Butterworth-Heinemann is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Application submitted.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-1-85617-567-8

For information on all Butterworth–Heinemann publications visit our Web site at www.elsevierdirect.com

 Printed in The United States of America

 08
 09
 10
 11
 12
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID International Sabre Foundation

Preface to the Sixth Edition

THERE IS a continuing demand for the **Purification of Laboratory Chemicals** book, to the extent that the 5th edition which was published in early 2003 was carefully translated into Chinese (ISBN 978-7-5025-94367) by Ying-Jie Lin, Wei Liu, Hui-Ping Wang, Xiao-Bo Sun, Qing-Shan Li and Jun-Gang Cao from Jilin University (People's Republic of China) in 2007. In response to the demand, it was timely to update the 5th edition to include the more recently developed purification procedures, as well as add to the list of compounds for purification. The latter comprise some commercially available compounds that have gained usefulness and popularity in the past few years.

The first two chapters have been updated, sections of current interest have been expanded and new sections added. Chapter 3 has been rewritten so that areas of work that have lost popularity have been reduced in size or deleted and sections on recent, and now commonly adopted, technologies have been inserted. Chapters 4, 5 and 6 are now completely reorganized, and each is subdivided into several sections which will make it easier for the reader to locate compounds of similar classification. Chapter 4 is subdivided into aliphatic, alicyclic, aromatic and heterocyclic compounds, Chapter 5 has been subdivided into inorganic and metal-organic compounds, and Chapter 6 has been subdivided into amino acids and peptides, proteins, enzymes, DNA and RNA, carotenoids, carbohydrates, steroids and a miscellaneous section which includes small biologically active substances such as antibiotics, coenzymes, co-factors, lipids, phospholipids, polynucleotides and vitamins. Some useful compounds that have been added recently to commercial catalogues have been included in these three chapters. A large number of derivatives of previous entries with their physical properties and purifications have been inserted together with extensive referencing to the original literature including *Beilstein* references. This resulted in an increase in size of the 5th edition, in text and number of compounds, by over 20%. The purifications of some 7400 substances are described. As in the 5th edition, substance entries are in alphabetical order within subsections and each substance is defined by its Chemical Abstracts Service (CAS) Registry Number. An index of these numbers with their respective page numbers at the end of the book will make it possible to locate the purification of a desired substance readily and to check if the substance is contained in the book. For this purpose we thank Rodney Armarego for setting up a *Macro* on the MacBook Pro computer used for collating the CAS Registry Numbers for the index. There is also a General Index of Contents.

Website references of distributors of substances and/or of equipment have been included in the text. However, since these may change in the future, users should check for current websites of suppliers. The bibliographies have been updated, and websites of a few publishers and book suppliers have been included. Several texts with publication dates older than fifteen years have been deleted except for a few very useful textbooks which are out of print and where recent editions have not been produced. In these cases it is usually possible to obtain used copies from good suppliers of old books, for which there are several websites, e.g. visit Google under "old books suppliers"; also visit websites such as http://www.abebooks.com, <a href="htt

We thank readers who have provided advice, constructive criticism and new information. We are grateful for any further comments, suggestions, amendments and criticisms which could, perhaps, be inserted in a second printing of this edition. We thank Joe Papa BS MS (EXAXOL in

Clearwater, Florida, USA) in particular for sharing his experiences on the purification of several inorganic substances in this and previous editions, and also for allowing us to use his analytical results on the amounts of metal impurities at various stages of purification of several salts.

We thank Dr Pauline M. Armarego for assistance in the painstaking task of entering data into respective files, for many hours of proofreading, correcting typographical errors and checking CAS Registry Numbers against their respective entries.

One of us (W.L.F.A) owes a debt of gratitude to Dr Desmond (Des) J. Brown of the Research School of Chemistry, ANU, for unfailing support and advice over several decades and for providing data that was difficult to acquire not only for this edition but also for the previous five editions of this book.

One of us (C.L.L.C) would like to acknowledge the support and friendship of her many research staff and students (past and present at ANU and A*STAR). She especially thanks Drs Paul Huleatt, Paul Bernardo, Felicity Moore and Brendan Burkett for their unfailing faith in her, through chemical and personal journeys both in Singapore and Australia. The legacy of this book is for Kimberley and Victoria Tse because it is cool to be a scientist!

We thank Mrs Joan Smith, librarian of the Research School of Chemistry, ANU, for her generous help in many library matters which made the tedious task of checking references more enduring.

W.L.F. Armarego & C.L.L. Chai

November 2008

Preface to the First Edition

WE BELIEVE that a need exists for a book to help the chemist or biochemist who wishes to purify the reagents she or he uses. This need is emphasised by the previous lack of any satisfactory central source of references dealing with individual substances. Such a lack must undoubtedly have been a great deterrent to many busy research workers who have been left to decide whether to purify at all, to improvise possible methods, or to take a chance on finding, somewhere in the chemical literature, methods used by some previous investigators.

Although commercially available laboratory chemicals are usually satisfactory, as supplied, for most purposes in scientific and technological work, it is also true that for many applications further purification is essential.

With this thought in mind, the present volume sets out, first, to tabulate methods, taken from the literature, for purifying some thousands of individual commercially available chemicals. To help in applying this information, two chapters describe the more common processes currently used for purification in chemical laboratories and give fuller details of new methods which appear likely to find increasing application for the same purpose. Finally, for dealing with substances not separately listed, a chapter is included setting out the usual methods for purifying specific classes of compounds.

To keep this book to a convenient size, and bearing in mind that its most likely users will be laboratory-trained, we have omitted manipulative details with which they can be assumed to be familiar, and also detailed theoretical discussion. Both are readily available elsewhere, for example in Vogel's very useful book Practical Organic Chemistry (Longmans, London, 3rd ed., 1956), or Fieser's Experiments in Organic Chemistry (Heath, Boston, 3rd ed., 1957).

For the same reason, only limited mention is made of the kinds of impurities likely to be present, and of the tests for detecting them. In many cases, this information can be obtained readily from existing monographs.

By its nature, the present treatment is not exhaustive, nor do we claim that any of the methods taken from the literature are the best possible. Nevertheless, we feel that the information contained in this book is likely to be helpful to a wide range of laboratory workers, including physical and inorganic chemists, research students, biochemists, and biologists. We hope that it will also be of use, although perhaps to only a limited extent, to experienced organic chemists.

We are grateful to Professor A. Albert and Dr D.J. Brown for helpful comments on the manuscript.

D.D.P., W.L.F.A. & D.R.P. 1966

Preface to the Second Edition

SINCE the publication of the first edition of this book, there have been major advances in purification procedures. Sensitive methods have been developed for the detection and elimination of progressively lower levels of impurities. Increasingly stringent requirements for reagent purity have gone hand-in-hand with developments in semiconductor technology, in the preparation of special alloys and in the isolation of highly biologically active substances. The need to eliminate trace impurities at the micro- and nanogram levels has placed greater emphasis on ultrapurification technique. To meet these demands the range of purities of laboratory chemicals has become correspondingly extended. Purification of individual chemicals thus depends more and more critically on the answers to two questions-Purification from what, and to what permissible level of contamination. Where these questions can be specifically answered, suitable methods of purification can usually be devised.

Several periodicals devoted to ultrapurification and separations have been started. These include "Progress in Separation and Purification" (vol. 1) Ed. E.S. Perry, Wiley-Interscience, New York, vols. 1-4, 1968-1971, and **Separation and Purification Methods**, Ed. E.S.Perry and C.J.van Oss, Marcel Dekker, New York, vol. 1, 1973. Nevertheless, there still remains a broad area in which a general improvement in the level of purity of many compounds can be achieved by applying more or less conventional procedures. The need for a convenient source of information on methods of purifying available laboratory chemicals was indicated by the continuing demand for copies of this book even though it had been out of print for several years.

We have sought to revise and update this volume, deleting sections that have become more familiar or less important, and incorporating more where so that is the number of compounds in Chapters 3 and 4 have been increased appreciably. Also, further details in purification and physical constants are given for many compounds that were listed in the first edition. We take this opportunity to thank users of the first edition who pointed out errors and omissions, or otherwise suggested improvements or additional material that should be included. We are indebted to Mrs S.Schenk who emerged from retirement to type this manuscript. D.D.P., W.L.F.A. & D.R.P.

1980

Preface to the Third Edition

THE CONTINUING demand for this monograph and the publisher's request that we prepare a new edition are an indication that **Purification of Laboratory Chemicals** fills a gap in many chemists' reference libraries and laboratory shelves. The present volume is an updated edition that contains significantly more detail than the previous editions, as well as an increase in the number of individual entries and a new chapter.

Additions have been made to Chapters 1 and 2 in order to include more recent developments in techniques (e.g. Schlenk-type, cf p. 10), and chromatographic methods and materials. Chapter 3 still remains the core of the book, and lists in alphabetical order relevant information on ca4000 organic compounds. Chapter 4 gives a smaller listing of ca 750 inorganic and metal-organic substances, and makes a total increase of ca 13% of individual entries in these two chapters. Some additions have also been made to Chapter 5.

We are currently witnessing a major development in the use of physical methods for purifying large molecules and macromolecules, especially of biological origin. Considerable developments in molecular biology are apparent in techniques for the isolation and purification of key biochemicals and substances of high molecular weight. In many cases something approaching homogeneity has been achieved, as evidenced by electrophoresis, immunological and other independent criteria. We have consequently included a new section, Chapter 6, where we list upwards

Preface to the First Edition

WE BELIEVE that a need exists for a book to help the chemist or biochemist who wishes to purify the reagents she or he uses. This need is emphasised by the previous lack of any satisfactory central source of references dealing with individual substances. Such a lack must undoubtedly have been a great deterrent to many busy research workers who have been left to decide whether to purify at all, to improvise possible methods, or to take a chance on finding, somewhere in the chemical literature, methods used by some previous investigators.

Although commercially available laboratory chemicals are usually satisfactory, as supplied, for most purposes in scientific and technological work, it is also true that for many applications further purification is essential.

With this thought in mind, the present volume sets out, first, to tabulate methods, taken from the literature, for purifying some thousands of individual commercially available chemicals. To help in applying this information, two chapters describe the more common processes currently used for purification in chemical laboratories and give fuller details of new methods which appear likely to find increasing application for the same purpose. Finally, for dealing with substances not separately listed, a chapter is included setting out the usual methods for purifying specific classes of compounds.

To keep this book to a convenient size, and bearing in mind that its most likely users will be laboratory-trained, we have omitted manipulative details with which they can be assumed to be familiar, and also detailed theoretical discussion. Both are readily available elsewhere, for example in Vogel's very useful book Practical Organic Chemistry (Longmans, London, 3rd ed., 1956), or Fieser's Experiments in Organic Chemistry (Heath, Boston, 3rd ed., 1957).

For the same reason, only limited mention is made of the kinds of impurities likely to be present, and of the tests for detecting them. In many cases, this information can be obtained readily from existing monographs.

By its nature, the present treatment is not exhaustive, nor do we claim that any of the methods taken from the literature are the best possible. Nevertheless, we feel that the information contained in this book is likely to be helpful to a wide range of laboratory workers, including physical and inorganic chemists, research students, biochemists, and biologists. We hope that it will also be of use, although perhaps to only a limited extent, to experienced organic chemists.

We are grateful to Professor A. Albert and Dr D.J. Brown for helpful comments on the manuscript.

D.D.P., W.L.F.A. & D.R.P. 1966

Preface to the Second Edition

SINCE the publication of the first edition of this book, there have been major advances in purification procedures. Sensitive methods have been developed for the detection and elimination of progressively lower levels of impurities. Increasingly stringent requirements for reagent purity have gone hand-in-hand with developments in semiconductor technology, in the preparation of special alloys and in the isolation of highly biologically active substances. The need to eliminate trace impurities at the micro- and nanogram levels has placed greater emphasis on ultrapurification technique. To meet these demands the range of purities of laboratory chemicals has become correspondingly extended. Purification of individual chemicals thus depends more and more critically on the answers to two questions-Purification from what, and to what permissible level of contamination. Where these questions can be specifically answered, suitable methods of purification can usually be devised.

Several periodicals devoted to ultrapurification and separations have been started. These include "Progress in Separation and Purification" (vol. 1) Ed. E.S. Perry, Wiley-Interscience, New York, vols. 1-4, 1968-1971, and **Separation and Purification Methods**, Ed. E.S.Perry and C.J.van Oss, Marcel Dekker, New York, vol. 1, 1973. Nevertheless, there still remains a broad area in which a general improvement in the level of purity of many compounds can be achieved by applying more or less conventional procedures. The need for a convenient source of information on methods of purifying available laboratory chemicals was indicated by the continuing demand for copies of this book even though it had been out of print for several years.

We have sought to revise and update this volume, deleting sections that have become more familiar or less important, and incorporating more where so that is the number of compounds in Chapters 3 and 4 have been increased appreciably. Also, further details in purification and physical constants are given for many compounds that were listed in the first edition. We take this opportunity to thank users of the first edition who pointed out errors and omissions, or otherwise suggested improvements or additional material that should be included. We are indebted to Mrs S.Schenk who emerged from retirement to type this manuscript. D.D.P., W.L.F.A. & D.R.P.

1980

Preface to the Third Edition

THE CONTINUING demand for this monograph and the publisher's request that we prepare a new edition are an indication that **Purification of Laboratory Chemicals** fills a gap in many chemists' reference libraries and laboratory shelves. The present volume is an updated edition that contains significantly more detail than the previous editions, as well as an increase in the number of individual entries and a new chapter.

Additions have been made to Chapters 1 and 2 in order to include more recent developments in techniques (e.g. Schlenk-type, cf p. 10), and chromatographic methods and materials. Chapter 3 still remains the core of the book, and lists in alphabetical order relevant information on ca4000 organic compounds. Chapter 4 gives a smaller listing of ca 750 inorganic and metal-organic substances, and makes a total increase of ca 13% of individual entries in these two chapters. Some additions have also been made to Chapter 5.

We are currently witnessing a major development in the use of physical methods for purifying large molecules and macromolecules, especially of biological origin. Considerable developments in molecular biology are apparent in techniques for the isolation and purification of key biochemicals and substances of high molecular weight. In many cases something approaching homogeneity has been achieved, as evidenced by electrophoresis, immunological and other independent criteria. We have consequently included a new section, Chapter 6, where we list upwards

Preface to the First Edition

WE BELIEVE that a need exists for a book to help the chemist or biochemist who wishes to purify the reagents she or he uses. This need is emphasised by the previous lack of any satisfactory central source of references dealing with individual substances. Such a lack must undoubtedly have been a great deterrent to many busy research workers who have been left to decide whether to purify at all, to improvise possible methods, or to take a chance on finding, somewhere in the chemical literature, methods used by some previous investigators.

Although commercially available laboratory chemicals are usually satisfactory, as supplied, for most purposes in scientific and technological work, it is also true that for many applications further purification is essential.

With this thought in mind, the present volume sets out, first, to tabulate methods, taken from the literature, for purifying some thousands of individual commercially available chemicals. To help in applying this information, two chapters describe the more common processes currently used for purification in chemical laboratories and give fuller details of new methods which appear likely to find increasing application for the same purpose. Finally, for dealing with substances not separately listed, a chapter is included setting out the usual methods for purifying specific classes of compounds.

To keep this book to a convenient size, and bearing in mind that its most likely users will be laboratory-trained, we have omitted manipulative details with which they can be assumed to be familiar, and also detailed theoretical discussion. Both are readily available elsewhere, for example in Vogel's very useful book Practical Organic Chemistry (Longmans, London, 3rd ed., 1956), or Fieser's Experiments in Organic Chemistry (Heath, Boston, 3rd ed., 1957).

For the same reason, only limited mention is made of the kinds of impurities likely to be present, and of the tests for detecting them. In many cases, this information can be obtained readily from existing monographs.

By its nature, the present treatment is not exhaustive, nor do we claim that any of the methods taken from the literature are the best possible. Nevertheless, we feel that the information contained in this book is likely to be helpful to a wide range of laboratory workers, including physical and inorganic chemists, research students, biochemists, and biologists. We hope that it will also be of use, although perhaps to only a limited extent, to experienced organic chemists.

We are grateful to Professor A. Albert and Dr D.J. Brown for helpful comments on the manuscript.

D.D.P., W.L.F.A. & D.R.P. 1966

Preface to the Second Edition

SINCE the publication of the first edition of this book, there have been major advances in purification procedures. Sensitive methods have been developed for the detection and elimination of progressively lower levels of impurities. Increasingly stringent requirements for reagent purity have gone hand-in-hand with developments in semiconductor technology, in the preparation of special alloys and in the isolation of highly biologically active substances. The need to eliminate trace impurities at the micro- and nanogram levels has placed greater emphasis on ultrapurification technique. To meet these demands the range of purities of laboratory chemicals has become correspondingly extended. Purification of individual chemicals thus depends more and more critically on the answers to two questions-Purification from what, and to what permissible level of contamination. Where these questions can be specifically answered, suitable methods of purification can usually be devised.

Several periodicals devoted to ultrapurification and separations have been started. These include "Progress in Separation and Purification" (vol. 1) Ed. E.S. Perry, Wiley-Interscience, New York, vols. 1-4, 1968-1971, and **Separation and Purification Methods**, Ed. E.S.Perry and C.J.van Oss, Marcel Dekker, New York, vol. 1, 1973. Nevertheless, there still remains a broad area in which a general improvement in the level of purity of many compounds can be achieved by applying more or less conventional procedures. The need for a convenient source of information on methods of purifying available laboratory chemicals was indicated by the continuing demand for copies of this book even though it had been out of print for several years.

We have sought to revise and update this volume, deleting sections that have become more familiar or less important, and incorporating more where so that is the number of compounds in Chapters 3 and 4 have been increased appreciably. Also, further details in purification and physical constants are given for many compounds that were listed in the first edition. We take this opportunity to thank users of the first edition who pointed out errors and omissions, or otherwise suggested improvements or additional material that should be included. We are indebted to Mrs S.Schenk who emerged from retirement to type this manuscript. D.D.P., W.L.F.A. & D.R.P.

1980

Preface to the Third Edition

THE CONTINUING demand for this monograph and the publisher's request that we prepare a new edition are an indication that **Purification of Laboratory Chemicals** fills a gap in many chemists' reference libraries and laboratory shelves. The present volume is an updated edition that contains significantly more detail than the previous editions, as well as an increase in the number of individual entries and a new chapter.

Additions have been made to Chapters 1 and 2 in order to include more recent developments in techniques (e.g. Schlenk-type, cf p. 10), and chromatographic methods and materials. Chapter 3 still remains the core of the book, and lists in alphabetical order relevant information on ca4000 organic compounds. Chapter 4 gives a smaller listing of ca 750 inorganic and metal-organic substances, and makes a total increase of ca 13% of individual entries in these two chapters. Some additions have also been made to Chapter 5.

We are currently witnessing a major development in the use of physical methods for purifying large molecules and macromolecules, especially of biological origin. Considerable developments in molecular biology are apparent in techniques for the isolation and purification of key biochemicals and substances of high molecular weight. In many cases something approaching homogeneity has been achieved, as evidenced by electrophoresis, immunological and other independent criteria. We have consequently included a new section, Chapter 6, where we list upwards

of 100 biological substances to illustrate their current methods of purification. In this chapter the details have been kept to a minimum, but the relevant references have been included.

The lists of individual entries in Chapters 3 and 4 range in length from single-line entries to ca one page or more for solvents such as acetonitrile, benzene, ethanol and methanol. Some entries include information such as likely contaminants and storage conditions. More data referring to physical properties have been inserted for most entries [i.e. melting and boiling points, refractive indexes, densities, specific optical rotations (where applicable) and UV absorption data]. Inclusion of molecular weights should be useful when deciding on the quantities of reagents needed to carry out relevant synthetic reactions, or preparing analytical solutions. The Chemical Abstracts registry numbers have also been inserted for almost all entries and should assist in the precise identification of the substances.

In the past ten years laboratory workers have become increasingly conscious of safety in the laboratory environment. We have therefore in three places in Chapter 1 (pp. 3 and 33, and bibliography p. 52) stressed more strongly the importance of safety in the laboratory. Also, where possible, in Chapters 3 and 4 we draw attention to the dangers involved with the manipulation of some hazardous substances.

The worldwide facilities for retrieving chemical information provided by the Chemical Abstract Service (CAS on-line) have made it a relatively easy matter to obtain CAS registry numbers of substances, and most of the numbers in this monograph were obtained *via* CAS on-line. We should point out that two other available useful files are CSCHEM and CSCORP, which provide, respectively, information on chemicals (and chemical products) and addresses and telephone numbers of the main branch offices of chemical suppliers.

The present edition has been produced on an IBM PC and a Laser Jet printer using the Microsoft Word (4.0) word-processing program with a set stylesheet. This has allowed the use of a variety of fonts and font sizes which has made the presentation more attractive than in the previous edition. Also, by altering the format and increasing slightly the sizes of the pages, the length of the monograph has been reduced from 568 to 391 pages. The reduction in the number of pages has been achieved in spite of the increase of ca 15% of total text.

We extend our gratitude to the readers whose suggestions have helped to improve the monograph, and to those who have told us of their experiences with some of the purifications stated in the previous editions, and in particular with the hazards that they have encountered. We are deeply indebted to Dr M.D. Fenn for the several hours that he has spent on the terminal to provide us with a large number of CAS registry numbers.

This monograph could not have been produced without the expert assistance of Mr David Clarke who has spent many hours loading the necessary fonts in the computer, and for advising one of the authors (W.L.F.A.) on how to use them together with the idiosyncrasies of Microsoft Word. D.D.P. & W.L.F.A.

1988

Preface to the Fourth Edition

THE AIMS of the first three editions, to provide purification procedures of commercially available chemicals and biochemicals from published literature data, are continued in this fourth edition. Since the third edition in 1988 the number of new chemicals and biochemicals that have been added to most chemical and biochemical catalogues have increased enormously. Accordingly there is a need to increase the number of entries with more recent useful reagents and chemical and biochemical intermediates. With this in mind, together with the need to reorganise and update general purification procedures, particularly in the area of biological macromolecules, as well as the time lapse since the previous publication, this fourth edition of **Purification of Laboratory Chemicals** has been produced. Chapter 1 has been reorganised with some updating, and by using a smaller font it was kept to a reasonable number of pages. Chapters 2 and 5 were similarly altered and have been combined into one chapter. Eight hundred and three hundred and fifty entries have been added to Chapters 3 (25% increase) and 4 (44% increase), respectively, and four hundred entries (310% increase) were added to Chapter 5 (Chapter 6 in the Third Edition), making a total of 5700 entries-all resulting in an increase from 391 to 529 pages, i.e., by ca 35%.

Many references to the original literature have been included remembering that some of the best references happened to be in the older literature. Every effort has been made to provide the best references, but this may not have been achieved in all cases. Standard abbreviations, listed on page 1, have been used throughout this edition to optimise space, except where no space advantage was achieved, in which cases the complete words have been written down to improve the flow of the sentences.

With the increasing facilities for information exchange, chemical, biochemical and equipment suppliers are making their catalogue information available on the Internet; e.g., Aldrich-Fluka-Sigma catalogue information is available on the World Wide Web by using the address http://www.sigma.sial.com, and GIBCO BRL catalogue information from http://www.lifetech.com, as well as on CD-ROMS which are regularly updated. Facility for enquiring about, ordering and paying for items is available *via* the Internet. CAS on-line can be accessed on the Internet, and CAS data is available now on CD-ROM. Also biosafety bill boards can similarly be obtained by sending SUBSCRIBE SAFETY John Doe at the address "listserv@uvmvm.uvm.edu", SUBSCRIBE BIOSAFETY at the address "listserv@mitvma.mit.edu", and SUBSCRIBE RADSAF at the address "listserv@romulus.ehs.uiuc.edu"; and the Occupational, Health and Safety information (Australia) is available at the address "http://www.worksafe.gov.au/~wsa1". Sigma-Aldrich provided Material Safety data sheets on CD-ROMs.

It is with much sadness that Dr Douglas D. Perrin was unable to participate in the preparation of the present edition due to illness. His contributions towards the previous editions have been substantial, and his drive and tenacity have been greatly missed.

The Third Edition was prepared on an IBM-PC, and the previous IBM files were converted into Macintosh files. These have now been reformatted on a Macintosh LC575 computer, and all further data to complete the Fourth Edition were added to these files. The text was printed with a Hewlett-Packard 4MV -600dpi Laser Jet printer, which gives a clearer resolution.

I thank my wife Dr Pauline M. Armarego, also an organic chemist, for the arduous and painstaking task of entering the new data into the respective files, and for the numerous hours of proofreading as well as the corrections of typographic errors in the files. I should be grateful to my readers for any comments, suggestions, amendments and criticisms which could, perhaps, be inserted in the second printing of this edition.

W.L.F. Armarego, 30 June 1996

of 100 biological substances to illustrate their current methods of purification. In this chapter the details have been kept to a minimum, but the relevant references have been included.

The lists of individual entries in Chapters 3 and 4 range in length from single-line entries to ca one page or more for solvents such as acetonitrile, benzene, ethanol and methanol. Some entries include information such as likely contaminants and storage conditions. More data referring to physical properties have been inserted for most entries [i.e. melting and boiling points, refractive indexes, densities, specific optical rotations (where applicable) and UV absorption data]. Inclusion of molecular weights should be useful when deciding on the quantities of reagents needed to carry out relevant synthetic reactions, or preparing analytical solutions. The Chemical Abstracts registry numbers have also been inserted for almost all entries and should assist in the precise identification of the substances.

In the past ten years laboratory workers have become increasingly conscious of safety in the laboratory environment. We have therefore in three places in Chapter 1 (pp. 3 and 33, and bibliography p. 52) stressed more strongly the importance of safety in the laboratory. Also, where possible, in Chapters 3 and 4 we draw attention to the dangers involved with the manipulation of some hazardous substances.

The worldwide facilities for retrieving chemical information provided by the Chemical Abstract Service (CAS on-line) have made it a relatively easy matter to obtain CAS registry numbers of substances, and most of the numbers in this monograph were obtained *via* CAS on-line. We should point out that two other available useful files are CSCHEM and CSCORP, which provide, respectively, information on chemicals (and chemical products) and addresses and telephone numbers of the main branch offices of chemical suppliers.

The present edition has been produced on an IBM PC and a Laser Jet printer using the Microsoft Word (4.0) word-processing program with a set stylesheet. This has allowed the use of a variety of fonts and font sizes which has made the presentation more attractive than in the previous edition. Also, by altering the format and increasing slightly the sizes of the pages, the length of the monograph has been reduced from 568 to 391 pages. The reduction in the number of pages has been achieved in spite of the increase of ca 15% of total text.

We extend our gratitude to the readers whose suggestions have helped to improve the monograph, and to those who have told us of their experiences with some of the purifications stated in the previous editions, and in particular with the hazards that they have encountered. We are deeply indebted to Dr M.D. Fenn for the several hours that he has spent on the terminal to provide us with a large number of CAS registry numbers.

This monograph could not have been produced without the expert assistance of Mr David Clarke who has spent many hours loading the necessary fonts in the computer, and for advising one of the authors (W.L.F.A.) on how to use them together with the idiosyncrasies of Microsoft Word. D.D.P. & W.L.F.A.

1988

Preface to the Fourth Edition

THE AIMS of the first three editions, to provide purification procedures of commercially available chemicals and biochemicals from published literature data, are continued in this fourth edition. Since the third edition in 1988 the number of new chemicals and biochemicals that have been added to most chemical and biochemical catalogues have increased enormously. Accordingly there is a need to increase the number of entries with more recent useful reagents and chemical and biochemical intermediates. With this in mind, together with the need to reorganise and update general purification procedures, particularly in the area of biological macromolecules, as well as the time lapse since the previous publication, this fourth edition of **Purification of Laboratory Chemicals** has been produced. Chapter 1 has been reorganised with some updating, and by using a smaller font it was kept to a reasonable number of pages. Chapters 2 and 5 were similarly altered and have been combined into one chapter. Eight hundred and three hundred and fifty entries have been added to Chapters 3 (25% increase) and 4 (44% increase), respectively, and four hundred entries (310% increase) were added to Chapter 5 (Chapter 6 in the Third Edition), making a total of 5700 entries-all resulting in an increase from 391 to 529 pages, i.e., by ca 35%.

Many references to the original literature have been included remembering that some of the best references happened to be in the older literature. Every effort has been made to provide the best references, but this may not have been achieved in all cases. Standard abbreviations, listed on page 1, have been used throughout this edition to optimise space, except where no space advantage was achieved, in which cases the complete words have been written down to improve the flow of the sentences.

With the increasing facilities for information exchange, chemical, biochemical and equipment suppliers are making their catalogue information available on the Internet; e.g., Aldrich-Fluka-Sigma catalogue information is available on the World Wide Web by using the address http://www.sigma.sial.com, and GIBCO BRL catalogue information from http://www.lifetech.com, as well as on CD-ROMS which are regularly updated. Facility for enquiring about, ordering and paying for items is available *via* the Internet. CAS on-line can be accessed on the Internet, and CAS data is available now on CD-ROM. Also biosafety bill boards can similarly be obtained by sending SUBSCRIBE SAFETY John Doe at the address "listserv@uvmvm.uvm.edu", SUBSCRIBE BIOSAFETY at the address "listserv@mitvma.mit.edu", and SUBSCRIBE RADSAF at the address "listserv@romulus.ehs.uiuc.edu"; and the Occupational, Health and Safety information (Australia) is available at the address "http://www.worksafe.gov.au/~wsa1". Sigma-Aldrich provided Material Safety data sheets on CD-ROMs.

It is with much sadness that Dr Douglas D. Perrin was unable to participate in the preparation of the present edition due to illness. His contributions towards the previous editions have been substantial, and his drive and tenacity have been greatly missed.

The Third Edition was prepared on an IBM-PC, and the previous IBM files were converted into Macintosh files. These have now been reformatted on a Macintosh LC575 computer, and all further data to complete the Fourth Edition were added to these files. The text was printed with a Hewlett-Packard 4MV -600dpi Laser Jet printer, which gives a clearer resolution.

I thank my wife Dr Pauline M. Armarego, also an organic chemist, for the arduous and painstaking task of entering the new data into the respective files, and for the numerous hours of proofreading as well as the corrections of typographic errors in the files. I should be grateful to my readers for any comments, suggestions, amendments and criticisms which could, perhaps, be inserted in the second printing of this edition.

W.L.F. Armarego, 30 June 1996

Preface to the Fifth Edition

THE DEMAND for **Purification of Laboratory Chemicals** has not abated since the publication of the fourth edition as evidenced by the number of printings and the sales. The request by the Editor for a fifth edition offered an opportunity to increase the usefulness of this book for laboratory purposes. It is with deep regret that mention should be made that Dr Douglas D. Perrin had passed away soon after the fourth edition was published. His input in the first three editions was considerable, and his presence has been greatly missed. A fresh, new and young outlook was required in order to increase the utility of this book, and it is with great pleasure that Dr Christina L.L. Chai, a Reader in Chemistry and leader of a research group in organic and bio-organic chemistry, has agreed to coauthor this edition. The new features of the fifth edition have been detailed below.

Chapters 1 and 2 have been reorganised and updated in line with recent developments. A new chapter on the Future of Purification has been added. It outlines developments in syntheses on solid supports, combinatorial chemistry as well as the use of ionic liquids for chemical reactions and reactions in fluorous media. These technologies are becoming increasingly useful and popular, so much so that many future commercially available substances will most probably be prepared using these procedures. Consequently, knowledge of their basic principles will be helpful in many purification methods of the future.

Chapters 4, 5 and 6 (3, 4 and 5 in the 4th ed.) form the bulk of the book. The number of entries has been increased to include the purification of many recent commercially available reagents that have become more and more popular in the syntheses of organic, inorganic and bio-organic compounds. Several purification procedures for commonly used liquids, e.g., solvents, had been entered with excessive thoroughness, but in many cases the laboratory worker only requires a simple, rapid but effective purification procedure for immediate use. In such cases a **rapid purification** procedure has been inserted at the end of the respective entry, and should be satisfactory for most purposes. With the increased use of solid phase synthesis, even for small molecules, and the use of reagents on solid support (e.g., on polystyrene) for reactions in liquid media, compounds on solid support have become increasingly commercially available. These have been inserted at the end of the respective entry and have been listed in the General Index together with the above rapid purification entries.

A large number of substances are ionisable in aqueous solutions, and knowledge of their ionisation constants, stated as pK (pKa) values, can be of importance not only in their purification but also in their reactivity. Literature values of the pK's have been inserted for ionisable substances, and where values could not be found they were estimated (pK_{Est}). The estimates are usually so close to the true values as not to affect the purification process or the reactivity seriously. The book will thus be a good compilation of pK values for ionisable substances.

Almost all the entries in Chapters 4, 5 and 6 have CAS (Chemical Abstract Service) Registry Numbers to identify them, and these have been entered for each substance. Unlike chemical names which may have more than one synonymous name, there is only one CAS Registry Number for each substance (with only a few exceptions, e.g., where a substance may have another number before purification, or before determination of absolute configuration). To simplify the method for locating the purification of a substance, a CAS Registry Number Index with the respective page numbers has been included after the General Index at the end of the book. This will also provide the reader with a rapid way to see if the purification of a particular substance has been reported in the book. The brief General Index includes page references to procedures and equipment, page references to abbreviations of compounds, e.g., TRIS, as well as the names of substances for which a Registry Number was not found.

Website references for distributors of substances or/and of equipment have been included in the text. However, since these may be changed in the future we must rely on the suppliers to inform users of their change in website references.

We wish to thank readers who have provided advice, constructive criticism and new information for inclusion in this book. We should be grateful to our readers for any further comments, suggestions, amendments and criticisms which could, perhaps, be inserted in a second printing of this edition. In particular, we thank Professor Ken-chi Sugiura (Graduate School of Science, Tokyo Metropolitan University, Japan) who has provided us with information on the purification of several organic compounds from his own experiences, and Joe Papa BS MS (EXAXOL in Clearwater, Florida, USA) who has provided us not only with his experiences in the purification of many inorganic substances in this book, but also gave us his analytical results on the amounts of other metal impurities at various stages of purification of several salts. We thank them graciously for permission to include their reports in this work. We express our gratitude to Dr William B. Cowden for his generous advice on computer hardware and software over many years and for providing an Apple LaserWriter (16/600PS) which we used to produce the master copy of this book. We also extend our sincere thanks to Dr Bart Eschler for advice on computer hardware and software and for assistance in setting up the computers (iMac and eMac) used to produce this book.

We thank Dr Pauline M. Armarego for assistance in the painstaking task of entering data into respective files, for many hours of proofreading, correcting typographical errors and checking CAS Registry Numbers against their respective entries.

One of us (W.L.F.A) owes a debt of gratitude to Dr Desmond (Des) J. Brown of the Research School of Chemistry, ANU, for unfailing support and advice over several decades and for providing data that was difficult to acquire not only for this edition but also for the previous four editions of this book.

One of us (C.L.L.C) would especially like to thank her many research students (past and present) for their unwavering support, friendship and loyalty, which enabled her to achieve what she now has. She wishes also to thank her family for their love, and would particularly like to dedicate her contribution towards this book to the memory of her brother Andrew who had said that he should have been a scientist.

We thank Mrs. Joan Smith, librarian of the Research School of Chemistry, ANU, for her generous help in many library matters, which has made the tedious task of checking references more enduring.

W.L.F. Armarego & C.L.L. Chai November 2002

CHAPTER 1

COMMON PHYSICAL TECHNIQUES USED IN PURIFICATION

INTRODUCTION

Purity is a matter of degree. Other than contaminants such as dust, paper fibres, wax, cork, etc., that may have been inadvertently introduced into the sample during manufacture, all commercially available chemical substances are in some measure impure. Any amounts of unreacted starting material, intermediates, by-products, isomers and related compounds may be present depending on the synthetic or isolation procedures used for preparing the substances. Inorganic reagents may deteriorate because of defective packaging (glued liners affected by sulfuric acid, zinc extracted from white rubber stoppers by ammonia), corrosion or prolonged storage. Organic molecules may undergo changes on storage. In extreme cases the container may be incorrectly labeled or, where compositions are given, they may be misleading or inaccurate for the proposed use. Where any doubt exists, it is usual to check for impurities by appropriate spot tests, or by recourse to tables of physical or spectral properties such as the extensive infrared and NMR libraries published by the Sigma Aldrich Chemical Co.

The important question, then, is not whether a substance is pure but whether a given sample is sufficiently pure for some intended purpose. That is, are the contaminants likely to interfere in the process or measurement that is to be studied. By suitable manipulation it is often possible to reduce levels of impurities to acceptable limits, but absolute purity is an ideal which, no matter how closely approached, can never be attained. A *negative* physical or chemical test indicates only that the amount of an impurity in a substance lies below a certain sensitivity level; no test can demonstrate that a likely impurity is entirely absent.

When setting out to purify a laboratory chemical, it is desirable that the starting material is of the best grade commercially available. Particularly among organic solvents there is a range of qualities varying from *laboratory chemical* to *spectroscopic* and *chromatographic* grades. Many of these are suitable for use as received. With the more common reagents it is usually possible to obtain from the current literature some indications of likely impurities, their probable concentrations and methods for detecting them. However, in many cases complete analyses are not given so that significant concentrations of unspecified impurities may be present.

THE QUESTION OF PURITY

Solvents and substances that are specified as *pure* for a particular purpose may, in fact, be quite impure for other uses. Absolute ethanol may contain traces of benzene, which makes it unsuitable for ultraviolet spectroscopy, or plasticizers which make it unsuitable for use in solvent extraction. See also the section on "Criteria of Purity" in Chapter 2.

Irrespective of the grade of material to be purified, it is essential that some criteria exist for assessing the degree of purity of the final product. The more common of these include:

- 1. Examination of physical properties such as:
 - (a) Melting point, freezing point, boiling point, and the freezing curve (i.e. the variation, with time, in the freezing point of a substance that is being slowly and continuously frozen).
 - (b) Density.
 - (c) Refractive index at a specified temperature and wavelength. The sodium D line at 589.26 nm (weighted mean of the D_1 and D_2 lines) is the usual wavelength used but the refractive index values at other wavelengths can often be interpolated from a plot of refractive index versus $1/(\text{wavelength})^2$.

- (d) Specific conductivity. (This can be used to detect, for example, water, salts, inorganic and organic acids and bases, in non-electrolytes).
- (e) Optical rotation, optical rotatory dispersion and circular dichroism.
- 2. Empirical analysis, for C, H, N, ash, etc.
- 3. Chemical tests for particular types of impurities, e.g. for peroxides in aliphatic ethers (with acidified KI), or for water in solvents (quantitatively by the Karl Fischer method, see Fieser and Fieser, *Reagents for Organic Synthesis*, J. Wiley & Sons, NY, Vol 1 pp. 353, 528 1967, Library of Congress Catalog Card No 66-27894, also see Karl Fischer titrant or Hydranal –Titrant type 5E [64-17-5] and other types in Fluka catalogue, Sigma-Aldrich Catalogue and <htp://www.sigmaaldrich.com/Area_of_Interest/ Analytical Chromatography/ Titration/HYDRANAL.html>).
- 4. Physical tests for particular types of impurities:

Emission and atomic absorption spectroscopy for detecting organic impurities and determining metal ions. Chromatography, including paper, thin layer, liquid (high, medium and normal pressure), flash and vapour phase.

Electron spin resonance for detecting free radicals. Other spectroscopic methods (see 5 below).

5. Examination of spectroscopic properties

Nuclear Magnetic Resonance (¹H, ¹³C, ³¹P, ¹⁹F NMR etc) Infrared spectroscopy (IR and Fourier Transform IR) Ultraviolet (UV), visible and fluorescence spectroscopy X-ray photoelectron spectroscopy (XPS) Atomic absorption spectroscopy (AAA) Mass spectroscopy [electron ionisation (EI), chemical ionisation (CI), electrospray ionisation (ESI), fast atom bombardment (FAB), matrix-associated laser desorption ionisation (MALDI), inductively coupled plasma-mass spectrmetry (ICP-MS, cf and <www.wcmclab.com>), etc]

- 6. Electrochemical methods (see Chapter 6 for macromolecules).
- 7. Nuclear methods which include a variety of radioactive elements as in organic reagents, complexes or salts.

A substance is usually taken to be of an acceptable purity when the measured property is unchanged by further treatment (especially if it agrees with a recorded value). In general, at least two different methods, such as recrystallisation and distillation, should be used in order to ensure maximum purity. Crystallisation may be repeated (from the same solvent or better from different solvents) until the substance has a constant melting point, and until it distils repeatedly within a narrow specified temperature range. The purified product should have spectroscopic properties which indicate that the traces of impurities left in the sample are of acceptable levels for the intended purpose.

With liquids, the refractive index at a specified temperature and wavelength is a sensitive test of purity. Note however that this is sensitive to dissolved gases such as O_2 , N_2 or CO_2 . Under favourable conditions, freezing curve studies are sensitive to impurity levels of as little as 0.001 moles percent. Analogous fusion curves or heat capacity measurements can be up to ten times as sensitive as this. With these exceptions, most of the above methods are rather insensitive, especially if the impurities and the substances in which they occur are chemically similar. In some cases, even an impurity comprising many parts per million of a sample may escape detection.

The common methods of purification, discussed below, comprise distillation (including fractional distillation, distillation under reduced pressure, sublimation and steam distillation), crystallisation, extraction, chromatographic, electrophoresis and other methods. In some cases, volatile and other impurities can be removed simply by heating. Impurities can also sometimes be eliminated by the formation of derivatives from which the purified material is regenerated (see Chapter 2).

SOURCES OF IMPURITIES

Some of the more obvious sources of contamination of solvents arise from storage in metal drums and plastic containers, and from contact with grease and screw caps. Many solvents contain water. Others have traces of acidic materials such as hydrochloric acid in chloroform. In both cases this leads to corrosion of the drum and contamination of the solvent by traces of metal ions, especially Fe^{3+} . Grease, for example on stopcocks of separating funnels and other apparatus, e.g. greased ground joints, is also likely to contaminate solvents during extractions and chemical manipulation. Oxygen from the air is also a source of contamination by virtue of its ability to produce small or large amounts of oxidation products (see section on the *Solubility of gases in liquids* below).

A much more general source of contamination that has not received the consideration it merits comes from the use of plastics for tubing and containers. Plasticisers can readily be extracted by organic solvents from PVC and other plastics, so that most solvents, irrespective of their grade (including spectrograde and ultrapure), have been reported to contain 0.1 to 5ppm of plasticiser [de Zeeuw, Jonkman and van Mansvelt Anal Biochem 67 339 1975]. Where large quantities of solvent are used for extraction followed by evaporation, this can introduce significant amounts of impurity, even exceeding the weight of the genuine extract and giving rise to spurious peaks in gas chromatography, for example of fatty acid methyl esters [Pascaud, Anal Biochem 18 570 1967]. Likely contaminants are di(2-ethylhexyl)phthalate and dibutyl phthalate, but upwards of 20 different phthalate esters are listed as plasticisers as well as adipates, azelates, phosphates, epoxides, polyesters and various heterocyclic compounds. These plasticisers would enter the solvent during passage through plastic tubing or from storage in containers or from plastic coatings used in cap liners for bottles. Such contamination could arise at any point in the manufacture or distribution of a solvent. The problem with cap liners is avoidable by using corks wrapped in aluminium foil, although even in this case care should be taken because aluminium foil can dissolve in some liquids e.g. benzylamine and propionic acid. Polycarbonate containers invariably leach out the 'estrogenic chemical' Bisphenol A (see Chapter 4, Aromatic Compounds) into the liquid in the container [Fiona Case Chemistry World 5 (No. 4) 12 2008, Rebecca Trager Chemistry World 5 (No. 5) 8 2008].

Solutions in contact with polyvinyl chloride can become contaminated with trace amounts of lead, titanium, tin, zinc, iron, magnesium or cadmium from additives used in the manufacture and moulding of PVC.

N-Phenyl-2-naphthylamine is a contaminant of solvents and biological materials that have been in contact with black rubber or neoprene (in which it is used as an antioxidant). Although this naphthylmine was only an artefact of the isolation procedures, it was at first thought to be a genuine component of vitamin K preparations, extracts of plant lipids, algae, butter, animal livers, eye tissue and kidney tissue [Brown *Chem Br* **3** 524 *1967*].

Most of the above impurities can be removed by prior distillation of the solvent, and care should be taken to avoid further contact with plastic or black rubber materials.

PRACTICES TO AVOID IMPURITIES

Cleaning practices

Laboratory glassware and Teflon equipment can be cleaned satisfactorily for most purposes by careful immersion into a solution of sodium dichromate in concentrated sulfuric acid, followed by draining, and rinsing copiously with distilled water. This is an exothermic reaction and should be carried out very cautiously in an efficient fume cupboard. [To prepare the chromic acid bath, dissolve 5 g of sodium dichromate (CARE: cancer suspect agent) in 5 mL of water. The dichromate solution is then cooled and stirred while 100 mL of concentrated sulfuric acid is added slowly. Store it in a glass bottle.] Where traces of chromium (adsorbed on the glass) must be avoided, a 1:1 mixture of concentrated sulfuric and nitric acid is a useful alternative. (Use in a fumehood to remove vapour and with adequate face protection.) Acid washing is also suitable for polyethylene ware, but prolonged contact (some weeks) leads to severe deterioration of the plastic. Alternatively an alcoholic solution of sodium hydroxide (alkaline base bath) can be used. This strongly corrosive solution (CAUTION: alkali causes serious burns) can be made by dissolving 120g of NaOH in 120 mL of water, followed by dilution to 1 L with 95% ethanol. This solution is conveniently stored in suitable alkali-resistant containers (e.g. Nalgene heavy duty rectangular tanks) with lids. Glassware can be soaked overnight in the base bath and rinsed thoroughly after soaking. For much glassware, washing with hot detergent solution, using tap water, followed by rinsing with distilled water and acetone, and heating to 200-300° overnight, is adequate. (Volumetric apparatus should not be heated: after washing it is rinsed with acetone, then pure diethyl ether, and air-dried. Prior to use, equipment can be rinsed with acetone, then with petroleum ether or pure diethyl ether, to remove the last traces of contaminants.) Teflon equipment should be soaked, first in acetone, then in petroleum ether or pure diethyl ether for ten minutes, then dried in a vacuum or flushed with dry nitrogen prior to use.

For trace metal analyses, prolonged soaking of equipment in 1M nitric acid may be needed to remove adsorbed metal ions.

Soxhlet thimbles and filter papers may contain traces of lipid-like materials. For manipulations with highly pure materials, as in trace-pesticide analysis, thimbles and filter papers should be thoroughly extracted with pure diethyl ether before use.

Trace impurities in silica gel for TLC can be removed by heating at 300° for 16hours or by Soxhlet extraction for 3hours with distilled chloroform, followed by 4hours extraction with distilled pure diethyl ether and drying in a vacuum.

Silylation of glassware and plasticware

Silylation of apparatus makes it repellant to water and hydrophilic materials. It minimises loss of solute by adsorption onto the walls of the container. The glassware is placed in a desiccator containing dichloromethyl silane (1mL) in a small beaker and evacuated for 5minutes. The vacuum is turned off and air is introduced into the desiccator, which allows the silylating agent to coat the glassware uniformly. The desiccator is then evacuated, closed and set aside for 2hours. The glassware is removed from the desiccator and baked at 180° for 2hours before use.

Fluka supplies a variety of silylating mixtures including (a) Silanization solution I (Fluka gel repel I: ~5% dimethyldichlorosilane in hexane, (b) Silanization solution II (Fluka gel repel II: ~2% dimethyldichlorosilane in 1,1,1-trichloroethane) for silanizing micro electrode, (c) Silanization solution III (Selectophore: 10% hexamethyldisilazane and 6% trimethylchlorosilane in 1-chloronaphthalene), (d) Silanization solution IV (Selectophore: ~4% trimethylchlorosilane in *o*-xylene, (e) Silanization solution V (Selectophore: ~5% dimethyldichlorosilane in *o*-xylene, and (f) Silanization solution VI (Selectophore: ~3% tributylchlorosilane in 1-chloronaphthalene for silanizing micropipette electrodes by the dip-and-bake method. Most powerful general silylating mixtures among many others are also available from Fluka (see catalogue).

Plasticware is treated similarly except that it is rinsed well with water before use instead of baking. Note that dichloromethyl silane is highly **TOXIC** and **VOLATILE**, and the whole operation should be carried out in an efficient fume cupboard.

An alternative procedure used for large apparatus is to rinse the apparatus with a 5% solution of dichloromethyl silane in chloroform, followed by several rinses with water before baking the apparatus at 180°/2hours (for glass) or drying in air (for plasticware).

A solution of 2% w/v of dichloromethyl silane in octamethyl cyclooctasilane or octmethylcyclotetrasiloxane is used to inhibit the sticking of polyacrylamide gels, agarose gels and nucleic acids to glass surfaces and these chemicals are available commercially [from Fluka (Riedel-deHaën)].

SAFETY PRECAUTIONS ASSOCIATED WITH THE PURIFICATION OF LABORATORY CHEMICALS

Although most of the manipulations involved in purifying laboratory chemicals are inherently safe, care is necessary if hazards are to be avoided in the chemical laboratory. In particular there are dangers inherent in the inhalation of vapours and absorption of liquids and low melting solids through the skin. In addition to the toxicity of solvents there is also the risk of their flammability and the possibility of eye damage. Chemicals, particularly in admixture, may be explosive. Compounds may be carcinogenic or otherwise deleterious to health. Present-day chemical catalogues specifically indicate the particular dangerous properties of the individual chemicals they list, and these should be consulted whenever the use of commercially available chemicals is contemplated. Radioisotopic labelled compounds pose special problems of human exposure and of disposal of laboratory waste. Hazardous purchased chemicals are accompanied by detailed MSDS (Material Safety Data Sheets), which contain information regarding their toxicity, safety handling procedures and the necessary precautions to be taken. These should be read carefully and filed for future reference. In addition, chemical management systems such as ChemWatch, which include information on hazards, handling and storage, are commercially available. There are a number of websites which provide selected safety information: they include the Sigma-Aldrich website <www.sigmaaldrich.com> and other chemical websites e.g. <www.ilpi.com/msds>.

The most common hazards are:

(1) Explosions due to the presence of peroxides formed by aerial oxidation of ethers and tetrahydrofuran, decahydronaphthalene, acrylonitrile, styrene and related compounds.

- (2) Compounds with low flash points (below room temperature). Examples are acetaldehyde, acetone, acetonitrile, benzene, carbon disulfide, cyclohexane, diethyl ether, ethyl acetate and *n*-hexane.
- (3) Contact of oxidising agents (KMnO₄, HClO₄, chromic acid) with organic liquids.
- (4) Toxic reactions with tissues (Me_2SO_4).

Aldrich Labware catalogue).

The laboratory should at least be well ventilated and safety glasses should be worn, particularly during distillations and manipulations carried out under reduced pressure or elevated temperatures. With this in mind we have endeavoured to warn users of this book whenever greater than usual care is needed in handling chemicals. As a general rule, however, all chemicals which users are unfamiliar with should be treated with extreme care and assumed to be highly flammable and toxic. The safety of others in a laboratory should always be foremost in mind, with ample warning whenever a potentially hazardous operation is in progress. Also, unwanted solutions or solvents should never be disposed of *via* the laboratory sink. The operator should be aware of the usual means for disposal of chemicals in her/his laboratories, and she/he should remove unwanted chemicals accordingly. Organic liquids for disposal should be temporarily stored, as is practically possible, in respective containers. Avoid placing all organic liquids in the same container particularly if they contain small amounts of reagents which could react with each other. Halogenated waste solvents should be kept separate from other organic liquids. Laboratory coats, disposable aprons, caps, sleeves, dust/mist respirators and foot protection, hearing protection as well as a variety of safety glasses, goggles, face and body shields should be used when the demand arises and are available commercially (see e.g. the Sigma-

SOME HAZARDS OF CHEMICAL MANIPULATION IN PURIFICATION AND RECOVERY OF RESIDUES

Performing chemical manipulations calls for some practical knowledge if danger is to be avoided. However, with care, hazards can be kept to an acceptable minimum. A good general approach is to consider every operation as potentially perilous and then to adjust one's attitude as the operation proceeds. A few of the most common dangers are set out below. For a larger coverage of the following sections, and of the literature, the bibliography at the end of this chapter should be consulted.

Perchlorates and perchloric acid. At 160° perchloric acid is an exceedingly strong oxidising acid and a strong dehydrating agent. Organic perchlorates, such as methyl and ethyl perchlorates, are unstable and are violently explosive compounds. A number of heavy-metal perchlorates are extremely prone to explode. The use of anhydrous magnesium perchlorate, *Anhydrone*, *Dehydrite*, as a drying agent for organic vapours is **not** recommended. Desiccators which contain this drying agent should be adequately shielded at all times and kept in a cool place, i.e. **never** on a window sill where sunlight can fall on it.

No attempt should be made to purify perchlorates, except for ammonium, alkali metal and alkaline earth salts which, in water or aqueous alcoholic solutions are insensitive to heat or shock. Note that perchlorates react relatively slowly in aqueous organic solvents, but as the water is removed there is an increased possibility of an explosion. Perchlorates, often used in non-aqueous solvents, are explosive in the presence of even small amounts of organic compounds when heated. Hence stringent care should be taken when purifying perchlorates, and direct flame and infrared lamps should be avoided. Tetra-alkylammonium perchlorates should be dried below 50° under vacuum (and protection). Only very small amounts of such materials should be prepared, and stored, at any one time.

Peroxides. These are formed by aerial oxidation or by autoxidation of a wide range of organic compounds, including diethyl ether, allyl ether, allyl phenyl ether, dibenzyl ether, benzyl butyl ether, *n*-butyl ether, *iso*-butyl ether, *t*-butyl ether, dioxane, tetrahydrofuran, olefins, and aromatic and saturated aliphatic hydrocarbons. They accumulate during distillation and can detonate violently on evaporation or distillation when their concentration becomes high. If peroxides are likely to be present materials should be tested for peroxides before distillation (for tests see entry under "Ethers", in Chapter 2). Also, distillation should be discontinued when at least one quarter of the residue is left in the distilling flask.

Heavy-metal-containing explosives. Ammoniacal silver nitrate, on storage or treatment, will eventually deposit the highly explosive silver nitride *fulminating silver*. Silver nitrate and ethanol may give silver fulminate (see Chapter 5), and in contact with azides or hydrazine and hydrazides may form silver azide.

Mercury can also form such compounds. Similarly, ammonia or ammonium ions can react with gold salts to form "*fulminating gold*". Metal fulminates of cadmium, copper, mercury and thallium are powerfully explosive, and some are detonators [Luchs, *Photog Sci Eng* **10** 334 *1966*]. Heavy-metal-containing solutions, particularly when organic material is present, should be treated with great respect and precautions towards possible explosion should be taken.

Strong acids. In addition to perchloric acid (see above), extra care should be taken when using strong mineral acids. Although the effects of concentrated sulfuric acid are well known, these cannot be stressed strongly enough. Contact with tissues will leave irreparable damage. Always dilute the concentrated acid by carefully adding the acid down the side of the flask which contains the water, and the process should be carried out under cooling. This solution is not safe to handle until the acid has been thoroughly mixed (care) with the water. Protective face, and body coverage should be used at all times. Fuming sulfuric acid and chlorosulfonic acid are even more dangerous than concentrated sulfuric acid, and adequate precautions should be taken. Chromic acid cleaning mixture contains strong sulfuric acid and should be treated in the same way; and in addition the mixture is potentially carcinogenic.

Concentrated and fuming nitric acids are also dangerous because of their severe deleterious effects on tissues.

Picric acid. This acid and related nitro compounds, e.g. styphnic acid, are explosive and should **not** be kept dry. The acid is generally stored wet by covering the crystals with water. Solutions in ethanol and benzene are used occasionally. They should be stored in the cold (to minimize evaporation), and a rubber or plactic stopper (**not a ground glass stopper**) should be used. **Note** that picric acid and picrates stain skin protein with a yellow colour that is not readily washed off. This can be avoided by wearing rubber gloves.

Reactive halides and anhydrides. Substances like acid chlorides, low-molecular-weight anhydrides and some inorganic halides (e.g. PCl₃) can be highly toxic and lachrymatory, affecting mucous membranes and lung tissues. Utmost care should be taken when working with these materials. Work should be carried out in a very efficient fume cupboard.

Salts and organic esters of some inorganic acids. In addition to the dangers of perchlorate salts, other salts such as nitrates, azides, diazo salts, organic nitrates, organic azides and picrates (see above) can be hazardous, and due care should be taken when these are dried. Large quantities should never be prepared or stored for long periods.

Solvents. The flammability of low-boiling organic liquids cannot be emphasised strongly enough. These invariably have very low flash points and can ignite spontaneously. Special precautions against explosive flammability should be taken when recovering such liquids. Care should be taken with small volumes (*ca* 250mL) as well as large volumes (> 1L), and the location of all the fire extinguishers, and fire blankets, in the immediate vicinity of the apparatus should be checked. The fire extinguisher should be operational. The following flammable liquids (in alphabetical order) are common fire hazards in the laboratory: acetaldehyde, acetone, acrylonitrile, acetonitrile, benzene, carbon disulfide, cyclohexane, diethyl ether, ethyl acetate, hexane, low-boiling petroleum ether, tetrahydrofuran and toluene. Toluene should always be used in place of benzene wherever possible due to the potential *carcinogenic* effects of the liquid and vapour of the latter.

The drying of flammable solvents with sodium or potassium metal and metal hydrides poses serious potential fire hazards, and adequate precautions should be stressed.

SAFETY DISCLAIMER

Experimental chemistry is a very dangerous occupation, and extreme care and adequate safety precautions should be taken at all times. Although we have stated the safety measures that have to be taken under specific entries, these are by no means exhaustive and some may have been unknowingly or accidentally omitted. The experimenter without prior knowledge or experience must seek further safety advice on reagents and procedures from experts in the field before undertaking the purification of any material. *We take no responsibility whatsoever if any mishaps occur when using any of the procedures described in this book.*

METHODS OF PURIFICATION OF REAGENTS AND SOLVENTS

Many methods exist for the purification of reagents and solvents. A number of these methods are routinely used in synthetic as well as analytical chemistry and biochemistry. These techniques, outlined below, will be discussed in greater detail in the respective sections in this chapter. It is important to note that more than one method of purification may need to be implemented in order to obtain compounds of highest purity. Common methods of purification are:

Solvent Extraction and Distribution Distillation Recrystallisation Sublimation Electrophoresis Chromatography

For substances contaminated with water or solvents, drying with appropriate absorbents and desiccants may be sufficient.

SOLVENT EXTRACTION AND DISTRIBUTION

Extraction of a substance from suspension or solution into another solvent can sometimes be used as a purification process. Thus, organic substances can often be separated from inorganic impurities by shaking an aqueous solution or suspension with suitable immiscible solvents such as benzene, carbon tetrachloride, chloroform, diethyl ether, diisopropyl ether or petroleum ether. After several such extractions, the combined organic phase is dried and the solvent is evaporated. Grease from the glass taps of conventional separating funnels is invariably soluble in the solvents used. Contamination with grease can be very troublesome particularly when the amounts of material to be extracted are very small. Instead, the glass taps should be lubricated with the extraction solvent; or better, the taps of the extraction funnels should be made of the more expensive material *Teflon*. Immiscible solvents suitable for extractions are given in Table 1. Addition of electrolytes (such as ammonium sulfate, calcium chloride or sodium chloride) to the aqueous phase helps to ensure that the organic layer separates cleanly and also decreases the extent of extraction into the latter. Emulsions can also be broken up by filtration (with suction) through Celite, or by adding a little diethyl ether, octyl alcohol or some other paraffinic alcohol. The main factor in selecting a suitable immiscible solvent is to find one in which the material to be extracted is readily soluble, whereas the substance from which it is being extracted is not. The same considerations apply irrespective of whether it is the substance being purified, or one of its contaminants, that is taken into the new phase. (The second of these processes is described as washing.)

Common examples of washing with aqueous solutions include the following:

Removal of acids from water-immiscible solvents by washing with aqueous alkali, sodium carbonate or sodium bicarbonate.

Removal of phenols from similar solutions by washing with aqueous alkali.

Removal of organic bases by washing with dilute hydrochloric or sulfuric acids.

Removal of unsaturated hydrocarbons, of alcohols and of ethers from saturated hydrocarbons or alkyl halides by washing with cold concentrated sulfuric acid.

This process can also be applied to purification of the substance if it is an acid, a phenol or a base, by extracting into the appropriate aqueous solution to form the salt which, after washing with pure solvent, is again converted to the free species and re-extracted. Paraffin hydrocarbons can be purified by extracting them with phenol (in which aromatic hydrocarbons are highly soluble) prior to fractional distillation.

For extraction of solid materials with a solvent, a *Soxhlet* extractor is commonly used. This technique is applied, for example, in the alcohol extraction of dyes to free them from insoluble contaminants such as sodium chloride or sodium sulfate.

Acids, bases and amphoteric substances can be purified by taking advantage of their ionisation constants (see below).

The recovery of some fifty more commonly used solvents from water, other solvents, residues etc. have been discussed, together with information on their behaviour before and after use, by I.M. Smallwood in the *Solvent Recovery Handbook*, Blackwood Science Publ Ltd, 2001, ISBN 9780632056477.

DISTILLATION

One of the most widely applicable and most commonly used methods of purification of liquids or low melting solids (especially of organic chemicals) is fractional distillation at atmospheric, or some lower, pressure. Almost without exception, this method can be assumed to be suitable for all organic liquids and most of the low-melting organic solids. For this reason it has been possible, e.g. in Chapter 4, to omit many procedures for purification of organic chemicals when only a simple fractional distillation is involved-the suitability of such a procedure is implied from the boiling point.

The boiling point of a liquid varies with the 'atmospheric' pressure to which it is exposed. A liquid boils when its vapour pressure is the same as the external pressure on its surface, its normal boiling point being the temperature at which its vapour pressure is equal to that of a standard atmosphere (760mm Hg). Lowering the external pressure lowers the boiling point. For most substances, boiling point and vapour pressure are related by an equation of the form,

$$\log p = A + B/(t + 273),$$

where p is the pressure in mmHg, t is in °C, and A and B are constants. Hence, if the boiling points at two different pressures are known, the boiling point at another pressure can be calculated from a simple plot of log p versus 1/(t + 273). For organic molecules that are not strongly associated, this equation can be written in the form,

$$\log p = 8.586 - 5.703 (T + 273)/(t + 273)$$

where *T* is the boiling point in °C at 760mm Hg. Tables 2A and 2B give computed boiling points over a range of pressures. Some examples illustrate its application. Ethyl acetoacetate, **b** 180° (with decomposition) at 760mm Hg has a predicted **b** of 79° at 16mm; the experimental value is 78°. Similarly 2,4-diaminotoluene, **b** 292° at 760mm, has a predicted **b** of 147° at 8mm; the experimental value is 148-150°. For self-associated molecules the predicted **b** are lower than the experimental values. Thus, glycerol, **b** 290° at 760mm, has a predicted **b** of 146° at 8mm; the experimental values.

Similarly an estimate of the boiling points of liquids at reduced pressure can be obtained using a nomogram (see Fig. 1).

For pressures near 760mm, the change in boiling point is given approximately by

$$\hat{\mathbf{I}}t = a(760 - p)(t + 273)$$

where a = 0.00012 for most substances, but a = 0.00010 for water, alcohols, carboxylic acids and other associated liquids, and a = 0.00014 for very low-boiling substances such as nitrogen or ammonia [Crafts *Chem Ber* **20** 709 *1887*]. When all the impurities are non-volatile, simple distillation is adequate purification. The observed boiling point remains almost constant and approximately equal to that of the pure material. Usually, however, some of the impurities are appreciably volatile, so that the boiling point progressively rises during the distillation because of the progressive enrichment of the higher-boiling components in the distillation flask. In such cases, separation is effected by fractional distillation using an efficient column. [For further reading see section on "Variation of Boiling Points with Pressure" on pp. 15-26 in *CRC*—*Handbook of Chemistry and Physics* 88th *Edition*, David R Lide (Editor–in-Chief) CRC Press, Boca Raton, Florida 2007-2008, ISBN 0849304881.]

Techniques

The distillation apparatus consists basically of a distillation flask, usually fitted with a vertical fractionating column (which may be empty or packed with suitable materials such as glass helices or stainless-steel wool) to which is attached a condenser leading to a receiving flask. The bulb of a thermometer projects into the vapour phase just below the region where the condenser joins the column. The distilling flask is heated so that its contents are steadily vaporised by boiling. The vapour passes up into the column where, initially, it condenses and runs back into the flask. The resulting heat transfer gradually warms the column so that there is a progressive movement of the vapour phase-liquid boundary up the column, with increasing enrichment of the more volatile component. Because of this fractionation, the vapour finally passing into the condenser (where it condenses and flows into the receiver) is commonly that of the lowest-boiling components in the system. The conditions apply until all of the low-boiling material has been distilled, whereupon distillation ceases until the column temperature is high enough to permit the next component to distil. This usually results in a temporary fall in the temperature indicated by the thermometer.

Distillation of liquid mixtures

The principles involved in fractional distillation of liquid mixtures are complex but can be seen by considering a system which approximately obeys *Raoult's law*. (This law states that the vapour pressure of a solution at any given temperature is the sum of the vapour pressures of each component multiplied by its mole fraction in the solution.) If two substances, A and B, having vapour pressures of 600mm Hg and 360mm Hg, respectively, were mixed in a molar ratio of 2:1 (i.e. 0.666:0.333 mole ratio), the mixture would have (ideally) a vapour pressure of 520mm Hg (i.e. $600 \times 0.666 + 360 \times 0.333$, or 399.6 + 119.88 mm Hg) and the vapour phase would contain 77% (399.6 x 100/520) of A and 23% (119.88 x 100/520) of B. If this phase was now condensed, the new liquid phase would, therefore, be richer in the volatile component A. Similarly, the vapour in equilibrium with this phase is still further enriched in A. Each such liquid-vapour equilibrium constitutes a "theoretical plate". The efficiency of a fractionating column is commonly expressed as the number of such plates to which it corresponds in operation. Alternatively, this information may be given in the form of the height equivalent to a theoretical plate, or HETP. The number of theoretical plates and equilibria between liquids and vapours are affected by the factors listed to achieve maximum separation by fractional distillation in the section below on techniques.

In most cases, systems deviate to a greater or lesser extent from Raoult's law, and vapour pressures may be greater or less than the values calculated. In extreme cases (e.g. azeotropes), vapour pressure-composition curves pass through maxima or minima, so that attempts at fractional distillation lead finally to the separation of a constantboiling (azeotropic) mixture and one (but not both) of the pure species if either of the latter is present in excess.

Elevation of the boiling point by dissolved solids. Organic substances dissolved in organic solvents cause a rise in boiling point which is proportional to the concentration of the substance, and the extent of rise in temperature is characteristic of the solvent. The following equation applies for dilute solutions and non-associating substances:

$$\underline{M Dt} = K$$

where M is the molecular weight of the solute, Dt is the elevation of boiling point in °C, c is the concentration of solute in grams for 1000gm of solvent, and K is the *Ebullioscopic Constant* (molecular elevation of the boiling point) for the solvent. K is a fixed property (constant) for the particular solvent. This has been very useful for the determination of the molecular weights of organic substances in solution.

The efficiency of a distillation apparatus used for purification of liquids depends on the difference in boiling points of the pure material and its impurities. For example, if two components of an ideal mixture have vapour pressures in the ratio 2:1, it would be necessary to have a still with an efficiency of at least seven plates (giving an enrichment of $2^7 = 128$) if the concentration of the higher-boiling component in the distillate was to be reduced to less than 1% of its initial value. For a vapour pressure ratio of 5:1, three plates would achieve as much separation. In a fractional distillation, it is usual to reject the initial and final fractions, which are likely to be richer in the lower-boiling and higher-boiling impurities respectively. The centre fraction can be further purified by repeated fractional distillation.

To achieve maximum separation by fractional distillation:

- 1. The column must be flooded initially to wet the packing. For this reason it is customary to operate a still at reflux for some time before beginning the distillation.
- 2. The reflux ratio should be high (i.e. the ratio of drops of liquid which return to the distilling flask and the drops which distil over), so that the distillation proceeds slowly and with minimum disturbance of the equilibria in the column.
- 3. The hold-up of the column should not exceed one-tenth of the volume of any one component to be separated.
- 4. Heat loss from the column should be prevented but if the column is heated to offset this, its temperature must not exceed that of the distillate in the column.
- 5. Heat input to the still-pot should remain constant.
- 6. For distillation under reduced pressure there must be careful control of the pressure to avoid flooding or cessation of reflux.

Types of distillation

The distilling flask. To minimise superheating of the liquid (due to the absence of minute air bubbles or other suitable nuclei for forming bubbles of vapour), and to prevent bumping, one or more of the following precautions should be taken:

(a) The flask is heated uniformly over a large part of its surface, either by using an electrical heating mantle or, by partial immersion in a bath above the boiling point of the liquid to be distilled (Table 3).

(b) Before heating begins, small pieces of unglazed fireclay or porcelain (porous pot, boiling chips), pumice, diatomaceous earth, or platinum wire are added to the flask. These act as sources of air bubbles.

(c) The flask may contain glass siphons or boiling tubes. The former are inverted J-shaped tubes, the end of the shorter arm being just above the surface of the liquid. The latter comprise long capillary tubes sealed above the lower end.

(d) A steady slow stream of inert gas (e.g. N₂, Ar or He) is passed through the liquid.

(e) The liquid in the flask is stirred mechanically. This is especially necessary when suspended insoluble material is present.

For simple distillations a Claisen flask is often used. This flask is, essentially, a round-bottomed flask to the neck of which is joined another neck carrying a side arm. This second neck is sometimes extended so as to form a Vigreux column [a glass tube in which have been made a number of pairs of indentations which almost touch each other and which slope slightly downwards. The pairs of indentations are arranged to form a spiral of glass inside the tube].

For heating baths, see Table 3. For distillation apparatus on a macro, semi-micro or micro scale see Aldrich and other glassware catalogues. Alternatively, visit some useful websites for suppliers of laboratory glassware, e.g. <www.wheatonsci.com>; <www.sigmaaldrich.com> and <www.kimble-kontes.com>.

Types of columns and packings. A slow distillation rate is necessary to ensure that equilibrium conditions operate and also that the vapour does not become superheated so that the temperature rises above the boiling point. Efficiency is improved if the column is heat insulated (either by vacuum jacketing or by lagging) and, if necessary, heated to just below the boiling point of the most volatile component. Efficiency of separation also improves with increase in the heat of vaporisation of the liquids concerned (because fractionation depends on heat equilibration at multiple liquid-gas boundaries). Water and alcohols are more easily purified by distillation for this reason.

Columns used in distillation vary in their shapes and types of packing. Packed columns are intended to give efficient separation by maintaining a large surface of contact between liquid and vapour. Efficiency of separation is further increased by operation under conditions approaching total reflux, i.e. under a high reflux ratio. However, great care must be taken to avoid flooding of the column during distillation. The minimum number of theoretical plates for satisfactory separation of two liquids differing in boiling point by $\hat{I}t$ is approximately $(273 + t)/3\hat{I}t$, where t is the average boiling point in °C.

Some of the commonly used *columns* are:

Bruun column. A type of all-glass bubble-cap column.

Bubble-cap column. A type of plate column in which inverted cups (bubble caps) deflect ascending vapour through reflux liquid lying on each plate. Excess liquid from any plate overflows to the plate lying below it and ultimately returns to the flask. (For further details, see Bruun & Faulconer *Ind Eng Chem (Anal Ed)* **9** 247 1937). Like most plate columns, it has a high through-put, but a relatively low number of theoretical plates for a given height.

Dufton column. A plain tube, into which fits closely (preferably ground to fit) a solid glass spiral wound round a central rod. It tends to choke at temperatures above 100° unless it is lagged (Dufton *J Soc Chem Ind* (London) **3 8** 45T *1919*).

Hempel column. A plain tube (fitted near the top with a side arm) which is almost filled with a suitable packing, which may be of rings or helices.

Oldershaw column. An all-glass perforated-plate column. The plates are sealed into a tube, each plate being equipped with a baffle to direct the flow of reflux liquid, and a raised outlet which maintains a definite liquid level on the plate and also serves as a drain on to the next lower plate [see Oldershaw *Ind Eng Chem (Anal Ed)* **11** 265 *1941*].

Podbielniak column. A plain tube containing "Heli-Grid" Nichrome or Inconel wire packing. This packing provides a number of passage-ways for the reflux liquid, while the capillary spaces ensure very even spreading of the liquid, so that there is a very large area of contact between liquid and vapour while, at the same time, channelling and

flooding are minimised. A column 1m high has been stated to have an efficiency of 200-400 theoretical plates (for further details, see Podbielniak *Ind Eng Chem (Anal Ed)* **13** 639 *1941*; Mitchell & O'Gorman *Anal Chem* **20** 315 *1948*).

Stedman column. A plain tube containing a series of wire-gauze discs stamped into flat, truncated cones and welded together, alternatively base-to-base and edge-to-edge, with a flat disc across each base. Each cone has a hole, alternately arranged, near its base, vapour and liquid being brought into intimate contact on the gauze surfaces (Stedman *Can J Research B* **15** 383 *1937*).

Todd column. A column (which may be a Dufton type, fitted with a Monel metal rod and spiral, or a Hempel type, fitted with glass helices) which is surrounded by an open heating jacket so that the temperature can be adjusted to be close to the distillation temperature (Todd *Ind Eng Chem (Anal Ed)* **17** 175 *1945*).

Vigreux column. A glass tube in which have been made a number of pairs of indentations which almost touch each other and which slope slightly downwards. The pairs of indentations are arranged to form a spiral of glass inside the tube.

Widmer column. A Dufton column, modified by enclosing within two concentric tubes the portion containing the glass spiral. Vapour passes up the outer tube and down the inner tube before entering the centre portion. Thus flooding of the column, especially at high temperatures, is greatly reduced (Widmer *Helv Chim Acta* **7** 59 *1924*).

The packing of a column greatly increases the surface of liquid films in contact with the vapour phase, thereby increasing the efficiency of the column, but reducing its capacity (the quantities of vapour and liquid able to flow in opposite directions in a column without causing flooding). Material for packing should be of uniform size, symmetrical shape, and have a unit diameter less than one-eighth that of the column. (Rectification efficiency increases sharply as the size of the packing is reduced but so, also, does the hold-up in the column.) It should also be capable of uniform, reproducible packing.

The usual *packings* are:

(a) **Rings.** These may be hollow glass or porcelain (Raschig rings), of stainless steel gauze (Dixon rings), or hollow rings with a central partition (Lessing rings) which may be of porcelain, aluminium, copper or nickel.

(b) **Helices.** These may be of metal or glass (Fenske rings), the latter being used where resistance to chemical attack is important (e.g. in distilling acids, organic halides, some sulphur compounds, and phenols). Metal single-turn helices are available in aluminium, nickel or stainless steel. Glass helices are less efficient, because they cannot be tamped to ensure uniform packing.

(c) Balls. These are usually glass.

(d) **Wire packing.** For use of "Heli-Grid" and "Heli-Pak" packings. see references given for Podbielniak column. For Stedman packing, see entry under Stedman column.

Types of condensers:

Air condenser. A glass tube such as the inner part of a Liebig condenser. Used for liquids with boiling points above 90°. Can be of any length.

Allihn condenser. The inner tube of a Liebig condenser is modified by having a series of bulbs to increase the condensing surface. Further modifications of the bubble shapes give the Julian and Allihn-Kronbitter condensers.

Bailey-Walker condenser. A type of all-metal condenser fitting into the neck of extraction apparatus and being supported by the rim. Used for high-boiling liquids.

Coil condenser. An open tube, into which is sealed a glass coil or spiral through which water circulates. The tube is sometimes also surrounded by an outer cooling jacket.

Double surface condenser. A tube in which the vapour is condensed between an outer and inner watercooled jacket after impinging on the latter. Very useful for liquids boiling below 40° .

Friedrichs condenser. A "cold-finger" type of condenser sealed into a glass jacket open at the bottom and near the top. The cold finger is formed into glass screw threads.

Graham condenser. A type of coil condenser.

Hopkins condenser. A cold-finger type of condenser resembling that of Friedrichs.

Liebig condenser. An inner glass tube surrounded by a glass jacket through which water is circulated.

Othmer condenser. A large-capacity condenser which has two coils of relatively large bore glass tubing inside it, through which the water flows. The two coils join at their top and bottom.

West condenser. A Liebig condenser with a light-walled inner tube and a heavy-walled outer tube, with only a narrow space between them.

Wiley condenser. A condenser resembling the Bailey-Walker type.

Vacuum distillation. This expression is commonly used to denote a distillation under reduced pressure lower than that of the normal atmosphere. As the boiling point of a substance depends on the pressure, it is often possible to distil materials at a temperature low enough to avoid partial or

complete decomposition by lowering the pressure, even if they are unstable when boiled at atmospheric pressure.

Sensitive or high-boiling liquids should invariably be distilled or fractionally distilled under reduced pressure. The apparatus is essentially as described for distillation except that ground joints connecting the different parts of the apparatus should be air tight by using grease, or better Teflon sleeves. For low, moderately high, and very high temperatures Apiezon L, M and T greases, respectively, are very satisfactory. Alternatively, it is often preferable to avoid grease and to use thin Teflon sleeves in the joints. The distilling flask, must be supplied with a capillary bleed (which allows a fine stream of air, nitrogen or argon into the flask), and the receiver should be of the fraction collector type. When distilling under vacuum it is very important to place a loose packing of glass wool above the liquid to buffer sudden boiling of the liquid. The flask should be not more than two-thirds full of liquid. The vacuum must have attained a steady state, i.e. the liquid has been completely degassed, before the heat source is applied, and the temperature of the heat source must be raised *very slowly* until boiling is achieved.

If the pump is a filter pump off a high-pressure water supply, its performance will be limited by the temperature of the water because the vapour pressure of water at 10° , 15° , 20° and 25° is 9.2, 12.8, 17.5 and 23.8 mm Hg, respectively. The pressure can be measured with an ordinary manometer. For vacuums in the range 10^{-2} mm Hg to 10 mm Hg, rotary mechanical pumps (oil pumps) are used and the pressure can be measured with a Vacustat McLeod-type gauge. If still higher vacuums are required, for example for high vacuum sublimations, a mercury diffusion pump is suitable. Such a pump can provide a vacuum up to 10^{-6} mm Hg. For better efficiencies, the diffusion pump can be backed up by a mechanical pump. In all cases, the mercury pump is connected to the distillation apparatus through several traps to remove mercury vapours. These traps may operate by chemical action, for example the use of sodium hydroxide pellets to react with acids, or by condensation, in which case empty tubes cooled in solid carbon dioxide-ethanol or liquid nitrogen (contained in wide-mouthed Dewar flasks) are used.

Special oil or mercury traps are available commercially, and a liquid-nitrogen (**b** -209.9°C) trap is the most satisfactory one to use between these and the apparatus. It has an advantage over liquid air or oxygen in that it is non-explosive if it becomes contaminated with organic matter. Air should not be sucked through the apparatus before starting a distillation because this will cause liquid oxygen (**b** -183° C) to condense in the liquid nitrogen trap, and this is potentially explosive (especially in mixtures with organic materials). Due to the potential lethal consequences of liquid oxygen/organic material mixtures, care must be exercised when handling liquid nitrogen. Hence, it is advisable to degas the system for a short period before the trap is immersed into the liquid nitrogen (which is kept in a Dewar flask).

Spinning-band distillation. Factors which limit the performance of distillation columns include the tendency to flood (which occurs when the returning liquid blocks the pathway taken by the vapour through the column) and the increased hold-up (which decreases the attainable efficiency) in the column that should, theoretically, be highly efficient. To overcome these difficulties, especially for distillation under high vacuum of heat sensitive or high-boiling highly viscous fluids, spinning band columns are commercially available. In such units, the distillation columns contain a rapidly rotating, motor-driven, spiral band, which may be of polymer-coated metal, stainless steel or platinum. The rapid rotation of the band in contact with the walls of the still gives intimate mixing of descending liquid and ascending vapour while the screw-like motion of the band drives the liquid towards the still-pot, helping to reduce hold-up. There is very little pressure drop in such a system, and very high throughputs are possible, with high efficiency. For example, a 765-mm long 10-mm diameter commercial spinning-band column is reported to have an efficiency of 28 plates and a pressure drop of 0.2 mm Hg for a throughput of 330mL/hour. The columns may be either vacuum jacketed or heated externally. The stills can be operated down to 10⁻⁵ mm Hg. The principle, which was first used commercially in the Podbielniak Centrifugal Superfractionator, has also been embodied in descending-film molecular distillation apparatus.

Steam distillation. When two immmiscible liquids distil, the sum of their (independent) partial pressures is equal to the atmospheric pressure. Hence in steam distillation, the distillate has the composition

Moles of substance		P substance		760 $-P$ water
Moles of water	=	P water	=	P water

where the *P*'s are vapour pressures (in mm Hg) in the boiling mixture.

The customary technique consists of heating the substance and water in a flask (to boiling), usually with the passage of steam, followed by condensation and separation of the aqueous and non-aqueous phases in the distillate. Its advantages are those of selectivity (because only some water-insoluble substances, such as naphthalene, nitrobenzene, phenol and aniline are volatile in steam) and of ability to distil certain high-boiling substances well below their boiling point. It also facilitates the recovery of a non-steam-volatile solid at a relatively low temperature from a high-boiling solvent such as nitrobenzene. The efficiency of steam distillation is increased if superheated steam is used (because the vapour pressure of the organic component is increased relative to water). In this case the flask containing the material is heated (without water) in an oil bath and the steam passing through it is superheated by prior passage through a suitable heating device (such as a copper coil heated electrically or an oil bath).

Azeotropic distillation. In some cases two or more liquids form constant-boiling mixtures, or azeotropes. Azeotropic mixtures are most likely to be found with components which readily form hydrogen bonds or are otherwise highly associated, especially when the components are dissimilar, for example an alcohol and an aromatic hydrocarbon, but have similar boiling points.

Examples where the boiling point of the distillate is a minimum (less than either pure component) include: **Water** with ethanol, *n*-propanol and isopropanol, *tert*-butanol, propionic acid, butyric acid, pyridine,

methanol with methyl iodide, methyl acetate, chloroform,

ethanol with ethyl iodide, ethyl acetate, chloroform, benzene, toluene, methyl ethyl ketone,

benzene with cyclohexane,

acetic acid with toluene.

Although less common, azeotropic mixtures are known which have higher boiling points than their components. These include water with most of the mineral acids (hydrofluoric, hydrochloric, hydrobromic, perchloric, nitric and sulfuric) and formic acid. Other examples are acetic acid-pyridine, acetone-chloroform, aniline-phenol, and chloroform-methyl acetate.

The following azeotropes are important commercially for drying ethanol:

ethanol 95.5% (by weight) - water 4.5%	b 78.1°
ethanol 32.4% - benzene 67.6%	b 68.2°
ethanol 18.5% - benzene 74.1% - water 7.4%	b 64.9°

Materials are sometimes added to form an azeotropic mixture with the substance to be purified. Because the azeotrope boils at a different temperature, this facilitates separation from substances distilling in the same range as the pure material. (Conversely, the impurity might form the azeotrope and be removed in this way.) This method is often convenient, especially where the impurities are isomers or are otherwise closely related to the desired substance. Formation of low-boiling azeotropes also facilitates distillation.

One or more of the following methods can generally be used for separating the components of an azeotropic mixture:

- 1. By using a chemical method to remove most of one species prior to distillation. (For example, water can be removed by suitable drying agents; aromatic and unsaturated hydrocarbons can be removed by sulfonation).
- 2. By redistillation with an additional substance which can form a ternary azeotropic mixture (as in the ethanol-water-benzene example given above).
- 3. By selective adsorption of one of the components. (For example, of water on to silica gel or molecular sieves, or of unsaturated hydrocarbons onto alumina).
- 4. By fractional crystallisation of the mixture, either by direct freezing or by dissolving in a suitable solvent.

Kügelrohr distillation. The Aldrich Kügelrohr Distillation Apparatus (see Aldrich-Sigma Labware catalogue) is made up of small glass bulbs (*ca* 4-5cm diameter) which are joined together *via* Quickfit joints at each pole of the bulbs. The liquid (or low melting solid) to be purified is placed in the first bulb of a series of bulbs joined end to end, and the system can be evacuated. The first bulb is heated in a furnace (e.g. Büchi Kügelrohr micro distillation oven from Sigma-Aldrich Labware catalogue) at a high temperature whereby most of the material distils into the second bulb (which is outside of the furnace). The second bulb is then moved into the furnace and the furnace temperature is reduced by *ca* 5° whereby the liquid in the second bulb distils into the third bulb (at this stage the first bulb is now out at the back of the furnace, and the third and subsequent bulbs are outside the front of the furnace). The furnace temperature is lowered by a further *ca* 5°, and the third bulb is moved into the furnace. The lower boiling material will distil into the fourth bulb. The process is continued until no

more material distils into the subsequent bulb. The vacuum (if applied) and the furnace are removed, the bulbs are separated and the various fractions of distillates are collected from the individual bulbs. For volatile liquids, it may be necessary to cool the receiving bulb with solid CO_2 held in a suitable container (a Kügelrohr distillation apparatus with an integrated cooling system is available). This procedure is used for preliminary purification and the distillates are then redistilled or recrystallised.

Isopiestic or isothermal distillation. This technique can be useful for the preparation of metal-free solutions of volatile acids and bases for use in trace metal studies. The procedure involves placing two beakers, one of distilled water and the other of a solution of the material to be purified, in a desiccator. The desiccator is sealed and left to stand at room temperature for several days. The volatile components distribute themselves between the two beakers whereas the non-volatile contaminants remain in the original beaker. This technique has afforded metal-free pure solutions of ammonia, hydrochloric acid and hydrogen fluoride.

RECRYSTALLISATION

Techniques

The most commonly used procedure for the purification of a solid material by recrystallisation from a solution involves the following steps:

- (a) The impure material is dissolved in a suitable solvent, by shaking or vigorous stirring, at or near the boiling point, to form a near-saturated solution.
- (b) The hot solution is filtered to remove any insoluble particles. To prevent crystallisation during this filtration, a heated filter funnel can be used, or the solution can be diluted with more of the solvent.
- (c) The solution is then allowed to cool so that the dissolved substance crystallises out.
- (d) The crystals are separated from the mother liquor, either by centrifuging or by filtering, under suction, through a sintered glass, a Hirsch or a Büchner, funnel. Usually, centrifugation is preferred because of the greater ease and efficiency of separating crystals and mother liquor, and also because of the saving of time and effort, particularly when very small crystals are formed or when there is entrainment of solvent.
- (e) The crystals are washed free from mother liquor with a little fresh cold solvent, then dried.

If the solution contains extraneous coloured material likely to contaminate the crystals, this can often be removed by adding some activated charcoal (decolorising carbon) to the hot, but not boiling, solution which is then shaken frequently for several minutes before being filtered. (The large active surface of the carbon makes it a good adsorbent for this purpose.) In general, the cooling and crystallisation steps should be rapid so as to give small crystals which occlude less of the mother liquor. This is usually satisfactory with inorganic material, so that commonly the filtrate is cooled in an ice-water bath while being vigorously stirred. In many cases, however, organic molecules crystallise much more slowly, so that the filtrate must be set aside to cool to room temperature or left in the refrigerator. It is often desirable to subject material that is very impure to preliminary purification, such as steam distillation, Soxhlet extraction, or sublimation, before recrystallising it. A greater degree of purity is also to be expected if the crystallisation process is repeated several times, especially if different solvents are used. The advantage of several crystallisations from different solvents lies in the fact that the material sought, and its impurities, are unlikely to have similar solubilities as solvents and temperatures are varied.

For the final separation of solid material, sintered-glass discs are preferable to filter paper. Sintered glass is unaffected by strongly acidic solutions or by oxidising agents. Also, with filter paper, cellulose fibres are likely to become included in the sample. The sintered-glass discs or funnels can be readily cleaned by washing in freshly prepared *chromic acid cleaning mixture*. This mixture is made by adding 100mL of concentrated sulfuric acid slowly with stirring to a solution of 5g of sodium dichromate (CARE: cancer suspect) in 5mL of water. (The mixture warms to about 70°, and sulfuric acid becomes hot when water is added to it; see p 3).

For materials with very low melting points it is sometimes convenient to use dilute solutions in acetone, methanol, pentane, diethyl ether or $CHCl_3/CCl_4$. The solutions are cooled to -78° in a dry-ice/acetone bath, to give a slurry which is filtered off through a precooled Büchner funnel. Experimental details, as applied to the purification of nitromethane, are given by Parrett and Sun [*J Chem Educ* **54** 448 1977].

Where substances vary little in solubility with temperature, *isothermal crystallisation* may sometimes be employed. This usually takes the form of a partial evaporation of a saturated solution at room temperature by leaving it under reduced pressure in a desiccator.

However, in rare cases, crystallisation is not a satisfactory method of purification, especially if the impurity forms crystals that are isomorphous with the material being purified. In fact, the impurity content may even be greater in

such recrystallised material. For this reason, it still remains necessary to test for impurities and to remove or adequately lower their concentrations by suitable chemical manipulation prior to recrystallisation.

Filtration. Filtration removes particulate impurities rapidly from liquids and is also used to collect insoluble or crystalline solids which separate or crystallise from solution. The usual technique is to pass the solution, cold or hot, through a fluted filter paper in a conical glass funnel.

If a solution is hot and needs to be filtered rapidly, a Büchner funnel and flask are used and filtration is performed under a slight vacuum (water pump), the filter medium being a circular cellulose filter paper wet with solvent. If filtration is slow, even under high vacuum, a pile of about twenty filter papers, wet as before, are placed in the Büchner funnel and, as the flow of solution slows down, the upper layers of the filter paper are progressively removed. Alternatively, a filter aid, e.g. Celite, Florisil or Hyflo-supercel, is placed on top of a filter paper in the funnel. When the flow of the solution (under suction) slows down, the upper surface of the filter aid is scratched gently. Filter papers with various pore sizes are available covering a range of filtration rates. Hardened filter papers are slow filtering, but they can withstand acidic and alkaline solutions without appreciable hydrolysis of the cellulose (see Table 4). When using strong acids it is preferable to use glass micro fibre filters, which are commercially available (see Tables 4 and 5).

Freeing a solution from extremely small particles [e.g. for optical rotatory dispersion (ORD) or circular dichroism (CD) measurements] requires filters with very small pore size. Commercially available (Millipore, Gelman, Nucleopore) filters other than cellulose or glass include nylon, Teflon, and polyvinyl chloride, and the pore diameter may be as small as 0.01micron (see Table 9). Special containers are used to hold the filters, through which the solution is pressed by applying pressure, e.g. from a syringe. Some of these filters can be used to clear strong sulfuric acid solutions.

As an alternative to the Büchner funnel for collecting crystalline solids, a funnel with a sintered glass-plate under suction may be used. Sintered-glass funnels with various porosities are commercially available and can be easily cleaned with warm chromic or nitric acid (see above).

When the solid particles are too fine to be collected on a filter funnel because filtration is extremely slow, separation by **centrifugation** should be used. Bench-type centrifuges are most convenient for this purpose. The solid is placed in the centrifuge tube, the tubes containing the solutions on opposite sides of the rotor should be balanced accurately (at least within 0.05 to 0.1g), and the solutions are spun at maximum speed for as long as it takes to settle the solid (usually *ca* 3-5minutes). The solid is washed (by shaking) with cold solvent by centrifugation, and finally twice with a pure volatile solvent in which the solid is insoluble, also by centrifugation. After decanting the supernatant, the residue is dried in a vacuum, at elevated temperatures if necessary. In order to avoid "spitting" and contamination with dust while the solid in the centrifuge tube is dried, the mouth of the tube is covered with aluminium foil and held fast with a tight rubber band near the lip. The flat surface of the aluminium foil is then perforated in several places with a pin, and the tube and contents are dried in a vacuum desiccator over a desiccant.

Solvents

Choice of solvents. The best solvents for recrystallisation have the following properties:

(a) The material is much more soluble at higher temperatures than it is at room temperature or below.

(b) Well-formed (but not large) crystals are produced.

(c) Impurities are either very soluble or only sparingly soluble.

(d) The solvent must be readily removed from the purified material.

(e) There must be no reaction between the solvent and the substance being purified.

(f) The solvent must not be inconveniently volatile or too highly flammable. (These are reasons why diethyl ether and carbon disulfide are not commonly used in this way.)

The following generalisations provide a rough guide to the selection of a suitable solvent:

(a) Substances usually dissolve best in solvents to which they are most closely related in chemical and physical characteristics. Thus, hydroxylic compounds are likely to be most soluble in water, methanol, ethanol, acetic acid or acetone. Similarly, petroleum ether might be used with water-insoluble substances. However, if the resemblance is too close, solubilities may become excessive.

(b) Higher members of homologous series approximate more and more closely to their parent hydrocarbon.

(c) Polar substances are more soluble in polar than in non-polar solvents.

Although Chapters 4, 5 and 6 provide details of the solvents used for recrystallising a large portion of commercially available laboratory chemicals, they cannot hope to be exhaustive, nor need they necessarily be the best choice, but they are the solvents reported in the literature. In other cases where it is desirable to use this process, it is necessary to establish whether a given solvent is suitable. This is usually done by taking only a small amount of material in a small test-tube and adding enough solvent to cover it. If it dissolves readily in the cold or on gentle warming, the solvent is unsuitable. Conversely, if it remains insoluble when the solvent is heated to boiling (adding more solvent if necessary), the solvent is again unsuitable. If the material dissolves in the hot solvent but does not crystallise readily within several minutes of cooling in an ice-salt mixture, another solvent should be tried.

Water

The properties and purification of water are described in the "Inorganic Compounds" section of Chapter 5. Fluka (Riedel-de Haën) supply purified water prepared specifically for a variety of uses, e.g. LC-MS, HPLC, gradient elution, for cell biology which is freed from enterotoxins by ultrafiltration and autoclaving, for organic and for inorganic trace analysis, for residue analysis and other analytical purposes. Some of these have been prepared by reverse osmosis, or ultrafiltration, under clean room conditions and filtered through 0.2µm membranes into bottles of high purity glass under inert gas (see the 2007-2008 catalogue). They have a limited shelf life once opened most probably because O_2 from the air dissolves readily in the water. The solubility of O_2 in 100mL of water is ~1.02mL (0.455mM) at 0°, 0.68mL (0.282mM) at 20°, 0.63mL (0.258mM) at 25°, 0.63mL (0.237mM) at 30°, and 0.12mL (0.033mM) at 100°, all at ~760mmHg in equilibrium with air (see Tables 20-23). This is in comparison with the concentration of O_2 of 0.23mM in 0.1M Tris HCl buffer at pH 7.2 and 25° in equilibrium with air at 760mmHg. Routinely, water is best purified by redistilling it twice in an all glass apparatus, storing it under N2 or He in stoppered glass containers and, if necessary, preferably subjected to ultrafiltration through a single or multistage 0.2μ m membrane system or reverse osmosis (visit <www.millipore.com>). If oxygen-free water is required, N₂ or argon should be bubbled through a sintered glass frit in the highly purified water for 2-3hours, and stoppered immediately. It is best to use a glass container from which the water can be withdrawn without it coming into contact with air. Note that boiling and distilling water, and condensing it in an inert atmosphere should de-gas it.

Petroleum ethers are commercially available fractions of refined petroleum and are sold in fractions of about 20° boiling ranges. This ensures that little of the hydrocarbon ingredients boiling below the range is lost during standing or boiling when recrystallising a substance. Petroleum ethers with boiling ranges (at 760mm pressure) of $35-60^{\circ}$, $40-60^{\circ}$, $60-80^{\circ}$, $80-100^{\circ}$, and $100-120^{\circ}$ are generally free from unsaturated and aromatic hydrocarbons. The lowest boiling petroleum ether commercially available has **b** 30-40°/760mm and is mostly *n*-pentane. The purer spectroscopic grades are almost completely free from olefinic and aromatic hydrocarbons. **Petroleum spirit** (which is sometimes used synonymously with petroleum ether or light petroleum) is usually less refined petroleum, and *ligroin* is used for fractions boiling above 100°. The lower boiling fractions consist of mixtures of *n*-pentane (**b** 36°), *n*-hexane (**b** 68.5°) and *n*-heptane (**b** 98°), and some of their isomers in varying proportions. For purification see petroleum ether b 35-60° in "Aliphatic Compounds", chapter 4, which is typical.

Solvents commonly used for recrystallisation, and their boiling points, are given in Table 6. For comments on the toxicity and use of **benzene** see the "Introduction" pages of Chapters 4, 5 and 6.

Mixed Solvents. Where a substance is too soluble in one solvent and too insoluble in another, for either to be used for recrystallisation, it is often possible (provided they are miscible) to use them as a mixed solvent. (In general, however, it is preferable to use a single solvent if this is practicable.) Table 7 contains many of the common pairs of miscible solvents.

The technique of recrystallisation from mixed solvents is as follows:

The material is dissolved in the solvent in which it is the more soluble; then the other solvent (heated to near boiling) is added cautiously to the hot solution until a slight turbidity persists or crystallisation begins. This is cleared by adding several drops of the first solvent, and the solution is allowed to cool and crystallise in the usual way.

A variation of this procedure is simply to precipitate the material in a microcrystalline form from solution in one solvent at room temperature, by adding a little more of the second solvent, filtering off the crystals, adding a little more of the second solvent and repeating the process. This ensures, at least in the first or last precipitation, a material which contains as little as possible of the impurities, which may also be precipitated in this way. With salts, the first solvent is commonly water, and the second solvent is alcohol or acetone.

Recrystallisation from the melt.

A crystalline solid melts when its temperature is raised sufficiently for the thermal agitation of its molecules or ions to overcome the restraints imposed by the crystal lattice. Usually, impurities weaken crystal structures, and hence lower the melting points of solids (or the freezing points of liquids). If an impure material is melted and cooled slowly (with the addition, if necessary, of a trace of solid material near the freezing point to avoid supercooling), the first crystals that form will usually contain less of the impurity, so that fractional solidification by partial freezing can be used as a purification process for solids with melting points lying in a convenient temperature range (or for more readily frozen liquids). Some examples of cooling baths that are useful in recrystallisation are summarised in Table 8. In some cases, impurities form higher melting eutectics with substances to be purified, so that the first material to solidify is less pure than the melt. For this reason, it is often desirable to discard the first crystals and also the final portions of the melt. Substances having similar boiling points often differ much more in melting points, so that fractional solidification can offer real advantages, especially where ultrapurity is sought. For further information on this method of recrystallisation, consult the earlier editions of this book as well as references by Schwab and Wichers (*J Res Nat Bur Stand* **25** 747 *1940*). This method works best if the material is already nearly pure, and hence tends to be a final purification step.

Zone refining. Zone refining (or zone melting) is a particular development for fractional solidification and is applicable to all crystalline substances that show differences in the concentrations of impurities in liquid and solid states at solidification. The apparatus used in this technique consists essentially of a device in which the crystalline solid to be purified is placed in a glass tube (set vertically) which is made mechanically to move slowly upwards while it passes through a fixed coil (one or two turns) of heated wire. A narrow zone of molten crystals is formed when the tube is close to the heated coil. As the zone moves away from the coil the liquid crystallises, and a fresh molten zone is formed below it at the coil position. The machine can be set to recycle repeatedly. At its advancing side, the zone has a melting interface with the impure material whereas on the upper surface of the zone there is a constantly growing face of higher-melting, resolidified purer material. This leads to a progressive increase in impurity in the liquid phase which, at the end of the run, is discarded from the bottom of the tube. Also, because of the progressive increase in impurity in the liquid phase, the resolidified material contains correspondingly less of the impurites. For this reason, it is usually necessary to make several zone-melting runs before a sample is satisfactorily purified. This is also why the method works most successfully if the material is already fairly pure. In all these operations the zone must travel slowly enough to enable impurities to diffuse or be convected away from the area where resolidification is occurring.

The technique finds commercial application in the production of metals of extremely high purity (tubes other than glass are used in these cases, and impurities are reduced down to 10⁻⁹ ppm), in purifying refractory oxides, and in purifying organic compounds, using commercially available equipment. Criteria for indicating that definite purification is achieved include elevation of melting point, removal of colour, fluorescence or smell, and a lowering of electrical conductivity. Difficulties likely to be found with organic compounds, especially those of low melting points and low rates of crystallisation, are supercooling and, because of surface tension and contraction, the tendency of the molten zone to seep back into the recrystallised areas. The method is likely to be useful in cases where fractional distillation is not practicable, either because of unfavourable vapour pressures or ease of decomposition, or where super-pure materials are required. The method has been used for the latter purpose for purifying anthracene, benzoic acid, chrysene, morphine, 1,8-naphthyridine and pyrene to name a few. [See E.F.G.Herington, *Zone Melting of Organic Compounds*, Wiley & Sons, NY, 1963; W.Pfann, *Zone Melting*, 2nd edn, Wiley, NY, 1966; H.Schildknecht, *Zonenschmelzen*, Verlag Chemie, Weinheim, 1964; W.R.Wilcox, R.Friedenberg et al. *Chem Rev* **64** 187 *1964*; M.Zief and W.R.Wilcox (Eds), *Fractional Solidification*, Vol I, M Dekker Inc. NY, 1967.]

SUBLIMATION

Sublimation differs from ordinary distillation because the vapour condenses to a solid instead of a liquid. Usually, the pressure in the heated system is diminished by pumping, and the vapour is condensed (after travelling a relatively short distance) onto a cold finger or some other cooled surface. This technique, which is applicable to many organic solids, can also be used with inorganic solids such as aluminium chloride, ammonium chloride, arsenious oxide and iodine to name a few. In some cases, passage of a stream of inert gas over the heated substance secures adequate vaporization and reduces oxidation. This procedure has the added advantage of removing occluded solvent used for recrystallising the solid.

CHROMATOGRAPHY

Chromatography is often used with advantage for the purification of small amounts of complex organic mixtures. Chromatography techniques all rely on the differential distribution of the various components in a mixture between the mobile phase and the stationary phase. The mobile phase can either be a gas or a liquid whereas the stationary phase can either be a solid or a non-volatile liquid adspred on a solid surface.

The major chromatographic techniques can also be categorised according to the nature of the mobile phase used - vapour phase chromatography for when a gas is the mobile phase and liquid chromatography for when a liquid is the mobile phase.

The suppliers of chromatography equipment for every need are too numerous to list here but can be viewed on the internet under "Chromatography products". Details and orders can be obtained from the respective websites listed at the end of the section on HPLC below.

Vapour phase chromatography (GC or gas-liquid chromatography)

The mobile phase in vapour phase chromatography is a gas (e.g. hydrogen, helium, nitrogen or argon), and the stationary phase is a non-volatile liquid impregnated onto a porous material. The mixture to be purified is injected into a heated inlet whereby it is vaporised and taken into the column by the carrier gas. It is separated into its components by partition between the liquid on the porous support and the gas. For this reason vapour-phase chromatography is sometimes referred to as gas-liquid chromatography (g.l.c). Vapour phase chromatography is very useful for the resolution of a mixture of volatile compounds. This type of chromatography uses either packed or capillary columns. Packed columns have internal diameters of 3-5 mm with lengths of 2-6 metres. These columns can be packed with a range of materials including firebrick derived materials (chromasorb P, for separation of non-polar hydrocarbons) or diatomaceous earth (chromasorb W, for separation of more polar molecules such as acids, amines). Capillary columns have stationary phase bonded to the walls of long capillary tubes. The diameters of capillary columns are less than 0.5 mm, and the lengths of these columns can go up to 50 metres! These columns have much superior separating powers than the packed columns. Elution times for equivalent resolutions with packed columns can be up to ten times shorter. It is believed that almost any mixture of compounds can be separated using one of the four stationary phases, OV-101, SE-30, OV-17 and Carbowax-20M. Capillary columns for analysis in gas chromatography are now routinely used. An extensive range of packed and capillary columns is available from chromatographic specialists such as Supelco, Alltech, Hewlett-Packard, Phenomenex (for stainless steel capillary columns see <phenomenex.com>, etc. (see above and at the end of the section on HPLC below).

Table 9 shows some typical liquids used for stationary phases in gas chromatography.

Although gas chromatography is routinely used for the analysis of mixtures, this form of chromatography can also be used for separation/purification of substances. This is known as preparative GC. In preparative GC, suitably packed columns are used, and as substances emerge from the column, they are collected by condensing the vapour of these separated substances in suitable traps. The carrier gas blows the vapour through these traps; hence these traps have to be very efficient. Improved collection of the effluent vaporised fractions in preparative work is attained by strong cooling, increasing the surface of the traps by packing them with glass wool, and/or by applying an electrical potential which neutralises the charged vapour and causes it to condense.

When the gas chromatograph is attached to a mass spectrometer, a very powerful analytical tool (*gas chromatography-mass spectrometry*; **GC-MS**) is produced. Gas chromatography allows the separation of mixtures but does not allow the definitive identification of unknown substances, whereas mass spectrometry is good for the identification of individual compounds of the mixtures of compounds. This means that with GC-MS, both separation *and* identification of substances in mixtures can be achieved. The spectrometer can be connected to a computer that has a library from which the mass peaks can be compared and is a very powerful analytical tool. Because of the relatively small amounts of material required for mass spectrometry, a splitting system is inserted between the column and the mass spectrometer. This enables only a small fraction of the effluent to enter the spectrometer; the rest of the effluent is usually collected or vented to the air.

For more detail on apparatus and chromatographic columns see Supelco (Chromatographic Products for Analysis & Purification Catalogue, www.sigmaaldrich.com/supelco/analytical) and websites at the end of the section on HPLC below).

Liquid chromatography

In contrast to vapour phase chromatography, the mobile phase in liquid chromatography is a liquid. In general, there are four main types of liquid chromatography: *adsorption*, *partition*, *ion-chromatography*, and *gel filtration*.

Adsorption chromatography is based on the difference in the extent to which substances in solution are adsorbed onto a suitable surface. The main techniques in adsorption chromatography are TLC (thin layer chromatography), paper and column chromatography.

Thin layer chromatography (TLC). In thin layer chromatography, the mobile phase, i.e. the solvent, creeps up the stationary phase (the absorbent) by capillary action. The adsorbent (e.g. silica, alumina, cellulose) is spread on a rectangular glass plate (or solid inert plastic sheet or aluminium foil). Some adsorbents (e.g. silica) are mixed with a setting material (e.g. CaSO₄) by the manufacturers which causes the film to set hard on drying. The adsorbent can be activated by heating at 100-110° for a few hours. Other adsorbents (e.g. celluloses) adhere on glass plates without a setting agent. Thus some grades of absorbents have prefixes; e.g. prefix G means that the absorbent can cling to a glass plate and is used for TLC (e.g. silica gel GF₂₅₄ is for TLC plates which have a dye that fluoresces under 254nm UV light). Those lacking this binder have the letter H after any coding and is suitable for column chromatography e.g. silica gel 60H. The materials to be purified or separated are spotted in a solvent close to the lower end of the plate and allowed to dry. The spots will need to be placed at such a distance so as to ensure that when the lower end of the plate is immersed in the solvent, the spots are a few mm above the eluting solvent. The plate is placed upright in a tank containing the eluting solvent. Elution is carried out in a closed tank to ensure equilibrium. Good separations can be achieved with square plates if a second elution is performed at right angles to the first using a second solvent system. For rapid work, plates of the size of microscopic slides or even smaller are used which can decrease the elution time and cost without loss of resolution. The advantage of plastic backed and aluminium foil backed plates is that the size of the plate can be made as required by cutting the sheet with scissors or a sharp guillotine. Visualisation of substances on TLC can be carried out using UV light if they are UV absorbing or fluorescing substances or by spraying or dipping the plate with a reagent that gives coloured products with the substance (e.g. iodine solution or vapour gives brown colours with amines), or with dilute sulfuric acid (organic compounds become coloured or black when the plates are heated at 100° if the plates are of alumina or silica, but not cellulose). (see Table 10 for some methods of visualisation.) Some alumina and silica powders are available with fluorescent materials in them, in which case the whole plate fluoresces under UV light. Non-fluorescing spots are thus clearly visible, and fluorescent spots invariably fluoresce with a different colour. The colour of the spots can be different under UV light at 254nm and at 365nm. Another useful way of showing up non-UV absorbing spots is to spray the plate with a 1-2% solution of Rhodamine 6G in acetone. Under UV light the dye fluoresces and reveals the non-fluorescing spots. For preparative work, if the material in the spot or fraction is soluble in ether or petroleum ether, the desired substance can be extracted from the absorbent with these solvents which leave the water soluble dye behind.

TLC can be used as an analytical technique, or as a guide to establishing conditions for column chromatography or as a preparative technique in its own right.

The thickness of the absorbent on the TLC plates could be between 0.2mm to 2mm or more. In preparative work, the thicker plates are used and hundreds of milligrams of mixtures can be purified conveniently and quickly. The spots or areas are easily scraped off the plates and the desired substances extracted from the absorbent with the required solvent. For preparative TLC, non-destructive methods for visualising spots and fractions are required. As such, the use of UV light is very useful. If substances are not UV active, then a small section of the plate (usually the right or left edge of the plate) is sprayed with a visualising agent while the remainder of the plate is kept covered.

Thin layer chromatography has been used successfully with ion-exchange celluloses as stationary phases and various aqueous buffers as mobile phases. Also, gels (e.g. Sephadex G-50 to G-200 superfine) have been adsorbed on glass plates and are good for fractionating substances of high molecular weights (1500 to 250,000). With this technique, which is called *thin layer gel filtration* (**TLG**), molecular weights of proteins can be determined when suitable markers of known molecular weights are run alongside (see Chapter 6).

Commercially available pre-coated plates with a variety of adsorbents are generally very good for quantitative work because they are of a standard quality. Plates of a standardised silica gel 60 (as medium porosity silica gel with a mean porosity of 6mm) released by Merck have a specific surface of 500 m²/g and a specific pore volume of 0.75 mL/g. They are so efficient that they have been called *high performance thin layer chromatography* (**HPTLC**) plates (Ropphahn & Halpap *J Chromatogr* **112** 81 *1975*). In another variant of thin layer chromatography the adsorbent is coated with an oil as in gas chromatography thus producing *reverse-phase thin layer chromatography*. Reversed-phase TLC plates e.g. silica gel RP-18 are available from Fluka and Merck.

A very efficient form of chromatography makes use of a circular glass plate (rotor) coated with an adsorbent (silica, alumina or cellulose). As binding to a rotor is needed, the sorbents used may be of a special quality and/or binders are added to the sorbent mixtures. For example when silica gel is required as the absorbent, silica gel 60 PF-254 with calcium sulfate (Merck catalog 7749) is used. The thickness of the absorbent (1, 2 or 4 mm) can vary depending on the amount of material to be separated. The apparatus used is called a **Chromatotron** (available from Harrison Research, USA). The glass plate is rotated by a motor, and the sample followed by the eluting solvent is allowed to drip onto a central position on the plate. As the plate rotates the solvent elutes the mixture,

centrifugally, while separating the components in the form of circular bands radiating from the central point. The separated bands are usually visualised conveniently by UV and as the bands approach the edge of the plate, the eluent is collected. The plate with the adsorbent can be re-used many times if care is employed in the usage, and hence this form of chromatography utilises less absorbents as well as solvents.

Recipes and instructions for coating the rotors are available from the Harrison website http://www.harrisonresearch.com/chromatotron/. In addition, information on how to regenerate the sorbents and binders is also included.

Paper chromatography. This is the technique from which thin layer chromatography was developed. It uses cellulose paper (filter paper) instead of the TLC adsorbent and does not require a backing like the plastic sheet in TLC. It is used in the ascending procedure (like in TLC) whereby a sheet of paper is hung in a jar, and the materials to be separated are spotted (after dissolving in a suitable solvent and drying) near the bottom of the sheet which dips into the eluting solvent just below the spots. As the solvent rises up the paper the spots are separated according to their adsorption properties. A variety of solvents can be used, the sheet is then dried in air (fume cupboard), and can then be run again with the solvent running at right angles to the first run to give a two-dimensional separation. The spots can then be visualised as in TLC or can be cut out and analysed as required. A descending procedure had also been developed where the material to be separated is spotted near the top of the paper and the top end is made to dip into a tray containing the eluting solvent. The whole paper is placed in a glass jar, and the solvent then runs down the paper causing the materials in the spots to separate also according to their adsorption properties and to the eluting ability of the solvent. This technique is much cheaper than TLC and is still used (albeit with thicker cellulose paper) with considerable success for the separation of protein hydrolysates for sequencing analysis and/or protein identification. However, modern and more efficient technologies are available for analysing proteins and their hydrolysates although the equipment is expensive. (Whatman papers for chromatography and electrophoresis are available also from Sigma-Aldrich Labware.)

Column Chromatography. The substances to be purified are usually placed on the top of the column and the solvent is run down the column. Fractions are collected and checked for compounds using TLC (UV and/or other means of visualisation). The adsorbent for chromatography can be packed dry and solvents to be used for chromatography are used to equilibrate the adsorbent by flushing the column several times until equilibration is achieved. Alternatively, the column containing the adsorbent is packed wet (slurry method), and pressure is applied at the top of the column until the column is well packed (i.e. the adsorbent is settled).

Graded Adsorbents and Solvents. Some materials used in columns for adsorption chromatography are grouped in Table 11 in an approximate order of effectiveness. Other adsorbents sometimes used include barium carbonate, calcium sulfate, calcium phosphate, charcoal (usually mixed with Kieselguhr or other form of diatomaceous earth, for example, the filter aid Celite) and cellulose. The alumina can be prepared in several grades of activity (see below).

In most cases, adsorption takes place most readily from non-polar solvents such as petroleum ether and least readily from polar solvents such as alcohols, esters, and acetic acid. Common solvents, arranged in approximate order of increasing eluting ability are also given in Table 11. Eluting power roughly parallels the dielectric constants of solvents. The series also reflects the extent to which the solvent binds to the column material, thereby displacing the substances that are already adsorbed. This preference of alumina and silica gel for polar molecules explains, for example, the use of percolation through a column of silica gel for the following purposes-drying of ethylbenzene, removal of aromatics from 2,4-dimethylpentane and of ultraviolet absorbing substances from cyclohexane.

Mixed solvents are intermediate in strength, and so provide a finely graded series. In choosing a solvent for use as an eluent it is necessary to consider the solubility of the substance in it and the ease with which it can subsequently be removed.

Preparation and Standardisation of Alumina. The activity of alumina depends inversely on its water content, and a sample of poorly active material can be rendered more active by leaving for some time in a round bottomed flask heated up to about 200° in an oil bath or a heating mantle while a slow stream of a dry inert gas is passed through it. Alternatively, it is heated to red heat (380-400°) in an open vessel for 4-6hours with occasional stirring and then cooled in a vacuum desiccator: this material is then of grade I activity. Conversely, alumina can be rendered less active by adding small amounts of water and thoroughly mixing for several hours. Addition of about 3% (w/w) of water converts grade I alumina to grade II.

Used alumina can be regenerated by repeated extraction, first with boiling methanol, then with boiling water, followed by drying and heating. The degree of activity of the material can be expressed conveniently in terms of the scale due to Brockmann and Schodder (*Chem Ber* B 74 73 1941).

Alumina is normally slightly alkaline. A (less strongly adsorbing) neutral alumina can be prepared by making a slurry in water and adding 2M hydrochloric acid until the solution is acid to Congo red. The alumina is then filtered off, washed with distilled water until the wash water gives only a weak violet colour with Congo red paper, and dried.

Alumina used in TLC can be recovered by washing in ethanol for 48hours with occasional stirring, to remove binder material and then washed with successive portions of ethyl acetate, acetone and finally with distilled water. Fine particles are removed by siphoning. The alumina is first suspended in 0.04M acetic acid, then in distilled water, siphoning off 30minutes after each wash. The process is repeated 7-8 times. It is then dried and activated at 200° [Vogh & Thomson *Anal Chem* **53** 1365 *1981*].

Preparation of other adsorbents

Silica gel can be prepared from commercial water-glass by diluting it with water to a density of 1.19 and, while keeping it cooled to 5°, adding concentrated hydrochloric acid with stirring until the solution is acid to thymol blue. After standing for 3hours, the precipitate is filtered off, washed on a Büchner funnel with distilled water, then suspended in 0.2M hydrochloric acid. The suspension is set aside for 2-3days, with occasional stirring, then filtered, washed well with water and dried at 110°. It can be activated by heating up to about 200° as described for alumina.

Powdered commercial silica gel can be purified by suspending and standing overnight in concentrated hydrochloric acid (6mL/g), decanting the supernatant and repeating with fresh acid until the latter remains colourless. After filtering with suction on a sintered-glass funnel, the residue is suspended in water and washed by decantation until free of chloride ions. It is then filtered, suspended in 95% ethanol, filtered again and washed on the filter with 95% ethanol. The process is repeated with anhydrous diethyl ether before the gel is heated for 24hours at 100° and stored for another 24hours in a vacuum desiccator over phosphorus pentoxide.

To buffer silica gel for flash chromatography (see later), 200g of silica is stirred in 1L of 0.2M NaH₂PO₄ for 30minutes. The slurry is then filtered with suction using a sintered glass funnel. The silica gel is then activated at 110°C for 16hours. The pH of the resulting silica gel is ~4. Similar procedures can be utilized to buffer the pH of the silica gel at various pHs (up to pH ~8: pH higher than this causes degradation of silica) using appropriate phosphate buffers.

Commercial silica gel has also been purified by suspension of 200g in 2L of 0.04M ammonia, and stood for 5minutes before siphoning off the supernatant. The procedure was repeated 3-4 times, before rinsing with distilled water and drying, and activating the silica gel in an oven at 110° [Vogh & Thomson, *Anal Chem* **53** 1345 *1981*].

Although silica gel is not routinely recycled after use (due to fear of contamination as well as the possibility of reduced activity), the costs of using new silica gel for purification may be prohibitive. In these cases, recycling may be achieved by stirring the used silica gel (1 kg) in a mixture of methanol and water (2L MeOH/4L water) for 30-40minutes. The silica gel is filtered (as described above) and reactivated at 110°C for 16hours.

Diatomaceous earth (Celite 535 or 545, Hyflo Super-cel, Dicalite, Kieselguhr) is purified before use by washing with 3M hydrochloric acid, then water, or it is made into a slurry with hot water, filtered at the pump and washed with water at 50° until the filtrate is no longer alkaline to litmus. Organic materials can be removed by repeated extraction at 50° with methanol or chloroform, followed by washing with methanol, filtering and drying at 90-100°.

Charcoal is generally satisfactorily activated by heating gently to red heat in a crucible or quartz beaker in a muffle furnace, finally allowing to cool under an inert atmosphere in a desiccator. Good commercial activated charcoal is made from wood, e.g. *Norit* (from Birch wood), *Darco* and *Nuchar*. If the cost is important, then the cheaper *animal charcoal* (bone charcoal) can be used. However, this charcoal contains calcium phosphate and other calcium salts and cannot be used with acidic materials. In this case the charcoal is boiled with dilute hydrochloric acid (1:1 by volume) for 2-3hours, diluted with distilled water and filtered through a fine grade paper on a Büchner flask, washed with distilled water until the filtrate is almost neutral, and dried first in air, then in a vacuum, and activated as above. To improve the porosity, charcoal columns are usually prepared in admixture with diatomaceous earth.

Cellulose for chromatography is purified by sequential washing with chloroform, ethanol, water, ethanol, chloroform and acetone. More extensive purification uses aqueous ammonia, water, hydrochloric acid, water, acetone and diethyl ether, followed by drying in a vacuum. Trace metals can be removed from filter paper by washing for several hours with 0.1M oxalic or citric acid, followed by repeated washing with distilled water.

Supelco (Chromatographic Products for Analysis & Purification Catalogue, <www.sigmaaldrich.com/supelco/analytical>) supply a variety of "solvent desorption tubes", which are cartridges that remove specific impurities (e.g. LpDNPH cartridges which contain a high purity silica adsorbent coated with 2,4-dinitrophenylhydrazine and remove carbonyl compounds; ozone scrubbers which eliminate ozone). Other cartridges such as the "ORBO charcoal" cartridges contain various beds such as *activated coconut charcoal*, *activated petroleum charcoal*, *HBr on petroleum charcoal or 4-tert-butyl catechol on charcoal* and are used for

specific or for general purposes. Other ORBO cartridges contain activated silica gel and coated silica gel, Florisil, Carboxen, Carbosieve and carbon-coated traps, as well as a variety of ORBO porous polymers, polyurethane, and glass fibre coated with 1-(2-pyridyl)piperazine (which is specific for sampling diisocyanates). They also supply filter cartridges for trapping aerosols and particulate forms of semivolatiles.

Flash Chromatography (FC and HPFC)

A faster method of separating components of a mixture is *flash chromatography* (see Still et al. J Org Chem 43 2923 1978). Flash chromatography has become an extremely useful and popular means of purification of small as well as large quantities of compounds. In flash chromatography the eluent flows through the column under a pressure of ca 1 to 4 atmospheres. The lower end of the chromatographic column has a relatively long taper closed with a tap. The upper end of the column is connected through a ball joint to a tap. Alternatively a specially designed chromatographic column with a solvent reservoir can also be used (for an example, see the Aldrich Chemical Catalog-glassware section). The tapered portion is plugged with cotton, or quartz, wool and $ca \ 1 \ cm$ length of fine washed sand (the latter is optional). The adsorbent is then placed in the column as a dry powder or as a slurry in a solvent and allowed to fill to about one-third of the column. A fine grade of adsorbent is required in order to slow the flow rate at the higher pressure, e.g. Silica 60, 230 to 400 mesh with particle size 0.040-0.063 mm (e.g. from Merck). The top of the adsorbent is layered with $ca \ 1$ cm length of fine washed sand. The mixture in the smallest volume of solvent is applied at the top of the column and allowed to flow into the adsorbent under gravity by opening the lower tap momentarily. The top of the column is filled with eluent, the upper tap is connected by a tube to a nitrogen supply from a cylinder, or to compressed air, and turned on to the desired pressure (monitor with a gauge). The lower tap is turned on and fractions are collected rapidly until the level of eluent has reached the top of the adsorbent (do not allow the column to run dry). If further elution is desired then both taps are turned off, the column is filled with more eluting solvent and the process repeated. The top of the column can be modified so that gradient elution can be performed. Alternatively, an apparatus for producing the gradient is connected to the upper tap by a long tube and placed high above the column in order to produce the required hydrostatic pressure. Much better resolution is obtained by dry loading the sample for purification rather than loading the sample as a solution. Flash chromatography is more efficient and gives higher resolution than conventional chromatography at atmospheric pressure and is completed in a relatively shorter time. A successful separation of components of a mixture by TLC using the same adsorbent is a good indication that flash chromatography will give the desired separation on a larger scale.

Very elaborate equipment is now available for FC and HPFC (high-performance flash chromatography), which may include a pump, facility for gradient elution, UV detection and fraction collection of effluent. A large variety of columns (disposable cartridges) with packings such as silicate, carbon, reverse phases for a wide range of applications are commercially available. In addition a plethora of cartridges are available for preliminary purification, prior to FC or HPFC, packed with adsorbents which can remove specific impurities, e.g. unwanted reaction products such as aldehydes or ketone which may be suspected by-products and/or starting materials. [Supelco (Chromatographic Products for Analysis & Purification Catalogue <<www.sigmaaldrich.com/supelco/analytical>; Biotage: Synthesis and Purification Catalogue and the 2007 Analytical Sample Preparation Catalogue contain details on available FC and HPFC equipment, accessories and consumables, as well as means of optimizing purification, see <<www.biotage.com>.]

Paired-ion Chromatography (PIC)

Mixtures containing ionic compounds (e.g. acids and/or bases), non-ionisable compounds, and zwitterions can be separated successfully by paired-ion chromatography (PIC). It utilises the 'reverse-phase' technique (Eksberg & Schill *Anal Chem* **45** 2092 *1973*). The stationary phase is lipophilic, such as μ -BONDAPAK C₁₈ or any other adsorbent that is compatible with water. The mobile phase is water or aqueous methanol containing the acidic or basic counter ion. Thus the mobile phase consists of dilute solutions of strong acids (e.g. 5mM 1-heptanesulfonic acid) or strong bases (e.g. 5 mM tetrabutylammonium phosphate) that are completely ionised at the operating pH values which are usually between 2 and 8. An equilibrium is set up between the neutral species of a mixture in the stationary phase and the respective ionised (anion or cation) species which dissolve in the mobile phase. Since the ionisation constants and the solubility of the unionised species in the stationary phase. Since the ionisation constants and the solubility in the stationary phase will vary with the water-methanol ratio of the mobile phase, the separation may be improved by altering this ratio gradually (gradient elution) or stepwise. If the compounds are eluted too rapidly, the water content of the mobile phase should be increased, e.g. by steps of 10%.

The application of pressure to the liquid phase in liquid chromatography generally increases the separation (see HPLC). In PIC also, improved efficiency of the column is observed if pressure is applied to the mobile phase

(Wittmer et al. *Anal Chem* **47** 1422 *1975*). [See the Fluka (Riedel-deHaën) catalogue and Supelco catalogue for IPC reagents for the separation of cations and anions.]

Ion-exchange Chromatography

Ion-exchange chromatography involves an electrostatic process which depends on the relative affinities of various types of ions for an immobilised assembly of ions of opposite charge. The mobile phase is an aqueous buffer with a fixed pH or an aqueous mixture of buffers in which the pH is continuously increased or decreased as the separation may require. This form of liquid chromatography can also be performed at high inlet pressures of liquid with increased column performances.

Ion-exchange Resins. An ion-exchange resin is made up of particles of an insoluble elastic hydrocarbon network to which is attached a large number of ionisable groups. Materials commonly used comprise synthetic ion-exchange resins made, for example, by crosslinking polystyrene to which has been attached non-diffusible ionised or ionisable groups. Resins with relatively high crosslinkage (8-12%) are suitable for the chromatography of small ions, whereas those with low cross linkage (2-4%) are suitable for larger molecules. Applications to hydrophobic systems are possible using aqueous gels with phenyl groups bound to the rigid matrix (Phenyl-Superose/Sepharose, Pharmacia-Amersham Biosciences) or neopentyl chains (Alkyl-Superose, Pharmacia-Amersham Biosciences). (Superose is a cross-linked agarose-based medium with an almost uniform bead size.) These groups are further distinguishable as strong [-SO₂OH, -NR₃⁺] or weak [-OH, -CO₂H, -PO(OH)₂, -NH₂]. Their charges are counterbalanced by diffusible ions, and the operation of a column depends on its ability and selectivity to replace these ions. The exchange that takes place is primarily an electrostatic process but adsorptive forces and hydrogen bonding can also be important. A typical sequence for the relative affinities of some common anions (and hence the inverse order in which they pass through such a column) is the following, obtained using a quaternary ammonium (strong base) anion-exchange column:

Fluoride < acetate < bicarbonate < hydroxide < formate < chloride < bromate < nitrite < cyanide < bromide < chromate < nitrate < iodide < thiocyanate < oxalate < sulfate < citrate.

For an amine (weak base) anion-exchange column in its chloride form, the following order has been observed:

Fluoride < chloride < bromide = iodide = acetate < molybdate < phosphate < arsenate < nitrate < tartrate < citrate < chromate < sulfate < hydroxide.

With strong cation-exchangers (e.g. with SO_3H groups), the usual sequence is that polyvalent ions bind more firmly than mono- or di-valent ones, a typical series being as follows:

$$\begin{aligned} \text{Th}^{4+} > \text{Fe}^{3+} > \text{Al}^{3+} > \text{Ba}^{2+} > \text{Pb}^{2+} > \text{Sr}^{2+} > \text{Ca}^{2+} > \text{Co}^{2+} > \text{Ni}^{2+} = \text{Cu}^{2+} > \text{Zn}^{2+} = \text{Mg}^{2+} > \text{UO}_2^+ \\ = \text{Mn}^{2+} > \text{Ag}^+ > \text{Tl}^+ > \text{Cs}^+ > \text{Rb}^+ > \text{NH}_4^+ = \text{K}^+ > \text{Na}^+ > \text{H}^+ > \text{Li}^+. \end{aligned}$$

Thus, if an aqueous solution of a sodium salt contaminated with heavy metals is passed through the sodium form of such a column, the heavy metal ions will be removed from the solution and will be replaced by sodium ions from the column. This effect is greatest in dilute solution. Passage of sufficiently strong solutions of alkali metal salts or mineral acids readily displaces all other cations from ion-exchange columns. (The regeneration of columns depends on this property.) However, when the cations lie well to the left in the above series it is often advantageous to use a complex-forming species to facilitate removal. For example, iron can be displaced from ion-exchange columns by passage of sodium citrate or sodium ethylenediaminetetraacetate.

Some of the more common commercially available resins are listed in Table 12.

Ion-exchange resins swell in water to an extent which depends on the amount of crosslinking in the polymer, so that columns should be prepared from the wet material by adding it as a suspension in water to a tube already partially filled with water. (This also avoids trapping air bubbles.) The exchange capacity of a resin is commonly expressed as mg equiv./mL of wet resin. This quantity is pH-dependent for weak-acid or weak-base resins but is constant at about 0.6-2 for most strong-acid or strong-base types.

Apart from their obvious applications to inorganic species, sulfonic acid resins have been used in purifying amino acids, aminosugars, organic acids, peptides, purines, pyrimidines, nucleosides, nucleotides and polynucleotides. Thus, organic bases can be applied to the H⁺ form of such resins by adsorbing them from neutral solution and, after washing with water, they are eluted sequentially with suitable buffer solutions or dilute acids. Alternatively, by passing alkali solution through the column, the bases will be displaced in an order that is governed by their pK values. Similarly, strong-base anion exchangers have been used for aldehydes and ketones (as bisulfite addition compounds), carbohydrates (as their borate complexes), nucleosides, nucleotides, organic acids, phosphate esters and uronic acids. Weakly acidic and weakly basic exchange resins have also found extensive applications, mainly

in resolving weakly basic and acidic species. For demineralisation of solutions without large changes in pH, mixed-bed resins can be prepared by mixing a cation-exchange resin in its H^+ form with an anion-exchange resin in its OH⁻ form. Commercial examples include Amberlite MB-1 (IR-120 + IRA-400) and Bio-Deminrolit (Zeo-Karb 225 and Zerolit FF). The latter is also available in a self-indicating form.

Ion-exchange Celluloses and Sephadex. A different type of ion-exchange column that finds extensive application in biochemistry for the purification of proteins, nucleic acids and acidic polysaccharides derives from cellulose by incorporating acidic and basic groups to give ion-exchangers of controlled acid and basic strengths. Commercially available cellulose-type resins are listed in Tables 13 and 14. AG 501 x 8 (Bio-Rad) is a

mixed-bed resin containing equivalents of AG 50W-x8 H⁺ form and AG 1-x8 HO⁻ form, and Bio-Rex MSZ 501 resin. A dye marker indicates when the resin is exhausted. Removal of unwanted cations, particularly of the transition metals, from amino acids and buffer can be achieved by passage of the solution through a column of Chelex 20 or Chelex 100. The metal-chelating abilities of the resin reside in the bonded iminodiacetate groups. Chelex can be regenerated by washing in two bed volumes of 1M HCl, two bed volumes of 1M NaOH and five bed volumes of water.

Ion-exchange celluloses are available in different particle sizes. It is important that the amounts of 'fines' are kept to a minimum otherwise the flow of liquid through the column can be extremely slow to the point of no liquid flow. Celluloses with a large range of particle sizes should be freed from 'fines' before use. This is done by suspending the powder in the required buffer and allowing it to settle for one hour and then decanting the 'fines'. This separation appears to be wasteful, but it is necessary for reasonable flow rates without applying high pressures at the top of the column. Good flow rates can be obtained if the cellulose column is packed dry whereby the 'fines' are evenly distributed throughout the column. Wet packing causes the 'fines' to rise to the top of the column, which thus becomes clogged.

Several ion-exchange celluloses require recycling before use, a process which must be applied for recovered celluloses. Recycling is done by stirring the cellulose with 0.1M aqueous sodium hydroxide, washing with water until neutral, then suspending in 0.1M hydrochloric acid and finally washing with water until neutral. When regenerating a column it is advisable to wash with a salt solution (containing the required counter ions) of increasing ionic strength up to 2M. The cellulose is then washed with water and recycled if necessary. Recycling can be carried out more than once if there are doubts about the purity of the cellulose and when the cellulose had been used previously for a different purification procedure than the one to be used. The basic matrix of these ion-exchangers is cellulose and it is important not to subject them to strong acid (> 1M) and strongly basic (> 1M) solutions.

When storing ion-exchange celluloses, or during prolonged usage, it is important to avoid growth of microorganisms or moulds which slowly destroy the cellulose. Good inhibitors of microorganisms are phenyl mercuric salts (0.001%, effective in weakly alkaline solutions), chlorohexidine (Hibitane at 0.002% for anion exchangers), 0.02% aqueous sodium azide or 0.005% of ethyl mercuric thiosalicylate (Merthiolate); these are most effective in weakly acidic solutions for cation exchangers. Trichlorobutanol (Chloretone, at 0.05% is only effective in weakly acidic solutions) can be used for both anion and cation exchangers. Most organic solvents (e.g. methanol) are effective antimicrobial agents but only at high concentrations. These inhibitors must be removed by washing the columns thoroughly before use because they may have adverse effects on the material to be purified (e.g. inactivation of enzymes or other active preparations).

Sephadex. Other carbohydrate matrices such as Sephadex are a bead form of cross-linked gels (based on dextran) which have more uniform particle sizes. Their advantages over the celluloses include faster and more reproducible flow rates and they can be used directly without removal of 'fines'. Sephadex, which can also be obtained in a variety of ion-exchange forms (see Table 14) consists of beads of a cross-linked dextran gel which swells in water and aqueous salt solutions. The smaller the bead size, the higher the resolution that is possible but the slower the flow rate. Typical applications of Sephadex gels are the fractionation of mixtures of polypeptides, proteins, nucleic acids, polysaccharides and for desalting solutions.

Sephadex ion-exchangers, unlike celluloses, are available in narrow ranges of particle sizes. These are of two medium types, the G-25 and G-50, and their dry bead diameter sizes are *ca* 50 to 150 microns. They are available as cation and anion exchange Sephadex. One of the disadvantages of using Sephadex ion-exchangers is that the bed volume can change considerably with alteration of pH. *Ultragels* also suffer from this disadvantage to a varying extent, but ion-exchangers of the bead type have been developed e.g. *Fractogels, Toyopearl*, which do not suffer from this disadvantage.

Sepharose (e.g. *Sepharose CL and Bio-Gel A*) is a bead form of agarose gel which is useful for the fractionation of high molecular weight substances, for molecular weight determinations of large molecules (molecular weight > 5000), and for the immobilisation of enzymes, antibodies, hormones and receptors usually for affinity chromatography applications.

In preparing any of the above for use in columns, the dry powder is evacuated, then mixed under reduced pressure with water or the appropriate buffer solution. Alternatively it is stirred gently with the solution until all air bubbles are removed. Because some of the wet powders change volumes reversibly with alteration of pH or ionic strength (see above), it is imperative to make allowances when packing columns (see above) in order to avoid overflowing of packing when the pH or salt concentrations are altered.

Cellex CM ion-exchange cellulose can be purified by treatment of 30-40g (dry weight) with 500mL of 1mM cysteine hydrochloride. It is then filtered through a Büchner funnel and the filter cake is suspended in 500mL of 0.05M NaCl/0.5M NaOH. This is filtered and the filter cake is resuspended in 500mL of distilled water and filtered again. The process is repeated until the washings are free from chloride ions. The filter cake is again suspended in 500mL of 0.01M buffer at the desired pH for chromatography, filtered, and the last step repeated several times.

Cellex D and other anionic celluloses are washed with 0.25M NaCl/0.25M NaOH solution, then twice with deionised water. This is followed with 0.25M NaCl and then washed with water until chloride-free. The *Cellex* is then equilibrated with the desired buffer as above.

Crystalline Hydroxylapatite is a structurally organised, highly polar material which, in aqueous solution (in buffers) strongly adsorbs macromolecules such as proteins and nucleic acids, permitting their separation by virtue of the interaction with charged phosphate groups and calcium ions, as well by physical adsorption. The procedure therefore is not entirely ion-exchange in nature. Chromatographic separations of singly and doubly stranded DNA are readily achievable, whereas there is negligible adsorption of low-molecular-weight species.

Gel Filtration

The gel-like, bead nature of wet Sephadex enables small molecules such as inorganic salts to diffuse freely into it while, at the same time, protein molecules are unable to do so. Hence, passage through a Sephadex column can be used for complete removal of salts from protein solutions. Polysaccharides can be freed from monosaccharides and other small molecules because of their differential retardation. Similarly, amino acids can be separated from proteins and large peptides.

Gel filtration using Sephadex G-types (50 to 200) is essentially useful for fractionation of large molecules with molecular weights above 1000. For Superose, the range is given as 5000 to 5×10^6 . Fractionation of lower molecular weight solutes (e.g. ethylene glycols, benzyl alcohols) can now be achieved with Sephadex G-10 (up to Mol.Wt 700) and G-25 (up to Mol.Wt 1500). These dextrans are used only in aqueous solutions. In contrast, Sephadex LH-20 and LH-60 (prepared by hydroxypropylation of Sephadex) are used for the separation of small molecules (Mol.Wt less than 500) using most of the common organic solvents as well as water.

Sephasorb HP (ultrafine, prepared by hydroxypropylation of crossed-linked dextran) can also be used for the separation of small molecules in organic solvents and water, and in addition it can withstand pressures up to 1400 psi making it useful in HPLC. These gels are best operated at pH values between 2 and 12, because solutions with high and low pH values slowly decompose them (see further in Chapter 6).

Supelco (see catalogue) supply a variety of SUPELCOGEL columns (for small molecule separations), TSK-GEL columns (for large molecules separation) and guard columns for gel permeation chromatography. They have columns of the latter type (e.g. TSL-GEL column G4000SW) which can separate globular proteins of $20-10,000 \times 10^3$ Daltons in molecular weight. They also supply "Ascentis HPLC Applications CDs" containing a comprehensive library of their columns and possible applications.

High Performance Liquid Chromatography (HPLC)

When pressure is applied at the inlet of a liquid chromatographic column the performance of the column can be increased by several orders of magnitude. This is partly because of the increased speed at which the liquid flows through the column and partly because fine column packings which have larger surface areas can be used. Because of the improved efficiency of the columns, this technique has been referred to as high performance, high pressure, or high speed liquid chromatography and has found great importance in chemistry and biochemistry.

The equipment consists of a hydraulic system to provide the pressure at the inlet of the column, a column, a detector, data storage and output, usually in the form of a computer. The pressures used in HPLC vary from a few psi to 4000-5000 psi. The most convenient pressures are, however, between 500 and 1800psi. The plumbing is made of stainless steel or non-corrosive metal tubing to withstand high pressures. Plastic tubing and connectors are used for low pressures, e.g. up to ~500psi. Increase of temperature has a very small effect on the performance of a column in liquid chromatography. Small variations in temperatures, however, do upset the equilibrium of the column, hence it is advisable to place the column in an oven at ambient temperature in order to achieve reproducibility. The packing (stationary phase) is specially prepared for withstanding high pressures. It may be an adsorbent (for adsorption or solid-liquid HPLC), a material impregnated with a high boiling liquid (e.g. octadecyl

sulfate, in *reverse-phase* or *liquid-liquid or paired-ion* HPLC), an ion-exchange material (in *ion-exchange* HPLC), or a highly porous non-ionic gel (for high performance *gel filtration* or *permeation*). The mobile phase is water, aqueous buffers, salt solutions, organic solvents or mixtures of these. The more commonly used detectors have UV, visible, diode array or fluorescence monitoring for light absorbing substances, and refractive index monitoring and evaporative light scattering for transparent compounds. UV detection is not useful when molecules do not have UV absorbing chromophores and solvents for elution should be carefully selected when UV monitoring is used so as to ensure the lack of background interference in detection. The sensitivity of the refractive index monitoring is usually lower than the light absorbing monitoring by a factor of ten or more. It is also difficult to use a refractive index monitoring system with gradient elution of solvents. When substances have readily oxidised and reduced forms, e.g. phenols, nitro compounds, heterocyclic compounds etc. then electrochemical detectors are useful. These detectors oxidise and reduce these substances and make use of this process to provide a peak on the recorder.

The cells of the monitoring devices are very small ($ca 5 \mu l$) and the detection is very good. The volumes of the analytical columns are quite small (ca 2mL for a 1 metre column); hence the result of an analysis is achieved very quickly. Larger columns have been used for preparative work and can be used with the same equipment. Most machines have solvent mixing chambers for solvent gradient or ion gradient elution. The solvent gradient (for two solvents) or pH or ion gradient can be adjusted in a linear, increasing or decreasing exponential manner.

In general two different types of HPLC columns are available. Prepacked columns are those with metal casings with threads at both ends onto which capillary connections are attached. The cartridge HPLC columns are cheaper and are used with cartridge holders. As the cartridge is fitted with a groove for the holding device, no threads are necessary and the connection pieces can be reused.

A large range of HPLC columns (including guard columns, i.e. small pre-columns) are available from Alltech <alltech.com>, Supelco <www.sigmaaldrich.com>, Waters <www.waters.com>, Agilent Technologies <www.chem.agilent.com>, Phenomenex <www.phenomenex.com>, YMC <www.ymc.co.jp/en/>, Merck <www. merck.de>, SGE <www.sge.com>, Amersham Bioscience <http://www6.gelifescience.com/aptrix/upp00919.nsf/content/labsep_homepage> under "HPLC columns", and other leading companies. Included in this range of columns are also columns with chiral bonded phases capable of separating enantiomeric mixtures, such as Chiralpak AS and Chirex columns (e.g. from Restek <www.restekcorp.com>, Daicel-<www.daicel.co.jp/indexe.html>).

Other Types of Liquid Chromatography

New stationary phases for specific purposes in chromatographic separation are being continually developed. *Charge transfer adsorption chromatography* makes use of a stationary phase which contains immobilised aromatic compounds and permits the separation of aromatic compounds by virtue of the ability to form charge transfer complexes (sometimes coloured) with the stationary phase. The separation is caused by the differences in stability of these complexes (Porath and Dahlgren-Caldwell *J Chromatogr* **133** 180 *1977*).

In *metal chelate adsorption chromatography* a metal is immobilised by partial chelation on a column which contains bi- or tri- dentate ligands. Its application is in the separation of substances which can complex with the bound metals and depends on the stability constants of the various ligands (Porath et al. *Nature* **258** 598 *1975*; Loennerdal et al. *FEBS Lett* **75** 89 *1977*).

An application of chromatography which has found extensive use in biochemistry and has brought a new dimension in the purification of enzymes is *affinity chromatography*. A specific enzyme inhibitor is attached by covalent bonding to a stationary phase (e.g. AH-Sepharose 4B for acidic inhibitors and CH-Sepharose 4B for basic inhibitors, Phenyl-Sepharose for hydrophobic proteins), and will strongly bind only the specific enzyme which is inhibited or preferentially bound, allowing all other proteins to flow through the column. The enzyme is then eluted with a solution of high ionic strength (e.g. 1M sodium chloride) or a solution containing a substrate or reversible inhibitor of the specific enzyme. (The ionic medium can be removed by gel filtration using a mixed-bed gel.) Similarly, an immobilised lectin may interact with the carbohydrate moiety of a glycoprotein. The most frequently used matrixes are cross-linked (4-6%) agarose and polyacrylamide gel. Many adsorbents are commercially available for nucleotides, coenzymes and vitamins, amino acids, peptides, lectins and related macromolecules and immunoglobulins. Considerable purification can be achieved by one passage through the column and the column can be reused several times.

The affinity method may be *biospecific*, for example as an antibody-antigen interaction, or chemical as in the chelation of boronate by *cis*-diols, or of unknown origin as in the binding of certain dyes to albumin and other proteins.

Hydrophobic adsorption chromatography takes advantage of the hydrophobic properties of substances to be separated and has also found use in biochemistry (Hoftsee *Biochem Biophys Res Commun* **50** 751 *1973*;

Jennissen & Heilmayer Jr *Biochemistry* **14** 754 *1975*). Specific covalent binding with the stationary phase, a procedure that was called *covalent chromatography*, has been used for the separation of compounds and for immobilising enzymes on a support: the column was then used to carry out specific bioorganic reactions (Mosbach *Method Enzymol* **44** 1976; A.Rosevear et al. *Immobilised Enzymes and Cells: A Laboratory Manual*, Adam Hilger, Bristol, 1987, ISBN 085274515X). See Bibliography for further literature.

Automated column chromatography

Most of the above methods of column chromatography have been, or can be, automated. Devices are available for the automated application of samples to columns which are useful for analytical evaluation of samples, or for repeated analysis or separations to obtain larger amounts of material. The specific fractions of the effluent can be collected. Equipment for these purposes can be obtained from several of the supplier listed at the end of the HPLC section above with the corresponding websites. GC systems coupled with mass spectrometers (GC-MS) and HPLC systems coupled to mass spectrometers (LC-MS) are extremely important methods for the separation and identification of substances. These are invariably linked to a computer with internal libraries which can identify the peaks, and the libraries can be continually updated (see above). With more elaborate equipment LC-MS-MS where the peaks from the first spectrometer are further analysed by a second mass spectrometer provide a wealth of information. If not for the costs involved in GC-MS, GC-MS-MS, LC-MS and LC-MS-MS equipment, these systems would be more commonly found in analytical and research laboratories. [For further reading see Bibliography.]

ELECTROPHORESIS

Ionisable substances such as organic and inorganic acids, bases and salts migrate to their respective electrodes (anode or cathode) if a voltage is applied. When they are placed onto a matrix, e.g. paper or gel, then their rate of migration to the electrodes will vary with the charge, nature and structure of the substance. This phenomenon is known as electrophoresis and is very useful for separating and purifying substances. Capillary techniques have been adapted to electrophoresis and "capillary electrophoresis", and "capillary zone electrophoresis" are finding wide use for identification, separation and isolation of ionisable substances (see text in the Bibliography under "electrophoresis" and the "Introduction" in Chapter 6). The method is used extensively for biological substances, e.g. proteins, polypeptides, DNA, RNA, (see Introduction in Chapter 6) but has been used to a limited extent for identifying and purifying small molecules. Elaborate equipment is available commercially which contains essentially an electrolytic cell and a power supply which provides variable voltage for the process. The use of paper (Whatman of various thicknesses) as the matrix on a flat bed or in a vertical descending mode has been completely superseded with polyacrylamide or agarose flat bed gels. These are routinely used mainly for the separation of proteins and nucleic acids. Also capillary electrophoresis (CE) is now widely used for the analysis and detection of biological substances. It is used for the separation and purification of carbohydrates, nucleic acids, proteins and peptides and for chiral analysis and separations [see Bibliography].

DRYING

Removal of Solvents

Where substances are sufficiently stable, removal of solvent from recrystallised materials presents no problems. The crystals, after filtering at the pump (and perhaps air-drying by suction), are heated in an oven above the boiling point of the solvent (but below the melting point of the crystals), followed by cooling in a desiccator. Where this treatment is inadvisable, it is still often possible to heat to a lower temperature under reduced pressure, for example in an Abderhalden pistol. This device consists of a small chamber which is heated externally by the vapour of a boiling solvent. Inside this chamber, which can be evacuated (pump) is placed a small boat containing the sample to be dried and also a receptacle with a suitable drying agent. Convenient liquids for use as boiling liquids in an Abderhalden pistol, and their boiling temperatures, are given in Table 15. Alternatively an electrically heated drying pistol can also be used. In cases where heating above room temperature cannot be used, drying must be carried out in a vacuum desiccator containing suitable absorbents. For example, hydrocarbons, such as cyclohexane and petroleum ether, can be removed by using shredded paraffin wax, and acetic acid and other acids can be absorbed by pellets of sodium or potassium hydroxide. However, in general, solvent removal is less of a problem than ensuring that the water content of solids and liquids is reduced below an acceptable level.

Removal of Water

Methods for removing water from solids depend on the thermal stability of the solids or the time available. The safest way is to dry in a vacuum desiccator over concentrated sulfuric acid, phosphorus pentoxide, silica gel,

calcium chloride, or some other desiccant. Where substances are stable in air and melt above 100^o, drying in an air oven may be adequate. In other cases, use of an Abderhalden pistol may be satisfactory.

Often, in drying inorganic salts, the final material that is required is a hydrate. In such cases, the purified substance is left in a desiccator to equilibrate above an aqueous solution having a suitable water-vapour pressure. A convenient range of solutions used in this way is given in Table 16.

The choice of desiccants for drying liquids is more restricted because of the need to avoid all substances likely to react with the liquids themselves. In some cases, direct distillation of an organic liquid is a suitable method for drying both solids and liquids, especially if low-boiling azeotropes are formed. Examples include acetone, aniline, benzene, chloroform, carbon tetrachloride, heptane, hexane, methanol, nitrobenzene, petroleum ether, toluene and xylene. Addition of benzene can be used for drying ethanol by distillation. In carrying out distillations intended to yield anhydrous products, the apparatus should be fitted with guard-tubes containing calcium chloride or silica gel to prevent entry of moist air into the system. (Many anhydrous organic liquids are appreciably hygroscopic).

Traces of water can be removed from solvents such as benzene, 1,2-dimethoxyethane, diethyl ether, pentane, toluene and tetrahydrofuran by refluxing under nitrogen a solution containing sodium wire and benzophenone, and fractionally distilling. Drying with, and distilling from CaH_2 is applicable to a number of solvents including aniline, benzene, *tert*-butylamine, *tert*-butanol, 2,4,6-collidine, diisopropylamine, dimethylformamide, hexamethylphosphoramide, dichloromethane, ethyl acetate, pyridine, tetramethylethylene diamine, toluene, triethylamine.

Removal of water from gases may be by physical or chemical means, and is commonly by adsorption on to a drying agent in a low-temperature trap. The effectiveness of drying agents depends on the vapour pressure of the hydrated compound - the lower the vapour pressure the less the remaining moisture in the gas.

The most usually applicable of the specific methods for detecting and determining water in organic liquids is due to Karl Fischer. (See J.Mitchell & D.M.Smith, *Aquametry*, 2nd Ed, J Wiley & Sons, New York, *1977-1984*, ISBN 0471022640; Fieser & Fieser, *Reagents for Organic Synthesis*, J.Wiley & Sons, NY, Vol 1, 528 *1967*, ISBN 0271616X), also see Karl Fischer titrant or Hydranal –Titrant Type 5E [64-17-5] and other types in the Fluka catalogue and <http://www.sigmaaldrich.com/Area_of_Interest/Analytical Chromatography/ Titration/HYDRANAL.html>. Other techniques include electrical conductivity measurements and observation of the temperature at which the first cloudiness appears as the liquid is cooled (applicable to liquids in which water is only slightly soluble). Addition of anhydrous cobalt (II) iodide (blue) provides a convenient method (colour change to pink on hydration) for detecting water in alcohols, ketones, nitriles and some esters. Infrared absorption measurements of the broad band for water near 3500 cm⁻¹ can also sometimes be used for detecting water in non-hydroxylic substances.

Cartridges for the removal not only water from solvents or solutions but other specific impurities, e.g. acids, amines, aldehydes, are now commercially available [see supplies listed at the end of the HPLC section together with their respective websites].

For further useful information on mineral adsorbents and drying agents, go to the SigmaAldrich website <sigmaaldrich.com>, under technical library (Aldrich) for technical bulletin AL-143.

Intensity and Capacity of Common Desiccants

Drying agents are conveniently grouped into three classes, depending on whether they combine with water reversibly, they react chemically (irreversibly) with water, or they are molecular sieves. The first group varies in their drying intensity with the temperature at which they are used, depending on the vapour pressure of the hydrate that is formed. This is why, for example, drying agents such as anhydrous sodium sulfate, magnesium sulfate or calcium chloride should be filtered off from the liquids before the latter are heated. The intensities of drying agents belonging to this group fall in the sequence:

 $P_2O_5 >> BaO > Mg(ClO_4)_2$, CaO, MgO, KOH (fused), conc H_2SO_4 , CaSO₄, Al₂O₃ > KOH (pellets), silica gel, Mg(ClO₄)₂.3H₂O > NaOH (fused), 95% H₂SO₄, CaBr₂, CaCl₂ (fused) > NaOH (pellets), Ba(ClO₄)₂, ZnCl₂, ZnBr₂ > CaCl₂ (technical) > CuSO₄ > Na₂SO₄, K₂CO₃.

Where large amounts of water are to be removed, a preliminary drying of liquids is often possible by shaking with concentrated solutions of sodium sulfate or potassium carbonate, or by adding sodium chloride to salt out the organic phase (for example, in the drying of lower alcohols), as long as the drying agent does not react (e.g. CaCl₂ with alcohols and amines, see below).

Drying agents that combine irreversibly with water include the alkali metals, the metal hydrides (discussed in Chapter 2), and calcium carbide.

Suitability of Individual Desiccants

Alumina. (Preheated to 175⁰ for about 7hours). Mainly as a drying agent in a desiccator or as a column through which liquid is percolated.

Aluminium amalgam. Mainly used for removing traces of water from alcohols *via* refluxing followed by distillation.

Barium oxide. Suitable for drying organic bases.

Barium perchlorate. Expensive. Used in desiccators (*covered with a metal guard*). Unsuitable for drying solvents or organic material where contact is necessary, because of the danger of **EXPLOSION**

Boric anhydride. (Prepared by melting boric acid in an air oven at a high temperature, cooling in a desiccator, and powdering.) Mainly used for drying formic acid.

Calcium chloride (anhydrous). Cheap. Large capacity for absorption of water, giving the hexahydrate below 30^o, but is fairly slow in action and not very efficient. Its main use is for preliminary drying of alkyl and aryl halides, most esters, saturated and aromatic hydrocarbons and ethers. Unsuitable for drying alcohols and amines (which form addition compounds), fatty acids, amides, amino acids, ketones, phenols, or some aldehydes and esters. Calcium chloride is suitable for drying the following gases: hydrogen chloride, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen, methane, oxygen, also paraffins, ethers, olefins and alkyl chlorides.

Calcium hydride. See Chapter 2.

Calcium oxide. (Preheated to 700-900^o before use.) Suitable for alcohols and amines (but does not dry them completely). Need not be removed before distillation, but in that case the head of the distillation column should be packed with glass wool to trap any calcium oxide powder that might be carried over. Unsuitable for acidic compounds and esters. Suitable for drying gaseous amines and ammonia.

Calcium sulfate (anhydrous). (Prepared by heating the dihydrate or the hemihydrate in an oven at 235° for 2-3hours; it can be regenerated.) Available commercially as *Drierite*. It forms the hemihydrate, $2CaSO_4.H_2O$, so that its capacity is fairly low (6.6% of its weight of water), and hence is best used on partially dried substances. It is very efficient (being comparable with phosphorus pentoxide and concentrated sulfuric acid). Suitable for most organic compounds. Solvents boiling below 100° can be dried by direct distillation from calcium sulfate.

Copper (II) sulfate (anhydrous). Suitable for esters and alcohols. Preferable to sodium sulfate in cases where solvents are sparingly soluble in water (for example, benzene or toluene). The colourless to fawn coloured powder turns blue as it absorbs water

Lithium aluminium hydride. See Chapter 2.

Magnesium amalgam. Mainly used for removing traces of water from alcohols by refluxing the alcohol in the presence of the Mg amalgam followed by distillation.

Magnesium perchlorate (anhydrous). (Available commercially as *Dehydrite*. Expensive.) Used in desiccators. Unsuitable for drying solvents or any organic material where contact is necessary, because of the danger of EXPLOSION.

Magnesium sulfate (anhydrous). (Prepared from the heptahydrate by drying at 300° under reduced pressure.) More rapid and effective than sodium sulfate but is slightly acidic. It has a large capacity, forming MgSO₄.7H₂O below 48°. Suitable for the preliminary drying of most organic compounds.

Molecular sieves. See below.

Phosphorus pentoxide. Very rapid and efficient, but difficult to handle and should only be used after the organic material has been partially dried, for example with magnesium sulfate. Suitable for anhydrides, alkyl and aryl halides, ethers, esters, hydrocarbons and nitriles, and for use in desiccators. Not suitable with acids, alcohols, amines or ketones, or with organic molecules from which a molecule of water can be eliminated. Suitable for drying the following gases: hydrogen, oxygen, carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen, methane, ethene and paraffins. It is available on a solid support with an indicator under the name *Sicapent* (from Merck). The colour changes in Sicapent depend on the percentage of water present (e.g. in the absence of water, Sicapent is colourless but becomes green with 20% water and blue with 33% w/w water). When the quantity of water in the desiccator is high, a crust of phosphoric acid forms a layer over the phosphorus pentoxide powder and decreases its efficiency. The crust can be removed with a spatula to expose the dry powder and restore the desiccant property.

Potassium (metal). Properties and applications are similar to those for sodium but as the reactivity is greater than that of sodium, the hazards are greater than those of sodium. Handle with extreme care.

Potassium carbonate (anhydrous). Has a moderate efficiency and capacity, forming the dihydrate. Suitable for an initial drying of alcohols, bases, esters, ketones and nitriles by shaking with them, then filtering off. Also suitable for salting out water-soluble alcohols, amines and ketones. Unsuitable for acids, phenols, thiols and other acidic substances.

Potassium carbonate. Solid potassium hydroxide is very rapid and efficient. Its use is limited almost entirely to the initial drying of organic bases. Alternatively, sometimes the base is shaken first with a concentrated solution of potassium hydroxide to remove most of the water present. Unsuitable for acids, aldehydes, ketones, phenols, thiols, amides and esters. Also used for drying gaseous amines and ammonia.

Silica gel. Granulated silica gel is a commercially available drying agent for use with gases, in desiccators, and (because of its chemical inertness) in physical instruments (pH meters, spectrometers, balances). Its drying action depends on physical adsorption, so that silica gel must be used at room temperature or below. By incorporating cobalt chloride into the material it can be made self indicating (blue when dry, pink when wet), re-drying in an oven at 110° being necessary when the colour changes from blue to pink.

Sodium (metal). Used as a fine wire or as chips, for more completely drying ethers, saturated hydrocarbons and aromatic hydrocarbons which have been partially dried (for example with calcium chloride or magnesium sulfate). Unsuitable for acids, alcohols, alkyl halides, aldehydes, ketones, amines and esters. Reacts violently if water is present and can cause a fire with highly flammable liquids.

Sodium hydroxide. Properties and applications are similar to those for potassium

hydroxide.

Sodium-potassium alloy. Used as lumps. Lower melting than sodium, so that its surface is readily renewed by shaking. Properties and applications are similar to those for sodium.

Sodium sulfate (anhydrous). Has a large capacity for absorption of water, forming the decahydrate below 33°, but drying is slow and inefficient, especially for solvents that are sparingly soluble in water. It is suitable for the preliminary drying of most types of organic compounds.

Sulfuric acid (concentrated). Widely used in desiccators. Suitable for drying bromine, saturated hydrocarbons, alkyl and aryl halides. Also suitable for drying the following gases: hydrogen, nitrogen, carbon dioxide, carbon monoxide, chlorine, methane and paraffins. Unsuitable for alcohols, bases, ketones or phenols. Also available on a solid support with an indicator under the name *Sicacide* (from Merck) for desiccators. The colour changes in Sicacide depends on the percentage of water present (e.g. when dry Sicacide is red-violet but becomes pale violet with 27% water and pale yellow to colourless with 33% w/w water).

For convenience, many of the above drying agents are listed in Table 17 under the classes of organic compounds for which they are commonly used.

Molecular sieves

Molecular sieves are types of adsorbents composed of crystalline zeolites (sodium and calcium aluminosilicates). By heating them, water of hydration is removed, leaving holes of molecular dimensions in the crystal lattices. These holes are of uniform size and allow the passage into the crystals of small molecules, but not of large ones. This *sieving* action explains their use as very efficient drying agents for gases and liquids. The pore size of these sieves can be modified (within limits) by varying the cations built into the lattices. The four types of molecular sieves currently available are:

- **Type 3A sieves.** A crystalline potassium aluminosilicate with a pore size of about 3 Angstroms. This type of molecular sieves is suitable for drying liquids such as acetone, acetonitrile, methanol, ethanol and 2-propanol, and drying gases such as acetylene, carbon dioxide, ammonia, propylene and butadiene. The material is supplied as beads or pellets.
- **Type 4A sieves.** A crystalline sodium aluminosilicate with a pore size of about 4 Angstroms, so that, besides water, ethane molecules (but not butane) can be adsorbed. This type of molecular sieves is suitable for drying chloroform, dichloromethane, diethyl ether, dimethylformamide, ethyl acetate, cyclohexane, benzene, toluene, xylene, pyridine and diisopropyl ether. It is also useful for low pressure air drying. The material is supplied as beads, pellets or powder.
- **Type 5A sieves.** A crystalline calcium aluminosilicate with a pore size of about 5 Angstroms, these sieves adsorb larger molecules than type 4A. For example, as well as the substances listed above, propane, butane, hexane, butene, higher *n*-olefins, *n*-butyl alcohol and higher *n*-alcohols, and cyclopropane can be adsorbed, but not branched-chain C_6 hydrocarbons, cyclic hydrocarbons such as benzene and cyclohexane, or secondary and tertiary alcohols, carbon tetrachloride or boron trifluoride. This is the type generally used for drying gases, though organic liquids such as THF and dioxane can be dried with this type of molecular sieves.
- **Type 13X sieves.** A crystalline sodium aluminosilicate with a pore size of about 10 Angstroms which enables many branched-chain and cyclic compounds to be adsorbed, in addition to all the substances removed by type 5A sieves.

They are unsuitable for use with strong acids but are stable over the pH range 5-11.

Because of their selectivity, molecular sieves offer advantages over silica gel, alumina or activated charcoal, especially in their very high affinity for water, polar molecules and unsaturated organic compounds. Their relative efficiency is greatest when the impurity to be removed is present at low concentrations. Thus, at 25° and a relative humidity of 2%, type 5A molecular sieves adsorb 18% by weight of water, whereas for silica gel and alumina the figures are 3.5 and 2.5% respectively. Even at 100° and a relative humidity of 1.3%, molecular sieves adsorb about 15% by weight of water.

The greater preference of molecular sieves for combining with water molecules explains why this material can be used for drying ethanol and why molecular sieves are probably the most universally useful and efficient drying agents. Percolation of ethanol with an initial water content of 0.5% through a 144 cm long column of type 4A molecular sieves reduced the water content to 10ppm. Similar results have been obtained with pyridine.

The main applications of molecular sieves to purification comprise:

- 1. Drying of gases and liquids containing traces of water.
- 2. Drying of gases at elevated temperatures.
- 3. Selective removal of impurities (including water) from gas streams.

(For example, carbon dioxide from air or ethene; nitrogen oxides from nitrogen; methanol from diethyl ether. In general, carbon dioxide, carbon monoxide, ammonia, hydrogen sulfide, mercaptans, ethane, ethene, acetylene

(ethyne), propane and propylene are readily removed at 25°. In mixtures of gases, the more polar ones are preferentially adsorbed).

The following applications include the removal of straight-chain from branched-chain or cyclic molecules. For example, type 5A sieves will adsorb n-butyl alcohol but not its branched-chain isomers. Similarly, it separates n-tetradecane from benzene, or n-heptane from methylcyclohexane.

The following liquids have been dried with molecular sieves: acetone, acetonitrile, acrylonitrile, allyl chloride, amyl acetate, benzene, butadiene, *n*-butane, butene, butyl acetate, *n*-butylamine, *n*-butyl chloride, carbon tetrachloride, chloroethane, 1-chloro-2-ethylhexane, cyclohexane, dichloromethane, dichloroethane, 1,2-dichloropropane, 1,1-dimethoxyethane, dimethyl ether, 2-ethylhexanol, 2-ethylhexylamine, *n*-heptane, *n*-hexane, isoprene, isopropyl alcohol, diisopropyl ether, methanol, methyl ethyl ketone, oxygen, *n*-pentane, phenol, propane, *n*-propyl alcohol, propylene, pyridine, styrene, tetrachloroethylene, toluene, trichloroethylene and xylene. In addition, the following gases have been dried: acetylene, air, argon, carbon dioxide, chlorine, ethene, helium, hydrogen, hydrogen sulfide, nitrogen, oxygen and sulfur hexafluoride.

After use, molecular sieves can be regenerated by heating at between $300^{\circ}-350^{\circ}$ for several hours, preferably in a stream of dry inert gas such as nitrogen or preferably under vacuum, then cooling in a desiccator. Special precautions must be taken before regeneration of molecular sieves used in the drying of flammable solvents.

However, care must be exercised in using molecular sieves for drying organic liquids. Appreciable amounts of impurities were *formed* when samples of acetone, 1,1,1-trichloroethane and methyl-*t*-butyl ether were dried in the liquid phase by contact with molecular sieves 4A (Connett *Lab Pract* **21** 545 *1972*). Other, less reactive types of sieves may be more suitable but, in general, it seems desirable to make a preliminary test to establish that no unwanted reaction takes place. Useful comparative data for Type 4A and 5A sieves are in Table 18. With the advent of nanotechnology, nanoparticles are finding use as porous materials for a variety of purposes [see J.A. Schwartz & C. Contescu (Eds), *Surfaces of Nanoparticles & Porous Materials*, Marcel Dekker Inc, *1999*. ISBN 9780824719333].

MISCELLANEOUS TECHNIQUES

Freeze-pump-thaw and purging

Volatile contaminants, e.g. traces of low boiling solvent residue or oxygen, in liquid samples or solutions can be very deleterious to the samples on storage. These contaminants can be removed by repeated freeze-pump-thaw cycles. This involves freezing the liquid material under high vacuum in an appropriate vessel (which should be large enough to avoid contaminating the vacuum line with liquid that has bumped) connected to the vacuum line *via* efficient liquid nitrogen traps. The frozen sample is then thawed until it liquefies, kept in this form for some time (*ca* 10-15minutes), refreezing the sample and the cycle repeated several times without interrupting the vacuum. This procedure applies equally well to solutions, as well as purified liquids, e.g. as a means of removing oxygen from solutions for NMR and other measurements. If the presence of nitrogen, helium or argon, is not a serious contaminant then solutions can be freed from gases, e.g. oxygen, carbon dioxide, and volatile impurities by purging with N₂, He or Ar at room, or slightly elevated, temperature. The gases used for purging are then removed by freeze-pump-thaw cycles or simply by keeping in a vacuum for several hours. Special NMR tubes with a screw cap thread and a PTFE valve (Wilmad) are convenient for freeze thawing of NMR samples. Alternatively NMR tubes with "J Young" valves (Wilmad) can also be used.

Vacuum lines, Schlenk and glovebox techniques

Manipulations involving materials sensitive to air or water vapour can be carried out by these procedures. Vacuum line methods make use of quantitative transfers, and P(pressure)-V(volume)-T(temperature) measurements, of gases, and trap-to-trap separations of volatile substances.

It is usually more convenient to work under an inert-gas atmosphere using **Schlenk** type apparatus. The *principle* of Schlenk methods involve a flask/vessel which has a standard ground-glass joint and a sidearm with a tap. The system can be purged by evacuating and flushing with an inert gas (usually nitrogen, or in some cases, argon), repeating the process until the contaminants in the vapour phases have been diminished to acceptable limits. A large range of Schlenk glassware is commercially available (e.g. see Aldrich Chemical Catalog and the associated technical bulletin AL-166). With these, and tailor-made pieces of glassware, inert atmospheres can be maintained during crystallisation, filtration, sublimation and transfer.

Syringe techniques have been developed for small volumes, while for large volumes or where much manipulation is required, dryboxes (*glove boxes*) or dry chambers should be used. Disposable glove bags (e.g. Atmosbags see Sigma-Aldrich Labware of various dimensions with two or four hands which can be sealed, purged and inflated

with an inert gas are available and are relatively cheap. They are useful not only for handling moisture-sensitive substances but also for toxic materials.

PROPERTIES USEFUL IN PURIFICATION

Ionisation Constants - pK

When substances ionize, their neutral species produce positive and negative species. The ionisation constants are those constant values (equilibrium constants) for the equilibria between the charged species and the neutral species, or species with a larger number of charges (e.g. between mono and dications). These ionisation constants are given as **pK** values where **pK = -log K** and **K** is the dissociation constant for the equilibrium between the species [Albert and Serjeant, *The Determination of Ionisation Constants*, A Laboratory Manual, 3rd Edition, Chapman & Hall, New York, London, 1984, ISBN 0412242907].

The advantage of using pK values (instead of K values) is that theory (and practice) states that the pK values of ionisable substances are numerically equal to the pH of the solution at which the concentrations of ionised and neutral species are equal. For example acetic acid has a pK^{25} value of 4.76 at 25° in H₂O; then at pH 4.76 the aqueous solution contains equal amounts of acetic acid [AcOH] and acetate anion [AcO⁻], i.e. [AcOH]/[AcO⁻] of 50/50. At pH 5.76 (pK + 1) the solution contains [AcOH]/[AcO⁻] of 10/90, at pH 6.76 (pK + 2) the solution contains [AcOH]/[AcO⁻] of 1/99 etc; conversely at pH 3.76 (pK - 1) the solution contains [AcOH]/[AcO⁻] of 90/10, and at pH 2.76 (pK - 2) the solution contains [AcOH]/[AcO⁻] of 99/1.

One can readily appreciate the usefulness of pK value in purification procedures, e.g. as when purifying acetic acid. If acetic acid is placed in aqueous solution and the pH adjusted to 7.76 { $[AcOH]/[AcO^-]$ with a ratio of 0.1/99.9}, and extracted with say diethyl ether, neutral impurities will be extracted into diethyl ether leaving almost all the acetic acid in the form of AcO⁻ in the aqueous solution. If then the pH of the solution is adjusted to 1.67 where the acid is almost all in the form AcOH, almost all of it will be extracted into diethyl ether.

Aniline will be used as a second example. It has a pK^{25} of 4.60 at 25° in H₂O. If it is placed in aqueous solution at pH 1.60 it will exist almost completely (99.9%) as the anilinium cation. This solution can then be extracted with solvents e.g. diethyl ether to remove neutral impurities. The pH of the solution is then adjusted to 7.60 whereby aniline will exist as the free base (99.9%) and can be extracted into diethyl ether in order to give purer aniline.

See Table 19 for the pH values of selected buffers.

A knowledge of the pK allows the adjustment of the pH without the need of large excesses of acids or base. In the case of inorganic compounds, knowledge of the pK is useful for adjusting the ionic species for making metal complexes which could be masked or extracted into organic solvents [Perrin and Dempsey, *Buffers for pH and Metal ion Control*, Chapman & Hall, New York, London, 1974, ISBN 0412117002], or for obtaining specific anionic species in solution e.g. $H_2PO_4^-$, HPO_4^{2-} or PO_4^{3-} .

The **pK** values that have been entered in Chapters 4, 5 and 6 have been collected directly from the literature or from compilations of literature values for organic bases [Perrin, *Dissociation Constants of Organic Bases in Aqueous Solution*, Butterworths, London, 1965, Supplement 1972, ISBN 040870408X; Albert and Serjeant, *The Determination of Ionisation Constants*, A Laboratory Manual, 3rd Edition, Chapman & Hall, London, New York, 1984, ISBN 0412242907]; organic acids [Kortum, Vogel and Andrussow, *Dissociation Constants of Organic Acids in Aqueous Solution*, Butterworth, London, 1961; Serjeant and Dempsey, *Dissociation Constants of Organic Acids in Aqueous Solution*, Pergamon Press, Oxford, New York, 1979, ISBN 0080223397; and inorganic acids and bases [Perrin, *Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution*, Second Edition, Pergamon Press, Oxford, New York, 1979, ISBN 0080223397; and inorganic acids have been predicted and assigned **pK**_{Est} ~. Most predictions should be so close to true values as to make very small difference for the purposes intended in this book. The success of the predictions, i.e. how close to the true value, depends on the availability of pK values for closely related compounds because the effect of substituents or changes in structures are generally additive [Perrin, Dempsey and Serjeant, *pKa Prediction for Organic Acids and Bases*, Chapman & Hall, London, New York, 1981, ISBN 041222190X].

All the pK values in this book are pKa values, the acidic pK, i.e. dissociation of H⁺ from an acid (AH) or from a conjugate base (BH⁺). Occasionally pKb values are reported in the literature but these can be converted using the equation pKa + pKb = 14. For strong acids e.g. sulfuric acid, and strong bases, e.g. sodium hydroxide, the pK values lie beyond the 1 to 11 pH scale and have to be measured in strong acidic and basic media. In these cases appropriate scales e.g. the H_o (for acids) and H₋ (for bases) have been used [see Katritzky & Waring, *J Chem Soc* 1540 *1962*]. These values will be less than 1 (and negative) for acids and >11 for bases. They are rough guides to the strengths of acids and bases. Errors in the stated pK and $pK_{Est} \sim$ values can be judged from the numerical values given. Thus pK values of 4.55, 4.5 and 4 mean that the respective errors are better than ± 0.05 , ± 0.3 and ± 0.5 . Values taken from the literature are written as **pK**, and all the values that were estimated because they were not found in the literature are written as **pK**_{Est}.

pK and Temperature

The temperatures at which the literature measurements were made are given as superscripts, e.g. pK^{25} . Where no temperature is given, it is assumed that the measurements were carried out at room temperature, e.g. $15-25^{\circ}$. No temperature is given for estimated values ($pK_{Est} \sim$), and these have been calculated from data at room temperature. The variation of pK with temperature is given by the equation:

$- d(pK)/dT = (pK + 0.052\Delta S^{O})/T$

where T is in degrees Kelvin and ΔS^{0} is in Joules deg⁻¹ mol⁻¹. The -d(pK)/dT in the range of temperatures between 5 to 70° is generally small (e.g. between ~0.0024 and ~0.04), and for chemical purification purposes is not a seriously deterring factor. It does, however, vary with the compound under study because ΔS^{0} varies from compound to compound. The following are examples of the effect of temperature on pK values: for imidazole the pK values are 7.57 (0°), 7.33 (10°), 7.10 (20°), 6.99 (25°), 6.89 (30°), 6.58 (40°) and 6.49 (50°), and for 3,5-dinitrobenzoic acid they are 2.60 (10°), 2.73 (20°), 2.85 (30°), 2.96 (40°) and 3.07 (40°), and for *N*-acetyl- β -alanine they are 4.4788 (5°), 4.4652 (10°), 4.4564 (15°), 4.4488 (20°), 4.4452 (25°), 4.4444 (30°), 4.4434 (35°) and 4.4412 (40°).

pK and solvent

All stated pK values in this book are for data in dilute aqueous solutions unless otherwise stated, although the dielectric constants, ionic strengths of the solutions and the method of measurement, e.g. potentiometric, spectrophotometric etc., are not given. Estimated values are also for dilute aqueous solutions whether or not the material is soluble enough in water. Generally the more dilute the solution the closer is the pK to the real thermodynamic value. The pK in mixed aqueous solvents can vary considerably with the relative concentrations and with the nature of the solvents. For example the pK²⁵ values for *N*-benzylpenicillin are 2.76 and 4.84 in H₂O and H₂O/EtOH (20:80) respectively; the pK²⁵ values for (-)-ephedrine are 9.58 and 8.84 in H₂O and H₂O/EtOH (20:80), respectively; and for cyclopentylamine the pK²⁵ values are 10.65 and 4.05 in H₂O and H₂O/EtOH (50:50) respectively. pK values in acetic acid or aqueous acetic acid are generally lower than in H₂O.

The dielectric constant of the medium affects the equilibria where charges are generated in the dissociations e.g. $AH - A^- + H^+$ and therefore affects the pK values. However, its effect on dissociations where there are no changes in total charge such as $BH^+ - B + H^+$ is considerably less, with a slight decrease in pK with decreasing dielectric constant.

Solubilities of Gases in Liquids

There are two ways to define the solubilites of gases in water.

The first is the *Bunsen coefficient* (β), which is the ratio of the volume of gas corrected to STP (0°C and 1atm, i.e. 760mmHg) that dissolves in unit volume of solvent at the temperature of the experiment in equilibrium with the gas at 1atm.

The second is the *Ostwald coefficient* (*l*) which is the ratio of the volume of gas that dissolves in unit volume of solvent at the temperature of the experiment in equilibrium with the gas at 1 atm. The latter is a more convenient ratio to use because no correction for volume is required. Note that the volume of an ideal gas occupied by one molecular weight in grams of element or compound is ~22.4L at STP (e.g. 32g of oxygen occupy 22.4L at STP). The discussion will be limited to the solubilities of oxygen, nitrogen and air (which behave almost as ideal gases) in water, water containing salts, and in some organic solvents. Generally the solubility of these three gases in water decreases with increase of temperature and can be "boiled out" of the liquid. Their solubilities in organic liquids, on the other hand, generally increase with increase of temperature. The presence of salts in water tends to

decrease the solubilities of these gases, i.e. a salting out effect, and increase in pressure increases their solubilities. These properties have to be noted in liquid chromatography at atmospheric and at high pressures. They become important when purifying small amounts of compounds by crystallization or chromatography when large amounts of solvents are used. One must be wary of the presence of oxygen in solution, particularly in the presence of organic matter. Also the formation of reactive oxygen species e.g. "singlet" oxygen, superoxide and hydroxyl radicals, especially in the presence of trace metals such as iron, and/or of ultraviolet light can result in the formation of impurities.

The composition of air is: 78.08% of N₂, 20.95% of O₂, 0.03% of CO₂, 0.93% of Ar and less than 0.01% of other gases. Although the partial pressure of O₂ in air at 1atm is ~0.20, it has a higher solubility in H₂O than N₂. At STP the solubility of O₂ by volume in H₂O is 34.9% when in equilibrium with excess of air. Thus by successively dissolving air in H₂O, expelling it, and redissolving the expelled air six to seven times it is possible to increase the concentration of oxygen by volume in the expelled air to 90%. The (β) values for O₂ and N₂ in H₂O at STP are 0.028 and 0.014 respectively. There are 55.5 moles of H₂O in 1L of H₂O, so the molar ratios of O₂ to H₂O can be calculated. Note that the concentration of O₂ in liquids is higher when the liquids are in equilibrium with excess O₂ than when they are with excess of air.

The solubility coefficients (β) and/or (*l*) of some gases in liquids are give in Tables 20–23. Tables of the solubilities of HCl and NH₃ (g/100g of solution) at 760mm (Table 24) and the boiling points of some useful gases at 760mm (Table 25) are included.

CHEMICAL AND BIOCHEMICAL SOURCES

Apart from wishing to obtain a pure substance there are many reasons for wanting to purify a substance. For example the substance may have been in the store for too long and has deteriorated to a smaller or larger extent and needs to be used. Large quantities may be required, so bulk amounts, less pure but of cheaper grade could serve the purpose if they can be purified readily. The cost consideration is very important. Substances that are available commercially can be of varying grades of purity and the purer the grade the higher the price. Biological substances may be only available in crude form, e.g. acetone powders for enzymes. There are a large number of suppliers of substances for chemical, biochemical and for biological requirements and they are continually improving quality, increasing their range and introducing recently developed substances. The following is list of the more commonly used suppliers from which almost all the substances described in this book can be purchased. The list is small and by no means complete.

Fluka, Aldrich (organics & general inorganics) and Sigma (biochemicals & life science products) <www.sigmaaldrich.com>; Merck (organics & general inorganics) <www.merck-chemicals.com>, GE Healthcare (chemicals, biochemicals & life science products) <www.gelifeciences.com>, Tokyo Chemical Industry <www.tci-asiapacific.com>, <www.waco-chem.co.jn>, Invitrogen (life science products) www.invitrogen.com> and Promega (life science products) <www.promega.com>, GL Biochem, <www.glchina.com>. For inorganic chemicals particularly visit STREM (metals, metal catalysts, inorganics and organometallics) <www.strem.com>, <www.alfa.com>, and for high purity inorganic compounds, NIST Traceable inorganic reference standards/calibrants and aqueous standard solutions for ICP, ICP-MS, AA, GFAA and IC visit <www.exaxol.com>. Note that all the trace metal analyses in the "Inorganic Compounds" section of Chapter 5 are by courtesy of Joe Papa (EXAXOL see Preface).

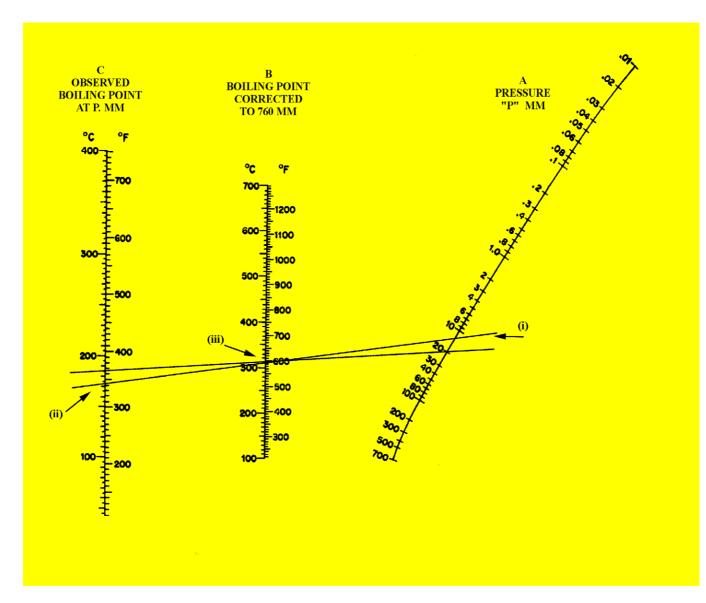
TABLES

TABLE 1.SOME COMMON IMMISCIBLE OR SLIGHTLY MISCIBLE
PAIRS OF SOLVENTS

Carbon tetrachloride with ethanolamine, ethylene glycol, formamide or water.

Dimethyl formamide with cyclohexane or petroleum ether.

Dimethyl sulfoxide with cyclohexane or petroleum ether.


Ethyl ether with ethanolamine, ethylene glycol or water.

Methanol with carbon disulfide, cyclohexane or petroleum ether.

Petroleum ether with aniline, benzyl alcohol, dimethyl formamide, dimethyl sulfoxide, formamide, furfuryl alcohol, phenol or water.

Water with aniline, benzene, benzyl alcohol, carbon disulfide, carbon tetrachloride, chloroform, cyclohexane, cyclohexanol, cyclohexanone, diethyl ether, ethyl acetate, isoamyl alcohol, methyl ethyl ketone, nitromethane, tributyl phosphate or toluene.

FIGURE 1: NOMOGRAM

How to use Figure 1:

You can use a nomogram to estimate the boiling points of a substance at a particular pressure. For example, the boiling point of 4-methoxybenzenesulfonyl chloride is 173° C/14mm. Thus to find out what the boiling point of this compound will be at 760mm (atmospheric), draw a point on curve A (pressure) at 14mm (this is shown in (i). Then draw a point on curve C (observed boiling point) corresponding to 173° (or as close as possible). This is shown in (ii). Using a ruler, find the point of intersection on curve B, drawing a line between points (i) and (ii). This is the point (iii) and is the boiling point of 4-methoxybenzenesulfonyl chloride (i.e. approx. 310° C) at atmospheric pressure. If you want to distil 4-methoxybenzenesulfonyl chloride at 20mm, then you will need to draw a point on curve A (at 20mm). Using a ruler, find the point of intersection on curve C drawing through the line intersecting (iii, curve B, i.e. 310° C) and the point in curve A corresponding to 20mm. You should have a value of 185° C; that is, the boiling point of 4-methoxybenzenesulfonyl chloride is estimated to be at 185° C at 20mm.

		Т	empera	ture in	degre	es Cen	tigrade	è			
760 mm	hHg 0	20	40	60	80	100	120	140	160	180	
0.1	-111	-99	-87	-75	-63	-51	-39	-27	-15	-4	
0.2	-105	-93	-81	-69	-56	-44	-32	-19	-7	5	
0.4	-100	-87	-74	-62	-49	-36	-24	-11	2	15	
0.6	-96	-83	-70	-57	-44	-32	-19	-6	7	20	
0.8	-94	-81	-67	-54	-41	-28	-15	-2	11	24	
1.0	-92	-78	-65	-52	-39	-25	-12	1	15	28	
2.0	-85	-71	-58	-44	-30	-16	-3	11	25	39	
4.0	-78	-64	-49	-35	-21	-7	8	22	36	51	
6.0	-74	-59	-44	-30	-15	-1	14	29	43	58	
8.0	-70	-56	-41	-26	-11	4	19	34	48	63	
10.0	-68	-53	-38	-23	-8	7	22	37	53	68	
14.0	-64	-48	-33	-23	-2	13	28	44	59	74	
16.0	-61	-45	-29	-14	2	17	33	48	64	79	
20.0	-59	-44	-28	-12	3	19	35	50	66	82	
30.0	-54	-38	-22	-6	10	26	42	58	74	90	
40.0	-50	-34	-17	-1	15	32	48	64	81	97	
50.0	-47	-30	-14	3	19	36	52	69	86	102	
60.0	-44	-28	-11	6	23	40	56	73	86	107	
80.0	-40	-23	-6	11	28	45	62	79	97	114	
100.0	-37	-19	-2	15	33	50	67	85	102	119	
150.0	-30	-12	6	23	41	59	77	95	112	130	
200.0	-25	-7	11	29	47	66	84	102	120	138	
300.0	-18	1	19	38	57	75	94	113	131	150	
400.0	-13	6	25	44	64	83	102	121	140	159	
500.0	-8	11	30	50	69	88	108	127	147	166	
600.0	-5	15	34	54	74	93	113	133	152	172	
700.0	-2	18	38	58	78	98	118	137	157	177	
750.0	0	20	40	60	80	100	120	140	160	180	
770.0	0	20	40	60	80	100	120	140	160	180	
800.0	1	21	41	61	81	101	122	142	162	182	

TABLE 2A. PREDICTED EFFECT OF PRESSURE ON BOILING POINT*

* *How to use the Table*: Take as an example a liquid with a boiling point of 80°C at 760mm Hg. The Table gives values of the boiling points of this liquid at pressures from 0.1 to 800mm Hg. Thus at 50mm Hg this liquid has a boiling point of 19°C, and at 2mm Hg its boiling point would be -30°C.

Temperature in degrees Centigrade											
760mmHg	200	220	240	260	280	300	320	340	360	380	400
0.1	8	20	32	44	56	68	80	92	104	115	127
0.2	17	30	42	54	67	79	91	103	116	128	140
0.4	27	40	53	65	78	91	103	116	129	141	154
0.6	33	40	59	72	85	98	111	124	137	150	163
0.8	38	51	64	77	90	103	116	130	143	156	169
1.0	41	54	68	81	94	108	121	134	147	161	174
2.0	53	66	80	94	108	121	135	149	163	176	190
4.0	65	79	93	108	122	136	151	156	179	193	208
6.0	72	87	102	116	131	146	160	175	189	204	219
8.0	78	93	108	123	137	152	167	182	197	212	227
10.0	83	98	113	128	143	158	173	188	203	218	233
14.0	90	105	120	136	151	166	182	197	212	228	243
18.0	95	111	126	142	157	173	188	204	219	235	251
20.0	97	113	129	144	160	176	191	207	223	238	254
30.0	106	123	139	155	171	187	203	219	235	251	267
40.0	113	130	146	162	179	195	211	228	244	260	277
50.0	119	135	152	168	185	202	218	235	251	268	284
60.0	123	140	157	174	190	207	224	241	257	274	291
80.0	131	148	165	182	199	216	233	250	267	284	301
100.0	137	154	171	189	206	223	241	258	275	293	310
150.0	148	166	184	201	219	237	255	273	290	308	326
200.0	156	174	193	211	229	247	265	283	302	320	338
300.0	169	187	206	225	243	262	281	299	318	337	355
400.0	178	197	216	235	254	273	292	311	330	350	369
500.0	185	205	224	244	263	282	302	321	340	360	379
600.0	192	211	231	251	270	290	310	329	349	368	388
700.0	197	217	237	257	277	296	316	336	356	376	396
750.0	200	220	239	259	279	299	319	339	359	279	399
770.0	200	220	241	261	281	301	321	341	361	381	401
800.0	202	222	242	262	282	302	322	342	262	382	403

TABLE 2B. PREDICTED EFFECT OF PRESSURE ON BOILING POINT*

* *How to use the Table*: Taking as an example a liquid with a boiling point of 340°C at 760mm Hg, the column headed 340°C gives values of the boiling points of this liquid at each value of pressures from 0.1 to 800mm Hg. Thus, at 100mm Hg its boiling point is 258°C, and at 0.8mm Hg its boiling point will be 130°C.

TABLE 3.

HEATING BATHS

Up to 100°	Water baths
-20 to 200°	Glycerol or di- <i>n</i> -butyl phthalate
Up to about 200°	Medicinal paraffin
Up to about 250°	Hard hydrogenated cotton-seed oil (m 40-60°) or a 1:1 mixture of cotton-seed oil and castor oil containing about 1% of
	hydroquinone.
-40 to 250° (to 400° under N ₂)	D.C. 550 silicone fluid
Up to about 260°	A mixture of 85% orthophosphoric acid (4 parts) and metaphosphoric acid (1 part)
Up to 340°	A mixture of 85% orthophosphoric acid (2 parts) and metaphosphoric acid (1 part)
60 to 500°	Fisher bath wax (highly unsaturated)
73 to 350°	Wood's Metal*
250 to 800°	Solder*
350 to 800°	Lead*

* In using metal baths, the container (usually a metal crucible) should be removed while the metal is still molten.

TABLE 4.	WHAT	MAN	FILTER	R PAPE	RS		
Grade No.	1	2	3	4	5	6	113
Particle size retained (in microns)	11	8	5	12	2.4	2.8	28
Filtration speed*(sec/100mL)	40	55	155	20	<300	125	9
]	Routine	ashless	filters		
Grade No.		40	41	42	43	44	

Particle size retained (in microns)	7.5	12	3	12	4
Filtration speed* (sec/100mL)	68	19	200	38	125

	F	lardened			На	rdened a	shless
Grade No.	50	52	54	5	40	541	542
Particle size retained(in microns)	3	8	20		9	20	3
Filtration speed* (sec/100mL)	250	55	10	:	55	12	250
			Glass	microfilte	rs		
Grade No	GF/A	GF/	В	GF/C		GF/D	GF/F
Particle size retained (in microns)	1.6	1.0		1.1		2.2	0.8
Filtration speed (sec/100mL)*	8.3	20.0)	8.7		5.5	17.2

*Filtration speeds are rough estimates of initial flow rates and should be considered on a relative basis.

TABLE 5.			MICRO	FILTERS	5*				
Nucleopor	e (poly	vcarbonate)	Filters						
Mean Pore Size (micro	ns)	8.0	2.0	1.0	0.1	1	0.03	0	.015
Av. pores/cm ²		10 ⁵	2x10 ⁶	2x10 ⁷	3x10) ⁸	6x10 ⁸	1.	-6x10 ⁹
Water flow rate(mL/mi	n/cm ²)	2000	2000	300	8	8	0.03	0	.1-0.5
Millipore	Filters								,,
Туре		Cellulo	se ester—		—Те	eflon—		–Micro	oweb [#] -
		MF/SC	MF/VF		LC	LS		WS	WH
Mean Pore Size (micro	ns)	8	0.01		10	5		3	0.45
Water flow rate (mL/m	in/cm ²)	850	0.2		170	70		155	55
Gelman M	embran	es							
Туре —	GA-1	lose ester TCM-450	VM-1	DM-800		Cop AN-200	2	 ffryn-45	
Mean Pore Size (microns)	5	0.45	5	0.8		0.2		0.4	5
Water flow rate (mL/min/cm ²)	320	50	700	200		17		5	0
Sartorius N	Membra	ne Filters (S	M)						
Application		Gravi- metric	Biologica clarifica- tion	l Sterili- sation		Particle count i H ₂ O		Fo aci &	
Type No.		11003	11004	11006		11011		12	801
Mean PoreSize (micror	ns)	1.2	0.6	0.45		0.01		8	8.0
Water flow rate (mL/m	in/cm ²)	300	150	65		0.6		1	100
* Only a few represent	tative filt	ers are tabulated	(available 1	anges are m	ore exte	ensive). #	Reinfo	orced ny	lon.

TABLE 6. COMMON SOLVENTS USED IN RECRYSTALLISATION

Acetic acid (118 ^o)	*Cyclohexane (81 ⁰)	*Methanol (64.5 ⁰)
*Acetone (56 ^o)	Dichloromethane (41 ^o)	*Methyl ethyl ketone (80°)
Acetylacetone (139 ^o)	*Diethyl ether (34.5 ^o)	Methyl isobutyl ketone (116 ⁰)
Acetonitrile (82°C)	Dimethyl formamide (76°/39mm)	Nitrobenzene (210 ^o)
*Benzene (80 ^o)	*Dioxane (101 ^o)	Nitromethane (101 ^o)
Benzyl alcohol (93%/10mm)	*Ethanol (78 ⁰)	*Petroleum ether (various)
<i>n</i> -Butanol (118 ⁰)	2-Ethoxyethanol (cellosolve 135 ^o)	Pyridine (115.5 ^o)
Butyl acetate (126.5°)	*Ethyl acetate (78 ⁰)	Pyridine trihydrate (93 ⁰)
<i>n</i> -Butyl ether (142°)	Ethyl benzoate (98%)19mm)	*Tetrahydrofuran (64-66 ⁰)
γ-Butyrolactone (206 ^o)	Ethylene glycol (68°/4mm)	Toluene (110 ⁰)
Carbon tetrachloride (77°)	Formamide (110 ^o /10mm)	Trimethylene glycol (59%/11mm)
Chlorobenzene (132 ^o)	Glycerol (126 ⁰ /11mm)	Water (100°)
Chloroform (61 ⁰)	Isoamyl alcohol (131 ^o)	Xylenes (o 143-145°, m 138-139°, p 138°)

*Highly flammable, should be heated or evaporated on steam or electrically heated water baths only (preferably under nitrogen). None of these solvents should be heated over a naked flame.

TABLE 7.

PAIRS OF MISCIBLE SOLVENTS

Acetic acid: with chloroform, ethanol, ethyl acetate, acetonitrile, petroleum ether, or water.

Acetone: with benzene, butyl acetate, butyl alcohol, carbon tetrachloride, chloroform, cyclohexane, ethanol, ethyl acetate, methyl acetate, acetonitrile, petroleum ether or water.

- Ammonia: with ethanol, methanol, pyridine.
- Aniline: with acetone, benzene, carbon tetrachloride, ethyl ether, *n*-heptane, methanol, acetonitrile or nitrobenzene.
- **Benzene:** with acetone, butyl alcohol, carbon tetrachloride, chloroform, cyclohexane, ethanol, acetonitrile, petroleum ether or pyridine.

Butyl alcohol: with acetone or ethyl acetate.

Carbon disulfide: with petroleum ether.

Carbon tetrachloride: with cyclohexane.

Chloroform: with acetic acid, acetone, benzene, ethanol, ethyl acetate, hexane, methanol or pyridine.

Cyclohexane: with acetone, benzene, carbon tetrachloride, ethanol or diethyl ether.

Diethyl ether: with acetone, cyclohexane, ethanol, methanol, methylal (dimethoxymethane), acetonitrile, pentane or petroleum ether.

Dimethyl formamide: with benzene, ethanol or ether.

Dimethyl sulfoxide: with acetone, benzene, chloroform, ethanol, diethyl ether or water.

- **Dioxane:** with benzene, carbon tetrachloride, chloroform, ethanol, diethyl ether, petroleum ether, pyridine or water.
- Ethanol: with acetic acid, acetone, benzene, chloroform, cyclohexane, dioxane, ethyl ether, pentane, toluene, water or xylene.

Ethyl acetate: with acetic acid, acetone, butyl alcohol, chloroform, or methanol.

Glycerol: with ethanol, methanol or water.

Hexane: with benzene, chloroform or ethanol.

Methanol: with chloroform, diethyl ether, glycerol or water.

Methylal: with diethyl ether.

Methyl ethyl ketone: with acetic acid, benzene, ethanol or methanol.

Nitrobenzene: with aniline, methanol or acetonitrile.

Pentane: with ethanol or diethyl ether.

Petroleum ether: with acetic acid, acetone, benzene, carbon disulfide or diethyl ether.

Phenol: with carbon tetrachloride, ethanol, diethyl ether or xylene.

Pyridine: with acetone, ammonia, benzene, chloroform, dioxane, petroleum ether, toluene or water.

Toluene: with ethanol, diethyl ether or pyridine.

Water: with acetic acid, acetone, ethanol, methanol, or pyridine.

Xylene: with ethanol or phenol.

TABLE 8.

MATERIALS FOR COOLING BATHS

Temperatur	e Composition	Tempera	ture Composition
00	Crushed ice		
-5° to -20°	Ice-salt mixtures	-77º	Solid CO ₂ with chloroform or acetone
Up to -20°	Ice-MeOH mixtures	-78º	Solid CO ₂ (powdered; CO ₂ snow)
-33° -40° to -50°	Liquid ammonia ^D Ice (3.5-4 parts) - CaCl ₂ 6H ₂ O (5 parts)	-100°	Solid CO ₂ with diethyl ether
-72°	Solid CO_2 with ethanol	-196º	liquid nitrogen (see footnote*)

Alternatively, the following liquids can be used, partially frozen, as cryostats, by adding solid CO_2 from time to time to the material in a Dewar-type container and stirring to make a slush:

	material in a Dewar-type container and st	lining to mar	
13º	<i>p</i> -Xylene	-55°	Diacetone
12º	Dioxane	-56°	<i>n</i> -Octane
6 ⁰	Cyclohexane	-60°	Di-isopropyl ether
5°	Benzene	-73°	Trichloroethylene or isopropyl acetate
2º	Formamide	-74º	<i>o</i> -Cymene or <i>p</i> -cymene
-8.6°	Methyl salicylate	-77º	Butyl acetate
-9º	Hexane-2,5-dione	-79°	Isoamyl acetate
-10.5°	Ethylene glycol	-83°	Propylamine
-11.9º	tert-Amyl alcohol	-83.6°	Ethyl acetate
-12º	Cycloheptane or methyl benzoate	-86°	Methyl ethyl ketone
-15°	Benzyl alcohol	-89°	<i>n</i> -Butanol
-16.3º	<i>n</i> -Octanol	-90°	Nitroethane
-18 ^o	1,2-Dichlorobenzene	-91°	Heptane
-22°	Tetrachloroethylene	-92°	<i>n</i> -Propyl acetate
-22.4°	Butyl benzoate	-93°	2-Nitropropane or cyclopentane
-22.8°	Carbon tetrachloride	-94°	Ethyl benzene or hexane
-24.5°	Diethyl sulfate	-94.6°	Acetone
-25°	1,3-Dichlorobenzene	-95.1°	Toluene
-29º	o-Xylene or pentachloroethane	-97º	Cumene
-30°	Bromobenzene	-98°	Methanol or methyl acetate
-32°	<i>m</i> -Toluidine	-99º	Isobutyl acetate
-32.6°	Dipropyl ketone	-104°	Cyclohexene
-38°	Thiophene	-107°	Isooctane
-41°	Acetonitrile	-108°	1-Nitropropane
-42°	Pyridine or diethyl ketone	-116º	Ethanol or diethyl ether
-44 ⁰	Cyclohexyl chloride	-117º	Isoamyl alcohol
-45°	Chlorobenzene	-126°	Methylcyclohexane
-47°	<i>m</i> -Xylene	-131°	<i>n</i> -Pentane
-50°	Ethyl malonate or <i>n</i> -butylamine	-160°	Isopentane
-52°	Benzyl acetate or diethylcarbitol		-

For other organic materials used in low temperature slush-baths with liquid nitrogen see R.E.Rondeau [*J Chem Eng Data* **11** 124 *1966*]. ***NOTE**: Use high quality pure nitrogen; do not use liquid air or liquid nitrogen that has been in contact with air for a long period (due to the dissolution of oxygen in it) as this could EXPLODE in contact with organic matter.

Material	Temp.	Retards
Dimethylsulfolane	0-40°	Olefins and aromatic hydrocarbons
Di- <i>n</i> -butyl phthalate	0-40°	General purposes
Squalane	0-150°	Volatile hydrocarbons and polar molecules
Silicone oil or grease	0-250°	General purposes
Diglycerol	20-120°	Water, alcohols, amines, esters, and aromatic hydrocarbons
Dinonyl phthalate	20-130°	General purposes
Polydiethylene glycol succinate	50-200°	Aromatic hydrocarbons, alcohols, ketones, esters
Polyethylene glycol	50-200°	Water, alcohols, amines, esters and aromatic hydrocarbons
Apiezon grease	50-200°	Volatile hydrocarbons and polar molecules
Tricresyl phosphate	50-250°	General purposes

TABLE 9. LIQUIDS FOR STATIONARY PHASES IN GAS CHROMATOGRAPHY*

* See Suppliers at the end of section on HPLC and E.F. Barry and R.L.Grob, *Columns for Gas Chromatography*, J. Wiley and Sons NY, *2007*, ISBN 9780471740438.

Reagent	Compound	Preparation	Observations
Iodine	General	Iodine crystals in a closed chamber or spray 1% methanol solution of Iodine	Brown spots which may disappear upon standing. Limited sensitivity.
H_2SO_4	General	50% solution, followed by heating to 150° C	Black or coloured spots
Molybdate	General	$5\% (NH_4)_6 Mo_7 O_{24} + 0.2\% Ce(SO_4)_2$ in $5\% H_2 SO_4$, followed by heating to $150^{\circ}C$.	Deep blue spots
Vanillin	General	0.5g vanillin, 0.5 mL H ₂ SO ₄ , 9 mL ethanol	various coloured spots
Ammonia	phenols	Ammonia vapour in a closed chamber	various coloured spots
FeCl ₃	phenols, enolic compounds	1% aqueous FeCl ₃	various coloured spots
2,4-DNP	aldehydes, ketones	0.5% 2,4-dinitrophenylhydrazine/2M HCl	red to yellow spots
HC1	aromatic acids and amines	HCl vapour in a closed chamber	various coloured spots
Ninhydrin	amino acids, and amines	0.3% ninhydrin in <i>n</i> -BuOH with 3% AcOH, followed by heating to 125°C/10 min	blue spots
PdCl ₂	S and Se compds	0.5% aq. $PdCl_2$ + few drops of conc. HCl	red and yellow spots
Anisaldehyde	carbohydrates	0.5 mL anisaldehyde in 0.5 mL conc H ₂ SO ₄ + 95% EtOH + a few drops of AcOH Heat at 100-110°C for 20-30 minutes	various blue spots

TABLE 10. METHODS OF VISUALISATION OF TLC SPOTS

TABLE 11.GRADED ADSORBENTS AND SOLVENTS

Adsorbents (decreasing effectiveness)

Solvents (increasing eluting ability)

Fuller's earth (hydrated aluminosilicate) Magnesium oxide Charcoal Alumina Magnesium trisilicate Silica gel Calcium hydroxide Magnesium carbonate Calcium phosphate Calcium carbonate Sodium carbonate Talc Inulin Sucrose = starch Petroleum ether, b. 40-60°. Petroleum ether, b. 60-80°. Carbon tetrachloride. Cyclohexane. Benzene. Diethyl ether. Chloroform. Ethyl acetate. Acetone. Ethanol. Methanol. Pyridine. Acetic acid.

TABLE 12.REPRESENTATIVE ION-EXCHANGE RESINS

Sulfonated polystyrene Strong-acid cation exchanger AG 50W-x8 Amberlite IR-120 Dowex 50W-x8 Duolite 225 Permutit RS Permutite C50D

Carboxylic acid-type Weak acid cation exchangers Amberlite IRC-50 Bio-Rex 70 Chelex 100 Duolite 436 Permutit C Permutits H and H-70 Aliphatic amine-type weak base anion exchangers Amberlites IR-45 and IRA-67 Dowex 3-x4A Permutit E Permutit A 240A

Strong Base, anion exchangers AG 2x8 Amberlite IRA-400 Dowex 2-x8 Duolite 113 Permutit ESB Permutite 330D

TABLE 13.MODIFIED FIBROUS CELLULOSES FOR ION-EXCHANGE

Cation exchange CM cellulose (carboxymethyl) CM 22, 23 cellulose P cellulose (phosphate) SE cellulose (sulfoethyl) SM cellulose (sulfomethyl) Anion exchange DEAE cellulose (diethylaminoethyl) DE 22, 23 cellulose PAB cellulose (*p*-aminobenzyl) TEAE cellulose (triethylaminoethyl) ECTEOLA cellulose

SE and SM are much stronger acids than CM, whereas P has two ionisable groups (pK 2-3, 6-7), one of which is stronger, the other weaker, than for CM (3.5-4.5). For basic strengths, the sequence is: TEAE » DEAE (pK 8-95) > ECTEOLA (pK 5.5-7) > PAB. Their exchange capacities lie in the range 0.3 to 1.0 mg equiv/g.

TABLE14.BEAD FORM ION-EXCHANGE PACKAGINGS1

Cation exchange	Capacity (meq/g)	Anion exchange	Capacity (meq/g)
CM-Sephadex C-25, C-50. ² (weak acid)	4.5±0.5	DEAE-Sephadex A-25, A-50.7 (weak base)	3.5±0.5
SP-Sephadex C-25, C-50. ³ (strong acid)	2.3±0.3	QAE-Sephadex A-25, A-50. ⁸ (strong base)	3.0±0.4
CM-Sepharose CL-6B. ⁴	0.12±0.02	DEAE-Sepharose CL-6B. ⁴	0.13±0.02
		DEAE-Sephacel.9	1.4±0.1
Fractogel EMD, CO_{2}^{-} (<i>pK</i> ~ 4. SO $_{3}^{2-}$ (<i>pK</i> ~< 1). ⁵	5),	Fractogel EMD, DMAE (pK ~9) DEAE (pK ~10.8), TMAE (pK >	
CM-32 Cellulose.		DE-32 Cellulose.	
CM-52 Cellulose. ⁶		DE-52 Cellulose	

¹ May be sterilised by autoclaving at pH 7 and below 120°.² Carboxymethyl.³ Sulfopropyl.⁴ Crosslinked agarose gel, no pre-cycling required, pH range 3-10.⁵ Hydrophilic methacrylate polymer with very little volume change on change of pH (equivalent to *Toyopearl*, Sigma), available in superfine 650S, and medium 650M particle sizes.⁶ Microgranular, pre-swollen, no pre-cycling required.⁷ Diethylaminoethyl.⁸ Diethyl(2-hydroxy-propyl)aminoethyl.⁹ Bead form cellulose, pH range 2-12, no pre-cycling required. Sephadex and Sepharose from Pharmacia-Amersham Biosciences, Fractogel from Merck, Cellulose from Whatman.

TABLE 15.LIQUIDS FOR DRYING PISTOLSBoiling points (760mm)Boiling points (760mm)						
Ethyl chloride	12.2°	Toluene	110.5°			
Dichloromethane	39.8°	Tetrachloroethylene	121.2°			
Acetone	56.1°	Chlorobenzene	132.0°			
Chloroform	62.0°	<i>m</i> -Xylene	139.3°			
Methanol	64.5°	Isoamyl acetate	142.5°			
Carbon tetrachloride	76.5°	Tetrachloroethane	146.3°			
Ethanol	78.3°	Bromobenzene	155.0°			
Benzene	79.8°	<i>p</i> -Cymene	176.0°			
Trichloroethylene	86.0°	Tetralin	207.0°			
Water	100.0°					

TABLE 16.	VAPOUR PRESSURES (mm Hg) OF SATURATED AQUEOU SOLUTIONS IN EQUILIBRIUM WITH SOLID SALTS					
Salt	1 0 ⁰	1 5 ⁰	Temper 2 0°		3 0 ⁰	% Humidity at 20°
LiCl.H ₂ O			2.6			15
CaBr ₂ .6H ₂ O	2.1	2.7	3.3	4.0	4.8	19
KOAc			3.5			20
CaCl ₂ .6H ₂ O	3.5	4.5	5.6	6.9	8.3	20
CrO ₃			6.1			32
$n(NO_3)_2.6H_2O$			7.4			42
C ₂ CO ₃ .2H ₂ O			7.7	10.7		44
CNS			8.2			47
a ₂ Cr ₂ O ₇ .2H ₂ O			9.1			52
a(NO ₃) ₂ .4H ₂ O	6.0	7.7	9.6	11.9	14.2	55
g(NO ₃) ₂ .6H ₂ O			9.8			56
Br.2H ₂ O	5.8	7.8	10.3	13.5	17.5	58
NO ₂			11.6			66
Cl	6.9	9.6	13.2	17.8	21.4	75
DAc			13.3			76
4Cl			13.8			79
$H_4)_2SO_4$			14.2			81
Br			14.7			84
SO ₄			15.1			86
1			15.1	20.2	27.0	86
CrO ₄			15.4			88
04.7H2O			15.8			90
4.H2PO4			16.3			93
03			16.7	22.3	29.8	95
$(NO_3)_2$			17.2			98
C	9.21	12.79	17.53	23.76	31.82	100

TABLE 17. DRY Class	ING AGENTS FOR CLASSES OF COMPOUNDS Dried with				
Acetals	Potassium carbonate.				
Acids (organic)	Calcium sulfate, magnesium sulfate, sodium sulfate.				
Acyl halides	Magnesium sulfate, sodium sulfate.				
Alcohols	Calcium oxide, calcium sulfate, magnesium sulfate, potassium carbonate, followed by magnesium and iodine.				
Aldehydes	Calcium sulfate, magnesium sulfate, sodium sulfate.				
Alkyl halides	Calcium chloride, calcium sulfate, magnesium sulfate, phosphorus pentoxide, sodium sulfate.				
Amines	Barium oxide, calcium oxide, potassium hydroxide, sodium carbonate, sodium hydroxide.				
Aryl halides	Calcium chloride, calcium sulfate, magnesium sulfate, phosphorus pentoxide, sodium sulfate.				
Esters	Magnesium sulfate, potassium carbonate, sodium sulfate.				
Ethers	Calcium chloride, calcium sulfate, magnesium sulfate, sodium, lithium aluminium hydride.				
Heterocyclic bases	Magnesium sulfate, potassium carbonate, sodium hydroxide.				
Hydrocarbons	Calcium chloride, calcium sulfate, magnesium sulfate, phosphorus pentoxide, sodium (not for olefins).				
Ketones	Calcium sulfate, magnesium sulfate, potassium carbonate, sodium sulfate.				
Mercaptans	Magnesium sulfate, sodium sulfate.				
Nitro compounds and					
Nitriles	Calcium chloride, magnesium sulfate, sodium sulfate.				
Sulfides	Calcium chloride, calcium sulfate.				

TABLE 18.	STATIC DRYING FOR SELECTED LIQUIDS (25°C)							
Liquid	Water	Linde Type 4 A	Linde Type 5 A	Activated Alumina	Silicic Acid Gel			
МеОН	Residual H ₂ O % Wt % absorbed	0.54 2.50	0.55 1.50	_	0.60 —			
EtOH	Residual H ₂ O % Wt % absorbed	0.25 7.00	0.25 6.80	0.45 1.50	0.68 —			
1-Butylamine	Residual H ₂ O % Wt % absorbed	1.65 10.40	1.31 18.20	1.93 3.40	2.07			
2-Ethyl- hexylamine	Residual H ₂ O % Wt % absorbed	0.25 15.10	0.08 21.10	0.43 6.10	0.53 1.70			
Diethyl ether	Residual H ₂ O % Wt % absorbed	0.001 9.50	0.013 9.20	0.16 6.20	0.27 4.30			
Amyl acetate	Residual H ₂ O % Wt % absorbed	0.002 9.30		0.33 7.40	0.38 1.80			

TABLE 19.	AQUEOUS BUFFERS										
Approx. pH	Composition										
0	2N sulfuric acid or N hydrochloric acid										
1	0.1N hydrochloric acid or 0.18N sulfuric acid										
2	Either 0.01N hydrochloric acid or 0.013N sulfuric acid Or 50 mL of 0.1M glycine (also 0.1M NaCl) + 50 mL of 0.1N hydrochloric acid										
3	Either 20 mL of the 0.2M Na ₂ HPO ₄ + 80 mL of 0.1M citric acid Or 50 mL of 0.1M glycine + 22.8 mL of 0.1N hydrochloric acid in 100 mL										
4	Either 38.5 mL of $0.2M \text{ Na}_2\text{HPO}_4 + 61.5 \text{ mL of } 0.1M$ citric acid Or 18 mL of $0.2M \text{ NaOAc} + 82 \text{ mL of } 0.2M$ acetic acid										
5	Either 70 mL of 0.2M NaOAc + 30 mL of 0.2M acetic acid Or 51.5 mL of 0.2M Na ₂ HPO ₄ + 48.5 mL of 0.1M citric acid										
6	63 mL of 0.2M Na ₂ HPO ₄ + 37 mL of 0.1M citric acid										
7	82 mL of M Na_2HPO_4 + 18 mL of 0.1M citric acid										
8	Either 50 mL of 0.1M Tris buffer + 29 mL of 0.1N hydrochloric acid, in 100 mL Or 30 mL of 0.05M borax + 70 mL of 0.2M boric acid										
9	80 mL of 0.05M borax + 20 mL of 0.2M boric acid										
10	Either 25 mL of 0.05M borax + 43 mL of 0.1N NaOH, in 100 mL Or 50 mL of 0.1M glycine + 32 mL of 0.1N NaOH, in 100 mL										
11	50 mL of 0.15M Na ₂ HPO ₄ + 15 mL of 0.1N NaOH										
12	50 mL of 0.15M Na ₂ HPO ₄ + 75 mL of 0.1N NaOH										
13	0.1N NaOH or KOH										
14	N NaOH or KOH										

These buffers are suitable for use in obtaining ultraviolet spectra. Alternatively, for a set of accurate buffers of low, but constant, ionic strength (I = 0.01) covering a pH range 2.2 to 11.6 at 20°, see Perrin Aust J Chem 16 572 1963. "In 100 mL" means that the solution is made up to 100 mL with pure water.

TABLE 20. SOLUBILITY COEFFICIENTS OF AIR AT 1atm IN WATER								
T ⁰C	(β) _{air}	(l) _{air}	$\% O_2$ (by vol)	(<i>l</i>) O ₂	Conc of O ₂ in H ₂ O			
0	0.0292	0.0292	34.91	0.0102	0.455mM			
20	0.0187	0.0199	34.03	0.0068	0.282mM			
25	0.0171	0.0187	33.82	0.0063	0.258mM			
30	0.0156	0.0173	33.62	0.0060	0.237mM			

 (β) is the Bunsen coeff. in mL gas/mL H₂O at STP. (*l*) is the Ostwald coeff. in mL gas/mL H₂O at stated temp. Adapted from W.F. Linke, *A. Seidell's Solubilities of Inorganic and Metal-organic Compounds*, American Chemical Society, 1965.

TABLE 21. SOLUBILITY COEFFICIENTS OF O ₂ AT 1atm IN WATER							
(β)	((l) Conc of O ₂ in H ₂ O					
0.04	7 0.0	0.047 2.10mM					
0.03	1 0.0	0.033 1.37mM					
0.02	8 0.0	.0306 1.25mM					
0.02	6 0.0	.0289 1.16mM					
0.02	1 0.0	.0248 0.94mM					

(β) is the Bunsen coeff. in mL gas/mL H₂O at STP. (l) is the Ostwald coeff. in mL gas/mL H₂O at stated temp. Adapted from W.F. Linke, A. Seidell's Solubilities of Inorganic and Metal-organic Compounds, American Chemical Society, 1965.

٦

Solvent	H ₂	He	N ₂	O ₂	CO	CO ₂
H ₂ O	0.017	0.009	0.015	0.031	0.025	0.88
CS ₂	0.031	_	0.049	_	0.076	0.83
CHCl ₃	_	_	0.120	0.205	0.177	0.345
EtOH	0.080	0.028	0,130	0.143	0.177	3.0
Me ₂ CO	0.065	0.030	0.129	0.207	0.198	6.5
Et ₂ O	0.12	_	0.24	0.415	0.38	5.0
C ₆ H ₆	0.066	0.018	0.104	0.163	0.153	_

Adapted from S. Glasstone, Textbook of Physical Chemistry, Macmillan & Co Ltd, London, 1951.

ſ

Γ

TABLE 23. OSTWALD COEFFICIENTS (l)/L OF O2 AT 1atm IN AQUEOUSSOLUTIONS AT 25°C						
	(<i>l</i>)/L		(1)			
0.125N NH4Cl	2,31	0.5M HCl	0.0296			
0.25N NH4C1	1.6	1.0M HC1	0.0287			
1.0N NH4C1	0.07	2.0M HCl	0.0267			
0.125N NaCl	5.52	0.25M H ₂ SO ₄	0.0288			
0.025N NaCl	5,30	0.5M H ₂ SO ₄	0.0275			
0.50N NaCl	4.92	1.0M H ₂ SO ₄	0.0251			
1.0N NaCl	4.20	1.5M H ₂ SO ₄	0.0229			
2.0N NaCl	3.05	2.0M H ₂ SO ₄	0.0209			
4.0N NaCl	1.62	2.5M H ₂ SO ₄	0.0194			
0.125N NaBr	5.65	0.5M HNO3	0.0302			
0.5N NaBr	5.15	1.0M HNO ₃	0.0295			
1.0N NaBr	4.47	2.0M HNO ₃	0.0284			
6.0N NaBr	1.28					
0.125N KCl	5.52	0.5M NaOH	0.0250			
0.25N KCl	5.30	1.0M NaOH	0.0204			
1.0N KCl	4.26	2.0M NaOH	0.0133			
4.0N KCl	1.17					
0.125N K ₂ SO ₄	5.11	0.5M KOH	0.0252			
0.25N K ₂ SO ₄	4.66	1.0M KOH	0.0206			
0.05N K ₂ SO ₄	3.89					
0.125N BaCl ₂	5.40	0.125N Sucrose	0.00540			
0.25N BaCl ₂	5.04	0.5N Sucrose	0.00438			
1.0N BaCl ₂	3.10	1.0N Sucrose	0.00320			
		2.0N Sucrose	0.00184			

The Ostwald coefficient (*l*)/L is for mL of gas in 1L of solution, and (*l*) is for mL of gas in 1ml of solution. Adapted from W.F. Linke, *A. Seidell's Solubilities of Inorganic and Metal-organic Compounds*, American Chemical Society, 1965.

٦

TABLE 24. SOLUBILITIES OF HCI AND NH ₃ AT 760mm (g/100g OF SOLUTION)							
Gas	Temperature ^o C	МеОН	EtOH	Et ₂ O			
Hydrogen Chloride [*]	-10 0 20 30	54.6 51.3 47.0 (18°) 43.0	45.4 41.0 38.1	37.5 (-9.2°) 35.6 24.9 19.47			
Ammonia	15 25	21.6 (27.6g/100g MeOH) 16.5 (19.8g/100g MeOH)	13.2 (9.2g/100mL soln) 10.0 (6.0g/100mL soln)	_			

* Saturated EtOH with HCl is ~ 5.7M at 25°C, i.e. 21.5g/100mL of solution.

TABLE	25.	BOILING	POINTS	OF	SOME	USEFUL	GASES	AT	760	mm	

Argon	-185.6°	Krypton	-152.3°	
Carbon dioxide	-78.5°	Methane	-164.0°	
(sublimes)		Neon	-246.0°	
Carbon monoxide	-191.3°	Nitrogen	-209.9°	
Ethane	-88.6°	Nitrous oxide	-88.5°	
Helium	-268.6°	Nitric oxide	-195.8°	
Hydrogen	-252.6°	Oxygen	-182.96	

TABLE 26.PREFIXES FOR QUANTITIES										
Fractional	deci (d) = 10 ⁻¹	centi (c) = 10 ⁻²	milli (m) = 10 ⁻³	micro (μ) = 10 ⁻⁶	nano (n) = 10 ⁻⁹	pico (p) = 10 ⁻¹²	femto (f) = 10^{-15}	atto (atto) = 10^{-18}		
Multiple	deca (d) = 10 ¹	hecto (h) = 10^2	kilo (k) = 10 ³	mega (M) = 10 ⁶	giga (G) = 10 ⁹	tera (T) = 10 ¹²	penta (P) = 10 ¹⁵	eka (E) = 10 ¹⁸		

BIBLIOGRAPHY

The following books and reviews provide fuller details of the topics indicated in this chapter. [For earlier bibliographies see *Purification of Laboratory Chemicals*, 4th and 5th Edns, ISBN 0750628391 (1996, hardback) and 0750637617 (1997, paperback) and 0750675713 (2003). See Biblography in Chapter 2, and visit the website of DA Books <www.dadirect.com>, Elsevier <www.elsevierdirect.com> and Wiley <www.wiley.com> to update this bibliography.

AFFINITY CHROMATOGRAPHY

P. Matejtschuk (Ed.), *Affinity Separations: A Practical Approach*, Oxford University Press, Oxford, 1997. ISBN 019963551X, 0199635501.

P. Bailon, G.K. Ehrlich, W. Fung and W. Berthold (Eds), *Affinity Chromatography: Methods and Protocols*, Humana Press, Totowa, 2000. ISBN 0896036944.

T.M. Phillips and B.F. Dickens, *Affinity and Immunoaffinity Purification Techniques*, Eaton Publishing, Natick MA, 2000. ISBN 1881299228.

D.S. Hage, Handbook of Affinity Chromatography, Marcel Dekker Inc, 2005. ISBN 9780824740573.

M. Zachariou, Affinity Chromatography: Methods and Protocols, 2nd Edn, Humana, 2007. ISBN 9781588296597.

CHIRAL CHROMATOGRAPHY

S. Allenmark, *Chromatographic Enantioseparations (Methods and Applications)*, 2nd Edn, Eliss Horwood Publ. New York, 1991. ISBN 0131329782.

D. Stevenson and I.D. Wilson (Eds), *Recent Advances in Chiral Separations* (Chromatographic Society Symposium Series), Plenum Pub Corp., New York, 1991. ISBN 0306438364.

S. Ahuja (Ed.), *Chiral Separations: Applications and Technology*, ACS, Washington DC, 1997. ISBN 0841234078.

T.E. Beesley and R.P.W. Scott, Chiral Chromatography, J.Wiley & Son, Chichester, 1999. ISBN 0471974277.

G. Subramanian (Ed.), *Chiral Separation Techniques: A Practical Approach*, VCH Verlagsgesellschaft, Weinheim, 2000. ISBN 3527298754.

H.Y. Aboul-Enein, *Chiral separations by liquid chromatography and related technologies*, Marcel Dekker Inc, 2003. ISBN 9780824740146.

CHROMATOGRAPHY

E. Heftmann (Ed.), Chromatography, 5th Edn, Elsevier Science, Amsterdam, 1992. ISBN 0444882375.

K. Blau and J.M. Halket (Eds), *Handbook of Derivatives for Chromatography*, J. Wiley & Sons, New York, 1994. ISBN 047192699X.

P.R. Brown et al. (Eds), *Advances in Chromatography*, Marcel Dekker, New York, Vol **34** 1994, and vol **35** 1995. ISBN 9780824790875 and 9780824793616 respectively.

C.F. Poole and S.K. Poole, *Chromatography Today*, Elsevier Science, Amsterdam, 4th reprint 1997. ISBN 0444891617.

K. Hostettmann, A. Marston and M. Hostettmann, *Preparative Chromatography Techniques: Applications in Natural Product Isolation*, 2nd Edn, Springer-Verlag, Berlin, 1998. ISBN 3540624597.

P. Miller (Ed.), *High Resolution Chromatography: A Practical Approach*, Oxford University Press, Oxford, 1999. ISBN 0199636486.

J. Cazes, Encyclopedia of Chromatography, Marcel Dekker, New York, 2001. ISBN 0824705114.

R.E. Ardrey, *Liquid Chromatography–Mass Spectrometry: An Introduction*, Wiley & Sons Inc, 2003. ISBN 9780471498018.

E. Heftmann, *Chromatography: Fundamentals and Applications of Chromatography and Related Differential Methods*, Elsevier Science, 2004. ISBN 9780444511072.

J.M. Miller, Chromatography: Concepts and Contrasts, J. Wiley & Sons Inc, 2004. ISBN 9780471472070.

P.C. Sadek, Illustrated Pocket Dictionary of Chromatography, NetLibrary, 2004. eISBN 114739.

P.R. Brown et al. (Eds), Advances in Chromatography, Marcel Dekker, New York, Vols 1-46 1955-2008.

S.A. Cohen and M.R. Schure (Eds), *Multidimensional Liquid Chromatography: Theory and Applications in Industrial Chemistry and Life Sciences*, J. Wiley & Sons Inc, 2008. ISBN 9780471738473.

CRYSTALLISATION

A.S. Myerson and K. Toyokura, Crystallisation as a Separation Process, ACS, Washington DC, 1990. ISBN 0841218641.

H. Michel (Ed.), Crystallisation of Membrane Proteins, CRC Press, Boca Raton, 1991. ISBN 0849348161.

A. Ducruix and R. Giege (Eds), *Crystallisation of Nucleic Acids and Proteins*, IRL Press, Oxford, 1992. ISBN 0199632456. 2nd Edn, Oxford University Press, Oxford, 1999. ISBN 0199636788.

A. Mersmann (Ed.), Crystallisation Technology Handbook, Marcel Dekker, New York, 1994. ISBN 0824792335.

J. Nyvit and J. Ulrich, Admixtures in Crystallisation, Wiley-VCH, New York 1995. ISBN 3527287396.

G.D. Botsaris, Separation & Purification by Crystallization, American Chemical Society, 1997. ISBN 9780841235137.

T.M. Bergfors (Ed.), Protein Crystallisation, International University Line, 1999. ISBN 0963681753.

J. Garside, From Molecules to Crystallizers; An Introduction to Crystallization, Oxford University Press, 2001. ISBN 9780198504894.

J.M. Mullin, Crystallisation, 4th Edn, Butterworth-Heinemann, Oxford, 2001. ISBN 0750648333.

DISTILLATION

J. Stichlmair and J.R. Fair, *Distillation: Principles and Practices*, J. Wiley and Sons, New York, 1998. ISBN 0471252417.

K. Sundmacher and A. Kienle, *Reactive Distillation: Status and Future Directions*, VCH-Wiley Publishing, 2002. ISBN 9783527305797.

I.M. Mutjaba, Batch Distillation: Design and Operation, World Scientific Publ Co, 2004. ISBN 9781860944376.

F. Petlyuk, *Distillation: Theory and Its Application to Optimal Design of Separation Units*, Cambridge University Press UK, 2004. ISBN 9780521820929.

B. Ding, L. Zhongwei and C. Zhigang, Special Distillation Processes, Elsevier Science, 2005. ISBN 9780444516480.

W.L.Luyben, *Distillation:Design and Control Using Aspen Simulation*, J.Wiley and Sons, New York, 2006. ISBN 9780471778882.

W.L. Luyben and C-C. Yu, *Reactive Distillation: Design and Control*, J.Wiley and Sons, New York, 2008. ISBN 9780470226124.

DRYING

G. Broughton (Chapter VI), in A. Weissberger's (Ed.) *Techniques of Organic Chemistry*, Vol III, pt I, 2nd Edn, Interscience, New York, 1956.

J.A. Riddick and W.B. Bunger, Organic Solvents: Physical Properties and Methods of Purification, Techniques of Chemistry, Vol II, Wiley-Interscience, New York, 1970.

J.F. Coetzee, *Recommended Methods for the Purification of Solvents and Tests for Impurities*, Pergamon Press, Oxford, 1982. ISBN 0080223702.

G,W. Oetjen, Freeze-drying, VCH-Wiley Publishing, 1999. ISBN 0783527295715.

H. Costantino and M. Pikal, Lyophilysation of Biopharmaceuticals, Springer, 2006. ISBN 9780971176768.

ELECTROPHORESIS

F. Foret, L. Krivankova and K.P. Boce, *Capillary Zone Electrophoresis*, VCH-Wiley Publishing, 1993, ISBN 9783527300198.

B. Chankvetaze, Capillary Electrophoresis and Chiral Analysis, J. Wiley & Sons Inc, 2000, ISBN 9780470865521.

P. Thibault and S. Honda Capillary Electrophoresis of Carbohydrates, Humana, 2003, ISBN 9781592592944.

A.L. Lagu and M.A. Strege, *Capillary Electrophoresis of Proteins and Peptides*, Marcel Dekker Inc, 2004, ISBN 9781588290175 and 9781592597987.

K.R. Mitchelson and J. Cheng Capillary Electrophoresis of Nucleic Acids-Introduction, Humana, 2004, ISBN 9781592590551.

M.L. Marina, Analysis and Detection by Capillary Electrophoresis, Elsevier Science, 2005, ISBN 9780444517180.

A.E. Van and E. Michotte, *Chiral Separations by Capillary Electrophoresis*, Taylor & Francis Ltd, 2009, ISBN 9781420069334.

GAS CHROMATOGRAPHY

P. Sandra (Ed.), *Sample Introduction in Capillary Gas Chromatography*, Vol 1, Chromatographic Method Series, Huethig, Basel, 1985.

R.E. Clement (Ed.), *Gas Chromatography: Biochemical, Biomedical and Clinical Applications*, J. Wiley & Sons, New York, 1990. ISBN 0471010480.

H.H. Hill and D.G. McMinn (Eds), *Detectors for Capillary Chromatography*, J. Wiley & Sons, New York, 1992. ISBN 0471506451.

P.J. Baugh (Ed.), Gas Chromatography: A Practical Approach, IRL Press, Oxford, 1994. ISBN 0199632715.

I.A. Fowlis, Gas Chromatography: Analytical Chemistry by Open Learning, 2nd Edn, J. Wiley & Sons, Chichester, 1995. ISBN 0471954683.

W. Jennings, E. Mittlefehldt and P. Stremple, *Analytical Gas Chromatography*, 2nd Edn, Academic Press, San Diego, 1997. ISBN 012384357X.

H.M. McNair and J.M. Miller, *Basic Gas Chromatography: Techniques in Analytical Chemistry*, J. Wiley & Sons, New York, 1997. ISBN 047117260X.

M. McMaster, C. McMaster, GC/MS: A Practical User's Guide, Wiley-VCH, New York, 1998. ISBN 0471248266.

F.W. Karasek and R.E. Clement, *Basic Gas-Chromatography-mass spectrometry: Principles and Techniques*, Elsevier, Amsterdam, 1988. ISBN 0444427600.

D. Rood, A Practical Guide to the Care, Maintenance, and Troubleshooting of Capillary Gas Chromatographic Systems, 3rd Edn, Wiley-VCH, New York; 1999. ISBN 3527297502.

H.-J. Hubschmann, *Handbook of GC/MS: Fundamentals and Applications*, VCH Verlagsgessellschaft Mbh, Weinheim, 2001. ISBN 3527301704.

W.M.A. Niessen, Current Practice of Gas Chromatography, Marcel Dekker Inc, 2001. ISBN 9780824704735.

R.D. Sacks, J-M.D. Dimandja and DG. Patterson, *High Speed Gas Chromatography*, J. Wiley & Sons, New York, 2001. ISBN 0471415561.

E.F. Barry and R.L.Grob Columns for Gas Chromatography, J. Wiley & Sons, New York, 2007, ISBN 9780471740438.

H-J. Hubschmann, Handbook of GC/MS: Fundamentals and applications, VCH-Wiley Publishing, 2008. ISBN 9783527314270.

M. Mcmaster and C. Mcmaster, GC/MS: A Practical User's Guide, J. Wiley & Sons, New York, 2008. ISBN 9780470101636.

GEL FILTRATION

W.W. Yau, D.D.By and J.J. Kirkland, *Modern Size Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography*, J. Wiley and Sons, New York, 1979. ISBN 0471033871.

L. Fischer, Gel Filtration, 2nd Edn, Elsevier, North-Holland, Amsterdam, 1980. ISBN 0444802231.

P.L. Dubin, Aqueous Size-Exclusion Chromatography, Elsevier, Amsterdam, 1988. ISBN 0444429573.
M. Potschka and P.L. Dubin (Eds), Strategies in Size-exclusion Chromatography, ACS, Washington DC, 1996. ISBN 0841234140.

C-S. Wu (Ed.), Handbook of Size Exclusion Chromatography, Marcel Dekker, New York, 1995. ISBN 0824792882

C-S. Wu (Ed.), Column Handbook for Size Exclusion Chromatography, Academic Press, New York, 1998. ISBN 0127655557

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

B.A. Bidlingmeyer, *Preparative Liquid Chromatography*, 2nd Reprint, Elsevier, Amsterdam, 1991. ISBN 0444428321.

G. Szepesi, How to Use Reverse Phase HPLC, VCH, New York, 1992. ISBN 0895737663.

V. Meyer, *Practical High-Performance Liquid Chromatography*, 2nd Edn., J. Wiley & Sons, New York, 1994. ISBN 0471941328, 0471941298.

W.J. Lough and I.W. Wainer (Eds), *High Performance Liquid Chromatography: Fundamental Principles and Practice*, Blackie Academic and Professional, London, 1996. ISBN 0751400769.

P.C. Sadek, The HPLC Solvent Guide, J. Wiley & Sons, New York, 1996. ISBN 0471118559.

U.D. Neue, HPLC Columns: Theory, Technology, and Practice, Wiley-VCH, New York, 1997. ISBN 0471190373.

D. Parriott, A Practical Guide to HPLC Detection, Academic Press, San Diego, 1997. ISBN 0125456808.

L.R. Snyder, J. Kirkland and J. Glaich, *Practical HPLC Method Development*, 2nd Edn., Wiley-Interscience, New York, 1997. ISBN 047100703X.

J. Swadesh (Ed.), HPLC: Practical and Industrial Applications, CRC Press, Boca Raton, 1997. ISBN 0849326826.

R.W.A. Oliver (Ed.), HPLC of Macromolecules, 2nd Edn, IRL Press, Oxford, 1998. ISBN 0199635714, 0199635706.

T. Hanai and R.M. Smith (Eds), *HPLC: A Practical Guide*, Royal Society of Chemistry, Thomas Graham House, Cambridge, U.K, 1999. ISBN 0854045155.

P.C. Sadek, *Troubleshooting HPLC Systems: A Bench Manual*, Wiley-Interscience, New York, 1999. ISBN 0471178349.

K.D. Bartle and P. Meyers, *Capillary Electrochromatography*, Royal Society of Chemistry Chromatography Monographs, London, 2000. ISBN 0854045309.

A. Berthold (Ed.), *Countercurrent Chromatography (CCC)*. *The Support-Free Liquid Stationary Phase*, Elsevier, Amsterdam, 2002. ISBN 044450737X.

R. Freitag, *Modern Advances in Chromatography*, Springer-Verlag, New York, 2002. ISBN 3540430423. [Electronic version available at: http://link.springer.de/series/abe/].

M.C. McMaster, LC-MS: A Practical Uuser's Guide, J. Wiley & Sons Inc, 2005. ISBN 9780471655312.

S. Kromidas, *HPLC Made to Measure: A Practical Handbook for Optimization*, VCH-Wiley Publishing, 2006. ISBN 9783527313778.

IONIC EQUILIBRIA

G. Kortüm, W. Vogel and K. Andrussow, *Dissociation Constants of Organic Acids in Aqueous Solution*, Butterworths, London, 1961.

D.D. Perrin, Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution, Butterworths, London, 1969. ISBN 408-70015-7

D.D. Perrin, *Dissociation Constants of Organic Bases in Aqueous Solution*, Butterworths, London, 1965 suggested additional U.D.C number 543-831-36(083); and Supplement 1972. ISBN 0-408-70408 X.

D.D. Perrin and B. Dempsey, Buffers for pH and Metal Ion Control, Chapman and Hall, London, 1974.

E.P. Serjeant and B. Dempsey, *Ionisation Constants of Organic Acids in Aqueous Solution*, Pergamon Press, Oxford, 1979. ISBN 0-08-022339-7

W. Sabnis, Handbook of acid-base indicators, CRC Press, Boca Raton, Florida, 2007. ISBN 9780849382185.

ION EXCHANGE

F.G. Helfferich, Ion Exchange, Dover Publications, New York, 1989. ISBN 0486687848.

P.R. Haddad and P.E. Jackson, *Ion Chromatography: Principles and Applications*, Elsevier, New York, 1990. ISBN 0444882324.

A. Dyer, M.J. Hudson and P.A. Williams (Eds), *Ion Exchange Processes: Advances and Applications*, Royal Society of Chemistry, London, 1993. ISBN 0851864457.

D.T. Gjerde and J.S. Fritz, *Ion Chromatography*, 2nd Edn, J. Wiley and Sons, New York, 1998. ISBN 3527296964.

E.M. Thurman and M.S. Mills, *Solid-phase Extraction: Principles and Practice*, Chemical Analysis Series Vol. 147, J. Wiley & Sons, New York, 1998. ISBN 047161422X.

J.S. Fritz and D.T. Gjerde, *Ion Chromatography*, 3rd Edn, VCH Verlagsgessellschaft Mbh, Weinheim, 2000. ISBN 3527299149.

J. Korkisch, Concise Handbook of Ion Exchange Resins in Analytical Chemistry, CRC Press, Boca Raton, 2001. ISBN 9780849386558.

J. Weiss, *Handbook of Ion Chromatography*, (3rd Edn, 2 volumes), VCH-Wiley Publishing, 2004. ISBN 9783527287017.

A.K. SenGupta, Ion Exchange and Solvent Extraction: A Series of Advances, volume 18, CRC Press, Boca Raton, 2007. ISBN 9780849373978.

Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications, Elsevier Science, 2007. ISBN 9780444519825.

A.A. Zagorondi, Ion Exchange Materials: Properties and Applications, Elsevier Science, 2007. ISBN 9780080445526.

J.S. Fritz and D.T. Guide, Ion Chromatography, 4th Edn, Completely Revised and Enlarged Edition, J Wiley & Sons Inc, 2008. ISBN 978352732053.

LABORATORY TECHNIQUE AND THEORETICAL DISCUSSION

D.W. Mayo, S.S. Butcher, P.K. Trumper, R.M. Pike and S.S. Butcher, *Microscale Techniques for the Organic Laboratory*, J. Wiley & Sons, New York, 1991. ISBN 0471621927.

H.J.E. Loewenthal and E. Zass, A Guide for the Perplexed Organic Experimentalist, 2nd Edn, J. Wiley & Sons, Chichester, 1992. ISBN 0471935336.

J.D. Wollins (Ed). *Inorganic Experiments*, VCH-Wiley Publishing, 1995. ISBN 9783 527292530.

G.S. Coyne, *The Laboratory Companion: A Practical Guide to Materials, Equipment and Technique*, Wiley-Interscience, New York, 1997. ISBN 0471184225.

J. Feist, R. Fessenden and J.S. Fessenden, *Organic Laboratory Techniques*, 3rd Edn, Brooks Cole Publishing Co, 2000. ISBN 9780534379810.

C.E. Meloan, *Chemical Separations, Principles, Techniques and Experiments*, J. Wiley & Sons, New York, 2000, ISBN 0471351970.

J. Mendham, R.C. Denney, J.D. Barnes and M.J.K. Thomas, *Vogel's Quantitative Chemical Analysis*, 6th Edn, Prentice Hall, Harlow, 2000. ISBN 0582226287.

A.M. Schoffstall, B.A. Gaddis, M.L. Druelinger and M. Druelinger, *Organic Microscale and Miniscale Laboratory Experiments*, McGraw-Hill, Boston, 2000. ISBN 0072375493.

E. Prichard, *Practical Laboratory Skills Training Guide (complete set 5)*, Royal Society of Chemistry, 2003. ISBN 9780854044580.

J.L. Hollenberg, J.M. Postma, Roberts J.L, *Chemistry in the Laboratory*, 6th Edn, W.H. Freeman & Co, 2004. ISBN 9780716796060.

W.L. Masterton, E.J. Slowinski, W. Wolsey, *Chemical Principles in the Laboratory*, Brooks-Cole Publishing Co, 2004. ISBN 9780534424534. (Slowinski, Wolsey and Masterton, *Eds]-Chapters 1 to 43: Chemical Principles in the Laboratory*, Thompson Learning UK, 2006. ISBN (for Ch 43) 9780495371885.

P.F. Schatz, J.R. Mohrig and C.N. Hammond, *Techniques in Organic Chemistry*, 2nd Edn, Palgrave Macmillan, 2006. ISBN 9780716769354.

T. Toube, R. Keese and B. Brandle, *Practical Organic Synthesis: A Student's Guide*, J. Wiley & Sons Inc, 2006. ISBN 9780470029657.

K. Waldron and L. McGahey, *Chemistry of Everything: Laboratory Manual*, Prentice Hall Inc, 2006. ISBN 9780131875364.

D.R. Lide, *CRC Handbook of Chemistry and Physics*. CRC Press, 88th Edn, Boca Raton, Florida, 2007. ISBN 9780849304880 and 9780849328787 (on cd-rom).

S.A. Weiner, Intro to Chemical Principles: A Laboratory Approach, Thompson Learning UK, 2007. ISBN 9780495114796.

J.W. Zubrick, *The Organic Chemistry Survival Manual: A Student's Guide to Techniques*, 6th Edn, J. Wiley & Sons Inc, 2007. ISBN 9780470896051, also 9780470129326.

Chemical Principles in the Laboratory, 9th Edn, Thompson Learning UK, 2008. ISBN 9780495112884.

MOLECULAR SIEVES

R. Szostak, *Molecular Sieves: Principles of Synthesis and Identification*, Van Nostrand Reinhold, New York, 1989. ISBN 0442280238.

J.A. Schwartz and C. Contescu (Eds), *Surfaces of Nanoparticles & Porous Materials*, Marcel Dekker Inc, 1999. ISBN 9780824719333.

H.G. Karge and J. Weitkamp (Eds), *Molecular Sieves, Characterization I*, Springer, 2004. ISBN 9783540643357 J. Cejka, *Molecular Sieves: From Basic Research to Industrial Applications*, Elsevier Science, 2005. ISBN 0780444520821.

J. Cejka, H. van Bekkum, A. Corma and F. Schueth, *Introduction to Zeolite Molecular Sieves*, Elsevier Science, 2007. ISBN 9780444530639.

M. Lahmani, C. Bréchignac and P. Houdy, Nanomaterials and Nanochemistry, Springer, 2007. ISBN 9783540729921.

REAGENTS AND PURITY

J.I.G. Cadogan et al. (Eds), *Dictionary of Organic Compounds*, 6th Edn, Chapman and Hall Electronic Publ Div, 1996. ISBN (9 volume set) 0412540908.

Reagents Chemicals: American Chemical Society Specifications, Official from January 1 2000 (Reagent Chemicals American Chemical Society Specification) 9th Edn, Washington DC (Sept. 1999). ISBN 0841236712.

A.J. Pearson and W.R. Rouse, *Handbook of Reagents for Organic Synthesis*, 4 Vol. Set, J. Wiley & Sons, Chichester, 2001. ISBN 04719878911.

G. Wypych (Ed.), Solvents Database on CD Rom, William Andrew Publishing, LLC 2001. ISBN 0815514638.

L.E. Smart, *Separation, Purification and Identification*, The Royal Society of Chemistry, London, 2002 (in paperback and CD-ROM). ISBN 0854046852.

W.J. Lennarz and M.D. Lane (Eds), *Encyclopedia of Biological Chemistry*, Elsevier Inc, 2004. ISBN (4 volumes set) 0124437109.

J.G. Speight (Ed), Lange's Handbook of Chemistry, 16th Edn, McGraw-Hill Co Inc, 2005. ISBN 0071432205.

M.J. O'Neil (Ed), *The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals*, Merck & Co, NJ, 2006. ISBN 9780911971000.

L.A. Paquette (Ed), The Complete Collection of Organic Reagents On Line (up to 2006): <www.interscience.wiley.com/eros/>.

D.R. Lide (Editor-in-Chief), CRC-Handbook of Chemistry and Physics, 88th Edition, CRC Press Boca Raton, Florida 2007-2008, ISBN 0849304881.

S. Caron, *Practical Organic Chemistry: Proven Reactions and Synthetic Transformations*, J. Wiley & Sons Inc, 2008. ISBN 9780470037331.

SAFETY IN THE CHEMICAL LABORATORY

R.E. Lenga (Ed.), *The Sigma-Aldrich Library of Chemical Safety Data*, 3 Volume set, Aldrich Chemical Co., Milwaukee, 1988. ISBN 0941633160.

S.G. Luxon (Ed.), *Hazards in the Chemical Laboratory*, 5th Edn, Royal Society of Chemistry, 1992. ISBN 0851862292.

S.K. Hall, Chemical Safety in the Laboratory, Lewis Publishers, 1993. ISBN 9780873718967.

R.E. Lenga, K.L. Votoupal (Eds), *The Sigma-Aldrich Library of Regulatory and Safety Data*, 3 Volume set, Aldrich Chemical Co., Milwaukee, 1993. ISBN 0941633357.

A.K. Furr (Ed), *Handbook of Laboratory Safety*, 4th Edn, CRC Press, Boca Raton, Florida, 1995. ISBN 9780849325182.

M.-A. Armour, *Hazardous Laboratory Chemicals: Disposal Guide*, 2nd Edn, CRC Press, Boca Raton, 1996. ISBN 1566701082.

G.J. Hathaway, Chemical Hazards of the Workplace, 4th Edn, J. Wiley & Sons, 1996. ISBN 0471287024.

R.J. Lewis Sr., Sax's Dangerous Properties of Industrial Materials, 10th Edn, 3 Vol. Set., J. Wiley & Sons, New York, 1999. ISBN 0471354074.

P. Patniak, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 2nd Edn, J. Wiley & Sons, 1999. ISBN 0471291757.

N.P. Cheremisinoff, *Handbook of Hazardous Chemical Properties*, Butterworth-Heinemann, Oxford, 2000. ISBN 0750672099.

R.J. Lewis Sr., Hazardous Chemicals Desk Reference, 5th Edn, J. Wiley & Sons, 2002. ISBN 0471441651.

L. Bretherick, P.G. Urben and M.J. Pitt, *Bretherick's Handbook of Reactive Chemical Hazards*, 7th Edn, (2 volumes), Harcourt, 2006. ISBN 9780123739452.

Safety Sense: A Laboratory Guide, Cold Spring Harbor Lab Press, 2007. ISBN 9780879697839.

SOLVENTS, SOLVENT EXTRACTION AND DISTRIBUTION

D.R. Lide, Handbook of Organic Solvents, CRC Press, Florida, 1995. ISBN 0849389305.

R.P. Pohanish and S.A. Greene, *Rapid Guide to Chemical Incompatibilities*, J. Wiley & Sons, New York, 1997. ISBN 0471288020.

I.M. Smallwood, Solvent Recovery Handbook, Blackwell Science Publ Ltd, 2001. ISBN 9780632056477.

J. Rydberg, M. Cox and C. Musikas, *Solvent Extraction: Principles and Practice*, Marcel Dekker Inc, 2004. ISBN 9780824750633.

SPECTROSCOPY

C.J. Pouchert, The Aldrich Library of Infrared Spectra, 3rd Edn, Aldrich Chemical Co., Milwaukee, 1981.

E. Breitmaier, *Structure Elucidation by NMR in Organic Chemistry: A Practical Guide*, J. Wiley & Sons, New York, 1993. ISBN 0471937452, 0471933813.

C.J. Pouchert and J. Behnke, *The Aldrich Library of* ¹³C and ¹H FT NMR Spectra, 3 Volume set, Aldrich Chemical Co., Milwaukee, 1993. ISBN 0941633349.

K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 2 Vol. Set, 5th Edn, J. Wiley & Sons, New York, 1997. ISBN 0471194069.

J.A. Iggo, NMR Spectroscopy in Inorganic Chemistry, Oxford University Press UK, 1999 (reprinted 2000). ISBN 9780198558903

S. Berger and S, Braun, 200 and More NMR Experiments, VCH-Wiley Publishing, 2004. ISBN 9783527310678.

J.A.C. Broekaert, *Analytical Atomic Spectrometry with Flames and Plasmas*, VCH-Wiley Publishing, 2005. ISBN 9783527312825.

W. Henderson and J.S. McIndoe, *Mass Spectrometry of Inorganic and Organometallic Compounds: Tools-Techniques-Tips*, J Wiley & Sons Inc, 2005. ISBN 9780470014318.

J. Sole and L. Bausa, An Introduction to the Optical Spectroscopy of Inorganic Solids, J. Wiley & Sons Inc, 2005. ISBN 9780470868850.

B. Henderson and G.F. Imbusch, *Optical Spectroscopy of Inorganic Solids*, Oxford University Press UK, 2006. ISBN 9780199298642.

S. Becker, *Inorganic Mass Spectrometry: Principles and Applications*. J. Wiley & Sons Inc, 2007. ISBN 9780470012000.

M. Hesse, H. Meier and B. Zeeh, *Spectroscopic Methods in Organic Chemistry* (translated by Dunmer & Murray) 2nd Edn, George Theme Verlag, 2007. ISBN 9783131060426 (Stuttgart) and 9781588904881 (New York).

De Hoffmann and V. Stroobant, *Mass Spectrometry: Principles and Applications*, J Wiley & Sons Inc, 2007. ISBN 9780470033111.

T.J. Wenzel, *Discrimination of Chiral Compounds using NMR Spectroscopy*, Wiley-Interscience, New York 2007. ISBN 978047176352-9

D. Williams and I. Fleming, *Spectroscopy in Organic Chemistry*, McGraw-Hill Publishing Co UK, 2008. ISBN 9780077118129.

THIN LAYER CHROMATOGRAPHY

H. Jork (Ed.), *Thin Layer Chromatography: Reagents and Detection Methods*, Vol. 1a, 1b, J. Wiley & Sons, 1989 (Vol. 1a) and 1994 (Vol. 1b). ISBN 3527278346 (Vol. 1a) and 352728205X (Vol. 1b).

B. Fried, J. Sherma, *Practical Thin-Layer Chromatography: A MultiDisciplinary Approach*, CRC Press, Boca Raton, 1996. ISBN 9780849326608.

B. Fried and J. Sherma, Thin Layer Chromatography, Marcel Dekker, New York, 1999. ISBN 0824702220.

E. Hahn-Dienstrop, Applied Thin Layer Chromatography: Best Practice and Avoidance of Mistakes, VCH Verlagsgessellschaft Mbh, Weinheim, 2000. ISBN 3527298398.

T. Kowalska and J. Sherma, *Preparative Thin Layer Chromatography*, CRC Taylor & Francis Press, 2006. ISBN 10: 0-8493-4039-X, 13: 97804934390.

T. Kowalska and J. Sherma, *Thin Layer Chromatography in Chiral Separations and Analysis*, CRC Press, 2007. ISBN 978084943698.

CHAPTER 2

CHEMICAL METHODS

USED

IN PURIFICATION

GENERAL REMARKS

Greater selectivity in purification can often be achieved by making use of differences in chemical properties between the substance to be purified and the contaminants. Unwanted metal ions may be removed by precipitation in the presence of a *collector* (see below). Sodium borohydride and other metal hydrides transform organic peroxides and carbonyl-containing impurities such as aldehydes and ketones in alcohols and ethers. Many classes of organic chemicals can be purified by conversion into suitable derivatives, followed by regeneration. This chapter describes relevant procedures.

REMOVAL OF TRACES OF METALS FROM REAGENTS

METAL IMPURITIES

The presence of metal contaminants in reagents may sometimes affect the chemical or biochemical outcomes of an experiment. In these cases, it is necessary to purify the reagents used. Metal (and other) impurities can be determined qualitatively and quantitatively by atomic absorption spectroscopy (AAA), x-ray photoelectron spectroscopy (XPS), various mass spectrometric methods and/or inductively coupled plasma mass spectrometry (ICP-MS) (see Chapter 1, Question of Purity) and the required purification procedures can be formulated. Metal impurities in organic compounds are usually in the form of ionic salts or complexes with organic compounds and very rarely in the form of free metal. If they are present in the latter form then they can be removed by crystallising the organic compound (whereby the insoluble metal can be removed by filtration), or by distillation in which case the metal remains behind with the residue in the distilling flask. If the impurities are in the ionic or complex forms, then extraction of the organic compound in a suitable organic solvent with aqueous acidic or alkaline solutions will reduce their concentration to acceptable levels.

When the metal impurities are present in inorganic compounds as in metals or metal salts, then advantage of the differences in chemical properties should be taken. Properties of the impurities like the solubility, the solubility product (product of the metal ion and the counter-ion concentrations), the stability constants of the metal complexes with organic complexing agents and their solubilities in organic solvents should be considered. Alternatively the impurities can be masked by the addition of complexing agents which could lower the concentration of the metal ion impurities to such low levels that they would not interfere with the main compound (see **complexation** below). Specific procedures and examples are provided below.

DISTILLATION

Reagents such as water, ammonia, hydrochloric acid, nitric acid, perchloric acid, and sulfuric acid can be purified *via* distillation (preferably under reduced pressure and particularly with perchloric acid) using an all-glass still. Isothermal distillation is convenient for ammonia: a beaker containing concentrated ammonia is placed alongside a beaker of distilled water for several days in an empty desiccator so that some of the ammonia distils over into the water. The redistilled ammonia should be kept in polyethylene or paraffin-waxed bottles. Hydrochloric acid can be purified in the same way. To ensure the absence of metal contaminants from some salts (e.g. ammonium acetate), it may be more expedient to synthesise the salts using distilled components rather than to attempt to purify the salts themselves.

SCAVENGER RESINS AND OTHER SUPPORTS

There is now an extensive range of supported reactants that use resins, silica, carbons etc, to clean up reactions prior to final purification and is gaining favour in the laboratory. [See section on "Scavenger Resins" in Chapter 3, at the ends of the sections on "*Preparation of other adsorbents*", "FPLC" and "HPLC".]

USE OF ION-EXCHANGE RESINS

Application of ion-exchange columns has greatly facilitated the removal of heavy metal ions such as Cu^{2+} , Zn^{2+} and Pb^{2+} from aqueous solutions of many reagents. Thus, sodium salts and sodium hydroxide can be purified by passage through a column of a cation-exchange resin in its sodium form, prepared by washing the resin with 0.1M aqueous NaOH then washing with water until the pH of the effluent is ~7. Similarly, for acids, a resin in its H⁺ form [prepared by washing the column with 0.1M aqueous mineral acid (HCl, H₂SO₄) followed by thorough washing with water until the effluent has pH ~7 is used]. In some cases, where metals form anionic complexes, they can be removed by passage through an anion-exchange resin. Iron in hydrochloric acid solution can be removed in this way.

Ion-exchange resins are also useful for demineralising biochemical preparations such as proteins. Removal of metal ions from protein solutions using polystyrene-based resins, however, may lead to protein denaturation. This difficulty may be avoided by using a weakly acidic cation exchanger such as Bio-Rex 70.

Heavy metal contamination of pH buffers can be removed by passage of the solutions through a Chelex X-100 column. For example when a solution of 0.02M HEPES [4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid] containing 0.2M KCl (1L, pH 7.5) alone or with calmodulin, is passed through a column of Chelex X-100 (~60g) in the K⁺ form, the level of Ca²⁺ ions falls to less than 2 x 10⁻⁷ M as shown by atomic absorption spectroscopy. Such solutions should be stored in polyethylene containers that have been washed with boiling deionised water (5minutes) and rinsed several times with deionised water. TES [*N*,*N*,*N*',*N*'-Tetraethylsulfamide] and TRIS [Tris-(hydroxymethyl)aminomethane] have been similarly decontaminated from metal ions.

Water, with very low concentrations of ionic impurities (and approaching conductivity standards), is very readily obtained by percolation through alternate columns of cation- and anion-exchange resins, or through a mixed-bed resin, and many commercial devices are available for this purpose. For some applications, this method is unsatisfactory because the final deionised water may contain traces of organic material after passage through the columns. However, organic matter can be removed by using yet another special column in series for this purpose (see Milli Q water preparation, Millipore Corpn., <www.millipore.com>).

PRECIPITATION

In removing traces of impurities by precipitation, it is necessary to include a material to act as a *collector* of the precipitated substance so as to facilitate its removal by filtration or decantation. The following are a few examples:

Removal of lead contaminants

Aqueous hydrofluoric acid can be freed from lead by adding 1mL of 10% strontium chloride per 100mL of acid, lead being co-precipitated as lead fluoride with the strontium fluoride. If the hydrofluoric acid is decanted from the precipitate and the process repeated, the final lead content in the acid is less than 0.003ppm. Similarly, lead can be precipitated from a nearly saturated sodium carbonate solution by adding 10% strontium chloride dropwise (1-2mL per 100mL) followed by filtration. (If the sodium carbonate is required as a solid, the solution can be evaporated to dryness in a platinum dish.) Removal of lead from potassium chloride uses precipitation as lead sulfide by bubbling H_2S , followed, after filtration, by evaporation and recrystallisation of the potassium chloride.

Removal of iron contaminants

Iron contaminants have been removed from potassium thiocyanate solutions by adding a slight excess of an aluminium salt, then precipitating aluminum and iron as their hydroxides by adding a few drops of ammonia. Iron is also carried down on the hydrated manganese dioxide precipitate formed in cadmium chloride or cadmium sulfate solutions by adding 0.5% aqueous potassium permanganate (0.5mL per 100mL of solution), sufficient ammonia to give a slight precipitate, and 1mL of ethanol. The solution is heated to boiling to coagulate the precipitate, then filtered. Ferrous ion can be removed from copper solutions by adding some hydrogen peroxide to the solution to oxidise the iron, followed by precipitation of ferric hydroxide by adding a small amount of sodium hydroxide.

Removal of other metal contaminants

Traces of calcium can be removed from solutions of sodium salts by precipitation at pH 9.5-10 as the 8-hydroxyquinolinate. The excess 8-hydroxyquinoline acts as a *collector* and is extracted out with an organic solvent.

EXTRACTION

In some cases, a simple solvent extraction is sufficient to remove a particular impurity. For example, traces of gallium can be removed from titanous chloride in hydrochloric acid by extraction with diisopropyl ether. Similarly, ferric chloride can be removed from aluminium chloride solutions containing hydrochloric acid by extraction with diethyl ether. Usually, however, it is necessary to extract an undesired metal with an organic solvent in the presence of a suitable complexing agent such as dithizone (diphenylthiocarbazone) or sodium diethyl dithiocarbamate. When the former is used, weakly alkaline solutions of the substance containing the metal impurity are extracted with dithizone in chloroform (at about 25mg/L of chloroform) or carbon tetrachloride until the colour of some fresh dithizone solution remains unchanged after shaking. Dithizone complexes metals more strongly in weakly alkaline solutions. Excess dithizone in the aqueous medium is removed by extracting with the pure solvent (chloroform or carbon tetrachloride), the last traces of which, in turn, are removed by aeration. This method has been used to remove metal impurities from aqueous solutions of ammonium hydrogen citrate, potassium bromide, potassium cyanide, sodium acetate and sodium citrate. The advantage of dithizone for such a purpose lies in the wide range of metals with which it combines under these conditions. 8-Hydroxyquinoline (oxine) can also be used in this way. Sodium diethyl dithiocarbamate has been used to remove metals from aqueous hydroxylamine hydrochloride (made just alkaline to thymol blue by adding ammonia) from copper and other heavy metals by repeated extraction with chloroform until no more diethyl dithiocarbamate remained in the solution (which was then acidified to thymol blue by adding hydrochloric acid).

COMPLEXATION

Although not strictly a removal of an impurity, addition of a suitable complexing agent such as ethylenediaminetetraacetic acid often overcomes the undesirable effects of contaminating metal ions by reducing the concentrations of the free metal species to very low levels, i.e. sequestering metal ions by complexation. For a detailed discussion of this *masking*, see *Masking and Demasking of Chemical Reactions*, D.D.Perrin, Wiley-Interscience, New York, 1970.

USE OF METAL HYDRIDES

This group of reagents is commercially available in large quantities; some of its members-notably lithium aluminium hydride (LiAlH₄), calcium hydride (CaH₂), sodium borohydride (NaBH₄) and potassium borohydride (KBH₄)-have found widespread use in the purification of chemicals.

LITHIUM ALUMINIUM HYDRIDE

This solid is stable at room temperature and is soluble in ether-type solvents. It reacts violently with water, liberating hydrogen, and is a powerful drying and reducing agent for organic compounds. It reduces aldehydes, ketones, esters, carboxylic acids, peroxides, acid anhydrides and acid chlorides to the corresponding alcohols. Similarly, amides, nitriles, aldimines and aliphatic nitro compounds yield amines, while aromatic nitro compounds are converted to azo compounds. For this reason it finds extensive application in purifying organic chemical substances by the removal of water and carbonyl containing impurities as well as peroxides formed by autoxidation. Reactions can generally be carried out at room temperature, or in refluxing diethyl ether, at atmospheric pressure. When drying organic liquids with this reagent it is important that the concentration of water in the liquid is below 0.1% - otherwise a violent reaction or **EXPLOSION** may occur. LiAlH₄ should be added cautiously to a cooled solution of organic liquid in a flask equipped with a reflux condenser.

CALCIUM HYDRIDE

This powerful drying agent is suitable for use with hydrogen, argon, helium, nitrogen, hydrocarbons, chlorinated hydrocarbons, esters and higher alcohols.

SODIUM BOROHYDRIDE

This solid, which is stable in dry air up to 300°, is a less powerful reducing agent than lithium aluminium hydride, from which it differs also by being soluble in hydroxylic solvents and to a lesser extent in ether-type solvents. Sodium borohydride forms a dihydrate melting at 36-37°, and its aqueous solutions decompose slowly unless stabilised to above pH 9 by alkali. (For example, a useful sodium borohydride solution is one that is nearly saturated at 30-40° and containing 0.2% sodium hydroxide.) Its solubility in water is 25, 55 and 88g per 100mL

Chemical Methods used in Purification

of water at 0°, 25° and 60°, respectively. Boiling or acidification rapidly decomposes aqueous sodium borohydride solutions. The reagent, available either as a hygroscopic solid or as an aqueous sodium hydroxide solution, is useful as a water soluble reducing agent for aldehydes, ketones and organic peroxides. This explains its use for the removal of carbonyl-containing impurities and peroxides from alcohols, polyols, esters, polyesters, amino alcohols, olefins, chlorinated hydrocarbons, ethers, polyethers, amines (including aniline), polyamines and aliphatic sulfonates.

Purifications using sodium borohydride can be carried out conveniently using alkaline aqueous or methanolic solutions of sodium borohydride, allowing the reaction mixture to stand at room temperature for several hours. Other solvents that can be used with this reagent include isopropyl alcohol (without alkali), amines (including liquid ammonia, in which its solubility is 104g per 100g of ammonia at 25°, and ethylene diamine), diglyme, formamide, dimethylformamide and tetrahydrofurfuryl alcohol. Alternatively, the material to be purified can be percolated through a column of the borohydride. In the absence of water, sodium borohydride solutions in organic solvents such as dioxane or amines decompose only very slowly at room temperature. Treatment of ethers with sodium borohydride appears to inhibit peroxide formation.

POTASSIUM BOROHYDRIDE

Potassium borohydride is similar in properties and reactions to sodium borohydride, and can similarly be used as a reducing agent for removing aldehydes, ketones and organic peroxides. It is non-hygroscopic and can be used in water, ethanol, methanol or water-alcohol mixtures, provided some alkali is added to minimise decomposition, but it is somewhat less soluble than sodium borohydride in most solvents. For example, the solubility of potassium borohydride in water at 25° is 19g per 100mL of water (as compared to 55g of sodium borohydride).

PURIFICATION via DERIVATIVES

Relatively few derivatives of organic substances are suitable for use as aids to purification. This is because of the difficulty in regenerating the starting material. For this reason, we list below the common methods of preparation of derivatives that can be used in this way.

Whether or not any of these derivatives is likely to be satisfactory for the use of any particular case will depend on the degree of difference in properties, such as solubility, volatility or melting point, between the starting material, its derivative and likely impurities, as well as on the ease with which the substance can be recovered. Purification *via* a derivative is likely to be of most use when the quantity of pure material that is required is not too large. Where large quantities (for example, more than 50g) are available, it is usually more economical to purify the material directly (for example, in distillations and recrystallisations).

The most generally useful purifications via derivatives are as follows:

ALCOHOLS

Aliphatic or aromatic alcohols are converted to solid esters. *p*-Nitrobenzoates are examples of convenient esters to form because of their sharp melting points, and the ease with which they can be recrystallised as well as the ease with which the parent alcohol can be recovered. The *p*-nitrobenzoyl chloride used in the esterification is prepared by refluxing dry *p*-nitrobenzoic acid with a 3 molar excess of thionyl chloride for 30minutes on a steam bath (*in a fume cupboard*). The solution is cooled slightly and the excess thionyl chloride is distilled off under vacuum, keeping the temperature below 40°. Dry toluene is added to the residue in the flask, then distilled off under vacuum, the process being repeated two or three times to ensure complete removal of thionyl chloride, hydrogen chloride and sulfur dioxide. (This freshly prepared *p*-nitrobenzoyl chloride (1mol) in dry toluene or alcohol-free chloroform (distilled from P₂O₅ or by passage through an activated Al₂O₃ column) under a reflux condenser is cooled in an ice bath while the alcohol (1mol), with or without a solvent (preferably miscible with toluene or alcohol-free chloroform), is added dropwise to it. When addition is over and the reaction subsides, the mixture is refluxed for 30minutes and the solvent is removed under reduced pressure. The solid ester is then recrystallised to constant melting point from toluene, acetone, low boiling point petroleum ether or mixtures of these, but not from alcohols (due to unwanted trans-esterifiction).

Hydrolysis of the ester is achieved by refluxing in aqueous N or 2N NaOH solution until the insoluble ester dissolves. The solution is then cooled, and the alcohol is extracted into a suitable solvent, e.g. ether, toluene or alcohol-free chloroform. The extract is dried (CaSO₄, MgSO₄) and distilled, then fractionally distilled if liquid or recrystallised if solid. (The *p*-nitrobenzoic acid can be recovered by acidification of the aqueous layer.) In most cases where the alcohol to be purified can be readily extracted from ethanol, the hydrolysis of the ester is best

achieved with N or 2N ethanolic NaOH or 85% aqueous ethanolic N NaOH. The former is prepared by dissolving the necessary alkali in a minimum volume of water and diluting with absolute alcohol. The ethanolic solution is refluxed for one to two hours and hydrolysis is complete when an aliquot gives a clear solution on dilution with four or five times its volume of water. The bulk of the ethanol is distilled off and the residue is extracted as above. Alternatively, use can be made of ester formation with benzoic acid, toluic acid or 3,5-dinitrobenzoic acid, by the above method.

Other derivatives can be prepared by reaction of the alcohol with an acid anhydride. For example, phthalic or 3nitrophthalic anhydride (1 mol) and the alcohol (1mol) are refluxed for half to one hour in a non-hydroxylic solvent, e.g. toluene or alcohol-free chloroform, and then cooled. The phthalate ester crystallises out, is precipitated by the addition of low boiling petroleum ether or is isolated by evaporation of the solvent. It is recrystallised from water, 50% aqueous ethanol, toluene or low boiling petroleum ether. Such an ester has a characteristic melting point and the alcohol can be recovered by acid or alkaline hydrolysis.

ALDEHYDES

The best derivative from which an aldehyde can be recovered readily is its bisulfite addition compound, the main disadvantage being the lack of a sharp melting point. The aldehyde (sometimes in ethanol) is shaken with a cold saturated solution of sodium bisulfite until no more solid adduct separates. The adduct is filtered off, washed with a little water, followed by alcohol. A better reagent to use is a freshly prepared saturated aqueous sodium bisulfite solution clear.) With this reagent the aldehyde need not be dissolved separately in alcohol and the adduct is finally washed with alcohol. The aldehyde is recovered by dissolving the adduct in the least volume of water and adding an equivalent quantity of sodium carbonate (not sodium hydroxide) or concentrated hydrochloric acid to react with the bisulfite, followed by steam distillation or solvent extraction.

Other derivatives that can be prepared are the Schiff bases and semicarbazones. Condensation of the aldehyde with an equivalent of primary aromatic amine yields the Schiff base, for example aniline at 100° for 10-30minutes.

Semicarbazones are prepared by dissolving semicarbazide hydrochloride ($ca \ 1g$) and sodium acetate ($ca \ 1.5g$) in water (8-10mL) and adding the aldehyde or ketone (0.5-1g) with stirring. The semicarbazone crystallises out and is recrystallised from ethanol or aqueous ethanol. These are hydrolysed by steam distillation in the presence of oxalic acid or better by exchange with pyruvic acid (Hershberg *J Org Chem* **13** 542 *1948*) [see entry under Ketones].

AMINES

Picrates

The most versatile derivative from which the free base can be readily recovered is the picrate. This is very satisfactory for primary and secondary aliphatic amines and aromatic amines and is particularly so for heterocyclic bases. The amine, dissolved in water or alcohol, is treated with excess of a saturated solution of picric acid in water or alcohol, respectively, until separation of the picrate is complete. If separation does not occur, the solution is stirred vigorously and warmed for a few minutes, or diluted with a solvent in which the picrate is insoluble. Thus, a solution of the amine and picric acid in ethanol can be treated with petroleum ether to precipitate the picrate. Alternatively, the amine can be dissolved in alcohol and aqueous picric acid added. The picrate is filtered off, washed with water or ethanol and recrystallised from boiling water, ethanol, methanol, aqueous ethanol, methanol or chloroform. The solubility of picric acid in water and ethanol is 1.4 and 6.23% respectively at 20°.

It is not advisable to store large quantities of picrates for long periods, *particularly when they are dry due to their potential* **EXPLOSIVE** *nature*. Also this method is not advised when large quantities of amines (e.g. >25g) are to be purified. The free base should be recovered as soon as possible. The picrate is suspended in an excess of 2N aqueous NaOH and warmed a little. Because of the limited solubility of sodium picrate, excess hot water must be added. Alternatively, because of the greater solubility of lithium picrate, aqueous 10% lithium hydroxide solution can be used. The solution is cooled, the amine is extracted with a suitable solvent such as diethyl ether or toluene, washed with 5N NaOH until the alkaline solution remains colourless, then with water, and the extract is dried with anhydrous sodium carbonate. The solvent is distilled off and the amine is fractionally distilled (under reduced pressure if necessary) or recrystallised.

If the amines are required as their hydrochlorides, picrates can often be decomposed by suspending them in acetone and adding two equivalents of 10N HCl. The hydrochloride of the base is filtered off, leaving the picric acid in the acetone. Dowex No 1 anion-exchange resin in the chloride form is useful for changing solutions of the more soluble picrates (for example, of adenosine) into solutions of their hydrochlorides, from which sodium hydroxide precipitates the free base.

Salts

Amines can also be purified *via* their salts, e.g. hydrochlorides. A solution of the amine in dry toluene, diethyl ether, dichloromethane or chloroform is saturated with dry hydrogen chloride (generated by addition of concentrated sulfuric acid to dry sodium chloride, or to concentrated HCl followed by drying the gas through sulfuric acid, or the HCl gas is obtained from a hydrogen chloride cylinder) and the insoluble hydrochloride is filtered off and dissolved

Chemical Methods used in Purification

in water. The solution is made alkaline and the amine is extracted, as above. Hydrochlorides can also be prepared by dissolving the amine in ethanolic HCl and adding diethyl ether. Where hydrochlorides are too hygroscopic or too soluble for satisfactory isolation, other salts, e.g. nitrate, sulfate, bisulfate or oxalate, can be used.

Double salts

The amine (1mol) is added to a solution of anhydrous zinc chloride (1mol) in concentrated HCl (42mL) in ethanol (200mL, or less depending on the solubility of the double salt). The solution is stirred for 1hour and the precipitated salt is filtered off and recrystallised from ethanol. The free base is recovered by adding excess of 5-10N NaOH (to dissolve the zinc hydroxide that separates) and is steam distilled. Mercuric chloride (highly poisonous) in hot water can be used instead of zinc chloride and the salt is crystallised from 1% hydrochloric acid. Other double salts have been used, e.g. cuprous salts, but are not as convenient as the above salts.

N-Acetyl derivatives

Purification as their *N*-acetyl derivatives is satisfactory for primary, and to a limited extent, secondary amines. Tertiary amines are not acetylated. The base is refluxed with slightly more than one equivalent of acetic anhydride for half to one hour, cooled and poured into ice-cold water. The insoluble derivative is filtered off, dried, and recrystallised from water, ethanol, aqueous ethanol or benzene (CAUTION **toxic**!). The derivative can be hydrolysed to the parent amine by refluxing with 70% sulfuric acid for a half to one hour. The solution is cooled, poured onto ice, and made alkaline. The amine is steam distilled or extracted as above. Alkaline hydrolysis is very slow.

N-Tosyl derivatives

Primary and secondary amines are converted into their tosyl derivatives by mixing equimolar amounts of amine and p-toluenesulfonyl chloride in dry pyridine (*ca* 5-10mols) and allowing to stand at room temperature overnight. The solution is poured into ice-water and the pH adjusted to 2 with HCl. The solid derivative is filtered off, washed with water, dried (vacuum desiccator) and recrystallised from an alcohol or aqueous alcohol solution to a sharp melting point. The derivative is decomposed by dissolving in liquid ammonia (*fume cupboard*) and adding sodium metal (in small pieces with stirring) until the blue colour persists for 10-15minutes. Ammonia is allowed to evaporate (*fume cupboard*), the residue treated with water and the solution checked that the pH is above 10. If the pH is below 10, then the solution has to be basified with 2N NaOH. The mixture is extracted with diethyl ether or toluene, the extract is dried (K₂CO₃), evaporated and the residual amine recrystallised if solid or distilled if liquid.

AROMATIC HYDROCARBONS

Adducts

Aromatic hydrocarbons can be purified as their picrates using the procedures described for amines. Instead of picric acid, 1,3,5-trinitrobenzene or 2,4,7-trinitrofluorenone can also be used. In all these cases, following recrystallisation, the hydrocarbon can be isolated either as described for amines or by passing a solution of the adduct through an activated alumina column and eluting with toluene or petroleum ether. The picric acid and nitro compounds are more strongly adsorbed on the column.

Sulfonation

Naphthalene, xylenes and alkyl benzenes can be purified by sulfonation with concentrated sulfuric acid and crystallisation of the sodium sulfonates. The hydrocarbon is distilled out of the mixture with superheated steam.

CARBOXYLIC ACIDS 4-Bromophenacyl esters

A solution of the sodium salt of the acid is prepared. If the salt is not available, the acid is dissolved in an equivalent of aqueous NaOH and the pH adjusted to 8-9 with this base. A solution of one equivalent of 4-bromophenacyl bromide (for a monobasic acid, two equivalents for a dibasic acid, etc) in ten times its volume of ethanol is then added. The mixture is heated to boiling, and, if necessary, enough ethanol is added to clarify the solution which is then refluxed for half an hour to three hours depending on the number of carboxylic groups that have to be esterified. (One hour is generally sufficient for monocarboxylic acids.) On cooling, the ester should crystallise out. If it does not, then the solution is heated to boiling, and recrystallised or fractionally distilled.

The ester is hydrolysed by refluxing for 1-2hours with 1-5% of barium carbonate suspended in water or with aqueous sodium carbonate solution. The solution is cooled and extracted with diethyl ether, toluene or chloroform. It is then acidified and the acid is collected by filtration or extraction, and recrystallised or fractionally distilled. 4-Bromophenylphenacyl esters are used similarly.

p-Nitrobenzyl esters can be prepared in an analogous manner using the sodium salt of the acid and *p*-nitrobenzyl bromide. They are readily hydrolysed.

Alkyl esters

Of the alkyl esters, methyl esters are the most useful because of their rapid hydrolysis. The acid is refluxed with one or two equivalents of methanol in excess alcohol-free chloroform (or dichloromethane) containing about 0.1g

of *p*-toluenesulfonic acid (as catalyst), using a Dean-Stark apparatus. (The water formed by the esterification is carried away into the trap.) When the theoretical amount of water is collected in the trap, esterification is complete. The chloroform solution in the flask is washed with 5% aqueous sodium carbonate solution, then water, and dried over anhydrous sodium sulfate or magnesium sulfate. The chloroform is distilled off and the ester is fractionally distilled through an efficient column, or recrystallised if it is a solid. The ester is hydrolysed by refluxing with 5-10% aqueous NaOH solution until the insoluble ester has completely dissolved. The aqueous solution is concentrated a little by distillation to remove almost all of the methanol. It is then cooled and acidified. The acid is either extracted with diethyl ether, toluene or chloroform, or filtered off and isolated as above. Other methods for preparing esters are available, e.g. addition of an ethereal solution of diazomethane (yellow in colour, poisonous, use a fume cupboard. CARE: Use diazomethane with extreme care as the reagent is POISONOUS and HIGHLY explosive; special precautions MUST be used; see *Fieser and Fieser's Reagents for Organic Synthesis* **1** pp191-195 *1967*) to the acid which dissolves as the acid is esterified, liberating N₂ and the yellow colour. The methyl ester so produced is obtained by evaporating the ethereal solution.

Salts

The most useful salt derivatives for carboxylic acids are the isothiouronium salts. These are prepared by mixing almost saturated solutions containing the acid (carefully neutralised with N NaOH using phenolphthalein indicator) then adding two drops of N HCl and an equimolar amount of *S*-benzylisothiouronium chloride in ethanol and filtering off the salt that crystallises out. After recrystallisation from water, alcohol or aqueous alcohol the salt is decomposed by suspending or dissolving in 2N HCl and extracting the carboxylic acid from aqueous solution into diethyl ether, chloroform or toluene.

HYDROPEROXIDES

These can be converted to their sodium salts by precipitation below 30° with aqueous 25% NaOH. The salt is then decomposed by addition of solid (powdered) carbon dioxide and extracted with low-boiling petroleum ether. The solvent should be removed under reduced pressure below 20°. The manipulation should be adequately shielded at all times to guard against EXPLOSIONS for the safety of the operator.

KETONES

Bisulfite adduct

The adduct can be prepared and decomposed as described for aldehydes. Alternatively, because no Cannizzaro reaction is possible, it can also be decomposed with 0.5N NaOH.

Semicarbazones

A powdered mixture of semicarbazide hydrochloride (1mol) and anhydrous sodium acetate (1.3mol) is dissolved in water by gentle warming. A solution of the ketone (1mol) in the minimum volume of ethanol needed to dissolve it is then added. The mixture is warmed on a water bath until separation of the semicarbazone is complete. The solution is cooled, and the solid is filtered off. After washing with a little ethanol followed by water, it is recrystallised from ethanol or dilute aqueous ethanol. The derivative should have a characteristic melting point. The semicarbazone is decomposed by refluxing with excess of oxalic acid or with aqueous sodium carbonate solution. The ketone (which steam distils) is distilled off. It is extracted or separated from the distillate (after saturating with NaCl), dried with CaSO₄ or MgSO₄ and fractionally distilled using an efficient column (under vacuum if necessary). [See entry under Aldehydes.]

PHENOLS

The most satisfactory derivatives for phenols that are of low molecular weight or monohydric are the benzoate esters. (Their acetate esters are generally liquids or low-melting solids.) Acetates are more useful for high molecular weight and polyhydric phenols.

Benzoates

The phenol (1mol) in 5% aqueous NaOH is treated (while cooling) with benzoyl chloride (1mol) and the mixture is stirred in an ice bath until separation of the solid benzoyl derivative is complete. The derivative is filtered off, washed with alkali, then water, and dried (in a vacuum desiccator over NaOH). It is recrystallised from ethanol or dilute aqueous ethanol. The benzoylation can also be carried out in dry pyridine at low temperature ($ca 0^{\circ}$) instead of in NaOH solution, finally pouring the mixture into water and collecting the solid as above. The ester is hydrolysed by refluxing in an alcohol (for example, ethanol, *n*-butanol) containing two or three equivalents of the alkoxide of the corresponding alcohol (for example, sodium ethoxide or sodium *n*-butoxide) and a few (ca 5-10) millilitres of water, for half an hour to three hours. When hydrolysis is complete, an aliquot will remain clear on dilution with four to five times its volume of water. Most of the solvent is distilled off. The residue is diluted with cold water and acidified, and the phenol is steam distilled. The latter is collected from the distillate, dried and either fractionally distilled or recrystallised. It can also be isolated by extraction from a slightly acidified (pH ~3) aqueous solution with diethyl ether.

These can be prepared as for the benzoates using either acetic anhydride with 3N NaOH or acetyl chloride in pyridine. They are hydrolysed as described for the benzoates. This hydrolysis can also be carried out with aqueous 10% NaOH solution, completion of hydrolysis being indicated by the complete dissolution of the acetate in the aqueous alkaline solution. On steam distillation, acetic acid also distils off, but in these cases the phenols (see above) are invariably solids which can be filtered off and recrystallised.

PHOSPHATE AND PHOSPHONATE ESTERS

These can be converted to their uranyl nitrate addition compounds. The crude or partially purified ester is saturated with uranyl nitrate solution and the adduct is filtered off. It is recrystallised from *n*-hexane, toluene or ethanol. For the more soluble members crystallisation from hexane using low temperatures (-40°) has been successful. The adduct is decomposed by shaking with sodium carbonate solution and water, the solvent is steam distilled (if hexane or toluene is used) and the ester is collected by filtration. Alternatively, after decomposition, the organic layer is separated, dried with CaCl₂ or BaO, filtered, and fractionally distilled under high vacuum.

MISCELLANEOUS

Impurities can sometimes be removed by conversion to derivatives under conditions where the major component does not react or reacts much more slowly. For example, normal (straight-chain) paraffins can be freed from unsaturated and branched-chain components by taking advantage of the greater reactivity of the latter with chlorosulfonic acid or bromine. Similarly, the preferential nitration of aromatic hydrocarbons can be used to remove e.g. benzene or toluene from cyclohexane by shaking for several hours with a mixture of concentrated nitric acid (25%), sulfuric acid (58%), and water (17%).

GENERAL METHODS FOR THE PURIFICATION OF CLASSES OF COMPOUNDS

Chapters 4, 5 and 6 list a large number of individual compounds, with a brief statement of how each one may be purified. For substances that are not included in these chapters the following procedures may prove helpful.

PROCEDURES

If the laboratory worker does not know of a reference to the preparation of a commercially available substance, he/she may be able to make a reasonable guess at the synthetic method used from the published laboratory syntheses. This information, in turn, can simplify the necessary purification steps by suggesting probable contaminants. However, for other than macromolecules it is important that *at least* the ¹H NMR spectrum and/or the mass spectrum of the substance should be measured. These measurements require no more than two to three milligrams of material and provide a considerable amount of information about the substance. From the bibliography at the end of this chapter, references to NMR, IR and mass spectral data for a large number of the compounds in the Aldrich-Sigma catalogue are available and are extremely useful for identifying compounds and impurities. If the material appears to have several impurities, these spectra should be followed by examination of their chromatographic properties and spot tests. Purification methods can then be devised to remove these impurities, and a monitoring method will have already been established.

Physical methods of purification depend largely on the melting and boiling points of the materials. For gases and low-boiling liquids use is commonly made of the *freeze-pump-thaw* procedure (see Chapter 1). Gas chromatography is also useful, especially for low-boiling point liquids. Liquids are usually purified by refluxing with drying agents, acids or bases, reducing agents, charcoal, etc., followed by fractional distillation under reduced pressure. For solids, general methods include fractional freezing of the melted material, taking the middle fraction. Another procedure is sublimation of the solid under reduced pressure. The other commonly used method for purifying solids is by recrystallisation from a solution in a suitable solvent, by cooling with or without the prior addition of a solvent in which the solute is not very soluble.

The nature of the procedure will depend to a large extent on the quantity of purified material that is required. For example, for small quantities (50-250mg) of a pure volatile liquid, preparative gas chromatography is probably the best method. Two passes through a suitable column may well be sufficient. Similarly, for small amounts (100-500mg) of an organic solid, column chromatography is likely to be very satisfactory, the eluate being collected as a number of separate fractions (*ca* 5-10mL) which are examined by FT-IR, NMR or UV spectroscopy, TLC or by

Chemical Methods used in Purification

some other appropriate analytical technique. (For information on suitable adsorbents and eluents the texts referred to in the bibliography at the end of Chapters 1 and 2 should be consulted.) Preparative thin layer chromatography or HPLC, FC and HPFC can also be used successfully for purifying up to 500mg of solid. The latter chromatographic techniques (see Chapter 1) are more and more commonly used procedures for the purification of small molecules as well as large molecules such as polypeptides and DNA.

Where larger quantities (upwards of 1g) are required, most of the impurities should be removed by preliminary treatments, such as solvent extraction, liquid-liquid partition, or conversion to a derivative (*vide supra*) which can be purified by crystallisation or fractional distillation before being reconverted to the starting material. The substance is then crystallised or distilled. If the final amounts must be in excess of 25g, preparation of a derivative is sometimes omitted because of the cost involved. In all of the above cases, purification is likely to be more laborious if the impurity is an isomer or a derivative with closely similar physical properties.

CRITERIA OF PURITY

Purification becomes meaningful only insofar as adequate tests of purity are applied: the higher the degree of purity that is sought, the more stringent must these tests be. If the material is an organic solid, its melting point should first be taken and compared with the recorded value. *Note that the melting points of most salts, organic or inorganic, are generally decomposition points and are not reliable criteria of purity*. As part of this preliminary examination, the sample might be examined by thin layer chromatography in several different solvent systems and in high enough concentrations to facilitate the detection of minor components. On the other hand, if the substance is a liquid, its boiling point should be measured. If, further, the boiling point of the liquid is too high, or it decomposes on heating, then its purity should be assessed by high pressure liquid chromatograpiy. Liquids, especially volatile ones, can be studied very satisfactorily by gas chromatography, preferably using at least two different stationary and/or mobile phases. Spectroscopic methods, if facilities are available, such as atomic absorption spectroscopy (AAA), and inductively coupled plasma mass spectrometry (ICP-MS) are useful and sensitive methods for detecting metal impurities and the concentrations of metals and metal salts or complexes.

Application of these tests at successive steps will give a good indication of whether or not the purification is satisfactory and will also show when adequate purification has been achieved. Finally elemental analyses, e.g. of carbon, hydrogen, nitrogen, sulfur, metals etc., are very sensitive to impurities (other than with isomers), and are good criteria of purity.

There are certain requirements for purity of new compounds in most journals. This is especially so for samples which are shown to have biological activity. See instructions to authors for ACS journals especially in *J. Med. Chem* (see "Guidelines for Authors under *Purity Criteria for Target Compounds (i)*" ">http://pubs.acs.org/jmc>">http://pubs.acs.org/jmc>) which specify that elemental analysis (with an accuracy of ±0.4%), homogeneity by HPLC, and spectral data (e.g. NMR, HRMS) as well as biological activity data should be stated in the paper or in supporting information.

GENERAL PROCEDURES FOR THE PURIFICATION OF SOME CLASSES OF ORGANIC COMPOUNDS

In the general methods of purification described below, it is assumed that the impurities belong essentially to a class of compounds different from the one being purified. They are suggested for use in cases where substances are not listed in Chapters 4, 5 and the low-molecular-weight compounds in Chapter 6. In such cases, the experimenter is advised to employ them in conjunction with information given in these chapters for the purification of suitable analogues. Also, for a wider range of drying agents and the use of cartridges (e.g. Na₂SO₄ for removal of H₂O, or Celite for removal of tar), solvents for extraction and solvents for recrystallisation, the reader is referred to Chapter 1. A common method of purification of organic compounds is to convert them to a suitable derivative which is purified (with the assumption that the impurity does not form a similar derivative, or if it does its properties are different), and then regenerate the original compound and purify it further. Various derivatives are described for different classes of compounds below, but many more can be considered, and the reader is referred to texts on "Protecting Groups" which describe ways of selectively protecting functional groups and facile means of deprotecting them, i.e. regenerating the unprotected group [P.J.Kocienski *Protecting Groups* Thieme International Publisher, 2005, ISBN 9783131356031; J.R.Hanson *Protecting Groups in Organic Synthesis* Sheffield Academic Press, 1999, ISBN 9781850759577, or J.Wiley & Sons Inc, 1999, ISBN 980632045068]. See Chapter 6 for general purification procedures used for macromolecules.

These are generally diethyl or dimethyl acetal derivatives of aldehydes. They are more stable to alkali than to acids. Their common impurities are the corresponding alcohol, aldehyde and water. Drying with sodium wire removes alcohols and water, and polymerizes aldehydes so that, after decantation, the acetal can be fractionally distilled. In cases where the use of sodium is too drastic, aldehydes can be removed by shaking with alkaline hydrogen peroxide solution and the acetal is dried with sodium carbonate or potassium carbonate. Residual water and alcohols (up to *n*-propyl) can be removed with Linde type 4A molecular sieves. The acetal is then filtered and fractionally distilled. Solid acetals (i.e. acetals of high-molecular-weight aldehydes) are generally low-melting and can be recrystallised from low-boiling petroleum ether, toluene or a mixture of both.

ACIDS

Carboxylic acids

Liquid carboxylic acids are first freed from neutral and basic impurities by dissolving them in aqueous alkali and extracting with diethyl ether. (The pH of the solution should be at least three units above the pK_a of the acid, see pK in Chapter 1). The aqueous phase is then acidified to a pH at least three units below the pK_a of the acid and again extracted with ether. It is quite unnecessary to add large excesses of mineral acid (e.g. HCl) to liberate the organic acid, as mineral acids dissolve appreciably in organic solvents such as diethyl ether. The extract is dried with magnesium sulfate or sodium sulfate and the ether is distilled off. The acid is fractionally distilled through an efficient column. It can be further purified by conversion to its methyl or ethyl ester (*vide supra*) which is then fractionally distilled. Hydrolysis yields the original acid which is again purified as above.

Acids that are solids can be purified in this way, except that distillation is replaced by repeated crystallisation (preferable from at least two different solvents such as water, alcohol or aqueous alcohol, toluene, toluene/petroleum ether or acetic acid.) Water-insoluble acids can be partially purified by dissolution in N sodium hydroxide solution and precipitation with dilute mineral acid. If the acid is required to be free from sodium ions, then it is better to dissolve the acid in hot N ammonia, heat to *ca* 80°, adding slightly more than an equal volume of N formic acid and allowing to cool slowly for crystallisation. Any ammonia, formic acid or ammonium formate that adhere to the acid are removed when the acid is dried in a vacuum — these are volatile. Cartridges and columns are available (e.g. the Isolute SCX-2 made of polysulfonic acid bonded to silica as an ion exchange column developed by Biotage Inc (<www.biotage.com>), particularly for the purification of acids using flash chromatography.

The separation and purification of naturally occurring fatty acids, based on distillation, salt solubility and low temperature crystallisation, are described by K.S.Markley (Ed.), *Fatty Acids*, 2nd Edn, part 3, Chap. 20, Interscience, New York, 1964, see also N.Reavley *Essential Fatty Acids* Book Media Publ, 2002, ISBN 9780958157643; G.Grati and K.Sato (Eds) *Crystallisation and Polymorphism of Fats and Fatty Acids* Marcel Dekker, 1988, ISBN 9780824778750.

Aromatic carboxylic acids can be purified by conversion to their sodium salts, recrystallisation from hot water, and reconversion to the free acids.

Sulfonic acids

The low solubility of sulfonic acids in organic solvents and their high solubility in water makes necessary a treatment different from that for carboxylic acids. Sulfonic acids are strong acids, they have the tendency to hydrate, and many of them contain water of crystallisation. The lower-melting and liquid acids can generally be purified with only slight decomposition by fractional distillation, preferably under reduced pressure. A common impurity is sulfuric acid, but this can be removed by recrystallisation from concentrated aqueous solutions. The wet acid can be dried by azeotropic removal of water with toluene, followed by distillation. The higher-melting acids, or acids that melt with decomposition, can be recrystallised from water or, occasionally, from ethanol. For a typical purification of aromatic sulfonic acids using their barium salts refer to benzenesulfonic acid in the "Aromatic Compounds" section in Chapter 4.

Sulfinic acids

These acids are less stable, less soluble and less acidic than the corresponding sulfonic acids. The common impurities are the respective sulfonyl chlorides from which they have been prepared, and the thiolsulfonates (neutral) and sulfonic acids into which they decompose. The first two of these can be removed by solvent extraction from an alkaline solution of the acid. On acidification of an alkaline solution, the sulfinic acid crystallises out leaving the sulfonic acid behind. The lower molecular weight members are isolated as their metal (e.g. ferric) salts, but the higher members can be crystallised from water (made slightly acidic), or alcohol.

ACID CHLORIDES

The corresponding acid and hydrogen chloride are the most likely impurities. Usually these can be removed by efficient fractional distillation. Where acid chlorides are not readily hydrolysed (e.g. aryl sulfonyl chlorides) the compound can be freed from contaminants by dissolving in a suitable solvent such as alcohol-free chloroform, dry toluene or petroleum ether and shaking with dilute sodium bicarbonate solution. The organic phase is then washed with water, dried with anhydrous sodium sulfate or magnesium sulfate, and distilled or recrystallised. This procedure is *hazardous* with readily hydrolysable *carboxylic* acid chlorides such as acetyl chloride and benzoyl chloride. Solid acid chlorides should be thoroughly dried *in vacuo* over strong drying agents and are satisfactorily recrystallised from toluene, toluene-petroleum ether, petroleum ethers, alcohol-free chloroform/toluene, and, occasionally, from dry diethyl ether. Hydroxylic or basic solvents should be strictly avoided. *All operations should be carried out in a fume cupboard because of the irritant nature of these compounds which also attack the skin*.

ALCOHOLS

Monohydric alcohols

The common impurities in alcohols are aldehydes or ketones, and water. [*Ethanol* in Chapter 4 is typical.] Aldehydes and ketones can be removed by adding a small amount of sodium metal and refluxing for 2hours, followed by distillation. Water can be removed in a similar way but it is preferable to use magnesium metal instead of sodium because it forms a more insoluble hydroxide, thereby shifting the equilibrium more completely from metal alkoxide to metal hydroxide. The magnesium should be activated with iodine (or a small amount of methyl iodide), and the water content should be low, otherwise the magnesium will be deactivated. If the amount of water is large, it should be removed by azeotropic distillation (see below), or by drying over anhydrous MgSO₄ (not CaCl₂ which combines with alcohols). Acidic materials can be removed by treatment with anhydrous Na₂CO₃, followed by a suitable drying agent, such as calcium hydride, and fractional distillation, using gas chromatography to establish the purity of the product (Ballinger & Long, *J Am Chem Soc* **82** 795 *1960*). Alternatively, the alcohol can be refluxed with freshly ignited CaO for 4hours and then fractionally distilled (McCurdy & Laidler, *Can J Chem* **41** 1867 *1963*).

With higher-boiling alcohols it is advantageous to add some freshly prepared magnesium ethoxide solution (only slightly more than required to remove the water), followed by fractional distillation. Alternatively, in such cases, water can be removed by azeotropic distillation with toluene. Higher-melting alcohols can be purified by crystallisation from methanol or ethanol, toluene/petroleum ether or petroleum ether. Sublimation in vacuum, molecular distillation and gas and liquid chromatographic methods are also useful means of purification. For purification *via* derivatives, *vide supra*.

Polyhydric alcohols

These alcohols are more soluble in water than are monohydric alcohols. Liquids can be freed from water by shaking with type 4A Linde molecular sieves and can safely be distilled only under high vacuum. Carbohydrate alcohols can be crystallised from strong aqueous solution or, preferably, from mixed solvents such as ethanol/petroleum ether or dimethyl formamide/toluene. Crystallisation usually requires seeding and is extremely slow. Further purification can be effected by conversion to the acetyl or benzoyl derivatives which are much less soluble in water and which can readily be recrystallised, e.g. from ethanol. Hydrolysis of the acetyl derivatives, followed by removal of acetate or benzoate and metal ions by ion-exchange chromatography, gives the purified material. On no account should solutions of carbohydrates be concentrated above 40° because of darkening and formation of *caramel*. Ion exchange, charcoal or cellulose column chromatography has been used for the purification and separation of carbohydrates.

ALDEHYDES

Common impurities found in aldehydes are the corresponding alcohols, aldols and water from self-condensation, and the corresponding acids formed by autoxidation. Acids can be removed by shaking with aqueous 10% sodium bicarbonate solution. The organic liquid is then washed with water. It is dried with anhydrous sodium sulfate or magnesium sulfate and then fractionally distilled. Water soluble aldehydes must be dissolved in a suitable solvent such as diethyl ether before being washed in this way. Further purification can be effected *via* the bisulfite derivative (see above) or the Schiff base formed with aniline or benzidine. Solid aldehydes can be dissolved in diethyl ether and purified as above. Alternatively, they can be steam distilled, then sublimed and crystallised from toluene or petroleum ether.

AMIDES

Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water. They can be recrystallised

from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.

AMINES

The common impurities found in amines are nitro compounds (if prepared by reduction), the corresponding halides (if prepared from them) and the corresponding carbamate salts. Amines are dissolved in aqueous acid, the pH of the solution being at least three units below the pK_a value of the base to ensure almost complete formation of the cation. They are extracted with diethyl ether to remove neutral impurities and to decompose the carbamate salts. The solution is then made strongly alkaline and the amines that separate are extracted into a suitable solvent (ether or toluene) or steam distilled. The latter process removes coloured impurities. Note that chloroform cannot be used as a solvent for primary amines because, in the presence of alkali, poisonous carbylamines (isocyanides) are formed. However, chloroform is a useful solvent for the extraction of heterocyclic bases. In this case it has the added advantage that while the extract is being freed from the chloroform most of the moisture is removed with the solvent.

Alternatively, the amine may be dissolved in a suitable solvent (e.g. toluene), and dry HCl gas is passed through the solution to precipitate the amine hydrochloride. This is purified by recrystallisation from a suitable solvent mixture (e.g. ethanol/diethyl ether). The free amine can be regenerated by adding sodium hydroxide and isolated as above. Cartridges and columns are available (e.g. KP-NH silica column with slightly nitrogenous alkaline chemistry developed by Biotage Inc (2007 Catalogue Application No 40 particularly for heterocyclic amines <www.biotage.com>) for the purification of amines using flash chromatography.

Liquid amines can be further purified *via* their acetyl or benzoyl derivatives (*vide supra*). Solid amines can be recrystallised from water, alcohol, toluene or toluene-petroleum ether. *Care should be taken in handling large quantities of amines because their vapours are harmful (possibly carcinogenic)* and they are readily absorbed through the skin.

AMINO ACIDS

Because of their zwitterionic nature, amino acids are generally soluble in water. Their solubility in organic solvents rises as the fat-soluble portion of the molecule increases. The likeliest impurities are traces of salts, heavy metal ions, proteins and other amino acids. Purification of these is usually easy, by recrystallisation from water or ethanol/water mixtures. The amino acid is dissolved in the boiling solvent, decolorised if necessary by boiling with 1g of acid-washed charcoal/100g amino acid, then filtered hot, chilled, and set aside for several hours to crystallise. The crystals are filtered off, washed with ethanol, then ether, and dried.

Amino acids have high melting or decomposition points and are best examined for purity by paper or thin layer chromatography. The spots are developed with ninhydrin. Customary methods for the purification of small quantities of amino acids obtained from natural sources (i.e. 1-5g) are ion-exchange chromatography (see Chapter 1). For general treatment of amino acids see Greenstein and Winitz [*The Amino Acids*, Vols 1-3, J.Wiley & Sons, New York 1961] and individual amino acids in Chapters 4 and 6.

A useful source of details such as likely impurities, stability and tests for homogeneity of amino acids is *Specifications and Criteria for Biochemical Compounds*, 3rd edn, National Academy of Sciences, USA, 1972.

ANHYDRIDES

The corresponding acids, resulting from hydrolysis, are the most likely impurities. Distillation from phosphorus pentoxide, followed by fractional distillation, is usually satisfactory. With high boiling or solid anhydrides, another method involves boiling under reflux for 0.5-1hours with acetic anhydride, followed by fractional distillation. Acetic acid distils first, then acetic anhydride and finally the desired anhydride. Where the anhydride is a solid, removal of acetic acid and acetic anhydride at atmospheric pressure is followed by heating under vacuum. The solid anhydride is then either crystallised as for acid chlorides or (in some cases) sublimed in a vacuum. A preliminary purification when large quantities of acid are present in a solid anhydride (such as phthalic anhydride) is by preferential solvent extraction of the (usually) more soluble anhydride from the acid (e.g. with CHCl₃ in the case of phthalic anhydride). *All operations with liquid anhydrides should be carried out in a fume cupboard because of their* LACHRYMATORY properties. *Almost all anhydrides attack skin*.

CAROTENOIDS

These usually are decomposed by light, air and solvents, so that degradation products are probable impurities. Chromatography and adsorption spectra permit the ready detection of coloured impurities, and separations are possible using solvent distribution, chromatography or crystallisation. Thus, in partition between immiscible solvents, xanthophyll remains in 90% methanol while carotenes pass into the petroleum ether phase. For small amounts of material, thin-layer or paper chromatography may be used, while column chromatography is suitable for larger amounts. Colourless impurities may be detected by IR, NMR or mass spectrometry. The more common separation procedures are described by P. Karrer and E. Jucker in *Carotenoids*, E.A. Braude (translator), Elsevier, NY, 1950.

Purity can be checked by chromatography (on thin-layer plates, Kieselguhr, paper or columns), by UV or NMR procedures. See "Carotenoids" in Chapter 6.

ESTERS

The most common impurities are the corresponding acid and hydroxy compound (i.e. alcohol or phenol), and water. A liquid ester from a carboxylic acid is washed with 2N sodium carbonate or sodium hydroxide to remove acid material, then shaken with calcium chloride to remove ethyl or methyl alcohols (if it is a methyl or ethyl ester). It is dried with potassium carbonate or magnesium sulfate, and distilled. Fractional distillation then removes residual traces of hydroxy compounds. This method does not apply to esters of inorganic acids (e.g. dimethyl sulfate) which are more readily hydrolysed in aqueous solution when heat is generated in the neutralisation of the excess acid. In such cases, several fractional distillations, preferably under vacuum, are usually sufficient.

Solid esters are easily crystallisable materials. It is important to note that esters of alcohols must be recrystallised either from non-hydroxylic solvents (e.g. toluene) or from the alcohol from which the ester is derived. Thus methyl esters should be crystallised from methanol or methanol/toluene, but not from ethanol, *n*-butanol or other alcohols, in order to avoid alcohol exchange and contamination of the ester with a second ester. Useful solvents for crystallisation are the corresponding alcohols or aqueous alcohols, toluene, toluene/petroleum ether, and chloroform (ethanol-free)/toluene. Esters of carboxylic acids derived from phenols are more difficult to hydrolyse and exchange, hence any alcoholic solvent can be used freely. Sulfonic acid esters of phenols are even more resistant to hydrolysis: they can safely be crystallised not only from the above solvents but also from acetic acid, aqueous acetic acid or boiling *n*-butanol. Note that sulfonic esters of lower alcohols, e.g. methanol, are good alkylating agents.

Fully esterified phosphoric acid and phosphonic acids differ only in detail from the above mentioned esters. Their major contaminants are alcohols or phenols, phosphoric or phosphonic acids (from hydrolysis), and (occasionally) basic material, such as pyridine, which is used in their preparation. Water-insoluble esters are washed thoroughly and successively with dilute acid (e.g. 0.2N sulfuric acid), water, 0.2N sodium hydroxide and water. After drying with calcium chloride they are fractionally distilled. Water-soluble esters should first be dissolved in a suitable organic solvent and, in the washing process, water should be replaced by saturated aqueous sodium chloride. Some esters (e.g. phosphate and phosphonate esters) can be further purified through their uranyl adducts (*vide supra*). Traces of water or hydroxy compounds can be removed by percolation through, or shaking with, activated alumina (about 100g/L of liquid solution), followed by filtration and fractional distillation in a vacuum. For high molecular weight esters (which cannot be distilled without some decomposition) it is advisable to carry out distillation at as low a pressure as possible. Solid esters can be crystallised from toluene or petroleum ether. Alcohols can be used for recrystallising phosphoric or phosphonic esters of phenols.

ETHERS

The purification of diethyl ether (see Chapter 4) is typical of liquid ethers. The most common contaminants are the alcohols or hydroxy compounds from which the ethers are prepared, their oxidation products (e.g. aldehydes), peroxides and water. Dialkyl ethers form peroxides much more readily than other ethers, e.g. ethyl phenyl ethers, on standing in air. Peroxides, aldehydes and alcohols can be removed by shaking with alkaline potassium permanganate solution for several hours, followed by washing with water, concentrated sulfuric acid [CARE], then water. After drying with calcium chloride, the ether is distilled. It is then dried with sodium or with lithium aluminium hydride, redistilled and given a final fractional distillation. The drying process is repeated if necessary. Alternatively, methods for removing peroxides include leaving the ether to stand in contact with iron filings or compare powder sheling with a colution of force sulface acidified with N sulfarie acid chaking with a compare right.

copper powder, shaking with a solution of ferrous sulfate acidified with N sulfuric acid, shaking with a copper-zinc couple, passage through a column of activated alumina, and refluxing with phenothiazine. Cerium(III) hydroxide has also been used.

A simple test for ether peroxides is to add 10mL of the ether to a stoppered cylinder containing 1mL of freshly prepared 10% solution of potassium iodide containing a drop of starch indicator. No colour should develop during one minute if free from peroxides. Alternatively, a 1% solution of ferrous ammonium sulfate, 0.1M in sulfuric acid and 0.01M in potassium thiocyanate should not increase appreciably in red colour when shaken with two volumes of the ether. Merck-Chemicals supply peroxide test kits (Perex Test) which use a colorimetric method with test strips which can be used to estimate the amount of hydrogen peroxide, from as low a concentration as 0.2mg/L to as high as1000mg/L. They are very convenient as they can give an indication of the concentration of peroxide rapidly <http://www.merck-chemicals.com/chemdat/en_US/Merck-International-Site/EUR/ViewCatalogs. As a safety precaution against **EXPLOSION** in case purification from peroxides has been insufficiently thorough,

at least a quarter of the total volume of liquid ether should remain in the distilling flask when the distillation is discontinued, as the peroxides are generally higher boiling than the corresponding ethers. To minimize peroxide formation, ethers should be stored in dark bottles and, if they are liquids, they should be left in contact with type 4A Linde molecular sieves, in a cold place, over sodium amalgam. The rate of formation of peroxides depends on storage conditions and is accelerated by metal impurities, heat, light, air and moisture. Always be vigilant and test for peroxides. The formation of peroxides is inhibited in the presence of diphenylamine, di*-tert*-butylphenol, or other antioxidants which can be used as stabilisers.

Ethers that are solids (e.g. phenyl ethers) can be steam distilled from an alkaline solution which will hold back any phenolic impurity. After the distillate is made alkaline with sodium carbonate, the insoluble ether is collected either by extraction (e.g. with chloroform, diethyl ether or toluene) or by filtration. It is then crystallised from alcohols, alcohol/petroleum ether, petroleum ether, toluene or mixtures of these solvents, sublimed in a vacuum and recrystallised if necessary.

HALIDES

Aliphatic halides are likely to be contaminated with halogen acids and the alcohols from which they have been prepared, whereas in aromatic halides the impurities are usually aromatic hydrocarbons, amines or phenols. In both groups the halogen is less reactive than it is in acid halides. Purification is by shaking with concentrated hydrochloric acid, followed by washing successively with water, 5% sodium carbonate or bicarbonate, and water. After drying with calcium chloride, the halide is distilled and then fractionally distilled using an efficient column. For a solid halide the above purification is carried out by dissolving it in a suitable solvent such as toluene. Solid halides can also be purified by chromatography using an alumina column and eluting with toluene or petroleum ether. They can be crystallised from toluene, petroleum ethers, toluene/petroleum ether or toluene/chloroform/petroleum ether. Care should be taken when handling organic halogen compounds because of their HIGH **TOXICITY**. It should be noted that methyl iodide is a cancer suspect.

Liquid aliphatic halides are obtained alcohol-free by distillation from phosphorus pentoxide. They are stored in dark bottles to prevent oxidation and, in some cases, the formation of phosgene.

A general method for purifying *chlorohydrocarbons* uses repeated shaking with concentrated sulfuric acid [CARE] until no further colour develops in the acid, then washing with water followed by a solution of sodium bicarbonate, then with water again. After drying with calcium chloride, the chlorohydrocarbon is fractionally redistilled to constant boiling point or recrystallised.

HYDROCARBONS

Gaseous hydrocarbons are best freed from water and gaseous impurities by passage through suitable adsorbents and (if olefinic material is to be removed) oxidants such as alkaline potassium permanganate solution, followed by fractional cooling (see Chapter 1 for cooling baths) and fractional distillation at low temperature. To effect these purifications and also to store the gaseous sample, a vacuum line is necessary.

Impurities in hydrocarbons can be characterised and evaluated by gas chromatography and mass spectrometry. The total amount of impurities present can be estimated from the thermometric freezing curve.

Liquid aliphatic hydrocarbons are freed from aromatic impurities by shaking with concentrated sulfuric acid [CARE] whereby the aromatic compounds are sulfonated. Shaking is carried out until the sulfuric acid layer remains colourless for several hours. The hydrocarbon is then freed from the sulfuric acid and the sulfonic acids by separating the two phases and washing the organic layer successively with water, 2N sodium hydroxide, and water. It is dried with CaCl₂ or Na₂SO₄, and then distilled. The distillate is dried with sodium wire, P₂O₅, or metallic hydrides, or passage through a dry silica gel column, or preferably, and more safely, with molecular sieves (see Chapter 1) before being finally fractionally distilled through an efficient column. If the hydrocarbon is contaminated with olefinic impurities, shaking with aqueous alkaline permanganate is necessary prior to the above purification. Alicyclic and paraffinic hydrocarbons can be freed from water, non-hydrocarbon and aromatic impurities by passage through a silica gel column before the final fractional distillation. This may also remove isomers. (For the use of chromatographic methods to separate mixtures of aromatic, paraffinic and alicyclic hydrocarbons see references in the bibliography in Chapter 1 under *Liquid and Flash Chromatography, Gas Chromatography and High Performance Liquid and Flash Chromatography*). Another method of removing branched-chain and unsaturated hydrocarbons from straight-chain hydrocarbons depends on the much faster reaction of the former with chlorosulfonic acid.

Isomeric materials which have closely similar physical properties can be serious contaminants in hydrocarbons. With aromatic hydrocarbons, e.g. xylenes and alkyl benzenes, advantage is taken of differences in ease of sulfonation. If the required compound is sulfonated more readily, the sulfonic acid is isolated, crystallised (e.g. from water), and decomposed by passing superheated steam through the flask containing the acid. The sulfonic acid undergoes hydrolysis, and the liberated hydrocarbon distils with the steam. It is separated from the distillate, dried,

distilled and then fractionally distilled. For small quantities (10-100mg), vapour phase chromatography is the most satisfactory method for obtaining a pure sample (for column materials for packings see Chapter 1).

Azeotropic distillation with methanol or 2-ethoxyethanol (cellosolve) has been used to obtain highly purified saturated hydrocarbons and aromatic hydrocarbons such as xylenes and isopropylbenzenes.

Carbonyl-containing impurities can be removed from hydrocarbons (and other oxygen-lacking solvents such as CHCl₃ and CCl₄) by passage through a column of Celite 545 (100g) mixed with concentrated sulfuric acid (60mL). After first adding some solvent and about 10g of granular Na_2SO_4 , the column is packed with the mixture and a final 7-8cm of Na_2SO_4 is added at the top [Hornstein & Crowe, *Anal Chem* **34** 1037 *1962*]. Alternatively, Celite impregnated with 2,4-dinitrophenylhydrazine can be used.

With solid hydrocarbons such as naphthalene and polycyclic hydrocarbons, preliminary purification by sublimation in vacuum (or high vacuum if the substance is high melting) is followed by zone refining and finally by chromatography (e.g. on alumina) using low-boiling liquid hydrocarbon eluents. These solids can be recrystallised from alcohols, alcohol/petroleum ether or from liquid hydrocarbons (e.g. toluene) and dried below their melting points. Aromatic hydrocarbons that have been purified by zone melting include anthracene, biphenyl, fluoranthrene, naphthalene, perylene, phenanthrene, pyrene and terphenyl, among others. Some polycyclic hydrocarbons, e.g. benzopyrene, are CARCINOGENIC.

Olefinic hydrocarbons have a very strong tendency to polymerise, and commercially available materials are generally stabilised, e.g. with hydroquinone. When distilling compounds such as vinylpyridine or styrene, the stabiliser remains behind and the purified olefinic material is more prone to polymerisation. The most common impurities are higher-boiling dimeric or polymeric compounds. Vacuum distillation in a nitrogen atmosphere not only separates monomeric from polymeric materials but in some cases also depolymerises the impurities. The distillation flask should be charged with a polymerisation inhibitor, and the purified material should be used immediately or stored in the dark and mixed with a small amount of stabiliser (e.g. 0.1% of hydroquinone or di*tert*-butylcatechol). It is also advisable to add to the flask a small amount (*ca* 5-10% by volume of liquid in the flask) of a ground mixture of Kieselguhr and NaCl which will provide nuclei for facilitating boiling and finally for cleaning the flask from insoluble polymeric residue (due to the presence of the water soluble NaCl).

IMIDES

Imides (e.g. phthalimide) can be purified by conversion to their potassium salts by reaction in ethanol with ethanolic potassium hydroxide. The imides are regenerated when the salts are hydrolysed with water or dilute acid. Like amides, imides readily crystallise from alcohols and, in some cases (e.g. quinolinic imide), from glacial acetic acid.

IMINO COMPOUNDS

These substances contain the -C=NH group and, because they are strong, unstable bases, they are kept as their more stable salts, such as the hydrochlorides. (The free base usually hydrolyses to the corresponding oxo compound and ammonia.) Like amine hydrochlorides, the salts are purified by solution in alcohol containing a few drops of hydrochloric acid. After treatment with charcoal, and filtering, dry diethyl ether (or petroleum ether if ethanol is used) is added until crystallisation sets in. The salts are dried and kept in a vacuum desiccator.

KETONES

Ketones are more stable to oxidation than aldehydes and can be purified from oxidisable impurities by refluxing with potassium permanganate until the colour persists, followed by shaking with sodium carbonate (to remove acidic impurities) and distilling. Traces of water can be removed with type 4A Linde molecular sieves. Ketones which are solids can be purified by crystallisation from alcohol, toluene, or petroleum ether, and are usually sufficiently volatile for sublimation in vacuum. Ketones can be further purified *via* their bisulfite, semicarbazone or oxime derivatives (*vide supra*). The bisulfite addition compounds are formed only by aldehydes and methyl ketones but they are readily hydrolysed in dilute acid or alkali.

MACROMOLECULES See Chapter 6.

NITRILES

All purifications should be carried out in an efficient fume cupboard because of the **TOXIC** nature of these compounds.

Nitriles are usually prepared either by reacting the corresponding halide or diazonium salts with a cyanide salt or by dehydrating an amide. Hence, possible contaminants are the respective halide or alcohol (from hydrolysis), phenolic compounds, amines or amides. Small quantities of phenols can be removed by chromatography on alumina. More commonly, purification of liquid nitriles or solutions of solid nitriles in a solvent such as diethyl ether is by shaking with dilute aqueous sodium hydroxide, followed by washing successively with water, dilute acid

and water. After drying with sodium sulfate, the solvent is distilled off. Liquid nitriles are best distilled from a small amount of P_2O_5 which, besides removing water, dehydrates any amide impurity to the nitrile. About one-fifth of the nitrile should remain in the distilling flask at the end of the distillation (*the residue may contain some inorganic cyanide*). This purification also removes alcohols and phenols. Solid nitriles can be recrystallised from ethanol, toluene or petroleum ether, or a mixture of these solvents. They can also be sublimed under vacuum. Preliminary purification by steam distillation is usually possible.

Strong alkali or heating with dilute acids may lead to hydrolysis of the nitrile and should be avoided.

NITRO COMPOUNDS

Aliphatic nitro compounds are generally acidic. They are freed from alcohols or alkyl halides by standing for a day with concentrated sulfuric acid, then washed with water, dried with magnesium sulfate followed by calcium sulfate and distilled. The principal impurities are isomeric or homologous nitro compounds. In cases where the nitro compound was originally prepared by vapour phase nitration of the aliphatic hydrocarbon, fractional distillation should separate the nitro compound from the corresponding hydrocarbon. Fractional crystallisation is more effective than fractional distillation if the melting point of the compound is not too low.

The impurities present in aromatic nitro compounds depend on the aromatic portion of the molecule. Thus, benzene, phenols or anilines are probable impurities in nitrobenzene, nitrophenols and nitroanilines, respectively. Purification should be carried out accordingly. Isomeric compounds are likely to remain as impurities after the preliminary purifications to remove basic and acidic contaminants. For example, *o*-nitrophenol may be found in samples of *p*-nitrophenol. Usually, the *o*-nitro compounds are more steam volatile than the *p*-nitro isomers and can be separated in this way. Polynitro impurities in mononitro compounds can be readily removed because of their relatively lower solubilities in solvents. With acidic or basic nitro compounds which cannot be separated in the above manner, advantage may be taken of their differences in pK values (see Chapter 1). The compounds can thus be purified by preliminary extractions with several sets of aqueous buffers of known pH (see for example Table 19, Chapter 1) from a solution of the substance in a suitable solvent such as diethyl ether. This method is more satisfactory and less laborious the larger the difference between the pK value of the impurity and the desired compound. Heterocyclic nitro compounds require similar treatment to the nitroanilines. Neutral nitro compounds can be steam distilled.

NUCLEIC ACIDS See Chapter 6.

PHENOLS

Because phenols are weak acids, they can be freed from neutral impurities by dissolution in aqueous N sodium hydroxide (cf pK) and extraction with a solvent such as diethyl ether, or by steam distillation to remove the non-acidic material. The phenol is recovered by acidification of the aqueous phase with 2N sulfuric acid, and either extracted with ether or steam distilled. In the second case the phenol is extracted from the steam distillate after saturating it with sodium chloride (salting out). A solvent is necessary when large quantities of liquid phenols are purified. The phenol is fractionated by distillation under reduced pressure, preferably in an atmosphere of nitrogen to minimise oxidation. Solid phenols can be crystallised from toluene, petroleum ether or a mixture of these solvents, and can be sublimed under vacuum. Purification can also be effected by fractional crystallisation or zone refining. For further purification of phenols *via* their acetyl or benzoyl derivatives *vide supra*.

POLYPEPTIDES AND PROTEINS See Chapter 6.

QUINONES

These are neutral compounds which are usually coloured. They can be separated from acidic or basic impurities by extraction of their solutions in organic solvents with aqueous basic or acidic solutions, respectively. Their colour is a useful property in their purification by chromatography through an alumina column with, e.g. toluene, as eluent. They are volatile enough for vacuum sublimation, although with high-melting quinones a very high vacuum is necessary. *p*-Quinones are stable compounds and can be recrystallised from water, ethanol, aqueous ethanol, toluene, petroleum ether or glacial acetic acid. *o*-Quinones, on the other hand, are readily oxidised. They should be handled in an inert atmosphere, preferably in the absence of light.

SALTS

With metal ions

Water-soluble salts are best purified by preparing a concentrated aqueous solution to which, after decolorising with charcoal and filtering, ethanol or acetone is added so that the salts crystallise. They are collected, washed with aqueous ethanol or aqueous acetone, and dried. In some cases, water-soluble salts can be recrystallised satisfactorily from alcohols. With very water-soluble salts, pure crystals are best obtained by dissolving them in water and

allowing the solution to evaporate slowly in a desiccator over a suitable desiccant in a cold room. When crystals are formed they are removed, e.g. by centrifugation, washed with a little ice-cold water and dried in a vacuum. Water-insoluble salts are purified by Soxhlet extraction, first with organic solvents and then with water, to remove soluble contaminants. The purified salt is recovered from the thimble.

With organic cations

Organic salts (e.g. trimethylammonium benzoate) are usually purified by recrystallisation from polar solvents (e.g. water, ethanol or dimethyl formamide). If the salt is too soluble in a polar solvent, its concentrated solution should be treated dropwise with a miscible non-polar, or less polar, solvent (see Table 8, Chapter 1) until crystallisation begins.

With sodium alkane sulfonates

These are purified from sulfites by boiling with aqueous HBr. They are purified from sulfates by adding BaBr₂. Sodium alkane disulfonates are finally precipitated by addition of MeOH (Pethybridge & Taba *J Chem Soc Faraday Trans 1* **78** 1331 *1982*).

SULFUR COMPOUNDS Disulfides

These can be purified by extracting acidic and basic impurities with dilute aqueous base or acid, respectively. However, they are somewhat sensitive to strong alkali which slowly cleaves the disulfide bond. The lower-melting members can be fractionally distilled under vacuum. The high members can be recrystallised from alcohol, toluene or glacial acetic acid.

Sulfones

Sulfones are neutral and very stable compounds that can be distilled without decomposition. They are freed from acidic and basic impurities in the same way as disulfides. The low-molecular-weight members are quite soluble in water, but the higher members can be recrystallised from water, ethanol, aqueous ethanol or glacial acetic acid.

Sulfoxides

These are odourless, rather unstable compounds because they oxidise to sulfones, and should be distilled under vacuum in an inert atmosphere. They are generally water-soluble but can be extracted from aqueous solution with a solvent such as diethyl ether.

Thioethers (sulfides)

Thioethers are neutral stable compounds that can be freed from acidic and basic impurities as described for disulfides. They can be recrystallised from organic solvents and distilled without decomposition. They have sulfurous odours.

Thiols

Thiols, or mercaptans, are stronger acids than the corresponding aliphatic hydroxy or phenolic compounds, but can be purified in a similar manner. However, care must be exercised in handling thiols to avoid their oxidation to disulfides. For this reason, purification is best carried out in an inert atmosphere in the absence of oxidising agents. Similarly, thiols should be stored out of contact with air. They can be distilled without change, and the higher-melting thiols (which are usually more stable) can be crystallised, e.g. from water or dilute alcohol. They oxidise readily in alkaline solution but can be separated from the disulfide which is insoluble in this medium. They should be stored in the dark below 0°. All operations with thiols should be carried out in an efficient fume cupboard because of their very unpleasant odour and their **TOXICITY**.

Thiolsulfonates (disulfoxides)

Thiolsulfonates are neutral and are somewhat light-sensitive compounds. Their most common impurities are sulfonyl chlorides (neutral) or the sulfinic acid or disulfide from which they are usually derived. The first can be removed by partial freezing or crystallisation, the second by shaking with dilute alkali, and the third by recrystallisation because of the higher solubility of the disulfide in solvents. Thiolsulfonates decompose slowly in dilute, or rapidly in strong, alkali to form disulfides and sulfonic acids. Thiolsulfonates also decompose on distillation but they can be steam distilled. The solid members can be recrystallised from water, alcohols or glacial acetic acid.

BIBLIOGRAPHY

[For earlier bibliographies see *Purification of Laboratory Chemicals*, 4th and 5th Edns, ISBN 0750628391 (1996, hardback) and 0750637617 (1997, paperback) and 0750675713 (2003). See Bibliography in Chapter 1, and visit the websites of DA Books <www.dadirect.com>, Elsevier <www.elsevierdirect.com> and Wiley <www.wiley.com> to update this bibliography.

CHARACTERISATION OF ORGANIC AND INORGANIC COMPOUNDS

F. Fiegl, Spot Tests in Organic Analysis, 7th Edn, Elsevier Science, New York, 1989. ISBN 0444402098.

W.L. Jolly, The Synthesis and Characterisation of Inorganic Compounds, Waveland Press, 1991. ISBN 0881335789.

J. Mendham, R.C. Denney, J.D. Barnes and M.J.K. Thomas, *Vogel's Quantitative Chemical Analysis*, 6th Edn, Prentice Hall, Harlow, 2000. ISBN 0582226287.

T.C. Morrill, R.L. Shriner and C.K.F. Hermann, *The Systematic Identification of Organic Compounds*, 8th Edn, J. Wiley & Sons, New York, 2003. ISBN 9780471215035 and 9780471451655.

D. Kiemble, R.M. Silverstein and F.X. Webster, *Spectrometric Identification of Organic Compounds*, 7th Edn, J. Wiley & Sons, New York, 2005. ISBN 9780471393627.

R.B. King (Ed.), *Encyclopedia of Inorganic Chemistry* (10 volume set), J. Wiley & Sons, New York, 2005. ISBN 9780470860786.

M. Fieser and M.B.Smith, *Fieser and Fieser's Reagents for Organic Synthesis*, J.Wiley & Sons, Inc., New York, 2007, Volumes 1-23, and collective index 1-23. ISBN 9780470133910

D.R. Lide, *CRC Handbook of Chemistry and Physics*, 88th Edn, CRC Press, Boca Raton, 2007. ISBN 9780849304880 and 9780849328787 (on cd-rom).

M.C. Pirrung, The Synthetic Organic Chemist's Companion, J.Wiley & Sons Inc, 2007. ISBN 9780470107072.

L.A. Paquette (Ed.), *The Encyclopedia of Reagents for Organic Synthesis*, J. Wiley & Sons, New York, 2009. ISBN 9780470017548.

METAL HYDRIDES

A. Dedieu, (Ed.), Transition Metal Hydrides, VCH-Wiley Publishing, 1992. ISBN 9783527279852.

J. Seyden-Penne, *Reductions by the Alumino- and Borohydrides in Organic Synthesis*, 2nd Edn., J. Wiley & Sons, New York, 1997. ISBN 9781560819391.

M.V.C. Sastri (Ed.), Metal Hydrides: Fundamentals and Applications, Springer, 1999. ISBN 9783540642046.

SPECTROSCOPY

F.W. McLafferty and D.B. Stauffer, *The Wiley/NBS Registry of Mass Spectral Data*, (7 volumes), J. Wiley & Sons, New York, 1989. ISBN 0471628867.

C.J. Pouchert and J. Behnke, *The Aldrich Library of* ¹³C and ¹H FT NMR Spectra, 3 Volume set, Aldrich Chemical Co., Milwaukee, 1993. ISBN 0941633349.

C.J. Pouchert, *The Aldrich Library of FT-IR Spectra*, Aldrich Chemical Co., Milwaukee, 3 Volume set, 2nd Edn., 1997. ISBN 0941633349X.

M. Gunzler and M. Heise, IR Spectroscopy; An Introduction, VCH-Wiley Publishing, 2001. ISBN 9783527288960.

R.J. Anderson and D. Bendell, Organic Spectroscopic Analysis, Royal Society of Chemistry, 2004. ISBN 9780854044764.

G.W. Gokel, Deane's Handbook of Organic Chemistry, McGraw-Hill, 2004. ISBN 0-07-137593-7.

Y-C. Ning, *Structural Identification of Organic Compounds with Spectroscopy*, VCH-Wiley Publishing, 2005. ISBN 9783527312405.

TRACE METAL ANALYSIS

G. Christian and M. Epstein, Atomic Absorption Spectrometry, American Chemical Society, 1990. ISBN 9780841210998.

I.S. Krull (Ed.), Trace Metal Analysis and Speciation, Elsevier Science, 1991. ISBN 9780444882097.

R. Dean, Atomic Absorption and Plasma Spectroscopy, 2nd Edn., J. Wiley & Sons, 1997. ISBN 9780471972549.

T.J.S. Bruno and D.N. Paris, *Handbook of Basic Tables for Chemical Analysis*, CRC Press LLC, 2003. ISBN 9780849315732.

R.Cornelis, J. Caruso and H. Crews, *Handbook of Elemental Speciation: Techniques and Methodology* Vol 1, J. Wiley & Sons, 2003. ISBN 9780471492146.

CHAPTER 3

THE FUTURE OF PURIFICATION

INTRODUCTION

The essence of research is to seek answers wherever there are questions. Regardless of what the answers are, the experiments to be conducted must be carried out with utmost care. For this, one must ensure that the quality of the reactants used and the products obtained are of the highest possible purity. In general terms, one can broadly categorise experimental chemistry and biological chemistry into the following areas:

Isolation and identification of substances (natural products from nature, protein purification and characterisation, etc).

Synthesis of substances (organic, or inorganic in nature; these substances may be known substances or new compounds).

Analysis of substances (this is a key process in the identification of new or known chemical and biological substances. Methods of analysis include spectroscopic methods, derivatisation and sequencing methods).

Measurements of particular properties of a compound or substance (enzyme kinetics, reaction kinetics, FACS, fluorescence-activated cell sorting, assay).

Impressive and sophisticated strategies, in the form of new reagents, catalysts and chemical transformations, are currently available for the synthesis of molecules. In recent years there has been a deviation in focus from developing new synthetic routes and reactions to improving methods for carrying out reactions. In particular, traditional reactions are carried out in new ways such that the efficiencies of reactions are greatly improved. Included in this is the movement towards the development of 'greener' technologies. Although there is continual debate over the definition of 'green' technologies, for our intent and purpose we consider these to include methodologies that are developed to reduce waste and energy, improve on atom economy and are environmentally benign. [Anastas & Kirchhoff *Acc Chem Res* **35** 686 2002; *Benign by Design*; American Chemical Society: Washington, DC, *1994*; Constable et al, *Green Chem* **9** 411 2007.] This may mean that there will be a new world order for carrying out synthesis, which in turn will change the way that one approaches purification. Hence the future of purification very much depends on future methods and trends in synthesis. In the previous edition of this book, some improved methods of synthesis which seek to minimize purification steps were outlined. These included the use of solid phase synthesis, fluorous chemistry as well as ionic liquids. Although some of these methods are still important in some areas of research, other trends have emerged. In this chapter, a brief survey of the emerging trends is presented.

ORGANOCATALYSIS

One of the major areas of chemical research is in the development of efficient catalysts for carrying out organic transformations. Traditionally this field is dominated by metal mediated catalysis, although increasingly biocatalysis and organocatalysis are gaining prominence. Organocatalysts are defined as catalysts (usually small organic molecules) with low molecular weights (<1000g/mol) where a metal is not part of the active principle. The potential advantages that organocatalysts can offer over metal catalysts include the ease of handling, good stability, low costs and the environmentally benign nature of the former. A major disadvantage of organocatalysis is the limited substrate scope for a particular organocatalyst in a particular transformation. It should be added that the field of organocatalysis is in its relative infancy and stunning progress has been made in the last ten years or so. For example, readily available organic compounds have been found to be capable of catalyzing a range of reactions. These include carbon-carbon bond forming reactions (Aldol, Mannich, Diels-Alder, alkylations, cyclopropanations, etc), epoxidation reactions, desymmetrisation reactions and so on [for an excellent book, see Berkessel and Gröger, in the bibliography]. Classes of compounds that have demonstrated applications as organocatalysts include α -amino acids [Jarvo & Miller *Tetrahedron* **58** 2481 2002], *N*-heterocyclic carbenes [Marion et al. *Angew Chem, Int Ed Engl* **46** 2988 2007], thioureas [Connon *Chemistry-A Eur J* **12** 5419 2006],

The Future of Purification

cinchona alkaloids [Dalaigh Syn Lett 875 2005] and so on. One of the earliest practical demonstrations of the use of organocatalysts is exemplified by the Hajos-Parrish-Eder-Sauer-Wiechert reaction which was patented as early as 1971 [Eder, Sauer & Wiechert DE 2014757 1971, Eder, Sauer & Wiechert Angew Chem, Int Ed Engl 10 496 1971, Hajos & Parrish DE 2102623 1971, Hajos & Parrish J Org Chem **39** 1612 1974]. The Robinson aldol annulation reaction utilized the humble proline molecule as the organocatalyst, and is the *first* example of a highly enantioselective carbon-carbon bond forming reaction. Recent advances in organocatalysis have progressed to the level of sophistication that has enabled the synthesis of relatively complex organic molecules with multiple stereocenters in high chemical and optical yields. There are many excellent reviews and monographs on organocatalysis, and some of these are listed in the bibliography. Also see ChemFiles, Vol 6, no 4 from Sigma-Aldrich for a compilation of some commercially available organocatalysts.

MICROWAVE TECHNOLOGIES

The first reports of the use of microwave technologies to accelerate organic reactions were published in 1986 [Gedye et al. Tetrahedron Lett 27 279 1986, Giguere et al. Tetrahedron Lett. 27 4945 1986]. These days, dedicated microwave instrumentation for carrying out organic synthesis is an almost indispensable piece of equipment in chemical laboratories. Microwave assisted organic synthesis have several advantages over conventional heating methods in that the reaction times are greatly reduced, yields are increased, side reactions are decreased and reactions have greater reproducibility. Microwave irradiation produces efficient internal heating due to the direct coupling of the microwave energy with the reactants and solvents. Inverted temperature gradients in microwave versus traditional oil-bath heating have been demonstrated. Although there is still some controversy regarding the 'special' effects of microwave assisted technologies, it is generally accepted that microwave technologies provide 'specific microwave effects' - that resulting due from thermal effects. The microwave thermal effect may be different to thermal effects from conventional heating methods in view of the inverted temperature gradient leading to direct 'in-core' heating, or superheating effects of solvents at atmospheric pressure, or selective heating by strongly absorbing components of some of the reactants. Microwave-assisted organic synthesis has been demonstrated in a number of reactions: from transition metal catalysed reactions to solid phase synthesis to polymerization reactions. For online resources on microwave chemistry, go to http://www.milestonesci.com (and follow the links to the resource library). Some excellent reviews and books on this topic are listed in the bibliography. It should be noted that microwave technologies have been touted as an important development towards "green" technologies in terms of reduction in energy and waste as well as improved efficiencies. In many instances, solventless reactions under microwave conditions have also been developed and reported [see e.g. Varma Green Chem 1 43 1999].

There are a number of commercial microwaves for carrying out synthesis. Mono-mode (single mode) reactors direct electromagnetic irradiation onto a reaction vessel which is mounted at a fixed position. In these reactors, only one vessel can be used at any one time. In contrast, a multi-mode reactor can accommodate several reaction vessels which can be irradiated simultaneously. The choice of solvent for microwave reactions is dependent on the loss factor 'tan δ '. A reaction medium with a high 'tan δ ' is required for efficient absorption of electromagnetic energy from the microwave and hence leads to rapid heating. High microwave absorbing solvents include ethanol, DMSO, methanol, 1-butanol ('tan δ ' >0.5), while medium solvent absorbers ('tan δ ' between 0.1–0.5) include water and DMF. Poor absorbers are solvents like hexane, dichloromethane, chloroform, THF, acetone and ethyl acetate. Common solvents without a permanent dipole e.g. carbon tetrachloride and *benzene are more or less microwave transparent. Solvents with low 'tan δ ' values can still be used in microwave. Alternatively, practices such as doping the reaction with solvents with high 'tan δ ' values have also been successful. Of note, ionic liquids (which have high 'tan δ ' values) have been used successfully [see Leadbeater, Torenius & Tye *Comb Chem High Throughput Screening* **7** 511 2004, for a review].

SOLID PHASE SYNTHESIS

The promise of cleaner, more rapid and efficient chemistries *via* solid phase synthesis (SPS) was the driving force behind the huge body of research that emerged. The ease of work-up and purification procedures in solid phase as compared to solution phase chemistry, as well as the scope for combinatorial chemistry provided impetus for further development in this field. The earliest studies on solid phase chemistry were focused on solid phase peptide synthesis (SPPS). The concept of carrying out reactions on a polymer support as distinct to reactants in solution, was conceived by R.B. Merrifield who received the Nobel Prize in Chemistry in 1984 for his pioneering work. However since the mid-1990's, advances in solid phase chemistry have moved beyond the routine (often robotic) synthesis of small to medium sized peptides and oligonucleotides. SPOS (solid phase organic synthesis) gained

much prominence due to the wealth of compounds (combinatorial libraries) that can be synthesised rapidly. This is especially important for pharmaceutical companies screening for compounds with certain biological profiles, or for chemical companies screening for new catalysts or reagents. However, the lack of generality of reactions carried out on solid support as well as the difficulties in monitoring reactions on solid phase has limited the synthetic applications of SPOS. The legacy from solid phase synthesis that is more widely adopted in recent times is the use of solid supported reactants and reagents for carrying out synthesis and for scavenging and purification purposes. The more common methods of SPS are outlined here. For a more complete treatise, readers are encouraged to consult the previous edition of this book.

SOLID PHASE PEPTIDE SYNTHESIS (SPPS)

Extensive studies on the synthesis of peptides on solid phase have been carried out, so much so that the technique of SPPS can be reliably and routinely used for the synthesis of short peptides by novices in the field. A large number of resins and reagents have been developed specifically for this purpose, and much is known about problems and avoidance of racemisation, difficult couplings, compatibility of reagents and solvents. Methods for monitoring the success of coupling reactions are available. Automated synthesisers are available commercially (e.g. from Protein Technologies, Rainin Inst Inc, Tuscon AZ; See Google) which can carry out as many as a dozen polypeptide syntheses simultaneously. The most satisfactory chemistry currently used is FMOC (9fluorenylmethoxycarbonyl) chemistry whereby the amino group of the individual amino acid residues is protected as the FMOC. A large number of Fmoc-amino acids are commercially available as well as polymer resins to which the specific Fmoc-amino acid (which will eventually become the carboxy terminal residue of the peptide) is attached. With automated synthesisers, the solvent used is N-methylpyrrolidone and washings are carried out with dimethylformamide. A cycle for one residue varies with the residue but can take an hour or more. This means that 70-80 mer polypeptides could take more than a week to prepare. This is not a serious drawback because several different polypeptides can be synthesised simultaneously. The success of the synthesis is dependent on the amino acid sequence since there are some twenty or more different amino acids and the facility of forming a peptide bond varies with the pair of residues involved. However, generally 70 to 80 mers are routinely prepared, and if the sequence is favourable, up to 120-mer polypeptides can be synthesised. After deprotection, the polypeptide is usually purified by HPLC using a C18 column with reverse phase chromatography. There are many commercial firms that will supply custom-made polypeptides at a price depending on the degree of purity required.

SOLID PHASE DEOXYRIBONUCLEOTIDE SYNTHESIS

The need for oligodeoxyribonucleotides mainly as primers for the preparation of deoxyribonucleic acids (DNA) and for DNA sequencing has resulted in considerable developments in oligo-deoxyribonucleotide synthesis. The solid phase procedure is the method commonly used. Automated synthesisers are commercially available, but with the increase in the number of firms that will provide custom-made oligo-deoxyribonucleotides, it is often not economical to purchase a synthesiser to make one's own oligo-deoxyribonucleotides. Unlike in polypeptide synthesis where there are some twenty different residues to "string" together, in DNA synthesis there are only four deoxyribonucleotides. Consequently there is usually little difficulty in synthesising 100-mers in quantities from 10 μ g to 10 milligrams of material. The deprotected deoxyribonucleic acid which is separated from the solid support is purified on an anion exchange column followed by reverse phase HPLC using C8 to C18 columns for desalting. As for the polypeptides, the cost of DNA will depend on the purification level required.

POLYMER SUPPORTED REACTANTS

These have become of increasing importance in synthesis, and a broad classification of polymer supported reactants is as follows: Polymer bound bases (e.g. dimethylaminopyridine, morpholine, piperidine); Polymer supported catalysts (e.g. Grubbs catalyst for metathesis reactions, palladium for hydrogenation reactions, tributylmethylammonium chloride for phase transfer reactions); Polymer supported condensation reagents {e.g. DEAD (diethyl azodicarboxylate) for Mitsonobu reactions, DEC [1-(3-dimethylamino-propyl)-3-ethylcarbodiimide hydrochloride] {or EDCI [1-ethyl-3-(3-di-methylaminopropyl) carbodiimide HCl]} for peptide synthesis, HOBt (1-hydroxybenzotriazole) for peptide synthesis; Polymer supported oxidizing agents (e.g. osmium tetroxide, perruthenate, pyridinium chlorochromate); Polymer supported reducing agents (e.g. borohydride, tributyltin fluoride); Polymer-supported phosphines (for miscellaneous applications depending on the structure) and so on. Commercially available polymer supported catalysts and reagents can be purchased from a number of companies including Sigma-Aldrich (see Chem Files, Vol 5, issue 11 as well as the main catalog), Biotage, Alfa-Aesar, TCI.

SCAVENGER RESINS

The use of resins to clean up reactions has gained much importance in recent years. The type of commercially available scavenger resins are electrophilic scavenger resins (e.g. benzaldehyde derivatised resins to scavenge amines; isocyanate resins to scavenge amines, anilines and hydrazines; tosyl chloride resins to scavenge nucleophiles) and nucleophilic scavenger resins (e.g. diethylenetriamine resins to scavenge acids, acid chlorides,

anhydrides; sulfonyl amide resins to scavenge acids, acid chlorides, aldehydes, isocyanates and chloroformates) [e.g. see Bhattacharyya *Comb Chem High Throughput Screening* **3** 65 2000, Bhattacharyya *Curr Opin Drug Disc Dev* **7** 752 2004].

Specific scavengers that use purified silica support (e.g. LpDNPH cartridges which contain a high purity silica adsorbent coated with 2,4-dinitrophenylhydrazine to remove carbonyl compounds), charcoal in various forms and Florisil etc. for particular purposes are available commercially (see Biotage: the *Synthesis and Purification* Catalogue and the *Analytical Sample Preparation* Catalogue and <www.biotage.com> which contain details of such resins, and Supelco: *the Chromatographic Products for Analysis & Purification* Catalogue </www.sigmaaldrich.com/supelco/analytical>) for various supports). General types of scavenger resins are also available from a number of companies including Sigma-Aldrich and Biotage.

COMBINATORIAL CHEMISTRY

The major impetus for the development of solid phase synthesis centers on applications in combinatorial chemistry. The notion that new drug leads and catalysts can be discovered in a high throughput fashion has been demonstrated many times over as is evidenced from the number of publications that have arisen (see references at the end of this chapter). A number of approaches to combinatorial chemistry exist. These include the split-mix method, serial techniques and parallel methods to generate libraries of compounds. The advances in combinatorial chemistry are also accompanied by sophisticated methods in deconvolution and identification of compounds from libraries. In a number of cases, innovative hardware and software have been developed for these purposes.

Depending on the size of the combinatorial library to be generated as well as the scale of the reactions to be carried out, a wide range of specialised glassware and equipment is commercially available. For example, in order to carry out parallel combinatorial synthesis, reaction stations equipped with temperature and stirring control are available from a number of sources (e.g. www.fisher.co.uk; www.radleys.com). These reaction stations are readily adapted, using appropriate modules, for conditions under reflux or under inert atmosphere. For automated synthesis of large libraries of compounds, reactions can be carried out using reaction blocks on microtiter plates.

ALTERNATIVE SOLVENTS

The bulk of a reaction medium usually comprises the solvent for reaction. It has been estimated that generally solvents account for 80-90% of the mass utilization in a typical batch reaction. In view of this, one of the greatest challenges to the 'greening' of chemistry is to consider the 'greening' of solvents. In this regard, issues such as environmental toxicities, waste minimization, recyclability or the use of renewable solvents are considered in the greening of solvents. A number of publications have provided a framework for the environmental assessment of solvents [Capello et al. *Green Chem* **8** 927 2007, Alfonsi et al. *Green Chem* **10** 31 2008]. Some approaches to the replacement of conventional solvents include the use of supercritical fluids, e.g. carbon dioxide, ionic liquids, perfluorohydrocarbons. The use of water as an environmentally friendly reaction media has also been the focus of study by several groups [Dallinger & Kappe *Chem Rev* **107** 2563 2007, Hailes *Org Proc Res Dev* **11** 114 2007, Li & Chen *Chem Soc Rev* **35** 68 2006, Leadbeater *J Chem Soc, Chem Commun* 2881 2005] as is the study of solvent-less reactions [Polshettiwar & Varma *Pure Appl Chem* **80** 777 2008].

SUPERCRITICAL FLUIDS

Supercritical fluids (SCF) are defined as substances that are above their critical temperatures and pressures such that at this critical point, this is the highest temperature and pressure at which the substance can exist as a vapour and liquid in equilibrium. The commonly used SCF in chemistry is that of supercritical carbon dioxide (scCO₂), which has a critical point at 31.1° C and a pressure of 73.8 Bar. The density of CO₂ at this critical point is approximately 0.4g/mL. CO₂ is potentially an ideal green solvent-it is non-toxic to the environment and at atmospheric pressure, CO_2 is a gas and hence does not require any waste treatment. CO_2 is inexpensive, non-flammable, environmentally benign and can be removed completely from products. Although CO_2 is a greenhouse gas, CO_2 is naturally occurring as well as obtained as a byproduct of many processes, and the use of CO₂ as solvent is to use a 'renewable' resource. In this respect, CO₂ is easily recovered either by cooling (condensing) or absorption by aqueous alkaline solutions and re-used. It should be noted that scCO₂ has found applications in extractions (e.g. of caffeine), dry-cleaning, polymer modification, pharmaceutical processing. The use of $scCO_2$ in organic synthesis has also been demonstrated in a number of reactions including hydrogenation reactions, Diels-Alder chemistry, free radical reactions, Friedel Crafts reactions and so on [S. Hadlington Chem Br 39 21 2003, Liu & Xiao, J Mol Cat A: Chem 270 1 2007]. The solvent properties of $scCO_2$ can be tuned by adjusting the temperature and pressure. Liquids and solid solutes are surprisingly soluble in scCO₂ though it is generally true that the solubility of nonpolar substances is higher than the polar ones because CO_2 is a non-polar molecule. The solubility can be tuned by changing the bulk densities of CO_2 or by adding a co-solvent or modifying the solute. Other fluids that have been used in this way are ammonia and SO_2 , although they do not have the many advantages of CO_2 , especially those pertaining to its low reactivity under 'normal' reaction conditions.

IONIC LIQUIDS

Ionic liquids (ILs) are organic or inorganic salts that are liquids at room or reaction temperatures. Although ionic liquids are themselves not new discoveries (e.g. the ionic liquid [EtNH₃] [NO₃] was described in 1914), the use of ionic liquids in synthesis is relatively recent. In particular, the potential applications of ionic liquids as solvents in synthesis and in catalysis have recently been realised. They have high mechanical, thermal and electrochemical stability. Their physical properties make them unique solvents for synthesis, and are 'green' alternatives to volatile organic solvents, though there has been some debate on whether ionic liquids can be considered as 'green' solvents. [R. Sanghi & M.M. Srivasatava, Green Chemistry: Environment Friendly Alternatives, Alpha Science International, 2003, ISBN 9781842651735; C. Alfonso, A.M. Crespo & P.S.G. Joao, Green Separation Processes: Fundamentals and Applications, VCH-Wiley Publishing, 2005, ISBN 978357309856; J. Clark & J. Hardy, Green Chemistry in Undergraduate Practical Classes (with CD-ROM), Royal Society of Chemistry, 2006, ISBN 978054042784]. Ionic liquids are good solvents for both organic and inorganic substances and hence can be used to bring reagents into the same phase for reaction. Ionic liquids are also immiscible with a number of organic solvents and thus provide a non-aqueous, polar alternative for two-phase extraction systems. As ionic liquids are non-flammable and non-volatile (with hardly any measurable vapour pressure), they can be used in high vacuum systems without the possibility of loss or contaminants. In addition, this also facilitates the isolation of products as products can be distilled from the ionic liquid or alternatively extracted with an organic solvent that is immiscible with the ionic liquid. Although ionic liquids are frequently composed of poorly coordinating ions, they are highly polar which are important characteristics in the activation of catalysts. For example the 1-butyl-3methylimidazolinium salt with AlCl₃ is a very good catalyst for the Friedel-Crafts reaction, and varying the ratio of salt to AlCl₃ produces a more or less acidic medium. ILs are used successfully in organic reactions which are mediated by microwaves. ILs have found uses in phase-separation processes, in electrochemical processes, as heat storage media, lubricants and additives.

A large variety of ILs of high purity with water content below 100ppm and halide content below 10ppm are now available commercially. These include numerous *N*-alkylpyridinium, *N*,*N*'-dialkylimidazolium, alkylammonium and alkylphosphonium salts, covalent hydrophobic ILs (e.g. 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, task-specific ILs, Brønsted acidic ILs (e.g. 3-[triphenylphosphonio]propane-1-sulfonic acid tosylate), nitrile-functionalised ILs, perfluorinated ILs (e.g. tetrabutylammonium nonafluorobutane sulfonate, BASF Basionics (e.g. 1,2,3-trimethylimidazolium methyl sulfate), and TOMATS for heavy metal extraction (e.g. methyltrioctylammonium thiosalicylate)

A number of reactions have been carried out in ionic liquids; for examples see Dell'Anna et al. *J Chem Soc, Chem Commun* 434 2002, Nara et al. *Tetrahedron Lett* 43 1127 2002, Semeril et al. *J Chem Soc, Chem Commun* 146 2002, Buijsman et al. *Org Lett* 3 3785 2001. These include Diels-Alder reactions, Friedel-Crafts (above), transition-metal mediated catalysis, e.g. Heck and Suzuki coupling reactions, and olefin metathesis reactions. An example of ionic liquid acceleration of reactions carried out on solid phase is given by Revell & Ganesan [*Org Lett* 4 3071 2002]. [See also Fluka, Riedel-deHaën, Catalogue 2007-2008, and <www.sigmaaldrich.com/ionicliquids>, with or without BasionicsTM and Cytec (Cytos^R); Chem Files (Sigma-Aldrich) Vol 6, No 9 2006, Ghassemi et al. Application Note 48 in Synthesis and Purification Catalog 2007, <www.Biotage.com>.]

FLUOROUS CHEMISTRY

Fluorous chemistry is defined as chemistry that is related to highly fluorinated sp³-hybridised carbon containing compounds. The seminal work by Horvath and Rabai (Science 266 72 1994) described the applications of fluorous biphasic catalysis and applied it to Rh catalysed hydroformylation reactions. To date the scope of fluorous chemistry has expanded to include applications in organic synthesis and material science, separation, extraction and chromatography. For example, fluorous phase labels can be attached to substrates such that the subsequent fluorinated products can be extracted into the fluorous phase. This has applications in liquid-liquid extractions (typical work-up procedures) where a three-phase extraction is now possible (organic, fluorous and aqueous phases). As organic and inorganic compounds have little or no tendency to dissolve in highly fluorinated solvents and compounds, phase labeling a compound as fluorous will enable successful extraction into the fluorous phase. However in order to carry out homogenous reactions with these fluorinated compounds, organic solvents with a good dissolving power for fluorous compounds or miscible organic and fluorous solvents can be used. Alternatively organic solvents with a few fluorine atoms, e.g. trifluoroethanol, benzotrifluoride ('hybrid solvents') will dissolve both organic and fluorous compounds. A number of synthetic applications utilising fluorous chemistry have been reported in the literature. [For examples, see Schneider & Bannwarth Helv Chim Acta 84 735 2001, Galante et al. Tetrahedron Lett 42 5425 2001, Studer & Curran Tetrahedron 53 6681 1997, Studer et al. J Org Chem 62 2917 1997, Crich & Neelamkavil Tetrahedron 58 3865 2002.] For some fluorous compounds for synthesis and separation, see Chem Files from Sigma-Aldrich, Supplement II, 2008.

BIBLIOGRAPHY

GREEN CHEMISTRY

P.T. Anastas and J.C. Warner, *Green Chemistry: Theory and Practice*, Oxford University Press, USA 2005. ISBN10: 0198506988, ISBN-13: 978-0198506980.

R.A. Sheldon, I. Arends and U. Hanefeld, *Green Chemistry and Catalysis*, Wiley-VCH, 2007. ISBN 10: 352730715x, ISBN-13: 978-3527307159.

P. Tundo, A. Perosa and F. Zecchini, *Methods and Reagents for Green Chemistry: An Introduction*. Wiley-Interscience, 2007. ISBN-10: 0471754005, ISBN-13: 978-0471754008.

ORGANOCATALYSIS

A. Berkessel and H. Gröger, Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH 2005. ISBN-10: 3-527-30517-3, 13: 978-3-527-30517-9.

J. Seayad and B. List, Asymmetric Organocatalysis, Org Biomol Chem 3 719-724 2005.

G. Lelais and D.W. MacMillan, Modern Strategies in Organic Catalysis: the Advent and Development of Iminium Activation, *Aldrichimica Acta* **39** 79-87 2006.

B. List, The Ying and Yang of Organic Asymmetric Aminocatalysis, J Chem Soc, Chem Commun 819 2006.

P.I. Dalko (Ed.), *Enantioselective Organocatalysis: Reactions and experimental procedures*, Wiley-VCH, 2007. ISBN-10: 3527315225, ISBN-13: 978-3527315222.

R.M. deFigueiredo and M. Christmann, Organocatalytic Synthesis of Drugs and Bioactive Natural Products, *Eur J* Org Chem 2575-2600 2007.

D. Enders, C. Grondal and M.R. Huttl, Asymmetric Organocatalytic Domino Reactions, Angew Chem, Int Ed Engl 46 1570 2007.

H. Pellissier, Asymmetric Organocatalysis, Tetrahedron 63 9267-9331 2007.

MICROWAVE TECHNOLOGIES

B.L. Hayes, *Microwave Synthesis: Chemistry at the Speed of Light*, CEM publishing, Matthews NC, 2002. ISBN-10: 092222901, ISBN-13: 978-0972222907.

O.C. Kappe, Synthetic Methods. Controlled Microwave Heating in Modern Organic Synthesis, Angew Chem, Int Ed Engl 43 6250-6284 2004.

A. de la Hoz, A. Diaz-Ortiz and A. Moreno, Microwaves in Organic Synthesis: Thermal and Non-thermal Microwave Effects, *Chem Soc Rev* **34** 164-178 2005.

P. Lidstrum, J.P and Tierney (Eds.), *Microwave-assisted Organic Synthesis*, Blackwell, Oxford, 2005. ISBN-10: 0849 323711, ISBN-13: 978-0849323713.

O.C. Kappe, The Use of Microwave Irradiation in Organic synthesis. From Laboratory Curiosity to Standard Practice in Twenty Years, *Chimia* **60** 308-312 2006.

A. Loupy (Ed.) *Microwaves in Organic Synthesis* (2 volume set), Wiley-VCH, 2006. ISBN-10: 3527314520, ISBN-13: 978-3527314522.

J.A. Dahl, B.L.S. Maddux and J.E. Hutchison, Towards Greener Nanosynthesis, Chem Rev 107 2228-2269 2007.

V. Polshettiwar and R.S. Varma, Microwave-assisted Organic Synthesis and Transformations Using Benign Reaction Media, *Acc Chem Res* **41** 629-639 2008.

SOLID PHASE SYNTHESIS General

J.A. Ellman, Design, Synthesis, and Evaluation of Small-molecule Libraries, Acc Chem. Res 29 132-143 1996.

J.S. Fruchtel and G. Jung, Organic Chemistry on Solid Supports, Angew Chem, Int Ed Engl 35 17-42 1996.

P. Hodge, Polymer-supported Organic Reactions: What Takes Place in the Beads? *Chem Soc Rev* 26 417-424 1997.

J.W. Labadie, Polymeric Supports for Solid Phase Synthesis, Curr Opin Chem Biol 2 346-352 1998.

F. Guillier, D. Orain and M. Bradley, Linkers and Cleavage Strategies in Solid-phase Organic Synthesis and Combinatorial Chemistry, *Chem Rev* 100 2091-2157 2000.

P. Seneci, Solid Phase and Combinatorial Technologies, J. Wiley & Sons, New York, 2000, ISBN 0471331953.

A.R. Vaino and K.D. Janda, Solid-Phase Organic Synthesis: A Critical Understanding of the Resin, *J Comb Chem* **2** 579-596 2000.

A. Ganesan, Solid-phase Synthesis in the Twenty-first Century, *Mini-reviews in Medicinal Chemistry* **6** 3-10 2006.

Applications to SPOS, SPPS

S.J. Shuttleworth, S.M. Allin and P.K. Sharma, Functionalised Polymers-Recent Developments and New Applications in Synthetic Organic Chemistry, *Synthesis* 1217-1239 *1997*.

D.H. Drewry, D.M. Coe and S. Poon, Solid Supported Reagents in Organic Synthesis, *Med Res Rev* 19 97-148 1999.

S.J. Shuttleworth, S.M. Allin, R.D. Wilson and D. Nasturica, Functionalised polymers in Organic Chemistry; Part 2, *Synthesis* 8 1035-1074 2000.

B. Clapham, T.S. Reger and K.D. Janda, Polymer-supported Catalysis in Synthetic Organic Chemistry, *Tetrahedron* **57** 4637-4662 2001.

P. Blaney, R. Grigg and V. Sridharan, Traceless Solid-Phase Organic Synthesis, Chem Rev 102 2607-2624 2002.

Polymer Supported Reagents And Scavenger Resins

R.J. Booth and J.C. Hodges, Solid-supported Reagent Strategies for Rapid Purification of Combinatorial Synthesis Products, *Acc Chem Res* **32** 18-26 *1999*.

S.V. Ley, I.R. Baxendale, G. Brusotti, M. Caldarelli, A. Massi and M. Nesi, Solid-supported Reagents for Multistep Organic Synthesis: Preparation and Application, *Il Farmaco* 57 321-330 2002.

G.J. Gabriel, Scavenger Resins in Solution-phase Combi-chem, *Methods Enzymol* **369** (Combinatorial Chemistry Part B) 391-412 2003.

P.H. Toy and M. Shi, Polymer-supported Reagents and Catalysts: Increasingly Important Tools for Organic Synthesis, *Tetrahedron* **61**, 12025 2005.

H. Salimi, A. Rahimi, and A. Pourjavadi, Applications of Polymeric Reagents in Organic Synthesis, *Monatsh Chem* **138**, 363-379 2007.

A. Solinas and M. Taddei, Solid-supported Reagents and Catch-and-release Techniques in Organic Synthesis, *Synthesis* 2409-2453 2007.

Combinatorial Chemistry

F. Balkenhohl, C. Vondembusschehunnefeld, A. Lansky and C. Zechel, Combinatorial Synthesis of Small Organic Molecules, *Angew Chem, Int Ed Engl* **35** 2289-2337 1996.

H. Wennemers, Combinatorial chemistry: A Tool for the Discovery of New Catalysts, *Comb Chem High Throughput Screening* **4** 273-285 2001.

A. Ganesan, Recent Developments in Combinatorial Organic Synthesis, Drug Discovery Today 7 47-55 2002.

SUPERCRITICAL CARBON DIOXIDE

W. Leitner, Carbon Dioxide as an Environmentally Benign Reaction Medium for Chemical Synthesis, *Appl Organomet Chem* **14** 809-814 2000.

R.S. Oakes, A.A. Clifford and C.M. Rayner, The Use of Supercritical Fluids in Synthetic Organic Chemistry, J Chem Soc, Perkins Trans 1 917-941 2001.

W. Leitner, Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis, *Acc Chem Res* **35** 746-756 2002.

P. Licence, J. Ke, M. Sokolova, S.K. Ross and M. Poliakoff, Chemical Reactions in Supercritical Carbon Dioxide: from Laboratory to Commercial Plant, *Green Chem* **5** 99-104 2003.

E.J. Beckman, Supercritical and Near Critical CO_2 in Green Chemistry Synthesis and Processing. J Supracrit Fluids 28 121-191 2004.

C.M. Rayner, The Potential of Carbon Dioxide in Synthetic Organic Chemistry, Org Proc Res Dev 11 121-132 2007.

IONIC LIQUIDS

T. Welton, Room Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, *Chem Rev* **99** 2071-2083 1999.

C.M. Gordon, New Developments in Catalysis Using Ionic Liquids, Appl Catal A: General 222 101-117 2001.

R. Sheldon, Catalytic Reactions in Ionic Liquids, J Chem Soc, Chem Commun 2399-2407 2001.

W. Miao and T.H. Chan, Ionic Liquid-supported Synthesis: A Novel Liquid-phase Strategy for Organic Synthesis, *Acc Chem Res* **39** 897-908 2006.

P. Wasserscheid and T. Welton, *Ionic Liquids in Synthesis* (2 volume set), Wiley VCH, 2007. ISBN-10: 3527312390, ISBN-13: 978-3527312399.

FLUOROUS CHEMISTRY

D.P. Curran, Combinatorial Organic Synthesis and Phase Separation: Back to the Future, *Chemtracts: Org Chem* **9** 75-87 1996.

A. Studer, S. Hadida, R. Ferritto, S.Y. Kim, P. Jeyer, P. Wipf and D.P. Curran, Fluorous Synthesis – A Fluorous-phase Strategy for Improving Separation Efficiency in Organic Synthesis, *Science* **275** 823-826 *1997*.

D.P. Curran, Strategy-level Separations in Organic Synthesis: from Planning to Practice, Angew Chem, Int Ed Engl 37 1174-1196 1998.

D.L. Flynn, Phase-trafficking Reagents and Phase-switching Strategies for Parallel Synthesis, *Med Res Rev* 19 408-431 1999.

Tetrahedron Symposium 58 Issue 20, pp 3823-4131 2002.

J.A. Gladysz, D.P. Curran and I.T Horvath (Eds.), *Handbook of Fluorous Chemistry*, Wiley VCH, 2004. ISBN-10: 352730617x, ISBN-13: 978-3527306176.

W. Zhang and D.P. Curran, Synthetic applications of fluorous solid-phase extraction (F-SPE), *Tetrahedron* **62** 11837-11865 2006.

CHAPTER 4

PURIFICATION OF ORGANIC CHEMICALS

INTRODUCTION

The general principles, techniques and methods of purification in Chapters 1 and 2 are applicable to this chapter. Most organic liquids and a number of solids can readily be purified by fractional distillation, usually at atmospheric pressure. Sometimes, particularly with high boiling or sensitive liquids, or when in doubt about stability, distillation or fractionation under as low a pressure as possible should be carried out. To save space, the present chapter omits many substances for which the published purification methods involve simple distillation. Where boiling points are given, purification by distillation is another means of removing impurities. Literature references, and in particular Beilstein references, are included for most entries which refer the reader directly or indirectly to the original sources. Substances are listed alphabetically in each section, usually with some criteria of purity, giving brief details of how they can be purified. Also noted are the molecular weights (to the first decimal place), melting points and/or boiling points together with the respective densities and refractive indexes for liquids, and optical rotations for chiral compounds. All temperatures are in centigrade unless stated otherwise. When temperatures and/or wavelengths are not given for the last three named properties, then they should be assumed to be 20°C and the average of the wavelengths of the sodium D lines respectively; and most densities are relative to water at 4°C.

Ionisation constants of ionisable compounds are given as **pK** values (published in the literature) and refer to the **pKa** values at room temperature (~ 15°C to 25°C). Values at other temperatures are given as superscripts, e.g. **pK³⁰** for 30°C. Estimated values are entered as **pK_{Est}** (see Chapter 1, p 32).

The present chapter includes commercially available organic chemicals. Most of the inorganic, metal-organic, organo- bismuth, boron, phosphorus, selenium, silicon and alkali metal compounds and metal ion salts of organic acids are in Chapter 5. Naturally occurring commercially available organic compounds for use in biochemistry, molecular biology and biology are in Chapter 6. Commercially available polymer supported reagents are indicated with § under the appropriate reagent.

Rapid purification procedures are included for commonly used solvents and reagents which make them suitable for general use in synthetic chemistry.

Abbreviations of titles of periodicals are defined as in the Chemical Abstracts Service Source Index (CASSI) except that punctuation is deleted. Other abbreviations are self evident.

As a good general rule, all low boiling ($<100^{\circ}$) organic liquids should be treated as highly flammable and toxic (because they can be inhaled in large quantities) and the necessary precautions should be taken (see Safety precautions associated with the purification of laboratory chemicals in Chapter 1, p 4).

Benzene has been used as a solvent successfully and extensively in the past for reactions and purification by chromatography and crystallisation but is now considered a **very dangerous substance**. It should be used with extreme care. We emphasise that an alternative solvent to benzene (e.g. toluene, toluene-petroleum ether, or a petroleum ether to name a few) should be used first. However, if no other solvent system can be found, then all operations involving benzene (and storage) have to be performed in an efficiently running fumehood, and precautions must be taken to avoid inhalation and contact with skin and eyes. An asterisk has been inserted in the text, e.g. ${}^{*}C_{6}H_{6}$ or *benzene, to remind the user that special precautions should be adopted.

This chapter consists of four sections viz: Aliphatic Compounds, Alicyclic Compounds, Aromatic Compounds and Heterocyclic Compounds.

ALIPHATIC COMPOUNDS

Acetal (acetaldehyde diethylacetal) [105-57-7] M 118.2, b 103.7-104°, d_4^{20} 0.831, n_D^{25} 1.38054, n^{25} 1.3682. Dry acetal over Na to remove alcohols and H₂O, and to polymerise aldehydes, then fractionally distil. Or, treat it with alkaline H₂O₂ at 40-45° to remove aldehydes, then saturate with NaCl, separate, dry with K₂CO₃ and distil it from Na [Vogel *J Chem Soc* 616 1948]. [Beilstein 1 IV 3103.]

Acetaldehyde [75-07-0] M 44.1, b 20.2°, d_4^{20} 0.788, n_D^{25} 1.33113, pK²⁵ 13.57 (hydrate). Acetaldehyde is usually purified by fractional distillation in a glass helices-packed column under dry N₂, discarding the first portion of distillate. Or, it is shaken for 30minutes with NaHCO₃, dried with CaSO₄ and fractionally distilled at 760mm through a 70cm Vigreux column (p 11). The middle fraction is collected and further purified by standing for 2hours at 0° with a small amount of hydroquinone (free radical inhibitor), followed by distillation [Longfield & Walters J Am Chem Soc 77 810 1955]. [Beilstein 1 IV 3094.]

Acetaldehyde dimethyl acetal (1,1-dimethoxyethane) [534-15-6] M 90.1, b 63-65°, d_4^{20} 0.852, n_D^{25} 1.36678. Distil the dimethyl acetal through a fractionating column and fraction boiling at 63.8°/751mm is collected. It forms an azeotrope with MeOH. Alternatively purify it as for *acetal* above. It has been purified by GLC. [*Beilstein* 1 IV 3103.]

Acetamide [60-35-5] M 59.1, m 81°, pK₁²⁵ -1.4, pK₂²⁵ +0.37. Acetamide is crystallised by dissolving in hot MeOH (0.8mL/g), diluting with Et₂O and allowing to stand [Wagner *J Chem Edu* 7 1135 *1930*]. Alternate crystallisation solvents are acetone, *benzene, chloroform, dioxane, methyl acetate or *benzene/ethyl acetate mixtures (3:1 and 1:1). It has also been recrystallised from hot water after treating with HCl-washed activated charcoal (which had been repeatedly washed with water until free from chloride ions), then crystallised again from hot 50% aqueous EtOH and finally twice from hot 95% EtOH [Christoffers & Kegeles *J Am Chem Soc* 85 2562 *1963*]. Finally it is dried in a vacuum desiccator over P₂O₅. Acetamide is also purified by distillation (b 221-223°) or by sublimation *in vacuo*. It has also been purified by two recrystallisations from cyclohexane containing 5% (v/v) of *benzene. Needle-like crystals separate and are filtered, washed with a small volume of distilled H₂O and dried with a flow of dry N₂. [Slebocka-Tilk et al. *J Am Chem Soc* 109 4620 *1987*, *Beilstein* 2 H 175, 2 I 80, 2 II 177, 2 III 384, 2 IV 399.]

Acetamidine hydrochloride [124-42-5] M 94.5, m 164-166°, 165-170°(dec), 174°, pK²⁵ 12.40. The hydrochlorde can be recrystallised from small volumes of EtOH. Alternatively it is dissolved in EtOH, filtered, Et₂O is added; filter the crystalline salt off under N₂ and dry it in a vacuum desiccator over H₂SO₄. The salt is deliquescent and should be stored in a tightly stoppered container. Its solubility in H₂O is 10% at room temperature and it is soluble in Me₂CO. The *free base* reacts strongly alkaline in H₂O. It has λ_{max} 224nm (ϵ 4000) in H₂O. The *picrate* has m 252° (sintering at ~245°). [Dox *Org Synth* Coll Vol I 5 1941, Davies & Parsons *Chem Ind (London)* 628 1958, Barnes et al. J Am Chem Soc 62 1286 1940 give m 177-178°, *Beilstein* 2 H 185, 2 I 85, 2 II 183, 2 III 416, 2 IV 428.]

N-(2-Acetamido)-2-aminoethanesulfonic acid (ACES) [7365-82-4] M 182.2, m > 220°(dec), pK_{Est} ~1.5, pK₂ 6.9. Recrystallise ACES from hot aqueous EtOH. [Perrin & Dempsey *Buffers for pH and Metal Ion Control* Chapman & Hall, London 1974, Beilstein 4 III 1707.]

N-(2-Acetamido)iminodiacetic acid (ADA) [26239-55-4] M 190.2, m 219°(dec), pK₁ ~2.3, pK₂ 6.6. Dissolve ADA in water, add one equivalent of NaOH solution (to final pH of 8-9), then acidify with HCl to precipitate the free acid. This is filtered off, washed with water and dried *in vacuo*. [*Beilstein* 4 IV 2441.]

Acetamidomethanol [625-51-4] M 89.1, m 47-50°, 54-56°, 55°. Recrystallise it from freshly distilled Me₂CO, wash the crystals with dry Et₂O and dry them in a vacuum desiccator over P₂O₅. R_F 0.4 on paper chromatography with CHCl₃/EtOH (2:8) as solvent and developed with ammoniacal AgNO₃. It also crystallises in needles from EtOAc containing a few drops of Me₂CO. It is *hygroscopic* and should be stored under dry conditions. [Bachmann et al. J Am Chem Soc 73 2775 1951, Walter et al. Chem Ber 99 3204 1966, Einhorn & Ladisch Justus Liebigs Ann Chem 343 265 1905, Beilstein 2 IV 405.]

Acetic acid (glacial) [64-19-7] M 60.1, m 16.6°, b 118°, d_4^{20} 1.049, n_D^{25} 1.37171, n^{25} 1.36995, pK²⁵ 4.76. Usual impurities are traces of acetaldehyde and other oxidisable substances and water. (Glacial acetic acid is very *hygroscopic*. The presence of 0.1% water lowers its m by 0.2°.) Purify it by adding some acetic anhydride to react with water present, heat it for 1hour to just below boiling in the presence of 2g CrO₃ per 100mL and then fractionally distil it [Orton & Bradfield *J Chem Soc* 960 1924, Orton & Bradfield *J Chem Soc* 983 1927]. Instead of CrO₃, use 2-5% (w/w) of KMnO₄, and boil under reflux for 2-6hours.

Traces of water have been removed by refluxing with tetraacetyl diborate (prepared by warming 1 part of boric acid with 5 parts (w/w) of acetic anhydride at 60° , cooling, and filtering off, followed by distillation [Eichelberger & La Mer *J Am Chem Soc* **55** 3633 *1933*].

Refluxing with acetic anhydride in the presence of 0.2g % of 2-naphthalenesulfonic acid as catalyst has also been used [Orton & Bradfield *J Chem Soc* 983 1927]. Other suitable drying agents include anhydrous CuSO₄ and chromium triacetate: P₂O₅ converts some acetic acid to the anhydride. Azeotropic removal of water by distillation with thiophene-free *benzene or with butyl acetate has been used [Birdwhistell & Griswold *J Am Chem Soc* 77 873 1955]. An alternative purification uses fractional freezing. [*Beilstein* **2** H 96, **2** IV 94.] **Rapid procedure:** Add 5% acetic anhydride, and 2% of CrO₃. Reflux and fractionally distil.

Acetic anhydride [108-24-7] M 102.1, b 138°, d_4^{20} 1.082, n_D^{25} 1.3904. Adequate purification can usually be achieved by fractional distillation through an efficient column. Acetic acid can be removed by prior refluxing with CaC₂ or with coarse Mg filings at 80-90° for 5days, or by distillation from a large excess of quinoline (1% AcOH in quinoline) at 75mm pressure. Acetic anhydride can also be dried by standing with Na wire for up to a week, removing the Na and distilling it under vacuum. (Na reacts vigorously with acetic anhydride at 65-70°). Dippy & Evans [J Org Chem 15 451 1950] let the anhydride (500g) stand over P₂O₅ (50g) for 3hours, then decanted it and stood it with ignited K₂CO₃ for a further 3hours. The supernatant liquid was distilled and the fraction b 136-138° was further dried with P₂O₅ for 12hours, followed by shaking with ignited K₂CO₃, before two further distillations through a five-section Young and Thomas fractionating column. The final material distilled at 137.8-138.0°. It can also be purified by azeotropic distillation with toluene: the azeotrope boils at 100.6°. After removal of the remaining toluene, the anhydride is distilled [sample had a specific conductivity of 5 x 10⁻⁹ ohm⁻¹cm⁻¹]. [Beilstein 2 H 96, 2 I 39, 2 II 91, 2 III 134, 2 IV 94.] **Rapid procedure:** Shake with P₂O₅, separate, shake with dry K₂CO₃ and fractionally distil.

Acetic hydrazide [1068-57-1] M 74.1, m 67°, b 127°/18mm. Acetic hydrazide crystallises as needles from EtOH. It reduces NH₃/AgNO₃. [*Beilstein* 2 H 191, 2 IV 435.]

Acetoacetamide [5977-14-0] M 101.1, m 54-55°, 54-56°. Recrystallise the amide from CHCl₃, or Me₂CO/pet ether. It also crystallises from pyridine with 4mols of solvent. It is slightly soluble in H₂O, EtOH and AcOH but is insoluble in Et₂O. The *phenylhydrazone* has m 128°. [Kato *Chem Pharm Bull Jpn* 15 921 923 1967, Claisen & Meyer *Chem Ber* 35 583 1902, *Beilstein* 3 H 659, 3 I 231, 3 III 1204, 3 IV 1545.]

Acetone [67-64-1] M 58.1, b 56.2°, d_4^{20} 0.791, n_D^{25} 1.35880, pK_1^{25} -6.1 (basic, monoprotonated), pK_2^{25} 20.0 (acidic) The commercial preparation of acetone by catalytic dehydrogenation of isopropyl alcohol gives relatively pure material. Analytical reagent quality generally contains less than 1% of organic impurities but may have up to about 1% of H₂O. Dry acetone is appreciably *hygroscopic*. The main organic impurity in acetone is mesityl oxide, formed by aldol condensation. It can be dried with anhydrous CaSO₄, K₂CO₃ or type 4A Linde molecular sieves, and then distilled. Silica gel and alumina, or mildly acidic or basic desiccants cause acetone to undergo the aldol condensation, so that its water content is increased by passage through these reagents. This also occurs to some extent when P₂O₅ or sodium amalgam is used. Anhydrous MgSO₄ is an inefficient drying agent, and CaCl₂ forms an addition compound. Drierite (anhydrous CaSO₄) offers minimum acid and base catalysis for aldol formation and is the recommended drying agent for this solvent [Coetzee & Siao *Inorg Chem* 14 2 *1987*, Riddick & Bunger *Organic Solvents* Wiley-Interscience, N.Y., 3rd edn, *1970*]. Acetone can be shaken with Drierite (25g/L) for several hours before it is decanted and distilled from fresh Drierite (10g/L) through an efficient column, maintaining atmospheric contact through a Drierite drying tube. The equilibrium water content is about 10⁻²M. Anhydrous Mg(ClO₄)₂ should not be used as drying agent because of the risk of EXPLOSION with acetone vapour.

Organic impurities have been removed from acetone by adding 4g of AgNO₃ in 30mL of water to 1L of acetone, followed by 10mL of M NaOH, shaking for 10minutes, filtering, drying with anhydrous CaSO₄ and distilling

[Werner Analyst (London) **58** 335 1933]. Alternatively, successive small portions of KMnO₄ have been added to acetone at reflux, until the violet colour persists, followed by drying and distilling. Refluxing with chromium trioxide (CrO₃) has also been used. Methanol has been removed from acetone by azeotropic distillation (at 35°) with methyl bromide, and treatment with acetyl chloride.

Small amounts of acetone can be purified as the NaI addition compound, by dissolving 100g of finely powdered NaI in 400g of boiling acetone, then cooling in ice and salt to -8° . Crystals of NaI.3Me₂CO are filtered off and, on warming in a flask, acetone distils off readily. [This method is more convenient than the one using the bisulfite addition compound.] It has also been purified by gas chromatography on a 20% free fatty acid phthalate (on Chromosorb P) column at 100°.

For efficiency of desiccants in drying acetone see Burfield and Smithers [*J Org Chem* **43** 3966 1978]. The water content of acetone can be determined by a modified Karl Fischer titration [Koupparis & Malmstadt *Anal Chem* **54** 1914 1982]. [*Beilstein* **1** IV 3180.]

Rapid procedure: Dry over anhydrous CaSO₄ and distil.

Acetone cyanohydrin [75-86-5] M 85.1, b $48^{\circ}/2.5$ mm, $68-70^{\circ}/11$ mm, $78-82^{\circ}/15$ mm, d_4^{20} 0.93. Dry the cyanohydrin with Na₂SO₄, and distil it as rapidly as possible under vacuum to avoid decomposition. Discard fractions boiling below 78-82°/15mm. Store it in the dark. USE AN EFFICIENT FUME HOOD as HCN (POISONOUS) is always present. [Cox & Stormont Org Synth Coll.Vol. II 7 1940, Beilstein 3 H 316, 3 IV 785.]

Acetonedicarboxylic acid (3-oxoglutaric acid) [542-05-2] M 146.1, m 138°(dec), pK^{25} 3.10. Crystallise it from ethyl acetate and store it over P₂O₅. It decarboxylates in hot water. [*Beilstein* 3 IV 1816.]

Acetone semicarbazone [110-20-3] M 115.1, m 187°, pK²⁵ 1.33. Acetone semicarbazone crystallises from water or from aqueous EtOH. [Beilstein 3 H 101, 3 I 48, 3 II 81, 3 III 189, 3 IV 179.]

Acetonitrile (methyl cyanide) [75-05-8] M 41.1, b 81.6°, d^{25} 0.77683, n_D^{20} 1.3441, n^{25} 1.34163. Commercial acetonitrile is a by-product of the reaction of propylene and ammonia to acrylonitrile. The following procedure that significantly reduces the levels of acrylonitrile, allyl alcohol, acetone and *benzene was used by Kiesel [*Anal Chem* 52 2230 1988]. Methanol (300mL) is added to 3L of acetonitrile fractionated at high reflux ratio until the boiling temperature rises from 64° to 80°, and the distillate becomes optically clear down to $\lambda = 240$ nm. Add sodium hydride (1g) free from paraffin, to the liquid, reflux for 10minutes, and then distil rapidly until about 100mL of residue remains. Immediately pass the distillate through a column of acidic alumina, discarding the first 150mL of percolate. Add 5g of CaH₂ and distil the first 50mL at a high reflux ratio. Discard this fraction, and collect the following main fraction. The best way of detecting impurities is by gas chromatography.

Usual contaminants in commercial acetonitrile include H_2O , acetamide, NH₄OAc and NH₃. Anhydrous CaSO₄ and CaCl₂ are inefficient drying agents. Preliminary treatment of acetonitrile with cold, saturated aqueous KOH is undesirable because of base-catalysed hydrolysis and the introduction of water. Drying by shaking with silica gel or Linde 4A molecular sieves removes most of the water in acetonitrile. Subsequent stirring with CaH₂ until no further hydrogen is evolved leaves only traces of water and removes acetic acid. The acetonitrile is then fractionally distilled at high reflux, taking precaution to exclude moisture by refluxing over CaH₂ [Coetzee *Pure Appl Chem* **13** 429 *1966*]. Alternatively, 0.5-1% (w/v) P₂O₅ is often added to the distilling flask to remove most of the remaining water. Excess P₂O₅ should be avoided because it leads to the formation of an orange polymer. Traces of P₂O₅ can be removed by distilling from anhydrous K₂CO₃.

Kolthoff, Bruckenstein and Chantooni [*J Am Chem Soc* **83** 3297 *1961*] removed acetic acid from 3L of acetonitrile by shaking for 24hours with 200g of freshly activated alumina (which had been reactivated by heating at 250° for 4hours). The decanted solvent was again shaken with activated alumina, followed by five batches of 100-150g of anhydrous CaCl₂. (Water content of the solvent was then less than 0.2%.) It was shaken for 1hour with 10g of P_2O_5 , twice, and distilled in a 1m x 2cm column, packed with stainless steel wool and protected from atmospheric moisture by CaCl₂ tubes. The middle fraction had a water content of 0.7 to 2mM.

Traces of unsaturated nitriles can be removed by initially refluxing with a small amount of aqueous KOH (1mL of 1% solution per L). Acetonitrile can be dried by azeotropic distillation with dichloromethane, *benzene or

trichloroethylene. Isonitrile impurities can be removed by treatment with conc HCl until the odour of isonitrile has gone, followed by drying with K_2CO_3 and distilling.

Acetonitrile is refluxed with, and distilled from alkaline KMnO₄ and KHSO₄, followed by fractional distillation from CaH₂. (This is better than fractionation from molecular sieves or passage through a type H activated alumina column, or refluxing with KBH₄ for 24hours and fractional distillation)[Bell et al. *J Chem Soc*, *Faraday Trans 1* **73** 315 *1977*, Moore et al. *J Am Chem Soc* **108** 2257 *1986*].

Material suitable for polarography is obtained by refluxing over anhydrous AlCl₃ (15g/L) for 1hour, distilling, refluxing over Li_2CO_3 (10g/L) for 1 hour and redistilling. It is then refluxed over CaH₂ (2g/L) for 1 hour and fractionally distilled, retaining the middle portion. The product is not suitable for UV spectroscopy use. A better purification procedure uses refluxing over anhydrous AlCl₃ (15g/L) for 1hour, distilling, refluxing over alkaline KMnO₄ (10g KMnO₄, 10g Li₂CO₃/L) for 15minutes, and distilling. A further reflux for 1hour over KHSO₄ (15g/L), then distillation, is followed by refluxing over CaH₂ (2g/L) for 1hour, and fractional distillation. The product is protected from atmospheric moisture and stored under nitrogen [Walter & Ramalay Anal Chem 45 165 1973]. Purificaton of "General Purity Reagent" for this purpose is not usually satisfactory because very large losses occur at the KMnO₄/LiCO₃ step. For electrochemical work involving high oxidation fluorides, further reflux over P₂O₅ (1g/mL for 0.5hours) and distilling (discarding 3% of first and last fractions) and repeating this step is necessary. The distillate is kept over molecular sieves in vacuo after degassing, for 24hours and distilling in a vacuum onto freshly activated 3A molecular sieves. The MeCN should have absorption at 200nm of < 0.05 (H₂O reference) and UV cutoff at *ca* 175nm. Also the working potential range of purified $Et_4N^+BF_4^-$ (0.1mol.dcm⁻³ in the MeCN) should be +3.0 to -2.7V vs Ag⁺/Ag⁰. If these criteria are not realised then further impurities can be removed by treatment with activated neutral alumina (60 mesh) in vacuo before final molecular sieves treatment [Winfield J Fluorine Chem 25 91 1984].

Acetonitrile has been distilled from AgNO₃, collecting the middle fraction over freshly activated Al_2O_3 . After standing for two days, the liquid is distilled from the activated Al_2O_3 . The specific conductivity should be 0.8-1.0 x 10⁻⁸ mhos [Harkness & Daggett *Can J Chem* **43** 1215 *1965*]. *Acetonitrile* ¹⁴*C* is best purified by gas chromatography and is water free and distils at 81°. [*Beilstein* **2** H 183, **2** IV 419.]

Rapid procedure: Dry over anhydrous K_2CO_3 for 24hours, followed by further drying for 24hours over 3A molecular sieves or boric anhydride, followed by distillation. Alternatively, stir over P_2O_5 (5% w/v) for 24hours then distil. However, this last method is not suitable for reactions with very acid sensitive compounds.

Acetonylacetone (2,5-hexanedione) [110-13-4] M 114.2, m -9°, b 76-78°/13mm, 88°/25mm, 137°/150mm, 188°/atm, d_4^{20} 0.9440, n_D^{20} 1.423, pK²⁵ 18.7. Purify it by dissolving in Et₂O, stiring with K₂CO₃ (a quarter of the weight of dione), filtering, drying over anhydrous Na₂SO₄ (not CaCl₂), filtering again, evaporating the filtrate and distilling it in a vacuum. It is then redistilled through a 30cm Vigreux column (p 11, oil bath temperature 150°). It is miscible with H₂O and EtOH. The *dioxime* has m 137° (plates from *C₆H₆), the *mono-oxime* has b 130°/11mm, and the 2,4-*dinitrophenylhydrazone* has m 210-212° (red needles from EtOH). It forms complexes with many metals. [Werner et al. *Chem Ber* 22 2100 1989, for enol content see Gero J Org Chem 19 1960 1954, Beilstein 1 IV 3688.]

Acetoxime (acetone oxime) [127-06-0] M 73.1, m 63°, b 135°/760mm, d_4^{20} 0.901, pK⁴⁰ 0.99. It crystallises from pet ether (b 40-60°) and can be sublimed. [*Beilstein* 1 H 649, 1 IV 3202.]

Acetoxyacetone (acetonyl acetate, acetol acetone) [592-20-1] M 116.1, b 65%/11mm, 73-75%/17mm, 174-176%/atm, d_4^{20} 1.0757, n_D^{20} 1.4141. Distil it in a vacuum, then redistil it at atmospheric pressure. It is miscible with H₂O, but is slowly decomposed by it. Store it in a dry atmosphere. The 2,4-dinitrophenylhydrazone has m 115-115.5% (from CHCl₃/hexane). [Perkin Jr J Chem Soc 59 789 1891, Reich & Samuels J Org Chem 21 68 1956, Nef Justus Liebigs Ann Chem 335 260 1904, Beilstein 2 IV 297.]

1-Acetoxy-1,3-butadiene (1,3-butadienyl acetate) *cis-trans* mixture [1515-76-0] M 112.1, b 42-43°/16mm, 51-52°/20mm, 60-61°/40mm, d_4^{20} 0.9466, n_D^{20} 1.4622. The commercial sample is stabilised with 0.1% of *p-tert*-butylcatechol. If the material contains crotonaldehyde (by IR, used in its synthesis), it should be dissolved in Et₂O, shaken with 40% aqueous sodium bisulfite, then 5% aqueous Na₂CO₃, water, dried (Na₂SO₄) and distilled several times in a vacuum through a Widmer [Helv Chim Acta 7 59]

1924] (p 11) or Vigreux column (p 11) [Wicterle & Hudlicky Collect Czech Chem Commun 12 564 1947, Hagemeyer & Hull Ind Eng Chem 41 2920 1949]. [Beilstein 2 III 295.]

1-Acetoxy-2-butoxyethane (2-butyloxyethyl acetate) [112-07-2] M 160.2, b 61-62% 0.2mm, 75-76% 12mm, 185.5% 740mm, 188-192% atm, d_4^{20} 0.9425, n_D^{20} 1.4121. Shake the ester with anhydrous Na₂CO₃, filter and distil it in a vacuum. Redistillation can then be carried out at atmospheric pressure. [Dunbar & Bolstad J Org Chem 21 1041 1956, Beilstein 2 IV 215.]

2-Acetoxyethanol (2-hydroxyethyl acetate) [542-59-6] M 104.1, b 61°/1mm, 79-81°/12mm, 187°/761mm, d_4^{20} 1.108, n_D^{20} 1.42. Dry the ester over K₂CO₃ (not CaCl₂), and distil it. [Davis & Ross *J Chem Soc* 3061 1950, rate of hydrolysis: Davis & Ross *J Chem Soc* 2706 1951, Beilstein 2 H 141, 2 I 66, 2 II 154, 2 III 303, 2 IV 214.]

1-Acetoxy-2-ethoxyethane [111-15-9] M 132.2, b 30°/3mm, 49-50°/12mm, 156-159°, d_4^{20} 0.97, n_D^{20} 1.406. Shake the ethoxy-ethane with anhydrous Na₂CO₃, filter and distil it in a vacuum. Redistillation can then be carried out at atmospheric pressure. [Dunbar & Bolstad J Org Chem 21 1041 1956, Beilstein 2 IV 214.]

1-Acetoxy-2-methoxyethane [110-49-6] M 118.1, b 30% mm, 40-41% 12mm, 140-144% form, d_4^{20} 1.009, n_D^{20} 1.4011. Shake the methoxy-ethane with anhydrous Na₂CO₃, filter and distil it in a vacuum. Redistillation can be then be carried out at atmospheric pressure. [Dunbar & Bolstad J Org Chem 21 1041 1956, Beilstein 2 IV 214.]

S-(-)-2-Acetoxypropionyl chloride [36394-75-9] M 150.6, b 51-53°/11mm, d_4^{20} 1.19, n_D^{20} 1.423, $[\alpha]_D^{27}$ -33°, (c 4, CHCl₃), $[\alpha]_{546}^{20}$ -38° (c 4, CHCl₃). It is moisture sensitive and is hydrolysed to the corresponding acid. Check the IR spectrum. If the OH band above 3000cm⁻¹ is too large and broad then the mixture should be refluxed with pure acetyl chloride for 1hour, evaporated and distilled under reduced pressure. [Julia & Sans J Chromatographic Sci 17 651 1979, Dolittle & Heath J Org Chem 49 5041 1984, Beilstein 3 II 189.]

S-Acetoxysuccinic anhydride [59025-03-5] M 158.1, m 58° (RS 81.5-82.5°, 86-87°), $[\alpha]_D^{20}$ -26.0° (c 19, Me₂CO), $[\alpha]_D^{20}$ -28.4° (c 13, Ac₂O). Recrystallise it from Ac₂O and dry it in a vacuum over KOH, or by washing it with dry Et₂O due to its deliquescent nature. [Jones J Chem Soc 788 1933, Henrot et al. Synth Commun 16 183 1986, Shiuey et al. J Org Chem 52 1040 1988, RS: Cohen et al. J Am Chem Soc 88 5306 1966.]

Acetylacetone (2,4-pentanedione) [123-54-6] M 100.1, m -23°, 45°/30mm, b 140.4°/atm, d^{30.2} 0.9630, n^{18.5} 1.45178, pK₁²⁵ -5.0 (enol), -6.6 (keto), pK₂²⁵ 8.95. Small amounts of acetic acid are removed by shaking with small portions of 2M NaOH until the aqueous phase remains faintly alkaline. The sample, after washing with water, is dried with anhydrous Na₂SO₄, and distilled through a modified Vigreux column (p 11) Cartledge *J Am Chem Soc* 73 4416 1951]. An additional purification step is fractional crystallisation from the liquid. Alternatively, there is less loss of acetylacetone if it is dissolved in four volumes of *benzene and the solution is shaken three times with an equal volume of distilled water (to extract acetic acid): the *benzene is then removed by distillation at 43-53° and 20-30mm through a helices-packed column. It is then refluxed over P₂O₅ (10g/L) and fractionally distilled under reduced pressure. The distillate (sp conductivity 4 x 10⁻⁸ ohm⁻¹cm⁻¹) is suitable for polarography [Fujinaga & Lee *Talanta* 24 395 1977]. To recover used acetylacetone, metal ions are stripped from the solution at pH 1 (using 100mL 0.1M H₂SO₄/L of acetylacetone). The acetylacetone is then washed with (1:10) ammonia solution (100mL/L) and with distilled water (100mL/L, twice), then treated as above. It complexes with Al, Be, Ca, Cd, Ce , Cu, Fe²⁺, Fe³⁺, Mn, Mg, Ni, Pb and Zn. [*Beilstein* **1** H 777, **1** I 401, **1** II 831, **1** III 3113, **1** IV 3662.]

Acetyl bromide [506-96-7] M 123.0, b 76-77°, d_4^{20} 1.65. Boil acetyl bromide with PBr₃/Ac₂O for 1hour, then distil the latter off and redistil it. Store it dry. [Burton & Degering *J Am Chem Soc* 62 227 1940, *Beilstein* 2 IV 398.] LACHRYMATORY.

2-Acetylbutyrolactone [517-23-7] **M** 128.1, **b** 105% 5mm, 120-123% 11mm, 142-143% 30mm, d_4^{20} 1.1846, n_D^{20} 1.459. Purify the lactone by distillation, which will convert any free acid to the lactone, alternatively dissolve it in Et₂O, wash well with 0.5N HCl, dry the organic layer and distil it. Its solubility in H₂O is 20% v/v. The 2,4-dinitrophenylhydrazone forms orange needles from MeOH, **m** 146°. The lactone hydrolyses in mineral acid to 2-acetyl-4-hydroxybutyric acid which can be converted to the di-n-propylamine salt with **m** 68-70°. The lactone is a **SKIN IRRITANT**. [Matsuhawa Yakugaku Zasshi (J Pharm Soc Jpn) **62** 417 1942, Willman & Schinz Helv Chim Acta **35** 2401 1952, Beilstein **17/11** V 16.]

Acetyl chloride [75-36-5] M 78.5, b 52°, d_4^{20} 1.1051, n_D^{20} 1.38976. Reflux acetyl chloride with PCl₅ for several hours to remove traces of acetic acid, then distil it. Redistil it from one-tenth its volume of dimethylaniline or quinoline to remove free HCl. A.R. quality is freed from HCl by pumping it for 1hour at -78° and distilling it into a trap at -196°. [*Beilstein* 2 IV 395.] LACHRYMATORY.

Acetylene [74-86-2] M 26.0, m -80.8°, b -84°, pK^{25} ~25. If very impure, acetylene should be purified by successive passage through spiral wash bottles containing, in this order, saturated aqueous NaHSO₄, H₂O, 0.2M iodine in aqueous KI (two bottles), sodium thiosulfate solution (two bottles), alkaline sodium hydrosulfite with sodium anthraquinone-2-sulfonate as indicator (two bottles), and 10% aqueous KOH solution (two bottles). The gas is then passed through a Dry-Ice trap and two drying tubes, the first containing CaCl₂, and the second, Dehydrite [Mg(ClO₄)₂] [Conn et al. J Am Chem Soc 61 1868 1939]. Acetone vapour can be removed from acetylene by passage through H₂O, then conc H₂SO₄, or by passage through two gas traps at -65° and -80°, conc H₂SO₄ and a soda lime tower, a tower of 1-mesh Al₂O₃ then through H₂SO₄ [Reichert & Nieuwland Org Synth Coll Vol I 229 1941, Wiley Org Synth Coll Vol III 853 1955, Jones & Whiting Org Synth Coll Vol IV 793 1963]. Sometimes it contains acetone and air. These can be removed by a series of bulb-to-bulb distillations, e.g. a train consisting of a conc H₂SO₄ trap and a cold EtOH trap (-73°), or passage through H₂O and H₂SO₄, then over KOH and CaCl₂. [See Brandsma Preparative Acetylenic Chemistry, 1st Edn Elsevier 1971 p15, for pK, ISBN 0444409475, 2nd Edn Elsevier 1988, ISBN 0444429603, and below for sodium acetylide.] It is also available commercially as 10ppm in helium, and several concentrations in N₂ for instrument calibration. [Beilstein 1 IV 939.]

Sodium acetylide [1066-26-8] M 48.0, is prepared by dissolving Na (23g) in liquid NH₃ (1L) and bubbling acetylene until the blue color is discharged (ca 30minutes) and evaporated to dryness [Saunders *Org Synth* Coll Vol **III** 416 1955], and is available commercially as a suspension in xylene/light mineral oil. [See entry in "Metal-organic Compounds", Chapter 5.]

Acetylenedicarboxamide (Aquamycin, Cellocidin) [543-21-5] M 112.1, m 216-218°(dec), 219-221°(dec). Acetylenedicarboxamide crystallises from MeOH and H₂O [m 190-192°(dec) as *hemihydrate*]. When prepared from the ester + NH₃ it has m 213°(dec). Also a melting point of 290-292°(dec) has been reported. [Saggimo J Org Chem 22 1171 1857, Kharash et al. J Org Chem 10 392 1945, Blomquist & Winslow J Org Chem 10 156 1945, Beilstein 2 I 317, 2 III 1995, 2 IV 2295.]

Acetylenedicarboxylic acid (butynedioic acid) [142-45-0] M 114.1, m 179°(anhydrous), pK¹⁹₁ 1.04, pK¹⁹₂ 2.50. The acid is soluble in Et₂O and crystallises from Et₂O/pet ether (m 183-183.5°), or H₂O as the *dihydrate* which dehydrates in a desiccator over conc H₂SO₄ in a vacuum. The *dipicrate* crystallises from aqueous ether. For the mono K salt see entry in "Metal-organic Compounds", Chapter 5. [Abbott et al. Org Synth Coll Vol II 10 1943, Huntress et al. Org Synth Coll Vol IV 329 1963, Beilstein 2 H 801, 2 I 317, 2 II 670, 2 III 1991, 2 IV 2290.]

N-Acetylethylenediamine [1001-53-2] M 102.1, m 50-51°, 51°, b 128°/3mm, 125-130°/5mm, 133-139°/27mm, pK²⁵ 9.28. The acetyl-diamine has been fractionated under reduced pressure and fraction b 125-130°/5mm was refractionated, fraction b 132-135°/4mm was collected and solidified. It is a low melting *hygroscopic* solid which can be recrystallised from dioxane/Et₂O. It is soluble in H₂O, Et₂O and *C₆H₆. The *p*-toluenesulfonate salt can be recrystallised from EtOH/EtOAc (1:8), has m 125-126° but the free base cannot be recovered from it by basifying and extracting with CH₂Cl₂. The *picrate* has m 175° (from EtOH) [Aspinall J Am Chem Soc **63** 853 1941, Hall J Am Chem Soc **78** 2570 1956]. [Beilstein **4** IV 1193.]

Acetyl fluoride [557-99-3] M 62.0, b 20.5% 760mm, d_4^{20} 1.032. Purify acetyl fluoride by fractional distillation. It attacks glass and is sold in steel cylinders. [*Beilstein* 2 H 172, 2 I 79, 2 II 175, 2 III 385, 2 IV 393.] TOXIC and LACHRYMATORY.

Acetyl iodide [507-02-8] M 170.0, b 39.5-40%/64mm. 108%/760mm. Purify it by fractional distillation. [Beilstein 2 H 174, 2 I 80, 2 II 177, 2 III 393, 2 IV 399.] TOXIC and LACHRYMATORY.

3-(S-Acetylmercapto)isobutyric acid [RS 33325-40-5] **M 162.2, m 40-40.5°, b** ca **120°/1.25mm, pK**_{Est} ~4.0. Distil the acid under high vacuum and recrystallise it from C_6H_6 . [Fredga & Mastersson Chem Abstr 38 3616 1944.]

Acetyl methanesulfonate [5539-53-7] M 170.2, b $<120^{\circ}/<0.01$ mm. The main impurity is methanesulfonic acid. Reflux it with redistilled acetyl chloride for 6-10 hours, i.e. until no further HCl is absorbed in a trap, and exclude moisture. Distil off excess of AcCl and carefully distil it below 0.001mm with the bath temperature below 120° to give the anhydride as a pale yellow oil which solidifies below 0°. Below $\sim 130^{\circ}$ it gives the disulfonic anhydride, and above $\sim 130^{\circ}$ polymers are formed, and it is used for cleaving ethers [Preparation, IR, NMR: Karger & Mazur J Org Chem 36 528, 532 1971]. [Beilstein 2 H 166, 2 III 349.]

3-(Acetylthio)propionic acid [41345-70-4] M 148.2, m 48-52°, 52-54°, b 127-128°/3mm, pK_{Est} ~4.2. Purify the propionic acid by distillation in a vacuum. It has λ_{max} at 231nm (ε 4200). It is a potential enzyme inhibitor [Noda et al. J Am Chem Soc 75 914 1953, Clegg et al. J Am Chem Soc 121 5319 2004, Clegg & Hutchinson Angew Chem, Int Edn 43 3716 2005]. [Beilstein 3 III 551, 3 IV 731.]

N-Acetylthiourea [591-08-2] M 118.2, m 164-165°, 166-168°. Recrystallise the thiourea from AcOH; the solid is washed with Et_2O and dried in air then at 100°. [Zahradnik *Collect Czech Chem Commun* 24 3678 1959, *Beilstein* 3 IV 354.]

cis-Aconitic acid [585-84-2] M 174.1, m 126-129°(dec). Crystallise the *cis*-acid from water by cooling (solubility is 1g in 2mL of water at 25°). Dry it in a vacuum desiccator. [*Beilstein* 2 IV 2405.]

trans-Aconitic acid (1,2,3-propenetriscarboxylic acid) [4023-65-8] M 174.1, m 195°(dec), m 198-199°(dec), 204-205°(dec), pK_1^{25} 2.81, pK_2^{25} 4.46. Purify *trans*-acid by dissolving it in AcOH (77g/150mL), filtering and cooling. The acid separates (55g) as colourless needles. A further quantity (10g) can be obtained by reducing the volume of the filtrate. The acid is dried in air then in a vacuum desiccator over NaOH. The acid can be recrystallised from Me₂CO/CHCl₃. The highest melting point is obtained with the very dry acid. A melting point of 209° was obtained on a Dennis bar [Dennis & Shalton J Am Chem Soc 52 3128 1930, Bruce Org Synth Coll Vol II 12 1943]. [Beilstein 2 IV 2405.]

cis-Aconitic anhydride [6318-55-4] M 156.1, m 75°, 76-78°, 78-78.5°. Reflux it in xylene (7.5 parts) for 1hour, then evaporate and recrystallise the residue from C_6H_6 . Alternatively, reflux it in Ac₂O, evaporate and recrystallise from C_6H_6 . It is sensitive to moisture. [IR: Groth & Dahlén Acta Chem Scand 21 291 1967, Malachowski & Maslowski Chem Ber 61 2523 1928, NMR: Gawron & Mahajan Biochemistry 5 2335 1966.] [Beilstein 18/8 V 530.]

Acrolein (acraldehyde, 2-propenal) [107-02-8] M 56.1, fp -86.95°, b 52.69°/760mm (dt/dp 0.0355°/mm, d_4^{20} 0.839, n^{25} 1.3992. Purify acrolein by fractional distillation, under nitrogen, drying with anhydrous CaSO₄ and then distilling under vacuum. Blacet, Young and Roof [*J Am Chem Soc* 59 608 1937] distilled it under nitrogen through a 90cm column packed with glass rings. To avoid formation of diacryl, the vapour is passed through an ice-cooled condenser into a receiver cooled in an ice-salt mixture and containing 0.5g catechol. The acrolein is then distilled twice from anhydrous CuSO₄ at low pressure, catechol being placed in the distilling flask and the receiver to avoid polymerization. [Alternatively, hydroquinone (1% of the final solution) can be used.] [*Beilstein* **1** IV 3435.]

Acrolein diacetyl acetal (1,1-diacetoxy-2-propene). [869-29-4] M 158.2, b 75%/10mm, 184%/atm, d_4^{20} 1.08, n_D^{20} 1.4203. Check the NMR spectrum. If it is not satisfactory, then add Ac₂O and

a drop of conc H_2SO_4 and heat at 50° for 10minutes. Then add anhydrous NaOAc (*ca* 3g/ 100g of liquid) and fractionate. Note that it forms an azeotrope with H_2O , so do not add H_2O at any time. It is a **highly flammable and TOXIC** liquid; keep away from the skin. [Smith et al. *J Am Chem Soc* **73** 5282 1951, *Beilstein* **2** H 154, **2** I 72, **2** III 356, **2** IV 291.]

Acrolein diethyl acetal (3,3-diethoxy-I-propene or 1,1-diethoxy2-propene) [3054-95-3] M 130.2, b 120-125°/atm, n_D^{20} 1.398-1.407. Add Na₂CO₃ (*ca* 3.5%) and distil it using an efficient column, or better use a spinning band column. [Witzemann et al. Org Synth Coll Vol II 17 1943, Beilstein 1 H 727, 1 I 378, 1 III 2960, 1 IV 3437.]

Acrolein dimethyl acetal (1,1-dimethoxy-2-propene) [6044-68-4] M 102.1, b 87.5-88%/750mm, 89-90%/760mm, d²⁰₄ 0.86, n²⁰_D 1.3962. Fractionally distil it (after adding 0.5g of hydroquinone) under reduced pressure through an all glass column (40cm x 2.5 cm) packed with glass helices and provided with a heated jacket and a total reflux variable take-off head. Stainless steel Lessing rings (1/8 x 1/8 in) or gauze have also been used as packing. It is a highly flammable and TOXIC liquid; keep away from the skin. [Hall & Stern J Chem Soc 2657 1955, Beilstein 1 IV 3437.]

Acrolein semicarbazone [6055-71-6] M 113.1, m 171°. It crystallises from water in needles. [Auwers & Heineke Justus Liebigs Ann Chem 458 202 1927, Beilstein 1 II 785.]

Acrylamide [79-06-1] M 71.1, m 84°, b 125°/25 mm. Crystallise acrylamide from acetone, chloroform, ethyl acetate, methanol or *benzene/chloroform mixture, then vacuum dry and store it in the dark under vacuum. Recrystallise it from CHCl₃ by dissolving 200g in 1L, heating to boiling and filtering without suction in a warmed funnel through Whatman 541 filter paper; allowing to cool to room temperature and keeping at -15° overnight. The crystals are collected with suction in a cooled funnel and washed with 300mL of cold MeOH. The crystals are air-dried in a warm oven. [Dawson et al. *Data for Biochemical Research*, Oxford Press 1986 p. 449, *Beilstein* 2 IV 1471.]

CAUTION: Acrylamide is extremely **TOXIC** (neurotoxic), and precautions must be taken to avoid skin contact or inhalation. Use gloves and handle in a well-ventilated fume cupboard.

Acrylic acid [79-10-7] M 72.1, m 13°, b 30°/3mm, 70°/50mm, d_4^{20} 1.051, pK²⁵ 4.25. It can be purified by steam distillation, or vacuum distillation through a column packed with copper gauze to inhibit polymerisation. (This treatment also removes inhibitors such as methylene blue that may be present.) Azeotropic distillation of the water with *benzene converts aqueous acrylic acid to the anhydrous material. [*Beilstein* 2 H 397, 2 I 186, 2 II 383, 2 III 1215, 2 IV 1455.]

Acrylonitrile [107-13-1] M 53.1, b 78°, d_4^{20} 0.806, n^{25} 1.3886. Wash acrylonitrile with dilute H₂SO₄ or dilute H₃PO₄, then with dilute Na₂CO₃ and water. Dry it with Na₂SO₄, CaCl₂ or (better) by shaking with molecular sieves. Fractionally distil it under N₂. It can be stabilised by adding 10ppm *tert*-butyl catechol. Immediately before use, the stabilizer can be removed by passage through a column of activated alumina (or by washing with 1% NaOH solution if traces of water are permissible in the final material), followed by distillation. Alternatively, shake it with 10% (w/v) NaOH to extract inhibitor, and then wash it in turn with 10% H₂SO₄, 20% Na₂CO₃ and distilled water. Dry for 24hours over CaCl₂ and fractionally distil under N₂ taking fraction boiling at 75.0-75.5°C (at 734mm). Store it with 10ppm *tert*-butyl catechol. Acrylonitrile is distilled off when required. [Burton et al. *J Chem Soc*, *Faraday Trans 1* **75** 1050 *1979*, *Beilstein* **2** IV 1473.]

Acryloyl chloride [814-68-6] M 90.5, b 72-749/740mm, 749/760mm, d_4^{20} 1.1127, n_D^{20} 1.4337. Distil acryloyl chloride rapidly through an efficient 25cm column after adding 0.5g of hydroquinone/200g of chloride, and then redistil it carefully at atmospheric pressure preferably in a stream of dry N₂. [Stempel et al. J Am Chem Soc 72 72, Gresham et al. J Am Chem Soc 72 2299 1950, Beilstein 2 IV 1471.] The liquid is an irritant and is TOXIC.

Adipic acid [124-04-9] M 146.1, m 154°, b 159.5°/0.1mm, 191°/5mm, 205.5°/10mm, 222.5°/20mm, 337.5°/760mm, pK_1^{20} 4.43, pK_2^{20} 5.51; pK_1^{25} 4.44, pK_2^{25} 5.45; pK_1^{40} 4.54, pK_2^{40} 5.59. For use as a volumetric standard, adipic acid is crystallised once from hot water with the addition

of a little animal charcoal, dried at 120° for 2hours, then recrystallised from acetone and again dried at 120° for 2hours. Other purification procedures include crystallisation from ethyl acetate and from acetone/petroleum ether, fusion followed by filtration and crystallisation from the melt, and preliminary distillation under vacuum. [*Beilstein* **2** IV 1956.]

Adiponitrile (1,4-dicyanobutane) [111-69-3] M 108.14, m 2.4°, b 123°/0.5mm, 153°/6mm, 175°/26mm, 184°/30mm, 295°/atm, d_4^{20} 0.9396, n_D^{20} 1.4371. Reflux adiponitrile over P_2O_5 and POCl₃, and fractionally distil it, then fractionate it through an efficient column. The liquid is TOXIC and is an IRRITANT. [Braun & Rudolph Chem Ber 67 1770 1934, Reppe et al. Justus Liebigs Ann Chem 596 127 1955, Gagnon et al. Can J Chem 34 1662 1956, Copley et al. J Am Chem Soc 62 228 1940, Beilstein 2 IV 1947.]

Agaricic acid [1-(*n*-hexadecyl)citric acid] [666-99-9] M 416.6, m 142°(dec), $[\alpha]_D$ -9.8° (in NaOH), pK_{Est(1)} ~2.7, pK_{Est(2)} ~4.2, pK_{Est(3)} ~5.5. Crystallise the acid from EtOH. The *trihydrazide* has m 170°(dec) (from EtOH). [Brandänge et al. Acta Chem Scand B 31 307 1977, Beilstein 3 I 186, 3 II 372, 3 III 1109, 3 IV 1284.]

Agmatine sulfate [5-guanidinopent-1-ylamine sulfate] [2482-00-0] M 228.3, m 231°, pK_{Est(1)} ~9.1, pK_{Est(2)} ~13.0. Crystallise the salt from aqueous MeOH. The *free base* has m 101.5-103°, the *gold chloride hydrochloride* crystallises from H₂O with m 223°(dec), and the *picrate* has m 236-238°. [Odo J Chem Soc Jpn 67 132 1946, Beilstein 4 I 420, 4 II 703, 4 III 575, 4 IV 1291.]

Aldol (3-hydroxybutanal) [107-89-1] M 88.1, b 80-81°/20mm, d¹⁶ 1.109. An ethereal solution of aldol is washed with a saturated aqueous solution of NaHCO₃, then with water. The non-aqueous layer is dried with anhydrous CaCl₂ and distilled immediately before use. The fraction, b 80-81°/20mm, is collected as a thick liquid which decomposes at 85°/atm. It is a sedative and a hypnotic but is used in perfumery. [Mason et al. J Am Chem Soc 76 2255 1954]. [Beilstein 1 H 824, 1 I 419, 1 II 868, 1 III 3195, 1 IV 3984.]

Aleuritic acid [*RS-erythro-9*,10,16-trihydroxyhexadecanoic acid] [533-87-9] M 304.4, m 100-101°, pK Est ~4.9. Crystallise the acid from aqueous EtOH. The *hydrazide* crystallises from EtOH and has m 139-140°. [*Beilstein* 3 III 901.]

Aliquat 336 (methyltricaprylylammonium chloride, tri-*n*-octylmethylammonium chloride) [5137-55-3, a replacement product, Aliquat 128, has 63393-96-4] M 404.2, d_4^{20} 0.884. A 30% (v/v) of Aliquat 336 solution in *benzene is washed twice with an equal volume of 1.5M HBr. [Petrow & Allen, Anal Chem 33 1303 1961.] It is purified by dissolving 50g in CHCl₃ (100mL) and shaking with 20% NaOH solution (200mL) for 10minutes, and followed by 20% NaCl (200mL) for 10minutes. It is then washed with a small volume of H₂O and filtered through a dry filter paper [Adam & Pribil Talanta 18 733 1971].

n-Alkylammonium chloride n=2,4,6. Recrystallise them from EtOH or an EtOH/Et₂O mixture. [Hashimoto & Thomas J Am Chem Soc 107 4655 1985, Chu & Thomas J Am Chem Soc 108 6270 1986.]

n-Alkyltrimethylammonium bromide n=10,12,16. Recrystallise them from an EtOH/Et₂O mixture. [Hashimoto & Thomas *J Am Chem Soc* 107 4655 *1985*.]

Allene (propadiene) [463-49-0] M 40.1, m -146°, b -32°. Freeze allene in liquid nitrogen, evacuate, then thaw out. This cycle is repeated several times, then the allene is frozen in a methylcyclohexane/liquid nitrogen bath and pumped for some time. It has also been purified by HPLC. [Cripps & Kiefer Org Synth 42 12 1962, Beilstein 1 IV 966.]

neo-Alloocimene (allocimene B, *tc*-2,6-dimethyl-2,4,6-octatriene) [7216-56-0, *cis/trans mixt* 673-84-7, *trans/trans 3016-19-1*] M 136.2, b 80°/13mm, 196-198°/atm, d_4^{20} 0.8161, n_D^{20} 1.5437. Fractionally distil allocimene through an efficient column and repeatedly distil it at 15mm through a long column of glass helices, with a final distillation from sodium under nitrogen. It should be stabilised with α 0.1% of hydroquinone. UV: λ_{max} nm(ϵ M⁻¹cm⁻¹) 290 (32 500), 279 (41 900) and 278 (42,870). [Alder et al.

Justus Liebigs Ann Chem 609 1 1957, O'Connor & Goldblatt Anal Chem 26 1726 1954, Beilstein 1 IV 1106.]

Allyl acetate [591-87-7] M 100.1, b 103°, d_4^{20} 0.928, n_D^{17} 1.4004, n_D^{20} 1.4040. The ester is freed from peroxides by standing with crystalline ferrous ammonium sulfate, then washed with 5% NaHCO₃, followed by saturated CaCl₂ solution. Dry it with Na₂SO₄ and fractionally distil it in an all-glass apparatus. **FLAMMABLE LIQUID.** [*Beilstein* 2 H 136, 2 IV 180.]

Allylacetic acid (pent-4-enoic acid) [591-80-0] M 100.1, m -22.5°, b 83-84°/12mm, 90°/15mm, 187-189°/~760mm, d_4^{20} 0.9877, n_D^{20} 1.4280, pK²⁵ 4.68. Distil the acid through an efficient column (allyl alcohol has b 95-97°). It is characterised as the S-*benzylisothiouronium salt* m 155-158° (from 96% EtOH, or aqueous EtOH) [Friediger & Pedersen *Acta Chem Scand* 9 1425 1955], and the 4*bromophenacyl ester* has m 59.5-60.5° (from 90% EtOH). Its solubility at 18° in solvents is: pyridine (57%), AcOH (7.3%), MeOH (5.4%), Me₂CO (3.2%), MeOAc (2.8%), EtOH (5.4%), H₂O (1.8%), PrOH (1.6%), isoPrOH (0.27%). [Brown & Berkowski J Am Chem Soc 74 1894 1952, Beilstein 2 IV 1542.]

Allyl alcohol [107-18-6] M 58.1, b 98°, d_4^{20} 0.857, n_D^{20} 1.4134. It can be dried with K₂CO₃ or CaSO₄, or by azeotropic distillation with *benzene followed by distillation under nitrogen. It is difficult to obtain it free of peroxide. It has also been refluxed with magnesium and fractionally distilled [Hands & Norman Ind Chem 21 307 1945]. [Beilstein 1 IV 2079.]

Allylamine [107-11-9] M 57.1, b 52.9°, d_4^{20} 0.761, n_D^{20} 1.42051, pK²⁵ 9.49. Purify allylamine by fractional distillation from calcium chloride. It causes sneezing and tears. [*Beilstein* 4 IV 1057.]

Allyl bromide [106-95-6] M 121, b 70°, d_4^{20} 1.398, n_D^{20} 1.46924. Wash the bromide with NaHCO₃ solution then distilled water, dry (CaCl₂ or MgSO₄), and fractionally distil. Protect it from strong light. [*Beilstein* 1 IV 754.] LACHRYMATORY, HIGHLY TOXIC and FLAMMABLE.

Allyl butyl ether [3739-64-8] M 114.2, b 64-65% 120mm, 117.8-118% 763mm, d²⁰₄ 1.4057, n²⁰_D 0.7829. Check the IR for the presence of OH str vibrations; if so then wash it well with H₂O, dry it with CaCl₂ and distil it through a good fractionating column. The liquid is an irritant. [Watanabe et al. J Org Chem 23 1666 1958, Schueler & Hanna J Am Chem Soc 73 3528 1951, Beilstein 1 IV 2084.]

Allyl chloride [107-05-1] M 76.5, b 45.1°, d_4^{20} 0.939, n_D^{20} 1.4130. Likely impurities include 2chloropropene, propyl chloride, *iso*-propyl chloride, 3,3-dichloropropane, 1,2-dichloropropane and 1,3dichloropropane. Purify it by washing with conc HCl, then with Na₂CO₃ solution, dry it with CaCl₂, and distil it through an efficient column [Oae & Vanderwerf J Am Chem Soc 75 2724 1953]. [Beilstein 1 IV 738.] LACHRYMATORY, TOXIC.

Allyl chloroformate [2937-50-0] M 120.5, b 56°/97mm, 109-110°/atm, d $_{4}^{20}$ 1.14, n $_{D}^{20}$ 1.4223. Wash the chloroformate several times with cold H₂O to remove alcohol and HCl and dry over CaCl₂. It is **important** to dry well before distilling *in vacuo*. Note that the receiver should be cooled in ice to avoid loss of distillate into the trap and vacuum pump. The liquid is **highly TOXIC and flammable**. [Fierz-David & Müller J Chem Soc 125 26 1924, Strain et al. J Am Chem Soc 72 1254 1950, Beilstein 3 IV 29.]

Allyl cyanide (3-butene nitrile) [109-75-1] M 67.1, b -19.6%/1.0mm, 2.9%/5mm, 14.1%/5mm, 26.6%/20mm, 48.8%/60mm, 60.2%/100mm, 98%/400mm, 119%/760mm, d_4^{20} 0.8341, n_D^{20} 1.406. The nitrile should be redistilled at atmospheric pressure, then distilled under a vacuum to remove final traces of HCN from the residue. Note that the residue from the first distillation may be difficult to remove from the flask and should be treated with conc HNO₃ then H₂O and finally hot EtOH (CARE). Allyl cyanide has an onion-like odour and is stable to heat. It forms a complex with AlCl₃ (2:2) m 41°, and (3:2) m 120°. All operations should be done in an efficient fume hood as the liquid is flammable, may contain cyanide and is HIGHLY TOXIC. [Supniewski et al. Org Synth Coll Vol I 46 1941, Beilstein 2 IV 1491.]

Allyl disulfide (diallyl disulfide) [2179-57-9] M 146.3, b 58-59%/5mm, 79-81%/20mm, 138-139%/atm, d_4^{20} 1.01, n_D^{20} 1.541. Purify the disulfide by fractional distillation until the molar refractivity is in uniformly good agreement with the calculated value [Small et al. *J Am Chem Soc* 69 1710 1947]. It has also been purified by gas chromatography [retention times: Carson & Wong *J Org Chem* 24 175 1959, UV: Koch *J Chem Soc* 395 1949]. It is present in garlic. [*Beilstein* 1 IV 2098.]

Allyl iodide (3-iodopropene) [556-56-9] M 167.7, b 103%/760mm, d¹² 1.848. Purify allyl iodide in a dark room by washing with aqueous Na₂SO₃ to remove free iodine, then dry with MgSO₄ and distil at 43%/90 mm or at atmospheric pressure to give a very pale yellow liquid. (This material, dissolved in hexane, can be stored in a light-protected tight container at -5% for up to three months before free iodine could be detected, by its colour in the solution.) Store it away from light. [Sibbett & Noyes *J Am Chem Soc* 75 761 1953, *Beilstein* 1 H 202, 1 I 84, 1 II 172, 1 III 714, 1 IV 761.]

Allylisocyanate [1476-23-9] M 83.1, b 84°/atm, 87-89°/atm, d_4^{20} 0.94, n_D^{20} 1.417. Purify it as for allylisothiocyanate below and it is TOXIC. [*Beilstein* 4 IV 1081.]

Allylisothiocyanate [57-06-7] M 99.2, m -80°, b 84-85°/80mm, 150°/760mm, 151°/atm, d_4^{20} 1.017, n_D^{20} 1.5268. Fractionate the isothiocyanate using an efficient column, preferably in a vacuum. It is a yellow **pungent**, irritating and TOXIC (suspected CARCINOGEN) liquid. Store it in a sealed tube under N₂. The *N*'-benzylthiourea derivative has m 94.5° (from aqueous EtOH) [Weller et al. *J Am Chem Soc* 74 1104 1952]. [Beilstein 4 IV 1081.]

N-Allylthiourea (thiosinamine) [109-57-9] M 116.2, m 70-73°, 78°. Recrystallise it from H₂O. It is soluble in 30 parts of cold H₂O, and it is soluble in EtOH but insoluble in C_6H_6 . It has also been recrystallised from acetone, EtOH or ethyl acetate, after decolorising with charcoal. The white crystals have a bitter taste with a slight garlic odour and are **TOXIC**. An unstable crystalline form is obtained by recrystallising from the melt. [McCrone et al. Anal Chem 21 421 1949, Beilstein 4 IV 1072.]

N-Allylurea [557-11-9] M 100.1, m 85°. It crystallises from EtOH, EtOH/ether, EtOH/chloroform or EtOH/toluene. [*Beilstein* 4 IV 1070.]

Aminoacetaldehyde dimethyl acetal (2,2-dimethoxyethylamine) [22483-09-6] M 105.1, m $<-78^{\circ}$, b 139.5°/768mm, 137-139°/atm, d²⁰₄ 0.9676 n²⁰_D 1.4144. Dry the acetal over KOH pellets and distil it through a 30cm vacuum jacketed Vigreux column (p 11). [Lawson J Am Chem Soc 75 3398 1953, Erickson et al. J Am Chem Soc 77 6640 1955, Beilstein 4 IV 1918.]

Aminoacetonitrile bisulfate [151-63-3] M 154.1, m 125°(dec), pK^{25} 5.34 (NH₂). Recrystallise the hydrogensulfate (1:1) from EtOH/Et₂O (hygroscopic leaflets). The *Sulfate* (2:1) [5466-22-8] crystallises as flat prisms from H₂O/EtOH with m 166°(dec). [Stephen *J Chem Soc* 871 1931, Anslow & King *J Chem Soc* 2465 1929, *Beilstein* 4 III 1120.]

Aminoacetonitrile hydrochloride [6011-14-9] M 92.5, m 166-167°, 172-174°, pK²⁵ 5.24 (NH₂). The salt recrystallises from dilute EtOH as *hygroscopic* leaflets. It is best to crystallise it from absolute EtOH/Et₂O (1:1) and then recrystallise it from absolute EtOH. The melting point recorded ranges from 144° to 174°. The *free base* has b 58°/15mm with partial decomposition. [Klages J Prakt Chem [2] 65 189 1902, Mange J Am Chem Soc 56 2197 1934, Goldberg & Kelly J Chem Soc 1371 1947, Beilstein 4 H 344, 4 I 468, 4 II 783, 4 III 1120, 4 IV 2363.]

2-Amino-1-butanol $[RS(\pm) 96-20-8, R(-) 5856-63-3, S(+) 5856-62-2]$ **M 89.1, m ~ -2°, b 78-80°/10mm and 179-183°/atm for (±), 172-174°/atm for (+) or (-), pK⁰ 10.353, pK²⁰ 9.672, pK⁶⁰ 8.555. They are purified by shaking with solid NaOH, filtering and distilling through a short column. The** *oxalate* **of the racemate has m** 176°. They are strong bases and should be stored under N₂ in the absence of CO₂. The *enantiomers* have $[\alpha]_{D}^{20} \pm 12.5^{\circ}$ (c 2, EtOH). [Johnson & Degering *J Org Chem* 87 *1943*, Nagao et al. *J Org Chem* 51 2392 *1986*, Santaniello et al. *J Chem Soc, Perkin Trans 1* 919 *1985*, *Beilstein* **4** H 291, **4** IV 1705.]

2-Aminoethanol (ethanolamine) [141-43-5] M 61.1, f 10.5°, b 72-73°/12mm, 171.1°/760mm, d_4^{20} 1.012, n_D^{20} 1.14539, pK²⁵ 9.51. It decomposes slightly when distilled at atmospheric pressure, with the formation of conducting impurities. Fractional distillation at about 12mm pressure is most satisfactory. After distillation, 2-aminoethanol is further purified by repeated washing with ether and crystallising from EtOH (at low temperature). After fractional distillation in the absence of CO₂, it is twice crystallised by cooling, followed again by distillation. It is *hygroscopic*, and absorbs CO₂ from the atmosphere. [Reitmeier et al. J Am Chem Soc 62 1943 1940.] It can be dried by azeotropic distillation with dry *benzene. [Beilstein 4 IV 1406.]

2-Aminoethanol hydrochloride [2002-24-6] **M 97.6, m 75-77°.** Recrystallise the salt from EtOH. It is deliquescent; store it dry. [*Beilstein* **4** IV 1406.]

2-Aminoethyl hydrogen sulfate (sulfuric acid mono-2-aminoethyl ester) [926-39-6] M 141.1, m 285-287^o (chars at 275^o). Crystallise the sulfate ester from water or dissolve it in water and add EtOH. [*Beilstein* 4 III 1414.]

S-(2-Aminoethyl)isothiouronium bromide hydrobromide [56-10-0] **M 281.0, m 194-195°**. Crystallise the salt from absolute EtOH/ethyl acetate or MeOH. Store dry as it is *hygroscopic* in a humid atmosphere. It is a radioprotective agent. When refluxed in EtOH for 16hours or H₂O for 30minutes, it decomposes to 2-amino-4(5H)-thiazoline hydrobromide which on recrystallisation from isoPrOH/EtOAc has m 175-176° [Doherty et al. J Am Chem Soc **79** 5667 1957].

(2-Aminoethyl)trimethylammonium chloride hydrochloride (chloramine chloride hydrochloride) [3399-67-5] M 175.1, m 268°(dec). Crystallise the hydrochloride from EtOH. The material is very soluble in H₂O. [*Beilstein* 4 II 690.]

Aminomalononitrile toluene-4-sulfonate [5098-14-6] M 253.4, m 168-170°, 172°(dec), $pK_{Est} \sim 1.3$. It forms colourless crystals on recrystallisation from MeCN (1.8g in 100mL) using activated charcoal. Wash the crystals with dry Et₂O and dry them at 25°/1mm. Recovery is ~80%. [Ferris et al. *Org Synth* Coll Vol V 32 1973.]

2-Amino-2-methyl-1,3-propanediol [115-69-5] M 105.1, m 111°, b 151-152°/10mm, pK²⁵ **8.80.** Crystallise the diol three times from MeOH, dry in a stream of dry N₂ at room temperature, then in a vacuum oven at 55°. Store it over CaCl₂ [Hetzer & Bates J Phys Chem 66 308 1962]. [Beilstein 4 IV 1881.]

2-Amino-2-methyl-1-propanol (β -aminoisobutanol) [124-68-5] M 89.4, m 24°, 31°, b 67°/10mm, 164-166°/760mm, d_4^{20} 0.935, n_D^{20} 1.45, pK²⁵ 9.71. Purify it by distilling and fractional freezing. The *hydrochloride* [3207-12-3] has m 204°-206°. [*Beilstein* 4 III 783, 4 IV 1740.]

n-Amyl acetate (*n*-pentyl acetate) [628-63-7] M 130.2, b 149.2°, d_4^{20} 0.876, n_D^{20} 1.40228. Shake the ester with saturated NaHCO₃ solution until neutral, washed it with water, dry with MgSO₄ and distil it. The ester has also been purfied by repeated fractional distillation through an efficient column or spinning band column. [Timmermann & Hennant-Roland J Chim Phys 52 223 1955, Mumford & Phillips J Chem Soc 75 1950, ¹H NMR: Crawford & Foster Can J Phys 34 653 1956, Beilstein 2 IV 152.]

n-Amyl alcohol (1-pentanol) [71-41-0] M 88.2, b 138.1°, d¹⁵ 0.818, n²⁰_D 1.4100. Dry 1pentanol with anhydrous K₂CO₃ or CaSO₄, filter and fractionally distil it. It has also been treated with 1-2% of sodium and heated at reflux for 15hours to remove water and chlorides. Traces of water can be removed from the near-dry alcohol by refluxing it with a small amount of sodium in the presence of 2-3% *n*-amyl phthalate or succinate followed by distillation (see *ethanol*).

Small amounts of amyl alcohol have been purified by esterifying with *p*-hydroxybenzoic acid, recrystallising the ester from CS₂, saponifying with ethanolic-KOH, drying with CaSO₄ and fractionally distilling [Olivier *Recl Trav Chim Pays-Bas* **55** 1027 *1936*]. [*Beilstein* **1** IV 1640.]

tert-Amyl alcohol (2-methyl-2-butanol) [75-85-4] M 88.2, m -12°, b 102.3°, d¹⁵ 0.8135, n_D^{20} 1.4058. Reflux it with K₂CO₃, CaH₂, CaO or sodium, then fractionally distil. The near-dry alcohol is further dried by refluxing with Mg activated with iodine, as described for *ethanol*. Further purification is possible using fractional crystallisation and zone refining at <-10° or preparative gas chromatography. [*Beilstein* 1 IV 1668.]

n-Amylamine [1-aminopentane] [110-58-7] M 87.2, b 105°, d_4^{20} 0.752, pK²⁵ 10.63. Dry it by prolonged shaking with NaOH pellets, then distilling. Store it in a CO₂-free atmosphere. [Beilstein 4 IV 674.]

n-Amyl bromide (*n*-pentylbromide) [110-53-2] M 151.1, b 129.7°, d_4^{20} 1.218, n_D^{20} 1.445. Wash the bromide with conc H₂SO₄, then water, 10% Na₂CO₃ solution, again with water, dry with CaCl₂ or K₂CO₃, and fractionally distil it just before use. [Beilstein 1 IV 312.]

n-Amyl chloride (1-chloropentane) [543-59-9] M 106.6, b 107.8°, d_4^{20} 0.882, n_D^{20} 1.41177. Purify as for *sec*-amyl chloride. [*Beilstein* 1 IV 309.]

sec-Amyl chloride (1-chloro-2-methylbutane) [616-13-7] M 106.6, b 52.2°/150mm, 96-97° (100°)/760mm, d_4^{20} 0.886, n_D^{20} 1.412. Purify the chloride by stirring vigorously with 95% H₂SO₄, replacing the acid when it becomes coloured, until the layer remains colourless after 12hours stirring. The amyl chloride is then washed with saturated Na₂CO₃ solution, then distilled water, and dried with anhydrous MgSO₄, followed by filtration, and distillation through a 10-in Vigreux column (p 11). Alternatively a stream of oxygen containing 5% ozone is passed through the amyl chloride for three times as long as it takes to cause the first coloration of starch iodide paper by the exit gas. The liquid is washed with NaHCO₃ solution to hydrolyze the ozonides and remove organic acids prior to drying and fractional distillation [Chien & Willard J Am Chem Soc 75 6160 1953]. The S(+)-enantiomer has b 50-51°/140mm, 100°/760, mm, [α] $_D^{20}$ +1.64° (neat) [Brown et al. J Am Chem Soc 62 3437 1940]. [Beilstein 1 H 134, 1 I 46, 1 III 356, 1 IV 326.]

tert-Amyl chloride (2-chloro-2-methylbutane) [594-36-5] M 106.6, b 86°, d_4^{20} 0.866. Methods of purification commonly used for other alkyl chlorides lead to decomposition. Unsaturated contaminants are removed by chlorination with a small amount of chlorine in bright light, followed by distillation [Chien & Willard J Am Chem Soc 75 6160 1953]. [Beilstein 1 H 134, 1 I 46, 1 II 100, 1 III 357, 1 IV 324.]

Amylene (β -iso-amylene, 2-methyl-2-butene) [513-35-9] M 70.1, b 37-38% ~760mm, d²⁰₄ 0.663, n²⁰_D 1.387. Distil amylene and collect the distillate at low temperature. It has also been distilled from sodium. FLAMMABLE. It is available in steel cylinders and has a short shelf life. [Beilstein 1 H 211, 1 I 87, 1 II 187, 1 III 788, 1 IV 820.]

Amyl ether (dipentyl ether) [693-65-2] M 158.3, b 186.8°, d_4^{20} 0.785, n_D^{20} 1.41195. Repeatedly reflux amyl ether over sodium and distil it. [*Beilstein* 1 IV 1643.]

Arachidic (eicosanoic C_{20}) acid [506-30-9] M 312.5, m 77°, pK_{Est} ~5.0. Crystallise the C_{20} acid from absolute EtOH. [*Beilstein* 2 IV 1276.]

Arachidic alcohol (1-eicosanol C₂₀) [629-96-9] M 298.6, m 65.5° (71°), b 200°/3mm. Crystallise the C₂₀ alcohol from *benzene or *benzene/pet ether. [Beilstein 1 IV 1900.]

Azelaic acid (1,9-nonanedioic acid, heptane-1,7-dicarboxylic acid) [123-99-9] M 188.2, m 105-106°, b 225°/10mm, 256°/50mm, pK_1^{25} 4.53, pK_2^{25} 5.33. Recrystallise it from H₂O (charcoal) or thiophene-free *benzene. The acid can be dried by azeotropic distillation with toluene, the residual toluene solution is then cooled and filtered, and the precipitate is dried in a vacuum oven. It has been purified by zone refining or by sublimation onto a cold finger at 10^{-3} torr. It distils above 360° with partial formation of the anhydride. The *dimethyl ester* has m -3.9° and b 140°/8mm. [Hill & McEwen Org Synth Coll Vol II 53 1943, Beilstein 2 IV 2055.]

2,2'-Azobis(isobutyronitrile) (α,α 'bis[2-methylpropionitrile], AIBN) [78-61-1] M 164.2, m 103°(dec). Crystallise the nitrile from Et₂O, Me₂CO, CHCl₃, aqueous EtOH or MeOH. It has also been

Purification of Organic Chemicals - Aliphatic Compounds

crystallised from absolute EtOH below 40° in subdued light. Dry it under vacuum at room temperature over P₂O₅ and store it under vacuum in the dark at <-10° until required. Also crystallise it from CHCl₃ solution by addition of pet ether (b <40°). It is a radical inhibitor. [Askham et al. *J Am Chem Soc* **107** 7423 *1985*, Ennis et al. *J Chem Soc, Dalton Trans* 2485 *1986*, Inoue & Anson *J Phys Chem* **91** 1519 *1987*, Tanner *J Org Chem* **52** 2142 *1987*, *Beilstein* **4** IV 3377.]

Azomethane (dimethyldiimide) [503-28-6] M 58.1, m -78°, b 1.5°, d_0^{15} 0.981, n_D^{19} 1.3933. Purify azomethane by distillation in a vacuum line and store it in the dark at -80°. It is soluble in EtOH, Et₂O and EtOAc. It can be **EXPLOSIVE.** [*Beilstein* 4 H 562, 4 I 566, 4 II 966, 4 III 1747, 4 IV 3366.]

B.A.L. (British Anti-Lewesite) see 1,2-dimercapto-3-propanol.

Batyl alcohol (*rac*-3-[1-octadecyloxy]-1,2-propanediol) [544-62-7] M 344.6, m 70.5-71°. Batyl alcohol crystallises from aqueous Me₂CO, EtOH or pet ether (b 40-60°). [Taguchi & Armarego *Med Res Rev* 18 pp43-88 1998, *Beilstein* 1 IV 2758.]

Behenoyl chloride (docosanoyl chloride) [21132-76-3] M 359.0, m 40°. If the IR shows OH bands, then it should be dissolved in oxalyl chloride in C_6H_6 solution and warmed at 35° for 24hours in the absence of moisture, evaporated and distilled in a vacuum of 10^{-5} mm. It is soluble in C_6H_6 and Et_2O . It is moisture sensitive and is **LACHRYMATORY**. [Francis et al. *J Chem Soc* 1001 *1937*, Levene & Taylor *J Biol Chem* 59 905 *1924*, *Beilstein* 2 III 1076.]

Biacetyl (butan-2,3-dione) [431-03-8] **M 86.1, b 88°, d** $_{4}^{20}$ **0.981, n**^{18.5}**1.3933.** Dry biacetyl over anhydrous CaSO₄, CaCl₂ or MgSO₄, then distil it in a vacuum under nitrogen, taking the middle fraction and storing it at Dry-Ice temperature in the dark (to prevent polymerization). [*Beilstein* **1** IV 3644.]

Biguanide [56-03-1] **M 101.1, m 130°** pK_1^{25} **3.1,** pK_2^{25} **12.8.** Crystallise biguanide from EtOH. It gives a red Cu derivative, and it forms salts with many metals. The *monohydrochloride* has **m** 235° [38664-03-8] and the *dihydrochloride* forms plates with **m** 248° (213-214°, also reported) [25836-74-2]. [*Beilstein* **3** H 93, **3** I 44, **3** II 76, **3** III 171, **3** IV 162.]

Bis-acrylamide (*N*,*N*'-methylene bisacrylamide) [110-26-9] M 154.2, m >300°. Recrystallise the amide from MeOH (100g dissolved in 500mL boiling MeOH) and filter without suction in a warmed funnel. Allow to stand at room temperature and then at -15°C overnight. The crystals are collected with suction in a cooled funnel and washed with cold MeOH. The crystals are air-dried in a warm oven. [*Beilstein* 2 IV 1472.] **VERY TOXIC** (neurotoxic).

Bis-(β -chloroethyl)amine hydrochloride [821-48-7] M 178.5, m 214-215°, 216-217°, pK_{Est} ~5.8 (free base). Crystallise the salt from Me₂CO or MeOH/Et₂O. The *picrate* has m 112-113° (from EtOH or Me₂CO). [Mann J Chem Soc 464 1934, Ward J Am Chem Soc 57 915 1935, Beilstein 4 III 238.]

Bis-(β -chloroethyl) ether [111-44-4] M 143.0, b 94%/33mm, 178.8%, d_4^{20} 1.220, n_D^{20} 1.45750. Wash the ether with conc H₂SO₄, then Na₂CO₃ solution, dry with anhydrous Na₂CO₃, and finally pass it through a 50cm column of activated alumina before distillation. Alternatively, wash it with 10% ferrous sulfate solution to remove peroxides, then H₂O, dry with CaSO₄, and distil it in a vacuum. Add 0.2% of catechol to stabilise it. [*Beilstein* 1 IV 1375.] VERY TOXIC.

2,2'-Bis-[di-(carboxymethyl)-amino]diethyl ether, $(HOOCCH_2)_2NCH_2CH_2OCH_2CH_2N-(CH_2COOH)_2$ [923-73-9] M 336.3, pK_1^{20} 1.8, pK_2^{20} 2.76, pK_3^{20} 8.84, K_4^{20} 9.47. Crystallise it from EtOH.

N,*N*-Bis-(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) [10191-18-1] M 213.3, m 150-155°, pK²⁵ 7.17. Crystallise BES from aqueous EtOH. [*Beilstein* 4 IV 3290.] Bis-(2-hydroxyethyl)amino-tris-(hydroxymethyl)methane (BIS-TRIS) [6976-37-0] M 209.2, m 89°, 104°, pK²⁰ 6.46. Crystallise BIS-TRIS from hot 1-butanol and dry it in a vacuum at 25°.

N,N-Bis-(2-hydroxyethyl)glycine (BICINE) See in "Amino Acids and Peptides", Chapter 6.

Bis(2-mercaptoethyl)sulfone (BMS) [145626-87-5] **M 186.3, m 57-58°, pK**₁²⁵ **7.9, pK**₂²⁵ **9.0**. BMS recrystallises from hexane as white fluffy crystals. Large amounts are best recrystallised from deoxygenated H₂O (charcoal). It is a good alternative reducing agent to dithiothreitol. Its IR (film) has v_{max} 2995, 2657, 1306, 1248, 1124 and 729 cm⁻¹. The synthetic intermediate *thioacetate* has **m** 82-83° (white crystals from CCl₄). The *disulfide* is purified by flash chromatography on SiO₂ and elution with 50% EtOAc/hexane and recrystallised from hexane, and has **m** 137-139°. [Lamoureux & Whitesides *J Org Chem* **58** 633 1993, Beilstein **1** IV 2455.]

Bis-(trichloromethyl) carbonate (triphosgene) [32315-10-9] **M 296.8, m 79-83°, 81-83°, b 203-206°(slight dec).** It is a good solid substitute for phosgene (using a third mol per mol). Crystallise it from pet ether (b 60-80°), wash it with anhydrous cold Et₂O, de-gas it at 200mm then dry at 0.1mm (over H₂SO₄). It has IR: ν_{max} 900 and 1900 cm⁻¹. It is a **lachrymator**, is **TOXIC** and should be handled with gloves and in an efficient fume hood. [Hales et al. *J Chem Soc* 620 *1957*, Eckert & Forster *Angew Chem, Int Ed Engl* **26** 894 *1987*, *Aldrichimica Acta* **21** 47 *1988*, *Beilstein* **3** H 17, **3** I 8, **3** II 16, **3** III 36, **3** IV 33.]

Bistrifluoroacetamide (BTFA) [407-24-9] **M 209.1, m 85°, b 135-136°/744mm, 141°/760mm.** A major impurity is trifluoroacetamide. Add trifluoroacetic anhydride to BTFA, reflux for 2hours and fractionate using a Vigreux column (p 11) at atmospheric pressure. [Donike *J Chromatogr* **78** 273 1973, Beilstein **2** IV 471.]

Biuret (allophanic acid amide, carbamoylurea) [108-19-0] M 103.1, sinters at 218° and chars at 270°, pK_1^{25} -0.88, pK_2^{25} >4. Crystallise biuret from EtOH. [Beilstein 3 IV 141.]

N-Bromoacetamide [79-15-2] M 138.0, m 102-105°, 107-109°, 108°(anhydrous). A possible contaminant is CH₃CONBr₂. Recrystallise it from CHCl₃/hexane (1:1, seed if necessary) or water and dry over CaCl₂. It is a brominating agent. [Oliveto & Gerold *Org Synth* Coll Vol IV 104 1963.] Alternatively, dissolve it in the minimum volume of warm H₂O (60°), then cool in an ice bath, collect the crystals and dry them in an anhydrous atmosphere, dissolve in Et₂O, chill and evaporate till crystallisation. Dry the crystals *in vacuo* at 25°, then at 45° (m 108°). Crystallise from CHCl₃ (m 103°). Estimate the available Br iodometrically [Buckles et al. *J Org Chem* 23 483 1958]. [*Beilstein* 2 H 181, 2 I 82, 2 II 180, 2 III 406, 2 IV 417.]

Bromoacetic acid [79-08-3] **M 138.9, m 50°, b 118°/15mm, 208°/760mm, d²⁵ 1.93, pK²⁵ 2.92.** Crystallise bromoacetic acid from pet ether (b 40-60°). A diethyl ether solution of it is passed through an alumina column, and the ether is evaporated at room temperature under vacuum. It is best obtained by distillation from a Claisen (flask immersed in an oil bath) fitted with an insulated Vigreux column (p 11) and the fraction b 108-110°/30mm is collected. It is light and moisture sensitive. [Natelson & Gottfried *Org Synth* Coll Vol **III** 381 1955, *Beilstein* **2** IV 526.] **LACHRYMATORY and is a skin IRRITANT**.

Bromoacetone [598-31-2] **M 137.0, b 31.5°/8mm, 63.5-64°/50mm, 137°/atm, d²³ 1.643.** Stand bromoacetone over anhydrous CaCO₃, filter, distil it under low vacuum, and store it with CaCO₃ in the dark at 0°. [Levene *Org Synth* Coll Vol II 88 1943.] Violently LACHRYMATORY and skin IRRITANT.

2-Bromobutane [78-76-2] **M 137.0, b 91.2°, d** $_4^{20}$ **1.255, n** $_D^{20}$ **1.4367, n** 25 **1.4341.** Wash 2-bromobutane with conc HCl, water, 10% aqueous NaHSO₃, and then water. Dry it with CaCl₂, Na₂SO₄ or anhydrous K₂CO₃, and fractionally distil it through a 1m glass helices packed column. [*Beilstein* **1** IV 261.]

Bromoform [75-25-2] M 252.8, m 8.1°, 55-56°/35mm, 149.6°/760mm, d¹⁵ 2.9038, d³⁰ 2.86460, n¹⁵ 1.60053, n²⁰_D 1.5988. The storage and stability of bromoform and chloroform are similar. Ethanol, added as a stabilizer, is removed by washing with H₂O or with saturated CaCl₂ solution, and the

CHBr₃, after drying with CaCl₂ or K_2CO_3 , is fractionally distilled. Prior to distillation, CHBr₃ has also been washed with conc H_2SO_4 until the acid layer is no longer coloured, then dilute NaOH or NaHCO₃, and H_2O . A further purification step is fractional crystallisation by partial freezing. [*Beilstein* **1** IV 82.]

(±)-2-Bromohexadecanoic acid (2-bromopalmitic acid) [18263-25-7] M 335.3, m 51-53°, 52.3-52.5°, 53°, pK_{Est} ~3.2. Recrystallise the acid from pet ether (b 60-80°, charcoal) and finally from EtOH. The *ethyl ester* has b 177-178°/2mm, d_{28}^{28} 1.0484, n_{D}^{20} 1.4560. [IR: Sweet & Estes J Org Chem 21 1426 1956, Beilstein 2 IV 1184.]

S-(+)-1-Bromo-2-methylbutane [534-00-9] M 151.1, b 38.2°/39mm, 49°/62mm, 60.8°(57-58°)/100mm, 65-65.6°/140mm, 116-122°/atm, d_4^{20} 1.2232, n_D^{20} 1.4453, $[\alpha]_D^{20}$ +5.1° (neat, +5.8° (c 5, CHCl₃). Wash the bromobutane with ice-cold H₂O, dry by freezing, shake it twice with an equal volume of H₂SO₄ at 0°, and twice with an equal volume of H₂O at 0°. Freeze-dry and keep over freshly heated (and then cooled) K₂CO₃, and distil it through a vacuum jacketed column of broken glass. Alternatively, dissolve it in pet ether (b 40-60°), wash it with 5% NaOH, conc H₂SO₄ (at 0°), then H₂O, dry (CaCl₂), evaporate it and distil. [Heller *J Am Chem Soc* 74 4858 1952, Foley *J Am Chem Soc* 81 2779 1959, Easton & Hargreaves *J Chem Soc* 1413 1959, Crombie & Harper *J Chem Soc* 2685 1950, *Beilstein* 1 IV 327.]

2-Bromo-2-methylpropane [507-19-7] **M 137.0, b 71-73°, d** $_{4}^{20}$ **1.218, n** $_{D}^{20}$ **1.429.** Neutralise the bromomethylpropane with K₂CO₃, distil, and dry it using molecular sieves (5A), then distil it in a vacuum and degas it by the freeze-pump-thaw technique. Seal it under vacuum. [*Beilstein* **1** IV 295.]

1-Bromooctadecane [112-89-0] M 333.4, m 26°, 27.3°, 28-30°, b 178-179°/2mm, 214-218°/15mm, d_4^{20} 0.976, n_D^{20} 1.461. Twice recrystallise bromooctadecane from the melt, then distil it under vacuum three times using the middle cut. Alternatively, wash the oil with aqueous Na₂SO₄, then conc H₂SO₄ (cool) and again with aqueous Na₂SO₄ and then fractionally distil it. [Meyer & Ried J Am Chem Soc 55 1574 1933, Hoffmann & Smyth J Am Chem Soc 72 171 1950, IR: LeFévre et al. Aust J Chem 12 743 1959, IR: Brini-Fritz Bull Soc Chim Fr 516 1957, Beilstein 1 IV 555.]

(±)-2-Bromopentane [107-81-3] M 151.1, b 117.2°/753mm, 116-117°/atm, 117.5°/740mm, d_4^{20} 1.2190, n_D^{20} 1.4401. Dry it over K₂CO₃ and distil it through a short Vigreux column (p 11). [IR: Pines et al. J Am Chem Soc 74 4063 1952, Brown & Wheeler J Am Chem Soc 78 2199 1956, Beilstein 1 IV 312.]

Bromopicrin (tribromonitromethane) [464-10-8] M 297.8, m 10.2-10.3°, b 85-87°/16mm, d_4^{20} 2.788, n_D^{20} 1.579. Steam distil it, dry it with anhydrous Na₂SO₄ and distil it again in a vacuum. HIGHLY TOXIC. [Beilstein 1 H 77, 1 I 21, 1 II 43, 1 III 115, 1 IV 106.]

R-(+)-2-Bromopropionic acid [10009-70-8] M 153.0, b 78°/4mm, d_4^{20} 1.474, $[\alpha]_D^{25}$ +27.2° (neat), pK²⁵ 4.07. Dissolve it in Et₂O, dry (CaCl₂), evaporate and distil it through a short column. Distillation through a Podbielniak column (p 11) (see *S*-(-)-2-chloropropionic acid below) led to decomposition. Store it in the dark under N₂, preferably in sealed ampoules. Even at -10° it slowly decomposes. [Fuet et al. *J Am Chem Soc* 76 6054 1954, *Beilstein* 2 IV 761.]

3-Bromopropionic acid [590-92-1] **M 153.0, m 62.5°, 62.5-63.5°, 63-64°, pK²⁵ 4.01.** The acid crystallises as plates from CCl₄. It is soluble in organic solvents and H₂O. Its *methyl ester* has **b** 65°/18mm and 80°/27mm. The *S-benzylisothiouronium salt* has **m** 136°. [Kendall & McKenzie Org Synth Coll Vol I 131 1941, Beilstein 2 IV 764.]

Bromopyruvic acid (3-bromo-2-oxopropionic acid) [1113-59-3] M 167.0, m 79-82°, pK_{Est} ~1.6. Dry it by azeotropic distillation (with toluene), and then recrystallise it from dry CHCl₃. Dry for 48hours at 20° (0.5 torr) over P₂O₅. Store it at 0°. [Labandiniere et al. *J Org Chem* 52 157 1987, *Beilstein* 3 III 1167.]

N-Bromosuccinimide [128-08-5] M 178.0, m 183-184°(dec). *N*-Bromosuccinimide (30g) is purified by dissolving rapidly in 300mL of boiling water and filtering through a fluted filter paper into a flask immersed in an ice bath, and left for 2hours. The crystals are filtered off, washed thoroughly with *ca* 100mL of ice-cold water and drained on a Büchner funnel before drying under vacuun over P₂O₅ or CaCl₂ [Dauben & McCoy *J Am Chem Soc* 81 4863 1959]. This *brominating agent* has also been crystallised from acetic acid or water (10 parts), washed in water and dried *in vacuo* [Wilcox et al. *J Am Chem Soc* 108 7693 1986, Shell et al. *J Am Chem Soc* 108 121 1986, Phillips & Cohen *J Am Chem Soc* 108 2013 1986, Beilstein 21/9 V 543.]

Bromotetronic acid (2-bromo-4-hydroxyacetoacetic lactone) [21151-51-9] **M 179.0, m 182.8°, pK**²⁵ **2.23.** Decolourise with Norit in EtOAc, evaporate, and crystallise from EtOAc or *C₆H₆. [Schuler et al. *J Phys Chem* **78** 1063 1974, Gillespie & Price *J Org Chem* **22** 782 1957, *Beilstein* **17** III/IV 5819.]

Bromotrichloromethane [75-62-7] **M 198.5, f -5.6°, m 21°, b 104.1°, d_D^{20} 2.01, n_D^{20} 1.5061.** Wash it with aqueous NaOH solution or dilute Na₂CO₃, then with H₂O, and dry with CaCl₂, BaO, MgSO₄ or P₂O₅ before distilling in diffuse light and storing in the dark. It has also been purified by treatment with charcoal and fractional crystallisation by partial freezing. It is purified also by vigorous stirring with portions of conc H₂SO₄ until the acid did not discolour during several hours stirring. Wash with Na₂CO₃ and water, dry with CaCl₂ and then illuminate it with a 1000W projection lamp at 15cm for 10hours, after making it 0.01M in bromine. Pass it through a 30 x 1.5cm column of activated alumina and fractionally redistil it through a 12-in Vigreux column (p 11). [Firestone & Willard J Am Chem Soc 83 3511 1961; see also Cadogan & Duell J Chem Soc 4154 1962, Beilstein 1 IV 77.]

1-Bromo-2,2,2-trifluoroethane [421-06-7] **M 163.0**, **m** -94°, **b** 26-27°, d_4^{20} **1.788**, n_D^{20} **1.332.** Wash it with water, dry (CaCl₂) and distil it. [*Beilstein* **1** III 179, **1** IV 154.]

Bromotrifluoromethane (Freon 13B1) [75-63-8] **M 148.9, b -59°, d** $_{4}^{20}$ **1.590.** Purify the gas by passing it through a tube containing P₂O₅ on glass wool into a vacuum system where it is frozen out in a quartz tube and degassed by a cycles of freezing, evacuating and thawing. [*Beilstein* **1** III 83, **1** IV 73.]

5-Bromovaleric (γ -bromopentanoic) acid [2067-33-6] M 181.0, m 40°, pK_{Est} ~4.6. Crystallise the acid from pet ether. [*Beilstein* 2 IV 883.]

(±)-Bromural [N-(aminocarbonyl)-2-bromo-3-methylbutanamide, bromisovalum] [496-67-3] M 223.1, m 154-155°. Crystallise it from aqueous EtOH or toluene, and dry it in air. [Beilstein 3 H 63, 3 I 29, 3 II 51, 3 III 123, 3 IV 117.]

1,3-Butadiene [106-99-0] **M 54.1, b -2.6°.** Dry the gas by condensing it into a solution of triethylaluminium in decahydronaphthalene, then it is flash distilled. It has also been dried by passage over anhydrous CaCl₂ or distilled from NaBH₄. Also purify by passaging through a column packed with molecular sieves (4A), followed by cooling in a Dry-ice/MeOH bath overnight, filtering off the ice and drying over CaH₂ at -78° then distilling in a vacuum line. [*Beilstein* **1** IV 976.]

n-Butane [106-97-8] M 58.1, m -135°, b -0.5°. Dry by passing over anhydrous $Mg(ClO_4)_2$ and molecular sieves type 4A. Air is removed by prolonged and frequent degassing at -107°. [Beilstein 1 IV 236.]

1,4-Butanediol (tetramethylene glycol) [110-63-4] M 90.1, f 20.4°, b 107-108°/4mm, 127°/20mm, d_4^{20} 1.02, n_D^{20} 1.4467. Distil the glycol and store it over Linde type 4A molecular sieves, or crystallise it twice from anhydrous diethyl ether/acetone, and redistil it. It has been recrystallised from the melt and doubly distilled *in vacuo* in the presence of Na₂SO₄. [*Beilstein* 1 IV 2515.]

meso-2,3-Butanediol [513-85-9] M 90.1, m 25°. Recrystallise it from isopropyl ether at low temperature. [*Beilstein* 1 IV 2524.]

threo-2,3-butanediol [*R,R*(-) 24347-58-8, *S,S*(+) 19132-06-0] **M 90.1, m 16-19°**, **19.7°**, **b** 77.5-78°/10mm, 179-180°/atm, $[\alpha]_D^{20}(-)$ or (+) 13.1° (neat). Purify it by fractional distillation. The *bis*-

(4-nitrobenzoate) has **m** 141-142° and $[\alpha]_{D}^{20}$ (-) or (+) 52° (c 4 CHCl₃). [Ghirardelli & Lucas J Am Chem Soc **79** 734 1957, Rubin et al. J Am Chem Soc **74** 425 1952, Neish Can J Res **27** 6 1949, Neish & Ledingham Can J Res **27** 694 1949, Beilstein **1** IV 2524-2525.]

1-Butanesulfonyl chloride [2386-60-9] **M 156.6, b 75-76°/7mm, 98°/13mm, 100-103°/27-28mm, d**²⁰₄ **1.2078, n**²⁰_D **1.4559**. It has a pungent odour and is LACHRYMATORY. If IR shows OH bands, then dissolve in Et₂O, wash with cold saturated aqueous NaHCO₃ (care since CO₂ will be generated) then H₂O, dry it over solid Na₂SO₄, filter, evaporate and distil the residue twice. Characterise it by shaking a solution in Et₂O or *C₆H₆ with aqueous NH₃, collect the solid *1-butanesulfonamide* with **m** 48° after recrystallisation from CHCl₃, CCl₄ or Et₂O/pet ether. [Douglass & Johnson *J Am Chem Soc* **60** 1488 *1938*, Lee & Dougherty *J Org Chem* **5** 83 *1940*, *Beilstein* **4** IV 45.]

1-Butanethiol [109-79-5] **M 90.2, b 98.4°, d²⁵ 0.837, n**_D²⁰ **1.443, n**²⁵ **1.440, pK**_{Est} ~11.3. Dry the thiol with CaSO₄ or Na₂SO₄, then reflux it over magnesium, or dry with, and distil it from CaO, under nitrogen [Roberts & Friend J Am Chem Soc 108 7204 1986.] It has been separated from hydrocarbons by extractive distillation with aniline.

Dissolve it also in 20% NaOH, extract with a small amount of C_6H_6 , then steam distil it until clear. The solution is then cooled and acidified slightly with 15% H₂SO₄. The thiol is distilled out, dried with CaSO₄ or CaCl₂, and fractionally distilled under N₂ [Mathias & Filho *J Phys Chem* **62** 1427 *1958*]. It has also been purified by precipitation as the lead mercaptide from alcoholic solution, then regeneration by adding dilute HCl to the residue followed by steam distillation. *All operations should be carried out in a fume cupboard due to the* **TOXICITY** *and obnoxious odour of the thiol*. [*Beilstein* **1** IV 1555.]

2-Butanethiol [513-53-1] **M 90.2, b 37.4**°/134mm, d^{25} 0.846, n^{25} 1.4338, $pK_{Est} \sim 11.4$. Purify it as for 1-butanethiol. [*Beilstein* 1 IV 1584.]

n-Butanol [71-36-3] M 74.1, b 117.7°, d^{25} 0.80572, n_D^{20} 1.39922, n^{15} 1.40118. Dry it with MgSO₄, CaO, K₂CO₃, or solid NaOH, followed by refluxing with, and distillation from, small amounts of calcium, magnesium activated with iodine, or aluminium amalgam. It can also be dried with molecular sieves, or by refluxing with *n*-butyl phthalate or succinate. (For method, see *Ethanol.*) *n*-Butanol can also be dried by efficient fractional distillation, water passing over in the first fraction as a binary azeotrope (contains about 37% water). An ultraviolet-transparent distillate has been obtained by drying with magnesium and distilling from sulfanilic acid. To remove bases, aldehydes and ketones, the alcohol is washed with dilute H₂SO₄, then NaHSO₄ solution; esters are removed by boiling for 1.5hours with 10% NaOH.

It has also been purified by adding 2g NaBH₄ to 1.5L butanol, gently bubbling with argon and refluxing for 1 day at 50°. Then adding 2g of freshly cut sodium (washed with butanol) and refluxed for 1 day. Distil and collect the middle fraction [Jou & Freeman J Phys Chem **81** 909 1977]. [Beilstein **1** IV 1506.]

2-Butanone (methyl ethyl ketone, MEK) [78-93-0] M 72.1, b 79.6°, d_4^{20} 0.853, n_D^{20} 1.37850, n^{25} 1.37612, pK^{25} -7.2 (aqueous H₂SO₄). In general, purification methods are the same as for acetone. Aldehydes can be removed by refluxing with KMnO₄ + CaO, until the Schiff aldehyde test is negative, prior to distillation. Shaking with saturated K₂CO₃, or passaging through a small column of activated alumina, removes cyclic impurities. The ketone can be dried by careful distillation (an azeotrope containing 11% water boils at 73.4°), or over CaSO₄, P₂O₅, Na₂SO₄, or K₂CO₃, followed by fractional distillation. Purification as the bisulfite addition compound is achieved by shaking with excess saturated Na₂SO₃, cooled to 0°, filtering off the precipitate, washing with a little ethyl ether and drying in air; this is followed by decomposition with a slight excess of Na₂CO₃ solution and steam distillation, the distillate being saturated with K₂CO₃ so that the ketone can be separated, dried with K₂CO₃, filtered, and distilled. Purification as the *NaI addition compound* (m 73-74°) is more convenient. (For details, see *Acetone*.) Small quantities of 2-butanone can be purified by conversion to the semicarbazone, recrystallisation to constant melting point, drying under vacuum over CaCl₂ and paraffin wax, refluxing for 30minutes with excess oxalic acid, followed by steam distillation, salting out, drying and distilling [Cowan et al. *J Chem Soc* 171 *1940*]. [*Beilstein* **1** IV 3243.]

cis-2-Butene [590-18-1] M 56.1, b 2.95-3.05%746mm. The gas is dried with CaH₂ and purified by gas chromatography. [*Beilstein* 1 H 205, 1 II 176, 1 III 728, 1 IV 778.] HIGHLY FLAMMABLE.

trans-2-Butene [624-64-6] M 56.1, b $0.3-0.4^{\circ}/744$ mm. The gas is dried with CaH₂ and purified by gas chromatography. [*Beilstein* 1 H 205, 1 II 176, 1 III 730, 1 IV 781.] HIGHLY FLAMMABLE.

2-Butene-1,4-dicarboxylic acid (*trans-3*-hexenedioic acid, *trans-B*-hydromuconic acid) [4436-74-2] M 144.1, m 194-197°, 195-196°, $pK_{Est(1)} \sim 4.2$, $pK_{Est(2)} \sim 5.00$. Crystallise the acid rom boiling water, then dry it at 50-60° in a vacuum oven. [Beilstein 2 IV 2237.]

2-Butoxyethanol (butyl cellosolve) [111-76-2] **M 118.2, b 171^o/745mm, d²⁰₄ 0.903, n²⁰_D 1.4191.** Peroxides can be removed by refluxing with anhydrous SnCl₂ or by passage under slight pressure through a column of activated alumina. Dry with anhydrous K_2CO_3 and $CaSO_4$, filter and distil, or reflux with, and distil from NaOH. [Beilstein 1 IV 2380.]

n-Butyl acetate [123-86-4] M 116.2, b 126.1°, d_4^{20} 0.882, n_D^{20} 1.394. Distil, reflux with successive small portions of KMnO₄ until the colour persists, dry with anhydrous CaSO₄, filter and redistil. [*Beilstein* 2 IV 143.]

tert-Butyl acetate [540-88-5] M 116.2, b 97-98°, d_4^{20} 0.866, n_D^{20} 1.387. Wash the ester with 5% Na₂CO₃ solution, then saturated aqueous CaCl₂, dry with CaSO₄ and distil it. [McClosky et al. Org Synth Coll Vol IV 263 1963, Mangia et al. Org Prep Proc Int 18 13 1986, Beilstein 2 IV 151.]

tert-Butyl acetoacetate [1694-31-1] M 158.2, b 7 1°/10mm, 8 5°/20mm, d_4^{20} 0.954, n_D^{20} 1.42. Distil it under reduced pressure through a short column. [Lawesson et al. Org Synth Coll Vol V 155 1973, Lawesson et al. Org Synth 42 28 1962, Beilstein 3 IV 1536.] HARMFUL VAPOUR.

tert-Butylacetyl chloride [7065-46-5] M 134.6, b 68-71%/100mm, 81%/180mm, 128-132% atm, d_4^{20} 0.964, n_D^{20} 1.423. Distil it under vacuum. If IR shows OH group, then treat with thionyl chloride or oxalyl chloride at *ca* 50% for 30minutes, evaporate and fractionate the residue using a short column. Strongly LACHRYMATORY, use a good fume hood. [Berliner & Berliner *J Am Chem Soc* 72 222 1950, Traynham & Battiste *J Org Chem* 22 1551 1957, Beilstein 2 IV 956.]

Butyl acrylate [141-32-2] **M 128.2, b 59°/25mm, d** $_{4}^{20}$ **0.894, n**¹² **1.4254.** Wash it repeatedly with aqueous NaOH to remove inhibitors such as hydroquinone, then with distilled water. Dry with CaCl₂. Fractionally distil under reduced pressure in an all-glass apparatus. The middle fraction is sealed under N₂ and stored at 0° in the dark until required [Mallik & Das J Am Chem Soc 82 4269 1960]. [Beilstein **2** IV 1463.]

tert-Butyl acrylate [1663-39-4] M 128.2, b 30.0-30.8°/26mm, 61-63°/15mm, 117-120°/760mm, d²⁵ 0.875, n_D^{20} 1.410. Purify the ester by fractional distillation. If it contains acid (OH bands in the IR), then dissolve it in Et₂O, wash it with aqueous NaHCO₃, dry the organic layer (Na₂SO₄), filter it and distil it under reduced pressure. Stabilise it by adding hydroquinone monomethyl ether (~0.05%). It forms a crystalline *tert*-butyl acrylate polymer which is soluble in organic solvents [Garrett et al. J Am Chem Soc 81 1007 1959]. [Beilstein 2 IV 1465.] For other alkyl acrylate see Rehberg Org Synth Coll Vol 3 146 1955.

(±)-sec-Butyl alcohol (± 2-butanol) [78-92-2; 15892-23-6] M 74.1, b 99.4°, d_4^{20} 0.808. Purification methods are the same as for *n*-Butanol. These include drying with K₂CO₃ or CaSO₄, followed by filtration and fractional distillation, refluxing with CaO, distillation, then refluxing with magnesium and redistillation, and refluxing with, then distilling from CaH₂. Calcium carbide has also been used as a drying agent. The anhydrous alcohol is obtained by refluxing with sec-butyl phthalate or succinate. (For method see *Ethanol.*) Small amounts of alcohol can be purified via conversion to the alkyl hydrogen phthalate and recrystallisation [Hargreaves J Chem Soc 3679 1956]. For purification of optical isomers, see Timmermans and Martin [J Chem Phys 25 411 1928]. [Beilstein 2 III 1566.]

tert-Butyl alcohol [75-65-0] M 74.1, m 23-25⁰, 25.7^o, b 28.3^o/60mm, 43.3^o/123.8mm, 61.8^o/315mm, 72.5^o/507mm, 82.45^o/760mm, d_4^{20} 0.7858, n_D^{20} 1.3878. It is synthesised commercially by the hydration of 2-methylpropene in dilute H₂SO₄. Dry it with CaO, K₂CO₃, CaSO₄ or

MgSO₄, filter and fractionally distil it. Dry further by refluxing with, and distilling from, either magnesium activated with iodine, or small amounts of calcium, sodium or potassium, under nitrogen. Passage through a column of type 4A molecular sieve is another effective method of drying; as well as refluxing with *tert*-butyl phthalate or succinate. (For method see *Ethanol*.) Other methods include refluxing with excess aluminium *tert*-butylate, or standing with CaH₂, and distilling as needed. Further purification is achieved by fractional crystallisation by partial freezing, taking care to exclude moisture. *tert*-Butyl alcohol samples containing much water can be dried by adding *benzene, so that the water distils off as a tertiary azeotrope, **b** 67.3°. Traces of isobutylene have been removed from dry *tert*-butyl alcohol by bubbling dry pre-purified nitrogen through for several hours at 40-50° before using. It forms azeotropic mixtures with a large number of compounds. It has also been purified by distillation from CaH₂ into Linde 4A molecular sieves which had been activated at 350° for 24hours [Jaeger et al. *J Am Chem Soc* **101** 717 *1979*]. [*Beilstein* **1** IV 1609.]

Rapid purification: Dry tert-butanol over CaH₂ (5% w/v), distil and store it over 3A molecular sieves.

n-Butylamine [109-73-9] M 73.1, b 77.8°, d_4^{20} 0.740, n_D^{20} 1.4009, n^{25} 1.399, pK^{25} 10.66. Dry it with solid KOH, K₂CO₃, LiAlH₄, CaH₂ or MgSO₄, then reflux it with, and fractionally distil it from P₂O₅, CaH₂, CaO or BaO. Further purification is by precipitation as the *hydrochloride*, m 213-213.5°, from ethereal solution by bubbling HCl gas into it. This is re-precipitated three times from EtOH by adding ether, followed by liberation of the free amine using excess strong base. The amine is extracted into ether, which is separated, dried with solid KOH, the ether removed by evaporation and then the amine is distilled. It is stored in a desiccator over solid NaOH [Bunnett & Davis J Am Chem Soc 82 665 1960, Lycan et al. Org Synth Coll Vol II 319 1943]. [Beilstein 4 IV 540.] SKIN IRRITANT.

R-(-)-sec-Butylamine [13250-12-9] M 73.1, b 61-63°/atm, 62.5°/atm, d_4^{20} 0.731, n_D^{20} 1.393, $[\alpha]_D^{20}$ -7.5° (neat), pK²⁵ 10.56. Dry it over solid NaOH overnight and fractionate it through a short helices packed column. The L-hydrogen tartrate salt has m 139-140° (from H₂O), the *1H*₂O has m 96° $[\alpha]_D^{21}$ +18.1° (c 11, H₂O), the hydrochloride has m 152° $[\alpha]_D^{21}$ -1.1° (c 13, H₂O) and the benzoyl derivative crystallises from EtOH as needles with m 97°, $[\alpha]_D^{21}$ -34.9° (c 11, H₂O). [Bruck et al. J Chem Soc 921 1956, Kjaer & Hansen Acta Chem Scand 11 898 1957.] [Beilstein 4 H 161, 4 I 372, 4 III 308, 4 IV 617.] The S-(+)-enantiomer has has same properties except for the optical rotation which has the opposite sign.

tert-Butylamine [75-64-9] M 73.1, b 42°, d_4^{20} 0.696, pK²⁵ 10.68. Dry it with KOH or LiAlH₄, and/or distil it from CaH₂ or BaO. [*Beilstein* 4 IV 657.]

tert-Butylammonium bromide [60469-70-7] M 154.1, m >250°(dec). Recrystallise the salt several times from absolute EtOH and thoroughly dry it at 105°. [*Beilstein* 4 IV 657.]

n-Butyl bromide [109-65-9] M 137.0, b 101-102°, d^{25} 1.2678, n_D^{20} 1.4399, n^{25} 1.4374. Wash the bromide with conc H₂SO₄, water, 10% Na₂CO₃ and again with H₂O. Dry it over CaCl₂, CaSO₄ or K₂CO₃, and distil it. Redistil it after drying with P₂O₅, or pass it through two columns containing 5:1 silica gel/Celite mixture and store it with freshly activated alumina. [*Beilstein* 1 IV 258.]

tert-Butyl bromoacetate [5292-43-3] M 195.1, b 52°/10mm, 74-76°/25mm, d_4^{20} 1.324, n_D^{25} 1.4162. Dissolve the ester in Et₂O, wash it well with ice cold 10% aqueous K₂CO₃, dry it over CaCl₂, filter and evaporate the Et₂O, then fractionate it through a Vigreux column (p 11) in a vacuum. LACHRYMATORY. [Abramovitch et al. J Am Chem Soc 64 2274 1942, Abramovitch & Hauser J Am Chem Soc 65 986 1943, Beilstein 2 III 482.]

tert-Butyl carbazate [870-46-2] M 132.2, m 41-42°, b 64°/0.01mm, 55-57°/0.4mm. Distil it in a Claisen flask with a water or oil bath at ca 80°. After a couple of drops have distilled, the carbazate is collected as an oil which solidifies to a snow white solid. It can be crystallised with 90% recovery from a 1:1 mixture of pet ether (b 30-60°) and pet ether (b 60-70°). [Carpino et al. *Org Synth* Coll Vol V 166 1973, Caprino et al. *Org Synth* 44 20 1964, *Beilstein* 3 IV 175.]

n-Butyl chloride [109-69-3] M 92.6, b 78°, d_4^{20} 0.886, n_D^{25} 1.4021. Shake it repeatedly with conc H₂SO₄ (until no further colour develops in the acid), then wash it with water, aqueous NaHCO₃ or Na₂CO₃, and

more water. Dry it with CaCl₂, or MgSO₄ (then with P_2O_5 if desired), decant and fractionally distil it. Alternatively, a stream of oxygen continuing *ca* three times as long as is necessary to obtain the first coloration of starch iodide paper by the exit gas. After washing with NaHCO₃ solution to hydrolyse ozonides and to remove the resulting organic acid, the liquid is dried and distilled [Chien & Willard *J Am Chem Soc* **75** 6160 *1953*]. [*Beilstein* **1** IV 246.]

tert-Butyl chloride [507-20-0] M 92.6, f -24.6°, b 50.4°, d_4^{20} 0.851, n_D^{25} 1.38564. Purification methods commonly used for other alkyl halides lead to decomposition. Some impurities can be removed by photochlorination with a small amount of chlorine prior to use. The liquid is washed with ice water, dried with CaCl₂ or CaCl₂ + CaO and fractionally distilled. It has been further purified by repeated fractional crystallisation by partial freezing. [*Beilstein* 1 IV 288.]

tert-Butyl chloroacetate [107-59-5] M 150.6, b 48-49%/11mm, 60.2%/15mm, 155%/atm (dec), d_4^{25} 1.4204, n_D^{20} 1.4259. Check the NMR spectrum; if satisfactory then distil in a vacuum; if not then dissolve in Et₂O, wash with H₂O, 10% H₂SO₄ until the acid extract does not become cloudy when made alkaline with NaOH. Wash the organic layer again with H₂O, then saturated aqueous NaHCO₃, dry over Na₂SO₄, evaporate and fractionate it through a carborundum-packed column or a 6-inch Widmer column (p 11, *see tert-butyl ethyl malonate for precautions to avoid decomposition during disillation*). [Johnson et al. J Am Chem Soc 75 4995 1953, Baker Org Synth Coll Vol III 144 1944, Beilstein 2 III 444.]

tert-Butyl cyanide (trimethylacetonitrile, pivalonitrile) [630-18-2] M 83.1, m 16-18°, d_4^{20} 0.765, b 104-106°. Purify it by a two-stage vacuum distillation and de-gas by the freeze-pump-thaw technique. Store it under vacuum at 0°. TOXIC, use an efficient fume hood. [*Beilstein* 2 IV 875.]

tert-Butyl cyanoacetate [1116-98-9] M 141.2, b 40-42°/0.1mm, 54-56°/0.3mm, 90°/10mm, 107-108°/23mm, d_4^{20} 0.989, n_D^{20} 1.4198. The IR spectrum of a film should have bands at 1742 (ester CO) and 2273 (C=N), but no band at *ca* 3500 broad (OH) cm⁻¹. If it does not have the last-named band, then fractionally distil; otherwise dissolve in Et₂O, wash with saturated aqueous NaHCO₃, dry over K₂CO₃, evaporate Et₂O, and distil the residue under a vacuum (*see tert-butyl ethyl malonate for precautions to avoid decomposition during distillation*). [Beech & Piggott *J Chem Soc* 423 1955, Dahn & Hauth *Helv Chim Acta* 42 1214 1959, Beilstein 2 I 255.]

n-Butyl disulfide [629-45-8] M 178.4, b 110-113°/15mm, d_4^{20} 0.938, n^{22} 1.494. Shake it with lead peroxide, filter and distil it in a vacuum under N₂. [*Beilstein* 1 IV 1560.]

n-Butyl ether (di-*n*-butyl ether) [142-96-1] M 130.2, b 52-53°/26mm, 142.0°/760mm, d_4^{20} 0.764, n_D^{20} 1.39925, n^{25} 1.39685, pK^{25} -5.40 (aqueous H₂SO₄). Peroxides (detected by the liberation of iodine from weakly acid HCl solutions of 2% KI) can be removed by shaking 1L of ether with 5-10mL of a solution comprising of 6.0g of ferrous sulfate and 6mL conc H₂SO₄ and 110mL of water, with aqueous Na₂SO₃, or with acidified NaI, water, then aqueous Na₂S₂O₃. After washing with dilute NaOH, KOH, or Na₂CO₃, then water, the ether is dried with CaCl₂ and distilled. It can be further dried by distillation from CaH₂ or Na (after drying with P₂O₅), and stored in the dark with Na or NaH. The ether can also be purified by treating with CS₂ and NaOH, expelling the excess sulfide by heating. The ether is then washed with water, dried with NaOH and distilled [Kusama & Koike *J Chem Soc Jpn, Pure Chem Sect* 72 229 *1951*]. Other purification procedures include passage through an activated alumina column to remove peroxides, or through a column of silica gel, and distillation after adding about 3% (v/v) of a 1M solution of MeMgI in *n*-butyl ether. [*Beilstein* 1 IV 1520.]

n-Butyl ethyl ethyl ether [628-81-9] M 102.2, b 92.7°, d_4^{20} 0.751, n_D^{20} 1.38175, n^{25} 1.3800. Purify by drying with CaSO₄, by passage through a column of activated alumina (to remove peroxides), followed by prolonged refluxing with Na and then fractional distillation. [*Beilstein* 4 IV 1518.]

tert-Butyl ethyl ether [637-92-3] M 102.2, b 71-72°, d_4^{20} 0.741. Dry the ether with CaSO₄, pass it through an alumina column, and fractionally distil it. [*Beilstein* 1 IV 1618.]

tert-Butyl ethyl malonate [32864-38-3] M 188.2, b 83-85°/8mm, 93-95°/17mm, 107-109°/24mm, d_4^{25} 0.994, n_D^{24} 1.4150. A likely impurity is monoethyl malonate; check IR for OH bands at 3330 br cm⁻¹. To *ca* 50g of ester add ice cold NaOH (50g in 200mL of H₂O and 200g of ice). Swirl a few times (filter off ice if necessary), place it in a separating funnel and extract with 2 x 75mL of Et₂O. Dry the extract (MgSO₄) (since traces of acid decompose the *t*-Bu group of the ester, the distillation flask has to be washed with aqueous NaOH, rinsed with H₂O and allowed to dry). Addition of some K₂CO₃ or MgO before distilling is recommended to inhibit decomposition. Distil it under reduced pressure through a 10cm Vigreux column (p 11). Decomposition is evidenced by severe foaming due to autocatalytic decomposition and cannot be prevented from accelerating except by stopping the distillation and rewashing the distillation flask with alkali again. [Breslow et al. J Am Chem Soc 66 1287 1944, Hauser et al. J Am Chem Soc 64 2714 1942, Strube Org Synth Coll Vol IV 417 1963, Stube Org Synth 37 35 1957, Beilstein 2 IV 1884.]

n-Butyl formate [592-84-7] M 102.1, b 106.6°, d_4^{20} 0.891, n_D^{20} 1.3890. Wash the formate with saturated NaHCO₃ solution in the presence of saturated NaCl, until no further reaction occurs, then with saturated NaCl solution, dry (MgSO₄), filter and fractionally distil the filtrate. [*Beilstein* 2 IV 28.]

Butyl glycolate [7397-62-8] M 132.2, b 191-192°/755mm, 187-190°/atm, d_4^{20} 1.019, n_D^{20} 1.4263. Dissolve in CHCl₃ (EtOH-free), wash with 5% KHCO₃ until effervescence ceases (if free acid is present), dry over CaCl₂, filter, evaporate and distil through a short column. [Bøhme & Opfer Z Anal Chem 139 255 1953, Filachione et al. J Am Chem Soc 73 5265 1951, Beilstein 3 IV 589.]

tert-Butyl hydroperoxide (TBHP) /75-91-2/ M 90.1, f 5.4°, m 0.5-2.0°, b 38°/18mm, d²⁰ **0.900**, n_{10}^{20} **1.4013**, pK²⁰ **12.8**. Care should be taken when handling this peroxide because of the possibility of EXPLOSION. It explodes when heated over an open flame. Alcoholic and volatile impurities can be removed by prolonged refluxing at 40° under reduced pressure, or by steam distillation. For example, Bartlett, Benzing and Pincock [J Am Chem Soc 82 1762 1960] refluxed at 30mm pressure in an azeotropic separation apparatus until two phases no longer separated, and then distilled at 41°/23mm. Pure material is stored under N2, in the dark at 0°. Crude commercial material has been added to 25% NaOH below 30°, and the crystals of the sodium salt have been collected, washed twice with *benzene and dissolved in distilled water. After adjusting the pH of the solution to 7.5 by adding solid CO_2 , the peroxide is extracted into pet ether, from which, after drying with K_2CO_3 , it is recovered by distilling off the solvent under reduced pressure at room temperature [O'Brien et al. J Am Chem Soc 79 6238 1957]. The temperatures should be kept below 75°. It has also been distilled through a helices packed column (ca 15 plates) and the material with **b** $34-35^{\circ}/20$ mm was collected. Similarly, a solution in pet ether has been extracted with cold aqueous NaOH, and the hydroperoxide has been regenerated by adding at 0°, KHSO4 at a pH not higher than 4.5, then extracted into diethyl ether, dried with MgSO4, filtered and the ether evaporated in a rotary evaporator under reduced pressure [Milac & Djokic J Am Chem Soc 84 3098 1962].

A 3M solution of TBHP in CH₂Cl₂ is prepared by swirling 85mL (0.61mol) of commercial TBHP (70% TBHP-30% H₂O, **d** 0.935 *ca* 7.2mmol/mL) with 140mL of CH₂Cl₂ in a separating funnel. The milky mixture is allowed to stand until the phases separate (*ca* 30minutes). The organic (lower) layer (*ca* 200mL) containing 0.60mole of TBHP is separated from the aqueous layer (*ca* 21mL) and used without further drying. TBHP is assayed by iodometric titration. With 90% grade TBHP (w/w, d 0.90, *ca* 9.0mmole/mL) no separation of layers occurs, i.e. when TBHP (66.67mL, 0.60mole) is added to CH₂Cl₂ (140mL) the resulting solution (*ca* 200mL) should be clear. [Walling & Buckler J Am Chem Soc 77 6032 1955, Rogers & Campbell J Am Chem Soc 74 4742 1952, Akashi et al. J Org Chem 43 2063 1978 state the quality of available grades, handling and compatibility for reactions, *Beilstein* 1 IV 1616.]

n-Butyl iodide (1-iodobutane) [542-69-8] M 184.0, b 130.4°, d_4^{20} 1.616, n^{25} 1.44967. Dry the iodide with MgSO₄ or P₂O₅, fractionally distil it through a column packed with glass helices, taking the middle fraction and storing over calcium or mercury in the dark. Alternatively purify it by prior passage through activated alumina or by shaking with conc H₂SO₄ then washing with Na₂SO₃ solution. It has also been treated carefully with sodium to remove free HI and H₂O, before distilling through a column containing copper turnings at the top. Another purification procedure consisted of treatment with bromine, followed by extraction of free halogen with Na₂S₂O₃, washing with H₂O, drying and fractionally distilling. [*Beilstein* **1** IV 271.]

tert-Butyl iodide [558-17-8] M 184.0, b 100°(dec), d_4^{20} 1.544. Vacuum distillation has been used to obtain a distillate which remained colourless for several weeks at -5°. More extensive treatment has been used by Boggs, Thompson and Crain [*J Phys Chem* 61 625 1957] who washed with aqueous NaHSO₃ solution to remove free iodine, dried this for 1hour over Na₂SO₃ at 0°, and purified it by four or five successive partial freezings of the liquid to obtain colourless material and was stored at -78° with Ag wool. [*Beilstein* 1 IV 300.]

tert-Butyl isocyanate [1609-86-5] M 99.1, m 10.5-11.5°, b 30.5-32°/10mm, 64°/52mm, d_{25}^{25} 0.9079, n_D^{25} 1.470. It is LACHRYMATORY and TOXIC, and should have IR with 2251 (C=N) cm⁻¹ and no OH bands. The NMR should have one band at 1.37 ppm from TMS. Purify it by fractional distillation under reduced pressure. [Greene & Bergmark J Org Chem 36 3056 1971, Curtius J Prakt Chem 125 152 1930, Beilstein 4 IV 669.]

tert-Butyl isocyanide [7188-38-7] M 83.1, b 91-92°/730mm, 90°/758mm, d_4^{20} 0.735. Dissolve it in pet ether (b 40-60°), wash it with H₂O, dry (Na₂SO₄), filter, remove pet ether under slight vacuum, and distil it using a vacuum-jacketed Vigreux column (p 11) at atmospheric pressure, IR: v 2134 cm⁻¹. [Ugi & Meyr Chem Ber 93 239 1960, Beilstein 4 IV 661.] It has toxic vapours.

tert-butyl isocyanoacetate [2769-72-4] M 141.2, b 50%/0.1mm, 49-50%/10mm, 63-65%/15mm, d_4^{20} 0.970, n_D^{20} 1.420. If it contains some free acid (OH bands in IR), then dissolve it in Et₂O, shake with 20% Na₂CO₃, dry over anhydrous K₂CO₃, evaporate and distil it. [Ugi et al. *Chem Ber* 94 2814 1961, Schhöllkopf Angew Chem 89 351 1977.]

n-Butyl methacrylate [97-88-1] M 142.2, b 49-52% (0.1mm, 163-165%) atm, d_4^{20} 0.896, n_D^{20} 1.424. Purify as for butyl acrylate. [Beilstein 2 IV 1525.]

tert-Butyl methacrylate [585-07-9] M 142.2, f -48°, b 135-136°/760mm, d_4^{20} 0.878, n_D^{20} 1.415. Purify as for butyl acrylate. [*Beilstein* 2 IV 1582.]

n-Butyl methyl ether [628-28-4] M 88.2, b 70°, d_4^{20} 0.744, pK²⁵ -3.50 (aqueous H₂SO₄). Dry it with CaSO₄, pass it through an alumina column to remove peroxides, and fractionally distil it. [*Beilstein* 1 IV 1518.]

tert-Butyl methyl ether [1634-04-4] M 88.2, b 56°, n 1.369. Purify as for *n*-butyl methyl ether. [*Beilstein* 1 IV 1615.]

tert-Butyl methyl ketone (3,3-dimethyl-2-butanone, pinacolone) [75-97-8] M 100.2, b 105%/746mm, 106%/760mm, d_4^{20} 0.814, n_D^{20} 1.401. Reflux the ketone with a little KMnO₄. Dry it with CaSO₄ and distil it. [Beilstein 1 IV 3310.]

tert-Butyl nitrite [540-80-7] M 103.1, b 34°/250mm, 61-63°/atm, d_4^{20} 0.8671, n_D^{25} 1.3660. If it is free from OH bands (IR) then distil it through a 12inch helices packed column under reduced pressure, otherwise wash with aqueous 5% NaHCO₃ (effervescence), then H₂O, dry (Na₂SO₄) and fractionate it through a 10 theoretical plates column at *ca* 10mm pressure. [Allen *J Chem Soc* 1968 1954, Coe & Doumani *J Am Chem Soc* 70 1516 1948, UV: Ungnade & Smiley *J Org Chem* 21 993 1956, IR: Terte *Bull Soc Chim Belg* 60 240 1951, *Beilstein* 1 IV 1622.]

tert-Butyl peracetate [107-71-1] M 132.2, b 23-24% (0.5mm, n^{25} 1.4030. Wash the ester with NaHCO₃ from a *benzene solution, then redistil to remove *benzene [Kochi J Am Chem Soc 84 774 1962]. Handle with adequate protection due to possible EXPLOSIVE nature. [Beilstein 2 IV 391.]

tert-Butylperoxy isobutyrate [109-13-7] M 160.2, f -45.6°. After diluting 90mL of the material with 120mL of pet ether, the mixture is cooled to 5° and shaken twice with 90mL portions of 5% NaOH solution (also at 5°). The non-aqueous layer, after washing once with cold water, is dried at 0° with a mixture of anhydrous MgSO₄ and MgCO₃ containing *ca* 40% MgO. After filtering, this material is passed, twice, through a column of silica gel at 0° (to remove *tert*-butyl hydroperoxide). The solution is then evaporated at 0°/0.5-

1mm to remove the solvent, and the residue is recrystallised several times from pet ether at -60°, then subjected to high vacuum to remove traces of solvent [Milos & Golubovic J Am Chem Soc **80** 5994 1958]. Handle with adequate protection due to possible **EXPLOSIVE** nature.

Butyl stearate [123-95-5] **M 340.6, m 26.3°, d** $_{4}^{20}$ **0.861.** Acidic impurities are removed by shaking with 0.05M NaOH or a 2% NaHCO₃ solution, followed by several water washes, then purified by fractional freezing of the melt and fractional crystallisation from solvents with boiling points below 100°. [*Beilstein* **2** IV 1219.]

S-tert-Butyl thioacetate [999-90-6] M 132.2, b 31-32°/11mm, 38°/14mm, 44-45°/28mm, 67°/54mm, 135.6-135.9°/773mm, d_4^{25} 0.9207, n_D^{20} 1.4532. Dissolve it in CHCl₃ (EtOH-free), wash with H₂O, 10% H₂SO₄, saturated aqueous NaHCO₃ (care CO₂ liberated), H₂O again, dry over Drierite and anhydrous K₂CO₃, and fractionate under reduced pressure. [Rylander & Tarbell *J Am Chem Soc* 72 3021 1950, *Beilstein* 2 IV 546.]

N-tert-Butyl urea [1118-12-3] M 116.2, m 182°, 185°(dec). Possible impurity is N,N'-di-*tert*-butyl urea which is quite insoluble in H₂O. Recrystallise it from hot H₂O, filter off insoluble material, and cool to 0° to -5° with stirring. Dry in vacuum at room temperature over KOH or H₂SO₄. If dried at higher temperatures, it sublimes slowly. It can be recrystallised from EtOH as long white needles or from 95% aqueous EtOH as plates. During melting point determination the bath temperature has to be raised rapidly as the urea sublimes slowly above 100° at 760mm. [Smith & Emerson Org Synth Coll Vol III 151 1955, Beilstein 4 IV 665.]

n-Butyl vinyl ether [111-34-2] M 100.2, b 93.3°, d_4^{20} 0.775. After five washings with equal volumes of water to remove alcohols (made slightly alkaline with KOH), the ether is dried with sodium and distilled under vacuum, taking the middle fraction [Coombes & Eley J Chem Soc 3700 1957]. Store it over KOH. [Beilstein 1 IV 2052.]

2-Butyne [503-17-3] **M 54.1, b 0°/253mm, d** $_{4}^{20}$ **0.693.** Stand it over sodium for 24hours, then fractionally distil it under reduced pressure into a cooled receiver. [*Beilstein* **1** IV 971.]

2-Butyne-1,4-diol [110-65-6] **M 86.1, m 54-57°, 56-58°, b 238°.** Crystallise the diol from EtOAc. [Beilstein 1 IV 2687.]

Butyramide [514-35-5] **M 87.1, m 115°, b 230°.** Crystallise it from acetone, *benzene, CCl₄/pet ether, 20% EtOH or water. Dry it under vacuum over P₂O₅, CaCl₂ or 99% H₂SO₄. [*Beilstein* **2** H 275, **2** I 122, **2** II, 251, **2** III 616, **2** IV 804.]

n-Butyric acid [107-92-6] M 88.1, f -5.3°, b 163.3°, d_4^{20} 0.961, n^{25} 1.396, pK^{25} 2.82. Distil the acid, them mix it with KMnO₄ (20g/L), and fractionally redistil, discarding the first third of the distillate [Vogel J Chem Soc 1814 1948]. [Beilstein 2 IV 779.]

n-Butyric anhydride [106-31-0] M 158.2, b 198°, d_4^{20} 0.968. Dry the anhydride by shaking it with P₂O₅, then distilling it. [*Beilstein* 2 IV 802.]

 γ -Butyrolactone [96-48-0] M 86.1, b 83.8°/12mm, d_4^{20} 1.124. Dry the lactone over anhydrous CaSO₄, then fractionally distil it. *Handle it in a fume cupboard due to its* TOXICITY. [Beilstein 17 V 7.]

Butyronitrile [109-74-0] **M 69.1, b 117.9°, d** $_{4}^{20}$ **0.793, n** $_{D}^{20}$ **1.3846, n**³⁰ **1.37954.** Treat it with conc HCl until the smell of the isonitrile had gone, then dry with K₂CO₃ and fractionally distil [Turner *J Chem Soc* 1681 1956]. Alternatively it is twice heated at 75° and stirred for several hours with a mixture of 7.7g Na₂CO₃ and 11.5g KMnO₄ per L of butyronitrile. The mixture is cooled, then distilled. The middle fraction is dried over activated alumina. [Schoeller & Wiemann *J Am Chem Soc* **108** 22 1986, Beilstein **2** IV 806.]

Butyryl chloride (butanoyl chloride) [141-75-3] M 106.6, f -89°, b 101-102°/atm, d_4^{20} 1.026, n_D^{20} 1.412. Check IR to see if there is a significant peak at 3000-3500 cm⁻¹ (br) for OH. If OH is

present then reflux with less than one mole equivalent of SOCl₂ for 1hour and distil directly. The fraction boiling between 85-100° is then refractionated at atmospheric pressure. Keep all apparatus free from moisture and store the product in sealed glass ampoules under N₂. **LACHRYMATORY**; *handle in a good fume hood*. [Hefferich & Schaeffer *Org Synth* Coll Vol I 147 *1941*, *Beilstein* 2 IV 803.]

Capric acid (decanoic acid) [334-48-5] M 172.3, m 31.5°, b 148°/11mm, d_4^{20} 0.886, n^{25} 1.424, pK_{Est} ~4.9. The acid is best purified by conversion into its *methyl ester*, b 114.0°/15mm (using excess MeOH, in the presence of H₂SO₄). The H₂SO₄ and MeOH are removed, the ester is distilled *in vacuo* through a 3ft column packed with glass helices. The acid is then obtained from the ester by saponification and vacuum distillation. [Trachtman & Miller J Am Chem Soc 84 4828 1962, Beilstein 2 IV 1041.]

n-Caproamide (*n*-hexanamide) [628-02-4] M 115.2, m 100°, 100.5°. Recrystallise the amide from hot water. [*Beilstein* 2 H 324, 2 I 141, 2 II 286, 2 III 732.]

Caproic acid (hexanoic acid) [142-62-1] M 116.2, b 205.4°, d_4^{20} 0.925, n_D^{20} 1.417, pK²⁵ 4.85. Dry the acid with MgSO₄ and fractionally distil it from CaSO₄. [Beilstein 2 IV 917.]

Capronitrile (hexanenitrile) [628-73-9] M 97.2, m -80°, b 163.7°, n_D^{20} 1.4069, n^{25} 1.4048. Wash the nitrile twice with half-volumes of conc HCl, then with saturated aqueous NaHCO₃, dry over MgSO₄, filter and distil it. [*Beilstein* 2 H 324, 2 I 141, 2 II 286, 2 III 733, 2 IV 930.]

Caprylonitrile (heptylcyanide) [124-12-9] M 125.2, m -45°, b 198-200°/~760mm, d_4^{20} 0.812, n_D^{20} 1.420. Wash the nitrile twice with half-volumes of conc HCl, then with saturated aqueous NaHCO₃, dry over MgSO₄, filter and distil it. [Beilstein 2 H 349, 2 I 148, 2 II 303, 2 III 798, 2 IV 993.]

Carbon Black Leach the carbon for 24hours with 1:1 HCl to remove oil contamination, then wash it repeatedly with distilled water. Dry it in air, and elute for one day each with *benzene and acetone. Again dry it in air at room temperature, then heat it in a vacuum for 24hours at 600° to remove adsorbed gases. [Tamamushi & Tamaki *Trans Faraday Soc* **55** 1007 *1959*.]

Carbon disulfide See entry in "Inorganic Compounds", Chapter 4.

Carbon tetrabromide [558-13-4] **M 331.7, m 92.5°.** Reactive bromide is removed from CBr_4 by refluxing with dilute aqueous Na₂CO₃, then steam distilling, crystallising from EtOH, and drying in the dark under vacuum. [Sharpe & Walker J Chem Soc 157 1962.] It can be sublimed at 70° and low pressure. [Beilstein 1 IV 85.]

Carbon tetrachloride [56-23-5] M 153.8, b 76.8°, d²⁵ 1.5842. For many purposes, careful fractional distillation gives adequate purification. Carbon disulfide, if present, can be removed by shaking vigorously for several hours with saturated KOH, separating, and washing with water: this treatment is repeated. The CCl₄ is shaken with conc H₂SO₄ until there is no further coloration, then washed with water, dried with $CaCl_2$ or MgSO₄ and distilled (from P_2O_5 if desired). It must not be dried with sodium. An initial refluxing with mercury for 2hours removes sulfides. Other purification steps include passage of dry CCl₄ through activated alumina, and distillation from KMnO₄. Carbonyl containing impurities can be removed by percolation through a Celite column impregnated with 2,4-dinitrophenylhydrazine (DNPH), H₃PO₄ and water. (Prepared by dissolving 0.5g DNPH in 6mL of 85% H₃PO₄ by grinding together, then mixing with 4mL of distilled water and 10g Celite.) [Schwartz & Parks Anal Chem 33 1396 1961]. Photochlorination of CCl₄ has also been used: CCl₄ to which a small amount of chlorine has been added is illuminated in a glass bottle (e.g. for 24hours with a 200W tungsten lamp near it), and, after washing out the excess chlorine with 0.02M Na_2SO_3 , the CCl₄ is washed with distilled water and distilled from P_2O_5 . It can be dried by passing through 4A molecular sieves and distilled. Another purification procedure is to wash CCl₄ with aqueous NaOH, then repeatedly with water and N_2 gas is bubbled through the liquid for several hours. After drying over CaCl₂ it is percolated through silica gel and distilled under dry N₂ before use [Klassen & Ross J Phys Chem 91 3664 1987]. [Beilstein 1 IV 56.]

Purification of Organic Chemicals – Aliphatic Compounds

Rapid purification: Distil, discarding the first 10% of distillate or until the distillate is clear. The distilled CCl_4 is then stored over 5A molecular sieves.

Carbon tetrafluoride [75-73-0] **M 88.0, b -15°.** Purify CF_4 by repeated passage over activated charcoal at solid- CO_2 temperatures. Traces of air are removed by evacuating while alternately freezing and melting. Alternatively, liquefy CF_4 by cooling in liquid air and then fractionally distil it under vacuum. (The chief impurity originally present is probably CF_3Cl). Use brass equipment. It is non-flammable. [*Beilstein* **1** H 59, **1** I 8, **1** II 11, **1** III 35, **1** IV 26.]

Carbon tetraiodide [507-25-5] M 519.6, m 168°(dec). Sublime CI_4 in vacuo. [Beilstein 1 H 74, 1 IV 98.]

Carbonyl sulfide See "Inorganic Compounds" in Chapter 5.

Cerulenin (helicocerin, 2*R*,3*S*-2,3-epoxy-4-oxo-7*E*,10*E*-dodecadienamide) [17397-89-6] M 223.3, m 93-94°, 93-95°, b 120°/10⁻⁸mm, $[\alpha]_{D}^{16}$ +63° (c 2, MeOH). It forms white needles from *C₆H₆. It has also been purified by repeated chromatography through Florisil and silica gel. It is soluble in EtOH, MeOH, *C₆H₆, slightly soluble in H₂O and pet ether. The *dl*-form has m 40-42° (from *C₆H₆/hexane), and the 2*R*,3*S*-tetrahydrocerulenin has m 86-87°, $[\alpha]_{D}^{20}$ +44.4 (c 0.25, MeOH after 24hours). [Ohrui & Emato *Tetrahedron Lett* 2095 1978, Sneda et al. *Tetrahedron Lett* 2039 1979, Broeckman & Thomas *J Am Chem Soc* 99 2805 1977, Jakubowski et al. *J Org Chem* 47 1221 1982, Beilstein 18/2 V 201.]

Cetyl acetate [629-70-9] M 284.5, m 18.3°, b 158°/2mm, 204°/18mm, d_4^{20} 0.861. Distil the ester in a vacuum twice, then recrystallise it several times from diethyl ether/MeOH. [Beilstein 2 H 136, 2 II 146, 2 III 265, 2 IV 171.]

Cetyl alcohol (1-hexadecanol) [36653-82-4] **M 242.5, m 49.3°.** Crystallise the alcohol from aqueous EtOH or from cyclohexane. Alternatively purify it by zone refining. The purity can be checked by gas chromatography. [*Beilstein* **1** H 429, **1** I 219, **1** II 466, **1** III 1815, **1** IV 1876.]

Cetylamide [629-54-9] M 255.4, m 104-104.5°, 106-107°, b 235-236°/12mm. Crystallise the amide from thiophene-free *benzene and dry it under vacuum over P_2O_5 . It is slightly soluble in EtOH, Me₂CO, CHCl₃ and toluene but insoluble in H₂O. [*Beilstein* 2 H 374, 2 II 341, 2 III 975, 2 IV 1182.]

Cetylamine (1-hexadecylamine) [143-27-1] M 241.5, m 48°, b 162-165°/5.2mm, pK²⁵ 10.60. Crystallise the base from thiophene-free *benzene and dry under vacuum over P_2O_5 . Store away from CO_2 [*Beilstein* 4 IV 818.]

Cetylammonium chloride [1602-97-7] M 278.0, m 178°. Crystallise the salt from MeOH. [Beilstein 4 IV 818.]

Cetyl bromide (1-bromohexadecane) [112-82-3] M 305.4, m 15°, b 193-196°/14mm. Shake the bromide with H_2SO_4 , wash with H_2O , dry with K_2CO_3 and fractionally distil it *in vacuo*. [Beilstein 1 IV 542.]

Cetyl ether (dihexadecyl ether) [4113-12-6] M 466.9, m 54°. Distil the ether in a vacuum then crystallise it several times from MeOH/*benzene. [Beilstein 1 H 430, 1 II 467, 1 III 1820, 1 IV 1878.]

Cetyltrimethylammonium bromide (cetrimonium bromide, CTAB) [57-09-0] **M 364.5, m 227-235°(dec).** Crystallise it from EtOH, EtOH/*benzene or from wet acetone after extracting twice with pet ether. Shake it with anhydrous diethyl ether, filter and dissolve it in a little hot MeOH. After cooling in the refrigerator, the precipitate is filtered off at room temperature and re-dissolved in MeOH. Anhydrous ether is added and, after warming to obtain a clear solution, it is cooled and the crystalline material is collected. [Dearden & Wooley J Phys Chem **91** 2404 1987, Hakemi et al. J Am Chem Soc **91** 120 1987, Beilstein **4** IV 819.]

Cetyltrimethylammonium chloride [112-02-7] M 320.0. Crystallise the chloride from acetone/ether mixture, EtOH/ether, or from MeOH. [Moss et al. J Am Chem Soc 109 4363 1987, Beilstein 4 IV 819.]

Charcoal [7440-44-0] **M 12.0, m ~3550°.** Charcoal (50g) is added to 1L of 6M HCl and boiled for 45minutes. The supernatant is discarded, and the charcoal is boiled with two more lots of HCl, then with distilled water until the supernatant no longer gives a test for chloride ion. The charcoal (now phosphate-free) is filtered onto a sintered-glass funnel and air dried at 120° for 24hours. [Lippin et al. *J Am Chem Soc* **76** 2871 *1954*.] The purification can be carried out using a Soxhlet extractor (without cartridge), allowing longer extraction times. Treatment with conc H_2SO_4 instead of HCl has been used to remove reducing substances.

Chimyl alcohol (1-O-n-hexadecylglycerol) [(±) 506-03-6, 10550-58-0 (chimyl alcohol)] M 316.5, m 64°. Recrystallise it from hexane. [Beilstein 1 III 2322.]

Chloral (trichloroacetaldehyde) [75-87-6, 302-17-0 (hydrate)] M 147.4, b $26^{\circ}/35$ mm, 98°/760mm. pK²⁵ 10.04. Distil chloral, then dry it by distilling through a heated column of CaSO₄. [*Beilstein* 1 H 616, 1 I 328, 1 II 467, 1 III 2663, 1 IV 3142 for anhydr, 1 IV 3143 for hydrate.]

Chloralacetone chloroform (2,2,2-trichloro-1-[2,2,2-trichloro-1,1-dimethylethoxy]ethanol) [512-47-0] M 324.9, m 65°. Crystallise it from *benzene. It sublimes on careful heating and hydrolyses in cold H₂SO₄ to chloral acetone and chloroform. [*Beilstein* 1 H 622.]

Chloroacetaldehyde dimethyl acetal [97-97-2] M 124.6, m -34.4°, b $64^{\circ}/23$ mm, 71-72°/35mm, d_4^{20} 1.0172, n_D^{20} 1.4175. Purify the acetal by fractional distillation. [Melhotra J Indian Chem Soc 36 4405 1959, Beilstein 1 IV 3134.]

 α -Chloroacetamide [79-07-2] M 93.5, m 121°, b 224-225°/743mm. Recrystallise the amide from acetone and dry it under vacuum over P₂O₅. [*Beilstein* 2 IV 490.]

Chloroacetic acid [79-11-8] **M 94.5, m 62.8°, b 189°, pK**²⁵ **2.87.** Crystallise the acid from CHCl₃, CCl₄, *benzene or water. Dry it over P₂O₅ or conc H₂SO₄ in a vacuum desiccator. Further purification is by distillation from MgSO₄, and by fractional crystallisation from the melt. Store it under vacuum or under dry N₂. [Bernasconi et al. *J Am Chem Soc* **107** 3621 *1985*, *Beilstein* **2** IV 474.]

Chloroacetic anhydride [541-88-8] M 171.0, m 46°, b 122-123°/20mm, 203°/760mm, d_4^{20} 1.5494. Crystallise the it from *benzene. [Eglinton et al. J Chem Soc 1860 1954, Beilstein 2 IV 487.]

Chloroacetone [78-95-5] **M 92.5, b 61°/50mm, 119°/763mm, d** $_{4}^{20}$ **1.15.** Dissolve it in water and shake it repeatedly with small amounts of diethyl ether which extracts, preferentially, 1,1-dichloroacetone present as an impurity. The chloroacetone is then extracted from the aqueous phase using a large amount of diethyl ether, and distilled at slightly reduced pressure. It is dried with CaCl₂ and stored at Dry-ice temperature. Alternatively, it was stood over CaSO₄, distilled and stored over CaSO₄. It is steam volatile. The 2,4-dinitrophenylhydrazone forms yellow needles from EtOH with **m** 120° or 124°. [Beilstein **1** IV 3215.] **LACHRYMATOR with toxic vapour.**

Chloroacetonitrile [107-14-2] M 75.5, b 125°. Reflux it with P₂O₅ for one day, then distil it through a helices-packed column. Also purified by gas chromatography. [*Beilstein* 2 IV 492.] LACHRYMATOR, HIGHLY TOXIC.

2-Chlorobutane [78-86-4] **M 92.6, b 68.5°, d** $_{4}^{20}$ **0.873, n** 25 **1.3945.** Purify it in the same way as *n*-butyl chloride. [*Beilstein* **1** IV 248.]

N-Chlorocarbonyl isocyanate [27738-96-1] M 105.5, m -68°, b 63.6°/atm, d_4^{20} 1.310. Fractionally distil it at 760mm using a 40cm column. TOXIC vapour, use a good fume hood. Store it dry, v_{max} 2260 (NCO), 1818 (CO) and 1420 (NCO sym) cm⁻¹. [Jäckl & Sundmeyer Chem Ber 106 1752 1975.] 2-Chloroethanol (ethylene chlorohydrin) [107-07-3] M 80.5, b 51.0°/31mm, 128.6°/760mm, d_4^{20} 1.201, n^{15} 1.444. Dry it with, then distil it from, CaSO₄ in the presence of a little Na₂CO₃ to remove traces of acid. [*Beilstein* 1 IV 1372.]

2-Chloroethyl bromide (1-bromo-2-chloroethane) [107-04-0] M 143.4, b 106-108°, d_4^{20} 1.723, n_D^{20} 1.490. Wash it with conc H₂SO₄, water, 10% Na₂CO₃ solution, and again with water, then dry with CaCl₂ and fractionally distil before use. [Beilstein 1 H 89, 1 I 28, 1 II 61, 1 III 179, 1 IV 155.]

2-Chloroethyl chloroformate [627-11-2] M 143.0, b 52-54% 12mm, 153%760mm, d_4^{18} 1.3760, n_D^{20} 1.446. Purify it by fractional distillation, preferably in a vacuum and store it in a dry atmosphere. [Jones J Chem Soc 2735 1957, Beilstein 3 IV 24.]

2-Chloroethyl vinyl ether [110-75-8] M 106.6, b 109% 760mm, d_4^{20} 1.048, n_D^{20} 1.437. Wash the ether repeatedly with equal volumes of water made slightly alkaline with KOH, dry with sodium, and distil it under vacuum. Stabilise it with ~0.01% of triethanolamine. [Beilstein 1 IV 2051.] TOXIC.

Chloroform [67-66-3] **M** 119.4, **b** 61.2°, **d**¹⁵ 1.49845, **d**¹⁰ 1.47060, **n**¹⁵ 1.44858. It reacts slowly with oxygen, or oxidising agents, when exposed to air and light, giving, mainly, phosgene, Cl₂ and HCl. Commercial CHCl₃ is usually stabilized with up to 1% EtOH or of dimethylaminoazobenzene. Simplest purifications involve washing with water to remove the EtOH, drying with K₂CO₃ or CaCl₂, refluxing with P₂O₅, CaCl₂, CaSO₄ or Na₂SO₄, and distilling. **It must not be dried with sodium.** The distilled CHCl₃ should be stored in the dark to avoid photochemical formation of phosgene. In an alternative purification, CHCl₃ (500mL) was shaken (mechanically) with several small portions of 12% H₂SO₄ for 1hour, washed thoroughly with water, saturated NaHCO₃, washed again with water, and dried over CaCl₂ or K₂CO₃ (100g) for 1hour before filtering and distilling. After further drying for a short time over P₂O₅, the CHCl₃ was redistilled and stored over Drierite in the dark [Reynolds & Evans *J Am Chem Soc* **60** 2559 *1938*].

EtOH can be removed from CHCl₃ by passage through a column of activated alumina, or through a column of silica gel 4-ft long by 1.75-in diameter at a flow rate of 3mL/minute. (The alumina column, which can hold about 8% of its weight of EtOH, is regenerated by air drying and then heating at 600° for 6hours. It is prepurified by washing with CHCl₃, then EtOH, leaving in conc H_2SO_4 for about 8hours, washing with water until the washings are neutral, then air drying, followed by activation at 600° for 6hours. Just before use it is reheated for 2hour at 154°.) [McLaughlin et al. *Anal Chem* **30** 1517 *1958*.]

Carbonyl-containing impurities can be removed from CHCl₃ by percolation through a Celite column impregnated with 2,4-dinitrophenylhydrazine (DHNP), phosphoric acid and water. (Prepared by dissolving 0.5g DHNP in 6mL of 85% H₃PO₄ by grinding together, then mixing with 4mL of distilled water and 10g of Celite.) [Schwartz & Parks *Anal Chem* **33** 1396 *1961*]. Chloroform can be dried by distillation from powdered type 4A Linde molecular sieves. For use as a solvent in IR spectroscopy, chloroform is washed with water (to remove EtOH), then dried for several hours over anhydrous CaCl₂ and fractionally distilled. This treatment removes material absorbing near 1600 cm⁻¹. (Percolation through activated alumina increases this absorbing impurity). [Goodspeed & Millson *Chem Ind (London)* 1594 *1967*, *Beilstein* **1** IV 42.]

Rapid purification: Pass through a column of basic alumina (Grade I, 10g/mL of CHCl₃), and either dry by standing over 4A molecular sieves, or alternatively, distil from P₂O₅ (3% w/v). Store away from light (to avoid formation of phosgene) and use as soon as possible.

Chloromethyl methyl ether (MOMCl) [107-30-2] M 80.5, b 55-57°, d_4^{20} 1.060, n_D^{20} 1.396. If suspect (check IR), shake it with saturated aqueous CaCl₂ solution, dry over CaCl₂ and fractionally distil taking middle fraction. [Marvel & Porter Org Synth Coll Vol I 377 1941, Beilstein 1 H 580, 1 I 304, 1 II 645, 1 III 2587, 1 IV 3046.] VERY TOXIC and CARCINOGENIC.

1-Chloro-2-nitroethane [625-47-8] M 109.5, b 37-38°/20mm, 55°/60mm, 127.5°/atm, n_D^{20} 1.4224, n^{25} 1.4235. Dissolve it in alkali, extract with ether (discard), then the aqueous phase is acidified with hydroxylamine hydrochloride, and the nitro compound is collected and fractionally distilled under reduced pressure. [Pearson & Dillon J Am Chem Soc 75 2439 1953, Beilstein 1 H 101, 1 III 202, 1 IV 173.]

Chloropicrin (trichloronitromethane) [76-06-2] M 164.5, b 112°. Dry with MgSO₄ and fractionally distil. [*Beilstein* 1 IV 106.] **EXTREMELY NEUROTOXIC**, use appropriate precautions.

RS-2-Chloropropionic acid [598-78-7] **M 108.5, b 98°/3mm, d_4^{20} 1.182, n_D^{20} 1.453 pK²⁵ 2.89.** Dry it with P₂O₅ and fractionally distil it under vacuum. [*Beilstein* 2 IV 745.]

S-(-)-2-Chloropropionic acid [29617-66-1] M 108.5, b 77°/10mm, 80.7°/10mm, 185-188°/atm, d_4^{25} 1.2485, n_D^{25} 1.436, $[\alpha]_D^{25}$ -14.6° (neat). Purify the acid by fractionating twice through a 115cm Podbielniak column (p 11, calculated 50 theoretical plates at atmospheric pressure) using a take-off ratio of 1:5. The *acid chloride* is prepared by dissolving the acid in SOCl₂, adding a few drops of PCl₃, refluxing and then distilling through a 30cm column, b 53°/100mm, $[\alpha]_D^{25}$ -4.6° (neat), d_4^{25} 1.2689, n_D^{25} 1.4368. [Fu et al. *J Am Chem Soc* 76 6954 1954, *Beilstein* 2 IV 745.]

3-Chloropropionic acid [107-94-8] **M 108.5, m 41°, pK²⁵ 4.08.** Crystallise the acid from pet ether or *benzene. [*Beilstein* **2** IV 748.]

3-Chloropropyl bromide (1-bromo-3-chloropropane) [109-70-6] M 157.5, b 142-145°, n^{25} 1.4732. Wash it with conc H₂SO₄, water, 10% Na₂CO₃ solution, water again and then dry with CaCl₂ and fractionally distil it just before use [Akagi et al. J Am Chem Soc 78 4034 1956]. [Beilstein 1 H 109, 1 IV 212.]

2-Chlorotriethylamine hydrochloride [869-24-9] M 172.1, m 208-210°, pK_{Est} ~8.6 (free base). Crystallise the salt from absolute MeOH (to remove highly coloured impurities). [Beilstein 4 III 240.]

Chlorotrifluoroethylene (**TFE**) [79-38-9] **M 116.5, b -26 to -24°.** Scrub it with 10% KOH solution, then 10% H₂SO₄ solution to remove inhibitors, dry and pass it through silica gel. It is stabilized with ~1% tributylamine. Use brass equipment. [*Beilstein* 1 III 646.] **TOXIC GAS.**

Chlorotrifluoromethane [75-72-9] **M 104.5, m -180°, b -81.5°.** Main impurities are CO₂, O₂, and N₂. The CO₂ is removed by passage through saturated aqueous KOH, followed by conc H₂SO₄. The O₂ is removed using a tower packed with activated copper on Kieselguhr at 200°, and the gas is dried over P₂O₅. [Miller & Smyth J Am Chem Soc **79** 20 1957, Beilstein **1** III 42, **1** IV 34.] **TOXIC GAS.**

Choline acetate ([2-hydroxyethyl]trimethylammonium acetate) [16586-35-7] M 163.2, m varies with amount of H₂O. Choline acetate is a very hygroscopic solid and should be kept in well stoppered containers, preferably under N₂ or Ar. [Sasaki & Kobayashi J Agric Chem Soc 23 456 1949, Chem Abstr 47 2696 1953.] It forms a gold complex [HOCH₂CH₂N⁺(Me)₃][AcO⁻] [AuCl₃] with m 263°. Choline Reineckate has m 267-270° (from aqueous Me₂CO, m 226-258° was also reported). Choline picrate has m 247-247.5° (from EtOH, m's of 237-238° and 242-245° were also reported) [Taylor & Kraus J Am Chem Soc 69 1732 1947] and choline picrolonate has m 186° (from EtOH). [Beilstein 4 IV 1444.]

Choline chloride ([2-hydroxyethyl]trimethylammonium chloride) [67-48-1] M 139.6, m 302-305°(dec). Extremely deliquescent. Check purity by $AgNO_3$ titration or by titration of OH-base after passage through an anion-exchange column. Crystallise it from absolute EtOH, or EtOH/Et₂O, dry it under vacuum and store it in a vacuum desiccator over P_2O_5 or $Mg(ClO_4)_2$. [Beilstein 4 IV 1443.]

Citraconic acid (methylmaleic acid) [498-23-7] M 130.1, m 91°, pK_1^{25} 2.2, pK_2^{25} 5.60 (cis). Steam distil and crystallise it from EtOH/ligroin. [Beilstein 2 H 768, 2 I 309, 2 II 652, 2 III 1938, 2 IV 2230.]

Citraconic anhydride (methylmaleic anhydride) [616-02-4] M 112.1, m 8-9°, b 109°/30mm, 132°/74mm, 213°/760mm, d_4^{20} 1.245, n_D^{20} 1.472. Possible contamination is from the acid formed by hydrolysis. If the IR has OH bands, then reflux with Ac₂O for 30minutes, evaporate, then distil the residue in a vacuum, otherwise distil in a vacuum. Store in a dry atmosphere. [Vaughan & Andersen J Am Chem Soc 77

6702 1955, Vaughan & Andersen J Org Chem 21 680 1956, Beilstein 17 H 440, 17 I 234, 17 II 448, 17 III/IV 5912, 17/11 V 65.]

Citric acid (H₂O) [5949-29-1 monohydrate, 77-92-9 (anhydrous)] M 210.1, m 156-157°, 153° (anhyd), pK_1^{25} 2.96, pK_2^{25} 4.38, pK_3^{25} 5.68. Crystallise it from hot H₂O solution (w/w solubility is 54% at 10°, 71% at 50° and 84% at 100°. The monohydrate (softens at ~75° and melts at ~100°) dehydrates in air or when heated gently above 40°. The triethylester ([77-93-0] M 276.3, b 127°/1mm, 294°/atm, d_4^{20} 1.137, n_D^{20} 1.4420.) is a bitter tasting oil. [Beilstein 3 H 556 and 568, 3 IV 1272.]

Citronellal (3,7-dimethyloctan-6-al) [R(+) 2385-77-5, S(-) 5949-05-3] M 154.3, b 67°/4mm, 89°/14mm, 104-105°/21mm, 207°/760mm, $[\alpha]_{546}^{20}$ (+) and (-) 20°, $[\alpha]_D^{20}$ (+) and (-) 16.5° (neat). Fractionally distil it. Alternatively extract it with NaHSO₃ solution, wash it with Et₂O, then acidify it to decompose the bisulfite adduct and extract with Et₂O, dry (Na₂SO₄), evaporate and distil. Check for purity by hydroxylamine titration. The ORD in MeOH (c 0.167) is: $[\alpha]_{700} + 9^{\circ}$, $[\alpha]_{589} + 11^{\circ}$, $[\alpha]_{275} + 12^{\circ}$ and $[\alpha]_{260} + 12^{\circ}$. The *semicarbazone* has **m** 85°, and the 2,4-*dinitrophenylhydrazone* has **m** 79-80°. [(+)-compound: Tietze & Beifuss Org Synth 71 167 1993, IR: Carroll et al. J Chem Soc 3457 1950, ORD: Djerassi & Krakower J Am Chem Soc 81 237 1959, Beilstein 1 IV 3515.]

β-Citronellene (2,6-dimethylocta-2,7-diene) [S-(+) 2436-90-0, R-(-) 10281-56-8] M 138.3, b 153-154⁰/730mm, 155⁰/atm, d_4^{22} 0.757, n_D^{22} 1.431, [α] $_{546}^{20}$ (+) and (-) 13⁰, [α] $_D^{20}$ (+) and (-) 10⁰ (neat). Purify it by distillation over Na (three times) and fractionation. [(-) Arigoni & Jeager *Helv Chim Acta* 37 881 12954, (+) Eschenmoser & Schinz *Helv Chim Acta* 33 171 1950, *Beilstein* 1 IV 1059-1060.]

β-Citronellol (3,7-dimethyloctan-6-ol) [*R*-(+): 11171-61-9, S-(-): 106-22-9] M 156.3, b 47%/1mm, 102-104(110)%/10mm, 112-113%/12mm, 221-224%/atm, 225-226%/atm, d_4^{24} 0.8551, n_D^{24} 1.4562, [α] $_{546}^{20}$ (+) and (-) 6.3%, [α] $_D^{20}$ (+) and (-) 5.4% (neat). Purify them by distillation through a cannon packed (Ni) column and the main cut collected at 84%/14mm and redistilled. Also purify *via* the benzoate. [IR: Eschenazi *J Org Chem* 26 3072 1961, Naves *Bull Soc Chim Fr* 505 1951, *Beilstein* 1 IV 2188.]

Crotonaldehyde (2-butenal) [123-73-9] M 70.1, b 104-105°, d_4^{20} 0.851, n_D^{20} 1.437. Fractionally distil it under N₂, through a short Vigreux column (p 11). Stabilise it with 0.01% of 2,6-di-tert-butyl-*p*-cresol and store it in sealed ampoules. [*Beilstein* 1 IV 3447.]

trans-Crotonic acid (*trans*-2-butenoic acid) [107-93-7] M 86.1, m 72-72.5°, pK_1^{25} -6.17 (aq H_2SO_4), pK_2^{18} 4.71. Distil the acid under reduced pressure and/or recrystallise it from pet ether (b 60-80°) or water, or by partial freezing of the melt. [*Beilstein* 2 IV 1498.]

E- and Z-Crotonitrile (mixture) [4786-20-3] M 67.1, b 120-121°, d_4^{20} 1.091, n_D^{20} 1.4595. Separate the mixture by preparative GLC on a column using 5% FFAP on Chromosorb G. [Lewis et al. *J Am Chem Soc* 108 2818 1986, *Beilstein* 2 IV 1507.]

trans-Crotonoyl chloride [625-35-4] M 104.5, b 42-45% (20mm, 124-125%) (760mm, d_4^{20} 1.080, n_D^{20} 1.4570. If the IR of a film has no OH bands, then fractionally distil it, taking the middle fraction and redistilling it. If OH bands are present, then add excess of oxalyl chloride, reflux for 3hours, then distil off the reagent and fractionally distil the crotonoyl chloride as before. Stabilise the distillate with 160ppm of hydroquinone. The *amide* forms needles m 158% from aqueous ammonia, and the *anilide* also forms needles but with m 115-118% from H₂O. [*Beilstein* 2 H 411, 2 I 188, 2 II 392, 2 III 1265, 2 IV 1506.]

Crotyl bromide [29576-14-5] **M 135.0, b 103-105^o/740mm, n²⁵ 1.4792.** Dry the bromide with $MgSO_4/CaCO_3$ mixture and fractionally distil it through an all-glass Todd column (p 11). [Beilstein 1 IV 789.]

Cyanoacetamide [107-91-5] **M 84.1, m 119.4°.** Crystallise the amide from MeOH/dioxane (6:4), then water and dry it over P₂O₅ under vacuum. [*Beilstein* **2** IV 1891.]

Cyanoacetic acid [372-09-8] M 85.1, m 70.9-71.1°, pK^{25} 2.47. Recrystallise the acid to constant melting point from *benzene/acetone (2:3), and dry it over silica gel. [*Beilstein* 2 H 583, 2 I 253, 2 II 530, 2 III 1626, 2 IV 1888.]

Cyanoacetic acid hydrazide [140-87-4] M 99.1, m 114.5-115°. Crystallise the hydrazide from EtOH. The hydrochloride has m 178-180° and the benzylidene derivative has m 178°. It is converted to 3-oxo-5-iminopyrazolidine in hot 40% aqueous NaOH. [Beilstein 2 H 591, 2 I 256, 2 III 1636.] IRRITANT.

Cyanoguanidine (dicyanodiamide) [461-58-5] M 84.1, m 209.5°, pK²⁵ -0.4. Recrystallise cyanoguanidine from water or EtOH. [*Beilstein* 3 IV 160.]

n-Decane [124-18-5] M 142.3, m -29.7° , b 57.6°/10mm, 174.1°, d²⁰₄ 0.7300, n²⁰_D 1.4102, n²⁵ 1.40967. It can be purified by shaking with conc H₂SO₄, washing with water, aqueous NaHCO₃, and more water, then drying with MgSO₄, refluxing with Na and distilling. Also purify through a column of silica gel or alumina. It has been purified by azeotropic distillation with 2-butoxyethanol, the alcohol being washed out of the distillate, using water, the decane is next dried and redistilled. It can be stored with NaH. Further purification can be achieved by preparative gas chromatography on a column packed with 30% SE-30 (General Electric methyl-silicone rubber) on 42/60 Chromosorb P at 150° and 40psig, using helium [Chu J Chem Phys 41 226 1964]. It is soluble in EtOH and Et₂O. [Beilstein 1 IV 484.]

Decan-1,10-diol [112-47-0] M 174.3, m 72.5-74°. Crystallise the diol from dry ethylene dichloride. [Beilstein 1 IV 2613.]

n-Decanol (*n*-decyl alcohol) [112-30-1] M 158.3, f 6.0°, b 109°/8mm, 231°/atm, d_4^{20} 0.823, n_D^{20} 1.434. Fractionally distil *n*-decanol in an all-glass unit at 10mm pressure (b 110°), then fractionally crystallise by partial freezing. Also purify by preparative GLC, and by passage through alumina before use. [*Beilstein* 1 IV 1815.]

n-Decyl bromide (1-bromodecane) [112-29-8] M 221.2, b 117-1189/15.5mm, d_4^{20} 1.066. Shake the it with H₂SO₄, wash with H₂O, dry with K₂CO₃, and fractionally distil it. [*Beilstein* 1 IV 470.]

Decyltrimethylammonium bromide [2082-84-0] **M 280.3, m 239-242°.** Crystallise the salt from 50% (v/v) EtOH/Et₂O, or from acetone and wash with ether. Dry it under vacuum at 60°. Also recrystallise it from EtOH and dry it over silica gel. [McDonnell & Kraus J Am Chem Soc 73 2170 1952, Dearden & Wooley J Phys Chem **91** 2404 1987, Beilstein **4** IV 784.]

Diacetamide [625-77-4] **M 101.1, m 75.5-76.5°, b 222-223°.** Purify the amide by recrystallisation from MeOH [Arnett & Harrelson J Am Chem Soc **109** 809 1987]. [Beilstein **2** H 181.]

(+)-Di-O-acetyl-L-tartaric anhydride [(R,R)-2,3-diacetoxysuccinic anhydride] [6283-74-5] M 216.2, m 129-132°, 133-134°, 135°, $[\alpha]_D^{20} + 97.2°$ (c 0.5, dry CHCl₃), $[\alpha]_D^{20} + 60°$ (c 6, Me₂CO), If the IR is good, i.e. no OH bands, then keep it in a vacuum desiccator overnight (over P₂O₅/paraffin) before use. If OH bands are present then reflux 4g in Ac₂O (12.6mL) containing a few drops of conc H₂SO₄ for 10minutes (use a relatively large flask), pour onto ice, collect the crystals, wash with dry *C₆H₆ (2 x 2mL), stir with 17mL of cold Et₂O, filter and dry in it a vacuum desiccator as above, or store it in dark evacuated ampoules under N₂ in small aliquots. It is not very stable in air, the melting point of the crystals drop one degree in the first four days then remains constant (132-134°). If placed in a stoppered bottle, it becomes gummy and the m falls 100° in three days. Recrystllisation leads to decomposition. If good quality anhydride is required it, should be prepared freshly from tartaric acid. It sublimes in a CO₂ atmosphere. [Shriner & Furrow *Org Synth* Coll Vol **IV** 242 *1963*, Bell *Aust J Chem* **34** 671 *1981*, *Beilstein* **18** III/IV 2296.]

Diallyl amine (N-2-propenyl-2-propen-1-amine) [124-02-7] M 97.2, b 107-1119/760mm, $112^{0}/760$ mm, d_{4}^{20} 0.789, n_{D}^{20} 1.440, pK²⁰ 9.42. Keep the amine over KOH pellets overnight, decant

and distil it from a few pellets of KOH at atmospheric pressure (b 108-111°), then fractionate through a Vigreux column (p 11). [Vliet J Am Chem Soc 46 1307 1924, Org Synth Coll Vol 1 201 1941.] The hydrochloride has m 164-165° (from Me₂CO/EtOH). [Butler & Angels J Am Chem Soc 79 3128 1957.]

(+)-N,N'-Diallyl tartrimide (DATD) [58477-85-3] M 228.3, m 184°, $[\alpha]_{546}$ +141° (c 3, MeOH). Wash DATD with Et₂O containing 10% EtOH until the washings are clear and colourless, and dry in vacuo. [FEBS Lett 7 293 1970, Beilstein 4 H 218.]

1,4-Diaminobutane dihydrochloride (putrescine 2HCl) [333-93-7] M 161.1, m >290°, pK¹⁵₁ 9.63, pK_2^{25} 10.80. Crystallise the salt from EtOH/H₂O. [Beilstein 4 IV 1284.]

2,2'-Diaminodiethylamine (diethylenetriamine) [111-40-0] M 103.2, b 208°, d²⁰₄ 0.95, n²⁰_D 1.483, pK_1^{25} 4.34, pK_2^{25} 9.13, pK_3^{25} 9.94. Dry the amine with Na and distil, preferably under reduced pressure, or in a stream of N₂. [Beilstein 4 IV 1284.] § Polymer-bound diethylenetriamine is commercially available.

3,3'-Diaminodipropylamine (bis-[3-aminopropyl]amine) [56-18-8] M 131.2, b 152%50mm, d_4^{20} 0.938, n_D^{20} 1.481, pK_1^{25} 7.72, pK_2^{25} 9,57, pK_3^{25} 10.65. Dry the amine with Na and distil it under vacuum. [Beilstein 4 IV 1278.]

[373-44-4] M 144.3, m 50-52°, 51-52°, 52-53°, b 121°/18mm, 1,8-Diaminooctane 120%/24mm, pK_1^{20} 10.1, pK_2^{20} 11.0. Distil the diamine under vacuum in an inert atmosphere (N₂ or Ar), cool and store the distillate in an inert atmosphere in the dark. The *dihydrochloride* has **m** 273-274°. [Nae & Le Helv Chim Acta 15 55 1955, Beilstein 4 III 612.]

1,5-Diaminopentane [462-94-2] M 102.2, m 14-16°, b 78-80°/12mm, 101-103°/35mm, 178- $180^{\circ}/750$ mm, d_4^{20} 0.869, n_D^{20} 1.458, pK_1^{20} 10.02, pK_2^{20} 10.96. Purify the base by distillation, after standing over KOH pellets (at room temperature, i.e. liquid form). Its dihydrochloride has m 275° (sublimes in a vacuum), and its tetraphenyl boronate has m 164°. [Schwarzenbach et al. Helv Chim Acta 35 2333 1952, Beilstein 4 IV 1310.]

1,3-Diaminopropane dihydrochloride [10517-44-9] M 147.1, m 243°, pK₁²⁵ 8.29, pK₂²⁵ 10.30. Crystallise the salt from EtOH/H₂O. [Beilstein 4 IV 1258 free base.]

1,3-Diaminopropan-2-ol [616-29-5] M 90.1, m 38-40°, pK₁²⁵ 7.94, pK₂²⁵ 9.57. Dissolve it in an equal amount of water, shake it with charcoal and distil it at 68% 0.1mm. The distillate solidifies. It is too viscous to be distilled through a packed column. [Beilstein 4 IV 1694.]

Di-O-benzoyl-(*R* and *S*)-tartaric acid (H₂O) [*R*-(+) 17026-42-5, *S*-(-) 2743-38-6 (anhydrous), 62708-56-9 (hydrate)] M 376.3, m 88-89° (hydrate), 173° (anhydrous), $[\alpha]_{546}^{20}$ (+) and (-) 136° (c 2, EtOH), $[\alpha]_{D}^{20}$ (+) and (-) 117° (c 5, EtOH), p K_{Est(1)} ~2.9, pK_{Est(2)} ~4.2. Crystallise the acid from water (18g from 400 mL boiling H₂O) and stir vigorously while cooling in order to obtain crystals; otherwise an oil will separate which solidifies on cooling. Dry it in a vacuum desiccator over KOH/H₂SO₄ (yield 16.4g) as monohydrate, **m** 88-89°. It crystallises from xylene as the anhydrous acid, **m** 173° (150-153°). It does not crystallise from C_6H_6 , toluene, C_6H_6 /pet ether (oil), or CHCl₃/pet ether. [Butler & Cretcher J Am Chem Soc 55 2605 1933, Acs et al. Tetrahedron 41 2465 1985, R(+) Beilstein 9 IV 557, S(-) Beilstein 9 III 870.]

trans-1,4-Dibromobut-2-ene [821-06-7] M 213.9, m 54°, b 85°/10mm. Crystallise the dibromide from ligroin and/or distil it in a vacuum. [Beilstein 1 IV 79.]

Dibromodichloromethane [594-18-3] M 242.7, m 21.8°, b 66°/81mm, d_4^{20} 2.433, n_D^{25} **1.5499.** Crystallise CBr_2Cl_2 , repeatedly from its melt, after washing with aqueous $Na_2S_2O_3$ and drying with BaO. Alternatively, distil it in a vacuum. Store away from light. [Beilstein 1 H 68, 1 III 88, 1 IV 82.]

1,2-Dibromoethane [106-93-4] **M 187.9, f 10.0°, b 29.1°/10mm, 131.7°/760mm, d 2.179,** n^{15} **1.54160.** Wash the dibromide with conc HCl or H₂SO₄, then water, aqueous NaHCO₃ or Na₂CO₃, more water, and dry it with CaCl₂. Fractionally distil it. Alternatively, keep in daylight with excess bromine for 2hours, then extract with aqueous Na₂SO₃, wash with water, dry with CaCl₂, filter and distil. It can also be purified by fractional crystallisation by partial freezing. Store it in the dark. [*Beilstein* **1** H 90, **1** I 28, **1** II 61, **1** III 182, **1** IV 158.]

Dibromomaleic acid [608-37-7] **M 273.9, m 123.5°, 125°(dec), pK** $_{1}^{25}$ **1.45, pK** $_{2}^{25}$ **4.62.** It has been recrystallised from Et₂O or Et₂O/CHCl₃. It is slightly soluble in H₂O, soluble also in AcOH but insoluble in *C₆H₆ and CHCl₃. [Salmony & Simonis *Chem Ber* **38** 2583 1905, Ruggli *Helv Chim Acta* **3** 566 1929, *Beilstein* **3** IV 2224.]

1,3-Dibromopropane [109-64-8] M 201.9, f -34.4°, b 63-63.5°/26mm, 76-77°/40mm, 90°/80mm, 165°/atm, d_4^{20} 1.977, n 1.522. Wash the dibromide with dilute aqueous Na₂CO₃, then water. Dry and fractionally distil it under reduced pressure. [*Beilstein* 1 IV 216.]

meso-2,3-Dibromosuccinic acid [608-36-6] M 275.9, m 288-290°(sealed tube, dec), pK_1^{20} **1.56**, pK_2^{20} 2.71. Crystallise the acid from distilled water, keeping the temperature below 70°. [*Beilstein* 2 IV 1930.]

1,2-Dibromotetrafluoroethane [124-73-2] **M 259.8, b 47.3°/760mm.** Wash it with water, then with weak alkali. Dry with CaCl₂ or H_2SO_4 and distil it. [Locke et al. *J Am Chem Soc* 56 1726 1934.] Also purify it by gas chromatography on a silicone DC-200 column.

Di-*n*-**butylamine** [111-92-2] **M 129.3, b 159°, d_4^{20} 0.761, n_D^{20} 1.41766, pK²⁵ 11.25.** Dry this strong base with LiAlH₄, CaH₂ or KOH pellets, filter and distil it from BaO or CaH₂. [*Beilstein* 4 IV 550.]

Di-tert-butylazodicarboxylate [870-50-8] **M 230.3, m 89-92°, 90-92°.** The tert-butyl ester has the advantage over the ethyl ester (below) in being a solid and more acid labile. It crystallises from ligroin and is best purified by covering the dry solid (22g) with pet ether (b 30-60°, 35-40 mL) heating to boiling and adding ligroin (b 60-90°) until the solid dissolves. On cooling, large lemon yellow crystals of the ester separate (~ 20g), m 90.7-92°. Evaporation of the filtrate gives a further crop of crystals [Carpino & Crowley Org Synth **44** 18 1964]. This reagent is useful in the Mitsunobu reaction [Mitsunobu Synthesis 1 1981, Gennari et al. J Am Chem Soc **108** 6394 1986, Evans et al. J Am Chem Soc **108** 6394 1986, Hughes Org React **42** 335 1992, Dodge et al. Org Synth **73** 110 1996, Hughes Org Prep Proc Int **28** 127 1996, Ferguson & Marcelle J Am Chem Soc **128** 4576 2006, see also **DEAD** and **DIAD** below].

Dibutylcarbitol (di[ethyleneglycol]-dibutyl ether, bis[2-butoxethyl]-ether [112-73-2] M 218.3, b 125-130% (0.1mm, d_4^{20} 0.883, n_D^{20} 1.424. Dibutylcarbitol is freed from peroxides by slow passage through a column of activated alumina. The eluate is then shaken with Na₂CO₃ (to remove any remaining acidic impurities), washed with water, and stored with CaCl₂ in a dark bottle [Tuck *J Chem Soc* 3202 1957]. [Beilstein 1 IV 2395.]

Di-*tert*-butyl dicarbonate (di-*tert*-butyl pyrocarbonate) [24424-99-5] M 218.3, m 23° (21-22°), b 55-56°/0.15mm, 62-65°/0.4mm, d_4^{20} 0.950, n_D^{20} 1.409. Melt the ester by heating at ~35°, and distil it in a vacuum. If IR and NMR (v_{max} 1810m 1765 cm⁻¹, δ in CCl₄ 1.50 singlet) suggest very impure, then wash with an equal volume of H₂O containing citric acid to make the aqueous layer slightly acidic, collect the organic layer and dry it over anhydrous MgSO₄ and distil it in a vacuum. [Pope et al. *Org Synth* 57 45 1977, Keller et al. *Org Synth* 63 160 1985, Grehn et al. *Angew Chem* 97 519 1985.] FLAMMABLE.

N,*N*-Dibutyl formamide [761-65-9] M 157.3, b $63^{\circ}/0.1$ mm, 118-120^o/15mm, 244-246^o/760mm, d_4^{20} 0.878, n_D^{20} 1.445. Purify the amide by fractional distillation [Mandel & Hill *J Am* Chem Soc 76 3981 1954]. [Beilstein 4 IV 565.]

Di-tert-butyl peroxide (tert-butyl peroxide) [110-05-4] M 146.2, d 0.794, n_D^{20} 1.389. Wash the peroxide with aqueous AgNO₃ to remove olefinic impurities, water and dry (MgSO₄). Free it from tert-butyl hydroperoxide by passage through an alumina column [Jackson et al. J Am Chem Soc 107 208 1985], and if necessary two high vacuum distillations from room temperature to a liquid-air trap [Offenbach & Tobolsky J Am Chem Soc 79 278 1957]. [Beilstein 1 IV 1619.] The necessary protection from EXPLOSION should be used.

Di-*n*-butyl sulfide [544-40-1] **M** 146.3, α -form b 182°, β -form b 190-230°(dec). Wash the sulfide with aqueous 5% NaOH, then water. Dry with CaCl₂ and distil it from sodium. [*Beilstein* 1 IV 1559.]

Di-*n*-**butyl sulfone** [598-04-9] **M 162.3, m 43.5**°. Purify it by zone melting. It crystallises from pet ether (**m** 44-44.5°), CHCl₃ (**m** 44°), and EtOH (**m** 45°). [*Beilstein* **1** H 371, **1** II 400, **1** III 1524, **1** IV 1561.]

N,N'-Di-tert-butylthiourea [4041-95-6] M 188.3, m 174-175°(evacuated capillary). Recrystallise it from H₂O [Bortnick et al. J Am Chem Soc 78 4358 1956]. [Beilstein 4 IV 585 for n-butylthiourea.]

Dichloroacetic acid [79-43-6] **M 128.9, m 13.5°, b 95.0-95.5°/17-18mm, d** $_{4}^{20}$ **1.563, n** $_{D}^{20}$ **1.466, pK** 25 **1.35.** Crystallise this strong acid from *benzene or pet ether. Dry it with MgSO₄ and fractionally distil it. [Bernasconi et al. *J Am Chem Soc* **107** 3612 *1985, Beilstein* **2** IV 498.]

sym-Dichloroacetone (1,3-dichloropropan-2-one) [534-07-6] M 127.0, m 41-43°, 45°, b 86-88°/12mm, 75-77°/22mm, 172-172.5°/760mm, 170-175°/760mm, d_4^{20} 1.383. Crystallise it from CCl₄, CHCl₃ or *benzene and/or distil under vacuum [Conant & Quayle Org Synth Coll Vol I 211 1941, Hall & Sirel J Am Chem Soc 74 836 1952]. It is dimorphic [Daasch & Kagarise J Am Chem Soc 77 6156 1955]. The oxime has m 130-131°, b 106°/25mm [Arzneimittel-Forsch 8 638 1958]. [Beilstein 1 IV 3219.]

Dichloroacetonitrile [3018-12-0] **M 110.0, b 110-112°, d_4^{20} 1.369, n_D^{20} 1.440.** Purify the nitrile by distillation or by gas chromatography. [*Beilstein* 2 IV 506.] **FLAMMABLE.**

2,5-Dichlorobenzoic acid [50-79-3] **M 191.0, m 154°, b 301°/760mm, pK²⁵ 2.47.** Recrystallise the acid from water. [*Beilstein* **9** IV 1005.]

2,3-Dichloro-1,3-butadiene [1653-19-6] **M 123.0, b 41-43º/85mm, 98º/760mm.** Crystallise it from pentane to constant melting point of -40°. A mixture of *meso* and *d,l* forms is separated by gas chromatography on an 8m stainless steel column (8mm i.d.) with 20% DEGS (diethyleneglycolsilyl chloride) on Chromosorb W (60-80 mesh) at 60° and 80mL He/min. Distil it under vacuum. [Su & Ache J Phys Chem **80** 659 1976.]

1,2-Dichloro-1,2-difluoroethane [431-06-1] **M 134.9, b 59°, n_D^{20} 1.376.** Purify it by fractional distillation [Hazeldine *J Chem Soc* 4258 1952]. For purification of a diastereoisomeric mixture, with resolution into *meso* and *rac* forms, see Machulla and Stocklin [*J Phys Chem* **78** 658 1974].

Dichlorodifluoromethane (Freon 12) [75-71-8] M 120.9, m -158°, b -29.8°/atm, 42.5°/10atm. Pass the gas through saturated aqueous KOH then conc H₂SO₄, and a tower packed with activated copper on Kielselguhr at 200° removed CO₂ and O₂. A trap cooled to -29° removed a trace of high boiling material. It is a non-flammable propellant.

1,1-Dichloroethane (ethylidene dichloride) [75-34-3] M 99.0, b 57.3°, d¹⁵ 1.18350, d²⁰ 1.177, n¹⁵ 1.41975. Shake it with conc H₂SO₄ or aqueous KMnO₄, then wash it with water, saturated aqueous NaHCO₃, again with water, dry with K₂CO₃ and distil it from CaH₂ or CaSO₄. Store it over silica gel. [*Beilstein* 1 IV 130.]

1,2-Dichloroethane [107-06-2] M 99.0, b 83.4°, d_4^{20} 1.256, n^{15} 1.44759. It is usually prepared by chlorinating ethylene, so that likely impurities include higher chloro derivatives and other chloro compounds

depending on the impurities originally present in the ethylene. It forms azeotropes with water, MeOH, EtOH, trichloroethylene, CCl_4 and isopropanol. Its azeotrope with water (containing 8.9% water, and **b** 77°) can be used to remove gross amounts of water prior to final drying. As a preliminary purification step, it can be steam distilled, and the lower layer is treated as below.

Shake it with conc H_2SO_4 (to remove alcohol added as an oxidation inhibitor), wash with water, then dilute KOH or aqueous Na_2CO_3 and again with water. After an initial drying with $CaCl_2$, $MgSO_4$ or by distillation, it is refluxed with P_2O_5 , $CaSO_4$ or CaH_2 and fractionally distilled. Carbonyl-containing impurities can be removed as described for chloroform. [*Beilstein* **1** IV 131.]

1,2-Dichloroethylene [cis + trans 540-59-0] **M 96.9, b 60°** (cis), d_4^{20} **1.284, b 48°** (trans), d_4^{20} **1.257.** Shake it successively with conc H₂SO₄, water, aqueous NaHCO₃ and water. Dry it with MgSO₄ and fractionally distil it to separate the cis- and trans-isomers. [Beilstein 1 IV 707-709.]

cis-1,2-Dichloroethylene [156-59-2] M 96.9, b 60.4°, d_4^{20} 1.2830, n^{15} 1.44903, n_D^{20} 1.4495. Purify it by careful fractional distillation, followed by passage through neutral activated alumina. Also by shaking with mercury, drying with K₂CO₃ and distilling from CaSO₄. Stabilise it with 0.02% of 2,6-di-*tert*-butyl-*p*-cresol. [*Beilstein* 1 IV 707.]

trans-1,2-Dichloroethylene [156-60-5] M 96.9, b 47.7°, n^{15} 1.45189, d_4^{20} 1.2551, n_D^{20} 1.4462. Dry it with MgSO₄, and fractionally distil it under CO₂. Fractional crystallisation at low temperatures has also been used. [*Beilstein* 1 IV 709.]

2,3-Dichloromaleic anhydride [1122-17-4] **M 167.0, m 105-115°, 120°, 121-121.5°.** Purify the anhydride by sublimation *in vacuo* [Katakis et al. *J Chem Soc, Dalton Trans* 1491 1986]. It has also been purified by Soxhlet extraction with hexane, recrystallised from CHCl₃ and sublimed [MS, Relles *J Org Chem* **37** 3630 1972]. [*Beilstein* **17/11** V 63.]

Dichloromethane (methylene dichloride) [75-09-2] M 84.9, b 40.0°, d_4^{20} 1.325, n_D^{20} 1.42456, n^{25} 1.4201. Shake it with portions of conc H₂SO₄ until the acid layer remains colourless, then wash with water, aqueous 5% Na₂CO₃, NaHCO₃ or NaOH, then water again. Pre-dry with CaCl₂, and distil it from CaSO₄, CaH₂ or P₂O₅. Store it away from bright light in a brown bottle with Linde type 4A molecular sieves, in an atmosphere of dry N₂. Other purification steps include washing with aqueous Na₂S₂O₃, passage through a column of silica gel, and removal of carbonyl-containing impurities as described under Chloroform. It has also been purified by treatment with basic alumina, distillation, and stored over molecular sieves under nitrogen [Puchot et al. J Am Chem Soc 108 2353 1986].

Dichloromethane from Japanese sources contained MeOH as stabiliser which is not removed by distillation. It can, however, be removed by standing over activated 3A Molecular Sieves (note that 4A Sieves cause the development of pressure in bottles), passed through activated Al_2O_3 and distilled [Gao et al. *J Am Chem Soc* **109** 5771 *1987*]. It has been fractionated through a platinum spinning band column, degassed, and distilled onto degassed molecular sieves Linde 4A (heated under high vacuum at over 450° until the pressure readings reached the low values of 10^{-6} mm, ~1-2hours). Stabilise it with 0.02% of 2,6-di-*tert*-butyl-*p*-cresol [Mohammad & Kosower *J Am Chem Soc* **93** 2713 *1971*]. [*Beilstein* **1** IV 35.]

Rapid purification: Reflux over CaH₂ (5% w/v) and distil it. Store it over 4A molecular sieves.

1,2-Dichloropropane [78-87-5] **M 113°**, **b 95.9-96.2°**, d_4^{20} **1.158**, n_D^{20} **1.439**. Distil the propane from CaH₂. It has a limited shelf life. [*Beilstein* **1** IV 195.]

2,2-Dichloropropane [594-20-7] **M 113.0, b 69.3°, d** $_{4}^{20}$ **1.090, n** $_{D}^{20}$ **1.415.** Wash it with aqueous Na₂CO₃ solution, then distilled water, dry over CaCl₂ and fractionally distil it. [*Beilstein* **1** IV 196.]

Di-*n*-decylamine [1120-49-6] **M 297.6, m 34°. b 153°/1mm, 359°/760mm, pK**_{Est} ~11.0. Dissolve the amine in *benzene and precipitate it as its bisulfate by shaking with 4M H₂SO₄. Filter, wash with *benzene, separate by centrifugation, then the free base is obtained by treating with NaOH [McDowell & Allen J Phys Chem 65 1358 1961]. It is a strong base; store away from CO₂. [*Beilstein* **4** IV 780.]

Didodecylamine [3007-31-6] M 353.7, m 51.8°, b 263-265°/27mm, d_4^{25} 0.806, pK²⁵ 11.00. Crystallise the amine from EtOH/*C₆H₆ under N₂, and store away from CO₂. It provides two crystalline forms: an α -form with m 44.4° and a β -form with m 51.8°. The *hydrochloride* has m 207-208°(dec, from isoProOH), the *hydroiodide* has m 23.8-234°(dec, sealed capillary) and the *nitrate* has m 125.4-125.2°(dec, sealed capillary) when crystallised from MeOH/Me₂CO. [Hoerr et al. *J Am Chem Soc* 65 328 1943, Hoerr & Harwood *J Org Chem* 16 779 1951, Beilstein 4 III 412, 4 IV 801.]

Didodecyldimethylammonium bromide [3282-73-3] **M 463.6, m 157-162°.** Recrystallise the salt from acetone, acetone/ether mixture, then from ethyl acetate, wash with ether and dry it in a vacuum oven at 60° [Chen et al. J Phys Chem **88** 1631 1984, Rupert et al. J Am Chem Soc **107** 2628 1985, Halpern et al. J Am Chem Soc **108** 3920 1986, Allen et al. J Phys Chem **91** 2320 1987]. [Beilstein **4** IV 801.]

Diethanolamine (2,2'-iminodiethanol) [111-42-2] M 105.1, m 28°, b 154-155°/10mm, 270°/760mm pK²⁵ 8.88. Fractionally distil the amine twice, then fractionally crystallise it from its melt. Its solubility in H₂O is 10% at 20°. [Perrin & Dempsey *Buffers for pH and Metal Ion Control* Chapman & Hall, London 1974, Beilstein 4 H 283, 4 II 729, 4 III 689, 4 IV 1514.]

N,*N*-Diethylacetamide [685-91-6] M 157.2, b 86-88°, d_4^{20} 0.994, n_D^{20} 1.474. Dissolve the amide in cyclohexane, shake with anhydrous BaO and then filter. The procedure is repeated three times, and the cyclohexane is distilled off at atmospheric pressure. The crude amide is also fractionally distilled three times from anhydrous BaO. [*Beilstein* 4 III 349.]

Diethyl acetamidomalonate [1068-90-2] M 217.2, m 96°. Crystallise the ester from *benzene/pet ether. [*Beilstein* 4 III 2993.]

Diethyl acetylenedicarboxylate [762-21-0] M 170.2, b $60-62^{\circ}/0.3$ mm, $107-110^{\circ}/11$ mm, 118-120°/20mm, d²⁰₄ 1.0735, n²⁰_D 1.4428. Dissolve the ester in *C₆H₆, wash it with NaHCO₃, H₂O, dry over Na₂SO₄, filter, evaporate and distil it in a vacuum [IR: Walton & Hughes J Am Chem Soc 79 3985 1957, Truce & Kruse J Am Chem Soc 81 5372 1959]. [Beilstein 2 H 803.]

Diethylamine [109-89-7] **M 73.1, b 55.5°, d** $_{4}^{20}$ **0.707, n 1.38637, pK**¹⁵ **11.38.** Dry diethylamine with LiAlH₄ or KOH pellets. Reflux with, and distil it from, BaO or KOH. Convert it to the *p*-toluenesulfonamide and crystallise to constant melting point from dry pet ether (b 90-120°), then hydrolyse with HCl, excess NaOH is added, and the amine is passed through a column of activated alumina. Redistil the amine and dry it with activated alumina before use [Swift *J Am Chem Soc* **64** 115 *1942*]. [*Beilstein* **4** III 313.] **§** A polystyrene diethylaminomethyl supported version is commercially available.

Diethylamine hydrochloride [660-68-4] **M 109.6, m 223.5°, 226-229°.** Crystallise salt from absolute EtOH. Also crystallise it from dichloroethane/MeOH. *Hygroscopic*. [*Beilstein* **4** III 113.]

Diethyl azodicarboxylate (DEAD) [1972-28-7] **M 174.2, b 104.5% 12mm, 211-213% 420 1.110, n**_D²⁰ **1.420.** Dissolve DEAD in toluene, wash it with 10% NaHCO₃ till neutral (may require several washes if too much hydrolysis had occurred: check IR for OH bands), then wash with H₂O (2x), dry over Na₂SO₄, filter, evaporate the toluene and distil it through a short Vigreux column (p 11) at as high a vacuum as possible. The main portion boils at 107-111% mm. *Since it is likely to explode, use an oil bath for heating the still and all operations should be carried -out behind an adequate shield*. [Rabjohn Org Synth Coll Vol **III** 375 1955, see Kauer Org Synth Coll Vol **IV** 412 1963]. [Beilstein **3** III 233.] It is commercially available as a 40% solution in toluene. This reagent is useful in the Mitsunobu reaction [Mitsunobu Synthesis 1 1981, Gennari et al. J Am Chem Soc **108** 6394 1986, Evans et al. J Am Chem Soc **108** 6394 1986, Hughes Org *React* **42** 335 1992, Dodge et al. Org Synth **73** 110 1996, Hughes Org Prep Proc Int **28** 127 1996, Ferguson & Marcelle J Am Chem Soc **128** 4576 2006; see also di-tert-butyl azodicarboxylate above and **DIAD** below].

§ A polystyrene supported DEAD version is commercially available with a loading of ~1.2mmol/g.

Diethyl bromomalonate [685-87-0] **M 239.1, b 116-118°/10mm, 122-123°/20mm, d** $_{4}^{20}$ **1.420, n** $_{D}^{20}$ **1.4507.** Purify the ester by fractional distillation in a vacuum. IR: v_{max} 1800 and 1700cm⁻¹ [Abramovitch *Can J Chem* **37** 1146 1959, Bretschneider & Karpitschka *Monatsh Chem* **84** 1091 1053]. [Beilstein **2** IV 1904.]

Diethyl tert-butylmalonate [759-24-0] M 216.3, b 40-42°/0.03, 102-104°/11mm, 109.5-110.5°/17mm, 205-210°/760mm, d_4^{20} 0.980, n_D^{20} 1.425. Dissolve it in Et₂O, wash with aqueous NaHCO₃, H₂O, dry (MgSO₄), filter, evaporate and distil the residue. Identify by hydrolysis to the acid and determine the neutralisation equivalent (theor: 80.0). The acid has m 155-157° effervescence [Hauser et al. J Am Chem Soc 64 2715 1942, Bush & Beauchamp J Am Chem Soc 75 2949 1953]. [Beilstein 2 IV 2027.]

Diethyl carbonate [105-58-8] **M 118.1, b 124-125°, 126.8°, d**²⁰₄ **0.975, n**²⁵ **1.38287.** Wash the ester (100mL) with an aqueous 10% Na₂CO₃ (20mL) solution, saturated CaCl₂ (20mL), then water (30mL). After drying by standing over solid CaCl₂ for 1hour (note that prolonged contact should be avoided because slow combination with CaCl₂ occurs), it should be fractionally distilled. Also dry it over MgSO₄ and distil it. [*Beilstein* **3** H 5, **3** I 4, **3** II 4, **3** III 5, **3** IV 5.]

Diethyl disulfide [110-81-6] M 122.3, b 86.2°/87mm, 154-155°/atm, d_4^{20} 0.993, n_D^{20} 1.506. Dry the disulfide over silica gel or MgSO₄ and distil it under reduced pressure (optionally from CaCl₂). [*Beilstein* 1 H 347, 1 I 173, 1 II 345, 1 III 1377, 1 IV 1379.]

Diethylene glycol [111-46-6] **M 106.1, f -10.5°, b 244.3°, d** $_{4}^{20}$ **1.118, n**¹⁵ **1.4490, n** $_{D}^{20}$ **1.4475.** Fractionally distil it in a vacuum (b 133°/14mm, 2.5cm x 1.3m heli-grid column), then recrystallise it by partial freezing. [Feldman et al. *J Am Chem Soc* **73** 4341 1951, *Beilstein* **1** III 2090, **1** IV 2390.]

Diethylene glycol diethyl ether [112-36-7] M 162.2, b 76°/32mm, 85-86°/10mm, 188.2-188.3°/751mm, d_4^{20} 0.910, n_D^{20} 1.412. Dry the ether with MgSO₄, then CaH₂ or LiAlH₄, under N₂. If sodium is used, the ether should be redistilled alone to remove any products which may be formed by the action of sodium on the ether. As a preliminary purification, the crude ether (2L) can be refluxed for 12hours with 25mL of conc HCl in 200mL of water, under reduced pressure, with slow passage of N₂ to remove aldehydes and other volatile substances. After cooling, add sufficient solid KOH pellets (slowly and with shaking until no more dissolves) to give two liquid phases. The upper of these is decanted, dried with fresh KOH pellets, decanted, then refluxed over, and distilled from sodium. It can be passed through (alkaline) alumina prior to purification. [*Beilstein* 1 IV 2394.]

Diethylene glycol ditosylate [7460-82-4] **M 414.5, m 86-87°, 87-88°, 88-89°**. Purify the ester by recrystallisation from Me₂CO and dry it in a vacuum. [*Beilstein* 11 III 225.]

Diethylene glycol mono-*n*-butyl ether (butyl carbitol) [112-34-5] M 162.2, b 69-70% (0.3mm, 230.5%)760mm, d_4^{20} 0.967, n_D^{20} 1.4286. Dry the ether with anhydrous K₂CO₃ or CaSO₄, filter and fractionally distil it. Peroxides can be removed by refluxing with stannous chloride or a mixture of FeSO₄ and KHSO₄ (or, less completely, by filtration under slight pressure through a column of activated alumina). [*Beilstein* 1 IV 2394.]

Diethylene glycol monoethyl ether [111-90-0] M 134.2, b 201.9°, d_4^{20} 0.999, n_D^{20} 1.4273, n^{25} 1.4254. Ethylene glycol can be removed by extracting 250g in 750mL of *benzene with 5mL portions of water, allowing for phase separation, until successive aqueous portions show the same volume increase. Dry, and free from peroxides, as described for diethylene glycol mono-*n*-butyl ether. [*Beilstein* 1 IV 2393.]

Diethylene glycol monomethyl ether [111-77-3] M 120.2, b 194°, d_4^{20} 1.010, n_D^{20} 1.423. Purify as for diethylene glycol mono-*n*-butyl ether. [*Beilstein* 1 IV 2392.]

Diethylenetriaminepenta-acetic acid (DTPA, DEPTAPAC) [67-43-6] M 393.4, m 219-220°, pK_1^{25} 1.79, pK_2^{25} 2.56, pK_3^{25} 4.42, pK_4^{25} 8.76, pK_5^{25} 10.42. Crystallise DTPA from water. Dry

under vacuum or at 110°. [Bielski & Thomas J Am Chem Soc 109 7761 1987, NMR: Wenzel et al. Anal Chem 54 615 1982, Beilstein 4 IV 2454.]

Diethyl ether (ethyl ether) [60-29-7] **M 74.1, b 34.6**°/760mm, d_4^{20} 0.714, n^{15} 1.3555, n_D^{20} 1.35272. Usual impurities are water, EtOH, diethyl peroxide (which is explosive when concentrated), and aldehydes. Peroxides [detected by liberation of iodine from weakly acid (HCl) solutions of KI, or by the blue colour in the ether layer when 1mg of Na₂Cr₂O₇ and 1 drop of dilute H₂SO₄ in 1mL of water is shaken with 10mL of ether] can be removed in several different ways. The simplest method is to pass dry ether through a column of activated alumina (80g Al₂O₃/700mL of ether). More commonly, 1L of ether is shaken repeatedly with 5-10mL of a solution comprising 6.0g of ferrous sulfate and 6mL of conc H₂SO₄ in 110mL of water. Aqueous 10% Na₂SO₃ or stannous chloride can also be used. The ether is then washed with water, dried for 24hours with CaCl₂, filtered and dried further by adding sodium wire until it remains bright. The ether is stored in a dark cool place, until distilled from sodium before use. Peroxides can also be removed by wetting the ether with a little water, then adding excess LiAlH₄ or CaH₂ and leaving to stand for several hours. (This also dried the ether.)

Werner [*Analyst* **58** 335 *1933*] removed peroxides and aldehydes by adding 8g AgNO₃ in 60mL of water to 1L of ether, then 100mL of 4% NaOH and shaking for 6minutes. Fierz-David [*Chimia* **1** 246 *1947*] shook 1L of ether with 10g of a zinc-copper couple. (This reagent is prepared by suspending zinc dust in 50mL of hot water, adding 5mL of 2M HCl and decanting after 20seconds, washing twice with water, covering with 50mL of water and 5mL of 5% cuprous sulfate with swirling. The liquid is decanted and discarded, and the residue is washed three times with 20mL of ethanol and twice with 20mL of diethyl ether).

Aldehydes can be removed from diethyl ether by distillation from hydrazine hydrogen sulfate, phenyl hydrazine or thiosemicarbazide. Peroxides and oxidisable impurities have also been removed by shaking with strongly alkaline-saturated KMnO₄ (with which the ether was left to stand in contact for 24hours), followed by washing with water, conc H_2SO_4 , water again, then drying (CaCl₂) and distillation from sodium, or sodium containing benzophenone to form the ketyl. Other purification procedures include distillation from sodium triphenylmethide or butyl magnesium bromide, and drying with solid NaOH or P₂O₅. [*Beilstein* **1** IV 1314.] **Rapid purification:** Same as for 1,4-dioxane.

Diethyl ethoxymethylene malonate [87-13-8] **M 216.2, b 014°/0.2mm, 109°/0.5mm, 279-283°/atm, d**²⁰₄ **1.079, n**²⁰_D **1.4623.** Likely impurity is diethyl diethoxymethylene malonate which is difficult to separate from diethyl ethoxymethylene malonate by distillation, and it is necessary to follow the course of the distillation by the change in refractive index instead of boiling point. After a low boiling fraction is collected, there is obtained an intermediate fraction (n²⁰_D 1.414–1.458), the size of which depends on the amount of the diethoxymethylene compound. This fraction is fractionated through a 5inch Vigreux column (p 11) at low pressure avoiding interruption in heating. Fraction **b** 108-110°/0.25mm is *ca* 10° lower than the submitters' fraction (**b** 97.2°/0.25mm, n²⁰_D 1.4612–1.4623) [*Org Synth* Coll Vol **III** 395 *1955*, Fuson et al. *J Org Chem* **11** 197 *1946*, Duff & Kendal *J Chem Soc* 893 *1948*]. [*Beilstein* **3** IV 1192.]

N,N'-Diethylformamide [617-84-5] M 101.2, b 29% 0.5mm, 61-63% 10mm, 178.3-178.5% 760mm, d_4^{20} 0.906, n_D^{25} 1.4313. Distil it under reduced pressure, then at atmospheric pressure [Wintcler et al. *Helv Chim Acta* 37 2370 1954, NMR: Hoffmann Z Anal Chem 170 177 1959]. [Beilstein 4 IV 346.]

Diethyl fumarate [623-91-6] **M 172.2, b 218°, d 1.052, n 1.441.** Wash the fumarate with aqueous 5% Na₂CO₃, then with saturated CaCl₂ solution, dry with CaCl₂ and distil it. [Beilstein **2** IV 2207.]

Diethyl ketone (3-pentanone) [96-22-0] **M 86.1, b 102.1°, d** $_{4}^{20}$ **0.8099, n** $_{D}^{20}$ **1.392.** Dry it with anhydrous CaSO₄ or CuSO₄, and distil from P₂O₅ under N₂ or under reduced pressure. Further purification is by conversion to the semicarbazone (recrystallise to constant **m** 139°, from EtOH) which, after drying *in vacuo* over CaCl₂ and paraffin wax, is refluxed for 30minutes with excess oxalic acid, then steam distilled and salted out with K₂CO₃. Dry with Na₂SO₄ and distil [Cowan et al. *J Chem Soc* 171 *1940*]. [*Beilstein* **1** IV 3279.]

Diethyl malonate [105-53-3] **M 160.2, b 92°/22mm, 198-199°/760mm, d** $_{4}^{20}$ **1.056, d** 25 **1.0507, n** $_{D}^{20}$ **1.413.** If too impure (IR, NMR) the ester (250g) is heated on a steam bath for 36hours with absolute EtOH (125mL) and conc H₂SO₄ (75mL), then fractionally distilled under reduced pressure. Otherwise fractionally distil it under reduced pressure and collect the steady boiling middle fraction. [*Beilstein* **2** IV 1881.]

2,2-Diethyl-1,3-propanediol [115-76-4] **M 132.2, m 61.4-61.8**°, **b 130-133**°/16mm, n_D^{20} **1.4574.** Crystallise the diol from pet ether (b 65-70°). **IRRITANT.** [McKusick J Am Chem. Soc **70** 1982 1948, Beilstein **1** III 2217, **1** IV 2589.]

Diethyl pyrocarbonate (DEP) [1609-47-8] M 162.1, b 38-40°/12mm, 160-163°/atm, d²⁰₄1.119, n²⁰_D 1.398. Dissolve the ester in Et₂O, wash it with dilute HCl, H₂O, dry over Na₂SO₄, filter, evaporate and distil the residue first *in vacuo* then at atmospheric pressure. It is soluble in alcohols, esters, ketones and hydrocarbon solvents. A 50% w/w solution is usually prepared for general use. Treat with great CAUTION as DEP irritates the eyes, mucous membranes and skin. [Boehm & Mehta Chem Ber 71 1797 1938, Thoma & Rinke Justus Liebigs Ann Chem 624 30 1959, Beilstein 3 IV 18.]

Diethyl succinate [123-25-1] **M 174.2, b 105°/15mm, 218°/atm, d** $_{4}^{20}$ **1.047, n** $_{D}^{20}$ **1.4199.** Dry the succinate with MgSO₄, and distil it at 15mm pressure. [*Beilstein* **2** IV 1914.]

Diethyl sulfate [64-67-5] **M 154.2, b 96% 15mm, 118% 40mm, d₄²⁰ 1.177, n_D²⁰ 1.399.** Wash the ester with aqueous 3% Na₂CO₃ (to remove acidic material), then distilled water, dry (CaCl₂), filter and distil it in a vacuum. *It is an ethylating agent and blisters the skin.* [*Beilstein* **1** IV 1236.]

Diethyl sulfide [352-93-2] **M 90.2, m 0°/15mm, b 90.1°/760mm, d** $_{4}^{20}$ **0.837, n** $_{D}^{20}$ **1.443.** Wash the sulfide with aqueous 5% NaOH, then water, dry with CaCl₂ and distil it from sodium. It can also be dried with MgSO₄ or silica gel. Alternative purification is *via* the Hg(II) chloride complex [(Et)₂S.2HgCl₂] (see dimethyl sulfide). [*Beilstein* **1** IV 1394.]

Diethyl (-)-D- (from the non-natural) [13811-71-7] and (+)-L- (from the natural acid) [89-91-2] tartrate M 206.2, m 17°, b 80°/0.5mm, 162°/19mm, 278-282°/atm, d_4^{20} 1.204, n_D^{20} 1.4476, $[\alpha]_D^{20}$ (+) and (+) 26.5° (c 1, H₂O) and (-) and (+) 8.5° (neat), $[\alpha]_{546}^{20}$ (+) and (+) 30° (c 1, H₂O). Distil the esters under high vacuum and store them under vacuum or in an inert atmosphere in a desiccator in round bottomed flasks equiped with a vacuum stopcock. They have also been distilled by Kügelrohr distillation and/or by 'wiped-film' molecular distillation. They are slightly soluble in H₂O but miscible with EtOH and Et₂O. [Gao et al. J Am Chem Soc 109 5770 (5771) 1987, IR: Pristera Anal Chem 25 844 1953, Beilstein 3 III 1025 for D-(-), 3 IV 1232 for L(+).]

sym-Diethylthiourea [105-55-5] M 132.2, m 76-77°. 77-79°. Crystallise it from *benzene. [*Beilstein* 4 H 118, 4 I 355, 4 II 610, 4 III 220, 4 IV 375.]

Difluoroacetic acid [381-73-7] **M 96.0, m -0.35°, b 67-70°/20mm, 134°/760mm, d**²⁰₄ **1.530, n**²⁰_D **1.3428, pK**²⁵ **1.28.** Purify the acid by distilling over P₂O₅. The *acid chloride* is a fuming liquid **b** 25°/atm, and the *amide* has **b** 108.6°/35mm, **m** 52° (from *C₆H₆), and the *anilide* has **b** 90°/1mm, 114°/5mm, **m** 58° [Henne & Pelley J Am Chem Soc **74** 1426 1952, Coffman et al. J Org Chem **14** 749 1949, NMR: Meyer et al. J Am Chem Soc **75** 4567 1953, pK: Wegscheider Z Phys Chem **69** 614 1909]. [Beilstein **2** IV 455.]

Diglycolic acid (2-oxapentane-1,5-dioic acid) [110-99-6] M 134.1, m 148° (monohydrate), pK_1^{25} 2.97, pK_2^{25} 4.37. Crystallise diglycolic acid from water. [Beilstein 3 IV 577.]

Diglyme [bis-(2-methoxyethyl) ether, diethylene glycol dimethyl ether] [111-96-6] M 134.2, b 62°/17mm, 75°/35mm, 160°/760mm, d_4^{20} 0.917, n_D^{20} 1.4087. Dry diglyme with NaOH pellets or CaH₂, then reflux with, and distil (under reduced pressure) it from Na, CaH₂, LiAlH₄, NaBH₄ or NaH. These operations are carried out under N₂. The amine-like odour of diglyme has been removed by shaking with a weakly acidic ion-exchange resin (Amberlite IR-120) before drying and distilling. Addition of 0.01% NaBH₄ to the distillate inhibits peroxidation. Purify it also as for dioxane. It has been passed through a 12-in column of molecular sieves to remove water and peroxides. [*Beilstein* **1** IV 2393.]

Dihydroxyfumaric (1,2-dihydroxybut-1-ene-1,2-dioic) acid dihydrate [133-38-0] M 184.1, m $155^{\circ}(dec)$, pK²⁵₁ 1.57, pK²⁵₂ 3.36. Crystallise the acid from water. [Beilstein 3 IV 1975.]

1,2-Diiodoethane [624-73-7] **M 281.9, m 81-84°, d 2.134.** Dissolve it in ether, wash it with saturated aqueous $Na_2S_2O_3$, dry over MgSO₄ and evaporate the ether *in vacuo* and distil it. Store it in the dark. [Molander et al. J Am Chem Soc **109** 453 1987]. [Beilstein **1** IV 169.]

Diiodomethane (methylene diiodide) [75-11-6] **M 267.8, m 6.1°, b 66-70°/11-12mm, d** $_{4}^{20}$ **3.325.** Fractionally distil it under reduced pressure, then fractionally crystallise it by partial freezing, and stabilize it with silver wool if necessary. It has also been purified by drying over CaCl₂ and fractionally distilling from Cu powder. Store it in the dark. [*Beilstein* **1** IV 97.]

Diisopropanolamine [110-97-4] **M 133.2, m 41-44**°, d_4^{20} **1.004**, $pK_{Est} \sim 10.7$. Crystallise the amine repeatedly from dry diethyl ether. [*Beilstein* **4** III 761.]

Diisopropylamine [108-18-9] **M 101.2, b 83.5%** (760mm, d_4^{20} 0.720, n_D^{20} 1.39236, pK^{25} 11.20. Distil the amine from NaOH, or reflux it three minutes over Na wire or NaH, and distil it into a dry receiver under N₂. [Beilstein 4 H 154, 4 I 369, 4 II 630, 4 III 274, 4 IV 510.] § A polystyrene supported version of diisopropylamine is commercially available.

Diisopropylazodicarboxylate (DIAD) [2446-83-5] M 202.2, b 75% 0.2mm, d²⁵ 1.420, n_D²⁰ 1.420. Purify the azo compound by distillation at as high a vacuum as possible. Since it is likely to explode, use an oil bath for heating the still, and all operations should be carried out behind an adequate shield. [Kauer Org Synth Coll Vol IV 412 1963, Beilstein 3 III 233]. This reagent is useful in the Mitsunobu reaction [Mitsunobu Synthesis 1 1981, Gennari et al. J Am Chem Soc 108 6394 1986, Evans et al. J Am Chem Soc 108 6394 1986, Hughes Org React 42 335 1992, Dodge et al. Org Synth 73 110 1996, Hughes Org Prep Proc Int 28 127 1996, Ferguson & Marcelle J Am Chem Soc 128 4576 2006; see also di-tert-butyl azodicarboxylate and DEAD above].

Diisopropylethylamine (Hünig's base) [7087-68-5] M 129.3, b 119°/731mm, 127°/760mm, d_4^{27} 1.440, n_D^{25} 1.4376, pK_{Est} ~10.9. Distil the amine from ninhydrin, then from KOH [Dryland & Sheppard, *J Chem Soc*, *Faraday Trans 1* 125 *1986*]. It is a strong base and should be stored in the absence of carbon dioxide. [Hünig & Kiessel *Chem Ber* 91 380, 387 *1958*, Wotiz et al. *J Org Chem* 24 1202 *1959*, *Beilstein* 4 IV 551.]

Diisopropyl ketone (2,4-dimethyl-3-pentanone) [565-80-0] M 114.2, b 124°, d 0.801, n 1.400. Dry the ketone with CaSO₄, shake it with chromatographic alumina and fractionally distil it from P_2O_5 under N_2 . [Beilstein 1 IV 3334.]

Diketene See 2-methylene-oxetan-2-one in "Heterocyclic Compounds", Chapter 4, and see ketene below.

2,3-Dimercapto-1-propanol (BAL, British Anti-Lewisite) [59-52-9] M 124.2, b 82-84% (0.8mm, 120% 15mm, d_4^{20} 1.239, n_D^{20} 1.5732, pK_1^{25} 8.62, pK_2^{25} 10.75. Precipitate BAL as the Hg mercaptide [see Bjöberg Chem Ber 75 13 1942], regenerate with H₂S, and distil it under a vacuum [Rosenblatt & Jean Anal Chem 951 1955]. It is an antidote for heavy metal (As, Hg, Au etc) poisoning. [Beilstein 1 IV 2770.]

1,3-Dimercapto-2-propanol [584-04-3] M **124.2, b 68-69% 0.8mm, 82% 1.5mm, 94% 12mm, n**²³_D **1.5696.** Purify the dithiol as for 2,3-dimercapto-1-propanol above. [Johary & Owen J Chem Soc 1305 1955, Beilstein **1** IV 2773 or **2** IV 1102.]

meso-2,3-Dimercaptosuccinic acid [304-55-2] M 182.2, m 191-192°(dec), 210°(dec), 210-211° (dec), pK₁²⁵ 2.71, pK₂²⁵ 3.48, pK₃²⁵ 8.89, pK₄²⁵ 10.75. Purify the acid by dissolving it in NaOH and precipitating with dilute HCl, drying and recrystallising from MeOH. IR has v_{max} at 2544 (SH) and 1689 (CO₂H) cm⁻¹. The *bis-S-acetyl* derivative has m 183-185° (from EtOAc or Me₂CO), and its *Me ester* has m 119-120° (from pet ether) [Gerecke et al. *Helv Chim Acta* 44 957 *1961*, Owen & Sultanbawa *J Chem Soc* 3112 *1949*]. [*Beilstein* 3 III 1033.]

1,2-Dimethoxyethane (glycol dimethyl ether, glyme) [110-71-4] **M 90.1, b 84°, d** $_{4}^{20}$ **0.867, n 1.380.** Traces of water and acidic materials have been removed from it by refluxing with Na, K or CaH₂, decanting and distilling from Na, K, CaH₂ or LiAlH₄. The reaction has been speeded up by using vigorous high-speed stirring with molten potassium. For virtually complete elimination of water, 1,2-dimethoxyethane has been dried with Na-K alloy until a characteristic blue colour is formed in the solvent at Dry-ice/cellosolve temperatures: the solvent is kept with the alloy until distilled for use [Ward J Am Chem Soc 83 1296 1961]. Alternatively, glyme, refluxed with benzophenone and Na-K, is dry enough if, on distillation, it gives a blue colour of the ketyl immediately on addition to benzophenone and sodium [Ayscough & Wilson J Chem Soc 5412 1963]. It has also been purified by distillation under N₂ from sodium benzophenone ketyl (see above). [*Beilstein* **1** IV 2376.]

N,N-Dimethylacetamide [127-19-5] M 87.1, b 58.0-58.5% (11.4mm, d_4^{20} 0.940, n_D^{20} 1.437. Shake the amide with BaO for several days, reflux it with BaO for 1hour, then fractionally distil it under reduced pressure. Store it over molecular sieves. [*Beilstein* 4 IV 180.]

 β , β -Dimethylacrylic acid (senecioic acid, 3-methyl-2-butenoic acid) [541-47-9] M 100.1, m 68°, pK²⁵-5.4 (aqueous H₂SO₄). Crystallise the acid from hot water or pet ether (b 60-80°). [Beilstein 2 IV 1555.]

Dimethyl adipate [627-93-0] M 174.2, m 9-11°, b 109°/10mm, 121-123°/20mm, 235°/760mm, d_4^{20} 1.0642, n_D^{20} 1.4292. Dissolve it in Et₂O, wash with NaHCO₃, H₂O, dry over MgSO₄, filter, evaporate and distil it several times until the IR and NMR are consistent with the structure [Lorette & Brown *J Org Chem* 24 261 1959, Hoffmann & Weiss *J Am Chem Soc* 79 4759 1957]. [Beilstein 2 IV 1959.]

Dimethyl adipimidate dihydrochloride [14620-72-5] **M 245.1, m 218-220^o, 222-224^o**. If the salt smells of HCl, then wash it with MeOH and dry Et_2O (1:3) under N₂ until the free HCl is completely removed. Recrystallise it from MeOH/ Et_2O (it is very important that the solvents are super dry) [Hartman & Wold *Biochemistry* **6** 2439 1967, McElvain & Shroeder J Am Chem Soc **71** 40 1949].

Dimethylamine [124-40-3] **M 45.1, f -92.2°, b 0°/563mm, 6.9°/760mm, pK²⁵ 10.73.** Dry dimethylamine by passage through a KOH-filled tower, or by standing with sodium pellets at 0° during 18hours. [*Beilstein* **4** IV 128.]

§ A dimethylaminomethyl polystyrene supported version is commercially available.

Dimethylamine hydrochloride [506-59-2] **M 81.6, m 171°.** Crystallise the salt from hot CHCl₃ or absolute EtOH. It also recrystallises from MeOH/ether solution. Dry it in a vacuum desiccator over H₂SO₄, then P₂O₅. *Hygroscopic*. [*Beilstein* **4** IV 132.]

2-Dimethylaminoethanol [108-01-0] **M 89.1, b 134.5-135.5**°, d_4^{20} **1.430, n_D^{20} 1.4362, pK²⁵ 9.23.** Dry the amine with anhydrous K₂CO₃ or KOH, and fractionally distil it. [Beilstein 4 IV 1424.]

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, DEC, 1-ethyl-3-(3dimethylaminopropyl) carbodiimide hydrochloride) [25952-53-8] M 191.7, m 113.5-114.5°, 114-116°, $pK_{Est} \sim 10.3$. It is an excellent H₂O-soluble peptide coupling reagent. It is purified by dissolving (*ca* 1g) in CH₂Cl₂ (10mL) at room temperature and then add dry Et₂O (~110mL) dropwise and the crystals that separate are collected, washed with dry Et₂O, recrystallised from CH₂Cl₂/Et₂O and dried in a vacuum over P₂O₅. It is important to work in a dry atmosphere or work rapidly and then dry the solid as soon as possible. The material is moderately *hygroscopic*, but once it becomes wet it reacts slowly with H₂O. Store it away from moisture at -20° to slow down the hydrolysis process. The *free base* has **b** 47-48°/0.27mm, 53-54°/0.6mm, n_D^{25} 1.4582. The *methiodide* is recrystallised from CHCl₃/EtOAc, the crystals are filtered off, washed with dry Et₂O, recrystallised from CHCl₃/Et₂O, and dried *in vacuo* over P₂O₅, **m** 93-95°, 94-95°. [Sheehan et al. *J Am Chem Soc* **87** 2492 *1965*, Sheehan & Cruickshank *Org Synth* Coll Vol **V** 555 *1973*.] § A polymer bound version is commercially available.

N,*N*-Dimethylbiuret [7710-35-2] M 131.1, m 178°. Purify it by repeated crystallisation from the melt, or H₂O. [Bredereck & Richter *Chem Ber* 99 2461 1968, Dunning & Close J Am Chem Soc 75 3615 1953.]

2,3-Dimethyl-1,3-butadiene [513-81-5] **M 82.2, m -69-70°, b 68-69°/760mm, d** $_{4}^{20}$ **0.727, n** $_{D}^{20}$ **1.4385.** Distil it from NaBH₄, and purify it by zone melting. [*Beilstein* **1** IV 1023.]

1,3-Dimethylbutadiene sulfone (1,3-dimethylsulfolene, 2,4-dimethyl-2,5-dihydrothiophen-**1,1-dioxide**) [10033-92-8] M 145.2, m 40.4-41.0°. Crystallise the sulfone from diethyl ether (three times), or from CCl₄ (m 39.5-40°). [Grummitt et al. J Am Chem Soc 72 5768 1950, Beilstein 17/1 V 97.]

2,2-Dimethylbutane [75-83-2] **M 86.2, b 49.7°, d** $_4^{20}$ **0.649, n** 25 **1.36595.** Distil it azeotropically with MeOH, then wash it with water, dry (Na₂SO₄) it, and distil it. [*Beilstein* **1** IV 367.]

2,3-Dimethylbutane [79-29-8] **M 86.2, b 58.0°, d** $_{4}^{20}$ **1.375, n** 25 **1.37231.** Distil it from sodium, pass it through a column of silica gel (activated by heating in nitrogen to 350° before use) to remove unsaturated impurities, and again distil it from sodium. Also distil it azeotropically with MeOH, then wash with water, dry (Na₂SO₄) it, and redistil it. [*Beilstein* **1** IV 371.]

2,3-Dimethylbut-2-ene [563-79-1] **M 84.2, b 72-73°/760mm, d** $_{4}^{20}$ **0.708, n** $_{D}^{20}$ **1.41153.** Purify it by GLC on a column of 20% squalene on chromosorb P at 50° [Flowers & Rabinovitch *J Phys Chem* **89** 563 1985]. Also wash it with 1M NaOH solution followed by H₂O. Dry it over Na₂SO₄, distil it over powdered KOH under nitrogen and pass it through activated alumina before use. [Woon et al. *J Am Chem Soc* **108** 7990 1986, Wong et al. *J Am Chem Soc* **109** 3428 1987, Beilstein **1** IV 853.]

Dimethylcarbamoyl chloride [79-44-7] **M 107.5, m -33°, b 34°/0.1mm, d_4^{20} 1.172, n_D^{20} 1.4511. It must be distilled under high vacuum to avoid decomposition. [***Beilstein* **4 IV 224.]**

Dimethyl carbonate [616-38-5] **M 90.1, m 4.65°, b 90-91°, d** $_{4}^{20}$ **1.070, n** $_{D}^{20}$ **1.369.** It may contain small amounts of water and alcohol which form azeotropes. Stand it for several days in contact with Linde type 4A molecular sieves, then fractionally distil it. The middle fraction is frozen slowly at 2°, several times, retaining 80% of the solvent at each cycle. [*Beilstein* **3** IV 3.]

1,5-Dimethyl-1,5-diazaundecamethylene polymethobromide (Hexadimethrene, Polybrene) [28728-55-4] **M 5000—10,000 polymer** Purify it by chromatography on Dowex 50 and/or by filtration through alumina before use [Frank *Hoppe-Seyler's Z Physiol Chemie* **360** 997 *1979*]. It is hygroscopic, and its solubility in H₂O is 10%.

Dimethyl disulfide [624-92-0] M 94.2, f -98°, b 40°/12mm, 110°/760mm, d²⁰₄ 1.0605, n 1.5260. Pass it through neutral alumina before use. [Trost *Chem Rev* 78 363 1978, *Beilstein* 1 IV 1281.]

N,N-Dimethylformamide (DMF) [68-12-2] M 73.1, b 40% 10mm, 61% 30mm, 88% 100mm, 153% 760mm, d_4^{20} 0.948, n^{25} 1.4269, pK^{25} -0.3. DMF decomposes slightly at its normal boiling point to give small amounts of dimethylamine and carbon monoxide. The decomposition is catalysed by acidic or basic materials, so that even at room temperature DMF is appreciably decomposed if allowed to stand for several hours with solid KOH, NaOH or CaH₂. If these reagents are used as dehydrating agents, therefore, they should not be refluxed with the DMF. Use of CaSO₄, MgSO₄, silica gel or Linde type 4A molecular sieves is preferable, followed by distillation under reduced pressure. This procedure is adequate for most laboratory purposes. Larger amounts of water can be removed by azeotropic distillation with *benzene (10% v/v,

previously dried over CaH₂), at atmospheric pressure: water and *benzene distil below 80°. The liquid remaining in the distillation flask is further dried by adding MgSO₄ (previously ignited overnight at 300-400°) to give 25g/L. After shaking for one day, a further quantity of MgSO₄ is added, and the DMF is distillied at 15-20mm pressure through a 3-ft vacuum-jacketed column packed with steel helices. However, MgSO₄ is an inefficient drying agent, leaving about 0.01M water in the final DMF. More efficient drying (to around 0.001-0.007M water) is achieved by standing with powdered BaO, followed by decanting before distillation, then with alumina powder (50g/L, previously heated overnight to 500-600°), and distilling from more of the alumina, or by refluxing at 120-140° for 24hours with triphenylchlorosilane (5-10g/L), then distilling at *ca* 5mm pressure [Thomas & Rochow J Am Chem Soc **79** 1843 1957]. Free amine in DMF can be detected by the colour reaction with 1-fluoro-2,4-dinitrobenzene. It has also been purified by drying overnight over KOH pellets and then distilling from BaO through a 10 cm Vigreux column (p 11) [Jasiewicz et al. *Exp Cell Res* **100** 213 *1976*]. [For efficiency of desiccants in drying dimethylformamide see Burfield & Smithers J Org Chem **43** 3966 *1978*, and for a review on purification, tests of purity and physical properties, see Juillard *Pure Appl Chem* **49** 885 *1977*.]

It has been purified by distilling from K_2CO_3 under high vacuum and fractionated in an all-glass apparatus. The middle fraction is collected, degassed (seven or eight freeze-thaw cycles) and redistilled under as high a vacuum as possible [Mohammad & Kosower *J Am Chem Soc* **93** 2713 *1971*]. [*Beilstein* **4** IV 171.]

Rapid purification: Stir over CaH_2 (5% w/v) overnight, filter, then distil at 20mmHg. Store the distilled DMF over 3A or 4A molecular sieves. For solid phase synthesis, the DMF used must be of high quality and free from amines.

d,l-2,4-Dimethylglutaric acid [2121-67-7] M 160.2, m 144-145° $pK_{Est(1)}$ ~4.4, $pK_{Est(2)}$ ~5.4. Distil the acid in steam and recrystallise it from ether/pet ether. [*Beilstein* 2 H 681, 2 I 284, 2 II 590, 21 III 1755, 2 IV 2022.]

3,3-Dimethylglutaric acid [4839-46-7] M 160.2, m 103-104°, b 89-90°/2mm, 126-127°/4.5mm, pK₁²⁵ 3.85, pK₂²⁵ 6.45. Crystallise the acid from water, *benzene or ether/pet ether. Dry it in a vacuum. [*Beilstein* 21 H 391, 21 I 334, 21 II 309, 21 III/IV 4601, 21/9 V 592.]

Dimethylglyoxime [95-45-4] **M 116.1, m 240°, pK** $_{1}^{25}$ **10.60, pK** $_{2}^{25}$ **11.85.** Crystallise it from EtOH (10mL/g) or aqueous EtOH. [*Beilstein* **1** III 3105.] **TOXIC.**

2,5-Dimethyl-2,4-hexadiene [764-13-6] M 110.2, f 14.5°, b 132-134°, d_4^{20} 0.773, n_D^{20} 1.4796. Distil, then repeatedly fractionally crystallise it by partial freezing. Immediately before use, the diene is passed through a column containing Woelm silica gel (activity I) and Woelm alumina (neutral) in separate layers. [*Beilstein* 1 IV 1043.]

2,2-Dimethylhexane [590-73-8] **M 114.2, m -121.2°, b 107°, d_4^{20} 0.695.** Dry the hexane over type 4A molecular sieves and distil it. [*Beilstein* **1** IV 432.]

2,5-Dimethylhexane [592-13-2] **M 114.2, m -91.2°, b 109°, d** $_{4}^{20}$ **0.694.** Dry the hexane over type 4A molecular sieves and distil it. [*Beilstein* **1** IV 434.]

2,5-Dimethylhexane-2,5-diol [110-03-2] **M 146.2, m 88-90°.** Purify the diol by fractional crystallisation. Then the diol is dissolved in hot acetone, treated with activated charcoal, and filtered while hot. The solution is cooled and the diol is filtered off and washed well with cold acetone. The crystallisation process ia repeated several times, and the crystals are dried under a vacuum in a freeze-drying apparatus [Goates et al. *J Chem Soc, Faraday Trans 1* **78** 3045 1982]. [*Beilstein* **1** IV 2600.]

1,1-Dimethylhydrazine [57-14-7] **M 60.1, b 60.1°/702mm, d**²⁰₄ **0.790, n**²⁰_D **1.408 pK**³⁰ **7.21.** Fractionally distil the hydrazine through a 4-ft column packed with glass helices. Precipitate it as its oxalate from diethyl ether solution. After crystallising from 95% EtOH, the salt is decomposed with aqueous saturated NaOH, and the free base is distilled, dried over BaO and redistilled [McBride & Kruse J Am Chem Soc 79 572 1957]. Distillation and storage should be under nitrogen. [Beilstein **4** IV 3322.] **Dimethyl itaconate** [617-52-7] **M 158.2, m 38°, b 208°, d 1.124.** Crystallise the ester from MeOH by cooling to -78°. [*Beilstein* **2** IV 2229.]

Dimethylmaleic anhydride [766-39-2] **M 126.1, m 96°, b 225°/760mm.** Distil the anhydride from *benzene/ligroin and sublime in a vacuum. [*Beilstein* 17/11 V 69.]

Dimethylmalonic acid [595-46-0] **M 132.1, m 192-193**° pK_1^{25} **3.03**, pK_2^{25} **5.73**. Crystallise the acid from *benzene/pet ether. It sublimes in a vacuum with slight decomposition. [*Beilstein* **2** IV 1955.]

Dimethylnitrosamine (*N*-nitrosodimethylamine) [62-75-9] M 74.0, m -28°, b 149-150°/atm, 153°/774mm, d_4^{20} 1.006, n_D^{20} 1.4370. Dry the nitrosamine over anhydrous K₂CO₃ or dissolve it in Et₂O, dry it over solid KOH, filter, evaporate Et₂O and distil the yellow oily residue through a 30cm fractionating column discarding the first fraction which may contain Me₂N. Also dry over CaCl₂ and distil it at atmospheric pressure. All operations should be done in an efficient fume cupboard as the vapors are **TOXIC** and **CARCINOGENIC**. [Fischer *Chem Ber* 8 1588 1875, Romberg *Recl Trav Chim, Pays-Bas* 5 248 1886, Hatt Org Synth Coll Vol II 211 1961, Krebs & Mandt *Chem Ber* 108 1130 1975.]

2,6-Dimethyl-2,4,6-octatriene see neo-alloocimene below.

Dimethylolurea (di-[hydroxymethyl]urea) [140-95-4] M 120.1, m 137-139^o. Crystallise it from aqueous 75% EtOH. [*Beilstein* 3 IV 107.]

Dimethyl oxalate [553-90-2] **M 118.1, m 54°, b 163-165°, d_4^{20} 1.148.** Crystallise the ester repeatedly from EtOH. De-gas it under nitrogen at high vacuum and distil it. [*Beilstein* 2 IV 1847.]

2,4-Dimethylpentane [108-08-7] **M 100.2, b 80.5°, d** $_{4}^{20}$ **0.763, n** $_{D}^{20}$ **1.3814, n** 25 **1.37882.** Extract it repeatedly with conc H₂SO₄, wash with water, dry and distil it. Alternatively percolated it through silica gel (previously heated in nitrogen to 350°). Purify it by azeotropic distillation with EtOH, followed by washing out the EtOH with water, drying and distilling. [Beilstein 1 IV 406.]

4,4-Dimethyl-1-pentene [762-62-9] **M 98.2**, **b 72.5**°/**760mm**, d_4^{20} **0.6827**, n_D^{20} **1.3918**. Purify it by passing through alumina before use [Traylor et al. *J Am Chem Soc* **109** 3625 *1987*]. [*Beilstein* **1** IV 869.]

Dimethyl peroxide [690-02-8] **M 62.1, b 13.5% M 62.1, b 13.5% Observe and Second Secon**

2,2-Dimethyl-1,3-propanediol (neopentyl glycol) [126-30-7] M 104.2, m 128.4-129.4°, b 208°/760mm. Crystallise the diol from *benzene or acetone/water (1:1). [Beilstein 1 IV 2551.]

2,2-Dimethyl-1-propanol (*neo-pentyl alcohol*) [75-84-3] **M 88.2, m 52°, b 113.1°/760mm.** It is difficult to distil because it is a solid at ambient temperatures. Purify it by fractional crystallisation and sublimation. [*Beilstein* **1** IV 1690.]

N,N-Dimethylpropionamide [758-96-3] M 101.2, b 175-178°, d_4^{20} 0.920, n_D^{20} 1.440. Shake the amide over BaO for 1-2 days, then distil it under reduced pressure. [*Beilstein* 4 III 126.]

meso- α , β -Dimethylsuccinic acid [608-40-2] M 146.1, m 211°, pK₁²⁵ 3.77, pK₂²⁵ 5.36. Crystallise the *meso*-acid from EtOH/ether or EtOH/chloroform.

2,2-Dimethylsuccinic acid [597-43-3] M 146.1, m 141°, pK_1^{20} 4.15, pK_2^{20} 6.40. Crystallise the acid from EtOH/ether or EtOH/chloroform. [*Beilstein* 2 IV 1996.]

(±)-2,3-Dimethylsuccinic acid [13545-04-5] M 146.1, m 129°, pK_1^{25} 3.82, pK_2^{25} 5.98. Crystallise the *racemic* acid from water. [*Beilstein* 2 IV 1998.]

Dimethyl sulfide [75-18-3] **M 62.1, f -98.27°, b 0°/172mm, 37.5-38°/760mm, d²¹ 0.8458,** n^{25} **1.4319.** Purify dimethyl sulfide via the Hg(II) chloride complex by dissolving 1 mole of Hg(II)Cl₂ in 1250mL of EtOH and slowly adding the boiling alcoholic solution of Me₂S to give the right ratio for 2(CH₃)₂S.3HgCl₂. After recrystallisation of the complex to constant melting point, 500g of complex is heated with 250mL conc HCl in 750mL of water. The sulfide is separated, washed with water, and dried with CaCl₂ and CaSO₄. Finally, it is distilled under reduced pressure from sodium. Precautions should be taken (*efficient fume hood*) because of its very UNPLEASANT ODOUR. [*Beilstein* 1 IV 1275.]

2,4-Dimethylsulfolane [1003-78-7] **M 148.2, b 128°/77mm, d²⁵ 1.1314, n_D^{20} 1.474.** Distil the sulfolane in a vacuum. [*Beilstein* 17/1 IV 97.]

Dimethyl sulfone [67-71-0] **M 94.1, m 109°.** Crystallise the sulfone from water. Dry it over P₂O₅. [*Beilstein* **1** IV 1279.]

Dimethyl sulfoxide (DMSO) [67-68-5] **M 78.1, m 18.0-18.5°, b 75.6-75.8°/12mm, 190°/760mm, d** $_{4}^{20}$ **1.100, n** $_{D}^{20}$ **1.479.** This colourless, odourless, very *hygroscopic* liquid, is synthesised from dimethyl sulfide. The main impurity is water, with a trace of dimethyl sulfone. The Karl-Fischer test is applicable. It is dried with Linde types 4A or 13X molecular sieves, by prolonged contact and passage through a column of the material, then distilled under reduced pressure. Other drying agents include CaH₂, CaO, BaO and CaSO₄. It can also be fractionally crystallised by partial freezing. More extensive purification is achieved by standing overnight with freshly heated and cooled chromatographic grade alumina. It is then refluxed for 4hours over CaO, dried over CaH₂, and fractionally distilled at low pressure. For efficiency of desiccants in drying dimethyl sulfoxide see Burfield and Smithers [*J Org Chem* **43** 3966 *1978*, Sato et al. *J Chem Soc, Dalton Trans* 1949 *1986*]. [Reddy *Pure Appl Chem* **25** 459 *1969*, *Beilstein* **1** IV 1277.]

Rapid purification: Stand over freshly activated alumina, BaO or $CaSO_4$ overnight. Filter and distil it over CaH_2 under reduced pressure (~ 12 mm Hg). Store it over 4A molecular sieves.

N,*N*-Dimethylthiocarbamoyl chloride [16420-13-6] M 123.6, m 42-43°, b 64-65°/0.1mm. Crystallise it twice from pentane and/or distil it at low pressure. [*Beilstein* 4 III 147.]

sym-Dimethylurea [96-31-1] M 88.1, m 106°. Crystallise the urea from acetone/diethyl ether by cooling in an ice bath. Also crystallise it from EtOH and dry it at 50°/5mm for 24hours [Bloemendahl & Somsen J Am Chem Soc 107 3426 1985]. [Beilstein 4 IV 207.]

2,2-Dinitropropane [595-49-3] **M 162.1, m 53.5°.** Crystallise it from EtOH or MeOH. Dry it over CaCl₂ or *in vacuo* for 1hour just above the melting point. [*Beilstein* **2** H 117, **2** II 79, **2** III 261, **2** IV 234.]

Dioctadecyldimethylammonium bromide [3700-67-2] **M 630.9, m 161-163°.** Crystallise the bromide from acetone, then MeOH [Lukac J Am Chem Soc **106** 4387 1984]. Also purify it by chromatography on alumina by washing with $*C_6H_6$ and eluting with Me₂CO, evaporating and crystallising from MeCN [Swain & Kreevoy J Am Chem Soc **77** 1126 1955]. [Beilstein **4** IV 829.]

N,*N*-Dioctadecyl methylamine (hydrogen ionophore III) [4088-22-6] M 536.0, m 40°, 44-46°, 48-49°, b 252-259°, $pK_{Est} \sim 10$. It can be distilled at high vacuum, but dissolving in *C₆H₆, filtering and evaporating give a waxy solid suitable for electrode use. It recrystallises from Me₂CO or MeCN. [Hoerr et al. *J Org Chem* 9 201 1944, Wu & Yu *Talanta* 34 577 1987, *Beilstein* 4 III 435.]

Dipropylene glycol (octan-4,5-diol) [110-98-5] M 134.2, b 109-110^o/8mm, d_4^{20} 1.022, n_D^{20} 1.441. Fractionally distil the diol below 15mm pressure, using a packed column and taking precautions to avoid absorption of water. [Beilstein 1 IV 2473.]

Di-*n*-propyl ketone (4-pentanone) [123-19-3] M 114.2, b 143.5°, d_4^{20} 0.8143, n_D^{20} 1.40732. Dry 4-pentanone with CaSO₄, then distil it from P₂O₅ under nitrogen. [*Beilstein* 1 IV 3323.]

Di-*n*-**propyl sulfide** [111-47-7] **M 118.2, b 141-142**°, d_4^{20} **0.870, n_D^{20} 1.449.** Wash the sulfide with aqueous 5% NaOH, then water. Dry it with CaCl₂ and distil it from Na [Dunstan & Griffiths *J Chem Soc* 1344 1962]. [Beilstein **1** IV 1452.]

S-1,2-Distearin (S-glycerol-1,2-distearate) [S- 1429-59-0, RS- 51063-97-9, 1188-58-5] M 625.0, m 76-77°, $[\alpha]_{D}^{20}$ -2.8° (c 6.3, CHCl₃), $[\alpha]_{546}^{20}$ +1.4° (c 10, CHCl₃/MeOH, 9:1). Crystallise the glyceride from chloroform/pet ether. [cf p 678, *Beilstein* 2 IV 1231.]

1,4-Dithioerythritol (DTE, erythro-2,3-dihydroxy-1,4-dithiobutane) [6892-68-8] M 154.3, m 82-84°, pK₁ 9.0, pK₂ 9.9. Crystallise DTE from ether/hexane and store it in the dark at 0° . [Beilstein 1 III 2360.]

Dithiooxamide (rubeanic acid) [79-40-3] M 120.2, m >300°. Crystallise dithiooxamide from EtOH and sublime it at high vacuum. [*Beilstein* 2 IV 1871.]

RS-1,4-Dithiothreitol (DTT, Cleland's reagent) [27565-41-9] M 154.3, m 42-43°, pK₁ 8.3, pK₂ 9.5. Crystallise DTT from ether and sublime it at $37^{\circ}/0.005$ mm. It should be stored at 0°. [Beilstein 1 III 2360.]

All-cis-4,7,10,13,16,19-Docosahexaenoic acid [6217-54-5] M 328.5, m -44.1°, n_D²⁰ 1.5017, pK_{Est}~4.6. Its solubility in CHCl₃ is 5%. It has been purified from fish oil by GLC using Ar as mobile phase and EGA as stationary phase with an ionisation detector [UV: Stoffel & Ahrens *J Lipid Res* 1 139 *1959*], and *via* the ester by evaporative "molecular" distillation using a 'continuous molecular still' at 10⁻⁴ mm with the highest temperature being 110° and a total contact time with the hot surface being 60sec [Farmer & van den Heuvel *J Chem Soc* 427 *1938*]. The *methyl ester* [2566-90-7] has b 208-211°/2mm, d₄²⁰ 0.9398, n_D²⁰ 1.5035. With Br₂ it forms a *dodecabromide* m *ca* 240°(dec). Also, the acid was converted to the methyl ester and purified through a three-stage molecular still [as described by Sutton *Chem Ind (London)* 11383 *1953*] at 96°, and the rate was adjusted so that one-third of the material was removed each cycle of three distillations. The distillate (numbered 4) (13g) was dissolved in EtOH (100mL containing 8g of KOH) at -70° and set aside for 4hours at 30° with occasional shaking under a vacuum. Water (100mL) was added and the solution was extracted with pentane, washed with HCl, dried (MgSO₄), filtered and evaporated to give a clear oil (11.5g) m - 44.5° to -44.1°. In the catalytic hydrogenation of the oil six mols of H₂ are absorbed and *docosanoic acid (behenic acid)* is produced with m 79.0-79.3° undepressed with an authentic sample (see docosanoic acid below) [Whitcutt *Biochem J* **67** 60 *1957*]. [*Beilstein* **2** IV 1812.]

Docosane (C22) [629-97-0] M 310.6, m 47°, b 224°/15mm. Crystallise docosane from EtOH or ether. [Beilstein 1 IV 572.]

Docosanoic acid (behenic acid) [112-85-6] **M 340.6, m 81-82°, pK**_{Est} ~4.9. Crystallise the acid from ligroin. [Francis & Piper J Am Chem Soc 61 577 1939, Beilstein 2 IV 1290.]

1-Docosanol (behenyl alcohol) [661-19-8] M 182.3, m 70.8°. Crystallise docosanol from ether or chloroform/ether. [Beilstein 1 IV 1906.]

n-Dodecane [112-40-3] M 170.3, b 97.5-99.5°/5mm, 216°/760mm, d_4^{20} 0.748, n_D^{20} 1.42156. Pass it through a column of Linde type 13X molecular sieves. Store it in contact with, and distil it from sodium. Pass through a column of activated silica gel. It has been crystallised from diethyl ether at -60°. Unsaturated dry material which remained after passage through silica gel has been removed by catalytic hydrogenation (Pt₂O) at 45lb/in² (3.06 atmospheres), followed by fractional distillation under reduced pressure [Zook & Goldey J Am Chem Soc 75 3975 1953]. It has also purified by partial crystallisation from the melt. [Beilstein 1 IV 498.]

Dodecane-1,10-dioic acid (decane-1,10-dicarboxylic acid) [693-23-2] M 230.3, m 129°, b 245°/10mm, $pK_{Est} \sim 4.8$. Crystallise the dioic acid from water, 75% or 95% EtOH (solubility is 10%), or glacial acetic acid. [Beilstein 2 IV 2126.]

1-Dodecanol (dodecyl alcohol) [112-53-8] M 186.3, m 24°, b 91°/1mm, 135°/10mm, 167°/40mm, 213°/200mm, 259°/760mm, d^{24} 0.8309 (liquid). Crystallise dodecanol from aqueous EtOH, and distil it through a spinning-band column under vacuum. [Ford & Marvel Org Synth 10 62 1930, Beilstein 1 IV 1844.]

1-Dodecanthiol [112-55-0] **M 202.4, b 111-112°/3mm, 153-155°/24mm, d** $_{4}^{20}$ **0.844, n** $_{D}^{20}$ **1.458, pK**_{Est}~**10.8.** Dry it with CaO for several days, then distil it from CaO. [*Beilstein* **1** IV 1851.]

Dodecylamine [124-22-1] **M 185.4, m 28°, 27-29°, 120-121°/2mm, 134°/15mm, 156°/33mm, pK²⁵ 10.63.** Fractionally distil the amine, preferably under N₂ and in a vacuum. Store it in the absence of CO₂. It can be recrystallised from *n*-hexane at low temperature. The *hydrochloride* crystallises from Me₂CO (**m** 182-183°) or CHCl₃/pet ether (**m** 185-187°). [Magnien & Baltzly *J Org Chem* **23** 2029 1958, Beilstein **4** H 200, III 406, **4** IV 794.]

Dodecylammonium butyrate [17615-97-3] **M 273.4, m 39-40°, 39-41°, pK^{25} 10.63 (for free base).** Recrystallise the salt from *n*-hexane. [Beilstein 4 III 409, 4 IV 791.]

Dodecylammonium propionate [17448-65-6] **M 259.4, m 55-56°.** Recrystallise the salt from hexanol/pet ether (b 60-80°). [*Beilstein* **4** III 409, **4** IV 797.]

Dodecyldimethylamine oxide [1643-20-5] M 229.4, m 102°. Crystallise the oxide from acetone or ethyl acetate. [Bunton et al. J Org Chem 52 3832 1987, Beilstein 4 III 410, 4 IV 798.]

Dodecyl ether (didodecyl ether) [4542-57-8] M 354.6, m 32.5-33°, 33°, b 175°/0.15mm, d^{36} 0.8127, n^{39} 1.4393. Distil the ether in a vacuum, then crystallise it from MeOH or MeOH/*benzene. [Mannich & Nadelmann *Chem Ber* 63 799 1930, Butterworth & Hey *J Chem Soc* 390 1940, *Beilstein* 1 III 1785, 1 IV 1846.]

Dodecyl methacrylate (lauryl methacrylate) [142-90-5] M 254.4, m -7°, b 142°/4mm, d²⁵ 0.8717, n_D^{25} 1.4330. Purify the ester by fractional distillation in a high vacuum. Add 0.05% of hydroquinone monomethyl ether as stabilizer. [Rehberg & Fischer *Ind Eng Chem* 40 1430 *1948*, *Beilstein* 2 III 1290, 2 IV 1528.]

Dodecyltrimethylammonium bromide [1119-94-4] **M 308.4, m 246°(dec).** Purify the salt by repeated crystallisation from acetone. Wash it with diethyl ether and dry it in a vacuum oven at 60° [Dearden & Wooley J Phys Chem **91** 2404 1987]. [Beilstein **4** IV 798.]

Dodecyltrimethylammonium chloride [112-00-5] **M 263.9, m 246°(dec).** Dissolve the chloride in MeOH, treat with active charcoal, filter and dry it *in vacuo* [Waldenburg *J Phys Chem* **88** 1655 1984], or recrystallise it several times from 10% EtOH in acetone. It has also been repeatedly crystallised from EtOH/ether or MeOH. [Cella et al. *J Am Chem Soc* **74** 2062 1952, Beilstein **4** IV 79.]

Eicosane (C20) [112-95-8] M 282.6, m 36-37°, b 205°/15mm, d^{36.7} 0.7779, n⁴⁰ 1.43453. Crystallise eicosane from EtOH. [Beilstein 1 IV 563.]

Elaidic (*trans*-oleic) acid [112-79-8] M 282.5, m 44.5°, pK²⁵ 4.9. Crystallise the acid from acetic acid, then EtOH. [*Beilstein* 2 IV 1647.]

RS-Epichlorohydrin (\pm 2-chloromethyloxirane) [106-89-8] M 92.5, b 115.5°, d²⁰₄ 1.180, n²⁰_D 1.438,. Distil epichlorohydrin under atmospheric pressure, heat it on a steam bath with one-quarter its weight of CaO, then decant and fractionally distil it. [*Beilstein* 17 V 20.]

1,2-Epoxybutane [106-88-7] M **72.1, b 66.4-66.6°, d** $_{4}^{20}$ **0.837, n** $_{D}^{20}$ **1.3841.** Dry it with CaSO₄, and fractionally distil it through a long (126cm) glass helices-packed column. The first fraction contains a water azeotrope. [*Beilstein* **17** II 17.]

Erucic acid (*cis*-13-docosenoic acid) [112-86-7] M 338.6, m 33.8°, b 358°/400mm, pK_{Est} ~4.9. Crystallise erucic acid from MeOH. [*Beilstein* 2 IV 1676.]

Ethane [74-84-0] M 30.1, f -172°, b -88°, d $_{4}^{0}$ 1.0493 (air = 1). Ethylene can be removed by passing the gas through a sintered-glass disc into fuming H₂SO₄ then slowly through a column of charcoal saturated with bromine. Bromine and HBr are removed by passage through firebrick coated with N,N-dimethylp-toluidine. The ethane is also passed over KOH pellets (to remove CO₂) and dried with Mg(ClO₄)₂. Further purification is by several distillations of liquified ethane, using a condensing temperature of -195°. Yang and Gant [J Phys Chem 65 1861 1961] treated ethane by standing it for 24hours at room temperature in a steel bomb with activated charcoal treated with bromine. They then immersed the bomb in a Dry-ice/acetone bath and transferred the ethane to an activated charcoal trap cooled in liquid nitrogen. (The charcoal had previously been degassed by pumping for 24hours at 450°.) By allowing the trap to warm slowly, the ethane distils, and only the middle third fraction is kept. Removal of methane is achieved using Linde type 13X molecular sieves (previously degassed by pumping for 24hours at 450°) in a trap which, after cooling in Dry-ice/acetone, is saturated with ethane. After pumping for 10minutes, the ethane is recovered by warming the trap to 25°. (The final gas contains less than 10⁻⁴ mole % of either ethylene or methane). [*Beilstein* **1** IV 108.]

Ethanesulfonyl chloride [594-44-5] M 128.6, b 55% mm, 62% 12mm, 74% 19mm, 76-79% 22mm, 95-98% 50mm, 177% 760mm, d_4^{20} 1.357, n_D^{20} 1.4539. Purify the sulfonyl chloride by repeated distillation to remove HCl formed from hydrolysis. It is a fuming, corrosive liquid, handle in a good fumehood. It is hydrolysed by aqueous N NaOH at room temperature and is best stored in aliquots in sealed ampules under N₂. [Davies & Dick J Chem Soc 484 1932, Klamann & Drahowzal Monatsh Chem 83 463 1952, Saunders et al. Biochem J 36 372 1942, Beilstein 4 IV 34.]

Ethanethiol (ethyl mercaptan) [75-08-1] M 62.1, b 32.99/704mm, d^{52} 0.83147, pK²⁵ 10.61. Dissolve the thiol in aqueous 20% NaOH, extract it with a small amount of *benzene and then steam distil until clear. After cooling, the alkaline solution is acidified slightly with 15% H₂SO₄ and the thiol is distilled off, dried with CaSO₄, CaCl₂ or 4A molecular sieves, and fractionally distilled under nitrogen [Ellis & Reid *J Am Chem Soc* 54 1674 1932]. It has a foul odour. [*Beilstein* 1 IV 1390.]

Ethanol [64-17-5] M 46.1, b 78.3°, d¹⁵ 0.79360, d⁵ 0.78506, n_D^{20} 1.36139, pK²⁵ 15.93. Usual impurities of fermentation alcohol are fusel oils (mainly higher alcohols, especially pentanols), aldehydes, esters, ketones and water. With synthetic alcohol, likely impurities are water, aldehydes, aliphatic esters, acetone and diethyl ether. Traces of *benzene are present in ethanol that has been dehydrated by azeotropic distillation with *benzene. Anhydrous ethanol is very *hygroscopic*. Water (down to 0.05%) can be detected by formation of a voluminous precipitate when aluminium ethoxide in *benzene is added to a test portion, Rectified spirit (95% ethanol) is converted to *absolute* (99.5%) ethanol by refluxing with freshly ignited CaO (250g/L) for 6hours, standing overnight and distilling with precautions to exclude moisture.

Numerous methods are available for further drying of *absolute* ethanol for making "Super dry ethanol". Lund and Bjerrum [*Chem Ber* **64** 210 *1931*] used reaction with magnesium ethoxide, prepared by placing 5g of clean dry magnesium turnings and 0.5g of iodine (or a few drops of CCl_4), to activate the Mg, in a 2L flask, followed by 50-75 mL of *absolute* ethanol, and warming the mixture until a vigorous reaction occurs. When this subsides, heating is continued until all the magnesium is converted to magnesium ethoxide. Up to 1L of ethanol is then added and, after an hour's reflux, it is distilled off. The water content should be below 0.05%. Walden, Ulich and Laun [*Z Phys Chem* **114** 275 *1925*] used amalgamated aluminium chips, prepared by degreasing aluminium chips (by washing with Et₂O and drying in a vacuum to remove grease from machining the Al), treating with alkali until hydrogen evolved vigorously, washing with H₂O until the washings were

weakly alkaline and then stirring with 1% HgCl₂ solution. After 2minutes, the chips were washed quickly with H₂O, then alcohol, then ether, and dried with filter paper. (The amalgam became warm.) These chips were added to the ethanol, which was then gently warmed for several hours until evolution of hydrogen ceased. The alcohol was distilled and aspirated for some time with pure dry air. Smith [*J Chem Soc* 1288 *1927*] reacted 1L of *absolute* ethanol in a 2L flask with 7g of clean dry sodium, and added 25g of pure ethyl succinate (27g of pure ethyl phthalate was an alternative), and refluxed the mixture for 2hours in a system protected from moisture, and then distilled the ethanol. A modification used 40g of ethyl formate instead, so that sodium formate separated out and, during reflux, the excess of ethyl formate decomposed to CO and ethanol.

Drying agents suitable for use with ethanol include Linde type 4A molecular sieves, calcium metal, and CaH₂. The calcium hydride (2g) is crushed to a powder and dissolved in 100mL *absolute* ethanol by gently boiling. About 70mL of the ethanol are distilled off to remove any dissolved gases before the remainder is poured into 1L of *ca* 99.9% ethanol in a still, where it is boiled under reflux for 20hours, while a slow stream of pure, dry hydrogen (better use nitrogen or Ar) is passed through. It is then distilled [Rüber *Z Elektrochem* **29** 334 *1923*]. If calcium is used for drying, about ten times the theoretical amount should be used, and traces of ammonia (from some calcium nitride in the Ca metal) would be removed by passing dry air into the vapour during reflux.

Ethanol can be freed from traces of basic materials by distillation from a little 2,4,6-trinitrobenzoic acid or sulfanilic acid. *Benzene can be removed by fractional distillation after adding a little water (the *benzene/water/ethanol azeotrope distils at 64.9°), the alcohol is then re-dried using one of the methods described above. Alternatively, careful fractional distillation can separate *benzene as the *benzene/ethanol azeotrope (**b** 68.2°). Aldehydes can be removed from ethanol by digesting with 8-10g of dissolved KOH and 5-10g of aluminium or zinc per L, followed by distillation. Another method is to heat under reflux with KOH (20g/L) and AgNO₃ (10g/L) or to add 2.5-3g of lead acetate in 5mL of water to 1L of ethanol, followed (slowly and without stirring) by 5g of KOH in 25mL of ethanol: after 1hour the flask is shaken thoroughly, then set aside overnight before filtering and distilling. The residual water can be removed by standing the distillate over activated aluminium amalgam for 1 week, then filtering and distilling. Distillation of ethanol from Raney nickel eliminates catalyst poisons.

Other purification procedures include pre-treatment with conc H_2SO_4 (3mL/L) to eliminate amines, and with KMnO₄ to oxidise aldehydes, followed by refluxing with KOH to resinify aldehydes, and distilling to remove traces of H_3PO_4 and other acidic impurities after passage through silica gel, and drying over CaSO₄. Water can be removed by azeotropic distillation with dichloromethane (azeotrope boils at 38.1° and contains 1.8% water) or 2,2,4-trimethylpentane. [*Beilstein* **1** IV 1289.]

Rapid purification: Place degreased Mg turnings (grease from machining the turnings is removed by washing with dry EtOH then Et_2O , and drying in a vacuum) (5g) in a dry 2L round bottomed flask fitted with a reflux condenser (protect from air with a drying tube filled with $CaCl_2$ or KOH pellets) and flush with dry N_2 . Then add iodine crystals (0.5g) and gently warm the flask until iodine vapour is formed and coats the turnings. Cool, then add EtOH (50mL) and carefully heat to reflux until the iodine disappears. Cool again then add more EtOH (to 1L) and reflux under N_2 for several hours. Distil and store over 3A molecular sieves (pre-heated at $300^{\circ} - 350^{\circ}$ for several hours and cooled under dry N_2 or argon).

Ethoxycarbonyl isocyanate [19617-43-7] M 115.1, b 51-55°/13mm, 56°/18mm, 115-116°/781mm, d_4^{20} 1.15. Distil it twice from P₂O₅ (1-2g) through a small Vigreux column (p 11) and then through a 20-plate column. All fractional distillations should be under a vacuum. [Lamon *J Heterocycl Chem* 5 837 1968, Beilstein 3 H 36, 3 I 17.]

Ethoxycarbonyl isothiocyanate [16182-04-0] M 131.5, b 43°/14mm, 51-55°/13mm, 56°/18mm, d_4^{20} 1.12. Fractionally distil it through a short column. It also distils at 83°/30mm with some decomposition liberating CO₂ and sulfurous gases, best distil below 20mm vacuum. [Capp et al. *J Chem Soc* 1340, 1948, Lamon J Heterocycl Chem 5 837 1968, Beilstein 3 H 174, 3 I 71, 3 III 279, 3 IV 323.]

2-Ethoxyethanol [110-80-5] **M 90.1, b 134.8°, d** $_{4}^{20}$ **0.931, n** $_{D}^{20}$ **1.40751.** Dry it with CaSO₄ or K₂CO₃, filter and fractionally distil it. Peroxides can be removed by refluxing with anhydrous SnCl₂ or by filtration under slight pressure through a column of activated alumina. [*Beilstein* **1** IV 2377.]

2-Ethoxyethyl methacrylate [2370-63-0] **M 158.2, b 91-93%** d_4^{20} **0.965, n**_D²⁰ **1.429.** Purify the ester as described under methyl methacrylate. [*Beilstein* **2** III 1291.]

Ethyl acetate [141-78-6] M 88.1, b 77.1°, d_4^{20} 0.9003, n_D^{20} 1.37239, n^{25} 1.36979, pK²⁵ -6.93 (aqueous H₂SO₄). The most common impurities in EtOAc are water, EtOH and acetic acid. These can be removed by washing with aqueous 5% Na₂CO₃, then with saturated aqueous CaCl₂ or NaCl, and drying with K₂CO₃, CaSO₄ or MgSO₄. More efficient drying is achieved if the solvent is further dried with P₂O₅, CaH₂ or molecular sieves before distillation. CaO has also been used. Alternatively, ethanol can be converted to ethyl acetate by refluxing with acetic anhydride (*ca* 1mL per 10mL of ester), the liquid is then fractionally distilled, dried with K₂CO₃ and redistilled. [*Beilstein* 2 III 127.]

Rapid purification: Distil, dry over K₂CO₃, re-distil and store over 4A molecular sieves.

Ethyl acetimidate [1000-84-6] M 87.1, b 92-95°/atm, 89.7-90°/765mm, d_4^{20} 0.8671, n_D^{20} 1.4025, pK_{Est} ~5.5. It is best to prepare it freshly from the *hydrochloride* (see below). Dissolve the hydrochloride (123.5g) by adding it slowly to an ice-cold mixture of H₂O (500mL), K₂CO₃ (276g) and Et₂O (200mL) and stirring rapidly. The Et₂O layer is separated, the aqueous layer is extracted with Et₂O (100mL), the combined Et₂O layers are dried (MgSO₄), evaporated and the residual oil is distilled through a glass helices packed column (70x1.2cm). The yield is 19g (22%). [Glickman & Cope J Am Chem Soc 67 1020 1945, Chaplin & Hunter J Chem Soc 1118 1937, Hunter & Ludwig Methods Enzymol 25 585 1972.]

Ethyl acetimidate hydrochloride [2208-07-3] M 123.6, m 98-100°(dec), 110-115°(dec), 112-113°(dec), m 112-114°(dec), $pK_{Est} \sim 5.5$. Recrystallise the hydrochloride by dissolving it in the minimum volume of super dry EtOH and adding dry Et₂O or from dry Et₂O. Dry it in a vacuum and store it in a vacuum desiccator with P₂O₅. Alternatively it could be crystallised from EtOH (containing a couple of drops of ethanolic HCl) and adding dry Et₂O. Filter and dry it in a vacuum desiccator over H₂SO₄ and NaOH. [Pinner *Chem Ber* 16 1654 *1883*, Glickman & Cope *J Am Chem Soc* 67 1020 *1945*, Chaplin & Hunter *J Chem Soc* 1118 *1937*, McElvain & Schroeder *J Am Chem Soc* 71 40 *1949*, McElvain & Tate *J Am Chem Soc* 73 2233 *1951*, *Methods Enzymol* 25 585 *1972*, *Beilstein* 2 III 418.]

Ethyl acetoacetate [141-97-9] M 130.1, b 71°/12mm, 100°/80mm, d_4^{20} 1.026, n_D^{20} 1.419, pK²⁵ 10.68. Shake the ester with small amounts of saturated aqueous NaHCO₃ (until no further effervescence), then with water. Dry it with MgSO₄ or CaCl₂ and distil it under reduced pressure. [*Beilstein* 3 IV 1528.]

Ethyl acrylate [140-88-5] M 100.1, b 20%/40mm, 99.5%/atm, d_4^{20} 0.922, n_D^{20} 1.406. Wash the ester repeatedly with aqueous NaOH until free from inhibitors such as hydroquinone, then wash it with saturated aqueous CaCl₂ and distil it under reduced pressure. Hydroquinone should be added if the ethyl acrylate is to be stored for extended periods. [*Beilstein* 2 IV 1460.] LACHRYMATORY.

Ethylamine [75-04-7] M 45.1, b 16.6% d_4^{20} 1.3663, pK²⁰ 10.79. Condense it in an allglass apparatus cooled by circulating ice-water, and store it with KOH pellets below 0%. [*Beilstein* 4 IV 307.]

Ethylamine hydrochloride [557-66-4] M 81.5, m 109-110°. Crystallise the hydrochloride from absolute EtOH or MeOH/CHCl₃, wash with dry ether and dry it in a vacuum. [*Beilstein* 4 IV 310.]

Ethyl bromide [74-96-4] M 109.0, b 0°/165mm, 38°/745mm, d_4^{20} 1.460, n_b^{20} 1.4241. The main impurities are usually EtOH and water, both of which form azeotropes with it. Ethanol and unsaturated compounds can be removed by washing with conc H₂SO₄ until no further coloration is produced. The ethyl bromide is then washed with water, aqueous Na₂CO₃, and water again, then dried with CaCl₂, MgSO₄ or CaH₂, and distilled from P₂O₅. Olefinic impurities can also be removed by storing the ethyl bromide in daylight with elemental bromine, later removing the free bromine by extraction with dilute aqueous Na₂SO₃, drying the ethyl bromide with CaCl₂ and fractionally distilling it. Alternatively, unsaturated compounds can be removed by bubbling oxygen containing *ca* 5% ozone through the liquid for an hour, then washing with aqueous Na₂SO₃ to hydrolyse ozonides and remove hydrolysis products, followed by drying and distillation. [*Beilstein* **1** IV 150.]

Ethyl bromoacetate [105-36-2] M 167.0, b 158-158.5%/758mm, d_4^{20} 1.50, n_D^{20} 1.450. Wash the ester with saturated aqueous Na₂CO₃ (three times), 50% aqueous CaCl₂ (three times) and saturated aqueous NaCl (twice). Dry with MgSO₄, CaCl₂ or CaCO₃, and distil it. [Beilstein 2 IV 527.] LACHRYMATORY.

Ethyl 2-(bromomethyl)acrylate [17435-72-2] M 193.1, b 38°/0.8mm, d_4^{20} 1.398, n_D^{20} 1.479. If it contains some free acid, add H₂O, cool, and neutralise with NaHCO₃ until evolution of CO₂ ceases. Extract the mixture with Et₂O (3x) and dry the combined extracts (Na₂SO₄, 3hours). Evaporate Et₂O and distil the ester collecting fraction b 39-40°/0.9mm and check spectra. [Preparation and NMR: Ramarajan et al. *Org Synth* Coll Vol VII 211 1990, *Beilstein* 2 IV 1541.]

Ethyl α -bromopropionate [535-11-5] M 181.0, b 69-70% 25mm, d²⁰₄ 1.39, n²⁰_D 1.447. Wash the ester with saturated aqueous Na₂CO₃ (three times), 50% aqueous CaCl₂ (three times) and saturated aqueous NaCl (twice). Dry with MgSO₄, CaCl₂ or CaCO₃, and distil it. [Beilstein 2 IV 762.] LACHRYMATORY.

Ethyl bromopyruvate [70-23-5] M 195.0, b 47°/0.5mm, 71-73°/5mm, 87°/9mm, 89-104°/14mm, d_4^{20} 1.561, n_D^{20} 1.464. The most likely impurity is free acid (bromopyruvic or bromoacetic acids). Dissolve the ester in dry Et₂O or dry CHCl₃, stir with CaCO₃ until effervescence ceases, filter, (may wash with a little H₂O rapidly), dry (MgSO₄) and distil it at least twice. The 2,4-dinitrophenylhydrazone has m 144-145°. [Burros & Holland J Chem Soc 672 1947, Letsinger & Laco J Org Chem 21 764 1956, Kruse et al. J Am Chem Soc 76 5796 1954, Beilstein 3 IV 1519.] LACHRYMATORY.

2-Ethyl-1-butanol [97-95-0] **M 102.2, b 146.3**°, n^{15} **1.4243**, n^{25} **1.4205**. Dry it with CaSO₄ for several days, filter and fractionally distil it. [*Beilstein* **1** IV 1725.]

2-Ethylbut-1-ene [760-21-4] **M 84.1, b 66.6°, d** $_4^{20}$ **0.833, n** $_D^{20}$ **1.423.** Wash it with 10N aqueous NaOH, then water. Dry the organic layer with CaCl₂, filter and fractionally distil it. [*Beilstein* **1** IV 850.]

Ethyl *n*-butyrate [105-54-4] M 116.2, b 49°/50mm, 119-120°/760mm, d_4^{20} 0.880, n_D^{20} 1.393. Dry the ester with anhydrous CuSO₄ and distil it under dry nitrogen. [*Beilstein* 2 IV 787.]

Ethyl carbamate see urethane below.

Ethyl carbazate (*N*-ethoxycarbonyl hydrazine) [4114-31-2] M 104.1, m 44-48°, 51-52°, b 95.5°/10m, 92-95°/12mm, 100-102°/11mm. Fractionate the carbazate using a Vigreux column (p 11) until the distillate crystallises [Allen & Bell Org Synth Coll Vol III 404 1955, Beilstein 3 IV 174].

Ethyl chloride [75-00-3] M 64.5, b 12.4°, d_4^{20} 0.8978, n_D^{20} 1.3676. Pass ethyl chloride through absorption towers containing, successively, conc H₂SO₄, NaOH pellets, P₂O₅ on glass wool, or soda-lime, CaCl₂, P₂O₅. Condensed it into a flask containing CaH₂ and fractionally distil it. It has also been purified by illumination in the presence of bromine at 0° using a 1000W lamp, followed by washing, drying and distilling. [*Beilstein* **1** IV 124.]

Ethyl chloroacetate [105-39-5] M 122.6, b 143-143.2°, d_4^{20} 1.150, n^{25} 1.4192. Shake the ester with satutated aqueous Na₂CO₃ (three times), aqueous 50% CaCl₂ (three times) and saturated aqueous NaCl (twice). Dry it with Na₂SO₄ or MgSO₄ and distil it. [Beilstein 2 IV 481.] LACHRYMATORY.

Ethyl chloroformate [541-41-3] M 108.5, m -81°, b 94-95°, d_4^{20} 1.135, n_D^{20} 1.3974. Wash the ester several times with water, redistil it using an efficient fractionating column at atmospheric pressure and a CaCl₂ guard tube to keep free from moisture [Hamilton & Sly J Am Chem Soc 47 435 1925, Saunders et al. J Am Chem Soc 73 3796 1951]. [Beilstein 3 IV 23.] LACHRYMATORY AND TOXIC.

Ethyl trans-crotonate [623-70-1] M 114.2, b 137°, d_4^{20} 0.917, n_D^{20} 1.425. Wash it with aqueous 5% Na₂CO₃, then with saturated aqueous CaCl₂, dry it with CaCl₂ and distil it. [Beilstein 2 IV 1500.]

Ethyl cyanoacetate [105-56-6] M 113.1, b 206.0°, d_4^{20} 1.061, n_D^{20} 1.41751. Shake the ester several times with aqueous 10% Na₂CO₃, wash it well with water, dry with Na₂SO₄ and fractionally distil it. [*Beilstein* 2 IV 1889.]

Ethyl cyanoformate [623-49-4] M 99.1, b 113-114°/740mm, 116.5-116.8°/765.5mm, d_4^{20} 1.0112, n_D^{20} 1.3818. Dissolve the cyanoformate in Et₂O, dry it over Na₂SO₄, filter, evaporate and distil it [Malachowsky et al. *Chem Ber* 70 1016 1937, Adickes et al. *J Prakt Chem* [2] 133 313 1932, Grundmann et al. *Justus Liebigs Ann Chem* 577 77 1952]. [*Beilstein* 2 IV 1862.]

Ethyl diazoacetate [623-73-4] M 114.1, m -22°, b 42°/5mm, 45°/12mm, 85-86°/88mm, 140-141°/720mm, 140-143°/atm, $d_4^{17.6}$ 1.0852, $n_D^{17.6}$ 1.4588. It is a very volatile yellow oil with a strong pungent odour. EXPLOSIVE [distillation even under reduced pressure is dangerous and may result in an explosion – TAKE ALL THE NECESSARY PRECAUTIONS IF DISTILLATION IS TO BE CARRIED OUT]. It explodes in contact with conc H₂SO₄-trace acid causes rapid decomposition. It is slightly soluble in H₂O, but is miscible with EtOH, *C₆H₆, pet ether and Et₂O. To purify, dissolve it in Et₂O [using CH₂Cl₂ instead of Et₂O, protects the ester from acid], wash it with 10% aqueous Na₂CO₃, dry (MgSO₄), filter and repeat as many times as possible until the Et₂O layer loses its yellow colour, then remove the solvent below 20° (vacuum). Note that prolonged heating may lead to rapid decomposition and low yields. It can also be purified by steam distillation under reduced pressure but with considerable loss in yield. Place the residual oil in a brown bottle, keep below 10°, and use as soon as possible without distilling. For preparing esters usually the ethereal solution is used directly without purification. [Womack & Nelson Org Synth Coll Vol III 392 1955, UV: Miller & White J Am Chem Soc **79** 5974 1957, Fieser **1** 367 1967, Beilstein **3** IV 1495.]

Ethyl dibromoacetate [617-33-4] M 245.9, b 81-82°/14.5mm, 194°/atm, d²² 1.9081, n²² 1.4973. Wash the ester briefly with conc aqueous NaHCO₃, then with aqueous CaCl₂. Dry it with CaSO₄ and distil it under reduced pressure. [Hornyak & Amis J Am Chem Soc 79 2079 1957, Beilstein 2 H 219, 2 I 97, 2 III 484, 2 IV 533.]

Ethyl dichloroacetate [535-15-9] M 157.0, b 54-55%/11mm, 131.0-131.5%/40mm, d_4^{20} 1.28, n_D^{20} 1.438. Shake the ester with aqueous 3% NaHCO₃ to remove free acid, wash with distilled water, dry for 3 days with CaSO₄ and distil it under reduced pressure. [*Beilstein* 2 IV 501.]

Ethyl 3,3-diethoxypropionate [10601-80-6] M 190.2, b 58.5%/1.5mm, 65%/2mm, 95-96%/12mm, d_4^{20} 0.78, n_D^{25} 1.4101. Dissolve it in dry Et₂O, and dry with solid NaHCO₃, filter, distil and carefully fractionate it [Dyer & Johnson J Am Chem Soc 56 223 1934]. [Beilstein 3 II 411.]

Ethylene (ethene) [74-85-1] M 28.0, m -169.4°, b -102°/700mm. Purify ethylene by passage through a series of towers containing molecular sieves or anhydrous $CaSO_4$ or a cuprous ammonia solution, then conc H_2SO_4 , followed by KOH pellets. Alternatively, it has been condensed in liquid nitrogen, with melting, freezing and pumping to remove air before passage through an activated charcoal trap, followed by a further condensation in liquid air. A sputtered sodium trap was used to remove oxygen. [*Beilstein* 1 IV 677.]

Ethylenediamine (1,2-diaminoethane) [107-15-3] M 60.1, f 11.0°, b 117.0°, d_4^{20} 0.897, n_D^{20} 1.45677, n^{30} 1.4513, pK_1^{25} 6.86, pK_2^{25} 9.92. It forms a constant-boiling (b 118.5°, monohydrate, m 10°) mixture with water (23w/w%). [It is hygroscopic and miscible with water.] Recommended purification procedure [Asthana & Mukherjee in J.F.Coetzee (ed), *Purification of Solvents*, Pergamon Press, Oxford, 1982 cf p 53]: to 1L of ethylenediamine is added 70g of type 5A Linde molecular sieves and shaken for 12hours. The liquid is decanted and shaken for a further 12hours with a mixture of CaO (50g) and KOH (15g). The supernatant is fractionally distilled (at 20:1 reflux ratio) in contact with freshly activated molecular sieves. The fraction distilling at 117.2° /760mm is collected. Finally it is fractionally distilled from sodium metal. All distillations and storage of ethylenediamine should be carried out under nitrogen to prevent reaction with CO₂ and water. The material containing 30% water is dried with solid NaOH (600g/L) and heated on a water bath for 10hours. Above 60°, separation into two phases takes place. The hot ethylenediamine layer is decanted off, refluxed with 40g of sodium for 2hours and distilled [Putnam & Kobe *Trans Electrochem Soc* 74 609 1938].

140

Ethylenediamine is usually distilled under nitrogen. Alternatively, it is dried over type 5A Linde molecular sieves (70g/L), then a mixture of 50g of CaO and 15g of KOH/L, with further dehydration of the supernatant with molecular sieves followed by distillation from molecular sieves and, finally, from sodium metal. A spectroscopically improved material is obtained by shaking with freshly baked alumina (20g/L) before distillation. [*Beilstein* **4** IV 1166.]

N,*N*'-Ethylenediaminediacetic acid (EDDA) [5657-17-0] M 176.2, m 222-224°(dec), pK_1^{25} 6.48, pK_2^{25} 9.57 (for NH groups). Crystallise EDDA from H₂O. [Beilstein 4 IV 2446.]

Ethylenediamine dihydrochloride [333-18-6] M 133.0, m >300°, pK_1^{25} 6.86, pK_2^{25} 9.92. Crystallise the salt from H₂O or H₂O/EtOH. Wash the crystals with EtOH and dry them *in vacuo*. It sublimes on heating. [*Beilstein* **4** IV 1168.]

Ethylenediaminetetraacetic acid (EDTA) [60-00-4] M 292.3, m 253°(dec), pK_1^{25} 0.26 pK_2^{25} 0.96, pK_3^{25} 2.60, pK_4^{25} 2.67, pK_5^{25} 6.16, pK_6^{25} 10.26. Dissolve EDTA in aqueous KOH or ammonium hydroxide, and precipitate it twice with dilute HCl or HNO₃. Boil it twice with distilled water to remove mineral acid, then recrystallise it from water or dimethylformamide. Dry it at 110°. It also recrystallises from boiling 1N HCl; wash the crystals with distilled H₂O and dry them *in vacuo*. [Ma & Ray *Biochemistry* 19 751 1980, *Beilstein* 4 IV 2449.]

Ethylene dimethacrylate (ethylene glycol dimethacrylate) [97-90-5] M 198.2, b 98-100°/5mm, d_4^{20} 1.053, n_D^{20} 1.456. Distil it through a short Vigreux column (p 11) at about 1mm pressure, in the presence of 3% (w/w) of phenyl- β -naphthylamine. [Beilstein 2 IV 1532.]

Ethylene dimyristate (1,2-bis-myristoyloxyethane) [627-84-9] M 482.8, m 61.7°. Crystallise the ester from *benzene/MeOH or diethyl ether/MeOH, and dry it in a vacuum desiccator. It forms an inclusion compound with 25.9 mols of urea. [McGreer et al. J Am Chem Soc 74 3441 1952, Beilstein 2 H 366, 2 II 327, 2 III 924, 2 IV 1133.]

Ethylene dipalmitate (1,2-bis-palmitoyloxyethane) [624-03-3] M 538.9, m 69.1°, 71.2°. Crystallise the ester from *benzene/MeOH, diethyl ether/MeOHor Me₂CO and dry it in a vacuum desiccator. It forms an inclusion compound with 28.2 mols of urea. [McGreer et al. J Am Chem Soc 74 3541 1952, Beilstein 2 H 373, 2 I 166, 2 II 338, 2 III 926, 2 IV 1169.]

Ethylene distearate (1,2-bis-stearoyloxyethane) [627-83-8] M 595.0, m 74.4-75°, 75.3°, 77°. Crystallise the ester from *benzene/MeOH, diethyl ether/MeOH or Me₂CO and dry it in a vacuum desiccator. It forms an inclusion compound with 31 mols of urea. [McGreer et al. J Am Chem Soc 74 3541 1952, Beilstein 2 H 380, 2 II 354, 2 III 1021, 2 IV 1223.]

Ethylene glycol [107-21-1] M 62.1, b 68%/4mm, 197.9%/760mm, d_4^{20} 1.0986, n^{15} 1.43312, n^{25} 1.43056, pK^{25} 10.6. It is very *hygroscopic*, and also likely to contain higher diols. Dry it with CaO, CaSO₄, MgSO₄ or NaOH and distil it under vacuum. Dry further by reaction with sodium under nitrogen, reflux for several hours and distil. The distillate is then passed through a column of Linde type 4A molecular sieves and finally distil under nitrogen, from more molecular sieves. Then fractionally distil it. [*Beilstein* 1 IV 2369.]

Ethylene glycol bis(ß-aminoethylether)-N,N'-tetraacetic acid (EGTA) [67-42-5] M 380.4, m >245°(dec), pK₁²⁰ 1.15 (2.40), pK₂²⁰ 2.40 (2.50), pK₃²⁰ 8.40 (8.67), pK₄²⁰ 8.94 (9.22). Dissolve EGTA in aqueous NaOH, precipitate it by adding aqueous HCl, wash it with water and dry at 100° *in vacuo*. [Beilstein 4 IV 217.]

Ethylene glycol diacetate [111-55-7] M 146.2, b 190.1°, 79-81°/11mm, d^{25} 1.4188, n_D^{20} 1.4150. Dry the di-ester with CaCl₂, filter (excluding moisture) and fractionally distil it under reduced pressure. [*Beilstein* 2 IV 1541.]

Ethylene glycol dibutyl ether [112-48-1] M 174.3, b 78-80°/16mm, 200-201°/760mm, d_4^{20} 1.105, n_D^{20} 1.42. Shake the ether with aqueous 5% Na₂CO₃, dry with MgSO₄ and store it with chromatographic alumina to prevent peroxide formation. [*Beilstein* 1 III 2083, 1 IV 2382.]

Ethylene glycol diethyl ether (1,2-diethoxyethane) [629-14-1] M 118.2, m -74°, b 121.5°, d_4^{20} 0.842, n_D^{20} 1.392. After refluxing for 12hours, a mixture of the ether (2L), conc HCl (27mL) and water (200mL), is added with slow passage of nitrogen. The solution is cooled, and KOH pellets are added slowly and with shaking until no more dissolves. The organic layer is decanted, treated with some KOH pellets and again decanted. It is then refluxed with, and distilled from sodium immediately before use. Alternatively, after removal of peroxides by treatment with activated alumina, the ether is refluxed in the presence of the blue ketyl formed by sodium-potassium alloy with benzophenone, then distilled. [*Beilstein* 1 H 468, 1 II 519, 1 III 2078, 1 IV 2379.]

Ethyl formate [109-94-4] M 74.1, b 54.2°, d_4^{20} 0.921, d^{30} 0.909, n_D^{20} 1.35994, n^{25} 1.3565. Free acid or alcohol is removed by standing the ester over anhydrous K₂CO₃, with occasional shaking, then decanting and distilling from P₂O₅. Alternatively, the ester can be kept over CaH₂ for several days, then distilled from fresh CaH₂. It cannot be dried with CaCl₂ because it reacts rapidly with the ester to form a crystalline compound. [*Beilstein* 2 IV 23.]

Ethyl iodide (iodoethane) [75-03-6] M 156.0, b 72.4°, d_4^{20} 1.933, n^{15} 1.5682, n^{25} 1.5104. Drying the iodide with P_2O_5 is unsatisfactory, and with CaCl₂ it is incomplete. It is probably best to dry it with sodium wire and distil [Hammond et al. *J Am Chem Soc* 82 704 *1960*]. Exposure of ethyl iodide to light leads to rapid decomposition, with the liberation of iodine. Free iodine can be removed by shaking with several portions of dilute aqueous Na₂S₂O₃ (until the colour is discharged), followed by washing with water, drying (with CaCl₂, then sodium), and distilling. The distilled ethyl iodide is stored, over mercury, in a dark bottle away from direct sunlight. Other purification procedures include passage through a 60cm column of silica gel, followed by distillation, and treatment with elemental bromine, extraction of free halogen with Na₂S₂O₃ solution, followed by washing with water, drying and distilling. Free iodine and HI have also been removed by direct distillation through a LeBel-Henninger column containing copper turnings. Purification by shaking with alkaline solutions, and storage over silver, are reported to be unsatisfactory. [*Beilstein* **1** IV 163.]

Ethyl isobutyrate [97-62-1] M 116.2, b 110°, d_4^{20} 0.867, n_D^{20} 1.388. Wash the ester with aqueous 5% Na₂CO₃, then with saturated aqueous CaCl₂. Dry it over CaSO₄ and distil. [*Beilstein* 1 IV 846.]

Ethyl isocyanate [109-90-0] M 71.1, b 559.8°/759mm, 59-61°/760mm, 60-63°/~760mm, d_4^{20} 0.9031, n_D^{20} 1.3808. Fractionate the isocyanate through an efficient column preferably in an inert atmosphere and store it in aliquots in sealed tubes [Bieber J Am Chem Soc 74 4700 1952, Slocombe et al. J Am Chem Soc 72 1888 1950]. [Beilstein 4 IV 402.]

Ethyl isovalerate [108-64-5] M 130.2, b 134.7°, d_4^{20} 0.8664, n_D^{20} 1.39621, n^{25} 1.3975. Wash the ester with aqueous 5% Na₂CO₃, then saturated aqueous CaCl₂. Dry it over CaSO₄ and distil. [*Beilstein* 2 IV 898.]

Ethyl levulinate (4-oxopentanoic acid ethyl ester) [539-88-8] M 144.2, m 37.2°, b 106-108°/2mm, 138.8°/8mm, 203-205°/atm, d_4^{20} 1.012, n_D^{20} 1.423. Stir the ester with Na₂CO₃ and charcoal, filter and distil. It is freely soluble in H₂O and EtOH [IR, NMR: Sterk Monatsh Chem 99 1770 1968, Thomas & Schuette J Am Chem Soc 53 2328 1931, Cox & Dodds J Am Chem Soc 55 3392 1933]. [Beilstein 3 IV 1562.]

Ethyl malonate monoamide [7597-56-0] M 131.1, m 47-50°, 49.5-50°, 50°, b 130-135°/2mm. The amide crystallises from Et₂O or by slow evaporation of an aqueous solution as colourless crystals [Snyder & Elston J Am Chem Soc 76 3039 1954, McAlvain & Schroeder J Am Chem Soc 71 45 1949, Rising et al. J Biol Chem 89 20 1930]. [Beilstein 2 IV 1887.]

Ethyl methyl ether [540-67-0] M 60.1, b 7%760mm, d $^{\circ}$ 0.725, n 4 1.3420. Dry the ether with CaSO₄, pass it through an alumina column (to remove peroxides), then fractionally distil it. [*Beilstein* 1 H 314, 1 I 158, 1 II 311, 1 III 1288, 1 IV 1314.]

3-Ethyl-2-methyl-2-pentene [19780-67-7] **M 112.2, b 109°/757mm, 114.5°/760mm, d** $_4^{20}$ **0.72468, n** $_D^{20}$ **1.4124.** Purify it by preparative GLC on a column of 20% squalene on Chromosorb P at 70°. Alternatively fractionate it under an inert atmosphere. It forms an azeotrope with methoxyethanol. [*Beilstein* **1** H 222, **1** III 8471, **1** IV 890.]

Ethyl nitroacetate [626-35-7] M 133.1, b 42-43% 0.2mm, 71-72% mm, 93-96% mm, 194-195% atm, d_4^{20} 1.1953, n_D^{20} 1.4260, pK²⁵ 5.82. Purify the ester by repeated distillation. IR: v_{max} 1748 (CO₂), 1570 and 1337 (NO₂), and 800 cm⁻¹ [Haszeldine *J Chem Soc* 2525 *1953*]. The *hydrazine salt* crystallises from 95% EtOH or MeOH as yellow crystals m 104-105% [Ungnade & Kissinger *J Org Chem* 22 1661 *1957*, Emmons & Freeman *J Am Chem Soc* 77 4391 *1955*]. [Beilstein 2 IV 537.]

Ethyl propionate [105-37-3] M 102.1, b 99.1°, d_4^{20} 0.891, n^{15} 1.38643, n_D^{20} 1.38394. Treat the ester with anhydrous CuSO₄ and distil it under nitrogen. [*Beilstein* 2 IV 205.]

Ethyl pyruvate [617-35-6] M 116.1, m -50°, b 44-45°/10mm, 56°/20mm, 69-71°/42mm, 63°/23mm, 155.5°/760mm, d_4^{20} 1.047, n_D^{20} 1.4052. Shake the ester with 10mL portions of saturated aqueous CaCl₂ solution (removes ethyl acetate) and the organic layer is removed by centrifugation, decantation and filtration, and is distilled under reduced pressure. Purification of small quantities is carried out *via* the bisulfite adduct: the ester (2.2mL) is shaken with saturated NaHSO₃ (3.6mL), chilled in a freezing mixture when crystals separate rapidly (particularly if seeded). After 5minutes EtOH (10mL) is added and the crystals are filtered off, washed with EtOH and Et₂O and dried. Yield *ca* 3g of *bisulfite adduct*. Then treat the adduct (16g) with saturated aqueous MgSO₄ (32mL) and 40% formaldehyde (5mL) and shake, whereby the ester separates as an oil which is extracted with Et₂O. The extract is dried (MgSO₄), filtered, evaporated and the residue is distilled (b 147.5°/750mm) to give 5.5g of pure ester. [Cornforth *Org Synth* Coll Vol **IV** 467 *1963*, *Beilstein* **3** IV 1513.]

Ethyl stearate [111-61-5] M 312.5, m 33°, b 213-215°/15mm. The solid portion is separated from the partially solid starting material, then crystallised twice from EtOH, dried by azeotropic distillation with *benzene, and fractionally distilled through a spinning-band column at low pressure [Welsh *Trans Faraday Soc* 55 52 1959]. [*Beilstein* 2 IV 1218.]

Ethyl thiocyanate (ethyl rhodanide) [542-90-5] M 87.1, b 144-145°, d_4^{20} 1.011, n_D^{20} 1.462. Fractionally distil the ester at atmospheric pressure. [*Beilstein* 2 IV 1218.] (CARE LACHRYMATOR.)

Ethyl thioglycolate (ethyl 2-mercaptoacetate) [623-51-8] M 120.2, b 50-51°/10mm, 55°/17mm, 62.5-64°/22mm, 67-68°/24mm, 155-158°/atm, d_4^{20} 1.096, n_D^{20} 1.457. Dissolve the thioglycolate in Et₂O, wash with H₂O, dry it over Na₂SO₄, filter, evaporate and distil the residue under reduced pressure [Bredereck et al. *Chem Ber* 90 1837 1957]. The *Ni complex* [*Ni*(*SCH*₂*CO*₂*Et*)₂] recrystallised twice from EtOH gives crystals which became black when dried in a vacuum over H₂SO₄, m 104-105° [Dranet & Cefola J Am Chem Soc 76 1975 1954]. [Beilstein 3 H 255.]

N-Ethyl thiourea [625-53-6] M 104.2, m 110°. Crystallise the thiourea from EtOH, MeOH or ether. [*Beilstein* 4 IV 374.]

Ethyl trichloroacetate [515-84-4] M 191.4, b 100-100.5°/30mm, d_4^{20} 1.383. Shake the ester with saturated aqueous Na₂CO₃ (three times), aqueous 50% CaCl₂ (three times), saturated aqueous NaCl (twice), then distil over CaCl₂ and redistil it under reduced pressure. [*Beilstein* 2 IV 514.]

Ethyl trifluoroacetate [383-63-1] M 142.1, b 61.3°/750, 60-62°/atm, 62-64°/755mm, d_4^{20} 1.191, n_D^{20} 1.30738. Fractionate it through a long Vigreux column (p 11). IR has v_{max} at 1800 (CO₂) and 1000 (OCO) cm⁻¹ [Fuson et al. *J Chem Phys* 20 1627 1952, Bergman *J Org Chem* 23 476 1958]. [Beilstein 2 IV 463.]

Ethyl trifluoromethanesulfonate [425-75-2] M 178.1, b 115°/atm, 118-120°/atm, d_4^{20} 1.378, n_D^{20} 1.336. The ester reacts slowly with H₂O and aqueous alkali. If its IR has no OH bands (~3000 cm⁻¹) then purify it by redistillation. If OH bands are present, then dilute with dry Et₂O and shake (carefully) with aqueous NaHCO₃ until effervescence ceases, then wash with H₂O and dry (MgSO₄), filter, evaporate and distil the residue under a slight vacuum then at atmospheric pressure in a N₂ atmosphere. IT IS A POWERFUL ALKYLATING AGENT, AND THE FUMES ARE VERY TOXIC – PERFORM ALL OPERATIONS IN AN EFFICIENT FUME CUPBOARD. [Gramstad & Haszeldine J Chem Soc 173 1956, Howells & McCown Chem Rev 77 69 1977, Beilstein 3 IV 34.]

S-Ethyl trifluorothioacetate [383-64-2] M 158.1, b 88-90% atm, 90.5% 760 mm, d_4^{20} 1.255, n_D^{20} 1.372. If IR is free of OH bands then fractionally distil it; otherwise dilute the thio-ester with dry Et₂O, wash with 5% KOH and H₂O, dry over MgSO₄ and fractionate it through an efficient column [Hauptschein et al. J Am Chem Soc 74 4005 1952]. [Beilstein 2 IV 567.] Powerful obnoxious odour.

Ethyl vinyl ether [109-92-2] M 72.1, b 35.5° , d_4^{20} 0.755. It usually contains polymerization inhibitors (usually amines, e.g. triethanolamine) which can be removed by fractional distillation. Redistil it from sodium. [*Beilstein* 1 IV 2049.] LACHRYMATORY.

Fluoroacetamide [640-19-7] **M 77.1, m 108°.** Crystallise fluoroacetamide from chloroform and dry it in a vacuum. [*Beilstein* **2** IV 454.]

Formaldehyde [50-00-0] M 30.0, m -92°, b -79.6°/20mm, -19.5°/760mm, d_4^{20} 0.815, pK²⁵ 13.27 (hydrate). It commonly contains added MeOH. Add KOH solution (1 mole KOH: 100 moles HCHO) to ~37% by weight aqueous formaldehyde solution (*formalin*), or evaporate to dryness, to give paraformaldehyde polymer which, after washing with water, is dried in a vacuum desiccator over P₂O₅ or H₂SO₄. Formaldehyde is regenerated by heating the paraformaldehyde to 120° under vacuum, or by decomposing it with barium peroxide. The monomer, a colourless flammable gas, is passed through a glass-wool filter cooled to -48° in a CaCl₂/ice mixture to remove particles of polymer, then dried by passage over P₂O₅ and either condensed in a bulb immersed in liquid nitrogen or absorbed in ice-cold conductivity water. The gas or aqueous solutions have *pungent suffocating odours*, are LACHRYMATORY and suspected carcinogens, handle carefully. Formalin is a disinfectant and a preservative of dead animal and plant tissues. [*Beilstein* 1 IV 3017.]

Formaldehyde dimethyl acetal (dimethoxymethane, methylal, formal) [109-87-5] M 76.1, m -108°, b 41-42°/736mm, 41-43°/atm, 42-46°/atm, d_4^{20} 0.8608, n_D^{20} 1.35335. It is a volatile flammable liquid which is soluble in three parts of H₂O, and is readily hydrolysed by acids. Purify it by shaking with an equal volume of 20% aqueous NaOH, stand for 20minutes, dry over fused CaCl₂, filter and fractionally distil it through an efficient column. Store it over molecular sieves. [Buchler et al. Org Synth Coll Vol III 469 1955, Rambaud & Besserre Bull Soc Chim Fr 45 1955, IR: Wilmshurst Can J Chem 36 285 1958, Beilstein 1 IV 3026.]

Formaldehyde dimethyl mercaptal (bis-[methylthio]methane) [1618-26-4] M 108.2, b 44-47%/13mm, 45.5%/18mm, 148-149%/~760mm, d_4^{20} 1.0594, n_D^{20} 1.5322. Work in an efficient fume cupboard as the substance may contain traces (or more) of methylmercaptan which has a very bad odour. Dissolve the mercaptal in Et₂O, shake it with aqueous alkalis then dry it over anhydrous K₂CO₃, filter and distil it over K₂CO₃ under a stream of N₂. If the odour is very strong, then allow

145

all gas efluents to bubble through 5% aqueous NaOH solution which is then treated with dilute KMnO₄ in order to oxidise MeSH to odourless products. UV: λ_{max} 238 nm (log ϵ 2.73) [Fehnel & Carmack *J Am Chem Soc* **71** 90 *1949*, Fehér & Vogelbruch *Chem Ber* **91** 996 *1958*, Bøhme & Marz *Chem Ber* **74** 1672 *1941*]. Oxidation with aqueous KMnO₄ yields *bis-(methylsulfonyl)methane* which has **m** 142-143° [Fiecchi et al. *Tetrahedron Lett* 1681 *1967*]. [*Beilstein* **1** IV 3088.]

Formamide [75-12-7] M 45.0, f 2.6°, b 103°/9mm, 210.5°/760mm(dec), d_4^{20} 1.13, n_D^{20} 1.44754, n^{25} 1.44682. Formamide is easily hydrolysed by acids and bases. It also reacts with peroxides, acid halides, acid anhydrides, esters and (on heating) alcohols, while strong dehydrating agents convert it to a nitrile. It is very *hygroscopic*. Commercial material often contains acids and ammonium formate. Vorhoek [J Am Chem Soc 58 2577 1956] added some bromothymol blue to formamide and then neutralised it with NaOH before heating to 80-90° under reduced pressure to distil off ammonia and water. The amide is again neutralised and the formamide is concentrated until the liquid remained neutral on heating. Sodium formate is added, and the formamide is concentrated under reduced pressure at 80-90°. The distillate is again neutralised and redistilled. It is then fractionally crystallised in the absence of CO₂ and water by partial freezing.

Formamide (specific conductance 2×10^{-7} ohm⁻¹ cm⁻¹) of low water content is dried by passage through a column of 3A molecular sieves, then deionized by treatment with a mixed-bed ion-exchange resin loaded with H⁺ and HCONH⁻ ions (using sodium formamide in formamide)[Notley & Spiro *J Chem Soc (B)* 362 *1966*]. [*Beilstein* **2** IV 45.]

Formamidine acetate [3473-63-0] M 104.1, m 159-161°(dec), 164°(dec), $pK_{Est} \sim 12$. Unlike the hydrochloride, the acetate salt is not hygroscopic. It is recrystallised from a small volume of acetic acid, by addition of EtOH and the crystals are washed with EtOH then Et₂O and dried in a vacuum. [Taylor et al. *Org Synth* 46 39 1966, *Beilstein* 2 IV 82.]

Formamidine sulfinic acid (thiourea-S-dioxide) [1758-73-2] **M 108.1, m 124-126°(dec).** Dissolve it in five parts of aqueous 1:1% NaHSO₃ at 60-63° (charcoal), then allow it to crystallise slowly, with agitation, at 10°. Filter and dry it immediately at 60° [Koniecki & Linch Anal Chem **30** 1134 1958]. [Beilstein **3** I 36, **3** IV 145.]

Formic acid [64-18-6] M 46.0 (anhydrous), f 8.3°, b 25°/40mm, 100.7°/760mm, d_4^{20} 1.22, n 1.37140, n^{25} 1.36938, pK^{25} 3.74. Anhydrous formic acid can be obtained by direct fractional distillation under reduced pressure, the receiver being cooled in ice-water. The use of P₂O₅ or CaCl₂ as dehydrating agents is unsatisfactory. Reagent grade 88% formic acid can be satisfactorily dried by refluxing with phthalic anhydride for 6hours and then distilling it. Alternatively, if it is left in contact with freshly prepared anhydrous CuSO₄ for several days about one half of the water is removed from 88% formic acid; distillation then removes the remainder. Boric anhydride (prepared by melting boric acid in an oven at a high temperature, cooling in a desiccator, and powdering) is a suitable dehydrating agent for 98% formic acid; after prolonged stirring with the anhydride the formic acid is distilled under vacuum. Formic acid can be further purified by fractional crystallisation using partial freezing. [*Beilstein* 2 IV 3.]

N-Formyl *tert*-butylamine (*N*-*tert*-butylformamide) [2425-74-3] M 101.2, m 16°, b 48°/0.2mm, 78-83°/9mm, 135-136°/107mm, 202°/760mm, d_4^{25} 0.903, n_D^{20} 1.4330. If the IR indicates some hydrolysis, then dissolve it in Et₂O, wash it with 20% aqueous Na₂CO₃, dry it (MgSO₄), filter and fractionate it. Collect the fraction that solidifies on cooling and recrystallise it from Et₂O at low temperature if necessary. [Emmons *J Am Chem Soc* 79 5753 1957, *Beilstein* 4 III 324, 4 IV 661.]

N-Formyl ethylamine (*N*-ethylformamide) [627-45-2] M 73.1, b 29% (0.5mm, 176-179%) (758mm, d_4^{20} 0.950, n_D^{20} 1.4346. If the IR is good, then distil it and collect the middle fraction and redistil if necessary; otherwise proceed as for the previous amide. [Erickson *J Org Chem* 20 1569 1955, *Beilstein* 4 H 109, 4 I 352, 4 II 601, 4 III 207, 4 IV 346.]

Formyl hydrazine (formic acid hydrazide) [624-84-0] M 60.1, m 54°, 54-57°, pK_{est} ~ 2.5. Recrystallise it from EtOH and dry it *in vacuo*. Store below 10°; it may disproportionate on storage to 1,2-

diformyl hydrazine and hydrazine. It forms a blue $[Cu(CH_4N_2O)]SO_4$ salt with $CuSO_4$. [*Beilstein* **2** H 93, **2** III 127, **2** IV 85.]

Formyloxy acetonitrile (cyanomethyl formate) [150760-95-5] M 85.1, b 62-64°/12mm, 172-173°/atm, d_4^{25} 0.903, n_D^{20} 1.4330. Purify it by fractional distillation and redistilling the middle fraction. It is useful for the formylation of alcohols and amines. The ¹³C NMR has δ (CDCl₃) at 47.87, 114.47 and 159.46ppm. [Deutsch & Niclas Synth Commun 23 1561 1993, Duczek et al. Synthesis 37 1966.]

Fumaraldehyde bis-(dimethyl acetal) (*trans*-1,1,4,4-tetramethoxybut-2-ene) [6068-62-8] M 176.2, b 100-103°/15mm, 101-103°/25mm, d_4^{20} 1.011, n_D^{20} 1.425. Dry it over fused CaCl₂ and distil it *in vacuo*. The maleic (*cis*) isomer has b 112°/11mm, and d²³ 0.932 and n_D^{25} 1.4243. [Zeik & Heusner Chem Ber 90 1869 1957, Clauson-Kaas et al. Acta Chem Scand 9 111 1955, Clauson-Kaas Acta Chem Scand 6 569 1952, Beilstein 1 IV 3754.]

Fumaric (*trans*-but-2-ene-1,4-dioic) acid [110-17-8] M 116.1, m 289.5-291.5°(sealed tube), pK_1^{25} 3.10, pK_2^{25} 4.60 (4.38). Crystallise it from hot M HCl or water and dry it at 100°. [Beilstein 2 IV 2202.]

Geraniol (*trans*-3,7-dimethyl-2,6-octadien-8-ol) [106-24-1] M 154.3, b 114-115^o/11-12mm, 230^o, d_4^{20} 0.879, n_D^{20} 1.4766. Purify geraniol by ascending chromatography or by thin layer chromatography on plates of kieselguhr G with acetone/water/liquid paraffin (130:70:1) as solvent system. Hexane/ethyl acetate (1:4) is also suitable. Also purify it by GLC on a silicone-treated column of Carbowax 20M (10%) on Chromosorb W (60-80 mesh). [Porter *Pure Appl Chem* 20 499 1969.] Store it in full, tightly sealed containers in the cool and protect from light. It has a pleasant odour. [cf p 681, *Beilstein* 1 IV 2277.]

Glutaraldehyde [111-30-8] **M 100.1, b 71°/10mm, as 50% aqueous solution.** Likely impurities are oxidation products-acids, semialdehydes and polymers. It can be purified by repeated washing with activated charcoal (Norit) followed by vacuum filtration, using 15-20g charcoal/100mL of glutaraldehyde solution. Distil it at 60-65°/15mm, discarding the first 5-10%, then dilute with an equal volume of freshly distilled water

at 70-75°, using magnetic stirring under nitrogen. The solution is stored at low temperature $(3-4^\circ)$, in a tightly stoppered container, and protected from light. Standardise by titration with hydroxylamine. [Anderson J Histochem Cytochem **15** 652 1967, Beilstein **1** IV 3659.]

Glutaric acid [110-94-1] M 132.1, m 97.5-98°, pK_1^{25} 4.35, pK_2^{25} 5.40. Crystallise the acid from *benzene, CHCl₃, distilled water or *benzene containing 10% (w/w) of diethyl ether. Dry it under vacuum. [*Beilstein* 2 IV 1934.]

dl-Glyceraldehyde [56-82-6] M 90.1, m 145°. Crystallise it from EtOH/diethyl ether. The D(+)enantiomer [453-17-8] is a syrup (70 + % H₂O) with $[\alpha]_{D}^{25}$ +14° (c 2, H₂O) and the *dimethyl acetal* has b 124-127 °/14mm and $[\alpha]_{D}^{15}$ +21° (c 18, H₂O). [*Beilstein* 1 H 845, 1 IV 4114.]

Glycerol [56-81-5] M 92.1, m 18.2°, b 182°/20mm, 290°/760mm, d_4^{20} 1.261, n_D^{25} 1.47352, pK²⁵ 14.4. Glycerol is dissolved in an equal volume of *n*-butanol (or *n*-propanol, amyl alcohol or liquid ammonia) in a water-tight container, cooled and seeded while slowly revolving in an ice-water slurry. The crystals are collected by centrifugation, then washed with cold acetone or isopropyl ether. [Hass & Patterson *Ind Eng Chem (Anal Ed)* 33 615 1941.] Coloured impurities can be removed from substantially dry glycerol by extraction with 2,2,4-trimethylpentane. Alternatively, glycerol can be decolorised and dried by treatment with activated charcoal and alumina, followed by filtering. Glycerol can be distilled at 15mm in a stream of dry nitrogen, and stored in a desiccator over P₂O₅. Crude glycerol can be purified by digestion with conc H₂SO₄ and saponification with a lime paste, then re-acidified with H₂SO₄, filtered, treated with an anion exchange resin and fractionally distilled under vacuum. [*Beilstein* 1 IV 2751.]

Glycolic (α -hydroxyacetic) acid [79-14-1] M 76.1, m 81°, pK²⁵ 3.62. Crystallise it from diethyl ether. [*Beilstein* 3 IV 571.]

Guanidine [113-00-8] M 59.1, m 47.5-48.5°, 48-49°, ~50°, pK^{25} 13.6. Crystallise it from water/EtOH under nitrogen. It is very deliquescent and absorbs CO₂ from the air readily. [Jones *Trans Faraday* Soc 55 524 1959, Beilstein 3 H 82, 3 I 39, 3 II 69, 3 III 154, 3 IV 148.]

Guanidine carbonate [593-85-1] M 180.2, m 197°, 230°. Crystallise it from MeOH. [Beilstein 3 H 86, 3 I 41, 3 II 72, 3 III 161, 3 IV 152.]

Guanidine hydrochloride [50-01-1] **M 95.5, m 181-183°.** Crystallise the hydrochloride from hot methanol by chilling to about -10°, with vigorous stirring. The fine crystals are filtered through fritted glass, washed with cold (-10°) methanol, dried at 50° under vacuum for 5hours. (The product is purer than that obtained by crystallisation at room temperature from methanol by adding large amounts of diethyl ether.) [Kolthoff et al. J Am Chem Soc 79 5102 1957, Beilstein **3** H 86, **3** II 71, **3** III 160, **3** IV 150.]

Heptadecanoic acid (margaric) [506-12-7] M 270.5, m 60-61°, b 227°/100mm, $pK_{Est} \sim 4.9$. Crystallise the acid from MeOH or pet ether. [*Beilstein* 2 IV 1193.]

1-Heptadecanol [1454-85-9] M 256.5, m 54°. Crystallise it from acetone. [Beilstein 1 IV 1884.]

Heptafluoro-2-iodopropane [677-69-0] M 295.9, b 39°/735mm, 41°/760mm, d_4^{ν} 2.1306, n_D^{20} 1.3281. Purify it by gas chromatography on a triacetin (glyceryl triacetate) column, followed by bulb-to-bulb distillation at low temperature. Store it over Cu powder to stabilise it. UV has v_{max} at 271nm (ϵ 240) in pet ether (b 60-80°). [Haszeldine J Chem Soc 1767, 3761 1953, Beilstein 1 III 255, 1 IV 225.]

n-Heptaldehyde [111-71-7] M 114.2, b 40.5%/12mm, 152.8%/760mm, d_4^{20} 0.819, n_D^{25} 1.4130. Dry *n*-heptaldehyde with CaSO₄ or Na₂SO₄ and fractionally distil it under reduced pressure. More extensive purification is by precipitation as the bisulfite compound (formed by adding the aldehyde to saturated aqueous NaHSO₃) which is filtered off and recrystallised from hot H₂O. The crystals, after being filtered and washed well with H₂O, are hydrolysed by adding 700mL of aqueous Na₂CO₃ (12.5% w/w of anhydrous Na₂CO₃) per 100g of aldehyde. The aldehyde is then steam distilled off, separated, dried with CuSO₄ and distilled under reduced pressure in a slow stream of nitrogen. [McNesby & Davis *J Am Chem Soc* 76 2148 1954, Beilstein 1 H 695, 1 I 357, 1 II 750, 1 III 2844, 1 IV 3314.]

n-Heptaldoxime [629-31-2] M 129.2, m 53-55°. Separate the cis(Z) and trans(E) oximes by liquid chromatography through a silica gel column and eluting with pet ether (b 40-65°)/EtOAc (50:10) at a flow rate of 2-3.4mL/sec where the *trans-isomer* comes through first and is a liquid with n_D^{22} 1.38512 followed by the *cis-isomer* which is a solid and crystallises from 60% aqueous EtOH with m 55°. They are identified by TLC on 0.2mm silica gel G by eluting with *C₆H₆/EtOAc (50/10) and visualizing with I₂ vapour: the *trans-isomer* has R_F 0.6 and the *cis-isomer* has R_F 0.5 [Pejkovic-Tadic et al. J Chromatography 21 239 1966, Emmous & Pagano J Am Chem Soc 77 4557 1955]. [Beilstein 1 H 698, 1 I 358, 1 II 752, 1 III 2850.]

n-Heptane [142-18-5] M 100.2, b 98.4°, d_4^{20} 0.684, n_D^{20} 1.38765, n_D^{25} 1.38512. Pass it through a silica gel column which greatly reduces the ultraviolet absorption of *n*-heptane. (The silica gel is previously heated to 350° before use.) For more extensive purification, heptane is shaken with successive small portions of conc H₂SO₄ until the lower (acid) layer remains colourless. The heptane is then washed successively with water, aqueous 10% Na₂CO₃, water (twice), and dried with CaSO₄, MgSO₄ or CaCl₂. It is distilled from sodium. *n*-Heptane can be distilled azeotropically with methanol, then the methanol is washed out with water and, after drying, the heptane is redistilled. Other purification procedures include passage through activated basic alumina, drying with CaH₂, storage with sodium, and stirring with 0.5N KMnO₄ in 6N H₂SO₄ for 12hours after treatment with conc H₂SO₄. Carbonyl-containing impurities have been removed by percolation through a column of impregnated Celite made by dissolving 0.5g of 2,4-dinitrophenylhydrazine in 6mL of 85% H₃PO₄ by grinding together, then adding 4mL of distilled water and 10g Celite. [Schwartz & Parks Anal Chem 33 1396 1961, Beilstein 1 IV 376.]

Hept-1-ene [592-76-7] **M 98.2, b 93°/771mm, d** $_{4}^{20}$ **0.698, n** $_{D}^{20}$ **1.400.** Distil hept-1-ene from sodium, then carefully distil it fractionally using an 18-in gauze-packed column. It can also be purified by azeotropic distillation with EtOH. It usually contains the 2- and 3-isomers as impurities. These can be removed by gas chromatography using a Carbowax column at 70°. [*Beilstein* **1** IV 857.]

n-Heptyl alcohol (1-heptanol) [111-70-6] M 116.2, b 175.6°, d 0.825, n_D^{20} 1.425. Shake the alcohol with successive lots of alkaline KMnO₄ until the colour persists for 15minutes, then dry it with K₂CO₃ or CaO, and fractionally distil it. [Beilstein 1 IV 1731.]

n-Heptylamine [111-68-2] M 115.2, b 155°, d_4^{20} 0.775, n_D^{20} 1.434, pK²⁵ 10.66. Dry it in over KOH pellets for 24hours, then decant it and fractionally distil it. Store away from CO₂. [Beilstein 4 IV 734.]

n-Heptyl bromide [629-04-9] M 179.1, b 70.6°/19mm, 180°/760mm, d_4^{20} 1.140, n_D^{20} 1.45. Shake it with conc H₂SO₄, wash with water, dry it with K₂CO₃, and fractionally distil. [*Beilstein* 1 IV 391.]

Hexachloro-1,3-butadiene (perchlorobutadiene) [87-68-3] M 260.8, b 144.19/100mm, 210-2129/760mm, d_4^{20} 1.683, n_D^{20} 1.5556. Wash the diene with four or five 1/10th volumes of MeOH (or until the yellow colour has been extracted), then stir it for 2hours with H₂SO₄, wash it with distilled water until neutral and filter it through a column of P₂O₅. Distil it under reduced pressure through a packed column. [Rytner & Bauer J Am Chem Soc 82 298 1960, Beilstein 1 IV 998.]

Hexachloroethane [67-72-1] M 236.7, m 187°. Steam distil it, then crystallise it from 95% EtOH. Dry it in the dark under vacuum. [Beilstein 1 IV 148.]

Hexacosane (C-26) [630-01-3] M 366.7, m 56.4°, b 169°/0.05mm, 205°/1mm, 262°/15mm. Distil hexacosane under vacuum and recrystallise it from diethyl ether. [*Beilstein* 1 IV 583.]

Hexacosanoic acid (cerotinic acid) [506-46-7] M 396.7, m 86-87°, 88-89°, $pK_{Est} \sim 4.9$. Crystallise the acid from EtOH, aqueous EtOH and pet ether/Me₂CO. [*Beilstein* 2 IV 1310.]

n-Hexadecane (Cetane) [544-76-3] M 226.5, m 18.2°, b 105°/0.1mm, d_4^{20} 0.773, n_D^{20} 1.4345, n^{25} 1.4325. Pass cetane through a column of silica gel and distil it under vacuum in a column packed with Pyrex helices. Store it over silica gel. It also crystallises from acetone, or fractionally crystallise it by partial freezing. [*Beilstein* 1 IV 537.]

1,14-Hexadecanedioic acid (thaspic acid). [505-54-4] M 286.4, m 126°, $pK_{Est(1)}$ ~4.5, $pK_{Est(2)}$ ~5.5. Crystallise thaspic acid from EtOH, ethyl acetate or *C₆H₆. [*Beilstein* 2 IV 2162.]

Hexadecanoic acid (palmitic acid) [57-10-3] M 256.4, m 62-63°, b 215°/15mm, pK²⁵ 6.46 (50% aqueous EtOH), 5.0 (H₂O). Purify palmitic acid by slow (overnight) recrystallisation from hexane. Some samples are also crystallised from acetone, EtOH or EtOAc. The crystals are kept in air to lose solvent, or are pumped dry of solvent on a vacuum line. [Iwahashi et al. J Chem Soc, Faraday Trans 1 81 973 1985, pK: White J Am Chem Soc 72 1858 1950, Beilstein 2 IV 1157.]

1,5-Hexadiene [592-42-7] **M 82.2, b 59.6°, d** $_{4}^{20}$ **0.694, n** $_{D}^{20}$ **1.4039.** Distil 1,5-hexadiene from NaBH₄. [*Beilstein* **1** IV 1013.]

Hexafluoroacetone [684-16-2, 34202-69-2 (3 H_2O)] M 166.1, m -129°, (trihydrate m 18-21°), b -28°. Dehydrate hexafluoroacetone by passing the vapours over P_2O_5 . Ethylene is removed by passing the dried vapours through a tube containing Pyrex glass wool moistened with conc H_2SO_4 . Further purification is by low temperature distillation using Warde-Le Roy stills. Store it in the dark at -78°. [Holmes & Kutschke *Trans Faraday Soc* 58 333 1962, *Beilstein* 1 IV 3215.]

Hexafluoroacetylacetone (1,1,1,5,5,5-hexafluoro-2,4-pentanedione) [1522-22-1] M 208.1, b $68^{0}/736$ mm, 70-70.2⁰/760mm, 68-71⁰/atm, d_{4}^{20} 1.490, n_{D}^{20} 1.333. It forms a *dihydrate* which

has no UV spectrum compared with λ_{max} (CHCl₃) 273nm (ϵ 7,800) for the anhydrous ketone. The dihydrate decomposes at ~90°. The hydrate (10g) plus anhydrous CaSO₄ (Drierite, 30g) are heated and distilled, the distillate is treated with more CaSO₄ and redistilled. When the distillate is treated with aqueous NaOH and heated, the dihydrate crystallises on cooling. The Cu complex has **m** 135° (after sublimation). [Gilman et al. *J Am Chem Soc* **78** 2790 *1956*, Belford et al. *J Inorg Nucl Chem* **2** 11 *1956*, *Beilstein* **1** IV 3681.]

Hexafluoroethane [76-16-4] **M 138.0, b -79°.** Purify it for pyrolysis studies by passing through a copper vessel containing CoF_3 at *ca* 270°, and hold for 3hours in a bottle with a heated (1300°) platinum wire. It is then fractionally distilled. [Steunenberg & Cady J Am Chem Soc **74** 4165 1962, Beilstein **1** IV 132.]

1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP) [920-66-1] M 168.1, m -4°, b 57-58°/760mm, d_4^{20} 1.4563, n^{22} 1.2750, pK^{25} 9.30. Distil it from 3A molecular sieves, retaining the middle fraction. It has been prepared by reduction of *hexafluoroacetone* in tetrahydrofuran (THF), In this case hexafluoropropanol forms a stable 1:1 complex which distils at 99-100°/760mm (n_D^{25} 1.3283), The complex is decomposed by mixing with 20% oleum and distilling in a vacuum, and the distillate is redistilled to give pure hexafluoropropan-2-ol with b 59°/760mm. The ¹H NMR shows a doublet at 4.52ppm ($J_{H,H}$ 2Hz). The *benzoyl* derivative, [10315-85-2] M 272.1, has m 53.9° after crystallisation from pentane at -50°, and its IR has v_{max} at 1760cm⁻¹. [Middleton & Lindsey J Am Chem Soc 86 4948 1964, Urry et al. J Org Chem 32 347 1967.] It has very high peptide solubilising properties, alone or with CH₂Cl₂ [use as a solvent: Narita et al. Bull Chem Soc Jpn 61 281 1988, Biochemistry 29 2639 1990.] It is CORROSIVE, causes severe eye irritation.

Hexamethylenediamine (1,6-diaminohexane) [124-09-4] M 116.2, m 42°, b 46-47°/1mm, 84.9°/9mm, 100°/20mm, 204-205°/760mm, pK_1^{25} 10.24, pK_2^{25} 11.02. Crystallise it in a stream of nitrogen. It sublimes in a vacuum. [Beilstein 4 IV 1320.]

Hexamethylenediamine dihydrochloride [6055-52-3] M 189.2, m 248°. Crystallise the salt from water or EtOH. [*Beilstein* 4 IV 1320.]

Hexamethylene glycol (1,6-hexanediol) [629-11-8] M 118.2, m 41.6°, 43-45°, b $134^{\circ}/10$ mm, 250°, n_D^{20} 1.458. Fractionally crystallise it from its melt or from water. Distil it *in vacuo*. [Beilstein 1 IV 2556.]

n-Hexane [110-54-3] M 86.2, b 68.7°, d_4^{20} 0.660, n 1.37486, n^{25} 1.37226. Purify as for *n*-heptane. Modifications include the use of chlorosulfonic acid or 35% fuming H₂SO₄ instead of conc H₂SO₄ in washing the alkane, and final drying and distilling from sodium hydride. Unsaturated impurities can be removed by shaking the hexane with nitrating acid (58% H₂SO₄, 25% conc HNO₃, 17% water, or 50% HNO₃, 50% H₂SO₄), then washing the hydrocarbon layer with conc H₂SO₄, followed by H₂O, drying, and distilling over sodium or *n*-butyl lithium. It can also be purified by distillation under nitrogen from sodium benzophenone ketyl solubilised with tetraglyme. Also purify it by passage through a silica gel column followed by distillation [Kajii et al. *J Phys Chem* **91** 2791 *1987*]. It is a FLAMMABLE liquid and a possible nerve toxin. [*Beilstein* **1** IV 338.]

Rapid purification: Distil, discarding the first forerun and stored over 4A molecular sieves.

(±)-1,2-Hexanediol [6920-22-5] M 118.2, b 96-98%/1mm, 118.4-118.5%/13mm, 214-215%/760mm, d_4^{20} 0.951, n_D^{20} 1.442. Fractionally distil it, preferably in a vacuum. Alternatively, dissolve it in Et₂O, dry with K₂CO₃ then Na₂SO₄, filter, evaporate and distil it in a vacuum. The *bis-4-nitrobenzoyl* derivative has m 101.5-102.5%. [Rudloff *Can J Chem* 36 486 1958, *Beilstein* 1 I 251, 1 III 2200, 1 IV 2554.]

1-Hexene [592-41-6] **M 84.2, b 63°, d 0.674, n_D^{20} 1.388.** Purify it by stirring over Na/K alloy for at least 6hours, then fractionally distil it from sodium under nitrogen. [*Beilstein* 1 IV 828.]

cis-2-Hexene [7688-21-3] M 84.2, b 68-70°, d_4^{20} 0.699, n_D^{20} 1.399. Purify it as for 1-hexene above. [*Beilstein* 1 IV 833.]

trans-2-Hexene [4050-45-7] M 84.2, b 65-67°, n_D^{20} 1.390. Purify it as for 1-hexene above. [*Beilstein* 1 IV 834.]

trans-3-Hexene [13269-52-8] M 84.2, b 67-69°, d_4^{20} 0.678, n_D^{20} 1.393. Purify it as for 1-hexene above. [*Beilstein* 1 IV 837.]

n-Hexyl alcohol (1-hexanol) [111-27-3] M 102.2, b 157.5° , d²⁰₄ 0.818, n¹⁵ 1.4198, n²⁵ 1.4158. The commercial material usually contains other alcohols which are difficult to remove. A suitable method is to esterify with hydroxybenzoic acid, recrystallise the ester and saponify. [Olivier *Recl Trav Chim, Pays-Bas* 55 1027 1936.] Drying agents include K₂CO₃ and CaSO₄, followed by filtration and distillation. (Some decomposition to the olefin occurs when Al amalgam is used as drying agent at room temperature, even if the amalgam is removed prior to distillation.) If the alcohol is required anhydrous, the redistilled material can be refluxed with the appropriate alkyl phthalate or succinate, as described under *Ethanol.* [*Beilstein* 1 IV 1694.]

n-Hexylamine [111-26-2] M 101.2, b 131°, d_4^{20} 0.765, n_D^{20} 1.419, pK²⁵ 10.64. Dry with, and fractionally distil the hexylamine from, KOH or CaH₂. Store away from CO₂. [*Beilstein* 4 IV 709.]

n-Hexyl bromide [111-25-1] M 165.1, b 87-88°/90mm, 155°/743mm, d_4^{20} 1.176, n_D^{20} 1.448. Shake the bromide with H₂SO₄, wash with water, dry (K₂CO₃) and fractionally distil. [*Beilstein* 1 IV 352.]

n-Hexyl methacrylate [142-09-6] M 154.2, b 65-66% 4 mm, 88-88.5% 14 mm, d_4^{20} 0.8849, n_D^{20} 1.4320. Purify as for *methyl methacrylate*. [IR: Hughes & Walton J Am Chem Soc 79 3985 1957, Beilstein 2 III 1288, 2 IV 1527.]

Hexyltrimethylammonium bromide [2650-53-5] M 224.3, m 186°. Recrystallise it from acetone. It is extremely *hygroscopic*. [McDowell and Kraus J Am Chem Soc 73 2170 1951, Beilstein 4 IV 710.]

1-Hexyne [693-02-7] **M 82.2, b 12.5°/75mm, 71°/760mm, d_4^{20} 0.7156, n_D^{20} 1.3989. Distil it from NaBH₄ to remove peroxides. Stand over sodium for 24hours, then fractionally distil it under reduced pressure. Also dry it by repeated vacuum transfer into freshly activated 4A molecular sieves, followed by vacuum transfer onto Na/K alloy and stirring for 1hour before fractionally distilling. [Beilstein 1 IV 1006.]**

2-Hexyne [764-35-2] **M 82.2, b 83.8°/760mm, d_4^{20} 0.73146, n_D^{20} 1.41382. Purify as for 1-hexyne above. [***Beilstein* **1 IV 1009.]**

3-Hexyne [928-49-4] **M 82.2, b 81°/760mm, d_4^{20} 0.7231, n_D^{20} 1.4115. Purify as for 1-hexyne above. [***Beilstein* **1 IV 1009.]**

(±)-5-Hexyn-3-ol (4-hydroxy-1-hexyne) [19780-84-8] M 98.1, b 58-59°/25mm, 73-76°/60mm, d_4^{20} 0.8918, n_D^{20} 1.4437. Purify the hexynol by fractionation in a vacuum. The *carbamoyl* derivative (prepared by reaction with COCl₂/toluene followed by NH₃) is crystallised by dissolving in the minimum volume of toluene and adding excess of pet ether (b 40-60°) and has m 70-71°. [Länger et al. *Helv Chim Acta* 42 2379 1959, *Beilstein* 1 IV 2235.]

Hydrazine *N*,*N*'-**dicarboxylic acid diamide** [110-21-4] **M 116.1, m 245-246°(dec), 248°.** Crystallise the diamide from water, wash the crystals with EtOH then Et₂O and dry in vacuum over P_2O_5 . It does **not** decompose on drying at 110°/48hours. Its solubility in H₂O is 1% at 0°. [Andrieth & Mohr *Inorg Synth* **IV** 26 1953, *Beilstein* **3** H 116, **3** I 56, **3** III 229.]

3-Hydroxy-2-butanone (acetoin) [513-86-0] **M 88.1, b 144-145°, [m 100-105° dimer].** Wash acetoin with EtOH until colourless, then with diethyl ether or acetone to remove biacetyl. Dry it in air by suction and dry further in a vacuum desiccator. [*Beilstein* **1** IV 3991.]

(±)-α-Hydroxy-γ-butyrolactone [19444-84-9, S(-)- 733-52-4] M 102.1, b 84% 0.2mm, 133% 10mm, d_4^{20} 1.310, n_D^{20} 1.4656. It has been purified by repeated fractionation and forms a colourless liquid. It has to be distilled at high vacuum; otherwise it will dehydrate. The *acetoxy* derivative has b 94% 0.2mm. The *S*-enantiomer has d_4^{20} 1.24, n_D^{20} 1.464, $[\alpha]_D^{25}$ -82% (c 2, MeOH). [NMR: Daremon & Rambaud *Bull Soc Chim Fr* 294 1971, Schmitz et al. *Chem Ber* 108 1010 1975, *Beilstein* 18/1 V 5.]

12-Hydroxydodecanoic acid [505-95-3] M 216.3, m 86-88°, pK_{Est} ~4.8. Crystallise the acid from toluene [Sadowik et al. J Am Chem Soc 108 7789 1986]. [Beilstein 3 III 658.]

N-[2-Hydroxyethyl]ethylenediamine [2-(2-aminoethylamino)ethanol] [111-41-1] M 104.1, b 91.2°/5mm, 238-240°/752mm, d_4^{20} 1.030, n_D^{20} 1.485, pK_1^{20} 3.75, pK_2^{20} 9.15. Distil the amine twice through a Vigreux column (p 11). Redistil it from solid NaOH, then from CaH₂. Alternatively, it can be converted to the dihydrochloride and recrystallised from water. It is then dried, mixed with excess of solid NaOH and the free base is distilled from the mixture. It is finally redistilled from CaH₂. [Drinkard et al. *J Am Chem Soc* 82 2992 *1960*, *Beilstein* 4 IV 1558.]

N-[2-Hydroxyethyl]ethylenediaminetriacetic acid (HEDTA) [150-39-0] M 278.3, m 212-214°(dec), pK_1^{20} 2.51, pK_2^{20} 5.31, pK_3^{20} 9.86. Crystallise HEDTA from warm H₂O, after filtering, by addition of 95% EtOH and allowing to cool. The crystals, collected on a sintered-glass funnel, are washed three times with cold absolute EtOH, then again crystallised from H₂O. After leaching with cold H₂O, the crystals are dried at 100° under vacuum. [Spedding et al. *J Am Chem Soc* 78 34 1956, *Beilstein* 4 IV 2449.]

N-Hydroxyethyliminodiacetic acid (HIMDA) [93-62-9] M 177.2, m 181°(dec), pK_1^{25} 2.16, pK_1^{25} 8.72, pK_3^{25} 13.7 (OH). Crystallise HIMDA from water. [Beilstein 4 IV 2432.]

2-Hydroxyethylimino-tris(hydroxymethyl)methane (MONO-TRIS) [7343-51-3] M 165.2, m 91°, pK_{Est}~9.8. Crystallise it twice from EtOH. Dry it under vacuum at 25°.

2-Hydroxyethyl methacrylate [868-77-9] **M 130.1, b 67°/3.5mm, d_4^{20} 1.071, n_D^{20} 1.452. Dissolve the ester in water and extract with** *n***-heptane to remove ethylene glycol dimethacrylate (checked by gasliquid chromatography and by NMR) and distil it twice under reduced pressure [Strop et al.** *J Phys Chem* **80** 694 1976]. [*Beilstein* **2** IV 1530.]

dl-2-Hydroxy-2-methylbutyric acid [3739-30-8] M 118.1, m 72-73°, pK^{25} 3.73. Crystallise the acid from *benzene, and sublime it at 90°. [*Beilstein* 3 H 324.] IRRITANT.

dl-2-Hydroxy-3-methylbutyric (α -hydroxyisovaleric) acid [600-37-3] M 118.1, m 86°, pK_{Est} ~3.9. Crystallise the acid from ether/pentane. [*Beilstein* 3 IV 618.] IRRITANT.

R-γ-Hydroxymethyl-γ-butyrolactone [52813-63-5] M 116.1, b 101-102°/0.048mm, d_4^{20} 1.2238, n_D^{20} 1.471, [α] $_{546}^{20}$ -38°, [α] $_D^{20}$ -33° (c 3, EtOH), [α] $_D^{30}$ -53.5° (c 3, EtOH). Purify it by column chromatography on Silica gel 60 (Merck 70-230 mesh) and eluting with 7% EtOH/73% CHCl₃. IR v_{max} (film): 3400 (OH), 1765 (C=O) and 1180 (COC) cm⁻¹. [Eguchi & Kakuta *Bull Chem Soc Jpn* 47 1704 1974, IR and NMR: Ravid et al. *Tetrahedron* 34 1449 1978, *Beilstein* 3 III 620.]

3-Hydroxy-3-methylglutaric acid (Meglutol) [503-49-1] M 162.1, m 99-102°, 108-109°, 100°, $pK_{Est(1)} \sim 4.0$, $pK_{Est(2)} \sim 5.0$. Recrystallise the acid from diethyl ether/hexane and dry it under a vacuum at 60° for 1hour. [Beilstein 3 IV 1166.]

4-Hydroxy-4-methyl-2-pentanone [123-42-2] **M** 116.2, **b** 166°, d_4^{20} 0.932, n_D^{20} 1.4235, n_D^{25} 1.4213. The pentanone loses water when heated. It can be dried with CaSO₄, then fractionally distilled under reduced pressure. [*Beilstein* 1 IV 403.]

2-Hydroxy-2-methylpropionic acid (α -hydroxyisobutyric acid, 2-methyllactic acid)) [594-61-6] M 104.1, m 79°, b 114°/12mm, 212°/760mm, pK²⁵ 3.78. Distil the acid in steam, crystallise it from Et₂O or *benzene, sublime it at 50° and dry it under vacuum. [*Beilstein* 3, 7 IV 782.]

(±)-2-Hydroxyoctanoic acid (2-hydroxycaprylic acid) [617-73-2] M 160.2, m 69.5°, b 160-165°/10mm, pK_{Est} ~3.7. Crystallise the acid from EtOH/pet ether or ether/ligroin. [Beilstein 3 IV 873.]

N-Hydroxysuccinimide [6066-82-6] M 115.1, m 96-98°, pK^{25} 6.0. Recrystallise the imide from EtOH/ethyl acetate [Manesis & Goodmen J Org Chem 52 5331 1987]. [Beilstein 21/9 V 498.]

(±)-2-Hydroxytetradecanoic acid (α -hydroxymyristic acid) [2507-55-3] M 244.4, m 81-82°, pK_{Est}~3.7. Crystallise the acid from chloroform or twice from MeOH (m 85.8-86.6°) [Horn & Pretorious J Chem Soc 1463 1954, Chibnall et al. Biochem J 30 1034 1963, Beilstein 3 H 361, 3 I 130, 3 II 246, 3 III 660, 3 IV 921].

R-2-Hydroxytetradecanoic acid [26632-17-7] M 244.4, m 88-2-88.5°, $[\alpha]_{D}^{20}$ -3.1° (CHCl₃). Crystallise the acid from chloroform or first from Me₂CO, then hexane [Horn & Pretorious *J Chem Soc* 1463 1954, Horn et al. *J Chem Soc* 177 1954, *Beilstein* 3 III 660.]

Hydroxyurea See in "Inorganic Compounds", Chapter 5.

Iminodiacetic acid [142-73-4] **M 133.1, m 225°(dec), pK** $_{1}^{25}$ **2.50, pK** $_{2}^{25}$ **9.40.** Recrystallise iminodiacetic acid from water and dry it in a vacuum over P₂O₅. [*Beilstein* **4** IV 2428.]

Iodoacetamide [144-48-9] **M 185.0, m** ca **143**°(**dec**). Crystallise it from water or CCl₄. It is used for tagging proteins. [Gurd *Methods Enzymol* **25** 424 1972, *Beilstein* **2** IV 536.]

Iodoacetic acid [64-69-7] M 160.6, m 78°, pK^{25} 3.19. Crystallise it from pet ether (b 60-80°) or CHCl₃/CCl₄. [*Beilstein* 2 IV 534.]

2-Iodobutane (*sec*-butyl iodide) [513-48-4] M 184.0, b 120.0, d_4^{20} 1.50, n_D^{25} 1.4973. Purify the iodide by shaking with conc H₂SO₄, then washing it with water, aqueous Na₂SO₃ and again with water. Dry (MgSO₄) and distil. Alternatively, pass it through a column of activated alumina before distillation, or treat with bromine, followed by extraction of the free halogen with aqueous Na₂S₂O₃, thoroughly washing with water, drying and distilling. It is stored over silver powder and distilled before use. [*Beilstein* 1 IV 272.]

Iodoform [75-47-8] **M 393.7, m 119°.** Crystallise it from MeOH, EtOH or EtOH/EtOAc. It is steam volatile. It is a disinfectant. [*Beilstein* **1** IV 97.]

N-Iodosuccinimide [516-12-1] M 225.0, m 200-201°. Crystallise it from dioxane/CCl₄. It iodinates arenes in triflic acid. [Olah et al J Org Chem 58 3194 1993, Beilstein 21/9 V 544.]

Isoamyl acetate (1-butyl-3-methyl acetate, isopentyl acetate) [123-92-2] M 130.2, b 142.0°, d_4^{20} 0.871, n_D^{20} 1.40535. Dry the acetate with finely divided K₂CO₃ and fractionally distil it. [Beilstein 2 IV 157.]

Isoamyl alcohol (3-methyl-1-butanol, 1-butyl-3-methyl alcohol) [123-51-3] **M 88.2, b 128°/750mm, 132°/760mm, d¹⁵ 0.8129, n¹⁵ 1.4085, n**_D²⁰ **1.4075.** Dry the alcohol by heating with CaO and fractionally distilling, then heating with BaO and redistilling. Alternatively, boil it with concentrated KOH solution, wash it with dilute H₃PO₄, and dry it with K₂CO₃, then anhydrous CuSO₄, before fractionally distilling it. If very dry alcohol is required, the distillate is refluxed with the appropriate alkyl phthalate or succinate as described for *ethanol*. It is separated from 2-methyl-1-butanol by fractional distillation, fractional crystallisation and preparative gas chromatography. [*Beilstein* **1** IV 1677.]

152

Isoamyl bromide (1-butyl-3-methyl bromide) [107-82-4] M 151.1, f -112°, b 119.2°/ 737mm, d_4^{20} 1.208, n 1.444. Shake the bromide with conc H₂SO₄, wash with water, dry with K₂CO₃ and fractionally distil it. [*Beilstein* 1 IV 378.]

Isoamyl chloride (1-butyl-3-methyl chloride) [107-84-6] M 106.6, b 999/734mm, d_4^{20} 0.8704, n_D^{20} 1.4084. Shake the chloride vigorously with 95% H₂SO₄ until the acid layer no longer becames coloured during 12hours, then wash it with water, saturated aqueous Na₂CO₃, and more water. Dry it with MgSO₄, filter and fractionally distil it. Alternatively, a stream of oxygen containing 5% of ozone is passed through the chloride for a time, three times longer than is necessary to cause the first coloration of starch iodide paper by the exit gas. Subsequent washing of the liquid with aqueous NaHCO₃ hydrolyses the ozonides and removes organic acids. After drying and filtering, the isoamyl chloride is distilled. [Chien & Willard J Am Chem Soc 75 6160 1953, Beilstein 1 IV 287.]

Isoamyl ether [diisopentyl ether, di-(1-butyl-3-methyl) ether] [544-01-4] M 158.3, b 173.4°, d_4^{20} 0.778, n_D^{20} 1.40850. This is a mixture of 2- and 3-methylbutyl ether. It is purified by refluxing with sodium for 5hours, then it is distilled under reduced pressure, to remove alcohols. Isoamyl ether can also be dried with CaCl₂ and fractionally distilled from P₂O₅. [*Beilstein* 1 IV 1682.]

Isobutane (2-methylpropane) [75-28-5] M 58.1, b -10.2°, d_4^{20} 0.557. Olefins and moisture can be removed by passage at 65° through a bed of silica-alumina catalyst which has previously been evacuated at about 400°. Alternatively, water and CO₂ can be removed by passage through P₂O₅, then asbestos impregnated with NaOH. Treatment with anhydrous AlBr₃ at 0° then removes traces of olefins. Inert gases can be separated by freezing the isobutane at -195° and evacuating out the system. [*Beilstein* 1 IV 282.]

Isobutene (2-methylpropene, isobutylene) [115-11-7] M 56.1, b -6.6°/760mm. Dry isobutene by passage through anhydrous CaSO₄ at 0°. Purify it further by freeze-pump-thaw cycles and trap-to-trap distillation. [*Beilstein* 1 IV 796.]

Isobutyl bromide (1-bromo-2-methylpropane) [78-77-3] M 137.0, b 91.2°, d_4^{20} 1.260, n_D^{20} 1.437. Partially hydrolyse it to remove any tertiary alkyl halide, then fractionally distil it, then wash it with conc H₂SO₄, water and aqueous K₂CO₃, then redistil it from dry K₂CO₃. [Dunbar & Hammett *J Am Chem Soc* 72 109 1950, Beilstein 1 IV 294.]

Isobutyl chloride (1-chloro-2-methylpropane) [513-36-0] M 92.6, m -131°, 68.8°/760mm, d_4^{20} 0.877, n_D^{20} 1.398. Use the same methods as described under *isoamyl chloride*. [Beilstein 1 IV 287.]

Isobutyl chloroformate [543-27-1] **M 136.6, b 123-127°/atm, 128.8°/atm, d** $_{4}^{20}$ **1.053, n** $_{D}^{20}$ **1.4070.** It can be dried over CaCl₂ and fractionated at atmospheric pressure while keeping moisture out. Its purity can be checked by conversion to the *phenyl urethane* derivative with PhNCO [Saunders et al. J Am Chem Soc **73** 3796 1951.] IR: v_{max} 1780cm⁻¹ [Thompson & Jameson Spectrochim Acta **13** 236 1959, Röse Justus Liebigs Ann Chem **205** 227 1880]. [Beilstein **3** IV 26.]

Isobutyl formate [542-55-2] **M 102.1, b 98.4°, d** $_{4}^{20}$ **0.885, n** $_{D}^{20}$ **1.38546.** Wash the formate with saturated aqueous NaHCO₃, in the presence of saturated NaCl solution until no further reaction occurs, then with saturated aqueous NaCl, dry (MgSO₄) and fractionally distil it. [*Beilstein* **2** H 21, **2** I 18, **2** II 30, **2** III 41, **2** IV 29.]

Isobutyl iodide (1-iodo-2-methylpropane) [513-38-2] **M 184.0, b 83% 250mm, 120% 760mm,** d_4^{20} **1.60, n**_D²⁰ **1.495.** Shake the iodide with conc H₂SO₄, and wash it with water, aqueous Na₂SO₃, and water, dry with MgSO₄ and distil it. Alternatively, pass through a column of activated alumina before distillation. Store it under nitrogen with mercury in a brown bottle or in the dark. [*Beilstein* **1** IV 299.]

Isobutyl vinyl ether [109-53-5] **M 100.2, b 108-110°, d** $_{4}^{20}$ **0.768, n** $_{D}^{20}$ **1.398.** Wash the ether three times with equal volumes of aqueous 1% NaOH, dry with CaH₂, reflux it with sodium for several hours, then fractionally distil it from sodium. [*Beilstein* **1** IV 2054.]

Isobutyraldehyde [78-84-2] **M 72.1, b 62.0°, d** $_{4}^{20}$ **0.789, n** $_{D}^{20}$ **1.377.** Dry isobutyraldehyde with CaSO₄ and use it immediately after distillation under nitrogen because of the great difficulty in preventing oxidation. It can be purified through its acid bisulfite derivative. [*Beilstein* **1** IV 3262.]

Isobutyramide (2-methylpropionamide) [563-83-7] M 87.1, m 128-129°, b 217-221°/760mm. Crystallise the amide from acetone, *benzene, CHCl₃, EtOAc or water, then dry it under vacuum over P_2O_5 or 99% at H_2SO_4 , or at 70°/3hours in a desiccator. Sublime it under vacuum. [Kent & McAlvain *Org Synth* Coll Vol III 491 1955, *Beilstein* 2 H 293, 2 I 129, 2 II 262, 2 III 654, 2 IV 852.]

Isobutyric acid (2-methylpropionic acid) [79-31-2] M 88.1, b 78°/34mm, 154-154.5°/760mm, d_4^{20} 0.949, n_D^{20} 1.393, pK²⁵ 4.60. Distil the acid from KMnO₄, then redistil it from P₂O₅. [Beilstein 2 H 288, 2 I 126, 2 II 257, 2 III 637, 2 IV 843.]

Isobutyronitrile (2-methylpropionitrile, isopropyl cyanide) [78-82-0] M 69.1, b 103.69/760mm, d^{25} 0.7650, n_D^{20} 1.378. Shake the nitrile with conc HCl (to remove isonitriles), then with water and aqueous NaHCO₃. After a preliminary drying with silica gel or Linde type 4A molecular sieves, it is shaken or stirred with CaH₂ until hydrogen evolution ceases, then decanted and distilled from P₂O₅ (not more than 5g/L, to minimize gel formation) or Drierite (b 101-103°/760mm). Finally it is refluxed with, and slowly distilled from CaH₂ (5g/L), taking precautions to exclude moisture. [*Beilstein* 2 H 294, 2 I 129, 2 II 263, 2 III 655, 2 IV 853.]

Isonitrosoacetone (*anti*-pyruvic aldehyde-1-oxime) [31915-82-9] M 87.1, m 65-67°, 69°, pK^{25} 8.3. Crystallise isonitrosoacetone from *C₆H₆, ether/pet ether or CCl₄. It sublimes at 90-100° (water bath temperature)/0.05mm [Kahovec & Kohlrausch *Chem Ber* 75 1547 1942]. It forms an iron and a Cu²⁺ salt (m 170° dec). [*Beilstein* 1 H 763, 1 I 396, 1 II 822, 1 III 3092, 1 IV 3632.]

(±)-Isononane (3,3,4-trimethylhexane) [34464-40-9] M 128.3, b 142°/760mm, 142°/760mm, d_4^{20} 0.7454, n_D^{20} 1.4178. Isononane is passed through columns of activated silica gel and basic alumina (activity 1) and distilled under high vacuum from Na/K alloy. [Beilstein 1 III 517, 1 IV 462.]

Isopentyl formate [110-45-2] M 116.2, b 27°/10mm, 123-123.6°/760mm, 123-124°/atm, d_4^{20} 0.8713, n_D^{20} 1.391. The colourless liquid ester is soluble in 300 volumes of H₂O and is soluble in common organic solvents. It is purified by repeated distillation using an efficient column at atmospheric pressure. [*Beilstein* 2 H 22, 2 I 18, 2 II 31, 2 III 43, 2 IV 30.]

Isoprene (2-methyl-1,3-butadiene) [78-79-5] M 68.1, b 34.5-35⁰/762mm, d_4^{20} 0.681, n^{25} 1.4225. Reflux it with sodium then distil it from sodium or NaBH₄ under nitrogen, and pass it through a column containing KOH, CaSO₄ and silica gel. *tert*-Butylcatechol (0.02% w/w) is added, and the isoprene is stored in this way until redistilled before use. The inhibitor (*tert*-butylcatechol) in isoprene can be removed by several washings with dilute NaOH and water. The isoprene is then dried over CaH₂, distilled under nitrogen at atmospheric pressure, and the fraction distilling at 32° is collected. Store it under nitrogen at -15°. [*Beilstein* 1 H 252, 1 IV 1001.]

Isopropanol (propan-2-ol) [67-63-0] M 60.1, b 82.5°, d_4^{20} 0.783, $n^{25.8}$ 1.3739, pK²⁵ 17.1. Isopropyl alcohol is prepared commercially by dissolution of propene in H₂SO₄, followed by hydrolysis of the sulfate ester. Major impurities are water, lower alcohols and oxidation products such as aldehydes and ketones. Purification of isopropanol follows substantially the same procedure as for *n*-propyl alcohol.

Isopropanol forms a constant-boiling mixture, **b** 80.3°, with water. Most of the water can be removed from this 91% isopropanol by refluxing with CaO (200g/L) for several hours, then distilling. The distillate can be dried further with CaH₂, magnesium ribbon, BaO, CaSO₄, calcium, anhydrous CuSO₄ or Linde type 5A molecular sieves. Distillation from sulfanilic acid removes ammonia and other basic impurities. Peroxides [indicated by liberation of iodine from weakly acid (HCl) solutions of 2% KI] can be removed by refluxing with solid stannous chloride or with NaBH₄ then the alcohol is fractionally distilled. To obtain isopropanol containing only 0.002M of water, sodium (8g/L) is dissolved in material dried by distillation from CaSO₄. Isopropyl

155

benzoate (35mL) is then added and, after refluxing for 3hours, the alcohol is distilled through a 50-cm Vigreux column (p 11). [Hine & Tanabe *J Am Chem Soc* **80** 3002 *1958*.] Other purification steps for isopropanol include refluxing with solid aluminium isopropoxide, refluxing with NaBH₄ for 24hours, and removing acetone by treatment with, and distillation from, 2,4-dinitrophenylhydrazine. Peroxides re-form in isopropanol if it is kept for several days in contact with air. [*Beilstein* **1** IV 1461.]

Isopropyl acetate [108-21-4] **M 102.1, b 88.4°, d_4^{20} 0.873, n_D^{20} 1.3773.** Wash the acetate with 50% aqueous K₂CO₃ (to remove acid), then with saturated aqueous CaCl₂ (to remove any alcohol). Dry it with CaCl₂ and fractionally distil it. [*Beilstein* **2** IV 141.]

Isopropyl acrylamide [2210-25-5] M 113.2, m 60-63°, b 89-92°/2mm, 110-115°/15mm. Fractionate the amide under reduced pressure, and recrystallise the solid distillate from hexane (m 59°), *C₆H₆ (m 62°) or *C₆H₆/hexane (m 62-63°). Store it with 0.05% of 4-*tert*-butylcatechol. It is used for making water soluble swellable hydrogels. [*Beilstein* 4 IV 517.]

Isopropyl bromide (2-bromopropane) [75-26-3] M 123.0, b 0%69.2mm, 59.4%760mm, d_4^{20} 1.31, n^{15} 1.42847, n_D^{20} 1.4251. Wash the bromide with 95% H₂SO₄ (concentrated acid partially oxidised it) until a fresh portion of acid did not become coloured after several hours, then with water, aqueous NaHSO₃, aqueous 10% Na₂CO₃ and again with water. (The H₂SO₄ can be replaced by conc HCl.) Prior to this treatment, isopropyl bromide has been purified by bubbling a stream of oxygen containing 5% ozone through it for 1hour, followed by shaking with 3% hydrogen peroxide solution, neutralising with aqueous Na₂CO₃, washing with distilled water and drying. Alternatively, it has been treated with elemental bromine and stored for 4 weeks, then extracted with aqueous NaHSO₃ and dried with MgSO₄. After the acid treatment, isopropyl bromide can be dried with Na₂SO₄, MgSO₄ or CaH₂, and fractionally distilled. [*Beilstein* 1 IV 208.]

Isopropyl chloride (2-chloropropane) [75-29-6] **M 78.5, b 34.8°, d** $_{4}^{20}$ **0.864, n** $_{D}^{20}$ **1.3779, n** $_{2}^{25}$ **1.3754.** Purify the chloride with 95% H₂SO₄ as described for *isopropyl bromide*, then dry with MgSO₄, P₂O₅ or CaH₂, and fractionally distil it from Na₂CO₃ or CaH₂. Alternatively, a stream of oxygen containing *a* 5% ozone is passed through the chloride for about three times as long as is necessary to obtain the first coloration of starch iodide paper by the exit gas, and the liquid is then washed with NaHCO₃ solution to hydrolyse ozonides and remove organic acids before drying and distilling. [*Beilstein* **1** IV 191.]

Isopropyl ether (diisopropyl ether) [108-20-3] M 102.2, b 68.3°, d²⁰₄ 0.719, n²⁰_D 1.3688, n^{25} 1.36618. Common impurities are water and peroxides [detected by the liberation of iodine from weakly acid (HCl) solutions of 2% KI]. Peroxides can be removed by shaking with aqueous Na2SO3 or with acidified ferrous sulfate (0.6g FeSO₄ and 6mL conc H_2SO_4 in 110mL of water, using 5-10g of solution per L of ether), or aqueous NaBH₄ solution. The ether is then washed with water, dried with CaCl₂ and distilled. Alternatively, refluxing with LiAlH₄ or CaH₂, or drying with CaSO₄, then passage through an activated alumina column, can be used to remove water and peroxides. Other dehydrating agents used with isopropyl ether include P_2O_5 , sodium amalgam and sodium wire. (The ether is often stored in brown bottles, or in the dark, with sodium wire.) Bonner and Goishi (J Am Chem Soc 83 85 1961) treated isopropyl ether with dilute sodium dichromate/sulfuric acid solution, followed by repeated shaking with a 1:1 mixture of 6M NaOH and saturated KMnO₄. The ether is washed several times with water, dilute aqueous HCl, and water, with a final washing with, and storage over, ferrous ammonium sulfate acidified with H₂SO₄. Blaustein and Gryder (J Am Chem Soc **79** 540 1957), after washing with alkaline KMnO₄, then water, treated the ether with ceric nitrate in nitric acid, and again washed it with water. Hydroquinone is added before drying with $CaCl_2$ and $MgSO_4$, and refluxing with sodium amalgam (108g Hg/100g Na) for 2hours under nitrogen. The distillate (nitrogen atmosphere) is made 2 x 10⁻⁵M in hydroquinone to inhibit formation of peroxides (which is negligible if the ether is stored in the dark). Catechol (pyrocatechol) and resorcinol are alternative inhibitors. [Beilstein 1 IV 1471.]

Isopropyl iodide (2-iodopropane) [75-30-9] **M 170.0, b 88.9°, d_4^{20} 1.70, n_D^{20} 1.4987.** Treat the iodide with bromine, followed by extraction of free halogen with aqueous Na₂S₂O₃ or NaHSO₃, washing with water, drying (MgSO₄ or CaCl₂) and distilling. (The treatment with bromine is optional.) Other purification methods include passage through activated alumina, or shaking with copper powder or mercury to remove iodine, drying with P₂O₅ and distilling. Washing with conc H₂SO₄ or conc HCl (to remove any

alcohol), water, aqueous Na_2SO_3 , water and aqueous Na_2CO_3 has also been used. Treatment with silica gel causes some liberation of iodine. Distillations should be carried out at slightly reduced pressure. Purified isopropyl iodide is stored in the dark in the presence of a little mercury. [*Beilstein* **1** IV 223.]

Isopropyl methyl ether [598-53-8] M 74.1, b 32.5°/777mm, d¹⁵ 0.724, n_D²⁰ 1.3576. Purify the ether by drying with CaSO₄, passing through a column of alumina (to remove peroxides) and fractional distillation. [*Beilstein* 1 H 362, 1 II 381, 1 III 1458, 1 IV 1471.]

Isovaleric acid (3-methylbutyric acid) [502-74-2] M 102.1, b 176.5%/762mm, d_4^{20} 0.927, n^{15} 1.4064, n_D^{20} 1.40331, pK²⁵ 4.77. Dry the acid (Na₂SO₄), then fractionally distil. [Beilstein 2 IV 895.]

Itaconic acid (2-propen-1,2-dicarboxylic acid) [97-65-4] M 130.1, m 165-166°, pK_1^{25} 3.63, pK_2^{25} 5.00. Crystallise itaconic acid from EtOH, EtOH/water or EtOH/*benzene. [Beilstein 2 IV 2228.]

Itaconic anhydride (2-propen-1,2-dicarboxylic anhydride) [2170-03-8] M 112.1, m 66-68°, 67-68°, 68°, b 139-140°/30mm. Crystallise the anhydride from CHCl₃/pet ether. It can be distilled under reduced pressure. Distillation at atmospheric pressure, or prolonged distillation causes rearrangement to citraconic anhydride (2-methylmaleic anhydride). If the material (as seen in the IR spectrum) contains much free acid, then heat with acetyl chloride or SOCl₂, evaporate and distil at as high a vacuum as possible. The crude anhydride deposits crystals of itaconic acid on standing probably due to hydrolysis by H_2O — store it in sealed ampoules under dry N_2 . [Skinner et al. *Org Synth* Coll Vol II 368 1943, IR: Nagai *Bull Chem Soc Jpn* 37 369 1964, Kelly & Segura J Am Chem Soc 56 2497 1934, Beilstein 17/11 V 66.]

Kerosene [8008-20-6] (mixture of hydrocarbons) b ~175-225°, ~190-250°, d_4^{20} 0.75-0.82, n $_D^{20}$ 1.443. Stir it with conc H₂SO₄ until a fresh portion of acid remains colourless, then wash with water, dry with solid KOH and distil it in a Claisen flask. For more complete drying, the kerosene can be refluxed with Na, and distilled from Na.

Ketene [463-51-4] M 42.0, b -56°, -41°, d_4^{20} 1.093, n_D^{20} 1.441. Ketene is prepared by pyrolysis of acetic anhydride. Purify it by passing through a trap at -75° and collecting in a liquid-nitrogen-cooled trap. Ethylene is removed by evacuating the ethylene in an isopentane-liquid-nitrogen slush pack at -160°. Store it at room temperature in a suitable container in the dark or better at -80°, but do not store it under pressure as it may **EXPLODE**. It is a strong **IRRITANT** when inhaled and is as poisonous as phosgene. See diketene in "Heterocyclic Compounds", Chapter 4. [Hurd *Org Synth* Coll Vol I 330 1941, Andreades & Carlson *Org Synth* Coll Vol V 679 1973.]

L(+)-Lactic acid (S(+)-2-hydroxypropionic acid) [79-33-4] M 90.1, m 52.8°, b 105°/0.1mm, $[\alpha]_{D}^{20}$ +3.82° (H₂O), pK³¹ 3.83. Purify lactic acid by fractional distillation at 0.1mm pressure, followed by fractional crystallisation from diethyl ether/isopropyl ether (1:1, dried with sodium). [Borsook et al. *J Biol Chem* 102 449 1933.] The solvent mixture, *benzene/diethyl ether (1:1) containing 5% pet ether (b 60-80°) has also been used. [Brin *Biochemical Preparations* 3 61 1953, *Beilstein* 3 IV 633.]

Lanthanide shift reagents A variety of these reagents are available commercially, and they are generally quite stable and should not deteriorate on long storage in a dry state and in the absence of light. [See G.R.Sullivan in *Top Stereochem* (Eliel & Allinger Eds) J Wiley & Sons Vol 10 287 *1978*, T.C.Morrill Ed. *Lanthanide Shift Reagents* Deerfield Beach Florida *1986*, ISBN 0895731193.]

Lauraldehyde (1-dodecanal) [112-54-9] **M 184.3, b 99.5-100°/3.5mm, n^{24.7} 1.4328.** Convert lauraldehyde to the bisufite addition compound by shaking with saturated aqueous NaHSO₃ for 1hour. The precipitate is filtered off, washed with ice cold water, EtOH and ether, then decomposed with aqueous Na₂CO₃. The aldehyde is extracted into diethyl ether which, after drying and evaporating, gives an oil which is fractionally distilled under vacuum. [*Beilstein* **1** IV 3380.]

Lauric acid (1-dodecanoic acid) [143-07-7] M 200.3, m 44.1°, b 141-142°/0.6-0.7mm, 225°/100mm, pK^{20} 5.3. Distil the acid in a vacuum. Also crystallise it from absolute EtOH, or from acetone at -25°. Alternatively, purify it *via* its *methyl ester* (b 140.0°/15mm), as described for *capric* acid. It has also been purified by zone melting. [cf *Beilstein* 1 III 2913.]

Lauryl peroxide (di-dodecyl peroxide) [105-74-8] M 398.6, m 53-54°. Crystallise it from *n*-hexane or *benzene and store it below 0°. Potentially EXPLOSIVE. [cf *Beilstein* 2 IV 1102.]

Z-Maleamic acid (*cis*-maleic acid monoamide) [557-24-4] M 115.1, m 172°, 172-173°(dec), 178-180°, pK_{Est}~2.65. Crystallise it from EtOH. [Beilstein 2 H 752, 2 II 646, 2 III 1927, 2 IV 1927.] IRRITANT.

Maleic acid [110-16-7] M 116.1, m 143.5°, pK₁²⁵ 1.91, pK₂²⁵ 6.33. Crystallise the acid from acetone/pet ether (b 60-80°) or hot water. Dry it at 100°. [*Beilstein* 2 H 748, 2 I 303, 2 II 641, 2 III 1911, 2 IV 2199.]

Maleic anhydride See furan-2,5-dione in "Heterocyclic Compounds", Chapter 4.

Maleic hydrazide [123-33-1] M 112.1, m 144°(dec), pK_1^{25} 5.67, pK_2^{25} 13.3. Crystallise the hydrazide from water. Dry it at ~100° over P₂O₅. [*Beilstein* 24 III/IV 1186.]

Maleimide See pyrrol-2,5-dione in "Heterocyclic Compounds", Chapter 4.

Maleuric acid (Z-N-carbamoylmaleamic acid) [105-61-3] M 158.1, m 167-168°(dec). Crystallise the acid from hot water. Dry it at ~100° over H_2SO_4 . [Batt et al. J Am Chem Soc 76 3663 1954.]

dl-Malic acid [617-48-1 and 6915-15-7] M 134.1, m 128-129°. Crystallise the acid from acetone, then from acetone/CCl₄, or from ethyl acetate by adding pet ether (b 60-70°). Dry it at 35° under 1mm pressure to avoid formation of the anhydride. [*Beilstein* 3 IV 1124.]

L-Malic acid (S(-)-2-hydroxysuccinic acid) [97-67-6] M 134.1, m 104.5-106°, $[\alpha]_D^{20}$ -2.3° (c 8.5, H₂O), $[\alpha]_D^{20}$ -30° (c 5.5, pyridine), pK₁²⁵ 3.46, pK₂²⁵ 5.10. Crystallise S-malic acid (charcoal) from ethyl acetate/pet ether (b 55-56°), keeping the temperature below 65°. Or dissolve it by refluxing in fifteen parts of anhydrous diethyl ether, decant, concentrate to one-third volume and crystallise it at 0°, repeatedly to constant melting point. [*Beilstein* 3 IV 1123.]

Malonamide [108-13-4] M 102.1, m 170°. Crystallise the amide from water. [Beilstein 2 IV 1887.]

Malonic acid [141-82-2] **M 104.1, m 136°, pK_1^{25} 2.58, pK_2^{25} 5.69.** Crystallise malonic acid from *benzene/diethyl ether (1:1) containing 5% of pet ether (b 60-80°), wash with diethyl ether, then recrystallise it from H₂O or acetone. Dry it under vacuum over conc H₂SO₄. [*Beilstein* **2** IV 1874.]

Malononitrile [109-77-3] M 66.1, m 32-34°, b 109°/20mm, 113-118°/25mm, 220°/760mm. Crystallise the nitrile from water, EtOH, *benzene or chloroform. Distil it in a vacuum from, and store over, P_2O_5 . [Bernasconi et al. J Am Chem Soc 107 7692 1985, Gratenhuis J Am Chem Soc 109 8044 1987, Beilstein 2 IV 1892.]

Meprobamate [2,2-di(carbamoyloxymethyl)pentane] [57-53-4] M 246.3, m 104-106°. Crystallise it from hot water, aqueous EtOH (m 104-105.5°) or xylene (m 104.1-105.3°). It can be an addictive drug. [Beilstein 3 IV 73.]

2-Mercaptoethanol [60-24-2] M 78.1, b 44°/4mm, 53.5°/10mm, 58°/12mm, 68°/20mm, 78.5°/40mm, 96-97° (92°)/100mm, 157°/748mm, d_4^{20} 1.114, n_D^{20} 1.500, pK^{25} 9.72 (9.43). Purify it by distilling in a vacuum. Distilling at atmospheric pressure causes some oxidation and should be

done in an inert atmosphere. [Woodward J Chem Soc 1892 1948.] It has a foul odour, is irritating to the eyes, nose and skin — should be handled in an efficient fume cupboard. It is miscible with H₂O, EtOH, Et₂O and *C₆H₆ and the UV has λ_{max} at 235nm. The 2,4-dinitrophenyl thioether has m 101-102° (from EtOH or aqueous MeOH) [Grogen et al. J Org Chem 20 50 1955]. [Beilstein 1 IV 2428.]

Mesaconic acid (methylfumaric acid) [498-24-8] M 130.1, m 204-205°, pK¹⁸ 4.82. Crystallise it from H₂O or EtOH [Katakis et al. *J Chem Soc, Dalton Trans* 1491 1986]. [*Beilstein* 2 IV 2231.]

Mesityl oxide (4-methyl-3-penten-2-one) [141-79-7] M 98.2, b 57°/55mm, 128-129°/745mm, 112°/760mm, n²⁴ 1.4412, d 0.854, pK²⁰ -5.36 (H_o scale, aqueous H₂SO₄). Purify it by distillation, preferably in a vacuum or via the semicarbazone (m 165°) which is decomposed to pure ketone. The 2,4-dinitrophenylhydrazone (m 205-206°) crystallises from EtOH. [Johnson J Am Chem Soc 73 5888 1951, Johnson J Am Chem Soc 75 2720 1953, Erskine & Waight J Chem Soc 3425 1960, Beilstein 1 H 736, 1 I 382, 1 II 793, 1 III 2995, 1 IV 3471.]

 α -Methacraldehyde (methacrolein) [78-85-3] M 68.1, b 68.4°, d_4^{20} 0.849, n_D^{20} 1.416. Fractionally distil it under nitrogen through a short Vigreux column (p 11). Store it in sealed ampoules. (Slight polymerisation may occur.) [*Beilstein* 1 IV 3455.]

Methacrylamide [79-39-0] M 85.1, m 111-112°. Crystallise the amide from *benzene or ethyl acetate and dry it under vacuum at room temperature. [*Beilstein* 2 IV 1538.]

Methacrylic acid [79-41-4] M 86.1, b 72°/14mm, 160°/760mm, d_4^{20} 1.015, n_D^{20} 1.431, pK²⁵ 4.65. Aqueous methacrylic acid (90%) is saturated with NaCl (to remove the bulk of the water), then the organic phase is dried with CaCl₂ and distilled under vacuum. Polymerisation inhibitors should be added to the distillate and include 0.25% *p*-methoxyphenol, 0.1% hydroquinone, or 0.05% *N*,*N*'-diphenyl-*p*-phenylenediamine. [*Beilstein* 2 IV 1518.]

Methacrylic anhydride [760-93-0] M 154.2, b 65°/2mm, d_4^{20} 1.040, n_D^{20} 1.454. Distil the anhydride at 2mm pressure, immediately before use, in the presence of hydroquinone. [*Beilstein* 2 IV 1537.]

Methacrylonitrile [126-98-7] **M 67.1, b 90.3°, d** $_{4}^{20}$ **0.800, n** $_{D}^{20}$ **1.4007, n** $_{3}^{30}$ **1.3954.** Wash it with saturated aqueous NaHSO₃ (to remove inhibitors such as *p*-tert-butylcatechol), 1% NaOH in saturated NaCl and then with saturated NaCl. Dry it with CaCl₂ and fractionally distil it under nitrogen to separate it from impurities such as methacrolein and acetone. [Beilstein 2 IV 1539.]

Methacryloyl chloride [920-46-7] M 104.5, m -60°, b 95-96°/760mm, 98.4°/772mm, d^{25} 1.076, n_D^{20} 1.4432. Purify the ester by fractional distillation. If it contains the acid (OH bands in the IR) then add redistilled SOCl₂ (with cooling) and cuprous chloride (ca to 2%), reflux the mixture gently for 1hour and fractionate it through a 1metre column packed with glass helices. Redistillation then provides the acid chloride in high purity as a colourless liquid. It is necessary to keep the apparatus moisture free (use CaCl₂ tubes), Stabilise it with 0.05% of 2,6-di-*tert*-butyl-4-methylphenol. [Lal & Green *J Org Chem* 20 1032 1955, *Beilstein* 2 IV 1537.]

Methane [74-82-8] M 16.0, m -184°, b -164°/760mm, -130°/6.7atmospheres, d⁰₄ 0.554 (c f d⁰₄ 1.00 for air). Dry methane by passing over CaCl₂ and P₂O₅, then through a Dry-ice trap and fractionally distil it from a liquid-nitrogen trap. Oxygen can be removed by prior passage in a stream of hydrogen over reduced copper oxide at 500°, and higher hydrocarbons can be removed by chlorinating about 10% of the sample: the hydrocarbons, chlorides and HCl are readily separated from the methane by condensing the sample in the liquid-nitrogen trap and fractionally distilling it. Methane has also been washed with conc H₂SO₄, then solid NaOH and then 30% NaOH solution. It is dried with CaCl₂, then P₂O₅, and condensed in a trap at liquid air temperature, then transferred to another trap cooled in liquid nitrogen. CO₂, O₂, N₂ and higher hydrocarbons can be removed from methane by adsorption on charcoal. [Eiseman & Potter *J Res Nat Bur Stand* 58 213 1957, *Beilstein* 1 IV 3.] HIGHLY FLAMMABLE.

Methanesulfonic acid [75-75-2] M 96.1, m 20°, b 134.5-135°/3mm, d_4^{20} 1.483, n_D^{20} 1.432, pK^{25} -1.86 (-1.2). Dry the acid, either by azeotropic removal of water with *benzene or toluene, or by stirring 20g of P₂O₅ with 500mL of the acid at 100° for 0.5hours. Then distil it under vacuum and fractionally crystallise it by partial freezing. Sulfuric acid, if present, can be removed by prior addition of Ba(OH)₂ to a dilute solution, filtering off the BaSO₄ and concentrating under reduced pressure; and is sufficiently pure for most applications. [*Beilstein* 4 IV 10.]

Methanesulfonothioic acid Na salt (sodium methanethiosulfonate, sodium methylthiosulfonate) [1950-85-2] M 134.1, m 265°(dec). Recrystallise the salt from H₂O (plates as monohydrate) or MeOH. The potassium salt crystallises from H₂O, EtOH or MeOH (thick plates) with m 201-202° [Foss Acta Chem Scand 10 868 1956]. The S-benzylisothiouronium salt has m 141-142° (from EtOH) [Kurzer & Powell J Chem Soc 3733 1952]. [Beilstein 4 IV 31.]

Methanesulfonyl chloride [124-63-0] M 114.5. b 55%/11mmm, d_4^{20} 1.474, n_D^{20} 1.452. Distil the sulfonyl chloride from P₂O₅ under vacuum. It is a strong **IRRITANT**. [Beilstein 4 IV 27.]

Methanol [67-56-1] M 32.0, b 64.5°, d¹⁵ 0.79609, d²⁵ 1.32663, n¹⁵ 1.33057, n²⁵ 1.32663, pK²⁵ 15.5. Almost all methanol is now obtained synthetically. Likely impurities are water, acetone, formaldehyde, ethanol, methyl formate and traces of dimethyl ether, methylal, methyl acetate, acetaldehyde, carbon dioxide and ammonia. Most of the water (down to about 0.01%) can be removed by fractional distillation. Drying with CaO is unnecessary and wasteful. Anhydrous methanol can be obtained from "absolute" material by passage through Linde type 4A molecular sieves, or by drying with CaH₂, CaSO₄, or with just a little more sodium than required to react with the water present, in all cases the methanol is then distilled. Two treatments with sodium reduces the water content to about 5 x $10^{-5}\%$. [Friedman et al. J Am Chem Soc 83 4050 1961.] Lund and Bjerrum [Chem Ber 64 210 1931] warmed clean dry magnesium turnings (5g) and iodine (0.5g) with 50-75mL of "absolute" methanol in a flask until the iodine disappeared and all the magnesium was converted to the methoxide. Up to 1L of methanol was added and, after refluxing for 2-3hours, it was distilled off, excluding moisture from the system. Redistillation from tribromobenzoic acid removes basic impurities and traces of magnesium oxides, and leaves conductivity-quality material. The method of Hartley and Raikes [J Chem Soc 127 524 1925] gives a slightly better product. This consists of an initial fractional distillation, followed by distillation from aluminium methoxide, and then ammonia and other volatile impurities are removed by refluxing for 6hours with freshly dehydrated CuSO₄ (2g/L) while dry air is passed through: the methanol is finally distilled. (The aluminium methoxide is prepared by warming with aluminium amalgam (3g/L) until all the aluminium has reacted. The amalgam is obtained by warming pieces of sheet aluminium with a solution of $HgCl_2$ in dry methanol.) This treatment also removes aldehydes.

If acetone is present in the methanol, it is usually removed prior to drying. Bates, Mullaly and Hartley [*J Chem Soc* 401 *1923*] dissolved 25g of iodine in 1L of methanol and then poured the solution, with constant stirring, into 500mL of M NaOH. Addition of 150mL of water precipitated iodoform. The solution was allowed to stand overnight, filtered, then boiled under reflux until the odour of iodoform disappeared, and fractionally distilled. (This treatment also removes formaldehyde.) Morton and Mark [*Ind Eng Chem* (*Anal Edn*) **6** 151 *1934*] refluxed methanol (1L) with furfural (50mL) and 10% NaOH solution (120mL) for 6-12hours, the refluxing resin carries down with it the acetone and other carbonyl-containing impurities. The alcohol was then fractionally distilled. Evers and Knox [*J Am Chem Soc* **73** 1739 *1951*], after refluxing 4.5L of methanol for 24hours with 50g of magnesium, distilled off 4L of it, which they then refluxed with AgNO₃ for 24hours in the absence of moisture or CO₂. The methanol was again distilled, shaken for 24hours with activated alumina before being filtered through a glass sinter and distilled under nitrogen in an all-glass still. Material suitable for conductivity work was obtained.

Variations of the above methods have also been used. For example, a sodium hydroxide solution containing iodine has been added to methanol and, after standing for 1day, the solution has been poured slowly into about a quarter of its volume of 10% AgNO₃, shaken for several hours, then distilled. Sulfanilic acid has been used instead of tribromobenzoic acid in Lund and Bjerrum's method. A solution of 15g of magnesium in 500mL of methanol has been heated under reflux, under nitrogen, with hydroquinone (30g), before degassing and distilling the methanol, which was subsequently stored with magnesium (2g) and hydroquinone (4g per 100mL). Refluxing for about 12hours removes the bulk of the formaldehyde from methanol: further purification has been

obtained by subsequent distillation, refluxing for 12hours with dinitrophenylhydrazine (5g) and H_2SO_4 (2g/L), and again fractionally distilling. [*Beilstein* 1 IV 1227.]

Rapid purification: Methanol purification is the same as for ethanol.

Another simple purification procedure consists of adding 2g of NaBH₄ to 1.5L methanol, gently bubbling argon through it and refluxing for a day at 30° , then adding 2g of freshly cut sodium (washed with methanol) and refluxing for 1 day before distilling. The middle fraction is taken. [Jou & Freeman J Phys Chem **81** 909 1977.]

Methoxyacetic acid [625-45-6] M 90.1, b 97°/13-14mm, d_4^{20} 1.175, n_D^{20} 1.417, pK²⁵ 3.57. Fractionally crystallise the acid by repeated partial freezing, then fractionally distil it under vacuum through a vacuum-jacketed Vigreux column ~20cm long (p 11). [*Beilstein* 3 IV 574.]

Methoxyamine hydrochloride [593-56-6] **M 83.5, m 151-152°, pK²⁵ 4.60.** Crystallise the hydrochloride from absolute EtOH or EtOH by addition of diethyl ether. [Kovach et al. *J Am Chem Soc* **107** 7360 *1985, Beilstein* **1** IV 1252.]

2-Methoxyethanol (methylcellosolve) [109-86-4] M 76.1, b 124.4°, d_4^{20} 0.964, n_D^{20} 1.4017, pK²⁵ 14.8. Peroxides can be removed by refluxing with stannous chloride or by filtration under slight pressure through a column of activated alumina. 2-Methoxyethanol can be dried with K₂CO₃, CaSO₄, MgSO₄ or silica gel, then distilled from sodium. Aliphatic ketones (and water) can be removed by making the solvent 0.1% in 2,4-dinitrophenylhydrazine and allowing to stand overnight with silica gel before fractionally distilling. [*Beilstein* 1 IV 2375.]

2-Methoxyethoxymethylchloride (MEMCl) [3970-21-6] M 124.6, b 50-52°/13mm, 140-145°(dec)/atm, d_4^{20} 1.092, n_D^{20} 1.427. Possible impurities are methoxyethanol (b 124°/atm), HCHO and HCl which can be removed below the boiling point of MEMCl. Purify MEMCl by fractional distillation in a vacuum. If too impure, prepare it from methoxyethanol (152g) and *s*-trioxane (66g) by bubbling a stream of dry HCl (with stirring) until a clear mixture is obtained. Dilute with pentane (900mL), dry (3hours over 100g MgSO₄, at 5°), evaporate and the residue is distilled in a vacuum. It is MOISTURE SENSITIVE and TOXIC. The *MEM.NEt₃+Cl* salt, prepared by reaction with 1.3 equivalents of Et₃N (16hours/25°) and dried in a vacuum, has m 58-61°, and is moisture sensitive. [Corey et al. *Tetrahedron Lett* 809 1976, Yoshimatsu et al. *J Org Chem* 59 1011 1994, Greene & Wuts Protective Groups in Organic Synthesis 3rd edn, J Wiley & Sons NY 1991.] Carcinogen.

2-Methoxyethylamine [109-85-3] **M 75.1, b 94°, d** $_{4}^{20}$ **0.874, n** $_{D}^{20}$ **1.407, pK** 25 **9.40.** An aqueous 70% solution of the amine is dehydrated by azeotropic distillation with *benzene or methylene chloride and the amine is distilled twice from zinc dust. Store it in a tight container as it absorbs CO₂ from the atmosphere. [*Beilstein* **4** IV 1411.]

8-Methoxypsoralen See xanthotoxin in "Miscellaneous Compounds", Chapter 6.

N-Methylacetamide [79-16-3] M 73.1, m 30°, b 70-71°/2.5-3mm, pK_1^{25} -3.70, pK_2^{25} -0.42. Fractionally distil it under vacuum, then fractionally crystallise it twice from its melt. Likely impurities include acetic acid, methyl amine and H₂O. For a detailed purification procedure, see Knecht and Kolthoff, *Inorg Chem* 1 195 *1962*. Although *N*-methylacetamide is commercially available it is often extensively contaminated with acetic acid, methylamine, water and an unidentified impurity. The recommended procedure is to synthesise it in the laboratory by direct reaction. The gaseous amine is passed into hot glacial acetic acid, to give a partially aqueous solution of methylammonium acetate which is heated to *ca* 130° to expel water. Chemical methods of purification such as extraction by pet ether, treatment with H₂SO₄, K₂CO₃ or CaO can be used but are more laborious.

Tests for purity include the Karl Fischer titration for water; this can be applied directly. Acetic acid and methylamine can be detected polarographically.

In addition to the above, purification of *N*-methylacetamide can be achieved by fractional freezing, including zone melting, repeated many times, or by vacuum distillation under reduced pressures. For details of zone melting techniques, see Knecht in *Recommended Methods for Purification of Solvents and Tests for Impurities*, Coetzee Ed. Pergamon Press *1982*. [*Beilstein* **4** IV 176.]

Methyl acetate [79-20-9] M 74.1, b 56.7-57.2°, d $_{4}^{20}$ 0.934. n $_{D}^{20}$ 1.36193, n $_{D}^{25}$ 1.3538, pK²⁰ - 7.28 (H_o scale, aqueous H₂SO₄). Methanol in methyl acetate can be detected by measuring its solubility in water. At 20°, the solubility of methyl acetate in water is *ca* 35g per 100mL, but 1% MeOH confers complete miscibility. Methanol can be removed by conversion to methyl acetate, by refluxing for 6hours with acetic anhydride (85mL/L), followed by fractional distillation. Acidic impurities can be removed by shaking with anhydrous K₂CO₃ and distilling. An alternative treatment is with acetyl chloride, followed by washing with concentrated NaCl and drying with CaO or MgSO₄. (Solid CaCl₂ cannot be used because it forms a crystalline addition compound.) Distillation from copper stearate destroys peroxides. Free alcohol or acid can be eliminated from methyl acetate by shaking with strong aqueous Na₂CO₃ or K₂CO₃ (three times), then with aqueous 50% CaCl₂ (three times), saturated aqueous NaCl (twice), drying with K₂CO₃ and distilling it from P₂O₅. [*Beilstein* **2** IV 122.]

Methyl acetimidate hydrochloride [14777-27-6] M 109.6, m 93-95°, 105°(dec), pK_{Est} ~ 5.5. Crystallise the imidate from methanol by adding dry ether to a ratio of 1:1 and cooling at 0°. Filter off the crystals in a cold room, wash them with methanol/ether (1:2), then dry in a vacuum. [Hunter & Ludwig J Am Chem Soc 84 3491 1962.] The free base has b 90-91°/765mm, d_4^{20} 0.867, n_D^{20} 1.403. [Hunter & Ludwig Methods Enzymol 25 585 1973, Beilstein 2 IV 181.]

Methyl acrylate [96-33-3] M 86.1, b 80°, d_4^{20} 0.9535, n_D^{20} 1.4040. Wash the ester repeatedly with aqueous NaOH until free from inhibitors (such as hydroquinone), then wash it with distilled water, dry (CaCl₂) and fractionally distil it under reduced pressure in an all-glass apparatus. Seal it under nitrogen and store it at 0° in the dark. [Bamford & Han J Chem Soc, Faraday Trans 1 78 855 1982, Beilstein 2 IV 1457.]

Methylamine (gas) [74-89-5] M 31.1, b -7.55%/719mm, pK²⁵ 10.62. Dry the amine with sodium or BaO. It is commercially available in metal cylinders. [*Beilstein* 4 IV 118.]

Methylamine hydrochloride [593-51-1] M 67.5, m 231.8-233.4°, b 225-230°/15mm, pK²⁵ 10.62. Crystallise the salt from *n*-butanol, absolute EtOH or MeOH/CHCl₃. Wash it with CHCl₃ to remove traces of dimethylamine hydrochloride. Dry it under vacuum first with H₂SO₄ then P₂O₅. It is deliquescent; store it in a desiccator over P₂O₅. [*Beilstein* **4** IV 122.]

Methyl bromide [74-83-9] **M 94.9, b 3.6°.** Purify it by bubbling through conc H_2SO_4 , followed by passage through a tube containing glass beads coated with P_2O_5 . Also purify it by distillation from AlBr₃ at -80°, by passage through a tower of KOH pellets and by partial condensation. [*Beilstein* **1** IV 68.]

2-Methylbutane (isopentane) [78-78-4] **M 72.2, b 27.9°, d**²⁰₄ **0.621, n**²⁰_D **1.35373, n**²⁵_D **1.35088.** Stir isopentane for several hours in the cold with conc H₂SO₄ (to remove olefinic impurities), then wash it with H₂O, aqueous Na₂CO₃ and H₂O again. Dry it with MgSO₄ and fractionally distil it using a Todd column packed with glass helices. Material transparent down to 180nm is obtained by distilling from sodium wire, and passing through a column of silica gel which had previously been dried in place at 350° for 12hours before use. [Potts *J Phys Chem* **20** 809 1952, *Beilstein* **1** IV 320.]

2-Methyl-1-butanol [137-32-6, $RS(\pm)$ 34713-94-5, S(-) 1565-80-6] **M** 88.2, **b** 130°(RS), 128.6°(S), [α] $_{D}^{25}$ -5.8° (neat), d_{4}^{20} 0.809, n^{52} 1.4082. Reflux the butanol with CaO, distil, reflux with magnesium and again fractionally distil it. A small sample of highly purified material is obtained by fractional crystallisation after conversion into a suitable ester such as the trinitrophthalate or the 3-nitrophthalate. The latter is converted to the cinchonine salt in acetone and recrystallised from CHCl₃ by adding pentane. The salt is saponified, extracted with ether, and fractionally distilled. [Terry et al. *J Chem Eng Data* 5 403 1960, *Beilstein* 1 IV 1666.]

3-Methyl-2-butanol [598-75-4] **M 88.2, b 111.5°, d_4^{20} 0.807, n_D^{20} 1.4095, n_D^{25} 1.4076. Reflux it with magnesium, then fractionally distil it. [Beilstein 1 IV 1675.]**

3-Methyl-2-butanone (methyl isopropyl ketone) [563-80-4] M 86.1, b 93-94°/752mm, d_4^{20} 0.818, n 1.410, pK²⁵ -7.1 (aqueous H₂SO₄). Reflux the ketone with a little KMnO₄. Fractionate it through a spinning-band column, dry with CaSO₄ and distil it. [*Beilstein* 1 IV 3287.]

2-Methyl-2-butene see amylene above.

2-Methyl-3-butyn-2-amine (1,1-dimethylpropargylamine, 3-amino-3-methyl-1-butyne) [2978-58-7] M 83.1, b 79-80°/760mm, d_4^{25} 0.790, n_D^{25} 1.4183, $pK_{Est} \sim 8.0$. Dissolve the amine in Et₂O, dry over anhydrous K₂CO₃, filter, evaporate and distil (preferably under N₂). Store it away from CO₂. The *hydrochloride* [2978-59-8] has m 234° (from EtOH/Et₂O). The *benzoyl* derivative has m 152-153° (from EtOH). [Hennion & Teach J Am Chem Soc 75 1653 1953, Hennion & DiGiovanna J Org Chem 30 2645 1965.]

Methyl *n*-butyrate [623-42-7] M 102.1, b 102.3°/760mm, d_4^{20} 0.898, n_D^{20} 1.389. Treat the ester with anhydrous CuSO₄, then distil it under dry nitrogen. [Beilstein 2 IV 786.]

S-(+)-2-Methylbutyric acid [1730-91-2] M 102.1, b 64°/2mm, 78°/15mm, 90-94°/23mm, 174-175°/atm, d_4^{20} 0.938, n_D^{20} 1.406, $[\alpha]_{546}^{20}$ +23°, $[\alpha]_D^{20}$ +19.8° (neat), $[\alpha]_D^{13}$ +18.3° (c 6, EtOH), pK²⁵ 4.76 (for RS). Purify the acid by distilling it *in vacuo* [Sax & Bergmann J Am Chem Soc 77 1910 1955, Doering & Aschner J Am Chem Soc 75 393 1953]. The methyl ester is formed by addition of diazomethane and has b 112-115°/760mm, $[\alpha]_D^{27}$ +21.1° (c 1.7, MeOH). [Beilstein 2 IV 888.]

Methyl carbamate [598-55-0] M 75.1, m 54.4-54.8°, 56-58°, b 176-177°/~760mm. Crystallise the carbamate from *benzene or distil it. [*Beilstein* 3 H 21.]

Methyl chloride [74-87-3] **M 50.5, b -24.1°.** Bubble methyl chloride through a sintered-glass disc dipped into conc H_2SO_4 , then wash it with water, condense it at low temperature and fractionally distil it. It has been distilled from AlCl₃ at -80°. Alternatively, pass it through towers containing AlCl₃, soda-lime and P₂O₅, then condense and fractionally distil it. Store it as a gas. [*Beilstein* **1** IV 28.]

Methyl chloroacetate [96-34-4] M 108.5, b 129-130°, d_4^{20} 1.230, n_D^{20} 1.423. Shake the ester with saturated aqueous Na₂CO₃ (three times), aqueous 50% CaCl₂ (three times), saturated aqueous NaCl (twice), dry (Na₂SO₄) and fractionally distil it. Very toxic. [Beilstein 2 IV 480.]

R-(+) Methyl 2-chloropropionate [77287-29-7] M 122.6, b 49-50°/35mm, 78-80°/120mm, 132-134°/760mm, d_4^{20} 1.152, n_D^{20} 1.417, $[\alpha]_D^{20} + 26^{\circ}$ (19.0°) (neat). Purify the ester by repeated distillation [Walker J Chem Soc 67 916 1895, Walden Chem Ber 28 1293 1985, see also Gless Synth Commun 16 633 1986]. [Beilstein 2 H 248.]

Methyl cyanoacetate [105-34-0] M 99.1, f -13°, b 115°/36mm, 200.4-200.9°/761mm, d_4^{20} 1.128, n_D^{20} 1.420. Purify the ester by shaking with 10% Na₂CO₃ solution, wash well with water, dry with anhydrous Na₂SO₄, and distil it. [Beilstein 2 H 584, 2 I 253, 2 II 530, 2 III 1628, 2 IV 1889.]

Methyl cyanoformate [17640-15-2] M 85.1, b 81°/47mm, 97°/751mm, 100-101°/760mm, d_4^{20} 1.072, n_D^{20} 1.37378. Purify the ester by fractionation through a 45cm glass helices packed column or a 30cm spinning band column. [Sheppard *J Org Chem* 27 3756 1962.] It has been distilled through a short Vigreux column (p 11), and further purified by recrystallisation from Et₂O at -40° as white crystals which melt at room temperature. NMR: δ 4.0 (CH₃), and IR: v_{max} 2250 (CN) and 1750 (CO) cm⁻¹. [Childes & Weber *J Org Chem* 41 3486 1976, Beilstein 2 III 1587.]

Methyl decanoate (methyl caprate) [110-42-9] M 186.3, b 114°/15mm, 224°/760mm, d_4^{20} 0.874, n_D^{20} 1.426. Pass the ester through alumina before use and distil in a vacuum. [Beilstein 2 IV 1044.]

Methyl dodecanoate (methyl laurate) [111-82-0] M 214.4, m 5°, b 141°/15mm, d_4^{20} 0.870, n⁵⁰ 1.4199. Pass the ester through alumina before use, and distil it in a vacuum. [*Beilstein* 2 IV 1090.]

162

N-Methyleneaminoacetonitrile (MAAN) [109-82-0] M 68.1, m 129°. Crystallise MAAN from EtOH or acetone. It crystallises nicely from H₂O but with considerable loss of material. It is an inhibitor of bone growth. [Adams & Langley *Org Synth* Coll Vol I 355 1941.]

Methyl ether (dimethyl ether) [115-10-6] M 46.1, m -141° , b $-63.5^{\circ}/96.5$ mm, $-24^{\circ}/\sim760$ mm, d^{25} 1.918/L (at 1 atmosphere relative to air as 1). Dry methyl ether by passing over alumina and then BaO, or over CaH₂, followed by fractional distillation at low temperatures. Its solubility is 37mL per mL of H₂O at 18°, and it is very soluble in EtOH and Et₂O. [*Beilstein* 1 IV 1245.]

N-Methyl ethylamine hydrochloride [624-60-2] M 95.6, m 126-130°, pK²⁵ 10.9 (free base). Crystallise the hydrochloride from absolute EtOH or diethyl ether. Dry it *in vcuo*. [*Beilstein* 4 H 94.]

N-Methyl formamide [123-39-7] M 59.1, m -3.5°, b 100.5°/25mm, d_4^{20} 1.005., n^{52} 1.4306 Dry it over molecular sieves for 2days, then distil it under reduced pressure through a column packed with glass helices. Fractionally crystallise it by partial freezing and the solid portion is distilled in a vacuum. [*Beilstein* **4** IV 170.]

Methyl formate [107-31-3] M 60.1, b 31.5°, 34°, d_4^{20} 0.971, n^{15} 1.34648, n_D^{20} 1.34332. Wash the formate with strong aqueous Na₂CO₃, dry it with solid Na₂CO₃ and distil it from P₂O₅. (Procedure removes free alcohol or acid.) [*Beilstein* 2 IV 20.]

2-Methylglutaric acid [18069-17-5] **M 146.1, m 79°, pK** $_{1}^{25}$ **4.36, pK** $_{2}^{25}$ **5.37.** Crystallise the acid from distilled water, then dry it under vacuum over conc H₂SO₄. [*Beilstein* **2** IV 1989.]

3-Methylglutaric acid [626-51-7] **M 146.1, m 87°, pK** $_{1}^{25}$ **4.35, pK** $_{2}^{25}$ **5.44.** Crystallise the acid from distilled water, then dry it under vacuum over conc H₂SO₄. [*Beilstein* **2** IV 1992.]

Methylglyoxal [78-98-8] **M 72.1, b** *ca* **72°/760mm.** Commercial 30% (w/v) aqueous solution is diluted to about 10% and distilled twice, taking the fraction boiling below 50°/20mm Hg. (This treatment does not remove lactic acid). [*Beilstein* **1** IV 3631.]

2-Methylhexane [591-76-4] **M 100.2, b 90.1°, d** $_{4}^{20}$ **0.678, n** $_{D}^{20}$ **1.38485, n** $_{D}^{20}$ **1.38227.** Purify it by azeotropic distillation with MeOH, then wash it with water (to remove the MeOH), dry it over type 4A molecular sieves and distil it. [*Beilstein* **1** IV 397.]

3-Methylhexane [589-34-4] **M 100.2, b 91.9°, d** $_{4}^{20}$ **0.687, n** $_{D}^{20}$ **1.38864, n** $_{D}^{20}$ **1.38609.** Purify it as for 2-methylhexene. [*Beilstein* **1** IV 399.]

Methyl hexanoate (methyl caproate) [106-70-7] M 130.2, b 529/15mm, 1509/760mm, d_4^{20} 0.885, n_D^{20} 1.410. Pass it through alumina and distil it before use. [Beilstein 2 IV 921.]

Methylhydrazine [60-34-4] M 46.1, b 87°/745mm, d_4^{20} 0.876, n_D^{20} 1.436, pK³⁰ 7.87. Dry with BaO, then distil it in a vacuum. Store it under nitrogen. [*Beilstein* 4 IV 3322.]

Methyl hydrazinocarboxylate [6294-89-9] M 90.1, m 70-73°, b 108°/12mm. To remove impurities, the material is melted and pumped under vacuum until the vapours are spectroscopically pure [Caminati et al. J Am Chem Soc 108 4364 1986]. Distil it in a vacuum. [Beilstein 3 I 46.]

Methyl iodide [74-88-4] **M 141.9, b 42.8°, d** $_{4}^{20}$ **2.281, n** $_{D}^{20}$ **1.5315.** Methyl iodide deteriorates rapidly with liberation of iodine if exposed to light. It is usually purified by shaking with dilute aqueous Na₂S₂O₃ or NaHSO₃ until colourless, then washing with water, dilute aqueous Na₂CO₃, and more water, drying with CaCl₂ and distilling. It is stored in a brown bottle away from sunlight in contact with a small amount of mercury, powdered silver or copper. (Prolonged exposure of mercury to methyl iodide forms methylmercuric iodide.) Methyl iodide can be dried further using CaSO₄ or P₂O₅. An alternative purification is by percolation

through a column of silica gel or activated alumina, then distillation. The solution can be degassed by using a repeated freeze-pump-thaw cycle. [*Beilstein* 1 IV 87.]

O-Methylisourea hydrogen sulfate (2-methylpseudourea sulfate) [29427-58-5] M 172.2, m 114-118°, 119°. Recrystallise the salt from MeOH/Et₂O (327g of salt dissolved in 1L of MeOH and 2.5L of Et₂O is added) [Fearing & Fox J Am Chem Soc 76 4382 1954]. The picrate has m 192° [Odo et al. J Org Chem 23 1319 1958]. [Beilstein 3 IV 143.]

N-Methyl maleimide [930-88-1] M 111.1, m 94-96°. Crystallise the imide three times from diethyl ether. Dry it *in vacuo*. [*Beilstein* 21/10 V 5.]

Methylmalonic acid [516-05-2] M 118.1, m 135°(dec), pK_1^{25} 3.05, pK_2^{25} 5.76. The acid crystallises as the *hydrate* from water. [*Beilstein* 2 IV 1932.]

Methyl methacrylate [80-62-6] M 100.1, f -50°, b 46°/100mm, 100°/~760mm, d_4^{20} 0.937, n_D^{20} 1.4144. Wash the ester twice with aqueous 5% NaOH (to remove inhibitors such as hydroquinone) and twice with water. Dry it with CaCl₂, Na₂CO₃, Na₂SO₄ or MgSO₄, then with CaH₂ under nitrogen under reduced pressure. The distillate is stored at low temperatures and redistilled before use. Prior to distilling, inhibitors such as hydroquinone (0,004%), β-naphthylamine (0.2%) or di-β-naphthol are sometimes added. Also purify it by boiling with aqueous H₃PO₄ solution and finally with saturated NaCl solution. It is dried for 24hours over anhydrous CaSO₄, distilled at 0.1mm Hg at room temperature and stored at -30° [Albeck et al. J Chem Soc, Faraday Trans 1 1 1488 1978]. [Beilstein 2 II 398, 2 III 1279, 2 IV 1519.]

Methyl methanesulfonate [66-27-3] M 110.3, b 59% 0.6mm, 96-98% 19mm, d_4^{20} 1.300, n_D^{20} 1.4140. Purify the ester by careful fractionation and collecting the middle fraction. Suspected CARCINOGEN. Note that MeSO₃H has b 167-167.5% 10mm and methanesulfonic anhydride has b 138% 10mm)—both are possible impurities. [*Beilstein* 4 IV 11.]

Methyl methanethiolsulfonate [2949-92-0] M 126.2, b 69-71°/0.4mm, 96-97°/4.5mm, 104-105°/10mm, 119°/16mm, d_4^{20} 1.226, n_D^{20} 1.515. Purify it by fractional distillation under reduced pressure, IR: v_{max} 1350, 750 cm⁻¹. [Applegate et al. J Org Chem 38 943 1973, Beilstein 4 IV 31.]

Methyl nitrate [598-58-3] M 77.0, b 5%0mm, 65%760mm, d⁵ 1.2322, d¹⁵ 1.2167, d²⁵ 1.2032. Wash MeONO₂ once with H₂O then again with H₂O containing a few drops of concentrated NaOH to keep it slightly alkaline (litmus). Dry the ester over anhydrous CaCl₂, decant it and use it directly. It is possible to distil it under a vacuum with slow and gentle heating, as a sudden rise in temperature can cause decomposition with copious release of nitrous fumes (use extreme precautions and protection). The middle fraction can then be subjected to several freeze-pump-thaw cycles. [Black & Bakers *Org Synth* Col Vol II 412 1943.] [*Beilstein* 1 H 284, 1 I 141, 1 II 273, 1 III 1201, 1 IV 1254.] The VAPOUR CAN EXPLODE ON HEATING.

Methyl nitrite [624-91-9] M 61.0, b -18°, -17°, d¹⁵ (liquid) 0.991. Condense MeONO in a liquid nitrogen trap. Distil the greenish liquid under vacuum (preferably in a vacuum line), into the first trap containing dry Na₂CO₃ to free it from acid impurities then into further Na₂CO₃ and fused CaCl₂ traps before collection at -78°. It has been distilled through columns that are surrounded by Et₂O/Dri-Ice cooled to -30°. [Leermakers & Ramsperger J Am Chem Soc 54 1838 1932, Thompson & Purkis Trans Farad Soc 32 675 1936, Beilstein 1 H 284, 1 I 141, 1 II 273, 1 III 1201, 1 IV 1253.] CARCINOGEN.

2-Methyl-2-nitro-1,3-propanediol [77-49-6] **M** 135.1, **m** 145°, 147-148°, 149-150°, Crystallise it from *n*-butanol or Me₂CO (**m** 150.6°). It decomposes on attempted distillation at 10mm. Its solubility in H₂O is 80g/100mL at 20°. [Beilstein 1 H 489, 1 II 547, 1 III 2190, 1 IV 2537.]

2-Methyl-2-nitro-1-propanol [76-39-1] **M 119.1, m 87-88°, b 94-95%/10mm.** Distil it under vacuum and/or crystallise it from pet ether or MeOH. [Astle & Abbott J Org Chem **21** 1229 1956, Kambe & Yasuda Bull Soc Chem Jpn **41** 1444 1968, Beilstein **1** H 378, **1** III 1546, **1** IV 1604.]

164

3-Methyloctane [2216-33-3] **M 128.3, b 142-144** 0 /760mm, d $_{4}^{20}$ 0.719, n $_{D}^{20}$ 1.407. Take it through a silica gel column and distil it. [Klassen & Ross J Phys Chem 91 3668 1987, Beilstein 1 IV 455]

Methyl octanoate (methyl caprylate) [111-11-5] M 158.2, b 83°/15mm, 193-194°/760mm, d_4^{20} 0.877, n_D^{20} 1.419. Pass the ester through alumina and distil it before use. [*Beilstein* 2 IV 986.]

Methyl oleate (methyl *cis*-9-octadecenoate) [112-62-9] M 296.5, f -19.9°, b 217°/16mm, d_4^{20} 0.874, n_D^{20} 1.4522. Purify the oleate by fractional distillation under reduced pressure, and by low temperature crystallisation from acetone. Store it in the dark under N₂. [Beilstein 2 IV 1649.]

Methylpentane (**mixture of isomers**). Pass the mixture through a long column of activated silica gel (or alumina) and collect material that is transparent down to 200nm in the UV.

2-Methylpentane [107-83-5] **M 86.2, b 60.3°, d** $_{4}^{20}$ **0.655, n** $_{D}^{20}$ **1.37145, n** $_{D}^{25}$ **1.36873.** Purify it by azeotropic distillation with MeOH, followed by washing out the MeOH with water, drying (CaCl₂, then sodium), and distilling it. [Forziati et al. *J Res Nat Bur Stand* **36** 129 1946.]

3-Methylpentane [96-14-0] **M 86.2, b 63.3°, d** $_{4}^{20}$ **0.664, n** $_{D}^{20}$ **1.37652, n** $_{D}^{25}$ **1.37384.** Purify it by azeotropic distillation with MeOH, as for 2-methylpentane. Purify it for ultraviolet spectroscopy by passing it through columns of silica gel or alumina activated by heating for 8hours at 210° under a stream of nitrogen. Alternatively treat it with conc (or fuming) H₂SO₄, then wash it with water, aqueous 5% NaOH, water again, then dry (CaCl₂, then sodium), and distil it through a long, glass helices-packed, column. [*Beilstein* **1** IV 363.]

2-Methyl-2,4-pentanediol [107-41-5] M **118.2, b 107.5-108.5**°/25mm, d_4^{20} **0.922,** n_D^{25} **1.4265.** Dry the diol with Na₂SO₄, then CaH₂ and fractionally distil it under reduced pressure through a packed column, taking precautions to avoid absorption of water. [*Beilstein* **1** IV 2565.]

2-Methyl-1-pentanol [105-30-6] **M 102.2, b 65-66% (60mm, 146-147%) 760mm, d** $_{4}^{20}$ **0.827, n** $_{D}^{20}$ **1.420.** Dry the 1-pentanol with Na₂SO₄ and distil it. [*Beilstein* **1** IV 1713.]

4-Methyl-2-pentanol [108-11-2] **M 102.2, b 131-132°, d_4^{20} 0.810, n 1.413.** Wash the 2-pentanol with aqueous NaHCO₃, dry and distil it. Purify it further by converting it to the phthalate ester by adding 120mL of dry pyridine and 67g of phthalic anhydride per mole of alcohol, purifying the ester and steam distilling it in the presence of NaOH. The distillate is extracted with ether, and the extract is dried and fractionally distilled. [Levine & Walti J Biol Chem **94** 367 1931, Beilstein **1** IV 1717.]

3-Methyl-3-pentanol carbamate (Emylcamate) [78-28-4] **M 145.2, m 56-58.5°.** Crystallise the carbamate from 30% aqueous EtOH. [*Beilstein* **1** IV 1773.]

4-Methyl-2-pentanone (methyl isobutyl ketone) [108-10-1] **M 100.2, b 115.7°/~760mm d_4^{20} 0.801, n 1.3958, n_D^{25} 1.3938.** Reflux the ketone with a little KMnO₄, wash it with aqueous NaHCO₃, dry with CaSO₄ and distil it. Acidic impurities are removed by passage through a small column of activated alumina. [*Beilstein* **1** IV 3305.]

2-Methyl-1-pentene [763-29-1] **M 84.2, b 61.5-62°, d_4^{20} 0.680, n_D^{20} 1.395.** Water is removed, and formation of peroxides is prevented by several vacuum distillations of 2-methyl-1-pentene from sodium. It is stored with sodium-potassium alloy. [*Beilstein* **1** IV 841.]

cis-4-Methyl-2-pentene [691-38-3] M 84.2, m -134.4°, b 57.7-58.5°, d_4^{20} 0.672, n_D^{20} 1.388. Dry the *cis*-pentene with CaH₂, and distil it. [*Beilstein* 1 IV 841.]

trans-4-Methyl-2-pentene [674-76-0] M 84.2, m -140.8°, b 58.5°, d_4^{20} 0.669, n_D^{20} 1.389. Dry the *trans*-isomer with CaH₂, and distil it. [*Beilstein* 1 IV 844.]

2-Methylpropane-1,2-diamine (1,2-diamino-2-methylpropane) [811-93-8] M 88.2, b 47-48%/17mm, pK_1^{25} 6.25 (6.18), pK_2^{25} 9.82 (9.42). Dry the diamine with sodium for 2 days, then distil it from sodium under reduced pressure. [*Beilstein* 4 IV 1306.]

2-Methylpropane-1-thiol (isobutylmercaptan) [513-44-0] M 90.2, b $41.2^{\circ}/142$ mm, 88.5^{\overline{5}/760mm, n_D^{25} 1.43582, pK_{Est}~10.8. Dissolve the thiol in EtOH, and add to 0.25M Pb(OAc)₂ in 50% aqueous EtOH. The precipitated lead mercaptide is filtered off, washed with a little EtOH, and impurities are removed from the molten salt by steam distillation. After cooling, dilute HCl is added dropwise to the residue, and the mercaptan is distilled directly from the flask. Water is separated from the distillate, and the mercaptan is dried (Na₂CO₃) and distilled under nitrogen. [Mathias *J Am Chem Soc* 72 1897 1950, Beilstein 1 H 378, 1 I 191, 1 II 412, 1 III 1565, 1 IV 1605.]}

2-Methylpropane-2-thiol (*tert*-butylmercaptan) [75-66-1] M 90.2, b $61.6^{\circ}/701$ mm, $66^{\circ}/760$ mm, d_4^{25} 0.79426, n_D^{25} 1.41984, pK²⁵ 11.22. Dry the thiol for several days over CaO, then distil it from CaO. Purify it as for 2-methylpropane-1-thiol above. [Beilstein 1 H 383, 1 II 416, 1 III 1589, 1 IV 1634.]

2-Methyl-1-propanol (isobutanol) [78-83-1] **M 74.1, b 107.9°760mm, d_4^{20} 0.804, n¹⁵ 1.39768, n_D²⁵ 1.3939.** Isobutanol is dried by refluxing with CaO and BaO for several hours, followed by treatment with calcium or aluminium amalgam, then fractional distilling it from sulfanilic or tartaric acids. More exhaustive purifications involve formation of phthalate or borate esters. Heating it with phthalic anhydride gives the *acid phthalate* which, after crystallisation to constant melting point (**m** 65°) from pet ether, is hydrolysed with aqueous 15% KOH. The alcohol is distilled off as the water azeotrope and dried (K₂CO₃, then anhydrous CuSO₄), and finally magnesium turnings, followed by fractional distillation. [Hückel & Ackermann *J Prakt Chem* **136** 15 *1933*.] The borate ester is formed by heating the dried alcohol for 6hours in an autoclave at 160-175° with a quarter of its weight of boric acid. After fractional distillation under vacuum, the ester is hydrolysed by heating for a short time with aqueous alkali and the alcohol is dried with CaO and distilled. [Michael et al. *J Am Chem Soc* **38** 653 *1916*.] Alternatively dry the alcohol with K₂CO₃, CaSO₄ or CaCl₂, filter and fractionally distil it. For further drying, the redistilled alcohol can be refluxed with the appropriate alkyl phthalate or succinate as described under *ethanol*. [*Beilstein* **1** IV 1588.]

Methyl propiolate [922-67-8] M 84.1, b 100% atm, 102% atm, 103-105% atm, d_4^{20} 0.945, n_D^{20} 1.4080. Purify the propiolate by fractional distillation and collecting the middle fraction, note that propiolic acid has a high b [144% (dec)/760mm]. [Beilstein 2 IV 1688.] LACHRYMATORY.

N-Methylpropionamide [1187-58-2] **M 87.1, f -30.9°, b 103°/12-13mm, d** $_{4}^{20}$ **0.934, n** $_{D}^{25}$ **1.4356.** The amide is a colourless, odourless, neutral liquid at room temperature with a high dielectric constant. The amount of water present can be determined directly by Karl Fischer titration, GLC and NMR have been used to detect unreacted propionic acid. Commercial material of high quality is available, probably from the condensation of anhydrous methylamine with 50% excess of propionic acid. Rapid heating to 120-140° with stirring favours the reaction by removing water either directly or as the ternary xylene azeotrope. The quality of the distillate improves during the distillation.

N-Methylpropionamide can be dried over CaO. Water and unreacted propionic acid are removed as their xylene azeotropes. It is then distilled in a vacuum. Material used as an electrolyte solvent (specific conductance less than 10⁻⁶ ohm⁻¹ cm⁻¹) is obtained by fractional distillation under reduced pressure, and storage over BaO or molecular sieves because it readily absorbs moisture from the atmosphere on prolonged storage. [Hoover *Pure Appl Chem* **37** 581 *1974*, *Recommended Methods for Purification of Solvents and Tests for Impurities*, Coetzee Ed., Pergamon Press, *1982*, *Beilstein* **4** IV 183.]

Methyl propionate [554-12-1] **M 88.1, b 79.7°.** Wash the ester with saturated aqueous NaCl, then dry it with Na₂CO₃ and distil it from P_2O_5 . (This removes any free acid and alcohol.) It has also been dried with anhydrous CuSO₄. [*Beilstein* **2** IV 104.]

Methyl *n*-propyl ether [557-17-5] M 74.1, b $39^{\circ}/743$ mm d_4^{20} 0.736, n^{14} 1.3602, pK^{25} -3.79 (aqueous H₂SO₄). Dry it with CaSO₄, then pass the ether through a column of alumina (to remove peroxides) and fractionally distil it. [*Beilstein* 1 H 354, 1 I 178, 1 II 367, 1 III 1413, 1 IV 1421.]

Methyl *n*-propyl ketone (pentan-2-one) [107-87-9] M 86.1, b 102.4°, d_4^{20} 0.807, n_D^{20} 1.3903. Purify the ketone by refluxing it with a little KMnO₄, dry it with CaSO₄ and distil it. It can be converted to its bisulfite addition compound by shaking with excess saturated aqueous NaHSO₃ at room temperature, cooling to 0°, filtering, washing with diethyl ether and drying. Steam distillation of the adduct gives a distillate from which the ketone is recovered, washed with aqueous NaHCO₃ and distilled water, dried (K₂CO₃) and fractionally distilled. [Waring & Garik J Am Chem Soc 78 5198 1956, Beilstein 1 IV 3271.]

(±)-3-Methyl-1-propyn-3-ol carbamate (Meparfynol carbamate) [302-66-9] M 141.2, m 55.8-57°, 56-58°, 120-121°/16mm. Crystallise it from $*C_6H_6$, hexane, ether/pet ether or cyclohexane. [Beilstein 1 IV 65.] It is a sedative.

Methyl stearate [122-61-8] M 298.5, m 41-43°, b 181-182°/4mm. Crystallise the ester from pet ether or distil it in a vacuum. [Beilstein 2 IV 1216.]

Methylsuccinic acid [498-21-5] M 132.1, m 115.0°, pK_1^{25} 3.88, pK_2^{25} 5.35. Crystallise the acid from water. [*Beilstein* 2 IV 1948.]

N-Methylthioacetamide [5310-10-1] M 89.1, m 59°. Recrystallise the amide from *benzene or EtOH. [Todd et al. *Chem Ber* 69 220 1936, *Beilstein* 4 I 329, 4 III 124.]

Methyl trifluoromethanesulfonate (methyl triflate) [333-27-7] M 164.1, b 97-97.5%736mm, 99%~760mm, 100-102%760mm, d²⁰₄ 1.496, n²⁵_D 1.3238. It is a strong methylating agent but is corrosive and POISONOUS. Fractionate it carefully and collecting the middle fraction (use an efficient fume cupboard) and keep away from moisture. It is a POWERFUL ALKYLATING AGENT and a strong IRRITANT. [IR: Gramstad & Haszeldine J Chem Soc 173 1956, J Chem Soc 4069 1957.] Trifluoromethanesulfonic acid (triflic acid) [1493-13-6] M 151.1, boils higher (b 162%) has a pKa of 3.10, and is TOXIC and hygroscopic. [Hansen J Org Chem 30 4322 1965, Kurz & El-Nasr J Am Chem Soc 104 5823 1982, Beilstein 3 IV 34.]

Methyl vinyl ketone (3-buten-2-one) [78-94-4] M 70.1, b $62-68^{\circ}/400$ mm, 79-80 $^{\circ}/760$ mm, d_4^{20} 0.845, n_D^{20} 1.413. It forms an 85% azeotrope with water. After drying with K₂CO₃ and CaCl₂ (with cooling), the ketone is distilled at low pressures. [*Beilstein* 1 IV 3444.]

Methyl vinyl sulfone [3680-02-2] M 106.1, b 116-118%/20mm, d_4^{20} 1.215, n_D^{20} 1.461. Pass the sulfone through a column of alumina, then de-gas, distil it in a vacuum line and store it at -190° until required. [*Beilstein* 1 III 1866.]

N-Monobutyl urea [592-31-4] M 116.2, m 96-98°, pK_{Est} ~0.2. Crystallise the urea from EtOH/water, then dry it under vacuum at room temperature. [*Beilstein* 4 I 371, 4 IV 578.]

N-Monoethyl urea [625-52-5] M 88.1, m 92-95°, $pK_{Est} \sim 0.2$. Crystallise the urea from EtOH/water, then dry it under vacuum at room temperature. [*Beilstein* 4 IV 369.]

N-Monomethyl urea [598-50-5] M 74.1, m 93-95°, $pK_{Est} \sim 0.2$. Crystallise the urea from EtOH/water, then dry it under vacuum at room temperature. [*Beilstein* 4 IV 205.]

N-Monopropyl urea [627-06-5] M 102.1, m 107°, 110°, pK_{Est} ~0.2. Crystallise the urea from EtOH or EtOH/Et₂O. [Biovin & Biovin Can J Chem 29 479 1951, IR: Biovin & Biovin Can J Chem 32 563 1954, Beilstein 4 H 142, 4 III 261, 4 IV 482.]

Mucochloric acid (2,3-dichloro-4-oxo-2-butenoic acid) [87-56-9] M 169.0, m 124-126°, pK^{25} 4.20. Crystallise the acid twice from water (charcoal). [Beilstein 3 IV 1720.]

trans, trans-Muconic acid (hexa-2,4-dienedioic acid) [3588-17-8] M 142.1, m 300°, pK^{25} 4.51, for *cis,cis* pK^{25} 4.49. Crystallise the diacid from H₂O. [Beilstein 2 IV 2298.]

Myristic acid (tetradecanoic acid) [544-63-8] M 228.4, m 58°, pK^{20} 6.3 (50% aqueous EtOH), $pK_{Est} \sim 4.9$ (H₂O). Purify the acid via the methyl ester (b 153-154°/10mm, n²⁵ 1.4350), as for capric acid. [Trachtman & Miller J Am Chem Soc 84 4828 1962.] Also purify it by zone melting. It crystallises from pet ether, and is dried in a vacuum desiccator containing shredded wax. [Beilstein 2 IV 1126.]

Neopentane (2,2-dimethylpropane) [463-82-1] M 72.2, flash point 79.3°, m –19.8°, b 9.5°/760mm, d_4^{20} 0.6737, n_D^{20} 1.38273. It is freed from isobutene by passage over conc H₂SO₄ or P₂O₅, and through silica gel. [Beilstein 1 H 141, 1 I 50, 1 II 104, 1 369, 1 IV 333.]

Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) M 222.4 [cis/trans 7212-44-4] b 122°/3mm, d_4^{20} 0.73, n_D^{20} 1.477, [cis 3790-78-1] b 70°/0.1mm, [trans 40716-66-3] b 78°/0.2mm, 145-146°/2mm. Purify it by TLC on plates of Kieselguhr G [McSweeney J Chromatogr 17 183 1965] or silica gel impregnated with AgNO₃, using 1,2-CH₂Cl₂/CHCl₃/EtOAc/PrOH (10:10:1:1) as solvent system. Also by GLC on butanediol succinate (20%) on Chromosorb W. Stored it under N₂ at ~5° in the dark. [Beilstein 1 IV 2336.]

Nitrilotriacetic acid [tris(carboxymethyl)amine, NTA, Complexone 1] [139-13-9] M 191.1, m 247°(dec), pK_1 0.8, pK_2 1.71, pK_3 2.47, pK_4 9.71. Crystallise it from water and dry it at 110°. [Beilstein 4 IV 2441.]

Nitroethane [79-24-3] M 75.1, b 115°, d_4^{20} 1.049, n_D^{20} 1.3920, n_D^{25} 1.39015, pK²⁵ 8.60 (8.46, pH equilibrium requires *ca* 5 minutes). Purify it as described for *nitromethane* below. A spectroscopic impurity can be removed by shaking it with activated alumina, decanting and distilling it rapidly. [*Beilstein* 1 IV 170.]

Nitroguanidine [556-88-7] **M 104.1, m 246-246.5°(dec), 257°, pK**₁²⁵ -0.55, pK₂²⁵ 12.20. Crystallise it from water (20mL/g). The *nitrate* has **m** 147°(dec)(prisms, H₂O). [*Beilstein* **3** H 126, **3** III 236.]

Nitromethane [75-52-5] M 61.0, f -28.5°, b 101.3°, d²⁰₄ 1.13749, d³⁰ 1.12398, n²⁰_D 1.3819, n^{30} 1.37730, pK^{25} 10.21. Nitromethane is generally manufactured by gas-phase nitration of methane. The usual impurities include aldehydes, nitroethane, water and small amounts of alcohols. Most of these can be removed by drying with CaCl₂ or by distillation to remove the water/nitromethane azeotrope, followed by drying with CaSO₄. Phosphorus pentoxide is not suitable as a drying agent. [Wright et al. J Chem Soc 199 1936.] The purified material should be stored by dark bottles, away from strong light, in a cool place. Purifications using extraction are commonly used. For example, Van Looy and Hammett [J Am Chem Soc 81 3872 1959] mixed about 150mL of conc H₂SO₄ with 1L of nitromethane and allowed it to stand for 1 or 2days. The solvent was washed with water, aqueous Na₂CO₃, and again with water, then dried for several days with MgSO₄, filtered again with CaSO₄. It was fractionally distilled before use. Smith, Fainberg and Winstein [J Am Chem Soc 83 618 1961] washed it successively with aqueous NaHCO₃, aqueous NaHSO₃, water, 5% H₂SO₄, water and dilute NaHCO₃. The solvent was dried with CaSO₄, then percolated through a column of Linde type 4A molecular sieves, followed by distillation from some of this material (in powdered form). Buffagni and Dunn [J Chem Soc 5105 1961 refluxed it for 24hours with activated charcoal while bubbling a stream of nitrogen through the liquid. The suspension was filtered, dried (Na₂SO₄) and distilled, then passed through an alumina column and redistilled. It has also been refluxed over CaH₂, distilled and kept under argon over 4A molecular sieves.

It has been purified by zone melting at low temperature, or by distillation under vacuum at 0° , subjecting the middle fraction to several freeze-pump-thaw cycles. An impure sample containing higher nitroalkanes and traces of cyanoalkanes was purified (on the basis of its NMR spectrum) by crystallisation from diethyl ether at -60° (cooling in Dry-ice)[Parrett & Sun *J Chem Educ* **54** 448 *1977*].

168

Fractional crystallisation is more effective than fractional distillation from Drierite in purifying nitromethane for conductivity measurements. [Coetzee & Cunningham *J Am Chem Soc* **87** 2529 *1965.*] Specific conductivities around 5 x 10^{-9} ohm⁻¹cm⁻¹ were obtained. [*Beilstein* **1** IV 100.]

1-Nitropropane [108-03-2] **M 89.1, b 131.4°, d** $_{4}^{20}$ **1.004, n** $_{D}^{20}$ **1.40161, n** $_{D}^{25}$ **1.39936, pK**²⁵ **8.98.** Purify it as for *nitromethane*. [Beilstein 1 IV 229.]

2-Nitropropane [79-46-9] **M 89.1, b 120.3°, d_4^{20} 0.989, n_D^{20} 1.3949, n_D^{25} 1.39206, pK^{25} 7.68. Purify it as for** *nitromethane***. [Beilstein 1 IV 230.]**

N-Nitrosodiethanolamine (NDELA) [1116-54-7] M 134.4, b 100°/2.6x10⁻⁵mm, 125°/0.01mm, n_D^{20} 1.4849. Purify NDELA by dissolving the amine (0.5g) in 1-propanol (10mL) and 5g of anhydrous Na₂SO₄ added with stirring. After standing for 1-2hours, it is filtered and passed through a chromatographic column packed with 10mL of AG 50W x 8 (H⁺form 50-100mesh, a strongly acidic cation exchanger). The eluent and washings (50 mL EtOH) are combined and evaporated to dryness at 35°. It has also been extracted with EtOH from the nitrosation mixture of ethanolamine, filtered and distilled under high vacuum. [Fukuda et al. Anal Chem 53 2000 1981, Jones & Wilson J Chem Soc 550, 1949, Beilstein 1 III 721, see Spiegelhalder et al. N-Nitroso Compounds: Occurrence Biological Effects and Relevance in Human Cancer (eds. O'Neill et al. IARC Scientific Publications No 57; IARC Lyon p943 1984.] Possible CARCINOGEN.

Nitrourea [556-89-8] M 105.1, m 158.4-158.8°(dec). Crystallise it from EtOH/pet ether. Dry it in vacuo ~50°. [Ingersoll & Arenendt Org Synth Coll Vol I 417 1941.]

n-Nonane [111-84-2] M 126.3, b 150.8°, d_4^{20} 0.719, n_D^{20} 1.40542, n_D^{25} 1.40311. Fractionally distil *n*-nonane, then stir it with successive volumes of conc H₂SO₄ for 12hours each until no further coloration is observed in the acid layer. Then wash it with water, dry with MgSO₄ and fractionally distil it. Alternatively, it is purified by azeotropic distillation with 2-ethoxyethanol, followed by washing out the alcohol with water, drying and distilling it. [Forziati et al. *J Res Nat Bur Stand* **36** 129 1946, *Beilstein* **1** IV 447.]

Nylon powder. Pellets are purified by dissolving them in ethylene glycol under reflux, then precipitating nylon as a white powder by adding EtOH at 25°. This is washed with EtOH and dried at 100° under vacuum.

n-Octacosane [630-02-4] M 394.8, m 62.5°. Purify it by forming its adduct with urea, washing it and crystallising it from acetone/water. [McCubbin *Trans Faraday Soc* 58 2307 1962.] Crystallise it then from hot filtered isopropyl ether solution (10mL/g). [*Beilstein* 1 IV 588.]

n-Octacosanol (octacosyl alcohol) [557-61-9] M 410.8, m 83.4°, 84°. Recrystallise it from large volumes of Me₂CO. Sublime it at 200-250°/1mm instead of distilling it. [*Beilstein* 2 IV 1318.]

n-Octadecane [593-45-3] M 254.5, m 28.1°, b 173.5°/10mm, 316.1°/760mm, d_4^{20} 0.7768, n $_D^{20}$ 1.4390. Crystallise it from acetone and distil it from sodium in a vacuum. [*Beilstein* 1 IV 553.]

Octadecyl acetate [822-23-1] M 312.5, m 32.6°, b 166-168°/1mm, 172-174°/1.5mm. Distil the ester under high vacuum, then crystallise it from Et₂O/MeOH, EtOH (m 32.8°) or Me₂CO (m 32.4°). Also recorded are m 30.2°; and 35.3° for an α form as well as 38-39° for a β form. [Phillips & Mumford J Chem Soc 1663 1934, Beilstein 2 H 136, 2 II 147, 2 III 266, 2 IV 171.]

n-Octadecyl alcohol (stearyl alcohol, octadecanol) [112-92-5] M 270.5, m 61°, b 153-154°/0.3mm. Crystallise octadecanol from MeOH, or dry Et_2O and $*C_6H_6$, then fractionally distil it *in vacuo*. Also purify it by column chromatography. Free it from cetyl alcohol by zone refining. [*Beilstein* 1 IV 1888.]

Octadecyl ether (dioctadecyl ether) [6297-03-6] M 523.0, m 59.4°, n_D^{ov} 1.440. Distil the ether in a vacuum, then crystallise it from MeOH/*C₆H₆, MeOH (m 58.5-59.5°) or Me₂CO (m 59.5°). It has an α form m 57.8° and a β form m 40°. [Beilstein 1 IV 1891.]

Octafluoropropane (profluorane) [76-19-7] M 188.0, m -183°, b -38°. Purify it for pyrolysis studies by passage through a copper vessel containing CoF_3 at about 270°, then fractionally distil it. [Steunenberg & Cady J Am Chem Soc 74 4165 1952.] Also purify it by several trap-to-trap distillations at low temperatures [Simons & Block J Am Chem Soc 59 1407 1937].

n-Octane [111-65-9] M 114.2, b 19.2°/10mm, 125.6°/760mm, d_4^{20} 0.704, n_D^{20} 1.39743, n_D^{25} 1.39505. Extract the octane repeatedly with conc H₂SO₄ or chlorosulfonic acid, then wash it with water, dry and distil it. Alternatively, purify it by azeotropic distillation with EtOH, followed by washing with water to remove the EtOH, drying and distilling it. For further details, see n-*heptane*. It is also purified by zone melting. [*Beilstein* 1 H 159, 1 I 60, 1 II 122, 1 III 457, 1 IV 412.]

RS-(±)-Octane-1,2-diol [1117-86-8] M 146.2, m 30-30.5°, 36°, b 103-105°/0.5mm, 131-132°/10mm. Distil the diol *in vacuo* and/or recrystallise it from pet ether. The α -naphthylurethane has m 112-114°. [Beilstein 1 III 2217, 1 IV 2590.] S-(-)-Octane-1,2-diol [87720-91-0] also crystallises from pet ether with m 35-37° and $[\alpha]_{D}^{17}$ -4.7° (c 35, EtOH) [Späth et al. Chem Ber 66 598 1933]; R-(+)-octane-1,2-diol [87720-90-9] has similar properties but with a positive optical rotation.

Octane-1,8-diol (octamethylene glycol) [629-41-4] M 146.2, m 59-61°, b 172°/20mm. Recrystallise the diol from EtOH and distil it in a vacuum. [*Beilstein* 1 IV 2592.]

1-Octanethiol [111-88-6] M 146.3, b 86°/15mm, 197-200°/760mm, d_4^{20} 0.8433, n_D^{20} 1.4540, pK²⁵ 10.72(dilute *t*-BuOH). Pass the thiol through a column of alumina and work under N₂, or Ar. Distil it under N₂ and a vacuum. Store it under N₂, or Ar in the dark. [Battacharyya et al. *J Chem Soc, Faraday Trans I* 82 135 1986, Fletcher *J Am Chem Soc* 68 2727 1946]. [Beilstein 1 III 1710, 1 IV 1767.]

1-Octene [111-66-0] **M 112.2, b 121^o/742mm, d** $_{4}^{20}$ **0.716, n** $_{D}^{20}$ **1.4087.** Distil 1-octene under nitrogen from sodium which removes water and peroxides. Peroxides can also be removed by percolation through dried, acid washed, alumina. Store it under N₂, or Ar in the dark. [Strukul & Michelin J Am Chem Soc **107** 7563 1985, Beilstein **1** H 221, **1** II 199, **1** IV 874.]

(*trans*)-2-Octene [13389-42-9] M 112.2, b 124-124.5% d_4^{20} 0.722, n_D^{20} 1.4132. Purify it as for 1-octene above. [*Beilstein* 1 IV 879.]

n-Octyl alcohol [111-87-5] M 130.2, b 98%/19mm, 195.3%/760mm, d_4^{20} 0.828, n_D^{20} 1.43018. Fractionally distil it under reduced pressure. Dry it with sodium and again fractionally distil or reflux with boric anhydride and re-distilled (b 195-205%/5mm), the distillate being neutralised with NaOH and again fractionally distillation from Raney nickel and by preparative GLC. [*Beilstein* 1 IV 1756.]

n-Octylammonium hexadecanoate [88020-97-7] M 385.7, m 52-53°. Purify it by several recrystallisations from *n*-hexane or ethyl acetate. The solid is then washed with cold anhydrous diethyl ether, and dried *in vacuo* over P_2O_5 . [Beilstein 4 IV 751 for octylamine.]

n-Octylammonium octadecanoate [32580-92-0] M 413.7, m 56-57°. Purify it as for the *hexadecanoate* above.

n-Octylammonium tetradecanoate [17463-35-3] M 358.6, m 46-48°. Purify it as for the *hexadecanoate* above.

n-Octyl bromide [111-83-1] M 193.1, b 201.5°, d_4^{20} 1.118, n^{25} 1.4503. Shake the bromide with H₂SO₄, wash it with water, dry with K₂CO₃ and fractionally distil it. [*Beilstein* 1 IV 422.]

1-Octyne [629-05-0] **M 110.2, b 76-77%/150mm, 126.2%/760mm, d** $_{4}^{20}$ **0.717, n** 25 **1.4159.** Distil I-octyne from NaBH₄ to remove peroxides. Fractionate it through a 10inch Widmer column (p 11) at 125-126%/759mm [Sletzinger & Dawson *J Org Chem* **14** 853 *1949.*] [*Beilstein* **1** III 1005, **1** IV 1034.]

Oleic acid (*cis*-9-octadecenoic acid, olainic acid) [112-80-1] M 282.5, m 16°, b 145°/0.1mm, 194-195°/1.2mm, 228-229°/15mm, 360°(dec), d_4^{20} 0.891, n^{30} 1.4571, pK²⁵ 6.42 (50% aqueous EtOH), pK_{Est} ~4.8 (H₂O). Purify the acid by fractional crystallisation from its melt, followed by molecular distillation at 10⁻³mm, or by conversion to its methyl ester, the free acid can be crystallised from acetone at -40° to -45° (12mL/g). For purification by the use of lead and lithium salts, see Keffler and McLean [*J Soc Chem Ind (London)* 54 176T 1935]. Purification based on direct crystallisation from acetone is described by Brown and Shinowara [*J Am Chem Soc* 59 6 1937, pK White *J Am Chem Soc* 72 1857 1950]. [*Beilstein* 2 H 463, 2 I 198, 2 II 429, 2 III 1387, 2 IV 1641.]

Oleyl alcohol [143-28-2] **M 268.5, b 182-184°/1.5mm, d** $_{4}^{20}$ **0.847, n** $^{27.5}$ **1.4582.** Purify it by fractional crystallisation at -40° from acetone, then distil it under vacuum. [*Beilstein* **2** IV 2204.]

Oxalic acid (2H₂O) [6153-56-6] M 90.0, m 101.5°, [anhydrous 144-62-7] m 189.5°, pK₁²⁵ 1.08 (1.37), pK₂²⁵ 3.55 (3.80). Crystallise oxalic acid from distilled water. Dry it in a vacuum over H₂SO₄. The anhydrous acid can be obtained by drying at 100° overnight. [Beilstein 2 IV 1819.]

Oxaloacetic acid [328-42-7] **M 132.1, m 160°(decarboxylates), pK_1^{25} 2.22, pK_2^{25} 3.89, pK_3^{25} 13.0. Crystallise it from boiling EtOAc, or from hot Me₂CO/hot *C₆H₆. [***Beilstein* **3 IV 1808.]**

2-Oxoglutaric acid (2-oxopentane-1,5-dioic, α -ketoglutaric acid) [328-50-7] M 146.1, m 114°, 115-117°, (pK_{Est} see oxaloacetic acid above). Crystallise the keto-acid repeatedly from Me₂CO/*benzene, EtOAc or ethyl propionate. Dry it *in vacuo*. [Beilstein 3 IV 1813.]

Oxamide [471-46-5] **M 88.1, m >320°(dec).** Crystallise oxamide from water, grind it and dry it in an oven at 150°. [*Beilstein* **2** IV 1860.]

Palmitic acid anhydride (hexadecanoic anhydride) [623-65-4] M 494.9, m 63-64°, 64°, d^{82} 0.838, n^{68} 1.436. It is moisture sensitive and hydrolyses in water. Purify it by refluxing with acetic anhydride for 1hour, evaporating and freeing the residue of acetic acid and anhydride by drying the residue at high vacuum and recrystallising from pet ether at low temperature. [*Beilstein* 2 IV 1181.]

Paraffin (oil) [8012-95-1] d_4^{20} 0.880, n_D^{20} 1.482. Treat the oil with fuming H₂SO₄ (care), then wash it with water and dilute aqueous NaOH, then percolate it through activated silica gel.

Paraffin Wax. Melt the wax in the presence of NaOH, wash it with water until all of the base had been removed. The paraffin is allowed to solidify after each wash. Finally, 5g of paraffin is melted by heating it on a water-bath, then shaken for 20-30minutes with 100mL of boiling water and and dry the melt under vacuum.

Pelargonic acid (nonanoic acid) [112-05-0] **M 158, m 15°, b 98.9°/1mm, 225°/760mm, pK²⁵ 4.96.** Esterify the acid with ethylene glycol and distil the ester. (This removes dibasic acids as undistillable residues.) The acid is regenerated by hydrolysing the ester in the usual way and is distilled *in vacuo*. [*Beilstein* **2** IV 1018.]

Pelargononitrile (octyl cyanide) [2243-27-8] M 139.2, m -34°, b 92°/10mm, 224°, d_4^{20} 0.818, n_D^{20} 1.4255. Stir the nitrile with P₂O₅ (~5%), distil it from P₂O₅ and redistil it under a vacuum. IR should have CN but no OH bands. [*Beilstein* 2 IV 1204.]

Pelargonyl chloride (nonanoyl chloride) [764-85-2] M 176.7, b 88°/12mm, d_4^{20} 0.941, n_D^{20} 1.436. Reflux it with acetyl chloride (~ 3 volumes) for 1hour, then distil off AcCl followed by the nonanoyl chloride at ~12mm. It is moisture sensitive and should be stored in sealed ampoules. [*Beilstein* 2 IV 1023.]

Pentabromoacetone [79-49-2] M 452.6, m 76°, pK^{25} 8.0 (MeOH), $pK_{Est} \sim 4.6$ (H₂O). Crystallise it from Et₂O, EtOH or aqueous EtOH (m 73.2°) and sublime it. Its solubility in H₂O is 0.01mg/100mL. [*Beilstein* 1 H 659, 1 I 345, 1 III 2753, 1 IV 3226.]

Pentachloroethane (pentalin) [76-01-7] M 202.3, b 69% 37mm, 152.2% 44mm, 162.0% 760mm, d_4^{20} 1.678, n^{15} 1.50542. Usual impurities include trichloroethylene. It partially decomposes if it is distilled at atmospheric pressure. Drying it with CaO, KOH or sodium is unsatisfactory because of the elimination of the elements of HCl. It can be purified by steam distillation, or by washing with conc H₂SO₄, water, and then aqueous K₂CO₃, drying with solid K₂CO₃ or CaSO₄, and fractionally distilling under reduced pressure. [*Beilstein* 2 IV 147.]

Pentadecafluoro octanoic acid (perfluorocaprylic acid) [335-67-1] M 414.1, m 54.9-55.6°, b 189°/736mm, pK_{Est} <0. Crystallise the acid from CCl₄ and toluene, and distil it. It forms micelles in H₂O and the solubility is 1% in H₂O. The *acid chloride* has b 129-130°/744mm. The *amide* has m 138°. [Bernett & Zisman J Phys Chem 63 1911 1959, Bro & Sperati J Polym Sci 38 289 1959, Beilstein 2 IV 994.]

Pentadecanoic acid [1002-84-2] M 242.4, m 51-53°, 80°, b 158°/1mm, 257°/760mm, d_4^{80} 0.8424, pK_{Est}~5.0. Crystallise the acid from Et₂O and distil it *in vacuo*. It is very hygroscopic. See the purification of palmitic acid. [*Beilstein* 2 IV 1147.]

Pentadecanolide (1-oxacyclohexadecan-2-one, pentadecanoic- ω -lactone, 15-hydroxypentadecanoic lactone, exaltolide, Tibetolide) [106-02-5] M 240.4, m 34-36°, 37-37.5°, 37-38°, b 102-103°/0.03mm, 112-114°/0.2mm, 137°/2mm, 169°/10-11mm, d⁴⁰ 0.9401. It has been recrystallised from MeOH (4 parts) at -15°. [Hundiecker & Erlbach *Chem Ber* 80 135 1947, Galli & Mandolini *Org Synth* 58 100 1978, Demole & Enggist *Helv Chim Acta* 11 2318 1978, *Beilstein* 17/9 V 106.]

Penta-1,3-diene [cis: 1574-41-0, trans: 2004-70-8] **M 68.1, b 42°, d** $_{4}^{20}$ **0.680, n** $_{D}^{20}$ **1.4316.** Distil the diene from NaBH₄. Purify it also by preparative gas chromatography. [Reimann et al. J Am Chem Soc **108** 5527 1986, Beilstein **1** IV 994.]

Penta-1,4-diene [591-93-5] **M 68.1, b 25.8-26.2%** (756mm, d_4^{20} 0.645, n_D^{20} 1.3890. Distil it from NaBH₄. Purify it by preparative gas chromatography or distillation and stabilize it with 0.1% of 2,6-ditert-butyl-p-cresol. [Reimann et al. J Am Chem Soc 108 5527 1986, Beilstein 1 IV 998.]

Pentaethylenehexamine [4067-16-7] M 232.4, d_4^{20} 0.950, n_D^{20} 1.510, pK_1 1.2, pK_2 2.7, pK_3 4.3, pK_4 7.8, pK_5 9.1, pK_6 9.9 (all estimated). Fractionally distil it twice at 10-20mm, the fraction boiling at 220-250° being collected. It can be further purified *via* the *hydrochloride*. Its solution in MeOH (40mL of base in 250mL) is cooled in an ice-bath and conc HCl (~50mL) is added dropwise with stirring. The precipitated *hydrochloride* is filtered off, washed with Me₂CO, and Et₂O, then dried in a vacuum desiccator. The free base is then obtained by basification, extraction into Et₂O, drying (NaOH), filtering, evaporating and distilling the residue as before. It forms a Cu complex [Cu(C₁₀H₂₈N₆)]²⁺. [Jonassen et al. *J Am Chem Soc* **79** 4279 1957, Beilstein **4** IV 1245.]

2,2,3,3,3-Pentafluoropropan-1-ol [422-05-9] **M 150.1, b 80%**~760mm, d_4^{20} **1.507,** n_D^{20} **1.288,** pK²⁵ **12.74.** Shake the alcohol with alumina for 24hours, dry with anhydrous K₂CO₃, and distil it, collect the middle fraction (b 80-81°) and redistil it. [*Beilstein* **1** IV 1438.]

n-Pentane [109-66-0] M 72.2, b 36.1°, d_4^{20} 0.626, n_D^{25} 1.35472. Stir the pentane with successive portions of conc H₂SO₄ until there is no further coloration during 12hours, then with 0.5N KMnO₄ in 3M H₂SO₄ for 12hours, wash with water and aqueous NaHCO₃. Dry it with MgSO₄ or Na₂SO₄, then P₂O₅ and fractionally distil it through a column packed with glass helices. It is also purified by passage through a column of silica gel, followed by distillation and storage with sodium hydride. An alternative purification is by azeotropic distillation with MeOH, which is subsequently washed out from the distillate (using water), followed by drying and re-distilling. For removal of carbonyl-containing impurities, see n-heptane. Also purify it by

fractional freezing (*ca* 40%) on a copper coil through which cold air is passed, then wash with conc H_2SO_4 and fractionally distil it. [*Beilstein* 1 IV 303.]

Pentane-1-thiol [110-66-7] **M 104.2, m -76°, b 122.9°/697.5mm, d²⁵ 0.8375, pK_{Est} ~10.1.** Dissolve the thiol in aqueous 20% NaOH, then extract with a small amount of diethyl ether. The aqueous solution is acidified slightly with 15% H₂SO₄, and the thiol is distilled out, dried with CaSO₄ or CaCl₂, and fractionally distilled under nitrogen. [Ellis & Reid *J Am Chem Soc* 54 1674 1932, Beilstein 1 IV 1453.]

(±)-Pentan-2-ol [6032-29-7] M 88.2, b 119.9% ~760mm, d_4^{20} 0.810, n_D^{20} 1.41787, n_D^{25} 1.4052. Refluxed it with CaO, distil it, then reflux it with magnesium and again fractionally distil it. [Beilstein 1 IV 1655.]

Pentan-3-ol [584-02-1] **M 88.2, b 116.2°, d** $_{4}^{20}$ **0.819, n** $_{D}^{25}$ **1.4072.** Reflux the alcohol with CaO, distil, then reflux it with magnesium and again fractionally distil it. [*Beilstein* **1** IV 1662.]

Pentan-3-one see diethyl ketone above.

Pent-2-ene (mixed isomers) [109-68-2] M 70.1, b 36.4°, d_4^{20} 0.650, n_D^{20} 1.38003, n_D^{25} 1.3839. Reflux the mixture with sodium wire, then fractionally distil it twice through a Fenske (glass helices packing, p 11) column. [*Beilstein* 1 IV 815.]

cis-Pent-2-ene [627-20-3] M 70.1, b 37.1°, d_4^{20} 0.657, n_D^{25} 1.3798. Dry it with sodium wire and fractionally distil it, or purify it by azeotropic distillation with MeOH, followed by washing out the MeOH with water, drying and distilling. Also purify it by chromatography through silica gel and alumina [Klassen & Ross J Phys Chem 91 3668 1987]. [Beilstein 1 IV 814.]

trans-Pent-2-ene [646-04-8] M 70.1, b 36.5°, d_4^{20} 0.6482, n_D^{20} 1.3793. It is treated as above and washed with water, dried over anhydrous Na₂CO₃, and fractionally distilled. The middle cut is purified by two passes of fractional melting. [*Beilstein* 1 IV 814.]

Pent-2-yne [627-21-4] **M 68.1, b 26°/2.4mm, 56.1°/760mm, d** $_{4}^{20}$ **0.710, n** $_{D}^{25}$ **1.4005.** It is stood with, then distilled at low pressure from sodium or NaBH₄. [*Beilstein* **1** III 958, **1** IV 992.]

Perfluorobutyric acid (heptafluorobutyric acid) [375-22-4] **M 214.0, m -17.5°, b 120°/735mm, d**²⁰₄ **1.651, n**¹⁶_D **1.295, pK**²⁵**-0.17.** Fractionally distil the acid twice in an Oldershaw column (p 10) with an automatic vapour-dividing head, the first distillation being in the presence of conc H₂SO₄ as a drying agent. (Take care with the hot acid.) [*Beilstein* **2** IV 810.]

Perfluoroheptane (hexadecafluoroheptane) [335-57-9] M 388.1, b 99-101°, d_4^{25} 1.7200. Purify it as for *perfluorodimethylhexane*. Other procedures include shaking with H₂SO₄, washing with water, drying with P₂O₅ for 48hours and fractionally distilling. Alternatively, it has been refluxed for 24hours with saturated acid KMnO₄ (to oxidise and remove hydrocarbons), then neutralised, steam distilled, dried with P₂O₅, and passed slowly through a column of dry silica gel. It has been purified by fractional crystallisation using partial freezing. [*Beilstein* 1 IV 388.]

Perfluoro-*n*-**hexane** (tetradecafluorohexane) [355-42-0] M 338.1, m - 4°, b 58-60°, d_4^{20} 1.684. Purify the fluorohexane by fractional freezing. The methods described for *perfluoroheptane* should be applicable here. [*Beilstein* 1 IV 348.]

Perfluorononane (eicosafluorononane) [375-96-2] M 488.1, b 126-127°, d_4^{20} 1.80, n_D^{20} 1.275. Purify as for *perfluorodimethylcyclohexane*. [Beilstein 1 III 505.]

Perfluoropropyl iodide (heptafluoro-1-iodopropane) [754-34-7] M 295.9, b 41°, d_4^{20} 2.13, n_D^{20} 1.339. Purify the iodide by fractional distillation. Store it over Cu as stabilizer. [*Beilstein* 1 IV 225.]

Perfluorotributylamine (heptacosafluorotributylamine) [311-89-7] M 671.1, b 177.6°/760mm, d_4^{20} 1.881, n_D^{20} 1.291, pK_{Est} ~5.0. Purify it as for perfluorodimethylcyclopropane (see p 220); see also perfluorotripropylamine below [Haszeldine *J Chem Soc* 102 1951]. [*Beilstein* 2 IV 819.]

Perfluorotripropylamine (heneicosafluorotripropylamine) [338-83-0] M 521.1, b 130% atm, 129.5-130.5% atm, d_4^{20} 1.822, n_D^{20} 1.279, pK_{Est} ~5.6. Purify it as for *perfluorodimethyl-cyclopropane* (see p 220). [Haszeldine J Chem Soc 102 1951, for azeotropes see Simons & Linevsky J Am Chem Soc 74 4750 1972.] IRRITANT.

Petroleum ether [8032-32-4] **b** 35-60°, d_4^{20} 0.640, n_D^{20} 1.363. Shake it several times with conc H₂SO₄, then 10% H₂SO₄ and concentrated KMnO₄ (to remove unsaturated, including aromatic, hydrocarbons) until the permanganate colour persists. Wash it with water, aqueous Na₂CO₃ and again with water. Dry it with CaCl₂ or Na₂SO₄, and distil it. It can be dried further using CaH₂ or sodium wire. Passage through a column of activated alumina, or treatment with CaH₂ or sodium, removes peroxides. For the elimination of carbonyl-containing impurities without using permanganate, see *n*-heptane. These procedures could be used for all fractions of pet ethers. See skellysolve below, p. 178.

Rapid purification: Pass it through an alumina column and fractionally distilling, collecting the desired boiling fraction.

Phorone (2,6-dimethylhepta-2,5-dien-4-one) [504-20-1] M 138.2, m 28°, b 197°/743mm. Crystallise phorone repeatedly from EtOH. [Beilstein 1 IV 3564.]

Pimelic acid (heptane-1,7-dioic acid) [111-16-0] **M 160.2, m 105-106^o, pK_1^{25} 4.46, pK_2^{25} 5.58.** Crystallise the acid from water or from *benzene containing 5% diethyl ether. [*Beilstein* 1 IV 2003.]

Pinacol (hexahydrate) [6091-58-3 (6 H_2O), 76-09-5 (anhydrous)] M 194.3, m 46.5°, b 59°/4mm. Distil pinacol, then crystallise it repeatedly from water. (See also below.) [Beilstein 1 IV 2575.]

Pinacol (anhydrous) [76-09-5] M 118.1, m 41.1°, b 172°. The hydrate is rendered anhydrous by azeotropic distillation of water with *benzene. Recrystallise it from *benzene or toluene/pet ether, absolute EtOH or dry diethyl ether. It recrystallises from water to give the *hexahydrate*. [*Beilstein* 1 IV 2575.]

Pinacolone see tert-butyl methyl ketone.

Pinacolone oxime [2475-93-6] **M 115.2, m 75.5-76°, 78°, 78.5-79.5°, 171.6°/748mm.** Crystallise the oxime from aqueous EtOH, EtOH (small needles) or pet ether (plates). [Markownikoff *Chem Ber* **32** 1448 1899, Smith & Atkins *J Am Chem Soc* **60** 660 1938, Whitmore et al. *J Am Chem Soc* **61** 684 1939, Beilstein **1** H 694, **1** II 750, **1** III 2842, **1** IV 3310.]

Pivalic acid (trimethylacetic acid) [75-98-9] M 102.1, m 35.4°, b 71-73°/0.1mm, pK²⁵ 5.03. Fractionally distil the acid under reduced pressure, then fractionally crystallise it from its melt. Recrystallise it from *benzene. [*Beilstein* 2 IV 908.]

Pivaloyl chloride (trimethylacetyl chloride) [3282-30-2] M 120.6, b 57.6°/150mm, 70.5-71/250mm, 104°/754mm, 104-105°/atm, 105-108°/atm, d_4^{20} 1.003, n_D^{20} 1.4142. First check the IR to see if OH bands are present. If absent, or present in small amounts, then redistil it under a moderate vacuum. If present in large amounts then treat it with oxalyl chloride or thionyl chloride and reflux for 2-3hours, evaporate and distil the residue. Strongly LACHRYMATORY - work in a fumecupboard. Store it in sealed ampoules under N₂. [Traynham & Battiste J Org Chem 22 1551 1957, Grignard reactions: Whitmore et al. J Am Chem Soc 63 647 1941, Beilstein 2 IV 912.]

Polyacrylonitrile [25014-41-9]. Precipitate it from dimethylformamide by addition of MeOH.

Poly(diallyldimethylammonium) chloride [26062-79-3]. Precipitate it from water with acetone, and dry the salt in a vacuum for 24hours. [Hardy & Shriner J Am Chem Soc **107** 3822 1985.]

Polyethylene [9002-88-4]. Crystallise it from thiophen-free *benzene and dry it over P2O5 under vacuum.

Polymethyl acrylate [9003-21-8]. Precipitate it from a 2% solution in acetone by addition of water.

Polyvinyl acetate [9003-20-7]. Precipitate it from acetone by addition of *n*-hexane.

Polyvinyl chloride [9002-81-2]. Precipitate it from cyclohexanone by addition of MeOH.

Propane [74-98-6] **M 44.1, m -189.7, b -42.1^o/760mm, d²⁰₄ 0.5005, n²⁰_D 1.2898.** Purify propane by bromination of the olefinic contaminants. Propane is treated with bromine for 30minutes at 0^o. Unreacted bromine is quenched, and the propane is distilled through two -78^o traps and collected at -196^o [Skell et al. *J Am Chem Soc* 108 6300 *1986*]. It autoignites at 450^o and the flash point is -104^o. It is highly **FLAMMABLE** and is available in metal cylinders. [*Beilstein* 1 H 103, 1 I 33, 1 II 71, 1 III 204, 1 IV 175.]

Propane-1,2-diamine (propylenediamine) [78-90-0] **M 74.1, b 120.5%** 20 **0.868,** n_D^{20} **1.446,** pK_1^{25} **6.61,** pK_2^{25} **9.82.** Purify the diamine by azeotropic distillation with toluene. Then distil it. Store it in a CO₂ free atmosphere. [Horton et al. *Anal Chem* **27** 269 1955, *Beilstein* **4** IV 1255.]

Propane-1,2-diol (propyleneglycol) [57-55-6] **M 76.1, b 104°/32mm, d** $_{4}^{20}$ **1.040, n** $_{D}^{20}$ **1.433.** Dry the diol with Na₂SO₄, decant and distil it under reduced pressure. [*Beilstein* **1** IV 2468.]

Propane-1,3-diol [504-63-2] **M 76.1, b 110-122°/12mm, d** $_{4}^{20}$ **1.053, n**^{18.5} **1.4398.** Dry this diol with K₂CO₃ and distil it under reduced pressure. More extensive purification involves conversion with benzaldehyde to 2-*phenyl-1,3-dioxane* (**m** 47-48°) which is subsequently decomposed by shaking with 0.5M HCl (3mL/g) for 15minutes and standing overnight at room temperature. After neutralisation with K₂CO₃, the benzaldehyde is removed by steam distillation and the diol is recovered from the remaining aqueous solution by continuous extraction with CHCl₃ for 1day. The extract is dried with K₂CO₃, the CHCl₃ is evaporated and the diol is distilled. [Foster et al. *Tetrahedron* **6** 177 *1961*, *Beilstein* **1** IV 2493.]

Propane-1-thiol [107-03-9] **M 76.1, b 65.3°/702mm, d** $_{4}^{25}$ **0.83598, n** $_{D}^{25}$ **1.43511, pK**²⁰ **10.82.** Purify the thiol by dissolving it in aqueous 20% NaOH, extracting with a small amount of *benzene and steam distilling until clear. After cooling, the solution is acidified slightly with 15% H₂SO₄, and the thiol is distilled out, dried with anhydrous CaSO₄ or CaCl₂, and fractionally distilled under nitrogen. [Mathias & Filho J Phys Chem **62** 1427 1958.] Also purify it by liberating the mercaptan by adding dilute HCl to the residue remaining after steam distilling. After direct distillation from the flask, and separation of the water, the mercaptan is dried (Na₂SO₄) and distilled under nitrogen. [*Beilstein* **1** IV 1449.]

Propane-2-thiol (Isopropyl mercaptan) [75-33-2] M 76.1, b 49.8% (696mm, d_4^{25} 0.80895, n_D^{25} 1.42154, pK²⁵ 10.86. Purify it as for propane-1-thiol above. [Beilstein 1 IV 1498.]

Propargyl alcohol (2-propyn-1-ol) [107-19-7] **M 56.1, b 54%** 57mm, **113.6%** 760mm, d_4^{20} **0.947, n_D^{20} 1.432.** The commercial material contains a stabiliser. An aqueous solution of propargyl alcohol can be concentrated by azeotropic distillation with butanol or butyl acetate. Dry it with K₂CO₃ and distil it under reduced pressure, in the presence of about 1% succinic acid, through a glass helices-packed column. [*Beilstein* **1** IV 2214.]

Propargyl chloride (3-chloropropyne) [624-65-7] M 74.5, b 58°/760mm, 65°/760mm, d_4^{20} 1.03, n_D^{20} 1.435. Purify the chloride by fractional distillation at atmospheric pressure. Note that a possible impurity is propargyl alcohol which has has b 114-115°/~760mm (see above). [Henry *Chem Ber* 8 398 1875.] HIGHLY TOXIC and FLAMMABLE. [*Beilstein* 1 IV 960.]

Propene (propylene) [115-07-1] M 42.1, m -185.2°, b -47.8°/750mm, d_4^{20} 0.519, n⁻⁷¹ 1.357. Purify it by freeze-pump-thaw cycles and trap-to-trap distillation. [*Beilstein* 1 IV 725.] β-Propiolactone see oxetan-2-one in "Heterocyclic Compounds", Chapter 4.

Propionaldehyde [123-38-6] **M 58.1, b 48.5-48.7°, d** $_{4}^{20}$ **0.804, n** $_{D}^{20}$ **1.3733, n** $_{D}^{25}$ **1.37115.** Dry the aldehyde with CaSO₄ or CaCl₂, and fractionally distil it under nitrogen or in the presence of a trace of hydroquinone (to retard oxidation). Blacet and Pitts [*J Am Chem Soc* **74** 3382 1952] repeatedly distilled the middle fraction in a vacuum until it no longer gave a solid polymer when cooled to -80°. It is stored with CaSO₄. [*Beilstein* **1** IV 3165.]

Propionamide [79-05-0] **M 73.1, m 79.8-80.8°, pK²⁴ -0.9** (H_0 scale, aqueous H_2SO_4). Crystallise it from acetone, *benzene, CHCl₃, water or acetone/water, then dry it in a vacuum desiccator over P₂O₅ or conc H₂SO₄. [*Beilstein* **2** H 243, **2** I 108, **2** II 223, **2** III 542, **2** IV 725.]

Propionic acid [79-09-4] **M 74.1, b 141°, d** $_{4}^{20}$ **0.992, n** $_{D}^{20}$ **1.3865, n** $_{D}^{25}$ **1.3843, pK** $_{1}^{25}$ **-6.8 (H**_o **scale, aqueous H**₂**SO**₄**), pK** $_{2}^{25}$ **4.88.** Dry the acid with Na₂SO₄ or by fractional distillation, then redistil after refluxing with a few crystals of KMnO₄. An alternative purification uses conversion to the ethyl ester, fractional distillation and hydrolysis. [Bradbury *J Am Chem Soc* **74** 2709 *1952*.] Propionic acid can also be heated for 0.5hour with an amount of benzoic anhydride equivalent to the amount of water present (in the presence of CrO₃ as catalyst), followed by fractional distillation. [Cham & Israel *J Chem Soc* **196** *1960*, *Beilstein* **2** IV 695.]

Propionic anhydride [123-62-6] M 130.2, b 67°/18mm, 168°/780mm, d_4^{20} 1.407, n_D^{20} 1.012. Shake the anhydride with P₂O₅ for several minutes, then distil. [Beilstein 2 IV 722.]

Propionitrile [107-12-0] **M 55.1, b 97.2°, d** $_{4}^{20}$ **1.407, n**¹⁵ **1.36812, n**³⁰ **1.36132.** Shake the nitrile with dilute HCl (20%), or with conc HCl until the odour of isonitrile has gone, then wash it with water, and aqueous K₂CO₃. After a preliminary drying with silica gel or Linde type 4A molecular sieves, it is stirred with CaH₂ until hydrogen evolution ceases, then decant and distil from P₂O₅ (not more than 5g/L, to minimise gel formation). Finally, it is refluxed with, and slowly distilled from CaH₂ (5g/L), taking precautions to exclude moisture. [*Beilstein* **2** IV 728.]

n-Propyl acetate [109-60-4] M 102.1, b 101.5°, d_4^{20} 0.887, n_D^{20} 1.38442, pK²⁵ -7.18 (H_o scale, aqueous H₂SO₄). Wash the ester with saturated aqueous NaHCO₃ until neutral, then with saturated aqueous NaCl. Dry it with MgSO₄ and fractionally distil it. [*Beilstein* 2 IV 138.]

n-Propyl alcohol (1-propanol) [71-23-8] M 60.1, b 97.2°, d_4^{25} 0.79995, n_D^{20} 1.385, pK²⁵ 16.1. The main impurities in *n*-propyl alcohol are usually water and 2-propen-1-ol, reflecting the commercial production by hydration of propene. Water can be removed by azeotropic distillation either directly (azeotrope contains 28% water) or by using a ternary system, e.g. by also adding *benzene. Alternatively, for removal of gross amounts of water, reflux over CaO for several hours is desirable, followed by distillation and a further drying. To obtain more nearly anhydrous alcohol, suitable drying agents are firstly NaOH, CaSO₄ or K₂CO₃, then CaH₂, aluminium amalgam, magnesium activated with iodine, or a small amount of sodium. Alternatively, the alcohol can be refluxed with *n*-propylsuccinate or phthalate in a method similar to the one described under EtOH. Allyl alcohol is removed by adding bromine (15mL/L) and then fractionally distilling from a small amount of K₂CO₃. Propionaldehyde, also formed in the bromination, is removed as the 2,4-dinitrophenylhydrazone. *n*-Propyl alcohol can be dried down to 20ppm of water by passage through a column of pre-dried molecular sieves (type 3 or 4A, heated for 3hours at 300°) in a current of nitrogen. Distillation from sulfanilic or tartaric acids removes impurities.

Albrecht [*J Am Chem Soc* **82** 3813 1960] obtained spectroscopically pure material by heating with charcoal to 50-60°, filtering and adding 2,4-dinitrophenylhydrazine and a few drops of conc H₂SO₄. After standing for several hours, the mixture is cooled to 0°, filtered and distilled in a vacuum. Gold and Satchell [*J Chem Soc* 1938 1963] heated *n*-propyl alcohol with 3-nitrophthalic anhydride at 76-110° for 15hours, then recrystallised the resulting ester from H₂O, *benzene/pet ether (b 100-120°)(3:1), and *benzene. The ester was hydrolysed under reflux with aqueous 7.5M NaOH for 45minutes under nitrogen, followed by distillation (also under nitrogen). The fraction with **b** 87-92° is dried with K₂CO₃ and stirred under reduced pressure in the dark over 2,4-dinitrophenylhydrazine, then freshly distilled. Also purify it by adding 2g NaBH₄ to 1.5L of alcohol, gently

176

flushing with argon and refluxing for 1day at 50°. Then 2g of freshly cut sodium (washed with propanol) is added and refluxed for one day, and finally distilled, taking the middle fraction [Jou & Freeman *J Phys Chem* **81** 909 *1977*]. [*Beilstein* **1** IV 1413.]

n-Propylamine [107-10-8] M 59.1, b 48.5°, d_4^{20} 0.716, n_D^{20} 1.38815, pK²⁵ 10.69. Distil the amine from zinc dust, under reduced pressure, in an atmosphere of nitrogen. [Beilstein 4 IV 464.]

n-Propyl bromide. [106-94-5] M 123.0, b 71.0°, d_4^{20} 1.354, n^{15} 1.43695, n_b^{25} 1.43123. Likely contaminants include *n*-propyl alcohol and isopropyl bromide. The simplest purification procedure uses drying with MgSO₄ or CaCl₂ (with or without a preliminary wash of the bromide with aqueous NaHCO₃, then water), followed by fractional distillation away from bright light. Chien and Willard [*J Am Chem Soc* **79** 4872 1957] bubbled a stream of oxygen containing 5% ozone through *n*-propyl bromide for 1hour, then shook it with 3% hydrogen peroxide solution, neutralised it with aqueous Na₂CO₃, washed it with distilled water and dried it. This was followed by vigorous stirring with 95% H₂SO₄ until fresh acid did not discolour within 12hours. The propyl bromide was separated, neutralised, washed, dried with MgSO₄ and fractionally distilled. The centre cut was stored in the dark. Instead of ozone, Schuler and McCauley [*J Am Chem Soc* **79** 821 1957] added bromine and stored it for 4 weeks, the bromine then being extracted with aqueous NaHSO₃ before the sulfuric acid treatment was applied and finally distilled. Further purification is by preparative gas chromatography on a column packed with 30% SE-30 (General Electric ethylsilicone rubber) on 42/60 Chromosorb P at 150° and 40psi, using helium. [Chu *J Phys Chem* **41** 226 1964, Beilstein **1** IV 205.]

n-Propyl chloride [540-54-5] M 78.5, b 46.6°, d_4^{20} 0.890, n_D^{20} 1.3880. Dry the chloride with MgSO₄ and fractionally distil. It can be more extensively purified using extraction with H₂SO₄ as for *n*-propyl bromide. Alternatively, Chien and Willard [*J Am Chem Soc* 75 6160 1953] passed a stream of oxygen containing about 5% ozone through the *n*-propyl chloride for three times as long as was needed to cause the first coloration of starch iodide paper by the exit gas. After washing with aqueous NaHCO₃ to hydrolyse ozonides and remove organic acids, the chloride was dried with MgSO₄ and fractionally distilled. [*Beilstein* 1 IV 189.]

Propylene glycol diacetate (1,2-diacetoxypropane, propylene diacetate) [623-84-7] M 160.2, b 84-85°/12mm, 191°/760mm, d_4^{25} 1.050, n_D^{20} 1.414. Wash the ester with aqueous NaHCO₃ in the presence of solid NaCl, dry it with MgSO₄ and fractionally distil it. [Beilstein 2 H 142, 2 II 156, 2 III 312, 2 IV 220.]

Propylene glycol 1-methylether (1-methoxy-2-propanol) $[RS(\pm) 107-98-2, R(+) 4984-22-9, S(-) 26550-55-0]$ **M 90.1, b 119-120°/atm for** RS**, 131-132°/atm for** R **or** S**, d**²⁵₄ **0.922, n**²⁰_D **1.403.** Wash the ethers with aqueous NaHCO₃ in the presence of solid NaCl, dry them with MgSO₄ and fractionally distil them. The *RS-acetate* [108-65-6] **M** 132.2 has **b** 145-146°/atm. The R(+) and S(-) enantiomers have $[\alpha]^{20}_{D} \pm 20.5^{\circ}$ (c 10, H₂O). [Beilstein **1** II 536, **1** III 2146, **1** IV 2471.]

n-Propyl ether (dipropyl ether) [111-43-3] M 102.2, b 90.1°, d_4^{20} 0.740, n^{15} 1.38296, n_D^{20} 1.3803, pK^{25} -4.40 (aqueous H₂SO₄). Purify the ether by drying with CaSO₄, by passage through an alumina column (to remove peroxides), and by fractional distillation. [*Beilstein* 1 III 2146, 1 IV 1422.]

Propyl formate [110-74-7] **M 88.1, b 81.3°, d_4^{20} 0.9058, n_D^{20} 1.3779.** Distil the formate, then wash it with saturated aqueous NaCl, and with saturated aqueous NaHCO₃ in the presence of solid NaCl, dry it with MgSO₄ and fractionally distil it. [*Beilstein* 2 IV 26.]

n-Propyl iodide (1-iodopropane) [107-08-4] M 170.0, b 38°/80mm, 102.5°/atm, d_4^{20} 1.745, n 1.5041. It should be distilled first under reduced pressure to avoid decomposition. Dry the iodide with MgSO₄ or silica gel and fractionally distil it. Store it under nitrogen with mercury in a brown bottle. Prior to distillation, free iodine can be removed by shaking with copper powder or by washing with aqueous Na₂S₂O₃ and drying. Alternatively, the *n*-propyl iodide can be treated with bromine, then washed with aqueous Na₂S₂O₃, dried and distilled. See also *n*-butyl iodide. [Beilstein 1 IV 222.]

n-Propyl propionate [106-36-5] M 120.2, b 122°, d_4^{20} 0.881, n 1.393. Treat the ester with anhydrous CuSO₄, then distil it under nitrogen. [*Beilstein* 2 IV 707.]

Propyne [74-99-7] **M 40.1, m -101.5°, b -23.2°/760mm, d⁻⁵⁰ 0.7062, n⁻⁴⁰ 1.3863.** Purify it by preparative gas chromatography. [*Beilstein* 1 H 246.]

Pyruvic acid [127-17-3] **M 88.1, m 13^o, b 65^o/10mm, pK²⁵ 2.39** (2.60). Distil it twice, then fractionally crystallise it by partial freezing. [*Beilstein* 3 IV 1505.]

Ricinoleic acid (*dl* 12-hydroxyoleic acid) [141-22-0] M 298.5, m 7-8° (α -form), 5.0° (γ -form), n_D^{20} 1.4717, pK_{Est}~4.5. Purify it as the methyl acetylricinoleate [Rider J Am Chem Soc 53 4130 1931], fractionally distilling it at 180-185°/0.3mm, then 87g of this ester is hydrolysed by refluxing with KOH (56g), water (25mL), and MeOH (250mL) for 10minutes. The free acid is separated on acidification and extracted into Et₂O, dried (Na₂SO₄), filtered, evaporated and the residue is crystallised from acetone at -50°, and distilled in small batches, b 180°/0.005mm. The *R*-enantiomer has m +5.5°, b 245°/10mm and [α] ²⁶_D +7.2° (c 5, Me₂CO). [Bailey et al. J Chem Soc 3027 1957, Beilstein 3 IV 1026, 1207.]

Sebacic acid (1,10-decanedioic acid) [111-20-6] M 202.3, m 134.5°, pK_1^{25} 4.58, pK_2^{25} 5.54. Purify sebacic acid *via* the disodium salt which, after crystallisation from boiling water (charcoal), is again converted to the free acid. The free acid is crystallised repeatedly from hot distilled water or from Me₂CO/pet ether and dried under vacuum. [*Beilstein* 2 IV 2078.]

Sebacic acid monomethyl ester [818-88-2] M 216.3, m 42-43°, b 169-171°/4mm. Recrystallise the ester from Me₂CO/pet ether or pet ether at low temperature and distil it in a vacuum. [Beilstein 2 IV 608.]

Sebaconitrile (decanedinitrile) [1871-96-1] M 164.3, m 8°, b 199-200°. Mix the nitrile with P₂O₅ (10% by wt) and distilled from it, then redistil it. [*Beilstein* 2 IV 2089.]

Semicarbazide hydrochloride (hydrazine carboxamide hydrochloride) [563-41-7] M 111.5, m 173°(dec), 175°(dec), pK^{24} 3.66. Crystallise the salt from aqueous 75% EtOH and dry it under vacuum over CaSO₄. Alternatively crystallise it from a mixture of 3.6 mole % MeOH and 6.4 mole % of water. [Kovach et al. *J Am Chem Soc* 107 7360 1985.] IR: v_{max} 700, 3500 cm⁻¹ [Ingersoll et al. *Org Synth* Coll Vol I 485 1941, Davison & Christie *J Chem Soc* 3389 1955, Thiele & Stange *Chem Ber* 27 33 1894, pK: Bartlett *J Am Chem Soc* 54 2853 1923]. The *free base* crystallises as prisms from absolute EtOH, m 96°. [Curtius & Heidenreich *Chem Ber* 27 55 1894, *Beilstein* 3 IV 177.] TOXIC ORALLY, possible CARCINOGEN and TERATOGEN.

Senecialdehyde (3,3-dimethylacraldehyde, 3-methyl-2-butenal) [107-86-8] M 84.1, b 78-80%/70mm, 133-135%/atm, d_4^{20} 0.911, n_D^{20} 1.428. This flammable oil oxidises readily and should be fractionated under N₂. It should be stored under N₂ and/or vacuum. The UV has λ_{max} at 235.5nm. The semicarbazone has m 221-222% (from MeOH) and the 2,4-dinitrophenylhydrazone has m 184-185% (from MeOH). [Forbes & Skilton J Org Chem 24 436 1959, Beilstein 1 III 2990, 1 IV 3464.]

- Skellysolve A is essentially *n*-pentane, b 28-30°,
- Skellysolve A is essentially n-hexane, b 60-68°,
- Skellysolve C is essentially *n*-heptane, **b** 90-100°,
- Skellysolve D is mixed heptanes, b 75-115°,
- Skellysolve E is mixed octanes, b 100-140°,
- Skellysolve F is pet ether, b 30-60°,
- Skellysolve G is pet ether, b 40-75°,
- Skellysolve H is hexanes and heptanes, b 69-96°,
- Skellysolve L is essentially octanes, b 95-127°. For methods of purification, see petroleum ether.

Solanone [S(+)-trans-2-methyl-5-isopropyl-1,3-nonan-8-one] [1937-54-8] M 194.3, b 60°/1mm, n_D^{20} 1.4755, $[\alpha]_D^{20}$ +14° (neat). Purify solanone by high vacuum distillation and store it in sealed ampules [Kohda & Sato J Chem Soc, Chem Commun 951 1981]. It has UV (hexane) at λ_{max} 230nm (ε 11,800). The semicarbazone crystallises from aqueous EtOH or toluene with m 160.5-161.5°. [Johnson et al. J Org Chem 30 2918 1965.]

Sorbic acid (2,4-hexadienoic acid) [110-44-1] M 112.1, m 134°, pK^{25} 4.76. Crystallise the acid from water. Dry it air or in a desiccator over P₂O₅. [*Beilstein* 2 IV 1701.]

Spermidine [N-(3-aminopropyl)-1,4-diaminobutane] [124-20-9] M 145.3, m 23-25°, b 128-131°/15mm, d_4^{20} 0.918, n_D^{20} 1.482, pK_1^{25} 8.25, pK_2^{25} 9.64, pK_3^{25} 10.43. It is a strong base with an alkylamine odour and absorbs CO₂ from the atmosphere. It is purified by shaking with solid K₂CO₃ or NaOH, decanting and distilling from K₂CO₃ in a vacuum. Store it in the dark under N₂. [*Beilstein* 4 IV 1300.]

Spermidine trihydrochloride [334-50-9] M 245.3, m ~250°(dec), 256-258°, for pKa see free base above. Recrystallise the salt from dry 3% HCl in ethanol and adding dry Et_2O if necessary. Filter it off rapidly and dry it in a vacuum desiccator. Alternatively centrifuge the crystals off, wash them with dry Et_2O and dry them in a vacuum. [Beilstein 4 IV 1300.]

Spermine 4HCl (*N*,*N*-bis(3-aminopropyl)-1,4-butanediamine 4HCl) [306-67-2] M 348.2, m 313-315°. Its pK values are similar to those of spermidine above. Purify it as for spermidine trihydrochloride above. [*Beilstein* 4 IV 1301.]

Stearic acid (octadecanoic acid) [57-11-4] M 284.5, m 71.4°, 72°, b 144-145°/27mm, 383°/760mm, d_4^{20} 0.911, n_D^{20} 1.428, pK_{Est} ~5.0. Crystallise stearic acid from acetone, acetonitrile, EtOH (5 times), aqueous MeOH, ethyl methyl ketone or pet ether (b 60-90°), or by fractional precipitation by dissolving in hot 95% EtOH and pouring into distilled water, with stirring. The precipitate, after washing with distilled water, is dried under vacuum over P₂O₅. It has also been purified by zone melting and partial freezing. [Tamai et al. J Phys Chem 91 541 1987, Beilstein 2 IV 1206.]

Suberic acid (hexane-1,6-dicarboxylic acid) [505-48-6] M 174.2, m 141-142°, pK_1^{25} 4.12, pK_2^{25} 5.40. Crystallise it from acetone. It sublimes at 300° without decomposition. [*Beilstein* 2 IV 2028.]

Succinamic acid (succinic acid amide) [638-32-4] M 117.1, m 155°, 156-157°, pK²⁵ 4.54. Crystallise the amide from Me₂CO or H₂O and dry it in a vacuum. It is not very soluble in MeOH. It is converted to succinimide above 200°. [Beilstein 2 H 614.]

Succinamide [110-14-5] M 116.1, m 262-265°(dec). Crystallise it from water. [Beilstein 2 H 614.]

Succinic acid [110-15-6] M 118.1, m 185-185.5°, pK_1^{25} 4.21, pK_2^{25} 5.72. Wash it with diethyl ether. Crystallise it from acetone, distilled water, or *tert*-butanol. Dry it under vacuum over P₂O₅ or conc H₂SO₄. Also purify it by conversion to the disodium salt which, after crystallisation from boiling water (charcoal), is treated with mineral acid to regenerate the succinic acid. The acid is then recrystallised and dried in a vacuum. [*Beilstein* **2** H 606, **2** IV 1908.]

Succinic anhydride [108-30-5] **M 100.1, m 119-120°.** Crystallise the anhydride from redistilled acetic anhydride or CHCl₃, then filter, wash with diethyl ether and dry it in a vacuum. [*Beilstein* **17** H 606, **17** V 6.]

Succinimide [123-56-8] M 99.1, m 124-125°, pK²⁵9.62. Crystallise the imide from EtOH (1mL/g) or water. [*Beilstein* 21 H 369, 21/9 V 438.]

Succinonitrile [110-61-2] M 80.1, m 57.9°, b 108°/1mm, 267°/760mm. Purify the nitrile by vacuum sublimation, and/or crystallisation from acetone. [*Beilstein* 2 H 615, 2 IV 1923.]

D(-)-Tartaric acid [147-71-7] M 150.1, m 169.5-170^o (2S,3S-form, natural) [α] $_{546}^{20}$ -15^o (c 10, H₂O), m 208^o (2RS,3RS-form), pK₁²⁵ 3.03, pK₂²⁵ 4.46, pK₃²⁵ 14.4. Crystallise the acid from distilled H₂O or *benzene/diethyl ether containing 5% of pet ether (b 60-80^o) (1:1). Soxhlet extraction with diethyl ether has been used to remove an impurity absorbing at 265nm. It has also been crystallised from absolute EtOH/hexane and dried in a vacuum for 18hours [Kornblum & Wade J Org Chem 52 5301 1987]. [Beilstein 3 IV 1229.]

meso-Tartaric acid [147-73-9] M 150.1, m 139-141°, pK_1^{25} 3.17, pK_2^{25} 4.91. Crystallise it from water, wash it with cold MeOH and dry it at 60° under vacuum. [*Beilstein* 3 IV 1218.]

Tetra-*n***-amylammonium bromide (tetra-***n***-pentylammonium bromide) [866-97-7] M 378.5, m 100-101°. Crystallise it from pet ether, *benzene or acetone/ether mixtures and dry in vacuum at 40-50° for 2 days. It is used in ion-paired chromatography (Sagara et al.** *J Chromatogr* **328** 289 1985). [*Beilstein* **4** IV 677.]

Tetra-*n*-**amylammonium iodide** [2498-20-6] **M 425.5, m 135-137°.** Crystallise the iodide from EtOH and dry it at 35° under a vacuum. It has also been purified by dissolving in acetone and precipitating by adding diethyl ether, and drying at 50° for 2 days. [*Beilstein* **4** IV 677.]

1,1,2,2,-Tetrabromoethane [79-27-6] M 345.7, f 0.0°, b 119°/15mm, 243.5°/atm, d_4^{20} 2.965, n_D^{20} 1.63533. Wash it successively with conc H₂SO₄ (three times) and H₂O (three times), dry it with K₂CO₃ and CaSO₄ and distil it in a vacuum or at ~760mm. [*Beilstein* 1 IV 162.]

Tetra-*n***-butylammonium bromide** [1643-19-2] **M** 322.4, **m** 119.6°. Crystallise the salt from *benzene (5mL/g) at 80° by adding hot *n*-hexane (three volumes) and allowing to cool. Dry it over P_2O_5 or Mg(ClO₄)₂, under vacuum. The salt is *very hygroscopic*. It can also be crystallised from ethyl acetate or dry acetone by adding diethyl ether and dried *in vacuo* at 60° for 2 days. It has been crystallised from acetone by addition of diethyl ether. It is so *hygroscopic* that all manipulations should be carried out in a dry-box. It has been purified by precipitation from a saturated solution in dry CCl₄ on addition of cyclohexane or by recrystallisation from ethyl acetate, then heating in vacuum to 75° in the presence of P_2O_5 . [Symons et al. *J Chem Soc, Faraday Trans 1* 76 2251 *1908*.] It also recrystallises from CH₂Cl₂/diethyl ether and is dried in a vacuum desiccator over P_2O_5 . [Blau & Espenson *J Am Chem Soc* 108 1962 *1986*, *Beilstein* 4 IV 657.]

Tetra-*n***-butylammonium chloride** [1112-67-0] **M 277.9, m 15.7°.** Crystallise the chloride from acetone by addition of diethyl ether. It is very **hygroscopic** and forms crystals with 34H₂O. It is used in ion-paired chromatography (Sagara et al. *J Chromatogr* **328** 289 1985). [*Beilstein* **4** IV 557.]

Tetra-*n***-butylammonium fluoroborate** See tetrabutyl-ammonium fluoroborate in "Metal-organic Compounds", Chapter 5.

Tetra-*n***-butylammonium hexafluorophosphate** [3109-63-5] **M 387.5, m 239-241°.** Recrystallise it from saturated EtOH/water and dry it for 10hours in a vacuum at 70°. Also recrystallise it three times from absolute EtOH and dry it for 2 days in a drying pistol under a vacuum at boiling toluene temperature [Bedard & Dahl J Am Chem Soc **108** 5933 1986]. It is a stable supporting electrolyte in organic solvents [Baiser in Organic Electrochemitry M. Dekker NY p228 1973.]

Tetra-*n*-butylammonium hydrogen sulfate [32503-27-8] M 339.5, m 171-172°. The sulfate crystallises from acetone. It has been used as a phase transfer catalyst.

Tetra-*n***-butylammonium iodide** [311-28-4] **M 369.4, m 146°.** Crystallise the iodide from toluene/pet ether (see entry for the corresponding bromide), acetone, ethyl acetate, EtOH/diethyl ether, nitromethane, aqueous EtOH or water. Dry it at room temperature under a vacuum. It has also been dissolved in MeOH/acetone (1:3, 10mL/g), filtered and allowed to stand at room temperature to evaporate to *ca* half its original volume. Distilled water (1mL/g) is then added, and the precipitate is filtered off and dried. It can also be dissolved in acetone, precipitated by adding ether and dried in a vacuum at 90° for 2 days. It has also been

recrystallised from CH₂Cl₂/pet ether or hexane, or anhydrous methanol and stored in a vacuum desiccator over H₂SO₄. [Chau & Espenson *J Am Chem Soc* **108** 1962 *1986*, *Beilstein* **4** IV 558.]

Tetra-*n***-butylammonium nitrate** [1941-27-1] **M 304.5, m 119°.** Crystallise it from *benzene (7mL/g), EtOH or EtOAc (m 121-122°); dry it in a vacuum over P_2O_5 at 60° for 2 days. [Beilstein 4 IV 558.]

Tetra-*n***-butylammonium perchlorate** [1923-70-2] **M** 341.9°, **m** 210°(dec). Crystallise the perchlorate from EtOH ethyl acetate, from *n*-hexane or diethyl ether/acetone mixture, ethyl acetate or hot CH₂Cl₂. Dry it in a vacuum at room temperature over P₂O₅ for 24hours. [Anson et al. J Am Chem Soc 106 4460 1984, Ohst & Kochi J Am Chem Soc 108 2877 1986, Collman et al. J Am Chem Soc 108 2916 1986, Blau & Espenson J Am Chem Soc 108 1962 1986, Gustowski et al. J Am Chem Soc 108 1986, Ikezawa & Kutal J Org Chem 52 3299 1987, Beilstein 4 IV 557.]

Tetra-*n*-butylammonium picrate [914-45-4] **M 490.6**, m 106.5-107°. Crystallise the picrate from EtOH. Dry it in a vacuum desiccator over P_2O_5 . [*Beilstein* 6 II 271, 4 III 292.]

Tetra-*n*-butylammonium tetrabutylborate ($Bu_4N^+ Bu_4B^-$) [23231-91-6] M 481.7, m 155°, 161.8°. Dissolve it in MeOH or acetone, and crystallise by adding distilled water. It also crystallises from EtOH or EtOAc. Dry it in a vacuum at 70°. It has also been successively recrystallised from isopropyl ether, isopropyl ether/acetone (50:1) and isopropyl ether/EtOH (50:1) for 10hours, then isopropyl ether/acetone for 1hour, and dried at 65° under reduced pressure for 1 week. [Kondo et al. *J Chem Soc, Faraday Trans 1* 76 812 1980, *Beilstein* 4 III 293, 4 III 558.]

1,1,2,2-Tetrachloro-1,2-difluoroethane [72-12-0] M **203.8, f 26.0°, b 92.8°/760mm,** d_4^{25} **1.6252,** n_D^{25} **1.4130.** Purify it as for trichlorotrifluoroethane. [*Beilstein* **1** III 165, **1** III 146.]

sym-Tetrachloroethane [79-34-5] M 167.9, b 62°/100mm, 146.2°/atm, d_4^{20} 1.588, n_D^{15} 1.49678. Stir the ethane, on a steam-bath, with conc H₂SO₄ until a fresh portion of acid remains colourless. The organic phase is then separated, distilled in steam, dried (CaCl₂ or K₂CO₃), and fractionally distilled in a vacuum. [*Beilstein* 1 IV 144.]

Tetrachloroethylene [127-18-4] **M 165.8, b 62°/80mm, 121.2°, d**¹⁵ **1.63109, d**²⁰ **1.623, n**¹⁵ **1.50759, n 1.50566** It decomposes under similar conditions to CHCl₃, to give phosgene and trichloroacetic acid. Inhibitors of this reaction include EtOH, diethyl ether and thymol (effective at 2-5ppm). Tetrachloroethylene should be distilled under a vacuum (to avoid phosgene formation) and stored in the dark out of contact with air. It can be purified by washing with 2M HCl until the aqueous phase no longer becomes coloured, then with water, drying with Na₂CO₃, Na₂SO₄, CaCl₂ or P₂O₅, and fractionally distilling just before use. 1,1,2-Trichloroethane and 1,1,1,2-tetrachloroethane can be removed by counter-current extraction with EtOH/water. [*Beilstein* **1** IV 715.]

Tetracosane (C24) [646-31-1] M 338.7, m 54°, b 243-244°/15mm. Crystallise it from diethyl ether and/or distil it under high vacuum. [*Beilstein* 1 IV 578.]

Tetracosanoic (lignoceric) acid [557-59-5] **M 368.7, m 84°, 87.5-88°, pK**_{Est} ~5.0. Crystallise the acid from acetic acid, Me₂CO, toluene, pet ether/Me₂CO or*C₆H₆/Me₂CO. [*Beilstein* 2 IV 1301.]

Tetracyanoethylene [670-54-2] **M 128.1, m 199-200°(sealed tube).** Crystallise it from chlorobenzene, dichloroethane, or dichloromethane [Hall et al. J Org Chem **52** 5528 1987]. Store it at 0° in a desiccator over NaOH pellets. (It slowly evolves HCN on exposure to moist air **CARE**.) It can also be sublimed at 120° under vacuum. Also purify it by repeated sublimation at 120-130°/0.5mm. [Frey et al. J Am Chem Soc **107** 748 1985, Traylor & Miksztal J Am Chem Soc **109** 2778 1987, Fatiadi Synthesis 249 1986, Synthesis 749 1967, Beilstein **2** IV 1245.]

Tetradecane (C14) [629-59-4] M 198.4, m 6°, b $122^{\circ}/10$ mm, $252-254^{\circ}$, d_4^{20} 0.763, n_D^{20} 1.429. Wash it successively with 4M H₂SO₄ and water. Dry it over MgSO₄ and distil it several times under

Purification of Organic Chemicals - Aliphatic Compounds

reduced pressure [Poë et al. *J Am Chem Soc* **108** 5459 *1986*]. It is used as a standard in gas chromatography. [*Beilstein* **1** H 171, **1** IV 520.]

1-Tetradecanol [112-72-1] **M 214.4, m 39-39.5°, b 160°/10mm, 170-173°/20mm.** Crystallise the alcohol from aqueous EtOH. It has also been purified by zone melting. [*Beilstein* **1** IV 1864.]

Tetradecyl ether (di-tetradecyl ether) [5412-98-6] **M 410.7, m 43.5°, d** $_{4}^{43}$ **0.8117.** Distil the ether under a vacuum and then crystallise it repeatedly from MeOH/*benzene. It also crystallises from MeOH alone (**m** 31.2°, 33°, 44.4°), or Me₂CO (**m** 43.5°). [Di Giacomo & Smyth *J Am Chem Soc* **78** 2027 1956, *Beilstein* **1** IV 1865.]

Tetradecyltrimethylammonium bromide (myristyl trimthylammonium bromide) [1119-97-7] **M 336.4, m 244-245°, 244-249°.** Crystallise the bromide from acetone or a mixture of Me₂CO and >5% MeOH or Me₂CO/EtOH. Wash it with diethyl ether and dry it in a vacuum oven at 60°. It is a cationic detergent. Its solubility is 1g/5g H₂O. [Dearden & Wooley *J Phys Chem* **91** 2404 1987, Shelton et al. *J Am Chem Soc* **68** 754 1946, Beilstein **4** III 419, **4** IV 813.]

Tetraethoxymethane See tetraethyl orthocarbonate below.

Tetraethylammonium bromide [71-91-0] **M 210.2, m 269°(dec), 284°(dec).** Recrystallise the bromide from EtOH, CHCl₃ or diethyl ether, or recrystallise it from acetonitrile and dry it over P_2O_5 under reduced pressure for several days. It also recrystallises from EtOH/diethyl ether (1:2), EtOAc, water or boiling MeOH/acetone (1:3) or by adding an equal volume of acetone and allowing to cool. Dry it at 100° *in vacuo* for 12 days, and store over P_2O_5 . [*Beilstein* **4** IV 332.]

Tetraethylammonium chloride hydrate [68696-18-4 (H_2O), 56-34-8 (anhydrous)] **M 165.7, m dec** >200°. Crystallise the chloride from EtOH by adding diethyl ether, from warm water by adding EtOH and diethyl ether, from dimethylacetamide or from CH₂Cl₂ by addition of diethyl ether. Dry it over P₂O₅ in vacuum for several days. It also crystallises from acetone/CH₂Cl₂/hexane (2:2:1) [Blau & Espenson *J Am Chem Soc* **108** 1962 *1986*, White & Murray *J Am Chem Soc* **109** 2576 *1987*]. [*Beilstein* **4** IV 332.]

Tetraethylammonium iodide [68-05-3] **M 257.2, m 302°, >300°(dec).** Crystallise the iodide from acetone/MeOH, EtOH/water, dimethylacetamide or ethyl acetate/EtOH (19:1). Dry it under a vacuum at 50° and store it over P_2O_5 . [*Beilstein* **4** IV 332.]

Tetraethylammonium perchlorate [2567-83-1] **M 229.7, m 345°(dec).** Crystallise the perchlorate repeatedly from water, aqueous MeOH, acetonitrile or acetone, and dry it at 70° under a vacuum for 24hours. [Cox et al. J Am Chem Soc **106** 5965 1984, Liu et al. J Am Chem Soc **108** 1740 1986, White & Murray J Am Chem Soc **109** 2576 1987.] It has also been crystallised twice from ethyl acetate/95% EtOH (2:1) [Lexa et al. J Am Chem Soc **109** 6464 1987]. [Beilstein **4** IV 332.]

Tetraethylammonium picrate [741-03-7] **M 342.1, m >300°(dec).** Purify it by successive crystallisations from water or 95% EtOH followed by drying in vacuum at 70°. [*Beilstein* **4** IV 332.]

Tetraethylammonium tetrafluoroborate See tetraethylammonium tetrafluoroborate in "Metal-organic Compounds", Chapter 5.

Tetraethylammonium tetraphenylborate [12099-10-4] **M 449.4.** Recrystallise the borate from aqueous acetone. Dry it in a vacuum oven at 60° for several days. Similarly for the propyl and butyl homologues. [Beilstein 4 IV 333.]

Tetraethylene glycol dimethyl ether [143-24-8] **M 222.3, b 105%/1mm, d_4^{20} 1.010, n_D^{20} 1.435. Stand the ether over CaH₂, LiAlH₄ or sodium, and distil it when required. [Beilstein 1 IV 2404.]**

Tetraethylenepentamine [112-57-2] **M 189.3, b 169-171% 0.05mm, d**²⁰ **0.999, n**²⁰ **1.506, pK**²⁵ **2.98, pK**²⁵ **4.72, pK**³⁵ **8.08, pK**²⁵ **9.10, pK**²⁵ **9.68.** Distil the amine under vacuum. Also purify *via* its penta hydrochloride, nitrate or sulfate. Jonassen, Frey and Schaafsma [*J Phys Chem* **61** 504 1957] cooled a solution of 150g of the base in 300mL of 95% EtOH, and added dropwise 180mL of conc HCl, keeping the temperature below 20%. The white precipitate was filtered off, crystallised three times from EtOH/water, then washed with diethyl ether and dried by suction. Reilley and Holloway [*J Am Chem Soc* **80** 2917 1958], starting with a similar solution cooled to 0%, added slowly (keeping the temperature below 10%) a solution of 4.5g-moles of HNO₃ in 600mL of aqueous 50% EtOH (also cooled to 0%). The precipitate was filtered by suction, recrystallised five times from aqueous 5% HNO₃, then washed with acetone and absolute EtOH and dried at 50%. [For purification *via* the sulfate see Reilley and Vavoulis (*Anal Chem* **31** 243 1959), and for an additional purification step using the Schiff base with benzaldehyde see Jonassen et al. *J Am Chem Soc* **79** 4279 1957]. [*Beilstein* **4** IV 1244.]

Tetraethyl 1,1,2,2-ethanetetracarboxylate [632-56-4] **M 318.3, m 73-74°.** Recrystallise the ester twice from EtOH by cooling to 0°. [Mochizuki et al. *Bull Chem Soc Jpn* **64** 1750 *1991*, Weinges et al. *Angew Chem* **93** 1008 *1981*, *Beilstein* **2** IV 2415.]

Tetraethyl orthocarbonate (ethyl orthocarbonate, tetraethoxy ethane) [78-09-1] M 192.3, b 59.6-60%/14mm, 158%/atm, 159%/atm, 160-161%/atm, d_4^{20} 0.9186, n_D^{20} 1.3932. Likely impurities are hydrolysis products. Shake the orthocarbonate with brine (saturated NaCl, dilute with a little Et₂O if amount of material is small) and dry (MgSO₄). The organic layer is filtered off and evaporated, and the residue is distilled through a helices packed fractionating column with a total reflux partial take-off head. All distillations can be done at atmospheric pressure in an inert atmosphere (e.g. N₂). [Roberts & McMahon *Org Synth* Coll Vol IV 457 1963, Connolly & Dyson J Chem Soc 828 1937, Tieckelmann & Post J Org Chem 13 266 1948, for review see Kantlehner et al. Justus Liebigs Ann Chem 507 207 1982, Beilstein 3 IV 6.]

2,2,3,3-Tetrafluoropropan-1-ol [76-37-9] **M 132.1, b 106-106.5**°/~760mm, pK^{25} **12.74.** Tetrafluoro-1-propanol (450mL) is added to a solution of 2.25g of NaHSO₃ in 90mL of water, shaken vigorously and set aside for 24hours. The fraction distilling at or above 99° is refluxed for 4hours with 5-6g of KOH and rapidly distilled, followed by a final fractional distillation. [Kosower & Wu *J Am Chem Soc* **83** 3142 *1961.*] Alternatively, shake the alcohol with alumina for 24hours, dry it overnight with anhydrous K₂CO₃ and distil it, taking the middle fraction (**b** 107-108°). [*Beilstein* **1** IV 2438.]

Tetra*-n***-heptylammonium bromide** [4368-51-8] **M 490.7, m 88.9-89.1**°. Crystallise the bromide from *n*-hexane, then dry it in a vacuum oven at 70°. [Goodrich et al. *J Am Chem Soc* **72** 4412 1950, Beilstein **4** IV 736.]

Tetra-*n*-heptylammonium iodide [3535-83-9] M 537.7, m 102-103°. Crystallise the iodide from EtOH or aqueous EtOH. [Eriksen et al. J Org Chem 25 849 1960, Beilstein 4 IV 736 for triheptylamine.]

Tetra*-n***-hexylammonium bromide** [4328-13-6] **M 434.6, m 99-100°.** Wash the bromide with ether, and dry it in a vacuum at room temperature for 3 days.

Tetra-n-hexylammonium chloride [5922-92-9] M 390.1. Crystallise the chloride from EtOH.

Tetra-*n***-hexylammonium iodide** [2138-24-1] **M 481.6, m 99-101°, 102-103°.** Wash the iodide with diethyl ether and dry it at room temperature *in vacuo* for 3 days. It is soluble in CH₂Cl₂. [Eriksen et al. J Org Chem **25** 849 1960, Beilstein **4** IV 711 for trihexylamine.]

Tetrahexylammonium perchlorate [4656-81-9] **M 454.1, m 104-106°.** Crystallise the salt from acetone and dry it *in vacuo* at 80° for 24hours.

Tetrakis(dimethylamino)ethylene [996-70-3] M 300.2, b 60°/1mm, d_4^{20} 0.861, n_D^{20} 1.4817, pK_{Est(1)}<0, pK_{Est(2)}<0, pK_{Est(3)}~ 1.5, pK_{Est(4)} 5.1. Impurities include tetramethylurea, dimethylamine, tetramethylethanediamine and tetramethyloxamide. It is washed with water while being flushed with nitrogen to

remove dimethylamine, dried over molecular sieves, then passed through a silica gel column (previously activated at 400°) under nitrogen. De-gas it in a vacuum line by distillation from a trap at 50° to one at -70°. Finally, it is stirred over sodium-potassium alloy for several days. [Holroyd et al. *J Phys Chem* **89** 4244 *1985*, Wiberg *Angew Chem Int Ed Engl* **7** 766 *1968*, *Beilstein* **4** IV 167.]

Tetramethylammonium bromide [64-20-0] **M 154.1, sublimes with dec >230°.** Crystallise the bromide from EtOH, EtOH/diethyl ether, MeOH/acetone, water or from acetone/MeOH (4:1) by adding an equal volume of acetone. It is dried at 110° under reduced pressure or at 140° for 24hours. [*Beilstein* **4** IV 145.]

Tetramethylammonium chloride [75-57-0] **M 109.6, m >230°(dec).** Crystallise the chloride from EtOH, EtOH/CHCl₃, EtOH/diethyl ether, acetone/EtOH (1:1), isopropanol or water. Traces of the free amine can be removed by washing with CHCl₃. [*Beilstein* **4** IV 145.]

Tetramethylammonium hydroxide (5H₂O) [10424-65-4 (5H₂O), 75-59-2 (aqueous solution)] M 181.2, m 63°, 65-68°. It is freed from chloride ions by passage through an ion-exchange column (e.g. Amberlite IRA-400, prepared in its OH⁻ form by passing 2M NaOH until the effluent is free from chloride ions, then washed with distilled H₂O until neutral). A modification, to obtain carbonate-free hydroxide, uses the method of Davies and Nancollas [*Nature* 165 237 1950]. [*Beilstein* 4 IV 145.]

Tetramethylammonium iodide [75-58-1] **M 201.1, m >230°(dec).** Crystallise the iodide from water or 50% EtOH, EtOH/diethyl ether, ethyl acetate, or from acetone/MeOH (4:1) by adding an equal volume of acetone. Dry it in a vacuum desiccator. [*Beilstein* **4** IV 145.]

Tetramethylammonium nitrate [1941-24-8] **M 136.2, m >300°, 410°.** Recrystallise the nitrate from EtOH and dry at 110° in an air oven. [Coats & Taylor *J Chem Soc* 1498 1936, Beilstein **4** III 113, **4** IV 147.]

Tetramethylammonium tetraphenylborate [15525-13-0] **M 393.3.** Recrystallise it from acetone, acetone/CCl₄ and from acetone/1,2-dichloroethane. Dry it over P_2O_5 in a vacuum, or in a vacuum oven at 60° for several days. [*Beilstein* **4** IV 145.]

N,N,N',N'-Tetramethylethylenediamine (TMEDA, TEMED) [110-18-9] M 116.2, m -55°, b 122°, d²⁰₄ 1.175, n²⁵_D 1.4153, pK²⁵₁ 5.90, pK²⁵₂ 9.14. Dry TMEDA partially with molecular sieves (Linde type 4A), then distil it in a vacuum from butyl lithium. This treatment removes all traces of primary and secondary amines and water. [Hay et al. *J Chem Soc*, *Faraday Trans 1* 68 1 1972.] Or dry it with KOH pellets, reflux for 2hours with one-sixth its weight of *n*-butyric anhydride (to remove primary and secondary amines) and fractionally distil it. Reflux it with fresh KOH, and distil it under nitrogen. [Cram & Wilson J Am Chem Soc 85 1245 1963.] It was also distilled from Na. Store it sealed under N₂. The *dipicrate* has m 263°(dec). [*Beilstein* 4 H 250, 4 I 415, 4 II 690, 4 III 512, 4 IV 1172.]

Tetramethylethylenediamine dihydrochloride [7677-21-8] **M 198.2, m ~300°.** Crystallise the salt from 98% EtOH/conc HCl. It is *hygroscopic*. [Knorr *Chem Ber* **37** 3510 *1904*, *Beilstein* **4** IV 1172.]

1,1,3,3-Tetramethylguanidine [80-70-6] **M 115.2, b 159-160°, d_4^{20} 0.917 n _D^{20} 1.470, pK²⁵ 13.6. Reflux it over granulated BaO, then fractionally distil it. Protect it from CO₂. [Beilstein 4 IV 227.]**

Tetramethyl orthocarbonate (methyl orthocarbonate, tetramethoxy methane) [1850-14-2] M 136.2, m -5.6°, -5°, -2°, b 113.5°/760mm, 113.5-114°/755mm, 112-114°/atm, d_4^{20} 1.0202, n $_D^{20}$ 1.3860. Purify it in the same way as for tetraethyl orthocarbonate. [Smith Acta Chem Scand 10 1006 1956, Tiekelmann & Post J Org Chem 13 266 1948, Kantlehner et al. Synthesis 73 1977, Beilstein 3 IV 4.]

2,6,10,14-Tetramethylpentadecane (pristane, norphytane) [1921-70-6] M 268.5, b 68° (bath temp)/0.004mm, 158°/10mm, 296°/atm, d_4^{20} 0.7827, n_D^{20} 1.4385. Purify pristane by shaking it with conc H₂SO₄ (care, if amount of pristane is too small then it should be diluted with pet ether *not* Et₂O which is quite soluble H₂SO₄), then H₂O (care, as it may heat up in contact with conc H₂SO₄), dry (MgSO₄), evaporate and distil it over Na. [Sörensen & Sörensen *Acta Chem Scand* 3 939 1949, *Beilstein* 1 III 570.]

184

Tetramethylthiuram disulfide [bis-(dimethylthiocarbamyl)disulfide, Thiram] [137-26-8] **M 240.4, m 146-148°, 155-156°.** Crystallise thiram (three times) from boiling CHCl₃, then recrystallise it from boiling CHCl₃ by adding EtOH dropwise to initiate crystallisation, and allow it to cool. Finally it is precipitated from cold CHCl₃ by adding EtOH (which retains the monosulfide in solution). [Ferington & Tobolsky J Am Chem Soc **77** 4510 1955, Beilstein **4** IV 242.]

1,1,3,3-Tetramethyl urea [632-22-4] **M 116.2, f -1.2°, b 175.2°/760mm, d_4^{20} 0.969, n_D^{20} 1.453.** Dry it over BaO and distil it under nitrogen. It denatures proteins in H₂O. [Elbaum & Herskovits *Biochemistry 13 1268 1974*, Kane *Anal Biochem* **53** 350 *1973*, *Beilstein* **4** IV 225.]

Tetranitromethane [509-14-8] **M 196.0, m 14.2°, b 46°/36mm, 21-23°/23mm, 126°/760mm,** d_4^{20} **1.640, n**_D²⁰ **1.438.** Shake tetranitromethane with dilute NaOH, wash, steam distil, dry with Na₂SO₄ and fractionally crystallise it by partial freezing. The melted crystals are dried with MgSO₄ and fractionally distilled under reduced pressure. Alternatively, shake it with a large volume of dilute NaOH until no absorption attributable to the *aci*-nitro anion (from mono- di- and tri- nitromethanes) is observable in the water. Then wash it with distilled water, and distil it at room temperature by passing a stream of air or nitrogen through the liquid and condensing it in a trap at -80°. It can be dried with MgSO₄ or Na₂SO₄, fractionally crystallised from the melt, and fractionally distilled under reduced pressure. [Liang *Org Synth* Coll Vol III 803 1955, *Beilstein* **4** H 80, **4** I 21, **4** II 45, **4** III 116, **4** IV 107.] **Potentially explosive** (when impure e.g. with toluene), toxic, carcinogenic.

Tetrapentylammonium bromide See tetra-*n*-amylammonium bromide above.

Tetra-*n*-propylammonium bromide [1941-30-6] M 266.3, $m > 280^{\circ}(dec)$. Crystallise it from ethyl acetate/EtOH (9:1), acetone or MeOH. Dry it at 110° under reduced pressure. [*Beilstein* 4 IV 471.]

Tetra-*n*-**propylammonium iodide** [631-40-3] **M 313.3, m >280°(dec).** Purify the iodide by crystallising it from EtOH, EtOH/diethyl ether (1:1), EtOH/water or aqueous acetone. Dry it at 50° under a vacuum and store it over P_2O_5 in a vacuum desiccator. Keep it away from light. [Beilstein 4 IV 472.]

Tetra-*n*-**propylammonium perchlorate** See tetrapropylammonium perchlorate in "Metal-organic Compounds", in Chapter 5.

Thioacetamide [62-55-5] **M 75.1, m 112-113°, pK²⁵ 13.4.** Crystallise the amide from absolute diethyl ether or *benzene. Dry it at 70° in a vacuum and store it over P_2O_5 at 0° under nitrogen. (*It develops an obnoxious odour on storage*, and absorption at 269nm decreases, hence it should be freshly recrystallised before use). [*Beilstein* **2** IV 565.]

Thiodiglycollic acid (2,2'-dithioacetic acid) [123-93-3] M 150.2, m 129°, pK_1^{25} 3.15 (3.24), pK_2^{25} 4.13 (4.56). Crystallise the acid from water. [Beilstein 3 IV 612.]

3,3'-Thiodipropionic acid (bis[2-carboxyethyl]sulfide) [111-17-1] M 178.2, pK_1^{25} 3.84, pK_2^{25} 4.66. Crystallise the sulfide from water. [*Beilstein* 3 IV 735.]

Thioformamide [115-08-2] **M 61.0, m 29°, 32.0-33.8°, pK**_{Est} ~12.4. Crystallise thioformamide from EtOAc, Et₂O or ether/pet ether. The *monohydrate* is a yellow oil soluble in many organic solvents. UV: λ_{max} 263nm (ϵ 2500) in MeOH. [Erlenmyer & Menzi *Helv Chim Acta* **31** 2071 *1948*.] Alternatively dissolve it in Et₂O to separate it from any formanide and/or polymers, filter, evaporate and recrystallise the residue from EtOAc at Dry-Ice temperature [Londergan et al. *J Am Chem Soc* **75** 4456 *1953*]. Store it in Et₂O solution over P₂O₅. [Cousineau & Secrist *J Org Chem* **44** 4351 *1979*, *Beilstein* **2** H 95, **2** I 39, **2** III 128, **2** IV 92.]

Thioglycollic acid [68-11-1] M 92.1, b 95-96% mm, d_4^{20} 1.326, n_D^{20} 1.505, pK_1^{25} 3.42, pK_2^{25} 10.20. Mix the acid with an equal volume of *benzene; the *benzene is then distilled off to dehydrate

the acid. After heating to 100° to remove most of the *benzene, the residue is distilled under vacuum and stored in sealed ampoules at 3°. [Eshelman et al. *Anal Chem* **22** 844 *1960*, *Beilstein* **3** IV 1130.]

(±)-Thiomalic (mercaptosuccinic) acid [70-49-5] M 150.2, m 153-154°, pK_1^{25} 3.64 (3.17), pK_2^{25} 4.64 (4.67), pK_3^{25} 10.37 (10.52). Dissolve the acid in water and extract it several times with diethyl ether to remove imprities. The aqueous solution gave the acid on freeze-drying. [*Beilstein* 3 IV 472.]

Thiosemicarbazide [79-19-6] **M 91.1, m 181-183°, pK** $_{1}^{25}$ **1.88, pK** $_{2}^{25}$ **12.81.** Crystallise thiosemicarbazide from H₂O (solubility is 20.3% w/w at 80°). The *hydrochloride* has **m** 190-191°(dec, 184° also reported). It forms salts with heavy metals. [*Beilstein* **3** H 195, **3** I 79, **3** II 134, **3** III 315, **3** IV 374.]

Thiourea [62-56-6] **M 76.1, m 179°, pK²⁰ -1.19** (aqueous H_2SO_4). Crystallise thiourea from absolute EtOH, MeOH, acetonitrile or water. Dry it under vacuum over H_2SO_4 at room temperature. [*Beilstein* **3** IV 342.]

Tiglic acid (*trans-2,3-dimethylacrylic acid*) [80-59-1] M 100.1, m 63.5-64°, b 198.5°, 9 5°/11mm, pK¹⁸ 4.96. Crystallise it from water. It is steam volatile and is soluble in organic solvents. [*Beilstein* 2 IV 1552.]

trans-Traumatic acid (2-dodecene-1,12-dioic acid) [6402-36-4] M 228.3, m 165-166°, 150-160°/0.001mm, $pK_{Est(1)}$ ~4.2, $pK_{Est(2)}$ ~4.6. Crystallise the acid from EtOH, acetone or glyme. The *bis-4-phenylphenacyl ester* has m 144-145° (from EtOH). [*Beilstein* 2 III 1978, 2 IV 2279.]

1,2,3-Triaminopropane trihydrochloride [free base 21291-99-6] M 198.7, m 250° (sintering at 100°), pK_1^{20} 3.72, pK_2^{20} 7.95, pK_3^{20} 9.59. Crystallise the trihydrochloride from EtOH or H₂O. The free base decomposes at 190°/760mm but has b 92-93°/9mm without decomposition. [Beilstein 4 H 274, 4 III 630.]

Tribromochloromethane [594-15-0] M 287.2, m 55°, b 158-159.5°/~760mm, 160°/~760mm. Melt it, wash it with aqueous Na₂S₂O₃, dry it with BaO and fractionally crystallise from its melt. It also crystallises from EtOH and distils at atmospheric pressure. [*Beilstein* 1 H 68, 1 II 35, 1 III 91, 1 IV 85.]

Tri-*n*-butylamine [102-82-9] **M** 185.4, b 68%/3mm, 120%/44mm, d_4^{20} 0.7788, n_D^{20} 1.4294, pK²⁵ 9.93. Purify the amine by fractional distillation from sodium under reduced pressure. Pegolotti and Young [*J Am Chem Soc* 83 3251 1961] heated the amine overnight with an equal volume of acetic anhydride, in a steam bath. The amine layer was separated and heated with water for 2hours on the steam bath (to hydrolyse any remaining acetic anhydride). The solution was cooled, solid K₂CO₃ was added to neutralize any acetic acid that had been formed, and the amine was separated, dried (K₂CO₃) and distilled at 44mm pressure. Davis and Nakshbendi [*J Am Chem Soc* 84 2085 1926] treated the amine with one-eighth of its weight of benzenesulfonyl chloride in aqueous 15% NaOH at 0-5°. The mixture was shaken intermittently and allowed to warm to room temperature. After a day, the amine layer was washed with aqueous NaOH, then water and dried with KOH. (This treatment removes primary and secondary amines.) It was further dried with CaH₂ and distilled under vacuum. [*Beilstein* 4 IV 554.]

Tri-*n***-butylammonium hydrobromide** [37026-85-0] **M 308.3, m 75.2-75.9°.** Crystallise the hydrobromide from ethyl acetate. [*Beilstein* **4** H 157, **4** III 292, **4** IV 555.]

Tri-*n*-butylammonium nitrate [33850-87-2] **M 304.5.** Crystallise the nitrate from mixtures of *n*-hexane and acetone (95:5). Dry it over P_2O_5 in a vacuum. [*Beilstein* **2** IV 554.]

Tri-*n*-butylammonium perchlorate [14999-66-7] M 285.5. Recrystallise the perchlorate from *n*-hexane. (Potentially explosive.) [*Beilstein* 2 IV 554.]

Tricarballylic acid (propane-1,2,3-tricarboxylic acid) [99-14-9] M 176.1, m 166°, pK_1^{25} 3.47, pK_2^{25} 4.54, pK_3^{25} 5.89. Crystallise the acid from diethyl ether. [Beilstein 2 IV 2366.]

Trichloroacetamide [594-65-0] M 162.4, m 139-141°, b 238-240°. Its solution in xylene is dried with P₂O₅, then fractionally distilled. [*Beilstein* 2 IV 520.]

Trichloroacetic acid [76-03-9] **M 163.4, m 59.4-59.8°, pK²⁵ 0.51.** Purify the acid by fractional crystallisation from its melt, then crystallise it repeatedly from dry *benzene and store it over conc H₂SO₄ in a vacuum desiccator. It can also be crystallised from CHCl₃ or cyclohexane, and dried over P₂O₅ or Mg(ClO₄)₂ in a vacuum desiccator. Trichloroacetic acid can be fractionally distilled under reduced pressure from MgSO₄. Layne, Jaffé and Zimmer [*J Am Chem Soc* **85** 435 *1963*] dried trichloroacetic acid in *benzene by distilling off the *benzene-water azeotrope, then crystallised the acid from the remaining *benzene solution. Manipulations should be carried out under N₂. [*Toxic vapours, use a well ventilated fume cupboard.*] [*Beilstein* **2** IV 508.]

1,1,1-Trichloroethane [71-55-6] **M 133.4, f -32.7°, b 74.0°, d** $_{4}^{20}$ **1.337, n** $_{D}^{20}$ **1.4385.** Wash it successively with conc HCl (or conc H₂SO₄), aqueous 10% K₂CO₃ (Na₂CO₃), aqueous 10% NaCl, dry it with CaCl₂ or Na₂SO₄, and fractionally distil it. It can contain up to 3% dioxane as preservative. This is removed by washing successively with 10% aqueous HCl, 10% aqueous NaHCO₃ and 10% aqueous NaCl, and distilling over CaCl₂ before use. [*Beilstein* **1** IV 138.]

1,1,2-Trichloroethane [79-00-5] **M 133.4, f -36.3°, b 113.6°, d_4^{20} 1.435, n_D^{20} 1.472. Purify the chloroethane as for 1,1,1-trichloroethane above. [***Beilstein* **1 IV 139.]**

Trichloroethylene [79-01-6] **M 131.4, f -88°, b 87.2°, d** $_{4}^{20}$ **1.463, n** $_{D}^{21}$ **1.4767.** Tricloroethylene undergoes decomposition in a similar way as CHCl₃, giving HCl, CO, COCl₂ and organic products. It reacts with KOH, NaOH and 90% H₂SO₄, and forms azeotropes with water, MeOH, EtOH, and acetic acid. It is purified by washing successively with 2M HCl, water and 2M K₂CO₃, then dried with K₂CO₃ and CaCl₂, then fractionally distilled before use. It has also been steam distilled from 10% Ca(OH)₂ slurry, most of the water being removed from the distillate by cooling to -30° to -50° and filtering off the ice through chamois skin: the trichloroethylene is then fractionally distilled at 250mm pressure and collected in a blackened container. [Carlisle & Levine *Ind Eng Chem (Anal Ed)* **24** 1164 *1932, Beilstein* **1** IV 712.]

1,1,2-Trichloro-1,2,2-trifluoroethane [76-13-1] M **187.4, b 47.6** 0 /760mm, d²⁰₄ **1.576,** n²⁰_D **1.360.** Wash it with water, then with weak alkali. Dry it with CaCl₂ or H₂SO₄ and distil it. [Locke et al. J Am Chem Soc **56** 1726 1934, Beilstein **1** III 157, **1** IV 142.]

Tridecanoic acid [638-53-9] M 214.4, m 41.8°, 44.5-45.5° (several forms), b 199-200°/24mm, pK_{Est}~5.0. Crystallise the acid from acetone. [*Beilstein* 2 IV 1117.]

7-Tridecanone (dihexyl ketone) [462-18-0] **M 198.4, m 33°, b 255°/766mm.** Crystallise the ketone from EtOH. [*Beilstein* **1** H 715.]

Tri-*n***-dodecylamine (Hydrogen ionophore I)** [102-87-4] **M 522.0, m 15.7°, b 220-228°/0.03mm, d**²⁰₄ **0.833, n**²⁰_D **1.4577, pK**_{Est} ~**11.0.** Distil tridodecylamine under high vacuum and N₂, and store it in the absence of CO₂. It can be crystallised from 95%EtOH/*C₆H₆ at low temperature under vacuum. The *hydrochloride* has **m** 78-79°. [Ra et al. *J Org Chem* **9** 259 1944, Beilstein **4** III 413, **4** IV 801.]

Tri-*n*-dodecylammonium nitrate [2305-34-2] **M 585.0.** Crystallise the salt from *n*-hexane/acetone (95:5) and keep it in a desiccator over P_2O_5 under vacuum. [*Beilstein* **4** IV 801 for tridodecylamine.]

Tri-*n*-dodecylammonium perchlorate [5838-82-4] M 622.4. Recrystallise the salt from *n*-hexane or acetone and keep it in a desiccator over P_2O_5 . (Potentially explosive.)

Triethanolamine [102-71-6] **M 149.2, m 20-22°, b 190-103°/5mm, 206-207°/15mm, 335.4°/760mm, d** $_{4}^{20}$ **1.124, n** $_{D}^{20}$ **1.485, pK** 25 **7.92.** Shake the amine gently with Linde type 4A molecular sieves for 24hours, filter and fractionate it under a vacuum, and preferably in the presence of N₂. Store it in dark stoppered bottles under N₂ as it is *hygroscopic*, and turns brown in air and light. It has a strong ammoniacal odour (like diethanolamine). It is miscible with H₂O, MeOH and Me₂CO, and its solubilities at 25° in *n*-heptane, Et₂O and $*C_6H_6$ are 0.4%, 1.6% and 4.2%, respectively. [See diethanolamine above, *Beilstein* **4** IV 1524.]

Triethanolamine hydrochloride [637-39-8] **M 185.7, m 177°, pK²⁵ 7.92 (free base).** Crystallise the salt from EtOH. Dry it at 80°. [*Beilstein* **4** IV 1525.]

1,1,2-Triethoxyethane [4819-77-6] **M 162.2, b 74°/28mm, 164°/~760mm, 167.2°/760mm,** d_4^{20} **0.897, n**_D²⁰ **1.401.** Dry it with Na₂SO₄, and distil it. [McElvain & Walters J Am Chem Soc **64** 1964 1942, Beilstein **1** H 818, **1** I 418, **1** III 3184, **1** IV 3958.]

Triethylamine [121-44-8] **M 101.2, b 89.4**°, d_4^{20} 0.7280, n_D^{20} 1.4005, pK²⁵ 10.82. Dry triethylamine with CaSO₄, LiAlH₄, Linde type 4A molecular sieves, CaH₂, KOH, or K₂CO₃, then distil it, either alone or from BaO, sodium, P₂O₅ or CaH₂. It has also been distilled from zinc dust, under nitrogen. To remove traces of primary and secondary amines, triethylamine has been refluxed with acetic anhydride, benzoic anhydride, phthalic anhydride, then distilled, refluxed with CaH₂ (ammonia-free) or KOH (or dried with activated alumina), and again distilled. Another purification method involved refluxing for 2hours with *p*-toluenesulfonyl chloride, then distilling. Grovenstein and Williams [*J Am Chem Soc* 83 412 1961] treated triethylamine (500mL) with benzoyl chloride (30mL), filtered off the precipitate, and refluxed the liquid for 1hour with a further 30mL of benzoyl chloride. After cooling, the liquid was filtered, distilled, and allowed to stand for several hours with KOH pellets. It was then refluxed with, and distilled from EtOH (to m 254°), then liberated with aqueous NaOH, dried with solid KOH and distilled from sodium under N₂. [*Beilstein* 4 H 99, 4 I 348, 4 II 593, 4 III 194, 4 IV 322.]

Triethylammonium hydrobromide [636-70-4] **M 229.1, m 248°.** Equimolar portions of triethylamine and aqueous solutions of HBr in acetone are mixed with cooling. The precipitated salt is washed with anhydrous acetone and dried in vacuum for 1-2hours. [Odinekov et al. J Chem Soc, Faraday Trans 2 80 899 1984.] Recrystallise it from CHCl₃ or EtOH. [Beilstein **4** IV 322.]

Triethylammonium hydrochloride [554-68-7] M 137.7, m 257-260°(dec). Purify it like the bromide above. [*Beilstein* 4 IV 327.]

Triethylammonium hydroiodide [4636-73-1] **M 229.1, m 181°.** Purify it as for triethylammonium bromide, except the solution for precipitation in precooled acetone at -10° and the precipitate is twice recrystallised from a cooled acetone/hexane mixture at -10°. Store it in the dark. [*Beilstein* **4** IV 327.]

Triethylammonium trichloroacetate [4113-06-8] **M 263.6.** Equimolar solutions of triethylamine and trichloroacetic acid in *n*-hexane are mixed at 10°. The solid so obtained is recrystallised from CHCl₃/*benzene. [Hoigbné & Gäumann *Helv Chim Acta* **42** 444 1959, *Beilstein* **4** IV 330.]

Triethylammonium trifluoroacetate [454-49-9] **M 196.2.** Purify as for the corresponding trichloroacetate but in Et₂O. Evaporation of the Et₂O gives the salt as a colourless viscous liquid at ambient temperature. [Emmons et al. J Am Chem Soc **76** 3472 1954, Beilstein **4** IV 330.]

Triethylene glycol [112-27-6] **M 150.2, b 115-117°/0.1mm, 278°/760mm, d** $_{4}^{15}$ **1.1274, n** $_{D}^{15}$ **1.4578,.** Dry the glycol with CaSO₄ for 1 week, then it is repeatedly and very slowly fractionally distilled under a vacuum. Store it in a vacuum desiccator over P₂O₅. It is very *hygroscopic*. [*Beilstein* **1** IV 2400.]

Triethylene glycol dimethyl ether (triglyme) [112-49-2] M 178.2, b 225°, d_4^{20} 0.987, n_D^{20} 1.425. Reflux it with, and distil it from sodium hydride or LiAlH₄. [*Beilstein* 1 IV 2401.]

Triethylenetetramine (TRIEN, TETA, trientine) [112-24-3] M 146.2, m 12°, b 157°/20mm, d_4^{20} 0.971, n_D^{20} 1.497, pK₁²⁵ 3.32, pK₂²⁵ 6.67, pK₃²⁵ 9.20, pK₄²⁵ 9.92. Dry the amine with sodium, then distil it under a vacuum. Further purification has been *via* the nitrate or the chloride salts. For

example, Jonassen and Strickland [*J Am Chem Soc* **80** 312 *1958*] separated TRIEN from admixture with TREN (38%) by solution in EtOH, cooling to approximately 5° in an ice-bath and adding conc HCl dropwise from a burette, keeping the temperature below 10° , until all of the white crystalline precipitate of TREN.HCl (see p 191) had formed and was removed. Further addition of HCl then precipitated thick, creamy white TRIEN.HCl (see below) which was crystallised several times from hot water by adding an excess of cold EtOH. The crystals were finally washed with Me₂CO, then Et₂O and dried in a vacuum desiccator. [*Beilstein* **4** H 255, **4** II 695, **4** III 542, **4** IV 1242.]

Triethylenetetramine tetrahydrochloride (TRIEN HCl) [4961-10-4] **M 292.1, m 266-270°.** Crystallise the salt repeatedly from hot water by precipitation with cold EtOH or EtOH/HCl. Wash it with acetone and absolute EtOH and dry it in a vacuum oven at 80° (see TRIEN above). The *tetrabenzoyl* derivative has **m** 230° after crystallisation from boiling EtOH. [Peacock *J Chem Soc* 1519 *1936*, *Beilstein* **4** H 255, **4** II 695, **4** III 543.]

Triethyl orthoformate (ethyl orthoformate, 1,1,1-triethoxymethane) [122-51-0] M 148.2, m 30°, b 60°/30mm, 144-146°/760mm, d_4^{20} 0.891, n_D^{20} 1.392. Fractionate it first at atmospheric pressure, then in a vacuum. If impure, then shake it with aqueous 2% NaOH, dry it with solid KOH and distil it from sodium through a 20cm Vigreux column (p 11). Alternatively, wash it with H_2O , dry it over anhydrous K_2CO_3 , filter and fractionate it through a Widmer column (p 11). [Sah & Ma J Am Chem Soc 54 2964 1932, Ohme & Schmitz Justus Liebigs Ann Chem 716 207 1968, Beilstein 2 IV 25.] IRRITANT and FLAMMABLE.

Triethyloxonium fluoroborate [368-39-8] **M 190.0, m 92-93°(dec).** Crystallise it from diethyl ether. It is *very hygroscopic*, and must be handled in a dry box and stored at 0°. [Meerwein *Org Synth* Coll Vol V 1096 1973.] Pure material should give a clear and colourless solution in dichloromethane (1 in 50, w/v). [*Beilstein* **1** IV 1322.]

Trifluoroacetic acid [76-05-1] **M 114.0, f -15.5°, b 72.4°, d**²⁰₄ **1.494, n**²⁰_D **1.2850, pK**²⁵ **0.52.** The purification of trifluoroacetic acid, reported in earlier editions of this work, by refluxing over KMnO₄ for 24hours and slowly distilling has resulted in very **SERIOUS EXPLOSIONS** on various occasions, but not always. This apparently depends on the source and/or age of the acid. The method is NOT RECOMMENDED. Water can be removed by adding trifluoroacetic anhydride (0.05%, to diminish water content) and distilling. [Conway & Novak *J Phys Chem* **81** 1459 *1977*]. It can be refluxed and distilled from P₂O₅. It is further purified by fractional crystallisation by partial freezing and again distilled. **Highly TOXIC vapour. Work in an efficient fume hood.** [*Beilstein* **2** IV 458.]

Trifluoroacetic anhydride [407-25-0] **M 210.0, b 38-40°/760mm, d** $_{4}^{20}$ **1.508.** Purification by distilling over KMnO₄, as for the acid above, is **EXTREMELY DANGEROUS** due to the possibility of **EXPLOSION**. It is best purified by distilling from P₂O₅ slowly, and collecting the fraction boiling at 39.5°. Store it in a dry atmosphere. **Highly TOXIC vapour and attacks skin, work in an efficient fume hood.** [*Beilstein* **2** IV 469.]

2,2,2-Trifluoroethanol [75-89-8] **M 100.0, b 72.4°/738mm, d** $_{4}^{20}$ **1.400, pK** 25 **12.8.** Dry it with CaSO₄ and a little NaHCO₃ (to remove traces of acid) and distil it. **Highly TOXIC vapour.** [*Beilstein* **1** IV 1370.]

Trifluoromethanesulfonic anhydride (triflic anhydride) [358-23-6] **M 282.1, b 82-85°, 84°,** d_4^{20} **1.71, n_D^{20} 1.322.** Distil it through a short Vigreux column (p 11). It can be freshly prepared from the anhydrous acid (11.5g) and P₂O₅ (11.5g, or half this weight) by setting aside at room temperature for 1hour, distilling off volatile products then distil it through a short Vigreux column. It is readily hydrolysed by H₂O and decomposes appreciably after a few days to liberate SO₂ and produce a viscous liquid. Store it dry at low temperatures. [Burdon et al. *J Chem Soc* 2574 *1957*, Beard et al. *J Org Chem* **38** 373 *1973*, *Beilstein* **3** IV 35.] **Highly TOXIC vapour.** **Trimethylamine** [75-50-3] **M 59.1, b 3.5°, pK²⁵9.80.** Dry triethylamine by passing the gas through a tower filled with solid KOH. Water and impurities containing labile hydrogen were removed by treatment with freshly sublimed, ground, P₂O₅. It has been refluxed with acetic anhydride, and then distilled through a tube packed with HgO and BaO. [Comyns *J Chem Soc* 1557 *1955.*] For more extensive purification, trimethylamine is converted to the hydrochloride, crystallised (see below), and regenerated by treating the hydrochloride with excess aqueous 50% KOH, the gas is passed through a CaSO₄ column into a steel cylinder containing sodium ribbon. After 1-2 days, the cylinder is cooled to -78° and hydrogen and air are removed by pumping. [Day & Felsing *J Am Chem Soc* 72 1698 *1950.*] Me₃N has been distlled from trap-to-trap and degassed by freeze-pump-thaw [Halpern et al. *J Am Chem Soc* 108 3907 *1986*]. It is commercially supplied in a pressure tin. [*Beilstein* **4** H 43, **4** I 322, **4** II 553, **4** III 99, **4** IV 134.]

Trimethylamine hydrochloride [593-81-7] **M 95.7, m >280°(dec).** The salt crystallises from CHCl₃, EtOH or *n*-propanol, and is dried under vacuum. It also crystallises from *benzene/MeOH, MeOH/diethyl ether and is dried under vacuum over paraffin wax and H₂SO₄. It is kept over P₂O₅ as it is *hygroscopic*. [*Beilstein* **4** H 262, **4** I 419, **4** IV 138.]

Trimethylamine hydroiodide [20230-89-1] M 186.0, m 263°. It crystallises from MeOH.

Trimethylolpropane (1,1,1-trishydroxymethylpropane, 2-ethyl-2-hydroxymethyl-1,3propanediol [77-99-6] M 134.2, m 57-59°, 60-62°, b 159-161°/2mm. Crystallise it from acetone and ether and it distils at high vacuum. [*Beilstein* 1 III 2349.]

2,2,3-Trimethylpentane [564-02-3] **M 114.2, b 109.8°, d** $_{4}^{20}$ **0.7161, n** $_{D}^{20}$ **1.40295, n** $_{D}^{25}$ **1.40064.** Purify it by azeotropic distillation with 2-methoxyethanol, which is subsequently washed out with water. The trimethylpentane is then dried and fractionally distilled. [Forziati et al. *J Res Nat Bur Stand* **36** 129 1946, Beilstein **1** IV 439.]

2,2,4-Trimethylpentane (isooctane) [540-84-1] M 114.2, m -107°, b 99.2°, d_4^{20} 0.693, n_D^{20} 1.39145, n_D^{25} 1.38898. Distil isooctane from sodium, pass it through a column of silica gel or activated alumina (to remove traces of olefins), and again distilled from sodium. Extract repeatedly with conc H₂SO₄, then agitate it with aqueous KMnO₄, wash it with water, dry (CaSO₄) and distil it. Purify it also by azeotropic distillation with EtOH, which is subsequently washed out with water, and the trimethylpentane is dried and fractionally distilled. [Forziati et al. *J Res Nat Bur Stand* 36 126 1946.] [Beilstein 1 IV 439.]

2,4,4-Trimethylpent-2-ene (β -diisobutylene) [107-40-4] M 112.2, m -106°, b 104°, d²⁰₄ 0.720, n²⁰_D 1.4160. Fractionate it under N₂ as it is highly flammable. [*Beilstein* 1 III 848, 1 IV 891.]

 Trimethylsulfonium
 iodide
 [2181-42-2]
 M 204.1, m
 211-212.5°(dec), 215-220°(dec).

 Crystallise the iodide from EtOH.
 [Emeleus & Heal J Chem Soc 1126 1946, Swain & Kaiser J Am Chem Soc
 80 4089 1958, Borredon et al. J Org Chem 55 501 1990, Bouda et al. Synth Commun 17 503 1987.]

Trimyristin [555-45-3] M 723.2, m 56.5°. Crystallise it from diethyl ether. [Beilstein 2 IV 1135.]

Tri-*n*-octylamine [1116-76-3] **M** 353.7, **b** 164-168% 0.7mm, 365-367% 760mm, d_4^{20} 0.813, n_D^{20} 1.450, pK^{25} 10.65. It is converted to the amine hydrochloride etherate which is recrystallised four times from diethyl ether at -30% (see below). Neutralisation of this salt regenerates the free amine which distil under high vacuum. [Wilson & Wogman J Phys Chem 66 1552 1962.] Distil the amine at 1-2mm pressure. [*Beilstein* 4 H 196, 4 III 382, 4 IV 754.]

Tri-*n*-octylammonium chloride [1188-95-0] M 384.2, m 78-79°, pK^{25} 8.35 (in 70% aqueous **EtOH**). Crystallise it from Et₂O, then *n*-hexane (see above). [Burrows et al. *J Chem Soc* 200 1947, *Beilstein* 4 H 196.]

Tri-*n*-octylammonium perchlorate [2861-99-6] M 454.2, m >300°(dec). Crystallise the perchlorate from *n*-hexane. (Possibly explosive.) [*Beilstein* 4 IV 754.]

Tripalmitin [555-44-2] **M 807.4, m 66.4°.** Crystallise it from acetone, diethyl ether or EtOH. It exists in an α -form (**m** 56.0°), a β '-form (**m** 63.5°) and a β -form (**m** 65.5°). [*Beilstein* **2** H 373, **2** I 167, **2** II 340, **2** III 971.]

Tri-*n*-propylamine [102-69-2] **M** 143.3, **b** 156.5°, d_4^{20} 0.757, n_D^{20} 1.419, pK^{25} 10.66. Dry the amine with KOH and fractionally distil it. Also reflux it with toluene-*p*-sulfonyl chloride and with KOH, then fractionally distil it. The distillate, after additon of 2% phenyl isocyanate, was redistilled and the residue fractionally distilled from sodium. [Takahashi et al. *J Org Chem* **52** 2666 1987, *Beilstein* **4** IV 470.]

Tris-(2-aminoethyl)amine (TREN) [4097-89-6] M 146.2, b 114°/15mm, 263°/744mm, d_4^{20} 0.977, n_D^{20} 1.498, pK_1^{25} 8.42, pK_2^{25} 9.44, pK_3^{25} 10.13. For a separation from a mixture containing 62% TRIEN, see entry under triethylenetetramine. Also purify it by conversion to the hydrochloride (see below), recrystallise it and regenerate the free base [Xie & Hendrickson *J Am Chem Soc* 109 6981 1987]. [*Beilstein* 4 H 256, 4 II 695, 4 III 545, 4 IV 1250.]

Tris-(2-aminoethyl)amine trihydrochloride [14350-52-8] **M 255.7, m 300°(dec).** Crystallise the salt several times by dissolving it in the minimum of hot water and precipitating it with excess of cold EtOH. The precipitate is washed with acetone, then diethyl ether and dried in a vacuum desiccator. [Beilstein 4 H 256, 4 II 695, 4 III 545, 4 IV 1250.]

Tris-(dimethylamino)methane (N,N,N',N',N'',N'',N'',N'')-hexamethylmethanetriamine) [5762-56-1] M 145.3, b 42-43°/12mm, n_D^{20} 1.4349, $pK_{Est} \sim 10$. Dry it over KOH and distil it through a Vigreux column (p 11) at water pump vacuum. Store it in the absence of CO₂. [Bredereck et al. *Chem Ber* 101 1885 1968 and *Angew Chem*, Int Ed Engl 5 132 1966.]

Tris-(hydroxymethyl)methylamine (TRIS) [77-86-1] **M 121.1, m 172°, pK²⁵ 8.07.** TRIS can ordinarily be obtained in highly pure form suitable for use as an acidimetric standard. If only impure material is available, it should be crystallised from 20% EtOH, aqueous MeOH (**m** 171.1°) or isopropanol (**m** 172-173°). Dry it in a vacuum desiccator over P_2O_5 or CaCl₂.

Alternatively, it is dissolved in twice its weight of water at 55-60°, filtered, concentrated to half its volume and poured slowly, with stirring, into about twice its volume of EtOH. The crystals which separate on cooling to 3-4° are filtered off, washed with a little MeOH, air dried by suction, then finally ground and dried in a vacuum desiccator over P_2O_5 . It has also been recrystallised from water, MeOH or aqueous MeOH, and vacuum dried at 80° for 2 days. [*Beilstein* **4** H 303, **4** III 857, **4** IV 1903.]

Tris-(hydroxymethyl)methylammonium hydrochloride (TRIS-HCl) [1185-53-1] M 157.6, m 149-150°(dec). Crystallise the salt from 50% EtOH, then from 70% EtOH. TRIS-hydrochloride is also available commercially in a highly pure state. Otherwise, recrystallise it from 50% EtOH, then 70% EtOH, and dry it below 40° to avoid risk of decomposition. [Beilstein 4 H 304.]

1,1,1-Tris-(hydroxymethyl)ethane (2-hydroxymethyl-2-methyl-1,3-propanediol) [77-85-0] M 120.2, m 200°. Dissolve it in hot tetrahydrofuran, filter and precipitate it with hexane. It has also been crystallised from acetone/water (1:1). Dry it in a vacuum. [*Beilstein* 1 H 520, 1 IV 2780.]

N-Tris-(hydroxymethyl)methyl-2-aminomethanesulfonic acid (TES) [7365-44-8] M 229.3, m 224-226^o(dec), pK²⁰ 7.50. Crystallise the acid from hot EtOH containing a little water.

Tris-(hydroxymethyl)nitromethane [2-(hydroxymethyl)-2-nitro-1,3-propanediol] [126-11-4] M 151.1, m 174-175^o(dec, tech. grade), 214^o(pure). Crystallise it from CHCl₃/ethyl acetate or ethyl acetate/*benzene. It is an acid and a 0.1M solution in H₂O has pH 4.5. **IRRITANT.** [*Beilstein* 1 H 520.]

Triuret (1,3-dicarbamoylurea) [556-99-0] **M** 146.1, **m** 233°(dec). It crystallises from aqueous ammonia or H₂O (plates **m** 232-234°). It gives mono and dipotassium salts. [*Beilstein* 3 H 72, 3 I 35, 3 II 60, 3 III 142.]

Undecan-1-ol [112-42-5] **M 172.3, m 16.5°, 146°/30mm, d²⁵ 0.830, n**_D²⁰ **1.440,** Purify the alcohol by repeated fractional crystallisation from its melt or by distillation in a vacuum. [*Beilstein* **1** H 427, **1** IV 1835.]

Undecanoic acid (C11, undecylic acid)) [112-78-8] M 186.3, m 28.5°, b 164°/18mm, 228°/160mm, 248-250°/~760mm, d_4^{20} 0.8907, n_D^{25} 1.4294, pK_{Est} ~5.0. Purify the acid by repeated fractional crystallisation from its melt or by distillation in a vacuum. [*Beilstein* 2 H 358, 2 IV 1068.]

Undec-10-enoic acid [112-38-9] M 184.3, m 25-25.5°, b 131°/1mm, 168°/15mm, d_4^{20} 0.912, n $_D^{25}$ 1.447, pK_{Est} ~5.0. Purify the acid by repeated fractional crystallisation from its melt or by distillation in a vacuum. [*Beilstein* 2 IV 1612.]

Urea [57-13-6] **M 60.1, m 132.7-132.9°, pK^{25} 0.12.** Crystallise urea twice from conductivity water using centrifugal drainage and keeping the temperature below 60°. The crystals are dried under vacuum at 55° for 6hours. Levy and Margouls [*J Am Chem Soc* **84** 1345 *1962*] prepared a 9M solution in conductivity water (keeping the temperature below 25°) and, after filtering through a medium-porosity glass sinter, added an equal volume of absolute EtOH. The mixture was set aside at -27° for 2-3 days and filtered cold. The precipitate was washed with a small amount of EtOH and dried in air. Crystallisation from 70% EtOH between 40° and -9° has also been used. Ionic impurities such as ammonium isocyanate have been removed by treating the concentrated aqueous solution at 50° with Amberlite MB-1 cation- and anion-exchange resin, and allowing it to crystallise on evaporation. [Benesch et al. *J Biol Chem* **216** 663 *1955*.] It can also be crystallised from MeOH or EtOH, and is dried under vacuum at room temperature. [*Beilstein* **3** H 42, **3** I 19, **3** II 35, **3** III 80.]

Urea nitrate [124-47-0] M 123.1, m 152°(dec), 157-158°, 163°. Crystallise it from dilute HNO₃ or EtOH (m 157-158°) and dry it in a vacuum over P_2O_5 . [Beilstein 3 H 54, 3 I 25, 3 II 45, 3 III 105, 3 IV 94.]

Urethane (ethyl carbamate, ethyl urethane) [51-79-6] M 89.1, m 48-50°, b 182-184°/~760mm, d_4^{20} 0.986, n_D^{25} 1.4144. Urethane is best purified by fractional distillation, but it can be sublimed at ~103°/~50mm. It has also been recrystallised from *benzene. Its solubility at room temperature is 2g/mL in H₂O, 1.25g/mL in EtOH, 1.1g/mL in CHCl₃, 0.67g/mL in Et₂O and 0.03g/mL in olive oil. It is a suspected human carcinogen. [*Beilstein* 3 H 22, 3 IV 40.]

cis-Vaccenic acid (octadec-11-enoic acid) [506-17-2] M 282.5, m 14-15°, b 158-163°/0.4mm, d_4^{20} 0.880, n_D^{25} 1.4598, pK_{Est} ~ 4.9. Purify the acid by fractional distillation under high vacuum or crystallisation form its melt in an inert atmosphere away from light. [*Beilstein* 2 I 198, 2 III 1384, 2 IV 1639.]

trans-Vaccenic acid (octadec-11-enoic acid) [693-72-1] M 282.5, m 43-44°, n_D^{50} 1.4472, pK_{Est} ~ 4.9. Crystallise the acid from acetone (m 45-45.5°) or aqueous MeOH (m 43.5-43.7°). The methyl ester has b 174-175°/5mm. [Böeseken & Hoagland Rec Trav Chim, Pays Bas 46 632 1927, Ahmad et al. J Am Chem Soc 70 3391 1948, IR: Rao & Daubert J Am Chem Soc 70 1102 1948.]

n-Valeraldehyde (pentanal) [110-62-3] M 86.1, m -92°, b 103°, d_4^{20} 0.811, n_D^{25} 1.40233. Purify pentanal *via* the bisulfite derivative (see 2-butanone above for the preparation and decomposition of the bisulfite derivative). [Birrell & Trotman-Dickinson *J Chem Soc* 2059 1960, Beilstein 1 H 676, 1 IV 3268.] The 2,4-dinitrophenylhydrazone [2057-84-3] M 266.3 has m 103-105° (from EtOH). [Beilstein 15 III/IV 429.]

n-Valeramide (pentanamide) [626-97-1] M 101.1, m 115-116°. Crystallise the amide from EtOH. It sublimes at 80°. [Philbrook J Org Chem 19 624 1954, Beilstein 2 H 301, 2 I 131, 2 II 266, 2 III 674, 2 IV 874.]

Valeric acid (*n*-pentanoic acid) [109-52-4] M 102.1, b 95% 22mm, 186.4% ~ 760 mm, d²⁰₄ 0.938, n²⁰_D 1.4080, pK²⁵ 4.81. Water is removed from the acid by distillation using a Vigreux column (p 11), until the boiling point reaches 183°. A few crystals of KMnO₄ are added, and after refluxing, the distillation is continued. [Andrews & Keefer J Am Chem Soc 83 3708 1961, Beilstein 2 H 299, 2 I 130, 2 II 263, 2 III 663, 2 IV 868.]

Valeronitrile [110-59-8] **M 83.1, b 142.3**°/~760mm, d_4^{20} 0.799, n_D^{15} 1.39913, n_D^{30} 1.39037. Wash the nitrile with half its volume of conc HCl (twice), then with saturated aqueous NaHCO₃, dry it with MgSO₄ and fractionally distil it from P₂O₅. [Beilstein 2 H 301, 2 I 131, 2 II 267, 2 III 675, 2 IV 875.]

Vinyl acetate [108-05-4] **M 86.1, b 72.3°, d** $_{4}^{20}$ **0.938, n** $_{D}^{20}$ **1.396.** Inhibitors such as hydroquinone and other impurities are removed by drying with CaCl₂ and fractionally distilling under nitrogen, then refluxing briefly with a small amount of benzoyl peroxide and redistilling it under nitrogen. Store it in the dark at 0°. Add inhibitor (~0.004%) for storage. [Beilstein 2 IV 176.]

Vinyl butoxyethyl ether (ethylene glycol butyl vinyl ether) [4223-11-4] M 144.2, b 70-72°/20mm, d_4^{20} 0.866, n_D^{20} 1.4220, Wash the ether with aqueous 1% NaOH, dry with CaH₂, then reflux with, and distil it from sodium. Stabilize it with 0.5% of 2,6-di-*tert*-butyl-*p*-cresol for storage. [*Beilstein* 1 IV 2387.] IRRITANT.

Vinyl chloroformate [5130-24-5] M 106.5, b 46.5%80mm, 67-69% atm, 109-110% 760mm, d_4^{20} 1.136, n_D^{21} 1.420. It has been fractionated through a Todd column (p 11, Model A with ~60 plates) under atmospheric pressure and the purity can be checked by gas chromatography. Stabilize it with 0.5% of 2,6-di-*tert*-butyl-*p*-cresol. It has IR with v_{max} at 3100 + 2870 (CH₂), 1780 (C=O), 1640 (C=C) and 940 (CH₂ out-of-plane) and 910 (CH₂ wagging) cm⁻¹. [IR: Lee *J Org Chem* 30 3943 *1965*, Levaillant *Ann Chim (Paris)* 6 504 *1936*.] It is used for protecting NH₂ groups in peptide synthesis [Olofson et al. *Tetrahedron Lett* 1563 *1977*]. [*Beilstein* 3 III 28.]

Vinyl stearate [111-63-7] M 310.5, m 35°, b 166°/1.5mm, 187-188°/4.3mm, d_4^{40} 0.8517, n_D^{40} 1.4423. Distil the ester in a vacuum under nitrogen, then crystallise it from acetone (3mL/g) or ethyl acetate at 0°. Store under it nitrogen in the dark. [Swern & Jordan *J Am Chem Soc* 70 2338 1948, Swern & Jordan *Org Synth* 30 108 1950, *Beilstein* 2 III 1019.]

ALICYCLIC COMPOUNDS

Abietic acid [514-10-3] M 302.5, m 172-175°, $[\alpha]_D^{25}$ -116° (-106°)(c 1, EtOH), pK²⁵ 5.27. Crystallise it by dissolving 100g of acid in 95% EtOH (700mL), adding to H₂O (600mL) and cooling. Filter, dry it in a vacuum (over KOH or CaSO₄) and store it in an O₂-free atmosphere. It can also be purified *via* the anhydride, tritylabietate and the potassium, piperidine and brucine salts. λ_{max} : nm(log ε): 2343(4.3), 241(4.4), 2505(4.2), 235(4.34) and 240(4.36) in EtOH. [Harris & Sanderson *Org Synth* Coll Vol IV 1 *1963*, *J Am Chem Soc* **35** 3736 *1949*, Lambard & Frey *Bull Soc Chim Fr* 1194 *1948*, Buchbauer et al. *Monatsh Chem* **116** 1345 *1985*.] [*Beilstein* **9** IV 2175.]

S-Abscisic acid (Dormin) [21293-29-8] M 264.3, m 160-161°, 161-163° (sublimation), $[\alpha]_{287}$ +24,000°, $[\alpha]_{245}$ -69,000° (c 1-50µg/mL in acidified MeOH or EtOH), pK_{Est} ~3.9. Crystallise the acid from CCl₄/pet ether, EtOH/hexane and sublime it at 120°. Also purify it by dissolving ~30g in 30mL of EtOAc, adding 100mL of hexane and allow to crystallise overnight (yield 8.4g), m 156-158°, 161-163°, $[\alpha]_{D}^{20}$ +426° (c 0.005M H₂SO₄ in MeOH). [Cornforth et al. *Nature (London)* 206 715 1965, Soukemp et al. *Helv Chim Acta* 72 361 1989.] The *RS-isomer* was purified on a Kieselgel F₂₅₄ plate with toluene/EtOAc/AcOH (50:50:3) and has m 188-190° [Cornforth et al. *Aust J Chem* 45 179 1992]. [Beilstein 17/3 V 13.]

Acetylcyclohexane (cyclohexyl methylketone) [823-76-7] M 126.2, b 64%/11mm, 76.2-77%/25mm, d_4^{20} 0.9178, n_D^{20} 1.4519. Dissolve acetylcyclohexane in Et₂O, shake it with H₂O, dry, evaporate and fractionate it under reduced pressure. [UV: Mariella & Raube *J Am Chem Soc* 74 518 1952, enol content: Gero *J Org Chem* 19 1960 1954.] The semicarbazone has m 174° and the 2,4-dinitrophenylhydrazone has m 139-140° [Theus & Schinz Helv Chim Acta 39 1290 1956].

2-Acetylcyclohexanone [874-23-7] **M 140.2, m -11°, b 62-64°/2.5mm, 95-98°/10mm, 111-112°/18mm, d** $_{4}^{20}$ **1.08, n** $_{D}^{20}$ **1.51.** Dissolve it in ligroin (b 30-60°), wash it with saturated aqueous NaHCO₃, dry over Drierite and fractionate in a vacuum. [Perfetti & Levine J Am Chem Soc **75** 626 1953, Manyik et al. J Am Chem Soc **75** 5030 1953, Eistert & Reiss Chem Ber **87** 108 1954.] It forms a Cu salt which crystallises in green leaflets from EtOH, **m** 162-163° [UV: McEntee & Pinder J Chem Soc 4419 1957].

2-Acetylcyclopentanone [1670-46-8] M 126.2, b. 72-75% mm, 82-86% 12mm, 88% 18mm, d_4^{20} 1.043, n_D^{20} 1.490. Dissolve the ketone in pet ether (b 30-60%), wash it with saturated aqueous NaHCO₃, dry over Drierite and fractionate in a vacuum. It gives a violet colour with ethanolic FeCl₃ and is only slowly hydrolysed by 10% aqueous KOH but rapidly on boiling to yield 6-oxoheptanoic acid. [Manyik et al. J Am Chem Soc 75 5030 1953, Acheson J Chem Soc 4232 1956, UV: Martin & Frenelius J Am Chem Soc 81 2342 1959.] It gives a gray green Cu salt from Et₂O/pentane, m 237-238% [House & Wasson J Am Chem Soc 79 1488 1957].

4-Acetyl-1-methyl-1-cyclohexene [6090-09-1] **M** 138.2, **b** 73-75^o/7.5mm, 85-86^o/13mm, **94-94.7**^o/20mm, 204.5-206^o/747mm, d_4^{20} 1.0238, n_D^{20} 1.469. Purify it by fractionation under reduced pressure *in vacuo*, and if it is almost pure it can be fractionated at atmospheric pressure, preferably in an inert atmosphere. It forms two *semicarbazones* one of which is more soluble in *C₆H₆, and both can be recrystallised from EtOH; the more soluble has **m** 149°(151°), and the less soluble has **m** 172-175°(191°). The *4-nitrophenylhydrazone* has **m** 166-167° and the 2,4-dinitrophenylhydrazone has **m** 114-115°. [Pfau & Plattner *Helv Chim Acta* 17 129, 142 1934, Adler & Vogt Justus Liebigs Ann Chem 564 109 1949.]

Adamantane [281-23-2] M 136.2, m 269.6-270.8° (sublimes). Crystallise adamantane from acetone or cyclohexane, and sublime it in a vacuum below its melting point [Butler et al. J Chem Soc, Faraday Trans I 82 535 1986]. Adamantane is also purified by dissolving it in *n*-heptane (*ca* 10mL/g of adamantane) on a hot plate, adding activated charcoal (2g/100g of adamantane), and boiling for 30minutes, filtering the hot solution through a filter paper, concentrating the filtrate until crystallisation just starts, adding one quarter of the original volume of *n*-heptane, and allowing to cool slowly over a period of hours. The supernatant is decanted off and

the crystals are dried *in vacuo* at 25°. [Prelog & Seiwerth *Chem Ber* **74** 1769 *1941*, Schleyer et al. *Org Synth* Coll Vol V 16 *1973*, Walter et al. *J Am Chem Soc* **107** 793 *1985*.] [*Beilstein* **5** III 393, **5** IV 469.]

1-Adamantane acetic acid [4942-47-6] **M 194.3, m 136°, pK**_{Est} ~**4.8.** Dissolve the acid in hot N NaOH, treat with charcoal, filter and acidify. Collect the solid, wash it with H₂O, dry and recrystallise it from MeOH. [Stetter et al. *Chem Ber* **92** 1629 1959.] The acid chloride [2094-72-6] has **M** 168.7, **m** 51-54°, and **b** 135-136°/1mm. **LACHRYMATORY**.

1-Adamantane carboxylic acid [828-51-3] **M 180.3, m 175-176.5°, 177°, pK**_{Est} ~4.9. Possible impurities are trimethylacetic acid and C9 and C13 acids. Dissolve 15g of the acid in CCl₄ (300mL) and shake with 110mL of 15N aqueous NH₃ whereby the ammonium salt separates and is collected. Acid impurities form soluble ammonium salts. The salt is washed with cold Me₂CO (20mL) and suspended in H₂O (250mL). This is treated with 12N HCl and extracted with CHCl₃ (100mL). The dried (Na₂SO₄) extract was evaporated and the residue was recrystallised from a mixture of MeOH (30mL) and H₂O (*ca* 10mL) to give the pure acid (10-11g). [Koch & Haaf *Org Synth* Coll Vol V 20 *1973*.] It was also recrystallised from absolute EtOH and dried under vacuum at 100°.

Alternatively, the acid (5g) is refluxed for 2hours with 15mL of MeOH and 2mL of 98% H_2SO_4 (cool when mixing this solution). Pour into 10 volumes of H_2O and extract with the minimum volume of CHCl₃ to give clear separation of phases. The extract is washed with H_2O , dried (CaCl₂) and distilled. The methyl ester is collected at 77-79°/1mm, **m** 38-39°. The ester is hydrolysed with the calculated amount of N KOH and refluxed until clear. Acidification with HCl provides the pure acid with 90% recovery. The *amide* crystallises from cyclohexane, **m** 189°. [Stetter et al. *Chem Ber* **92** 1629 *1959*.] [*Beilstein* **9** IV 253.]

1,3-Adamantane diamine dihydrochloride [26562-81-2] M **239.2, m** >**310°, pK**_{Est(1)} ~**8.1, pK**_{Est(2)} ~**10.1.** Dissolve it in boiling conc HCl (400mg in 15mL) and evaporate to dryness. Dissolve it in absolute EtOH and add dry Et₂O to crystallise the *dihydrochloride*. [Stetter & Wulff *Chem Ber* **93** 1366 1960, *Beilstein* **13** III 27,]

1,3-Adamantane dicarboxylic acid [39269-10-8] M **224.3, m 276°, 276-278°, 279°, pK**_{Est(1)} ~**4.9.** $pK_{Est(2)}$ **5.9.** Dissolve the acid in aqueous NaOH, treat with charcoal, filter and acidify with dilute HCl. It crystallises from MeOH. [Stetter & Wulff *Chem Ber* **93** 1366 1960, *Beilstein* **9** III 4066, **9** IV 2997.]

1-Adamantane methylamine [17768-41-1] **M 165.3, b 83-85°/0.3mm, d** $_{4}^{20}$ **0.93, pK**_{Est} ~**10.2.** Dissolve the amine in Et₂O, dry over KOH and distil it. The *N-Tosyl* derivative has **m** 134-135° (from EtOH). [Stetter & Goebel Chem Ber **96** 550 1963.]

1-Adamantanol (1-hydroxyadamantane) [768-95-6] **M 152.4, m 288.5-290°.** If 2-adamantanol is a suspected impurity, then dissolve the substance (10g) in acetone (100mL) and add Jones's reagent [CrO₃ (10.3g) in H₂O (30mL)], then conc H₂SO₄ (8.7mL) is added dropwise (turns green in colour) until excess reagent is present (slight red colour). Stir overnight, decant the acetone solution from the Cr salts and adamantan-2-one, dry (Na₂SO₄) and evaporate to dryness. The residue (*ca* 7g) is chromatographed through Al₂O₃ (250g) and washed with 50% *benzene/pet ether (b 40-60°), then 100% Et₂O (to remove any adamantan-2-one present) and the 1-adamantanol is then eluted with 5% MeOH in Et₂O. The eluate is evaporated, and the residue is recrystallised from pet ether (b 30-60°) at -70°, **m** 287.2-288.5°. It also crystallises from MeOH and can be sublimed *in vacuo*. It has characteristic IR, v_{max} 3640, 1114, 1086, 982 and 930cm⁻¹. [Schleyer & Nicholas *J Am Chem Soc* **83** 182 1961.] [*Beilstein* **6** IV 391.]

Alternatively, if free from the 2-isomer, dissolve it in tetrahydrofuran, dilute with H_2O to precipitate the alcohol. Collect, dry and sublime it in a vacuum at 130°. [Stetter et al. *Chem Ber* **92** 1629 1959.]

2-Adamantanol (2-hydroxyadamantane) [700-57-2] M 152.4, m 296.2-297.7°. It can be purified by chromatography as for the 1-isomer. It crystallises from cyclohexane and has characteristic IR, v_{max} 3600, 1053, 1029 and 992cm⁻¹ [Schleyer & Nicholas J Am Chem Soc 83 182 1961].

2-Adamantanone [700-58-3] **M 150.2, m 256-258**^o(sublimes). Purify 2-admantanone by repeated sublimation *in vacuo*. [Butler et al. *J Chem Soc, Faraday Trans II* **82** 535 1986.]

N-(1-Adamantyl) acetamide [880-52-4] M 193.3, m 149°. Wash the amide well with H₂O, dry and recrystallise it from cyclohexane. It is an irritant. [Stetter et al. Chem Ber 92 1629 1959.]

1-Adamantylamine [768-94-5] **M 151.2, m 160-190°, 208-210°, pK²⁵ 10.58.** Dissolve the amine in Et₂O, dry it over KOH, evaporate and sublime it *in vacuo*. [Stetter et al. *Chem Ber* **93** 226 *1960*.]

1-Adamantylamine hydrochloride [665-66-7] **M 187.7, m 360° (dec), pK²⁵ 10.58.** Dissolve the salt in dry EtOH, add a few drops of dry EtOH saturated with HCl gas, followed by dry Et_2O to crystallise the hydrochloride. Dry the salt in a vacuum. [Stetter et al. *Chem Ber* **93** 226 1960.]

2-Adamantylamine hydrochloride [10523-68-9] **M 187.7, m >300°, pK**_{Est} ~10.4. The *free amine* in Et₂O, liberated by the action of alkali in H₂O, is dried over KOH, filtered, evaporated and sublimed at 110°/12torr, **m** 230-236°. The base is dissolved in EtOH, sufficient ethanolic HCl is added dropwise and crystallised by the addition of Et₂O. Dry it *in vacuo*. [Stetter et al. *Justus Liebigs Ann Chem* **658** 151 1962].

1-Adamantyl bromide [768-90-1] M **215.1, m 117-119°, 118°, 119.5-120°.** If coloured, dissolve it in CCl₄, wash with H₂O, treat with charcoal, dry (CaCl₂), filter and evaporate to dryness. Dissolve the residue in a small volume of MeOH and cool in a CO₂/trichloroethylene bath and collect the crystals. Sublime it at 90-100°/water pump vacuum. [Stetter et al. *Chem Ber* **92** 1629 1959, Schleyer & Nicholas J Am Chem Soc **83** 2700 1961, Beilstein **5** III 469.]

1-Adamantyl bromomethylketone [5122-82-7] **M 257.2, m 76-79°, 78-79°.** Dissolve the ketone in Et_2O , wash it with H_2O , dry (MgSO₄), evaporate and crystallise the residue from small volumes of MeOH. **LACHRYMATORY.** [Stetter & Rauscher *Chem Ber* **93** 2054 *1960.*]

1-Adamantyl chloride [935-56-8] M 170.7, m 164.3-165.6°. Crystallise the chloride from aqueous MeOH and sublime it at 100°/12torr. It also crystallises from MeOH at -70°. [Stetter et al. Chem Ber 92 1629 1959, Schleyer & Nicholas J Am Chem Soc 83 2700 1961, Beilstein 5 IV 469.]

1-Adamantyl chloroformate [5854-52-4] **M 214.6, m 46-47°.** Crystallise it from pet ether (b 30-60°) at -20°. Also purify it as for 1-adamantyl fluoroformate below. Its IR has v_{max} at 4.2, 5.6 and 8.4 μ (2380, 1786 and 1190 cm⁻¹). [Haas et al. J Am Chem Soc **88** 1988 1966, cf Moroder et al. Hoppe-Seyler's Z Physiol Chem **357** 1647 1976.]

1-Adamantyl fluoride (1-fluoroadamantane) [768-92-3] M 154.2, m 210-212°(dec, sealed tube), 259-260°(dec). Dissolve it in Et₂O, dry over Na₂SO₄, evaporate to dryness and sublime the residue at 90-100°/12mm. Recrystallise the sublimate from MeOH, m 259-260°. To remove 1-hydroxyadamantane impurity, dissolve it in cyclohexane, cool for many hours, filter off the hydroxyadamantane, and evaporate to dryness or by passage through an Al₂O₅ column in dry cyclohexane. Recrystallise the residue from pet ether at -77° and sublime it in vacuum, m 210-212°dec (sealed tube). [Bhandari & Pinock *Synthesis* 655 1974, NMR: Fort et al. J Org Chem **30** 789 1965.]

1-Adamantyl fluoroformate [62087-82-5] **M 198.2, m 31-32°.** Dissolve it in *n*-hexane (*ca* 10g in 150 mL) and keep at 0° for 24hours. Any 1-adamantanol present will separate. Filter and evaporate to dryness. The crystalline residue has **m** 31-32° and is recrystallised from *n*-hexane (90g/500mL), (IR (KBr): v_{max} 1242, 1824 and 2340 cm⁻¹). There should be no OH str band above 2500 cm⁻¹. [Moroder et al. *Hoppe-Seyler's Z Physiol Chem* **357** 1647 *1976, cf* Haas et al. *J Am Chem Soc* **88** 1988 *1966.*]

1-Adamantyl iodide (1-iodoadamantane) [768-93-4] **M 262.1, m 75.3-76.4°.** Dissolve the iodide in Et₂O, shake with aqueous NaHSO₃, aqueous K₂CO₃, and H₂O, dry (Na₂SO₄), evaporate and recrystallise it from MeOH at -70° (to avoid alcoholysis) to give white crystals. [Schleyer & Nicholas *J Am Chem Soc* **83** 2700 *1961*, lit **m** of 151-152.5° is incorrect.] Also purify by recrystallisation from pet ether (40-60°C) followed by rigorous drying and repeated sublimation. [*Beilstein* **5** IV 470.]

1-Adamantyl isocyanate [4411-25-0] M 177.3, m 144-145°. Recrystallise the isocyanate from *n*-hexane and sublime it. Irritant. [Stetter & Wulff Chem Ber 95 2302 1962.]

1-Adamantyl isothiocyanate [4411-26-1] **M 193.3, m 168-169°.** Dissolve it in Et_2O , wash with H_2O , dry (Na₂SO₄), evaporate and sublime the residue in a vacuum at 140°, then recrystallise it from MeOH. **Irritant.** [Stetter & Wulff *Chem Ber* **95** 2302 1962.]

N-(1-Adamantyl)urea [13072-69-0] M 194.2, m >250° (dec), 268-272° (dec). Wash the urea with H₂O and dioxane and recrystallise it from EtOH. [Stetter & Wulff *Chem Ber* 95 2302 1962.]

(-)-Alloaromadendrene [25246-27-9] M 204.4, b 96% mm, 265-267% atm, $[\alpha]_{D}^{25}$ -22% (neat), d_{4}^{20} 0.923, n_{D}^{23} 1.501. Fractionally distil it from Na. It has IR bands at 6.06 and 11.27 μ due to C=CH₂. [Birch J Chem Soc 715 1953, cf Büchi et al. J Am Chem Soc 91 6473 1969.]

Cis-(±)-(1-*RS*,2-*SR*)-6-Amino-3-cyclohexene-1-carboxylic acid (*cis*-(±)-1,2,3,6-tetrahydroanthranilic acid) [54162-90-2] M 141.5, m 216-218°, pK_{Est(1)} ~3.5, pK_{Est(2)} ~10.2. Purify the free amino-acid by dissolving it in H₂O and passing it through a Dowex 50W (acid form) column and eluting with 1M aqueous NH₄OH. The eluate is evaporated (*in vacuo*) and the residue is dissolved in H₂O. Me₂CO is added to turbidity, cooled at 0° and the colourless crystals of the amino-acid are collected and dried *in vacuo* [Bernáth et al. *Tetrahedron* 41 1315 1958, *cf* Mazza & Crapetta *Gazzetta* 57 297 1927]. In earlier work, it was recrystallised from aqueous EtOH and had reported melting points of 265-265° [Kricheldorf *Justus Liebigs Ann Chem* 1378 1975] and 269-271° [Marconi & Mazzochi J Org Chem 31 1372 1966]. The hydrochloride [57266-56-5] M 177.6 has m 210-213° and the *methyl ester hydrochloride* [52766-61-2] has m 85-87° (from Et₂O). The *trans*-(±)-(1*RS*,2*RS*)-*amino-acid* [97945-19-2] crystallises from aqueous Me₂CO with m 267-269°. [*Beilstein* 14 II 203.]

\alpha-Amyrin [638-95-9] **M** 426.7, **m** 186°, 244°/0.8mm, $[\alpha]_D^{25}$ +85° (**c** 2, **CHCl**₃). Purify it by acetylation to the acetate followed by hydrolysis and recrystallisation from aqueous MeOH or from EtOH. The *acetate* when crystallised from pet ether, *n*-heptane or CHCl₃/MeOH, and sublimed *in vacuo* has **m** 227° (225-226°) and $[\alpha]_D^{20}$ +76.4° (**c** 0.6, CHCl₃). [Bently et al. *J Chem Soc* 3672 *1953*, IR: Cole & Thornton *J Chem Soc* 1332 *1957*, Corey & Cantrall *J Am Chem Soc* 81 1745 *1958*, *Beilstein* 6 III 2889, 6 IV 4191.]

B-Amyrin [508-04-3] **M** 426.7, **m** 197-197.5°, 204-205°, 260°/0.8mm, $[\alpha]_D^{23} + 91°$ (c 0.9, CHCl₃). Purify it through an Al₂O₃ column and eluting with pet ether (40-60°) then Et₂O and recrystallising from pet ether or EtOH. The *acetate* crystallises from Ac₂O or pet ether and has **m** 242-143° and $[\alpha]_D^{20} + 82.8°$ (c 0.81, CHCl₃) [Crow & Michael Aust J Chem 8 133 1955, Barton et al. J Chem Soc (C) 1031 1968, Beilstein 6 III 1894, 6 IV 4195.]

1,1'-Azobis(cyclohexane carbonitrile) [2094-98-6] M 244.3, m 114-114.5°, ε_{350nm} 16.0. Purify the nitrile by dissolving it in boiling 95%EOH as rapidly as possible, cool overnight at 0°, filter, wash with a little EtOH and dry it in a vacuum desiccator over CaCl₂. Note that prolonged heating >80° causes decomposition. Recrystallise it from EtOH. It should be regarded as **potentially explosive**. It is a radical initiator. [Overberger et al. Org Synth Coll Vol IV 66 1963, Beilstein 16 II 97.]

Bicyclohexyl [92-51-3] M 166.3, b 238° (*cis-cis*), 217-219° (*trans-trans*). Shake bicyclohexyl repeatedly with aqueous KMnO₄ and with conc H_2SO_4 , wash it with water, dry, first with CaCl₂ then with sodium, and distil it. [Mackenzie J Am Chem Soc 77 2214 1955, Beilstein 5 IV 334.]

Bicyclo[3.2.1]octane [6221-55-2] M 110.2, m 141°. Purify it by zone melting. It has been sublimed under N₂ at 70° and atmospheric pressure (closed vessel), and resublimed over P₂O₅ to give an analytically pure sample m 137.5-139.5°. [Von E Doering & Farber J Am Chem Soc 71 1514 1949, Cope et al. J Am Chem Soc 82 4299 1960, NMR: Stothers et al. Can J Chem 55 841 1977.]

1R-2-endo-Borneol [464-43-7] M 154.3, m 204.5-205.5°, 208°, 212°/atm, $[\alpha]_{\rm D}^{20}$ +37° (c 5, EtOH). It can be steam distilled, the distillate is extracted into Et₂O, the extract dried with Drierite and evaporated. The residue is then recrystallised from boiling EtOH (charcoal) or pet ether. [Clark & Read *J Chem* Soc 1773 1934, Beilstein 6 III 295, 6 IV 281.]

(±)-Borneol [6627-72-1] M 154.3, m 206-207°, 210-215°. Crystallise borneol from pet ether (b 60-80°) and sublime it *in vacuo*. [Beilstein 6 II 81, 6 IV 281.]

3-Bromo-adamantane-1-carboxylic acid [21816-08-0] **M 259.1, m 145-146°, 146.5°, 147-150°, pK²⁵ 6.28 (50% aqueous EtOH).** Purify the acid by recrystallising it from cyclohexane and/or subliming at 130°/10mm. It is converted to the *methyl ester* (diazomethane) with **m** 32° (from pet ether at -10°). [Stetter & Mayer Chem Ber **95** 667 1962, Stetter & Wulff Chem Ber **93** 1366 1960, Bayal & Lantvoev J Org Chem USSR (Engl Trans) **9** 291 1973.]

(+)-3-Bromocamphor-8-sulfonic acid [5344-58-1] M 311.2, m 195-196°(anhydrous), $[\alpha]_{D}^{20}$ +88.3° (c 1, H₂O), pK ~0. Crystallise the acid from water. The *ammonium salt* has m 268-207°, $[\alpha]_{D}^{20}$ +81.9° (c 2.2, H₂O). [Kauffman J Prakt Chem 33 95 1966.]

1R(endo, anti)-3-Bromocamphor-8-sulfonic acid ammonium salt See entry in "Metal-organic compounds", Chapter 5.

(+)-3-Bromocamphor-10-sulfonic acid hydrate [67999-30-8] M 329.2, m 119-121°, $[\alpha]_{D}^{20}$ +98.3° (c 1, H₂O), pK ~0. Crystallise the acid from water. [Boyle *Quart Rev Chem Soc* 25 323 1971, UV: Lowry & Owen J Chem Soc 609 1926, Beilstein 11 II 181, 11 III 592.]

4-*tert***-Butyl-1-cyclohexanone** [98-53-3] **M 154.3, m 49-50°, 52-52.5, b 90-92°/9mm.** Purify it *via* the *semicarbazone* (crystallised from EtOH with **m** 203-205°), hydrolyse this with dilute HCl and steam distil it. The distillate is extracted into Et₂O, dried, evaporated and the residue is recrystallised from pentane, aqueous EtOH or EtOH [Houlihan J Org Chem 27 3860 1962]. The oxime recrystallises from 1,2-dichloropropane and has m 137.5-138.5°. [Harvill et al. J Org Chem 15 58 1950, Beilstein 7 IV 82.]

(+)-Calarene (+ β-gurjunen, 1,3,3,11-tetramethyltricyclo[5.4.0.0^{2,4}]undecan-7-ane, (1aR)-1,1,7c,7ac-tetramethyl-1a,2,3,5,6,7,7a,7b-octahydro-1*H*-cyclopropa[α]naphthalene, new name 1(10)aristolene) [17334-55-3] M 204.35, b 45-47% 0.008-0.01mm, 255-258%/atm, d_4^{20} 0.9340, n_D^{20} 1.55051, $[\alpha]_{20}^{20}$ +73% (c 2, EtOH), +81.8% (neat). Purify Calarene by gas chromatography (7% propylene glycol adipate on unglazed tile particles of size 0.2-0.3mm, 400 cm column length and 0.6 cm diameter, at 184%, with N₂ carrier gas at a flow rate of 0.54 mL/sec using a thermal detector). Also purify it by chromatography on alumina (200 times the weight of calarene) and elute with pet ether. UV: λ_{max} 200 and 210 nm (ε 9560, 5480) in EtOH. [IR: Sorm *Collect Czech Chem Commun* 18 512 1953, 29 795 1964, Tetrahedron Lett 827 1962, Vrkoc Tetrahedron Lett 225 1963, Beilstein 5 III 1093.]

1*R*,4*S*-(-)-Camphanic acid [13429-83-9] M 198.2, m 190-192°, 198-200°, $[\alpha]_{548}^{20}$ -22.5° (c 1, dioxane), -4.4° (c 8, EtOH), pK_{Est} ~3.8. Dissolve it in CH₂Cl₂, dry (MgSO₄), filter, evaporate and the residue is sublimed at 120°/0.5mm or 140°/1mm. [Gerlach *Helv Chim Acta* 61 2773 1978, *Beilstein* 18/8 V 101.]

1*R*,4*S*-(-)-Camphanic acid chloride [39637-74-6] M 216.7, m 65-66.5°, 70.5-71°, $[\alpha]_{548}$ -23° (c 2, CCl₄), $[\alpha]_{364}^{20}$ -29.2°, $[\alpha]_{405}^{20}$ -18.0°, $[\alpha]_{436}^{20}$ -13.5°, $[\alpha]_{546}^{20}$ -7.8°, $[\alpha]_{578}^{20}$ -6.0°, (c 0.67, *C₆H₆). It is soluble in toluene (50g/100mL at 0°) and crystallises from pet ether (b 40-60°). It sublimes at 70°/5mm, Store it dry at 0°, v_{max} (CCl₄) 1805s and 1780m cm⁻¹. [Armarego et al. *J Chem Soc, Perkin Trans I* 2229 *1976*, Gerlach *Helv Chim Acta* **51** 1587 *1968*, Gerlach *Helv Chim Acta* **68** 1815 *1985*, *Beilstein* **18/8** V 101.]

RS-Camphene [565-00-4] **M 136.2, m 51-52°, b 40-70°/10mm.** Crystallise it twice from EtOH, then repeatedly melted and frozen at 30mm pressure. [Williams & Smyth J Am Chem Soc 84 1808 1962.] Alternatively it is dissolved in Et₂O, dried over CaCl₂ and Na, filtered, evaporated and the residue is sublimed in a vacuum [NMR: Hana & Koch Chem Ber 111 2527 1978].

(-)-Camphene (1S-2,2-dimethyl-3-methylene norbornane) [5794-04-7] M 136.2, m 49.2-49.6°, 49-50°, b 79-80°/58mm, 91.5°/100mm, d_4^{54} 0.8412, n_D^{54} 1.4564, $[\alpha]_D^{21}$ -119.1° (c 2.3, *C₆H₆), -117.5° (c 19, toluene), -113.5° (c 9.7, Et₂O). Purify norbornane by fractionation through a Stedman column (see p. 11) at 100mm in a N₂ atmosphere, crystallise it from EtOH and sublime it in a vacuum below its melting point. It is characterised by its *camphenilone semicarbazone*, m 217-218.5°, or *camphor semicarbazone*, m 236-238°. [NMR: Hana & Koch *Chem Ber* 111 2527 1978, Bartlett et al. Justus Liebigs Ann Chem 623 217 1959, Bain et al. J Am Chem Soc 72 3124 1950, Beilstein 5 IV 461.]

Camphor (1*R*-bornan-2-one) [R-(+)-464-49-3, S-(-)-464-48-2] M 136.2, m 178.8°, 179.97°(open capillary), b 204°/atm, $[\alpha]_{546}^{35}$ (+) and (-) 59.6° (in EtOH), $[\alpha]_D^{20}$ (+) and (-) 44.3° (c 10, EtOH), $[\alpha]_{579}^{179}$ (+) and (-) 70.85°(melt). Crystallise it from EtOH, 50% EtOH/water, MeOH, or pet ether or from glacial acetic acid by addition of water. It can be sublimed (50°/14mm) and also fractionally crystallised from its own melt. It is steam volatile. It should be stored in tight containers as it is appreciably volatile at room temperature. The solubility is 0.1% (H₂O), 100% (EtOH), 173% (Et₂O) and 300% (CHCl₃). The *R*-oxime (from Et₂O, CHCl₃, or aqueous EtOH) has m 119° $[\alpha]_D^{20}$ -42.4° (c 3, EtOH), the \pm oxime has m 118-119°. It has a characteristic odour. [Asahina & Ishidate Chem Ber 67 1432 1934, Allan & Rodgers J Chem Soc (B) 632 1971, UV, NMR: Fairley et al. J Chem Soc, Perkin Trans 1 2109 1973, White & Bishop J Am Chem Soc 62 8 1940, Beilstein 7 IV 213.]

Camphoric acid (1,2,2-trimethyl-cyclopentan-1*r*,3*c*-dicarboxylic acid) [1R,2S)-(+)- 124-83-4, 1S,2R)-(-)- 560-09-8] M 200.2, m 186-188°, 187°, 186.5-189°, $[\alpha]_{546}^{20}$ (+) and (-) 57° (c 1, EtOH), $[\alpha]_{D}^{20}$ (+) and (-) 47.7° (c 4, EtOH) , pK_{1}^{25} 4.71, pK_{2}^{25} 5.83 (for + isomer). Purify the acid by re-precipitation from an alkaline solution by HCl, filter it off, and recrystallise it from water several times, rejecting the first crop. It forms leaflets from EtOH and Me₂CO and H₂O and is insoluble in CHCl₃. Its solubility in H₂O is 0.8% at 25° and 10% at 100°, 50% in EtOH and 5% in ethylene glycol. The (±)-acid has m 202-203°. The (+)-1-methyl ester has m 86° (from pet ether) $[\alpha]_{D}^{20}$ +45° (c 4, EtOH), and the (+)-3-methyl ester has m 77° (from pet ether) $[\alpha]_{D}^{17.5}$ +53.9° (c 3, EtOH). [Rupe & Thommen Helv Chim Acta **30** 933 1947, Tiovonan et al. Acta Chem Scand **2** 597 1948, Howell & Fisher J Am Chem Soc **80** 6316 1958, Beilstein **9** IV 2851.]

(±)-Camphoric anhydride [595-30-2, 76-32-4] M 182.2, transition temp. 135°, m 223.5°. Crystallise the anhydride from EtOH. If it contains too much of the acid (by IR), then reflux it in Ac₂O, concentrate and collect the crystals, wash them with pet ether and dry them. [Bunton et al *J Chem Soc* 2918 1963, NMR: Baker & Davis *Tetrahedron* 24 1663 1968, *Beilstein* 18 H 400, 401.]

Camphorquinone (borna-2,3-dione) [1R-(-)-10334-26-6, 1S-(+)-2767-84-2] M 166.2, m 198.7°, 198-199°, 197-201°, $[\alpha]_{D}^{25}$ (-) and (+) 101.1° (c 2, EtOH). It can be purified by steam distillation, recrystallisation (yellow prisms) from EtOH, *C₆H₆ or Et₂O/pet ether and it can be sublimed in a vacuum. The (±)-quinone forms needles from EtOH, m 197-198°, 203°. [Buxtorf & Flatt Helv Chim Acta 13 1026 1930, Asahena et al. Chem Ber 67 1432 1934, Beiltein 7 I 325.]

RS-Camphorquinone [10373-78-1] **M 166.2, m 199-202°.** Purification is the same as for above enantiomers. [Huckel & Fichtig Justus Liebigs Ann Chem **628** 81 1962, Evans et al. J Chem Soc 137 1939, Beilstein **7** I 325.]

(1R)-(-)Camphor-10-sulfonic acid [35963-20-3] M 232.3, m 197.4-198°(dec), 197-198°, $[\alpha]_{D}^{20}$ -20.7° (c 5.4, H₂O), pK_{Est} ~-1. It forms prisms from AcOH or EtOAc, and is deliquescent in moist air. Store it in tightly stoppered bottles. The NH₄ salt forms needles from H₂O [α]_D¹⁶ ±20.5° (c 5, H₂O). [Burgess & Lowry J Chem Soc 127 279 1925, Marsi et al. J Am Chem Soc [78 3063 1956.] The *RS-acid* recrystallises from AcOH. [60g of (\pm) -acid in 60mL of AcOH at 105° gave 40g of crystals has **m** 202-203° [Bartlett & Knox *Org Synth* **45** 12 *1965*.] [*Beilstein* **11** IV 642.]

(1S)-(+)Camphor-10-sulfonic acid [3144-16-9] M 232.3, m 193°(dec), 197-198°, $[\alpha]_{546}^{20}$ +27.5° (c 10, H₂O), $[\alpha]_{D}^{20}$ +43.5° (c 4.3, EtOH), pK_{Est} ~ -1. Crystallise the acid from ethyl acetate and dry it under vacuum (deliquescent). [Loudon J Chem Soc 823 1933, Komppa J Prakt Chem 162 19 1943, Beilstein 11 IV 642.] See above for RS-isomer.

Camphor-10-sulfonyl chloride [15-(+)- 21286-54-4, 1R-(-)- 39262-22-1] **M 250.7, m 67-68°, 70°,** $[\alpha]_{D}^{20}$ (+) and (-) 32.2° (c 3, CHCl₃). If free from OH bands in the IR, then recrystallise it from Et₂O or pet ether; otherwise treat it with SOCl₂ at 50° for 30minutes, evaporate, dry the residue over KOH in a vacuum and recrystallise it. The (±)-acid chloride has **m** 85° [Bartlett & Knox Org Synth **45** 14 1965]. It is characterised as the *amide* (prisms from EtOH) **m** 132°, $[\alpha]_{D}^{17}$ (+) and (-) 1.5° (EtOH). On repeated recrystallisation from EtOH the *anilide* has **m** 120.5-121°, $[\alpha]_{D}^{25}$ +76° (c 1, CHCl₃). [Read & Storey J Chem Soc 2761 1930, Sutherland & Shriner J Am Chem Soc **58** 62 1936, Halterman et al. J Am Chem Soc **109** 8105 1987, Bartlet & Knox Org Synth **45** 55 1945, Beilstein **11** IV 650.]

2,10-Camphorsultam [1*R*-(+)- 108448-77-7, 1*S*-(-)- 94594-90-8] **M 215.3**, **m 181-183°**, **183-184 185-187°**, $[\alpha]_{D}^{20}$ (+) **and** (-) **32°** (**c 5**, CHCl₃). The (-)-enantiomer is recrystallised from 95% EtOH and dried in a vacuum desiccator. It dissolves in dilute aqueous NaOH and can be precipitated without hydrolysis by acidifying. It forms the *N*-Na salt in EtOH (by addition of Na to the EtOH solution), and the salt can be methylated with MeI to give the (-)-*N-Me lactam* with **m** 80° after recrystallisation from hot H₂O and has $[\alpha]_{D}^{25}$ -59.6° (c 5, CHCl₃) [Shriner et al. *J Am Chem Soc* **60** 2794 1938]. [Oppolzer et al. *Helv Chim Acta* **69** 1142 1986, Weismiller et al. Org Synth **69** 154 1955, Beilstein **27** III/IV 1007.]

4-Carboethoxy-3-methyl-2-cyclohexen-1-one (Hagemann's ester) [487-51-4] M 182, b 79-80% (0.2mm, 121-123% (4mm, 142-144% (15mm, n_D^{20} 1.488, d_4^{20} 1.038. Dissolve the ester in ether, shake with solid K₂CO₃, aqueous saturated NaHCO₃, dry (MgSO₄) and distil it. The *semicarbazone* has m 165-167% (169%). [Smith & Rouault J Am Chem Soc 65 631 1943, Beilstein 10 H 631, 10 I 300, 10 III 2899, 10 IV 2666.]

(-)-Caryophyllene oxide (1-S-5c-6t-epoxy-6c,10,10-trimethyl-2-methylene-1r,9t-bicyclo-[7.2.0]undecane) [1139-30-6] M 220.4, m 62-63°, 63.5-64°, 64°, b 114-117°/1.8mm, 141-142°/11mm, d²⁰₄ 0.967, n²⁰_D 1.4956, [α]²⁰_D -79° (c 2, CHCl₃), [α]²⁰_D -68° (supercooled melt). Purify the oxide by TLC on silica gel with EtOAc/pet ether (b 60-80°) (15:85), and recrystallise it from MeOH or *C₆H₆. [NMR: Warnhoff *Can J Chem* 42 1664 *1964*, Ramage & Whitehead *J Chem Soc* 4336 *1954*, *Beilstein* 17 IV 392.]

(+)-Cedrol (octahydro-3,6,8,8-tetramethyl-1-3a,7-methanoazulen-6-ol, 8aS-6c-hydroxy-3c,6t,8,8-tetramethyl[8ar-H)-octahydro-3H,3at,7t-methanoazulene), [77-53-2] m 82-86°, 86-87°, $[\alpha]_{D}^{28}$ +10.5° (c 5, CHCl₃), $[\alpha]_{D}^{18}$ +13.1° (c 5.5, EtOH), $[\alpha]_{D}^{18}$ +14.3° (c 10, dioxane). Purify cedrol by recrystallisation from aqueous MeOH. It is estimated colorimetrically with H₃PO₄ in EtOH followed by vanillin and HCl [Hayward & Seymour Anal Chem 20 572 1948]. The 3,5-dinitrobenzoyl derivative has m 92-93°. [Stork & Clarke J Am Chem Soc 83 3114 1961, Beilstein 6 III 424.]

Chaulmoogric acid [(13-cyclopent-2-enylyl)tridecanoic acid] [29106-32-9] M 280.4, m 68.5°, b 247-248°/20mm, $[\alpha]_{D}^{20}$ +60° (c 4, CHCl₃), pK_{Est} ~5.0. Crystallise the acid from pet ether or EtOH. The *Me ester* [24828-59-9] has m 22°, b 227°/20mm and $[\alpha]_{D}^{15}$ +50° (c 5, CHCl₃). [Mislow & Steinberg *J Am Chem Soc* 77 3807 1955.]

Chlorendic anhydride (1,4,5,6,7,7,-hexachloro-5-norbornene-2,3-dicarboxylic anhydride) [115-27-5] M 370.9, m 234-236°. 235-237°, 238°. Steam distil the anhydride or recrystallise it from H₂O to yield pure diacid. The pure diacid yields the anhydride with Ac₂O. [Prill J Am Chem Soc 69 62 1947.] Chlorocyclohexane (cyclohexyl chloride) [542-18-7] M 118.6, b 46-48°/26mm, 142.5°/atm, d_4^{20} 1.00, n_D^{25} 1.46265. Wash chlorocyclohexane several times with dilute NaHCO₃, then repeatedly with distilled water. Dry it with CaCl₂ and fractionally distil it slowly at atmospheric pressure or better under vacuum. [Perlman et al. *J Org Chem* 1 294 *1937*, IR: Roberts & Chambers *J Am Chem Soc* 73 5031 1951, *Beilstein* 5 H 21, 5 I 8, 5 II 11, 5 III 37, 5 IV 48.]

(-)- α -Copaene (1R,2S,6S,7S,8S-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0^{2,7}]dec-3-ene) [3856-25-5] M 204.4, b 119-120°/10mm, 246-251°, d²⁰₄ 0.908, n²⁰_D 1.489, [α]²⁰_D -6.3° (c 1.2, CHCl₃). Purify it by distillation, preferably under vacuum. [Heathcock J Am Chem Soc 88 4110 1966, Heathcock et al. J Am Chem Soc 89 4133 1967, Corey & Watt J Am Chem Soc 95 2303 1973, Beilstein 5 IV 1189.]

Cyclobutane [287-23-0] **M 56.1, m -50°, -80°, b 13°/740mm, 12°/atm, d** $_{4}^{20}$ **0.721, n** $_{D}^{20}$ **1.426.** This easily liquefiable gas is dried over Na at melting ice temperature for 4days and distilled at low temperature through a Podbielniak (p 10) precision still. A dry sample has been prepared by passage through P₂O₅ and distilled repeatedly until all fractions had similar vapour pressures at 0°. [Cansson & Wat *J Org Chem* **14** 31 *1949*, Heisig *J Am Chem Soc* **63** 1698 *1941*, Stodola & Heisig *Org Synth* Coll Vol **III** 213 *1955*.]

Cyclobutane carboxylic acid [3721-95-7] M 100.1, m 3-4°, -5.4°, b 84-84.5°/10mm, 110°/25mm, 135-138°/110mm, 194°/760mm, d_4^{20} 1.061, n_D^{20} 1.453, pK²⁵ 4.79. Dissolve the acid in aqueous HCO₃ then acidify with HCl and extract it into Et₂O, wash with H₂O, dry (Na₂SO₄), concentrate to a small volume, then distil it through a glass helices packed column. The S-*benzylisothiuronium salt* has m 176° (from EtOH), the *anilide* has m 112.5-113°, and the *p*-toluide has m 123°. [Payne & Smith J Org Chem 22 1680 1957, Kantaro & Gunning J Am Chem Soc 73 480 1951, Stodola & Heisig Org Synth Coll Vol III 213 1955, Beilstein 9 H 5.]

(±)-*trans*-Cyclobutane-1,2-dicarboxylic acid [1124-13-6] M 144.1, m 131°, pK_1^{25} 4.11 (pK_1^{20} 3.77), pK_2^{25} 5.15 (pK_2^{20} 5.63). Crystallise the acid from *C₆H₆ or *C₆H₆/EtOAc. The *diphenacyl ester* has m 98° (from EtOH) and the *p*-bromodiphenacyl ester has m 158° (from EtOH). The *cis*-acid isomerizes to the *trans*-acid on heating in conc HCl at 190°. [Reed J Chem Soc 685 1951, Fison et al. J Am Chem Soc 51 1536 1929, Fison et al. J Am Chem Soc 56 1774 1934, pK: Bode Chem Ber 67 332 1934, Beilstein 9 IV 2788.]

cis-Cyclobutane-1,2-dicarboxylic acid [1461-94-5] M 144.1, m 139.5°, 139-140°, pK_1^{20} 4.20, pK_2^{20} 6.56. Purify the acid by crystallisation from H₂O or ligroin, or by hydrolysis of the *anhydride* [b 120-150°/40mm, m 77-77.5° (from *C₆H₆, 74-75° from H₂O or ligroin)] with H₂O. The *diphenacyl ester* has m 113° (from EtOH) and the *p*-bromodiphenacyl ester has m 153° (from EtOH/Me₂CO). [Vogel Justus Liebigs Ann Chem 615 13 1958, Reed J Chem Soc 685 1951, Fison et al. J Am Chem Soc 56 1774 1934, pK: Bode Chem Ber 67 332 1934, Beilstein 9 IV 2788.]

Cyclobutanone [1191-95-3] **M 70.1, b 96-97°, 99-100°/atm, d** $_{4}^{20}$ **0.931, n** $_{D}^{52}$ **1.4189.** Treat cyclobutanone with dilute aqueous KMnO₄, dry it with molecular sieves and fractionally distil it. Purify it *via* the semicarbazone, then regenerate the ketone, dry it (CaSO₄), and distil it in a stainless steel spinning-band (or Vigreux, p 11) column. Alternatively, purify it by preparative gas chromatography using a Carbowax 20-M column at 80°. (This treatment also removes acetone). The *oxime* has **m** 84-85° (from pet ether) and the *semicarbazone* has **m** 212-212-5° (220-221° from MeOH or H₂O, Buchanan et al. *J Am Chem Soc* **64** 2701 1942). [Salaun Org Synth **57** 36 1977, Fitzer & Quabeck Synthesis 299 1987, Beilstein **7** IV 3.]

Cyclobutylamine [2516-34-9] M 71.1, b 82-83% atm, 83.2-84.2% 760mm, d_4^{20} 0.839, n_D^{20} 1.437, pK²⁵ 10.04 (9.34 in 50% aqueous EtOH). It has been purified by steam distillation. The aqueous distillate (e.g. 2L) is acidified with 3N HCl (90mL) and evaporated to dryness in a vacuum. The *hydrochloride* is treated with a few mL of H₂O, cooled in ice and a slush of KOH pellets ground in a little H₂O is added slowly in portions and keeping the solution very cold. The amine separates as an oil from the strongly alkaline solution. The oil is collected, dried over solid KOH and distilled using a vacuum jacketed Vigreux column (p 11) and protected from CO₂ using a soda lime tube. The fraction boiling at 79-83° is collected, dried

over solid KOH for 2days and redistilled over a few pellets of KOH (**b** 80.5-81.5°). Best distil in a dry N₂ atmosphere. The purity can be checked by GLC using a polyethylene glycol on Teflon column at 72°, 15 psi, flow rate of 102 mL/min of He. The sample can appear homogeneous but because of tailing it is not possible to tell if H₂O is present. The NMR in CCl₄ should show no signals less than 1 ppm from TMS. The *hydrochloride* has a multiplet at *ca* 1.5-2.6ppm (H 2,2,4,3,3,4,4), a quintet at 3.8 ppm (H 1) and a singlet at 4.75 for NH₂ [Roberts & Chambers *J Am Chem Soc* **73** 2509 *1951*]. The *benzenesulfonamide* has **m** 85-86° (from aqueous MeOH) and the *benzoyl* derivative has **m** 120.6-121.6°. [Roberts & Mazur *J Am Chem Soc* **73** 2509 *1951*, Iffland et al. *J Am Chem Soc* **75** 4044 *1953*, Werner & Casanova Jr *Org* Synth Coll Vol **V** 273 *1973*, *Beilstein* **12** IV 3.]

Cyclodecanone [1502-06-3] M 154.2, m 21-24°, b 100-102°/12mm. Purify the ketone *via* the *semicarbazone* (m 205-207°, from EtOH) and distil it through an efficient column. It sublimes in a vacuum. The *oxime* has m 80°, from MeOH or by sublimation in a high vacuum. [Cope et al. *Org Synth* Coll Vol IV 218 1963, Prelog et al. *Helv Chim Acta* 30 1746 1947, Ruzicka et al. *Helv Chim Acta* 11 675 1930, *Beilstein* 7 III 134, 7 IV 76.]

cis-Cyclodecene [935-31-9] M 138.3, m -3°, -1°, b 73°/15mm, 90.3°/33mm, 194-195°/740mm, 197-199°/atm, d_4^{20} 0.8770, n_D^{20} 1.4854. Purify it by fractional distillation. It forms an AgNO₃ complex which crystallises from MeOH, m 167-187° [Cope et al. *J Am Chem Soc* 77 1628 1955, IR: Blomqvist et al. *J Am Chem Soc* 74 3636 1952, Prelog et al. *Helv Chim Acta* 35 1598 1952].

cis-cis-trans-1,5,9-Cyclododecatriene (cyclododec-1c,5c,9t-triene) [2765-29-9] M 162.3, m -9°, -8°, b 117.5°/2mm, 237-239°/atm, 244°/760mm, d_4^{20} 0.907, n_D^{20} 1.5129. Purify the triene by fractional distillation, preferably in a vacuum under N₂, and it forms an insoluble AgNO₃ complex. [IR: Breil et al. *Makromol Chemie* 69 28 1963, *Beilstein* 5 IV 1114.]

Cyclododecylamine [1502-03-0] M 183.3, m 27-29°, b 140-150°/ca 18mm, 280°/atm, pK 9.62 (in 80% methyl cellosolve). It can be purified via the hydrochloride salt m 274-275° (from EtOH) or the picrate m 232-234°, and the free base is distilled preferably at water-pump vacuum [Prelog et al. Helv Chim Acta 33 365 1950].

1,3-Cycloheptadiene [4054-38-0] **M 94.2, b 55% 75mm, 71.5% 120-121% atm**, d_4^{20} **0.868, n_D^{20} 1.4972.** Purify the diene by dissolving it in Et₂O, washing with 5% HCl, H₂O, drying (MgSO₄), evaporating, and the residue is distilled under dry N₂ through a semi-micro column (some foaming occurs) [Cope et al. J Am Chem Soc **79** 6287 1957, UV: Pesch & Friess J Am Chem Soc **72** 5756 1950]. [Beilstein **5** IV 390.]

Cycloheptane [291-64-5] M 98.2, m ~12°, ~13°, b 114.4°, 118°/atm d_4^{20} 0.812, n_D^{20} 1.4588. Distil it from sodium using a Vigreux column (p 11), under nitrogen. It is highly flammable. [Bocian & Strauss J Am Chem Soc 99 2866 1977, Ruzicka et al. Helv Chim Acta 28 395 1945, Beilstein 5 H 92, 5 IV 92.]

Cycloheptanol [502-41-0] M 114.2, m 2°, b 77-81°/11mm, 83-84/14mm, 185°/atm, d_4^{20} 0.955, n_D^{20} 1.471. Purify it as described for cyclohexanol. The 2,4-dinitrobenzoyl derivative has m 79° and the allophanate has m 184° (from EtOAc). [Ruzicka et al. Helv Chim Acta 28 395 1945, Beilstein 6 H 10.]

Cycloheptanone (suberone) [502-42-1] **M 112.2, b 105°/80mm, 172.5°/760, d** $_{4}^{20}$ **0.949, n** $_{D}^{20}$ **1.461.** Shake suberone with aqueous KMnO₄ to remove material absorbing around 230-240nm, then dry it with Linde type 13X molecular sieves and fractionally distil it through a glass helix packed column. [Blicke et al. *J Am Chem Soc* **74** 2924 *1952*, Dauben et al. *Org Synth* Coll Vol **IV** 221, 229 *1963*, *Beilstein* **7** H 13, **7** I 9, **7** II 14, **7** III 46, **7** IV 39.]

Cycloheptatriene [544-25-2] M 92.1, b 60.5% 122mm, 114-115% atm, d_4^{20} 0.895, n_D^{20} 1.522. Wash the triene with alkali, then fractionally distil it. Store it under N₂ or Ar as it resinifies in air. [Dryden J Am Chem Soc 76 2814 1954, Kohler et al. J Am Chem Soc 61 1057 1939, Beilstein 5 IV 280.]

Cycloheptylamine [5452-35-7] M 113.2, b 50-52°/11mm, 60°/18mm, d_4^{20} 0.887, n_D^{20} 1.472, pK_{Est} ~10.5 (H₂O), pK²⁴ 9.99 (in 50% aqueous methyl cellosolve). It can be purified by conversion to the *hydrochloride* m 242-246°, and the free base is distilled under dry N₂ in a vacuum [Cope et al. J Am Chem Soc 75 3212 1953, Prelog et al. Helv Chim Acta 33 365 1950]. [Beilstein 12 IV 115.]

1,3-Cyclohexadiene [592-57-4] **M 80.1, m -89°, b 83-84°/atm, d_4^{20} 0.840, n_D^{20} 1.471. Distil the diene from NaBH₄ or Na under N₂ and collect it in a trap cooled in Dry Ice. It is highly flammable. [Marvel & Martell, J Am Chem Soc 81 450 1959, Beilstein 5 IV 382.]**

1,4-Cyclohexadiene [628-41-1] M **80.1, b 83-86°/714mm, 88.3°/741mm, 86-88°/atm, 88.7-89°/760mm, d_4^{20} 0.8573, n_D^{20} 1.4725. Dry the diene over CaCl₂ and distil it in a vacuum under N₂. [Hückel & Wörffel** *Chem Ber* **88** 338 1955, Giovannini & Wegmüller *Helv Chim Acta* **42** 1142 1959.] [*Beilstein* **5** IV 385.]

Cyclohexane [110-82-7] **M 84.2, f 6.6°, b 80.7°, d²⁴** 0.77410, n_D^{20} 1.42623, n_D^{25} 1.42354. It is best to purify it by washing with conc H₂SO₄ until the washings are colourless, followed by water, aqueous Na₂CO₃ or 5% NaOH, and again water until neutral. It is then dried with P₂O₅, Linde type 4A molecular sieves, CaCl₂, or MgSO₄ then Na and distilled. Cyclohexane has been refluxed with, and distilled from Na, CaH₂, LiAlH₄ (which also removes peroxides), sodium/potassium alloy, or P₂O₅. Traces of *benzene can be removed by passage through a column of silica gel that has been freshly heated: this gives material suitable for ultraviolet and infrared spectroscopy. If there is much *benzene in the cyclohexane, most of it can be removed by a preliminary treatment with nitrating acid (a cold mixture of 30mL conc HNO₃ and 70mL of conc H₂SO₄) which converts *benzene into nitrobenzene. The impure cyclohexane and the nitrating acid are placed in an ice bath and stirred vigorously for 15minutes, after which the mixture is allowed to warm to 25° during 1hour. The cyclohexane is decanted, washed several times with 25% NaOH, then water, dried with CaCl₂, and distilled from sodium. Carbonyl-containing impurities can be removed as described for chloroform. Other purification procedures include passage through columns of activated alumina and repeated crystallisation by partial freezing. Small quantities may be purified by chromatography on a Dowex 710-Chromosorb W gas-liquid chromatographic column. **Flammable liquid**. [Sabatier *Ind Eng* Chem **18** 1005 *1926*, Schefland & Jacobs The Handbook of Organic Solvents (Van Nostrand) p592 *1953*, *Beilstein 5* IV 27.]

Rapid purification: Distil, discarding the forerun. Stand distillate over Grade I alumina (5% w/v) or 4A molecular sieves.

Cyclohexane butyric acid [4441-63-8] M 170.3, m 31°, 26.5-28.5°, b 136-139°/4mm. 169°/20mm, 188.8°/46mm, pK²⁵ 4.95. Distil the acid through a Vigreux column (p 11), and the crystalline distillate is recrystallised from pet ether. The S-*benzylisothiuronium salt* has m 154-155° (from EtOH) [Friediger & Pedersen Acta Chem Scand 9 1425 1955, English & Dayan J Am Chem Soc 72 4187 1950]. [Beilstein 9 II 15.]

Cyclohexane carboxylic acid (hexahydrobenzoic acid) [98-89-5] M 172.2, m 31-32°, b 63-67°/~0.1mm, 110°/8mm, 232-233°/atm, d¹⁵ 1.480, n²⁰ 1.460, pK²⁵ 4.90. Crystallise the acid from hot H₂O (solubility is 0.2% w/w at 15°), it is soluble in organic solvents. Also distil it at as high a vacuum as possible and warm the condenser as it solidifies on cooling. The *acid chloride* [2719-27-9] M 146.6, has b 184°/atm, d²⁵ 1.096, the *methyl ester* has b 183°/atm, and the *S-benzylisothiuronium salt* has m 165-166° (from EtOH). [*Beilstein* 9 H 7, 9 I 5, 9 II 6, 9 III15, 9 IV 16.]

Cyclohexane-1,2-diaminetetraacetic acid (H₂O, CDTA) [H_2O : 12333-90-4; xH_2O : 13291-61-7] M 364.4, m >210°(dec), pK₁ 1.34, pK₂ 3.20, pK₃ 5.75 (6.12), pK₄ 9.26 (12.35). Dissolve CDTA in aqueous NaOH as its disodium salt, then precipitate it by adding HCl. The free acid is filtered off and boiled with distilled water to remove traces of HCl [Bond & Jones *Trans Faraday Soc* 55 1310 1959]. Recrystallise it from water and dry it *in vacuo*. [*Beilstein* 13 III 10.]

cis-Cyclohexane-1,2-dicarboxylic acid (*cis*-hexahydrophthalic acid) [610-09-3] M 172.2, m 191-192°, 191-194°, pK_1^{25} 4.25, pK_2^{25} 6.74. It is purified by recrystallisation from EtOH or H₂O.

[Smith & Byrne J Am Chem Soc 72 4406 1950, Abell J Org Chem 22 769 1957, Beilstein 9 III 3812, 9 IV 2801.]

trans-Cyclohexane-1,2-dicarboxylic acid (trans-hexahydrophthalic acid) [2305-32-0] M 172.2, m 227.5-228°, 228-230.5°, pK₁²⁵ 4.30, pK₂²⁵ 6.06. It is purified by recrystallisation from EtOH or H₂O. It is formed by hydrolyzing the anhydride with water. The *dimethyl ester* has m 95-96° (from *C₆H₆/pet ether). [Abell J Org Chem 22 769 1957, Smith & Byrne J Am Chem Soc 72 4406 1950, Linstead et al. J Am Chem Soc 64 2093 1942, Beilstein 9 III 3812, 9 IV 2801.] The 1R,2R-(-)-transcyclohexane-1,2-acid [46022-05-3] has m 171-182° and $[\alpha]_D^{20}$ -20° (c 1, Me₂CO).

cis-Cyclohexane-1,2-dicarboxylic anhydride (*cis*-hexahydrophthalic anhydride) [85-42-7, 13149-00-3] M 154.2, m 32-34°, b 158°/17mm. It has been obtained by heating the *trans-acid* or *anhydride* at 200°. Crystallise it from $C_{6}H_{6}/Et_{2}O$ or distil it. [Kohler & Jansen J Am Chem Soc 60 2145 1938, Abell J Org Chem 22 769 1957, Beilstein 17 II 452, 17 III/IV 5931.]

trans-Cyclohexane-1,2-dicarboxylic anhydride (*trans*-hexahydrophthalic anhydride) [14166-21-3] M 154.2, m 140-142°, 145-146°. Crystallise the anhydride from C_6H_6/Et_2O . It has been obtained by heating the *cis*- *acid* or *anhydride* with HCl at 180° for 3hours. It can be obtained from the acid by heating in Ac₂O. It sublimes at 125-135°/0.02mm. [Kohler & Jansen J Am Chem Soc 60 2145 1938, Fichter & Simon Helv Chim Acta 17 1218 1934, Beilstein 9 IV 2802.]

(±)-trans-1,2-Cyclohexanediol [1460-57-7] M 116.2, m 104°, 105°, 120°/14mm. Crystallise the diol from Me₂CO and dry it at 50° for several days. It can also be recrystallised from CCl₄ or EtOAc and it can be distilled. The 2,4-dinitrobenzoyl derivative has m 179°. [Winstein & Buckles J Am Chem Soc 64 2780 1942.] [Beilstein 6 IV 5194.]

trans-1,2-Cyclohexanediol [1R,2R-(-)-1072-86-2, 1S,2S-(+)-57794-08-8] M 116.2, m 107-109°, 109-110.5°, 111-112°, 113-114°, $[\alpha]_{\rm D}^{22}$ (-) and (+) 46.5° (c 1, H₂O). The enantiomers have been recrystallised from *C₆H₆ or EtOAc. The (±) diol has been resolved *via* the distrychnine salt of the hemisulfate [Hayward et al. *J Chem Soc Perkin Trans 1* 2413 1976], or the *1-menthoxy acetates*. {*l-trans*-diastereoisomer has m 64°, $[\alpha]_{\rm D}$ -91.7° (c 1.4 EtOH) from pet ether or aqueous EtOH and yields the (-)-*trans*-diol } and {d-*trans*-diastereoisomer has m 126-127°, $[\alpha]_{\rm D}$ -32.7° (c 0.8 EtOH) from pet ether or aqueous EtOH and yields the (-)-*trans*-diol } and {d-*trans*-diastereoisomer has m 126-127°, $[\alpha]_{\rm D}$ -32.7° (c 0.8 EtOH) from pet ether or aqueous EtOH and yields the (+)-*trans* diol}. The bis-4-*nitrobenzoate* has m 126.5° $[\alpha]_{\rm D}$ (-) and (+) 25.5° (c 1.1 CHCl₃), and the bis-3,5-*dinitrobenzoate* has m 160° $[\alpha]_{\rm D}$ ± 83.0° (c 1.8 CHCl₃) [Wilson & Read *J Chem Soc* 1269 1935]. [*Beilstein* 6 III 4060.]

cis-1,3-Cyclohexanediol [823-18-7] M 116.2, m 86°, 87°, 137°/13mm. Crystallise the *cis*diol from ethyl acetate and acetone. The *dibenzoyl* derivative has m 65.5° (from MeOH or pet ether). [Rigby J *Chem Soc* 1586 1949, Furberg & Hassell Acta Chem Scand 4 518 1950, Beilstein 6 III 4077, 6 IV 5208.]

trans-1,3-Cyclohexanediol [5515-64-0] M 116.2, m 117°, 118-118.5°, 135°/13mm Crystallise the *trans*-diol from ethyl acetate or Me₂CO. The *dibenzoyl* derivative has m 123.5° (from EtOH or pet ether). [Rigby J Chem Soc 1586 1949, Beilstein 6 III 4077, 6 IV 5208.]

cis-1,4-Cyclohexanediol [931-71-5] M 116.2, m 102.5°, 113-114°. Crystallise the *cis*-diol from acetone (charcoal), then dry and sublime it under vacuum. It also crystallises from Me₂CO or Me₂CO/*C₆H₆. The *diacetate* has m 40.6-41.1° (from pet ether or 34-36° from EtOH). [Grob & Baumann *Helv Chim* Acta **38** 604 1955, Owen & Robins J Chem Soc 320 1949, Beilstein **6** III 4080, **6** IV 5209.]

trans-1,4-Cyclohexanediol [6995-79-5] M 116.2, m 142.6-143.1°. Crystallise the *trans*-diol from MeOH or Me₂CO. The *diacetate* has m 104.5-105° (from pet ether or 102-103° from EtOH). [Grob & Baumann *Helv Chim Acta* 38 604 1955, Owen & Robins J Chem Soc 320 1949, Beilstein 6 III 4080, 6 IV 5209.]

Cyclohexane-1,3-dione [504-02-9] **M 112.1, m 107-108°, pK_1^{25} 5.25.** Crystallise the dione from *benzene. Dissolve ~50g of the diol in 140mL of *C₆H₆ under N₂, cool, collect the solid and dry it in a vacuum desiccator overnight. It is unstable and should be stored under N₂ or Ar at ~0°. [Thompson *Org Synth* Coll Vol **III** 278 1955, *Beilstein* **7** IV 1985.]

Cyclohexane-1,4-dione [637-88-7] **M 112.1, m 76-77°, 78°, 79.5°, 79-80°, b 130-133°/20mm, d_{4}^{91} 1.0861, n_{D}^{102} 1.4576. Crystallise the dione from water, then *benzene. It can also be recrystallised from CHCl₃/pet ether or Et₂O. It has been purified by distillation in a vacuum, and the pale yellow distillate which solidified is then recrystallised from CCl₄ (14.3 g/100 mL) and has m** 77-79°. The *disemicarbazone* has **m** 231°, the *dioxime* HCl has **m** 150° (from MeOH/*C₆H₆) and the bis-2,4-dinitrophenylhydrazone **m** 240° (from PhNO₂). [Nielsen & Carpenter Org Synth Coll Vol **V** 288 1973, IR: LeFevre & LeFevre J Chem Soc 3549 1956.] [Beilstein **7** IV 1986.]

Cyclohexane-1,2-dione dioxime (Nioxime) [492-99-9] M 142.2, m 189-190°, pK_1^{25} 10.68, pK_2^{25} 11.92. Crystallise Nioxime from alcohol/water and dry it in a vacuum at 40°. Also 2.5g of oxime have been recrystallised from 550mL of H₂O using Fe free Norit. It forms complexes with Ni and Pd. [Hach et al. *Org Synth* 32 35 1952.] [*Beilstein* 7 IV 1982.]

1,4-Cyclohexanedione monoethylene acetal (**1,4-dioxa-spiro**[**4.5**]**decan-8-one**) [4746-97-8] **M 156.2, m 70-73°, 73.5-74.5°.** Recrystallise it from pet ether. It sublimes slowly on attempted distillation. Also purify it by dissolving it in Et₂O and adding pet ether (b 60-80°) until turbid and cooling. [Gardner et al. *J Am Chem Soc* **22** 1206 *1957*, Britten & Lockwood *J Chem Soc Perkin Trans 1* 1824 *1974*.] [*Beilstein* **19/4** V 93.]

cis,cis-1,3,5-Cyclohexane tricarboxylic acid [16526-68-4] M 216.2, m 216-218°, pK_{Est(1)} ~4.1, pK_{Est(2)} ~5.4, pK_{Est(3)} ~6.8. Purify the acid by recrystallisation from toluene/EtOH or H₂O. It forms a 1.5 hydrate with m 216-218°, and a *dihydrate* m 110°. Purify it also by conversion to the *triethyl ester* b 217-218°/10mm, 151°/1mm, the distillate solidifies on cooling, m 36-37°, which is hydrolysed by boiling in aqueous HCl. The *trimethyl ester* can be distilled and recrystallised from Et₂O, m 48-49°. [Newman & Lawrie J Am Chem Soc 76 4598 1954, Lukes &S Galik Coll Czech Chem Comm 19 712 1954, Beilstein 9 III 4749.]

Cyclohexanol [108-93-0] **M 100.2, m 25.2°, b 161.1°, d 0.946, n_D^{20} 1.466, n_D^{25} 1.437, n_D^{30} 1.462. Reflux it with freshly ignited CaO, or dry it with Na₂CO₃, then fractionally distil it. Redistil it from Na. It is further purified by fractional crystallisation from the melt in dry air. Peroxides and aldehydes can be removed by prior washing with ferrous sulfate and water, followed by distillation under nitrogen from 2,4-dinitrophenylhydrazine, using a short fractionating column: water distils as the azeotrope. Dry cyclohexanol is** *very hygroscopic***. The 3,4-dinitrobenzoate has m** 111-112° (EtOH or aqueous EtOH) It has **TOXIC** vapours. [Beilstein 6 III 10, 6 IV 20.]

Cyclohexanone [108-94-1] **M 98.2, f -16.4°, b 155.7°, d₄²⁰ 0.947, n_D¹⁵ 1.452. n_D²⁰ 1.451, pK²⁵ -6.8 (aqueous H₂SO₄), pK²⁵ 11.3 (enol), 16.6 (keto). Dry cyclohexanone with MgSO₄, CaSO₄, Na₂SO₄ or Linde type 13X molecular sieves, then distil it. Cyclohexanol and other oxidisable impurities can be removed by treatment with chromic acid or dilute KMnO₄. More thorough purification is possible by conversion to the bisulfite addition compound, or the semicarbazone, followed by decomposition with Na₂CO₃ and steam distillation. [For example, equal weights of the bisulfite adduct (crystallised from water) and Na₂CO₃ are dissolved in hot water and, after steam distillation, the distillate is saturated with NaCl and extracted with Et₂O which is then dried (anhydrous MgSO₄ or Na₂SO₄), filtered and the solvent evaporated prior to further distillation.] FLAMMABLE** [*Beilstein* 7 III 14, 7 IV 15.]

Cyclohexanone oxime [100-64-1] **M 113.2, m 90°, b 100-105°/10-12mm, 206-210°/atm.** Crystallise the oxime from water or pet ether (b 60-80°). [Bousquet *Org Synth* Coll Vol **II** 313 1943, *Beilstein* 7 III 32, 7 IV 21.]

Cyclohexanone phenylhydrazone [946-82-7] M 173.3, m 77°. Crystallise it from EtOH.

Cyclohexene [110-83-8] **M 82.2, M -104°, b 83°, d** $_{4}^{20}$ **0.810, n** $_{D}^{20}$ **1.4464, n** $_{D}^{25}$ **1.4437.** Free cyclohexene from peroxides by washing with successive portions of dilute acidified ferrous sulfate, or with NaHSO₃ solution, then with distilled water, drying with CaCl₂ or CaSO₄, and distilling under N₂. Alternative methods for removing peroxides include passage through a column of alumina, refluxing with sodium wire or cupric stearate (then distilling from sodium). The diene is removed by refluxing with maleic anhydride before distilling under vacuum. Treatment with 0.1moles of MeMgI in 40mL of diethyl ether removes traces of oxygenated impurities. Other purification procedures include washing with aqueous NaOH, drying and distilling under N₂ through a spinning band column, redistilling from CaH₂, storing under sodium wire, and passing through a column of alumina, under N₂, immediately before use. Store it at <0° under argon. [Coleman & Johnstone *Org Synth* Coll Vol I 83 1955, Carson & Ipatieff *Org Synth* Coll Vol II 152 1943, Woon et al. J Am Chem Soc **109** 3428 1987.] [Beilstein **5** IV 218.]

(±)-2-Cyclohexen-1-ol (3-hydroxycyclohex-1-ene) [822-67-3] M 242.2, b 63-65°/12mm, 65-66°/13mm, 67°/15mm, 74°/25mm, 85°/35mm, 166°/atm, d_4^{20} 0.9865, n_D^{20} 1.4720. Purify 2-cyclohexen-1-ol by distillation through a short Vigreux column (p 11). The 2,4-dinitrobenzoyl derivative has m 120.5°, and the phenylurethane has m 107°. [Pedersen et al. Org Synth 48 18 1968, Cook J Chem Soc 1774 1938, Deiding & Hartman J Am Chem Soc 75 3725 1953, Beilstein 6 IV 196.]

Cyclohexene oxide (7-oxabicyclo[4.1.0]heptane] [286-20-4] **M 98.2, b 131-133°/atm, d**⁴⁰ **0.971, n**²⁰_D **1.452.** Fractionate the oxide through an efficient column. The main impurity is probably H₂O. Dry it over MgSO₄, filter and distil it several times (**b** 129-134°/760mm). The residue is sometimes hard to remove from the distilling flask. To avoid this difficulty, add a small amount of a mixture of ground NaCl and Celite (1:1) to help break up the residue particularly if H₂O is added. [Osterberg *Org Synth* Coll Vol **I** 185 *1948*, *Beilstein* **17** H 21, **17/1** V 203.]

Cycloheximide (actidione) [68-81-9] M 281.4, m 119.5-121°, $[\alpha]_{546}^{20}$ +9.5° (c 2, H₂O), pK 11.2. Crystallise it from water/MeOH (4:1), amyl acetate, isopropyl acetate/isopropyl ether or water. The *acetate* has m 150-152° (from aqueous EtOH), the *p*-nitrobenzoate has m 215-220°(dec) (from aqueous dioxane) and the *oxime* has m 203-204° (from MeOH). [Kornfeld et al. J Am Chem Soc 71 155 1949, Beilstein 21 IV 6632.]

Cyclohexylamine [108-91-8] **M 99.2, b 134.5°, d**²⁰₄ **0.866, d**²⁵₄ **0.863, n**²⁰_D **1.4593, n**²⁵_D **1.456, pK**²⁵ **10.63.** Dry the amine with CaCl₂ or LiAlH₄, then distil it from BaO, KOH or Na, under N₂. Also purify it by conversion to the hydrochloride (which is crystallised several times from water), then liberation of the amine with alkali and fractional distillation under N₂. The *hydrochloride* has **m** 205-207° (dioxane/EtOH). [Lycan et al. Org Synth Coll Vol **II** 319 1943, Beilstein **12** III 10, **12** IV 8.]

Cyclohexyl bromide [108-85-0] **M 156.3, b 7 2^{0}/29mm, d²⁰₄ 0.902, n²⁵_D 1.4935.** Shake the bromide with 60% aqueous HBr to remove the free alcohol. After removing excess HBr, the sample is dried and fractionally distilled. [IR: Roberts & Chambers J Am Chem Soc 73 5031 1951, Beilstein 5 III 48, 5 IV 67.]

1-Cyclohexylethylamine $[S \cdot (+) - 17430 \cdot 98 \cdot 7, R \cdot (-) - 5913 \cdot 13 \cdot 3]$ M 127.2, b 177 \cdot 178%/atm, d²⁰₄0.866, n²⁰_D 1.446, $[\alpha]_{\rm b}^{15}$ (-) and (+) 3.2° (neat), pK_{Est} ~10.6. Purify it by conversion to the *bitartrate salt* (m 172°), then decomposing with strong alkali and extracting into Et₂O, drying (KOH), filtering, evaporating and distilling. The *hydrochloride salt* has m 242° (from EtOH/Et₂O), $[\alpha]_{\rm D}^{15} \cdot 5.0°$ (c 10 H₂O, from (+) amine). The *oxalate salt* has m 132° (from H₂O). The (±)-base has b 176 \cdot 178°/760mm, and *HCl* has m 237 \cdot 238°. [Reihlen et al. *Justus Liebigs Ann Chem* 532 247 *1938*, Leithe *Chem Ber* 65 660 *1932*, *Beilstein* 12 III 95.]

Cyclohexylidene fulvene (6,6-pentamethylene fulvene) [3141-04-6] M 134.2. Purify the fulvene by column chromatography and eluting with *n*-hexane [Abboud et al. J Am Chem Soc 109 1334 1987].

Cyclohexyl mercaptan (cyclohexane thiol) [1569-69-3] M 116.2, b $38-39^{\circ}/12 \text{ mm}$, 57°/23mm, 90°/100mm, 157°/763mm, d²⁰₄ 0.949, n²⁰_D 1.493, pK_{Est} ~10.8. Possible impurities

are the sulfide and the disulfide. Purify the thiol by conversion to the Na salt by dissolving in 10% aqueous NaOH, extract the sulfide and disulfide with Et₂O, and then acidify the aqueous solution (with cooling and under N₂) with HCl, extract with Et₂O, dry over MgSO₄, evaporate and distil it in a vacuum (**b** 41°/12mm). The *sulfide* has **b** 74°/0.2mm, $n_{D}^{18.5}$ 1.5162 and the *disulfide* has **b** 110-112°/0.2mm, $n_{D}^{18.5}$ 1.5557. The *Hg-mercaptide* has **m** 77-78° (needles from EtOH). [Naylor *J Chem Soc* 1532 *1947*, *Beilstein* **6** H 8, **6** I 6, **6** II 14, **6** III 46, **6** IV 72.]

Cyclohexyl methacrylate [101-43-9] **M 168.2, b 81-86% 0.1mm, d** $_{4}^{20}$ **0.964, n** $_{D}^{20}$ **1.458.** Purify as for methyl methacrylate (p 164). [Tong & Kenyon J Am Chem Soc 68 1355 1946, Beilstein 6 III 25, 6 IV 39.]

Cyclononanone [3350-30-9] **M 140.2, m 142.0-142.8°, b 220-222°, 100-101.5°/15mm.** Purify it via the semicarbazone (m 179,5-180.5° from 90% MeOH) and regenerate it by steam distilling a mixture of 13.1g of semicarbazone, 22g of phthalic anhydride and 45mL of H₂O. After collecting 300mL of distillate, the latter is extracted with Et₂O. The dried extract (MgSO₄) gives on evaporation 8.4g of ketone b 100-101.5°/15mm. The oxime has m 76.5-77.5° (79° from MeOH) and the *iso-oxime* has m 138-139° [Ruzicka et al. *Helv Chim Acta* **32** 548 1949.] It has also been repeatedly sublimed at 0.05-0.1mm pressure. [Blomquist et al. J Am Chem Soc **74** 3639, 3645 1952, Beilstein **7** III 110, **7** IV 62.]

*cis,cis-***1,3-**Cyclooctadiene [3806-59-5] M 108.2, m -5°, -49°, b 55°/34mm, 142-144°/760mm, d²⁰₄ 0.8690, n²⁰_D 1.48921. Purify the diene by GLC. Fractionally distil it through a Widmer column (p 11) as a mobile liquid and redistil it with a Claisen flask or through a semi-micro column [Gould, et al. *Anal Chem* 20 361 1948]. NB: It has a strong characteristic disagreeable odour detectable at low concentrations and causes headaches on prolonged exposure. [IR: Cope & Estes J Am Chem Soc 72 1128 1950, UV: Cope & Baumgardner J Am Chem Soc 78 2812 1956.] [Beilstein 5 IV 401.]

*cis-cis-***1**,**5**-cyclooctadiene, [111-78-4, 1552-12-1] **M** 108.2, **m** -69.5°, -70°, **b** 51-52°/25**mm**, **97°/144mm**, **150.8°/757mm**, d_4^{20} 0.880, n_D^{20} 1.4935. Purify it by GLC. It has been purified *via* the AgNO₃ salt. This is prepared by shaking with a solution of 50% aqueous AgNO₃ w/w several times (e.g. 3 x 50 mL and 4 x 50 mL) at 70° for *ca* 20minutes to get a good separation of layers. The upper layers are combined and further extracted with AgNO₃ at 40° (2 x 20 mL). The upper layer (19 mL) of original hydrocarbon mixture gives colourless needles of the AgNO₃ complex on cooling. The adduct is recrystallised from MeOH (and cooling to 0°). The hydrocarbon is recovered by steam distilling the salt. The distillate is extracted with Et₂O, dried (MgSO₄), filtered, evaporated and distilled. [Jones *J Chem Soc* 312 1954, [Beilstein 5 H 116, 5 IV 403.]

Cyclooctanone [502-49-8] M 126.2, m 42°, 43.8°, b 115-115.5°/60mm. Purify the ketone by sublimation after drying with Linde type 13X molecular sieves. The *semicarbazone* has m 168-169° (from dioxane) [Kohler et al. J Am Chem Soc 61 1060 1939]. The oxime has m 36-37° after subliming at high vacuum or distillation and has b 128-129° /14mm. The *iso-oxime* has m 72-73° [Ruzicka et al. Helv Chim Acta 32 548 1949]. [Beilstein 7 III 77, 7 IV 49.]

1,3,5,7-Cyclooctatetraene [629-20-9] **M 104.2, m -5° to -3°, b 141-141.5°, d_4^{20} 1.537, n_D^{25} 1.5350.** Purify the triene by shaking 3mL with 20mL of 10% aqueous AgNO₃ for 15minutes, then filtering off the AgNO₃ complex which precipitates. The precipitate is dissolved in water and added to cold concentrated ammonia to regenerate the cyclooctatetraene which is fractionally distilled under vacuum onto molecular sieves and stored at 0°. It is passed through a dry alumina column before use [Broadley et al. *J Chem Soc, Dalton Trans* 373 1986]. [Beilstein **5** I 228, **5** IV 1331.]

cis-Cyclooctene [931-87-3; 931-88-4] M 110.2, b 32-349/12mm, 66.5-679/60mm, 889/141mm, 1409/170mm, 1439/760mm, d_4^{20} 0.84843, n_D^{20} 1.4702. The *cis*-isomer is freed from the *trans*-isomer by fractional distillation through a spinning-band column, followed by preparative gas chromatography on a Dowex 710-Chromosorb W GLC column. It is passed through a short alumina column immediately before use [Collman et al. *J Am Chem Soc* 108 2588 1986]. It has also been distilled in a dry N₂ glove box from powdered fused NaOH through a Vigreux column (p 11), then passed through activated neutral alumina before use [Wong et al. *J Am Chem Soc* **109** 4328 *1987*]. Alternatively it can be purified *via* the AgNO₃ salt. This salt is obtained from crude cyclooctene (40 mL) by shaking at 70-80° with 50% w/w AgNO₃ (2 x 15 mL) to remove cyclooctadienes (aqueous layer). Extraction is repeated at 40° (4 x 20 mL, of 50% AgNO₃). Three layers are formed each time. The middle layer contains the AgNO₃ adduct of cyclooctene which crystallises on cooling the layer to room temperature. The adduct (complex 2:1) is highly soluble in MeOH (at least 1g/mL) from which it crystallises in large flat needles when cooled at 0°. It is dried under slight vacuum for 1 week in the presence of CaCl₂ and paraffin wax soaked in cyclooctene. It has **m** 51° and loses hydrocarbon on exposure to air. *cis*-Cyclooctene can be recovered by steam distillation of the salt, collected, dried (CaCl₂) and distilled in vacuum. [Braude et al. *J Chem Soc* 4711 *1957*, AgNO₃: Jones *J Chem Soc* 1808 *1954*, Cope & Estes *J Am Chem Soc* **72** 1128 *1950*, *Beilstein* **5** I 35, **5** IV 263.] **FLAMMABLE LIQUID**.

cis-Cyclooctene oxide {(1r, 8c)-9-oxabicyclo[6.1.0]nonane} [286-62-4] M 126.7, m 56-57°, 57.5-57.8°, 50-60°, b 85-88°/17mm, 82.5°/22mm, 90-93°/37mm, 189-190°/atm. It can be distilled in vacuum, and the solidified distillate can be sublimed in vacuum below 50°. It has a characteristic odour. [IR: Cope et al. J Am Chem Soc 74 5884 1952, cf trans-isomer: Cope et al. J Am Chem Soc 79 3905 1957, Reppe et al. Justus Liebigs Ann Chem 560 1 1948].

Cyclopentadecanone (Exaltone) [502-72-7] M 224.4, m 63°, 65°, 65-66°, b 155-157°/5mm Subliming Exaltone is better than crystallising it from aqueous EtOH for purification. The *semicarbazone* has m 186-187°. [Stevens & Erickson J Am Chem Soc 64 146 1942, Mathur et al. J Chem Soc 3505 1963, Biens & Hess Helv Chim Acta 71 1704 1988, Beilstein 7 III 203, 7 IV 118.]

Cyclopentadiene [542-92-7] **M 66.1, b 41-42°, pK²⁵ 15.** Dry the diene with Mg(ClO₄)₂ and distil it rapidly as it dimerises readily at room temperature. It should be used immediately or stored in a Dry Ice or an ice-salt bath. **HIGHLY FLAMMABLE.** [Moffett *Org Synth* Coll Vol **IV** 238 1963.] *Cyclopentadiene Dimer* (4,7-*methano-3a*,4,7,7*a*-*tetrahydroindene*) has [77-73-6], **M** 132.3, **m** 33°, **b** 170°/atm, and **d**²⁵ 0.986; add ~0.05% of 2,6-di-*tert*-butyl-4-methylphenol as stabilizer. Cyclopentadiene is prepared when required by depolymerising the technical grade dimer by heating it carefully under a fractionating column [Wilkinson *Org Synth Coll Vol* **IV** 467 1963], as described by Moffett (above reference), or by adding the dimer at a steady rate onto mineral oil heated at 240-270° (Korach et al. *Org Synth* **42** 50 1962). [*Beilstein* **5** II 391.]

Cyclopentane [287-92-3] **M 70.1, b 49.3°, d** $_{4}^{20}$ **0.745, n** $_{D}^{20}$ **1.40645, n** $_{D}^{25}$ **1.4340.** Free it from cyclopentene by two passages through a column of carefully dried and degassed activated silica gel. It occurs in petroleum and is **HIGHLY FLAMMABLE.** [NMR: Christl *Chem Ber* **108** 2781 *1975*, Whitesides et al. **41** 2882 *1976*, *Beilstein* **5** III 10, 5 IV 4.]

Cyclopentane carbonitrile [4254-02-8] **M** 95.2, **m** -75.2°, -76°, **b** 43-44°/7**mm**, 50-62°/10**mm**, 67-68°/14**mm**, 74.5-75°/30**mm**, d_4^{20} 0.912, n_D^{20} 1.441. Dissolve the nitrile in Et₂O, wash it thoroughly with saturated aqueous K₂CO₃, dry (MgSO₄) and distil it through a 10 cm Vigreux column (p 11). [McElvain & Stern J Am Chem Soc 77 457 1955, Bailey & Daly J Am Chem Soc 81 5397 1959, Beilstein 9 IV 14.]

Cyclopentane carboxylic acid [3400-45-1] M 114.1, m 3-5°, b 106.5-107°/10mm, 216°/atm, d^{25} 1.053, pK²⁵ 4.98. If it is discoloured shake it with saturated aqueous NaCl, extract it with Et₂O, dry the extract (MgSO₄), filter, evaporate and distil the residue preferably under a vacuum. The lachrymatory *acid chloride* [3400-45-1] has M 114.1, m 4° and b 216°/atm, d_4^{20} 1.091, n_D^{20} 1.4620. [*Beilstein* 9 H 6, 9 IV 11.]

Cyclopentane-1,1-dicarboxylic acid [5802-65-3] M 158.1, m 184°, pK_1 3.23, pK_2 4.08. Recrystallise the di-acid from water or pentane/Et₂O (10:1), and it decarboxylates on melting. [IR, NMR: Hoberg et al. *Synthesis* 395 1991.]

1,3-Cyclopentanedione [3859-41-4] **M 98.1, m 149-150°, 151-152.5°, 151-154°, 151-153°, pKa 4.5.** Purify the dione by Soxhlet extraction with CHCl₃. The CHCl₃ is evaporated and the residue is recrystallised from EtOAc and/or sublimed at 120°/4mm. [IR: Boothe et al. J Am Chem Soc 75 1732 1953, DePuy & Zaweski J Am Chem Soc 81 4920 1959, Beilstein 7 IV 1981.]

Cyclopentanone [120-92-3] **M 84.1, b 130-130.5°, d** $_{4}^{20}$ **0.947, n** $_{D}^{20}$ **1.4370, n** $_{D}^{25}$ **1.4340.** Shake it with aqueous KMnO₄ to remove materials absorbing around 230 to 240nm. Dry it with Linde-type 13X molecular sieves and fractionally distil it. It has also been purified by conversion to the NaHSO₃ adduct which, after crystallising four times from EtOH/water (4:1), is decomposed by adding to an equal weight of Na₂CO₃ in hot H₂O. The free cyclopentanone is steam distilled from the solution. The distillate is saturated with NaCl and extracted with *benzene which is then dried (anhydrous K₂CO₃) and evaporated. The residue is then distilled [Allen, et al. *J Chem Soc* 1909 *1960*]. [*Beilstein* **7** IV 5.]

Cyclopentene [142-29-0] **M 68.1, b 45-46°, d** $_{4}^{20}$ **0.772, n** $_{D}^{20}$ **1.4228.** Free cyclopentene from hydroperoxide by refluxing with cupric stearate. Fractionally distil it from Na. It can be chromatographed on a Dowex 710-Chromosorb W GLC column. Methods for **cyclohexene** should be applicable here. Also, it has been washed with 1M NaOH solution followed by water. It was dried over anhydrous Na₂SO₄, distilled over powdered NaOH under nitrogen, and passed through neutral alumina before use [Woon et al. *J Am Chem Soc* **108** 7990 *1986*]. It was distilled in a dry nitrogen atmosphere from powdered fused NaOH through a Vigreux column (p 11), and then passed through activated neutral alumina before use [Wong et al. *J Am Chem Soc* **109** 3428 *1987*]. [*Beilstein* **5** IV 209.]

1-Cyclopentene-1,2-dicarboxylic anhydride [3205-94-5] M 138.1, m 42-54°, 46-47°, b 130°/5mm, 133-135°/10mm, n_D^{20} 1.497. If IR has OH peaks, then some hydrolysis to the diacid (m 178°) must have occurred. In this case reflux it with an appropriate volume of Ac₂O for 30minutes, evaporate the Ac₂O and distil it *in vacuo*. The distillate solidifies and can be recrystallised from EtOAc/hexane (1:1). The diacid distils without decomposition due to formation of the anhydride. The *dimethyl ester* has m 120-125°/11mm. [Askain Chem Ber 98 2322 1965, Beilstein 17/11 V 125.]

Cyclopentylamine [1003-03-8] M 85.2, m -85.7°, b 106-108°/760mm, 108.5°/760mm, d_4^{20} 0.869, n_D^{20} 1.452, pK²⁵ 10.65, (pK²⁵ 4.05 in 50% aqueous EtOH). The amine may contain H₂O or CO₂ in the form of carbamate salt. Dry it over KOH pellets and then distil it from a few pellets of KOH. Store it in a dark, dry CO₂-free atmosphere. It is characterised as the *thiocyanate salt* m 94.5°. The *benzenesulfonyl* derivative has m 68.5-69.5°. [Roberts & Chambers J Am Chem Soc 73 5030 1951, Bollinger et al. J Am Chem Soc 75 1729 1953, Beilstein 12 IV 4.]

Cyclopropane [75-19-4] **M 42.1, b -34**^o. Wash cyclopropane with a solution of HgSO₄ and dry it with CaCl₂, then Mg(ClO₄)₂. It is an anaesthetic FLAMMABLE gas and is packaged in steel cylinders. [Rifi *Org Synth* Coll **52** 22 1972, Simmons & Smith *J Am Chem Soc* **80** 5323 1958, *Beilstein* **5** H 15.]

Cyclopropanecarbonyl chloride [4023-34-1] **M 104.5, b 117.9-118.0°/723mm, 119.5-119.6**^{[0/760mm, d²⁰₄] **1.142, n**²⁰_D **1.453.** If the IR shows OH bands, then some hydrolysis to the free acid must have occurred. In this case heat with oxalyl chloride at 50° for 2hours or SOCl₂ for 30minutes, then evaporate and distil three times using a Dufton column (p 10). Store it in an inert dry atmosphere, preferably in sealed tubes. Strong **IRRITANT.** If it is free from OH bands, then just distil it *in vacuo* and store as before. [Jeffrey & Vogel J Chem Soc 1804 1948, Beilstein **9** IV 4.]}

Cyclopropane-1,1-dicarboxylic acid [598-10-7] **M 130.1, m 140°, pK_1^{25} 1.8 (1.68), pK_2^{25} 5.42 (7.22, 7.43). Recrystallise the di-acid from CHCl₃, EtOAc or *C₆H₆/Et₂O/pet ether. It forms a** *monohydrate***. [Nicolet & Satler J Am Chem Soc 49** 2070 1927, Beilstein **9** II 512, **9** III 3795.]

Cyclopropylamine [765-30-0] **M 57.1, b 49-49.5°/760mm, 48-50°/atm, 49-50°/750mm,** d_4^{20} **0.816, n**_D²⁰ **1.421, pK**²⁵ **9.10** (**pK**²⁵ **5.33 in 40% aqueous EtOH**). It has been isolated as the *benzamide* **m** 100.6-101.0° (from aqueous EtOH). It forms a *picrate* **m** 149° (from EtOH/pet ether) from which the free base can be recovered using a basic ion-exchange resin and can then be distilled through a Todd column (p 11) using an automatic still head which only collects products boiling below 51°/atm. Polymeric materials if present will boil above this temperature. The *hydrochloride* has **m** 85-86° [Roberts & Chambers J Am Chem Soc **73** 5030 1951, Jones J Org Chem **9** 484 1944, Emmons J Am Chem Soc **79** 6522 1957]. [Beilstein **12** IV 3.] **Cyclopropyl methyl ketone (acetylcyclopropane)** [765-43-5] M 84.1, b 111.6-111.8°/752mm, 111.8°, d²⁰₄ 0.850, n²⁰_D 1.4242. Store the ketone with anhydrous CaSO₄, or CaCl₂ and distil it under nitrogen, preferably using a good fractionating column. Redistil it under vacuum. It polymerises readily. The *semicarbazone* has m -119.5-120.5° (from *C₆H₆). [Cannon et al. *Org Synth* Coll Vol **IV** 597 1963, *Beilstein* 7 III 13, 7 IV 14.]

Cyclotetradecane [295-17-0] M 192.3, m 56°. Recrystallise it twice from aqueous EtOH, then sublime it *in vacuo* [Dretloff et al. J Am Chem Soc 109 7797 1987].

Cyclotetradecanone [3603-99-4] **M 206.3, m 25°, b 145°/10mm, d** $_{4}^{20}$ **0.926, n** $_{D}^{20}$ **1.480.** It is converted to the semicarbazone which is recrystallised from EtOH and re-converted to the free cyclotetradecanone by hydrolysis [Dretloff et al. *J Am Chem Soc* **109** 7797 *1987*]. Fractionate it in a vacuum.

Decahydronaphthalene (decalin, mixed isomers) [91-17-8] M 138.2, b 191.7°/760mm, d_4^{20} 0.886, n_D^{20} 1.476. Stir decalin with conc H₂SO₄ for several hours. Then the organic phase is separated, washed with water, saturated aqueous Na₂CO₃, again with water, dried with CaSO₄ or CaH₂ (and perhaps dried further with Na), filtered and distilled under reduced pressure (b 63-70°/10mm). It has also been purified by repeated passage through long columns of silica gel previously activated at 200-250°, followed by distillation from LiAlH₄ and storage under N₂. Type 4A molecular sieves can be used as a drying agent. Storage over silica gel removes water and other polar substances. [For the separation of *cis* and *trans* isomers see Seyer & Walker J Am Chem Soc **60** 2125 1938, and Baker & Schuetz J Am Chem Soc **69** 1250 1949.]

cis-Decahydronaphthalene [493-01-6] M 138.2, f -43.2°, b 195.7°, 81-83°/19mm, d $_4^{20}$ 0.897, n $_D^{20}$ 1.48113. Purification methods described for the mixed isomers are applicable here. The individual isomers can be separated by very efficient fractional distillation, followed by fractional crystallisation by partial freezing. The *cis*-isomer reacts preferentially with AlCl₃ and can be removed from the *trans*-isomer by stirring the mixture with a limited amount of AlCl₃ for 48hours at room temperature, filtering and distilling. [Seyer & Walker J Am Chem Soc 60 2125 1938, Baker & Schuetz J Am Chem Soc 69 1250 1949.] A very pure authentic sample is best obtained by synthesis from *cis*-1,2-bis-chloroethylcyclohexane [Whitesides & Gutowski J Org Chem 41 2882 1976, Beilstein 5 IV 310.]

trans-Decahydronaphthalene [493-02-7] M 138.2, f -30.6°, b 187.3°, d_4^{20} 0.870, n_D^{20} 1.46968. See purification of *cis*-isomer above. [Seyer & Walker J Am Chem Soc 60 2125 1938, Baker & Schuetz J Am Chem Soc 69 1250 1949, Beilstein 5 IV 311.]

(+)-Dehydroabietylamine (abieta-8,11,13-triene-18-ylamine) [1446-61-3] M 285.5, m 41°, 42.5-45°, b 192-193°/1mm, 250°/12mm, n_D^{40} 1.546, $[\alpha]_{546}^{20}$ +51° (c 1, EtOH), $pK_{Est} \sim 10.3$. The crude base is purified by converting 2g of base in toluene (3.3mL) into the *acetate salt* by heating at 65-70° with 0.46g of AcOH, and the crystals are collected and dried (0.96g from two crops, m 141-143°). The acetate salt is dissolved in warm H₂O, basified with aqueous NaOH and extracted with *C₆H₆. The dried extract (MgSO₄) is evaporated in vacuum leaving a viscous oil which crystallises and can be distilled. [Gottstein & Cheney J Org Chem 30 2072 1965.] The picrate has m 234-236° (from aqueous MeOH), and the *formate* has m 147-148° (from heptane). [Beilstein 12 IV 3005.]

Diamantane (congressane) [2292-79-7] **M 188.3, m 234-235°, 243-245°.** Purify diamantane by repeated crystallisation from MeOH or pentane. Alternatively purify it by dissolving it in CH₂Cl₂, washing with 5% aqueous NaOH and water, and drying (MgSO₄). The solution is filtered, concentrated to a small volume, an equal weight of alumina is added, and the solvent evaporated. The residue is placed on an activated alumina column (*ca* 4 x weight of diamantane) and eluted with pet ether (b 40-60°). Eight sublimations and twenty zone refining experiments gave material **m** 251° of 99.99% purity by differential analysis [Gund et al. *Tetrahedron Lett* 3877 *1970*, Courtney et al. *J Chem Soc Perkin Trans I* 2691 *1972*]. [For spectra see Cupas et al. *J Am Chem Soc* **87** 919 *1965*.]

1.3-Diaminoadamantane [10303-95-4] **M 164.3, m 52°, pK**_{Est(1)} ~**8.6, pK**_{Est(2)} ~**10.6.** Purify it by zone refining. The *dibenzoyl* derivative has **m** 248°, and the *dihydrochloride salt* has **m** 310° (360°) after recrystallisation from aqueous EtOH or EtOH/Et₂O. [Prelog & Seiwerth *Chem Ber* **74** 1769 1941, Stetter & Wulff *Chem Ber* **93** 1366 1960.]

cis-1,2-Diaminocyclohexane [1436-59-5] M 114.2, b 92-93% mm, d_4^{25} 0.952, n_D^{20} 1.493, pK₁²⁰ 6.13, pK₂²⁰ 9.93. Dry the diamine over solid KOH and distil it in a vacuum. It is a strong base, keep away from CO₂, store in the dark under N₂. [Beilstein 13 IV 1.]

(±)-*trans*-1,2-Diaminocyclohexane [1121-22-8] M 114.2, m 14-15°, b 78-81°/15mm, d_4^{25} 0.951, n_D^{20} 1.489, pK_1^{20} 6.47, pK_2^{20} 9.94. Purify and store the diamine as for the *cis*-isomer above as it is a strong base and becomes yellow on storage. [*Beilstein* 13 IV 1.]

IR,2*R*(-)-*trans*-1,2-Diaminocyclohexane [20439-47-8] M 114.2, m 41-45°, $[\alpha]_{D}^{20}$ -25.5° (c 5 M HCl). m 14-15°. Distil or recrystallise the diamine from pet ether under N₂ or Ar. Store it as above. The *IR*,2*R*-base *L*-tartrate salt has [39961-95-0], M 264.3, m 273° and $[\alpha]_{D}^{25}$ +12.5° (c 4, H₂O), and can be used to purfy and/or optically enrich the free base. [*Beilstein* 13 III 6, and references below.]

IS, 2S(+)-trans-1,2-Diaminocyclohexane [21436-03-3] M 114.2, m 42-45°, b 104-110°/40mm, $[\alpha]_{D}^{20}$ +25.5° (c 5 M HCl). m 14-15°. Distil or recrystallise the diamine from pet ether under N₂ or Ar. Store it as above. The *IS,2S*-base *D*-tartrate salt has [67333-70-4], M 264.3, m 180-184°(dec) and $[\alpha]_{D}^{25}$ -12.5° (c 4, H₂O) from which the free base can be purified or optically enriched. It is a useful chiral synthon. [Fjii et al. J Chem Soc, Chem Commun 45 1985, Takahashi et al. Tetrahedron Lett 30 7095 1989, Hanassian et al. J Org Chem 58 1991 1993, Beilstein 13 III 7.]

trans-1,4-Diaminocyclohexane [2615-25-0] M 114.2, m 69-72°, b 197°/760mm, $pK_{est(1)} \sim 9.4$, $pK_{est(2)}$ 10.8. Recrystallise the diamine from pet ether under N₂ or Ar as it should be an even stronger base than the above 1,2-diamine isomers. It distils under N₂. Store in the dark under N₂. [*Beistein* 13 I 3, 13 III 11.]

cis-3,4-Dichlorocyclobutene [2957-95-1] M 123.0, b 70-71°/55mm, 74-76°/55mm, d_4^{20} 1.297, n_D^{20} 1.499. Distil the cyclobutene at 55mm through a 36-in platinum spinning band column, a forerun b 58-62°/55mm is mainly 1,4-dichlorobutadiene. When the temperature reaches 70° the reflux ratio is reduced to 10:1 and the product is collected quickly. It is usually necessary to apply heat frequently with a sun lamp to prevent any dichlorobutadiene from clogging the exit in the early part of the distillation [Pettit & Henery Org Synth 50 36 1970].

1,3-Dicyclohexylcarbodimide (DCC) [538-75-0] M 206.3, m 34-35°, b 95-97°/0.2mm, 120-121°/0.6mm, 155°/11mm. It is sampled as a liquid after melting in warm H_2O . It is sensitive to air, and *it is a potent skin irritant*. It can be distilled in a vacuum and is best stored in a tightly stoppered flask in a freezer. It is very soluble in CH₂Cl₂ and pyridine where the reaction product with H_2O , after condensation, is dicyclohexyl urea which is insoluble and can be filtered off. Alternatively dissolve it in CH₂Cl₂, add powdered anhydrous MgSO₄, shake for 4hours, filter, evaporate and distil at 0.6mm pressure and oil bath temperature of 145°. [Bodansky et al. *Biochemical Preparations* 10, 122 *1963*, Schmidt & Seefelder *Justus Liebigs Ann Chem* 571 83 *1951*, Schmidt et al. *Justus Liebigs Ann Chem* 612 11 *1958*, *Beilstein* 12 IV 72.]

3,4-Diethoxy-3-cyclobutene-1,2-dione (diethyl squarate) [5321-87-8] M 170.2, b 89-91% (Mapping 10.4 mm, 88-92% (Mapping 1.162, n_D^{25} 1.5000. Dissolve the ester in Et₂O, wash it with Na₂CO₃, H₂O and dry (Na₂SO₄) it, filter, evaporate and distil it using a Kügelrohr or purify it by chromatography. Use a Kieselgel column and elute with 20% Et₂O/pet ether (b 40-60%), then with Et₂O/pet ether (1:1), evaporate and distil the residue *in vacuo*. [Dehmlow & Schell Chem Ber 113 1 1980, Perri & Moore J Am Chem Soc 112 1897 1990, IR: Cohen & Cohen J Am Chem Soc 88 1533 1966] It can cause severe dermatitis. [Foland et al. J Am Chem Soc 111 975 1989, Perri et al. Org Synth 69 220 1990]. *N,N*-Diethylcyclohexylamine [91-65-6] M 155.3, b 85-87°/15mm, 193°/760mm, d_{25}^{25} 0.850, n_D^{25} 1.4562, pK²⁵ 10.72. Dry the amine with BaO and fractionally distil it. The *picrate* has m 98-99° (from aqueous EtOH) and the *methiodide* has m 224° (from Me₂CO/pet ether) [Cadogan J Chem Soc 1081 1957.] [Bain & Pollard J Am Chem Soc 61 2704 1939, Beilstein 12 H 6, 12 III 14, 12 IV 19.]

Diethyl cyclopropane-1,1-dicarboxylate [1559-02-0] **M 186.2, b 94-96**/10mm, d_4^{25} 1.055, n_D^{20} 1.433. If it is free from OH bands in the IR, then fractionally distil the ester and redistil the middle fraction. Otherwise shake it with aqueous NaHCO₃, dry it (MgSO₄), filter and distil as before or re-esterify it. [As synthon see Danishefsky Acc Chem Res 12 66 1979, Beilstein 9 I 314, 9 II 512, 9 III 3595, 9 IV 2786.]

Dimedone (5,5-dimethylcyclohexane-1,3-dione) [126-81-8] M 140.2, m 148-149°, pK²⁵ 5.27. Crystallise dimedone from acetone (*ca* 8mL/g), water or aqueous EtOH. Dry it in air. [Schneider & Todd Org Synth Coll Vol II 200 1943, Beilstein 7 H 559, 7 IV 1999.]

*cis- and trans-***1,4-Dimethylcyclohexane** [589-90-2] **M 112.2, b 120**°, d_4^{20} **0.788,** n_D^{25} **1.427.** Free it from olefins by shaking with conc H₂SO₄, washing with water, drying and fractionally distilling it. [Haggis & Owen *J Chem Soc* 411 *1953*, *Beilstein* **5** III 102, **5** IV 122.]

1,2-Dimethylcyclohexene [1674-10-8] M **110.2, b 135-136**°/760mm, d_4^{25} **0.826,** n_D^{25} **1.4587.** Pass it through a column of basic alumina and distil it. If removal of 2-methylmethylenecyclohexane or 2,3-dimethylcyclohexene is required, then fractionation through a centre-rod column operating at ~50 theoretical plates is required. [Hammond & Nevitt J Am Chem Soc 76 4121 1954, Beilstein **5** III 213, **5** IV 268.]

Ethyl chrysanthemumate (ethyl $\pm 2,2$ -dimethyl-3{c and t}-[2-methylpropenyl]cyclopropane carboxylate) [97-41-6] M 196.3, b 98-102°/11mm, 117-121°/20mm. Purify the ester by vacuum distillation. The free *trans-acid* has m 54° (from EtOAc), and the free *cis-acid* has m 113-116° (from EtOAc). The 4-nitrophenyl ester has m 44-45° (from pet ether) [Campbell & Harper J Chem Soc 283 1945, IR: Allen et al. J Org Chem 22 1291 1957]. [Beilstein 9 II 45.]

Ethylcyclohexane [1678-91-7] M 112.2, b 131.2°/742mm, d_4^{20} 0.7839, n_D^{20} 1.43304, n_D^{25} 1.43073. Purify it by azeotropic distillation with 2-ethoxyethanol; then the alcohol is washed out with water and, after drying, the ethylcyclohexane is redistilled. The dried material has been repeatedly fractionated over Na. [Baker & Groves J Chem Soc 1148 1939, Beilstein 5 H 35, 5 III 90, 5 IV 115.]

Ethyl cyclohexanecarboxylate [3289-28-9] M 156.2, b 76-77°/10mm, 92-93°/34mm, 196-196.2°/760mm, d_4^{20} 0.955, n_D^{20} 1.441. Wash the ester with N sodium hydroxide solution, then water, dry with Na₂SO₄ and distil it. The *amide* has m 185-186°. [Adkins & Cramer J Am Chem Soc 52 4355 1930, Newman & Walborsky J Am Chem Soc 72 4296 1950, Beilstein 9 III 17, 9 IV 18.]

1-Ethynyl-1-cyclohexanol [78-27-3] M **124.2, m 30-33°, 32-33°, b 74°/12mm, 76-78°/17mm, 171-172°/694mm, 180°/atm, d** $_{4}^{25}$ **0.9734, n** $_{D}^{25}$ **1.4801.** Dissolve it in Et₂O, wash it with H₂O, dilute NaHCO₃, H₂O again, dry (Na₂SO₄), filter, evaporate and distil the residue. IR (CCl₄): v_{max} 3448 (OH), 2941 (CH), 1449-1123 and 956 cm⁻¹, NMR (CCl₄) δ : 3.2 (OH), 2.5 (= CH), 1.70 (m 10H, CH₂) [Hasbrouck & Kiessling J Org Chem **38** 2103 1972]. [Beilstein **6** II 100.] **TOXIC.**

Eucaliptol (1,8-cineol, 1,8-epoxy-*p*-menthane, 1,3,3-trimethyl-2-oxabicyclo[2.2.2]-octane) [470-82-6] M 154.2, m 1.3°, 1.5°, b 39-39.3°/4mm, 176-176.4°/760mm, d_4^{20} 0.9232, n_D^{20} 1.4575. Purify 1,8-cineol by dilution with an equal volume of pet ether, then saturate with dry HBr. The precipitate is filtered off, washed with small volumes of pet ether, then cineole is regenerated by stirring the crystals with H₂O. It can also be purified *via* its *o*-cresol or resorcinol addition compounds. Store it over Na until required. Purify it also by fractional distillation. It is insoluble in H₂O but soluble in organic solvents. [IR: Kome et al. *Nippon Kagaku Zasshi [J Chem Soc Japan* (Pure Chem Sect)] 80 66 1959, Chem Abstr 603 1961, Beilstein 17 II 32, 17/1 V 273.]

(+)- α -Fenchol (1*R*-1,3,3-trimethyl-norbornan-2-ol) [1632-73-1] M 154.3, m 40-43°, 47-47.5°, b 201-202°, $[\alpha]_{D}^{20}$ +12.5° (c 10, EtOH). It is prepared by reduction of (-)-fenchone and is purified by recrystallisation from *C₆H₆/pet ether, or distillation, or both. The 2-carboxybenzoyl (monophthalate) derivative has m 146.5-147.5° $[\alpha]_{D}^{20}$ -20.4° (EtOH), and the 2-phenylurethane has m 81°. [Beckmann & Metzger Chem Ber 89 2738 1956]. [Beilstein 6 III 288, 6 IV 278.]

(+)- Fenchone (1S-1,3,3-trimethyl-norbornan-2-one) [4695-62-9] M 152.2, m 5-7°, 6.1°, b 63-65°/13mm, 66°/15mm, 122°/10mm, d_{20}^{20} 0.9434, n_D^{20} 1.4636, $[\alpha]_{20}^{20}$ +66.9° (neat, or in c 1.5, EtOH), $[\alpha]_{546}^{20}$ +60.4° (neat). The oily liquid is purified by distillation in a vacuum and is very soluble in EtOH and Et₂O. [Boyle et al. *J Chem Soc, Chem Commun* 395 1971, Hückel *Justus Liebigs Ann Chem* 549 186 1941, (±)-isomer: Braun & Jacob *Chem Ber* 66 1461 1933.] It forms two *oximes, cisoxime*: m 167° (crystallises from pet ether) $[\alpha]_{D}^{20}$ +46.5° (c 2, EtOH), *O-benzoyloxime* m 81°, $[\alpha]_{D}^{18}$ +49° (EtOH) and *oxime-HCl* m 136°(dec). The *trans-oxime* has m 123° (from pet ether) $[\alpha]_{D}^{18}$ +148° (c 2, EtOH) and the *O-benzoyloxime* has m 125° $[\alpha]_{D}^{20}$ +128.5° (c 2, EtOH) [Hückel *Justus Liebigs Ann Chem* 549 186 1941, Hückel & Sachs *Justus Liebigs Ann Chem* 498 166 1932]. [*Beilstein* 7 III 212, 7 IV 212.]

(-)- Fenchone (1R-1,3,3-trimethyl-norbornan-2-one) [7787-20-4] M 152.2, m 5.2°, b 67.2°/10mm, 191-195°/atm, d²⁰₄ 0.9484, n²⁰_D 1.4630, [α]²⁰_D -66.8° (neat). Purification is as for the (+)-enantiomer above and should have the same physical properties except for opposite optical rotations. UV has λ_{max} 285nm (ε 12.29). [Braun & Jacob Chem Ber 66 1461 1933, UV: Ohloff et al. Chem Ber 90 106 1957.] [Beilstein 7 III 392, 7 IV 212.]

Fullerene C_{60} (Buckminsterfullerene C_{60} , Footballene, Buckyball 60) [99685-96-8] M 720.66 and Fullerene C_{70} [115383-22-7] M 840.77. It was purified from the soluble toluene extract (400mg) of the soot (Fullerite) formed from resistive heating of graphite by adsorption on neutral alumina (100g, Brockmann I, 60 x 8cm). Elution with toluene/hexane (5:95 v/v) gives *ca* 250mg of quite pure C_{60} . It has characteristic spectral properties (see below). Further elution with toluene/hexane (20:80 v/v, i.e. increased polarity of solvent) provides 50mg of "pure" C_{70} [Allemand et al. J Am Chem Soc 113 1050 1991].

Chromatography on alumina can be improved by using conditions which favour adsorption rather than crystallisation. Thus the residue from toluene extraction (1g) in CS₂ (*ca* 300mL) is adsorbed on alumina (375g, standard grade, neutral *ca* 150 mesh, Brockmann I) and loaded as a slurry in toluene/hexanes (5:95 v/v) to a 50 x 8cm column of alumina (1.5Kg) in the same solvent. To avoid crystallisation of the fullerenes, 10% of toluene in hexane is added quickly followed by 5% of toluene in hexane after the fullerenes had left the loading fraction (2-3hours). With a flow rate of 15mL/minute the purple C₆₀ fraction is eluted during a 3-4hour period. Evaporation of the eluates gives 550-630mg of product which, after recrystallisation from CS₂/cyclohexane yields 520-600mg of C₆₀ which contains adsorbed solvent. On drying at 275°/10⁻³mm for 48hours a 2% weight loss is observed although the C₆₀ still contains traces of solvent. Further elution of the column with 20% of toluene in hexane provides 130mg of C₇₀ containing 10-14% of C₆₀ (by ¹³C NMR). This was rechromatographed as above using a half scale column and adsorbing the 130mg in CS₂ (20mL) on alumina (24g) and gave 105mg of recrystallised C₇₀ (containing 2% of C₆₀). The purity of C₆₀ can be improved further by washing the crystalline product with Et₂O and Me₂CO followed by recrystallisation from *C₆H₆ and vacuum drying at high temperatures.

Carbon soot from resistive heating of a carbon rod in a partial helium atmosphere (0.3bar) under specified conditions is extracted with boiling C_6H_6 or toluene, filtered and the red-brown solution is evaporated to give crystalline material in 14% yield which is mainly a mixture of fullerenes C_{60} and C_{70} . Chromatographic filtration of the 'crude' mixture with C_6H_6 allows no separation of components, but some separation was observed on silica gel TLC with *n*-hexane or *n*-pentane, but not cyclohexane as eluents. Analytical HPLC with hexanes (5μ m Econosphere silica) gave satisfactory separation of C_{60} and C_{70} (retention times of 6.64 and 6.93minutes respectively) at a flow rate of 0.5mL/minute and using a detector at 256nm. HPLC indicated the presence of minor (<1.5% of total mass) unidentified C_n species with retention times of 5.86 and 8.31minutes. Column chromatography on flash silica gel with hexane gives a few fractions of C_{60} with \geq 95% purity, but later fractions contain mixtures of C_{60} and C_{70} . These can be obtained in 99.85 and \geq 99% purity, respectively, by column chromatography on neutral alumina. [Ajie et al. *J Phys Chem* **94** 8630 *1990*.]

Separation of C_{60} and C_{70} can be achieved by HPLC on a dinitroanilinopropyl (DNAP) silica (5µm pore size, 300Å pore diameter) column with a gradient from *n*-hexane to 50% CH₂Cl₂ using a diode array detector at wavelengths 330nm (for C_{60}) and 384nm (for C_{70}). [Cox et al. *J Am Chem Soc* **113**, 2940, *1991*.]

Soxhlet extraction of the "soot" is a good preliminary procedure, or if material of only *ca* 98% purity is required. Soxhlet extraction with toluene is run (20minutes per cycle) until colourless solvent filled the upper part of the Soxhlet equipment (10hours). One-third of the toluene remained in the pot. After cooling, the solution was filtered through a glass frit. This solid (purple in toluene) was *ca* 98% C₆₀. This powder was again extracted in a Soxhlet using identical conditions as before, and the C₆₀ was recrystallised from toluene to give 99.5% pure C₆₀. C₇₀ has greater affinity than C₆₀ for toluene. [Coustel et al. *J Chem Soc, Chem Commun* 1402 *1992*.]

Purification of C_{60} from a C_{60}/C_{70} mixture was also achieved by dissolving it in an aqueous solution of γ (but not β) cyclodextrin (0.02M) upon refluxing. The rate of dissolution (as can be followed by the UV spectra) is quite slow and constant up to 10^{-5} M of C_{60} . The highest concentration of C_{60} in H₂O obtained was 8 x 10^{-5} M and a 2 γ -cyclodextrin:1 C_{60} clathrate is obtained. C_{60} is extracted from this aqueous solution by toluene and C_{60} of >99 purity is obtained by evaporation. With excess of γ -cyclodextrin more C_{60} dissolves and the complex precipitates. The precipitate is insoluble in cold H₂O but soluble in boiling H₂O to give a yellow solution. [Andersson et al. *J Chem Soc, Chem Commun* 604 *1992*.]

 C_{60} and C_{70} can also be readily purified by inclusion complexes with *p-tert*-butylcalix[6] and [8]arenes. Fresh carbon-arc soot (7.5g) is stirred with toluene (250mL) for 1hour and filtered. To the filtrate is added *p-tert*-butylcalix[8]arene, refluxed for 10minutes and filtered. The filtrate is seeded and set aside overnight at 20°. The C_{60} complex separates as yellow-brown plates and is recrystallised twice from toluene (1g from 80mL) to give a 90% yield. Addition of CHCl₃ (5mL) to the complex (0.85g) gave C_{60} (0,28g, 92% from recrystallised complex).

p-tert-Butylcalix[6]arene- $(C_{60})_2$ complex is prepared by adding *p-tert*-butylcalix[6]arene (4.4mg) to a refluxing solution of C_{60} (5mg) in toluene (5mL). The hot solution is filtered rapidly and cooled overnight to give prisms (5.5mg, 77% yield). Pure C_{60} is obtained by decomposing the complex with CHCl₃ as above.

The *p*-tert-butylcalix[6]arene- $(C_{70})_2$ complex is obtained by adding *p*-tert-butylcalix[6]arene (5.8mg) to a refluxing solution of C_{70} (5mg) in toluene (2mL), filtering hot and slowly cooling to give red-brown needles (2.5mg, 31% yield) of the complex. Pure C_{70} is then recovered by decomposing the complex with CHCl₃.

Decomposition of these complexes can also be achieved by boiling a toluene solution over KOH pellets for aa 10minutes. The calixarenes form Na salts which do not complex with the fullerenes. These appear to be the most satisfactory means at present for preparing large quantities of relatively pure fullerene C₆₀ and C₇₀ and is considerably cheaper than previous methods. [Atwood et al. *Nature* **368** 229 *1994*.]

Repeated chromatography on neutral alumina yields minor quantities of solid samples of C_{76} , C_{84} , C_{90} and C_{94} believed to be higher fullerenes. A stable oxide C_{70} O has been identified. These have been separated by repeated flash chromatography on alumina with gradient elution using hexane/toluene mixtures (starting from 95:5 and increasing proportions of toluene until the ratio of 50:50 was attained) [Diederich et al. *Science* **252** 548 *1991*].

Physical properties of Fullerene C_{60} : C₆₀ fullerene [135105-52-1] M 720.64, does not melt below 360°, and starts to sublime at 300° in vacuo, is now available commercially in a high state of purity. It is a mustard-coloured solid that appears brown or black with increasing film thickness. It is soluble in common organic solvents, particularly aromatic hydrocarbons which give a beautiful magenta colour. Toluene solutions are purple in colour. It is soluble in *C₆H₆ (5mg/mL), but dissolves slowly. Crystals of C₆₀ are both needles and plates. [Taylor J Chem Soc, Chem Commun 1423 1990.]

UV-Vis in hexanes: λ_{max} nm(log ε) 211(5.17), 227sh(4.91), 256(5.24), 328(4.71), 357sh(4.08), 368sh(3.91), 376sh(3.75), 390(3.52), 395sh(3.30), 403(3.48), 407(3.78), 492sh(2.72), 540(2.85), 568(2.78), 590(2.86), 598(2.87) and 620(2.60).

IR (KBr): v_{max} 1429m, 1182m, 724m, 576m and 527s cm⁻¹. ¹³C NMR: one signal at 142.68ppm.

Physical properties of Fullerene C_{70} : C₇₀ (5,6)-fullerene [115383-22-7] M 840.78, does not melt below 360°, and starts to sublime at 300° in vacuo, is now available commercially in a high state of purity. It is a reddish-brown solid but greenish black in thicker films. Solutions are port-wine red in colour. Mixtures of C₆₀ and C₇₀ are red due to C₇₀ being more intensely coloured. It is less soluble than C₆₀ in *C₆H₆ and also dissolves slowly. C₇₀ gives orange-coloured solution in toluene. Drying at 200-250° is not sufficient

to remove all the solvent. Samples need to be sublimed to be free from solvent. [Taylor J Chem Soc, Chem Commun 1423 1990.]

UV-Vis in hexanes: λ_{max} nm(log ϵ) 214(5.05), 235(5.06), 249sh(4.95), 268sh(4.78), 313(4.23), 330(4.38), 359(4.29), 377(4.45), 468(4.16), 542(3.78), 590sh(3.47), 599sh(3.38), 609(3.32), 623sh(3.09), 635sh(3.13) and 646sh(2.80).

IR (KBr): v_{max} 1430m, 1428m, 1420m, 1413m, 1133mw, 1087w, 795s, 674ms, 642ms, 5778s, 566m, 535ms and 458m cm⁻¹.

¹³C NMR [run in the presence of Cr(pentan-2,4-dione)₃ which induces a *ca* 0.12ppm in the spectrum]: Five signals at 150.07, 147.52, 146.82, 144.77 and 130.28ppm, unaffected by proton decoupling.

 C_{76} fullerene [135113-15-4] M 912.85, melts above 350°. It is now available commercially. After the sequential removal of C_{60} and C_{70} fullerenes from soot extracts (see above) on gel permeation columns (e.g. Buckyclutcher 1 column), C_{76} and higher fullerenes are obtained. These are further separated on a Trident-TriDNP functionalised silica column. After two HPLC runs on a C_{18} reverse phase (Vydac 201 TP C_{18}) column and eluting with 1:1 MeCN/toluene, pure C_{76} fullerene is obtained. The identity is confirmed by HPLC/GPC system with Waters 600E UV/VIS detection, mass and NMR spectroscopy. [Seleque et al. In Kadish and Ruoff (Eds) *Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials* The Electrochemical Soc. Inc, Pennington, NJ, 1994 ISBN 1566770823, Diederich & Whetten *Acc Chem Res* 25 119 1992, Diederich et al. *Science* 254 1768 1991.]

 C_{78} (C_{2v})-fullerene [136316-32-0] M 936.98, melts above 350°. It is now available commercially. Pure material is obtained as in the previous purification and elutes after C_{76} fullerene, followed by C_{78} (D_{3h})fullerene. The identities are confirmed by an HPLC/GPC system with Waters 600E UV/VIS detection, mass and NMR spectroscopy. [Seleque et al. In Kadish and Ruoff (Eds) *Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials* The Electrochemical Soc. Inc, Pennington, NJ, 1994 ISBN 1566770823, Diederich & Whetten Acc Chem Res 25 119 1992, Diederich et al. Science 254 1768 1991, MS and NMR: Taylor et al. J Chem Soc, Chem Commun 1043 1992.]

 C_{84} fullerene [135113-16-5] M 1008.94, melts above 350°. It is now available commercially. Pure material is obtained as in the previous purification and elutes after C_{78} (D_{3h})-fullerene. It consists of at least two isomers. The identities are confirmed by an HPLC/GPC system with Waters 600E UV/VIS detection, mass and NMR spectroscopy. [Seleque et al. In Kadish and Ruoff (Eds) *Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials* The Electrochemical Soc. Inc, Pennington, NJ, 1994 ISBN 1566770823, Diederich & Whetten Acc Chem Res 25 119 1992, Diederich et al. Science 254 1768 1991.]

Higher Fullerenes e.g. C₃₉₉₆ fullerene [175833-78-0] have been isolated [Chem Abstr 124 299339 1996.]

[Further reading: Kroto et al. Chem Rev 91 1213 1991; Kroto, Fischer and Cox Fullerenes Pergamon Press, Oxford 1993 ISBN 0080421520; Kadish and Ruoff (Eds) Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials The Electrochemical Soc. Inc, Pennington, NJ, 1994 ISBN 1566770823; Smalley Acc Chem Res 25 98 1992, and following papers; Hammond & Kuck Fullerenes: Synthesis, Properties and Chemistry of Large Carbon Cluters American Chemical Society, Washington 1992, ISBN 0-8412-2182-0; K.Jinno Separation of Fullerenes by LC Royal Society of Chemistry 1999, ISBN 9780854045204; S.Nagase & T.Akasaki Endofullerenes: a new family of carbon clusters Springer 2003, ISBN 9781402009822; F.J.M.Reitmeijer Natural Fullerenes and related structures of elemental carbon. NetLibrary 2006, eBook ID 190026, eISBN 9781402041358; P.W.Fowler &D.E.Manopoulos An Atlas of Fullerenes Dover Publications Inc 2007 ISBN 9780486453620; P.O'Brien, H.Criaghead, H.Kroto, F.Langa and J-F.Nierengarten Fullerenes: principles and applications Royal Society of Chemistry 2007, ISBN 9780854045518; Fullerenes, Nanotubes and Carbon Nanostructures Marcel Dekker Inc New York, on line series on World Wide Web.online; N.Chaniotakis Fullerenes-bifunctionalisation (nanostructured for biosensing) in "Nanomaterials for Biosensors", C. Kumar ed., Wiley-VCH, 2007, ISBN 978-3-527-31388-4; C.N.Kramer Fullerene research advances Nova Science Publishers Inc 2007, ISBN 9781600218248; M.Lang Progress in fullerene research Nova Science Publishers Inc 2007, ISBN 9781600218415; S.Margadonna Fullerene-related materials: recent advances in their chemistry and physics Springer 2007, ISBN 9781402044588.]

Gibberillic acid A₃ (gibberillin A₃) [77-06-5] M 346.4, m 233-235°(dec), $[\alpha]_{546}^{20}$ +92° (c 1, MeOH), $[\alpha]_{D}^{20}$ +93° (c 0.5, MeOH), pK 4.0. It crystallises from EtOAc, EtOAc/pet ether, MeOH/pet ether or Me₂CO/pet ether. [Cross *J Chem Soc* 3022 *1960*, *Beilstein* 18 III/IV 6533.]

1,2,3,4,5,6-Hexachlorocyclohexane $[\alpha-319-84-6, \gamma-58-89-9]$ M **290.8**, m **158°** (α -), **312°** (**b**-), **112.5°** (γ -isomer). Crystallise it from EtOH. Purify it also by zone melting. Possible CANCER AGENT, TOXIC. [α : Beilstein 1 H 23, γ : Beilstein 5 I 8, many isomers : Beilstein 5 III 41, 5 IV 55.]

1,2,3,4,5,5-Hexachlorocyclopenta-1,3-diene [77-47-4] M 272.8, b $80^{\circ}/1$ mm, $83-84^{\circ}/3$ mm, 234°/atm, d_4^{25} 1.702, n_D^{25} 1.5628. Dry the diene with MgSO₄, filter, and distil it under vacuum in a nitrogen atmosphere. Irritates skin and eyes, HIGHLY TOXIC. [McBee et al. *J Am Chem Soc* 77 4378 1955, UV spectra: Idol et al. *J Org Chem* 20 1746 1955, *Beilstein* 5 III 308, 5 IV 381.]

Hexahydromandelic acid [R-(-)-53585-93-6, S-(+)-61475-31-8] M 158.2, m 127-129°, 128-129°, 129.7°, $[\alpha]_{D}^{20}$ (-) and (+) 25.5° (c 1, AcOH) and $[\alpha]_{D}^{20}$ (-) and (+) 13.6° (c 7.6, EtOH). It forms hexagonal clusters on recrystallisation from CCl₄ or Et₂O. [Wood & Comley *J Chem Soc* 2638 1924, Lettré et al. *Chem Ber* 69 1594 1936]. The *racemate* has m 137.2-137.6° (134-135°) [Smith et al. *J Am Chem Soc* 71 3772 1949]. [Beilstein R- 10 II 5; S- 10 II 6.]

Hexamethyl(Dewar)benzene [7641-77-2] M 162.3, m 7°, b 60°/20mm, d_4^{20} 0.803, n_D^{20} 1.4480. Purify it by passage through alumina [Traylor & Miksztal J Am Chem Soc 109 2770 1987].

Humulon [26472-41-3] M 362.5, m 65-66.5°, $[\alpha]_{D}^{26}$ -212° (95% EtOH). Crystallise humulon from Et₂O. It dissolves slightly in hot H₂O but precipitates on cooling. It has λ_{max} (ϵ) 237 (13,760) and 282 (8,330) in EtOH. [Wollmer Chem Ber 49 780 1916, Carson J Am Chem Soc 73 4652 1951, Beilstein 8 II 537, 8 III 4034, 8 IV 3410.]

1-Hydroxymethyladamantane [770-71-8] **M 166.3, m 115°.** Dissolve the adamantane in Et_2O , wash it with aqueous 0.1N NaOH and H_2O , dry over $CaCl_2$, evaporate and recrystallise the residue from aqueous MeOH. [Stetter et al. *Chem Ber* **92** 1629 1959, *Beilstein* **6** IV 400.]

N-Hydroxy-5-norbornene-2,3-dicarboxylic acid imide [21715-90-2] M 179.2, m 165-166°, 166-169°, $pK_{Est}\sim 6$ Dissolve the imide in CHCl₃, filter, evaporate and recrystallise from EtOAc. IR (nujol): v_{max} 1695, 1710 and 1770 (C=O), and 3100 (OH) cm⁻¹. The *O*-acetyl derivative has m 113-114° (from EtOH) with IR bands at v_{max} 1730, 1770 and 1815 cm⁻¹ only, and the *O*-benzoyl derivative has m 143-144° (from propan-2-ol or *C₆H₆). [Bauer & Miarka J Org Chem 24 1293 1959, Fujino et al. Chem Pharm Bull Jpn 22 1857 1974]. [Beilstein 21/10 V 188.]

i-Inositol (*myo*) See in "Miscellaneous", Chapter 6.

Inositol monophosphate [15421-51-9] **M 260.1, m 195-197°(dec).** Crystallise the phosphate from water, and EtOH. Recrystallise 1g by dissolving it in 3mL of H₂O and adding slowly 15mL of commercial EtOH, filter the crystals, wash with a little EtOH then Et₂O and dry it in a vacuum. [McCormick & Carter *Biochemical Preparations* **2** 65 1952.]

α-Ionone (*trans*-+) [127-41-3] M 192.3, b 86-87°/1.9mm, 131°/13mm, d_4^{20} 0.929, n_D^{20} 1.5497, [α] $_D^{20}$ +401° (neat) +415° (EtOH). Purify α-ionone through a spinning band fractionating column. The *semicarbazone* has m 157-157.5° (from EtOH) and [α] $_D^{20}$ +433° (c 4, *C₆H₆). [Naves *Helv Chim Acta* 30 769 1947, CD: Ohloff et al. *Helv Chim Acta* 56 1874 1973, Buchacker et al. *Helv Chim Acta* 56 2548 1973, *Beilstein* 7 H 168, 7 III 640, 7 IV 363.]

β-Ionone [79-77-6] **M** 192.3, **b** 150-151°/24mm, d_4^{20} 0.945, n_D^{20} 1.5211, ε_{296nm} 10,700. Convert β-ionone to the *semicarbazone* (**m** 149°) by adding 50g of semicarbazide hydrochloride and 44g of potassium acetate in 150mL of water to a solution of 85g of β-ionone in EtOH. (More EtOH is added to redissolve any β-ionone that precipitates.) The semicarbazone crystallises on cooling in an ice-bath and is recrystallised from EtOH or 75% MeOH to constant **m** (148-149°). The semicarbazone (5g) is shaken at room temperature for several days with 20mL of pet ether and 48mL of M H₂SO₄; then the ether layer is washed with water and dilute aqueous NaHCO₃, dried and the solvent is evaporated. The β-ionone is distilled under vacuum. (The customary steam distillation of β-ionone semicarbazone did not increase the purity.) [Young et al. *J Am Chem Soc* **66** 855 *1944*]. [*Beilstein* **7** H 167, **7** I 109, **7** II 140, **7** III 634, **7** IV 361.]

(±)-Irone (6-methyl-ionone, ±-*trans*-(α)-4*t*-[2,5,6,6-tetramethyl-cyclohex-2-yl]but-3*t*-en-2one) [79-69-6] M 206.3, b 85-86°/0.05mm, 109°/0.7mm, d²⁰₄ 0.9340, n²⁰_D 1.4998. If large amounts are available, then fractionate through a Podbielniak column (p 10) or an efficient spinning band column, but small amounts are distilled using a Kügelrohr apparatus. The 4-phenylsemicarbazone has m 174-175° (165-165.5°). [IR: Seidel & Ruzicka Helv Chim Acta 35 1826 1952, Naves Helv Chim Acta 31 1280 1948, Lecomte & Naves J Chim Phys 53 462 1956, Beilstein 7 IV 378.]

dl-Isoborneol [124-76-5] M 154.3, m 212° (sealed tube). Crystallise isoborneol from EtOH or pet ether (b 60-80°). It sublimes in a vacuum. The 4-nitrobenzoyl derivative has m 153°. [Yager & Morgan J Am Chem Soc 57 2081 1935, Beilstein 6 II 80, 6 III 299, 6 IV 281.]

(-)- γ -Isocaryophyllene (*1R*,9*S*-8-methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene) [*118-65-0*] M 204.4, b 122-124^o/12mm, 131-133^o/16mm, 130-131^o/24mm, 271-273^o/atm, d²⁰₄ 0.8959, n²⁰_D 1.496, [α]²⁰₅₄₆ -31^o, [α]²⁰_D -27^o (neat). Purify it by vacuum distillation or GLC using a nitrile-silicone column [Corey et al. *J Am Chem Soc* 86 485 *1964*, Ramage & Simonsen *J Chem Soc* 741 *1936*, Kumar et al. *Synthesis* 461 *1976*]. [*Beilstein* 5 III 1085.]

(-)- β -Isolongifolene (1-*R*-(-)-2,2,7,7-tetramethyltricyclo[6.2.1.0^{1,6}]undec-5-ene) [1135-66-6] M 204.4, b 82-83°/0.4mm, 144-146°/30mm, 255-256°/atm, d²⁰₄ 0.930, n²⁰_D 1.4992, [α]²⁰₅₄₆ -166°, [α]²⁰_D -38° (c 1, EtOH). Reflux it over, and distil it from Na. [Zeiss & Arakawa *J Am Chem Soc* 76 1653 1954, IR: Reinaecker & Graafe Angew Chem, Int Ed Engl 97 348 1985, UV and NMR: Ranganathan et al. Tetrahedron 26 621 1970, Beilstein 5 IV 1191.]

Isophorone [78-59-1] **M 138.2, b 94°/16mm, d** $_{4}^{20}$ **0.921, n** $_{D}^{20}$ **1.4778.** Wash isophorone with aqueous 5% Na₂CO₃ and then distil it under reduced pressure immediately before use. Alternatively, it can be purified *via* the semicarbazone. [Erskine & Waight *J Chem Soc* 3425 *1960, Beilstein* **7** IV 165.]

Isopinocampheol (pinan-3-ol, 2,6,6-trimethylbicyclo[3.1.1]heptan-3-ol) [1S,2S,3S,5R-(+)-27779-29-9, 1R,2R,3R,5S-(-)-25465-65-0] M 154.25, m 52-55°, 55-56°, 55-57°, b 103°/11mm, n $_{D}^{20}$ 1.4832, [α] $_{546}^{20}$ (+) and (-) 43°, [α] $_{D}^{20}$ (+) and (-) 36° (c 20, EtOH). Dissolve it in Et₂O, dry over MgSO₄, filter, evaporate, then recrystallise it from pet ether. Also recrystallise it from aqueous EtOH and distil it in a vacuum. [Kergomard & Geneix *Bull Soc Chim Fr* 394 *1958*, Zweifel & Brown *J Am Chem Soc* 86 393 *1964*.] The *3,4-dinitrobenzoyl* derivative has m 100-101°, the *phenylcarbamoyl* derivative has m 137-138° and the *acid -phthalate* has m 125-126°. [*Beilstein* 6 III 282, 283.]

Isopropenylcyclobutane [3019-22-5] **M 98.1, b 98.7**°/760mm, d_4^{20} 0.7743, n_D^{20} 1.438. Purify the cyclobutane by preparative chromatography (silicon oil column), or fractional distillation. Dry it with molecular sieves. IR (film): v_{max} 1640 (C=C), 887 and 1773 (C-H) cm⁻¹. [Chiurdohlu & Van Walle *Bull Soc Chim Belg* 66 612 1957, *Beilstein* 5 IV 255.]

Lupulon (β -lupulic acid, bitter acid) [468-28-0] M 414.6, m 92-94°, pK_{Est(1)} ~ 4.2, pK_{Est(2)} ~ 9.7. Crystallise Lupulon from 90% MeOH, hexane or pet ether at low temperature. It has also been purified by chromatography through Kieselgel. [Wieland et al. *Chem Ber* 102 2012 1925, Riedl *Chem Ber* 85 692 1952, *Beilstein* 7 II 856, 7 III 4752, 7 IV 2866.]

1*R*(-)-**Menthol** [2216-51-5] **M 156.3**, **m 43**°, **44-46.5**°, **89**°/2**mm**, **100-101**°/7**mm**, **n** $_{\rm D}^{60}$ **1.446**, $[\alpha]_{\rm D}^{20}$ - **50**° (**c 10**, **EtOH**), $[\alpha]_{546}^{18}$ - **58.7**° (**c 2**, **EtOH**). Crystallise menthol from CHCl₃, pet ether or EtOH/water. [Barrow & Atkinson *J Chem Soc* 638 *1939*, *Beilstein* **6** III 133, **6** IV 150.]

1*R*-(-)-Menthyl chloride (1*S*,2*R*,4*R*-2-chloro-1-isopropyl-1-methylcyclohexane) [16052-42-9] M 174.7, m -20.1° to -16.5°, b 88.5°/12.5mm, 101-105°/21mm, d_4^{20} 0.936, n_D^{20} 1.463(neat). Dissolve menthyl chloride in pet ether (b 40-60°), wash with H₂O, conc H₂SO₄ until no discoloration of the organic layer occurs (care with conc H₂SO₄ during shaking in a separating funnel), again with H₂O and dry it (MgSO₄). Evaporate and distil the residual oil through a Claisen head with a Vigreux neck (p 11) of *ca* 40 cm length. [Smith & Wright *J Org Chem* 17 1116 1952, Barton et al. *J Chem Soc* 453 1952, *Beilstein* 5 III 134.]

1-Methyladamantane [768-91-2] **M 150.2, m 103°, 104°.** Purify it by zone melting, chromatography through an Al₂O₃ column and eluting with pentane, and sublime it repeatedly at 90-95°/12mm. [Stetter et al. *Chem Ber* **92** 1629 1959, Schleyer & Nicholas *Tetrahedron Lett* **9** 305 1961, *Beilstein* **5** IV 479,]

2-Methyladamantane [700-56-1] **M 150.2, 144-146°.** Purify it by zone melting, chromatography through an Al₂O₃ column and eluting with pentane. Recrystallise it from EtOH and sublime it repeatedly at 90-95°/12mm. [Schleyer & Nicholas J Am Chem Soc **83** 182 1961, Molle et al. Can J Chem **65** 2428 1987.]

Methylcyclohexane [108-87-2] **M** 98.2, **b** 100.9°, d_4^{25} 0.7650, n_D^{20} 1.4231, n_D^{25} 1.42058. Passage through a column of activated silica gel gives material transparent down to 220nm. It can also be purified by passage through a column of activated basic alumina, or by azeotropic distillation with MeOH, followed by washing out the MeOH with H₂O, drying and distilling. Methylcyclohexane can be dried with CaSO₄, CaH₂ or sodium. It has also been purified by shaking with a mixture of conc H₂SO₄ and HNO₃ in the cold, washing with H₂O, drying with CaSO₄ and fractionally distilling it from potassium. Percolation through a Celite column impregnated with 2,4-dinitrophenylhydrazine (DNPH), phosphoric acid and H₂O (prepared by grinding 0.5g DNPH with 6mL 85% H₃PO₄, then mixing with 4mL of distilled H₂O and 10g of Celite) removes carbonyl-containing impurities. [Cowan et al. *J Chem Soc* 1865 1939, Beilstein **5** III 65, **5** IV 94.]

cis- and trans 2-Methylcyclohexanol [583-59-5] M 114.2, b 65% 20mm, 167.6% 760mm, d_4^{20} 0.922, n_D^{20} 1.46085. Dry 2-methylcyclohexanol with Na₂SO₄ and fractionate it under vacuum. Note: The cis-isomer has b 165% 760mm, and the trans-isomer has b 166.5% 760mm. [Eliel & Haber J Org Chem 23 2041 1958, Beilstein 6 III 61, 6 IV 100.]

cis- and *trans*-3-Methylcyclohexanol [591-23-1] M 114.2, b 699/16mm, 1729/760mm, d_4^{20} 0.930, n_D^{20} 1.45757, $n_D^{25.5}$ 1.45444. Dry 3-methylcyclohexanol with Na₂SO₄ and fractionate it under vacuum. Note: The *cis-isomer* has b 173°/760mm, and the *trans-isomer* has b 168-169°/760mm. [Eliel & Haber J Org Chem 23 2041 1958, Beilstein 6 IV 102.]

4-Methylcyclohexanone [589-92-4] **M 112.2, m -40.6°, b 68°/23mm, 165.5°/743mm, d** $_{4}^{20}$ **0.914, n** $_{D}^{20}$ **1.44506.** Dry the ketone with CaSO₄, then fractionally distil it. The *semicarbazone* has **m** 197°, 203.5°(dec) (from MeOH or EtOH). [White & Bishop J Am Chem Soc 62 8 1945, Vogel & Oommen J Chem Soc 774 1930, Beilstein 7 III 63, 7 IV 44.]

1-Methylcyclohexene [591-49-1] M 96.2, m -120.4° , b 107.4-108°/atm, 110-111°/760mm, d²⁰₄ 0.813, n²⁰_D 1.451. Free it from hydroperoxides by passing through a column containing basic alumina or refluxing with cupric stearate, filter and fractionally distil it from sodium. [Vogel J Chem Soc 1332 1938, Cope et al. J Am Chem Soc 79 4729 1957, Beilstein 5 III 197, 5 VI 245.]

Methylcyclopentane [96-37-7] M 84.2, b 64.32°/400mm, 71.8°/atm, d_4^{20} 0.749, n_D^{20} 1.40970, n_D^{25} 1.40700. Purification procedures include passage through columns of silica gel (prepared by heating in nitrogen to 350° prior to use) and activated basic alumina, distillation from sodium-potassium alloy,

and azeotropic distillation with MeOH, followed by washing out the methanol with water, drying and distilling. It can be stored with CaH₂ or sodium. [Vogel *J Chem Soc* 1331 *1938*, *Beilstein* **5** III 55, **5** IV 84.]

Methylnorbornene-2,3-dicarboxylic anhydride (5-methylnorborn-5-ene-2-endo-3-endo-dicarboxylic anhydride) [25134-21-8] M 178.2, m 88.5-89°. Purify the anhydride by thin layer chromatography on Al₂O₃ (previously boiled in EtOAc) and eluted with hexane/*C₆H₆ (1:2) then recrystallise it from *C₆H₆/hexane. The *free acid* has m 118.5-119.5°. [Miranov et al. *Tetrahedron* 19 1939 1963, Beilstein 17/11 V 199.]

2,5-Norbornadiene (bicyclo[2.2.1]hepta-2,5-diene) [121-46-0] M 92.1, b 89°, d_4^{20} 0.854, n_D^{20} 1.4707. Purify the diene by distillation from activated alumina [Landis & Halpern J Am Chem Soc 109 1746 1987]. [Beilstein 5 IV 879.]

cis-endo-5-Norbornene-2,3-dicarboxylic anhydride (carbic anhydride, $3a\alpha,4,7,7,\alpha\alpha$ -tetrahydro-4 $\alpha,7\alpha$ -methanoisobenzofuran-1,3-dione) [129-64-6] M 164.2, m 164.1°, 164-165°, 165-167°, d_4^{20} 1.417. It forms crystals from pet ether, hexane or cyclohexane. It is hydrolysed by H₂O to form the acid [Diels & Alder Justus Liebigs Ann Chem 460 98 1928, Maitte Bull Soc Chim Fr 499 1959]. The exo-exo-isomer has m 142-143° (from *C₆H₆/pet ether) [Alder & Stein Justus Liebigs Ann Chem 504 216 1933]. [Beilstein 17 II 461.]

(±)-endo-2-Norbornylamine hydrochloride (± endo[2.2.1]hept-2-ylamine HCl) [14370-45-7] M 147.7, m ~295°(dec), pK_{Est} ~ 9.0(free base). Recrystallise the salt from MeOH/EtOAc or EtOH/ Et₂O. The free base has m 75-80°, b 156-157°/atm and the picrate has m 179-180° (from aqueous MeOH). [Beilstein 12 III 160.]

Norbornylene (bicyclo[2.2.1]hept-2-ene) [498-66-8] M 94.2, m 44-46°, b 96°. Reflux it over Na, and distil it [Gilliom & Grubbs J Am Chem Soc 108 733 1986]. It has also been purified by sublimation *in vacuo* onto an ice-cold finger. [Woon et al. J Am Chem Soc 108 7990 1986, Beilstein 5 IV 394.]

(±)-*exo*-2-Norbornylformate [41498-71-9] M 140.2, b 65-67% (16mm, 80-81% (25mm, d_4^{20} 1.048, n_D^{20} 1.4620. Shake with NaHCO₃ and distil it *in vacuo* (*exo*-borneol has m 124-126%). Alternatively mix the ester with formic acetic anhydride overnight and fractionate. [*Beilstein* 6 III 219.]

Norcamphor (bicyclo[2.2.1]heptan-2-one, \pm norbornan-2-one) [497-38-1] M 110.2, m 94-95°, 95.5-96.5°, b 89-94°/60mm. Crystallise it from water and sublime it *in vacuo*. It has λ_{max} at 287nm (EtOH). The *semicarbazone* has m 196-196.5° (from EtOH/H₂O). The 2,4-dinitrophenylhydrazone has m 137-138° (from EtOH). [Wildman & Hemminger J Org Chem 17 1641 1952, Wood & Roberts J Org Chem 23 1124 1957, Bixter & Niemann J Org Chem 23 742 1958, Beilstein 7 III 243, 7 IV 139.]

Perfluorocyclobutane (octafluorocyclobutane) [115-25-3] M 200.0, m -40°, b -5°, d⁻²⁰ 1.654, d° 1.72. Purify octafluorocyclobutane by trap-to-trap distillation, retaining the middle portion. [Danus Ind Eng Chem 47 144 1955, Claasen J Chem Phys 18 543 1950, Beilstein 5 III 8, 5 IV 8.]

Perfluorocyclohexane (dodecafluorocyclohexane) [355-68-0] M 300.1, m 51° (sublimes), sublimes on melting at 52°, m 58.2° (sealed tube), d_4^{25} 1.720, n_D^{30} 1.269. Extract it repeatedly with MeOH, then pass it through a column of silica gel (previously activated by heating at 250°). [Haszeldine & Smith J Chem Soc 2691 1950, IR: Thompson & Temple J Chem Soc 1432 1948, Beilstein 5 III 37, 5 IV 48.]

Perfluoro-1,3-dimethylcyclohexane [335-27-3] **M 400.1, b 101°, d** $_{4}^{20}$ **1.829, n** $_{D}^{20}$ **1.300.** Fractionally distil it, then 35mL are sealed with about 7g KOH pellets in a borosilicate glass ampoule and heated at 135° for 48hours. The ampoule is cooled, opened, and the liquid is resealed with fresh KOH in another ampoule and heated as before. This process is repeated until no further decomposition is observed. The substance is then washed with distilled water, dried (CaSO₄) and distilled. [Grafstein Anal Chem **26** 523 1954, Beilstein **5** III 378.] **IRRITANT.**

Perfluoro(methylcyclohexane) [355-02-2] M 350.1, b 76.3°, d^{25} 1.7878. Reflux it for 24hours with saturated acid KMnO₄ (to oxidise and remove hydrocarbons), then neutralise, steam distil, dry with P₂O₅ and pass slowly through a column of dry silica gel. [Glew & Reeves *J Phys Chem* 60 615 1956.] It can also be purified by percolation through a 1metre neutral activated alumina column, and ¹H-impurities are checked by NMR. [*Beilstein* 5 IV 102.] IRRITANT.

R(-)-α-Phellandrene (*p*-menta-1,5-diene) [4221-98-1] M 136.2, b 61°/11mm, 175-176°/760mm, d_4^{20} 0.838, n_D^{20} 1.471, [α] $_D^{20}$ -230° (c 10, Et₂O), -153° to -183° (neat). Purify it by gas chromatography on an Apiezon column. Also purify it by steam distillation (with 0.5% hydroquinone), then re-distil it through a 50 plate bubble cap column b 72-72.5°/22mm [Pines & Eschinazi J Am Chem Soc 77 6318 1955]. UV: λ_{max} 263nm (ε 3,345) in octane. [Read & Storey J Chem Soc 2770 1930, Beilstein 5 III 341, 5 IV 436.]

Picrotoxin (cocculin) [124-87-8] M 602.6, m 203°, $[\alpha]_{546}^{20}$ -40° (c 1, EtOH), $[\alpha]_D^{16}$ -29.3° (c 4, EtOH). Crystallise picrotoxin from H₂O or Me₂CO/H₂O. The *monoacetate* has m 244-245° (*C₆H₆). [Meyer & Bruger Chem Ber 31 2958 1898, Johns et al. J Chem Soc 4717 1956, Beilstein 19 III/IV 5245.]

IR,5*S*- α -Pinene [7785-70-8] M 136.2, b 61°/30mm, 156.2°/760mm, d $_{4}^{20}$ 0.858, n $_{D}^{15}$ 1.4634, n $_{D}^{20}$ 1.4658, [α] $_{D}^{20}$ +51° (neat) It is isomerised by heat, acids and certain solvents. It should be distilled under reduced pressure under nitrogen and stored in the dark. It has been purified *via* the nitrosochloride [Waterman et al. *Recl Trav Chim, Pays-Bas* 48 1191 *1929*]. For purification of optically active forms see Lynn [*J Am Chem Soc* 91 361 *1919*].

Small quantities (0.5mL) have been purified by GLC using helium as carrier gas and a column at 90° packed with 20 wt% of polypropylene sebacate on a Chromosorb support. Larger quantities are fractionally distilled under reduced pressure through a column packed with stainless steel gauze spirals. The material can be dried over CaH₂ or sodium, and stored in a refrigerator: CaSO₄ and silica gel are not satisfactory because they induce spontaneous isomerisation. [Bates et al. *J Chem Soc* 1521 *1962*, *Beilstein* **5** III 366, **5** IV 452.]

1S,5S-α-Pinene [7785-26-4] M 136.2, b 155-156⁰/760mm, d_4^{20} 0.858, n_D^{20} 1.4634, [α] $_D^{20}$ -47.2°. Purify as for 1R,5S-α-Pinene above. [Beilstein 5 III 366, 5 IV 455.]

R (+)-Pulegone [89-82-7] M 152.2, b 69.5% 5mm, d_4^{20} 0.936, n_D^{20} 1.4866, $[\alpha]_{546}^{20}$ +23.5% (neat), $[\alpha]_D^{20}$ +24.2% (neat). Purify pulegone via the semicarbazone which has m 174% (from MeOH) and $[\alpha]_D^{20}$ +68.2% (c 1, CHCl₃). Fractionally distil it in vacuo. [Short & Read J Chem Soc 1309 1939]. [Erskine & Waight J Chem Soc 3425 1960, cf Ort Org Synth 65 203 1987, Beilstein 7 III 334, 7 IV 188.]

1*R*,3*R*,4*R*,5*R*-Quinic acid (1,3,4,5-tetrahydroxy-cyclohexane carboxylic acid) [77-95-2] M **192.3**, m **172°(dec)**, $[\alpha]_{546}^{20}$ -51° (c 20, H₂O), $[\alpha]_D^{23}$ -45° (c 5, H₂O), pK²⁵ 3.58. Quinic acid crystallises from H₂O with m 174°, and from EtOH with m 168-169°. [McComsey & Maryanoff *J Am Chem Soc* 59 2652 1994, pK: Timberlake *J Chem Soc* 2795 1959, Anet & Reynolds *Aust J Chem* 8 282 1955, *Beilstein* **10** III 2407, **10** IV 2257.]

Reductic acid (1,2-dihydroxycyclopent-1,2-en-3-one) [80-72-8] M 114.1, m 213°, pK_1^{20} 4.80, pK_2^{20} 12.9. Crystallise reductic acid from EtOH, EtOAc (m 213-213.5°) or EtOH/EtOAc. It has been sublimed at 0.5mm. The osazone has m 245°(dec) (from BuOH). [Hess et al. Justus Liebigs Ann Chem 563 31 1939, 592 137 1955, 736 134 1970, Beilstein 8 III 1942, 8 IV 1714.]

Squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) [2892-51-5] M 114.1, m 293°(dec), 294°(dec), >300°, pK₁²⁰ 1.50, pK₂²⁰ 2.93. Purify squaric acid by recrystallisation from H₂O – this is

quite simple because the acid is ~ 7% soluble in boiling H₂O and only 2% at room temperature. It is not soluble in Me₂CO or Et₂O; hence it can be rinsed with these solvents and dried in air or a vacuum. It is not hygroscopic and gives an intense purple colour with FeCl₃. It has IR ν_{max} at 1820 (C=O) and 1640 (C=C) cm⁻¹, and UV λ_{max} at 269.5nm (ϵ 37K M⁻¹cm⁻¹). [Cohn et al. *J Am Chem Soc* **81** 3480 1959, Park et al. *J Am Chem Soc* **84** 2919 1962] See also **pKa** values of 0.59 ±0.09 and 3.48 ±0.023 [Scwartz & Howard *J Phys Chem* **74** 4374 1970]. [Schmidt & Reid Synthesis 869 1978, Beilstein **8** IV 2701.]

Terpin hydrate [2451-01-6 cis-hydrate, 565-50-4 and 565-48-0 stereoisomers] **M 190.3**, **m 105.5**° (cis anhydrous), **116-117**° (cis hydrate), **156-158**°, **157.5**°(trans). Crystallise terpin from H₂O or EtOH. The anhydrous cis-isomer distils at 258°/760mm but hydrates on exposure to moist air. Anhydrous terpin is also obtained by recrystallisation from absolute EtOH. [Sword J Chem Soc **127** 1632 1925, Lombard & Ambrose Bull Soc Chim Fr 230 1961, Beilstein **5** IV 435.]

1,1,2,2-Tetrafluorocyclobutane [374-12-9] **M 128.1, b 50-50.7°, d**²⁰₄ **1.275, n**²⁰_D **1.3046.** Purify 1,1,2,2-tetrafluorocyclobutane by distillation or by preparative gas chromatography using a 2m x 6mm(i.d.) column packed with β,β' -oxydipropionitrile on Chromosorb P at 33°. [Conlin & Fey J Chem Soc, Faraday Trans 1 76 322 1980, Coffmann et al. J Am Chem Soc 71 490 1949, Beilstein 5 III 8, 5 IV 8.]

2,2,4,4-Tetramethylcyclobutan-1,3-dione [933-52-8] **M 140.2, m 114.5-114.9°.** Crystallise the dione from C_6H_6 and dry it *in vacuo* over P_2O_5 in an Abderhalden pistol. [*Beilstein* 7 III 3234, 7 IV 2004.]

3,3,5,5-Tetramethylcyclohexanone [14376-79-5] **M 154.3, m 11-12°, 13.2°, b 59-61°, 80-82°/13mm, 196°/760mm, 203.8-204.8°/760mm, d** $_{4}^{20}$ **0.8954, n** $_{D}^{20}$ **1.4515.** Purify the ketone first through a 24inch column packed with Raschig rings, then a 40cm Vigreux column (p 11) under reduced pressure (b 69-69.3°/7mm, see above). The *oxime* has **m** 144-145° (from 60% EtOH), and the *semicarbazone* has **m** 196-197°, 197-198° (214.5°, 217-218°) [Karasch & Tawney J Am Chem Soc **63** 2308 1941, UV: Sandris & Ourisson Bull Soc Chim Fr 958 1956]. [Beilstein 7 III 163, 7 IV 89.]

(1*R*)-(-)-Thiocamphor (1*R*-bornane-2-thione, 1*R*-(-)-1,7,7-trimethylbicyclo[2.2.1]heptane-2-thione) [53402-10-1] M 168.3, m 136-138°, 146°, $[\alpha]_{D}^{22}$ -22° (c 3, EtOAc). It forms red prisms from EtOH and sublimes under vacuum. It possesses a sulfurous odour and is volatile like camphor. [Sen J Indian Chem Soc 12 647 1935, Sen J Indian Chem Soc 18 76 1941.] The racemate crystallises from *C₆H₆ and has m 145° [138.6-139°, White & Bishop J Am Chem Soc 62 10 1940]. [Beilstein 7 III 419.]

1*r*,2*t*,4*t*-**Trimethylcyclohexane** [2234-75-7] **M 126.2, b 145.7-146.7%**(760mm, d_4^{20} 0.786, n_D^{20} 1.4330. Wash the trimethylcyclohexane with conc H₂SO₄ (removes aromatic hydrocarbons), then with H₂O, dry it (type 4A molecular sieves), and fractionally distil it through a glass helices packed column with partial take-off and reflux ratio between 50 and 75. **Flammable liquid.** [cf. Henne et al. *J Am Chem Soc* 63 3475 *1941*, Rossini *Anal Chem* 20 112 *1948*, *Beilstein* 5 H 42, 5 I 17, 5 II 24, 5 III 121.]

R-(-)-2,2,6-Trimethyl-1,4-cyclohexanedione [60046-49-3] M 154.2, m 88-90°, 91-92°, $[\alpha]_D^{20}$ -270° (c 0.4%, MeOH), $[\alpha]_D^{20}$ -275° (c 1, CHCl₃). It is obtained from fermentation and is purified by recrystallisation from diisopropyl ether. [ORD: Leuenberger et al. *Helv Chim Acta* 59 1832 1976.] The *racemate* has m 65-67°, and the 4-(4-phenyl)semicarbazone has m 218-220° (from CH₂Cl₂/MeOH) [Isler et al. *Helv Chim Acta* 39 2041 1956, *Beilstein* 7 IV 2032.]

cis,cis-1 α , 3α , 5α -Trimethylcyclohexane-1, 3, 5-tricarboxylic acid (Kemp's acid) [79410-20-1] M 258.3, m 241-243°, pK₁ 3.30, pK₂ 5.85, pK₃ 7.3 (H₂O); pK₁ 4.7, pK₂ 7.6, pK₃ 8.8 (50% H₂O/MeOH). Recrystallise the tricarboxylic acid from Me₂CO after re-precipitating it several times with mineral acid from aqueous alkaline soltion. The *trimethyl ester* has m 78-81°. [cf. Kemp J Org Chem 46 5140 1981, Jeong et al. J Am Chem Soc 113 201 1991, Stack et al. J Am Chem Soc 114 7007 1992.]

(±)-2,2,6-Trimethylcyclohexanone [2408-37-9] M 140.2, b 69-71.5°/20mm, 177-178.5°/758mm d_4^{20} 0.904, n_D^{20} 1.4470. Purify it via the semicarbazone (m 218°, from MeOH or EtOH), decompose this in the usual way (cf p 65 and 67, or MEK, p 106) and fractionally distil the liquid ketone through a vigreux column (p 11) at ~760mm. [Chakravarti *J Chem Soc* 1567 *1947*, Milas et al. *J Am Chem Soc* **70** 1831 *1948*, *Beilstein* **7** I 24, **7** II 32, **7** III 7.]

Xanthatin (3-methylene-7-methyl-6-[3-oxo-1-buten-1-yl]cyclohept-5-ene-[10,11-b]furan-2one, (-)-2-[(1R)-7t-hydroxy-5c-methyl-4-(3-oxobut-1-en- ξ -yl)cyclohept-3-en-r-yl)-acrylic acid lactone [26791-73-1] M 246.3, m 114.5-115°, $[\alpha]_{D}^{20}$ -20° (c 2, CHCl₃). Crystallise xanthatin from MeOH, aqueous MeOH, EtOH or aqueous EtOH. UV: λ_{max} 213 and 275nm (ϵ 22800 and 7300). The 2,4-dinitrophenylhydrazone has m 240°(dec) (twice recrystallised from CHCl₃/MeOH). [Geissman et al. J Am Chem Soc 76 685 1954, Deuel & Geissman J Am Chem Soc 79 3778 1957, Beilstein 17 III/IV 6221, 17/1 V 305.]

AROMATIC COMPOUNDS

Acenaphthene [83-32-9] M 154.2, m 94.0°. Crystallise acenaphthene from EtOH. It has also been purified by chromatography from CCl₄ on alumina with *benzene as eluent [McLaughlin & Zainal J Chem Soc 2485 1960]. [Beilstein 5 IV 1834.]

Acenaphthenequinone [82-86-0] M 182.2, m 260-261°. Extract it with, then recrystallise it twice from C_6H_6 . Dry it *in vacuo*. [LeFevre et al. *J Chem Soc* 974 1963, *Beilstein* 7 IV 2498.]

RS-Acenaphthenol [6306-07-6] **M** 170.2, **m** 144.5-145.5°, 146°, 148°. If highly coloured (yellow), dissolve it in boiling *benzene (14g in 200mL), add charcoal (0.5g), filter it through a heated funnel, concentrate to 100mL and cool to give almost colourless needles. *Benzene vapour is **TOXIC**; use an efficient fume cupboard. The acetate has **b** 166-168°/5mm (bath temperature 180-185°). [Cason Org Synth Coll Vol **III** 3 1955.] It can also be recrystallised from $*C_6H_6$ or EtOH [Fieser & Cason J Am Chem Soc **62** 432 1940]. It forms a brick-red crystalline **complex** with 2,4,5,7-tetranitrofluoren-9-one which is recrystallised from AcOH and is dried in a vacuum over KOH and P₂O₅ at room temperature, **m** 170-172° [Newman & Lutz J Am Chem Soc **78** 2469 1956]. [Beilstein **6** IV 4623.]

Acenaphthylene [208-96-8] M 152.2, m 92-93°, b 280°/~760mm. Dissolve acenaphthylene in warm redistilled MeOH, filter through a sintered glass funnel and cool to -78° to precipitate the material as yellow plates [Dainton et al. *Trans Faraday Soc* 56 1784 1960]. Alternatively it can be sublimed *in vacuo*. [*Beilstein* 5 H 625, 5 IV 2138.]

4-Acetamidobenzaldehyde [122-85-0] **M 163.2, m 155°, 156°, 160°.** Recrystallise it from water. The *4-nitrophenylhydrazone*, **m** 264-265°, crystallises as orange needles from EtOH [Hodgson & Beard J Chem Soc 21 1927, Beilstein 14 H 38, 14 II 25, 14 III 75, 14 IV 71.]

p-Acetamidobenzenesulfonyl chloride (*N*-acetylsulfanilyl chloride) [121-60-8] M 233.7, m 149°(dec). Crystallise the chloride from toluene, CHCl₃, or ethylene dichloride. [*Beilstein* 14 IV 2703.]

 α -Acetamidocinnamic acid [5469-45-4] M 205.2, m 185-186° (2H₂O), 190-191°(anhydrous), 193-195°, pK_{Est} ~3.2. It crystallises from H₂O as the *dihydrate*, and on drying at 100° it forms the *anhydrous* compound which is *hygroscopic*. Alkaline hydrolysis yields NH₃ and phenylpyruvic acid. [Erlenmeyer & Früstück Justus Liebigs Ann Chem 284 47 1895, Beilstein 14 IV 1769.]

2-Acetamidofluorene (*N*-[2-fluorenyl)acetamide) [53-96-3] M 223.3, m 194°, 196-198°. Recrystallise it from toluene (1.3mg in 100mL). Its solubility in H₂O is 1.3mg/L at 25°, UV: λ_{max} nm(log ε) : 288(4.43), 313(4.13). [Sawicki *J Org Chem* 21 271 1956.] It can also be recrystallised from 50% AcOH. [Diels et al. *Chem Ber* 35 3285 1902]. 9-1⁴C and ω -1⁴C 2-acetamidofluorene were recrystallised from aqueous EtOH and had m 194-195° and 194° respectively. *Potent* CARCINOGEN. [Miller et al. *Cancer Res* 9 504 1949, 10 616 1950, Sadin et al. *J Am Chem Soc* 74 5073 1952, *Beilstein* 12 H 3287, 12 IV 3373.]

2-Acetamidophenol [614-80-2] **M 151.2, m. 209°, pK_{Est} ~9.4.** Recrystallise it from water, EtOH or aqueous EtOH. [*Beilstein* **13** H 370, **13** I 113, **13** II 171, **13** III 778.]

3-Acetamidophenol (Metacetamol) [621-42-1] M 151.2, m 148-149°, $pK^{25} \sim 9.59$. Recrystallise the phenol from water. The 3,5-dinitrobenzamide complex gives orange-yellow crystals from hot H₂O and has m 212°. [Beilstein 13 H 415, 13 I 132, 13 II 213, 13 III 950, 13 IV 977.]

4-Acetamidophenol (Paracetamol, acetaminophen, 4'-hydroxyacetanilide) [103-90-2] M 151.2, m 169-170.5°, pK_{Est} ~10.0. Recrystallise Paracetamol from water or EtOH. The 3,5dinitrobenzamide complex gives orange crystals from hot H₂O and has m 171.5°. [Beilstein 13 H 460, 13 I 159, 13 II 243, 13 III 1056, 13 IV 1091.] *p*-Acetamidophenylacetic acid (Actarit) [18699-02-0] M 193.2, m 167°, 168-170°, 174-175°, pK^{25} 3.49. Crystallise the acid from MeOH/Me₂CO, aqueous EtOH or H₂O. The *amide* has m 231° (from 50% aqueous EtOH). [Gabriel *Chem Ber* 15 841 1882, Cerecedo et al. J Biol Chem 42 238 1924, Tramontano et al. J Am Chem Soc 110 2282 1988, Beilstein 14 II 281.]

Acetanilide [103-84-4] M 135.2, m 114°, pK²⁵ 0.5. Recrystallise acetanilide from water, aqueous EtOH, *benzene or toluene. [*Beilstein* 12 IV 373.]

Acetoacetanilide [102-01-2] M 177.2, m 86°, pK^{25} 10.68. Crystallise the anilide from H₂O, aqueous EtOH or pet ether (b 60-80°). [Williams & Krynitsky *Org Synth* Coll Vol III 10 1955.]

4-Acetophenetidide (phenacetin, *p*-methoxyacetanilide) [62-44-2] M 179.2, m 136°. Crystallise it from H₂O or EtOH, and its solubility in H₂O is 0.08% (at ~10°) and 1.2% (at ~100°), and in EtOH it is 6.7% (at ~10°) and 36% (at ~100°). Alternatively it can be purified by solution in cold dilute alkali and re-precipitating by addition of acid to neutralisation point. Dry it in air. [*Beilstein* 13 H 461, 13 IV 1092.]

Acetophenone [98-86-2] M 120.2, m 19.6°, b 54°/2.5mm, 202°/760mm, d_4^{25} 1.0238, n_D^{25} 1.5322, pK²⁶ –7.6(basic). p K²⁵ 19.2(acidic). Dry it by fractional distillation or by standing with anhydrous CaSO₄ or CaCl₂ for several days, followed by fractional distillation under reduced pressure (from P₂O₅, optional), and careful, slow and repeated partial crystallisations from the liquid at 0° excluding light and moisture. It can also be crystallised at low temperatures from isopentane. Distillation can be followed by purification using gas-liquid chromatography [Earls & Jones J Chem Soc, Faraday Trans 1 71 2186 1975.] [Beilstein 7 H 271, 7 IV 619.]

§ A commercial polystyrene supported version is available — scavenger resin (for diol substrates).

Aceto-o-toluidide (2-methylacetanilide) [120-66-1] M 149.2, m 110°, 112°, b 176°/14mm, 296°/760mm. Crystallise the toluidide from hot H₂O (solubility 1g/210mL), EtOH or aqueous EtOH. UV: λ_{max} 230 and 280nm (EtOH). [Beilstein 12 H 792, 12 I 376, 12 II 439, 12 III 1853, 12 IV 1755.]

Aceto-*m*-toluidide (3-methylacetanilide) [537-92-8] M 149.2, m 65.5°, b 182-183°/14mm, 303°/760mm. Crystallise the toluidide from H₂O, EtOH, aqueous EtOH or Et₂O/pet ether (m 66°). UV: λ_{max} 245nm (EtOH). [Beilstein 12 H 860, 12 I 400, 12 II 468, 12 III 1962, 12 IV 1823.]

Aceto-*p*-toluidide (4-methylacetanilide) [103-89-9] M 149.2, m 146°, b 307°/760mm. Crystallise it from aqueous EtOH. [Beilstein 12 H 920, 12 I 420, 12 II 501, 12 III 2051, 12 IV 1902.]

R-(-)- α -Acetoxyphenylacetic (acetyl mandelic) acid [51019-43-3] M 194.2, m 96-98°, $[\alpha]_{D}^{20}$ -153.7° (c 2.06, Me₂CO), $[\alpha]_{546}^{20}$ -194° (c 2.4, Me₂CO), pK_{Est} ~2.9 It crystallises from H₂O with 1mol of solvent which is removed on drying, or from other solvents as for the *S*-isomer below. [Angus & Owen *J Chem Soc* 227 1943, Parker *Chem Rev* 91 1441 1991, *Beilstein* 10 III 453.]

S-(+)- α -Acetoxyphenylacetic (acetyl mandelic) acid [7322-88-5] M 194.2, m 80-81°, 95-97.5°, $[\alpha]_{D}^{27}$ +158° (c 1.78, Me₂CO), $[\alpha]_{546}^{20}$ +186° (c 2, Me₂CO). Recrystallise it from *benzene/hexane or toluene, and it has characteristic NMR and IR spectra. [Pracejus Justus Liebigs Ann Chem 622 10 1959, Breitholle & Stammer J Org Chem 39 1311 1974, Beilstein 10 IV 567.]

9-Acetylanthracene [784-04-3] **M 220.3, m 75-76°.** Crystallise 9-acetylanthracene from EtOH. [Masnori et al. J Am Chem Soc **108** 1126 1986, Beilstein **7** II 450.]

N-Acetylanthranilic acid [89-52-1] M 179.1, m 182-184°, 185-186°, 190°(dec), pK²⁰ 3.61. Wash the acid with distilled H₂O and recrystallise it from aqueous AcOH, dry it and recrystallise again from EtOAc. Also recrystallise it from water or EtOH. UV: λ_{max} 221, 252 and 305nm (EtOH). The *amide* crystallises from aqueous EtOH and has m 186-187° and λ_{max} 218, 252 and 301nm. [Chattaway J Chem Soc 2495 1931, Walker J Am Chem Soc 77 6698 1955, Beilstein 14 H 337, 14 I 540, 14 II 219, 14 III 922.] **2-Acetylbenzoic acid** [577-56-0] **M 164.2, m 115-116°, 116-118°, pK^{20} 4.14, pK^{25} 4.10. It crystallises from *C_6H_6 and H_2O (15g/100mL). The** *oxime* **has m** 156-157°, and the 2,4-*dinitrophenylhydrazone* has **m** 185-186°(needles from EtOH). [Yale J Am Chem Soc **69** 1547 1947, Panetta & Miller Synthesis 43 1977, Beilstein **10** H 690, **10** I 330, **10** II 479, **10** III 3025, **10** IV2766.]

4-Acetylbenzoic acid [586-89-0] **M 164.2, m 207.5-209.5°, 208.6-209.4°, pK²⁵ 3.70, 5.21, 5.10 (EtOH).** Dissolve the acid in 5% aqueous NaOH, extract it with Et₂O, and acidify the aqueous solution. Collect the precipitate, and recrystallise it from boiling H₂O (100 parts) using decolorising charcoal [Pearson et al. *J Org Chem* **24** 504 1959, Pearson et al. *J Chem Soc* 265 1957, Detweiler & Amstutz *J Am Chem Soc* **72** 2882 1950, Bordwell & Cooper *J Am Chem Soc* **74** 1058 1952]. [Beilstein **10** IV 2769.]

4-Acetylbenzonitrile [1443-80-7] **M 145.2, m 57-58°.** Recrystallise the nitrile from EtOH [Wagner et al. J Am Chem Soc **108** 7727 1986]. [Beilstein **10** H 695, **10** III 3030.]

Acetyl-5-bromosalicylic acid [1503-53-3] M 259.1, m (156°), 168°, 168-169°, pK_{Est} ~3.0. Crystallise the acid from EtOH. [Robertson J Chem Soc 81 1482 1902, Beilstein 10 H 108, 10 II 64.]

2-Acetylfluorene [781-73-7] **M 208.3, m 130-131°, 1 3 2°.** Crystallise acetylfluorene from EtOH (solubility is 60g/800mL) or Me₂CO (solubility is 60g/400mL). The *oxime* [110827-07-1] has **m** 192-193.5° and the 2,4-dinitrophenylhydrazone [109682-26-0] has **m** 261-262°. [Ray & Rieveschl Org Synth Coll Vol III 23 1973.]

5(3)-Acetyl-2(6)-methoxybenzaldehyde [531-99-7] **M 166.2, m 144**°. Extract a solution of the aldehyde in C_6H_6 with 20% aqueous sodium bisulfite, and the bisulfite adduct in the aqueous solution is decomposed by acidifying and heating whereby the aldehyde separates. It is collected, washed with H₂O, dried in a vacuum. It is recrystallised from EtOH (m 140-141°) and then from Et₂O (m 143-144°). [Gray & Bonner J Am Chem Soc **70** 1249 1948, Angyal et al. J Chem Soc 2142 1950, Beilstein **8** IV 1984.]

4-Acetyl-N-methylaniline ([**4-methylamino**]acetophenone) [17687-47-7] M 149.2, m 102-106°, 103-107°. This herbicide crystallises from H₂O. The *4-acetyl-N,N-dimethylaniline* derivative forms colourless plates also from H₂O with m 58-59°. [Klingel *Chem Ber* 18 2694 1885, Staudinger & Kon Justus Liebigs Ann Chem 384 111 1911, Beilstein 14 H 47, 14 I 366.]

1-Acetylnaphthalene (1-acetonaphthenone) [941-98-0] M 170.1, m 10.5°, b 93-95°/0.1mm, 167°/12mm, 302°/760mm, d_4^{20} 1.12, pK²⁵ -6.22 (H_o scale, aqueous H₂SO₄). If the NMR spectrum indicates the presence of impurities, probably 2-acetylnaphthalene, convert the substance to its *picrate* by dissolving in *benzene or EtOH and adding excess of saturated picric acid in these solvents until separation of picrates is complete. Recrystallise the picrate till the melting point is 118°. Decompose the picrate with dilute NaOH and extract with Et₂O. Dry the extract (Na₂SO₄), filter, evaporate and distil the residue. The 2,4dinitrophenylhydrazone crystallises from EtOH and has m 259°. [Stobbe & Lenzer Justus Liebigs Ann Chem **380** 95 1911, Williams & Osborne J Am Chem Soc **61** 3438 1939, Beilstein **7** IV 1292.]

2-Acetylnaphthalene (2-acetonaphthenone, ß-Acetonaphthone, 2-acetonaphthalene, methyl-2-naphthylketone) [93-08-3] M 170.2, m 52-53°, 55°, 55.8°, b 164-166°/8mm, 171-173°/17mm, 301-303°/760mm, pK^{25} -6.16 (H₀ scale, aqueous H₂SO₄). Separate it from the 1isomer by fractional crystallisation of the *picrate* in EtOH (see entry for the 1-isomer above) to m 82°. Decomposition of the picrate with dilute NaOH and extraction with Et₂O, then evaporation, give purer 2acetylnaphthalene. If this residue solidifies, it can be recrystallised from pet ether, EtOH or acetic acid; otherwise it should be distilled in a vacuum and the solid distillate is recrystallised [Gorman & Rodgers J Am Chem Soc 108 5074 1986, Levanon et al. J Phys Chem 91 14 1987]. Purity should be checked by high field NMR spectroscopy. Its oxime has m 145°(dec), and the semicarbazone has m 235°. [Stobbe & Lenzer Justus Liebigs Ann Chem 380 95 1911, Raffauf J Am Chem Soc 72 753 1950, Hunsberger J Am Chem Soc 72 5626 1950, Immediata & Day J Org Chem 5 512 1940, Beilstein 7 IV 1294.] 1-Acetyl-2-phenylhydrazine [114-83-0] M 150.2, m 128.5°, pK²⁵ 1.3. Crystallise the hydrazine from aqueous EtOH. [*Beilstein* 15 H 241.]

Acetylsalicylic acid (Aspirin) [50-78-2] M 180.2, m 133.5-135°, pK^{25} 3.38, (pK^{17} 3.56). Crystallise aspirin twice from toluene, wash it with cyclohexane and dry it at 60° under vacuum for several hours [Davis & Hetzer *J Res Nat Bur Stand* 60 569 1958]. It has been recrystallised from isopropanol and from diethyl ether/pet ether (b 40-60°). It crystallises from EtOH (m 143-144°), *C₆H₆ (m 143°), hexane (m 115° and 128°), octane (m 121°), and has m 110° after sublimation. It has pK^{26} 3.69(H₂O), 4.15(20% aqueous EtOH), 4.47(30% aqueous EtOH) and 4.94(40% aqueous EtOH). It is an analgesic. [*Beilstein* 10 H 67, 10 II 41, 10 III 102, 10 IV 138.]

O-Acetylsalicyloyl chloride [5538-51-2] M 198.6, m 45°, 46-49°, 48-52°, b 107-110°/0.1mm, 115°/5mm, 135°/12mm, n_D^{20} 1.536. Check first the IR to see if an OH frequency is present. If so, some free acid is present. Then reflux with acetyl chloride for 2-3hours and fractionate at high vacuum. The distillate should crystallise. It can be recrystallised from hexane or *C₆H₆ (m 60°, sintering at 52°). [Riegel & Wittcoff *J Am Chem Soc* 64 486 1942, Beilstein 10 H 86, 10 I 43, 10 II 55, 10 III 151, 10 IV 169.]

O-Acetylsalicylsalicylic acid (Salsalate acetate) [530-75-6] M 300.3, m 159°. Crystallise the analgesic from dilute AcOH or EtOH (m 161-162°), MeOH (m 165-168°), and *C₆H₆/EtOH (m 163-165°). Its solubilities in boiling Et₂O, *C₆H₆ and EtOH are 1.4%, 2.2% and 33%, respectively. [Baker et al. *J Chem Soc* 201 *1951*, Garrett et al. *J Am Pharm Soc* 48 684 *1959*, *Beilstein* 10 I 41, 10 II 54, 10 IV 165.]

N-(4)-Acetylsulfanilamide (sulfacetamide) [144-80-9] M 214.2, m 216°. Crystallise the amide from aqueous EtOH. [*Beilstein* 14 IV 2662.]

Acetyl *p*-toluenesulfonate [26908-82-7] M 214.2, m 54-56°, b 186-188°/20mm. The most likely impurity is *p*-toluenesulfonic acid (could be up to 10%). This can be removed by dissolving it in dry Et_2O and cooling until the anhydride crystallises out. It decomposes on heating; below ~130° it gives the disulfonic anhydride and above ~130° polymers are formed, but it can be distilled in a vacuum if it is free of acid. It is used for cleaving ethers [Prep, IR, NMR: Karger & Mazur *J Org Chem* 36 528, Karger & Mazur *J Org Chem* 36 532 1971]. [Beilstein 11 III 255.]

Allyl Phenyl sulfide [5296-64-0] M 150.2, b 59-60°/1.5mm, 79-80°/3mm, 114-114.3°/23.5mm, 225-226°/740mm, 215-218°/750mm, d_4^{20} 1.0275, n_D^{20} 1.5760. Dissolve the sulfide in Et₂O, wash with alkali, H₂O, dry over CaCl₂, evaporate and fractionally distil it, preferably under vacuum. It should not give a precipitate with an alcoholic solution of Pb(OAc)₂. [Hurd & Greengard J Am Chem Soc 52 3356 1930, Tarbell & McCall J Am Chem Soc 74 48 1952, Beilstein 6 IV 1479.]

Amberlite IRA-904 Anion exchange resin (Rohm and Haas) [9050-98-0]. Wash with 1M HCl, CH₃OH (1:10) and then rinse it with distilled water until the washings are neutral to litmus paper. Finally extract successively for 24hours in a Soxhlet apparatus with MeOH, *benzene and cyclohexane [Shue & Yan Anal Chem 53 2081 1981]. It is a strong basic resin also used for base catalysis [Fieser & Fieser Reagents for Org Synth 1 511, Wiley 1967].

p-Aminoacetanilide [122-80-5] M 150.2, m 162-163°, 163°, 165-167°, 166-167°, pK¹⁵ 4.46, pK⁴⁰ 3.94. Crystallise the anilide from water. It has an unstable crystalline form with m 141°. It has IR: v_{max} (CCl₄) 1681cm⁻¹. [*Beilstein* 13 H 94, 13 I 28, 13 II 50, 13 III 166, 13 IV 137.]

ω-Aminoacetophenone hydrochloride (phenacylamine hydrochloride, 2-aminoacetophenone HCl) [5468-37-1] M 171.6, m 188°(dec), 194°(dec), pK²⁵ 5.34. Crystallise the salt from Me₂CO /EtOH, EtOH/ Et₂O, 2-propanol or 2-propanol and a little HCl (slowly after a few days). The *oxime* of the free base has m 140°, and the *picrate* of the free base has m 182° (from EtOH). [Castro J Am Chem Soc 108 4179 1986, Baumgarten & Petersen Org Synth Coll Vol V 909 1973, cf Beilstein 14 H 49, 14 III 105.]

m-Aminoacetophenone [99-03-6] M 135.2, m 98-99°, b 189-290°/760mm, pK²⁵ 3.56. Recrystallise it from EtOH or aqueous EtOH (m 99.5°). The *thiosemicarbazone* has m 202-204° (from EtOH). [*Beilstein* 14 H 45, 14 IV 96.]

p-Aminoacetophenone [99-92-3] M 135.2, m 104-106°, 105-107°, b 293°/atm, pK²⁵ 2.19 Recrystallise it from CHCl₃, *C₆H₆ or H₂O. It is soluble in hot H₂O. UV (EtOH) has λ_{max} 403nm (log ε 4.42) [Johnson *J Am Chem Soc* 75 2720 1953]. [Vandenbelt Anal Chem 26 726 1954.] The 2,4dinitrophenylhydrazone has m 266-267° (from CHCl₃ or EtOH) with λ_{max} 403nm (log ε 4.42), and the semicarbazone has m 193-194°(dec)(from MeOH). The hydrochloride has m 98°(dec)(from H₂O). [Beilstein 14 IV 100.]

1-Aminoanthraquinone-2-carboxylic acid [82-24-6] M 276.2, m 295-296°. Crystallise the acid from nitrobenzene. It is used for the detection of Al, Mg Cd, Zn, Mn, Cu, Hg, Fe, Co, Ni and Pb. The *methyl ester* gives red needles from AcOH, m 228°. The *ethyl ester*, m 198°, crystallises also as red needles from AcOH. [Locher & Fietz Helv Chim Acta 10 667 1927, Beilstein 14 II 419, 14 III 168.]

p-Aminoazobenzene (*p*-phenylazoaniline) [60-09-3] M 197.2, CI 11000, m 126°, pK²⁵ ~2.82. Crystallise this dye from EtOH, CCl₄, pet ether/*C₆H₆, or a MeOH/H₂O mixture. [*Beilstein* 16 IV 445.]

o-Aminoazotoluene (Fast Garnet GBC base, 4'-amino-2,3'dimethylazobenzene, Solvent yellow 3) [97-56-3] M 225.3, m 101.4-102.6°, CI 11160, pK²⁶ 2.29 (50% aqueous EtOH). Recrystallise the dye twice from EtOH, once from *benzene, then dry it in an Abderhalden drying apparatus. [Cilento J Am Chem Soc 74 968 1952, Sawicki J Org Chem 21 605 1956, Beilstein 16 H 334, 16 I 322, 16 II 178, 16 III 386, 16 IV 525.] CARCINOGENIC.

2-Aminobenzaldehyde [529-23-7] **M 121.1, m 39-40°, 80-82°/2mm, pK²⁰ 1.36.** Distil it in steam and recrystallise it from H₂O or EtOH/ Et₂O. The *semicarbazone* has **m** 247°. [*Beilstein* **14** H 21, **14** I 356, **14** II 14, **14** III 47, **14** IV 42.]

2-Aminobenzaldehyde phenylhydrazone (Nitrin) [63363-93-9] M 211.3, m 227-229°. Crystallise it from acetone. [Knöpfer Monatsh Chem 31 97 1910, Beilstein 14 H 21, 14 II 14, 14 III 47.]

3-Aminobenzaldehyde [29159-23-7] **M 121.1, m 28-30°, pK**_{Est} ~2.0. The aldehyde crystallises as light yellow plates from ethyl acetate. The UV has λ_{max} 227 and 327.5nm in cyclohexane. The *acetyl* derivative has **m** 122° (from EtOH) and the *oxime* has **m** 195° (yellow-brown plates from EtOH). [*Beilstein* 14 H 28, 14 I 359, 14 II 21, 14 III 53, 14 IV 46.]

4-Aminobenzamide hydrochloride [59855-11-7] **M 199.6, m 284-285°, pK**_{Est} ~1.7. Recrystallise the salt from EtOH. The *free base* [2835-68-9] **M** 136.2, has **m** 182.9° and crystallises with 0.25H₂O (**m** 178-179°). [Rupe & Vogler *Helv Chim Acta* **8** 835 1925, *Beilstein* **14** H 425, **14** III 1061.]

p-Aminobenzeneazodimethylaniline [539-17-3] M 240.3, m 182-183°. Crystallise the azo-dye from aqueous EtOH. [*Beilstein* 14 IV 1004.]

o-Aminobenzoic acid (anthranilic acid) [118-92-3] M 137.1, m 145°, pK_1^{25} 2.94, pK_2^{25} 4.72. Crystallise anthranilic acid from water (charcoal). It has also been recrystallised from 50% aqueous acetic acid. It sublimes in a vacuum. [*Beilstein* 14 IV 1004.]

m-Aminobenzoic acid [99-05-8] M 137.1, m 174°, pK_1^{25} 3.29, pK_2^{25} 5.10. Crystallise the acid from water. [*Beilstein* 14 IV 1092.]

p-Aminobenzoic acid [150-13-0] M 137.1, m 187-188°, pK_1^{25} 2.45, pK_2^{25} 4.85. Purify *p*-aminobenzoic acid by dissolving it in 4-5% aqueous HCl at 50-60°, decolorising with charcoal and carefully precipitating it with 30% Na₂CO₃ to pH 3.5-4 in the presence of ascorbic acid. It can be recrystallised from water, EtOH or EtOH/water mixtures. [*Beilstein* 14 IV 1126.]

p-Aminobenzonitrile (*p*-cyanoaniline) [873-74-5] M 118.1, m 86-86.5°, 85-87°, pK^{25} 1.74. It crystallises from water, 5% aqueous EtOH or EtOH and is dried over P₂O₅ or dried *in vacuo* for 6hours at 40°. [Moore et al. *J Am Chem Soc* 108 2257 1986, Edidin et al. *J Am Chem Soc* 109 3945 1987, Beilstein 14 IV 1158.]

4-Aminobenzophenone [1137-41-3] **M 197.2, m 123-124**°, **pK**²⁵ **2.17.** Dissolve it in aqueous acetic acid, filter and precipitate it with ammonia. This process is repeated several times, then the amine is recrystallised from aqueous EtOH. [*Beilstein* **14** IV 248.]

o-Aminobiphenyl [90-41-5] M 169.2, m 49.0°, pK¹⁸ 3.83. Crystallise it from aqueous EtOH (charcoal). [*Beilstein* 12 IV 3223.]

p-Aminobiphenyl [92-67-1] M 169.2, m 53°, b 191°/16mm, pK¹⁸ 4.38. Crystallise it from water or EtOH. [*Beilstein* 12 IV 3241.] CARCINOGENIC.

5-Amino-2-bromobenzoic acid [2840-02-0] **M 216.0, m 178°, 180°, pK**_{Est(1)} ~1.7, pK_{Est(2)} ~4.4. Crystallise the acid from H₂O or C_6H_6 (m 128°). The *acetyl* derivative crystallises from H₂O (as *monohydrate*) or absolute EtOH with m 196-197° (*anhydrous*). [Koopal *Rec Trav Chim, Pays Bas* 34 148 1915, Bamberger *Chem Ber* 57 2090 1924, *Beilstein* 14 H 413, 14 II 245.]

2-Amino-5-bromotoluene (4-bromo-2-methylaniline) [583-75-5] M 186.1, m 59°, 59.5°, 240°/760mm, pK^{25} 3.58. Steam distil the aniline and recrystallise it from EtOH. UV: λ max 292.5nm (H₂O). [Beilstein 12 H 838, 12 I 389, 12 II 456, 12 IV 1804.]

2-Amino-5-chlorobenzoic acid [635-21-1] **M 171.6, m 100°, pK_1^{25} 1.69, pK_2^{25} 4.35.** Crystallise the acid from water, EtOH or chloroform. [*Beilstein* 14 IV 1075.]

3-Amino-4-chlorobenzoic acid [2840-28-0] **M 171.6**, **m 216-217°**, $pK_{Est(1)} \sim 2.7$, $pK_{Est(2)} \sim 2.9$. Crystallise the acid from water. [*Beilstein* 14 IV 1115.]

4-Amino-4'-chlorobiphenyl [135-68-2] **M 203.5, m 132-133°, 134°, pK**_{Est} ~**4.0.** Crystallise the amine from pet ether, EtOH or aqueous EtOH. The *acetyl* derivative has **m** 245° from EtOH. [Dewar & James J Chem Soc 4270 1958, Gelmo Chem Ber **39** 4176 1906, Beilstein **12** H 1319, **12** II 757, **12** IV 3269.]

2-Amino-4,6-dichlorophenol [527-62-8] **M 175.0, m 95-96°, pK**_{Est(1)} ~**3.1, pK**_{Est(2)} ~**6.8.** Crystallise the phenol from CS₂ or *benzene. It sublimes at 0.06mm. The *hydrochloride* has **m** 280-285° from EtOH. [Meyer *Helv Chim Acta* **41** 1890 1958, *Beilstein* **13** II 185, **13** III 856, **13** IV 889.]

4-Amino-*N*,*N***-diethylaniline hydrochloride** [16713-15-8] **M 200.7, m 233.5°, pK²² 6.61.** Crystallise the salt from EtOH. The *free base* [93-05-0] **M 164.2** distils at **260-262°/~760mm**. [*Beilstein* **14** IV 109.]

4-Amino-3,5-diiodobenzoic acid [2122-61-4] **M 388.9, m ~350°, pK**_{Est(1)} **0.4, pK**_{Est(2)} **~1.6.** Purify the iodo-acid by dissolving it in dilute NaOH and precipitating with dilute HCl. Alternatively, dissolve it in aqueous NH₃ and acidify it with AcOH. Dry it in air. The solubility of the *Na salt* in H₂O is 2.56% at 25°. [Klemme & Hunter *J Org Chem* **5** 510 *1940, Beilstein* **14** H 439, **14** III 1161, **14** IV 1284.]

2-Aminodiphenylamine [534-85-0] **M 184.2, m 79-80°, pK**_{Est(1)} ~**3.8** (NH₂), pK_{Est(2)} <~0. Crystallise the amine from H₂O. [*Beilstein* **13** IV 43.]

4-Aminodiphenylamine [101-54-2] **M 184.2, b 155%0.026mm, pK²⁵ 5.20.** It crystallises from EtOH with **m** 66%, and from ligroin with **m** 75%. It can be distilled at high vacuum. [*Beilstein* **13** IV 113.]

2-Amino-1,2-diphenylethanol [530-36-9] **M 213.3, m 165°, pK**_{Est(1)} ~7.5. Recrystallise the ethanol from EtOH. The IR, 2S-(-)- [23190-16-1] and the IS, 2R(+)- enantiomers also crystallise from EtOH and have **m 142-145°**, $[\alpha]_{D}^{20} \pm 7^{\circ}$ (c 0.6, EtOH). [Masters et al. J Org Chem 56 5666 1991, Masters & Hegedus J Org Chem 58 4547 1993, Beilstein 13 IV 2150.]

2-Aminodiphenylmethane (2-benzylaniline) [28059-64-5] M 183.3, m 52°, 51-54°, b 172°/12mm and 190°/22mm, pK_{Est(1)} ~4.2. Crystallise 2-benzylaniline from ether and distil it in a vacuum. [*Beilstein* 12 IV 3279.]

2-Aminofluorene (2-fluorenamine) [153-78-6] **M 181.2, m 127.8-128.8°, 132-133°, pK²⁵ 4.64.** Wash the amine well with H₂O and recrystallise it from Et₂O or 50% aqueous EtOH (25g with 400mL), and dry it in a vacuum. Store it in the dark. [Bavin *Org Synth* Coll Vol **V** 30 1973, Beilstein **12** H 1331, **12** IV 337.]

9-Aminofluorene (9-fluorenamine) [525-03-1] **M 181.2, m 64-65°, pK**_{Est} ~3.5. Purify it by converting it to the hydrochloride with HCl, then basify it with NH₃ and recrystallise it from pet ether (m 62-63°) or from hexane. The *hydrochloride* [5978-75-6] **M** 217.7, **m** ~255°(dec, from EtOH). [Ingold et al. J Chem Soc 1493 1933, Mathieu Bull Soc Chim Fr 1526 1971, Beilstein 12 H 1331, 12 I 553, 12 II 780, 12 III 3297, 12 IV 3390.]

1-Amino-4-hydroxyanthraquinone [116-85-8] M 293.2, m 207-208°, $pK_{Est(1)} \sim 2.6$ (NH₂), $pK_{Est(2)} \sim 9.0$ (OH). Purify it by TLC on SiO₂ gel plates (0.75mm thick) using toluene/acetone (9:1) as eluent. The main band is scraped off and extracted with MeOH. The solvent is evaporated, and the dye is dried in a drying pistol [Land et al. *J Chem Soc*, *Faraday Trans 1* 72 2091 *1976*]. It has also been recrystallised from aqueous EtOH. [*Beilstein* 14 H 268, 14 I 503, 14 II 168, 14 III 652, 14 IV 891.]

3-Amino-4-hydroxytoluene (2-amino-*p***-cresol)** [95-84-1] **M 123.2, m 135°, 137-138°, pK_{Est(1)} \sim 4.7(NH_2), pK_{Est(2)} \sim 9.6 (OH). Recrystallise the cresol from H₂O, Et₂O or toluene. It sublimes** *in vacuo* **as plates or needles. The** *hydrochloride* **has m** 222-224° (dec, from aqueous EtOH). [Beilstein 13 H 601, 13 I 227, 13 II 338, 13 III 1576.]

4-Amino-3(5)-hydroxytoluene (2-amino-*m*-cresol) [2835-98-5] M 123.2, m 159°, 159-162°, pK_{Est(1)} ~5.4 (NH₂), pK_{Est(2)} ~10.2 (OH). Crystallise it from H₂O, 50% EtOH, or toluene. [*Beilstein* 13 H 590, 13 III 1552.]

2-Amino-5-hydroxytoluene [2835-99-6] M 123.2, m 162°(dec), 177-179°(dec), pK_{Est(1)} ~5.4 (NH₂), pK_{Est(2)} ~10.4 (OH). Crystallise it from 50% EtOH. [Beilstein 13 H 593, 13 IV 1698.]

5-Aminoindane [24425-40-9] **M 133.2, m 37-38°, b 131°/15mm, 146-147°/25mm, 247-249°/745mm, pK¹⁶ 5.31.** Distil the indane and then crystallise it from pet ether. [*Beilstein* 12 I 511, 12 III 2798.]

2-Amino-5-iodotoluene [13194-68-8] **M 233.0, m 87°, pK**_{Est} ~**3.6.** Crystallise it from 50% EtOH. [*Beilstein* **12** IV 1807.]

1-Amino-4-methylaminoanthraquinone [1220-94-6] **M 252.3, pK**_{Est(1)} ~**1, pK**_{Est(2)} <~**4.** Purify the quinone by TLC on silica gel plates using toluene/acetone (3:1) as eluent. The main band is scraped off and extracted with MeOH. The solvent is evaporated, and the residue is dried in a drying pistol [Land et al. *J Chem Soc, Faraday Trans 1* **72** 2091 1976]. [*Beilstein* **14** H 198, **14** I 462, **14** III 440, **14** IV 458.]

4-Aminomethylbenzenesulfonamide hydrochloride (Mafenide HCl) [138-37-4] M 222.3, m 265-267°, pK_1^{20} 8.18 (NH₂), pK_2^{20} 10.23 (SONH₂). Crystallise the salt from dilute HCl or 95% EtOH and dry it in a vacuum at 100°. It is an antibacterial. [Miller et al. J Am Chem Soc 62 2099 1940, Bergeim & Barker J Am Chem Soc 66 1459 1944.] The sulfate salt has m 254-255° (from aqueous EtOH). [Beilstein 14 III 2223, 14 IV 2799.]

4-Amino-2-methyl-1-naphthol See Vitamin K₅ in "Miscellaneous Compounds", Chapter 6.

3-Amino-2-naphthoic acid [5959-52-4] M **187.2, m 214°(dec), pK**_{Est(1)} ~**1.5** $pK_{Est(2)}$ ~**4.0.** Crystallise the naphthoic acid from aqueous EtOH. [*Beilstein* **14** III 1341.]

4-Amino-5-naphthol-2,7-disulfonic acid [90-20-0] M 320.3, pK_1^{20} 3.54, pK_2^{20} 8.55. pK_1^{25} 3.63, pK_2^{25} 8.83. A slightly alkaline solution of Na₂CO₃ (*ca* 22g) in water (litmus) is added to a solution of 100g of the dry acid in 750mL of hot distilled water, followed by 5g of activated charcoal and 5g of Celite. The suspension is stirred for 10minutes and filtered by suction. The acid is then precipitated by adding *ca* 40mL of conc HCl (solution is blue to Congo Red), then filter it by suction through a shark skin filter circular sheet (or hardened filter paper) and wash it with 100mL of distilled water. The purification process is repeated. The acid is dried overnight in an oven at 60° and stored in a dark bottle The *diethylamine salt* has m 306-307°(dec, from aqueous EtOH). [Post & Moore Anal Chem **31** 1872 1959]. [Beilstein **14** H 840, **14** I 758, **14** II 502, **14** III 2292, **14** IV 2824.]

1-Amino-2-naphthol hydrochloride [1198-27-2] M 195.7, m 250°(dec), $pK_{Est(1)} \sim 3.7$ (NH₂), $pK_{Est(2)} \sim 9.9$ (OH). Crystallise the salt from the minimum volume of hot water containing a few drops of stannous chloride in an equal weight of hydrochloric acid (to reduce atmospheric oxidation). Filter the solution and add half its volume of conc HCl and set aside. The salt crystallises almost quantitatively. Dry it in a vacuum in the dark (m 260°). The salt is more stable than the *free base* which has m 150° (darkening at 130°) and its *O-methyl ether* has m 49° and b 159-159°/9mm. [Desai et al. *J Chem Soc* 324 1938, Beilstein 13 H 666, 13 I 268, 13 II 408, 13 III 1875, 13 IV 2080.]

1-Amino-2-naphthol-4-sulfonic acid [116-63-2] M **239.3**, m **295**°(dec), pK_{Est(1)} <0 , pK_{Est(2)} ~**2.8** (NH₂), pK_{Est(2)} ~**8.8**. Purify it by warming 15g of the acid, 150g of NaHSO₃ and 5g of Na₂SO₃ (anhydrous) with 1L of water to *ca* 90°, shaking until most of the solid had dissolved, then filtering hot. The precipitate obtained by adding 10mL of conc HCl to the cooled filtrate is collected, washed with 95% EtOH until the washings are colourless, and is dried under vacuum over CaCl₂. It is stored in a dark-coloured bottle, in the cold [Chanley et al. *J Am Chem Soc* **74** 4347 1952]. [*Beilstein* **14** IV 2825.]

2-Amino-4-nitrobenzoic acid (4-nitroanthranilic acid) [619-17-0] **M 182.1, m 269°(dec),** pK_1^{25} **0.65,** pK_2^{25} **3.70.** Crystallise the acid from water, EtOH (m 271°) or aqueous EtOH (m 269°). The *acetyl* derivative has m 217° (from EtOH), m 222° (from aqueous EtOH). [Chapman & Stephen J Chem Soc 1796 1925, Beilstein **14** II 234, **14** III 975, **14** IV 1087.]

5-Amino-2-nitrobenzoic acid [13280-60-9] M 182.1, m 235°(dec), $pK_{Est(1)} \sim 1.1$, $pK_{Est(2)} \sim 1.2$. Crystallise the acid from water. [*Beilstein* 14 III 1021.]

1-Amino-4-nitronaphthalene [776-34-1] **M 188.2, m 195°, 196-197°, pK²⁰ 0.54.** It crystallises from EtOH, ethyl acetate or aqueous NH₃ as light yellow crystals. The *acetyl* derivative also forms yellow crystals, **m** 192.5-193.5°, from Me₂CO. [*Beilstein* **12** H 1259, **12** I 530, **12** II 704, **12** III 2971, **12** IV 3114.]

2-Amino-4-nitrophenol [99-57-0] M **154.1**, m **80-90°** (hydrate), **142-143°** (anhydrous), $pK_{Est(1)} \sim 3.9$ (NH₂), $pK_{Est(2)} \sim 9.2$. Crystallise the phenol from water. [*Beilstein* **13** IV 896.]

2-Amino-5-nitrophenol [121-88-0] **M** 154.1, **m** 207-208°, $pK_{Est(1)} \sim 3.8$, $pK_{Est(2)} \sim 9.3$. Crystallise the phenol from water. [*Beilstein* 13 IV 803.]

RS-(±)-3-Amino-3-(4-nitrophenyl)propionic acid [35005-61-9] M 210.2, m 220-226°(dec), 226°(dec, browning at 215°), $pK_{Est(1)} \sim 3.0$, $pK_{Est(2)} \sim 9.5$. The acid crystallises from 50% aqueous EtOH. The *hydrochloride* has m 218-220°(dec). The *N*-benzoyl derivative has m 204-205° (from MeOH) and the *N*-benzoyl-hydrazide has m 226-227° (from MeOH or EtOH). [Posner Justus Liebigs Ann Chem 389 44 1912, Beilstein 14 I 603, 14 IV 1548.] **2-Aminophenol** [95-55-6] **M 109.1, m 175-176°, pK** $_{1}^{25}$ **4.65, pK** $_{2}^{25}$ **9.75.** Purify it by dissolving it in hot water, decolorising with activated charcoal, filtering and cooling to induce crystallisation. Maintain an atmosphere of N₂ over the hot phenol solution to prevent its oxidation [Charles & Freiser *J Am Chem Soc* **74** 1385 1952]. It can also be crystallised from EtOH using the same precautions. [*Beilstein* **13** IV 805.]

3-Aminophenol [591-27-5] **M 109.1, m 122-123°, pK_1^{25} 4.25, pK_2^{25} 9.90.** Crystallise it from hot water or toluene. [*Beilstein* **13** IV 952.]

4-Aminophenol [123-30-8] **M 109.1, m 190**° (under N₂), pK_1^{25} **5.38**, pK_2^{25} **10.4**. Crystallise it from EtOH, then water, excluding oxygen. It sublimes at 110°/0.3mm. It has been purified by chromatography on alumina with a 1:4 (v/v) mixture of absolute EtOH/*benzene as eluent. [*Beilstein* **13** IV 1014.]

4-Aminophenol hydrochloride [51-78-5] **M 145.6, m 306°(dec).** Purify the salt by treating an aqueous solution with saturated Na₂S₂O₃, filtering under N₂, then recrystallising it from 50% EtOH twice and once from absolute EtOH [Livingston & Ke J Am Chem Soc **72** 909 1950]. [Beilstein **13** III 993.]

4-Aminophenylacetic acid [1197-55-3] **M 151.2, m 199-200**°(dec), pK_1^{20} **3.60,** pK_2^{20} **5.26.** Crystallise the acid from hot water (60-70mL/g). [Beilstein 14 III 1182.]

IRS,2*RS*-2-Amino-1-phenylbutan-1-ol [α -(α -aminopropyl)benzyl alcohol] [(\pm)-threo 5897-76-7] M 165.1, m 79-80°, pK_{Est} ~9.7. Crystallise the *free base* of the *threo* isomer from *benzene/pet ether which has m 79-80°. The *threo-hydrochloride*, m 204-205°, crystallised from EtOH [Abrams & Kipping J *Chem Soc* 1480 1936, Rebstock et al. J Am Chem Soc 73 3666 1951]. The *IRS*,2*RS*-erythro isomer has m 80.5-81° and its *hydrochloride* has m 242° [Harturg et al. J Am Chem Soc 52 3317 1930. [Beilstein 13 II 390, 13 III 1791, 13 IV 1952.]

N-Aminophthalimide [1875-48-5] M 162.2, m 200-202°, $pK_{Est} \sim 0$. The imide has been recrystallised from 96% EtOH (solubility is ~2% at boiling temperature) to form a yellow solution. It sublimes *in vacuo* at *ca* 150°. It solidifies after melting, and remelts at 338-341° (see phthalhydrazide in "Heterocyclic Compounds, Chapter 4"). [*Beilstein* 22/11 V 122.]

4-Aminopropiophenone [70-69-9] **M 163.1, m 140°, b 180°/10mm, pK**_{Est} ~2.2. Crystallise it from water or aqueous EtOH. The *hydrochloride* has **m** 188-189° (aqueous EtOH/HCl drops), and the *semicarbazone* has **m** 139-140° (from EtOH/H₂O). [Derrick & Bornemann J Am chem. Soc **35** 1283 1913, Beilstein **14** H 59, **14** I 375, **14** III 146, **14** IV 139.]

4-(2-Aminopropyl)phenol (hydroxyamphetamine) [103-86-6] M 151.2, m 125-126°, pK_{Est(1)} ~9.4 (OH), pK_{Est(2)} ~9.7(NH₂), pK²⁵ 9.31. Crystallise the phenol from *benzene. The *R*-(-)enantiomer crystallises from EtOH or *C₆H₆ with m 110.5-111.5° and $[\alpha]_D^{17}$ -52.0° (c 1, EtOH). The (±)hydrochloride has m 171-172° (EtOH/Et₂O), and the 2,4-dinitrophenylhydrazone has m 190-192° (EtOH). [Beilstein 13 I 251, 13 III 1709, 13 IV 1871.]

1-Aminopyrene [1606-67-3] M 217.3, m 117-118°, pK_1^{25} 2.91 (50% aqueous EtOH), pK_2^{25} 2.77 (50% aqueous EtOH). Crystallise it from hexane. [Beilstein 12 IV 3460.]

4-Aminosalicylic acid [65-49-6] M 153.1, m 150-151°(dec), pK_1^{25} 1.78 (CO₂H), pK_2^{25} 3.63 (NH₂), pK^{25} 13.74 (OH). Crystallise the acid from EtOH. [Beilstein 14 IV 1967.]

5-Aminosalicylic acid (5-amino-2-hydroxybenzoic acid) [89-57-6] M 153.1, m 276-280°, 283°(dec), pK_1^{25} 2.74 (CO₂H), pK_2^{25} 5.84 (NH₂). It crystallises as needles from H₂O containing a little NaHSO₃ to avoid aerial oxidation to the quinone-imine. The *Me ester* gives needles from *C₆H₆, m 96°, and the *hydrazide* has m 180-182° (from H₂O). [Fallab et al. *Helv Chim Acta* 34 26 1951, Shavel J Amer Pharm Assoc 42 402 1953, Beilstein 14 IV 2058.]

2-Amino-5-sulfanilylthiazole (thiazolsulfone) [473-30-3] M **238.3, m 219-221°(dec), pK**_{Est} ~**4.5 (OH).** Crystallise the thiazole from EtOH. It is antibacterial. [Bambas J Am Chem soc **67** 671 1945.]

4-Amino-2-sulfobenzoic acid [527-76-4] **M 217.1.** Crystallise the sulfobenzoic acid from H_2O (solubility is 0.3% at 25°. [KasHe J Am Chem Soc 44 490 1910, Beilstein 19 I 356, 19 III/IV 1641 for 4-NO₂.]

9-Aminotriptycene [793-41-9] **M 269.3, m 223.5-224.5**°. Recrystallise aminotriptycene from ligroin [Imashiro et al. J Am Chem Soc 109 729 1987].

p-tert-Amylphenol (*p*-2,2-dimethylpropylphenol) [80-46-6] M 146.3, m 93.5-94.2°, 94-96°, b 138°/15mm, 262°/760mm, pK_{Est} ~10.2. Purify *via* its benzoate, as for phenol. After evaporating the solvent from its solution in ether, the material is recrystallised (from the melt) to a constant melting point. The *benzoyl* derivative has m 60° (from EtOH). [Berliner et al. J Am Chem Soc 76 507 1954, Huston et al. J Am Chem Soc 67 899 1945, Beilstein 6 H 548, 6 I 269, 6 II 506, 6 III 1965, 6 IV 3383.]

Aniline [62-53-3] M 93.1, f -6.0°, b 68.3/10mm, 184.4°/760mm, d_4^{20} 1.0220, n_D^{20} 1.585, n_D^{25} 1.5832, pK^{25} 4.60. Aniline is *hygroscopic*. It can be dried with KOH or CaH₂, and distilled under reduced pressure. Treatment with stannous chloride removes sulfur-containing impurities, reducing the tendency to become coloured by aerial oxidation. It can be crystallised from Et₂O at low temperatures. More extensive purifications involve preparation of derivatives, such as the double salt of aniline hydrochloride and cuprous chloride or zinc chloride, or *N*-acetylaniline (m 114°) which can be recrystallised from water.

Redistilled aniline is dropped slowly into a strong aqueous solution of recrystallised oxalic acid. Aniline oxalate (**m** 174-175°) is filtered off, washed several times with water and recrystallised three times from 95% EtOH. Treatment with saturated Na₂CO₃ solution regenerated aniline which was distilled from the solution, dried and redistilled under reduced pressure [Knowles *Ind Eng Chem* **12** 881 *1920*].

After refluxing with 10% acetone for 10hours, aniline is acidified with HCl (Congo Red as indicator) and extracted with Et_2O until colourless. The hydrochloride is purified by repeated crystallisation before aniline is liberated by addition of alkali, then dried with solid KOH, and distilled. The product is sulfur-free and remains colourless in air [Hantzsch & Freese *Chem Ber* **27** 2529, 2966 1894].

Non-basic materials, including nitro compounds, are removed from aniline in 40% H₂SO₄ by passing steam through the solution for 1hour. Pellets of KOH are then added to liberate the aniline which is steam distilled, dried with KOH, distilled twice from zinc dust at 20mm, dried with freshly prepared BaO, and finally distilled from BaO in an all-glass apparatus [Few & Smith *J Chem Soc* 753 *1949*]. Aniline is absorbed through skin and is **TOXIC**. [*Beilstein* **12** IV 223.]

Aniline hydrobromide [542-11-0] M 174.0, m 286°. Crystallise the hydrobromide from water or EtOH and dry it at 5mm over P_2O_5 . Also recrystallise it four times from MeOH containing a few drops of conc HBr by addition of pet ether (b 60-70°), then dry it to constant weight over paraffin chips *in vacuo* [Gutbezahl & Grunwald J Am Chem Soc 75 559 1953]. It precipitates from EtOH solution on addition of Et₂O, and the filtered solid is recrystallised from EtOH and dried *in vacuo*. [Buchanan et al. J Am Chem Soc 108 1537 1986, Beilstein 12 III 232.]

Aniline hydrochloride [142-04-1] M 129.6, m 200.5-201°. Purification is as for aniline HBr above. [Beilstein 12 IV 232.]

Aniline hydroiodide [45497-73-2] M 220.0, it decomposes on heating. Purification is as for aniline HBr; store it in the dark. [*Beilstein* 12 III 232.]

m-Anisaldehyde (3-methoxybenzaldehyde) [591-31-1] M 136.2, b 143°/50mm, d_4^{20} 1.119. Wash it with saturated aqueous NaHCO₃, then H₂O, dry it with anhydrous MgSO₄ and distil it under reduced pressure under N₂. Store it under N₂ in sealed glass ampoules. [*Beilstein* 8 IV 241.]

p-Anisaldehyde (4-methoxybenzaldehyde) [123-11-5] M 136.2, m -1°, b 249°/atm, 89-90°/2mm, d_4^{20} 1.119, n_D^{20} 1.576. Wash the aldehyde with saturated aqueous NaHCO₃, then H₂O, steam

distil, extract the distillate with Et_2O , dry (MgSO₄) the extract, filter and distil this under a vacuum and N₂. Store it in glass ampules under N₂ in the dark. [*Beilstein* **8** IV 252.]

o-Anisidine [2-methoxyaniline] [90-04-0] M 123.2, m ~5°, b 109°/17mm, 119°/21mm, 225°/atm, d_4^{20} 1.096, n_D^{20} 1.575, pK²⁵ 4.52. It is separated from the *m*- and *p*- isomers by steam distillation. It is also separated from its usual synthetic precursor *o*-nitroanisole by dissolving it in dilute HCl (pH <2.0) extracting the nitro impurity with Et₂O, adjusting the pH to ~8.0 with NaOH, extracting the amine into Et₂O or steam distilling. Extract the distillate with Et₂O, dry the extract (Na₂SO₄), filter, evaporate and fractionate the residual oil. Protect the almost colourless oil from light which turns it yellow in color. [Biggs & Robinson *J Chem Soc* 3881961, Nodzu et al. *Yakugaku Zasshi (J Pharm Soc Japan)* 71 713, 715 1951, *Beilstein* 13 IV 806.]

m-Anisidine [3-methoxyaniline] [536-90-3] M 123.2, m ~5°, b 79°/1mm, 128°/17mm, 251°/atm, d_4^{20} 1.101, n_D^{20} 1.583, pK²⁵ 4.20. *o*-Isomer impurity can be removed by steam distillation. Another possible impurity is the precursor 3-nitroanisole which can be removed as for the preceding *o*-isomer and fractionating using an efficient column. It is a yellow liquid. [Gilman & Kyle *J Am Chem Soc* 74 3027 1952, Bryson *J Am Chem Soc* 82 4858 1960, Kadaba & Massie *J Org Chem* 22 333 1957, Beilstein 13 IV 953.]

p-Anisidine [4-methoxyaniline] [104-94-9] M 123.2, m 57°, pK^{25} 5.31. Crystallise *p*-anisidine from H₂O or aqueous EtOH. Dry it in a vacuum oven at 35° for 6hours and store it in a dry box. [More et al. *J* Am Chem Soc 108 2257 1986.] Purify it also by vacuum sublimation [Guarr et al. *J Am Chem Soc* 107 5104 1985]. [Beilstein 13 IV 1015.]

Anisole [100-66-3] M 108.1, f -37.5°, b 43°/11mm, 153.8°/760mm, d^{15} 0.9988, n_D^{20} 1.5143, pK⁰ -6.61 (aqueous H₂SO₄). Shake anisole with half its volume of 2M NaOH, and the emulsion is allowed to separate. Repeat three times, then wash twice with water, dry over CaCl₂, filter, dry over sodium wire and finally distil it from fresh sodium under N₂ using a Dean-Stark trap (samples in the trap being rejected until free from turbidity) [Caldin et al. J Chem Soc, Faraday Trans 1 72 1856 1976].

Alternatively dry it with $CaSO_4$ or $CaCl_2$, or by refluxing with sodium or BaO with crystalline FeSO₄ or by passage through an alumina column. Traces of phenols are removed by prior shaking with 2M NaOH, followed by washing with water. It has been be purified by zone refining. [*Beilstein* **6** IV 548.]

2-*p*-**Anisyl-1,3-indanone (anisindione)** [117-37-3] **M 252.3, m 156-157°, pK²⁰ 4.09.** Crystallise anisidinone from acetic acid or EtOH. [Horeau & Jacqius *Bull Soc Chim Fr* 53 1948, Koelsch *J Am Chem. Soc* **58** 1331 1936, *Beilstein* **8** III 2931.]

Anthracene [120-12-7] M 178.2, m 215-216°, 218°, b 342°/760mm, pK^{25} -7.4 (aqueous H_2SO_4). Likely impurities are anthraquinone, anthrone, carbazole, fluorene, 9,10-dihydroanthracene, tetracene and bianthryl. Carbazole is removed by continuous-adsorption chromatography [see Sangster & Irvine J Phys Chem 24 670 1956] using a neutral alumina column and eluting with *n*-hexane. [Sherwood in *Purification of Inorganic and Organic Materials*, Zief (ed), Marcel Dekker, New York, 1969.] The solvent is evaporated, and anthracene is sublimed under vacuum, then purified by zone refining, under N₂ in darkness or non-actinic light.

It has also been purified by co-distillation with ethylene glycol (boils at 197.5°), from which it can be recovered by addition of water, followed by crystallisation from 95% EtOH, *benzene, toluene, a mixture of *benzene/xylene (4:1), or Et₂O. It has also been chromatographed on alumina with pet ether in a dark room (to avoid photo-oxidation of adsorbed anthracene to anthraquinone). Other purification methods include sublimation in a N₂ atmosphere (in some cases after refluxing with sodium), and recrystallisation from toluene [Gorman et al. J Am Chem Soc **107** 4404 1985].

Anthracene has been crystallised from EtOH, chromatographed through alumina in hot *benzene (*fume hood*) and then sublimed in a vacuum in a pyrex tube that has been cleaned and baked at 100°. (For further details see Craig & Rajikan J Chem Soc, Faraday Trans 1 74 292 1978, and Williams & Zboinski J Chem Soc, Faraday Trans 1 74 611 1978.) It has been chromatographed on alumina, recrystallised from *n*-hexane and sublimed under reduced pressure. [Saltiel J Am Chem Soc 108 2674 1986, Masnori et al. J Am Chem Soc 108 1126 1986.] Alternatively, recrystallise it from cyclohexane, chromatograph it on alumina with *n*-hexane as eluent,

and recrystallise two more times [Saltiel et al. *J Am Chem Soc* **109** 1209 *1987*]. Anthracene is fluorescent and forms a *picrate complex*, **m** 139°, on mixing the components in CHCl₃ or $*C_6H_6$, but decomposes on attempted crystallization. [*Beilstein* **5** IV 228.]

Anthracene-9-carboxylic acid (anthroic acid) [723-62-6] M 222.2, m 214°(dec), pK²⁰ 3.65. Crystallise the acid from EtOH. It is fluorescent in EtOH. [*Beilstein* 9 IV 2671.]

9-Anthraldehyde [642-31-9] **M 206.2, m 104-105°.** Crystallise the aldehyde from acetic acid or EtOH. [Masnori et al. J Am Chem Soc 108 1126 1986, Beilstein 7 IV 1738.]

Anthranol (enol tautomer of anthone, see below) [529-86-2] M 196.2, m 120°(rapid heating), 160-170°(dec. but sainters >100°), pK²⁵ -5.5 (aqueous H₂SO₄). Crystallise anthrol from glacial acetic acid or aqueous EtOH. It is the less stable of two tautomers and is obtained by heating anthrone in aqueous NaOH (but not in cold NaOH) whereby it dissolves to form the sodium salt of anthrol. On cautious acidification anthrol precipitates as a yellowish-brown solid. It changes into anthrone on keeping, as it does on melting (120° in a preheated bath). The melting point depends on the initial bath temperature, and recrystallisation may cause it to tautomerise to *anthrone* (see below). The *acetate* (m 134°) crystallises from pet ether (m 134°) or EtOH (m 135.5-137°). [Meyer Justus Liebigs Ann Chem **379** 56 1911, Barnett et al. J Chem Soc 885 1928, for tautomerism see Almdal et al. Acta Chem Scand Series B **40** 230 1986.]

Anthranthrone [641-13-4] M 306.3, m 300°, 415°, pK^{25} -7.9 (aqueous H₂SO₄). Crystallise it from chlorobenzene, nitrobenzene or CHCl₃ (m 340°). [*Beilstein* 7 I 451, 7 II 783, 7 III 4406, 7 IV 2694.]

Anthraquinone [84-65-1] M 208.2, m 286°, pK^{25} -8.27 (aqueous H_2SO_4). Crystallise anthraquinone from CHCl₃ (38mL/g), *benzene, or boiling acetic acid, wash it with a little EtOH and dry it under vacuum over P_2O_5 . [Beilstein 7 IV 2556.]

Anthrarufin [1,5-dihydroxy-9,10-anthraquinone] [117-12-4] M 240.1, m 280°(dec), pK₁²⁵ 9.90, pK₂²⁵ 11.05. Purify anthrarufin by column chromatography on silica gel with CHCl₃/Et₂O as eluent, followed by recrystallisation from acetone. Alternatively recrystallise it from glacial acetic acid [Flom & Barbara *J Phys Chem* 89 4489 1985]. [*Beilstein* 7 III 2359, 8 IV 3268.]

1,8,9-Anthratriol [480-22-8] **M 226.2, m 176-181°, pK**_{Est} ~9.5. Crystallise it from pet ether and dry it *in vcuo*. [*Beilstein* **6** IV 7602.]

Anthrimide [1,1'-imino-bis-anthraquinone] [82-22-4] M 429.4, m >250°(dec). Crystallise anthrimide from chlorobenzene (red needles) or nitrobenzene (red rhombs). It is poorly soluble in organic solvents. [Eckert & Steiner *Monatsh Chem* 35 1129 1914.]

Anthrone [90-44-8] M 194.2, m 155°, pK^{25} -5.5 (aqueous H_2SO_4). This stable keto tautomer of 9-anthranol (above) provides yellow crystals from a 3:1 mixture of C_6H_6 /pet ether (b 60-80°) (10-12mL/g), or successively from C_6H_6 then EtOH. Dry it *in vacuo*. [Meyer *Org Synth* Coll Vol I 60 1941, Beilstein 6 IV 4930.]

(±)-Atrolactic acid ($0.5H_2O$) (2-hydroxy-2-phenylpropionic acid) [515-30-0] M 166.2, m 94.5-95°(anhydrous), 88-91° ($0.5H_2O$), pK¹⁸ 3.53. Crystallise the acid from water (4g/20ml boiling H₂O with charcoal, filter and cool overnight at 0-5°) and dry it at 55°/0.5mm [Eliel & Freeman Org Synth Coll Vol IV 58 1963]. The (±)-ethyl ester [76496-51-0] has b 250°/~760mm, 129-130°/13mm, and the (±)-amide [5908-94-1] has m 101-102°. [Beilstein 10 H 259, 10 I 113, 10 II 157, 10 III 560, 10 IV 467.]

R-(-) and *S*-(+) Atrolactic acid [*R* 3966-30-1 and *S* 13113-71-8] M 166.2, m 115-116^o, 116-117^o, *R* $[\alpha]_{D}^{14.6}$ -37.7^o (c 3.3 EtOH) and $[\alpha]_{D}^{14.6}$ -51.1^o (c 2.2, H₂O], *S* $[\alpha]_{D}^{14.6}$ +37.7^o (c 3.5 EtOH). Recrystallise them from *C₆H₆ or *C₆H₆/pet-ether and dry them in a vacuum. [McKenzie & Clough *J Chem Soc* 1019 1910, Meyers & Slade Synth Commun 6 6011972, Beilstein 10 II 157, 10 III 560, 10 IV 657.]

Auramine O (4,4'-bis-dimethylaminobenzophenone imine hydrochloride) [2465-27-2] M 321.9, m >250°(dec), pK²⁵ 10.71 (free base), 9.78 (carbinolamine). It crystallises from EtOH as the hydrochloride and is very slightly soluble in CHCl₃, UV: λ_{max} 434nm (ϵ 370). The *free base* (carbinolamine) has m 136° (from *C₆H₆). [Goldacre & Phillips J Chem Soc 1724 1949, Conrad et al. Biochemistry 9 1540 1970, Beilstein 14 IV 256.]

Aurin tricarboxylic acid [4431-00-9] M 422.4, m 300°. The acid is dissolved in aqueous NaOH, NaHSO₃ solution is added until the colour is discharged and then the tricarboxylic acid is precipitated with HCl. [Heisig & Lauer Org Synth Coll Vol I 54 1941, Beilstein 10 IV 4161]. Do not extract the acid with hot water because it softens, forming a viscous mass. Make a solution in aqueous NH₃. Aluminon is the NH₄ salt.

Azobenzene [103-33-3] M 182.2, m 68°, b 293°/atm, pK²⁵ 2.48. Ordinary azobenzene is nearly all in the *trans*-form. It is partly converted into the *cis*-form on exposure to light [for isolation see Hartley J Chem Soc 633 1938, and for spectra of *cis*- and *trans*-azobenzenes, see Winkel & Siebert Chem Ber 74B 6701941]. *trans*-Azobenzene is obtained by chromatography on alumina using 1:4 C_6H_6 /heptane or pet ether, and it crystallises from EtOH (after refluxing for several hours) or hexane. All operations should be carried out in diffuse red light or in the dark. [Beilstein 16 IV 8.]

4-Azidoaniline hydrochloride [91159-79-4] **M 170.6, m 165°(dec).** Purify it in EtOAc with dry HCl gas followed by cold dry Et₂O. The *free base* has **m** 66°(dec) (MeOH) and the *picrate* has **m** 64-65°(dec) (MeOH). The IR has v_{max} (Nujol) at 2110cm⁻¹ (N₃). [Escher et al. *Helv Chim Acta* **62** 1217 1979, Maffei & Rivolta *Gazetta Chim Ital* **84** 750 1954, *Beilstein* **12** H 772, **12** IV 1741.]

Azolitmin B [1395-18-2] M ~3300, m >250°(dec). It crystallises from water as dark violet scales, or as a red powder on precipitation from H_2O by addition of EtOH. It is an indicator which is red at pH 4.5 and blue at pH 8.3. [cf Kolthopff & Rosenblum *Acid-Base Indicators*, Macmillan, NY pp160-162, 365-366 1937.]

p,p'-Azoxyanisole (4,4'-dimethoxyazoxybenzene) [1562-94-3] M 258.3, transition temperatures: 118.1-118.8°, 135.6-136.0°, pK²⁵-5.23 (20% aqueous EtOH + 80% aqueous H₂SO₄). Crystallise the dye from absolute or 95% EtOH, or acetone, and dry it by heating under vacuum or sublime it in a vacuum onto a cold finger. [*Beilstein* 16 II 326.]

Azoxybenzene (Fenazox) [495-48-7] M 198.2, m 36°, pK^{25} -6.16 (20% aqueous EtOH + 80% aqueous H₂SO₄). Crystallise azobenzene from EtOH or MeOH, and dry it for 4hours at 25°/10⁻³mm. Sublime it before use. [Bigelow & Palm *Org Synth* Coll Vol II 57 1943, *Beilstein* 16 II 326.]

p,*p*-Azoxyphenetole [4792-83-0] M 286.3, m 137-138^o (turbid liquid clarifies at 167^o). Crystallise the dye from toluene or EtOH. [*Beilstein* 16 II 326.]

Azulene [275-51-4] M 128.2, m 98.5-99°, pK²⁵-1.65 (aqueous H₂SO₄). Crystallise azulene from EtOH. It has UV λ_{max} 270nm (loge 4.72) in hexane. [Platner & Magyar Helv Chim Acta 25 581 1942, Beilstein 5 IV 1636.]

Benzalacetone (*trans*-4-phenyl-3-buten-2-one) [122-57-6] M 146.2, m 42°. Crystallise it from pet ether (b 40-60°), or distil it (b 137-142° /16mm). [*Beilstein* 7 IV 1003.]

Benzalacetophenone (Chalcone) [94-41-7] M 208.3, m 56-58°, b 208°/25mm, pK^{25} -5.73 (aqueous H₂S O₄). Crystallise it from EtOH by warming to 50° (about 5mL/g), iso-octane, or toluene/pet ether, or recrystallise it from MeOH, and then twice from hexane. SKIN IRRITANT. [*Beilstein* 7 IV 1658.]

Benzaldehyde [100-52-7] M 106.1, f -26°, b 62° 58°/10mm, 179.0°/760mm, d_4^{20} 1.044, n_D^{20} 1.5455, pK²⁵ -7.1 (aqueous H₂SO₄). To diminish its rate of oxidation, benzaldehyde usually contains additives such as hydroquinone or catechol. It can be purified *via* its bisulfite addition compound but usually

distillation (under nitrogen at reduced pressure) is sufficient. Prior to distillation it is washed with NaOH or 10% Na₂CO₃ (until no more CO₂ is evolved), then with saturated Na₂SO₃ and H₂O, followed by drying with CaSO₄, MgSO₄ or CaCl₂. [*Beilstein* 7 IV 505.]

anti-Benzaldoxime [932-90-1] M 121.1, m 33-34°. Crystallise the oxime from diethyl ether by adding pet ether (b 60-80°). The *syn*-isomer [622-32-2] has b 121-124°/12mm, m 34-36°. [*Beilstein* 7 H 218, 7 IV 527.]

Benzamide [55-21-0] **M 121.1, m 129.5°, pK²⁵ -2.16** (aqueous H₂SO₄). Crystallise it from hot water (about 5mL/g), EtOH or 1,2-dichloroethane, and dry it in air. It has also been crystallised from dilute aqueous NH₃, H₂O, Me₂CO, then $*C_6H_6$ using a Soxhlet extractor. Dry it in an oven at 110° for 8hours and store in a desiccator over 99% H₂SO₄. [Bates & Hobbs *J Am Chem Soc* **73** 2151 1951, Beilstein **9** IV 725.]

Benzamidine [618-39-3] **M 120.2, m 64-66°, pK²⁰ 11.6.** It is liberated from its hydrochloride chloride (below) by treatment with 5M NaOH, extracted into diethyl ether, dried (Na₂SO₄) and sublimed *in vacuo*. [*Beilstein* 9 H 280, 9 I 123, 9 II 199, **9** 1264, 9 IV 898.]

Benzamidine hydrochloride hydrate [206752-36-5] **M 156.6 (anhydrous), m 86-88°, pK²⁰ 11.6 (see free base above).** Recrystallise it from dilute HCl (crystals contain xH₂O) or EtOH/few drops HCl; dry it in a vacuum. It is a proteolytic inhibitor [Jeffcoate & White J Clin Endocrinol Metab **38** 155 1974, Beilstein **9** IV 898.]

Benzanilide [93-98-1] **M 197.2, m 164°, pK⁵⁵ 1.26.** Crystallise benzanilide from pet ether (b 70-90°) using a Soxhlet extractor, and dry it overnight at 120°. Also crystallise it from EtOH. [*Beilstein* **12** IV 417.]

Benz[a]anthracene (1,2-benzanthracene, tetraphene) [56-55-3] M 228.3, m 159-160°. Crystallise 1,2-benzanthracene from MeOH, EtOH or *benzene (charcoal), then chromatograph it on alumina from sodium-dried *benzene (twice), using vacuum distillation to remove *benzene. Final purification is by vacuum sublimation. [*Beilstein* 5 IV 2549.]

Benz[a]anthracene-7,12-dione [2498-66-0] **M 258.3, m 169.5-170.5**°, **169-171**°. Crystallise the dione from MeOH (charcoal). toluene, toluene/hexane, Me₂CO, or AcOH. Alternatively purify it by sublimation *in vacuo*, or by zone refining. [Beilstein 7 H 826, 7 I 440, 7 II 760, 7 III 4278, 7 IV 2644.]

Benzanthrone [82-05-3] M 230.3, m 170°, pK^{25} -3.2 (aqueous H₂SO₄). Crystallise benzanthrone from EtOH or xylene. [*Beilstein* 7 IV 1819.]

*Benzene [71-43-2] M 78.1, f 5.5°, b 80.1°, d_4^{20} 0.874, n_D^{20} 1.50110, n_D^{25} 1.49790. For most purposes, *benzene can be purified sufficiently by shaking with conc H₂SO₄ until free from thiophene, then with H₂O, dilute NaOH and water, followed by drying (with P₂O₅, sodium, LiAlH₄, CaH₂, 4X Linde molecular sieve, or CaSO₄, or by passage through a column of silica gel, and for a preliminary drying, CaCl₂ is suitable), and distillation. A further purification step to remove thiophene, acetic acid and propionic acid, is crystallisation by partial freezing. The usual contaminants in dry thiophene-free *benzene are non-benzenoid hydrocarbons such as cyclohexane, methylcyclohexane, and heptanes, together with naphthenic hydrocarbons and traces of toluene. Carbonyl-containing impurities can be removed by percolation through a Celite column impregnated with 2,4dinitrophenylhydrazine, phosphoric acid and H₂O. (Prepared by dissolving 0.5g DNPH in 6mL of 85% H₃PO₄ by grinding together, then adding and mixing 4mL of distilled H₂O and 10g Celite.) [Schwartz & Parker Anal *Chem* 33 1396 1961.] *Benzene has been freed from thiophene by refluxing with 10% (w/v) of Raney nickel for 15minutes, after which the nickel is removed by filtration or centrifugation.

Dry *benzene is obtained by doubly distilling high purity *benzene from a solution containing the blue ketyl formed by the reaction of sodium-potassium alloy with a small amount of benzophenone.

Thiophene has been removed from *benzene (absence of bluish-green coloration when 3mL of *benzene is shaken with a solution of 10mg of isatin in 10mL of conc H_2SO_4) by refluxing the *benzene (1.25L) for several hours with 40g HgO (freshly precipitated) dissolved in 40mL glacial acetic acid and 300mL of water. The precipitate is filtered off, the aqueous phase is removed and the *benzene is washed twice with H_2O , dried and

distilled. Alternatively, *benzene dried with CaCl₂ has been shaken vigorously for 0.5hour with anhydrous AlCl₃ (12g/L) at 25-35°, then decanted, washed with 10% NaOH, and water, dried and distilled. The process is repeated, giving thiophene-free *benzene. [Holmes & Beeman *Ind Eng Chem* **26** 172 *1934*.]

After shaking successively for about an hour with conc H_2SO_4 , distilled water (twice), 6M NaOH, and distilled water (twice), *benzene is distilled through a 3-ft glass column to remove most of the water. Absolute EtOH is added and the *benzene-alcohol azeotrope is distilled. (This low-boiling distillation leaves any non-azeotrope-forming impurities behind.) The middle fraction is shaken with distilled water to remove EtOH, and again redistilled. Final slow and very careful fractional distillation from sodium, then LiAlH₄ under N₂, removed traces of water and peroxides. [Peebles et al. *J Am Chem Soc* **82** 2780 *1960.*] **Benzene liquid and vapour are very* **TOXIC** *and* **HIGHLY FLAMMABLE**, *and all operations should be carried out in an efficient fume cupboard and in the absence of naked flames in the vicinity.* [*Beilstein* **5** H 175, **5** I 95, **5** II 119, **5** III 469.] **Rapid purification:** To dry benzene, alumina, CaH₂ or 4A molecular sieves (3% w/v) may be used (dry for

6hours). Then benzene is distilled, discarding the first 5% of distillate, and stored over molecular sieves (3A, 4A) or Na wire.

 $[{}^{2}H_{6}]$ *Benzene (**benzene-d*₆) [1076-43-3] M 84.2, b 80°/773.6mm, 70°/562mm, 60°/399mm, 40°/186.3mm, 20°/77.1mm, 10°/49.9mm, 0°/27.5mm, d²⁰₄ 0.9488, d⁴⁰₄ 0.9257, n²⁰_D 1.4991, n⁴⁰ 1.4865. Hexadeuteriobenzene of 99.5% purity is refluxed over and distilled from CaH₂ onto Linde type 5A sieves under N₂. [*Beilstein* 5 III 518, 5 IV 630.]

Benzeneazodiphenylamine (4-phenylazodiphenylamine) [28110-26-1; 101-75-7] M 273.3, m 82°, 86°, 87-91°, pK²² 0.48. Purify the dye by chromatography on neutral alumina using dry *C₆H₆ with 1% of dry MeOH. The major component, which gave a stationary band, is cut out and eluted with EtOH or MeOH. [Högfeldt & Bigeleisen J Am Chem Soc 82 15 1960.] It crystallises from pet ether, EtOH or aqueous EtOH, and has λ_{max} at 420nm (ε 28,000) (aqueous EtOH) and 540nm (aqueous EtOH/H₂SO₄) [Badger et al. J Chem Soc 1888 1954, Beilstein 16 H 314, 16 III 343, 16 IV 457.]

1-Benzeneazo-2-naphthol (Sudan I) [842-07-9] **M 248.3, m 106°, 120,5°, 132°** (**polymorphism**) **134°, pK**_{Est} ~9.5 (**OH**). Crystallise the dye from EtOH. It forms Cu and Ni salts. [Beilstein 16 H 162, 16 I 254, 16 II 70, 16 III 129, 16 IV 228.]

1-Benzeneazo-2-naphthylamine (1-phenylazo-2-naphthylamine, Yellow AB) [85-84-7] M 247.3, m 102-104°, 103-104°, pK_{Est} ~4.1. Crystallise the dye from glacial acetic acid, acetic acid/water or ethanol. It forms Cu, Co and Ni salts. [Beilstein 16 H 369, 16 I 328, 16 II 193, 16 III 417, 16 IV 551.]

1,2-Benzenedimethanol (**1,2-bishydroxymethylbenzene**, **phthalyl alclhol**) [612-14-6] **M 138.2, m 61-64°, 63-64°, 64-65°, 65-66.5°, b 145°/3mm.** Recrystallise it from C_6H_6 , H₂O, pet ether or pentane. It has been extracted in a Soxhlet with Et₂O, evaporated and recrystallised from hot pet ether. It is also purified by dissolving in Et₂O, allowing to evaporate till crystals are formed, filtering off and washing the colourless crystals with warm pet ether or pentane. The *diacetate* has **m** 35°, 35-36°. [Nystrom & Brown J Am Chem Soc **69** 1197 1947, IR and UV: Entel et al. J Am Chem Soc **74** 441 1952, Beilstein **6** IV 5953.]

m-Benzenedisulfonic acid [98-48-6] M 238.2, $pK_{Est} < 0$. Free it from H₂SO₄ by conversion to the calcium or barium salts (using Ca(OH)₂ or Ba(OH)₂, and filtering). The calcium salt is then converted to the potassium salt, using K₂CO₃. Both the potassium and the barium salts are recrystallised from H₂O, and the acid is regenerated by passing through the H⁺ form of a strong cation exchange resin. The acid is recrystallised twice from conductivity water and dried over CaCl₂ at 25°. [Atkinson et al. *J Am Chem Soc* 83 1570 *1961*.] It has also been crystallised from Et₂O and dried in a vacuum oven. The *S-benzylisothiuronium salt* has m 214.3° (from EtOH/H₂O). [*Beilstein* 11 IV 553.] It is best kept as the *disodium salt* [831-59-4] which decomposes on heating [*Beilstein* 11 H 199, 11 I 48, 11 II 213, 11 III 453.]

m-Benzenedisulfonyl chloride [585-47-7] M 275.1, m 63°. Crystallise it from CHCl₃ (EtOH free, by passing through an alumina column) or $*C_6H_6$ /pet ether and dry it at 20mm pressure. [*Beilstein* 11 IV 553.]

Benzene-1,2-dithiol [17534-15-5] **M 142.2, m 24-25°, 27-28°, b 110-112°, pK**_{Est(1)} ~6.0, $\mathbf{pK}_{Est(2)}$ ~9.4. Likely impurities are the oxidation products, the disulfides which could be polymeric. Dissolve it in aqueous NaOH until the solution is alkaline. Extract with Et₂O and discard the extract. Acidify with cold HCl (diluted 1:1 by volume with H₂O) to Congo Red paper under N₂ and extract it three times with Et₂O. Dry the Et₂O with Na₂SO₄, filter, evaporate and distil the residue under reduced pressure in an atmosphere of N₂. The distillate solidifies on cooling. [UV: Dewar et al. J Chem Soc 3076 1958, Grunwald & Berkowitz J Am Chem Soc 81 4939 1951, Ferretti Org Synth Coll Vol V 419 1973, Beilstein 6 IV 5651.]

Benzenesulfinic acid [618-41-7] **M 142.2, m 84°, pK²⁵ 2.16(2.74).** The acid is purified by dissolving the Na salt in H₂O, acidifying to Congo Red paper with HCl and adding a concentrated solution of FeCl₃ whereby Fe sulfinate precipitates. Collect the salt, wash it with a little H₂O, drain, suspend it in H₂O and add a slight excess of 1.5M aqueous NaOH. The Fe(OH)₃ precipitates, it is filtered off, the sulfinic acid in the aqueous solution is extracted with Et₂O, the extract is dried (Na₂SO₄) and evaporated to give colourless crystals of benzenesulfinic acid **m** 84° which are stored under N₂ in the dark, as it slowly oxidises in air to the sulfonic acid. [*Beilstein* **11** H 2, **11** I 3, **11** II 3, **11** II 3, **11** II 3, **11** IV 3.]

Benzenesulfonic acid [98-11-3] **M 158.2, m 43-44°, 50-55°(anhydrous), 65-66°, pK²⁵ - 2.7, 0.70, (2.53?)** Purify benzenesulfonic acid by dissolving it in a small volume of distilled H₂O and stirring with slightly less than the theoretical amount of BaCO₃. When effervescence is complete and the solution is still acidic, filter off the insoluble barium benzenesulfonate. The salt is collected and dried to constant weight *in vacuo*, then suspended in H₂O and stirred with a little less than the equivalent (half mol.) of sulfuric acid. The insoluble BaSO₄ (containing a little barium benzenesulfonate) is filtered off and the filtrate containing the free acid is evaporated in a high vacuum. The oily residue will eventually crystallise when completely anhydrous. A 32% commercial acid is allowed to fractionally crystallise at room temperature over P₂O₅ in a vacuum desiccator giving finally colourless deliquescent plates **m** 52.5°. The anhydrous crystalline acid is deliquescent and should be stored over anhydrous Na₂SO₄ in the dark and should be used in subdued sunlight as it darkens under sunlight. The main impurity is Fe which readily separates as the Fe salt in the early fractions [Taylor & Vincent *J Chem Soc* 3218 *1952*]. The *S-benzylisothiuronium salt* has **m** 148° (from EtOH/H₂O). It is an IRRITANT to the skin and eyes. [See Adams & Marvel *Org Synth* Coll Vol **I** 84 *1941*, Michael & Adair *Chem Ber* **10** 585 *1877*, *Beilstein* **11** IV 27.]

Benzenesulfonic anhydride [512-35-6] **M 298.3, m 88-91°.** Crystallise the anhydride from Et₂O (**m** 88.5-91.5°), CHCl₃ or chlorobenzene (**m** 90-92°). Store it dry. [Field *J Am Chem Soc* **74** 394 1952, *Beilstein* **11** H 3, **11** I 11, **11** II 23, **11** III 50, **11** IV 50.]

Benzenesulfonyl chloride [98-09-9] M 176.6, m 14.5°, b 120°/10mm, 251.2°/760mm(dec), d_4^{20} 1.384. Distil the sulfonyl chloride, then treat it with 3mole % each of toluene and AlCl₃, and allow it to stand overnight. The sulfonyl chloride is distilled off at 1mm pressure and then carefully fractionally distilled at 10mm in an all-glass column. [Adams & Marvel Org Synth Coll Vol I 84 1941, Jensen & Brown J Am Chem Soc 80 4042 1958, Beilstein 11 IV 49.] It is TOXIC.

Benzene-1,2,4,5-tetracarboxylic (pyromellitic acid) [89-05-4] M 254.2, m 276°, 281-284°, pK₁²⁵ 1.87, pK₂²⁵ 2.72, pK₃²⁵ 4.30, pK₄²⁵ 5.52. Dissolve it in 5.7 parts of hot dimethylformamide, decolorise, filter and cool. The precipitate is collected and dried in air. The solvent is removed by heating in an oven at 150-170° for several hours. It also crystallises from water. [*Beilstein* **9** H 997, **9** IV 3804.]

Benzene-1,2,4,5-tetracarboxylic dianhydride (pyromellitic dianhydride) [89-32-7] M 218.1, m 286°, b 397-400°/760mm. Crystallise the dianhydride from ethyl methyl ketone or dioxane. Dry, and sublime it *in vacuo*. [Beilstein 19 H 196, 19/5 V 407.]

Benzene-1,2,3-tricarboxylic (hemimellitic) acid (H₂O) [36362-97-7] M 210.1, m 190°(dec), pK_1^{25} 2.62, pK_2^{25} 3.82, pK_3^{25} 5.51. Crystallise the acid from water. [Beilstein 9 H 976, 9 IV 3745.]

Benzene-1,3,5-tricarboxylic (trimesic or trimellitic) acid [554-95-0] M 210.1, m $360^{\circ}(dec)$, pK²⁵₁ 2.64, pK²⁵₂ 3.71, pK²⁵₃ 5.01. Crystallise the acid from water. The *trimethyl ester* has m 144° (from MeOH or MeOH/H₂O). [Beilstein 9 H 978, 9 IV 3747.]

1,2,4-Benzenetriol [533-73-3] **M 126.1, m 140.5-141**°(sintering at 139°), pK_1^{20} 9.08, pK_2^{20} 11.82. Crystallise the triol from Et₂O or Et₂O/EtOH, and dry it in a vacuum. The *picrate* forms orange-red needles **m** 96°. [*Beilstein* **6** H 1087, **6** I 541, **6** II 1071, **6** III 6276.]

Benzethonium chloride (Hyamine 1622, [diisobutylphenoxyethoxyethyl]dimethylbenzylammonium chloride, (N,N-dimethyl-N-[2-[2-[4-(1,1,3,3-tetramethylbutyl)phenoxy]ethoxy]-ethyl]-benzenemethanammonium chloride,) [121-54-0] M 448.1, m 164-166° (sinters at 120°, monohydrate). Crystallise it from boiling acetone after filtering or from CHCl₃/pet ether. The precipitate is filtered off, washed with diethyl ether and dried for 24hours in a vacuum desiccator. It is a cationic antiseptic surfactant which forms crystals also from a 1:9 MeOH/Et₂O mixture. It foams in water. [*Beilstein* 12 IV 2187.]

Benzhydrol (diphenylmethanol) [91-01-0] M 184.2, m 69°, b 297°/748mm, 180°/20mm. Crystallise benzhydrol from hot H₂O or pet ether (b 60-70°), pet ether containing a little *benzene, from CCl₄, or EtOH (1mL/g). An additional purification step includes passage of a *benzene solution through an activated alumina column. It sublimes in a vacuum. Also recrystallise it three times from MeOH/H₂O [Naguib J Am Chem Soc 108 128 1986]. [Beilstein 6 IV 4648.]

§ A commercial polystyrene supported version is available.

Benzidine (4,4'-diaminobiphenyl) [92-87-5] M 184.2, m 128-129°, pK_1^{20} 3.85, pK_2^{20} 4.95. Its solution in *benzene is decolorized by percolating through two 2-cm columns of activated alumina, then concentrated until benzidine crystallises on cooling. Recrystallise alternately from EtOH and *benzene to constant absorption spectrum [Carlin et al. *J Am Chem Soc* 73 1002 1951]. It has also been crystallised from hot water (charcoal) and from diethyl ether. Dry it under vacuum in an Abderhalden pistol. Store it in the dark in a stoppered container. CARCINOGENIC. [*Beilstein* 13 IV 364.]

Benzidine dihydrochloride [531-85-1] M 257.2, m >250°(dec). Crystallise the salt by dissolving in hot H₂O, and adding conc HCl to the slightly cooled solution. CARCINOGENIC. [*Beilstein* 13 IV 365.]

Benzil [134-81-6] **M 210.2, m 96-96.5°.** Crystallise benzil from *benzene after washing with alkali. (Crystallisation from EtOH did not free benzil from material reacting with alkali.) [Hine & Howarth *J Am Chem Soc* **80** 2274 1958.] It has also been crystallised from CCl₄, diethyl ether or EtOH [Inoue et al. *J Chem Soc, Faraday Trans 1* **82** 523 1986]. [*Beilstein* **7** IV 2502.]

Benzilic acid (diphenylglycollic acid) [76-93-7] M 228.3, m 150°, pK^{18} 3.06. Crystallise benzilic acid from *benzene (*ca* 6mL/g), or hot H₂O. [*Beilstein* 10 IV 1256.]

Benzil monohydrazone [5433-88-7] M 224.3, m 151°(dec). Crystallise it from EtOH. The monoacetyl hydrazone has m 91° (from EtOH). [Metze & Meyer Chem Ber 90 483 1959, Beilstein 7 I 394.]

\alpha-Benzil monoxime [14090-77-8], [E 574-15-2], [Z 574-16-3] **M 105.1**, **m 140°**. The *transisomer* crystallises from C_6H_6 (must not use animal charcoal) and has **m** 140°. The *cis-isomer* also crystallises from C_6H_6 but crystals have $0.5*C_6H_6$ (**m** 62-63°), and the solvent free compound has **m** 112°. [Beilstein **7** III 3812, **7** IV 2504.]

Benzo[*a*]**biphenylene** [252-47-1] **M 202.2, m 72-73°** (compare with β -isomer). It forms yellow needles from MeOH and sublimes *in vacuo* (m 72.0-72.8°). The 2,4,7-*trinitrofluorenone complex* crystallises as black needles m 201.5-202.5°. [Cava & Stucker *J Am Chem Soc* 77 6022 1955, Barton et al. *J Chem Soc*(*C*) 1276 1967, *Beilstein* **5** IV 2462.]

Benzo[*b*]**biphenylene** [259-56-3] **M** 202.2, 242.6-243.6°. It forms yellow crystals from $*C_6H_6$ /cyclohexane **m** 234-245° (sublimation). The 2,4,7-trinitrofluorenone complex crystallises as red needles from $*C_6H_6$ /MeOH **m** 214-216°. It has been sublimed *in vacuo*. [Jensen & Coleman Tetrahedron Lett **No** 20 7 1959, Barton et al. J Chem Soc Perkin Trans 1 967 1986, Beilstein **5** IV 2462.]

Benzoic acid [65-85-0] **M 122.1, m 122.6-123.1°, pK²⁵ 4.12.** For use as a volumetric standard, analytical reagent grade benzoic acid should be carefully fused to *ca* 130° (to dry it) in a platinum crucible, and then powdered in an agate mortar. Benzoic acid has been crystallised from boiling water (charcoal), aqueous acetic acid, glacial acetic acid, *C₆H₆, aqueous EtOH, pet ether (b 60-80°), and from EtOH solution by adding water. It is readily purified by fractional crystallisation from its melt and by sublimation in a vacuum at 80°. The *S-benzylisothiuronium salt* has **m** 167° (from EtOH/H₂O). [*Beilstein* **9** IV 273.]

Benzoic anhydride [93-97-0] **M 226.2, m 42°.** Free it from benzoic acid by washing with NaHCO₃, then water, and drying. Crystallise it from *benzene (0.5mL/g) by adding just enough pet ether (b 40-60°) to cause cloudiness, then cool in ice. It can be distilled at 210-220°/20mm. [*Beilstein* **19** IV 550.]

(±)-Benzoin (2-hydroxy-2-phenylacetophenone) [119-53-9] M 212.3, m 137°. Crystallise benzoin from CCl₄, hot EtOH (8mL/g), or 50% acetic acid. Also crystallise it from high purity *benzene, then twice from high purity MeOH, to remove fluorescent impurities [Elliott & Radley *Anal Chem* 33 1623 1961]. It can be sublimed. [*Beilstein* 8 IV 1279.]

(±)- α -Benzoinoxime [441-38-3] M 227.3, m 151°. Crystallise the oxime from diethyl ether. It is used for the spectroscopic determination of Cu²⁺, Pd²⁺, Pt⁴⁺, Rh³⁺ and V⁵⁺ [Singh et al. *Talanta* 26 425 1979, *Beilstein* 8 IV 1282.]

Benzonitrile [100-47-0] **M 103.1, f -12.9°, b 191.1°, d** $_{4}^{20}$ **1.010, n** $_{D}^{20}$ **1.528.** Dry benzonitrile with CaSO₄, CaCl₂, MgSO₄ or K₂CO₃, and distil it from P₂O₅ in an all-glass apparatus, under reduced pressure (**b** 69°/10mm), collecting the middle fraction. Distillation from CaH₂ causes some decomposition of benzonitrile. Isonitriles can be removed by preliminary treatment with conc HCl until the odour of isonitrile (carbylamine) has gone, followed by preliminary drying with K₂CO₃. (This treatment also removes amines.) Steam distil (to remove small quantities of carbylamine). The distillate is extracted into ether, washed with dilute Na₂CO₃, dried overnight with CaCl₂, and the ether is removed by evaporation. The residue is distilled at

40mm (**b** 96°) [Kice et al. *J Am Chem Soc* **82** 834 1960]. Conductivity grade benzonitrile (specific conductance 2×10^{-8} mho) is obtained by treatment with anhydrous AlCl₃, followed by rapid distillation at 40-50° under vacuum. After washing with alkali and drying with CaCl₂, the distillate is redistilled in a vacuum several times at 35° before fractionally crystallising several times by partial freezing. It is dried over finely divided activated alumina from which it is withdrawn when required [Van Dyke & Harrison *J Am Chem Soc* **73** 402 1951]. [*Beilstein* **9** IV 892.]

Benzo[ghi]perylene (1,12-benzoperylene) [191-24-2] M 276.3, m 273°, 277-278.5°, 278-280°. It forms light green crystals on recrystallisation from $C_{6}H_{6}$ or xylene and sublimes at 320-340°/0.05mm [UV: Hopff & Schweizer *Helv Chim Acta* 42 2315 1959, Clar *Chem Ber* 65 846 1932, Fluoresc. Spectrum: Bowen & Brocklehurst J Chem Soc 3875 1954]. It also recrystallises from propan-1-ol [Altman & Ginsburg J Chem Soc 466 1959]. The 1,3,5-Trinitrobenzene complex has m 310-313° (deep red crystals from $C_{6}H_{6}$), the picrate has m 267-270° (dark red crystals from $C_{6}H_{6}$), and the styphnate (2,4,6-trinitroresorcinol complex) has m 234° (wine red crystals from $C_{6}H_{6}$). [Beilstein 5 IV 2766.]

3,4-Benzophenanthrene (benzo[c]phenanthrene) [195-19-7] M **228.3**, m **68°**. Crystallise benzo[c]phenanthrene from EtOH, pet ether, or EtOH/Me₂CO. [*Beilstein* **5** III 2378, **5** IV 2552.]

Benzophenone [119-61-9] **M 182.2, m 48.5-49**°, pK^{25} -6.0(-8.4) (aqueous H₂SO₄). Crystallise it from MeOH, EtOH, cyclohexane, *benzene or pet ether, then dry in a current of warm air and store it over BaO or P₂O₅. It is also purified by zone melting and by sublimation [Itoh *J Phys Chem* **89** 3949 1985, Naguib et al. *J Am Chem Soc* **108** 128 1986, Gorman & Rodgers *J Am Chem Soc* **108** 5074 1986, Ohamoto & Teranishi J Am Chem Soc 108 6378 1986, Naguib et al. J Phys Chem 91 3033 1987]. [Beilstein 7 III 2048, 7 IV 1357.]

Benzophenone oxime [574-66-3] **M 197.2, m 142°, 143-144°, pK²⁵ 11.18.** Crystallise the oxime from MeOH (4mL/g). [*Beilstein* **7** II 355, **7** III 2063 1370.]

Benzophenone-3,3',4,4'-tetracarboxylic anhydride [2421-28-5] M 322.2, m 218.5-219.5°, 225.5°. The main impurity is the free acid formed by hydrolysis (check for OH bands in the IR). This can be converted to the dianhydride by treating with Ac₂O (molar ratio of 4 to 1 of acid), heating at 110-120° for 1.5 to 2hours, cooling to $0-5^{\circ}$ and collecting the dianhydride. This is then dissolved in hot dioxane or Me₂CO, filtered and cooled to $10-15^{\circ}$. The moisture sensitive solid is collected and dried at $120-130^{\circ}$ in vacuo. It has been sublimed at high vacuum. [Faberov et al. J Org Chem USSR 4 153 (English translation) 1968.]

Benzopinacol [464-72-2] **M 366.5, m 170-180°** (depends on heating rate), 171-173°. Crystallise benzopinacol from EtOH. [Beilstein 6 IV 7053.]

Benzo[a]pyrene (3,4-benzpyrene, benzo[dcf]chrysene) [50-32-8] M 252.3, m 177.5-178°, 179.0-179.5°. A solution of 250mg of benzo[a]pyrene in 100mL of *benzene is diluted with an equal volume of hexane, then passed through a column of alumina, Ca(OH)₂ and Celite (3:1:1). The adsorbed material is developed with a 2:3 *benzene/hexane mixture. (It showed as an intensely fluorescent zone.) The main zone is eluted with 3:1 acetone/EtOH, and is transferred into 1:1 *benzene-hexane by adding H₂O. The solution is washed, dried with Na₂SO₄, evaporated and crystallised from *benzene by the addition of MeOH [Lijinsky & Zechmeister J Am Chem Soc 75 5495 1953]. Alternatively it can be chromatographed on activated alumina, eluted with a cyclohexane-*benzene mixture containing up to 8% *benzene, and the solvent evaporated under reduced pressure [Cahnmann Anal Chem 27 1235 1955], and crystallised from EtOH [Nithipatikom & McGown Anal Chem 58 3145 1986]. [Beilstein 5 III 2517, 5 IV 2687.] CARCINOGENIC.

Benzo[e]pyrene (1,2-benzpyrene) [192-97-2] M 252.3, m 178-179°, 178-180°. Purify it by passage through an Al₂O₃ column (Woelm, basic, activity I) and elute with C_6H_6 and recrystallise from 2 volumes of EtOH/ C_6H_6 (4:1). It forms colourless or light yellow prisms or needles. [Campbell *J Chem Soc* 3659 1954, Buchta & Kröger Justus Liebigs Ann Chem 705 190 1967.] The 1,3,5-trinitrobenzene complex has m 253-254° (orange needles from EtOH), the *picrate* prepared by mixing 20mg in 1mL of C_6H_6 with 20mg of picric acid in 2mL C_6H_6 , collecting the deep red crystals, and recrystallising from C_6H_6 has m 228-229° [NMR: Cobb & Memory J Chem Phys 47 2020 1967]. [Beilstein 5 III 2520, 5 IV 2689.] CARCINOGEN.

p-Benzoquinone [106-51-4] M 108.1, m 115.7°. Purify *p*-benzoquinone in one or more of the following ways: steam distillation followed by filtration and drying (e.g. in a desiccator over CaCl₂), crystallisation from pet ether (b 80-100°), *benzene (with, then without, charcoal), water or 95% EtOH, sublimation under vacuum (e.g. from room temperature to liquid N₂). It slowly decomposes and should be stored, refrigerated, in an evacuated or sealed glass vessel in the dark. It should be resublimed before use. [Wolfenden et al. *J Am Chem Soc* 109 463 1987, Beilstein 7 IV 2065.]

1-Benzosuberone (6,7,8,9-tetrahydrobenzocyclohepten-5-one) [826-73-3] M 160.2, b 80-85% (0.5mm, 90-93% (1mm, 138-139% (12mm, 154% (15mm, 175-175% (40mm, d_4^{20} 1.086, n_D^{20} 1.5638. Purify it by dissolving in toluene, washing with aqueous 5% NaOH, then brine, drying (MgSO₄), and distilling. The 2,4-dinitrophenylhydrazone has m 210.5%, 207-208% (from CHCl₃/MeOH). The Z-O-Picryloxime has m 156-157% (from Me₂CO/MeOH), the E-O-picryloxime has m 107%. The oxime has m 106.5-107.5%. [UV: Gilmore & Horton J Am Chem Soc 73 1411 1951, Hedden & Brown J Am Chem Soc 75 3744 1953, Huisgen et al. Chem Ber 90 1844 1957, Beilstein 7 IV 1029.]

Benzoylacetone (1-phenyl-1,3-butanedione) [93-91-4] M 162.2, m 58.5-59.0°. Crystallise benzoylacetone from Et_2O or MeOH and dry it under vacuum at 40°. [*Beilstein* 7 IV 2151.]

2-Benzoylbenzoic acid [85-52-9] **M 226.2, m 126-129^o, 129.2, 130^o, pK²⁵ 3.54.** Recrystallise the acid from C_6H_6 or cyclohexane, but it is best recrystallised by dissolving in a small volume of hot toluene and then adding just enough pet ether to cause turbidity, and cool. Dry it in a low vacuum at 80^o. It can be sublimed at 230-240^o/0.3mm [Bray et al. *J Chem Soc* 265 1957]. The *S-benzylisothiuronium salt* has **m** 177-178^o (from EtOH). [Lewenz & Serijan *J Am Chem Soc* 75 4087 1953, *Beilstein* **10** H 747, **10** IV 2977.]

3-Benzoylbenzoic acid [579-18-0] **M 226.2, m 164-166°, 165°, pK**_{Est}~3.5. Crystallise the acid from EtOH and sublime it at 160°/1mm. [*Beilstein* **10** H 752, **10** III 3304, **10** IV 2982.]

4-Benzoylbenzoic acid [611-95-0] **M 226.2, m 196.5-198**°, **197-200**°, **pK**_{Est} ~**3.7.** Dissolve the acid in hot H₂O by adding enough aqueous KOH solution till distinctly alkaline, filter and then acidify with drops of conc HCl. Filter off, wash the solid with cold H₂O, dry it at 100°, and recrystallise it from EtOH. [Wertheim J Am Chem Soc **55** 2540 1933, Beilstein **10** H 753, **10** IV 3305.]

Benzoyl chloride [98-88-4] **M 140.6, b 56°/4mm, 196.8°/745mm, d** $_{4}^{20}$ **1.2120, n** $_{D}^{10}$ **1.5537.** A solution of benzoyl chloride (300mL) in *C₆H₆ (200mL) is washed with two 100mL portions of cold 5% NaHCO₃ solution, separated, dried with CaCl₂ and distilled [Oakwood & Weisgerber *Org Synth* **III** 113 1955]. Repeated fractional distillation at 4mm Hg through a glass helices-packed column (avoiding porous porcelain or silicon-carbide boiling chips, and hydrocarbon or silicon greases on the ground joints) gave benzoyl chloride that did not darken on addition of AlCl₃. Further purification is achieved by adding 3 mole% each of AlCl₃ and toluene, standing overnight, and distilling off the benzoyl chloride at 1-2mm [Brown & Jenzen *J Am Chem Soc* **80** 2291 1958]. Refluxing for 2hours with an equal weight of thionyl chloride before distillation has also been used. [*Beilstein* **9** IV 721.] *Strong* **IRRITANT**. *Use in a fume cupboard*.

Benzoyl disulfide (dibenzoyl disulfide) [644-32-6] **M 174.4, m 131.2-132.3°.** About 300mL of solvent is blown off from a filtered solution of dibenzoyl disulfide (25g) in acetone (350mL). The remaining acetone is decanted from the solid which is recrystallised first from 300mL of 1:1 (v/v) EtOH/ethyl acetate, then from 300mL of EtOH, and finally from 240mL of 1:1 (v/v) EtOH/ethyl acetate. The yield is about 40% [Pryor & Pickering J Am Chem Soc 84 2705 1962]. [Beilstein 9 H 424, 9 II 289, 9 III 1977.] Handle in a fume cupboard because of TOXICITY and obnoxious odour.

Benzoylformic acid (phenylglyoxylic acid) [611-73-4] M 150.14, m 62-65°, 64.5-65.5°, 67°, b 84°/0.1mm, 163-167°/15mm, pK²⁵ 1.39 (1.79). If the sample is oily, then it may contain H₂O. In this case dry it in a vacuum desiccator over P₂O₅ or KOH until crisp. For further purification dissolve 5.5g in hot CCl₄ (750mL), add charcoal (2g, this is necessary otherwise the acid may separate as an oil), filter, cool in ice-water until crystallisation is complete. Filter the acid off, and the solvent on the crystals is removed by keeping the acid (4.5g) in a vacuum desiccator for 2 days. Slightly yellow crystals are obtained. It can be recrystallised also from *C₆H₆/pet ether, and can be distilled in a vacuum. The acid is estimated by titration with standard NaOH. The *phenylhydrazone* is recrystallised from EtOH, m 163-164°, and the *semicarbazone acid* has m 259°(dec) (from EtOH). The *methyl ester* distils at 137°/14mm, 110-111°/2mm, n²⁰_D 1.5850. [Baert & Kates J Am Chem Soc 67 1482 1945, Schaffer & Corey J Org Chem 24 1825 1959, Beilstein 10 H 654, 10 IV 2737.]

Benzoyl isothiocyanate [532-55-8] M 163.2, m 25.5-26°, b 72.5-73°/6mm, 88-91°/20mm, 94-96°/21mm, 202.5-204°/724mm, 250-255°/atm, d_4^{20} 1.213, n_D^{20} 1.637. Distil the isothiocyanate over a small amount of P₂O₅, whereby the distillate crystallises in prisms. It is readily hydrolysed by H₂O to give benzamide and benzoylurea, but with NH₃ it gives *benzoylurea* m 210° which can be recrystallised from EtOH. [Hill & Degnan J Am Chem Soc 62 1595 1940, Terss & McEwen J Am Chem Soc 76 580 1954, Frank & Smith Org Synth Coll Vol III 735 1955, Beilstein 9 IV 777.]

Benzoyl peroxide [94-36-0] **M 242.2, m 95°(dec).** Dissolve benzoyl peroxide in CHCl₃ at room temperature and precipitate it by adding an equal volume of MeOH or pet ether. Similarly it is precipitated from acetone by adding two volumes of distilled water. It has also been crystallised from 50% MeOH and from diethyl ether. Dry it under vacuum at room temperature for 24hours. Store it in a desiccator in the dark at 0°. When purifying in the absence of water it can be **EXPLOSIVE**, and operations should be done on a very small

scale with adequate protection. Large amounts should be kept moist with water and stored in a refrigerator. [Kim et al. J Org Chem **52** 3691 1987, Beilstein **9** IV 777.]

p-Benzoylphenol (4-hydroxybenzophenone) [1137-42-4] M 198.2, m 133.4-134.8°, pK²⁵ 7.95. Dissolve *p*-benzoylphenol in hot EtOH (charcoal), filter and cool. Alternatively crystallise it once from EtOH/H₂O and twice from *benzene [Grunwald *J Am Chem Soc* 73 4934 1951, Dryland & Sheppard *J Chem Soc Perkin Trans 1* 125 1986]. [Beilstein 8 IV 1263.]

N-Benzoyl-*N*-phenylhydroxylamine [304-88-1] M 213.2, m 121-122°. Recrystallise it from hot water, *benzene Et₂O/hexane or acetic acid. It complexes with metals. [*Beilstein* 15 III 8, 15 IV 7.]

N-Benzoyl-*o*-tolylhydroxylamine [1143-74-4] M 227.3, m 104°. Recrystallise the hydroxylamine from aqueous EtOH. [*Beilstein* 15 III 8, 15 IV 7.]

Benzyl acetate [140-11-4] M 150.2, m -51°, b 92-93°/10mm, 134°/102mm, 214.9°/760mm, d_4^{20} 1.0562, n_D^{25} 1.4994. Purify the acetate by fractional distillation, preferably in a good vacuum. Values of n^{25} of 1.5232-1.5242 are too high and should be nearer to 1.4994. [Merker & Scott J Org Chem 26 5180 1961, Beilstein 6 IV 2262.]

Benzyl acetoacetate [5396-89-4] M 192.2, b 130°/2mm, 156-157°/10mm, 162-167°/15mm, 275-277°/atm, d_4^{20} 1.114, n_D^{20} 1.514. Fractionate the ester and collect fractions with the expected physical properties. Otherwise add *ca* 10% by weight of benzyl alcohol and heat in an oil bath (160-170°, open vessel) for 30minutes during which time excess of benzyl alcohol will have distilled off, then fractionate. [Baker et al. *J Org Chem* 17 77 1952, *Beilstein* 6 IV 2480.]

4'-Benzylacetophenone [782-92-3] M 210.3, m 37°, 38°, 39°, b 197-198°/9mm, 209-210°/15mm. Distil it in a vacuum, then recrystallise it from EtOH (*ca* 1mL/g). The *oxime* has m 99.5° (from 60% aqueous EtOH). [*Beilstein* 7 H 449, 7 III 2176.]

Benzyl alcohol [100-51-6] M 107.2, f -15.3°, b 205.5°, 9 3°/10mm, 205.5°/atm, d_4^{20} 0.981, n_D^{20} 1.54033, pK²⁵ 15.4. It is usually purified by careful fractional distillation under reduced pressure in the absence of air. Benzaldehyde, if present, can be detected by UV absorption at 283nm. It has also been purified by shaking with aqueous KOH and extracting with peroxide-free diethyl ether. After washing with water, the extract is treated with saturated NaHS solution, filtered, washed, dried with CaO and distilled under reduced pressure [Mathews J Am Chem Soc 48 562 1926]. Peroxy compounds can be removed by shaking with a solution of Fe²⁺ followed by washing the alcohol layer with distilled water and fractionally distilling it. [Beilstein 6 IV 2222.]

Benzylamine [100-46-9] M 107.2, b 178°/742mm, 185°/768mm, d_4^{20} 0.981, n_D^{20} 1.5392, pK²⁵ 9.33. Dry it with NaOH or KOH, then distil it under N₂, through a column packed with glass helices, taking the middle fraction. Also distil it from zinc dust under reduced pressure. The *picrate* has m 196° (from EtOH), and the *p-toluenesulfonamide* has m 116° (from MeOH). [*Beilstein* 12 IV 2155.]

Benzylamine hydrochloride [3287-99-8] M 143.6, m 248° (rapid heating). Crystallise the salt from water. [Beilstein 12 IV 2155.]

N-Benzylaniline (*N*-phenylbenzylamine) [103-32-2] M 183.4, m 36°, b 306-307°, d_4^{20} 1.061, pK²⁵ 4.04. Crystallise the amine from pet ether (b 60-80°) (*ca* 0.5mL/g). The *picrate* has m 113° (from Et₂O). [*Beilstein* 12 H 1023, 12 I 449, 12 II 548, 12 III 2215, 12 IV 2172.]

Benzyl bromide [100-39-0] M 171.0, m -4°, b 85°/12mm, 192°/760mm, d_4^{20} 1.438, n_D^{20} 1.575. Wash benzyl chloride with conc H₂SO₄ (CARE), water, 10% Na₂CO₃ or NaHCO₃ solution, and again with water. Dry it with CaCl₂, Na₂CO₃ or MgSO₄ and fractionally distil it in the dark, under reduced pressure. It has also been thoroughly degassed at 10⁻⁶ mm and redistilled in the dark. This gives material with λ_{max}

(MeCN): 226nm (ε 8200) [Mohammed & Kosower J Am Chem Soc 93 2709 1971]. [Beilstein 5 IV 829.] Handle in a fume cupboard, extremely LACHRYMATORY.

Benzyl bromoacetate [5437-45-6] M 229.1, b 96-98% 0.1mm, 146% 12mm, 166-170% 22mm, d_4^{20} 1.444, n_D^{25} 1.5412. Dilute the ester with Et₂O, wash it with 10% aqueous NaHCO₃, H₂O, dry (MgSO₄) and fractionate it using a Fenske (glass helices packing) column. [Bergmann & Szinai *J Chem Soc* 1521 1956, Beilstein 6 IV 2265.] LACHRYMATORY.

N-Benzyl-*tert*-butylamine (*N*-*tert*-butylbenzylamine) [3378-72-1] M 163.3, b 91°/12mm, 109-110°/25mm, 218-220°/atm, d_4^{20} 0.899, n_D^{25} 1.4942, pK²⁵ 10.19. Dissolve the amine in Et₂O, dry it over KOH pellets, filter and fractionate it in a N₂ atmosphere to avoid reaction with CO₂ from the air. The *hydrochloride* has m 245-246°(dec) (from MeOH/Me₂CO) and the *perchlorate* has m 200-201°. [Freidfelder et al. J Am Chem Soc 80 4320 1958, Beilstein 12 IV 2166.]

Benzyl carbamate [621-84-1] **M 151.2, m 86°, 86-88°, 90-91°**. If it smells of NH₃, then dry it in a vacuum desiccator and recrystallise it from 2 volumes of toluene and dry it in a vacuum desiccator again. It forms glistening plates from toluene, and can be recrystallised from H₂O [Martell & Herbst *J Org Chem* **6** 878 1941, Carter et al. *Org Synth* Coll Vol **III** 168 1955]. [*Beilstein* **6** IV 2278.]

Benzyl chloride [100-44-7] **M 126.6, m 139°, b 6 3°/8mm, d** $_{4}^{20}$ **1.100, n** $_{4}^{20}$ **1.538.** Dry it with MgSO₄ or CaSO₄, or reflux it with fresh Ca turnings, then fractionally distil it under reduced pressure, collecting the middle fraction and storing it over CaH₂ or P₂O₅. It has also been purified by passage through a column of alumina. Alternatively it is dried over MgSO₄ and distilled in a vacuum. The middle fraction is degassed by several freeze-thaw cycles and then fractionated in an 'isolated fractionating column' (which has been evacuated and sealed off at ~10⁻⁶ mm) over a steam bath. The middle fraction is retained. The final samples are distilled in a vacuum from this sample and again retaining the middle fraction. The purity is >99.9% (no other peaks are visible by GLC, and the NMR spectrum is consistent with the structure. [Mohammed & Kosower *J Am Chem Soc* **93** 1709 1971, *Beilstein* **5** IV 809.] **IRRITANT** and strongly **LACHRYMATORY.**

N-Benzyl-B-chloropropionamide [24752-66-7] M 197.7, m 94°, 96°. Crystallise the amide from MeOH. [12 III 2257, 12 IV 2234.]

Benzyl cinnamate [103-41-3] M 238.3, m 34-35°, 39°, b 154-157°/0.5mm, 228-230°/22mm. Recrystallise the ester to a constant melting point from 95% EtOH. It has the odour of balsam. Alternatively dissolve it in Et₂O, wash it with 10% aqueous Na₂CO₃, H₂O, dry (Na₂SO₄), evaporate and fractionate it under reduced pressure using a short Vigreux column (p 11). It decomposes when boiled at atmospheric pressure. [Eliel & Anderson J Am Chem Soc 74 547 1952, Bender & Zerner J Am Chem Soc 84 2550 1962, Beilstein 9 IV 2012.]

Benzyl cyanide [140-29-4] **M 117.1, b 100**°/8mm, 233.5°/760mm, d_4^{20} 1.015, n_4^{20} 1.523. Any benzyl isocyanide impurity can be removed by shaking vigorously with an equal volume of 50% H₂SO₄ at 60°, washing with saturated aqueous NaHCO₃, then half-saturated NaCl solution, drying and fractionally distilling under reduced pressure. Distillation from CaH₂ causes some decomposition of this compound: it is better to use P₂O₅. Other purification procedures include passage through a column of highly activated alumina, and distillation from Raney nickel. *Precautions should be taken because of possible formation of free* **TOXIC** *cyanide, use an efficient fume cupboard*. [*Beilstein* **9** IV 1663.]

N-Benzyl dimethylamine [103-83-3] M 135.2, b 66-67%/15mm, 83-84%/30mm, 98-99%/24mm, 181%/760mm, d_4^{20} 0.898, n_D^{20} 1.516, pK²⁵ 8.91. Dry the amine over KOH pellets and fractionate it over Zn dust in a CO₂-free atmosphere. It has a pKa²⁵ of 8.25 in 45% aqueous EtOH. Store it under N₂ or in a vacuum. The *picrate* has m 94-95%, and the *picrolonate* has m 151% (from EtOH). [Skita & Keil Chem Ber 63 34 1930, Coleman J Am Chem Soc 55 3001 1933, Devereux et al. J Chem Soc 2845 1957.] The tetraphenyl borate salt has m 182-185%. [Crane Anal Chem 28 1794 1956, Beilstein 12 IV 2161.]

Benzyldimethyloctadecylammonium chloride [122-19-0] M 442.2, m 150-158° (sinters at 120°. Crystallise the salt from acetone, EtOAc or EtOAc/ Et₂O. [Sumiki et al. J Agric Chem Soc Jpn 26 325 1952, Chem Abstr 3505 1953, Beilstein 12 III 2212, 12 IV 2168.]

Benzyl ether (dibenzyl ether) [103-50-4] M 198.3, b 298°, 158-160°/0.1mm, d_4^{20} 1.043, n_4^{20} 1.54057. Reflux the ether over sodium, then distil it under reduced pressure. It been purified by fractional freezing. [*Beilstein* 6 IV 2240.]

N-Benzyl-*N*-ethylaniline [92-59-1] M 221.3, b 212-222^o/54mm, 285-286^o/710mm, 312-313^o/atm (dec), d_4^{20} 1.029, n_4^{20} 1.595, pK_{Est}~4.6. Dry the amine over KOH pellets and fractionate it. The *picrate* crystallises from *C₆H₆ as lemon yellow crystals m 126-128^o (softening at 120^o). [Forrest et al. J Chem Soc 303 1951, IR: Hill & Meakins J Chem Soc 760 1958, Beilstein 12 H 1026, 12 IV 2176.]

Benzyl ethyl ether [539-30-0] **M 136.2, b 186°, 65°/10mm, d** $_{4}^{20}$ **0.949, n** $_{D}^{20}$ **14955.** Dry the ether with CaCl₂ or NaOH, then fractionally distil it. [Letzinger & Pollart J Am Chem Soc **78** 6079 1956, Beilstein **6** III 1454, **6** IV 2229.]

Benzyl ethyl ketone (1-phenylbutan-2-one) [1007-32-5] M 148.2, b 49-49.5°/0.01mm, 66-69°/1mm, 83-85°/5mm, 101-102°/10mm, 229-233°/atm, d_4^{20} 0.989, n_D^{25} 1.5015. Purify the ketone by fractionation using an efficient column. It can be converted into the *oxime* which is distilled, b 117-118°/2mm, 145-146°/15mm, d_{25}^{25} 1.036, n_D^{25} 1.5363; decompose the oxime, and the ketone is redistilled. It can also be purified via the semicarbazone which has m 154-155°. [Meyers et al. J Am Chem Soc 77 5655 1955, Hass et al. J Org Chem 15 8 1950, Beilstein 7 IV 712.]

O-Benzylhydroxylamine hydrochloride [2687-43-6] M 159.6, m 234-238°(sublimes), pK_{Est} ~5.9. Recrystallise the hydrochloride from H₂O or EtOH. [*Beilstein* 6 IV 2562.]

N-Benzylideneaniline [538-51-2] **M 181.2, m 48° (54°), 56°, b 310°/760 mm.** It is steam volatile and crystallises from *benzene or 85% EtOH. The *picrate* has **m** 159°. [*Beilstein* **12** H 195, **12** I 169, **12** II 113, **12** III 319, **12** IV 311.]

Benzylidene malononitrile [2700-22-3] **M 154.2, m 83-84°, 87°.** Recrystallise the nitrile from EtOH [Bernasconi et al. *J Am Chem Soc* **107** 3612 1985]. It has λ_{max} at 307nm (EtOH). [Beilstein **9** H 895, **9** II 640, **9** III 4380, **9** IV 3462.]

Benzyl isocyanate [3173-56-6] M 133.2, b 82-84°/10mm, 87°/14mm, 95°/17mm, 101-104°/33mm, d_4^{20} 1.08, n_D^{20} 1.524. Purify the isocyanate by fractionation through a two-plate column. It is a viscous liquid and is TOXIC. [Howarth et al. *J Chem Soc* 182 1947, Ferstandig & Scherrer *J Am Chem Soc* 81 4838 1959, IR: Derkosch et al. *Monatsh Chem* 88 35 1957, Beilstein 12 IV 2276.]

Benzyl isothiocyanate [622-78-6] M 149.2, b 123-124°/1mm, 138-140°/20mm, 255-260°/atm, d_4^{20} 1.1234, n_D^{20} 1.6039. Dissolve benzyl isothiocyanate in Et₂O, filter, if there is any solid, and distil it through an efficient column at 11mm with a bath temperature at *ca* 150°. Characterise it by reacting (0.5mL) in EtOH (1mL) with 50% NH₂NH₂.H₂O (2 mL) to give 4-benzylthiosemicarbazide as colourless needles which are recrystallised from EtOH, m 130°. [Hoggarth & Young J Chem Soc 1582 1950, Schmidt et al. Justus Liebigs Ann Chem 612 11 1958, IR and UV: Svátek et al. Acta Chem Scand 13 442 1959, Beilstein 12 IV 2276.]

S-Benzylisothiuronium chloride [538-28-3] M 202.7, two forms, m 150° and 175°, pK_{Est} ~9.8 (free base). Crystallise the chloride from 0.2M HCl (2mL/g) or EtOH and it dry in air. [*Beilstein* 6 III 1600.]

Benzylmalonic acid [616-75-1] **M 194.2, m 121°, pK** $_{1}^{25}$ **2.91, pK** $_{2}^{25}$ **5.87.** Crystallise the acid from *C₆H₆. [*Beilstein* **9** IV 3357.]

Benzyl mercaptan [100-53-8] **M 124.2, b 70.5-70.7°/9.5mm, d** $_{4}^{20}$ **1.058, n** $_{D}^{20}$ **1.5761, pK**²⁵ **9.43.** Purify benzyl mercaptan *via* the mercury salt [see Kern *J Am Chem Soc* **75** 1865 1953], which crystallises from *benzene as needles (**m** 121°), and then dissolve it in CHCl₃. Pass H₂S gas through the solution to regenerate the mercaptan. The HgS that precipitates is filtered off and washed thoroughly with CHCl₃. The filtrate and washings are evaporated to remove CHCl₃; then the residue is fractionally distilled under reduced pressure [Mackle & McClean, *Trans Faraday Soc* **58** 895 1962]. [Beilstein **6** IV 2632.]

(-)-*N*-Benzyl-*N*-methylephedrinium bromide [benzyl(2-hydroxy-1-methyl-2-phenethyl) dimethylammonium bromide] [58648-09-2] M 350.3, m 209-211°, 212-214°, $[\alpha]_{D}^{25}$ -3.8° (c 1.45, MeOH), $[\alpha]_{D}^{20}$ -5.3° (c 1.45, MeOH). Recrystallise the bromide from MeOH/Et₂O. [Horner & Brich Justus Liebigs Ann Chem 710 1978.] The chloride is recrystallised from EtOAc/*n*-hexane, m 198-199° $[\alpha]_{D}^{25}$ -8.67° (c 1.45, MeOH). [Julia et al. J Chem Soc, Perkin Trans 1 574 1981, Beilstein 13 IV 1890.]

Benzyl 4-nitrophenyl carbonate [13795-24-9] **M 273.2, m 78-80°**. Dissolve the carbonate in Et₂O, wash with H₂O (3x) and saturated aqueous NaCl, dry (MgSO₄), evaporate this in a vacuum and recrystallise the residue from a small volume of MeOH, **m** 78-79°. Alternatively dissolve it in Et₂O, wash it with N HCl (2x), 0.5N NaHCO₃ (4x) then H₂O, dry (Na₂SO₄), evaporate the Et₂O and recrystallise the residue from *C₆H₆/pet ether, **m** 79-80°. The 2-nitro-isomer has **m** 27-28°, **b** 151°/11mm. [Khosla et al. Indian J Chem **5** 279 1967, Wolman et al. J Chem Soc (C) 596 1976, Beilstein **6** IV 2277.]

Benzyloxyacetyl chloride [19810-31-2] M 184.6, b 81°/0.2mm, 84-87°/0.4mm, 105-107°/5mm, d_4^{20} 1.19, n_D^{20} 1.523. Check the IR to see if there are OH bands. If so, then it may be contaminated with free acid formed by hydrolysis. Add oxalyl chloride (amount depends on contamination and needs to be judged, *ca* 3mols), heat at 50° in the absence of moisture for 1hour and fractionate twice, b 81°/0.2mm (with bath temperature at 81°). Excessive heating results in decomposition to give benzyl chloride. The *anilide* is formed by adding aniline in CHCl₃ solution and has **m** 49°. [Fischer & Gohlke *Helv Chim Acta* 16 1130 1933, Beilstein 6 IV 2470.]

3-Benzyloxybenzoic acid [69026-14-8] **M 228.2, m 133-137°, 135.5-136°, pK**_{Est}~4.1. Recrystallise the acid from acetic acid (**m** 137-138°) [Kipping & Wren J Chem Soc 3246 1957, Beilstein 10 III 247, **10** IV 316.]

Benzyloxybutan-2-one [6278-91-7] M 178.2, b 90-92% 0.1mm, 88-91% 0.5mm, 121-126% mm, d_4^{20} 1.0275, n_D^{20} 1.5040. Dissolve the ketone in CHCl₃, wash with H₂O, aqueous saturated NaHCO₃, H₂O, dry (MgSO₄), evaporate the CHCl₃, and fractionate it. [Hoffman et al. *J Am Chem Soc* 79 2316 1957, *Beilstein* 6 IV 2255.]

Benzyloxycarbonyl chloride (Cbz-Cl, benzyl chloroformate) [501-53-1] M 170.6, b $103^{\circ}/20$ mm, d_4^{20} 1.195, n_D^{20} 1.5190. The commercial material is usually better than 95% pure and may contain some toluene, benzyl alcohol, benzyl chloride and HCl. After long storage (e.g. two years at 4°, Greenstein and Winitz [*The Chemistry of the Amino Acids* Vol 2 p. 890, J Wiley and Sons NY, 1961] recommended that the liquid should be flushed with a stream of dry air, filtered and stored over sodium sulfate to remove CO₂ and HCl which are formed by decomposition. It may further be distilled from an oil bath at a temperature below 85° because Thiel and Dent [*Annalen* 301 257 1898] stated that benzyloxycarbonyl chloride decarboxylates to benzyl chloride slowly at 100° and vigorously at 155°. Redistillation at higher vacuum below 85° yields material which shows no other peaks than those of benzyloxycarbonyl chloride by NMR spectroscopy. [*Beilstein* 6 IV 2278.] LACHRYMATORY and TOXIC.

p-(**Benzyloxy**)**phenol** [103-16-2] **M 200.2, m 122.5°, pK**_{Est} ~10.1. Crystallise it from EtOH or H₂O, and dry (P₂O₅) under vacuum. [Walter et al. J Am Chem Soc 108 5210 1986, Beilstein 6 IV 5778.]

S-(-)-3-Benzyloxypropan-1,2-diol [17325-85-8] M 182.2, m 24-26°, b 117-118°/10⁻⁴mm, 115-116°/0.02mm, 121-123°/0.2mm, d_4^{20} 1.1437, n_D^{22} 1.5295, $[\alpha]_D^{25}$ -5.9° (neat). Purify the diol by repeated fractional distillation. [Baer et al. *J Biol Chem* 230 447 1958, Gigg & Gigg *J Chem Soc C* 1865 1967, *Beilstein* 6 IV 2247.]

2-Benzylphenol [28994-41-4] **M 184.2, m 54.5°, b 312°/760mm, 175°/18mm, pK**_{Est} ~10.0 Distil 2-benzylphenol in a vacuum and recrystallise it from EtOH. It has a stable form with $\mathbf{m} \sim 52^{\circ}$ and an unstable form with $\mathbf{m} 21^{\circ}$. [*Beilstein* **6** H 675, **6** IV 4628.]

4-Benzylphenol (α -phenyl-*p*-cresol) [101-53-1] M 184.2, m 84°, pK_{Est} ~10.2. Crystallise 4-benzylphenol from water. [*Beilstein* 6 H 675, 6 IV 4628.]

4-N-Benzylsulfanilamide (Septazen) [1709-54-2] M 262.3, m 175°, 178°. Crystallise Septazen from dioxane/H₂O, EtOH/H₂O or Me₂CO (m 174.5-175.8°). Its solubility in H₂O at 37° is 0.03-0.43mg/100mL. [*Beilstein* 14 III 2026.]

Benzylthiocyanate [3012-37-1] **M 149.2, m 43°, b 256°(dec).** Crystallise the thiocyanate from EtOH or aqueous EtOH. [*Beilstein* **6** H 460, **6** IV 2680.]

Benzyl toluene-*p*-sulfonate [1024-41-5] **M 162.3, m 58°, 58.5-58.8°.** Crystallise the ester from pet ether (b 40-60°), CHCl₃/hexane or $Et_2O/*C_6H_6$. Dry it *in vacuo* but NOT in a desiccator over CaCl₂ as it causes hydrolysis of the ester. [Emmons & Ferris *J Am Chem Soc* **75** 2257 1953, Beilstein **11** II 48, **11** III 207, **11** IV 273.]

Benzyltributylammonium bromide [25316-59-0] M 356.4, m 169-171°, 174-175°. Recrystallise the bromide from EtOAc/EtOH and EtOH/Et₂O. [Kantor & Hauser J Am Chem Soc 73 4122 1951, Petersen et al. J Am Chem Soc 81 3264 1959, Beilstein 12 IV 2166.]

Benzyl 2,2,2-trichloroacetimidate [81927-55-1] M 252.5, b 106°/0.5mm, m 3°, d_4^{20} 1.349, n_D^{20} 1.545. Purify the imidate by distillation to remove up to 1% of PhCH₂OH as stabiliser. A solution in hexane can be stored for up to 2 months without decomposition. It is *hygroscopic* and has to be stored dry. [Wessel et al. J Chem Soc, Perkin Trans 1 2247 1985, Beilstein 6 IV 2265.]

Benzyltrimethylammonium chloride [56-93-9] **M 185.7, m 238-239°(dec).** A 60% aqueous solution of the salt is evaporated to dryness under a vacuum on a steam bath, and then left in a vacuum desiccator containing a suitable drying agent. The solid residue is dissolved in a small volume of boiling absolute EtOH and precipitated by adding an equal volume of diethyl ether with cooling. After washing, the precipitate is dried under a vacuum [Karusch J Am Chem Soc 73 1246 1951]. [Beilstein **12** IV 2162.]

Benzyltrimethylammonium hydroxide (Triton B) [100-85-6] **M 167.3, d 0.91.** A 38% solution (as supplied) is decolorized (charcoal), then evaporated under reduced pressure to a syrup, with final drying at 75°/1mm pressure. The *anhydrous* base is obtained by prolonged drying over P_2O_5 in a vacuum desiccator. [*Beilstein* **12** IV 2162.]

Bibenzyl [103-29-7] **M 182.3, m 52.5-53.5°.** Crystallise bibenzyl from hexane, MeOH, or 95% EtOH. It has also been sublimed under vacuum, and further purified by percolation through columns of silica gel and activated alumina. [*Beilstein* **5** IV 1868.]

(±)-1,1'-Bi-(2-naphthol) [1,1'-di-(2-naphthol)] [602-09-5, 41024-90-2] M 286.3, m 215-217°, 218°, $pK_{Est(1)} \sim 7.1$, $pK_{Est(2)} \sim 11.2$. Crystallise the binaphthol from toluene or *benzene (10mL/g). When crystallised from chlorobenzene it has m 238°. Its solubility in dioxane is 5%. [Beilstein 6 IV 7020.]

1,1'-Bi-(2-naphthol) [1,1'-di-(2-naphthol)] [*R*-(+)- 18531-94-7], [*S*-(-)- 18531-99-2] M 286.3, m 207.5-208.5°, 209-211°, $[\alpha]_{D}^{20}$ (+) and (-) 37.4.0° (c 0.5, THF), $[\alpha]_{546}^{25}$ (+) and (-) 51° (c 0.1, THF), pK as above. Dissolve it in cold 2.5N NaOH, extract with CH₂Cl₂, and acidify with 5% HCl. Collect the white precipitate and recrystallise it from aqueous EtOH and dry it in a vacuum [Akimoto & Yamada *Tetrahedron* 27 5999 1971]. It is optically stable in dioxane-water (100°/24hours). *Racemisation*: 72% in 1.2N HCl at 100°/24hours and 68% in 0.67M KOH in BuOH at 118°/23hours [Kyba et al. J Am Chem Soc 95 2693 1973]. It has also been crystallised from *C₆H₆ (solubility is 1%) using Norite or aqueous EtOH after

chromatography through silica gel, eluting with Me₂CO/*C₆H₆. [Kyba et al. *J Org Chem* **42** 4173 *1977*; see also Brussee & Jansen *Tetrahedron Lett* **24** 3261 *1983*, Akimoto & Yamada *Tetrahedron* **27** 5999 *1971*, *Beilstein* **6** IV 7020.]

1,1'-Binaphthyl $[(\pm)$ - 32507-32-7 and 604-53-5, R(-)- 24161-30-6, S(+)- 734-77-0] **M 254.3**, **m 145°**, **159°**, **b ~240°/13mm**, (\pm , **2 forms**), **153-154°**, **154°**, (\pm and -), $[\alpha]_{D}^{20}$ (-) and (\pm) ~220° (*C₆H₆). Purify 1,1'-binaphthyl through a silica gel column with Me₂CO/*C₆H₆ [or Al₂O₃ with 10% *C₆H₆/pet ether (b 30-60°)] and recrystallise it from EtOH, pentane, or slow evaporation of *C₆H₆, Me₂CO or Et₂O solutions. Half life ~10hours at 25° in various solvents. [Wilson & Pincock J Am Chem Soc 97 1474 1975, Akimoto & Yamada Tetrahedron **27** 5999 1971, Beilstein **5** I 358, **5** II 642, **5** III 2465, **5** IV 2634.]

2,2'-Binaphthyl (β , β '-binaphthyl) [61-78-2] M **254.3**, m **188°**. Crystallise the 2,2'-binaphthyl from *C₆H₆, or Et₂O/*C₆H₆ (m 187-189°). The 2,4,7-trinitrofluorenone complex forms orange-red needles from EtOH/*C₆H₆ (m 170.6-171°). [Beilstein **5** H 727, **5** I 359, **5** II 643, **5** III 2467, **5** IV 2636.]

Biphenyl [92-52-4] **M** 154.2, **m** 68-75°, 70-71°, **b** 112°/7**mm**, 255°/760**mm**, d_4^{20} 0.992. Crystallise biphenyl from EtOH, MeOH, aqueous MeOH, pet ether (b 40-60°) or glacial acetic acid. Free it from polar impurities by passage through an alumina column in *benzene, followed by evaporation. The residue has been purified by distillation in a vacuum and by zone refining. Treatment with maleic anhydride removes anthracene-like impurities. It has been recrystallised from EtOH followed by repeated vacuum sublimation and passage through a zone refiner. [Taliani & Bree *J Phys Chem* 88 2351 *1984*, *Beilstein* 5 H 576, 5 I 271, 5 II 479, 5 III 1726, 5 IV 1807.]

4-Biphenylcarbonyl chloride [14002-51-8] **M 216.7, m 114-115°.** Dissolve the carbonyl chloride in a large volume of pet ether (10 x, $b 50-70^\circ$), filter it through a short column of neutral alumina, evaporate to dryness *in vacuo* and recrystallise it from pet ether ($b 60-80^\circ$). [*Beilstein* **9** IV 2480.] LACHRYMATORY.

Biphenyl-2-carboxylic (2-phenylbenzoic) acid [947-84-2] M 198.2, m 114°, b 343-344°, pK²⁵ 3.46. Crystallise the acid from C_6H_6 /pet ether or aqueous EtOH. [Beilstein 9 IV 2472.]

Biphenyl-4-carboxylic (4-phenylbenzoic) acid [92-92-2] M 198.2, m 228°, pK²⁵ 5.66 (in 50% 2-butoxyethanol). Crystallise the acid from $C_{6}H_{6}$ /pet ether or aqueous EtOH. [*Beilstein* 9 IV 2479.]

2,4'-Biphenyldiamine [492-17-1] **M 184.2, m 45°, b 363°/760mm, pK**_{Est(1)} ~4.8, pK_{Est(2)} ~3.9. Crystallise the diamine from aqueous EtOH or pet ether (m 54-54.5°). [Beilstein 9 III 416, 9 IV 360.]

Biphenyl-4,4'-dicarboxylic acid [787-70-2] **M 242.2, m >300°, pK**_{Est(1)} ~**3.5, pK**_{Est(2)} ~**4.3.** The dicarboxylic acid is a white amorphous or microcrystalline substance which does not melt or sublime. It is best purified by precipitation of an aqueous alkaline solution with mineral acid, washing well with H₂O and drying *in vacuo* at 100°. It is characterized by conversion to *diphenyl-4,4'-dicarbonyl chloride* (with PCl₅ [Work *J Chem Soc* 1317 1940], or by phase transfer catalysis with SOCl₂ + BuEt₃N⁺Cl⁻ in 1,2-dichloroethane [Burdett *Synthesis* 441 *1991*]) which crystallises from *C₆H₆ with **m** 184°. The di-acid chloride gives the *dimethyl ester* with MeOH, and has **m** 215-217° (plates from MeOH, **m's** of 214° and 224° were also reported). The *diethyl ester* is similarly prepared with EtOH and has **m** 122° (from EtOH). [*Beilstein* **9** II 665, **9** III 4519, **9** IV 3563.]

Biphenylene [259-79-0] **M 152.2, m 111°.** Biphenylene from yellow crystals from cyclohexane, MeOH (**m** 110-111°) or EtOH (**m** 111-112°). It sublimes *in vacuo*. The 2,4,7-*trinitrofluorenone complex* has **m** 154° and the *picrate* gives red needles **m** 122° from EtOH. [*Beilstein* **5** I 298, **5** II 530, **5** III 1935, **5** IV 2137.]

 $(\pm)-\alpha$ -(4-Biphenylyl)butyric acid [959-10-4] M 240.3, m 124-125°, pK_{Est} ~4.5. Crystallise the acid from MeOH, pet ether or AcOH (m 123-125°). [Beilstein 9 III 3370, 9 IV 2558.]

 γ -(4-Biphenylyl)butyric acid [6057-60-9] M 240.3, m 118°, 120-121°, pK_{Est} ~4.8. Crystallise the acid from MeOH (m 118°) or *C₆H₆ (m 118-119°). [Beilstein 9 I 290, 9 III 3370, 9 IV 2558.]

Bis-(*p*-**bromophenyl**)**ether** [53563-56-7] **M 328.0, m 60.1-61.7**^o. Crystallise the ether twice from EtOH, pet ether, once from *benzene and dry it *in vacuo* [Purcell & Smith J Am Chem Soc **83** 1063 1961]. [Beilstein **6** III 745, **9** IV 1048.]

2*R*,3*R*-(+)-1,4-Bis-(4-chlorobenzyloxy)-2,3-butanediol [85362-86-3] and 2*S*,3*S*-(-)-1,4-Bis-(4-chlorobenzyloxy)-2,3-butanediol [85362-85-2] M 371.3, m 76-77°, $[\alpha]_{D}^{20}$ (+) and (-) 6.4° (c 3.11 CHCl₃). Recrystallise the diol from toluene-hexane. [Tamoto & Sugimori *Tetrahedron Lett* 23 4107 1982, Tamoto *Tetrahedron* 40 4617 1984.]

N,*N*-Bis-(2-chloroethyl)2-naphthylamine (chlornaphthazine) [494-03-1] M 268.3, m 54-56°, b 210°/5mm, pK_{Est} ~5.3. Crystallise it from pet ether. At 15° it is soluble in EtOH (3.2%), Et₂O (50%), Me₂CO (84%) and *C₆H₆ (80%). [*Beilstein* 12 III 2996, 12 IV 3126.] CARCINOGENIC.

1,4-Bis-(chloromethyl)durene (1,4-bischloromethyl-2,3,5,6-tetramethylbenzene) [3022-16-0] **M 231.2, m 197-198°.** Crystallise it three times from C_6H_6 (**m** 193-194°) or pet ether (**m** 195-196°), then dry it *in vacuo* in a drying pistol. [Fuson et al. J Am Chem Soc **75** 5952 1953, Beilstein **5** IV 1140.]

2,2-Bis-(*p*-chlorophenyl)-1,1-dichloroethane (*p,p*'-DDD) [72-54-8] M 320.1, m 109-111°, 111-112°. Crystallise DDD from EtOH and dry it *in vacuo*. The purity is checked by TLC. [*Beilstein* 5 III 1830.] TOXIC INSECTICIDE.

2,2-Bis-(p-chlorophenyl)-1,1-dichloroethylene (*p,p*'-DDE) [72-55-9] M **318.0, m 89-91°.** Crystallise DDE from MeOH or EtOH and dry it *in vacuo*. The purity is checked by TLC. [Gätzi & Stammbach *Helv Chim Acta* **28** 569 1946, *Beilstein* **5** H 639, **5** III1891.] **POSSIBLE CARCINOGEN.**

2,2-Bis-(4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) [50-29-3] M 354.5, m 108.5-109°, 108°. Crystallise DDT from *n*-propyl alcohol (5mL/g), then dry it in air or an air oven at 50-60°. Alternatively crystallise it from 95% EtOH, and the purity is checked by TLC. [Beilstein 5 III 1833.] TOXIC INSECTICIDE.

4,4'-Bis-(diethylamino)benzophenone [90-93-7] M 324.5, m 93-95°, 95-96°, b \sim 300°/10mm, pK_{Est(1)} \sim 1.8, pK_{Est(2)} \sim 3.3. Crystallise the phenone from EtOH (25mL/g) and dry it under vacuum. Its *picrate* forms yellow needles from EtOH with m 178.5°. [*Beilstein* 14 II 59.]

Bis-(4-dimethylaminobenzylidene)benzidine [6001-51-0] **M** 454.5, **m** 318°, $pK_{Est} \sim 0$. Crystallise the benzidine from nitrobenzene. [*Beilstein* 14 H 35.]

Bis-(4-fluoro-3-nitrophenyl) sulfone [312-30-1] **M 344.3, m 193-194°.** Recrystallise the sulfone from Me₂CO and H₂O (5:1). It should give a yellow colour in aqueous base. [Zahn & Zuber Chem Ber 86 172 1953, Beilstein 6 IV 172.]

3,4-Bis-(4-hydroxyphenyl)hexane (Hexesterol) [5635-50-7 (no configuration), 84-16-2 (meso-3RS,4-SR)] **M 270.4, m 185-186°, 187°.** Free it from diethylstilboestrol by zone refining. Crystallise meso-Hexestero from *benzene or aqueous EtOH (**m 185-188°**). The meso-dibenzoyl derivative has **m 236-237°.** The **3RS,4RS(±)-racemate** [5776-72-7] crystallises from pet ether, *C₆H₆/pet ether, Et₂O/pet ether, or MeOH/H₂O and has **m 128-129°**. The (±)-dibenzoyl derivative has **m 123-124°**. The **3R,4R(+)-isomer** [26614-21-1] and **3S,4S(-)-isomer** [26614-22-2] crystallise from Et₂O/pet ether with **m 80-80.5°** and have $[\alpha]_D^{17}$ (+) and (-) 17.7° (c 5, EtOH). Their dibenzoyl derivatives have **m 116.5°**. [Beilstein 6 III 5503, 6 IV 6761.] They have estrogenic activity where optically active forms are more potent and they have antineoplastic activity. [Aboul-Enein et al. Anal Profiles Drug Subst **11** 347 1982, J Am Chem Soc **65** 4911941.] 4,4-Bis(4-hydroxyphenyl)valeric acid [diphenolic acid] [126-00-1] M 286.3, m 168-171°, 171-172°, pK_{Est(1)}~ 4.8 (CO₂H), pK_{Est(2)}~ 7.55 (OH), pK_{Est(3)}~9.0 (OH). When recrystallised from $^{*}C_{6}H_{6}$, the crystals have 0.5 mol of $^{*}C_{6}H_{6}$ (m 120-122°), and when recrystallised from toluene, the crystals have 0.5 mol of toluene. Purify the acid by recrystallisation from hot H₂O. It is soluble in Me₂CO, AcOH, EtOH, propan-2-ol, methyl ethyl ketone. It can also be recrystallised from AcOH, heptane/Et₂O or Me₂CO/*C₆H₆. It has λ_{max} 225 and 279nm in EtOH. The *methyl ester* has m 87-89° (aqueous MeOH to give the *trihydrate*). [Bader & Kantowicz J Am Chem Soc 76 4465 1954, Beilstein 10 IV 1890.]

1,4-Bismethylaminoanthraquinone (Disperse Blue 14) [2475-44-7] **M 266.3, m 220-222°, C.I. 61500, \lambdamax 640 (594)nm.** Purify the anthraquinone by thin-layer chromatography on silica gel plates, using toluene/acetone (3:1) as eluent. The main band is scraped off and extracted with MeOH. The solvent is evaporated and the dye is dried in a drying pistol [Land et al. *J Chem Soc, Faraday Trans 1* **72** 2091 *1976*]. It crystallises from *n*-butanol with **m** 221-222° and has λ_{max} 539 and 644nm (EtOH). [*Beilstein* **14** H 198, **14** III 440, **14** IV 459.]

Bis-(1-naphthylmethyl)amine [5798-49-2] **M 329.4, m 62°, 63-64°, pK**_{Est} ~8.4. Crystallise the amine from pet ether, Et₂O (**m** 73-74°) or $*C_6H_6$ (**m** 62°). The *hydrochloride* crystallises from H₂O as needles **m** 239°, and the picrate has **m** 206°(202°). [Beilstein **12** II 741, **12** IV 3195.]

Bis-(4-nitrophenyl) carbonate [5070-13-3] **M 304.3, m 142-143**^o. Dissolve the carbonate in CHCl₃, wash it with 2N NaOH (3 x) and once with conc HCl, dry (Na₂SO₄), evaporate and crystallise the residue from toluene (authors say prisms from 15 volumes of *benzene). [Glatthard & Matter *Helv Chim Acta* **46** 795 *1963*, *Beilstein* **6** III 820.]

Bis-(2-nitrophenyl) disulfide [1155-00-6] **M 308.3, m 192-195°, 195°, 194-197°, 198-199°.** Purify the disulfide by recrystallisation from glacial AcOH or from C_6H_6 and the yellow needles are dried in an oven at 100° until the odour of the solvent is absent. It is sparingly soluble in EtOH and Me₂CO. [Bogert & Stull Org Synth Coll Vol I 220 1941, Bauer & Cymerman J Chem Soc 3434 1949, Beilstein 6 IV 1672.]

Bis-(4-nitrophenyl) ether [101-63-3] **M 260.2, m 142-143°, 144.4-144.7°, 147-148°.** Crystallise the ether twice from *C₆H₆ or pet ether and dry it *in vacuo*. [*Beilstein* 6 II 822, 6 IV 1290.]

Bis-(4-nitrophenyl) methane [1817-74-9] **M 258.2, m 183°, 184°, 187°.** Crystallise the methane twice from $*C_6H_6$, pet ether or AcOH (m 188.6-189.6°), and dry it *in vacuo*. [Beilstein 5 III 1797, 5 IV 1853.]

Bis-(trifluoroacetoxy)iodobenzene (BTI) [2712-78-9] **M 430.0, m 112-114°(dec), 120-121°, 124-126°.** Crystallise the iodo compound from warm trifluoroacetic acid and dry it over NaOH pellets. Recrystallise it also from Me₂CO/pet ether. Its melting point depends on the heating rate. [Spyroudis & Varvoglis *Synthesis* 445 1975, application: Almond et al. *Org Synth* **66** 132 1988.]

N-BOC-1,2-phenylenediamine ([2-aminophenyl]carbamic acid, *tert*-butyl ester) [146651-75-4] **M 208.3, m 109-114^o.** Purify the ester by crystallisation from CHCl₃/hexane (1:1, v/v) and dry it *in vacuo*. [Seto et al. J Am Chem Soc **115** 1321 1993, Seto et al. J Am Chem Soc **127** 11442 2005.]

Brilliant Green (4-dimethylaminotriphenyl carbinol) [633-03-4] M 482.7, m 209-211°(dec), pK²⁵ 4.75. Purify the dye by precipitating the *perchlorate* from aqueous solution (0.3%) after filtering, heating to 75° and adjusting to pH 1-2. Recrystallise it from EtOH/water (1:4) [Kerr & Gregory Analyst (London) 9 4 1036 1969]. [Beilstein 13 IV 2281.]

4-Bromoacetanilide [103-88-8] **M 214.1, m 167°.** Crystallise the anilide from aqueous MeOH or EtOH. Purify it by zone refining. [Beilstein 12 IV 1504.]

4-Bromoacetophenone [99-90-1] **M 199.1, m 54°.** Crystallise it from EtOH, MeOH or from pet ether (b 80-100°). [Tanner J Org Chem **52** 2142 1987, Beilstein **7** IV 647.]

ω-Bromoacetophenone (**phenacyl bromide**) [70-11-1] **M 199.1**, **m 57-58°**. Crystallise the bromide from EtOH, MeOH or pet ether (b 80-100°). [Tanner J Org Chem 52 2142 1987, Beilstein 7 IV 649.]

4-Bromoaniline [106-40-1] **M 172.0, m 66°, pK²⁵ 3.86.** Crystallise the aniline (with appreciable loss) from aqueous EtOH. The *benzoyl* derivative has **m** 204° (from EtOH). [*Beilstein* **12** IV 1497.]

2-Bromoanisole [578-57-4] **M 187.0, f 2.5°, b 124°/40mm, d** $_{4}^{20}$ **1.513, n** $_{D}^{25}$ **1.5717.** Crystallise the anisole by repeated partial freezing, then distil it under reduced pressure. [*Beilstein* **6** IV 1037.]

4-Bromoanisole [104-92-7] **M 187.0, f 13.4°, b 99-100°/18mm, 124°/40mm, d_4^{20} 1.495, n_D^{25} 1.5617.** Crystallise the anisole by repeated partial freezing, then distil it under reduced pressure. [*Beilstein* **6** III 741, **6** IV 1044.]

9-Bromoanthracene [1564-64-3] **M 257.1, m 98-100°.** Crystallise 9-bromoanthracene from MeOH or EtOH followed by sublimation *in vacuo*. [Masnori et al. *J Am Chem Soc* **108** 126 1986, Beilstein **5** IV 2295.]

4-Bromobenzal diacetate [55605-27-1] **M 287.1, m 95°.** Crystallise the diacetate from hot EtOH (3mL/g). [Liebermann & Connor *Org Synth* Coll Vol **II** 442 1948, *Beilstein* **7** II 182, **7** IV 579.]

Bromobenzene [108-86-1] **M 157.0, b 155.9°, d** $_{4}^{20}$ **1.495, n** $_{D}^{20}$ **1.5588, n** $_{D}^{15}$ **1.56252.** Wash bromobenzene vigorously with conc H₂SO₄, then 10% NaOH or NaHCO₃ solutions, and H₂O. Dry it with CaCl₂ or Na₂SO₄, or pass it through activated alumina, before refluxing with, and distilling from, CaH₂, using a glass helix-packed column. [Beilstein 5 IV 670.]

4-Bromobenzene diazonium tetrafluoroborate [673-40-5] **M 270.8, m 133°(dec)**, **135-140°** (**dec**), **135°(dec**). Wash the salt with Et₂O until the wash is colourless and allow it to dry by blowing N₂ over it. Store it at 0-4° in the dark. [Schiemann & Pillarsky *Chem Ber* **64** 1340 *1931*, *Beilstein* **16** III 517.]

4-Bromobenzenesulfonyl chloride [98-58-8] **M 255.5, m 73-75°, 74.3-75.1, 75-76°, 77°, b 153°/15mm, 150.6°/13mm**. Wash the sulfonyl chloride with cold water, dry and recrystallise it from pet ether, or from ethyl ether cooled in powdered Dry-Ice after the ether solution had been washed with 10% NaOH until colourless, then dry it with anhydrous Na₂SO₄. Alternatively dissolve it in CHCl₃, wash it with H₂O, dry (Na₂SO₄), evaporate and recrystallise it. [Huntress & Carten *J Am Chem Soc* **62** 511 *1940.*] Test for the SO₂Cl group by dissolving it in EtOH and boiling with NH₄CNS whereby a yellow amorphous precipitate forms on cooling. [*Beilstein* **11** IV 162.]

o-Bromobenzoic acid [88-65-3] M 201.0, m 148.9°, pK^{20} 2.88. Crystallise the acid from *C₆H₆ or MeOH. The *anilide* has m 141° (from EtOH/H₂O). [*Beilstein* 9 IV 1011.]

m-Bromobenzoic acid [585-76-2] M 201.0, m 155°, pK^{25} 3.81. Crystallise the acid from acetone/water, MeOH or acetic acid. The *anilide* has m 137° (from EtOH/H₂O). [*Beilstein* 9 IV 1013.]

p-Bromobenzoic acid [586-76-5] M 201.0, m 251-252°, 254-256°, 257-258°, pK^{25} 3.96. Crystallise the acid from MeOH, or MeOH/water mixture, 90% EtOH and Et₂O. The *methyl ester* has m 81° from Et₂O or dilute MeOH. The *anilide* has m 197° (from EtOH). [Male & Thorp J Am Chem Soc 35 269 1913, Lamneck J Am Chem Soc 76 406 1954, Vandenbelt et al. Anal Chem 26 926 1954, Beilstein 9 IV 1017.]

p-Bromobenzophenone [90-90-4] M 261.1, m 81°, 81-82°. Crystallise the phenone from EtOH. The 2,4-dinitrophenylhydrazone forms orange-red leaflets from dioxane/EtOH with m 207-209°. [Allen & Van Allan J Am Chem Soc 66 7 1944, Beilstein 7 H 422, 7 III 2079, 7 IV 1378.]

4-Bromobenzoyl acetonitrile [4592-94-3] **M 224.1, m 160-164°, 162.4-163.4°.** The nitrile is purified by dissolving in slightly alkaline H₂O (charcoal), filtering and acidifying with HCl to give colourless needles (**m** 162-163°). It recrystallises from EtOH. With Me₂SO₄/KOH at 130° it gives 4-bromo- β -methoxycinnamylnitrile **m** 58.5-59.5° (from high boiling pet ether) [Fuson & Wolf J Am Chem Soc **61** 1940 1939, Grathaus & Dains J Am Chem Soc **58** 1334 1936]. [Beilstein **10** III 2998.]

p-Bromobenzoyl chloride [586-75-4] M 219.5, m 36-39°, 39.8°, 41°, b $62^{\circ}/0.1$ mm, 104.5°/6mm, 126.4-127.2°/14mm. Check IR of a film to see if OH bands are present. If absent then recrystallise from pet ether and dry it *in vacuo*. If OH bands are weak, then distil it *in vacuo* and recrystallise if necessary. If OH bands are very strong, then treat with an equal volume of redistilled SOCl₂ reflux for 2hours, then evaporate excess of SOCl₂ and distil the residual oil or low melting solid. Store it in the dark away from moisture. LACHRYMATORY. [Martin & Partington *J Chem Soc* 1175 1936, Beilstein **9** IV 1023.]

p-Bromobenzyl bromide [589-15-1] M 249.9, m 60-61°. Crystallise the bromide from EtOH. [Beilstein 5 IV 836.] LACHRYMATORY.

p-Bromobenzyl chloride [589-17-3] M 205.5, m 40-41°, b 105-115°/12mm. Crystallise the chloride from EtOH and distil it in a vacuum. [*Beilstein* 5 IV 832.] LACHRYMATORY.

p-Bromobiphenyl [92-66-0] M 233.1, m 88.8-89.2°. Crystallise the biphenyl from abolute EtOH and dry it *in vacuo*. [*Beilstein* 5 IV 1819.]

4-Bromo-4'-chlorobenzophenone [27428-57-5] **M 295.6, m 150°.** Crystallise the phenone from EtOH or $*C_6H_6$ and further purify it by zone refining (100 passes) [Grove & Turner *J Chem Soc* 509 1929, Lin & Hanson *J Phys Chem* **91** 2279 1987]. [*Beilstein* **7** II 360, **7** III 2081.]

Bromocresol Green (3',3",5',5"-tetrabromo-*m*-cresolsulfonephthalein) [76-60-8] M 698.0, m 218-219°(dec), 225°(dec), pK²⁵ 4.51. Crystallise the dye from glacial acetic acid or dissolve it in aqueous 5% NaHCO₃ solution and precipitate it from the hot solution by dropwise addition of aqueous HCl. Repeat this until the UV/VIS-extinction did not increase at λ_{max} 423nm. It is an indicator: at pH 3.81 (yellow) and pH 5.4 (blue-green). [*Beilstein* 19/3 V 460.]

Bromocresol Purple (5',5"-dibromo-o-cresolsulfonephthalein) [115-40-2] M 540.2, m 241-242°(dec), pK₁ -2.15, pK₂ 6.3. Dissolve the dye in aqueous 5% NaHCO₃ solution and precipitate it from a hot solution by dropwise addition of aqueous HCl. Repeat this until the UV/VIS-extinction did not increase at λ_{max} 419nm. It can also be recrystallised from *benzene. It is an indicator: at pH 5.2 (yellow) and pH 6.8 (purple). [Beilstein 19/3 V 460.]

p-Bromo-*N*,*N*-dimethylaniline [586-77-6] M 200.1, m 55°, b 264°, pK pK²⁵ 19.2 (acidic). 4.23. Reflux the aniline for 3hours with two equivalents of acetic anhydride, then fractionally distil it under reduced pressure. [*Beilstein* 12 IV 1499.]

1-Bromo-2,4-dinitrobenzene [584-48-5] M 247.0, m 72.5-73°, 7 5°. Crystallise it from ethyl ether, isopropyl ether, 80% EtOH or absolute EtOH. [*Beilstein* 5 III 640, 5 IV 749.]

N-(2-Bromoethyl)phthalimide [574-98-1] M 254.1, m 81-83°, 82.5-83.5°. The following is to be carried out in an efficient FUME HOOD. Dissolve the compound (180g) in CS_2 (500 mL) by refluxing for 15minutes (to cause the separation of the most likely impurity, 1,2-diphthalimidoethane), filter and evaporate under reduced pressure. The product forms light tan crystals (m 78-80°). Recrystallise it from EtOH (charcoal) [the compound (50g) is dissolved in hot 75% EtOH (200mL), boiled for *ca* 10 minutes, carbon is added (5g, Norite), filter and cool to 0°], to give white crystals (40g) which can be recrystallised (m 80-81°); and further recrystallisation gives m 82-83°. [Salzberg & Supniewski *Org Synth* Coll Vol I 119 *1932*, Landini & Rolla *Synthesis* 389 *1976*, *Beilstein* **21/10** V 275.]

3-Bromo-5-hydroxybenzoic acid [140472-69-1] **M 217.0, m 233.5°, 237-241°, pK**_{Est(1)} ~2.3, **pK**_{Est(2)} ~13.0. The acid crystallises from H₂O (**m** 238-239°), and with Me₂SO₄ it yields the 3-methoxy derivative with **m** 190-191° (from EtOH). [Baddar et al. J Chem Soc 469 1955, Beilstein 10 IV 333.]

2-Bromomethylanthraquinone [7598-10-9] **M 301.1, m 200-202°.** Recrystallise the quinone from AcOH, wash the crystals with a little Et₂O, dry it in air and then in a vacuum at 100°. It is prepared by bromination of 2-methylanthraquinone with $Br_2/PhNO_2$ at 145-150°, or *N*-bromosuccinimide in CCl₄ containing a trace of (PhCOO)₂. [*Beilstein* **7** IV 2576.]

2-(Bromomethyl)benzonitrile [22115-41-9] **M 195.1, m 72-73°, 79°, b 152-155°/15mm.** Purify the nitrile by steam distillation. Extract the distillate with Et_2O , dry the extract (Na₂SO₄), evaporate and distil the residue. The solidified distillate can be recrystallised from pet ether or cyclohexane. NMR (CDCl₃) δ : 7.8-7.2 (m 4H), 4.62 (s, 2H), IR v_{max} 2238 cm⁻¹. [Drory *Chem Ber* **24** 2570 *1891*, Borsche et al. *Chem Ber* **74** 685 *1934*, Buckley et al. *Aust J Chem* **22** 594 *1969*, *Beilstein* **9** III 2312.] LACHRYMATORY.

4-Bromo-α-methylbenzyl alcohol $[(\pm)$ 5391-88-8, 25675-29-0, R-(+) 76155-78-7, S-(-) 100760-04-1] **M 201.1.** The (±)-racemate is purified by distillation in a vacuum (**b** 90°/1mm, 119-121°/7mm, **d** 1.46) and it solidifies on cooling (**m** 36-37°) [Overberger et al. Org Synth Coll Vol **III** 200 1955]. The (±)-tosyl derivative [114200-15-6] has **m** 56-57°. The R-(+)-enantiomer is also purified by distillation in a vacuum (**b** 110°/3mm, d²⁵₄ 1.322, n²⁰_D 1.569) and has [α]²⁰_D +39° (c 1, CHCl₃), +32.9° (c 1.39, MeOH). The S-(-)enantiomer is similarly purified. [Stein et al. Can J Chem **63** 3442 1985, Crevinka et al. Collect Czech Chem Commun **51** 401 1986, Beilstein **6** II 447.]

2-(Bromomethyl)-naphthalene [939-26-4] M 221.1, m 52-54°, 56°, 56-57°, b 133-136°/0.8mm, 214°/100mm. Dissolve the bromo compound in toluene, wash it with saturated aqueous NaHCO₃, dry (Mg SO₄), evaporate, fractionally distil the residue and recrystallise the solidified distillate from EtOH. [Chapman & Williams J Chem Soc 5044, 1952, Bergmann & Szmuszkovicz Bull Soc Chim Fr 20 566 1953, Beilstein 5 IV 1698.]

1-Bromonaphthalene [90-11-9] **M 207.1, b 118°/6mm, d_D^{20} 1.489.** Purify 1-bromonaphthalene by passage through activated alumina, and three vacuum distillations. [*Beilstein* **5** H 547, **5** IV 1665.]

2-Bromonaphthalene [580-13-2] **M 207.1, m 59°.** Purify 2-bromonaphthalene by fractional elution from a chromatographic column of activated alumina. Crystallise it from EtOH. [*Beilstein* **5** IV 1667.]

1-Bromo-2-naphthol [573-97-7] **M 223.1, m 76-78°, 83°, 84°, pK**_{Est} **~8.0.** Distil the naphthol at 10mm then recrystallise it from $C_{6}H_{6}$ /pet ether (b 30-60°) **m** 80-81°. The *benzoyl* derivative has **m** 98.5-99.5° (from MeOH). [Hazlet *J Am Cherm Soc* **62** 2156 *1940*, *Beilstein* **6** H 650, **6** II 604, **6** III 2994.]

6-Bromo-2-naphthol [15231-91-1] **M 223.1, m 122-126°, pK**_{Est} ~9.1. Crystallise the naphthol from EtOH or C_6H_6 /pet ether (m 128°). The *benzoyl* derivative has m 122°, (from EtOH). [Ruggli & Michels Helv Chim Acta 14 779 1931, Beilstein 6 H 651, 6 II 605, 6 III 2996.]

ω-Bromo-4-nitroacetophenone [99-81-0] M 244.1, m 98°. Crystallise it from *C₆H₆/pet ether. [*Beilstein* 7 IV 661.]

o-Bromonitrobenzene (2-bromo-1-nitrobenzene) [577-19-5] M 202.1, m 43°. Crystallise it twice from pet ether, using charcoal before the first crystallisation. [*Beilstein* 5 III 618, 5 IV 728.]

m-Bromonitrobenzene (3-bromo-1-nitrobenzene) [585-79-5] M 202.1, m 55-56°. Crystallise it twice from pet ether, using charcoal before the first crystallisation. [*Beilstein* 5 III 618, 5 IV 729.]

p-Bromonitrobenzene (4-bromo-1-nitrobenzene) [586-78-7] M 202.1, m 127°. Crystallise it twice from pet ether, using charcoal before the first crystallisation. [*Beilstein* 5 III 619, 5 IV 729.]

p-Bromophenacyl bromide [99-73-0] M 277.9, m 110-111°. Crystallise the bromide from EtOH (*a* 8mL/g). [*Beilstein* 7 IV 652.]

o-Bromophenol [95-56-7] M 173.0, b 194°, d_D^{20} 1.490, pK²⁵ 8.45. Purify the phenol by at least two passes through a chromatographic column and distil it. [*Beilstein* 6 IV 1037.]

p-Bromophenol [106-41-2] M 173.0, m 64°, pK^{25} 9.36. Crystallise the phenol from CHCl₃, CCl₄, pet ether (b 40-60°), or water and dry it at 70° under vacuum for 2hours. [*Beilstein* 6 IV 1043.]

Bromophenol Blue (3,3',5,5'-tetrabromophenolsulfonephthalein) [115-39-9] M 670.0, m 270-271°(dec), 273°(dec), λ_{max} 422nm, pK²⁵ 3.62 (acidic). Crystallise the dye from *C₆H₆ or Me₂CO/AcOH, and dry it in air. It is an indicator: at pH 3.0 it is yellow and it is purple at pH 4.6. [Beilstein 19/3 V 458.]

(4-Bromophenoxy)acetic acid [1878-91-7] M 231.1, m 157°, 158°, pK²⁵ 3.13. Crystallise the acid from EtOH or H₂O (m 161.4-161.8°). [Hayes & Branch J Am Chem Soc 65 1555 1943, Beilstein 6 III 747, 6 IV 1052.]

3-(4-Bromophenoxy)propionic acid [93670-18-9] **M 247.1, m 146°, pK**_{Est} ~4.2. Crystallise the acid from EtOH, MeOH or $*C_6H_6$ /hexane (**m** 144-145°). [*Beilstein* 6 III 748, 6 IV 1052.]

4-Bromophenylacetic acid [1878-68-8] **M 215.1, m 112-113°, 113-115°, 114°, pK²⁵ 4.19.** The acid crystallises from H₂O as needles. The *acid chloride* has **b** 238°/760mm, **m** 50°, and the *anilide* has **m** 174-175°. [Dippy & Williams J Chem Soc 161 1934, 1251 1948, Schwenk & Pala J Org Chem 11 798 1946, Beilstein **9** III 2275.]

4-Bromophenylhydrazine [589-21-9] **M 187.1, m 108-109°, pK²⁰ - 5.6** (aqueous H_2SO_4), pK²⁵ **5.05.** Crystallise the hydrazine from H_2O . The hydrochloride crystallises from EtOH/ H_2O with **m** 213-214°, and the *tosylate* has **m** 212° (from EtOH). [Beilstein 15 H 434, 15 I 117, 15 II 160, 15 III 289, 15 IV 282.]

4-Bromophenyl isocyanate [2492-02-9] M 189.0, m 41-42°, b 158°/14mm. Crystallise the isocyanate from pet ether (b 30-40°). It has a pungent odour. [*Beilstein* 12 H 647, 12 I 321.]

4-Bromophenyl isothiocyanate [1985-12-2] **M 214.1, m 56-58°.** Recrystallise the isothiocyanate from boiling *n*-hexane. Any insoluble material is most probably the corresponding urea. It is also purified by steam distillation, cool the receiver, add NaCl and extract in Et₂O, wash the extract with N H₂SO₄, dry (MgSO₄), evaporate and recrystallise the residual solid. [Cymerman-Craig et al. *Org Synth* Coll Vol **IV** 700 *1963*, cf Dains et al. *Org Synth* Coll Vol **I** 447 *1941*, *Beilstein* **6** IV 1051, **12** II 354, **12** III 1463p, **12** IV 1519.]

N-(**3-Bromopropyl)phthalimide** [5460-29-7] **M 268.1, m 72-74°, 74°.** Place it in a Soxhlet and extract it with Et_2O , whereby the bis-phthalimido impurity is not extracted. Evaporate the Et_2O and recrystallise the residue from EtOH, aqueous EtOH or pet ether. [Gabriel & Weiner Chem Ber 21 2669 1888, Gaudry Can J Chem 31 1060 1953, Beilstein 21/10 V 1277.]

Bromopyrogallol Red (5,5'-dibromopyrogallolsulfonephthalein) [16574-43-9] M 576.2, m 300°, λ_{max} 538nm (ϵ 54,500 H₂O pH 5.6-7.5), pK₁ 2.9, pK₂ 4.39, pK₃ 9.15, pK₄ 11.72. Crystallise the dye from 50% EtOH, or aqueous alkaline solution followed by acidification. It is a metal chromic indicator. [Suk Collect Czech Chem Commun 31 3127 1966, Beilstein 19/10 V 226].

5-Bromosalicyl hydroxamic acid [5798-94-7] M 210.1, m 232°(dec), $pK_{Est(1)} \sim 1.5$, $pK_{Est(2)} \sim 7.0$, $pK_{Est(3)} \sim 8.7$. Crystallise the hydroxamic acid from H₂O (m 249°) or from EtOH (m 232° dec). It sublimes at m 235°. It complexes with metals. [*Beilstein* 10 IV 221.]

4-Bromostyrene [2039-82-9] **M 183.1, b 49.5-50°/2.5mm, 87-88°/12mm, 102-104°/20mm,** d_4^{20} **1.3984, n_D^{20} 1.5925**. It polymerises above 75° in the presence of benzoyl peroxide. To purify, if it has not gone to a solid resin, dissolve it in Et₂O, dry (MgSO₄) and add *ca* 0.1g of 4-*tert* butylcatechol (polymerisation inhibitor) per 100g of bromostyrene. Filter, evaporate this under reduced pressure (use as high a vacuum as possible) and distil the residue. Store it in dark bottles in the presence of the inhibitor (at above concentration). [Overberger & Saunders *Org Synth* Coll Vol **III** 204 *1955*, *Beilstein* **5** IV 1349.]

Bromothymol Blue (3',3"-dibromothymolsulfonephthalein) [76-59-5] M 624.4, m 201-203°, pK₁ -0.66, pK₂ 6.99. Dissolved the dye in aqueous 5% NaHCO₃ solution and precipitate it from the hot solution by dropwise addition of aqueous HCl. Repeat this until the extinction at λ_{max} 420nm does not increase. It is an indicator: aqueous solutions are yellow at pH 6.0, and blue at pH 7.6. [Beilstein 19/3 V 461.]

o-Bromotoluene [95-46-5] M 171.0, m -27°, b 58-60°/10mm, 74°/19mm, 181.7°/760mm, d_4^{20} 1.422, n_D^{20} 1.556. Fractionally distil it through an efficient column. It can be separated from its isomers by gas chromatography on a column of "Sil-o-cel" firebrick (30-40mesh, 80 parts) coated with 5% (20 parts) of ICI E301 con rubber with N₂ carrier gas at 170°/atm and 100mL/minute and using a conductivity cell detector. [Cowley et al. *J Chem Soc* 1801 1959, *Beilstein* **5** H 304, **5** I 153, **5** II 234 **5** III 704, **5** IV 825.]

p-Bromotoluene [106-38-7] M 171.0, m 28°, b 184°, d²⁰₄ 1.390. Crystallise it from EtOH [Taylor & Stewart J Am Chem Soc 108 6977 1986]. [Beilstein 5 IV 827.]

 α -Bromo-4-toluic acid [6232-88-8] M 215.1, m 229-230°, pK_{Est} ~3.2. Crystallise the acid from Me₂CO. [Beilstein 9 IV 1745.]

 α -Bromo-*p*-xylene (*p*-methylbenzyl bromide) [104-81-4] M 185.1, m 35°, b 218-220°/740mm. Crystallise the bromide from EtOH or pentane. [*Beilstein* 5 H 385, 5 IV 969.]

2-tert-Butoxycarbonyloxyimino-2-phenylacetonitrile (BOC-ON) [58632-95-4] M 246.3, m 87-89°. Triturate the solid with 90% aqueous MeOH, filter, wash with 90% aqueous MeOH and dry it in a vacuum. Recrystallise it from MeOH (needles or plates), but use warm MeOH and cool to crystallise; *do not boil as it decomposes slowly*. IR has v_{max} 1785 (C=O) cm⁻¹ and NMR (CDCl₃) usually shows two *tert*-butyl singlets for *syn* and *anti* isomers. Store it in a brown bottle (fridge). It evolves CO₂ at room temperature (stoppered bottle can explode!), but can be stored over silica gel which may extend its useful life to more than a year. [Itoh et al. *Org Synth* **59** 95 *1980*.]

4-Butoxyphenylacetic acid [4547-57-3] **M 208.3, m 86-87°, 88.5°, pK**_{Est} ~**4.4**. Recrystallise it from pet ether (b 40-60°). [McElvain & Carney J Am Chem Soc **68** 2592 1946, Beilstein **10** IV 545.]

n-Butyl *p*-aminobenzoate (Butamben) [94-25-7] M 193.2, m 57-59°, b 174°/8mm, pK_{Est} ~2.5. Crystallise Butamben from EtOH. [Beilstein 14 IV 1130.]

tert-Butylammonium bromide [60469-70-7] M 154.1, m >250°(dec). Recrystallise the salt several times from absolute EtOH or by dissolving in absolute EtOH and adding Et₂O slowly to crystallise the salt. Dry it thoroughly at 105°. [IR: Chenon & Sandorfy *Can J Chem* 36 1181 1958, *Beilstein* 4 IV 659.]

2-*tert***-Butylanthracene** [13719-97-6] **M 234.3, m 148-149°.** Recrystallise the anthracene from EtOH and finally purify it by TLC. [*Beilstein* **5** IV 2364.]

n-Butylbenzene [104-51-8] M 134.2, b 183.3°, d_4^{20} 0.860, n_D^{20} 1.4897, n_D^{25} 1.487. Distil butylbenzene from sodium. Wash it with small portions of conc H₂SO₄ until the acid is no longer coloured, then with water and aqueous Na₂CO₃. Dry it (MgSO₄), and distil it twice from Na, collecting the middle fraction [Vogel *J Chem Soc* 607 1948]. [Beilstein 5 IV 1033.]

tert-Butylbenzene [98-06-6] M 134.2, b 169.1°, d_4^{20} 0.867, n_D^{20} 1.493, n_D^{25} 1.490. Wash it with cold conc H₂SO₄ until a fresh portion of acid is no longer coloured, then with 10% aqueous NaOH (care-

effervescence), followed by distilled water until neutral. Dry it (CaSO₄), and distil it in a glass helices-packed column, taking the middle fraction. [*Beilstein* **5** IV 1045.]

4-tert-Butyl benzoyl chloride [1710-98-1] M 196.7, b 135% 10mm, 149.9-150.5% 14mm, 266-268% (dec), d²⁰₄ 1.082, n²⁰_D 1.536. Distil it in a vacuum. If IR shows OH group, then treat it with thionyl chloride or oxalyl chloride at *ca* 50% for 30minutes, evaporate and fractionate it in a vacuum using a short column. Strongly LACHRYMATORY; use a good fume hood. [Fuson & Turnbull *J Am Chem Soc* 71 2544 1949, Tsuno et al. *Bull Chem Soc Jpn* 32 960 1959, Swain et al. *J Am Chem Soc* 72 5433 1950, *Beilstein* 9 III 2526.]

4-tert-Butylcatechol [98-29-3] M 166.22, m 47-48°, 55-56°, 75°, b 265°/atm, pK_{Est(1)} ~9.5, pK_{Est(2)} ~13.0. Distil it in a vacuum, then recrystallise it from pentane or pet ether (or C_6H_6). [Beilstein 6 IV 6014.]

6-tert-Butyl-1-chloro-2-naphthol [525-27-9] M 232.7, m 76°, b 185°/15mm, pK_{Est} ~8.0. Recrystallise the naphthol from pet ether. Its *methyl ether* has m 115° (from EtOH/pet ether). [Buu-Hoi et al. J Org Chem 15 1064 1950, Beilstein 6 IV 4367.]

2-tert-Butyl hydroquinone [1948-33-0] M 166.2, m 125-127°, 127-128°, 129°, $pK_{Est(1)} \sim 10.5$. $pK_{Est(2)} \sim 11.6$. Recrystallise the hydroquinone from H₂O or MeOH and dry it in a vacuum at 70°. Store it in a dark container. [Stroh et al. Angew Chem 69 699 1957, Beilstein 6 IV 6013.]

2-*tert*-**Butyl-4-methoxyphenol** (**2-***tert*-**butyl-4-hydroxyanisole**) [121-00-6] **M 180.3**, **m 64.1**°, **pK**_{Est} ~**10.8**. Fractionally distil the phenol *in vacuo*, then pass it as a solution in CHCl₃ through alumina, and evaporate the eluate. Recrystallise the residue from pet ether. [*Beilstein* **6** IV 6013.]

p-tert-Butylnitrobenzene [3282-56-2] M 179.2, m 28.4°, b 135°/10mm, 140-142°/15mm, n_D^{20} 1.5230. Recrystallise it three times by partially freezing a mixture of the mono-nitro isomers, then recrystallise it twice from MeOH and dry it *in vacuo* [Brown J Am Chem Soc 81 3232 1959]. [Beilstein 5 H 418, 5 I 203, 5 II 321, 5 III 943, 5 IV 1052.]

tert-Butyl perphthalic acid (monoperoxyphthalic acid 1-*tert*-butyl ester) [15042-77-0] M 238.2, m 104-104.5° (dec), $pK_{Est} \sim 6.2$. Crystallise the per acid-ester from Et₂O or Et₂O/pet ether and dry it over H₂SO₄. The ester was prepared from *tert*-butylhydroperoxide and phthalic anhydride [Davies et al. J Chem Soc 1545 1953]. Possibly EXPLOSIVE. [Beilstein 9 IV 3260.]

p-*tert*-Butylphenol [98-54-4] M 150.2, m 99°, pK²⁵ 10.39. Crystallise the phenol to constant melting point from pet ether (b 60-80°). It sublimes *in vacuo*. Also purify it *via* the benzoate, as for phenol. The *salicylate ester* [87-18-30] has m 63-64° (from aqueous EtOH, or EtOH). [*Beilstein* 6 IV 3296.]

p-*tert*-Butylphenoxyacetic acid [1798-04-5] M 208.3, m 86.5°, 88-89°, 94°, 96.5°, pK_{Est} ~2.9. Crystallise the acid from pet ether or pet ether/*C₆H₆ mixture. [*Beilstein* 6 H 524, 6 III 1869.]

tert-Butyl phenyl carbonate [6627-89-0] M 194.2, b 74-78% (0.5mm, 83% (0.6mm, d_4^{20} 1.05, n_D^{20} 1.480. If IR is free from OH, then purify it by redistillation; otherwise dissolve it in Et₂O, wash it with 5% HCl, then H₂O, dry it (MgSO₄), evaporate and distil it through a Claisen head under vacuum. Care should be taken as distillation of large quantities can lead to decomposition with liberation of CO₂ and isobutylene; use the necessary precautions. [Carpino J Am Chem Soc 79 98 1957, Beilstein 6 IV 629.]

n-Butyl phenyl ether [1126-79-0] M 150.2, b 95%/17mm, 210.20%/760mm, d_4^{20} 0.935, n_D^{20} 1.4969. Dissolve it in diethyl ether, washed first with 10% aqueous NaOH to remove traces of phenol, then repeatedly with distilled water, followed by evaporation of the solvent and distillation under reduced pressure [Arnett & Wu J Am Chem Soc 82 5660 1960]. [Beilstein 6 H 143, 6 I 82, 6 II 145, 6 III 550, 6 IV 558.]

N-tert-Butyl α-phenyl nitrone (PBN) [3376-24-7] M 177.2, m 73-74°. Crystallise PBN from hexane. It is a free radical trap. [cf Janzen Methods Enzymology 105 188 1984, Beilstein 7 IV 519.]

p-tert-Butyltoluene [98-51-1] M 148.3, f -53.2°, b 91°/28mm, 189-192°/atm, d_4^{20} 0.854, n_D^{20} 1.4920. A sample containing 5% of the *meta*-isomer is purified by selective mercuration. Fractional distillation of the solid arylmercuric acetate, after removal from the residual hydrocarbon, gives pure *p-tert*-butyltoluene [Stock & Brown J Am Chem Soc 81 5615 1959]. [Beilstein 5 H 439, 5 III 1003, 5 IV 1079.]

tert-Butyl 2,4,5-trichlorophenyl carbonate [16965-08-5] M 297.6, m 64-66°, 67-68.5°. Crystallise the carbonate from a mixture of MeOH (90mL) and water (6mL) using charcoal [Broadbent et al. J Chem Soc (C) 2632 1967, Fieser & Fieser Reagents for Organic Synthesis 2 55 1969].

Caffeic acid (3,4-dihydroxycinnamic acid) [331-39-5] M 180.2, m 195°, 223-225°, pK_1^{25} 4.62, pK_2^{25} 9.07. Recrystallise this antioxidant from water. [Beilstein 10 IV 1776.]

Calcon carboxylic acid [3-hydroxy-4-(2-hydroxy-4-sulfo-1-naphthylazo)naphthalene-2carboxylic acid] [3737-95-9] M 428.4, m 300°, λ max 560nm, pK₁ 1.2, pK₂ 3.8, pK₃ 9.26, pK₄ 13.14. Purify it *via* its *p*-toluidinium salt, *viz*: dissolve the dye in warm 20% aqueous MeOH, treat with an equivalent of *p*-toluidine and cool to precipitate the salt. Finally recrystallise the acid from hot water. [Itoh & Ueno Analyst (London) 95 583 1970.] It is an indicator and complexes with Ca²⁺ in presence of Mg²⁺ and other metal ions [Patton & Reeder Anal Chem 28 1026 1956, Prentoe & Prentoe Analyst 106 227 1981].

Calmagite [1-(1-hydroxy-4-methyl-2-phenylazo)-2-hydroxynaphthalene-4-sulfonic acid] [3147-14-6] M 358.4, m 300°, pK₁ 8.1, pK₂ 12.4. A crude dye is extracted with anhydrous diethyl ether and forms red crystals from Me₂CO. It gives a red colour in H₂O at pH 7–9 and a blue colour at pH 9–11 which turns red on addition of Ca²⁺ or Mg²⁺ ions. [Lindstrom & Diehl Anal Chem 32 1123 1960]. Complexes with Ca, Mg and Th.

Capsaicin (*E*-*N*-[(4-hydroxy-3-methoxyphenyl)-methyl]-8-methyl-6-nonenamide) [404-86-4] M 305.4, m 64-66°, 65°, 66.1°, b 210-220°/0.01mm, ε 7000 (281nm, EtOH). Recrystallise capcaicin from pet ether (b 40-60°), or pet ether/Et₂O (9:1). Also purify it by chromatography on neutral Al₂O₃ (grade V) and elute successively with *C₆H₆, *C₆H₆/EtOAc (17:3) then *C₆H₆/EtOAc (7:3), and distil it at 120°/10⁻⁵mm, then repeatedly recrystallise the needles from isopropanol (charcoal). [Crombie et al. *J Chem Soc* 11025 *1955*, Bennett & Kirby *J Chem Soc*(*C*) 442 *1968*.] It **causes pain** and is **neurotoxic** [Bevan & Szolcsanyi *Trends in Pharmacol Sci* **11** 330 *1990*, *Beilstein* **13** IV 2588].

4-(Carbamoylmethoxy)acetanilide [14260-41-4] M 208.2, m 208°. Crystallise the anilide from water.

N-Carboethoxyphthalimide (*N*-ethoxycarbonylphthalimide) [22509-74-6] M 219.2, m 87-89°, 90-92°. Crystallise the imide from toluene/pet ether (or *benzene/pet ether). It is partly soluble in Et_2O , *benzene and CHCl₃. [Heller & Jacobsohn *Chem Ber* 54 1112 1921, *Beilstein* 21/10 V 428.]

o-Carboxyphenylacetonitrile [6627-91-4] M 161.2, m 114-115°. Crystallise the nitrile (with considerable loss) from *benzene, glacial acetic acid or H₂O. The *methyl ester* has m 47-48° (from *C₆H₆). [Price & Rogers Org Synth Coll Vol III 174 1955, Beilstein 9 H 859, 9 II 618, 9 III 4267.]

Catechol (1,2-dihydroxybenzene, pyrocatechol) [120-80-9] M 110.1, m 105°, pK_1^{25} 9.45, pK_2^{25} 12.8. Crystallise catechol from *benzene or toluene and sublime it *in vacuo*. [Rozo et al. Anal Chem 58 2988 1986, Beilstein 6 IV 5557.]

Cation exchange resin. The resin should be conditioned before use by successive washing with water, EtOH and water, and taken through two H^+ - Na^+ - H^+ cycles by successive treatment with M NaOH, water and M HCl then washed with water until neutral.

p-Chloranil (2,3,5,6-tetrachloro-1,4-benzoquinone) [118-75-2] M 245.9, m 290°, 294.2-294.6°(sealed tube). Crystallise *p*-chloranil from acetic acid, acetone, *benzene, EtOH or toluene, dry it in a vacuum over P₂O₅, or from acetic acid and drying over NaOH in a vacuum desiccator. It can be sublimed under vacuum at 290°. A sample may contain significant amounts of the *o*-chloranil isomer as impurity. Purify it by triple sublimation under vacuum and recrystallise before use. It is a skin and mucous membrane irritant. [UV: Pummerer et al. *Chem Ber* 85 545 1952, Brook *J Chem Soc* 5040 1952, *Beilstein* 7 IV 2083.]

Chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) [87-88-7] M 209.0, m 283-284° pK₁²⁵ 1.22, pK₂²⁵ 3.01. A solution of 8g of quinone in 1L of boiling water is filtered while hot, then extracted twice at about 50° with 200mL portions of *benzene. The aqueous phase is cooled in ice-water. The crystals are filtered off, washed with three 10mL portions of water, and dried at 115°. It can be sublimed *in* vacuo. [Weissbart & Rysselberghe *J Phys Chem* 61 765 1957.] The *diacetate* has m 182-185° [Conant & Fieser *J Am Chem Soc* 46 1866 1924, Thamer & Voight *J Phys Chem* 56 225 1952]. [Beilstein 8 IV 2707.]

p-Chloroacetanilide [539-03-7] M 169.6, m 179°. Crystallise the anilide from EtOH or aqueous EtOH. [*Beilstein* 12 IV 1178.]

2-Chloroacetophenone [532-27-4] **M 154.6, m 54-56°.** Crystallise it from MeOH [Tanner J Org Chem **52** 2142 1987]. [Beilstein **7** IV 641.]

o-Chloroaniline [95-51-2] M 127.6, m -1.9°, b 84.5°/10mm, 108.4°/30mm, 208.8°/760mm, d_4^{20} 1.213, n_D^{20} 1.588, pK²⁵ 2.66. Free it from small amounts of the *p*-isomer by dissolving in one equivalent of H₂SO₄ and steam distilling. The *p*-isomer remains behind as the sulfate. [Sidgwick & Rubie *J Chem Soc* 1013 1921.] An alternative method is to dissolve it in warm 10% HCl (11mL/g of amine) and on cooling, *o*-chloroaniline hydrochloride separates out. The latter can be recrystallised until the acetyl derivative has a constant melting point (m 90°). (In this way, yields are better than via the recrystallisation of the *picrate* from EtOH or of the acetyl derivative from pet ether.) [King & Orton *J Chem Soc* 1377 1911]. [Beilstein 12 III 1281, 12 IV 1115.]

p-Chloroaniline [106-47-8] M 127.6, m 70-71°, b 106.8-107.3-.5°/12mm, 116°/17mm, d_4^{20} 1.175, p K²⁵ 3.98. Crystallise the aniline from MeOH, pet ether (b 30-60°), or 50% aqueous EtOH, then *benzene/pet ether (b 60-70°), and then dry it in a vacuum desiccator. It can be distilled under vacuum (b 75-77°/3mm). It sublimes in a very high vacuum. The *acetate* crystallises from aqueous MeOH (m 178°, 180°) or EtOH or AcOH (m 173-174°) and has b 331.3°/760mm. [*Beilstein* 12 III 1325, 12 IV 1116.]

p-Chloroanisole [623-12-1] M 142.6, b 799/11.5mm, 196.69/760mm, d_4^{20} 1.164, $n_D^{25.5}$ 1.5326. Wash the anisole with 10% (by volume) aqueous H₂SO₄ (three times), 10% aqueous KOH (three times), and then with water until neutral. Dry it (MgSO₄), and fractionally distil it from CaH₂ through a glass helices-packed column under reduced pressure. [*Beilstein* 16 IV 822.]

9-Chloroanthracene [716-53-0] **M 212.9, m 104-106°, 105-107°.** 9-Chloroanthracene crystallises from EtOH or pet ether (**b** 60-80°) as yellow needles. [Nonhebel *Org Synth* Coll Vol **V** 206 1973, Masnori J Am Chem Soc **108** 1126 1986, Beilstein **5** H 663, **5** III 2133, **5** IV 2292.]

10-Chloro-9-anthraldehyde [10527-16-9] **M 240.7, m 218°, 217-219°.** The aldehyde crystallises as yellow needles from EtOH, AcOH or toluene. [*Beilstein* **7** III 2529.]

2-Chlorobenzaldehyde [89-98-5] **M 140.6, m 11°, b 213-214°, d** $_{4}^{20}$ **1.248, n** $_{D}^{20}$ **1.566.** Wash it with 10% Na₂CO₃ solution, then fractionally distil it in the presence of a small amount of catechol as stabiliser. [*Beilstein* **7** H 233, **7** IV 561.]

3-Chlorobenzaldehyde [587-04-2] **M 140.6, m 18°, b 213-214°, d_4^{20} 1.241, n_D^{20} 1.564.** Purify it by low temperature crystallisation from pet ether (b 40-60°) and distillation. [*Beilstein* 7 H 234, 7 IV 566.]

4-Chlorobenzaldehyde [104-88-1] **M 140.6, m 47°.** Crystallise it from EtOH/water (3:1), then sublime it twice at ~50°/2mm. [*Beilstein* **7** H 235, **7** IV 568.]

Chlorobenzene [108-90-7] **M** 112.6, **b** 131.7°, d_4^{20} 1.107, n_D^{20} 1.52480. The main impurities are likely to be chlorinated impurities originally present in the *benzene used in the synthesis of chlorobenzene, and also unchlorinated hydrocarbons. A common purification procedure is to wash it several times with conc H₂SO₄ then with aqueous NaHCO₃ or Na₂CO₃, and water, followed by drying with CaCl₂, K₂CO₃ or CaSO₄, then with P₂O₅, and distilling. It can also be dried with Linde 4A molecular sieve. Passage through, and storage over, activated alumina has been used to obtain low conductance material. [Flaherty & Stern *J Am Chem Soc* 80 1034 1958, Beilstein 5 H 199, 5 IV 640.]

4-Chlorobenzenesulfonyl chloride [98-60-2] **M 211.1, m 53°, b 141°/15mm.** Crystallise it from ether in powdered Dry-Ice, after the solution has been washed with 10% NaOH until colourless and dried (Na₂SO₄). Distil it *in vacuo* and store it in the absence of H₂O. [*Beilstein* **11** IV 114.]

4-Chlorobenzhydrazide [536-40-3] M 170.6, m 164°. Crystallise it from H₂O. [Beilstein 9 III 1368.]

2-Chlorobenzoic acid [118-91-2] **M 156.6, m 139-140°, pK²⁵ 2.91.** Crystallise the acid successively from glacial acetic acid, aqueous EtOH, and pet ether (b 60-80°). Other solvents include hot water or toluene (*ca* 4mL/g). The crude material can be initially purified by dissolving 30g in 100mL of hot water containing 10g of Na₂CO₃, boiling with 5g of charcoal for 15minutes, then filtering and adding 31mL of 1:1 aqueous HCl. The precipitate is washed with a little water and dried at 100°. [*Beilstein* **9** IV 956.]

3-Chlorobenzoic acid [535-80-8] **M 156.6, m 154-156°, 158°, d** $_{4}^{25}$ **1.496, pK** 25 **3.82 (5.25 in 50% dimethylacetamide).** Crystallise the acid successively from glacial acetic acid, aqueous EtOH and pet ether (b 60-80°). It also recrystallises from *C₆H₆ or Et₂O/hexane, and sublimes at 55° in a vacuum. [*Anal Chem* **26** 726 1954] The methyl ester has **m** 21°, **b** 231°/760mm. The *S-benzylisothiouronium salt* has **m** 164-165° (from EtOH) [Friediger & Pedersen *Acta Chem Scand* **9** 1425 1955, Samuel J Chem Soc 1318 1960]. [Beilstein **9** IV 969.]

4-Chlorobenzoic acid [74-11-3] **M 156.6, m 238-239**, **pK**²⁵ **3.99**. Purify it as for *m*-chlorobenzoic acid. It has also been crystallised from hot water, and from EtOH. [*Beilstein* **9** IV 973.]

2-Chlorobenzonitrile [873-32-5] **M 137.6, m 45-46°.** Crystallise the nitrile to a constant melting point from *benzene/pet ether (b 40-60°). [*Beilstein* **9** IV 965.]

4-Chlorobenzophenone [134-85-0] **M 216.7, m 75-76°.** Recrystallise it from EtOH. [Wagner et al. J Am Chem Soc **108** 7727 1986, Beilstein **7** H 419, **7** I 227, **7** II 359, **7** III 2072, **7** IV 1375.]

o-Chlorobenzotrifluoride (o-chlorotrifluoromethylbenene) [88-16-4] M 180.6, m -6.37°, b 19.6°/3mm, 152.3°/760mm, d_4^{25} 1.364, n_D^{25} 1.4533. Dry the trifluoride over CaSO₄, and distil it at high reflux ratio through a silvered vacuum-jacketed glass column packed with one-eight inch glass helices [Potter & Saylor J Am Chem Soc 73 90 1951]. [Beilstein 5 H 302, 5 III 692, 5 IV 814.]

m-Chlorobenzotrifluoride [98-15-7] M 180.6, m – 56.49°, b 50°/31mm, 137.6°/760mm, d_4^{20} 1.3345, n_D^{20} 1.4432. Purify it as for *o*-chlorobenzotrifluoride above. [*Beilstein* 5 III 692, 5 IV 814.]

p-Chlorobenzotrifluoride [98-56-6] M 180.6, m -33.18° , b 19.3°/5mm, 138.6°/760mm, d³⁰₄ 1.3278, n³⁰_D 1.4430. Purify it as for *o*-chlorobenzotrifluoride above. [*Beilstein* 5 IV 815.]

p-Chlorobenzyl chloride [104-83-6] M 161.0, m 28-29°, b 96°/15mm. Dry it over CaSO₄, then fractionally distil it under reduced pressure. Crystallise it from heptane or dry diethyl ether at low temperature. [Beilstein 5 IV 816.] LACHRYMATORY.

p-Chlorobenzylisothiuronium chloride [544-47-8] M 237.1, m 177-178°, and 197°, 201-203°, $pK_{Est} \sim 9.6$ (free base). Crystallise the salt from conc HCl by addition of water. Dry it in a vacuum over P₂O₅. Also crystallise it from EtOH, wash the crystals with EtOH, then Et₂O to give the lower melting form m 177-178°. By evaporating the filtrate and washings to a quarter of the volume and adding an equal volume of Et₂O the higher melting form m 201-203° is obtained. [Harvey & Jensen *J Org Chem* 28 470 *1963*, *Beilstein* 6 III 1639, 6 IV 2778.]

trans-4-Chlorocinnamic acid [1615-02-7] M 182.6, m 243°, 248-250°, 249-251°, pK²⁵ 4.41. Recrystallise the acid from EtOH or aqueous EtOH (charcoal). UV has λ_{max} at 275nm (EtOH). [Walling & Wolfstirn J Am Chem Soc 69 852 1947, Beilstein 9 H 596, 9 II 395, 9 III 2727, 9 IV 2033.]

4-Chloro-3,5-dimethylphenol [88-04-0] M 156.6, m 115.5°, pK²⁵ 9.70. Crystallise the phenol from *benzene or toluene. [*Beilstein* 6 IV 3152.]

1-Chloro-2,4-dinitrobenzene [97-00-7] M **202.6**, m **48-50°**, **51°**, **52-54°**, **54°**, b **315°/atm**, d_4^{22} **1.697.** Usually it is recrystallised from EtOH or MeOH. It has also been crystallised from Et₂O, *C₆H₆, *C₆H₆/pet ether or isopropyl alcohol. A preliminary purification step is to pass its solution in *benzene through an alumina column. It has also been purified by zone refining. It exists in three forms: one stable and two unstable. The stable form crystallises as yellow needles from Et₂O, m **51°**, b **315°/760mm** with some decomposition, and is soluble in EtOH. A labile form also crystallises from Et₂O, m **43°**, and is more soluble in organic solvents. The second labile form has m 27°. [Hoffman & Dame, J Am Chem Soc **41** 1015 1919, Welsh J Am Chem Soc **63** 3276 1941, J Chem Soc 2476 1957, Beilstein **5** IV 744.]

4-Chloro-3,5-dinitrobenzoic acid [118-97-8] **M 246.6, m 159-161°, 163°, pK**_{Est} ~2.5. Crystallise the acid from EtOH/ H₂O, EtOH or $*C_6H_6$. The 1:1 *naphthalene complex* (by fusing various ratios of ingredients and recrystallising from EtOH) has **m** 122°. [*Beilstein* **9** H 416, **9** III 1953, **9** IV 1360.]

Chlorogenic [1-(3,4-dihydroxycinnamoyloxy)-D-quinic] acid [327-97-9] M 354.3, m 208°, $[\alpha]_{D}^{25}$ -36° (c 1, H₂O), pK₁²⁵ 3.59, pK₂²⁵ 8.59. Crystallise the acid from water and dry it at 110°. [Beilstein 10 H 537, 10 I 271, 10 II 378, 10 III 2408, 10 IV 2259.]

Chlorohydroquinone (2-chloro-1,4-dihydroxybenzene) [615-67-8] M 144.6, m 106°, b 263°, pK_1^{25} 8.81, pK_2^{25} 10.78. Crystallise the hydroquinone from CHCl₃ or toluene. [Beilstein 6 IV 5767.]

4-Chloroiodobenzene [637-87-6] **M 238.5, m 53-54°, 56.2°, b 104.2°/16mm, d**^{5/}₄ **1.886.** Distil it in a vacuum then recrystallise it from EtOH. [Sugden J Chem Soc 1173 1924, Beilstein 5 H 221, 5 III 579, 5 IV 695.]

5-Chloro-2-methoxyaniline (2-amino-4-chloroanisole) [95-03-4] M 157.6, m 81-83°, 82-84°, 84°, pK²⁵ 3.56. Purify the aniline by steam distillation and recrystallisation from H₂O or 40% aqueous EtOH. The *N*-acetate forms needles from hot H₂O with m 104°, the *N*-benzoyl derivative forms needles from aqueous EtOH with m 77-78°, and the picrate has m 194°(dec). [Raiford & Colbert J Am Chem Soc 48 2657 1926, Beilstein 13 IV 879.]

9-Chloromethyl anthracene [24463-19-2] **M 226.7, m 141-142°(dec), 141-142.5°**. If it is free from OH in the IR then recrystallisation from hexane/ C_6H_6 or C_6H_6 (as needles). If OH is present, then some solvolysis has occurred. In this case treat 8.5g of it with SOCl₂ (4.8g) in dioxane (60mL) and reflux for 5hours, then evaporate to dryness and wash the residue with cold C_6H_6 and recrystallise it. With KI/Me₂CO it forms the *iodomethyl* derivative. [Fierens et al. *Helv Chim Acta* **38** 2009 *1955*, Hunter et al. *J Org Chem* **21** 1512 *1956*, *Beilstein* **5** III 3152, **5** IV 2313.]

4-Chloro-2-methylphenol [1570-64-5] **M 142.6, m 49°, b 112-114°/18mm, 225°/760mm, pK²⁵ 9.71.** Purify the phenol by crystallisation from pet ether (**m** 51°) and by zone melting. [Beilstein 6 H 359, 6 I 174, 6 II 332, 6 III 1264, 6 IV 1987.] **4-Chloro-3-methylphenol** [59-50-7] **M 142.6, m 66°, b 238°/760mm, pK²⁵ 9.55.** Crystallise the phenol from pet ether or C_6H_6 . [Beilstein 6 H 381, 6 I 187, 6 II 355, 6 III 1315, 6 IV 2064.]

4-Chloro-2-methylphenoxyacetic acid (MCPA) [94-74-6] M 200.6, m 113-117°, 120°, 122-123°, pK²⁰ 3.62(3.05). It is insoluble in H₂O (solubility is 0.55g/L at 20°) and recrystallises from $*C_6H_6$ or chlorobenzene as plates [Jönsson et al. *Acta Chem Scand* 6 993 1952]. The *S-benzylisothiouronium salt* has m 164-165°, and the Cu²⁺ salt has m 247-249°(dec) [Armarego et al. *Nature* 183 1176 1959, UV: Duvaux & Grabe *Acta Chem Scand* 4 806 1950, IR: Jöberg *Acta Chem Scand* 4 798 1950]. [*Beilstein* 6 IV 1991.] It is a plant growth substance and a herbicide.

Chloromethyl phenyl sulfide [7205-91-6] M 158.7, b $63^{\circ}/0.1$ mm, 98°/12mm, 113-115°/20mm, d_4^{20} 1.184, n_D^{20} 1.5950. Dissolve the sulfide in CH₂Cl₂ or CCl₄ and dry it (CaCl₂), or pass it through a tube of CaCl₂ and distil it using a fractionating column. *Harmful vapours*. It gives the *sulfone* [7205-98-3] (b 130°/1mm and m 53° from EtOH) [*Beilstein* 6 IV 1507] on oxidation with permonophthalic acid. [Böhme et al. Justus Liebigs Ann Chem 563 54 64 1949.] [*Beilstein* 6 III 1002.]

N-(Chloromethyl)phthalimide [17564-64-6] M 195.6, m 131-135°, 134-135°, 136.5°. Purify the imide by recrystallisation from EtOAc or CCl₄ or *via* the 1:1 complex with pyridine [Sakellarios J Am Chem Soc 70 2822 1948, Böhme et al. Chem Ber 92 1258 1959]. [Beilstein 21/10 V 372.]

1-Chloronaphthalene [90-13-1] **M 162.6, f - 2.3°, b 136-136.5°/20mm, 259.3°/760mm, d** $_{4}^{20}$ **1.194, n** $_{D}^{20}$ **1.6326.** Wash the naphthalene with dilute NaHCO₃, then dry it with Na₂SO₄ and fractionally distil it *in vacuo*. Alternatively, before distillation, it is passed through a column of activated alumina, or dried with CaCl₂, then distilled from sodium. It can be further purified by fractional crystallisation by partial freezing or by crystallisation of its *picrate* to constant melting point (**m** 132-133°) from EtOH, and recovering it from the picrate. [*Beilstein* **5** H 541, **5** III 1570, **5** IV 1658.]

2-Chloronaphthalene [91-58-7] M **162.6**, m **59.5-60°**, **61°**, b **121-122°**/**12mm**. **264-266°**/**760mm**. Distil 2-chloronaphthalene in a vacuum, then crystallise it from 25% EtOH/water, then dry it under vacuum (see also the 1-isomer above). [*Beilstein* **5** H 541, **5** I 262, **5** II 445, **5** III 1573, **5** IV 1660.]

1-Chloro-2-naphthol [633-99-8] **M 178.6, m 70°, 71°, pK**_{Est} ~8.3. Crystallise the naphthol from pet ether. The *acetate* has **m** 42-43°. [*Beilstein* **6** I 315, **6** II 603, **6** III 2990, **6** IV 4289.]

2-Chloro-1-naphthol [606-40-6] **M 178.6, m 64-65°, 65°, pK²⁰ 9.9** (aqueous EtOH). Crystallise the naphthol from pet ether. [*Beilstein* **6** I 308, **6** II 581, **6** III 2933, **6** IV 4230.]

4-Chloro-1-naphthol [604-44-4] **M 178.6, m 116-117^o, 120-121^o, pK²⁵ 8.86, 10.7** (aqueous **EtOH).** Crystallise the naphthol from EtOH or CHCl₃. [Beilstein 6 H 611, 6 II 582, 6 III 2933, 6 IV 4233.]

4-Chloro-2-nitroaniline [89-63-4] **M 172.6, m 114-115°, 116-116.5°, pK²⁵-0.99.** Crystallise the aniline from hot H₂O (**m** 115.8-116°), EtOH, EtOH/H₂O or $*C_6H_6$, and dry it for 10hours at 60° *in vacuo*. It has **m** 115.5-116° after sublimation. [*Beilstein* **12** H 729, **12** I 355, **12** II 396, **12** III 1649, **12** IV 1669.]

2-Chloro-4-nitrobenzamide [3011-89-0] **M 200.6, m 170-171°, 172°.** Crystallise the amide from EtOH. [Jensen & Ploug Acta Chem Acta **3** 15 1949, Beilstein **9** H 404, **9** III 1768.]

2-Chloro-1-nitrobenzene [88-73-3] M 157.6, m 32.8-33.2°. Crystallise it from EtOH, MeOH or pentane (charcoal). [Beilstein 5 IV 721.]

3-Chloro-1-nitrobenzene [121-73-3] **M 157.6, m 45.3-45.8°.** Crystallise the nitrobenzene from MeOH or 95% EtOH (charcoal), then pentane. [*Beilstein* **5** IV 722.]

4-Chloro-1-nitrobenzene [100-00-5] **M 157.6, m 80-83°, 83.5-84°, b 113°/8mm, 242°/atm, d** $_{4}^{100.5}$ **1.2914.** Crystallise the nitrobenzene from 95% EtOH (charcoal) and sublime it *in vacuo*. [Emmons J Am Chem Soc **76** 3470 1954, Newman & Forrest J Am Chem Soc **69** 1221 1947, Beilstein **5** IV 723.]

3-Chloroperbenzoic acid (MCPBA) [937-14-4] M 172.6, m 92-94°(dec), pK^{25} 7.57. Recrystallise MCPBA from CH₂Cl₂ [Traylor & Mikztal *J Am Chem Soc* 109 2770 1987]. Peracid of 99+% purity can be obtained by washing commercial 85% material with phosphate buffer pH 7.5 and drying the residue under reduced pressure. Alternatively the peracid can be freed from *m*-chlorobenzoic acid by dissolving 50g/L of *benzene and washing with an aqueous solution buffered at pH 7.4 (NaH₂PO₄/NaOH) (5 x 100mL). The organic layer is dried over MgSO₄ and carefully evaporated under vacuum. *Necessary care should be taken in case of* **EXPLOSION**. The solid is recrystallised twice from CH₂Cl₂/Et₂O and stored at 0° in a plastic container as glass catalyses the decomposition of the peracid. The acid is assayed iodometrically. [Schwartz & Blumbrgs *J Org Chem* **29** 1976 *1964*, Bortolini et al. *J Org Chem* **52** 5093 *1987*, McDonald et al. *Org Synth* Coll Vol VI 276 *1988*, *Beilstein* **9** IV 972.]

2-Chlorophenol [95-57-8] **M 128.6, m 8.8°, b 61-62°/10mm, 176°/760mm, pK²⁵ 8.34.** Pass 2-chlorophenol at least twice through a gas chromatography column. It has also been purified by fractional distillation. [*Beilstein* **6** IV 782.]

3-Chlorophenol [108-43-0] **M 128.6, m 33°, b 44.2°/1mm, 214°/760mm, pK²⁵ 9.13.** It could not be obtained solid by crystallisation from pet ether. It is best purified by distillation under reduced pressure. [*Beilstein* **6** IV 810.]

4-Chlorophenol [106-48-9] **M 128.6, m 43°, 100-101°/10mm, pK²⁵ 9.38.** Distil the phenol, then crystallise it from pet ether (b 40-60°) or hexane, and dry it under vacuum over P_2O_5 at room temperature. [Bernasconi & Paschalis J Am Chem Soc 108 2969 1986, Beilstein 6 IV 820.]

Chlorophenol Red (3,3'-dichlorophenolsulfonephthalein) [4430-20-0] M 423.3, m dec on heating, λ_{max} 573nm, pK²⁵ 5.96. Crystallise the dye from glacial acetic acid. It is yellow at pH 4.8 and violet at pH 6.7. [Beilstein 19/3 V 458.]

4-Chlorophenoxyacetic acid [122-88-3] M 186.6, m 157°, pK²⁰ 3.00, 4.15 (50% aqueous EtOH). Crystallise the acid from EtOH. It is a plant growth substance and a herbicide. [Beilstein 6 IV 845.]

(±)- α -4-Chlorophenoxypropionic acid [3307-39-9] M 200.6, m 116°, pK_{Est} ~3.2. Crystallise the acid from EtOH or HCOOH (m 114.5-115.5°). It is a plant growth substance. The *R*(+)- and *S*(-)-enantomers have m 103-104° (from pet ether) and $[\alpha]_{D}^{25} \pm 41°$ (c 1, EtOH). [Beilstein 6 III 695, 6 IV 850.]

B-4-Chlorophenoxypropionic acid [3284-79-5] **M 200.6, m 138°, pK**_{Est} ~4.2. Crystallise the acid from EtOH. It is a plant growth substance. [Beilstein 6 III 696, 6 IV 851.]

3-Chlorophenylacetic acid [1878-65-5] **M 170.6, m 74°, pK²⁵ 4.11.** Crystallise the acid from EtOH/water, or as needles from C_6H_6 or H_2O (charcoal). The *acid chloride* (prepared by boiling with SOCl₂) has **b** 127-129°/15mm. [Dippy & Williams *J Chem Soc* 161 1934, Misra & Shukla *J Indian Chem Soc* 28 480 1951, *Beilstein* **9** III 2263, **9** IV 1674.]

4-Chlorophenylacetic acid [1878-66-6] **M 170.6, m 105°, 106°, pK²⁵ 4.12.** Purify it as for 3-chlorophenylacetic acid. [Beilstein 9 III 2263, 9 IV 1674.]

4-Chloro-1-phenylbutan-1-one [939-52-6] **M 182.7, m 19-20°, b 134-137°/5mm, d** $_{4}^{20}$ **1.149, n** $_{D}^{20}$ **1.55413.** Fractionate the ketone several times using a short column. It recrystallises from pet ether at -20° as glistening white rosettes and is filtered at 0°, and dried in a vacuum desiccator over H₂SO₄. The *semicarbazone* has **m** 136-137°. [Conant et al. *J Am Chem Soc* **46** 1882 *1924*, Cloke *J Chem Soc* 1174 *1929*, Hart & Curtis *J Am Chem Soc* **79** 931 *1957*, *Beilstein* **7** IV 711.]

1-(2-Chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane (Mitotane, *o*,*p*'-DDD) [53-19-0] M 320.1, m 75.8-76.8°, 76-78°. Purify Mitotane by recrystallisation from pentane, MeOH or EtOH. It is soluble in isooctane and CCl₄. [Haller et al. J Am Chem Soc 67 1600 1945, Beilstein 5 IV 1883.]

3-(4-Chlorophenyl)-1,1-dimethylurea (Monuron) [150-68-5] **M 198.7, m 171º.** Crystallise monuron from MeOH. [Beilstein 12 IV 1191.]

4-Chloro-1,2-phenylenediamine [95-83-0] **M 142.6, m 69-70°, pK_1^{25} -0.27 (aqueous H₂SO₄), pK_2^{25} 3.35 (3.67). Recrystallise the diamine from pet. ether. [***Beilstein* **13 IV 68.]**

4-Chlorophenyl isocyanate [104-12-1] M **153.6**, m **28-31**°, **31-32**°, **32°**, **32.5**°, b **80.6**-**80.9**°/**9.5mm**, **115-117**°/**45mm**. Purify the isocyanate by recrystallisation from pet ether (b 30-40°) or better by fractional distillation. **TOXIC irritant**. [*Beilstein* **12** H 616, **12** III 1376, **12** IV 1213.]

4-Chlorophenyl isothiocyanate [2131-55-7] M 169.6, m 44°, 43-45°, 45°, 46°, 47°, b 110-115°/4mm, 135-136°/24mm. Check the IR first to see if free from OH frequencies. Triturate it with pet ether (b 30-60°) and decant the solvent. Repeat this 5times. The combined extracts are evaporated under reduced pressure to give almost pure compound as a readily crystallisable oil with a pleasant anise odour. It can be recrystallised from the minimum volume of EtOH at 50° (do not boil too long as it could react). It can be purified by vacuum distillation. [van der Kerk et al. *Org Synth* Coll Vol V 223 1973, *Beilstein* 12 IV 1214.] It is an IRRITANT and causes dermatitis; use gloves.

4-Chlorophenyl 2-nitrobenzyl ether [109669-56-9] M 263.7, m 44.5°, b 154-156°/3mm, 208°/11mm. Distil it under reduced pressure, and it crystallises from EtOH (m 44-45°) or MeOH (m 46°) as yellow needles. [Beilstein 6 II 210, 6 III 801, 6 IV 1253.]

4-Chlorophenyl 4-nitrobenzyl ether [5442-44-4] **M 263.7, m 77°, b 215°/12mm.** Distil it in a vacuum and crystallise it from EtOH, MeOH (**m** 75.5-76°) or pet ether (**m** 76°, 77°). UV has λ_{max} 222 and 302nm (EtOH). [Beilstein 6 II 222, 6 III 821, 6 IV 1288.]

4-Chlororesorcinol [95-88-5] **M 144.6, m 105°, pK**_{Est(1)} ~9.2, pK_{Est(2)} ~10.1. Crystallise it from boiling CCl₄ (10g/L, charcoal) and dry it in air. [*Beilstein* 6 II 818.] **IRRITANT.**

5-Chlorosalicaldehyde [635-93-8] **M 156.6, m 98.5-99°, 99.5°, 101°, pK²⁵ 7.4.** Steam distil it, then crystallise it from aqueous EtOH or $*C_6H_6$ (**m** 100°). It forms complexes with Cu²⁺ and Fe²⁺. [Beilstein **8** H 53, **8** II 45, **8** III 181, **8** IV 224.]

4-Chlorothiophenol [106-54-7] **M 144.6, m 51-52°, 53.5-54°, pK²⁵ 6.14.** Recrystallise the thiophenol from aqueous EtOH. The *SMe ether* has **m** 129° and the *SEt ether* has **m** 64°. [D'Sousa et al. *J* Org Chem **52** 1720 1987, Beilstein **6** H 326, **6** I 149, **6** III 1034.]

2-Chlorotoluene [95-49-8] **M 126.6, b 159°, d** $_{4}^{20}$ **1.083, n** $_{D}^{20}$ **1.5255.** Dry 2-chlorotoluene for several days with CaCl₂, then distil it from Na using a glass helices-packed column. [*Beilstein* **5** IV 805.]

3-Chlorotoluene [108-41-8] **M 126.6, m -48°, b 161-163°, d_4^{20} 1.072, n_D^{20} 1.522. Purify it as for 2-chlorotoluene above. [***Beilstein* **5 IV 806.]**

4-Chlorotoluene [106-43-4] **M 126.6, m 7.2°, b 162.4°, d** $_{4}^{20}$ **1.07, n** $_{D}^{20}$ **1.521.** Dry it with BaO, fractionally distil it, then fractionally crystallise it by partial freezing. [Beilstein 5 IV 806.]

Chrysene [218-01-9] **M 228.3, m 255-256°**. Purify chrysene by chromatography on alumina from pet ether in a darkened room. Its solution in C_6H_6 is passed through a column of decolorising charcoal, then crystallised by concentrating the eluate. It has also been purified by crystallising from C_6H_6 or C_6H_6 /pet ether, and by zone refining. [Gorman et al. *J Am Chem Soc* **107** 4404 *1985*]. It is freed from 5*H*-benzo[*b*]carbazole by dissolving it in *N*,*N*-dimethylformamide and successively adding small portions of alkali

and iodomethane until the fluorescent colour of the carbazole anion no longer appears when alkali is added. The chrysene (and alkylated 5*H*-benzo[*b*]carbazole) separate on addition of water. Final purification is by crystallisation from ethylcyclohexane and/or from 2-methoxyethanol [Bender et al. *Anal Chem* **36** 1011 *1964*]. It can be sublimed in a vacuum. [*Beilstein* **5** IV 2554.]

Chrysoidine G (4-phenylazo-1,3-benzenediamine monohydrochloride, basic orange 2) [532-82-1] M 248.7, m 118-118.5°, pK_1 3.32, pK_2 5.21. It is a red-brown powder which is recrystallised from H₂O. It gives a yellow solution in conc H₂SO₄ which turns orange on dilution. Its solubility at 15° is 5.5% (H₂O), 4.75% (EtOH), 6.0% (cellosolve), 9.5% (ethylene glycol), 0.005% (xylene) and is insoluble in *C₆H₆. The *hydroiodide* has m 184° (from EtOH) and the *picrate* forms red needles m 196°. [Muramatsu *Bull Chem Soc Jpn* **31** 864 1958, *Beilstein* **6** IV 561.]

trans-Cinnamaldehyde [14271-10-9] M 132.2, m -4°, -7.5°, -9°, b 80°/0.4mm, 85.8°/1.1mm, 125-128°/11mm, 152.2°/40mm, 163.7°/60mm, 199.3°/200mm, 246°/760mm (dec), d_4^{20} 1.0510, n_D^{20} 1.623. Purify the aldehyde by steam distillation (solubility is 1 in 700 parts H₂O) followed by distillation *in vacuo*. The *cis*-isomer has b 67-69°/40mm and d_4^{20} 1.0436 and n_D^{20} 1.5937. The *trans-semicarbazone* has m 210°(dec) from CHCl₃/MeOH (*cis-semicarbazone* has m 196°), the *transphenylsemicarbazone* has m 177° from CHCl₃/MeOH (the *cis-phenylsemicarbazone* has m 146°), the *trans-2,4-dinitrophenylhydrazone* has m 250°(dec) from MeOH as the *cis*-isomer [Gamboni et al. *Helv Chim Acta* 38 255 1955, Holum J Org Chem 26 4814 1961]. [Beilstein 9 IV 984.]

cis-Cinnamic acid (Z-3-phenyl-2-propenoic acid) [102-94-3] M 148.2, m 68° (for allo-form), pK²⁵ 3.93. The *cis*-acid is prepared by catalytic reduction of phenylpropiolic acid and after distillation in a high vacuum at ~95° it gives the most stable *allo*-isomer m 68°. Recrystallisation from pet ether yields Liebermann's *iso*-cinnamic acid m 58°. When the *allo*-acid (m 68°) is heated at 20° above its melting point in a sealed capillary for 0.5hours and allowed to cool slowly, Erlenmyer's *iso*-cinnamic acid m 42° is formed. This form can also be obtained in larger amounts by heating the *allo*-acid at 80° for 3hours, and on cooling it remains liquid for several weeks but gives the m 42° acid on innoculation with the crystals from the capillary tube. This form is unchanged in 6 weeks when kept in a dark cupboard. All three forms have the same pK values and the same rate of bromination. There is also a very labile form with m 32°. [Liebermann, *Chem Ber* 26 1572 1893, Claisen & Crismer Justus Liebigs Ann Chem 218 135 1883, Robinson & James J Chem Soc 1453 1933, Berthoud & Urech Helv Chim Acta 13 437 1930, McCoy & McCoy J Org Chem 33 2354 1968, Beilstein 9 IV 2001.]

trans-Cinnamic (*E*-3-phenyl-2-propenoic) acid [140-10-3, 621-82-9 for *E*-Z mixture] M 148.2, m 134.5-135°, pK^{25} 4.42 (4.50). Crystallise the acid from *benzene, CCl₄, hot water, water/EtOH (3:1), or 20% aqueous EtOH. Dry it at 60° in vacuo. It is steam volatile. [*Beilstein* 9 IV 2002.]

trans-Cinnamic anhydride [538-56-7] M 278.4, m 136°. Crystallise the anhydride from C_6H_6 or toluene/pet ether (b 60-80°) or EtOH (m 135-136°). [*Beilstein* 9 III 2703, 9 IV 2018.]

trans-Cinnamoyl chloride [102-92-1] M 166.6, m 35-37°, b 101°/2mm, 154°/25mm, 256-258°/atm, $d_4^{37.6}$ 1.6202, $n_D^{37.6}$ 1.1632. Refractionate it in a vacuum until the distillate solidifies on cooling, and recrystallise it from pet ether. The *trans-amide* has m 145-150° (from H₂O) [*Beilstein* 9 III 2711]. [Adams & Ulich J Am Chem Soc 42 605 1920, Bergmann et al. J Chem Soc 2524 1952, Beilstein 9 H 587, 9 I 233, 9 II 390, 9 III 2710, 9 IV 2020.]

N-Cinnamoyl-*N*-phenylhydroxylamine [7369-44-0] M 239.3, m 158-163°. Recrystallise the hydroxylamine from EtOH.

Cinnamyl alcohol [104-54-1] M 134.2, m 33°, b 143.5°/14mm, λ_{max} 251nm (ϵ 18,180 M⁻¹ cm⁻¹). Crystallise the alcohol from diethyl ether/pentane. [*Beilstein* 6 I 281.]

Congo Red (4B) (cotton red B) [573-58-0] M 696.7, m >360°, λ_{max} 497nm, pK₂²⁸ 4.19. Crystallise the dye from aqueous EtOH (1:3). Dry it in air. [*Beilstein* 6 I 342.] **Coniferyl alcohol** [4-hydroxy-3-methoxy-cinnamyl alcohol, 3-(4-hydroxy-3-methoxyphenyl)-2-propen-1-ol] [458-35-5] M 180.2, m 73-75°, b 163-165°/3mm, pK²⁵ 9.54. It is soluble in EtOH and insoluble in H₂O. It can, however, be recrystallised from EtOH and distilled in a vacuum. It polymerises in dilute acid. The *benzoyl* derivative has m 95-96° (from pet ether), and the *tosylate* has m 66°. [Derivatives: Freudenberg & Achtzehn *Chem Ber* 88 10 1955, UV: Herzog & Hillmer *Chem Ber* 64 1288 1931, Beilstein 6 II 1093.]

Coronene [191-07-1] M 300.4, m 438-440°, 4 4 2°, b 525°, λ_{max} 345nm (log ε 4.07). Crystallise coronene from *benzene or toluene, then sublime it in a vacuum. [Beilstein 5 III 2651.]

o-Cresol [95-48-7] M 108.1, m 30.9°, b 191°/760mm, n_D^{41} 1.536, n_D^{40} 1.534, pK^{25} 10.22. It can be freed from *m*- and *p*-isomers by repeated fractional distillation. It crystallises from *benzene by addition of pet ether. It has been fractionally crystallised by partial freezing of its melt. The 3,5-dinitrobenzoate (prepared with 3,5-dinitrobenzoyl chloride in dry pyridine, and recrystallised from EtOH or aqueous Me₂CO) has m 138°. [*Beilstein* 6 IV 1940.]

m-Cresol [108-39-4] M 108.1, f 12.0°, b 202.7°, d²⁰₄ 1.034, n²⁰_D 1.544, pK²⁵ 0.09. Separation of the m- and p-cresols requires chemical methods, such as conversion to their sulfonates [Brüchner Anal Chem 75 289 1928]. An equal volume of H_2SO_4 is added to *m*-cresol, stirred with a glass rod until solution is complete. Heat for 3hours at 103-105°. Dilute carefully with 1-1.5 volumes of water, heat to boiling point and steam distil until all unsulfonated cresol has been removed. Cool and extract the residue with ether. Evaporate the solution until the boiling point reaches 134° and steam distil off the *m*-cresol. Another purification method involves distillation, fractional crystallisation from the melt, then redistillation. Free from p-cresol by solution in glacial acetic acid and bromination by about half of an equivalent amount of bromine in glacial acetic acid. The acetic acid is distilled off, then fractional distillation of the residue under vacuum gives bromocresols from which 4-bromo-m-cresol is obtained by crystallisation from hexane. Addition of the bromocresol in glacial acetic acid slowly to a reaction mixture of HI and red phosphorus or (more smoothly) of HI and hypophosphorus acid, in glacial acetic acid, at reflux, removes the bromine. After an hour, the solution is distilled at atmospheric pressure until layers are formed. Then it is cooled and diluted with water. The cresol is extracted with ether, washed with water, NaHCO3 solution and again with water, dried with a little CaCl2 and distilled [Baltzly et al. J Am Chem Soc 77 2522 1955]. The 3,5-dinitrobenzoate (prepared with 3,5-dinitrobenzoyl chloride in dry pyridine, and recrystallised from EtOH or aqueous Me₂CO) has m 165°. [Beilstein 6 IV 2035.]

p-Cresol [106-44-5] M 108.1, m 34.8°, b 201.9°, n⁴¹ 1.531, n⁴⁶ 1.529, pK²⁵ 10.27. It can be separated from *m*-cresol by fractional crystalisation of its melt. Purify it by distillation, by precipitation from *benzene solution with pet ether, and *via* its benzoate, as for phenol. Dry it under vacuum over P₂O₅. It has also been crystallised from pet ether (b 40-60°) and by conversion to sodium *p*-cresoxyacetate which, after crystallisation from water is decomposed by heating with HCl in an autoclave [Savard Ann Chim (Paris) 11 287 1929]. The 3,5-dinitrobenzoate (prepared with 3,5-dinitrobenzoyl chloride in dry pyridine, and recrystallised from EtOH or aqueous Me₂CO) has m 189°. [Beilstein 6 II 2093.]

o-Cresolphthalein complexon (Metalphthalein) [2411-89-4] M 636.6, m 186°(dec), λ max 575nm, pK₁ 2.2, pK₂ 2.9, pK₃ 7.0, pK₄ 7.8, pK₅ 11.4, pK₆ 12.0. o-Cresolphthalein (a complexon precursor without the two bis-carboxymethylamino groups) is a contaminant and is one of the starting materials. It can be removed by dissolving the reagent in H₂O and adding a 3-fold excess of sodium acetate and fractionally precipitating it by dropwise addition of HCl to the clear filtrate. Wash the precipitate with cold H₂O and dry the *monohydrate* at 30° in a vacuum. The pure material gives a single spot on paper chromatography (eluting solvent EtOH/water/phenol, 6:3:1, and developing with NaOH). [Anderegg et al. *Helv Chim Acta* 37 113 1954.] It complexes with Ba, Ca, Cd, Mg and Sr. [*Beilstein* 18 III/IV 8141.]

o-Cresol Red [1733-12-6] M 382.4, m 290°(dec), pK²⁵ 1.26. Crystallise it from glacial acetic acid. Dry it in air. Dissolve it in aqueous 5% NaHCO₃ solution and precipitate it from a hot solution by dropwise addition of aqueous HCl. Repeat the procedure till the UVmax does not increase. [*Beilstein* 19 IV 1133.]

o-Cresotic acid (3-methylsalicylic acid) [83-40-9] M 152.2, m 163-164^o, 165^o, pK₁²⁵ 3.32. Crystallise the acid from water. [*Beilstein* 10 H 220, 10 II 131, 10 III 505, 10 IV 601.]

m-Cresotic acid (4-methylsalicylic acid) [50-85-1] M 152.2, m 176°, 177°, (182-183°), pK_1^{25} 3.15, pK_2^{25} 13.35. Crystallise the acid from water. It sublimes at 130°/11mm. [*Beilstein* 10 H 233, 10 II 137, 10 III 521, 10 IV 617.]

p-Cresotic acid (5-methylsalicylic acid) [89-56-5] M 152.2, m 151°, 152°, 151-154°, pK_1^{25} 3.40, pK_2^{25} 13.45. Crystallise the acid from H₂O. [Beilstein 10 H 227, 10 II 134, 10 III 516, 10 IV 610.]

Crystal Violet Chloride {Gentian violet, N-4[bis[4-(dimethylaminophenyl)methylene]-2,5cyclohexadien-1-ylidene]-<math>N-methylmethaninium chloride} [548-62-9] M 408.0, pK 9.36. Crystallise the dye from water (20mL/g), the crystals being separated from the chilled solution by centrifugation, then wash them with chilled EtOH (solubility is 1g in 10 mL of hot EtOH) and diethyl ether and dry under vacuum. It is soluble in CHCl₃ but insoluble in Et₂O. The carbinol is precipitated from an aqueous solution of the dye-hydrochloride, using excess NaOH, then dissolve in HCl and recrystallise it from water as the chloride [UV and kinetics: Turgeon & La Mer J Am Chem Soc 74 5988 1952]. The carbinol base has m 195° (needles from EtOH). The diphthalate (blue and turns red in H₂O) crystallises from H₂O, m 153-154°(dec at 185-187°)[Chamberlain & Dull J Am Chem Soc 50 3089 1928]. [Beilstein 13 H 233, 13 IV 2284.]

Cumene (isopropyl benzene) [98-82-8] M 120.2, b 69-70%/41mm, 152.4%/760mm, d_4^{20} 0.864, n_D^{20} 1.49146, n_D^{25} 1.48892. Usual purification is by washing it with several small portions of conc H₂SO₄ (until the acid layer is no longer coloured), then with water, 10% aqueous Na₂CO₃, again with water, and drying with MgSO₄, MgCO₃ or Na₂SO₄, followed by fractional distillation. It can then be dried with, and distilled from, Na, NaH or CaH₂. Passage through columns of alumina or silica gel removes oxidation products. It has also been steam distilled from 3% NaOH, and azeotropically distilled with 2-ethoxyethanol (which is subsequently removed by washing out with water). [*Beilstein* **5** IV 985.]

Cumene hydroperoxide [80-15-9] **M 152.2, b 60%.2mm, d** $_{4}^{20}$ **1.028, n** $_{D}^{24}$ **1.5232.** Purify the hydroperoxide by adding 100mL of 70% material slowly and with agitation to 300mL of 25% NaOH in water, keeping the temperature below 30°. The resulting crystals of the sodium salt are filtered off, washed twice with 25 mL portions of *benzene, then stirred with 100mL of *benzene for 20minutes. After filtering off the crystals and repeating the washing, they are suspended in 100mL of distilled water and the pH is adjusted to 7.5 by addition of 4M HCl. The free hydroperoxide is extracted into two 20mL portions of *n*-hexane, and the solvent is evaporated under vacuum at room temperature, the last traces being removed at 40-50%/1mm [Fordham & Williams *Canad J Res* **27B** 943 *1949*]. Petroleum ether, **but not diethyl ether**, can be used instead of *benzene, and powdered solid CO₂ can replace the 4M HCl. [*Beilstein* **6** IV 3221.] *The material is potentially* **EXPLOSIVE.**

Cuminaldehyde (4-isopropylbenzaldehyde) [122-03-2] M 148.2, b 82-84%/3.5mm, 120%/23mm, 131-135%/35mm, 235-236%/760mm, d_4^{20} 0.978, n_D^{20} 1.5301. A likely impurity is the benzoic acid. Check the IR for the presence of OH from CO₂H, and the CO frequencies. If the acid is present, then dissolve the aldehyde in Et₂O, wash it with 10% NaHCO₃ until effervescence ceases, then with brine, dry over CaCl₂, evaporate and distil the residual oil, preferably under vacuum. It is almost insoluble in H₂O, but soluble in EtOH and Et₂O. The *thiosemicarbazone* has m 147° after recrystallisation from aqueous EtOH, MeOH or *C₆H₆. [Crounse J Am Chem Soc 71 1263 1949, Bernstein et al. J Am Chem Soc 73 906 1951, Gensler & Berman J Am Chem Soc 80 4949 1958, Beilstein 7 H 318, 7 II 347, 7 III 1095, 7 IV 723.]

Curcumin [bis-(4-hydroxy-3-methoxycinnamoyl)methane] [458-37-7] M 368.4, m 183°. Crystallise curcumin from EtOH or acetic acid. [*Beilstein* 8 IV 3697.]

9-Cyanoanthracene (anthracene-9-carbonitrile) [1210-12-4] **M 203.2, m 134-137°, 173-177°.** Crystallise the nitrile from EtOH or toluene, and sublime it in a vacuum in the dark under N₂ [Ebied et al. J Chem Soc, Faraday Trans 1 **76** 2170 1980, Kikuchi et al. J Phys Chem **91** 574 1987]. [Beilstein **9** I 304.] **9-Cyanoanthracene photodimer** [33998-38-8] **M 406.4, dec to monomer above ~147°.** Purify the dimer by dissolving it in the minimum amount of CHCl₃ followed by addition of EtOH at 5° [Ebied et al. J Chem Soc, Faraday Trans 1 **75** 1111 1979, Ebied et al. J Chem Soc, Faraday Trans 1 **76** 2170 1980].

p-Cyanobenzoic acid [619-65-8] M 147.1, m 219°, pK²⁵ 3.55. Crystallise the acid from water and dry it in a vacuum desiccator over Sicapent. [*Beilstein* 9 IV 3324.]

4-Cyanobenzoyl chloride [6068-72-0] **M 165.6, m 68-70°, 69-70°, 73-74°, b 132°/8mm, 150-151°/25mm.** If the IR shows the presence of OH, then treat it with SOCl₂ boil for 1hour, evaporate and distil it in a vacuum. The distillate solidifies and can be recrystallised from pet ether. It is moisture sensitive and an **IRRITANT.** [Ashley et al. J Chem Soc 103 1942, Fison et al. J Org Chem **16** 648 1951, [Beilstein **9** III 4255, **14** IV 3327.]

p-Cyanophenol (*p*-hydroxybenzonitrile) [767-00-0] M 119.1, m 113°, pK^{25} 7.97. Crystallise the phenol from pet ether, *benzene or water and keep it under vacuum over P₂O₅. [Bernasconi & Paschelis J Am Chem Soc 108 2969 1986.] [Beilstein 10 H 167, 10 IV 441.]

Cyclohexylbenzene (phenylcyclohexane) [827-52-1] M 160.3, f 6.8°, b 237-239°, d_4^{20} 0.950, n_D^{20} 1.5258. Purify it by fractional distillation, and by fractional freezing. [Beilstein 5 IV 1424.]

Cyclopropyldiphenylcarbinol (cyclopropyldiphenylmethanol) [5785-66-0] M 224.3, m 86-87°. Crystallise the carbinol from *n*-heptane or C_6H_6 /pentane (m 82-83°). It sublimes at 60°/0.001mm. The 2,4-dinitrobenzoate has m 140°. [Beilstein 6 III 3517, 6 IV 4888.]

p-Cymene (4-isopropyltoluene) [99-87-6] M 134.2, b 177.1°/760mm, d_4^{20} 0.8569, n_D^{20} 1.4909, n_D^{25} 1.4885. Wash *p*-cymene with cold, conc H₂SO₄ until there is no further colour change, then repeatedly with H₂O, 10% aqueous Na₂CO₃ and H₂O again. Dry it over Na₂SO₄, CaCl₂ or MgSO₄, and distil it. Further purification steps include steam distillation from 3% NaOH, percolation through silica gel or activated alumina, and a preliminary reflux for several days over powdered sulfur. Store it over CaH₂. [*Beilstein* 5 IV 1060.]

Deoxybenzoin [451-40-1] **M 196.3, m 60°, b 177°/12mm, 320°/760mm.** Crystallise deoxybenzoin from EtOH and/or distil it in a vacuum. [*Beilstein* 7 II 368, 7 III 2098, 7 IV 1393.]

(±)-Desyl bromide (α-bromo-desoxybenzoin, ω-bromo-ω-phenyl acetophenone) [484-50-0] M 275.2, m 57.1-57.5°. Crystallise it from 95% EtOH. [Beilstein 7 H 436, 7 II 370, 7 III 2122.]

(±)-Desyl chloride (α -chloro-desoxybenzoin, ω -chloro- ω -phenyl acetophenone) [447-31-4] M 230.7, m 62-64°, 66-67°, 67.5°, 68°. For the purification of small quantities recrystallise it from pet ether (b 40-60°), but use MeOH or EtOH for larger quantities. For the latter solvent, dissolve 12.5g of chloride in 45mL of boiling EtOH (95%), filter and the filtrate yields colourless crystals (7.5g) on cooling. A further crop (0.9g) can be obtained by cooling in an ice-salt bath. It turns brown on exposure to sunlight but it is stable in sealed dark containers. The R(+)-enantiomer has m 75-76° (from pet ether) and [α]_{546.1} +168.4° (c 0.6, Me₂CO) [Roger & Wood J Chem Soc 811 1954]. [Henley & Turner J Chem Soc 1182 1931, Ward Org Synth Coll Vol II 159 1943, Beilstein 7 H 436, 7 I 234, 7 II 369, 7 III 2106, 7 IV 1396.]

Diacetoxyiodobenzene (iodobenzenediacetate) [3240-34-4] M **322.1, m 163-165^o.** The purity of diacetoxyiodobenzene can be checked by treatment with H₂SO₄ then KI and the liberated I₂ is estimated with standard thiosulfate. It has been recrystallised from 5M acetic acid and dried overnight in a vacuum desiccator over CaCl₂. The surface of the crystals may become slightly yellow but this does not affect its usefulness. [Sharefkin & Saltzman Org Synth Coll Vol V 600 1973, Beilstein **5** IV 693.]

1,2-Diacetyl benzene [704-00-7] **M 162.2, m 39-41°, 41-42°, b 110°/0.1mm, 148°/20mm.** Purify it by distilling and by recrystallising from pet ether. The *bis-2,4-dinitrophenylhydrazone* has **m** 221° (dec). [Halford & Weissmann J Org Chem 17 1646 1952, Riemschneider & Kassahn Chem Ber 92 1705 1959, [Beilstein 7 III 3501, 7 IV 2155.]

1,4-Diacetyl benzene [1009-61-6] **M 162.2, m 113-5-114.2°, b 128-130°/3mm.** Crystallise it from EtOH (**m** 114°) or *benzene and dry it in a vacuum over CaCl₂. Also purify it by dissolving it in acetone, treating with Norit, evaporating and recrystallising from MeOH. The *dioxime* has **m** 248-259°. [Wagner et al. J Am Chem Soc **108** 7727 1986]. [Beilstein **7** H 686, **7** II 624, **7** III 3504, **7** IV 2156.]

1,4-Diaminoanthraquinone [128-95-0] **M 238.3, m 268°.** Purify the anthraquinone by thin-layer chromatography on silica gel using toluene/acetone (9:1) as eluent. The main band is scraped off and extracted with MeOH. The solvent is evaporated, and the quinone is dried in a drying pistol [Land et al. *J Chem Soc, Faraday Trans 1* **72** 2091 1976]. It crystallises from EtOH (**m** 269°) in dark violet crystals. Store it in sealed ampoules in the dark. [*Beilstein* **14** H 197, **14** II 113, **14** III 437, **14** IV 458.]

1,5-Diaminoanthraquinone [129-44-2] **M 238.3, m 319°.** Recrystallise it from aniline (**m** 313-314°) EtOH or acetic acid [Flom & Barbara J Phys Chem **89** 4481 1985]. [Beilstein **14** H 303, **14** I 467, **14** II 116, **14** III 466, **14** IV 479.]

2,6-Diaminoanthraquinone [131-14-6] **M 238.3, m 310-320°.** Crystallise it from pyridine or nitrobenzene (red needles). Column-chromatography on Al₂O₃/toluene is used to remove a fluorescent impurity, then it is recrystallised from EtOH. [*Beilstein* 14 H 215, 14 I 471, 14 II 120, 14 III 480, 14 IV 486.]

3,3'-Diaminobenzidine tetrahydrochloride (2H₂O) [7411-49-6] M 396.1, m >300°(dec), $pK_{Est(1)}$ ~3.3, $pK_{Est(2)}$ ~4.7 (free base). Dissolve the salt in water and precipitate it by adding conc HCl, then drying it over solid NaOH. [*Beilstein* 13 IV 530.]

3,4-Diaminobenzoic acid [619-05-6] M 152.2, m 213°(dec), 228-229°, pK_1^{25} 2.57 (4-NH₂), pK_2^{25} 3.39 (3-NH₂), $pK_{Est(3)}$ ~5.1 (CO₂H). Crystallise it from H₂O or toluene. [Beilstein 15 IV 1503.]

3,5-Diaminobenzoic acid [535-87-5] M **152.2, m 235-240°(dec), pK²⁵ 5.13** (CO₂H), pK²⁵ **7.12** (in **80% aqueous 2-MeOCH₂CH₂OH**), Crystallise the acid from water. The *dihydrochloride* has m 226-228°(dec). [*Beilstein* **14** H 453, **14** III 1179, **14** IV 1304.]

3,4-Diaminobenzophenone [39070-63-8] **M 212.3, m 116-117°, pK**_{Est(1)} ~ **<0, pK**_{Est(2)} ~**2.5.** Crystallise it from C_6H_6 /pet ether and sublime it *in vacuo* [Ayyanger et al. Org Prep Proced Int **23** 627 1991].

4,4'-Diaminobenzophenone [611-98-3] M 212.3, m 242-244°, 243-245°, 246.5-247.5° (after sublimation at 0.0006mm), pK_1^{25} 1.37, pK_2^{25} 2.92. Purify the phenone by recrystallisation from EtOH and by sublimation in high vacuum. The *dihydrochloride* has m 260°(dec) (from EtOH), and the *thiosemicarbazone* has m 207-207.5°(dec) (from aqueous EtOH). [Kuhn et al. *Chem Ber* 75 711 1942, *Beilstein* 14 IV 255.]

1,2-Diamino-4,5-dichlorobenzene [5348-42-5] **M 177.0, m 162°, 162-163°, 163°, pK**_{Est(1)} ~**1.0, pK**_{Est(2)} ~**2.9.** Reflux the amine with activated charcoal in CH₂Cl₂, followed by recrystallisation from Et₂O/pet ether or pet ether [Koolar & Kochi *J Org Chem* **52** 4545 *1987*]. Alternatively, recrystallise the diamine from hexane, $*C_6H_6$, pet ether or H₂O (Na₂SO₄) and sublime it at 150°/15mm. [*Beilstein* **13** IV 72.]

4,4'-Diamino-3,3'-dinitrobiphenyl [6271-79-0] **M 274.2, m 275°, pK**_{Est} ~ -0.2. Crystallise the biphenyl from aqueous EtOH or pyridine/EtOH. [Beilstein 13 H 236, 13 I 68, 13 II 108, 13 III 415, 13 IV 387.]

4,4'-Diaminodiphenylamine [537-65-5] **M 199.3, m 158°, pK**_{Est} ~**5.0.** Crystallise the amine from water (its solubility at 25° is 0.42%). [*Beilstein* **13** H 110, **13** I 36, **13** II 55, **13** III 256, **13** IV 203.]

4,4'-Diaminodiphenylmethane [101-77-9] **M 198.3, m 91.6-92°, 92-93°, b 232°/9mm, pK**_{Est} **~4.9.** Crystallise the amine from water, 95% EtOH or *benzene. [*Beilstein* **13** IV 390.]

4,4-Diaminodiphenyl sulfide (4,4'-thioaniline) [139-65-1] M **216.3, m 108-109°, pK²⁰ 2.28** (**1:1 EtO**H/H₂O). It separates as needles from EtOH and is a **possible mutagen**. The free base is used for the detection of NO₃ ions. The *diacetate* crystallises from aqueous AcOH with **m** 182° and the *sulfoxide*, [119-59-5] **m** 184°, forms prisms from EtOH or H₂O. [Fuson & Melamed J Org Chem **13** 690 I1948, Beilstein **13** III 1246, **13**, IV 1246.]

2,7-Diaminofluorene [524-64-4] M 196.3, m 165°, pK_{Est} ~4.6. Recrystallise it from H₂O. [*Beilstein* 13 IV 449.]

1,5-Diaminonaphthalene [2243-62-1] **M 158.2, m 190°, pK²⁵ 4.12.** Recrystallise the aminonaphthalene from boiling H₂O, but this is wasteful due to poor solubility. Boil it in chlorobenzene (charcoal), filter hot and cool the filtrate (preferably under N₂). This gives colourless crystals. Dry it in a vacuum till free from chlorobenzene (odour), and store it in sealed ampoules under N₂ away from light. [*Beilstein* **13** IV 340.]

1,8-Diaminonaphthalene [479-27-6] **M 158.2, m 66.5°, b 205°/12mm, pK²⁵ 4.44.** Crystallise 1,8-diaminonaphthalene from water or aqueous EtOH, and sublime it in a vacuum. The N,N'-dimethyl derivative [20734-56-9] has **m** 103-104° and **pK²⁵ 5.61**, the N,N,N'-trimethyl- derivative [20734-57-0] has **m** 29-30° and **pK²⁵ 6.43**. [Hodgson et al. J Chem Soc 202 1945, Beilstein **13** IV 344.]

2,3-Diaminonaphthalene [771-97-1] **M 158.2, m 199°, pK²¹ 3.54 (in 50% aqueous EtOH).** Crystallise the diamine from water, or dissolve it in 0.1M HCl, by heating to 50°. After cooling, the solution is extracted with decalin to remove fluorescent impurities and centrifuged. [*Beilstein* **13** IV 346.]

2,5-Di-tert-amylhydroquinone [79-74-3] M 250.4, m 185.8-186.5°. Crystallise the hydroquinone under N₂ from boiling AcOH (7mL/g) plus boiling water (2.5mL/g). [Stolow & Bonaventura J Am Chem Soc 85 3636 1963]. Store it in sealed ampoules under N₂ away from light. [Beilstein 6 H 952, 6 III 4748.]

Di-n-amyl phthalate (dipentyl phthalate) [131-18-0] M 306.4, b 204-206%/11mm, d_4^{25} 1.023, n_D^{20} 1.489. Wash the ester with aqueous Na₂CO₃, then distilled water. Dry it with CaCl₂ and distil it in a vacuum. Store it in a vacuum desiccator over P₂O₅. [*Beilstein* 9 IV 3178.]

Diazoaminobenzene (1,3-diphenyltriazene) [136-36-6] M 197.2, m 99°, 100°. Crystallise the triazene from pet ether (b 60-80°) (m 94-96°), 60% MeOH/water or 50% aqueous EtOH (charcoal) containing a small amount of KOH. Its solubility in pet ether (b 60-80°) is ~6%. Also purify it by chromatography on alumina/toluene and elute with toluene/pet ether. Store the pale yellow needles in the dark. [Hartman & Dickey Org Synth Coll Vol II 163 1943, Beilstein 16 H 687, 16 I 404, 16 II 351, 16 III 643, 16 IV 904.]

Dibenzalacetone (1,5-diphenyl-1,4-dien-3-one) [538-58-9] M 234.3, m 112°. Crystallise the ketone from hot ethyl acetate (2.5mL/g) or EtOH. [*Beilstein* 7 IV 1747.]

Dibenz[*a*,*h*]**anthracene** (1,2:5,6-dibenzanthracene) [53-70-3] **M** 278.4, **m** 266-267°. The yellow-green colour (due to other pentacyclic impurities) is removed from it by crystallising from *benzene or by selective oxidation with lead tetraacetate in acetic acid [Moriconi et al. J Am Chem Soc 82 3441 1960]. [Beilstein 5 IV 2722.]

trans-1,2-Dibenzoylethylene (*trans*-1,4-diphenyl-2-butane-1,4-dione) [959-28-4] M 236.3, m 109-112°, 111°. It crystallises from MeOH or EtOH as yellow needles [Koller et al. *Helv Chim Acta* 29 512 1946]. The *dioxime* has m 210-211°(dec) from AcOH. [IR: Kuhn et al. J Am Chem Soc 72 5058 1950, Yates J Am Chem Soc 74 5375 1952, Erickson et al. J Am Chem Soc 73 5301 1951, Beilstein 7 IV 2578.]

Dibenzoylmethane (1,3-diphenyl-1,3-propanedione) [120-46-7] M 224.3, m 80°. Crystallise dibenzoylmethane from pet ether or MeOH. [*Beilstein* 7 IV 2512.]

2,3,6,7-Dibenzphenanthrene (pentaphene) [222-93-5] M **276.3**, m **255-256°**, **257°**. Purify pentaphene through Al_2O_3 with $*C_6H_6$ or xylene as eluant. It crystallises from xylene as yellow plates and sublimes in high vacuum. The *dipicrate* forms orange needles m 184° from $*C_6H_6$. (Clar & John *Ber* **64** 986 1931, Clar & Stewart J Chem Soc 3215 1951, Tet Lett 3023 1965, French & Zander *Ber* **99** 396 1966.]

Dibenzyl amine [103-49-1] **M 197.3, m -26°, b 113-114°/0.1mm, 174-175°/6mm, 270°/250mm, 300° (partial dec), d** $_{4}^{20}$ **1.027, n** $_{D}^{20}$ **1.576, pK**²⁵ **8.52.** Purify the amine by distillation in a vacuum. It causes burns to the skin. The *dihydrochloride* has **m** 265-266° (from MeOH/HCl), and the *tetraphenyl boronate* has **m** 129-133°. [Bradley & Maisey J Chem Soc 247 1954, Hall J Phys Chem **60** 63 1956, Donetti & Bellora J Org Chem **37** 3352 1972, Beilstein **12** IV 2179.]

Dibenzyl disulfide [150-60-7] **M 246.4, m 71-72°, 74-75°, b 142-148°/0.05-0.1mm, 210-216°/18mm.** Crystallise the disulfide from EtOH (**m** 77°), pet ether or CS₂ (**m** 72°) or distil it. The AgNO₃ complex has **m** 103°. [*Beilstein* **6** H 465, **6** I 229, **6** II 437, **6** III 1635, **6** IV 2760.]

Dibenzylethylenediamine (benzathine, DBED) [140-28-3] M 240.4, m 26°, b 195°/4mm, d_4^{20} 1.02, n_D^{20} 1.563, $pK_{Est(1)}$ ~ 5.9, $pK_{Est(2)}$ ~ 8.9. Dissolve DBED in acid, extract with toluene, basify, extract it with Et₂O, dry over solid KOH, evaporate and fractionate it *in vacuo*. The *diacetate* crystallises from H₂O by addition of EtOH and has m 111° (solubility in H₂O is ~25%). The *dihydrochloride* has m 306-308° (from H₂O) and the *dipicrate* has m 212°(dec) (from H₂O). [Frost et al., *J Am Chem Soc* 71 3842 1949, *Beilstein* 12 H 1067, 12 III 2304.]

Dibenzyl ketone (1,3-diphenyl-2-propanone) [102-04-5] M 210.3, m 34.0°. Fractionally crystallise it from its melt, then crystallise it from pet ether. Store it in the dark. [*Beilstein* 7 IV 1420.]

Dibenzyl malonate [15014-25-2] **M 284.3, b 188-190°/0.2mm, 193-196°/1mm, d_4^{20} 1.158, n_D^{20} 1.5452. Dissolve the ester in toluene, wash it with aqueous NaHCO₃, H₂O, dry over MgSO₄, filter, evaporate and distil it at high vacuum. [Ginsburg & Pappo J Am Chem Soc 75 1094 1953, Baker et al. J Org Chem 17** 77 1952, Beilstein 6 IV 2270.]

Dibenzyl sulfide [538-74-9] **M 214.3, m 48.5°, 50°.** Crystallise the sulfide from EtOH/water (10:1), or repeatedly from Et₂O. It has also been purified by chromatography on Al_2O_3 (pentane as eluent), then recrystallised from EtOH [Kice & Bowers *J Am Chem Soc* **84** 2390 *1962*]. Dry it in a vacuum at 30° over P_2O_5 , fused under nitrogen and re-dried. [*Beilstein* **6** IV 2649.]

2,4-Dibromoaniline [615-57-6] **M 250.9, m 79-80°, pK²⁵ 1.87.** Crystallise the aniline from aqueous EtOH. The *picrate* has **m** 124°. [*Beilstein* **12** H 655, **12** I 326, **12** II 356, **12** III 1471, **12** IV 1532.]

9,10-Dibromoanthracene [523-27-3] **M 336.0, m 222-224°, 226°.** Recrystallise it from toluene, xylene or CCl₄ (yellow needles), and sublime it in a vacuum [Johnston et al. J Am Chem Soc **109** 1291 1987]. [Heilbron & Heaton Org Synth Coll Vol **I** 207 1941, Beilstein **5** H 665.]

p-Dibromobenzene [106-37-6] M 235.9, m 87.8°. Steam distil the dibromobenzene, then crystallise it from EtOH or MeOH and dry it in the dark under vacuum. Purify it by zone melting. [*Beilstein* 5 IV 683.]

2,5-Dibromobenzoic acid [610-71-9] **M 279.9, m 157°, pK**_{Est} ~1.5. Crystallise the acid from water or EtOH. [Beilstein **9** H 358, **9** I 147, **9** II 237, **9** III 1428, **9** IV 1027.]

4,4'-Dibromobiphenyl [92-86-4] **M 312.0, m 164°, b 355-360°/760mm.** Crystallise it from MeOH. [*Beilstein* **5** IV 1820.]

(±)-2,2'-dibromo-1,1'-binaphthyl [74866-28-7, (±) 76284-65-6] M 412.1, m 178-183°, 180.5-181°. Purify the binaphthyl by chromatography through a silica gel column (70-230mesh) using hexane as eluent. It gives pale yellow crystals from EtOH with m 187.3-187.9°. The R-(+)-enantiomer [86688-08-6]

crystallises from hexane with **m** 157-157.5° and $[\alpha]_D^{25}$ +32.9° (c 1, pyridine) [Brown et al. *J Org Chem* **50** 4345 *1985*]. [Okamoto et al. *J Am Chem Soc* **103** 6971*1981*, *Beilstein* **5** III 2465.]

α,α-Dibromodeoxybenzoin [15023-99-1] M 354.0, m 111.8-112.7°. Crystallise α,α-dibromo deoxybenzoin from acetic acid, 50% aqueous EtOH (prisms, m 109-112°) or Et₂O (m 112°). [Curtius & Lang J Prakt Chem 44 547 1891, Beilstein 7 H 436, 7 III 2114.]

2,5-Dibromonitrobenzene [3460-18-2] **M 280.9, m 84°, 85-86°.** It crystallises from Me₂CO or EtOH. [*Beilstein* **5** H 250, **5** II 190, **5** III 621, **5** IV 732.]

2,6-Dibromo-4-nitrophenol [99-28-5] **M 280.9, m 143-144°, pK²⁵ 3.39.** Crystallise the phenol from aqueous EtOH, 50% aqueous AcOH (**m** 144-145°, dec varies with rate of heating). Dry it in an oven at 40-60° or *in vacuo* over NaOH. [Hartman & Dickey *Org Synth* Coll Vol **II** 173 1943, Beilstein **6** H 246, **6** I 123, **6** II 234, **6** III 849, **6** IV 1366.]

2,4-Dibromophenol [615-58-7] **M 251.9, m 37°, 41-42°, b 154°/10mm, 239°/760mm, pK²⁵ 7.79.** Crystallise the phenol from CHCl₃ at -40°, or distil it in a vacuum. [Beilstein 6 H 202, 6 I 106, 6 II 188, 6 III 753, 6 IV 1061.]

2,6-Dibromophenol [608-33-3] **M 251.9, m 56-57°, b 138°/10mm, 255-256°/740mm, pK²⁵ 6.67.** Distil the phenol under vacuum (at 10mm), then crystallise it from cold CHCl₃ or from EtOH/water. [Beilstein **6** H 202, **6** I 106, **6** II 188, **6** III 755, **6** IV 1064.]

 α, α' -Dibromo-*o*-xylene [91-13-4] M 264.0, m 95°, 95-96°, 98-99°, b 129-130°/4.5 mm. Crystallise it from CHCl₃ or pet ether, and/or distil it under vacuum. [Wenner Org Chem 17 527 1952, Beilstein 5 H 366, 5 I 180, 5 II 285, 5 III 819, 5 IV 929.]

α,α'-Dibromo-*m*-xylene [626-15-3] M 264.0, m 77°, 78-79°, b 156-160°/12mm. Crystallise it from acetone or *benzene, and fractionally distil it under vacuum. [Wenner *Org Chem* 17 527 1952, *Beilstein* 5 H 374, 5 I 184, 5 II 294, 5 III 839, 5 IV 946.]

α,α'-Dibromo-*p*-xylene [623-24-5] M 264.0, m 143.4°, 142-144°, 145-147°, b 155-158°/12-15mm, 245°/760mm. Distil it under a vacuum and recrystallise it from EtOH, *benzene or chloroform. [Wenner Org Chem 17 527 1952, Beilstein 5 H 385, 5 I 187, 5 II 301, 5 III 859, 5 IV 970.]

a-Dibutylamino- α -(*p*-methoxyphenyl)acetamide (Ambucetamide) [519-88-0] M 292.4, m 134°. Crystallise ambucetamide from EtOH containing 10% diethyl ether. [Janssen J Am Chem Soc 76 6192 1954, Beilstein 14 IV 2101.]

2,5-Di-*tert*-butyl aniline [21860-03-7] M 205.4, m 103-104°, 103-106°, pK²⁵ 3.34 (50% aqueous MeOH), 3.58 (90% aqueous MeOH). The aniline recrystallises from EtOH in fine needles after steam distillation. It has a pKa²⁵ of 3.58 (50% aqueous EtOH). The *tosylate* has m 164° (from AcOH). [Bell & Wilson J Chem Soc 2340 1956, Carpenter et al. J Org Chem 16 586 1951, Bartlett et al. J Am Chem Soc 76 2349 1954, Beilstein 12 IV 2891.]

p-Di-*tert*-butylbenzene [1012-72-2] M 190.3, m 80°, 236°/760mm. Crystallise it from Et_2O or EtOH and dry it under vacuum over P_2O_5 at 55°. [Tanner et al. *J Org Chem* 52 2142 1987, *Beilstein* 5 II 344.]

2,6-Di-*tert*-butyl-1,4-benzoquinone [719-22-2] M **220.3**, m **66-67**^o. It can be recrystallised from MeOH and sublimes in a vacuum. [*Beilstein* **7** IV 2116.]

3,5-Di-*tert*-butyl-o-benzoquinone [3383-21-9] M 220.3, m 112-114°, 113-114°. It can be recrystallised from MeOH or pet ether, and forms fine red plates or rhombs. [Flaig et al. Justus Liebigs Ann Chem 597 196 1955, IR: Ley & Müller Chem Ber 89 1402 1956, Beilstein 7 IV 2113.]

3,5-Di-*tert*-butyl catechol [1020-31-1] M 222.3, m 99°, 99-100°, $pK_{Est(1)} \sim 11.0$, $pK_{Est(2)} \sim 13.1$. Recrystallise the catechol from pet ether. [Ley & Müller *Chem Ber* 89 1402 1956, UV Flaig et al. Z *Naturforschung* 10b 668 1955.] Also purify it by crystallising three times from pentane [Funabiki et al. J Am Chem Soc 108 2921 1986].

2,6-Di-*tert*-**butyl**-*p*-**cresol (2,6-di**-*tert*-**butyl**-4-methylphenol, **butylatedhydroxytoluene**, **BHT** or **DBPC**) [128-37-0] **M 230.4**, **m 71.5°**, **pK**²⁵ **12.23**. Dissolve BHT in *n*-hexane at room temperature, then cool with rapid stirring, to -60°. The precipitate is separated, redissolved in hexane, and the process is repeated until the mother liquor is no longer coloured. The final product is stored under N₂ at 0° [Blanchard J Am Chem Soc **82** 2014 1960]. It has also been recrystallised from EtOH, MeOH, *benzene, *n*-hexane, methylcyclohexane or pet ether (b 60-80°), and is dried in a vacuum. [Beilstein **6** IV 3511.]

2,6-Di-*tert*-butyl-4-dimethylaminomethylphenol [88-27-7] M 263.4, m 93-94°, b 172°/30mm, pK_{Est} ~12.0. Crystallise it from *n*-hexane. [*Beilstein* 13 IV 2014.]

Di-tert-butyldiperphthalate [2155-71-7] M 310.3, m (48°) 57-57.5°, decomposes at 108°, CARE. Crystallise the perphthalate from Et₂O or pet ether and dry it over H₂SO₄. The IR has v_{max} 1772cm⁻¹ in CCl₄. [Milas & Surgemor J Am Chem Soc 68 642 1946, Milas & Kelin J Org Chem 36 2900 1971, Beilstein 9 III 4190, 9 IV 3260.] Potentially EXPLOSIVE.

2,6-Di-*tert*-butyl-4-ethylphenol [4130-42-1] M 234.4, m 42-44°, $pK_{Est} \sim 12.3$. Crystallise the phenol from aqueous EtOH or *n*-hexane. [*Beilstein* 6 IV 3529.]

2,5-Di*tert*-butylhydroquinone [88-58-4] M **222.3**, m **222-223°**. Crystallise the hydroquinone from $*C_6H_6$ or AcOH. [*Beilstein* 6 III 4741.]

2,6-Di-tert-butyl-4-isopropylphenol [5427-03-2] M 248.4, m 39-41°, 38-42°, b 105-106°/0.3mm, pK_{Est} ~12.3. Crystallise the phenol from *n*-hexane or aqueous EtOH. It is used for making the respective *phenoxyl radical*. [Cook & Norcross J Am Chem Soc 78 3797 1956, Beilstein 6 III 3534.]

2,6-Di-*tert*-butylphenol [128-39-2] M 206.3, m 37-38°, pK²⁵ 11.70. Crystallise the phenol from aqueous EtOH or *n*-hexane. [*Beilstein* 6 III 2061.]

Dibutyl phthalate (DBP, butyl phthalate) [84-74-2] M 278.4, f -35°, b $44^{\circ}/2.5 \times 10^{-4}$ mm, 182°/5mm, 206°/20mm, 340°/760mm, d²⁰₄ 1.4929, d⁵ 1.0426, n²⁵_D 1.490. Wash DBP with H₂O (to free it from alcohol), then dilute NaOH (to remove any butyl hydrogen phthalate or acid), aqueous NaHCO₃ (charcoal), then distilled water. Dry it (CaCl₂), distil it at 10torr or less, and store it in a desiccator over P₂O₅. [*Beilstein* 9 II 586, 9 III 4102, 9 IV 3175.]

Dichloramine-T (*N*,*N*-dichloro-*p*-toluenesulfonamide) [473-34-7] M 240.1, m 83°. Crystallise it from pet ether (b 60-80°) or CHCl₃/pet ether. Dry it in air $<55^{\circ}$ and store in the dark. It is soluble in CHCl₃ (~1:1), *C₆H₆ (~1:1) and CCl₄ (~1:2.5). It is a germicide and antibacterial as it readily liberates chlorine, and it should not smell strongly of chlorine; otherwise it should be purified. Alternatively dissolve ~15g of reagent in 75mL of hot acetic acid and precipitate it by addition of 37mL of N/10 bleaching powder solution (NaOCl), filter off, wash it with a dilute solution of the latter, dry as above (m 78-84°) and recrystallise it. "Sharp drying" will decompose it. [Orton & Bradfield *J Chem Soc* 993 *1927*, Krauss & Crede *J Am Chem Soc* 39 2720 *1917*, Soper *J Chem Soc* 1899 *1924*.] [see also chloramine-T (monochloramine T Na salt) in "Metalorganic Compounds", Chapter 5]. [*Beilstein* 11 H I07, 11 I 27, 11 II 63, 11 III 301.]

2,4-Dichloroaniline [554-00-7] **M 162.0, m 63°, pK²⁵ 2.02.** Crystallise the aniline from EtOH/water. It also crystallises from EtOH and is dried *in vacuo* for 6hours at 40° [Moore et al. J Am Chem Soc **108** 2257 1986, Edidin et al. J Am Chem Soc **109** 3945 1987]. [Beilstein **12** IV 1241.]

3,4-Dichloroaniline [95-76-1] **M 162.0, m 71.5°, pK²⁵ 2.97.** Crystallise the aniline from MeOH. [*Beilstein* **12** IV 1257.]

9,10-Dichloroanthracene [605-48-1] **M 247.1, m 214-215°.** Purify it by crystallising it from MeOH, EtOH, *C₆H₆ or Me₂CO (**m** 210-211°) followed by subliming *in vacuo*. [Masnori & Kochi J Am Chem Soc **107** 7880 1985, Beilstein **5** H 664, **5** I 324, **5** II 575, **5** III 2134, **5** IV 2293.]

2,4-Dichlorobenzaldehyde [874-42-0] **M 175.0, m 72°.** Crystallise the aldehyde from EtOH or ligroin. [*Beilstein* **7** IV 575.]

2,6-Dichlorobenzaldehyde [83-38-5] **M** 175.0, **m** 70.5-71.5°. Crystallise the aldehyde from EtOH/H₂O or pet ether (b 30-60°). [*Beilstein* 7 IV 576.]

o-Dichlorobenzene [95-50-1] M 147.0, b 81-82°/31-32mm, 180.5°/760mm, d_4^{20} 1.306, n_D^{20} 1.551, n^{25} 1.549. Contaminants may include the *p*-isomer and trichlorobenzene [Suslick et al. *J Am Chem Soc* 106 4522 1984]. It should be shaken with conc or fuming H₂SO₄, washed with water, dried with CaCl₂, and distilled from CaH₂ or sodium in a glass-packed column. Low conductivity material (*ca* 10⁻¹⁰ mhos) has been obtained by refluxing with P₂O₅, fractionally distilling and passing it through a column packed with silica gel or activated alumina: it is stored in a dry-box under N₂ or with activated alumina. [*Beilstein* 5 IV 654.]

m-Dichlorobenzene [541-73-1] M 147.0, b 173.0°/atm, d_4^{20} 1.289, n_D^{20} 1.54586, n_D^{25} 1.54337. Wash it with aqueous 10% NaOH, then with water until neutral, dry and distil it. Conductivity material (*ca* 10⁻¹⁰ mhos) has been prepared by refluxing over P₂O₅ for 8hours, then fractionally distilling, and storing with activated alumina. *m*-Dichlorobenzene dissolves rubber stoppers. [*Beilstein* **5** IV 657.]

p-Dichlorobenzene [106-46-7] M 147.0, m 53.0°, b 174.1°, d_4^{20} 1.241, n_D^{60} 1.52849. *o*-Dichlorobenzene is a common impurity. The *p*-isomer has been purified by steam distillation, crystallisation from EtOH or boiling MeOH, air-dried and dried in the dark under vacuum. It has also been purified by zone refining. [*Beilstein* 5 IV 658.]

2,2'-Dichlorobenzidine [84-68-4] **M 253.1, m 165°, pK**_{Est(1)} ~**3.0, pK**_{Est(2)} ~**4.0.** Crystallise the benzidine from EtOH or H₂O. [*Beilstein* **13** H 234, **13** I 66, **13** II 106, **13** III 477, **13** IV 384.]

3,3'-Dichlorobenzidine [91-94-1] **M 253.1, m 132-133°, pK**_{Est(1)} ~**4.8, pK**_{Est(2)} ~**5.7.** Crystallise the benzidine from EtOH, pet ether (m 133°) or *benzene. [*Beilstein* **13** H 234, **13** I 67, **13** II 106, **13** III 477, **13** IV 384.] CARCINOGEN.

2,3-Dichlorobenzoic acid [50-45-3] **M 191.0, m 168.3°, 169-170°, pK**²⁵ **2.67.** Aromatic acid impurities (to <0.05%) can be removed *via* the (\pm)- α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates Organic Process Research & Development **12** 120 2008.] Crystallise the acid from H₂O, aqueous EtOH, or 30% aqueous AcOH and several times from *C₆H₆, then dry it *in vacuo* at 40° overnight. The *methyl ester* has **m 35-39°**. [Hope & Riley J Chem Soc **123** 2478 1923, Lock Monatsh Chem **90** 687 1959, Shorter & Mather J Chem Soc 4744 1961, Beilstein **9** II 228, **9** IV 998.]

2,4-Dichlorobenzoic acid [50-84-0] **M 191.0, m 163-164**°, **pK**²⁵ **2.68.** Crystallise the acid from aqueous EtOH (charcoal), then *benzene (charcoal). It can also be recrystallised from water. [*Beilstein* **9** IV 998.] It can be freed from isomeric acids (to <0.05%) *via* the (\pm)- α -methylbenzylamine salt as follows: dissolve the dichloro-acid (10g, 50.2mmol) in isopropanol (200mL), heat to 60° and add the (\pm)-benzylamine (5.49g, 45.3mmol), then stir it at 60° for 1hour. Cool the mixture to room temperature, filter the slurry, wash it with isopropanol (25mL) and dry it *in vacuo* at 40° overnight to give 79% of the *salt* with **m** 185.2°. Dissolve the salt (5g) in H₂O (50mL) and MeOH (20mL), then heat to 60° and add concentrated HCl to pH <2.0. Cool the solution to room temperature add H₂O (12mL), filter it, wash it with H₂O (30mL) and dry it *in vacuo* at 40° overnight to give 94% of the *acid* with **m** 162.0°. [Ley & Yates *Organic Process Research & Development* **12** 120 2008.]

2,5-Dichlorobenzoic acid [50-79-3] M **191.0**, m **154°**, b **301°**/760mm, pK²⁵ **2.47**. Crystallise the acid from water. [*Beilstein* **9** IV 1005.] Aromatic acid impurities (to <0.05%) can be removed *via* the (\pm)-

 α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates Organic Process Research & Development **12** 120 2008.]

2,6-Dichlorobenzoic acid [50-30-6] **M 191.0, m 141-142°, pK²⁵ 1.59.** Crystallise the acid from EtOH and sublime it *in vacuo*. [*Beilstein* **9** IV 1005.] Aromatic acid impurities (to <0.05%) can be removed via the (\pm)- α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates Organic Process Research & Development **12** 120 2008.]

3,4-Dichlorobenzoic acid [51-44-5] **M 191.0, m 206-207°, pK²⁵ 3.64.** Crystallise the acid from aqueous EtOH (charcoal) or acetic acid. [*Beilstein* **9** IV 1006.] Aromatic acid impurities (to <0.05%) can be removed *via* the (\pm)- α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates Organic Process Research & Development **12** 120 2008.]

3,5-Dichlorobenzoic acid [51-36-5] **M 191.0, m 188°, pK²⁵ 3.54.** Crystallise the acid from EtOH and sublime it in a vacuum. [*Beilstein* **9** IV 1008.] Aromatic acid impurities (to <0.05%) can be removed *via* the (\pm)- α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates Organic Process Research & Development **12** 120 2008.]

2,6-Dichlorobenzonitrile [1194-65-6] M 172.0, m 145°. Crystallise the nitrile from acetone. [Beilstein 9 IV 1006.]

4,4'-Dichlorobenzophenone [90-98-2] **M 251.1, m 145-146°.** Recrystallise it from EtOH [Wagner et al. J Am Chem Soc **108** 7727 1986]. The semicarbazone has **m** 192-193° (from H₂O). [Beilstein **7** H 420, **7** I 228, **7** II 359, **7** III 2076, **7** IV 1376.]

2,5-Dichloro-1,4-benzoquinone [615-93-0] **M 177.0, m 161-162°, 163°.** Recrystallise it twice from 95% EtOH to give yellow needles [Beck et al. J Am Chem Soc **108** 4018 1986]. The dioxime has **m** 278°(dec). [Beilstein **7** H 632, **7** I 346, **7** II 580, **7** III 3376, **7** IV 2081.]

2,6-Dichloro-1,4-benzoquinone [697-91-6] **M 177.0, m 122-124°.** Recrystallise the quinone from pet ether (b 60-70°). It sublimes at $41^{\circ}/17.6\mu$. [Carlson & Miller J Am Chem Soc **107** 479 1985, Beilstein **7** II 580. **7** III 3376.]

2,6-Dichlorobenzoyl chloride [4659-45-4] M **209.5**, m **15-17**, b **122-124** 0 /15mm, d²⁰₄ **1.464**. Reflux the acid chloride for 2hours with excess of acetyl chloride (3 volumes), distil off AcCl followed by the benzoyl chloride. Store it away from moisture. It is an **IRRITANT**. [*Beilstein* **9** III 1377.]

3,4-Dichlorobenzyl alcohol [1805-32-9] **M 177.0, m 38-39°, 148-151°/760mm.** Crystallise the alcohol from EtOH (**m** 32-34°) or water (**m** 38°, needles). Its solubility at 20° is 1g in 1250mL of H₂O. [*Beilstein* **6** H 445, **6** III 1558, **6** IV 2598.]

2,3-Dichloro-5,6-dicyano-*p*-benzoquinone (DDQ) [84-58-2] M **227.0**, m **203**°(dec), **213-216**°, (**210-215**°)(dec). Crystallise DDQ from CHCl₃, CHCl₃/*benzene (4:1), or *benzene and store it at 0°. [Pataki & Harvey J Org Chem 52 2226 1987, Beilstein 10 H 902, 10 II 635, 10 IV 3521.]

2,4-Dichloro-6-methylphenol (2,4-dichloro-o-cresol) [1570-65-6] M 177.0, m 55°, b 111-113°/16mm, 129-132°/40mm, 231.6-231.9°/760mm, pK²⁰ 8.14. Crystallise the cresol from Et₂O (m 55°) or water; it has m 53-54° after sublimation. [Beilstein 6 H 359, 6 II 332, 6 III 1267, 6 IV 2001.]

2,4-Dichloro-1-naphthol [2050-76-2] **M 213.1, m 106-107°, pK**_{Est} ~7.7. Crystallise the naphthol from MeOH. The *1-methyl ether* has **m** 58° (from EtOH). [*Beilstein* **6** H 612, **6** I 308, **6** II 582, **6** III 2934, **6** IV 4233.]

2,3-Dichloro-1,4-naphthoquinone [117-80-6] M 227.1, m 193°. Crystallise the quinone from EtOH. [Beilstein 7 IV 2426.]

2,5-Dichloro-4-nitroaniline [6627-34-5] M **207.0**, m **153-154**°, **157-158**°, pK²⁵ -0.74 (aqueous H₂SO₄). Recrystallise it from EtOH, then sublime it *in vacuo*. [*Beilstein* **12** H 735, **12** II 400.]

2,6-Dichloro-4-nitroaniline (Dichloran) [99-30-9] **M 207.0, m 193°.** Crystallise Dichloran from aqueous EtOH or *benzene/EtOH. [*Beilstein* **12** IV 1681.]

2,5-Dichloro-1-nitrobenzene (1,4-dichloro-4-nitrobenzene) [89-61-2] M 192.0, m 56°, 266-269°/atm. Crystallise the nitrobenzene from absolute EtOH. [Beilstein 5 IV 726.]

3,4-Dichloro-1-nitrobenzene (**1,2-dichloro-4-nitrobenzene**) [99-54-7] M **192.0**, m **43**°. Crystallise it from absolute EtOH. [*Beilstein* **5** IV 726.]

2,4-Dichloro-6-nitrophenol [609-89-2] M 208.0, m 122-123°, $pK_{Est} \sim 5.0$. Crystallise the chloronitrophenol from AcOH. [Beilstein 6 IV 1358.]

2,6-Dichloro-4-nitrophenol [618-80-4] **M 208.0, m 125^o(dec), pK²⁵ 3.55.** Crystallise the chloronitrophenol from EtOH and dry it *in vacuo* over anhydrous MgSO₄. [*Beilstein* **6** IV 1361.]

Dichlorophen [2,2'-methylenebis(4-chlorophenol)] [97-23-4] M 269.1, b 177-178°, pK_{Est} ~9.7. Crystallise dichlorophen from toluene. [*Beilstein* 6 III 5406.]

2,3-Dichlorophenol [576-24-9] **M 163.0, m 57°, pK²⁵ 7.70.** Crystallise it from ether. [Beilstein 6 IV 883.]

2,4-Dichlorophenol [120-83-2] **M 163.0, m 42-43°, pK²⁵ 7.89.** Crystallise it from pet ether (b 30-40°). Purify it also by repeated zone melting, using a P_2O_5 guard tube to exclude moisture. It is very *hygroscopic* when dry. [*Beilstein* **6** IV 885.]

2,5-Dichlorophenol [583-78-8] M 163.0, m 58°, b 211°/744mm, pK²⁵ 7.51. Crystallise it from ligroin and sublime it in a vacuum or distil it. [*Beilstein* 6 IV 942.]

3,4-Dichlorophenol [95-77-2] **M 163.0, m 68°, b 253.5°/767mm, pK²⁵ 8.58.** Crystallise 3,4-dichlorophenol from pet ether/*benzene mixture and/or distil it. [*Beilstein* **6** IV 952.]

3,5-Dichlorophenol [591-35-5] **M 163.0, m 68°, b 122-124°/8mm, 233-234°/760mm, pK²⁵ 8.81.** Crystallise 3,5-dichlorophenol from pet ether/*benzene mixture and/or distil it. [Beilstein 6 IV 957.]

2,4-Dichlorophenoxyacetic acid (2,4-D) [94-75-7] **M 221.0, m 146°, pK²⁵ 2.90.** Crystallise 2,4-D from MeOH. It is a plant growth substance, a herbicide and is **TOXIC.** [*Beilstein* **6** IV 908.]

(±)- α -(2,4-Dichlorophenoxy)propionic acid (2,4-DP, Dichloroprop) [120-36-5] M 235.1, m 117°, pK²⁰ 2,86, Crystallise 2,4-DP from MeOH. It is a plant growth substance, a herbicide and is **TOXIC.** The R(+)- and S(-)- enantiomers have m 124° (from *C₆H₆) and [α] $_{\rm D}^{25}$ ±35.2° (c 1, Me₂CO). [Beilstein 6 H 189, 6 III 708, 6 IV 922-923.]

2,4-Dichlorophenylacetic acid [19719-28-9] M 205.0, m 131°, 132-133°, $pK_{Est} \sim 4.0$. Crystallise the acid from aqueous EtOH. [Beilstein 9 III 2271.]

2,6-Dichlorophenylacetic acid [6575-24-2] M 205.0, m 157-158°, $pK_{Est} \sim 3.8$. Crystallise the acid from aqueous EtOH. [Beilstein 9 III 2272.]

3-(3,4-Dichlorophenyl)-1,1-dimethyl urea (Diuron) [330-54-1] **M 233.1, m 153-154°, 155°,** Recrystallise it from 95% EtOH [Beck et al. J Am Chem Soc **108** 4018 1986]. [Beilstein **12** IV 1263.] **4,5-Dichlorophthalic acid** [56962-08-4] **M 235.0, m 200° (dec to anhydride), pK**_{Est(1)} **2.2,** $pK_{Est(2)} \sim 4.7$. Crystallise the acid from water. It has been purified by converting to the anhydride, reacting it with boiling EtOH to form the *monoethyl ester* (**m** 133-134°) and hydrolysing it back to the diacid (see next entry). [*Beilstein* **9** III 4205.]

3,6-Dichlorophthalic anhydride [4466-59-5] **M 189-191°, 191-191.5°, b 339°.** Boil the anhydride in xylene (allowing any vapours which would contain H₂O to be removed, e.g. Dean and Stark trap), which causes any acid present to dehydrate to the anhydride, and cool. Recrystallise it from xylene [Villiger *Chem Ber* **42** 3539 1909, Fedoorow Izv Akad Nauk SSSR Otd Khim Nauk 397 1948, Chem Abstr 1585 1948]. [Beilstein **17/11** V 260.]

2,6-Dichlorostyrene [28469-92-3] **M 173.0, m 8°, b 72-73°/2mm, d_4^{20} 1.4045, n_D^{20} 1.5798. Purify the styrene by fractional crystallisation from the melt and by distillation** *in vacuo***. [***Beilstein* **5 III 1174.]**

2,4-Dichlorotoluene [95-73-8] M 161.1, m -13.5°, b 61-62°/3mm, d_4^{20} 1.250, n_D^{20} 1.5513. Recrystallise 2,4-dichlorotoluene from EtOH at low temperature or fractionally distil it. [Beilstein 5 IV 815.]

2,6-Dichlorotoluene [118-69-4] **M 161.1, b 199-200**°/atm, d_4^{20} **1.254**, n_D^{20} **1.548**. Fractionally distil it and collect the middle fraction. [*Beilstein* **5** IV 815.]

3,4-Dichlorotoluene [95-75-0] **M 161.1, m -16°, b 205°/atm, d_4^{20} 1.2541, n_D^{20} 1.549.** Recrystallise it from EtOH at very low temperature or fractionally distil it. [*Beilstein* 5 IV 815.]

α,α'-Dichloro-*p*-xylene [623-25-6] M 175.1, m 100°, 254°/atm. Crystallise the xylene from *benzene and dry it under vacuum. [*Beilstein* 5 IV 967.]

Dicinnamalacetone (1,9-diphenyl-1,3,6,8-nonatetraen-5-one) [622-21-9] M 314.4, m 144°, 146°. Crystallise the ketone from *benzene/isooctane (1:1). The 1,3,5-trinitrobenzene complex (1:1) has m 113° (from EtOH), and the 1,3,5-trinitrobenzene complex (1:2) has m 110° (from EtOH). [Beilstein 7 H 524, 7 I 293, 7 II 484, 7 III 2756, 7 IV 1834.] The 2,4-dinitrophenylhydrazone has m 199-200°.

Dicumyl peroxide [80-43-3] **M 270.4, m 39-40°.** Crystallise the peroxide from 95% EtOH (charcoal). Store it at 0°. *Potentially* **EXPLOSIVE.** [*Beilstein* **6** IV 3220.]

9,10-Dicyanoanthracene [1217-45-4] **M 228.3, m 340°.** Recrystallise the dinitrile twice from pyridine [Mattes & Farid J Am Chem Soc **108** 7356 1986]. [Beilstein **9** IV 3667.]

1,4-Dicyanobenzene (terephthalonitrile) [623-26-7] M 128.1, m 222°. Crystallise the dinitrile from EtOH or AcOH, and has m 221.5-222.5° after sublimation. [Beilstein 9 H 846, 9 I 376, 9 II 613, 9 III 4255, 9 IV 3328.]

1,4-Dicyanonaphthalene [3029-30-9] **M 178.2, m 206°.** Purify it by recrystallization from EtOH (charcoal), **m** 208°, and sublime it *in vacuo*. [Bradbrook & Linstead J Chem Soc 1742 1936, Beilstein **9** H 917, **9** II 651, **9** III 464.]

trans-4-(Diethylamino)azobenzene [3588-91-8] M 320.5, m 171° pK²⁶ 3.08 (50% aqueous EtOH) Purify the azobenzene by column chromatography on alumina, elute with, and crystallise it from, toluene, [Albini et al. J Chem Soc Perkin Trans 2 1393 1982, Flamigni & Monti J Phys Chem 89 3702 1985]. The deoxycholate (1:4) complex has m 194-194° (from EtOH). [Beilstein 16 H 341, 16 I 311, 16 III 342, 16 IV 455.]

N,N-Diethylaniline [91-66-7] M 149.2, b 216.5% atm, d_4^{20} 0.938, n_D^{20} 1.5409 pK²⁵ 6.57. Reflux the base for 4hours with half its weight of acetic anhydride, then fractionally distil it under reduced pressure (b 92% 10mm). [Beilstein 12 IV 252.]

Di-(2-ethylhexyl)phthalate ('di-iso-octyl' phthalate) [117-81-7] M 390.6, b 384°, 256-257°/1mm, d_4^{20} 0.9803, n_D^{20} 1.4863. Wash the ester with Na₂CO₃ solution, then shake it with water. After the resulting emulsion has been broken by adding ether, the ethereal solution is washed twice with water, dried (CaCl₂), and evaporated. The residual liquid is distilled several times under reduced pressure, then stored in a vacuum desiccator over P₂O₅ [French & Singer J Chem Soc 1424 1956]. [Beilstein 9 IV 3184.]

Diethyl phenyl orthoformate (diethoxy phenoxy ethane) [14444-77-0] M 196.3, b 1110/11mm, 1220/13mm, d_4^{20} 1.0099, n_D^{20} 1.4799. Fractionate the ortho-ester through an efficient column under vacuum [Smith Acta Chem Scand 10 1006 1956].

Diethyl phthalate [84-66-2] **M 222.2. b 172^o/12mm, b 295^o/760mm, d** $_{4}^{25}$ **1.1160, n 1.5022.** Wash the ester with aqueous Na₂CO₃, then distilled water, dry (CaCl₂), and distil it under reduced pressure. Store it in a vacuum desiccator over P₂O₅. [*Beilstein* **9** IV 3172.]

Diethyl 2-phthalimidomalonate [56680-61-5] **M 305.3, m 72-74°, 73-74°, pK²⁵ 9.17.** Dissolve it in xylene and when the temperature is 30° add pet ether (b 40-60°) and cool to 20° whereby the malonate separates as a pale brown powder [Booth et al. J Chem Soc 666 1944]. Alternatively, dissolve it in $*C_6H_6$, dry it over CaCl₂, filter, evaporate and the residual oil solidifies. Grind this with Et₂O, filter and wash it with Et₂O until white in colour, and dry it in a vacuum. It forms a yellow sodium salt **m** 280°(dec). The anion has λ_{max} 254nm (ϵ 18.5K) [Clark & Murray Org Synth Coll Vol **I** 271 1941, UV of Na salt: Nnadi & Wang J Am Chem Soc **92** 4421 1970]. [Beilstein **21** H 487, **21** I 379, **21** III/IV 5264.]

Diethylstilboesterol [stilbesterol, stilboesterol, (E)-3,4-bis(4-hydroxyphenyl)-3-hexene] [56-23-1] M 268.4, m 169-172°. Crystallise stilbesterol from *benzene. [Beilstein 6 IV 6856.]

Diethyl terephthalate [636-09-0] M 222.2, m 44°, 142°/2mm, 302°/760mm. Crystallise the ester from toluene and distil it under reduced pressure. [Beilstein 9 H 8, 9 I 374, 9 III 4250, 9 IV 3304.]

4,4'-Di-*n*-heptyloxyazoxybenzene [2635-26-9] M **426.6**, m **75°**, **95°** (smectic \emptyset nematic) and **127°** (nematic \emptyset liquid), pK_{Est} ~ -5. Purify azoxybenzene by chromatography on Al₂O₃ (*benzene), recrystallise it from hexane or 95% EtOH and dry it by heating under vacuum. The liquid crystals can be sublimed *in vacuo*. [Mellifiori et al. Spectrochim Acta Part A **37**(A) 605 1981, Dewar & Schroeder J Am Chem Soc **86** 5235 1964, Weygand & Glaber J Prakt Chem **155** 332 1940, Beilstein **16** III 600, **16** IV 5264.]

9,10-Dihydroanthracene [613-31-0] **M 180.3, m 110-110.5°, b ~312°/atm, d**²⁰ **0.880.** Crystallise it from EtOH [Rabideau et al. J Am Chem Soc **108** 8130 1986]. [Beilstein **5** H 641, **5** IV 2182.]

Dihydrochloranil (tetrachloro-1,4-hydroquinone) [87-87-6] M 247.9, m 240.5°. Crystallise the quinone from EtOH or AcOH/EtOH. Sublime it at 77°/0.6x10⁻³mm. The *dibenzoyl* derivative has m 233°. [Conant & Fieser J Am Chem Soc 45 2207 1923, Rabideau et al. J Am Chem Soc 108 8130 1986, Beilstein 6 H 851, 6 I 417, 6 II 846, 6 III 4436, 6 IV 5775.]

1,4-Dihydro-1,4-epoxynaphthalene [573-57-9] **M 144.2, m 53-54.5°, 53-56°, 55-56°.** Dissolve it in Et₂O, wash it with H₂O, dry it over K₂CO₃, filter, evaporate and dry the residue at 15mm, then recrystallise it from pet ether (b 40-60°), dry it at 25°/0.005mm and sublime it (sublimes slowly at room temperature)[Wittig & Pohmer Chem Ber **89** 1334 1956, Gilman & Gorsich J Am Chem Soc **79** 2625 1957]. [Beilstein **17** III/IV 548.]

1,8-Dihydroxyanthraquinone (Danthrone) [117-10-2] **M 240.1, m 193-197°**, pK_1^{25} **8.30**, pK_2^{25} **12.46**. Crystallise Danthrone from EtOH and sublime it in a vacuum. [*Beilstein* **8** IV 3217.]

2,4-Dihydroxyazobenzene (Sudan orange G) [2051-85-6] **M 214.2, m 143-146**, **228**, **pK**_{Est(1)} <**0, pK**_{Est(2)} ~**7.3, pK**_{Est(3)} ~**9.3.** Crystallise the dye from hot EtOH (charcoal). [*Beilstein* **16** IV 264.]

2,3-Dihydroxybenzaldehyde [24677-78-9] **M 138.1, m 135-136°, pK** $_{1}^{20}$ **7.73, pK** $_{2}^{20}$ **10.91.** Crystallise the aldehyde from water. [*Beilstein* **8** III 1979.]

2,4-Dihydroxybenzoic acid (β -resorcylic acid) [89-86-1] M 154.1, m 226-227°(dec), pK₁²⁵ 3.30, pK₂²⁵ 9.12, pK₃²⁵ 15.6. Crystallise the acid from water. [*Beilstein* 10 IV 1420.]

2,5-Dihydroxybenzoic acid (Gentisic acid, 5-hydroxysalicylic acid) [490-79-9] M 154.1, m 204.5-205°, pK²⁵ 2.95. Crystallise gentisic acid from hot water or *benzene/acetone. Dry it in a vacuum desiccator over silica gel. [Beilstein 10 H 384, 10 IV 1441.]

2,6-Dihydroxybenzoic acid (γ -resorcylic acid) [303-07-1] M 154.1, m 167°(dec), pK²⁵ 1.05. Dissolve the acid in aqueous NaHCO₃ and the solution is washed with ether to remove non-acidic material. The acid is precipitated by adding H₂SO₄, and recrystallised from water. Dry it under vacuum and store it in the dark [Lowe & Smith J Chem Soc, Faraday Trans 1 69 1934 1973]. [Beilstein 10 IV 1456.]

2,4-Dihydroxybenzophenone [131-56-6] **M 214.2, m 145.5-147°** $pK_{Est(1)} \sim 7.0$, $pK_{Est(2)} \sim 12.0$. Recrystallise it from MeOH. [*Beilstein* **8** IV 2442.]

2,5-Dihydroxybenzyl alcohol (Gentisyl alcohol) [495-08-9] M 140.1, m 47-48° pK_{Est(1)} ~9.3, pK_{Est(2)} ~11.3. Crystallise the alcohol from ligroin, CHCl₃, AcOH or H₂O. Sublime it at ~70° under high vacuum. [Beilstein 6 II 1084, 6 III 6326.]

2,2'-Dihydroxybiphenyl [1806-29-7] **M 186.2, m 108.5-109.5°, pK** $_{1}^{25}$ **7.56, pK** $_{2}^{25}$ **11.80.** Crystallise the biphenyl repeatedly from toluene, then sublime it at 60°/10⁻⁴mm. [*Beilstein* 6 IV 6645.]

4.4'-Dihydroxybiphenyl (4,4'-biphenol) [92-88-6] M 186.2, m 280.5°, 280-285°, $pK_{Est(1)} \sim 3.6$, $pK_{Est(2)} \sim 11.8$. Recrystallise the biphenol from aqueous EtOH preferably under N₂ to avoid oxidation to the extended qiunone. It is characterized as the *dimethyl derivative* (4,4'-*dimethoxybiphenyl*) from which it is prepared by demethylation. The dimethoxy derivative has m 176.5-177° (from AcOH, EtOH, hexane or *C₆H₆) and sublimes *in vacuo*. [Williamson & Rodebush *J Am Chem Soc* 63 3019 1941, Beilstein 6 I 485, 6 II 962, 6 III 6389, 6 IV 6651.]

1,8-Dihydroxy-3-methylanthraquinone (chrysophanic acid) [481-74-3] M 245.3, m 196°, $pK_{Est(1)} \sim 8.2$, $pK_{Est(2)} \sim 12.4$. Crystallise chrysophanic acid from EtOH or *benzene and has m 195.6-196.2°, after sublimation it in a vacuum. The yellow *mono-acetate* has m 188-190° (from MeOH or Me₂CO). It forms Ni²⁺, Co²⁺ and Cu²⁺ complexes. [*Beilstein* 8 H 470, 8 I 725, 8 II 510, 8 III 3808, 8 IV 3277.]

1,5-Dihydroxynaphthalene (**1,5-naphthalenediol**) [83-56-7] **M 160.7**, **m 258°**, **260°**, **265°**, **pK**_{Est(1)} ~**9.0**, **pK**_{Est(2)} ~**11.0**. The diol (~30g) is purified by making into a thick paste with H₂O and suspending this in 3L of H₂O containing 200mL of EtOH, boiling under reflux for 3hours, cooling to 30°, saturating with SO₂, digesting below the boiling point for 1hour and filtering fast through a large hot filter paper. The hot filtrate is poured onto crushed ice whereby the diol (15-20g) separates as colourless needles (**m** 258°) [Wheeler & Ergle J Am Chem Soc **52** 4873 1930]. Recrystallise it from H₂O or nitromethane under N₂ to avoid oxidation. The dibenzoyl derivative has **m** 245° (from EtOH). The 5-methoxy-1-naphthol derivative [prepared from the diol in MeOH/HCl (1:30 weight to volume ratio) and set aside at 25° for 9-10days] crystallised from pet ether (**m** 135-136°) or from CH₂Cl₂/hexane (needles **m** 140°) [Bell & McCaffrey Aust J Chem **46** 731 1993]. [Beilstein **6** I 477, **6** II 950, **6** III 5265, **6** IV 6554.]

1,6-Dihydroxynaphthalene [575-44-0] M **160.2**, m **138-139**° (with previous softening), pK_{Est} ~9.4. Crystallise it from *benzene or *benzene/EtOH after treatment with charcoal. [Beilstein 6 IV 6557.]

2,5-Dihydroxyphenylacetic acid (homogentisic acid) [451-13-8] M 168.2, m 152°, 154-152°, pK^{20} 4.14 (COOH). Crystallise homogentisic acid from EtOH/CHCl₃ or H₂O (solubility is 85% at 25°). [Beilstein 10 IV 1506.]

278

3,4-Dihydroxytoluene (4-methylcatechol) [452-86-8] **M 124.1, m 65-66°, 68°, b 112°/3mm, 241°/760mm, pK** $_{1}^{25}$ **9.44 (9.7), pK** $_{2}^{25}$ **10.90 (11.9).** Crystallise the catechol from *C₆H₆. The purity is checked by TLC. Crystallise it from high-boiling pet ether and distil it in a vacuum. [*Beilstein* 6 IV 5878.]

1,4-Diiodobenzene [624-38-4] M 329.9, m 132-133°. Crystallise it from EtOH or boiling MeOH, then dry it in air. [Beilstein 5 IV 700.]

trans-4,4'-Dimethoxyazobenzene [501-58-6] M 242.3, m 162.7-164.7°, 165-166°, pK_{Est} ~0. Chromatograph it on basic alumina and elute with *benzene. Then crystallise the residue from 2:2:1 (v/v) methanol/*benzene or Me₂CO. [*Beilstein* 16 H 112, 16 I 237, 16 II 43, 16 III 93, 16 IV 172.]

1,2-Dimethoxybenzene (veratrole) [91-16-7] **M 137.2, m 23°, b 208.5-208.7, d** $_{4}^{20}$ **1.085, n** $_{D}^{25}$ **1.53232.** Steam distil veratrole, then fractionally distil it from BaO, CaH₂ or Na. Crystallise it from *benzene or low-boiling pet ether at 0°. Fractionally crystallise it from its melt. Store it over anhydrous Na₂SO₄. [*Beilstein* **6** IV 5564.]

1,3-Dimethoxybenzene [151-10-0] **M 137.2, b 212-213**°, d_4^{20} **1.056, n_D^{20} 1.5215.** Extract it with aqueous NaOH, and water, then dry it. Fractionally distil it from BaO or Na. [*Beilstein* 6 IV 5663.]

1,4-Dimethoxybenzene [150-78-7] **M 137.2, m 57.2-57.8**°. Steam distil 1,4-dimethoxybenzene, then crystallise it from hexane or *benzene, and from MeOH or EtOH, but these are wasteful due to high solubilities. Dry it under vacuum. It also sublimes under vacuum. [*Beilstein* **6** IV 5718.]

2,4-Dimethoxybenzoic acid [91-52-1] **M 182.2, m 107.3°, 109°, pK²⁵ 4.36.** Crystallise the acid from water and dry it in a vacuum desiccator over H_2SO_4 . The *S-benzylisothiuronium salt* has **m** 158-159° (from CHCl₃). [*Beilstein* **10** H 379, **10** I 177, **10** II 252, **10** III 1371, **10** IV 1422.] Aromatic acid impurities (to <0.05%) can be removed *via* the (±)- α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates Organic Process Research & Development **12** 120 2008.]

2,6-Dimethoxybenzoic acid [1466-76-8] **M 182.2, m 186-187°, 188-191°, pK²⁵ 3.44.** Crystallise the acid from water or 1,1-dichloroethane (**m** 187.5-188.5°). [Beilstein **10** H 388, **10** I 185, **10** II 259, **10** III 1401, **10** IV 1456.]

3,4-Dimethoxybenzoic acid (veratric acid) [93-07-2] **M 182.2, m 181-182°, 185-186°, pK²⁵ 4.43.** Crystallise the acid from Et₂O, H₂O or aqueous acetic acid. It has **m** 180-181° after sublimation at 80°/1mm. [*Beilstein* **10** H 393, **10** I 188, **10** II 261, **10** III 1404, **10** IV 1406.]

3,5-Dimethoxybenzoic acid [1132-21-4] **M 182.2, m 185-186°, pK²⁵ 3.97.** Crystallise the acid from water, EtOH or aqueous acetic acid and dry it in a vacuum. [*Beilstein* **10** H 405, **10** I 195, **10** III 1446, **10** IV 1501.]

p,*p*'-**Dimethoxybenzophenone** [90-96-0] **M 242.3, m 144.5**°. Crystallise the ketone from absolute EtOH, aqueous EtOH or EtOH/AcOH. The 2,4-dinitrophenylhydrazone has **m** 199-200°. [Beilstein **8** H 317, **8** I 641, **8** II 355, **8** III 2649, **8** IV 2453.]

2,6-Dimethoxy-1,4-benzoquinone [530-55-2] **M 168.1, m 255-256°, 256°(dec), 262-263°,** Crystallise the quinone from H₂O or acetic acid. It sublimes at 175-180°/1mm. It has UV with λ_{max} at 287 and 377nm (CHCl₃). [*Beilstein* **8** H 385, **8** I 683, **8** II 433, **8** III 3354, **8** IV 2710,]

5,6-Dimethoxy-1-indanone [2107-69-9] **M 192.2, m 118-120°.** Crystallise the indanone from MeOH, then sublime it in a vacuum. [*Beilstein* **8** IV 1985.]

1,4-Dimethoxynaphthalene [10075-62-4] **M 188.2, m 87-88°.** Crystallise the naphthalene from EtOH, MeOH (**m** 85-86°) or pet ether. [*Beilstein* **6** H 984, **6** III 5261, **6** IV 6546.]

1,5-Dimethoxynaphthalene [10075-63-5] **M 188.2, m 183-184°, b 179°/13mm** Crystallise it from EtOH, AcOH (**m** 178-180°) or $*C_6H_6$. Also distil it in a vacuum. [*Beilstein* 6 III 5266, 6 IV 6554.]

3,4-Dimethoxy-6-nitrobenzaldehyde (6-nitroverataldehyde) [20357-25-9] M 211.2, m 132°, 133.5-134.5°. The aldehyde is purified by dissolving 9g in 200mL of boiling 95% EtOH, and set aside overnight to crystallise. It is then dried *in vacuo* at 50° and recrystallised from 110mL of 95% EtOH to give 6-7g of aldehyde with m 132-133°. Crystallisation from aqueous EtOH provides light yellow needles. It is light sensitive and should be stored in the dark [Fetscher *Org Synth Coll Vol* **4** 735 *1963*]. [*Beilstein* **8** H 262, **8** I 610, **8** II 290, **6** III 2065, **6** IV 1785.]

2,6-Dimethoxyphenol (pyrogallol-1,3-diethylether) [91-10-1] **M 154.2, m 54-56°, pK**_{Est} ~9.6. Purify the phenol by zone melting or sublimation in a vacuum. [Beilstein 6 IV 7329.]

3,5-dimethoxyphenol (phloroglucinol dimethylether) [500-99-2] M 154.2, m 42-43°, b 115°/0.04mm, pK²⁵ 9.35. Purify the phenol by distillation followed by sublimation in a vacuum. [*Beilstein* 6 IV 7362.]

3,4-Dimethoxyphenyl acetic acid (homoveratric acid) [93-40-3] **M 196.2, m 97-99°, pK²⁵ 4.33.** Crystallise homoveratric acid from H₂O or C_6H_6 /ligroin. The *amide* has **m** 142° (from H₂O). [Beilstein 10 H 409, 10 I 197, 10 II 268, 10 III 1459, 10 IV 1509.]

3,5-Dimethoxyphenylacetonitrile [13388-75-5] **M 177.1, m 53°.** Crystallise the nitrile from MeOH or pet ether (b 90-110°). [Adams et al. *J Am Chem Soc* **70** 664 1948, Sankaraman et al. *J Am Chem Soc* **109** 5235 1987, *Beilstein* **10** I 198, **10** II 269, **10** III 1470.]

4,4'-Dimethoxythiobenzophenone [958-80-5] **M 258.3, m 120°**. Recrystallise the thioketone from a mixture of cyclohexane/dichloromethane (4:1) or EtOH (**m** 119°). [Bergmann & Wagenberg *Chem Ber* **63** 2590 1930, *Beilstein* **8** H 319, **8** II 355, **8** III 2658, **8** IV 2457.]

2,6-Dimethoxytoluene [5673-07-4] **M 152.2, m 39-41°, b 97-99°/15mm, 219-220°/731mm.** Sublime 2,6-dimethoxytoluene *in vacuo*. Distil it (preferably under reduced pressure) and/or recrystallise it from pentane, EtOH or aqueous MeOH. [Sankaraman et al. *J Am Chem Soc* **109** 5235 *1987*]. [*Beilstein* **6** H 872, **6** III 4513, **6** IV 5877.]

4,4'-Dimethoxytrityl chloride (DMT) [40615-36-9] **M 338.8, m 114°**. DMT crystallises from cyclohexane/acetyl chloride as the hydrochloride. Dry it over KOH pellets in a desiccator. When dissolved in $*C_6H_6$ and air is blown through, HCl is removed. It crystallises from Et₂O. [Baeyer & Villiger *Chem Ber* **36** 2788 1903, Smith et al. J Am Chem Soc **84** 430 1962, Smith et al. J Am Chem Soc **85** 3821 1963.] If it has hydrolysed considerably (see OH in IR), then repeat the crystallisation from cyclohexane/acetyl chloride — excess of AcCl is removed in a vacuum over KOH, then recrystallise it from Et₂O. [*Beilstein* **6** IV 1042.]

p-Dimethylaminoazobenzene (Dimethyl Yellow) [60-11-7] M 225.3, m 118-119°(dec), pK_1^{25} -5.34 (aq H₂SO₄), pK_2^{25} 2.96. Crystallise the dye from acetic acid or isooctane, or from 95% EtOH by adding hot water and cooling. Dry it over KOH under vacuum at 50°. [*Beilstein* 6 IV 448.] CARCINOGEN.

4-N,N'-Dimethylaminoazobenzene-4'-isothiocyanate {DABITC, 4-[(4-isocyanatophenyl)azo]-N,N'-dimethylaniline} [7612-98-8] M 282.4, m 170-171°, pK_{Est}~ 2.5. Crystallise DABITC by dissolving 1g in 150mL of boiling Me₂CO, filtering hot and allowing to cool at -20° overnight, collecting the solid and drying it in a vacuum. Solutions in pyridine should be used immediately, otherwise it decomposes. It is moisture sensitive. [Chang *Methods Enzymol* 91 79, 455 1983.]

p-Dimethylaminobenzaldehyde (Ehrlich's Reagent, DMAB) [100-10-7] M 149.2, m 74-75°, $pK_{Est} \sim 2.6$. Crystallise DMAB from water, hexane, or from EtOH (2mL/g), after charcoal treatment, by adding excess of water. Alternatively dissolve it in aqueous acetic acid, filter, and precipitate it with ammonia.

Finally recrystallise it from EtOH. It is used for the detection of pyrroles [Iyer et al. *J Org Chem* **59** 6038 *1994*]. [*Beilstein* **14** IV 51.]

p-Dimethylaminobenzoic acid [619-84-1] M 165.2, m 242.5-243.5°(dec), pK_1 2.51, pK_2 6.03. Crystallise the acid from EtOH/water. [*Beilstein* 14 IV 1164.]

p-Dimethylaminobenzophenone [530-44-9] M 225.3, m 92-93°, $pK_{Est} \sim 2.7$. Crystallise the pale green *p*-dimethylaminobenzophenone from EtOH. Dissolve 100g in 600mL of boiling EtOH, add 5g of charcoal, cool, isolate the solid by centrifugation and similarly wash the pale crystals with ice-cold EtOH. When filtered by suction, EtOH solution remains on the crystals and turns deep green in air. Dry it in a vacuum and store it in the dark. The *hydrazone* has m 128-130° and forms a ketyl with potassium. [Hurd & Webb *Org Synth* Coll Vol I 217 *1941*, *Beilstein* 14 H 82, 14 I 288, 14 III 218, 14 IV 248.]

N,*N*-Dimethylamino-*p*-chlorobenzene (*p*-chloro-*N*,*N*-dimethylaniline) [698-69-1] M 155.6, m 32-33.5°, 35.5°, b 231°/atm. Purify it by vacuum sublimation [Guarr et al. *J Am Chem Soc* 107 5104 1985]. The *picrate* has m 126-128° (from methanol).

4-Dimethylamino cinnamaldehyde [6203-18-5] **M 175.2, m 141°.** The aldehyde crystallises from EtOH or ligroin and is dried *in vacuo*. The *oxime* has **m** 157° (from ligroin). The *phenylhydrazone* has **m** 169° (form MeOH). It is used as a reagent for amines (with NH₃, UV has λ max at 630nm). [König et al. *Chem Ber* **61** 2075 2075, Quareshi & Kahn *Anal Chim Acta* **86** 309 1976, *Beilstein* **14** III 184, **14** IV 197.]

4-Dimethylamino cinnamic acid [1552-96-1] **M 191.2, m 225°** (effervesces), pK_{Est(1)} ~2.2, pK_{Est(2)} ~4.6. Recrystallise the acid from EtOH. The *methyl ester* has **m** 134-135° (from Me₂CO), and the *ethyl ester* has **m** 77-78° (from aqueous EtOH). [Shoppee J Chem Soc 982 1938, Galat J Am Chem Soc 68 376 1946, Beilstein 14 H 522, 14 II 318, 14 III 1306, 14 IV 1716.]

2S,3R-(+)-4-Dimethylamino-1,2-diphenyl-3-methyl-2-butanol [38345-66-3] M 283.4, m 55-57°, $[\alpha]_{546}^{20}$ +9.3° (c 9.6, EtOH), $[\alpha]_{D}^{20}$ +7.7° (c 9.6, EtOH), pK_{Est} ~10.0. Purify the *hydrochloride* by dissolving 1.5g in 13.5 mL of 5N HCl, heat to boiling and evaporate in a vacuum. Recrystallise the *hydrochloride* three times from MeOH/EtOAc giving m 189-190°, $[\alpha]_D$ -33.7° (c 1, H₂O) {enantiomer has +34.2°}. The *hydrochloride* in the minimum volume of water is basified with aqueous 5N NaOH and extracted with Et₂O. The extract is dried (K₂CO₃) and evaporated, leaving a residue which is stored in a desiccator over solid KOH as a low melting solid. It can be recovered using these procedures from asymmetric reductions with LAH, and re-used. [Pohland & Sullivan J Am Chem Soc 77 3400 1955, Sullivan et al. J Org Chem 28 2483 1963, Beilstein 13 IV 2221.]

N,*N*-Dimethylaniline [121-69-7] M 121.2, f 2°, b 84%/15mm, 193%/760mm, d_4^{20} 0.956, n_D^{25} 1.5556, pK²⁵ 5.07. Primary and secondary amines (including aniline and monomethylaniline) can be removed by refluxing for 4-5hours with excess acetic anhydride, and then fractionally distilling. Crocker and Jones (*J Chem Soc* 1808 1959) used four volumes of acetic anhydride, then distilled off the greater part of it, and dissolved the residue in ice-cold dilute HCl. Non-basic materials were removed by ether extraction, then the dimethylaniline was liberated with ammonia, extracted with ether, dried, and distilled under reduced pressure. Metzler and Tobolsky (*J Am Chem Soc* 76 5178 1954) refluxed with only 10% (w/w) of acetic anhydride, then cooled and poured it into excess 20% HCl, which, after cooling, was extracted with diethyl ether. (The amine hydrochloride remains in the aqueous phase.) The HCl solution was cautiously made alkaline to phenolphthalein, and the amine layer was drawn off, dried over KOH and fractionally distilled under reduced pressure.

Other purification procedures include the formation of the *picrate* (**m** 163° from Me₂CO or EtOH/H₂O), prepared in *benzene solution and crystallised to constant melting point, then decomposed with warm 10% NaOH and extracted into ether: the extract was washed with water and distilled under reduced pressure. The *oxalate* salt has also been used for purification. The base has been fractionally crystallised by partial freezing and also from aqueous 80% EtOH then from absolute EtOH. It has been distilled from zinc dust, under nitrogen. [*Beilstein* **12** H 141, **12** I 151, **12** II 2, **12** III 245, **12** IV 243.] 2,3-Dimethylaniline [2,3-xylidine (*vic*, o)] [87-59-2] M 121.2, m 2°, b 106°/15mm, 223°/760mm, d²⁰₄ 1.570, n²⁰_D 0.991, pK²⁵ 4.70. Purify *vic*-xylidine by conversion into a derivative (see below), recrystallise the derivative, decompose the derivative with aqueous NaOH and fractionally distil the liquid base. The *acetyl* derivative has m 135° (from EtOH), and the *formyl* derivative has m 102° (from EtOH). [*Beilstein* 12 H 1101, 12 III 2438, 12 IV 2497.]

2,4-Dimethylaniline [2,4-xylidine (*uns*, *m*)] [95-68-1] M 121.2, m 11°, b 212°/736mm, 213-214°/760mm, d_4^{20} 0.974, n_D^{20} 1.5604, pK²⁵ 4.89. Convert *uns*-xylidine to a derivative (see below) which, after recrystallisation, is decomposed with alkali to give the free base. Dry it over KOH and fractionally distil. The *acetyl* derivative has m 130°, the *benzoyl* derivative has m 192°, and the *picrate* has m 209°. [*Beilstein* 12 H 1111, 12 IV 2545.]

2,5-Dimethylaniline [2,5-xylidine (*p*)] [95-78-3] M 121.2, m 11°, 15.5°, b 104°/15mm, 215°/739mm, 218°/760mm, d_4^{20} 0.974, n_D^{20} 1.5604, pK²⁵ 4.53. Convert *p*-xylidine to a derivative (see below) which, after recrystallisation, is decomposed with alkali to give the free base. Dry over KOH and fractionally distil. The *acetyl* derivative has m 142° (from H₂O or toluene), and the *benzoyl* derivative has m 140° (from EtOH). [*Beilstein* 12 H 1135, 12 IV 2567.]

2,6-Dimethylaniline [2,6-xylidine (vic, m)] [87-62-7] M 121.2, m 11°, b b 98°/14mm, 210-211°/736mm, 215°/760mm, d_4^{20} 0.974, n_D^{20} 1.5604, pK²⁵ 3.95. Convert vic-xylidine to a derivative (see below) which, after recrystallisation, is decomposed with alkali to give the free base. Dry it over KOH and fractionally distil. The acetyl derivative has m 177°, the benzoyl derivative has m 168°, and the picrate has m 180°. [Beilstein 12 H 1107, 12 IV 2521.]

3,4-Dimethylaniline [**3,4-xylidine**] [95-64-7] **M 121.2, m 51°, b 116-118°/25mm, b 226°/760mm, pK²⁵ 5.17.** Crystallise it from ligroin and distil it under vacuum. [Beilstein **12** H 1103, **12** IV 2502.]

3,5-Dimethylaniline [3,5-xylidine (sym, m)] [108-69-0] M 121.2, b 105-106°/15mm, 221-222°/atm, d_4^{20} 0.974, n_D^{20} 1.557, pK²⁵ 4.91 Convert sym-xylidine to a derivative (see below) which, after recrystallisation, is decomposed with alkali to give the free base. Dry it over KOH and fractionally distil it. The *acetyl* derivative has m 144°, the *benzoyl* derivative has m 136° and the *picrate* has m 209° (from H₂O, EtOH or 10% AcOH). [*Beilstein* 12 H 1131, 12 IV 2561.]

9,10-Dimethylanthracene [781-43-1] **M 206.3, m 180-181°.** Purify 9,10-dimethylanthracene by crystallising from EtOH, and by recrystallising from the melt. [*Beilstein* **5** IV 2329.]

7,12-Dimethylbenz[*a*]**anthracene (DMBA)** [57-97-6] **M 256.4, m 122-123°.** Purify DMBA by chromatography on alumina/toluene or *benzene. Crystallise it from acetone/EtOH. [*Beilstein* **5** IV 2587.]

2,3-Dimethylbenzoic acid [603-79-2] **M 150.2, m 146°, pK²⁵ 3.72.** Crystallise the acid from EtOH. It is volatile in steam. The *amide* has **m** 156° (from H_2O). [*Beilstein* **9** H 531, **9** III 2434, **9** IV 1797.]

2,4-Dimethylbenzoic acid [611-01-8] **M 150.2, m 125-126°, 126-127°, b 267°/727mm, pK²⁵ 4.22.** Crystallise the acid from EtOH or H₂O, and sublime it in a vacuum. [*Beilstein* **9** H 531, **9** III 2436, **9** IV 1801.]

2,5-Dimethylbenzoic acid [610-72-0] **M 150.2, m 134°, b 268°/760mm, pK²⁵ 4.00.** Steam distil the acid, then crystallise it from EtOH or H_2O (**m** 134-134.5°). [*Beilstein* **9** H 534, **9** IV 1802.]

2,6-Dimethylbenzoic acid [632-46-2] M 150.2, m 117°, b 118-119°/2.5mm, pK²⁵ 3.35. Steam distil the acid, and crystallise it from EtOH or H₂O (m 116.3-116.7°). The *N*-dimethylamide has m 62-63° (from Et₂O). [Beilstein 9 H 531, 9 IV 1798.] **3,4-Dimethylbenzoic acid** [619-04-5] **M 150.2, m 166°, pK²⁵ 4.50.** Crystallise it from EtOH or H₂O (**m** 168-168.5°), and sublime it *in vacuo*. The *phenyl ester* has **m** 68° (from EtOH or pet ether) and **b** 155-157°/2mm. [*Beilstein* **9** II 353, **9** III 2441, **9** IV 1803.]

3,5-Dimethylbenzoic acid [499-06-9] **M 150.2, m 170°, pK²⁵ 4.30.** Distil the acid in steam, crystallise it from H_2O (**m** 171.2-171.7°) or EtOH, and sublime it *in vacuo*. [Beilstein **9** H 536, **9** III 244, **9** IV 1806.]

4,4'-Dimethylbenzophenone [611-97-2] M 210.3, m 95°, b 150-152/2mm. 333-334°/725mm. Purify the benzophenone by zone refining or distllation, preferably in a vacuum. [Beilstein 7 III 2181, 7 IV 1434.]

2,5-Dimethyl-1,4-benzoquinone [137-18-8] **M 136.1, m 124-125°, 126-127°.** Crystallise the quinone from EtOH. [Beilstein 7 IV 2090.]

2,6-Dimethyl-1,4-benzoquinone (Phloron) [527-61-7] **M 136.1, m 72° (sealed tube).** Crystallise the quinone from water/EtOH (8:1). [*Beilstein* 7 IV 657, 7 III 3402, 7 IV 2096.]

3,3'-Dimethylcarbanilide (N,N'-bis-[m-tolyl]urea) [620-50-8] M 240.3, m 220°, 225°. Crystallise urea from ethyl acetate. The UV has λ_{max} 258nm (EtOH). The hydrochloride has m 162°. [Beilstein 12 III 1970, 12 IV 1829.]

1,1-Dimethyl-1*H***-indene** [18636-55-0] **M 144.2, b 57%.8mm, 115%.20mm.** Purify the oily indene by gas chromatography or by fractional distillation. [Bosch & Brown Can J Chem **42** 1718 1964, cf. Beilstein **5** I 251, **5** III 1377.]

1,5-Dimethylnaphthalene [571-61-9] **M 156.2, m 81-82°, b 265-266°.** Crystallise it from 85% aqueous EtOH. [Beilstein 5 IV 1709.]

2,3-Dimethylnaphthalene [581-40-8] M 156.2, m 104-104.5°. Steam distil the naphthalene and crystallise it from EtOH. [Beilstein 5 IV 1713.]

2,6-Dimethylnaphthalene [581-42-0] M 156.2, m 110-111°, b 122.5-123.5°/10mm, 261-262°/760mm. Distil it in steam and crystallise it from EtOH. [Beilstein 5 IV 1714.]

3,3'-Dimethylnaphthidine (4,4'-diamino-3,3'-dimethyl-1,1'-binaphthyl) [13138-48-2] **M 312.4, m 213°.** Recrystallise the naphthidine from EtOH or pet ether (b 60-80°). [Beilstein 13 IV 493.]

N,*N*-Dimethyl-*m*-nitroaniline [619-31-8] M 166.1, m 60°, 61°, pK²⁵ 2.63. Crystallise the aniline from EtOH. The *picrate* has m 119° (from EtOH). [*Beilstein* 12 H 701, 12 III 1544, 12 IV 1591.]

N,*N*-Dimethyl-*p*-nitroaniline [100-23-2] M 166.1, m 164.5-165.2°, pK²⁵ 0.61 (0.92). Crystallise the nitroaniline from aqueous EtOH, EtOH or MeOH (m 163.5-164°). Dry it *in vacuo*. The *N*-*methiodide* has m 161°(dec) (from H₂O). [*Beilstein* 12 H 714, 12 III 1584, 12 IV 1616.]

N,*N*-Dimethyl-*p*-nitrosoaniline (4-nitroso-*N*,*N*-dimethylaniline) [138-89-6] M 150.2, m 86-87°, 92.5-93.5°, b 191-192°/100mm, pK²⁵ 4.54. Recrystallise the nitroso-aniline from pet ether or CHCl₃/CCl₄ and dry it in air. Alternatively suspend it in H₂O, heat to boiling and add HCl until it dissolves. Filter, cool and collect the *hydrochloride* [42344-05-8] with m 177° after recrystallisation from H₂O containing a small amount of HCl. The *hydrochloride* (e.g. 30g) is made into a paste with H₂O (100mL) in a separating funnel. Add cold aqueous 2.5 NaOH or Na₂CO₃ to a pH of ~ 8.0 (green color due to the free base) and extract with toluene, CHCl₃ or Et₂O. Dry the extract (K₂CO₃), filter, distil off the solvent, cool the residue and collect the crystalline free base. Recrystallise it as above and dry it in air. [*Beilstein* 12 IV 1558.] **R**-(+)-*N*,*N*'-Dimethyl-1-phenethylamine [19342-01-9] and S-(-)-*N*,*N*'-Dimethyl-1-phenethylamine [17279-31-1] M 149.2, b 81°/16mm, $[\alpha]_{D}^{20}$ (+) and (-) 50.2° (c 1, MeOH), d_{4}^{20} 0.908, pK_{Est} ~9.0 (for RS). The amine is mixed with aqueous 10N NaOH and extracted with toluene. The extract is washed with saturated aqueous NaCl, dried over K₂CO₃, and transferred to fresh K₂CO₃ until the solution is clear, and is filtered. The filtrate is distilled. If a short column packed with glass helices is used, the yield is reduced but a purer product is obtained. [Ingersoll Org Synth 25 89 1945, Snyder & Brewster J Am Chem Soc 71 291 4165 1949, Cope et al. J Am Chem Soc 71 3931 1949.] The (-)-picrate has m 140-141° (from EtOH). The racemate [1126-71-2] has b 88-89°/16mm, 92-94°/30mm, 194-195°/760mm, d_{4}^{20} 0.908. [Beilstein 13 III 2392.]

2,3-Dimethylphenol [526-75-0] **M 122.2, m 75°, b 120°/20mm, 218°/760mm, pK²⁵ 10.54.** Crystallise 2,3-xylenol from aqueous EtOH. [*Beilstein* **6** IV 3096.]

2,5-Dimethylphenol [95-87-4] **M 122.2, m 73°, b 211.5°/762mm, pK²⁵10.41.** Crystallise 2,5-xylenol from EtOH/ether. [*Beilstein* **6** IV 3164.]

2,6-Dimethylphenol [576-26-1] **M 122.2, m 49°, b 203°/760mm, pK²⁵ 10.61.** Fractionally distil 2,6-xylenol under nitrogen, crystallise it from *benzene or hexane, and sublime it at 38°/10mm. [*Beilstein* **6** IV 3122.]

3,4-Dimethylphenol [95-65-8] **M 122.2, m 65°, b 225°**/757**mm, pK**²⁵ **10.36.** Heat 3,4-xylenol with an equal weight of conc H₂SO₄ at 103-105° for 2-3hours, then dilute it with four volumes of water, reflux it for 1hour, and either steam distil or extract it repeatedly with diethyl ether after cooling to room temperature. The steam distillate is also extracted and evaporated to dryness. (The purification process depends on the much slower sulfonation of 3,4-dimethylphenol than most of its likely contaminants.). It can also be crystallised from water, hexane or pet ether, and sublimed in a vacuum. [Kester *Ind Eng Chem (Anal Ed)* **24** 770 *1932*, Bernasconi & Paschalis *J Am Chem Soc* **108** 2969*1986*, *Beilstein* **6** IV 3099.]

3,5-Dimethylphenol [108-68-9] **M 122.2, m 68°, b 219°, pK²⁵ 10.19.** Purify it as for 3,4-dimethylphenol. [*Beilstein* **6** IV 3141.]

Dimethyl phthalate [131-11-3] **M 194.2, b 282°/760mm, d** $_{4}^{20}$ **1.190, d** $_{4}^{25}$ **1.1865, n** $_{D}^{20}$ **1.5149.** Wash the ester with aqueous Na₂CO₃, then distilled water, dry (CaCl₂) and distil it under reduced pressure (b 151-152°/0.1mm). [*Beilstein* **7** IV 3170.]

2,4-Dimethylresorcinol [634-65-1] **M 138.1, m 111°, 112°, pK**_{Est(1)} ~9.8, pK_{Est(2)} ~11.7. Crystallise the resorcinol from pet ether (b 60-80°), $*C_6H_6$ /pet ether or toluene/BuOAc. It sublimes at 100-110°/1mm. [*Beilstein* **6** H 918, **6** II 891, **6** III 4588, **6** IV 5955.]

Dimethyl terephthalate [120-61-6] M 194.2, m 141.5-141.8°, 142°. Purify it by recrystallisation from aqueous EtOH, MeOH or CCl₄; or by zone melting. [*Beilstein* 6 H 843, 6 III 4250, 6 IV 3303.]

N,*N*-Dimethyl-*o*-toluidine [609-72-3] M 135.2, b 68%/10mm, 211-211.5%/760mm, d_4^{20} 0.937, n_D^{20} 1.53664, pK²⁵ 6.11. Isomers and other bases are removed by heating in a water bath for 100hours with two equivalents of 20% HCl and two and a half volumes of 40% aqueous formaldehyde, then making the solution alkaline and separating the free base. After washing well with water, it is distilled at 10mm pressure and redistilled at ambient pressure [von Braun & Aust *Chem Ber* 47 260 *1914*]. Other procedures include drying with NaOH, distilling from zinc in an atmosphere of nitrogen under reduced pressure, and refluxing with excess of acetic anhydride in the presence of conc H₂SO₄ as catalyst, followed by fractional distillation in a vacuum. The *picrate* has m 124-125°. [*Beilstein* 12 H 857, 12 III 1843, 12 IV 1747.]

N,*N*-Dimethyl-*m*-toluidine (*m*-methyl-*N*,*N*-dimethylaniline) [121-72-2] M 135.2, b 72-74^o/5mm, 128^o/57mm, 211.5-212.5^o/760mm, d_4^{20} 0.93, n_D^{20} 1.5500, pK²⁵ 5.34. Reflux it for 3hours with 2 molar equivalents of Ac₂O, then fractionally distil it under reduced pressure. Alternatively, dry

over BaO, distil and store it over KOH. The *hydrochloride* has **m** 176° (from EtOH) and the *picrate* has **m** 131°. Methods described for *N*,*N*-dimethylaniline are applicable. [*Beilstein* **12** H 857, **12** III 1953, **12** IV 1815.]

N,*N*-Dimethyl-*p*-toluidine (*p*-methyl-*N*,*N*-dimethylaniline) [99-97-8] M 135.2, b 76.5-77.5°/4mm, 93-94°/11mm, b 211°/760mm, d_4^{20} 0.937, n_D^{20} 1.5469, pK^{21.5} 5.56, pK²⁵ 5.63. Reflux for 3hours with 2 molar equivalents of Ac₂O, then fractionally distil it under reduced pressure. Alternatively, dry it over BaO, distil and store it over KOH. The *picrate* has m 128° (from EtOH). Methods described for *N*,*N*-dimethylaniline are applicable here. [*Beilstein* 12 H 902, 12 III 2026, 12 IV 1874.]

2,4-Dinitroaniline [97-02-9] M 183.1, m 180°, ε_{348} 12,300 in dilute aqueous HClO₄, pK²⁵ -4.27 (aqueous H₂SO₄). Crystallise the nitroaniline from boiling EtOH by adding one-third volume of H₂O and cooling slowly. Dry it on a steam oven. The *N*-acetyl derivative has m 180°. [*Beilstein* 12 IV 1689.]

2,6-Dinitroaniline [606-22-4] **M 183.1, m 139-140°, pK²⁵-5.37** (aqueous H_2SO_4). Purify the nitroaniline by chromatography on alumina, then crystallise it from *benzene or EtOH. The *N*-acetyl derivative has **m** 197° (from EtOH). [Beilstein 12 IV 1729.]

2,4-Dinitroanisole [5327-44-6] **M 198.1, m 87-88°(metastable), 94-95°. m 206-207°/12mm.** Crystallise the anisole from aqueous EtOH. The *naphthalene complex* has **m** 50° (from EtOH). [*Beilstein* 6 H 254, 6 III 858, 6 IV 1372.]

3,5-Dinitroanisole [119-27-7] **M 198.1, m 105-106°.** Purify the anisole by repeated crystallisation from EtOH, MeOH or H₂O and dry it in a vacuum desiccator over P_2O_5 . The *naphthalene complex* has **m** 69° (from EtOH). [*Beilstein* **6** III 869, **6** IV 1385.

1,2-Dinitrobenzene [528-29-0] M 168.1, m 116.5°. Crystallise it from EtOH. [Beilstein 5 IV 738.]

1,3-Dinitrobenzene [99-65-0] **M 168.1, m 90.5-91°.** Crystallise 1,3-dinitrobenzene from alkaline EtOH solution (20g in 750mL 95% EtOH at 40°, plus 100mL of 2M NaOH) by cooling and adding 2.5L of H₂O. The precipitate, after filtering off, is washed with H₂O, sucked dry, and crystallised from 120mL, then 80mL of absolute EtOH [Callow et al. *Biochem J* **32** 1312 *1938*]. Alternatively crystallise it from MeOH, CCl₄ or EtOAc. It can be sublimed in a vacuum. [Tanner *J Org Chem* **52** 2142 *1987*, *Beilstein* **5** IV 739.]

1,4-Dinitrobenzene [100-25-4] **M 168.1, m 173°.** Crystallise 1,4-dinitrobenzene from EtOH or EtOAc. Dry it under vacuum over P_2O_5 . It can be sublimed in a vacuum. [*Beilstein* **5** IV 741.]

2,4-Dinitrobenzenesulfenyl chloride [528-76-7] **M 234.6, m 96°.** Crystallise the sulfenyl chloride from CCl₄. [*Beilstein* **6** II 316.]

2,4-Dinitrobenzenesulfonyl chloride [1656-44-6] **M 266.6, m 102°.** Crystallise the sulfonyl chloride from *benzene or *benzene/pet ether. [*Beilstein* **11** H 78, **11** IV 214.]

2,4-Dinitrobenzoic acid [610-30-3] **M 212.1, m 183°, pK²⁵1.42.** Crystallise the acid from aqueous 20% EtOH (10mL/g) and let it dry at 100°. [Beilstein **9** II 279, **9** III 1776, **9** IV 1239.]

2,5-Dinitrobenzoic acid [610-28-6] **M 212.1, m 179.5-180°, pK²⁵1.62.** Crystallise the acid from distilled H₂O. Dry it in a vacuum desiccator. [*Beilstein* **9** II 279, **9** III 1778, **9** IV 1241.]

2,6-Dinitrobenzoic acid [603-12-3] **M 212.1, m 202-203°, pK²⁵ 1.14.** Crystallise the acid from water. [*Beilstein* **9** II 279, **9** III 1778, **9** IV 1242.]

3,4-Dinitrobenzoic acid [528-45-0] **M 212.1, m 166°, pK²⁵ 2.81.** Crystallise the acid from EtOH by addition of water. [*Beilstein* **9** III 1778, **9** IV 1242.]

3,5-Dinitrobenzoic acid [99-34-3] **M 212.1, m 205°, pK²⁵ 2.73** (2.79). Crystallise the acid from distilled H₂O or 50% EtOH (4mL/g). Dry it in a vacuum desiccator or at 70° over BaO under a vacuum for 6hours. [*Beilstein* **9** II 279, **9** III 1779, **9** IV 1242.]

4,4'-Dinitrobenzoic anhydride [902-47-6] **M 406.2, m 192°, 195-195.5°.** Crystallise the anhydride from Me₂CO, toluene, $*C_6H_6$ /EtOAc or EtOAc. [*Beilstein* **9** H 393, **9** II 268, **9** III 1684.]

3,5-Dinitrobenzoyl chloride [99-33-2] **M 230.6, m 69.5°.** Crystallise it from CCl₄ or pet ether (b 40-60°). It reacts readily with H_2O and should be kept in sealed ampoules. [*Beilstein* **9** IV 1350.]

2,2'-Dinitrobiphenyl [2436-96-6] **M 244.2, m 123-124°, b 194°/4mm.** Crystallise the biphenyl from EtOH, AcOH (**m** 124.5°) or pet ether (**m** 125.5-126°). [*Beilstein* **5** H 538, **5** III 1759, **5** IV 1826.]

2,4'-Dinitrobiphenyl [606-81-5] **M 244.2, m 92.7-93.7°.** Crystallise the biphenyl from EtOH. [*Beilstein* **5** H 538, **5** I 274, **5** II 491, **5** III 1759, **5** IV 1827.]

4,4'-Dinitrobiphenyl [1528-74-1] **M 244.2, m 240.9-241.8°.** Crystallise the biphenyl from C_6H_6 , EtOH (charcoal) or Me₂CO. Dry it under vacuum over P₂O₅. It sublimes at ~138°/2.9x10⁻³mm. [Beilstein **5** H 584, **5** III 1760, **5** IV 1827.]

2,6-Dinitro-*p***-cresol (2,6-dinitro-4-methylphenol)** [609-93-8] **M 198.1, m 78-79°, 80.5°, 81-82°, 85°, pK**_{Est}**~3.7.** Recrystallise the cresol from EtOH. It is steam volatile. The *piperidine salt* has **m** 195°. [*Beilstein* **6** H 414, **6** II 391, **6** III 1390, **6** IV 2152.] **TOXIC IRRITANT.**

4,6-Dinitro*-o***-cresol** (**4,6-dinitro**-**2**-methylphenol) [534-52-1] M **198.1**, m **85-86°**, **86-87°**, **87°**, **pK²⁵ 4.70**. The cresol crystallises from aqueous EtOH. [*Beilstein* **6** H 369, **6** III 1276.]

2,4-Dinitrodiphenylamine [961-68-2] M 259.2, m 157°, 160°, $pK_{Est} < 0$. The amine forms red crystals from aqueous EtOH or CHCl₃/EtOH (m 158°). The UV has λ_{max} at 335nm (cyclohexane). [Beilstein 12 H 751, 12 III 1683, 12 IV 1692.]

4,4'-Dinitrodiphenylurea [**1,3-bis-(4-nitrphenyl)urea**] [587-90-6] M **302.2, m 312°(dec).** Crystallise the urea from EtOH (m 364°, long heating), EtOH/Me₂CO (m 301-303°, 300-304° dec, 318-319°) or Me₂CO (m 289° dec). It sublimes *in vacuo*. [*Beilstein* **12** H 723, **12** II 393, **12** III 1619, **12** IV 1646.]

2,4-Dinitrofluorobenzene (Sanger's reagent) [70-34-8] M 186.1, m 25-27°, b 133°/2mm, 140-141°/5mm, d_4^{20} 1.483. Crystallise the reagent from Et₂O or EtOH. Distil it in a vacuum through a Todd Column (p 11). If it is to be purified by distillation *in vacuo*, the distillation unit must be allowed to cool before air is allowed into the apparatus; otherwise the residue carbonises spontaneously and an **EXPLOSION** may occur. The material is a **skin irritant** and may cause serious dermatitis. [*Beilstein* **5** IV 742.]

1,8-Dinitronaphthalene [602-38-0] **M 218.2, m 170-171°, 171.3°.** Crystallise it from *benzene. [Beilstein 5 H 559, 5 II 455, 5 III 1608.]

2,4-Dinitro-1-naphthol (Martius Yellow) [605-69-6] M 234.2, m 81-82°, pK_{Est} ~3.7. Crystallise the naphthol from *benzene or aqueous EtOH. [*Beilstein* 6 IV 4240.]

2,4-Dinitrophenetole [610-54-8] **M 240.2, m 85-86°, 210-211°/15mm.** Crystallise it from aqueous EtOH. The 1:1 *naphthalene complex* has **m** 41° and is obtained by fusing the compound with naphthalene in various ratios, then crystallizing the solidified mix with a little EtOH (Dermer & Smith *J Am Chem Soc* **61** 748 1939). [Beilstein **6** H 254, **6** III 858, **6** IV 1373.]

2,4-Dinitrophenol [51-28-5] **M 184.1, m 114°, pK²⁵ 4.12.** Crystallise it from *benzene, EtOH, EtOH/H₂O or H₂O acidified with dilute HCl, dry it, then recrystallise it from CCl₄. Dry it in an oven and store it in a vacuum desiccator over CaSO₄. The *benzoate* has **m** 132° (from EtOH). [*Beilstein* **6** IV 1369.]

2,5-Dinitrophenol [329-71-5] **M 184.1, m 108°, pK²⁵ 5.20.** Crystallise 2,5-dinitrophenol from H_2O with a little EtOH. [*Beilstein* 6 IV 1383.]

2,6-Dinitrophenol [573-56-8] **M 184.1, m 63.0-63.7°, pK**²⁵**3.73.** Crystallise it from H₂O, aqueous EtOH, $*C_6H_6$ /cyclohexane, or $*C_6H_6$ /pet ether (b 60-80°, 1:1). [*Beilstein* **6** III 867, **6** IV 1383.]

3,4-Dinitrophenol [577-71-9] **M 184.1, m 138°, pK²⁵ 5.42.** Steam distil and crystallise it from H₂O then dry it in air. **EXPLOSIVE** when dry, store it with 10% H₂O. [*Beilstein* **6** III 868, **6** IV 1384.]

3,5-Dinitrophenol [586-11-8] **M 184.1, m 126°, pK²⁵ 6.68.** Crystallise it from $C_{6}H_{6}$ or CHCl₃/pet ether. Store it with 10% water as it is **EXPLOSIVE** when dry. [*Beilstein* 6 III 869, 6 IV 1383.]

2,4-Dinitrophenylacetic acid [643-43-6] **M 226.2, m 179°(dec), pK²⁵ 3.50.** Crystallise the acid from H₂O. [Beilstein 9 IV 1691.]

2,4-Dinitrophenylhydrazine (DNPH) [119-26-6] M 198.1, m 200°(dec), $pK_{Est} \sim 2.0$. Crystallise DNPH from butan-1-ol, dioxane, EtOH, *C₆H₆ or EtOAc. The *hydrochloride* has m 186° (dec). [Beilstein 15 IV 380.]

2,4-Dinitroresorcinol [519-44-8] **M 200.1, m 212.5-214.5°, pK²⁵ 3.05** (3.79). Crystallise the resorcinol from aqueous EtOH. Its solubility at 25° is 0.25% in EtOH and 0.08g/L in H₂O. **EXPLOSIVE.** [*Beilstein* **6** II 824, **6** III 4352, **6** IV 5696.]

3,5-Dinitrosalicylic acid [609-99-4] **M 228.1, m 173-174**°, pK_1^{25} **0.70,** pK_2^{25} **7.40.** Crystallise the acid from H₂O. [*Beilstein* **10** IV 270.]

2,6-Dinitrothymol [303-21-9] **M 240.2, m 54.5-55°, 80-81°, 81°.** Crystallise 2,4-dinitrothymol from aqueous EtOH or pet ether. [Ganguly & LeFévre *J Chem Soc* 851 *1934*, *Beilstein* **6** H 543, **6** III 1911.]

2,3-Dinitrotoluene [602-01-7] **M 182.1, m 59.2°, 63°.** Distil the toluene in steam and crystallise it from H₂O or *benzene/pet ether. Store it with 10% H₂O as it could be **EXPLOSIVE** when dry. [Beilstein **5** H 339, **5** III 758, **5** IV 865.]

2,4-Dinitrotoluene [121-14-2] **M 182.1, m 70.5-71.0°, 71.8-72.2°.** Crystallise it from Me₂CO, isopropanol or MeOH. Dry it in a vacuum over H_2SO_4 . It has also been purified by zone melting. *It could be* **EXPLOSIVE** when dry. [Beilstein 5 H339, 5 IV 865, 5 III 759.]

2,5-Dinitrotoluene [619-15-8] **M 182.1, m 50.3°, 51.2°.** Crystallise it from *benzene. **EXPLOSIVE** when dry. [Beilstein 5 III 760, 5 IV 866.]

2,6-Dinitrotoluene [606-20-2] **M 182.1, m 64.3°, 66.1°.** Crystallise it from acetone. **EXPLOSIVE** when dry. [Beilstein 5 III 761, 5 IV 866.]

3,4-Dinitrotoluene [610-39-9] **M 182.1, m 58.5°, 6 0°, 6 1°.** Steam distil it and crystallise it from *C₆H₆/pet ether. Store it with 10% of H₂O to avoid **EXPLOSION**.[Beilstein **5** H 341, **5** III 761, **5** IV 866.]

3,5-Dinitro-*o*-toluic acid [28169-46-2] M 226.2, m 206°, 207.5-208°, $pK_{Est} \sim 3.0$. Crystallise the acid from H₂O or aqueous EtOH. The *ammonium salt* forms yellow crystals from EtOH with m 218-219°, and the *urea salt* has m 189-190° (prisms from EtOH). [*Beilstein* 9 H 474, 9 II 323, 9 III 2316.]

2,4-Dinitro-*m*-**xylene** [603-02-1] **M 196.2, m 83-84**°. Crystallise the yellow 2,4-dinitro-*m*-xylene from EtOH. [*Beilstein* **5** H 379, **5** II 295, **5** III 844.]

Dinonyl phthalate (mainly 3,5,5-trimethylhexyl phthalate isomer) [14103-61-8, 28553-12-0, 84-76-4] **M 418.6, m 26-29°, b 170°/2mm, d** $_{4}^{20}$ **0.9640, n** $_{D}^{20}$ **1.4825.** Wash the ester with aqueous Na₂CO₃ then shake it with water. Ether is added to break the emulsion, and the solution is washed twice with water, and dried (CaCl₂). After evaporating the ether, the residual liquid is distilled three times under reduced pressure. It is stored in a vacuum desiccator over P₂O₅. [Beilstein **9** IV 3183.]

4,4'-Di-*n*-pentyloxyazoxybenzene [64242-26-8] M 370.5, m 124.5° (with phase change at 82°, becomes clear and remelts at 119°). Crystallise it from Me₂CO, and dry it by heating under vacuum. [Beilstein 16 III 599, 16 IV 175.]

Diphenic acid (diphenyl-2,2'-dicarboxylic acid) [482-05-3] **M 242.2, m 228-229°, pK²⁵ 3.46.** Crystallise diphenic acid from water. Hot Ac₂O provides the *anhydride* below. [*Beilstein* **9** H 922, **9** IV 3552.]

Diphenic anhydride (diphenyl-2,2'-dicarboxylic anhydride) [6050-13-1] M 466.3, m 217°, 222-224°. After removing free acid by extraction with cold aqueous Na₂CO₃, the residue is crystallised from acetic anhydride and dried at 100°. Acetic anhydride converts the acid to the anhydride. It also crystallises from $*C_6H_6$ (m 219°) or chlorobenzene (m 224.5-225.5°). [Beilstein 17 H 526, 17 II 495, 17 III/IV 6425.]

N,*N*-Diphenylacetamidine [621-09-0] M 210.3, m 131°. Crystallise it from EtOH, then sublime it under vacuum at *ca* 96° onto a "finger" cooled in solid CO₂/MeOH, with continuous pumping to free it from occluded solvent. [*Beilstein* 12 H 248, 12 II 144, 12 III 471, 12 IV 384.]

Diphenylacetic acid [117-34-0] **M 212.3, m 147.4-148.4**°, pK^{25} **3.94.** Crystallise the acid from *benzene, H₂O or aqueous 50% EtOH. [*Beilstein* **9** H 673, **9** IV 2492.]

Diphenylacetonitrile [86-29-3] **M 193.3, m 73-75°.** Crystallise the nitrile from EtOH or pet ether (b 90-100°). [*Beilstein* **9** H 674, **9** IV 2505.]

Diphenylacetylene (tolan) [501-65-5] **M 178.2, m 62.5°, b 90-97°/0.3mm.** Crystallise tolan from EtOH. [Beilstein 5 H 656, 5 IV 2276.]

Diphenylamine [122-39-4] **M 169.2, m 62.0-62.5**°, pK^{25} 0.77 (aqueous H₂SO₄). Crystallise diphenylamine from pet ether, MeOH, or EtOH/water. Dry it under vacuum. [*Beilstein* 12 H 174, 12 IV 271.]

Diphenylamine-2-carboxylic acid (*N*-phenylanthranilic acid) [91-40-7] M 213.2, m 182-183°, 184°, pK_1^{25} -1.28 (aqueous H₂SO₄), pK_2^{25} 3.86(CO₂H). Crystallise the acid from EtOH (5mL/g) or AcOH (2mL/g) by adding hot water (1mL/g). [*Beilstein* 14 IV 1019.]

Diphenylamine-2,2'-dicarboxylic acid (2,2'-iminodibenzoic acid) [579-92-0] M 257.2, m 298°(dec), 302°(dec), 320°(dec, long heating), pK_1^{35} 6.05, pK_2^{35} 7.02 (in 50% aqueous dioxane). Crystallise the acid from EtOH. It complexes with Cu²⁺, Zn²⁺, Cd²⁺, Co²⁺ and Ni²⁺. [Beilstein 14 H 354, 14 I 545, 14 III 942, 14 IV 1058.]

9,10-Diphenylanthracene [1499-10-1] **M 330.4, m 248-249°.** Crystallise the anthracene from acetic acid or xylene [Baumstark et al. *J Org Chem* **52** 3308 1987]. [*Beilstein* **5** IV 2807.]

N,*N*'-**Diphenylbenzidine** [531-91-9] **M 336.4, m 245-247**°, **251-252**°, **pK**²⁵**0.30**. Crystallise the benzidine from toluene or ethyl acetate. Store it in the dark. [*Beilstein* **13** H 223, **13** IV 368.]

*trans-trans-***1,4-Diphenylbuta-1,3-diene** [538-81-8] **M 206.3, m 153-153.5°.** Its solution in pet ether (b 60-70°) is chromatographed on an alumina-Celite column (4:1), and the column is washed with the same solvent. The main zone is cut out, eluted with ethanol and transferred to pet ether, which is then dried and evaporated [Pinckard et al. *J Am Chem Soc* **70** 1938 *1948*]. Recrystallise it from hexane. [*Beilstein* **5** H 676, **9** IV 2319.]

sym-(1,5)-Diphenylcarbazide [140-22-7] M 242.3, m 172°. A common impurity is phenylsemicarbazide which can be removed by chromatography: ~8g in H₂O is placed on a column (polyamide 6 powder, Macherey-Nagel-GmbH-Germany, washed several times with MeOH), eluted with H₂O/MeOH/AcOH (1:3:0.04) at 7-8 drops/second, then eluted with the same solvent mixture but diluted 5 fold with H₂O. The purification is followed by UV light at 280nm. The effluent is evaporated to dryness *in vacuo* at ~28°. [chromatography, IR & UV: Willems et al. *Anal Chim Acta* 51 544 *1970*]. Recrystallise it from EtOH by adding CCl₄ to induce crystallisation, or AcOH to give a white crystalline powder which turns pink in air. It is air and light sensitive and should be stored in the dark under N₂. [*Beilstein* 15 H 292, 15 IV 182.]

1,5-Diphenylcarbazone (phenyldiazinecarboxylic acid 2-phenylhydrazide) [538-62-5] **M 240.3, m 124-127°, 156-159°(dec).** It crystallises from EtOH (*ca* 5mL/g), and dry the orange-red needles at 50°. A commercial sample, nominally *sym*-diphenylcarbazone (**m** 154-156°) was a mixture of diphenylcarbazide and diphenylcarbazone. The former was removed by dissolving 5g of the crude material in 75mL of warm EtOH, then adding 25g Na₂CO₃ dissolved in 400mL of distilled water. The alkaline solution was cooled and extracted six times with 50mL portions of diethyl ether (discarded). Diphenylcarbazone was then precipitated by acidifying the alkaline solution with 3M HNO₃ or glacial acetic acid. It was filtered off, air dried, and stored in the dark [Gerlach & Frazier *Anal Chem* **30** 1142 *1958*]. Other impurities are phenylsemicarbazide and diphenylcarbodiazone. Impurities can be detected by chromatography [Willems et al. *Anal Chim Acta* **51** 544 *1970*]. It is used for detection and estimation of Hg, Zn, Cd, Cr, Cu, Fe and Mo [Cheng et al. *Handbook of Organic Analytical Reagents*, Boca Baton 277 *1982*, *Beilstein* **16** H 24, **16** IV 17.]

Diphenyl carbonate (phenyl carbonate) [102-09-0] **M 214.2, m 80°, 168°/15mm, 306°/760mm.** Purify it by distillation under reduced pressure, sublimation, or by gas chromatography with 20% Apiezon on Embacel, and crystallisation from EtOH. [*Beilstein* **6** H 158, **6** IV 629.]

Diphenylcyclopropenone (**Diphencyprone**) [886-38-4] **M 206.2, m 87-90**^o(hydrate), 119-121^o(anhydrous). Crystallise it from cyclohexane. UV (MeCN): λmax 226, 282, 297nm. [*Beilstein* 17 IV 1736.]

Diphenyl disulfide (phenyl disulfide) [882-33-7] M 218.3, m 60.5°. Crystallise the disulfide from MeOH. [Alberti et al. J Am Chem Soc 108 3024 1986]. Also crystallise it repeatedly from hot Et_2O , then dry it in a vacuum at 30° over P_2O_5 , fuse it under N_2 and re-dry it; the whole procedure being repeated, with a final drying under a vacuum for 24hours. Alternatively, recrystallise it from hexane/EtOH solution. [Burkey & Griller J Am Chem Soc 107 246 1985, Beilstein 6 H 323, 6 IV 1560.]

1,1-Diphenylethanol [599-67-7] **M 198.3, m 80-81°, 81-81.5°, 87°, 90°, b 144-145°/12mm, 260°/760mm (dec), d¹⁵ 1.1057.** Crystallise 1,1-diphenylethanol from *n*-heptane and/or distil it under vacuum. The *benzoyl* derivative has **m** 115° and the *phenylurethane* has **m** 119°. [Bromberg et al. J Am Chem Soc 107 83 1985, Beilstein 6 H 685, 6 I 330, 6 II 639, 6 III 3395, 6 IV 4713.]

1,1-Diphenylethylene [530-48-3] M **180.3, m 6°, b 101°/2mm, 134°/10mm, 268-270°/760mm, d** $_{4}^{20}$ **1.024, n** $_{D}^{20}$ **1.6088.** Distil it under reduced pressure from KOH. Dry it with CaH₂ and redistil it. [*Beilstein* **5** H 639, **5** III 1975, **5** IV 2173.]

N,*N*'-Diphenylethylenediamine (Wanzlick's Reagent) [150-61-8] M 212.3, m 67.5°, b 178-182°/2mm $pK_{Est(1)} \sim 0.5$, $pK_{Est(2)} \sim 3.8$. Crystallise the reagent from aqueous EtOH or MeOH. [Beilstein 12 H 543, 12 IV 986.]

N,*N*'-**Diphenylformamidine** [622-15-1] **M 196.2, m 142°, 137°, 136-139°.** Crystallise it from absolute EtOH. The *hydrate* is obtained from aqueous EtOH. [*Beilstein* **12** H 236, **12** IV 372.]

1,3-Diphenylguanidine [102-06-7] M **211.3, m 148°, pK²⁵ 10.12.** Crystallise it from toluene, aqueous acetone or EtOH, and dry it in a vacuum. [*Beilstein* **12** H 369, **12** IV 769.]

1,6-Diphenyl-1,3,5-hexatriene [1720-32-7] **M 232.3, m 200-203°.** Crystallise the hexatriene from CHCl₃ or EtOH/CHCl₃ (1:1). [*Beilstein* **5** H 691, **5** IV 2425.]

1,1-Diphenylhydrazine [530-50-7] M **184.2, m 34.5°, 44°, b 120°/1.1mm, 220°/40-50mm, pK**_{Est} ~9.1. Purify it *via* the *hydrochloride* [530-47-2], which has **m** 165-170°(dec) after crystallization from aqueous EtOH (+ a few drops of HCl) and recover the free base with aqueous NaOH, extract it into Et₂O, dry it (KOH), filter, evaporate and distil the residue under a vacuum. The distillate crystallises on cooling. The *benzoyl* derivative has **m** 194° (from Me₂CO), and the 4-nitrophenyl hydrazone (with the aldehyde) has **m** 131-132°. [Koga & Anselme J Org Chem **33** 3963 1968, Beilstein **15** IV 55.]

1,2-Diphenylhydrazine (hydrazobenzene) [122-66-7] M 184.2, m 124-126°, 175°/10mm, 222°/40mm, pK_{Est}~1.7. Crystallise hydrazobenzene from hot EtOH containing a little ammonium sulfide or H_2SO_3 (to prevent atmospheric oxidation), preferably under N_2 . Dry it in a vacuum desiccator, and store it in the dark or under N_2 . Alternatively, crystallise it from pet ether (b 60-100°) to constant absorption spectrum. It is almost colourless but in air it turns yellow, then red with the formation of azobenzene. The *hydrochloride* crystallises from EtOH and has m 163-164°(dec); however, hydrazobenzene readily rearranges to *benzidine* in the presence of acid. The *picrate* crystallises from *C₆H₆ and has m 123°(dec). [*Beilstein* 15 H 123.]

Diphenylmethane [101-81-5] **M 168.2, m 25.4°, b 74°/0.4mm, 260.5°/764.5mm.** Sublime it under vacuum, or distil it at 72-75°/0.4mm. Recrystallise it from cold EtOH. It has also been purified by fractional crystallisation from the melt. [Armarego Aust J Chem 13 95 1960, Beilstein 5 II 498, 5 IV 1841.]

1,1-Diphenylmethylamine (benzhydrylamine, aminodiphenylmethane) [91-00-9] **M 183.2, m 12°, 34°, b 166°/12mm, 295°/atm, d** $_{4}^{25}$ **1.063, n** $_{D}^{20}$ **1.596, pK**_{Est} ~9.1. Crystallise the amine from H₂O. The *free base* absorbs CO₂ from the atmosphere; store it accordingly. The *hydrochloride* [5267-34-5] **M** 219.7 **m** 293-295°, crystallises from H₂O. [*Beilstein* **12** H 1323, **12** IV 3282.] §A polymer bound *benzhydrylamine hydrochloride* is commercially available.

Diphenylmethyl chloride (benzhydryl chloride) [90-99-3] M 202.7, m 17.0°, b 140°/3mm, 167°/17mm, n 1.5960. Dry the chloride with Na₂SO₄ and fractionally distil it under reduced pressure. [Beilstein 5 H 590, 5 I 278, 5 II 500, 5 III 1790, 5 IV 1847.]

*all-trans-***1,8-Diphenyl-1,3,5,8-octatetraene** [3029-40-1] **M 258.4, m 235-237°.** Crystallise the octatetraene from EtOH. [*Beilstein* **5** H 709, **5** II 620, **5** III 2328, **5** IV 2508.]

N,N'-Diphenyl-p-phenylenediamine [74-31-7] M 260.3, m 148-149°, b 219-224°/0.7 mm, pK_{Est} <0. Crystallise the diamine from EtOH, chlorobenzene/pet ether or *benzene. It has also been crystallised from aniline, then extracted three times with absolute EtOH. [*Beilstein* 13 H 80.]

1,1-Diphenyl-2-picrylhydrazine [1707-75-1] **M 395.3, m 174°(dec), 178-179.5°(dec).** Crystallise the hydrazine from CHCl₃, or *benzene/pet ether (1:1), then degas it at 100° and <10⁻⁵mm Hg for aa 50hours to decompose the 1:1 molar complex formed with *benzene. [Beilstein **15** II 221, **15** IV 1210.]

2,2-Diphenylpropionic acid [5558-66-7] **M 226.3, m 173-174**°, pK_{Est} ~3.8. Crystallise the acid from EtOH. [*Beilstein* **9** II 474.]

3,3-Diphenylpropionic acid [606-83-7] M **226.3**, m **155**°, $pK_{Est} \sim 4.5$. Crystallise the acid from EtOH. [Beilstein 9 H 680.]

Diphenyl sulfide [139-66-2] **M 186.3, b 145°/8mm, d** $_{4}^{20}$ **1.114, n** $_{D}^{20}$ **1.633.** Wash the sulfide with aqueous 5% NaOH, then water. Dry it with CaCl₂, then with sodium. The sodium is filtered off, and the diphenyl sulfide is distilled under reduced pressure. [*Beilstein* **2** H 299, **6** IV 1488.]

Diphenyl sulfone [127-63-9] **M 218.3, m 125°, b 378°(dec).** Crystallise the sulfone from diethyl ether. It has been purified by zone melting. [*Beilstein* **6** H 300, **6** IV 1490.]

sym-Diphenylthiourea (thiocarbanilide) [102-08-9] M 228.3, m 154°. Crystallise the thiourea from boiling EtOH by adding hot water and allowing to cool. [*Beilstein* 12 H 394, 12 IV 810.]

1,1-Diphenylurea [603-54-3] **M 212.3, m 238-239°.** Crystallise 1,1-diphenylurea from MeOH. [*Beilstein* for 1,3 **12** IV 741.]

N,*N*-Di-*n*-propylaniline [2217-07-4] M 177.3, b 127% 10mm, 238-241% 760mm, pK²³ 5.68. Reflux the aniline for 3hours with acetic anhydride, then fractionally distil under reduced pressure.

Dithizone (diphenylthiocarbazone) [60-10-6] M 256.3, m 168°(dec), ratio of $\varepsilon_{620nm}/\varepsilon_{450nm}$ should be ≥ 1.65 , ε_{620} 3.4 x 10⁴ (CHCl₃), pK₂ 4.6. The crude dithizone is dissolved in CCl₄ to give a concentrated solution. This is filtered through a sintered glass funnel and shaken with 0.8M aqueous ammonia to extract dithizonate ion. The aqueous layer is washed with several portions of CCl₄ to remove undesirable materials. The aqueous layer is acidified with dilute H₂SO₄ to precipitate pure dithizone. This is dried in a vacuum. When only small amounts of dithizone are required, purification by paper chromatography is convenient. [Cooper & Hibbits J Am Chem Soc 75 5084 1933.] Instead of CCl₄, CHCl₃ can be used, and the final extract, after washing with water, can be evaporated in air at 40-50° and dried in a desiccator. It complexes with Cd, Hg, Ni and Zn. [Beilstein 16 H 26, 16 IV 18.]

Di-*p*-tolyl carbonate [621-02-3] M 242.3, m 115°. Purify the carbonate by GLC with 20% Apiezon on Embacel followed by sublimation *in vacuo* and recrystallisation from EtOH (m 114°). [*Beilstein* 6 H 398, 6 I 201, 6 II 380, 6 III 1366.]

N,N'-Di-o-tolylguanidine [97-39-2] M 239.3, m 179° (175-176°), pK¹⁸ 9.62. The guanidine crystallises from aqueous EtOH. The *sulfate* has m 253-254°(dec, H₂O). [*Beilstein* 12 H 803, 12 II 445, 12 III 1871, 16 IV 1764]

Di-*p*-tolylphenylamine [20440-95-3] **M** 273.4, **m** 108.5°, **b** 250°/20-40mm, $pK_{Est} \sim -5.0$. Crystallise the amine once from EtOAc, then twice from EtOH to give pale yellow needles [Marsden J Chem Soc 627 1937, Beilstein 12 III 2033.]

Di-*p*-tolyl sulfone [599-66-6] **M 278.3**, **m 158-159°**, **163.5°**, **b 405°**/760**mm**. Crystallise the sulfone repeatedly from Et_2O or EtOH. It has been purified by zone melting. [*Beilstein* 6 H 419, 6 II 395, 6 III 1405, 6 IV 2174.]

1,2-Divinylbenzene [1321-74-0] **M 130.2, b 53°/3mm, 79.2-79.6°/15mm, 195°//760mm, d²⁰ 0.919, n_D^{20} 1.573. Purify divinylbenzene by dissolving in Et₂O, shaking with H₂O, drying over CaCl₂, filtering, evaporating and distilling** *in vacuo***. It polymerises within 2-3days unless 4-***tert* **butylcatechol (0.05%) is added as stabilizer. [Fries & Bestian** *Chem Ber* **69** 715 *1936*, *Beilstein* **5** III 1366.]

Duroquinone (tetramethylbenzoquinone) [527-17-3] M 164.2, m 110-111°, 111-112°. Crystallise duraquinone from 95% EtOH. Dry it *in vacuo*. [*Beilstein* 7 H 669, 7 III 3417, 7 IV 2101.]

Ellagic acid (4,4',5,5',6,6'-hexahydroxydiphenic acid dilactone) [476-66-4] M 338.2, m > 360°, $pK_{Est(1)}$ ~8, $pK_{Est(2)}$ ~11. This antioxidant crystallises from pyridine. It forms a dark green solution in aqueous N NaOH. The *tetraactetate dilactone* crystallises from Ac₂O, with m 340°. [*Beilstein* 19 H 261, 19 III/IV 3164, 19/7 V 108.]

Emodine (1,3,8-trihydroxy-6-methyl-9,10-anthracenedione, archin) [518-82-1] M 270.2, m 253-257°, 255-256°, 256-257°, 262°, 264° (phenolic pKs 7–10). Archin forms orange needles from EtOH, Et₂O, $*C_6H_6$, toluene or pyridine. It sublimes above 200° at 12mm. [Tutin & Clewer J Chem Soc 99 946 1911, IR: Bloom et al. J Chem Soc 178 1959, UV: Birkinshaw Biochem J 59 495 1955, Raistrick Biochem J 34 159 1940.]

1R,2S-(-)Ephedrine see (-)-ephedrine (1R,2S-2-methylamino-1-phenylpropanol) in "Miscellaneous" in Chapter 6.

(±)-Epichlorohydrin [106-89-8] M 92.5, b 115.5%/760mm d_4^{25} 1.183, n_D^{20} 1.438. Distil epichlorohydrin at 760mm, heat it on a steam bath with one-quarter its weight of CaO, then decant and fractionally distil it. [Beilstein 17 H 6, 17 III/IV 20.]

R(-)Epinephrine See adrenalin in "Miscellaneous" in Chapter 6.

3-Ethoxy-*N*,*N*-**diethylaniline** [1846-92-2] **M 193.3**, **b 145**%/**14mm**, **268-270**%/**760mm**, n_D^{25} **1.5325**, **pK**_{Est} ~**6.1**. Reflux it for 3hours with Ac₂O, then fractionally distil it, preferably under reduced pressure. The 3-nitroso derivative has **m** 72.5° (green crystals from pet ether/*C₆H₆). [Klaassens & Schoot Recl Trav Chim Pays-Bas **48** 1272 1929.]

1-Ethoxynaphthalene [5328-01-8] M 172.2, b 136-138°/14mm, 282°/760mm, d_4^{20} 1.061, n_D^{20} 1.604. Fractionally distil it (twice) under a vacuum, then dry it with, and distil it under a vacuum from sodium. The *picrate* has m 118.5-119° (from EtOH). [*Beilstein* 6 H 606, 6 II 578, 6 III 2924, 6 IV 4212.]

2-Ethoxynaphthalene [93-18-5] **M 172.2, m 35.6-36.0°, b 142-143°/12mm, 280°/760mm,** Crystallise it from pet ether or EtOH (**m** 37-38°). Dry it *in vacuo*, or distil it in a vacuum. The *picrate* has **m** 104.5° (from EtOH or CHCl₃). [*Beilstein* **6** H 606, **6** II 578, **6** III 2972, **6** IV 4257.]

Ethyl *p*-aminobenzoate (Benzocaine) [94-09-7] M 165.2, m 92°, pK^{25} 2.39. Crystallise Benzocaine from EtOH/H₂O or EtOH (m 93-94°), and dry it in air. [*Beilstein* 14 H 422, 14 IV 1129.]

p-Ethylaniline [589-16-2] M 121.2, b 88°/8mm, d $_{4}^{20}$ 0.975, n $_{D}^{20}$ 1.554, pK²⁵5.00. Dissolve *p*-ethylaniline in *benzene, then acetylate it. Recrystallise the *acetyl* derivative (m 93-94°, Hickinbottom & Waine *J Chem Soc* 1565 1930) from *C₆H₆/pet ether or EOH, and hydrolyse it by refluxing 50g with 500mL of H₂O and 115mL of conc H₂SO₄ until the solution becomes clear. The amine sulfate is isolated, suspended in H₂O and solid KOH is added to generate the free base, which separates. Dry it (KOH), and distil it from zinc dust in a vacuum [Berliner & Berliner *J Am Chem Soc* 76 6179 1954]. The *picrate* has m 171-172° (from 1,2-dichloroethane). [*Beilstein* 12 H 1090, 12 III 2380, 12 IV 2419.]

trans-Ethyl cinnamate [103-36-6] M 176.2, f 6.7°, b 127°/6mm, 272.7°/768mm, d_4^{20} 1.040, n_D^{20} 1.55983. Wash the ester with aqueous 10% Na₂CO₃, then water, dry (MgSO₄), and distil it. The purified ester is saponified with aqueous KOH, and, after acidifying the solution, cinnamic acid is isolated, washed and dried. The ester is reformed by refluxing for 15hours the cinnamic acid (25g) with absolute EtOH (23g), conc H₂SO₄ (4g) and dry *benzene (100mL), after which it is isolated, washed, dried and distilled under reduced pressure [Jeffery & Vogel J Chem Soc 658 1958]. [Beilstein 9 IV 2006.]

(±)-Ethyl α,β -dibromo- β -phenylpropionate [5464-70-0, erythro 30983-70-1] M 336.0, m 75°. Crystallise the propionate from pet ether (b 60-80°), EtOH or aqueous EtOH (m 78°, and an unstable form m 65°). [Beilstein 9 H 512, 9 I 202, 9 III 2406, 9 IV 1772.]

Ethyl gallate [831-61-8] **M 198.2, m 150-151°, 163-165°.** Recrystallise the gallate from 1,2dichloroethane, UV: λ_{max} (neutral species) 275nm (ε 10 000), (anion) 235nm (ε 10 300), 279nm (ε 11 400) and 324nm (ε 8 500) [Campbell & Coppinger J Am Chem Soc **73** 2708 1951]. [Beilstein **10** IV 2002.]

Ethyl *p*-nitrobenzoate [99-77-4] M 195.2, m 56°. Dissolve it in Et₂O and wash it with aqueous alkali, then the ether is evaporated and the solid recrystallised from EtOH. [*Beilstein* 13 H 3787, 13 IV 1074.]

o-Ethylphenol [90-00-6] M 122.2, f 45.1°, b 210-212°, d_4^{20} 1.020, n_D^{20} 1.537, pK²⁵ 10.20. Purify as for *p*-ethylphenol below. [*Beilstein* 6 H 470, 6 IV 3011.] *p*-Ethylphenol [123-07-9] M 122.2, m 47-48°, b 76°/1mm, 153°/100mm, 218.0°/762mm, n_D^{25} 1.5239, pK^{25} 10.21. Non-acidic impurities are removed by passing steam through a boiling solution containing 1 mole of the phenol and 1.75 moles of NaOH (as an aqueous 10% solution). The residue is cooled and acidified with 30% (v/v) H₂SO₄, and the free phenol is extracted into diethyl ether. The extract is washed with water, dried with CaSO₄ and the ether is evaporated. The phenol is distilled at 100mm pressure through a Stedman gauze-packed column (p 11). It is further purified by fractional crystallisation by partial freezing, and by zone refining, under N₂ [Biddiscombe et al. *J Chem Soc* 5764 *1963*]. Alternatively purify it *via* the benzoate, as for phenol. The 4-nitrophenylbenzoate has m 80° (from EtOH). [Beilstein 6 H 470, 6 III 1663, 5 IV 3020.]

Ethyl phenylacetate [101-97-3] M 164.2, b 99-99.3°/14mm, d $_{4}^{20}$ 1.030, n $_{D}^{20}$ 1.499. Shake the ester with saturated aqueous Na₂CO₃ (three times), aqueous 50% CaCl₂ (twice) and saturated aqueous NaCl (twice). Dry with CaCl₂ and distil it under reduced pressure. [*Beilstein* 9 H 434, 9 IV 1618.]

Ethyl Red [2-(4-diethylaminophenylazo)benzoic acid] [76058-33-8] M 297.4, m 135°, 150-152°, pK₁ 2.5, pK₂ 9.5. Crystallise the acid dye from EtOH/diethyl ether or toluene. It is an indicator: pH 4.4 (red) and 6.2 (yellow). UV: λ_{max} 447nm. [Beilstein 16 I 316.]

Ethynyl *p*-tolylsulfone [13894-21-8] M 180.2, m 65-67°, 73-74°. Recrystallise the sulfone from pet ether, $*C_6H_6$ or EtOH (m 66°), and dry it in a vacuum. [*Beilstein* 6 III 1397, 6 IV 2160.]

Eugenol (4-allyl-2-methoxyphenol) [97-53-0] M 164.2, b 253°/760mm, 255°/760mm, d_4^{20} 1.066, n_D^{20} 1.540, pK²⁵ 10.19. Fractional distillation of eugenol gives a pale yellow liquid which darkens and thickens on exposure to air. It should be stored under N₂ at -20°. [Waterman & Priedster *Recl Trav Chim Pays-Bas* 48 1272 1929, *Beilstein* 6 H 961, 6 IV 6337.]

Eugenol methyl ether (4-allyl-1,2-dimethoxybenzene) [93-15-2] M 178.2, m -4°, b 127-129°/11mm, 146°/30mm, 154.7°/760mm, d_4^{20} 1.0354, n_D^{20} 11.53411. Recrystallise the ether from hexane at low temperature and redistil it (preferably *in vacuo*). [Hillmer & Schorning Z Phys Chem [A] 167 407 1934, Briner & Fliszár Helv Chim Acta 42 2063 1959, Beilstein 6 H 963, 6 IV 6337.]

Fluoranthene (benzo[*j*,*k*]fluorene) [206-44-0] M 202.3, m 110-111°, b 384°/760mm. Purify it by chromatography of CCl₄ solutions on alumina, with *benzene as eluent. Crystallise it from EtOH, MeOH or *benzene. Also purify it by zone melting. [Gorman et al. *J Am Chem Soc* 107 4404 1985, *Beilstein* 5 I 344, 5 IV 2463.]

Fluorene [86-73-7] **M 166.2, m 114.7-115.1°, b 160°/15mm, 298°/atm.** Purify fluorene by chromatography of CCl₄ or pet ether (b 40-60°) solution on alumina, with *benzene as eluent. Crystallise it from 95% EtOH, 90% acetic acid and again from EtOH. Crystallisation using glacial acetic acid retains an impurity which is removed by partial mercuration and precipitation with LiBr [Brown et al. *J Am Chem Soc* **84** 1229 *1962*]. It has also been crystallised from hexane, or *benzene/EtOH, distilled under vacuum and purified by zone refining. [Gorman et al. *J Am Chem Soc* **107** 4404 *1985*, *Beilstein* **5** IV 2142.]

Fluorene-2,7-diamine [525-64-4] **M 196.3, m 165-166°.** Crystallise the diamine from hot H_2O or aqueous EtOH, dry it *in vacuo* and store it in the dark. [*Beilstein* **13** H 266, **13** II 123, **12** III 507, **13** IV 449.]

9-Fluorenone [486-25-9] **M 180.2, m 82.5-83.0°, 85-86°, b 341°/760mm.** Crystallise 9-fluorenone from absolute EtOH, MeOH or *benzene/pentane. [Ikezawa J Am Chem Soc 108 1589 1986.] Also recrystallise it twice from toluene and sublime it in a vacuum [Saltiel J Am Chem Soc 108 2674 1986]. It can be distilled under high vacuum. [Beilstein 7 H 465, 7 III 2330, 7 IV 1629.]

9-Fluorenylmethyl chloroformate (FMOC-Cl) [28920-43-6] **M 258.7, m 61-63°, 61.4-63°.** If the IR contains no OH bands (at ~3000 cm⁻¹) due to the hydrolysis product 9-fluorenylmethanol, then purify it by recrystallisation from dry Et₂O. IR (CHCl₃) has a band at 1770 cm⁻¹ (C=O), and the NMR (CDCl₃) has δ

at 4-4.6 (m 2H, CHCH₂) and 7.1-7.8 (m, 8 aromatic *H*) ppm. The *azide* (*FMOC-N*₃) has **m** 89-90° (from hexane) and IR (CHCl₃) at 2135 (N₃) and 1730 (C=O) cm⁻¹, and the *carbazate* (*FMOC-NHNH*₂) has **m** 171°(dec) (from nitromethane), IR (KBr) 3310, 3202 (NH) and 1686 (CONH) cm⁻¹. [Caprino & Han *J Org Chem* **37**, 3404 *1972*, *J Am Chem Soc* **92** 5748 *1970*, Koole et al. *J Org Chem* **59** 1657 *1989*, Fürst et al. *J Chromatogr* **499** 537 *1990*.]

9-Fluorenylmethyl succinimidyl carbonate [82911-69-1] M 337.3, m 147-151°(dec), 151° (dec). Recrystallise the carbonate from CHCl₃/Et₂O, or from pet ether (b 40-60°). [Pauet *Can J Chem* 60 976 1982, Lapatsaris et al. *Synthesis* 671 1983.]

Fluorobenzene [462-06-6] M 96.1, b 84.8°/760mm, d_4^{20} 1.025, n_D^{20} 1.46573, n_D^{30} 1.4610. Dry fluorobenzene for several days with P₂O₅, then fractionally distil it. [*Beilstein* 5 H 198, 5 IV 632.]

o-Fluorobenzoic acid [445-29-4] M 140.1, m 127°, d^{25} 1.460, pK²⁵ 3.27. Crystallise the acid from 50% aqueous EtOH, dilute HCl or *C₆H₆, then purify it by zone melting or vacuum sublimation at 130-140°. [*Beilstein* 9 H 333. 9 III 1324, 9 IV 950.]

m-Fluorobenzoic acid [445-38-9] M 140.1, m 124°, 125°, d^{25} 1.474 pK²⁵ 3.86. Crystallise the acid from 50% aqueous EtOH or *C₆H₆, then sublime it *in vacuo* at 130-140°. [*Beilstein* 9 H 333, 9 IV 952.]

p-Fluorobenzoic acid [456-22-4] M 140.1, m 182°, d^{25} 1.479, pK²⁵ 4.15. Crystallise the acid from 50% aqueous EtOH, then purify it by zone melting or vacuum sublimation at 130-140°. [Beilstein 9 H 333, 9 III 1327, 9 IV 953.]

3-Fluoro-4-hydroxyphenylacetic acid [458-09-3] M 170.1, m 33°, $pK_{Est(1)} \sim 4.4$, $pK_{Est(2)} \sim 9.4$. Crystallise the acid from water. [*Beilstein* 10 III 440.]

4-Fluoro-2-methylbenzaldehyde [63082-45-1] **M 138.1,** d_4^{25} **1.144,** n_D^{25} **1.526.** The aldehyde has been purified by gas chromatography and should be kept under N₂ as it readily oxidizes in air [Burgess et al. *Aust J Chem* **30** 543 1977].

2-Fluoro-4-nitroaniline [369-35-7] M **156.1, m 134-135°, 135-136°, pK²⁵ -0.44** (aqueous HClO₄). The aniline forms yellow crystals on recrystallisation from aqueous MeOH or EtOH. The *acetyl* derivative has m 203-204° (from EtOH). [Wepster & Verkade *Recl Trav Chim, Pays Bas* **68** 86 1949, *Beilstein* **12** III 1647.]

1-Fluoro-4-nitrobenzene [350-46-9] M 141.1, m 27°(stable form), 21.5°(unstable form), b 86.6°/14mm, 95-97.5°/22mm, 205.3°/735mm. Crystallise it from EtOH. [Beilstein 5 H 241, 5 IV 719.]

1-Fluoro-4-nitronaphthalene [341-92-4] **M 191.2, m 80°.** It crystallises from EtOH as yellow needles [Bunce et al. *J Org Chem* **52** 4214 1987]. [*Beilstein* **5** III 1596, **5** IV 1675.]

4-Fluoro-3-nitrophenylazide [28166-06-5] **M 182.1, m 53-55°, 54-56°.** Dissolve the azide in Et₂O, dry it over MgSO₄, filter, evaporate and recrystallise the residue from pet ether (b 20-40°) to give orange needles. Store it in a stoppered container at ~0°. The NMR has δ 7.75 (m 1H) and 7.35 (m 2H) in CDCl₃. [Hagedorn et al. *J Org Chem* **43** 2070 1978.]

o-Fluorophenol [367-12-4] M 112.1, m 16°, b 53°/14mm, 171-172°/714mm, d_4^{20} 1.257, n_D^{20} 1.514, pK²⁵ 8.70. Pass *o*-fluorophenol at least twice through a gas chromatographic column for small quantities; otherwise fractionally distil it under reduced pressure. [*Beilstein* 6 I 97, 6 IV 770.]

p-Fluorophenoxyacetic acid [405-79-8] M 170.1, m 104.2-104.6°, 106°, pK²⁵ 3.13. Crystallise the acid from EtOH or H₂O. [Hayes & Branch *J Am Chem Soc* 65 1555 *1943*, *Beilstein* 6 III 971, 6 IV 776.]

4-Fluorophenylacetic acid [405-50-5] **M 154.1, m 86°, 94°, b 164°/2mm, pK²⁵ 4.22.** Crystallise it from heptane, but it is best purified by distillation at high vacuum. [Bergmann et al. J Am Chem Soc **78** 6037 1956, Beilstein **9** III 2261, **9** IV 1672.]

4-Fluorophenyl isocyanate [1195-45-5] **M 137.1, b 55% mm, n_D^{20} 1.514.** Purify the isocyanate by repeated fractionation through an efficient column. If IR indicates that there is too much urea (in the presence of moisture the symmetrical urea is formed), then dissolve it in dry EtOH-free CHCl₃, filter, evaporate and distil it. **It is a pungent LACHRYMATORY liquid.** [See Hardy J Chem Soc 2011 1934, and Hickinbottom *Reactions of Organic Compounds* Longmans p493 1957.]

4-Fluorophenyl isothiocyanate [1544-68-9] **M** 153.2, **m** 24-26°, 26-27°, **b** 66°/2**mm**, 215°/atm, 228°/760**mm**, n_D^{20} 1.6116. A likely impurity is the symmetrical thiourea. Dissolve the isothiocyanate in dry CHCl₃, filter and distil the residue in a vacuum. It can also be steam distilled, the oily layer is separated, dried over CaCl₂ and distilled *in vacuo*. *Bis-(4-fluorophenyl)thiourea* has **m** 145° (from aqueous EtOH). [Browne & Dyson *J Chem Soc* 3285 1931, Buu Hoi et al. *J Chem Soc* 1573 1955, Olander *Org Synth* Coll Vol I 448 1941].

p-Fluorophenyl-*o*-nitrobenzyl ether [448-37-3] M 247.2, m 62°. Crystallise the ether from EtOH. [Jones J Chem Soc 1416 1938, Beilstein 6 III 1564, 6 IV 2608.]

o-Fluorotoluene [95-52-3] M 110.1, m -62°, b 114.4°/760mm, d_4^{20} 1.005, n_D^{20} 1.475. Dry *o*-fluorotoluene with P₂O₅ or CaSO₄ and fractionally distil it through a silvered vacuum-jacketed glass column with 1/8th-in glass helices. A high reflux ratio is necessary because of the closeness of the boiling points of the *o*-, *m*- and *p*- isomers [Potter & Saylor J Am Chem Soc **37** 90 1951]. [Beilstein **5** H 290, **5** III 676, **5** IV 799.]

m-Fluorotoluene [352-70-5] M 110.1, m -87°, b 116.5°/760mm, d_4^{20} 1.00, n_D^{27} 1.46524. Purify it as for *o*-fluorotoluene. [*Beilstein* 5 H 290, 5 III 676, 5 IV 799.]

p-Fluorotoluene [352-32-9] M 110.1, m -56°, 116.0°/760mm, d_4^{20} 1.00, n_D^{20} 1.46884. Purify it as for *o*-fluorotoluene. [*Beilstein* 5 H 290, 5 III 677, 5 IV 799.]

Formanilide [103-70-8] M 121.1, m 50°, b 166°/14mm, 216°/120mm, d_4^{20} 1.14. Crystallise formanilide from Et₂O (m 45.3°), Et₂O/pet ether (m 46°), pet ether (m 47.6°), ligroin/xylene, or distil it preferably under reduced pressure. [Beilstein 12 H 230, 12 II 135, 12 III 453.]

Gallic acid (H₂O) (3,4,5-trihydroxybenzoic acid) [5995-86-8 (H₂O), 149-91-7 (anhydrous)] M 188.1, m 253°(dec), pK_1^{25} 4.27, pK_2^{25} 8.68. Crystallise gallic from water. The *tri-O-acetyl* derivative has m 172° (from MeOH), and the *anilide* has m 207°(from EtOH). [*Beilstein* 10 H 470, 10 IV 1993.]

Galvinoxyl [2,6-di-*tert*-butyl- α -(3,5-di-*tert*-butyl-4-oxo-2,5-cyclohexadiene-1-ylidene)-*p*-tolyloxy] [2370-18-5] M 421.65, m 153.2-153.6°, 158-159°. It is a stable free radical scavenger of short-lived free radicals with odd electrons on C or O. It is best prepared freshly by oxidation of 3,3',5,5'-tetra-*tert*-butyl-4,4'-dihydroxydiphenyl-methane [m 154°, 157.1-157.6°, obtained by gently heating for 10-15minutes 2,6-di-*tert*-butylphenol, formaldehyde and NaOH in EtOH and recrystallised from EtOH (20g/100mL) as colourless plates, Karasch & Joshi *J Org Chem* 22 1435 *1957*, Bartlett et al. *J Am Chem Soc* 82 1756 *1960* and 84 2596 *1962*.] Oxidation is carried out under N₂ with PbO₂ in Et₂O or isooctane [Galvin A. Coppinger *J Am Chem Soc* 79 501 *1957*, Bartlett et al. above] or with alkaline potassium ferricyanide [Karasch & Joshi, above], whereby Galvinoxyl separates as deep blue crystals and is recrystallised twice under N₂ from *C₆H₆ solution by suction evaporation at 30°. The VIS spectrum has λ_{max} at 407nm (ε 30,000), 431nm (ε 154,000) and weak absorption at 772.5nm, and IR: ν_{max} 1577 and 2967cm⁻¹, and is estimated by iodometric titration. It is sensitive to O₂ in the presence of OH⁻ ions and traces of strong acid in hydroxylic or hydrocarbon solvents. At 62.5° in a 0.62mM solution in *C₆H₆ the radical decays with a first order $k = 4 \times 10^{-8} \sec^{-1}$ (half life 1.7 x 10¹⁷ sec, ~200 days) as observed by the change in OD at 550nm [see Green & Adam *J Org Chem* 28 3550 *1963*].

R(-)-Guaiaretic acid [guaiacic acid, 4,4'-(2,3-dimethyl-1-butene-(1,4-diyl)-bis-(2-methoxyphenol)] [500-40-3] M 328.4, m 99-100.5°, $[\alpha]_{D}^{16}$ -91° (c 1.1, EtOH), pK_{Est} ~10.0. Crystallise the acid once from pet ether (b 60-80°), twice from 60% aqueous MeOH and finally from EtOH (m 100-101°). UV has λ_{max} 207 and 260nm (loge 4.64 and 4.28). [King et al. *J Chem Soc* 4011 *1964*, Schrecker & Hartwell *J Org Chem* 21 381 *1956*.]

Guaiacol (2-methoxyphenol) [90-05-1] M 124.1, m 32°, b 106°/24mm, 205°/746mm, pK²⁵ 9.90. Crystallise guaiacol from *benzene/pet ether or distil it in a vacuum. [*Beilstein* 6 H 768, 6 IV 5563.]

Guaiacol carbonate [553-17-3] M 274.3, m 88.1°, 89°. Crystallise the carbonate from EtOH. It is estimated by bromination to the *monobromo guaiacol carbonate* m 178° (from EtOH) [Chernoff J Am Chem Soc 51 3073 1929]. [Beilstein 6 H 776, 6 I 386, 6 II 784, 6 III 4233.]

Guaiazuline (1,4-dimethyl-7-isopropylazulene) [489-84-9] M 198.3, m 31.5°, b 153°/7mm, d^{25} 0.976. It forms blue-violet plates from EtOH. Also redistil it *in vacuo* until distillate solidifies. UV has λ_{max} at 284nm (log ε 4.6, heptane). The *picrate* has m 122°(EtOH). [*Beilstein* 5 III 1677, 5 IV 1751.]

Guanabenz (1-[2,6-dichlorobenzylideneamino]guanidine WY-8677) [5051-62-7] M 231.1, m 227-229°(dec), pKest ~9. Crystallise the guanidine from MeCN and store it in a CO₂-free atmosphere. The *monoHCl* [23256-5-0] has m 178°(dec) [solubility w% at 25° is 1.1(H₂O), 5(EtOH), 0.1(EtOAc), 0.06(CHCl₃)]. It is an antihypertensive drug. [Holmes et al. *Drugs* 26 212 1983.]

Hexachlorobenzene [118-74-1] **M 284.8, m 230.2-231.0**°, **b 323-326**°/atm. Crystallise hexachlorobenzene repeatedly from *benzene. Dry it under vacuum over P₂O₅. [*Beilstein* **5** H 205, **5** IV 670.]

Hexachlorophene (2,2'-methylenebis[3,4,6-trichlorophenol]) [70-30-4] M 406.9, m 166-167°, pK_1^{20} 5.41, pK_2^{20} (30% aqueous MeOH). It forms needles from MeOH, C₂H₄Cl₂, or toluene. The *diacetate* has m 175-176° (EtOH). A disinfectant is also available in MeOH (5mg/L). [*Beilstein* 6 III 5407, 6 IV 6659.]

Hexadecyl 3-hydroxynaphthalene-2-carboxylate [531-84-0] M 412.6, m 73-74°, d¹³⁵ 0.824. Recrystallise the ester from hot EtOH and sublime it in a vacuum. It is soluble in C_6H_6 , pet ether and AcOH. [Oshima & Hayashi J Soc Chem Ind Jpn 44 821 1941, Chem Abs 42 2108 1948, Beilstein 5 H 471, 5 I 227, 5 II 358, 5 III 1106, 5 IV 1208.]

Hexaethylbenzene [604-88-6] M 246.3, m 128.7-129.5°. Crystallise this hydrocarbon from C_6H_6 , or C_6H_6 /EtOH. The 1,3,5-trinitrobenzene complex (1:1) has m 174°(EtOH). [Beilstein 5 III 3038, 5 IV 1137.]

Hexafluorobenzene [392-56-3] **M 186.1, m 5.1°, b 79-80°/760mm, d** $_{4}^{20}$ **1.61, n** $_{D}^{20}$ **1.378.** Main impurities are incompletely fluorinated benzenes. Purify it by standing in contact with oleum for 4hours at room temperature, repeating until the oleum does not become coloured. Wash it several times with water, then dry it with P₂O₅. Finally purify it by repeated fractional crystallisation. [*Beilstein* **5** III 523, **5** IV 640.]

Hexamethylbenzene [87-85-4] **M 162.3, m 165-165.5°.** Sublime hexamethylbenzene, then crystallise it from abolute EtOH, *benzene, EtOH/*benzene or EtOH/cyclohexane. It has also been purified by zone melting. Dry it in a vacuum over P_2O_5 . [Beilstein 5 H 450, 5 IV 1137.]

Homophthalic acid [89-51-0] M 180.2, m 180-181°, 182-183°, 189-190°, (depends on heating rate) $pK_{Est(1)} \sim 3.5$, $pK_{Est(2)} \sim 4.3$. Crystallise the acid from boiling H₂O (25mL/g; 63mL/g at 20°), aqueous AcOH (m 180°) Dry it at 100°. The *S-benzylisothiuronium salt* has m 155-156° (from EtOH). [Price Org Synth 22 611942, Grummitt et al. Org Synth Coll Vol III 449 1955, Beilstein 9 H 857, 9 II 617, 9 III 4266, 9 IV 3343.] The anhydride [703-59-3] M 162.1 has m 141-142°. [Beilstein 17/11 V 270.]

Homoveratronitrile (3,4-dimethoxybenzylnitrile) [93-17-4] M 177.2, m 62-64°, 68°, b 184°/20mm, 195-196°/2mm, 208°/atm. Its solubility is 10% in MeOH, and it has been recrystallised from EtOH or MeOH. Purify it also by distillation followed by recrystallisation. [Price & Rogers Org Synth Coll Vol III 174 1955, Niederl & Ziering J Am Chem Soc 64 885 1952, Julian & Sturgis J Am Chem Soc 57 1126 1935, Beilstein 10 I 198.]

Homoveratrylamine (2-[3,4-dimethoxyphenyl]ethylamine) [120-20-7] M 181.2, b 99.3-101.3°/0.5mm, 168-170°/15mm, d_4^{20} 1.091, n_D^{20} 1.5460, $pK_{Est} \sim 9.8$. Purify the amine by fractionation through an efficient column in an inert atmosphere as it is a relatively strong base. [Horner & Sturm Justus Liebigs Ann Chem 608 12819 1957, Jung et al. J Am Chem Soc 75 4664 1953.] The hydrochloride has m 152°, 154°, 156° (from EtOH, Me₂CO or EtOH/Et₂O), the picrate has m 165-167°(dec), and the 4-nitrobenzoyl derivative has m 147° [Buck J Am Chem Soc 55 2593 1933]. [Beilstein 13 H 800, 13 IV 2604.]

Hordenine {4-[(2-dimethylamino)ethyl]phenol} [539-15-1] M 165.2, m 117-118°, b 173-174°/11mm, pK²⁵ 9.46 (OH). Crystallise Hordenine from EtOH or H₂O and sublime it at 105°/5mm. The 4,4'-dichlorodiphenyl disulfimide salt has m 145-146° (from Me₂CO/H₂O) [Runge et al. Chem Ber 88 50 1955]. [Beilstein 13 H 626, 13 I 236, 13 II 356, 13 III 1640, 13 IV 1790.]

4-Hydrazinobenzoic acid [619-67-0] **M 152.2, m 217° (dec), pK²⁵ 4.13.** The acid crystallises from water. [*Beilstein* **15** H 631, **15** IV 1372.] The *hydrochloride* [24589-37-3] **M** 188.6, has **m** 253°(dec) [*Beilstein* **15** III 837].

Hydrobenzamide [1-phenyl-N,N'-bis(phenylmethylene)-methanediamine] [92-29-5] M 298.4, m 101-102°, 107-108°. Crystallise hydrobenzamide from absolute EtOH, pet ether (m 107-108°), *C₆H₆ (m 103°), or cyclohexane/*benzene. Dry it under vacuum over P₂O₅. [Pirrone *Gazz Chim Ital* 67 534 1937, *Beilstein* 7 H 215, 7 I 120, 7 II 166, 7 III 838.]

dl-Hydrobenzoin (1,2-diphenyl-1,2-ethanediol, *iso*-hydrobenzoin) [492-70-6] M 214.3, m 120°. Crystallise the diol from Et₂O /pet ether or H₂O (m 121-122°) [*Beilstein* 6 H 1004, 6 I 490, 6 II 969, 6 III 5431.] The *R*,*R*-(+)- and *S*,*S*-(-)- enantiomers have m 148.5-149.5°(dec), $[\alpha]_{D}^{20}$ + and -94.0° (c 2, EtOH) [Eisenlohr & Hill Chem Ber 70 942 1937].

meso-Hydrobenzoin [579-43-1] **M 214.3, m 139°, 139-140°.** Crystallise it from EtOH or water. [*Beilstein* **6** H 1003, **6** I 490, **6** II 967. **6** III 5429, **6** IV 6682.]

Hydroquinone (1,4-dihydroxybenzene, quinol) [123-31-9] M 110.1, m 175.4, 176.6°, pK_1^{20} 9.91, pK_2^{20} 11.56. Crystallise quinol from acetone, *benzene, EtOH, EtOH/*benzene, water or acetonitrile (25g in 30mL), preferably under nitrogen. Dry it under vacuum. [Wolfenden et al. J Am Chem Soc 109 463 1987, Beilstein 6 H 836, 6 IV 5712.]

p-Hydroxyacetophenone [99-93-4] M 136.2, m 109°, 111°, 147-148°/3mm, pK^{25} 8.01. Crystallise it from diethyl ether, aqueous EtOH or *benzene/pet ether. [*Beilstein* 8 H 87, 8 IV 339.]

3-Hydroxyanthranilic acid (2-amino-3-hydroxybenzoic acid) [548-93-6] M **153.1, m** >240°(dec), 245-265°(dec), 253-154°, 252-255°, λ_{max} 298nm, log ε 3000 (0.1M HCl), pK₁²⁰ 2.7, pK₂²⁰ 5.19, pK₃²⁰ 10.12. Crystallise the acid from H₂O or EtOH (m 254-255°). Sublime it at 170°/0.1mm. The *hydrochloride* has m 227° (from dilute HCl). [*Beilstein* 14 H 587, 14 III 1463, 14 IV 2071.] Possible carcinogen.

5-Hydroxyanthranilic acid (2-amino-5-hydroxybenzoic acid) [394-31-0] M 153.1, m 233-234°, 235-236°, 248°(dec), pK_1^{25} 2.72, pK_2^{25} 5.37, pK_3^{20} 10.12. Crystallise the acid from water. The *benzamide* has m 240-242° (fromAcOH). It is a hypoglycemic agent. [*Beilstein* 14 H 591, 14 II 357, 14 III 1468, 14 IV 2080.]

m-Hydroxybenzaldehyde [100-83-4] M 122.1, m 108° pK_1^{25} 8.98, pK_2^{25} 15.81. Crystallise the aldehyde from water. [*Beilstein* 8 H 58, 8 IV 240.]

p-Hydroxybenzaldehyde [123-08-0] M 122.1, m 115-116°, 117-119°, pK²⁵ 7.61. Crystallise it from water (containing some H₂SO₄). Dry it over P₂O₅ under vacuum. [*Beilstein* 8 H 64, 8 IV 251.]

m-Hydroxybenzoic acid [99-06-9] M 138.1, m 200.8°, pK_1^{25} 4.08, pK_2^{25} 9.98. Crystallise the hydroxyacid from absolute EtOH. [*Beilstein* 10 IV 315.]

p-Hydroxybenzoic acid [99-96-7] M 138.1, m 213-214°, pK_1^{25} 4.50, pK_2^{25} 9.11. Crystallise the hydroxyacid from water. [*Beilstein* 10 IV 345.]

2-Hydroxybenzyl alcohol (saligenine) [90-01-7] **M 124.1, m 86-87°, 87°, pK²⁵ 9.92.** Crystallise saligenine from water or EtOH/*C₆H₆ (**m** 89°). [*Beilstein* 6 III 4537, 6 IV 5896.]

3-Hydroxybenzyl alcohol [620-24-6] **M 124.1, m 71°, pK²⁵ 9.83.** Crystallise the alcohol from $*C_6H_6$ or CHCl₃. [*Beilstein* **6** III 4545, **6** IV 5907.]

4-Hydroxybenzyl alcohol [623-05-2] **M 124.1, m 122°, 127°, 132°, pK²⁵ 9.82.** Crystallise the alcohol from H_2O , $*C_6H_6$ (**m** 124°), $*C_6H_6$ /EtOH or ClCH₂CH₂Cl (**m** 122°). [Beilstein 6 III 4546, 6 IV 5909.]

2-Hydroxybiphenyl [90-43-7] **M 170.2, m 56°, b 145°/14mm, 275°/760mm, pK²⁰ 10.01.** Crystallise it from pet ether. [*Beilstein* **6** IV 4579.]

4-Hydroxybiphenyl (4-phenylphenol) [92-69-3] **M 170.2, m 164-165°, b 305-308°/760mm,** pK^{23} **9.55.** Crystallise the phenol from aqueous EtOH, $*C_6H_6$, and dry it in a vacuum over CaCl₂ [Buchanan et al. J Am Chem Soc **108** 7703 1986]. [Beilstein **6** IV 4600.]

trans-4-Hydroxycinnamic acid (*p*-coumaric acid) [501-98-4] M 164.2, m 210-213°, 214-215°, 215°, pK₁²⁵ 4.64, pK₂²⁵ 9.45. Crystallise *p*-coumaric acid from H₂O (charcoal). It forms needles from concentrated aqueous solutions as the *anhydrous acid*, but from hot dilute solutions the *monohydrate acid* separates on slow cooling. The acid (33g) has been crystallised from 2.5L of H₂O (1.5g charcoal) yielding 28.4g of recrystallised acid, m 207°. It is insoluble in *C₆H₆ or pet ether. The UV in 95% EtOH has λ_{max} 223 and 286nm (ϵ 14,450 and 19000 M⁻¹cm⁻¹). [UV Wheeler & Covarrubias *J Org Chem* 28 2015 1963, Corti *Helv Chim Acta* 32 681 1949, *Beilstein* 10 IV 1005.]

3-(4-Hydroxy-3,5-dimethoxyphenyl)acrylic acid (sinapinic acid) [530-59-6] M 234.1, m 204-205°(dec), $pK_{Est(1)} \sim 4.6$, $pK_{Est(2)} \sim 9.3$. Crystallise it from water. [Beilstein 10 H 508, 10 IV 2104.]

4-Hydroxydiphenylamine [122-37-2] **M 185.2, m 72-73°, pK**_{Est} ~10.0. Crystallise the amine from chlorobenzene/pet ether, pentane (**m** 72°) or C_6H_6 /pet ether (**m** 70°). [*Beilstein* 13 III 1019, 13 IV 1052.]

2-Hydroxy-4-(*n*-dodecyloxy)benzophenone [2985-59-3] M 382.5, m 50-52°, $pK_{Est} \sim 7.1$. Recrystallise it from *n*-hexane and then 10% (v/v) EtOH in acetonitrile [Valenty et al. *J Am Chem Soc* 106 6155 1984].

4-Hydroxyindane [1641-41-1] **M 134.2, m 49-50°, b 120°/12mm, pK²⁵ 10.32.** Crystallise 4-hydroxyindane from pet ether, pentane (**m** 50-50.5°) or C_6H_6 (**m** 39.5-40°). It has UV with λ_{max} at 277nm (cyclohexane). The *acetyl* derivative has **m** 30-32° (from EtOH), **b** 127°/14mm and the *3,5-dinitrobenzoyl* derivative has **m** 114°. [Dallacker et al. *Chem Ber* **105** 2568 1972, *Beilstein* **6** III 2427, **6** IV 3827.]

5-Hydroxyindane [1470-94-6] M 134.2, m 55°, b 127°/14mm, 255°/760mm, pK²³ 10.24. Crystallise 5-hydroxyindane from pet ether (m 56°) or pentane (m 59-60°). It has UV with λ_{max} at 283.5nm (cyclohexane). The 3,5-dinitrobenzoyl derivative has m 156°. [Beilstein 6 III 2428, 6 IV 3829.]

4-Hydroxy-3-methoxyacetophenone (apocynin) [498-02-2] M 166.2, m 115°, pK_{Est} ~7.9. Crystallise apocynin from water, or EtOH/pet ether. [*Beilstein* 8 IV 1814.]

trans-4-Hydroxy-3-methoxycinnamic acid (ferulic acid) [537-98-4; 1135-24-6] M 194.2, m 174^o, pK_1^{25} 4.58, pK_2^{25} 9.39. Crystallise ferulic acid from H₂O. [Beilstein 10 H 436, 10 IV 1776.]

4-Hydroxy-2-methylazobenzene (3-methyl-4-phenylazophenol) [1435-88-7] M 212.2, m 100-101°, 112°, pK_{Est} ~9.5. Crystallise the phenol from hexane. [Beilstein 16 II 61, 16 IV 195.]

4-Hydroxy-3-methylazobenzene (2-methyl-4-phenylazophenol) [621-66-9] **M 212.2, m 125-126°.** Crystallise the phenol from hexane or pet ether (**m** 130°). [Beilstein **16** II 59, **16** III 104, **16** IV 193.]

3-Hydroxy-4-methylbenzaldehyde [57295-30-4] **M 136.1, m 73°, pK**_{Est} ~10.2. Crystallise it from water or C_6H_6 (**m** 71-71°). The *O-methyl ether* has **m** 45-46° (from Et₂O/hexane). [Sedgwick & Allott *J Chem Soc* 2820 1923, Flitsch et al. *Justus Liebigs Ann Chem* 1413 1985, *Beilstein* **8** H 100, **8** II 103, **8** IV 368.]

5-Hydroxy-2-methyl-1,4-naphthaquinone (plumbagin) [481-42-5] M 188.2, m 78-79°, $pK_{Est(1)}\sim9.5$, $pK_{Est(2)}\sim11.0$. It crystallises in yellow needles from aqueous EtOH. It is soluble in organic solvents, it is steam volatile and it sublimes on heating in a vacuum. [Fieser & Dunn J Am Chem Soc 58 572 1936, Beilstein 8 III 2576, 8 IV 2376.]

6-Hydroxy-2-methyl-1,4-naphthaquinone [633-71-6] **M 188.2, pK**_{Est} \sim 10.0. Crystallise the naphthaquinone from aqueous EtOH and sublime it in a vacuum.

2-Hydroxy-1-naphthaldehyde [708-06-5] M 172.2, m 82°, b 139-142°/4mm, 192°/27mm, pK²⁵8.27 (50% aqueous EtOH). Crystallise the aldehyde from EtOH (1.5mL/g), aqueous EtOH, aqueous AcOH (m 84°), EtOAc or H₂O. [Russell & Lockhart *Org Synth* Coll Vol III 463 1955, *Beilstein* 8 H 143, 8 I 564, 8 II 171, 8 III 1108, 8 IV 1160.]

2-Hydroxy-1-naphthaleneacetic acid [10441-45-9] **M 202.2, m 147-148**, $pK_{Est(1)}$ ~4.2, $pK_{Est(2)}$ ~8.3. Crystallise the acid from EtOH/water (1:9, v/v, activated charcoal), H₂O (**m** 157°) or xylene (**m** 147°). Dry it under vacuum, over silica gel, in the dark. Store it in the dark at -20° [Gafni et al. *J Phys Chem* 80 898 1976]. It forms a cyclic lactone (**m** 107°) readily. [*Beilstein* 10 II 218, 10 III 1102, 10 IV 1201.]

6-Hydroxy-2-naphthalenepropionic acid [553-39-9] M 216.2, m 180-181°, $pK_{Est(1)} \sim 4.6$, $pK_{Est(2)} \sim 9.0$ Crystallise the acid from aqueous EtOH or aqueous MeOH. [Ormancey & Horeau Bull Soc Chim Fr 962 1955, Beilstein 10 III 1113.]

3-Hydroxy-2-naphthalide (Naphthol AS) [92-77-3] **M 263.3, m 248.0-248.5°, CI 37505.** Crystallise it from xylene or AcOH which forms plates **m** 243-244° [Schnopper et al. *Anal Chem* **31** 1542 1959]. [*Beilstein* **12** H 505.]

3-Hydroxy-2-naphtho-4'-chloro-*o*-toluidide [92-76-2] M **311.8, m 243.5-244.5°.** Crystallise it from xylene [Schnopper et al. Anal Chem **31** 1542 1959].

3-Hydroxy-2-naphthoic-1'-naphthylamide [123-68-3] **M 314.3, m 217-.5-218.0°.** Crystallise the amide from xylene [Schnopper et al. *Anal Chem* **31** 1542 1959].

3-Hydroxy-2-naphthoic-2'-naphthylamide [136-64-8] M **305.3, m 243.5-244.5°, and other naphthol AS derivatives.** Crystallise it from xylene [Schnopper et al. Anal Chem **31** 1542 1959].

2-Hydroxy-1,4-naphthoquinone (Lawsone B, Neutral Orange 6, tautomeric with 4-hydroxy-1,2-naphthoquinone) [83-72-7] M 174.2, m 192°(dec), CI 75480 pK₁²⁵ -5.6 (C=O protonation), pK₂²⁵ 2.38, pK₃²⁵ 4.00 (phenolic OH). Crystallise Lawsone B from *C₆H₆ or AcOH (m 192.5°, 195-196°). It sublimes in a vacuum (m 194°). It has UV with λ_{max} at 455nm (aqueous NaOH). [*Beilstein* 8 H 300, 8 I 635, 8 II 344, 8 III 2543, 8 IV 2360.]

5-Hydroxy-1,4-naphthoquinone (Juglone) [481-39-0] M 174.2, m 155°, 164-165°, pK²⁵ 8.7. Crystallise Juglone from *benzene/pet ether or pet ether. [*Beilstein* 8 III 2558, 8 IV 2368.]

6-Hydroxy-2-naphthyl disulfide [6088-51-3] **M 350.5**, **m 221-222°**, **226-227°**, **pK**_{Est} ~9.0. It crystallises as leaflets from AcOH and is slightly soluble in EtOH, and AcOH, but is soluble in $*C_6H_6$ and in alkalis to give a yellow solution. [Zincke & Dereser *Chem Ber* **51** 352 1918.] The acetoxy derivative has **m** 198-200° (from AcOH or dioxane/MeOH), and the diacetyl derivative has **m** 167-168° (from AcOH). A small amount of impure disulfide can be purified by dissolving it in a small volume of Me₂CO and adding a large volume of toluene, filter rapidly and concentrate to one-third of its volume. The hot toluene solution is filtered rapidly from any tarry residue, and crystals separate on cooling. Recrystallisation from hot acetic acid gives crystals with **m** 220-223° [Barrett & Seligman Science **116** 323 1952]. [Beilstein **6** I 481.]

2-Hydroxy-5-nitrobenzyl bromide (Koshland's reagent) [772-33-8] M 232.0, m 147°, pK_{Est} ~8.0. Crystallise the bromide from *benzene or *benzene/ligroin. It is slightly soluble in EtOH, soluble in *C₆H₆ and AcOH, and very soluble in ligroin. [*Beilstein* 6 H 367.]

2-Hydroxyphenylacetic acid [614-75-5] **M 152.2, m 148-149°, 152-153°, b 240-243°/760mm,** $pK_{Est(1)}\sim 4.3$, $pK_{Est(2)}\sim 10.1$. Crystallise the acid from ether or chloroform (m 147°, m from latter solvent is always lower). [Beilstein 10 H 187, 10 I 81, 10 II 112, 10 III 422, 10 IV 536.]

3-Hydroxyphenylacetic acid [621-37-4] **M 152.2, m 137°, pK**_{Ext(1)}~4.3, pK_{Ext(2)}~10. Crystallise the acid from C_6H_6 /ligroin or EtOAc/cyclohexane (m 131-132°). [Beilstein 10 H 189, 10 I 82, 10 II 112, 10 III 428, 10 IV 541.]

4-Hydroxyphenylacetic acid [156-38-7] **M 152.2, m 150-151°, 152°, pK_1 4.28, pK_2 10.1. Crystallise the acid from water or Et₂O/pet ether. The** *p***-bromophenacyl ester has m** 117° (from EtOH). [Beilstein 10 II 112, 10 III 430, 10 IV 543.]

N-(4-Hydroxyphenyl)-3-phenylsalicylamide [550-57-2] M 305.3, m 183-184°, pK_{Est} ~9.5. Crystallise the amide from aqueous MeOH. [*Beilstein* 13 IV 224.]

L-2-Hydroxy-3-phenylpropionic acid (3-phenyl lactic acid) [20312-36-1] M 166.2, m 125-126°, $[\alpha]_{D}^{12}$ -18.7° (EtOH), $[\alpha]_{D}^{20}$ -22° (c 1, H₂O), pK see below. Crystallise the acid from water, MeOH, EtOH or *benzene. [Beilstein 10 IV 653.]

dl-2-Hydroxy-3-phenylpropionic acid [828-01-3] M 166.2, m 97-98°, b 148-150°/15 mm, $pK_{Est} \sim 3.7$. Crystallise the propionic acid from *benzene or chloroform. [*Beilstein* 10 IV 653.]

3-*p*-Hydroxyphenylpropionic acid (phloretic acid) [501-97-3] M 166.2, m 129-130°, 131-133°, $pK_{Est(1)}$ ~4.7, $pK_{Est(2)}$ ~10.1. Crystallise phloretic acid from ether or H₂O. [Beilstein 10 IV 631.]

p-Hydroxyphenylpyruvic acid [156-39-8] M 180.2, m 220°(dec), pK_{Est} ~2.3. Crystallise it three times from 0.1M HCl/EtOH (4:1, v/v) immediately before use [Rose & Powell *Biochem J* 87 541 1963], or from Et₂O. The 3,4-dinitrophenylhydrazone has m 178°. [*Beilstein* 10 IV 3630.]

N-Hydroxyphthalimide [524-38-9] M 163.1, m 230°, ~235°(dec), 237-240°, pK³⁰ 7.0. Dissolve the imide in H₂O by adding Et₃N to form the salt and while hot, acidify, cool and pour into a large volume of H₂O. Filter off the solid, wash it with H₂O and dry it over P₂O₅ in a vacuum. [Nefken & Teser J

Am Chem Soc **83** 1263 *1961*, Fieser **1** 485 *1976*, Nefkens et al. *Recl Trav Chim*, *Pays-Bas* **81** 683 *1962*] The *O-acetyl* derivative has **m** 178-180° (from EtOH). [*Beilstein* **21/11** V 100.]

4'-Hydroxypropiophenone [70-70-2] **M 150.2, m 149°, b 140-145°/0.5mm, pK²⁵ 8.05.** Crystallise the phenone from H₂O (**m** 149.8-150.2°) or EtOH (**m** 147°). The *benzoyl derivative* has **m** 117°, and the *semicarbazone* has **m** 183° (EtOH). [*Beilstein* **8** H 102, **8** II 104, **8** III 379.]

trans-4-Hydroxystilbene [6554-98-9] M 196.3, m 189°. Crystallise it from *C₆H₆, MeOH (m 186-187°) or acetic acid. [*Beilstein* 6 H 693, 6 II 657, 6 III 3497, 6 4855.]

Hydroxy(tosyloxy)iodobenzene [phenyl(hydroxyl)tosyloxyiodine, hydroxy(4-methylbenzenesulfonato-O)phenyliodine, Koser's reagent] [27126-76-7] M 392.2, m 134-136°, 135-138°, 134-136°, 136-138.5°. Possible impurities are tosic acid (removed by washing with Me₂CO) and acetic acid (removed by washing with Et₂O). It is purified by dissolving in the minimum volume of MeOH, adding Et₂O to cloud point and setting aside for the prisms to separate [Koser & Wettach *J Org Chem* 42 1476 1977, NMR: Koser et al. *J Org Chem* 41 3609 1976]. It has also been crystallised from CH₂Cl₂ (needles, m 140-142°) [Neiland & Karele *J Org Chem*, USSR (Engl Transl) 6 889 1970].

9-Hydroxytriptycene [73597-16-7] **M 270.3, m 245-246.5°.** Crystallise it from *benzene/pet ether. Dried it at 100° in a vacuum [Bartlett & Greene J Am Chem Soc **76** 1088 1954, Imashiro et al. J Am Chem Soc **109** 729 1987].

Hypericin (hypericum, 4,5,7,4',5',7'-hexahydroxy-2',2'-dimethylnaphthodianthrone) [548-04-9] M 504.4, m 320°(dec). Crystallise hypericin from pyridine by addition of methanolic HCl. [Beilstein 8 IV 3761.]

Ibuprofen [(S+) and (R-) 4-isobutyl- α -methylphenylacetic acid, Brufen, Nurofen, Motrui] [(S +) 51146-56-6, (R -) 51146-57-7] M 206.3, m 52-53°, [α] $_{\rm D}^{20}$ +59° (c 2, EtOH). Crystallise the (+) and (-) acids from EtOH or aqueous EtOH. The *racemate* which crystallises from pet ether with m 75-77° is sparingly soluble in H₂O and has IR (film) $v_{\rm max}$ 1705 (C=O), 2300–3700 (OH broad)cm⁻¹. It is used as a nonsteroidal anti-inflammatory. [Shiori et al. J Org Chem 43 2936 1978, Kaiser et al. J Pharm Sci 65 269 1976, J Pharm Sci 81 221 1992, Freer Acta Cryst (C) 49 1378 1993 for the (S+)-enantiomer.]

1,3-Indandione [606-23-5] **M 146.2, m 129-132°, pK¹⁸ 7.2** (1% aqueous EtOH). Recrystallise it from EtOH or C_6H_6 . In dilute alkali it gives a deep yellow solution of the enol. [Bernasconi & Paschalis J Am Chem Soc 108 2969 1986]. [Beilstein 7 IV 2344.]

Indane [496-11-7] M 118.1, f -51.4° , b 79°/29mm, 177-179.5°/760mm, d²⁰₄ 0.960, n²⁰_D 1.536. Shake indane with conc H₂SO₄, then water, dry and fractionally distil it. [*Beilstein* 5 H 486, 5 I 234, 5 II 376, 5 III 1200, 5 IV 1371.]

Indene [95-13-6] M 116.2, f -1.5°, b 114.5°/100mm, d $_4^{20}$ 0.994, n $_D^{20}$ 1.5763. Shake indene with 6M HCl for 24hours (to remove basic nitrogenous material), then reflux it with 40% NaOH for 2hours (to remove benzonitrile). Fractionally distil, then fractionally crystallise it by partial freezing. The higher-melting portion is converted to its sodium salt by adding a quarter of its weight of sodamide under nitrogen and stirring for 3hours at 120°. Unreacted organic material is distilled off at 120°/1mm. The sodium salts are hydrolysed with water, and the organic fraction is separated by steam disillation, followed by fractional distillation. Before use, the distillate is passed, under nitrogen, through a column of activated silica gel. It turns yellow in air as it readily oxidizes and polymerises. [Russell J Am Chem Soc 78 1041 1956, Beilstein 5 IV 1532.]

2-Iodoaniline [615-43-0] **M 219.0, m 60-61°, pK²⁵ 2.54.** Distil 2-iodoaniline with steam and crystallise it from *benzene/pet ether. The *N*-acetyl derivative has **m** 110°. [Beilstein **12** IV 1542.]

4-Iodoaniline [540-37-4] **M 219.0, m 62-63°, pK²⁵ 3.81.** Crystallise it from pet ether (b 60-80°) by refluxing, then cool it in an ice-salt bath freezing mixture. Dry it in air. Alternatively, crystallise it from EtOH and dry it *in vacuo* for 6hours at 40° [Edidin et al. *J Am Chem Soc* **109** 3945 1987]. The *N*-acetyl derivative has **m** 184° (from MeOH). [*Beilstein* **12** IV 1544.]

4-Iodoanisole [696-62-8] **M 234.0, m 51-52°, b 133-133.3°/25mm, 139°/35mm, 237°/726mm.** Crystallise 4-iodoanisole from aqueous EtOH and/or distil it under vacuum. [Beilstein 6 H 208, 6 I 109, 6 II 199, 6 III 744, 6 IV 1075.]

Iodobenzene [591-50-4] **M 204.0, b 63-65°/10mm, 188°/atm, d** $_{4}^{20}$ **1.829, n** $_{D}^{25}$ **1.6169.** Wash it with dilute aqueous Na₂S₂O₃, then water. Dry it with CaCl₂ or CaSO₄, decolourise with charcoal and distil it under reduced pressure then store it with mercury or silver powder to stabilise it. [*Beilstein* **5** IV 688.]

o-Iodobenzoic acid [88-67-5] M 248.4, m 162°, pK²⁰ 2.93. Crystallise the acid repeatedly from water and EtOH. Sublime it under vacuum at 100°. [*Beilstein* 9 IV 1030.]

m-Iodobenzoic acid [618-51-9] M 248.4, m 186.6-186.8°, pK^{25} 3.85. Crystallise the acid repeatedly from water and EtOH. Sublime it under vacuum at 100°. [*Beilstein* 9 IV 1033.]

p-Iodobenzoic acid [619-58-9] M 248.4, m 271-272°, pK²⁵ 4.00. Crystallise the acid repeatedly from water and EtOH. Sublime it under vacuum at 100°. [*Beilstein* 9 IV 1035.]

4-Iodobiphenyl [1591-31-7] **M 280.1, m 113.7-114.3°, b 207°/28mm.** Crystallise 4-iodobiphenyl from EtOH/*C₆H₆, and dry it *in vacuo* over P₂O₅. [*Beilstein* **5** H 581, **5** I 273, **5** II 486, **5** III 1748, **5** IV 1821.]

1-Iodo-2,4-dinitrobenzene [709-49-9] **M 294.0, m 88°.** Crystallise it from EtOAc. [Beilstein 5 H 270.]

1-Iodo-4-nitrobenzene [636-98-6] **M 249.0, m 171-172°.** Precipitate it from acetone by addition of water, followed by recrystallisation from EtOH. [*Beilstein* **8** H 523, **8** H 523, **8** II 191, **8** III 623, **8** IV 743.]

o-**Iodophenol** [533-58-4] **M 280.1, m 43°, pK²⁵ 8.51.** Crystallise 2-iodophenol from CHCl₃ or diethyl ether. The *acetate* has **m** 65-66° (from MeOH). [*Beilstein* **6** H 208, **6** II 198, **6** III 774, **6** IV 1074.]

p-Iodophenol [540-38-5] M 280.1, m 94°, 138-140°/5mm, pK²⁵ 9.30. Crystallise 4-iodophenol from pet ether (b 80-100°) or distil it *in vacuo*. If the material has a brown or violet color, then dissolve it in CHCl₃, shake it with 5% sodium thiosulfate solution until is colourless. Dry (Na₂SO₄), extract, evaporate and disil the residue *in vacuo*. [Dains & Eberly *Org Synth* Coll Vol II 355 1948, *Beilstein* 6 IV 1074.]

5-Iodosalicylic acid (2-hydroxy-5-iodobenzoic acid) [119-30-2] M 264.0, m 197° pK_1^{25} 2.65, pK_2^{25} 13.05. Crystallise the acid from water. [*Beilstein* 10 H 112.]

o-Iodosobenzoic acid [304-91-6] M 264.0, $m > 200^{\circ}$, $pK_{Est} \sim 2.6$. Crystallise the acid from EtOH and dry it *in vacuo*. [Beilstein 9 H 363.]

p-Iodotoluene [624-31-7] M 218.0, m 35°, b 211-212°. Crystallise 4-iodotoluene from EtOH and or distil it. [*Beilstein* 5 IV 840.]

Isonitrosoacetophenone (phenylglyoxaldoxime) [532-54-7] **M 149.2, m 126-128°.** Crystallise it from water. [*Beilstein* **7** IV 2132.]

Isophthalic acid (benzene-1,3-dicarboxylic acid) [121-91-5] M 166.1, m 345-348°, pK_1^{25} 3.70, pK_2^{25} 4.60. Crystallise the acid from aqueous EtOH. [Beilstein 9 IV 3292.]

303

4,4'-Isopropylidenediphenol (Bisphenol A, 2,2-bis[4-hydroxyphenol]propane) [80-05-7] **M 228.3, m 158°, pK**_{Est} ~**10.3.** Crystallise bisphenol from acetic acid/water (1:1). It is used for making polycarbonate bottles and leaches out slowly on heating. It is a known "estrogenic chemical" shown to disrupt chemical signaling in the complex network of glands, hormones and cell receptors which make up the endocrine system. It causes low sperm count and damages the ecosystem by the feminisation of fish, reptiles and birds. [cf Chapter 1, p 3, *Beilstein* **6** IV 6717.]

Isopropyl *p*-**nitrobenzoate** [13756-40-6] **M 209.2, m 105-106°.** Dissolve it in Et₂O, wash it with aqueous alkali, then H₂O and dry it. Evaporate the ether and recrystallise it from EtOH to give pure material. It gives yellow crystals from pet ether (\mathbf{m} 109°, 110°). [*Beilstein* **9** H 391, **9** II 258, **9** III 1543, **9** IV 1075.]

Isovanillin (3-hydroxy-4-methoxybenzaldehyde) [621-59-0] M 152.2, m 117°, b 175°/14mm, pK²⁵ 8.89. Crystallise isovaniline from H_2O or $*C_6H_6$. The oxime has m 147°. [Beilstein 8 IV 1764.]

Isoviolanthrone [128-64-3] **M 456.5, m 510-511°(uncorrected).** Dissolve isoviolanthrone in 98% H₂SO₄ and precipitate it by adding water to reduce the acid concentration to about 90%. It sublimes *in vacuo* to give dark green-violet needles [Parkyns & Ubblehode *J Chem Soc* 4188 1960]. [*Beilstein* **7** I 465, **7** II 815, **7** III 4538, **7** IV 2747.]

Janus Red B {3-[(2-hydroxy-1-naphtholenyl)azo-2-methylphenylazo]N,N,N-trimethylbenzenaminium chloride} [2636-31-9] M 460.0. Crystallise the dye from EtOH/H₂O (1:1 v/v) and dry in vacuum. Store it in a dark bottle. [Beilstein 16 II 149.]

Ketone moschus (4-*tert*-butyl-2,6-dimethyl-3,5-dinitroacetophenone, Musk ketone) [81-14-1] M 294.3, m 134-137°, 137-138°. Purify the ketone by recrystallisation from MeOH. It has a strong odour of musk and is used in perfumery. [Fuson et al. J Org Chem 12 587 1947, Beilstein 7 IV 808.]

Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthalenedione, Neutral Yellow 16] [84-79-7] M 242.3, CI 7549, m 140°. Crystallise Lapachol from pet ether/EtOH, EtOH or Et₂O. [Beilstein 8 H 326, 8 I 644, 8 II 365, 8 III 2720.]

Leucomalachite Green [129-73-7] M 330.5, m 92-93°, pK²⁵ 6.90 (several pK's). Crystallise it from 95% EtOH (10mL/g), then from *benzene/EtOH, and finally from pet ether. [*Beilstein* 13 H 275, 13 II 89, 13 II 135, 13 III 529, 13 481.]

Malachite Green (carbinol) [510-13-4] **M 346.4, m 112-114°, CI 42000, pK²⁴ 6.84.** The *oxalate* [2437-29-8] [*Beilstein* **8** H 326, **13** IV 2279.] is recrystallised from hot water and dried in air. The carbinol is precipitated from the oxalate (1g) in distilled water (100mL) by adding M NaOH (10mL). The precipitate is filtered off, recrystallised from 95% EtOH containing a little dissolved KOH, then washed with ether, and crystallised from pet ether. Dry it in a vacuum at 40°. An acid, almost colourless, solution (2 x 10⁻⁵M in 6 x 10⁻⁵M H₂SO₄) rapidly reverts to the coloured dye. [Swain & Hedberg *J Am Chem Soc* **72** 3373 1950, *Beilstein* **13** H 243, 744.]

Mandelic acid (α -hydroxyphenylacetic acid) [S-(+)- 17199-29-0, R-(-)- 611-71-2] M 152.2, m 130-133°, 133°, 133.1° (evacuated capillary), 133-133.5°, [α] $_{546}^{20}$ (+) and (-) 188° (c 5, H₂O), [α] $_{D}^{20}$ (+) and (-) 155° (c 5, H₂O) and (+) and (-) 158° (c 5, Me₂CO), pK²⁵ 3.41. Purify the mandelic acids by recrystallisation from H₂O, *C₆H₆ or CHCl₃. [Roger *J Chem Soc* 2168 1932, Jamison & Turner *J Chem Soc* 611 1942.] They have solubilities in H₂O of *ca* 11% at 25°. [Banks & Davies *J Chem Soc* 73 1938.] The *S*-benzylisothiuronium salts has m 180° (from H₂O) and [α] $_{D}^{25}$ (+) and (-) 57° (c 20, EtOH) [El Masri et al. *Biochem J* 68 199 1958]. [Beilstein 10 IV 564.]

RS-(±)-Mandelic acid [61-72-3] M 152.2, m 118°, 120-121°. Purify mandelic acid by Soxhlet extraction with C_6H_6 (about 6mL/g) and allow the extract to crystallise. It can also be recrystallised from CHCl₃. The *S*-benzylisothiuronium salt has m 169° (166°) (from H₂O). Dry it at room temperature under vacuum. [*Beilstein* **10** IV 565.]

Mescaline sulfate [2-(3,4,5-trimethoxyphenyl)ethylamine sulfate] [5967-42-0] M 309.3, m 181-184°, 183-184°, 186-189°, $pK_{Est} \sim 9.7$. The salt crystallises from water with $2H_2O$ or from hot MeOH. The *acid sulfate* has m 158°. [Slomon & Bina J Am Chem Soc 68 2403 1946, Beilstein 13 I 338, 13 II 521, 13 III 2375, 13 IV 2919.]

Mesitylene (1,3,5-trimethylbenzene) [108-67-8] M 120.2, m -44.7°, b 99.0-99.8°/100mm, 166.5-167°/760mm, d_4^{20} 0.865, n_D^{25} 1.4967. Dry it with CaCl₂ and distil it from Na in a glass helices-packed column. Treat it with silica gel and redistil it. Alternative purifications include vapour-phase chromatography, or fractional distillation followed by azeotropic distillation with 2-methoxyethanol (which is subsequently washed out with H₂O), drying and fractional distilling. More exhaustive purification uses sulfonation by dissolving in two volumes of conc H₂SO₄, precipitating with four volumes of conc HCl at 0°, washing with conc HCl and recrystallising from CHCl₃. The mesitylene sulfonic acid is hydrolysed with boiling 20% HCl and steam distilled. The separated mesitylene is dried (MgSO₄ or CaSO₄) and distilled. It can also be fractionally crystallised from the melt at low temperatures. [*Beilstein* **5** IV 1016.]

Metanilic acid (3-aminobenzenesulfonic acid) [121-47-1] M 173.2, m <300°(dec), $pK_1^{25} <1$, pK_2^{25} 3.74. Crystallise the acid from water (as the hydrate), under CO₂ in a semi-darkened room. The solution is photosensitive. Dry it over 90% H₂SO₄ in a vacuum desiccator. [*Beilstein* 14 H 688, 14 IV 2640.]

p-Methoxyacetophenone [100-06-1] M 150.2, m 39°, b 139°/15mm, 264°/736mm. Crystallise the ketone from diethyl ether/pet ether. [*Beilstein* 8 IV 340.]

p-Methoxyazobenzene [2396-60-3] M 212.3, m 54-56°. Crystallise 4-methoxyazobenzene from EtOH. [*Beilstein* 16 IV 162.]

3-Methoxybenzanthrone [3688-79-7] **M 274.3, m 173°.** Crystallise it from *benzene, EtOH or Me₂CO to give yellow needles. [*Beilstein* **8** II 239, **8** III 1629, **8** IV 1476.]

m-Methoxybenzoic acid (*m*-anisic acid) [586-38-9] M 152.2, m 110°, pK^{25} 4.09. Crystallise *m*-anisic acid from H₂O (m 109°, 110.5°) or EtOH/water. The *S*-benzylisothiuronium salt has m 176° (from EtOH). [Beilstein 10 II 80, 10 III 244, 10 IV 316.]

p-Methoxybenzoic acid (*p*-anisic acid) [100-09-4] M 152.2, m 184.0-184.5°, pK²⁵ 4.51. Crystallise *p*-anisic acid from EtOH, water, EtOH/water or toluene. The *S*-benzylisothiuronium salt has m 189° (from EtOH). [Beilstein 10 II 91, 10 III 280, 10 IV 346.]

4-Methoxybenzyl chloride (anisyl chloride) [824-94-2] M 156.6, m -1°, b 76°/0.1mm, 95°/5mm, 110°/10mm, 117-117/5°/14mm, 117°/18mm, d_4^{20} 1.15491, n_D^{20} 1.55478. Purify 4-anisyl chloride by fractional distillation under vacuum, and the middle fraction is redistilled at 10⁻⁶ mm at room temperature by intermittent cooling of the receiver in liquid N₂, and the middle fraction is collected. [Mohammed & Kosower J Am Chem Soc 93 2709 1971, Beilstein 6 IV 2137.]

"Methoxychlor", (1,1-bis[*p*-methoxyphenyl]-2,2,2-trichloroethane, DMDT) [72-43-5] M 345.7, m 78-78.2°, or 86-88°. Free the insecticide from 1,1-bis(*p*-chlorophenyl)-2,2,2-trichloroethane by crystallising from EtOH. It is dimorphic and also crystallises from Et₂O/EtOH (m 92°). [Fritsch & Feldmann Justus Liebigs Ann Chem 306 77 1899, Smith et al. Aust J Chem 29 743 1976, Beilstein 6 H 1007.]

trans-p-Methoxycinnamic acid [830-09-1, 943-89-5 (trans)] M 178.2, m 173.4-174.8°, pK²⁵ 4.54. Crystallise the acid from MeOH to constant melting point and UV spectrum. [*Beilstein* 10 IV 1005.]

6-Methoxy-1-indanone [13623-25-1] **M 162.2, m 151-153°.** Crystallise it from MeOH, then sublime it at high vacuum. [*Beilstein* **8** IV 894.]

1-Methoxy-4-nitronaphthalene [4900-63-4] M 203.2, m 85°. Purify it by chromatography on silica gel, then recrystallise it from MeOH or EtOH (yellow needles). [Hodgson & Habeshaw J Chem Soc 47 1942, Bunce et al. J Org Chem 52 4214 1987, Beilstein 6 H 616, 6 III 2938.]

p-Methoxyphenol [150-76-5] M 124.1, m 54-55°, b 243°/atm, pK²⁵ 10.21. Crystallise 4methoxyphenol from *benzene, pet ether or H₂O, and dry it under vacuum over P₂O₅ at room temperature. Sublime it *in vacuo*. [Wolfenden et al. J Am Chem Soc 109 463 1987, Beilstein 6 IV 5717.]

a-Methoxyphenylacetic acid (*O*-methyl mandelic acid), [R-(-)-3966-32-3, S-(+)-26164-26-1]**M 166.2, m 62.9°, 62-65°, 65-66°,** $[\alpha]_{546}^{20}$ (-) and (+) **179°** (**169.8°**), $[\alpha]_{D}^{20}$ (-) and (+) **150.7°** (**148°**) (**c 0.5, EtOH**), **pK**_{Est} ~**3.1.** Purify the acids by recrystallising from *C₆H₆/pet ether (**b** 80-100°). [Neilson & Peters *J Chem Soc* 1519 *1962*, Weizmann et al. *J Am Chem Soc* **70** 1153 *1948*, Pirie & Smith *J Chem Soc* 338 *1932*, NMR: Dale & Mosher *J Am Chem Soc* **95** 512 *1973*, for resolution: Roy & Deslongchamps *Can J Chem* **63** 651 *1985*, Trost et al. *J Am Chem Soc* **108** 4974 *1986*.] The *racemic mixture* has **m** 72°, **b** 121-122°/0.4mm, 165°/18mm (from pet ether) [Braun et al. *Chem Ber* **63** 2847 *1930*]. [*Beilstein* **10** IV 566.]

o-Methoxyphenylacetic acid [93-25-4] M 166.2, m 124-125°, $pK_{Est} \sim 4.4$. Crystallise the acid from H₂O, EtOH or aqueous EtOH, pet ether/Et₂O and dry it in a vacuum desiccator over Sicapent. The *amide* has m 131° (from EtOH). [*Beilstein* 10 H 188, 10 III 422, 10 IV 536.]

m-Methoxyphenylacetic acid [1798-09-0] M 166.2, m 66-67°, 68-69°, 71.0-71.2°, pK_{Est} ~4.3. Crystallise the acid from H₂O, or aqueous EtOH. The *S*-benzylisothiuronium salt has m 160-161° (from EtOH). [Beilstein 10 I 82, 10 III 428, 10 IV 541.]

p-Methoxyphenylacetic acid (homoanisic acid) [104-01-8] M 166.2, m 85-87°, b 138-140°/2-3mm, pK²⁵ 4.36. Crystallise the acid from EtOH/water, EtOAc/pet ether (m 87°) or C_6H_6 /pet ether (m 84-86°). [Beilstein 10 III 431, 10 IV 544.] The acid chloride [4693-91-8] has M 184.6, b 143°/10mm, d²⁵ 1.208. [Beilstein 10 III 434.]

N-(p-Methoxyphenyl)-p-phenylenediamine [101-64-4] M 214.3, m 102°, b 200°/2mm, 238°/12mm, pK²⁵ 6.6 (5.9). Crystallise the diamine from ligroin or *C₆H₆/pet ether (m 99-100°). The *picrate* has m 164° (from EtOH). [*Beilstein* 13 III 1161, 13 IV 1243.]

α-Methoxy-α-trifluoromethylphenylacetic acid (MTPA, Mosher's acid) [*R*-(+)- 20445-31-2, S-(-)- 17257-71-5] M 234.2, m 43-45°, 90°/0.1mm, 105-107°/1mm, $[\alpha]_{546}^{20}$ (+) and (-) 87°, $[\alpha]_{D}^{20}$ (+) and (-) 73° (c 2, MeOH), pK_{Est} ~2.5. A likely impurity is phenylethylamine from the resolution. Dissolve the acid in Et₂O/*benzene (3:1), wash with 0.5N H₂SO₄, then water, dry over magnesium sulfate, filter, evaporate and distil it. [Dale et al. J Org Chem 34 2543 1969, J Am Chem Soc 75 512 1973.]

α-Methoxy-α-trifluoromethylphenylacetyl chloride [R-(-)-39637-99-5, S-(+)-20445-33-4] M 252.6, b 54-56°/1mm, 213-214°/760mm, d²⁰₄ 1.353, n²⁰_D 1.468, [α]²⁰₅₄₆ (-) and (+) 167°, [α]²⁰_D (-) and (+) 137° (c 4, CCl₄), [α]²⁴_D (-) and (+) 10.0° (neat). The most likely impurity is the free acid due to hydrolysis and should be checked by IR. If free from acid, then distil, taking care to keep moisture out of the apparatus. Otherwise add SOCl₂ and reflux for 5hours and distil it. Note that shorter reflux times result in a higher boiling fraction (b 130-155°/1mm) which has been identified as the anhydride. [Dale et al. J Org Chem 34 2543 1969, for enantiomeric purity see Dale & Mosher J Am Chem Soc 97 512 1973.]

N-Methylacetanilide [579-10-2] M 149.2, m 102-104°, b 145-146°/30mm, 225°/760mm, Crystallise the anilide from water, ether, pet ether (b 80-100°) or $*C_6H_6$ (m 105°). The *BF*₃ salt has m 114° (from Me₂CO/diisopropyl ether). [*Beilstein* 12 III 465, 12 IV 378.]

p-Methylacetophenone [122-00-9] M 134.2, m 22-24°, b 93.5°/7mm, 110°/14mm, d_4^{20} 1.000, n_D^{20} 1.5335. Impurities, including the *o*- and *m*-isomers, are removed by forming the *semicarbazone* (m 212-213.5°) which, after repeated crystallisation, is hydrolysed to the ketone. [Brown & Marino J Am Chem Soc 84 1236 1962.] It can also be purified by distillation under reduced pressure, followed by low temperature crystallisation from isopentane. [Beilstein 7 IV 701.]

1-Methylaminoanthraquinone [82-38-2] M 237.3, m 166.5°, pK_{Est}~2. Crystallise it to constant melting point from butan-1-ol, then from EtOH. It can be sublimed under vacuum. [*Beilstein* 7 IV 2574.]

N-Methyl-*o*-aminobenzoic acid (*N*-methylanthranilic acid) [119-68-6] M 151.2, m 178.5°, pK_1^{25} 1.97, pK_2^{25} 5.34. Crystallise the acid from water, MeOH (m 177°) or EtOH. [Casulich & Smith J Am Chem Soc 70 1923 1948, Beilstein 14 H 323, 14 III 895, 14 IV 1015.]

3-(Methylamino)benzoic acid [51524-84-6] M 151.1, m 129°, pK_1^{25} 3.08, pK_2^{25} 5.10. Crystallise the acid from H₂O (needles), pet ether (plates) or CHCl₃ (m 127°). The hydrochloride has m 244° (plates from EtOH). [Beilstein 14 H 391, 14 I 559.]

p-Methylaminophenol sulfate (Photol, Metol) [55-55-0] M 344.4, m 260°(dec), pK²⁵ 5.9. Crystallise this photographic developer from H₂O (needles m 250-260°) (its solubility is 5% at 20° and 17% at 100°) or MeOH. It is used for determining Ag. [Palit et al. *Indian J Chem, Sect B* 28 64 1989.]

N-Methylaniline [100-61-8] M 107.2, b 57°/4mm, 81-82°/14mm, d_4^{20} 0.985, n_D^{20} 1.570, pK²⁵ 4.56. Dry it with KOH pellets and fractionally distil it under vacuum. Acetylate, and the acetyl derivative is recrystallised to constant melting point (m 101-102°), then hydrolysed with aqueous HCl and distilled from zinc dust under reduced pressure. [Hammond & Parks J Am Chem Soc 77 340 1955, Beilstein 12 IV 241.]

N-Methylaniline hydrochloride [2739-12-0] M 143.7, m 123.0-123.1°. Crystallise the salt from dry *benzene/CHCl₃ and dry under vacuum. [*Beilstein* 12 IV 241.]

Methyl *p*-anisate [121-98-2] M 166.2, m 48°, b 123.8°/12mm, 24-245°/760mm. Distil the ester and/or crystallise it from EtOH. [*Beilstein* 10 H 159, 10 III 297, 10 IV 360.]

4-Methyl anisole [104-93-8] **M 122.2, b 56.2°/9mm, 67°/20mm, 175-176°/760mm, d_{15}^{15} 0.9757, n_D^{20} 1.512. Dissolve 4-methyl anisole in diethyl ether, wash it with M NaOH, water, dry (Na₂CO₃), evaporate and distil it under vacuum. The** *picrate* **has m** 103° (from aqueous EtOH). [*Beilstein* **6** IV 2098.]

2-Methylanthracene [613-12-7] **M 192.3, m 204-206**^o Chromatograph it on silica gel with cyclohexane as eluent and then recrystallise it from EtOH [Werst J Am Chem Soc **109** 32 1987]. [Beilstein **5** IV 2311.]

4-Methylanthracene [779-02-2] **M 192.3, m 77-79°, b 196-197°/12mm, d** $_{4}^{20}$ **1.066.** Chromatograph it on silica gel with cyclohexane as eluent and recrystallise it from EtOH [Werst *J Am Chem Soc* **109** 32 1987]. [*Beilstein* **5** IV 2312.]

2-Methylanthraquinone [84-54-8] **M 222.3, m 176°, b 236-238°/10mm.** Crystallise the quinone from EtOH, then sublime it. It has λ_{max} at 257, 275 and 330nm (EtOH). [Hersbery & Fieser J Am Chem Soc **63** 2562 1941, Beilstein **7** H 809, **7** III 4104, **7** IV 2574.]

Methylarenes (see also pentamethyl- and hexamethyl- benzenes). Recrystallise them from EtOH and sublime them in a vacuum [Schlesener et al. J Am Chem Soc 106 7472 1984].

Methyl benzoate [93-58-3] M 136.2, b 104-105% 39mm, 199.5% 760mm, d_4^{20} 1.087, n^{15} 1.52049, n_D^{20} 1.51701, pK²⁰ -8.11, -6.51 (H₀ scale, aqueous H₂SO₄). Wash the ester with dilute aqueous NaHCO₃, then water, dry with Na₂SO₄ and fractionally distil it in a vacuum. [*Beilstein* 9 IV 283.]

p-Methylbenzophenone [134-84-9] M 196.3, m 57°, b 154-155°/3mm, 183-184°/15mm, 277-281°/3mm, d²⁰ 0.9926. Crystallise the ketone from MeOH, Et₂O (m 58-59°) or pet ether. The *cis-oxime* has m 154°(153-156°) (from EtOH), and the *trans-oxime* has m 114-116° (from pet ether). [*Beilstein* 7 H 440, 7 III 2127, 7 IV 1403.]

Methyl-1,4-benzoquinone (*p*-toluoquinone) [553-97-9] **M 122.1, m 68-69°.** Crystallise *p*-toluoquinone from heptane or EtOH, dry rapidly (vacuum/ P_2O_5) and stored in a vacuum. [*Beilstein* **7** IV 2088.]

Methyl benzoylformate (methyl phenylglyoxalate) [15206-55-0] M 164.2, m 246-248°. Purify the ester by radial chromatography (diethyl ether/hexane, 1:1), and dry it at 110-112°/6mm. [Meyers & Oppenlaender J Am Chem Soc 108 1989 1986, Beilstein 10 IV 2738.]

2-Methyl-3,4-benzphenanthrene (**2-methylbenzo**[*c*]**phenanthrene**) [652-04-0] **M 242.3, m 70°, 80.6-81.4°, b 200°/0.4mm.** Crystallise it from EtOH (**m** 81-82.5°). The *picrate* has **m** 118-118.5° (yellow needles from MeOH). [*Beilstein* **5** III 2394, **5** IV 2570.]

R-(+)- α -Methylbenzylamine [*R*(+) 3886-69-9, *RS*(±) 618-36-0] M 121.2, b 187-188°/atm, [α]²⁰₅₄₆ +35° (c 10, EtOH), [α] ²⁵_D +39.7° (neat), pK 9.08 (for *RS*). Dissolve the amine in toluene, dry over NaOH and distil; fraction boiling at 187-188°/atm is collected. Store it under N₂ to avoid forming the carbamate and urea. Similarly for the *S*-(-) *enantiomer* [2627-86-3]. [Ingersoll Org Synth Coll Vol II 503 1943, Robinson & Snyder Org Synth Coll Vol II 717 1955, Beilstein 12 IV 2424, 2425.]

p-Methylbenzyl chloride [104-82-5] M 140.6, b 80^o/2mm, 98-101^o/27mm, d_4^{20} 1.085, n_D^{20} 1.543. Dry the chloride with CaSO₄ and fractionally distil it under vacuum. [*Beilstein* 5 H 384, 5 III 854, 5 IV 966.]

Methyl *o*-bromobenzoate [610-94-6] M 215.1, b 131.4-132 $^{\circ}$ /16mm, 234-244 $^{\circ}$ /760mm. A solution of the ester in ether is washed with 10% aqueous Na₂CO₃, water, then dried and distilled. [*Beilstein* 9 H 348, 9 III 1385, 9 IV 1012.]

Methyl *p*-bromobenzoate [619-42-1] M 215.1, m 79.5-80.5°. Crystallise the ester from MeOH. EtOH (m 81°, also 80.5°, 79.5°) or $*C_6H_6$ /pet ether (m 78-79°). [*Beilstein* 9 H 352, 9 III 1405, 9 IV 1017.]

(±)-3'-Methyl-1,2-cyclopentenophenanthrene (16,17-dihydro-17-methyl-15*H*-cyclopenta-[*a*] -phenanthrene [549-38-2] M 232.3, m 126-127°. Crystallise it from AcOH or EtOH (plates, m 125.5-126°). The *picrate* has m 130-131° (orange-red needles from EtOH). [Tatta & Bardhan J Chem Soc (C) 893 1968, Beilstein 5 IV 2433.]

Methyl 2,4-dichlorophenoxyacetate [1928-38-7] M 235.1, m 43°, b 119°/11mm. Crystallise the herbicide ester from MeOH. [Branch & Jones J Chem Soc 2924 1955, Beilstein 6 III 705, 6 IV 909.]

3,4-Methylenedioxyaniline [14268-66-7] **M 137.1, m 44.5-45.5°, 45-46°, b 108°/1mm, 144°/14mm, 156°/30mm, pK**_{Est} ~**3.8.** Crystallise the base from pet ether and/or distil it in a vacuum. The *hydrochloride* has **m** 198°(dec). [Sonn & Benirschke *Chem Ber* **54** 1734 1921, Beilstein **19** H 328, **19** II 341, **19** III/IV 4056.]

trans-3,4-Methylenedioxycinnamic acid [2373-80-0] M 192.2, m 243-244°(dec), pK_{Est} ~4.6. Crystallise the acid from glacial AcOH, EtOH (m 247°) or aqueous EtOH (m 240-242°), and it has m 242° after sublimation. [*Beilstein* 19 H 278, 19 II 299, 19 III/IV 3548.]

5,5'-Methylenedisalicylic acid [122-25-8; 27496-82-2] **M 288.2, m 238°(dec).** Crystallise the acid from Me₂CO, $*C_6H_6$ or CHCl₃/MeOH (**m** 268-268°). It has λ_{max} at 312nm (ϵ 7530)in EtOH. [Cushman & Kanamathareddy *Tetrahedron* **46** 1406 1990.]

N-Methylephedrine (2-dimethylamino-1-phenylpropanol) [1S,2R-(+)-42151-56-4, 1R,2S-(-)-552-79-4] M 179.3, m 85-86°, 87-87.5°, 90°, b 115°/2mm, $[\alpha]_{546}^{20}$ (+) and (-) 35°, $[\alpha]_D^{20}$ (+) and (-) 30° (c 4.5, MeOH), pK²⁶ 9.22. *N*-Methylephedrine has been recrystallised from Et₂O, pet ether, of aqueous EtOH or aqueous MeOH and has been distilled under reduced pressure. [Smith J Chem Soc 2056 1927, Tanaka & Sugawa Yakugaku Zasshi (J Pharm Soc Japan) 72 1548 1952 (Chem Abstr 47 8682 1953), Takamatsu Yakugaku Zasshi (J Pharm Soc Japan) 76 1227 1956, Chem Abstr 51 4304 1957.] The hydrochloride has m 192-193° and $[\alpha]_D^{20}+30°$ (c 5,H₂O)[Prelog & Hüfliger Helv Chim Acta 33 2021 1950]. [Beilstein 13 IV 1884.]

Methyl gallate [99-24-1] M 184.2, m 202°. Crystallise the gallate ester from MeOH. [Beilstein 10 IV 1998.]

Methyl Green [82-94-0, 7114-03-6 ($ZnCl_2 \ salt$)] M 458.5, m >200°(dec). Crystallise the dye from hot water. [*Beilstein* 13 IV 2286.]

Methyl 4-hydroxybenzoate [99-76-3] M 152.2, m 127.5°, pK_{Est}~9.3. Fractionally crystallise the ester from its melt, and recrystallise it from *benzene, then from *benzene/MeOH and dry it over CaCl₂ in a vacuum desiccator. [*Beilstein* 10 IV 360.]

Methyl 3-hydroxy-2-naphthoate [883-99-8] M 202.2, m 73-74°, pK_{Est} ~9.0. Crystallise the ester from MeOH (charcoal) containing a little water. [*Beilstein* 10 IV 1186.]

3-Methylmercaptoaniline [1783-81-9] **M 139.2, b 101.5-102.5°/0.3mm, 163-165°/16mm,** d_4^{20} **1.147,** n_D^{20} **1.641,** pK^{25} **4.05.** Purify the aniline by fractional distillation in an inert atmostphere. It has UV max at 226 and 300nm. [Bordwell & Cooper *J Am Chem Soc* **74** 10581952.] The *N-acetyl* derivative has **m** 78-78.5° (from aqueous EtOH). The *hydrochloride* has **m** 260-261° (aqueous EtOH/HCl) or **m** 225-227° (EtOH/Et₂O). [*Beilstein* **13** H 533, **13** III 1221, **13** IV 1289.]

4-Methylmercaptoaniline [104-96-1] **M 139.2, b 140°/15mm, 151°/25mm, 155°/23mm, d** $_{4}^{20}$ **1.137, n** $_{D}^{20}$ **1.639, pK**²⁵ **4.40.** Purify the aniline by fractional distillation in an inert atmosphere. The *hydrochloride* has **m** 242-246° (from aqueous EtOH/HCl). The *sulfone* has **m** 137° (from H₂O), pK²⁵ 1.48, and the *sulfone hydrochloride* has **m** 260-261° (from aqueous EtOH/HCl). [Lumbroso & Passerini *Bull Soc Chim Fr* 311 1957, Mangini & Passerini *J Chem Soc* 4954 1956, *Beilstein* **13** H 533, **13** II 297, **13** IV 1221.]

1-Methylnaphthalene [90-12-0] M 142.2, f - 30°, b 244.6°, d²⁰₄ 1.021, n²⁰_D 1.6108. Dry 1methylnaphthalene for several days with CaCl₂ or by prolonged refluxing with BaO. Fractionally distil it through a glass helices-packed column from sodium. Purify it further by solution in MeOH and precipitation of its picrate complex by adding to a saturated solution of picric acid in MeOH. The picrate, after crystallisation to constant melting point (m 140-141°) from MeOH, is dissolved in *benzene and extracted with aqueous 10% LiOH until the extract is colourless. Evaporation of the *benzene solution under vacuum gives 1methylnaphthalene [Kloetzel & Herzog J Am Chem Soc 72 1991 1950]. However, neither the picrate nor the styphnate complexes satisfactorily separate 1- and 2- methylnaphthalenes. To achieve this, 2-methylnaphthalene (10.7g) in 95% EtOH (50mL) has been precipitated with 1,3,5-trinitrobenzene (7.8g) and this complex has been crystallised from MeOH to m 153-153.5° (m of the 2-methyl isomer is 124°). [Alternatively, 2,4,7trinitrofluorenone in hot glacial acetic acid could be used, and the derivative (\mathbf{m} 163-164°) is recrystallised from glacial acetic acid]. The 1-methylnaphthalene is regenerated by passing a soution of the complex in dry *benzene through a 15-in column of activated alumina and washing with *benzene/pet ether (b 35-60°) until the coloured band of the nitro compound had moved down near the end of the column. The complex can also be decomposed using tin and acetic-hydrochloric acids, followed by extraction with diethyl ether and *benzene; the extracts are washed successively with dilute HCl, strongly alkaline sodium hypophosphite, water, dilute HCl

and water. [Soffer & Stewart J Am Chem Soc 74 567 1952.] It can be freed from anthracene by zone melting [Beilstein 5 IV 1687.]

2-Methylnaphthalene [91-57-6] **M 142.2, m 34.7-34.9°, b 129-130°/25mm.** Fractionally crystallise repeatedly from its melt, then fractionally distil under reduced pressure. It has been crystallised from *benzene and dried under vacuum in an Abderhalden pistol. It can be purified *via* its *picrate* (**m** 114-115°) or better *via* the 1,3,5-trinitrobenzene complex as for 1-methylnaphthalene (above). [Beilstein **5** IV 1693.]

6-Methyl-2-naphthol [17579-79-2] **M 158.2, m 128-129°, b 177.5-178°/15mm, pK**_{Est} ~9.8. Crystallise the naphthol from EtOH or ligroin. Sublime it *in vacuo*. [*Beilstein* **6** II 618, **6** III 3028.]

7-Methyl-2-naphthol [26593-50-0] **M 158.2, m 118°, pK**_{Est} ~9.7. Crystallise the naphthol from EtOH or ligroin. It has **m** 118° after sublimation *in vacuo*. [Halsall & Thomas J Chem Soc 2564 1956, Beilstein **6** IV 3029.]

Methyl 1-naphthyl ether (1-methoxynaphthalene) [2216-69-5] M 158.2, b 90-91% 2mm, d_4^{20} 1.095, n_D^{26} 1.6210. Steam distil the ether from alkaline solution. The distillate is extracted with Et₂O. After drying (MgSO₄) the extract and evaporating Et₂O, the methyl naphthyl ether is then fractionated under reduced pressure from CaH₂. The *picrate* has m 129.5-130.5° (from EtOH). [*Beilstein* 6 IV 4211.]

Methyl 2-naphthyl ether (2-methoxynaphthalene, Nerolin) [93-04-9] M 158.2, m 73.0-73.6°, b 138°/10mm 273°/760mm. Fractionally distil the ether under vacuum. Crystallise it from absolute EtOH, aqueous EtOH, $*C_6H_6$, pet ether or *n*-heptane, and dry it under vacuum in an Abderhalden pistol or distil it *in vacuo*. The *picrate* has m 118° (from EtOH or CHCl₃). [Kikuchi et al. J Phys Chem 91 574 1987, Beilstein 6 III 2969, 6 IV 4257.]

2-Methyl-3-nitroaniline [603-83-8] M **152.2 m 92°**, b **305°**/760mm, pK_{Est} ~ **2.3.** Crystallise the nitrotoluidine from EtOH or C_6H_6 . It is steam volatile. The *acetyl* derivative crystallises from aqueous EtOH and has m 164°. [Beilstein **12** I 395, **12** II 460, **12** III 1944, **2** IV 1811.]

N-Methyl-4-nitroaniline [100-15-2] M 152.2, m 152.2°, pK^{25} 0.55. Crystallise the aniline from aqueous EtOH. [*Beilstein* 12 H 714.]

2-Methyl-4-nitroaniline [99-52-5] **M 152.2 m 129°**, pK_{25} **0.93.** Crystallise the nitrotoluidine from EtOH. The *acetyl* and *benzoyl* derivatives have **m** 200° and 174° (EtOH) respectively. [*Beilstein* **12** IV 1809.]

2-Methyl-5-nitroaniline [99-55-8] **M 152.2, m 109°, pK²⁵ 2.35.** Acetylate the aniline, and the acetyl derivative is crystallised to constant melting point; then hydrolyse it with 70% H_2SO_4 and the free base is regenerated by treatment with NH₃ [Bevan et al. *J Chem Soc* 4284 1956]. [Beilstein **12** H 844. **12** IV 1807.]

4-Methyl-3-nitroaniline [119-32-4] **M 152.2, m 81.5**°, **pK**²⁵ **3.02.** Crystallise the aniline from hot water (charcoal), then ethanol and dry it in a vacuum desiccator. [*Beilstein* **12** H 966.]

2-Methyl-5-nitroanisole [4837-88-1] **M 176.2, m 54-56°.** 2-Methyl-5-nitroanisole crystallises from MeOH (yellow needles) and sublimes *in vacuo*. [Kuffner *Monatsh Chem* **91** 1152 *1960*, *Beilstein* **6** I 178.]

Methyl 3-nitrobenzoate [618-95-1] M 181.2, m 78°. Crystallise the benzoate from MeOH (1g/mL). [*Beilstein* 9 H 378, 9 I 153, 9 II 248, 9 III 1493, 9 IV 1056.]

Methyl 4-nitrobenzoate [619-50-1] M 181.2, m 95-95.5°. Dissolve the benzoate in diethyl ether, then wash it with aqueous alkali; the ether is evaporated and the ester is recrystallised from EtOH. [Beilstein 9 H 390, 9 IV 1074.]

3-Methyl-2-nitrobenzoic acid [5437-38-7] **M 181.2, m 220-222.5°, pK²⁰ 2.91** (1% aqueous **EtOH).** Recrystallise it from EtOH. The *methyl ester* has **m** 74° (from MeOH), and the *amide* [60310-07-8] **M** 180.1, has **m** 192° (needles from H₂O, prisms from EtOH). [*Beilstein* **9** H 480, **9** IV 1722.]

4-Methyl-3-nitrobenzoic acid (3-nitro*p***-toluic acid)** [96-98-0] **M 181.2, m 190-191**°, **pK**²⁰ **3.62 (1% aqueous EtOH).** Recrystallise the acid from EtOH. The *S*-benzylisothiuronium salt has **m** 167-168° (EtOH). The acid chloride [10397-30-5] has **m** 20-21°, **b** 185°/36mm, and the methyl ester [7356-11-8] crystallises as pale yellow needles from MeOH with **m** 51°. [Beilstein **9** H 502, **9** II 334, **9** III 2359.]

N-Methyl-4-nitrosoaniline [10595-51-4] M 136.2, m 114-115°, 118°, $pK_{Est} \sim 1.0$. Crystallise it from *C₆H₆. The *picrate* has m 166°(dec) (from MeOH or CHCl₃). [*Beilstein* 7 III 3370, 12 IV 1228.]

N-Methyl-*N*-nitroso-*p*-toluenesulfonamide (Diazald) [80-11-5] M 214.2, m 62°. Crystallise diazald from *benzene by addition of pet ether and store it in a refrigerator. It is soluble in most organic solvents and liberates diazomethane on treatment with alkali. Store it in the cold. [deBoer & Backer *Org Synth* 34 96 1954, *Beilstein* 11 I 29.]

4-Methylphenylacetic acid (*p*-tolylacetic acid) [622-47-9] M 150.2, m 94°, pK²⁵ 4.37. Crystallise the acid from heptane or water. [*Beilstein* 9 IV 1795.]

1-Methyl-1-phenylhydrazine sulfate [33008-18-3] **M 218.2, pK²⁵ 4.98** (free base). Crystallise the sulfate from hot H_2O by addition of hot EtOH. [*Beilstein* 15 IV 53 for free base.]

N-Methylphthalimide [550-44-7] M 161.1, m 133.8°. Recrystallise the imide from absolute EtOH or AcOH (m 134°). The IR has v_{max} at 1780 and 1380cm⁻¹. [*Beilstein* 21 H 461, 21 III/IV 5030.]

Methyl Red (4-dimethylaminoazobenzene-2'-carboxylic acid) [493-52-7] M 269.3, m 181-182°, CI 13020, pK_1^{25} 2.30, pK_2^{25} 4.82. The acid is extracted with boiling toluene using a Soxhlet apparatus. The crystals which separate on slow cooling to room temperature are filtered off, washed with a little toluene and recrystallised from glacial acetic acid, *benzene or toluene followed by pyridine/water. Alternatively, dissolve it in aqueous 5% NaHCO₃ solution, and precipitate it from a hot solution by dropwise addition of aqueous HCl. Repeat this until the extinction coefficients do not increase. [*Beilstein* 16 IV 504.]

Methyl salicylate (methyl 2-hydroxybenzoate) [119-36-8] M 152.2, m -8.6°, b 79°/6mm, 104-105°/14mm, 223.3°/atm, d_4^{20} 1.1149, n_D^{20} 1.5380, pK²⁵ 10.19. Dilute the ester with Et₂O, wash with saturated NaHCO₃ (it may effervesce due to the presence of free acid), brine, dry MgSO₄, filter, evaporate and distil it. Its solubility is 1g/1.5L of H₂O. The *benzoyl derivative* has m 92° (b 270-280°/120mm), and the 3,5-dinitrobenzoate has m 107.5°, and the 3,5-dinitrocarbamoyl derivative has m 180-181°. [Hallas J Chem Soc 5770 1965, Beilstein 10 IV 143.]

α-Methylstyrene (monomer, 2-phenylpropene) [98-83-9] M 118.2, b 57%/15mm, d_4^{20} 0.910, n_D^{20} 1.5368. Wash the monomer three times with aqueous 10% NaOH (to remove inhibitors such as quinol), then six times with distilled water, dry with CaCl₂ and distil it under vacuum. The distillate is kept under nitrogen, in the cold, and redistilled if kept for more than 48hours before use. It can also be dried with CaH₂. Add stabilizer if it is to be stored for long periods. [*Beilstein* 5 IV 1364.]

trans-B-Methylstyrene (1-phenylpropene) [873-66-5] M 118.2, b 64-65%/10mm, 176%/760mm, d_4^{20} 0.910, n_D^{20} 1.5496. Distil it under N₂ from powdered NaOH through a Vigreux column (p 11), and pass it through activated neutral alumina before use [Wong et al. J Am Chem Soc 109 3428 1987]. [Beilstein 5 III 1184, 5 IV 1359.]

4-Methylstyrene [622-97-9] M 118.2, b 60%/12mm, 106%/10mm, d_4^{20} 0.9173, n_D^{20} 1.542. Purify it as the above styrenes and add a small amount of antioxidant if it is to be stored. It has UV in EtOH at λ_{max} 285nm (log ε 3.07), and in EtOH + HCl 295nm (log ε 2.84) and 252nm (log ε 4.23). [Schwartzman & Carson J Am Chem Soc **78** 322 1956, Joy & Orchin J Am Chem Soc **81** 305 1959, Buck et al. J Chem Soc 23771949, Beilstein **5** IV 1369.]

Methyl 4-toluenesulfonate [80-48-8] M 186.2, m 25-28°, 28°, b 144.6-145.2°/5mm, 168-170°/13mm, d $_{4}^{20}$ 1.23, n $_{D}^{20}$ 1.5172. The ester is purified by distillation *in vacuo* and could be crystallised from pet ether or Et₂O/pet ether at low temperature. It is a powerful methylating agent, is TOXIC and is a skin irritant, so it is better to purify it by repeated distillation. [IR: Schreiber Anal Chem 21 1168 1949, Buehler et al. J Org Chem 2 167 1937, Roos et al. Org Synth Coll Vol I 145 1948, Beilstein 11 IV 247.]

Methyl Violet 2B [4,4'-bis-(diethylamino)-4"-methyliminotriphenylmethyl hydrochloride) [8004-87-3] M 394.0, m 137°(dec), CI 42535, $\lambda_{max} \sim 580$ nm. Crystallise the dye from EtOH by precipitation with Et₂O during cooling in an ice-bath. Filter it off and dry it at 105°. [Beilstein 13 IV 2283.]

Michler's ketone [4,4'-bis(dimethylamino)benzophenone] [90-94-8] M 268.4, m 179°, pK²⁵ 9.84. Dissolve the ketone in dilute HCl, filter and precipitate it by adding ammonia (to remove waterinsoluble impurities such as benzophenone). Then crystallise it from EtOH or pet ether. [Suppan *J Chem Soc*, *Faraday Trans1* 71 539 1975.] It is also purified by dissolving in *benzene, then washing with water until the aqueous phase is colourless. The *benzene is evaporated off, and the residue is recrystallised three times from *benzene and EtOH [Hoshino & Kogure *J Phys Chem* 72 417 1988]. [*Beilstein* 14 IV 255.]

Naphthacene (benz[b]anthracene, 2,3-benzanthracene, rubene) [92-24-0] M 228.3, m >300°, 341° (open capillary), 349°, 357°. Naphthacene crystallises in orange needles from EtOH, $*C_6H_6$ or toluene. Dissolve it in sodium-dried *benzene and pass it through a column of alumina. The eluent is evaporated under vacuum, and the chromatography is repeated using fresh *benzene. Finally, the naphthacene is sublimed *in vacuo* at 186°. [Martin & Ubblehode *J Chem Soc* 4948 *1961*, UV: Clar *Chem Ber* **65** 517 *1932*, Clar *Chem Ber* **69** 607 *1936*, IR: Cannon & Sutherland *Spectrochim Acta* **4** 373 *1951*, *Beilstein* **5** H 718, **5** IV 2545.]

1-Naphthaldehyde [66-77-3] M 156.2, m 2°, b 160-161°/15mm, pK²⁰ -7.04 (aqueous H_2SO_4). Distil 1-naphthaldehyde with steam, extract the distillate into Et₂O, dry (Na₂SO₄), filter, evaporate the filtrate and distil the residue in a vacuum. [*Beilstein* 7 IV 1286.]

2-Naphthaldehyde [66-99-9] **M 156.2, m 59°, b 260°/19mm, pK²⁰ -7.04** (aqueous H_2SO_4). Distil 2-naphthaldehyde with steam then crystallise it from water or EtOH. [*Beilstein* 7 IV 1288.]

Naphthalene [91-20-3] M 128.2, m 80.3°, b 87.5°/10mm, 218.0°/atm, d_4^{20} 1.0253, d_4^{100} 0.9625, n^{85} 1.5590. Crystallise naphthalene once or more times from the following solvents: EtOH, MeOH, CCl₄, *C₆H₆, glacial acetic acid, acetone or diethyl ether, followed by drying at 60° in an Abderhalden drying apparatus. It has also been purified by vacuum sublimation and by fractional crystallisation from its melt. Other purification procedures include refluxing in EtOH over Raney Ni and chromatography of a CCl₄ solution on alumina with *benzene as eluting solvent. Baly and Tuck [*J Chem Soc* 1902 1908] purified naphthalene for spectroscopy by heating with conc H₂SO₄ and MnO₂, followed by steam distillation (repeating the process), and formation of the *picrate* which, after recrystallisation (**m** 150°) is decomposed with base and the naphthalene is steam distilled. It is then crystallised from dilute EtOH. It can be dried over P₂O₅ under vacuum (take care not to make it sublime). Also purify it by sublimation and subsequent crystallisation from cyclohexane. Alternatively, it has been washed at 85° with 10% NaOH to remove phenols, with 50% NaOH to remove nitriles, with 10% H₂SO₄ to remove organic bases, and with 0.8g AlCl₃ to remove thianaphthalenes and various alkyl derivatives. Then it is treated with 20% H₂SO₄, 15% Na₂CO₃ and finally distilled. [Gorman et al. *J Am Chem Soc* 107 4404 1985.]

Zone refining purified naphthalene from anthracene, 2,4-dinitrophenylhydrazine, methyl violet, benzoic acid, methyl red, chrysene, pentacene and indoline. [*Beilstein* **5** IV 1640.]

Naphthalene-1,4-disulfonic acid [92-41-1] M 288.2, pK_{Est} <0. Crystallise the acid from conc HCl. The *disulfonamide* has m 273° (from EtOH). [*Beilstein* 11 II 119, 11 III 463.]

Naphthalene-1-sulfonic acid [85-47-2] M 208.2, m (2H₂O) 90°, (anhydrous) 139-140°, pK^{20} -0.17. Crystallise the acid from conc HCl and twice from H₂O. The *S-benzylisothiuronium salt* has m 137° (from aqueous EtOH). [*Beilstein* 11 H 155, 11 III 383, 11 IV 521.]

Naphthalene-2-sulfonic acid [120-18-3] M 208.2, m 91°, pK_{Est} <1. Crystallise the acid from conc HCl. The *S-benzylisothiuronium salt* has m 192° (from aqueous EtOH). [Berger Acta Chem Scand 8 432 1954, Beilstein 11 H 171, 11 IV 527.]

Naphthalene-1-sulfonyl chloride [85-46-1] **M 226.7, m 64-67°, 68°, b 147.5°/0.9mm, 147.5°/13mm.** If the IR indicates the presence of OH, then treat it with an equal weight of PCl₅ and heat it at *ca* 100° for 2hours, cool and pour onto ice + H₂O, stir well and filter off the solid. Wash the solid with cold H₂O and dry the solid in a vacuum desiccator over P₂O₅ + solid KOH. Extract the solid with pet ether (b 40-60°), filter off any insoluble solid and cool. Collect the crystalline sulfonyl chloride and recrystallise it from dry Et₂O, pet ether or *C₆H₆/pet ether. If large quantities are available, then it can be distilled under high vacuum. [Fierz-Davaid & Weissenbach *Helv Chim Acta* **3** 2312 *1920.*] The *sulfonamide* crystallises from EtOH (**m** 150.5°) or H₂O (**m** 153°). [*Beilstein* **11** H 175, **11** II 93, **11** IV 383.]

Naphthalene-2-sulfonyl chloride [93-11-8] M 226.7, m 74-76°, 78°, 79°, 83°, b 148°/0.6mm, 201°/13mm. Distil the chloride in a vacuum and/or recrystallise it (twice) from *benzene/pet ether (1:1 v/v). Purify it as the 1-sulfonyl chloride above. [Fierz-Davaid & Weissenbach *Helv Chim Acta* 3 2312 1920.] The sulfonamide has m 217° (from EtOH). [Beilstein 11 III 399, 11 IV 529.]

1,8-Naphthalic acid (naphthalene-1,8-dicarboxylic acid) [518-05-8] M 216.9, m 270°, $pK_{Est(1)} \sim 2.1$, $pK_{Est(2)} \sim 4.5$. Crystallise the acid from EtOH or aqueous EtOH. [Raecke& Schrip Org Synth 40 71 1960, Beilstein 9 II 651, 9 III 4466.]

1,8-Naphthalic anhydride [81-84-5] **M 198.2, m 274°, 274-275°.** Extract it with cold aqueous Na₂CO₃ to remove free acid, then crystallise from acetic anhydride. [*Beilstein* **17** III/IV 6392, **17/11** V 492.]

2-Naphthamide (2-naphthoic acid amide) [2243-82-5] M 171.2, m 195°, pK^{20} - 2.30 (H_o scale, aqueous H₂SO₄). Crystallise it from EtOH (197°). [Clemo & Spence J Chem Soc 2818 1928, Beilstein 9 H 657, 9 II 45, 9 IV 2417.]

Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) [475-38-7] M 190.2, m ~ 220-230°(dec), m 225-230°, p K $_{1}^{20}$ 8.2, pK $_{2}^{20}$ 10.2. It crystallises in red-brown needles with a green shine from EtOH. It also crystallises from hexane and is further purified by sublimation at 2-10mm. [Huppert et al. *J Phys Chem* 89 5811 1985.] It is sparingly soluble in H₂O but soluble in alkalis. The *diacetate* forms golden yellow prisms from CHCl₃, m 192-193° and the 5,8-*dimethoxy* derivative has m 157° (155°) (from pet ether) [Bruce & Thompson *J Chem Soc* 1089 1955, IR: Schmand & Boldt *J Am Chem Soc* 97 447 1975, NMR: Brockmann & Zeeck *Chem Ber* 101 4221 1968]. The monothiosemicarbazone has m 168°(dec) from EtOH [Gardner et al. *J Am Chem Soc* 74 2106 1952]. [Beilstein 8 H 412, 8 III 3600.]

Naphthionic acid (4-aminonaphthalene-1-sulfonic acid) [84-86-6] M 223.3, $m > 300^{\circ}(dec)$, pK^{25} 2.68. It crystallises from H₂O as needles of the 0.5 hydrate. Salt solutions fluoresce strongly blue. The *S*-benzylisothiuronium salt has m 195° (from aqueous EtOH). [Beilstein 14 IV 2793.]

1-Naphthoic acid [86-55-5] **M 172.2, m 162.5-163.0°, pK²⁵ 3.60.** Crystallise the acid from toluene (3mL/g) (charcoal), pet ether (b 80-100°), or aqueous 50% EtOH. The *amide* has **m** 202° (from EtOH). [*Beilstein* **9** IV 2402.]

2-Naphthoic acid [93-09-4] **M 172.2, m 184-185°, pK²⁵ 4.14.** Crystallise the acid from EtOH (4mL/g), aqueous 50% EtOH or Me₂CO (**m** 185-186°). Dry it at 100°. The *acid chloride* has **m** 52-52° (from $*C_6H_6$ /pet ether) and **b** 160-162°/11mm [Hersberg & Carson *Org Synth* Coll Vol **III** 629 1955], the *amide* has

m 192° (from EtOH), and the *N*-Methyl amide has **m** 109-109.5° (form C_6H_6). [Beilstein **9** H 656, **9** III 3174, **9** IV 2402.]

1-Naphthol [90-15-3] **M 144.2, m 95.5-96°, pK²⁵ 9.34.** Sublime 1-naphthol, then crystallise it from aqueous MeOH (charcoal), aqueous 25% or 50% EtOH, $*C_6H_6$, cyclohexane, heptane, CCl₄ or H₂O. Dry it over P₂O₅ *in vacuo*. The 4-nitrobenzoate has **m** 143° (from EtOH). [Shizuka et al. J Am Chem Soc **107** 7816 1985, Beilstein **8** H 596, **6** IV 4208.]

2-Naphthol [135-19-3] **M** 144.2, **m** 122.5-123.5°, **pK**²⁵ 9.57. Crystallise 2-naphthol from aqueous 25% EtOH (charcoal), H₂O, *benzene, toluene or CCl₄. Alternatively, extract it repeatedly with small amounts of EtOH, followed by dissolution in a minimum volume of EtOH and precipitation with distilled water, then drying over P₂O₅ under vacuum. It has also been dissolved in aqueous NaOH and precipitated by adding acid (repeat several times), then precipitated from *benzene by addition of heptane. Final purification can be by zone melting or sublimation *in vacuo*. The 4-nitrobenzoate has **m** 104° (from EtOH). [Bardez et al. J Phys Chem **89** 5031 1985, Kikuchi et al. J Phys Chem **91** 574 1987, Beilstein **6** IV 4253.]

Naphthol AS-D (3-hydroxy-2-naphthoic-o-toluide) [135-61-5] M 277.3, m 1196-198°. Purify it by recrystallisation from xylene. This gives yellow-green fluorescent solutions at pH 8.2-9.5. [IR: Schnopper et al. Anal Chem 31 1542 1959.] The naphthol AS-D acetate is obtained with AcCl, m 168-169°, and with chloroacetyl chloride naphthol AS-D-chloroacetate is obtained [Moloney et al. J Histochem Cytochem 8 200 1960, Burstone Arch Pathology 63 164 1957]. [Beilstein 12 H 505.]

α-Naphtholbenzein [bis-(α-{4-hydroxynaphth-1-yl})-benzyl alcohol] [6948-88-5] M 392.5, m 122-125°, $pK_{Est} \sim 9.3$. Crystallise the alcohol from EtOH, aqueous EtOH or glacial acetic acid. [Beilstein 6 H 1150.]

1-Naphthol-2-carboxylic acid (1-hydroxy-2-naphthoic acid) [86-48-6] M 188.2, m 203-204°, $pK_{Est(1)}\sim 2.5$, $pK_{Est(2)}\sim 12$. Successively crystallise the acid from EtOH/water, diethyl ether and acetonitrile, with filtration through a column of charcoal and Celite. [Tong & Glesmann J Am Chem Soc 79 583 1957, Beilstein 10 H 331, 10 IV 1194.]

3-Naphthol-2-carboxylic acid (3-hydroxy-2-naphthoic acid) [92-70-6] M 188.2, m 222-223°, pK_1^{25} 2.79, pK_2^{25} 12.84. Crystallise it from water or acetic acid. The *S-benzyisothiuronium salt* has m 216-217° (from EtOH). It forms many metal complex salts. [*Beilstein* 10 H 333, 10 III 1084.]

1,2-Naphthoquinone [524-42-5] **M 158.2, m 140-142^o(dec).** Crystallise the quinone from ether (red needles) or *benzene (orange leaflets). [*Beilstein* **7** IV 2417.]

1,4-Naphthoquinone [130-15-4] **M 158.2, m 125-125.5°.** Crystallise the quinone from diethyl ether (charcoal). It distils in steam. It also crystallises from *benzene or aqueous EtOH and sublimes in a vacuum. [*Beilstein* **7** IV 2422.]

β-Naphthoxyacetic acid [120-23-0] M 202.2, m 156°, $pK_{Est} \sim 3.0$. Crystallise the acid from hot water or *benzene. [*Beilstein* 6 IV 4274.]

β-Naphthoyltrifluoroacetone (4,4,4-trifluoro-2-naphthylbutan-1,3-dione) [893-33-4] M 266.2, m 70-71°, 74-76°, pK²⁰ 6.35. Crystallise the dione from EtOH. The mono oxime crystallises from H₂O or aqueous EtOH and has m 137-138°. [Reid & Calvin J Am Chem Soc 72 2948 1950, Beilstein 7 IV 2478.]

Naphthvalene (2,3-dihydro-1,2,3-metheno-1*H*-indene) [34305-47-0] M 128.1, m dec at 175° to benzvalene. Purify it by chromatography on alumina and eluting with pentane, also by reverse phase (ODS) HPLC using MeCN as solvent. It is stable at room temperature [Kjell et al. J Am Chem Soc 108 4111 1986, Abelt et al. J Am Chem Soc 107 4148 1985]. The ¹H NMR in CCl₄ has τ 3.18 (4H), 6.17 (t J 1.5Hz, 2H), 7.60 (t J 1.5Hz 2H).

1-Naphthyl acetate [830-81-9] **M 186.2, m 45-46°, 48-49°, b 114-115°/1mm.** Chromatograph the acetate on silica gel and crystallise as the 2-isomer below. The 2,4,7-trinitrofluoren-9-one complex has $m 120^{\circ}$ (from EtOH). [Beilstein 6 H 608, 6 III 2928, 6 IV 4217.]

2-Naphthyl acetate [1523-11-1] **M 186.2, m 71°, 71-72°, b 133-134°/2mm.** Distil the acetate in a high vaccum and/or crystallise it from pet ether (b 60-80°) or dilute aqueous EtOH. The *picrate* has **m** 80° (from EtOH). [*Beilstein* **6** H 644, **6** I 313, **6** II 600, **5** III 2982, **6** IV 4267.]

1-Naphthylacetic acid [86-87-3] M 186.2, m 132°, pK²⁵ 4.23. Crystallise the acid from EtOH or water. [*Beilstein* 9 H 666, 9 IV 2424.]

2-Naphthylacetic acid [581-96-4] **M 186.2, m 143.1-143.4**°, **pK**²⁵ **4.30.** Crystallise the acid from water or *benzene. [*Beilstein* **9** H 666, **9** IV 2431.]

1-Naphthylamine [134-32-7] **M 143.2, m 50.8-51.2°, b 160°, pK^{25} 3.94.** Sublime the amine at 120° in a stream of nitrogen, then crystallise it from pet ether (b 60-80°), or absolute EtOH then diethyl ether. Dry it *in vacuo* in an Abderhalden pistol. It has also been purified by crystallisation of its *hydrochloride* (see below) from water, followed by liberation of the free base and distillation; it is finally purified by zone melting. The *styphnate* has **m** 181-182° (from EtOH). [*Beilstein* **12** III 2846, **12** IV 3009.] **CARCINOGEN.**

1-Naphthylamine hydrochloride [552-46-5] **M 179.7, m 240-250^o sublimes on heating.** Crystallise the salt from water (charcoal). [*Beilstein* **12** III 2849, **12** IV 3009.]

2-Naphthylamine [91-59-8] **M 143.2, m 113°, pK²⁵ 4.20.** Sublime the amine at 180° in a stream of nitrogen. Crystallise it from hot water (charcoal) or *benzene. Dry it under vacuum in a drying pistol. The *styphnate* has **m** 194-195° (from EtOH). [*Beilstein* **12** H 1265, **12** III 2989, **12** IV 3122.] **CARCINOGEN**.

2-Naphthylamine-1-sulfonic acid [81-16-3] **M 223.3, m >200°(dec), pK** $_{1}^{25}$ **<1, pK** $_{2}^{25}$ **2.35** (**NH**₂). Crystallise the acid under nitrogen from boiling water and dry it in a steam oven [Bryson *Trans Faraday Soc* **47** 522, 527 1951]. [Beilstein **14** III 2240, **14** IV 2792.]

5-Naphthylamine-1-sulfonic acid [84-89-9] M 223.3, m >200°(dec), $pK_{Est(1)}<1$, pK_2^{25} 3.69 (NH₂). Crystallise the acid under nitrogen from boiling water and dry it in a steam oven [Bryson *Trans Faraday Soc* 47 522, 527 1951]. [Beilstein 14 IV 2800.]

2-Naphthylamine-6-sulfonic acid [93-00-5] **M 223.3, m >200°(dec), pK²⁵ 3.74.** Crystallise the acid from a large volume of hot water. The *diethylamine salt* has **m** 190.5-192° (from EtOH/*iso*BuOH), and the *S-benzylisothiuronium salt* has **m** 330° (from *n*BuOH). [*Beilstein* **14** H 760, **14** II 463, **14** III 2249, **14** IV 2804.]

1-(1-Naphthyl) ethanol [R-(+)-42177-25-3, S-(-)-15914-84-8] **M 172.2, m 46°, 45-47.5°, 48°,** [α] $_{546}^{20}$ (+) and (-) 94°, [α] $_{D}^{20}$ (+) and (-) 78° (c 1, MeOH). Purify the alcohol by recrystallisation from Et₂O/pet ether, Et₂O, hexane [Balfe et al. *J Chem Soc* 797 1946, IR, NMR: Theisen & Heathcock *J Org Chem* 53 2374 1988, see also Fredga et al. *Acta Chem Scand* 11 1609 1957]. The *RS-alcohol* [57605-95-5] has **m** 63-65°, 65-66° from hexane. [*Beilstein* 6 III 3034, 6 IV 4346.]

1-(1-Naphthyl)ethylamine $[R_{-}(+)$ - 3886-70-2, S-(-)- 10420-89-0] M 171.2, b 153°/11mm, 178-181°/20mm, d $_{4}^{20}$ 1.067, n_{D}^{20} 1.624, $[\alpha]_{546}^{20}$ (+) and (-) 65°, $[\alpha]_{D}^{20}$ (+) and (-) 55° (c 2, MeOH), $[\alpha]_{D}^{17}$ (+) and (-) 82.8° (neat), pK_{Est} ~9.3. Purify the amine by distillation in a good vacuum. [Mori et al. *Tetrahedron* 37 1343 1981, cf Wilson in *Topics Stereochem* (Allinger and Eliel eds) vol 6 135 1971, Fredga et al. Acta Chem Scand 11 1609 1957.] The hydrochlorides crystallise from H₂O $[\alpha]_{D}^{18} \pm 3.9^{\circ}$ (c 3, H₂O), and the sulfates recrystallise from H₂O as tetrahydrates m 230-232°. The RS-amine [42882-31-5] has b 153°/11mm, 156°/15mm, 183.5°/41mm [Blicke & Maxwell J Am Chem Soc 61 1780 1939]. [Beilstein 12 III 3111.] $N \cdot (\alpha \cdot \text{Naphthyl})$ ethylenediamine dihydrochloride [1465-25-4] M 291.2, m 188-190°, pK_{Est(1)}~3.8, pK_{Est(2)}~9.4. Crystallise the salt from water. [Beilstein 12 II 699.]

1-Naphthyl isocyanate [86-84-0] M 169.2, m 3-5°, b 140-142°/12mm, 269-270°/760mm, d_4^{20} 1.1774. Distil the isocyanate at atmospheric pressure or in a vacuum. It can be crystallised from pet ether (b 60-70°) at low temperature. It has a pungent odour, is TOXIC and is absorbed through the skin. [Beilstein 12 H 1244, 12 III 2948.]

1-Naphthyl isothiocyanate [551-06-4] **M 185.3, m 58-59°.** Crystallise the isothiocyanate from hexane (1g in 9 mL). It forms white needles and is soluble in most organic solvents but is insoluble in H₂O. It is absorbed through the skin and may cause dermatitis. [Cymmerman-Craig et al. Org Synth Coll Vol IV 700 1963, Beilstein 12 H 1244, 12 III 2948.]

2-(2-Naphthyloxy)ethanol [93-20-9] **M 188.2, m 72-74°, 76.7°.** Crystallise it from *benzene/pet ether. [Yoshino et al. *Bull Chem Soc Jpn* **46** 553 1973.]

N-1-Naphthylphthalamic acid (Naptalam) [132-66-1] M 291.3, m 189° (dec), 203°. Crystallise the herbicide from EtOH (m 183-185°). The *Na salt* has m 185°. [*Beilstein* 12 H 1236, 12 I 525, 12 III 2876.]

2-Naphthyl salicylate (Betol) [613-78-5] **M 264.3, m 94.4°, 95°, pK**_{Est} ~10.0. Crystallise Betol from EtOH. It is *dimorphic* with **m**'s at ~55° and ~96°. [Beilstein 10 H 80, 10 II 53, 10 III 136, 10 IV 158.]

1-Naphthyl thiourea (ANTU) [86-88-4] **M 202.2, m 198**°. Crystallise ANTU from EtOH. [Beilstein 12 III 2941, 12 IV 3086.]

1-Naphthyl urea [6950-84-1] **M 186.2, m 215-220°.** Crystallise the urea from EtOH (**m** 213-214° also 215°). [Beilstein **12** H 1238, **12** IV 3076.]

2-Naphthyl urea [13114-62-0] **M 186.2, m 212°, 219-220°.** Crystallise the urea from EtOH. [*Beilstein* **12** H 1292, **12** III 3029, **12** IV 3149.]

Narcein {6-[6-(2-dimethylaminoethyl)]-2-methoxy-3,4-(methylenedioxy)phenylacetyl]-2,3dimethoxybenzoic acid} [131-28-2] M 445.4, m 176-177° (145° anhydrous), pK_1^{15} 3.5, pK_2^{15} 9.3. Recrystallise Narcein from water (as trihydrate). The *styphnate* has m 185-189° (from EtOH), and the *picrate* has m 200° (from EtOH). [*Beilstein* 19 H 370, 19 I 797, 19 II 386, 19 IV 4382.]

Neostigmine [(3-dimethylcarbamoylphenyl)trimethylammonium] bromide [114-80-7] M 303.2, m 176°(dec), 181°(dec). Crystallise neostigmine bromide from EtOH/diethyl ether. Its solubility in H₂O is ~50%. [Beilstein 13 III 939.] (It is cholinergic and highly TOXIC.) The starting material 3-dimethylcarbamoyl-N,N-dimethylaniline [59-99-4] has b 195°/20mm [Beilstein 13 III 936], and its picrate has m 138° (from EtOH).

Neostigmine methyl sulfate (Prostigmine B) [51-60-5] M 334.4, m 142-145°. Crystallise the sulfate from EtOH or Me₂CO (m 143-144°). Its solubility in H₂O is ~10%. [*Beilstein* 13 III 939.] (It is cholinergic and *highly* TOXIC.)

Ninhydrin (1,2,3-triketohydrindene hydrate) [485-47-2] M 178.1, m 241-243°(dec), pK³⁰ 8.82. Crystallise ninhydrin from hot water (charcoal). Dry it under vacuum and store it in sealed brown containers. [*Beilstein* 7 IV 2786.]

2-Nitroacetanilide [552-32-9] **M 180.2, m 93-94°, pK**_{Est} **<0.** Crystallise the anilide from H₂O, aqueous EtOH (m 92-93°) or EtOH (m 92.5-93.5°). [*Beilstein* **12** II 371, **12** III 1523, **12** IV 1574.]

4-Nitroacetanilide [104-04-1] **M 180.2, m 217°, pK**_{Est} **<0.** Precipitate the anilide from 80% H₂SO₄ by adding ice, then wash with water, and crystallise from aqueous EtOH. Dry it in air. [*Beilstein* **12** IV 1632.]

3-Nitroacetophenone [121-89-1] **M 165.2, m 81°, b 167°/18mm, 202°/760mm.** Distil the ketone in steam and crystallise it from EtOH. [*Beilstein* 7 IV 656.]

4-Nitroacetophenone [100-19-6] **M 165.2, m 80-81°, b 145-152°/760mm.** Crystallise the ketone from EtOH or aqueous EtOH. [*Beilstein* **7** IV 657.]

3-Nitroalizarin (1,2-dihydroxy-3-nitro-9,10-anthraquinone, Alizarin Orange) [568-93-4] M 285.2, m 244° (dec), $pK_{Est(1)}$ ~4.6, $pK_{Est(2)}$ ~9.6. Crystallise the dye from AcOH (m 244-245°). It has λ_{max} at 494nm (H₂SO₄) and forms Cu salts. [Beilstein 8 H 447, 8 II 491, 8 III 3774, 8 IV 2359.]

o-Nitroaniline [88-74-4] M 138.1, m 72.5-73.0°, pK²⁵ -0.25 (-0.31). Crystallise the aniline from hot water (charcoal), then from aqueous 50% EtOH, or EtOH, and dry it in a vacuum desiccator. It has also been chromatographed on alumina, then recrystallised from *benzene. [*Beilstein* 12 IV 1563.]

m-Nitroaniline [99-09-2] M 138.1, m 114°, pK²⁵ 2.46. Purify it as for *o*-nitroaniline. Warning: it is absorbed through the skin. [Beilstein 12 IV 1589.]

p-Nitroaniline [100-01-6] M 138.1, m 148-148.5°, pK²⁵ 1.02. Purify it as for *o*-nitroaniline. It also crystallises from acetone. It is freed from *o*- and *m*-isomers by zone melting and sublimation. [*Beilstein* 12 IV 1613.]

o-Nitroanisole (2-methoxynitrobenzene) [91-23-6] M 153.1, f 9.4°, b 265°/737mm, d_4^{20} 1.251, n_D^{20} 1.563. Purify it by repeated vacuum distillation in the absence of oxygen. [*Beilstein* 6 IV 1249.]

p-Nitroanisole (4-methoxynitrobenzene) [100-17-4] M 153.1, m 54°. Crystallise it from pet ether or hexane and dry it *in vacuo*. [Beilstein 6 IV 1282.]

9-Nitroanthracene [602-60-8] **M 223.2, m 142-143°.** Purify it by recrystallisation from EtOH or MeOH. Further purify it also by sublimation or TLC. [*Beilstein* **5** H 666, **5** II 578, **5** III 2136, **5** IV 2296.]

o-Nitrobenzaldehyde [552-89-6] M 151.1, m 44-45°, b 120-144°/3-6mm. Crystallise the aldehyde from toluene (2-2.5mL/g) by addition of 7mL pet ether (b 40-60°) for 1mL of solution. It can also be distilled under reduced pressures. [*Beilstein* 7 IV 584.]

m-Nitrobenzaldehyde [99-61-6] M 151.1, m 58°. Crystallise the aldehyde from water or EtOH/water, then sublime it twice at 2mm pressure at a temperature slightly above its melting point. [*Beilstein* 7 IV 591.]

p-Nitrobenzaldehyde [555-16-8] M 151.1, m 106°. Purify it as for *m*-nitrobenzaldehyde above. [Beilstein 7 IV 589.]

Nitrobenzene [98-95-3] M 123.1, f 5.8°, b 84-86.5°/6.5-8mm, 210.8°/760mm, $d_{\rm D}^{20}$ 1.206, n¹⁵1.55457, n_D²⁰ 1.55257, pK¹⁸-11.26 (aqueous H₂SO₄). Common impurities include nitrotoluene, dinitrothiophene, dinitrobenzene and aniline. Most impurities can be removed by steam distillation in the presence of dilute H₂SO₄, followed by drying with CaCl₂, and shaking with, then distilling at low pressure from BaO, P₂O₅, AlCl₃ or activated alumina. It can also be purified by fractional crystallisation from absolute EtOH (by refrigeration). Another purification process includes extraction with aqueous 2M NaOH, then water, dilute HCl, and water, followed by drying (CaCl₂, MgSO₄ or CaSO₄) and fractional distillation under reduced pressure. The pure material is stored in a brown bottle, in contact with silica gel or CaH₂. It is very *hygroscopic*. [*Beilstein* 5 H 233, 5 I 124, 5 II 171, 5 III 591, 5 IV 708.]

4-Nitrobenzene-azo-resorcinol (magneson-I) [74-39-5] M 259.2, m 185°(dec), 199-200°(dec). Crystallise the dye from EtOH. [*Beilstein* 16 H 181, 16 IV 1266.]

2-Nitrobenzenesulfenyl chloride (NPS-Cl) [7669-54-7] **M 189.6, m 73-74.5°, 74.5-75°, 74-76°.** Recrystallise it from CCl₄ (2mL/g), filter off the solution at 5° (recovery 75%). It has also been recrystallised from pet ether (b 40-60°), dried rapidly at 50° and stored in a brown glass bottle, sealed well and stored away from moisture. [Hubacher Org Synth Coll Vol II 455 1943, Ito et al. Chem Pharm Bull Jpn 26 296 1978, Beilstein **6** I 157.]

4-Nitrobenzhydrazide [606-26-8] **M 181.1, m 124°.** Crystallise the hydrazide from EtOH or EtOAc (**m** 120°). [*Beilstein* **9** H 375, **9** I 152, **9** II 246, **9** III 1481, **9** IV 1052.]

2-Nitrobenzoic acid [552-16-9] **M 167.1, m 146-148°, pK²⁵ 2.21.** Crystallise the acid from *benzene (twice), *n*-butyl ether (twice), then water (twice). Dry and store it in a vacuum desiccator. [Le Noble & Wheland J Am Chem Soc **80** 5397 1958.] It has also been crystallised from EtOH/H₂O. The *amide* has **m** 176.5° (from H₂O). [Beilstein **9** III 1466, **9** IV 1046.]

3-Nitrobenzoic acid [121-92-6] **M 167.1, m 143-143.5**°, **pK**²⁵ **3.46.** Crystallise the acid from *benzene, H₂O, EtOH (charcoal), glacial acetic acid or MeOH/H₂O. Dry and store it in a vacuum desiccator. The *amide* has **m** 143° (from H₂O or *C₆H₆). [*Beilstein* **9** III 1489, **9** IV 1055.]

4-Nitrobenzoic acid [62-23-7] **M 167.1, m 241-242°, pK²⁵ 3.43.** Purify it as for 3-nitrobenzoic acid above. The *amide* has **m** 201.6° (from H_2O). [*Beilstein* **9** III 1537, **9** IV 1072.]

4-Nitrobenzoyl chloride [122-04-3] **M 185.6, m 75°, b 155°/20mm.** Crystallise the acid chloride from dry pet ether (b 60-80°), *C₆H₆ or CCl₄. Distil it under vacuum. **Irritant**. [Adama & Jenkins *Org Synth* Coll Vol **I** 394 1941, *Beilstein* **9** III 1709, **9** IV 1191.]

4-Nitrobenzyl alcohol [619-73-8] **M 153.1, m 93°.** Crystallise the alcohol from EtOH and sublime it *in vacuo*. Purity should be at least 99.5%. Sublimed samples should be stored in the dark over anhydrous CaSO₄ (Drierite). If the IR contains OH bands, then the sample should be resublimed before use. [Mohammed & Kosower J Am Chem Soc **93** 2709 1979, Beilstein **6** IV 2611.]

4-Nitrobenzyl bromide [100-11-8] **M 216.0, m 98.5-99.0°.** Recrystallise the bromide four times from absolute EtOH, then twice from cyclohexane/hexane/*benzene (1:1:1), followed by sublimation at 0.1mm and final recrystallisation from the same solvent mixture. [Lichtin & Rao J Am Chem Soc 83 2417 1961.] It has also been crystallised from pet ether (b 80-100°, 10mL/g, charcoal). It slowly decomposes even when stored in a desiccator in the dark. IRRITANT. [Beilstein **5** IV 861.]

m-Nitrobenzyl chloride [619-23-8] M 171.6, m 45°. Crystallise the chloride from pet ether (b 90-120°). IRRITANT. [Beilstein 5 IV 855.]

p-Nitrobenzyl chloride [100-14-1] M 171.6, m 72.5-73°. Crystallise the chloride from CCl₄, dry diethyl ether, or *n*-heptane, and dry it under vacuum. **IRRITANT**. [*Beilstein* 5 IV 856.]

p-Nitrobenzyl cyanide [555-21-5] M 162.2, m 117°. Crystallise the nitrile from EtOH. TOXIC. [*Beilstein* 9 H 456, 9 I 183, 9 II 313, 9 III 2291.]

2-Nitrobiphenyl [86-00-0] **M 199.2, m 36.7°.** Crystallise it from EtOH (seeding required). Sublime it under vacuum. [*Beilstein* **5** H 582, **5** I 273, **5** II 487, **5** III 1750.]

3-Nitrocinnamic acid [555-68-0] **M 193.2, m 200-201°, pK²⁵ 2.58** (*trans*). Crystallise the acid from ${}^{*}C_{6}H_{6}$ or EtOH. The *p*-bromophenacyl ester has **m** 178° (from AcOH). [Beilstein **9** III 271, **9** IV 2043.]

4-Nitrocinnamic acid [882-06-4] **M 193.2, m 143°** (*cis*), **286°**(*trans*), **pK**_{Est} ~**2.6** (*trans*). Crystallise the acid from H₂O. The *p*-bromophenacyl ester has **m** 191° (from AcOH). [Beilstein **9** H 606, **9** III 2744.]

4-Nitrodiphenylamine [836-30-6] **M 214.2, m 133-134°, pK²⁵ -2.5.** Crystallise the amine from EtOH or aqueous EtOH (**m** 135-136°) and has **m** 131.5-132° after sublimation *in vacuo*. [Beilstein **12** H 715, **12** III 1586.]

2-Nitrodiphenyl ether [2216-12-8] **M 215.2, b 106-108°/0.01mm, 137-138°/0.5mm, 161-162°/4mm, 188-189°/12mm, 195-200°/25mm, d_4^{20} 1.241, n_D^{25} 1.600. Purify the ether by fractional disillation. UV (EtOH): 255, 315mm (\varepsilon 6200 and 2800), IR (CS₂): 1350 (NO₂) and 1245, 1265 (COC) cm⁻¹ [UV, IR: Dahlgard & Brewster J Am Chem Soc 80 5861 1958, Tomita & Takase Yakugaku Zasshi (J Pharm Soc Japan) 75** 1077 1955, Fox & Turner J Chem Soc 1115 1930, Henley J Chem Soc 1222 1930]. [Beilstein 6 H 218, 6 II 210, 6 III 801.]

Nitrodurene (1,2,4.5-tetramethyl-3-nitrobenzene) [3463-36-3] M 179.2, m 113-114°, b 143-144°/10mm. Distil nitrodurene in a vacuum and/or crystallise it from EtOH (yellow prisms, m 113-113.5°), MeOH, acetic acid, pet ether or chloroform. It has been crystallised by dissolving in hexane and kept at -20° for crystals to form (m 111-112°). UV has λ_{max} at 238 and 400nm (iso-octane). [Masnovi et al. *J Am Chem Soc* 111 2263 1989, cf Powell & Johnson *Og Synth* Coll Vol II 449 1943, *Beilstein* 5 H 432, 5 III 982, 5 IV 1080.]

3-Nitrofluoranthene [892-21-7] **M 247.3, m 159-160°.** Recrystallise it from AcOH or EtOAc (yellow crystals) and/or sublime it at high vacuum. It is soluble in CH_2Cl_2 , Me_2CO or $*C_6H_6$, soluble in warm EtOH and very soluble in Et_2O . [Kloetzel et al. J Am Chem Soc 78 1165 1956, Beilstein 5 III 2279.]

2-Nitrofluorene [607-57-8] **M 211.2, m 156°.** Crystallise 2-nitrofluorene from aqueous acetic acid or Me₂CO (**m** 158-158.5°, also 160-160.5°). [*Beilstein* **5** H 628, **5** III 1948.]

Nitromesitylene (2-nitro-1,3,5-trimethylbenzene) [603-71-4] M 165.2, m 44°, b 255°/760mm. Crystallise it from EtOH, or a small volume of MeOH and cool in an ice-salt bath (m 43.5°). [Powell & Johnson Org Synth Coll Vol II 449 1943, Beilstein 5 H 410, 5 III 923, 5 IV 1028.]

Nitromethylphenylsulfone [21272-85-5] M 201.2, m 78-79°. Recrystallise the sulfone from CHCl₃, or 95% EtOH, then sublime it at 100-120°/0.1 Torr and recrystallise again. It is an acidic analogue of nitromethane used for the general synthesis of aliphatic acids and nitriles and in cycloaddition reactions with olefins to form heterocycles. [Wade et al. J Org Chem 46 765 1981, 49 4595 1984, Beilstein 6 II 292.]

1-Nitronaphthalene [86-57-7] **M 173.2, m 57.3-58.3°, b 30-40°/0.01mm.** Fractionally distil 1nitronaphthalene under reduced pressure, then crystallise it from EtOH, aqueous EtOH or heptane. Chromatograph it on alumina with *benzene/pet ether as eluent. It sublimes *in vacuo*. The 1:1 picrate complex has **m** 72° (from EtOH). [Beilstein **5** H 553, **5** III 1593, **5** IV 1673.]

2-Nitronaphthalene [581-89-5] **M** 173.2, **m** 79°, **b** 165°/15mm. Distil it in a vacuum and/or crystallise it from aqueous EtOH and sublime in a vacuum. The 1:1 1,3,5-trinitrobenzene complex has **m** 75.5° (from EtOH). [Beilstein **5** H 555, **5** III 1596, **5** IV 1675.]

1-Nitro-2-naphthol [550-60-7] **M 189.2, m 103°, b 115°/0.05mm, pK²⁵ 5.93.** Distil it under high vacuum and/or crystallise the naphthol (repeatedly) from *benzene/pet ether (b $60-80^\circ$)(1:1). [Beilstein 6 H 653, 6 III 3002, 6 IV 4370.]

2-Nitro-1-naphthol [607-24-9] **M 189.2, m 127-128°, pK²⁵ 5.89.** Crystallise the naphthol (repeatedly) from EtOH. [*Beilstein* **6** H 615, **6** III 2938, **6** IV 4236.]

2-Nitrophenol [88-75-5] **M 139.1, m 44.5-45.5°, b 214-215°/760mm, pK²⁵ 7.23.** Crystallise 2-nitrophenol from EtOH/water, water, EtOH, *benzene or MeOH/pet ether (b 70-90°). It can be steam distilled. Petrucci and Weygandt [*Anal Chem* **33** 275 1961] crystallised it from hot water (twice), then EtOH

(twice), followed by fractional crystallisation from the melt (twice), drying over $CaCl_2$ in a vacuum desiccator and then in a drying pistol. The 4-nitrobenzoate had **m** 141° (from EtOH). [Beilstein **6** IV 1246.]

3-Nitrophenol [554-84-7] **M 139.1, m 96°, b 160-165°/12mm, pK²⁵ 8.36.** Crystallise 3nitrophenol from water, CHCl₃, CS₂, EtOH or pet ether (b 80-100°), and dry it under vacuum over P_2O_5 at room temperature. It can also be distilled at low pressure. The 4-nitrobenzoate had **m** 174° (from EtOH). [*Beilstein* **6** IV 1269.]

4-Nitrophenol [100-02-7] **M 139.1, m 113-114°, pK²⁵ 7.16.** Crystallise 4-nitrophenol from water (which may be acidified, e.g. with N H₂SO₄ or 0.5N HCl), EtOH, aqueous MeOH, CHCl₃, *benzene or pet ether, then dry it *in vacuo* over P₂O₅ at 25°. It can be sublimed at 60°/10⁻⁴mm. The 4-nitrobenzoate had **m** 159° (from EtOH). [Beilstein 6 IV 1279.]

2-Nitrophenoxyacetic acid [1878-87-1] **M 197.2, m 150-159**°, **158.2-158.5**°, **pK**²⁵ **2.90.** Crystallise the acid from water, and dry it over P_2O_5 *in vacuo*. The *S-benzylisothiuronium salt* has **m** 155-156° (from EtOH). [Hayes & Brooch *J Am Chem Soc* **65** 1577 *1943*, *Beilstein* **6** H 220, **6** II 211, **6** III 804, **6** IV 1261.]

p-Nitrophenyl acetate [830-03-5] M 181.2, m 78-79°. Recrystallise the ester from absolute EtOH [Moss et al. J Am Chem Soc 108 5520 1986]. [Beilstein 6 IV 1298.]

2-Nitrophenylacetic acid [3740-52-1] **M 181.2, m 141-142.5°, pK²⁵ 3.95.** The acid crystallises as yellow needles from EtOH, EtOH/water and dry it over P_2O_5 under vacuum. The *amide* has **m** 160-161° (from *C₆H₆ plates or EtOH, needles). [*Beilstein* **9** III 2282, **9** IV 1687.]

4-Nitrophenylacetic acid [104-03-0] **M 181.2, m 153.4-154.6°, pK²⁵ 3.92.** Crystallise the acid from EtOH/water (1:1), then from sodium-dried diethyl ether and dry it over P_2O_5 in vacuo. The styphnate has **m** 196.5-197° (prisms from EtOH). The *amide* has **m** 191° (from EtOH). [Beilstein **9** III 2284, **9** IV 1698.]

4-Nitro-1,2-phenylenediamine [99-56-9] **M** 153.1, **m** 201°, pK_1^{25} 1.39 (1-NH₂), pK_2^{25} 2.61 (2-NH₂). Crystallise the diamine from water. [*Beilstein* 13 IV 75.]

1-(4-Nitrophenyl)ethylamine hydrochloride [R-(+)-57233-86-0, S-(-)-132873-57-5] M 202.6, m 225°, 240-242°(dec), 243-245°(dec), 248-250°, $[\alpha]_{D}^{20}$ (+) and (-) 72° (c 1, 0.05 M NaOH), (+) and (-) 0.3° (H₂O), pK_{Est} ~8.6. To ensure dryness, the hydrochloride (*ca* 175 g) is extracted with EtOH (3x100mL) and evaporated to dryness (any residual H₂O increases the solubility in EtOH and lowers the yield). The hydrochloride residue is triturated with absolute EtOH and dried *in vacuo*. The product is further purified by refluxing with absolute EtOH (200 mL for 83g) for 1hour, and cool to 10° to give 76.6g of hydrochloride m 243-245°(dec). The *free base* is prepared by dissolving in N NaOH, extracting with CH₂Cl₂ (3 x 500mL), drying (Na₂CO₃), filtering, evaporating and distilling it. It has m 27°, b 119-120°/0.5mm (105-107°/0.5mm, 157-159°/9mm, d_4^{20} 1.1764, n D_D^{20} 1.5688, $[\alpha]_D^{24} \pm 17.7°$ (neat) [Perry et al. *Synthesis* 492 *1977*, ORD: Nerdel & Liebig *Justus Liebigs Ann Chem* 621 142 *1959*]. [*Beilstein* 12 IV 2451.]

4-Nitrophenylhydrazine [100-16-3] M 153.1, m 158°(dec), pK_1^{25} -9.2 (aqueous H₂SO₄), pK_2^{25} 3.70. Crystallise the hydrazine from EtOH. The *hydrochloride* has m 212°(dec) (from EtOH, also m 202-203° dec). [*Beilstein* 15 III 331, 15 IV 317.]

3-Nitrophenyl isocyanate [3320-87-4] **M 164.1, m 52-54°, b 130-131°/11mm.** Distil the isocyanate in a vacuum, and/or recrystallise it from pet ether (b 28-38°) or toluene/pet ether (m 52°). [Beilstein **12** H 708, **12** III 1573.]

4-Nitrophenyl isocyanate [100-28-7] M 164.1, m 53°, b 137-138°/11mm, 162-164°/20mm. Distil the isocyanate in a vacuum, and/or recrystallise it from pet ether (b 28-38°), C_6H_6 /pet ether (m 58°) or CCl_4 (m 56-57°). [Beilstein 12 H 725, 12 III 1630.]

2-Nitrophenylpropiolic acid [530-85-8] M 191.1, m 157°(dec), 160.5-161°, 166-167°(dec), pK^{25} 2.83 (50% aqueous dioxane), 3.39 (50% aqueous EtOH). Digest the acid with boiling CHCl₃, then crystallise it from H₂O. The *amide* has m 159° (plates, from H₂O). [Schofield & Simpson J Chem Soc 516 1945, Beilstein 9 H 636, 9 I 267, 9 II 438, 9 III 3067, 9 IV 2330.]

4-Nitrophenyl trifluoroacetate [658-78-6] **M 235.1, m 37-39°, b 120°/12mm.** Recrystallise the ester from CHCl₃/hexane [Margolis et al. J Biol Chem **253** 7891 1978]. It sublimes in vacuo (**m** 36-38°). It is moisture sensitive. [Sakakibara & Inukai Bull Chem Soc Jpn **37** 1231 1964.]

4-Nitrophenyl urea [556-10-5] **M 181.2, m 232°(dec), 238°, 242°.** Crystallise the urea from EtOH or hot water. UV has λ_{max} at 322nm (EtOH). [*Beilstein* **12** II 392, **12** III 1617, **12** IV 1645.]

3-Nitrophthalic acid [603-11-2] **M 211.1, m 216-218°, pK²⁵ 3.93.** Crystallise 3-nitrophthalic acid from hot water (1.5mL/g). Dry it in air. The *amide* has m 201° (from EtOH). [*Beilstein* **9** H 823, **9** IV 3275.]

4-Nitrophthalic acid [610-27-5] **M 211.1, m 165°, pK²⁵ 4.12.** Crystallise 4-nitrophthalic acid from Et₂O, EtOAc or C_6H_6 (**m** 166°). The *amide* has **m** 200° (from EtOH). [*Beilstein* **9** H 828, **9** IV 4234.]

3-Nitrophthalic anhydride [641-70-3] **M 193.1, m 164°.** Crystallise it from $C_{6}H_{6}$, $C_{6}H_{6}$ /pet ether, Me₂CO, AcOH, or Ac₂O (**m** 164-165°). Dry it at 100°. [Beilstein **17** III/IV 6149, **17/11** V 266.]

4-Nitrophthalic anhydride [5466-84-2] **M 193.1, m 120-121.5°, b 196-197°/8mm.** Distil the anhydride in a vacuum and/or recrystallise it from C_6H_6 or Et_2O /pet ether. Dry it *in vacuo*. It forms addition compounds with anthracene (**m** 118°), and phenanthrene (**m** 96°). [*Beilstein* **17** III/IV 6150, **17/11** V 267.]

5-Nitro-2*-n***-propoxyaniline** [553-79-7] **M 196.2, m 47.5-48.5°, 49°. pK**_{Est} ~2.32. Crystallise the aniline from *n*-propyl alcohol/pet ether or H₂O (136mg/L at 20°). [*Beilstein* **13** III 878, **13** IV 897.]

2-Nitroresorcinol [601-89-8] **M 155.1, m 81-81°, pK_1^{20} 6.37, pK_2^{20} 9.46.** Recrystallise 2nitroresorcinol from aqueous EtOH. [*Beilstein* **6** H 823.]

4-Nitrosalicylic acid [619-19-1] **M 183.1, m 235-238°(dec), pK²⁵ 2.23.** Crystallise the acid from H₂O (**m** 236-238°) or aqueous EtOH (**m** 235-236° dec). [*Beilstein* **10** III 194, **10** IV 231.]

5-Nitrosalicylic acid [96-97-9] **M 183.1, m 233°, pK** $_{1}^{25}$ **2.32, pK** $_{2}^{25}$ **10.34.** Crystallise the acid from Me₂CO (charcoal), then twice more from Me₂CO alone, aqueous EtOH (**m** 234-236°) or H₂O (**m** 232-233°). [*Beilstein* **10** III 197, **10** IV 255.]

Nitrosobenzene [586-96-9] M 107.1, m 67.5-68°, b 57-59°/18mm. Steam distil nitrosobenzene, then crystallise it from a small volume of EtOH with cooling below 0°, dry it over CaCl₂ in a dessicator at atmospheric pressure, and store it under N₂ at 0°. Alternatively it can be distilled onto a cold finger cooled with brine at ~-10° in a vacuum at 17mm (water pump), while heating in a water bath at 65-70° [Robertson & Vaughan J Chem Educ 27 605 1950]. [Beilstein 5 IV 702.]

4-Nitrosodiphenylamine (tautomer of benzoquinone-1,4-phenylimine oxime) [156-10-5] M 198.2, m 144-145°(dec), 145.4-146.6°, 144-148°. The amine forms dark green crystals from EtOH or ${}^{*}C_{6}H_{6}$ (m 143°). It has UV at λ_{max} 421nm (EtOH) and is used for detecting Pd and Rh. It is highly toxic and a possible carcinogen. [Beilstein 12 H 207, 12 II 122, 12 III 347, 12 IV 1860B.]

1-Nitroso-2-naphthol [131-91-9] **M 173.2, m 110.4-110.8°, pK²⁵ 7.63.** Crystallise the naphthol from pet ether (b 60-80°, 7.5mL/g). [Beilstein **7** H 712, **7** IV 2419.]

2-Nitroso-1-naphthol [132-53-6] **M 173.2, m 162-164**°, **pK**²⁵ **7.24.** Purify the naphthol by recrystallisation from pet ether (b 60-80°) or by dissolving it in hot EtOH, followed by successive addition of

small volumes of water (**m** 158° dec). It also crystallises from C_6H_6 or H_2O . Crystallisation from C_6H_6 /pet ether gives **m** (106-109°, also 109.5°). It has λ_{max} at 274.5 and 382nm (CHCl₃). It complexes with metals. [*Beilstein* **7** H 712, **7** I 385, **7** II 647, **7** III 3688, **7** IV 2419.]

4-Nitroso-1-naphthol [605-60-7] **M 173.2, m 198°(dec), pK²⁵ 8.18.** Crystallise the naphthol from $*C_6H_6$ or H_2O (**m** 197°, dec). and sublime it at 75-80°/0.2mm. It has λ_{max} at 336nm (EtOH). [Beilstein **7** H 715, **7** II 653, **7** III 3700, **7** IV 2424.]

2-Nitroso-1-naphthol-4-sulfonic acid (3H₂O) [3682-32-4] M 316.3, m 142-146°(dec), $pK_{Est} \sim 6.3$ (OH). Crystallise the acid from dilute HCl solution. The crystals are dried over CaCl₂ in a vacuum desiccator. It has also been purified by dissolution in aqueous alkali and precipitation by addition of water. It is a reagent for cobalt. [*Beilstein* 11 H 331, 11 II 189, 11 III 621, 11 IV 668.]

4-Nitrosophenol (benzoquinone mono oxime) [104-91-6] M 123.1, m >124°(dec), pK²⁵ 6.36. 4-Nitrosophenol forms yellow crystals from xylene, $*C_6H_6$ (m ~144°) or Et₂O (m 128-129°, dec). [Beilstein 7 H 622, 7 II 574, 7 III 3367.]

N-Nitroso-*N*-phenylbenzylamine [612-98-6] M 212.2, m 58°. Crystallise the amine from absolute EtOH (yellow needles) and dry it in air. It is slightly soluble in organic solvents. [*Beilstein* 12 H 1071, 12 II 335, 12 III 2335.]

trans- β -Nitrostyrene [5153-67-3] M 149.2, m 60°. Crystallise the styrene from absolute EtOH, or three times from *benzene/pet ether (b 60-80°) (1:1). [*Beilstein* 5 III 1180, 5 IV 1352.]

4-Nitrostyrene [100-13-0] **M 149.2, m 20.5-21°.** Crystallise it from CHCl₃/hexane. Purify it by addition of MeOH to precipitate the polymer, then crystallise it at -40° from MeOH. It has also been crystallised from EtOH. [Bernasconi et al. J Am Chem Soc **108** 4541 1986, Beilstein **5** H 478, **5** III 1180, **5** IV 1351.]

2-Nitro-4-sulfobenzoic acid [552-23-8] **M 247.1, m 111°, pK**_{Est} ~1.65. Crystallise the acid from dilute HCl. It is *hygroscopic*. [*Beilstein* 11 H 391, 11 III 685.]

2-Nitrotoluene [88-72-2] M 137.1, m -9.55° (α -form), -3.85° (β -form), b 118°/16mm, d222.3°/760mm, d²⁰₄ 1.163, n²⁰_D 1.545. Crystallise 2-nitrotoluene (repeatedly) from absolute EtOH by cooling in a Dry-ice/alcohol mixture. Further purify it by passing an alcoholic solution through a column of alumina. [*Beilstein* 5 IV 845.]

3-Nitrotoluene [99-08-1] **M 137.1, m 16°, b 113-114°/15mm, 232.6°, d _4^{20} 1.156, n _D^{20} 1.544.** Dry 3-nitrotoluene over P₂O₅ for 24hours, then fractionally distil it under reduced pressure. [Clark & Taylor *Org. Synth* Coll Vol I 415 1941, *Beilstein* **5** IV 847.]

4-Nitrotoluene [99-99-0] **M 137.1, m 52°.** Crystallise 4-nitrotoluene from EtOH, MeOH/water, EtOH/water (1:1) or MeOH. Dry it in air, then dry it in a vacuum desiccator over H_2SO_4 . [Wright & Grilliom J Am Chem Soc **108** 2340 1986, Beilstein **5** IV 848.]

5-Nitrovanillin (nitroveratric aldehyde) [6635-20-7] M 197.2, m 172-175°, 176°, 178°. It forms yellow plates from AcOH and needles from EtOH [Slotta & Szyszke *Chem Ber* 68 184 1935]. With diazomethane, 5-nitro-3,4-dimethoxyacetophenone is formed [Brady & Manjunath J Chem Soc 125 1067 1924]. The *methyl ether* crystallises from EtOAc or AcOH, m 88°, 90-91°, and the *phenylhydrazone* has m 108-110° (from aqueous EtOH). [Finger & Schott J Prakt Chem [2] 115 288 1927.] The oxime has m 216° (from EtOH or AcOH), and the oxime acetate has m 147° (from aqueous EtOH) [Vogel Monatsh Chem 20 384 1899, Brady & Dunn J Chem Soc 107 1861 1915]. [Beilstein 8 III 2064.]

Nordihydroguaiaretic [1,4-bis(3,4-dihydroxyphenyl)-2,3-dimethylbutane] acid [500-38-9] M 302.4, m 184-185°, pK_{Est(1)}~9.7, pK_{Est(2)}~12. Crystallise the acid from dilute acetic acid. [Beilstein 6 IV 7771.]

1,2,3,4,6,7,8,9-Octahydroanthracene [1079-71-6] M **186.3, m** 73°, 73.5°, 78°, d_4^{80} **0.9703,** n $_D^{80}$ **1.5372.** Crystallise the octahydro compound from EtOH, then purify it by zone melting. [*Beilstein* **5** III 1400.]

n-Octylammonium 9-anthranilate [88020-99-9] M 351.5, m 134-135°, pK²⁵ 10.65 (for octylamine). Recrystallise the ester several times from ethyl acetate.

4-Octylbenzoic acid [3575-31-3] M 234.3, m 99-100°, pK^{25} 6.5 (80% aqueous EtOH), pK_{Est} ~4.5 (H₂O). When crystallised from EtOH it has m 139°, but when crystallised from aqueous EtOH it has m 99-100°. It forms liquid crystals. [*Beilstein* 9 H 571, 9 III 2611.]

4-(*tert*-Octyl)phenol [140-66-9] M 206.3, m 85-86°, b 166°/20mm, $pK_{Est} \sim 10.4$. Crystallise the phenol from *n*-hexane and/or distil it in a vacuum. [*Beilstein* 6 III 2051, 6 IV 3484.]

Opianic acid (2-formyl-4,5-dimethylbenzoic acid) [519-05-1] **M 210.2, m 150°, pK²⁵ 3.07.** Crystallise the acid from water. [Beilstein 10 H 990, 10 I 484, 10 II 719, 10 III 4511, 10 IV 3863.]

Orcine monohydrate (orcinol hydrate, 3,5-dihydroxytoluene) [6153-39-5] M 142.2, m 56°, 56-58°, 58°, b 147°/5 mm, pK_1^{20} 9.48 (9.26), pK_2^{20} 11.20 (11.66). Purify orcine by recrystallisation from H₂O as the *monohydrate*. It sublimes *in vacuo*, and the *anhydrous* compound has m 106.5-108° (110°, 108°). It can be recrystallised from CHCl₃ (plates) or *C₆H₆ (needles or prisms). [UV: Kiss et al. *Bull Soc Chim Fr* 275 1949, Adams et al. *J Am Chem Soc* 62 732 1940.]

Orcinol (5-methylresorcinol) [504-15-4; 6153-39-5 H_2O] M 124.2, m 107.5°, m 59-61° (hydrate cf orcine), pK₁²⁰ 9.36 (9.48), pK₂²⁰ 11.6 (11.20). Crystallise orcinol from CHCl₃/*benzene (2:3). See hydrate in previous entry. [Beilstein 6 H 882, 6 IV 5892.]

Orthanilic acid (2-aminobenzenesulfonic acid) [88-21-1] **M 173.2, m >300°(dec), pK²⁵ 2.49.** Crystallise orthanilic acis from aqueous solution, containing 20mL of conc HCl per L, then crystallise it from distilled water, and dry it in a vacuum desiccator over Sicapent (**m** 315°). When an aqueous solution is chilled below 13.5°, the hydrated form of the acid is obtained. It is used for the determination of nitrite and nitrate. The *S-benzylisothiuronium salt* has **m** 137° (from H₂O). [Wertheim *Org Synth* Coll Vol **II** 471 1943, Beilstein **14** H 681, **14** I 714, **14** II 429, **14** III 1896, **14** IV 2638.]

[2.2]-Paracyclophane (tricyclo[8.2.2.2^{4,7}]hexadeca-4,6,10,12,13,15-hexaene) [1633-22-3] M 208.3, m 284°, 285-287°, 286-288°, 288-290°. Purify it by recrystallisation from AcOH. ¹H-NMR δ: 1.62 (Ar-H) and -1.71 (CH₂) [Waugh & Fessenden J Am Chem Soc 79 846 1957, IR and UV: Cram et al. J Am Chem Soc 76 6132 1954, Cram & Steinberg J Am Chem Soc 73 5691 1951. It complexes with unsaturated compounds: Cram & Bauer J Am Chem Soc 81 5971 1959, Syntheses: Brink Synthesis 807 1975, Givens et al. J Org Chem 44 16087 1979, Kaplan et al. Tetrahedron Lett 3665 1976]. [Beilstein 5 IV 2223.]

Para Red (1-(4-nitrophenylazo]-2-naphthol) [6410-10-2] M 293.3, m 250-251°, pK_{est} ~ 9.3. Crystallise this dye from AcOH or xylene and dry it *in vacuo*. It has λ_{max} at 488nm. [*Beilstein* 16 II 70.]

Pargyline hydrochloride (Eutonyl, N-methyl-*n***-propargylbenzylamine hydrochloride) [306-07-0] M 195.7, m 154-155°, 155°, pK^{25} 6.9. Recrystallise the salt from EtOH/Et₂O and dry it** *in vacuo***. It is very soluble in H₂O, in which it is unstable. The** *free base* **has b** 101-103°/11mm. It is a glucuronyl transferase inducer and a monoamine oxidase inhibitor. [von Braun et al. *Justus Liebigs Ann Chem*

322

445 205 *1928*, Yeh & Mitchell *Experientia* **28** 298 *1972*, Langstrom et al. *Science* **225** 1480 *1984*, *Beilstein* **12** II 548.]

Pavatrine hydrochloride [fluorine-9-carboxylic acid, 2-(diethylamino)ethyl ester hydrochloride] [548-65-2] M 333.7, m 143-144°, pK_{Est} ~9.0 Recrystallise the salt from isopropanol, EtOAc/isoPrOH and dry it over P_2O_5 in vacuo. The metho-bromide has m 111-117° (from butanone). [Beilstein 9 III 3412, 9 IV 2596.]

Pentabromophenol [608-71-9] **M 488.7, m 229-230°, pK**_{Est} ~ **4.5.** Purify it by crystallisation (charcoal) from toluene then from CCl₄. Dry it for 2 weeks at *ca* 75°. The *diethylammonium salt* has **m** 191-193° (from MeOH). [*Beilstein* **6** H 206, **6** I 108, **6** II 197, **6** III 766, **6** IV 1069.]

1-Pentacene [135-48-8] M 278.4, m 300°. It forms blue crystals from *benzene or nitrobenzene and sublimes in a vacuum. [Clar & John Ber 62 940 1929, 64 981 1931, Beilstein 5 IV 2721.]

Pentachloronitrobenzene [82-68-8] **M 295.3, m 144-145° 146°.** Crystallise it from EtOH. [*Beilstein* **5** H 247, **5** II 188, **5** III 618.]

Pentachlorophenol [87-86-5] **M 266.3, m 190-191°, pK²⁵ 4.8.** Crystallise it twice from toluene/EtOH. Sublime it *in vacuo*. [Beilstein 6 IV 1025.]

Pentachlorothiophenol [133-49-3] **M 282.4, m between 228° and 235°, pK**_{Est} ~1.1. Crystallise from *benzene, toluene (m 243°) or AcOH (m 240° also 242-244°). [*Beilstein* 6 IV 1642.]

Pentafluorobenzene [363-72-4] M 168.1, b 85°/atm, 85-86°/atm, 88-89°/atm, d_4^{20} 1.524, n_D^{20} 1.3931. Purify it by distillation and by gas chromatography. IR film: 1535 and 1512 cm⁻¹ (*C₆H₆ ring). [Stephen & Tatlow *Chem Ind (London)* 821 1957, Nield et al. J Chem Soc 166 1959, Beilstein 5 IV 639.]

2,3,4,5,6-Pentafluorobenzoic acid [602-94-8] M 212.1, m 101-103°, 104-105°, 106-107°, pK²⁵ 1.75. Dissolve the acid in Et₂O, treat it with charcoal, filter, dry (CaSO₄), filter again, evaporate and recrystallise the residue from pet ether (b 90-100°) after adding a little toluene, to give large colourless plates. UV (H₂O) has λ_{max} at 265nm (ϵ 761) (H₂O). The *S*-benzylisothiuronium salt has m 187° (from H₂O). [McBee & Rapkin J Am Chem Soc 73 1366 1951, Nield et al. J Chem Soc 166 1959, Beilstein 9 IV 956.]

O-(2,3,4,5,6-Pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA.HCl) [57981-02-9] M 249.6, m 215°, 215-216°, pK_{Est} ~1.1. Recrystallise the salt from EtOH to form colourless leaflets. Drying the compound at high vacuum and elevated temperature will result in losses by sublimation. [Youngdale J Pharm Sci 65 625 1976, Wehner & Handke J Chromatog 177 237 1979, Nambara et al. give incorrect m as 115-116° J Chromatogr 114 81 1975.]

2,3,4,5,6-Pentafluorophenol [771-61-9] M 184.1, m 33-35°, 38.5-39.5°, b 72-74°/48mm, 142-144°/atm, 143°/atm, n_D^{20} 1.4270 (liquid prep), pK²⁵ 5.53. It is a hygroscopic low melting solid not freely soluble in H₂O. Purify it by distillation, preferably in a vacuum [Forbes et al. J Chem Soc 2019 1959, IR and pKa: Birchall & Haszeldine J Chem Soc 13 1959]. IR of a film has v_{max} 3600 (OH) and 1575 (fluoroaromatic breathing) cm⁻¹. The benzoyl derivative has m 74-75°, 3,4-dinitrobenzoyl derivative has m 107°, the tosylate has m 64-65° (from EtOH) and the K salt crystallises from Me₂CO, m 242°(dec), with 1H₂O-salt the m is 248°(dec) and the 2H₂O-salt has m 245°(dec). [Beilstein 6 IV 782.]

1-(Pentafluorophenyl)ethanol [R-(+)-104371-21-3, S-(-)-104371-20-2] M 212.1, m 41-42°,42°, 42.5-43°, $[\alpha]_{546}^{20}$ (+) and (-) 9°, $[\alpha]_{D}^{20}$ (+) and (-) 7.5° (c 1, *n*-pentane). Recrystallise the ethanol from *n*-pentane at -40° and sublime it at 25°/0.3mm (use ice-cooled cold finger). It has also been purified by column chromatography through Kieselgel 60 (0.063-0.2mm mesh, Merck) and eluted with EtOAc/*n*-hexane (1:5), then recrystallised from *n*-pentane and sublimed in a vacuum. It has R_F on Kieselgel 60 F₂₅₄ TLC foil and eluting with EtOAc/*n*-hexane (1:5). [Meese Justus Liebigs Ann Chem 2004 1986.] The racemate [75853-08-6] has **m** 32-34°, **b** 77-79°/8mm, 80-82°/37mm, n_D^{20} 1.4426, and the 3,4dinitrobenzoate has **m** 83° [Nield et al. J Chem Soc 166 1959]. [Beilstein **6** IV 3044.]

Pentamethylbenzene [700-12-9] **M 148.3, m 53.5-55.1°.** Successively crystallise it from absolute EtOH, aqueous EtOH, MeOH, toluene C_6H_6 , and dry it under vacuum. [Rader & Smith J Am Chem Soc **84** 1443 1962.] It has also been sublimed. The 1,3,5-trinitrobenzene complex (1:1) has **m** 121° (EtOH). [Beilstein **5** H 443, **5** III 1010, **5** IV 1109.]

Perbenzoic acid [93-59-4] **M 138.1, m 41-43°, b 97-110°/13-15mm, pK**_{Est} ~7.7. Crystallise the peracid from *benzene or pet ether. It sublimes readily and is steam volatile. It is soluble in $CHCl_3$, CCl_4 and Et_2O . [Braun *Org Synth* Coll Vol I 431 1941.] **EXPLOSIVE.**

Perylene [198-55-0] **M** 252.3, **m** 273-274°. Purify perylene by silica-gel chromatography of its recrystallised picrate. [Ware *J Am Chem Soc* 83 4374 1961.] Crystallise it from *benzene, toluene or EtOH and sublime it at 142° in a flow of oxygen-free nitrogen. It forms a 1:1 **benzene-complex* (**m** 223-224.5° needles from *C₆H₆), and a 1:2 **benzene-complex* (**m** 154-155° from *C₆H₆ or H₂O). The 2,4,7-*trinitrofluoren-9-one* has **m** 270-271° (from EtOH/*C₆H₆). [Gorman et al. *J Am Chem Soc* 107 4404 1985, Johansson et al. *J Am Chem Soc* 109 7374 1987, *Beilstein* 5 III 2521, 5 IV 2689.]

Phenanthrene [85-01-8] M 178.2, m 98°, 98.7-99°, 99.15°, 100.8-101.3°, b 148-149°/1mm, d^{25} 1.175. Likely contaminants include anthracene, carbazole, fluorene and other polycyclic hydrocarbons. Purify it by distillation from sodium under vacuum, boiling with maleic anhydride in xylene, crystallisation from acetic acid, sublimation and zone melting. It has also been recrystallised repeatedly from EtOH, *benzene or pet ether (b $60-70^{\circ}$), with subsequent drying under vacuum over P₂O₅ in an Abderhalden pistol. Feldman, Pantages and Orchin [J Am Chem Soc 73 4341 1951] separated most of the anthracene impurity by refluxing phenanthrene (671g) with maleic anhydride (194g) in xylene (1.25L) under nitrogen for 22hours, then filtered. The filtrate was extracted with aqueous 10% NaOH, the organic phase was separated, and the solvent was evaporated. The residue, after stirring for 2hours with 7g of sodium, was distilled in a vacuum, then recrystallised twice from 30% *benzene in EtOH. It was then dissolved in hot acetic acid (2.2mL/g), and to it was slowly added an aqueous solution of CrO₃ (60g in 72mL H₂O plus 2.2L of acetic acid), followed by slow addition of conc H_2SO_4 (30mL). The mixture was refluxed for 15minutes, diluted with an equal volume of water and cooled. The precipitate was filtered off, washed with water, dried and distilled, then recrystallised twice from EtOH. Further purification is possible by chromatography from a CHCl₃ solution on activated alumina, with *benzene as eluent, and by zone refining. The *picrate* (1:1) forms golden yellow needles with **m** 146°, and the styphnate (1:1) has **m** 138-139^o (plates or needles from EtOH or EtOH/H₂O respectively). [Dornfeld et al. Org Synth Coll Vol III 134 1955, Beilstein 5 H 667, 5 I 327, 5 II 579, 5 III 2136, 5 IV 2297.]

Phenanthrene-9-aldehyde [4707-71-5] M 206.3, m 102-103°, pK^{25} -6.39 (aqueous H₂SO₄). Crystallise the aldehyde from EtOH and sublime it at 95-98°/0.07mm. The 2,4-dinitrophenylhydrazone has m 272-273°. [Beilstein 7 III 2532, 7 IV 1740.]

9,10-Phenanthrenequinone [84-11-7] **M 208.2, m 208°, pK^{25} -7.1 (aqueous H₂SO₄).** Crystallise the quinone from dioxane or 95% EtOH and dry it under vacuum. [*Beilstein* 7 IV 2565.]

Phenethylamine [64-04-0] M 121.2, b 87%/13mm, d_4^{20} 0.962, n_D^{20} 1.535, pK²⁵ 9.88. Distil the amine from CaH₂, under reduced pressure, just before use. [Beilstein 12 H 1096, 12 IV 2453.]

Phenethyl bromide [103-63-9] **M 185.1, b 92°/11mm, d** $_{4}^{20}$ **1.368, n** $_{D}^{20}$ **1.557**. Wash the bromide with conc H₂SO₄, water, aqueous 10% Na₂CO₃ and water again, then dry it with CaCl₂ and fractionally distil it just before use. [*Beilstein* **5** IV 907.]

(±)-*N*-1-Phenethyl urea (*N*- α -phenethyl urea) [60295-51-4] M 164.2, m 137°. Crystallise the urea from H₂O, EtOAc or *C₆H₆. [Buck *J Am Chem Soc* 56 1607 1934, *Beilstein* 12 I 1096, 12 IV 1440.]

(+)-S-N-1-Phenethyl urea (*R*-N- α -phenethyl urea) [16849-91-5] M 164.2, m 121-122°, $[\alpha]_{D}^{25}$ +48.8° (c 2, EtOH), $[\alpha]_{D}^{25}$ +46.2° (c 4.0, EtOH). Crystallise the (+)-urea from H₂O or EtOH (m 122-123°). [Marckwald & Meth Chem Ber 38 808 1905, Cairns J Am Chem Soc 63 871 1941, Beilstein 12 I 1092, 12 III 2398.]

(-)-S-N-1-Phenethyl urea (S-N- α -phenethyl urea) [25144-64-3] M 164.2, m 121-122°, $[\alpha]_{D}^{25}$ -43.6° (c 14, EtOH), $[\alpha]_{D}^{25}$ -52.1° (c 3.6, EtOH). Crystallise the (-)-urea from H₂O or EtOH. [Lovén J Prakt Chem [2] 72 313 1905, Beilstein 12 I 1094, 12 III 2398.]

N-2-Phenethyl urea [2158-04-5] M 164.2, m 112°. Crystallise the (±)-urea from H₂O (m 112-113°) or EtOH. The *picrate* has m 113-115° (from H₂O) [Spica *Gazzetta* 9 567 1879, Shapiro et al. J Am Chem Soc 81 2224 1959]. [Beilstein 12 1099, 12 III 2423, 12 IV 2470.]

Phenetole [103-73-1] M 122.2, b 60°/9mm, 77.5°/31mm, 170.0°/760mm, d_4^{20} 0.967, n_D^{20} 1.50735, n^{25} 1.50485. Small quantities of phenol can be removed by shaking with NaOH, but this is not a very likely contaminant of commercial material. Fractional distillation from sodium, at low pressures, probably gives adequate purification. It can be dissolved in diethyl ether and washed with 10% NaOH (to remove phenols), then water. The ethereal solution is evaporated, and the phenetole is fractionally distilled under vacuum. [*Beilstein* 6 H 140, 6 I 80, 6 II 142, 6 III 545.]

Phenocoll hydrochloride (4-ethoxyaniline, *p*-phenetidine HCl) [536-10-6] M 230.7, m 234°, pK²⁸ 5.20. Crystallise the salt from water then sublime it *in vacuo*. [Beilstein 13 IV 1017.]

Phenol [108-95-2] **M** 94.1, **m** 40.9°, **b** 85.5-86.0°/20mm, 180.8°/760mm, d_4^{20} 1.06, n_D^{41} 1.54178, n_D^{46} 1.53957, **pK**²⁵ 9.86 (10.02). Steam is passed through a boiling solution containing 1mole of phenol and 1.5-2.0moles of NaOH in 5L of H₂O until all non-acidic material has distilled. The residue is cooled, acidified with 20% (v/v) H₂SO₄, and the phenol is separated, dried with CaSO₄ and fractionally distilled under reduced pressure. It is then fractionally crystallised several times from its melt [Andon et al. *J Chem Soc* 5246 1960]. Purification via the benzoate has been used by Berliner, Berliner and Nelidow [*J Am Chem Soc* 76 507 1954]. The *benzoate*, (**m** 70°, **b** 314°/760mm), is crystallised from 95% EtOH, then hydrolysed to the free phenol by refluxing with two equivalents of KOH in aqueous EtOH until the solution becomes homogeneous. It is acidified with HCl and extracted with diethyl ether. The ether layer is freed from benzoic acid by thorough extraction with aqueous NaHCO₃, and, after drying and removing the ether, the phenol is distilled.

Phenol has also been crystallised from a 75% w/w solution in water by cooling to 11° and seeding with a crystal of the hydrate. The crystals are centrifuged off, rinsed with cold water (0-2°), saturated with phenol, and dried. It can be crystallised from pet ether [Berasconi & Paschalis *J Am Chem Soc* **108** 2969 *1986*].

Draper and Pollard [*Science* **109** 448 *1949*] added 12% water, 0.1% aluminium (can also use zinc) and 0.05% NaHCO₃ to phenol, and distilled it at atmospheric pressure until the azeotrope was removed. The phenol was then distilled at 25mm. Phenol has also been dried by distillation from the *benzene solution to remove the water/*benzene azeotrope and the excess *benzene, followed by distillation of the phenol at reduced pressure under nitrogen. Processes such as this are probably adequate for analytical grade phenol which has as its main impurity water. Phenol has also been crystallised from pet ether/*benzene or pet ether (b 40-60°). The purified material is stored in a vacuum desiccator over P_2O_5 or CaSO₄. [*Beilstein* **6** IV 531.]

Phenol-2,4-disulfonic acid [96-77-5] **M 254.2, pK₁ <1, pK₂ <1, pK₃ ~8.3.** Crystallise the acid from EtOH/diethyl ether. [*Beilstein* 11 H 250, 11 I 58, 11 II 139, 6 III 522.]

Phenolphthalein [77-09-8] **M 319.2, m 263°, pK**_{Est(1)}~ **4.2, pK**_{Est(2)}~ **9.8.** Dissolve it in EtOH (7mL/g), then dilute it with eight volumes of cold water, filter and heat on a water-bath to remove most of the alcohol and the phenolphthalein that precipitates is filtered off and dried *in vacuo*. [Beilstein **18** II 119, **18** III/1V 1945, **18/4** V 188.]

Phenolphthalol [81-92-5] **M 306.3, m 201-202°, pK_{Est} \sim 9.8.** Crystallise it from aqueous EtOH. [*Beilstein* **6** H 1146, **6** II 1110, **6** IV 7623.]

Phenoxyacetic acid [122-59-8] M 152.2, m 98-99°, pK²⁵ 3.18. Crystallise the acid from water or aqueous EtOH. [*Beilstein* 6 IV 634.]

Phenoxyacetyl chloride [701-99-5] **M 170.6, b 112°/10mm, 102°/16mm, 225-226°/atm,** d_4^{20} **1.235,** n_D^{20} **1.534.** If it has no OH band in the IR then distil it in a vacuum, taking precautions for the moisture-sensitive compound. If it contains free acid (due to hydrolysis, OH bands in the IR), then add an equal volume of redistilled SOCl₂, reflux for 2-3hours, evaporate and distil the residue in a vacuum as before. The *amide* has **m** 101°. [McElvain & Carney J Am Chem Soc **68** 2592 1946, Beilstein **6** III 613.]

4-Phenoxyaniline [139-59-3] **M 185.2, m 95°, pK²⁰ 4.44** (**50% aqueous EtOH**). Crystallise 4-phenoxyaniline from water. [*Beilstein* **13** IV 1020.]

Phenoxybenzamine [N-(2-chloroethyl)-N-(1-methyl-2-phenoxyethyl)benzylamine] [59-96-1] M 303.5, m 38-40°, hydrochloride [63-92-3] M 340.0, m 137.5-140°, pK_{Est} ~4.2. The free base is crystallised from pet ether, and the *HCl* is crystallised from EtOH/diethyl ether. [*Beilstein* 12 IV 2204.]

2-Phenoxybenzoic acid [2243-42-7] **M 214.2, m 113°, b 355^{\circ}/760 mm, pK^{15/25} 3.53.** Crystallise the acid from aqueous EtOH or H₂O (**m** 114°). [*Beilstein* **10** H 65, **10** I 28, **10** II 40, **10** III 99, **10** IV 132.]

3-Phenoxybenzoic acid [3739-38-6] **M 214.2, m 145°, pK²⁵ 3.95.** Crystallise the acid from aqueous EtOH. [Beilstein 10 H 138, 10 III 247, 10 IV 316.]

Phenoxybutyric acid [6303-58-8] **M 180.2, m 64°, 65-66°, 82-83°, 99°, b 180-185°/12mm, pK 3.17.** It has been purified by recrystallisation from pet ether, $*C_6H_6$, Et₂O/pet ether, EtOH and from H₂O. It can be steam distilled or distilled in a good vacuum. [UV: Ramart-Lucas & Hoch *Bull Soc Chim Fr* [4] **51** 824 1932, Dann & Arndt Justus Liebigs Ann Chem **587** 38 1954.] The acid chloride has **b** 154-156°/20mm [Hamford & Adams J Am Chem Soc **57** 921 1935], and the amide crystallises from $*C_6H_6$ as needles with **m** 113°. [Beilstein **6** IV 645.]

2-Phenoxypropionic acid (lactic acid O-phenylether) [940-31-8] **M 166.2, m 115-116°, b 105-106°/5mm, 265-266°/758mm, pK²⁵ 3.11.** Crystallise the acid from water. [Beilstein 6 H 163, 6 II 158, 6 III 614.]

Phensuximide (*N*-methyl-2-phenylsuccinimide) [86-34-0] M 189.2, m 71-73°. Crystallise phensuximide from hot 95% EtOH (m 72-73°). At 25° 1g of the imide dissolves in 1g of $C_{6}H_{6}$, 18g of Et₂O, 9.5g of EtOH, 5.1g of MeOH and 235g of H₂O. [Beilstein **21** II 300, **21** III/IV 5465.]

Phenylacetamide [103-81-1] **M 135.2, m 158.5°.** Crystallise the acetamide repeatedly from absolute EtOH, EtOAc (**m** 160-161°) or H₂O (**m** 159-160°). Dry it *in vacuo* over P₂O₅. [*Beilstein* **9** H 347, **9** III 2193, **9** IV 1632.]

Phenyl acetate [122-79-2] **M 136.2, b 78%/10mm, d _4^{20} 1.079, n _D^{22} 1.5039.** Phenyl acetate acid is freed from phenol and acetic acid by washing (either directly or as a solution in pentane) with aqueous 5% Na₂CO₃, then with saturated aqueous CaCl₂, drying with CaSO₄ or Na₂SO₄, and fractionally distilling under reduced pressure. [*Beilstein* **6** II 153, **6** III 595, **6** IV 611.]

Phenylacetic acid [103-82-2] M 136.2, m 76-77°, b 140-150°/20mm, pK₁ -7.59 (aqueous H₂S O₄), pK₂ 4.31. Crystallise the acid from pet ether (b 40-60°), isopropyl alcohol, 50% aqueous EtOH or hot water (m 77.8-78.2°). Dry it *in vacuo*. It can be distilled under a vacuum. [*Beilstein* 9 II 294, 9 III 2169.]

Phenylacetone (1-phenylpropan-2-one) [103-79-9] M 134.2, b 69-71°/3mm, d_4^{20} 1.00, n_D^{20} 1.516. Convert the ketone to the *semicarbazone* and crystallise it three times from EtOH (m 186-187°). The

semicarbazone is then hydrolysed with 10% phosphoric acid, and the ketone is distilled. [Kumler et al. J Am Chem Soc 72 1463 1950, Beilstein 7 H 303, 7 I 161, 7 II 223, 7 III 1037, 7 IV 687.]

4'-Phenylacetophenone [92-91-1] M 196.3, m 120.3-121.2°, b 196-210°/18mm, 325-327°/760mm. Crystallise it from EtOH or acetone. It can also be distilled under reduced or atmospheric pressure. The *semicarbazone* has m 131-132° (aqueous EtOH). [*Beilstein* 7 H 443, 7 III 2134, 7 IV 1407.]

Phenylacetylene [536-74-3] **M 102.1, b 75%0mm, d** $_{4}^{20}$ **0.930, n** $_{D}^{25}$ **1.5463, pK ~19.** Distil phenylacetylene through a spinning band column. It should be filtered through a short column of alumina before use [Collman et al. J Am Chem Soc **108** 2988 1986; for pK see Brandsma Preparative Acetylenic Chemistry, 1st Edn Elsevier 1971, p. 15, ISBN 0444409475]. [Beilstein 5 IV 1525.]

Phenylalaninol (2-amino-3-phenylpropan-1-ol) [R-(+)-5267-64-1, S-(-)-3182-95-4] M 151.2, m 91-92°, 91.5°, 92-94°, b 80°/11mm (Kügelrohr), $[\alpha]_{546}^{20}$ (+) and (-) 28°, $[\alpha]_D^{20-25}$ (+) and (-) 23-28.7° (c 1-5, EtOH), pK_{Est}~9.3. It can be recrystallised from Et₂O, *C₆H₆/pet ether (b 40-60°) or toluene and distilled in a vacuum. It has been purified by dissolving in Et₂O, drying over K₂CO₃, filtering, evaporating to a small volume, cooling in ice and collecting the plates. Store them in the presence of KOH (i.e. CO₂—free atm). [Karrer & Ehrhardt *Helv Chim Acta* 34 3203 1951, Oeda Bull Chem Soc Jpn 13 465 1938.] The picrate has m 141-141.5° (from EtOH/pet ether). The hydrogen oxalate has m 177°, 161-162° [Hunt & McHale J Chem Soc 2073 1957]. The racemate has m 87-88° from *C₆H₆/pet ether (75-77° from Et₂O), and the hydrochloride has m 139-141° [Fodor et al. J Chem Soc 1858 1951]. [Beilstein 13 IV 1920.]

3-Phenylallyl chloride (cinnamyl chloride) [E: 18685-01-3, Z: 39199-93-4] M 152.6, trans: m 7-8°, b 92-93°/3mm, d_4^{25} 1.086, n_D^{25} 1.5802, cis: 85°/3mm, d_4^{25} 1.0891, n_D^{25} 1.5746. Distil the chloride under vacuum three times from K₂CO₃. [Hatch & Alexander J Am Chem Soc 72 643 1950, Beilstein 5 III 1186.]

Phenyl 4-aminosalicylate (Phenamisal) [133-11-9] M 229.2, m 153°, $pK_{Est(1)}\sim 2.0$ (NH₂), $pK_{Est(2)}\sim 9.7$ (OH). Crystallise the ester from EtOH (m 155°, also 149-150.5°), aqueous EtOH (m 147-149°), or isopropanol. It is tuberculostatic. [Beilstein 13 IV 1979.]

4-Phenylanisole (4-methoxybiphenyl) [361-37-6] M 184.2, m 89.9-90.1°. Crystallise the biphenyl from *benzene/pet ether. Dry it under vacuum in an Abderhalden pistol. It has λ_{max} at 259.5nm (hexane). [Beilstein 6 H 674, 6 II 625, 6 III 3321, 6 IV 4600.]

9-Phenylanthracene [602-55-1] **M 254.3, m 153-154°, 156°, b 417°/760mm.** Chromatograph it on alumina in C_6H_6 and recrystallise it from AcOH or toluene. [*Beilstein* **5** H 725, **5** II 639, **5** III 2462.]

p-**Phenylazobenzoyl chloride** [104-24-5] **M 244.7, m 93°.** Crystallise the acid chloride from pet ether (b 60-80°). [*Beilstein* **16** III 224.]

4-Phenylazo-1-naphthylamine [131-22-6] **M 247.3, m 125-125.5°.** Crystallise the dye from cyclohexane or aqueous EtOH. [Brode et al. *J Am Chem Soc* **74** 4641 *1952*, *Beilstein* **16** H 361, **16** III 406, **16** IV 546.]

4-Phenylazophenacyl bromide [62625-24-5] **M 317.3, m 103-104°.** Purify the bromide on a column silica gel, using pet ether/ Et_2O (9:1 v/v) as solvent. It forms orange yellow crystals from *C₆H₆ (**m** 113-114°) or pet ether/ Et_2O (**m** 114.5-115°). [*Beilstein* **16** II 22, **16** III 53, **16** IV 79.]

4-Phenylazophenol (4-hydroxyazobenzene) [1689-82-3] M 198.2, m 155°, pK_1^{25} -0.93, pK_2^{25} 8.2. Crystallise the dye from *benzene or 95% EtOH. [Beilstein 16 II 38, 16 III 86, 16 IV 159.]

Phenyl benzenethiosulfonate (diphenyldisulfoxide) [1212-08-4] M 250.3, m 36-37°, 45-46°, 45-47°. Recrystallise the disulfoxide from EtOH or MeOH. It has also been purified from phenylsulfide impurities by dissolving in CHCl₃, washing with aqueous saturated NaHCO₃, drying (Na₂SO₄), filtering,

evaporating the filtrate, and the residual oil is passed through a silica gel column (600g) and eluted with hexane/ C_6H_6 (1L, 4:1, eluting PhSSPh) then C_6H_6 (1L) which elutes PhSSO₂Ph. [Trost & Massiot *J Am Chem Soc* **99** 4405 *1977*, Knoevenagel & Römer *Chem Ber* **56** 215 *1923*, *Beilstein* **11** IV 220.]

Phenyl benzoate [93-99-2] M 198.2, m 69.5°, b 198-199°. Crystallise the ester from EtOH using *ca* twice the volume needed for complete dissolution at 69°. [*Beilstein* 9 IV 303.]

Phenyl-1,4-benzoquinone [363-03-1] **M 184.2, m 114-115°.** Crystallise the quinone from heptane, pet ether (b 60-70°), $*C_6H_6$ (**m** 113.5-114.5°) or EtOH (**m** 112-113°) and sublime it *in vacuo*. [Carlson & Miller J Am Chem Soc **107** 479 1985, Beilstein **7** H 740, **7** III 3764.]

1-Phenylbiguanide [102-02-3] **M 177.2, m 144-146°, pK_1^{32} 2.16, pK_2^{32} 10.74. Crystallise the biguanide from water or toluene. [***Beilstein* **12 H 370, 12 I 236, 12 III 807.]**

S-(-)-1-Phenylbutanol [22135-49-5] M 150.2, m 46-47°, 46-48°, 49°, b 90-92°/2mm. $[\alpha]_{\rm D}^{18}$ -51.4° (c 5, CHCl₃), -44.7° (c 5.13, *C₆H₆). Purify the alcohol by distillation, and the distllate crystallises on cooling. The hydrochloride has $[\alpha]_{\rm D}^{20}$ +45.1° (c 4.8, *C₆H₆). The (-)-hydroperoxide has b 58°/0.005mm, $n_{\rm D}^{20}$ 1.5123, $\alpha_{\rm D}^{18}$ -2.14°, (l = 0.5dcm, neat). [Holding & Ross J Chem Soc 145 1954, Davies & Feld J Chem Soc 4637 1958.] The (±)-racemate has b 73°/0.05mm, and its 4-nitrophenylhydrazone has m 58°. [Beilstein 6 IV 3272.]

2-Phenylbutyramide [90-26-6] **M 163.2, m 86°, 87°.** Crystallise the amide from H_2O , EtOH, Et₂O/pet ether or $*C_6H_6$. [*Beilstein* **9** I 212, **9** II 356, **9** III 2466.]

2-Phenylbutyric acid [R-(-)-938-79-4, S-(+)-4286-15-1] **M 164.2, b 102-104⁰/760mm, d²⁰₄ 1.056, n²⁰_D 1.521, [\alpha]_{D}^{20} (+) and (-) 96^o (c 2.5, *C₆H₆), [\alpha]_{D}^{23} (-) and (+) 5.8^o (neat), pK_{Est} ~4.3. Purify the acids by distillation at atmospheric pressure using an efficient column. The** *acid chlorides* **have b** 106-107^o/20mm, $[\alpha]_{D}^{18}$ (-) and (+) 108^o (c 2, *C₆H₆). [Levene et al. *J Biol Chem* 100 589 1933, Gold & Aubert *Helv Chim Acta* 41 1512 1958, ORD in heptane: Rothen & Levene *J Chem Phys* 7 975 1939, *Beilstein* 9 III 2461.]

3-Phenylbutyric acid [*R*-(-)- 772-14-5, *S*-(+)- 772-15-6] **M 164.2, b 94-95°/3mm, 134°/4mm,** d_4^{26} **1.066,** n_D^{25} **1.5167,** $[\alpha]_D^{20}$ (-) **and** (+) **57°** (**c 1,** ***C**₆**H**₆), **pK**²⁵ **4.40.** Purify the acids as the 2isomer above, i.e. by distillation, but under a good vacuum. [Prelog & Scherrer *Helv Chim Acta* **42** 2227 1959, Levene & Marker *J Biol Chem* **93** 761 1932, **100** 685 1933, Cram *J Am Chem Soc* **74** 2137 1952.] The *Ramide* crystallises from H₂O, with **m** 101.5-102°, and $[\alpha]_D^{20}$ -16.5° (c 1.2, EtOH). The *racemic acid* has **m** 39-40°, **b** 134-136°/6mm, 158°/12mm [Marvel et al. *J Am Chem Soc* **62** 3499 1940]. [Beilstein **9** IV 1813.]

4-Phenylbutyric acid [1821-12-1] **M 164.2, m 50°, pK²⁵ 4.76.** Crystallise the acid from pet ether (b 40-60°). [Beilstein **9** IV 1811.]

O-Phenyl chlorothionoformate [1005-56-7] **M 172.6, b 81-83°/6mm, 91°/10mm, d** $_{4}^{20}$ **1.276, n** $_{D}^{20}$ **1.585.** Purify it by dissolving in CHCl₃, washing with H₂O, drying (CaCl₂), filtering, evaporating and distilling twice under a vacuum to give a clear yellow liquid. It is reactive and **POISONOUS—work in a fume cupboard.** Store it in sealed ampoules under N₂. A possible impurity is *O,O'-diphenyl thiocarbonate* which has **m** 106° and remains behind in the distilling flask. [Bögemann et al. in *Methoden Der Organischen Chemie (Houben-Weyl)* 4th edn (E. Müller Ed.) **Vol 9** Schwefel-Selen-Tellur Verbindungen pp. 807-808 1955, Rivier & Schalch Helv Chim Acta **6** 612 1923, Kalson Chem Ber **20**, 2384 1987, Rivier & Richard Helv Chim Acta **8** 490 1925, Schönberg & Varga Justus Liebigs Ann Chem **483** 176 1930, Schönberg & Vargha Chem Ber **64** 1390 1931, Beilstein **6** III 609.]

Phenyl cinnamate [2757-04-2] M 224.3, m 75-76°, b 205-207°/15mm. Crystallise the cinnamate from EtOH (2mL/g). It can also be distilled under reduced pressure. [Womack & McWhirter Org Synth Coll Vol III 715 1955, Beilstein 9 H 583, 9 II 387, 9 III 2689, 9 IV 2011.]

a-Phenylcinnamic acid (2,3-diphenylprop-2-enoic acid) [cis-E 91-48-5, trans-Z 91-47-4] **M 224.3, m 174**°(cis), **m 138-139**°(trans), **pK**²⁵ **4.8** (60% aqueous EtOH). Crystallise the acid from Et₂O/pet ether. Crystallise the cis-isomer from pet ether or EtOH (m 174°) and has a pK²⁵ of 4.44, and the cisamide from aqueous Me₂CO (m 174°). Crystallise the trans-isomer from Et₂O/pet ether or EtOH (m 140°), and the trans-amide from CHCl₃/pet ether (m 167-168°). [Beilstein 6 H 691, 9 III 3414.]

o-Phenylenediamine [95-54-5] M 108.1, m 100-101°, pK_1^{25} 0.67 (aqueous H₂SO₄), pK_2^{25} 4.47 (4.85). Crystallise the diamine from aqueous 1% sodium hydrosulfite (charcoal), wash it with ice-water and dry it in a vacuum desiccator, or sublime it *in vacuo*. It has been purified by recrystallisation from toluene and zone refined [Anson et al. *J Am Chem Soc* 108 6593 1986]. Purification by refluxing a CH₂Cl₂ solution containing charcoal is also carried out followed by evaporation and recrystallisation [Koola & Kochi *J Org Chem* 52 4545 1987], protect from light. The *acetate* has m 186°. [*Beilstein* 13 IV 38.]

m-Phenylenediamine [108-45-2] M 108.1, m 61-63°, 62-63°, 62-5°, 63-64°, b 146°/22mm, 282-284°/760mm, 284-287°/atm, d_{10}^{10} 1.1422, $n_D^{57.7}$ 1.6340, pK_1^{25} 2.41, pK_2^{25} 4.98. Purify the diamine by distillation under a vacuum followed by recrystallisation from EtOH (rhombs) and if necessary redistillation. It should be protected from light; otherwise it darkens rapidly. [Neilson et al. *J Chem Soc* 371 1962, IR: Katritzky & Jones *J Chem Soc* 3674, 2058 1959, UV: Forbes & Leckie *Can J Chem* 36 1371 1958.] The hydrochloride has m 277-278°, and the bis-4-chlorobenzenesulfonyl derivative has m 220-221° from H₂O (214-215°, from MeOH/H₂O) [Runge & Pfeiffer *Chem Ber* 90 1737 1957]. The acetate has m 191°. [Beilstein 13 IV 79.]

p-Phenylenediamine [106-50-3] M 108.1, m 140°, pK_1^{25} 2.89, pK_2^{25} 6.16. Crystallise the diamine from EtOH or *benzene, and sublime it *in vacuo*; protect it from light. The *acetate* has m 304°. [*Beilstein* 13 IV 104.]

o-**Phenylenediamine dihydrochloride** [615-28-1] **M 181.1, m 180°.** Crystallise the salt from dilute HCl (60mL conc HCl, 40mL water, with 2g stannous chloride), after treatment of the hot solution with charcoal by adding an equal volume of conc HCl and cooling in an ice-salt mixture. The crystals are washed with a small amount of conc HCl and dried in a vacuum desiccator over NaOH. [*Beilstein* **13** IV 38.]

1,4-Phenylene diisothiocyanate (bitoscanate) [4044-65-9] M 192.3, m 129-131°, 130-131°, 132°. Purify bitoscanate by recrystallisation from AcOH, pet ether (b 40-60°), Me₂CO or aqueous Me₂CO. [van der Kerk et al. *Recl Trav Chim Pays-Bas* 74 1262 1955, Leiber & Slutkin J Org Chem 27 2214 1962, Beilstein 13 IV 174.]

1-Phenyl-1,2-ethanediol [R-(-)-16355-00-3, S-(+)-25779-13-9] **M 138.2, m 64-67°, 65-66°,** $[\alpha]_{D}^{24}$ (-) and (+) 40.5° (c 2.8, H₂O), $[\alpha]_{D}^{20}$ (-) and (+) 39° (c 3, EtOH). Purify the diol by recrystallisation from *C₆H₆/ligroin and sublime it at 1-2mm. [Arpesella et al. *Gazetta* 85 1354 1955, Prelog et al. *Helv Chim Acta* 37 221 1954, *Beilstein* 6 IV 5939.]

dl-1-Phenylethanol (*dl*- α -methylbenzyl alcohol) [98-85-1; 13323-81-4] M 122.2, b 60.5-61.0°/3mm, 106-107°/22-23mm, d²⁰₄ 1.01, n²⁵_D 1.5254. Purify the alcohol *via* its hydrogen phthalate. [See Houssa & Kenyon J Chem Soc 2260 1930.] Shake it with a solution of ferrous sulfate, and the alcohol layer is washed with distilled H₂O, dried (MgSO₄) and fractionally distilled. [*Beilstein* 6 II 444.]

2-Phenylethanol [60-12-8] **M 122.2, b 215-217°, d 1.020.** Purify the ethanol by shaking it with a solution of ferrous sulfate, and the alcohol layer is washed with distilled water and fractionally distilled. [*Beilstein* **6** IV 3067.]

Phenyl ether (diphenyl ether) [101-84-8] M 170.2, m 27.0°, b 83-84°/1mm, 138°/21mm, 257°/760mm, d_4^{20} 1.074, $n_D^{30.7}$ 1.57596. Crystallise the ether from 90% EtOH. Melt it, wash it with 3M NaOH and water, dry it with CaCl₂ and fractionally distil it under reduced pressure. Fractionally recrystallise it from its melt and store over P₂O₅. [*Beilstein* 6 IV 562.]

1-Phenylethyl isocyanate (α -methylphenyl isocyanate) [R-(+)-33375-06-3, S(-)-14649-03-7] M 147.2, b 82-83°/12-14mm, d²⁰₄ 1.045, n²⁰_D 1.513, [α]²⁴_D (+) and (-) 2° (c 3.5, *C₆H₆), (+) and (-) 10.5° (neat). Purify the isocyanates by fractional distillation under a vacuum. With ammonia they give the *ureido* derivatives which crystallise from H₂O with m 121-122°, [α]²⁵_D (+) and (-) 48.8°. [Cairns *J Am Chem Soc* 63 870 1941.] The *racemate* has b 90-94°/3mm, 96°/18mm [Seiftan Justus Liebigs Ann Chem 562 75 1949]. [Beilstein 12 IV 2443.]

(±)-*p*-α-Phenylethylphenol [1988-89-2] M 198.3, m 56.0-56.3°, 64°, b 126°/0.4mm, 165-170°/5mm, 315-316°/742.2mm, pK_{Est}~10.3. Crystallise the phenol from pet ether. *S*-(+)-enantiomer has $[\alpha]_D$ +10.3° (*C₆H₆). [Okamoto et al. Bull Chem Soc Jpn 39 303 1966.]

5-(\alpha-Phenylethyl)semioxamazide [93-95-8] **M 207.1, m 167-168**° (*l*-), **157**° (*dl*-). Crystallise it from EtOH. The *l-enantiomer* has $[\alpha]_{D}^{25}$ -102.5° (c 1, CHCl₃). [Leonard & Boyer *J Org Chem* **15** 42 1950.]

9-Phenyl-3-fluorone (2,6,7-trihydroxy-9-phenylxanthen-3-one) [975-17-7] M 320.3, m >300°(dec), 350°, λ_{max} 462nm (ϵ 4.06 x 10⁴, in 1M HCl aqueous EtOH). Recrystallise it from warm, acidified EtOH by addition of ammonia. The crude material (1g) can be extracted with EtOH (50mL) in a Soxhlet apparatus for 10hours to remove impurities. Impurities can be detected by paper electrophoresis. The *triacetate* forms yellow needles from EtOH (m 230-233°). [Petrova et al. *Anal Lett* 5 695 1972, *Beilstein* 18 H 199, 18 I 404, 18 III/IV 2824.]

Phenylhydrazine [100-63-0] M 108.1, m 23°, b 71.8°/1mm, 137-138°/18mm, 241-242°/760mm, d_4^{20} 1.10, n_D^{20} 1.607, pK_1^{20} -5.2 (aqueous H₂SO₄), pK_2^{25} 5.27. Purify phenylhydrazine by chromatography, then crystallise it from pet ether (b 60-80°)/*benzene. Store it in the dark under N₂ as it turns yellow, then red, on exposure to air. It is best stored as the hydrochloride salt; see below. [Coleman Org Synth Coll Vol I 442 1941, Shaw & Stratton J Chem Soc 5004 1962, Beilstein 15 IV 50.]

Phenylhydrazine hydrochloride [59-88-1] **M 144.5, m 244°, 250-254°(dec).** Dissolve 100g of phenylhydrazine hydrochloride in 200mL of warm H₂O (60-70°) during 1-3hours, then add 1L of boiling EtOH. The solution is filtered, while still hot, through Whatman No 2 filter paper and cooled in a refrigerator. The precipitate is collected on a medium sintered-glass filter and recrystallised twice this way, then washed with cold EtOH, dried thoroughly and stored in a stoppered brown bottle. [Peterson et al. *Anal Chem* **29** 144 *1957.*] Hough, Powell and Woods [*J Chem Soc* 4799 *1956*] boiled the hydrochloride with three times its weight of water, filtered hot (charcoal), added one-third volume of concentrated HCl and cooled to 0°. The crystals were washed with acetone, and dried over P_2O_5 under vacuum. The salt has also been crystallised from 95% EtOH, and it can be sublimed. [Coleman *Org Synth* Coll Vol I 442 *1941*, *Beilstein* **15** III 71.]

Phenylhydroxylamine (*N*-hydroxyaniline) [100-65-2] M 109.1, m 81°, 82°, 83-84°, pK²⁵ 3.2. Impure base deteriorates rapidly. Crystallise it from H₂O, C_6H_6 or C_6H_6 /pet ether (40-60°). The picrate has m 186° (from EtOH), and the *benzenesulfonate salt* has m 70° (dec)(EtOH/*C₆H₆). [Beilstein 15 H 2, 15 I 3, 15, II 4, 15 III 5. 15 IV 4.]

2-Phenyl-1,3-indandione [83-12-5] **M 222.2, m 149-151°, pK²⁰ 4.12** (1% aqueous MeOH). Crystallise the dione from EtOH (m 156°) or CHCl₃ (m 148-150°). [Beilstein 7 H 808, 7 III 4100, 7 IV 2570.]

Phenylisocyanate [103-71-9] M 119.1, b 45-47°/10mm, d_4^{20} 1.093, n_D^{20} 1.536. Distil phenylisocyanate under reduced pressure from P₂O₅. [*Beilstein* 12 IV 864.]

Phenylisothiocyanate (phenyl mustard oil) [103-72-0] M 135.2, m -21°, b 95°/12mm, 117.1°/33mm, 221°/760mm, d_4^{25} 1.1288, $n_D^{23.4}$ 1.64918. It is insoluble in H₂O, but soluble in Et₂O and EtOH. If impure (due to formation of thiourea), then steam distil it into a receiver containing 5-10mL of N H₂SO₄. Separate the oil, dry over CaCl₂ and distil it under vacuum. [Dains et al. *Org Synth* Coll Vol I 447 1941, *Beilstein* 12 IV 867.]

8-Phenylmenthol [1R,2S,5R-(-)-65253-04-5, 1S,2R,5S-(+)-57707-91-2] **M 232.4**, $[\alpha]_{D}^{20}$ (-) and (+) **26°** (c **2**, EtOH). Dissolve the menthol in toluene, dry (Na₂SO₄), evaporate and chromatograph it on a silica gel column and eluting with 5% Et₂O in pet ether to give an oil with the desired rotation. IR has v_{max} 3420cm⁻¹ (OH) with consistent ¹H NMR [Corey & Ensley J Org Chem **43** 1610 1978, Whitesell et al. *Tetrahedron* **42** 2993 1986, Bednarski & Danishefsky J Am Chem Soc **108** 7060 1986].

Phenyl methanesulfonate [16156-59-5] **M 172.1, m 61-62°.** Crystallise the sulfonate from MeOH or from H_2O (**m** 61.5°). [*Beilstein* **6** H 176, **6** III 650, **6** IV 689.]

Phenyl methanesulfonyl fluoride (PMSF) [329-98-6] **M 174.2, m 90-91°, 92-93°**. Purify PMSF by recrystallisation from C_6H_6 , pet ether or CHCl₃/pet ether. [Davies & Dick J Chem Soc 483 1932, cf Tullock & Coffman J Org Chem 23 2016 1960.] It is a general protease inhibitor (specific for trypsin and chymotrypsin) and is a good substitute for diisopropylphosphoro floridate [Fahrney & Gould J Am Chem Soc 85 997 1963]. [Beilstein 11 III 331.]

2-Phenylnaphthalene [612-94-2] M 204.3, m 102-103°, 103.5°, 103-104°, b 185-190°/5mm, 357-358°/760mm. Chromatograph it on alumina in *benzene and crystallise it from aqueous EtOH or MeOH/EtOH. It has been sublimed. It has λ_{max} at 248 and 286nm (methylcyclohexane). The 2,4,7-trinitrofluoren-9-one has m 169.5-170.5° (from EtOH/*C₆H₆). [Beilstein 5 H 687, 5 II 603, 5 III 2231, 5 IV 2412.]

N-Phenyl-1-naphthylamine [90-30-2] M 219.3, m 63.7-64.0°, $pK_{Est} \sim 0.1$. Crystallise it from EtOH, pet ether or *C₆H₆/EtOH. Dry it under vacuum in an Abderhalden pistol. [*Beilstein* 12 H 1224.]

N-Phenyl-2-naphthylamine [135-88-6] M 219.3, m 107.5-108.5°, 110°, pK_{Est} ~0.5. Crystallise it from EtOH, MeOH, glacial acetic acid or *benzene/hexane. [*Beilstein* 12 H 1275, 12 I 535, 12 II 716, 12 III 2991.]

4-Phenylphenacyl bromide [135-73-9] **M 275.2, m 126**^o. Crystallise (charcoal) the bromide from EtOH (15mL/g), or ethyl acetate/pet ether (b 90-100^o). [*Beilstein* **7** III 2137.]

2-Phenylpropanal [93-53-8] **M 134.2, b 206%/760mm, d** $_{4}^{20}$ **1.001, n** $_{D}^{20}$ **1.5183.** It may contain up to 15% of acetophenone. Purify it *via* the bisulfite addition compound [Lodge & Heathcock *J Am Chem Soc* **109** 3353 1987] and see Chapter 2 for preparation and decomposition of bisulfite adducts. [Beilstein 7 IV 695.]

Phenylpropiolic acid [637-44-5] M 146.2, m 137.8-138.4°, pK^{25} 2.23. Crystallise the acid from *benzene, CCl₄ (m 136°) or aqueous EtOH. The *S*-benzylisothiuronium salt has m 184-186° (from EtOH). [Beilstein 9 II 436, 9 III 3061, 9 IV 2327.]

RS-2-Phenylpropionic acid [492-37-5] M 150.2, m 16-16.5°, b 153-155°/20mm, 189°/48mm, 260-262°/760mm, d_4^{20} 1.10, n_D^{20} 1.522, pK²⁵ 4.3. Fractionally distil the acid, or recrystallise it from pet ether (b 40-60°) with strong cooling (see references below). [*Beilstein* 9 II 348.]

2-Phenylpropionic acid [*R*-(-)- 7782-26-5, *S*-(+)- 7782-24-3] **M 150.2**, **m 30.3-31°**, **30-32°**, **b 115°/1-2mm**, **142°/12mm**, **[\alpha**] $_{\rm D}^{20}$ (-) and (+) **99.7°** (**l** = 1 dcm, neat), (-) and (+) **89.1°** (c **1.7**, **EtOH**), (-) and (+) **75°** (c **1.6**, CHCl₃). Purify the acids by vacuum distillation and by recrystallisation from pet ether. The *S-anilide* has **m** 103-104° (from H₂O or CHCl₃/*C₆H₆), [α] $_{\rm D}^{25}$ +47° (c 9, Me₃CO) [Argus & Kenyon *J Chem Soc* 916 *1939*, Campbell & Kenyon *J Chem Soc* 25 *1946*, Levene et al. *J Biol Chem* **88** 27, 34 *1930*]. [*Beilstein* **9** III 2417, **9** IV 1779.]

3-Phenylpropionic acid (hydrocinnamic acid) [501-52-0] **M 150.2, m 48-48.5°, pK²⁵ 4.56.** Crystallise the acid from *benzene, CHCl₃ or pet ether (b 40-60°). Dry it in a vacuum. [*Beilstein* **9** H 508.] **3-Phenylpropyl bromide** [637-59-2] M **199.1, b 110°/12mm, 128-129°/29mm, d** $_{4}^{20}$ **1.31.** Wash the bromide successively with conc H₂SO₄, water, 10% aqueous Na₂CO₃ and again with water, then dry it with CaCl₂ and fractionally distil it just before use. [*Beilstein* **5** IV 982.]

Phenylpyruvic acid [156-06-9] **M 164.2, m 150-154°, 158-159°, pK**_{Est} ~2.1. Recrystallise the acid from C_6H_6 . The phenylhydrazone has **m** 173° [Zeller Helv Chim Acta 26 1614 1943, Hopkins & Chisholm Can J Research [B] 24 89 1946]. The 2,4-dinitrophenylhydrazone has **m** 162-164° (189°, 192-194°) [Fones J Org Chem 17 1952]. [Beilstein 10 IV 2760.]

Phenyl salicylate (Salol) [118-55-8] M 214.2, m 41.8-42.6°, pK_{Est} ~9.9. Fractionally crystallise salol from its melt, then crystallise it from *benzene. [*Beilstein* 10 IV 154.]

3-Phenylsalicylic acid [304-06-3] **M 214.3, m 186-187.5°, pK**_{Est(1)}~2.8 (CO₂H), **pK**_{Est(2)}~11.0 (OH). Dissolve the acid in *ca* 1 equivalent of saturated aqueous Na₂CO₃, filter and precipitate it by adding 0.8 equivalents of M HCl. Crystallise it from ethylene dichloride (charcoal), and sublime it at 0.1mm. [Brooks et al. *J Chem Soc* 661 1961.]

1-Phenylsemicarbazide [103-03-7] M 151.2, m 172°, 173.5°. Crystallise it from water and dry it in a vacuum over KOH. [Beilstein 15 H 287, 15 II 106, 15 III 184, 15 IV 180.]

4-Phenylsemicarbazide [537-47-3] **M 151.2, m 122^o.** Crystallise it from water and dry it in a vacuum over KOH. [*Beilstein* **12** II 221, **12** III 822.]

Phenylsuccinic acid [R-(-)-46292-93-7, S-(+)-4036-30-1] M 194.2, m 173-176°, 178.5-179°, 179-180°, $[\alpha]_{D}^{25}$ (-) and (+) 171° (c 2, Me₂CO), $[\alpha]_{D}^{26-30}$ (-) and (+) 148° (c 0.27-5, EtOH), pK₁²⁵ 3.78, pK₂²⁵ 5.55. Purify the acids by re-precipitation from alkali and recrystallisation from H₂O. [Naps & Johns *J Am Chem Soc* 62 2450 1940, Fredga & Matell *Bull Soc Chim Belg* 62 47 1953, Wren & Williams *J Chem Soc* 109 572 1916.] The *racemate* [635-51-8] has m 166-168°, 168° after recrystallisation from H₂O or MeCN. Its *S-benzylisothiuronium salt* has m 164-165° (from EtOH) [Griediger & Pedersen *Acta Chem Scand* 9 1425 1955]. [Beilstein 9 IV 3351.]

1-Phenylthiosemicarbazide [645-48-7] M 167.2, m 200-201°(dec). Crystallise it from EtOH. [Beilstein 15 IV 183.]

4-Phenylthiosemicarbazide [5351-69-9] **M 167.2, m 140°.** Crystallise it from EtOH. [Beilstein 12 IV 827.]

1-Phenyl-2-thiourea [103-85-5] **M 152.1, m 154°.** Crystallise the thiourea from water and dry it at 100° in air. [*Beilstein* **12** IV 804.]

Phenyltoloxamine [2-(2-dimethylaminoethoxy)-diphenylmethane] hydrochloride [6152-43-8] M 291.8, m 119-120°, pK²⁵ 9.3 (free base). Crystallise the salt from isobutyl methyl ketone. The *free base* has b 144°/1mm. [*Beilstein* 6 III 3351, 6 IV 4630.]

Phenyl 4-toluenesulfonate [640-60-8] M 248.2, m 94.5-95.5°, 95.8-97.8°. Crystallise the ester from MeOH or glacial acetic acid. [Beilstein 11 H 99, 11 II 47, 11 III 200, 6 IV 271.]

Phenyl 4-tolylcarbonate [13183-20-5] **M 228.2, m 94°.** Purify the carbonate by preparative GLC with 20% Apiezon on Embacel, and sublime it *in vacuo*. [*Beilstein* **6** H 398.]

1-Phenyl-2,2,2-trifluoroethanol [*R*-(-)- 10531-50-7, *S*-(+)- 340-06-7] **M 176.1**, **b 74**-**76**°/**10mm**, **125-127**°/**760mm**, **d**²⁰₄ **1.301**, **n**²⁰_D **1.4632**, $[\alpha]_{D}^{20}$ (-) **and** (+) **31**° (**neat**). Purify the chiral alcohols by fractional distillation preferably in a vacuum. [Morrison & Ridgeway *Tetrahedron Lett* 573 1969, NMR: Pirkle & Beare J Am Chem Soc **90** 6250 1968.] The racemate [340-05-6] has **b** 52-54°/2mm,

57-59°/2mm, 64-65°/5mm, d_4^{20} 1.293, n_D^{20} 1.457, and the 2-carbobenzoyl derivative has **m** 137-138° [Mosher et al. J Am Chem Soc **78** 4374 1956]. [Beilstein **6** IV 3043.]

Phenylurea [64-10-8] **M 136.2, m 148°, pK²⁵ -1.45** (aqueous H₂SO₄). Crystallise the urea from boiling water (10mL/g) or amyl alcohol (m 149°). Dry it in a steam oven at 100°. The 1:1 *resorcinol complex* has **m** 115° (from EtOAc/*C₆H₆). [*Beilstein* **12** H 346, **12** II 204, **12** III 760, **12** IV 734.]

Phloroacetophenone (2H₂O) (2',4',6'-trihydroxyacetophenone) [480-66-0] M 186.2, m 218-219°, $pK_{Est(1)}$ ~7.9, $pK_{Est(2)}$ ~12.0. Crystallise the ketone from hot H₂O (35mL/g). [Beilstein 8 IV 2729.]

Phloretin [2',4',6'-trihydroxy-3-(*p*-hydroxyphenyl)propiophenone] [60-82-2] M 274.3, m 264-271°(dec), $pK_{Est(1)}\sim7.5$, $pK_{Est(2)}\sim8.0$, $pK_{Est(3)}\sim10$, $pK_{Est(4)}\sim12$ (phenolic OH's). Crystallise phloretin from aqueous EtOH. [Zemplen & Bognár Chem Ber 75 1040 1942, Zemplén Chem Ber 76 386 1943, Beilstein 8 IV 3518.]

Phloroglucinol (2H₂O) (benzene-1,3,5-triol) [6099-90-7 (2H₂O), 108-73-6 (anhydrous)] M 126.1, m 217-219°, 117° (anhydrous), pK_1^{25} -7.74 (HClO₄), pK_2^{20} 7.97, pK_3^{20} 9.23. Crystallise the triol from water, and store it in the dark under nitrogen. [*Beilstein* 6 IV 7361.]

o-Phthalic acid [88-99-3] M 166.1, m 211-211.5°, pK_1^{25} 2.76 (3.05), pK_2^{25} 4.92 (4.73). Crystallise phthalic acid from water. [*Beilstein* 9 IV 3167.]

Phthalic anhydride [85-44-9] **M 148.1, m 132°, b 295°.** Distil the anhydride under reduced pressure. Purify it from the acid by extracting with hot CHCl₃, filtering and evaporating. The residue is crystallised from CHCl₃, CCl₄ or *benzene, or sublimed. Fractionally crystallise it from its melt. Dry it under vacuum at 100°. [Saltiel J Am Chem Soc **108** 2674 1986, Beilstein **17/11** V 253.]

Phthalide [87-41-2] M 134.1, m 72-73°, pK -7.98 (aqueous H_2SO_4). Crystallise phthalide from water (75mL/g) and dry it in air on filter paper. [*Beilstein* 17/10 V 7.]

Phthalimide [85-41-6] M 147.1, m 235°, 238°, pK 8.30. Crystallise the imide from EtOH (20mL/g) (charcoal), or sublime it. For potassium phthalimide see entry in "Metal-organic Compounds", Chapter 5. [Beilstein 21/10 V 270.]

Phthalonitrile (1,2-dicyanobenzene) [91-15-6] M 128.1, m 141°. Crystallise the nitrile from EtOH, toluene or *benzene. It has also been distilled under high vacuum. It is steam volatile. [Beilstein 9 H 815, 9 II 602, 9 III 4199, 9 IV 3268.]

PhthalyIsulfacetamide [131-69-1] **M 362.3, m 304°.** It is prepared by hydrolysis of Nacetamidosulfophenylpthalimide by boiling for 3hours in 15% aqueous KOH followed by treatment with Norit, filtration and acidification with AcOH. Crystallise the phthalamide from hot H_2O or EtOH [Jain et al. J Indian Chem Soc 24 174 1947]. It is **antibacterial**. [Beilstein 14 III 2073.]

Phthiocol (2-hydroxy-3-methylnaphtha-1,4-quinone) [483-55-6] M 188.1, m 173-174°, pK_{Est} \sim 4.2. Crystallise the quinone from diethyl ether/pet ether. [Beilstein 8 III 2568, 8 IV 2375.]

Physodic acid [4,4',6'-trihydroxy-6-(2-oxoheptyl)-2'-pentyl-2,3'-oxydibenzoic acid 1,5lactone] [84-24-2] M 470.5, m 205°, $pK_{Est(1)}\sim3.0$, $pK_{Est(2)}\sim10$, $pK_{Est(3)}\sim13$. Crystallise the acid from MeOH. The diacetate has m 155-156° (from Me₂CO/CS₂). [Beilstein 19 II 329, 19 III/IV 3988.]

Picene [213-14-3] **M** 278.3, **m** 364°, 366-367°, 367-369°. Crystallise picene from isopropylbenzene/xylene. After sublimation at 300°/2mm followed by crystallisation from xylene (charcoal), it gives white glistening leaflets with **m** 366-366.5° [Newman J Org Chem 9 524 1944]. The 2,4,7-trinitrofluoren-9-one has **m** 257-257.8° (from $C_{6}H_{6}$). [Beilstein 5 H 735, 5 I 369, 5 III 2555, 5 IV 2724.]

Picric acid [88-89-1] **M 229.1, m 122-123°, pK²⁵ 0.33 (0.37).** Crystallise the acid first from acetic acid, then acetone, toluene, CHCl₃, aqueous 30% EtOH, 95% EtOH, MeOH or H₂O. Dry it in a vacuum for 2hours. Alternatively, dry it over Mg(ClO₄)₂ or fuse (CARE) and allow it to solidify under a vacuum three times. Because it is **EXPLOSIVE**, picric acid should be stored moistened with H₂O, and only small portions should be dried at any one time. The dry acid should **NOT** be heated. [*Beilstein* **6** IV 1388.]

Picryl chloride (2-chloro-1,3,7-trinitrobenzene) [88-88-0] **M 226.3, m 83°.** Crystallise the chloride from CHCl₃ or EtOH. The 2:1 $*C_6H_6$ -complex has **m** 39° (from $*C_6H_6$). [Beilstein 5 II 205, 5 III 645, 5 IV 757.]

Picryl iodide (2-iodo-1,3,7-trinitrobenzene) [4436-27-5] M 340.0, m 164-165°. Crystallise the iodide from *benzene. [*Beilstein* 5 III 647, 5 IV 758.]

Pinacyanol chloride (Quinaldine Blue] [2768-90-3] **M 388.9, m 270°(dec).** Crystallise the chloride from EtOH/diethyl ether. [*Beilstein* 23 I 90.]

Piperic acid [*trans,trans*-5-(3,4-methylenedioxyphenyl)-2,4-pentadieneoic acid] [136-72-1] M 218.2, m 217°, pK_{Est} ~4.7. Crystallise the acid from EtOH. It turns yellow in light. It sublimes with partial decomposition. It has UV λ_{max} 340nm (MeOH). [*Beilstein* 19 H 281, 19 II 30, 19 III/IV 3565.]

Piperonal [120-57-0] **M 150.1, m 37°, b 140°/15mm, 263°/760mm.** Crystallise piperonal from aqueous 70% EtOH or EtOH/water. [*Beilstein* 19/4 V 225.]

Piperonylic acid [94-53-1] **M 166.1, m 229°, pK²⁵ 4.50.** Crystallise the acid from EtOH or water. [*Beilstein* 19/7 V 300.]

Polystyrene [9003-53-6]. Precipitate polystyrene repeatedly from CHCl₃ or toluene solution by addition of MeOH. Dry it *in vacuo*. [Miyasaka et al. *J Phys Chem* **92** 249 1988.]

Procaine [4-(2-diethylaminomethoxycarbonyl)aniline] [59-46-1] M 236.3, m 51° (dihydrate), 61° (anhydrous), pK_1^{15} 2.45, pK_2^{15} 8.91. Procain crystallises as the *dihydrate* from aqueous EtOH and as the *anhydrous* material from pet ether or diethyl ether. The latter is *hygroscopic*. [Beilstein 14 IV 1138.]

p-(1-Propenyl)phenol [cis/trans 6380-21-8, 539-12-8] M 134.2, m 93-94°, pK_{Est} ~10.2. Crystallise the phenol from water. [Beilstein 6 III 2394, 6 IV 3796.]

1-Propyl-3-(*p*-chlorobenzenesulfonyl) urea [94-20-2] M 260.7, m 126-128°, 127-129°. Crystallise the urea from aqueous EtOH. [*Beilstein* 11 IV 119.]

n-Propyl gallate [121-79-9] M 212.2, m 150°. Crystallise the ester from aqueous EtOH or $*C_6H_6$ (m 146-146.5°). [*Beilstein* 10 III 2078, 10 IV 2003.]

Protocatechualdehyde (3,4-dihydroxybenzaldehyde) [139-85-5] M 138.1, m 153°. Crystallise the aldehyde from water or toluene and dry it in a vacuum desiccator over KOH pellets or shredded wax respectively. [*Beilstein* 8 IV 1762.]

IS,2*S*-Pseudoephedrine (1-hydroxy-1-phenyl-2-methylaminopropane) [90-82-4] M 165.2, m 118-119°, $[\alpha]_{D}^{20}$ +53.0° (EtOH), +40.0° (H₂O), pK²⁵ 9.71. Crystallise the amine from dry diethyl ether, or from water and dry it in a vacuum desiccator. [*Beilstein* 13 IV 1878.]

1S,2S-Pseudoephedrine hydrochloride [345-78-8] M 210.7, m 181-182°, 185-188°, $[\alpha]_{D}^{20}$ + 61° (c 1 H₂O). Crystallise the salt from EtOH. [*Beilstein* 13 IV 1878.]

Purpurin (1,2,4-trihydroxy-5,10-anthraquinone) [81-54-9] M 256.2, m 253-256°, $pK_{Est(1)}$ ~7.0 (2-OH), $pK_{Est(2)}$ ~9.0 (4-OH), $pK_{Est(3)}$ ~11.1 (1-OH). Crystallise purpurin from aqueous EtOH, dry it at 100°. [Beilstein 8 IV 3568.]

Pyrene (benzo[*def*]phenanthrene) [129-00-0] M 202.3, m 149-150°. Crystallise pyrene from EtOH, glacial acetic acid, *benzene or toluene. Purify it also by chromatography of CCl₄ solutions on alumina, with *benzene or *n*-hexane as eluent. [Backer & Whitten *J Phys Chem* 91 865 1987.] It can also be zone refined and purified by sublimation. Marvel and Anderson [*J Am Chem Soc* 76 5434 1954] refluxed pyrene (35g) in toluene (400mL) with maleic anhydride (5g) for 4days, then added 150mL of aqueous 5% KOH and refluxed for 5hours with occasional shaking. The toluene layer was separated, washed thoroughly with H₂O, concentrated to about 100mL and allowed to cool. Crystalline pyrene was filtered off and recrystallised three times from EtOH or acetonitrile. [Chu & Thomas *J Am Chem Soc* 108 6270 1986, Russell et al. *Anal Chem* 50 2961 1986.] The material is free from anthracene derivatives. Another purification step involves passage of pyrene in cyclohexane through a column of silica gel. It can be sublimed in a vacuum and zone refined. The *picrate* has m 224°. [Kano et al. *J Phys Chem* 89 3748 1985, *Beilstein* 5 IV 2467.]

Pyrene-1-aldehyde [3029-19-4] **M 230.3, m 125-126°.** Recrystallise the aldehyde three times from aqueous EtOH. [*Beilstein* 7 IV 1821.]

1-Pyrenebutyric acid [3443-45-6] M 288.4, m 184-186°, pK_{Est} ~4.1. Crystallise the butyric acid from *benzene, EtOH, EtOH/water (7:3 v/v) or *C₆H₆/AcOH. Dry it over P₂O₅. [Chu & Thomas J Am Chem Soc 108 6270 1986, Beilstein 9 IV 2731.]

1-Pyrenecarboxylic acid [19694-02-1] **M 230.3, m 274-274°, pK**_{Est} ~3,2. Crystallise the acid from C_6H_6 , chlorobenzene, nitrobenzene or 95% EtOH. [*Beilstein* **9** H 712, **9** III 3575.]

1-Pyrenesulfonic acid [26651-23-0] **M 202.2, m >350°, pK**_{Est} <**0.** Crystallise the sulfonic acid from EtOH/H₂O. The *sulfonyl chloride* has **m** 120°(dec). [Vollmann et al. *Justus Liebigs Ann Chem* **531** 32 1937 and *Justus Liebigs Ann Chem* **540** 189 1939, *Beilstein* **11** H 198, **11** III 448.]

1,3,6,8-Pyrenetetrasulfonic acid [6528-53-6] **M 522.2, m >400°, pK**_{Est} <**0** Crystallise the tetrasulfonic acid from water. The tetra-Na salt crystallises also from H_2O . [Tietz & Bayer Justus Liebigs Ann Chem 540 189 1939, Beilstein 11 III 486.]

p-Quaterphenyl [135-70-6] M 306.4, m 312-314°, b 428°/18mm. Recrystallise *p*-quaterphenyl from dimethyl sulfoxide at *ca* 50°. [*Beilstein* 5 II 669.]

Quinalizarin (1,2,5,8-tetrahydroxy-9,10-anthraquinone) [81-61-8] M 272.2, m 275°, $pK_{Est(1)}\sim7.1$ (1-OH), $pK_{Est(2)}\sim9.9$ (8-OH), $pK_{Est(3)}\sim11.1$ (5-OH), $pK_{Est(4)}\sim11.8$ (2-OH). Crystallise the quinone from acetic acid or nitrobenzene. It can be sublimed *in vacuo*. The Cu salt forms red crystals. [*Beilstein* 8 H 549, 8 I 755, 8 II 584.]

Quinhydrone (1:1 complex of hydroquinone and benzoquinone) [106-34-3] M 218.2, m 168°, 167-172°. Crystallise quinhydrone from H₂O at 65°, then dry it *in vacuo*. [Beilstein 7 H 617, 7 IV 2069.]

Quinizarin (1,4-dihydroxy-9,10-anthraquinone) [81-64-1] M 240.2, m 200-202°, pK_1^{25} 9.90 (9.5), pK_2^{25} 11.18. Crystallise quinizarin from glacial acetic acid. [Beilstein 8 H 450, 8 IV 3260.]

p-Quinquephenyl (*p*-pentaphenyl) [61537-20-0] M 382.5, m 388.5°. Recrystallise *p*-pentaphenyl from boiling dimethyl sulfoxide (b 189°, lowered to 110°). The solid obtained on cooling is filtered off and washed repeatedly with toluene, then with conc HCl. The final material is washed repeatedly with hot EtOH. It is also recrystallised from pyridine, then sublimed *in vacuo*. [Campbell & McDonald *Org Synth* Coll Vol V 986 1973, *Beilstein* 5 II 709, 5 III 2680, 5 IV 2874.]

Resorcinol [108-46-3] **M 110.1, m 111.2-111.6**°, pK_1^{25} **9.23,** pK_2^{25} **13.05.** Crystallise resorcinol from *benzene, toluene or *benzene/diethyl ether. The *benzoate* has **m** 117°. [*Beilstein* **6** IV 2069.]

Retene (1-methyl-7-*iso*propylphenanthrene) [483-65-8] M 234.3, m 89°, 90°, 99°, 100.5-101°, b 208°/10mm. Crystallise retene from EtOH. The *picrate* has m 126° (from EtOH). The 1:1 1,3,5-*trinitrobenzene-complex* has m 144° (from EtOH). [Beilstein 5 H 683, 5 II 598, 5 III 2199.]

*Para*Rosaniline (4,4',4"-triaminotrityllium [triphenylmethane] carbonium ion, parafuschin, paramagenta) [467-62-9] M 305.4, pK^{25} 7.57 and free base has pK > 13. Dissolve the dye in EtOH (1.16g in 30mL), filter and add aqueous NH₃ till neutral (colourless) and precipitate it by adding H₂O giving 0.8g, m 247°(dec, sintering at 230°). Dissolve it in EtOH, neutralise with NH₃ till colourless, add 0.1g of charcoal, filter, and repeat, then add H₂O (100mL) to precipitate the colourless *carbinol* (pseudo-base) and dry it *in vacuo*, m 257°(dec, also 205°, sintering at 232°). [Weissberger & Theile *J Chem Soc* 148 *1934*.] The *carbinol* is slightly soluble in H₂O but is soluble in acids (e.g. HCl to give the coloured *chloride* [569-61-9]) and EtOH [pK: Goldacre & Phillips *J Chem Soc* 172 *1949*]. The *perchlorate* (dark red with a green shine) has m 300° and explodes at 317° [Dilthey & Diaklage *J Prakt Chem* [2] 129 *1931*]. [*Beilstein* **13** IV 2283.]

Rosaniline HCl (Magenta I, Fuschin) [632-99-5] **M 337.9, m >200°(dec).** Purify the dye by dissolving it in EtOH, filtering and adding H₂O. Filter or centrifuge it and wash the precipitate with Et₂O and dry it in air. It has also been recrystallised from water and dried *in vacuo* at 40°. The crystals have a metallic green lustre. It has UV λ_{max} in EtOH at 543nm (ϵ 93,000). Its solubility in H₂O is 0.26%. A carmine red colour is obtained in EtOH. It is paraRosaniline with a methyl group. [Scalan *J Am Chem Soc* 57 887 1937.]

p-Rosolic acid (4-[bis-{4-hydroxyphenyl}methylene]-2,5-cyclohexadien-one, 4',4"-dihydroxy-fuschson, aurin, corallin) [603-45-2] M 290.3, m 292°, 295-300° (dec with liberation of phenol), 308-310°(dec), pK_1 3.11, pK_2 8.62. It forms green crystals with a metallic luster, but the colour depends on the solvent used. When recrystallised from brine (saturated aqueous NaCl) acidified with HCl, it forms red needles, but when recrystallised from EtO/AcOH, the crystals have a beetle iridescent green colour. It has been recrystallised from Me₂CO (although it dissolves slowly), methyl ethyl ketone, 80-95% AcOH and from AcOH/*C₆H₆. An aqueous KOH solution is golden yellow, and a 70% H₂SO₄ solution is deep red in colour. An alternative purification is to dissolve this triphenylmethane dye in 1.5% of aqueous NH₃, filter, and heat to 70-80°, then acidify with dilute AcOH by adding it slowly with vigorous stirring, whereby the aurin separates as a brick-red powder or as purplish crystals depending on the temperature and period of heating. Filter off the solid, wash it with H₂O and a little dilute AcOH, then H₂O again. Stir this solid with Et₂O to remove any ketones and allow it to stand overnight in the Et₂O, then filter and dry it in air then in a vacuum. [Gomberg & Snow J Am Chem Soc 47 202 1925, Baines & Driver J Chem Soc 123 1216 1923, UV: Burawoy Chem Ber **64** 462 1941, Beilstein **8** IV 2646.]

Salicylaldehyde (*o*-hydroxybenzaldehyde) [90-02-8] M 122.1, b 93°/25mm, 195-197°/760mm, d_4^{20} 1.167, n 1.574, pK²⁵ 8.37. It is precipitated as the bisulfite addition compound by pouring the aldehyde slowly and with stirring into a 25% solution of NaHSO₃ in 30% EtOH, then standing for 30minutes. The precipitate, after filtering at the pump, and washing with EtOH, is decomposed with aqueous 10% NaHCO₃, and the aldehyde is extracted into diethyl ether, dried with Na₂SO₄ or MgSO₄, and distilled, under reduced pressure. Alternatively, salicylaldehyde is precipitate as its Cu complex by adding it to warm, saturated aqueous Cu(OAc)₂, shaking and standing in ice. The precipitate is filtered off, washed with EtOH, then Et₂O, and decomposed with 10% H₂SO₄; the aldehyde is extracted into Et₂O, dried and vacuum distilled. It was also purified by dry column chromatography on Kieselgel G [Nishiya et al. *J Am Chem Soc* 108 3880 *1986*]. The *acetyl* derivative has m 38-39° (from pet ether or EtOH) and b 142°/18mm, 253°/atm. [*Beilstein* 8 IV 176.] The *oxime*, [94-67-7] M 137.1, crystallises CHCl₃/pet ether (b 40-60°) with m 57° [*Beilstein* 8 IV 203.]

Salicylamide [65-45-2] **M 137.1, m 142-144°, pK²⁰ 8.37.** Crystallise the amide from water or repeatedly from CHCl₃ [Nishiya et al. J Am Chem Soc **108** 3880 1986]. [Beilstein **10** IV 169.] The anilide [87-17-2] **M 213.2, m** 135° crystallises from H₂O. [Beilstein **12** H 500, **12** I 268, **12** II 256, **12** 944.]

Salicylhydroxamic acid [89-73-6] M 153.1, m 179-180°(dec), pK_1^{30} 2.15, pK_2^{30} 7.46, pK_3^{30} 9.72. Crystallise the hydroxamic acid from acetic acid. [*Beilstein* 10 H 98.]

Salicylic acid (2-hydroxybenzoic acid) [69-72-7] M 138.1, m 157-159°, 158-160°, 159.5°, 159-160°, 162°, b 211°/20mm, pK₁²⁵ 3.01, pK₂²⁵ 13.43 (13.01). It has been purified by steam distillation, by recrystallisation from H₂O (solubility is 0.22% at room temperature and 6.7% at 100°), absolute MeOH, or cyclohexane and by sublimation in a vacuum at 76°. The *acid chloride* (needles) has m 19-19.5°, b 92°/15mm, the *amide* has m 133° (yellow needles from H₂O), the *O-acetyl* derivative has m 135° (rapid heating and the liquid resolidifies at 118°), and the *O-benzoyl* derivative has m 132° (aqueous EtOH). [IR: Hales et al. *J Chem Soc* 3145 1954, Bergmann et al. *J Chem Soc* 2351 1950]. [*Beilstein* 10 IV 125.]

Solochrome Violet R [4-hydroxy-3-(2-hydroxynaphthyl-1-ylazo)benzenesulfonic acid] [2092-55-9] M 367.3, CI 15670, λ max 501nm, pK²⁵₂ 7.22 (OH), pK²⁵₃ 13.39 (OH). Convert the acid to the monosodium salt by precipitation with NaOAc/AcOH buffer of pH 4, then purify by precipitation of the free acid from aqueous solution with conc HCl, washing and extracting with EtOH in a Soxhlet extractor. The acid precipitates on evaporating the EtOH and is reconverted to the sodium salt as described for *Chlorazole Sky Blue FF*. Dry it at 110°. It is *hygroscopic*. [Coates & Rigg *Trans Faraday Soc* 57 1088 1961, Beilstein 16 II 127.]

cis-Stilbene [645-49-8] M 180.3, b 145% Purify it by chromatography on alumina using hexane and distil it under vacuum. (The final product contains *ca* 0.1% of the *trans*-isomer.) [Lewis et al. *J Am Chem Soc* 107 203 1985, Saltiel *J Phys Chem* 91 2755 1987, Beilstein 5 H 630.]

trans-Stilbene (*trans*-1,2-diphenylethylene) [103-30-0] M 180.3, m 125.9°, b 305-307°/744mm, d_4^{20} 0.970. Purify it by vacuum distillation. (The final product contains about 1% of the *cis* isomer.) Crystallise it from EtOH. It has also been purified by zone melting. The *styphnate* (see next entry) has m 142°. [Lewis et al. J Am Chem Soc 107 203 1985, Bollucci et al. J Am Chem Soc 109 515 1987, Saltiel J Phys Chem 91 2755 1987, Beilstein 5 IV 2156.]

Styphnic acid (2,4,6-trinitroresorcinol) [82-71-3] M 245.1, m 177-178°, 179-180°, pK_1^{25} 0.06 (1.74), pK_2^{25} 4.23 (4.86). Crystallise the phenol from ethyl acetate or water containing HCl [EXPLODES violently on rapid heating.] Its solubility in H₂O is 0.7% at 20° and 3% at 100°. It forms *addition compounds* with aromatic hydrocarbons, e.g. naphthalene (m 168°), anthracene (m 180°), phenanthrene (m 142°), fluorene (m 134°) and retene (m 141°). [*Beilstein* 6 H 830, 6 III 4354, 6 IV 5699.]

Styrene (vinylbenzene) [100-42-5] M 104.2, b 41-42°/18mm, 145.2°/760mm, d_4^{20} 0.907, n_D^{20} 1.5469, n_D^{25} 1.5441. Styrene is difficult to purify and keep pure. Usually it contains added inhibitors (such as a trace of hydroquinone). Wash it with aqueous NaOH to remove inhibitors (e.g. *tert*-butanol), then with water, dry it for several hours with MgSO₄ and distil it at 25° under reduced pressure in the presence of an inhibitor (such as 0.005% *p-tert*-butylcatechol). It can be stored at -78°. It can also be stored and kept anhydrous with Linde type 5A molecular sieves, CaH₂, CaSO₄, BaO or sodium, being fractionally distilled, and distilled in a vacuum line just before use. Alternatively styrene (and its deuterated derivative) are passed through a neutral alumina column before use [Woon et al. J Am Chem Soc 108 7990 1986, Collman J Am Chem Soc 108 2588 1986]. [Beilstein 5 IV 1334.]

(±)-Styrene glycol (±-1-phenyl-1,2-ethanediol) [93-56-1] M 138.2, m 67-68°, 272-274°/755mm. Crystallise the diol from pet ether, Et₂O, Et₂O/*C₆H₆ (m 69-70°) or *C₆H₆. The *dibenzoyl* dervative has m 96-97°. [Beilstein 6 H 907, 6 I 444, 6 II 887, 6 III 4572, 6 IV 5939.]

Styrene oxide [96-09-3] **M 120.2, b 84-86% (16.5mm, d**²⁰₄**(1.053, n**)²⁵_D**(1.535)**. Fractional distillation under reduced pressure does not remove phenylacetaldehyde. If this material is present, the styrene oxide is treated with hydrogen under 3 atmospheres pressure in the presence of platinum oxide. The aldehyde, but not the oxide, is reduced to β-phenylethanol, and separation is now readily achieved by fractional distillation. [Schenck & Kaizermen J Am Chem Soc **75** 1636 1953, Beilstein **17**/1 V 577.]

Sudan I (Solvent Yellow 14, 1-phenylazo-2-naphthol) [824-07-9] M 248.3, m 135°, CI 12055, λ max 476nm, pK_{Est}~9.0. Crystallise the dye from EtOH. [Beilstein 16 III/IV 228.]

Sudan III [Solvent Red 23, 1-(*p*-phenylazo-phenylazo)-2-naphthol] [85-86-9] M 352.4, m 199°(dec), CI 26100, λ_{max} 354, 508 nm, pK_{Est}~9.0. Crystallise the dye from EtOH, EtOH/water or *benzene/absolute EtOH (1:1). [Beilstein 16 II 75, 16 III 148, 16 IV 248.]

Sudan IV [Solvent Red 24, 1-(4-o-tolylazo-o-tolylazo)-2-naphthol] [85-83-6] M 380.5, m $\sim 184^{\circ}(dec)$, CI 26105, λmax 520nm, pK_{Est} ~ 9.0 . Crystallise the dye from EtOH/water or acetone/water. [Beilstein 16 IV 249.]

Sulfaguanidine [57-67-0] M 214.2, m 189-190°, pK_1 0.48, pK_2 2.75. Crystallise the antibacterial from hot water (7mL/g). [*Beilstein* 14 III 1970, 14 IV 2668.]

Sulfanilic acid (4-aminobenzenesulfonic acid) [121-57-3] M 173.2, $pK_1^{25} < 1$, $pK_2^{25} 3.23$. Crystallise the acid (as *dihydrate*) from boiling water. Dry it at 105° for 2-3hours, then over 90% H₂SO₄ in a vacuum desiccator. The *S-benzylisothiuronium salt* has **m** 187° (from aqueous EtOH). [*Beilstein* 14 IV 2655.]

o-Sulfobenzoic acid (H₂O) [123333-68-6 (H_2O), 632-25-7] M 202.2, m 68-69°, pK_{Est(1)}<1, pK_{Est(2)}~3.1 (CO₂H). Crystallise the acid from water. The *S*-benzylisothiuronium salt has m 205.5-206.5° (from aqueous EtOH). [Beilstein 1 H 369, 1 II 215, 1 III 658.]

o-Sulfobenzoic acid (monoammonium salt) [6939-89-5] M 219.5. Crystallise the salt from water.

5-Sulfosalicylic acid [5965-83-3] **M 254.2, m 108-110°, pK** $_{1}^{25}$ **<0, pK** $_{2}^{25}$ **2.67, pK** $_{3}^{25}$ **11.67.** Crystallise the acid from H₂O. Alternatively, it is converted to the monosodium salt which is crystallised from H₂O and washed with a little H₂O, EtOH and then Et₂O. The acid is recovered by acidifying. The *S*-4-chlorobenzylisothiuronium salt has **m** 181° (from dioxane). [*Beilstein* **11** H 411, **11** II 232, **11** III 704.]

Syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) [134-96-3] M 182.2, m 113°, pK_{Est} ~8. Crystallise syringaldehyde from pet ether. [Beilstein 8 H 391, 8 IV 2718.]

Syringic acid (3,5-dimethoxy-4-hydroxybenzoic acid) [530-57-4] M 198.2, m 204-205°, 206.5°, 206-209°, 209-210°, pK₁²⁵ 4.34, pK₂²⁵ 9.49. Recrystallise syringic acid from H₂O using charcoal [Bogert & Coyne J Am Chem Soc 51 571 1929, Anderson & Nabenhauer J Am Chem Soc 48 3001 1926.] The methyl ester has m 107° (from MeOH), the 4-acetyl derivative has m 190° and the 4-benzoyl derivative has m 229-232°. [Hahn & Wassmuth Chem Ber 67 2050 1934, UV: Lemon J Am Chem Soc 69 2998 1947 and Pearl & Beyer J Am Chem Soc 72 1743 1950, Beilstein 10 IV 1995.]

Terephthalaldehyde [623-27-8] **M 134.1, m 116°, b 245-248°/771mm.** Crystallise terephthalaldehyde from water. [*Beilstein* 7 IV 2140.]

Terephthalic acid (benzene-1,4-dicarboxylic acid) [100-21-0] **M 166.1, m sublimes >300°** without melting, pK_1^{20} **3.4,** pK_2^{20} **4.34.** Purify the acid *via* the sodium salt which, after crystallisation from water, is re-converted to the acid by acidification with mineral acid. Filter off the solid, wash it with H₂O and dry it in a vacuum. The *S-benzylisothiuronium salt* has **m** 204° (from aqueous EtOH). [*Beilstein* **9** IV 3301.]

Terephthaloyl chloride [100-20-9] M 203.0, m 80-82°. Crystallise the acid chloride from dry hexane. [Beilstein 9 IV 3318.]

o-**Terphenyl** [84-15-1] **M 230.3, m 58-59°, b 337°/atm.** Crystallise *o*-terphenyl from EtOH. Also purify it by chromatography of CCl₄ solution on alumina, with pet ether as eluent, followed by crystallisation from pet ether (b 40-60°) or pet ether/ $*C_6H_6$. It also distils under vacuum. [*Beilstein* **5** III 2292, **5** IV 2478.]

m-**Terphenyl** [92-06-8] **M 230.3, m 88-89°, b 379°/atm.** Purify it as for *o*-terphenyl above. [Beilstein **5** IV 2480.]

p-Terphenyl (1,4-diphenylbenzene) [92-94-4] M 230.3, m 212.7°, b 389°/atm. Crystallise *p*-terphenyl from nitrobenzene or trichlorobenzene. It is also purified by chromatography on alumina in a darkened room, using pet ether, and then crystallising from pet ether (b 40-60°) or pet ether/*benzene. It is a fluorophore for scintillation counting and has λ_{ex} 286nm : λ_{em} 343nm in DMF, and λ_{max} 277nm (loge 4.50). [*Beilstein* 5 IV 2483.]

Terreic acid (2-hydroxy-3-methyl-1,4-benzoquinone-5,6-epoxide) [121-40-4] M 154.1, m 127-127.5°, $[\alpha]_{D}^{22}$ +74° (pH 4, phosphate buffer), -17° (CHCl₃), pK²⁵ 4.5. Crystallise terreic acid from *C₆H₆, *C₆H₆/pet ether or hexane. Sublime it 80-100°/1mm. [Beilstein 17 IV 6698.]

3',3",5',5"-Tetrabromophenolphthalein ethyl ester [1176-74-5] **M 662.0, m 212-214°.** Crystallise the ester from *benzene, dry at 120° and keep it under vacuum. [*Beilstein* **10** III 4490.]

2,3,4,5-Tetrachloroaniline [634-83-3] **M 230.9, m 117-118°, 119-120°, pK**_{Est} ~-0.26. Crystallise it from EtOH. The *acetyl* derivative has **m** 165-166° (from EtOH). [*Beilstein* 12 H 630, 12 I 313, 12 II 340, 12 IV 1286.]

2,3,5,6-Tetrachloroaniline [3481-20-7] **M 230.9, m 107-108°, pK**_{Est} ~-1.8. Crystallise it from EtOH. The *acetyl* derivative has **m** 213-214° (from EtOH). [*Beilstein* **12** II 340, **12** III 1414, **12** IV 1287.]

1,2,3,4-Tetrachlorobenzene [634-66-2] **M 215.9, m 45-46°, 47.5°, b 254°/760mm.** Crystallise it from EtOH. [Beilstein 5 H 204, 5 II 156, 5 III 550, 5 IV 667.]

1,2,3,5-Tetrachlorobenzene [634-90-2] **M 215.9, m 50-51°, 51°, 54-55°, b 246°/760mm, d¹⁰ 1.7344.** Crystallise it from EtOH. [Beilstein 5 II 157, 5 III 551, 5 IV 668.]

1,2,4,5-Tetrachlorobenzene [95-94-3] **M 215.9, m 139.5-140.5°, b 240°/760mm.** Crystallise it from EtOH, ether, *benzene, *benzene/EtOH or carbon disulfide. [*Beilstein* **5** IV 668.]

3,4,5,6-Tetrachloro-1,2-benzoquinone (*o*-chloranil) [2435-53-2] M 245.9, m 130°. Crystallise *o*-chloranil from AcOH. Dry it in vacuum desiccator over KOH. [*Beilstein* 7 IV 2068.]

Tetrachloro-*N*-**methylphthalimide** [14737-80-5] **M 298.9, m 209.7°.** Crystallise the imide from absolute EtOH. [*Beilstein* **21** H 505, **17**/11 V 260.]

2,3,4,6-Tetrachloronitrobenzene (1,2,3,5-tetrachloro-4-nitrobenzene) [879-39-0] M 260.9, m 41-42°, 42°. Crystallise it from aqueous EtOH. [*Beilstein* 5 II 187, 5 III 617, 5 IV 728.]

2,3,5,6-Tetrachloronitrobenzene (1,2,4,5-tetrachloro-3-nitrobenzene) [117-18-0] M 260.9, m 99-100°. Crystallise it from aqueous EtOH or H₂O. [*Beilstein* 5 III 617, 5 IV 728.]

2,3,4,5-Tetrachlorophenol [4901-51-3] **M 231.9, m 116-117°, pK²⁵ 6.95.** Crystallise the phenol from pet ether. The *benzoate* has **m** 110° (from EtOH). [*Beilstein* **6** II 182, **6** III 729, **6** IV 1020.]

2,3,4,6-Tetrachlorophenol [58-90-2] **M 231.9, m 70°, b 150°/15mm, pK²⁵ 5.38.** Crystallise the phenol from pet ether. The *benzoate* has **m** 116° (from EtOH). [*Beilstein* **6** H 193, **6** III 729, **6** IV 1021.]

2,3,5,6-Tetrachlorophenol [935-95-5] **M 231.9, m 115°, pK²⁵ 5.48.** Crystallise the phenol from pet ethers. The *benzoate* has **m** 136° (from EtOH). [*Beilstein* **6** II 182, **6** III 730, **6** IV 1025.]

Tetrachlorophthalic anhydride [117-08-8] **M 285.9, m 255-257°.** Crystallise the anhydride from chloroform or *benzene, then sublime it in a vacuum. [*Beilstein* 17/11 V 260.]

1,2,4,5-Tetracyanobenzene [712-74-3] M 178.1, m 270-272° (280°). Crystallise the tetra-nitrile from EtOH and sublime *in vacuo*. [Lawton & McRitchie J Org Chem 24 26 1959, Bailey et al. Tetrahedron 19 161 1963, Beilstein 9 IV 3800.]

Tetrahydroxy-*p*-benzoquinone (2H₂O) [5676-48-2; 123334-16-7 2H₂O] M 208.1, pK_1^{30} 4,80, pK_2^{30} 6.8. Crystallise the quinone from water. [*Beilstein* 8 H 534, 8 II 572, 8 III 4204, 8 IV 3604.]

Tetralin (1,2,3,4-tetrahydronaphthalene) [119-64-2] M 132.2, m -35.79° (from CF₂Cl₂), b 65-66^o/5mm, 207.6^o/760mm, d²⁰₄ 0.968, n²⁰_D 1.5413. Wash tetralin with successive portions of conc H₂SO₄ until the acid layer is no longer coloured, then wash it with aqueous 10% Na₂CO₃, and then distilled water. Dry (CaSO₄ or Na₂SO₄), filter, reflux and fractionally distil it under under reduced pressure from sodium or BaO. It can also be purified by repeated fractional freezing.

Bass [*J Chem Soc* 3498 1964] freed tetralin, purified as above, from naphthalene and other impurities by conversion to ammonium tetralin-6-sulfonate. Concentrated H_2SO_4 (150mL) is added slowly to stirred tetralin (272mL) which is then heated on a water bath for about 2hours for complete solution. The warm mixture, when poured into aqueous NH₄Cl solution (120g in 400mL water), gives a white precipitate which, after filtering off, is crystallised from boiling water, washed with 50% aqueous EtOH and dried at 100°. Evaporation of its boiling aqueous solution on a steam bath removes traces of naphthalene. The pure salt (229g) is mixed with conc H_2SO_4 (266mL) and steam distilled from an oil bath at 165-170°. An ether extract of the distillate is washed with aqueous Na_2SO_4 , and the ether is evaporated, prior to distilling the tetralin from sodium. Tetralin has also been purified *via* barium tetralin-6-sulfonate, conversion to the sodium salt and decomposed in 60% H_2SO_4 using superheated steam. [*Beilstein* **5** H 491, **5** III 1219, **5** IV 1388.]

Tetralin hydroperoxide [771-29-9] **M 164.2, m 55.7-56°, 56°.** Crystallise the tetralin hydroperoxide from hexane, toluene at -30° (**m** 54.0-54.5°). The oxygen content should be ~9.70%. [Knight & Swern *Org Synth* Coll Vol **1V** 895 1963.]

α-Tetralone (1,2,3,4-tetrahydro-1-oxonaphthalene) [529-34-0] M 146.2, m 2-7°, 7.8-8.0°, b 75-85°/0.3mm, 89°/0.5mm, 94-95°/2mm, 132-134°/15mm, 143-145°/20mm, d_4^{20} 1.0695, n_D^{20} 1.5665. Check the IR first. Purify α-tetralone by dissolving 20mL in Et₂O (200mL), washing with H₂O (100mL), 5% aqueous NaOH (100mL), H₂O (100mL), 3% aqueous AcOH (100mL), 5% NaHCO₃ (100mL) then H₂O (100mL) and dry the ethereal layer over MgSO₄. Filter, evaporate and fractionate the residue through a 6in Vigreux column (p 11) under reduced pressure to give a colourless oil (~17g) with b 90-91°/0.5-0.7mm. [Snyder & Werber Org Synth Coll Vol III 798 1955.] It has also been fractionated through a 0.5metre packed column with a heated jacket under reflux using a partial take-off head. It has λ_{max} 247.5 and 290nm (hexane). The phenylhydrazone has m 83°. The 2,4,6-trinitrophenylhydrazone has m 247.5-248° (from EtOH). [Olson & Bader Org Synth Coll Vol IV 898 1963, Beilstein 7 H 370, 7 III 1416, 7 IV 1015.]

β-Tetralone (1,2,3,4-tetrahydro-2-oxonaphthalene) [530-93-8] M 146.2, m 17-18°, ~18°, b 93-95°/2mm, 104-105°/4mm, 114-115°/4-5mm, 140°/18mm, d_4^{20} 1.1000, n_D^{20} 1.5598. If reasonably pure, then fractionate it through an efficient column. Otherwise purify it *via* the *bisulfite adduct*. To a solution of NaHSO₃ (32.5g, 0.31mol) in H₂O (57mL) is added 95% EtOH (18mL) and set aside overnight. Any bisulfite-sulfate that separated is removed by filtration, and the filtrate is added to the tetralone (14.6g, 0.1mol) and shaken vigorously. The adduct separates in a few minutes as a white precipitate and is kept on ice for ~3.5hours with occasional shaking. The precipitate is collected, washed with 95% EtOH (13mL), then with Et₂O (4 x 15mL, by stirring the suspension in the solvent, filtering and repeating the process). The colourless product is dried in air and stored in air tight containers in which it is stable for extended periods (yield is ~17g). This bisulfite (5g) is suspended in H₂O (25mL), and Na₂CO₃.H₂O (7.5g) is added (pH of solution is ~10). The mixture is then extracted with Et₂O (5 x 10mL, i.e. until the aqueous phase does not test for tetralone — see

below). Wash the combined extracts with 10% aqueous HCl (10mL), H₂O (10mL, i.e. until the washings are neutral), dry (MgSO₄), filter, evaporate and distil the residual oil using a Claisen flask under reduced pressure and in a N₂ atmosphere. The pure tetralone is a colourless liquid **b** 70-71°/0.25mm (see also above). The yield is ~2g. **Tetralone test:** Dissolve a few drops of the tetralone solution (ethereal or aqueous) in 95% EtOH in a test tube and add 10 drops of 25% NaOH down the side of the tube. A deep blue colour develops at the interface with air. [Soffer et al. *Org Synth* Coll Vol **IV** 903 *1963*, Cornforth et al. *J Chem Soc* 689 *1942*, UV: Soffer et al. *J Am Chem Soc* 1556 *1952*.] The *phenylhydrazone* has **m** 108° [Crawley & Robinson *J Chem Soc* 2001 *1938*]. [*Beilstein* 7 H 370, 7 II 295, 7 III 1422, 7 IV 1018.]

1,2,3,4-Teteramethylbenzene (prehnitine) [488-23-3] M **134.2**, m -6.3°, b **79.4**°/10mm, **204-205**°/760mm, d_4^{20} **0.905**, n_D^{20} **1.5203**. Dry it over sodium and distil under reduced pressure. The *picrate* has m 92-95° (EtOH). [*Beilstein* **5** H 430, **5** I 206. **5** II 329, **5** III 974, **5** IV 1072.]

1,2,3,5-Tetramethylbenzene (isodurene) [527-53-7] M 134.2, m -23.7°, b 74.4°/10mm, **198°/760mm**, d_4^{20} 0.890, n_D^{20} 1.5130. Reflux isodurene over sodium and distil it under reduced pressure. [Smith Org Synth Coll Vol II 248 1943, Beilstein 5 H 430, 5 II 329, 5 III 976, 5 IV 1073.]

1,2,4,5-tetramethylbenzene (durene) [95-93-2] **M 134.2, m 79.5-80.5°, 191-192°/760mm.** Chromatograph durene on alumina, and recrystallise it from aqueous EtOH or *benzene. Zone-refining removes duroaldehydes. Dry it under vacuum. [Yamauchi et al. J Phys Chem **89** 4804 1985.] It has also been sublimed *in vacuo* [Johnston et al. J Am Chem Soc **109** 1291 1987]. [Beilstein **5** H 431, **5** I 207, **5** II 329, **5** III 979, **5** IV 1076.]

N,N,N',N'-**Tetramethylbenzidine** [366-29-0] **M 240.4**, **m 195.4-195.6°**, **pK**_{Est(1)}~3.4, **pK**_{Est(2)}~4.5. Crystallise the benzidine from EtOH or pet ether, then from pet ether/*benzene, and sublime it in a vacuum. [Guarr et al. *J Am Chem Soc* 107 5104 1985.] Dry it *in vacuo* in a drying pistol, or a vacuum line. It has **m** 195-196° after sublimation. [*Beilstein* 13 H 221, 13 I 61, 13 II 97, 13 III 429, 13 IV 368.]

p,*p*'-Tetramethyldiaminodiphenylmethane [bis(*p*-dimethylaminophenyl)methane, Michler's base, (*p*,*p*'-methylene-bis-(*N*,*N*-dimethylaniline)] [101-61-1] M 254.4, m 89-90°, b 155-157°/0.1mm, pK_{Est(1)}~5.8, pK_{Est(2)}~5.1. Crystallise the base from EtOH (2mL/g) or 95% EtOH (α 12mL/g). It sublimes on heating. [Beilstein 13 IV 390.]

N,N,N',N'-**Tetramethyl-1,8-naphthalenediamine** [Proton sponge, 1,8-bis-(dimethylamino)naphthalene [20734-58-1] M 214.3, m 45-48°, 47-48°, b 144-145°/4mm, pK₁ -10.5 (from half protonation in 86% aqueous H₂SO₄, diprotonation), pK₂ 12.34 (monoprotonation). It is prepared by methylating 1,8-diaminonaphthalene, and likely impurities are methylated products. The tetramethyl compound is a stronger base than the unmethylated, di and trimethylated derivatives. The pKa values are: 1,8-(NH₂)₂ = 4.61, 1,8-(NHMe)₂ = 5.61, 1-NHMe-8-NHMe₂ = 6.43 and 1,8-(NMe₂)₂ = 12.34. The mixture is then treated with H₂O at pH 8 (where all but the required base are protonated) and extracted with Et₂O or CHCl₃. The dried extract (K₂CO₃) yields the tetramethyldiamine on evaporation which can be distilled. It is a strong base with weak nucleophilic properties, e.g. it could not be alkylated by refluxing with EtI in MeCN for 4 days; and on treatment with methyl fluorosulfonate only the fluorosulfonate salt of the base is obtained. [NMR: Adler et al. *J Chem Soc, Chem Commun* 723 *1968*, Brown & Letang *J Am Chem Soc* **63** 358 *1941*, Brzezinski et al. *J Chem Soc Perkin Trans* 2 857 *1991*.] Alternatively, crystallise proton sponge from EtOH and dry it in a vacuum oven. Store it in the dark in a CO₂-free atmosphere. [Benoit et al. *Can J Chem* **65** 996 *1987*, *Beilstein* **13** IV 344.]

N,N,N',N'-**Tetramethyl-1,4-phenylenediamine** [100-22-1] M 164.3, m 51°, b 135°/14mm, 260°/760mm, pK₁²⁰ 2.29, pK₂²⁰ 6.35. Crystallise the amine from pet ether or water. It can be sublimed or dried carefully in a vacuum line, and stored in the dark under nitrogen. It has been recrystallised from its melt. [*Beilstein* 13 H 74, 13 I 22, 13 II 40, 13 III 111, IV 107.]

N,*N*,*N*',*N*'-**Tetramethyl-1,4-phenylenediamine dihydrochloride** (**Wurster's Reagent**) [637-01-4] **M 237.2, m 222-224°.** Crystallise the salt from isopropyl or *n*-butyl alcohols, saturated with HCl. Treat

it with aqueous NaOH to give the *free base* (see previous entry) which is filtered, dried and sublimed in a vacuum. [Guarr et al. J Am Chem Soc **107** 5104 1985, Beilstein **13** H 74.]

Tetra(*p*-nitrophenyl)ethylene [47797-98-8] M 512.4, m 298-299°. Crystallise it from dioxane or AcOH (m 292°, yellow needles), and dry it at 150°/0.1mm. [Gorvin J Chem Soc 678 1959, Schlenk Justus Liebigs Ann Chem 394 214 1913, Beilstein 5 H 744, 5 IV 2780.]

Tetraphenylethylene [632-51-9] **M 332.4, m 223-224°, b 415-425°/760mm.** Crystallise the ethylene from dioxane or from EtOH/ $*C_6H_6$. Sublime it under high vacuum. [*Beilstein* **5** H 743, **5** IV 2780.]

Tetraphenylhydrazine [632-52-0] **M 336.4, m 147°, pK**_{Est} ~**0.** Crystallise the hydrazine from 1:1 CHCl₃/toluene, 1:5 CHCl₃/EtOH (**m** 149°), $*C_6H_6$ or $*C_6H_6$ /pet ether. Store it in a refrigerator, in the dark. [*Beilstein* **15** H 125, **15** I 29, **15** III 77, **15** IV 59.]

trans-1,1,4,4-Tetraphenyl-2-methylbutadiene [20411-57-8] M 372.5. Crystallise it from EtOH.

5,6,11,12-Tetraphenylnaphthacene (Rubrene) [517-51-1] M **532.7, m>315°, 322°, d _4^{20} 1.255** Rubrene forms orange crystals on sublimation at 250-260°/3-4mm [UV Badger & Pearce Spectrochim Acta 4 280 1950]. It has also been recrystallised from *benzene under red light because it is chemiluminescent and light sensitive. [Beilstein 5 IV 2968.]

1,2,3,4-Tetraphenylnaphthalene [751-38-2] M 432.6, m 199-201°, 204-204.5°. Crystallise the naphthalene from MeOH or EtOH. [Fieser & Haddadin Org Synth 46 107 1966, Beilstein 5 IV 2918.]

Thioacetanilide [677-53-6] **M 151.2, m 75-76^o, 76-79^o, pK_{Est} ~13.1.** Crystallise thioacetanilide from H₂O and dry it *in vacuo*. [*Beilstein* 12 H 245, 12 I 193, 12 II 142, 12 III 464, 12 IV 378.]

Thiobenzanilide [636-04-4] M 213.2, m 101.5-102°, $pK_{Est} \sim 12.6$. Crystallise thiobenzanilide from MeOH at Dry-ice temperature.

Thio-Michler's Ketone [4,4'-bis(dimethylamino)thiobenzophenone] [1226-46-6] M 284.4, m 102-106°, λ_{max} 457 nm (ϵ 2.92 x 10⁴ in 30% aqueous *n*-propanol). Purify the thioketone by recrystallisation from hot EtOH or by trituration with a small volume of CHCl₃, followed by filtration and washing with hot EtOH [Terbell & Wystrade *J Phys Chem* 68 2110 1964]. Also it recrystallises from CHCl₃/ MeOH. [*Beilstein* 14 H 101, 14 I 395, 14 II 60.]

1-Thionaphthol [529-36-2] M 160.2, b 106°/1.5mm, 208.5°/200mm, d_4^{20} 1.161, n_D^{20} 1.6802, pK²⁵ 6.34. It is steam volatile and is purified by distillation in the absence of O₂, as it oxidises to the disulfide. It is soluble in Et₂O and EtOH but very slightly soluble in H₂O and dilute alkalis. The *S-ethyl* derivative, [17539-31-0] M 188.2, has b 175-176°/25mm, and d° 1.120. [*Beilstein* 6 III 2943, 6 IV 4241.]

2-Thionaphthol [91-60-1] **M 160.2, m 81.8-82.4°, 82°, b 153.5°/15mm, 286°/760mm, pK²⁵ 6.47.** It is steam volatile. It has to be distilled under Ar or N₂, as it oxidises to the disulfide, and crystallises from EtOH. The *S-methyl* derivative has **m** 104-105° (from C_6H_6 /pet ether), and the *S-ethyl* derivative [32551-87-4] **M** 188.2, has m 16° and b 175-170.5°/15mm. The *S-acetate* [831-23-2] has **m** 53.5° and **b** 191°/15mm, and the *diethylamine salt* forms yellow needles **m** 107° from dioxane. [*Beilstein* **6** H 657, **6** I 316, **6** II 610, **6** III 3006, **6** IV 4312.]

Thiophenol (benzenethiol) [108-98-5] M 110.2, f -14.9°, b 46.4°/10mm, 168.0°/760mm, d_4^{20} 1.073, n_D^{20} 1.5897, pK²⁵ 6.62. Dry thiophenol with CaCl₂ or CaSO₄, and distil it at 10mm pressure or at 100mm (b 103.5°) in a stream of nitrogen. The 2,4-dinitrophenyl thioether has m 121° (from EtOH), and the 2,4-dinitrophenyl sulfone has m 161° (from EtOH). [Beilstein 6 IV 1463.]

Thiosalicylic (2-mercaptobenzoic) acid [147-93-3] M 154.2, m 164-165°, pK_1^{25} 3.54, pK_2^{25} 8.80. Crystallise the thio acid from hot EtOH (4mL/g), after adding hot distilled water (8mL/g) and boiling

with charcoal. The hot solution is filtered, cooled, the solid is collected and dried *in vacuo* (P₂O₅). Crystallise it from AcOH and sublime *in vacuo*. [*Beilstein* **10** IV 272.]

Thymolphthalein complexone [1913-93-5] M 720.8, m 190°(dec), $pK_1^{18.2}$ 7.35, $pK_2^{18.2}$ 12.25. Purify it as for phthalein complexone except that it is synthesised from thymolphthalein instead of cresolphthalein. [Beilstein 18/4 V 194.]

o-Tolidine (3,3'-dimethylbenzidine) [119-93-7] M 212.3, m 131-132°, pK²⁵ 4.45. Dissolve the tolidine in *benzene by percolation through a column of activated alumina and crystallise it from *benzene/pet ether. [*Beilstein* 13 IV 410.]

p-Tolualdehyde [104-87-0] M 120.2, b 83-85% (0.1mm, 199-200%)760mm, d_4^{20} 1.018, n_D^{20} 1.548. Steam distil the aldehyde, dry it with CaSO₄, then fractionally distil it. [Beilstein 7 IV 672.]

o-**Toluamide** [527-85-5] **M 135.2, m 141°, 144-145°.** Crystallise *o*-toluamide from hot water (10mL/g) and dry in air. [Noller *Org Synth* Coll Vol **II** 586 1943, *Beilstein* **9** H 465, **9** II 319, **9** III 2304.]

Toluene [108-88-3] M 92.1, b 110.6°, d_4^{10} 0.87615, d_4^{25} 0.86231, n_D^{20} 1.49693, n_D^{25} 1.49413. Dry toluene with CaCl₂, CaH₂ or CaSO₄, and dry further by standing with sodium, P₂O₅ or CaH₂. It can be fractionally distilled from sodium or P_2O_5 . Unless specially purified, toluene is likely to be contaminated with methylthiophenes and other sulfur-containing impurities. These can be removed by shaking with conc H_2SO_4 , but the temperature must be kept below 30° if sulfonation of toluene is to be avoided. A typical procedure consists of shaking toluene twice with cold conc H_2SO_4 (100mL of acid per L), once with water, once with aqueous 5% NaHCO3 or NaOH, again with H2O, then drying successively with CaSO4 and P₂O₅, with final distillation from P₂O₅ or over LiAlH₄ after refluxing for 30minutes. Alternatively, the treatment with NaHCO₃ can be replaced by boiling under reflux with 1% sodium amalgam. Sulfur compounds can also be removed by prolonged shaking of the toluene with mercury, or by two distillations from AlCl₃, the distillate then being washed with water, dried with K_2CO_3 and stored with sodium wire. Other purification procedures include refluxing and distillation of sodium dried toluene from diphenylpicrylhydrazyl, and from SnCl₂ (to ensure freedom from peroxides). It has also been co-distilled with 10% by volume of ethyl methyl ketone, and again fractionally distilled. [Brown & Pearsall J Am Chem Soc 74 191 1952.] For removal of carbonyl impurities see *benzene. Toluene has been purified by distillation under nitrogen in the presence of sodium benzophenone ketyl. Toluene has also been dried with $MgSO_4$, after the sulfur impurities have been removed, and then fractionally distilled from P₂O₅ and stored in the dark [Tabushi et al. J Am Chem Soc 107 4465 1985]. Toluene can be purified by passage through a tightly packed column of Fuller's earth.

Rapid purification: Alumina, CaH_2 and 4A molecular sieves (3% w/v) may be used to dry toluene (6hours stirring and standing). Then the toluene is distilled, discarding the first 5% of distillate, and is stored over molecular sieves (3A, 4A) or Na wire. [*Beilstein* **5** H 280, **5** I 144, **5** II 209, **5** III 651, **5** IV 766.]

Toluene-2,4-diamine (4-methyl-*m*-phenylenediamine) [95-80-7] M 122.2, m 99°, b 148-150°/8mm, 292°/760mm, $pK_{Est(1)}\sim 2.5$, $pK_{Est(2)}\sim 4.4$. Recrystallise the diamine from water containing a very small amount of sodium dithionite (to prevent air oxidation), and dry it under vacuum. It also crystallises from *benzene. [*Beilstein* 13 IV 235.]

o-Toluenesulfonamide [88-19-7] M 171.2, m 155.5°. Crystallise the amide from hot H_2O (m 153°), then from EtOH or Et₂O/pet ether. The *N*-*o*-toluenesulfonylphthalimide has m 182° (from EtOH). [Evans & Dehn J Am Chem Soc 51 3652 1929, Beilstein 11 H 86, 11 I 23, 11 II 39, 11 III 167, 11 IV 229.]

p-Toluenesulfonamide [70-55-3] M 171.2, m 137-137.5°, 138°. Crystallise the amide from hot water, then from EtOH or Et_2O /pet ether. [*Beilstein* 11 H 104, 11 IV 376.]

p-Toluenesulfonic acid [6192-52-5] M 190.2, m 38° (anhydrous), m 105-107° (monohydrate), pK^{25} 1.55. Purify the acid by precipitation from a saturated solution at 0° by introducing HCl gas. It can also be crystallised from conc HCl, then crystallised from dilute HCl (charcoal) to remove benzenesulfonic acid. It has been crystallised from EtOH/water. Dry it in a vacuum desiccator over solid KOH and CaCl₂. *p*-

Toluenesulfonic acid can be dehydrated by azeotropic distillation with *benzene or by heating at 100° for 4hours under water-pump vacuum. The anhydrous acid can be crystallised from *benzene, CHCl₃, ethyl acetate, anhydrous MeOH, or from acetone by adding a large excess of *benzene. It can also be dried under vacuum at 50° . The *S-benzylisothiuronium salt* has **m** 182° (from aqueous EtOH). [*Beilstein* **11** IV 241.]

Toluenesulfonic acid hydrazide (tosylhydrazide) [1576-35-8] M 186.2, m 108-110°, 109-110°. Dissolve the hydrazide in hot MeOH (~1g/4mL), filter through Celite and precipitate the material by adding 2-2.5 volumes of distilled H_2O . Dry it in air or in a vacuum. [Fiedman et al. *Org Synth* Coll Vol V 1055 1973, *Beilstein* 11 II 66.]

p-Toluenesulfonyl chloride (tosyl chloride) [98-59-9] M 190.7, m 66-69°, 67.5-68.5°, 69°, b 138-139°/9mm, 146°/15mm, 167°/36mm. Material that has been standing for a long time contains tosic acid and HCl and has m *ca* 65-68°. It is purified by dissolving (10g) in the minimum volume of CHCl₃ (*ca* 25mL) filtered, and diluted with five volumes (i.e. 125mL) of pet ether (b 30-60°) to precipitate impurities. The solution is filtered, clarified with charcoal and concentrated to 40mL by evaporation. Further evaporation to a very small volume gives 7g of white crystals which are analytically pure, m 67.5-68.5°. (The insoluble material is largely tosic acid and has m 101-104°.) [Pelletier *Chem Ind (London)* 1034 1953.]

It also crystallises from toluene/pet ether in the cold, from pet ether (b 40-60°) or *benzene. Its solution in diethyl ether has been washed with aqueous 10% NaOH until colourless, then dried (Na₂SO₄) and crystallised by cooling in powdered Dry-ice. It has also been purified by dissolving in *benzene, washing with aqueous 5% NaOH, then dried with K_2CO_3 or MgSO₄, and distilled under reduced pressure and can be sublimed at high vacuum [Ebel *Chem Ber* **60** 2086*1927*]. [*Beilstein* **11** IV 375.]

p-Toluenethiol (*p*-thiocresol) [106-45-6] M 124.2, m 43.5-44°, pK^{25} 6.82. Crystallise the thiol from pet ether (b 40-70°). The 2,4-dinitrophenyl thioether has m 103° (from EtOH), and the 2,4-dinitrophenyl sulfone has m 190° (from EtOH). [Beilstein 6 IV 2153.]

Toluhydroquinone (2-methylbenzene-1,4-dione) [95-71-6] M 124.1, m 128-129°, pK_1^{20} 10.15, pK_2^{20} 11.75. Crystallise the quinone from EtOH. [Beilstein 6 IV 5866.]

o-Toluic acid [118-90-1] M 136.2, m 102-103°, b 258-259°/760mm, pK^{25} 3.91. Crystallise the acid from *benzene (2.5mL/g) and dry in air. The *S*-benzylisothiuronium salt has m 146° (from aqueous EtOH). [Beilstein 9 IV 1697.]

m-Toluic acid [99-04-7] M 136.2, m 111-113°, b 263°/760mm, pK²⁵ 4.27. Crystallise the acid from water. [*Beilstein* 9 IV 1712.] Aromatic acid impurities (to <0.05%) can be removed *via* the (\pm)- α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates *Organic Process Research* & *Development* 12 120 2008]. The *S-benzylisothiuronium salt* has m 140° (from aqueous EtOH).

p-Toluic acid [99-94-5] M 136.2, m 178.5-179.5°, b 274-275°/760mm, pK²⁵ 4.37. Crystallise the acid from water, water/EtOH (1:1), MeOH/water or *benzene. [*Beilstein* 9 IV 1724.] Aromatic acid impurities (to <0.05%) can be removed *via* the (\pm)- α -methylbenzylamine salt as described for 2,4-dichlorobenzoic acid [Ley & Yates Organic Process Research & Development 12 120 2008]. The S-benzylisothiuronium salt has m 164° (from aqueous EtOH).

o-Toluidine (2-methylaniline) [95-53-4] M 107.2, f -16.3°, b 80.1°/10mm, 200.3°/760mm, d_4^{20} 0.999, n_D^{20} 1.57246, n_D^{25} 1.56987, pK²⁵ 4.45. In general, methods similar to those for purifying aniline can be used, e.g. distillation from zinc dust, at reduced pressure, under nitrogen. Berliner and May [*J Am Chem Soc* 49 1007 1927] purified it *via* the oxalate. Twice-distilled *o*-toluidine is dissolved in four times its volume of diethyl ether, and the equivalent amount of oxalic acid needed to form the dioxalate is added as its solution in diethyl ether. (If *p*-toluidine is present, its oxalate precipitates and can be removed by filtration.) Evaporation of the ethereal solution gives crystals of *o*-toluidine dioxalate [*Beilstein* 12 III 1494, 12 IV 1817]. These are filtered off, recrystallised five times from water containing a small amount of oxalic acid (to prevent hydrolysis), then treated with dilute aqueous Na₂CO₃ to liberate the amine which is separated, dried (CaCl₂) and

distilled under reduced pressure. The *benzoyl* derivative has **m** 144° (from EtOH). [*Beilstein* **12** H 772, **12** I 372, **12** II 429, **12** III 1837, **12** IV 1744.]

m-Toluidine (3-methylaniline) [108-44-1] M 107.2, f -30.4°, b 82.3°/10mm, 203.4°/ 760mm, d_4^{20} 0.989, n_D^{20} 1.56811, n_D^{25} 1.56570, pK²⁵ 4.71. It can be purified as for aniline. Twicedistilled, *m*-toluidine is converted to the hydrochloride using a slight excess of HCl, and the salt is fractionally crystallised from 25% EtOH (five times), and from distilled water (twice), rejecting, in each case, the first material that crystallised out. The amine is regenerated and distilled as for *o*-toluidine. The *benzoyl* derivative has m 125° (from EtOH). [Berliner & May J Am Chem Soc 49 1007 1927, Beilstein 12 H 853, 12 I 397, 12 II 463, 12 III 1949, 12 IV 1813.]

p-Toluidine (4-methylaniline) [106-49-0] M 107.2, m 44.8°, b 79.6°/10mm, 200.5°/ 760mm, d_4^{20} 0.962, n_D^{20} 1.5636, $n_D^{59.1}$ 1.5534, pK²⁵ 5.08. In general, methods similar to those for purifying aniline can be used. It can be separated from the *o*- and *m*-isomers by fractional crystallisation from its melt. *p*-Toluidine has been crystallised from hot water (charcoal), EtOH, *benzene, pet ether or EtOH/water (1:4), and dried in a vacuum desiccator. It can also be sublimed at 30° under vacuum. For further purification, use has been made of the oxalate, the sulfate and acetylation. The oxalate, formed as described for *o*-toluidine, is filtered, washed and recrystallised three times from hot distilled water. The base is regenerated with aqueous Na₂CO₃ and recrystallised three times from distilled water. [Berliner & May *J Am Chem Soc* 49 1007 1927.] Alternatively, *p*-toluidine is converted to its acetyl derivative which, after repeated crystallisation from EtOH, is hydrolysed by refluxing (50g) in a mixture of 500mL of water and 115mL of conc H₂SO₄ until a clear solution is obtained. The amine sulfate is isolated, suspended in water, and NaOH is added. The free base is distilled twice from zinc dust under vacuum. The *p*-toluidine is then recrystallised from pet ether and dried in a vacuum desiccator or in a vacuum for 6hours at 40°. The *benzoyl* derivative has **m** 158° (from EtOH). [Berliner & Berliner *J Am Chem Soc* 76 6179 1954, Moore et al. *J Am Chem Soc* 108 2257 1986, Beilstein 12 H 880, 12 I 140, 12 II 482, 12 III 2017, 12 IV 1866.]

p-Toluidine hydrochloride [540-23-8] M 143.6, m 245.9-246.1°. Crystallise the salt from MeOH containing a few drops of conc HCl or aqueous EtOH. Dry it under vacuum over paraffin chips. [Beilstein 12 II 587, 12 III 2021, 12 IV 1869.]

2-*p*-**Toluidinylnaphthalene-6-sulfonic acid** [7724-15-4] **M 313.9, pK**_{Est} ~ **0.** Crystallise the acid twice from 2% aqueous KOH and dry it under high vacuum for 4hours at room temperature. It also crystallises from H₂O. It is tested for purity by TLC on silica gel with isopropanol as solvent. The free acid is obtained by acidifying a saturated aqueous solution. [*Beilstein* **14** H 762.]

o-Tolunitrile [529-19-1] M 117.2, b 205.2°, d_4^{20} 0.992, n_D^{20} 1.5279. Fractionally distil the nitrile, wash it with conc HCl or 50% H₂SO₄ at 60° until the smell of isonitrile has gone (this also removes any amines), then wash it with saturated NaHCO₃ and dilute NaCl solutions, then dry it with K₂CO₃ and redistil it. [*Beilstein* **9** IV 1703.]

m-Tolunitrile [620-22-4] M 117.2, b 209.5-210°/773mm, d_4^{20} 0.986, n_D^{20} 1.5250. Dry the nitrile with MgSO₄, fractionally distil it, then wash it with aqueous acid to remove possible traces of amines, dry and redistil it. [*Beilstein* 9 H 477, 9 I 191, 9 II 325, 9 III 2324, 9 IV 1717.]

p-Tolunitrile [104-85-8] M 117.2, m 29.5°, b 104-106°/20mm. Melt the nitrile, dry it with MgSO₄, fractionally crystallise it from its melt, then fractionally distil it under reduced pressure in a 6-in spinning band column. [Brown J Am Chem Soc 81 3232 1959.] It can also be crystallised from *benzene/pet ether (b 40-60°). [Beilstein 9 H 489, 9 I 194, 9 II 330, 9 III 2348, 9 IV 1738.]

4-Tolyl-2-benzoic acid (4'-methylbiphenyl-2-carboxylic acid) [7148-03-0] M **212.2, m 138-139°, 146-148°, pK²⁵ 3.64.** Crystallise the acid from toluene or $*C_6H_6$ (m 147-148°). [Beilstein 9 H 677, 9 IV 2523.]

p-Tolyl carbinol (4-methylbenzyl alcohol) [589-18-4] M 122.2, m 59.5-60°, 61°, b 116-118°/20mm, 217°/760mm. Crystallise the alcohol from pet ether (b 80-100°, 1g/mL), Et₂O, pentane or H₂O (m 61-62.1°). It can also be distilled in a vacuum. [*Beilstein* 6 H 498, 6 I 248, 6 II 469, 6 III 1779.]

p-Tolyl disulfide [103-19-5] M 246.4, m 45-46°, 168°/45mm. Purify it by chromatography on alumina using hexane as eluent, then crystallise it from MeOH, and/or distil it in a vacuum. [Kice & Bowers J Am Chem Soc 84 2384 1962, Beilstein 6 H 245, 6 I 212, 6 II 400, 6 III 1432, 6 IV 3206.]

Tolylene-2,4-diisocyanate (toluene-2,4-diisocyanate). [584-84-9] M 174.2, m 19.5-21.5°, 20-22°, 28°, b 126°/11mm, 124-126°/18mm, 250°/760mm. It is purified by fractionation in a vacuum and should be stored in a dry atmosphere. It is soluble in organic solvents but reacts with H₂O, alcohols (slowly) and amines, all of which could cause explosive polymerisation. It darkens on exposure to light. It has a sharp pungent odour, is TOXIC and is IRRITATING TO THE EYES. [Siefken Justus Liebigs Ann Chem 562 75, 96, 127 1949, Bayer Angew Chem 59 257 1947.] It is a reagent for covalent crosslinking of proteins [Wold Methods Enzymol 25 623 1972.] [Beilstein 13 IV 243.]

Tolylene-2,6-diisocyanate (2-methyl-*m*-phenylenediisocyanate). [91-08-7] M 174.2, b 129-133% d^{25} 1.225. It is purified by fractional distillation in a vacuum. Store it under N₂ in sealed dark ampoules as it is water and light sensitive. Like the preceding 2,4-isomer, it has a sharp pungent odour, is **TOXIC** and is **IRRITATING TO THE EYES**. [Beilstein 13 IV 259.]

p-Tolylsulfonylmethyl isocyanide (tosylmethyl isocyanide, TOSMIC) [36635-61-7] M 195.2, m 114-115°(dec), 116-117°(dec). Use an efficient fume cupboard. Purify TOSMIC by dissolving (50g) in CH₂Cl₂ (150mL) and passing it through a column (40x3cm) containing neutral alumina (100g) in CH₂Cl₂ and eluting with CH₂Cl₂. A nearly colourless solution (700mL) is collected, evaporated *in vacuo* and the residue (42-47g) of TOSMIC (m 113-114° dec) is recrystallised once from MeOH (m 116-117° dec). [Hoogenboom et al. Org Synth **57** 102 1977, Lensen Tetrahedron Lett 2367 1972.] It also crystallises from EtOH (charcoal) [Saito & Itano, J Chem Soc, Perkin Trans 1 1 1986].

p-**Tolyl urea** [622-51-5] **M 150.2, m 181°.** Crystallise the urea from H₂O (**m** 186°), EtOH/water (1:1) or aqueous AcOH (**m** 184°). [*Beilstein* **12** H 941, **12** I 425, **12** II 512, **12** III 2084, **12** IV 1923.]

Tribenzylamine [620-40-6] **M 287.4, m 93-94°, 230°/13mm, pK**_{Est} <0. Crystallise the amine from absolute EtOH or pet ether. Dry it in a vacuum over P_2O_5 at room temperature. The *hydrochloride* has **m** 226-228° (from EtOH) and the *picrate* has **m** 191° (from H₂O or aqueous EtOH). [*Beilstein* **12** IV 2183.]

2,4,6-Tribromoacetanilide [607-93-2] **M 451.8, m 232°, 238-240°, 240°.** Crystallise the anilide from EtOH. [*Beilstein* **12** II 359, **12** III 1478.]

2,4,6-Tribromoaniline [147-82-0] **M 329.8, m 120°, 122°, pK_{Est} \sim 0.5 (aqueous H₂SO₄). Crystallise the aniline from MeOH. The** *benzenesulfonamide* **derivative has m** 198°. [*Beilstein* **12** H 663, **12** I 329, **12** II 358, **12** III 1477, **12** IV 1538.]

sym-**Tribromobenzene** (1,3,5-tribromobenzene) [626-39-1] M 314.8, m 122°. Crystallise it from glacial acetic acid/water (4:1), then wash with chilled EtOH and dry in air. [*Beilstein* 5 H 213, 5 IV 685.]

2,4,6-Tribromophenol [118-79-6] **M 330.8, m 94°, pK²⁵ 6.00.** Crystallise the phenol from EtOH or pet ether. Dry it under vacuum over P_2O_5 at room temperature. [*Beilstein* **6** IV 1067.]

sym-**Tri**-*tert*-**butylbenzene** [1460-02-2] **M 246.4, m 73.4-73.9**^o. Crystallise it from EtOH. [Beilstein 5 IV 1206.]

2,4,6-Tri-*tert*-butylphenol [732-26-3] M 262.4, m 129-132°, 131-131.2°, b 131°/1mm, 147°/10mm, 278°/760mm, pK^{25} 12.19. Distil the phenol under reduced pressure and/or recrystallise it from *n*-hexane or several times from 95% EtOH until the EtOH solution is colourless [Balasubramanian &

Bruice J Am Chem Soc 108 5495 1986]. It has also been purified by sublimation [Yuan & Bruice J Am Chem Soc 108 1643 1986, Wong et al. J Am Chem Soc 109 3428 1987]. Purification has also been achieved by passage through a silica gel column followed by recrystallisation from *n*-hexane [Kajii et al. J Phys Chem 91 2791 1987]. [Beilstein 6 III 2094, 6 IV 3539.]

Trichloroacetanilide [2563-97-5] M 238.5, m 93.5-94°, 95°. Crystallise the anilide from *benzene or 90% EtOH (m 93.5-95.5°). [Sukornick *Org Synth* Coll Vol V 1074 *1973*, *Beilstein* 12 H 224, 12 I 193, 12 II 142, 12 III 464, 12 IV 377.]

2,3,4-Trichloroaniline [634-67-3] **M 196.5, m 67.5°, b 292°/774mm, pK**_{Est} ~1.3. Crystallise the aniline from ligroin. The *acetanilide* has **m** 120-122° (from EtOH or $C_{6}H_{6}$). [*Beilstein* 12 H 626.]

2,4,5-Trichloroaniline [636-30-6] **M 196.5, m 96.5°, b 270°/760mm, pK 1.09.** Crystallise the aniline from ligroin. [*Beilstein* **12** H 627, **12** IV 1277.]

2,4,6-Trichloroaniline [634-93-5] **M 196.5, m 78.5°, b 127°/14mm, 262°/746mm, pK²⁵ 0.03.** Crystallise the aniline from ligroin. The *benzoyl* derivative has **m** 174° (from EtOH). [*Beilstein* **12** H 627, **12** IV 1281.]

1,2,3-Trichlorobenzene [87-61-6] **M 181.5, m 52.6**^o. Crystallise it from EtOH. [Beilstein 5 IV 664.]

1,2,4-Trichlorobenzene [120-82-1] **M 181.5, m 17°, b 210°.** Separate it from a mixture of isomers by washing with fuming H_2SO_4 , then water, drying with CaSO₄ and slowly fractionally distilling. [Jensen et al. J Am Chem Soc **81** 3303 1959, Beilstein **5** IV 664.]

1,3,5-Trichlorobenzene [108-70-3] **M 181.5, m 64-65°.** Recrystallise it from dry *benzene or toluene. [Beilstein 5 IV 666.]

3,4,5-Trichloro-*o*-cresol (**3,4,5-trichloro-2-methylphenol**) [608-92-4] M **211.5, m 77°, pK**_{Est} \sim **7.6.** Crystallise the cresol from pet ether.

2,3,5-Trichloro-*p*-cresol (2,3,,5-trichloro-4-methylphenol) [608-91-3] M 211.5, m 66-67°, $pK_{Est} \sim 6.9$. Crystallise the cresol from pet ether. [Datta & Mitter J Am Chem Soc 41 2034 1919, Beilstein 6 I 204.]

2,4,5-Trichloro-1-nitrobenzene (1,2,4-trichloro-5-nitrobenzene) [89-69-0] M 226.5, m 57°. Crystallise it from EtOH. [Beilstein 5 IV 728.]

3,4,6-Trichloro-2-nitrophenol [82-62-2] **M 242.4, m 92-93°, pK_{Est} \sim 4.1.** Crystallise the nitrophenol from pet ether or EtOH. [*Beilstein* 6 III 842.]

2,4,5-Trichlorophenol [95-95-4] **M 197.5, m 67°, b 7 2^{\circ}/1mm, 248°/740mm, pK²⁵ 7.0.** Crystallise the phenol from EtOH or pet ether. [*Beilstein* 6 IV 962.]

2,4,6-Trichlorophenol [88-06-2] **M 197.5, m 67-68°, b 246°/760mm, pK²⁵ 6.23.** Crystallise the phenol from *benzene, EtOH or EtOH/water. [*Beilstein* **6** IV 1005.]

3,4,5-Trichlorophenol [609-19-8] **M 197.5, m 100°, pK²⁵ 7.84.** Crystallise the phenol from pet ether/*benzene mixture. [*Beilstein* 6 III 729.]

2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) [93-76-5] M 255.5, m 153°, 155-158°, pK²⁵ **2.83.** Crystallise this herbicide from *benzene. [Beilstein 6 III 721.] (CANCER SUSPECT) **1,2,4-Triethylbenzene** [877-44-1] **M 162.3, b 96.8-97.1°/12.8mm, d** $_{4}^{20}$ **0.8738, n** $_{D}^{20}$ **1.5015.** For separation from a commercial mixture see Dillingham and Reid [*J Am Chem Soc* **60** 2606 1938]. [*Beilstein* **5** IV 1133.]

1,3,5-Triethylbenzene [102-25-0] **M 162.3, b 102-102.5°, d** $_{4}^{20}$ **0.8631, n** $_{D}^{20}$ **1.4951.** For separation from a commercial mixture see Dillingham and Reid [*J Am Chem Soc* **60** 2606 1938]. [*Beilstein* **5** IV 133.]

4-(Trifluoromethyl)acetophenone [709-63-7] **M 188.2, m 31-33°, b 79-81°/9mm.** Purify the ketone by distillation or sublimation *in vacuo*. [*Beilstein* **7** IV 1404.]

3-Trifluoromethyl-4-nitrophenol [88-30-2] **M 162.1, m 81°, b 135-138°/0.01mm, pK**_{Est} **~6.1.** Crystallise the nitrophenol from *benzene or from pet ether/*benzene mixture. [*Beilstein* 6 III 1328.]

 α, α, α -Trifluorotoluene (benzotrifluoride) [98-08-8] M 144.1, b 102.5°, d²⁰₄ 1.190, n³⁰ 1.4100. Purify benzotrifluoride by repeated treatment with boiling aqueous Na₂CO₃ (until no test for chloride ion is obtained), dry it with K₂CO₃, then with P₂O₅, and fractionally distil it. [Beilstein 5 IV 802.]

2,3,4-Trihydroxybenzoic acid [610-02-6] **M 170.1**, **m 207-208**°, $pK_{Est(1)}\sim3.4$, $pK_{Est(2)}\sim7.8$, $pK_{Est(3)}>12$. Crystallise the acid from water. [*Beilstein* **10** IV 1971.]

2,4,6-Trihydroxybenzoic acid [83-30-7] M 170.1, m 205-212°(dec), $pK_{Est(1)}\sim1.5$, $pK_{Est(2)}\sim8.0$, $pK_{Est(3)}>12$. Crystallise the acid from water. [Beilstein 10 IV 1987.]

3,4,5-Triiodobenzoic acid [2338-20-7] **M 499.8, m 289-290°, 293°, pK²⁵ 0.65.** Crystallise the acid from aqueous EtOH or water. [*Beilstein* **9** H 367, 9 III 1475.]

3,4,5-Triiodobenzyl chloride [52273-54-8] **M 504.3, m 138°.** Crystallise the chloride from CCl₄/pet ether (charcoal).

Trimellitic (benzene-1,2,4-tricarboxylic) acid [528-44-9] M 210.1, m 218-220°, pK_1^{25} 2.42, pK_2^{25} 3.71, pK_3^{25} 5.01. Crystallise the acid from acetic acid or aqueous EtOH. [Beilstein 9 IV 3746.]

1,2,3-Trimethoxybenzene [634-36-6] **M 168.2, m 45-46°.** Sublime it under vacuum. [Beilstein 6 H 1081, 6 I 540, 6 II 1066, 6 III 6265, 6 IV 7329.]

1,3,5-Trimethoxybenzene [621-23-8] **M 168.2, m 5.3°.** Sublime it under vacuum. [Beilstein 6 III 635, 6 IV 7362.]

3,4,5-Trimethoxyphenol (Antiarol) [642-71-7] M 184.2, m 146°, 145-149°, $pK_{Est} \sim 9.4$. Recrystallise the phenol from 10 times its weight of H₂O (white needles, m 148°). The *acetyl* derivative crystallises as elongated prisms from EtOH with m 74°. [Chapman et al. J Chem Soc 3028 1927, Shriner et al. J Am Chem Soc 61 2325 1939, Beilstein 6 H 1154, 6 II 1118, 6 III 6656.]

1,2,4-Trimethylbenzene (pseudocumene) [95-63-6] M **120.2, m -43.8°, b 51.6°/10mm, 167-168°/760mm, d _{4}^{20} 0.889, n** $_{D}^{20}$ **1.5048.** Reflux pseudocumene over sodium and distil it under reduced pressure. [*Beilstein* **6** H 1088, **6** I 542, **6** II 1072, **6** III 6278, **6** IV 7339.]

2,4,6-Trimethylbenzoic acid (mesitoic acid) [480-63-7] M 164.2, m 155°, pK^{25} 3.45. Crystallise mesitoic acid from water, ligroin or carbon tetrachloride [Ohwada et al. J Am Chem Soc 108 3029 1986]. [Beilstein 9 H 553, 9 I 214, 9 II 360, 9 III 2489, 9 IV 1854.]

Trimethyl-1,4-benzoquinone [935-92-2] **M 150.1, m 29-30°, 36°, b 98°/10mm, 108°/18mm.** Distil the quinone in a vacuum or sublime it *in vacuo* before use. [Smith et al. J Am Chem Soc **60** 318 1939, Beilstein **7** H 161, **7** III 3407, **7** IV 2098.] Trimethyl-1,4-hydroquinone (2,3,5-trimethylbenzene-1,4-diol) [700-13-0] M 152.2, m 173-174°, $pK_{Est(1)} \sim 11.1$, $pK_{Est(2)} \sim 12.7$. Recrystallise the hydroquinone from water, under anaerobic conditions. [Beilstein 6 H 931, 6 IV 5997.]

2,3,5-Trimethylphenol [697-82-5] **M 136.2, m 95-96°, b 233°/760mm, pK²⁵ 10.67.** Crystallise the phenol from water or pet ether. [*Beilstein* 6 IV 3248.]

2,4,5-Trimethylphenol [496-78-6] **M 136.2, m 70.5-71.5°, pK²⁵ 10.57.** Crystallise the phenol from water. [*Beilstein* **6** H 509, **6** I 255, **6** II 482, **6** III 1831, **6** IV 3247.]

2,4,6-Trimethylphenol [527-60-6] **M 136.2, m 69°, b 220°/760mm, pK²⁵ 10.86.** Crystallise the phenol from water and sublime it *in vacuo*. [*Beilstein* **6** IV 3253.]

3,4,5-Trimethylphenol [527-54-8] **M 136.2, m 107°, b 248-249°/760mm, pK^{25} 10.25.** Crystallise the phenol from pet ether. [*Beilstein* **6** IV 3245.]

Trimethylphenylammonium benzenesulfonate [16093-66-6] **M 293.3.** Crystallise it repeatedly from MeOH (charcoal). [*Beilstein* **12** IV 249.]

2,4,6-Trinitroanisole [606-35-9] **M 243.1, m 68°.** Crystallise it from EtOH or MeOH. Dry it *in vacuo*. [Beilstein **6** H 288, **6** I 140, **6** II 280, **6** III 968, **6** IV 1456.]

1,3,6(1,2,4)-Trinitrobenzene [99-35-4] **M 213.1, m 122-123°.** Crystallise it from glacial acetic acid, CHCl₃, CCl₄, EtOH aqueous EtOH or EtOH/*benzene, after (optionally) heating with dilute HNO₃. Dry it in air. Fuse it and crystallise it under vacuum. [*Beilstein* **5** H 271, 5 I 140, **5** II 203, **5** III 643, **5** IV 754.]

2,4,6-Trinitrobenzenesulfonic acid hydrate (TNBS, picrylsulfonic acid) [2508-19-2] M 293.2, m 180°, λ max 240nm (ϵ 650 M⁻¹cm⁻¹), pK_{Est}~ <0. It is also available as 0.1M and 5%w/v solutions in H₂O. Recrystallise TNBS from 1M HCl, or a mixture of EtOH (50mL), H₂O (30mL) and conc HCl (70mL) for 65g of acid, and dry it at 100°. The *diethanolamine salt* had m 182-183° [Golumbic J Org Chem 11 518 1946]. [Beilstein 11 III 161.]

2,4,6-Trinitrobenzoic acid [129-66-8] **M 225.1, m 227-228°, pK²⁵ 0.65.** Crystallise the acid from distilled H₂O. Dry in a vacuum desiccator. The *amide* has **m** 264° (from EtOH). [*Beilstein* **9** H 417, **9** I 168, **9** II 285, **9** III 1956, **9** IV 1362.]

2,4,6-Trinitro-*m*-**cresol** [602-99-3] **M 243.1, m 107.0-107.5**°, pK^{25} **2,8.** Crystallise the cresol successively from H₂O, aqueous EtOH and *benzene/cyclohexane, then dry at 80° for 2hours. [Davis & Paabo J Res Nat Bur Stand **64A** 533 1960, Beilstein **6** H 387, **6** I 194, **6** II 363, **6** III 1331, **6** IV 2079.]

2,4,7-Trinitro-9-fluorenone [129-79-3] **M 315.2, m 176°.** Crystallise it from nitric acid/water (3:1), wash it with water and dry it under vacuum over P_2O_5 , or recrystallise it from dry *benzene. [Beilstein 7 II 410, 7 III 2348, 7 IV 1638.]

2,4,6-Trinitrotoluene (TNT) [118-96-7] **M 227.1, m 81.0-81.5°.** Crystallise TNT from *benzene and EtOH. Then fuse (**CARE**) and allow to crystallise under vacuum. Gey, Dalbey and Van Dolah [J Am Chem Soc **78** 1803 1956] dissolved TNT in acetone and added cold water (1:2:15), the precipitate was filtered off, washed free from solvent and stirred with five parts of aqueous 8% Na₂SO₃ at 50-60° for 10minutes. This was filtered, washed with cold water until the effluent was colourless, and air dried. The product was dissolved in five parts of hot CCl₄, washed with warm water until the washings were colourless and TNT was recoverd by cooling and filtering. It was recrystallised from 95% EtOH and carefully dried over H₂SO₄. The dry solid should not be heated without taking precautions for a possible **EXPLOSION**. Work with small quantities. [*Beilstein* **5** H 347, **5** I 172, **5** II 268, **5** III 767, **5** IV 873.]

2,4,6-Trinitro-*m*-**xylene** [632-92-8] **M 241.2, m 182.2**°. Crystallise the xylene from ethyl methyl ketone. [*Beilstein* **5** H 381, **5** I 185, **5** II 295, **5** III 845, **5** IV 950.]

Triphenylamine [603-34-9] **M 245.3, m 127.3-127.9**, **pK**²⁵ -5.0 (in fluorosulfuric acid). Crystallise the amine from EtOH or from *benzene/absolute EtOH, diethyl ether and pet ether. It is sublimed under vacuum and carefully dried in a vacuum line. Store it in the dark under nitrogen. [*Beilstein* 12 IV 276.]

1,3,5-Triphenylbenzene [612-71-5] **M 306.4, m 171-172°, 173-175°, 176°, d_4^{\circ} 1.205.** Purify it by chromatography on alumina using *benzene or pet ether as eluents. Crystallise the triphenylbenzene from EtOH (**m** 174°). [*Beilstein* **5** H 737, **5** I 370, **5** II 670, **5** III 2563, **5** IV 2732.]

Triphenylene [217-59-4] **M 228.3, m 198°, b 425°.** Purify triphenylene by zone refining or crystallisation from EtOH or CHCl₃ and sublime. [*Beilstein* **5** IV 2556.]

1,2,3-Triphenylguanidine [101-01-9] **M 287.3, m 144°, pK²⁵ 9.10.** Crystallise the guanidine from EtOH or EtOH/water. Dry it *in vacuo*. [*Beilstein* **12** H 451, **12** I 261, **12** II 246, **12** III 907, **12** IV 866.]

Triphenylmethane [519-73-3] **M 244.3, m 92-93°.** Crystallise triphenylmethane from EtOH or *benzene (with one molecule of *benzene of crystallisation which is lost on exposure to air or by heating on a water bath). It can also be sublimed under vacuum. It has been given a preliminary purification by refluxing with tin and glacial acetic acid, then filtered hot through a glass sinter disc, and precipitated by addition of cold water. [*Beilstein* **5** H 698, **5** IV 2495.]

Triphenylmethanol (triphenylcarbinol) [76-84-6] M 260.3, m 164°, b 360-380° (without dec), pK^{25} -6.63 (aqueous H_2SO_4). Crystallise the carbinol from EtOH, MeOH, CCl₄ (4mL/g), *benzene, hexane or pet ether (b 60-70°). Dry it at 90°. [Ohwada et al. J Am Chem Soc 108 3029 1986, Beilstein 6 IV 5014.]

Triphenylmethyl chloride (trityl chloride) [76-83-5] M 278.9, m 111-112°. Crystallise trityl chloride from iso-octane. Also crystallise it from 5 parts of pet ether (b 90-100°) and 1 part of acetyl chloride using 1.8g of solvent per g of chloride. Dry it in a desiccator over soda lime and paraffin wax. [Bachman Org Synth Coll Vol III 841 1955, Thomas & Rochow J Am Chem Soc 79 1843 1957, Moisel et al. J Am Chem Soc 108 4706 1986, Beilstein 5 H 750, 5 I 346, 5 II 615, 5 III 2315, 5 IV 2497.] It is moisture sensitive and LACHRYMATORY,

Tropaeolin 00, [554-73-4] **M 316.3**, $pK_{Est(2)} \sim 5.8$, $pK_{Est(3)} \sim 10.3$. Recrystallise it twice from water [Kolthoff & Gus J Am Chem Soc 60 2516 1938]. [Beilstein 16 II 171.]

Tropaeolin 000 (see Orange II in "Metal-Organic Compounds", Chapter 5). Purify the dye by salting out from hot distilled water using sodium acetate, then three times from distilled water and twice from EtOH.

dl-Tropic (3-hydroxy-2-phenylpropionic) acid [529-64-6] M 166.2, m 118°, pK²⁵ 4.12. Crystallise tropic acid from water or *benzene. [*Beilstein* 10 IV 664.]

Tropolone (2-hydroxycyclohepta-2,4.6-trien-1-one) [533-75-5] M 122.1, m 49-50°, b 81-84°/0.1mm, pK_1 -0.53 (protonation of CO, aqueous H₂SO₄), pK_2 6.67 (acidic OH). Crystallise tropolone from hexane or pet ether and sublime it at 40°/4mm. Also distil it at high vacuum. [*Beilstein* 8 IV 159.]

Tyramine (4-hydroxybenzylamine) [51-67-2] M 137.2, m 164-165°, b 171-181°/8mm, pK_1^{25} 9.74 (OH), pK_2^{25} 10.52 (NH₂). Crystallise tyramine from *benzene or EtOH. [*Beilstein* 13 IV 1788.]

Tyramine hydrochloride [60-19-5] **M 173.6, m 274-276°.** Crystallise the hydrochloride from EtOH by addition of diethyl ether, or from conc HCl. [*Beilstein* **3** II 355.]

Vanillin (4-hydroxy-3-methoxybenzaldehyde) [121-33-5] M 152.2, m 83°, b 170°/15mm, pK²⁵ 7.40. Crystallise vanillin from water or aqueous EtOH, or by distillation *in vacuo*. [Beilstein 8 IV 1763.]

Veratraldehyde (vanillin methyl ether) [120-14-9] M 166.2, m 42-43°. Crystallise the ether from diethyl ether, pet ether, CCl₄ or toluene. [*Beilstein* 8 IV 1765.]

Variamine Blue RT [4-(phenylamino)benzenediazonium sulfate (1:1)] [4477-28-5] M 293.3, m 120°(dec), CI 37240, λ_{max} 377 nm. Dissolve 10g of the dye in 100mL of hot water. Sodium dithionite (0.4g) is then added, followed by active carbon (1.5g) and is filtered hot. To the colourless or slightly yellow filtrate a solution of saturated NaCl is added, and the mixture is cooled. The needles are filtered off, washed with cold water, dried at room temperature, and stored in a dark bottle (light sensitive). [Anderson & Steedly J Am Chem Soc 76 5144 1954, Erdey Chem Analyst 48 106 1959, Beilstein 16 H 602, 16 I 371, 16 II 307, 16 III 575.]

9-Vinylanthracene [2444-68-0] **M 204.3, m 65-67°, b 61-66°/10mm.** Purify it by vacuum sublimation. It has also been purified by chromatography on silica gel with cyclohexane as eluent, and recrystallised from EtOH [Werst et al. J Am Chem Soc 109 32 1987]. [Beilstein 5 IV 2415.]

4-Vinylbenzyl chloride (4-chloromethylstyrene) [1592-20-7] M 152.6, b 58-62%/0.4mm, 75.5-79%/2mm, 229%/760mm, d²⁵ 1.083, n²⁰_D 1.572. Purify 4-vinylbenzyl chloride by dissolving it in Et₂O, washing it with 0.5% of aqueous NaOH, separating, drying the organic layer (Na₂SO₄), evaporating and distilling the residual oil under N₂ in vacuo. Add 0.05% of 4-tert-butylcatechol as stabilizer. It is lachrymatory. [Nishikubo et al. *Tetrahedron Lett* 22 3872 1981, Tanimoto et al. *Synth Commun* 4 193 1974, *Beilstein* 6 IV 3818.]

1-Vinylnaphthalene [826-74-4] M 154.2, b 68-69% 0.4mm, 100-101% 3.7mm, 124-125% 15mm, d 1.040, n_D^{20} 1.653. Commercial material can contain up to 2% of poly-1-vinylnaphthalene. Fractionally distil it under reduced pressure using a spinning-band column, dry it with CaH₂ and again distil it under vacuum. Store it in sealed ampoules in a freezer. It has λ_{max} (cyclohexane) at 210 and 320nm. The *picrate* has m 105-106%. [Beilstein 5 H 585, 5 III 1773, 5 IV 1833.] It is an irritant.

2-Vinylnaphthalene [827-54-3] **M 154.2, m 66°, 65-68°, b 76-81°/2.5mm, 135-137°/18mm,** Commercial material can contain up to 5% of MeOH. The flammable solid can be fractionally distilled under reduced pressure using a spinning-band column; dry it with CaH₂ and again distil it under vacuum. It crystallises from aqueous MeOH, EtOH (**m** 66°) or pet ether (**m** 66-66.5°). Store it in sealed ampoules in a freezer. The *picrate* has **m** 91-92° (from EtOH). [*Beilstein* **5** III 1775, **5** IV 1833.] It is an **irritant**.

Violanthrene (dibenzanthrene, 5,10-dihydroviolanthrene A) [81-31-2] M 428.5. Purify violanthrene by vacuum sublimation over Cu in a muffle furnace at 450°/25mm in a CO₂ atmosphere [Scholl & Meyer Chem Ber 67 1229 1934]. [Beilstein 5 I 392.] Violanthrene A (anthro[9,1,2-cde]benzo[rst]pentaphene [188-87-4] M 426.5 has m 506°. [Clar Chem Ber 76 458 1943, Beilstein 5 III 2778; Violanthrene B (violanthrone) Beilstein 7 I 466, 7 II 818, 7 III 4539.]

Xylene [1330-20-7] **M 106.1 (mixed isomers).** Usual impurities are ethylbenzene, paraffins, traces of sulfur compounds and water. It is not practicable to separate the m-, and p-isomers of xylene by fractional distillation, although, with a sufficiently efficient still, o-xylene can be fractionally distilled from a mixture of isomers. Purify (and dry) by fractional distillation from LiAlH₄, P₂O₅, CaH₂ or sodium. This treatment can be preceded by shaking successively with conc H₂SO₄, water, aqueous 10% NaOH, water and mercury, and drying with CaCl₂ for several days. Xylene can be purified by azeotropic distillation with 2-ethoxyethanol or 2-methoxyethanol, the distillate being washed with water to remove the alcohol, then dried and fractionally distilled. [*Beilstein* **5** H 360.]

o-Xylene [95-47-6] M 106.2, f -25.2°, b 84°/14mm, 144.4°/760mm, d_4^{20} 0.88020, d_4^{25} 0.87596, n_D^{20} 1.50543, n_D^{25} 1.50292. The general purification methods listed under xylene are applicable [Clarke & Taylor *J Am Chem Soc* 45 831 1923]. *o*-Xylene (4.4Kg) is sulfonated by stirring for 4hours with 2.5L of conc H₂SO₄ at 95°. After cooling, and separating the unsulfonated material, the product is diluted with 3L of water and neutralised with 40% NaOH. On cooling, sodium *o*-xylene sulfonate separates and is recrystallised from half its weight of water. [A further crop of crystals is obtained by concentrating the mother liquor to one-third of its volume.] The salt is dissolved in the minimum amount of cold water, then mixed with the same amount of cold water, and with the same volume of conc H₂SO₄ and heated to 110°. *o*-Xylene is regenerated and steam distils. The distillate is saturated with NaCl, the organic layer is separated, dried and redistilled. [*Beilstein* **5** H 362, **5** I 179, **5** II 281, **5** III 807, **5** IV 917.]

m-Xylene [108-38-3] M 106, f -47.9°, b 139.1°/760mm, d_4^{20} 0.86417, d_4^{25} 0.85990, n_D^{20} 1.49721, n_D^{25} 1.49464. The general purification methods listed under *xylene* are applicable. The *o*- and *p*- isomers can be removed by their selective oxidation when a *m*-xylene sample containing them is boiled with dilute HNO₃ (one part conc acid to three parts water). After washing with water and alkali, the product can be steam distilled, collected as for *o*-xylene, then distilled and purified further by sulfonation. [Clarke & Taylor *J Am Chem Soc* 45 831 1923.] *m*-Xylene is selectively sulfonated when a mixture of xylenes is refluxed with the theoretical amount of 50-70% H₂SO₄ at 85-95° under reduced pressure. By using a still resembling a Dean and Stark apparatus, water in the condensate can be progressively withdrawn while the xylene is returned to the *m*-xylene sulfonic acid is subsequently hydrolysed by steam distillation up to 140°, the free *m*-xylene is washed, dried with silica gel and again distilled. It is stored over molecular sieves Linde type 4A. [*Beilstein* 5 H 370, 5 II 182, 5 II 287, 5 III 823, 5 IV 932.]

p-Xylene [106-42-3] M 106.2, f 13.3, b 138.3%/760mm, d_4^{20} 0.86105, d_4^{25} 0.85669, n_D^{20} 1.49581, n_D^{25} 1.49325. The general purification methods listed for *xylene* above are applicable. *p*-Xylene can readily be separated from its isomers by crystallisation from such solvents as MeOH, EtOH, isopropanol, acetone, butanone, toluene, pentane or pentene. It can be further purified by fractional crystallisation by partial freezing, and stored over sodium wire or molecular sieves Linde type 4A. [Stokes & French J Chem Soc, Faraday Trans 1 76 537 1980, Beilstein 5 H 382, 5 I 185, 5 II 296, 5 III 845, 5 IV 951.]

HETEROCYCLIC COMPOUNDS

Acetaldehyde ammonia trimer (hexahydro-2,4,6-trimethyl-1,3,5-triazine trihydrate) [76231-37-3] M 183.3, m 94-96°, 95-97°, 97°, b 110°(partly dec). It crystallises from EtOH/Et₂O. When prepared, it separates as the *trihydrate* which can be dried in a vacuum over CaCl₂ at room temperature to give the *anhydrous* compound with the same melting point. The *dihydrate* melts at 25-28°, then resolidifies and melts again at 94-95°. IT IRRITATES THE EYES AND MUCOUS MEMBRANES. [Nielson et al. J Org Chem 38 3288 1973, Beilstein 26 III/IV 25.]

2-Acetamido-5-nitrothiazole (Acinitrazole) [140-40-9] M 187.2, m 264-265°. Recrystallise acinitrazole from EtOH or AcOH. [Hurd & Wehrmeister J Am Chem Soc 71 4007 1949, Beilstein 27 III/IV 4676.]

4-Acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (acetamidoTEMPO) [14691-89-5] M **213.3, m 144-146°, 146-147°**. Dissolve the 1-oxyl in CH_2Cl_2 , wash it with saturated K_2CO_3 , then saturated aqueous NaCl, dry (Na₂SO₄), filter and evaporate. The red solid is recrystallised from aqueous MeOH, m 147.5°. [Ma & Bobbitt J Org Chem 56 6110 1991, Rozantsev & Kokhanov Bull Acad Sci USSR, Div Chem Sci 15 1422 1966, Beilstein 22/8 V 174.]

5-Acetamido-1,3,4-thiadiazole-2-sulfonamide (Acetazolamide) [59-66-5] M 222.3, m 256-259° (dec). It is recrystallised from water. [Roblin & Clapp J Am Chem Soc 72 4890 1950, Beilstein 27 III/IV 8219.]

Acetoacetylpiperidide [1128-87-6] M 169.2, b 88.9% (0.1mm, n_D^{52} 1.4983. Dissolve it in *benzene, extract with 0.5M HCl to remove basic impurities, wash with water, dry, and distil it at 0.1mm [Wilson J Org Chem 28 314 1963]. [Beilstein 20 IV 1121.]

4-Acetoxy-2-azetidinone [28562-53-0] **M 129.1, m 38-41°.** Dissolve it in $CHCl_3$, dry (MgSO₄) concentrate at 40°/70mm, or better at room temperature to avoid decomposition. Wash and stir the residual oil with hexane by decantation and discard the wash. Dry the oil at high vacuum when it should solidify, **m** 34°. It can be distilled at high vacuum, 80-82°/10⁻³mm, but this results in extensive losses. The purity can be checked by TLC using Merck Silica Gel F₂₅₄ and eluting with EtOAc. The azetidinone has R_F 0.38 (typical impurities have R_F 0.67). The spots can be detected by the TDM spray. This is prepared from (A) 2.5g 4,4'-tetramethyldiaminodiphenylmethane (TDM) in 10mL AcOH and diluted with 50mL of H₂O, (B) 5g KI in 100mL of H₂O and (C) 0.3g ninhydrin in 10mL of AcOH and 90mL of H₂O. The spray is prepared by mixing (A) and (B) with 1.5mL of (C) and stored in a brown bottle. [Clauβ et al. *Justus Liebigs Ann Chem* 539 1974, Michel et al. *Org Synth* **65** 135 1987, *Beilstein* **21/12** V 4.]

3*R***,4***R***,1**'*R***-4**-**Acetoxy-3**-[**1**-(*tert*-**butylmethylsilyloxy**)**ethyl**]-**2**-**azetinone** See in "Metal-organic Compounds", Chapter 5.

N-Acetylimidazole [2466-76-4] M 110.1, m 101.5-102.5°, pK²⁵ 3.6. It is recrystallised from isopropenyl acetate and dried in a vacuum over P_2O_5 . [Riordan & Valee *Methods Enzymol* 25 500 1972, *Beilstein* 23/4 V 218.]

3-Acetylindole [703-80-0] **M 159.2, m 188-190°, 191-193°, 194°, pK²⁵ 12.99** (acidic). Recrystallise the indole from MeOH or $*C_6H_6$ containing a little EtOH. The *phenylureido* derivative has **m** 154°. [Baker J Chem Soc 461 1946, Beilstein **21/8** V 297.]

4-Acetylmorpholine [1696-20-4] M 129.2, m 13.8-14°, 14°, 14.5°, b 96-97°/6mm, 113-128°/22mm, 242-247°/760mm, d_4^{20} 1.0963, n_D^{20} 1.4830. Distil it through an 8inch Fenske (glass helices packing, p 11) column with a manual take-off head. Purify it by fractional distillation. The hydrobromide has m 172-175°. [Brace J Am Chem Soc 75 357 1953, deBenneville et al. J Org Chem 21 1072 1956, Beilstein 27 III/IV 274.]

N-Acetyl-D-penicillamin (*N*-acetyl-3-mercapto-D-valine) see in "Miscellaneous Compounds", Chapter 6.

1-Acetylpiperazine [13889-98-0] **M 128.2, m 32-34°, 52°, pK²⁵ 7.94.** Purify 1-acetylpiperazine by recrystallisation from 40% aqueous EtOH or from EtOH/Et₂O. It is an **irritant**, and is *hygroscopic*. The *hydrochloride* has **m** 191° (from EtOH), and the *tosylate salt* has **m** 148-149° (from EtOH/EtOAc, 1:16). The free base, however, cannot be isolated by basifying the tosylate salt and extraction with CH₂Cl₂. [Jacobi Chem Ber **66** 113 1933, Mosher et al. J Am Chem Soc **75** 4949 1953, Hall J Am Chem Soc **78** 2570 1956, Beilstein **23** IV 1786.]

1-Acetyl-4-piperidone [32161-06-1] M 141.2, b 124-128% 0.2mm, 218% 760mm, d_4^{25} 1.1444, n_D^{25} 1.5023. Purify it by fractional distillaton through a short Vigreux column (15mm, p 11). The 2,4-dinitrophenylhydrazone has m 212-213% (from EtOH). It is freely soluble in H₂O but insoluble in Et₂O. [McElvain & McMahon J Am Chem Soc 71 901 1949, Beilstein 21/6 V 246.]

3-Acetylpyridine [350-03-8] **M 121.1, m 13-14**°, **b 65-66**°/1**mm, 92-95**°/8-9**mm, 105**°(**113**°)/16**mm, 219-221**°/760**mm, d**²⁰₄ **1.1065, n**²⁰_D **1.1065, p**K²⁵ **3.18.** It is purified by dissolving in HCl, extracting with Et₂O to remove the possible impurity of nicotinic acid, basified with NaOH and extracted with Et₂O. The dried extract is filtered, evaporated and the residual oil is distilled. If the NMR spectrum indicates further impurities, then convert it to the *phenylhydrazone* (**m** 137°, yellow needles from EtOH). This is hydrolysed with HCl [Engler & Kiby *Chem Ber* **22** 597 *1889*], the phenylhydrazine HCl is removed by filtration, NaNO₂ is added, the solution is basified with aqueous NaOH and extracted with Et₂O as before and distilled at atmospheric pressure to give 3-acetylpyridine as a colourless oil. Purification can also be achieved by shaking with 50% aqueous KOH, extracting with Et₂O, drying the extract and distilling it at atmospheric pressure or *in vacuo*. [Kloetzel & Chubb *J Am Chem Soc* **79** 4226 *1957*.] The *hydrochloride* has **m** 137° (129-130°)(needles, from EtOH) [Webb & Webb *J Am Chem Soc* **71** 2285 *1949*]. The *ketoxime* has **m** 112° (from EtOH or *C₆H₆). [Strong & McElvain *J Am Chem Soc* **55** 816 *1933*, Kolloff & Hunter *J Am Chem Soc* **63** 490 *1941*, *Beilstein* **21**/7 V 394.]

2-Acetylthiazole [24295-03-2] M 127.2, b 89-91° (90-95°)/12mm, 95-105°/15mm, d_4^{20} 1.23, n_D^{20} 1.55. Check NMR spectrum; if it is not too bad, distil it through an efficient column in a vacuum. The *oxime* sublimes at 140-145°, m 159°, and when crystallised from H₂O has m 163-165.5°. [Erlenmeyer et al. *Helv Chim Acta* 31 1142 *1948*, Waisvisz et al. *J Am Chem Soc* 79 4524 *1957*, Menasseé et al. *Helv Chim Acta* 40 554 *1957*, *Beilstein* 27 IV 2617.]

2-Acetylthiophene (methyl 2-thienyl ketone) [88-15-3] M 126.2, m 9.2-10.5°, 10.45°, 10-11°, b 77°/4mm, 89-91°/9mm, 94.5-96.5°/13mm, 213-214°/atm, d_4^{20} 1.17, n_D^{20} 1.5666. Fractionally distil the thiophene through a 12-plate column, and fraction b 77°/4mm is collected. Also wet the acetylthiophene in order to remove and free thiophene which forms an azeotrope with H₂O, b 68°. Store it in a brown bottle, and the clear colourless liquid remains thus for extended periods. [Kosak & Hartough *Org Synth* Coll Vol III 14 1955, Hartough & Kosak *J Am Chem Soc* 69 3093 1947.] The red 4-nitrophenylhydrazone crystallises from EtOH with m 181-182°. [*Beilstein* 17/9 V 387.]

3-Acetylthiophene (methyl 3-thienyl ketone, acetothienone) [1468-83-3] M 126.2, m 57°, 60-63°, b 106-107°/25mm, 208-210°/748mm. Recrystallise the thiophene from pet ether (b 30-60°) or EtOH. The 2,4-dinitrophenylhydrazone crystallises from CHCl₃, m 265°, and the *semicarbazone* crystallises from EtOH, m 174-175°. [Campaigne & Le Suer J Am Chem Soc 70 1555 1948, Beilstein 17/9 V 399.]

Aconitine [302-27-2] M 645.8, m 204°, $[\alpha]_{546}$ + 20° (c 1, CHCl₃), pK¹⁵ 8.35. Crystallise it from EtOH, CHCl₃ or toluene. [*Beilstein* 21/6 V 310.]

Aconitine hydrobromide [6034-57-7] M 726.7, m 207°. Crystallise the salt from water or EtOH/ether. [Beilstein 21/6 V 310.]

Acridine (2,3-benzoquinoline) [260-94-6] M 179.2, m 111° (sublimes), b 346°, pK²⁵ 5.58 (pK²⁵ of excited state 10.65). Acridine has been crystallised twice from *benzene/cyclohexane, or from aqueous EtOH, then sublimed, removing and discarding the first 25% of the sublimate. The remainder is again crystallised and sublimed, discarding the first 10-15% [Wolf & Anderson J Am Chem Soc 77 1608 1955]. Acridine can also be purified by crystallisation from *n*-heptane and then from ethanol/water after pre-treatment with activated charcoal, or by chromatography on alumina with pet ether in a darkened room. Alternatively, acridine can be precipitated as the hydrochloride from *benzene solution by adding HCl, after which the base is regenerated, dried at 110°/50mm, and recrystallised to constant melting point from pet ether [Cumper et al. J Chem Soc 4518 1962]. The regenerated free base may be recrystallised, chromatographed on basic alumina, then vacuum-sublimed and zone-refined. [Williams & Clarke, J Chem Soc, Faraday Trans 1 73 514 1977, Albert, *The Acridines* Arnold Press 1966.] It can exist in five crystalline forms and is steam volatile. It is a strong IRRITANT to skin and mucous membranes and can become a chronic irritant— handle it with CARE. [Beilstein 20/8 V 199.]

Acridine Orange (3,6-bisdimethylaminoacridine) [494-38-2] M 349.94, m 165°(dec), 181-182°, 184-186° (free base), $p K_1^{20}$ -3.3, $p K_2^{20}$ 0.2, $p K_3^{20}$ 10.1. The double salt with ZnCl₂ (6g) is dissolved in water (200mL) and stirred with four successive portions (12g each) of Dowex-50 ion-exchange resin (K⁺ form) to remove the zinc. The solution is then concentrated in vacuum to 20mL, and 100mL of ethanol is added to precipitate KCl which is removed. Ether (160mL) is added to the solution from which, on chilling, the dye crystallises as its chloride. It is separated by centrifugation, washed with chilled ethanol and ether, and dried under vacuum, before being recrystallised from ethanol (100mL) by adding ether (50mL), and chilling. Yield 1g. [Pal & Schubert J Am Chem Soc 84 4384 1962].

It was recrystallised twice as the free base from ethanol or methanol/water by dropwise addition of NaOH (less than 0.1M). The precipitate was washed with water and dried under vacuum. It was dissolved in CHCl₃ and chromatographed on alumina: the main sharp band was collected, concentrated and cooled to -20° . The precipitate was filtered off, dried in air, then dried for 2hours under vacuum at 70° . [Stone & Bradley *J Am Chem Soc* **83** 3627 *1961*, Blauer & Linschitz *J Phys Chem* **66** 453 *1962*, Albert *J Chem Soc* 244 *1947*, *Beilstein* **22** III/IV 5490, **22/11** V 326.]

Acridine Yellow G (2,7-dimethylacridine-3,6-diamine hydrochloride) [135-49-9] M 273.8, m 325° (free base), CI 46025, pK_1^{20} -3.0, pK_2^{20} 0.5, pK_3^{20} 8.9. Note that the hydrochloride is normally called Acridine Yellow G and not the free base. The free base recrystallises from 1:1 *benzene/methanol, or from 800 parts of EtOH. It is converted to the sparingly soluble hydrochloride with dilute HCl, filtered off and dried. [Albert *J Chem Soc* 248 1947, *Beilstein* 22 III/IV 5499, 22/11 V 340.]

N-(9-Acridinyl)maleimide (NAM) [49759-20-8] M 274.3, m 248°, 255-258°. Purify NAM by chromatography on silica gel using CH₂Cl₂ as eluant. Evaporation of pooled fractions that gave the correct NMR spectra gave a solid which was crystallised from Me₂CO as pale yellow prisms. IR v_{max} (nujol): 1710 (imide); UV (MeOH): λ_{max} (nm), (ϵ M⁻¹cm⁻¹): 251 (159 500), 343 shoulder (7 700), 360 (12 400) and 382shoulder (47 000). [Mashida et al. *Chem Pharm Bull Jpn* **26** 596 *1978*, Schuldiner et al. *Eur J Biochem* **25** 64 *1972*,]

Acridone [578-95-0] M 195.2, m >300°, pK₁ -0.32 (basic), pK₂ 12.80 (14.0, acidic). Dissolve ~1g in *ca* 1% NaOH (100mL), add 3M HCl to pH 4 when acridone separates as a pale yellow solid with m just above 350° (sharp). It can be recrystallised from large volumes of H₂O to give a few mg. It is soluble in 160 parts of boiling EtOH (540 parts at 22°) [Albert & Phillips *J Chem Soc* 1294 *1956*]. A few decigms are best crystallised as the *hydrochloride* from 400 parts of 10N HCl (90% recovery) from which the free base is obtained by washing the salt with H₂O. A small quantity can be recrystallised (as the neutral species) from boiling AcOH. Larger quantities are best recrystallised from a mixture of 5 parts of freshly distilled aniline and 12.5 parts of glacial acetic acid. Acridone distils unchanged at atmospheric pressure, but the boiling point was not recorded, and some sublimation occurs below 350°. It has UV: λ_{max} 399nm. [see Albert, *The Acridines* Arnold Press pp 201, 372 *1966*; for pKa see Kalatzis *J Chem Soc* (*B*) 96 *1969*, *Beilstein* 23/9 V 7.]

Acriflavine [8048-52-0] M 196.2, $pK^{25} > 12$. Treat acriflavin twice with freshly precipitated AgOH to remove proflavine, then recrystallise it from absolute methanol [Wen & Hsu J Phys Chem 66 1353 1962]. [Beilstein 22 III/IV 218.]

Acriflavin Mixture (Euflavin, 3,6-diamino-10-methylacridinium chloride) [8063-24-9] M 259.7, m 179-181°. Purify it by dissolving in 50 parts of H₂O, shaking with a small excess of freshly precipitated and washed Ag₂O. The mixture is set aside overnight at 0° and filtered. The cake is not washed. The pH of the filtrate is adjusted to 7.0 with HCl and evaporated to dryness. The residue is then crystallised twice from MeOH, twice from H₂O and dried at 120°. λ_{max} at 452nm has a loge value of 4.67. It is a red powder which readily absorbs H₂O. The solubility is increased in the presence of proflavin. The *dihydrochloride* is a deep red crystalline powder. It is available as a mixture of 3,6-diaminoacridinium chloride (35%) and its 10-metho-chloride (65%). [See Albert, *The Acridines* Arnold Press p 346 1966, Benda Chem Ber 45 1787 1912]. [Beilstein 23 I 650.]

Adenine (6-aminopurine, vitamin B_4) [73-24-5] M 135.1, m 360-365°(dec rapid heating), pK₁²⁵ 4.12, pK₂²⁵ 9.83. Crystallise adenine from distilled water. [*Beilstein* 26 III/IV 3561.]

Adenosine [58-61-7] M 267.3, m 235-236°, $[\alpha]_{546}$ -85° (c 2, 5% NaOH), $[\alpha]_D^{24}$ -61.2° (c 1, H₂O), pK₁²⁵ 3.48, pK₂²⁵ 12.5. Crystallise adenosine from distilled water and dry it at 110°. It has been purified *via* the *picrate*, where ethanolic picric acid is added to adenosine and the *picrate* is filtered off and recrystallised from EtOH. It has m 180-185°(dec). Adenosine is recovered by dissolving 0.4g of the picrate in 80mL of hot H₂O, treated with a small quantity of Dowex 1 anion exchange resin in the chloride form, and the resin is filtered off. The filtrate is treated with more resin and filtered again. One equivalent of aqueous NaOH is added to the colourless filtrate which is evaporated to 4mL and cooled to give 0.176g of adenosine m 236°. [Davoll et al. J Chem Soc 967 1948, Davoll & Lowy J Am Chem Soc 73 1650 1951, Beilstein 26 III/IV 3598.]

Adrenochrome (3-hydroxy-1-methyl-5,6-indoline-dione) [54-06-8] M 179.2, m 125-130° (dec). It was crystallised from MeOH/formic acid, as red crystals of the *hemihydrate*, and stored in a vacuum desiccator. The *mono-semicarbazone* (*Carbazochrome*) [69-81-8] M 236.2, crystallises as orange-red crystals from dilute EtOH with m ~203° (dec) and is haemostatic. [Heacock Chem Rev 59 181 1959, Beilstein 21 III/IV 6434.]

Actioporphyrin I (2,4,6,8-tetraethyl-1,3,5,7-tetramethylporphyrin) [448-71-5] M 478.7, m 360-363°, pK^{25} 18. Purify it by chromatography on an Al₂O₃ column (300g/300mg of porphyrin) and elute with CH₂Cl₂, evaporate the eluate and crystallise the residue from CH₂Cl₂/MeOH, pyridine or CHCl₃/pet ether(purple prisms, m > 300°) [Smith *J Chem Soc Perkin Trans 1* 1471 1972]. The copper salt crystallises as red needles from pyridine/AcOH. It complexes with metals. The *dihydrobromide* [69150-58-9] M 640.5 separates from aetioporphyrin I in Et₂O on addition of 10% of aqueous HBr after 2days [Fischer & Treibs *Justus Liebigs Ann Chem* 457 241 1927, Treibs & Dieter *Justus Liebigs Ann Chem* 513 88-91 1934]. [Beilstein 26 III/IV 1915.]

Agroclavin [548-42-5] M 238.3, m 198-203°(dec), 205-206°, 210-212°, $[\alpha]_D^{20}$ -155° (c 1, CHCl₃), pK_{Est} ~8.0. It crystallises from diethyl ether or Me₂CO. The hydrochloride crystallises from H₂O and has m 265-266°, $[\alpha]_D^{20}$ -110° (CHCl₃). [Plieninger et al. Justus Liebigs Ann Chem 743 95 1971, Beilstein 23 III/IV 1623.]

Ajmalicine (δ -yohimbine, Raubacine) [483-04-5] M 352.4, m 250-252°(dec), 257°(dec), 261-263°(dec), [α]₅₄₆ -76° (c 0.5, CHCl₃), [α]_D²⁰ -45° (c 0.5, pyridine), -39° (c 0.25, MeOH), pK²⁵ 5.7(90% aqueous 2-methoxyethanol), 6.46(66% aqueous Me₂NCHO). It crystallises from MeOH, EtOH or EtOAc. [*Beilstein* 27 III/IV 7927.]

Ajmalicine hydrochloride [4373-34-6] M 388.9, m 290°(dec), 294-295°(dec), $[\alpha]_D$ –18.5° (c 0.5, MeOH). This hydrochloride crystallises from MeOH or EtOH. Its solubility is 0.315g/100g of H₂O at 100°. [Beilstein 27 III/IV 7928.]

Ajmaline (γ -yohimbine) [4360-12-7] M 326.4, m 160° (MeOH), 205-206° (anhyd), $[\alpha]_D^{20}$ +144° (c 0.8, CHCl₃), pK²⁵ 8.15(80% aqueous 2-methoxyethanol), 8.4(60% aqueous Me₂NCHO). Ajmaline crystallises from MeOH or EtOAc containing a little H₂O to give the *trihydrate* m 158-160°. This loses 1H₂O at 110° and all H₂O at 150°. [*Beilstein* 23 III/IV 3212.]

Ajmaline hydrochloride [4410-48-4] M 388.9, m 140°. It crystallises from water as the *dihydrate* m 140°, and the *anhydrous salt* has m 252-255°, and $[\alpha]_{D}^{40}$ +84.6° (c 1, H₂O). The *dihydrochloride* crystallises from EtOH/Et₂O with m 305-306°. [Beilstein 23 III/IV 3212.]

Alizarin (1,2-dihydroxyanthraquinone) [72-48-0] M 240.2, m 290°, d_4^{20} 0.884, CI 58000, pK_1^{25} 7.45, pK_2^{25} 11.80. Alizarin crystallises from glacial acetic acid or 95% EtOH. It can also be sublimed at 110°/2mm. It is an indicator with λ_{max} at 452nm (pH 5.8) and 520nm (pH 7.2). [Beilstein 8 IV 3256.]

Alizarin-3-methyliminodiacetic acid (Alizarin Complexone) ($2H_2O$) [3952-78-1] M 421.4, m 189°(dec), pK_{Est(1)}~4.9, pK_{Est(2)}~7.5. It is purified by suspending it in 0.1M NaOH (1g in 50mL), filtering the solution and extracting alizarin with 5 successive portions of CH₂Cl₂. Then add HCl dropwise to precipitate the reagent, stirring the solution in an ice bath. Filter the precipitate onto a glass filter, wash it with cold water and dry it in a vacuum desiccator over KOH [Ingman *Talanta* 20 135 1973, *Beilstein* 14 IV 931].

Alizarin Yellow R [5-(4-nitrophenylazosalicylic acid), Mordant Orange I] [2243-76-7] M 287.2, m 253-254°(dec), >300°, CI 14030, pK²⁵ 11.17. The free acid is precipitated by adding HCl to an aqueous solution of the Na salt. After 2 recrystallisations from aqueous AcOH, it has m 255°(dec); [m 253-254°(dec) was reported by Hewitt & Fox *J Chem Soc* 79 49 1901]. The free acid recrystallises from dilute AcOH as orange brown needles. The Na salt changes colour from yellow to red when the pH is increased from 10.2 to 12.0. [Woodland et al. *J Am Chem Soc* 75 5835 1953, *Beilstein* 16 IV 372.]

RS-Allantoin [97-59-6] **M 158.1, m 238°(dec).** It crystallises from water or EtOH [Hartman et al. Org Synth Coll Vol **II** 21 1943]. [Beilstein 25 III/IV 4071.]

Alloxan [2,4,5,6(1*H*,3*H*]pyrimidine, tetrone] [50-71-5] M 142.0, m ~170°(dec), pK²⁵ 6.64. Crystallisation from water gives the *tetrahydrate*. Anhydrous crystals are obtained by crystallisation from acetone, glacial acetic acid or by sublimation *in vacuo*. [See below and *Beilstein* 24 H 500, 24 I 428, 24 II 301, 24 III/IV 2137.]

Alloxan monohydrate [2244-11-3] M 160.1, m 255°(dec), pK^{25} 6.64. Recrystallisation from H₂O gave the *tetrahydrate* in large prisms or rhombs. On heating at 100°, or on exposure to air, this is converted to the *monohydrate*. Dissolve it in its own weight of boiling H₂O and cool it for several days below 0°; the *tetrahydrate* crystallises from solution much more slowly when free from HNO₃. It is less soluble in bicarbonate solutions than in H₂O. Drying the solid over H₂SO₄ yields the *monohydrate*. The *anhydrous* crystals can be obtained by recrystallisation from dry Me₂CO or AcOH followed by washing with dry Et₂O, or by sublimation in a vacuum. On heating it turns pink at 230° and decomposes at *ca* 256°. It is acidic to litmus. [Hartman & Sheppard *Org Synth* Coll Vol III 37 *1955*.] It forms a compound with urea which crystallises from H₂O in yellow needles that become red at 170° and decompose at 185-186°. [*Beilstein* 24 H 500, 24 I 428, 24 II 301, 24 III/IV 2137.]

Alloxantin [76-24-4] M 286.2, m 253-255^o(dec) (yellow at 225^o). Alloxantin crystallises from water or EtOH and is kept under nitrogen. It turns red in air. [*Beilstein* 26 III/IV 2782.]

1-Allyl-6-amino-3-ethyluracil (Aminometradine) [642-44-4] **M 195.2, m 143-144**° (anhydrous). It crystallises from water (as monohydrate). It is a diuretic. [Beilstein 24 III/IV 4133.]

1-N-Allyl-3-hydroxymorphinan (Levallorphan) [152-02-3] M 283.4, m 180-182°, $[\alpha]_{D}^{20}$ -89° (c 3, MeOH). It crystallises from aqueous EtOH. It is a narcotic antagonist. [Schneider & Grüssner Helv Chim Acta 34 2211 1951, Hellerbach Helv Chim Acta 39 429 1956.]

5-Allyl-5-*iso*butylbarbituric acid [77-26-9] M 224.3, m 139°, 139-140°, 140-142°, pK¹⁸ 12.36. It can be recrystallised from H₂O or dilute EtOH, and sublimes at 100-120°/8-12mm. It is soluble in $*C_6H_6$, cyclohexane, tetralin and pet ether at 20°. [Butler et al. J Am Chem Soc 77 1486 1955, Beilstein 24 III/IV 2006.]

9-Aminoacridine [9-acridineamine] [90-45-9] M 194.2, m 241°, pK²⁰ 9.95. It crystallises from EtOH or acetone and sublimes at 170-180°/0.04mm [Albert & Ritchie *Org Synth* Coll Vol III 53 1955, for hydrochloride, see below]. [*Beilstein* 22 H 463, 21 II 280, 21 III/IV 4174.]

9-Aminoacridine hydrochloride monohydrate (Acramine yellow, Monacrin) [52417-22-8] **M 248.7, m** >**355°, pK**₁²⁰ **4.7, pK**₂²⁰ **9.99.** Recrystallise it from boiling H₂O (charcoal; 1g in 300 mL) to give pale yellow crystals with a neutral reaction. It is one of the most fluorescent substances known. At 1:1000 dilution in H₂O it is pale yellow with only a faint fluorescence, but at 1:100,000 dilution it is colourless with an intense blue fluorescence. [Albert & Ritchie Org Synth Coll Vol **III** 53 1955; Falk & Thomas Pharm J **153** 158 1944, Beilstein **22** H 463, **21** II 280, **21** III/IV 4174.] See previous entry for the free base.

2-Amino-4-anilino-s-triazine (Amanozine) [537-17-7] M 168.2, m 235-236°, pK_{Est} ~5.5. It crystallises from dioxane or 50% aqueous EtOH. [*Beilstein* 26 III/IV 1195.]

4-Aminoantipyrine [83-07-8] **M 203.3, m 109°.** It crystallises from EtOH or EtOH/ether. [Beilstein 25 III/IV 3554.]

2-Aminobenzothiazole [136-95-8] **M 150.2, m 132°, pK²⁰ 4.48.** The thiazole cystallises from a H₂O, aqueous EtOH, $*C_6H_6$ or pet ether. The *hydrochloride* crystallises from dilute HCl and has **m** 240.5°. [*Beilstein* **27** H 182, **27** III/IV 4824.]

6-Aminobenzothiazole [533-30-2] **M 150.2, m 87°, pK**_{Est} ~**3.** It crystallises from aqueous EtOH, pet ether or C_6H_6 /pet ether. The *hydrochloride* has **m** 305°(dec) from dilute HCl, and the *picrate* has **m** 185°(dec) from Me₂CO. [Boggust & Cocker J Chem Soc 360 1949, Beilstein **27** III/IV 4884.]

3-*o*-**Aminobenzyl-4**-methylthiazolium chloride hydrochloride [534-94-1] M 277.4, m 213°(dec). The hydrochloride crystallises from aqueous EtOH, and the *iodide hydroiodide* has m 273° (from aqueous HI). [Beilstein 27 III/IV 973.]

4-Amino-1-benzylpiperidine [50541-93-0] **M 190.3, b** ~180°/20mm, d_4^{20} 0.933, n_D^{20} 1.543, $pK_{Est(1)}$ ~ 8.3 $pK_{Est(2)}$ ~ 10.4. Purify it by distillation *in vacuo* and store it under N₂ because it absorbs CO₂. The *dihydrochloride salt* [1205-72-7] has **m** 270-273° (255°) after recrystallisation from MeOH/EtOAc or EtOH. [Brookes *J Chem Soc* 3165, 3172 1957.] The 4-methylamino-1-benzylpiperidine derivative has **b** 168-172°/17mm, n_D^{20} 1.5367 [Reitsema & Hunter *J Am Chem Soc* 70 4009 1948]. The 1-(1-benzyl-4-piperidinyl)-3-cyano-2-methylisothiourea derivative has **m** 160° from CHCl₃/Et₂O [Preparation, IR, NMR: Ried et al. *Chem Ber* 116 1547 1983, *Beilstein* 22 III/IV 3752].

2-Amino-4-chloro-6-methylpyrimidine [5600-21-5] **M 143.6, m 184-186°, pK**_{Est} ~1.0. Recrystallise it from EtOH. [*Beilstein* 24 H 84.]

2-Amino-5-chloropyridine [1072-98-6] **M 128.6, m 135-136°, pK²⁵ 4.38.** Recrystallise this base from pet ether. It sublimes at 50°/0.5mm. [*Beilstein* **22** II 332, **22/8** V 541.]

2-Amino-4-chloropyrimidine [3993-78-0] M **129.55**, m **168-169**°, m **170**°, pK_{Est} ~**1.2**. The pyrimidine crystallises in glistening plates from EtOH (m 170°, sintering at 167°). It has also been purified by

sublimation in a vacuum and recrystrallisation from H₂O. [Hilbert & Johnson *J Am Chem Soc* **52** 1155 *1930*, *Beilstein* **24** H 80, **25** III/IV 2117.]

2-Amino-3,5-dibromopyridine [35486-42-1] M **251.9, m 103-104°, pK**_{Est} ~**2.4.** Steam distil it and recrystallise it from aqueous EtOH or pet ether. [*Beilstein* **22** H 431, **22** II 333, **22** III/IV 4041.]

3-Amino-2,6-dichloropyridine [62476-56-6] **M 164.0, m 119°, b 110°/0.3mm, pK**_{Est} ~2.0. Recrystallise it from water. [*Beilstein* 22 III/IV 4093.]

2-Amino-4,6-dimethylpyridine [5407-87-4] **M 122.2, m 69-70.5°, pK²⁵ 7.84.** Recrystallise this base from hexane, ether/pet ether or *benzene. Residual *benzene is removed over paraffin-wax chips in an evacuated desiccator. The *dipicrate* crystallises from EtOH and has **m** 205-207°(dec). [*Beilstein* **22** III/IV 4210.]

2-Amino-4,6-dimethylpyrimidine [767-15-7] **M** 123.2, **m** 152-153°, **pK**²⁵ 4.95. Recrystallisation from water gives the pyrimidine with **m** 197°, but recrystallisation from acetone gives **m** 153°. [*Beilstein* 25 III/IV 2205.]

2-(Aminomethyl)piperidine [22990-77-8] **M 114.2, b 66-67°/12mm, 80-81°/18mm, d_4^{20} 0.9406, n_D^{20} 1.4854, pK_1^{20} 6.33, pK_2^{20} 9.70. Dry (over Na₂SO₄) and distil the piperidine under vacuum from KOH. It has been purified via the** *Reinekate salt* **(m** 173-174°) and its *dipicrate salt* (**m** 201°, from H₂O). [Norton et al. J Am Chem Soc 68 1330 1946, Mortimer Aust J Chem 11 84 1958, Augustine J Am Chem Soc 81 4667 1959, Beilstein 22 III/IV 3765.]

4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald) [1750-12-5] M 146.2, m 228-230°(dec), 234-235°(dec), $pK_{Est(1)}\sim 2$, $pK_{Est(2)}\sim 3$ (NH₂), $pK_{Est(3)}\sim 8$ (SH). Recrystallise Purpald from H₂O (0.6g in 300-400mL). The *benzylidene* derivative has m 245-246°(dec) from *i*-PrOH [Hoggarth J Chem Soc 4817 1952, Dickinson & Jacobson J Chem Soc, Perkin Trans I 975 1975. [Beilstein 26 III/IV 547.]

5-Amino-8-hydroxyquinoline hydrochloride [3881-33-2] **M 196.7, pK**₁²⁰ **5.67, pK**₂²⁰ **11.24.** Dissolve the hydrochloride in the minimum volume of MeOH, then add Et₂O to initiate crystallisation. The crystals are filtered off and dried [Lovell et al. *J Phys Chem* **88** 1885 *1984*]. The *dihydrochloride* [21302-43-2] has **M 233.1, m 279°(dec).** [*Beilstein* **22** III/IV 5866.]

4-Aminoimidazole-5-carboxamide hydrochloride (AICAR HCl) [72-40-2] M 162.6, m 255-256°(dec), $pK_{Est(1)} \sim 3.5$, $pK_{Est(2)} \sim 9.4$. Recrystallise the hydrochloride from EtOH. [Kuroda & Hakko J Heterocycl Chem 30 593 1993, Alhede et al. J Org Chem 56 2139 1991, Cheru et al. Heterocycles 24 1133 1992, Beilstein 25 II 221, 25 III/IV 4329.]

6-Aminoindazole [6967-12-0] **M 133.2, m 210^o, pK²⁵ 3.99.** It is recrystallised from H₂O or EtOH and sublimes in a vacuum. [*Beilstein* 25 H 317.]

3-Amino-5-mercapto-1,2,4-triazole [16691-43-3] **M 116.1, m 298°, pK**_{Est(1)}~ **3.0, pK**_{Est(2)}~ **9.** Recrystallise the triazole from H₂O and dry it *in vacuo*. The *acetyl* derivative has **m** 325°(dec) after recrystallisation from H₂O. [*Beilstein* **26** III/IV 1351.] It has also been recrystallised from EtOH/H₂O (3:1, 1g in 50 mL, 50% recovery), **m** 300-302° (dec subject to heating rate), (λ_{max} 263nm, log ε 4.12). The *S-benzyl* derivative, when crystallised from *C₆H₆/EtOH (20:1), or CHCl₃/Et₂O has **m** 109-111° [Godfrey & Kruzer *J Chem Soc* 3437 1960, *Beilstein* **26** III/IV 1351.]

2-Amino-4-methoxy-6-methylpyrimidine [7749-47-5] **M 139.2, m 157-159°, 158-158.5°, 158-160°, pK**_{Est} ~ 6.0. Recrystallise it from H₂O. The *picrate* has **m** 220-221°(dec). [Baker et al. *J Am Chem Soc* 69 3072, 3075 1947, Sirakawa et al. *Yakugaku Zasshi* 73 598 1953, Backer & Grevenstuk *Recl Trav Chim, Pays-Bas* 61 291 1942, *Beilstein* 25 III/IV 3385.]

360

8-Amino-6-methoxyquinoline [90-52-8] M 174.2, m 41-42°, 51°, b 137-138°/1mm, pK^{70.1} 3.38. Distil it under N₂ and at high vacuum, then recrystallise it several times from MeOH (0.4mL/g). It remains colourless for several months when purified in this way [Elderfield & Rubin J Am Chem Soc 75 2963 1953]. The hydrobromide [312693-53-1] M 255.1 has m 238°(dec). [Beilstein 22 III/IV 5934.]

7-Amino-4-methylcoumarin [26093-31-2] **M** 175.2, **m** 224-229°(dec), $pK_{Est} \sim 3.2$. Dissolve it in 5% HCl, filter and basify with 2M ammonia. The precipitate is dried in a vacuum and recrystallised from dilute EtOH. It yields a blue solution and is light sensitive. [Sigler *Synthesis* 614 1980, Kanaoka et al. *Chem Pharm Bull Jpn* 30 1485 1982, *Beilstein* 18/11 V 445.]

2-Amino-3-methylpyridine (2-amino-3-picoline) [1603-40-3] **M 108.1, m 33.2°, b 221-222°, pK**²⁵ **7.24.** Recrystallise the picoline three times from *benzene, most of the residual *benzene being removed from the crystals by standing over paraffin wax chips in an evacuated desiccator. The amine is also transferred to a separating funnel under N₂, and left in contact with NaOH pellets for 3hours with occasional shaking. It is then placed in a vacuum distilling flask where it is refluxed gently in a stream of dry N₂ before fractionally distilling it. [Mod et al. J Phys Chem **60** 1651 1956, Beilstein **22/9** V 212].

2-Amino-4-methylpyridine (2-amino-4-picoline) [695-34-1] **M 108.1, m 99.2°, b 230°, pK²⁵ 7.48.** Crystallise it from EtOH or a 2:1 *benzene/acetone mixture, and dry it under vacuum as in the prevous entry. [Beilstein 22/9 V 325.]

2-Amino-5-methylpyridine (6-amino-3-picoline) [1603-41-4] M 108.1, m 76.5°, b 227°, pK²⁵ 7.22. Crystallise it from acetone. [Beilstein 22/9 V 289.]

2-Amino-6-methylpyridine (6-amino-2-picoline) [1824-81-3] **M 108.1, m 44.2°, b 208-209°, pK**²⁵ **7.41.** Crystallise it three times from acetone and dry it under vacuum at *ca* 45°. Alternatively, keep it in contact with NaOH pellets for 3hours, with occasional shaking, decant and fractionally distil it [Mod et al. *J Phys Chem* **60** 1651 1956]. It also recrystallises from CH_2Cl_2 on addition of pet ether. [Marzilli et al. *J Am Chem Soc* **108** 4830 1986, *Beilstein* **22/9** V 210.]

2-Amino-4-methylpyrimidine [108-52-1] **M 109.1, m 159-160°, 161°, pK^{20} 4.15.** Crystallise the pyrimidine from H₂O or EtOH and sublime it in a vacuum. The *picrate* crystallises from EtOH and has **m** 235-236°(dec). [*Beilstein* 24 H 84, 25 III/IV 2152.]

2-Amino-5-methylpyrimidine [50840-23-8] **M 109.1, m 193.5°, pK**_{Est} ~4.0. Crystallise it from water or *benzene/pet ether and sublime it at $50^{\circ}/0.5$ mm. [*Beilstein* 24 H 87.]

4-Amino-2-methylquinoline (4-aminoquinaldine) [6628-04-2] M 158.2, m 168°, b 333°/760mm, pK²⁰ 9.42. Recrystallise it from *benzene/pet ether. [*Beilstein* 22/10 V 347.]

6-Aminonicotinic acid [3167-49-5] M 138.1, m 312°(dec), $pK_{Est(1)} \sim 2.2$ (CO₂H), $pK_{Est(2)} \sim 6.5$. Crystallise the acid from aqueous acetic acid. Dry it *in vacuo* at 70°. [Beilstein 22 III/IV 6726.]

6-Aminopenicillanic acid [551-16-6] M 216.2, m 208-209°, $[\alpha]_{546}$ +327° (in 0.1M HCl), pK₁²⁵ 2.30, pK₂²⁵ 4.90. This acid crystallises from water. [Kleppe & Stroninger J Biol Chem 254 4856 1979, Beilstein 27 III/IV 2858.]

2-Aminoperimidine [28832-64-6] **M 183.1, m 239°, b 170-175°/1.5mm, pK**_{Est} ~7.9 (free base). It crystallises from EtOH/H₂O (1:1). It precipitates as the *hydrochloride* with dilute HCl which has **m** 282°. [Dasgupta et al. Anal Chim Acta **94** 205 1977, Beilstein **24** H 193, **25** III/IV 2677.]

2-Aminoperimidine hydrobromide [40835-96-9] **M 264.1, m 299°, pK**_{Est} ~7.9 (free base). Purify the hydrobromide by boiling a saturated aqueous solution with charcoal, filtering and leaving the salt to crystallise. Store this *dihydrate salt* in a cool, stoppered flask in the dark place. The *anhydrous salt* is obtained by heating at 80°/4hours, and it is hygroscopic. The solubilities of the hydrobromide at 26° are 2.4% in EtOH,

0.6% in H₂O, 0.3% in Et₂O, 0.1% in Me₂CO and 0.003% in $C_{6}H_{6}$. [Dasgupta et al. Anal Chim Acta **94** 205 1977, Dasgupta & West Microchim Acta **2** 505 1978, Dasgupta et al. Anal Chem **50** 1793 1978, Beilstein **24** H 193, **25** III/IV 2677.]

2-Aminopyridine [504-29-0] **M 94.1, m 58°, b 204-210°, pK** $_{1}^{25}$ **-7.6, pK** $_{2}^{25}$ **6.71.** It crystallises from *benzene/pet ether (b 40-60°) or CHCl₃/pet ether. [*Beilstein* **22/8** V 280.]

3-Aminopyridine [462-08-8] **M 94.1, m 64°, b 248°, pK** $_{1}^{25}$ **-1.5, pK** $_{2}^{25}$ **6.03.** It crystallises from *benzene, CHCl₃/pet ether (b 60-70°), or *benzene/pet ether (4:1). [*Beilstein* **22**/9 V 3.]

4-Aminopyridine [504-24-5] **M 94.1, m 160°, b 180°/12-13mm, pK** $_{1}^{25}$ **-6.55, pK** $_{2}^{25}$ **9.11** (**9.18**). Crystallise the aminopyridine from *benzene/EtOH, then recrystallise it twice from water, then crush and dry it for 4hours at 105° [Bates & Hetzer *J Res Nat Bur Stand* **64A** 427 *1960*]. It has also been crystallised from EtOH, *benzene, *benzene/pet ether, toluene and sublimes in a vacuum. [*Beilstein* **22/9** V 106.]

2-Aminopyrimidine [109-12-6] M 95.1, m 126-127.5°, pK^{20} 3.45. Crystallise 2-aminopyrimidine from *C₆H₆, EtOH or H₂O. [Beilstein 25 III/IV 2071.]

4-Aminopyrimidine [591-54-8] **M 95.1, m 149-151°, 154-156°, pK²⁵ 5.69.** Recrystallise 10.6g of aminopyrimidine from hot EtOAc (200mL) to give 7.4g colourless needles as first crop; evaporation to 25mL gives a second crop of 1.7g. The *hydroiodide* has **m** 180°. The *picrate* has **m** 225°. [Brown J Soc Chem Ind (London) **69** 353 1950, Beilstein **24** H 81, **24** III/IV 2130.]

5-Aminopyrimidine [591-55-9] **M 95.1, m 171-172**° (with sublimation), pK^{25} 2.52. It is purified by conversion to the MgCl₂ complex in a small volume of H₂O. The complex (~ 5g) is dissolved in the minimum volume of hot H₂O, passed through a column of activated Al₂O₃ (200g), and the column is washed with EtOH. Evaporation of the EtOH gives a colourless residue of the aminopyrimidine which is recrystallised from *C₆H₆ (toluene could also be used) which forms needles at first, then prisms. It melts with sublimation. Acetylation yields 5-acetamidopyrimidine which crystallises from *C₆H₆, **m** 148-149°. [Whittaker J Chem Soc 1565 1951.]

Aminopyrine (4-dimethylaminoantipyrene) [58-15-1] M 231.3, m 107-109°, 108°, pK_1^{25} -2.22, pK_2^{25} 4.94. It crystallises from pet ether, sublimes between 80° and 90°, and forms metal complexes. [*Beilstein* 25 H 452, 25 III/IV 3555.]

3-Aminoquinoline [580-17-6] **M 144.2, m 93.5**°, pK_1^{20} -0.58, pK_2^{20} 4.94. It crystallises from *C₆H₆, toluene, hexane and aqueous EtOH. [*Beilstein* 22 III/IV 4605, 22/10 V 233.]

4-Aminoquinoline [578-68-7] **M 144.2, m 155-155.5°, 158°, pK_1^{25} -7.11(5.99), pK_2^{20} 9.13.** It has been purified by zone refining and recrystallisation from *C₆H₆, EtOH or H₂O. The *hydrochloride* has **m** 308° (from MeOH), and the *picrate* has **m** 277° (from EtOH). [Albert et al. *J Chem Soc* 2240 1948, Beilstein **22** III/IV 4611, **22/10** V 341.]

5-Aminoquinoline [611-34-7] **M 144.2, m 110°, b 184°/10mm, 310°/760mm, pK_1^{20} 0.97(0.49), pK_2^{20} 5.42. It crystallises from pentane and from *benzene or EtOH. The** *picrate* **has m** 209-210°(dec) (202° dec) (from aqueous EtOH). [*Beilstein* 22 III/IV 4669, 22/10 V 297.]

6-Aminoquinoline [580-15-4] M 144.2, m 117-119°, 120°, b 146°/0.3mm, 192-195°/14mm, pK_1^{20} 1.63, pK_2^{20} 5.59. It is purified by column chromatography on a SiO₂ column using CHCl₃/MeOH (4:1) as eluent. It crystallises from *C₆H₆ or *C₆H₆/pet ether and is an **irritant**. The *styphnate* has m 239-240° (from EtOH) and m 242-243° (from aqueous Me₂CO). [Barrett et al. *J Chem Soc* 50, 57 1953, *Beilstein* 22 III/IV 4681, 22/10 V 303.]

8-Aminoquinoline [578-66-5] M 144.2, m 70°, b 140.5-141°/7mm, 123°/5mm, pK_1^{20} -0.52, pK_2^{20} 3.95. 8-Aminoquinoline crystallises from EtOH, ligroin, octane or H₂O, and complexes with metals. [*Beilstein* 22 III/IV 4708, 22/10 V 316.]

2-Aminothiazole [96-50-4] **M 108.1, m 93°, b 140°/11mm, pK²⁰ 5.36.** It crystallises from pet ether (b 100-120°), or EtOH. [Beilstein 27 III/IV 4574.]

1-Amino-1,2,4-triazole [24994-60-3] **M 84.1, m 91-93°, pK**_{Est} ~2. The triazole crystallises from water. [Barszez et al. *J Chem Soc, Dalton Trans* 2025 *1986*, Temple & Montgomery *1,2,4-Triazoles* – *The Chemistry of Heterocyclic Compounds* Vol 37 (Weissberger & Taylor eds.). Wiley & Sons NY *1981*, ISBN 0-471-0656-6.]

3-Amino-1,2,4-triazole (Amitrol) [61-82-5] **M 84.1, m 159°, pK**²⁰ **4.04, pK**²⁰ **11.08.** It crystallises from EtOH (charcoal), then three times from dioxane [Williams et al. J Phys Chem 61 261 1957]. [Beilstein **26** H 137.] **Possible carcinogen.** [Beilstein **26** H 137, Temple & Montgomery 1,2,4-Triazoles – The Chemistry of Heterocyclic Compounds Vol 37 (Weissberger & Taylor eds.). Wiley & Sons NY 1981, ISBN 0-471-0656-6.]

4-Amino-1,2,4(4H)-triazole [584-13-4] **M 84.1, m 80-81°, pK²⁵ 3.23.** It crystallises from EtOH/ Et₂O or H₂O. The hydrochloride has **m** 151-152° (from EtOH, 1g/10mL). [Allen & Bell Org Synth Coll Vol **III** 96 1955, Barszez et al. J Chem Soc, Dalton Trans 2025 1986, Beilstein **26** H 16, **26** II 7, **26** III/IV 40, Temple & Montgomery 1,2,4-Triazoles – The Chemistry of Heterocyclic Compounds Vol 37 (Weissberger & Taylor eds.). Wiley & Sons NY 1981, ISBN 0-471-0656-6.]

7-Amino-4-(trifluoromethyl)coumarin, [53518-15-3] **M 229.1, m 222°, pK**_{Est} ~3.1. Purify the coumarin by column chromatography on a C18 column, elute with acetonitrile/0.01M H₂O/HCl (1:1), and recrystallise it from isopropanol. Alternatively, it is eluted from a silica gel column with CH₂Cl₂, or by extracting a CH₂Cl₂ solution (4g/L) with 1M aqueous NaOH (3 x 0.1L), followed by drying (MgSO₄), filtration and evaporation. [Bissell *J Org Chem* **45** 2283 1980, Zimmermann et al. *Anal Biochem* **70** 258 1976.]

4(6)-Aminouracil (4-amino-2,6-dihydroxypyrimidine) [873-83-6] **M 127.1, m >350°, pK**₁²⁰ **0.00 (basic), pK**₂²⁰ **8.69 (acidic), pK**₃²⁰ **15.32 (acidic).** Purify the aminouracil by dissolving it in 3M aqueous NH₃, filtering hot, and adding 3M formic acid until precipitation is complete. Cool, filter off (or centrifuge), wash well with cold H₂O, then EtOH and dry it in air. Dry it further in a vacuum at ~80°. [Barlin & Pfeiderer J Chem Soc (B) 1424 1971, Beilstein 25 III/IV 4107.]

Amodiaquin [4-(3-dimethylaminomethyl-4-hydroxyanilino)-7-chloroquinoline] [86-42-0] M 355.9, m 208°(dec). Amodiaquin crystallises from 2-ethoxyethanol or EtOH. [Burckhalter et al. J Am Chem Soc 70 1363 1948, Beilstein 22 III/IV 4647.]

2-*n***-Amylpyridine (2-***n***-pentylpyridine) [2294-76-0] M 149.2, b 63.0°/2mm, 206.5-207°/~760mm, n_D^{26} 1.4861, pK²⁵ 6.00. Dry it with NaOH for several days, then distil it from CaO under reduced pressure, taking the middle fraction and redistilling it. The** *picrate* **has m 72-72.8° (from EtOH). [***Beilstein* **20 III/IV 2835.]** *3-n-Pentylpyridine***, purified as the 2-isomer, has b 110-112°/20mm, 224-226°/748mm, and the** *picrate* **has m 79.5-80°(from EtOH). [***Beilstein* **20 III/IV 2835.]**

4-*n*-Amylpyridine [2961-50-4] M 149.2, b 78.0% 2.5mm, 229-230% 760mm, n_D^{20} 1.4908, pK_{Est} ~6.1. It is dried with NaOH for several days, then distilled from CaO under reduced pressure, taking the middle fraction and redistilling it. The *picrate* has m 104% (from EtOH). [*Beilstein* 20 III/IV 2836.]

Antipyrine [2,3-dihydro-1,5-dimethyl-3-oxo-2-phenylpyrazole] [60-80-0] M 188.2, m 114°, b 319°, pK²⁵ 1.45. Antipyrine crystallises from EtOH/water mixture, *benzene, *benzene/pet ether or hot water (charcoal), and the crystals are dried under a vacuum. [Beilstein 24 H 27, 24 III/IV 75.]

Aspergillic acid (2-hydroxy-3-isobutyl-6-[1-methylpropyl]pyrazine 1-oxide) [490-02-8] M 224.3, m 97-99°, pK^{25} 5.5, $[\alpha]_{D}^{20}$ +13.3° (c 4, EtOH). It is recrystallised from MeOH and is sublimed at 80°/10⁻³mm. [Dutcher J Biol Chem 171 321 1947, Beilstein 24 III/IV 235.]

Atropine [51-55-8] M 289.4, m 114-116°, pK_1^{20} 4.35, pK^{18} 9.85. Atropine crystallises from acetone or hot water, and sublimes at ~ 100°/high vacuum. [*Beilstein* 21/1 V 235.]

8-Azaadenine [1123-54-2] **M 136.1, m 345°(dec), pK_1^{20} 2.65, pK_2^{20} 6.29. 8-Azaadenine crystallises from H₂O. [Beilstein 25 III/IV 4157.]**

2-Azacyclotridecanone (laurolactam) [947-04-6] **M 197.3, m 152°.** 2-Azacyclotridecanone crystallises from CHCl₃ and is stored over P_2O_5 in a vacuum desiccator. [Beilstein 26/1 V 566.]

8-Azaguanine [134-58-7] M 152.1, m >300°, pK_1^{20} 1.04, pK_2^{20} 6.29. Dissolve it in hot M NH₄OH, filter, and cool. Recrystallise it, and wash it with water, then dry it in a vacuum. [*Beilstein* 26 III/IV 4171.]

7-Azaindole (1*H*-pyrrolo[2,3b]pyridine) [271-63-6] M 118.1, m 105-106°, pK²⁰ 4.57. Recrystallise it repeatedly from EtOH, then sublime it in a vacuum [Tokumura et al. *J Am Chem Soc* 109 1346 1987]. The *N*-acetate has m 65-66° (from $C_{6}H_{6}$), and the *picrate* has m 232-233° (from Me₂CO) [Clemo & Swan *J Chem Soc* 603 1945, Beilstein 23 III/IV 1105.]

1-Azaindolizine (1,7a-diazaindene, imidazo[1,2-a]pyridine) [274-76-0] M 118.1, b 72-73% (1,73%) M 118.1, in aqueous HCl) 1-Azaindolizine is purified by distillation or gas chromatography. [Bower & Ramage J Chem Soc 4506 1957, Armarego J Chem Soc 4226 1964, Beilstein 23 II 1554, 23 III/IV 1104.]

8-Azapurine (1*H*-1,2,3-triazolo[4,5-*d*]pyrimidine, 1,2,3,4,6[3*H*]penta-azaindene) [273-40-5] M 121.1, m 174-175° (effervescence, m depends on heating rate), pK_1^{20} 2.05 (equilib with covalent hydrate), pK_2^{20} 4.84. Sublime 8-azapurine at 120-130°/0.01mm and recrystallise it from 3 parts of EtOH. [Albert J Chem Soc(B) 427 1966, Beilstein 26 III/IV 4108.]

Azetidine (trimethyleneimine) [503-29-7] M 57.1, b 19%/132.5mm, 61.3-61.5%/760mm, d_4^{20} 0.846, n 1.432, pK²⁵ 11.29. Azetidine is a flammable, hygroscopic liquid smelling of ammonia, which absorbs CO₂ from air and should be kept under Argon. Purify it by drying it over solid KOH and distilling it through a short Vigreux column (p 11) at atmospheric pressure (under Argon) and keeping the pot temperature below 210°. It is moisture sensitive. The *hydrochloride* [36520-39-5] M 93.6 has m > 300° and the *hydroiodide* has m 146.5°(from EtOH). The *N-Me* derivative has m 112°(from *C₆H₆/pet ether), and the *N-phenylcarbamoyl* derivative has m 189-190°(from EtOH). [Searles et al. *J Am Chem Soc* 78 4917 1956, *Beilstein* 20 H 2, 20 I 3, 20 III 3, 20 III/IV 53, 20/1 V 136.]

Aziridine (ethyleneimine) [151-56-4] M 43.1, b 55-56°/756mm, 56°/760mm, d_4^{24} 0.8321, pK²⁵ 8.00. Redistil it in an Ar or N₂ atmosphere in a fume hood, and store it over KOH in sealed bottles in a refrigerator. Commercial aziridine has been dried over sodium and distilled from the metal through an efficient column before use [Jackson & Edwards J Am Chem Soc 83 355 1961, Wenker J Am Chem Soc 57 2328 1935]. It is a weaker base than Me₂NH (pK²⁵ 10.87) but is caustic to the skin. It should not be inhaled, causes inflammation of the eyes, nose and throat, and one may become sensitized to it. It is soluble in H₂O, has an ammoniacal smell and reacts with CO₂. Pure aziridine is comparatively stable but polymerises in the presence of traces of H₂O and is occasionally explosive in the presence of acids. CO₂ is sufficiently acidic to cause polymerisation (forms linear polymers) which is not free radical promoted. It is stable in the presence of bases. The violet 2:1 Cu complex crystallises from EtOH containing a few drops of aziridine and adding Et₂O, and has men 142°(dec). The picrate has m 142°. [O'Rourke et al. J Am Chem Soc 78 2159 1956.] It has also been dried over BaO and has been distilled from sodium under nitrogen. [Allen et al. Org Synth Coll Vol IV 433 1963, Beilstein 20 III/IV 1.] TOXIC.

Azuleno(1,2-b)thiophene [25043-00-9] M 184.2. It is crystallised from cyclohexane, then sublimed *in vacuo*.

Azuleno(2,1-b)thiophene [248-13-5] M 184.2. It is crystallised from cyclohexane, then sublimed *in vacuo*.

Azure A (3-amino-7-dimethylaminophenazin-5-ium chloride) [531-53-3] M 291.8, CI 52005, m > 290°(dec), λ_{max} 633nm, pK²⁵ 7.2. Azure A has been twice recrystallised from H₂O and dried at 100°/1hour in an oven. [*Beilstein* 27 III/IV 5151.]

Azure B (3-dimethylamino-7-methylaminophenazin-5-ium chloride) [531-55-5] M 305.8, CI 52010, m > 201°(dec), λ_{max} 648nm, pK²⁵ 7.4. Azure B has been twice recrystallised from H₂O and dried at 100°/1hour in an oven. [*Beilstein* 27 III/IV 5151.]

Azure C (3-amino-7-methylaminophenazin-5-ium chloride) [531-57-7] M 277.8, λ_{max} 616nm, pK²⁵ 7.0. Azure C has been twice recrystallised from H₂O, and dried at 100°/1hour in an oven.

Barbituric acid [6-hydroxypyrimidin-2,4-dione] [67-52-7] M 128.1, m 250°(dec), pK_1^{25} 3.99, pK_2^{25} 12.5. Recrystallise it twice from H₂O, then dry it for 2 days at 100°. [Beilstein 24 III/IV 1873.]

Benzimidazole [51-17-2] **M 118.1, m 172-173°, pK_1^{25} 5.53, pK_2^{25} 11.70. It crystallises from water or aqueous EtOH (charcoal) and is dried at 100° for 12hours. [***Beilstein* **23 H 131, 23/6 V 196.]**

2-Benzimidazolylacetonitrile [4414-88-4] **M** 157.2, **m** 200-205°(dec), 209.7-210.7°(corrected), 210°. It is recrystallised from aqueous EtOH. It has also been recrystallised from hot H₂O using charcoal, and finally from aqueous EtOH. [Copeland & Day J Am Chem Soc 65 1072 1943, Beilstein 25 III/IV 820.]

Benzo-15-crown-5 [14098-44-3] M 268.3, m 78-80°. It is recrystallised from *n*-heptane. IRRITANT. [Vögtle ed, Host Guest Complex Chemistry in *Topics in Current Chemistry* p98 1981, Beilstein 19/10 V 618.]

Benzo-18-crown-6 [14098-24-9] **M 312.2, m 42-45°, 43-43.5°.** Purify it by passage through a DEAE cellulose column in cyclohexane. It recrystallises from *n*-hexane. Its *thiourea complex* has **m** 127° [5-6 mol of urea to ether, Pedersen J Org Chem 36 1690 1971]. The stability constants of the Na⁺, K⁺, Rb⁺, Cs⁺, Tl⁺ and Ba²⁺ complexes are described in Hofmanova et al. *Inorg Chim Acta* 28 73 1978. [NMR: Live & Chan J Am Chem Soc 98 3769 1976]. [Beilstein 19/12 V 618.] IRRITANT.

Benzo[3,4]cyclobuta[1,2-*b*]**quinoxaline** [259-57-4] **M 204.2, m dec >250°.** It is purified by sublimation under reduced pressure.

Benzofuran (coumarone) [271-89-6] M 118.1, b 62-63°/15mm, 97.5-99.0°/80mm, 170-173°/atm, 173-175° (169)/760mm, d_4^{20} 1.0945, n_D^{20} 1.565. Benzofuran is steam distilled, dissolved in Et₂O, washed with 5% aqueous NaOH, saturated NaCl, dried (Na₂SO₄), evaporated and redistilled. UV: λ_{max} 245, 275, 282nm (log ε 4.08, 3.45, 3.48). The *picrate* has m 102-103°. [Burgstahler & Worden *Org Synth* Coll Vol V 251 1973, NMR: Black & Heffernan Aust J Chem 18 353 1965, Beilstein 17/2 V 3.]

2-Benzofurancarboxylic acid [496-41-3] **M 162.1, m 192-193°, pK**_{Est} ~3.2. The acid crystallises from water. [Beilstein 18/6 V 419.]

Benzofurazan [273-09-6] **M 120.1, m 55°.** Purify benzofuran by crystallisation from EtOH and by sublimation. [*Beilstein* **27** I 740.]

5,6-Benzoquinoline (benzo[f]quinoline) [85-02-9] **M 179.0, m 93°, 94°, b 350°, pK²⁰ 5.11.** Purify as 3,4-benzoquinoline above. The *picrate* has **m** 258.1-259° (from EtOH or H₂O). [Albert et al. *J Chem* Soc 2240 1948, Beilstein **20** III/IV 4009, **20/8** V 220.]

7,8-Benzoquinoline (benzo[h]quinoline) [230-27-3] **M 179.0, m 52.0-52.5°, pK²⁰ 4.21.** Purify it as for 3,4-benzoquinoline above. The *picrate* has **m** 196°(from Me₂CO). [*Beilstein* **20** H 463, **20** III/IV 4003, **20/8** V 215.]

1,2,3-Benzothiadiazole [273-77-8] **M 136.2, m 35°, 36-37°, b 63°/0.5mm, pK**_{Est} ~<0. 1,2,3-Benzothiadiazole crystallises from pet ether, and has λ_{max} at 264 and 306nm in hexane. [Overberger et al. *J Org Soc* 24 1407 1959, *Beilstein* 27 III/IV 7113.]

2,1,3(1,2,5)-Benzothiadiazole [272-13-2] M 136.2, m 44°, b 206°/760mm, pK_{Est} <0. 2,1,3-Benzothiadiazole crystallises from pet ether and has UV λ_{max} at 221-222, 304 and 330nm in EtOH. [Sanvicki & Carr J Org Soc 22 503 1959, Beilstein 27 III/IV 7118.]

1-Benzothiophene (benzo[b]thiophene, thianaphthene) [95-15-8] M 134.2, m 29-32°, 30°, 31-32°, 32°, b 100°/16mm, 103-105°/20mm, 221-222°/760mm, $d_4^{32.2}$ 1.1484, n_D^{39} 1.6306. 1-Benzothiophene has the odour of naphthalene. If the IR spectrum is not very good, then suspend it in a faintly alkaline aqueous solution and steam distil it. Extract the distillate with Et₂O, dry the extract (CaCl₂), filter, evaporate the solvent and fractionate the residue. The distillate sets solid. The *sulfoxide* has m 142°, the *picrate* has m 148-149° (yellow crystals from EtOH) and the *styphnate* has m 136-137°. [Hansch & Lindwall J Org Chem 10, 381 1945, Meyer & Meyer Chem Ber 52B 1249 1919, Weisgerber & Kruber 53 1551 1920, Iddon & Scrowston Adv Heterocycl Chem 11 177 1970, Beilstein 17/2 V 6.]

1,2,3-Benzotriazole [95-14-7] M 119.1, m 96-97°, 98.5°, 100°, b 159°/0.2mm, 204°/15mm, pK_1^{20} 1.6, pK_2^{20} 8.64. 1,2,3-Benzotriazole crystallises from toluene, CHCl₃, Me₂NCHO or a saturated aqueous solution, and is dried at room temperature or in a vacuum oven at 65°. Losses are less if the material is distilled in a vacuum. CAUTION: may EXPLODE during distillation; necessary precautions must be taken. [Damschroder & Peterson Org Synth Coll Vol III 106 1955, Beilstein 26 III/IV 93.]

O-Benzotriazol-1-yl-*N,N'*,*N*',*N*',*N*',**tetramethyluronium hexafluorophosphate (HBTU)** [94790-37-1] **M 379.2, m 200° (dec), 250°, 254°(dec).** Wash the salt with H₂O (3x), CH₂Cl₂ (3x), dry and recrystallise it from MeCN. Dry it in a vacuum and store it cold in the dark [Dourtoglou et al. *Tetrahedron Lett* 1269 1978, NMR: Dourtoglou and Gross Synthesis 572 1984].

Benzoxazolinone (2-hydroxybenzoxazole) [59-49-4] M 135.1, m 137-139°, 142-143°(corrected), b 121-213°/17mm, 335-337°/760mm. Benzoxazolinone is purified by recrystallisation from aqueous Me₂CO followed by distillation at atmospheric pressure, then in a vacuum. The *methyl mercury salt* recrystallises from aqueous EtOH and has m 156-158°. [Bywater et al. *J Am Chem Soc* 67 905 1945, Beilstein 27 III/IV 2677.]

S-(+) and R-(-) 1-Benzoyl-2-tert-butyl-3-methyl-4-imidazolinone [R- 101055-57-6] [S-101055-56-5] M 260.3, m 142-143°, 145.6-146.6°, 145-147°, $[\alpha]_{546}^{20}$ (+) and (-) 155°, $[\alpha]_{D}^{20}$ (+) and (-) 133° (c 1, CHCl₃). Recrystallise these chiral imidazolinones from boiling EtOH (solubility is 1.43g/mL) or better by dissolving in CH₂Cl₂ and adding pentane, filtering and drying for at least 12hours at 60°/0.1mm and sublime them at 135°/0.01mm. They have also been purified by flash column chromatography through Merck silica gel at 0.04-0.063mm and using Et₂O/pet ether/MeOH (60:35:5) as eluent. They are then recrystallised from EtOH/pet ether. [IR, NMR: Seebach et al. *Helv Chim Acta* 70 237 1987, Fitzi & Seebach *Angew Chem, Int Ed Engl* 25 345 1986.] The *racemate* is purified in a similar manner and has m 104-105° [NMR: Seebach et al. *Helv Chim Acta* 68 949 1985].

2-Benzoylpyridine [91-02-1] M **183.2, m 41-43°, 48-50°, 72°/0.02mm, 104-105°/0.01mm,** n_D^{24} **1.6032, pK**_{Est} ~2.4. Dissolve 2-benzoylpyridine in Et₂O, shake it with aqueous NaHCO₃, H₂O, dry it over MgSO₄ and evaporate. The residue solidifies on cooling. The solid can be recrystallised from pet ether.

Its *hydrochloride* crystallises from Me₂CO, **m** 126-127°, and the 2,4-*dinitrophenylhydrazone* has **m** 193-195°. It distils at high vacuum. [Kinkerton & Thames *J Organomet Chem* **24** 623 1970, *Beilstein* **21/8** V 566.]

*N*⁶-Benzyladenine [1214-39-7] M 225.3, m 231-232°, 232.5°(dec), pK_{Est(1)}~ 4.2, pK_{Est(2)}~ 10.1. It is purified by recrystallisation from aqueous EtOH. It has λ_{max} at 207 and 270nm (H₂O), 268 nm (pH 6), 274nm (0.1 N HCl) and 275nm (0.1 N NaOH). [Daly *J Org Chem* 21 1553 1956, Bullock et al. *J Am Chem Soc* 78 3693 1956, *Beilstein* 26 III/IV 3575.]

1-Benzyl-1-aza-12-crown-4 (10-benzyl-1,4,7-trioxa-10-azacyclododecane) [84227-47-4] M 265.4, 122-125% (0.03mm, 140-143% (0.05mm, d_4^{20} 1.09, n_D^{20} 1.52, $pK_{Est} \sim 7.7$. Dissolve it in CH₂Cl₂ or CCl₄ (1g in 30mL), wash it with H₂O (30mL), brine (30mL), H₂O (30 mL) again, dry (MgSO₄ or Na₂SO₄), and evaporate. The residue in CH₂Cl₂ is chromatographed through Al₂O₃ (eluting with 10% EtOAc in hexane); evaporate, collect the correct fractions and distil (Kügelrohr) them. Log K_{Na} in dry MeOH at 25% for Na⁺ complex is 2.08. [White et al. *Tetrahedron Lett* 26 151 1985, Arnold et al. J Org Chem 53 5652 1988.]

2-Benzyl-1,3-dioxolane [101-49-5] **M 164.2, b 98-99%/1mm, 110%/5mm, 137-138%/34mm, 240-242%/atm, d _{4}^{20} 1.087, n_{D}^{20} 1.532. Dissolve 2-benzyl-1,3-dioxolane in CH₂Cl₂, wash well with 1M NaOH, dry over K₂CO₃, filter, evaporate and distil it through a short path still (Kügelrohr). It has also been purified by preparative gas chromatography. [Raber & Guida Synthesis 808 1974, Lloyd & Luberoff J Org Chem 34** 3949 1969, Beilstein **19** III/IV 220.]

S-(+)- and R-(-)- Benzyl glycidyl ether (1-benzyloxyoxirane) [S:14618-80-5] [R:16495-13-9] M 164.2, b 68°/10⁻⁴ mm, 105°/0.4mm, d_4^{20} 1.072, n_D^{20} 1.517, $[\alpha]_{546}^{20}$ (+) and (-) 5.5°, $[\alpha]_D^{20}$ (+) and (-) 5.1° (c 5, toluene), $[\alpha]_D^{20}$ (+) and (-) 1.79° (c 5.02, CHCl₃), $[\alpha]_D^{21}$ (+) and (-) 15.3° (neat). This ether in EtOAc is dried (Na₂SO₄), then purified by flash chromatography using pet ether/EtOAc (5:1) as eluent. The ether distils through a short path distillation apparatus (Kügelrohr) as a colourless liquid. Alternatively, dissolve it in CHCl₃, wash it with H₂O, dry (Na₂SO₄), evaporate and purify by silica gel chromatography. [Anisuzzamen & Owen J Chem Soc 1021 1967, Takano et al. Heterocycles 16 381 1981, Lipshutz et al. Org Synth 69 82 1990, Takano et al. Synthesis 539 1989, Honda et al. Chem Pharm Bull Jpn 39 1385 1991, Beilstein 12 IV 2277.]

3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolinium chloride [4568-71-2] **M 269.8, m 142-144°, 145-147°.** Purify the chloride by recrystallisation from EtOH or H₂O. If placed in a bath at 125° and heated at 2°/minute, the melting point is 140.5-141.4°. [Livermore & Sealock J Biol Chem 167 699 1947, Maier & Metzler J Am Chem Soc **79** 4386 1957, Beilstein **27** III/IV 1758.]

5-Benzyloxyindole [1215-59-4] **M 223.3, m 96-97°; 100-103°, 104-106°, pK²⁵ <0.** It is recrystallised from C_6H_6 /pet ether or pet ether. The *picrate* forms red crystals from C_6H_6 and has **m** 142-143°. [Burton & Leong *Chem Ind* (London) 1035 1953, Ek & Witkop J Am Chem Soc **76** 5579 1954, fluorescence: Bridges & Williams *Biochem J* **107** 225 1968, *Beilstein* **27** III/IV 1758.]

1-Benzyl-4-piperidone [3612-20-2] M **189.3, b 107-108% 0.2mm, 114-116% 0.3mm, 143-146% 5mm, 157-158% 11mm, d _4^{20} 1.059, n** $_D^{20}$ **1.538.** If the physical properties show contamination, then dissolve it in the minimum volume of H₂O, made strongly alkaline with aqueous KOH, extract it with toluene several times, dry the extract with K₂CO₃, filter, evaporate and distil the residue at high vacuum using a bath temperature of 160-190%, and redistil it. [Brookes & Walker *J Chem Soc* 3173 *1957*, Bolyard *J Am Chem Soc* **52** 1030 *1930.*] The *hydrochloride* has **m** 159-161% (from Me₂CO/Et₂O), and the *picrate* has **m** 174-182% (from Me₂CO/Et₂O). [Grob & Brenneisen *Helv Chim Acta* **41** 1184 *1958*, *Beilstein* **21/6** V 424.]

2-Benzylpyridine [101-82-6] **M 169.2, b 98.5**°/4mm, d_4^{20} 1.054, n_D^{26} 1.5771, pK²⁵ 5.13. Dry it with NaOH for several days, then distil it from CaO under reduced pressure, and redistil the middle fraction. [*Beilstein* 20/7 V 556.]

4-Benzylpyridine [2116-65-6] **M 169.2, b 110.0°/6mm, d** $_4^{20}$ **1.065, n** $_D^{26}$ **1.5814, pK** 25 **5.59.** Dry it with NaOH for several days, then distil it from CaO under reduced pressure, and redistil the middle fraction. [*Beilstein* **20**/7 V 561.]

Berbamine [478-61-5] M 608.7, m 197-210°, $[\alpha]_{D}^{20}$ +115° (CHCl₃), pK²⁰ 7.33. (70% aqueous EtOH) Crystallise berbamine from pet ether or *C₆H₆ (with 1*C₆H₆ m 129-134°). [Bick Aust J Chem 9 111, 118 1956, Beilstein 27 II 891, 27 III/IV 8732.]

Berberine [2086-83-1] M 336.4, m 145°, 147-148°, pK_1^{20} 2.47, pK_2^{20} 11.73 (pseudobase?). Berberine crystallises from pet ether or ether as yellow needles or from H₂O. [*Beilstein* 27 II 567, 27 III/IV 6539.]

Berberine chloride (2H₂O) (Neutral Yellow 18) [633-65-8 (anhydrous), 5956-60-5 (2H₂O)] M 407.9, m 204-206°(dec), CI 75160, pK^{20} 2.47. Berberine chloride crystallises from water to give the *dihydrate*. The anhydrous salt may be obtained by recrystallisation from EtOH/Et₂O, wash the crystals with Et₂O and dry them in a vacuum. The *iodide* has m 250°(dec) (from EtOH). [Perkin J Chem Soc 113 503 1918, Kametani et al. J Chem Soc(C) 2036 1969, Beilstein 27 I 515, 27 II 567.]

Bicuculline See entry in "Miscellaneous", Chapter 6.

Bilirubin [635-65-4] **M 584.7, m >360°, \varepsilon_{450nm} 55,600 in CHCl₃, pK_{Est} ~3.0. An acyclic tetrapyrrole bile pigment with impurities which can be eliminated by successive Soxhlet extraction with diethyl ether and MeOH. It crystallises from CHCl₃ as deep red-brown rhombs, plates or orange-red prisms from chlorobenzene (m 330° dec) and is dried to constant weight at 80° under vacuum. [Gray et al.** *J Chem Soc* **2264, 2276 1961,** *Beilstein* **26** III/IV 3268.]

Biliverdine [114-25-0] **M 582.6, m >300°, pK²⁵ 3.0.** This is the precursor of bilirubin (above) and forms dark green plates or prisms, with a violet reflection, from MeOH. The *dimethyl ester*, when crystallised from MeOH has **m** 215°(209°), and when crystallised from CHCl₃/Pet ether gives blue-green crystals with **m** 202°. [Gray et al. *J Chem Soc* 2264 1961, Sheldrick *J Chem Soc*, *Perkin Trans* 2 1457 1976, *Beilstein* **26** III/V 3272.]

2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole (BPD) [852-38-0] M 298.4, m 166-167°, 167-170°. PBD is recrystallised from toluene. It is a good scintillation material [Brown et al. Discussion Faraday Soc 27 43 1959]. [Beilstein 27 III/IV 7283.]

2,2'-Bipyridyl [366-18-7] **M 156.2, m 70.5°, b 273°, pK** $_{1}^{25}$ **-0.52, pK** $_{2}^{25}$ **4.44.** 2,2'-Bipyridyl crystallises from hexane, or EtOH, or (after charcoal treatment of a CHCl₃ solution) from pet ether. Also, it precipitates from a concentrated solution in EtOH by addition of H₂O. Dry it in a vacuum over P₂O₅. It can be further purified by chromatography on Al₂O₃ or by sublimation. UV (EtOH): λ_{max} at 280nm (log ϵ 4.13). [Airoldi et al. *J Chem Soc, Dalton Trans* 1913 *1986, Beilstein* **23** H 199, **23/8** V 16.]

4,4'-Bipyridyl [553-26-4] M **156.2, m 73°(hydrate)** [123333-55-1], **114°** (**171-171°)(anhydrous), b 305°/760mm, 293°/743mm, pK** $_{1}^{20}$ **3.17, pK** $_{2}^{20}$ **4.82.** It crystallises from water, *benzene/pet ether, ethyl acetate and sublimes *in vacuo* at 70°. Also purify it by dissolving in 0.1M H₂SO₄ and twice precipitating by addition of 1M NaOH to pH 8. Then recrystallise it from EtOH. For the *dihydrochloride* see Viologen below. [Collman et al. *J Am Chem Soc* **109** 4606 *1987, Beilstein* **23** H 800, **23** III/IV 1371, **23/8** V 28.]

2,2'-Biquinolin-4,4'-dicarboxylic (2,2'-bicinchoninic) acid [1245-13-2] M 344.3, m 367°, $pK_{Est(1)} \sim 1.5$, $pK_{Est(2)} \sim 4.0$. Dissolve the acid in dilute NaOH and precipitate it with acetic acid, filter, wash swell with H₂O and dry it at 100° in a vacuum oven. Attempts to form a picrate failed. The *methyl ester* (SOCl₂-MeOH) has m 165.6-166°. [Lesesne & Henze J Am Chem Soc 64 1897 1942, Brown et al. J Am Chem Soc 68 2705 1946, Beilstein 25 III/IV 1148.] For the di-K salt see entry in "Metal-organic Compounds" in Chapter 5.

2,2'-Biquinolyl (α,α '-diquinolyl) [119-91-5] M 256.3, m 196°, pK_{Est} ~4.2. Decolourise 2,2'biquinolyl in CHCl₃ solution (charcoal), then crystallise it to constant melting point from EtOH or pet ether [Cumper et al. J Chem Soc 1188 1962]. [Beilstein 23/10 V 8.]

2,5-Bis(4-aminophenyl)-1,3,4-oxadiazole (BAO) [2425-95-8] M 252.3, m 252-255°, 254-255°. BAO is recrystallised from EtOH using charcoal and under N₂ to avoid oxidation. It is a fluorescent stain for DNA [Yataghanas et al. *Exptl Cell Res* 56 59 1969]. [*Beilstein* 27 III/IV 8158.]

2,5-Bis(2-benzothiazolyl)hydroquinone [33450-09-8] **M 440.3, m dec >200°.** Purify the hydroquinone by repeated crystallisation from dimethylformamide followed by sublimation in vacuum [Erusting et al. J Phys Chem **91** 1404 1987].

2,5-Bis(4-biphenylyl)-1,3,4-oxadiazole (BBOD) [2043-06-3] **M 374.5, m 229-230°, 235-238°**. BBOD is recrystallised from heptane or toluene. It is a good scintillant. [Hayes et al. J Am Chem Soc 77 1850 1955.]

3,3-Bis(chloromethyl)oxacyclobutane (3,3-bis-[chloromethyl]oxetane) [78-71-7] **M 155.0, m 18.9°, b 65°/5mm, 80°/10mm, 103°/30mm, 198°/atm, d _{4}^{20} 1.290, n_{D}^{20} 1.486. Shake it with aqueous NaHCO₃ or FeSO₄ to remove peroxides, separate, dry with anhydrous Na₂SO₄, then distil it under reduced pressure from a little CaH₂ [Dainton et al.** *Trans Faraday Soc* **56 1784** *1960***, Farthing** *J Chem Soc* **3648** *1955***]. The** *3,3-bis(phenoxymethyl)* **derivative is described below. [***Beilstein* **17** III/IV 68.] Lachrymatory.

N,*N*'-Bis(nicotinic acid) hydrazide [840-78-8] M 227-228°, m dec 200°, pK_{Est} ~3.3. The hydrazide crystallises from water; it is also soluble in hot EtOH but insoluble in C_6H_6 , pet ether or CHCl₃. [Graf J Prakt Chem [2] 138 290 1933, Beilstein 22 III/IV 455.]

3,3-Bis(phenoxymethyl)oxacyclobutane (3,3-bis-[phenoxymethyl]oxetane) [1224-69-7] **M 270.3, m 67.5-68°, b 1 4 3°/0.05mm.** Distil it under high vacuum, then crystallise the solidified distillate from MeOH. [Farthing J Chem Soc 3648 1955, Beilstein **17** III/IV 2010.]

Blue Tetrazolium (tetrazolium blue chloride) [1871-22-3] M 727.7, m 254-255°(dec). Crystallise the chloride from 95% EtOH/anhydrous diethyl ether to constant absorbance at 254nm. [Beilstein 26 III/IV 1789.]

Brazilin (6a*S*-*cis*-7,11b-dihydrobenzo[b]indeno[1,2-d]pyran-3,6a,9,10(6*H*)-tetraol) [474-07-7] M 269.3, m 130°(dec), 250°, pK_{Est(1)} ~9.3, pK_{Est(2)} ~10.0, pK_{Est(3)} ~12.5 (all phenolic), CI 75280. Brazilin crystallises from EtOH as yellow crystals which become orange when exposed to light and air, and is yellow in dilute acid but crimson in dilute alkali. When crystallised from H₂O, it has m 247-248°. It forms coloured metal salts and is oxidized in air to *Brazilein* the quinonoid form. The (\pm)-form has been resolved, and the (+)-enantiomer has [α] $_{D}^{20}$ +121° (c 1, MeOH). [Craig et al. J Org Chem 30 1573 1965, Morsingh & Robinson Tetrahedron 26 281 1970, Beilstein 17 H 194, 17 II 244, 17 III/IV 2711.]

Brilliant Cresyl Blue (*NN*-diethyl-3-imino-8-methyl-3*H*-phenoxazin-7-amine hydrochloride) [4712-70-3] M 332.8, pK²⁵ 3.2. Crystallise the dye from pet ether. It has λ_{max} 625nm (H₂O) and 622nm (95% aqueous EtOH). [Beilstein 27 H 400, 27 II 454, 27 III/IV 5160.]

5-Bromocytosine [2240-25-7] **M 190.0, m 245-255°(dec), 250°(dec), pK_1^{25} 3.04, pK_2^{25} 10.33.** 5-Bromocytosine is recrystallised from H₂O or 50% aqueous EtOH. Alternatively, dissolve *ca* 3g in conc HCl (10mL) and evaporate to dryness. Dissolve the residual hydrochloride in the minimum volume of warm H₂O and make faintly alkaline with aqueous NH₃. Collect the crystals and dry them in a vacuum at 100°. [Hilbdert & Jensen *J Am Chem Soc* **56** 134 *1934*, *Beilstein* **25** III/IV 3689.]

2-(2-Bromoethyl)-1,3-dioxane [33884-43-4] **M 195.1, b 67-70% 2.8mm, 71-72% 4mm, 95% 1.44, n** $_{\rm D}^{20}$ **1.4219**. Purify it by vacuum fractionation. Also dissolve it in Et₂O, wash with aqueous NaHCO₃, dry the extract (Na₂SO₄), filter and fractionate at high vacuum. ¹HNMR in CCl₄ has δ 1.3 (m, 1H), 2.1 (m, 3H), 3.36 (t, 2H), 3.90 (m, 4H) and 4.57 (t, H). [Stowell *J Org Chem* **41** 560 1976, NMR, MS: Schwarz & Franke *Tetrahedron* **35** 1969 1979, Kriesat & Gisvold *J Pharm Sci* **60** 1250 1971, *Beilstein* **19/1** V 69.]

2-(2-Bromoethyl)-1,3-dioxolane [18742-02-4] **M 181.1, b 68-80°/8mm, 68-73°/10mm, 78-80°/20mm, d_4^{20} 1.510, n_D^{20} 1.479. Dissolve it in pentane, wash with 5% aqueous NaHCO₃, dry (Na₂SO₄), and evaporate. Distil the residue. [NMR: Büchi & Wüest** *J Org Chem* **34** 1122 1969, Kriesat & Gisvold *J Pharm Sci* **60** 1250 1971, Beilstein **19/1** V 69.]

3-Bromofuran [22037-28-1] **M** 147.0, **b** 38.5°/40mm, 50°/110mm, 102.5-103°/atm, d_4^{20} 1.661, n_D^{20} 1.4970. Purify 3-bromofuran by two steam distillations and dry it over fresh CaO. It can be dried over Na metal (no obvious reaction) and fractionated. It is not very soluble in H₂O but is soluble in organic solvents. When freshly distilled, it is a clear oil, but darkens on standing and eventually resinifies. It can be stored for long periods by covering the oil with an alkaline solution of hydroquinone and is redistilled when required. It forms a characteristic *maleic anhydride adduct*, **m** 131.5-132°. [Shepard et al. *J Am Chem Soc* 52 2083 1930, Huhes & Johnson *J Am Chem Soc* 53 737 1931, adduct: van Campen & Johnson *J Am Chem Soc* 55 430 1933, Beilstein 17/1 V 295.]

5-Bromoindole [10075-50-0] **M 196.1, m 90.5-91°, 90-92°, pK²⁵ 16.13 (NH).** Purify it by steam distillation from a faintly alkaline solution. Cool the aqueous distillate, collect the solid, dry it in a vacuum desiccator over P₂O₅ and recrystallise it from aqueous EtOH (35% EtOH) or pet ether/Et₂O. UV in MeOH has λ_{max} at 279, 287 and 296nm (log 3.70, 3.69 and 3.53). The *picrate* has **m** 137-138°(dec) (from Et₂O/pet ether). [UV: Thesing et al. *Chem Ber* **95** 2205 1962, UV and NMR: Lallemand & Bernath *Bull Soc Chim Fr* 4091 1970, *Beilstein* **20**/7 V 36.]

5-Bromoisatin [87-48-9] **M 226.0, m 245°(dec), 251-153°, 255-256°.** 5-Bromoisatin forms red prisms or needles from EtOH. The *N*-acetate crystallises as yellow prisms from C_6H_6 , **m** 170-172°, and the *N*-methyl derivative forms orange-red needles from MeOH, **m** 172-173°. [Heller Chem Ber **53** 1545 1920, Buu-Hoi Recl Trav Chim, Pays-Bas **73** 197 1954, Baker etal. Tetrahedron Lett 215 1978, Beilstein **21** H 453, **21** III/IV 5009.]

6-Bromoisatin [6326-79-0] **M 226.0, m 270°, pK²⁵ 10.35.** 6-Bromoisatin recrystallises from AcOH (yellow needles). It is a plant growth substance. IR in CHCl₃ has v_{max} 1320 and 3440cm⁻¹. [Sadler *J Org Chem* **21** 169 *1956*, *Beilstein* **21** III/IV 5012.]

2-Bromo-3-methylindole (2-bromoskatole) [1484-28-2] M 210.1, m 102-104°, pK_{Est} <0. Purify 2-bromoskatole by chromatography on silica gel in CHCl₃/pet ether (1:2) followed by crystallisation from aqueous EtOH. [Phillips & Cohen J Am Chem Soc 108 2023 1986, cf Beilstein 20 III/IV 3205.]

4-(Bromomethyl)-7-methoxycoumarin [35231-44-8] M 269.1, m 208-209°, 213-215°, 216-218°. The coumarin crystallises from boiling AcOH; the crystals are washed with AcOH, EtOH and dried in a vacuum; ¹HNMR (TFA) δ 3.97s, 4.57s, 6.62s, 6.92-7.19m and 7.80d. [Secrist et al. *Biochem Biophys Res Commun* 45 1262 1971, Dünges Anal Chem 49 442 1977, Beilstein 18 III/IV 348.]

5-Bromonicotinic acid [20826-04-4] M 202.0, m 178-182°, 189-190°, $pK_{Est} \sim 4.4$, $pK^{25} 4.02$ (50% aqueous EtOH). The acid is recrystallised from H₂O and then from EtOH using charcoal. The *amide* has m 219-219.5° (from aqueous EtOH), and the *methyl ester*, prepared by addition of ethereal diazomethane, can be purified by sublimation in a vacuum and has m 98-99°. The *acid chloride* also can be sublimed in *vacuo* and has m 74-75° and gives the methyl ester in MeOH. [Graf *J Prakt Chem* 138 244 1933, Bachman & Micucci *J Am Chem Soc* 70 2381 1948, Garcia et al. *J Am Chem Soc* 82 4430 1960, Misic-Vokovic et al. *J Chem Soc* 34 1978, Beilstein 22/2 V 181.]

2-Bromopyridine [109-04-6] M 158.0, b 49.0°/2.7mm, d_4^{20} 1.660, n_D^{20} 1.5713, pK²⁵ 0.90. Dry 2-bromopyridine over KOH for several days, then distil it from CaO under reduced pressure, and taking the middle fraction. [*Beilstein* 20/5 V 422.]

8-Bromotheophylline (bromo-1,3-dimethyl-2,6(1*H*,3*H*)-purinedione) [10381-75-6] M 259.1, m 309°, 315-320° (with browning and dec), $pK_{Est(1)} \sim 5.5$, $pK_{Est(2)} \sim 9.2$. It is purified by dissolving in the minimum volume of dilute NaOH (charcoal), filtering and acidifying to pH *ca* 3.5-4. The solid that separates is collected, dried *in vacuo* at 100° and stored in a dark container. It has also been recrystallised from EtOH or AcOH. [Blitz & Beck *J Prakt Chem* [2] **118** 158 1928, Fischer & Ach *Chem Ber* **28** 3142 1895, Beilstein **26** H 476, **26** II 227, **26** III/IV 2447.]

5-Bromothiazole [3034-55-7] **M 164.0, b 62-63°/15mm, d**²⁰₄ **1.835, n**²⁰_D **1.5955, n**²⁵_D **1.5976, pK**_{Est} ~2.0. If bromothiazole is too coloured, then suspend it in dilute NaOH and steam distil it. Add NaCl to the aqueous distillate, extract it with Et₂O, dry it (Na₂SO₄), evaporate and fractionate the residue in a vacuum. The $HgCl_2$ salt crystallises from EtOH with **m** 148° (dec). [Beyerman et al. *Recl Trav Chim, Pays Bas* **73** 330 1954, Beilstein **27** III/IV 962.]

Bufotenine hydrogen oxalate (3-[2-{dimethylamino}ethyl]-5-hydroxyindole hydrogen oxalate]) [2963-79-3] M 294.3, m 96.5°, $pK_1^{25} \sim 4.9$ (estimated), pK_2^{25} 9.8 (5-OH), pK_3^{25} 11.2 (NMe₂), $pK_4^{25} \sim 18.2$ (estimated acidic indole NH). The hydrogen oxalate crystallises from Et₂O, EtOH/Et₂O (gave monohydrate) or MeOH/Et₂O. [Wieland et al. Justus Liebigs Ann Chem 513 11 1934, Beilstein 22 III/IV 5672.]

4-tert-Butylcalix[4]arene [60705-62-6] **M 648.9, m >300° (dec), 380° (dec), 344-346°.** The calixarene recrystallises from CHCl₃ in large solvated prisms (**m** 380° dec); it effloresces on drying in air. Its *tetra-acetate* crystallises from Ac_2O in colourless prisms **m** 332-333°(dec). It crystallises from CCl_4 or chlorobenzene /EtOH (**m** >300°) and the *tetra-acetate* crystallises from $CHCl_3/EtOH$ **m** >290°(dec). It also crystallises from toluene in white plates with toluene of crystallisation **m** 344-346° (330-332°); the *tetra-acetate* crystallises with 1AcOH of crystallisation **m** 383-386° (softening at 330-340°, also **m** 283-286°), but acetylation with $Ac_2O/NaOAc$ gives the *triacetate* which recrystallises from AcOH with 1AcOH of crystallisation **m** 278-281°. 4-*tert*-Butylcalix[4]arene (100mg) is unchanged after boiling for 4hours with 10N KOH (0.04mL) in xylene (4mL). [*Br J Pharmacol* **10** 73 *1955*, Kämmerer et al. *Monatsh Chem* **109** 767 *1978*, Gutsche et al. *J Am Chem Soc* **103** 3782 *1981*; see also Kluawer in *Calixarenes*, Vicens & Böhner eds Academic Press *1991*, *Beilstein* **6** IV 7858.]

4-tert-Butylcalix[6]arene [78092-53-2] **M 972.3, m >300°, 380-381°.** It is recrystallised from CHCl₃ or CHCl₃/MeOH to give a white solid from the mother liquors of the calix[8]arene preparation. The *hexa-acetate* (Ac₂O/H₂SO₄) crystallises from CHCl₃/MeOH with **m** 360-362°(dec), and the (*SiMe₃*)₆ derivative crystallises from CHCl₃/MeOH with **m** 410-412°. Its stability in KOH-xylene is the same as for the 4-*tert*-butylcalix[4]arene. [Gutsche et al. *J Am Chem Soc* **103** 3782 *1981*. See also Kluawer in *Calixarenes*, Vicens & Böhner eds Academic Press *1991*, *Beilstein* **6** IV 7858.]

4-*tert***-Butylcalix**[8]arene [68971-82-4] **M 1297.8, m 411-412°.** The calixarene recrystallises from CHCl₃ in fine colourless, glistening needles. It melts sharply between 400-401° and 411-412° depending on the sample and is sensitive to traces of metal ions. On TLC with silica gel (250μ m thick) and elution with CHCl₃/hexane (3:4) it has R_F 0.75. The *octa-acetate* is prepared from 8g in Ac₂O (50mL) and 2 drops of conc H₂SO₄ and refluxed for 2hours. On cooling, a colourless precipitate separates and is recrystallised from Ac₂O (1.2g 48%) with **m** 353-354°. The (*SiMe₃*)₈ is prepared from 4-*tert*-butylcalix[8]arene (0.65g) in pyridine (4mL) with excess of hexamethyldisilazane (1mL) and trimethylchlorosilane (0.5mL) and refluxed under N₂ for 2hours. Cool, evaporate the pyridine, triturate the gummy residue with MeOH. Chromatograph on silica gel using hexane/CH₂Cl₂ gave 0.5g (61%) with one spot on TLC. Recrystallise it from hexane/Me₂CO to give colourless needles **m** 358-360°. [Gutsche et al. *J Am Chem Soc* **103** 3782 *1981*, Gutsche & MuthuKrishnan *J Org Chem* **43** 4905 *1978*, Gutsche & MuthuKrishnan *J Org Chem* **44** 3962 *1979*, Andretti et al. *J Chem Soc, Chem Commun* 533 *1981*; see Kluawer in *Calixarenes*, Vicens & Böhner eds Academic Press *1991*.]

370

8-sec-Butylmetrazole [25717-83-3] **M 194.3, m 70°.** Crystallise it from pet ether and dry it for 2 days under vacuum over P₂O₅. [Beilstein **26** II 213 for Metrazole.]

N-(*n*-Butyl)-5-nitro-2-furamide [14121-89-2] M 212.2, m 89-90°, b 190°/10 mm. Distil the amide in a vacuum and recrystallise it twice from EtOH/water mixture or pet ether. [Gliman & Yale J Am Chem Soc 72 3593 1950, Beilstein 18 III/IV 3995.]

Butyloxirane (1-hexene oxide) [1436-34-6] M 100.2, b 116-117% atm, 116-119% atm, d_4^{20} 0.833, n_D^{20} 1.44051. Purify it by fractional distillation through a 2ft helices-packed column at atmospheric pressure in a N₂ atmosphere. [Pasto & Cumbo J Org Chem 30 1271 1965, Howarth et al. J Chem Soc 2433 1927, ¹³C NMR Davies & Witham J Chem Soc Perkin Trans 2 861 1975, Beilstein 17/1 V 103.]

4-tert-Butylpyridine [3978-81-2] M 135.2, f -44.4°, b 194-197°atm, 197°/765mm, d_4^{20} 0.923, n_D^{20} 1.495, pK²⁵ 5.82. Dry 4-tert-butylpyridine over solid KOH and purify it by fractional distillation through an efficient column under dry N₂. Its picrate has m 153.9-154°, and the hydrochloride has m 151.7-154.8° (from Me₂CO). [Brown & Murphey J Am Chem Soc 73 3308 1951, IR: Arnett & Chawla J Am Chem Soc 100 214 1978, Kyle et al. J Chem Soc 4454 1960, Beilstein 20/6 V 123.]

Cacotheline (2,3-dihydro-4-nitro-2,3-dioxo-9,10-secostrychnidin-10-oic acid) [561-20-6] M 508.4, $pK_{Est(1)} \sim 4.4$ (CO₂H), $pK_{Est(1)} \sim 10.2$ (N). Cacotheline gives yellow crystals from H₂O. It is then dried over H₂SO₄ which gives the *dihydrate*, and in a vacuum over H₂SO₄ at 105° it forms the *anhydrous* compound. The *hydrochloride* separates as the *hydrate* (on heating in vacuum at 80°) in orange-yellow prisms or plates, m 250°(dec) and forms a *resorcinol complex* which gives brown crystals from EtOH, m 325°, and a *hydroquinone complex* as dark red crystals from EtOH, m 319°. [Leuchs & Leuchs *Chem Ber* 43 1042 *1910*, Teuber *Chem Ber* 86 232, (UV: 242) *1953*; complexes: Gallo *Gazz Chim Ital* 85 1441 *1955*.] It is used in the titrimetric estimation of Sn²⁺ ions [Szrvas & Lantos *Talanta* 10 477 *1963*]. [*Beilstein* 27 III/IV 8014.]

Caffeine (1,3,7-trimethylxanthine) [58-08-2] M 194.2, m 237°, pK_1^{40} -0.10, pK_2^{55} 1.22. Caffeine crystallises from water or absolute EtOH. [*Beilstein* 26 III/IV 2338.]

Cannabinol [521-35-7] M 310.4, m 76-77°, b 185°/0.05mm, 225°, pK_{Est} ~10.5 (phenolic OH). Cannabinol crystallises from pet ether and sublimes in a vacuum. [Meitzer et al. *Synthesis* 985 1981, *Beilstein* 17 II 151, 17 III/IV 1652.]

 ϵ -Caprolactam (azepan-2-one, aza-2-cycloheptanone, 2-oxohexamethyleneimine) [105-60-2] M 113.2, m 70°, 70.5-71.5°, 70-71°, 262.5°/760mm. The lactam is distilled under reduced pressure, recrystallised from acetone or pet ether and redistilled. It can be purified by zone melting. It is very hygroscopic and discolours in contact with air unless small amounts (0.2g/L) of NaOH, Na₂CO₃ or NaBO₂ are present. It has been crystallised from a mixture of pet ether (185mL of b 70°) and 2-methyl-2-propanol (30mL), from acetone, or pet ether. It is then distilled under reduced pressure and stored under nitrogen. [Pellegata et al. Synthesis 614 1978, Beilstein 21/6 V 444.]

Caprylolactam (azanon-2-one, azacyclononan-2-one, 8-aminooctanoic acid lactam, cyclooctanone isooxime) [935-30-8] M 141.2, m 72°, 73°, 74-76°, 75°, 76-77°, b 119-122°/0.7mm, 150-151°/7-8mm, 164°/14mm, d_4^{73} 1.009, n_D^{73} 1.489, pK^{25} 0.55 (AcOH). Dissolve it in CHCl₃, decolorise it with charcoal, evaporate to dryness and recrystallise it from CHCl₃/hexane. Sublime it at high vacuum. The oxime has m 117° (from *C₆H₆ or pet ether). [Guggisberg Helv Chim Acta 61 1050 1978, Olah et al. Synthesis 538 1979, Behringer & Meier Justus Liebigs Ann Chem 607 67 1957, Beilstein 21 III/V 3260.]

IS,2'S-Captopril (S-1-[3-mercapto-2-methyl-1-oxopropyl]-L-proline) [62571-86-2] M 217.3, m 103-104°(polymorphic unstable form m 86°, melts at 87-88° solidifies and then melts again at 104-105°), $[\alpha]_{D}^{22}$ -131° (c 1.7, EtOH), pK₁ 3.7, pK₂ 9.8. Purify it by recrystallisation from EtOAc/hexane. It is also purified by dissolving in EtOAc and chromatographed on a

372

column of Wakogel C200 using a linear gradient of MeOH in EtOAc (0-100°) and fractions which give a positive nitroprusside test (for SH), are combined, evaporated and recrystallised from EtOAc/hexane (1:1), to give white crystals with $[\alpha]_{D}^{20}$ -128.2° (c 2.0, EtOH). [Nam *J Pharm Sci* **73** 1843 *1984*]. Alternatively, dissolve it in H₂O, apply to a column of AG-50Wx2 (BioRad) and elute with H₂O. The free acid is converted to the *dicyclohexylamine salt* in MeCN by addition of the amine until the pH is 8-9. The salt is converted to the free acid by shaking with EtOAc and 10% aqueous KHSO₄ or passage through an AG50Wx2 column. The EtOAc solution is dried (MgSO₄), evaporated to dryness and the residue is recrystallised as above from EtOAc/hexane [Cushman et al. *Biochemistry* **16** 5484 *1977*, NMR and IR: Horii & Watanabe *Yakugaku Zasshi (J Pharm Soc Japan)* **81** 1786 *1961*]. It is an antihypertensive because it is a potent competitive inhibitor of the angiotensive convertive enzyme (ACE-inhibitor) with a Ki value of 0.0017µM [Shimazaki et al. *Chem Pharm Bull Jpn* **30** 3139 *1982*].

3-Carbamoyl-1-methylpyridinium chloride (1-methylnicotinamide chloride, Trigonellamide) [1005-24-9] M 172.6, m 240°(dec). Recrystallise it from MeOH. [Beilstein 22 III/IV 468, 22/2 V 80.]

Carbazole [86-74-8] **M 167.2, m 240-243°, pK²⁵ <0.** Dissolve carbazole (60g) in conc H₂SO₄ (300mL), extract with three 200mL portions of *benzene, then stir this into 1600mL of an ice-water mixture. The precipitate is filtered off, washed with a little water, dried, recrystallised from *benzene and then from pyridine/*benzene [Feldman et al. *J Am Chem Soc* **73** 4341 *1951*]. It has also been recrystallised from EtOH or toluene, sublimed in vacuum, zone-refined, and purified by TLC. [UV: Armarego in *Physical Methods in Heterocyclic Chemistry* (Ed Katritzky, Academic Press) **Vol III** 158 *1971*, *Beilstein* **20/8** V 9.]

9-Carbazoleacetic acid [524-80-1] **M 225.2, m 215°, pK**_{Est} ~3.5. Crystallise the acid from ethyl acetate. [Fan et al. Anal Chim Acta 367 1 1998, Beilstein 20 III/IV 3841.]

Carbazole-9-carbonyl chloride [73500-82-0] **M 300.0, m 100-103°, 103.5-104.5°**. Recrystallise the acid chloride from C_6H_6 . If it is not very pure (presence of OH or NH bands in the IR), dissolve it in pyridine, shake it with phosgene in toluene, evaporate and recrystallise the residue. Carry out this experiment in a good fume cupboard as COCl₂ is very **TOXIC**, and store the product in the dark. It is moisture sensitive. The *amide* has **m** 246.5-247°, and the *dimethylaminoethylamide* hydrochloride has **m** 197-198°. [Weston et al. J Am Chem Soc **75** 4006 1953, Beilstein **20** III/IV 3841.]

1-Carbethoxy-4-methylpiperazine hydrochloride [532-78-5] M 204.7, m 168.5-169°, pK²⁵ 7.31. Crystallise the hydrochloride from absolute EtOH. Its solubility is 280g/100g of H₂O at 25°. The *free* base ester has b 97-98°/8mm. [Beilstein 23 III/IV 223.]

γ-Carboline (9*H*-pyrido[3,4-b]indole) [244-69-9] M 168.2, m 225°, 230-233°, pK²⁵ ~0. Crystallise it from water or EtOAc. [Robinson & Thornley *J Chem Soc* 12S 2169 *1924*, Dalton et al. *Aust J Chem* 22 185 *1969*, Staab & Wendel *Org Synth* 48 44 *1968*, *Beilstein* 23 II 223, 23 III/IV 1572.]

N,*N*'-**Carbonyldiimidazole** [530-62-1] **M 162.2, m 115.5-116**°. Crystallise it from *benzene or tetrahydrofuran in a dry-box and store it dry. [Hearn *Methods Enzymol* **135** 102 1987, *Beilstein* **23/4** V 245.]

1,1'-Carbonyldi(1,2,4-triazole) (CDT) [41864-22-6] M **164.1,** m **134-136°, 145-150°.** Dissolve CDT in tetrahydrofuran and evaporate at 10mm until it crystallises. Wash the crystals with cold tetrahydrofuran and dry them in a vacuum desiccator over P_2O_5 in which it can be stored for months. [Bergmann & van den Brink *Recl Trav Chim, Pays-Bas* **80** 1372 *1961*, Potts *J Org Chem* **27** 2631 *1962*, Staab *Justus Liebigs Ann Chem* **106** 75 *1957*.]

(±)-Catechin [7295-85-4] M 272.3, m 177° (anhydrous). Crystallise it from hot water and dry it at 100°. [Beilstein 17/8 V 448.]

Cetylpyridinium chloride (H₂O) (hexadecylpyridinium chloride) [6004-24-6] M 358.0, m 80-83°. Crystallise the chloride from MeOH or EtOH/diethyl ether and dry it *in vacuo*. [Moss et al. *J Am Chem Soc* 108 788 1986, Lennox & McClelland *J Am Chem Soc* 108 3771 1986, Beilstein 20 V 233.]

Chelerythrine (1,2-dimethoxy-12-methyl[1,3]benzodioxolo[5,6-c]phenanthridinium] [34316-15-9] M 389.4, m 207°. Chelerythrine crystallises from CHCl₃ on addition of MeOH [Manske *Can J Res* 21B 140 1943, UV: Hruban et al. *Coll Czech Chem Commun* 35 3420 1970]. The *pseudo base* is colourless while the salts are yellow in aqueous solution and are fluorescent.

Chelidonic acid (4-oxopyran-2,6-dicarboxylic acid) [99-32-1] **M 184.1, m 262°, pK**²⁵₂ **2.36.** The acid crystallises from aqueous EtOH. Dry it first at 100°/2hours, then at 160° to constant weight to remove water of crystallisation. It decarboxylates at 220-230° in a vacuum. [Riegel & Zwilgmeyer *Org Synth* Coll Vol **II** 126 1943, *Beilstein* **18** H 490, **18/8** V 646.]

2-Chlorobenzothiazole [615-20-3] **M 169.6, m 21°, 90-91.4°/4mm, 135-136°/28mm, d_4^{20} 1.303, n_D^{20} 1.6398. It is purified by fractional distillation** *in vacuo***. The 2-chloro-3-methylbenzothiazolinium 2,4-dinitrobenzenesulfonate crystallises from Ac₂O, m** 162-163°(dec). [Young & Amstutz J Am Chem Soc 73 4773 1951, Brower et al. J Org Chem 19 1830 1954, Hunter & Jones J Chem Soc 2190 1930, Beilstein 27 H 44, 27 II 18, 27 III/IV 1072.]

o-Chlorobenzotrifluoride [88-16-4] M 180.6, b 152.3°, d_4^{20} 1.371, n_D^{20} 1.456. Dry it over CaSO₄, and distil it at high reflux ratio. [*Beilstein* 5 III 692.]

2-Chlorobenzoxazole [615-18-9] **M 153.6, b 95-96% (20mm, 198-202%) atm, d_4^{20} 1.331, n_D^{20} 1.570.** Purify it by fractional distillation, preferably in a vacuum. [Siedel *J Prakt Chem* **42** 456 1890, Katz *J Am Chem Soc* **75** 712 1953, Meyer & Sigel *J Org Chem* **42** 2769 1977, Beilstein **27** H 43, **27** II 17.]

2-(4-Chlorobutyl)-1,3-dioxolane [118336-86-0] **M 164.6, b 56-58°/0.1mm, d** $_{4}^{20}$ **1.106, n** $_{D}^{20}$ **1.457.** If the IR has no CHO band, then just distil it in a vacuum. If it is present, then dissolve it in Et₂O, wash it with H₂O, then saturated NaHCO₃, dry over MgSO₄, evaporate and distil it. [cf Kriesat & Gisvold J Pharm Sci **60** 1250 1971, Loftfield J Am Chem Soc **73** 1365 1951.]

4-Chloro-2,6-diaminopyrimidine (2,4-diamino-6-chloropyrimidine) [156-83-2] M 144.6, m 198°, 199-202°, pK²⁵ 3.57. It recrystallises from boiling H₂O (charcoal) as needles; it also crystallises from Me₂CO. [Büttner Chem Ber 36 2232 1903, Roth J Am Chem Soc 72 1914 1950, UV: Brown & Jacobsen J Chem Soc 3172 1962, Beilstein 24 H 318, 25 III/IV 2788.]

2-Chloro-3,5-dinitropyridine [2578-45-2] **M 203.5, m 62-65°, 63-65°, 64°, pK**_{Est} <-5. Dissolve it in CHCl₃, shake it with saturated NaHCO₃, dry (MgSO₄), evaporate and apply to an Al₂O₃ column, elute with pet ether (b 60-80°), evaporate and recrystallise it from C_6H_6 or pet ether. [Ochiai & Kaneko *Chem Pharm Bull Jpn* **8** 28 1960, Plazek *Recl Trav Chim, Pays-Bas* **72** 573 1953, *Beilstein* **20**/5 V 458.]

1-(2-Chloroethyl)pyrrolidine hydrochloride [7250-67-1] M 170.1, m 167-170°, 173.5-174°, $pK_{Est} \sim 8.5$ (free base). Purify the hydrochloride by recrystallisation from isopropanol/di-isopropyl ether (charcoal) and recrystallise it twice more. The *free base*, b 55-56°/11mm, 60-63°/23mm and 90°/56mm, is relatively unstable and should be converted to the hydrochloride immediately, by dissolving in isopropanol and bubbling dry HCl through the solution at 0°, filtering off the hydrochloride and recrystallising it. The *picrate* has m 107.3-107.8° (from EtOH) [Cason *J Org Chem* 24 247 1959, Wright et al. *J Am Chem Soc* 70 3098 1948]. [*Beilstein* 20 III/IV 66.]

5-Chloroindole [17422-32-1] **M 151.6, m 69-71°, 72-73°, b 120-130°/0.4mm, pK**_{Est} <0 It is distilled at high vacuum and recrystallises from pet ether (b 40-60°) or (b 80-100°) as glistening plates. The *picrate* has **m** 147° (146.5-147.5°)(from C_6H_6). [Rydon & Tweddle *J Chem Soc* 3499 1955, Sugasawa *J Org Chem* **44** 578 1979, *Beilstein* **20/4** V 34.]

374 Purification of Organic Chemicals – Heterocyclic Compounds

2-Chloro-3-methylindole (2-chloroskatole) [51206-73-6] M 165.6, m 114.5-115.5°, pK_{Est} <0. Purify 2-chloroskatole by chromatography on silica gel in CH₂Cl₂/pet ether (1:2), followed by recrystallisation from aqueous EtOH, aqueous AcOH or pet ether (m 113.5°). The *picrate* has m 121-122°(dec) (orange-red crystals from pet ether). [Phillips & Cohen J Am Chem Soc 108 2023 1986, Beilstein 20 H 317, 20 III/IV 3212.]

4-(Chloromethyl)pyridine hydrochloride [1822-51-1] **M 164.0, m 170-175°, 172-173°, pK**_{Est} ~**5.6.** Purify it by recrystallisation from EtOH or EtOH/dry Et₂O. It melts between 171° and 175°, and the clear melt resolidifies on further heating at 190° and turns red to black at 280° but does not melt again. The *picrate-hydrochloride* (prepared in EtOH) has **m** 146-147°. The *free base* is an oil. [Mosher & Tessieri *J Am Chem Soc* **73** 4925 1951, Beilstein **20** III/IV 2752.]

2-Chloro-1-methylpyridinium iodide [14338-32-0] **M 255.5, m 203-205°, 205-206°(dec), 207°.** Purify it by dissolving in EtOH and adding dry Et₂O. The solid is washed with Me₂CO and dried at 20°/0.35mm. Store it in the dark. Attempted recrystallisation from Me₂CO/EtOH/pet ether (b 40-60°) causes some exchange of the Cl substituent by I. The *picrate* has **m** 106-107°, and the *perchlorate* has **m** 212-213°. [Jones et al. J Am Chem Soc **111** 1157 1989, UV and solvolysis: Barlin & Benbow J Chem Soc, Perkin Trans 2 790 1974, Beilstein **20/5** V 405.]

6-Chloronicotinic acid [5326-23-8] M 157.6, m 190-193°, 198-199°(dec), pK²⁵ 4.22 (50% aqueous EtOH). Purify it by recrystallisation from hot H₂O and sublime it in a vacuum. [Pechmann & Welsch Chem Ber 17 2384 1884, Herz & Murty J Org Chem 26 122 1961, Beilstein 22/2 V 177.]

4-Chloro-7-nitrobenzofurazane (7-chloro-4-nitrobenzoxadiazole, NBD-chloride) [10199-89-0] M 199.6, m 96.5-97°, 97°, 99-100°. Wash the solid with H₂O, and it recrystallises from aqueous EtOH (1:1) as pale yellow needles. It sublimes in a vacuum [Gosh & Whitehouse *Biochem J* 108 155 1968, UV, NMR: Bolton et al. J Chem Soc 1004 1966].

2-Chloro-3-nitropyridine [5470-18-8] **M** 158.5, **m** 100-103°, 101-102°, 103-104° (sublimes), pK^{20} -2.6. It forms needles from H₂O. Purify it by continuous sublimation over a period of 2 weeks at 50-60°/0.1mm [Barlin J Chem Soc 2150 1964]. The N-oxide has **m** 100°(from CH₂Cl₂/Et₂O). [Taylor & Driscoll J Org Chem 25 1716 1960, Ochiai & Kaneko Chem Pharm Bull Jpn 8 28 1960, Beilstein 20/5 V 451.]

2-Chloro-5-nitropyridine [4548-45-2] M **158.5, m 108°, pK**_{Est} ~-2.6. It crystallises from *benzene or *benzene/pet ether. [*Beilstein* **20**/5 V 452.]

9-Chloro-9-phenylxanthene (Pixyl chloride) [42506-03-6] M 292.8, m 105-106°. A possible impurity is 9-hydroxy-9-phenylxanthene. If the material contains a lot of the hydroxy product, then boil 10g of it in CHCl₃ (50mL) with redistilled acetyl chloride (1mL) until liberation of HCl is complete. Evaporation leaves the chlorophenylxanthene as the hydrochloride which on heating with *benzene loses HCl; and on adding pet ether prisms of chlorophenylxanthene separate and contain 0.5mol of *benzene. The *benzene-free compound is obtained on drying, and it melts to a colourless liquid. [Gomberg & Cone Justus Liebigs Ann Chem 370 142 1909.] The 9-phenylxanthyl group is called "pixyl" and is a good protecting group [Chattopadhyaya & Reese J Chem Soc, Chem Commun 639 1978, Beilstein 17 III/IV 1704.]

Chlorophylls a and b See entries in "Miscellaneous Compounds", Chapter 5.

6-Chloropurine [87-42-3] **M 154.6, m 179°(dec), pK**₁²⁰ **0.45, pK**₂²⁰ **7.88.** 6-Chloropurine crystallises from water. The UV in water at pH 1 has λ_{max} 264nm (loge 3.94). [Beilstein 26 III/IV 1742.]

2-Chloropyrazine [14508-49-7] M **114.5, b 62-63% 11mm, 153-154% atm, d**²⁰ **1.302, n**²⁴ **1.535, pK**_{Est} **<0.** Fractionally distil it through a short column packed with glass helices. It has a penetrating, mildly pungent odour with a high vapour pressure at room temperature. [Erickson & Spoerri J Am Chem Soc **68** 400 1946, Hetman & O.Donnell J Org Chem **28** 1682 1963, Beilstein **23/5** V 366.]

2-Chloropyridine [109-09-1] M 113.6, b 49.0°/7mm, d_4^{20} 1.20, n_D^{20} 1.532, pK²⁰ 0.49 (0.72). Dry 2-chloropyridine with NaOH for several days, then distil it from CaO under reduced pressure. [Beilstein 20/5 V 402.]

3-Chloropyridine [626-60-8] **M 113.6, b 148°, d** $_{4}^{20}$ **1.194, n** $_{D}^{20}$ **1.533, pK**²⁰ **2.84.** Distil 3-chloropyridine from KOH pellets. [*Beilstein* **20**/5 V 406.]

4-Chloropyridine [626-61-9] **M 113.6, b 85-86°/100mm, 147-148°/760mm, pK²⁰ 3.84.** Pour 4-chloropyridine into distilled water, and excess of 6M NaOH is added to give pH 12. The organic phase is separated and extracted with four volumes of diethyl ether. The combined extracts are filtered through paper to remove water, and the solvent is evaporated. The dark brown residual liquid is kept under high vacuum [Vaidya & Mathias J Am Chem Soc 108 5514 1986]. It can be distilled, but readily darkens and is best kept as the hydrochloride [7379-35-3] **M** 150.1, **m** 163-165°(dec). [Beilstein 20/5 V 410.]

2-Chloropyrimidine [1722-12-9] **M 114.5, m 63-65°, 66°, b 91°/26mm, pK²⁰-1.90**. It has been recrystallised from C_6H_6 , pet ether or a mixture of both. It sublimes at 50°/18mm and can be distilled in a vacuum. [IR: Short & Thompson J Chem Soc 168 1952, Boarland & McOmie J Chem Soc 1218 1951, Beilstein 23/5 V 343.]

2-Chloroquinoline [612-62-4] **M 163.6, m 34°, b 147-148°/15mm, d** $_{4}^{35}$ **1.235, n** $_{D}^{25}$ **1.629, pK**_{Est} ~**0.3.** Purify it by crystallisation of its *picrate* to constant melting point (123-124°) from *benzene, regenerating the base and distilling it under vacuum [Cumper et al. *J Chem Soc* 1183 *1962*]. 2-Chloroquinoline can be crystallised from EtOH. Its *picrate* has **m** 123-124° (from EtOH). [*Beilstein* **20** H 359, **20**/7 V 312.]

4-Chloroquinoline [611-35-8] **M 163.6, m 29-32°, 31°, b 130°/15mm, 261°/744mm, pK²⁵ 3.72.** Possible impurities include the 2-isomer. It is best purified by converting to the *picrate* (**m** 212-213° dec) in EtOH and recrystallising it from EtOH (where the picrate of the 2-chloroquinoline remains in solution) or EtOAc. The picrate is decomposed with 5% aqueous NaOH, extracted in CHCl₃, washed with H₂O, dried (MgSO₄), evaporated and distilled in a vacuum. It can be steam distilled from slightly alkaline aqueous solutions, the aqueous distillate is extracted with Et₂O, evaporated and distillate solidifies on cooling. [Bobránski *Chem Ber* **71** 578 1938, *Beilstein* **20**/7 V 314.]

8-Chloroquinoline [611-33-6] M 163.6, b 171-171.5% d_4^{20} 1.278, n_D^{20} 1.644, pK²⁰ 3.12. Purify it by crystallisation of its ZnCl₂ complex (m 228%) from aqueous EtOH. [Beilstein 20 III/IV 3381, 20/7 V 315.]

8-Chlorotheophylline (8-chloro-1,3-dimethyl-2,6(1*H*,3*H*)-purinedione) [85-18-7] M 214.6, m 311°(dec), $pK_{Est(1)} \sim 5.4$, $pK_{Est(2)} \sim 9.1$. It crystallises from H₂O or EtOH (m 304°, dec). The *choline* salt crystallises from H₂O with m 60-62° (2 H₂O) and m 97-99° (anhydrous). [Beilstein 26 H 473, II 276, 26 III/IV 2442.]

2-Chlorothiophene (2-thienyl chloride) [96-43-5] M 118.6, b 126-128°, 128°/~760mm, d_4^{20} 1.285, n_D^{20} 1.551. Purify it by fractional distillation at atmospheric pressure or by gas chromatography. [Conde et al. Synthesis 412 1976, Beilstein 17/1 V 303.]

5-Chlorouracil (5-chloro-2,4(6)-dihydroxypyrimidine) [1820-81-1] M 146.5, m 314-418°(dec), 324-325°(dec), pK_1^{25} 7.95, pK_2^{25} >13. It recrystallises from hot H₂O (4g/500mL) using charcoal. [McOmie et al. *J Chem Soc* 3478 1955, West & Barrett *J Am Chem Soc* 76 3146 1954, Beilstein 24 III/IV 1231.]

4-Chromanone (2,3-dihydro-4*H*-1-benzopyran-4-one) [491-37-2] M 148.2, m 35-37°, 39°, 41°, b 92-93°/3mm, 130-132°/15mm, 160°/50mm. It has been recrystallised from pet ether, or purified by dissolving in $C_{6}H_{6}$ washing with $H_{2}O$, drying (MgSO₄), evaporating and distilling in a vacuum, then recrystallising the residue. The liquid has a pleasant lemon-like odour. The *semicarbazone* has m 227°.

[Loudon & Razdan *J Chem Soc* 4299 1954.] The *oxime* is prepared from 3g of chromanone, 3g NH₂OH.HCl in EtOH (50mL), 6g K₂CO₃ and refluxed on a water bath for 6hours. The solution is poured into H₂O, the solid is filtered off, dried and dissolved in hot $*C_6H_6$ which on addition of pet ether yields the *oxime* as glistening needles **m** 140°. Hydrolysis of this gives very pure chromanone. The *benzal derivative* is prepared from 3g of chromanone and 4g PhCHO in 50mL EtOH, heated to boiling, 10mL of conc HCl are added dropwise and set aside for several days. The derivative separates and is recrystallised from EtOH to give yellow needles, **m** 112° [Powell *J Am Chem Soc* 45 2711 1923]. Reaction with Pb(OAc)₄ yields the *3-acetoxy derivative* **m** 74° (from pet ether + trace of EtOAc) [Cavill et al. *J Chem Soc* 4573 1954, *Beilstein* 17/10V 14].

Cinnoline [253-66-7] **M 130.2, m 38°, 40-41°, b 114°/0.35, pK²⁰ 2.37.** It is distilled at high vacuum, then recrystallised from pet ether. Keep it under N₂ in sealed tubes in the dark at 0°. The *hydrochloride* [5949-24-6] **M** 166.6 crystallises from EtOH/Et₂O and has **m** 156-158° (yellow *monohydrate*), and dehydrates on sublimation at 110-115°/3mm. The *picrate* has **m** 196-196.5°. [*Beilstein* **23** H 173, **23** III.IV 1217.]

Citrazinic acid (2,6-dihydroxyisonicotinic acid) [99-11-6] M 155.1, m >300°, pK₁ 3.0, pK₂ 4.76. The acid is normally a yellow powder with a greenish shade, but is white when ultra pure and turns blue on long standing. It is insoluble in H₂O but slightly soluble in hot HCl and soluble in alkali or carbonate solutions. It is purified by precipitation from alkaline solutions with dilute HCl, and dried in a vacuum over P₂O₅. The *ethyl ester* has m 232° (evacuated tube) and a pKa of 4.81 in MeOCH₂CH₂OH [IR: Pitha *Coll Czech Chem Comm* 28 1408 1963]. [*Beilstein* 22/7 V 24.]

Clioquinol (5-chloro-8-hydroxy-7-iodoquinoline [130-26-7] M 305.5, m 181°, pK_1^{25} 2.7, pK_2^{25} 7.9. It crystallises from AcOH or xylene and dry it at 70° *in vacuo*. [Beilstein 21 III/IV 1190.]

Clofazimine [2-(4-chloroanilino)-3-isopropylimino-5-(4-chlorophenyl)-3,4-dihydrophenazine] [2030-63-9] M 473.5, m 210-212°, pK²⁰ 8.37 (8.51). Clofazimine recrystallises from acetone as dark red crystals. Its solubility in CHCl₃ and EtOH is 7% and 0.1%, respectively, at room temperature. It is insoluble in H₂O. It is antibacterial. [Barry et al. *J Chem Soc* 859 1958, *Beilstein* 25 III/IV 3033.]

Colforsin, see Forskolin.

376

Conessine [546-06-5] M 356.6, m 125°, 127-128.5°, $[\alpha]_D^{20}$ -1.9° (in CHCl₃) and +26° (c 3, EtOH), pK_{Est(1)}~10.4 , pK_{Est(2)}~10.7. It crystallises from acetone, sublimes at 95°/0.01mm and boils at 0.1mm with bath temperature at 220°. The *dihydrochloride* has m >340° (browns at 235° and decomposes at 338-240°) and has $[\alpha]_D^{20}$ +9.3° (c 2, H₂O). [Marshall & Johnson *J Am Chem Soc* 84 1458 1962, Beilstein 22 III/IV 4382.]

Coproporphyrin I [531-14-6] **M** 654.7, λ_{max} 591, 548, 401nm in 10% HCl. It crystallises from pyridine/glacial acetic acid. The *dihydrochloride* [69477-27-6] has M 727.7 and λ_{max} at 395nm in water. [*Beilstein* 26 III/IV 3094.]

Coumalic acid (2-pyrone-5-carboxylic acid) [500-05-0] M 140.1, m 205-210°(dec), $pK_{Est} \sim 0$. The acid crystallises from MeOH. The *methyl ester* has m 73-74° (from pet ether) and b 178-180°/60 mm. [*Beilstein* 18/8 V 120.]

Coumarin [91-64-5] M 146.2, m 68-69°, b 298°, pK^{25} -4.97 (aqueous H₂SO₄). Coumarin crystallises from ethanol or water and sublimes *in vacuo* at 43° [Srinivasan & deLevie J Phys Chem 91 2904 1987]. [Beilstein 17/10 V 143.]

Coumarin-3-carboxylic acid [531-81-7] M 190.2, m 188°(dec), $pK_{Est} \sim 1.5$. The acid crystallises from water. [Beilstein 18/8 V 323.]

γ-Crotonolactone [2(5*H*)-furanone] [497-23-4] M 84.1, m 3-4°, 76-77°/3.5mm, 90.5-91°/11.5mm, 92-93°/14mm, 107-109°/24mm, 212-214°/760mm, d_4^{20} 1.197, n_D^{20} 1.470. Fractionally distil the lactone under reduced pressure. IR: (CCl₄) 1784 and 1742 cm⁻¹, UV no max above

205nm (ϵ 1160 cm⁻¹ M⁻¹) and ¹HNMR: (CCl₃) τ : 2.15 (pair of triplets 1H), 3.85 (pair of triplets 1H) and 5.03 (triplet 2H). [Price & Judge *Org Synth* Coll Vol V 255 *1973*, Smith & Jones *Can J Chem* **37** 2007, 2092 *1959*, *Beilstein* **17**/**9** V 112.]

15-Crown-5 [33100-27-5] **M 220.3, b 93-96°/0.1mm, d** $_{4}^{20}$ **1.113, n** $_{D}^{20}$ **1.465.** Dry it over 3A molecular sieves and distil it in a high vacuum. [*Beilstein* **19/12** V 252.]

18-Crown-6 [17455-13-9] **M 264.3, m 37-39°.** Recrystallise it from acetonitrile and dry it in a vacuum. Purify it also by precipitating the 18-crown-6/nitromethane 1:2 complex with Et_2O /nitromethane (10:1 mixture). The complex is decomposed in vacuum whereby 18-crown-6 distils off under the reduced pressure. [Beilstein 19/12 V 601.]

Cryptopine [482-74-6] **M 369.4, m 220-221°, 220-223°, pK²⁵ 8.09.** It crystallises from *benzene, hot EtOH (0.25% cold, 1.2% at boiling), pet ether or methyl ethyl ketone. The *perchlorate* crystallises from aqueous MeOH with **m** 226-228°(dec). [Thomas et al. *Can J Chem* **33** 570 1955, Howarth & Perkin *J Chem Soc* 1769 1926, *Beilstein* **27** III/IV 6652.]

Cupreine (6'-hydroxycinchonidine) [524-63-0] M 310.4, m 202°(anhydrous), $[\alpha]_D^{17}$ -176° (c 0.5, MeOH), pK¹⁵ 7.63. Cupreine crystallises from EtOH (*anhydrous* crystals) and wet Et₂O (as *dihydrate* crystals). It has K_b 2.7x10⁻⁷ [Kolthoff *Biochem Z* 162 323]. The *sulfate* forms needles, m 257°(dec), from MeOH, amyl alcohol or H₂O, with $[\alpha]_D^{20}$ -197.9° (c 1.2, H₂O). [*Beilstein* 22 I 165, 22 II 416.]

5-Cyanoindole [15861-24-2] **M** 142.2, **m** 106-108°, 107-108°, $pK^{25} < 0$. Dissolve the nitrile in 95% EtOH, boil it in the presence of charcoal, filter, evaporate to a small volume and add enough H₂O to cause crystallisation and cool. Recrystallise it directly from aqueous EtOH and dry it in a vacuum. UV has λ_{max} at 276 nm (log ε 3.6) in MeOH. [Lindwall & Mantell J Org Chem 18 345 1953, 20 1458 1955, Thesing at al. Chem Ber 95 2205 1962, NMR: Lallemend & Bernath Bull Soc Chim Fr 4091 1970, Beilstein 22/3 V 45.]

3-Cyanopyridine [100-54-9] **M 104.1, m 50°, pK²⁵ 1.38.** It is recrystallised to constant melting point from *o*-xylene/hexane. [Beilstein 22/2 V 115.]

4-Cyanopyridine [100-48-1] **M 104.1, m 76-79°, pK²⁵ 1.86.** It crystallises from dichloromethane/diethyl ether mixture. [*Beilstein* 22/2 V 214.]

Cyanuric acid (2,4,6-trichloro-1,3,5-triazine) [108-80-5] M 120.1, $m > 300^{\circ}$, pK^{25} 6.78. It crystallises from water. Dry it at room temperature in a desiccator in a vacuum. [*Beilstein* 26 III/IV 632.]

Cyanuric chloride (TCT, 2,4,6-trichloro-1,3,5-triazine) [108-77-0] M 184.4, m 146-149°, 154°, b 190°. TCT crystallises from CCl_4 or pet ether (b 90-100°) and is dried under vacuum. It has also been recrystallised twice from anhydrous *benzene immediately before use [Abuchowski et al. *J Biol Chem* 252 3582 1977]. [Beilstein 26 III/IV 66.]

Cycloheximide (Actidione) [66-81-9] M 281.4, m 119.5-121°, $[\alpha]_{546}^{20}$ +9.5° (c 2, H₂O). It crystallises from H₂O /MeOH (4:1), amyl acetate, isopropyl acetate/isopropyl ether or H₂O. [Beilstein 21/13 V 434.]

1-Cyclohexyl-5-methyl-1*H*-tetrazole [7707-57-5] M 166.2, m 124-124.5°. Crystallise it from absolute EtOH or H₂O (heavy needles), then sublime it at $115^{\circ}/3$ mm. [Harvill et al. *J Org Chem* 15 662, 668 1950, Billuber Inc USP 2507337 1946, *Beilstein* 26 III/IV 1661.]

Cyclotrimethylenetrinitramine (RDX, Cyclonite, 1,3,5-trinitrohexahydro-1,3,5-triazine) [121-82-4] M 222.2, m 203.8°(dec), 205-206°(dec). RDX crystallises from acetone. [Bachmann & Sheehan J Am Chem Soc 71 1842 1949, Beilstein 26 II 5, 26 III/IV 22.] EXPLOSIVE.

Cytisine (7R,9S-7,9,10,11,12,13-hexahydro-7,9-methano-12*H*-pyrido[1,2-a][1,5]diazocin-8-one, Laburnine, Ulexine) [485-35-8] M 190.3, m 152-153°, 155°, b 218°/2mm, $[\alpha]_{D}^{17}$ -120° (H₂O), $[\alpha]_{D}^{25}$ -115° (c 1, H₂O), pK₁¹⁵ 1.20, pK₂¹⁵ 8.12 [also stated are pK₁ 6.11, pK₂ 13.08]. Crystallise cytisine from acetone and sublime it in a vacuum. Its solubilities are: 77% (H₂O), 7.7% (Me₂CO), 28.6% (EtOH), 3.3% (*C₆H₆), 50% (CHCl₃) but it is insoluble in pet ether. The *tartrate* has m 206-207° $[\alpha]_{D}^{24}$ +45.9°, the *N*-tosylate has m 206-207°, and the *N*-acetate has m 208°. [Bohlmann et al. Angew Chem 67 708 1955, van Tamelen & Baran J Am Chem Soc 77 4944 1955, Isolation: Ing J Chem Soc 2200 1931, Govindachari et al. J Chem Soc 3839 1957, Abs config: Okuda et al. Chem Ind (London) 1751 1961, Beilstein 24 H 134, 24 I 244, 24 II 70, 24 III/IV 321.] TOXIC.

Cytosine (4-amino-2-hydroxypyrimidine) See entry in "Miscellaneous Compounds", Chapter 6.

cis-Decahydroisoquinoline [2744-08-3] M 139.2, b 97-98% 15mm, 208-209% 730mm, pK²⁰ **11.32.** The free base is treated with saturated aqueous picric acid, allowed to stand for 12hours, filtered, washed with MeOH to remove the more soluble trans isomer and recrystallised from MeOH to give pure cis-picrate m 149-150°. The picrate (~5g) is shaken with 5M aqueous NaOH (50mL) and Et₂O (150mL) while H₂O is added to the aqueous phase to dissolve insoluble Na picrate. The Et₂O extract is dried over solid NaOH and then shaken with Al_2O_3 (Merck for chromatography) until the yellow color of traces of picric acid disappears (this color cannot be removed by repeated shaking with 5-10 M aqueous NaOH). The extract is concentrated to 50mL and dry HCl is bubbled through until separation of the white crystals of the cis-HCl is complete. These are washed with Et₂O, dried at 100° and recrystallised from EtOH/EtOAc to yield pure cis-hydrochloride m 182-183° (dried in a vacuum desiccator over KOH) with IR (KBr) v_{max} 2920, 2820, 1582, 1470, 1445, 1410, 1395, 1313, 1135, 1080, 990, 870 cm⁻¹. The pure free base is prepared by dissolving the hydrochloride in 10 M aqueous NaOH, extracted with Et₂O, dried over solid KOH, filtered and distilled in a vacuum. It has IR (film) v_{max} 2920, 2820, 2720, 2560, 1584, 1470, 1445, 1415, 1395, 1315, 1300, 1135, 1080, 1020, 990, 873 cm⁻¹. The ¹HNMR in CDCl₃ is characteristically different from that of the *trans*-isomer. [Armarego J Chem Soc (C) 377 1967, Gray & Heitmeier J Am Chem Soc 80 6274 1958, Witkop J Am Chem Soc 70 2617 1948, Skita Chem Ber 57 1982 1924, Helfer Helv Chim Acta 6 7991923, Beilstein 20 II 73, 20 III/IV 2026.]

trans-Decahydroisoquinoline [2744-09-4] M 139.2, b 106°/15mm, pK²⁰ 11.32. This is purified as the *cis*-isomer above. The trans-*picrate* has m 175-176°, and the trans-*hydrochloride* has m 221-222° and has IR (KBr) v_{max} 2930, 3800, 1589, 1450, 1400, 1070, 952, 837 cm⁻¹. The pure *free base* is prepared as above and had IR (film) v_{max} 2920, 2820, 2720, 2560, 1584, 1470, 1445, 1415, 1395, 1315, 1300, 1135, 1080, 1020, 990, 873 cm⁻¹. The ¹HNMR in CDCl₃ is characteristically different from that of the *cis*-isomer. (references as above and Helfer *Helv Chim Acta* **9** 818 1926). [*Beilstein* **20** II 73, **20** III/IV 2026.]

cis-Decahydroquinoline (10343-99-4) M 139.2, b 207-2080/708mm, pK²⁰ 11.29. It is available as a cis-trans-mixture (b 70-73°/10mm, Aldrich, ~ 18% cis-isomer [2051-28-7]), but the isomers can be separated by fractionating in a spinning band column (1~1.5 metre, type E) at atmospheric pressure and collecting 2mL fractions with a distillation rate of 1 drop in 8-10seconds. The lower boiling fraction solidifies and contains the *trans*-isomer (see below, m 48°). The higher boiling fraction b 207-208°/708mm remains liquid and is mostly pure cis-isomer. This is reacted with PhCOCl and M aqueous NaOH to yield the N-benzoyl *derivative* \mathbf{m} 96° after recrystallisation from pet ether (b 80-100°). It is hydrolysed with 20% aqueous HCl by refluxing overnight. PhCO₂H is filtered off, the filtrate is basified with 5M aqueous NaOH and extracted with Et₂O. The dried extract (Na₂SO₄) is saturated with dry HCl gas, and the *cis-decahydroquinoline hydrochloride* which separates has **m** 222-224° after washing with Et₂O and drying at 100°; and has IR (KBr) v_{max} 2900, 2780, 2560, 1580, 1445, 1432, 1403, 1165, 1080, 1036, 990, 867 cm⁻¹. The free base is obtained by dissolving the hydrochloride salt in 5M aqueous NaOH, extracting with Et₂O and drying the extract (Na₂SO₄), evaporating and distilling the residue; it has IR (film) v_{max} 2900, 2840, 2770, 1445, 1357, 1330, 1305, 1140, 1125, 1109, 1068, 844 cm⁻¹. The ¹H NMR in CDCl₃ is characteristically different from that of the *trans*isomer. [Armarego J Chem Soc (C) 377 1967, Hückel & Stepf Justus Liebigs Ann Chem 453 163 1927, Bailey & McElvain J Am Chem Soc 52 4013 1930, Beilstein 20 H 157, 20 I 35, 20 II 72-73, 20 III/IV 2017.]

trans-Decahydroquinoline [767-92-0] M 139.2, m 48°, b 205-206°/708mm, pK²⁰ 11.29. The lower boiling fraction from the preceding spinning band column fractionation of the commercial *cis-trans*-mixture (~ 20:60; see the *cis*-isomer above) solidifies readily (m 48°), and the receiver has to be kept hot with warm water. It is further purified by conversion to the *hydrochloride* m 285-286° after recrystallisation from EtOH/AcOEt. This has IR (KBr) v_{max} 2920, 2760, 2578, 2520, 1580, 1455, 1070, 1050, 975, 950, 833 cm⁻¹. The *free base* is prepared as for the *cis*-isomer above and distilled; and has IR (film, at ca 50°) v_{max} 2905, 2840, 2780, 1447, 1335, 1305, 1240, 1177, 1125, 987, 900, 835 cm⁻¹. The ¹HNMR in CDCl₃ is characteristically different from that of the *cis*-isomer. [Armarego J Chem Soc (C) 377 1967, Hückel & Stepf Justus Liebigs Ann Chem 453 163 1927, Bailey & McElvain J Am Chem Soc 52 4013 1930, Prelog & Szpilfogel Helv Chim Acta 28 1684 1945, Beilstein 20 H 157, 20 I 35, 20 II 72-73, 20 III/IV 2017.]

Delphinine [561-07-9] **M 559.7, m 197-199°,** $[\alpha]_{D}^{20}$ +26° (c 1, EtOH). It crystallises from EtOH with 198-200° uncorrected (187.5-188.5°) and from Et₂O or Me₂CO. Its solubility at ~25° in EtOH, CHCl₃ and Et₂O is 4%, 5% and 10% respectively. In c 1, EtOH, it has $[\alpha]_{D}^{20}$ +22° changing to +19° in 4 hours. [Markwood *J Am Chem Soc* 16 931 1927.] The *hydrochloride* has **m** 214°(dec) from MeOH or MeOH/Et₂O. [Weissner et al. *Can J Chem* 50 1925 1972, Jacobs & Craig *J Biol Chem* 127 363 1939, *Beilstein* 21 III/IV 2867.]

3,6-Diaminoacridine hydrochloride [952-23-8] **M 245.7, m 270°(dec),** ε_{456} **4.3 x 10⁴, pK**₁²⁰ **1.5, pK**₂²⁰ **9.60 (9.65 free base).** It is first purified by precipitation of the free base by adding aqueous NH₃ solution to an aqueous solution of the hydrochloride or hydrogen sulfate (see below), drying the precipitate and subliming at 0.01mm Hg [Müller & Crothers *Eur J Biochem*, **54** 267 1975]. [*Beilstein* **22** H 487.]

3,6-Diaminoacridine sulfate (proflavin sulfate) [1811-28-5] M **516.6, m >300°(dec),** λ_{max} **456nm.** An aqueous solution, after treatment with charcoal, is concentrated, chilled overnight, filtered and the precipitate is rinsed with a little diethyl ether. The precipitate is dried in air, then overnight in a vacuum oven at 70°. [Beilstein 22 I 650, 22/11 V 323.]

4,5-Diamino-2,6-dihydroxypyrimidine (diamino uracil) sulfate [32014-70-3] **M 382.3, m** >**300°, pK**₁²⁰ **1.7, pK**₂²⁰ **3.20, pK**₃²⁵ **4.56.** The salt is quite insoluble in H₂O but can be converted to the free base which is recrystallised from H₂O and converted to the sulfate by addition of the required amount of H₂SO₄. The *hydrochloride* has **m** 300-305°(dec) and can be used to prepare the sulfate by addition of H₂SO₄; it is more soluble than the sulfate. The *perchlorate* has **m** 252-254°. The free base has λ_{max} at 260nm (log ε 4.24) in 0.1M HCl. [Bogert & Davidson *J Am Chem Soc* **86** 1668 1933, Bredereck et al. *Chem Ber* **86** 850 1953, Sherman & Taylor Org Synth Coll Vol IV 247 1963, Barlin & Pfleiderer *J Chem Soc* (*B*) 1425 1971, *Beilstein* **25** II 382.]

5,6-Diamino-1,3-dimethyluracil hydrate (5,6-diamino-1,3-dimethyl-2-pyrimidine-2,4-dione hydrate) [5440-00-6] M 188.2, m 205-208°(dec), 209°(dec), 210°dec, pK_1 1.7, pK_2 4.6. It recrystallises from EtOH. The hydrochloride has m 310° (from MeOH), and the perchlorate has m 246-248°. [UV: Bredereck et al. Chem Ber 92 583 1959, Taylor et al. J Am Chem Soc 77 2243 1955, Beilstein 25 III/IV 4133.]

6,9-Diamino-2-ethoxyacridine (Ethacridine) [442-16-0] M 257.3, m 226°, pK^{20} 11.6. It crystallises from 50% EtOH or EtOH as orange-yellow crystals. It also crystallises as a *monohydrate* m 116-118°. It has a pK^{20} of 11.04 in 50% aqueous EtOH. The *methiodide* is soluble in H₂O and has m 332-334° (dec) (from aqueous Me₂CO). [Albert & Gledhill J Soc Chem Ind **61** 159 1942, Foye et al. J Pharm Sci **57** 1795 1968, Albert & Goldacre J Chem Soc 708 1946, Beilstein **22** II 458, **22** III/IV 6679, **22/12** V 243.]

6,9-Diamino-2-ethoxyacridine *dl*-lactate moohydrate (Rivanol, Acrinol) [6402-23-9] M 361.4, m 235° (dark at ~200°), pK^{2°} 11.6. It forms yellow crystals from 90% EtOH/Et₂O. Its solubility in H₂O is ~15% at 25° and ~9% at 100°, and its solutions have a yellow fluorescence which is stable on boiling. It is an antiseptic. See ethacridine above, *Beilstein* 22 II 458, 22 III/IV 6680, 22/12 V 243.] 2,4-Diamino-6-hydroxypyrimidine [56-06-4] M 126.1, m 260-270°(dec), pK_1^{25} 1.34, pK_2^{25} 3.27, pK_3^{25} 10.83. It recrystallises from H₂O. [Beilstein 25 III/IV 3642.]

4,5-Diamino-6-hydroxypyrimidine hemisulfate [102783-18-6] **M 350.3**, **m 268**°, **270**°, **pK** $_{1}^{25}$ **1.34**, **pK** $_{2}^{25}$ **3.57**, **pK** $_{3}^{25}$ **9.86**. It recrystallises from H₂O. The *free base* also crystallises from H₂O (**m** 239°). [Mason *J Chem Soc* 2071 1954, Elion et al. *J Am Chem Soc* **74** 411 1952, *Beilstein* **25** III/IV 3645.]

2,4-Diamino-5-phenylthiazole (Amiphenazole) [490-55-1] M 191.3, m 163-164°(dec). The thiazole crystallises from aqueous EtOH or water. Store it in the dark under N₂. The *hydrochloride* has m 273-274°(dec) (from MeOH/EtOAc), and the *picrate* has m 189-191°(dec) (from H₂O). [Davies et al. J Chem Soc 3491 1950, Dodson & Turner J Am Chem Soc 73 4517 1951, Beilstein 27 III/IV 5139.]

2,3-Diaminopyridine [452-58-4] **M 109.1, m 116°, pK** $_{1}^{25}$ -0.50, pK $_{2}^{25}$ 6.92. It crystallises from *benzene and sublimes *in vacuo*. [*Beilstein* 22/11 V 241.]

2,6-Diaminopyridine [141-86-6] **M 109.1, m 121.5°** $pK_{Est(1)} < -6.0$, $pK_{Est(2)} \sim 7.3$. It crystallises from *benzene and sublimes *in vacuo*. [*Beilstein* **22** III/IV 255.]

3,4-Diaminopyridine [54-96-6] **M 109.1, m 218-219**°, pK_1^{20} **0.49**, pK_2^{20} **9.14**. It crystallises from *benzene and is stored under N₂ because it is *deliquescent* and absorbs CO₂. [*Beilstein* **22**/11 V 266.]

3,5-Diamino-1,2,4-triazole (Guanazole) [1455-77-2] M 99.1, m 206°, pK_1^{20} 4.43, pK_2^{20} 12.12. The triazole crystallises from water or EtOH. [*Beilstein* 26 III/IV 1161.]

1,3-Diazaazulene (cycloheptimidazole) [275-94-5] M 130.1, m 110-112°, 120°. It is recrystallised repeatedly from de-aerated cyclohexane in the dark or from pet ether/ $*C_6H_6$ and forms yellow needles. It is soluble in H₂O, EtOH and $*C_6H_6$, and forms a *monohydrate* which loses H₂O at 60°. The *picrate* has m 207°(dec). [Nozoe et al. J Am Chem Soc 76 3352 1954, Nukai et al. Bull Chem Soc Jpn 40 1967, Beilstein 23 III/IV 1216.]

1,5-Diazabicyclo[4.3.0]non-5-ene (DBN, 2,3,4,,6,7,8-hexahydropyrrolo[1,2-*a*]-pyrimidine) [3001-72-7] M 124.2, b 96-98%/11mm, 100-102%/12mm, 118-121%/32mm, d²⁰₄ 1.040, n²⁰_D 1.520, pK²⁵ >13.0. Distil DBN from BaO. It forms a *hydroiodide* on addition of 47% HI; dry it and dissolve it in MeCN, evaporate and repeat; recrystallise from EtOH, dry at 25%/1mm for 5hours, then at 80%/0.03mm for 12hours and store and dispense it in a dry box, m 154-156% [Jaeger et al. *J Am Chem Soc* 101 717 1979]. The *methiodide* is recrystallised from CHCl₃/Et₂O, m 248-250%, and *hydrogen fumarate* has m 159-160% and is crystallised from *iso*-PrOH [Rokach et al. *J Med Chem* 22 237 1979, Oediger et al. *Chem Ber* 99 2012 1966, Reppe et al. *Justus Liebigs Ann Chem* 596 210 1955]. [Beilstein 23/5 V 239.]

1,4-Diazabicyclo[2.2.2]octane (DABCO, triethylenediamine TED) [280-57-9] M 112.2, m 156-157^o (sealed tube), pK_1^{25} 2.97, pK_2^{25} 8.82 DABCO crystallises from 95% EtOH, pet ether or MeOH/diethyl ether (1:1). Dry it under vacuum over CaCl₂ and BaO. It can be sublimed *in vacuo*, and readily at room temperature. It has also been purified by removal of water during azeotropic distillation of a *benzene solution. It is then recrystallised twice from anhydrous diethyl ether under argon, and stored under argon [Blackstock et al. *J Org Chem* 52 1451 *1987*]. [*Beilstein* 23/3 V 487.]

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 2,3,4,6,7,8,9,10-octahydropyrimidino[1,2-*a*]azepine) [6674-22-2] M 152.2, b 115°/11mm, d_4^{20} 1.023, n_D^{20} 1.522, pK_{Est} ~ >13. Fractionally distil DBU under vacuum. Also purify it by chromatography on Kieselgel and eluting with CHCl₃/EtOH/25% aqueous NH₃ (15:5:2) and checking by IR and MS. [Oediger et al. *Chem Ber* 99 2012 1962, Angew Chem, Int Ed Engl 6 76 1967, Guggisberg et al. Helv Chim Acta 61 1057 1978, Beilstein 23/5 V 271.] **1,8-Diazabiphenylene** [259-84-7] **M 154.2, m 156-158.5°, pK**_{Est} ~4.4. Recrystallise it from cyclohexane, then sublime it in a vacuum. [Barton & Walker *Tetrahedron Lett* 569 1975, Deroski & Marhgraf *Can J Chem* 62 2235 1984.]

2,7-Diazabiphenylene [31857-42-8] **M 154.2, m 192-192.5**°, **pK**_{Est} ~4.5. It forms yellow crystals from cyclohexane, and sublimes in a vacuum. [MacBride J Chem Soc, Chem Commun 359 1974, Kramer & Berry J Am Chem Soc **94** 8336 1972.]

1,8-Diazafluorenone (cyclopenta[1.2-*b*:4,3-*b*']dipyridin-9-one) [54078-29-4] M 182.2, m 205°, 229-231°, $pK_{Est} \sim 2.6$. Recrystallise it from Me₂CO. The oxime has m 119-200°. [Druey & Schmid Helv Chim Acta 33 1080 1950, Beilstein 24 III/IV 622.]

Dibenzo-18-crown-6 [14187-32-7] M 360.4, m 163-164°. Crystallise it from *benzene, *n*-heptane or toluene and dry it under vacuum at room temperature for several days. [Szezygiel J Phys Chem 91 1252 1987, Vögtle ed. Top Corr Chem (Host Guest Complex Chemistry) 98 1981.]

Dibenzo-18-crown-8 [14174-09-5] **M 448.5, m 103-106°.** Recrystallise it from EtOH, and dry in a vacuum at 60° over P₂O₅ for 16hours. [Delville et al. J Am Chem Soc **109** 7293 1987, Vögtle ed. Top Corr Chem (Host Guest Complex Chemistry) **98** 1981.]

Dibenzofuran [132-64-9] **M 168.2, m 82.4**°. Dissolve dibenzofuran in diethyl ether, then shake it with two portions of aqueous NaOH (2M), wash it with water, separate and dry (MgSO₄) it. After evaporating the ether, dibenzofuran is crystallised from aqueous 80% EtOH and then dried under vacuum. [Cass et al. *J Chem Soc* 1406 1958.] High purity material is obtained by zone refining. [*Beilstein* **17** V 234.]

Dibenzothiophene [132-65-0] **M 184.3, m 99°.** Purify dibenzothiophene by chromatography on alumina with pet ether, in a darkened room. Recrystallise it from water or EtOH. [*Beilstein* **17** V 239.]

1,3-Dibromo-5,5-dimethylhydantoin [77-48-5] **M 285.9, m 190-192°(dec), 190-193°(dec)**. Recrystallise it from H_2O . Its solubility in CCl₄ is 0.003 mol/L at 25° and 0.024 mol/L at 76.5°. [Beilstein 24 III/IV 1101.]

4',5'-Dibromofluorescein [596-03-2] **M 490.1, m 285°.** Crystallise it from aqueous 30% EtOH. [*Beilstein* **19/6** V 462.]

5,7-Dibromo-8-hydroxyquinoline [521-74-4] **M 303.0, m 196°, pK** $_{1}^{25}$ **5.84, pK** $_{2}^{25}$ **9.56.** Crystallise it from acetone/EtOH. It can be sublimed. [*Beilstein* **21**/3 V 290.]

2,6-Dibromopyridine [626-05-1] M 236.9, m 117-119°, 118.5-119°, b 249°/757.5mm, $pK_{Est} < 0$. Purify 2,6-dibromopyridine by steam distillation, then recrystallise it twice from EtOH. It does not form an HgCl₂ salt. [den Hertog & Wibaut *Recl Trav Chim Pays Bas* 51 381 1932, *Beilstein* 20/5 V 435.]

2,6-Di-tert-butyl-4-methylpyridine [38222-83-2] M 205.4, m 31-32°, 33-36°, b 148-153°/ 95mm, 223°/760mm, n_D^{20} 1.476, pK_{Est} ~5.7. A possible impurity is 2,6-di-tert-butyl-4neopentylpyridine. Attempts to remove coloured impurities directly by distillation, acid-base extraction or treatment with activated charcoal were unsuccessful. Pure material is obtained by dissolving 0.3mole of the alkylpyridine in pentane (150mL) and introducing it at the top of a cold water jacketed chromatographic column (40 x 4.5cm) (cooling is necessary because the base in pentane reacts exothermically with alumina) containing activated and acidic alumina (300g). The column is eluted with pentane using a 1L constant pressure funnel fitted at the top of the column to provide slight pressure. All the pyridine is obtained in the first two litres of eluent (the progress of elution is monitored by spotting a fluorescent TLC plate and examining under short wave UV light—a dark blue spot is evidence for the presence of the alkylpyridine). Elution is complete in 1hour. Pentane is removed on a rotovap with 90-93% recovery yielding a liquid which solidifies on cooling, m 31-32°, and the base can be distilled. The *HPtCl₆ salt* has m 213-314°(dec), and the *CF₃SO₃H salt* has m 202.5-203.5° (from CH₂Cl₂). [Anderson & Stang *Org Synth* Coll Vol **VII** 144 *1981*, *Beilstein* **20/6** V 190.] **2,6-Di***tert*-butylpyridine [585-48-8] M 191.3, b 100-101°/23mm, d 0.852, n 1.474, pK²⁵ **5.02.** Redistil it from KOH pellets. [*Beilstein* 20 III/IV 2868.]

§ Polystyrene supported version is commercially available [107054-29-5] 200-400 mesh, crosslinked with 1% divinyllbenzene containing ~1.8mmol N/g polymer.

3,5-Dicarbethoxy-1,4-dihydro-2,4,6-collidine [632-93-9] **M 267.3, m 131-132°.** Crystallise the ester from hot EtOH/water mixture. [*Beilstein* **22** H 147, **22** I 529, **22** II 100, **22** III/IV 1594.]

(+) and (-) (8,8-Dichlorocamphorylsulfonyl)oxaziridine [127184-05-8] M 298.2, m 178-180°, 183-186°, $[\alpha]_{D}^{20}$ (+) and (-) 88.3° (c 1.3, CHCl₃), (+) and (-) 91° (c 5, CHCl₃). Recrystallise the enantiomers from EtOH [Davis & Weismiller *J Org Chem* 55 3715 1990].

1,3-Dichloro-5,5'-dimethylhydantoin [118-52-5] **M 197.0, m 132-134°, 136°.** Purify it by dissolving in conc H_2SO_4 and diluting with ice H_2O , collect the solid, dry it in a vacuum and recrystallise it from CHCl₃. It sublimes at 100° in a vacuum. It exhibits time-dependent hydrolysis at pH 9. [Petterson & Grzeskowiak J Org Chem 24 1414 1959, Beilstein 24 III/IV 1100.]

4,5-Dichloro-3*H***-1,2-dithiol-3-one** [1192-52-5] **M 187.1, m 52-56°, 61°, b 87°/0.5mm, 125°/11mm.** Dissolve it in CH₂Cl₂ (1g in 250ml), filter, wash it twice with H₂O, evaporate and distil the residue *in vacuo* and then recrystallise it from pet ether. IR: v_{max} 1650 cm⁻¹. [Boberg Justus Liebigs Ann Chem **679** 109 1964, Boberg Justus Liebigs Ann Chem **693** 212 1966, Beilstein **19/4** V 72.]

5,7-Dichloro-8-hydroxyquinoline [773-76-2] **M 214.1, m 180-181°, pK_1 1.89, pK_2 7.62.** Crystallise the dichloro-oxine from acetone/EtOH. [*Beilstein* **21** H 95.]

6,9-Dichloro-2-methoxyacridine (3,9-Dichloro-7-methoxyacridine) [86-38-4] M **278.1, m 160-161°, 164°, 163-165°.** Crystallise it from *benzene or 1,2-dichloroethane (m 162-163°). [Hall & Turner J Chem Soc 697 1945, Beilstein **21** III/IV 1553.]

5,7-Dichloro-2-methyl-8-hydroxyquinoline (5,7-dichloro-8-hydroxyquinaldine) [72-80-0] M 228.1, m 114-115°, $pK_{Est(1)} \sim 2.0$, $pK_{Est(2)} \sim 8.4$. Crystallise it from EtOH. [Beilstein 21/3 V 346.]

4,6-Dichloro-5-nitropyrimidine [4316-93-2] **M 194.0, m 100-103°, 101-102°, pK**_{Est} <0. If too impure, then dissolve it in Et₂O, wash it with H₂O, dry it over MgSO₄, evaporate it to dryness and recrystallise it from pet ether (b 85-105°) to give a light tan solid. It is soluble in *ca* 8 parts of MeOH [Boon et al. *J Chem Soc* 96 1951, Montgomery et al. in *Synthetic Procedures in Nucleic Acid Chemistry* Zorbach & Tipson eds, Wiley & Sons, NY, p76 1968]. [Beilstein **23** III/IV 899.]

2,6-Dichloropurine [5451-40-1] M **189.0**, m **180-181.5**°, **181**°, **185-195**°(dec), **188-189**°, pK₁²⁰ **1.16** (aqueous H₂SO₄), pK₂²⁰ **7.06**. It can be recrystallised from 150 parts of boiling H₂O and dried at 100° to constant weight. It is soluble in EtOAc. The $HgCl_2$ salt separates from EtOH solution. UV: λ max 275nm (ϵ 8.9K) at pH 1; and 280nm (ϵ 8.5K) at pH 11 [Elion & Hitchings J Am Chem Soc **78** 3508 1956, Schaeffer & Thomas J Am Chem Soc **80** 3738 1958, Beaman & Robins J Appl Chem (London) **12** 432 1962, Montgomery J Am Chem Soc **78** 1928 1956]. [Beilstein **26** III/IV 1747.]

2,6-Dichloropyridine [2402-78-0] **M 148.0, m 87-88°, pK^{25} -2.86 (aqueous H₂SO₄). It crystallises from EtOH. [***Beilstein* **20**/5 V 416.]

3,5-Dichloropyridine [2457-47-8] **M 148.0, m 64-65°, 66-67°, b 178-178°/~760mm, pK²⁵ 0.67.** Crystallise 3,5-dichloropyridine from EtOH, or distil it. [den Hertog et al. *Recl Trav Chim, Pays Bas* **69** 685 1950, *Beilstein* **20** H 23, **20** III/IV 2502, **20** V 417.]

4,7-Dichloroquinoline [86-98-6] **M 198.1, m 86.4-87.4°, b 148°/10mm, pK²⁵ 2.80.** Crystallise the dichloroquinoline from MeOH or 95% EtOH. [*Beilstein* **20**/7 V 316.]

2,3-Dichloroquinoxaline [2213-63-0] **M 199.0, m 152-153°, 152-154°, pK**_{Est} <0. Recrystallise it from $C_{6}H_{6}$ and dry it in a vacuum [Cheeseman *J Chem Soc* 1804 1955, *Beilstein* 23/7 V 144].

cis-Dicyclohexyl-18-crown-6 [16069-36-6] M 372.5, m 47-50°. Purify it by chromatography on neutral alumina and eluting with an ether/hexane mixture [see Izatt et al. *Inorg Chem* 14 3132 1975]. Dissolve it in ether at *ca* 40°, and spectroscopic grade MeCN is added to the solution, which is then chilled. The crown ether precipitates and is filtered off. It is dried *in vacuo* at room temperature [Wallace J Phys Chem 89 1357 1985]. [Vögtle ed. *Top Corr Chem* (Host Guest Complex Chemistry) 98 1981.] SKIN IRRITANT.

5,5-Diethylbarbituric acid (Barbital) [57-44-3] M 184.2, m 188-192°, pK_1^{25} 8.02, pK_2^{25} 12.7. Crystallise barbital from water or EtOH and dry it in a vacuum over P₂O₅. [Beilstein 24 III/IV 1901.]

1,1'-Diethyl-2,2'-cyanine iodide [977-96-8] **M 454.4, m 274°(dec).** It crystallises from EtOH and is dried in a vacuum oven at 80° for 4hours. [*Beilstein* 23 II 267.]

2,3-Dihydrobenzofuran (coumaran) [496-16-2] M 120.2, m -21.5°, 72-73°/12mm, **84°/17mm**, 188°/atm, d_4^{20} 1.065, n_D^{20} 1.5524. Suspend coumaran in aqueous NaOH and steam distil it. Saturate the distillate with NaCl and extract it with Et₂O, dry the extract (MgSO₄), filter, evaporate and distil the residue. It gives a strong violet colour with FeCl₃ + H₂SO₄ and forms a yellow *picrate*, m 76° (from EtOH or *C₆H₆) which loses coumaran in a desiccator [Bennett & Hafez *J Chem Soc* 287 *1941*, Baddeley et al. *J Chem Soc* 2455 *1956*]. [*Beilstein* 17/1 V 581.]

Dihydropyran (3,4-dihydro-2*H*-pyran) [110-87-2] M 84.1, b 84.4%/742mm, 85.4-85.6%/760mm, d_4^{20} 0.9261, n_D^{20} 1.4423, pK_{Est} ~ 4.2. Partially dry dihydropyran with Na₂CO₃, then fractionally distil it. The fraction b 84-85% is refluxed with Na until hydrogen no longer evolves when fresh Na is added. It is then dried, and distilled again through a 60 x 1.2cm column packed with glass rings [Brandon et al. *J Am Chem Soc* 72 2120 1950, UV: Elington et al. *J Chem Soc* 2873 1952, NMR: Bushweller & O'Neil *Tetrahedron Lett* 4713 1969]. It has been characterised as the 3,5-dinitrobenzoyloxy-tetrahydrofuran derivative, m 103% which forms pale yellow crystals from dihydropyran/Et₂O [Woods & Kramer *J Am Chem Soc* 69 2246 1947]. [Beilstein 17/1 V 181.]

3,4-Dihydro-2H-pyrido[1,2*a*]-pyrimidin-2-one [5439-14-5] M 148.2, m 185-187°, 187-188°, 191-191.5°. Dissolve it in CHCl₃, filter, evaporate, then recrystallise the residue from EtOH/Me₂CO (needles) which can be washed with Et₂O and dried. It can also be recrystallised from CHCl₃/pet ether or CHCl₃/hexane. The *hydrochloride* has m 295-295° (dec, from EtOH or MeOH/Et₂O), the *hydrobromide* has m 299-300°(dec) (from MeOH/Et₂O) and the *picrate* has m 224-226°(corr), m 219-220° from EtOH. [Adams & Pachter J Am Chem Soc 74 4906 1952, Lappin J Org Chem 23 1358 1958, Hurd & Hayao J Am Chem Soc 77 115 1955, Beilstein 24 III/IV 299.]

7,8-Dihydroxycoumarin (Daphnetin) [486-35-1] M 178.2, m 256°(dec), $pK_{Est(1)} \sim 8.5$, $pK_{Est(2)} \sim 12.3$. Crystallise it from aqueous EtOH. It can be sublimed. [Beilstein 18/3 V 202.].

trans-2,3-Dihydroxy-1,4-dioxane [4845-50-5] M 120.1, m 91-95°, 100°. Recrystallise it from Me₂CO. With phenylhydrazine it gives glyoxal phenylhydrazone m 175° (from Me₂CO/pet ether). The *diacetyl* derivative has m 105-106° [Head J Chem Soc 1036 1955, Raudnitz Chem Ind (London) 166 1956]. [Beilstein 1 IV 3627.]

2,5-Dihydroxy-1,4-dithiane [40018-26-6] M 152.2, m (142-147°) 150-152°, 151°. Recrystallise the dithiane from EtOH. 2,5-Diethoxy-dithiane has m 91° (92-93°); it crystallises from pet ether and can be sublimed at 60°/0.001mm [Hormatka & Haber Monatsh Chem 85 1088 1954, Thiel et al. Justus Liebigs Ann Chem 611 121 1958, Hesse & Jøeder Chem Ber 85 924 1952]. [Beilstein 1 IV 3966.]

S(-)-4',7-Dihydroxyflavanone (3,4'-Dihydroxyisoflavone, Liquiritigenin) [578-86-9] M 256.3, m 203-205° [α] $_{D}^{20}$ -225° (c 0.95, 95% EtOH). It crystallises from aqueous 50% EtOH. [Beilstein 18 III/IV 1780, 18/4 V 82.]

5,7-Dihydroxy-4'-methoxyflavone (Acacetin) [480-44-4] **M 284.3, m 261°, 260-265°.** Acacetin crystallises from 95% EtOH or acetic acid as pale yellow needles (m 263°). It is an anti-inflammatory. [Zemplen & Bognar *Chem Ber* **76** 452 *1943*, Pillon *Bull Soc Chim* Fr 9 *1954*, UV: Gaydou & Bianchini *Bull Soc Chim Fr* Part II 43 *1978*, *Beilstein* **18** III/IV 2683, **18/4** V 575.]

(±)-7-(2,3-Dihydroxypropyl)theophylline (Diprophylline, Dyphylline) [479-18-5] M 254.3, m 158°, 160-164°, 161°, 161-164°, pK_{Est} ~ 8.7. Recrystallise it from EtOH or H₂O. Its solubility in H₂O is 33% at 25°, in EtOH it is 2% and in CHCl₃ it is 1%. UV: λ_{max} (H₂O) 273nm (ε 8,855). [Roth Arch Pharm 292 234 1959.] The 4-nitrobenzoyl derivative has m 178° [Oshay J Chem Soc 3975 1956]. [Beilstein 26 III/IV 2370.]

1,3-Diiminoisoindoline [3468-11-9] **M 145.2, m 193-194°(dec), 196°(dec), pK²⁵ 8.27.** It crystallises from H₂O, MeOH or MeOH/Et₂O (charcoal) in colourless prisms that become green on heating. [Elvidge & Linstead J Chem Soc 5000 1952]. IR (nujol): 3150 and 690 cm⁻¹, and UV: λ max 251nm (ϵ 12,500), 256nm (ϵ 12,5000) and 303nm (ϵ 4,600) [Elvidge & Golden J Chem Soc 700 1957, Clark et al. J Chem Soc 3593 1953]. The thiocyanate has m 250-255° (dec), the monohydrochloride has m 300-301° (turns green), and the dihydrochloride has m 326-328° (turns green) and the picrate crystallises from EtOH with m 299° (dec). [Beilstein 22/13 V 5.]

5,7-Diiodo-8-hydroxyquinoline [83-73-8] M **397.0**, m **214-215°(dec)** $pK_{Est(1)}$ ~**3.2**, $pK_{Est(2)}$ ~**8.2**. It crystallises from xylene and is dried at 70° in a vacuum. [*Beilstein* **21** II 58.]

6-Dimethylaminopurine [938-55-6] **M 163.1, m 257.5-258.5°, 259-262°, 263-264°, pK_1^{25} 3.87, pK_2^{25} 10.5. It is purified by recrystallisation from H₂O, EtOH (0.32g in 10mL) or CHCl₃. [Albert & Brown J Chem Soc 2060 1954, UV: Mason J Chem Soc 2071 1954.] The monohydrochloride crystallises from EtOH/Et₂O, m** 253°(dec) [Elion et al. J Am Chem Soc 74 411 1952], the dihydrochloride has **m** 225°(dec) and the picrate has **m** 245° (235-236.5°) [Fryth et al. J Am Chem Soc **80** 2736 1958]. [Beilstein 26 III/IV 3566.]

4-Dimethylaminopyridine (DMAP) [1122-58-3] **M 122.2, m 108-109°, b 191°, pK²⁵ 9.61.** Recrystallise DMAP from toluene [Sadownik et al. *J Am Chem Soc* **108** 7789 1986]. [Beilstein **22** V 112.] § A polystyrene supported version (PS-DMAP) is commercially available.

1,3-Dimethylbarbituric acid [769-42-6] **M 156.1, m 123°, pK²⁵ 4.56.** Crystallise the acid from water and sublime it in a vacuum. Also purify it by dissolving 10g in 100mL of boiling $CCl_4/CHCl_3$ (8:2) (1g charcoal), filtering and cooling to 25°. Dry it *in vacuo* [Kohn et al. *Anal Chem* **58** 3184 *1986*]. [*Beilstein* **24** III/IV 1875.]

5,6-Dimethylbenzimidazole [582-60-5] **M 146.2, m 205-206°, pK_1^{25} 5.96, pK_2^{25} 12.52. Crystallise 5,6-dimethylbenzimidazole from diethyl ether. It sublimes at 140°/3mm. [***Beilstein* **23/6 V 454.]**

2,3-Dimethylbenzothiophene [31317-17-6] **M 212.3, m 69-70°, b 123-124°/10mm, n_D^{19} 1.6171.** Fractionate it through a 90cm Monel spiral column, or other efficient fractionating or spinning band column and collect the middle fraction. It has also been purified by chromatography on basic alumina using pentane as eluent. [Tedjanulia et al. J Heterocycl Chem 20 1485 1983, Beilstein 17 III/IV 161.]

4,4'-Dimethyl-2,2'-bipyridine [1134-35-6] **M 184.2, m 175-176°, pK**_{Est(1)} ~0.2, pK_{Est(2)} ~4.9. Crystallise it from ethyl acetate. [Elliott et al. J Am Chem Soc 107 4647 1985, Beilstein 23/8 V 79.]

1,1'-Dimethyl-4,4'-bipyridylium dichloride (3H₂O; Methyl Viologen Dichloride, paraquat dichloride) [1910-42-5] M 311.2, $m > 300^{\circ}(dec)$. Recrystallise the dichloride from MeOH/acetone

mixture. It has also been recrystallised three times from absolute EtOH [Bancroft et al. Anal Chem 53 1390 1981]. Dry it at 80° in a vacuum. [Beilstein 23/8 V 30.]

1,3-Dimethylbutadiene sulfone (1,3-dimethylsulfolene, 2,5-dihydro-2,4-dimethylthiophene) [10033-92-8] M 145.2, m 40.4-41.0°. Crystallise it from Et₂O, Et₂O/pentane or CCl₄. [Grummitt et al. J Am Chem Soc 72 5167 1950, Bartlett et al. J Org Chem 32 1290 1967, Beilstein 17 III/IV 161.]

2,2-Dimethyl-1,3-dioxan-4,6-dione (Meldrum's Acid) [2033-24-1] M 144.1, m 92-96°, 94-95°, pK²⁵ 5.1, 7.32. Crystallise the dione from Me₂CO/H₂O. It is a synthon for the C3 malonic acid moiety. [Arnette et al. J Am Chem Soc 106 6759 1984, Bihlmayer et al. Monatsh Chem 98 564 1967, Review: McNab Chem Soc, Rev 7 345 1978, Chan & Huang Synthesis 452 1982, Beilstein 19/5 V 8.]

3,6-Dimethyl-1,4-dioxan-2,5-dione (Lactide) [cis-RS,RS-(±) 615-95-2, cis-R,R-(±) 95-96-5, cis-S,S-(-) 4511-42-6] **M** 144.1. This is the cyclic dilactone of lactic acid. The (±)-cis-racemate has been distilled with **b** 142°/8mm; the distillate which solidifies gives yellow needles on recrystallisation from EtOH with **m** 128°, from Et₂O with **m** 129°, or CHCl₃ with **m** 126°, v_{max} 1720-1740 cm⁻¹. It hydrolyses in cold H₂O. [Carothers et al. J Am Chem Soc 54 772 1932]. A trans-form (probably RS,SR) has been reported which crystallises from Et₂O with **m** 42-43° [Hummel et al. Acta Cryst (Sect B) 38 1679 1982]. The R, R-(+)-lactide has **b** 150°/2mm and crystallises from Et₂O with **m** 95°, or **m** 96.5-97.5° (from CHCl₃) or **m** 97.7° (from EtOAc) and $[\alpha]_{D}^{22}$ +297° (c 1.2, *C₆H₆). The S,S-(-)-lactide has **b** 150°/2.5mm and crystallises from EtOAc with **m** 98.7°, or **m** 95° (from CHCl₃) or **m** 96.5-97.5° (from CCl₄) and $[\alpha]_{D}^{22}$ -297° (c 1.2, *C₆H₆). [Toniolo et al. J Org Chem 35 6 1970, Beilstein 19 H 154, 19 I 179, 19 II 176, 19 IV 1927, 19/5 V 10.]

2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine) [4733-39-5] M 360.5, m >280°, pK_{Est} ~5.6. Purify it by recrystallisation from *benzene. [Smith & Wilkins Anal Chem 25 510 1953, Beilstein 23 III/IV 2160.]

2,2-Dimethylethyleneimine (2,2-dimethylaziridine) [2658-24-4] M 71.1, b 70.5-71.0°, 72°, n_D^{20} 1.405, pK^{25} 8.64. Dry the 2,2-dimethylaziridine over solid KOH, filter and freshly distil from sodium before use, and store it under dry nitrogen. The *N*-phenylthiocarbamoyl derivative crystallises from pet ether containing a trace of Me₂CO with m 92.5-93.5°. [Hassner et al. J Am Chem Soc **91** 5046 1969, Cairns J Am Chem Soc **63** 871 1941, Lamaty et al. Justus Liebigs Ann Chem **726** 77 1969, Beilstein **20** III/IV 280.]

5,5-Dimethylhydantoin [77-71-4] **M 128.1, m 177-178**° pK²⁴ **9.19.** Crystallise the hydantoin from EtOH and sublime it *in vacuo*. [*Beilstein* **24** III/IV 1097.]

4,6-Dimethyl-2-hydroxypyrimidine [108-79-2] **M 124.1, m 198-199**°, 202-205°, pK_1^{20} 3.77, pK_2^{20} 10.50. Crystallise the pyrimidine from absolute EtOH (charcoal). [*Beilstein* 24/2 V 138.]

1,2-Dimethyl-1*H***-imidazole** [1739-84-0] **M 96.1, m 38-40°, b 206°**/760mm, d_4^{20} **1.084, pK**_{Est} ~8.1. Crystallise the imidazole from *benzene, dry and store it at 0-4°. The *picrate* crystallises from H₂O or EtOH with **m** 181°. [Balaban & Pymann *J Chem Soc* **125** 1570 1924, Gorun et al. *J Am Chem Soc* **109** 4244 1987, Beilstein **23** H 66, **23** II 56, **23** III/IV 594.]

3,3-Dimethyloxetane [6921-35-3] **M 86.1, b 79.2-80.3**°/760mm, d_4^{20} 0.836, n_D^{20} 1.399, Purify 3,3-dimethyloxetane by gas chromatography using a 2m silicone oil column or distil it. Fractionate it at atmospheric pressure (preferably under N₂ or Ar. [*Beilstein* 17 II 21.]

2,9-Dimethyl-1,10-phenanthroline (neocuproine hemihydrate) [484-11-7] M 208.3, 217.3 (hemihydrate), m 162-164°, pK²⁵ 5.85. Purify it as the *hemihydrate* by crystallisation from water and as the *anhydrous* base from *benzene. [*Beilstein* 23/8 V 527.]

4,4-Dimethyl-2,6-piperidinedione (**4,4-dimethylglutarimide**) [1123-40-6] **M 141.2, m 144-146°, pK**_{Est} ~**11.5.** Recrystallise the imide from hot H₂O or EtOH [Arnett & Harrelson J Am Chem Soc **109** 809 1987]. [Beilstein **21** H 391, **21** I 331, **21** II 309, **21** III/IV 4601, **21/9** V 592.]

2,5-Dimethylpyrazine [123-32-0] **M 108.1, b 156°, d** $_{4}^{20}$ **0.990, n** $_{D}^{20}$ **1.502, pK** $_{1}^{25}$ **-4.6** (aqueous H₂SO₄), pK $_{2}^{25}$ **1.85.** Purify it *via* its *picrate* (m 150°) which is decomposed with a base (e,g, KOH) and distilled. [Wiggins and Wise *J Chem Soc* 4780 1956]. [*Beilstein* 23/5 V 403.]

3,5-Dimethylpyrazole [67-51-6] **M 96.1, m 107-108°, pK²⁰ 4.16.** Crystallise it from cyclohexane or water. [Barszez et al. J Chem Soc, Dalton Trans 2025 1986, Beilstein 23/5 V 110.]

2,3-Dimethylquinoxaline [2379-55-7] **M 158.2, m 106°, pK²⁵ -3.84** (aqueous H_2SO_4). It has been purified by steam distillation with the base crystallising in the distillate. Recrystallise it from distilled water or aqueous EtOH. The *sulfate* crystallises from EtOH with **m** 151-152°(dec). [Gibson *J Chem Soc* 343 1927, *Beilstein* **23** H 191, **23** II 197, **23** III/IV 1277.]

2,4-Dimethylsulfolane [1003-78-7] **M 148.2, b 128°/77mm, d_D^{25} 1.1314, n_D^{20} 1.474.** Distil the 2,4-dimethylsulfolane in a vacuum. [*Beilstein* 17/1 V 82.]

1,3-Dimethyluracil [874-14-6] **M 140.1, m 121-122°, pK^{25} -3.25 (aqueous H₂SO₄). Crystallise it from EtOH/ether. [***Beilstein* **24** III/IV 1196.]

1,3-Dioxolan-2-one (ethylene carbonate) [96-49-1] M **88.1, m 37°, 39°, 40°, b 65-67°/1mm, 126°/17mm, 238°/760mm, d** $_{4}^{20}$ **1.321, n**⁴⁰ **1.4199.** Dry 1,3-dioxolan-2-one over P₂O₅, then fractionally distil it at low or atmospheric pressure. Recrystallise it from dry Et₂O (plates, m 36.5°, 38.5-40° was also reported). It is soluble in H₂O. [*Beilstein* 19 II 135,19 III/IV 1556, 19/4 V 6.]

1,3-Dioxane [505-22-6] **M 88.1, b 104.5°/751mm, d** $_{4}^{20}$ **1.040, n** $_{D}^{20}$ **1.417.** Dry the dioxane with sodium and fractionally distil it. [*Beilstein* **19/1** V 11.]

1,4-Dioxane [123-91-1] **M 88.1, f 11.8°, b 101.3°, d** $_{4}^{25}$ **1.0292, n** $_{15}^{15}$ **1.4236, n** $_{2}^{25}$ **1.42025.** It is prepared commercially either by dehydration of ethylene glycol with H₂SO₄ and heating ethylene oxide or bis(β -chloroethyl)ether with NaOH. The usual impurities are acetaldehyde, ethylene acetal, acetic acid, water and peroxides. Peroxides can be removed (and the aldehyde content decreased) by percolation through a column of activated alumina (80g per 100-200mL solvent), by refluxing with NaBH₄ or anhydrous stannous chloride and distilling, or by acidification with conc HCl, shaking with ferrous sulfate and leaving in contact with it for 24hours before filtering and purifying further.

Hess and Frahm [*Chem Ber* **71** 2627 *1938*] refluxed 2L of dioxane with 27mL conc HCl and 200mL water for 12hours with slow passage of nitrogen to remove acetaldehyde. After cooling the solution, KOH pellets were added slowly and with shaking until no more would dissolve and a second layer had separated. The dioxane was decanted, treated with fresh KOH pellets to remove any aqueous phase, then transferred to a clean flask where it was refluxed for 6-12hours with sodium, then distilled from it. Alternatively, Kraus and Vingee [*J Am Chem Soc* **56** 511 *1934*] heated it on a steam bath with solid KOH until fresh addition of KOH gave no more resin (due to acetaldehyde). After filtering through paper, the dioxane was refluxed over sodium until the surface of the metal was not further discoloured during several hours. It was then distilled from sodium.

The acetal (**b** 82.5^o) is removed during fractional distillation. Traces of *benzene, if present, can be removed as the *benzene/MeOH azeotrope by distillation in the presence of MeOH. Distillation from LiAlH₄ removes aldehydes, peroxides and water. Dioxane can be dried using Linde type 4X molecular sieves. Other purification procedures include distillation from excess C_2H_5MgBr , refluxing with PbO₂ to remove peroxides, fractional crystallisation by partial freezing and the addition of KI to dioxane acidified with aqueous HC1. Dioxane should be stored out of contact with air, preferably under N₂.

A detailed purification procedure is as follows: Dioxane is stood over ferrous sulfate for at least 2 days, under nitrogen. Then water (100mL) and conc HCl (14mL)/ litre of dioxane are added (giving a pale yellow colour). After refluxing for 8-12hours with vigorous N_2 bubbling, pellets of KOH are added to the warm solution to form two layers and to discharge the colour. The solution is cooled rapidly with more KOH pellets being added

(magnetic stirring) until no more dissolved in the cooled solution. After 4-12hours, if the lower phase is not black, the upper phase is decanted rapidly into a clean flask containing sodium, and refluxed over sodium (until freshly added sodium remained bright) for 1hour. The middle fraction is collected (and checked for minimum absorbency below 250nm). The distillate is fractionally frozen three times by cooling in a refrigerator, with occasional shaking or stirring. This material is stored in a refrigerator. Before use it is thawed, refluxed over sodium for 48hours, and distilled into a container. All joints are clad with Teflon tape.

Coetzee and Chang [*Pure Appl Chem* **57** 633 *1985*] dried the solvent by passing it slowly through a column (20g/L) of 3A molecular sieves activated by heating at 250° for 24hours. Impurities (including peroxides) are removed by passing the effluent slowly through a column packed with type NaX zeolite (pellets ground to 0.1mm size) activated by heating at 400° for 24hours or chromatographic grade basic Al_2O_3 activated by heating at 250° for 24hours. After removal of peroxides the effluent is refluxed for several hours over sodium wire, excluding moisture, distilled under nitrogen or argon and stored in the dark.

One of the best tests of purity of dioxane is the formation of the purple disodium benzophenone complex during reflux and its persistence on cooling. (Benzophenone is better than fluorenone for this purpose and for the storing of the solvent.) [Carter et al. *Trans Faraday Soc* **56** 343 *1960*, *Beilstein* **19** V 16.] **TOXIC.**

Rapid purification: Check for peroxides (see Chapter 1 and Chapter 2 for test under ethers). Pre-dry with $CaCl_2$ or better over Na wire. Then reflux the pre-dried solvent over Na (1% w/v) and benzophenone (0.2% w/v) under an inert atmosphere until the blue colour of the benzophenone ketyl radical anion persists. Distil, and store it over 4A molecular sieves in the dark.

1,3-Dioxolane [646-06-0] **M 74.1, b 75.0-75.2°, d_D^{20} 1.0600, n^{21} 1.3997.** Dry it with solid NaOH, KOH or CaSO₄, and distil it from sodium or sodium amalgam. Barker et al. [*J Chem Soc* 802 1959] heated 34mL of dioxalane under reflux with 3g of PbO₂ for 2hours, then cooled and filtered. After adding xylene (40mL) and PbO₂ (2g) to the filtrate, the mixture is fractionally distilled. Addition of xylene (20mL) and sodium wire to the main fraction (**b** 70-71°) led to a vigorous reaction, following which the mixture was again fractionally distilled. Xylene and sodium additions are made to the main fraction (**b** 73-74°) before it is finally distilled. [*Beilstein* **19/1** V 6.]

5,5-Diphenylhydantoin [57-41-0] **M 252.3, m 293-295°.** Crystallise the hydantoin from EtOH. [*Beilstein* **24** III/IV 1748.]

1,3-Diphenylisobenzofuran [5471-63-6] **M 270.3, m 129-130°.** Recrystallise it from EtOH or EtOH/CHCl₃ (1:1) under red light (as in photographic dark rooms) or from *benzene in the dark. [Beilstein **17/2** V 503.]

2,5-Diphenyl-1,3,4-oxadiazole (PPD) [725-12-2] M 222.3, m 70° (hydrate), 139-140° (anhydrous), b 231°/13mm, 248°/16mm. Its solubility in CHCl₃ is 10%. Crystallise it from EtOH and sublime it *in vacuo*. [*Beilstein* 27 III/IV 2712.]

2,5-Diphenyloxazole (PPO) [92-71-7] **M 221.3, m 74°, b 360°/760mm.** Distil it in steam and crystallise it from ligroin. [*Beilstein* **27** III/IV 1437.]

Dipicolinic acid (pyridine-2,6-dicarboxylic acid) [499-83-2] M 167.1, m 255°(dec), λ_{max} 270nm, pK₁²⁰ 2.10, pK₂²⁰ 4.68. Crystallise the acid from water, and sublime it in a vacuum. [Beilstein 22/4 V 128.]

Di-(4-pyridoyl)hydrazine (N,N'-disionicolinoyl hydrazine) [4329-75-3] M 246.2, m 254-255°, 259-260°. Crystallise it from water, aqueous EtOH or propan-1-ol. [Albert & Rees Biochem J 61 128 1955, Beilstein 22 III/IV 663.]

2,2'-Dipyridylamine [1202-34-2] M 171.2, m 84° and remelts at 95° after solidifying, b 176-178°/13mm, 222°/50mm, 307-308°/760mm, pK^{25} 6.69 (in 20% aqueous EtOH). Crystallise the amine from *benzene or toluene [Blakley & De Armond J Am Chem Soc 109 4895 1987]. The amine is also recrystallised from Me₂CO (m 95.1°) or distilled in a vacuum. [Beilstein 22 I 630, 22 II 331, 22 III/IV 3961.]

2,2'-Dipyridyl disulfide (2,2'dithiopyridine, Aldrithiol-2) [2127-03-9] M 220.3, m 53°, 57-58°, pK₁²⁵ 0.35, pK₂²⁵ 2.45. Recrystallise the disulfide H₂O from $*C_6H_6$ /pet ether (6:7), ligroin or $*C_6H_6$. The *picrate* has m 119° (from EtOH). [Walter et al. *Justus Liebigs Ann Chem* 695 7785 1966, Marckwald et al. *Chem Ber* 33 1556 1900, Brocklehurst & Little *Biochem J* 133 67,78 1973, *Beilstein* 21 III/IV 48.] It has been used as a 1mM solution in EtOH for the spectrophotometric estimation of thiols. Essentially the thiol displaces half the disulfide molecule liberating the 2-mercaptopyridine anion, thereby shifting the λ_{max} from 340nm (of the disulfide) to 268nm (of the anion) at pH 9, or 278nm in H₂O. (Compare with 4,4'-dipyridyl disulfide (below) which has been used for the same purpose [Humphrey et al. *Anal Chem* 40 698 1970].

4,4'-Dipyridyl disulfide (4,4'-dithiopyridine, Aldrithiol-4) [2645-22-9] M 220.3, m 74-76°, $pK_{Est(1)} \sim 1.5$, $pK_{Est(2)} \sim 4.5$. Recrystallise the disulfide from H₂O, EtOH, Me₂CO, *C₆H₆ or pet ether. It has been used as a 1mM solution in EtOH for the spectrophotometric estimation of thiols. Essentially the thiol displaces half the disulfide molecule liberating the 4-mercaptopyridine (4-pyridinethiol) anion, thereby shifting the λ_{max} from 324nm (of the disulfide) to 285nm (of the anion) at pH 9. (Compare with 2,2'dipyridyl disulfide above which has been used for the same purpose.) [Humphrey et al. Anal Chem 40 698 1970, Cheng & Ritchie Aust J Chem 26 1785 1973.] [Beilstein 21 II 35, for review see Aldrichimica Acta 4 33 1971.]

1,2-Di-(4-pyridyl)-ethane [4916-57-8] M **184.2, m 110.9-111.2°, 114.5-116°, b 167-174°/3mm, pK**_{Est(1)} ~**3.8, pK**_{Est(2)} ~**5.4.** Crystallise the ethane from cyclohexane/*benzene (3:1, solubility is ~7.5g/100mL). The *dihydrochloride* crystallises from EtOH with m 329-330°(dec). [Bergmann et al. J Am Chem Soc **74** 5981 1952, Thayer & Carson J Am Chem Soc **70** 2331 1948, Jampolsky et al. J Am Chem Soc **74** 5222 1952, Chow & Fouss J Am Chem Soc **80** 1095 1958, Beilstein **23** III/IV 1389.]

trans-1,2-Di-(4-pyridyl)-ethylene [13362-78-2] M 182.2, m 153-154°, 155.5-156.5°, pK_1^{25} 3.65, pK_2^{25} 5.6. Crystallise the ethylene from water (1.6g/100mL at 100°). The *di-hydrochloride* has m 347°, from EtOH. [*Beilstein* 23/8 V 239.]

1,3-Di-(4-pyridyl)-propane [17252-51-6] **M 198.3, m 60.5-61.5°, 62-65°, pK_{Est(1)} \sim 4.5, pK_{Est(2)} \sim 5.5.** Crystallise the propane from *n*-hexane/*benzene (5:1) or Me₂CO. The *picrate* has **m** 185-185°. [Jampolsky et al. *J Am Chem Soc* **74** 5222 1952, Chow & Fouss *J Am Chem Soc* **80** 1095 1958, Beilstein **23** III/IV 1400.]

2,5-Distyrylpyrazine [14990-02-4] **M 284.3, m 219°.** Recrystallise it from xylene; chromatograph it on basic silica gel (60-80 mesh) using CH_2Cl_2 as eluent, then sublime it in a vacuum on to a cold surface at 10⁻³ torr [Ebied *J Chem Soc, Faraday Trans 1* **78** 3213 1982]. All operations should be carried out in the dark.

1,3-Dithiane [505-23-7] **M 120.2, m 54°.** Crystallise the 1,3-dithiane from 1.5 times its weight of MeOH at 0°, and sublime it at 40-50°/0.1mm. [Gröbel & Seebach *Synthesis* 357 1977, *Beilstein* **19**/1 V 13.]

2,2'-Dithiobis(benzothiazole) [120-78-8] **M 332.2, m 180°, 182.5-183.5°.** Crystallise it from *benzene. [*Beilstein* **27** H 109, **27** III/IV 1862.]

4,4'-Dithiodimorpholine (**S,S'-di**-*N,N'-***dimorpholine**, **dimorpholine**-*N,N'*-**disulfide**) [103-34-4] **M 236.2, m 124-125°.** Crystallise it from hot aqueous dimethylformamide or EtOH. It is a fungicide. [Blake J Am Chem Soc **65** 1267 1943.]

1-Dodecylpyridinium chloride [104-74-5] **M 301.9, m 68-70°.** Purify the chloride by repeated crystallisation from acetone (charcoal); then recrystallise it twice from EtOH [Chu & Thomas J Am Chem Soc **108** 6270 1986]. It is hygroscopic and should be stored with a desiccant. [Beilstein **20** III/IV 2314.]

Ellipticine (5,11-dimethylpyrido[4,3:b]carbazole) [519-23-3] M 246.3, m 311-315°(dec), 312-314°(dec), pK²⁵ 5.78 (80% aqueous methoxyethanol). This DNA intercalator is purified by

recrystallisation from CHCl₃ or MeOH and is dried *in vacuo*. The UV λ_{max} values in aqueous EtOH/HCl are at 241, 249, 307, 335 and 426nm. [Marini-Bettolo & Schmutz *Helv Chim Acta* **42** 2146 *1959*.] The *methiodide* has **m** 360°(dec), with UV λ_{max} (EtOH/KOH) at 223, 242, 251, 311, 362 and 432nm. [Goodwin et al. *J Am Chem Soc* **81** 1903 *1959*, *Beilstein* **23/9** V 417.]

Elymoclavine (8,9-didehydro-6-methylergoline-8-methanol) [548-43-6] M 254.3, m 249-253°(dec), 250-252°(dec), $[\alpha]_{D}^{20}$ -109° (c 0.4, EtOH). It crystallises from MeOH, CHCl₃, Et₂O, Me₂CO or *C₆H₆. [Beilstein 23 III/IV 2716.]

Emetine hydrochloride hydrate [316-42-7] M 553.6 + aq, m 235-240°, 235-250°, 240-250°, 248-250° (depending on H₂O content), $[\alpha]_{D}^{20}$ -49.2° (free base, c 4, CHCl₃), +18° (c 6, H₂O, dry salt), pK₁ 5.77, pK₂ 6.64. It crystallises from MeOH/Et₂O, MeOH or Et₂O/EtOAc. The *free base* has m 104-105°, and the (-)-*phenylthiourea* derivative has m 220-221° (from EtOAc/pet ether, $[\alpha]_{D}^{25}$ - 29.3° (CHCl₃)). IR: v_{max} 3413 (OH) and 2611 (NH⁺) cm⁻¹; UV λ_{max} at 230nm (ϵ 16 200) and 282nm (ϵ 6 890) [Brossi et al. *Helv Chim Acta* 42 1515 1959, Barash et al. *J Chem Soc* 3530 1959]. [Beilstein 23 III/IV 3419.]

Ergocornine [564-36-3] **M 561.7, m 182-184**°, $[\alpha]_D^{20}$ -176° (c 0.5, CHCl₃). It crystallises with solvent of crystallisation from MeOH. [Stadler et al. *Helv Chim Acta* 52 1549 1969, *Beilstein* 25 III/IV 963, 27 II 860.]

Ergocristine [511-08-0] M 573.7, m 165-170°, $[\alpha]_{D}^{20}$ -183° (c 0.5, CHCl₃). It crystallises with 2 molecules of solvent of crystallisation from *benzene. [Stadler et al. *Helv Chim Acta* 52 1549 1969, *Beilstein* 25 III/IV 966, 27 II 860.]

Ergocryptine [511-09-1] **M 575.7, m 212-214**°, $[\alpha]_D^{20}$ -180° (c 0.5, CHCl₃). It crystallises with solvent of crystallisation, from acetone, *benzene or methanol. [Stadler et al. *Helv Chim Acta* 52 1549 1969, *Beilstein* 25 III/IV 964, 27 II 860.]

Ergotamine [113-15-5] M 581.6, m 212-214°(dec), $[\alpha]_D^{20}$ -160° (c 0.5, CHCl₃), pK²⁵ 6.40. Crystallise it from *benzene, then dry it by prolonged heating in high vacuum. It is very hygroscopic. [Beilstein 25 III/IV 964.]

Ergotamine tartrate [379-79-3] M 657.1, m 203°(dec). It crystallises from MeOH. [Beilstein 25 III/IV 964.]

Ergotaminine [639-81-6] **M 581.7, m 241-243°**, $[\alpha]_D^{20} + 369°$ (c 0.5, CHCl₃). It forms rhombic plates from MeOH which retain solvent unlike its isomer ergotamine (previous entry). It is less soluble than ergotamine, and its solubility is 0.1% in boiling ethanol and 0.07% in methanol. [Stoll *Helv Chim Acta* 28 1299 and 1306 1945, *Beilstein* 25 II 860, 862, 25 III/IV 966.]

D-Erythronic acid (3R-3,4-dihydroxyfuran-2-one) [15667-21-7] M 118.1, m 98-100°, 103-104°, 104-105°, 105°, $[\alpha]_{D}^{20}$ -73.2° (c 0.5, H₂O), $[\alpha]_{546}^{20}$ -87.6° (c 4, H₂O). Recrystallise it from EtOAc (20 parts) or isoPrOH (3 parts). [Baker & MacDonald J Am Chem Soc 82 230 1960, Glattfeld & Forbrich J Am Chem Soc 56 1209 1934, Weidenhagen & Wegner Chem Ber 72 2010 1939, Musich & Rapoport J Am Chem Soc 100 4865 1978, Beilstein 18/2 V 457.]

Esculetin (cichorigenin, 6,7-dihydroxycoumarin) [305-01-1] M 178.2, m 272-275° (dec), 274° (dec), pK²⁵ 8.60 (70% aqueous EtOH), pK_{Est(1)}~8.7, pK_{Est(2)} ~12.4. It forms prisms from AcOH, aqueous EtOH or aqueous MeOH, and provides leaflets on sublimation in a vacuum. [Kagan J Am Chem Soc 88 2617 1966, Marby et al. Phytochemistry 4 492 1965.] Esculin (the 6-glucoside) has m 215°(dec), $[\alpha]_{D}^{20}$ -41° (c 5, pyridine). [Beilstein 18 III/IV 1322, 18/3 V 202.]

Eserine (Physostigmine, Physostol, [(3aS-cis)-1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-pyrrolo[2,3-b]indol-5-ol methylcarbamate ester] [57-47-6] M 275.4, m 102-104°, 105-106°,

 $[\alpha]_{D}^{17}$ -67° (c 1.3, CHCl₃), $[\alpha]_{D}^{25}$ -120° (*C₆H₆), pK₁²⁵ 1.96, pK₂²⁵ 8.08. Eserine crystallises from Et₂O or *C₆H₆ and forms an unstable low melting form m 86-87° [Harley-Mason & Jackson *J Chem Soc* 3651 1954, Wijnberg & Speckamp *Tetrahedron* 34 2399 1978]. [*Beilstein* 23/11 V 401.]

2-Ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) [16357-59-8] M 247.3, m 63.5-65°, 66-67°. Dissolve EEDQ ~180g in CHCl₃, evaporate to dryness in a vacuum. Add dry Et₂O (20mL) and a white solid separates on standing. Set aside for a few hours, collect the solid, wash it thoroughly with cold Et_2O and dry it in a vacuum (~140g, m 63.5-65°). A further crop of solid (~25g) is obtained from the filtrate on standing overnight. [Fieser & Fieser *Reagents for Organic Synthesis* 2 191 1969, Belleau et al. J Am Chem Soc **90** 823 1968 and **90** 1651 1968, Beilstein **21**/3 V 28.]

Ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) [91-53-2] M 217.3, b 169°/12-13mm, d_4^{20} 1.000, $pK_{Est} \sim 5.8$. Purify Ethoxyquin by fractional distillation *in vacuo* whereby the distillate solidifies to a glass. [Knoevenagel *Chem Ber* 54 1723, 1730 1921.] The *methiodide* has m 179° (from EtOH), and the *1-phenylcarbamoyl* derivative has m 146-147° (from EtOH). [Beaver et al. *J Am Chem Soc* 79 1236 1957, *Beilstein* 21 III/IV 95.]

N-Ethylcarbazole [86-28-2] M 195.3, m 69-70°, 69-71°, b 199-200°/15mm. Recrystallise it from MeOH, EtOH, EtOH/water or isopropanol and dry it below 55°. [*Beilstein* 20 H 436, 20 II 282, 20 III/IV 3829.]

Ethyl 1,3-dithiane-2-carboxylate [20462-00-4] M 192.3, b 75-77% 0.2mm, 96% 0.4mm, d_4^{20} 1.220, n_D^{25} 1.5379. Dissolve the ester in CHCl₃, wash with aqueous K₂CO₃, twice with H₂O, dry over MgSO₄, filter, evaporate and distil the residue. [Eliel & Hartman J Org Chem 37 505 1972, Seebach Synthesis 1 17 1969, Beilstein 19/7 V 227.]

Ethyl 1,3-dithiolane-2-carboxylate [20461-99-8] M 178.3, b 85% 0.1mm, d_4^{20} 1.250, n_D^{20} 1.538. Dissolve the ester in CHCl₃, wash it with aqueous K₂CO₃, twice with H₂O, dry it over MgSO₄, filter, evaporate and distil the residue *in vacuo*. [Hermann et al *Tetrahedron Lett* 2599 1973, Corey & Erickson J Org Chem 36 3553 1971]. [Beilstein 19/7 V 225.]

Ethylene oxide (oxirane) [75-21-8] M 44.0, b 13.5% d_4^{10} 0.882, n_D^7 1.3597. Dry oxirane with CaSO₄, then distil it from crushed NaOH. It has also been purified by passage, as a gas, through towers containing solid NaOH. [*Beilstein* 17/1 V 3.]

Ethylene thiourea (2-imidazolidinethione) [96-45-7] M 102.2, m 203-204°. Crystallise it from EtOH or amyl alcohol. [*Beilstein* 24 III/IV 22.]

Ethylene urea (2-imidazolidone) [120-93-4] M 86.1, m 131°. Crystallise it from MeOH (charcoal). [Beilstein 24 III/IV 6.]

(±)-2-Ethylethylenimine (2-ethylaziridine) [2549-67-9] M 71.1, b 88.5-89°, pK²⁵ 8.31 (K_b 5.70x10⁻⁷ Freshly distil the aziridine from sodium before use. The *picrate* has m 103-104°. TOXIC. [O'Rourke et al. J Am Chem Soc 78 2159 1956, Beilstein 20 III/IV 280.]

Ethyl hydrocupreine hydrochloride (Optochin) [3413-58-9] M 376.9, m 249-251°, pK_1^{25} 5.50, pK_2^{25} 9.95. Recrystallise it from H₂O [UV: Heidt & Forbes J Am Chem Soc 55 2701 1933]. [Beilstein 24 H 385, 24 III/IV 1446.]

2-Ethyl-isothionicotinamide (ethionamide, 3-ethyl 4-pyrdinecarbothioamide) [536-33-4] **M 166.2, m 163-164°, 164-166°(dec).** It crystallises from EtOH as lemon yellow needles. The *hydrochloride* crystallises from EtOH (+ few drops of HCl) as orange yellow needles with **m** 212-214°. [Kutscherowa et al. *J Gen Chem USSR* (English transl) **29** 915 1959, Beilstein **22** III/IV 737.] It causes peripheral and occular **neuropathy** and is **carcinogenic** and **teratogenic**.

390

(±)-3-Ethyl-5-phenylhydantoin (Ethotoin) [86-35-1] M 204.2, m 94°. Crystallise it from water. It is an anticonvulsant and is used in epilepsy. [Dudley et al. J Heterocycl Chem 10 173 1973, Pinner Chem Ber 21 2320 1888, Beilstein 25 III/IV 963, 27 II 860.]

N-Ethyl-5-phenylisoxazolinium-3'-sulfonate (Woodward's reagent K) [4156-16-5] M 253.3, m 220°(dec). Crystallise the reagent from diethyl ether or ethyl acetate/pet ether. [Lamas et al. J Am Chem Soc 108 5543 1986.] It is best purified by dissolving in excess of aqueous N HCl and precipitating with Me₂CO to give a white fluffy solid. [Woodward et al. Tetrahedron 22 Suppl 8 321 1966, Fieser & Fieser Reagents for Organic Synthesis 1 385, 2 198.]

(±)-3-Ethyl-3-phenyl-2,6-piperidinedione (Glutethimide) [77-21-4] M 217.3, m 84°. Crystallise glutethimide from diethyl ether or ethyl acetate/pet ether. It has m 91-92° (from aqueous EtOH), 87-87.5° (from Et₂O/pet ether), 84-87° (from isopropanol), and 83-84° (from Et₂O). [Penprase & Biles *J Am Pharm Assoc* 47 523 1958, Hofmann et al. *Helv Chim Acta* 40 387, 393 1957, *Beilstein* 21 III/IV 5493.] The R(+)-enantomer crystallises from EtOAc/pet ether with m 103-104°, and [α] $_{D}^{20}$ +184° (c 1, EtOH). [Branchini *Ricerche Scientifiche* 29 2435 1959, Finch et al. *Experientia* 31 1002 1975.]

2-Ethylpyridine [100-71-0] **M 107.2, b 148.6°, d_4^{25} 0.942, pK²⁵ 5.89.** Dry 2-ethylpyridine with BaO, and fractionally distil it. Purify it further by conversion to the *picrate*, recrystallisation of the picrate and regeneration of the free base followed by distillation. [*Beilstein* **20**/6 V 3.]

4-Ethylpyridine [536-75-4] **M 107.2, b 168.2-168.3**°, d_4^{25} **0.942, pK**²⁵ **6.02.** Dry 4-ethylpyridine with BaO, and fractionally distil it. Also purified by converting to the *picrate*, recrystalising and the free base is regenerated and distilled. [*Beilstein* **20**/6 V 10.]

4-Ethylpyridine-1-oxide [14906-55-9] M 123.1, m 109-110°, $pK_{Est} \sim 1.1$. Crystallise the oxide from acetone/ether. [*Beilstein* 20/6 V 10.]

Etioporphyrin I See aetioporphyrin I above.

Flavone (2-phenyl-4H-1-benzopyran-4-one) [525-82-6] M 222.3, m 100°. Crystallise flavone from pet ether. [Beilstein 17/10 V 552.]

Fluorescein [9-(*o*-carboxyphenyl-6-hydroxy-3*H*-xanthene-3-one] [2321-07-5] M 320.0, ε_{495nm} 7.84 x 10⁴ (in 10⁻³M NaOH), pK₁ 2.2, p K₂ 4.4, pK₃ 6.7. Dissolve it in dilute aqueous NaOH, filter and precipitate it by adding dilute (1:1) HCl. The process is repeated twice more, and the fluorescein is dried at 100°. Alternatively, it has been crystallised from acetone by allowing the solution to evaporate at 37° in an open beaker. It has also been recrystallised from EtOH and dried in a vacuum oven. [*Beilstein* 19 I 721, 19 II 248, 19 III/IV 2904, 19/8 V 456.]

Fluoresceinamine (mixture of 5- and 6-aminofluorescein) [27599-63-9] M 347.3, m 215-220°(dec, 5-amino) and m 314-316°(dec, 5-amino). Dissolve it in EtOH, treat with charcoal, filter, evaporate and dry the residue in a vacuum at 100° overnight. Also recrystallise it from 6% HCl, then dissolve it in 0.5% aqueous NaOH and precipitate it by acidifying with acetic acid. The separate amines are made from the respective nitro compounds, which are best separated *via* their acetate salts. They have similar R_F of 0.26 on Silica Gel Merck F_{254} in 5 mL MeOH + 150 mL Et₂O saturated with H₂O. IR (Me₂SO) has a band at v_{max} 1690 cm⁻¹ (CO₂⁻) and sometimes a weak band at v_{max} 1750 cm⁻¹ due to the lactone. UV (EtOH) of the 6 isomer has λ_{max} at 222nm (ε 60 000) and the 5-isomer at λ_{max} 222nm (ε 60 000) and 285nm (ε 20.600). [IR: McKinney & Churchill J Chem Soc (C) 654 1970, McKinney et al. J Org Chem 27 3986 1962, UV: Verbiscar J Org Chem 29 490 1964, Beilstein 19 III/IV 4337, 19/8 V 713.]

Fluorescein isothiocyanate isomer I (5-isocyanato isomer) [3326-32-7; 27072-45-3 mixture of 5- and 6-isomers] M 389.4, m >160°(slow dec). It is made from the pure 5-amino isomer. Purify it by dissolving it in boiling Me₂CO, filtering and adding pet ether (b 60-70°) until it becomes turbid. If an oil

Purification of Organic Chemicals – Heterocyclic Compounds

separates, then decant it and add more pet ether to the supernatant and cool. Orange-yellow crystals separate, collect and dry them *in vacuo*. It should give one spot on TLC (silica gel) in EtOAc/pyridine/AcOH (50:1:1) and in Me₂NCHO/CHCl₃/28% NH₄OH (10:5:4). IR (Me₂SO): v_{max} 2110 (NCS) and 1760 (C=O) cm⁻¹. The ¹HNMR spectra in Me₂CO-d₆ of the 5- and 6-isomers are distinctly different for the protons in the *benzene ring; the UV in phosphate buffer pH 8.0 shows a λ_{max} at ~490nm. [Sinsheimer et al. *Anal Biochem* **57** 227 *1974*, McKinney et al. *Anal Biochem* **7** 74 *1964*, *Beilstein* **19** III/IV 4337.]

3-Fluoro-4-iodopyridine [22282-75-3] M **223.0, m 80-81°, 85-89°, pK**_{Est} ~1.7, Crystallise it from pet ether and/or sublime it *in vacuo* (m 87°). The *picrate* [22282-76-4] has m 140° (from EtOH). [Gribble & Saulnier *Tetrahedron Lett* 4137 1980.]

4-Fluoro-7-nitrobenzofurazan (4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole) [29270-56-2] M **183.1, m 52.5-53.5°, 53-56°, 53.5-54.5°.** Purify it by repeated recrystallisation from pet ether (b 40-60°). On treatment with MeONa in MeOH it gives 4-methoxy-7-nitrobenzo-2-oxa-1,3-diazole m 115-116°. [Nunno et al. J Chem Soc (C) 1433 1970.] It is a very good fluorophore for amino acids [Imai & Watanabe Analyt Chim Acta **130** 377 1981], as it reacts with primary and secondary amines to form fluorescent adducts with λ_{ex} 470nm and λ_{em} 530nm. It gives a glycine derivative with m 185-187° [Miyano et al. Anal Chim Acta **170** 81 1985].

5-Fluorouracil (5-fluoropyrimidinedi-2,4-[1*H*,3*H*]-one) [51-21-8] M 130.1, m 282-283°(dec), 282-286°(dec), pK_1^{25} 8.04, pK_2^{25} 13.0. Recrystallise it from H₂O or MeOH/Et₂O and sublime it at 190-200°/0.1mm or 210-230°/0.5mm. UV: λ_{max} at 265-266nm (ε 7070). [Barton et al. *J Org Chem* 37 329 1972, Duschinsky & Pleven *J Am Chem Soc* 79 4559 1957, *Beilstein* 24 III/IV 1229.]

Fluram (Fluorescamine, 4-phenyl-spiro[furan-2(3*H*)-1-phthalan]-3,3'-dione) [38183-12-9] M 278.3, m 153-155°, 154-155°. Fluram is a non-fluorescent reagent that reacts with primary amines to form highly fluorescent compounds. Purify it by dissolving (~1g) in Et₂O/*C₆H₆ (1:1, 180 mL), washing with 1% aqueous NaHCO₃ (50mL), drying (Na₂SO₄), and evaporating in a vacuum. Dissolve the residue in warm CH₂Cl₂ (5mL), dilute with Et₂O (12mL) and refrigerate. Collect the solid and dry it in a vacuum. IR (CHCl₃): v_{max} 1810, 1745, 1722, 1625 and 1600 cm⁻¹, and ¹HNMR (CDCl₃): δ 8.71 (s, -OHC=). [Weigele et al. *J Am Chem Soc* 94 5927 1972, Weigele et al. *J Org Chem* 41 388 1976, Lai Methods Enzymol 47 236 1977.]

Forskolin (Colforsin, Coleonol, 5-[acetyloxy]-3-ethenyldodecahydro-6,10,10b-trihydroxy-3,4a,7,7, 10a-penta-methyl- $[3R-\{3\alpha-4a\beta,5\beta,6\beta,6a\alpha,10\alpha,10a\beta,10b\alpha\}-1H$ -naphtho[2,1b]pyran-1-one) [66575-29-9] M 410.5, m 230-232°, 228-233°, $[\alpha]_D^{25}$ -96.2° (c 1.7, CHCl₃). Recrystallise it from *C₆H₆/pet ether, EtOAc/pet ether. It is an antihypertensive, a positive ionotropic, a platelet aggregation inhibitor, and it has adenylate cyclase activating properties [*Chem Abstr* 89 244150 1978, de Souza et al. *Med Res Rev* 3 201 1983, X-ray: Tandon et al. *Indian J Chem* 15B 880 1977]. [*Beilstein* 18/5 V 55.]

Fumagillin {2,4,6,8-decatetraene-1,10-dioic acid mono[4-(1,2-epoxy-1,5-dimethyl-4-hexenyl)-5-methoxy-1-oxaspiro[2.5]oct-6-yl] ester} [23110-15-8] M 458.5, m 194-195°, $[\alpha]_D^{20}$ -26.2° (in 95% EtOH), pK_{Est} ~4.5. Forty grams of a commercial sample containing 42% fumagillin, 45% sucrose, 10% antifoam agent and 3% of other impurities are digested with 150mL of CHCl₃. The insoluble sucrose is filtered off and washed with CHCl₃. The combined CHCl₃ extracts are evaporated almost to dryness at room temperature under reduced pressure. The residue is triturated with 20mL of MeOH, and the fumagillin is filtered off by suction. It is crystallised twice from 500mL of hot MeOH by standing overnight in a refrigerator (yellow needles). (The long-chain fatty ester used as antifoam agent is still present, but is then removed by repeated digestion, on a steam bath, with 100mL of diethyl ether.) For further purification, the fumagillin (10g) is dissolved in 150mL of 0.2M ammonia, and the insoluble residue is filtered off. The ammonia solution (cooled in running cold water) is then brought to pH 4 by careful addition of M HCl with constant shaking in the presence of 150mL of CHCl₃. (Fumagillin is acid-labile and must be removed rapidly from the aqueous acid solution.) The CHCl₃ extract is washed several times with distilled water, dried (Na₂SO₄) and evaporated under reduced pressure. The solid residue is washed with 20mL of MeOH. The

fumagillin is filtered off by suction, then crystallised from 200mL of hot MeOH. [Tarbell et al. J Am Chem Soc 77 5610 1955.]

Alternatively, 10g of fumagillin in 100mL CHCl₃ is passed through a silica gel (5g) column to remove tarry material, and the CHCl₃ is evaporated to leave an oil which gives fumagillin on crystallisation from amyl acetate. It recrystallises from MeOH (charcoal) or Me₂CO/MeOH. The fumagillin is stored in dark bottles in the absence of oxygen and at low temperatures. [Schenk et al. *J Am Chem Soc* **77** 5606 *1955*, *Beilstein* **19** III/IV 1012.]

Furan [110-00-9] **M 68.1, b 31.3°, d** $_{4}^{20}$ **1.42, n** $_{D}^{20}$ **1.4214.** Shake it with aqueous 5% KOH, dry it with CaSO₄ or Na₂SO₄, then distil it under nitrogen, from KOH or sodium, immediately before use. A trace of hydroquinone could be added as an inhibitor of oxidation. [*Beilstein* **17** H 27, **17** I 16, **17** II 34, **17**/1 V 291.]

Furan-2-carboxylic (2-furoic) acid [88-14-2] M 112.1, m 133-134°, b 141-144°/20mm, 230-232°/760mm, pK_1^{25} -7.3 (O-protonation), pK_2^{25} 3.32. Crystallise the acid from hot water (charcoal), dry it at 120° for 2hours, then recrystallise it from CHCl₃, and again dry it at 120° for 2hours. For use as a standard in volumetric analysis, good quality commercial acid should be crystallised from CHCl₃ and dried as above or sublimed at 130-140°/50-60mm or less. [*Beilstein* 18 I 438, 18 II 265, 18 III/IV 3914, 18/6 V 102.]

Furan-3-carboxylic (3-furoic) acid [488-93-7] M 112.1, m 122-123°, 123°.5, pK²⁵ 4.03 Crystallise the acid from water or aqueous EtOH, and sublime it in a vacuum. [*Beilstein* 18 I 439, 18 III/IV 4052, 18/6 V 196.]

Furan-3,4-dicarboxylic acid [3387-26-6] **M 156.1, m 217-218**°, 221.5-222.5°, pK_1^{25} 1.44, pK_2^{25} 7.84. Crystallise it from water or Et₂O/pet ether, and sublime it in a vacuum. [Beilstein 18 III/IV 4497.]

Furan-2,5-dione (maleic anhydride) [108-31-6] **M 98.1, m 54°, b 94-96°/20mm, 199°/760mm.** Crystallise it from *benzene, CHCl₃, CH₂Cl₂ or CCl₄. Sublime it under reduced pressure. [Skell et al. J Am Chem Soc **108** 6300 1986, Beilstein **17** III/IV 5897, **17/11** V 55.]

3-(2-Furanyl)acrylic acid [539-47-9] M **138.1**, (*cis-isomer*) m **106-108**°, pK²⁵ **3.5**; (*trans-isomer*) m **141**°, **143-144**°, b **285**°, pK²⁵ **4.5** (H₂O), **5.76** (**50% aqueous EtOH**), **6.65** (**ethoxyethanol/H₂O-80:20**). Crystallise the *cis-isomer* from $*C_6H_6$ and the *trans-isomer* from H₂O, $*C_6H_6$ or pet ether (b 80-100°)(charcoal). [*Beilstein* **18** H 301, **18** III/IV 4143, **18/6** V 306.]

Furfural (2-furfuraldehyde) [98-01-1] M 96.1, b 54-56°/11mm, 59-60°/15mm, 67.8°/20mm, 90°/65mm, 161°/760mm, d_4^{20} 1.159, n_D^{20} 1.52608, pK^{25} -6.5 (O-protonation). Furfural is unstable to air, light and acids. Impurities include formic acid, β-formylacrylic acid and furan-2-carboxylic acid. Distil it in an oil bath from 7% (w/w) Na₂CO₃ (added to neutralise acids, especially pyromucic acid). Redistil it from 2% (w/w) Na₂CO₃, and then, finally fractionally distil it under vacuum. It is stored in the dark. [Evans & Aylesworth *Ind Eng Chem (Anal ed)* 18 24 1926.]

Impurities resulting from storage can be removed by passage through chromatographic grade alumina. Furfural can be separated from impurities other than carbonyl compounds by the bisulfite addition compound. The aldehyde is steam volatile.

It has been purified by distillation (using a Claisen head) under reduced pressure. This is essential as is the use of an oil bath with temperatures of no higher than 130° which is highly recommended. When furfural is distilled at atmospheric pressure (in a stream of N₂), or under reduced pressure with a free flame (caution: because the aldehyde is flammable), an almost colourless oil is obtained. After a few days and sometimes a few hours, the oil gradually darkens and finally becomes black. This change is accelerated by light and occurs more slowly when it is kept in a brown bottle. However, when the aldehyde is distilled under vacuum and the bath temperature kept below 130° during the distillation, the oil develops only a slight colour when exposed to direct sunlight during several days. The distillation of very impure material should NOT be attempted at atmospheric pressure; otherwise the product darkens very rapidly. After one distillation under vacuum, a distillation at atmospheric pressure can be carried out without too much decomposition and darkening. The liquid **irritates**

mucous membranes. Store it in dark containers under N₂, preferably in sealed ampoules. [Adams & Voorhees *Org Synth* Coll Vol I 280 1941, *Beilstein* 17/9 V 292.]

Furfuryl alcohol (2-furylmethanol) [98-00-0] M 98.1, b 68-699/20mm, 170.09/750mm, d_4^{20} 1.132, n_D^{20} 1.4873, n_D^{30} 1.4801, pK²⁵ 2.61. Distil it under reduced pressure to remove tarry material, shake with aqueous NaHCO₃, dry it with Na₂SO₄ and fractionally distil it under reduced pressure from Na₂CO₃. It can be further dried by shaking with Linde 5A molecular sieves. [*Beilstein* 17/3 V 338.]

Furfurylamine (2-aminomethylfuran) [617-89-0] M 97.1, b 54-56%/17mm, 142.5-143%/735mm, d²⁰₄ 1.059, n²⁰_D 1.489, pK³⁰ 8.89. Distil it under nitrogen from KOH through a column packed with glass helices, preferably under vacuum. The *picrate* has m 184-184% (dec), the *hydrochloride* has m 147-149%, and the *oxalate* has m 145-147%. [*Beilstein* 18 H 584, 18 II 416, 18 III/IV 3068, 18/9 V 541.]

6-Furfurylaminopurine (Kinetin) [525-79-1] M 215.2, m 266-267°, 269-271°, 270-272°, 272° (sealed capillary), $pK_1 < 1$, pK_2 3.8, pK_3 10. It forms platelets from EtOH and sublimes at 220°, but is best done at lower temperatures in a good vacuum. It has been extracted from neutral aqueous solutions with Et₂O. [Miller et al *J Am Chem Soc* 78 1375 1956, Bullock et al. *J Am Chem Soc* 78 3693 1956, Beilstein 26 III/IV 3586.]

Furil [492-94-4] **M 190.2, m 165-166°.** Furil crystallises from MeOH or *benzene (charcoal). [*Beilstein* **19** III/IV 2008.]

(±)-Furoin [1,2-di-(2-furyl)-2-hydroxyethanone] [552-86-3] M 192.2, m 135-136°, 138-139°, 158-162°/9mm. It crystallises from MeOH (charcoal) and distils in a vacuum. [Hartman & Dickey J Am Chem Soc 55 1228 1933.] The (-)-enantiomer crystallises from toluene or EtOH with m 131-131°, and $[\alpha]_D^{20}$ -4.9° (dioxane) [Neuberg et al. Arch Biochem 1 393 1943, Beilstein 19 H 204, 19 I 710, 19 II 224, 19 III/IV 2543.]

Fusaric acid (5-*n*-butylpyridine-2-carboxylic acid) [536-69-6] M 179.2, m 96-98°, 98°, 98-100°, 101-103°, pK₁ 5.7, pK₂ 6.16 (80% aqueous methoxyethanol). Dissolve it in CHCl₃, dry (Na₂SO₄), filter, evaporate and recrystallise the residue from 50 parts of pet ether (b 40-60°), CHCl₃/pet ether or EtOAc, then sublime it *in vacuo*. The *amide* crystallises from MeOH with m 128.2-129.0°. The *copper salt* forms bluish violet crystals from H₂O and has m 258-259°. [Hardegger & Nikles *Helv Chim Acta* 39 505 1956, Schreiber & Adam *Chem Ber* 93 1848 1960, NMR and MS: Tschesche & Führer *Chem Ber* 111 3500 1978, *Beilstein* 22 III/IV 764, 22/2 V 384.]

Fuschin (Magenta I) See rosaniline hydrochloride in "Aromatic Compounds", Chapter 4,

Glycidol (oxirane-2-methanol) $[RS-(\pm)-556-52-5; R-(+)-57044-25-4; S-(-)-60456-23-7]$ M 74.1, (*R*,*S*) b 61-62°/15mm, d²⁰₄ 1.117, n²⁰_D 1.433, $[S(-)-isomer, \S$ also available on polymer support, has b 49-50°/7mm, 66-67°/19mm, $[\alpha]_{D}^{20}$ -15°(neat)], [R(+)-isomer has b 56-56.5°/11mm, d²⁰₄ 1.117, n²⁰_D 1.429, $[\alpha]_{D}^{20}$ +15° (neat)]. Purify glycidol by fractional distillation. The 4-nitrobenzoates have m 56°(±); m 60-62°, $[\alpha]_{D}^{20}$ -37.9° (c 3.38 CHCl₃) for *R*-(-)-isomer [106268-95-5]; m 60-62°, $[\alpha]_{D}^{20}$ +38° (c 1 CHCl₃) for the S-(+)-isomer [115459-65-9] and are recrystallised from Et₂O or Et₂O/pet ether (b 40-60°) [S-isomer: Burgos et al. J Org Chem 52 4973 1987, Sowden & Fischer J Am Chem Soc 64 1291 1942.] [Beilstein 17 I 50, 17 III/IV 985, 17/3 V 9.]

Gramine (3-dimethylaminoethylindole) [87-52-5] M 174.3, m 134°, pK^{25} 16.00 (NH acidic), basic pK^{25} 9.2 (50% aqueous EtOH). Crystallise gramine from diethyl ether, ethanol or acetone. It sublimes at 59°/0.001mm. The *hydrochloride* crystallises from EtOH/Et₂O with m 190.5-191.0°(dec). [Culvenor et al. *Aust J Chem* 17 1301 1964, *Beilstein* 22 III/IV 4302, 22/10 V 25.]

395

 $(2S,6^{\circ}R)(+)$ -Griseofulvin [126-07-8] M 352.8, m 220°, $[\alpha]_{D}^{22}$ +365° (c 1, acetone). Crystallise it from *benzene or EtOH. Purify 2g of griseofulvin by chromatography on Alumina (40 x 1.5cm) and elute with *C₆H₆/MeOH (199:1) and follow the UV blue fluorescent band. [MacMillan J Chem Soc 1823 1959, Beilstein 18 III/IV 3160, 18/5 V 150.]

Guanosine (H₂O) [118-00-3] M 283.2, m 237-237.5°(dec), 239°(dec), $[\alpha]_{546}^{20}$ -86° (c 1, 0.1M NaOH), pK_1^{25} 1.9, pK_2^{25} 9.24, pK_3^{25} 12.33. It crystallises from water as a *dihydrate*. Dry it at 110°. [Beilstein 26/18 V 81.]

Guanylic acid (guanosine-5'-monophosphoric acid) [85-32-5] M 363.2, m 208°(dec), pK_2^{25} 2.4, pK_3^{25} 6.66 (6.1), pK_4^{25} 9.4. Crystallise it from water and dry it at 110°. [Beilstein 26 III/IV 3910.]

Harmaline (7-methoxy-1-methyl-4,9-dihydro-3*H*-β-carboline, 4,9-dihydro-7-methoxy-1methyl-3*H*-pyrido[3,4-*b*]indole) [304-21-2] M 214.3, m 229-230°, 229-231°, 235-237° (after distillation at 120-140°/10⁻³), pK₁ 4.2. Recrystallise harmaline from MeOH and sublime it at high vacuum. It has UV in MeOH and has λ_{max} at 218, 260 and 376nm (log ε 4.27, 3.90 and 4.02, respectively); IR (Nujol) ν_{max} 1620, 1600, 1570 and 1535cm⁻¹ and in CHCl₃ ν_{max} 1470 and 1629cm⁻¹. [Spenser *Can J Chem* 37 1851 *1959*, Marion et al. *J Am Chem Soc* 73 305 *1951*, UV Prukner & Witkop *Justus Liebigs Ann Chem* 554 127 *1942*.] The *hydrochloride dihydrate* has m 234-236°(dec), the *picrate* has m 228-229° (sinters at 215°) from aqueous EtOH, and the *N-acetate* forms needles m 204-205°. [*Beilstein* 23 H 396, 23 I 119, 23 II 345, 23 III/IV 2666, 23/12 V 148.]

Harmine [442-51-3] M 212.3, m 261°(dec), 265°, pK²⁰ 7.61. Crystallise harmine from MeOH and sublime it in a vacuum. See *hydrochloride* below. [*Beilstein* 23 II 348, 23 III/IV 2702, 23/12 V 237.]

Harmine hydrochloride (hydrate) [343-27-1] M 248.7, m 280°(dec). The hydrate crystallises as fluorescent crystals from water. The anhydrous salt has m 319°. [Beilstein 23/12 V 237.]

Hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone) [520-33-2] M 302.3, (*R*,S) m 227-228°, pK_{Est} ~8.5-10.5 (phenolic). Crystallise it from EtOAc or ethanol. The natural S(-) form crystallises from EtOH and has m 216-218° and $[\alpha]_{D}^{20}$ -37.6° (c 2, EtOH). Note that C2 is chiral. [Beilstein 18 II 204, 18 III/IV 3215, 18/5 V 214.]

Hesperidin (hesperetin 7-rhamnoside) [520-26-3] M 610.6, m 258-262°, 261-263°(dec), $[\alpha]_{546}^{20}$ -82° (c 2, pyridine). Dissolve hesperidine in dilute aqueous alkali and precipitate it by adjusting the pH to 6-7. [Beilstein 18 III/IV 3219, 18/5 V 218.]

Hexahydro-1*H*-azepine (hexamethyleneimine, Azepane) [111-49-9] M 99.2, b 70-72°/30mm, 135-138°/atm, d_4^{20} 0.879, n_D^{20} 1.466, pK²⁵ 11.10 (pK⁰ 9.71, pK⁷⁵ 9.71). Purify azepane by dissolving in Et₂O and adding ethanolic HCl until all the base separates as the white *hydrochloride*, filter, wash with Et₂O and dry it (m 236°). The salt is dissolved in the minimum volume of H₂O and basified to pH ~ 14 with 10N KOH. The solution is extracted with Et₂O, the extract is dried over KOH, evaporated and distilled. The free base is a **FLAMMABLE** and **TOXIC** liquid, and best kept as the salt. The *nitrate* has m 120-123°, the *picrate* has m 145-147°, and the *tosylate* has m 76.5° (ligroin). [Müller & Sauerwald Monatsh Chem 48 727 1027, Hjelt & Agback Acta Chem Scand 18 194 1964, Beilstein 20 II 1406, 20 III/IV 1406, 20/4 V 3.]

Hexamethylenetetramine (Urotropine, hexamine, HMTA) [100-97-0] M 140.1, m 280° (subln), 290-292° (sealed tube, CARE), d_4^{20} 1.331, pK²⁵ 4.85 (6.30). It is soluble in H₂O (67%), CHCl₃ (10%), EtOH (8%) and Et₂O (0.3%), and a 0.2M solution has a pH of 8.4. Dissolve it in hot absolute EtOH (reflux, Norit), filter using a heated funnel, cool at room temperature first, then in ice. Wash the crystals with cold Et₂O, dry them in air or under a vacuum. A further crop can be obtained by adding Et₂O to the filtrate. It sublimes above 260° without melting. The *picrate* has m 179°(dec). [pK²⁰ 4.85: Reilley &

Schmid Anal Chem **30** 947 1958, pK²⁰ 6.30: Pummerer & Hofmann Chem Ber **56** 1255 1923.] [Beilstein **26** I 306, **26** II 200, **26** III/IV 1680.]

Histamine [51-45-6] M 111.2, m 86° (sealed tube), b 167°/0.8mm, 209°/18mm, pK₁²⁵ 6.02, pK₂²⁵ 9.70. It crystallises from *benzene or chloroform. [Beilstein 25 I 628, 25 II 302, 25 III/IV 2049.]

Histamine dihydrochloride [56-92-8] M 184.1, m 249-252° (244-245°). The dihydrochloride crystallises from aqueous EtOH. The *phosphate* $(2H_3PO_4)$ [51-74-1] has m 132-133° (from H₂O). [Beilstein 25 III/IV 2049.]

Homopiperazine (1,4-diazepane) [505-66-8] M 100.2, m 38-40°, 43°, b 60°/10mm, 92°/50mm, 169°/atm, pK $_1^{20}$ 6.70, pK $_2^{20}$ 10.41. Purify it by fractionation through a column of 10 theoretical plates with a reflux ratio of 3:1. It boils at 169°, and the cool distillate crystallises in plates m 43°. [Poppelsdorf and Myerly *J Org Chem* 26 131 *1961.*] Its pKa values are 6.67 and 10.09 at 29.7°, and 6.28 and 9.86 at 40° [Pagano et al. *J Phys Chem* 65 1062 *1961*]. The *1,4-bis(4-bromobenzoyl)* derivative has m 194-198° (from EtOH); the hydrochloride has m 270-290° (from EtOH) and the *picrate* has m 265°(dec) [Lloyd et al. *J Chem Soc* (*C*) 780 *1966*]. [*Beilstein* 23 III/IV 388, 23/3 V 240.]

1-Hydrazinophthalazine (hydralazine) [86-54-4] M 160.1, m 172-173°(dec), pK₁²⁵ 2.90, pK₂²⁵ 7.25 (NNH₂). It crystallises from MeOH. UV: λ_{max} 656nm at pH ~11. It complexes with Bi³⁺, Zn²⁺, Fe²⁺ and Co²⁺. The hydrochloride (hydralazine hydrochloride) [304-20-1] M 196.6, also crystallises from MeOH and has m 172-173°(dec). [Druey et al. Helv Chim Acta 34 195 1951, Beilstein 25 III/IV 4552.] It is an antihypertensive.

2-Hydrazinopyridine [4930-98-7] M 109.1, m 41-44°, 46-47°, 49-50°, b 105°/0.5mm, 128-135°/13mm. Purify it by distillation under a vacuum and by recrystallisation from Et_2O /hexane. [Kauffmann et al. Justus Liebigs Ann Chem 656 103 1962, Potts & Burton J Org Chem 31 251 1966.] The mono-hydrochloride has m 183°(dec) from aqueous HCl, and the *di-hydrochloride* has m 214-215°. [Beilstein 22 II 487, 22 III/IV 7025, 22/14 V 486.]

4-Hydroxyacridine (4-acridinol, neo-oxine) [18123-20-1] **M 195.2, m 116.5°, 122-123°, pK_1^{15} 5.28,** pK_2^{15} **9.75.** Crystallise neo-oxine from EtOH or aqueous EtOH. It complexes with Zn²⁺, Cd²⁺, Ga²⁺, Pb²⁺, Cr²⁺, Mn²⁺, Fe²⁺, Co²⁺ and Ni²⁺. The hydrochloride crystallises from EtOH with **m** 242°. [Beilstein **21** II 78, **21** III/IV 1562, **21/4** V 90.]

2-Hydroxybenzothiazole (benzothiazol-2(3*H*)-one) [934-34-9] M 183.1, m 140-141° Crystallise it from aqueous EtOH or water. [Hoggarth *J Chem Soc* 3314 1949, Hunter *J Chem Soc* 135 1930, *Beilstein* **27** H 182, **27** I 270, **27** II 225, **27** III/IV 2693.]

1-Hydroxybenzotriazole hydrate (HOBt) [2592-95-2; 123333-53-9 (H₂O)] M 135.1, m 159-160°, pK²⁰ 7.88. Crystallise HOBt from aqueous EtOH or water. [Boyle & Jones J Chem Soc Perkin Trans II 160 1973, Tomita & Ikawa J Pharm Soc Jpn 75 449 1955, Beilstein 26 III/IV 95.]

§ A polystyrene supported version is available. For use in solid phase peptide synthesis, see Dryland & Sheppard *J Chem Soc Perkin Trans 1* 125 *1986*.

4-Hydroxycoumarin (4-hydroxy-1-benzopyran-2-one) [1076-38-6] M 162.1, m 206°, 211-213°, $pK_{Est} \sim 9.0$. Crystallise 4-hydroxycoumarin from water and dry it in a vacuum desiccator over Sicapent. [Beilstein 18/1 V 378.]

N-2-Hydroxyethylpiperazine-*N*'-2-ethanesulfonic acid (HEPES) [7365-45-9] M 238.3, pK²⁰ 7.55. Crystallise the acid from hot EtOH and water. It is a useful buffer. [*Beilstein* 23 V 376.]

3-Hydroxyflavone (Flavanol) [577-85-5] **M 238.2, m 169-170°, 171-172°.** Recrystallise it from MeOH (**m** 169.5-170°), EtOH, aqueous EtOH (**m** 167°) or hexane. It has also been purified by repeated

396

sublimation under high vacuum, and dried at high vacuum pumping for at least one hour [Bruker & Kelly J Phys Chem **91** 2856 1987]. [Beilstein **17** H 527, **17** I 268, **17** II 498, **17** III/IV 6428.]

7-Hydroxy-4-methylcoumarin (4-methylumbelliferone(β) hydrate) [90-33-5] M 194.2, m 185-186°, 188-188.5°, 194-195°, pK²⁵ 7.80 (phenolic OH). Purify it by recrystallisation from EtOH. It is very slightly soluble in cold H₂O (solubility at 37° is 0.22%), slightly soluble in Et₂O and CHCl₃, but soluble in MeOH and AcOH. It has a blue fluorescence in aqueous EtOH and has UV: λ_{max} 221, 251 and 322.5nm (MeOH). The IR has ν_{max} 3077 br, 1667, 1592, 1385, 1267, 1156, 1130 and 1066 cm⁻¹. The *acetate* has m 153-154°. [Woods & Sapp J Org Chem 27 3703 1962, Beilstein 18 III/IV 332, 18/1 V 439.]

2-Hydroxymethyl-12-crown-4 [75507-26-5] **M 206.2, b 115°/0.04mm, d** $_4^{20}$ **1.186, n** $_D^{20}$ **1.480.** Purify it by chromatography on Al₂O₃ with EtOAc as eluent to give a *hygroscopic* colourless oil, which is distilled under high vacuum and is distilled *in vacuo*. It has IR: v_{max} 3418 (OH) and 1103 (COC) cm⁻¹, NMR: δ 3.70s. [Kimura et al. J Chem Soc, Chem Commun 492 1983, Pugia et al. J Org Chem **52** 2617 1987.]

S-(-)-5-Hydroxymethyl-2(5*H*)-furanone [78508-96-0] M 114.1, 39-42°, 40-44°, b 130°/0.3mm, $[\alpha]_{546}^{20}$ -180°, $[\alpha]_{D}^{20}$ -148° (c 1.4, H₂O). It is purified by chromatography on Silica gel using hexane/EtOAc (1:1) to give a colourless oil which is distilled using a Kügelrohr apparatus, and the distillate crystallises on cooling. It has R_F 0.51 on Whatman No 1 paper using pentan-1-ol and 85% formic acid (1:1) and developing with ammoniacal AgNO₃. [Boll Acta Chem Scand 22 3245 1968, NMR: Oppolzer et al. Helv Chim Acta 68 2100 1985, Beilstein 18 III/IV 56, 18/1 V 54.]

5-(Hydroxymethyl)furfural [67-47-0] M 126.1, m 33.5°, b 114-116°/1mm, d_{25}^{25} 1.2620, n_{D}^{25} 1.5533. Crystallise it from diethyl ether/pet ether. [*Beilstein* 18 III/IV 100, 18/1 V 130.]

*dl-***3-Hydroxy-***N***-methylmorphinan** [297-90-5] **M 257.4**, **m 251-253°**. Crystallise it from MeOH or aqueous EtOH. The *hydrochloride* has **m** 176-177°. The *hydrobromide* has **m** 200-201° when recrystallised from EtOH/Et₂O. [Sneider & Hellerbach *Helv Chim Acta* **33** 1446 1950, *Beilstein* **21** III/IV 100.]

8-Hydroxy-2-methylquinoline [826-81-3] M 159.2, m 74-75°, b 266-267°, pK_1^{25} 5.61, pK_2^{25} 10.16. Crystallise the quinoline from EtOH or aqueous EtOH. Its solubility at 20° in H₂O is 0.366g/L, and in CHCl₃ it is 466g/L. It complexes with many metals. [*Beilstein* 21 H 106, 21 III/IV 2132.]

4-Hydroxy-2-*n***-nonylquinoline** *N***-oxide** [316-66-5] **M 287.4**, **m 148-149°**, **pK**_{Est} ~6.0. Crystallise the *N*-oxide from EtOH. UV: λ_{max} 220-230nm in 0.001N NaOH. [Cornforth & James Biochem J 63 124 1956, Beilstein 21 III/IV 3834.]

1-Hydroxyphenazine (Hemipyocyanine) [528-71-2] M 196.2, m 157-158°, 165-166°, p K_1^{15} 1.61, p K_2^{15} 8.33 (10% aqueous MeOH) Purify the hydroxyphenazine by chromatography on acidic alumina with *benzene/ether and recrystallise it from aqueous EtOH, *benzene/heptane, then sublime it at 140°/1.5mm. [UV, IR: Badger et al. J Chem Soc 3204 1951, Hegedüs Helv Chim Acta 33 746 1950, Beilstein 23 II 360, 23 III/IV 2753.]

2-(2-Hydroxyphenyl)benzothiazole [3411-95-8] **M 227.2, m 132-133°, b 173-179°/3mm.** Recrystallise it several times from aqueous EtOH or dilute AcOH and sublime it. [Itoh & Fujiwara J Am Chem Soc **107** 1561 1985, Bogert & Corbitt J Am Chem Soc **48** 786 1926, Beilstein **27** II 91.]

2-(2-Hydroxyphenyl)benzoxazole [835-64-3] **M 211.2, m 127°, b 338°/760mm.** Recrystallise it several times from aqueous EtOH or dilute AcOH and sublime it. An aqueous alkaline solution containing EtOH has a blue fluorescence. [Itoh & Fujiwara *J Am Chem Soc* **107** 1561 *1985, Beilstein* **27** II 91.]

3-Hydroxy-2-phenylcinchoninic acid (Oxycincophen) [485-89-2] **M 265.3, m 206-207°(dec).** It is precipitated from alkaline solution on acidification and crystallises from EtOH or AcOH in yellow crystals. [Marshall & Blanchard J Pharmacol **95** 186 1949, Beilstein **22** H 245, **22** II 183, **22** III/IV 2383.] (±)-2-(α -Hydroxypropyl)piperidine [2-piperidinepropanol, RS-1-(RS-2-piperidyl)propan-1ol, (±)- α -conhydrine] [3238-62-8, 63401-12-7, 24448-89-3] M 143.2, m 99-100°, pK_{Est} ~10.2. Crystallise it from ether. The [RS-1-(SR-2)]-isomer also crystallises from ether and has m 98-98.5°. The methiodide crystallises from Me₂CO/MeOH with m 127-130.5°. POISONOUS [Sicher & Tichy Coll Czech Chem Commun 23 2081 1958, Govindachari & Rajappa J Chem Soc 1306 1958, Stereochemistry: Hill J Am Chem Soc 80 1609 1958, Beilstein 21 II 21, 21 III/IV 122.]

(+)-2-(α -Hydroxypropyl)piperidine [2-piperidinepropanol, *R*-1-(*S*-2-piperidyl)propan-1-ol, (+)- α -conhydrine] [495-20-5] M 143.2, m 121°, b 224-5°/720mm, [α] $_{\rm D}^{20}$ -9.8° (c 4, EtOH), pK_{Est}~10.2. This very POISONOUS alkaloid from hemlock crystallises in leaflets from ether. The *O*,*N*dibenzoyl derivative has m 133-134° and [α] $_{\rm D}^{24}$ -13° (c 3, CHCl₃). [Sicher & Tichy Coll Czech Chem Commun 23 2081 1958, Stereochemistry: Hill J Am Chem Soc 80 1609 1958, Absolute config & ORD: Fodor et al. Canad J Chem 47 4393 1969, Beilstein 21 I 191, 21 II 21, 21 III/IV 122.]

(-)-2-(α -Hydroxypropyl)piperidine [2-piperidinepropanol, *R*-1-(*R*-2-piperidyl)propan-1-ol, (-)- α -conhydrine] [495-20-5] M 143.2, m 121°, b 224-5°/720mm, $[\alpha]_D^{20}$ +10° (c 10, EtOH), pK_{Est} ~10.2. Crystallise the piperidine from ether. POISONOUS. [Galinovsky & Mulley Monatsh Chem 79 426 1948, Beilstein 21 I 191, 21 II 21, 21 III/IV 122.]

(±)-7-(2-Hydroxypropyl)theophylline (Proxyphylline, 1,3-dimethyl-3*H*,7*H*-purine-2,6dione) [603-00-9] M 238.2, m 135-136°. Crystallise it from EtOH, aqueous MeOH or EtOAc. Roth Archiv Pharmazie 292 234 1959, Zelnik et al. Bull Soc Chim Fr 1733 1956, Beilstein 26 III/IV 2366.]

6-Hydroxypurine (hypoxanthine) [68-94-0] M 136.1, m 150°(dec), pK_1^{20} 1.98, pK_2^{20} 8.96, pK_3^{20} 12.18. Crystallise it from hot water and dry it at 105°. [Beilstein 26 II 252, 26 III/IV 2081.]

2-Hydroxypyridine (2-pyridone) [142-08-5] M 95.1, m 105-107°, b 181-185°/24mm, ε_{293nm} 5900 (H₂O) pK₁²⁵ 1.25, pK₂²⁵ 11.99. Distil the pyridone under vacuum to remove coloured impurity, then recrystallise from *benzene, CCl₄, EtOH or CHCl₃/diethyl ether. It can be sublimed under high vacuum. [DePue et al. *J Am Chem Soc* 107 2131 1985, *Beilstein* 21/7 V 106.]

3-Hydroxypyridine [109-00-2] **M 95.1, m 129°, 130°, pK_1^{25} 5.10, pK_2^{25} 8.6.** Crystallise 3-hydroxypyridine from C_6H_6 , water or EtOH. [*Beilstein* **21** III/IV 402, **21**/2 V 68.]

4-Hydroxypyridine (4-pyridone) [626-64-2] M 95.1, m 65°, 68° (hydrate), 148.5°, 151-152° (anhydr), b >350°/760mm, pK_1^{20} 3.20, pK_2^{20} 11.12. Crystallise 4-pyridone from H₂O or wet CHCl₃ as the *monohydrate*. It loses H₂O on drying *in vacuo* over H₂SO₄. Store it over KOH because it is *hygroscopic*. [*Beilstein* 21 III/IV 446, 21/7 V 152.]

2(6)-Hydroxypyridine-5(3)-carboxylic acid (6-hydroxynicotinic acid) [5006-66-6] M 139.1, m 304°(dec), pK_1^{20} 3.82 and pK_2^{20} 9.92. It crystallises from water with m 303.4-303.7°(dec), or with m 325°(dec) from aqueous EtOH. The *methyl ester* crystallises from Me₂CO with m 166° and pK^{20} 9.92. [Albert J Chem Soc 1020 1960, Beilstein 22 III/IV 2147, 22/6 V 119.]

4-Hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid) [134.828-60-3] M 183.1, m 248°(dec, 1 H₂O), 254°(dec), 263°(dec), pK₁²² 1.9, pK₂²² 3.18, pK₃²² 10.85; pK₁ 3.62, pK₂ 4.82 (80% aqueous methoxyethanol). It crystallises from water. The *dimethyl ester* crystallises from MeOH with m 167°(*monohydrate*, from H₂O), m 170-171°(*anhydrous*, from MeOH), and pK²⁵ 6.25. [Bensaude et al. J Am Chem Soc 99 4438 1972, Beilstein 22 III/IV 2583, 22/7 V 164.]

2-Hydroxypyrimidine [557-01-7] **M 96.1, m 179-180°, pK** $_{1}^{20}$ **2.24, pK** $_{2}^{20}$ **9.17.** It crystallises from EtOH or ethyl acetate. Its solubility in H₂O at 20° is 1g/2.2mL. [Albert J Chem Soc 4219 1952, Beilstein **24** III/IV 194.]. 2-Hydroxypyrimidine hydrochloride [38353-09-2] M 132.5, has **m** 203-205.5°(dec)

and crystallises from EtOH. [*Beilstein* 24 III/IV 173.] The *picrate* has **m** 199° and crystallises from EtOH. [Brown et al. *J Chem Soc* 211 1955.]

4-Hydroxypyrimidine [4562-27-0] **M 96.1, m 164-165°, pK_1^{20} 1.66, pK_2^{20} 8.63.** It crystallises from *benzene or ethyl acetate. The *picrate* has **m** 164-166° and crystallises from EtOH [Brown et al. *J Chem Soc* 4035 1955, *Beilstein* **24** III/IV 171.]

R-(+)-3-Hydroxypyrrolidine $[(\pm) 2799-21-5$ and 104706-47-0, R(+) 40499-83-0, S(-) 100243-39-8] **M 87.1, b 215-216°/atm, d**²⁰₄ **1.078, n**²⁰_D **1.490, [α]**²⁰_D +6.5° (c **1.5, MeOH), pK**_{Est} ~10.1. The (\pm) -isomer is purified by repeated distillation (b 102-104°/12mm, 108-110°/18mm), and the (\pm) -picrate crystallises from EtOH with **m** 140-141°. The R(+)-enantiomer has **b** 70°/0.6mm and $[\alpha]^{20}_{D}$ +5.6° (c 3.63, MeOH). Its hydrochloride has a negative rotation and its dimethiodide has **m** 230° and $[\alpha]^{20}_{D}$ +8.02°. [Suyama & Kanno Yakugaku Zasshi (J Pharm Soc Japan) **85** 531 1965, Uno et al. J Heterocycl Chem **24** 1025 1987, Flanagan & Joullie Heterocycles **26** 2247 1987, Beilstein **21** III/IV 44.]

2-Hydroxyquinoline (carbostyril) [59-31-4] M 145.2, m 199-200°, pK_1^{20} -0.31, pK_2^{20} 11.76. Crystallise it from MeOH. It has m 200-201° after sublimation in a vacuum. The *picrate* has m 132° after crystallisation from Et₂O. [Gibson et al. J Chem Soc 4340 1955, Beilstein 21 III/IV 1057, 21/8 V 217.]

8-Hydroxyquinoline (oxine, 8-quinolinol) [148-24-3] M 145.2, m 71-73°, 75-76°, 76°, b 122°/0.1mm, ~267°/atm, pK_1^{25} 4.91, pK_2^{25} 9.81. Crystallise oxine from hot EtOH, acetone, pet ether (b 60-80°) or water. Crude oxine can be purified by precipitation of copper oxinate, followed by liberation of free oxine with H₂S or by steam distillation after acidification with H₂SO₄. Store it in the dark. It forms complexes with many metals. [Manske et al. *Can J Research* 27F 359 1949, Phillips *Chem Rev* 56 271 1956, *Beilstein* 21 III/IV 1135, 21/3 V 252.]

8-Hydroxyquinoline-5-sulfonic acid (H₂O) [84-88-8] M 243.3, m 322-323°(sintering at ~305°), >310°, pK₁²⁵ 4.09, pK₂²⁵ 8.66. Crystallise the acid from water (as the 1.5 hydrate, m 316-317°) or dilute HCl (ca 2% by weight). [Beilstein 22 I 620, 22 II 313, 22 III/IV 3493.]

4-Hydroxy-2,2,6,6-tetramethylpiperidine [2403-88-5] **M 157.3, m 130-131°, pK²⁰ 10.05.** The piperidine crystallises from water as a *hydrate* and crystallises from dry ether or C_6H_6 as the *anhydrous* base. The *hydrochloride* has **m** 282-284° (from EtOH/H₂O), and the *formate* has **m** 207°(dec, from EtOH/EtOAc). [Mailey & Day J Org Chem 22 1061 1957, Beilstein 21 I 195, 21 III/IV 146, 21/1 V 159.]

4(6)-Hydroxy-2,5,6(2,4,5)-triaminopyrimidine sulfate [35011-47-3] M 257.22, m > 340°, pK₁ 2.0, pK₂ 5.1, pK₃ 10.1. This salt has very low solubility in H₂O. It is best purified by conversion into the dihydrochloride salt, which is then re-converted to the insoluble sulfate salt. The sulfate salt (2.57g, 10mmoles) is suspended in H₂O (20mL) containing BaCl₂ (10mmoles) and stirred in a boiling water bath for 15minutes. After cooling, the insoluble BaSO₄ is filtered off and washed with boiling H₂O (10mL). The combined filtrate and washings are made acidic with HCl and evaporated to dryness. The residual hydrochloride salt is recrystallised from H₂O by adding conc HCl whereby the *dihydrochloride salt* separates as clusters which darken at 260° and dec > 300°[darkening > 360°]. [Baugh & Shaw J Org Chem 29 3610 1964, King & Spengley J Chem Soc 2144 1952]. The hydrochloride is then dissolved in H₂O, and while hot an equivalent of H₂SO₄ is added when the sulfate separates as a white microcrystalline solid which is filtered off washed liberally with H₂O and dried in vacuum over P₂O₅. [Albert & Wood J Appl Chem London 3 521 1953, UV: Cavalieri et al. J Am Chem Soc 70 3875 1948; see also Pfleiderer Chem Ber 90 2272 1957, Traube Chem Ber 33 1371 1900.] The hydrochloride has m > 300°. [Beilstein 25 II 384, 25 III/IV 3648.]

3-Hydroxyxanthone [3722-51-8] **M 212.2, m 246°, 249-250°.** Purify the xanthone by chromatography on SiO₂ gel with pet ether/*benzene as eluent. Recrystallise it from *benzene or EtOH. The *acetate* has **m** 157-158°. [Itoh et al. J Am Chem Soc **107** 4819 1985, Davies et al. J Org Chem **23** 307 1958]. [Beilstein **18** H 46, **18** I 315, **18** II 29, **21** III/IV 601.]

Hyoscine (scopolamine, atroscine) [51-34-3] M 321.4, m 59°, $[\alpha]_{D}^{20}$ -18° (c 5, EtOH), -28° (c 2, H₂O), $[\alpha]_{546}^{20}$ -30° (c 5, CHCl₃), pK²⁵ 7.55. Crystallise it from *benzene/pet ether, EtOH or H₂O. It is polymorphic with m 165-166° and 190-191°. The *racemate* has m 56-57° (H₂O), 37-38° (2H₂O), syrup (anhydrous), *l* and *d* isomers can separate as syrups when anhydrous. [*Beilstein* 27 H 99, 102, 27 I 247-248, 27 II 43-44, 27 III/IV 1790.]

Ibogaine [83-74-9] M 300.3, m 152-153°, $[\alpha]_{D}^{20}$ -54° (EtOH), pK²⁵ 8.1 (80% aqueous MeOCH₂CH₂OH). Crystallise it from EtOH or aqueous EtOH and sublime it at 150°/0.01mm. It is soluble in organic solvents but insoluble in H₂O. The *hydrochloride*, m 299-300°(dec), is soluble in H₂O and alcohols. [Büchi et al. *J Am Chem Soc* 88 3099 *1866*, Rosenmund *Chem Ber* 108 1871 *1975*, *Beilstein* 23 III/IV 2742.]

Imidazole (glyoxaline) [288-32-4] M 68.1, m 89.5-91°, 89-90°, b 140-145°/15mm, 256°/atm, 262-264°/atm, pK_1^{25} 6.99, pK_2^{25} 14.44. Crystallise imidazole from *benzene, CCl₄, CH₂Cl₂, EtOH, pet ether, acetone/pet ether and distilled de-ionized water. Dry it at 40° under vacuum over P₂O₅. Distil it at low pressure. It is also purified by sublimation or by zone melting. [Snyder et al. *Org Synth* Coll Vol III 471 1955, Bredereck et al. *Chem Ber* 97 827 1964, Caswell & Spiro J Am Chem Soc 108 6470 1986.]

¹⁵N-imidazole crystallises from *benzene [Scholes et al. *J Am Chem Soc* **108** 1660 *1986*]. [*Beilstein* **23** II 34, **23** III/IV 564, **23/4** V 191.]

4'-(Imidazol-1-yl)acetophenone [10041-06-2] **M 186.2, m 104-107°, pK^{25} 4.54.** Recrystallise it twice from CH₂Cl₂/hexane [Collman et al. J Am Chem Soc **108** 2588 1986].

2-Iminothiolane hydrochloride (2-iminotetrahydrothiophene, Traut's reagent) [4781-83-3] M 137.6, m 187-192°, 190-195°, 192-193°, 193-194°, 202-203°, pK²⁵ <2 (free base). Recrystallise the hydrochloride from MeOH/Et₂O (m 187-192°) or (MeOH/Me₂CO), but after sublimation at ~180°/0.2mm the melting point rises to 202-203°. It has ¹HNMR with δ 2.27 (2H, t), 3.25 (2H, t) and 3.52 (2H, t) in (CD₃)₂SO. [King et al. *Biochemistry* 17 1499 1978.] The *free base* is purifed by vacuum distillation (b 71-72°/6mm) with IR (film) with v_{max} 1700 (C=N)cm⁻¹ and ¹HNMR (CDCl₃) with δ at 3.58 (2H, t) and 2.10-2.8 (4H, m). The *free base* is stable on storage but slowly hydrolyses in aqueous solutions with half-lives at 25° of 390hours at pH 9.1, 210hours at pH 10 and 18hours at pH 11. [Traut et al. *Biochemistry* 12 3266 1973, *Biochemistry* 17 399 1978, Alagon & King *Biochemistry* 19 4343 1980, *Beilstein* 17/9 V 12.]

Indanthrene [81-77-6] M 442.4, m 470-500°(dec). Crystallise indanthrene repeatedly from 1,2,4-trichlorobenzene to give a blue powder. It is soluble in alkali and conc H_2SO_4 . [Weinstein & Merritt J Am Chem Soc 81 3759 1959, Beilstein 24 II 317, 24 III/IV 2193.]

Indazole [271-44-3] M 118.1, m 147°, 150°, pK_1^{20} 1.32, pK_2^{20} 13.80 (acidic NH). Crystallise indazole from water, sublime it *in vacuo*, then recrystallise it from pet ether (b 60-80°). The *picrate* crystallises from Et₂O with m 136°. [Ainsworth *Org Synth* Coll Vol IV 536 1963, *Beilstein* 23 III/IV 1055, 23/6 V 156.]

Indigo [482-89-3] M 262.3, sublimes at ~300°, m 390°(dec), and halogen-substituted indigo dyes. First reduce indigo in alkaline solution with sodium hydrosulfite, and filter. The filtrate is then oxidised by air, and the resulting precipitate is filtered off, dried at 65-70°, ground to a fine powder, and extracted with CHCl₃ in a Soxhlet extractor. Evaporation of the CHCl₃ extract gives the purified dye. [Brode et al. *J Am Chem Soc* 76 1034 1954; spectral characteristics are listed, *Beilstein* 24 II 233, 24 III/IV 1791.]

Indole [120-72-9] M 117.2, m 52°, 54.5°, b 124°/5mm, 253-254°/760mm, pK $_1^{25}$ -2.47 (H_o scale), pK $_2^{25}$ 16.97 (acidic NH). Crystallise indole from *benzene, hexane, pet ether, water or EtOH/water (1:10). It can be further purified by sublimation in a vacuum or by zone melting. The *picrate* forms orange crystals from EtOH and has m 175°. [*Beilstein* 20 II 196, 20 III/IV 3176, 20/7 V 5.]

Indole-3-acetic acid (heteroauxin) [87-51-4] M 175.2, m 167-169°(dec), pK₁²⁵ -6.13 (aqueous H₂S O₄), pK₂²⁵ 4.54 (CO₂H). Recrystallise heteroauxin from EtOH/water [James & Ware *J Phys Chem* 89 5450 1985]. [*Beilstein* 22 III/IV 65.] Alternatively recrystallise 30g of the acid with 10g of charcoal in 1L of hot water, filter and cool when 22g of colourless acid separate. Dry it and store it in a dark bottle away from direct sunlight [Johnson & Jacoby *Org Synth* Coll Vol V 654 1973]. The *picrate* has m 178-180°. [*Beilstein* 22 H 66, 22 I 508, 22 III/IV 1088.] It is a plant growth substance.

3-Indoleacetonitrile [771-51-7] **M** 156.2, **m** 33-36°, **36-38**°, **b** 157°/0.2mm, 158-160°/0.1mm, viscous oil n_D^{20} 1.6097. Distil the nitrile at very high vacuum, and the viscous distillate crystallises on standing after a few days; the *picrate* has **m** 127-128° (from EtOH) [Coker et al. *J Org Chem* 27 850 1962, Thesing & Schülde *Chem Ber* 85 324 1952]. Store it away from light. The *N*-acetate has **m** 118° (from MeOH) and has $R_F = 0.8$, on Silica Gel F_{254} in CHCl₂/MeOH 19:1 [Buzas et al. *Synthesis* 129 1977]. [Beilstein 22 III/IV 1097, 22/3 V 74.]

Indole-2-carboxaldehyde [19005-93-7] M 145.2, m 138°, 140-141°, 138-142°, $pK_{Est} < 1$. Recrystallise the indole from aqueous MeOH (m 141-142°), Et₂O (m 138°) or sublime it *in vacuo* (m 138°). The *N*,*N*-dimethylhydrazone [127280-17-5] has m 105-106° (from hexane/*C₆H₆). The thiosemicarbazone has m 229° (dec) (from 50% aqueous EtOH) [Doyle et al. *J Chem Soc* 2854 1956]. The 2,4-dinitrophenylhydrazone has m 315-320° (dec) (from pyridine/MeOH). [Suzuki et al. *Chem Pharm Bull Jpn* **39** 2170 1991, Beilstein **21** III/IV 3754.]

Indole-3-propionic acid [830-96-6] M 189.2, m 134-135°, pK^{25} 4.95. Recrystallise it from EtOH/water [James & Ware J Phys Chem 89 5450 1985]. The picrate has m 143-144°, and the methyl ester crystallises from *C₆H₆ or MeOH with m 81-83°. [Beilstein 22 III/IV 1113, 22/3 V 114.]

Indolizine [pyrrocoline, pyrrolo(1,2-*a*)pyridine] [274-40-8] M 117, m 73-74^o, 75^o, pK²⁰ 3.94 (C-protonation). Purify indolizine through an alumina column in C_6H_6 and elute with C_6H_6 (toluene could be used instead). The eluate contained in the fluorescent band (using UV light λ 365mn) is collected, evaporated and the crystalline residue is sublimed twice at 40-50°/0.2-0.5mm. The colourless crystals darken on standing and should be stored in dark sealed containers. If the original sample is dark in color then it should be covered with water and steam distilled. The colourless crystals in the distillate are collected and dried between filter paper and sublimed. It protonates on C3 in aqueous acid. It should give one fluorescent spot on paper chromatography (Whatman 1) in 3% aqueous ammonia and in *n*-BuOH/AcOH/H₂O (4:1:1). The *picrate* has m 101° from EtOH. [Armarego J Chem Soc 226 1964, Armarego J Chem Soc (B) 191 1966, Scholtz *Chem Ber* 45 734 1912, *Beilstein* 20 II 200, 20 III/IV 3195.]

trans-Indol-3-ylacrylic acid [1204-06-4] M 187.2, m 190-195°(dec), 195°(dec), 196°(dec), 195-196°(dec), pK_{Est} ~ 4.2. Recrystallise the acid from AcOH, H₂O or EtOAc/cyclohexane. UV in MeOH has λ_{max} at 225, 274 and 325nm. [Shaw et al. J Org Chem 23 1171 1958, constitution: Rappe Acta Chem Scand 18 818 1964, Moffatt J Chem Soc 1442 1957, Kimming et al. Hoppe Seyler's Z Physiol Chem 371 234 1958, Beilstein 22 V 249.]

3-Indolylbutyric acid [133-32-4] **M 203.2, m 120-123°, 123-125°, 124°, pK²⁵ 4.84.** Recrystallise the acid from H₂O. It is soluble in EtOH, Et₂O and Me₂CO but insoluble in CHCl₃. [Bowman & Islip *Chem Ind London* 154 1971, Jackson & Manske *J Am Chem Soc* **52** 5029 1930, Albaum & Kaiser *Am J Bot* **24** 420 1937.] It has also been recrystallised from EtOH/water [James & Ware *J Phys Chem* **89** 5450 1985]. Its UV has λ_{max} 278 and 320nm in isoPrOH [Elvidge *Quart J Pharm Pharmacol* **13** 219 1940]. The *methyl ester* has **m** 73-74° (from *C₆H₆/pet ether) and **b** 230°/6mm [Bullock & Hand *J Am Chem Soc* **78** 5854 1951]. [Beilstein **22** III/IV 1128, **22/3** V 140.]

3-Indolylpyruvic acid [392-12-1] **M 203.2, m~210°(dec), 208-210°(dec), 219°(dec), pK**_{Est} ~2.4. Recrystallise the acid from Me₂CO/*C₆H₆, EtOAc/CHCl₃, Me₂CO/AcOH (crystals have 1 molecule of AcOH) and dioxane/*C₆H₆ (with 0.5 molecule of dioxane) [Shaw et al. J Org Chem 23 1171 1958, Kaper & Veldstra Biochim Biophys Acta 30 401 1958]. The ethyl ester has m 133° (from Et₂O), and its 2,4-dinitro-phenylhydrazone has m 255° (from Me₂CO). [Baker J Chem Soc 461 1946.] The oxime has m 157°(dec,

Purification of Organic Chemicals – Heterocyclic Compounds

402

from EtOAc/Et₂O) and pK²⁰ 3.40 [Ahmad & Spenser *Canad J Chem* **39** 1340 *1961*]. [*Beilstein* **22** II 250, **22** III/IV 3080, **22/6** V 324.]

7-Iodoindole [89976-15-8] **M 243.0, m 52-56°, pK**_{Est} <1. Purify 7-iodoindole by chromatography through a silica gel column and eluting with CH_2Cl_2 /hexane (1:3, v/v) followed by recrystallisation from hexane (colourless plates, **m** 55-56°). [Somei et al. *Chem Pharm Bull Jpn* **35** 3146 1987, Somei & Saida *Heterocycles* **23** 3114 1985.]

Iodinin (1,6-dihydroxyphenazine-5,10-dioxide) [68-81-5] M 244.1, m 236°(dec), pK^{25} 12.5. Purify iodinin through a column of silica gel and elute with Me₂CO/CHCl₃, then recrystallise it from CHCl₃ to give purple crystals with a copper-coloured luster. [Clemo & Dalgleish J Chem Soc 1481 1950, Gerber & Lechevalier Biochemistry 3 598 1964, Beilstein 23 III/IV 3227,]

Iodonitrotetrazolium chloride (2[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyl-2*H*-tetrazolium chloride) [146-68-9] M 505.7, m 229°(dec), ~245°(dec). Recrystallise the chloride from H₂O, aqueous EtOH or EtOH/Et₂O. Alternatively, dissolve it in the minimum volume of EtOH and add Et₂O; or dissolve it in hot H₂O (charcoal), filter and precipitate it by adding conc HCl. Filter the solid off and dry it at 100°. Its solubility in H₂O at 25° is 0.5%, and in hot MeOH/H₂O (1:1) it is 5%. [Fox & Atkinson J Am Chem Soc 72 3629 1950, Beilstein 26 III/IV 1776.]

Iodonitrotetrazolium violet-Formazan [7781-49-9] M 471.3, m 185-186°. Dissolve it in boiling dioxane (20g in 300mL), add H₂O (100mL) slowly, cool, filter and dry it *in vacuo* at 100°. Its solubility in CHCl₃ is ~1%. [UV: Fox & Atkinson J Am Chem Soc 72 3629 1950, Beilstein 26 III/IV 1776.]

Isatin (indole-2,3-dione) [91-56-5] M 147.1, m 201-203°, 205°, $pK^{25} > 12$ (acidic NH). Crystallise isatin from amyl alcohol and sublime it at 180°/1mm. In aqueous NaOH the ring opens to yield sodium *o*-aminobenzoylformate. [*Beilstein* 21 II 327, 567, 21 III/IV 4981, 21/10 V 221.]

Isatoic anhydride (3,1-benzoxazin-2,4[1-*H*]-dione) [118-48-9] M 163.1, m 235-240°, 240-243°, 243°, 243°, 243-245°. Recrystallise it from EtOH or 95% EtOH (30mL/g) or dioxane (10mL/g) and dry it in a vacuum. [Wagner & Fegley *Org Synth* Coll Vol III 488 1955, Ben-Ishai & Katchalski *J Am Chem Soc* 74 3688 1952, UV: Zentmyer & Wagner *J Org Chem* 14 967 1949, Beilstein 27 II 299, 27III/IV 3330.]

3-Isobutyl-1-methylxanthine (3-isobutyl-1-methylpurine-2,6-dione) [28822-58-4] M 222.3, m 199-210°, 202-203°, pK_{Est} ~ 6.7 (acidic NH). Recrystallise it from aqueous EtOH. [Beilstein 26 III/IV 2350.]

(+)-Isolysergic acid [478-95-5] M 268.3, m 218°(dec), $[\alpha]_{D}^{20}$ +281° (c 1, pyridine) pK₁²⁴ 3.33, pK₂²⁴ 8.46. It crystallises from water as the *dihydrate*. The *methyl ester* has m 172-174° (from MeOH or *C₆H₆) and $[\alpha]_{D}^{20}$ +179° (c 0.5 CHCl₃). [Smith & Timmis J Chem Soc 1440 1936, Craig et al. J Biochem 125 289 1938, Stenlake J Chem Soc 1626 1955, Leemann & Fabbri Helv Chim Acta 4 2696 1959, Beilstein 25 III/IV 935.]

Isonicotinamide [1453-82-3] M 122.1, m 155.5-156°, pK_1^{20} -1.0 (protonation of CONH₂), pK_2^{20} 3.61, pK_3^{25} 11.47 (acidic CONH₂). Recrystallise isonicotinamide from hot water or isopropanol (158.5-159°), and dry it in a vacuum at 100°. The *picrate* crystallises from aqueous EtOH or H₂O and has m 217-218° (214-215°). [Beilstein 22 III/IV 527, 22/2 V 195.]

Isonicotinic acid (pyridine-4-carboxylic acid) [55-22-1] M 123.1, m 320°, 323-325°(dec), pK_1^{25} 1.70, pK_2^{25} 4.89. Crystallise the acid repeatedly from water and dry it under vacuum at 110° or sublime it at 260°/15mm (m 319°). [Beilstein 22 III/IV 518, 22/2 V 188.]

Isonicotinic acid hydrazide (isoniazide) [54-85-3] M 137.1, m 172°, pK_1 1.75 (NHNH₂), pK_2 3.57 (=N-), pK_3 10.75 (-NH). Crystallise isoniazide from 95% EtOH and dry it in a vacuum. [*Beilstein* 22 III/IV 545, 22/2 V 219.]

403

1-Isonicotinyl-2-isopropylhydrazide (Iproniazid) [54-92-2] M 179.2, m 112.5-113.5°, 114-115°, $pK_{Est} \sim 3.5$. Crystallise it from *benzene or *benzene /pet ether and dry it in a vacuum. It is soluble in H₂O and EtOH. [Fox & Gibas J Org Chem 18 994 1953.] The dihydrochloride has m 227-228° (from EtOH). [Beilstein 22 III/IV 551.] It is an antidepressant.

1-Isonicotinyl-2-isopropylhydrazide phosphate (Iproniazid phosphate, Marsilide) [305-33-9] M 277.2, m 178-179°, 180-184°, pK_{Est} ~3.5 (free base). Crystallise it from H₂O and Me₂CO. The *free base* (see above) has m 113-114° from $C_{6}H_{6}$ /pet ether and is soluble in H₂O and EtOH. [Fox & Gibas J Org Chem 18 994 1953, Beilstein 22 III/IV 551.]

1-Isonicotinyl-2-salicylidenehydrazide [495-84-1] **M 241.2, m 232-233°.** Crystallise it from EtOH (**m** 265-266° or 244-245°), aqueous EtOH or MeOH (252-253°) and dry it in a vacuum at 100°. [*Beilstein* **22** III/IV 584.]

5-Isonitrosobarbituric acid (violuric acid) [26851-19-9] M 175.1, m 221-223°, 245-250°, pK₁ 4.41, pK₂ 9.66 (10.1). Crystallise violuric acid from water or EtOH. 1,1-Dimethylvioluric acid, m 144-147° has pK²⁵ 4.72 [Taylor & Robinson *Talanta* 8 518 1961]. [Beilstein 24 III/IV 2142.]

N-Isopropylcarbazole [1484-09-9] M 209.3, m 120°. Crystallise it from isopropanol. It sublimes under vacuum. It was also purified by zone refining. The *picrate* has m 143° after recrystallisation from EtOH. [*Beilstein* 20 I 164.]

Isoquinoline [119-65-3] **M 129.2, m 24°, 25.5-26°, b 120°/18mm, 243.25°/760mm, d** $_4^{20}$ **1.0986, n** $_D^{20}$ **1.6148, pK**²⁵**5.40.** Dry isoquinoline with Linde type 5A molecular sieves or Na₂SO₄ and fractionally distil at reduced pressure. Alternatively, it can be refluxed with, and distilled from, BaO. It is also purified by fractional crystallisation from the melt and distilled from zinc dust. It forms a *phosphate* (**m** 135°) and a *picrate* (**m** 223°), which are purified by crystallisation, and the free base can be recovered and distilled. [Packer et al. *J Am Chem Soc* **80** 905 1958.] The procedure for purification *via* the picrate comprises the addition of quinoline to picric acid dissolved in the minimum volume of 95% EtOH to yield yellow crystals which are washed with EtOH and air dried before recrystallising from acetonitrile. The crystals are dissolved in dimethyl sulfoxide (previously dried over 4A molecular sieves) and passed through a basic alumina column, on which picric acid is adsorbed. The free base in the effluent is extracted with *n*-pentane and distilled under vacuum. Traces of solvent from small quantities are removed by vapour phase chromatography. The *hydrochloride* crystallises from EtOH with **m** 193°. [Mooman & Anton *J Phys Chem* **80** 2243 1976, Beilstein **20** II 236, **20** III/IV 3410, **20/7** V 333.]

Isoxanthopterin (2-amino-4,7-dihydroxypteridine) [529-69-1] M 179.4, m>300°, pK₁²⁰ -0.5 (basic), pK₂²⁰ 7.34 (acidic), pK₃²⁰ 10.06 (acidic). Purify it by repeated precipitation from alkaline solution with acid (preferably AcOH or formic acid), filter, wash well with H₂O, then EtOH and dry at 100°. The purity is checked by paper chromatography [R_F 0.15 (*n*-BuOH/AcOH/H₂O, 4:1:1); 0.33 (3% aqueous NH₄OH). [Goto et al. *Arch Biochem Biophys* 111 8 1965.] [For biochemistry see Blakley *Biochemistry of Folic Acid and Related Pteridines* North Holland Publ Co, Amsterdam 1969.] [*Beilstein* 26 III/IV 3999.]

Janus Green B (3-dimethylamino-7-[4-dimethylaminoazo]-5-phenylphenazonium chloride) [2869-83-2] M 511.1, m >200°, CI 11050. The dye dissolves in H₂O to give a bluish violet solution which becomes colourless when made 10M in NaOH. It dissolves in EtOH to give a blue-violet colour, filter from insoluble material, then add dry Et₂O whereby the dye separates out leaving a small amount of blue colour in solution. Filter off the solid and dry it in a vacuum. Store it in a dark bottle. [Colour Index Vol 4, 3rd edn, 4015 1971.]

Jervine $(3\beta,23\beta-17,23$ -epoxy-2-hydroxyvertraman-11-one, a steroidal alkaloid) [469-59-0] M 425.6, m 243-245°, 247-248°, $[\alpha]_{D}^{20}$ -150° (in EtOH), pK_{Est}~9.4 Crystallise Jervine from MeOH/H₂O or Me₂O. The hydrochloride has m 300-302° (from MeOH/Et₂O), and the picrate has m 262.5°

(from aqueous MeOH). [Kutney et al. Can J Chem 53 1796 1975, Beilstein 27 III/IV 3590.] It is teratogenic.

Julolidine (2,3,6,7-tetrahydro-1*H*,5*H*-benzo[*ij*]quinolizidine) [479-59-4] M 173.3, m 34-36°, 40°, b 105-110°/1mm, 155-156°/17mm, 280°(dec), pK_{Est} ~7.0. Purify julolidine by dissolving it in dilute HCl, steam is bubbled through the solution and the residual acidic solution is basified with 10N NaOH, extracted with Et₂O, washed with H₂O, dried (NaOH pellets), filtered, evaporated and distilled *in vacuo*. The distillate crystallises on cooling (m 39-40°). It develops a red colour on standing in contact with air for several days. The colour can be removed by distilling or dissolving in 2-3 parts of hexane, adding charcoal, filtering and cooling in an Me₂CO/Dry-ice bath when julolidine crystallises out (85-90% yield m 39-40°). The *hydrobromide* [83646-41-7] has m 218° (239-242°), the *picrate* has m 174°(165°) and the *methiodide* crystallises from MeOH, with m 186° [Glass & Weisberger Org Synth Coll Vol III 504 1955, Smith & Yu J Org Chem 17 1285 1952, Beilstein 20 H 332, 20 I 133, 20 II 214, 20 III/IV 3281.] Highly TOXIC.

Kainic acid H₂O (2*S*,3*S*,4*S*-2-carboxy-4-isoprenyl-3-pyrrolidine- acetic acid) [487-79-6] M 231.4, m 235-245°(dec), 251°(dec), $[\alpha]_{D}^{20}$ -14.6° (c 1.46, H₂O), pK₁ 2.09, pK₂ 4.58, pK₃ 10.21. Purify the acid by adsorbing on to a strongly acidic ion-exchange resin (Merck), elute the diacid with aqueous M NaOH, the eluate is evaporated, H₂O is added, and filtered through a weakly acidic ion-exchange resin (Merck). The filtrate is then evaporated and recrystallised from EtOH. Its solubility is 0.1g in 1mL of 0.5N HCl. (±)- α -Kainic acid is recrystallised from H₂O with m 230-260°. UV (MeOH): λ_{max} 219 (log ε 3.9); ¹HNMR (CCl₄, 100MHz, Me₄Si standard) δ : 1.64 (s 1H), 1.70 (s 3H), 3.24 (d J 7.5, 2H), 3.3-4.2 (1H), 3.70 (s 3H), 3.83 (s 3H), 4.35 (dd J 7.5, J 14.5, 1H), 5.21 (t J 7.5, 1H), 7.26 (t J 7.5, 1H). [Oppolzer & Andres *Helv Chim Acta* 62 2282 1979, *Beilstein* 22 III/IV 1523.]

Ketanserin [3(4-*p*-fluorobenzoylpiperidinyl-*N*-ethyl)quinazolin-2,4-dione] [74050-98-9] M 395.4, m 227-235°, pK²⁵ 7.5. Its solubility is 0.001% in H₂O, 0.038% in EtOH and 2.34% in Me₂NCHO. It has been purified by recrystallisation from 4-methyl-3-pentanone [Peeters et al. *Cryst Structure Commun* 11 375 1982, Kacprowicz et al. *J Chromatogr* 272 417 1983, Davies et al. *J Chromatogr* 275 232 1983]. It is an antihypertensive.

Khellin (4,9-dimethoxy-7-methyl-5-oxofuro[3,2-g]-1,2-chromene) [82-02-0] M 260.3, m 154-155°, b 180-200°/0.05mm. Crystallise khellin from H₂O, MeOH, pet ether or Et₂O. The *hydrochloride* has m 98°(dec) (from EtOH/HCl). [*Beilstein* 19 II 236, 19 III/IV 2816, 19/6 V 320.]

Kojic acid [(5-hydroxy-2-hydroxymethyl)-4*H*-pyran-4-one] [501-30-4] M 142.1, m 152°, 154-155°, pK_1^{25} -1.38, pK_2^{25} 7.66. Crystallise the acid from MeOH (charcoal) by adding Et₂O. It sublimes at 150-200°/0.1torr. [*Beilstein* 18 II 57, 18 III/IV 1145, 18/2 V 516.]

Kynurenic acid (4-hydroxyquinoline-2-carboxylic acid) [492-27-3] M 189.1, m 282-283°, 285°, $pK_{Est(1)}\sim 2$, $pK_{Est(2)}\sim 10$. Crystallise the acid from absolute EtOH. The *methyl ester* crystallises from MeOH with m 224-226°. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p2723 1961, Beilstein 22 II 174, 22 III/IV 2245, 22/6 V 280.]

L-Kynurenine [343-65-7] M 208.2, m 190°(dec), $[\alpha]_{D}^{20}$ -30° (c 0.4, H₂O), pK_{Est(1)}~2.3, pK_{Est(2)}~3.5, pK_{Est(3)}~9.2. Crystallise it from H₂O or aqueous AcOH. The *picrate* has m 188.5-189°(dec) after crystallisation from H₂O. (±)-Kynurenine has m 218°. [Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p2726 1961, Beilstein 14 III 1657, 14 IV 2562.]

L-Kynurenine sulfate [16055-80-4] M 306.3, m 194°, monohydrate m 178°, $[\alpha]_{D}^{25}$ +9.6° (H₂O). Crystallise the sulfate from water by addition of EtOH. The (±)-sulfate has m 173°. [Beilstein 14 IV 2562.]

dl- and l-Laudanosine $[(\pm)$ 1699-51-0, (-) 2688-77-9] **M 357.4, m 114-115°, 118°.** Crystallise these from EtOH. The (\pm) -picrate crystallises from EtOH with **m** 177-178°. The (-)-isomer has **m** 83-85° and $[\alpha]_{D}^{24}$ -110° (c 0.3, EtOH). The hydrobromide tetrahydrate [303136-74-5] **M** 436.3 has **m** 232-234°. [Frydman et al. *Tetrahedron* **4** 342 1958, Elliott J Heterocycl Chem **9** 853 1972, Beilstein **21** II 183, **21** III/IV 2704.]

Lumichrome (7,8-dimethylalloxazine) [1086-80-2] M 242.2, m >290°, pK_{Est(1)}~-0.1 (basic), pK_{Est(2)}~9.9 (acidic), Recrystallise lumichrome twice from glacial AcOH and dry it at 100° in a vacuum. [Cresswell & Wood *J Chem Soc* 4768 1960, *Beilstein* 26 III/IV 2538.]

Luminol (5-aminophthalazin-1,4-dione) [521-31-3] M 177.2, m 329-332°, pK₁ 3.37, pK₂ 6.35. Dissolve luminol in KOH solution, treat with Norit (charcoal), filter and precipitate it with conc HCl. [Hardy et al. *Talanta* 24 297 1977.] Store it in the dark in an inert atmosphere, because its structure changes during its luminescence. It has been recrystallised from 0.1M KOH [Merenyi et al. *J Am Chem Soc* 108 77716 1986]. [*Beilstein* 25 II 389, 25 III/IV 4192.]

dl-Lupinine (1-hydroxymethyloctahydroquinolizine, 1-hydroxymethylquinolizidine) [10248-30-3] M 169.3, m 57-58°, 59°, 107°/1mm, pK_{Est}~7.0. It crystallises from Me₂CO, pentane and pet ether (b. 40-60°) and can be sublimed or distilled in high vacuum. The *picrate* has m 127°(from Et₂O), the *picrolonate* has m 203-204°, and the *methiodide* has m 203°(dec, from EtOH). [Clemo et al. J Chem Soc 969 1937, Boekelheide & Lodge J Am Chem Soc 73 3684 1951, Beilstein 21 II 28, 21 III/IV 291.]

Lutidine (mixture). For the preparation of pure 2,3-, 2,4- and 2,5-lutidine from commercial "2,4- and 2,5-lutidine" see Coulson et al. *J Chem Soc* 1934 *1959*, and Kyte, Jeffery and Vogel *J Chem Soc* 4454 *1960*.

2,3-Lutidine [583-61-9] **M 107.2, f -14.8°, b 160.6°, d _4^{20} 0.9464, n _D^{20} 1.50857, pK²⁵ 6.57. Steam distil it from a solution containing about 1.2 equivalents of 20% H₂SO₄, until** *ca* **10% of the base has been carried over with the non-basic impurities. The acidic solution is then made alkaline, and the base is separated, dried over NaOH or BaO, and fractionally distilled. The distilled lutidine is converted to its urea complex by stirring 100g with 40g of urea in 75mL of H₂O, cooling to 5°, filtering at the pump, and washing with 75mL of H₂O. The complex, dissolved in 300mL of H₂O, is steam distilled until the distillate gives no turbidity with a little solid NaOH. The distillate is then treated with excess solid NaOH, and the upper layer is removed: the aqueous layer is then extracted with diethyl ether. The upper layer and the ether extract are combined, dried (K₂CO₃), and distilled through a short column. Final purification is by fractional crystallisation using partial freezing. The** *picrate* **crystallises from EtOH with m** 187-188°. [Kyte et al. *J Chem Soc* 4454 *1960, Beilstein* **20** H 243, **20** III 159, **20** III/IV 2765, **20/6** V 15.]

2,4-Lutidine [108-47-4] **M 107.2, b 157.8°, d** $_{4}^{20}$ **0.9305, n** $_{D}^{20}$ **1.50087, n** $_{D}^{25}$ **1.4985, pK**²⁵ **6.77.** Dry it with Linde type 5A molecular sieves, BaO or sodium, and fractionally distil it. The distillate (200g) is heated with *benzene (500mL) and conc HCl (150mL) in a Dean and Stark apparatus on a water bath until water no longer separates, and the temperature just below the liquid reaches 80°. When cold, the supernatant *benzene is decanted, and the 2,4-lutidine hydrochloride, after washing with a little *benzene, is dissolved in water (350mL). After removing any *benzene by steam distillation, an aqueous solution of NaOH (80g) is added, and the free lutidine is steam distilled. It is isolated by saturating the distillate with solid NaOH and distilling it through a short column. The precipitation cycle is repeated, then the final distillate is partly frozen in an apparatus at -67.8-68.5° (cooled by acetone/CO₂). The crystals are collected, then melted and distilled. [Kyte et al. *J Chem Soc* 4454 *1960.*] Alternative purifications are *via* the *picrate* **m** 183-184° (from H₂O). [Clarke & Rothwell *J Chem Soc* 1885 *1960*], or the hydrobromide [Warnhoff *J Org Chem* **27** 4587 *1962*]. The latter is precipitated from a solution of lutidine in *benzene by passing dry HBr gas: the salt is recrystallised from CHCl₃/methyl ethyl ketone, then decomposed with NaOH, and the free base is extracted into Et₂O, dried, evaporated and the residue is distilled. [*Beilstein* **20** H 244, **20** II 180, **20** III/IV 2718, **20/6** V 19.]

2,5-Lutidine [589-93-5] **M 107.2, m -15.3°, b 156.7°/759mm, d** $_{4}^{20}$ **0.927, n** $_{D}^{25}$ **1.4982, pK** 25 **6.40.** Steam distil the lutidine from a solution containing 1-2 equivalents of 20% H₂SO₄ until about 10% of

the base has been carried over with the non-basic impurities, then the acidic solution is made alkaline, and the base is separated, dried with NaOH and fractionally distilled twice. Dry the distillate with Na and fractionally distill it through a Todd column (p 11) packed with glass helices. The *hydrochloride* has **m** 219°(dec), and the *picrate* has **m** 170.5° (from EtOH or H₂O). [*Beilstein* **20** H 244, **20** II 160, **20** III/IV 2774, **20/6** V 27.]

2,6-Lutidine [108-48-5] **M 107.2, m -59°, b 144.0°, d** $_{4}^{20}$ **0.92257, n** $_{D}^{20}$ **1.49779, pK**²⁵ **6.72.** Likely contaminants include 3- and 4-picoline (similar boiling points). However, they are removed by using BF₃, with which they react preferentially, by adding 4mL of BF₃ to 100mL of dry fractionally distilled 2,6-lutidine and redistilling. Distillation of commercial material from AlCl₃ (14g per 100mL) can also be used to remove picolines (and water). Alternatively, lutidine (100mL) can be refluxed with ethyl benzenesulfonate (20g) or ethyl *p*-toluenesulfonate (20g) for 1hour, then the upper layer is cooled, separated and distilled. The distillate is refluxed with BaO or CaH₂, then fractionally distilled through a glass helices-packed column.

2,6-Lutidine can be dried with KOH or sodium or by refluxing with (and distilling from) BaO, prior to distillation. For purification *via* its *picrate*, 2,6-lutidine, dissolved in absolute EtOH, is treated with an excess of warm ethanolic picric acid. The precipitate is filtered off, recrystallised from acetone (to give **m** 163-164.5° (166-167°), and partitioned between ammonia and CHCl₃/diethyl ether. The organic layer, after washing with dilute aqueous KOH, is dried with Na₂SO₄ and fractionally distilled. [Warnhoff *J Org Chem* **27** 4587 *1962*.] Alternatively, 2,6-lutidine can be purified *via* its urea complex, as described under 2,3-lutidine. Other purification procedures include azeotropic distillation with phenol [Coulson et al. *J Appl Chem (London)* **2** 71 *1952*], fractional crystallisation by partial freezing, and vapour-phase chromatography using a 180-cm column of polyethylene glycol-400 (Shell, 5%) on Embacel (May and Baker) at 100°, with argon as carrier gas [Bamford & Block *J Chem Soc* 4989 *1961*]. The *hydrochloride* has **m** 235-237°, 239° (from EtOH). [*Beilstein* **20** II 160, **20** III/IV 2776, **20/6** V 32.]

3,5-Lutidine [591-22-0] **M 107.2, f - 6.3°, b 172.0°/767mm, d _4^{20} 0.9419, n _D^{20} 1.50613, n _D^{25} 1.5035, pK**²⁵ **6.15.** Dry 3,5-lutidine with sodium and fractionally distil it through a Todd column (p 11) packed with glass helices. Dissolve (100mL) in dilute HCl (1:4) and steam distil this until 1L of distillate is collected. Excess conc NaOH is added to the residue which is again steam distilled. The base is extracted from the distillate, using diethyl ether. The extract is dried over K₂CO₃, and distilled. It is then fractionally crystallised by partial freezing. The *hydrochloride* has **m** 229°(sublimes at 190-231°), and the *picrate* has **m** 242-243°(dec, from H₂O), 249-250°(dec, from AcOH). [*Beilstein* **20** II 161, **20** III/IV 2788, **20/6** V 60.]

Lycorine [476-28-8] M 552.9, m 275-280°(dec), b 175-185°/0.002mm. $[\alpha]_D^{20}$ -91° (c 0.16, EtOH), pK²⁵ 6.9 (30% aqueous dimethylformamide). It crystallises as orange crystals from MeOH (m 281-283°), CHCl₃/EtOH (m 272-274°), pyridine or from EtOH (m 277°, dec). It has been distilled under high vacuum. The *hydrochloride* has m 288° (from MeOH/HCl), and the *picrate* has m 196-197°(from EtOH), [Cook et al. *J Chem Soc* 4176 *1954*, Martin & Tu *J Org Chem* 46 3763 *1981*, *Beilstein* 27 II 547, 27 III/IV 6463.]

(+)-Lysergic acid [82-58-6] M 268.3, m 240°(dec), $[\alpha]_{D}^{20}$ +40° (pyridine), pK_{1}^{25} 3.32, pK_{2}^{25} 8.66, pK^{20} 8.50, pK^{40} 8.27 It crystallises from water as a *hydrate*. The *methyl ester* crystallises from *C₆H₆ and has m 168°; the *amide* [478-94-4] has m 242°(dec) (from MeOH) and $[\alpha]_{546}$ +15° (c 0.5, pyridine). The (-)-hydrochloride has m 208-210°(dec, from MeOH). [Kornfeld et al. J Am Chem Soc 76 5256 1954, Kornfeld et al. J Am Chem Soc 78 3087 1956, Beilstein 25 IIII/IV 934,]

Maltol (3-hydroxy-2-methyl-4-pyrone) [118-71-8] M 126.1, m 161-162°, 162-162.5°. It crystallises from CHCl₃, toluene, aqueous 50% EtOH or H₂O, and is volatile in steam. It can be readily sublimed in a vacuum. It forms a Cu^{2+} complex. [Beilstein 17 III/IV 5916, 18/1 V 114.]

Meconic acid (3-hydroxy- γ -pyrone-2,6-dicarboxylic acid) [497-59-6] M 200.1, m 100° (loses H₂O), pK₁²⁵ 1.83, pK₂²⁵ 2.3, pK₃²⁰ 10.10. Crystallise the acid from water (0.25g/mL) and dry it at 100° for 20minutes to dehydrate the *mono* or *dihydrate*. It decarboxylates above 120° or in boiling H₂O. It is soluble in MeOH (2%), EtOAc (2%) and Me₂CO (1%). The *picrate* has m 206.5-208.5°(dec, from H₂O).

406

2

[Wibaut & Kleinpool *Recl Trav Chim, Pays Bas* 66 24 1947, *Beilstein* 18 H 409, 18 I 523, 18 II 367, 18 III/IV 6136.]

Melamine (2,4,6-triamino-1,3,5-triazine) [108-78-1] M 126.1, m 353°, pK²⁵ 5.00. Crystallise Melamine from water or dilute aqueous NaOH. It sublimes at ~240° on prolonged heating. [*Beilstein* 26 I 74, 26 II 132, 26 III/IV 1253.]

(±)-Mellein [(±)-3,4-dihydro-8-hydroxy-3-methyl-2-benzopyran-1-one, 8-hydroxy-3-methylisochroman-1-one] [1200-93-7] M 178.2, m 37-39°, 39°, pK_{Est} ~9.5. Purify it by recrystallisation from H₂O or aqueous EtOH. It has UV: λ_{max} at 247 and 314nm. [Arakawa et al. Justus Liebigs Ann Chem 728 152 1969, Blair & Newbold Chem Ind (London) 93 1955, J Chem Soc 2871 1955.] The methyl ether has m 66-67° and UV: λ_{max} 242nm (ϵ 7,400) and 305nm (ϵ 4,600). R(-)-Mellein has m 56°(aqueous Me₂CO), [α] $_{D}^{25}$ -102.5° (c 1, CHCl₃) and R(+)-mellein has m 56-57°(hexane), [α] $_{D}^{25}$ +102° (c 1, CHCl₃) or [α] $_{D}^{25}$ +88° (c 1, MeOH). [Beilstein 18 III/IV 188, 18/1 V 274.]

2-Mercaptobenzimidazole [583-39-1] **M 150.2, m 302-304°, 312°, pK²⁰ 10.24.** Crystallise it from aqueous EtOH, AcOH or aqueous ammonia. It complexes with many metals. [Brown J Chem Soc 1976 1958, Beilstein **24** II 65, **24** III/IV 287.]

2-Mercaptobenzothiazole [149-30-4] **M 167.2, m 182°, pK²⁵ 7.5** (50% aqueous AcOH). Crystallise it repeatedly from 95% EtOH, or purify it by incomplete precipitation by dilute H_2SO_4 from a basic solution, followed by several crystallisations from acetone/ H_2O or *benzene. It complexes with Ag, Au, Bi, Cd, Hg, Ir, Pt, and Tl. [*Beilstein* **27** II 233, **27** III/IV 2709.]

2-Mercaptoimidazole [872-35-5] **M 100.1, m 221-222°, 226-228°(monohydrate), pK**₁²⁰ **-1.6, p K**₂²⁰ **11.6.** Crystallise 2-mercaptoimidazole from Me₂CO or H₂O. UV: λ_{max} at 208 and 252nm (H₂O). [Fox et al. *J Am Chem Soc* **67** 496 1947, Beilstein **24** II 7, **24** III/IV 61.]

2-Mercapto-1-methylimidazole [60-56-0] **M 114.2, m 145-147°, 146-148°, pK_1^{20} -2.0, pK_2^{20} 11.9.** Crystallise it from EtOH. UV: λ_{max} at 251nm (H₂O), 260nm (EtOH) and 267nm (CHCl₃). [Lawson & Morley *J Chem Soc* 1103 *1956*, *Beilstein* **24** H 17, **24** III/IV 61.]

6-Mercaptopurine monohydrate [6112-76-1] M 170.2, m 314-315°(dec), ~315°(dec), 313-315°(dec), pK₁²⁰ 0.5, pK₂²⁰ 7.77, pK₃²⁰ 10.84. Crystallise 6-mercaptopurine from pyridine (30mL/g), wash it with pyridine, then triturate with water (25mL/g) and adjust to pH 5 by adding M HCl. Recrystallise it by heating, then cooling, the solution. Filter off the solid, wash it with water and dry it at 110°. It has also been crystallised from water (charcoal) as yellow crystals of the *monohydrate* which become *anhydrous* on drying at 140°. It has UV: λ_{max} at 230 and 312nm (ε 14,000 and 19,600) in 0.1N NaOH; 222 and 327nm (ε 9,2400 and 21,300), and 216 and 329nm (ε 8,740 and 19,300) in MeOH. It forms a 1:1 complex with Zn²⁺, Pb²⁺, Co²⁺, and Ni²⁺ in aqueous dioxan. It is an antineoplastic. [Albert & Brown *J Chem Soc* 2060 1954, IR: Brown & Mason *J Chem Soc* 682 1957, UV: Fox et al. *J Am Chem Soc* 80 1669 1958, UV: Mason *J Chem Soc* 2071 1954, Beilstein 26 III/IV 2097.]

8-Mercaptoquinoline (2H₂O, thioxine) [491-33-8] M 197.3, m 58-59°, pK_1^{25} 2.0, pK_2^{25} 8.40. Thioxine readily oxidises in air to give diquinolyl-8,8'-disulfide (which is stable). It is more convenient to make 8-mercaptoquinoline by reduction of the disulfide. [Nakamura & Sekido *Talanta* 17 515 1970.] The *hydrochloride* (see thiooxine hydrochloride below) is more stable. [*Beilstein* 21 III/IV 1197, 21/3 V 30.]

3-Methoxycarbonyl-2,5-dihydrothiophen-1,1-dioxide (methyl **3-sulfolene-3-carboxylate**) [67488-50-0] **M 176.1, m 57-58°, 60-62°.** If the IR shows OH bands, then dissolve the dioxide in CHCl₂, wash it with aqueous Na₂CO₃ and H₂O, dry it over MgSO₄, filter, evaporate and wash the residue with cold Et₂O and dry *in vacuo.* ¹HNMR (CDCl₃): δ 7.00 (m 1H), 3.98 (bs 4H) and 3.80 (s Me). [McIntoch & Sieber J Org Chem **43** 4431 1978, Beilstein **18/6** V 5.]

408

5-Methoxyindole [1006-94-6] **M 147.2, m 55°, 57°, b 176-178°/17mm, pK**_{Est} ~0. Crystallise 5-methoxyindole from cyclohexane pet ether or pet ether/Et₂O. [Saito & Kikugawa J Heterocycl Chem **16** 1325 1979, Beilstein **21** III/IV 765, **21/3** V 18.]

5-(*p*-**Methoxyphenyl**)-**1,2-dithiole-3-thione** [42766-10-9] **M 240.2, m 111°.** Crystallise the thione from EtOAc, BuOAc or EtOH. It sublimes at 90°/0.001mm and complexes with Sb³⁺, Sb⁵⁺, Bi³⁺, Sn⁴⁺, Ag⁺, Au³⁺ and Hg²⁺. [*Beilstein* **19** III/IV 2538.]

8-Methoxypsoralen (Methoxsalen) See xanthotoxin in "Miscellaneous Compounds" in Chapter 6.

6-Methylaminopurine [443-72-1] M 149.2, m >300°, 312-314° (dec), $pK_1^{20} <1$, $pK_2^{20} 4.15$, pK_3^{20} 10.02. The purine is best purified by recrystallising 2g from 50mL of H₂O and 1.2g of charcoal. [UV: Albert & Brown J Chem Soc 2060 1954; UV: Mason J Chem Soc 2071 1954; see also Elion et al. J Am Chem Soc 74 411 1952.] The picrate has m 265°(257°) [Bredereck et al. Chem Ber 81 307 1948]. [Beilstein 26 III/IV 3565.]

Methyl 3-aminopyrazine-2-carboxylate [16298-03-6] **M 153.1, m 169-172°, 172°.** The ester forms yellow needles from H₂O (100 parts using charcoal). If it contains the free acid (see IR), then dissolve it in CH₂Cl₂, wash it with saturated aqueous Na₂CO₃, brine, dry over MgSO₄ filter, evaporate and recrystallise the residue. The *free acid* has **m** 203-204° (dec) [UV: Brown & Mason *J Chem Soc* 3443 1956] and pK₁ <1 and pK₂ 3.70. The *ammonium salt* has **m** 232°(dec) (from aqueous Me₂CO) and the *amide* has **m** 239.2° (from H₂O) [Ellingson et al. *J Am Chem Soc* **67** 1711 1945]. [Beilstein **25** III/IV 4412.]

9-Methylcarbazole (*N*-methylcarbazole) [1484-12-4] **M** 181.2, **m** 87°, 89°. Purify *N*-methylcarbazole by chromatography on silica gel and eluting with CHCl₃/Me₂CO/Et₂O (100:5:1 v/v), or by flash chromatography using pet ether, or by zone melting followed by recrystallisation from pet ether or EtOH. [Flo & Pindus Annalen 509 1987, Kashima et al. J Heterocycl Chem 24 913 1987, UV: Armarego Physical Methods in Heterocyclic Chemistry (Ed Katritzky, Academic Press) Vol III 158 1971, Beilstein 20 H 436.]

5-Methylcytosine [4-amino-5-methylpyrimidin-2(1*H*)-one] [554-01-8] M 125.1, m 270°(dec), pK_1 4.6, pK_2 12.4. Crystallise it from water (solubility is 3.4%). The hydrochloride has m 299-301° (sintering at 280°) (from aqueous HCl/Me₂CO). [Hitchings et al. J Biol Chem 177 537 1949, Cohn J Am Chem Soc 73 1539 1951, Beilstein 25 II 183, 25 III/IV 3727.]

2-Methyl-1,3-dithiane [6007-26-7] **M 134.3, b 53-54°/1.1mm, 66°/5mm, 79-80°/8-10mm, 85°/12mm, d _{4}^{20} 1.121, n** $_{D}^{20}$ **1.560.** Wash the dithiane with H₂O, 2.5 M aqueous NaOH, H₂O, brine, dry over K₂CO₃ (use toluene as solvent if the volume of reagent is small), filter, evaporate and distil the colourless residue. IR film: v_{max} 1455, 1371 and 1060 (all medium and CH₃), 1451m, 1422s, 1412m, 1275m, 1236m, 1190m, 1171w, 918m and 866w (all dithiane) cm⁻¹ [Corey & Erickson *J Org Chem* **36** 3553 *1971*, Seebach & Corey *J Org Chem* **40** 231 *1975*]. [*Beilstein* **19** III/IV 49, **19/1** V 53.]

Methylene Blue [3,7-bis-(dimethylamino)phenothiazin-5-ium chloride [61-73-4] M 319.9, CI 52015, ε_{654} 94,000 (EtOH), ε_{664} 81,000 (H₂O), pK²⁵ 3.8. Crystallise the chloride from 0.1M HCl (16mL/g), the crystals are separated by centrifugation, washed with chilled EtOH and diethyl ether, and dried under vacuum. Crystallise it from 50% aqueous EtOH, wash it with absolute EtOH, and dry it at 50-55° for 24hours. It has also been crystallised from *benzene/MeOH (3:1). It has been salted out with NaCl from a commercial concentrated aqueous solution, then crystallised from water, and dried at 100° in an oven for 8-10hours. [Beilstein 27 III/IV 5152.]

Methylene Green [3,7-bis-(dimethylamino)-4-nitrophenothiazin-5-ium chloride] [2679-01-8] M 364.9, m >200°(dec), CI 52020, pK^{25} 3.2. Crystallise the dye three times from water (18mL/g). [Beilstein 27 H 399.] The ZnCl₂ double salt [6722-15-2] M 866.0 has the same CI. [Beilstein 27 III/IV 5157.]

2-Methylene-oxetan-2-one (diketene) [674-82-8] M 84.1, m -7°, b 41°/50.5mm, 66-68°/90mm, 127°/760mm, d_4^{20} 1.440, n_D^{20} 1.4376, n^{25} 1.4348. Diketene polymerizes violently in the presence of alkali. Distil it under reduced pressure, then fractionally crystallise it by partial freezing (using as a cooling bath made from a 1:1 solution of Na₂S₂O₃ in water, cool with Dry-Ice until slushy, and store it in a Dewar flask). Freezing proceeds slowly, and takes about a day for half completion. The crystals are separated and stored in a refrigerator under N₂. [Miller & Carlson *J Am Chem Soc* **79** 3995 *1957*, Andreades & Carlson *Org Synth* Coll Vol V 679 *1973*, *Beilstein* **7** H 552, **7** I 309, **7** II 525, **1** III 2947, **17** III/IV 4297, **17/9** V 115.] See ketene in "Aliphatic Compounds", Chapter 4.

2-Methylfuran (Silvan) [534-22-5] **M 82.1, f –90.19°, b 62.7-62.8°/731mm, d** $_{4}^{20}$ **0.917, n** $_{D}^{20}$ **1.436.** Wash it with acidified saturated ferrous sulfate solution (to remove peroxides), separate, dry with CaSO₄ or CaCl₂, and fractionally distil it from KOH immediately before use. To reduce the possibility of spontaneous polymerisation, addition of about one-third of its volume of heavy mineral oil to 2-methylfuran prior to distillation has been recommended. [*Beilstein* **17** H 36, **17** I 18, **17** II 39, **17** III/IV 265.]

1-Methylguanine [938-85-2] **M 165.2, m >300°(dec), pK** $_{1}^{20}$ ~0, pK $_{2}^{20}$ 3.13, pK $_{3}^{20}$ 10.54. Crystallise it from H₂O or 50% aqueous acetic acid. [*Beilstein* 26 III/IV 3892.]

7-Methylguanine [578-76-7] **M** 165.2, $pK_1^{20} \sim 0$, $pK_2^{20} 3.50$, $pK_3^{20} 9.95$. Crystallise it from water. UV: λ_{max} at 280nm (pH 2.1). The *picrate* has **m** 267° (270-272° dec, also reported). [*Beilstein* 26 H 455, 26 I 134, 26 II 263, 26 III/IV 3890.]

N-Methylimidazole [616-47-7] M 82.1, b 81-84^o/27mm, 197-198^o/760mm, d_4^{20} 1.032, n_D^{20} 1.496, pK²⁵7.25. Dry it with sodium metal and then distil it. Store it at 0° under dry argon. The *picrate* has m 159.5-160.5° (from H₂O). [*Beilstein* 23 III/IV 568.]

2-Methylimidazole (2-methylglyoxaline) [693-98-1] M 82.1, m 140-141°, 144.5-145.5°, b 267°/760mm, pK²⁵ 7.86. Recrystallise 2-methylimidazole from *benzene or pet ether. The *picrate* has m 215° (from H₂O). [*Beilstein* 23 III/IV 594, 23/5 V 35.]

4-Methylimidazole [822-36-6] **M 82.1, m 47-48°, b 263^{\circ}/760 mm, pK²⁵ 7.61.** Recrystallise 4methylimidazole from *benzene or pet ether. It has **m** 56° after sublimation. The *picrate* has **m** 162-163.5° (from EtOH). [*Beilstein* **23** II 60, **23** III/IV 597, **23/5** V 89.]

2-Methylindole [95-20-5] **M 131.2, m 61^o, pK²⁵-0.28** (C-3 protonation, aqueous H₂SO₄). Crystallise it from *benzene. It has also been purified by zone melting. The *picrate* has **m** 139^o (from Et₂O or Et₂O/MeOH). [Cohen et al. J Am Chem Soc 82 2184 1960, Beilstein 20 III/IV 3202, 20/7 V 59.]

3-Methylindole (skatole) [83-34-1] M 131.2, m 95°, pK²⁵-4.55 (C-3-protonation, aqueous H₂SO₄). Crystallise skatole from *benzene or pet ether (m 96.5°). It has also been purified by zone melting. The *picrate* has m 182° (from Et₂O or Et₂O/MeOH). [*Beilstein* 20 III/IV 3206, 20/7 V 69.]

N-Methylmorpholine (4-methylmorpholine) [109-02-4] M 101.2, b 116-117°/764mm, d_4^{20} 0.919, n_D^{20} 1.436, pK²⁵ 7.41. Dry it by refluxing with BaO or sodium, then fractionally distil it through a helices-packed column. The *picrate* has m 227°, the *thiocyanate salt* has m 103° (from butanone). [Hall J Phys Chem 60 63 1956, Beilstein 27 I 203, 27 III/IV 22.]

4-Methylmorpholine-4-oxide monohydrate [7529-22-8] **M 135.2, m 71-73°.** When the oxide is dried for 2-3hours at high vacuum, it dehydrates. Add MeOH to the oxide and distil off the solvent under vacuum until the temperature is ca 95°. Then add Me₂CO at reflux and cool to 20°. The crystals are filtered off, washed with Me₂CO and dried. The degree of hydration may vary and may be important for the desired reactions. [van Rheenan et al. *Tetrahedron Lett* 1973 1076, Schneider & Hanze *US Pat 2 769 823*; see also Sharpless et al. *Tetrahedron Lett* 2503 1976.]

410 Purification of Organic Chemicals – Heterocyclic Compounds

3-Methyl-2-oxazolidone [19836-78-3] **M 101.1, m 15°, b 88-91°/1mm, d** $_{4}^{20}$ **1.172, n** $_{D}^{20}$ **1.455.** Purify the oxazolidone by successive fractional freezing, then dry it in a dry-box over 4A molecular sieves for 2 days. Distil it under high vacuum and store it dry as before. [*Beilstein* **27** III/IV 2517.]

3-Methyl-3-oxetanemethanol (3-hydroxymethyl-3-methyloxetane) [3143-02-0] M 102.1, b 80°/4mm, 92-93°/12mm, d_4^{20} 1.033, n_D^{25} 1.4449. Purify the oxetane by fractionation through a glass column [Pattison J Am Chem Soc 79 3455 1957, Corey et al. J Am Chem Soc 106 2736 1984]. [Beilstein 17 III/IV 1128.]

5-Methyl-1,10-phenanthroline [3002-78-6] M 194.2, m 67°(monohydrate), 113°(anhydrous), pK^{25} 5.28. Crystallise it from *benzene/pet ether or from H₂O as the monohydrate. It complexes with many metals. [Beilstein 23 III/IV 1714.]

5-Methylphenazinium methyl sulfate [299-11-6] M **306.3**, m **155-157**° (**198**°dec by rapid heating), pK²⁵ –3.5. It forms yellow-brown prisms from EtOH (charcoal), or EtOH/Et₂O. Its solubility in H₂O at 20° is 10%. In the presence of aqueous KI it forms a *semiquinone* which crystallises as blue leaflets from EtOH. [Wieland & Roseen Chem Ber **48** 1117 1913, Voriskova Collect Czech Chem Commun 12 607 1947, Bülow Chem Ber **57** 1431 1924, Campbell et al. J Chem Soc 404 1938, Morley J Chem Soc 4008 1952, Beilstein **23** I 59, **23** II 234, **23** III/IV 1658, **23/8** V 395.]

N-Methylphenothiazine (10-methylphenothiazine) [1207-72-3] M 213.2, α -form m 99.3°, 100-102°, and b 360-365°, B-form m 78-79°. Recrystallise it (three times) from EtOH to give the α -form (prisms). Recrystallisation from EtOH/*benzene gives the B-form (needles). It has also been purified by vacuum sublimation and is carefully dried in a vacuum line. It has been crystallised from toluene or MeOH and stored in the dark [Guarr et al. *J Am Chem Soc* 107 5104 *1985*, Olmsted et al. *J Am Chem Soc* 109 3297 *1987*]. Its solubility in H₂O (pH 6.5) is 0.0544mg/100mL, and in hexane it is 2083mg/100mL. UV λ_{max} at 255nm (loge 4.60) (pH 6.3) and 255nm in hexane. [Cymerman-Craig & Warburton *Aust J Chem* 9 294 *1956*, *Beilstein* 27 II 33, 27 III/IV 1215.]

3-Methyl-1-phenyl-5-pyrazolone [89-25-8] **M 174.2, m 127°, 129°, pK^{25} 2.7.** Crystallise the pyrazolone from hot H₂O, EtOH or EtOH/water (1:1). It complexes with metals. [Veibel et al. *Acta Chim Scand* **6** 1066 1952, *Beilstein* **24** II 9, **24** III/IV 71.]

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) [23007-85-4] M 209.7, m 196-198°, pK_{Est} ~ 9.3, pK_a 8.07 (50% aqueous EtOH). Purify MPTP by recrystallisation from Me₂CO/isoPrOH. The *free base* has m 40-42°(from heptane), b 99-100°/1.3mm, 128-132°/12mm, (137-142°/0.8mm), n_D^{25} 1.5347. The *hydrochloride* has m 251-252°(from Me₂CO/isoPrOH) [Schmidle & Mansfield J Am Chem Soc 78 425 1956, Defeudis Drug Dev Res 15 1 1988, Beilstein 20 III/IV 3240, 20/7 V 121.]

(±)-2-Methylpiperazine [109-07-9] M 100.2, m 61-62°, 66°, b 147-150°/739mm, pK_1^{25} 5.46, pK_2^{25} 9.90. Purify it by zone melting and by distillation. It is *hygroscopic*. The *picrate* has m 275-276°. [*Beilstein* 23 II 16, 23 III/IV 393, 23/3 V 267.]

(±)-3-Methylpiperidine [626-56-2] M 99.2, b $125^{\circ}/763$ mm, d_4^{20} 0.846, n_D^{25} 1.4448, pK²⁵ 10.92. Purify it via the hydrochloride (m 172°). The hydrobromide has m 162-163°(from iso-PrOH). [Chapman et al. J Chem Soc 1925 1959, Beilstein 20 III/IV 1499, 20/4 V 100.]

4-Methylpiperidine [626-58-4] **M 99.2, b 124.4**°/755mm, d_4^{20} 0.839, n_D^{25} 1.4430, pK²⁵ 10.78. Purify it *via* the *hydrochloride* (m 189°). It is freed from 3-methylpyridine by zone melting. The *hydrobromide* has m 173°(from butanone/*C₆H₆). [*Beilstein* 20 III/IV 1511, 20/4 V 116.]

1-Methyl-4-piperidone [1445-73-4] M 113.2, b 53-56% (0.5mm, 54-56% (9mm, 68-71% 17mm, 85-87% (45mm, d_4^{20} 0.972, n_D^{25} 1.4588, pK²⁵ 7.9. It is best purified by fractional distillation The *hydrochloride* of the hydrate (4-diol) has m 94.7-95.5%, but the anhydrous *hydrochloride* which crystallises from CHCl₃/Et₂O has m 165-168% (164-167%) and can also be obtained by sublimation at 120% 2mm. The *oxime*

411

has **m** 130-132° (from Me₂CO). The *methiodide* crystallises from MeOH, the crystals with 1MeOH have **m** 189-190°, and the solvent-free *iodide* has **m** 202-204°(dec). [Lyle et al. *J Org Chem* **24** 342 *1959*, Bowden & Greeen *J Chem Soc* 1164 *1952*, Tomita Yakugaku Zasshi (J Pharm Soc Japan) **71** 1053 *1951*, Beilstein **21** IIII/IV 3183, **21/6** V 419.]

2-Methylpyrazine [109-08-0] **M 94.1, f –28.8°, b 136-137°, d _{4}^{20} 1.025, n_{D}^{20} 1.505, pK_{1}^{25} -5.25 (aqueous H₂SO₄), pK_{2}^{25} 1.47. Purify it** *via* **the picrate and distil the** *free base***. The** *picrate* **has m** 133-134°(from EtOH). [Wiggins & Wise *J Chem Soc* 4780 1956, *Beilstein* 23 III/IV 911, 23/5 V 386.]

2-Methylpyridine (2-picoline) [109-06-8] M 93.1, b 129.4°, d_4^{20} 0.9444, n_D^{20} 1.50102, pK²⁵ 5.96. Biddiscombe and Handley [*J Chem Soc* 1957 1954] steam distilled a boiling solution of the base in 1.2 equivalents of 20% H₂SO₄ until about 10% of the base had been carried over, along with non-basic impurities. Excess aqueous NaOH is then added to the residue, the free base is separated, dried with solid NaOH and fractionally distilled.

2-Methylpyridine can also be dried with BaO, CaO, CaH₂, LiAlH₄, sodium or Linde type 5A molecular sieves. An alternative purification is *via* the ZnCl₂ adduct, which is formed by adding 2-methylpyridine (90mL) to a solution of anhydrous ZnCl₂ (168g) and 42mL conc HCl in absolute EtOH (200mL). Crystals of the complex are filtered off, recrystallised twice from absolute EtOH (to give **m** 118.5-119.5°), and the free base is liberated by addition of excess aqueous NaOH. It is steam distilled, and solid NaOH is added to the distillate to form two layers, the upper one of which is then dried with KOH pellets, stored for several days with BaO and fractionally distilled. Instead of ZnCl₂, HgCl₂ (430g in 2.4L of hot water) can be used. The complex, which separates on cooling, can be dried at 110° and recrystallised from 1% HCl (to **m** 156-157°). The *hydrochloride* has **m** 78-79°, and the *picrate* has **m** 165.5°(from EtOH) and 180°(from H₂O). [*Beilstein* **20** III/IV 2679, **20**/5 V 464.]

3-Methylpyridine (3-picoline) [108-99-6] M 93.1, m -18.5°, b 144°/767mm, d $_{4}^{20}$ 0.957, n $_{10}^{20}$ 1.5069, pK²⁵ 5.70. In general, the same methods of purification that are described for 2-methylpyridine can be used. However, 3-methylpyridine often contains 4-methylpyridine and 2,6-lutidine, neither of which can be removed satisfactorily by drying and fractionation, or by using the ZnCl₂ complex. Biddiscombe and Handley [*J Chem Soc* 1957 1954], after steam distillation as for 2-methylpyridine, treated the residue with urea to remove 2,6-lutidine, then azeotropically distilled with acetic acid (the azeotrope had b 114.5°/712mm), and recovered the base by adding excess of aqueous 30% NaOH, drying with solid NaOH and carefully fractionally distilling. The distillate is then fractionally crystallised by slow partial freezing. An alternative treatment [Reithoff et al. *Ind Eng Chem* (Anal Edn) 18 458 1946] is to reflux the crude base (500mL) for 20-24hours with a mixture of acetic anhydride (125g) and phthalic anhydride (125g) followed by distillation until phthalic anhydride begins to pass over. The distillate is treated with NaOH (250g in 1.5L of water) and then steam distilled. Addition of solid NaOH (250g) to this distillate (*ca* 2L) led to the separation of 3-methylpyridine which is removed, dried (K₂CO₃, then BaO) and fractionally distilled. (Subsequent fractional freezing would probably be advantageous.) The *hydrochloride* has m 85°, and the *picrate* has m 153°(from Me₂CO, EtOH or H₂O). [*Beilstein* 20 III/IV 2710, 20/5 V 506.]

4-Methylpyridine (4-picoline) [108-89-4] M 93.1, m 4.25°, b 145.0°/765mm, d_4^{20} 0.955, n_D^{20} 1.5058, pK^{25} 4.99. It can be purified as for 2-methylpyridine. Biddescombe and Handley's method (above) for 3-methylpyridine is also applicable. Lidstone [J Chem Soc 242 1940] purified it via the oxalate (m 137-138°) by heating 100mL of 4-methylpyridine to 80° and adding slowly110g of anhydrous oxalic acid, followed by 150mL of boiling EtOH. After cooling and filtering, the precipitate is washed with a little EtOH, then recrystallised from EtOH, dissolved in the minimum quantity of water and distilled with excess 50% KOH. The distillate is dried with solid KOH and again distilled. Hydrocarbons can be removed from 4-methylpyridine by converting the latter to its hydrochloride, crystallising from EtOH/diethyl ether, regenerating the free base by adding alkali and distilling. As a final purification step, 4-methylpyridine can be fractionally crystallised by partial freezing to effect a separation from 3-methylpyridine. Contamination with 2,6-lutidine is detected by its strong absorption at 270nm. The hydrochloride has **m** 161°, and the picrate has **m** 167°(from Me₂CO, EtOH or H₂O). [Beilstein 20 III/IV 2732, 20/5 V 543.]

N-Methylpyrrole [96-54-8] M 81.1, b 115-116⁰/756mm, d_4^{20} 0.908, n_D^{20} 1.487, pK²⁵ -3.4 (-2.90). Dry *N*-methylpyrrole with CaSO₄, then fractionally distil it from KOH immediately before use. [*Beilstein* 20 III/IV 2080, 20/5 V 8.]

1-Methyl-2-pyrrolidinone (1-methyl-2-pyrrolidone) [872-50-4] M 99.1, f -24.4, b 65-76%/1mm, 78-79%/12mm, 94-96%/20mm, 202%/760mm, d_4^{20} 1.0328, n_D^{20} 1.4678, pK²⁵ -0.17 (also -0.92, and 0.2). Dry the pyrrolidone by removing water as the *benzene azeotrope. Fractionally distil at 10 torr through a 100-cm column packed with glass helices. [Adelman J Org Chem 29 1837 1964, McElvain & Vozza J Am Chem Soc 71 896 1949.] The hydrochloride has m 86-88° (from EtOH or Me₂CO/EtOH) [Reppe et al. Justus Liebigs Ann Chem 596 1 1955]. [Beilstein 21 II 213, 21 III/IV 3145, 21/6 V 321.]

2-Methylquinoline (quinaldine) [91-63-4] M 143.2, b 86-87°/1mm, 155°/14mm, 246-247°/760mm, d_4^{20} 1.058, n_D^{20} 1.6126, pK²⁵ 5.65. Dry it with Na₂SO₄ or by refluxing with BaO, then fractionally distil it under reduced pressure and redistil it from zinc dust. Purify it further by conversion to its *phosphate* (m 220°) or *picrate* (m 192°) from which after recrystallisation, the free base is regenerated. [Packer et al. *J Am Chem Soc* 80 905 1958.] Its ZnCl₂ complex can be used for the same purpose. [*Beilstein* 20 III/IV 3454, 20 V 375.]

4-Methylquinoline (lepidine) [491-35-0] M 143.2, b 265.5°, d_4^{20} 1.084, n_D^{20} 1.61995, pK²⁵ 5.59. Reflux lepidine with BaO, then fractionally distil it. Further purify it *via* its recrystallised *dichromate* salt (m 138°) (from H₂O). [Cumper et al. J Chem Soc 1176 1962.] [Beilstein 20 III/IV 3477, 20/7 V 389.]

6-Methylquinoline [91-62-3] **M** 143.2, **b** 258.6°, d_4^{20} 1.067, n_D^{20} 1.61606, pK²⁵ 4.92. Reflux it with BaO, then fractionally distil it. Further purified it *via* its recrystallised *ZnCl*₂ *complex* (**m** 190°). [Cumper et al. *J Chem Soc* 1176 1962, *Beilstein* 20 III/IV 3498, 20/7 V 400.]

7-Methylquinoline [612-60-2] M 143.2, m 38°, b 255-260°, d_4^{20} 1.052, n_D^{20} 1.61481, pK²⁵ 5.29. Purify it via its dichromate complex (m 149°, after five recrystallisations from water). [Cumper et al. J Chem Soc 1176 1962, Beilstein 20 III/IV 3497, 20/7 V 402.]

8-Methylquinoline [611-32-5] M 143.2, b 122.5°/16mm, 247.8°/760mm, d_4^{20} 1.703, n_D^{20} 1.61631, pK²⁵ 4.60. Purify it as for 2-methylquinoline. The *phosphate* and *picrate* have m 158° and m 201°, respectively. [*Beilstein* 20 III/IV 3500, 20/7 V 405.]

(±)-3-Methylsulfolane (3-methyl-tetrahydrothiophene-1,1-dioxide) [872-93-5] M 134.2, m 0.5°, b 101°/2mm, 125-130°/12mm, 278-282°/763.5mm, d_4^{20} 1.1885, n_D^{20} 1.4770. Distil the sulfolane under vacuum and recrystallise it from Et₂O at -60° to -70°. An IR film has strong bands at 570 and 500 cm⁻¹. [Eigenberger J Prakt Chem [2] 131 289 1931, Freaheller & Katon Spectrochim Acta 20 1099 1964, Whitehead et al. J Am Chem Soc 73 3632 1951, Beilstein 17 III/IV 648.]

[96-47-9] M 86.1, b 80.0°, d_4^{20} 0.856, n_D^{20} 1.4053. (±)-2-Methyltetrahydrofuran Likely impurities are 2-methylfuran, methyldihydrofurans and hydroquinone (stabiliser, which is removed by distillation under reduced pressures). It is washed with 10% aqueous NaOH, dried, vacuum distilled from CaH₂, passed through freshly activated alumina under nitrogen, and refluxed over sodium metal under vacuum. Store it over sodium. [Ling & Kevan J Phys Chem 80 592 1976.] Distil it from sodium under vacuum, and store it with sodium-potassium alloy (this treatment removes water and prevents the formation of peroxides). Alternatively, it can be freed from peroxides by treatment with ferrous sulfate and sodium bisulfate, then solid KOH, followed by drying with, and distilling from, sodium, or type 4A molecular sieves under argon. It may be difficult to remove *benzene if it is present as an impurity (can be readily detected by its ultraviolet absorption in the 249-268nm region). [Ichikawa & Yoshida J Phys Chem 88 3199 1984.] It has also been purifed by percolating through Al_2O_3 and fractionated collecting fraction **b** 79.5-80°. After degassing, the material is distilled onto degassed molecular sieves, then distilled onto anthracene and a sodium mirror. The solvent is then distilled from the green solution onto potassium mirror or sodium-potassium alloy, from which it is distilled again. [Mohammad & Kosower J Am Chem Soc 93 2713 1971.] It should be stored in the presence of 0.1% of

412

hydroquinone or 2,6-di-*tert*-butyl –*p*-cresol as stabiliser. The R(+)-enantiomer has **b** 78-80°/atm and $[\alpha]_D^{20}$ +27.5° (neat), and the S(-)-enantiomer has **b** 86°/atm and $[\alpha]_D^{20}$ -27.0° (neat) [Iffland & Davis J Org Chem **42** 4150 1977, Gagnaire & Butt Bull Soc Chim Fr 312 1961, Beilstein **17** III/IV 60, **17/1** V 78.] **HARMFUL VAPOURS.**

3-Methylthiophene [616-44-4] **M 98.2, b 60°/116mm, 111-113°/atm, 115.5°/atm, d_4^{20} 1.024, n_D^{20} 1.531.** Dry it with Na₂SO₄, then distil it from sodium. [*Beilstein* 17 III/IV 277, 17/1 V 331.]

6(4)-Methyl-2-thiouracil [56-04-2] **M 142.2, m 330°(dec), 299-303°(dec), 323-324°(dec), pK**²⁵ **8.1.** Crystallise the thiouracil from a large volume of H₂O. Purify it further by dissolving in base, adding charcoal, filtering and acidifying with AcOH. Suspend the wet solid (*ca* 100g) in boiling H₂O (1L), stir and add AcOH (20mL), stir and refrigerate. Collect the product, wash it with cold H₂O (4 x 200mL), drain it for several hours then place it in an oven at 70° to constant weight. [IR: Short & Thompson *J Chem Soc* 168 1952, Foster & Snyder *Org Synth* Coll Vol **IV** 638 1063, *Beilstein* **24** III/IV 1289.]

4-Methyl-1,2,4-triazoline-3,5-dione (MTAD) [13274-43-6] M **113.1, m 103-104°, m 107-109°.** MTAD is obtained as pink needles by sublimation at 40-50°/0.1mm (see 4-phenyl-1,2,4-triazoline-3,5-dione, PTAD below). [Cookson et al. Org Synth **51** 121 1971, Cheng et al. J Org Chem **49** 2910 1984, Beilstein **26** III/IV 538.]

2-Methyltricycloquinazoline [2642-52-6] **M 334.4, m >300°.** Purify it by crystallization from ${}^{*}C_{6}H_{6}$, toluene or xylene followed by vacuum sublimation. [*cf: Beilstein* **26** III/IV 1932.] **CARCINOGEN.**

5-Methyltryptamine hydrochloride (3-[2-aminoethyl]-5-methylindole hydrochloride) [1010-95-3] M 210.7, m 289-291°(dec), 290-292°, $pK_{Est(1)} \sim -3$ (protonation of ring NH), $pK_{Est(2)} \sim$ 9.0 (CH₂NH₂), $pK_{Est(3)} \sim 10.9$ (acidic indole NH). Recrystallise the hydrochloride from H₂O. The free base has m 96-98° (from *C₆H₆/cyclohexane) or m 99-100° (from pet ether), and the picrate has m 243°(dec) (from EtOH). [Young J Chem Soc 3493 1958, Gaddum et al. Quart J Exp Physiol 40 49 1955, Röhm Hoppe Seyler's Z Physiol Chem 297 229 1954, Beilstein 22 III/IV 4364, 22/10 V 167.]

6-Methyluracil [626-48-2] **M 126.1, m 270-280°(dec)**, $\lambda_{max} 260_{nm} \log \varepsilon 3.97$, pK₁ ~1.1, pK₂ **9.8.** Crystallise 6-methyluracil from EtOH or acetic acid. [*Beilstein* 24 III/IV 1281.]

1-Methyluric acid [708-79-2] M 182.1, m >350°, pK₁ 5.75 (basic), pK₂ 10.6 (acidic). Recrystallise it from H₂O. Its solubility at 17.5° is 1g in 353mL of H₂O. [Bergmann & Dikstein J Am Chem Soc 77 691 1955.] It has UV: λ_{max} at 231 and 283nm (pH 3), and 217.5 and 292.5nm (pH >12) [Johnson Biochem J 5 133 1952]. [Beilstein 26 II 299, 26 III/IV 2621.]

3-Methyluric acid [39717-48-1] **M 182.1, m >350°, pK₁ 5.75 (6.2), pK₂ >12.** Crystallise it from water. Its solubility at 17.5° is 1g in 19.7L of H₂O. It has UV: λ_{max} at 232 and 287 nm (pH 3), and 214 and 292.5nm (pH >12). [Beilstein 26 II 299, 26 III/IV 2621.]

7-Methyluric acid [612-37-3; 30409-21-3] **M 182.1, m >380°, pK₁ 5.6, pK₂ 10.3.** Crystallise it from water. It has UV: λ_{max} at 234 and 286nm (pH 3), 237 and 293nm (8.5), and 222 and 296.5nm (pH >12) [Beilstein **26** H 525, **26** II 299, **26** III/IV 2622.]

9-Methyluric acid [30345-24-5] **M 182.1, m 385-400°(dec), >400°.** Crystallise it from water. [Beilstein **26** II 299, **26** III/IV 2622.]

1-Methylxanthine (1-methyl-purin-2,6(3-*H*,7-*H*)-dione) [6136-37-4] M 166.1, m >360° pK₁²⁰ **1.3,** pK₂²⁰ **7.9,** pK₃²⁰ **11.8.** Crystallise it from water. It has UV: λ_{max} at 266nm (pH 2.08), 242.5 and 276nm (pH 9). [Beilstein 26 II 263, 26 III/IV 2329.]

3-Methylxanthine [1076-22-8] **M 166.1, m >360°** pK_1^{20} **8.45,** pK_2^{20} **11.92.** Crystallise it from water. [*Beilstein* **26** II 263, **26** III/IV 2329.]

414

7-Methylxanthine [552-62-5] **M 166.1, m >380°(dec)** pK_1^{20} **8.42,** pK_2^{20} **>13.** Crystallise it from water. [*Beilstein* **26** II 263, **26** III/IV 2330.]

8-Methylxanthine [17338-96-4] M 166.1, m 292-293°(dec). Crystallise it from water. [Beilstein 26 III/IV 2330.]

9-Methylxanthine [1198-33-0] **M 166.1, m 384**°(dec), pK_1^{20} **2.0,** pK_2^{20} **6.12,** pK_3^{20} **10.5** (>13). Crystallise it from water. [Beilstein 26 II 263, 26 III/IV 2330.]

Metrazol (Cardiazol, Leptazol, 3a,4,5,6,7,8-hexahydro-1,2,3,3a-tetraaza-azulene, 1,5pentamethylene-1,2,3,4-tetrazole) [54-95-5] M 138.2, m 61°, b 194°/12mm, pK_{Est} ~<0. Crystallise metrazol from diethyl ether and dry it under vacuum over P_2O_5 , or distil it. [Schmidt Chem Ber 57 704 1924, Beilstein 26 II 213.]

Morin (hydrate) (2',3,4',5,7-pentahydroxyflavone) [480-16-0] M 302.2, m 289-292°, CI 75660, pK₁ 5.3, pK₂ 8.74. Stir morin at room temperature with ten times its weight of absolute EtOH, then leave overnight to settle. Filter it off, and evaporate under a heat lamp to one-tenth its volume. An equal volume of water is added, and the precipitated morin is filtered off, dissolved in the minimum amount of EtOH and again precipitated with an equal volume of water. The precipitate is filtered off, washed with water and dried at 110° for 1hour (yield *ca* 2.5%.). [Perkins & Kalkwarf *Anal Chem* 28 1989 1956.] It complexes with W and Zr. [*Beilstein* 18 H 239, 18 III/IV 3468, 18/5 V 492.]

(-)-Morphine (H₂O) [57-27-2] M 302.2, m 230°(dec), 254°(dec, rapid heating), 260°(Kofler block), $[\alpha]_{D}^{23}$ -130.9° (MeOH), pK₁ 8.31, pK₂ 9.51. Crystallise the narcotic from MeOH or anisole. It dehydrates at 130°. Its solubility in H₂O is 0.2g/L at 20° and 0.9g/L at 100°, and in EtOH it is 5g/L at 20° and 10g/L on boiling. The *styphnate* has m 189° (from aqueous EtOH). [*Beilstein* 27 II 118, 27 III/IV 2223.]

Morpholine [110-91-8] M 87.1, f -4.9°, b 128.9°, d_4^{20} 1.0007, n_D^{20} 1.4540, n_D^{25} 1.4533, pK²⁵ 8.33. Dry morpholine with KOH, fractionally distil it, then reflux it with Na, and again fractionally distil it. Dermer & Dermer [*J Am Chem Soc* 59 1148 1937] precipitated it as the *oxalate* by adding slowly to slightly more than 1 molar equivalent of oxalic acid in EtOH. The precipitate is filtered off and recrystallised twice from 60% EtOH [1:1 salt has m 190-195°(dec)]. Addition of the oxalate to concentrated aqueous NaOH regenerated the base, which is separated and dried with solid KOH, then sodium, before being fractionally distilled. The *hydrochloride* has m 178-179° (from MeOH/Et₂O), and the *picrate* has m 151.6° (from aqueous EtOH). [*Beilstein* 27 II 3, 27 III/IV 15.]

§ A polystyrene supported morpholine is commercially available.

2-(*N*-Morpholino)ethanesulfonic acid (MES) [4432-31-9] M 213.3, m >300°(dec), pK²⁰ 6.15. Crystallise MES from hot EtOH containing a little water. The *picrate* crystallises from EtOH and has m 178.8-182°. [Malkiel & Mason J Org Chem 8 199 1943, Beilstein 27 III/IV 370.]

Murexide (ammonium purpurate) [3051-09-0] M 284.2, m >300°, λ_{max} 520nm (ε 12,000), pK₂ 9.2, pK₃ 10.9. The sample may be grossly contaminated with uramil, alloxanthine, etc., and may be difficult to purify. It is better to synthesise it from pure alloxanthine [Davidson *J Am Chem Soc* 58 1821 1936]. Recrystallise it from water. [Kuhn & Lyman *Chem Ber* 69 1547 1936, *Beilstein* 25 I 709, 25 III/IV 4236.]

α-Naphthoflavone (7,8-benzoflavone) [604-59-1] M 272.3, m 153-155°, 155°, pK²⁵ 8-9 (phenolic OH). Recrystallise the flavone from EtOH or aqueous EtOH. [IR: Cramer & Windel Chem Ber 89 354 1956, UV Pillon & Massicot Bull Soc Chim Fr 26 1954, Smith J Chem Soc 542 1946, Mahal & Venkataraman J Chem Soc 1767 1934.] It is a competitive inhibitor of human estrogen synthase. [Kellis & Vickery Science 225 1032 1984, Beilstein 17 III/IV 5550.] Naphthol AS-acetate (3-acetoxynaphthoic acid anilide) [1163-67-3] M 305.3, m 152°, 160°. Recrystallise it from hot MeOH and dry *in vacuo* over P₂O₅. It has m 252° after sublimation at 210-215°. It is slightly soluble in AcOH, EtOH, CHCl₃ or *C₆H₆. It is a fluorogenic substrate for albumin esterase activity. [Chen & Scott Anal Lett 17 857 1984.] At λ_{ex} 320nm it has fluorescence at λ_{em} 500nm. [Brass & Sommer Chem Ber 61 1000 1928, Beilstein 12 II 260, 12 III 960, 12 IV 923.]

1,5-Naphthyridine [254-79-5] **M 130.1, m 75°, b 112°/15mm, pK²⁰ 2.84.** Purify 1,5-naphthyridine by repeated sublimation. The *picrate* crystallises from EtOH with **m** 200°(dec). [UV: Armarego *Physical Methods in Heterocyclic Chemistry* (Ed Katritzky, Academic Press) **Vol III** 133 *1971, Beilstein* **23** II 178, **23** III/IV 1235.]

1,8-Naphthyridine [254-60-4] **M 130.1, m 98-99°, pK²⁰3.36.** Purify 1,8-naphthyridine through an Al_2O_3 column and elute with toluene and pet ether, evaporate the eluate, crystallise the residue from pet ether (b 60-80°), and sublime it at 80°/13mm. The *picrate* [15936-16-0] has **m** 207-208° (from EtOH), and the *methiodide* has **m** 180-181° (from EtOH). [Hawes & Wibberley J Chem Soc (C) 1564 1967, UV: Armarego Physical Methods in Heterocyclic Chemistry (Ed Katritzky, Academic Press) **Vol III** 134 1971, Beilstein **23** II 178, **23** III/IV 1237.]

(±)-Naringenin (4',5,7-trihydroxyflavanone) [480-41-1] M 272.3, m 251° (phenolic pKs~ 8-11). Crystallise it from EtOH or aqueous EtOH. It has UV: λ_{max} at 290nm (EtOH). The S(-)-enantiomer (natural form) has m 255-256° (from EtOH) and $[\alpha]_D^{20}$ -28.0° (c 2, EtOH), $[\alpha]_D^{20}$ -35.2° (c 1, pyridine). [Beilstein 18 H 503, 18 II 164, 18 III/IV 2630.] Genistein (4',5,7-trihydroxyisoflavone) [446-72-0] M 270.2 crystallises from 60% aqueous EtOH or water with m 297-298° and $[\alpha]_D^{20}$ -28° (c 0.6, 20mM NaOH). [Beilstein 18/4 V 594.]

For Naringin (naringenin 7-rhamnoglucoside) See "Carbohydrates" in Chapter 6.

Neutral Red (2-amino-8-dimethylamino-3-methylphenazine HCl, Basic Red 5, CI 50040) [553-24-2] M 288.8, m 290°(dec), pK^{25} 6.5. Crystallise the dye from *benzene/MeOH (1:1). In aqueous solution it is red at pH 6.8 and yellow at pH 8.0. [*Beilstein* 25 III/IV 3054.]

Nicotinaldehyde thiosemicarbazone [3608-75-1] M 180.2, m 222-223°. Crystallise the derivative from EtOH, BuOH or water. Its *hydrochloride* crystallises from aqueous EtOH with m 237-239° (dec). [Beilstein 21 III/IV 3542 21/7 V 342.]

Nicotinamide (Niacin, Vitamin B3, vitamin PP) [98-92-0] M 122.1, m 128-131°, b ~150-160°/high vac, pK_1^{20} 0.5, pK_2^{20} 3.33. Crystallise niacin from *benzene. It has solubility in g/ml: H₂O (1), EtOH (0.7) and glycerol (0.1). [Methods in Enzymology 66 23 1980, UV: Armarego Physical Methods in Heterocyclic Chemistry (Ed Katritzky, Academic Press) Vol III 83 1971, Beilstein 22 III/IV 389, 22/2 V 80.]

Nicotinic acid (Niacin *is also used for the acid*, pyridine-3-carboxylic acid) [59-67-6] M 123.1, m 232-234°, pK_1^{25} 2.00, pK_2^{25} 4.82. Crystallise the acid from *benzene, EtOH or H₂O. It sublimes without decomposition. [McElvain Org Synth Coll Vol I 385 1941, Beilstein 22 III/IV 439, 22/2 V 57.]

Nicotinic acid hydrazide [553-53-7] M 137.1, m 158-159°, pK_1^{25} 2.2, pK_2^{25} 3.63, pK_3^{25} 11.49(NH). Crystallise it from aqueous EtOH or *benzene. [*Beilstein* 22 III/IV 439, 22/2 V 121.]

Nile Blue A (a benzophenoxazinium sulfate dye) [3625-57-8] M 415.5, m >300°(dec), CI 51180, pK²⁵ 2.4. Crystallise the dye from aqueous AcOH. It has UV: λ_{max} at 630nm (96% aqueous EtOH) and 635nm (H₂O). The *betaine* has UV: λ_{max} at 513nm (EtOH). [Crossley et al. *J Am Chem Soc* 74 57, 578 1952, Merill & Spencer *J Am Chem Soc* 70 3683 1948, Beilstein 27 II 457, 27 III/IV 5166.]

5-Nitrobarbituric acid (dilituric acid) [480-68-2] M 173.1, m 176°, 176-183°(dec), pK^{20} 10.25. Crystallise diliuric acid from water as the *trihydrate* (m 180-181° (dec). Drying over 70% H₂SO₄

416 Purification of Organic Chemicals – Heterocyclic Compounds

converts the trihydrate to the *dihydrate* [Loeffler & Moore J Am Chem Soc **70** 3650 1948]. [Beilstein **24** H 474, **24** II 273, **24** III/IV 1882.]

4'-Nitrobenzo-15-crown-5 [60835-69-0] **M 313.3, m 84-85°, 93-95°.** Recrystallise the crown ether from EtOH, MeOH or $C_{6}H_{6}$ /hexane as for the 18-crown-6 compound below. It complexes with Na⁺, K⁺, NH₄⁺, Ca²⁺, Mg²⁺ and Cd²⁺. The ¹HNMR spectrum (CDCl₃) has δ (ppm): 3.6-4.4 (m 16CH₂), 6.8 (d 1H arom), 7.65 (d 1H arom), 7.80 (dd 1H arom J_{ab} 9Hz and J_{bc} 3Hz) [Schmid et al. J Am Chem Soc **98** 5198 1976, Kikukawa et al. Bull Chem Soc Jpn **50** 2207 1977, Toke et al. Justus Liebigs Ann Chem **349** 349, 761 1988, Lindner et al. Z Anal Chem **322** 157 1985].

4'-Nitrobenzo-18-crown-6 [53408-96-1] **M 357.4, m 83-84°, 83-84°.** If impure and discoloured, then chromatograph it through Al_2O_3 and elute with $*C_6H_6$ /hexane (1:1) containing 1% MeOH. The fractions are followed by TLC on Al_2O_3 (with Dragendorff's reagent for detection: R_F 0.6 in the above solvent system). Recrystallise the residues from the required fractions from $*C_6H_6$ /hexane to give yellowish leaflets. It complexes with Na or K ions with $logK_{Na}$ 3.95 and $logK_K$ 4.71. [Petranek & Ryba *Collect Chem Czech Chem Commun* **39** 2033 1974.]

4-(4-Nitrobenzyl)pyridine (PNBP) [1083-48-3] M 214.2, m 70-71°, 74°, pK_{Est} ~5.0. Crystallise PNBP from aqueous EtOH or cyclohexane. The *hydrochloride* has m 194-196°(dec, from EtOH), and the *picrate* has m 168°(dec, from EtOH/EtOAc). [Beilstein 20 II 272, 20/7 V 564.]

5-Nitroindole [6146-52-7] **M 162.1, m 141-142°, pK²⁵ -7.4 (aqueous H₂SO₄).** Decolourise (charcoal) 5-nitroindole and recrystallise it twice from aqueous EtOH or recrystallise it from octane. It has UV: λ_{max} 265 and 324nm (EtOH). [Beilstein 20 III/IV 3194, 20/7 V 41.]

Nitron [1,4-diphenyl-3-phenylamino-(1*H*)-1,2,4-triazolium (hydroxide) inner salt] [2218-94-2] M 312.4, m 189°(dec). Crystallise it from EtOH, chloroform or EtOH/*C₆H₆. [Beilstein 25 III/IV 1075.]

5-Nitro-1,10-phenanthroline [4199-88-6] **M 225.2, m 197-198°, pK²⁵ 3.33.** Crystallise the phenanthroline from *benzene/pet ether, until anhydrous. It also crystallises from H₂O with **m** 202°, and EtOAc with **m** 203°. Its pK²⁵ varies from 3.20 to 2.69 with varying MeOH/H₂O ratios from 0 to 0.95 moles/L, and from 3.20 to 1.95 in varying EtOH/H₂O ratios from 0 to 0.94 moles/L [Ram et al. *J Prakt Chem* **319** 719 *1977*]. It forms complexes with Cu²⁺, Zn²⁺, In²⁺, Fe²⁺, Co²⁺, Ni²⁺. [*Beilstein* **23** III/IV 1682, **23/8** V 425.]

3-Nitro-2-pyridinesulfenyl chloride [68206-45-1] **M 190.2, m 217-222°(dec).** The chloride crystallises as yellow needles from CH₂Cl₂. When pure, it is stable for several weeks at room temperature, and no decomposition was observed after 6 months at <0°. It is moisture sensitive. UV (MeCN) has λ_{max} at 231nm (ϵ 12,988), 264nm (ϵ 5,784) and 372nm (ϵ 3,117). [NMR and UV: Matsuda & Aiba *Chem Lett* 951 *1978*, Wagner et al. *Chem Ber* **75** 935 *1942*.]

5-Nitroquinoline [607-34-1] **M 174.2, m 70°, pK²⁰ 2.69.** Crystallise 5-nitroquinoline from pentane, then from *benzene. The *hydrochloride* has **m** 224° and the *picrate* has **m** 206°, 214°(from MeOH). [*Beilstein* **20** H 371, **20** II 235, **20** III/IV 3397.]

8-Nitroquinoline [706-35-2] M 174.2, m 88-89°, 91-92°, $pK^{20}2.55$. Crystallise 8-nitroquinoline from hot water, MeOH, EtOH or EtOH/diethyl ether (3:1). It sublimes at 70°/2mm. [Beilstein 20 H 373, 20 III/IV 3399.]

4-Nitroquinoline 1-oxide [56-57-5] **M 190.2, m 154-155°, 157°.** The *N*-oxide recrystallises from aqueous acetone as yellow needles or platelets. [Ochiai J Org Chem **18** 534 1953, Seki et al. J Phys Chem **91** 126 1987, Beilstein **20** III/IV 3396.]

5-Nitrouracil (2,4-dihydroxy-5-nitropyrimidine) [611-08-5] M 157.1, m 280-285°, >300°, pK_1^{20} 0.03, pK_2^{20} 5.55, pK_3^{20} 11.3. The uracil recrystallises in prisms from boiling H₂O as the monohydrate and loses H₂O on drying *in vacuo*. [UV: Brown J Chem Soc 3647 1959, Brown J Appl Chem 2 239 1952, Johnson J Am Chem Soc 63 263 1941, Beilstein 24 I 313, 24 II 171, 24 III/IV 1236.]

4-Nonadecylpyridine (hydrogen ionophore II [ETH 1907] - Proton ionophore) [70268-36-9] **M 345.6, b 180°/0.07mm, pK**_{Est}~ 6.0. Dissolve the waxy ionophore (*ca* 60g) in CHCl₃ (200mL), wash it with H₂O (3 x 200mL), dry it and evaporate it to dryness, then distil it in a vacuum. A waxy solid is formed on cooling the distillate. UV: λ_{max} 257nm (ε 1.86 x 10³ M⁻¹cm⁻¹), 308nm (ε 1.7 x 10² M⁻¹cm⁻¹). [IR, NMR UV: Valenty et al. *Inorg Chem* **18** 2160 *1979*.]

Norcodeine [467-15-2] M 285.3, m 185°, 186°, pK²⁰ 9.10. It crystallises from acetone or ethyl acetate. [Speyer & Walther *Chem Ber* 63 822 1930.] The *hydrochloride* has m 309°(dec) when crystallised from H₂O. [*Beilstein* 18 III/IV 8091.]

Octadecyl isonicotinate (hydrogen ionophore IV ETH 1778) [103225-02-1] M 375.6, m 57.5°, pK_{Est} ~ 3.5. Dissolve it in Et₂O and wash it 3 times with H₂O. Dry the extract (MgSO₄), evaporate, and recrystallise the residue from EtOAc/hexane (4:1). [Oesch et al. Anal Chem 58 2285 1986.]

Orotic acid (H₂O) [50887-69-9] M 174.1, m 334°(dec), 235-346°(dec), pK_1^{25} 1.8, $pK_2^{25}9.55$. It crystallises from water. The *anhydrous acid* [65-86-1] M 156.1 has m 245-246°(dec). [Nye & Mitchell J Am Chem Soc 69 1382 1947, Beilstein 25 III/IV 1759.]

Orotic acid Li salt H₂O (1-carboxy-4,6-dihydroxypyrimidine Li salt H₂O) [5266-20-6] M 180.0, m >300°, pK₁ 2.8 (CO₂H), pK₂ 9.4 (OH), pK₃ >13 (OH) (for free acid). The salt is soluble in H₂O at 17° and 100°. Best to acidify an aqueous solution of the salt, isolate the *free acid* (see above) which is recrystallised from H₂O (as *monohydrate*) m 345-347° (345-346°), then dissolve it in EtOH, add an equivalent amount of LiOH in EtOH and evaporate. Its solubility in H₂O is 1.28% (17°) and 2.34% (100°). [Bachstez *Chem Ber* 63 1000 *1930*, Johnson & Shroeder *J Am Chem Soc* 54 2941 *1932*, UV: Shugar & Fox *Biochim Biophys Acta* 9 199 *1952*, *Beilstein* 25 III/IV 1759.]

Oxalylindigo [2533-00-8] **M 316.3.** It crystallises twice from nitrobenzene as small yellow crystals and is dried by heating *in vacuo* for several hours. [Schanze et al. J Am Chem Soc **108** 2646 1986.]

2-Oxazolidinone [497-25-6] **M 87.1, m 89-90°, 91°, b 152°/0.4mm, 200°/12mm.** Crystallise it from *benzene, dichloroethane, CHCl₃ or EtOH. It is a cyclic urethane, and as such it is not very stable. [Katritzky et al. J Chem Soc Perkin II 145 1990, Beilstein **27** H 135, **27** II 259, **27** III/IV 2516.]

Oxetane (1.3-trimethylene oxide) [503-30-0] M 58.1, b 45-46^o/736mm, 47-49^o/atm, 48^o/760mm, d_4^{20} 0.892, n_D^{20} 1.395. Distil oxetane twice from sodium metal and then fractionate it through a small column at atmospheric pressure, b 47.0-47.2^o. It can also be purified by preparative gas chromatography using a 2m silica gel column. Alternatively, add KOH pellets (50g for 100g of oxetane) and distil it through an efficient column or a column packed with 1/4in Berl Saddles with the main portion boiling at 45-50^o being collected and redistilled over fused KOH. [Noller *Org Synth* Coll Vol III 835 1955, Dittmer et al. J Am Chem Soc 79 4431 1957, Beilstein 17 H 6, 17 I 3, 17 II 12, 17 III/IV 13, 17/1 V 11.]

Oxetan-2-one (β -propiolactone, propan-3-olide) [57-57-8] M 72.1, m -31.2°, -35°, b 51°/10mm, 83°/45mm, d_4^{20} 1.1460, n_D^{25} 1.4117. Fractionally distil the lactone from sodium under reduced pressure. It gives an acidic solution in H₂O. It irritates the skin and is a possible carcinogen. [*Beilstein* 17 I 130, 17 III/IV 4157.]

Oxine Blue [3-(4-hydroxyphenyl)-3-(8-hydroxy-6-quinilinyl)-1(3H)-isobenzofuranone] [3733-85-5] M 369.4, m 134-135°. Recrystallise the dye from EtOH and dry it in a desiccator over H₂SO₄. **Oxolinic acid (5-ethyl-5,8-dihydro-8-oxo-1,3-dioxolo**[4,5-g]quinoline-3-carboxylic acid) [14698-29-4] M 261.2, m 313-314°(dec), 314-316°(dec), pK_{Est} ~ 2.3. Purify the acid by recrystallisation from aqueous Me₂CO, 95% EtOH or dimethylformamide. It has UV λ_{max} 220, (255.5sh), 259.5, 268, (298sh, 311sh), 321 and 326nm [ϵ 14.8, (36.8sh), 38.4, 38.4, (6.4sh, 9.2sh), 10.8 and 11.2 x 10³]. [Kaminsky & Mettzer J Med Chem 11 160 1968, Beilstein 17 H 6, 17 I 3, 17 II 202, 17 III/IV 13, 17/1 V 11.]

Papaverine hydrochloride (6,7-dimethoxy-1-veratrylisoquinoline hydrochloride) [61-25-6] M 375.9, m 215-220°, 222.5-223.5°(dec), 231°, pK²⁵ 6.41. Recrystallise it from H₂O. It sublimes at 140°/0.1mm. Its solubility in H₂O is 5%. [Saunders & Srivastava J Pharm Pharmacol 3 78 1951, Biggs Trans Faraday Soc 50 800 1954.] The free base has m 148-150°, The picrate has m 186-189°(dec, 186-186.5°(dec) [Bobbitt J Org Chem 22 1729 1957]. [Beilstein 21 II 202, 21 III/IV 2788, 21/6 V 182.]

Paraldehyde (acetaldehyde trimer, 2r,4c,6c-trimethyl-1,3,5-trioxane, *all-cis*) [123-63-7] M 132.2, m 12.5°, b 124°/751mm, d_4^{20} 0.995, n_D^{20} 1.407. Wash paraldehyde with water and fractionally distil it. Alternatively, it is purified by drying with anhydrous Na₂SO₄, then cooled to 5°, and the frozen material is separated by decantation. The solid is distilled (b 121-124°/atm), the distillate is collected, stored over anhydrous Na₂SO₄ for several days and re-distilled at atmospheric pressure before use [Le Fevre et al. *J Chem Soc* 290 *1950*]. The 2*r*,4*c*,6*t*-trimethyl-1,3,5-trioxane has m 14.5°, b 125°/760mm. [Beilstein 19 II 394, 19 III/IV 4715. 19/9 V 112.]

Patulin [4-hydroxy-4*H*-furo(3.2-*c*)pyran-2(6*H*)-one, Clavatin] [149-29-1] M 154.1, m 110°, 111-112°. Crystallise patulin from $C_{6}H_{6}$, Et₂O, EtOH or chloroform. It sublimes at 90°/high vacuum [Bergel et al. J Chem Soc 415 1944]. [Beilstein 18 III/IV 1184, 18/3 V 5.] (Highly TOXIC).

Pentachloropyridine [2176-62-7] M 251.3, m 122-124°, 123°, 124°, 124°, 125°, 125-126°, b 279-280°/atm, pK^{20} -6.02 (aqueous H_2SO_4). Purify it by recrystallisation from EtOH or aqueous EtOH. It sublimes at 150°/3mm. [den Hertog et al. *Recl Trav Chim Pays-Bas* 69 673 1950, Schikh et al. *Chem Ber* 69 2604 1936, *Beilstein* 20 I 81, 20 III/IV 2503, 20/5 V 422.]

Pentafluoropyridine [700-16-3] M 169.1, m -41.5°, b 83.5°, 84°, 83-85°, d_4^{20} 1.609, n_D^{20} 1.3818, pK_{Est} ~<0. Distil it through a concentric tube column; it has λ_{max} in cyclohexane at 256.8nm. [Chambers et al. J Chem Soc 3573 1964, ¹⁹F NMR: Bell et al. J Fluorine Chem 1 51 1971.] The hexafluoroantimonate has m 98-102°(dec) after crystallisation from liquid SO₂. [Beilstein 20/5 V 401.]

Pentaquine monophosphate (1,4-pentanediamine, n-[6-methoxy-8-quinolinyl)-N'-[1-methylethyl) (1:1) phosphate] [5428-64-8] M 399.4, m 189-190°, pK⁷⁰ 8.22. Crystallise it from H₂O or 95% EtOH. The *free base* has b 165-170°/0.05mm, n_D^{25} 1.5785. The *picrate* crystallises from Me₂CO/EtOH with m 164.5-165.5°. [Drake et al. J Am Chem Soc 68 1529 1946, Beilstein 22 III/IV 5814.]

(±)-Pentobarbital (5-ethyl-5-1'-methylbutyl barbituric acid, Nembutal is the Na salt) [76-74-4] M 226.4, m ~127°(dec), $pK_{Est(1)}~ 8.0$, $pK_{Est(2)}~12.7$. A solution of the sodium salt in 10% HCl is prepared, and the acid is extracted with ether. Evaporation of the extract gives a solid which is then purified by repeated crystallisation from CHCl₃. It sublimes at 95-105°/10-12mm. [Bucket & Sandorfy *J Phys Chem* 88 3274 1984.] The (+)- and (-)-enantiomers crystallise from 50% aqueous EtOH with m 120-121° and have $[\alpha]_{D}^{25}$ +4.73° to -4.93° (EtOH) [Kleiderer & Shonle *J Am Chem Soc* 56 1772 1934]. [Beilstein 24 I 419, 24 II 287, 24 III/IV 1951.]

Pericyazine [10-{3-(4-hydroxy-1-piperidinyl)-propyl}-10*H*-phenothiazine-2-carbonitrile, Propericiazine] [2622-26-6] M 365.4, m 116-117°. It recrystallises from a saturated solution in cyclohexane. It is antipsychotic and is a sensitive reagent for Pd, Va, Ru, Rh and Au. [Gowda et al. Anal Chem 55 1816 1983, Anal Chim Acta 154 347 1983, Beilstein 27 III/IV 4110.] Phenanthridine (benzo[c]quinoline, 3,4-benzoquinoline) [229-87-8] M 179.2, m 106.5°, 108-109°, b 350°/760mm, pK²⁰ 4.61 (4.48). Purify it *via* the HgCl₂ addition compound formed when phenanthridine (20g) in 1:1 HCl (100mL) is added to aqueous HgCl₂ (60g in 3L), and the mixture is heated to boiling. The HgCl₂ complex separates as yellow red crystals with m 195-198° [Arcus & Mesley *J Chem Soc* 1780 *1953*]. Conc HCl is then added until all of the solid has dissolved. The compound separates on cooling and is decomposed with aqueous NaOH (*ca* 5M). Phenanthridine is extracted into Et₂O, evaporated, and the residue is crystallised from pet ether (b 80-100°) or EtOAc. [Cumper et al. *J Chem Soc* 45218 *1962*.] It is also purified by chromatography on activated alumina from *benzene solution, with diethyl ether as eluent. Evaporation of ether gives crystalline material which is freed from residual solvent under vacuum, then further purified by fractional crystallisation, under N₂, from its melt. It was purified by zone melting and sublimes in a vacuum. The *picrate* has m 218.5-219.5° (from *iso*-PrOH) (also reported are m 244-245° and 247-248°, from EtOH or H₂O). [Slough & Ubbelhode *J Chem Soc* 911 *1957*.] [*Beilstein* 20 H 466, 20 III/IV 4016, 20/8 V 223.]

1,10-Phenanthroline (*o*-phenanthroline) [66-71-7 (anhydr); 5144-89-8 (H₂O)] **M** 198.2, **m** 98-101°, 108-110° (hydrate), 118° (anhydrous), **b** >300°, **pK**₁²⁵ -0.7 (aqueous HClO₄), **pK**₂²⁵ **4.86** (4.96). Crystallise its *picrate* (**m** 191°) from EtOH; then the free base is liberated with aqueous alkali, dried at 78°/8mm over P₂O₅ and crystallised from pet ether (b 80-100°). [Cumper et al. *J Chem Soc* 1188 1962.] It can be purified by zone melting. It has also been crystallised from hexane, *benzene/pet ether (b 40-60°) or sodium-dried *benzene, dried and stored over H₂SO₄. The *monohydrate* is obtained by crystallisation from aqueous EtOH or ethyl acetate. It has been crystallised from H₂O (300 parts) to give the *monohydrate* **m** 102-103° which sublimes at 10⁻³mm [Fielding & LeFevre *J Chem Soc* 1811 1951.] The anhydrous compound has **m** 118° (after drying at high vacuum at 80°) and is also obtained by recrystallisation from pet ether or *C₆H₆ (70 parts) and drying at 78°/8mm. [UV: Badger et al. *J Chem Soc* 3199 1951.] It has a pKa in H₂O of 4.857 (25°) or 5.02 (20°) and 4.27 in 50% aqueous EtOH (20°). [Albert et al. *J Chem Soc* 2240 1948]. [Beilstein **23** H 227, **23** II 235, **23/8** V 419.]

1,10-Phenanthroline hydrochloride (o-phenanthroline hydrochloride) [3829-86-5] M 243.7, m 212-219°. The hydrochloride crystallises from 95% EtOH, m 212-219° as the monohydrate; the half hydrate has m 217°. The 3HCl has m 143-145° (sinters at 128°). [Thevenet et al. Acta Cryst Sect B 33 2526 1977]. [Beilstein 23 II 235, 23/8 V 421.]

4,7-Phenanthroline-5,6-dione [84-12-8] **M 210.2, m 295°(dec).** The dione crystallises from MeOH. The *mono-oxime* forms yellow crystals from MeOH with **m** 250°(dec), the *di-oxime* forms yellow crystals from MeOH with **m** 300°(dec) and the *mono-semihydrazone* forms yellow crystals from MeOH with **m** 195°(dec). [Druey & Schmidt *Helv Chim Acta* **33** 1080 1950, *Beilstein* **24** III/IV 1741.]

Phenazine [92-82-0] **M 180.2, m 171°, pK** $_{1}^{20}$ -4.9 (aqueous H₂SO₄), pK $_{2}^{20}$ 1.21. Phenazine crystallises from EtOH, CHCl₃ or ethyl acetate, after pre-treatment with activated charcoal. It can be sublimed *in vacuo* and purified by zone refining. [*Beilstein* 23/8 V 389.]

Phenosafranine (3,7-diamino-5-phenylphenazinium chloride) [81-93-6] M 322.8, m >300°, λ_{max} 530nm (H₂O). Crystallise the chloride from dilute HCl. It has UV with λ_{max} at 530nm in H₂O. The *picrate* decomposes on heating and has a solubility of 0.0048% in H₂O at 18°. [Beilstein 23 H 395, Beilstein 25 H 394, 25 I 654, 25 II 338, 25 III/IV 3050.]

Phenothiazine [92-84-2] **M 199.3, m 184-185°.** Crystallise it from *benzene, toluene, hexane or Me₂CO (charcoal) after boiling for 10minutes under reflux. Filter the crystals off and dry them in an oven at 100°, then in a vacuum desiccator over paraffin chips. Also recrystallise it twice from water and dry it in an oven at 100° for 8-10hours. It sublimes at 130°/1mm and has UV with λ_{max} at 253nm in heptane. [*Beilstein* **27** I 225, **27** II 32, **27** III/IV 1214.]

Phenoxazine [135-67-1] M 199.2, m 156°, 156-158°, 158-159°, b 215°/4mm. Crystallise phenoxazine from EtOH and sublime it *in vacuo*. If too impure then extract it in a Soxhlet extractor using

Purification of Organic Chemicals – Heterocyclic Compounds

420

toluene. Evaporate the solvent and dissolve the residue (*ca* 100g) in C_{6H_6} (1L), **CARCINOGEN** (use an efficient fume cupboard) and chromatograph it through an Al₂O₃ column (50 x 450 mm) using C_{6H_6} . The eluent (*ca* 3L) is evaporated to *ca* 150mL and cooled when *ca* 103g of phenoxazine **m** 149-153° is obtained. Sublimation yields platelets **m** 158-159°. It forms a green *picrate* **m** 141.5-142°. [Gilman & Moore *J Am Chem Soc* **79** 3485 1957, Müller et al. *J Org Chem* **24** 37 1959, *Beilstein* **27** I 223, **27** III/IV 1209.]

2-Phenyl-1-azaindolizine [4105-21-9] **M 194.2, m 140°, pK**_{Est} ~1.9. Crystallise the indolizine from EtOH, *benzene/pet ether, hexane (**m** 135-136°) or cyclohexane (**m** 136-137°). The *hydrochloride* $2H_2O$ has (**m** 114-116°, from H₂O), and the *picrate* has **m** 228-229° (from AcOH) and 236-238° (from Me₂CO). [Adams & Dix J Am Chem Soc **80** 4618 1958, Beilstein **23** III/IV 1705.]

Phenylbutazone (4-butyl-1,2-diphenylpyrazolidin-3,5-dione) [50-33-9] M 308.4, m 105°, 106-108°. Crystallise the dione from EtOH. Its pK^{23} is 4.52 (in H₂O), 4.89 (in 50% aqueous EtOH) and 5.25 (80% 2-methoxyethanol). It complexes with Hg²⁺, Cd²⁺ and Zn²⁺. It has UV with λ_{max} at 239.5nm in MeOH+50% aqueous HClO₄ and 264nm in aqueous 0.1N NaOH. [*Beilstein* 24 III/IV 1123.]

2-Phenyl-1,3-diazahexahydroazulene *[2161-31-1]* **M 212.3.** Recrystallise the azulene three times from de-aerated cyclohexane in the dark.

2-Phenylindolizine [25379-20-8] **M 193.2, m 214°(dec), pK**_{Est} ~4.4. Crystallise 2-phenylindolizine from EtOH. The 0.25HCl crystallises from MeCN with **m** 109°, and the *picrate* has **m** 161° when crystallised from EtOAc. [*Beilstein* 20 II 304, 20 III/IV 4033, 20/8 V 244.]

1-Phenyl-5-mercaptotetrazole [86-93-1] **M 178.2, m 150° (dec), 155° (dec), 157-158°, pK²⁵ 3.65 (5% aqueous EtOH).** Purify the tetrazole by recrystallisation from EtOH or CHCl₃ (**m** 152°) [Tautomerism: Kauer & Sheppard *J Org Chem* **32** 3580 1967, UV: Leiber et al. *Can J Chem* **37** 563 1959]. The *ammonium salt* crystallises from EtOH and decomposes at 176°. The *sodium salt* crystallises from EtOH/*C₆H₆, melts at 96° and decomposes at 145° [Stollé *J Prakt Chem* [2] **133** 60 1932]. It is used for the determination of Bi and Pd. [Fresenius *Z Anal Chem* **261** 151 1972, *Beilstein* **26** III/IV 2065.]

4-Phenylpyridine-2-carbonitrile [18714-16-4] **M 180.1, m 97-101°, pK**_{Est} <0. Purify the nitrile by recrystallisation from pet ether (m 99-100°). [Case & Gasper J Am Chem Soc 78 5842 1956, Beilstein 22 III/IV 1261.]

Phenyl 2-pyridyl ketoxime [1826-28-4] M 198.2, m 151-152°, 154-156°, pK_1^{25} 3.84, pK_2^{25} 10.71 for *E*-isomer. The *E*-isomer crystallises from EtOH (charcoal). It isomerizes to the *Z*-isomer on melting or in boiling *o*-xylene, and crystallises from EtOH or cyclohexanol with m 166-168°. [*Beilstein* 21 H 330, 21 III/IV 4120, 21/8 V 568.]

6-Phenylquinoline [612-95-3] **M 205.3, m 110.5-111.5°, pK**_{Est} ~**5.2**. Crystallise 6-phenylquinoline from EtOH (charcoal). The *picrate* has **m** 105° (from Me₂CO). It has UV with λ_{max} at 253nm in aqueous EtOH and 263 and 325nm in aqueous HCl. [*Beilstein* **20** H 483, **20** III/IV 4151.]

2-Phenylquinoline-4-carboxylic acid (Cinchophen, Atophen) [132-60-5] M 249.3, m 215°, $pK_{Est(1)}\sim0.5$ (CO₂H), $pK_{Est(2)}\sim5.1$ (N). It crystallises from EtOH (*ca* 20mL/g), in several modifications with m 196° and 216°(subliming at 65°). [*Beilstein* 22 H 103, 22 II 518, 22 II 70, 22 III/IV 1358.]

1-Phenyl-5-sulfanilamidopyrazole [526-08-9] **M 314.3, m 177-178°, 178-179°.** Crystallise it from EtOH or aqueous EtOH. [Schmidt & Druey *Helv Chim Acta* **41** 309 1958, *Beilstein* **25** III/IV 2029.]

4-Phenyl-1,2,4-triazole-3,5-diol (**4-phenylurazole**) [15988-11-1] **M 175.2, m 207-209°.** Crystallise 4-phenylurazole from water or 95% EtOH. Dissolve 35g in 80mL of boiling 95% EtOH and on cooling 90-95% is recovered with **m** 209-210°. It has IR with v_{max} 1685 and 3120cm⁻¹. [Cookson et al. *Org Synth* **51** 121 1971, Beilstein **26** I 64, **26** III/IV 540.] **4-Phenyl-1,2,4-triazoline-3,5-dione** (**PTAD**) [4233-33-4] **M 175.2, m 165-170°(dec), 170-177°(dec).** PTAD forms carmine red needles by sublimation (ice cold finger) at 100°/0.1mm, and/or by recrystallisation from EtOH. IR: v_{max} 1760 and 1780 cm⁻¹. [Cookson et al. Org Synth **51** 121 1971, Moore et al. J Org Chem **39** 3700 1974, Beilstein **26** I 57, **26** III/IV 540.]

9-Phenyl-9-xanthenol (hydroxypixyl) [596-38-3] **M 274.3, m 158-161⁰, 158.5-159^o, 159^o.** Dissolve hydroxypixyl in AcOH and add H₂O whereby it separates as colourless prisms. It is slightly soluble in CHCl₃, soluble in $*C_6H_6$ but insoluble in pet ether. It sublimes on heating. UV in H₂SO₄: λ_{max} 450nm (ϵ 5620) and 370nm (ϵ 24,900) and the *HClO₄* salt in CHCl₃ has λ_{max} 450 (ϵ 404) and 375nm (ϵ 2420). [Sharp *J Chem Soc* 2558 1958, Bünzly & Decker *Chem Ber* **37** 2983 1904, Chattopadhyaya & Reece *J Chem Soc, Chem Commun* 639 1978, Gomberg & Cone Justus Liebigs Ann Chem **370** 142 1909, Beilstein **17** I 80, **17** II 161, **17** III/IV 1704, **17/4** V 675.]

"Phosphine" [dye CI 793, Chrysaniline mononitrate, 3-amino-9-(4-aminophenyl)acridinium mononitrate) [10181-37-0] M 348.4, m >250°(dec), pK^{20} 7.71 (50% aqueous EtOH). Crystallise the dye from *benzene/EtOH. The *free base* crystallises from *C₆H₆ in yelow crystals m 229-230°. [Albert & Goldacre J Chem Soc 709 1946, Beilstein 22 H 91, 22 I 651, 22 II 403, 22 III/IV 5513.]

Phthalazine [253-52-1] M 130.2, m 90-91°, b 190°/30mm, 175°/17mm, pK²⁰ 3.47. Phthalazine crystallises from diethyl ether or *benzene, and sublimes under a vacuum. The hydrochloride forms needles from EtOH with m 235-236°(dec) and the *picrate* has m 208-210°. [Armarego J Appl Chem 11 70 1961, Beilstein 23 H 174, 23 III/IV 1233.]

Phthalazine-1,4-dione (phthalhydrazide) [1445-69-8] M 162.2, m 330-333°, 336°, 346°, pK_1^{20} -3.29 pK_2^{20} -0.99, pK_3^{20} 5.67, pK_4^{20} 13.0. Recrystallise it twice from 0.1M KOH [Merenyi et al. *J Am Chem Soc* 108 7716 1986], EtOH or dimethylformamide and it sublimes >300°. [Beilstein 24 H 371, 24 II 194.]

Phthalazone (1-hydroxyphthalazine) [119-39-1] M 146.2, m 183-184°, 186-188°, b $337^{\circ}/760$ mm, pK₁²⁰ -2.2, pK₂²⁰ -1.4, pK₃²⁰ 11.99. Phthalazone crystallises from H₂O or EtOH and sublimes *in vacuo*. [Beilstein 24 H 142, 24 24 III/IV 400.]

2-Picoline-N-oxide (2-methylpyridine-1-oxide) [931-19-1] M 109.1, m 41-45°, b 89-90°/0.8-0.9mm, 90-100°/1mm, 110°/4mm, 135°/5mm, 123°/9mm, 123-124°/15mm, 259-261°/atm, n_D^{25} 1.5854 (supercooled), pK²⁵ 1.10. Purify the N-oxide by fractional distillation, and it can be recrystallised from *C₆H₆/hexane but is *hygroscopic*. [Bullitt & Maynard J Am Chem Soc 76 1370 1954, Ross et al. J Am Chem Soc 78 3625 1956, IR: Wiley & SlaymAker J Am Chem Soc 79 2233 1957.] The picrate has m 125-126.5° (from EtOH) [Boekelheide & Linn J Am Chem Soc 76 1286 1954]. The phthalate has m 115-116° (from EtOH) [den Hertog et al. Recl Trav Chim Pays-Bas 70 591 1951.]. [Beilstein 20 III/IV 2689, 20/5 V 479.]

3-Picoline-*N***-oxide** (3-methylpyridine-1-oxide) [1003-73-2] M 109.1, m 37-39°, 37-38° (evacuated capillary), 84-85°/0.3mm, 101-103°/0.7-0.8mm, 114-115°/1.5mm, 118°/2mm, pK^{25} 1.08. Purify the *N*-oxide by careful fractionation *in vacuo*. The distillate remains supercooled for several days before solidifying. It is a slightly *hygroscopic* solid which could melt in the hand. The *picrate* has m 149-151° (from EtOH). [Taylor & Corvetti Org Synth Coll Vol IV 654 1963, IR: Katritzky et al. J Chem Soc 3680 1959, Jaffé & Doak J Am Chem Soc 77 4441, 4481 1955, Boekelheide & Linn J Am Chem Soc 76 1286 1954]. [Beilstein 20 III/IV 2719, 20/5 V 517.]

4-Picoline-*N***-oxide (4-methylpyridine-1-oxide)** [1003-67-4] **M 109.1, m 182-184°, 185-186°, 186-188°, pK²⁵ 1.29.** Recrystallise the *N*-oxide from EtOH/EtOAc, Me₂CO/Et₂O or $*C_6H_6$. [Bullitt & Maynard J Am Chem Soc **76** 1370 1954, Boekelheide & Linn J Am Chem Soc **76** 1286 1954]. [Beilstein **20** III/IV 2741, **20/5** V 558.]

Picolinic acid (pyridine-2-carboxylic acid) [98-98-6] M 123.1, m 138°, pK_1^{25} 1.03 (1.36), pK_2^{25} 5.30 (5.80). Crystallise the acid from water or *benzene. The *picrate* has m 185-187° (from MeOH). [*Beilstein* 22 H 33, 22 I 502, 22 II 30, 22 III/IV 303, 22/2 V 3.]

α-Picolinium chloride [14401-91-3] M 129.6, m 77-78°, 85°, b 229°/atm. A 1:1 mixture of αpicoline and HCl is distilled at 275°, then sublimed in a vacuum at 91-91.5°. [Beilstein 20 H 236, 20 III/IV 2685, 20/5 V 474.]

N-4-Picolinoylbenzimidazole [100312-29-6] M 173.3, m 105-107°. Recrystallise the imidazole three times from hexane [Fife & Przystas J Am Chem Soc 108 4631 1986].

Picrolic acid [3-methyl-4-nitro-1-(4-nitrophenyl)-2-pyrazolin-5-one, picrolonic acid] [550-74-3] M 264.2, m 120°(dec), 116.5°(dec at 125°) 125°. Crystallise picrolic acid from water or EtOH (solubility is 0.123% at 15° and 1.203% at 100° in H₂O; and 1.107% at 0° and 11.68% at 81° in EtOH). It forms Ca, Cu Hg, Mg, Na, Sr, Pb and many other metal complexes [Maquestian et al *Bull Soc Chim Belg* 82 233 1973, Isaki et al. *Chem Ber* 74 1420 1941]. [*Beilstein* 24 H 51, 24 I 218, 24 II 25, 22 III/IV 105.]

Pinacyanol chloride (Quinaldine Blue) [2768-90-3] **M 388.9, CI 808, m 270°(dec).** Crystallise the dye from EtOH/diethyl ether. The *iodide* [605-91-4] crystallises from MeOH or EtOH with **m** 298-299°(dec). [*Beilstein* **23** H 320, 23 I 89, II 282, III/IV 2064, **23/10** V 129.]

dl-Pipecolinic acid (piperidine-2-carboxylic acid) [4043-87-2] M 129.1, m 264°, 280°(dec), pK_1^{25} 2.29, pK_2^{25} 10.77. It crystallises from water. The (±)-picrate has m 158-159° (from EtOH or *C₆H₆). [Beilstein 22 H 7, 22 III/IV 97, 22/1 V 220.] The *R*(+)-enantiomer [1723-00-8] has m 277°(dec) and $[\alpha]_D^{20}$ +27° (c 4, H₂O), and the *S*(-)-enantiomer [3105-95-1] has m 277°(dec) and $[\alpha]_D^{20}$ -26° (c 4, H₂O). [cf p 603, Beilstein 22 III/IV 96, 22/1 V 220.]

Piperazine [110-85-0] **M 86.1, m 110-112°, 44°** (hexahydrate 142-63-2) b 125-130°/760mm, pK_1^{25} 5.33, pK_2^{25} 9.73. Piperazine crystallises from EtOH or anhydrous *benzene and is dried at 0.01mm. It can be sublimed under vacuum and purified by zone melting. The *hydrochloride* has **m** 172-174° (from EtOH), and the *dihydrochloride* crystallises from aqueous EtOH and has **m** 318-320° (dec, sublimes at 295-315°). The *picrate* has **m** ~200°, and the *picrolonate* crystallises from dimethylformamide (**m** 259-261°). [*Beilstein* 23 H 4, 23 I 4, 23 II 3, 23 III/IV 15, 23/1 V 30.]

§ Piperazine on polystyrene support is commercially available.

Piperazine-N,N'-**bis**(2-ethanesulfonic acid) (PIPES) [5625-37-6] M 302.4, pK₁²⁵ <3, pK₂²⁵ 6.82 (7.82). Purify PIPES from boiling water (maximum solubility is about 1g/L) or as described for ADA [N-(2-acetamido)iminodiacetic acid above]. [Good et al. *Biochemistry* 5 469 1966, *Beilstein* 23/12 V 380.]

Piperazine dihydrochloride (H₂O) [142-64-3 (2HCl); 6094-40-2 (xHCl)] M 177.1, m 82.5-83.5°. Crystallise the salt from aqueous EtOH and dry it at 110°. [*Beilstein* 23 III/IV 17, 23/1 V 30.]

Piperazine phosphate (H₂O) [18534-18-4] M 197.6. Crystallise it twice from water, air-dry and store for several days over Drierite. The salt dehydrates slowly if heated at 70°. [*Beilstein* 23 III/IV 18, 23/1 V 30.]

Piperidine [110-89-4] **M 85.2, f -9°, b 35.4°/40mm, 106°/760mm, d** $_{4}^{20}$ **0.862, n** $_{D}^{20}$ **1.4535, n** $_{D}^{25}$ **1.4500, pK** 25 **11.20 (basic).** Dry piperidine with BaO, KOH, CaH₂, or sodium, and fractionally distil (optionally from sodium, CaH₂, or P₂O₅). Purify from pyridine by zone melting. [*Beilstein* **22** H 6, **22** I 5, **22** II 3, **22** III/IV 287, **22/2** V 3.]

§ Piperidine on polystyrene support is commercially available.

Piperidine-2,6-dione (glutarimide) [1121-89-7] **M 113.1, m 163-165°, 155-157°, 154°, 152-154°, pK²⁵ 11.43 (acidic).** Purify it by dissolving 75g in 200mL of H₂O, boil for 30minutes with 2g of charcoal, filter, evaporate to dryness and recystallise the residue from 125mL of 95% EtOH to give 70g of white crystals, **m** 152-154°. It also crystallises from Me₂CO (**m** 163-165°) or EtOH (**m** 153-154°). The *N-bromo*

derivative (a brominating agent) crystallises from H_2O with **m** 180-185°. [Paris et al. *Org Synth* Coll Vol IV 496 *1963*, *Beilstein* **21** H 382, **21** I 331, **21** II 307, **21** III/IV 4582.]

Piperidinium chloride [6091-44-7] **M 121.6, m 244-245, 247-248°.** Crystallise the salt from EtOH/diethyl ether in the presence of a small amount of HCl. [*Beilstein* **20** H 6, **20** II 10, **20** III/IV 295, **20/2** V 13.]

Piperidinium nitrate [6091-45-8] M 145.2, m 141°, (155-157° from EtOH). The nitrate crystallises from acetone/ethyl acetate or EtOH. [Beilstein 20 H 12, 20 II 10, 20 III/IV 295, 20/2 V 14.]

Piperine (1-piperoylpiperidine) [94-62-2] M 285.4, m 129-129.5°, pK¹⁵ 1.98. Piperine crystallises as light yellow crystals from EtOH or EtOAc (m 132°), aqueous EtOH (m 128-129°), Et₂O (m129°), or*benzene/ligroin. [Beilstein 20 H 79, 20 I 23, 20 II 53, 20 III/IV 1341, 20/3 V 469.]

Poly(*N*-vinylcarbazole) [25067-59-8]. Precipitate it seven times from tetrahydrofuran with MeOH, with final freeze-drying from *benzene. Dry it under vacuum.

Poly(4-vinylpyridine) [25232-41-1] **M** (105.1)_n. Purify it by repeated precipitation from solutions in EtOH and dioxane, and then EtOH and ethyl acetate. Finally, freeze-dry a *tert*-butanol solution.

Poly(*N*-vinylpyrrolidone) [9003-39-8] **M** (111.1)_n, crosslinked [25249-54-1] **m** >300°. Purify it by dialysis, and freeze-drying. Also by precipitation from CHCl₃ solution by pouring into ether. Dry it in a vacuum over P_2O_5 . For the crosslinked polymer purification is by boiling for 10minutes in 10% HCl and then washing with glass-distilled water until free from Cl ions. Finally, Cl ions are removed more readily by neutralising with KOH and continued washing.

(±)-Primaquine diphosphate (*RS*- 8-[4-amino-1-methylbutylamino]-6-methoxyquinoline di-phosphate) [63-45-6] M 455.4, m 197-198°, 204-206°(dec), $pK_{Est(1)}$ ~ 3.38 (ring N⁺), $pK_{Est(2)}$ ~ 10.8 NH₃⁺). It forms yellow crystals from 90% aqueous EtOH and is moderately soluble in H₂O. The oxalate salt has m 182.5-185° (from 80% aqueous EtOH), and the free base is a viscous liquid b 165-170°/0.002mm, 175-177°/2mm. [Elderfield et al. J Am Chem Soc 68 1526 1964, Elderfield et al. J Am Chem Soc 77 4817 1955, Beilstein 22 III/IV 5817.]

Proclavine (3,6-diaminoacridine) [92-62-6] M 209.2, m 284-286°, pK_1^{25} -2.7, pK_2^{25} 0.55, pK_3^{25} 9.49. It crystallises from aqueous MeOH. The *picrate* crystallises from aqueous pyridine with m ~185°. [*Beilstein* 22 H 487, 22 I 649, 22 II 397, 22 III/IV 5487, 22/11 V 322.] For proflavin see 3,6-diaminoacridine hydrochloride.

Propidium iodide (3,8-diamino-5-(3-diethylaminopropyl)-6-phenylphenantridinium iodide methiodide) [25535-16-4] M 668.4, m 210-230°(dec), $pK_{Est(1)} \sim 4$ (aniline NH₂), $pK_{Est(2)} \sim 8.5$ (EtN₂). It crystallises as red crystals from H₂O containing a little KI. It fluoresces strongly with nucleic acids. [Watkins J Chem Soc 3064 1952, Beilstein 22 III/IV 5519.] TOXIC.

(±)-Propylene carbonate (4-methyl-1,3-dioxalan-2-one) [108-32-7] M 102.1, b 79-80%0.08mm, 110%0.5-1mm, 112-114%2mm, 241%760mm, d_4^{20} 1.204, n_D^{20} 1.423. It is manufactured by reaction of 1,2-propylene oxide with CO₂ in the presence of a catalyst (quaternary ammonium halide). Contaminants include propylene oxide, carbon dioxide, 1,2- and 1,3-propanediols, allyl alcohol and ethylene carbonate. It can be purified by percolation through molecular sieves (Linde 5A, dried at 350° for 14hours under a stream of argon), followed by distillation under a vacuum. [Jasinski & Kirkland Anal Chem 39 163 1967.] It can be stored over molecular sieves under an inert gas atmosphere. When purified in this way it contains less than 2ppm of water. Activated alumina and dried CaO have also been used as drying agents prior to fractional distillation under reduced pressure. It has been dried with 3A molecular sieves and distilled under nitrogen in the presence of *p*-toluenesulfonic acid, then redistilled and the middle fraction collected. [*Beilstein* 19 III/IV 1564, 19/4 V 21.]

Purification of Organic Chemicals – Heterocyclic Compounds

424

dl-Propylene oxide [75-56-9] M 58.1, b 34.5°, d_4^{20} 0.829, n_D^{20} 1.3664. Dry the oxide with Na₂SO₄ or CaH₂ and fractionally distil it through a packed column (glass helices), after refluxing with Na, CaH₂, or KOH pellets. [*Beilstein* 17 I 4, 17 II 131, 17 III/IV 17, 17/1 V 17.] The *R*(+)enantiomer [15448-47-2] and the *S*(-)enantiomer [16088-62-3] have b 33-34°/atm and $[\alpha]_{D}^{20} \pm 14.6°$ (neat). [*Beilstein* 17/1 V 17.]

6-Propyl-2-thiouracil (propacil, propyail) [51-52-5] M 170.2, m 218-220°, 218-220°, pK₁²¹ -6.54 (aqueous H₂SO₄), pK₂²¹ -4.22 (aqueous H₂SO₄), pK₃²¹ 8.25 (4% aqueous EtOH). Purify propacil by recrystallisation from H₂O (soluble in 900 parts at 20°, and 100 parts at 100°). UV, MeOH: λ max 277nm. [Anderson et al. J Am Chem Soc 67 2197 1945, Vanderhaegue Bull Soc Chim Belg 59 689 1950, Beilstein 24 III/IV 1333.]

Protopine [fumarine, macleyine, 4,6,7,14-tetrahydro-5-methyl-bis[1,3]-benzodioxolo[4,5c:5',6'-g]azecine-13(5H)-one] [130-86-9] M 353.4, m 208°, 209°, 211°, pK²⁵ 5.99. It crystallises from EtOH/CHCl₃. The *picrate* has m ~240°(dec). [*Beilstein* 27 H 558, 17 I 568, 17 II 620, 17 III/IV 6881.]

Pteridine [91-18-9] M 132.2, m 139.5-140°, pK_1^{20} 4.05 (equilibrium, hydrate), pK_2^{20} 11,90 (OH of hydrate). It crystallises from EtOH, *benzene, *n*-hexane, *n*-heptane or pet ether. It is best purified by sublimation at 120-130°/20mm. Store at 0°, in the dark. It turns green in the presence of light and on long standing in the dark and sublimation leaves the dark-coloured material behind. [Albert et al. *J Chem Soc* 474 1951; see Albert & Armarego Adv Heterocycl Chem 4 1 1965, Beilstein 26 III/IV 1770.]

2,4-(1*H*,3*H*)-Pteridinedione H₂O (lumazine) [487-21-8] M 182.1, m >350°, $pK_1^{20} < 1.0$, pK_2^{20} 7.94. Crystallise the dione from water. It has also been purified as for pterin below. [Dallacker & Steiner Justus Liebigs Ann Chem 660 98 1962, Beilstein 26 III/IV 2489.]

Pterin (2-aminopteridin-4(3*H*)-one) [2236-60-4] M 163.1, m >300°, pK_1^{20} 2.27 (basic), pK_2^{20} 7.96 (acidic). It is dissolved in hot 1% aqueous ammonia, filtered, and an equal volume of hot 1M aqueous formic acid is added. The solution is allowed to cool at 0-2° overnight. The solid is collected and washed with distilled water several times by centrifugation and dried *in vacuo* over P₂O₅ overnight, and then at 100° overnight (any ammonium formate in the sample evaporates off). [*Beilstein* 26 III/IV 3936.]

Pterocarpin{(6aR-cis)-6a,12a-dihydro-3-methoxy-6H-[1,3]dioxolo[5,6]benzofuro[3,2c][1]-
benzopyran}benzopyran[524-97-0]M 298.3, m 165°, 165-166°, [α] $_{546}^{20}$ -215° (c 0.5, CHCl₃).Crystallise it from EtOH, or pet ether.[Fukui & Nakayama Bull Chem Soc Jpn 42 1408 1969, Packler & Underwood Tetrtahedron 23 1817 1967, Beilstein 19 II 459, 19 III/IV 5789.]

Pteroic acid (2-amino-6-*p*-carboxyanilinomethylpteridin-4(3*H*)-one) [119-24-4] M 312.3, m >300°(dec), $pK_{Est(1)} \sim 2.3$ (basic, N1), $pK_{Est(2)} \sim 2.6$ (basic, CH₂NH), $pK_{Est(3)} \sim 4.5$ (COOH), $pK_{Est(4)} \sim 7.9$ (acidic 4-OH). Crystallise it from dilute HCl. Dry it *in vacuo*. Hygroscopic IRRITANT. [Nair et al. J Org Chem 46 3152 1981, Beilstein 26 III/IV 3942.]

Purine [120-73-0] **M 120.1, m 216-217°, pK** $_{1}^{20}$ **2.30, pK** $_{2}^{20}$ **9.86.** It crystallises from toluene or EtOH, and sublimes at 100-150°/0.1mm or 160°/10⁻⁴mm. The *picrate* has **m** 207-209° after crystallisation from 20volumes of H₂O. [*Beilstein* **26** H 354, **26** III/IV 1736.]

Pyocyanine (1-hydroxy-5-methylphenazinium zwitterion) [85-66-5] M 210.2, m 133° (sublimes and decomposes on further heating), pK^{25} –3.5. It crystallises from H₂O as dark blue needles. The *picrate* has m 190° (dec). [*Beilstein* 23 H 395, 23 I 59, 23 II 234, 23/8 V 395.]

Pyrazine [290-37-9] M 80.1, m 47°, 57°, b 115.5-115.8°, pK_1^{20} -6.25 (aqueous H₂SO₄), pK_2^{20} 1.1 (0.51 at 20°). Distil pyrazine in steam and crystallise it from water. Purify also by zone melting. [*Beilstein* 23 H 91, 23 II 80, 23 III/IV 899, 23/5 V 351.]

Pyrazinecarboxamide [98-96-4] **M 123.1, m 189-191**^o (sublimes slowly at 159^o), pK²⁵ - 0.5. The amide crystallises from water, EtOH or 1:1 hexane/EtOH in four modifications *viz* α-form, β-form, δ-form and γ-form. [Rø & Sørum Acta Cryst **28B** 1677 1972, Beilstein **25** III/IV 772.]

Pyrazinecarboxylic acid [98-97-5] **M 124.1, m 225-229°(dec), pK_1^{25} -3.0, pK_2^{25} -0.7, pK_3^{25} 2.70**. It crystallises from water. The *methyl ester* has **m** 62° (from pet ether). [Sauville & Spoerri J Am Chem Soc 63 3153 1941, Beilstein 25 III/IV 771.]

Pyrazine-2,3-dicarboxylic acid [89-01-0] **M 168.1, m 183-185°(dec), 187°(dec), pK₁ <-2.0, pK₂ 0.9, pK₃ 2.77 (2.20). Crystallise the dicarboxylic acid from water and dry it at 100°. The** *dimethyl* **ester has m** 62-63° (from Et₂O or Et₂O/pet ether). [Beilstein 25 H 168, 25 II 164, 25 III/IV 1064.]

Pyrazine-1,4-dioxide [2423-65-6] **M 112.1, m 285-286°, pK**_{Est} **<0.** If the sample contains pyrazine-1-oxide, then place it in a Soxhlet extractor and extract it with hot pet ether (b 60-68°) in which the mono-oxide is soluble. Collect the dioxide from the thimble and recrystallise it from MeOH. It is dried *in vacuo*. It has v_{max} at 1270cm⁻¹. [Koelsch & Gumprecht *J Org Chem* **23** 1605 1958.]

Pyrazine-1-oxide [2433-84-9] **M 96.1, m 113-114°, pK**_{Est} **<0.** Recrystallise the oxide from C_6H_6 . It is soluble in hot pet ether (b 60-68°, see pyrazine-1,4-dioxide above). Dry it *in vacuo*. It has v_{max} at 1305cm⁻¹. [Koelsch & Gumprecht J Org Chem 23 1605 1958.]

Pyrazole [288-13-1] **M 68.1, m 70°, b 96°/16mm, pK²⁵ 2.48.** Crystallise pyrazole from pet ether, cyclohexane, or water. Its solubility in H₂O at 9.6° is 2.7moles/L, and at 24.8° it is 19.4moles/L; in cyclohexane at 31.8° it is 0.577moles/L, and at 56.2° it is 5.86moles/L; and in benzene at 5.2° it is 0.31moles/L, and at 46.5° it is 16.8moles/1000mL. [Barszcz et al. J Chem Soc, Dalton Trans 2025 1986, Beilstein **23** H 39, **23** I 15, **23** II 33, **23** III/IV 550, **23/4** V 122.]

Pyrazole-3,5-dicarboxylic acid [3112-31-0] **M 174.1, m 287-289°(dec), 295-297°(dec),** $pK_{Est(1)}\sim 1.2$ (CO₂H), $pK_{Est(2)}\sim 3.7$ (CO₂H), $pK_{Est(3)}\sim 12$ (NH). It crystallises from water as a *monohydrate*, or EtOH. Dry it in a vacuum at 100°. The *dimethyl ester* crystallises from *C₆H₆ with **m** 155°. [*Beilstein* 25 III/IV 1047.]

Pyridazine *N*-oxide (pyridazine 1-oxide) [1457-42-7] M 96.1, m 38-39°, b 138-140°/4mm, $pK_{Est} < 1$. Purify the oxide by distillation in a vacuum and by sublimation *in vacuo*. When a solution of the oxide in MeOH is treated with an aqueous solution of CuCl₂, the $[C_4H_4N_2O]_2$ —CuCl₂-2H₂O-*complex* (m 182-183°) is formed from which the oxide can be recovered. [Pollak et al. *J Org Chem* 35 2478 1970, Klinge et al. *Recl Trav Chim, Pays Bas* 95 21 1976, Ohsawa et al. *Tetrahedron Lett* 1979 1978, Koelsch & Gumprecht *J Org Chem* 23 1605 1958, *Beilstein* 23 III/IV 890.]

Pyridine [110-86-1] **M 79.1, f -41.8°, b 115.6°, d** $_{20}^{20}$ **0.9831, n** $_{D}^{20}$ **1.51021, pK** 25 **5.23.** Likely impurities are H₂O and amines such as the picolines and lutidines. Pyridine is *hygroscopic* and is miscible with H₂O and organic solvents. It can be dried with solid KOH, NaOH, CaO, BaO or sodium, followed by fractional distillation. Other methods of drying include standing with Linde type 4A molecular sieves, CaH₂ or LiAlH₄, azeotropic distillation of the H₂O with toluene or *benzene, or treated with phenylmagnesium bromide in ether, followed by evaporation of the ether and distillation of the pyridine. A recommended [Lindauer & Mukherjee *Pure Appl Chem* **27** 267 1971] method dries pyridine over solid KOH (20g/Kg) for 2weeks and fractionally distils the supernatant over Linde type 5A molecular sieves and solid KOH. The product is stored under CO₂-free nitrogen. Pyridine can be stored in contact with BaO, CaH₂ or molecular sieves. Non-basic materials can be removed by steam distilling a solution containing 1.2 equivalents of 20% H₂SO₄ or 17% HCl until about 10% of the base has been carried over along with the non-basic impurities. The residue is then made alkaline, and the base is separated, dried with NaOH and fractionally distilled.

Alternatively, pyridine can be treated with oxidising agents. Thus pyridine (800mL) has been stirred for 24hours with a mixture of ceric sulfate (20g) and anhydrous K_2CO_3 (15g), then filtered and fractionally distilled. Hurd and Simon [*J Am Chem Soc* **84** 4519 *1962*] stirred pyridine (135mL), water (2.5L) and KMnO₄ (90g) for

2hours at 100° , then stood for 15hours before filtering off the precipitated manganese oxides. Addition of solid KOH (*ca* 500g) caused pyridine to separate. It was decanted, refluxed with CaO for 3hours and distilled.

Separation of pyridine from some of its homologues can be achieved by crystallisation of the oxalates. Pyridine is precipitated as its *oxalate* by adding it to the stirred solution of oxalic acid in acetone. The precipitate is filtered, washed with cold acetone, and pyridine is regenerated and isolated. Other methods are based on complex formation with $ZnCl_2$ or $HgCl_2$. Heap, Jones and Speakman [*J Am Chem Soc* **43** 1936 *1921*] added crude pyridine (1L) to a solution of $ZnCl_2$ (848g) in 730mL of water, 346mL of conc HCl and 690mL of 95% EtOH. The crystalline precipitate of $ZnCl_2$.(pyridine)₂ was filtered off, recrystallised twice from absolute EtOH, then treated with a conc NaOH solution, using 26.7g of solid NaOH to 100g of the complex. The precipitate was filtered off, and the pyridine (60mL) in 300mL of 10% (v/v) HCl to a solution of HgCl₂ (405g) in hot water (2.3L). On cooling, crystals of pyridine-HgCl₂ (1:1) complex separated and were filtered off, crystallised from 1% HCl (to **m** 178.5-179°), washed with a little EtOH and dried at 110°. The free base was liberated by addition of excess aqueous NaOH and separated by steam distillation. The distillate was saturated with solid KOH, and the upper layer was removed, dried further with KOH, then BaO and distilled. Another possible purification step is fractional crystallisation by partial freezing.

Small amounts of pyridine have been purified by vapour-phase chromatography, using a 180-cm column of polyethyleneglycol-400 (Shell 5%) on Embacel at 100°, with argon as carrier gas. The Karl Fischer titration can be used for determining water content. A colour test for pyrrole as a contaminant is described by Biddiscombe et al. [*J Chem Soc* 1957 *1954*]. The *1:1-hydrochloride* crystallises from EtOH with **m** 144°, **b** 218-219°/760mm (see below) and is hygroscopic. The *1:2-hydrochloride* has **m** 46° [58888-58-7] and the *picrate* has **m** 165-166° [1152-90-5]. [*Beilstein* **20** H 181, **20** I 54, **20** II 96, **20** III/IV 2205, **20/5** V 160.] § Polystyrene-supported pyridine is commercially available.

Pyridine-2-aldehyde [1121-60-4] **M 107.1, b 81.5**°/25mm, d_4^{20} **1.121, n_D^{20} 1.535, pK_1^{25} 3.84, pK_2^{25} 12.68.** Purification is achieved by bubbling sulfur dioxide into a solution of 50g of the aldehyde in 250mL of boiled water, under nitrogen, at 0°, until precipitation is complete. The bisulfite addition compound is filtered off rapidly and, after washing with a little water, is refluxed in 17% HCl (200mL) under nitrogen until a clear solution is obtained. Neutralisation with NaHCO₃ and extraction with ether separated the aldehyde which is recovered by drying the extract, then distilling twice, under nitrogen. [Kyte et al. *J Chem Soc* 4454 1960, *Beilstein* **21** I 287, **21** III/IV 3495, **21/7** V 293.]

Pyridine-3-aldehyde [500-22-1] M 107.1, b 89.5°/14mm, d_4^{20} 1.141, n_D^{20} 1.549, pK_1^{20} 3.80, pK_2^{20} 13.10. Purified as for pyridine-2-aldehyde. [Beilstein 21 I 288, 21 III/IV 3517, 21/7 V 334.]

Pyridine-4-aldehyde [872-85-5] M 107.1, b 79.5°/12mm, d_4^{20} 1.137, n_D^{20} 1.544, pK_1^{20} 4,77, pK_2^{20} 12.20. Purified as for pyridine-2-aldehyde. [Beilstein 21 III/IV 2529, 21/7 V 351.]

Pyridine-2-aldoxime (pyridine-2-carboxaldoxime) [873-69-8] M 122.1, m 111-113°, 114°, pK_1^{25} 3.56, pK_2^{25} 10.17. Recrystallise it from Et₂O/pet ether or H₂O. The *picrate* has m 169-171° (from aqueous EtOH). It is used in peptide synthesis. [UV: Grammaticakis *Bull Chem Soc Fr* 109, 116 1956, Ginsberg & Wilson J Am Chem Soc 79 481 1957, Hanania & Irvine Nature 183 40 1959, Green & Saville J Chem Soc 3887 1956, Beilstein E-isomer 21 I 288, 21 III/IV 3504, 21/7 V 305.]

Pyridine-3-aldoxime [1193-92-6] **M 122.1, m 150°, pK_1^{20} 4.07, pK_2^{20} 10.39.** Crystallise the oxime from water. [*Beilstein E-isomer* 21 III/IV 3521, 21/7 V 339.]

Pyridine-4-aldoxime [696-54-8] **M 122.1, m 129^o, pK**₁²⁰ **4.73, pK**₂²⁰ **10.03.** Crystallise the oxime from water. [*Beilstein E-isomer* **21** III/IV 3533, **21**/7 V 355.]

2,6-Pyridinedialdoxime [2851-68-5] M 165.1, m 212°, 216°, $pK_{Est(1)}\sim3.0$, $pK_{Est(2)}\sim10$. Crystallise it several times from water or EtOH to give colourless needles. [Lions & Martin J Am Chem Soc 79 2738 1957, Beilstein 21 III/IV 4746.]

426

Pyridine-2,5-dicarboxylic acid (isocinchomeronic acid) [100-26-5] M 167.1, m 254°, (267°, dec), pK_1^{25} 0.60, pK_2^{25} 2.49, pK_3^{25} 5.12. Crystallise it from H₂O or dilute HCl. [Napoli J Inorg Nucl Chem 32 1907 1970, Beilstein 22 H 153, 22 I 533, 22 II 105, 22 III/IV 1632, 22/4 V 124.]

Pyridine-3,4-dicarboxylic acid (cinchomeronic acid) [490-11-9] **M 167.1, m 253-255°, 256°, pK** $_{1}^{25}$ **1.50 (0.6), pK** $_{2}^{25}$ **2.43 (2.95), pK** $_{3}^{25}$ **4.78 (5.07).** Crystallise the acid from H₂O or dilute aqueous HCl. It has also been purified *via* the *dimethyl ester* which is distilled (**b** 95-100°/1.5mm) and hydrolysed with 3.5N HCl, evaporated and recrystallised. [Armarego & Evans J Appl Chem **12** 45 1962, Foye et al. J Med Chem **9** 61 1966, Beilstein **22** H 155, **22** I 534, **22** II 106, **22** III/IV 1641, **22/4** V 135.]

Pyridine hydrobromide perbromide (pyridinium bromide perbromide) [39416-48-3] M 319.9, m 130° (dec), 132-134°(dec), 135°(dec). It is a very good brominating agent-liberating one mol of Br₂. Purify it by recrystallisation from glacial acetic acid (33g from 100mL of AcOH) to give orange-red crystals. [Fieser & Fieser *Reagents for Organic Chemistry* 1 967 1967, Englert & McElvain J Am Chem Soc 51 865 1929, Beilstein 20 II 103, 20/5 V 181.]

Pyridine hydrochloride [628-13-7] **M 115.6, m 144°, b 218°/760mm.** Crystallise the salt from CHCl₃/EtOAc and wash it with Et₂O. It is *hygroscopic*. [*Beilstein* **20** H 185, **20** I 57, **20** II 103, **20** III/IV 2230, **20/5** V 180.]

Pyridine *N*-oxide [694-59-7] **M** 95.1, **m** 67°, 68-69°, **pK**²⁴ 0.79. Purify the *N*-oxide by crystallisation from Et₂O and by vacuum sublimation. The *picrolonate* has **m** 182-184°. [Katritzky *J Chem* Soc 2407 1956, Beilstein 20 III/IV 2305, 20/5 V 217.]

Pyridine 3-sulfonic acid [636-73-7] **M 159.2, m 365-366°(dec), 357°, pK²⁵ 2.89 (12% aqueous EtOH), 3.22 (H₂O)(protonation on N).** Purify the acid by recrystallisation from H₂O or aqueous EtOH as needles or plates. [pKa: Evans & Brown J Org Chem **27** 3127 1962, IR: Arnett & Chawla J Am Chem Soc **100** 214 1978.] UV in 50% aqueous EtOH has λ_{max} at 208 and 262nm. The ammonium salt has **m** 243° (from H₂O), the sulfonyl chloride has **m** 133-134° (from pet ether), the amide has **m** 110-111° (from H₂O), the hydrochloride has **m** >300°(dec), and the *N-methyl betaine* has **m** 130° (from H₂O). [Gastel & Wibaut Recl Trav Chim Pays-Bas **53** 1031 1934, McIlvain & Goese J Am Chem Soc **65** 2233 1943, Machek Monatsh Chem **72** 77 1938, Beilstein **22** I 616, **22** II 309, **22/7** V 552.]

2-Pyridinethiol (2-mercaptopyridine) [2637-34-5; 73018-10-7] **M 111.2, m 127.4°, 127-130°, 130-132°, pK** $_{1}^{20}$ **-1.07, pK** $_{2}^{20}$ **9.97.** If impure, dissolve in CHCl₃, wash with dilute AcOH, H₂O, dry (MgSO₄), evaporate under reduced pressure and recrystallise the residue from *C₆H₆ or H₂O. 2-*Methylmercaptopyridine* (**b** 100-104°/33mm, pK²⁰ 3.59) was formed by treatment with MeI/NaOH. [Albert & Barlin *J Chem Soc* 2394 1959, Phillips & Shapiro *J Chem Soc* 584 1942, *Beilstein* **21** H 45, **21** III/IV 373, **21**/7 V 147.]

4-Pyridinethiol (4-mercaptopyridine) [4556-23-4] **M** 111.2, **m** 177°, 179-189°, 186°, pK_1^{20} **1.43**, pK_2^{20} **8.86**. Purify the thiol by dissolving ~45g in boiling H₂O (100mL) (charcoal), filter and precipitate it by adding 50% aqueous NaOH (~80mL) to pH ~6. Dissolve the precipitate in EtOH, evaporate it to dryness, then crystallise it from boiling EtOH (~100mL, charcoal) to give yellow flat hexagonal plates (**m** 186°). It sublimes readily *in vacuo*. [King & Ware *J Chem Soc* 873 *1939*.] The *picrate* forms yellow needles from H₂O with **m** 222°(dec). The 4-methylmercaptopyridine derivative crystallises from pet ether (**m** 47°, also **44-45°** was reported, with a **pK²⁰** of **5.97**) and was prepared by treatment with MeI/NaOH. Its *picrate* has **m 245°** (from H₂O, MeOH or EtOH). The *N*-methyl-4-pyridinethiol derivative has **m** 168.5-170° (from EtOH), a **pK²⁰** of **1.30** and is soluble in CHCl₃. [Albert & Barlin *J Chem Soc* 2384 *1959*, *Beilstein* **21** II 35, **22** III/IV 373, **22/7** V 147.]

Pyridoxal hydrochloride, pyridoxamine hydrochloride and pyridoxine hydrochloride (vitamin B₆) See entries in "Miscellaneous Compounds" in Chapter 6. 1-(2-Pyridylazo)-2-naphthol (PAN) [85-85-8] M 249.3, m 140-142°, 142°, pK_1^{30-36} 2.9, pK_2^{30-36} 11.2. Purify PAN by repeated crystallisation from EtOH or MeOH. It can also be purified by sublimation under vacuum. Purity can be checked by TLC using a mixed solvent (pet ether/Et₂O/EtOH; 10:10:1) on a silica gel plate. It has pK_1 1.9 and pK_2 12.2 in 20% aqueous ethoxyethanol. It chelates with copper [Pease & Williams Anal Chem **31** 1046 1959]. [Beilstein **22** I 694, **22** III/IV 7073, **22/4** V 618.]

4-(2-Pyridylazo)-resorcinol (PAR) [1141-59-9] M 215.2, m >195°(dec), λ_{max} 415nm, ϵ 2.59 x 10⁴ (pH 6-12), pK₁²⁵ 2.69 (3.1), pK₂²⁵ 5.50 (5.8), pK₃²⁵ 12.5 (11.9). Purify PAR as the sodium salt by recrystallisation from 1:1 EtOH/water. Purity can be checked by TLC using a silica gel plate and a mixed solvent (*n*-BuOH:EtOH:2M NH₃; 6:2:2). [Beilstein 22 I 694, 22 III/IV 7074, 22/14 V 619.]

3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine [1046-56-6] **M 310.4, m 191-192°.** Purify it by repeated recrystallisation from EtOH/dimethylformamide. It is a reagent for estimating Fe(II) and Ru(II). [Chriswell & Schilt Anal Chem **46** 992 1974, Kamra & Ayers Anal Chem **78** 423 1975.]

1-(4-Pyridyl)ethanol $[R-(+)\ 27854-88-2;\ S-(-)\ 54656-96-1]$ M 123.2, m 63-65°, 67-69°, b 138-140°/30mm, 254°/760mm, $[\alpha]_{D}^{20} R(+)$ and $S(-)\ \pm 49.8°$ (c 0.5, EtOH), pK_{Est}~5.4. Purify it by recrystallisation from pet ether. The m recorded after sublimation was 59.9-60.2°, and 55° after crystallisation from *C₆H₆/pet ether or pet ether/*C₆H₆. The (-)-*di-O-benzoyl tartrate salt* has m 146-148° (from EtOH). [UV, ORD: Harelli & Samori J Chem Soc Perkin Trans 2 1462 1974.] The racemate recrystallises from Et₂O with m 74-76°, b 90-94°/1mm. The picrate has m 125-126° (from *C₆H₆). [Ferles & Attia Collect Czech Chem Commun 38 611 1973, UV, NMR: Nielson et al. J Org Chem 29 2898 1964, Beilstein 21 III/IV 522, 21/2 V 217.]

α-Pyrone (2*H*-pyran-2-one, coumalin) [504-31-4] M 96.1, m 5°, 8-9°, b 103-111°/19-22mm, 110°/26mm, 104°/ 30mm, 115-118°/37mm, 206-207°/atm, d_4^{20} 1.1972, n_D^{20} 1.5298, pK²⁵ -1.14 (aqueous H₂SO₄). Dissolve α-pyrone in Et₂O, wash it with brine, dry (Na₂SO₄), filter, evaporate, distil the residue under vacuum and redistil it. It is a colourless liquid. IR: v_{max} 1622 and 1752cm⁻¹ (CHCl₃). [Zimmermann et al. Org Synth Coll Vol V 982 1973, Nakagawa & Saegusa Org Synth 56 49 1977, Elderfield J Org Chem 6 566 1941.] The picrate has **m** 106-107° (from EtOH). [Beilstein 17 H 271, 17 II 305, 17 III/IV 4399, 17/9 V 288.]

 γ -Pyrone (4*H*-pyran-4-one) [108-97-4] M 96.1, m 32.5-32.6°, 33°, 32-34°, b 88.5°/7mm, 91-91.5°/9mm, 95-97°/13mm, 105°/23mm, 215°/atm, pK²⁵ 0.10. Purify γ -pyrone by vacuum distillation; the distillate crystallises and is *hygroscopic*. It is non-steam volatile. The *hydrochoride* has m 139° (from EtOH), and the *picrate* has m 130.2-130.3° (from EtOH or H₂O). [Mayer Chem Ber 90 2362 1957, IR: Jones et al. Can J Chem 37 2007 1959, Neelakatan J Org Chem 22 1584 1957, Beilstein 17 H 271, 17 I 145, 17 II 305, 17 III/IV 4399, 17/9 V 290.]

Pyronin G [3,6-bis(dimethylamino)xanthenylium chloride] [92-32-0] M 302.8, m 250-260°, CI 45005, λ max 522nm, pK_{Est}~7.6. Commercial material may contain a large quantity of zinc. Purify it by dissolving 1g in 50mL of hot water containing 5g NaEDTA. Cool to 0°, filter, evaporate to dryness and the residue is extracted with EtOH. The solution is evaporated to 5-10mL, filtered, and the dye is precipitated by addition of excess of dry diethyl ether. It is centrifuged, and the crystals are washed with dry ether. The procedure is repeated, then the product is dissolved in CHCl₃, filtered and evaporated. The dye is stored in a vacuum. [*Beilstein* 18 H 596, 18 III/IV 7361, 18/10 V 181.]

Pyrrol-2,5-dione (maleimide) [541-59-3] M 97.1, m 91-93°, 92.6-93°, $d_D^{105.5}$ 1.2493, $n_D^{110.7}$ 1.49256. Purify it by sublimation in a vacuum. The UV has λ_{max} at 216 and 280nm in EtOH. [de Wolf & van de Straete *Bull Soc Chim Belg* 44 288 1935, UV: Rondestvedt et al. *J Am Chem Soc* 78 6115 1956, IR: Chiorboli & Mirone Ann Chim (Rome) 42 681 1952, Beilstein 21/10 V 3.]

Pyrrole [109-97-7] M 67.1, m 23.4°, b 66°/80mm, 129-130°/atm, d_4^{20} 0.966, n_D^{20} 1.5097, pK₁²⁵ -4.4 (Protonation on carbon), pK₂²⁵ 17.51 (aqueous KOH, H. scale). Dry pyrrole with NaOH, CaH₂ or CaSO₄. Fractionally distil it under reduced pressure from CaH₂. Store it under nitrogen as it

429

turns brown in air. Redistil it immediately before use. The *picrate* forms orange-red crystals with **m** 69°(dec). [*Beilstein* **20** H 4, **20** I 3, **20** II 3, **20** III/IV 61, **20/5** V 3.]

1*H*-Pyrrole-1-propanoic acid (3-[pyrrol-1-yl]propionic acid) [89059-06-3] M 139.2, m 59-64°, 62.5°, $pK_{Est} \sim 4.5$. Recrystallise the acid from pet ether (b 80-100°) and dry it *in vacuo*. The *ethyl ester* has b 122°/23mm. The *amide* forms colourless needles from C_6H_6 with m 81° and is soluble in cold H₂O. [Clemo & Ramage J Chem Soc 49 1931, Jefford & Johncock Helv Chim Acta 66 2666 1983.]

Pyrrolidine [123-75-1] **M 71.1, b 87.5-88.5°, d** $_{4}^{20}$ **0.860, n** $_{D}^{20}$ **1.443, pK**²⁵ **11.31.** Dry pyrrolidine with BaO or sodium, then fractionally distil it, under N₂, through a Todd column (p 11) packed with glass helices. [*Beilstein* **20** H 159, **20** I 36, **20** II 79, **20** III/IV 2072, **20/1** V 162.]

Pyrrolidine-1-carbodithioic acid ammonium salt [5108-96-3] **M 164.3, m 128-130°, pK²⁵ 3.25** (free acid). Purify the salt by recrystallising twice by dissolving in MeOH and adding Et₂O. It has also been purified by recrystallisation from EtOH. It is used for the precipitation of As, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sb, Su, V and Zn from acidic solutions [Kinrade & van Loon Anal Chem 46 1894 1974]. The *ethyl ester* has **b** 87-89°/0.01mm. [Synthesis and Polarography: Kitagawa & Taku Bull Chem Soc Jpn 64 2151 1973, Malissa & Schöffmann Mikrochim Acta 187 1955, Beilstein 20 III/IV 195, 20/1 V 331.]

Quercetin (2H2O) (3,3',4',5,6-pentahydroxyflavone) [6151-25-3 (2H₂O); 117-39-3 (anhydrous)] M 338.3, m ca 315°(dec), 317.4-317.9°(dec), (phenolic pKs 7–10). Crystallise the flavone from aqueous EtOH and dry at 100°. It also sublimes in a vacuum. IR: v_{max} 2.5 μ and 16.7 μ (KBr). It complexes with Cu²⁺, Al³⁺, Ca²⁺, Ge⁴⁺, Zn²⁺, Ti⁴⁺, Zr⁴⁺, Th⁴⁺, UO⁴⁺. [Beilstein 18 H 242, 18 I 242, 18 I 242, 18 II 236, 18 III/IV 3470, 18/5 V 494.]

(±)-Quinacrine [Atebrine, Mepacrine, 3-chloro-9(4-diethylamino-1-methyl)butylamino-7methoxy)acridine] dihydrochloride. [69-05-6] M 472.9, m 248-250°(dec), pK_1^{30} -6.49 (aq H_2SO_4), pK_2^{30} 7.73 (ring NH⁺), pK_3^{30} 10.18 (Et₂N). It crystallises from H_2O (solubility is 2.8% at room temperature) as yellow crystals. It is slightly soluble in MeOH and EtOH. The *free base* crystallises from Me₂CO or pet ether with m 86-88°, or aqueous EtOH with 85-87.5°. The *bismethiodide* has m 224° (from MeOH/EtOAc/Et₃N), and the *picrate* has m 207-208°(dec) when crystallised from Me₂CO/EtOH. It is an antimalarial, antiprotozoal and intercalates DNA. [Wolfe Antibiot 3 (Springer-Verlag) 203 1975, Beilstein 22 III/IV 6247, 22/12 V 235.]

Quinaldic (quinoline-2-carboxylic) acid [93-10-7] M 173.2, m 156-157°, pK_1^{25} 1.45, pK_2^{25} 2.49 (2.97). Crystallise quinaldic acid from *C₆H₆ or AcOH. It is used for the estimation of many metals. The *methyl ester* has m 86-87° (from hexane) and pK^{25} 1.76. [Chauduri et al. *Frez Z Anal Chem* 281 361 1976, *Beilstein* 22 H 71, 22 II 55, 22 III/IV 1149, 22/3 V 183.]

Quinazoline [253-82-7] M 130.2, m 48.0-48.5°, b 120-121°/17-18mm, pK $_1^{20}$ -4.51 (aqueous H₂SO₄, anhydrous dication), pK $_2^{20}$ 2.01 (anhydrous monocation), pK $_3^{20}$ 4.3 (equilibrium with 3,4-hydrated species), pK $_2^{40}$ 12.1 (hydrated anion). Purify quinazoline by passage through an activated alumina column in *C₆H₆ or pet ether (b 40-60°). Distil it under reduced pressure, sublime it under vacuum and crystallise it from pet ether. The *picrate* has m 188-189° (from MeOH). [Armarego *J Appl Chem* 11 70 *1961*, Armarego *Quinazolines, Fused Pyrimidines Part I* Brown Ed, Wiley-Interscience *1967*, Brown *Quinazolines Supplement I* Taylor Ed, Wiley-Interscience *1996*, ISBN 0-471-14565-3; for covalent hydration see Albert & Armarego Adv Heterocycl Chem 4 1 1965, Beilstein 23 H 175, 23 II 177, 23 III/IV 1221.]

S(+)-Quinidine [56-54-2] M 324.4, m 171°, $[\alpha]_{546}^{20}$ +301.1° (CHCl₃ containing 2.5% (v/v) EtOH), pK₁¹⁵ 4.13, pK₂¹⁵ 8.77. Crystallise it from *C₆H₆ or dry CHCl₃/pet ether (b 40-60°), discarding the initial, oily crop of crystals. Dry it under vacuum at 100° over P₂O₅. It has been used as a chiral catalyst [Wynberg & Staring *J Am Chem Soc* 104 166 *1982*, *J Org Chem* 50 1977 *1985*]. [*Beilstein* 23 H 506, 23 I 164, 23 II 414, 23 III/IV 3261, 23/13 V 395.]

8*S*,*9R***-Quinine** [130-95-0] **M 324.4**, **m 177**°(dec), $[\alpha]_{546}^{20}$ -160° (c 1, CHCl₃), pK_1^{20} 4.13 (quinoline N), pK_2^{20} 8.52 (piperidine N). Crystallise the quinine from absolute EtOH. It has been used as a chiral catalyst (see previous entry). [*Beilstein* 23 H 511, 23 I 166, 23 II 416, 23 III/IV 3265, 23/13 V 395.]

Quinine bisulfate $[6183-68-2 (7H_2O), 549-56-4 (anhydrous)]$ M 422.4, m 160° (anhydrous). Crystallise the bisulfate from 0.1M H₂SO₄, and recrystallise it from water to give the *heptahydrate*. [*Beilstein* 23 III/IV 3270, 23/13 V 396.]

Quinine sulfate (2H₂O) [6119-70-6 (H₂O), 804-63-7 (anhydrous)] M 783.0, m 205° (219°). Crystallise it from water and dry it at 110°. [Beilstein 23 H 522, 23 I 168, 23 II 420, 23 III/IV 3269, 23 V 396.]

Quinoline [91-22-5] M 129.2, m -20°, -16°, b 113-114°/17mm, 236°/758mm, d_4^{20} 1.0937, n_D^{20} 1.625, pK²⁵ 4.80 (4.93). Dry quinoline with Na₂SO₄ and distil it from zinc dust in a vacuum. It has also been dried by boiling with acetic anhydride, then fractionally distilled. Calvin and Wilmarth [*J Am Chem Soc* 78 1301 1956] cooled redistilled quinoline in ice and added enough HCl to form its hydrochloride. Diazotization removed aniline, the diazo compound being broken down by warming the solution to 60°. Non-basic impurities were removed by ether extraction. Quinoline was then liberated by neutralising the hydrochloride with NaOH, then dried with KOH and fractionally distilled at low pressure. Addition of cuprous acetate (7g/L of quinoline) and shaking under hydrogen for 12hours at 100° removed impurities due to the nitrous acid treatment. Finally the hydrogen was pumped off, and the quinoline was distilled. Other purification procedures depend on conversion to the *phosphate* (m 159°, precipitated from MeOH solution, filtered, washed with MeOH, then dried at 55°) or the *picrate* (m 201°) which, after recrystallisation, were reconverted to quinoline.

The method using the picrate [Packer et al. *J Am Chem Soc* **80** 905 *1958*] is as follows: quinoline is added to picric acid dissolved in the minimum volume of 95% EtOH, giving yellow crystals which were washed with EtOH, air-dried and crystallised from acetonitrile. These were dissolved in dimethyl sulfoxide (previously dried over 4A molecular sieves) and passed through a basic alumina column, onto which the picric acid is adsorbed. The free base in the effluent is extracted with *n*-pentane and distilled under vacuum. Traces of solvent can be removed by vapour-phase chromatography. [Moonaw & Anton *J Phys Chem* **80** 2243 *1976*.] The ZnCl₂ and dichromate complexes have also been used [Cumper et al. *J Chem Soc* 1176 *1962*]. [*Beilstein* **20** H 339, **20** I 134, **20** II 222, **20** III/IV 3334, **20**/7 V 276.]

2-Quinolinealdehyde [5470-96-2] **M 157.2, m 71°, pK**_{Est} ~3.3. Distil it in steam and recrystallise it from H₂O. Protect it from light. The *semicarbazone* has **m** 254° (from aqueous EtOH), and the *picrate* has **m** 197-199°. [*Beilstein* **21** H 322, **21** III/IV 4034, **21/8** V 442.]

8-Quinolinecarboxylic acid [86-59-9] **M 173.2, m 186-187.5**°, pK_1^{25} **1.82,** pK_2^{25} **6.87.** Crystallise the acid from water, aqueous EtOH, EtOH or *C₆H₆. The *ethyl ester* has **m** 45° and **b** 194-197°/13mm. [*Beilstein* **22** H 81, **22** III/IV 1200, **22/3** V 217.]

Quinoline ethiodide (1-ethylquinolinium iodide) [634-35-5] M 285.1, m 158-159°. Crystallise it from aqueous EtOH or EtOH/peroxide free Et_2O . [Beilstein 20 H 352, 20 I 139, 20 II 231, 20 III/IV 3357, 20/7 V 276.]

Quinoxaline [91-19-0] M 130.2, m 28° (anhydrous), 37°(H₂O), b 108-110°/0.1mm, 140°/40mm, pK_1^{20} -5.52 (-5.8, dication), pK_2^{20} 0.56 (c 0.5), 0.72 (c 1.0) (monocation). Crystallise quinoxaline from pet ether. It crystallises as the *monohydrate* on addition of water to a pet ether solution. It has UV: λ_{max} at 242 and 331nm (H° -2); 234 and 316nm (pH 7.1). The *picrate* has m 161-162°. [Albert & Phillips J Chem Soc 1294 1956, Beilstein 23 H 176, 23 II 177, 23 III/IV 1226, 23/7 V 135.]

Quinoxaline-2,3-dithiol [1199-03-7] **M 194.1, m 345°(dec), pK₁ 6.9, pK₂ 9.9.** Purify the dithiol by repeated dissolution in alkali and re-precipitation by acetic acid. It complexes with Ag^+ , Cd^{2+} , Pb^{2+} , Bi^{3+} and Ni^{2+} in aqueous NH₃. [*Beilstein* 24 III/IV 1428.]

430

Quinuclidine (1-azabicyclo[2.2.2]octane) [100-76-5] M 111.2, m 158°(sublimes), pK^{25} 10.95. Crystallise it from diethyl ether. The *hydrochloride* has m 364-365°(dec) (from EtOH or n-BuOH), and the *picrate* has m 225° (from aqueous EtOH). [Beilstein 20 H 144, 20 II 71, 20 III/IV 1966, 20/4 V 335.]

Rescinnamine (Anaprel, Apoterin) [24815-24-5] M 634.7, m 238-239°(vacuum), 240°, $[\alpha]_{D}^{20}$ -97° (c 1, CHCl₃), pK_{Est(1)}~<0 (carbazole N), pK_{Est(2)}~7.0 (quinolizidine N), pK²⁵ 6.4 (75% aqueous HCONMe₂). Crystallise it from *benzene, MeOH or aqueous Me₂CO. The *hydrochloride* has m 232°(dec) (from MeOH) and $[\alpha]_{D}^{20}$ -74° (MeOH). It is an antihypertensive. [Klohs et al. J Am Chem Soc 77 2241 1955, Beilstein 25 III/IV 1323.]

(-)-Reserpic acid [83-60-3] M 400.5, m 241-243°, $[\alpha]_{D}^{24}$ -70° (c 1, H₂O), pK_{Est(1)}~<0 (carbazole N), pK_{Est(2)}~4.0 (CO₂H), pK_{Est(3)}~7.4 (quinolizidine N), pK₁ 6.2, pK₂ 8.2 (66% aqueous HCONMe₂). Crystallise the acid from MeOH. It has UV: λ_{max} at 222, 268 and 294nm (EtOH). The *hydrochloride* 0.5H₂O has m 257-259° (from EtOH/Et₂O), $[\alpha]_{D}^{23}$ -81° (H₂O). [Dorfman et al. *Helv Chim Acta* 77 59 1954, *Beilstein* 25 III/IV 1305.]

Reservine [50-55-5] M 608.7, m 262-263°, $[\alpha]_{546}^{20}$ -148° (c 1, CHCl₃), pK_{Est(1)}~<0 (carbazole N), pK₂ 6.6 (7.4)(quinolizidine N). Crystallise reservine from aqueous Me₂CO or Et₂O. [Woodward et al. *Tertrahedron* 2 155 1958, *Beilstein* 25 III/IV 1319.]

Rhamnetin (3,3'-4',5-tetrahydroxy-7-methoxy flavone, 7-methyl quercitin) [90-19-7] M 316.3, m >300°(dec), several phenolic pKs ~7-10.5. Crystallise rhamnetin from EtOH (m 292-293°), aqueous EtOH (m 294-296°) or MeOH (m 290-294°). or Me₂CO/MeOH. [Kuhn & Low *Chem Ber* 77 211 1944, Jurd J Am Chem Soc 80 5531 1958.] The tetra-acetate has m 189-190° (from Me₂CO/MeOH). [Beilstein 18 H 245, 18 II 237, 18 III/IV 3474.]

Rhodamine 3B chloride [3,5-bis-(diethylamino)-9-(2-carboxyphenyl)xanthylium chloride] [81-88-9] M 479.0, m 210-211°(dec), CI 45170, λ_{max} 543nm, {Free base [509-34-2] CI 749}, pK²⁵ 5.53. Major impurities are partially dealkylated compounds not removed by recrystallisation. Purify the dye by chromatography, using ethyl acetate/isopropanol/ammonia (conc)(9:7:4, R_F 0.75 on Kieselgel G). It has also been crystallised from a concentrated solution in MeOH by slow addition of dry diethyl ether; or from EtOH containing a drop of conc HCl by slow addition of ten volumes of dry diethyl ether. The solid is washed with ether and air dried. The dried material has also been extracted with *benzene to remove oil-soluble material prior to recrystallisation. Store it in the dark. [*Beilstein* 18 II 486, 18 III/IV 8246, 19/8 V 669.]

Rhodamine 6G [Basic Red 1, 3,5-bis-(ethylamino)-9-(2-ethoxycarbonylphenyl)-2,7dimethylxanthylium chloride] [989-38-8] M 479.3, CI 45160, λ max 524nm, pK²⁵ 5.58. Crystallise the dye from MeOH or EtOH, and dry it in a vacuum oven. [Beilstein 18 III/IV 8244, 18/12 V 283.]

Rhodanine (2-mercaptothiazolidin-4-one) [141-84-4] **M 133.2, m 168.5**^o (capillary), pK²⁰ **5.18.** Crystallise rhodanine from glacial acetic acid or water. It is used to estimate Ag and gallic acid [Thies & Fischer *Microchimica Acta* 809 1973]. [*Beilstein* **27** H 242, **27** I 309, **27** II 288, **27** III/IV 3188.]

Riboflavin, riboflavin-5'-phosphate (Na salt, $2H_2O$) See entries in "Miscellaneous Compounds" and for ribonucleic acids see entry in "Proteins, Enzymes, DNA and RNA" in Chapter 6.

Saccharin (1,2-benzisothiazol-3(2*H*)-one 1,1-dioxide, o-benzoic acid sulfimide) [81-07-2] M 183.2, m 227-229°, 229°, 228.8-229.7°, pK_1^{25} 1.31, pK_2^{25} 12.8. Purify saccharin by recrystallisation from Me₂CO [solubility 7.14% at 0°, 14.4% at 50°], or aqueous isoPrOH to give a fluorescent

solution. It sublimes *in vacuo*. It is an artificial sweetner and is 500 times sweeter than sucrose. [DeGarmo et al. *J Am Pharm Assoc (Sci Ed)* **41** 17 *1952*, *Beilstein* **27** H 168, 870, **27** I 266, **27** II 214, **27** III/IV 2649.]

Safranine O (Safranine T, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) [477-73-6] M 350.9, λ_{max} 530nm, pK²⁵ 6.4. Crystallise it from *benzene/MeOH (1:1) or water. Dry it *in vacuo* over H₂SO₄. It has UV: λ_{max} at 520nm (H₂O) and 530nm (EtOH). [*Beilstein* 25 H 403, 25 I 657, 25 III/IV 3056.]

Safrole (5-allyl-1,3-benzodioxole, 4-allyl-1,2-methylenedioxybenzene) [94-59-7] M 162.1, m~ 11°, b 69-70°/1.5mm, 104-105°/6mm, 231.5-232°/atm, 235-237°/atm, d_4^{20} 1.0993, n_D^{20} 1.53738. Safrole has been purified by fractional distillation, although it has also been recrystallised from low boiling pet ether at low temperatures. [IR: Briggs et al. Anal Chem 29 904 1957, UV: Patterson & Hibbert J Am Chem Soc 65 1962 1943.] The maleic anhydride adduct forms yellow crystals from toluene m 257° [Hickey J Org Chem 13 443 1948], and the picrate forms orange-red crystals from CHCl₃ [Baril & Magrdichian J Am Chem Soc 58 1415 1936]. [Beilstein 19 H 39, 19 I 617, 19 II 29, 19 III/IV 275, 19/1 V 553.]

Scopoletin (7-hydroxy-6-methoxycoumarin) [92-61-5] M 192.2, m 206°, 208-209°, pK^{25} 8.96 (70% aqueous EtOH). Crystallise it from water, acetic acid or *C₆H₆/MeOH. It is dimorphic with a second m at 193-195°. It sublimes at 120-130°/12mm. [*Beilstein* 18 H 99, 18 I 348, 18 II 68, 18 III/IV 1323, 18/3 V 203.]

Secobarbital (5-allyl-5-1'-methylbutylbarbituric acid) [76-73-3] M 260.3, m 100°, pK_1^{25} 8.08, pK_2^{25} 12.6. It is purified by dissolving the *sodium salt* [309-43-3] in 10% HCl which precipitates the acid form that is extracted into Et₂O. The extract is dried (Na₂SO₄) and evaporated. The residue is then purified by repeated crystallisation from CHCl₃. [Buchet & Sandorfy *J Phys Chem* 88 3274 1984, Beilstein 24 III/IV 2013.]

Serotonin creatinine sulfate (H₂O) [971-74-4] M 405.4, m 220°(dec), pK₁ 10.1, pK₂ 11.1, pK₃ 18.25 (NH) for serotonin, pK²⁵ 4.9 for creatinine. It crystallises as the monohydrate from water. [*Beilstein* 22 III/IV 5667, 22/12 V 18.]

Sinomenine hydrochloride (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl-9 α ,13 α ,14 α -morphan-6-one HCl) [6080-33-7] M 365.9, m 231°, [α] ¹⁷_D -83° (c 4, H₂O), pK_{Est(1)}~10.0 (N), pK_{Est(2)}~10.4 (OH). Crystallise the salt from water (1g/1.5mL) or EtOH. The *free base* [115-53-7] M 329.4, has m 161° (from EtOH) (and again at 182°) after crystallisation from *C₆H₆, and [α] ²⁰_D -78.9° (c 1, EtOH). The *picrate* has m 159-162°(dec) (from H₂O). [*Beilstein* 21 II 470, 21 III/IV 6670.]

(-)-Sparteine sulfate pentahydrate [6160-12-9] M 422.5, m loses H₂O at 100° and turns brown at 136° (dec), $[\alpha]_{D}^{20}$ -22° (c 5, H₂O), $[\alpha]_{D}^{21}$ -16° (c 10, EtOH for free base), pK₁²⁰ 2.24, pK₂²⁰ 9.46. Recrystallise the sulfate from aqueous EtOH or H₂O, although the solubility in the latter is high. The *free* (-)-*base* has b 173°/8mm and is steam volatile but resinifies in air. The *dipicrate* forms yellow needles from EtOH/Me₂CO, m 205-206° [Clemo et al. *J Chem Soc* 429 *1931*; see also Bolnmann & Schuman *The Alkaloids* (Ed Manske) Vol 9 175 *1967*]. The *free* (±)-*base* has m 71-72.5° [van Tamelen & Foltz *J Am Chem Soc* 82 2400 *1960*]. [*Beilstein* 23 II 99, 23 III/IV 18.]

(-)-Strychnine [57-24-9] M 334.4, m 268°, 278-279.5°, $[\alpha]_{546}^{20}$ -139° (c 1, CHCl₃), pK₁²⁰ 2,50, pK₂²⁰ 8.2, pK₁²⁰ 7.37 [80% aqueous MeO(CH₂)₂OH]. It crystallises from CHCl₃/Et₂O and sublimes at 125°/0.01mm. It can also be purified by conversion to the *hydrochloride* [m 275-295° (dec), $[\alpha]_{D}^{20}$ -44° (0.03N HCl)] with aqueous HCl, then neutralisation with ammonia. [*Beilstein* 27 II 723, 27 III/IV 7530.] It is POISONOUS.

Sulfamethazine (Sulfadimidine, N'-[4,6-dimethyl-2-pyrimidinyl]sulfanilamide) [57-68-1] M 278.3, m 178-179°, 198-200°, 205-207°, pK₁ 2.65, pK₂ 7.4. Crystallise it from dioxane or aqueous dioxane. [Caldwell et al. J Am Chem Soc 63 2188 1941, Roblin et al. J Am Chem Soc 64 567 1942, Beilstein 25 III/IV 2215.]

Sulfapyridine [144-83-2] M 349.2, m 193°, pK²⁰ 8.64. Crystallise sulfapyridine from 90% acetone and dry it at 90°. Its solubility in Me₂CO, EtOH and H₂O is 1.5%, 0.22% and 0.02%, respectively. [Winterbottom J Am Chem Soc 62 160 1940, Beilstein 22 III/IV 3978.]

2-Sulfobenzoic cyclic anhydride (2,1-benzoxathiazol-3-one-1,1-dioxide) [81-08-3] M 184.2, m 126-127°, 129.5°, 130°, b 184-186°/18mm. The anhydride is purified by distillation in a vacuum and readily solidifies to a crystalline mass on cooling. [Heitman J Am Chem Soc 34 1594 1912.] Alternatively purify it by dissolving it in the minimum volume of toluene and refluxing for 2hours using a Dean-Stark trap. Evaporate under reduced pressure and distil the anhydride at 18mm. It is then recrystallised three times from its own weight of dry C_6H_6 . It is sensitive to moisture and should be stored in the dark in a dry atmosphere. The *O-methyloxime* has m 110-112° [Levy *Tetrahedron Lett* 3289 1972]. If the sample has hydrolysed extensively (presence of OH band in the IR) then treat with an equal bulk of SOCl₂, reflux it for 3hours (CaCl₂ tube), evaporate and distil the residue in a vacuum, then recrystallise it from C_6H_6 , Et₂O/ C_6H_6 or CHCl₃ (EtOH free by passing through Al₂O₃, or standing over CaCl₂). [Clarke & Dreger *Org Synth* Coll Vol I 495 1941.] It is used for modifying ξ -amino functions of lysyl residues in proteins [Bagree et al. *FEBS Lett* 120 275 1980]. [*Beilstein* 19 I 659, 19 II 137, 19 III/IV 1641, 19/4 V 215.]

Sulfolane (tetramethylenesulfone) [126-33-0] M 120.2, m 28.5°, b 153-154°/18mm, 285°/760mm, d_4^{20} 1.263, n_D^{30} 1.4820. It is prepared commercially by a Diels-Alder reaction of between 1,3-butadiene and sulfur dioxide, followed by Raney nickel hydrogenation. The principal impurities are water, 3-sulfolene, 2-sulfolene and 2-isopropyl sulfolanyl ether. It is dried by passage through a column of molecular sieves. Distil it under reduced pressure through a column packed with stainless steel helices. Again dry it with molecular sieves and distil. [Cram et al. J Am Chem Soc 83 3678 1961, Coetzee Pure Appl Chem 49 211 1977.] Alternatively, it is stirred at 50°, and small portions of solid KMnO₄ are added until the colour persists during lhour. Dropwise addition of MeOH then destroys the excess KMnO₄; the solution is filtered, freed from potassium ions by passage through an ion-exchange column and dried under vacuum. It has also been distilled in a vacuum from KOH pellets. It is hygroscopic. [See Sacco et al. J Phys Chem 80 749 1976, J Chem Soc, Faraday Trans I 73 1936 1977, 74 2070 1978, Trans Faraday Soc 62 2738 1966.] Coetzee has reviewed the methods of purification of sulfolane, and also the removal of impurities. [Coetzee in Recommended Methods of Purification of Solvents and Tests for Impurities, Coetzee Ed. Pergamon Press, 1982, Beilstein 17 I 5, 17 III/IV 37, 17/1 V 39.]

2,2':6',2"-Terpyridyl [1148-79-4] M **233.3, m 91-92°, pK** $_{1}^{23}$ **2.64, pK** $_{2}^{23}$ **4.33.** Crystallise it from diethyl ether, toluene or from pet ether, then aqueous MeOH, followed by sublimation in a vacuum at 90°. It is used for estimating Ag and Ru. [Kamra et al. *Anal Chim Acta* **81** 177 1976, *Beilstein* **26** III/IV 258.]

Terthiophene (2,5-di[thienyl]thiophene; α -terthienyl) [1081-34-1] M 248.4, m 94-95.5°, 94-96°. Possible impurities are bithienyl and polythienyls. Suspend it in H₂O and steam distil it to remove bithienyl. The residue is cooled and extracted with CHCl₃, dried (MgSO₄), filtered, evaporated and the residue chromatographed on Al₂O₃ using pet ether/3% Me₂CO as eluent. The terphenyl zone is then eluted from the Al₂O₃ with Et₂O, the extract is evaporated and the residue is recrystallised from MeOH (40mL per g). The platelets are washed with cold MeOH and dried in air. [UV: Sease & Zechmeister J Am Chem Soc 69 270 1947; Uhlenbroek & Bijloo Recl Trav Chim Pays-Bas 79 1181 1960.]

It has also been recrystallised from MeOH, $*C_6H_6$, pet ether or AcOH. [UV: Zechmeister & Sease J Am Chem Soc 69 273 1947, Steinkopf et al. Justus Liebigs Ann Chem 546 180 1941.] It is a phototoxic nematocide [Cooper & Nitsche Bioorg Chem 13 36 1985, Chan et al. Phytochem 14 2295 1975]. [Beilstein 19 III/IV 4763, 19/9 V 226.]

2,4,5,6-Tetraaminopyrimidine sulfate [5392-28-9] M 238.2, m 255° (dec), >300°, >350° (dec), pK²⁰ 6.82. Purify the salt by recrystallisation from H₂O, 2N H₂SO₄ (20 parts, 67% recovery) or 0.1N H₂SO₄ (40 parts, 62% recovery), and dried in air. [UV: Konrad & Pfleiderer *Chem Ber* 103 722 1970, Malletta et al. J Am Chem Soc 69 1814 1947, Cavalieri et al. J Am Chem Soc 70 3875 1948, Beilstein 25 H 423, 25 III/IV 3106.]

1,4,8,11-Tetraazacyclotetradecane (cyclam) [295-37-4] M 200.33, m 173° (closed capillary and sublimes at 125°), 183-185°, 185°, pK_{Est(1)}~3.8, pK_{Est(2)}~6.0, pK_{Est(3)}~9.0, pK_{Est(4)}~9.6. Purify cyclam by recrystallisation from dioxane (white needles), and it sublimes above 120°. It has been distilled, **b** 132-140°/4-8mm. It forms complexes with metals and gives a sparingly soluble *nitrate salt*, **m** 205°(dec), which crystallises from H₂O and is dried at 150°. [UV: Bosnich et al. Inorg Chem 4 1102 1963, van Alphen Recl Trav Chim Pays-Bas 56 343 1937, Beilstein 26 III/IV 1647.]

Tetrabenazine (2-oxo-3-isobutyl-9,10-dimethoxy-1,2,3,4,6,7,-hexahydro-11bH-benzo[a]quinolizine) [58-46-8] M 317.4, m 127-128°, $pK_{Est} \sim 8$. Crystallise it from MeOH. The hydrochloride has m 208-210°, and the oxime has m 158° (from EtOH). [Beilstein 21 III/IV 6488.]

2,3,4,6-Tetrachloropyridine [14121-36-9] M 216.9, m 74-75°, (? 37-38°), b 130-135%/16-20mm, $248.5-249.5^{\circ}/760mm$, $pK_{Est} \sim -5.7$. Crystallise it from 50% EtOH and/or distil it. The Noxide has m 210° (from EtOH/CHCl₃). [Chivers & Suschitzky J Chem Soc 2870 1971, Beilstein 20 III/IV 6488, 20/5 V 421.]

Tetrahydrofuran (oxalane) [109-99-9] M 72.1, b 25%176mm, 66%760mm, d²⁰₄ 0.889, n²⁰_D 1.4070, pK^{25} -2.48 (aqueous H₂SO₄). It is obtained commercially by catalytic hydrogenation of furan from pentosan-containing agricultural residues. It was purified by refluxing with, and distilling from LiAlH₄ which removes water, peroxides, inhibitors and other impurities [Jaeger et al. J Am Chem Soc 101 717 1979]. Peroxides can also be removed by passage through a column of activated alumina, or by treatment with aqueous ferrous sulfate and sodium bisulfate, followed by solid KOH. In both cases, the solvent is then dried and fractionally distilled from sodium. Lithium wire or vigorously stirred molten potassium have also been used for this purpose. CaH_2 has also been used as a drying agent.

Several methods are available for obtaining the solvent almost anhydrous. Ware [J Am Chem Soc 83 1296 1961] dried it vigorously with sodium-potassium alloy until a characteristic blue colour was evident in the solvent at Dry-ice/cellosolve temperatures. The solvent is kept in contact with the alloy until distilled for use. Worsfold and Bywater [J Chem Soc 5234 1960], after refluxing and distilling from P₂O₅ and KOH, in turn, refluxed the solvent with sodium-potassium alloy and fluorenone until the green colour of the disodium salt of fluorenone was well established. [Alternatively, instead of fluorenone, benzophenone, which forms a blue ketyl, can be used.] The tetrahydrofuran was then fractionally distilled, degassed and stored above CaH2. p-Cresol or hydroquinone inhibit peroxide formation. The method described by Coetzee and Chang [Pure Appl Chem 57 633 1985] for 1,4-dioxane also applies here. Distillations should always be done in the presence of a reducing agent, e.g. FeSO₄. [Beilstein 17 H 10, 17 I 5, 17 II 15, 17 III/IV 24, 17/1 V 27.] It irritates the skin, eyes and mucous membranes, and the vapour should never be inhaled. It is HIGHLY FLAMMABLE, and the necessary precautions should be taken. Rapid purification: Purification as for diethyl ether.

l-Tetrahydropalmatine (2,3,9,10-tetramethoxy-6*H*-dibenzo[a,g]quinolizidine) [10097-84-4] M

355.4, m 148-149°, $[\alpha]_{D}^{20}$ -291° (EtOH). Crystallise it from MeOH or EtOH by addition of water [see Kametani & Ihara J Chem Soc (C) 530 1967, Bradsher & Dutta J Org Chem 26 2231 1961]. When crystallised from Me₂CO/Et₂O, it has **m** 142°. The hydrate has **m** 115°(effervescence). The picrate has **m** 188°(dec) (from aqueous EtOH). [Bradsher & Datta J Org Chem 26 2231 1961, Beilstein 21 II 196, 21 III/IV 2769.]

Tetrahydropyran (oxane) [142-68-7] M 86.1, b 88.0°, d²⁰₄ 0.885, n²⁰_D 1.4202, pK²⁵ -2.79 (aqueous H_2SO_4). Dry oxane with CaH₂, then pass it through a column of silica gel to remove olefinic impurities and fractionally distil it. Free it from peroxides and moisture by refluxing with sodium, then distil it from LiAlH₄. Alternatively, peroxides can be removed by treatment with aqueous ferrous sulfate and sodium bisulfate, followed by solid KOH, and fractional distillation from sodium. [Beilstein 17 H 12, 17 I 6, 17 II 18, 17 III/IV 51, 17/1 V 64.]

Tetrahydro-4H-pyran-4-one {29943-42-8] M 100.1, b 57-59%/11mm, 65-66%/15mm, 67-68°/18mm, 73°/20mm, 164.7°/atm, 166-166.5°/atm, d²⁰₄ 1.0844, n²⁰_D 1.4551. Purify the pyrone by repeated distillation, preferably in a vacuum. [Baker J Chem Soc 296 1944, IR: Olsen & Bredoch Chem Ber **91** 1589 1958.] The oxime has **m** 87-88° and **b** 110-111°/13mm [Cornubert et al. Bull Soc Chim Fr 36 1950]. The 4-nitrophenylhydrazone forms orange-brown needles from EtOH, **m** 186° [Cawley & Plant J Chem Soc 1214 1938]. [Beilstein **17** I 131, **17** II 287, **17** III/IV 4171, **17**/9 V 21.]

Tetrahydrothiophene (thiophane) [110-01-0] M 88.2, m -96°, b 14.5°/10mm, 40.3°/39.7 mm, 120.9°/760mm, d_4^{20} 0.997, n_D^{20} 1.5289. The crude material is purified by crystallisation of the mercuric chloride complex to a constant melting point. It is then regenerated, washed, dried, and fractionally distilled. [Whitehead et al. J Am Chem Soc 73 3632 1951.] It has been dried over Na₂SO₄ and distilled in a vacuum [Roberts & Friend J Am Chem Soc 108 7204 1986]. [Beilstein 17 I 5, 17 II 15, 17 III/IV 34, 17/1 V 36.]

Tetrahydro-4*H***-thiopyran-4-one** [1072-72-6] **M 116.2, m 60-62°, 61-62°, 64-65°, 65-67°.** Purify it by recrystallisation from diisopropyl ether or pet ether and dry it in air. If too impure, then dissolve it in Et₂O, wash with aqueous NaHCO₃, then H₂O, dry (MgSO₄), filter, evaporate and the residue is recrystallised as before. [Cardwell *J Chem Soc* 715 1949.] The oxime can be recrystallised from CHCl₃/pet ether (at -20°) and has **m** 84-85° [Barkenbus et al. *J Org Chem* **20** 871 1955]. The 2,4-dinitrophenylhydrazone has **m** 186° (from EtOAc) [Barkenbus et al. *J Org Chem* **16** 232 1951]. The S-dioxide is recrystallised from AcOH, **m** 173-174° [Fehnel & Carmack *J Am Chem Soc* **70** 1813 1948, Beilstein **17** II 287, **17** III/IV 4172, **17/1** V 21].

Tetramethylene sulfoxide (tetrahydrothiophen 1-oxide) [1600-44-8] M 104.2, b 235-237°, d_4^{20} 1.175, n_D^{20} 1.525. Shake the oxide with BaO for 4 days, then distil it from CaH₂ under reduced pressure. [Beilstein 17 III/IV 36, 17/1 V 38.]

2,2,6,6-Tetramethylpiperidinyl-1-oxy (**TEMPO**) [2564-83-2] **M 156.3, m 36-38°.** Purify TEMPO by sublimation (33°, water aspirator) [Hay & Fincke J Am Chem Soc **109** 8012 1987, Keana Chem Rev **78** 37 1978].

2,2,6,6-Tetramethyl-4-piperidone hydrochloride (triacetoneamine) [33973-59-0] **M 191.7, m 190°(dec), 198-199°(dec), pK²⁵ 7.90**. Purify the salt by recrystallisation from EtOH/Et₂O, MeCN or Me₂CO/MeOH. The *free base* has **m** 37-39° (after sublimation), **b** 102-105°/18mm, and the *hydrate* has **m** 56-58° (wet Et₂O); the *hydrobromide* has **m** 203° (from EtOH/Et₂O), and the *picrate* has **m** 196° (from aqueous EtOH). [Sandris & Ourisson *Bull Soc Chim Fr* 345 *1958*, *Beilstein* **21** H 246, **21** I 273, **21** II 222, **21** III/IV 3278, **21/6** V 538.]

1,3,7,9-Tetramethyl uric acid [2309-49-1] **M 224.2, m 225°, 228°, pK_{Est}<0.** Crystallise the uric acid from H₂O or MeOH. [*Beilstein* **26** H 532, **26** I 156, **26** II 302, **21** III/IV 2623.]

1,3,5,5-Tetranitrohexahydropyrimidine [81360-42-1] **M 270.1, m 153-154°.** Crystallise the nitropyrimidine from EtOH (5x) and sublime it (~65°/0.05mm) [Cichra & Adiolph *J Org Chem* **47** 2474 *1982*, *J Labelled Comp Radiopharm* **29** 1197 *1991*].

4,7,13,18-Tetraoxa-1,10-diazabicyclo[8.5.5]eicosane (Cryptand 211) [31250-06-3] M 288.1, b 130°/0.002mm, d_4^{20} 1.097, n_D^{20} 1.505, $pK_{Est} \sim 7.9$. Redistil Cryptand 211, dry it under high vacuum over 24hours, and store it under nitrogen.

1,7,10,16-Tetraoxa-4,13-diazacyclooctadecane (4,13-diaza-18-crown-6) [23978-55-4] M 262.3, m 118-116°, pK_{Est} ~ 8.8. Twice recrystallise it from *benzene/*n*-heptane, and dry it for 24hours under high vacuum [Weber & Vögtle *Top Curr Chem* (Springer Verlag, Berlin) 98 1 1981, D'Aprano & Sesta J *Phys Chem* 91 2415 1987].

5,10,15,20-Tetraphenylporphyrin (TPP) [917-23-7] M 614.7, m 450° (sublimes >400°), λ_{max} 482nm. Purify TPP by chromatography on neutral (Grade I) alumina, and recrystallisation from CH₂Cl₂/MeOH or *C₆H₆. It forms complexes with metals. [Yamashita et al. J Phys Chem 91 3055 1987, Beilstein 26 III/IV 1958.]

5,10,15,20-Tetra-4'-pyridinylporphyrin [16834-13-2] **M 618.7, m >300°(dec).** Purify it by chromatography on alumina (neutral, Grade I), with CHCl₃/MeOH (80:20) followed by recrystallisation from CH₂Cl₂/MeOH [Yamashita et al. J Phys Chem **91** 3055 1987]. [Kalyanasundaram Inorg Chem **23** 2453 1984, Okuno et al. Synthesis 537 1980.]

Tetrathiafulvalene [31366-25-3] M 204.4, m 122-124°. Recrystallise it from cyclohexane/hexane under an argon atmosphere [Kauzlarich et al. J Am Chem Soc 109 4561 1987]. [Beilstein 19/11 V 380.]

1,2,3,4-(1*H*)Tetrazole [288-94-8] M 70.1, m 156°, 157.5-158°, pK^{25} 4.89 (acidic). Crystallise the tetrazole from EtOH and sublime it under high vacuum at *ca* 120° (*care should be taken due to possible* **EXPLOSION**). [*Beilstein* 26 H 346, 26 I 108, 26 II 196, 26 III/IV 1652.]

Thebaine [115-37-7] **M 311.4, m 193°**, $[\alpha]_{D}^{25}$ -219° (EtOH), pK²⁰ 8.15. Crystallise Thebaine from Et₂O or EtOH. Sublime it at 170-180°. The *hydrochloride* decomposes >182° (from MeOH/Et₂O). [*Beilstein* 27 II 177, 27 III/IV 2271.] It is a NARCOTIC.

2-Thenoyltrifluoroacetone [1-(2-thienyl)-4,4,4-trifluorobutan-1,3-dione] [326-91-0] M **222.2, m 42-44°, b 96-98°/9mm, pK²⁵ 6.4.** Crystallise the dione from hexane or *benzene. (Anaqueous solutions slowly decompose it). It has v_{max} 1638(C=O), 1657(C=C)cm⁻¹. The *oxime* crystallises from H₂O or aqueous EtOH. It is used for the determination of Actinides and Lanthanides. [Chaston et al. *Aust J Chem* 18 673 1956, Jeffrey et al. In *Vogel's Textbook of Qunatitative Chemical Analysis* 5thedn J Wiley & Sons, p170 1989, Beilstein 17 III/IV 5989, 17/11 V 128.]

2-Thenylamine (2-thiophenemethylamine) [27757-85-3] M 113.1, b 78.5°/15mm, d_4^{20} 1.137, n_D^{20} 1.5643, pK³⁰ 8.92. Distil the amine under reduced pressure (nitrogen), from BaO, through a column packed with glass helices. The *hydrochloride* has m 193-194° (from EtOH/Me₂CO) and the *picrate* has m 181-182°. [*Beilstein* 18 III/IV 7096.]

Theobromine (3,7-dimethyl-2,6-dioxopurine) [83-67-0] M 180.2, m 337° (sublimes slowly at 290° and finally melts melts at ~351°), pK₁⁴⁰ -0.16, pK₂²⁵ 9.96. It crystallises from H₂O. Its solubility in H₂O is 0.06% at 15° and 1.25% at 100°, and it is poorly soluble in organic solvents. It forms salts with heavy metals and is a diuretic, vasodilator and a cardiac stimulant. [Lister *Purines Part II, Fused Pyrimidines* Brown Ed, Wiley-Interscience pp254-225 1971, ISBN 0-471-38205-1, *Beilstein* 26 H 457, 26 I 135, 26 II 264, 26 III/IV 2336.]

Theophylline (1,3-dimethyl-2,6-dioxopurine, Theocin) [58-55-9] M 180.2, m 272-274°, pK_1^{40} -0.24, pK_2^{40} 8.79, pK_3 11.5 (acidic). It crystallises from H₂O as the *monohydrate* which becomes *anhydrous* above 100°. It is freely soluble in hot H₂O, but its solubility at 15° is 0.44%. It complexes with heavy metals. It is a diuretic, vasodilator and a cardiac stimulant. [Lister *Purines Part II, Fused Pyrimidines* Brown Ed, Wiley-Interscience pp253-254 1971, ISBN 0-471-38205-1, *Beilstein* 26 H 455, 26 I 134, 26 II 263, 26 III/IV 2331.]

Thianthrene [92-85-3] **M 216.3, m 158°.** Crystallise thianthrene from Me_2CO (charcoal), AcOH or EtOH. It sublimes in a vacuum. [*Beilstein* **19** H 45, **19** I 619, **19** II 34, **19** III/IV 347, **19/2** V 49.]

5-Thiazolecarboxaldehyde [1003-32-3] **M 113.1, b 92-94**°/16mm, d_4^{20} 1.304, n_D^{20} 1.5874, **pK**_{Est} ~0.6. Dry the aldehyde over Na₂SO₄ and fractionate it in a vacuum. The 2,4-dinitrophenylhydrazone forms red crystals from MeOH with **m** 238-240°, and the *semicarbazone* has **m** 210-212° (from MeOH). [Erne et al. *Helv Chim Acta* 34 148 1951, *Beilstein* 27 III/IV 2615.]

Thiazoline-2-thiol [96-53-7] **M 119.2, m 106-107°, 106-108°, pK**_{Est} ~13.0. Purify the thiol by dissolution in aqueous alkali, precipitation by addition of HCl and then recrystallisation from H₂O (as needles). [IR: Flett *J Chem Soc* 347 1953 and Mecke et al. *Chem Ber* **90** 975, Gabriel & Stelzner *Chem Ber* **28** 2931 1895, Beilstein **27** III/IV 2540.]

4-(2-Thiazolylazo)-resorcinol [2246-46-0] M 221.2, m 200-202°(dec), 218-219°, λ_{max} 500 nm, pK₁²⁵ 1.25, pK₂²⁵ 6.53, pK₃²⁵ 10.76. Dissolve it in aqueous alkali, extract it with diethyl ether, and re-precipitate it with dilute HCl. The purity is checked by TLC on silica gel using pet ether/diethyl ether/EtOH (10:10:1) as the mobile phase. It complexes with Cu²⁺ (pH 3-4), Co²⁺ and Ni²⁺ (pH 7) and Zn²⁺, and Cd²⁺ (pH 8.4). [*Beilstein* 27 III/IV 5988.]

Thiazolyl blue tetrazolium bromide (MTT, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2*H*-tetrazolium bromide) [298-93-1, 2348-71-2] M 414.3, m 171°. It is recrystallised by dissolving in MeOH containing a few drops of HBr and then adding dry Et₂O to complete the crystallisation, wash the needles with Et₂O and dry them in a vacuum desiccator over KOH. [Beyer & Pyl *Chem Ber* 87 1505 1954, *Beilstein* 27 III/IV 6045.]

Thietane (trimethylene sulfide) [287-27-4] M 74.1, m -64°, -73.2°, b 93.8-94.2°/752mm, 95°/atm, d_4^{20} 1.0200, n_D^{20} 1.5020. Purify thietane by preparative gas chromatography on a dinonyl phthalate column. It has also been purified by drying over anhydrous K₂CO₃, and distilling through a 25cm glass helices-packed column (for 14g of thietane), then drying over CaSO₄ before sealing it in a vacuum. [Haines et al. *J Phys Chem* 58 270 1954.] It is characterised as the *dimethylsulfonium iodide* m 97-98° [Bennett & Hock *J Chem Soc* 2496 1927]. The *S-oxide* has b 102°/25mm, n_D^{21} 1.5075 [Tamres & Searles *J Am Chem Soc* 81 2100 1959]. [Beilstein 17 I 3, 17 II 12, 17 III/IV 14, 17/1 V 14.]

2-Thiobarbituric acid [504-17-6] **M 144.2, m 235°(dec), pK**₁²⁵ **2.25, pK**₂²⁵ **10.72** (2% **aqueous EtOH).** Crystallise it from water. [*Beilstein* **24** H 476, **24** I 414, **24** II 275, **24** III/IV 1884.]

1,1'-Thiocarbonyldiimidazole [6160-65-2] **M 178.1, m 100-102°, 105-106°.** It forms yellow crystals on recrystallisation from tetrahydrofuran or by sublimation at 10^{-3} torr (bath temperature 70-80°). It is hydrolysed by H₂O and should be stored dry. [Staab & Walther Justus Liebigs Ann Chem **657** 98 1962; Pullukat et al. Tetrahedron Lett 1953 1967, Hanessian et al. Can J Chem **65** 1859 1987, Rajanbabu et al. J Am Chem Soc **111** 1759 1989.]

Thiochrome {2,7-dimethyl-5*H*-thiachromine-8-ethanol; 3,8-dimethyl-2-hydroxyethyl-5*H*-thiazolo[2,3:1',2']pyrimido[4',5'-*d*]pyrimidine} [92-35-3] M 262.3, m 227-228°, pK_1^{20} 8.11, pK_2^{20} 12.6. Crystallise thiochrome from chloroform. The *monohydrochloride* has m 235-236°(dec) (from EtOH) and the *dihydrochloride* has m 237°(dec). [Beilstein 27 III/IV 9599.]

2-Thiocytosine (4-amino-2-mercaptopyrimidine) [333-49-3] M 127.2, m 236-237°(dec), 285-290°(dec), pK_1^{20} 3.90 (NH₂), pK_2^{20} 11.10 (SH). It is recrystallised from hot H₂O and dried at 100° to constant weight. [Brown *J Appl Chem (London)* 9 203 1959, Russell et al. *J Am Chem Soc* 71 2279 1949.] It is used in transcription and translation studies [Rachwitz & Scheit Eur J Biochem 72 191 1977].

Thioflavine T [2-(4-dimethylaminophenyl)-3,6-dimethylbenzothiazolium chloride] [2390-54-7] M 318.9, pK²⁵ 2.7. Crystallise the chloride from *benzene/EtOH (1:1). [Beilstein 27 III/IV 5052.]

1-Thioflavone (2-phenylthiochromen-4-one) [784-62-3] M 238.3, m 129-130°. This yellow solid is purified by passage through a silica gel column, eluting with C_6H_6/Me_6CO , evaporating and crystallising the residue from EtOH. The *sulfoxide* [65373-82-2] has m 133-135°, and the *sulfone* [22810-82-2] has m 136.5-137° (from EtOH). The *dimethylhydrazone* has m 111-113° (from BuOH). It forms easily hydrolysable salts. [Nakazumi et al. *J Heterocycl Chem* **21** 193 *1984*, Chen et al. *J Org Chem* **51** 3282 *1986*, Van Allen & Reynolds *J Heterocycl Chem* **8** 807 *1971*, *Beilstein* **17** I 204, **17** III/IV 5420, **17/10** V 560.]

6-Thioguanine [154-42-7] **M 167.2, m >300°, pK**₁²³ **8.2** (**SH**), **pK**₂²³ **11.6** (acidic, 9-NH). It crystallises from H₂O as needles. It has UV λ_{max} at 258 and 347nm (H₂O, pH 1) and 242, 270 and 322nm (H₂O, pH 11). [Elion & Hitchings *J Am Chem Soc* **77** 1676 1955, Fox et al. *J Am Chem Soc* **80** 1669 1958.] It is an antineoplastic agent [Kataoka et al. *Cancer Res* **44** 519 1984]. [Beilstein **26** III/IV 3926.]

Thioindigo [522-75-8] **M 296.2, m >280°.** Adsorb it on silica gel from CCl_4 /*benzene (3:1), elute with *benzene, evaporate, crystallise the residue from $CHCl_3$ and dry it at 60-65° [Wyman & Brode J Am Chem Soc 73 1487 1951; this paper also gives details of purification of other thioindigo dyes]. [Beilstein 19 H 137, 19 I 690, 19 II 192, 19 III/IV 2091.]

Thiomorpholine (tetrahydro-2*H*-1,4-thiazine) [123-90-0] M 103.2, b 110°/100mm, 169°/atm, d_4^{20} 1.026, n_D^{20} 1.540, pK²⁵ 9.00. Purify it by vacuum distillation. The *hydrochloride* has m 179° (from isoPrOH or EtOH/Et₂O/HCl). [Davies *J Chem Soc* 306 1920, *Beilstein* 27 II 4, 2 III/IV 636.]

Thionine (3,7-diaminophenothiazine, Lauth's violet) [135-59-1, 581-64-6 (HCl), 78338-22-4 (acetate)] **M 263.7**, ε_{590} 6.2 x 10⁴ M⁻¹ cm⁻¹, pK¹⁵ 6.9. The standard biological stain is usually highly pure. It can be crystallised from water or 50% EtOH, then chromatographed on alumina using CHCl₃ as eluent [Shepp et al. J Phys Chem 66 2563 1962]. Dry it overnight at 100° and store it in a vacuum. The hydrochloride can be crystallised from 50% EtOH or dilute HCl and aqueous *n*-butanol. Purify it also by column chromatography and washed with CHCl₃ and acetone. Dry it *in vacuo* at room temperature. [Beilstein 27 H 391, 27 I 442, 27 III/IV 5149.]

Thiooxine hydrochloride (8-mercaptoquinoline hydrochloride) [34006-16-1] M 197.7, m 170-175° (dec), pK_1^{25} 2.16, pK_2^{25} 8.38. It forms yellow crystals from EtOH. It has pKa^{20} values of 2.05 and 8.29 in H₂O. It is more stable than thiooxine. [UV: Albert & Barlin J Chem Soc 2384 1959.] [Beilstein 21 H 99, 21 III/IV 1197, 21/3 V 30.]

Thiophene [110-02-1] **M 84.1, f -38.5°, b 84.2°, d** $_{4}^{20}$ **1.525, n** $_{D}^{20}$ **1.52890, n** $_{D}^{30}$ **1.5223.** The simplest purification procedure is to dry thiophen with solid KOH, or reflux it with sodium, and fractionally distil it through a glass-helices-packed column. More extensive treatments include an initial wash with aqueous HCl, then water, drying with CaSO₄ or KOH, and passage through columns of activated silica gel or alumina. Fawcett and Rasmussen [*J Am Chem Soc* **67** 1705 *1945*] washed thiophene successively with 7M HCl, 4M NaOH, and distilled water, dried with CaCl₂ and fractionally distilled it. *Benzene was removed by fractional crystallisation by partial freezing, and the thiophene was degassed and sealed in Pyrex flasks. [Also a method is described for recovering the thiophene from the *benzene-enriched portion.] [*Beilstein* **17** H 29, **17** I 17, **17** II 35, **17** III/IV 234, **17/1** V 297.]

Thiophene-2-acetic acid [1918-77-0] M 142.2, m 63-64°, 76°, b $160^{\circ}/22$ mm, pK²⁵ 3.89, pK²⁵ 6.43[MeO(CH₂)₂OH-H₂O/80:20]. Crystallise the acid from ligroin, hexane and/or distil it in a vacuum. The *amide* has m 148° (from H₂O or pet ether). [*Beilstein* 18 H 293, 18 III/IV 4062, 18/6 V 207.]

Thiophene-3-acetic acid [6964-21-2] M 142.2, m 79-80°, $pK_{Est} \sim 3.1$. Crystallise the acid from ligroin or H₂O. [*Beilstein* 18 III/IV 4066.]

2-Thiophenecarboxaldehyde [98-03-3] M **112.2**, b **75-77°/11mm**, **106°/30mm**, **198°/756mm**, d_4^{20} **1.593**, n_D^{20} **1.222**. Wash it with 50% HCl and distil it under reduced pressure just before use. It has UV: λ_{max} 234nm (hexane). The *Z*-oxime has m 144°, 136-138° and 142° (H₂O). [Beilstein **17** H 285, **17** I 148, **17** II 313, **17** III/IV 4477, **17/9** V 349.]

Thiophene-2-carboxylic acid [527-72-0] **M 128.2, m 129-130°, pK²⁵ 3.59.** Crystallise the acid from water and dry it in a vacuum. The *amide* has **m** 181°(from H₂O) and pK²⁵ 10.54(50% aqueous dioxane). [*Beilstein* **18** H 289, **18** I 438, **18** II 269, **18** III/IV 4011, **18/6** V 158.]

Thiophene-3-carboxylic acid [88-31-1] **M 128.1, m 138-139°, pK²⁵ 6.23(4.11).** Crystallise the acid from water and dry it in a vacuum. [*Beilstein* **18** H 292, **18** III/IV 4053, **18/6** V 199.] The *amide* has **m** 179-180° (from H_2O) [*Beilstein* **18** III/IV 4056].

Thiopyronine (2,7-dimethylaminothiaxanthene chloride hydrochloride) [2412-14-8] M 318.9, λ_{max} 564nm (ϵ 78,500) H₂O, pK_{Est} ~ 7. Purify it as the hydrochloride by recrystallisation

438

from hydrochloric acid forming needles **m** 245° (dec) and UV: λ_{max} 564nm (ϵ 78,500, H₂O). [Fanghanel et al. *J Phys Chem* **91** 3700 *1987*, *Beilstein* **18** H 596, **18** III/IV 7291.]

Thiothienoyltrifluoroacetone [1-(2-thienyl)-4,4,4-trifluorobutan-3-one-1-thione] [4552-64-1] M 228.2, m 61-62°, 64.5-65°, 73-74°, 74°. It is easily oxidised and has to be purified before use. This may be by recrystallisation from *benzene or by dissolution in pet ether, extraction into 1M NaOH solution, acidification of the aqueous phase with 1-6M HCl solution, back extraction into pet ether and final evaporation of the solvent. The purity can be checked by TLC. It is stored in ampoules under nitrogen at 0° in the dark. It crystallises in red crystals from pet ether. IR: v_{max} 815m(C-S, C-H), 1260m(C-S), 1570sh(C=C) and 1612s(C=O)cm⁻¹. [Müller & Rother Anal Chim Acta 66 49 1973, Chaston et al. Aust J Chem 18 673 1965.]

2-Thiouracil [141-90-2] **M 128.2, m 240°(dec), 315°(dec), pK**₁²⁵ **7.75, pK**₂²⁵ **12.7.** Crystallise 2-thiouracil from water or EtOH. [*Beilstein* **24** H 323, **24** I 315, **24** II 171, **24** III/IV 1237.]

9*H***-Thioxanthene-9-one (thioxanthone, thionanthone)** [492-22-8] **M 212.3, m 200-202°, 209°, 212-214°, b 371-373°/712mm.** It forms yellow needles from CHCl₃ or EtOH and sublimes *in vacuo*. It is soluble in CS₂, hot AcOH, and dissolves in conc H₂SO₄ to give a yellow colour with green fluorescence in VIS light. The *sulfone* has **m** 187° (from EtOH), and the *hydrazone* has **m** 115° (yellow leaflets from EtOH/*C₆H₆). The *oxime* has **m** 194-196° (from pet ether). [Szmant et al. *J Org Chem* **18** 745 *1953*, Ullmann et al. *Chem Ber* **49** 2509 *1916*, NMR: Sharpless et al. *Org Magn Res* **6** 115 *1974*, *Beilstein* **17** H 357, **17** I 191, **17** III/IV 5302, **17/10** V 437.]

β-Thymidine [50-89-5] **M 242.2, m 185°, 186-188°,** $[\alpha]_{D}^{20}$ +19° (c 1, H₂O). pK₂²⁵ 9.65. Crystallise β-thymidine from ethyl acetate, MeOH/Et₂O (m 188°) or H₂O (as 2H₂O m 189°). It is soluble in water and hot organic solvents. The *picrate* has m 230° (from EtOH). [*Beilstein* 24 III/IV 1297.]

Thymine (5-methylpyrimidin-2,4-dione) [65-71-4] M 126.1, m 326°(dec), pK_1^{25} 9.90 (9.82) $pK_2^{25} > 13.0$. Crystallise thymine from EtOAc, 10% aqueous EtOH or water. It has m 318-320° after sublimation at 200°/12mm. Purify it by preparative (2mm thick) TLC plates of silica gel, eluting with ethyl acetate/isopropanol/water (75:16:9, v/v; $R_F 0.75$). The desired spot is localated with a uv lamp, cut the band from the plate, place it in MeOH, shake and filter it through a millipore filter, then evaporate. [Infante et al. *J Chem Soc, Faraday Trans 1* 68 1586 1973, Beilstein 24 H 353, 24 I 330, 24 II 183, 24 III/IV 1292.]

Tinuvin P (2-[2*H*-benzotriazol-2-yl]-*p*-cresol) [50936-05-5] M 225.3, m 131-133°, $pK_{Est(1)}\sim 1.6$ (N protonation), $pK_{Est(2)}\sim 8$ (phenolic OH). Recrystallise it from *n*-heptane or Me₂CO/pentane. [Woessner et al. J Phys Chem 81 3629 1985.]

Toluidine Blue O [93-31-9] **M 305.8, CI 52040,** λ max 626nm, pK²⁵ 7.5. Crystallise the dye from hot water (18mL/g) by adding one and a half volume of alcohol and chilling on ice. Dry it at 100° in an oven for 8-10hours. [Merrill & Spencer J Am Chem Soc 70 3683 1948, Beilstein 27 H 402, 27 I 417, 27 II 454, 27 III/IV 5161.]

1,5,7-Triazabicyclo[4.4.0]dec-5-ene (**TBD**, **1,3,4,6,7,8-hexahydro-**2H**-pyrimido[1,2-a]-pyrimidine**) [5807-14-7] **M 139.2, m 125-130°**, **pK**²⁵ ~ **16** It crystallises from Et₂O but readily forms white crystals of the carbonate. It is a strong base (see pK, i.e. about 100 times more basic than tetramethylguanidine). The *picrate* has **m** 220.5-222° (from EtOH). It forms the 5-*nitro* derivative **m** 14.5-160° that gives a 5-*nitro nitrate* salt **m** 100-101° (from EtOH/Et₂O) and a 5-*nitro picrate* **m** 144-145° (from H₂O) [McKay & Kreling Can J Chem **35** 1438 1957, Schwesinger Chimia **39** 369 1985, Hilpert et al. J Chem Soc, Chem Commun 1401 1983, Kamfen & Eschenmoser Helv Chim Acta **72** 185 1989]. [Beilstein **26** III/IV 60.]

1,2,4(1*H***)-Triazole** [288-88-0] **M 69.1, m 121°, 260°, pK_1^{25} 2.27 (basic), pK_2^{25} 10.26 (acidic). Crystallise 1,2,4-triazole from EtOH, H₂O, EtOAc (m 120.5-121°), or EtOH/*C₆H₆. The**

hydrochloride has **m** 170°, and the *picrate* has **m** 163-164° (from H₂O or CHCl₃). [Barszcz et al. *J Chem Soc*, *Dalton Trans* 2025 1986]. [*Beilstein* **26** H 13, **26** II 6, **26** III/IV 35.]

Tricycloquinazoline [195-84-6] **M 230.3, m 322-323°.** Crystallise it repeatedly from toluene, xylene or these solvents mixed with C_6H_6 . It can also be crystallised from CHCl₃ or cymene (**m** 308-310°), followed by sublimation at 210°/0.15-0.3 Torr in subdued light. [*Beilstein* **26** III/IV 1932.]

Trifluoperazine dihydrochloride (10-[3-{4-methyl-1-piperazinyl}propyl]-2-trifluoro-methylphenothiazine 2HCl) [440-17-5] M **480.4**, m **240-243°**, **242-243°**, **pK**₁ **3.9**, **pK**₂ **8.1**. Recrystallise the salt from absolute EtOH, filter the crystals, dry them *in vacuo* and store them in tightly stoppered bottles because it is *hygroscopic*. It is soluble in H₂O but insoluble in *C₆H₆, Et₂O and alkaline aqueous solution. It has UV λ_{max} at 258 and 307.5nm (log ε 4.50 and 3.50) in EtOH (neutral species). [Craig et al. *J Org Chem* **22** 709 *1957.*] It is a calmodulin inhibitor [Levene & Weiss *J Parmacol Exptl Ther* **208** 454 *1978*] and is a psychotropic agent [Fowler *Arzneim.-Forsch* **27** 866 *1977*]. [*Beilstein* **27** III/IV 1353.]

Trigonelline (1-methylnicotinic acid zwitterion) [535-83-1] M 137.1, m 218°(dec). It crystallises (as *monohydrate*) from aqueous EtOH, then it is dried at 100°. The *hydrochloride* [6138-41-6] M 173.6 has m 258-259°(dec) (from EtOH) [Smissman & Hite J Am Chem Soc 81 1201 1959]. [Beilstein 22 H 42, 22 I 504, 22 II 35, 22 III/IV 462, 22/2 V 143.]

4',5,7-Trihydroxyflavone (apigenin) [520-36-5] M 270.2, m 296-298°, 300-305°, 345-350° (pK's 7–10, for phenolic OH). Crystallise it from aqueous pyridine or aqueous EtOH. It dyes wool yellow when mixed with Cr ions. [Beilstein 18 H 181, 18 I 396, 18 II 178, 18 III/IV 2682, 18/4 V 574.]

1',3',3'-Trimethyl-6-nitrospiro[2*H*-benzopyran-2,2'-indoline] [1498-88-0] M 322.4, m 180°. This photochromic dye crystallises from absolute EtOH [Hinnen et al. *Bull Soc Chim Fr* 2066 1968, Ramesh & Labes J Am Chem Soc 109 3228 1987, Berman et al. J Am Chem Soc 81 5607 1959]. [Beilstein 27 III/IV 1460.]

2,2,4-Trimethyl-6-phenyl-1,2-dihydroquinoline [3562-69-4] **M 249.3, m 102°.** It is the principal ingredient in Santoflex. Crystallise it three times from absolute EtOH. The *1-phenylcarbamoyl* derivative has **m** 148-149.6° (from EtOH). [Hively et al. Anal Chem **27** 100 1955, Beilstein **20** III/IV 4116.]

2,4,6-Trimethylpyridine (sym-collidine) [108-75-8] M 121.2, m -46°, b 10°/2.7mm, 36-37°/2mm, 60.7°/13mm, 65°/31mm, 170.4°/760mm, 175-178°/atm, d_4^{25} 0.9100, n_D^{20} 1.4939, 1.4981, n_D^{25} 1.4959, pK^{25} 6.69(7.45). Commercial samples may be grossly impure. Likely contaminants include 3,5-dimethylpyridine, 2,3,6-trimethylpyridine and water. Brown, Johnson and Podall [*J Am Chem Soc* 76 5556 1954] fractionally distilled 2,4,6-trimethylpyridine under reduced pressure through a 40cm Vigreux column (p 11) and added to 430mL of the distillate slowly, with cooling to 0°, 45g of BF₃diethyl etherate. The mixture was again distilled, and an equal volume of dry *benzene was added to the distillate. Dry HCl was passed into the solution, which was kept cold in an ice-bath, and the hydrochloride was filtered off. It was recrystallised from absolute EtOH (1.5mL/g) to m 286-287°[m 256°(sealed tube), also m 293-294° subliming slowly]. The free base was regenerated by treatment with aqueous NaOH, then extracted with *benzene, dried (MgSO₄) and distilled under reduced pressure. Sisler et al. [*J Am Chem Soc* 75 446 1953] precipitated trimethylpyridine as its phosphate from a solution of the base in MeOH by adding 85% H₃PO₄, shaking and cooling. The free base was regenerated as above. Garrett and Smythe [*J Chem Soc* 763 1903] purified the trimethylpyridine *via* the HgCl₂ complex. It is more soluble in cold than hot H₂O [the solubility is 20.8% at 6°, 3.5% at 20°, 1.8% at 100°].

Alternatively, purify it by dissolving it in CHCl₃, adding solid K₂CO₃ and Drierite, filtering and fractionally distilling through an 8in helix-packed column. The *sulfate* has **m** 205°, and the *picrate* (from hot H₂O) has **m** 155-156°. [Frank & Meikle *J Am Chem Soc* **72** 4184 1950, Beilstein **20** H 250, **20** I 87, **20** II 164, **20** III/IV 2810, **20/6** V 93.]

1,3,7-Trimethyluric acid [5415-44-1] **M 210.2, m 345°(dec), pK²⁵ 6.0.** Crystallise it from water and dry it at 100° in a vacuum. It has UV: λ_{max} 289nm (pH 2.5). [*Beilstein* **26** III/IV 2623.]

440

1,3,9-Trimethyluric acid [7464-93-9] **M 210.2, m 340°(dec), 347°, pK²⁰ 9.39.** Crystallise it from water and dry it at 100° in a vacuum. [*Beilstein* **26** H 530, **26** II 301, **26** III/IV 2623.]

1,7,9-Trimethyluric acid [55441-82-2] **M 210.2, m 316-318°, 345°, pK**_{Est} ~9.0. Crystallise the uric acid from water or EtOH, and sublime it *in vacuo*. [*Beilstein* **26** H 530, **26** II 302, **26** III/IV 2623.]

3,7,9-Trimethyluric acid [55441-72-0] **M 210.2, m 373-375°(dec), pK²⁰ 9.39.** Crystallise the uric acid from water and dry it at 100° in a vacuum. It has UV: λ_{max} 294nm (pH 2.5). [Bergmann & Dikstein J Am Chem Soc77 691 1955, Beilstein 26 H 530, 26 I 156, 26 II 301, 26 III/IV 2623.]

1,3,5-Trioxane [110-88-3] **M 90.1, m 64°, b 114.5°/759mm.** Crystallise 1,3,4-trioxane from sodium-dried diethyl ether or water, and dry it over CaCl₂. It can also be purified by zone refining. [*Beilstein* **19** H 381, **19** II 392, **19** III/IV 4710, **19/9** V 103.]

Trioxsalen (2,5,9-trimethyl-7*H*-furo[3,2-*g*]benzopyran-7-one) [3902-71-4] M 228.3, m 233-235°, 234.5-235°. Purify trioxsalen by recrystallisation from CHCl₃. If too impure, it is fractionally crystallised from CHCl₃/pet ether (b 30-60°) using Norit and finally crystallised from CHCl₃ alone to give colourless prisms, m 234.5-235°. It is a photosensitiser so it should be stored in the dark. [UV: Kaufmann J Org Chem 26 117 1961, Baeme et al. J Chem Soc 2976 1949, Beilstein 19/4 V 472.]

2,3,5-Triphenyltetrazolium chloride (TTC, TTZ) [298-96-4] **M 334.8, m 243°(dec).** Crystallise TTZ from EtOH or CHCl₃, and dry it at 105°. [*Beilstein* **26** H 363, **26** II 216, **26** III/IV 1774.]

Tripyridyl triazine [3682-35-7] M 312.3, m 245-248°, 248-250°. Purify it by repeated crystallisation from aqueous EtOH. It is a reagent for the determination of Fe(II) and total Fe [Collins et al. Anal Chem 31 1862 1959]. [Beilstein 26 III/IV 4192.]

1,3,5-Trithiane (trithioformaldehyde) [291-21-4] M 138.3, m 216-218°(dec). Crystallise it from AcOH or toluene, after Soxhlet extraction with toluene (30g/300mL) [*Beilstein* 19 III/IV 4711, 19/9 V 105.]

3-Tropanol (**Tropine**) [120-29-6] **M 141.2, m 63°, 64-66°, b 229°/760mm, pK¹⁵ 3.80.** Distil 3-tropanol in steam and crystallise it from Et₂O or toluene/pet ether. It sublimes at 60°/0.1mm. *Hygroscopic*. The *hydrochloride* has **m** 280° (from EtOH/Et₂O). [*Beilstein* **21** H 16, **21** I 197, **21** II 17, **21** III/IV 168, **21/1** V 219.]

Tryptamine [(3-2-aminoethyl)indole)] [61-54-1] M 160.1, m 116°, pK₁²⁵ -6.31 (aqueous H₂SO₄, diprotonation), pK_{Est(2)}~4.9, pK₃²⁵ 16.60 (acidic indole NH). Crystallise tryptamine from *benzene, Et₂O (m 114°) or pet ether (m 118°). It has UV: λ_{max} 222n 276, 282 and 291nm (EtOH) and 226, 275, 281 and 290nm (HCl). [*Beilstein* 22 II 346, 22 III/IV 4319, 22/10 V 45.]

Tryptamine hydrochloride [343-94-2] M 196.7, m 252-253°. Crystallise the salt from EtOH/water or EtOH/Et₂O. See previous entry for UV. [*Beilstein* 22 II 347, 22 III/IV 4319, 22/10 V 46.]

Tryptophol [3-(2-hydroxyethyl)indole] [526-55-6] M 161.2, m 59°, b 174°/2mm. Crystallise it from diethyl ether/pet ether, C_6H_6 , C_6H_6 /pet ether. The *picrate* has m 100-101° (from C_6H_6). [Beilstein 21 I 218, 21 II 49, 21 III/IV 788, 21/3 V 61.]

(+)-Tubocurarine chloride (5H₂O) [57-94-3] M 771.7, m 274-275°(dec) (anhydrous), $[\alpha]_{546}^{20}$ +235° (c 0.5, H₂O), pK_{Est(1}~8.5, pK_{Est(2}~8.8. Crystallise this chloride from water. It forms various hydrates. The *hydrochloride pentahydrate* has m 268-269° (from H₂O) and $[\alpha]_D^{21}$ +190° (0.5, H₂O). Its solubility in H₂O at 25° is 50mg/mL. [*Beilstein* 27 II 897, 27 III/IV 8727.]

442 Purification of Organic Chemicals – Heterocyclic Compounds

Umbelliferone (7-hydroxycoumarin) [93-35-6] M 162.2, m 225-228°, 230-233°, $pK_{Est} \sim 8.0$. It crystallises from water (m 232-232.2°) or EtOH (m 232°). It sublimes at 160°/0.001mm. Fluorescence: Em _{max} 452nm/Exc 325nm in 50% EtOH. [*Beilstein* 18 H 27, 18 I 306, 18 II 16, 18 III/IV 294, 18/1 V 386.]

Uracil (pyrimidine-2,4(1*H*)-dione) [66-22-8] M 122.1, m 335°(dec), pK_1^{25} 9.43, pK_2^{25} 13.3-14.2. Uracil crystallises from water (m 339-341°) and m 338° after sublimation in high vacuum. Its solubility in H₂O at 20° is 1g/300mL. [Beilstein 24 H 312, 24 I 312, 24 II 169, 24 III/IV 1193.]

Uramil (5-aminobarbituric acid) [118-78-5] M 143.1, m 310-312°, 320°, >400°(dec), $pK_{Est(1)}\sim3.9$, $pK_{Est(2)}\sim8.0$, $pK_{Est(3)}\sim12.5$. It crystallises from water. It has also been purified by dissolving it in aqueous ammonia and precipitating it by dropwise addition of formic acid. The solid is collected and dried in a vacuum at 100°. [Hartman & Sheppard *Org Synth* Coll Vol II 617 1943, Beilstein 25 H 492, 25 I 704, 25 III/IV 4228.]

Uric acid [69-93-2] M 168.1, m >300° (dec) pK_1 5.75, pK_2 10.3. Crystallise uric acid from hot distilled H₂O (the solubility in H₂O is 1part/39,000parts at 18° and 1part/2,000parts at 100°). It is best purified by dissolving in an alkaline solution and acidifying with dilute HCl and drying it at 100° in a vacuum. [Bergmann & Dikstein *J Am Chem Soc* 77 691 1955, Lister *Purines Part II, Fused Pyrimidines* Brown Ed, Wiley-Interscience pp256-257 1971, ISBN 0-471-38205-1, *Beilstein* 26 H 513, 26 I 151, 26 II 293, 26 III/IV 2619.]

β-Uridine [58-96-8] **M 244.2, m 165°, [α]** $_{D}^{20}$ +10.0° (c 1.6, H₂O), pK²⁵ 9.51 (9.25). Crystallise β-uridine from aqueous 75% MeOH or EtOH (m 165-166°). [Beilstein 24 III/IV 1202.]

Urocanic acid (4-imidazolylacrylic acid) [104-98-3] M 138.1, m 225°, 226-228°, $pK_{Est(1)}\sim 2.5$, $pK_{Est(2)}\sim 6$, $pK_{Est(3)}\sim 11$. Crystallise the acid from water and dry it at 100°. The *trans-isomer* [3465-72-3] has m 225° (229-230°, 230-231° or 231° (dec, from H₂O) and pK_1 3.5 and pK_2 5.6, and the *picrate* has m 225° (dec, from H₂O). The *cis-isomer* [7699-35-6] has m 175-176° (178-179° or 180-184° dec, from H₂O) and pK_1 3.0 and pK_2 6.7, and the *picrate* has m 204° (from H₂O). [Beilstein 25 H 124, 25 I 536, 25 II 121, 25 III/IV 786.]

 δ -Valerolactam (2-piperidone) [675-20-7] M 99.1, m 38.5-39.5°, 39-40°, 40°, b 81-82°/0.1mm, 136-137°/15mm, pK²⁵ 0.75 (in AcOH). Purify it by repeated fractional distillation. [Cowley J Org Chem 23 1330 1958, Reppe et al. Justus Liebigs Ann Chem 596 198 1955, IR: Huisgen et al. Chem Ber 90 1437 1957.] The hydrochloride has m 183-184° (from isoPrOH or EtOH/Et₂O) [Hurd et al. J Org Chem 17 865 1952], and the oxime has m 122.5° (from pet ether) [Behringer & Meier Justus Liebigs Ann Chem 607 67 1957]. The picrate has m 92-93°. [Beilstein 21 H 239, 21 III/IV 3170, 21/6 V 396.]

δ-Valerolactone (tetrahydro-2*H*-pyran-2-one) [542-28-9] M 100.1, m -13°, -12°, b 88°/4mm, 97°/10mm, 124°/24mm, 145-146°/40mm, 229-229.5°/atm, d_4^{20} 1.1081, n_D^{20} 1.4568. Purify the δ-lactone by repeated fractional distillation. IR: v_{max} 1750 (in CS₂), 1732 (in CHCl₃), 1748 (in CCl₄) and 1733 (in MeOH) cm⁻¹ [Huisgen & Ott *Tetrahedron* 6 253 1959, Linstead & Rydon J Chem Soc 580 1933, Jones et al. Can J Chem 37 2007 1959]. [Beilstein 17 H 235, 17 II 287, 17 III/IV 4169, 17/9 V 17.]

γ-Valerolactone (± 4,5-dihydro-5-methyl-2(3*H*)-furanone) [108-29-2] M 100.1, m -37°, 36°, b 82-85°/10mm, 102-103°/28mm, 125.3°/68mm, 136°/100mm, 205.75-206.25°/ 754mm, d_4^{20} 1.072, n_D^{20} 1.4322. Purify the γ-lactone by repeated fractional distillation [Boorman & Linstead *J Chem Soc* 577, 580 1933]. IR: v_{max} 1790 (CS₂), 1775 (CHCl₃) cm⁻¹ [Jones et al. *Can J Chem* 37 2007 1959]. The *BF*₃-complex distils at 110-111°/20mm [Reppe et al. *Justus Liebigs Ann Chem* 596 179 1955]. It is characterized by conversion to γ-hydroxy-*n*-valeramide on treatment with NH₃, m 51.5-52° (by slow evaporation of a CHCl₃ solution). [*Beilstein* 17 H 235, 17 I 131, 17 II 288, 17 III/IV 4176, 17/9 V 24.] (±)-Vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) [50471-44-8] M 286.1, m 108°. Crystallise the fungicide from Me₂CO/H₂O. Its solubility at 20° (w/w%) is 44 (Me₂CO), 32 (CHCl₃), 25 (EtOAc) and 10 (H₂O). It irritates the eyes and skin. [GP 2,207,576 1973, Chem Abstr 79 137120 1973.]

N-Vinylcaprolactam [2235-00-9] M 139.2, m 35-38°(polym), b 95-95.5°/4mm, 128°/21mm, d_4^{20} 1.0287, n_D^{20} 1.5133. Distil it under vacuum and with 0.0015% of 4-*tert*-butylcatechol as stabilizer. [*Beilstein* 21 III/IV 3207.]

N-Vinylcarbazole [1484-13-5] M 193.3, m 66°. Crystallise *N*-vinylcarbazole repeatedly from MeOH in amber glassware. It sublimes in a vacuum. [*Beilstein* 20 II 282, 20 III/IV 3830, 20/8 V 19.]

Vinylene carbonate (1,3-diaxol-2-one) [872-36-6] M 86.1, m 22^o, b 76-78^o/37mm, 165^o/~760mm. Purify it by zone melting, or distillation, and stabilize it with 0.5% of 2,6-di-*tert*-butyl-*p*-cresol. [*Beilstein* 19 III/IV 1597, 19/4 V 72.]

2-Vinylpyridine monomer [100-69-6] M 105.1, b 79-82°/29mm, d 0.974, n 1.550, pK^{25} **4.92(4.98).** Steam distil it, then dry it with MgSO₄ and distil it in a vacuum. [Beilstein 20 H 256, 20 III/IV 2884, 20/6 V 211.]

4-Vinylpyridine monomer [100-43-6] M 105.1, b 40-41°/1.4mm, 54°/5mm, 58-61°/12mm, 68°/18mm, 79°/33mm, d_4^{20} 0.9836, n_D^{20} 1.5486, pK²⁵ 5.62. Purify the monomer by fractional distillation under a good vacuum and in a N₂ atmosphere and store it in sealed ampoules under N₂, and keep it in the dark at -20°. The *picrate* has m 175-176°. [UV: Coleman & Fuoss J Am Chem Soc 77 5472 1955, Overberger et al. J Polymer Sci 27 381 1958, Petro & Smyth J Am Chem Soc 79 6142 1957.] It is used for alkylating SH groups in peptides [Anderson & Friedman Can J Biochem 49 1042 1971, Cawins & Friedman Anal Biochem 35 489 1970]. [Beilstein 20 II 170, 20 III/IV 2887, 20/6 V 213.]

Viologen (4,4'-dipyridyl dihydrochloride) [27926-72-3] M 229.1, m 278° (also reported m 302-306°, >300°, with sublimation), pK_1^{20} 3.17, pK_2^{20} 4.82. Purify viologen by precipitation on adding excess of acetone to a concentrated solution of it in aqueous MeOH. It has also been recrystallised several times from MeOH or *iso*-propanol and dried at 70° under vacuum for 24hours [Prasad et al. *J Am Chem Soc* 108 5135 1986], and recrystallised three times from MeOH/isopropanol [Stramel & Thomas *J Chem Soc*, *Faraday Trans* 82 799 1986, Michaelis & Hill *J Am Chem Soc* 55 1481 1933, Tilford et al. *J Am Chem Soc* 70 4005 1948]. [Beilstein 23 I 49.]

Visnagin (4-methoxy-7-methyl-5*H*-furo[3,2-g][1]benzopyran-5-one) [82-57-5] M 230.2, m 142-145°. Crystallise visnagin from water. It is soluble in CHCl₃ but slightly soluble in EtOH. [Aneja et al. *Tetrahedron* 3 230 1958, *Beilstein* 19 III/IV 2640.]

9H-Xanthene (dibenzopyran) [92-83-1] M 182.2, m 100.5°, 101-102.5°, b 310-312°/760mm. Crystallise dibenzopyran from *benzene, MeOH or EtOH. [Beilstein 17 H 73, 17 I 30, 17 II 72, 17 III/IV 614, 17/2 V 252.]

Xanthine (2,6-dihydroxypurine, purine-2,6(1*H*,3*H*)dione) [69-89-6] M 152.1, pK₁ 0.8 [protonation of imidazole 7(9)NH], pK₂ 7.44 [monoanion 1(3)NH], pK₃ 11.12 [dianion 1,3-N²]. The monohydrate separates in a microcrystalline form on slow acidification with acetic acid of a solution of xanthine in dilute NaOH. It is also precipitated by addition of conc NH₃ to its solution in hot 2N HCl (charcoal). After washing with H₂O and EtOH, it is dehydrated by heating above 125°. Its solubility in H₂O is 1 in 14,000parts at 16° and 1 in 1,500parts of boiling H₂O, and separates as plates . It has no **m**, but the *perchlorate* has **m** 262-264° [Lister *Purines Part II, Fused Pyrimidines* Brown Ed, Wiley-Interscience pp252-253 1971, ISBN 0-471-38205-1]. [Beilstein 26 H 447, 26 I 131, 26 II 260, 26 III/IV 2327.] 444

9-Xanthone (9-xanthenone) [90-47-1] **M 196.2, m 175.6-175.4°.** Crystallise xanthone from EtOH (25mL/g) and dry it at 100°. It has also been recrystallised from *n*-hexane three times and sublimed *in vacuo*. [Saltiel J Am Chem Soc **108** 2674 1986]. [Beilstein **17** H 354, **17** I 190, **17** II 378, **17** III/IV 5292, **17/10** V 430.]

Xanthosine (2H₂O) [9-(β -D-ribosyl)purin-2,6(1*H*,3*H*)-dione] [5968-90-1] M 320.3, [α]_D²⁰ -53° (c 8, 0.3M NaOH), pK₁²⁵ <2.5, pK₂²⁵ 5.67, pK₃²⁵ 12.85. It crystallises from EtOH (anhydrous) or water (as dihydrate). [Howard et al. *J Chem Soc* 232 1949, *Beilstein* 31 H 28, 26 III/IV 2428.]

Xanthurenic acid (5,8-dihydroxyquinoline-2-carboxylic acid) [59-00-7] M 205.2, m 286°, 290-295°(dec), 297-29°(dec), $pK_{Est(1)} \sim 1.5$, $pK_{Est(2)} \sim 4.9$, $pK_{Est(3)} \sim 9.8$. It is precipitated by the addition of 2N formic acid to its solution in hot 2M ammonia (charcoal). The solid is filtered off, dried in a vacuum at ~80° in the dark. UV (H₂O) has λ_{max} nm (ϵ M⁻¹cm⁻¹): 243 (30,000) and 342 (6,500). The *methyl* ester has m 262° (from MeOH). It forms Cu²⁺, Zn²⁺, Fe²⁺ and Fe³⁺ salts. [Beilstein 22 III/IV 2513.]

Xanthydrol [90-46-0] **M 198.2, m 122-123°, 123-124°, 124-126°.** Crystallise xanthydrol from EtOH and dry it at 40-50°. [*Beilstein* 17 H 129, 17 I 72, 17 II 146, 17 III/IV 1602, 17/4 V 502.]

Xylenol Orange $\{3H-2,1\text{-}benzoxathiol-3-ylidene-bis-[(6-hydroxy-5-methyl-m-phenylene)-methylnitrilo]tetraacetic acid, S,S-dioxide} [1611-35-4] M 672.6, m 210°(dec), <math>\varepsilon_{578}$ 6.09 x 10⁴ (pH 14), ε_{435} 2.62 x 10⁴ (pH 3.1), pK₁ -1.74, pK₂ -1.09 (aqueous H₂SO₄-HNO₃), pK₃ 2.58, pK₄ 3.23, pK₅ 6.46, pK₆ 10.46, pK₇ 12.28. It is generally contaminated with starting material (cresol red) and semi-xylenol orange. Purify it by ion-exchange chromatography using DEAE-cellulose, eluting with 0.1M NaCl solution, which will give the sodium salt [3618-43-7]. Cresol Red, semi-xylenol orange and iminodiacetic acid bands elute first. This procedure will give the sodium salt of the dye.

To obtain the *free acid*, dissolve the salt in H_2O and acidify it with AcOH. Filter it off, wash it with H_2O and dry it first in air and then in a vacuum desiccator over P_2O_5 in the dark [Sato et al. *Anal Chim Acta* **94** 317 *1977*]. [*Beilstein* **19** II 111, **19** III/IV 1135, **19/3** V 461.]

α-Yohimbine [146-48-5] **M 354.5, m 235-237°(dec), 278°(dec),** $[\alpha]_{D}^{20}$ +55.6° (c 2, EtOH), **pK**₁²² 3.0, **pK**₂²² 7.45. Crystallise the alkaloid from EtOH, and dry it in a vacuum to remove EtOH of crystallisation. [Van Tamelen et al. *J Am Chem Soc* 91 7315 1969, Stork & Guthikonda *J Am Chem Soc* 94 5109 1972, Wenkert et al. *J Am Chem Soc* 100 4894 1978 and *J Am Chem Soc* 101 5370 1982, Beilstein 25 II 201, 25 III/IV 1234.] For δ-yohimbine and γ-yohimbine see ajmalicine and ajmaline above.

CHAPTER 5

PURIFICATION OF INORGANIC AND METAL-ORGANIC CHEMICALS

(Including Organic compounds of B, Bi, P, Se, Si, and ammonium and metal salts of organic acids)

INTRODUCTION

The most common method of purification of inorganic species is by recrystallisation, usually from water. However, especially with salts of weak acids or of cations other than the alkaline and alkaline earth metals, care must be taken to minimise the effect of hydrolysis. This can be achieved, for example, by recrystallising acetates in the presence of dilute acetic acid. Nevertheless, there are many inorganic chemicals that are too insoluble or are hydrolysed by water so that no general purification method can be given. It is convenient that many inorganic substances have large temperature coefficients for their solubility in water, but in other cases recrystallisation is still possible by partial solvent evaporation.

Organo-metallic compounds, on the other hand, behave very much like organic compounds, e.g. they can be redistilled and may be soluble in organic solvents. A note of **caution** should be made about handling organo-metallic compounds, e.g. arsines, because of their **potential toxicities**, particularly when they are volatile. Generally the suppliers of such compounds provide details about their safe manipulation. These should be read carefully and adhered to closely. If in any doubt, always assume that the materials are lethal and treat them with utmost care. The same **safety precautions** about the handling of substances as stated in Chapter 4 should be followed here (see Chapter 1).

For information on **ionization (pK)** see Chapter 1, p 32, and Chapter 4, p 89. In order to avoid repetition, the literature (or predicted) pK values of anionic and/or cationic species are usually reported at least once, and in several cases are entered for the free acid or free base; e.g. Na_2SO_4 will have a pK value for Na^+ at the entry for NaOH and the pK values for SO_4^{2-} at the entries for H_2SO_4 . When the pK values of the organic counter-ions are not given in this chapter, as in case of sodium benzoate, the reader is referred to the value(s) in Chapter 4, e.g. of benzoic acid.

Abbreviations of titles of periodicals are defined as in the Chemical Abstracts Service Source Index (CASSI).

Benzene, which has been used as a solvent successfully and extensively in the past for reactions and purification by chromatography and crystallization, is now considered a **very dangerous substance**, so it has to be used with extreme care. We emphasised that an alternative solvent to benzene (e.g. toluene, toluene-petroleum ether, or a petroleum ether to name a few) should be used first. However, if benzene has to be used, then all operations have to be performed in well-ventilated fumehoods and precautions taken to avoid inhalation and contact with skin and eyes. Whenever benzene is mentioned in the text, an asterisk e.g. ${}^{*}C_{6}H_{6}$ or * benzene, is inserted to remind the user that special precaution should be adopted.

Organic dyes which are *not* complexed or are salts of metals are included in Chapter 4 (use the CAS Registry Numbers to find them). Commercially available polymer-supported reagents are indicated with § under the appropriate reagent.

This chapter is subdivided into two sections: the **Purification of Inorganic Compounds** and the **Purification of Metal-Organic Compounds** which includes ammonium and metal salts of organic acids.

INORGANIC COMPOUNDS

Alumina (aluminium oxide) (neutral) [1344-28-1] M 102.0 (anhydrous). Stir the oxide with hot 2M HNO₃, either on a steam bath for 12hours (changing the acid every hour) or three times for 30minutes, then wash it with hot distilled water until the washings have pH 4, and follow by three washings with hot MeOH. The product is dried at 270° [Angyal & Young J Am Chem Soc 81 5251 1959]. For the preparation of alumina for chromatography see Chapter 1. [For α , β and γ Al₂O₃ see Becher in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 822-823 1963 and Wagner in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1662 1965.]

Aluminium ammonium sulfate (10H₂O) [7784-26-1] M 453.3, m 93°, m 95°, pK_1^{25} 4.89, pK_2^{25} 5.43, pK_3^{25} 5.86 (Al³⁺ aquo), pK_4^{25} 11.22 [aluminate Al(OH)₄⁻]. Crystallise it from hot H₂O and cool in ice. When the melt is heated, it loses NH₃ and H₂SO₄, and gives pure alumina at red heat. Solubility (%) in H₂O is 3.9 (0°), 15.0 (20°) and 135 (100°).

Aluminium bromide [7727-15-3] M 266.7, m 97°, b 114°/10mm, d_4^{18} 3.205. Reflux it and then distil it from pure aluminium chips in a stream of nitrogen into a flask containing more of the chips. It is then distilled under vacuum into ampoules [Tipper & Walker *J Chem Soc* 1352 1959]. Anhydrous conditions are essential, and the white to very light brown solid distillate can be broken into lumps in a dry-box (under nitrogen). It fumes in moist air. [Becher in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 812-813 1963.]

Aluminium caesium sulfate (12 H_2O) [7784-17-0 (12 H_2O), 14284-36-7] M 568.2. Recrystallise it from hot water (3mL/g).

Aluminium chloride (anhydrous) [7446-70-0] M 133.3, m 192.6°, d_4^{17} 2.465. Sublime it several times in an all-glass system under nitrogen at 30-50mm pressure. It has also been sublimed in a stream of dry HCl and has been subjected to a preliminary sublimation through a section of granular aluminium metal [for manipulative details see Jensen J Am Chem Soc 79 1226 1957]. It fumes in moist air.

Aluminium fluoride (anhydrous) [7784-18-4] M 84.0, m 250°. The technical material may contain up to 15% alumina, and minor impurities such as aluminium sulfate, cryolite, silica and iron oxide. Reagent grade AlF₃ (hydrated) contains only traces of impurities, but its water content is variable (and may be up to 40%). It can be dried by calcining at 600-800° in a stream of dry air (some hydrolysis occurs), followed by vacuum distillation at low pressure in a graphite system, heated to approximately 925° (condenser at 900°) [Henry & Dreisbach J Am Chem Soc 81 5274 1959]. Its solubility in H₂O is 0.5%. [Kwasnik in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 225-226 1963.]

Aluminium nitrate (9H₂O) [7784-27-2 (9H₂O); 13473-90-0] M 375.1. Crystallise the nitrate from dilute HNO₃, and dry it by passing dry nitrogen through the crystals for several hours at 40°. After 2 recrystallisations of ACS grade, it had S, Na and Fe at 2.2, 0.01 and 0.02 ppm, respectively.

Aluminium potassium sulfate (12H₂O, alum) [7784-24-9] M 474.4, m 92°. Crystallise it from weak aqueous H₂SO₄ (*ca* 0.5mL/g). Its solubility (%) in H₂O is 5.7 (0°), 12.0 (20°) and 136.9 (100°).

Aluminium rubidium sulfate $(12H_2O)$ [7784-29-4] M 496.2. Crystallise the double salt from aqueous H₂SO₄ (*ca* 2.5mL/g).

Aluminium sulfate (anhydrous) [10043-01-3] M 342.2, m 765°(dec), Al₂O₃ 14-18 H₂O [17927-65-0], Al₂O₃ 18 H₂O [7784-31-8]. It crystallises from hot dilute H₂SO₄ (l mL/g) on cooling in ice. When a solution of alumina (Al₂O₃) in conc H₂SO₄ is slowly cooled, Al₂SO₄ 17 or 18H₂O deposits as a crystalline mass. Al₂SO₄ 17H₂O is the stable form in equilibrium with its saturated aqueous solution at 25° [Smith J Am Chem Soc 64 41 1942]. This is purified by dissolving it in a small volume of H₂O and adding

447

EtOH until the sulfate readily crystallises from the oily supersaturated solution. It forms Al_2O_3 16H₂O between 0-112°. On gradual heating, the hydrate melts, giving the anhydrous salt at *ca* 250°. Several hydrates up to 27H₂O have been described. Further heating to red heat (~ 600-800°) causes decomposition to Al_2O_3 + SO₃ + SO₂ and O₂ [Cobb *J Soc Chem Ind* **29** 250 *1910*]. The ACS reagent is Al₂O₃ 18H₂O (98+%).

Ammonia (gas) [7664-41-7] M 17.0, pK²⁵ 9.25. Major contaminants are water, oil and noncondensable gases. Most of these impurities are removed by passing the ammonia through a trap at -22° and condensing it at -176° under vacuum. Water is removed by distilling the ammonia into a tube containing a small lump of sodium. Also dry it by passage through porous BaO, or over alumina followed by glass wool impregnated with sodium (prepared by soaking the glass wool in a solution of sodium in liquid ammonia and evaporating off the ammonia). It can be rendered oxygen-free by passage through a solution of potassium in liquid ammonia. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 460-463 1963.] AMMONIA (gas, liquid or aqueous solution) is very irritating and should not be inhaled in any quantity as it can lead to olfactory paralysis (temporary or permanent).

Ammonia (liquid) [7664-41-7] M 17.0, m -77.7°, b -33.4°, n_D^{20} 1.325, d_4^{20} 0.597, d^{79} 0.817g/mL. Dry the liquid, and store it, with sodium in a steel cylinder, then distil and condense it by means of liquid air, the non-condensable gases being pumped off. In order to obtain liquid NH₃ from a cylinder, turn the cylinder upside-down (i.e. with the valve at the bottom, use a metal stand to secure it in this position) and lead a plastic tube from the tap to a measuring cylinder placed in an efficient fume cupboard which is kept running. Turn the tap on and allow the ammonia to be released. At first, gas and liquid will splatter out (make sure that the plastic tube is secure), but soon the liquid will drip into the measuring cylinder. The high latent heat of evaporation will cool the ammonia so that the liquid will remain cool and not boil vigorously. If the ammonia is required dry, the necessary precautions should be taken, i.e. the gas is allowed to flow through tubes packed with coarse CaO pellets. AMMONIA (gas, liquid or aqueous solution) is very irritating and should not be inhaled in any quantity as it can lead to olfactory paralysis (temporary or permanent).

Ammonia (aqueous) [7664-41-7] M 17.0 + H_2O , d_4^{20} 0.90 (saturated, 27% w/v, 14.3 N), pK²⁵ 9.25. Obtained metal-free by saturating distilled water, in a cooling bath, with ammonia (from a cylinder) gas. Alternatively, isothermal distillation can be used by placing a dish of concentrated aqueous ammonia and a dish of pure water in an empty desiccator and leaving for several days. AMMONIA (gas, liquid or aqueous solution) is very irritating and should not be inhaled in any quantity as it can lead to olfactory paralysis (temporary or permanent).

Ammonium bisulfate (ammonium hydrogen sulfate (NH₄) HSO₄) [7803-63-6] M 115.1, m ~147°, d_4^{20} 1.79, pK^{25} 1.96 (HSO₄⁻). It crystallises from water at room temperature (1mL/g) on adding EtOH and cooling. (NH₄) HSO₄ is formed as deliquescent rhombic crystals on cooling a solution of (NH₄)₂SO₄ in hot conc H₂SO₄ but EtOH decomposes it to (NH₄)₃H(SO₄)₂ [Dunnicliff *J Chem Soc* 123 476 1923]. When powdered (NH₄)₂SO₄ is heated below 100°, it loses NH₃, and at 300° it is completely converted to fused (NH₄) HSO₄, m 140°, but >300° it decomposes to SO₂ and N₂ [Smith *J Chem Soc* 30 253 1911].

Ammonium bromide [12124-97-9] M 98.0, m 450°(sublimes), d_4^{20} 2.43. It crystallises from 95% EtOH and is slightly hygroscopic.

Ammonium chloride [12125-02-9] M 53.5, m 338°(sublime point, without melting), d_4^{20} 1.53. Crystallise it several times from conductivity water (1.5mL/g) between 90° and 0°. It sublimes. After one crystallisation, ACS grade has: metal(ppm) As (1.2), K (1), Sb (7.2), V (10.2). [Becher in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 812 1963.]

Ammonium chromate [7788-98-9] M 152.1, m 185°(dec), d_4^{20} 1.81, pK_1^{25} 0.74, pK_2^{25} 6.49 (for H₂CrO₄). Crystallise it from weak aqueous ammonia (*ca* 2.5mL/g) by cooling from room temperature. It loses NH₃ on heating to form ammonium dichromate. **POISONOUS.**

Ammonium dichromate [7789-09-5] M 252.1, m 170°(dec), d_4^{20} 1.26. It crystallises from weak aqueous HCl (*ca* 1mL/g). It decomposes rapidly on heating. (Possible carcinogen and is POISONOUS)

Ammonium dihydrogen arsenate [13462-93-6] M 159.0, m 300°(dec). Crystallise it from water (1mL/g). POISONOUS.

Ammonium dihydrogen orthophosphate [7722-76-1] M 115.0, m 190°, d_4^{20} 1.80. Crystallise it from water (0.7mL/g) between 100° and 0°.

Ammonium ferric sulfate (12H₂O) [7783-83-7 (12H₂O), 10138-04-2 (anhydrous)] M 482.2, m $\sim 37^{\circ}$, d²⁰₄ 1.71. Crystallise it from aqueous ethanol.

Ammonium ferrous sulfate (6H₂O) [Mohr's salt] [7783-85-9 (6H₂O), 10045-89-3 (anhydrous)] M 392.1, m 100°(dec), d_4^{20} 1.86. A solution in warm water (0.67g/mL) is cooled rapidly to 0°, and the resulting light bluish-green monoclinic crystals are filtered at the pump, washed with cold distilled water and pressed between sheets of filter paper to dry it. The solubility at 25° is 0.36g/mL. It separates as an almost white powder when a saturated aqueous solution is diluted with EtOH.

Ammonium hexachloroiridate (IV) [16940-92-4] M 441.0. It is precipitated several times from aqueous solution by saturation with ammonium chloride. This removes any palladium and rhodium. It is then washed with ice-cold water and dried over conc H_2SO_4 in a vacuum desiccator. If osmium or ruthenium is present, it can be removed as the tetroxide by heating with conc HNO₃, followed by conc HClO₄, until most of the acid has been driven off. (This treatment is repeated.) The near-dry residue is dissolved in a small amount of water and added to excess NaHCO₃ solution and bromine water. On boiling, iridic (but not platinic) hydroxide is precipitated. It is dissolved in HCl and precipitated several times, then dissolved in HBr and treated with HNO₃ and HCl to convert the bromides to chlorides. Saturation with ammonium chloride and cooling precipitates ammonium hexachloroiridate which is filtered off and purified as above [Woo & Yost J Am Chem Soc **53** 884 1931].

Ammonium hexacyanoferrate II hydrate [14481-29-9] M 284.1, m dec on heating. The pale yellow *trihydrate* powder can be washed with 10% aqueous NH₃, filtered, then washed several times with EtOH and Et₂O, and dried at room temperature. It decomposes in a vacuum above 100° and should be stored away from light and under N₂. In light and air it decomposes by losing NH₃. [Lux in *Handbook of Preparative Inorganic Chem (Ed. Brauer)* Academic Press Vol II p 1509 1965.]

Ammonium hexafluorophosphate [16941-11-0] M 163.0, d_4^{18} 2.181, pK_1^{25} ~0.5, pK_2^{25} 5.12 (for fluorophosphoric acid H_2PO_3F). It crystallises from H_2O in square plates and decomposes on heating before melting. Its solublility in H_2O at 20° is 74.8% w/v, and it is very soluble in Me₂CO, MeOH, EtOH and MeOAc but is decomposed by boiling mineral acids. [Lange & Müller *Chem Ber* 63 1063 1930, Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 195 1963.]

Ammonium hexafluorosilicate [16919-19-0] M 178.1, pK_2 1.92 (for H_2SiF_6). Crystallise the salt from water (2mL/g). After 3 recrystallisations, the Technical grade salt has Li, Na, K and Fe at 0.3, 0.2, 0.1 and 1.0 ppm respectively.

Ammonium hypophosphite [7803-65-8] M 83.0. Crystallise it from hot EtOH.

Ammonium iodate [13446-09-8] M 192.9, pK^{25} 0.79 (IO³⁺). Ammonium iodate crystallises from water (8mL/g) on cooling from 100° to 0°.

Ammonium iodide [12027-06-4] M 144.9, sublimes with dec ~405°, d_4^{20} 2.51. The iodide crystallises from EtOH on addition of ethyl iodide, and is very *hygroscopic*. Store it in the dark. Its solubility is 177g in 100g of H₂O at 25°. [Schmeisser in *Handbook of Preparative Inorganic Chem (Ed. Brauer)* Academic Press Vol I p 289-290 1963.]

Ammonium magnesium chloride (6H₂O) [60314-43-4] M 256.8. It crystallises from water (6mL/g) by partial evaporation in a desiccator over KOH (deliquescent).

Ammonium magnesium sulfate (6H₂O) [20861-69-2] M 360.6. It crystallises from water (1mL/g) between 100° and 0° .

Ammonium manganous sulfate (6H₂O) [13566-22-8] M 391.3. It crystallises from water (2mL/g) by partial evaporation in a desiccator.

Ammonium molybdate [13106-76-8] M 196.0, pK_1^{25} 0.9 (proton addition), pK_2^{25} 3.57, pK_3^{25} 4.08 (for H_2MoO_4). Crystallise the salt from water (2.5mL/g) by partial evaporation in a desiccator. [Sturdivant J Am Chem Soc 59 630 1937, Grüttner & Jauder in Handbook of Preparative Inorganic Chem (Ed. Brauer) Academic Press Vol II p 1711 1965.]

Ammonium nickel sulfate (6H₂O) [7785-20-8 (6H₂O), 15699-18-0 (anhydrous)] M 395.0, d_4^{20} 1.923. Crystallise this salt from water (3mL/g) on cooling from 90° to 0°.

Ammonium nitrate [6484-52-2] M 80.0, m 165°(moist salt), 210°(dec explosively), d_4^{20} 1.72. It is crystallised twice from distilled water (1mL/g) by adding EtOH, or from warm water (0.5mL/g) by cooling in an ice-salt bath. Dry it in air, then under vacuum. After 3 recrystallisations of ACS grade, it contained Li and B at 0.03 and 0.74 ppm, respectively. It is deliquescent. [Early & Lowry J Chem Soc 115 1387 1919, 121 963 1922, Hendricks et al. J Am Chem Soc 54 2766 1932.]

Ammonium perchlorate [7790-98-9] M 117.5, d_4^{20} 1.95, pK^{25} -2.4 to -3.1 (for HClO₄). It is recrystallised twice from distilled water (2.5mL/g) between 80° and 0°, and dried in a vacuum desiccator over P₂O₅. Drying at 110° might lead to slow decomposition to the chloride. **POTENTIALLY EXPLOSIVE**.

Ammonium peroxydisulfate (ammonium persulfate) [7727-54-0] M 228.2, m dec when heated wet liberating oxygen, d_4^{20} 1.98. Recrystallise it at room temperature from EtOH/water. It gradually loses NH₃ on exposure to air. Its solubility is 0.5g/mL at 20°, and 2g/mL at 100°.

Ammonium reineckate (Reineckate salt) [13573-16-5] M 336.4 (anhydrous), m 270-273°(dec). Crystallise it from water, between 30° and 0°, while working under artificial light. Solutions of reineckate salt (aqueous or alcoholic) decompose slowly at room temperature in the dark (~2 weeks) and more rapidly at higher temperatures or in diffuse sunlight. The solutions are blue in colour and liberate HCN (POISONOUS). Store it dry in the dark under a vacuum. [Dakin *Org Synth* Coll Vol II 555 1943.]

Ammonium selenate [7783-21-3] M 179.0, d_4^{20} 2.19, m dec on heating. Crystallise the selenate from water at room temperature by adding EtOH and cooling. Its solubility in H₂O is 117% at 7° and 197% at 100°. [King J Phys Chem 41 797 1937.]

Ammonium sulfamate [7773-06-0] M 114.1, m 132-135°, dec at 160°. Crystallise it from water at room temperature (1mL/g) by adding EtOH and cooling. [Sisler & Audrieth *Inorg Synth* II 180 1946.]

Ammonium sulfate [7783-20-2] M 132.1, m 230°(dec), 280°(dec), d_4^{20} 1.77. Crystallise it twice from hot water containing 0.2% EDTA to remove metal ions, then finally from distilled water. Dry it in a desiccator for 2 weeks over Mg(ClO₄)₂. After 3 recrystallisations, ACS grade had Ti, K, Fe, Na at 11, 4.4, 4.4, 3.2 ppm respectively.

Ammonium tetrafluoroborate [13826-83-0] M 104.8, pK^{25} 2.77 (for HBF₄). Crystallise it from conductivity water (1mL/g) between 100° and 0°.

Ammonium thiocyanate [1762-95-4] M 76.1, m 138°(dec), 149°(dec), pK^{25} -1.85 (for HSCN), 149. Crystallise it three times from dilute HClO₄ to give material optically transparent at wavelengths longer than 270nm. It has also been crystallised from absolute MeOH or from acetonitrile.

Ammonium tungstate (VI) [11120-25-5] M 283.9, pK_1^{25} 2.20, pK_2^{25} 3.70 (for tungstic acid, H₂WO₄). It crystallises from warm water on adding EtOH and cooling.

Ammonium (meta) vanadate [7803-55-6] **M 117.0, d**²⁰₁₀ **2.326.** Wash the salt with H₂O until free from Cl⁻ ions and dry it in air. It is soluble in H₂O (5.18g/100mL at 15°, 10.4g/100mL at 32°) but is more soluble in dilute NH₃. It crystallises from conductivity water (20mL/g). When heated at relatively low temperature, it loses H₂O and NH₃ to give vanadium oxide (V₂O₅), and at 210° it forms lower oxides. [Baker et al. *Inorg Synth* **III** 117 *1950.*] Its solubility in H₂O is 0.52% (15°), 1% (32°) and 1.6% (50°). After washing the technical grade salt with H₂O, it had Na, Mn and U at 0.06, 0.2 and 0.1 ppm, respectively. [Brauer in *Handbook of Preparative Inorganic Chem (Ed. Brauer)* Academic Press Vol **II** p 1272-1273 *1965.*]

Antimony (V) pentafluoride [7783-70-2] M 216.7, m 7.0°, 8.3°, b 141°, 150°, 148-150°, d_4^{20} 2.99, pK²⁵ 2.55 [for HSb(OH)₆ = Sb(OH)₆⁻ + H⁺]. Purify it by vacuum distillation, preferably in a quartz apparatus, and store it in quartz or aluminum bottles. It is a hygroscopic viscous liquid which reacts violently with H₂O and is hydrolysed by alkalis. It is POISONOUS and attacks the skin. [Woolf & Greenwood J Chem Soc 2200 1950, Kwasnik in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 200 1965.]

Antimony trichloride [10025-91-9] M 228.1, m 73°, b 283°, pK_1^{25} 1.4, pK_2^{25} 11.0 (11.8), pK_3^{25} 12.95 (for Sb³⁺ aquo). Dry the trichloride over P_2O_5 or by mixing it with toluene or xylene and distilling (water is carried off with the organic solvent), then distil it twice under dry nitrogen at 50mm, and sublime it twice in a vacuum into ampoules and seal. It can be crystallised from CS_2 and is *deliquescent*. It fumes in moist air and is decomposed by H_2O with precipitation of the basic chloride, but forms a clear solution in dilute HCl.

Antimony trifluoride [7783-56-4] M 178.8, m 292°, b 376°, d_4^{20} 4.379. It crystallises from MeOH to remove oxide and oxyfluoride, then it is sublimed under vacuum in an aluminium cup on to a water-cooled copper condenser. Its solubility is 443g/100g in H₂O at 20° and 562g/100g in H₂O at 30° with partial hydrolysis. [Woolf *J Chem Soc* 279 1955, Kwasnik in *Handbook of Preparative Inorganic Chem (Ed. Brauer)* Academic Press Vol I p 199 1963].

Antimony triiodide [7790-44-5] M 502.5, m 167°, 170°, b 401°. It sublimes under vacuum as a red solid with an orange vapour. It hydrolyses to the yellow oxyiodide with H₂O. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 614 1963.]

Antimony trioxide [1309-64-4] M 291.5, m 656°. Dissolve the trioxide in the minimum volume of dilute HCl, filter, and add six volumes of water to precipitate the basic antimonous chloride (free from Fe and Sb₂O₅). The precipitate is redissolved in dilute HCl, and added slowly, with stirring, to a boiling solution (containing a slight excess) of Na₂CO₃. The oxide is filtered off, washed with hot water, then boiled and filtered. The process is repeated until the filtrate gives no test for chloride ions. The product is dried in a vacuum desiccator [Schuhmann J Am Chem Soc 46 52 1924]. After one crystallisation (precipitation?), the oxide from a Chinese source had: metal (ppm) Al (8), Ag (0.2), As (56), Cr (6), Ge (0.4), Mn (0.2), Na (16), Ni (2.2) Pb (2.4), Sn (0.4) and V (32). It sublimes in a vacuum at 400°, being yellow on heating and pale buff in colour on cooling. [Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 615-616 1963.]

Aqua regia. This is prepared by adding slowly concentrated HNO_3 (1 volume) to concentrated hydrochloric acid (3 volumes) in a glass container. This mixture is used to dissolve metals, including noble metals and alloys, as well as minerals and refractory substances. It is done by suspending the material and boiling (EFFICIENT FUME CUPBOARD – EYE PROTECTION] to dryness and repeating the process until the residue dissolves in H₂O. If the aqua regia is to be stored for long periods it is advisable to dilute it with one

volume of H_2O which will prevent it from releasing chlorine and other chloro and nitrous compounds which are objectionable and toxic. Store it cool in a fume cupboard. However, it is good laboratory practice to prepare it freshly and dispose of it down the fume cupboard sink with copious amounts of water.

Argon [7440-37-1] **M 39.95, b -185.6°.** Argon is rendered oxygen-free by passage over reduced copper at 450°, or by bubbling through alkaline pyrogallol and H_2SO_4 , then dried with CaSO₄, Mg(ClO₄)₂, or Linde 5A molecular sieves. Other purification steps include passage through Ascarite (**CARE:** asbestos impregnated with sodium hydroxide), through finely divided uranium at about 800° and through a -78° cold trap.

Alternatively the gas is passed over CuO pellets at 300° to remove hydrogen and hydrocarbons, over Ca chips at 600° to remove oxygen and, finally, over titanium chips at 700° to remove nitrogen. It has also been purified by freeze-pump-thaw cycles and by passage over sputtered sodium [Arnold & Smith *J Chem Soc, Faraday Trans* 2 **77** 861 *1981*].

Arsenic acid (arsenic pentoxide hydrate, arsenic V oxide hydrate, orthoarsenic acid) [12044-50-7] M 229.8 + xH_2O , pK_1^{25} 2.26, pK_2^{25} 6.76, pK_3^{25} 11.29 (H_3AsO_4). The acid crystallises from concentrated solutions of boiling conc HNO₃ as rhombic crystals. Dry it in a vacuum to give the *hemihydrate* (hygroscopic). Heating above 300° yields As_2O_5 . [Thaler Z Anorg Allgem Chem 246 19 1941, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 601 1963.] POISONOUS.

Arsenic tribromide [7784-33-0] M 314.6, m 31.1°, b 89°/11mm, 221°/760mm, d_4^{20} 3.67 Distil it under vacuum. It hydrolyses in H₂O, but less readily than AsCl₃. **POISONOUS.** [Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 597 1963.]

Arsenic trichloride (butter of arsenic) [7784-34-1] M 181.3, m 31.2°, b 25°/11mm, 130.0°/atm, d_4^{20} 2.2. Reflux the trichloride with arsenic for 4hours, then fractionally distil it. The middle fraction is stored with sodium wire for two days, then again distilled [Lewis & Sowerby *J Chem Soc* 336 1957]. It fumes in moist air forming the solid hydroxy-chloride [AsCl(OH)₂] and is readily hydrolysed by H₂O to form arsenious acid. **POISONOUS.** [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 596 1963.]

Arsenic triiodide [7784-45-4] M 455.6, m 146°, b 400°/atm, d_4^{25} 4.688. It crystallises from acetone and sublimes below 100°. It is very slowly hydrolysed by H₂O (much more slowly than the chloride). POISONOUS. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 597-598 1963.]

Arsenic III oxide (arsenic trioxide, arsenious oxide) [1327-53-3] M 197.8, three forms: m ~200°(amorphous glass), m 275°(sealed tube, octahedral, common form, sublimes > 125° without fusion but melts under pressure), and m ~312°, pK₁²⁰ 9.27, pK₂²⁰ 13.54, pK₃²⁰ 13.99 (for H₃AsO₃). It crystallises in an *octahedral form* (common form) from H₂O or from dilute HCl (1:2), and is then washed, dried and sublimed (193°/760mm). Analytical reagent grade material is suitable for use as an analytical standard after it has been dried at 105° for 1-2hours or has been left in a desiccator for several hours over conc H₂SO₄.

Alternatively: As_2O_3 (15g) is dissolved by heating in a mixture of H_2O (60mL) and HCl (90g, s.g. 1.1), and crystallisation occurs on cooling, accompanied by brilliant flashes of light [Bandrowski *Z Phys Chem* **17** 234 *1895*].

The *amorphous* form is a colourless transparent glass (m 200°) which is obtained when the vapour is slowly condensed below the vaporization temperature, and should be kept in a sealed tube because it changes to the *octahedral* form (m 275°) in the presence of moisture. [Rushton & Daniels J Am Chem Soc 48 384 1926.]

A third *monoclinic* form, is obtained by heating the oxide in a sealed tube at 400° (the vitreous, amorphous form remains at the bottom of the tube) with the *monoclinic* form subliming onto the intermediate part of the tube at 200° (**m** 312°), and the *octahedral* form deposits at the top of the tube. The transition temperature between the last two forms is ~250°. POISONOUS (particularly the vapour, handle in a ventilated fume cupboard). [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 600 *1963*.]

Barium (metal) [7440-39-3] M 137.3, m 727°, b 1640°(1537°)/760mm, d_4^{20} 3.56(3.76). Barium is cleaned by washing with diethyl ether to remove adhering paraffin, then filed in an argon-filled glove box, washed first with ethanol containing 2% conc HCl, then with dry ethanol. It is dried in a vacuum and stored under argon [Addison et al. *J Chem Soc* 3868 1962]. It has also been purified by double distillation under 10mm of argon pressure.

Barium bromide (2H₂O) [7791-28-8] M 333.2, m at 75° loses first H₂O and at 120° it loses the second H₂O and melts at 847°. It crystallises from H₂O (1mL/g) by partial evaporation in a desiccator. [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 930 1963.]

Barium chlorate (H₂O) [10294-38-9 (hydrate), 13477-00-4 (anhydrous)] M 322.3, m 414°. It crystallises from H₂O (1mL/g) between 100° and 0°, and loses 1H₂O at 120°. [Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 314 1963.]

Barium chloride (2H₂O) [10326-27-9] M 244.3, m ~120°(dec, hydrate), 963° (anhydrous). It is crystallised twice from water (2mL/g) and dried in an oven to constant weight. The solubilities of the hydrate (% of anhydrous wt) in H₂O are 31.6 at 0°, 35.7 at 20° and 58.7 at 100°.

Barium dithionate (2H₂O) [13845-17-5] M 333.5, m >150° loses SO₂, pK^{25} 0.49 (for H₂S₂O₆, theory pK_1 -3.4, pK_2 -0.2). It crystallises from water. Its solubility in H₂O is 7.9% (0°), 15.7% (20°) and 19.9% (30°). [Pfanstiel *Inorg Synth* II 170 *1946*, Fehér in *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol I p 397 *1963*.]

Barium ferrocyanide (6H₂O) [13821-06-2] M 594.8, m 80°(dec), pK_3^{25} 2.57, pK_4^{25} 4.35 (for ferrocyanide). It crystallises from hot water (100mL/g).

Barium fluoride [7787-32-8] **M 175.3, m 1353°, 1368°, b 2260°, d** $_{4}^{20}$ **4.83.** Wash it well with distilled H₂O and dry it in a vacuum. Its solubility in H₂O is 1.6g (10°), 1.6g (20°) and 1.62g (30°) per L, and is soluble in mineral acids and aqueous NH₄Cl. It may be stored in glass bottles. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 234 *1963*.]

Barium hydroxide (8H₂O) [12230-71-6] **M 315.5, m 78°, pK** $_{1}^{25}$ **13.13, pK** $_{2}^{25}$ **13.36.** It crystallises from water (1mL/g) and readily absorbs CO₂ from air. It effloresces to the *monohydrate*. It dehydrates to Ba(OH)₂ in dry air at 100°. An aqueous solution (*baryta water*) absorbs CO₂ to form a white precipitate of BaCO₃.

Barium hypophosphite (H₂O) [14871-79-5] M 285.4. It precipitates from aqueous solution (3mL/g) on adding EtOH. Its solubility in H₂O is 28.6% at 17° and 33.3% at 100°. [Klement in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 557 1963.]

Barium iodate (H₂O) [7787-34-0] M **487.1, m 130°(loses H₂O), 476°(dec).** It crystallises from a large volume of hot water on cooling. Its solubility in H₂O is 1g/3.35L at 25° and 1g/0.625L at the boiling point. [Lambert & Yasada *Inorg Synth* VII 13 *1963.*]

Barium iodide $(2H_2O)$ [7787-33-9 $(2H_2O)$, 13718-50-8 (anhydrous)] M 427.2, m 740°(dec). It crystallises from water (0.5mL/g) by partial evaporation in a desiccator. POISONOUS.

Barium manganate (barium permanganate) [7787-35-1] M 256.3, d_4^{20} 3.77. Wash the salt with conductivity H₂O by decantation until the supernatant gives a faint test for Ba²⁺. Remove excess H₂O in a vacuum (IMPORTANT), then heat at 100° and the last traces of H₂O are removed in a vacuum desiccator over P₂O₅. Store it over KOH. It disproportionates in hot H₂O or dilute acid into Ba(MnO₂)₂ and MnO₂, and is a

mild oxidant. [Schlezinger & Siems J Am Chem Soc 46 1965 1924, Nyholm & Woolliams Inorg Synth XI 56 1968.]

Barium nitrate [10022-31-8] **M 261.4, m 593°(dec).** Crystallise it twice from water (4mL/g) and dry it overnight at 110°. It decomposes at higher temperatures to give mostly the oxide and the peroxide with only a little of the nitrite. **POISONOUS.** [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 941 1963.]

Barium nitrite (H_2O) [7787-38-4] M 247.4, m 217°(dec). Barium nitrite crystallises from water (1mL/g) on cooling in an ice-salt bath. POISONOUS.

Barium perchlorate [13465-95-7] **M 336.2, m 505°, pK²⁵ -2.4 to -3.1 (for HClO₄).** Recrystallise the perchlorate twice from water. [Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 320 1963.]

Barium sulfate [7722-43-7] **M 233.4, m >1580°.** Wash the sulfate five times by decantation with hot distilled water, dialyse it against distilled water for one week, then freeze-dry and dry in an oven at 105° to constant weight (~12hours). It is almost insoluble in H₂O (its solubility is 0.0024g/L at 25°).

Barium tetrathionate [82203-66-5] **M 361.6.** Purify the tetrathionate by dissolving it in a small volume of water and precipitating it with EtOH below 5°. After drying, the salt is stored in the dark at 0°. [see Frehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** p 399-401 *1963* for potassium tetrathionate $K_2S_4O_4$.]

Barium thiocyanate (2 H₂O) [2092-17-3] **M 289.6, pK²⁵ -1.85 (for HSCN).** It is crystallised from water (2.5mL/g) by partial evaporation in a desiccator. It is deliquescent. [Herstein *Inorg Synth* **III** 24 1950.]

Barium thiosulfate [35112-53-9] M 249.5, m 220°(dec), pK_1^{25} 0.6, pK_2^{25} 1.74 (for $H_2S_2O_3$). It is very slightly soluble in water and is washed repeatedly with chilled water and dried in air at 40°.

Beryllium potassium fluoride [7787-50-0] M 105.1, m ~350°. It crystallises from hot water (25mL/g).

Beryllium sulfate (4H₂O) [7787-56-6] **M 177.1, m ~100°(dec), pK** $_{1}^{25}$ **3.2, pK** $_{2}^{25}$ ~6.5 (Be²⁺). It crystallises from weak aqueous H₂SO₄ and is dried in air.

Bismuth [7440-69-9] **M 209.0, m 271-273°, b 1450°** Melt it in an atmosphere of dry helium, then filter through dry Pyrex wool to remove any bismuth oxide present [Mayer et al. J Phys Chem **64** 238 1960].

Bismuth trichloride [7787-60-2] **M 315.3, m 233.6°, pK²⁵ 1.58 for hydrolysis** ($Bi_3^+ = BiOH_2^+ + H^+$). Sublime the trichloride under high vacuum, or dry it under a current of HCl gas, followed by fractional distillation, once under HCl and once under argon. It is *deliquescent*. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 621 *1963*.]

Boric acid (orthoboric acid, boracic acid) [10043-35-3] **M 61.8, m 171°, pK**²⁵ **9.23.** Crystallise the acid three times from H₂O (3mL/g) between 100° and 0°, after filtering through sintered glass. Dry it to constant weight over metaboric acid in a desiccator. It is steam volatile. After two recrystallisations of ACS grade. it had Ag at 0.2 ppm. Its solubility (%) in H₂O is 2.66 at 0°, 4.0 at 12° and 24 at 80°. At 100° it loses H₂O to form *metaboric acid* (HBO₂). When it is heated to redness or slowly to 200°, or over P₂O₅ *in vacuo*, it dehydrates to *boric anhydride* (B₂O₃) [1303-82-6] to give a white hard glass or crystals with **m** ~294°. The glass softens on heating and liquefies at red heat. It is an astringent, a fungicide and an antibacterial. [McCulloch *J Am Chem Soc* **59** 2650 *1937*, Kelly *J Am Chem Soc* **63** 1137 *1941*, Taylor & Cole *J Chem Soc* 70 *1926*, Conti *J Soc Chem Ind* **44** 343T *1925*.] **Boron trichloride (trichloroborane)** [10294-34-5] **M 117.2, b 0%**476mm. Purify it (from chlorine) by passage through two mercury-filled bubblers, then fractionally distil it under a slight vacuum. In a more extensive purification the nitrobenzene addition compound is formed by passage of the gas over nitrobenzene in a vacuum system at 10°. Volatile impurities are removed from the crystalline yellow solid by pumping at -20°, and the BCl₃ is recovered by warming the addition compound at 50°. Passage through a trap at -78° removes entrained nitrobenzene, the BCl₃ finally condensing in a trap at -112° [Brown & Holmes J Am *Chem Soc* **78** 2173 *1956*]. Also purify it by condensing it into a trap cooled in acetone/Dry-ice, where it is pumped for 15minutes to remove volatile impurities. It is then warmed, recondensed and again pumped. [Gamble *Inorg Synth* **III** 27 *1950*.] **TOXIC.**

Boron trifluoride [7637-07-2] **M 67.8, b -101% 760mm.** The usual impurities-bromine, BF₅, HF and non-volatile fluorides-are readily separated by distillation. Brown and Johannesen [*J Am Chem Soc* **72** 2934 *1950*] passed BF₃ into benzonitrile at 0° until the latter was saturated. Evacuation to 10^{-5} mm then removed all traces of SiF₄ and other gaseous impurities. [A small amount of the BF₃-benzonitrile addition compound sublimes and is collected in a U-tube cooled to -80°]. The pressure is raised to 20mm by admitting dry air, and the flask containing the BF₃ addition compound is warmed with hot water. The BF₃ that evolves is passed through a -80° trap (to condense any benzonitrile) into a tube cooled in liquid air. The addition compound with anisole can also be used. BF₃ can be dried by passing it through H₂SO₄ saturated with boric oxide. It fumes in moist air. [It is commercially available as a 1.3M solution in MeOH or PrOH.] [Booth & Wilson *Inorg Synth* I 21 *1939*, Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 219-222 *1963*.] **TOXIC.**

Bromine [7726-95-6] **M** 159.8, m –7.2°, b 59°, d $_{4}^{20}$ 3.102, n $_{D}^{20}$ 1.661. Reflux the brown liquid with solid KBr and distil, then dry the distillate by shaking it with an equal volume of conc H₂SO₄, then redistil it. The H₂SO₄ treatment can be replaced by direct distillation from BaO or P₂O₅ A more extensive purification [Hildenbrand et al. *J Am Chem Soc* 80 4129 1958] is to reflux about 1L of bromine for 1hour with a mixture of 16g of CrO₃ in 200mL of conc H₂SO₄ (to remove organic material). The bromine is distilled into a clean, dry, glass-stoppered bottle, and chlorine is removed by dissolving *ca* 25g of freshly fused CsBr in 500mL of the bromine and standing overnight. To remove HBr and water, the bromine is then distilled back and forth through a train containing alternate tubes of MgO and P₂O₅. [Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 275 1963.] HIGHLY TOXIC.

Bromine pentafluoride [7789-30-2] M 174.9, m -60.5°, b 41.3°, d²⁵ 2.466. Purify it via its KF complex, as described for chlorine trifluoride. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 158-159 1963.] HIGHLY TOXIC.

Cadmium [7440-43-9] **M 112.4, m 321.1°, b 767°, d** $_{4}^{20}$ **8.642.** Any oxide contaminant is removed by filtering the molten metal, under vacuum, through quartz wool. Its solubility in Hg is 5.2% (18°), and it is soluble in mineral acids. [Wagenknecht & Juza in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1092 *1965.*]

Cadmium bromide (4H₂O) [13464-92-1 (4H₂O), 7789-42-6 (anhydrous)] **M 344.2, m 566°, b 963,** d_4^{20} **5.19°.** Crystallise it from water (0.6mL/g) between 100° and 0°, and dry it at 110°. It forms the monohydrate below 36° and the *tetrahydrate* above 36°. [Wagenknecht & Juza in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1096 1965.]

Cadmium chloride [10108-64-2] **M 183.3, m 568°, b 960°, d**²⁰₄ **4.06**. Crystallise it from water (1mL/g) by addition of EtOH and cooling. [Pray *Inorg Synth* **V** 153 1957, Wagenknecht & Juza in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1093 1965.]

Cadmium fluoride [7790-79-6] **M 150.4, m >1000°, b 1748°, d** $_{4}^{20}$ **6.35.** Crystallise it by dissolving it in hot water (25mL/g at room temperature) at 60°, filtering, then cooling. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 243 1963.]

Cadmium iodide [7790-80-9] **M 366.2, m 388°, b 787°, d** $_4^{20}$ **5.66.** Crystallise it from ethanol (2mL/g) by partial evaporation. [Wagenknecht & Juza in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1096 *1965.*]

Cadmium nitrate (4H₂O) [10022-68-1] **M 308.5, m 59.5°.** Crystallise the nitrate from water (0.5mL/g) by cooling in ice-salt. [*Gmelin's Cadmium (8th edn)* **33** pp 76-78 1925, Suppl p 446 1959.]

Cadmium potassium iodide [13601-63-3] M 532.2. Crystallise it from ethanol by partial evaporation.

Cadmium sulfate [7790-84-3 (for $3CdSO_4$ $8H_2O$), 10124-36-4 (anhydrous)] **M 208.4** (anhydrous), **769.5** (hydrate). The sulfate crystallises from distilled water as a hydrate by partial evaporation in a desiccator. It gives the monohydrate on heating at 80°. It is insoluble in EtOH, Me₂CO or EtOAc. It forms a white precipitate of Cd(OH)₂ with aqueous NH₃ which dissolves in excess of NH₃ to form soluble [Cd(NH₃)₄]SO₄. [*Gmelin's Cadmium (8th edn)* **33** p 121 1925, Suppl pp 609-610 1959.]

Calcium [7440-70-2] **M 40.1, m 845°.** Clean the metal by washing it with ether to remove adhering paraffin, file the surface in an argon-filled glove box, and wash it with ethanol containing 2% of conc HCl. Then wash it with dry ethanol, dry it in a vacuum and store it under pure argon [Addison et al. *J Chem Soc* 3868 1962].

Calcium bromide (H₂O) [62648-72-0, 71626-99-8 (xH_2O), 7789-41-5 (anhydrous)] M 217.9, d²⁰₄ **3.35.** Crystallise the bromide from EtOH or Me₂CO. It loses H₂O on heating, is anhydrous at 750°, then it loses Br at higher temperatures. It is *deliquescent*. [Ehrlich in *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol I p 930 1963.]

Calcium chloride (anhydrous) [10043-52-4] **M 111.0, m 772°, b >1600°, d** $_{4}^{15}$ **2.15.** It is available as fused granules or cubic crystals. It is very *hygroscopic*, very soluble in H₂O (exothermic), and EtOH. Store it in a tightly closed container. [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 931 1963.]

Calcium chloride $(2H_2O)$ [10035-04-8] M 147.0, m 175°(dehydrates), 772°(dec). Crystallise it from ethanol. It is *hygroscopic*. It loses H₂O at 200° so it can be dried at high temperatures to dehydrate it. The *hexahydrate* [7774-34-7] has m 30° and d 1.67.

Calcium dithionite [13812-88-9] **M 168.2, m dec on heating.** Crystallise it from water, or water followed by acetone and dry it in air at room temperature.

Calcium hexacyanoferrate (II) (11H₂O) [13821-08-4] **M 490.3.** Recrystallise it three times from conductivity H₂O and dry it in air to constant weight over the partially dehydrated salt. [James *Trans Faraday* Soc **45** 855 1949.] Alternatively the Ca salt can be purified by precipitation with absolute EtOH in the cold (to avoid oxidation) from an air-free saturated aqueous solution. The pure lemon yellow crystals are centrifuged, dried in a vacuum desiccator first over dry charcoal for 24hours, then over partly dehydrated salt and stored in a dark glass stoppered bottle. No deterioration occurred after 18 months. No trace of Na, K or NH₄ ions could be detected in the salt from the residue after decomposition of the salt with conc H₂SO₄. Analyses indicate 11mols of H₂O per mol of salt. The solubility in H₂O is 36.45g (24.9°) and 64.7g (44.7°) per 100g of solution. [Farrow J Chem Soc 50 1926.]

Calcium hydroxide [1305-62-0] **M 74.1, m loses H₂O on heating, pK²⁵ 12.7 (for Ca²⁺).** Heat analytical grade calcium carbonate at 1000° during 1hour. Allow the resulting oxide to cool and add slowly to water. Heat the suspension to boiling, cool and filter through a sintered glass funnel of medium porosity (to remove soluble alkaline impurities). Dry the solid at 110° and crush it to a uniformly fine powder. [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 934 *1963.*]

Calcium iodate [7789-80-2 (H_2O)] **M 389.9, m >540°, pK²⁵ 0.79** (for HIO₃). Crystallise it from water (100mL/g at 100° and 100mL/0.1g at 0°). [Bahl & Singh J Indian Chem Soc 17 397 1940.]

Calcium iodide $(\mathbf{x}\mathbf{H_2O})$ [71626-98-7 (xH_2O) , 10102-68-8 (anhydrous)] **M 293.9** (for $4H_2O$), **m** 740°, **b 1100°.** Dissolve the salt in acetone, which is then diluted and evaporated. This drying process is repeated twice, then the CaI₂ is recrystallised from acetone/diethyl ether and stored over P₂O₅. It is very *hygroscopic* when anhydrous and is light sensitive [Cremlyn et al. J Chem Soc 528 1958]. The yellow *hexahydrate* has **m** 42°. It is soluble in H₂O, MeOH, EtOH and Me₂CO but insoluble in Et₂O.

Calcium nitrate (4H₂O) [13477-34-4] **M 236.1, m 45°(hydrate), 560°(anhydrous).** Crystallise the nitrate four times from water (0.4mL/g) by cooling in a CaCl₂-ice freezing mixture. The *tetrahydrate* is dried over conc H₂SO₄ and stored over P₂O₅, to give the *anhydrous salt*. It is *deliquescent*. After 3 recrystallisations of ACS grade salt, it had Co, Fe, Mg, Sr and Zn at 0.2, 1. 0, 0.02, 10 and 0.02 ppm resp. [Bassett & Taylor J Chem Soc **105** 1926 1914.]

Calcium nitrite (2H₂O) [13780-06-8 (30% w/w aqueous solution)] M 150.1(hydrate), m dec on heating, d_D^{20} 2.22. Crystallise it from hot water (1.4mL/g) by adding ethanol and cooling to give the hydrate. It is *deliquescent*. [Ray & Ogg J Am Chem Soc 79 265 1957.]

Calcium permanganate ($4H_2O$) [10118-76-0 (anhydrous)] **M 350.0** (for $4H_2O$). Crystallise it from water (3.3mL/g) by partial evaporation in a desiccator. It is *deliquescent*. Note that it loses oxygen more readily than the potassium salt. It is an oxidising agent.

Calcium sulfate dihydrate [10101-41-4] **M 172.1, m 150(dec), d**²⁰₄ **2.32.** It loses only part of its H₂O at 100-150° (see below). It is soluble in H₂O and very slowly soluble in glycerol. It is insoluble in most organic solvents.

Calcium sulfate hemihydrate [10034-76-1] **M 145.2.** Its solubility in H₂O is 0.2parts/100 at 18.75°. It dehydrates completely >650°. Dry it below 300° to give a solid with estimated pore size *ca* 38% of volume. *Anhydrous* CaSO₄ (**Drierite**) has a high affinity for H₂O and will absorb 6.6% of its weight of H₂O to form the *hemihydrate* (gypsum). It sets to a hard mass with H₂O; hence it should be kept in a tightly sealed container. The solubility of gypsum in H₂O is unusual: 0.176% at 0°, 0.209% at 30°, 0.210 at 40°, 0.204 at 50° and 0.200 at 60°. [Hulett *J Am Chem Soc* **27** 49 1905, James & Partington *J Chem Soc* **107** 1019 1915, Namba *J Soc Chem Ind* **40** 2797 1920.]

Calcium thiosulfate [10124-41-1] **M 152.2, m 43-49°, pK_1^{25} 0.6, pK_2^{25} 1.74 (for H_2S_2O_3). Recrystallise it from water below 60° in a N₂ atmosphere, followed by drying with EtOH and Et₂O. Store it in a refrigerator. The** *hexahydrate* **can decompose spontaneously at 43-49°. Store it in a cool closed container. [Pethybridge & Taba J Chem Soc, Faraday Trans 1 78 1331 1982.]**

Carbon dioxide [124-38-9] **M 44.0, sublimes at -78.5°, pK** $_{1}^{25}$ **6.35, pK** $_{2}^{25}$ **10.33** (for H₂CO₃). Pass the gas over CuO wire at 800° to oxidise CO and other reducing impurities (such as H₂), then over copper dispersed on Kieselguhr at 180° to remove oxygen. Drying it at -78° removes the water vapour. Final purification is by vacuum distillation at liquid nitrogen temperature to remove non-condensable gases [Anderson et al. *J Chem Soc* 3498 1962]. Sulfur dioxide contaminant can be removed at 450° using silver wool combined with a plug of platinised quartz wool. Halogens are removed by using Mg, Zn or Cu, heated to 450°. [Glemsner in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 647 1963.]

Carbon disulfide [75-15-0] **M 76.1, b 46.3°, d** $_{4}^{20}$ **1.264, n** $_{D}^{20}$ **1.627.** Shake it for 3hours with three portions of KMnO₄ solution (5g/L), twice for 6hours with mercury (to remove sulfide impurities) until no further darkening of the interface occurs, and finally with a solution of HgSO₄ (2.5g/L) or cold, saturated HgCl₂. Dry it with CaCl₂, MgSO₄, or CaH₂ (with further drying by refluxing over P₂O₅), followed by fractional distillation in diffuse light. Alkali metals cannot be used as drying agents. It has also been purified by standing with bromine (0.5mL/L) for 3-4hours, shaking rapidly with KOH solution, then copper turnings (to remove unreacted bromine), and drying with CaCl₂. CS₂ is highly TOXIC and highly FLAMMABLE. *Work in a good fumehood*.

Small quantities of CS_2 have been purified (including removal of hydrocarbons) by mechanical agitation of a 45-50g sample with a solution of 130g of sodium sulfide in 150mL of H₂O for 24hours at 35-40°. The aqueous sodium thiocarbonate solution is separated from unreacted CS_2 , then precipitated with 140g of copper sulfate in 350g of water, with cooling. After filtering off the copper thiocarbonate, it is decomposed by passing steam into it. The distillate is separated from H₂O and distilled from P₂O₅. [Ruff & Golla *Z Anorg Chem* **138** 17 *1924*, *Beilstein* **3** IV 395.]

Carbon monoxide [630-08-0] **M 28.0, m -200°, b -191.5°.** Iron carbonyl is a likely impurity in CO stored under pressure in steel tanks. It can be decomposed by passing the gas through a hot porcelain tube at 350-400°. Passage through alkaline pyrogallol solution removes oxygen (and CO₂). Removal of CO₂ and water are effected by passage through soda-lime followed by Mg(ClO₄)₂ or P₂O₅ and collected over Hg. Carbon monoxide can be condensed and distilled at -195°. It is sparingly soluble in H₂O but is readily absorbed by a solution of CuCl in HCl to give the white crystalline adduct CuCl.CO.2H₂O. It burns in air with a bright blue flame but a mixture of 2volumes of CO and 1volume of O₂ explode when kindled, although in a small jar the combustion is not violent. **HIGHLY POISONOUS gas** as it reacts with haemoglobin to form bright red carboxyhaemoglobin which is stable and not readily decomposed by oxygen. [Gilliland & Blanchard *Inorg Synth* **II** 81 *1946*, Glemser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** p 645-646 *1963*.]

Carbonyl bromide [593-95-3] **M 187.8, b 64.5% 760mm.** Purify it by distillation from Hg and from powdered Sb to remove free bromine, then distil it in a slight vacuum to remove volatile SO₂ (the major impurity) [Carpenter et al. J Chem Soc, Faraday Trans 2 384 1977]. **TOXIC.**

Carbonyl sulfide [463-58-1] **M 60.1, m -138°, b -47.5°, -50°.** Purify the gas by scrubbing it through three consecutive fritted washing flasks containing conc NaOH at 0° (to remove HCN), and then through conc H_2SO_4 (to remove CS_2) followed by a mixture of NaN₃ and NaOH solution; or passed through traps containing saturated aqueous lead acetate, then through a column of anhydrous CaSO₄. Then it is freezepumped repeatedly and distilled through a trap packed with glass wool and cooled to -130° (using an *n*-pentane slurry). It liquefies at 0°/12.5mm. Use stainless steel containers. The gas is stored over conc H_2SO_4 . [Glemser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 654 *1963*.] **TOXIC**

Ceric ammonium nitrate [16774-21-3] M 548.2, pK_1^{25} -1.15, pK_2^{25} -0.72, pK_3^{25} 1.68, pK_4^{25} 2.29 (for aquo Ce⁴⁺). Ceric ammonium nitrate (125g) is warmed with 100mL of dilute HNO₃ (1:3 v/v) and 40g of NH₄NO₃ until it dissolves, and filtered through a sintered-glass funnel. The solid which separates on cooling in ice is filtered off on a sintered funnel (at the pump) and air is sucked through the solid for 1-2 hours to remove most of the nitric acid. Finally, the solid is dried at 80-85°.

Cesium bromide [7787-69-1] **M 212.8, m 636°, b** *ca* **1300°, d** $_{4}^{20}$ **4.44.** It is very soluble in H₂O, soluble in EtOH but insoluble in Me₂CO. Dissolve it in the minimum volume of H₂O, filter and precipitate it by adding Me₂CO. Filter off the solid and dry it at 100°. Also recrystallise it from water (0.8mL/g) by partial evaporation in a desiccator.

Cesium carbonate [534-17-8] **M 325.8, m 792°(at red heat).** Crystallise it from ethanol (10mL/g) by partial evaporation. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 988 1963.]

Cesium chloride [7647-17-8] **M 168.4, m 645°, b 1303°, d** $_{4}^{20}$ **3.99.** It is soluble in H₂O but can be purified by crystallisation from H₂O [solublity in g percent: 162.3(0.7°), 182.2(16.2°) and 290(at bp 119.4°)] and dried in high a vacuum. It is soluble in EtOH and is *deliquescent*; keep it in a tightly closed container. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 951-955 *1963.*] For further purification of CsCl, a concentrated aqueous solution of the practically pure reagent is treated with an equivalent weight of I₂ and Cl₂ is bubbled into the solution until preciptation of CsCl₂I is complete. Recrystallisation yields a salt which is free from other alkali metals. It is then decomposed to pure

CsCl on heating. [Harned & Schupp J Am Chem Soc 52 3886 1930.] It can also be recrystallised from acetone/water, or from water (0.5mL/g) by cooling in a CaCl₂/ice bath. Dry it at 78° under vacuum.

Cesium chromate [56320-90-2] M 381.8, pK_1^{25} 0.74, pK_2^{25} 6.49 (for H₂CrO₄). Crystallise the chromate from water (1.4mL/g) by partial evaporation in a desiccator. [Boer et al. *Z* Anorg Allgem Chem 191 113 1930, Hein & Herzog in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1389 1963.]

Cesium fluoride [13400-13-0] M 151.9, m 703°. Crystallise it from aqueous solution by adding ethanol.

Cesium iodide [7789-17-5] **M 259.8, m 621°, b~1280°, d** $_{4}^{20}$ **4.5.** Crystallise it from warm water (1mL/g) by cooling to -5°.

Cesium nitrate [7789-18-6] **M 194.9, m 414°(dec), d_4^{20} 3.65.** It crystallises from water (0.6mL/g) between 100° and 0°. After 1 crystallisation of 99.9% grade salt, it had K, Na and Se at 0.8, 0.4 and 0.2 ppm respectively.

Cesium perchlorate [13454-84-7] M 232.4, pK^{25} -2.4 to -3.1 (for HClO₄). Crystallise it from water (4mL/g) between 100° and 0°.

Cesium sulfate [10294-54-9] M 361.9, m 1005°, d_4^{20} 4.24. Crystallise it from water (0.5mL/g) by adding ethanol and cooling.

Chlorine [7782-50-5] **M 70.9, m -101.5°, b -34.0°, d** $_{4}^{20}$ **2.898.** Pass the gas in succession through aqueous KMnO₄, dilute H₂SO₄, conc H₂SO₄, and a drying tower containing Mg(ClO₄)₂. Or bubble it through water, dry it over P₂O₅ and distil it from bulb to bulb in a vacuum line. One volume of water dissolves 4.6 volumes of Cl₂ at 0°, 2.15 volumes at 20°, 1.22 volumes at 50° and 0.39 volumes at 90°. [Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 272 *1963*.] **HIGHLY TOXIC.**

Chlorine trifluoride [7790-91-2] **M 92.5, b 12.1°.** Impurities include chloryl fluoride, chlorine dioxide and hydrogen fluoride. Passed it first through two U-tubes containing NaF to remove HF, then through a series of traps in which the liquid is fractionally distilled. It can be purified *via* the KF complex; KClF₄, formed by adding excess ClF₃ to solid KF in a stainless steel cylinder in a dry-box and shaking overnight. After pumping out the volatile materials, pure ClF₃ is obtained by heating the bomb to 100-150° and condensing the evolved gas in a -196° trap [Schack et al. *Chem Ind (London)* 545 *1967*]. It attacks glass very vigorously. **HIGHLY TOXIC.**

Chlorosulfonic (chlorosulfuric) acid [7790-94-5] M 116.5, b 151-152°/750mm, d_4^{20} 1.753, n_D^{20} 1.4929, pK^{25} -5.9 (aqueous H_2SO_4). Distil the acid in an all-glass apparatus, taking the fraction boiling at 156-158°. It reacts **EXPLOSIVELY** with water [Cremlyn *Chlorosulfonic acid: A Versatile Reagent*, Royal Society of Chemistry UK, 2002, p 308, ISBN 0854044981, Fehér in *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol I p 385 1963].

Chromic chloride (anhydrous) [10025-73-7] **M 158.4, m 1152°, pK**₁²⁵ **3.95, pK**₂²⁵ **5.55, pK**₃²⁵ **10.5 (for Cr³⁺).** Sublime the chloride in a stream of dry HCl. Alternatively, the impure chromic chloride (100g) is added to 1L of 10% aqueous K₂Cr₂O₇ and several millilitres of conc HCl, and the mixture is brought to a gentle boil with constant stirring for 10minutes. (This removed a reducing impurity.) The solid is separated and washed by boiling with successive 1L lots of distilled water until the wash water no longer gives a test for chloride ion, then dry it at 110° [Poulsen & Garner J Am Chem Soc **81** 2615 1959, Hein & Herzog in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol **II** p 1338 1965].

Chromium ammonium sulfate (12H₂O) [34275-72-4 (hydrate), 13548-43-1 (anhydrous)] M 478.4, m 94° loses 9H₂O then dehydrates at 300°, d_4^{20} 1.72. Crystallise the double salt from a saturated

aqueous solution at 55° by cooling slowly with rapid mechanical stirring. The resulting fine crystals are filtered on a Büchner funnel, partly dried on a porous plate, then equilibrated for several months in a vacuum desiccator over crude chromium ammonium sulfate (partially dehydrated by heating at 100° for several hours before use) [Johnson et al. *J Am Chem Soc* **75** 3922 *1953*].

Chromium (II) chloride (anhydrous) [10049-05-5] **M 122.9, m 824**°, d_4^{14} 2.75. It is obtained from the *dihydrate* by heating *in vacuo* at 180°. It is a very *hygroscopic* white powder which dissolves in H₂O to give a sky blue solution. It is stable in dry air but oxidises rapidly in moist air and should be stored in air tight containers. It sublimes at 800° in a current of HCl gas and should be cooled in the presence of HCl gas. Alternatively it can be washed with air-free Et₂O and dried at 110-120°. [Burg *Inorg Synth* **III** 150 *1950*, Balthis & Bailar (4 H₂O) *Inorg Synth* **I** 125 *1939*, Hein & Herzog in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** pp 1336-1338 *1965*.]

Chromium hexacarbonyl [13007-92-6] **M 220.1, m 130**°(**dec**), d_4^{20} **1.77.** Wash the complex with cold EtOH, then Et₂O, and allow it to dry in air. Alternatively recrystallise it from dry Et₂O. This is best accomplished by placing the hexacarbonyl in a Soxhlet extractor and extracting exhaustively with dry Et₂O. Pure Cr(CO)₆ is filtered off and dried in air. Completely colourless refracting crystals are obtained by sublimation at 40-50°/<0.5mm in an apparatus where the collecting finger is cooled by Dry Ice and in which there is a wide short bore between the hot and cold sections to prevent clogging by the crystals. Loss of product in the crystallisation and sublimation is slight. It is important not to overdo the drying as the solid is appreciably volatile and **TOXIC** [vapour pressure is 0.04(8°), 1.0(48°) and 66.5(100°) mm]. Also do not allow the Et₂O solutions to stand too long as a brown deposit is formed which is sensitive to light, and to avoid the possibility of violent decomposition. It sinters at 90°, decomposes at 130°, and **EXPLODES** at 210°. [Owen et al. *Inorg Synth* **III** 156 *1950*, Podall et al. *J Am Chem Soc* **83** 2057 *1961*.] POISONOUS.

Chromium (III) nitrate nonahydrate [7789-02-8] **M 400.2, m ~60° (dec >100°).** The pure deep violet nonahydrate salt is best prepared freshly from pure recrystallised (3 times) chromium (VI) trioxide and pure nitric acid. A solution is prepared by dissolving 1g of CrO_3 in 3mL of H₂O and 2mL of pure HNO₃, and carefully, with stirring (behind a screen) pure MeOH (0.5-1.0mL) is added dropwise carefully (shield) with cooling to avoid a violent reaction. A bluish colour develops as Cr(VI) is reduced to Cr(III). When this solution is diluted to 130,000ppm of the salt, analysis detected by ICP/MS gave the following trace elements (ppm in brackets): Sr (33), Na (3.5), Mo, Ni, Cu, Si and Mg (0.13 each), Se, Zn, Al (0.026 each), Ti (1.5), Fe (4.9), Co (0.07), Sn (0.065), Ba (0.013 and W (0.078). Evaporation of the methanolic solution in high vacuum over CaCl₂ eventually yields pure deep violet rhombic crystals of chromium (III) nitrate *nonahydrate*. An aqueous solution of this salt becomes green on heating but reverts to the violet colour on cooling.

The pale green *anhydrous* chromium (III) nitrate, [13548-38-4] M 238.0, m dec >60°, is best obtained pure by mixing a solution of chromium hexacarbonyl in CCl₄ with excess of N₂O₅ in CCl₄ under N₂ for 12hours, whereby evolution of gasses occurs. Filter off the salt and wash it with CCl₄ in a closed system under N₂, and dry it *in vacuo*. It is very soluble in H₂O, EtOAc and Me₂SO but insoluble in *C₆H₆, CCl₄ and CHCl₃. The *deliquescent* powder reacts vigorously with Et₂O. [Addison & Chapman *J Chem Soc* 539 1964.] Cr(VI) ions are **carcinogenic** as they cause DNA breaks, and Cr(III) ions affect DNA synthesis.

Chromium potassium sulfate (12H₂O) [7788-99-0] M 499.4, pK_1^{25} 0.74, pK_2^{25} 6.49 (for H₂CrO₄, chromic acid). Crystallise it from hot water (2mL/g) by cooling.

Chromium trioxide (chromic anhydride) [1333-82-0] M 100.0, m 197°, dec at 250° to Cr_2O_3 , d 2.70 (p K_1^{25} 0.74, p K_2^{25} 6.49, for H₂CrO₄, chromic acid). It forms red crystals from water (0.5mL/g) between 100° and -5°, or from water/conc HNO₃ (1:5). It separates when potassium or sodium dichromate are dissolved in conc H₂SO₄. Dry it in a vacuum desiccator over NaOH pellets. It is a *hygroscopic*, powerful oxidant and can ignite with organic compounds. It is a skin and pulmonary **IRRITANT**. [Keyes et al. *Industrial Chemicals* (Lowenheim & Moran eds.) 4th edn J. Wiley pp 270-274 1975.] CANCER SUSPECT. **Chromyl chloride** [14977-61-8] **M 154.9, b 115.7°, d** $_{4}^{20}$ **1.911.** Purify it by distillation under reduced pressure. It hydrolyses violently with H₂O and is a powerful oxidant which explodes with P, and ignites in contact with S, NH₃, EtOH and many organic compounds. **TOXIC.**

Claisen alkali (alkali Claisen). Prepare this from KOH (35g) in H_2O (25mL) and dilute it to 100mL with MeOH. STRONGLY CAUSTIC.

Cobaltous ammonium sulfate ($6H_2O$) [13596-46-8] M 395.5, d_4^{20} 1.90. Crystallise it from boiling water (2mL/g) by cooling. Wash it with ethanol and dry it in a vacuum.

Cobaltous bromide (6H₂O) [85017-77-2 (xH_2O), 7789-43-7 (anhydrous)] M 326.9 (6H₂O), m 47°(dec), b 100°(dec), d²⁰₄ 4.9. Crystallise it from water (1mL/g) by partial evaporation in a desiccator. The anhydrous salt is soluble in EtOH, Me₂CO, MeOAc to form blue-coloured solutions. [Glemser in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1517 1965.]

Cobaltous chloride (6H₂O) [7791-13-1 (6H₂O), 7646-79-9 (anhydrous)] **M 237.9, m 87°(dec), d_4^{20} 1.92.** A saturated aqueous solution at room temperature is fractionally crystallised by standing overnight. The first half of the material that crystallises in this way is used in the next crystallisation. The process is repeated several times, water being removed in a dry-box using air filtered through glass wool and dried over CaCl₂ [Hutchinson J Am Chem Soc **76** 1022 1954]. It has also been crystallised from dilute aqueous HCl. The *hexahydrate* **m 86°** forms pink to red deliquescent crystals. It loses 4H₂O on heating at 52-56° and forms the violet *dihydrate* which loses a further H₂O at 100° to form the violet *monohydrate* which loses the last H₂O at 120-140° to give the pale blue anhydrous deliquescent salt **m 735°** and **b 1049°**. A pink solution of CoCl₂ in H₂O becomes blue on heating to 50° or adding conc HCl which may precipitate the mono or dihydrate. The solid dihydrate gives a blue-purple solution with EtOH. Note: CoCl₂ in H₂O is a "sympathetic ink", i.e. writing using an aqueous solution is almost invisible on paper, but becomes blue on warming the paper. On cooling or standing, the writing becomes invisible again. The anhydrous salt is soluble in H₂O, EtOH, Et₂O, Me₂CO and pyridine. [Glemser in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol **II** p 1515 1965.]

Cobaltous nitrate (6H₂O) [10026-22-9] **M 291.0, m ~55°(6H₂O), 100-105°(dec), d₄²⁰ 1.88.** Crystallise the nitrate from water (1mL/g), or ethanol (1mL/g), by partial evaporation. After 3 crystallisations from H₂O it contains: metal (ppm) As (8), Fe (1.2), K (1), Mg (4), Mn (4), Mo (4), Na (0.6), Ni (18), Zn (1.6). The *hexahydrate* gives the pink *anhydrous* salt by the action of HNO₃ and N₂O₅. The *hexahydrate* melts at ~55° to give a red liquid which decomposes on further heating at 100-105° to form Co₃O₄.

Cobaltous perchlorate (6H₂O) [13478-33-6] M 365.9, pK^{25} -2.4 to -3.1 (for HClO₄). Crystallise it from warm water (0.7mL/g) by cooling.

Cobaltous potassium sulfate [13596-22-0] **M 329.4.** Crystallise it from water (1mL/g) between 50° and 0°, and dry it in a vacuum desiccator over conc H_2SO_4 .

Cobaltous sulfate ($7H_2O$) [10026-24-1 ($7H_2O$), 60459-08-7 (xH_2O), 10124-43-3 (anhydrous)] **M 281.1, m** (see text), d_4^{20} 2.03. Crystallise it three times from conductivity water (1.3mL/g) between 100° and 0° depending on which hydrate is required. The *heptahydrate* crystallises below 44° and is efflorescent with **m 97°**. Between 44° and 70° the monoclinic *hexahydrate* CoSO₄.6H₂O **m 41.5**° is formed, and above 70° the *monohydrate* CoSO₄.H₂O **m 71°** is obtained. The pale reddish or lavender-coloured *anhydrous* salt is obtained by heating the hydrate above 250°, boiling with conc H₂SO₄ or heating with (NH₄)₂SO₄).

Cupric ammonium chloride (2H₂O) [10534-87-9 (hydrate), 15610-76-1 (anhydrous)] M 277.5, m 110-120^o(anhydrous) then dec at higher temperature, d_4^{20} 2.0. Crystallise it from weak aqueous HCl (1mL/g). It crystallises out of a hot solution of CuCl₂ saturated with NH₃ gas.

Cupric bromide [7789-45-9] **M 223.4, m 498°, b 900°, d** $_{4}^{20}$ **4.7.** Crystallise it twice by dissolving it in water (140mL/g), filtering to remove any Cu₂Br₂, and concentrating under vacuum at 30° until crystals

appear. The cupric bromide is then allowed to crystallise by leaving the solution in a vacuum desiccator containing P_2O_5 [Hope et al. *J Chem Soc* 5226 *1960*, Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1009 *1965*].

Cupric chloride [7447-39-4] **M 134.4, m 498°, 630°(dec).** Crystallise the chloride from hot dilute aqueous HCl (0.6mL/g) by cooling in a CaCl₂-ice bath. It is dehydrated by heating on a steambath under vacuum. It is deliquescent in moist air but efflorescent in dry air. The *dihydrate* is emerald green but blue when free from solvent. Concentrated solutions are yellow-green in colour but are blue when free from solvent. Concentrated solutions are yellow on adding conc HCl. A very dilute solution is pure blue due to $Cu(H_2O)_{4^{2+}}$ [Donan & Bassett *J Chem Soc* **81** 939 *1902*.]. CuCl₂ is very deliquescent and is soluble in MeOH or EtOH to give green crystals of $Cu(ROH)_2Cl_2$. [Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1008 *1965*.]

Cupric nitrate (3H₂O) [10031-43-3 (3H₂O), 3251-23-8 (anhydrous)] M 241.6, m 114°, b 170°(dec), d_4^{20} 2.0. Crystallise it from weak aqueous HNO₃ (0.5mL/g) by cooling from room temperature. The anhydrous salt can be prepared by dissolving copper metal in a 1:1 mixture of liquid NO₂ and ethyl acetate and purified by sublimation [Evans et al. J Chem Soc, Faraday Trans 1 75 1023 1979]. The hexahydrate dehydrates to the trihydrate at 26°, and the anhydrous salt sublimes between 150 and 225°, but melts at 255-256° and is deliquescent.

Cupric perchlorate (6H₂O) [10294-46-9 (hydrate), 13770-18-8] M 370.5, m 230-240°, pK^{25} - 2.4 to -3.1 (for HClO₄). Crystallise it from distilled water. The *anhydrous salt* is hygroscopic.

Cupric sulfate (blue vitriol, bluestone) [7758-98-7] **M 159.6, m >560°.** After adding 0.02g of KOH to a litre of nearly saturated aqueous solution of the sulfate, it is left for two weeks, then the precipitate is filtered on to a fibreglass filter with pore diameter of 5-15 microns. The filtrate is heated to 90° and allowed to evaporate until some CuSO₄.5H₂O crystallises out. The solution is then filtered hot and cooled rapidly to give crystals which are freed from mother liquor by filtering under suction [Geballe & Giauque *J Am Chem Soc* **74** 3513 1952]. Alternatively crystallise the sulfate from water (0.6mL/g) between 100° and 0°. The *pentahydrate* is slowly efflorescent, losing 2H₂O at 30°, two more H₂O are lost at 110° and a white anhydrous powder (dessicant) is obtained on heating above 250°.

Cuprous bromide [7787-70-4] **M 143.4, m 497°, b 1345°, d** $_{4}^{20}$ **4.72.** Purify it as for cuprous iodide but using aqueous NaBr. [Keller & Wycoff *Inorg Synth* **II** 3 *1946*, Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1006 *1965*.]

Cuprous chloride [7758-89-6] **M 99.0, m 430°, b~1400°.** Dissolve it in strong HCl, precipitate it by diluting with water and filter it off. Wash the solid with ethanol and diethyl ether, then dry it and store it in a vacuum desiccator [Österlöf Acta Chem Scand 4 375 1950]. Alternatively, to an aqueous solution of $CuCl_2.2H_2O$ is added, with stirring, an aqueous solution of anhydrous sodium sulfite. The colourless product is dried at 80° for 30minutes and stored under N₂. Cu_2Cl_2 can be purified by zone-refining [Hall et al. J Chem Soc, Faraday Trans 1 79 343 1983]. [Glemser & Sauer in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1005 1965.]

Cuprous cyanide [544-92-3] **M 89.6, m 474°.** Wash the cyanide thoroughly with boiling H₂O, then with EtOH. Dry it at 100° to a fine soft powder. It dissolves in excess alkali cyanide solutions to form the very soluble complex ion $Cu(CN)_{4^{3^{-}}}$. [Bassett & Corbett J Chem Soc 125 1660 1924, Barber J Chem Soc 79 1943.]

Cuprous iodide [7681-65-4] **M 190.5, m 605°, b 1336°, d_4^{25} 5.63.** It can be freshly prepared by dissolving an appropriate quantity of CuI in boiling saturated aqueous NaI over 30minutes. Pure CuI is obtained by cooling and diluting the solution with water, followed by filtering and washing sequentially with H₂O, EtOH, EtOAc, Et₂O and pentane, then drying *in vacuo* for 24hours [Dieter, *J Am Chem Soc* **107** 4679 *1985*]. Alternatively wash it with H₂O, then EtOH and finally with Et₂O containing a little iodine. Traces of H₂O are best removed first by heating at 110° and then at 400°. Exess of I₂ is removed completely at 400°. It

dissolves in Et₂O if an amine is present to form the amine complex. On heating it becomes red, then black, but changes to white on cooling. It is sparingly soluble in H₂O or alkali iodide solutions but readily soluble in NH₃ (which absorbs CO) and in cyanide or thiosulfate solutions. [Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed Brauer)* Academic Press Vol **II** p 1007 *1965*, Bawn & Ledwith *Chem Ind (London)* 1180 *1957*.]

Cuprous thiocyanate [18223-42-2] M 121.6, pK²⁵ -1.85 (for HSCN). Purify it as for cuprous iodide but using aqueous NaSCN. [Demmerle et al. *Ind Eng Chem* 42 2 1950, Newman Analyst 88 500 1963.]

Cyanamide [420-04-2] M 42.0, m 43°, 45°, 46°, b 85-87°/0.5mm, pK_1^{20} -0.36 (1.1 at 29°), pK_2^{20} 10.27. Purify it by placing *ca* 15g in a Soxhlet thimble and extracting exhaustively (2-3hours) with two successive portions of Et₂O (400mL, saturated with H₂O by shaking before use) containing two drops of 1N acetic acid. Two successive portions of Et₂O are used so that the NH₂CN is not heated for too long. Each extract is dried over Na₂SO₄ (30g), then combined and evaporated under reduced pressure. The NH₂CN may be stored unchanged at 0° in Et₂O solution in the presence of a trace of AcOH. Extracts from several runs may be combined and evaporated together. The residue from evaporation of an Et₂O solution is a colourless viscous oil which sets to a solid and can be recrystallised from a mixture of 2 parts of *C₆H₆ and 1 part of Et₂O. Concentrating an aqueous solution of NH₂CN at high temperatures causes **EXPLOSIVE** polymerisation. [Kurzer & Lawson *Org Synth* Coll Vol **IV** 645 *1963*, Pinck & Salissbury *Inorg Synth* **III** 39 *1950*, Soloway & Lipschitz *J Org Chem* **23** 613 *1958*.] *Hygroscopic*. [*Beilstein* **3** IV 145.]

Cyanogen bromide [506-68-3] **M 105.9, m 49-51°, b 60-62°/atm.** All operations with this substance should be performed in a very efficient fume cupboard-it is very **POISONOUS** and should be handled in small amounts. Fresh commercial material is satisfactory for nearly all purposes and does not need to be purified. It is a white crystalline solid with a strong cyanide odour. If it is reddish in colour and partly liquid or paste-like, then it is too far gone to be purified, and fresh material should be sought. It can be purified by distillation using small amounts at a time, and using a short wide-bore condenser because it readily solidifies to a crystalline white solid which may clog the condenser. An appropriate gas mask should be used when transferring the molten solid from one container to another, and the operation should be done in an efficient fume cupboard. The melting point (**m** 49-51°) should be measured in a sealed tube. [Hartman & Dreger Org Synth Coll Vol **H** 150 1948.]

Cyanogen iodide [506-78-5] **M 152.9, m 146-147°.** This compound is **POISONOUS**, and the precautions for cyanogen bromide (above) apply here. The reagent (ca 5.9g) is dissolved in boiling CHCl₃ (15mL), filtered through a plug of glass wool into a 25mL Erlenmeyer flask. Cool to room temperature for 15minutes, then place it in an ice-salt bath and cool to -10° . This cooling causes a small aqueous layer to separate as ice. The ice is filtered with the CNI, but melts on the filter and is also removed with the CHCl₃ used as washing liquid. The CNI which is collected on a sintered glass funnel is washed 3x with CHCl₃ (1.5mL at 0°) and freed from last traces of solvent by placing it on a watch glass and exposing it to the atmosphere in a good fume cupboard at room temperature for 1hour to give colourless needles (ca 4.5g), **m** 146-147° (sealed capillary totally immersed in the oil bath). The yield depends slightly on the rapidity of the operation; in this way loss by sublimation can be minimised. If desired, it can be sublimed under reduced pressure at temperatures at which CNI is only slowly decomposed into I₂ and (CN)₂. The vacuum will need to be renewed constantly due to the volatility of CNI. [Bak & Hillebert Org Synth Coll Vol **IV** 207 1963.]

Decaborane [17702-41-9] **M 122.2, m 99.7-100°, b 100°/19mm, 213°/atm.** Purify decaborane by vacuum sublimation at 80°/0.1mm, followed by crystallisation from methylcyclohexane, CH_2Cl_2 , or dry olefin-free-*n*-pentane, the solvent being subsequently removed by storing the crystals in a vacuum desiccator containing CaCl₂. It is soluble in H₂O but is slowly decomposed to give H₂. It is soluble in alkali, and on acidification it liberates H₂. **TOXIC.** [Greenwood in *Comprehensive Chemistry (Ed Bailar et al.)* Pergamon Press Vol **1** pp 818-837 1973.]

Deuterium [7782-39-0] **M 4.** Pass the gas over activated charcoal at -195° [MacIver & Tobin J Phys Chem 64 451 1960]. Purify it also by diffusion through nickel [Pratt & Rogers, J Chem Soc, Faraday Trans 1 92 1589 1976]. Always check deuterium for radioactivity to determine the amount of tritium in it (see D₂O

Deuterium oxide [7789-20-0] **M 20, f 3.8°/760mm, b 101.4°/760mm, d_4^{20} 1.105.** Distil it from alkaline KMnO₄ [de Giovanni & Zamenhof *Biochem J* 92 79 1963]. NOTE that D₂O invariably contains tritiated water and will therefore be RADIOACTIVE; always check the radioactivity level of D₂O in a scintillation counter before using.

below).

cis-Diamminedichloroplatinum(II) (Cisplatin) [15663-27-1] M 300.1, m 270°(dec). Recrystallise it from dimethylformamide and check the purity by IR and UV-VIS spectroscopy. [Raudaschl et al. *Inorg Chim Acta* 78 143 1983.] HIGHLY TOXIC, SUSPECTED CARCINOGEN.

Diammonium hydrogen orthophosphate [7783-28-0] **M 132.1.** Crystallise it from water (1mL/g) between 70° and 0°. Its solubility in H₂O is 59% at room temperature and 200% at the boiling point. It slowly evolves NH₃ and should be stored in a well-stoppered container. After one crystallisation, ACS grade salt had Fe, Mo, Na, Se and Ti at 1, 0.2, 1.4, 0.2 and 0.8ppm, respectively. [Gmelin's, Ammonium (8th edn) 23 pp422-426 1936.]

Dicobalt octacarbonyl [10210-68-1] **M 341.9, m 51°.** It forms orange-brown crystals on recrystallisation from *n*-hexane under a carbon monoxide atmosphere [Ojima et al. *J Am Chem Soc* **109** 7714 1987; see also Hileman in *Preparative Inorganic Reactions*, Ed. Jolly, Vol **1** p 101 1987].

Dinitrogen tetroxide (nitrogen dioxide, N₂O₄) [10544-72-6] **M 92.0 m -11.2°, b 21.1°.** Purify it by oxidation at 0° in a stream of oxygen until the blue colour changes to red-brown. Alternatively distil it from P_2O_5 , then solidify it by cooling in a deep-freeze (at -78° , giving nearly colourless crystals). Oxygen can be removed by alternate freezing and melting. **TOXIC VAPOUR.** [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 488-489 1963.]

Disodium hydrogen orthophosphate (anhydrous) [7558-79-4] **M 142.0, (see pK of H_3PO_4).** Crystallise the salt twice from warm water, by cooling. Dry in air, then in an oven overnight at 130°. It should be dried before use as it is slightly *hygroscopic*. It forms di-, hepta- and deca- hydrates.

Ferric Bromide [10031-26-2] **M 395.6, m >130°(dec).** Sublime it in a sealed tube with Br₂ at 120°-200°. [Lux in *Handbook of Preparative Inorganic Chemistry (Ed.Brauer)* Academic Press Vol **II** p 1494 *1965.*]

Ferric chloride (anhydrous) [7705-08-0] **M 162.2, m >300°(dec).** Sublime it at 200° in an atmosphere of chlorine. It is an "iron-black" coloured powder with green irridescence. Store it in a weighing bottle inside a desiccator as it absorbs moisture from air to form the yellow *hexahydrate* (see next entry). [Tarr *Inorg Synth* **III** 191 *1950*, Pray *Inorg Synth* **V** 153 *1957*, Epperson *Inorg Synth* **VII** 163 *1963*.]

Ferric chloride (6 H₂O) [10025-77-1] M 270.3, m 37°(dec), pK_1^{25} 2.83, pK_2^{25} 4.59 (for hydrolysis of Fe³⁺). An aqueous solution, saturated with the salt at room temperature, is cooled to -20° for several hours. Separation of the crystals is slow, even with scratching and seeding, and it is generally necessary to stir this overnight. The presence of free HCl retards crystallisation. [Linke J Phys Chem 60 91 1956].

Ferric nitrate (9H₂O) [7782-61-8] M 404.0, m 47°(dec). It crystallises from aqueous solutions of moderately strong HNO₃ as the pale violet *nonahydrate* m 40° and is soluble in EtOH and Me₂CO. With more concentrated aqueous solutions (containing some HNO₃), the *hexahydrate* crystallises out m 60.5°. The *anhydrous* salt is slightly deliquescent and decomposes at 47°. [Lambert & Thomson J Chem Soc 97 2426 1920, Gmelin's, Iron (8th edn) 59 Part B pp 161-172 1932.]

Ferric perchlorate (9H₂O) [13537-24-1] M 516.3, pK^{25} -2.4 to -3.1 (for HClO₄). Crystallise it twice from conc HClO₄, the first time in the presence of a small amount of H₂O₂ to ensure that the iron is fully oxidised [Sullivan *J Am Chem Soc* 84 4256 1962]. Extreme care should be taken with this preparation because it is potentially **EXPLOSIVE**.

Ferric sulfate (xH_2O) [10028-22-5] **M 399.9 + xH_2O.** Dissolve the sulfate in the minimum volume of dilute aqueousH₂SO₄ and allow it to evaporate at room temperature until yellowish-white crystals start to form. Do not concentrate by boiling off the H₂O as basic salts will be formed. Various *hydrates* are formed; the common ones are the *dodeca* and *nona hydrates* which are violet in colour. The *anhydrous* salt is colourless and is very *hygroscopic*, but it dissolves in H₂O slowly unless ferrous sulfate is added. [*Gmelin's*, *Iron* (8th edn) pp 439-462 1932.]

Ferrous bromide [20049-65-4] **M 215.7 + xH₂O, m 684°, d²⁵ 4.63.** It crystallises from air-free H₂O to provide the *hexahydrate* as pale green to bluish-green rhombic prisms. On heating at 49° H₂O is lost and the *tetrahydrate* is formed. On further heating at 83° more H₂O is lost and the *dihydrate* is formed as a light yellow to dark brown *hygroscopic* powder. The ferrous iron in aqueous solutions of these salts readily oxidises to ferric iron. The salts should be stored over H₂SO₄ under N₂ in tightly closed containers. They have some solubility in EtOH. [Baxter Z Anorg Chem **38** 236 1904, Kühln & Ernst Z Anorg Allgmen Chem **317** 84 1962, Lux in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol **II** p 1493 1965.]

Ferrous chloride (4H₂O) [13478-10-9] **M 198.8, m 105**°(dec), pK_1^{25} 6.7, pK_2^{25} 9.3 (for aquo F e²⁺). A 550mL round-bottomed Pyrex flask is connected, *via* a glass tube fitted with a medium porosity sintered-glass disc, to a similar flask. To 240g of FeCl₂.4H₂O in the first flask is added conductivity water (200mL), 38% HCl (10mL), and pure electrolytic iron (8-10g). A stream of purified N₂ gas is passed through the assembly, escaping through a mercury trap. The salt is dissolved by heating which is continued until complete reduction has occurred. By inverting the apparatus and filtering (under N₂ pressure) through the sintered glass disc, unreacted iron is removed. After cooling and crystallisation, the unit is again inverted, and the crystals of ferrous chloride are filtered free from mother liquor by applied N₂ pressure. Partial drying by overnight evacuation at room temperature gives a mixed hydrate which, on further evacuation on a water bath at 80°, loses water of hydration and absorbed HCl (with vigorous effervescence) to give a white powder of FeCl₂.2H₂O (see below). [Gayer & Wootner *J Am Chem Soc* 78 3944 1956, (2H₂O) Gayer & Wootner *Inorg Synth* V 179 1957.]

Ferrous chloride [7758-94-3] **M 126.8, m 674°, b 1023°, d²⁵ 3.16.** It sublimes in a stream of HCl at *ca* 700°, or in H₂ below 300°. Its vapour pressure at 700° is 12mm. It forms white *hygroscopic* rhombohedral crystals with a green tint which oxidise in air to FeCl₃ and Fe₂O₃. It is soluble in H₂O, EtOH Me₂CO but insoluble in Et₂O. The *tetrahydrate* is pale green to pale blue in colour and loses 2H₂O at 105-115°. The *dihydrate* loses H₂O at 120°. [*Anhydrous* FeBr₂ can be obtained by carefully dehydrating the *tetrahydrate* in a stream of HBr and N₂, and it can be sublimed under N₂.] The ferrous iron in aqueous solutions of these salts readily oxidises to ferric iron. (See above.) [Kovacuumic & Brace *Inorg Synth* **VI** 172 *1960*, Lux in *Handbook of Preparative Inorganic Chemistry (Ed Brauer)* Academic Press Vol **II** p 1491 *1965*.]

Ferrous perchlorate (6H₂O) [13933-23-8] M 362.9, pK^{25} -2.4 to -3.1 (for HClO₄). Crystallise it from HClO₄. [CARE, see ferric perchlorate above.]

Ferrous sulfate (7H₂O, green vitriol) [7782-63-0] **M 278.0, m ~60°(dec).** Crystallise the sulfate from 0.4M H₂SO₄, or precipitate it from an aqueous solution with EtOH. It is *efflorescent* in dry air, and is converted to the *tetrahydrate* at 57°, then to the *monohydrate* at 65° (or by heating the heptahydrate in a vacuum at 140°). It forms a brown-black complex, FeSO₄.NO, with nitric oxide and is used in a qualitative test for nitrates ("brown ring" test).

Fluorine [7782-41-4] **M 38.0, b -129.2°.** Pass the gas through a bed of NaF at 100° to remove HF and SiF₄. [For description of stills used in fractional distillation, see Greenberg et al. *J Phys Chem* **65** 1168 1961; Stein et al. *Purification of Fluorine by Distillation, Argonne National Laboratory*, ANL-6364 1961 (from Office of Technical Services, US Dept of Commerce, Washington 25).] **HIGHLY TOXIC.**

Fluoroboric acid [16872-11-0] **M 87.8, b 130°(dec), pK²⁵ -4.9.** Crystallise fluoroboric acid several times from conductivity water. It can be stored in a glass vessel at room temperature. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 221-222 1963.]

Gallium [7440-55-3] **M 69.7, m 29.78°, b 2403°, d^{29.6} 5.904, d^{29.8} 6.095.** Dissolve the metal in dilute HCl and extract it with Et₂O. Bubbling H₂S through the solution removes many metals, and a second extraction with Et₂O frees Ga further from metal impurities, except for Mo, Th(III) and Fe which are largely removed by precipitation with NaOH. The solution is then electrolysed in 10% NaOH with a Pt anode and cathode (2-5A at 4-5V) to deposit Ga, In, Zn and Pb, from which Ga was obtained by fractional crystallisation of the melt [Hoffman *J Res Nat Bur Stand* **13** 665 *1934*]. Ga is also purified by heating to boiling in 0.5-1M HCl, then heating to 40° in water and pouring the molten Ga with water under vacuum through a glass filter (30-50 μ pore size), to remove any unmelted metals or oxide film. The Ga is then fractionally crystallised from the melt under water. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 837 *1963*.]

Gallium (III) Chloride [13450-90-3] M 176.1, m 77.8°, b 133°/100mm, 197.7°/700mm, d_4^{20} 2.47, pK₁²⁵ 2.91, pK₂²⁵ 3.70, pK₃²⁰ 4.42 (for Ga³⁺). The pure compound can be obtained by redistillation in a stream of Cl₂ or Cl₂/N₂ followed by vacuum sublimation or zone refining. It forms colourless needles which give *gallium dichloride* [Ga(GaCl₄), m 172.4°] on heating. It dissolves in H₂O with liberation of heat. It is soluble in Et₂O and can be extracted from an HCl solution with Et₂O. [Laubengayer & Schirmer J Am Chem Soc 62 1579 1940, Dönges in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 846 1963.]

Gallium (III) nitrate (9H₂O) [63462-65-7] **M 417.9, m ca 65°.** Recrystallise the nitrate from H₂O (solubility is 295g/100mL at 20°). It forms a white *deliquescent*, colourless powder soluble in H₂O, absolute EtOH and Et₂O. It loses HNO₃ upon heating at 40°. Addition of Et₂O to a warm ethanolic solution (40-50°) of Ga(NO₃)₃ 9H₂O precipitates Ga(OH)₂NO₃.Ga(OH)₃.2H₂O. If the salt has partly hydrolysed, dissolve it in conc HNO₃, reflux, dilute with H₂O and concentrate on a sand bath. Wash the solid several times by adding H₂O and evaporating until there is no odour of acid. Dilute the residue to a Ga concentration of 26g/100mL. At this concentration, *spongy* Ga(NO₃)₃.xH₂O separates from the viscous solution. After standing for several days the crystals are collected and dried in a stream of dry air first at room temperature, then at 40°. *Dehydration* is complete after 2 days. Recrystallise it from H₂O and dry it at water pump vacuum at room temperature. [Reimmann & Tanner *Z Naturforsch* **20B** 71 *1965*, Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 856 *1963*.]

Gallium (III) sulfate [13494-91-2 (anhydrous), 13780-42-2 (hydrate)] **M 427.6.** Recrystallisation from H₂O gives the 16-18H₂O hydrate (solubility at 20° is 170g/100mL). Alternatively dissolve it in 50% H₂SO₄ and evaporate (60-70°), cool and precipitate it by adding EtOH/Et₂O. On heating at 165° it provides the anhydrous salt, which is a white hygroscopic solid. [Reimmann & Tanner Z Naturforsch **20B** 71 1965.]

Germanium [7440-56-4] **M 72.6, m 937°, 925-975°, b 2700°, d** $_{4}^{20}$ **5.3.** Copper contamination on the surface and in the bulk of single crystals of Ge can be removed by immersion in molten alkali cyanide under N₂. The Ge is placed in dry K and/or Na cyanide powder in a graphite holder in a quartz or porcelain boat. The boat is then inserted into a heated furnace which, after a suitable time, is left to cool to room temperature. At 750°, a 1mm thickness of metal requires about 1minute, whereas 0.5cm needs about half hour. The boat is removed from the furnace, and the solid samples are taken out with plastic-coated tweezers, carefully rinsed in hot water and dried in air [Wang J Phys Chem 60 45 1956, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 712 1963]. Care with the use of cyanide.

Germanium (IV) oxide [1310-53-8] M 104.6, m 1080°(soluble form), d^{25} 6.239; m 1116°(insoluble form) d^{25} 4.228, pK_1^{25} 9.02, pK_2^{25} 12.82 (for germanic acid H₂GeO₃). The oxide (GeO₂) is usually prepared by hydrolysing redistilled GeCl₄ and igniting it in order to remove H₂O and chloride. It can be further purified by dissolving in hot H₂O (solubility is 4g/L cold) evaporating and drying the

residual crystalline solid. When the *soluble* form (which is produced in H₂O at 355°) is heated for 100hours, it is converted to the *insoluble* form. This form is stable at temperatures up to 1033°, and fusion at 1080° for 4hours causes complete de-vitrification and it reverts to the *soluble* form. [Müller & Blank J Am Chem Soc **46** 2358 1924, Dennis & Laubengayer J Am Chem Soc **47** 1945 1925, Laubengayer & Morton J Am Chem Soc **54** 2303 1932, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 706 1963.]

Germanium tetrabromide [13450-92-5] M392.2, m 26°, b 185.9°/atm, d_4^{27} 3.123. Purify it by simple distillation or fractionation depending on purity. It is soluble in EtOH, CHCl₃, *C₆H₆ and Et₂O. It fumes in moist air and is readily hydrolysed by water. [Schenk in *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol I p 718 1963]. LACHRYMATORY.

Germanium tetrachloride [10038-98-9] M 214.4, m -49.5° (α), -52.0° (β), b 83.1°/760mm, 86.5°/760mm corr, d₄²⁰ 1.84. Traces of Cl₂ and HCl can be removed from the liquid by blowing dry air through it for a few hours at room temperature or by shaking it with Hg or Hg₂Cl₂ and then fractionating it in a vacuum. It decomposes on heating at 950°. It has a sharp penetrating odour and fumes in moist air to give a chalky coat of GeO₂. It is slowly hydrolysed by H₂O to give GeO₂, but distils from conc HCl. [Foster et al. *Inorg Synth* II 109 1946, Dennis & Hance J Am Chem Soc 44 304 1922, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 715 1963.] LACHRYMATORY.

Glass powder (100-300 mesh). Washed with 10% HNO₃, water and dry in air.

Gold (III) bromide (gold tribromide) [10294-28-7] **M 436.7, m 150°(dec).** Purify it by adding pure Br₂ to the dark powder, securely stopper the container, warm a little and shake while keeping away from light for *ca* 48hours. Remove the stopper and place it over NaOH until free Br₂ is no longer in the apparatus (48-60hours). The bright yellow needles of the tribromide are stable over NaOH in the dark. It is soluble in H₂O and in EtOH where it is slowly reduced. Keep it in a cooled, closed container and protect it from light as decomposition causes free gold to be formed. *Aurobromic acid* can be obtained by adding the calculated amount of conc HBr to AuBr₃ (actually Au₂Br₆) until all dissolves, whereby the acid crystallises out as HAuBr₄.5H₂O; a *deliquescent* solid soluble in EtOH with **m** *ca* 27°, and store it as above. [Gibson & Colles J Chem Soc 2411 *1931*, Burawoy & Gibson J Chem Soc 217 *1935*, Burawoy & Gibson J Chem Soc 219 *1935*.]

Gold (III) chloride (hydrate) [16903-35-8] **M 339.8 + xH₂O, m 229°, b 354°(dec), d** $_{4}^{20}$ **3.9.** It is obtained as a dark red crystalline mass by dissolving Au in aqua regia and evaporating. When sublimed at 180°, the crystals are ruby red. The anhydrous salt is *hygroscopic*, soluble in H₂O but sparingly soluble in EtOH and Et₂O. *Aurochloric acid* is formed when AuCl₃ is dissolved in HCl. [Diemer *J Am Chem Soc* **35** 553 1913, Glemser & Sauer Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol **II** p1 056 1965.]

Gold (I) cyanide [506-65-0] **M 223.0, m dec on heating.** The lemon yellow powder is sparingly soluble in H₂O and EtOH but soluble in aqueous NH₃. It is obtained by heating H[Au(CN)₂] at 110°. Wash it well with H₂O and EtOH and dry it at 110°. It has an IR band at v_{max} 2239 cm⁻¹ typical for C=N stretching vibration. [Glemser & Sauer Handbook of Preparative Inorg anic Chemistry (Ed. Brauer) Academic Press Vol II p 1064 1965.] CARE: may evolve HCN.

Gold (I) iodide [10294-31-2] **M 323.9, m 120°(dec), d** $_{4}^{20}$ **8.25.** It has been prepared by heating gold and iodine in a tube at 120° for 4 months. Since it decomposes to Au and I₂ in the presence of UV light and heat, then the main impurity is Au. The salt is therefore purified by heating at 120° with I₂ for several weeks. The crystals should be kept dry and in a cool place in the dark. [Weiss & Weiss Z Naturforsch 11B 604 1956.]

Gold (III) oxide hydrate [1303-58-8] M 441.9 + xH₂O, evolves O₂ at 110°, $pK_1^{25} < 11.7$, pK_2^{25} 13.36, $pK_3^{25} > 15.3$ [for Au(OH)₃]. The most probable impurities are SO₄²⁻ and Cl⁻ ions. Dissolve it in strong boiling KOH solution (*ca* 5M) and precipitate (care) with excess of 3N H₂SO₄. Then shake and centrifuge, resuspend in H₂O and repeat the washing several times until free from SO₄ and Cl ions.

This gives a *wet* oxide which is dried in air, but decomposes to free gold in sunlight. It is advisable to keep it wet as it decomposes on drying (analyse wet sample). Store it away from light in the presence of H₂O vapour. It evolves O₂ at 110°. It is insoluble in H₂O but soluble in HCl and conc HNO₃. [Roseveare & Buehrer *J Am Chem Soc* **49** 1221 *1927*.]

Graphite [7782-42-5]. Treat graphite with hot 1:1 HCl. Then filter, wash and the dried powdered is heated in an evacuated quartz tube at 1000° until a high vacuum is obtained. Cool this and store it in an atmosphere of helium [Craig et al. J Phys Chem 60 1225 1956].

Helium [7440-59-7] **M 4.0, m –272.2°/26atm, b –268.9°, d**^{-270.3} **0.147.** Dry the gas by passing it through a column of Linde 5A molecular sieves and CaSO₄, then through an activated-charcoal trap cooled in liquid N₂, to adsorb N₂, argon, xenon and krypton. Also pass it over CuO pellets at 300° to remove hydrogen and hydrocarbons, over Ca chips at 600° to remove oxygen, and then over titanium chips at 700° to remove N₂ [Arnold & Smith *J Chem Soc, Faraday Trans 2* **77** 861 *1981*]. Its solubility in 100mL of H₂O is 0.94mL at 25°, 1.05mL at 50° and 1.21 at 75°.

Hexachloroplatinic acid hydrate (H_2PtCl_6 , chloroplatinic acid, platinum IV chloride soution) [16941-12-1] M 409.8 + H_2O , m 60° (deliquescent solid). If it is to be purified, or regenerated from Pt recovered from catalytic hydrogenations, it should be dissolved in aqua regia followed by evaporation to dryness and dissolution in the minimum volume of H_2O . Then the aqueous solution is treated with saturated ammonium chloride until all the ammonium hexachloroplatinate separates. The (NH_4)₂PtCl₆ is filtered off and dried at 100°. Igniting this salt gives Pt *sponge*; dissolve the Pt sponge in aqua regia, boil to dryness, dissolve the residue in concentrated HCl, boil to dryness again and repeat the process. Protect it from light. [Hickers J Am Chem Soc 43 1268 1921, Adams et al. Org Synth Coll Vol I 463, 466 1941, Bruce J Am Chem Soc 58 687 1936.]

Hexammine cobalt(III) chloride [10534-89-1] M 267.5. It crystallises from warm water (8mL/g) on cooling. [Bjerrum & McReynolds *Inorg Synth* II 217 1946.]

Hexammine ruthenium(III) chloride [14282-91-8] M 309.6. Crystallise it twice from 1M HCl.

Hexarhodium hexadecacarbonyl [28407-51-4] **M 1065.6, m 220°(dec, in air), d** $_{4}^{20}$ **2.87.** It slowly loses CO when heated in air, but may be regenerated by heating at 80-200° in the presence of CO at 200atmospheres pressure for 15hours, preferably in the presence of Cu. It forms black crystals which are insoluble in hexane. It has bands at 2073, 2026 and 1800cm⁻¹ in the IR. [Hieber & Lagally Z Anorg Allgem Chem **251** 96 1963, Corey & Dahl J Am Chem Soc **85** 1202 1963, Doyle et al. Tetrahedron Lett **22** 1783 1981.] POISONOUS.

Hydrazine monohydrate (N₂H₄. H₂O) [7803-57-8] M 50.1, m 198°, b 118-122°/atm. d_4^{20} 1.03. It is best obtained by heating hydrazine sulphate (200g), NaOH (160g) and H₂O (75mL, exothermic) in a copper flask under reflux for 1.5hours then distilled off (using a flame to remove all the hydrazine). The distillate (175mL) is a clear liquid which contains ~40-45% of N₂H₄. Note that hydrazine attacks glass, rubber and cork, and stainless steel equipment should be used. The percentage of hydrazine is determined by titration with standard acid (methyl orange indicator) or against standard iodine (starch indicator). *Hydrazine monohydrate* should contain 64% of N₂H₄. The ~40-45% solution may be concentrated by mixing it (144mL) with xylene (230mL) and distilling it through an efficient fractionating column (e.g. Hempel column, p 10). All the xylene passes over with about 85mL of H₂O. On distilling the residue, hydrated hydrazine (50mL) is obtained containing 80-85% of N₂H₄. This can be diluted with conductivity H₂O to 64% N₂H₄ to give the *monohydrate*. Hydrazine and its hydrates have **VERY IRRITATING** and **TOXIC** vapours and should be used in an efficient fume cupboard. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** pp 469-472 *1963*.] Hydrazine hydrate (N_2H_4 . x H_2O) [10217-52-4] M 32.05 + x 18.02. Hydrated hydrazine can be obtained as above and diluted as required. Solutions containing various amounts of H_2O are available commercially.

Hydrazine (anhydrous) [302-01-2] M 32.1, m 1.5-2.0°, b 47°/26mm, 56°/71mm, 113-113.5°/atm, n 1.470, d 1.91, pK₁²⁵ -0.88, pK₂²⁵ 8.11. Hydrazine hydrate is dried by refluxing with an equal weight of KOH pellets for 3hours, then distilled from fresh solid NaOH or BaO in a current of dry N₂. Use stainless steel or copper equipment. Hydrazine and its hydrates have VERY IRRITATING and TOXIC vapours and should be used in an efficient fume cupboard. Store in a well-stoppered vessel, preferably under N₂. It is a reducing agent. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 469-472 1963.]

Hydrazine dihydrochloride [5341-61-7] M 105.0, m 198°, d_4^{20} 1.42. It is recrystallised from aqueous EtOH and dried under vacuum over CaSO₄.

Hydrazine monohydrochloride [2644-70-4] **M 68.5, m 89**°. Prepare it by dropwise addition of cold conc HCl to cold liquid hydrazine in equimolar amounts. The crystals are harvested from water and are twice recrystallised from absolute MeOH and dried under a vacuum. [Kovack et al. J Am Chem Soc 107 7360 1985.]

Hydrazine sulfate [10034-93-2] **M 130.1, m 254°.** Crystallise it from H_2O . Its solubility in H_2O is 3% at room temperature, but is very soluble in hot H_2O . It is a suspected **carcinogen**. [Adams & Brown Org Synth Coll Vol I 309 1941, Audrieth & Nickles Inorg Synth I 90 1939.]

Hydriodic acid [10034-85-2] M 127.9, b 127°(aqueous azeotrope), d_4^{20} 1.701, pK²⁵ -8.56. Iodine can be removed from aqueous HI, probably as the amine hydrogen triiodide, by three successive extractions using a 4% solution of Amberlite LA-2 (a long-chain aliphatic amine) in CCl₄, toluene or pet ether (10mL per 100mL of acid). [Davidson & Jameson *Chem Ind (London)* 1686 1963.] Extraction with tributyl phosphate in CHCl₃ or other organic solvents is also suitable. Alternatively, a De-acidite FF anion-exchange resin column in the OH⁻-form using 2M NaOH, then into its I⁻-form by passing dilute KI solution through, can be used. Passage of an HI solution under CO₂ through such a column removes polyiodide. The column can be regenerated with NaOH. [Irving & Wilson *Chem Ind (London)* 653 1964]. The earlier method was to reflux with red phosphorus and distil in a stream of N₂. The colourless product is stored in ampoules in the dark [Bradbury *J Am Chem Soc* 74 2709 1952, Heisig & Frykholm *Inorg Synth* I 157 1939]. It fumes in moist air. HARMFUL VAPOURS.

Hydrobromic acid [10035-10-6] M 80.9, b 125°(aqueous azeotrope, 47.5% HBr)/atm, d_4^{20} 1.38 (34% HBr), pK²⁵ -8.69. A solution of aqueous HBr *ca* 48% (w/w, constant boiling) is purified by distilling twice with a little red phosphorus, and the middle half of the distillate is taken. (The azeotrope at 760mm contains 47.8% (w/w) HBr.) [Hetzer et al. *J Phys Chem* 66 1423 1962]. Free bromine can be removed by Irvine and Wilson's method for HI (see above), except that the column is regenerated by washing with an ethanolic solution of aniline or styrene. Hydrobromic acid can also be purified by aerating with H₂S, distilling and collecting the fraction boiling at 125-127°. [Heisig & Andur *Inorg Synth* I 155 1939.] HARMFUL VAPOURS.

Hydrochloric acid (muriatic acid) [7647-01-0] M 36.5, b 108.6° (aqueous azeotrope, 20.2% HCl), d_4^{20} 1.09(20%), pK²⁵ -6.1. It is readily purified by fractional distillation as the constant boiling point acid, following dilution with H₂O. The constant-boiling fraction contains 1 mole of HCl in the following weights of distillate at the stated pressures: 179.555g (730mm), 179.766g (740mm), 179.979 (750mm), 180.193 (760mm), 180.407 (770mm). [Foulk & Hollingsworth J Am Chem Soc 45 1220 1923.] HARMFUL VAPOURS.

Hydrofluoric acid [7664-39-3] M 20.0, b 112.2°(aqueous azeotrope, 38.2% HF), d_4^{20} 1.15 (47-53% HF), pK^{25} 3.21. It is freed from lead (Pb *ca* 0.002ppm) by co-precipitation with SrF₂, by addition of 10% SrCl₂ solution per kilogram of the concentrated acid. After the precipitate has settled, the supernatant is decanted through a filter in a hard-rubber or paraffin lined-glass vessel [Rosenqvist *Am J Sci*

240 358 *1942*]. Pure aqueous HF solutions (up to 25M) can be prepared by isothermal distillation in polyethylene, polypropylene or platinum apparatus [Kwestroo & Visser *Analyst* **90** 297 *1965*]. It attacks glass and is used for etching glass. **HIGHLY TOXIC.**

Hydrogen [1333-74-0] **M 2.0, m -259.1°, b -252.9°, d 0.0889g/L (gas), 0.070g/L (liquid).** It is usually purified by passing through a suitable absorption train of tubes. Carbon dioxide is removed with KOH pellets, soda-lime or NaOH pellets. Oxygen is removed with a "De-oxo" unit or by passage over Cu heated to 450-500° and Cu on Kieselguhr at 250°. Passage over a mixture of MnO₂ and CuO (Hopcalite) oxidises any CO to CO₂ (which is removed as above). Hydrogen can be dried by passage through dried silica-alumina at -195°, through a dry-ice trap followed by a liquid-N₂ trap packed with glass wool, through CaCl₂ tubes, or through Mg(ClO₄)₂ or P₂O₅. Other purification steps include passage through a hot palladium thimble [Masson J Am Chem Soc 74 4731 1952], through an activated-charcoal trap at -195°, and through a non-absorbent cotton-wool filter or small glass spheres coated with a thin layer of silicone grease. Potentially **VERY EXPLOSIVE** in air.

Hydrogen bromide (anhydrous) [10035-10-6] **M 80.9, b -66.8%/atm.** Dry it by passing it through Mg(ClO₄)₂ towers. This procedure is **hazardous** [Stoss & Zimmermann *Ind Eng Chem* **17** 70 1939]. Alternatively shake it with mercury, distil it through a -78° trap and condense it at -195°/10⁻⁵mm. It fumes in moist air. **HARMFUL VAPOURS**. It is soluble in H₂O. A constant boiling aqueous solution of HBr has **b 126%/760mm**, and its HBr concentration is 47.4% (see hydrobromic acid above). It is soluble in AcOH. [Schneider & Johnson *Inorg Synth* **I** 152 1939, Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** pp 282-286 1963.]

Hydrogen chloride [7647-01-0] **M 36.5, b** -85%/760mm. Pass it through conc H₂SO₄, then over activated charcoal and silica gel. It fumes in moist air. Hydrogen chloride in gas cylinders contains ethylene, 1,1-dichloroethane and ethyl chloride. The latter two may be removed by fractionating the HCl through a trap cooled to -112°. Ethylene is difficult to remove. HCl fumes in moist air. HARMFUL VAPOURS. Its solubility in H₂O is 82% at 0°. A constant boiling aqueous solution (azeotrope) has **b** 108.6%/760mm with an HCl concentration of ~20%, and is called *Hydrochloric acid (muriatic acid)* (see above). [Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 280-282 1963.]

Hydrogen cyanide (anhydrous) [74-90-8] M 27.0, b 25.7°/760mm, pK^{25} 9.21 (aqueous acid). HCN is prepared from NaCN and H₂SO₄, and dried by passage through H₂SO₄ and over CaCl₂, then distilled in a vacuum system and degassed at 77°K before use [Arnold & Smith *J Chem Soc*, *Faraday Trans* 2 77 861 1981]. Cylinder HCN may contain stabilisers against explosive polymerisation, together with small amounts of H₃PO₄, H₂SO₄, SO₂, and water. It can be purified by distillaton over P₂O₅, then frozen in Pyrex bottles at Dry-ice temperature for storage. [Zeigler *Org Synth* Coll Vol I 314 1941, Glemser in *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol I pp 658-660 1963.] Liquid HCN, like liquid ammonia, evaporates very slowly since the latent heat of evaporation is high and keeps it in the liquid state because the temperature of the liquid is lowered to below its boiling point. **EXTREMELY POISONOUS; all due precautions should be taken**.

Hydrogen fluoride (anhydrous) [7664-39-3] **M 20.0, b 19.4°.** It can be purified by trap-to-trap distillation, followed by drying over CoF₂ at room temperature and further distillation. Alternatively, it can be absorbed on NaF to form NaHF₂ which is then heated under vacuum at 150° to remove volatile impurities. The HF is regenerated by heating at 300° and is stored with CoF₃ in a nickel vessel, being distilled as required. (Water content should be *ca* 0.01%.) To avoid contact with base metal, use can be made of nickel, polychlorotrifluoroethylene and gold-lined fittings [Hyman et al. *J Am Chem Soc* **79** 3668 *1957*]. An aqueous solution is *hydrofluoric acid* (see above). It is **HIGHLY TOXIC and attacks glass.**

Hydrogen iodide (anhydrous) [10034-85-2] **M 127.9, b - 35.5°.** After removal of free iodine from aqueous HI, the solution is frozen, then covered with P_2O_5 and allowed to melt under vacuum. The gas evolved is dried by passing through P_2O_5 on glass wool. It can be freed from iodine contamination by repeated fractional distillation at low temperatures. It fumes in moist air, and an aqueous solution is *hydriodic acid* (see above). **HARMFUL VAPOURS.**

Hydrogen peroxide [7722-84-1] **M 34.0, d** $_4^{20}$ **1.110, pK**²⁵ **11.65.** The 30% material has been steam distilled using distilled water. Gross and Taylor [*J Am Chem Soc* **72** 2075 1950] made 90% H₂O₂ approximately 0.001M in NaOH and then distilled it under its own vapour pressure, keeping the temperature below 40°, the receiver being cooled with a Dry-ice/isopropyl alcohol slush. The 98% material has been rendered anhydrous by repeated fractional crystallisation in all-quartz vessels. **EXPLOSIVE IN CONTACT WITH ORGANIC MATERIAL.**

Hydrogen peroxide urea adduct (UHP, urea hydrogen peroxide 1:1 complex, carbamide peroxide, Debrox, Hyperol) [124-43-6] M 94.1, m. 85-90°(dec), 90°(dec). It is a safe alternative to H_2O_2 in various oxidation reactions. It is commercially available in tablets ("rapidly soluble", equivalent to ~30% H₂O₂) or as a white powder (with 15-17% active oxygen). It is usually used without purification after assaying for active oxygen. This is done by titration with potassium permanganate or by iodometry, i.e. titration of liberated iodine when glacial acetic acid containing Fe³⁺ and NaI are added. It can be recrystallised from 30% H₂O₂ in a molar ratio of ~2:3 by heating in a pyrex dish for a few minutes at ~60°, cooling and allowed to crystallise slowly by evaporation in a crystallising dish. It forms elongated white needles, but if the solution is seeded just before crystallisation and shaken gently for as few seconds, then small plates are formed. Perferably collect the crystals by centrifugation at low temperature and dry them at 0° in vacuo. When dry, it is stable at room temperature and it has been reported that the available oxygen content had not decreased noticeably after 12 months. However, it is best to store it dry at low temperature. It is soluble in organic solvents e.g. EtOH, Et₂O, CHCl₃, CH₂Cl₂ and Me₂CO with slow decomposition, and its solubility in H₂O is 40% where it also decomposes slowly. It decomposes slowly at $40-60^{\circ}/20$ mm and at $55-70^{\circ}/760$ mm in air, but decomposition appears to accelerate above 80° . It is very useful (and in many cases superior to pchloroperbenzoic acid) in the oxidation of alkenes, (epoxides), aromatic hydrocarbons (to phenols), ketones (Baeyer-Villiger), sulfides (to sulfones) and N-heterocycles (to N-oxides) when using 5 to 10 molar ratios of oxidant in the presence of acetic or trifluoroacetic anhydrides. Care should be used with this reagent as it is potentially explosive. [Lu et al. J Am Chem Soc 63 1508 1941, Cooper et al. Synlett 533 1990, Beilstein 3 H 54, 3 I 25, 3 II 45, 3 III 105, 3 IV 102.]

Hydrogen sulfide [7783-06-4] M 34.1, b -59.6°, pK_1^{25} 7.05, pK_2^{25} 12.89. Wash it, then pass the gas through a train of tubes containing saturated Ba(OH)₂ (2x), water (2x), and dilute HCl [Goates et al. *J Am Chem Soc* 73 707 1951]. It is available in gas cylinders. HIGHLY POISONOUS.

Hydroxylamine [7803-49-8] M 33.0, m 33.1°, b 56.5°/22mm, d_4^{20} 1.226, pK²⁰ 5.96 (7.97). Crystallise it from *n*-butanol at -10°, collect it by vacuum filtration and wash it with cold diethyl ether. Harmful vapours. [Hurd *Inorg Synth* I 87 1939, Semon in *Org Synth* Coll Vol I 318 1932.]

Hydroxylamine hydrochloride [5470-11-1] **M 69.5, m 151°.** Crystallise the salt from aqueous75% ethanol or boiling methanol, and dry it under vacuum over $CaSO_4$ or P_2O_5 . It has also been dissolved in a minimum of water and saturated with HCl; after three such crystallisations, it is dried under a vacuum over $CaCl_2$ and NaOH. Its solubility at 20° is 85% in H₂O, 6% in EtOH and 12% in MeOH. [Hurd *Inorg Synth* **I** 87 1939, Semon in *Org Synth* Coll Vol **I** 318 1941.]

Hydroxylamine sulfate [10039-54-0] **M 164.1, m 170^o(dec).** Crystallise it from boiling water (1.6mL/g) by cooling to 0^o.

Hydroxylamine-*O*-sulfonic acid [2950-43-8] M 113.1, m 210-211°, 215°(dec), pK⁴⁵ 1.48. Stir the solid vigorously with anhydrous Et₂O and filter it off using large volumes of dry Et₂O. Drain dry at the pump for 5minutes and then for 12-14hours in a vacuum. Store it in a vacuum desiccator over conc H₂SO₄. Determine the purity by oxidation of iodide to I₂. It must be stored in a dry atmosphere at 0-4°. It decomposes slowly in H₂O at 25° and more rapidly above this temperature. [Matsuguma & Andrieth *Inorg Synth* V 122 1957.]

Hydroxyurea [127-07-1] M 76.1, m 70-72^o (unstable form), m 133-136^o, 141^o (stable form), pK²⁵ 10.6. Recrystallise hydroxyurea from absolute EtOH (10g in 150mL). Note that the rate of

solution in boiling EtOH is slow (15-30minutes). It should be stored in a cool dry place, but some decomposition could occur after several weeks. [Deghenghi *Org Synth* Coll Vol V 645 1973.] It is very soluble in H₂O and can be crystallised from Et₂O. [Kfod *Acta Chem Scand* **10** 256 1956, *Beilstein* **3** IV 170.]

Hypophosphorous acid (Phosphinic acid) [6303-21-5] M 66.0, m 26.5°, d³⁰₄ 1.217, 1.13 and 1.04 for 50, 30-32, and 10% aqueous solutions resp, pK²⁵ 1.31 (H₃PO₂). Phosphorous acid is a common contaminant of commercial 50% hypophosphorous acid. Jenkins and Jones [*J Am Chem Soc* 74 1353 1952] purified this material by evaporating about 600mL in a 1L flask at 40°, under reduced pressure (in N₂), to a volume of about 300mL. After the solution was cooled, it was transferred to a wide-mouthed Erlenmeyer flask which was stoppered and left in a Dry-ice/acetone bath for several hours to freeze (if necessary, with scratching of the wall). When the flask was then left at *ca* 5° for 12hours, about 30-40% of it liquefied, and was again filtered. This process was repeated, then the solid was stored over Mg(ClO₄)₂ in a vacuum desiccator in the cold. Subsequent crystallisations from *n*-butanol by dissolving it at room temperature and then cooling in an ice-salt bath at -20° did not appear to purify it further. The free acid forms *deliquescent* crystals **m** 26.5° and is soluble in H₂O and EtOH. The NaH₂PO₂ salt can be purified through an anion exchange resin [Klement *Z Anorg Allgem Chem* 260 267 1949.]

Indium [7440-74-6] **M 114.8, m 156.6°, b 2000°, d_4^{20} 7.31.** Before use, the metal surface is cleaned with dilute HNO₃, followed by thorough washing with water and an alcohol rinse. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** p 856 1963.]

Indium (III) chloride [10025-82-8] M 211.2, m 586°, d_4^{20} 4.0, pK_1^{25} 3.54, pK_2^{25} 4.28, pK_3^{25} 5.16 (for aqueous In³⁺). The anhydrous salt forms yellow deliquescent crystals which can be sublimed at 600° in the presence of Cl₂/N₂ (1:1) [does not melt]. It is resublimed in the presence of Cl₂/N₂ (1:10) and finally heated to 150° to expel excess Cl₂. It is soluble in H₂O and should be stored in a tightly closed container. [Baxter & Alter J Am Chem Soc 55 1943 1933.]

Indium (III) oxide [1312-43-2] M 277.6, d_4^{20} 7.18, m sublimes at 850°. Wash it with H₂O and dry it below 850°. It volatilises at 850° and dissolves in hot mineral acids to form salts. Store it away from light because it darkens due to the formation of free In.

Indium sulfate [13464-82-9] **M 517.8.** Crystallise it from dilute aqueous H_2SO_4 . It is *hygroscopic*; store it in a well-stoppered vessel.

Indium (III) sulfate (5H₂O) [17069-79-3] **M 607.9, d**²⁰₄ **3.44.** Dissolve the salt in strong H₂SO₄ and slowly evaporate at *ca* 50°. Wash the crystals with glacial AcOH and then heat them in a furnace at a temperature of 450-500° for 6hours. Its solubility in H₂O is 5%. The *pentahydrate* is converted to an *anhydrous hygroscopic* powder on heating at 500° for 6hours; but heating above this temperature over N₂ yields the oxide-sulfate. Evaporation of neutral aqueous solutions provides basic sulfates. [Baxter & Alter J Am Chem Soc **55** 1943 1933, Hattox & Vries J Am Chem Soc **58** 2126 1936.]

Iodic acid [7782-68-5] **M 175.9, m 118°(dec), d_4^{20} 4.628, pK²⁵ 0.79.** Dissolve iodic acid in the minimum volume of hot dilute HNO₃, filter and evaporate in a vacuum desiccator until crystals are formed. Collect the crystals and wash them with a little cold H₂O and dry them in air in the dark. It is soluble in H₂O: 269g/100mL at 20° and 295g/100mL at 40°. It is soluble in dilute EtOH and darkens on exposure to light. It is converted to HIO₃.I₂O₅ on heating at 70°, but at 220° complete conversion to HIO₃ occurs. [Lamb et al. *J Am Chem Soc* **42** 1636 *1920*, Bray & Caulkins *J Am Chem Soc* **53** 44 *1931*.]

Iodine [7553-56-2] **M 253.8, m 113.6**°. It is usually purified by vacuum sublimation. Preliminary purifications include grinding with 25% by weight of KI, blending with 10% BaO and subliming, subliming with CaO, grinding to a powder and treating with successive portions of H_2O to remove dissolved salts, then drying, and recrystallising from *benzene. Barrer and Wasilewski [*Trans Faraday Soc* 57 1140 1961] dissolved I₂ in concentrated KI and distilled it, then steam distilled it three times and washed it with distilled H_2O .

Organic material is removed by sublimation in a current of O_2 over platinum at about 700°, the iodine being finally sublimed under vacuum. HARMFUL VAPOURS.

Iodine monobromide [7789-33-5] **M 206.8, m 42°.** The brown-black crystals are purified by repeated fractional crystallisation from its melt. The vapour dissociates on heating [Yost et al. *J Amer Chem Soc* **55** 552 *1933*, Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** pp 291-292 *1963*].

Iodine monochloride [7790-99-0] **M 162.4, m 27.2°(\alpha-form), 13.9°(\beta-form).** Purify it by repeated fractional crystallisation from its melt at low temperatures. The black crystals melt to a red-brown liquid. [Cornog & Karges *Inorg Synth* I 165 *1939*.]

Iodine pentafluoride [7783-66-6] **M 221.9, m -8.0°, b 97°.** Rogers et al. [*J Am Chem Soc* **76** 4843 1954] removed dissolved iodine from IF₅ by agitating with a mixture of dry air and ClF₃ in a Fluorothene beaker using a magnetic stirrer. The mixture is transferred to a still, and the more volatile impurities are pumped off as the pressure is reduced below 40mm. The still is gradually heated (kept at 40mm) to remove the ClF₃ before IF₅ distilled. Stevens [*J Org Chem* **26** 3451 1961] pumped IF₅ under vacuum from its cylinder, trapping it at -78°, then allowing it to melt in a stream of dry N₂. **HARMFUL VAPOURS.** [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 159-160 1963.]

Iodine trichloride [865-44-1] **M 233.3, m 33^o, b 77^o(dec).** Purify ICl₃ by sublimation at room temperature. **Irritant vapours.** [Booth & Morris *Inorg Synth* I 167 1939.]

Iridium [7439-88-5] **M 192.2, m 2450°, b ~4500°, d** $_{4}^{20}$ **22.65.** Iridium is a silver white hard solid which oxidises on the surface in air. Scrape the outer tarnished layer until silver clear and store it under paraffin. It is stable to acids but dissolves in aqua regia. [Gilchrist *Chem Rev* **32** 277 1943.]

Iridium (IV) chloride hydrate (hexachloroiridic acid) [16941-92-7 ($6H_2O$), 207399-11-9 (xH_2O)] **M 334.0+H₂O.** If it contains nitrogen, then repeatedly concentrate a conc HCl solution until free from nitrogen, and dry free from HCl in a vacuum over CaO until crystals are formed. The olive-green solid (yellow at ~700°) is very hygroscopic. [Woo & Yost J Am Chem Soc 53 884 1931, Grube in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p1592 1965.]

Iron (wire) [7439-89-6] M 55.9, m 1535°. Clean it in conc HCl, rinse in de-ionised water, then reagent grade acetone and dry it under vacuum.

Iron enneacarbonyl (di-iron nonacarbonyl) [15321-51-4] **M 363.7, m 100°(dec).** Wash it with EtOH and Et₂O, then dry it in air. It sublimes at 35° at high vacuum. It forms dark yellow plates which are stable for several days when kept in small amounts. Large amounts, especially when placed in a desiccator, spontaneously *ignite* in a period of one day. It decomposes in moist air. It is insoluble in hydrocarbon solvents but forms complexes with several organic compounds. [Sheline & Pitzer *J Am Chem Soc* **72** 1107 *1950*, Speyer & Wolf *Chem Ber* **60** 1424 *1927*.] TOXIC.

Iron pentacarbonyl (pentacarbonyl iron) [13463-40-6] M 195.9, m -20°, b 102.8°/749mm, 103°/760mm, n 1.520, d 1.490. It is a pale yellow viscous liquid which is PYROPHORIC and readily absorbed by the skin. HIGHLY TOXIC (protect from light and air). It should be purified in a vacuum line by distilling and collecting in a trap at -96° (toluene-Dry ice slush). It has been distilled at atmospheric pressure (use a very efficient fume cupboard). At 180°/atmospheric pressure it decomposes to give Fe and CO. In UV light in pet ether it forms Fe₂(CO)₉ (see previous entry). [Hagen et al. *Inorg Chem* 17 1369 1978, Ewens et al. *Trans Faraday Soc* 35 6811 1939.]

Lanthanum [7439-91-0] **M 138.9, m 920°, b 3470°, d_4^{20} 6.16.** It is a shiny metal that slowly tarnishes in air due to oxidation. It slowly decomposes by H₂O in the cold and more rapidly on heating to form the hydroxide. The metal is cleaned by scraping off the tarnished areas until the shiny metal is revealed and

stored under oil or paraffin. It burns in air at 450°. It exists in three forms: α -form, β -form and γ -form with transition temperatures of 310° and 864°, respectively. [Spedding et al. *Ind Eng Chem* **44** 553 *1952*.]

Lead (II) bromide [10031-22-8] M 367.0, m 373°. Crystallise it from water containing a few drops of HBr (25mL of water per gram PbBr₂) between 100° and 0°. A neutral solution is evaporated at 110°, and the crystals that separate are collected by rapid filtration at 70° and dried at 105° (to give the *monohydrate*). Its solubility in H₂O is 0.5% (at ~10°) and 5% (at ~ 100°). To prepare the *anhydrous* bromide, the hydrate is heated for several hours at 170° and then in a Pt boat at 200° in a stream of HBr and H₂. Finally it is fused [Clayton et al. *J Chem Soc, Faraday Trans 1* 76 2362 1980].

Lead (II) chloride [7758-95-4] M 278.1, m 501°. Crystallise it from distilled water at 100° (33mL/g) after filtering through sintered-glass and adding a few drops of HCl, by cooling. After three crystallisations the solid is dried under vacuum or under anhydrous HCl vapour by heating slowly to 400°. The solubility in H₂O is 0.07% at ~10°, and 0.43% at ~ 100°.

Lead (II) iodide [10101-63-0] M 461.0, m 402°. It crystallises from a large volume of water. The solubility in H₂O is 1.1% at ~10°, and 3.3% at ~ 100°.

Lead monoxide [1317-36-8] **M 223.2, m 886°.** Higher oxides are removed by heating under vacuum at 550° with subsequent cooling under vacuum. It is red at room temperature but becomes yellow at high temperatures (~480°) reversibly. [Ray & Ogg J Am Chem Soc 78 5994 1956, Kwestroo et al. J Inorg Nucl Chem 29 39 1967.]

Lead nitrate [10099-74-8] **M 331.2, m 470°.** Precipitate it twice from a hot (60°) concentrated aqueous solution by adding HNO₃. The precipitate is sucked dry on a sintered-glass funnel, then transferred to a crystallising dish which is covered by a clock glass and left in an electric oven at 110° for several hours [Beck et al. *Trans Faraday Soc* **55** 331 1959]. After two recrystallisations of ACS grade, no metals above 0.001ppm were detected.

Lithium (metal) [7439-93-2] **M 6.9, m 180.5°, b 1342°, d** $_{4}^{20}$ **0.534.** After washing with pet ether to remove storage oil, lithium is fused at 400° and then forced through a 10-micron stainless-steel filter with argon pressure. It is again melted in a dry-box, skimmed, and poured into an iron distillation pot. After heating under a vacuum to 500°, cooling and returning it to the dry-box for a further cleaning of its surface, the lithium is distilled at 600° using an all-iron distillation apparatus [Gunn & Green J Am Chem Soc **80** 4782 1958].

Lithium aluminium hydride [16853-85-3] M 37.9, m 125°(dec). Extract it with Et₂O, and, after filtering, the solvent is removed under vacuum. The residue is dried at 60° for 3hours, under high vacuum [Ruff J Am Chem Soc 83 1788 1961]. It is a strong reducing agent. It IGNITES in the presence of a small amount of water and reacts with it EXPLOSIVELY. [Becher in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 805 1963.]

Lithium amide [7782-89-0] **M 23.0, m 380-400°, d^{17.5} 1.178.** Purify it by heating at 400° while NH₃ is passed over it in the upper of two crucibles (the upper crucible is perforated). The LiNH₂ will drip into the lower crucible through the holes in the upper crucible. The product is cooled in a stream of NH₃. Protect it from air and moisture, store it under N₂ in a clear glass bottle sealed with paraffin. Store it in small quantities so that all the material is used once the bottle is opened. If the colour of the amide is yellow, it should be destroyed as it is likely to have oxidised and to **EXPLODE.** On heating above 450° it is decomposed to Li₂NH, which is stable up to 750-800°. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 463 1963, Greenlee & Henne Inorg Synth II 135 1953.]

Lithium azide [19597-69-4] M 49.0, m 115-298° (dec), d_4^{20} 1.008, pK^{23} 4.72 (HN₃). Digest ~1g with 15mL of 96% EtOH at 35°, filter and dry it in air at temperatures below 80°. Store it in a cool place and treat it as potentially explosive. Its solubility in H₂O is 66.4% at16°, and 20.26% at16° in EtOH. [Hofmann-Bang Acta Chem Scand 11 581 1957, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 581 1963.]

Lithium borohydride [16949-15-8] **M 21.8, m 268°, b 380°(dec), d** $_{4}^{20}$ **0.66.** It is crystallised from Et₂O, and pumped free of ether at 90-100° during 2hours [Schaeffer et al. J Am Chem Soc **78** 729 1956]. Store it dry as it decomposes slowly in moist air. [Becher in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 775 1963.]

Lithium bromide [7550-35-8] **M 86.8, m 550°.** Crystallise it several times from water or EtOH, then dry it under high vacuum for 2 days at room temperature, followed by drying at 100°. Its solubility in H₂O is 167% at ~20°, and 250% at ~100°. It is *deliquescent* and should be stored in a tightly stoppered vessel.

Lithium carbonate [554-13-2] **M 73.9, m 552°, 618°.** Crystallise it from water. Its solubility decreases as the temperature is raised. The solubility in H₂O is 1.3% at ~10°, and 0.7% at ~100°. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 987 *1963*, Caley & Elving *Inorg Synth* I 1 *1939*.]

Lithium chloride [7447-41-8] M 42.4, m 600°, 723°. Crystallise it from water (1mL/g) or MeOH and dry it for several hours at 130°. Other metal ions can be removed by preliminary crystallisation from hot aqueous 0.01M disodium EDTA. It has also been crystallised from conc HCl, fused in an atmosphere of dry HCl gas, cooled under dry N₂ and pulverised in a dry-box. Kolthoff and Bruckenstein [*J Am Chem Soc* 74 2529 1952] precipitated it with ammonium carbonate, washed it with Li₂CO₃ five times by decantation and finally with suction, then dissolved it in HCl. The LiCl solution is evaporated slowly with continuous stirring in a large evaporating dish, the dry powder being stored (while still hot) in a desiccator over CaCl₂.

Lithium fluoride [7789-24-4] M 25.9, m 842°, 848°, b 1676°, 1681°, d_4^{20} 2.640. Possible impurities are LiCO₃, H₂O and HF. These can be removed by calcining it at red heat, then pulverizing it with a Pt pestle and storing it in a paraffin bottle. Its solubility in H₂O is 0.27% at 18°. It volatilises between 1100-1200°. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 235 *1963*].

Lithium hydride. [7580-67-8] **M 7.95, m 680°, d** $_{4}^{20}$ **0.76-0.77.** It should be a white powder; otherwise replace it. It darkens rapidly on exposure to air and is decomposed by H₂O to give H₂ and LiOH, and reacts with lower alcohols. One gram in H₂O liberates 2.8L of H₂ (could be explosive). [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 987 *1963.*]

Lithium hydroxide (H₂O) [1310-66-3 (H₂O), 1310-65-2 (anhydrous)] M 42.0, m 471°, d 1.51, pK^{25} 13.82. It crystallises from hot water (3mL/g) as the monohydrate. It is dehydrated at 150° in a stream of CO₂-free air. It sublimes at 220° with partial decomposition [Cohen Inorg Synth V 3 1957, Bravo Inorg Synth VII 1 1963].

Lithium iodate [13765-03-2] M 181.9. Crystallise it from water and dry it in a vacuum oven at 60°.

Lithium iodide [10377-51-2] **M 133.8, m 73°** (**3H**₂**O**), **469°, b 1171°, d** $_{4}^{20}$ **4.06.** Crystallise it from hot water (0.5mL/g) by cooling in a CaCl₂-ice EtOH or from an acetone- Dry-Ice bath. Dry it under a vacuum over P₂O₅ for 1hour at 60° and then at 120°. It is *deliquescent* and should be stored in a tightly stoppered vessel in the dark.

Lithium nitrate [7790-69-4] **M 68.9, m 253°, d** $_{4}^{20}$ **2.38.** It crystallises from water or EtOH. Dry it at 180° for several days by repeated melting under vacuum. If it is crystallised from water keeping the temperature above 70°, formation of *trihydrate* is avoided. The *anhydrous* salt is dried at 120° and stored in a vacuum desiccator over CaSO₄. After the 99% pure salt was recrystallised 3times, it contained: metal (ppm) Ca (1.6), K (1.1), Mo (0.4), Na (2.2). [Donnan & Burt *J Chem Soc* **83** 335 1903.]

Lithium nitrite (H_2O) [13568-33-7] M 71.0. Crystallise it from water by cooling from room temperature.

Lithium perchlorate [7791-03-9] **M 106.4, m 236°, pK²⁵ -2.4 to -3.1 (for HClO₄).** Crystallise it from water or 50% aqueous MeOH. It is rendered *anhydrous* by heating the *trihydrate* at 170-180° in an air oven. It can then be recrystallised twice from acetonitrile and again dried under vacuum [Mohammad & Kosower *J Am Chem Soc* **93** 2713 1971]. **SKIN IRRITANT.**

Lithium sulfate (anhydrous) [10377-48-7] M 109.9, loses H₂O at 130° and m 859°, d_D^{20} 2.21. Crystallise it from H₂O (4mL/g) by partial evaporation, and dry it above 130° *in vacuo*.

Lithium tetrafluoroborate [14283-07-9] M 93.7, pK^{25} 13.82 (Li⁺), pK^{25} -4.9 (for HBF₄). Dissolve it in THF just below its solubility, filter from insoluble material and evaporate it to dryness in a vacuum below 50°. Wash the residue with dry Et₂O, and pass dry N₂ gas over the solid and finally heat it in an oven at 80-90°. Its solubility in Et₂O is 1.3g in 100mL at 25°; in THF it is 71g in 100mL at 25°. It is *hygroscopic* and is an **IRRITANT**. [Elliott et al. J Am Chem Soc 74 5211 1952, 75 1753 1953.]

Lithium thiocyanate (lithium rhodanide) [556-65-0] **M** 65.0, pK^{25} -1.85 (for HSCN). It crystallises from H₂O as the *dihydrate*, but on drying at 38-42° it gives the *monohydrate*. It can be purified by allowing an aqueous solution to crystallise in a vacuum over P₂O₅. The crystals are collected, dried out in vacuum at 80°/P₂O₅ in a stream of pure N₂ at 110°. [Coates & Taylor *J Chem Soc* 1245 *1936*.]

Magnesium [7439-95-4] **M 24.3, m 651°, b 1100°, d_4^{20} 1.739.** It slowly oxidises in moist air and tarnishes. If dark in colour, do not use. The shiny solid should be degreased by washing with dry Et₂O, dry it *in vacuo* and keep it in a N₂ atmosphere. It can be activated by stirring it in Et₂O containing a crystal of I₂ then filtering it off, before drying and storing. [Gmelin's Magnesium (8th edn) **27A** 121 *1937*.]

Magnesium bromide (anhydrous) [7789-48-2] **M 184.1, m 711°, d** $_{4}^{20}$ **3.72.** Crystallise it from EtOH or H₂O (3.3g/mL). Dry it in a vacuum at ~150°, or heat the *hydrate* in a stream of HCl. It is very *deliquescent*. [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 909 1963.]

Magnesium chloride (6H₂O) [7791-18-6] M 203.3, m ~100°(dec), pK_1^{25} 10.3, pK_2^{25} 12.2 (for Mg²⁺ hydrolysis). Crystallise it from hot water (3.3g/mL) by cooling. Dry it in a vacuum at ~175°, or heat the *hydrate* in a stream of HCl. When the hydrate is heated above 180° it is hydrolysed to the oxychloride (Mg₂OCl₂). It is *deliquescent*; store it in a well-stoppered vessel. [Bryce-Smith *Inorg Synth* VI 9 1960, Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 908 1963.]

Magnesium iodate (4H₂O) [7790-32-1] M 446.2. Crystallise it from water (0.2g/mL) between 100° and 0°.

Magnesium iodide [10377-58-9] **M 278.1, m 634°.** Crystallise it from water (0.8g/mL) by partial evaporation in a desiccator. It is deliquescent and should be stored in the dark. [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 910 1963.]

Magnesium nitrate (6H₂O) [13446-18-9] M 256.4, m ~95°(dec). Crystallise the nitrate from water (2.5mL/g) by partial evaporation in a desiccator. It is *deliquescent* and is soluble in EtOH. After two recrystallisations, ACS grade salt has: metal (ppm) Ca (6.2), Fe (8.4), K (2), Mo (0.6), Na (0.8), Se (0.02).

Magnesium perchlorate (Anhydrone, Dehydrite) [10034-81-8 (anhydrous)] M 259.2, m >250°, pK^{25} -2.4 to -3.1 (for HClO₄). Crystallise it from water to give the *hexahydrate* M 331.3 [13346-19-0]. Coll et al. [J Am Chem Soc 81 1284 1959] removed traces of unspecified contaminants by washing it with small portions of Et₂O and drying in a vacuum (CARE). The anhydrous salt is commercially available as an ACS reagent, and is as efficient a dehydrating agent as P₂O₅ and is known as "Dehydrite" or "Anhydrone". [Smith et al. J Am Chem Soc 44 2255 1922 and Ind Eng Chem 16 20 1924.] It is hygroscopic; keep it in a tightly closed container. It is EXPLOSIVE in contact with organic materials, and is a SKIN IRRITANT.

Magnesium sulfate (anhydrous) [7487-88-9] **M 120.4, m 1127°.** Crystallise it from warm H₂O (1g/mL) by cooling. Dry the *heptahydrate (Epsom salt)* at ~250° until it loses 25% of its weight. Its solubility in H₂O is 36% at 20°, 55% at 60° and 74% at 100°; above 110° the solubility decreases with rise of temperature. Store it in a sealed container.

Manganese decacarbonyl $Mn_2(CO)_{10}$ [10170-69-1] M 390.0, m 151-152°, 154-155°(sealed tube), d^{25} 1.75. Golden yellow crystals which in the absence of CO begin to decompose at 110°, and on further heating yield a metallic mirror. In the presence of 3000psi of CO it does not decompose on heating to 250°. It is soluble in common organic solvents, insoluble in H₂O, not very stable in air, to heat or UV light. It dissolves in a lot of $*C_6H_6$ and can be crystallised from it. It distils with steam at 92-100°. It can be purified by sublimation under reduced pressure (<0.5mm) at room temperature to give well-formed golden yellow crystals. If the sample is orange coloured, this sublimation leads to a mixture of golden-yellow and dark red crystals of the carbonyl and carbonyl iodide, respectively, which can be separated by hand picking under a microscope. Separation followed by resublimations provides the pure compounds. POISONOUS. [Brimm et al. J Am Chem Soc 76 3831 1954, Closson et al. J Am Chem Soc 80 6167 1958, 82 1325 1960.]

Manganous bromide (anhydrous) [13446-03-2] M 214.8, m 695° (4H₂O) [10031-20-6] M 286.8, m 64°(dec). It forms rose-red *deliquescent* crystals which are soluble in EtOH. The H₂O is removed by heating at 100° then in HBr gas at 725° , or dry it in an atmosphere of N₂ at 200° .

Manganous chloride (4H₂O) [13446-34-9, 7773-01-5 (anhydrous)] M 197.9, m 58°, 87.5°, 650° (anhydrous), b 1190° (anhydrous), d_4^{20} 2.01. It crystallises from water (0.3mL/g) on cooling. The red-rose *tetrahydrate* melts at ~52° and forms the *dihydrate salt* which loses all its H₂O at 198° to give MnCl₂. It is soluble in EtOH.

Manganous sulfate (H₂O) [10034-96-5 (H₂O), 15244-36-7 (xH_2O)] M 169.0, d_4^{20} 2.75. Crystallise it from water (0.9mL/g) at 54-55° by evaporating about two-thirds of the water. It *dehydrates* above 400°.

Mercuric bromide [7789-47-1] **M 360.4, m 238.1°, b 320°, d** $_{4}^{20}$ **5.73.** Crystallise it from hot saturated ethanolic solution, dry and keep it at 100° for several hours under a vacuum, then sublime it. [Garrett J Am Chem Soc **61** 2744 1939.] Its solubility in H₂O is 0.6% at 20°, and 22% at 100°; in EtOH it is 30% at 25°; and in MeOH it is 69.6% at 25°. [Wagenknecht & Juza Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol **II** p 1109 1965.] **POISONOUS**.

Mercuric chloride [7487-94-7] **M 271.5, m 276°, b 304°, d_4^{20} 5.6.** Crystallise it twice from distilled water, dry it at 70° and sublime it under high vacuum. Its solubility in H₂O is 4.3% at ~0°, 6.6% at ~10° and 54% at ~100°. It is soluble in EtOH and is extracted into Et₂O from an aqueous solution. It is **very POISONOUS** and 0.2-0.4g is fatal. The antidote is immediate administration of white of egg as an emetic.

Mercuric cyanide [592-04-1] **M 252.6, m 320°(dec), d** $_{4}^{20}$ **4.00.** Crystallise it from water. The solubility in H₂O is 8% at ~20° and 33% at ~100°; in EtOH it is 8% at ~20° and in MeOH it is 25% at ~20°. [Blitz Z Anorg Allgem Chem **170** 161 1928.] **POISONOUS.**

Mercuric iodide (red) [7774-29-0] M 454.4, m 259°(yellow >130°), b ~350°(subl), d_4^{20} 6.3. Crystallise it from MeOH or EtOH and wash it repeatedly with distilled water (solubility is 0.006% at ~25°). It has also been mixed thoroughly with excess 0.001M iodine solution, filtered, washed with cold distilled water, rinsed with EtOH and Et₂O, and dried in air. It changes colour reversibly to yellow at ~130°. [Friend *Nature* 109 341 1922.] POISONOUS.

Mercuric oxide (yellow) [21908-53-2] **M 216.6, m 500°(dec).** Dissolve it in HClO₄ and precipitate it with NaOH solution. It is yellow when cold and changes to red at ~130° reversibly. **POISONOUS.**

Mercuric thiocyanate [592-85-8] M 316.8, m 165°(dec), pK^{25} -1.85 (for HSCN). Recrystallise it from H₂O, and it can give various crystal forms depending on conditions. Its solubility in H₂O is 0.069% at

25°, but is more soluble at higher temperatures. It decomposes to Hg above 165°. **Poisonous.** [Mason & Forgeng *J Phys Chem* **35** 1121 *1931*, Birckenbach & Kolb *Chem Ber* **68** 919 *1935*.]

Mercurous nitrate (2H₂O) [7782-86-7 (2H₂O), 7783-34-8 (H₂O), 10415-75-5 (anhydrous)] M 561.2, m 70°(dec), d_4^{20} 4.78, pK²⁵ 2.68 (for Hg₂²⁺ hydrolysis). Its solubility in H₂O containing 1% HNO₃ is 7.7%. Recrystallise it from a warm saturated solution of dilute HNO₃ and cool to room temperature slowly to give elongated prisms. Rapid cooling gives plates. The colourless crystals should be stored in the dark. **POISONOUS.** [Grdenic *J Chem Soc* 1312 1956.]

Mercurous sulfate [7783-36-0] **M 497.3,** d_4^{20} **7.56.** The white-yellow powder is recrystallised from dilute H₂SO₄, dried in a vacuum under N₂, and stored in the dark. Its solubility in H₂O is 0.6% at 25°. It is hydrolysed by excessive washing with H₂O to form the greenish-yellow *basic salt* Hg₂SO₄.Hg₂O.H₂O. **POISONOUS.**

Mercury [7439-97-6] M 200.6, m -38.9°, b 126°/1mm, 184°/10mm, 261°/100mm, 356.9°/atm, d_4^{20} 13.534. After air has been bubbled through mercury for several hours to oxidise metallic impurities, it is filtered to remove coarser particles of oxide and dirt, then sprayed through a 4-ft column containing 10% HNO₃. It is washed with distilled water, dried with filter paper and distilled under vacuum. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 8 1963.]

Molybdenum hexacarbonyl [13939-06-5] M 264.0, m 150°(dec), b 156°. Sublime it in a vacuum before use [Connor et al. J Chem Soc, Dalton Trans 511 1986]. TOXIC.

Molybdenum hexafluoride [7783-77-9] **M 209.9, m 17.5°, b 35°/760mm, d** $_{4}^{20}$ **2.543.** Purify the hexafluoride by low-temperature trap-to-trap distillation over pre-dried NaF. It is *hygroscopic*, fumes in moist air and is hydrolysed readily by H₂O. [Oppengard et al. *J Am Chem Soc* **82** 3825 1960, Anderson & Winfield *J Chem Soc, Dalton Trans* 337 1986, Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 259 1963.] **Poisonous vapours.**

Molybdenum trichloride [13478-18-7] **M 202.3, m 1027**°, d_4^{20} 3.74. Boil it with 12M HCl, wash it with absolute EtOH and dry it in a vacuum desiccator. It is a brown-red powder soluble in H₂O, EtOH or Et₂O and gives a blue solution in conc H₂SO₄. [Hein & Herzog *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol **II** p 1404 1965.]

Molybdenum trioxide (molybdenum IV oxide, MoO₃) [1313-27-5] M 143.9, m 795°, b 1155°, d_4^{20} 4.60. Crystallise it from water (1g/50mL) between 70° and 0°. The solubility in H₂O is 0.1% at 18°, and 2% at 70°. It is a white powder which turns yellow reversibly on heating. It sublimes readily at 1155°/760mm. [Hein & Herzog Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1412 1965.]

Monocalcium phosphate (2H₂O) (monobasic) [7789-77-7 (2H₂O), 7757-93-9 (anhydrous)] M **154.1, m 200°(dec, loses H₂O at 100°), d** $_{4}^{20}$ **2.2.** Crystallise it from a near-saturated solution in 50% aqueous reagent grade phosphoric acid at 100° by filtering through fritted glass and cooling to room temperature. The crystals are filtered off, and this process is repeated three times using fresh acid. For the final crystallisation the solution is cooled slowly with constant stirring to give thin plate crystals that are filtered off on a fritted glass funnel, washed free of acid with anhydrous acetone and dry in a vacuum desiccator [Egan et al. *J Am Chem Soc* **78** 1811 1956].

Neodynium chloride 6H₂O [13477-89-9] M 358.7, m 124°, pK_1^{25} 8.43 (for Nd³⁺ hydrolysis). Neodynium chloride forms large purple prisms from concentrated solutions of dilute HCl. They are soluble in H₂O (2.46 parts in 1 part of H₂O) and EtOH, and lose H₂O at 160°.

Neodynium nitrate (6H₂O) [16454-60-7] M 438.4, m 70-72°. It crystallises with 5 and 6 molecules of H_2O from concentrated solutions in dilute HNO₃ by slow evaporation; 1 part is soluble in 10 parts of H_2O .

Neodymium oxide [1313-97-9] **M 336.5, m 2320°.** Dissolve it in $HClO_4$, precipitate it as the oxalate with doubly recrystallised oxalic acid, wash it free of soluble impurities, dry it at room temperature and ignite it in a platinum crucible at higher than 850° in a stream of oxygen. It is a blue powder. [Tobias & Garrett J Am Chem Soc **80** 3532 1958.]

Neon [7440-01-9] **M 20.2.** Pass the gas through a copper coil packed with 60/80 mesh 13X molecular sieves which is cooled in liquid N_2 , or through a column of Ascarite (NaOH-coated silica adsorbent).

Nickel bromide [13462-88-9] M 218.5, m 963°(loses H_2O at ~ 200°). Crystallise it from dilute HBr (0.5mL/g) by partial evaporation in a desiccator. The *anhydrous* salt is yellow, but the *trihydrate* is green.

Nickel chloride (6H₂O) [7791-20-0 (6H₂O), 69098-15-3 (xH_2O), 7718-54-9 (anhydrous)] M 237.7. It crystallises from dilute HCl to form the green *hexahydrate*. At 70° this dehydrates to the *tetrahydrate*, and at higher temperatures it forms the *anhydrous* salt. It sublimes in yellow hexagonal scales in a stream of HCl. Store it in a desiccator as it is *deliquescent*. [Hart & Partington J Chem Soc 104 1943.]

Nickel nitrate (6H₂O) [13478-00-7] M 290.8, m 57°. Crystallise it from water (3.3g/mL) by partial evaporation in a desiccator. Store it in a desiccator as it is *deliquescent*.

Nickel sulfate (7H₂O) [1010-98-1] M 280.9, m loses $5H_2O$ at 100°, anhydrous m at ~280°. The sulfate crystallises from warm water (4g/mL) or dilute H_2SO_4 as bright green monoclinic crystals on cooling. Prolonged exposure to air gives the blue *tetrahydrate*. On heating above 118°, it is converted to the *dihydrate*, which at >280° is converted to the *yellow anhydrous* NiSO₄ which does not react with HCl.

Niobium (Colombium) (V) chloride [10026-12-7] M 270.2, m 204.7-209.5°, b $\sim 250^{\circ}$ (begins to sublime at 125°), d_4^{20} 2.75. It forms yellow, very deliquescent crystals which decompose in moist air to liberate HCl. It should be kept in a dry box flushed with N₂ in the presence of P₂O₅. Wash it with CCl₄ and dry it over P₂O₅. The yellow crystals usually contain a few small, dirty white pellets among the yellow needles. These should be easily picked out. Upon grinding in a dry box, however, they turn yellow. NbCl₅ has been sublimed and fractionated in an electric furnace. [Epperson *Inorg Synth* VII 163 *1963*, Alexander & Fairbrother *J Chem Soc* suppl 233 *1949*.]

Nitric acid [7697-37-2] M 63.0, m -42°, b 83°, d²⁵ 1.5027, [Constant boiling acid has composition 68% HNO₃ + 32% H₂O, b 120.5°, d²⁰₄ 1.41], pK²⁵ -1.27 (1.19). The acid is obtained colourless (approx. 92%) by direct distillation of fuming HNO₃ under reduced pressure at 40-50° with an air leak at the head of the fractionating column. Store it in a desiccator kept in a refrigerator. Nitrite-free HNO₃ can be obtained by vacuum distillation from urea. [Ward et al. *Inorg Synth* III 13 *1950*, Kaplan & Schechter *Inorg Synth* IV 53 *1953*.]

Nitric oxide [10102-43-9] M 30.0, b -151.8°. Bubble the gas through 10M NaOH which removes NO₂. It can also be freed from NO₂ by passage through a column of Ascarite followed by a column of silica gel held at -197°K. The gas is dried with solid NaOH pellets or by passing through silica gel cooled at -78°, followed by fractional distillation from a liquid N₂ trap. This purification does not eliminate nitrous oxide. Other gas scrubbers sometimes used include one containing conc H₂SO₄ and another containing mercury. It is freed from traces of N₂ by the freeze and thaw method. [Blanchard *Inorg Synth* II 126 1946, Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 485-487 1963.] TOXIC.

Nitrogen [7727-37-9] **M 28.0, b -195.8°.** Cylinder N₂ can be freed from oxygen by passage through Fieser's solution [which comprises 2g sodium anthraquinone-2-sulfonate and 15g sodium hydrosulfite dissolved in 100mL of 20% KOH; see Fieser, *J Am Chem Soc* **46** 2639 *1924*] followed by scrubbing with saturated lead acetate solution (to remove any H₂S generated by the Fieser solution), conc H₂SO₄ (to remove moisture), then

soda-lime (to remove any H_2SO_4 and CO_2). Alternatively, after passage through Fieser's solution, N_2 can be dried by washing with a solution of the metal ketyl from benzophenone and Na wire in absolute diethyl ether. [If ether vapour in N_2 is undesirable, the ketyl from liquid Na-K alloy under xylene can be used.]

Another method for removing O_2 is to pass the nitrogen through a long, tightly packed column of Cu turnings, the surface of which is constantly renewed by scrubbing it with ammonia (sg 0.880) solution. The gas is then passed through a column packed with glass beads moistened with conc H_2SO_4 (to remove ammonia), through a column of packed KOH pellets (to remove H_2SO_4 and to dry the N_2), and finally through a glass trap packed with chemically clean glass wool immersed in liquid N_2 . Nitrogen has also been purified by passage over Cu wool at 723°K and Cu(II) oxide [prepared by heating Cu(NO₃)₂.6H₂O at 903°K for 24hours] and then into a cold trap at 77°K.

A typical dry purification method consists of a mercury bubbler (as trap), followed by a small column of silver and gold turnings to remove any mercury vapour, towers containing anhydrous $CaSO_4$, dry molecular sieves or $Mg(ClO_4)_2$, a tube filled with fine Cu turnings and heated to 400° by an electric furnace, a tower containing soda-lime, and finally a plug of glass wool as filter. Variations include tubes of silica gel, traps containing activated charcoal cooled in a Dry-ice bath, copper on Kieselguhr heated to 250°, and Cu and Fe filings at 400°. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 458-460 *1963*.]

Nitrosyl chloride [2696-92-6] **M 65.5, m -64.5°. b -5.5°.** It is an orange gas with a suffocating odour. It has been fractionally distilled at atmospheric pressure in an all-glass, low-temperature still, taking the fraction boiling at -4° and storing it in sealed tubes. Alternatively the gas is dried by CaCl₂ and passed through H_2SO_4 when Cl₂ passes on, but NOCl is absorbed to form *nitrososulfuric acid* (NO.HSO₄) which on warming with NaCl evolves pure NOCl [Tilden *J Chem Soc* **27** 630 *1874*.] It is decomposed by H_2O and alkali, and forms compounds with metal chlorides e.g. FeCl₃.NOCl. [Coleman *Inorg Synth* **I** 55 *1939*.]

Nitrous oxide (laughing gas) [10024-97-2] **M 44.0, b -88.5°.** Wash the gas with concentrated alkaline pyrogallol solution, to remove O_2 , CO_2 , and NO_2 , then dry it by passing it through columns of P_2O_5 or Drierite, and collecting in a dry trap cooled in liquid N_2 . It is further purified by freeze-pump-thaw and distillation cycles under vacuum [Ryan & Freeman J Phys Chem **81** 1455 1977, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I pp 484-485 1963].

Osmium tetroxide (osmic acid) [20816-12-0] M 524.2, m 40.6°, b 59.4°/60mm, $71.5^{0}/100$ mm, 109.3⁰/400 mm, 130⁰/760 mm, d²⁰_D 5.10, pK²⁵₁ 7.2, pK²⁵₂ 12.2, pK²⁵₃ 13.95, pK_4^{25} 14.17 (H₄OsO₆). It is VERY TOXIC and should be manipulated in a very efficient fume cupboard. It attacks the eyes severely (use also face protection) and is a good oxidising agent. It is volatile and has a high vapour pressure (11mm) at room temperature. It sublimes and volatilises well below its boiling point. It is soluble in C_6H_6 , H_2O (7.24% at 25°), CCl_4 (375% at 25°), EtOH and Et₂O. It is estimated by dissolving a sample in a glass-stoppered flask containing 25mL of a solution of KI (previously saturated with CO₂) and acidified with 0.35M HCl. After gentle shaking in the dark for 30minutes, the solution is diluted to 200mL with distilled H₂O saturated with CO₂ and titrated with standard thiosulfate using starch as indicator. This method is not as good as the gravimetric method. Hydrazine hydrochloride (0.1 to 0.3g) is dissolved in 3M HCl (10mL) in a glass-stoppered bottle. After warming to 55-65°, a weighed sample of OsO₄ solution is introduced, and the mixture is digested on a water bath for 1hour. The mixture is transferred to a weighed glazed crucible and evaporated to dryness on a hot plate. A stream of H_2 is started through the crucible, and the crucible is heated over a burner for 20-30 minutes. The stream of H_2 is continued until the crucible in cooled to room temperature, and then the H_2 is displaced by CO_2 in order to avoid rapid combustion of H_2 . Finally the crucible is weighed. [Grube in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II pp 1603 1965, Anderson & Yost J Am Chem Soc 60 1822 1938.] § Available commercially on a polymer support.

Oxygen [7782-44-7] **M 32.00, m -218.4°, b -182.96°, d**⁻¹⁸³ **1.149, d**^{-252.5} **1.426.** Purify it by passing the gas over finely divided platinum at 673°K and Cu(II) oxide (see under nitrogen) at 973°, then condensed in a liquid N₂-cooled trap. **HIGHLY EXPLOSIVE in contact with organic matter.**

Palladium (II) chloride [7647-10-1] **M 177.3, m 678-680°.** The *anhydrous* salt is insoluble in H_2O and dissolves in HCl with difficulty. The *dihydrate* forms red *hygroscopic* crystals that are readily reduced to Pd. Dissolve it in conc HCl through which dry Cl_2 is bubbled. Filter this solution which contains H_2PdCl_4 and H_2PdCl_6 and on evaporation it yields a residue of pure PdCl₂. [Grube in *Handbook of Preparative Inorganic Chemistry (Ed Brauer)* Academic Press Vol **II** p 1582 *1965*, Mozingo *Org Synth* Coll Vol **III** 685 1955.]

Palladium (II) cyanide [2035-66-7] **M 158.1.** The yellow solid should be washed well with H₂O and dry in air. [Bigelow *Inorg Synth* **II** 245 1946]. **POISONOUS.**

Perchloric acid [7601-90-3] **M 100.5,** d_4^{20} **1.665,** pK^{25} **-2.4 to -3.1 (HClO₄).** The 72% acid is been purified by double distillation from silver oxide under vacuum: this frees the acid from metal contamination. Distillation at atmospheric pressure is **dangerous** and **explosive**. The *anhydrous* acid is obtained by adding gradually 400-500mL of oleum (20% fuming H₂SO₄) to 100-120mL of 72% HClO₄ in a reaction flask cooled in an ice-bath. The pressure is reduced to 1mm (or less), with the reaction mixture at 20-25°. The temperature is gradually raised during 2hours to 85°; the distillate is collected in a receiver cooled in Dry-ice. For further details of the distillation apparatus see Smith [*J Am Chem Soc* **75** 184 *1953*]. It is **HIGHLY EXPLOSIVE; a strong protective screen should be used at all times.** [Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 318-320 *1963.*]

Phosgene [75-44-5] **M 98.9, m -118°, b 8.2°/756mm.** Dry the gas with Linde 4A molecular sieves, de-gas it and distil it under vacuum at low temperature. This should be done in a closed system such as a vacuum line. It is hydrolysed by H_2O but does not fume in moist air. It is available in cylinders and as a ~20% solution in toluene. It is HIGHLY TOXIC and should not be inhaled. If it is inhaled, the operator should lie still and, be made to breathe in ammonia vapour which reacts with phosgene to give urea. [Pope et al. J Chem Soc 117 1410 1920, Beilstein 3 IV 41.]

Phosphine [7803-51-2] **M 34.0, m -133°, b -87.7°, pK**²⁵ **-14, pK**_b **28**. PH₃ is best purified in a gas line (in a vacuum) in an efficient fume cupboard. It is spontaneously flammable, has a strong odour of decayed fish and is **POISONOUS**. The gas is distilled through solid KOH towers (two), through a Dry ice-acetone trap (-78°, to remove H₂O, and P₂H₄ which spontaneously ignites with O₂), then through two liquid N₂ traps (-196°), followed by distillation into a -126° trap (Dry ice-methylcyclohexane slush), allowed to warm in the gas line and then sealed in ampoules preferably under N₂. IR: $v_{max} 2327$ (m), 1121 (m) and 900 (m) cm⁻¹. [Klement in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 525-530 *1963*, Gokhale & Jolly *Inorg Synth* IX 56 *1967*.] PH₃ has also been absorbed into a solution of cuprous chloride in hydrochloric acid (when CuCl.PH₃ is formed). PH₃ gas is released when the solution is heated, and the gas is purified by passage through KOH pellets and then over P₂O₅. Its solubility is 0.26mL/1 mL of H₂O at 20°, and a crystalline *hydrate* is formed on releasing the pressure on an aqueous solution.

Phosphonitrilic chloride (tetramer) [1832-07-1] **M 463.9.** Purify it by zone melting, then recrystallise it from pet ether (b 40-60°) or *n*-hexane. [van der Huizen et al. *J Chem Soc, Dalton Trans* 1317 1986.]

Phosphonitrilic chloride (trimer) (hexachlorocyclotriphosphazine) [940-71-6] M 347.7, m 112.8°, 113-114°. Purify it by zone melting, by crystallisation from pet.ether, *n*-hexane or *benzene, and by sublimation. [van der Huizen et al. *J Chem Soc, Dalton Trans* 1311 1986, Meirovitch et al. *J Phys Chem* 88 1522 1984, Alcock et al. *J Am Chem Soc* 106 5561 1984; Winter & van de Grampel *J Chem Soc, Dalton Trans* 1269 1986.]

Phosphoric acid [7664-38-2] **M 98.0, m 42.3°, pK** $_{1}^{25}$ **2.15, pK** $_{2}^{25}$ **7.21, pK** $_{3}^{25}$ **12.37.** Pyrophosphate can be removed from phosphoric acid by diluting with distilled H₂O and refluxing overnight. By cooling to 11° and seeding with crystals obtained by cooling a few millilitres in a Dry-ice/acetone bath, 85% orthophosphoric acid crystallises as H₃PO₄.H₂O. The crystals are collected on a sintered glass filter. [Weber & King *Inorg Synth* I 101 *1939*.]

Phosphorus (red) [7723-14-0] **M 31.0, m 590°/43atm, ignites at 200°, d** $_{4}^{20}$ **2.34.** Heat it for 15minutes in boiling distilled H₂O, allow it to settle and wash it several times with boiling H₂O. Transfer it to a Büchner funnel, wash it with hot H₂O until the washings are neutral, then dry it at 100° and store it in a desiccator.

Phosphorus (white) [7723-14-0] **M 31.0, m 44.1°, b 287°, d** $_{4}^{20}$ **1.82.** Purify white phosphorus by melting it under dilute H₂SO₄—dichromate (possible **carcinogen**) mixture and allow to stand for several days in the dark at room temperature. It remains liquid, and the initial milky appearance due to insoluble, oxidisable material gradually disappears. The phosphorus can then be distilled under vacuum in the dark [Holmes *Trans Faraday Soc* **58** 1916 *1962*]. It sublimes *in vacuo*. Other methods of purification include extraction with dry CS₂ followed by evaporation of the solvent, or washing with 6M HNO₃, then H₂O, and drying under vacuum. It ignites in air at ~50°, or by friction if dry. Store and cut it under H₂O. **POISONOUS.**

Phosphorus oxychloride [10025-87-3] **M** 153.3, **b** 105.5°, d_4^{20} 1.675, n_D^{20} 1.461. Distil the liquid under reduced pressure to separate it from the bulk of the HCl and the phosphoric acid (from hydrolysis); the middle fraction is re-distilled into ampoules containing a little purified mercury. These ampoules are sealed and stored in the dark for 4-6weeks with occasional shaking to facilitate reaction of any free chloride with the mercury. The POCl₃ is then again fractionally distilled and stored in sealed ampoules in the dark until required [Herber J Am Chem Soc 82 792 1960]. Lewis and Sowerby [J Chem Soc 336 1957] refluxed their distilled POCl₃ with Na wire for 4hours, then removed the Na and again distilled. Use Na only with almost pure POCl₃ to avoid explosions. HARMFUL VAPOURS; work in an efficient fume cupboard.

Phosphorus pentabromide [7789-69-7] **M 430.6, m <100°, b 106°(dec).** Dissolve it in pure nitrobenzene at 60°, filtering off any insoluble residue on to sintered glass funnel, then allow it to crystallise by cooling. Wash the collected solid with dry Et_2O and remove excess ether in a current of dry N₂. (All manipulations should be performed in a dry-box.) [Harris & Payne *J Chem Soc* 3732 1958]. It fumes in moist air because of hydrolysis. **HARMFUL VAPOURS** (wash burning eyes with aqueous NaHCO₃).

Phosphorus pentachloride [10026-13-8] **M 208.2, m 179-180°(sublimes).** [All operations should be carried out in an efficient fume cupboard.] Sublime it at 160-170° in an atmosphere of chlorine. Excess chlorine is then displaced by dry N₂ gas. All subsequent manipulations should be performed in a dry-box [Downs & Johnson J Am Chem Soc 77 2098 1955]. It fumes in moist air and attacks the eyes and the mucous membranes of the nose. It should not be breathed in and has very **HARMFUL VAPOURS** (wash burning eyes with aqueous NaHCO₃).

Phosphorus pentasulfide [1314-80-3] **M 444.5, m 277-283°, 290°, b 513-515.** Purify P_2S_5 by extraction and crystallisation with CS_2 , using a Soxhlet extractor, and is heated in a CO_2 atmosphere at 150° to remove solvent. It liberates H_2S in moist air. **HARMFUL VAPOURS.** [Klements in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 568 1963.]

Phosphorus pentoxide [1314-56-3] **M 141.9, m 562°, b 605°.** It has been sublimed at 250° under vacuum into glass ampoules. It fumes in moist air and reacts violently with water. It is an excellent drying agent for use in desiccators. **HARMFUL VAPOURS and attacks skin.** [Manley J Chem Soc **121** 331 1922, Klements in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 541 1963.]

Phosphorus sesquisulfide P_4S_3 [1314-85-8] M 220.1, m 172°. Extract P_4S_3 with CS_2 , filter it and evaporate it to dryness. Alternatively place it in H_2O , and pass steam through it for an hour. The H_2O is then removed, the solid is dried, and recrystallised from CS_2 [Rogers & Gross J Am Chem Soc 74 5294 1952].

Phosphorus sulfochloride (phosphorus thiochloride) [3982-91-0] **M 169.4, m - 35°, b 122-124°, 125°(corr), d**³⁰₄ **1.64, n**³⁰_D **1.556.** Possible impurities are PCl₅, H₃PO₄, HCl and AlCl₃. Gently mix it with H₂O to avoid a heavy emulsion; the product decoulorises immediately and settles to the bottom layer. It is soluble in $C_{6}H_{6}$ and CCl₄. [Duval *Inorg Synth* IV 73 1953.] HARMFUL VAPOURS.

Phosphorus tribromide [7789-60-8] **M 270.7, m -41.5°, b 168-170°/725mm, 171-173°/atm, 172.9°/760mm(corr), d**³⁰ **2.852.** It is decomposed by moisture, it should be kept dry and is *corrosive*. Purify it by distillation through an efficient fractionating column [see Whitmore & Lux J Am Chem Soc **54** 3451] in a slow stream of dry N₂, i.e. under strictly dry conditions. [Gay & Maxson *Inorg Synth* **II** 147 *1946*, *Org Synth* Col Vol **II** 358 *1943*.] Dissolve it in CCl₄, dry it over CaCl₂, filter and distil it. Store it in sealed ampoules under N₂ and keep it away from light. **HARMFUL VAPOURS.**

Phosphorus trichloride [7719-12-2] **M 137.3, b 76°, d** $_{4}^{20}$ **1.575, n 1.515.** Heat it under reflux to expel dissolved HCl, then distil it. It has been further purified by vacuum fractionation several times through a -45° trap into a receiver at -78°. [Forbes *Inorg Synth* **II** 145 1946.] **HARMFUL VAPOURS.**

Phosphorus triiodide [13455-01-1] **M 411.7, m 61°.** It decomposes in moist air and must be kept in a desiccator over CaCl₂. It is crystallised from sulfur-free CS₂; otherwise the **m** decreases to *ca* 55°. It is best to prepare it freshly. [Germann & Traxler *J Am Chem Soc* **49** 307 1927, Klement in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 541 1963.] **HARMFUL VAPOURS.**

12-Phosphotungstic acid [12501-23-4] **M 2880.2, m ~96°.** A few drops of conc HNO₃ are added to 100g of phosphotungstic acid dissolved in 75mL of water, in a separating funnel, and the solution is extracted with diethyl ether. The lowest of the three layers, which contains a phosphotungstic acid-ether complex, is separated, washed several times with 2M HCl, then with water and again extracted with ether. Evaporation of the ether under vacuum with mild heating on a water bath gives crystals which are dried under vacuum and ground [Matijevic & Kerker, *J Am Chem Soc* **81** 1307 1959].

Platinum (II) chloride [10025-65-7] **M 266.0, d** $_{4}^{20}$ **5.87.** It is purified by heating at 450° in a stream of Cl₂ for 2hours. Some sublimation occurs because the PtCl₂ sublimes completely at 560° as red (almost black) needles. This sublimate can be combined to the bulk chloride, and while still at *ca* 450° it should be transferred to a container and cooled in a desiccator. A probable impurity is PtCl₄. To test for this add a few drops of H₂O (in which PtCl₄ is soluble) to the salt, filter and add an equal volume of saturated aqueous NH₄Cl to the filtrate. If no precipitate is formed within 1minute, then the product is pure. If a precipitate appears, then the whole material should be washed with small volumes of H₂O until the soluble PtCl₄ is removed. The purified PtCl₂ is partly dried by suction and then dried in a vacuum desiccator over P₂O₅. It is insoluble in H₂O but soluble in HCl to form chloroplatinic acid (H₂PtCl₄) by disproportionation. [Cohen *Inorg Synth* VI 209 *1960*.]

Potassium bicarbonate [298-14-6] **M 100.1.** It is crystallised from water at 65-70° (1.25mL/g) by filtering and then cooling to 15° (~0.4ml/g). During all operations, CO₂ is passed through the stirred mixture. The crystals are sucked dry at the pump, washed with distilled water, dried in air and then over H₂SO₄ in an atmosphere of CO₂. It is much less soluble than the carbonate in H₂O (see below).

Potassium biiodate [13455-24-8] **M 389.9.** Crystallise the biiodate three times from hot water (3mL/g), and stirring continuously during each cooling. After drying at 100° for several hours, the crystals are suitable for use in volumetric analysis.

Potassium bisulfate [7646-93-7] **M 136.2, m 214°, 218°.** Crystallise it from H₂O (1mL/g) between 100° and 0°. It is also formed when a warm solution of K_2SO_4 in conc H₂SO₄ is cooled down.

Potassium borohydride [13762-51-1] **M 53.9, m ~500°(dec).** Crystallise it from liquid ammonia. It is slowly hydrolysed by H₂O. Its solubility at ~20° in H₂O or liquid NH₃ is 20%, in MeOH it is 0.7%, in Me₂NCHO it is 15% and in MeOH/H₂O (1:4) it is 13%. [Jons & Wallbridge *Progr Inorg Chem* **11** 99-231 1970.]

Potassium bromate [7758-01-2] **M 167.0, m 350°(dec at 370°), d** $_{4}^{20}$ **3.27.** Crystallise KBrO₃ from distilled H₂O (2mL/g) between 100° and 0°. To remove bromide contamination, a 5% solution in distilled H₂O, cooled to 10°, is bubbled with gaseous chlorine for 2hours, then filtered and extracted with reagent grade CCl₄ until colourless and odourless. After evaporating the aqueous phase to about half its volume, it is cooled

again slowly to about 10°. The crystalline KBrO₃ that separates, is washed with 95% EtOH and dried in a vacuum [Boyd et al. *J Am Chem Soc* **74** 237 1952]. Another way to remove Br⁻ ions is by stirring several times in MeOH and then drying at 150° [Field & Boyd *J Phys Chem* **89** 3767 1985].

Potassium bromide [7758-02-3] **M 119.0, m 734°, d** $_{4}^{20}$ **2.75.** Crystallise the bromide from distilled water (1mL/g) between 100° and 0°. Wash it with 95% EtOH, followed by Et₂O. Dry it in air, then heat it at 115° for 1hour, pulverize it, then heat it in a vacuum oven at 130° for 4hours. It has also been crystallised from aqueous30% EtOH, or EtOH, and dried over P₂O₅ under vacuum before heating in an oven.

Potassium carbonate [584-08-7] **M 138.2, m 898°, d** $_{4}^{20}$ **2.3.** It crystallises from water between 100° and 0°. The solubility in H₂O is 105% at 0°, 127% at 60° and 205% at 135° (**b** of saturated solution). After two recrystallisations of technical grade material, it had B, Li and Fe at 1.0, 0.04 and 0.01 ppm, respectively. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** p 987 *1963*.]

Potassium chlorate [3811-04-9] **M 122.6, m 368°.** It has been recrystallised from water (1.8mL/g) between 100° and 0°, and the crystals were filtered onto sintered glass. Keep away from organic material as it oxidises them readily.

Potassium chloride [7447-40-7] **M 74.6, m 771°, d**²⁰₄ **1.98.** Dissolve it in conductivity water, filter it, and saturate it with chlorine (generated from conc HCl and KMnO₄). Excess chlorine is boiled off, and the KCl is precipitated by HCl (generated by dropping conc HCl into conc H₂SO₄). The precipitate is washed with water, dissolved in conductivity water at 90-95°, and crystallised by cooling to about -5°. The crystals are drained at the centrifuge, dried in a vacuum desiccator at room temperature, then fused in a platinum dish under N₂, cooled and stored in a desiccator. Potassium chloride has also been sublimed in a stream of pre-purified N₂ gas and collected by electrostatic discharge [Craig & McIntosh *Can J Chem* **30** 448 *1952*].

Potassium chromate [7789-00-6] M 194.2, m 975°, d_4^{20} 2.72, pK_1^{25} 0.74, pK_2^{25} 6.49 (for H₂CrO₄). Crystallise it from conductivity water (0.6g/mL at 20°), and dry it between 135° and 170°.

Potassium cobalticyanide [13963-58-1] **M 332.4, m dec on heating,** d_4^{25} **1.878.** Crystallise it from water to remove traces of HCN. Its solubility in 87-88% EtOH is 1 in 7500 at 20°. [Glemser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II p 1542 *1965.*]

Potassium cyanate [590-28-3] **M 81.1,** d_4^{20} 2.05, pK^{25} 3.46 (for HCNO). Common impurities include ammonia and bicarbonate ion (from hydrolysis). Purify it by preparing a saturated aqueous solution at 50°, neutralising with acetic acid, filtering, adding two volumes of EtOH and keeping for 3-4hours in an ice bath. (More EtOH can lead to co-precipitation of KHCO₃.) Filter, wash it with EtOH and dry it rapidly in a vacuum desiccator (P₂O₅). The process is repeated [Vanderzee & Meyers *J Chem Soc* 65 153 *1961*].

Potassium cyanide [151-50-8] **M 65.1, m 634°, d** $_{4}^{20}$ **1.52.** A saturated solution in H₂O-ethanol (1:3) at 60° is filtered and cooled to room temperature. Absolute EtOH is added, with stirring, until crystallisation ceases. The solution is again allowed to cool to room temperature (during 2-3hours), then the crystals are filtered off, washed with absolute EtOH, and dried, first at 70-80° for 2-3hours, then at 105° for 2hours [Brown et al. J Phys Chem 66 2426 1962]. It has also been purified by melting in a vacuum and by zone refining. **HIGHLY POISONOUS.**

Potassium dichromate [7778-50-9] **M 294.2, m 398°(dec), d** $_{4}^{20}$ **2.68.** Crystallise it from water (g/mL) between 100° and 0° and dry it under vacuum at 156°. (Possible CARCINOGEN.)

Potassium dihydrogen phosphate [7778-77-0] **M 136.1.** Dissolve it in boiling distilled water (2mL/g), keep on a boiling water-bath for several hours, then filter it through paper pulp to remove any turbidity. Cool rapidly with constant stirring, and the crystals are collected on to hardened filter paper, using suction, washed twice with ice-cold water, once with 50% EtOH, and dried at 105°. Alternative crystallisations are from water, then 50% EtOH, and again water, or from concentrated aqueous solution by addition of EtOH. It

is freed from traces of Cu by extracting its aqueous solution with diphenylthiocarbazone in CCl₄, followed by repeated extraction with CCl₄ to remove traces of diphenylthiocarbazone.

Potassium dithionate [13455-20-4] M 238.3, $pK_{Est(1)}$ -3.4, pK_2^{25} 0.49 (for dithionic acid). Crystallise it from water (1.5mL/g) between 100° and 0°.

Potassium ferricyanide [13746-66-2] **M 329.3, pK^{25} < 1 (for ferricyanide).** It has been recrystallised repeatedly from hot water (1.3mL/g) and dried under vacuum in a desiccator.

Potassium ferrocyanide $(3H_2O)$ [14459-95-1] M 422.4, pK_3^{25} 2.57, pK_4^{25} 4.35 (for ferrocyanide) It is purified by repeated crystallisation from distilled water, and never heating above 60°. The *anhydrous* salt is prepared by drying at 110° over P₂O₅ in a vacuum desiccator. To obtain the *trihydrate*, it is necessary to equilibrate the salt in a desiccator over a saturated aqueous solution of sucrose and NaCl. It can also be precipitated from a saturated solution at 0° by adding an equal volume of cold 95% EtOH, setting aside for several hours, then centrifuge and wash with cold 95% EtOH. It is finally sucked air dry with water-pump vacuum. The *anhydrous* salt is obtained by drying the hydrate in a platinum boat at 90° in a slow stream of N₂ [Loftfield & Swift *J Am Chem Soc* **60** 3083 1938].

Potassium fluorosilicate [16871-90-2] **M 220.3**, d_4^{20} **2.3**, pK^{25} **1.92** (for H₂SiF₆). Crystallise it several times from conductivity water (100mL/g) between 100° and 0°.

Potassium hexachloroiridate (III) (K_3IrCl_6) [14024-41-1] M 483.1. Crystallise it from hot aqueous solution, and the solution should be olive-green in colour. If it has a tinge of red, then some would have oxidised to (K_2IrCl_6) [see following entry]. In this case make a concentrated solution in H_2O , and bubble H_2S through until the solution is clearly olive-green in colour due to Ir(III). Add KCl and $K_3IrCl_6.3H_2O$ deposits on evaporating under N_2 . Filter it off, wash it with a little H_2O , then EtOH and dry it *in vacuo* away from air. [Grube in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II pp 1595 1965.]

Potassium hexachloroiridate (IV) (K_2IrCl_6) [16920-56-2] M 522.2. Crystallise it from hot aqueous solution containing a few drops of HNO₃ to keep it in the oxidised state. It forms small shiny red-black octahedral crystals which are dried at 100° and give a red powder on grinding [Grube in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II pp 1593-1594 *1965*].

Potassium hexachloroosmate (IV) [16871-60-6] M 481.1. Crystallise it from hot dilute aqueous HCl. [Turner et al. Anal Chem 30 1708 1958.]

Potassium hexachloroplatinate (IV) [16921-30-5] **M 486.0, m 250°(dec).** It crystallises from water (20mL/g) between 100° and 0°. Its solubility in H₂O is 0.7% at 0°, 1.12% at 20°, 2.16% at 50° and 5.13% at 100°. [Grube in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1571 1965.]

Potassium hexacyanochromate (III) ($K_3[Cr(CN)_6]$ 3H₂O) [13601-11-1] M 418.5. It forms yellow crystals from water. Recrystallise it two or three times from H₂O and dry it over H₂SO₄. Its solubility at 20° is 30.96g/100g H₂O, and it is insoluble in EtOH. Aqueous solutions tend to decompose especially in the presence of light or on heating when Cr(OH)₃ separates. [Hein & Herzog in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II pp 1373-1374 *1965*.]

Potassium hexafluorophosphate [17084-13-8] M 184.1, $pK_1^{25} \sim 0.5$, $pK_2^{25} 5.12$ (for fluorophosphoric acid H_2PO_3F). Crystallise it from alkaline aqueous solution, using polyethylene vessels, or from 95% EtOH, and dry it in a vacuum desiccator over KOH. [Kloditz Z Anorg Allgem Chem 284 144 1956, Kwasnik in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 196 1963.]

Potassium hexafluorozirconate (K_2ZrF_6) [16923-95-8] M 283.4, d_4^{20} 3.48. Recrystallise it from hot water (solubility is 0.78% at 2° and 25% at 100°).

Potassium hydrogen fluoride [7789-29-9] **M 78.1, m 225°(dec).** It crystallises from water. It is very soluble in hot H₂O and 41% at 21°. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 237 1963.]

Potassium hydroxide (solution) [1310-58-3] **M 56.1, pK²⁵ 16 (for aquo K⁺).** Its carbonate content can be reduced by rinsing KOH sticks rapidly with water prior to dissolving them in boiled out distilled water. Alternatively, a slight excess of saturated BaCl₂ or Ba(OH)₂ can be added to the solution which, after shaking well, is set aside so that the BaCO₃ is allowed to separate out. Davies and Nancollas [*Nature* **165** 237 1950] rendered KOH solutions carbonate free by ion exchange using a column of Amberlite IR-100 in the OH⁻ form.

Potassium iodate [7758-05-6] **M 214.0, pK²⁵ 0.80** (for HIO₃). It has been crystallised twice from distilled water (3mL/g) between 100° and 0°, dried for 2hours at 140° and cooled in a desiccator. Analytical reagent grade material dried in this way is suitable for use as an analytical standard.

Potassium iodide [7681-11-0] **M 166.0**, pK^{25} -8.56 (for HI). Crystallise it from distilled water (0.5mL/g) by filtering the near-boiling solution and cooling. To minimise oxidation to iodine, the process can be carried out under N₂ and the salt is dried under a vacuum over P₂O₅ at 70-100°. Before drying, the crystals can be washed with EtOH or with acetone followed by pet ether. It has also been recrystallised from water/ethanol. After 2 recrystallisations, ACS/USP grade had Li and Sb at <0.02 and <0.01 ppm respectively. [Lingane & Kolthoff *Inorg Synth* I 163 *1939*.]

Potassium nickel sulfate ($6H_2O$) [13842-46-1] M 437.1. Crystallise it from H₂O (1.7mL/g) between 75° and 0°.

Potassium nitrate (saltpetre) [7757-79-1] **M 101.1, m 336°.** It crystallises from hot H_2O (0.5mL/g) on cooling (*cf* KNO₂ below). Dry it for 12hours under vacuum at 70°. The solubility in H_2O is 13.3% at 0°, 110% at 60°, and 246% at 100°. After two recrystallisations, technical grade salt had <0.001 ppm of metals. The fused salt is a powerful oxidising agent.

Potassium nitrite [7758-09-0] **M 85.1, m 350°(dec), pK²⁰ 3.20 (for HNO₂).** A saturated solution at 0° is warmed and partially evaporated under vacuum. The crystals so obtained are filtered off from the warm solution. (This procedure is designed to reduce the level of nitrate impurity and is based on the effects of temperature on solubility. The solubility of KNO₃ in water is 13g/100mL at 0°, 247g/100mL at 100°; for KNO₂ the corresponding figures are 280g/100mL and 413g/100mL.) Alternatively, dissolve it in H₂O and precipitate by adding of EtOH.

Potassium nitrosodisulfonate (Fremy's Salt) [14293-70-0] M 268.3. It forms yellow needles (dimeric) which dissolve in H_2O to give the violet monomeric free radical. It is purified by dissolving (~12g) in 2M KOH (600mL) at 45°, filtering the blue solution and keeping it in a refrigerator overnight. The golden yellow crystals (10g) are filtered off, washed with MeOH (3x), then Et₂O and stored in a glass container in a vacuum over KOH. It is stable indefinitely when dry. [Cram & Reeves J Org Chem **80** 3094 1958, Schenk Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 505 1963.]

Potassium osmate (VI) dihydrate [19718-36-6] **M 368.4.** It forms hygroscopic **POISONOUS** crystals which are soluble in H_2O but insoluble in EtOH and Et_2O . It decomposes slowly in H_2O to form the *tetroxide* which attacks the eyes. The solid should be kept dry and in this form it is relatively safe. [Lloyd et al. *Synthesis* 610 1972, Grube in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1604 1965.]

Potassium perchlorate [7778-74-7] M 138.6, m 400(dec), d_4^{20} 2.52, pK^{25} -2.4 to -3.1 (for HClO₄). It crystallises from boiling water (5mL/g) on cooling. Dry it under vacuum at 105°.

Potassium periodate (potassium metaperiodate) [7790-21-8] M 230.0, m 582°, d_4^{20} 3.62. Crystallise it from distilled water. Its solubility in H₂O is 0.2% at 0°, 0.4% at 20°, 4.4% at 80°. and 7.9% at 100°. [Hill *Inorg Synth* I 171 1939, Schmeisser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 325 1963.]

Potassium permanganate [7722-64-7] **M 158.0, m 240(dec), d_4^{20} 2.7, pK^{25} -2.25 (for HMnO₄). Crystallise it from hot water (4mL/g at 65°), then dry it in a vacuum desiccator over CaSO₄. Phillips and Taylor [***J Chem Soc* **4242** *1962***] cooled an aqueous solution of KMnO₄, saturated at 60°, to room temperature in the dark, and filtered it through a No.4 porosity sintered-glass filter funnel. The solution was allowed to evaporate in air in the dark for 12hours, and the supernatant liquid was decanted from the crystals, which were dried as quickly as possible with filter paper.**

Potassium peroxydisulfate (potassium persulfate, K_2S_2O_8) [7727-21-1] **M 270.3.** Crystallise the persulfate twice from distilled water (10mL/g) and dry it at 50° in a vacuum desiccator. Its solubility in H₂O is 1.6% at 0°, 4.5% at 20°, and 7.2% at 30°. An aqueous solution decomposes on long standing with evolution of O₂ and formation of KHSO₄. It is a powerful oxidising agent. Store it at ~10°. [Fehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 390 1963.]

Potassium peroxymonosulfate (Oxone, potassium monopersulfate triple salt; 2KHSO₅.KHSO₄.K₂SO₄), [37222-66-5, 70693-62-8 (triple salt)] **M 614.8.** This is a stable form of Caro's acid and should contain >4.7% of active oxygen. It can be used in EtOH/H₂O and EtOH/AcOH/H₂O solutions. If active oxygen is too low. it is best to prepare it afresh from 1mole of KHSO₅, 0.5mole of KHSO₄ and 0.5mole of K₂SO₄. [Kennedy & Stock J Org Chem **25** 1901 1960, Stephenson US Patent 2,802,722 1957.] A rapid preparation of *Caro's acid* is made by stirring finely powdered potassium persulfate (**M** 270.3) into ice-cold conc H₂SO₄ (7mL) and when homogeneous add ice (40-50g). It is stable for several days if kept cold. Keep away from organic matter as it is a **STRONG OXIDANT**. A detailed preparation of **Caro's acid** (*hypersulfuric acid*, **H**₂SO₅, [7722-86-3]) in crystalline form **m** ~45° from H₂O₂ and chlorosulfonic acid was described by Fehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** p 388 1963.

Potassium perrhenate (KReO₄) [10466-65-6] **M 289.3, pK²⁵ -1.25 (for HReO₄).** It is crystallised from water (7mL/g), then fused in a platinum crucible in air at 750°.

Potassium reineckate [34430-73-4] **M 357.5.** Crystallise it from KNO₃ solution, then from warm water [Adamson J Am Chem Soc **80** 3183 1958].

Potassium (VI) ruthenate [31111-21-4] **M 243.3.** Dissolve it in H₂O and evaporate until crystals are formed. The crystals are iridescent green prisms which appear red in thin films. A possible impurity is RuO₄; in this case wash with CCl₄ (which dissolves RuO₄). The concentration of an aqueous solution of RuO₄²⁻ (orange colour) can be estimated from the absorbance at 385nm (ε 1030 M⁻¹ cm⁻¹), or at 460nm (ε 1820 M⁻¹ cm⁻¹). [Lee et al. *Can J Chem* **50** 3741 1972, Connic & Hurley *J Am Chem Soc* **74** 5012 1952, Grube et al. *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1600 1965].

Potassium selenocyanate [3425-46-5] **M 144.1.** Dissolve it in acetone, filter and precipitate it by adding Et₂O.

Potassium sulfate [7778-80-5] M 174.3, m 1069°, d_4^{20} 2.67 It crystallised from distilled water (4mL/g at 20°; 8mL/g at 100°) between 100° and 0°.

Potassium tetrachloroplatinate(II) [10025-99-7] **M 415.1, m 500°(dec).** It forms crystals from aqueous 0.75M HCl (20mL/g) between 100° and 0°. Wash them with ice-cold water and dry.

Potassium tetracyanopalladate (II) 3H₂O [10025-98-6] M 377.4. All operations should be carried out in an efficient fume cupboard. Cyanide is very POISONOUS. Dissolve the complex (ca 5g) in a

solution of KCN (4g) in H₂O (75mL) with warming and stirring, and evaporate hot till crystals appear. Cool, filter off the crystals and wash them with a few drops of cold H₂O. Further concentration of the mother liquors provides more crystals. The complex is recrystallised from H₂O as the colourless *trihydrate*. It *effloresces* in dry air and dehydrates at 100° to the *monohydrate*. The *anhydrous salt* is obtained by heating at 200°, but at higher temperatures it decomposes to (CN)₂, Pd and KCN. [Bigelow *Inorg Synth* II 245 *1946*.]

Potassium tetrafluoroborate (potassium borofluoride) [14075-53-7] M 125.9, m 530°, d_4^{30} 2.505, pK²⁵ -4.9 (for HBF₄). Crystallise it from H₂O (solubility% (temperature): 0.3 (3°), 0.45 (20°), 1.4 (40°), 6.27 (100°), and dry it under vacuum. It is a non-hygroscopic salt. A 10% solution is transparent blue at 100°, green at 90° and yellow at 60°. [Vörlander et al. *Chem Ber* 65 535 1932, Kwasnik in *Handbook* of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 223 1963.]

Potassium thiocyanate [333-20-0] **M 97.2, m 172°, pK²⁵ -1.85 (for HSCN).** Crystallise it from H₂O if much chloride ion is present in the salt, otherwise from EtOH or MeOH (optionally by addition of Et₂O). Filter off on a Büchner funnel without paper, and dry it in a desiccator at room temperature before heating for 1hour at 150°, with a final 10-20minutes at 200° to remove the last traces of solvent [Kolthoff & Lingane J Am Chem Soc 57 126 1935]. Store it in the dark.

Potassium thiosulfate hydrate [13446-67-8, 10294-66-3 (75% aqueous solution)] M 190.3, pK_1^{25} 0.6, pK_2^{25} 1.74 (for $H_2S_2O_3$) Crystallise it from warm water (0.5mL/g) by cooling in an ice-salt mixture. It is a good reducing agent used in analytical chemistry. [Foerster & Mommen *Chem Ber* 57 258 1924.]

Potassium tungstate (*ortho* 2H₂O) [37349-36-3; 7790-60-5] M 362.1, m 921°, d_4^{20} 3.12, pK_1^{25} 2.20, pK_2^{25} 3.70 (for H₂WO₄). Crystallise it from hot water (0.7mL/g).

Praseodymium trichloride (6H₂O) [10361-79-2] M 355.4, pK_1^{25} 8.55 (for Pr^{3+} hydrol). Its 1M solution in 6M HCl is passed twice through a Dowex-1 anion-exchange column. The eluate is evaporated in a vacuum desiccator to about half its volume and allowed to crystallise [Katzin & Gulyas *J Phys Chem* 66 494 1962].

Praseodymium oxide (Pr_6O_{11}) [12037-29-5] **M 1021.4.** Dissolve the oxide in acid (perchloric acid), precipitate it as the oxalate and the salt is ignited at 650° to give the oxide.

Reinecke salt See ammonium reineckate above.

Rhodium (I) carbonyl chloride (di-\mu-chloro-tetracarbonyl dirhodium I, [Rh (CO)₂Cl]₂) [14532-22-9] **M 388.8, m 121°, 124-125°.** This catalyst is soluble in most organic solvents, but not pet ethers, and forms orange-red crystals from hexane. It sublimes at 80°/0.1mm to a red solid. It decomposes on exposure to air when in organic solvents but the solid is stable in dry air. It is moisture sensitive and should be stored in ampoules under N₂ or Ar. It catalyses ring-opening silylformylation of olefins. [McCleverty & Wilkinson *Inorg Synth* **8** 211 *1966*, Dahl et al. *J Am Chem Soc* **83** 1761 *1961*, Cramer *Inorg Synth* **15** 14 *1974*, Fukumoto et al. *J Org Chem* **58** 4187 *1993*, Colton et al. *Aust J Chem* **23** 1351 *1970*.]

Rhodium (III) chloride [10049-07-7] **M 209.3, m >100°(dec), b 717°.** Probable impurities are KCl and HCl. Wash the chloride well with small volumes of H₂O to remove excess KCl and KOH and dissolve it in the minimum volume of conc HCl. Evaporate it to dryness on a steam bath to give wine-red coloured RhCl₃.3H₂O. Leave it on the steam bath until the odour of HCl is lost-do not try to dry further as it begins to decompose above 100° to the oxide and HCl. It is not soluble in H₂O but soluble in alkalis or CN solutions and forms double salts with alkali chlorides. [Anderson & Basolo Inorg Synth VII 214 1963.]

Rubidium bromide [7789-39-1] **M 165.4, m 682°, b 1340°, d_4^{20} 3.35.** The bromide is a white crystalline powder which crystallises from H₂O (solubility: 50% in cold and 67% in boiling H₂O to give a neutral solution). It also crystallises from near-boiling water (0.5mL/g) by cooling to 0°.

Rubidium chlorate [13446-71-4] **M 168.9, d** $_{4}^{20}$ **3.19.** It crystallises from water (1.6mL/g) by cooling from 100°.

Rubidium chloride [7791-11-9] **M 120.9, m 715°, m 1383°, d_4^{20} 2.80.** Crystallise it from water (0.7mL/g) by cooling to 0° from 100°. Its solubility in H₂O is 77.3% at 0.6°, 90.3% at 70° and 147% at boiling point. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 951-955 *1963.*]

Rubidium nitrate [13126-12-0] **M 147.5, m 305°, d_4^{20} 3.11.** Crystallise the nitrate from hot water (0.25mL/g) by cooling to room temperature.

Rubidium perchlorate [13510-42-4] **M 184.9,** d_4^{20} 2.80, pK^{25} -2.4 to -3.1 (for HClO₄). Crystallise the perchlorate from hot water (1.6mL/g) by cooling to 0°.

Rubidium sulfate [7488-54-2] **M 267.0, m 1050°, d_4^{20} 6.31.** Crystallise the sulfate from water (1.2mL/g) between 100° and 0°.

Ruthenium (III) chloride (2H₂O) (β -form) [14898-67-0] M 207.4 + H₂O, m >500°(dec), d²⁰₄ 3.11, pK²⁵₁ 3.40 (for aquo Rh³⁺ hydrolysis). Dissolve the salt in H₂O, filter and concentrate to crystallisation in the absence of air to avoid oxidation. Evaporate the solution in a stream of HCl gas while being heated just below its boiling point until a syrup is formed and finally to dryness at 80-100° and dried in a vacuum over H₂SO₄. When heated at 700° in the presence of Cl₂ the insoluble α -form is obtained [Grube in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1598 1965, Carlsen et al. J Org Chem 46 3936 1981].

Ruthenium (IV) oxide [12036-10-1] M 133.1, d_4^{20} 6.97. Free the oxide from nitrates by boiling in distilled water and filtering. A more complete purification is based on fusion in a KOH/KNO₃ mix to form the soluble ruthenate and perruthenate salts. The melt is dissolved in water, and filtered, then acetone is added to reduce the ruthenates to the insoluble hydrated oxide which, after making a slurry with paper pulp, is filtered and ignited in air to form the *anhydrous* oxide [Campbell et al. *Anal Chem* 33 58 1961].

Samarium (II) iodide [32248-43-4] **M 404.2, m 520°, b 1580.** A possible impurity is SmI₃ from which it is made. If present, grind the solid to a powder and heat it in a stream of pure H₂. The temperature (~ 500-600°) should be below the **m** (~ 628°) of SmI₃, since the molten compounds react very slowly. [Wetzel in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** pp 1149, 1150 *1965*.]

Selenious acid [7783-00-8] M 129.0, m 70°(dec), d_D^{20} 3.0, pK_1^{25} 2.62, pK_2^{25} 8.32 (H₂SeO₃). Recrystallise the acid from water. On heating it loses water and SeO₂ sublimes. [Waitkins & Clark *Chem Rev* 36 235 1945.]

Selenium [7782-49-2] **M 79.0, m 217.4°, d** $_4^{20}$ **4.81.** Dissolve selenium in small portions in hot conc HNO₃ (2mL/g), filter and evaporate to dryness to give selenious acid which is then dissolved in conc HCl. Pass SO₂ gas through the solution whereby selenium (but not tellurium) precipitates. It is filtered off and washed with conc HCl. This purification process is repeated. The selenium is then converted twice to the selenocyanate by treating with a 10% excess of 3M aqueous KCN (CARE), heated for half an hour on a sandbath and filtered. Add an equal weight of crushed ice to the cold solution, followed by an excess of cold, conc HCl, with stirring (in an efficient fume cupboard as HCN is evolved) which precipitates selenium powder. This is washed with water until colourless, and then with MeOH and is heated in an oven at 105°. Finally it is fused for 2hours *in vacuo*. It is cooled, crushed and stored in a desiccator [Tideswell & McCullough *J Am Chem Soc* **78** 3036 1956].

Selenium dioxide [7446-08-4] M 111.0, m 340°. Purify it by sublimation at 315°, or by solution in HNO₃, precipitation of selenium which, after standing for several hours or boiling, is filtered off, then re-

oxidised by HNO₃ and cautiously evaporated to dryness below 200°. The dioxide is dissolved in H₂O and again evaporated to dryness. In H₂O it forms selenious acid (see selenious acid above). Its solubility in H₂O is 70% w/w at 20°, and it is soluble in EtOH. [Waitkins & Clark *Chem Rev* **36** 235 *1945*, Fehér in *Handbook of Preparative Inorganic Chemistry (Ed Brauer)* Academic Press Vol I p 421 *1963*.]

Silica [7631-86-9 (colloidal), 60676-86-0 (Quartz, Cristobalite, sand), 112945-52-5 (fumed)]. Purification of silica for high technology applications uses isopiestic vapour distillation from concentrated volatile acids and is absorbed in high purity water. The impurities remain behind. Preliminary cleaning to remove surface contaminants uses dip etching in HF or a mixture of HCl, H_2O_2 and deionised water [Phelan & Powell Analyst **109** 1299 1984].

Silica gel [63231-67-4, 112926-00-8]. Before use as a drying agent, silica gel is heated in an oven, then cooled in a desiccator. Conditions in the literature range from heating at 110° for 15hours to 250° for 2-3hours. Silica gel has been purified by washing with hot acid (in one case successively with aqua regia, conc HNO₃, then conc HCl; in another case it was digested overnight with hot conc H₂SO₄), followed by exhaustive washing with distilled water (one week in a Soxhlet apparatus has also been used), and prolonged oven drying. Alternatively, silica gel has been extracted with acetone until all soluble material was removed, then dried in a current of air, washed with distilled water and oven dried. Silica gel has also been washed successively with water, M HCl, water, and acetone, then activated at 110° for 15hours.

Silicon monoxide [10097-28-6] **M 44.1, m > 1700°, d** $_{4}^{20}$ **2.18.** Purify the monoxide by sublimation in a porcelain tube in a furnace at 1250° (4hours) in a high vacuum (10⁻⁴mm) in a stream of N₂. It is obtained as brownish black scales. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 696 1963.]

Silicon tetrachloride [10026-04-7] M 169.9, m -70°, b 57.6°, d_4^{20} 1.483. Distil it under vacuum and store it in sealed ampoules under N₂. It fumes in moist air and is very sensitive to moisture. It is soluble in organic solvents. It is a **strong irritant**. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 682-683 1963.]

12-Silicotungstic acid (tungstosilicic acid; $H_4SiW_{12}O_{40}$) [12027-43-9] M 2914.5. Extract the acid with diethyl ether from a solution acidified with HCl. The diethyl ether is evaporated under vacuum, and the free acid is crystallised twice [Matijevic & Kerker J Phys Chem 62 1271 1958].

Silver (metal) [7440-22-4] M 107.9, m 961.9°, b 2212°, d_4^{20} 10.5. For purification by electrolysis, see Craig et al. [*J Res Nat Bur Stand* 64A 381 1960]. For purification of crude, or silver residues to pure silver see Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 1028-1030 1963, and for the preparation of *colloidal silver* see *ibid (Ed. Brauer)* p 1034.

Silver bromate [7783-89-3] M 235.8, m dec on heating, d_4^{20} 5.21. It crystallises from hot water (80mL/g). It reacts with bromine water to form bromic acid (HBrO₃) which is a strong oxidising agent. Store it in the dark.

Silver bromide [7785-23-1] M 187.8, m 432°, d_4^{20} 6.47. Purify it from Fe, Mn, Ni and Zn by zone melting in a quartz vessel under vacuum. It is insoluble in dilute HNO₃ or dilute NH₃ but is soluble in conc NH₃. Store it in the dark.

Silver chlorate [7783-92-8] M 191.3, m 230°, b 270°(dec), d_4^{20} 4.43. Recrystallise the chlorate three times from water (10mL/g at 15°; 2mL/g at 80°). Store it in the dark. [Nicholson & Holley *Inorg Synth* II 4 1946, Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 1037 1963.]

Silver chloride [7783-90-6] M 143.3, m 455°, b 1550°, d_4^{20} 5.56. Recrystallise it from conc NH₃ solution by acidifying with HCl, filtering off the solid, washing it with H₂O and drying it in a vacuum. It is soluble in NH₃ and should be kept in the dark.

Silver chromate [7784-01-2] M 331.8, $d^{25} 5.625$, $pK_1^{25} 0.74$, $pK_2^{25} 6.49$ (for H_2CrO_4). Wash the red-brown powder with H_2O , dry it in a vacuum, then powder well and dry again in a vacuum at 90°/5hours. Its solubility in H_2O is 0.0014% at 10°. Store it in the dark. [Cardillo & Shimizu J Org Chem 42 4268 1977.]

Silver cyanide [506-64-9] M 133.9, m dec at 320°, d_4^{20} 3.95. It is a POISONOUS white or grayish white powder. Stir it thoroughly with H₂O, filter, wash well with EtOH and dry it in air in the dark. It is very insoluble in H₂O (0.000023g in 100mL H₂O) but is soluble in HCN or aqueous KCN to form the soluble Ag(CN)₂²⁻ complex. [Schnitz-Dumont *Chem Ber* 72 298 1939, Randall & Halford *J Am Chem Soc* 52 184 1930.]

Silver difluoride [7783-95-1] **M 145.9, m 690°, d** $_{4}^{20}$ **4.7.** It is highly **TOXIC** because it liberates HF and F₂. It is very *hygroscopic* and reacts violently with H₂O. It is a powerful oxidising agent and liberates O₃ from dilute acids, and I₂ from I⁻ solution. Store it in quartz or iron ampoules. It is white when pure; otherwise it is brown-tinged. It is thermally stable up to 700°. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 241 *1963.*]

Silver fluoride [7775-41-9] **M 126.9, m 435°, b** *ca* **1150°,** d_4^{20} **5.852.** The fluoride is a *hygroscopic* solid with a solubility of 135g/100mL of H₂O at 15°, and forms an insoluble basic fluoride in moist air. Purify it by washing with AcOH and dry *C₆H₆, then keep it in a vacuum desiccator at room temperature to remove *C₆H₆, and store it in opaque glass bottles. The flaky *hygroscopic* crystals darken on exposure to light. It *attacks* bone and teeth. [Sharpe *J Chem Soc* 4538 *1952*, Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 240 *1963*.]

Silver iodate [7783-97-3] M 282.8, m >200°, d_4^{20} 5.53. Wash the iodate with warm dilute HNO₃, then H₂O and dry it at 100°, or recrystallise it from NH₃ solution by adding HNO₃, filtering, washing with H₂O and drying at 100°.

Silver nitrate [7761-88-8] M 169.9, m 212°, b 444°(dec), d_4^{20} 4.35. Purify it by recrystallisation from hot water (solubility of AgNO₃ in water is 992g/100mL at 100° and 122g/100mL at 0°). It has also been purified by crystallisation from hot conductivity water by slow addition of freshly distilled EtOH.

CAUTION: avoid using EtOH for washing the precipitate; and avoid concentrating the filtrate to obtain further crops of AgNO₃ owing to the risk of EXPLOSION (as has been reported to us) caused by the presence of silver fulminate. When using EtOH in the purification, the apparatus should be enveloped in a strong protective shield. [Tully, *News Ed (Am Chem Soc)* 19 3092 *1941*; Garin & Henderson *J Chem Educ* 47 741 *1970*, Bretherick, *Handbook of Reactive Chemical Hazards* 4th edn, Butterworths, London, 1985, pp 13-14.] Before being used as a standard in volumetric analysis, analytical reagent grade AgNO₃ should be finely powdered, dried at 120° for 2hours, then cooled in a desiccator.

Recovery of silver residues as $AgNO_3$ [use protective shield during the whole of this procedure] can be achieved by washing with hot water and adding 16M HNO₃ to dissolve the solid. Filter this through glass wool and concentrate the filtrate on a steam bath until precipitation commences. Cool the solution in an ice-bath and filter the precipitated AgNO₃. Dry it at 120° for 2hours, then cool it in a desiccator in a vacuum. Store it over P₂O₅ in a vacuum in the dark. AVOID contact with hands due to formation of black stains.

Silver nitrite [7783-99-5] M 153.9, m 141°(dec), d_4^{20} 4.45. Crystallise the salt from hot conductivity water (70mL/g) in the dark. Dry it in the dark under vacuum. [Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 1048 1963.]

Silver(I) oxide [20667-12-3] M 231.7, m ~200°(dec), d_4^{20} 7.13. Leach the oxide with hot water in a Soxhlet apparatus for several hours to remove any entrained electrolytes. [Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II p 1037 1965.]

Silver (II) oxide [1301-96-8] M 123.9, m >100°(dec), d^{25} 7.22. It is soluble in 40,000 parts of H₂O, and should be protected from light. Stir it with an alkaline solution of potassium peroxysulfate (K₂S₂O₈)

at 85-90°. The black AgO is collected, washed free from sulfate with H_2O made slightly alkaline and dried in air in the dark. [Hammer & Kleinberg *Inorg Synth* IV 12 *1953*.]

Silver perchlorate (H₂O) [14242-05-8 (H₂O), 7783-93-9 (anhydrous)] M 207.3, pK²⁵ -2.4 to -3.1 (for HClO₄). Reflux it with *benzene (6mL/g) in a flask fitted with a Dean and Stark trap until all the water is removed azeotropically (*ca* 4hours). The solution is cooled and diluted with dry pentane (4mL/g of AgClO₄). The precipitated AgClO₄ is filtered off and dried in a desiccator over P₂O₅ at 1mm for 24hours [Radell et al. J Am Chem Soc 83 3958 1961]. It has also been recrystallised from perchloric acid. [Caution due to its EXPLOSIVE nature in the presence of organic matter.] Store it in the dark.

Silver permanganate [7783-98-4] M 226.8, d_4^{20} 4.49. The salt forms violet crystals which can be crystallised from hot H₂O (soluble is 9g/L at 20°). Store it in the dark. This oxidising agent is decomposed by light. [Lux in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 1463 1963.]

Silver sulfate [10294-26-5] **M 311.8, m 652°, b 1085°(dec), d** $_{4}^{20}$ **5.45.** Crystallise the sulfate form hot conc H₂SO₄ containing a trace of HNO₃, and dilute with H₂O while being strongly cooled. The precipitate is filtered off, washed with H₂O and dried at 120°. Its solubility in H₂O is 0.8% at 17°, and 1.46% at 100°. Store it in the dark. [Glemser & Sauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1042 *1965*.]

Silver thiocyanate [1701-93-5] M 165.9, m 265°(dec), d_4^{20} 3.746, pK²⁵ -1.85 (for HSCN). Digest the solid salt with dilute aqueous NH₄NCS, filter, wash it thoroughly with H₂O and dry it at 110° in the dark. It is soluble in dilute aqueous NH₃. Alternatively dissolve it in strong aqueous NH₄NCS solution, filter and dilute with large volumes of H₂O when the Ag salt separates. The solid is washed with H₂O by decantation until free from NCS⁻ ions, collected, washed with H₂O, EtOH and dried in an air oven at 120°. It has also been purified by dissolving in dilute aqueousNH₃ when single crystals are formed by free evaporation of the solution in air. Store it in the dark. [Garrick & Wilson *J Chem Soc* 835 *1932*, Occleshaw *J Chem Soc* 2405 *1932*, IR and Raman: *Acta Chem Scand* **13** 1607 *1957*, Lindqvist *Acta Cryst* **10** 29 *1957*.]

Sodium (metal) [7440-23-5] **M 23.0, m 97.5^o, d₄²⁰ 0.97.** The metal is placed on a coarse grade of sintered-glass filter, melted under vacuum and forced through the filter using argon. The Pyrex apparatus is then re-evacuated and sealed off below the filter, so that the sodium could be distilled at 460^o through a side arm and condenser into a receiver bulb which is then sealed off [Gunn & Green J Am Chem Soc 80 4782 1958]. **EXPLODES and IGNITES in water.**

Sodium amide [7782-92-5] **M 39.0, m 210°.** It reacts *violently* with H₂O and is soluble in liquid NH₃ (1% at 20°). It should be stored in wax-sealed containers in small batches. It is very *hygroscopic* and absorbs CO_2 and H₂O. If the solid is discoloured by being yellow or brown in colour, then it should be destroyed as it can be highly **EXPLOSIVE.** It should be replaced if discoloured. It is best destroyed by covering it with much toluene and slowly adding dilute EtOH with stirring until all the ammonia is liberated (FUME CUPBOARD). [Dennis & Bourne *Inorg Synth* I 74 *1939*, Schenk in *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol I p 465 *1963*, Bergstrom *Org Synth* Coll Vol III 778 *1955*.]

Sodium ammonium hydrogen phosphate [13011-54-6] M 209.1, m 79°(dec), d_4^{20} 1.55. Crystallise it from hot water (1mL/g).

Sodium arsenate (7H₂O) [10048-95-0] M 312.0, m 50 (loses 5H₂O), m 130°, d_4^{20} 1.88 pK_1^{25} 2.22, pK_2^{25} 6.98 (for H₃AsO₄). Crystallise it from water (2mL/g).

Sodium azide [26628-22-8] **M 65.0, m 300°(dec, explosive), pK²⁵ 4.72 (for HN₃).** Crystallise sodium azide from hot water or from water by adding absolute EtOH or acetone. Also purify it by repeated crystallisation from an aqueous solution saturated at 90° by cooling it to 10°, and adding an equal volume of EtOH. The crystals are washed with acetone, and the azide is dried at room temperature under vacuum for several hours in an Abderhalden pistol. Its solubility in H₂O is 42% at 18°, and in EtOH it is 0.22% at 0°. [Das et al. *J Chem Soc, Faraday Trans 1* **78** 3485 1982, Schenk in *Handbook of Preparative Inorganic Chemistry (Ed.*

Brauer) Academic Press Vol I pp 474-475 *1963*, Browne *Inorg Synth* **1** 79 *1939*, Frierson *Inorg Synth* **II** 139 *1946*.] **HIGHLY POISONOUS and potentially explosive.**

Sodium bicarbonate [144-55-8] M 84.0, m \sim 50°(dec, -CO₂). Crystallise it from hot water (6mL/g). The solid should not be heated above 40° due to the formation of carbonate.

Sodium bisulfite [7631-90-5] M 104.1, d_4^{20} 1.48. Crystallise it from hot H₂O (1mL/g). Dry it at 100° under vacuum for 4hours.

Sodium borate (borax) [1330-43-4] **M 201.2, m 741°, d** $_{4}^{20}$ **2.37.** Most of the water of hydration is removed from the *decahydrate* (see below) by evacuation at 25° for three days, followed by heating to 100° and evacuation with a high-speed diffusion pump. The dried sample is then heated gradually to fusion (above 966°), allowed to cool gradually to 200°, then transferred to a desiccator containing P₂O₅ [Grenier & Westrum J Am Chem Soc **78** 6226 1956]. [Becher in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I pp 794-795 1963.]

Sodium borate (decahydrate, hydrated borax) [1303-96-4] M 381.2, m 75°(loses $5H_2O$ at 60°), d_4^{20} 1.73. Crystallise the borate from water (3.3mL/g), keeping below 55° to avoid formation of the pentahydrate. Filter it off at the pump, wash it with water and equilibrate it for several days in a desiccator containing an aqueous solution saturated with respect to sucrose and NaCl. Borax can be prepared more quickly (but its water content is somewhat variable) by washing the recrystallised material at the pump with water, followed by 95% EtOH, then Et₂O, and dried in air at room temperature for 12-18hours on a clock glass. [Becher in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 794-795 *1963*.]

Sodium borohydride [16940-66-2] **M 37.8, m ~400°(dec), d²⁰₄ 1.07.** After adding NaBH₄ (10g) to freshly distilled diglyme (120mL) in a dry three-necked flask fitted with a stirrer, nitrogen inlet and outlet, the mixture is stirred for 30minutes at 50° until almost all of the solid has dissolved. Stirring is stopped, and, after the solid has settled, the supernatant liquid is forced under N₂ pressure through a sintered-glass filter into a dry flask. [The residue is centrifuged to obtain more of the solution which is added to the bulk.] The solution is cooled slowly to 0° and then decanted from the white needles that separated. The crystals are dried by evacuating for 4hours to give anhydrous NaBH₄. Alternatively, after the filtration at 50° the solution is heated at 80° for 2hours to give a white precipitate of substantially anhydrous NaBH₄ which is collected on a sintered-glass filter under N₂, then evacuated at 60° for 2hours [Brown et al. *J Am Chem Soc* 77 6209 1955].

NaBH₄ has also been crystallised from isopropylamine by dissolving it in the solvent at reflux, cooling, filtering and allowing the solution to stand in a filter flask connected to a Dry-ice/acetone trap. After most of the solvent has passed over into the cold trap, crystals are removed with forceps, washed with dry diethyl ether and dried under vacuum. [Kim & Itoh *J Phys Chem* **91** 126 *1987*.] Somewhat less pure crystals were obtained more rapidly by using Soxhlet extraction with only a small amount of solvent and extracting for about 8hours. The crystals that formed in the flask are filtered off, then washed and dried as before. [Stockmayer et al. *J Am Chem Soc* **77** 1980 *1955*.] Other solvents used for crystallisation include water and liquid ammonia.

Sodium bromate [7789-38-0] M 150.9, m 381°, d_4^{20} 3.3. It is crystallised from hot water (1.1mL/g) to decrease contamination by NaBr, bromine and hypobromite. [Noszticzius et al. *J Am Chem Soc* 107 2314 1985.]

Sodium bromide [7647-15-6] M 102.9, m 747°, b 1390°, d_4^{20} 3.2. Crystallise the bromide from water (0.86mL/g) between 50° and 0°, and dry it at 140° under vacuum (this purification may not eliminate chloride ion).

Sodium carbonate [497-19-8] **M 106.0, m 858°, d** $_{4}^{20}$ **2.5.** It crystallises from water as the *decahydrate* which is redissolved in water to give a near-saturated solution. By bubbling CO₂, NaHCO₃ is precipitated. It is filtered off, washed and ignited for 2hours at 280° [MacLaren & Swinehart *J Am Chem Soc* **73** 1822 1951]. Before being used as a volumetric standard, analytical grade material should be dried by heating at 260-270° for 0.5hour and allowed to cool in a desiccator. It has a transition point at 450°, and its solubility in water is 21.58% at 20° (*decahydrate* in solid phase), 49.25% at 35° (*heptahydrate* in solid phase) and 44.88%

at 75° (*monohydrate* in solid phase) [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 987-988 *1963*]. After three recrystallisations, technical grade Na₂CO₃ had Cr, Mg, K, P, Al, W, Sc and Ti at 32, 9.4, 6.6, 3.6, 2.4, 0.6, 0.2 and 0.2 ppm respectively; another technical source had Cr, Mg, Mo, P, Si, Sn and Ti at 2.6, 0.4, 4.2, 13.4, 32, 0.6, 0.8 ppm respectively.

Sodium chlorate [7775-09-9] M 106.4, m 248°, b >300°(dec), d_4^{20} 2.5. It is crystallised from hot water (0.5mL/g). It is a strong oxidising agent, and should be kept clear from organic matter.

Sodium chloride [7647-14-5] **M 58.4, m 800.7°, b 1413°, d₄²⁰ 2.17.** It is recrystallised from a saturated aqueous solution (2.7mL/g) by passing in HCl gas, or by adding EtOH or acetone. It can be freed from bromide and iodide impurities by adding chlorine water to an aqueous solution and boiling it for some time to expel free bromine and iodine. Traces of iron can be removed by prolonged boiling of solid NaCl in 6M HCl; the crystals are then washed with EtOH and dried at *ca* 100°. Sodium chloride has been purified by sublimation in a stream of pre-purified N₂ and collected by electrostatic discharge [Ross & Winkler *J Am Chem Soc* **76** 2637 *1954*]. For use as a primary analytical standard, analytical reagent grade NaCl should be finely ground, dried in an electric furnace at 500-600° in a platinum crucible, and allowed to cool in a desiccator. For most purposes, however, drying at 110-120° is satisfactory.

Sodium chlorite [7758-19-2] **M 90.4, m ~180°(dec).** Crystallise the chlorite from hot water and store it in a cool place. It has also been crystallised from MeOH by counter-current extraction with liquid ammonia [Curti & Locchi Anal Chem **29** 534 1957]. A major impurity is chloride ion which can be removed by recrystallisation from 0.001M NaOH. [Schmeisser in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol **I** p 312 1963.]

Sodium chromate (4H₂O) [10034-82-9] M 234.0, m ~20°(for 10H₂O), d_4^{20} 2.7, pK_1^{25} 0.74, pK_2^{25} 6.49 (for H₂CrO₄). Crystallise the chromate from hot water (0.8mL/g). It is *deliquescent*.

Sodium cyanate [917-61-3] M 65.0, m 550°, d_4^{20} 1.893, pK²⁵ 3.47 (for HCNO). It forms colourless needles from EtOH. Its solubility in EtOH is 0.22g/100g at 0°C. It is soluble in H₂O but can be recrystallised from small volumes of it.

Sodium cyanoborohydride (25895-60-7) M 62.8, m 240-242°(dec), d²⁸ 1.20. It is a verv hygroscopic solid, soluble in H₂O (212% at 29°, 121% at 88°), tetrahydrofuran (37% at 28°, 42.2% at 62°), very soluble in MeOH, slightly soluble in EtOH but insoluble in Et₂O, *C₆H₆ and hexane. It is stable to acid up to pH 3 but is hydrolysed in 12N HCl. The rate of hydrolysis at pH 3 is 10⁻⁸ times that of NaBH₄. The fresh commercially available material is usually sufficiently pure. If very pure material is required, one of the following procedures can be used [Lane Synthesis 135 1975]: (a) The NaBH₃CN is dissolved in tetrahydrofuran (20% w/v), filtered and the filtrate is treated with a fourfold volume of CH₂Cl₂. The solid is collected and dried in a vacuum [Wade et al. Inorg Chem. 9 2146 1970]. (b) NaBH₃CN is dissolved in dry MeNO₃, filtered, and the filtrate is poured into a 10-fold volume of CCl₄ with vigorous stirring; the white precipitate is collected, washed several times with CCl₄ and dried in a vacuum (yield 75%) [Berschied & Purcell Inorg Chem 9 624 1970]. (c) When the above procedures fail to give a clean product, then dissolve $NaBH_3CN$ (10g) in tetrahydrofuran (80mL) and add N MeOH/HCl until the pH is 9. Pour the solution with stirring into dioxane (250mL). The solution is filtered and heated to reflux. A further volume of dioxane (150mL) is added slowly with swirling. The solution is cooled slowly to room temperature, then chilled in ice and the crystalline dioxane complex is collected, dried in a vacuum for 4hours at 25°, then 4hours at 80° to yield the amorphous dioxane-free powder (6.7g) with purity >98% [Borch et al. J Am Chem Soc 93 2897 1971]. The purity can be checked by iodometric titration [Lyttle et al. Anal Chem 24 1843 1952].

Sodium dichromate [7789-12-0] M 298.0, m 84.6° (2H₂O), 356° (anhydrous); b 400°(dec), d_4^{25} 2.348. Crystallise the dichromate from small volumes of H₂O by evaporation to crystallisation. Its solubility in H₂O is 238% at 0° and 508% at boiling. The red *dihydrate* is slowly dehydrated by heating at 100° for long periods. It is *deliquescent* and is a powerful oxidising agent—*do not place it in contact with skin*—*wash immediately as it is caustic.* (Possible carcinogen.)

Sodium dihydrogen orthophosphate (2H₂O) [13472-35-0 (2H₂O), 10049-21-5 (H₂O), 7558-80-7 (anhydrous)] M 156.0, m 60°(dec), d_4^{20} 1.91. Crystallise it from warm water (0.5mL/g) by chilling.

Sodium dithionite (2H₂O) [7631-94-9] M 242.1, m 110^o(loses 2H₂O), 267^o(dec), d_4^{20} 2.19, $pK_{Est(1)}$ -3.4, pK_2^{25} 0.49 (for dithionic acid). Crystallise it from hot water (1.1mL/g) by cooling.

Sodium ferricyanide (H₂O) [14217-21-1, 13601-19-9 (anhydrous)] M 298.9, $pK^{25} < 1$ (for ferricyanide). Crystallise the ferricyanide from hot water (1.5mL/g) or by precipitation from 95% EtOH.

Sodium ferrocyanide (10H₂O) [13601-19-9] M 484.1, m 50-80° (loses $10H_2O$), $435^{\circ}(dec)$, d_4^{20} 1.46, pK_3^{25} 2.57, pK_4^{25} 4.35 (for ferrocyanide). Crystallise it from hot water (0.7mL/g), until free of ferricyanide as shown by the absence of formation of Prussian Blue colour with ferrous sulfate solution.

Sodium fluoride [7681-49-4] **M 42.0, m 996°, b 1695°, d** $_{4}^{20}$ **2.56.** Crystallise NaF from water by partial evaporation in a vacuum desiccator, or dissolve it in water, and precipitate *ca* half of it by adding EtOH. The precipitate is dried in an air oven at 130° for one day, and then stored in a desiccator over KOH. Its solubility in H₂O is 4% at 15° and 4.3% at 25°. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 235 *1963*].

Sodium fluoroborate [13755-29-8] M 109.8, m 384°, d_4^{20} 2.47, pK^{25} -4.9 (for fluoroboric acid $H_3O^+BF_4^-$). Crystallise the fluoroborate from hot water (50mL/g) by cooling to 0°. Alternatively, free it from insoluble material by dissolving it in a minimum amount of water; then fluoride ions are removed by adding concentrated lanthanum nitrate in excess. After removing lanthanum fluoride by centrifugation, the supernatant is passed through a cation-exchange column (Dowex 50, Na⁺-form) to remove any remaining lanthanum [Anbar & Guttman J Phys Chem 64 1896 1960]. It has also been recrystallised from anhydrous MeOH and dried in a vacuum at 70° for 16hours. Keep it dry as it is *hygrosopic*. [Delville et al. J Am Chem Soc 109 7293 1987.]

Sodium fluorosilicate [16893-85-9] M 188.1. Crystallise it from hot water (40mL/g) by cooling.

Sodium hexafluorophosphate [21324-39-0] M 167.9, $pK_1^{25} \sim 0.5$, $pK_2^{25} 5.12$ (for fluorophosphoric acid H_2PO_3F). Recrystallise it from acetonitrile and dry it in a vacuum for 2days at room temperature. It is an irritant and is *hygroscopic*. [Delville et al. J Am Chem Soc 109 7293 1987.]

Sodium hexanitrocobaltate III (Na₃[Co(NO)₆]) [13600-98-1] M 403.9. Dissolve the salt (*ca* 60g) in H₂O (300mL), filter to obtain a clear solution, add 96% EtOH (250mL) with vigorous stirring. Allow the precipitate to settle for 2hours, filter it off, wash it with EtOH (4 x 25mL), twice with Et₂O and dry it in air [Glemser in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1541 *1965*]. It forms yellow to brown crystals which are very soluble in H₂O, are decomposed by acid and form an insoluble K salt. Used for estimating potassium.

Sodium hydroxide (anhydrous) [1310-73-2] M 40.0, m 323°, b 1390°, d_4^{20} 2.13. Common impurities are water and sodium carbonate. Sodium hydroxide can be purified by dissolving 100g in 1L of pure EtOH, filtering the solution under vacuum through a fine sintered-glass disc to remove insoluble carbonates and halides. (This and subsequent operations should be performed in a dry, CO₂-free box.) The solution is concentrated under vacuum, using mild heating, to give a thick slurry of the mono-alcoholate which is transferred to a coarse sintered-glass disc and evacuated free of mother liquor. After washing the crystals several times with purified alcohol to remove traces of water, they are dried in a vacuum, with mild heating, for about 30hours to decompose the alcoholate, leaving a fine white crystalline powder [Kelly & Snyder J Am Chem Soc 73 4114 1951]. CAUSTIC.

Sodium hydroxide solutions (*caustic*), pK^{25} 14.77. Carbonate ion can be removed by passage through an anion-exchange column (such as Amberlite IRA-400; OH⁻-form). The column should be freshly prepared from the chloride form by slow prior passage of sodium hydroxide solution until the effluent gives no

test for chloride ions. After use, the column can be regenerated by washing with dilute HCl, then water. Similarly, other metal ions are removed when a 1M (or more dilute) NaOH solution is passed through a column of Dowex ion-exchange A-1 resin in its Na⁺-form.

Alternatively, carbonate contamination can be reduced by rinsing sticks of NaOH (analytical reagent quality) rapidly with H_2O , then dissolving in distilled H_2O , or by preparing a concentrated aqueous solution of NaOH and drawing off the clear supernatant liquid. (Insoluble Na₂CO₃ is left behind.) Carbonate contamination can be reduced by adding a slight excess of concentrated BaCl₂ or Ba(OH)₂ to a NaOH solution, shaking well and allowing the BaCO₃ precipitate to settle. If the presence of Ba in the solution is unacceptable, an electrolytic purification can be used. For example, sodium amalgam is prepared by the electrolysis of 3L of 30% NaOH with 500mL of pure mercury for cathode, and a platinum anode, passing 15 Faradays at 4Amps, in a thick-walled polyethylene bottle. The bottle is then fitted with inlet and outlet tubes, the spent solution being flushed out by CO₂-free N₂. The amalgam is then washed thoroughly with a large volume of deionised water (with the electrolysis current switched on to minimize loss of Na). Finally, a clean steel rod is placed in contact in the solution with the amalgam (to facilitate hydrogen evolution), reaction being allowed to proceed until a suitable concentration is reached, before being transferred to a storage vessel and diluted as required [Marsh & Stokes *Aust J Chem* **17** 740 *1964*].

Sodium hypophosphite monohydrate [10039-56-2] M 106.0 (see pK of hypophosphorous acid). Dissolve it in boiling EtOH, cool and add dry Et₂O till all the salt separates. Collect and dry it in vacuum. It is soluble in 1 part of H₂O. It liberates PH₃ on heating and can *ignite* spontaneously when heated. The anhydrous salt is soluble in ethylene glycol (33% w/w) and propylene glycol (9.7%) at 25°.

Sodium iodate [7681-55-2] M 197.9, m dec on heating, d_4^{20} 4.28. Crystallise sodium iodate from water (3mL/g) by cooling.

Sodium iodide [7681-82-5] **M 149.9, m 660°, b 1304°, d** $_{4}^{20}$ **3.67.** Crystallise NaI from water/ethanol solution and dry it for 12hours under vacuum, at 70°. Alternatively, dissolve it in acetone, filter it and cool it to -20°; the resulting yellow crystals are filtered off and heated in a vacuum oven at 70° for 6hours to remove acetone. The NaI is then crystallised from very dilute NaOH, dried under vacuum, and stored in a vacuum desiccator [Verdin *Trans Faraday Soc* **57** 484 *1961*].

Sodium metaperiodate (NaIO₄) [7790-28-5] M 213.9, m ~300°(dec), d_4^{20} 4.17. Recrystallise it from hot water. [Willard *Inorg Synth* I 170 1939, Bernays *Inorg Synth* II 212 1946.]

Sodium metasilicate (5H₂O) [6834-92-0] M 212.1, m 1088°, d_4^{20} 2.4. Crystallise it from aqueous 5% NaOH solution. [Schwartz Z Anorg Allgem Chem 126 62 1923.]

Sodium molybdate (2H₂O) [10102-40-6] M 241.9, m 100°(loses 2H₂O), 687°, d_4^{20} 3.28, pK²⁵ 4.08 (for H₂MoO₄). Crystallise it from hot water (1mL/g) by cooling to 0°.

Sodium nitrate [7631-99-4] **M 85.0, m 307°, b 380°, d** $_{4}^{20}$ **2.26.** Crystallise NaNO₃ from hot water (0.6mL/g) by cooling to 0°, or from a concentrated aqueous solution by adding MeOH. Dry it under a vacuum at 140°. After two recrystallisations, technical grade sodium nitrate had K, Mg, B, Fe Al, and Li at 100, 29, 0.6, 0.4, 0.2 and 0.2 ppm respectively. (See KNO₃.)

Sodium nitrite [7632-00-0] M 69.0, m 271°, b 320°, d_4^{20} 2.17. Crystallise NaNO₂ from hot water (0.7mL/g) by cooling to 0°, or from its own melt. Dry it over P₂O₅. (See KNO₂.)

Sodium perchlorate (anhydrous) [7601-89-0] M 122.4, m 130°(for monohydrate), d_4^{20} 2.02, pK^{25} -2.4 to -3.1 (for HClO₄). Because its solubility in water is high (2.1g/mL at 15°) and it has a rather low-temperature coefficient of solubility, sodium perchlorate is usually crystallised from acetone, MeOH, water/ethanol or dioxane/water (33g dissolved in 36mL of water and 200mL of dioxane). After filtering and recrystallising, the solid is dried under vacuum at 140-150° to remove solvent of crystallisation. Basic impurities can be removed by crystallisation from hot acetic acid, followed by heating at 150°. If NaClO₄ is

precipitated from distilled water by adding $HClO_4$ to the chilled solution, the precipitate contains some free acid. **EXPLOSIVE.**

Sodium phosphoamidate [3076-34-4] **M 119.0.** Dissolve it in water below 10°, and acetic acid is added dropwise to pH 4.0 so that the monosodium salt is precipitated. The precipitate is washed with water and Et_2O , then dried in air. Addition of one equivalent of NaOH to the solution gives the sodium salt, the solution being adjusted to pH 6.0 before use [Rose & Heald *Biochem J* **81** 339 1961].

Sodium pyrophosphate (10H₂O) [13472-36-1] M 446.1, d_4^{20} 1.82, pK_1^{25} 1.52, pK_2^{25} 2.36, pK_3^{25} 6.60, pK_4^{25} 9.25 (for pyrophosphoric acid, $H_4P_2O_7$). Crystallise the salt from hot H_2O and dry it in air at room temperature.

Sodium selenate [13410-01-0] M 188.9, d_4^{20} 3.21, $pK_1^{25} \sim 0$, pK_2^{25} 1.66 (for selenic acid, H_2SeO_4). Crystallise sodium selenate from hot water. [Fehér in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 433 1963].

Sodium selenite [10102-18-8] **M 172.9, m >350°, pK**₁²⁵ **2.62, pK**₂²⁵ **8.32 (for H**₂**SeO**₃). Crystallise sodium selenite from a saturated aqueous solution where its solubility is 68% at 20° to give the *pentahydrate* salt. This yields the *anhydrous* salt on heating at 40°. [Fehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 431 1963].

Sodium silicate solution [1344-09-8] pK_1^{25} 9.51, pK_2^{25} 11.77 (for silicic acid, H_4SiO_4) Purify by contact filtration with activated charcoal.

Sodium sulfate (10H₂O) [7727-73-3 (10H₂O), 7757-82-6 (anhydrous)] M 322.2, m 32°(dec), 884° (anhydrous), d_4^{20} 2.68 (anhydrous). Crystallise sodium sulfate from water at 30° (1.1mL/g) by cooling to 0°. It becomes anhydrous at 32°.

Sodium sulfide (9H₂O) [1313-84-4 (9H₂O), 1313-82-2 (anhydrous)] M 240.2, m ~50(loses H₂O), 950(anhydrous), d_4^{20} 1.43 (10H₂O), 1.86 (anhydrous), pK₁²⁵ 7.04, pK₂²⁵ 11.96 (for H₂S). Some purification of the hydrated salt can be achieved by selecting large crystals and removing the surface layer (contaminated with oxidation products) by washing with distilled water. Other metal ions can be removed from Na₂S solutions by passage through a column of Dowex ion-exchange A-1 resin, Na⁺-form. The hydrated salt can be rendered *anhydrous* by heating it in a stream of H₂ or N₂ until water is no longer evolved. (The resulting cake should not be heated to fusion because it is readily oxidised.) Recrystallise it from distilled water [Anderson & Azowlay *J Chem Soc*, *Dalton Trans* 469 1986]. Note that sodium sulfide hydrolyses in H₂O to form NaHS + H₂O, and is therefore alkaline. A 0.1N solution in H₂O is 86% hydrolysed at room temperature. Its solubility in H₂O is 8% at 0°, 12% at 20° and 30% at 50°. The *anhydrous* salt is obtained by allowing it to stand in a vacuum over conc H₂SO₄ or P₂O₅ at 45° to start with, then at 30-35° when the salt contains 4% of water. The last traces of water are removed by heating to 700° in a glass or porcelain tube in a stream of H₂ to give pure H₂S. [Fehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 358-360 *1963.*]

Sodium sulfite [7757-83-7] **M 126.0, d** $_{4}^{20}$ **2.63.** Crystallise the sulfite from warm water (0.5mL/g) by cooling to 0°. Also purify it by repeated crystallisation from deoxygenated water inside a glove-box, and finally drying it under vacuum. [Rhee & Dasgupta *J Phys Chem* **89** 1799 *1985*.]

Sodium tetrametaphosphate [13396-41-3] M 429.9, pK₁²⁵ 2.60, pK₂²⁵ 6.4, pK₃²⁵ 8.22, pK₄²⁵ 11.4 (tetrametaphosphoric acid, H₄P₄O₁₂). Crystallise it twice from water at room temperature by adding EtOH (300g of Na₄P₄O₁₂.H₂O, 2L of water, and 1L of EtOH), wash it first with 20% EtOH then with 50% EtOH and dry it in air [Quimby *J Phys Chem* 58 603 1954].

Sodium thioantimonate (Na₃SbS₄.9H₂O, Schlippe's salt) [13776-84-6] M 481.1, m 87°, b 234°, d_4^{20} 1.81. Crystallise it from warm water (2mL/g made weakly alkaline with a few drops of dilute

aqueous NaOH) by cooling to 0°. It forms a yellow *nonahydrate* which readily *effloresces* in air. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 619 1963.]

Sodium thiocyanate [540-72-7] **M 81.1, m 300°, pK²⁵ -1.85 (for HSCN)**. It is recrystallised from EtOH or Me₂CO, and the mother liquor is removed from the crystals by centrifugation. It is very *deliquescent* and should be kept in an oven at 130° before use. It can be dried in a vacuum at 120°/P₂O₅ [Partington & Winterton *Trans Faraday Soc* **30** 1104 *1934*]. Its solubility in H₂O is 113% at 10°, 178% at 46°, 225.6% at 101.4°; in MeOH 35% at 15.8°, 51% at 48°, 53.5% at 52.3°; in EtOH 18.4% at 18.8°, 24.4% at 70.9°; and in Me₂CO 6.85% at 18.8° and 21.4% at 56° [Hughes & Mead *J Chem Soc* 2282 *1929*]. Sodium thiocyanate has also been recrystallised from water, acetonitrile or from MeOH using Et₂O for washing,

then dried at 130°, or dried under vacuum at 60° for 2days. [Strasser et al. *J Am Chem Soc* **107** 789 *1985*, Szezygiel et al. *J Am Chem Soc* **91** 1252 *1987*.] (The latter purification removes material reacting with iodine.) Sodium thiocyanate solutions can be freed from traces of iron by repeated batch extractions with Et_2O .

Sodium thiosulfate (5H₂O) [10102-17-7 (hydrate), 7772-98-7 (anhydrous)] M 248.2(anhydrous), m 48(rapid heat), d_4^{20} 1.69, pK_1^{25} 0.6, pK_2^{25} 1.74 (for H₂S₂O₃). Crystallise it from EtOH/H₂O solutions or from water (0.3mL/g) below 60° by cooling to 0°, and dry it at 35° over P₂O₅ under vacuum. [Foerster & Mommsen Chem Ber 57 258 1924.] This salt is used as a secondary standard in volumetric analysis [Kilpatrick J Am Chem Soc 45 2132 1923], and is used as "Hypo" in photography [Hargreaves & Dunningham J Soc Chem Ind 42 147T 1923.]

Sodium trimetaphosphate (6H₂O) [7785-84-4] M 320.2, m 53°, d_4^{20} 1.79, pK₂²⁵ 1.64, pK₃²⁵ 2.07 (for trimetaphosphoric acid, H₃P₃O₉). It is precipitated from an aqueous solution at 40° by adding EtOH. It is dried in air.

Sodium tripolyphosphate [7758-29-4] M 367.9, $pK_1^{25} \sim 1$, $pK_2^{25} 2.0$, $pK_3^{25} 2.13$, $pK_4^{25} 5.78$, $pK_5^{25} 8.56$ (for tripolyphosphoric acid, $H_5P_3O_{10}$). Purify it by repeated precipitation from aqueous solution by slow addition of MeOH and dried in air. Also a solution of anhydrous sodium tripolyphosphate (840g) in water (3.8L) is filtered, MeOH (1.4L) is added with vigorous stirring to precipitate Na₅P₃O₁₀. The precipitate is collected on a filter, air dried by suction, then left to dry in air overnight. It is crystallised twice more in this way, using a 13% aqueous solution (w/w), and leaching the crystals with 200mL portions of water [Watters et al. *J Am Chem Soc* 78 4855 1956]. Similarly, EtOH can be added to precipitate the salt from a filtered 12-15% aqueous solution, the final solution containing *ca* 25% EtOH (v/v). Air drying should be at a relative humidity of 40-60%. Heat and vacuum drying should be avoided. [Quimby *J Phys Chem* 58 603 1954, Klement in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 547 1963.]

Sodium tungstate (2H₂O) [10213-10-2] M 329.9, m 698°, d_4^{20} 4.18, pK₁²⁵ 2.20, pK₂²⁵ 3.70 (for tungstic acid, H₂WO₄). The salt crystallises from hot water (0.8mL/g) on cooling to 0°. [Grüttner & Jender in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II p 1727 1965].

Stannic chloride (tin IV chloride, stannic tetrachloride) [7646-78-8] M 260.5, m -33°, -30.2°, b 114°/760mm, d_4^{20} 2.23, pK²⁵ 14.15 (for aquo Sn⁴⁺ hydrolysis). SnCl₄ fumes in moist air due to formation of a hydrate. Fractionate it in a ground glass still and store it in the absence of air. Possible impurities are SO₂ and HCl [Baudler in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 729 1963]. It forms a solid *pentahydrate [10026-06-9]* which smells of HCl and is obtained when the *anhydrous* salt is dissolved in a small volume of H₂O. Also reflux it with clean mercury or P₂O₅ for several hours, then distil it under (reduced) N₂ pressure into a receiver containing P₂O₅. Finally redistil it. Alternatively, distil it from Sn metal under vacuum in an all-glass system and seal off in large ampoules. SnCl₄ is available commercially as 1M solutions in CH₂Cl₂ or hexane. HARMFUL VAPOURS.

Stannic iodide (SnI₄) [7790-47-8] M 626.3, m 144°, b 340, d_4^{20} 4.46. It is recrystallised from anhydrous CHCl₃, dry it under vacuum and store it in a vacuum desiccator. It sublimes at 180°.

Stannic oxide (SnO₂) [18282-10-5] M 150.7, m 1630°, d_4^{20} 6.95. Reflux it repeatedly with fresh HCl until the acid shows no tinge of yellow. The oxide is then dried at 110°.

Stannous chloride (anhydrous) [7772-99-8] M 189.6, m 247°, b 606°, d_4^{20} 3.95, p K_1^{25} 1.7, p K_2^{25} 3.7 (for aquo Sn²⁺ hydrolysis). Analytical reagent grade stannous chloride dihydrate is dehydrated by adding it slowly to vigorously stirred, redistilled acetic anhydride (120g salt per 100g of anhydride) in a fume cupboard. After *ca* an hour, the anhydrous SnCl₂ is filtered on to a sintered-glass or Büchner funnel, washed free from acetic acid with dry Et₂O (2 x 30mL), and dried under vacuum. It is stored in a sealed container. [Stephen *J Chem Soc* 2786 1930, Williams Org Synth Coll Vol III 627 1955.]

Strontium bromide [10476-81-0] **M 247.4, m 643°, d** $_{4}^{20}$ **4.22.** Crystallise the bromide from water (0.5mL/g). It is *deliquescent*. [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** p 930 1963.]

Strontium chloride (6H₂O) [1025-70-4] M 266.6, m 61°(rapid heating), 114-150°(loses 5H₂O), 868°(anhydrous). It crystallises from warm water (0.5mL/g) on cooling to 0°. It dehydrates at 150-160° in a vacuum. [Ehrlich in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 930 1963.]

Strontium chromate [7789-06-2] M 203.6, d_4^{20} 3.9, pK_1^{25} 0.74, pK_2^{25} 6.49 (for H_2CrO_4). Crystallise strontium chromate from water (40mL/g) by cooling.

Strontium hydroxide (8H₂O) [1311-10-0 (8H₂O), 18480-07-4 (anhydrous)] M 265.8, m 100°(loses H₂O), d_4^{20} 1.90, m 375(anhydrous), d 3.63 (anhydrous). Crystallise the hydroxide from hot water (2.2mL/g) by cooling to 0°.

Strontium nitrate [10042-76-9] M 211.6, m 570°, b 645°, d_4^{20} 2.99. Crystallise it from hot water (0.5mL/g) by cooling to 0°.

Sulfamic acid [5329-14-6] M 97.1, m 205°(dec), pK^{25} 0.99 (NH₂SO₃H). Crystallise NH₂SO₃H from water at 70° (300mL per 25g), after filtering, by cooling a little and discarding the first batch of crystals (about 2.5g) before standing in an ice-salt mixture for 20minutes. The crystals are filtered off by suction, washed with a small quantity of ice cold water, then twice with cold EtOH and finally with Et₂O. Dry it in air for 1hour, then store it in a desiccator over Mg(ClO₄)₂ [Butler et al. *Ind Eng Chem (Anal Ed)* 10 690 *1938*]. For the preparation of primary standard material see *Pure Appl Chem* 25 459 *1969*.

Sulfamide [7803-58-9] **M 96.1, m 91.5°.** Crystallise sulfamide from absolute EtOH. It decomposes at 250°. [Schenk in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 482-483 1963.]

Sulfur [7704-34-9] **M 32.1, m between 112.8° and 120°, depending on form.** Murphy, Clabaugh & Gilchrist [*J Res Nat Bur Stand* **64A** 355 *1960*] have obtained sulfur of about 99.999% purity by the following procedure: Roll sulfur was melted and filtered through a coarse-porosity glass filter funnel into a 2L round-bottomed Pyrex flask with two necks. Conc H_2SO_4 (300mL) was added to the sulfur (2.5kg), and the mixture was heated to 150°, stirring continuously for 2hours. Over the next 6hours, conc HNO₃ was added in about 2mL portions at 10-15minutes intervals to the heated mixture. It was then allowed to cool to room temperature and the acid was poured off. The sulfur was rinsed several times with distilled water, then remelted, cooled, and rinsed several times with distilled water again, this process being repeated four or five times to remove most of the acid entrapped in the sulfur. An air-cooled reflux tube (*ca* 40cm long) was attached to one of the necks of the flask, and a gas delivery tube (the lower end about 2.5cm above the bottom of the flask) was inserted into the other. While the sulfur was boiled under reflux, a stream of helium or N₂ was passed through to remove any water, HNO₃ or H₂SO₄, as vapours. After 4hours, the sulfur was cooled so that the reflux tube could be replaced by a bent air-cooled condenser. The sulfur was then distilled, rejecting the first and the final 100mL portions, and transferred in 200mL portions to 400mL glass cylinder ampoules (which were placed on their sides during solidification). After adding about 80mL of water, displacing the air with N₂, the ampoule

was cooled, and the water was titrated with 0.02M NaOH, the process being repeated until the acid content was negligible. Finally, entrapped water was removed by alternate evacuation to 10mm Hg and refilling with N₂ while the sulfur was kept molten. The ampoules were then sealed. Other purifications include crystallisation from CS₂ (which is less satisfactory because the sulfur retains appreciable amounts of organic material), *benzene or *benzene/acetone, followed by melting and degassing. It has also been boiled with 1% MgO, then decanted, and dried under a vacuum at 40° for 2days over P₂O₅. [For the purification of S₆, "recrystallised S₈" and "Bacon-Fanelli sulfur" see Bartlett et al. *J Am Chem Soc* **83** 103, 109 *1961*.]

Sulfur dichloride (sulfur chloride, SCl₂) [10545-99-0] M 103.0, m -78°, b 59°/760mm(dec), d_4^{20} 1.621. Distil sulfur chloride twice in the presence of a small amount of PCl₃ through a 12in Vigreux column (p 11), the fraction boiling between 55-61° being redistilled (in the presence of PCl₃), and the fraction distilling between 58-61° retained. (The PCl₃ is added to inhibit the decomposition of SCl₂ into S₂Cl₂ and Cl₂). The SCl₂ must be used as quickly as possible after distillation — within 1hour at room temperature. The sample contains 4% of S₂Cl₂. On long standing this reaches 16-18%. [Fehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I pp 371-372 1963.] HARMFUL VAPOURS.

Sulfur dioxide [7446-09-5] **M 64.1, m -72°, b -10°.** Dry it by bubbling through conc H_2SO_4 and by passage over P_2O_5 , then through a glass-wool plug. Freeze it with liquid air and pump it to a high vacuum to remove dissolved gases. It is easily liquefied by compression (2.5atmospheres at 15°), or by passing it through a glass spiral column in a freezing mixture of ice and salt. It is a colourless liquid with a density of 1.434 at 0°, which on rapid evaporation forms a snow white solid. It could be used as a solvent in certain reactions. **HARMFUL SUFFOCATING VAPOURS.**

Sulfuric acid (oil of vitriol) [7664-93-9] M 98.1, d_4^{20} 1.83, $pK_1^{25} \sim -8.3$, pK_2^{25} 1.99. Sulfuric acid, and also 30% fuming H₂SO₄, can be distilled in an all-Pyrex system, optionally from potassium persulfate. It has been purified by fractional crystallisation of the *monohydrate* from the liquid. It has a very strong dehydrating action and attacks skin—wash immediately with cold H₂O; otherwise the skin can be scarred for life. It is very hygroscopic and has been used as a desiccant in desiccators. Dilution with H₂O is highly exothermic, and because the concentrated acid is much more dense than H₂O it is diluted by running the concentrated acid down the side of the container of H₂O with slowly stirring while cooling the outside of the container. If these precautions are not taken, the H₂O is likely to boil vigorously.

Sulfur monochloride (sulfur monochloride, S_2Cl_2) [10025-67-9] M 135.0, m -77°; b 19.1°, 29-30°/12mm, 72°/100mm, 138°/760mm, d_4^{20} 1.677, n_D^{20} 1.67. It is a *pungent, irritating golden yellow liquid*. When impure its colour is orange to red due to SCl₂ formed. It fumes in moist air and liberates HCl, SO₂ and H₂S in the presence of H₂O. Distil it and collect the fraction boiling above 137° at atmospheric pressure. Fractionate this fraction over sulfur at *ca* 12mm using a ground glass apparatus (b 29-30°). Alternatively purify it by distillation below 60° from a mixture containing sulfur (2%) and activated charcoal (1%), under reduced pressure (e.g. 50mm). It is soluble in EtOH, *C₆H₆, Et₂O, CS₂ and CCl₄. Store it in a closed container in the dark in a refrigerator. [Fehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 371 1963.] HARMFUL VAPOURS.

Sulfuryl chloride (SO₂Cl₂) [7791-25-2] M 135.0, m -54.1°, b 69.3°/760mm, d_4^{20} 1.67, n_D^{20} 1.44. It is a *pungent, irritating colourless liquid*. It becomes yellow with time due to decomposition to SO₂ and HCl. Distil it and collect fraction boiling below 75°/atm which is mainly SO₂Cl₂. To remove HSO₃Cl and H₂SO₄ impurities, the distillate is poured into a separating funnel filled with crushed ice and *briefly* shaken. The lower cloudy layer is removed, dried for some time in a desiccator over P₂O₅ and finally fractionate it at atmospheric pressure. The middle fraction boils at 69-70° and is pure SO₂Cl₂. It decomposes gradually in H₂O to H₂SO₄ and HCl. It reacts **violently** with EtOH and MeOH and is soluble in *C₆H₆, toluene, Et₂O and acetic acid. [Fehér in *Handbook of Preparative Inorganic Chemistry (Ed Brauer)* Academic Press Vol I p 383 1963, Allen & Maxson *Inorg Synth* I 114 1939]. HARMFUL VAPOURS.

Tantalium (V) chloride (tantalium pentachloride) [7721-01-9] M 358.2, m 216.2°, 216.5-220°, b 239°/atm, d_4^{20} 3.68. Purify it by sublimation in a stream of Cl₂. It forms colourless needles

when pure (yellow when contaminated with even less than 1% of NbCl₅). It is sensitive to H_2O ; even in conc HCl it decomposes to tantalic acid. It is soluble in EtOH. [Rolsten *J Am Chem Soc* **80** 2952 *1958*, Brauer in *Handbook of Preparative Inorganic Chemistry (Ed Brauer)* Academic Press Vol **II** p 1302 *1965*.]

Telluric acid [7803-68-1] **M 229.6,** pK_1^{25} **7.70,** pK_2^{25} **11.04** (**H**₆**TaO**₆). Crystallise it once from nitric acid, then repeatedly from hot water (0.4mL/g). [Fehér in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** pp 451-453 *1963.*]

Tellurium [13494-80-9] **M 127.6, m 450°.** Purify it by zone refining and repeated sublimation to an impurity of less than 1 part in 10^8 (except for surface contamination by TeO₂). [Machol & Westrum *J Am Chem Soc* **80** 2950 1958.] Tellurium is volatile at 500°/0.2mm. It has also been purified by electrode deposition [Mathers & Turner *Trans Amer Electrochem Soc* **54** 293 1928].

Tellurium dioxide [7446-07-3] **M 159.6, m 733°, d** $_{4}^{20}$ **6.04.** Dissolve it in 5M NaOH, filter it and precipitate it by adding 10M HNO₃ to the filtrate until the solution is acid to phenolphthalein. After decanting the supernatant, the precipitate is washed five times with distilled water, then dried for 24hours at 110° [Horner & Leonhard J Am Chem Soc 74 3694 1952].

Terbium oxide [12037-01-3] **M 747.7, pK²⁵ 8.16** (for Tb³⁺ hydrolysis). Dissolve it in acid (e.g. perchloric acid), precipitate it as its oxalate and ignite the oxalate at 650°.

Thallous bromide [7789-40-4] **M 284.3, m 460°.** Thallous bromide (20g) is purified by refluxing for 2-3hours with water (200mL) containing 3mL of 47% HBr. It is then washed until acid-free, heated to 300° for 2-3hours and stored in brown bottles. It solubility in H_2O (w/w) is 0.034% at 0°, 0.048% at 20°, and 0.204% at 100°. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 870 *1963*]. **POISONOUS.**

Thallous carbonate [6533-73-9] M 468.7, m 268-270°. It crystallises from hot water (4mL/g) on cooling. POISONOUS.

Thallous chlorate [13453-30-0] **M 287.8, d** $_{4}^{20}$ **5.05.** It crystallises from hot water (2mL/g) on cooling. Its solubility in H₂O (w/w) is 0.17% at 0°, 0.32% at 20°, and 2.4% at 100°. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 870 1963]. **POISONOUS.**

Thallous chloride [7791-12-0] **M 239.8, m 429.9°, b 806°, d_4^{20} 7.0.** Crystallise it from 1% HCl and wash it until acid-free, or crystallise it from hot water (50mL/g), then dry it at 140° and store it in brown bottles. Also purify it by subliming it in a vacuum, followed by treatment with dry HCl gas and filtering while molten. (It is soluble in 260 parts of cold water and 70 parts of boiling water). **POISONOUS.**

Thallous hydroxide [12026-06-1] M 221.4, m 139°(dec), pK^{25} 13.2 (for Tl⁺). It crystallises from hot water (0.6mL/g) on cooling. POISONOUS.

Thallous iodide [7790-30-9] **M 331.3, m 441.8°, b 824°, d** $_{4}^{20}$ **7.1.** Reflux it for 2-3hours with water containing HI, then wash it until acid-free, and dry it at 120°. Store it in brown bottles. [Dönges in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **I** p 870 1963]. **POISONOUS.**

Thallous nitrate [10102-45-1] M 266.4, m 206°, b 450°(dec), d_4^{20} 5.55. The nitrate crystallises from warm water (1mL/g) on cooling to 0°. POISONOUS.

Thallous perchlorate [13453-40-2] M 303.8, pK^{25} -2.4 to -3.1 (for HClO₄). It crystallises from hot water (0.6mL/g) on cooling. Dry it under vacuum for 12hours at 100° (protect from possible **EXPLOSION**).

Thallous sulfate [7446-18-6] **M 504.8, m 633^o, d**²⁰₄ 6.77. The sulfate crystallises from hot water (7mL/g) by cooling; then dry it under vacuum over P₂O₅. It is **POISONOUS**.

Thionyl chloride [7719-09-7] **M 119.0, b 77°, d** $_{4}^{20}$ **1.636.** Crude SOCl₂ can be freed from sulfuryl chloride, sulfur monochloride and sulfur dichloride by refluxing it with sulfur and then fractionally distilling twice. [The SOCl₂ is converted to SO₂ and sulfur chlorides. The S₂Cl₂ (**b** 135.6°) is left in the residue, whereas SCl₂ (**b** 59°) passes over in the forerun.] The usual purification is to distil it from quinoline (50g SOCl₂ to 10g quinoline) to remove acid impurities, followed by distillation from boiled linseed oil (50g SOCl₂ to 20g of oil). Precautions must be taken to exclude moisture.

Thionyl chloride is used extensively in organic syntheses and can be prepared by distillation of technical SOCl₂ in the presence of diterpene (12g/250mL SOCl₂), and avoiding overheating. Further purification is achieved by redistillation from linseed oil (1-2%) [Rigby *Chem Ind (London)* 1508 *1969*]. Gas chromatographically pure material is obtained by distillation from 10% (w/w) triphenyl phosphite [Friedman & Wetter *J Chem Soc (A)* 36 *1967*, Larsen et al. *J Am Chem Soc* **108** 6950 *1986*]. **HARMFUL VAPOURS.**

Thorium chloride [10026-08-1] M 373.8, pK_1^{25} 10.45, pK_2^{25} 10.62, pK_3^{25} 10.80, pK_4^{25} 11.64 (for aquo Th⁴⁺). It is freed from anionic impurities by passing a 2M solution of ThCl₄ in 3M HCl through a Dowex-1 anion-resin column. The eluate is partially evaporated to give crystals which are filtered off, washed with Et₂O and stored in a desiccator over H₂SO₄ to dry. Alternatively, a saturated solution of ThCl₄ in 6M HCl is filtered through quartz wool and extracted twice with ethyl, or isopropyl ether (to remove iron), then evaporated to a small volume on a hot plate. (Excess silica precipitates and is filtered off. The filtrate is cooled to 0° and saturated with dry HCl gas.) It is shaken with an equal volume of Et₂O, shaken with HCl gas, until the mixture becomes homogeneous. On standing, ThCl₄.8H₂O precipitates out and is filtered off, washed with Et₂O and dried [Kremer J Am Chem Soc **64** 1009 1942].

Thorium sulfate (4H₂O) [10381-37-0] M 496.2, m 42°(loses H₂O), d_4^{20} 2.8. Crystallise it from water. The solubility of the *decahydrate* increases with increase in temperature, whereas the solubility of the *tetrahydrate* decreases with increase of temperature.

Tin (powder) [7440-31-5] **M 118.7.** Tin powder is purified by adding it to about twice its weight of 10% aqueousNaOH and shaking vigorously for 10minutes. (This removes oxide film and stearic acid or similar material that is sometimes added for pulverisation.) It is then filtered, washed with water until the washings are no longer alkaline to litmus, rinsed with MeOH and dried in air. [Sisido et al. J Am Chem Soc **83** 538 1961.]

Titanium tetrabromide [7789-68-6] **M 367.5, m 28.3°, b 233.5°, d** $_{4}^{20}$ **3.3.** Purify it by distillation. The distillate forms light orange hygroscopic crystals. Store it in the dark under N₂ preferably in sealed brown glass ampules. [Olsen & Ryan J Am Chem Soc **54** 2215 1932.]

Titanium tetrachloride [7550-45-0] **M 189.7, b 136.4**°, **154**°, **d 1.730, pK** $_{1}^{25}$ **0.3, pK** $_{2}^{25}$ **1.8, pK** $_{3}^{25}$ **2.1, pK** $_{4}^{25}$ **2.4 (for aquo Ti**⁴⁺ **hydrolysis).** Reflux it with mercury or a small amount of pure copper turnings to remove the last traces of colour [due to FeCl₃ and VCl₄], then distil it under N₂ in an all-glass system, taking precautions to exclude moisture. Clabaugh et al. [*J Res Nat Bur Stand* **55** 261 *1955*] removed organic material by adding aluminium chloride hexahydrate as a slurry with an equal amount of water (the slurry being *ca* one-fiftieth the weight of TiCl₄), refluxed it for 2-6hours while bubbling in chlorine, the excess of which is subsequently removed by passing a stream of clean dry air. The TiCl₄ is then distilled, refluxed with copper and again distilled, taking precautions to exclude moisture. Volatile impurities are then removed using a technique of freezing, pumping and melting. The *titanium tetrachloride 2-tetrahydrofuran complex* [*Beilstein* **17**/1 V 33.] **M 333.9**, has **m 126-128**° and is easier to handle than TiCl₄ [Abrahamson et al. *Organometallics* **3** 1379 *1984*]. [Baxter & Fertig *J Am Chem Soc* **45** 1228 *1923*, Baxter & Butler *J Am Chem Soc* **48** 3117 *1926*.] **HARMFUL VAPOURS.**

Titanium trichloride [7705-07-9] M 154.3, $m > 500^{\circ}$, pK_1^{25} 2.55 (for hydrolysis of Ti³⁺ to TiOH²⁺). It is a brown purple powder that is very reactive to H₂O and pyrophoric when dry. It should be manipulated in a dry box. It is soluble in CH₂Cl₂ and tetrahydrofuran, and is used as a M solution in these

solvents in the ratio of 2:1, and stored under N_2 . It is a powerful reducing agent. [Ingraham et al. *Inorg Synth* **VI** 52 1960.]

Titanyl sulfate (TiOSO₄.2H₂O) [13825-74-6] M 160.0. Dissolve it in water, filter and crystallise it three times from boiling 45% H₂SO₄, washing with EtOH to remove excess acid, then with Et₂O. Dry it in air for several hours, then in an oven at 105-110°. [Hixson & Fredrickson *Ind Eng Chem* 37 678 1945.]

Triiron dodecacarbonyl [17685-52-8] M 503.7, m 140°(dec). It usually contains 10% by weight of MeOH as stabiliser. This can be removed by keeping it in a vacuum at 0.5mm for at least 5hours. It can be sublimed slowly at high vacuum and is soluble in organic solvents. [Landesberg et al. J Org Chem 37 930 1972, Case & Whiting J Chem Soc 4632 1960, King & Stone Inorg Synth VII 193 1963.] TOXIC.

Trisodium orthophosphate (12H₂O) [10101-89-0] M 380.1, pK_1^{25} 2.15, pK_2^{25} 7.21, pK_3^{25} 12.33 (for H₃PO₄). It crystallises from warm dilute aqueous NaOH (1mL/g) on cooling to 0°.

Tritium [10028-17-8] **M 6.0.** Purify tritium from hydrocarbons and ³He by diffusion through the wall of a hot nickel tube [Landecker & Gray *Rev Sci Instrum* **25** 1151 1954]. **RADIOACTIVE.**

Tungsten (rod) [7440-33-7] **M 183.6. m 3410°, b 5900°, d_4^{20} 19.0.** Clean the solid with conc NaOH solution, rub it with very fine emery paper until its surface is bright, wash it with previously boiled and cooled conductivity water and dry it with filter paper. [Hein & Herzog in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1417 *1965*.]

Tungsten hexacarbonyl [14040-11-0] **M 351.9, d** $_{4}^{20}$ **2.650.** Sublime it *in vacuo* before use [Connoe et al. J Chem Soc, Dalton Trans 511 1986]. **TOXIC.**

Tungsten (VI) trichloride [13283-01-7] M 396.6, m 265°(dec), 275°, b 346°, d_4^{25} 3.520, pK_1^{25} 2.20, pK_2^{25} 3.70 (for tungstic acid, H_2WO_4). Sublime it in a stream of Cl₂ in a high temperature furnace and collect it in a receiver cooled in a Dry Ice-acetone bath in an inert atmosphere because it is sensitive to moisture. It is soluble in CS₂, CCl₄, CHCl₃, POCl₃, *C₆H₆, pet ether and Me₂CO. Its solutions decompose on standing. Good crystals can be obtained by heating WCl₆ in CCl₄ to 100° in a sealed tube, followed by slow cooling (tablets of four-sided prisms). Store it in a desiccator over H₂SO₄ in the dark. [Leitzke & Holt *Inorg Synth* III 163 *1950*, Parterfield & Tyree *Inorg Synth* IX 133 *1967*, Hein & Herzog in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II p 1420 *1965*.]

Uranium hexafluoride [7783-81-5] M 352.0, b 0%/17.4mm, 56.2%/765mm, m 64.8%, pK²⁵ 1.68 (for hydrolysis of U⁴⁺ to UOH³⁺). Purify uranium hexafluoride by fractional distillation to remove HF. Also purify it by low-temperature trap-to-trap distillation over pre-dried NaF [Anderson & Winfield J Chem Soc, Dalton Trans 337 1986].

Uranium trioxide [1344-58-7] **M 286.0, d** $_{4}^{20}$ **7.29.** The oxide is dissolved in HClO₄ (to give a uranium content of 5%), and the solution is adjusted to pH 2 by addition of dilute ammonia. Dropwise addition of 30% H₂O₂, with rapid stirring, precipitated U(VI) peroxide, the pH being held constant during the precipitation, by addition of small amounts of the ammonia solution. Then H₂O₂ is added until further quantities caused no change in pH. After stirring for 1hour, the slurry is filtered through coarse filter paper in a Büchner funnel, washed with 1% H₂O₂ acidified to pH 2 with HClO₄, then heated at 350° for three days in a large platinum dish [Baes *J Phys Chem* **60** 878 1956].

Uranyl nitrate $(UO_2(NO_3)_2 \ 6H_2O)$ [13520-83-7] M 502.1, m 60.2°, b 118°, d²⁵ 2.807, pK²⁵ 5.82 (for aquo UO_2^{2+}). Crystallise the nitrate from water by cooling to -5°, taking only the middle fraction of the solid which separates. Dry the *deliquescent* rhombic yellow crystals of the *hexahydrate* over 35-40% H₂SO₄ in a vacuum desiccator. The crystals reflect a greenish lustre. They are remarkable because on crushing, rubbing or shaking they show triboluminescence with occasional detonation. They are very soluble in EtOH, and solutions of the nitrate in Et₂O can explode in the presence of sunlight.

Vanadium (metal) [7440-62-2] **M 50.9, m 1910^o, d** $_{4}^{20}$ **6.0.** Clean the metal by rapid exposure consecutively to HNO₃, HCl, HF, de-ionised water and reagent grade acetone, then dry it in a vacuum desiccator. [Brauer in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** pp 1252-1255 1965.]

Vanadyl trichloride (VOCl₃) [7727-18-6] M 173.3, m-79.5°, b 124.5-125.5°/744mm, 127.16°/760mm, d⁰ 1.854, d³² 1.811. VOCl₃ should be lemon yellow in colour. If it is red, it may contain VCl₄ and Cl₂. Fractionally distil it, and then redistil it over metallic Na, but be careful to leave some residue because the residue can become **EXPLOSIVE** in the presence of the metal. **USE A SAFETY SHIELD** and avoid contact with moisture. It readily hydrolyses to vanadic acid and HCl. Store it in a tightly closed container or in sealed ampoules under N₂. [Brown & Griffitts *Inorg Synth* I 106 1939, Brown & Griffitts *Inorg Synth* IV 80 1953.]

Water [7732-18-5] **M 18.0, m 0°, b 100°, pK²⁵ 14.00.** Conductivity water (specific conductance α 10⁻⁷ mho) can be obtained by distilling water in a steam-heated tin-lined still, then, after adding 0.25% of solid NaOH and 0.05% of KMnO₄, distilling once more from an electrically heated Barnstead-type still, taking the middle fraction into a Jena glass bottle. During these operations suitable traps must be used to protect against entry of CO₂ and NH₃. Water, only a little less satisfactory for conductivity measurements (but containing traces of organic material) can be obtained by passing ordinary distilled water through a mixed bed ion-exchange column containing, for example, Amberlite resins IR 120 (cation exchange) and IRA 400 (anion exchange), or Amberlite MB-1. This treatment is also a convenient one for removing traces of heavy metals. (The metals Cu, Zn, Pb, Cd and Hg can be tested for by adding pure concentrated ammonia to 10mL of sample and shaking vigorously with 1.2mL of 0.001% dithizone in CCl₄. Less than 0.1µg of metal ion will impart a faint colour to the CCl₄ layer.) For almost all laboratory purposes, simple distillation yields water of adequate purity, and most of the volatile contaminants such as ammonia and CO₂ are removed if the first fraction of distillate is discarded. Most laboratories have glass stills that "doubly" or "trebly" distil water. [See "water" in Chapter 1.]

Zinc (dust) [7440-66-6] M 65.4. Commercial zinc dust (1.2kg) is stirred with 2% HCl (3L) for 1minute, then the acid is removed by filtration, and washed in a 4L beaker with a 3L portion of 2% HCl, three 1L portions of distilled water, two 2L portions of 95% EtOH, and finally with 2L of absolute Et_2O . (The wash solutions were removed each time by filtration.) The material is then dried thoroughly, and if necessary, any 1umps are broken up in a mortar. [Wagenknecht & Juza *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol II p 1067 *1965*.]

Zinc (metal) [7440-66-6] M 65.4, m 420°, d_4^{20} 7.141. Fuse it under vacuum, cool it, then wash it with acid to remove the oxide.

Zinc bromide [7699-45-8] **M 225.2, m 384, b 697.** Heat ZnBr_2 to 300° under vacuum (2x10⁻² mm) for 1hour, then sublime it. [Wagenknecht & Juza *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol **II** p 1072 *1965.*]

Zinc chloride [7646-85-7] **M 136.3, m 283°, 290°.** The anhydrous material can be sublimed under a stream of dry HCl, followed by heating to 400° in a stream of dry N₂. It sublimes at high vacuum. Also purify it by refluxing (50g) in dioxane (400mL) with 5g zinc dust, filtering hot and cooling to precipitate ZnCl₂. Crystallise it from dioxane and store it in a desiccator over P₂O₅. It has also been dried by refluxing in thionyl chloride. [Weberg et al. J Am Chem Soc **108** 6242 1986.] Hygroscopic: minimal exposure to the atmosphere is necessary. [Wagenknecht & Juza Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1070 1965.]

Zinc cyanide [557-21-1] M 117.4, m 800°(dec), d_4^{20} 1.852. It is a POISONOUS white powder which becomes black on standing if Mg(OH)₂ and carbonate are not removed in the preparation. Thus, wash it

well with H₂O, then well with EtOH, Et₂O and dry it in air at 50°. Analyse it by titrating the cyanide with standard AgNO₃. Other likely impurities are ZnCl₂, MgCl₂ and traces of basic zinc cyanide; the first two salts can be washed out. It is soluble in aqueous KCN solutions. However, if purified in this way Zn(CN)₂ is not reactive in the Gattermann synthesis. For this, the salt should contain at least 0.33 mols of KCl or NaCl which will allow the reaction to proceed faster. [Adams & Levine J Am Chem Soc **45** 2375 1923, Arnold & Sorung J Am Chem Soc **60** 1699 1938, Fuson et al. Org Synth Coll Vol **III** 549 1955.]

Zinc fluoride [7783-49-5] M 103.4, m 872°, b 1500°, d^{25} 5.00. A possible impurity is H₂O which can be removed by heating at 100° or by heating to 800° in a dry atmosphere. Heating in the presence of NH₄F produces larger crystals. It is sparingly soluble in H₂O (1.51g/100mL) but more soluble in HCl, HNO₃ and NH₄OH. It can be stored in glass bottles. [Kwasnik in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 242 *1963*.]

Zinc iodide [10139-47-6] **M 319.2, m 446, b 624**°(dec), d_4^{20} 4.74. Heat the iodide to 300° under vacuum (2 x 10⁻²mm) for 1hour, then sublime it. Its solubility in H₂O is 0.3mL/g, and it is soluble in EtOH. Store it in the dark.

Zinc perchlorate (6H₂O) [13637-61-1] M 372.4, m 105-107°, pK^{25} -2.4 to -3.1 (for HClO₄). Crystallise it from a small volume of H₂O. It is soluble in EtOH. Potentially EXPLOSIVE.

Zinc sulfate (7H₂O) (white vitriol) [7446-20-0 (7 H_2O) 7446-19-7 (H_2O), 7733-02-0 (anhydrous)] M 287.5, m 100°(dec), 280°(loses all 7H₂O), >500(anhydrous), d²⁰₄ 1.97. Crystallise it from aqueous EtOH or dilute H₂SO₄ below 39° when it forms the *heptahydrate*, and between 39° and 70° it forms the *hexahydrate*, and above 70° the *monohydrate* is stable. The *anhydrous salt* is obtained from the hydrates by heating at 280° or lower temperatures in a current of dry air. It decomposes to ZnO and SO₂ at 767°. The solubility of the *heptahydrate* in H₂O is 5.88% at 0°, 61.92% at 30°, 66.61% at 35° and 70.05% at 39°.

Zirconium tetrachloride [10026-11-6] M 233.0, m 300°(sublimes), pK_1^{25} -0.32, pK_2^{25} 0.06, pK_3^{25} 0.35, pK_4^{25} 0.46 (for hydrolysis of aquo Zr⁴⁻). Crystallise it repeatedly from conc HCl. It is hydrolysed by H₂O to form white ZrOCl₂ (see below) and HCl. [Krebs Z Anorg Allgem Chem 378 263 1970.]

Zirconyl chloride (6H₂O) [7699-43-6] M 286.2, m 150°(loses 6H₂O). Crystallise it repeatedly from 8M HCl to give ZrOCl₂.8H₂O (see below). On drying, ZrOCl₂.6H₂O, m 150°, is formed. The product is not free from hafnium. [Blumenthal *J Chem Ed* 39 607 1962.]

Zirconyl chloride (8H₂O) [13520-92-8] M 322.3, m 150°(loses 6H₂O), 210°(loses all H₂O). 400°(anhydrous dec), d_4^{20} 1.91. Recrystallise the chloride several times from water [Ferragina et al. J Chem Soc, Dalton Trans 265 1986]. Recrystallisation from 8M HCl gives the octahydrate as white needles on concentrating. It is also formed by hydrolysing ZrCl₄ with water. After one recrystallisation from H₂O, 99+% grade zirconyl chloride had Ag, Al, As, Cd, Cu, Hf, Mg, Na, Sc and V at 20, 1.8, 0.6, 0.6, 0.4, 8.4, 0.4, 2.4, 80 and 3 ppm, respectively. (See above.)

505

METAL-ORGANIC COMPOUNDS

This section contains metal-organic compounds as well as ammonium and metal salts of organic acids. (For Introduction see p 445.)

Acetonyltriphenylphosphonium chloride [1235-21-8] M 354.8, m 237-238°, 244-246°(dec). Recrystallise it from CHCl₃/*C₆H₆/pet ether (b 60-80°) or by dissolving it in CHCl₃ and pouring it into dry Et₂O. $\lambda_{\text{max}}^{\text{EtOH}}$ nm(ε) 255(3,600), 262(3,700), 268(4,000) and 275(3,100). The *iodide salt* crystallises from H₂O and has m 207-209°. [Ramirez & Dershowitz *J Org Chem* 22 41 1957.] It is an IRRITANT and is *hygroscopic*. When shaken with a 10% aqueous solution of Na₂CO₃ (8hours) it gives *acetylmethylene triphenyl phosphorane* which is recrystallised from MeOH/H₂O and after drying at 70°/0.1mm has m 205-206°. UV: λ_{max} nm(ε) 268 (6600), 275 (6500) and 288 (5700), IR: v_{max} 1529 (s), 1470 (m), 1425 (s), 1374 (m), 1105 and 978 (s) (cm⁻¹). [Ramirez & Dershowitz *J Org Chem* 22 41, 44 1957, Beilstein 16 H 761, 16 II 373.]

3*R*,4*R*,1'*R*-4-Acetoxy-3-[1-(*tert*-butylmethylsilyloxy)ethyl]-2-azetinone [76855-69-1] M 287.4, m 107-108°, $[\alpha]_{D}^{20}$ +55° (c 0.5, toluene), $[\alpha]_{D}^{20}$ +53.7° (c 1.04, CHCl₃). Purify it by chromatography on silica gel (3 x 14cm) for 50g of ester using 20% EtOAc in *n*-hexane. The eluate is evaporated, and the residue is recrystallised from hexane (white fluffy crystals). [Leanza et al. *Tetrahedron* 39 2505 1983.]

Acetylenedicarboxylic acid monopotassium salt [928-04-1] M 152.2. It is very soluble in H_2O , but can be crystallised from a small volume of H_2O in small crystals. These are washed with EtOH and dried over H_2SO_4 at 125°. [Bandrowski *Chem Ber* 10 841 1877, Lossen *Justus Liebigs Ann Chem* 272 133 1893, *Beilstein* 2 H 801, 2 I 317, 2 II 670, 2 III 1991, 2 IV 2290.]

Acetylferrocene (ferrocenyl methylketone) [1271-55-2] M 228.1, m 86°, 86-87°. Orange-red crystals are obtained when it is recrystallised from isooctane or C_6H_6 , and then sublimed at 100°/1mm. The oxime has m 167-170° (from Et₂O or aqueous EtOH). The semicarbazone has m 198-201° (from EtOH). [Richmond & Freiser J Am Chem Soc 77 2022 1955, Weinmayer J Am Chem Soc 77 3009 1955, Broadhead et al. J Chem Soc 650 1958, Beilstein 16 IV 1798.]

N-Acetyl-4-hydroxy-*m*-arsanilic acid (Acetarsol, 3-acetamido-4-hydroxyphenylarsonic acid) [97-44-9] M 275.1, m 240-250°, pK_1 3.73, pK_2 7.9, pK_3 9.3. It crystallises from water in colourless prisms. It decomposes slowly on prolonged boiling in H₂O or dilute alkalis. The *N*-propionyl derivative recrystallises from H₂O with m 228-229°(dec). [Raiziss & Fisher J Am Chem Soc 48 1323 1926, Hewitt & King J Chem Soc 823 1926, Beilstein 16 I 491, 16 II 521, 16 III 1129.]

Alizarin Red S (3,4-dihydroxy-9,10-dioxo-2-anthracene sulfonic acid, Na salt. H_2O) [130-22-3] M 360.4, $pK_1^{25} <1$, $pK_2^{25} 5.49$, $pK_3^{25} 10.85$ (11.01). Commercial samples contain large amounts of sodium and potassium chlorides and sulfates. It is purified by passing through a Sephadex G-10 column (size exclusion column), followed by elution with water, then 50% aqueous EtOH [King & Pruden Analyst (London) 93 601 1968]. Finally dissolve it in EtOH and precipitate it with Et₂O several times [Sacconi J Phys Chem 54 829 1950, polarography: Furnam & Stone J Am Chem Soc 70 3055 1948, Beilstein 11 IV 682.]

Allylpalladium(II) chloride dimer [12012-95-2] M 365.9, m ~160°. It crystallises from benzene and is soluble in MeOH, Et₂O and CHCl₃. [Hüttel et al. *Chem Ber* 94 766 1961, Dent et al. *J Chem Soc* 1585 1964, Armstrong J Org Chem 31 618 1966.]

Allyl tri-*n*-butylstannane (allyl tributyl tin) [24850-33-7] M 331.1, b 88-92% 0.2 mm, 115% 17mm, d_4^{20} 1.068, n_D^{20} 1.487. A possible impurity is tributylchlorostannane – test for Cl as Cl ion after hydrolysing. Dissolve it in *C₆H₆ (or toluene), shake this with dilute aqueous NaOH, dry (CaCl₂),

filter, evaporate and distil the residue in a vacuum [Jones et al. J Chem Soc 1446 1947, Bristow Aldrichimica Acta **17** 75 1984, Yamamoto Aldrichimica Acta **20** 45 1987]. [Beilstein **4** IV 4317.]

Allyl trimethylsilane (2-propenyltrimethylsilane) [762-72-1] M 114.3, b 83.0-84.5°, 84-88°, 85.5-86.0°, d_4^{20} 0.713, n_D^{20} 1.405. Fractionate it through an efficient column at atmospheric pressure. If impure, dissolve it in THF, shake it with H₂O (2x), dry (Na₂SO₄), filter and fractionate it. [Cudlin & Chvalovský *Collect Czech Chem Commun* 27 1658 1962, *Beilstein* 4 IV 3927.]

Aluminum acetylacetonate (tris[2,4-pentandionate]aluminium) [13963-57-0] M 324.3, m 192-194°, 195°. Recrystallise it several times from *benzene or aqueous MeOH, λ_{max} 216 and 286mn. [Charles & Pawlikowski *J Phys Chem* 62 440 1958.] It can be purified by sublimation and has the following solubilities in g percent: *C₆H₆ 35.9 (20°), 47.6 (40°), toluene 15.9 (20°), 22.0 (40°) and acetylacetone 6.6 (20°), 10.4 (40°). [Fernelius & Bryant *Inorg Synth* V 105 1957, *Beilstein* 1 IV 3668.]

Aluminum ethoxide [555-75-9] M 162.2, m 154-159°, 146-151°, b 187-190°/7mm, 210-214°/13mm. Crystallise it from CS₂ [m 139°, CS₂ complex] and distil it in a vacuum. The molecular weight corresponds to $[Al(OEt)_3]_4$ [Robinson & Peak J Phys Chem 39 1127 1935, Vilani & Nord J Am Chem Soc 69 2605 1947]. [Beilstein 1 H 313, 1 I 158, 1 II 3008, 1 III 1284, 1 IV 1289.]

Aluminium isopropoxide [555-31-7] M 204.3, m 119°, b 94°/0.5mm, 135°/10mm. Redistil it under vacuum. *Hygroscopic*. [Robinson & Peak J Phys Chem 39 1127 1935, Beilstein 1 IV 1468.]

Aluminum triethyl (triethyl aluminum) [97-93-8] M 114.2, b 69%/1.5mm, 76%/2.5mm, 129-131%/55mm, d_4^{20} 0.695, n_D^{20} 1.394. Purify it by fractionation in an inert atmosphere under a vacuum in a 50cm column containing a heated nichrome spiral, taking the fraction b 112-114%/27mm. It is very sensitive to H₂O and should be stored under N₂. It should not contain chloride ions which can be shown by hydrolysis and testing with AgNO₃. [Baker & Sisler J Am Chem Soc 75 4828 5193 1953, NMR: Brownstein et al. J Am Chem Soc 81 3826 1959, Beilstein 4 IV 4398.]

Aluminium tri-*tert*-butoxide [556-91-2] M 246.3, m 208-210°(dec), >300°. Crystallise it from $*C_6H_6$ and it sublimes it at 180°. [McElvain & Davie J Am Chem Soc 73 1400 1951, Beilstein 1 IV 1612.]

Aluminium trimethanide (trimethyl aluminium) [75-24-1] M 72.1, m 15.2°, b 111.5°/488.2mm, 124.5°/atm, d_4^{20} 0.725. Distil it through a 10-20 theoretical plates column under 1 atmosphere pressure of N₂ (better with very slow take-off). It attacks grease (use glass joints). It has been distilled over Al in absence of grease, into small glass vials and sealed under N₂. The purity is measured by its freezing point. It reacts with H₂O, is non-conducting in *C₆H₆ and is **HIGHLY FLAMMABLE**. [Bamford et al. J Chem Soc 468 1946, Pitzer & Gutowsky J Am Chem Soc 68 2204 1946, Beilstein 4 IV 4397.]

4-Aminophenylmercuric acetate [6283-24-5] **M 371.8, m 168°, 175°(dec), 180°(dec).** Recrystallise it from hot dilute AcOH and dry it in air. Highly **TOXIC**. [Mahapatra et al. *J Indian Chem Soc* **32** 613 1955, Albert & Schneider Justus Liebigs Ann Chem **465** 269 1928, Beilstein **16** III 1411, **16** IV 1754.]

Ammonium acetate [631-61-8] M 77.1, m 112-114°, d_4^{20} 1.04. Crystallise it twice from anhydrous acetic acid, and dry under vacuum for 24hours at 100° [Proll & Sutcliff *Trans Faraday Soc* 57 1078 1961].

Ammonium benzoate [1863-63-4] M 139.2, m 198°, 200°(dec), d²⁰₄ 1.26. Crystallise it from EtOH. [*Beilstein* 9 IV 273.]

Ammonium dodecylsulfate (ammonium laurylsulfate) [2235-54-3] **M 283.4.** Recrystallise it first from 90% EtOH and then twice from absolute EtOH, and finally dry it in a vacuum. [*Beilstein* **1** III 1786.]

Ammonium ferric oxalate $(3H_2O)$ [13268-42-3] M 428.1, m ~160°(dec), d_4^{20} 1.77. Crystallise it from hot water (0.5mL/g). [Beilstein 3 III 1103.]

Ammonium formate [540-69-2] M 63.1, m 116°, 117.3°, d_4^{45} 1.280. Heat the solid in NH₃ vapour and dry it in a vacuum till the NH₃ odour is faint (note that it can evaporate completely in a vacuum). Recrystallise it from absolute EtOH and then keep it in a desiccator over 99% H₂SO₄ *in vacuo*. It is very *hygroscopic*. It exists in two forms, stable needles and less stable plates. It also forms acid salts, i.e. HCO₂NH₄.3HCO₂H and HCO₂NH₄.HCO₂H. [Kensall & Adler J Am Chem Soc 43 1473 1921, Beilstein 2 IV 18.]

Ammonium ionophore I (Nonactin) [6833-86-7] M 736.9, m 147-148°, $[\alpha]_{D}^{20}$ 0° (c 1.2, CHCl₃). Crystallise it from MeOH (colourless needles), and it is dried at 20° in high a vacuum. It is a selectophore with high sensitivity for NH⁺₄ ions. [Corbaz et al. *Helv Chim Acta* 38 1445 1955, Domingues et al. *Helv Chim Acta* 45 129 1962, Nawata & Ando *Helv Chim Acta* 55 1371 1972, *Beilstein* 19/12 V 751.]

Ammonium oxalate (H₂O) [6009-70-7] M 142.1, d_4^{20} 1.50. Crystallise it from water (10mL/g) at 50°. [Beilstein 2 IV 1846.]

Ammonium picrate [131-74-8] M 246.1, m EXPLODES above 200°. Crystallise it from EtOH and acetone. [Mitchell & Bryant J Am Chem Soc 65 128 1943, Beilstein 6 II 262, 16 III 879, 16 IV 1392.]

Ammonium tetraphenylborate [14637-34-4] M 337.3, m ca 220°(dec). Dissolve it in aqueous Me₂CO and allow crystallisation to proceed slowly; otherwise very small crystals are formed. No trace of Me₂CO is left in the crystals after drying at 120° [Davies & Staveley *Trans Faraday Soc* 53 19 1957]. Also, the salt can be precipitated from a dilute AcOH solution of sodium tetraphenylborane in the presence of NH⁺₄ ions. After standing for 5minutes, the precipitate is filtered off onto a sintered porcelain crucible, washed with very dilute AcOH and dried at room temperature for at least 24hours [Vendlandt *Anal Chem* 28 1001 1956]. Alternatively a solution of sodium tetraphenylborane (5% excess) in H₂O is added to NH₄Cl solution. After 5minutes the precipitate is collected, washed several times with H₂O and recrystallised from aqueous Me₂CO. [Howick & Pflaum *Analyt Chim Acta* 19 342 1958, *Beilstein* 16 IV 1625.]

n-Amylmercuric chloride [544-15-0] M 307.2, m 110°. Crystallise it from EtOH. The bromide has m 122°. [Larock & Brown J Am Chem Soc 92 2467 1970, Marvel et al. J Am Chem Soc 47 3009 1925, Beilstein 14 H 706, 725.]

9-Anthraceneboronic acid [100622-34-2] **M 222.0, m 203-250°.** Crystallise the boronic acid from dilute HCl (**m** 180-184°). The *disodium salt* has **m** 209-213°. [*Beilstein* **16** IV 1679.]

Anthraquinone Blue B (Acid Blue 45, 1,5-diamino-4,8-dihydroxy-9,10-anthraquinone-3,7-disulfonic acid di-Na salt) [2861-02-1] M 474.3, m >300°, CI 63010, λ max 595nm, pK_{Est(1)}~<0, pK_{Est(2)}~2, pK_{Est(3)}~9. Purify it by salting out an aqueous solution three times with sodium acetate, followed by repeated extraction with EtOH [McGrew & Schneider J Am Chem Soc 72 2547 1950, Beilstein 14 H 706, 725].

Anthraquinone Blue RXO [4403-89-8] M 445.5. Purify the dye by salting out an aqueous solution three times with sodium acetate, followed by repeated extraction with EtOH [McGrew & Schneider J Am Chem Soc 72 2547 1950]. [Beilstein 14 H 706, 725.]

Anthraquinone Green G [Acid Green 25, Alizarin Cyanine Green F, 1,4-bis-(4-methyl-2sulfophenyl-1-amino)-9,10-anthraquinone di-Na salt] [4403-90-1] M 624.6, m 235-238°, CI 61570, λ max 642nm, pK²⁵ >0. Purify it by salting out three times from an aqueous solution with sodium acetate, followed by repeated extraction with EtOH [McGrew & Schneider J Am Chem Soc 72 2547 1950]. It is a green powder that is slightly soluble in Me₂CO, EtOH and pyridine. It is soluble in conc H₂SO₄ to give a blue solution that becomes turquoise on dilution. [Allen et al. J Org Chem 7 63 1942, Beilstein 14 H 725.] **9,10-Anthraquinone-2,6-disulfonic acid (disodium salt)** [853-68-9] M **412.3, m >325°, pK**_{Est} ~<0 (for SO₃H). Crystallise it three times from water, in the dark [Moore et al. J Chem Soc. Faraday Trans1 **82** 745 1986]. [Beilstein **11** IV 673.]

o-Arsanilic acid [2045-00-3] M 216.1, m 153°, pK_1^{22} 3.77 (AsO₃H₂), pK_2^{22} 8.66 (AsO₃H⁻). Crystallise it from water or ethanol/ether. POISONOUS. [Beilstein 16 I 463.]

p-Arsanilic acid [98-50-0] M 216.1, m 232°, pK_1^{22} 4.05 (AsO₃H₂), pK_2^{22} 8.66 (AsO₃H⁻). Crystallise it from water or ethanol/ether. POISONOUS. [*Beilstein* 16 I 466.]

Arsenazo I [3(2-arsonophenylazo)-4,5-dihydroxy-2,7-naphthalenedisulfonic acid di Na salt] [66019-20-3] M 614.3, ϵ 2.6 x 10⁴ at 500nm, pH 8.0, pK₁ 0.6(0.8), pK₂ 3.52, pK₃ 2.97(AsO₃H₂), pK₄ 8.20(AsO₃H⁻), pK₅ 9.98(OH), pK₆ 15.0. A saturated aqueous solution of the free acid is slowly added to an equal volume of conc HCl. The orange precipitate is filtered off, washed with acetonitrile and dried for 1-2hours at 110° [Fritz & Bradford *Anal Chem* 30 1021 *1958*]. It is then titrated with NaOH to form the di or tri Na salt as set out below.

Arsenazo III [3,6-bis(2-arsonophenylazo)-4,5-dihydroxy-2,7-naphthalenedisulfonic acid di Na salt] [62337-00-2] M 776.4, pK₁ -2.7, pK₂ -2.7, pK₃ 0.6, pK₄ 0.8, pK₅ 1.6, pK₆ 3.4, pK₇ 6.27, pK₈ 9.05, pK₉ 11.98, pK₁₀ 15.1. Contaminants include monoazo derivatives, starting materials for synthesis and by-products. It is partially purified by precipitation of the dye from aqueous alkali on addition of HCl. More thorough purification is achieved by taking a 2g sample in 15-25mL of 5% aqueous NH₃ and filter. Add 10mL HCl (1:1) to the filtrate to precipitate the dye. Repeat the procedure and dissolve the solid dye (0.5g) in 7mL of a 1:1:1 mixture of *n*-propanol/conc NH₃/water at 50°. After cooling, filter the solution and chromatograph the filtrate through a cellulose column using a 3:1:1 mixture of *n*-propanol/conc NH₃/water as eluent. Collect the blue band and evaporate it to 10-15mL below 80°, then add 10mL of conc HCl to precipitate pure Arsenazo III. Wash it with EtOH and dry it in air [Borak et al. *Talanta* 17 215 1970]. The sodium salt is then obtained by dissolving it in the equivalent amount of dilute NaOH and freeze-drying. The purity of the dye can be checked by paper chromatography using M HCl as eluent. It is used for the estimation of Th, U, Zr, Cd and Zn [Michaylova & Yuroukova *Anal Chim Acta* 68 73 1974.]

Aurothioglucose (gold thioglucose) [12192-57-3] M 392.2. Purify it by dissolving it in H₂O (0.05g in 1mL) and precipitating it by adding EtOH. It yields yellow crystals with a slight mercaptan odour. It decomposes slowly in H₂O, and is soluble in propylene glycol but insoluble in EtOH and other common organic solvents. [Caterson & Taylor *FEBS Lett* 98 351 1979, Cooney et al. *Biochem J* 259 651 1989.]

Barium acetate [543-80-6] **M 255.4.** Crystallise the salt twice from anhydrous acetic acid and dry it under vacuum for 24hours at 100°. [*Beilstein* **2** I 49, **2** II 117, **2** III 192, **2** IV 114.]

Barium ionophore I [N,N,N',N'-tetracyclohexyloxy-bis-(o-phenyleneoxy)diacetamide] [96476-01-6] M 644.9, m 156-158°. Purify it by chromatography on a Kieselgel column, elute it with CH₂Cl₂/EtOAc (5:1), and recrystallise the residue from the evaporated effluent from EtOH/Me₂CO to give colourless crystals. It is an electrically neutral ionophore with high selectivity for Ba²⁺ ions and with high lipophilicity. [Kleiner et al. *Chem Ber* **118** 1071 *1985*, Läubli et al. *Anal Chem* **57** 2756 *1985*.]

Barium propionate (H₂O) [5908-77-0] M 301.5, d_4^{27} 1.44, pK²⁴ 4.88 (for propionic acid). Crystallise it from warm water (50mL/g) by adding EtOH and cooling. [*Beilstein* 2 III 517, 2 IV 702.]

Benzaldehyde-2-sulfonic acid sodium salt [1008-72-6] **M 208.2, m dec on heating.** It forms prisms or plates by extracting with boiling EtOH, filtering, evaporating to dryness and recrystallising the Na salt from a small volume of H_2O . The *N-phenylhydrazone sodium salt* recrystallises from H_2O with **m** 174.5°. [Gnehm & Schüle Justus Liebigs Ann Chem **299** 363 1898, Beilstein **11** IV 652.]

Benzenechromium(0) tricarbonyl [12082-08-5] **M 214.1, m 162-163°, 163-166°.** Purify the complex by sublimation *in vacuo*. A possible impurity is 2-picoline which can be removed by washing with pentane and drying. It is then purified further by sublimation at $80-85^{\circ}/10^{-3}$ mm, or by recrystallisation from Et₂O to give yellow crystals. ¹H NMR in CDCl₃ should give a single peak at τ 4.68. [Rausch *J Org Chem* **39** 1787 1974, Pauson in Houben-Weyl *Meth Org Chem* V, E 18 Pt I p226 Theme Verlag, Stuttgart 1986, *Beilstein* **5** IV 625.]

Benzeneselenenyl bromide (phenylselenenyl bromide) [34837-55-3] M 236.0, m 58-62°, 60°, 62°, b 107-108°/15mm, 134°/35mm. Distil it in a vacuum, recrystallise it from pet ether, CHCl₃ (EtOH free), or Et₂O (cooling mixture) to give dark red or orange crystals. These sublime at 25°/0.001mm [Behaghel et al. *Chem Ber* 65 815 1932, Pitteloud & Petrzilka *Helv Chim Acta* 62 1319 1979]. [Beilstein 6 III 1111.] HIGHLY TOXIC.

Benzeneselenenyl chloride (benzeneselenyl chloride, phenylselenenyl chloride) [5707-04-0] M 191.5, m 59-60°, 64-65°, b 92°/5mm, 120°/20mm. Purify it by distillation in a vacuum, and recrystallisation (orange needles) from hexane [Foster J Am Chem Soc 55 822 1933, Foster et al. Recl Trav Chim, Pays-Bas 53 405, 408 1934, Behaghel & Seibert Chem Ber 66 714 1933]. [Beilstein 6 III 1110.] HIGHLY TOXIC.

Benzeneseleninic acid [6996-92-5] **M 189.1, m 122-124**°, pK^{25} **4.70.** Add 10% excess of 15M NH₃ to the solid acid and stir until the solid dissolves, filter, decolorise with charcoal (2x, Norite) and acidify by slow addition of 6M HCl, filter the solid off and wash it with H₂O. Dissolve the acid in the minimum volume of MeOH, and this solution is added dropwise to boiling H₂O until cloudiness appears. At this point add 25% more boiling H₂O, filter hot (decolorise if necessary) and cool rapidly, with scratching, to 0°. After 30minutes the solid is filtered off and recrystallised as before but with very slow cooling. The colourless needles are filtered off and dried in a vacuum desiccator (CaCl₂) before the melting point is measured [McCullough & Gould *J Am Chem Soc* **71** 674 1949]. The *HNO*₃ complex has **m** 112°. [*Beilstein* **11** H 422, **11** I 110, **11** III 716.]

Benzeneseleninic anhydride [17697-12-0] **M 360.1, m 124-126°, 164-165°, 170-173°**. When the anhydride is recrystallised from C_6H_6 it has **m** 124-126°, but when this is heated at 140°/1hour in a vacuum or at 90°/2hours it has **m** 164-165° and gives a solid **m** 124-126° when then recrystallised from C_6H_6 . Both depress the melting point of the acid PhSeO₂H. If the high melting anhydride is dissolved in C_6H_6 and seeded with the high melting anhydride, the high melting anhydride crystallises out. It readily absorbs H₂O to form the acid (PhSeO₂H, **m** 122-124°). Because of this the commercial anhydride could contain up to 30% of the acid. It is best purified by converting to the HNO₃ complex (**m** 112°) and heating this *in vacuo* at 120°/72hours to give the anhydride as a white powder **m** 164-165°. Alternatively heat the anhydride *in vacuo* at 120°/72 hours until the IR shows no OH band. [Ayvrey et al. J Chem Soc 2089 1962, Barton et al. J Chem Soc, Perkin Trans 1 567 1977, Beilstein **11** H 422, **11** I 110, **11** III 716, **11** IV 708.] **TOXIC** solid.

Benzeneselenol (phenylselenol, selenophenol) [645-96-5] M 157.1, b 57-59°/8mm, 71-72°/18mm, 84-86°/25mm, d_4^{20} 1.480, n_D^{20} 1.616. Dissolve it in aqueous N NaOH, acidify this with conc HCl and extract with Et₂O, dry over CaCl₂, filter, evaporate on a steam bath and distil the residue from a Claisen flask or through a short column collecting the middle fraction, and seal immediately in a glass vial, otherwise the colourless liquid becomes yellow. The alkali insoluble materials consist of diphenylselenide (b 167°/16mm) and diphenyldiselenide, m 63° (from EtOH). **TOXIC**, use rubber gloves. It has a foul odour. [Foster *Org Synth* Coll Vol III 771 1955, *Beilstein* 6 III 1104, 1110, 6 IV 1777.]

Benzeneselenonic acid (benzeneselenoic acid) [39254-48-3] **M 205.1, m 64°, pK²⁵ 4.79.** Purify it by dissolving in H₂O and passing through a strong cation exchange resin (H⁺ form). Evaporate the effluent under reduced pressure and dry the residue in a high vacuum to give colourless hygroscopic crystals [Dostal et al. *Z Chem* **6** 153 1966 and IR: Dostál et al. *Chem Ber* **104** 2044 1971]. [Beilstein **11** H 422, **11** I 111.] 510

Benzenestibonic acid [535-46-6] **M 248.9, m >285^o(dec).** It crystallises from acetic acid (needles), or from EtOH/CHCl₃ mixture on addition of water. [Schmidt *Justus Liebigs Ann Chem* 542 288 1939, May *J Chem Soc* 101 1033 1912.]

Benzopurpurin 4B {3,3'-[(3,3'-dimethyl[1,1'-biphenyl]-4,4'-diyl)bis(azo)]bis[4-amino-1naphthalenesulfonic acid] di-Na salt, Direct red 2} [992-59-6] M 724.7, λ max 500nm, CI 23500, pK²⁵ <0. It crystallises from H₂O. It is a biological stain that is violet at pH 1.2 and red at pH 4.0 and is used for detecting Al, Mg, Hg, Au and U. [Beilstein 16 H 411, 16 II 224, 16 III 474, 16 IV 601.]

Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP, Castro's Reagent) [56602-33-6] M 442.29, m > 130°(dec), 147-149°(dec). Dissolve it in CH₂Cl₂, dry (MgSO₄), filter, concentrate it under a vacuum, then add dry Et₂O and filter off the first crop. Add CH₂Cl₂ to the filtrate and concentrate again to obtain a second crop. The solid is washed with dry Et₂O and dried in a vacuum. Also recrystallise it from dry Me₂CO/Et₂O and check the purity by NMR. Store it in the dark. [Castro et al. Synthesis 751 1976, Nguyen et al J Chem Soc, Perkin Trans I 1915 1987, Coste et al. Tetrahedron Lett 36 4253 1995.]

Benzylidene-bis-(tricyclohexylphosphine) dichlororuthenium (Grubbs catalyst) [172222-30-9] **M 823.0.** Wash it repeatedly with Me₂CO and MeOH and dry it in a vacuum. Alternatively dissolve it in CH₂Cl₂, concentrate it to half its volume, filter, add MeOH to precipitate it as purple microcrystals. Filter these off, wash several times with Me₂CO and MeOH and dry them in a vacuum for several hours. [Scwab et al. J Am Chem Soc **118** 100 1996, Miller et al. J Am Chem Soc **118** 9606 1996, Furstner & Langermann J Am Chem Soc **119** 9130 1997.]

§ A polymer supported version is available [Schwab et al. Angew Chem (Intl Edn) 34 2039 1995.].

Benzyl Orange [4-(4-benzylaminophenylazo)benzenesulfonic acid potassium salt] [589-02-6] M 405.5, $pK_{Est(1)}\sim 0$, $pK_{Est(2)}\sim 3.8$. Crystallise it from H₂O.

Benzyltriphenylphosphonium chloride [1100-88-5] **M 388.9, m 280° (sintering), 287-288°.** Wash it with Et_2O and crystallise it from EtOH (six-sided plates). It is *hygroscopic* and forms crystals with one molecule of H_2O . [Michaelis & Soden Justus Liebigs Ann Chem **229** 320 1885, Kröhnke Chem Ber **83** 291 1950, Beilstein **16** IV 994.]

Beryllium acetate (basic) [Be₄O(OAc)₆] [1332-52-1] M 406.3, m 285-286°, 330-331°/atm. Crystallise it from chloroform. [Moeller et al. *Inorg Synth* III 9 1950, *Beilstein* 2 H 111, 2 I 48, 2 II 116, 2 III 190, 2 IV 112.]

Bicyclo[2.2.1]hepta-2,5-diene rhodium (I) chloride dimer (norbornadiene rhodium chloride complex dimer) [12257-42-0] M 462, m 240°(dec). It recrystallises from hot $CHCl_3$ /pet ether as fine crystals soluble in $CHCl_3$ and $*C_6H_6$ but is almost insoluble in Et_2O or pet ether. [Abel et al. J Chem Soc 3178 1959.]

RS-(±)-1,1'-Binaphthyl-2,2'-diylhydrogen phosphate [36193-63-6] M 348.3, m 217°, pK²⁰ 0.74. Recrystallise it from EtOH. Reflux for 3hours in N NaOH is required to hydrolyse the cyclic phosphate. [Jacques et al. *Tetrahedron Lett* 4617 1971, Arnold et al. *Tetrahedron* 24, 343 1983, *Beilstein* 6 II 1027.]

R-(-)-1,1'-Binaphthyl-2,2'-diylhydrogen phosphate [39648-67-4] M 348.3, m 217°, $[\alpha]_{D}^{20}$ -608° (c 1, MeOH), pK²⁰ 0.74. Recrystallise it from EtOH. Reflux for 3hours in N NaOH is required to hydrolyse the cyclic phosphate. [Jacques et al. *Tetrahedron Lett* 4617 1971, Arnold et al. *Tetrahedron* 24, 343 1983.]

S-(+)-1,1'-Binaphthyl-2,2'-diylhydrogen phosphate [35193-64-7] M 348.3, m 217°, $[\alpha]_D^{20}$ +608° (c 1, MeOH), pK²⁵ 0.74. Recrystallise it from EtOH. Reflux for 3hours in N NaOH is required to

hydrolyse the cyclic phosphate. [Jacques et al. *Tetrahedron Lett* 4617 *1971*, Arnold et al. *Tetrahedron* **24**, 343 *1983*.]

Biphenyl-2-yl diphenyl phosphate [132-29-6] **M 302.4, b 280-290**/9mm, d_{25}^{25} **1.184,** n_D^{25} **1.5925.** Distil the ester in a vacuum, then percolate it through an alumina column. Pass the ester through a packed column maintained at 150° to remove residual traces of volatile materials by a counter-current stream of nitrogen at reduced pressure. [Dobry & Keller J Phys Chem 61 1448 1957, Beilstein 6 III 3295, 6 IV 4585.]

2,2'-Bipyridinium chlorochromate [76899-34-8] **M 292.6.** Wash it with cold conc HCl, then H₂O (sintered glass funnel) and dry it in a vacuum (CaCl₂) to give a free-flowing yellow-brown powder. Store it in the dark. [Guziec & Luzzio Synthesis 691 1980, Chakraborty & Chandrasekaran Synth Commun 10 951 1980.] **SUSPECTED CARCINOGEN.**

2,2'-Biquinolin-4,4'-dicarboxylic acid dipotassium salt [63451-34-3] **M 420.51.** Recrystallise it from H₂O. The *Cu salt* has λ_{max} at 562nm. [Mopper & Gindler Anal Biochem **56** 440 1973, Beilstein **25** IV 1148.]

Bis-(*p*-tert-butylphenyl)phenyl phosphate [115-87-7] M 438.5, b 281% 5.5mm, d_4^{25} 1.108, n_D^{25} 1.5412. Purify as for biphenyl-2-yl diphenyl phosphate (above). [Beilstein 6 III 1871, 6 IV 3310.]

Bis-(2-chlorophenyl) phenyl phosphate [597-80-8] **M 395, b 254°/4mm, n_D^{25} 1.5767**. Purify as for biphenyl-2-yl diphenyl phosphate above. [Fox et al. J Phys Chem **59** 1097 1955, Beilstein **6** III 680, **6** IV 807.]

Bis-(1,5-cyclooctadiene)nickel (0) [1295-35-8] **M 275.0, m 142°(dec).** It is available in sealed ampoules under N_2 . All procedures should be carried out in a dry box and in an atmosphere of N_2 or Argon in subdued light because the complex is light and oxygen sensitive, and flammable. The solid is washed with dry Et₂O (under Ar) and separates from toluene as yellow crystals. Filter this under Ar gas pressure, place the crystals in a container and dry under a vacuum of 0.01mm to remove adhered toluene, flush with Ar and seal them under Ar or N_2 in glass ampoules. [Semmelhack Org Reactions 19 115 and 178 1972, Wilke et al. Justus Liebigs Ann Chem 699 1 1966, Wender & Jenkins J Am Chem Soc 111 6432 1989, Fieser & Fieser Reagents for Org Synth 4 33, 16 29, 17 32.] SUSPECTED CARCINOGEN.

Bis(2,9-dimethyl-1,10-phenanthroline) copper(I) perchlorate (Cuproine) [54816-44-5] M 579.6, pK^{25} -2.4 to -3.1 (for HClO₄) and 6.15 (for dimethylphenanthroline). Crystallise it from acetone. λ_{max} in isopentanol or hexan-1-ol is 454nm. [Smith & McCurdy Anal Chem 24 371 1952, Gahler Anal Chem 26 577 1954, Beilstein 23 III/IV 1737.]

2,2'-Bis-(diphenylphosphino)-1,1'-binaphthyl (BINAP) [RS 98327-87-8] M 622.7, m 283-286°, [R-(+)-76189-55-4] m 241-242°, [S-(-)-76189-56-5] m 241-242°, [α] $_{\rm D}^{20}$ (+) and (-) 233° (c 0.3, toluene). Dissolve the enantiomer in toluene, wash it with 30% aqueous NaOH, three times with H₂O, dry (Na₂SO₄), evaporate to ~15% of its volume and add an equal volume of degassed MeOH. Collect the solid, wash it with MeOH and dry it at 80°/0.005mm for 6hours. Recrystallise it from a 1:1 mixture of toluene/EtOH to optical purity (m 241-242°) [Takaya et al. Org Synth 67 20 1989]. [Noyori & Takaya Acc Chem Res 23 345 1990, Kitamura et al. Org Synth 71 1 1993, Takaya et al. Org Synth 72 74 1995, Kitamura et al. J Org Chem 57 4053 1992.]

§ A polymer supported version is available.

1,4-Bis-(diphenylphosphino)butane (dppb) [7688-25-7] **M 426.5, m 135-136°, 136-137°.** Recrystallise it from EtOH [Trippett J Chem Soc 4263 1961]. [King J Coord Chem **1** 62 1971, Tolman Chem Rev **77** 313 1977.]

2*R*,3*R*-(+)-2,3-Bis(diphenylphosphino)butane (*R*,*R*-CHIRAPHOS) [74839-84-2], 2*S*,3*S*-(-)-2,3-bis(di-phenylphosphino)butane (*S*,*S*-CHIRAPHOS) [64896-28-2] M 426.5, m 108-109^o, $[\alpha]_{D}^{20}$ (+) and (-) 200° (c 1.5, CHCl₃). It recrystallises from absolute EtOH (~6g in 60mL) as colourless plates [Fryzuk & Bosnich J Am Chem Soc 99 6262 1977, Fryzuk & Bosnich J Am Chem Soc 101 3043 1979].

1,2-Bis-(diphenylphosphino)ethane (DIPHOS, ethylene bis(diphenylphosphine)) [1663-45-2] **M 398.4, m 139-140°, 140-142°, 143-144°, pK**_{Est} ~**4.5**. Recrystallise it from aqueous EtOH or $*C_6H_6$. The *dimethiodide*, when recrystallised from MeOH has **m** 305-307°, and the *dioxide* when recrystallised from toluene or DMF (needles), or $*C_6H_6$ (plates) has **m** 252-254° (276-278°) [Isslieb et al. *Chem Ber* **92** 3175 1959, NMR: Aquiar et al. *J Org Chem* **29** 1660 1964, Bäckvall et al. *J Org Chem* **52** 5430 1987]. [Beilstein **16** IV 958.]

1,1'-Bis-(diphenylphosphino)ferrocene [12150-46-8] **M 554.4, m 181-183°, 184-194°.** Wash it with distilled H₂O and dry it in a vacuum. Dissolve it in *ca* 5 parts of hot dioxane and cool to give orange crystals **m** 181-183°. Recrystallisation from $C_{6}H_{6}$ /heptane (1:2) gives a product with **m** 183-184°. [Bishop et al. *J Organomet Chem* **27** 241 1971.]

Bis-(2-ethylhexyl) 2-ethylhexyl phosphonate [25103-23-5] **M 434.6**, n_D^{25} **1.4473.** Purify it by stirring a 0.4M solution in *benzene with an equal volume of 6M HCl at *ca* 60° for 8hours. The *benzene layer is then shaken successively with equal volumes of water (twice), aqueous 5% Na₂CO₃ (three times), and water (eight times), followed by evaporation of the *benzene and distillation of the residue under reduced pressure at room temperature (using a rotating evacuated flask). It should be stored dry and in the dark [Peppard et al. *J Inorg Nucl Chem* **24** 1387 *1962*]. Distil it in a vacuum, then percolate it through an alumina column before finally passing it through a packed column maintained at 150° where residual traces of volatile materials are removed by a counter-current stream of N₂ under reduced pressure [Dobry & Keller *J Phys Chem* **61** 1448 *1957*].

Bis-(2-ethylhexyl) phosphoric acid ('diisooctyl' phosphate) [298-07-7, 27215-10-7] **M 322.4, m -60°,b 209°/10mm, d** $_4^{20}$ **0.965, pK**_{Est} ~1.7. Contaminants of commercial samples include the monoester, polyphosphates, pyrophosphate, 2-ethylhexanol and metal impurities. Dissolve the acid in *n*-hexane to give an 0.8M solution. Wash this with an equal volume of M HNO₃, then with saturated (NH₄)₂CO₃ solution, with 3M HNO₃, and twice with water [Petrow & Allen *Anal Chem* **33** 1303 *1961*]. Similarly, the impure sodium salt, after scrubbing with pet ether, is acidified with HCl and the free organic acid is extracted into pet ether and purified as above [Peppard et al. *J Inorg Nucl Chem* **7** 231 *1958*], or as described by Stewart & Crandall [*J Am Chem Soc* **73** 1377 *1951*]. It can be purified *via* its copper salt [McDowell et al. *J Inorg Nucl Chem* **38** 2127 *1976*]. [*Beilstein* **1** IV 1796.]

Bis(ethyl)titanium(IV) chloride [2247-00-9] **M 177.0.** Recrystallise it from boiling toluene. [See Marek (ed) *Titanium and Zirconium in Organic Synthesis* Wiley-VCH 2002 ISBN 3-527-304-28-2, Wailes et al. *Organometallic Chemistry of Titanium, Zirconium and Hafnium* Academic Press 1974 ISBN 0-127303502.]

Bis(ethyl)zirconium(IV) chloride [92212-70-9] **M 220.3.** Recrystallise it from boiling toluene. [See Marek (ed) *Titanium and Zirconium in Organic Synthesis* Wiley-VCH 2002 ISBN 3-527-304-28-2, Wailes et al. Organometallic Chemistry of Titanium, Zirconium and Hafnium Academic Press 1874 ISBN 0-127303502.]

2,4-Bis-(methylthio)-1,3,2 λ^5 ,4 λ^5 -dithiadiphosphetane-2,4-dithione (Davy's reagent methyl) [82737-61-9] M 284.4, m 160°. It crystallises from *C₆H₆ in yellow plates or from hot trichlorobenzene. The low melting point reported in the literature (112° with gradual softening at 68-102°) has been attributed to the presence of elemental sulfur in the crystals. It has a **foul odour** and is a suspected carcinogen. [Yousif et al. *Tetrahedron* 40 2663 1984, Scott et al. J Org Chem 22 789 1957.]

Bismuthiol I (2,5-dimercapto-1,3,4-thiadiazole) potassium salt [4628-94-8] M 226.4, m 275-276°(dec), ~294°(dec), $pK_{Est(1)}$ ~4.1. Usually contaminated with disulfide. Purify it by recrystallisation from EtOH. It is a reagent for the detection of Bi, Cu, Pb and Sb. [Najumdar & Chacraborty Anal Chim Acta 19 372 1958, Fries Z Anal Chem 165 100, 1959, Beilstein 27 IV 7725.]

N,N'-Bis-(salicylidene)ethylenediamine cobalt (II) [Co(SALEN)₂, salcomine] [14167-18-1] M 325.2. The powder should have an oxygen capacity of 4.7-4.8% as measured by the increase in weight under O₂ at 100 pounds pressure at *ca* 20°. The O₂ is expelled on heating the material to 65°. It crystallises from pyridine, CHCl₃ or *C₆H₆, and the solvent may be removed by heating at 120° in a vacuum. However, this heating may mean reduced O₂ capacity. In the dry state it absorbs O₂, turning from a maroon colour to black. [Diehl & Hack *Inorg Synth* III 196 *1950*.]

Bis-(tetrabutylammonium) dichromate [56660-19-6] **M 700.9, m 139-142°.** Wash it with water and dry it in a vacuum. Recrystallise it from hexane (**m** 79-80°). [Santaniello & Ferraboschi Synth Commun **10** 75 1980, Beilstein **4** IV 556.] (Possible CARCINOGEN.)

Bis-[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate calcium salt (Selectophore) [40835-97-0] **M 987.3.** The Ca diester salt is washed with H₂O (x3) and MeOH (x3) alternately and dried in a vacuum oven at 50°. If the Ca salt is contaminated with much Ca salt of the monoester, then it (10g) is converted to the free acid by adding 6N HCl (*ca* 10volumes) and Et₂O (> 50volumes) is added to it and stirred vigorously to form the free acids. When no white precipitate remains (*ca* 5minutes), the Et₂O is separated, washed with H₂O (2x > 50 mL) and dried by filtering through a bed of anhydrous Na₂SO₄ (11 x 5 cm) which is then washed with Et₂O (2x >50 mL). Evaporation gives an oil (TLC R_F 0.81 for diester and 0.50 for monoester). The oil is dissolved in *benzene (*ca* 25mL) and extracted with ethane-1,2-diol (25mL, 10x). After ten washings, a small sample of the *benzene layer is washed twice with H₂O to remove the diol and showed that it is pure bis-[4-(1,1,3,3-tetramethylbutyl)-phenyl]phosphoric acid by TLC, i.e. no monophosphate. To form the Ca salt, the oil is dissolved in MeOH and to it is added the equivalent amount of CaCl₂ together with aqueous NaOH to keep the pH >10. The resulting white precipitate is collected, washed alternately with 3 batches of H₂O and MeOH and dried in a vacuum oven at 50°. [Craggs et al. *J Inorg Nucl Chem* **40** 1483 *1978*, Morton & Chung *Anal Biochem* **157** 345 *1986*.]

2,4-Bis-(*p*-tolylthio)-1,3,2 λ^5 ,4 λ^5 -dithiadiphosphetane-2,4-dithione (Heimgartner's reagent or Davy's reagent *p*-tolyl) [114234-09-2] M 436.6, m 175-176°. Recrystallise it from toluene (light yellow solid), wash it with Et₂O and dry *in vacuo*. [Jennt & Heimgarter *Helv Chim Acta* 70 1001 1987.]

N,O-Bis-(trimethylsilyl)acetamide (BSA) [10416-59-8] M 203.4, b 71-73°/35mm, d_4^{20} 0.836, n_D^{20} 1.4150. Fractionate it through a spinning band column and collect liquid b 71-73°/35mm, and not higher because the main impurity MeCONHSiMe₃ distils at b 105-107°/35mm. It is used for derivatising alcohols and sugars [Klebe et al. *J Am Chem Soc* 88 3390 1966, see Matsuo et al. *Carbohydr Res* 241 209 1993, Johnson *Carbohydr Res* 237 313 1992]. It is FLAMMABLE and TOXIC.

Bis-(trimethylsilyl)acetylene (BTMSA) [14630-40-1] **M 170.4, m 26°, b 134-136°/atm.** Dissolve it in pet ether and wash it with ice-cold dilute HCl. The pet ether extract is dried (MgSO₄), evaporated and fractionated at 760mm. [Walton & Waugh *J Organomet Chem* **37** 45 1972, *Beilstein* **4** IV 3950.]

Bis-(trimethylsilyl) sulfide (hexamethyldisilathiane) [3385-94-2] **M 178.5, b 65-67%** (16mm, 162.5-163.5%)750mm, 164% (760mm, d_4^{20} 0.85, n_D^{20} 1.4598. Dissolve it in pet ether (b ca 40%), remove the solvent and distil it. Redistil it under atmospheric pressure of dry N₂. It is collected as a colourless liquid which solidifies to a white solid in Dry-ice. On standing for several days it turns yellow possibly due to liberation of sulfur. Store it below 4% under dry N₂. [Eaborn *J Chem Soc* 3077 1950, *Beilstein* 4 IV 4033.]

Bis-(triphenylphosphine)nickel(II) chloride [14264-16-5] **M 654.2, m 225°(dec), 250°(dec).** Wash it with glacial AcOH and dry it in a vacuum over H_2SO_4 and KOH until AcOH is removed. [Venanzi J Chem Soc 719 1958, Kocienski et al. J Org Chem **54** 1215 1989, Beilstein **16** IV 953.]

9-Borabicyclo[**3.3.1**]**nonane** (**9BBN**) [monomer 280-64-8] [dimer 21205-91-4 or 70658-61-6] [1:1 coordination compound with tetrahydrofuran 76422-63-4] M **122.0** (monomer), **244.0** (dimer), m **141-143**^o (monomer), **150-152**^o, **154-155**^o (dimer), b **195**^o/12mm. It is available as the solid dimer or in tetrahydrofuran solution. The solid is relatively stable and can be purified by distillation in a vacuum (as dimer) and by recrystallisation from tetrahydrofuran (solubility at room temperature is 9.5%, 0.78M), filter off the solid under N₂, wash it with dry pentane and dry it *in vacuo* at *ca* 100°. The solid is a dimer (IR 1567cm⁻¹), stable in air (for *ca* 2 months), and can be heated for 24hours at 200° in an inert atmosphere without loss of hydride activity. It is a dimer in tetrahydrofuran solution also (IR 1567cm⁻¹). It is sensitive to H₂O and air (O₂) in solution. Its concentration in solution can be determined by reaction with MeOH and measuring the volume of H₂ liberated, or it can be oxidised to *cis*-cyclooctane-1,5-diol (**m** 73.5-74.5°). [IR: Knights & Brown J Am Chem Soc **90** 5280 1968, Brown et al. J Am Chem Soc **96** 7765 1974, Brown et al. J Org Chem **41** 1778 1976, Brown & Chen J Org Chem **46** 3978 1981, Fieser & Fieser Reagents for Org Synth **2** 31, **3** 24, **10** 48, **15** 43, **17**, 49.]

Borane pyridine complex [110-51-0] M 92.9, m 8-10°, 10-11°, b 86°/7mm, 100-101°/12mm, d²⁰₄ 0.785. Dissolve it in Et₂O and wash it with H₂O in which it is insoluble. Evaporate the Et₂O and distil the residual oil to gives better than 99.8% purity. Its vapour pressure is less than 0.1mm at room temperature. [Taylor et al. J Am Chem Soc 77 1506 1955, Beilstein 20 IV 2235.]

Borane triethylamine complex [1722-26-5] M 115.0, b 76°/4mm, 8°/7mm, 100-101°/12mm, d_4^{20} 0.78. Distil it in a vacuum using a 60cm glass helices-packed column. [Brown et al. J Am Chem Soc 64 325 1942, Ashby & Foster J Am Chem Soc 84 3407 1962, Matsuura & Tolcura Tetrahedron Lett 4703 1968, Beilstein 4 IV 329.]

Borane trimethylamine complex [75-22-9] **M 73.0, m 94-94.5°, b 171°/atm.** It is sublimed using equipment described in Burg and Schlesinger [J Am Chem Soc **59** 780 1937I]. Its vapour pressure is 86mm at 100°. It forms colourless hexagonal crystals varying from needles to short lumps, which are slightly soluble in H₂O (1.48% at 30°), EtOH (1%), hexane (0.74%) but very soluble in Et₂O, *C₆H₆ and AcOH. It is stable at 125°. [Burg & Schlesinger J Am Chem Soc **59** 780 1937, Brown et al. J Am Chem Soc **104** 325 1942, Beilstein **4** IV 140.]

2-Bromoallyltrimethylsilane [81790-10-5] **M 193.2, b 64-66°/10mm, 82-85°/58-60mm, d_4^{25} 1.13.** It is fractionally distilled through an efficient column. It is **flammable.** [Trost & Chan J Am Chem Soc **104** 3733 1982, Trost & Coppola J Am Chem Soc **104** 6879 1982.]

2-Bromo-1,3,2-benzodioxaborole [51901-85-0] **M 198.8, m 47°, 51-53°, b 76°/9mm.** Keep at 20°/15mm for some time and then fractionally distil. [Gerrard J Chem Soc 1529 1959, Beilstein 6 IV 5612.]

IR(endo, anti)-3-Bromocamphor-8-sulfonic acid ammonium salt [55870-50-3] M 328.2, m 284-285°(dec), $[\alpha]_{D}^{25}$ +84.8° (c 4, H₂O). Pass a hot aqueous solution of it through an alumina column to remove water-soluble coloured impurities which remain on the column when the ammonium salt is eluted with hot water. The salt is crystallised from water and dried over CaCl₂ in a desiccator [Craddock & Jones *J Am Chem Soc* 84 1098 *1962*, Kauffmann *J Prakt Chem* 33 295 *1966*]. [*Beilstein* 11 H 319, 11 I 77, 11, II 183, 11 III 595.]

Bromopyrogallol Red See in "Aromatic Compounds", Chapter 4.

Bromosulfalein (phenoltetrabromophthalein 3',3'-disulfonic acid disodium salt) [71-67-0] **M 838.0.** Purify it by TLC on silica Gel G (Merck 250μ particle size) in two solvent systems (BuOH/AcOH/H₂O 30:7.5:12.5 v/v, and BuOH/propionic acid/H₂O 30:20:7.5 v/v). When the solvent reaches a height of ~10cm, the plate is removed, dried in air and developed with NH₃ vapour giving blue-coloured spots. Also, the dye can be chromatographed on MN Silica Gel with *t*-BuOH/H₂O/*n*-BuOH (32:10:5 v/v) as eluent and visualised with a dilute KOH (or NaOH if the Na salt is required) spray. The product corresponding to bromosulfalein is scraped off and eluted with H₂O, filtered and evaporated to dryness in a vacuum. It was dissolved in H₂O and filtered through Sephadex G-25 and evaporated to dryness. [UV and IR identification: Barbier & DeVeerdt *J Pharm Sci* **57** 819 *1968*, NMR: Kato et al. *Chem Pharm Bull Jpn* **20** 581 *1972*, McGuire *Anal Biochem* **83** 75 *1977*, *Beilstein* **18/9** V 461.] Bromotrimethylsilane (trimethylbromosilane, trimethylsilyl bromide) [2857-97-8] M 153.1, m -43.5° to -43.2°, b 40.5°/200mm, 77.3°/735mm, 79°/744mm, 79.8-79.9°/754mm, d_4^{20} 1.1805, n_D^{20} 1.422. Purify it by repeated fractional distillation and store it in sealed ampoules in the dark. [McCusker & Reilly *J Am Chem Soc* 75 1583 1953.] Also fractionate it through a 15-plate column (0.8 x 32cm packed with 1/16in single turn helices of Pt-Ir wire). [Gilliam et al. *J Am Chem Soc* 68 1161 1946, Pray et al. *J Am Chem Soc* 70 433 1948, Beilstein 4 IV 4008.]

But-3-enylboronic acid [379669-72-4] **M 99.9, m 84-90°, pK**_{Est} **8.8.** Recrystallise the acid from toluene and dry it *in vacuo*. [cf Letsinger & Skoog J Org Chem **18** 895 1953.]

Butylboronic acid (1-butanedihydroxyborane) [4426-47-5] M 101.9, m 90-92°, 94-96°, pK_{Est} ~8.8. Purify the acid by recrystallisation from *C₆H₆/pet ether and dry it *in vacuo*. [Corey et al. J Am Chem Soc 116 3151 1994, Quallich et al. J Am Chem Soc 116 8515 1994, Seerden Tetrahedron Lett 35 4419 1994, Beilstein 4 IV 4383.]

(±)-sec-Butylboronic acid ([sec-butyl]-dihydroxyborane) [88496-88-2] M 101.9, m 86-89°, 87-88°, pK_{Est} ~8.8. Purify the acid by recrystallisation from C_6H_6 /pet ether and dry *in vacuo*. [McCusker et al. J Am Chem Soc 79 5179 1957, Beilstein 4 IV 4386.]

tert-Butyldimethylsilyl chloride (TBDMSCl) [18162-48-6] M 150.7, m 87-89°, 92.5°, b 125°/760mm. Fractionally distil it at atmospheric pressure. [Sommer & Tyler J Am Chem Soc 76 1030 1954, Corey & Venkateswarlu J Am Chem Soc 94 6190 1972, Beilstein 4 IV 4076.]

tert-Butyldiphenylchlorosilane (TBDPSCl, *tert*-butylchlorodiphenylsilane) [58479-61-1] M 274.9, b 90°/0.015mm, d_4^{20} 1.057, n_D^{20} 1.568. Purify it by repeated fractional distillaton. It is soluble in DMF and pentane [Hanessian & Lavalee Can J Chem 53 2975 1975, Robl et al. J Med Chem 34 2804 1991]. [Beilstein 4 IV 4076 for tert-butylchlorodimethylsilane.]

n-Butylmercuric chloride [543-63-5] M 293.1, m 130°. Crystallise it from 95% EtOH. [Larock & Brown J Am Chem Soc 92 2467 1970, Marvel et al. J Am Chem Soc 47 3009 1925.]

n-Butylphenyl *n*-butylphosphonate [36411-99-1] M 270.3. Crystallise it three times from hexane as its compound with uranyl nitrate. See *tri-n-butyl phosphate* below.

p-tert-Butylphenyl diphenyl phosphate [981-40-8] M 382.4, b 261°/6mm, n^{25} 1.5522. Purify it by vacuum distillation, and percolation through an alumina column, followed by passage through a packed column maintained at 150° to remove residual traces of volatile materials in a counter-current stream of N₂ at reduced pressure [Dobry & Keller J Phys Chem 61 1448 1957].

n-Butylstannoic acid [PhSn(OH)₃, trihydroxy-*n*-butylstannane] [22719-01-3] M 208.8. Purify it by adding excess KOH in CHCl₃ to remove *n*-BuSn(OH)Cl₂ and *n*-BuSn(OH)₂Cl, and isolate it by acidification [Holmes et al. J Am Chem Soc 109 1408 1987].

Cacodylic acid (dimethylarsinic acid) [75-60-5] M 138.0, m 195-196°, pK²⁵ 6.15 [Me₂As(O)OH]. Recrystallise it from warm EtOH (3mL/g) by cooling and filtering. Dry it in a vacuum desiccator over CaCl₂. It has also been recrystallised twice from propan-2-ol. [Koller & Hawkridge J Am Chem Soc 107 7412 1985, Beilstein 4 IV 3681.]

Cadion [1-(4-nitrophenyl)-3-(4-phenylazophenyl)-triazene] [5392-67-6] M 346, m 189°(dec). Commercial cadion is purified by recrystallisation from 95% EtOH and is dried *in vacuo*. It is stable in 0.2 N KOH (in 20% aqueous EtOH) at 25°. It is a sensitive reagent for Cd, and the Cd complex has λ_{max} (EtOH) 475nm. [Chavanne & Geronimi Anal Chim Acta 19 377 1958, Beilstein 16 III 664.] Cadmium acetate (2H₂O) [5743-04-4] M 230.5, m 255°(anhydrous), d_4^{20} 2.01 (hydrate), 2.34 (anhydr), pK_1^{25} 9.7, pK_2^{25} ~11.0 (for Cd²⁺). Recrystallise it twice from anhydrous acetic acid and dry it under vacuum for 24hours at 100°. [*Beilstein* 2 IV 114.]

Cadmium ionophore I [N,N,N',N'-tetramethyl-3,6-dioxooctanedi-(thioamide)] [73487-00-0] **M 432.7, m 35-36°.** Wash it well with pet ether, then several times with 2N HCl (if it has a slight odour of pyridine), then H₂O and dry it in a vacuum over H₂SO₄. It is a polar selectrophore for Cd. [Schneider *Helv Chim Acta* **63** 217 *1980*, Simon & Carafoli *Methods Enzymol* **56** 439 *1977*.]

Cadmium lactate [16039-55-7] **M 290.6.** Recrystallise it from water (10mL/g) by partial evaporation in a desiccator. [*Beilstein* **3** H 277, **3** III 465, **2** IV 637.]

Cadmium salicylate [19010-79-8] **M 248.5, 242°(dec).** Recrystallise it from distilled H_2O by evaporation in a desiccator. It is an antiseptic. [Prasad et al. *J Indian Chem Soc* **35** 267 1958, *Beilstein* **10** H 60, **10** I 25, **10** II 33, **10** III 94, **10** IV 128.]

Calcein sodium salt [2',7'-bis-{N,N-di(carboxymethyl)aminomethyl}fluorescein Na salt, Fluorexon, Fluorescein Complexon] [108750-13-6 diNa salt, 1461-15-0 free acid] M 666.5, pK_{Est(1)}~ 1.9, pK_{Est(2)}~ 2.5, pK_{Est(3)}~ 8.0, pK_{Est(4)} ~ 10.5 (all for N-CH₂COOH), and pK_{Est(5)} ~ 3.5 (for benzoic COOH). Dissolve it in distilled H₂O and acidify with dilute HCl to pH 3.5. Filter off the solid acid and wash it well with H₂O. Redissolve *ca* 10g in 300mL H₂O containing 12g of NaOAc. Precipitate it again by adding HCl, filtering and washing with H₂O. Add the solid to 200mL of EtOH stir for 1hour and filter. Repeat the EtOH wash and dry the bright yellow solid in a vacuum. This acid decomposes on heating at *ca* 180°. See below for the preparation of the Na salt. [Diehl & Ellingboe Anal Chem 28 882 1956].

Altenatively dissolve it in H₂O and acidify with 3N HCl to pH 3.5. Collect the solid and wash it with H₂O. The air-dried precipitate is extracted with 70% aqueous EtOH, filtered hot and cooled slowly. Fine yellow needles of the acid crystallise out; they are filtered off and dissolved in the minimum quantity of 0.01N NaOH and re-precipitated by adding N HCl to pH 3.5. It is then recrystallised from 70% aqueous EtOH (3x). The final product (acid) is dried at 80° in a vacuum for 24hours, $\mathbf{m} > 300^{\circ}$ (dec). It contains one molecule of water per molecule of acid (C₃₀H₃₆N₄O₁₃.H₂O). The product is pure as revealed by electrophoresis at pH 5.6 and 8.6, and by TLC in *i*-BuOH/*i*-PrOH/AcOH/H₂O (60:60:5:5 by volume) or *i*-PrOH or pH 8.0 borate buffer. [Wallach et al. *Anal Chem* **31** 456 1959.]

The Na salt is prepared by dissolving the pure acid in H₂O containing 2 mols of NaOH per mol of acid reagent and lyophilising. It complexes with Ca and Mg ions. [*Beilstein* **19** III/IV 4338.]

Calcium acetate monohydrate [5743-26-0 (H_2O), 62-54-4 (xH_2O)] M 176.2 (H_2O), m 150° (loses H_2O), pK²⁵ 12.7 (for Ca₂⁺). Recrystallise it from water (3mL/g) by partial evaporation in a desiccator. [*Beilstein* 2 IV 113.]

Calcium benzoate (3H₂O) [2090-05-3] **M 336.4.** Recrystallise it from water (10m/g) between 90° and 0°. [*Beilstein* **9** I 60, **9** H 85, **9** III 377, **9** IV 280.]

Calcium butyrate [5743-36-2] **M 248.2, d** $_{4}^{30}$ **1.271.** Recrystallise it from water (5mL/g) by partial evaporation in a desiccator and dry it in a vacuum to constant weight. [Pathak & Bhide J Indian Chem Soc **30** 47, 48 1953.] Its dissociation constant at 25° is 0.29 [Colman-Porter & Monk J Chem Soc 4363 1952, Beilstein **2** IV 785].

Calcium carbamate [543-88-4] M 160.1. Recrystallise it from aqueous ethanol. [Beilstein 4 H 75, 4 I 336, 4 II 557, 4 III 149, 4 234.]

Calcium formate [544-17-2] **M 130.1, m dec on heating,** d_4^{20} **2.01.** Recrystallise it from water (5mL/g) by partial evaporation in a desiccator. [*Beilstein* **2** IV 16.]

Calcium D-gluconate monohydrate [299-28-5, 18016-24-5] **M 448.4, m dec on heating,** $[\alpha]_{546}^{20}$ +11.0°, $[\alpha]_{D}^{20}$ +9.0° (c 1.2, H₂O). It is soluble in H₂O (3.5g in 100g at 25°). Dissolve it in H₂O, filter and precipitate it by adding MeOH. Filter off the solid and dry it in a vacuum at 85°. Alternatively, dissolve it in H₂O, filter (from insoluble inorganic Ca) and evaporate it to dryness under vacuum at 85°. [March et al. J Am Pharm Assoc **41** 366 1952, Beilstein **3** IV 1255.]

Calcium D-heptagluconate dihydrate [17140-60-2] M 526.4, $[\alpha]_{546}^{20}$ +5.2°, $[\alpha]_D^{20}$ +4.4° (c 5, H₂O). Purify it in the same way as for calcium D-gluconate. [*Beilstein* 3 III 1112.]

Calcium ionophore I (ETH 1001) [58801-34-6] **M 685.0.** This is a neutral Ca selectophore. It can be purified by thick layer (2mm) chromatography (Kieselgel F_{245}) and eluted with Me₂CO/CHCl₃ (2:1). [Ammann et al. *Helv Chim Acta* **56** 1780 1973, Simon & Carafoli *Methods Enzymol* **56** 439 1977.]

Calcium ionophore II (ETH 129) [74267-27-9] **M 460.7, m 153-154°.** Recrystallise it from Me₂CO. It forms 1:2 and 1:3 metal/ligand complexes with Mg^{2+} and Ca^{2+} ions, respectively, and induces selectivity in membranes for Ca^{2+} over Mg^{2+} by a factor of *ca* 10⁴. [Pretsch et al. *Helv Chim Acta* **63** 191 1980, Simon & Carafoli *Methods Enzymol* **56** 439 1977.]

Calcium ionophore III [A23187 calcimycin] [52665-69-7] M 523.6, m 181-182°, $[\alpha]_{D}^{25}$ -56.0° (c 1, CHCl₃). It recrystallises from Me₂CO as colourless needles. Protect it from light and moisture, store in a refrigerator. It is soluble in Me₂SO or EtOH and can be stored for 3 months without loss of activity. The Mg and Ca salts are soluble in organic solvents and cross biological membranes. It has a pKa of 6.9 in 90% Me₂SO. The Ca complex crystallises from 50% EtOH as colourless prisms. It is *highly* TOXIC. [Pressman *Ann Rev Biochem* 45 501 1976, Chaney et al. J Am Chem Soc 96 1932 1974, Chaney et al. J Antibiotics 29 124 1976, Suzuki et al. Anal Biochem 61 382 1989, Simon & Carafoli Methods Enzymol 56 439 1977.]

Calcium isobutyrate [533-90-4] **M 248.2.** Crystallise it from water (3mL/g) by partial evaporation in a desiccator. It forms a *pentahydrate* at low temperatures, but the crystals filtered from a saturated solution at 80° are the *monohydrate*; the transition temperature is 62.5°. [Lumsden J Chem Soc **81** 359 1902.] It has a dissociation constant of 0.31 [Colman-Porter & Monk J Chem Soc 4363 1952]. [Beilstein **2** H 290, **2** II 290, **2** IV 845.]

Calcium lactate (5H₂O) [814-80-2, 15743-47-5] M 308.3, m anhydrous at 120°, $[\alpha]_{D}^{20}$ -4.2° (c 5, H₂O). Crystallise it from warm water (10mL/g) by cooling to 0°. [*Beilstein* 3 IV 636.]

Calcium propionate [4075-81-4] **M 186.2, m dec on heating.** Crystallise this antifungal salt from water (2mL/g) by partial evaporation in a desiccator. [*Beilstein* **2** H 238, **2** II 218, **2** III 516.]

Calcium salicylate $(2H_2O)$ [824-35-1] M 350.4, pK_1^{20} 3.08, pK_2^{20} 13.43 (for acid). Recrystallise it from water (3mL/g) between 90° and 0°. [Beilstein 10 H 60, 10 II 33, 10 III 94, 10 IV 128.]

(4-Carbamylphenylarsylenedithio)diacetic acid [531-72-6] M 345.1, pK_{Est}~3.5. Recrystallise it from MeOH or EtOH.

Carbonate ionophore I [ETH 6010] (heptyl 4-trifluoroacetylbenzoate) [129476-47-7] **M 316.3, b 170°/0.02mm, d** $_{4}^{20}$ **0.909.** Purify the ionophore by flash chromatography (2g of reagent with 30g of Silica Gel 60) and elute with EtOAc/hexane (1:19). The fractions that absorb light at 260nm are pooled, evaporated and dried at room temperature (10.3 Torr). The oily residue is distilled in a bubble-tube apparatus (170°/0.02 Torr). Its IR (CHCl₃) has peaks at 1720, 1280, 940cm⁻¹, and its solubility in tetrahydrofuran is 50mg/0.5mL. It is a lipophilic neutral ionophore selective for carbonate as well as being an optical humidity sensor. [Behringer et al. Anal Chim Acta 233 41 1990.]

Catecholborane (1,3,2-Benzodioxaborole) [274-07-7] M 119.2, b 50°/50mm, 66°/80mm, 76-77°/100mm, 88°/165mm, d_4^{20} 1.125, n_D^{20} 1.507 (also available as a 1.0M solution in THF or toluene). It is a moisture-sensitive flammable liquid which is purified by distillation in a vacuum under a N₂ atmosphere and stored under N₂ at 0-4°. It liberates H₂ when added to H₂O or MeOH. A solution in THF, after 25hours at 25°, has residual hydride of 95% (under N₂) and 80% (under air) [Brown & Gupta *J Am Chem Soc* 97 5249 1975].

Cerous acetate [537-00-8] **M 317.3, pK** $_{1}^{25}$ **8.1** (9.29), pK $_{2}^{25}$ **16.3, pK** $_{3}^{25}$ **26.0** (for Ce³⁺). Recrystallise it twice from anhydrous acetic acid, then pumped dry under a vacuum at 100° for 8hours. [*Beilstein* **2** I 50, **2** II 119, **2** III 196, **2** IV 115.]

Cesium oleate [31642-12-3] **M 414.4.** Recrystallise it from EtOAc, dry it in an oven at 40° and store it over P_2O_5 . [Finkle et al. J Am Chem Soc 45 2785 I1923, Beilstein 2 II 437, 2 III 1405.]

Cesium perfluoro-octanoate (Cesium pentadecafluorooctanoate) [17125-60-9] **M 546.0.** Recrystallise it from a butanol/pet ether mixture, dry it in an oven at 40° and store it over P_2O_5 under vacuum. [Beilstein 2 IV 994.]

Chloramine-T (*N*-chloro-*p*-toluenesulfonamide sodium salt) 3H₂O [7080-50-4] M 281.7, m 168-170°(dec). Recrystallise it from hot water (2mL/g). Dry it in a desiccator over CaCl₂ where it loses water. Protect it from sunlight. It is used for the detection of bromate and halogens, and Co, Cr, Fe, Hg, Mn, Ni and Sb ions. [Campbell & Johnson *Chem Rev* 78 65 1978, Bremner *Synthetic Reagents* 6 9 1985, Chattaway *J Chem Soc* 87 145 I1905, Inglis *J Soc Chem Ind (Lond)* 37 288 1918, Beilstein 11 H 107, 11 I 29, 11 II 62, 11 III 300, 2 IV 457.]

Chlorazol Sky Blue FF $\{6,6'-[(3,3'-dimethoxy[1,1'-biphenyl]-4,4'-diyl)bis(azo)bis(4-amino-5-hydroxy-1,3-naphthylenedisulfonic acid) tetra-Na salt [2610-05-1] M 996.9, m > 300°(dec). Free it from other electrolytes by adding aqueous sodium acetate to a boiling solution of the dye in distilled water. After standing, the salted-out dye is filtered on a Büchner funnel, the process being repeated several times. Finally, the precipitated dye is boiled several times with absolute EtOH to wash out any sodium acetate, then dried (as the sodium salt) at 105°. [McGregor et al.$ *Trans Faraday Soc*58 1045 1962, Beilstein 16 II 259.]

Chlorodiphenylphosphine (diphenylphosphinous chloride) [1079-66-9] M 220.6, m 15-16°, b 124-126°/0.6mm, 174°/5mm, 320°/atm, d_4^{20} 1.229, n_D^{20} 1.636. This air-sensitive, pale yellow lachrymatory liquid is purified by careful fractional distillation and discarding the lower boiling fraction which contains the main impurity PhPCl₂ (b 48-51°/0.7mm), and checking for impurities by NMR. [Weinberg *J Org Chem* 40 3586 1975, Honer et al. *Chem Ber* 94 2122 1961, *Beilstein* 16 IV 969.]

Chlorodi(*o*-tolyl)phosphine [36042-94-1] M 248.7, m 63-67°, b 120-122°/0.03mm, 146-147°/1.1mm. It is purified by fractional distillation in a vacuum (b 179-183°/7mm, 253-257°/15mm,) and the distillate solidifies (m 36°, also reported is m 37°). [Weinberg J Org chem. 40 3586 1975, McEwen et al. J Am Chem Soc 100 7304 1978, Beilstein 16 H 769, 16 IV 970 for chlorodi(p-tolyl)phosphine.]

4-(Chloromercuri)benzenesulfonic acid monosodium salt [14110-97-5] M 415.2, dec on heating. The free acid is obtained by acidifying an aqueous solution, filtering off the acid, washing it with H_2O and recrystallising from hot H_2O to give a colourless solid which is dried in a vacuum over P_2O_5 and should be free of Cl⁻ ions (AgNO₃ test). The Na salt is made by dissolving it in one equivalent of aqueous NaOH and evaporating to dryness. [Nesmejanow et al. *Chem Ber* 67 130 1934, Boyer J Am Chem Soc 76 4331 1954.] HIGHLY TOXIC.

4-Chloromercuribenzoic acid [59-85-8] **M 357.2, m >300°.** Its suspension in water is stirred with enough 1M NaOH to dissolve most of it: a small amount of insoluble matter is removed by centrifugation. The chloromercuribenzoic acid is then precipitated by adding 1M HCl and centrifuged off. The precipitation is

repeated twice. Finally, the precipitate is washed three times with distilled water (by centrifugation), then dried in a thin layer under vacuum over P₂O₅ [Boyer *J Am Chem Soc* **76** 4331 *1954*].

Chloromethylphosphonic acid dichloride [1983-26-2] M 167.4, b 50°/0.5mm, 52-53(59)°/2mm, 63-65°/3mm, 78-79°/10mm, 87-88°/15mm, 102-103°/30mm, d_4^{20} 1.638, n_D^{20} 1.4971. It is fractionally distilled using a short Claisen column and redistilled. The *aniline salt* has m 199-201°. The ³¹P NMR has a single peak at -38±2 ppm from 85% H₃PO₄. [Kinnear & Perren J Chem Soc 3437 1952, NMR: van Wazer et al. J Am Chem Soc 78 5715 1956, McConnell et al. J Org Chem 22 462 1957, Beilstein 1 III 2593, 1 IV 3068.]

2-Chloro-2-oxo-1,3,2-dioxaphospholane [6609-64-9] **M 142.5, m 12-14°, b 89-91°/0.8 mm,** d_4^{20} **1.549, n**_D²⁰ **1.448.** It should be distilled under high vacuum as some polymerisation occurs at atmospheric pressure. It has IR bands at 3012, 2933, 1477, 1366, 1325, 1040, 924 and 858 cm⁻¹. It is hydrolysed to HOCH₂CH₂OPO₃H₂ in 30minutes in H₂O at 100° [IR: Cox & Westheimer *J Am Chem Soc* **80** 5441 1958]. [Beilstein **1** IV 2419.]

2-Chlorophenyl diphenyl phosphate [115-85-5] **M 360.7, b 236%/4mm, n_D^{25} 1.5707.** Purify it by vacuum distillation, percolate it through a column of alumina, then pass it through a packed column maintained by a countercurrent stream of N₂ at reduced pressure [Dobry & Keller *J Phys Chem* **61** 1448 1957].

Chlorosulfonic (chlorosulfuric) acid [7790-94-5] M 116.5, b 151-152°/750mm, d_4^{20} 1.753, n_D^{25} 1.4929, pK^{25} -5.9 (aqueous H₂SO₄). Distil it in an all-glass apparatus, taking the fraction boiling at 156-158°. It reacts **EXPLOSIVELY** with water [Cremlyn *Chlorosulfonic acid: A Versatile Reagent*, Royal Society of Chemistry UK, 2002, 308 pp, ISBN 0854044981]. LACHRIMATORY.

Chloro-(2,2':6',2'-terpyridine)platinum (II) chloride (2H₂O) [60819-00-3] M 535.3. Recrystallise it from hot dilute HCl, and on cooling it gives the red *dihydrate*. The *trihydrate* crystallises slowly from a cold aqueous solution and is dried in air. The red dihydrate can be obtained from the trihydrate by desiccation over conc H_2SO_4 , by washing with EtOH or by precipitating from a warm aqueous solution with HCl. The dihydrate is also formed by decomposing the black trihydrate form by heating in water (slowly), or more rapidly with hot 2N HCl. [Morgan & Burstall *J Chem Soc* 1498 1934, Lippard Acc Chem Res **11** 211 1987.]

Chloro-tri-isopropoxy titanium [20717-86-6] **M 260.6, m 45-50°, b 61-65°/0.1mm.** When distilled under vacuum, the distillate sets slowly to a solid on standing. Stock reagents are made by dissolving the warm liquid in pentane, toluene, Et_2O , THF, CH_2Cl_2 , and can be stored in a pure state or in solution under dry N₂ for several months. The reagent is *hygroscopic* and is hydrolysed by H₂O. [Reetz et al. *Chem Ber* **118** 1421 *1985*.]

Chlorotriphenylsilane (triphenylchlorosilane) [76-86-8] M 294.9, m 90-92°, 91-93°, 94-95°, 97-99°, b 156°/1mm, 161°/0.6mm. Likely impurities are tetraphenylsilane, small amounts of hexaphenyldisiloxane and traces of triphenylsilanol. Purify it by distillation at 2mm, then crystallise it from EtOH-free CHCl₃, and from pet ether (b 30-60°) or hexane by cooling in a Dry-ice/acetone bath. [Allen & Modena J Chem Soc 3671 1957, Curran et al. J Am Chem Soc 72 4471 1950, Speier & Zimmerman J Am Chem Soc 77 6395 1955, Thomas & Rochow J Am Chem Soc 79 1843 1957, Beilstein 16 IV 1484.]

Chlorotris(triphenylphosphine) rhodium I (Wilkinson's catalyst) [14694-95-2] M 925.2, m 138°(dec), 140°(dec), 157-158°(dec). It forms dark burgundy crystals from hot EtOH after refluxing for 30minutes. When the solution is heated for only 5minutes, orange crystals are formed. Heating the orange crystals in EtOH yields red crystals. Crystallisation from Me₂CO gives the orange crystals. The two forms have similar IR spectra, but the X-ray diffraction patterns are slighly different. [Osborne et al. J Chem Soc (A) 1711 1966, Osborne & Wilkinson Inorg Synth X 67 1967, Bennett & Donaldson Inorg Chem 16 655 1977.] The solubilities are as follows: in CH₂Cl₂ ~2% (25°), in toluene 0.2% (25°), and less soluble in Me₂CO,

MeOH, BuOH and AcOH, but insoluble in pet ethers and cyclohexane. It reacts with donor solvents such as pyridine, DMSO and MeCN.

Chromeazurol S (Mordant Blue 29) [1667-99-8] M 539.3, λ_{max} 540nm, ε 7.80 x 10⁴ (10M HCl), CI 43825, pK_1^{25} <0, pK_2^{25} 2.25, pK_3^{25} 4.88, pK_4^{25} 11.75. The crude phenolic triphenylmethanecarboxysulfonic acid triNa salt (40g) is dissolved in water (250mL) and filtered. Then conc HCl (50mL) is added to the filtrate, with stirring. The precipitate is filtered off, washed with HCl (2M) and dried. It is redissolved in water (250mL), and precipitation is repeated twice more in a water bath at 70°. It is dried under vacuum over solid KOH (first), then P₂O₅ [Martynov et al. *Zh Analyt Khim* 32 519 1977]. It has also been purified by paper chromatography using *n*-butanol, acetic acid and water (7:3:1). First and second spots were extracted. It chelates Al and Be. It is used also for estimating fluoride. [Beilstein 11 IV 707.]

Chromium (III) acetylacetonate [21679-31-2] M 349.3, m 212-216°, 216°, pK^{25} 4.0 (see chromic chloride). Purify it by dissolving 6g in hot *C₆H₆ (20mL) and adding 75mL of pet ether slowly. Cool to room temperature then chill on ice, filter off and dry in air to give 2.9g. It also crystallises from EtOH. It is soluble in heptane, *C₆H₆, toluene and pentane-2,4-dione at 20-40°. It forms a 1:2 complex with CHCl₃. [Fernelius & Blanch *Inorg Synth* V 130 *1957*, Steinbach & Burns *J Am Chem Soc* 80 1839 *1958*, *Beilstein* 1 H 782, 1 II 836, 1 IV 3673.]

Chromocene [bis(cyclopentadienyl) chromium II) [1271-24-5] M 182.2, m 173°. Chromocene forms pyrophoric red crystals on sublimation at 50°/0.1mm followed by resublimation at 75-90°/0.1mm. Although it is stable at least to 300°, it is readily oxidised in air, and effervesces slowly in H₂O to give cyclopentadiene. All operations should be carried out in a dry box. It decomposes in CCl₄ or CS₂, and for IR even grinding with nujol, KBr or KI causes some decomposition. [Wilkinson et al. *J Inorg Nucl Chem* 95 109 1956, Wilkinson *J Am Chem Soc* 76 209 1954, *Beilstein* 16 IV 1774.]

Chromoionophore I [ETH 5294] [9-diethylamino-5-octadecanoyl-imino-5-*H***-benzo[a]-phenoxazine]** [125829-24-5] **M 583.9.** Purify it by flash chromatography (Silica Gel) and elute with EtOAc. The coloured fractions are pooled, evaporated and recrystallised from EtOAc. It is a lipophilic fluorescent chromoionophore and is a selectophore for K and Ca ions. [Morf et al. Anal Chem **62** 738 1990.]

Cobalt (II) *meso-5.10,15,20-tetraphenylporphine* complex [14172-90-8] M 671.7. It yields brown crystals from Et_2O or $CHCl_3/MeOH$ (*cf iron chloride complex*). It crystallises on extraction (Soxhlet) with $*C_6H_6$. It is soluble in most organic solvents except MeOH and pet ether. [UV, IR: Rothemund & Manott J Am Chem Soc 70 1808 1948, Thomas & Martell J Am Chem Soc 81 5111 1959.]

Cobaltic acetylacetonate [21679-46-9] **M 356.3.** Recrystallise it from C_6H_6 /pet ether and dry it in a vacuum. [Charles & Pawlikowski J Phys Chem 62 440 1938, Beilstein 1 H 783.]

Cobaltous acetate (4H₂O) [6147-53-1] **M 249.1, pK**₁²⁵ **9.85** (for C o^{2+}). Several recrystallisations from 50% aqueous acetic acid give the *tetrahydrate*. It is converted to the *anhydrous* salt by drying at 80°/1mm for 60hours. [*Beilstein* **2** IV 120.]

Cobaltous acetylacetonate [14024-48-7, 123334-29-2 x H_2O] M 257.2, m 165-170°, 172°. Recrystallise it from acetone or MeOH and dry it in a vacuum. [*Beilstein* 1 H 783.]

Copper (I) thiophenolate [1192-40-1] **M 172.7, m** ca 280°, pK_1^{25} 6.62 (for PhS⁻). The Cu salt can be extracted from a thimble (Soxhlet) with boiling MeOH. It is a green-brown powder which gives a yellow-green solution in pyridine. Wash it with EtOH and dry it in a vacuum. It can be precipitated from a pyridine solution by adding H₂O, collecting the precipitate, washing it with EtOH and drying in a vacuum. [Posner et al. *Synthesis* 662 1974, Krebs et al. *Chem Ber* **90** 425 1957, *Beilstein* **6** IV 1465.]

12-Crown-4 (lithium ionophore V, 1,4,7,10-tetraoxacyclododecane) [294-93-9] M 176.2, m 17°. The distilled crude product has to be recrystallised from pentane at -20° to remove acyclic material. It is then dried over P₂O₅. It complexes Li. [Anet et al. *Acta Chem Scand* 27 3395 1973, *Beilstein* 19/11 V 334.]

Cupferron ammonium salt (*N*-nitroso-*N*-phenylhydroxylamine ammonium salt) [135-20-6] M 155.2, m 150-155°(dec), 162.5-163.5°, 163-164°, pK²⁵ 4.16 (free base). Recrystallise it twice from EtOH after treatment with Norite and finally once with EtOH. The crystals are washed with diethyl ether and air dried, then stored in the dark over solid ammonium carbonate. A standard solution (*ca* 0.05M prepared in air-free H₂O) is prepared daily from this material for analytical work and is essentially 100% pure. [Olsen & Elving Anal Chem 26 1747 1954.] It can also be washed with Et₂O, dried and stored as stated. In a sealed, dark container it can be stored for at least 12 months without deterioration. λ_{max} 260nm (CHCl₃). [Marvel Org Synth Coll Vol I 177 1941, Elving & Olson J Am Chem Soc 78 4206 1956, Beilstein 16 IV 891.] Possible CARCINOGEN.

Cupric acetate (H₂O) [6046-93-1 (H₂O), 142-71-2 (anhydrous)] M 199.7, m 115°, 240°(dec), d_4^{20} 1.88, pK₁²⁵ 8.0, pK₂²⁵ 13.1 (for Cu²⁺). Recystallise it twice from warm dilute acetic acid solutions (5mL/g) by cooling. [Beilstein 2 IV 111.]

Cupric benzoate [533-01-7] **M 305.8.** Recrystallise it from hot water. Its solubility in EtOH/*C₆H₆ (90%) at 25° is 0.1%. [Crawford & Stewart J Chem Soc 228, 289 1953, Beilstein **9** H 84, **9** I 60, **9** III 376, **9** IV 280.]

Cupric lactate (H₂O) [814-81-3] M 295.7. The monohydrate crystallises from hot H₂O (3mL/g) on cooling. [Beilstein 3 II 203, 3 III 465, 3 IV 636.]

Cupric oleate [1120-44-1] M 626.5. Crystallise it from diethyl ether. [Beilstein 2 H 465, 2 I 196, 2 I202, 2 II 436, 2 III 1404, 2 IV 1646.]

Cupric phthalocyanine [147-14-8] **M 576.1.** Precipitate it twice from conc H_2SO_4 by slow dilution with water. It has also been purified by two or three sublimations at 580° in an argon flow at 300-400Pa. [Beilstein 26 III/IV 4256.]

Cupric trifluoromethylsulfonate (copper II triflate) [34946-82-2] M 361.7, pK^{25} <-3.0 (for triflic acid). Dissolve it in MeCN, add dry Et₂O until cloudy and cool at -20° in a freezer. The light blue precipitate is collected and dried in a vacuum oven at 130°/20mm for 8hours. It has λ_{max} 737nm (ϵ 22.4 M¹cm⁻¹) in AcOH. [Salomon & Kochi *J Am Chem Soc* 95 330 1973]. It has also been dried in a vessel at 0.1Torr by heating with a Fischer burner [Andrist et al. *J Org Chem* 43 3422 1978]. It has been dried at 110-120°/5mm for 1hour before use and forms a *benzene complex which should be handled in a dry box because it is air sensitive [Kobayashi et al. *Chem Pharm Bull Jpn* 28 262 1980, Salomon & Kochi *J Am Chem Soc* 95 330 1973]. [*Beilstein* 3 IV 34.]

Cuprous (I) bromide dimethylsulfide complex [54678-23-8] **M 205.6, m** *ca* **135**°(**dec**). Purify it by recrystallisation in the presence of Me₂S. A solution of the complex (1.02g) in Me₂S (5mL) is slowly diluted with hexane (20mL), and the pure colourless prisms of the complex (0.96g) separate and are collected and dried, **m** 124-129°(dec). The complex is insoluble in hexane, Et₂O, Me₂CO, CHCl₃ and CCl₄. It dissolves in DMF and DMSO, but the solution becomes hot and green indicating decomposition. It dissolves in $*C_6H_6$, Et₂O, MeOH and CHCl₃ if excess of Me₂S is added and a colourless solution is obtained. [House et al. *J Org Chem* **40** 1460 *1975.*] Prior to use, the complex is dissolved in Me₂S and evaporated to dryness in the weighed reaction flask [Bourgain-Commerçon et al. *J Organomet Chem* **228** 321 *1983*].

Cuprous iodide trimethylphosphite [34836-53-8] **M 314.5, m 175-177°, 192-193°.** Cuprous iodide dissolves in a C_6H_6 solution containing trimethylphosphite to form the complex. The complex crystallises from C_6H_6 or pet ether. [Arbusoff *Chem Ber* **38** 1171 1905, Nishizawa *Bull Chem Soc Jpn* **34** 1170, 1177 1961.]

Di-*n*-amyl *n*-amylphosphonate [6418-56-0] M 292.4, b 150-151°/2mm, n_D^{20} 1.4378. Purify it by three crystallisations of its uranyl nitrate complex from hexane (see *tributyl phosphate*). It extracts Zr²⁺ from NaCl solutions.

6,6-Dibenzyl-14-crown-4 (lithium ionophore VI, **6,6-dibenzyl-1,4,8,11-tetra-oxa-cyclo-tetradecane**) [106868-21-7] **M 384.5, m 102-103**°. Dissolve it in CHCl₃, wash this with saturated aqueous NaCl, dry (MgSO₄), evaporate and purify it by chromatography on silica gel and gradient elution with $*C_6H_6$ /MeOH followed by preparative reverse phase HPLC on an octadecyl silanised silica (ODS) column and eluting with MeOH. It can be recrystallised from MeOH (v_{max} 1120 cm⁻¹, C-O-C in KBr). [Kimura et al. *Anal Chem* **59** 2331 1987, see also Maruyama et al. *J Chem Soc Perkin Trans 1* 2069 *1986* and Tsukube et al. *J Chem Soc Perkin Trans 1* 1033 *1986*.] It complexes selectively with Li ions.

Di-n-butyl boron triflate (di-n-butylboryl trifluoromethanesulfonate) [60669-69-4] **M 274.1, b 37°/0.12mm, 60°/2mm, pK²⁵ <-3.0 (for triflic acid).** Distil it in a vacuum under argon and store it under argon. It should be used within 2 weeks of purchase or after redistillation. Use a short path distillation system. It has IR bands in CCl₄ at v_{max} 1405, 1380, 1320, 1200 and 1550cm⁻¹, and ¹³C NMR (CDCl₃) with δ at 118.1, 25.1, 21.5 and 13.6ppm. [Gage & Evans Org Synth 68 83 1990, Evans et al. J Am Chem Soc **103**, 3099 1981.] **TOXIC**

Di-n-butyl n-butylphosphonate [78-46-6] **M 250.3, b 150-151%** (10mm, 160-162%) (20mm, n²⁵ 1.4302. Purify by three recrystallisations of its compound with uranyl nitrate, from hexane. For method, see *tributyl phosphate*.

Di-*n*-**butyl cyclohexylphosphonate** [1085-92-3] **M 245.4.** The compound with uranyl nitrate is recrystallised three times from hexane. For method see *tributyl phosphate*.

Di-tert-butyl dichlorosilane (DTBCl₂) [18395-90-9] M 213.2, m -15°, b 190°/729mm, 195-197°/atm, d_4^{20} 1.01. Purify it by fractional distillation. It is a colourless liquid with a pleasant odour and does not fume in moist air, but does not titrate quantitatively with excess of dilute alkali. [Tyler et al. J Am Chem Soc 70 2877 1948.]

Di*tert*-butyl silyl bis(trifluoromethanesulfonate) [85272-31-7] M 440.5, b 73.5-74.5% (0.35mm, d²⁰₄ 1.36 (see pK for triflic acid). Purify it by fractional distillation at high vacuum. It is a pale yellow liquid which should be stored under argon. It is less reactive than the diisopropyl analogue. The presence of the intermediate monochloro compound can be detected by ¹H NMR, (CHCl₃): *tert*-Bu₂Si(OTf)₂ [δ 1.25s], but impurities have δ 1.12s for *tert*-Bu₂Si(H)OTf and δ 1.19s for *tert*-Bu₂HSi(Cl)OTf. [Deslongchamps *Tetrahedron Lett* 23 4871 1982, Deslongchamps *Aldrichimica Acta* 17 72 1984.] TOXIC.

Di-*n*-butyltin oxide [818-08-6] **M** 248.9, **m** >300°. It is prepared by hydrolysis of di-*n*-butyltin dichloride with KOH. Hence wash it with a little aqueous M KOH, then H₂O and dry at ~80°/10mm until the IR is free from OH bands. [Cummings Aust J Chem 18 98 1965, Beilstein 4 I 588.]

Dicarbonyl(cyclopentadienyl)Co (I) [12078-25-0] **M 180.1, b 75%/22mm, b 139-140%(dec)/710mm.** Best distilled in an atmosphere of CO in a vacuum. The red brown liquid decomposes slightly on distillation even in a vacuum to liberate some CO. Operations should be performed in an efficient fume cupboard. It is soluble in organic solvents and stable in air but decomposes slowly in sunlight and rapidly under UV. [Piper et al. J Inorg Nucl Chem 1 165 1955, Beilstein 16 IV 1827.] TOXIC.

2,6-Dichlorophenol-indophenol sodium salt (2H₂O) [620-45-1] M 326.1, ε 2.1 x 10⁴ at 600nm and pH 8, pK³⁰ 5.7 (oxidised form), pK₁³⁰ 7.0, pK₂³⁰ 10.1 (reduced form). Dissolve it in 0.001M phosphate buffer, pH 7.5 (alternatively, about 2g of the dye is dissolved in 80mL of M HCl), and extracted into diethyl ether. The extract is washed with water, extracted with aqueous 2% NaHCO₃, and the sodium salt of the dye is precipitated by adding NaCl (30g/100mL of NaHCO₃ solution), then filtered off, washed with dilute NaCl solution and dried. It has λ_{max} at 605nm. [Hiromi et al. Anal Biochem 101 421 1980.] The acetate [24857-20-3] M 310.1 has m 101-103° (from Et₂O/pet ether) and 99.5-100.5° (from Et₂O). [Beilstein 13 IV 1078-1079.]

Dicyclopentylphosphine [39864-68-1] **M 170.2, b 76-78%** (0.8mm, d_4^{25} 0.933, pK_{Est} ~4.5. Purify dicyclopentylphosphine by distillation in a vacuum in a stream of N₂ or Ar as it is air sensitive and must be stored in an inert atmosphere. [cf Neidergall Chem Ber 95 64 1962, Beilstein 16 IV 947 for dicyclohexylphosphine.]

Diethyl aluminium chloride [96-10-6] **M 120.6, m -75.5°, b 106.5-108°/24.5mm, d** $_{4}^{20}$ **0.96.** Distil it from excess dry NaCl (to remove ethyl aluminium dichloride) in a 50-cm column containing a heated nichrome spiral. [*Beilstein* **4** IV 4403.]

O,O-Diethyl-*S*-2-diethylaminoethyl phosphorothiolate [78-53-5] M 269.3, m 98-99°. Recrystallise it from isopropanol/diethyl ether. [Ailman & Magee in *Organo Phosphorus Compound* (Kosolapoff & Maier eds) Wiley Vol 7 pp 487-871 1976.]

Diethylmethylsilane [760-32-7] **M 102.3, b 78.4°/760mm, 77.2-77.6°/atm, d_4^{20} 0.71.** Fractionally distil it through a *ca* 20-plate column, and the fraction boiling within a range of less than 0.5° is collected. It is a **flammable irritating** liquid. [Price J Am Chem Soc **69** 2600 1947, Beilstein **4** III 1847.]

N,*N*-Diethyltrimethylsilylamine [996-50-9] M 145.3, b $33^{\circ}/26$ mm, 126.8-127.1°/738mm, 126.1-126.4°, d_4^{20} 0.763, n_D^{20} 1.411. Fractionate it through a 2ft vacuum-jacketed column containing Helipak packing with a reflux ratio of 10:1. [Sauer & Hasek *J Am Chem Soc* 68 241 1946, Langer et al. *J Org Chem* 23 50 1958, Rühlmann *J Prakt Chem* 9 315 1959, Beilstein 4 IV 4010.]

Diethyl trimethylsilyl phosphite [13716-45-5] **M 210.3, b 61°/10mm, 66°/15mm, d_4^{20} 0.9476, n_D^{20} 1.4113. Fractionate it under reduced pressure and has ³¹PMR: \delta_P -128ppm relative to H₃PO₄. [Sekine et al.** *J Org Chem* **46 2097 1981, Chernyshev et al.** *J Gen Chem USSR (Engl Transl)* **45 231 1975.]**

N,N'-Diheptyl-*N,N*'-5,5-tetramethyl-3,7-dioxanonanediamide [lithium ionophore I (ETH 149)] [58821-96-8] M 442.7. Purify it by chromatography on Kieselgel using CHCl₃ as eluent (IR ν_{max} 1640cm⁻¹). [Kirsch et al. *Helv Chim Acta* 60 2326 1977, Simon & Carafoli *Methods Enzymol* 56 439 1977.]

Dihexadecyl phosphate [2197-63-9] **M 546.9, m 75°, pK_{Est} \sim 1.2.** Recrystallise it from MeOH [Lukac J Am Chem Soc 106 4387 1984]. [Beilstein 1 IV 1880.]

1,2-Dihydroxybenzene-3,5-disulfonic acid, di-Na salt (TIRON) [149-45-1] M 332.2, ε 6.9 x 10⁴ at 260nm, pH 10.8, pK₁ and pK₂ <2 (for SO₃⁻), pK₃ 7.7, pK₄ 12.6 (for OHs of disulfonate dianion). Recrystallise it from water [Hamaguchi et al. *Anal Chim Acta* 9 563 1962]. It is an indicator colour reagent for Fe, Mn, Ti and Mo ions and complexes with Al, Cd, Co, Co, Fe (III), Mn, Pd, UO₂²⁺, VO²⁺ and Zn. [*Beilstein* 11 IV 630.]

(±)-Diisooctyl phenylphosphonate (bis-[2-ethylhexyl] phenylphosphonate) [49637-59-4] M

378.5, b 204-207°/4mm, d²⁰₂₀**0.970, n**²⁵_D**1.4780.** Distil it in a vacuum, percolate it through a column of alumina, then pass it through a packed column maintained at 150° to remove residual traces of volatile materials in a countercurrent stream of N₂ under reduced pressure [Dobry & Keller *J Phys Chem* **61** 1448 *1957*]. [*Beilstein* **16** III 884.]

Diisopropyl chlorosilane (chlorodiisopropylsilane) [2227-29-4] M 150.7, b 59%8mm, 80%10mm, 200%738mm, d_4^{20} 0.9008, n_D^{20} 1.4518. Impurities can be readily detected by ¹H NMR. Purify it by fractional distillation [Gilman & Clark J Am Chem Soc 69 1499 1947, Allen et al. J Chem Soc 3668 1957].

Dilongifolyl borane [77882-24-7] **M 422.6, m 169-172°**. Wash it with dry Et_2O and dry it in a vacuum under N₂. It has **m** 160-161° in a sealed evacuated capillary. It is sparingly soluble in pentane, tetrahydrofuran, carbon tetrachloride, dichloromethane, and chloroform, but the suspended material is capable of

causing asymmetric hydroboration. Disappearance of solid indicates that the reaction has proceeded. [Jadhav & Brown J Org Chem 46 2988 1981.]

Dimethyl carbonate [616-38-6] **M 90.1, m 2-4°, b 89.5°/755mm, 90.2°/atm, d** $_{4}^{20}$ **1.0446, n** $_{D}^{20}$ **1.3687**. If the reagent has broad intense bands at 3300cm⁻¹ and above (i.e. OH stretching), then it should be purified further. Wash it successively with 10% Na₂CO₃ solution, saturated CaCl₂, H₂O, and dry it by shaking mechanically for 1hour with anhydrous CaCl₂, and fractionate. [Bowden & Butler *J Chem Soc* 78 *1939*, Vogel *J Chem Soc* 1847 *1948*, *Beilstein* **3** IV 3.]

Dimethyl dicarbonate (dimethyl pyrocarbonate) [4525-33-1] M 134.1, m 15.2°, b 45-46°/5mm, d_4^{20} 1.2585, n_D^{20} 1.3950. Dissolve it in Et₂O, shake this with a small volume of 0.1N HCl, dry Et₂O with Na₂SO₄ and distil in *in vacuo* below 100° to give a clear liquid. It decomposes to CO₂ and dimethyl carbonate on heating at 123-149°. It is readily hydrolysed by H₂O and is a yeast inhibitor and an **IRRITANT**. [Brysov et al. *J Org Chem USSR* 10 2551 *1974*, Boehm & Mehta *Chem Ber* 71 1797 *1938*, *Beilstein* 3 IV 17.]

Dimethyldichlorosilane [75-78-5] M 129.1, m -75.5°, b 68.5-68.7°/750mm, 70.5°/760mm, d_4^{20} 1.0885, n_D^{20} 1.4108. Other impurities are chlorinated silanes and methylsilanes. Fractionate it through a 3/8in diameter 7ft Stedman column (p 11) rated at 100 theoretical plates at almost total reflux. See purification of MeSiCl₂. Solutions in heptane, 1,1,1-trichloroethane or 1-chloronaphthalene are used for the silanization of glassware and pipettes. [Sauer & Hadsell *J Am Chem Soc* 70 3590 1948, *Beilstein* 4 IV 4110.]

2,6-Dimethyl-1,10-phenanthrolinedisulfonic acid, di-Na salt (H₂O) (bathocuproinedisulfonic acid di-Na salt) [52698-84-7] M 564.5, m ~300°, pK_{Est}~0 (for free acid). Inorganic salts and some coloured species can be removed by dissolving the crude material in the minimum volume of water and precipitating by adding EtOH. The purified reagent can be obtained by careful evaporation of the filtrate. Recrystallise it from EtOH and dry it in a vacuum at room temperature in the dark. [Lorenzo et al. J Electroanalyt Chem 356 43 1993, Watkins et al. Microchem J 16 14 1971.]

Dimethylphenylsilyl chloride (DMPSCl, chlorodimethylphenylsilane, phenyl dimethyl chlorosilane) [768-33-2] M 170.7, b 79°/15mm, 85-87°/32mm, 196°/760mm, d_4^{20} 1.017, n_D^{20} 1.509. Fractionate it through a 1.5 x 18inch column packed with stainless steel helices, or a spinning band column. [Daudt & Hyde J Am Chem Soc 74 386 1952, Lewis et al. J Am Chem Soc 70 1115 1948, Eaborn J Chem Soc 494 1953.] It is used for standardising MeLi or MeMgBr which form Me₃PhSi which is estimated by GC. [Maienthal et al. J Am Chem Soc 76 6392 1954, House & Respess J Organomet Chem 4 95 1965, Beilstein 16 IV 1475.] TOXIC and MOISTURE SENSITIVE.

Dioctyl phenylphosphonate [1754-47-8] **M 378.8, b 207%/4mm, d** $_{4}^{20}$ **1.485, n** 25 **1.4780.** Purify it as described for diisooctyl phenylphosphonate and distil under high vacuum. [*Beilstein* **16** IV 1069.]

(1,3-Dioxalan-2-ylmethyl)triphenylphosphonium bromide [52509-14-5] M 429.3, m 191.5-193°, 193-195°. Wash the crystals with Et₂O, dry them in a vacuum and recrystallise them from CH₂Cl₂/dry Et₂O to give prisms m 172-174°, which is raised to 191.5-193° on drying at 56°/0.5mm. [Cresp et al. *J Chem Soc, Perkin Trans 1* 37 1974.]

Diphenyldiselenide [1666-13-3] M 312.1, m 62-64. Crystallise it twice from hexane [Kice & Purkiss J Org Chem 52 3448 1987]. [Beilstein 6 IV 1781.]

Diphenyl hydrogen phosphate (diphenyl phosphate) [838-85-7] **M 250.2, m 99.5°, pK²⁰ 0.26.** Crystallise it from CHCl₃/pet ether. [Cherbuliez in *Organo Phosphorus Compounds* (Kosolapoff & Maier eds) Wiley Vol 6 pp 211-577 1973, *Beilstein* 6 IV 714.]

Diphenylmercury [587-85-9] **M 354.8, m 125.5-126^o, 128-129^o.** Sublime it, then crystallise it from nitromethane or ethanol. If phenylmercuric halides are present, they can be converted to phenylmercuric hydroxide which, being much more soluble, remain in the alcohol or *benzene used for crystallisation. Thus, crude material (10g) is dissolved in warm ethanol (*ca* 150mL) and shaken with moist Ag₂O (*ca* 10g) for 30minutes, then heated under reflux for 30minutes and filtered hot. Concentrating the filtrate by evaporation gives diphenylmercury, which is then recrystallised from *benzene [Blair et al. *J Chem Soc* 3174 *1959*]. [*Beilstein* **16** IV 1702.] **TOXIC.**

4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid, di-Na salt 3H_2O (bathophenanthrolinedisulfonic acid di-Na salt) [52746-49-3] **M 590.6, m 300°, pK**_{Est}~**0** (for free acid). Dissolve crude sample in the minimum volume of water and add EtOH to precipitate the contaminants. Carefully evaporate the filtrate to obtain pure material. It forms a dark red complex with Fe²⁺ with λ_{max} 535nm (ϵ 2.23 x 10^4 mol⁻¹ cm⁻¹) [Imasaka et al. *Anal Chim Acta* **115** 407 *1980*]. It is prepared by sulfonating bathophenanthroline with CISO₃H: to 100g of bathophenanthroline is added 0.5mL of Fe free CISO₃H and heated over a flame for 30seconds. Cool and carefully add 10mL of pure distilled H₂O and warm on a water bath with stirring till all solid dissolves. A stock solution is made by diluting 3mL of this reagent to 100mL with 45% aqueous NaOAc, filter off the solid and store in a dark bottle. In this way it is stable for several months. [Landers & Bennie *Am J Clinical Pathology* **29** 590 *1958*.]

Diphenylphosphinic acid [1707-03-5] **M 218.2, m 194-195**°, **pK**²⁰ **1.72.** Recrystallise it from 95% EtOH and dry it under vacuum at room temperature. [see Kosolapoff Organophosphorus Compounds J Wiley, NY, 1950, Kosolapoff and Maier Organic Phosphorus Compounds Wiley-Interscience, NY, 1972-1976, Beilstein **16** IV 1036.]

Diphenyl phosphoro chloridate (diphenyl phosphoryl chloride) [2524-64-3] M 268.6, b 141°/1mm, 194°/13mm, 314-316/272mm, d_4^{30} 1.2960, n_D^{35} 1.5490. Fractionally distil it in a good vacuum; better use a spinning band column. [Walsh *J Am Chem Soc* 81 3023 1959, IR: Bellamy & Beecher *J Chem Soc* 475 1952, Beilstein 6 IV 737.]

Diphenylsilane [775-12-2] **M** 184.3, b 75-76% 0.5mm, 113-114% 9mm, 124-126% 11mm, 134-135% 16mm, d_4^{20} 1.0027, n_D^{20} 1.5802. Dissolve it in Et₂O, mix slowly with ice-cold 10% AcOH. The Et₂O layer is then shaken with H₂O until the washings are neutral to litmus. Dry over Na₂SO₄, evaporate the Et₂O and distil the residual oil under reduced pressure using a Claisen flask with the take-off head modified into a short column. Ph₂SiH₂ boils at 257% 760mm, but it cannot be distilled at this temperature because exposure to air leads to flashing, decomposition and formation of silica. It is a colourless, odourless oil, miscible with organic solvents but not H₂O. A possible impurity is Ph₃SiH which has m 43-45° and would be found in the residue. [West & Rochow J Org Chem 18 303 1953, Benkhesser et al. J Am Chem Soc 74 648 1952, Gilman & Zuech J Am Chem Soc 81 5925 1959, Beilstein 16 IV 1366.]

Diphenylsilanediol [947-42-2] **M 216.3, m 148°(dec).** Recrystallise it from CHCl₃/methyl ethyl ketone. [*Beilstein* **16** IV 1523.]

Diphenyl *p*-tolyl phosphate [26444-49-5] M 340.3, m 18-29°, b 156-158°/0.002mm, n_D^{25} 1.5758. Distil it in a vacuum, then percolate it through a column of alumina. Finally, pass it through a packed column maintained at 150° to remove traces of volatile impurities in a countercurrent stream of nitrogen under reduced pressure. [Dobry & Keller J Phys Chem 61 1448 1947, Beilstein 6 IV 2130.]

Disodium calcium ethylenediaminetetraacetate [39208-14-5] **M 374.3**, (see pKs for EDTA in entry below). Dissolve it in a small amount of water, filter it and precipitate it with excess EtOH. Dry it at 80°. [Beilstein 4 IV 2451.]

Disodium dihydrogen ethylenediaminetetraacetic acid $(2H_2O)$ [6381-92-6] M 372.2, m 248°(dec), pK₁²⁵ 0.26 pK₂²⁵ 0.96, pK₃²⁵ 2.60, pK₄²⁵ 2.67, pK₅²⁵ 6.16, pK₆²⁵ 10.26 (see EDTA). Analytical reagent grade material can be used as primary standard after drying at 80°. Commercial

grade material can be purified by crystallisation from water or by preparing a 10% aqueous solution at room temperature, then adding ethanol slowly until a slight permanent precipitate is formed, filtering, and adding an equal volume of ethanol. The precipitate is filtered off onto a sintered-glass funnel, is washed with acetone, followed by diethyl ether, and dried in air overnight to give the *dihydrate*. Drying at 80° for at least 24hours converts it to the *anhydrous* form. [*Beilstein* **4** IV 2451.]

Disodium 4,5(1,8)-dihydroxynaphthalene-2,7(3,6)-disulfonate 2H₂O (Chromotropic acid di-Na salt) [5808-22-0] **M 400.3, m >300°, pK₁ 0.61(SO₃⁻), pK₂ 0.7(SO₃⁻), pK₃ 5.45(OH), pK₄ 15.5(OH).** Recrystallise it from H₂O or H₂O by adding EtOH. It complexes with Ag, ClO_3^- , Cr, Hg, NO_2^- , NO_3^- and Ti. [*Beilstein* 11 H 72, 11 I 307, 11 II 174, 11 III 174, 11 IV 576.]

Disodium ethylenebis(dithiocarbamate) (Nabam) [142-59-6] M 436.5, $pK_{Est} \sim 3.0$. It crystallises (as *hexahydrate*) from aqueous ethanol. It is a skin irritant. [*Beilstein* 4 III 149, 4 IV 234.]

Disodium-B-glycerophosphate [819-83-0 (4 H_2O), 13408-09-8 (5 H_2O)] M 216.0, m 102-104°, pK $_2^{25}$ 6.66 (free acid). Crystallise it from water. [Attwood et al. *Biochem J* 253 389 1988, *Beilstein* 1 IV 2766.]

Disodium magnesium ethylenediaminetetraacetate [14402-88-1] M 358.5, pK_1^{25} 0.26 pK_2^{25} 0.96, pK_3^{25} 2.60, pK_4^{25} 2.67, pK_5^{25} 6.16, pK_6^{25} 10.26 (see EDTA). Dissolve it in a small amount of water, filter and precipitate it with an excess of MeOH. Dry it at 80°. [Beilstein 4 IV 2450.]

Disodium naphthalene-1,5-disulfonate [1655-29-4] **M 332.3, pK**_{Est} ~0. Recrystallise it from aqueous acetone [Okahata et al. J Am Chem Soc 108 2863 1986]. [Beilstein 11 IV 561.]

Disodium 4-nitrophenylphosphate (6H₂O) [4264-83-9] **M 371.1** Dissolve it in hot aqueous MeOH, filter and precipitate it by adding Me₂CO. Wash the solid with Me₂CO and repeat the purification. Aqueous MeOH and Et₂O can also be used as solvents. The white fibrous crystals contain less than 1% of free 4-nitrophenol [assay: Axelrod J Biol Chem **167** 57 1947]. [Beilstein **6** IV 1327.]

Disodium phenylphosphate (2H₂O) [3279-54-7, 66778-08-3 (2H₂O)] M **254.1, pK** $_{1}^{25}$ **1.46, pK** $_{2}^{25}$ **6.29 [for PhPO(OH)**₂]. Dissolve it in a minimum amount of methanol, filtering off any insoluble residue of inorganic phosphate, then precipitate it by adding an equal volume of Et₂O. Wash the solid with Et₂O and dry it in a vacuum [Tsuboi *Biochim Biophys Acta* **8** 173 1952]. [*Beilstein* **6** IV 708.]

Disodium succinate [150-90-3] **M 162.1.** Crystallise it twice from water (1.2mL/g) and dry it at 125°. It has been freed from other metal ions by passage of a 0.1M solution through a column of Dowex resin A-1 (Na form). It is hygroscopic. [Beilstein 2 H 606, 2 IV 1908.]

Di-*p*-tolylmercury [50696-65-6, 537-64-4] **M 382.8, m 244-246°.** Crystallise it from xylene. [Whitmore et al. *Org Synth* Coll Vol **I** 231 *1941*, *Beilstein* **16** H 947, **16** I 667, **16** III 1329, **16** IV 1705.]

Di-*p*-tolyl phenylphosphonate [94548-75-1] **M** 388.3, n_D^{25} 1.5758. Purify as described under diisooctyl phenylphosphonate.

1,3-Divinyl-1,1,3,3-tetramethyldisiloxane [2627-95-4] M 186.4, m -99.7°, b 128-129°/atm, 139°/760mm, d_4^{20} 0.811, n_D^{20} 1.4122. Dissolve it in Et₂O, wash it with H₂O, dry it over CaCl₂, evaporate the solvent and distil the residue. It is an **IRRITANT**. [Kantor et al. J Am Chem Soc 77 1685 1955, Bazant & Matousek Collect Czech Chem Comm 24 3758 1959, Beilstein 4 IV 4080.]

Eosin B (Bluish, Eosin Scarlet, 4',5'-dibromo-2',7'-dinitrofluorescein disodium salt) [548-24-3] M 624.1, λ_{max} 514nm, CI 45400. Free it from inorganic halides by repeated crystallisation from butan-1-ol. [Beilstein 19/6 V 469.]

Eosin Y (as di-Na salt) (2',4',5',7'-tetrabrommofluorescein di-Na salt) [17372-87-1] **M 691.9.** Dissolve it in water and precipitate it by adding dilute HCl. The precipitate is washed with water, crystallised from ethanol, then dissolved in the calculated amount of dilute NaOH solution and evaporated to dryness on a water-bath. The purified disodium salt is then crystallised twice from ethanol [Parker & Hatchard *Trans Faraday Soc* **57** 1894 1961]. [*Beilstein* **19** III/IV 2917.] [Same as below.]

Eosin YS (Eosin Yellowish solution, 2',4',5'7'-tetrabromofluorescein di-Na salt) [17372-87-1] M 691.9, CI 45380. Dissolve it in the minimum volume of H₂O (1g/mL), filter and add EtOH until separation of salt is complete. Filter the solid off, wash it with absolute EtOH, then Et₂O and dry it first in air, then at 100°. It is used for staining blood cells and for estimating traces of Ag. [Selsted & Becker Anal Biochem 155 270 1986, El-Ghamry & Frei Anal Chem 40 1986 1968.] [Beilstein 19 III/IV 2917.] [See above]

Eriochrome Black T [3-hydroxy-7-nitro-4-(1-hydroxy-2-naphthylazo)naphthalene-1-sulfonic acid Na salt] [1787-61-7] M 416.4, A_{1cm}^{∞} (λ m a x) 656(620nm) at pH 10, using the dimethylammonium salt, pK₂²⁵ 5.81, pK₃²⁵ 11.55. The sodium salt (200g) is converted to the free acid by stirring with 500mL of 1.5M HCl, and, after several minutes, the slurry is filtered on a sintered-glass funnel. The process is repeated and the material is air dried after washing with acid. It is then extracted with *benzene for 12hours in a Soxhlet extractor, the *benzene solution is evaporated and the residue is air dried. A further desalting with 1.5M HCl (1L) is followed by crystallisation from dimethylformamide (in which it is very soluble) by forming a saturated solution at the boiling point, and allowing to cool slowly. The crystalline dimethylammonium salt so obtained is washed with *benzene and treated repeatedly with dilute HCl to give the insoluble *free acid* which, after air drying, is dissolved in alcohol, filtered and evaporated. The final material is air dried, then dried in a vacuum desiccator over Mg(ClO₄)₂. The purified acid is converted to the dimethylammonium salt with Me₂NH. [Diehl & Lindstrom, *Anal Chem* **31** 414 1959]. It is an indicator in the complexometry of alkaline earth metals. [*Beilstein* **16** IV 429.]

Eriochrome Blue Black B (Mordant Black 3, 3-hydroxy-4-(1-hydroxy-2-naphthylazo)naphthalene-1-sulfonic acid Na salt] [3564-14-5] **M 416.4, pK** $_{2}^{25}$ **7.0, pK** $_{3}^{25}$ **13,5.** Free it from metallic impurities by three precipitations from aqueous solution by addition of HCl. The precipitated dye is dried at 60° under vacuum and converted into the Na salt with the calculated amount of alkali. It is an indicator in the complexometry of Al, Fe and Zr. [*Beilstein* **16** III 319.]

Eriochrome Blue Black R (Palatine Chrome Black 6BN, Mordant Black 17, 3-hydroxy-4-(2-hydroxy-1-naphthylazo)naphthalene-1-sulfonic acid Na salt] [2538-85-4] M 416.4, pK_2^{25} 7.0, pK_3^{25} 13,5. Free it from metallic impurities by three precipitations from aqueous solution by addition of HCl. The precipitated dye is dried at 60° under vacuum and converted into the Na salt with the calculated amount of alkali. It is an indicator in the complexometry of Al, Fe and Zr. [Beilstein 16 H 297, 16 IV 428.]

Ethoxycarbonylmethylene triphenylphosphonium bromide [1530-45-6] M 429.3, m 155-155.5°, 158°(dec). Wash it with pet ether (b 40-50°) and recrystallise it from CHCl₃/Et₂O and dry it in a high vacuum at 65°. [Isler et al. *Helv Chim Acta* 40 1242 1957, Wittig & Haag *Chem Ber* 88 1654, 1664 1955.]

(Ethoxycarbonylmethylene)triphenylphosphorane [ethyl (triphenylphosphoranylidene)acetate] [1099-45-2] M 348.4, m 116-117°, 128-130°. Crystallise it by dissolving it in AcOH and adding pet ether (b 40-50°) to give colourless plates. UV λ_{max} ($A_{1mm}^{1\%}$): 222nm (865) and 268nm (116) [Isler et al. Helv Chim Acta 40 1242 1957]. [Beilstein 16 IV 977.]

Ethylarsonic acid [507-32-4] M 154.0, m 94-95°, 99.5°, pK₁ 4.72 (As(OH)O[•]), pK₂ 8.00 [AsO₂²⁻]. Crystallise it from ethanol. Also it dissolves in excess EtOH, filter off the insoluble matter (salts?), evaporate the filtrate to dryness and recrystallise the residue from small volumes of EtOH or H₂O. [Quick & Adams J Am Chem Soc 44 805 1922, Banks et al. J Am Chem Soc 69 927 1947, Beilstein 4 H 614, 4 II 997, 4 III 1823, 4 IV 3682.]

2-Ethyl-1,2-benzisoxazolium tetrafluoroborate [4611-62-5] **M 235.0, m 107-109°, 109.5-110.2°.** Recrystallise it from MeCN/EtOAc to give magnificent crystals. It is not hygroscopic but on long exposure to moisture it etches glass. It is light-sensitive and should be stored in brown glass bottles. UV (H₂O), λ max 258nm (ϵ 13 100) and λ max 297nm (ϵ 2 900), IR (CH₂Cl₂): ν max 1613 (C=N) and 1111-1000 (BF⁴₄) [UV, IR, NMR: Kemp & Woodward *Tetrahedron* **21** 3019 1965].

Ethylmercuric chloride [107-27-7] M 265.1, m 192.5°, 193-194°. Mercuric chloride can be removed by suspending ethylmercuric chloride in hot distilled water, filtering with suction onto a sintered-glass crucible and drying it. Then crystallise it from ethanol and sublime it under reduced pressure. It can also be crystallised from water. [Marvel et al. J Am Chem Soc 47 3009 1925.]

Ethylmercuric iodide [2440-42-8] M 356.6, m 182°, 186°. Crystallise it once from water (50mL/g). [See previous entry, Marvel et al. J Am Chem Soc 4 3009 1925.]

Ethyl Orange (sodium 4,4'-diethylaminophenylazobenzenesulfonate) [62758-12-7] M 355.4, pK_{Est} ~ 3.8. Recrystallise it twice from water. [*Beilstein* 16 IV 511.]

Ethyl trimethylsilylacetate [4071-88-9] M 160.3, b 75.5°/42mm, 157°/730mm, d_4^{20} 0.8762, n_D^{20} 1.4149. Purify it by distilling *ca* 10g of reagent through a 15cm, Vigreux column (p 11) and then redistilling it through a 21cm glass helices-packed column [Hauze & Hauser *J Am Chem Soc* 75 994 1953]. Alternatively, dissolve it in Et₂O, wash with H₂O, dilute Na₂CO₃, dry over Na₂CO₃, evaporate Et₂O, and distil it through a column of 15 theoretical plates. [Gold et al. *J Am Chem Soc* 70 2874 1948, Beilstein 4 IV 3974.]

Ethyl 3-(trimethylsilyl)propionate [17728-88-0] M 174.3, b 93°/40mm, 178°-180°/atm, d_4^{20} 0.8763, n_D^{20} 1.4198. Dissolve it in Et₂O, wash this with H₂O, dilute Na₂CO₃, dry (Na₂SO₄), evaporate Et₂O and fractionally distil. [Sommer & Marans J Am Chem Soc 72 1935 1950, Beilstein 4 IV 3975.]

Ethyl triphenylphosphonium bromide [1530-32-1] **M 371.3, m 203-205**^o. Recrystallise it from H₂O and dry it in high vacuum at 100^o. IR has bands at 1449, 1431 and 997cm⁻¹. [Wittig & Wittenberg Justus Liebigs Ann Chem **606** 1 1957, Bergmann & Dusza J Org Chem **23** 1245 1958, Beilstein **16** IV 982.]

Ethynyl tributylstannane [994-89-8] M 315.1, b 76% 2.2 mm, 130-135% 0.7 mm, 200% 2.2 mm, d_4^{20} 1.1113, n_D^{20} 1.4770. Purify it by dissolving the reagent (*ca* 50g) in heptane (250mL), washing it with H₂O (100mL), drying (MgSO₄), evaporating and distilling in a vacuum. It has IR: v_{max} 3280 (= C-H), 2950, 2850, 2005 (C=C), 1455, 1065 and 865 cm⁻¹. [Bottaro et al. *J Org Chem* 46 5221 *1981*, Stille & Simpson *J Am Chem Soc* 109 2138 *1987*, Zavgorodnii et al. *J Gen Chem USSR* (*Engl Edn*) 37 1469 *1967*.]

Ethynyl trimethylsilane [1066-54-2] M 98.2, b 53% atm, 52.5% atm, d_4^{20} 0.71, n_D^{20} 1.3871. Distil it through an efficient column. The IR has bands at v_{max} 2041 (C=C) and 3289 (=C-H) cm⁻¹. [Kröhnke & Goss Chem Ber 92 30 1959, Beilstein 4 IV 3937.]

Europium (III) acetate (2H₂O) [62667-64-5] **M 383.1, pK** $_{1}^{25}$ **8.31 (for aquo Eu**³⁺). Recrystallise it several times from water [Ganapathy et al. J Am Chem Soc 108 3159 1986]. [Beilstein 2 II 119.] For europium shift reagents see lanthanide shift reagents in "Aliphatic Compounds", Chapter 4.

Ferric (III) acetylacetonate [14024-18-1] **M 353.2, m 181.3-182.3**^o. When recrystallised twice from *benzene/pet ether, it has **m** 181.3-182.3^o corr [Finn et al. *J Chem Soc* 1256 1938]. However, when recrystallised from EtOH or Et₂O it has **m** 179^o [Hantzsch & Desch *Justus Liebigs Ann Chem* **323** 13 1902]. Recrystallisation from absolute EtOH gives material with **m** 159.5^o [Emmert & Jacob *Chem Ber* **67** 286 1934]. Dry it for 1hour at 120^o. [*Beilstein* **1** IV 606, **2** IV 1908.]

Ferrocene [102-54-5] **M 186.0, m 173-174°.** Purify it by crystallisation from pentane or cyclohexane (also C_6H_6 or MeOH can be used). It is moderately soluble in Et₂O and sublimes readily above 100°.

Crystallisation from EtOH gave material **m** 172.5-173°. [Wilkinson *Org Synth* Coll Vol **IV** 473 *1963*, Miller *J Chem Soc* 632 *1952*.] It has also been crystallised from methanol and sublimed *in vacuo*. [Saltiel et al. *J Am Chem Soc* **109** 1209 *1987*, *Beilstein* **16** IV 1783.]

Ferrocene carboxaldehyde [12093-10-6] **M 214.1, m 117-120°, 118-120°, 121°, 124.5°.** It forms red crystals from heptane/CH₂Cl₂, EtOH or pet ether and sublimes at 70°/1mm. The *cyanohydrin* has **m** 104° (from $C_{6}H_{6}/EtOH$). The *semicarbazone* has **m** 217-219°(dec) after recrystallisation from aqueous EtOH. The *oxime* provides two isomers from pet ether *viz* **m** 96-99° and **m** 155°. The *O-acetyloxime* has **m** 80-81° after recrystallisation from hexane [Lindsay & Hauser J Org Chem **22** 355 1957]. The 2,4-dinitrophenylhydrazone has **m** 248°(dec). [Beilstein **16** IV 1798, Graham et al. J Am Chem Soc **79** 3416 1957, Broadhead et al. J Chem Soc 650 1958.]

Ferrocene carboxylic acid [1271-42-7] M 230.1, m 210°(dec), 225-230°(dec), pK²⁰ 4.4 (H₂O), 6.29 (68% aqueous MeOH). It crystallises as yellow crystals from pet ether (m 225-230°dec), CHCl₃ (m 208.5°dec), toluene/pet ether (m 195-205°dec), or aqueous ethanol. [Matsue et al. *J Am Chem Soc* 107 3411 1985.] The acid chloride m 49° crystallises from pentane, and has λ_{max} at 458nm [Lau & Hart *J Org Chem* 24 280 1959]. The methyl ester crystallises from aqueous MeOH with m 70-71°. The anhydride has m 143-145° when recrystallised from pet ether [Acton & Silverstein *J Org Chem* 24 1487 1959]. The amide has m 168-170° when crystallised from CHCl₃/Et₂O or m 167-169° when crystallised from *C₆H₆/MeOH. [Arimoto & Haven *J Am Chem Soc* 77 6295 1955, Benkeser et al. *J Am Chem Soc* 76 4025 1954.] [Beilstein 16 IV 1807.]

Ferrocene-1,1'-dicarboxylic acid [1293-87-4] M 274.1, $m > 250^{\circ}(dec)$, $>300^{\circ}$, pK_1^{25} 3.9, pK_2^{25} 5.3. It crystallises in orange-yellow crystals from AcOH and sublimes above 230°. The monomethyl ester has m 147-149° [Nesmeyanov & Reutov Dokl Acad Nauk USSS 115 518 1957]. The dimethyl ester has m 114-115° [Woodward et al. J Am Chem Soc 74, 3458 1953]. The diacid chloride has m 92-93° when recrystallised from pet ether. [Nesmeyanov & Reutov Dokl Acad Nauk SSSR 120 1267 1958, Kazitsyna et al. Dokl Acad Nauk SSSR 127 333 1959, Beilstein 16 IV 1811.]

Ferrocene-1,1,-dimethanol [1291-48-1] **M 246.1, m 107-108°.** It is obtained from the diacid by LiAlH₄ reduction and recrystallised from Et₂O/pet ether. [Reinhart et al. J Am Chem Soc 82 4111 1960, Beilstein 16 IV 1795.]

Fluorotrimethylsilane (trimethylsilyl fluoride, TMSF) [420-56-4] M 92.2, m -74°, b 16°/760mm, 19°/730mm, d⁰ 0.793. It is a FLAMMABLE gas which is purified by fractional distillation through a column at low temperature and with the exclusion of air [Booth & Suttle J Am Chem Soc 68 2658 1946, Reid & Wilkins J Chem Soc 4029 1955]. [Beilstein 4 IV 4007.]

Germanium tetraethoxide [14165-55-0] M 252.8, m -72°, b 54.5°/5mm, 71-72°/11mm, 188-190°/722mm, d²⁵ 1.1288. Distil it through a 10cm Vigreux column (p 11) under reduced pressure. Alternatively distil it through a Fenske glass helices (p 11) column fitted with a total condensation variable take-off stillhead. Fractionate it under reduced pressure using a reflux ratio of 10:1. [Johnson & Fritz J Am Chem Soc 75 718 1953, Bradley J Chem Soc 4916 1956, Beilstein 1 IV 1308.]

Hexabutyldistannane [hexabutylditin, bis(tributyl)tin] [813-19-4] M 580.4, b 160-162°/0.3mm, d_4^{20} 1.148, n_D^{20} 1.512. Purify it by distilling it in a vacuum and store it in the dark. [Shirai et al. Yakugaku Zasshi 90 59 1970, Chem Abstr 72 90593 1970, Beilstein 4 I 590.]

Hexaethyldisiloxane [924-49-0] M 246.5, b 114-115%/16mm, 235.5%/760mm, d_4^{20} 0.8443, n_D^{20} 1.4330. Distil in a vacuum, but it can be distilled at atmospheric pressure without decomposition. It is characterised by completely dissolving in conc H₂SO₄. [Eaborn *J Chem Soc* 3077 1950, *Beilstein* 4 IV 4055.]

2,2,4,4,6,6-Hexamethylcyclotrisiloxane [1009-93-4] M 219.5, m -10°, b 81-82°/19mm, 111-112°/85mm, 188°/756mm, d_4^{20} 0.9196, n_D^{20} 1.448. Purify it by fractional distillation at atmospheric pressure until the temperature reaches 200°. It is *moisture sensitive*. The residue in the flask is mostly octamethylcyclotetrasilazane. [Brewer & Haber J Am Chem Soc 70 3888 1948, Beilstein 4 III 1887.]

Hexamethyldisilane [1450-14-2] **M 164.4, m 9-12°, b 113.1°/750mm, d** $_{4}^{20}$ **0.7272, n** $_{D}^{20}$ **1.4229.** The most likely impurity is trimethylchlorosilane (*cf* boiling point). Wash it with H₂O, cold conc H₂SO₄, H₂O again, then aqueous NaHCO₃, dry over CaSO₄ and fractionate at atmospheric pressure. [Brown & Fowles *J Chem Soc* 2811 1958.] A grossly impure sample (25% impurities) was purified by repeated spinning band distillation. This lowered the impurity level to 500ppm. The main impurity was identified as 1hydroxypentamethyldisilane. [*Beilstein* **4** IV 4277.]

Hexamethyldisilazane (HMDS) [999-97-3] M 161.4, b 125-125.6°/atm, 126°/760mm, d_4^{20} 0.7747, n_D^{20} 1.407. A possible impurity is Me₃SiCl. Wash it well with pet ether and fractionate it through a vacuum jacketed column packed with Helipac using a reflux ratio of 10:1. [Langer et al. *J Org Chem* 23 50 1958, *Beilstein* 4 IV 4014.]

Hexamethyldisiloxane [107-46-0] M 162.4, m -59°, b 99.4°/760mm, 100.4°/764mm, d_4^{20} 0.7633, n_D^{20} 1.3777. Fractionally distil through a column packed with glass helices with *ca* 15 theoretical plates. It is highly flammable and is an irritant. [Mills & McKenzie J Am Chem Soc 76 2672 1954, Csakvari et al. J Organometal Chem 107 287 1976, Beilstein 4 IV 4018.]

Hexamethylditin (hexamethyldistannane) [661-69-8] M 327.6, m 23.5°, b 85-88°/45mm, 182°/756mm, d²⁵ 1.57. Wash it with H₂O and extract with C_6H_6 , dry by filtering through powdered Na₂SO₄, remove C_6H_6 on a rotary evaporator and fractionally distil the oily residue under vacuum (b 85-88°/45mm). It boils at ca 182° at atmospheric pressure, but it cannot be distilled in air because the hot vapours flash in the condenser. [Kraus & Session J Am Chem Soc 47 2361 1925, Morris & Selwood J Am Chem Soc 63 2509 1941, Pedley et al. Trans Faraday Soc 53 1612 1957, Beilstein 4 IV 4346.]

Hexamethylphosphoric triamide (HMPA) [680-31-9] M 179.2, f 7.2°, b $68-70^{\circ}/1 \text{ mm}$, 235°/760mm, d $_{4}^{20}$ 1.024, n $_{D}^{20}$ 1.460. The industrial synthesis is usually by treatment of POCl₃ with excess of dimethylamine in isopropyl ether. Impurities are water, dimethylamine and its hydrochloride. It is purified by refluxing over BaO or CaO at about 4mm pressure in an atmosphere of nitrogen for several hours, then distilled from sodium at the same pressure. The middle fraction (b ca 90°) is collected, refluxed over sodium under reduced pressure under nitrogen and distilled. It is kept in the dark under nitrogen, and stored in solid CO₂. It can also be stored over 4A molecular sieves.

Alternatively, it is distilled under vacuum from CaH₂ at 60° and is crystallised twice in a cold room at 0° , seeding the liquid with crystals obtained by cooling in liquid nitrogen. After about two-thirds are frozen, the remaining liquid is drained off [Fujinaga et al. *Pure Appl Chem* **44** 117 *1975*]. For tests of purity see Fujinaga et al. in *Purification of Solvents*, Coetzee Ed., Pergamon Press, Oxford, 1982. For efficiency of desiccants in drying HMPA see Burfield and Smithers [*J Org Chem* **43** 3966 *1978*, Sammes et al. *J Chem Soc, Faraday Trans 1* 281 *1986*]. [*Beilstein* **4** IV 284.] CARCINOGEN.

Hexamethylphosphorous triamide (HMPT) [1608-26-0] M 163.2, m 7.2°, b 49-51°/12mm, 162-164°/12mm, d_4^{20} 0.989, n_D^{20} 1.466. It may contain more than 1% of phosphoric triamide. The yellow oil is first distilled at atmospheric pressure, then under reduced pressure and stored under N₂. It is air sensitive, **TOXIC**, and should not be inhaled. It is absorbed through the skin. [Mark *Org Synth* Coll Vol V 602 1973, *Beilstein* 4 IV 274.]

Hydroquinone-2-sulfonic acid K salt [21799-87-1] M 228.3, m 250°(dec), $pK_{Est(1)}\sim 1$, $pK_{Est(2)}\sim 8.5$, $pK_{Est(3)}\sim 11$. Recrystallise it from water or EtOH. [Beilstein 11 I 70, 11 II 170, 11 III 570.]

Hydroxynaphthol Blue tri-Na salt [63451-35-4] M 620.5, m dec on heating, $pK_{Est} < 0$. The crude material is treated with hot EtOH to remove soluble impurities, then dissolve in 20% aqueous MeOH and chromatographed on a cellulose powder column with propanol/EtOH/water (5:5:4) as eluent. The upper of

three zones was eluted to give the pure dye which is precipitated as the *monosodium salt trihydrate* by adding conc HCl to the concentrated eluate [Ito & Ueno Analyst **95** 583 1970]. It can be converted to the trisodium salt with the calculated amount of alkali.

Indigocarmine (2[1,3-dihydro-3-oxo-5-sulfo-2*H*-indol-2-ylidene]-2,3-dihydro-3-oxo-1*H*-indole-5-sulfonic acid di-Na salt) [860-22-0] M 466.4, pK_1^{20} 2.8, pK_2^{20} 12.3. Its solubility in H₂O is 1g/100mL at 25°. It has been purified by dissolving in H₂O, filtering and adding EtOH to cause the salt to separate. Wash the solid with EtOH, Et₂O and dry *in vacuo*. [Vörlander & Schubert Chem Ber 34 1860 1901, UV: Smit et al. Anal Chem 27 1159 1955, Preisler et al. J Am Chem Soc 81 1991 1959, Beilstein 25 IV 1975.]

Iodomethyl trimethylsilane [4206-67-1] M 214.1, b 139.5°/744mm, d_4^{20} 1.44, n_D^{25} 1.4917. If slightly violet in colour, wash it with aqueous 1% sodium metabisulfite, H₂O, dry (Na₂SO₄) it and fractionally distil it at 760mm. [Whitmore & Sommer J Am Chem Soc 68 481 1946, Beilstein 4 IV 3878.]

Iodotrimethylsilane (trimethylsilyl iodide, TMSI) [16029-98-4] M 200.1, b 106.8% 742mm, 107.5% 760mm, d_4^{20} 1.470. Add a little antimony powder and fractionate with this powder in the still. Stabilise the distillate with 1% wt of Cu powder. [Eaborn *J Chem Soc* 3077 1950, *Beilstein* 4 IV 4009.]

Iron (III) *meso-5*,10,15,20-tetraphenylporphine chloride complex [16456-81-8] M 704.0. Purify it by extraction from a thimble (Soxhlet) with CHCl₃. Concentrate the extract to *ca* 10mL and add *aa* 80mL of hot MeOH. Dark blue crystals separate on cooling. It can be recrystallised several times from CHCl₃/MeOH. Avoid prolonged heating. It is quite soluble in organic solvents but insoluble in pet ether. [Rothemund & Manotti J Am Chem Soc 70 1808 1948, UV: Dorough et al. J Am Chem Soc 73 4315 1951, *Beilstein* 26 III 1960.]

Isopropyldimethyl chlorosilane [3634-56-8] M 140.7, b 109.8-110.0°/738mm, d_4^{20} 0.88, n_D^{20} 1.4158. Probable impurity is Me₃SiCl (b 56.9°/783mm) which can be removed by efficient fractional distillation. [Sommer et al. J Am Chem Soc 76 801 1954, Beilstein 4 IV 4067.]

(2,3-O-Isopropylidene)-2,3-dihydroxy-1,4-bis-(diphenylphosphino)butane (DIOP) [4R,5S-(-)-32305-98-9, 4S,5R-(+)-37002-48-5] M 498.5, m 88-90°, $[\alpha]_{D}^{19}$ (-) and (+) 26° (c 2.3, CHCl₃), pK_{Est} ~ 4.5. It has been recrystallised from *C₆H₆/pet ether. After 2 recrystallisations from EtOH, it was pure by TLC on silica gel using Me₂CO/hexane as solvent. [Kagan & Dang J Am Chem Soc 94 6429 1972.]

Lanthanide shift reagents See in "Aliphatic Compounds", Chapter 4, europium (III) acetate above and $Eu(tmc)_3$ and $Eu(tfc)_3$ below.

N-Lauroyl-*N*-methyltaurine sodium salt (sodium *N*-decanoyl-*N*-methy-2-aminoethane sulfonate) [4337-75-1] M 343.5, $pK_{Est} \sim 1.5$. It is prepared from methyldecanoate (at 180° under N₂) or decanoyl chloride and sodium *N*-methylethane sulfonate and purified by dissolving it in H₂O and precipitating by addition of Et₂O. It decomposes on heating. [Desseigne & Mathian *Mém Services Chim Etat Paris* 31 359 1944, cf. *Chem Abstr* 41 705 1947.]

Lead II acetate (sugar of lead) [301-04-2 (anhydrous), 6080-56-4 (3H₂O)] M 325.3, m 280°, pK_1^{25} 7.1 (for Pb²⁺), pK_2^{25} 10.1 (HPbO₂⁻), pK_3^{25} 10.8 (PbO₂²⁻). Crystallise it twice from anhydrous acetic acid and dry it under vacuum for 24hours at 100°. The solubility in H₂O is 63% (at ~20°) and 200% (at boiling point). [*Beilstein* 2 IV 118.]

Lead (bis-cyclopentadienyl) (plumbocene) [1294-74-2] M 337.4. Purify it by vacuum sublimation. Handle and store it under N₂. [Dave et al. J Chem Soc 3686 1979, Beilstein 16 IV 1614.] Lead diethyldithiocarbamate [17549-30-3] M 503.7, pK_1^{25} 3.36 (for *N*,*N*-diethyldithiocarbamate). Wash it with H₂O and dry it at 60-70°, or dissolve it in the minimum volume of CHCl₃ and add the same volume of EtOH. Collect the solid that separates and dry it as before. Alternatively, recrystallise it by slow evaporation of a CHCl₃ solution at 70-80°. Filter the crystals, wash them with H₂O until all Pb²⁺ ions are eluted (check by adding chromate) and then dry it at 60-70° for at least 10hours. [Lo et al. *Analyt Chem* **49** 1146 *1977*.]

Lead tetraacetate [546-67-6] M 443.2, m 175-180°. Colourless prisms or needles purified by dissolving in hot glacial acetic acid containing a little acetic anhydride, treated with decolorising charcoal, collected on a hot water funnel or preheated Buchner funnel with the minimum contact with moist air and dried in a vacuum desiccator over KOH pellets. Store it in a well-stoppered vessel as it is decomposed by moisture to form brown PbO₂. It attacks skin, is soluble in hot AcOH, $*C_6H_6$, CHCl₃, tetrachloroethane and is used as a powerful oxidising agent. [Bailar *Inorg Synth* I 42 *1939*, Baudler in *Handbook of Preparative Inorganic Chemistry (Ed. Brauer)* Academic Press Vol I p 767 *1963*, *Beilstein* 2 IV 118.]

Lissamine Green B {1-[bis-(4,4'-dimethylaminophenyl)methyl]-2-hydroxynaphthalene-3,6disulfonic acid sodium salt, Acid Green 50} [3087-16-9] M 576.6, m >200°(dec), CI 44090, λ max 633nm. Crystallise it from EtOH/water (1:1, v/v). Irritant. [Beilstein 14 II 574.]

Lissapol C (mainly sodium salt of 9-octadecene-1-sulfate) [2425-51-6]. Reflux it with 95% EtOH, then filter to remove insoluble inorganic electrolytes. The alcoholic solution is then concentrated, and the residue is poured into dry acetone. The precipitate is filtered off, washed in acetone and dried under vacuum [Biswas & Mukerji J Phys Chem 64 1 1960].

Lissapol LS (mainly sodium salt of anisidine sulfate) [28903-20-0]. Refluxed with 95% EtOH, then filtered to remove insoluble inorganic electrolytes. The alcoholic solution was then concentrated, and the residue was poured into dry acetone. The precipitate was filtered off, washed in acetone and dried under vacuum [Biswas & Mukerji J Phys Chem 64 1 1960].

Lithium benzoate [553-54-8] M 128.1. Crystallise it from EtOH (13mL/g) by partial evaporation. [Beilstein 9 I 107, 9 IV 279.]

Lithium diisopropylamide [4111-54-0] M 107.1, b 82-84% atm, 84% atm, d^{22} 0.722, flash point -6%. It is purified by refluxing over Na wire or NaH for 30minutes and then distilled into a receiver under N₂. Because of the low boiling point of the amine, a dispersion of NaH in mineral oil can be used directly in this purification without prior removal of the oil. It is HIGHLY FLAMMABLE, and is decomposed by air and moisture. [Wittig & Hesse Org Synth 50 69 1970, Beilstein 4 H 154, 4 I 369, 4 II 630, 4 III 274, 4 IV 510.]

Lithium dodecylsulfate [2044-56-6] **M 272.3.** Recrystallise this detergent twice from absolute EtOH and dry it under vacuum. Critical Micellar Concentration (CMC) in H₂O is 8.77 x 10^{-3} M. [Mukerjee et al. J *Phys Chem* **71** 4166 1967, Mysels & Dulin J Colloid Sci **10** 461 1955, Beilstein **1** IV 1847.]

Lithium formate (H₂O) [6108-23-2 (H₂O), 556-63-8 (anhydrous)] M 70.0, d_4^{20} 1.46. Crystallise it from hot water (0.5mL/g) by chilling. [*Beilstein* 2 III 22, 2 IV 13.]

Lithium methylate (lithium methoxide) [865-34-9] **M 38.0.** The most probable impurity is LiOH due to hydrolysis by moisture. It is important to keep the sample dry. It can be dried by keeping in a vacuum at 60-80° under dry N₂ using an oil pump for a few hours. Store it under N₂ in the cold. It should not have bands above 3000 cm⁻¹, IR has v_{max} 1078, 2790, 2840 and 2930 cm⁻¹ in KBr. [Suebold *J Org Chem* **21** 156 1956, Beilstein **1** IV 1220, 1241.]

Lithium picrate [18390-55-1] M 221.0. Recrystallise it three times from EtOH and dry it under vacuum at 45° for 48hours [D'Aprano & Sesta J Phys Chem 91 2415 1987]. [Beilstein 6 H 276, 6 II 263, 6 III 880, 6 IV 1390.] The necessary precautions should be taken in case of EXPLOSION.

Lithium salicylate [552-38-5] M 144.1. Recrystallise it from EtOH (2mL/g) by partial evaporation. [*Beilstein* 10 H 59, 10 II 32, 10 III 93, 10 IV 126.]

Lithium trimethylsilanolate (trimethylsilanol Li salt) [2004-14-0] M 96.1, m 120°(dec in air). Wash it with Et₂O and pet ether. It sublimes at 180°/1mm as fine transparent needles. [Tatlock & Rochnow J Org Chem 17 1555 1952, Beilstein 4 IV 3992.] Suspected CARCINOGEN.

Magnesium acetate [142-72-3 (anhydrous), 16674-78-5 ($4H_2O$)] **M 214.5, m 80°.** Crystallise it from anhydrous acetic acid, then dry it under vacuum for 24hours at 100°. [Nencollas J Chem Soc 744 1956, Beilstein 2 IV 113.]

Magnesium benzoate $(3H_2O)$ [553-70-8] M 320.6, m ~200°. Crystallise it from water (6mL/g) between 100° and 0°. [Beilstein 9 III 376, 9 IV 280.]

Magnesium dodecylsulfate [3097-08-3] M 555.1. Recrystallise it three times from EtOH and dry it in a vacuum. [Beilstein 1 I 1788, 1 IV 1849.]

Magnesium ethylate (magnesium ethoxide) [2414-98-4] **M 114.4.** Dissolve *ca* 1g of solid in 12.8mL of absolute EtOH and 20mL of dry xylene and reflux in a dry atmosphere (use CaCl₂ in a drying tube at the top of the condenser). Add 10mL of absolute EtOH and cool. Filter the solid under dry N₂ and dry it in a vacuum. Alternatively dissolve it in absolute EtOH and pass it through molecular sieves (40 mesh) under N₂, evaporate under N₂, and store it in a tightly stoppered container. [Smith & Wiley J Am Chem Soc **68** 889 1946, Beilstein **1** III 1283.]

Magnesium D-gluconate [3632-91-5] **M 414.6**, $[\alpha]_{546}^{20}$ +13.5°, $[\alpha]_D^{20}$ +11.3° (c 1, H₂O). Crystallise it from dilute EtOH to give *ca* trihydrate, and then dry it at 98° in high vacuum. It is insoluble in EtOH, and the solubility in H₂O is 16% at 25°. [Prescott et al. *Ind Eng Chem* **45** 338 1953, *Beilstein* **3** IV 1256.]

Magnesium ionophore I (ETH 1117), (*N*,*N*'-diheptyl-*N*,*N*'-dimethyl-1,4-butanediamide) [75513-72-3] M 340.6. Purify it by flash chromatography (at 40 kPa) on silica and eluting with EtOH/hexane (4:1). IR has v(CHCl₃) 1630cm⁻¹. [Eene et al. *Helv Chim Acta* 63 2271 *1980*.] It is a good magnesium selectophore compared with Na, K and Ca [Lanter et al. *Anal Chem* 52 2400 *1980*].

Magnesium ionophore II (ETH 5214), [N,N''-octamethylene-bis(N'-heptyl-N''-methyl methylmalonamide)] [119110-37-1] M 538.8. The reagent (*ca* 700mg) can be purified by flash chromatography on Silica Gel 60 (30g) and eluting with CH₂Cl₂/Me₂CO (4:1). [Hu et al. *Anal Chem* 61 574 1989.]

Magnesium lactate [18917-37-1] **M 113.4.** Recrystalise the salt from water (6mL/g) between 100° to 0°. [*Beilstein* **3** IV 636.]

Magnesium succinate [556-32-1] **M 141.4.** Recrystallise the salt from water (0.5mL/g) between 100° and 0°. [*Beilstein* **2** IV 1912.]

Magnesium trifluoromethanesulfonate [60871-83-2] M 322.4, m >300°. Wash it with CH₂Cl₂ and dry it at 125°/2hour and 3mmHg. [Corey & Shimoji *Tetrahedron Lett* 24 171 1983, *Beilstein* 3 IV 34.]

Magon [3-hydroxy-4-(hydroxyphenylazo)-2-naphthoyl-2,4-dimethylanilide, Xylidyl Blue II] [523-67-1] M 411.5, m 246-247°. Suspend it in H₂O and add aqueous NaOH until it dissolves, filter and acidify with dilute HCl. Collect the dye, dissolve it in hot EtOH (solubility is 100mg/L at *ca* 25°) concentrate to a small volume and allow to cool. The solubility of the Na salt in H₂O is 0.4mg/mL. [Mann & Yoe Anal Chim Acta 16 155 1957, Mann & Yoe Anal Chem 28 202 1956.]

Manganese (II) acetylacetone [14024-58-9] **M 253.2, m ~250°, 261°(dec).** Purify it by stirring 16g of reagent for a few minutes with 100mL absolute EtOH and filter by suction as rapidly as possible through coarse filter paper. Sufficient EtOH is added to the filtrate, to make up for the loss of EtOH and to redissolve any solid that separates. Water (15mL) is added to the filtrate, and the solution is evaporated with a stream of N₂ until reduced to half its volume. Cool for a few minutes and filter off the yellow crystals, dry them under a stream of N₂, then in a vacuum at room temperature for 6-8hours. These conditions are important for obtaining the *dihydrate*. A vacuum to several mm of Hg or much lower pressure for several days produces the *anhydrous complex*. The degree of hydration can be established by determining the loss in weight of 100g of sample after heating for 4hours at 100° and <20mmHg. The theoretical loss in weight for 2H₂O is 12.5%. The material sublimes at 200°/2mm. It is soluble in heptane, MeOH, EtOH or *C₆H₆ at 30°. [Charles *Inorg Synth* **VI** 164 *1960*, Fernelius & Biswas *Inorg Synth* **V** 105 *1957*, *Beilstein* **3** II 3122.]

Manganous acetate (4H₂O) [6156-78-1 (4H₂O), 638-38-0 (anhydrous)] M 245.1, m 80°, d_4^{20} 1.59, pK²⁵ 10.59 (for Mn²⁺ hydrolysis). Crystallise it from water acidified with acetic acid. [Beilstein 2 IV 120.]

Manganous ethylenebis(dithiocarbamate) (Maneb) [12427-38-2] M 265.3, pK_{Est} ~ 3.0 (for -NCSSH). Crystallise this fungicide from EtOH. It is soluble in CHCl₃. It is a skin irritant. [Beilstein 4 III 149, 4 IV 234.]

Manganous lactate ($3H_2O$) [6505-50-6 3 H_2O , 51877-53-3 (xH_2O)] **M 287.1.** Recrystallise it from water. [IR: Ranade & Biswas J Indian Chem Soc 44 314 1967, Beilstein 3 IV 637.]

2-Mercaptopyridine *N*-oxide sodium salt (pyridinethione or pyrithione sodium salt) [3811-73-2] M 149.1, m ~250°(dec), pK_1 -1.95, pK_2 4.65. When recrystallised from water, it assayed as 98.7% based on AgNO₃ titration [Krivis et al. *Anal Chem* 35 966 *1963*; see also Krivis et al. *Anal Chem* 48 1001 *1976*, and Barton & Crich J Chem Soc, Perkin Trans 1 1603, 1613 *1986*]. [Beilstein 21/7 V 151.]

Mercuric acetate [1600-27-7] M 318.7, pK₁²⁵ 2.47, pK₂²⁵ 3.49 (for Hg²⁺ hydrolysis). Recrystallise it from glacial acetic acid. POISONOUS. [Beilstein 2 IV 114.]

Mercury(II) bis(cyclopentadienyl) [18263-08-6] M 330.8 starts to dec at ~60° but melts at 83-85°. The pale yellow crystals can be purified by low-temperature (-78°) recrystallisation from Et₂O. Store it at low temperature in the dark as it decomposes slowly at room temperature even in the dark. It reacts with FeCl₂ in tetrahydrofuran to give ferrocene quantitatively. It is soluble in Et₂O, $*C_6H_6$, CHCl₃, CCl₄, and most organic solvents. [Campbell et al. J Am Chem Soc 94 8387 1972, Wilkinson & Piper J Inorg Nucl Chem 2 32, 36 1956, Piper & Wilkinson J Inorg Nucl Chem 3 104,106 1956, Beilstein 16 IV 1702.]

Mercury dibromofluorescein {mercurochrome, merobromin, $[2',7'-dibromo-4'-(hydroxy-mercurio)-fluorescein di-Na salt]} [129-16-8] M 804.8, m>300°. The Na salt is dissolved in the minimum volume of H₂O, or the free acid suspended in H₂O and dilute NaOH is added to cause it to dissolve, filter and acidify it with dilute HCl. Collect the precipitate, wash it with H₂O by centrifugation and dry it in a vacuum. The di Na salt can be purified by dissolving it in the minimum volume of H₂O and is precipitated by adding EtOH, filter, wash it with EtOH or Me₂CO and dry it in a vacuum. Its solubility in 95% EtOH is 2% and in MeOH it is 16%. [White J Am Chem Soc 42 2355 1920.]$

Mercury Orange [1-(4-chloromercuriophenylazo)-2-naphthol] [3076-91-3] M 483.3, m 291.5-293°(corr) with bleaching. Wash it several times with boiling 50% EtOH and recrystallise it from 1-butanol (0.9g/L of boiling alcohol). The fine needles are insoluble in H₂O but slightly soluble in cold alcohols, CHCl₃ and soluble in aqueous alkalis. [Chaikin J Am Chem Soc 70 3522 1948.]

Mercury(II) trifluoroacetate [13257-51-7] M 426.6. Recrystallise it from trifluoroacetic anhydride/trifluoroacetic acid [Lan & Kochi J Am Chem Soc 108 6720 1986]. [Beilstein 2 IV 458.] It is very TOXIC and hygroscopic.

Metanil Yellow (3[{4-phenylamino}phenylazo]-benzenesulfonic acid) [587-98-4] M 375.4, pK_{Est} <0. It can be salted out from water three times with sodium acetate, then repeatedly extracted with EtOH [McGrew & Schneider J Am Chem Soc 72 2547 1950]. [Beilstein 16 II 168.]

(Methoxycarbonylmethyl)triphenylphosphorane [methyl (triphenylphosphoranylidene)acetate] [2605-67-6] M 334.4, m 162-163°, 169-171°. Crystallise it by dissolving in it AcOH and adding pet ether (b 40-50°) to give colourless plates. UV λ_{max} ($A_{lmm}^{1\%}$): 222nm (865) and 268nm (116) [Isler et al. *Helv Chim Acta* 40 1242 1957]. [*Beilstein* 16 IV 977.]

Methoxycarbonylmethyltriphenylphosphonium bromide [1779-58-4] M 415.3, m 163°, 165-170°(dec). Wash it with pet ether (b 40-50°), recrystallise it from CHCl₃/Et₂O and dry it at high vacuum at 65°. [Isler et al. *Helv Chim Acta* 40 1242 1957, Wittig & Haag *Chem Ber* 88 1654, 1664 1955, *Beilstein* 16 IV 981.]

Methoxymethyl trimethylsilane (trimethylsilylmethyl methyl ether) [14704-14-4] M 118.3, b 83°/740mm, d_4^{25} 0.758, n_D^{25} 1.3878. It forms an azeotrope with MeOH (b 60°). If it contains MeOH (check IR for bands above 3000cm⁻¹), then wash with H₂O and fractionate. A possible impurity could be chloromethyl trimethylsilane (b 97°/740mm). [Speier J Am Chem Soc 70 4142 1948, Beilstein 4 III 1844.] It is an IRRITATING FLAMMABLE liquid.

1-Methoxy-2-methyl-1-trimethylsiloxypropene (dimethyl ketene methyl trimethylsilyl acetal) [31469-15-5] M 174.3, b 121-122°/0.35mm, 125-126°/0.4mm, 148-150°/atm, d_4^{20} 0.86. Add Et₂O, wash with cold H₂O, dry (Na₂SO₄), filter, evaporate Et₂O, and distil the oily residue in a vacuum. [Ainsworth et al. J Organometal Chem 46 59 1972.]

*trans-***1-Methoxy-3-(trimethylsilyloxy)-1,3-butadiene (Danishefsky's diene)** [54125-02-9] **M 172.3, b 68-69°/14mm, 70-72°/16mm, d**²⁰₄ **0.885, n**²⁰_D **1.4540.** It may contain up to 1% of the precursor 4-methoxybut-4-ene-2-one. It is easily purified by distilling through a Vigreux column (p 11) in a vacuum and taking the middle fraction. [Danishefsky & Kitihara J Am Chem Soc 96 7807 1974, Danishefsky Acc Chem Res **14** 400 1981.]

Methylarsonic acid [124-58-3] M 139.9, m 159.8°, 161°, pK_1^{25} 4.58, pK_2^{25} 7.82 [As(OH)₂]. Recrystallise this herbicide from Me₂CO or absolute EtOH (white plates; its solubility is 28g/100mL EtOH). [Quick & Adams J Am Chem Soc 44 809 1922, Beilstein 4 H 613, 4 I 577, 4 II 996, 4 III 1822, 4 IV 3682.]

Methyl dichlorosilane (dichloro methylsilane) [75-54-7] M 115.0, m -92.5°, b 41°/748mm, 40.9°/760mm, 40-45°/atm, d_{27}^{27} 1.105. Impurities are generally other chloromethyl silanes. Distil it through a conventional Stedman column (p 11) of 20 theoretical plates or more. It should be protected from H₂O by storing over P₂O₅. [Stck & Somieski *Chem Ber* 52 695 1919, Sauer J Am Chem Soc 68 962 1946, *Beilstein* 4 IV 4096.]

Methylmercuric chloride [115-09-3] **M 251.1, m 167°, 170°.** Recrystallise it from absolute EtOH (20mL/g). λ_{max} at 206nm (ε 1.37). [See EtHgCl above; Breitinger et al. J Organomet Chem **256** 217 1983, Slotta et al. J Prakt Chem **120** 249 1929, Waugh et al. J Phys Chem **59** 395 1955, Beilstein **16** IV 1729.]

Methyl Orange (sodium 4,4'-dimethylaminophenylazobenzenesulfonate) [547-58-0] M 327.3, pK_1^{25} 3.56, pK_2^{25} 6.49. Recrystallise it twice from hot water, then wash it with a little EtOH followed by diethyl ether. It is an indicator: pH 3.1 (red) and pH 4.4 (yellow). [Beilstein 16 IV 510.]

Methylphenyl dichlorosilane (dichloro methyl phenylsilane) [149-74-6] M 191.1, b 114-115%/50mm, 202-205%/atm, d_4^{20} 1.17. Purify it by fractionation using an efficient column. It hydrolyses *ca* ten times more slowly than methyltrichlorosilane and *ca* sixty times more slowly than phenyltrichlorosilane. [Shaffer & Flanigen J Phys Chem 61 1591 1957, Beilstein 16 III 1211, 16 IV 1517.] **Methylphosphonic acid** [993-13-5] **M 96.0, m 104-106°, 105-107°, 108°, pK_1^{25} 2.12, pK_2^{25} 7.29. If it tests for Cl⁻, then add H₂O and evaporate to dryness, repeat several times till free from Cl⁻. The residue solidifies to a wax-like solid. Alternatively, dissolve the acid in the minimum volume of H₂O, add charcoal, warm, filter and evaporate to dryness in a vacuum over P₂O₅. [Kosolapoff** *J Am Chem Soc* **75** 3379 1953.] The *di-Na salt* is prepared from 24g of acid in 50mL of dry EtOH, and a solution of 23g Na dissolved in 400mL EtOH is added. A white precipitate is formed, but the mixture is refluxed for 30minutes to complete the reaction. Filter off the solid and recrystallise it from 50% EtOH. Dry the crystals in a vacuum desiccator. [Thompson *J Chem Soc* 3292 1952, Beilstein **4** IV 3498.]

Methylphosphonic dichloride [676-97-1] M 132.9, m 33°, 33-37°, b 53-54°/10mm, 64-67°/20.5mm, 86°/44mm, 162°/760mm, d_4^{40} 1.4382. Fractionally redistil it until the purity as checked by hydrolysis and acidimetry for Cl⁻ is correct and the distillate should solidify on cooling. [Kinnear & Perren J Chem Soc 3437 1952, Crofts & Kosolapoff J Am Chem Soc 75 3379 1952, for IR see McIvor et al. Can J Chem 34 1611 1956, Beilstein 4 IV 3509.]

Methyl Thymol Blue, sodium salt [1945-77-3] M 844.8, ε 1.89 x 10⁴ at 435nm, pH 5.5, pK₁²⁵ 3.0, pK₂²⁵ 3.3, pK₃²⁵ 3.8, pK₄²⁵ 7.4 (pK₄²⁵ 7.2), pK₅²⁵ 11.5 pK₆²⁵ 13.4. The starting material for synthesis is Thymol Blue. Purify it as for Xylenol Orange on in "Heterocyclic Compounds", Chapter 4. [Tereshin et al. J Anal Chem USSR (Engl Trans) 20 1138 1965, Körbl & Kakác Collect Czech Chem Commun 23 889 1958, Beilstein 19/8 V 2830.]

Methyl trichlorosilane [75-79-6] M 149.5, b 13,7°/101mm, 64.3°/710.8mm, 65.5°/745mm, 66.1°/atm, d_4^{20} 1.263, n_D^{20} 1.4110. If very pure, distil it before use. The purity is checked by ²⁹Si NMR (δ in MeCN is 13.14ppm with respect to Me₄Si). Possible contaminants are other silanes which can be removed by fractional distillation through a Stedman column (p 11) of >72 theoretical plates with total reflux and 0.35% take-off. This apparatus should be under N₂ gas at a rate of 12 bubbles/minute fed into the line using an Hg manometer to control the pressure. It is sensitive to H₂O. [Gillam et al. J Am Chem Soc 73 4252 1951, Olah et al. J Org Chem 48 3667 1983, Beilstein 4 IV 4212.]

Methyl triethoxysilane [2031-67-6] M 178.31, b 142-144.5°/742mm, 141°/765mm, 141.5°/775mm, d_4^{20} 0.8911, n_D^{20} 1.3820. Fractionate it repeatedly in a stream of N₂ through a 3' Heligrid packed Todd column (p 11). It is hydrolysed by H₂O and yields cyclic polysiloxanes on hydrolysis in the presence of acid in *C₆H₆. [Bee et al. *J Am Chem Soc* 77 1292 1955, Sprung & Guenther *J Am Chem Soc* 77 3990 1955, *Beilstein* 4 IV 4204.]

Methyl trimethoxysilane [1185-55-3] M 136.2, b 102%/760mm, d_4^{20} 1.3687, n_D^{20} 1.3711. Likely impurities are 1,3-dimethyltetramethoxy disiloxane (b 31%/1mm) and cyclic polysiloxanes, see methyl triethoxysilane. [Tamborski & Post J Org Chem 16 1400 1952, Seyferth & Rochow J Org Chem 20 250 1955, Beilstein 4 IV 4203.]

N-Methyl-*N*-trimethylsilylacetamide [7449-74-3] M 145.3, b 48-49°/11mm, 84°/13mm, 105-107°/35mm (solid at room temperature), d_4^{20} 0.90, n_D^{20} 1.4379. A likely impurity is Et₃N.HCl which can be detected by its odour. If it is completely soluble in *C₆H₆, then redistil; otherwise dissolve it in this solvent, filter and evaporate first in a vacuum at 12mm, then fractionate; all operations should be carried out in a dry N₂ atmosphere. [Klebe et al. *J Am Chem Soc* 88 3390 *1966*, Ried & Suarez-Rivero *Chem Ber* 96 1473 *1963*, *Beilstein* 4 IV 4011.]

Methyl trimethylsilylacetate [2916-76-9] M 146.3, b 65-68°/50mm, d_4^{20} 0.89. Dissolve it in Et₂O, shaken with 1M HCl, wash with H₂O, aqueous saturated NaHCO₃, H₂O again, and dry it (a precipitate may be formed in the NaHCO₃ solution and should be drawn off and discarded). The solvent is distilled off, and the residue is fractionated through a good column. IR (CHCl₃) v_{max} 1728cm⁻¹. [Fessenden & Fessenden J Org Chem 32 3535 1967, Matsuda et al. J Org Chem 45 237 1980, Beilstein 4 III 1855, 4 IV 3974 for Et ester.]

Methyl 2-(trimethylsilyl)propionate [55453-09-3] M 160.3, b 155-157°/atm, d_4^{20} 0.89. Dissolve it in Et₂O, wash it with aqueous NaHCO₃, H₂O, 0.1M HCl, H₂O again, dry (MgSO₄), evaporate and distil it. [Emde & Simchen Synthesis 867 1977, Oppolzer et al. *Tetrahedron* **39** 3695 1983, Crimmin et al. J Chem Soc Perkin Trans 1 541 1985.]

N-Methyl-N-trimethylsilyl trifluoroacetamide [24589-78-4] **M 199.3, b 78-79%** Tight trifluoroacetamide and 1% of other impurities which can be removed by gas chromatography or fractionating using a spinning band column. [Donike *J Chromatogr* **42** 103 *1969*, Donike *J Chromatogr* **103** 91 *1975*, *Beilstein* **4** IV 4011.]

Methyl triphenoxyphosphonium iodide [17579-99-6] **M 452.2, m 114**^o (sealed tube), **146**^o. Gently heat the impure iodide with good grade Me_2CO . The saturated solution obtained is decanted rapidly from undissolved salt and treated with an equal volume of dry Et_2O . The iodide separates as flat needles which are collected by centrifugation, washed several times with dry Et_2O , and dried in a vacuum over P_2O_5 . For this recrystallisation it is essential to minimise the time of contact with Me_2CO and to work rapidly and with rigorous exclusion of moisture. If the crude material is to be used, it should be stored under dry Et_2O , and dried and weighed *in vacuo* immediately before use. [Landauer & Rydon J Chem Soc 224 1953, Hudson et al. J Chem Soc Perkin Trans 1 982 1974, Beilstein **6** IV 704.]

Methyl triphenylphosphonium bromide [1779-49-3] M 357.3, m 229-230°(corr), 227-229°, 230-233°. If the solid is sticky, wash it with *C₆H₆ and dry it in a vacuum over P₂O₅. [Marvel & Gall J Org Chem 24 1494 1959, Chem Ber 87 1318 1954, Milas & Priesing J Am Chem Soc 79 6295 1957, Wittig & Schöllkopf Org Synth 40 66 1960.] The iodide, on recrystallisation from H₂O, has m 187.5-188.5° [Mann et al. J Chem Soc 1130 1953, Wittig & Geissler Justus Liebigs Ann Chem 580 44 1953]. [Beilstein 16 IV 981.]

Methyl vinyl dichlorosilane (dichloro methyl vinyl silane) [124-70-9] M 141.1, b 43-45.5%/11-11.5mm, 91%/742mm, 92.5%/743.2mm, 92.5-93%/atm, d_4^{20} 1.0917, n_D^{20} 1.444. Likely impurities are dichloromethylsilane, butadienyl-dichloromethylsilane. Fractionate the silane through a column packed with metal filings (20 theoretical plates) at atmospheric or reduced pressure. [*Izv Akad Nauk SSSR Ser Khim* 1474 *1957* and 767 *1958*, *Beilstein* **4** III 1894, **4** IV 4184.]

Milling Red SWB {1-[4-[4-toluenesulfonyloxy]phenylazo](3,3'dimethyl-1,1'-biphenyl)-4'-azo]-2-hydroxynaphthalene-6,8-disulfonic acid di-Na salt, Acid Red 114} [6459-94-5] M 830.8, m dec >250°, CI 23635, λ max ~514nm. Salt out three times with sodium acetate, then repeatedly extract it with EtOH and dry the solid in air. [McGrew & Schneider J Am Chem Soc 72 2547 1950, Beilstein 16 II 140.] See Solochrome Violet R in "Aromatic compounds", Chapter 4.

Milling Yellow G [51569-18-7]. Salted out three times with sodium acetate, then repeatedly extracted with EtOH. [McGrew & Schneider J Am Chem Soc 72 2547 1950, Beilstein 16 II 125.] See Solochrome Violet R in "Aromatic compounds", Chapter 4.

Monoperoxyphthalic acid magnesium salt 6H₂O. (MMPP) [84665-66-7] M 494.7, m ~93°(dec). MMPP is a safer reagent than *m*-chloroperbenzoic acid for oxidation reactions because it is not as explosive and has advantages of solubility. It is soluble in H₂O, low-molecular-weight alcohols, *i*-PrOH and DMF. The product of reaction, Mg phthalate, is soluble in H₂O. It has been used in aqueous phase to oxidise compounds in e.g. CHCl₃ and using a phase transfer catalyst, e.g. methyltrioctylammonium chloride [Brougham *Synthesis* 1015 *1987*]. The oxidising activity can be checked (as for perbenzoic acid in Silbert et al. *Org Synth* Coll Vol V 906 *1973*], and if found to be low it would be best to prepare afresh from phthalic anhydride (1mol), H₂O₂ (1mol) and MgO at 20-25° to give MMPP. [Hignett, European Pat Appl 27 693 *1981*, *Chem Abstr* **95** 168810 *1981*, *Beilstein* **9** IV 3260.]

Naphthalene Scarlet Red 4 R [1-(4-sulfonaphthalene-1-azo)-2-hydroxynaphthalene-6,8disulfonic acid tri-Na salt, New Coccine, Acid Red 18] [2611-82-7] M 604.5, m >250°(dec), CI 16255, λ max 506nm. Dissolve the dye in the minimum quantity of boiling water, filter and enough EtOH is added to precipitate *ca* 80% of the dye. This process is repeated until a solution of the dye in aqueous 20% pyridine has a constant extinction coefficient. [*Beilstein* 16 I 306.]

Naphthol Yellow S (citronin A, flavianic acid sodium salt, 8-hydroxy-5,7-dinitro-2naphthalene sulfonic acid disodium salt) [846-70-8] M 358.2, m dec on heating. It is a watersoluble greenish yellow powder. The *free sulfonic acid* can be recrystallised from dilute HCl (m 150°) or AcOH/EtOAc (m 148-149.5°). The disodium salt is then obtained by dissolving the acid in two equivalents of aqueous NaOH and evaporating to dryness and drying the residue in a vacuum desiccator. The sodium salt can be recrystallised from the minimum volume of H₂O or from EtOH [Dermer & Dermer J Am Chem Soc 61 3302 1939]. [Beilstein 11 III 542.]

1,2-Naphthoquinone-4-sulfonic acid sodium salt (**3,4-dihydro-3,4-dioxo-1-naphthlene sulfonic acid sodium salt**) [521-24-4] **M 260.2, pK**_{Est} <0. It forms yellow crystals from aqueous EtOH and should be dried at 80° in vacuo. Its solubility in H₂O is 5% [Martin & Fieser Org Synth Coll Vol III 633 1955, Danielson J Biol Chem **101** 507 1933, UV: Rosenblatt et al. Anal Chem **27** 1290 1955]. [Beilstein **11** IV 668.]

1-Naphthyl phosphate disodium salt [2183-17-7] M 268.1, pK_1^{25} 0.97, pK_2^{25} 5.85 (for free acid). The free acid has m 157-158° (from Me₂CO/*C₆H₆). The *free acid* is recrystallised several times by adding 20 parts of boiling *C₆H₆ to a hot solution of 1 part of *free acid* and 1.2 parts of Me₂CO. It has m 157-158°. [Chanley & Ferguson J Am Chem Soc 77 4002 1955.] The monosodium salt is precipitated from a solution of the acid phosphate in MeOH by addition of an equivalent of MeONa in MeOH. [Friedman & Seligman J Am Chem Soc 72 624 1950, Beilstein 6 IV 4226.] See also entry on p 688 in Chapter 6.

2-Naphthyl phosphate monosodium salt [14463-68-4] **M 246.1, m 203-205°, pK_1^{25} 1.25,** pK_2^{25} **5.83 (for free acid).** Recrystallise it from H₂O (10mL) containing NaCl (0.4g). The salt is collected by centrifugation and dried in a vacuum desiccator, **m** 203-205° (partially resolidifies and re-melts at 244°). It crystallises from MeOH (**m** 222-223°). The free acid is recrystallised several times by addition of 2.5 parts of hot CHCl₃ to a hot solution of the free acid (1 part) in Me₂CO (1.3 parts), **m** 177-178°. [Friedman & Seligmann J Am Chem Soc **73** 5292 1951, Chanley & Feaggeson J Am Chem Soc **77** 4002 1955, Beilstein **6** H 647, **6** III 2989, **6** IV 428.] See also entry on p 688 in Chapter 6.

Neopentoxy lithium [3710-27-8] M 94.1. Recrystallise it from hexane [Kress & Osborn J Am Chem Soc 109 3953 1987]. [Beilstein 1 H 406, 1 I 201, 1 II 435. 1 III 1448, 1 IV 1690, for alcohol and Al and Fe neopentoxides.]

New Methylene Blue N (2,8-dimethyl-3,7-bis(ethylamino)phenothazinium chloride 0.5 ZnCl₂) [6586-05-6] M 416.1, m >200°(dec), pK₁ 3.54, pK₂ 4.82. Crystallise the dye from *benzene/MeOH (3:1). [Beilstein 27 IV 5163.]

Nickel (II) acetate (4H₂O) [6018-89-9] M 248.9, d_4^{20} 1.744, pK_1^{25} 8.94 (from Ni²⁺ hydrolysis). The acetate crystallises from aqueous AcOH as the green *tetrahydrate salt*. It is soluble in 6 parts of H₂O. It forms lower hydrates and should be kept in a well-sealed container. [Hardt & Pohlmann Z Anorg Allgem Chem 343 92 1966, Beilstein 2 IV 120.]

Nickel (II) acetylacetonate [3264-82-2] M 256.9, m 229-230°, b 220-235°/11mm, d¹⁷ 1.455. Wash the green solid with H₂O, dry it in a vacuum desiccator and recrystallise it from MeOH. [Charles & Pawlikowski *J Phys Chem* 62 440 1958.] The complex can be conveniently dehydrated by azeotropic distillation with toluene, and the crystals may be isolated by concentrating the toluene solution. [Wilkinson et al. *J Am Chem Soc* 76 1970 1954, *Beilstein* 1 IV 3677.]

Nickelocene [bis-(cyclopentadienyl)nickel II] [1271-28-9] M 188.9, m 173-174^o(under N₂). Dissolve the complex in Et₂O, filter and evaporate in a vacuum. Purify it rapidly by recrystallisation from pet ether using a solid CO₂/Me₂CO bath, m 171-173^o(in an evacuated tube). Also purify it by vacuum sublimation. [Wilkinson et al. J Am Chem Soc 76 1970 1954, Beilstein 16 IV 1831.]

Nickel (II) phthalocyanine [14055-02-8] M 571.3, m >300°. Wash it well with H₂O and boiling EtOH and sublime it at high vacuum in a slow stream of CO₂. A special apparatus is used (see reference), with the phthallocyanine being heated to red heat. The sublimate is in the form of needles with an extremely bright red lustre. The powder is dull greenish blue in colour. [Barrett et al. J Chem Soc 1719 1936, Beilstein 26 III/IV 4255.]

Nickel 5,10,15,20-tetraphenylporphyrin [14172-92-0] M 671.4, λ_{max} 414(525)nm. Purify it by chromatography on neutral (Grade I) alumina, followed by recrystallisation from CH₂Cl₂/MeOH [Yamashita J Phys Chem 91 3055 1987]. [Beilstein 26 III/IV 1960.]

p-Nitrobenzenediazonium fluoroborate [456-27-9] M 236.9. It crystallises from water. [Whetsch et al. J Am Chem Soc 78 3360 1956, Beilstein 16 IV 816.] It can be EXPLOSIVE when dry.

2-Nitrophenol-4-arsonic acid (4-hydroxy-3-nitrophenylarsonic acid) [121-19-7] M 263.0, $pK_{Est(1)} \sim 4.4 \text{ As}(O) \cdot (OH) \cdot (O^{\circ}), pK_{Est(2)} \sim 7.4$ (phenolic OH), $pK_{Est(3)} \sim 7.7$ (As(O)-2(O^{\circ}). It crystallises from water and is used for the spectroscopic detection of Zn. [Beilstein 16 II 468, 16 III 1073, 16 IV 1188.]

1-Nitroso-2-naphthol-3,6-disulfonic acid, di-Na salt, hydrate (Nitroso-R-salt) [525-05-3] M 377.3, m >300°, $pK_{Est(1)}<0$ (SO₃⁻), $pK_{Est(2)}\sim7$ (OH). Purify the salt by dissolution in aqueous alkali and precipitation by addition of HCl. The pKa is 7.13. [Oka & Miyamoto *J Chem Soc Jpn* (Pure Chem Sectn) 76 672 1955 (*Chem Abstr* 11882 1956I), *Beilstein* 11 IV 669.]

Nuclear Fast Red (1-amino-2,4-dihydroxy-5,10-anthraquinone-3-sulfonic acid Na Salt) [6409-77-4] M 357.3, m >290°(dec), λ_{max} 518nm. A solution of 5g of the dye in 250mL of warm 50% EtOH is cooled to 15° for 36hours, then filtered on a Büchner funnel, washed with EtOH until the washings are colourless, then with 100mL of Et₂O and dry it over P₂O₅ *in vacuo*. It is a biological stain which is also used for the estimation of Ca. [Kingsley & Robnett Anal Chem 33 552 1961.]

Octadecyl isonicotinate See hydrogen ionophore IV, ETH 1778 in "Heterocyclic Compounds", Chapter 4.

Octadecyl trichlorosilane [112-04-9] M 387.9, b 159-162°/13mm, 185-199°/2-3mm, d_4^{30} 0.98. Purify it by fractional distillation at high vacuum. [Winstein & Seubold J Am Chem Soc 69 2916 1947, Beilstein 4 IV 4256.]

Octadecyl trimethylammonium bromide (stearyl trimethylammonum bromide) [1120-02-1] M 392.5, m ~250°dec, 230-240°(dec). Crystallise it from EtOH or H₂O (solubility is 1 in 1000parts). It is very soluble in Me₂CO. It is a bactericide. [Sheldon et al. J Am Chem Soc 68 754 1946, Grieger & Kraus J Am Chem Soc 70 3805, 38007, Beilstein 4 IV 827.]

Octamethyl cyclotetrasiloxane [556-67-2] M 296.6, m 17-19°, 17.58°, 18.5°, b 74°/20mm, 176.4°/760mm, $d_4^{29.3}$ 0.9451, n_D^{30} 1.3968. The solid exists in two forms, m 16.30° and 17.65°. Dry it over CaH₂ and distil it. Further fractionation can be effected by repeated partial freezing and discarding the liquid phase. [Osthoff & Grubb J Am Chem Soc 76 399 1954, Hoffman J Am Chem Soc 75 6313 1953, Beilstein 4 IV 4125.]

Octamethyl trisiloxane [107-51-7] M 236.5, m -80°, b 151.7°/747mm, 153°/760mm. Distil it twice, the middle fraction from the first distillation is again distilled, and the middle fraction of the second

distillation is used. [Patnode & Wilcock J Am Chem Soc 68 358, Wolcock J Am Chem Soc 68 691 1946, Thompson J Chem Soc 1908 1953, Beilstein 4 IV 4115.]

Octaphenyl cyclotetrasiloxane [546-56-5] M 793.2, m 201-202°, 203-204°, b 330-340°/1mm. Recrystallise it from AcOH, EtOAc, C_6H_6 or C_6H_6 /EtOH. It forms two stable isomorphs and both forms, as well as the mixture, melt at 200-201°. There is a metastable form which melts at 187-189°. [Burkhard et al. J Am Chem Soc 67 2174 1945, Hyde et al. J Am Chem Soc 69 488 1947, Beilstein 16 IV 1530.]

Octyl trichlorosilane [5283-66-9] M 247.7, b 96.5%/10mm, 112%/15mm. 119%/28mm,229%/760mm, d_4^{20} 1.0744, n_D^{20} 1.4453. Purify the silane by repeated fractionation using a 15-20 theoretical plate glass column packed with glass helices. This can be done more efficiently using a spinning band column. The purity can be checked by analysing for Cl (*ca* 0.5-1g of sample is dissolved in 25mL of MeOH, diluted with H₂O and titrated with standard alkali). It is moisture sensitive. [Whitmore *J Am Chem Soc* 68 475 1946, El-Abbady & Anderson *J Am Chem Soc* 80 1737 1958, *Beilstein* 4 III 1907.]

Orange I [tropaeolin 000 Nr1, 4-(4-hydroxy-1-naphthylazo)benzenesulfonic acid sodium salt] [523-44-4] M 350.3, m >260°(dec). Purify the dye by dissolving it in the minimum volume of H₂O, adding, with stirring, a large excess of EtOH. The salt separates as orange needles. It is collected by centrifugation or filtration, washed with absolute EtOH (3x) and Et₂O (2x) in the same way and dried in a vacuum desiccator over KOH. The *free acid* can be recrystallised from EtOH. [Slotta & Franke *Chem Ber* 64 86 1931, *Beilstein* 16 H 275, 16 II 117, 16 IV 410.] The purity can be checked by titration with titanium chloride [Klotz J Am Chem Soc 68 2299 1946].

Orange II [tropaeolin 000 Nr2, 4-(2-hydroxy-1-naphthylazo)benzenesulfonic acid sodium salt] [633-96-5] M 350.3. Purification is as for Orange I. Its solubility in H₂O is 40g/L at 25°. [Müller et al. *Helv Chim Acta* 35 2579 1952.] Also purify it by extracting it with a small volume of cold water, then crystallising it by dissolving in boiling water, cooling to *ca* 80°, adding two volumes of EtOH and cooling. When cold, the precipitate is filtered off, washed with a little EtOH and dried in air. It can be salted out from aqueous solution with sodium acetate, then repeatedly extracted with EtOH. Meggy and Sims [*J Chem Soc* 2940 1956], after crystallising the sodium salt twice from water, dissolved it in cold water (11mL/g) and added conc HCl to precipitate the *acid* dye which was separated by centrifugation, redissolved and again precipitated with acid. After washing the precipitate three times with 0.5M acid, it was dried over NaOH, recrystallised twice from absolute EtOH, washed with a little Et₂O, dried over NaOH and stored over conc H₂SO₄ in the dark. It can then be converted to the pure salt with the calculated amount of NaOH or Na₂CO₃. [*Beilstein* 16 IV 408.]

Orange G (1-phenylazo-2-naphthol-6,8-disulfonic acid di-Na salt) [1936-15-8] M 452.4, $pK_{Est} \sim 9$. Recrystallise this dye from 75% EtOH, dry it for 3hours at 110° and keep it in a vacuum desiccator over H₂SO₄. The *free acid* crystallises from EtOH or conc HCl in deep red needles with a green reflex. [Conant & Pratt J Am Chem Soc 48 2483 1923, Drew & Landquist J Chem Soc 292 1938, Beilstein 16 H 301, 16 I 305, 16 II 141, 16 III 327.]

Orange RO {acid orange 8, 1,8-[bis(4-*n*-propyl-3-sulfophenyl-1-amino)]anthra-9,10quinone di-Na salt} [5850-86-2] M 364.4, CI 15575, λ_{max} 490nm. Salt it out three times with sodium acetate, then extract it repeatedly with EtOH and dry.

Palladium (II) acetate [3375-31-3] M 244.5, m 205°dec, pK_1^{25} 1.0, pK_2^{25} 1.2 (for Pd_2^{2+}). It recrystallises from CHCl₃ as purple crystals. It can be washed with AcOH and H₂O and dried in air. Large crystals are obtained by dissolving it in *C₆H₆, adding half its volume of AcOH and allowing it to evaporate slowly at room temperature. It forms green adducts with nitrogen donors, it dissolves in KI solution to form solid PdI₂ and a red solution of PdI₄²⁻, but is insoluble in aqueous saturated NaCl, and NaOAc. It dissolves in HCl to form PdCl₄²⁻. It is soluble in CHCl₃, CH₂Cl₂, Me₂CO, MeCN, Et₂O, but it is insoluble in H₂O, and decomposes when warmed in alcohols in which it is also insoluble. [Morehouse et al. *Chem Ind (London)*

544 1964, Stephenson et al. J Chem Soc 3632 1965, Skapski & Smart J Chem Soc (D) 658 1970, Heck Acc Chem Res **12** 146 1979.]

Palladium (II) acetylacetone [14024-61-4] **M 304.6.** It can be recrystallised from C_6H_6 /pet ether and sublimes *in vacuo*. It is soluble in heptane, C_6H_6 (1.2% at 20°, 2.2 at 40°), toluene (0.56% at 20°, 1.4% at 40°) and acetylacetone (1.2% at 20°, 0.05% at 40°). [West & Riley J Inorg Nucl Chem 5 295 1957/8, Fernelius & Bryant Inorg Synth V 105 1957, Beilstein 1 IV 3676.]

Palladium (II) trifluoroacetate [42196-31-6] **M 332.4, m 210°(dec).** Suspend it in trifluoroacetic acid and evaporate it on a steam bath a couple of times. The residue is then dried in vacuum (40-80°) to give a brown powder. It is *hygroscopic*. [Stephenson et al. *J Chem Soc* 3632 *1965*, Trost & Metzner *J Am Chem Soc* **102** 3572 *1980*.]

Pentafluorophenyl dimethylchlorosilane (Flophemesyl chloride) [20082-71-7] M 260.7, b 89-90%/10mm, d_4^{30} 1.403, n_D^{30} 1.447. If it goes turbid on cooling due to separation of some LiCl, then dissolve it in Et₂O, filter and fractionate it. [Morgan & Poole J Chromatogr 89 225 1974, Birkinshaw et al. J Chromatogr 132 548 1977.]

Phenylarsonic acid (benzenearsonic acid) [98-05-5] M 202.2, m 155-158°(dec), 158-162°(dec), pK_1^{25} 3.65, pK_2^{25} 8.77. Crystallise it from H₂O (3mL/g) between 90° and 0°. Alternatively dissolve 600g of the acid in 500mL of boiling H₂O, add 20g of Norite, filter hot, cool, filter off the crystals and dry them. On heating at ~154-160° it is converted to the *anhydride*. [Bullard & Dickery *Org Synth* Coll Vol **II** 494 1943, for the 4-nitro derivative see Ruddy & Starkey *Org Synth* Coll Vol **III** 665 1955, *Beilstein* 16 H 868, 16 I 448, 16 II 457, 16 III 1057, 16 IV 1183.]

Phenylboronic acid (benzeneboronic acid) [98-80-6] M 121.9, m ~43°, 215-216° (anhydride), 217-220°, pK₁²⁵ 8.83. It recrystallises from H₂O, but it can convert spontaneously to *benzeneboronic anhydride* or phenylboroxide on standing in dry air. A possible impurity is dibenzeneborinic acid which can be removed by washing with pet ether. Heating in an oven at 110°/760mm for 1hour converts it to the *anhydride* m 214-216°. Its solubility in H₂O is 1.1% at 0° and 2.5% at 25°, and in EtOH it is 10% (w/v). [Gilman & Moore J Am Chem Soc 80 3609 1958.] If the acid is required, not the anhydride, the acid (from recrystallisation in H₂O) is dried in a slow stream of air saturated with H₂O. The *anhydride* is converted to the acid by recrystallisation from H₂O. The acid gradually dehydrates to the *anhydride* if left in air at room temperature with 30-40% relative humidity. The melting point is usually that of the anhydride because the acid dehydrates before it melts [Washburn et al. *Org Synth* Coll Vol IV 68 1963]. [*Beilstein* 16 IV 1654.]

1,2-Phenylenephosphorochloridate (2-chloro-1,3,2-benzodioxaphosphole-2-oxide) [1499-17-8] M 190.5, m 52°, 58-59°, 59-61°, b 80-81°/1-2mm, 118°/10mm, 122°/12mm, 125°/16mm, 155°/33mm. After distilling it in a vacuum, it sets to a colourless solid. It is soluble in pet ether, *benzene and slightly soluble in Et_2O . [Khwaja et al. J Chem Soc (C) 2092 1970, Anschütz & Broeker Justus Liebigs Ann Chem 454 109 1927, Beilstein 6 IV 5602.]

Phenylmercuric acetate (PhHgOAc) [62-38-4] M 336.7, m 148-151°, 149°, 151.8-152.8°. It forms small colourless lustrous prisms from EtOH. Its solubility in H₂O is 0.17%, but it is more soluble in EtOH, Me₂CO and $*C_{6}H_{6}$. [Maynard J Am Chem Soc 46 1510 1925, Coleman et al. J Am Chem Soc 59 2703 1937, J Am Pharm Assoc 25 752 1936, Beilstein 16 IV 1720.] See PhHgOH below.

Phenylmercuric hydroxide (PhHgOH) [100-57-2] **M 294.7, m 195-203°, pK²⁵ 10 (~4.5).** Crystallise it from dilute aqueous NaOH. [Waugh et al. *J Phys Chem* **59** 395 1955, *Beilstein* **16** IV 1721.]

Phenylmercuric nitrate (PhHgNO₃) [8003-05-2] M 634.4, m 178-188°. When recrystallised from water or aqueous EtOH, it has m 191-191.5°, and from 95% EtOH it has m 186.5° [Challanger & Rothstein J Chem Soc I 1258 1934]. When recrystallised from $*C_6H_6$ or CHCl₃, it has m 131-131.5° [Morton et al. J Am Chem Soc 69 908 1947.] [Beilstein 16 III 1348, 16 IV 1721.]

Phenylphosphinic acid [benzenephosphinic acid, PhPH(O)(OH)] [1779-48-2] **M 142.1, m 70°, 71°, 83-85°, 86°, pK** $_{1}^{25}$ **1.75**. Crystallise it from H₂O (solubility is 7.7% at 25°). Also purify it by placing the solid in a flask covered with dry Et₂O, and allowed it to stand for 1day with intermittent shaking. Et₂O is decanted off and the process repeated. After filtration, excess Et₂O is removed in a vacuum. It has also been recrystallised from *C₆H₆. [Michaelis *Justus Liebigs Ann Chem* **181** 265 *1876*, Banks & Skoog *Anal Chem* **29** 109 *1957*, NMR: Van Wazer et al. *J Am Chem Soc* **78** 5715 *1956*, *Beilstein* **16** IV 1033.]

Phenylphosphonic acid [1571-33-1] **M 158.1, m 164.5-166**°, pK_2^{25} **7.43** (**7.07**). It is best to recrystallise it from H₂O by concentrating an aqueous solution to a small volume and allowing to crystallise. Wash the crystals with ice cold H₂O and dry them in a vacuum desiccator over H₂SO₄. [Lecher et al. J Am Chem Soc **76** 1045 1954.] pK^{25} values in H₂O are 7.07, and in 50% EtOH 8.26. [Jaffé et al. J Am Chem Soc **75** 2209 1953, IR: Daasch & Smith Anal Chem **23** 853 1951, Beilstein **16** IV 1068.]

Phenylphosphonic dichloride (P,P-dichlorophenyl phosphine oxide) [824-72-6] M 195.0, m 3°, b 83-84°/1mm, 135-136°/23mm, d³⁰₄ 1.977, n³⁰_D 1.5578. Fractionally distil it using a very efficient or a spinning band column. [Lecher et al. J Am Chem Soc 76 1045 1954, NMR: Müller et al. J Am Chem Soc 78 3557 1956, Van Wazer et al. J Am Chem Soc 78 5715 1956, IR: Daasch & Smith Anal Chem 23 853 1951, Beilstein 16 IV 1074.]

Phenylphosphonous acid [PhP(OH)₂] [tautomer of phenylphosphinic acid – above]/121-70-0] M 141.1, m 71°, $pK_{Est} < 0$, pK^{17} 2.1. Crystallise it from hot H₂O or *C₆H₆. [Beilstein 16 IV 1033.]

Phenylphosphonous dichloride (P,P-dichloro phenyl phosphine) [644-97-3] M 179.0, m -51°, b 68-70°/1mm, 224-226°/atm, d_4^{30} 1.9317, n_D^{35} 1.5962. Distil it in a vacuum by fractionating through a 20cm column packed with glass helices (better use a spinning band column) [Buchner & Lockhart J Am Chem Soc 73 755 1951, NMR: Müller et al. J Am Chem Soc 78 3557 1956, IR: Daasch & Smith Anal Chem 23 853 1951]. It forms a yellow Ni complex: Ni(C₆H₅Cl₂P)₄ (m 91-92°, from H₂O) [Quin J Am Chem Soc 79 3681 1957] and a yellow complex with molybdenum carbonyl: Mo(CO)₃.(C₆H₅Cl₂P)₃ (m 106-110° dec) [Abel et al. J Chem Soc 2323 1959]. [Beilstein 16 IV 972.]

Phenyl phosphoryl dichloride [770-12-7] M 211.0, m -1°, b 103-104°/2mm, 110-111°/10mm, 130-134°/21mm, 241-243°/atm, d_4^{30} 1.4160, n_D^{30} 1.5216. Fractionally distil it under as good a vacuum as possible using an efficient fractionating column or a spinning band column. It should be redistilled if the IR is not very good [IR: Bellamy & Beecher J Chem Soc 475 1952, Freeman & Colver J Am Chem Soc 60 750 1938, Orloff et al. J Am Chem Soc 80 727 1958]. [Beilstein 6 IV 737.] HARMFUL VAPOURS.

Phenylthio trimethylsilane (trimethyl phenylthio silane) [4551-15-9] M 182.4, b 95-99%/12mm, d_4^{30} 0.97. Purification is as for phenyl trimethyl silylmethyl sulfide.

Phenyl trimethoxysilane (trimethoxysilyl benzene) [2996-92-1] M 198.3, b $103^{\circ}/20$ mm, 130.5-131°/45mm, d³⁵₄ 1.022, n³⁵_D 1.4698. Fractionate it through an efficient column but note that it forms an azeotrope with MeOH which is a likely impurity. [Kantor J Am Chem Soc 75 2712 1953 Beilstein 16 IV 1556.]

Phenyl trimethylsilylmethyl sulfide [(phenylthiomethyl)trimethylsilane] [17873-08-4] M 196.4, b 48°/0.04mm, 113-115°/12mm, 158.5°/52mm, d_4^{30} 0.9671, n_D^{30} 1.5380. If the sample is suspect, then add H₂O, wash it with 10% aqueous NaOH, H₂O again, dry (anhydrous CaCl₂) and fractionally distil it through a 2ft column packed with glass helices. [Cooper J Am Chem Soc 76 3713 1954.]

Phthalocyanine [574-93-6] **M 514.6.** Purify phthalocyanine by sublimation (two to three times) in an argon flow at 300-400Pa; and similarly for the Cu(II), Ni(II), Pb(II), VO(II) and Zn(II) phthalocyanine complexes. [*Beilstein* **26** III/IV 4255.]

Platinum (II) acetate (diacetatoplatinum) [38928-89-1] **M 313.2 (monomer), m 245°dec.** Purify the purple crystals by dissolving them in CHCl₃, filtering, mixing with half its volume of glacial acetic acid and set aside to evaporate at room temperature. The resulting large, almost black, crystals are collected, washed with H₂O and dried in air. It dissolves in CHCl₃, $*C_6H_6$ and toluene to give purple solutions. Its molecular weights (ebullioscopically) in CHCl₃, $*C_6H_6$ and chlorobenzene are 950 (±2), 937 and 888, respectively, indicate that it is trimeric in solution. [Stephenson et al. J Chem Soc 3632 1965.]

Platinum (II) acetylacetonate [15170-57-7] **M 393.3, m 249-252°.** It crystallises from *C₆H₆ as yellow crystals and is dried in air or in a vacuum desiccator. [Werner *Chem Ber* **34** 2584 1901, Fernelius & Bryant *Inorg Synth* **V** 105 1957, *Beilstein* **1** H 783, **1** IV 3678.]

Polystyrenesulfonic acid sodium salt (-CH₂CH(C₆H₄SO₃Na)-) [25704-18-1]. Purify the polymer by repeated precipitation of the sodium salt from an aqueous solution by MeOH, with subsequent conversion to the free acid by passage through an Amberlite IR-120 ion-exchange resin. [Kotin & Nagasawa J Am Chem Soc 83 1026 1961.] Recrystallise it from EtOH. Alternatively purify it by passage through cation and anion exchange resins in series (Rexyn 101 cation exchange resin and Rexyn 203 anion exchange resin), then titrated it with NaOH to pH 7. The sodium form of polystyrenesulfonic acid is precipitated by addition of 2-propanol. Dry it in a vacuum oven at 80° for 24hours, and finally increasing to 120° before to use. [Kowblansky & Ander J Phys Chem 80 297 1976.]

Pontacyl Carmine 2G (Acid Red 1, Amido Naphthol Red G, Azophloxine, 1-acetamido-8-hydroxy-7-phenylazonaphthalene-3,7-disulfonic acid di-Na salt) [3734-67-6] M 510.4, CI 18050, λmax 532nm. Salt it out three times with sodium acetate, then repeatedly extract it with EtOH. See Solochrome Violet R in "Aromatic compounds", Chapter 4. [McGrew & Schneider J Am Chem Soc 72 2547 1950.]

Pontacyl Light Yellow GX [Acid Yellow 17, 1-(2,5-dichloro-4-sulfophenyl]-3-methyl-4-(4-sulfophenylazo)-5-hydroxypyrazole di-Na Salt] [6359-98-4] M 551.3, CI 18965, λmax 400nm. Purify as for Pontacyl Carmine 2G above.

Potassium 4-aminobenzoate [138-84-1] M 175.2. Crystallise it from EtOH. [Beilstein 14 II 246, 14 IV 1128.]

Potassium antimonyltartrate (H₂O) [28300-74-5] M 333.9, $[\alpha]_D$ +141° (c 2, H₂O). Crystallise it from water (3mL/g) between 100° and 0°. Dry it at 100°. [Chinoporos & Papathanosopolos *J Phys Chem* 65 1643 1961, Beilstein 3 III 1014, 3 IV 1227.]

Potassium benzoate [582-25-2] **M 160.2.** Crystallise it from water (1mL/g) between 100° and 0°. [*Beilstein* **9** III 375, **9** IV 279.]

Potassium *tert*-butoxide [865-47-4] M 112.2. It sublimes at 220^o/1mm. The last traces of *tert*-BuOH are removed by heating at 150-160^o/2mm for 1hour. It is best prepared afresh as likely impurities are *tert*-BuOH, KOH and K₂CO₃ depending on its exposure to air. Its solubility at 25-26^o in hexane, toluene, Et₂O, and THF is 0.27%, 2.27%, 4.34% and 25.0%, respectively. [Feuer et.al. J Am Chem Soc **78** 4364, Doering & Urban J Am Chem Soc **78** 5938 1956, Beilstein **1** IV 1612.]

Potassium citrate tribasic H_2O (tripotassium citrate monohydrate) [6100-05-6] M 324.4, m 275°(dec). It solubility in H_2O is 154% and it loses H_2O at 180°. [Beilstein 3 III 1091.]

Potassium dihydrogen citrate [866-83-1] **M 230.2.** It crystallises from H₂O with a solubility of 11.5% at 100°. Dry it at 80°, or in a vacuum desiccator over Sicapent. [Beilstein **3** I 209, **3** III 336, **3** IV 402.]

Potassium ethylxanthate [140-89-6] **M 160.3, m > 215°(dec).** Crystallise it from absolute EtOH, ligroin/ethanol or acetone by adding Et₂O. Wash it with ether, then dry it in a desiccator. Its solubility in Me₂CO is 8% at 25°. [*Beilstein* **3** H 563, **3** I 196, **3** II 367, **3** III 1101, **3** IV 1274.]

Potassium hydrogen D-glucarate [18404-47-2] M 248.2, m 188°(dec), $[\alpha]_{D}^{20}$ +4.95° (c 1.2, H₂O). Crystallise it from water. [Wolfrom & Neely J Am Chem Soc 75 2778 1953, Beilstein 3 H 579, 3 II 378, 3 III 1119, 3 IV 1291.]

Potassium hydrogen malate [4675-64-3] **M 172.2.** A saturated aqueous solution at 60° is decolorised with activated charcoal, and filtered. The filtrate is cooled in a water-ice bath, and the salt is precipitated by adding EtOH. After five recrystallisations from ethanol-water mixtures, it is dried overnight at 130° in air [Eden & Bates J Res Nat Bur Stand 62 161 1959]. [Beilstein 3 H 419, 3 III 915, 3 IV 1123.]

Potassium hydrogen oxalate (H_2O) [127-95-7] **M 137.1, m ~300°(dec).** Crystallise it from H_2O by dissolving 20g in 100mL H_2O at 60° containing 4g of potassium oxalate, filtering and allowing to cool to 25°. The crystals, after washing three or four times with water, are allowed to dry in air. [*Beilstein* 2 III 1552.]

Potassium hydrogen phthalate [877-24-7] **M 204.2.** Crystallise it first from a dilute aqueous solution of K_2CO_3 , then H_2O (3mL/g) between 100° and 0°. Before being used as a standard in volumetric analysis, analytical grade potassium hydrogen phthalate should be dried at 120° for 2hours, then allowed to cool in a desiccator. [*Beilstein* **9** IV 3169.]

Potassium hydrogen *d*-tartrate [868-14-4] M 188.2, $[\alpha]_{546}^{20}$ +37.5° (c 10, M NaOH). It crystallises from water (17mL/g) between 100° and 0°. Dry it at 110°. [Beilstein 3 IV 1222.]

Potassium ionophore I (valinomycin) See valinomycin in "Miscellaneous Compounds", Chapter 6.

Potassium isoamyl xanthate [61792-26-5] M 202.4, pK^{25} 1.82 (pK^{0} 2.8 free acid). Crystallise it twice from acetone/diethyl ether. Dry it in a desiccator for two days and store it under refrigeration. Its solubility in Me₂CO is 2.3% at 56°. [*Beilstein* 3 III 340, 3 IV 404.]

Potassium laurate (potassium dodecanoate) [10124-65-9] **M 338.4.** Recrystallise it three times from EtOH [Neto & Helene J Phys Chem **91** 1466 1987]. [Beilstein **2** H 360, **2** I 156, **2** II 318, **2** III 880, **2** IV 186.] See purification of sodium dodecanoate below.

Potassium nonafluorobutane sulfonate [29420-49-3] **M 338.2.** Wash it with H₂O and dry it *in vacuo*. When the K salt is distilled with 100% H₂SO₄, it gives the *free acid* which can be distilled (**b** 105°/22mm, 210-212°/760mm) and then converted to the pure K salt. [Gramstad & Haszeldine J Chem Soc 2640 1957, Beilstein **2** IV 818.]

Potassium oleate [143-18-0] M 320.6. Recrystallise it from EtOH (1g/mL). [Beilstein 2 H 465, 2 I 196, 2 I 202, 2 II 436, 2 III 1404, 2 IV 1646.]

Potassium oxalate [6487-48-5] **M 184.2, m 160°(dec), d** $_{4}^{20}$ **2.13.** Recrystallise it from hot water. It forms various K + oxalic acid salts [e.g. potassium hydrogen oxalate KH(C₂O₄)—see above, and KH₃(C₂O₄)₂ which is, surprisingly, called potassium tetraoxalate—see below]. [*Beilstein* **2** H 513, **2** I 224, **2** II, 485, **2** III 1552, **2** IV 1823.]

Potassium phenol-4-sulfonate (4-hydroxybenzene-1-sulfonic acid K salt) [30145-40-5] M 212.3. Crystallise it several times from distilled water at 90°, after treatment with charcoal, and cooling to *a* 10°. Dry it at 90-100°, *in vacuo*. [Beilstein 11 H 55, 11 I 242, 11 II 137, 11 III 498, 11 IV 582.]

Potassium phthalimide (phthalimide K salt) [1074-82-4] M 185.2, $m > 300^{\circ}$. The solid may contain phthalimide and K₂CO₃ from hydrolysis. If too much hydrolysis has occurred (this can be checked by

extraction with cold Me₂CO in which the salt is insoluble, evaporate the Me₂CO and weigh the residue), it would be better to prepare it afresh. If little hydrolysis has occurred, then recrystallise it from a large volume of EtOH, and wash the solid with a little Me₂CO and dry it in a continuous vacuum to constant weight. [Salzerg & Supriawski *Org Synth* Coll Vol I 119 *1941*, Raman & IR: Hase *J Mol Struct* **48** 33 *1978*, Dykman *Chem Ind (London)* 40 *1972*, IR, NMR: Assef et al. *Bull Soc Chim Fr* II 167 *1979*, *Beilstein* **21/10** V 270.]

Potassium picrate [573-83-1] **M 267.2, m 250°.** Recrystallise it from water or 95% EtOH, and dry it at room temperature in vacuum. It is soluble in 200 parts of cold water and 4 parts of boiling water. [*Beilstein* **3** III 880, **3** IV 1390.] **THE DRY SOLID EXPLODES WHEN STRUCK OR HEATED.**

Potassium propionate [327-62-8] M 112.2. Recrystallise it from water (30mL/g) or 95% EtOH. [Beilstein 2 II 217, 2 III 516, 2 IV 701.]

Potassium sodium tartrate ($4H_2O$) [6381-59-5 ($4H_2O$), 304-59-6 (R,R)] M 282.3. Recrystallise it from distilled water (1.5mL/g) by cooling to 0°. [*Beilstein* 3 IV 1223.]

Potassium *d*-tartrate (H₂O) [921-53-9, 6381-59-5] M 235.3, m loses H₂O at 150°, d_4^{20} 1.98. Recrystallise it from distilled water (solubility: 0.4mL/g at 100°, 0.7mL/g at 14°). [*Beilstein* 3 IV 1223.]

Potassium tetraoxalate (2H₂O) [oxalic acid hemipotassium salt] [6100-20-5 ($2H_2O$), 127-96-8] M 254.2. Crystallise it from water below 50°. Dry it below 60° at 760mm. [See potassium oxalate above, *Beilstein* 2 IV 1823.]

Potassium tetraphenylborate [3244-41-5] **M 358.3.** Precipitate it from a solution of KCl acidified with dilute HCl, then crystallise it twice from acetone, wash it thoroughly with water and dry it at 110° [Findeis & de Vries *Anal Chem* **28** 1899 1956]. It has also been recrystallised from conductivity water. [*Beilstein* **16** IV 1625.]

Potassium trifluoroacetate [2923-16-2] **M 152.1, m 140-142°, pK²⁵ 0.52** (for CF₃CO₂H). To purify it, dissolve the salt in trifluoroacetic acid with *ca* 2% of trifluoroacetic anhydride, filter it and evaporate it carefully to dryness (avoid over heating), and finally dry it in a vacuum at 100°. It can be recrystallised from trifluoroacetic acid (solubility in the acid is *ca* 50.1%). [Simons & Lorentzen *J Am Chem Soc* **74** 4746 1952, Hara & Cady *J Am Chem Soc* **76** 4285 1954, Watt & Muga *J Inorg Nucl Chem* **9** 166 1959, *Beilstein* **2** IV 458.]

Potassium trimethylsilanolate (trimethylsilanol K salt) [10519-96-7] M 128.3, m 131-135° (cubic form), d^{25} 1.11, 125° dec (orthorhombic form). Recrystallise it from H₂O and dry it at 100°/1-2mm. [Hyde et al. J Am Chem Soc 75 5615 1953, IR: Tatlock & Rochow J Org Chem 17 1555 1952, Beilstein 4 IV 3992.]

Praseodymium acetate [6192-12-7] **M 318.1.** Recrystallise it several times from water [Ganapathyl J Am Chem Soc **109** 3159 1986]. [Beilstein **2** I 150, **2** III 196, **2** IV 116.]

Propargyl triphenyl phosphonium bromide [2091-46-5] **M 381.4, m 179°.** It recrystallises from 2-propanol as white plates. It also crystallises from EtOH with **m** 156-158°. IR has v_{max} 1440, 1110cm⁻¹ (P-C str). [Elter & Dediger Justus Liebigs Ann Chem 682 62 1965, Schweizer et al. J Org Chem 42 200 1977].

Propenyloxy trimethylsilane [1833-53-0] **M 130.3, b 93-95% atm, d**²⁰ **0.786.** Purify it by fractional distillation using a very efficient column at atmospheric pressure. It usually contains 5% of hexamethyldisiloxalane which boils at 99-101°, but is generally non-reactive and need not be removed. [Hauser & Hance J Am Chem Soc 71 5091 1952.] It has been distilled under N₂ through a 15cm column packed with glass helices. Fraction **b** 99-104° is further purified by gas chromatography through a Carbowax column (Autoprep A 700) at a column temperature of 87°, and has a retention time of 9.5minutes. [Krüger & Rochow J Organomet Chem **1** 476 1963-4.]

1-Propenyltrimethylsilane (*cis and trans* mixture) [17680-01-2] M 114.3, b 85-88°, n_D^{20} **1.4121.** Dissolve ~20g in THF (200mL), shake it with H₂O (2x 300 mL), dry (Na₂SO₄) and fractionate. This is a mixture of *cis* and *trans* isomers which can be separated by gas chromatography on an AgNO₃ column (for preparation: see Seyferth & Vaughan *J Organomet Chem* 1 138 1963) at 25° with He as carrier gas at 9psi. The *cis*-isomer has n_D^{25} 1.4105 and the *trans*-isomer has n_D^{25} 1.4062. [Seyferth et al. *Pure Appl Chem* 13 159 1966.]

Pyridinium chlorochromate [26299-14-9] **M 215.6, m 205°(dec).** Dry it in a vacuum for 1hour. It is not hygroscopic and can be stored for extended periods at room temperature without change. If the purity is very suspect, it can be readily prepared. [Corey & Scuggs *Tetrahedron Lett* 2647 1975, Piancatelli et al. *Synthesis* 245 1982.] (Possible **CARCINOGEN**.)

§ Available commercially on a polymer support.

Pyridinium dichromate [20039-37-6] **M 376.2, m 145-148°, 152-153°.** Dissolve it in the minimum volume of H₂O and add 5 volumes of cold Me₂CO and cool to -20°. After 3hours the orange crystals are collected, washed with a little cold Me₂CO and dried in a vacuum. It is soluble in dimethylformamide (0.9g/mL at 25°), and in H₂O, and has a characteristic IR with v_{max} at 930, 875, 765, 730 and 730 cm⁻¹. [Corey & Schmidt *Tetrahedron Lett* 399 1979, Coats & Corrigan *Chem Ind (London)* 1594 1969.] (Possible **CARCINOGEN**.)

§ Available commercially on a polymer support.

3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p'-disulfonic acid, monosodium salt (H₂O) [Ferrozine] [63451-29-6] M 510.5, m >350°(dec), Purify it by recrystallisation from water or by dissolving it in the minimum volume of water, followed by addition of EtOH to precipitate the pure salt. It is light sensitive and complexes with Fe. [Stookey Anal Chem 42 779 1970.]

Pyrocatechol Violet (tetraphenolictriphenylmethanesulfonic acid Na salt) [115-41-3] M 386.4, ε 1.4 x 10⁴ at 445nm in acetate buffer pH 5.2-5.4, pK_{Est(1)}>0 (SO₃H), pK_{Est(2)}~ 9.4, pK_{Est(3)}~ 13. It is recrystallised from glacial acetic acid. It is very *hygroscopic* and is an indicator standard for metal complex titrations. [Mustafin et al. *Zh Anal Khim* 22 1808 1967, *Beilstein* 19/3 V 703.]

Pyrogallol Red (tetraphenolic xanthyliumphenylsulfonate) [32638-88-3] M 418.4, m $>300^{\circ}(dec)$, ϵ 4.3 x 10⁴ at 542nm, pH 7.9-8.6, pK₁ 2.71, pK₂ 6.60, pK₃ 10.41, pK₄ 12.16 (5% aqueous EtOH). It is recrystallised from aqueous alkaline solution (Na₂CO₃ or NaOH) by precipitation on acidification, filter it off and dry in a vacuum. [Suk *Collect Czech Chem Commun* 31 3127 1966, Beilstein 19 H 407, 19 II 417, 19 III/IV 599, 19/10 V 226.]

Pyronin B [di-(3,6-bis(diethylamino)xanthylium chloride) diFeCl₅ complex] [2150-48-3] M 358.9 (Fe free), m 176-178° (diFe complex), CI 45010, λ max 555nm, pK²⁵ 7.7. Recrystallise it from EtOH. It forms an Fe stain. [*Beilstein* 18/10 V 182.]

Quinolinium chlorochromate [108703-35-1] M 265.6, m 127-130°. It is a yellow-brown solid which is stable in air for long periods. If it has deteriorated or been kept for too long, it is best to prepare it freshly. Add freshly distilled quinoline (13mL) to a mixture of chromic acid (CrO₃) (10g) and ~ 5M HCl (11mL of cone HCl and 10mL of H₂O) at 0°. A yellow-brown solid separates, it is filtered off on a sintered glass funnel, dried for 1hour in a vacuum, and can be stored for extended periods without serious loss in activity. It is a good oxidant for primary alcohols in CH₂Cl₂. [Singh et al. *Chem Ind (London)* 751 1986, method of Corey & Suggs *Tetrahedron Lett* 2647 1975, *Beilstein* 20/7 V 276.]

Resorufin (7-hydroxy-3H-phenoxazine-3-one Na salt) [635-78-9] M 213.2, pK_1^{30} 6.93, pK_2^{30} 9.26, pK_3^{30} 10.0. Wash it with water and recrystallise it several times from EtOH. [Beilstein 27 II 108, 27 III/IV 2263.]

Rhodium (II) acetate dimer (2H₂O) [15956-28-2] **M 478.0.** Dissolve 5g of the salt in boiling MeOH (*ca* 600mL) and filter. Concentrate it to 400mL and chill overnight at *ca* 0° to give dark green crystals of the MeOH adduct. Concentration of the mother liquors gives a further crop of $[Rh(OAc)_2]_2$.2MeOH. The adduct is then heated at 45° in a vacuum for 2hours (all MeOH is lost) to leave the emerald green crystals of the actetate. [Legzdins et al. *J Chem Soc (A)* 3322 *1970.*] Alternatively dissolve the acetate in glacial AcOH and reflux for a few hours to give an emerald green solution. Evaporate most of the AcOH on a steam bath, then heat the residue at 120°/1hour. Extract the residue with boiling Me₂CO. Filter, concentrate to half its volume and keep at 0°/18hours. Collect the crystals, wash them with ice cold Me₂CO and dry them at 110°. It is soluble in most organic solvents with which it forms adducts including Me₃N and Me₂S and gives solutions with different colours varying from green to orange and red. [UV: Johnson et al. *Inorg Chem* **2** 960 *1963*, *Beilstein* **1** H 124.]

Rhodizonic acid sodium salt (5,6-dihydroxycyclohex-5-ene-1,2,3,4-tetraone di-Na salt) [523-21-7] **M 214.0, pK** $_{1}^{30}$ **4.1 (4.25), pK** $_{2}^{30}$ **4.5 (4.72).** The *free acid* is obtained by acidifying and extracting with Et₂O, drying (MgSO₄), filtering, evaporating and distilling in a vacuum (b 155-160°/14mm). The *free acid* solidifies on cooling, and the colourless crystals can be recrystallised from tetrahydrofuran/pet ether or *C₆H₆. It forms a *dihydrate* **m** 130-140°. The pure di Na salt is formed by dissolving the acid in 2 equivalents of NaOH and evaporating in a vacuum. It forms violet crystals which give an orange solution in H₂O that is unstable for extended periods even at 0°, and should be prepared freshly before use. Salts of rhodizonic acid **cannot** be purified by recrystallisation without great loss due to conversion to crotonate, so that the original material must be prepared anew if pure salt is required. It can be washed with NaOAc solution, then EtOH, to remove excess NaOAc, dried under vacuum and stored in the dark. [UV and tautomerism: Schwarzenbach & Suter *Helv Chim Acta* **24** 617 *1941*, Polarography: Preisler & Berger *J Am Chem Soc* **64** 67 *1942*, Souchay & Taibouet *J Chim Phys* **49** C108 *1952*, *Beilstein* **8** H 535, **8** II 572, **8** III 4214, **8** IV 3609.]

Rose Bengal [Acid Red 94, 4,5,6,7-tetrachloro-2'.4',5',7'-tetraiodofluorescein di-Na or di-K salt] [di-Na salt 632-69-9] M 1017.7 (di-Na salt) [di-K salt 11121-48-5] M 1049.8 (di-K salt). This biological stain can be purified by chromatography on silica TLC using a 35:65 mix of EtOH/acetone as eluent. [Beilstein 19 II 261, 19 III/IV 2926.]

Ruthenium (III) acetylacetonate [14284-93-6] M 398.4, m 240°(dec). Purify the complex by recrystallisation from *benzene. [Wilkinson J Am Chem Soc 74 6146 1952, Beilstein 1 IV 3677.]

Ruthenocene [bis-(cyclopentadienyl)ruthenium] [1287-13-4] M 231.2, m 195.5°, 199-210°. Sublime it in high vacuum at 120°. It forms yellow crystals which can be recrystallised from CCl₄ as transparent plates. [Wilkinson J Am Chem Soc 74 6146 1952, Beilstein 16 IV 1833.]

Seleno-DL-methionine (± 2 -amino-4-methylselanylbutyric acid) [1464-42-2, 2578-28-1 (\pm)] M 196.1, m 265°(dec), 267-269°(dec), 270° (see pKs of methionine). It crystallises in hexagonal plates from MeOH and H₂O. [Klosterman & Painter J Am Chem Soc 69 2009 1949.] The *L*-isomer [3211-76-5] is purified by dissolving it in H₂O, adjusting the pH to 5.5 with aqueous NH₃, evaporating to near-dryness, and the residue is washed several times with absolute EtOH till a solid is formed and then recrystallise from Me₂CO. It has m 266-268°(dec) [also 275°(dec)], and [α] $_{D}^{25}$ +18.1°(c 1, N HCl). [Pande et al. J Org Chem 35 1440 1970, Beilstein 4 IV 3216.]

Selenopyronine [85051-91-8] M 365.8, λ max 571nm (ϵ 81,000). Purify it as the hydrochloride from hydrochloric acid [Fanghanel et al. J Phys Chem 91 3700 1987]. [Beilstein 18 II 434.]

Selenourea [630-10-4] M 123.0, m 200°(slow heating), 202-205°, 205-207°(dec), 214-215°(dec), 235°(dec). Recrystallise it from the least volume of H₂O using Norite (preferably under N₂) to form colourless needles which are dried over P₂O₅. It is air and light sensitive. It slowly turns moderately dark on storage even below 0°. [King & Hlavacek J Am Chem Soc 73 1864 1951, Dunbar & Painter J Am Chem

Soc **69** 1833 1947, Bacher & Bos *Recl Trav Chim Pays Bas* **62** 580 1943, Hope *Acta Chem Scand* **18** 1800 1964.] The *Se-methyl iodide* provides yellow crystals from EtOH/Et₂O with **m 187-188**°(**dec**). The *N*,*N*-*dimethyl* derivative crystallises from H₂O or EtOH as colourless needles which slowly turn pink, then gray on standing, and although slightly soluble in *benzene it can be recrystallised from it and has **m 167-170**°(**dec**) [Zingaro et al. *J Org Chem* **18** 292 1953, IR: Jensen & Nielsen *Acta Chem Scand* **20** 597 1966, *Beilstein* **3** IV 435.]

Silicon tetraacetate [562-90-3] M 264.3, m 110-111°, b 148°/5-6mm, pK_1^{25} 9.7, pK_2^{25} 11.9 (for H₄SiO₄ free acid). It can be crystallised from mixtures of CCl₄ and pet ether or Et₂O, or from acetic anhydride and then dried in a vacuum desiccator over KOH. Ac₂O adheres to the crystals and is removed first by drying at room temperature, then at 100° for several hours. It is soluble in Me₂CO, is very *hygroscopic* and effervesces with H₂O. It decomposes at 160-170°. [Schenk in *Handbook of Preparative Inorganic Chemistry* (*Ed. Brauer*) Academic Press Vol I p 701 *1963*, *Beilstein* 2 H 171.]

Silver acetate [563-63-3] M 166.9, $pK^{25} > 11.1$ (for aquo Ag⁺ hydrolysis). Shake it with acetic acid for three days, and the process is repeated with fresh acid. The solid is then dried in a vacuum oven at 40° for 48hours. It has also been recrystallised from water containing a trace of acetic acid, and dried in air. Store it in the dark. [*Beilstein* 2 IV 112.]

Silver diethyldithiocarbamate [1470-61-7] M 512.3, m 172°, 174°, 176-78°, pK_1^{25} 3.36 (for *N*,*N*-diethyldithio-carbamate). Purify it by recrystallisation from pyridine or CO₂. Store it in a desiccator in a cool and dark place. [*Beilstein* 4 III 224, 4 IV 391.]

Silver lactate [128-00-7] **M 196.9, m ~ 100°.** Recrystallise it from H₂O by adding EtOH. The solid is collected, washed with EtOH, then Et₂O, and dried at 80° to give the *dihydrate*. It is a white powder soluble in 15 parts of H₂O but only slightly soluble in EtOH. Store it in the dark. [Engelhardt & Maddrell *Justus Liebigs Ann Chem* **63** 89 1847, Karrer et al. *Helv Chim Acta* **2** 251 1919, *Beilstein* **3** III 464.]

Silver tosylate [16836-95-6] **M 279.1.** The anhydrous salt is obtained by recrystallisation from H₂O. Store it in the dark. [Claesson & Wallin *Chem Ber* **12** 1851 1879, *Beilstein* **11** H 97, 99.]

Silver trifluoroacetate [2966-50-9] M 220.9, m 251-255°. Extract the salt (Soxhlet) with Et₂O. The extract is filtered and evaporated to dryness, then the powdered residue is completely dried in a vacuum desiccator over silica gel. Its solubility in Et₂O is 33.5g in 750mL. It can be recrystallised from $*C_6H_6$ (solubility is: 1.9g in 30mL of $*C_6H_6$, and 33.5g will dissolve in 750mL of anhydrous Et₂O). [Traynham & Dehn *J Org Chem* 23 1545 1958, Haszeldine *J Chem Soc* 584 1951.] Store it in the dark. It is also soluble in trifluoroacetic acid (15.2% at 30°), toluene, *o*-xylene and dioxane [Hara & Cady *J Am Chem Soc* 76 4285 1954]. [Beilstein 2 IV 461.]

Silver trifluoromethanesulfonate [2923-28-6] **M 256.9.** Recrystallise it twice from hot CCl₄ [Alo et al. *J Chem Soc, Perkin Trans 1* 805 1986]. Store it in the dark. [*Beilstein* **3** IV 34.]

Sodium acetate (anhydrous) [127-09-3] **M 82.0, m 324°, d** $_{4}^{20}$ **1.53.** Crystallise it from acetic acid and keep it under vacuum for 10hours at 120°. Alternatively, it is crystallised from aqueous EtOH, as the *trihydrate*. This material can be converted to *anhydrous* salt by heating slowly in a porcelain, nickel or iron dish, so that the salt liquefies. Steam is evolved and the mass again solidifies. Heating is now increased so that the salt melts again. (NB: if it is heated too strongly, the salt can char; avoid this.) After several minutes, the salt is allowed to solidify and is cooled to a convenient temperature (in a desiccator) before being powdered and bottled. The water content should now be less than 0.02%. [*Beilstein* **2** II 113, **2** III 184, **2** IV 109.]

Sodium acetylide [1066-26-8] **M 48.0.** It disproportionates at *ca* 180° to sodium carbide. It sometimes contains diluents, e.g. xylene, butyl ether or dioxane which can be removed by filtration followed by a vacuum at 65-60°/5mm. Alternatively the acetylide is purged with HC=CH at 100-125° to remove diluent. NaC₂H adsorbs 2.2x, 2.0x and 1.6x its wt of xylene, butyl ether and dioxane, respectively. Powdered NaC₂H is yellow or yellow-gray in colour and is relatively stable. It can be heated to *ca* 300° in the absence of air. Although no

explosion or evolution of gas occurs, it turns brown due to disproportionation. At 170-190° in air it ignites slowly and burns smoothly. At 215-235° in air it "flash-ignites" and burns quickly. It can be dropped into a *slight* excess of H₂O without flashing or burning, but vigorous evolution of HC=CH (HIGHLY FLAMMABLE IN AIR) occurs. The sample had been stored in the absence of air for one year without deterioration. Due to the high flammability of HC=CH, the salt should be stored dry and should be treated with care. After long storage, NaC=CH can be redissolved in liquid NH₃ and used for the same purposes as the fresh material. However it may be slightly turbid due to the presence of moisture. [Rutledge *J Org Chem* 22 649 *1957*, Greenlee & Henne *J Am Chem Soc* 77 5013 *1955*, Campbell & Campbell *Inorg Synth* II 76, 81 *1946*, *Org Synth* 30 15 *1950*, *Beilstein* 1 H 238.] It is available commercially under N₂ in Sure/Seal bottles as an 18 wt% solution in xylene/mineral oil. See "Aliphatic Compounds", Chapter 4, for its prepartion.

Sodium alginate (Algin) [9005-38-3]. Free it from heavy metal impurities by treatment with ion-exchange resins (Na⁺-form), or with a dilute solution of the sodium salt of EDTA. Alternatively dissolve it in 0.1M NaCl, centrifuge and fractionally precipitate it by gradual addition of EtOH or 4M NaCl. The resulting gels are centrifuged off, washed with aqueous EtOH or acetone, and dried under vacuum. [Büchner et al. J Chem Soc 3974 1961.]

Sodium *n*-alkylsulfates. Recrystallise these salts from EtOH/Me₂CO [Hashimoto & Thomas J Am Chem Soc 107 4655 1985].

Sodium 4-aminobenzoate [555-06-6] M 159.1. Recrystallise it from water. [Hermann Helv Chim Acta 9 786 1926, Beilstein 14 II 247.]

Sodium 4-aminosalicylate (2H₂O) [6018-19-5] M 175.1. Recrystallise it from water at room temperature (2mL/g) by adding acetone and cooling. [Beilstein 14 III 1436, 14 IV 1969.]

Sodium amylpenicillin [575-47-3] **M 350.4, m 188°(dec, anhydrous)** $[\alpha]_{\rm D}^{23}$ +319° (c 1, **H₂O).** The *monohydrate* crystallises from moist acetone or moist ethyl acetate. Dry it in a vacuum. [Wintersteiner in "The chemistry of Penicilin", Clarke, Johnson and Robinson eds, Princeton University Press, p 470 1949.]

Sodium 9,10-anthraquinone-1,5-disulfonate (H_2O) [853-35-0] M 412.3. Separate it from insoluble impurities by continuous extraction with water. Recrystallise it twice from hot water and dry it under vacuum. [Beilstein 11 II 195, 11 III 634.]

Sodium 9,10-anthraquinone-1-sulfonate (H_2O) [107439-61-2] M **328.3.** Recrystallise it from hot water (4mL/g) after treatment with active charcoal, or from water by addition of EtOH. Dry it under vacuum over CaCl₂, or in an oven at 70°. Store it in the dark. [*Beilstein* **11** II 192, **11** III 626, **11** IV 670.]

Sodium 9,10-anthraquinone-2-sulfonate (H₂O) (9,10-anthraquinone-2-sulfonic acid [Na salt, H₂O]) [131-08-8] M 328.3, $pK_{Est} \sim 0$ (SO₃H). It crystallises from H₂O or MeOH (charcoal). [Costa and Bookfield J Chem Soc, Faraday Trans 1 82 991 1986, Beilstein 11 IV 671.]

Sodium antimonyl tartrate [34521-09-0] M 308.8. It crystallises from water. [Beilstein 3 III 1014, 3 IV 1227.]

Sodium barbitone (sodium 5,5-diethylbarbiturate) [144-02-5] M 150.1, pK_1^{25} 3.99, pK_2^{25} 12.5 (barbituric acid). Crystallise it from water (3mL/g) by adding an equal volume of EtOH and cooling to 5°. Dry it under vacuum over P₂O₅. [*Beilstein* 24 III/IV 1904.]

Sodium benzenesulfinate (benzenesulfinic acid Na salt) [873-55-2] M 164.2, m >300°, pK²⁵ 2.16 (2.74, for PhSO₂H). Dissolve it in the minimum volume of O₂ free H₂O (prepared by bubbling N₂ through for 2 hours) and adding O₂ free EtOH (prepared as for H₂O), set aside at 4° overnight under N₂, filter, wash with EtOH, then Et₂O and dry *in vacuo*. The Na salt is relatively stable to air oxidation, but is best kept under N_2 in the dark. Also recrystallise it from EtOH and dry it at 120° for 4hours in a vacuum. [Kornblum & Wade *J Org Chem* **52** 5301 *1987*, *Beilstein* **11** II 2, **11** IV 3.]

Sodium benzenesulfonate [515-42-4] **M 150.1, pK** $_{1}^{25}$ **0.70** (2.55) (for PhSO₃H₂). Crystallise it from EtOH or aqueous 70-100% MeOH, and dry it under a vacuum at 80-100°. [*Beilstein* **11** H 28, **11** I 10, **11** II 18, **11** III 33, **11** IV 27.]

Sodium benzoate [532-32-1] M 144.1. Crystallise it from EtOH (12mL/g). [Beilstein 9 IV 27.]

Sodium bis(trimethylsilyl)amide (hexamethyl disilazane sodium salt) [1070-89-9] M 183.4, m 165-167°(sintering at 140°). It can be sublimed at 170°/2mm (bath temperature 220-250°) onto a cold finger, and can be recrystallised from C_6H_6 (its solubility is: 10g in 100mL at 60°). It is slightly soluble in Et₂O and is decomposed by H₂O. [Wannagat & Niederprüm *Chem Ber* 94 1540 1961.] It is available commercially under N₂ in Sure/Seal bottles in tetrahydrofuran (various concentrations) and at ~0.6M in toluene. [*Beilstein* 4 IV 4014.]

Sodium 4-bromobenzenesulfonate [5015-75-8] M 258.7. Crystallise it from MeOH, EtOH or distilled water. [Beilstein 11 H 570, 11 I 14, 11 II 30, 11 III 97.]

Sodium *tert*-butoxide [865-48-5] **M** 96.1. It sublimes at 180°/1mm. Its solubility in *tert*-BuOH is 0.208M at 30.2° and 0.382M at 60°, and it is quite soluble in tetrahydrofuran (32g/100g). It should not be used if it has a brown colour. [Feuer J Am Chem Soc 78 4364 1956, Hurd Inorg Synth I 87 1939, IR: Seubold J Org Chem 21 156 1956, Beilstein 1 IV 1609.]

Sodium butyrate [156-54-7] **M 110.1.** Prepare it by neutralising the acid with Na₂CO₃, and recrystallising it from EtOH. [*Beilstein* **2** IV 779.]

Sodium cacodylate (3H₂O) [124-65-2] M 214.0, m 60°. Recrystallise it from aqueous EtOH. [*Beilstein* 4 H I 612.]

Sodium carboxymethylcellulose [9004-32-4]. Dialyse it for 48hours against distilled water and freezedry if a solid is required.

Sodium 4-chlorobenzenesulfonate [5138-90-9] M 214.6, $pK_{Est} < 0$ (for SO_3H). Crystallise it twice from MeOH and dry it under vacuum. [*Beilstein* 11 IV 107.]

Sodium 3-chloro-5-methylbenzenesulfonate [5138-92-1] M 228.7, $pK_{Est} < 0$ (for SO_3H). Crystallise it twice from MeOH and dry it under vacuum. [*Beilstein* 2 I 22.]

Sodium *p*-**cymenesulfonate** [77060-21-0] **M 236.3.** Dissolve the salt in water, filter and evaporate to dryness. Recrystallise it twice from absolute EtOH and dry it at 110°.

Sodium decanoate (sodium caproate) [1002-62-6] **M 194.2.** Neutralise sodium hydroxide by adding a slight excess of free decanoic acid and recovering the excess acid by Et_2O extraction. The salt is recrystallised from the aqueous solution by adding pure acetone and repeating the steps several times, then drying the salt in an oven at *ca* 110° [Chaudhury & Awuwallia *Trans Faraday Soc* **77** 3119 1981]. [*Beilstein* **2** IV 1041.]

Sodium 1-decanesulfonate [13419-61-9] M 244.33. Recrystallise it from absolute EtOH and dry it over silica gel. [*Beilstein* 4 IV 62.]

Sodium *n***-decylsulfate** [142-87-0] **M 239.3.** Rigorously purify it by continuous Et₂O extraction of a 1% aqueous solution for two weeks. [*Beilstein* **1** IV 1818.]

Sodium deoxycholate (H₂O) [302-95-4, 145224-92-4] M 432.6, $[\alpha]_D^{20}$ +48° (c 1, EtOH). Recrystallise it from EtOH and dry it in an oven at 100°. The solution is freed from soluble components by repeated extraction with acid-washed charcoal. [*Beilstein* 10 IV 1608.]

Sodium dibenzyldithiocarbamate [55310-46-8] M 295.4, m 230°(dec), pK^{20} 3.13 (for monobenzyldithiocarbamic acid). The free acid when recrystallised twice from dry Et₂O has m 80-82°. The Na salt is reprecipitated from aqueous EtOH or EtOH by addition of Et₂O or Me₂CO [Lindler Anal Chem 50 896 1978]. The NH₄ salt has m 130-133°, Cu salt (yellow crystals) has m 284-286° and the Ti salt has m 64-70°. [Beilstein 12 IV 2275.]

Sodium 2,5-dichlorobenzenesulfonate [5138-93-2] M 249.0, $pK_{Est} < 0$ (for SO_3H). Crystallise it from MeOH, and dry it under vacuum. [*Beilstein* 11 III 93.]

Sodium diethyldithiocarbamate (3H₂O) [20624-25-3] M 225.3, m 94-96^o(anhydrous), 98^o, pK²⁰ 3.65 (diethyldithiocarbamic acid). Recrystallise it from water. [*Beilstein* 4 III 224, 4 IV 390.]

Sodium di(ethylhexyl)sulfosuccinate (Aerosol-OT, sodium docusate) [577-11-7] **M 444.6.** Dissolve it in MeOH and the inorganic salts which precipitate are filtered off. Water is added and the solution is extracted several times with hexane. The residue is evaporated to one-fifth its original volume, *benzene is added and azeotropic distillation is continued until no water remains. The solvent is evaporated. The white residual solid is crushed and dried *in vacuo* over P_2O_5 for 48hours [El Seoud & Fendler *J Chem Soc, Faraday Trans 1* **71** 452 *1975*]. [*Beilstein* **4** IV 114.] It solubilises major myelin trans membrane proteolipids, and forms reverse micelles in hydrocarbon solvents.

Sodium diethyloxaloacetate [63277-17-8, 40876-98-0] **M 210.2.** Extract it several times with boiling Et₂O (until the solvent remains colourless), and then the residue is dried in air. [*Beilstein* **3** H 789.]

Sodium diformylamide [18197-26-7] **M 95.0**. Grind the amide under dry tetrahydrofuran (fumehood), filter and wash it with this solvent, then dry it *in vacuo*. It is soluble in EtOH and H₂O but insoluble in Et₂O and pet ether. [IR and preparation: Rakshit *J Chem Soc* **103** 1557 *1913*, Yinglin & Hongwen *Synthesis* 122 *1990*, Allenstein & Beyl *Chem Ber* **100** 355 *1967*, Allenstein et al. *Chem Ber* **102** 4089 *1969*, *Beilstein* **2** II 22.]

Sodium 2,2'-dihydroxy-1-naphthaleneazobenzene-5'-sulfonate See Solochrome Violet R in "Aromatic Compounds", Chapter 4.

Sodium 2,4-dihydroxyphenylazobenzene-4'-sulfonate (Tropaeolin O, Acid Orange 6) [547-57-9] M 316.3. Recrystallise it from absolute EtOH. It has λ_{max} at 490nm and CI (colour index) 14270. [Beilstein 16 H 275.]

Sodium *p*-(*p*-dimethylaminobenzeneazo)-benzenesulfonate [23398-40-5] M 327.3. Recrystallise it from water and dry it *in vacuo*. [*Beilstein* 16 H 331, 16 I 317, 16 II 169, 16 III 370, 16 IV 510.]

Sodium *p*-dimethylaminoazobenzene-o'-carboxylate (Methyl Red) [845-10-3] M 291.2. It can be precipitated from aqueous solution as the free acid which is recrystallised from 95% EtOH, then reconverted to the sodium salt. In H₂O it is pink at pH 4.2 and yellow at pH 6.2 and has λ_{max} at 437nm. *Methyl Red Hydrochloride* [63451-28-5] has M 305.8, m 175°(dec) and λ_{max} at 493nm. [*Beilstein* 16 H 329.]

Sodium *p*-**dimethylaminoazobenzene**-*p*'-**carboxylate** [845-46-5] **M 219.2.** It has been precipitated from aqueous solution as the free acid which was recrystallised from 95% EtOH, then reconverted to the sodium salt. [*Beilstein* **16** H 329.]

Sodium 2,4-dimethylbenzenesulfonate [827-21-4] M 208.2. Crystallise it from MeOH and dry it under vacuum. [*Beilstein* 11 III 339.]

Sodium 2,5-dimethylbenzenesulfonate (sodium *p*-xylenesulfonate) [827-19-0] M 208.2. Dissolve it in distilled water, filter it, then evaporate it to dryness. Recrystallise it twice from absolute EtOH or MeOH and dry it at 110° under vacuum. [*Beilstein* 11 III 93, 11 IV 502.]

Sodium dimethyldithiocarbamate hydrate [128-04-1 (hydrate), 207233-95-2 (anhydrous)] M 143.2, m 106-108°, 120-122°, pK²⁵ 3.36 (diethyldithiocarbamic acid). Crystallise it from a small volume of H₂O, or dissolve it in the minimum volume of H₂O and add cold Me₂CO, collect it and dry it in air. The solubility in Me₂CO is ~50g/400mL. The *dihydrate* loses H₂O on heating at 115° to give the *hemihydrate* which decomposes on further heating [Kulka Can J Chem 34 1096 1956]. [Beilstein 4 IV 233.]

Sodium N,N-dimethylsulfanilate [2244-40-8] M 223.2, m >300°. It crystallises from water. [See *Beilstein* 4 IV 270.]

Sodium dodecanoate (sodium laurate) [629-25-4] **M 222.3, pK²⁰ 5.3 (COOH).** Neutralise it by adding a slight excess of dodecanoic acid and removing it by ether extraction. The salt is recrystallised from the aqueous solution by adding pure Me₂CO and repeating the process (see sodium decanoate). It has also been recrystallised from MeOH. [*Beilstein* **2** IV 1085.]

Sodium 1-dodecanesulfonate [2386-53-0] **M 272.4, m >300°.** Recrystallise it twice from EtOH and dry it in an oven at 105° for 2hours. It picks up moisture to form the 3.5H₂O. Its *hydrate* crystallises in several phases. [Tartar & Wright *J Am Chem Soc* **61** 543 1939, Reed & Tartar *J Am Chem Soc* **1 57** 571 1935, *Beilstein* **4** III 27, **4** IV 64.]

Sodium 4-dodecylbenzenesulfonate [25155-30-0] M 348.5. It crystallises from propan-2-ol or H₂O. [Gray et al. J Org Chem 20 515 1955, Beilstein 11 IV 514.]

Sodium dodecylsulfate (SDS, sodium laurylsulfate) [151-21-3] **M 288.4, m 204-207°.** Purify this detergent by Soxhlet extraction with pet ether for 24hours, followed by dissolution in acetone/MeOH/H₂O 90:5:5(v/v) and recrystallisation [Politi et al. J Phys Chem **89** 2345 1985]. It has been purified by two recrystallisations from absolute EtOH, aqueous 95% EtOH, MeOH, isopropanol or a 1:1 mixture of EtOH/isopropanol to remove dodecanol, and dried under vacuum [Ramesh & Labes J Am Chem Soc 109 3228 1987]. SDS has also been purified by repeatedly foaming whereby a 0.15% aqueous solution is made to foam and the foam is discarded, then the H₂O is removed *in vacuo* and the residue is diluted to the required concentrations [see Cockbain & McMullen *Trans Faraday Soc* **47** 322 1951] or by liquid-liquid extraction [see Harrold J Colloid Sci **15** 280 1960]. Dry it over silica gel. For DNA work it should be dissolved in excess MeOH passed through an activated charcoal column and evaporated until it crystallises out.

It has also been purified by dissolving in hot 95% EtOH (14mL/g), filtering and cooling, then drying in a vacuum desiccator. Alternatively, it is crystallised from H₂O, vacuum dried, washed with anhydrous Et₂O and dried in vacuum again. These operations are repeated five times [Maritato *J Phys Chem* **89** 1341 *1985*, Lennox and McClelland *J Am Chem Soc* **108** 3771 *1986*, Dressik *J Am Chem Soc* **108** 7567 *1986*]. [*Beilstein* **1** IV 1847.]

Sodium ethoxide [141-52-6] **M 68.1.** It is a *hygroscopic* powder which should be stored under N₂ in a cool place. A likely impurity is EtOH which can be removed by warming at 60-80° under high vacuum. It is hydrolysed by H₂O to yield NaOH and EtOH. Other impurities, if kept in air for long periods are NaOH and Na₂CO₃. In this case the powder cannot be used if these impurities affect the reactivity, and a fresh sample should be acquired [IR: Seubold *J Org Chem* **21** 156 1956]. [*Beilstein* **1** H 311, **1** IV 1289.]

Sodium ethylmercurithiosalicylate (Thimerosal) [54-64-8] s**M 404.8, m ~230°.** Recrystallise this antibacterial from EtOH/Et₂O. **HIGHLY TOXIC.** [Trikojus *Nature* **158** 472 *1940*, *Beilstein* **10** III 213.]

Sodium ethylsulfate [546-74-7] M 166.1. Recrystallise it three times from MeOH/Et₂O and dry it in a vacuum. [*Beilstein* 1 H 326, 1 I 164, 1 III 1317, 1 IV 1325.]

Sodium fluoroacetate (mono) [62-74-8] **M 100.0, m 200-205°(dec).** It is a free-flowing white **HIGHLY TOXIC** powder which is purified by dissolving it in *ca* 4 parts of H₂O and the pH is checked. If it is alkaline, add a few drops of FCH₂CO₂H to make the solution just acidic. Evaporate (fumehood) on a steam bath until crystals start to separate, cool and filter the solid off. More solid can be obtained by adding EtOH to the filtrate. Dry it at 100° in vacuum. The p-*nitrobenzyl ester* crystallises from EtOH with **m** 76°. **POISONOUS.** The free acid interferes with the citric acid cycle. [Saunders & Stacey J Chem Soc 1778 1948, Beilstein **2** IV 446.]

Sodium formaldehyde sulfoxylate dihydrate (sodium hydroxymethylsulfinate, Rongalite) [149-44-0] M 134.1, m 63-64° (dihydrate). It crystallises from H_2O as the *dihydrate* and decomposes at higher temperatures. Store it in a closed container in a cool place. It is insoluble in EtOH and Et₂O and is a good reducing agent. [X-ray structure: Tuter J Chem Soc 3064 1955.] Note that this compound {HOCH₂SO₂Na} should not be confused with formaldehyde sodium bisulfite adduct {HOCH₂SO₃Na} from which it is prepared by reduction with Zn. [Beilstein 1 IV 3052.]

Sodium formate (anhydrous) [141-53-7] **M 68.0, m 253°, d** $_{4}^{20}$ **1.92.** A saturated aqueous solution at 90° (0.8mL water/g) is filtered and allowed to cool slowly. (The final temperature should be above 30° to prevent formation of the hydrate.) After two such crystallissations, the crystals are dried in an oven at 130°, then under high vacuum. [Westrum et al. *J Phys Chem* **64** 1553 *1960*, Roecker & Meyer *J Am Chem Soc* **108** 4066 *1986*.] The salt has also been recrystallised twice from 1mM DTPA (diethylenetriaminepentaacetic acid, which was recrystallised 4x from MilliQ water and dried in a vacuum), then twice from water [Bielski & Thomas *J Am Chem Soc* **109** 7761 *1987*]. [*Beilstein* **2** IV 3.]

Sodium D-gluconate [527-07-1] M 218.1, m 200-205°dec, $[\alpha]_{546}^{20} + 14^{\circ}$, $[\alpha]_{D}^{20} + 12^{\circ}$ (c 20, H₂O). Crystallise it from a small volume of H₂O (solubility is 59g/100mL at 25°), or dissolve it in H₂O and add EtOH since it is sparingly soluble in EtOH. It is insoluble in Et₂O. It forms a Cu complex in alkaline solution and a complex with Fe in neutral solution. [cf p 639, Sawyer & Bagger J Am Chem Soc 81 5302 1959, Beilstein 3 I 188.]

Sodium glycochenodeoxycholate [16564-43-5] **M** 472.6, **m** 245-250°, $[\alpha]_{D}^{23}$ +41.2° (c 1, **H**₂**O**). Dissolve it in EtOH, filter it and concentrate it to crystallisation, and recrystallise from a little EtOH. It also recrystallises from EtOH/Et₂O. [Beilstein 10 IV 1611.]

Sodium glycocholate [863-57-0] M 488.6, m 230-240°, $[\alpha]_D^{23} + 29.2°$ (c 1, H₂O). Dissolve it in EtOH, filter it and concentrated to crystallisation, and recrystallise from a little EtOH. It also crystallises from 95% EtOH/Et₂O. [Beilstein 3 IV 573.]

Sodium glycolate (2H₂O) (sodium hydroxyacetate) [2836-32-0] M 98.0, pK²⁵ 3.83 (for acid). Precipitate it from aqueous solution by adding EtOH and dry it in air. Also recrystallise it from H₂O, where its solubility is 38% at 0° and 61% at100°. [*Beilstein* 3 III 370, 3 IV 573.]

Sodium hexadecylsulfate [1120-01-0] **M 344.5.** Recrystallise it from absolute EtOH or MeOH and dry it in vacuum [Abu Hamdiyyah & Rahman J Phys Chem **91** 1531 1987].

Sodium hydrogen diglycollate (2,2'-oxydiacetic acid monosodium salt) [50795-24-9] M 156.1, pK_1^{20} 2.70, pK_2^{20} 4.22 (for acid). Crystallise it from hot water (7.5mL/g) by cooling to 0° with constant stirring. The crystals are filtered off on to a sintered-glass funnel and dried at 110° overnight. Its solubility in water is 2.6% (at 0°) and 20% (at 90°). [*Beilstein* 3 III 377, 3 IV 577.]

Sodium hydrogen oxalate (H₂O) [1186-49-8] M 130.0, m 100°(loses H₂O), b 200°(dec). Crystallise it from hot water (5mL/g) by cooling. Its solubility in H₂O is 1.7% at 15.5° and 21.3% at boiling. [Souchay & Lenssen Justus Liebigs Ann Chem 99 34 1856, Beilstein 2 H 513, 2 I 223, IV 1817.]

Sodium hydrogen succinate [2922-54-5] **M 140.0.** Crystallise it from hot water and dry it at 110°. Its solubility in H₂O is 17% at 0°, 40% at 25° and 86% at 75°. [Marshall & Bain J Chem Soc 97 [I] 1074, 1084 1910, Stokes 70 1945 1948, Beilstein 2 H 606, 2 I 262, 2 III 16557, 2 IV 1911.]

Sodium hydrogen *d*-tartrate [526-94-3] M 190.1, m 100°(loses H₂O), m 253°dec, $[\alpha]_{546} + 26^{\circ}$ (c 1, H₂O) and $[\alpha]_{D}^{20} + 24^{\circ}$ (c 1, H₂O). It crystallises from warm water (10mL/g) by cooling to 0°. [*Beilstein* 3 IV 1219.]

Sodium 2-hydroxy-4-methoxybenzophenone-5-sulfonate [6628-37-1] **M 330.3.** Crystallise it from MeOH and dry it under vacuum.

Sodium *p***-hydroxyphenylazobenzene**-*p*'-**sulfonate** [2623-36-1] **M** 288.2. Recrystallise it from 95% EtOH.

Sodium ionophore I (ETH 227) (N,N',N"-triheptyl-N,N',N"-trimethyl-4,4',4"-propylidynetris(3-oxabutyramide) [61183-76-4] M 642.0. It is purified (*ca* 200mg) by TLC on Kieselgel F₂₅₄ with CHCl₃/Me₂CO (1:1) as solvent, followed by HPLC (50mg) with an octadecyltrimethylsilane modified column (Mercksorb SI 100, 10 μ m) [IR, NMR, MS: Güggi et al. *Helv Chim Acta* 59 2417 1976]. [See Simon & Carafoli *Methods Enzymol* 56 439 1977.]

Sodium ionophore V (ETH 4120) [4-octadecanoyloxymethyl-*N*,*N*,*N*',*N*'-tetracyclohexyl-**1,2-phenylenedioxydiacetamide**] [129880-73-5] **M 849.3.** Purify it by recrystallisation from EtOAc [Preparation and properties: Géhrig et al. Anal Chim Acta 233 295 1990].

Sodium ionophore VI {bis[(12-crown-4)methyl]dodecyl methyl malonate} [80403-59-4] M 662.9. Purify it by gel permeation or column chromatography. [Preparation and NMR data: Shono et al. J Electroanal Chem 132 99 1982, Cram & Cram Science 183 803 1974.]

Sodium isopropylxanthate [140-93-2] M 158.2, pK²⁵ 2.16 (for -S⁻). It crystallises from ligroin/ethanol.

Sodium RS-mandelate [114-21-6] M 174.1, pK²⁵ 3.41 (for the acid). It crystallises from 95% EtOH and is dried in a vacuum. [Ross & Morrison J Chem Soc 1019 1933, Banks & Davies J Chem Soc 74 1938, Beilstein 10 III 450.]

Sodium 2-mercaptoethanesulfonate (MESNA) [19767-45-4] M 164.2, $pK_1^{20} < 0$ (SO₃⁻), pK_2^{20} 9.53 (SH). It can be recrystallised from H₂O and does not melt below 250°. It is purified further by converting to the free acid by passing a 2M solution through an ion-exchange (Amberlite IR-120) column in the acid form, evaporating the eluate in a vacuum to give the acid as a viscous oil (readily decomposes) which can be checked by acid and SH titration. It is then dissolved in H₂O, carefully neutralised with aqueous NaOH, evaporated and the salt recrystallised from H₂O [Schramm *J Am Chem Soc* 77 6231 1955]. [Beilstein 4 IV 85.]

Sodium metanilate [1126-34-7] M 195.2. It crystallises from hot water. [Beilstein 14 H 688.]

Sodium methanethiolate [sodium methylmercaptide] [5188-07-8] M 70.1, pK^{25} 10.33 (MeS⁻). Dissolve the salt (10g) in EtOH (10mL) and add Et₂O (100mL). Cool and collect the precipitate, wash it with Et₂O and dry it in a vacuum. It is a white powder which is very soluble in EtOH and H₂O. [Billmann & Jensen *Bull Soc Chim Fr* 3 2318 1936, *Beilstein* 1 III 1212.]

Sodium methoxide [124-41-4] **M 54.0.** It behaves in the same way as sodium ethoxide. It is *hygroscopic* and is hydrolysed by moist air to NaOH and MeOH. Material that has been kept under N₂ should be used. If erratic results are obtained, even with recently purchased NaOMe, it should be freshly prepared thus: Clean Na (37g) cut in 1-3g pieces is added in small portions to stirred MeOH (800mL) in a 2L three-necked flask equipped with a stirrer and a condenser with a drying tube. After all the Na has dissolved, the MeOH is

removed by distillation under vacuum, and the residual NaOMe is dried by heating at 150° under vacuum and kept under dry N₂ [Burness *Org Synth* **39** 51 *1959*]. [*Beilstein* **1** IV 1227.]

Sodium 3-methyl-1-butanesulfonate [5343-41-9] M 174.1. It crystallises from 90% MeOH.

Sodium monensin [22373-78-0] M 693.8. Crystallise it from EtOH/H₂O [Cox et al. J Am Chem Soc 107 4297 1985].

Sodium 1-naphthalenesulfonate [130-14-3] M 230.2. Recrystallise it from water or aqueous acetone [Okadata et al. J Am Chem Soc 108 2863 1986]. [Beilstein 11 IV 521.]

Sodium 2-naphthalenesulfonate [532-02-5] **M 230.2.** It crystallises from hot 10% aqueous NaOH or water and is dried in a steam oven. [*Beilstein* **11** IV 521.]

Sodium 2-naphthylamine-5,7-disulfonate (Amido-G-acid) [79004-97-0] **M 235.4.** Crystallise it from water (charcoal) and dry it in a steam oven. [*Beilstein* **14** H 784, **14** II 473, **14** IV 2811.]

Sodium 1-octanesulfonate H₂O [5324-84-5] M 216.2. Recrystallise it from absolute EtOH. [Beilstein 4 IV 58.]

Sodium oleate [143-19-1] **M 304.4, m 233-235°.** It crystallises from EtOH and is dried in an oven at 100°. [*Beilstein* **2** H 465, **2** I 201, **2** II 434, **2** III 1405, **2** IV 1645.]

Sodium oxalate [62-76-0] **M 134.0, m 250-270°(dec), d** $_{4}^{20}$ **2.34.** It crystallises from hot water (16mL/g) by cooling to 0°. Before use as a volumetric standard, analytical grade quality sodium oxalate should be dried for 2hours at 120° and allowed to cool in a desiccator. [*Beilstein* **2** IV 1819.]

Sodium palmitate [408-35-5] M 278.4, m, 270°, 285-201°. It crystallises from EtOH and is dried in an oven. [Beilstein 2 IV 1157.]

Sodium phenol-4-sulfonate (2H₂O) (4-hydroxybenzenesulfonic acid Na salt) [825-90-1] M 232.2. It crystallises from hot water (1mL/g) by cooling to 0°, or from MeOH, and is dried in vacuum. [Beilstein 11 II 134.]

Sodium phenoxide [139-02-6, 156150-40-2 ($3H_2O$)] M 116.1, m 61-64°. The ground powder is washed with Et₂O, then heated at 60°/1mm for 12 to 24hours to remove any free phenol and solvent. [Kornblum & Lurie J Am Chem Soc 81 2710 1959, Beilstein 6 I 718.]

Sodium phenylacetate [114-70-5] **M 158.1.** Its aqueous solution is evaporated to crystallisation on a steam bath; the crystals are washed with absolute EtOH and dried under vacuum at 80°. [*Beilstein* **9** IV 1614.]

Sodium *o*-**phenylphenolate** (**4H**₂**O**) [132-27-4] **M 264.3.** Crystallise the salt from acetone and dry it under vacuum at room temperature. [*Beilstein* **16** IV 4600.]

Sodium phenylpyruvate [114-76-1] **M 186.1, m >300°.** The salt should have no OH broad bands in the IR at ~3000cm⁻¹. If these are present, then they are due either to water contamination or to the presence of free acid. For the first case dry the solid thoroughly in a vacuum over P_2O_5 , and in the latter case wash the salt well with Et_2O *in vacuo* till free of acid. Alternatively add a slight excess of the free acid (cf p 332) in EtOH to ethanolic NaOH, evaporate to dryness and extract excess acid from the salt with dry Et_2O . [*Beilstein* **10** I 325.]

Sodium phytate (H₂O) [*myo*-inositolhexakis(H₂PO₄) Na salt] [14306-25-3] M 857.9. Crystallise sodium phytate from hot water. [*Beilstein* 6 IV 7927.]

Sodium piperazine-N,N'-bis(2-ethanesulfonate) H₂O (PIPES-Na salt) [76836-02-7] M 364.3. It crystallises from water and EtOH. [Beilstein 23/2 V 380.] **Sodium polyacrylate (NaPAA)** [9003-04-7]. Commercial polyacrylamide is first neutralised with an aqueous solution of NaOH, and the polymer is precipitated with acetone. The precipitate is redissolved in a small amount of water and freeze-dried. The polymer is then repeatedly washed with EtOH and water to remove traces of low-molecular-weight material, and finally dried in vacuum at 60° [Vink J Chem Soc, Faraday Trans 1 75 1207 1979]. It has also been dialysed overnight against distilled water, then freeze-dried.

Sodium poly(α -L-glutamate). Wash it with acetone, dry it in a vacuum, dissolve it in water and precipitate it with isopropanol at 5°. Impurities and low-molecular-weight fractions are removed by dialysis of the aqueous solution for 50hours, followed by ultrafiltration through a filter impermeable to polymers of molecular weights greater than 10⁴. The polymer is recovered by freeze-drying. [Mori et al. *J Chem Soc*, *Faraday Trans 1 2583 1978.*]

Sodium propionate [137-40-6] **M 96.1, m 287-289°**. Recrystallise it from H₂O (solubility 10%) and dry by heating at 100° for 4hours. The solubility of the anhydrous salt in MeOH is 13% at 15° and 13.77% at 68°. It is insoluble in C_6H_6 and Me₂CO. [Henstock *J Chem Soc* 1341 1934, Beilstein **2** IV 701.]

Sodium stearate [822-16-2] **M 306.6.** It is better to prepare it by adding a slight excess of octadecanoic acid to ethanolic NaOH, evaporating and extracting the residue with dry Et₂O. [*Beilstein* **2** III 1003.]

Sodium sulfanilate [515-74-2] M 195.2. It crystallises from water. [Beilstein 14 IV 2655.]

Sodium *R*-tartrate (2H₂O) [6106-24-7] M 230.1, m 120°(loses H₂O), d_4^{20} 1.82, $[\alpha]_D^{20}$ +26° (c 1, H₂O). It crystallises from warm dilute aqueous NaOH on cooling. [*Beilstein* 3 H 524.]

Sodium taurocholate [145-42-6] M 555.7, m 168°dec, $[\alpha]_D^{20} + 23^\circ$ (c 3, H₂O). Purify it by recrystallisation and gel chromatography using Sephadex LH-20. [*Beilstein* 10 III 1655, 10 IV 2078.]

Sodium tetradecylsulfate [1191-50-0] **M 316.4.** It recrystallises from absolute EtOH [Abu Hamdiyyah & Rahman J Phys Chem **91** 1531 1987]. It is hygroscopic. [Beilstein **1** H 716.]

Sodium tetrakis-(4-fluorophenyl)borate hydrate [207683-22-5] **M 450.2.** This gravimetric reagent for Cs is purified by passing a solution (10g in 100mL H₂O) through a column of Dowex 50Wx4 (Na form) and eluting with dilute NaCl. Extract the 250-275mL eluate with Et₂O (3 x 50mL), add dry xylene (200mL), evaporate the Et₂O off *in vacuo*, immerse the xylene in a bath at 50° and the salt crystallises out. It is hygroscopic. [Moore et al. *Anal Chim Acta* **35** 1 *1966*, Tsubouci et al. *Anal Chem* **57** 783 *1985*.]

Sodium tetraphenylborate [tetraphenyl boron Na] [143-66-8] **M 342.2.** Dissolve the borate in dry MeOH and add dry Et₂O. Collect the solid and dry it in a vacuum at 80°/2mm for 4hours. It can also be extracted (Soxhlet) using CHCl₃, and it crystallises from CHCl₃ as snow-white needles. It is freely soluble in H₂O, Me₂CO but insoluble in pet ether and Et₂O. An aqueous solution has pH ~ 5 and can be stored for days at 25° or lower, and for 5 days at 45° without deterioration. Its solubility in polar solvents increases with decrease in temperature [Wittig & Raff Justus Liebigs Ann Chem **573** 204 1950]. The salt can also be recrystallised from acetone/hexane or CHCl₃, or from Et₂O/cyclohexane (3:2) by warming the solution. After standing at this temperature for 10minutes the mixture is filtered rapidly through a pre-heated Büchner funnel, cooled and the crystals are collected and dried in a vacuum desiccator at room temperature for 3days [Abraham et al. J Chem Soc, Faraday Trans 1 **80** 489 1984]. If the product gives a turbid aqueous solution, the turbidity can be removed by treating with freshly prepared alumina gel and filtering. [Beilstein **16** IV 1624.]

Sodium thioglycolate [367-51-1] **M 114.1.** It crystallises from 60% EtOH (charcoal). It is *hygroscopic.* [Beilstein **3** IV 600.]

Sodium 4-toluenesulfinate [824-79-3] M 178.2, pK^{25} 2.80 (1.99)(for $-SO_2^-$). Recrystallise the salt from water (to constant UV spectrum) and dry it under vacuum, or extract it with hot *benzene, then

dissolve it in $EtOH/H_2O$ and heat with decolorising charcoal. The solution is filtered and cooled to give crystals of the *dihydrate*. [*Beilstein* **11** I 718.]

Sodium 4-toluenesulfonate [657-84-1] **M 194.2, pK²⁵ -1.34** (for $-SO_3^-$). Dissolve it in distilled water, filter it to remove insoluble impurities and evaporate it to dryness. Then recrystallise it from MeOH or EtOH, and dry it at 110°. Its solubility in EtOH is not high (maximum 2.5%), so that Soxhlet extraction with EtOH may be preferable. Sodium *p*-toluenesulfonate has also been crystallised from Et₂O and dried under a vacuum at 50°. [*Beilstein* **11** I 4, **11** II 6, *cf* Gibson & Reid *J Chem Soc* 879 1923.]

Sodium trifluoroacetate [2923-18-4] **M 136.0, m 206-210°(dec), pK²⁵ 0.52 (for CF₃CO₂⁻).** A possible contaminant is NaCl. The solid is treated with CF₃CO₂H and evaporated twice. Its solubility in CF₃CO₂H is 13.1% at 29.8°. The residue is crystallised from dilute EtOH, and the solid is dried in vacuum at 100°. [Hara & Cady J Am Chem Soc **76** 4285 1954.] It can be precipitated from EtOH by adding dioxane, then recrystallising several times from hot absolute EtOH. Dry it at 120-130°/1mm. [*Beilstein* **2** IV 461.]

Sodium 2,2',4-trihydroxyazobenzene-5'-sulfonate [3564-26-9] **M 295.3.** Purify the dye by precipitating the free acid from aqueous solution using concentrated HCl, then wash it and extract it with EtOH in a Soxhlet extractor. Evaporation of the EtOH leaves the purified acid which is converted to the sodium salt.

Sodium 2,4,6-trimethylbenzenesulfonate [6148-75-0] M 222.1. Crystallise it twice from MeOH and dry it under vacuum. [Beilstein 11 III 345.]

Sodium trimethylsilanolate (sodium trimethylsilanol) [18027-10-6] M 112.2, m 230°(dec). It is very soluble in Et_2O and $*C_6H_6$ but moderately soluble in pet ether. It is purified by sublimation at 130-150° in a high vacuum. [Hyde et al. J Am Chem Soc 75 5615 1953, Tatlock & Rochow J Org Chem 17 1555 1952, Beilstein 4 III 1856.]

Sodium 3,5-xylenesulfonate [30587-85-0] **M 208.2.** Dissolve it in distilled water, filter, then evaporate it to dryness and recrystallise it twice from absolute EtOH and then dry it at 110°. [Beilstein 11 H 126, 11 I 34.]

Stannous bis-cyclopentadienyl [26078-96-6] **M 248.9.** Purify it by vacuum sublimation. Handle and store it under dry N_2 . The related thallium and indium compounds are similarly purified.

Strontium acetate [543-94-2] **M 205.7, d 2.1, pK²⁵ 13.0 (for aquo Sr²⁺ hydrolysis).** Crystallise it from AcOH, then dry it under vacuum for 24hours at 100^o. [*Beilstein* **2** II 91.]

Strontium lactate $(3H_2O)$ [29870-99-3] M 319.8, m 120°(loses $3H_2O$). It crystallises from aqueous EtOH. [Beilstein 3 IV 633.]

Strontium oxalate (H₂O) [814-95-9] **M 193.6, m 150°.** It crystallises from hot water on cooling. The solubility at ~25° in H₂O is 1g/20L, and in 3.5% AcOH and 25% AcOH it is 1g/1.9L and 1g/1.1L respectively. **IRRITANT.** [Beilstein **2** H 515, **2** IV 1826.]

Strontium salicylate [526-26-1] M 224.7. It crystallises from hot water (4mL/g) or EtOH. [Beilstein 10 IV 125.]

Strontium tartrate [868-19-9] M 237.7. It crystallises from hot water. [Beilstein 3 IV 1219.]

Strontium thiosalicylate (5H₂O) [15123-90-7] M 289.8. It crystallises from hot water (2mL/g) by cooling to 0°. [Beilstein 10 IV 272.]

Sulfur trioxide pyridine complex [26412-87-3] M 159.2, m 155-165°, 175°. Wash the solid with a little CCl_4 , then H_2O to remove traces of pyridine sulfate, and dry it over P_2O_5 . [Baumgarten *Chem Ber* 59 1166 1926, Olah et al. Synthesis 59 1979, Beilstein 20/5 V 184].

Tantalium pentaethoxide [6074-84-6] M 406.3, b 147°/0.2mm, 202°/10mm, pK_1^{25} 9.6, pK_2^{25} 13.0 (for tantalic acid). Purify it by distillation under reduced pressure. It aggregates in *C₆H₆, EtOH, MeCN, pyridine and disopropyl ether. [Bradley et al. *J Chem Soc* 726 1955, Bradley et al. *J Chem Soc* 5 1956, *Beilstein* 1 IV 1312.]

Tetraallyltin (tetraallylstannane) [7393-43-3] M 283.0, b 52°/0.2mm, 69-70°/15mm, d_4^{20} 1.179, n_D^{20} 1.536. Possible contaminants are allyl chloride and allyltin chloride. Check the ¹H NMR and IR [Fishwick & Wallbridge *J Organomet Chem* 25 69 1970], and if impure, dissolve it in Et₂O and shake it with a 5% aqueous solution of NaF which precipitates allyltin fluoride. Separate the Et₂O layer, dry (MgSO₄) and distil it at ~ 0.2mm. It decomposes slightly on repeated distillation. [O'Brien et al. *Inorg Synth* XIII 75 1972, Fishwick et al. *J Chem Soc* (A) 57 1971, Beilstein **4** III 1922.]

Tetrabutylammonium borohydride [33725-74-5] **M 257.3, m 128-129°.** Purify it by recrystallisation from EtOAc followed by careful drying under vacuum at 50-60°. Samples purified in this way showed no signs of loss of *active* H after storage at room temperature for more than 1year. Nevertheless samples should be stored at *ca* 6° in tightly stoppered bottles if kept for long periods. It is soluble in CH₂Cl₂. [Raber & Guida J Org Chem **41** 690 1976, Brändström et al. *Tetrahedron Lett* 3173 1972.]

Tetrabutylammonium chlorochromate [54712-57-1] **M 377.9, m 184-185°.** It recrystallises from EtOAc/hexane. IR v_{max} 920cm⁻¹ in CHCl₃ [Santaniello Synthesis 749 1983, Fieser & Fieser Reagents for Org Synth **12** 458]. Powerful oxidant and possible carcinogen.

Tetrabutylammonium tetrafluoroborate [429-42-5] **M 329.3, m 161.8°, 161-163°, pK²⁵ - 4.9** (for HBF₄). Recrystallise it from H₂O, aqueous EtOH or from EtOAc by cooling in Dry-ice. Also recrystallise it from ethyl acetate/pentane or dry acetonitrile. Dry it at 80° under vacuum. [Detty & Jones J A m Chem Soc 109 5666 1987, Hartley & Faulkner J Am Chem Soc 107 3436 1985.] The acetate has m 118±2° (from BuCl), the bromide has m 118° (from EtOAc) and the nitrate has m 120° (from *C₆H₆). [Witschonka & Kraus J Am Chem Soc 69 2472 1947, Wheeler & Sandstedt J Am Chem Soc 77 2024 1955, Beilstein 4 IV 558.]

Tetrabutyl orthotitanate monomer (titanium tetra-*n*-butoxide) [5593-70-4] M 340.4, b 142°/0.1mm, 134-136°/0.5mm, 160°/0.8mm, 174°/6mm, 189°/13mm, d_4^{35} 0.993, n_D^{25} 1.49. Dissolve it in *C₆H₆, filter if solid is present, evaporate and vacuum fractionate through a Widmer 24inch column (p 11). The ester hydrolyses when exposed to air to give hydrated ortho-titanic acid. The titanium content can be determined thus: weigh a sample (*ca* 0.25g) into a weighed crucible and cover it with 10mL of H₂O and a few drops of conc HNO₃. Heat (hot plate) carefully till most of the H₂O has evaporated. Cool and add more H₂O (10mL) and conc HNO₃ (2mL), and evaporate carefully (no spillage) to dryness and ignite the residue at 600-650°/1hour. Weigh the residual TiO₂. [Bradley et al. *J Chem Soc* 2773 1952, Speer *J Org Chem* 14 655 1949, Beilstein 1 II 398, 1 III 1515, 1 IV 1415.]

Tetrabutyl tin (tin tetrabutyl) [1461-25-2] M 347.2, m -97°, b 94.5-96°/0.28mm, 145°/11mm, 245-247°/atm, d_4^{20} 1.0559, n_D^{24} 1.473. Dissolve it in Et₂O, dry it over MgSO₄, filter, evaporate and distil it under reduced pressure. Although it does not crystallise easily, once the melt has crystallised, then it will recrystallise more easily. It is soluble in Et₂O, Me₂CO, EtOAc and EtOH but insoluble in MeOH and H₂O, and shows no apparent reaction with H₂O. [Johnson & Fritz *J Org Chem* 19 74 1954, Staveley *J Chem Soc* 1992 1954, Van der Kerk & Luitzen *Org Synth* Coll Vol IV 822 1963, Beilstein 4 III 1920, 4 IV 4312.]

Tetraethoxysilane (tetraethyl orthosilicate) [78-10-4] M 208.3, m -77°, b 165-166°/atm, d_4^{20} 0.933, n_D^{25} 1.382. Fractionate it through an 80cm Podbielniak type column (p 11) with a heated jacket and partial take-off head. It is slowly decomposed by H₂O-and is soluble in EtOH. It is flammable-it irritates the eyes and mucous membranes. [Sumrell & Ham J Am Chem Soc 78 5573 1956, Bradley et al. J Chem Soc 5020 1952, Beilstein 1 IV 1360.]

Tetraethylammonium hexafluorophosphate [429-07-2] M 275.2, m >300°, 331°(dec), pK₁²⁵ ~ 0.5, pK₂²⁵ 5.12 (for fluorophosphoric acid H₂PO₃F). Dissolve the salt (0.8g) in hot H₂O (3.3mL) and cool to crystallise. Yield of prisms is 0.5g. Its solubility in H₂O is 8.1g/L at 19° [Lange & Müller Chem Ber 63 1067 1930]. [Beilstein 4 III 199.]

Tetraethylammonium tetrafluoroborate [429-06-1] M 217.1, m 235°, 356-367°, 275-277°, 289-291°. pK²⁵ -4.9 (for HBF₄). Dissolve the salt in hot MeOH, filter and add Et₂O. It is soluble in ethylene chloride [Thompson & Kraus J Am Chem Soc 69 1016 1947, Wheeler & Sandstadt 77 2025 1955]. It has also been recrystallised three times from a mixture of ethyl acetate/hexane (5:1) or MeOH/pet ether, then stored at 95° for 48hours under vacuum [Henry & Faulkner J Am Chem Soc 107 3436 1985, Huang et al. Anal Chem 58 2889 1986]. It is used as a supporting electrolyte. [Beilstein 4 IV 333.]

Tetraethyl lead [78-00-2] **M 323.5, m -38°, b 84-85°/15mm, 200°, 227.7°(dec), d_4^{20} 1.653, n_D^{20} 1.5198.** Its more volatile contaminants can be removed by exposure to a low pressure (by continuous pumping) for 1hour at 0°. Purify it by stirring with an equal volume of H₂SO₄ (d 1.40), keeping the temperature below 30°, repeating this process until the acid layer is colourless. It is then washed with dilute Na₂CO₃ and distilled water, dried with CaCl₂ and fractionally distilled at low pressure under H₂ or N₂ [Calingaert *Chem Rev* **2** 43 *1926*]. It prevents "knocking" in petrol combustion engines. [Milde & Beatty Adv Chem Res **23** 306-318 *1959*, *Beilstein* **4** H 639.] **VERY POISONOUS.**

Tetraethylsilane [631-36-7] **M 144.3, b 153.8°/760mm, d** $_{4}^{30}$ **0.77, n** $_{D}^{30}$ **1.427.** Fractionate it through a 3ft vacuum-jacketted column packed with 1/4" stainless steel saddles. The material is finally percolated through a 2ft column packed with alumina and maintained in an inert atmosphere. [Staveley et al. J Chem Soc 1992 1954, Altshaller & Rosenblum J Am Chem Soc 77 272 1955, Beilstein 4 H 625.]

1.1.3.3-Tetraisopropyldisiloxane [18043-71-5] M 246.5, b 129-130^o/6mm, d_4^{30} 0.89, n_D^{30} 1.47. Fractionate it under reduced pressure in a N₂ atmosphere. [Gilman & Clark J Am Chem Soc 69 1500 1947.]

Tetraisopropyl orthotitanate (titanium tetraisopropoxide) [546-68-9] M 284.3, m 18.5°, 18-20°, b 80°/2mm, 78°/12mm, 228-229°/755mm. Dissolve it in dry C_6H_6 , filter if a solid separates, evaporate and fractionate. It is hydrolysed by H₂O to give solid Ti₂O(*iso*-OPr)₂ m *ca* 48°. [Bradley et al. *J Chem Soc* 2027, 1952, Bradley et al. *J Chem Soc* 469 1957, Beilstein 1 II 328, 1 IV 1469S.]

Tetrakis(diethylamino) titanium [(titanium tetrakis(diethylamide)] [4419-47-0] **M 336.4, b 85-90%/0.1mm, 112%/0.1mm, d**³⁰₄ **0.93, n**³⁰_D **1.54.** Dissolve it in C_6H_6 , filter if a solid separates, evaporate under reduced pressure and distil it. It is an orange liquid which reacts violently with alcohols. [Bradley et al. J Chem Soc 3857 1960, Beilstein 4 IV 313.]

Tetrakis(hydroxymethyl)phosphonium chloride [124-64-1] **M 190.6, m 151°**. Crystallise it from AcOH and dry it at 100° in a vacuum. An 80% w/v aqueous solution has d_4^{20} 1.33 [Reeves J Am Chem Soc 77 3923 1955]. [Beilstein 1 IV 3062.]

Tetrakis[triphenylphosphine]palladium(0) [14221-01-3] **M 1155.6, m 100-105°.** The palladium complex is recrystallised from EtOH. It should not be heated excessively as it dissociates to $Pd(PPh_3)_3$ and $PdPh_3$ and then further to $Pd(PPh_3)_2$ and PPh_3 . It is also air sensitive as PPh_3 is oxidized to PPh_3O . It is stable only for short periods because on exposure to heat or air it turns from yellow to orange and dissociates in solution so the solutions should be used directly. However it can always be prepared freshly by mixing $Pd(NO_3)_2$ (2mmols) and PPh_3 (2mmols) in hot $*C_6H_6$ when vigorous evolution of nitric oxide occurs and a solid mass separates. This is collected and crystallised from EtOH. Its cryoscopic constant in $*C_6H_6$ (at 0.601g/20mL) corresponds to **M 1156** [Malatesta & Angoletti *J Chem Soc* 1186 1957]. It is a useful catalyst for Suzuki coupling reactions [Trost *Tetrahedron* **33** 2615 1977]. [Beilstein **16** IV 954.] This palladium catalyst bound to a polymer support (~0.06mmol/g) is also commercially available [cf Fenger & LeDrain *Tetrahedron Lett* **39** 4287 1998]. [Beilstein **16** IV 954.]

Tetrakis(triphenylphosphine) platinum [14221-02-4] **M 1244.3, m 118°.** It forms yellow crystals on adding hexane to a cold saturated solution in C_6H_6 . It is soluble in C_6H_6 and $CHCl_3$ but insoluble in EtOH and hexane. A less pure product is obtained if it is crystallised by adding hexane to a $CHCl_3$ solution. It is stable in air for several hours and completely stable under N₂. [Malatesta & Cariello *J Am Chem Soc* 2323 1958, *Beilstein* **16** IV 955.]

Tetramethoxysilane (tetramethyl orthosilicate) [681-84-5] **M 152.2, m 4.5°, b 122°/760mm.** Purification is as for tetraethoxysilane. It has a vapour pressure of 2.5mm at 0°. [IR: Sternbach & MacDiarmid J Am Chem Soc 81 5109 1959. Beilstein 1 IV 1266.]

Tetramethylammonium borohydride [16883-45-7] **M 89.0.** Recrystallisation of the borohydride from H₂O three times yields *ca* 94% pure compound. Dry in high vacuum at 100° for 3hours. The solubility in H₂O is 48% (20°), 61% (40°), and in EtOH 0.5% (25°) and MeCN 0.4% (25°). It decomposes slowly in a vacuum at 150°, but rapidly at 250°. The rate of hydrolysis of Me₄N.BH₄ (5.8M) in H₂O at 40° is constant over a period of 100hours at 0.04% of original wt/hour. The rate decreases to 0.02%/hour in the presence of Me₄NOH (5% of the wt of Me₄N.BH₄). [Banus et al. *J Am Chem Soc* **74** 2346 1952, *Beilstein* **4** IV 148.]

Tetramethylammonium hexafluorophosphate [558-32-7] M 219.1, m >300°, d_4^{25} 1.617, pK₁²⁵ ~ 0.5, pK₂²⁵ 5.12 (for fluorophosphoric acid H₂PO₃F). The salt (0.63g) is recrystallised from boiling H₂O (76mL), yielding pure (0.45) Me₄N.PF₆ after drying at 100°. It is a good supporting electrolyte. [Lange & Müller Chem Ber 63 1067 1930, Beilstein 4 III 110.]

Tetramethylammonium perchlorate [2537-36-2] **M 123.6, m>300°, pK²⁵ -2.4 to -3.1 (for HClO₄).** Crystallise it twice from H₂O and dry it at 110° in an air oven. It is insoluble in most organic solvents. [Mead et al. J Chem Soc 1210 1933, Coats & Taylor J Chem Soc 1498 1936.]

Tetramethylammonium triacetoxyborohydride [109704-53-2] **M 263.1, m 93-98°, 96.5-98°.** If impure, wash it with freshly distilled Et_2O and dry it overnight in a vacuum to give a free flowing powder. Check ¹H NMR, and if still suspect prepare it freshly from Me_4NBH_4 and AcOH in $*C_6H_6$ and store it away from moisture [Banus et al. J Am Chem Soc 74 2346 1952, Evans & Chipman Tetrahedron Lett 27 5939 1986]. It is an **IRRITANT** and **MOISTURE SENSITIVE**.

Tetramethylammonium triphenylborofluoride [437-11-6] M 392.2. Crystallise it from acetone or acetone/ethanol. [Beilstein 4 IV 15.]

2,4,6,8-Tetramethylcyclotetrasiloxane (TMCTS) [2370-88-9] M 240.5, m -69°, b 134°/750mm, 134.5-134.9°/755mm, d_4^{20} 0.99, n_D^{20} 1.3872. It is purified by repeated redistillation, and fractions with the required ¹H NMR data are collected. [Sokolov J Gen Chem USSR (Engl Transl) 29 262 1959, Sauer et al. J Am Chem Soc 68 962 1946]. [Beilstein 4 IV 4099.]

1,1,3,3-Tetramethyldisiloxane [3277-26-7] M 134.3, b 70.5-719/731mm, 71-729/atm, d_4^{30} 0.75, n_D^{25} 11.367. Possible impurity is 1,1,5,5-tetramethyl-3-trimethylsiloxytrisiloxane b 154-1559/733mm. Fractionate it, collect fractions boiling below 80° and re-fractionate it. Its purity can be analysed by alkaline hydrolysis and measuring the volume of H₂ liberated followed by gravimetric estimation of silica in the hydrolysate. It is unchanged when stored in glass containers in the absence of moisture for 2-3 weeks. Small amounts of H₂ are liberated on long storage. *Care should be taken when opening a container due to pressure developed*. [Speier et al. *J Am Chem Soc* 79 974 1958, Emeléus & Smythe *J Chem Soc* 609 1958, IR: Kriegsmann Z Anorg Chem 299 78 1959, Beilstein 4 IV 3991.]

N,*N*,*N*'*N*'-**Tetramethylphosphonic diamide** (methylphosphonic bis-dimethylamide) [2511-17-3] M 150.2, b 60.5% (0.6mm, 138% 32mm, 230-230% atm, d_4^{30} 1.0157, n_D^{30} 1.4539. Dissolve it in heptane or ethylbenzene shake; this with 30% aqueous NaOH, stir for 1hour, separate the organic layer and fractionate. [Kosolapoff & Payne J Org Chem **21** 413 1956.] IR has v_{max} 1480, 1460, 1300, 1184, 1065 and 988-970cm⁻¹ [Harvey & Mayhood Can J Chem **33** 1552 1955].

Tetramethylsilane (TMS) [75-76-3] M 88.2, b 26.3°, d_4^{20} 0.639, n_D^{20} 1.359. Distil it from conc H₂SO₄ (after shaking with it) or LiAlH₄, through a 5ft vacuum-jacketed column packed with glass helices into an ice-cooled condenser, then percolate it through silica gel to remove traces of halide. [*Beilstein* 4 IV 3875.]

2,4,6,8-Tetramethyl tetravinyl cyclotetrasiloxane [2554-06-5] M 344.7, m -43.5°, b 111-112°/10mm, 145-146°/13mm, 224-224.5°/758mm, d_4^{30} 0.98, n_D^{30} 1.434. A 7mL sample can be distilled in a small Vigreux column (p 11) at atmospheric pressure without polymerisation or decomposition. It is soluble in cyclohexane. [Kantor et al. J Am Chem Soc 77 1685 1955, Beilstein 4 IV 4184.]

Tetraphenylarsonium chloride hydrate [507-28-8] **M 418.8, m 258-260°, 261-263°.** A neutralised aqueous solution is evaporated to dryness. The residue is extracted into absolute EtOH, evaporated to a small volume and precipitated by addition of absolute Et_2O . It is again dissolved in a small volume of absolute EtOH or ethyl acetate and re-precipitated with Et_2O . Alternatively, it is purified by adding conc HCl to precipitate the chloride dihydrate. Redissolve in water, neutralise with Na₂CO₃ and evaporate to dryness. The residue is extracted with CHCl₃ and finally crystallised from CH₂Cl₂ or EtOH by adding Et_2O . If the aqueous layer is somewhat turbid treat. it with Celite and filter through filter paper. It can be dehydrated before use in a vacuum. The *tetrafluoroborate* salt has **m** 293-295° (needles from MeCN), and the *picrate* salt has **m** 203-204° (from EtOH). [Blicke et al. *J Am Chem Soc* **57** 702 *1935*, Duke & Brown *J Am Chem Soc* **76** 1443 *1954*, Popov & Humphrey *J Am Chem Soc* **81** 2043 *1959*, Singhal & Raj *Synth Inorg Met-org Chem* **23** 1011 *1993*, *Beilstein* **16** III 1006, **16** IV 1170.] **POISONOUS.**

Tetraphenylarsonium iodide [7422-32-4] **M 510.2.** It crystallises from MeOH. [Blicke et al. J Am Chem Soc 57 702 1935, Chatt et al. J Chem Soc 1192 1940.] **POISONOUS.**

Tetraphenylarsonium perchlorate [3084-10-4] M 482.8, pK²⁵ -2.4 to -3.1 (for HClO₄). It crystallises from MeOH. [Horner et al. *Chem Ber* 101 2903 1968.] POISONOUS.

Tetraphenylboron potassium see potassium tetraphenylborate.

Tetraphenylphosphonium chloride [2001-45-8] **M 374.9, m 273-275°.** Crystallise the chloride from acetone and dry at 70° under vacuum. It can also be recrystallised from a mixture of 1:1 or 1:2 dichloromethane/pet ether, the solvents having been dried over anhydrous K_2CO_3 . The purified salt is dried at room temperature under a vacuum for 3days, and at 170° for a further 3days. Also recrystallise it from isoPrOH/Et₂O or EtOH/Et₂O. *Extremely hygroscopic*. [Wittig & Geissler *Justus Liebigs Ann Chem* **580** 44, 50 1953, Willard et al. J Am Chem Soc **70** 737 1948, Beilstein **16** III 851, **16** IV 984.]

Tetraphenylsilane [1048-08-4] **M 336.4, m 231-233°, 234-235°, 236-238°.** It crystallises from *benzene as clear colorless bladed needles. It decomposes at ~360°/~760mm on attempted distillation. [George et al. *J Am Chem Soc* **77** 6647 1955, Polis *Chem Ber* **98** 1540 1885, Drew & Landuist *J Chem Soc* 1480 1935, s *Beilstein* **16** H 901, **16** I 525, **16** II 606, **16** III 1199, **16** IV 1372.]

Tetraphenyltin [595-90-4] **M 427.1, m 224-225°, 226°.** It forms yellow crystals from CHCl₃, pet ether (b 77-120°), xylene or *benzene/cyclohexane, and is dried at 75°/20mm. [Gilman & Rosenberg J Am Chem Soc **74** 531 1952, Beilstein **16** IV 1592.]

Tetrapropylammonium perchlorate [15780-02-6] M 285.8, m 238-240°, 239-241°. pK²⁵ -2.4 to -3.1 (for HClO₄). Purify it by recrystallisation from H₂O or MeCN/H₂O (1:4.v/v), and dry it in an oven at 60° for several days, or in a vacuum over P₂O₅ at 100°. [Walden & Hilgert Z Phys Chem 165 245 1933, Walden & Birr Z Phys Chem 144 281 1929, Walden & Busch Z Phys Chem 140 97 1929, Beilstein 4 II 628.]

Tetra-*n*-propylammonium perruthenate (TPAP, tetrapropyl tetraoxoruthenate) [114615-82-6] **M 351.4, m 160°(dec).** It is a strong oxidant and may explode on heating. It can be washed with aqueous *n*-propanol, then H_2O and dried over KOH in a vacuum. It is stable at room temperature but best stored in a refrigerator. It is soluble in CH₂Cl₂ and MeCN. [Dengel et al. *Transition Met Chem* **10** 98 1985, Griffith et al. *J Chem Soc, Chem Commun* 1625 1987.]

§ Polymer supported reagent is available commercially.

Tetrasodium pyrene-1,3,6,8-tetrasulfonate [59572-10-0] **M 610.5.** It recrystallises from aqueous acetone [Okahata et al. J Am Chem Soc 108 2863 1986].

Thexyl dimethyl chlorosilane (dimethyl-[2,3-dimethyl-2-butyl] chlorosilane) [67373-56-2] M 178.8, b 55-56% (10mm, 158-159% (720mm, d_4^{20} 0.970, n_D^{20} 1.428. Purify it by fractional distillation and store it in small aliquots in sealed ampoules. It is very sensitive to moisture and is estimated by dissolving an aliquot in excess of 0.1M NaOH and titrating with 0.1M HCl using methyl red as indicator [Szabó et al. *Helv Chim Acta* 67 2128 1984].

N-(Thexyl dimethylsilyl)dimethylamine (*N*-[2,3-dimethyl-2-butyl]dimethylsilyl dimethylamine) [81484-86-8] M 187.4, b 156-160%/720mm. Dissolve in hexane, filter, evaporate and distil. It is a colourless oil which is extremely sensitive to moisture. It is best to store small quatities in sealed ampoules after distillation. For estimation of purity, crush an ampoule in excess 0.1N HCl and titrate the excess acid with 0.1M NaOH using methyl red as indicator. [Szabó et al. *Helv Chim Acta* 67 2128 1984.]

Tin tetramethyl (tetramethyl tin) [594-27-4] M 178.8, m 16.5°, b 78.3°/740mm. It is purified by fractionation using a Todd column (p 11) of 35-40 plates at atmospheric pressure. The purity of the fractions can be followed by IR [Edgell & Ward J Am Chem Soc 77 6486 1955]. It readily dissolves stopcock silicone greases which give bands in the 8-10 μ region. [Edgell & Ward J Am Chem Soc 76 1169 1954, Beilstein 4 IV 4307.]

Titanium (IV) methoxide [992-92-7] **M 172.0, m 200-210^o, b 243^o/52mm.** It is extremely sensitive to moisture. Dissolve it in H₂O-free C_6H_6 , filter, evaporate and distil it *in vacuo* under N₂. It is **FLAMMABLE** and **TOXIC**. [Bradley et al. *Metal Alkoxides* Academic Press 1978, ISBN 0121242501.]

Titanocene dichloride [1271-19-8] **M 248.9, m 260-280°(dec), 289.2°, 298-291°, d** $_4^{20}$ **1.60.** It forms bright red crystals from toluene or xylene/CHCl₃ (1:1) and sublimes at 190°/2mm. It is moderately soluble in EtOH and insoluble in Et₂O, *C₆H₆, CS₂, CCl₄, pet ether and H₂O. The crystalline *dipicrate* explodes on melting at 139-140°. [Wilkinson et al. J Am Chem Soc **75** 1011 1953, IR: Wilkinson & Birmingham J Am Chem Soc **76** 4281 1954, NMR and X-ray: Glivicky & McCowan Can J Chem **51** 2609 1973, Clearfield et al. J Am Chem Soc **53** 1622 1975, Beilstein **16** IV 1769.]

Tribenzyl chlorosilane [18740-59-5] **M 336.9, m 139-142°, 141-142°, b 300-360°/100mm.** It is recrystallised three times from pet ether (in slender colourless needles, **m** 141°). It is sparingly soluble in pet ether but is soluble in Et₂O. It does not fume in moist air but is decomposed by H₂O to give *tribenzyl silanol* **m** 106° (from pet ether). [Robinson & Kipping J Chem Soc **93** 439 1908, Jenkins & Post J Org Chem **15** 556 1950, Beilstein **16** H 906, **16** IV 1498.]

Tribenzyl phosphine [76650-89-7] **M 304.4, m 96-101°, b 203-210°/0.5mm, pK**_{Est}~8.8. Dissolve it in Et₂O, dry over Na₂SO₄, evaporate and distil it in an inert atmosphere. The distillate solidifies on cooling and is sublimed at 140°/0.001mm. This has **m** 92-95°(evacuated capillary). When air is bubbled through an Et₂O solution, it is oxidised to *tribenzyl phosphine oxide*, **m** 209-212° (evacuated capillary) (it crystallises from Me₂CO). [Hinton & Mann J Chem Soc 2835 1959, Beilstein **16** H 771, **16** IV 961.]

Tri-*n*-butyl borate [688-74-4] M 230.2, b 110°/11mm, 136°/30mm, 232.4°, d_4^{20} 0.857, n_D^{20} 1.4092. The chief impurities are *n*-butyl alcohol and boric acid (from hydrolysis). It must be handled in a drybox and can readily be purified by fractional distillation, under reduced pressure. [O'Brien Aust J Chem 10 91 1957, Gerrard & Lappert J Chem Soc 2545, 2547 1951, Beilstein 1 IV 1544.]

Tri-*n***-butyl chlorosilane** [995-45-9] **M 234.9, b 93-94°/4.5mm, 134-139°/16mm, 250-252°/atm, 142-144°/29mm, d_4^{20} 0.88, n_D^{20} 1.447. Fractionally distil it and store it in small aliquots in sealed ampoules. [Gilman et al. J Am Chem Soc 74 1361 1952, Osthoff & Clark J Org Chem 24** 219 1959, Beilstein 4 IV 4072.]

Tri-*n*-butyl phosphate (butyl phosphate) [126-73-8] M 266.3, m -80°, b 47°/0.45mm, 98°/0.1mm, 121-124°/3mm, 136-137°/5.5mm, 166-167°/17mm, 177-178°/27mm, 289°/760mm (some dec), d_4^{20} 0.980, n_D^{20} 1.44249. The main contaminants in commercial samples are organic pyrophosphates, mono- and di- butyl phosphates and butanol. It is purified by washing successively with 0.2M HNO₃ (three times), 0.2M NaOH (three times) and water (three times), then fractionally distilled under vacuum. [Yoshida J Inorg Nucl Chem 24 1257 1962.] It has also been purified via its uranyl nitrate addition compound, obtained by saturating the crude phosphate with uranyl nitrate. This compound is crystallised three times from *n*-hexane by cooling to -40°, and then decomposed by washing with Na₂CO₃ and water. Hexane is removed by steam distillation; the water is then evaporated under reduced pressure, and the residue is distilled under reduced pressure. [Siddall & Dukes J Am Chem Soc 81 790 1959.]

Alternatively, wash it with water, then with 1% NaOH or 5% Na₂CO₃ for several hours, then finally with water. Dry it under reduced pressure and fractionate it carefully under vacuum. It is a stable colourless oil, sparingly soluble in H₂O (1mL dissolves in 165mL of H₂O), but freely miscible in organic solvents. [Kuivila & Masterton *J Am Chem Soc* **74** 4953 *1952*, Cox & Westheimer *J Am Chem Soc* **80** 5441 *1958*, ³¹P NMR: Van Wazer *J Am Chem Soc* **78** 5715 *1956*, Fertig et al. *J Chem Soc* 1488 *1957*, *Beilstein* **1** IV 1531.]

Tri-n-butyl phosphine [998-40-3] **M 202.3, b 109-110% (10mm, 115-116%) (12mm, 149.5%) form, 240.4-242.2% atm, d_4^{20} 0.822, n_D^{20} 1.4463, pK_{Est}~7.6. Fractionally distil it under reduced pressure in an inert atmosphere (N₂) through an 8inch gauze-packed column (b 110-111%) (10mm) and redistil it in a vacuum, then seal it in thin glass ampoules. It is easily oxidised by air to** *tri-n-butylphosphine oxide***, b 293-296% (745mm. It has a characteristic odour, it is soluble in EtOH, Et₂O, and *C₆H₆ but is insoluble in H₂O and less easily oxidised by air than the lower molecular weight phosphines. It forms complexes, e.g. with CS₂ (1:1) m 65.5% (from EtOH). [Davies & Jones J Chem Soc 33 1929, Chernick & Skinner J Chem Soc 1401 1956, Beilstein 4 IV 3436.]**

Tri-*n*-butyl phosphite [102-85-2] M 250.3, b 114-115^o/5mm, 122^o/12mm, 130^o/17mm, 137^o/26mm, d_4^{20} 0.926, n_D^{20} 1.4924. Fractionate the phosphite with an efficient column. It is stable in air but is slowly hydrolysed by H₂O. [Gerrard *J Chem Soc* 1464 1940, Fertig et al. *J Chem Soc* 1488 1957, Fields *J Am Chem Soc* 80 2358 1958, Gillis et al. *J Am Chem Soc* 80 2999 1958, *Beilstein* 1 IV 1527.]

Tri-*n***-butyl tin chloride** [1461-22-9] **M** 325.5, **b** 98-100% (0.4mm, 140-152% 10mm, 172% 25mm, d_4^{20} 1.21, n_D^{20} 1.492. Fractionate it in an inert atmosphere and seal it in small aliquots in glass ampoules. It is sensitive to moisture. [Jones et al. *J Chem Soc* 1446 1947, Kocheshkov *J Gen Chem USSR* 4 1359 1934, Kocheshkov *J Gen Chem USSR* 5 211 1935, *J Appl Chem* 6 93 1936, *Beilstein* 4 III 1926.]

Tributyl tin hydride [688-73-3] **M 291.1, b 76%.7mm, 81%.09mm, d** $_{4}^{20}$ **1.098, n** $_{D}^{20}$ **1.473.** Dissolve it in Et₂O, add quinol (500mg for 300mL, to stabilize it), dry over Na₂SO₄, filter, evaporate and distil it under dry N₂. It is a clear liquid if dry and decomposes very slowly. In the presence of H₂O, traces of tributyl tin hydroxide are formed in a few days. Store it in sealed glass ampoules in small aliquots. It is estimated by reaction with aqueous NaOH when H₂ is liberated. **CARE**: stored samples may be under pressure due to liberated H₂. [Van Der Kerk et al. *J Appl Chem* **7** 366 1937, Ono et al. *Tetrahedron* **41** 4013 1985, Neuman *Synthesis* 665 1987, Curran *Synthesis* 417 1988, Beilstein **4** IV 4312.]

B-Trichloroborazine [B-trichloroborazole) [933-18-6] M 183.1, m 83.9-84.5°(sealed evacuated cappillary), 87°, b 88-92°/21mm, d_4^{25} 1.58. Purify it by distillation from mineral oil. It sublimes at 70°/1mm. [Brown & Laubangayer J Am Chem Soc 77 3699 1955, Emeléus & Videla J Chem Soc 1306 1959.] It is extremely sensitive to moisture and reacts with H₂O exothermically to give boric acid and NH₄Cl. Store it in sealed tubes. It is soluble in *C₆H₆, cyclohexane, CS₂, CHCl₃, CCl₄, and C₆H₅Cl

without decomposition, but in MeOH or EtOH it reacts vigorously, liberating HCl. It is insoluble in pyridine and $C_6H_5NO_2$. [*Beilstein* **4** III 174, **1** IV 305.]

Trichloromethyl trimethylsilane (trimethylsilyl trichloromethane) [5936-98-1] M 191.6, m 130-132°, b 146-156°/749mm. It distils at atmospheric pressure without decomposition and readily sublimes at 70°/10mm. It has one peak in the ¹H NMR spectrum (CH₂Cl₂) δ : 0.38. [Speier J Am Chem Soc 73 824 1951, Hergott & Simchen Synthesis 626 1980, Beilstein 4 IV 3892.]

Tricyclohexylphosphine [2622-14-2] M 280.4, m 82-83°, pK_{Est}~9.5. It recrystallises from EtOH [Boert et al. J Am Chem Soc 109 7781 1987]. [Beilstein 16 IV 947.]

Triethoxysilane [998-30-1] **M 164.3, m -170°, b 131.2-131.8°/atm, 131.5°/760mm, d_4^{20} 0.98753, n_D^{20} 1.4377. Fractionate it using a column packed with glass helices of** *ca* **15 theoretical plates in an inert atmosphere. Store it in aliquots in sealed ampoules because it is sensitive to moisture. [Spauschus et al.** *J Am Chem Soc* **72 1377 1950, MacKenzie et al.** *J Am Chem Soc* **72 2032 1950, Havill et al.** *J Org Chem* **13 280 1948, Beilstein 1 IV 1359.]**

Triethylborane [97-94-9] **M 146.0, m –92.5°, b 94-97°, 94-95°, n_D^{20} 1.378, d_4^{20} 0.678.** It distils at 56-57°/220mm. It can also be purified *via* its *ammonia addition complex* which is distilled in a high vacuum, decomposed with dry HCl, and the Et₃B is distilled out. It is commercially available as a 15% solution in hexane or as 1M solution in hexane. [Brown J Am Chem Soc 67 376 1945, Bamford et al. J Chem Soc 471 1946, Lin et al. J Organomet Chem **312** 277 1986, Beilstein **4** III 1957, **4** IV 4359.]

Triethyl borate [150-46-9] **M 146.0, b 44.5%** f_D^{20} **1.378, d**₄²⁰ **0.864.** Dry it over sodium, then distil it. Also fractionate it through a gauze packed column. [Charnlet et al. *J Chem Soc* 2288 1952, as for tributyl borate Johnson & Tompkins *Org Synth* Coll Vol **II** 106 1943, *Beilstein* **1** III 1339, **1** IV 1365.]

Triethyl phosphate [78-40-0] **M** 182.2, **b** 40-42°/0.25-0.3mm, 98-98.5°/8-10mm, 90°/10mm, 130°/55mm, 204°/680mm, 215-216°/760mm, d_4^{25} 1.608, n_D^{20} 1.4053. Dry the ester by refluxing it with solid BaO and then fractionally distil it under reduced pressure. It is kept over Na and distilled. Store it in the receiver protected from light and moisture. Alternatively it is dried over Na₂SO₄ and distilled under reduced pressure. The middle fraction is stirred for several weeks over anhydrous Na₂SO₄ and again fractionated under reduced pressure until the specific conductance reaches a constant low value of κ^{25} 1.19 x 10⁸, κ^{40} 1.68 x 10⁸, and κ^{55} 2.89 x 10⁸ ohm⁻¹ cm⁻¹. It has also been fractionated carefully under reduced pressure through a glass helices-packed column. It is soluble in EtOH, Et₂O and H₂O (dec). [Estok & Wendlandt *J Am Chem Soc* 77 4767 1955, Hoffmann et al. *J Am Chem Soc* 78 6413 1956, (P NMR) Muller et al. *J Am Chem Soc* 78 3557 1956, French et al. *J Chem Soc* 3582 1959, IR: Bellamy & Beecher *J Chem Soc* 475 1952 and McIvor *Can J Chem* 36 820 1958, Kosolapoff *Organophosphorus Compounds*, Wiley p 258 1950, *Beilstein* 1 IV 1339.]

Triethylphosphine [554-70-1] M 118.2, b 100°/7mm, 127-128°/744mm, d_4^{15} 0.812, n_D^{18} 1.457, pK²⁵ 8.69 (also available as a 1.0M solution in THF). All operations should be carried out in an efficient fume cupboard because it is flammable, toxic and has a foul odour. Purify the phosphine by fractional distillation at atmospheric pressure in a stream of dry N₂, as it is oxidised by air to the oxide. In 300% excess of CS₂ it forms Et₃PCS₂ (m 118-120° crystallising from MeOH) which decomposes in CCl₄ to give Et₃PS as a white solid m 94° when recrystallised from EtOH. [Sorettas & Isbell J Org Chem 27 273 1962, Henderson & Streuli J Am Chem Soc 82 5791 1960, pK: Henderson & Streuli J Am Chem Soc 82 5791 1960, see also trimethylphosphine.] Store it in sealed vials under N₂.

Alternatively, dissolve it in Et_2O and shake it with a solution of AgI and KI to form the insoluble complex. Filter off the complex, dry it over P_2O_5 and the Et_3P is regenerated by heating the complex in a tube attached to a vacuum system. [Hewitt & Holliday *J Chem Soc* 530 *1953*, Schettas & Isbell *J Org Chem* **27** 2573 *1962*, Kosolapoff *Organophosphorus Compounds*, Wiley p 31 *1950*, *Beilstein* **4** IV 3431.] **Triethyl phosphite** [122-52-1] M 166.2, b 48-49°/11mm, b 52°/12mm, 57.5°/19mm, 157.9°/757mm, d²⁰₄ 0.9687, n²⁰_D 1.4135. Treat the ester with Na (to remove water and any dialkyl phosphonate), then decant and distil it under reduced pressure, with protection against moisture, or distil it in a vacuum through an efficient Vigreux column (p 11) or a column packed with Penn State 0.16 x 0.16 inch protruded nickel packing and a variable volume take-off head. [Ford-Moore & Perry *Org Synth* Coll Vol IV 955 *1963*, Kosolapoff *Organophosphorus Compounds*, Wiley p 203 *1950*, *Beilstein* 1 IV 1333.]

Triethyl phosphonoacetate (triethyl carboxymethyl phosphonate) [867-13-0] M 224.2, b 83-84% (0.5mm, 103% 1.2mm, 143-144% (11mm, 260-262% atm, d_4^{20} 1.1215, n_D^{20} 1,4310. Purify it by fractional distillation, preferably *in vacuo*. ³¹P NMR has P resonance at 19.5 relative to orthophosphate. [Kosolapoff & Powell J Am Chem Soc 68 1103 1946, Kosolapoff & Powell J Am Chem Soc 72 4198 1950, Speziale & Freeman J Org Chem 23 1586 1958, Beilstein 4 IV 3613.]

Triethyl phosphonoformate [1474-78-8] M 210.2, b 70-72°/0.1mm, 122.5-123°/8mm, 130-131°/10mm, 138.2°/12.5mm, d_4^{20} 1.22, n_D^{20} 1.423. Dissolve it in Et₂O, shake this with H₂O (to remove any trace of NaCl impurity), dry (Na₂SO₄), evaporate and distil it using an efficient fractionating column. [Nylén *Chem Ber* 57 1035 1924, Reetz et al. J Am Chem Soc 77 3813 1955, Monson Advanced Organic Synthesis Academic Press p 89 1972, Beilstein **3** II 103.]

Triethyl 2-phosphonopropionate [ethyl 2-(diethoxyphosphinyl)propionate] [3699-66-9] **M 238.2, b** 76-77% (0.2mm, 137-138.5%) 17mm, d_0^{20} 1.096, n_D^{20} 1.432. Purify it by fractional distillation with high reflux ratio, preferably using a spinning band column. [Kosolapoff & Powell J Am Chem Soc 72 4198 1950, Kresze et al. Justus Liebigs Ann Chem 756 112 1972, Beilstein 4 IV 3617.]

Triethylsilane [617-86-7] **M 116.3, b 105-107°, 107-108°, d_0^{20} 0.734.** n_D^{20} **1.414.** Reflux triethylsilane over molecular sieves, then distil it. It is passed through neutral alumina before use [Randolph & Wrighton J Am Chem Soc **108** 3366 1986]. [Beilstein **4** IV 3895.]

Triethylsilyl-1,4-pentadiene (1,4-pentadien-3-yloxy-trimethylsilane) [62418-65-9] M 198.4, b 72-74°/12mm, d_4^{20} 0.842, n_D^{20} 1.439. Dissolve it in pentane, wash this with H₂O, dry (Na₂SO₄), evaporate, and distil it under vacuum. R_F values on Kieselgel 60 are 0.15 (pentane) and 0.60 (*C₆H₆). [IR, NMR, MS: Oppolzer et al. *Helv Chim Acta* 64 2002 1981.]

Triethyltin hydroxide [994-32-1] **M 222.9, m 49-50°, b 153-155°/20mm.** Treat it with HCl, followed by KOH, and filter it to remove diethyltin oxide [Prince *J Chem Soc* 1783 1959]. [Beilstein **4** H 633, **4** I 585, **4** II 1012, **4** III 1924, **4** IV 4325.]

Tri-*n*-hexylborane [1188-92-7] M 265.3, b 1279/1.5mm, b 185-1889/30mm. Treat the borane with hex-1-ene and 10% anhydrous Et_2O for 6hours at gentle reflux under N₂, then distil it in a vacuum through an 18inch glass helices-packed column under N₂ taking the fraction b 130°/2.1mm to 137°/1.5mm. The distillate may still contain some di-*n*-hexylborane [Brown & Subba Rao J Am Chem Soc 81 6423 1959, Mirviss J Am Chem Soc 83 3051 1961]. [Beilstein 4 IV 4362.]

Triisoamyl phosphate [919-62-0] **M 308.4, b 143% mm.** Purify the ester by repeated crystallisation, from hexane, of its addition compound with uranyl nitrate. Decompose the complex, and distil the ester at high vacuum. [Siddall *J Am Chem Soc* **81** 4176 1959.] [see *tributyl phosphate* and Cherbuliez in *Organo Phosphorus Compounds* (Kosolapoff & Maier eds) Wiley Vol **6** pp 211-577 1973.]

Triisobutyl phosphate [126-71-6] M 266.3, b 119-129%/8-12mm, 192%/760mm, d_4^{20} 0.962, n_D^{20} 1.421. Purify it by repeated crystallisation, from hexane, of its addition compound with uranyl nitrate. (see *tributyl phosphate*.) [Siddall J Am Chem Soc 81 4176 1959; see Cherbuliez in Organo Phosphorus Compounds (Kosolapoff & Maier eds) Wiley Vol 6 pp 211-577 1973.]

Triisooctyl thiophosphate [30108-39-5] **M 450.6.** Purify the ester by passing its solution in CCl₄ through a column of activated alumina. [See Ailman & Magean in *Organo Phosphorus Compound* (Kosolapoff & Maier eds) Wiley Vol **7** pp 487-465 1973, and tri-p-tolyl phosphate below.]

Triisopropyl phosphite [116-17-6] **M 208.2, b 58-59°/7mm, 63-64°/7mm, n**²⁵_D **1.4082.** Distil it from sodium, under vacuum, through a column packed with glass helices. (This removes any dialkyl phosphonate.) [Ford-Moore & Williams *J Chem Soc* 1465 1947, Arbuzov *Chem Ber* **38** 1171 1905, see Verkade & Coskren in *Organo Phosphorus Compound* (Kosolapoff & Maier eds) Wiley Vol **2** pp 1-187 1972, *Beilstein* **1** IV 1476.]

Trimesitylphosphine [23897-15-6] **M 388.5, m 205-206°, pK_{Est}~8.0.** It recrystallises from EtOH [Boert et al. *J Am Chem Soc* **109** 7781 1987]. The *P-methyl iodide* has **m** 269° (yellow powder from EtOH or H₂O). [*Beilstein* **16** H 774.]

Trimethallyl phosphate [14019-81-9] M 260.3, b 134.5-140%/5mm, n²⁵ 1.4454. Purify it as for triisoamyl phosphate. [Cherbuliez in *Organo Phosphorus Compounds* (Kosolapoff & Maier eds) Wiley Vol 6 pp 211-577 1973.]

Trimethoxysilane [2487-90-3] **M 122.2, m -114.8°, 81.1°/760mm, 84°/atm, d_4^{20} 0.957, n_D^{20} 1.359. Likely impurities are Si(OMe)₄ and H₂Si(OMe)₂. Efficient fractionation is essential for removing these impurities [IR: Sternbach & MacDiarmid** *J Am Chem Soc* **81** 5109 1959, Heilfrich & Hausen *Chem Ber* **57** 795 1924, Beilstein 1 IV 1266.]

Trimethyl borate (methylborate, trimethoxyboron) [121-43-7] M 103.9, m -34°, b 67-68°/742mm, d²⁰₄ 0.928, n²⁰_D 1.3610. Carefully fractionate the borate through a gauze-packed column. Re-distil and collect it in weighed glass vials and seal them. Keep it away from moisture. It undergoes alkyl exchange with alcohols and forms azeotropes, e.g. with MeOH the azeotrope consists of 70% (MeO)₃B and 30% MeOH with b 52-54°/760mm, d 0.87. [Charnley et al. *J Chem Soc* 2288 *1952*, Gerrard & Lappert *Chem Ind* (*London*) 53 *1952*, Schlesinger et al. *J Am Chem Soc* 75 213 *1953*.] It has also been dried with Na and then distilled. [*Beilstein* 1 IV 1269.]

Trimethyl boroxine [823-96-1] **M 125.5, m -38°, b 80°/742mm, 79.3°/755mm, d_4^{20} 0.902.** Possible impurity is methylboronic acid. If present, then add a few drops of conc H₂SO₄ and distil it immediately, then fractionate it through an efficient column. [McCusker et al. J Am Chem Soc **79** 5179 1957, IR: Goubeau & Keller Z Anorg Allgem Chem **272** 303 1953, Beilstein **4** IV 4378.]

Trimethyloxonium tetrafluoroborate [420-37-1] **M 147.9, m 141-143°(sinters, open capillary), 179.6-180.0°(dec), 210-220°(dec).** The salt must be a white crystalline solid $\mathbf{m} \sim 179.6-180.0°$ (dec, sealed tube). Under a N₂ atmosphere (e.g. Dry Box), wash it twice with CH₂Cl₂, then twice with Na-dried Et₂O, and dry by passing dry N₂ over the salt until free from Et₂O [Curphey *Org Synth* Coll Vol **VI** 1019 *1988*]. The oxonium salt, purified in this way, can be handled in air for short periods. The sample kept in a desiccator (Drierite) for 1 month at -20° had an unaltered melting point, and samples stored in this way for >1 year are satisfactory for alkylations. ¹H NMR in liquid SO₂ in a sealed tube had a single peak at δ 4.54 (impurities have δ at 3.39). [Meerwein *Org Synth* Coll Vol **V** 1096 *1973*.] If the sample looks good, dry it in a vacuum desiccator for 2hours (25°/1mm) and store it under N₂ at -20°. The melting point depends on heating rate. [*Beilstein* **1** IV 1248.]

Trimethylphenylsilane (phenyltrimethylsilane) [768-32-1] M 150.3, b 67.3°/20mm, 98-99°/80mm, 170.6°/738mm, d_4^{25} 0.8646, n_D^{20} 1.491. Fractionally distil the silane at atmospheric or reduced pressure (Podbielniak column p 11) and estimate it by GC with a column packed with Silicone Fluid No 710 on Chromosorb P support. [Gilman et al. J Org Chem 18 1743 1953, Maienthal et al. J Am Chem Soc 76 6392 1954, House & Respess J Organomet Chem 4 95 1965, Roberts et al. J Am Chem Soc 71 2923 1949, Freiser et al. J Am Chem Soc 75 2821 1953, Beilstein 16 I 525, 16 II 605, 16 III 1198, 16 IV 1361.] Trimethyl phosphate [512-56-1] M 140.1, b 77°/12mm, 94°/22mm, 110°/60mm, 197.2°/atm, d_4^{20} 1.0213, n_D^{20} 1.3961. Purify the phosphate by fractionation through an efficient column at high reflux ratio. It is quite soluble in H₂O; the solubility is 1:1 at 25°. [Becker J Am Chem Soc 74 2923 1952, IR: Bergmann et al. J Chem Soc 847 1952, McIvor et al. Can J Chem 36 820 1958, Kosolapoff Organophosphorus Compounds, Wiley p 258 1950, and Cherbuliez in Organo Phosphorus Compounds (Kosolapoff & Maier eds) Wiley Vol 6 pp 211-577 1973, Beilstein 1 IV 1259.]

Trimethylphosphine [594-09-2] M 76.1, m -86°, b 38-39°/atm, pK²⁵ 8.65, (also available as a 1.0M solution in THF or toluene). All operations should be carried out in an efficient fume cupboard because it is flammable, toxic and has a foul odor. Distil trimethylphosphine at atmospheric pressure in a stream of dry N_2 (apparatus should be held together with springs to avoid loss of gas from increased pressure in the system) and the distillate run into a solution of AgI in aqueous KI whereby the silver complex [Me₃PAgI]₄ separates steadily. Filter off the complex, wash it with saturated aqueous KI solution, then H₂O and dry it in a vacuum desiccator over P₂O₅. The dry complex is heated in a flask (in a stream of dry N₂) in an oil bath at 140°, when pure Me₃P distils off (bath temperature can be raised up to 260°). The vapour pressure of Me₃P at 20° is 466mm and the **b** is 37.8° [Thomas & Eriks *Inorg* Synth IX 59 1967]. Alternatively, freshly distilled Me₃P (6g) is shaken with a solution of AgI (13.2g, 1.1mol) in saturated aqueous KI solution (50mL) for 2hours. A white solid, not wetted with H₂O, separates rapidly. It is collected, washed with the KI solution, H₂O, and dried [Mann et al. J Chem Soc 1829 1937]. The silver complex is stable if kept dry in the dark, in which state it can be kept indefinitely. Me₃P can be generated from the complex when required. Store it under N_2 in a sealed container. It has been distilled in a vacuum line at -78° in vacuo and condensed at -96° [IR and NMR: Crosbie & Sheldrick J Inorg Nucl Chem 31 3684 1969]. The pK²² by NMR was 8.80 [Silver & Lutz J Am Chem Soc 83 786 1961, pK²⁵ 8.65: Henderson & Strueuli J Am Chem Soc 82 5791 1960].

The $[Me_2PAgI]_4$ complex [12389-34-3] is a flammable solid which has **m** 140-142°. It is decomposed by heating gently in one arm of an inverted U tube. The other arm is kept in a freezing mixture. The complex dissociates, and pure Me₃P collects in the cold arm and is used at once. It should not be allowed to come in contact with air [for AsMe₃ see Mann & Wells *J Chem Soc* 708 *1938*]. The CS₂ complex has **m** 119° (crystallising from 95% EtOH) and decomposes in CCl₄ to give Me₃PS **m** 154° (from EtOH) [Sorettas & Isbell *J Org Chem* 27 273 *1962*].

Trimethylphosphine hydrochloride is unstable and volatilises at 75°/0.4mm (120°/14mm). [Brown J Am Chem Soc 67 503 1945, IR: Wagstaffe & Thompson Trans Faraday Soc 40 41 1944, Kosolapoff Organo-phosphorus Compounds, Wiley p 31 1950, Beilstein 4 IV 3429.]

Trimethyl phosphite [121-45-9] M 124.1, b 22% 23mm, 86-86.5% 351mm, 111-112% 760mm, 111% d_4^{20} 1.0495, n_D^{20} 1.408. Treat the phosphite with Na (to remove water and any dialkyl phosphonate), then decant and distil it with protection against moisture. It has also been treated with sodium wire for 24hours, then distilled in an inert atmosphere onto activated molecular sieves [Connor et al. *J Chem Soc, Dalton Trans* 511 1986]. It can be fractionally distilled using a spinning band column at high reflux ratio. It is a colourless liquid which is slowly hydrolysed by H₂O. [Gillis et al. *J Am Chem Soc* 80 2999 1958, ³¹P NMR: Callis et al. *J Am Chem Soc* 79 2719 1957, Kosolapoff Organophosphorus Compounds, Wiley p 203 1950, Beilstein 1 IV 1256.]

Trimethylsilyl acetamide [13435-12-6] M 131.3, m 38-43°, 52-54°, b 84°/13mm, 185-186°/atm. Distil the amide repeatedly in an inert atmosphere with all operations to be performed in an anhydrous atmosphere. In the presence of moisture, trimethylsilanol (b 31-34°/26mm) is formed and is a likely impurity (check by NMR). [Birkofer et al. *Chem Ber* 96 1473 1963, *Beilstein* 4 IV 4011.]

Trimethylsilyl acetonitrile (TMSAN) [18293-53-3] **M 113.2, b 49-51°/10mm, 65-70°/20mm, d** $_{4}^{20}$ **0.8729, n** $_{D}^{20}$ **1.4420.** Check if NMR and IR spectra show impurities; if present dissolve it in *C₆H₆ (10volumes), wash it with buffer (AcOH/AcONa pH *ca* 7) several times, dry (CaCl₂) it, evaporate and distil it. IR: v (CCl₄) 2215 (CN) cm⁻¹, NMR δ (CCl₄): 0.23 (s, 9H, SiMe₃), and 1.53 (s, 2H, CH₂CN). [Matsuda et al. J Chem Soc, Perkin Trans 1 26 1979, Beilstein **4** IV 3974.]

Trimethylsilyl azide [4648-54-8] **M 115.2, b 92-95% atm, 95-99% atm, d_4^{20} 0.878, n_D^{20} 1.441. Distil the azide through a Vigreux column (p 11) in a N₂ atmosphere maintaining the oil bath temperature thermostat at 135-140°. Check the purity by ¹H NMR [CHCl₃, \delta: single peak at 13cps from Me₄Si]. Likely impurities are siloxane hydrolysis products. The azide is thermally stable even at 200° when it decomposes slowly without explosive violence. All the same, it is advisable to carry out the distillation behind a thick safety screen in a fumehood because unforseen EXPLOSIVE** azides may be formed on long standing. [Birkofer & Wagner *Org Synth* Coll Vol VI 1030 *1988*.]

Trimethylsilyl chloride (trimethyl chlorosilane, chlorotrimethylsilane) [75-77-4] M 108.6, b 56-57% atm, 58% 760mm, d_4^{20} 0.86, n_D^{20} 1.388. Likely impurities are other chlorinated methylsilanes and tetrachlorosilane (b 57.6%), some of which can form azeotropes. To avoid the latter, very efficient fractional distillation is required. It has been fractionated through a 12 plate glass helices-packed column with only the heart-cut material being used. It has also been fractionated through a 90cm, 19mm diameter Stedman column (p 11). Purify it by redistilling from CaH₂ before use. [Sauer et al. J Am Chem Soc 70, 4254 1948, Sauer & Hadsell J Am Chem Soc 70 4258 1948, Langer et al. J Org Chem 23 50 1958, Beilstein 4 IV 4007.] FLAMMABLE and CORROSIVE.

Trimethylsilyl chloroacetate [18293-71-5] **M 166.7, m -20°, b 57-58°/14mm, 70-71°/ 30mm, 159°/760mm, d** $_{4}^{20}$ **1.057, n** $_{D}^{20}$ **1.4231.** Purify it by repeated fractionation and taking the fractions with clean NMR spectra. [Anderson *J Am Chem Soc* 74 2371 1952, *Beilstein* 4 IV 4004.]

Trimethylsilyl cyanide [7677-24-9] **M 99.2, m 8-11°, 10.5-11.5°, 11-12°, 12-12.5°, b 54-55°/87mm, 67-71°/168mm, 114-117°/760mm, 118-119°/760mm, d_4^{20} 0.79 n_D^{20} 1.43916. The material should have only one sharp signal in the ¹H NMR (in CCl₄ with CHCl₃ as internal standard) \delta: 0.4ppm and IR with v_{max} at 2210cm⁻¹ [McBride & Beachall** *J Am Chem Soc* **74 5247 1952, Prober** *J Am Chem Soc* **77 3224 1955]; otherwise purify it by fractionating through an 18 x 1/4inch column. [Evers et al.** *J Am Chem Soc* **81 4493 1959.] It has also been carefully distilled using a 60cm vacuum jacketed column. If the volume of sample is small, the cyanide can be chased (in the distillation) with xylene that had been previously distilled over P₂O₅. It is HIGHLY TOXIC** and **FLAMMABLE**. [Evans et al. *J Org Chem* 39 914 1974, Beilstein 4 IV 3893.]

2-Trimethylsilyl-1,3-dithiane [13411-42-2] **M 192.2, b 54.5%** (0.17mm, 100% mm, d_4^{20} **1.04,** n_D^{20} **1.533.** Fractionally distil the dithiane through an efficient column and collect the fractions that have the correct NMR and IR spectra. ¹H NMR (CCl₄) τ 6.36 (SiMe₃), 9.87 (SCHS) and dithiane H at 7 and 8 (ratio 1:9:4:2) from Me₄Si; UV λ_{max} 244nm (ϵ 711), sh 227nm (ϵ 800). [Corey et al. *J Am Chem Soc* **89** 434 1967.]

2-(Trimethylsilyl)ethanesulfonyl chloride (SES-Cl) [106018-85-3] M 200.8, b $60^{\circ}/0.1 \text{ mm}$, 146.8°/760mm, d $_{4}^{25}$ 1.059, n $_{D}^{25}$ 1.4444. Check IR; if the bands at ~3200 (OH) cm⁻¹ are strong, then much of the SES-Cl had hydrolysed, and it should be treated with POCl₃ (with cooling) and stirred at ~25° for about 1hour, poured into ice cold H₂O, extracted with CH₂Cl₂, washed with NaHCO₃, dried (Na₂SO₄), evaporated , and it distils as a yellow oil in a vacuum. This procedure is used for converting the Na salt [18143-30-1] to SES-Cl. It reacts with amines to form amides, e.g. SES-NRR', which on heating with CsF (i.e. F⁻ ions) in DMF at 95° provide the amine (NHRR'), SO₂ and CH₂=CH₂ [Weinreb et al. *Tetrahedron Lett* **27** 2099 1986]. [Ribiere et al. *Chem Rev* **106** 2249 2006.]

Trimethylsilyl ethanol [2916-68-9] M 118.3, b 53-55°/11mm, 75°/41mm, 95°/100mm, d_4^{25} 0.8254, n_D^{25} 1.4220. If the NMR spectrum is not clean, then dissolve the alcohol in Et₂O, wash it with aqueous NH₄Cl solution, dry (Na₂SO₄), evaporate and distil it. The *3,4-dinitrobenzoyl* derivative has m 66° (from EtOH). [NMR: Speier et al. *J Am Chem Soc* 79 974 1957, *Z Naturforsch* 14b 137 1959, Beilstein 4 IV 3951.]

2-(Trimethylsilyl)ethoxymethyl chloride (SEMCl) [76513-69-4] M 166.7, b 57-59% mm, d_4^{20} 0.942, n_D^{20} 1.4350. Dissolve SEMCl in pentane, dry it (MgSO₄), evaporate and distil the residual oil

in a vacuum. Stabilise it with 10ppm of diisopropylamine. Store it under N_2 in a sealed container in a refrigerator. [Lipshutz & Pegram *Tetrahedron Lett* **21** 3343 1980.]

2-(Trimethylsilyl)ethoxymethyltriphenylphosphonium chloride [82495-75-8] M 429.0, m 140-142°, 145-149°. Wash the solid with AcOH and recrystallise it from $CH_2Cl_2/EtOAc$. Dry it in a vacuum desiccator. *Hygroscopic*. ¹H NMR (CDCl₃) δ : -0.2 (s, Me₃Si), 0.8 (t, 8Hz, CH₂Si), 3.83 (t, 8Hz, OCH₂), 5.77 (d, J_{PH} 4Hz, P⁺-CH₂O) and 7.70 (m, aromatic H). [Schönauer & Zbiral *Justus Liebigs Ann Chem* 1039 1983.]

Trimethylsilylethyl phenylsulfone (phenyl-2-trimethylsilylethylsulfone) [73476-18-3] M 242.4, m 52°. Dissolve it in Et₂O, wash it with saturated HCO₃ followed by saturated NaCl, H₂O and dried (MgSO₄). Evaporation leaves residual crystals with m 52°. [Hsiao & Shechter *Tetrahedron Lett* 23 1963 1982, Bortolini et al. J Org Chem 53 2688 1985.]

Trimethylsilyl isocyanate [1118-02-1] **M 115.2, b 90-92% atm, b 91.3-91.6% atm, d** $_{4}^{20}$ **0.850 n** $_{D}^{20}$ **1.43943.** Purify it by repeated fractionation as for the isothiocyanate. [Eaborn *J Chem Soc* 3077 1950, *Beilstein* **4** III 1861, **4** IV 4011.]

Trimethylsilyl isothiocyanate [2290-65-5] M 131.3, m -33° , b 142.6-143.1°/759mm, 143.8°/760mm, n_D^{20} 1.4809. The ¹H NMR spectrum should have only one peak; if not purify it by repeated fractionation in an all-glass system using a 50cm (4mm internal diameter) column without packing. [Anderson J Am Chem Soc 69 3049 1947, Fehér & Blümcke Chem Ber 90 1934 1957, Neidleim & Hege Synthesis 51 1975, Beilstein 4 III 1861, 4 IV 4011.]

(Trimethylsilyl)methanol [3219-63-4] M 104.2, b 120-122°/754mm, 122-123°/768mm, d_4^{20} 0.83 n_D^{20} 1.4176. If the NMR indicates impurities (should have only two signals), then dissolve it in Et₂O, shake this with aqueous 5N NaOH, M H₂SO₄, saturated aqueous NaCl, dry (MgSO₄) and distil it using an efficient column at atmospheric pressure. The 3,5-dinitrobenzoate has m 70-70.5° (from 95% EtOH). [Huang & Wang Acta Chem Sin 23 291 1957, cf. Chem Abstr 52 19911 1958, Speier et al. J Am Chem Soc 81 1844 1959 and Speier et al. J Am Chem Soc 70 1117 1948, Beilstein 4 III 1844, 4 IV 2876.]

(Trimethylsilyl)methylamine (aminomethyl trimethylsilane) [18166-02-4] M 103.2, b 101.6°/735mm, d_4^{20} 0.77, n_D^{20} 1.416. A possible contaminant is hexamethyldisiloxane. It should have two ¹H NMR signals in CDCl₃; if not, dissolve it in *C₆H₆, shake it with 15% aqueous KOH, separate, dry (Na₂SO₄), filter, evaporate and distil it using a still of *ca* 10 theoretical plates. The water azeotrope has b 83°/735mm; hence it is important to dry the extract well. The *hydrochloride* has m 198-199° (from MeOH or Me₂CO). [Noll et al. J Am Chem Soc 73 3867 1951, Beilstein 4 IV 3878.]

Trimethylsilylmethyl phenylsulfone (phenyltrimethylsilylmethylsulfone) [17872-92-3] M **228.4, m 28-32°, b 121°/0.01mm, 160°/6mm, n_D^{20} 1.5250.** Fractionate it at high vacuum and recrystallise it from pentane at -80°. If too impure (*cf* IR), dissolve it in CH₂Cl₂ (*ca* 800mL for 100g), wash this with 2M aqueous NaOH (2 x 200mL), brine, dry, evaporate and distil it. [Craig et al. J Chem Soc, Perkin Trans 1 1949 1985, IR and NMR: Cooper J Am Chem Soc **76** 3713 1954.]

1-Trimethylsilyloxy-1,3-butadiene [6651-43-0] M 142.3, b 1319/760mm (mixture of isomers), 49.59/25mm (*E*-isomer), d_4^{20} 0.8237, n_D^{20} 1.447. Purify it by fractional distillation and collect the fractions with the required ¹H NMR. Store it under N₂ — it is a flammable and moisture-sensitive liquid. [Caseau et al. *Bull Soc Chim Fr* 16658 1972, Belge Patent 670,769, *Chem Abstr* 65 5487d 1966.]

1-(Trimethylsilyloxy)cyclopentene [19980-43-9] M 156.3, b 45°/11mm, 75-80°/20-21mm, d_4^{20} 0.878, n_D^{20} 1.441. If too impure as seen by the NMR spectrum, then dissolve it in 10 volumes of pentane, shake with cold NaHCO₃ (3 x 500mL), then 1.5M HCl (200mL) and aqueous NaHCO₃ (200mL) again, dry (Na₂SO₄), filter, evaporate and distil it through a short Vigreux column (p 11). ¹H NMR: (CDCl₃) δ : 0.21 (s, 9H), 1.55 (m, 2H), 1.69 (m, 2H), 2.05 (br d, 4H) and 4.88 (br s, 1H). GLPC in a 6ft x 1/8inch

with 3% SP2100 on 100-120 mesh Supelcoport column should give one peak. Store dry. [For the cyclohexene analogue see Varghese et al. *Org Synth* Coll Vol **VIII** 460 *1993*.]

2-(Trimethylsilyloxy)furan [61550-02-5] **M 156.3, b 34-35°/9-10mm, 42-50°/17mm, 40-42°/25mm, d** $_{4}^{20}$ **0.950, n** $_{D}^{20}$ **1.436.** Fractionally distil it using a short path column. ¹H NMR in CCl₄ has δ : 4.90 (dd, J 1.3Hz, 3H), 6.00 (t, J 3Hz, 4H) and 6.60 (m, 5H). [Yoshii et al. *Heterocycles* **4** 1663 1976.]

4-Trimethylsilyloxy-3-penten-2-one (*cis*) (acetylacetone enol trimethylsilyl ether) [13257-81-3] M 172.3, b 66-68%/4mm, 61-63%/5mm, d_4^{20} 0.917, n_D^{20} 1.452. Fractionally distil it and store it in glass ampoules which are sealed under N₂. It hydrolyses readily in contact with moisture giving, as likely impurities, hexamethyldisiloxane and 2,4-pentanedione. [West *J Am Chem Soc* 80 3246 1958, *Beilstein* 4 IV 4003.]

1-(Trimethylsilyl)-2-phenylacetylene (1-phenyl-2-trimethylsilylacetylene) [78905-09-6] M 174.3, b 45-46% 0.1mm, 67% 5mm, 87.5% 9mm, d_4^{20} 0.8961 n_D^{20} 1.5284. Dissolve it in Et₂O, wash with H₂O, dry and fractionate it through a Todd column (p 11). [Benkeser & Hicker J Am Chem Soc 80 5298 1958.]

3-(Trimethylsilyl)propyne [13361-64-3] **M 112.3, b 99-100^o/760mm, d**²⁰₄ **0.7581, n**²⁰_D **1.4091.** Fractionally distil it and add 2,6-di-*tert*-butyl-*p*-cresol (~0.5%) to stabilise it. [Petrov et al. Doklady Acad Nauk USSR **93** 293 1953, cf Chem Abstr **48** 13616 1954, Beilstein **4** IV 3938.]

1-Trimethylsilyl-1,2,4-triazole [18293-54-4] M 141.3, b 74% 12mm, d_4^{20} 0.99, n_D^{20} 1.4604. Fractionally distil it at atmospheric pressure in an inert atmosphere because it is moisture sensitive. [Birkofer et al. *Chem Ber* 93 2804 1960.]

Trimethylsilyl trifluoromethane (trifluoromethyl trimethylsilane, Ruppert's reagent) [81290-20-2] **M 142.2, b 54-55°, 55-55.5°, d** $_4^{20}$ **0.962, n** $_D^{20}$ **1.332.** Purify it by distilling it from trap to trap in a vacuum of 20mm using a bath at 45° and Dry-ice/Me₂CO bath for the trap. The liquid in the trap is then washed with ice cold H₂O (3x), the top layer is collected, dried (Na₂SO₄), and the liquid is decanted and fractionated through a helices-packed column at atmospheric pressure. ¹H, ¹³C, ¹⁹F, and ²⁹Si NMR can be used for assessing the purity of fractions. [Ruppert et al. *Tetrahedron Lett* **25** 2195 *1984*, Krishnamurti et al. *J Org Chem* **56** 984 *199*, *Beilstein* **4** IV 3892.]

Trimethyl vinyl silane [754-05-2] M 100.2, b 54.4%/744mm, 55.5%/767mm, d_4^{25} 0.6865, n_D^{25} 1.3880. If the ¹H NMR spectrum shows impurities, then dissolve it in Et₂O, wash it with aqueous NH₄Cl solution, dry over CaCl₂, filter, evaporate and distil it at atmospheric pressure in an inert atmosphere. It is used as a co-polymer and may polymerise in the presence of free radicals. It is soluble in CH₂Cl₂. [Nagel & Post *J Org Chem* 17 1379 *1952*, *Beilstein* 4 IV 3922.]

Trineopentyl phosphate [14540-59-1] **M 320.4.** Crystallise it from hexane. [See Cherbuliez in *Organo Phosphorus Compounds* (Kosolapoff & Maier eds) Wiley Vol 6 pp 211-577 1973.]

Tri-(4-nitrophenyl)phosphate [3871-20-3] **M 461.3, m 155-156°, 156°, 156-158°, 157-159°**. It has been recrystallised from AcOH, dioxane, AcOEt and Me₂CO and dried it in a vacuum over P₂O₅. [Katelaar & Gersmann J Am Chem Soc **72** 5777 1950, Moffatt & Khorana J Am Chem Soc **79** 3741 1957.]

Tri-*n*-octylphosphine oxide [78-50-2] **M** 386.7, **m** 59.5-60°, **pK**_{Est} <0. Mason, McCarty and Peppard [*J Inorg Nuclear Chem* 24 967 1962] stirred a 0.1M solution in *benzene with an equal volume of 6M HCl at 40° in a sealed flask for 48hours, then washed the *benzene solution successively with water (twice), 5% aqueous Na₂CO₃ (three times) and water (six times). The *benzene and water were then evaporated under reduced pressure at room temperature. Zingaro and White [*J Inorg Nucl Chem* 12 315 *1960*] treated a pet ether solution with aqueous KMnO₄ (to oxidise any phosphinous acids to phosphinic acids), then with sodium oxalate, H₂SO₄ and HCl (to remove any manganese compounds). The pet ether solution was slurried with activated alumina (to

remove phosphinic acids), filtered, evaporated and the residue was recrystallised from pet ether or cyclohexane at -20°. It can also be recrystallised from EtOH. [*Beilstein* **4** IV 3466.]

Triphenylantimony [603-36-1] **M 353.1, m 52-54°.** Recrystallise Ph₃Sb from acetonitrile [Hayes et al. J Am Chem Soc **107** 1346 1985]. [Beilstein **16** H 891, **16** IV 1198.]

Triphenylarsine [603-32-7] **M 306.2, m 60-62°.** Recrystallise Ph₃As from EtOH or aqueous EtOH [Dahlinger et al. *J Chem Soc, Dalton Trans* 2145 *1986*, Boert et al. *J Am Chem Soc* **109** 7781 *1987*]. [*Beilstein* **16** H 829, **16** I 431, **16** II 407, **16** III 921, **16** IV 1139.] **HIGHLY TOXIC.**

Triphenylarsine oxide [1153-05-5] **M 322.2, m 194-196**^o (anhydrous). The anhydrous oxide crystallises from C_6H_6 , whereas the *monohydrate* separates from EtOH with **m** 118° (**m** 114-117° was also reported). [Beilstein 16 H 846, 16 I 433, 16 II 433, 16 III 1022, 16 IV 1139.] HIGHLY TOXIC.

Triphenylbismuth (bismuth triphenyl) [603-33-8] M 440.3, m 75-76°, 77-78°, 78.5°, b 124°/7mm, $d_4^{98.5}$ 1.6427(melt). Dissolve it in EtOH, precipitate it with H₂O, extract with Et₂O, dry and evaporate till the residue crystallises. It has been recrystallised from EtOH and Et₂O/EtOH and is a stable compound. [Forward et al. *J Chem Soc* suppl p121 1949, Pfeiffer et al. *Chem Ber* 37 4620 1904, Gilman & Yablunky *J Am Chem Soc* 62 665 1940, UV: Jaffé *J Chem Phys* 22 1430 1954, Beilstein 4 III 1841.]

Triphenyl borane (borane triphenyl, triphenyl boron) [960-71-4] M 242.1, m 134-140°, 137°, 139-141°, 142-142.5°, 147.5-148°, 151°, b 203°/15mm. Recrystallise the borane three times from Et_2O or C_6H_6 under N₂ and dry it at 130°. It can be distilled in a high vacuum at 300-350° and has been distilled (b 195-215°/~15mm) in vacuum using a bath temperature of 240-330°. N₂ is introduced into the apparatus before dismantling. It forms complexes with amines. [Nielsen et al. *Chem Ind (London)* 1069 1957, Wittig et al. *Justus Liebigs Ann Chem* 563 110 1949, Bent & Dorfman J Am Chem Soc 57 1259 1935, Beilstein 16 IV 1623.]

Triphenyl phosphate [115-86-6] M 326.3, m 49.5-50°, b 245°/11mm. Crystallise the phosphate from EtOH or pet ether (b 60-80°)/EtOH. [Cox & Westheimer J Am Chem Soc 80 5441 1958, Krishnakumar & Sharma Synthesis 558 1983, Cherbuliez in Organo Phosphorus Compounds (Kosolapoff & Maier eds) Wiley Vol 6 pp 211-577 1973, Beilstein 6 III 658, 6 IV 720.]

Triphenylphosphine [603-35-0] **M 262.3, m 77-78°, 79°, 79-81°, 80.5°, 80-81°, b** >360°(in inert gas), d_4^{25} 1.194, d_4^{80} 1.075 (liq), pK²⁵2.73. It crystallises from hexane, MeOH, diethyl ether, CH₂Cl₂/hexane or 95% EtOH. Dry it at 65°/<1mm over CaSO₄ or P₂O₅. Chromatograph it through alumina using (4:1) *benzene/CHCl₃ as eluent. [Blau & Espenson et al. *J Am Chem Soc* 108 1962 *1986*, Buchanan et al. *J Am Chem Soc* 108 1537 *1986*, Randolph & Wrighton *J Am Chem Soc* 108 3366 *1986*, Asali et al. *J Am Chem Soc* 109 5386 *1987*.] It has also been crystallised twice from pet ether and 5 times from Et₂O/EtOH to give **m** 80.5°. Alternatively, dissolve it in conc HCl, and upon dilution with H₂O it separates because it is weakly basic, it is then crystallised from EtOH/Et₂O. It recrystallises unchanged from AcOH. [Forward et al. *J Chem Soc* Suppl. p121 *1949*, Muller et al. *J Am Chem Soc* 78 3557 *1956*.] *3Ph*₃*P*.4HCl crystallises out when HCl gas is bubbled through an Et₂O solution, it has **m** 70-73°, but recrystallises very slowly and is deliquescent. The *hydriodide*, made by adding Ph₃P to hydriodic acid, is not hygroscopic and decomposes at ~100°. The *chlorate* (1:1) *salt* has **m** 165-167°, but decomposes slowly at 100°. All salts hydrolyse in H₂O to give Ph₃P [IR, UV: Sheldon & Tyree *J Am Chem Soc* 80 2117 *1958*, pK: Henderson & Streuli *J Am Chem Soc* 82 5791 *1960*, Kosolapoff, *Organophosphorus Compounds*, Wiley *1950*]. [*Beilstein* 16 IV 951.]

§ Available commercially on a polystyrene or polyethyleneglycol support.

Triphenyl phosphine dibromide [1034-39-5] **M 422.1, m 235°, 245-255°(dec).** It recrystallises from MeCN/Et₂O. Although it has been recrystallised from EtOH, this is not recommended as it converts alcohols to alkyl bromides. It deteriorates on keeping, and it is best to prepare it afresh. [Anderson & Freenor J Am Chem Soc 86 5037 1964, Horner et al. Justus Liebigs Ann Chem 626 26 1959, Beilstein 16 III 864.]

Triphenylphosphine oxide [791-28-6] M 278.3, m 152.0°, 156-157°, $pK_{Est} \sim 2.10$ (aqueous H₂SO₄), pK^{25} 2.9 (in MeNO₂). It crystallises from absolute EtOH and is dried *in vacuo*. The gold chloride complex has m 177.5-178.5°. [Addison & Sheldon J Chem Soc 2705 1956, Cox & Westheimer J Am Chem Soc 80 5441 1958, Beilstein 16 III 864, 16 1011.]

Triphenyl phosphite [101-02-0] **M 310.3, m 16-20°, 21-23°, b 181-189°/1mm, 183-184°/1mm, d_4^{20} 1.183.** Its ethereal solution is washed successively with aqueous 5% NaOH, distilled water and saturated aqueous NaCl, then dried with Na₂SO₄ and distilled under vacuum after evaporating the diethyl ether. [Walsh J Am Chem Soc **81** 3023 1959, Verkade & Coskren in Organo Phosphorus Compounds (Kosolapoff & Maier eds) Wiley Vol 6 pp 211-577 1973, Beilstein **6** IV 695.]

Triphenylphosphorylidene acetaldehyde (formylmethylenetriphenylphosphorane) [2136-75-6] **M 304.3, m 185-187°, 186-187°(dec).** Recrystallise it from Me₂CO, or dissolve it in C_6H_6 , wash with N NaOH, dry (MgSO₄), evaporate, and crystallise the residue from Me₂CO. It can be prepared from its precursor, formylmethyltriphenylphosphonium chloride (which crystallises from CHCl₃/EtOAc), by treatment with Et₃N and extraction with C_6H_6 . [Tripett & Walker J Chem Soc 1266 1961.]

Triphenyl silane [789-25-3] **M 260.4, m 45°, b 148-151°/1mm.** Purify it by recrystallisation from MeOH. [Gilman & Zuech J Am Chem Soc 81 5925 1959, Westermark Acta Chem Scand 9 947 1955, IR: Kaplan J Am Chem Soc 76 5880 1954, Beilstein 16 II 605, 16 III 1199, 16 IV 1369.]

Triphenylsilanol (hydroxytriphenylsilane) [791-31-1] M 276.4, m 150-153°, 151-153°, 154-155°, 156°. It is purified by dissolving in pet ether, passing through an Al₂O₃ column, eluting thoroughly with CCl₄ to remove impurities and then eluting the silanol with MeOH. Evaporation gives crystals with m 153-155°. It can be recrystallised from pet ether, CCl₄ or from *benzene or Et₂O/pet ether (1:1). It has also been recrystallised by partial freezing from the melt to constant melting point. [George & Gilman J Am Chem Soc 81 3288 1959, IR: Tatlock & Rochow J Org Chem 17 1555 1952 and Richards & Thompson J Chem Soc 124 1949, Beilstein 16 IV 1480.]

Triphenyltin chloride (chlorotriphenylstannane, triphenylchlorostannane) [639-58-7] M 385.5, m 103-106°(dec), 108°(dec), b 240°/13.5mm. Purify it by distillation, followed by recrystallisation from MeOH by adding pet ether (b 30-60°), m 105-106° [Kozeschow et al. *Chem Ber* 67 1348 1934], or by crystallisation from Et₂O, or 5 parts of EtOH and a small volume of pet ether. [Krause *Chem Ber* 51 914 1918.] It sublimes in a vacuum. [*Beilstein* 16 H 914, 16 I 540, 16 II 625, 16 III 1240, 16 IV 1606.] HIGHLY TOXIC.

Triphenyltin hydroxide [76-87-9] **M 367.0, m 122-123.5°, 124-126°.** West, Baney and Powell [*J Am Chem Soc* **82** 6269 1960] purified a sample which was grossly contaminated with tetraphenyltin and diphenyltin oxide by dissolving it in EtOH, most of the impurities remaining behind as an insoluble residue. Evaporation of the EtOH extract gave the crude hydroxide which was converted to *triphenyltin chloride* (above) by grinding in a mortar under 12M HCl, then evaporating the acidic solution. The chloride, after crystallisation from EtOH, had **m** 104-105°. It was dissolved in Et₂O and converted to the hydroxide by stirring with excess aqueous ammonia. The ether layer was separated, dried, and evaporated to give triphenyltin hydroxide which, after crystallisation from EtOH (or MeCN) and drying under vacuum, was in the form of white crystals (**m** 119-120°), which retained some cloudiness in the melt above 120°. The hydroxide retains water (0.1-0.5 moles of water per mole) tenaciously. [Glidewell & Liles *Acta Cryst* (B) **34** 129 *1978*, *Beilstein* **16** H 914, **16** I 540, **16** II 625, **16** III 1240, **16** IV 1606.]

Triphenyl vinyl silane [18666-68-7] M 286.5, m 58-59°, 57-59.5°, 67-68°, b 190-210°/3mm. It has been recrystallised from EtOH, 95% EtOH, EtOH/ $*C_6H_6$, pet ether (b 30-60°) and Et₂O, and has been distilled under reduced pressure. [Cason & Brooks J Am Chem Soc 74 4582 1952, Nagel & Post J Org Chem 17 1379 1952, Beilstein 16 IV 1371.]

Tri-*n*-propyl borate [688-71-1] M 188.1, b 64⁰/9mm, 175-177^o, d_4^{20} 0.857, n_D^{20} 1.395. Dry the ester over sodium and then distil it, preferably in a vacuum. (cf tributyl borate.) [Charnley et al. *J Chem Soc* 2288 1952, *Beilstein* 1 IV 1436.]

Triquinol-8-yl phosphate [52429-99-9] **M 479.4, m 193-197°, 202-203°**. Purify it by recrystallisation from dimethylformamide. The purity is checked by paper chromatography, R_F 0.90 [*i*-PrOH/saturated (NH₄)₂SO₄/H₂O, 2:79:19 as eluent], IR (KBr) v_{max} 1620–1570 (C=C, C=N) and 1253 (P=O) cm⁻¹. [Takaku et al. *Bull Chem Soc Jpn* 47 779 1974.]

Tris-(2-biphenylyl) phosphate [132-28-5] M 554.6, m 115.5-117.5°. Crystallise it from MeOH containing a little acetone. (*cf* triphenyl phosphate.)

Tris-(2,2'-bipyridine)ruthenium(II) dichloride (6H₂O) [50525-27-4] M 748.6. Recrystallise it from water, then from MeOH [Ikezawa et al. J Am Chem Soc 108 1589 1986].

Tris-(d,d-dicampholylmethanato) europium (III) [Eu(dcm)₃] [52351-64-1] M 108.5, m 220-227.5°, 229-232°, $[\alpha]_{D}^{25}$ +28.6° (c 5.4, CCl₄, and varies markedly with concentration). Dissolve it in pentane, filter it from any insoluble material, evaporate to dryness and dry the residue (white powder) at 100°/0.1mm for 36hours. IR: v_{max} 1540cm⁻¹. [McCreary et al. J Am Chem Soc 96 1038 1974.]

Tris-(1,2-dioxyphenyl)cyclotriphosphazine{trispiro[1,3,5,2,4,6-triazatriphosphorine]-2,2':-2,4":2,6"'-tris(1,3,2)benzodioxaphosphole}[311-03-5]M459.0,m244-245°,245°,245-246°.Recrystallise it from *C6H6 or chlorobenzene, then triple sublime it (175°/0.1mm, 200°/0.1mm,230°/0.05mm).UV has λ_{max} nm (log ε): 276 (3.72), 271 (3.79) 266sh (3.68) and 209 (4.38) in MeCN.(v):1270 (O-Ph), 1220 (P=N), 835 (P-O-Ph) and 745 (Ph) cm⁻¹.[Alcock J Am Chem Soc 86 2591 1964,Alcock et al. J Am Chem Soc 98 5120 1976, Meirovitch J Phys Chem 88 1522 1984.]

(±)-Tris-(2-ethylhexyl)phosphate (TEHP, tri-isooctylphosphate, "trioctyl" phosphate, [78-42-2, 25103-23-5] M 434.6, b 186°/1mm, 219°/5mm, d^{25} 0.92042, n_D^{20} 1.44464. TEHP, in an equal volume of diethyl ether, is shaken with aqueous 5% HCl, and the organic phase is filtered to remove traces of pyridine (used as a solvent during manufacture) as its hydrochloride. This layer is shaken with aqueous Na₂CO₃, then water, and the ether is distilled off at room temperature. The ester is then filtered, dried for 12hours at 100°/15mm, and again filtered, then shaken intermittently for 2days with activated alumina (100g/L). It is decanted through a fine sintered-glass disc (with exclusion of moisture), and distilled under vacuum. [French & Muggleton J Chem Soc 5064 1957.] *Benzene can be used as a solvent (to give 0.4M solution) instead of ether. IR (v): 1702, 1701, 481 and 478cm⁻¹ [Bellamy & Becker J Chem Soc 475 1952]. The uranyl nitrate salt is purified by partial crystallisation from hexane [Siddall & Dukes J Am Chem Soc 81 790 1959, Siddall J Am Chem Soc 81 4176 1959]. [Beilstein 1 IV 1786.]

Trisodium citrate (2H₂O) [68-04-2, 6132-04-3] M 294.1, m 150°(loses H₂O). Crystallise the salt from warm water by cooling to 0° . [*Beilstein* 3 III 1100, 3 IV 1274.]

Trisodium 8-hydroxy-1,3,6-pyrenetrisulfonate (Pyranine Solvent Green 7) [6358-69-6] **M 524.4, m >300(dec), CI 59040,** λ_{max} **403nm.** Purify the salt by chromatography with an alumina column, and elute with *n*-propanol/water (3:1, v/v). Recrystallise it from aqueous acetone (5:95, v/v) using decolorising charcoal. [Beilstein 1 III 565.] **IRRITANT.**

Trisodium 1,3,6-naphthalenetrisulfonate [5182-30-9] **M 434.2.** The *free acid* is obtained by passing the salt through an ion-exchange column and converting it to the lanthanum salt by treatment with La_2O_3 . This salt is crystallised twice from hot water. [The much lower solubility of $La_2(SO_4)_3$ and its retrograde temperature dependence allows a good separation from sulfate impurity]. The lanthanum salt is then passed through an appropriate ion-exchange column to obtain the free acid, the sodium or potassium salt. (The sodium salt is *hygroscopic*.) [Atkinson et al. J Am Chem Soc **83** 1570 1961.] It can also be recrystallised from aqueous acetone [Okahata et al. J Am Chem Soc **108** 2863 1986].

Tris-(2,2,2-trifluoroethyl)phosphite [370-69-4] M 328.1, b 130-131⁰/743mm, d_4^{20} 1.487, n_D^{20} 1.324. Fractionate it through a 10inch Helipak column [Krogh et al. J Org Chem 19 1124 1954].

Tris-[(3-trifluoromethylhydroxymethylene)-d-camphorato] europium (III) [Eu(tfc)₃] [34830-11-0] M 893.6, m 195-299° (dec), ~220°, $[\alpha]_{D}^{24}$ +152° (c 2, CCl₄, and varies markedly with concentration). Purify it by extraction with pentane, filter and the filtrate is evaporated and the residual bright yellow amorphous powder is dried at 100°/0.1mm for 36hours. A sample purified by fractional molecular distillation at 180-200°/0.004mm gave a liquid which solidified and softened at ~130°, and melted at ~180° and was analytically pure. IR (CCl₄) v_{max} 1630-1680cm⁻¹ and NMR (CCl₄) δ broad: -1.3 to 0.5, -0.08 (s), 0.41 (s), 1.6-2.3 and 3.39 (s). [McCreary et al. J Am Chem Soc 96 1038 1974, Goering et al. J Am Chem Soc 93 5913 1971.]

Tris-(trimethylsilyl)silane (TTMSS) [1873-77-4] **M 248.7, b 73°/5mm, d_4^{20} 0.808, n_D^{20} 1.49.** Purify it by fractional distillation and taking the middle cut. Store it under N₂ or Ar as it is **PYROPHORIC** and is an **IRRITANT**. [Chatgilialoglu et al. J Org Chem **53** 3641 1988, Balestri et al. J Org Chem **56** 678 1991, Chatgilialoglu Acc Chem Res **25** 188 1992, NMR: Gilman et al. J Organomet Chem **4** 163 1965.]

Tri-*p*-tolyl phosphate [20756-92-7, 1330-78-5 (isomeric tritolyl phosphate mixture)] **M 368.4, m 77°, b 232-234°, d²⁵ 1.16484, n**²⁰_D **1.56703.** Dry the ester with CaCl₂, percolate it through a column of alumina, then distil it under a vacuum. Alernatively pass it through a packed column of alumina at 150°, with a counter-current stream of nitrogen, under reduced pressure, to remove residual traces of volatile impurities. It also crystallises from pet ether (b 60-80°). [Cherbuliez in *Organic Phosphorus Compounds* (Kosolapoff & Maier eds) Wiley-Interscience Vol **6** pp 454-457 *1973*.]

Tri-*o*-**tolylphosphine** [6163-58-2] **M 304.4, m 129-130°, pK**_{Est} ~1.0. It crystallises from EtOH [Boert et al. J Am Chem Soc 109 7781 1987]. [Beilstein 16 III 835.]

Vanadium (III) acetylacetonate (vanadyl tris[2,4-pentadienato-O,O'], V[AcAc]₃) [13476-99-8] M 348.3, m 181-184°, 185-190°, pK_1^{25} 2.92, pK_2^{25} 3.5(for aquo V³⁺ hydrolysis). It crystallises from acetylacetone in brown plates. It can be distilled in small quantities without decomposition. It is soluble in CHCl₃ and *C₆H₆, and evaporation of a CHCl₃ solution yields brown crystals which are washed with cold EtOH and dried in vacuum or at 100° in a CO₂ atmosphere. Under moist conditions it readily oxidises [V(AcAc)₃ to V(AcAc)₂O]. [Fernelius & Bryant *Inorg Synth* V 105 *1957*, McKaveney & Freiser *Anal Chem* **30** 526 *1958*, UV: J Am Chem Soc **80** 5686 *1958*, Beilstein **1** IV 3672.]

Vanadyl (IV) acetylacetonate (vanadyloxa bis[2,4-pentadienato-O,O'], VO[AcAc]₂) [3153-26-2] M 265.2, m 256-259°. It crystallises from acetone. [cf Fernelius & Bryant Inorg Synth V 105 1957, Beilstein 1 IV 3672.]

Vinyl chlorosilane [75-94-5] M 161.5, b 17.7°/46.3mm, 82.9°/599.4mm, 92°/742mm, 91-91.5°/atm, d_4^{20} 0.1.2717, n_D^{20} 1.435. Fractionally distil it at atmospheric pressure. It is water sensitive and is stored in the dark and it is likely to polymerise. [Müller & Schnurrbusch *Chem Ber* 91 1805 1958, Munkelt & Müller *Chem Ber* 92 1012 1959, Polarography: Abrahamson & Reynolds *Anal Chem* 24 1827 1952, *Beilstein* 4 IV 4258.]

Vinylferrocene (ferroceneylethene) [1271-51-8] **M 212.1, m 51-52.5°, b 80-85°/0.2mm.** Dissolve vinylferrocene in Et₂O, wash it with H₂O and brine, dry (Na₂SO₄), and evaporate to a small volume. Purify it through an Al₂O₃ (Spence grade H) column by eluting the yellow band with pet ether (b 40-60°). The low melting orange crystals can be sublimed. The *tetracyanoethylene adduct [49716-63-4]* crystallises from $*C_6H_6$ /pentane and has **m** 137-139°(dec). [Horspool & Sutherland *Can J Chem* **46** 3453 1968, Berger et al. *J Org Chem* **39** 377 1974, Rauch & Siegel *J Organomet Chem* **11** 317 1968, Beilstein **16** III 1787.]

3-Vinylphenylboronic acid ([3-ethenylphenyl]-dihydroxyborane) [15016-43-0] **M148.0, m 141-147°, 145-160°, pK**_{Est(1)} ~**8.8.** This binder for paper or glass crystallises in white plates from H₂O (**m** 144-145°), and its IR has v_{max} 919 and 995 (CH₂CH=CH₂), 1350 (B-O) and 3220 (OH) cm⁻¹. The *dibromo* derivative crystallises in white needles from H₂O with **m** 196-197.5°. [Wesley & Rush *J Org Chem* **27** 2598 *1962, Beilstein* **16** III 1279, **16** IV 1677.]

Vinylphosphonic acid [1746-03-8] **M 108.0, m 41-45°, d²⁵ 1.389, pK**₁²⁰ 3.48, pK₂²⁰ 8.54 (50% EtOH). This fireproofing agent, and ingredient for making polymers, is obtained as a syrup on hydrolyzing vinylphosphonyl dichloride with cold H₂O and solidifies on prolonged drying over P₂O₅/KOH. When distilled at 235-240°/0.0006mm, it gives the *anhydride* (d_4^{20} 1.304, n_D^{20} 1.5874) [Kabachnik & Medvedi *Izvest Akad Nauk SSSR, Ser Khim* 868 1953, *Chem Abstr* 54 10834 1960]. It is best kept as the *sodium salt* (**m** 350°) which precipitates when a solution of EtOH containing NaOEt (from 2g of Na) is added to vinylphosphonic acid (3.2g), and is recrystallised from EtOH (5.1g, quantitative). The *p-anisidinium salt* forms mauve prisms **m** 250° (from EtOH/Et₂O). The *dimethyl ester*, [4645-32-3] **M** 136.1, **d**₄²⁰ 1.1405, **n**_D²⁰ 1.4330, has **b** 72.5°/10mm and 197-202°/760mm. [Kabachnik et al. *J Gen Chem USSR* (Engl Trans) 33 375 1963, *Beilstein* 4 IV 3568.]

Vinyltributylstannane (vinyltributyltin) [7486-35-3] M 317.1, b 104-106°/3.5mm, d_4^{20} 1.081, n_D^{20} 1.4751. Fractionate the stannane under reduced pressure and taking the middle fraction to remove impurities such as (*n*-Bu)₃SnCl. [Seyferth & Stone J Am Chem Soc **79** 515 1957, Beilstein **16** III 1279.]

Xylenol Orange (sodium salt) See entry in "Heterocyclic Compounds", Chapter 4.

Zinc acetate $(2H_2O)$ [5970-45-6] M 219.5, m 100°(loses $2H_2O$), 237°, d_4^{20} 1.74, pK²⁵ 8.96 (for hydrolysis of Zn²⁺ to ZnOH⁺). It crystallises (in poor yield) from hot water or, better, from EtOH. [*Beilstein* 2 III 193, 2 IV 114.]

Zinc acetonylacetate [14024-63-6, 108503-47-5 (x H_2O)] M 263.6, m 138°. The zinc complex crystallises from hot 95% EtOH. [Fernelius & Bryant Inorg Synth V 105 1957, Wakita et al. J Organometal Chem 301 C17 1986, Beilstein 2 IV 144.]

Zinc caprylate (zinc n-hexanoate) [557-09-5] M 351.8, m 142°. It crystallises from EtOH in plates. [Howarth J Chem Soc 1406 1929, Beilstein 2 H 284.]

Zinc diethyldithiocarbamate [14324-55-1] M 561.7, m 178-181°, pK^{25} 3.04 (for $Et_2NCS_2^{-}$). Crystallise this herbicide several times from hot toluene or from hot CHCl₃ by addition of EtOH. It also crystallises from xylene, m 180°. [*Beilstein* 4 II 613.] TOXIC.

Zinc dimethyldithiocarbamate [137-30-4] M 305.8, m 151-152°, 248-250°, pK^{25} 3.36 (for $Me_2NCS_2^{-}$). Crystallise this herbicide several times from hot toluene or from hot CHCl₃ by addition of EtOH. [*Beilstein* 4 III 149, 4 IV 234.]

Zinc ethylenebis(dithiocarbamate) (**Zineb**) [12122-67-7] **M 249.7.** Crystallise this herbicide several times from hot toluene or from hot CHCl₃ by addition of EtOH. It is a skin irritant. [Beilstein 4 III 149, 4 IV 234.]

Zinc formate (2H₂O) [557-41-5] M 191.4, m 140^o(loses H₂O), d_4^{20} 2.21. It crystallises from water (3mL/g). [*Beilstein* 2 H 16, 2 I 14, 2 II 21, 2 III 25, 2 IV 17.]

Zinc RS-lactate (**3H**₂**O**) [554-05-2, 16039-53-5 (L)] **M 297.5.** It crystallises from water (6mL/g). [*Beilstein* **3** I 107, **3** II 204, **3** III 464, **3** IV 637.]

Zincon (o-[1-(2-hydroxy-5-sulfo)-3-phenyl-5-formazono]-benzoic acid) [135-52-4] M 459.4. Main impurities are inorganic salts which can be removed by treatment with dilute acetic acid. Organic contaminants are removed by refluxing with ether. It can be recrystallised from dilute H₂SO₄ and complexes with Zn ions (see below). [Fichter & Schiess *Chem Ber* 33 751 1900, *Beilstein* 16 IV 421.]

Zincon disodium salt (o-[1-(2-hydroxy-5-sulfo)-3-phenyl-5-formazono]-benzoic acid di-Na salt) [135-52-4, 56484-13-0] M 484.4, m ~250-260° (dec). Zincon solution is prepared by dissolving 0.13g of the powder in aqueous N NaOH (2mL diluted to 100mL with H₂O). This gives a deep red colour which is stable for one week. It is a good reagent for zinc ions but also forms stable complexes with transition metal ions. [UV-VIS: Bush & Yoe Anal Chem 26 1345 1954, Hunter & Roberts J Chem Soc 820 1941, Platte & Marcy Anal Chem 31 1226 1959] The free acid (see above) has been recrystallised from dilute H₂SO₄. [Fichter & Scheiss Chem Ber 33 751 1900, Beilstein 16 IV 421.]

Zinc phenol-*o*-sulfonate (8H₂O) (Phenozin) [127-82-2] M 555.8. It crystallises from warm water by cooling to 0° . It effloresces in dry air. It loses all its H₂O at 120°. Its solubility in H₂O is 63% at 20° and 250% at boiling point, and in EtOH it is 55% at 50°. [Beilstein 11 H 53, 11 I 234, 11 IV 574.]

Zinc phthalocyanine [14320-04-8] M 580.9. Sublime it in oxygen-free N₂. [Beilstein 26 III/IV 4257.]

Zinc 5,10,15,20-tetraphenylporphyrin [14074-80-7] M 678.1, λ_{max} 418(556)nm. Purify the porphyrin by chromatography on neutral (Grade I) alumina, followed by recrystallisation from CH₂Cl₂/MeOH [Yamashita et al. *J Phys Chem* 91 3055 1987].

Zinc trifluoromethanesulfonate [54010-75-2] **M 363.5, m >300°.** It should be dried at 125° for 2hours at 3mm before use. It is soluble in CH_2Cl_2 but insoluble in pet ether. [Corey & Shimoji *Tetrahedron Lett* **24** 169 1983.]

Zirconium (IV) acetonylacetonate [17501-44-9] **M 487.7, m 190-193° (sealed capillary) 194.5-195°. 192-195°.** The zirconium complex crystallises from hot 95% EtOH (m 190-191°) or pet ether and sublimes *in vacuo* at 140° with slight decomposition. The *decahydrate* effloresces in air and dehydrates in a 0.1mm vacuum. Its solubility in 1L at 20° is 30g in CS₂, 47g in CCl₄, 44g in ethylene dibromide, 56g in acetonylacetone and 200g in C_6H_6 . [Young & Arch *Inorg Synth* **II** 122 *1964*, *Beilstein* **1** H 782, **1** II 835, **1** III 3121, **1** IV 3672.]

Zirconium (IV) proposide [23519-77-9] M 327.6, b 198°/0.03mm, 208°/0.1mm, d_4^{20} 1.06, n_D^{20} 1.454. Although it was reported that it could not be crystallised or sublimed even at 150°/10⁻⁴mm [Bradley & Wardlaw *J Chem Soc* 280 1951], the proposide, when properly prepared, has been purifed by distillation in a high vacuum [Bradley et al. *J Chem Soc* 2025 1953]. [*Beilstein* 1 IV 1420.]

Zirconocene chloride hydride (bis[cyclopentadienyl]zirconium hydride chloride, Cp₂ZrH₂) (Schwartz' reagent) [37342-97-5] M 257.9. It is moisture and light sensitive. Determine its purity by reaction with a slight excess of Me₂CO whereby the active H reacts to produce Cp₂ZrClOPrⁱ and the integrals of the residual Me₂CO in the ¹H NMR will show its purity. The presence of Cp₂ZrH₂ can be determined because it forms Cp₂Zr(OPrⁱ)₂. For a very active compound, it is best to prepare it freshly from the *dichloride* (see below) by reduction with Vitride [LiAl(OCH₂CH₂OH)₂H₂], the white precipitate is filtered off, washed with tetrahydrofuran, then Et₂O and dried in a vacuum. Store it dry in the dark. [Carr & Schwartz *J Am Chem Soc* 101 3521 *1979*, Negishi & Takahashi *Synthesis* 1 *1988*, *Beilstein* **16** IV 1770.]

Zirconocene dichloride (bis[cyclopentadienyl]zirconium dichloride, Cp₂ZrCl₂) [1291-32-3] M 292.3, m 242-245°, 248°. Recrystallise the dichloride from CHCl₃ or xylene and dry it in a vacuum. ¹H NMR (CDCl₃) δ: 6.52 from Me₄Si. Store it dry in the dark under N₂. [Reid et al. Aust J Chem 18 173 1965, Beilstein 16 IV 1770.]

CHAPTER 6

PURIFICATION OF BIOCHEMICALS AND RELATED PRODUCTS

INTRODUCTION

Biochemicals are chemical substances produced by living organisms. They range widely in size, from simple molecules such as formic acid and glucose to macromolecules such as proteins and nucleic acids. Their *in vitro* synthesis is often impossibly difficult, and in such cases they are available (if at all) only as commercial tissue extracts which have been subjected to purification procedures of widely varying stringency. The desired chemical may be, initially, only a minor constituent of the source tissue which may vary considerably in its composition and complexity. Recent advances in molecular biology have made it possible to produce substantial amounts of biological materials, which are present in nature in extremely small amounts, by recombinant DNA technology and expression in bacteria, yeast, insect and mammalian cells. The genes for these substances can be engineered such that the gene products, e.g. polypeptides or proteins, can be readily obtained in very high states of purity, and in large amounts if necessary. However, many such products, which are still obtained from the original natural sources, are available commercially and may require further purification.

As a preliminary step the tissue might be separated into phases [e.g. whole egg into white and yolk, blood into plasma (or serum) and red cells], and the desired phase may be homogenised. Subsequent treatment usually comprises filtration, solvent extraction, salt fractionation, ultracentrifugation, chromatographic purification, gel filtration and dialysis. Fractional precipitation with ammonium sulfate gives crude protein species. Purification is finally judged by the formation of a single band of macromolecule (e.g. protein) on electrophoresis and/or analytical ultracentrifugation. Although these generally provide good evidence of high purity, nonetheless it does not follow that one band under one set of experimental conditions is an absolute indication of homogeneity [D.S. Vodopich and R. Moore, *Biology Laboratory Manual*, McGraw-Hill, 2007, ISBN 9780072995220].

During the past 20 or 30 years a wide range of methods for purifying substances of biological origin have become available. For small molecules (including many sugars and amino acids) reference should be made to Chapters 1 and 2. The more important methods used for large molecules, polypeptides and proteins in particular, comprise:

1. Centrifugation. In addition to centrifugation for sedimenting proteins after ammonium sulfate precipitation in dilute aqueous buffer, the technique has been used for fractionation of large molecules in a denser medium or a medium of varying density. By layering sugar solutions of increasing densities in a centrifuge tube, proteins can be separated in a sugar-density gradient by centrifugation. Smaller DNA molecules (e.g. plasmid DNA) can be separated from RNA or nuclear DNA by centrifugation in aqueous cesium chloride (ca 0.975g/mL of buffer) for a long time (e.g. 40hours at 40,000 x g). The plasmid DNA band appears at about the middle of the centrifuge tube and is revealed by the fluorescent pink band formed by the binding of DNA to ethidium bromide which is added to the CsCl buffer. *Microfuges* are routinely used for centrifugation in Eppendorf tubes (1.2-2mL) and can run up to speeds of 12,000 x g. Analytical centrifugation, which is performed under specific conditions in an analytical ultracentrifuge is very useful for determining purity, aggregation of protein subunits and the molecular weight of macromolecules. [D. Rickwood, T.C. Ford and J. Steensgaard (Eds), Centrifugation: Essential Data Series, J Wiley & Sons, 1994, ISBN 9780471942719; L.L. Regel and W.R. Wilcox, Processing by Centrifugation, Springer, 2001, ISBN 9780306466546; J.M. Graham and D. Rickwood, Biological Centrifugation, Springer, 2001, 9781859960370; A. Records and K. Sutherland, Decanter Centrifugation Handbook, Elsevier, 2001, ISBN 1856173690].

2. Gel filtration with polyacrylamide (mol wt exclusion limit from 3000 to 300,000) and agarose gel (mol wt exclusion limit 0.5 to 150 x 10^6) is useful for separating macromolecules. In this technique high-molecular-weight substances are too large to fit into the gel microapertures and pass rapidly through the matrix (with the void volume), whereas low-molecular-weight species enter these apertures and are held there for longer periods of time, being retarded by the column material in the equilibria, relative to the larger molecules. This method is also used for desalting solutions of macromolecules.

Dry gels and *crushed beads* are also useful in the gel filtration process. Selective retention of water and inorganic salts by the gels or beads (e.g. Sephadex G-25) results in increased concentration and purity of the protein fraction which moves with the void volume. (See also section on "Gel filtration" in Chapter 1.)

- 3. Ion-exchange matrices are microreticular polymers containing carboxylic acid (e.g. Bio-Rad 70) or phosphoric acid (Pharmacia, Amersham Biosciences, Mono-P) exchange functional groups for weak acidic cation exchangers, sulfonic acid groups (Dowex 50W) for strong acidic cation exchangers, diethylaminoethyl (DEAE) groups for weakly basic anion exchangers and quaternary ammonium (QEAE) groups for strong anion exchangers. The old cellulose matrices for ion exchanges have been replaced by Sephadex, Sepharose or Fractogel which have more even particle sizes with faster and more reproducible flow rates. Some can be obtained in fine, medium or coarse grades depending on particle size. These have been used extensively for the fractionation of peptides, proteins and enzymes. The use of pH buffers controls the strength with which the large molecules are bound to the support in the chromatographic process. Careful standardisation of experimental conditions and similarly the very uniform size distribution of Mono beads have led to high resolution in the purification of protein solutions. MonoQ is a useful strong anion exchanger, and MonoS is a useful strong cation exchanger, whereas MonoP is a weak cation exchanger (Pharmacia, Amersham Biosciences and alternative sources, see Chapter 1). These have been successful with medium pressure column chromatography (HPLC, see below in 7). Chelex 100 binds strongly and removes metal ions from macromolecules. [See sections on "HPLC", "Ion-exchange Resins" and "Ion-exchange Celluloses and Sephadex" in Chapter 1.]
- 4. *Hydroxylapatite* is used for the later stages of purification of enzymes. It consists essentially of hydrated calcium phosphate which has been precipitated in a specific manner. It combines the characteristics of gel and ionic chromatography. Crystalline hydroxylapatite is a structurally organised, highly polar material which, in aqueous solution (in buffers), strongly adsorbs macromolecules such as proteins and nucleic acids, permitting their separation by virtue of the interaction with charged phosphate groups and calcium ions, as well as by physical adsorption. The procedure therefore is not entirely ion-exchange in nature. Chromatographic separations of singly and doubly stranded DNA are readily achievable, whereas there is negligible adsorption of low-molecular-weight species.
- 5. Affinity chromatography is a chromatographic technique whereby the adsorbant has a particular and specific affinity for one of the components of the mixture to be purified. For example the adsorbant can be prepared by chemically binding an inhibitor of a specific enzyme (which is present in the crude complex mixture) to a matrix (e.g. Sepharose). When the mixture of impure enzyme is passed through the column containing the adsorbant, only the specific enzyme binds to the column. After adequate washing, the pure enzyme can be released from the column by either increasing the salt concentration (e.g. NaCl) in the eluting buffer or adding the inhibitor to the eluting buffer. The salt or inhibitor can then be removed by dialysis, gel filtration (above) or ultrafiltration (see below). [See W.H. Scouten, Affinity Chromatography: Bioselective Adsorption on Inert Matrices, J.Wiley & Sons, NY, 1981, ISBN 0471026492; H. Schott, Affinity Chromatography: Template Chromatography of Nucleic Acids and Proteins, Marcel Dekker, NY, 1984, ISBN 0824771117; P. Matejtschuk Ed. Affinity Separations Oxford University Press 1997 ISBN 0199635501 (paperback); M.A. Vijayalakshmi, Biochromatography, Theory and Practice, Taylor & Francis Publ, 2002, ISBN 0415269032; and the section on "Other Types of Chromatography" in Chapter 1.]
- 6. In the *Isoelectric focusing* of large charged molecules on polyacrylamide or agarose gels, slabs of these are prepared in buffer mixtures (e.g. ampholines) which have various pH ranges along the length of the gel. When a voltage is applied for some time, the buffers arrange themselves on the slabs in respective areas according to their pH ranges (prefocusing). Then the macromolecules are applied near the middle of the slab and allowed to migrate in the electric field until they reach the pH area similar to their isoelectric points and focus at that position. This technique can also be used in a chromatographic mode, *chromatofocusing*, whereby a gel in a column is run (also under HPLC conditions) in the presence of ampholines (narrow or wide pH ranges as required) and the macromolecules are then run through in a buffer. *Capillary electrophoresis* systems in which a current is applied to set the gradient are now available in which the columns are fine capillaries and are used for qualitative and quantitative purposes [See R. Kuhn and S. Hoffstetter-Kuhn, *Capillary Electrophoresis*: Principles and Practice, CRC Press, Boca Raton, Florida, *1993*; D.R. Baker, *Capillary Electrophoresis*, J Wiley & Sons, NY, *1995*; P.G. Righetti, A. Stoyanov and M. Zhukov, *The Proteome Revisited, Isoelectric Focusing; J.Chromatography Library Vol* **63** 2001, Elsevier, ISBN

0444505261, P. Schmitt-Kopplin, *Capillary Electrophoresis: Methods and Protocols*, Humana, 2007, ISBN 9781588295392; J.P. Landers, *Handbook of Capillary & Microchip Electrophoresis and Associated Microtechniques*, CRC Press, Boca Raton, Florida, 2007, ISBN 9780849333293, C. Henry, *Microchip Capillary Electrophoresis*, Humana, 2006, ISBN 9781588292933.] The bands are eluted according to their isoelectric points. Isoelectric focusing standards are available which can be used in a preliminary run in order to calibrate the effluent from the column, or alternatively the pH of the effluent is recorded using a glass electrode designed for the purpose. Several efficient commercial equipment are available for separating proteins on a preparative and semi-preparative scale.

- 7. High performance liquid chromatography (HPLC) is liquid chromatography in which the eluting liquid is sent through the column containing the packing (materials as in 2-6 above, which can withstand higher than atmospheric pressures) under pressure. On a routine basis this has been found useful for purifying proteins (including enzymes) and polypeptides after enzymic digestion of proteins or chemical cleavage (e.g. with CNBr) prior to sequencing (using reverse-phase columns such as µ-Bondapak C18). Moderate pressures (50-300psi) have been found most satisfactory for large molecules (FPLC). [See Scopes Anal Biochem 114 8 1981; High Performance Liquid Chromatography and Its Application to Protein Chemistry, Hearn in Advances in Chromatography, 20 7 1982; B.A. Bidlingmeyer Practical HPLC Methodology and Applications, J Wiley & Sons, NY 1991; L.R. Snyder, J.L. Glajch and J.J. Kirkland Practical HPLC Method Development, J Wiley & Sons, NY 1988; ISBN 0471627828; R.W.A. Oliver, HPLC of Macromolecules: A Practical Approach, 2nd Edn, Oxford University Press, 1998, T. Hanai, HPLC: A Practical Guide, Royal Society of Chemistry (UK), 1999, ISBN 084045155; P. Millner High Resolution Chromatography, Oxford University Press, 1999 ISBN 0199636486; see also Chapter 1, Bibliography.]
- 8. Ultrafiltration using a filter (e.g. Millipore) can remove water and low-molecular-weight substances without the application of heat. Filters with a variety of molecular-weight exclusion limits not only allow the concentration of a particular macromolecule to be determined, but also the removal (by washing during filtration) of smaller molecular-weight contaminants (e.g. salts, inhibitors or cofactors). This procedure has been useful for changing the buffer in which the macromolecule is present (e.g. from Tris-Cl to ammonium carbonate), and for desalting. Ultrafiltration can be carried out in a stirrer cell (Amicon) in which the buffer containing the macromolecule (particularly protein) is pressed through the filter, with stirring, under argon or nitrogen gas pressure (e.g. 20-60psi). During this filtration process the buffer can be changed. This is rapid (e.g. 2L of solution can be concentrated to a few mLs in 1 to 2hours depending on pressure and filter). A similar application uses a filter in a specially designed tube (Centricon tubes, Amicon) and filtration occurs under centrifugal force in a centrifuge (4-6000rpm at 0°/40min). The macromolecule (usually DNA) then rests on the filter and can be washed on the filter also by centrifugation. The macromolecule rests, filling the other side of the filter tube with eluting solution (usually a very small volume e.g. 100 μ L), and during further centrifugation this solution passes through the filter and collects the macromolecule from the underside into the conical receiver tube.
- 9. *Partial precipitation* of a protein in solution can often be achieved by controlled addition of a strong salt solution, e.g ammonium sulfate. This is commonly the first step in the purification process. Its simplicity is offset by possible denaturation of the desired protein and the (sometimes gross) contamination with other proteins. It should therefore be carried out by careful addition of small aliquots of the powdered salt or concentrated solution (below 4°, with gentle stirring) and allowing the salt to be evenly distributed in the solution before adding another small aliquot. Under carefully controlled conditions and using almost pure protein, it is sometimes possible to obtain the protein in crystalline form suitable for X-ray analysis (see below).
- 10. *Dialysis*. This is a process by which small molecules, e.g. ammonium sulfate, sodium chloride, are removed from a solution containing the protein or DNA using a membrane which is porous to small molecules. The solution (e.g. 10mL) is placed in a dialysis bag or tube tied at both ends, and stirred in a large excess of dialysing solution (e.g. 1.5 to 2 L), usually a weak buffer at *ca* 4°. The dialysing buffer is replaced with fresh buffer several times, e.g. four times in 24hours. This procedure is similar to ultrafiltration (above) and allows the replacement of buffer in which the protein, or DNA, is dissolved. It is also possible to concentrate the solutions by placing the dialysis tube or bag in Sephadex G25 which allows the passage of water and salts from the inside of the bag thus concentrating the protein (or DNA) solution. Dialysis tubing is available from various distributors, but "Spectra/por" tubing (from Spectrum Medical Industries, Inc, LA) is particularly effective because it retains macromolecules and allows small molecules to dialyse out very rapidly, thus reducing dialysing time considerably. This procedure is used when the buffer has to be changed so as to be compatible with the next purification or storage step, e.g. when the protein (or DNA) needs to be stored frozen in a particular buffer for extended periods.
- 11. Gel Electrophoresis. This is becoming a more commonly used procedure for purifying proteins, nucleic acids, nucleoproteins, polysaccharides and carbohydrates. The gels can be "electroblotted" onto

membranes, and the modern procedures of identifying, sequencing (proteins and nucleic acids) and amplifying (nucleic acids) on sub-micro scales have made this technique of separation a very important one. See below for polyacrylamide gel electrophoresis (PAGE), [D. Patel *Gel Electrophoresis*, J.Wiley-Liss, Inc., 1994; P. Jones and D. Rickwood, *Gel Electrophoresis: Nucleic Acids*, J. Wiley and Sons, 1999 (paperback) ISBN 0471960438; D.M. Gersten and D. Gersten, *Gel Electrophoresis: Proteins*, J. Wiley and Sons, 1996, ISBN 0471962651; R. Westermeier *Electrophoresis in Practice*, 4th Edn, Wiley-VCH Publishing, 2004 ISBN 9783527311811].

12. Crystallisation. The ultimate in purification of proteins or nucleic acids is crystallisation. This involves very specialised procedures and techniques and is best left to the experts in the field of X-ray crystallography who can provide a complete picture of the structure of these large molecules. [A. Ducruix and R. Giegé Eds, Crystallisation of Nucleic Acids and Proteins: A Practical Approach, 2nd Edition, 2000, Oxford University Press, ISBN 0199636788 (paperback); T.L. Blundell and L.N. Johnson Protein Crystallisation, Academic Press, NY, 1976; A. McPherson Preparation and Analysis of Protein Crystals, J.Wiley & Sons, NY, 1982; A. McPherson, Crystallisation of Biological Macromolecules, Cold Spring Harbour Laboratory Press, 2001 ISBN 0879696176, see also Bibliography in Chapter 1.]

Other details of the above will be found in Chapters 1 and 2 which also contain relevant references.

Several illustrations of the usefulness of the above methods are given in the *Methods Enzymol* series (Academic Press) in which 1000-fold purifications or more have been readily achieved. In applying these sensitive methods to macromolecules, reagent purity is essential. It is disconcerting, therefore, to find that some commercial samples of the widely used affinity chromatography ligand Cibacron Blue F3GA contained this dye only as a minor constituent. The major component appeared to be the dichlorotriazinyl precursor of this dye. Commercial samples of Procion Blue and Procion Blue MX-R were also highly heterogeneous [Hanggi and Cadd *Anal Biochem* 149 91 *1985*]. Variations in composition of sample dyes can well account for differences in results reported by different workers. The purity of substances of biological origin should therefore be checked by one or more of the methods given above. Water of high purity should be used in all operations. Double glass distilled water or water purified by a MilliQ filtration system (see Chapter 2) is most satisfactory.

Brief general procedures for the purification of polypeptides and proteins. Polypeptides of up to ca 1-2000 (10-20 amino acid residues) are best purified by reverse phase HPLC. The desired fractions that are collected are either precipitated from solution with EtOH or lyophilised. The purity can be checked by HPLC and identified by microsequencing (1-30 picomoles) to ascertain that the correct polypeptide was in hand. Polypeptides larger than these are sometimes classified as proteins and are purified by one or more of the procedures described above. The purification of enzymes and functional proteins which can be identified by specific interactions is generally easier to follow because enzyme activities or specific protein interactions can be checked (by assaying) after each purification step. The commonly used procedures for purifying soluble proteins involve the isolation of an aqueous extract from homogenised tissues or extracts from ruptured cells from microorganisms or specifically cultured cells, for example, by sonication, freeze shocking or passage through a small orifice under pressure. Contaminating nucleic acids are removed by precipitation with a basic protein, e.g. protamine sulfate. The soluble supernatant is then subjected to fractionation with increasing concentrations of ammonium sulfate. The required fractions are then further purified by the procedures described in sections 2-9 above. If an affinity adsorbant has been identified, then affinity chromatography can provide an almost pure protein in one step sometimes even from the crude extract. The rule of thumb is that a solution with a protein concentration of 1 mg/mL has an absorbance A_{1cm} at 280nm of 1.0 units. Membrane-bound proteins are usually insoluble in water or dilute aqueous buffer and are obtained from the insoluble fractions, e.g. the microsomal fractions from the >100,000 x g ultracentrifugation supernatant. These are solubilised in appropriate detergents, e.g. Mega-10 (nonionic), Triton X-100 (ionic) detergents, and purified by methods 2 to 8 (previous section) in the presence of detergent in the buffer used. They are assayed also in the presence of detergent or membrane lipids.

The purity of proteins is best checked by *polyacrylamide gel electrophoresis* (PAGE). The gels are either made or purchased as pre-cast gels and can be with uniform or gradient gel composition. Proteins are applied onto the gels *via* wells set into the gels or by means of a comb, and travel along the gel surface by means of the current applied to the gel. When the buffer used contains sodium dodecylsulfate (SDS), the proteins are denatured and the denatured proteins (e.g. as protein subunits) separate on the gels mainly according to their molecular sizes. These can be identified by running marker proteins, with a range of molecular weights, simultaneously on a

track alongside the proteins under study. The protein bands are visualised by fixing the gel (20% acetic acid) and staining with Coomassie blue followed by silver staining if higher sensitivity is required. An Amersham-Pharmacia "Phast Gel Electrophoresis" apparatus, or related equipment, is very useful for rapid analysis of proteins. It uses small pre-cast polyacrylamide gels (two gels can be run simultaneously) with various uniform or gradient polyacrylamide concentrations as well as gels for isoelectric focusing. The gels are usually run for 0.5-1.5hours and can be stained and developed (1-1.5hours) in the same apparatus. The equipment can be used to "electroblot" the protein bands onto a membrane from which the proteins can be isolated and sequenced or subjected to antibody or other identification procedures. It should be noted that all purification procedures are almost always carried out at *ca* 4° in order to avoid denaturation or inactivation of the protein being investigated.

There has been considerable necessity for, and interest in, the study of **Proteomics.** This involves the identification, quantitation and isolation of all the proteins produced by a cell or organism at a particular point in time. It provides information on the expression of **all** the proteins produced by particular cells at a desired stage of the cell's development, maturity, activation or condition. A sophisticated apparatus for this purpose is a flat bed polyacrylamide gel which is run electrophoretically in one direction according to the extent of polymerization of the acrylamide and then run at right angles along a pH gradient (isoelectric focusing). Hundreds of polypeptides and proteins are thus separated, collected and identified by various other techniques such as LC-MS-MS, capillary electrophoresis etc (T. Palzkill, *Proteomics*, Springer, *2001*, ISBN 0792375653; T.D. Veenstra and R.D. Smith *Proteome Characterization and Proteomics*, Academic Press, *2003*, ISBN 978079237565; R. Westermeier, T. Naven and H-R. Höpker, *Proteomics in Practice: A Guide to Successful Experimental Design*. J.Wiley & Sons, *2008*, ISBN 9783527319411; see also Bibliography in Chapter 1).

Anyone contemplating the purification of a protein is referred to: Professor R.K. Scopes's monograph Protein Purification, 3rd Edn, Springer-Verlag, New York, 1994, ISBN 0387940723; M.L. Ladisch Ed. Protein Purification - from Molecular Mechanisms to Large-scale Processes, American Chemical Society, Washington DC, 1990; E.L.V. Harris and S. Angal, Protein Purification Applications - A Practical Approach, IRL Press, Oxford, 1990; J.C. Janson and L. Rydén, Protein Purification - Principles, High Resolution Methods and Applications, VCH Publ. Inc., 1989; ISBN 0895731223, Satinder Ahja Handbook of Bioseparations, Academic Press, 2000, ISBN 0120455404; S.M. Wheelwright, Protein Purification: Design and Scale up of Downstream Processing, J Wiley & Sons, 1994, references in the bibliography in Chapter 1, and selected volumes of Methods Enzymol, e.g. M.P. Deutscher (Ed). Guide to Protein Purification, Methods Enzymol, Academic Press, Vol 182 1990, ISBN 0121820831; M.A. Vijayalakshmi, Biochromatography, Theory and Practice, Taylor & Francis Publ, 2002, ISBN 0415269032; J.S. Davies, Amino Acids, Peptides and Proteins Vol 32 2001, A Specialist Periodical Report, Royal Society of Chemistry, ISBN 0854042326; S. Roe, Protein Purification Techniques: A Practical Approach, 2nd Edn, Oxford University Press, 2001, ISBN 0199636737; T. Palmer, Enzymes, Biochemistry, Biotechnology, Clinical Chemistry, Horwood Publishing, 2001, ISBN 1898563780. For a comprehensive treatise of many volumes see Springer Handbook of Enzymes D. Schonburg & I. Schonburg Eds (A. Chang co-Ed) Springer-Verlag, Berlin, Heidelberg, 2003-onwards <http://www.springer.de>.

Brief general procedures for purifying DNA. Oligo-deoxyribonucleotides (up to *ca* 60-mers) are conveniently purified by HPLC (e.g. using a Bio-Rad MA7Q anion exchange column and a Rainin Instrument Co, Madison, Dynamax-300A C₈ matrix column) and used for a variety of molecular biology experiments. Plasmid and chromosomal DNA can be isolated by centrifugation in cesium chloride buffer (see section 1. centrifugation above), and then re-precipitated with 70% ethanol at -70° (18hours), collected by centrifugation (microfuge) and dried in air before dissolving in TE (10mM TrisHCl, 1mM EDTA pH 8.0). The DNA is identified on an Agarose gel slab (0.5 to 1.0% DNA grade in 45mM Tris-borate + 1mM EDTA or 40mM Trisacetate + 1mM EDTA pH 8.0 buffers) containing ethidium bromide which binds to the DNA and under UV light causes it to be visualised as pink fluorescent bands. Marker DNA (from λ phage DNA cut with the restriction enzymes Hind III and/or EcoRI) with bands running from 72 to 353 base-pairs (bp) are run in a parallel track in order to estimate the size of the unknown DNA. Various other DNA markers are commercially available such as the step ladder ranging from 50bp to 800bp with bands at 50bp intervals, and the step ladder with bands ranging from 100bp to 4000bp with bands at 200bp intervals. The DNA can be isolated from the band on the gel by transfer onto nitro-acetate paper (e.g. NA 45) electrophoretically, by binding to silica or an ion-exchange resin, extracted from these adsorbents and precipitated with ethanol. The DNA pellet is then

dissolved in TE buffer and its concentration determined. A solution of duplex DNA (or RNA) of 50μ g/mL gives an absorbance of 1.0unit at 260nm/1cm cuvette (single-stranded DNA or RNA gives a value of 1.3 absorbance units). DNA obtained in this way is suitable for molecular cloning.

Recombinant and chemically synthesised DNA and RNA are now routinely separated and purified by HPLC, and their structures are confirmed by sequencing an aliquot. A variety of commercially available HPLC systems are now available, and the desired system can be selected from them.

For experimental details on the isolation, purification and manipulation of DNA and RNA the reader is referred to: J. Sambrook, E.F. Fritsch and T. Maniatis, *Molecular Cloning-A Laboratory Manual*, 2nd Edn, (3 volumes), Cold Spring Harbor Laboratory Press, (CSHL Press) NY, *1989*, ISBN 0879693096 (paperback); P.D. Darbre, *Basic Molecular Biology: Essential Techniques*, J. Wiley and Sons, *1998*, ISBN 0471977055; J. Sambrook and D.W. Russell, *Molecular Cloning-A Laboratory Manual*, 3rd Edn, (3 volumes), Cold Spring Harbor Laboratory Press, NY, *2001*, ISBN 0079695773, ISBN 9780879695774 (paperback), ISBN 0079695765 (cloth bound); J. Sambrook and D.W. Russell, *The Condensed Protocols for Molecular Cloning: A Laboratory Manual*, CSHL Press, *2006*, ISBN 9780879697716, also available on line; M.A. Vijayalakshmi, *Biochromatography, Theory and Practice*, Taylor & Francis Publ, *2002*, ISBN 0415269032; A. Travers and M. Buckle, *DNA-Protein Interactions: A Practical Approach*, Oxford University Press, *2000*, ISBN 0199636915 (paperback); R. Rapley and D.L. Manning Eds *RNA: Isolation and Characterisation Protocols*, Humana Press *1998* ISBN 0896034941; R. Rapley, *The Nucleic Acid Protocols Handbook*, Humana Press *2000* ISBN 0896038416 (paperback).

This chapter lists some representative examples of biochemicals and their origins, a brief indication of key techniques used in their purification, and literature references where further details may be found. Simpler low-molecular-weight compounds, particularly those that may have been prepared by chemical syntheses, e.g. acetic acid, glycine, will be found in Chapter 4. Only a small number of enzymes and proteins are included because of space limitations. The purification of some of the ones that have been included has been described only briefly. The reader is referred to comprehensive texts such as the *Methods Enzymol* (Academic Press) series which currently runs to more than 344 volumes and *The Enzymes* (3rd Edn, Academic Press) which runs to 22 volumes for methods of preparation and purification of proteins and enzymes. Leading references on proteins will be found in *Advances in Protein Chemistry* (59 volumes, Academic Press) and on enzymes will be found in *Advances in Enzymology* (72 volumes, then became *Advances in Enzymology and Related Area of Molecular Biology*, J Wiley & Sons). The *Annual Reviews of Biochemistry* (Annual Reviews Inc. Patlo Alto California) also is an excellent source of key references to the up-to-date information on known and new natural compounds, from small molecules, e.g. enzyme cofactors to proteins and nucleic acids. See also the *Springer Handbook of Enzymes* cited above.

Abbreviations of titles of periodical are defined as in the Chemical Abstracts Service Source Index (CASSI).

Ionisation constants of ionisable compounds are given as **pK** values (published from the literature) and refer to the **pKa** values at room temperature (~ 15°C to 25°C). The values at other temperatures are given as superscripts, e.g. **pK**²⁵ for 25°C. Estimated values are entered as **pK**_{Est(1)} ~ (see section on "Ionisation Constants" in Chapter 1 for further information).

Benzene, which has been used as a solvent successfully and extensively in the past for reactions and purification by chromatography and crystallisation is now considered a **very dangerous substance**, so it has to be used with extreme care. We emphasise that an alternative solvent to benzene (e.g. toluene, toluene-petroleum ether, or a petroleum ether to name a few) should be used first. However, if benzene has to be used then all operations have to be performed in well-ventilated fumehoods and precautions taken to avoid inhalation and contact with skin and eyes. Whenever benzene is mentioned in the text, an asterisk e.g. ${}^{*}C_{6}H_{6}$ or * benzene, is inserted to remind the user that special precaution should be adopted.

Amino acids and peptides, Proteins Enzymes DNA and RNA, Carotenoids, Carbohydrates, Steroids, and Miscellaneous compounds which include Biochemical reagents, Cofactors, Coenzymes and Vitamins are collected in the separate respective sections in this chapter.

AMINO ACIDS and PEPTIDES

This section includes amino acid derivatives and related compounds.

N-Acetyl-L-alaninamide [15962-47-7] M 130.2, m 162°. Crystallise the amide repeatedly from EtOH/diethyl ether. The (\pm) -isomer crystallises from H₂O and has m 157-158°. [Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p 1838 1961. de Jong Recl Trav Chim Pays-Bas 19 288 1900, Fischer & Otto Chem Ber 36 2106 1903, Beilstein 4 H 295.]

N-Acetyl-β-alanine [3025-95-4] M 127.2, m 78.3-80.3°, pK²⁵ 4.45. The β-alanine crystallises from acetone. [King & King J Am Chem Soc 78 1089 1956, Beilstein 4 IV 2526, 2548.]

N-Acetyl-L-alanyl-L-alaninamide [30802-37-0] M 201.2, m 250-251°. Crystallise the dipeptide derivative repeatedly from EtOH/diethyl ether.

N-Acetyl-L-alanyl-L-alanyl-L-alaninamide [29428-34-0] M 272.3, m 295-300°. Crystallise the tripeptide derivative from MeOH/diethyl ether.

N-Acetyl-L-alanylglycinamide [76571-64-7] M 187.2, m 148-149°. Crystallise the dipeptide derivative repeatedly from EtOH/diethyl ether.

Acetyl- α -amino-*n*-butyric acid [34271-24-4] M 145.2, pK²⁵ 3.72. Crystallise the acid twice from water (charcoal) and dry it in air [King & King J Am Chem Soc 78 1089 1956].

Acetylcarnitine chloride (2-acetoxy-3-carboxy-N,N,N-trimethylpropanamine HCl) [S(D +) - 5080-50-2, R(L-) - 5061-35-8, RS 2504-11-2] M 239.7, m 181°, 187°(corr, dec), 197°(dec), $[\alpha]_{D}^{25}$ -28° (c 2, H₂O) for S-isomer, pK²⁵ 3.6. Recrystallise the chloride from isopropanol. Dry it over P₂O₅ under high vacuum. The S-betaine crystallises from EtOH/Et₂O with m 145°(dec) and is hygroscopic; it has $[\alpha]_{D}^{20}$ -19.5° (c 6, H₂O). [Krimberg & Wittandt *Biochem Z* 251 231 1932, Strack et al. Z Physiol Chem 238 191 1936, Beilstein 4 III 1630, 1632.]

N-Acetylglutamic acid [1188-37-0] M 189.2, m 185° (*RS*), 201° (*S*), $[\alpha]_D^{25}$ -16.6° (in H₂O), $[\alpha]_D^{25}$ -5.6° (c 4, MeOH) for *S*-enantiomer, pK_{Est (1)} ~3.4, pK_{Est(2)} ~4.3. A likely impurity is glutamic acid. Crystallise it from boiling water. It inhibits *N*-acetyl-L-glutamate synthase. [Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p 1948 1961, Shigesada & Tatibana Eur J Biochem 84 285 1978, Coude Biochem Biophys Res Commun 102 1016 1981, Beilstein 4 IV 3047.]

N-Acetylglycinamide [2620-63-5] M 116.1, m 139-139.5°. Crystallise the amide repeatedly from EtOH/Et₂O. Dry it in a vacuum desiccator over KOH. [Davis & Levy *J Chem Soc* 3485 1951, Fischer & Otto *Chem Ber* 36 2106 1903, *Beilstein* 4 IV 2401.]

N-Acetylglycine [543-24-8] M 117.1, m 206-208°, pK_1^{25} -1.92, pK_2^{25} 3.69. *N*-Acetylglycine is treated with acid-washed charcoal and recrystallised three times from water or EtOH/Et₂O and is dried *in vacuo* over KOH [King & King J Am Chem Soc 78 1089 1956]. [Beilstein 4 IV 2399.]

N-Acetylglycyl-L-alaninamide [34017-20-4] M 175.2. Crystallise the dipeptide derivative repeatedly from EtOH/Et₂O. Dry it in a vacuum desiccator over KOH.

N-Acetylglycylglycinamide [27440-00-2] M 173.2, m 207-208°. Crystallise the dipeptide derivative repeatedly from EtOH/Et₂O. Dry it in a vacuum desiccator over KOH.

N-Acetylglycylglycylglycinamide [35455-24-4] M 230.2, m 253-255°. Crystallise the tripeptide derivative repeatedly from EtOH/Et₂O. Dry it in a vacuum desiccator over KOH.

N-Acetylhistidine (H₂O) [39145-52-3] M 171.2, m 148° (*RS*), 169° (*S*), $[\alpha]_{D}^{25}$ +46.8° (c 1, H₂O) for *S*-enantiomer. A likely impurity is histidine. Crystallise it from water, then 4:1 acetone/water. [Marshall et al. *J Am Chem Soc* 78 4636 1956, Bergmann & Zervas *Biochem Z* 203 280 1928, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 1990 1961, Beilstein 25 IV 4359.]

N-Acetyl-*RS*-homocysteine thiolactone (Citiolone) [1195-16-0] [17896-21-8 for \pm] M 159.2, m 110°, 109-111°, 111.5-112.5°. Dry Citiolone in a vacuum desiccator. It recrystallises from toluene as needles. It is a ninhydrin -ve substance which gives a "slow" nitroprusside test. It has λ_{max} at 238nm (ϵ 4,400 M⁻¹cm⁻¹); and v_{max} (nujol) 1789s and 851ms cm⁻¹. [Benesch & Benesch J Am Chem Soc 78 1597 1956, cf Laliberté J Chem Soc 2756 1963.]

N-Acetyl-L-leucinamide (2-acetamido-4-methylvaleramide) [28529-34-2] M 177.2, m 202°. Recrystallise it from aqueous EtOH or CHCl₃/pet ether (b 40-60°). [Gränacher *Helv Chim Acta* 8 216 1925, *Beilstein* 4 II 864, for L, and Bergmann et al. *Justus Liebigs Ann Chem* 449 301 1926, *Beilstein* 4 II 877 for DL.]

N-Acetyl-L-methionine [65-82-7] M 191.3, m 103.5-104.5°, 104°, $[\alpha]_{546}$ -24.5° (c 1, in H₂O), pK_{Est} ~3.4. Crystallise *N*-acetyl-L-methionine from Me₂CO, H₂O or EtOAc. Dry it in a vacuum over P₂O₅. Its solubility at 25° in H₂O is 30.7%, and in Me₂CO it is 29.5%. [Mitzi & Schueter *Biochim Biophys Acta* 27 168 1958, Birnbaum et al. *J Biol Chem* 194 455 1952, *Beilstein* 4 IV 3206.]

Acetylmethionine nitrile [538-14-7] M 172.3, m 44-46°. Crystallise the nitrile from diethyl ether. [Catch et al. *J Chem Soc* 1611 1947, *Beilstein* 4 III 1654.]

N-Acetyl-N'-methyl-L-alaninamide [19701-83-8] M 144.2, m 181.2-182° (sealed tube), $[\alpha]_{\rm D}^{25}$ -51.1° (c 2, EtOH). Crystallise the amide from EtOAc/Et₂O, then from EtOH and Et₂O. Also recrystallise it twice by dissolving ~2.5g in hot 200mL of toluene and cooling. It sublimes at ~170°, so its m is measured in a sealed tube. [Applewhite & Niemann J Am Chem Soc 81 2212 1959, Beilstein 4 IV 2500.]

N-Acetyl-*N*'-methylglycinamide [7606-79-3] M 130.2, 157.5-158°. Recrystallise the amide from EtOH/Et₂O mixture. Also recrystallise it twice from EtOAc/EtOH (16:1) and once from EtOAc. [Applewhite & Niemann J Am Chem Soc 81 2212 1959.]

N-Acetyl-N'-methyl-L-leucine amide [32483-15-1] M 186.3, m 165.3-166.8° (sealed tube), $[\alpha]_{D}^{25}$ -33.9° (c 1, H₂O). Recrystallise the amide from EtOAc, EtOH/hexane mixture or toluene/hexane mixture. [Applewhite & Niemann *J Am Chem Soc* 81 2212 1959.]

N-Acetyl-L-phenylalanine [2018-61-3] M 207.2, m 170-171°, 174-175°, $[\alpha]_D^{25}$ +47.5° (c 4, EtOH), +52.5° (c 2, EtOH), (DL) m 152.5-153°, pK_{Est} ~3.5. *N*-Acetyl-L-phenylalanine is recrystallised from H₂O, 20% MeOH/H₂O, or CHCl₃; dry and store it at 4°. The (*DL*)-isomer crystallises from H₂O, Me₂CO, EtOAc, or CHCl₃ with m 152-154° and the solubilities in w% at 25° are 0.73 (H₂O), 4.3 (Me₂CO), 0.79 (EtOAc) and 0.34 (CHCl₃) [Kerr & Niemann *J Org Chem* 23 893 1958, Overby & Ingersoll *J Am Chem Soc* 73 3363 1951, L: Fu et al. *J Am Chem Soc* 76 6057 1954, Bender & Glasson *J Am Chem Soc* 81 1591 1959]. [Beilstein 14 I 238, 4 IV 1575.]

N-Acetyl-L-phenylalanine ethyl ester [2361-96-8] M 235.3, m 93-94°. Crystallise the ester from aqueous EtOH or H₂O. [Izumiya & Fruton J Biol Chem 218 59 1956.]

N-Acetyltryptophan [87-32-1] M 246.3, m 206°, 207-208° (*RS*), pK_{Est} ~3.8, [1218-34-4] m 188°, 189.5-190.5° (\underline{S}), $[\alpha]_{D}^{25}$ +30.1° (aqueous NaOH), +71.5° (dioxane/aqueous HCl). A likely impurity is tryptophan. Crystallise it from EtOH by adding water. [Cowgill *Biochim Biophys Acta* 200 18 1970, DL: Berg J Biol Chem 100 79 1933, Beilstein 22/14 V 40-50.]

N-Acetyl-L-valine amide [37933-88-3] M 158.2, m 275°. Recrystallise the amide from CH₃OH/Et₂O.

Alamethicin (from *Tricoderma viridae*). [27061-78-5] M 1964.3, m 259-260°, 275-270°, $[\alpha]_{D}^{22}$ -45° (c 1.2, EtOH), pK²⁵ 6.04 (aqueous EtOH). Recrystallise alamethicin from MeOH. [Panday et al. *J Am Chem Soc* 99 8469 1977.] The *acetate* [64918-47-4] has m 195-180° from MeOH/Et₂O, and the *acetate-methyl ester* [64936-53-4] has m 145-140° from aqueous MeOH.

Alanine (*RS*) [302-72-7] M 89.1, m 295-296°, (*S*) [56-41-7] m 297°(dec), $[\alpha]_{15}^{15}$ +14.7° (in 1M HCl), (*R*) [338-69-2] m 289-291°(dec), $[\alpha]_{15}^{15}$ -14.1° (c 0.9, 1M HCl), pK₁²⁵ 2.34, pK₂²⁵ 9.87. Crystallise alanine from H₂O or aqueous EtOH, i.e. crystallise it from 25% EtOH in water, or recrystallise it from 62.5% EtOH, wash it with EtOH and dry it to constant weight *in vacuo* over P₂O₅. [Gutter & Kegeles J Am Chem Soc 75 3893 1953, Walsh J Biol Chem 264 2394 1989.] 2,2'-Iminodipropionic acid is a likely impurity. [Beilstein 4 IV 2480. 2481.]

β-Alanine [107-95-9] **M 89.1, m 205**^o(dec), pK_1^{25} 3.55, pK_2^{25} 10.24. Crystallise β-alanine by dissolving it in a hot saturated aqueous solution, filtering, adding four volumes of absolute EtOH and cooling in an ice-bath. Recrystallise it in the same way and then finally, crystallise it from a warm saturated solution in 50% EtOH and adding four volumes of absolute EtOH with cooling in an ice-bath. The crystals are dried in a vacuum desiccator over P₂O₅. [Donovan & Kegeles *J Am Chem Soc* 83 255 1961, *Beilstein* 4 IV 2526.]

S-Alaninol [S-2-aminopropan-1-ol] [2749-11-3] M 75.1, b 167-1699/760mm, d_4^{20} 0.961, n_D^{20} 1.456, [α]₅₄₆ +26.0° (c 2, EtOH), pK²⁵ 9.43. Purify it as for S-2-amino-3-methylbutan-1-ol below. [Beilstein 4 IV 1615.]

D-Allothreonine [2R, 3R(-)-isomer] [24830-94-2] **M 119.1, m 272-273°(dec), 276°(dec),** $[\alpha]_{D}^{25}$ -9.1° (c 3.9, H₂O), pK₁²⁵ 2.11, pK₂²⁵ 9.10. Recrystallise D-allothreonine from aqueous EtOH or 50% EtOH. [Elliot *J Chem Soc* 62 1950, Birnbaum et al. *J Biol Chem* 194 455 1952, IR: Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 1961, Beilstein 4 IV 3170.]

 $RS-\alpha$ -Allylglycine (2-aminopent-4-enoic acid). [7685-44-1] M 115.1, m 250-255°(dec), pK_{Est(1)} ~2.3, pK_{Est(2)} ~9.6. Dissolve it in absolute EtOH and precipitate it with pyridine, then recrystallise it from aqueous EtOH [R_F on paper in BuOH/EtOH/NH₃/H₂O (4:4:1:1:) is 0.37]. The hydrobromide has m 136-140° (from EtOAc) and the phenylureido derivative has m 159-161°. [Schögl Monatsh Chem **89** 377 1958, Beilstein **4** IV 2852.]

Aminoacetic acid (Glycine) [56-40-6] M 75.1, m 262° (dec, goes brown at 226°, sublimes at 200°/0.1mm), pK_1^{25} 2.35, pK_2^{25} 9.78. Crystallise glycine from distilled water by dissolving at 90-95°, filtering, cooling to about -5°, and draining the crystals centrifugally. Alternatively, crystallise it from distilled water by addition of MeOH or EtOH (e.g. 50g dissolved in 100mL of warm water, and 400mL of MeOH is added). The crystals are washed with MeOH or EtOH, then with diethyl ether. Likely impurities are ammonium glycinate, iminodiacetic acid, nitrilotriacetic acid or/and ammonium chloride. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 1955 *1961*, *Beilstein* 4 IV 2349.]

α-Amino acids. All the α-amino acids with the 'natural' configuration [S (L), except for cysteine which is R(L)] at the α- carbon atom are available commercially in a very high state of purity. Many of the 'non-natural' α-amino acids with the [R(D)] configuration as well as racemic mixtures are also available, and generally none require further purification before use unless they are of "Technical Grade' or were stored for a very long period. The R or S enantiomers are optically active except for glycine which has two hydrogen atoms on the α- carbon atom, but these are *pro*-chiral and enzymes or proteins do distinguish between them, e.g. serine hydroxymethyltransferase successfully replaces the *pro*-α- hydrogen atom of glycine with CH₂OH (from formaldehyde) to make S-serine. The twenty common natural α-amino acids are: **amino acid**, three-letter abbreviation, **one-letter abbreviation**, pK (-COOH) and pK (-NH₃⁺): **Alanine**, Ala, **A**, 2.34, 9.69; **Arginine**, Arg, **R**, 2.17, 9.04; **Asparagine**, Asn, **N**, 2.01, 8.80; **Aspartic acid**, Asp, **D**, 1.89, 9.60; **Cysteine**, Cys, **C**, 1.96, 8.18; **Glutamine**, Gln, **Q**, 2.17, 9.13; **Glutamic acid**, Glu, **E**, 2.19, 9.67; **Glycine**, Gly, **G**, 2.34, 9.60; **Histidine**, His, **H**, 1.8, 9.17; **Isoleucine**, Ile, **I**, 2.35, 9.68; **Leucine**, Leu, L, 2.36, 9.60; **Lysine**, Lys, **K**, 2.18, 8.95; **Methionine**, Met, **M**, 2.28, 9.20; **Phenylalanine**, Phe, **F**,

1.83, 9.12; **Proline**, Pro, **P**, 1.99, 10.96; **Serine**, Ser, **S**, 2.21, 9.15; **Threonine**, Thr, **T**, 2.11, 9.62; **Tryptophan**, Trp, **W**, 2.38, 9.39; **Tyrosine**, Tyr, **Y**, 2.2, 9.11, **Valine**, Val, **V**, 2.32, 9.61, respectively. Technical grade amino acids can be purified on ion-exchange resins (e.g. Dowex 50W and eluting with a gradient of HCl or AcOH), and the purity is checked by TLC in two dimensions and stained with ninhydrin. (J.P.Greenstein & M.Winitz, *Chemistry of the Amino Acids* (3 Volumes), J.Wiley & Sons, NY, 1961; C.Cooper, N.Packer and K.Williams, *Amino Acid Analysis Protocols*, Humana Press, 2001, ISBN 0896036561). Recently codons for a further two amino acids have been discovered which are involved in ribosome-mediated protein synthesis giving proteins containing these amino acids. The amino acids are R(L)-selenocysteine [Stadtman *Ann Rev Biochem* **65** 83 *1996*] and pyrrolysine [(4*R*, 5*R*)-4-substituted (with Me, NH₂ or OH) pyrroline-5-carboxylic acid] [Krzychi & Chan et al. *Science* **296** 1459 and 1462 *2002*.] They are, however, rare at present and only found in a few microorganisms.

dl-α-Aminoadipic acid (hydrate) (2-aminohexane-1,6-dioic acid) [542-32-5] M 161.2, m 196-198°, 204°, 205-206°, pK_{Est(1)} ~2.0, pK_{Est(2)} ~4.5, pK_{Est(3)} ~9.8. Crystallise the acid from H₂O. Alternatively purify it by precipitating the Cu salt and decomposing the Cu salt suspended in H₂O by bubbling H₂S, filtering off the CuS, evaporating, and recrystallising the residue from H₂O. Note that prolonged refluxing of an aqueous solution converts the acid to the lactone: *piperid-2-one-6-carboxylic acid* which has m 177-178°. [Linstead & Wang J Chem Soc 810, 811 1937, Waelkes et al. J Am Chem Soc 72 5760 1950, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p. 2408 1961, Beilstein 4 III 1555, 4 IV 3070.]

N-(*p*-Aminobenzoyl)-L-glutamic acid [4271-30-1] M 266.3, m 173°, 174-175° (L-form), $[\alpha]_{546}$ -17.5° (c 2, 0.1m HCl); 197° (DL), pK₁²⁵ 2.61, pK₂²⁵ 3.76, pK₃²⁵ 4.83. Crystallise the acid from H₂O. Also purify it by dissolving 2.7g in H₂O (130mL), adding aqueous NaOH to pH 5.5 and adding portionwise a solution of 0.5M CuSO₄ to complete precipitation of the Cu salt. This salt is filtered off, suspended in H₂O and H₂S is bubbled through to precipitate CuS, filter, evaporate and recrystallise the residue from H₂O. It has λ_{max} (H₂O) at 273nm. [Backer & Houtman *Recl Trav Chim Pays-Bas* 70 738, 743 1951, *Beilstein* 14 IV 1153.]

RS-2-Aminobutyric acid [2835-81-6] **M 103.1, m 287-288°(dec), 303°(dec), 303°(dec), sealed tube), pK_1^{25} 2.29, pK_2^{25} 9.83. Crystallise the acid from water. [Albertson & McKay J Am Chem Soc 81 505 1959, Perrin J Chem Soc 3125 1958, Beilstein 4 IV 2584.]**

S-2-Aminobutyric acid (Butyrine) [1492-24-6] M 103.1, m 292°(dec), $[\alpha]_D^{25}$ + 20.6° (c 2, 2.5N HCl), pK₁²⁵ 2.55, pK₂²⁵ 9.60. Crystallise butyrine from aqueous EtOH, and the melting point depends on heating rate but has m 303° in a sealed tube. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 2399 IR: 2401 1961, Beilstein 4 III 1294, 4 IV 2584.]

RS-3-Aminobutyric acid [2835-82-7] M 103.1, m 193-194°, pK_{Est(1)} ~3.5, pK_{Est(2)} ~10.3. Crystallise the acid from aqueous EtOH or MeOH/Et₂O. Also crystallise it by heating a slightly diluted EtOH solution and adding Me₂CO. It gives a purple spot with R_F 0.89 on paper chromatography using 80% aqueous phenol (the α -amino acid has R_F 0.74). [Zilka & Rivlin *J Org Chem* 23 94 1958, Bruylants *Bull Soc Chim Belg* 32 259 1923, *Beilstein* 4 IV 2595.]

S-3-Aminobutyric acid [3775-72-2] M 103.1, m 212°, 210-212°, $[\alpha]_D^{18} + 38.8°$ (c 0.5, H₂O). Purify the acid through Amberlite IR-4B (20-50 mesh) washing wth H₂O, evaporating in a vacuum, then recrystallise it twice from absolute EtOH. It has also been crystallised from MeOH or MeOH/Et₂O and dried in a vacuum. [Balenovic et al. *J Chem Soc* 3316 1952, Bruylants *Bull Soc Chim Belg* 32 259 1923, *Beilstein* 4 IV 2595.]

4-Aminobutyric acid (GABA) [56-12-2] M 103.1, m 202°(dec), 203°(dec), pK_1^{25} 4.14, pK_2^{25} 10.55. Crystallise GABA from aqueous EtOH or MeOH/Et₂O. Also crystallise it by dissolving it in the least volume of H₂O and adding 5-7 volumes of absolute EtOH. [Sherman *Biochemical Preparations* 4 91 1955, de Witt *Org Synth* Coll Vol II 25 1943, *Beilstein* 4 III 1316, 4 IV 2600.]

1-Amino-1-cyclopentanecarboxylic acid (cycloleucine) [52-52-8] M 129.2, m 328-335°(dec), 328-329°, 330°(dec), pK_1^{20} 2.4, pK_2^{20} 10.3. Any Cl⁻ or other anions are removed by stirring with a strong cation exchange resin (Amberlite IR-120), filtering, and washing with distilled H₂O until the filtrate is free from the anion. The resin is then stirred overnight with 6N NH₄OH, filtered, the filtrate is decolourised (charcoal) and evaporated to dryness in a vacuum. The residue is recrystallised from H₂O/EtOH. Also crystallise it from aqueous EtOH. The *hydrochloride* has m 222-224°(dec). [Neelakantan & Hartung J Org Chem 23 967 1958, Connors & Ross J Chem Soc 2119 1960. O'Donnell et al. Synthesis 127 1984, Beilstein 14 IV 974.]

4-Amino hippuric acid (*N*-*p*-aminobenzoylglycine) [61-78-9] M 194.2, m 198-199°, 200-202°, $pK_{Est(1)} \sim 1.7(NH_2)$, $pK_{Est(2)} \sim 3.4$ (CO₂H). Crystallise the acid from H₂O. It is soluble in organic solvents. [Cohen & McGilvery J Biol Chem 169 119 1945, 171 121 1947, Meunzen et al. J Biol Chem 26 469 1926, Beilstein 14 III 1069, 14 IV 1152.]

dl-4-Amino-3-hydroxybutyric acid [924-49-2] M 119.1, m 218°(dec), 225°(dec), pK₁²⁵ ~3.80 (CO₂H), pK_{Est(2)} ~9.3. Crystallise the acid from H₂O or aqueous EtOH. Recrystallise it by dissolving it in H₂O and adding MeOH or EtOH. It is not very soluble in CHCl₃ or EtOAc. [Renaud & Seebach Synthesis 424 1986, Beilstein 4 IV 3187.]

R (L-)-4-Amino-3-hydroxybutyric acid (GABOB) [352-21-6] M 119.1, m 212°(dec), 213-214°(dec), 216-217°(dec), [α] $_{\rm D}^{35}$ -20.5° (c 1.75, H₂O). Purify GABOB through a Dowex 50Wx8 resin, eluting with 1.3N NH₄OH, evaporating and crystallising the residue by dissolving it in H₂O and adding EtOH. It is an anticonvulsant. [Renaud & Seebach *Synthesis* 424 *1986*, Takano et al. *Tetrahedron Lett* 29 795 *1988*, *Beilstein* 4 IV 3187.]

 α -Aminoisobutyric acid (2-amino-2-methylpropionic acid) [62-57-7] M 103.1, m sublimes at 280-281°, 335° (sealed tube), pK₁²⁵ 2.36, pK₂²⁵ 10.21. Crystallise the acid from aqueous EtOH and dry it at 110°. [Zelinski & Stadnikoff *Chem Ber* 39 1726 1906, *Beilstein* 4 IV 2616.]

RS-β-Aminoisobutyric acid (α-methyl-β-alanine) [10569-72-9] M 103.1, m 176-178°, 178-180°, 181-182°, *R*-(-)- isomer [144-90-1] m 183°, [α] $_{\rm D}^{25}$ -21° (c 0.43, H₂O), pK_{Est(1)}~ 3.7, pK_{Est(2)}~ 10.2. *RS*-β-Aminoisobutyric acid forms colourless prisms by crystallisation from hot H₂O which are powdered and dried *in vacuo*. The purity is checked by paper chromatography (Whatman 1) using ninhydrin spray to visualise the amino acid; R_F values in 95% MeOH and *n*-PrOH/5N HCOOH (8:2) are 0.36 and 0.50 respectively. [Kupiecki & Coon *Biochemical Preparations* 7 20 1960, Pollack *J Am Chem Soc* 65 1335 1943.] The *R*-enantiomer, isolated from iris bulbs or human urine, crystallises from H₂O and sublimes *in vacuo* [Asen et al. *J Biol Chem* 234 343 1959]. The *RS*-hydrochloride crystallises from EtOH/Et₂O with m 128-129° (also 130°) [Böhme et al. *Chem Ber* 92 1258, 1260, 1261 1959]. [*Beilstein* 4 III 1330.]

5-Aminolaevulinic acid hydrochloride (ALA-HCl, δ -aminolaevulinic acid HCl) [5451-09-2] M 167.6, m 148°(dec), 150-151°(dec), 156-158°(dec), pK₁²² 4.05, pK₂²² 8.90. Dry ALA-HCl in a vacuum desiccator over P₂O₅ overnight, then crystallise it by dissolving it in cold EtOH and adding dry Et₂O. Also crystallise it by dissolving in the minimum volume of MeOH, and placing in a desiccator containing dry Et₂O (clamp the desiccator). During several days the Et₂O slowly distils into the MeOH causing the hydrochloride to separate as long needles. Filter them off and dry them in a Fischer pistol. [Wynn & Corwin J Org Chem 15 203, 207 1950, Neuberger & Scott J Chem Soc 1820, 1924 1954, Beilstein 4 IV 3265.]

S-2-Amino-3-methyl-1-butanol (S-valinol) [2026-48-4] M 103.2, m 31-32°, b 88°/11mm, d 0.92, $[\alpha]_{546} + 16.5°$ (c 6.32, l = 2 H₂O), $[\alpha]_D + 15.6°$ (EtOH), pK_{Est} ~10.4. Purify S-valinol by vacuum distillation using a short Vigreux column (p 11). Alternatively it is purified by steam distillation. The steam distillate is acidified with HCl; the aqueous layer is collected and evaporated. The residue is dissolved in butan-1-ol, filtered and dry Et₂O added to crystallise the hydrochloride salt (*hygroscopic*), m 113°. The free base can be obtained by suspending the salt in Et₂O and adding small volumes of saturated aqueous K₂CO₃ until effervescence is complete and the mixture is distinctly alkaline. At this stage the aqueous layer should appear as a white sludge. The mixture is heated to boiling and refluxed for 30minutes (more Et₂O is added if necessary).

The Et_2O layer is decanted off from the white sludge, the sludge is extracted twice with Et_2O (by boiling for a few minutes), the combined organic layers are dried (KOH pellets), evaporated and the residue is distilled in a vacuum. [Nagao et al. *J Org Chem* **55** 1148 *1990*, *Beilstein* **4** III 805.]

S-(+)-3-Aminopentanoic acid [14389-77-6] and R-(-)-3-aminopentanoic acid [131347-76-7] M 115.1, m (175°), 185°, $[\alpha]_{D}^{20} \pm 43°$ (c 0.5, H₂O), pK₁²⁵ 3.54, pK₂²⁵ 10.25. Crystallise the amino acid from EtOH/Et₂O. [Beilstein 4 II 843, 4 III 1342, 4 IV 2635.]

α-Aminothiophene-2-acetic acid [2-(2-thienyl)glycine] $[R(+) 65058-23-3, S(-) 4052-59-9, (-)-43189-45-3, RS(±) 21124-40-3] M 57.2, m 236-237° (R), 235-236° (S), 208-210°, 223-224° (dec)(RS), <math>[\alpha]_D^{20}$ (+) and (-) 84° (c 1, 1% aqueous HCl), $[\alpha]_D^{25}$ (+) and (-) 71° (c 1 H₂O), pK_{Est(1)}~ 1.5, pK_{Est(2)}~ 8.0. Recrystallise 2-(2-thienyl)glycine by dissolving it in H₂O (1g in 3 mL), adjusting the pH to 5.5 with aqueous NH₃, diluting with MeOH (20 mL), stirring, adjusting the pH to 5.5 and cooling to 0°. Also recrystallise it from small volumes of H₂O. [*R*-isomer: Nishimura et al. *Nippon Kagaku Zasshi* 82 1688 1961, S-isomer: Johnson & Panetta Chem Abstr 63 14869 1965, Johnson & Hardcastle Chem Abstr 66 10930 1967, RS-isomer: LiBassi et al. Gazz Chim Ital 107 253 1977.] The (±) N-acetyl derivative has m 191° (from H₂O) [Schouteenten et al. Bull Soc Chim Fr II 248, II 252 1978].

5-Amino-*n*-valeric acid (5-aminopentanoic acid) [660-88-8] M 117.2, m 157-158°, pK_1^{25} 4.25, pK_2^{25} 10.66. Crystallise it from H₂O/EtOH. When heated above its melting point, it is converted to 2-piperidone with m 200°. [Wood & Colver J Am Chem Soc 67 654 1945, Beilstein 4 IV 2636.]

5-Amino-*n***-valeric acid hydrochloride** [627-95-2] **M 153.6, m 92-94°, 103-104°.** Crystallise the salt from CHCl₃. Otherwise dissolve it in EtOH and add 2 volumes of Et₂O and chill. [Schniepp & Marvel J Am Chem Soc **57** 1557 1935, Woods & Colver J Am Chem Soc **67** 654 1945, Beilstein **4** III 1343, **4** IV 2636.]

Angiotensinogen (from human blood serum or procine plasma) [64315-16-8] M ~1762. A tetradecapeptide renin substrate which is purified by chromatography on Blue Sepharose, Phenyl-Sepharose, hydroxylapatite and immobilised 5-hydroxytryptamine [Campbell et al. *Biochem J* 243 121 1987]. [*Beilstein* 25 III/IV 4390 for angiotensin.]

Anserine $[N,\beta-\text{alanyl-1-methyl-S-histidine}]$ [584-85-0] M 240.3, m 238-239°, $[\alpha]_{b}^{23}$ +12.3° (c 5,H₂O), pK₁²⁵ 2.64, pK₂²⁵ 7.04, pK₃²⁵ 9.49. Crystallise anserine from aqueous EtOH. It is *hygroscopic* and is best stored as the nitrate salt (see below). Purify it by shaking the nitrate salt with Dowex 3 (x4 free base) and washing with H₂O, evaporating the filtrate and removing H₂O by 3 distillations with 10mL of propan-2-ol. Dissolve the crystals in MeOH and add H₂O dropwise until one phase is obtained and cool. Dry the crystals at 60° over P₂O₅ in a vacuum. The *picrate* has m 145° (from H₂O). [Rinderknecht et al. *J Org Chem* 29 1968 *1964*, *Beilstein* 25 II 408, 25 IV 4383.]

S-Anserine nitrate [5937-77-9] M 303.3, m 225°(dec), 226-228°(dec), $[\alpha]_{D}^{30}$ +12.2°. Likely impurities are 1-methylimidazole-5-alanine and histidine. Crystallise the nitrate from aqueous MeOH or EtOH (needles). Also dissolve ~20g in 25mL of MeOH, add 2-propanol (150-200mL) and store the mixture at 5° overnight to give shiny needles. Recrystallise it by heating 12g of the nitrate in MeOH (300mL) and adding H₂O (50-60mL) until one phase is obtained and refrigerating overnight. Filter and dry it at 60°/P₂O₅ in a vacuum. [Rinderknecht et al. *J Org Chem* 29 1968 *1964*, Behrens & duVigneaud *J Biol Chem* 120 517 *1937*.]

S-Arginine [74-79-3] M 174.2, m 205°(dec, anhydrous), 207°(dec, 2 H₂O), $[\alpha]_{\rm D}$ +26.5° (c 5, in 5M HCl), $[\alpha]_{546}$ +32° (c 5, in 5M HCl), pK_1^{25} 2.18, pK_2^{25} 9.36, pK_3^{25} 11.5. S-Arginine crystallises from H₂O as the *dihydrate* and as plates from EtOH. It also crystallises from 66% EtOH. Its solubility in H₂O is 15% at 21°. Its isoelectric point is at pH 10.76. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 1841 *1961*, *Beilstein* 4 IV 817.]

S-Arginine hydrochloride [1119-34-2] M 210.7, m 217°(dec), 222°(dec), $[\alpha]_D^{20}$ +26.9° (c 6, M HCl). A likely impurity is ornithine. Crystallise the salt from H₂O at pH 5-7, by adding EtOH to 80% (v/v). [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 1841 1961, Beilstein 4 IV 2649.]

S-Argininosuccinic acid [2387-71-5] M 290.3, $[\alpha]_{D}^{24}$ +16.4° (H₂O). A likely impurity is fumaric acid. In neutral or alkaline solution it readily undergoes ring closure to the 'anhydride' (see below). Crystallise it from water by adding 1.5 volumes of EtOH. The barium salt is stable at 0-5° if dry. [Westfall *Biochem J* 77 135 1960, Ratner & Kunkemueller *Biochemistry* 5 1821 1966.]

S-Argininosuccinic anhydride [28643-94-9] M 272.3, $[\alpha]_{\rm b}^{23}$ -10° (H₂O for anhydride formed at neutral pH). Crystallise the anhydride from H₂O by adding two volumes of EtOH. An isomeric anhydride is formed if the free acid is allowed to stand at acid pH. In solution, the mixture of anhydride and free acid is formed [see above entry, Ratner & Kunkemueller *Biochemistry* 5 1821 *1966*, Kowalsky & Ratner *Biochem J* 8 899 *1969*].

S-Asparagine [70-47-3] M 150.1, m 234-235°, (monohydrate) [5794-13-8] $[\alpha]_{\rm D}$ +32.6° (0.1M HCl), pK₁²⁵ 1.98, pK₂²⁵ 8.84. Likely impurities are aspartic acid and tyrosine. Crystallise it from H₂O or aqueous EtOH. It slowly effloresces in dry air. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 1856 1961, Beilstein 4 IV 3005.]

Aspartic acid M 133.1, m 338-339° (RS, [617-45-8]), m 271° (S, requires heating in a sealed tube [56-84-8]), $[\alpha]_{D}^{25}$ +25.4° (3M HCl), pK_{1}^{25} 1.99, pK_{2}^{25} 3.90. Likely impurities are glutamic acid, cystine and asparagine. Crystallise the acid from water by adding 4 volumes of EtOH and dry it at 110°. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 1856 *1961*, *Beilstein* 4 IV 2998, 3000.]

L-Aspartic acid ß-methyl ester hydrochloride [16856-13-6] M 183.6, m 194^o, pK²⁵ 8.62. Recrystallise it from MeOH by adding anhydrous Et₂O [Bach et al. *Biochemical Preparations* 13 20 1971].

DL-Aspartic acid dimethyl ester hydrochloride [14358-33-9] **M 197.7, 116-117°.** Crystallise it from absolute MeOH. [Kovach et al. J Am Chem Soc **107** 7360 1985.] The diethyl ester has **pK²⁵ 6.4.**

Azaserine [115-02-6] M 173.1, m 146-162°(dec), $[\alpha]_{D}^{27.5}$ -0.5° (c 8.5, H₂O, pH 5.2), pK_{Est(1)} ~4.53, pK_{Est(2)} ~5.40. Crystallise azaserine from 90% EtOH. Also dissolve it in H₂O, filter it through Supercel and add EtOH to give azaserine as pale yellow crystals. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 1 pp 75-76 1961, Curphey & David J Org Chem 43 4666 1978, Beilstein 4 IV 3124.]

Benzoyl glycine (hippuric acid) [495-69-2] M 179.2, m 188°, pK^{20} 3.81, 3.59. pK^{40} 3.59. Crystallise the acid from boiling H₂O. Dry it over P₂O₅. Also purify it by dissolving 135-140g in 2L of boiling H₂O, filtering through a steam-heated funnel and allowing to crystallise at ~20° (yield 115-122g first crop, m 186-187°). [Ingersoll & Babcock *Org Synth* Coll Vol II 328 1943, *Beilstein* 9 225, I 100.]

N-Benzyloxycarbonylglycyl-L-alaninamide [17331-79-2] M 279.3, m dec >200°. Recrystallise the dipeptide derivative from EtOH/Et₂O.

N-Benzyloxycarbonyl-*N*'-methyl-L-alaninamide [33628-84-1] M 236.3, m dec >200°. Recrystallise the amide from EtOAc.

Betaine (1-carboxymethyl-N,N,N-trimethylammonium zwitterion) [107-43-7 (anhydrous), 590-47-6, 17146-86-0 (monohydrate)] M 117.1, m 294-294°(dec) (monohydrate?) 301-305°(dec) (anhydrous), ~319°(dec), pK²⁵ 1.83. Crystallise betaine from aqueous EtOH or EtOH/Et₂O. The monohydrate loses H₂O above 100°. Betaine undergoes internal alkylation to methyl dimethylaminoacetate

above its melting point. It is also prepared by treating the hydrochloride (below) with silver oxide and recrystallising from EtOH/Et₂O. [Edsall *J Am Chem Soc* **66** 1767 *1943*, Leifer & Lippincott *J Am Chem Soc* **79** 5098 *1957*, for pK see Grob et al. *Chem and Ind (London)* 1222 *1955*, *Beilstein* **4** III 1127, **4** IV 2369.]

Betaine hydrochloride [590-46-5] **M153.6, m 227-228°(dec), 232°(dec), 246-247°(dec).** Recrystallise the salt from EtOH. Its solubility at 25° is 65% in H₂O, and 5% in EtOH. [Edsall *J Am Chem Soc* **66** 1767 1943, Kuhn & Ruelius *Chem Ber* **83** 420 1950, *Beilstein* **4** III 1127, IV 2369.]

Bis-*N*-tert-butyloxycarbonyl-L-cystine, [10389-65-8] M 440.5, m 144.5-145°, $[\alpha]_{D}^{20}$ -133.2° (c 1, MeOH), pK_{Est} ~2.9. Crystallise the cystine derivative from EtOAc by adding hexane [Ferraro *Biochemical Preparations* 13 39 1971].

Bombesin (2-L-glutamin-3-6-L-asparaginealytesin, a tetradecapeptide) [31362-50-2] M 1619.9. Purify Bombesin by gel filtration on a small column of Sephadex G-10 and elute with 0.01 M AcOH. This procedure removes lower molecular weight contaminants which are retarded on the column. The procedure should be repeated twice, and the material should now be homogeneous on electrophoresis, and on chromatography it gives a single active spot which is negative to ninhydrin but positive to Cl₂ and iodoplatinate reagents. R_F on paper chromatography (*n*-BuOH/pyridine/AcOH/H₂O :: 37.5: 25:7.5:30) is 0.55 for Bombesin and 0.65 for Alytin. [Bernardi et al. *Experientia* Part 1 27 166 1971, Anastasi et al. Part 2 27 873 1971.] The *hydrochloride* has m 185°(dec) (from EtOH) $[\alpha]_{D}^{24}$ -20.6° [c 0.65, Me₂NCHO/(Me₂N)₃PO (8:2)]. [For the stimulation of inositol phosphate see Lloyd et al. *Biochem J* 260 813 1989.]

Bradykinin [ArgProProGlyPheSerProPheArg] [5979-11-3] M_r 1,240.4. Purify Bradykinin by ion-exchange chromatography on CMC (*O*-carboxymethyl cellulose) and partition chromatography on Sephadex G-25. The purity is checked by paper chromatography using BuOH/AcOH/H₂O (4:1:5) as eluent. [Park et al. *Can J Biochem* 56 92 1978, ORD and CD: Bodanszky et al. *Experientia* 26 948 1970, activity: Regoli & Barabé *Pharmacol Rev* 32 1 1980, *Beilstein* 22 III/IV 91.]

S-Canavanine [2-amino-4-(guanidinooxy)butyric acid] [543-38-4] M 176.2, m 184°, $[\alpha]_{D}^{17}$ +19.4° (c 2, H₂O), $[\alpha]_{D}^{20}$ +7.9° (c 3.2, EtOH), pK₁²⁵ 2.43, pK₂²⁵ 6.60, pK₃²⁵ 9.25. Crystallise S-canavanine from absolute EtOH or aqueous EtOH. [Tomiyama J Biol Chem 111 48 1935 gave pK₁²⁵ 9.25 (COOH), pK₂²⁵ 7.4 (guanidinium), pK₃²⁵ 11.5 (NH₄⁺), Gulland & Morris J Chem Soc 763 1935, (±) Frankel et al. J Chem Soc 3127 1963, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2622-2628 1961, Beilstein 4 III 1636, 4 IV 3188.]

S-Canavanine sulfate (from jackbean, O-guanidino-L-homoserine) [2219-31-0] M 274.3, m 160-165°(dec), 172°(dec), $[\alpha]_{D}^{18.5}$ +19.8° (c 7, H₂O), pK_{1}^{25} 7.40 (CO₂H), pK_{2}^{25} 9.25 (α -NH₂), pK_{3}^{25} 11.5 (guanidinoxy). Recrystallise the sulfate by dissolving (~1g) in H₂O (10mL), and adding with stirring 0.5 to 1.0 volumes of 95% EtOH whereby crystals separate. These are collected, washed with Me₂CO/EtOH (1:1) and dried over P₂O₅ in a vacuum. [Hunt & Thompson *Biochemical Preparations* 13 416 1971, Feacon & Bell *Biochem J* 59 221 1955, *Beilstein* 4 III 1636, 4 IV 3188.]

Carnitine (α -hydroxy- β -N,N,N-trimethylaminopropionic acid) [R(+) 541-14-0, S(L-) 541-15-1, RS 461-06-3] M 161.2, m R or S isomer 197-198°(dec), 210-212°(dec), RS isomer 195-197°, [α] $_{546}^{20}$ (+) and (-) 36° (c 10, H₂O), pK²⁵ 3.6. The S(L) isomer is levocarnitine, Vitamin B₇. The R or S isomers crystallise from EtOH/Me₂CO (hygroscopic). The R or S hydrochlorides crystallise from hot EtOH or EtOH/Et₂O and have m 142°(dec). The RS-isomer crystallises from hot EtOH (hygroscopic). The RS hydrochloride crystallises in needles from hot EtOH and has m 196°(dec). [(±) Mazzetti & Lemmon J Org Chem 22 228 1957, Beilstein 4 H 513, 4 I 548, 4 II 937-8, 4 III 1632-5, 4 IV 3185.]

L-Carnosine (β -alanyl-L-histidine) [305-84-0] M 226.2, m 258-260°(dec), 260°(capillary tube), 262°(dec), [α] $_{D}^{25}$ +20.5° (c 1.5, H₂O), pK $_{1}^{25}$ 2.64, pK $_{2}^{25}$ 6.83, pK $_{3}^{25}$ 9.51. Likely impurities are histidine and β -alanine. Crystallise L-carnosine from water by adding EtOH in excess. Recrystallise it from aqueous EtOH by slow addition of EtOH to a strong aqueous solution of the dipeptide. Its

solubility in H₂O is 33.3% at 25°. [Vinick & Jung *J Org Chem* **48** 392 *1983*, Turner *J Am Chem Soc* **75** 2388 *1953*, Sifford & du Vigneaud *J Biol Chem* **108** 753 *1935*, *Beilstein* **25** H 516, **25** I 717, **25** II 408.]

S-Citrulline (2-amino-5-ureidopentanoic acid) [372-75-8] M 175.2, m 222°, $[\alpha]_D^{20}$ +24.2° (in 5M HCl), pK₁²⁵ 2.43, pK₂²⁵ 9.41. Likely impurities are arginine and ornithine. Crystallise S-citrulline from water by adding 5 volumes of EtOH. Also crystallise it from water by addition of MeOH. [Ellenbogen J Am Chem Soc 74 5198 1952, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2491-2494 1961, Beilstein 4 IV 2647.]

Corticotropin [92307-52-3] **polypeptide** $M_r \sim 4697$. The extract is purified by ion-exchange on CMcellulose, desalted, evaporated and lyophilised. Then separate from impurities by gel filtration through Sephadex G-50. [Lande et al. *Biochemical Preparations* 13 45 1971, Esch et al. *Biochem Biophys Res Commun* 122 899 1984].

Creatine (*N*-guanidino-*N*-methylglycine) [6020-87-7 (monohydrate), 57-00-1 (anhydrous)] M 131.1 (anhydrous), 149,1 (hydrate) m 303°, pK $_{1}^{25}$ 2.63, pK $_{2}^{25}$ 14.3. Likely impurities are creatinine and other guanidino compounds. It crystallises from the minimum volume of boiling H₂O as the monohydrate. The hydrate is also obtained by dissolving in H₂O and adding Me₂CO. Drying under vacuum over P₂O₅ or drying at 100° gives the anhydrous base. The anhydrous base can be obtained also by dissolving the hydrate in H₂O, seeding with the anhydrous base and cooling in ice. A m of **258-268°(dec)** was reported. The picrate crystallises from 17 parts of H₂O with m of **218-220°(dec)**. [King J Chem Soc 2377 1930, Hoffmann et al. J Am Chem Soc **58** 1730 1936, Mendel & Hodgkin Acta Cryst **7** 443 1954, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol **3** p 2750 1961, Beilstein **4** III 1170, **4** IV 2425.]

Creatine phosphate di Na, $4H_2O$ salt (phosphocreatine) [922-32-7] M 327.1, pK_1^{27} 2.7, pK_2^{27} 4.58, $pK_3^{27} \sim 12$. To 3-4g of the salt in H₂O (220mL) is added 4 volumes of EtOH with thorough stirring and allowed to stand at 20° for 12hours (this temperature is critical as crystals do not readily form at 23° or 25°). The salt first appears as oily droplets which slowly settle and crystallise. After 12hours the supernatant is clear. Stirring and scratching the flask containing the filtrate brings out additional crystals (0.3-1g) if the salt is kept at 20° for 12hours. Filter it off at room temperature, wash with 3 x 5mL of ice-cold 90% EtOH, then 5mL of absolute EtOH and dry it in a vacuum desiccator (Drierite or CaCl₂) for 16-30hours. The *hexahydrate* (plates) is converted to the *tetrahydrate* salt (needles) in a vacuum at -10°. [Ennor & Stocken *Biochemical Preparations* 5 9 1957, *Biochem J* 43 190 1958, *Beilstein* 4 III 1170, 4 IV 2425.]

Creatinine (2-imino-1-methyl-4-oxoimidazolidine) [60-27-5] M 113.1, m ~305°(dec), pK_1^{25} 4.80, pK_2^{25} 9.2. Likely impurities are creatine and ammonium chloride. Dissolve it in dilute HCl, then neutralise with ammonia. Recrystallise it from H₂O by adding excess of Me₂CO. The *picrate* crystallises from 23volumes of boiling H₂O and has m 220-221°(dec). [King J Chem Soc 2377 1930, Beilstein 25 III/IV 2543.]

D-(*R*-natural) and L-(*S*-non-natural) Cycloserine (2-amino-3-isoxazolidone) [*R*- 68-41-7 and *S*- 339-72-0] **M** 102.1, **m** 145-150° (dec), 154-155°, 155-156° (dec), 156° (dec), $[\alpha]_{\rm D}^{25}$ (+) and (-) 137° (c 5, 2N NaOH), pK₁¹⁰ 4.5, pK₂¹⁰ 7.74, pK₁²⁵ 4.50, pK₂²⁵ 7.43, pK₁⁵⁰ 4.44, pK₂⁵⁰ 7.20. Purify cycloserine by recrystallisation from aqueous EtOH or MeOH or aqueous NH₃/EtOH or isoPrOH. Also recrystallise it from aqueous ammoniacal solution at pH 10.5 (100mg/mL) by diluting with 5 volumes of isopropanol and then adjusting to pH 6 with acetic acid. An aqueous solution, buffered to pH 10 with Na₂CO₃, can be stored in a refrigerator for 1week without decomposition. UV: λ_{max} at 226nm ($A_{1cm}^{1\%}$ 4.02). The *tartrate salt* has **m** 165-166° (dec), 166-168° (dec), and [α]_D²⁴ -41° (c 0.7, H₂O). [Stammer et al. *J Am Chem Soc* 79 3236 1959, UV: Kuehl *J Am Chem Soc* 77 2344 1955, Beilstein 27 III/IV 5549.]

Cystamine dihydrochloride [2,2'-diaminodiethylene disulfide dihydrochloride, 2,3'-dithiobis(ethylamine) dihydrochloride] [56-17-7] M 225.2, m 219-220°(dec), pK_1^{30} 8.82, pK_2^{30} 9.58. Recrystallise the salt by dissolving in EtOH containing a few drops of dry EtOH/HCl, filtering and adding dry Et₂O. The solid is dried in a vacuum and stored in a dry and dark atmosphere. It has been recrystallised from EtOH (solubility: 1g in 60mL of boiling EtOH) or MeOH (plates). The *free base* has **b** 90100°/0.001mm, 106-108°/5mm and 135-136°/760mm, d_4^{20} 1.1559, n_D^{20} 1.5720. [Verly & Koch *Biochem J* **58** 663 *1954*, Gonick et al. *J Am Chem Soc* **76** 4671 *1954*, Jackson & Block *J Biol Chem* **113** 137 *1936*.] The *dihydrobromide* has **m** 238-239° (from EtOH/Et₂O) [Viscontini *Helv Chim Acta* **36** 835 *1953*]. [*Beilstein* **4** H 287, **4** IV 1578.]

S,S-(L,L)-Cystathionine (S-2-amino-2-carboxyethyl-L-homocysteine, L-2-amino-4[(2amino-2-carboxyethyl)thio]butyric acid) [56-88-2] M 222.3, m >300°, dec at 312° with darkening at 270°, $[\alpha]_D^{20}$ +23.9° (c 1, M HCl). S,S-Cystathionine is purified by converting it to the HCl salt in 20% HCl and carefully basifying with aqueous NH₃ until separation is complete. Filter it off and dry it in a vacuum. It forms prisms from H₂O. The dibenzoyl derivative has m 229° (from EtOH). [IR: Greenstein & Winitz Chemistry of the Amino Acids (J Wiley) Vol 3 p2690 1961 and Tallan et al. J Biol Chem 230 707 1958, Synthesis: du Vigneaud et al. J Biol Chem 143 59 1942, Anslow et al. J Biol Chem 166 39 1946.] [Prepn: Weiss & Stekol J Am Chem Soc 73 2497 1951; see also du Vigneaud et al. J Biol Chem 143 60 1942, Biological synthesis: Greenberg Methods Enzymol 5 943 1962, Beilstein 4 IV 3197.]

Cysteamine (2-aminoethanethiol, 2-mercaptoethylamine) [60-23-1] M 77.2, m 97-98.5°, 98-99°, 99-100°, pK₁⁰ 9.15, pK₂⁰ 11.93, pK₁³⁰ 8.42, pK₂³⁰ 10.83. It is soluble in H₂O giving an alkaline reaction, and it has a disagreeable odour. A likely impurity is the disulfide *cystamine* which is not soluble in alkaline solution. Under a N₂ atmosphere dissolve it in EtOH, evaporate to dryness and wash the white residue with dry pet ether, then sublime it at 0.1mm and store it under N₂ at 0-10° in the dark. Its *HgCl₂* (2:3) *complex* has m 181-182° (from H₂O), and its *picrate* has m 125-126°. [Mills & Bogert *J Am Chem Soc* 57 2328 1935, 62 1173 1940, Baddiley & Thain *J Chem Soc* 800 1952, Shirley *Preparation of Organic Intermediates* (*J. Wiley*) Vol 3 189 1951, Barkowski & Hedberg *J Am Chem Soc* 109 6989 1987, Beilstein 4 IV 1570.]

Cysteamine hydrochloride [156-57-0] **M 113.6, m 70.2-70.7°, 70-72°**. Purify the salt by recrystallisation from EtOH. It is freely soluble in H₂O and should be stored in a dry atmosphere. [Mills & Bogert J Am Chem Soc **62** 1177 1940.] The picrate has **m** 125-126°; see previous entry for free base. [Beilstein **4** IV 1570.]

(±)-Cysteic acid (3-sulfoalanine, 1-amino-3-sulfopropionic acid) [13100-82-8, 3024-83-7] M 169.2, m 260°(dec). Likely impurities are cystine and oxides of cysteine. Crystallise the acid from water by adding 2 volumes of EtOH. It crystallises from H₂O as the *monohydrate*. When recrystallised from aqueous MeOH it has m 264-266°, and the *anhydrous* acid has m ~260°(dec). [Chapeville & Formageot *Biochim Biophys Acta* 26 538 1957, Gortner & Hoffman J Biol Chem 72 435 1927, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p1908 1961.]

R(L)-Cysteic acid (H₂O) [23537-25-9] M 187.2, m 275-280°(dec), 289°, $[\alpha]_{20}^{20}$ +8.66° (c 7.4, H₂O, pH 1) and +1.54° (H₂O, pH 13), pK₁²⁵ 1.9 (SO₃H), pK₂²⁵ 8.7 (CO₂H), pK₃²⁵ 12.7 (NH₂). Likely impurities are cystine and oxides of cysteine. Crystallise it from water by adding 2 volumes of EtOH. When recrystallised from aqueous MeOH it has m 264-266°, and the *anhydrous* acid has m ~260°(dec). [Chapeville & Formageot *Biochim Biophys Acta* 26 538 1957, Riordan & Giese *Methods Enzymol* 47 31 1977, *Beilstein* 4 IV 3296.]

D-(S)- and L-(R)- Cysteine (S- and R-2-amino-3-mercaptopropionoic acid) [S(+) 921-01-7, R(-) 52-90-4] M 121.2, m 230°, 240° (dec), $[\alpha]_{D}^{20}$ + and -7.6° (c 2, M HCl), + and -10.1° (c 2, H₂O, pH 10), pK₁²⁵ 1.92 (CO₂), pK₂²⁵ 8.35 (NH₂), pK₃²⁵ 10.46 (SH). Purify it by recrystallisation from H₂O (free from metal ions) and dry it in a vacuum. It is soluble in H₂O, EtOH, Me₂CO, EtOAc, AcOH, *C₆H₆ and CS₂. Acidic solutions can be stored under N₂ for a few days without deterioration. [For synthesis and spectra see Greenstein & Winitz Chemistry of the Amino Acids (J. Wiley) Vol 3 p1879 1961, Beilstein 4 III 1618, 4 IV 3144.]

L-Cysteine hydrochloride (H₂O) [52-89-1 (anhydrous), 7048-04-6 (monohydrate)] M 175.6, m 175-178° (dec), $[\alpha]_{\rm p}^{25}$ +6.53° (5M HCl). Likely impurities are cystine and tyrosine. Crystallise the salt from MeOH by adding diethyl ether, or from hot 20% HCl. Dry it under vacuum over P_2O_5 . *Hygroscopic*. [*Beilstein* **4** III 1580, 1600.]

(±)-Cysteine hydrochloride [10318-18-0 (anhydrous), 116797-51-5 (monohydrate)] M 157.6, m 140-141.5° (dec), pK_2^{20} 8.36 (NH₂), pK_2^{20} 10.28 (SH). Crystallise the salt from hot 20% HCl and dry it under vacuum over P₂O₅. It also crystallises from EtOH with m 175° (hydrate?). When crystallised from absolute EtOH or EtOH/Et₂O, it has m 140-141.5° (anhydrous?). [Rurner & Voitle J Am Chem Soc 72 628 1950, Albert Biochem J 50 690 1953, Beilstein 4 IV 3145.]

L-Cystine [56-89-3] M 240.3, $[\alpha]_{D}^{18.5}$ -229° (c 0.92 in M HCl), pK₁²⁵ 1.04 (1.65), pK₂²⁵ 2.05 (2.76), pK₃²⁵ 8.00 (7.85), pK₄²⁵ 10.25 (8.7, 9.85). Cystine disulfoxide impurity is removed by treating an aqueous suspension with H₂S. The cystine is filtered off, washed with distilled water and dried at 100° under a vacuum over P₂O₅. Crystallise it by dissolving in 1.5M HCl, then adjusting to neutral pH with ammonia. Likely impurities are D-cystine, meso-cystine and tyrosine. Also purify it by dissolving it in 10% NH₃ and adding gradually dilute AcOH until the point of precipitation and cooling slowly [Dughton & Harrison Acta Cryst 12 396, 402 1959.] Alternatively dissolve it in 6N NH₄OH and evaporate it at room temperature for crystallisation to occur. [Chaney & Steinrauf Acta Cryst 30 711 1974, Beilstein 4 IV 3155.]

meso-2,6-Diaminopimelic acid [583-93-7] M 190.2, m 313-315°(dec) pK_1^{25} 1.04 (1.65, 1.8), pK_2^{25} 2.05 (2.2, 2.76), pK_3^{25} 8.00 (7.85, 8.8), pK_4^{25} 10.25 (8.7, 9.85, 9.9), $pI \sim 5.5$. Crystallise the acid from H₂O or aqueous EtOH. Also purify it by dissolving it in hot H₂O and adding 5volumes of EtOH, filter after 12hours at -10°. The acid has been recrystallised from 35% aqueous EtOH [Wade et al. *J Am Chem Soc* **79** 648, 651 *1957*]. [*Beilstein* **4** IV 3081.]

L(S)-2,3-Diaminopropionic acid monohydrochloride (3-amino-L-alanine hydrochloride) [1482-97-9] M 140.6, m 132-133°(dec), 237°(dec), $[\alpha]_{D}^{25}$ +26.1° (c 5.8, M HCl), pK₁²⁵ 1.30, pK₂²⁵ 6.79, pK₃²⁵ 9.51. It forms needles from H₂O and can be recrystallised from aqueous EtOH. [Gmelin et al. Z Physiol Chem. 314 28 1959, IR: Koegel et al. J Am Chem Soc 77 5708 1977, Beilstein 4 IV 2501.]

meso-2,3-Diaminosuccinic acid [23220-52-2] M 148.1, m 305-306°(dec, and sublimes), pK_{Est(1)} ~3.6, pK_{Est(2)} ~9.8. Crystallise the acid from water. Also, dissolve it in dilute NaOH and add AcOH to pH 5-6 and allow it to crystallise (m 304° dec). Alternatively dissolve the acid in aqueous NH₃ and boil; when the NH₃ has evaporated, the acid separates, filter it off and dry it at room temperature in a vacuum. In another procedure 1g of acid is dissolved in 10mL of conc HCl + 15mL of H₂O at 80°, filter immediately, dilute with 20mL of H₂O and allow to stand for 24hours. When the *monohydrochloride* (0.7g, m 175-156° dec) crystallises out, filter and dry it. It has also been purified by dissolving it in the minimum volume of 10% HCl, filtering, and diluting with 5volumes of H₂O when the crystals separate slowly on standing. The acid is filtered off after 24hours and dried (m 306-306° dec). Similar procedures were used for the *dl-isomer*. [Kenner *J Org Chem* 13 28 *1948*, McKennis & Yard *J Org Chem* 23 980 *1958*, *Beilstein* 4 III 1528, 4 IV 3025.]

6-Diazo-5-oxo-L-norleucine [157-03-9] M 171.2, m 140-150°(dec), 145-155°(dec), $[\alpha]_D^{20}$ +21° (c 5, EtOH), pK₁ 2.1, pK₂ 8.95. Crystallise it from EtOH, H₂O/EtOH, MeOH, 95% aqueous MeOH or H₂O/Me₂CO. [DeWald & Moor J Am Chem Soc 80 3944 1958, Dion et al. J Am Chem Soc 78 3075 1956, Beilstein 4 IV 3278.]

Diglycyl glycine (triglycine) [556-33-2] M 189.2, m 246°(dec), pK_1^{25} 3.30, pK_2^{25} 7.96. Crystallise triglycine from H₂O or H₂O/EtOH and dry it at 110°. [Yakel & Hughes Acta Cryst 5 847 1952, Lenel et al. Acta Cryst 3 313 1952, Holley & Holley J Am Chem Soc 74 3072 1952, Beilstein 4 III 1198, 4 IV 2469.]

N,*N*-Di-(2-hydroxyethyl)glycine (BICINE, *N*,*N*-bis-(2-hydroxyethyl)glycine) [150-25-4] M 163.2, m 193°(dec), 193-195°(dec), pK_1^{25} 2.50, pK_2^{25} 8.11. Dissolve bicine in a small volume of hot water and precipitate it with EtOH, twice. Repeat once more but treat the aqueous solution with charcoal

and filter before adding EtOH. Also crystallise it from concentrated aqueous solutions. [Torn & Kolthoff J Am Chem Soc 77 2061 1955, Chaberek et al. J Am Chem Soc 75 2185 1953, Beilstein 4 IV 2390.]

3-(3,4-Dihydroxyphenyl)-L-alanine (DOPA, LEVODOPA, EUODOPA) [59-92-7, 5796-17-8] M 197.2, m 275°(dec), 267-268°(dec), 284-286°(dec), ~295°(dec), $[\alpha]_D^{13}$ -13.1° (c 5.12, N HCl), pK₁²⁵ 2.32 (CO₂H), pK₂²⁵ 8.72 (NH₂), pK₃²⁵ 9.96 (OH), pK₄²⁵ 11.79 (OH). Likely impurities are vanillin, hippuric acid, 3-methoxytyrosine and 3-aminotyrosine. DOPA recrystallises from large volumes of H₂O forming colourless white needles; its solubility in H₂O is 0.165%, but it is insoluble in EtOH, *C₆H₆, CHCl₃, and EtOAc. Also crystallise it by dissolving it in dilute HCl and adding dilute ammonia to give pH 5, under N₂. Alternatively, crystallise it from dilute aqueous EtOH. It is rapidly oxidised in air when moist, and darkens, particularly in alkaline solution. Dry it *in vacuo* at 70° in the dark, and store it in a dark container preferably under N₂. It has λ_{max} at 220.5nm (log ε 3.79) and 280nm (log ε 3.42) in 0.001N HCl. [Yamada et al. *Chem Pharm Bull Jpn* 10 693 *1962*, Bretschneider et al. *Helv Chim Acta* 56 2857 *1973*, NMR: Jardetzky & Jardetzky *J Biol Chem* 233 383 *1958*, *Beilstein* 4 IV 2492, 2493.]

3-(3,4-Dihydroxyphenyl)-2-methyl-L-alanine [methyldopa, 2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropionic acid] [555-30-6, 41372-08-1 (sesquihydrate)] M 238.2, m >300°, 300-301°(dec), pK₁²⁵ 2.2, pK₂²⁵ 9.2, pK₃²⁵ 10.6, pK₄²⁵ 12.0. Recrystallise methyldopa from H₂O. [Reinhold et al. J Org Chem 33 1209 1968.] The L-isomer forms a sesquihydrate from H₂O m 302-304° (dec), and the anhydrous crystals are hygroscopic, $[\alpha]_{D}^{23}$ -4.0° (c 1, 0.1N HCl), $[\alpha]_{546}$ +154.5° (c 5, CuSO₄ solution). It has λ_{max} at 281nm (ϵ 2780). Its solubility in H₂O at 25° is ~10mg/mL and the pH of an aqueous solution is ~5.0. It is insoluble in most organic solvents. [Stein et al. J Am Chem Soc 77 700 1955, Beilstein 4 IV 2505.]

3,5-Diiodo-L-thyronine (**3,5-diiodo-4-[4-hydroxyphenoxy]-1-phenylalanine**) [1041-01-6] M **525.1, m 255°(dec), 255-257°(dec),** $[\alpha]_{D}^{22}$ **+26°** [2N HCI-EtOH (1:2)], pK_{1}^{20} **3.25,** pK_{2}^{20} **5.32,** pK_{3}^{20} **9.48.** Recrystallise it from EtOH. [Chambers et al. *J Chem Soc* 3424 1949, *Beilstein* **14** II 226, **14** III 1565, **14** IV 2372.]

3,5-Diiodo-L-tyrosine dihydrate [300-39-0] M **469.0**, m **199-210°**, **202°(dec)**, **204°(dec)**, $[\alpha]_{D}^{20}$ +2.89° (c 4.9, 4% HCl), pK₁²⁵ 2.12, pK₂²⁵ 6.48, pK₃²⁵ 7.82. It forms crystals from H₂O [solubility (g/L): 0.204 at 0°, 1.86 at 50°, 5.6 at 75° and 17.0 at 100°]. Also recrystallise it from 50% or 70% EtOH. When boiled in EtOH the crystals swell, and on further boiling a gelatinous precipitate is formed [Harrington *Biochem J* **22** 1434 *1928*, Jurd *J Am Chem Soc* **77** 5747 *1955*]. It also crystallises from cold dilute ammonia on adding acetic acid to pH 6. [*Beilstein* **14** IV 2370.]

dl-4-Dimethylamino-2,2-diphenylvaleramide (Dimevamide) [60-46-8] M 296.4, m 183-184°, pK_{Est} ~9.8. Crystallise dimevamide from aqueous EtOH. The *hydrochloride* forms leaflets from EtOH/Et₂O with m 190-191° and is deliquescent. The *picrate* has m 210-211°. It is an antispasmotic. [Moffett et al. *J Am Chem Soc* **79** 4451, 4457 *1957*, Beckett *J Pharm Pharmacol* **8** 848 *1956*, *Beilstein* **14** III 1363, **14** IV 1865.]

(-)-L-4-Dimethylamino-2,2-diphenylvaleramide [6078-64-4] M 296.4, m 134.5-135.5°, 136.5-137.5°, $[\alpha]_{D}^{20}$ -112° (c 0.87, EtOH), -84.1° (c 0.9, 0.04N HCl), pK_{Est(1)} 8.3. Crystallise the amide from pet ether, EtOH or as needles from aqueous EtOH. It is an analgesic. [Beckett et al. *J Chem Soc* 3076 1957.]

N,*N*-Dimethylglycinehydrazide hydrochloride [539-64-0] M 153.6, m 181°. Crystallise the salt by adding EtOH to a concentrated aqueous solution. [Viscontini & Meier *Helv Chim Acta* 33 1773 1950, *Beilstein* 4 III 1127, 4 IV 2368.]

Djenkolic acid (S,S'-methylene-bis-L-cysteine) [498-59-9] M 254.3, m 300-350°(dec), $[\alpha]_{D}^{20}$ -65° (c 2, HCl) [See pK of S-methyl-L-cysteine]. Crystallise djenkolic acid from a large volume of water (solubility is 0.5g%). [du Vigneaud & Patterson J Biol Chem 114 533 1936, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2682, 2687 1961, Beilstein 4 III 1591.] The N,N'-dibenzoyl derivative crystallises with 1H₂O from aqueous EtOH with m 87.5-89° [Beilstein 9 III 1171.]

S-Ethionine [13073-35-3] M 163.2, m 282°(dec), $[\alpha]_{D}^{25}$ +23.7° (in 5M HCl), pK²⁵ 9.02 (for *RS*). Likely impurities are *N*-acetyl-(*R* and *S*)-ethionine, *S*-methionine, and *R*-ethionine. Crystallise it from water by adding 4volumes of EtOH or 85% aqueous EtOH. It sublimes at 196-216°/0.3mm with 99.1% recovery and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Weiss & Stekol *J Am Chem*

Ethylene N,N'-bis[(o-hydroxyphenyl)glycine] [1170-02-1] M 360.4, m 249°(dec), pK_{Est(1)} ~1.8, pK_{Est(2)} ~4.8, pK_{Est(3)} ~9.0. Purify it by extensive Soxhlet extraction with acetone. [Bonadies & Carrano J Am Chem Soc 108 4088 1986].

Soc 73 2399 1951, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2658, 2659

1961, Beilstein 4 IV 3194.]

2-Fluorophenylalanine [R(+) 97731-02-7, S(-) 19883-78-4] M 183.2, m 226-232°, 231-234°, $[\alpha]_{D}^{25}$ (+) and (-) 15° (c 2, H₂O pH 5.5), pK₁²⁴ 2.12, pK₂²⁴ 9.01. Recrystallise 2fluorophenylalanine from aqueous EtOH. The *hydrochloride* has m 226-231°(dec), and the *N*-acetyl derivative has m 147-149° (aqueous EtOH). [Bennett & Nieman J Am Chem Soc 72 1800 1950, Beilstein 14 III 1268.]

4-Fluorophenylalanine $[R(+) \ 18125-46-7, \ S(-) \ 1132-68-9]$ **M 183.2, m 227-232°**, $[\alpha]_{D}^{25}$ + and -24° (c 2, H₂O), pK₁²⁴ 2.13, pK₂²⁴ 9.05. It is recrystallised from aqueous EtOH. The (*R*)-*N*-acetyl derivative has m 142-145°, $[\alpha]_{D}^{25}$ -38.6° (c 8, EtOH). [Bennett & Nieman J Am Chem Soc 72 1800 1950, Beilstein 14 III 1268.]

L-5-Fluorotryptophan monohydrate [16626-02-1; 154-08-5] M 240.2, m reported for the Lenantiomer 158-163°(dec), (\pm)-isomer >250°(dec), 264-265°(also 238-239° dec reported), [α] $_{D}^{20}$ +5.5° (c 1, 0.1N HCl), pK_{Est(1)}~ 2.5 (CO₂H), pK_{Est(2)}~ 9.4 (NH₂), pK_{Est(3)}~16 (indole-NH). Recrystallise it from EtOH, aqueous EtOH or AcOH. Also purify it by passage through a Dowex AG1x2 (acetate form) column and recrystallise the L-enantiomer (from enzymic enrichment) from H₂O/EtOH, m 158-163°(dec), [α] $_{D}^{23}$ -8.3° (c 2.5, N NaOH). [Coy et al. *Biochemistry* 13 3550 1974, *Beilstein* 22/14 V 116.]

L-Glutamic acid [56-86-0] **M 147.1, m 224-225°(dec),** $[\alpha]_D^{25}$ +31.4° (c 5, 5M HCl), pK₁²⁰ 2.06, p K₂²⁰ 4.35, pK₃²⁰ 9.85. Crystallise L-glutamic acid from H₂O acidified to pH 3.2 by adding 4volumes of EtOH, and drying at 110°. Likely impurities are aspartic acid and cysteine. It sublimes at 170-175°/10mm. It melts at 160° with cyclisation to L-*pyrrolidone carboxylic acid*. [Dunn & Brophy J Biol Chem 99 224 1958, Parikh et al. J Am Chem Soc 80 9571958, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 1929-1952 1961, Beilstein 4 III 1530, 4 IV 3028.]

L-Glutamic acid- γ -benzyl ester [1676-73-9] M 237.3, m 179-181°, [α] $_{589}^{20}$ +19.3° (c 1, AcOH), pK $_{1}^{25}$ 2.17, pK $_{2}^{25}$ 9.00. Recrystallise the ester from H₂O and store it at 0°. [Estrin *Biochemical Preparations* 13 25 1971, *Beilstein* 6 IV 2538.]

L-Glutamine [56-85-9] **M 146.2, m 184-185°, 187°,** $[\alpha]_{D}^{25}$ +31.8° (**M HCl**), pK_{1}^{25} 2.17, pK_{2}^{25} 9.13. Likely impurities are glutamic acid, ammonium pyroglutamate, tyrosine, asparagine, isoglutamine, arginine. Crystallise it from water or aqueous EtOH. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 1929-1925 *1961*, *Beilstein* 4 IV 3038.]

L-Glutathione (reduced form, γ -L-glutamyl-L-cysteinyl-glycine) [70-18-8] M 307.3, m 188-190°(dec), 195°(dec), [α] $_{D}^{20}$ -20.1° (c 1, H₂O), pK $_{1}^{25}$ 2.12 (CO₂H), pK $_{2}^{25}$ 3.59 (CO₂H), pK $_{3}^{25}$ 8.75 (NH₂), pK $_{4}^{25}$ 9.65 (10.0, SH). Crystallise L-glutathione from 50% aqueous EtOH, dry it in a vacuum and store it below 5°. Alternatively recrystallise it from aqueous EtOH under N₂, and store it dry in a sealed container below 4°. It is soluble in H₂O. [Weygand & Geiger *Chem Ber* 90 634 1957, Martin &

Edsall *Bull Soc Chim Fr* **40** 1763 1958, du Vigneaud & Miller *Biochemical Preparations* **2** 87 1952, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, **Vol 2** p 1523 1961, *Beilstein* **4** IV 3165.]

L-Glutathione (oxidised) [27025-41-8] M 612.6, m 175-195°, $[\alpha]_{D}^{20}$ -98° (c 2, H₂O), pK₁ 3.15, pK₂ 4.03, pK₃ 8.75. Purify it by recrystallisation from 50% aqueous EtOH. Its solubility in H₂O is 5%. Store it at 4°. [Li et al. *J Am Chem Soc* 76 225 1954, Berse et al. *Can J Chem* 37 1733 1959, *Beilstein* 4 IV 3168.]

Glycinamide hydrochloride [1668-10-6] M 110.5, m 186-189°, 203-205°, 207-208°, pK_1^{25} -6.10, pK_2^{25} -1.78, pK_3^{25} 7.95. Crystallise the salt from EtOH, EtOH/H₂O or MeOH. [Karmas & Spoerri J Am Chem Soc 74 1580 1952, Beilstein 4 IV 2358.]

Glycine anhydride (2,5-diketopiperazine) [106-57-0] M 114.1, m $309-310^{\circ}$, $311-312^{\circ}(dec)$, $\sim 315^{\circ}(dec)$, pK₁ -4.45, pK₂ -2.16 (pK₂ -1.94 in AcOH). Recrystallise glycine anhydride from H₂O (plates) and it can be sublimed (slowly) at 260° or at 140-170°/0.5mm. The *dihydrochloride* has m 129-130° and is prepared by dissolving it in conc HCl and adding EtOH to crystallisation point; dry it in a vacuum. The *bis-1-naphthylurethane* has m 232°(dec), and the *diperchlorate* has m 117° (*hygroscopic*). [MS: Johnstone J Chem Soc, Perkin Trans 1 1297 1975, NMR: Blaha & Samek Collect Czech Chem Commun **32** 3780 1967, Sauborn J Phys Chem **36** 179 1932, Corey J Am Chem Soc **60** 1599 1938, Beilstein **24** IV 1070.]

Glycine ethyl ester hydrochloride [623-33-6] M 136.9, m 145-146°, pK^{25} 7.69. Crystallise it from absolute EtOH or EtOH/Et₂O. [Marvel *Org Synth* Coll Vol II 310 1943, *Beilstein* 4 II 780, 4 III 3 75.]

Glycine hydrochloride [6000-43-7] M 111.5, m 176-178°, 185°, 187°. Crystallise the salt from absolute EtOH or 80% EtOH. *Monoglycine hydrochloride* has m 176-177°, and *diglycine monohydrochloride* has m 187°. [Frost J Am Chem Soc 64 1286 1942, Beilstein 4 III 1111, 4 IV 2353.]

Glycine methyl ester hydrochloride [5680-79-5] M 125.6, m 174°(dec), 177°(corrected), pK^{25} 7.66. Crystallise the ester salt from MeOH. [Werbin & Spoerri J Am Chem Soc 69 1682 1947, Beilstein 4 H 340, 4 III 1116.]

Glycine *p***-nitrophenyl ester hydrobromide.** *[7413-60-7]* **M 277.1, m 214**^o (dec). Recrystallise the ester salt from MeOH by adding diethyl ether. [Alners et al. *Biochemical Preparations* 13 22 *1971*].

Glycocyamine (*N*-guanylglycine) [352-97-6] M 117.1, m 280-284°(dec), >300°, pK²⁵ 2.86 (NH₃⁺). Recrystallise it from 15 parts of hot H₂O, or by dissolving it in slightly more than the calculated amount of 2N HCl and precipitating it by adding an equivalent of 2N NaOH, filtering, washing with cold H₂O and drying first *in vacuo*, then at 60° *in vacuo*. The *hydrochloride* has m 200°(dec) after recrystallisation from aqueous HCl as plates. The *picrate* forms needles from hot H₂O with m 210°(dec). [Brand & Brand *Org Synth* Coll Vol III 440 1955, Failey & Brand *J Biol Chem* 102 768 1933, King *J Chem Soc* 2375 1930, Beilstein 4 H 359, 4 I 477, 4 II 793, 4 III 1165.]

N-Glycylanilide [555-48-6] M 150.2, m 62°, pK_{Est}~8.0. *N*-Glycylanilide crystallises from water as needles (*dihydrate*) and is soluble in Et₂O. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp1915-1970 1961, Beilstein 4 H 343.]

Glycylglycine [556-50-3] M 132.1, m 260-262°(dec), pK^{20} 8.40, pK^{30} 8.04, pK_1^{15} 3.19, pK_2^{15} 8.40. Crystallise glycylglycine from aqueous 50% EtOH or water at 50-60° by addition of EtOH. Dry it at 110°. It sublimes at 190-200°/0.3mm with 30% recovery [Gross & Gradsky J Am Chem Soc 77 1678 1955, King J Am Chem Soc 79 6153 1957]. [Beilstein 4 IV 2459.]

Glycylglycine hydrochloride [13059-60-4] M 168.6, m 215-220°, 235-236°, 260-262°, pK_1^{25} 3.12, pK_2^{25} 8.17. Crystallise the salt twice from 95% EtOH. Single crystals are formed by slow evaporation of an aqueous solution. [Parthasarathy *Acta Cryst (B)* 25 509 1969, Mellon & Hoover J Am Chem Soc 73 3879 1951, Garfinkel & Edsall J Am Chem Soc 80 3818 1958, Beilstein 4 IV 2469.]

Glycyl-L-proline [704-15-4] M 172.2, m 184°(dec), 185°, 204°, pK_1^{25} 2.81, pK_2^{25} 8.65. Crystallise glycyl-L-proline from water at 50-60° by addition of EtOH. [Saidel J Am Chem Soc 77 3893 1955, Bergmann et al. Z Physiol Chem 212 79 1932, Beilstein 22 IV 49.]

dl-Glycylserine [687-38-7] M 162.2, m 197-199°(dec, sealed tube), 207°(dec), pK_1^{25} 2.92, pK_2^{25} 8.10. Crystallise it from H₂O (charcoal) by addition of EtOH. [Fölsch *Acta Chem Scand* 12 561-566 1958, NSR: Bovey & Tiers J Am Chem Soc 81 2876 1959, Beilstein 4 III 1572, 4 IV 3140.]

Gramicidin A (a pentadecapeptide from *Bacillus brevis*) [11029-61-1] m ~229-230°(dec). Purify gramicidin A by countercurrent distribution from $C_6H_6/CHCl_3$, MeOH/H₂O (15:15:23:7) with 5000 tubes. Fractions are examined by UV (280nm) of small aliquots. Separation from gramicidin C and other material occurred after 999 transfers. [Gross & Witkop *Biochemistry* 4 2495 1965, Bauer et al. *Biochemistry* 11 3266 1972.] Purify it finally by recrystallisation from EtOH/H₂O and dry it at 100°/10⁻²mm over KOH. It forms platelets m 229-230°. It is almost insoluble in H₂O (0.6%) but soluble in lower alcohols, dry Me₂CO, dioxane, acetic acid and pyridine. The commercial material is more difficult to crystallise than the synthetic compound. [Sarges & Witkop *J Am Chem Soc* 86 1861 1964, 87 2011, 2020 1965.] It has characteristic $[\alpha]_{D}^{20} +27.3^{\circ}$ (c 1.3, MeOH) and UV λ_{max} at 282nm (ε 22,100). The *N-carbamoyldeformyl gramicidine A* precipitates from EtOAc/pet ether (b 40-60°). [*Beilstein* 26 III/IV 4273.]

Gramicidin C (a pentadecapeptide from *Bacillus brevis*) [9062-61-7]. Purify as for Gramicidin A since they are isolated together and separated. [Sarges & Witkop *Biochemistry* **4** 2491 1965, Hunter & Schwartz "Gramicidins" in *Antibotics I* (Gotlieb and Shaw Eds) Springer-Verlag, NY, p.642 1967, as well as references above for Gramicidin A.]

Gramicidin S [113-73-5] M 1141.4, m 268-270°, $[\alpha]_{D}^{25}$ -290° (c 0.5, EtOH + 30mM aqueous HCl {7:3}). Gramicidin S crystallises from EtOH. The *di*-HCl [15207-30-4] crystallises from EtOH (+ few drops of HCl) with m 277-278° (see below). [NMR: Gibbons et al. Nature 227 840 1970, Beilstein 26 III/IV 4273.]

Gramicidin S 2HCl (from *Bacillus brevis* Nagano) [15207-30-4] M 1214.4, m 277-278°(dec), $[\alpha]_{p}^{24}$ -289° (c 0.4, 70% H₂O+EtOH). It crystallises in prisms from EtOH+aqueous HCl.

N-Guanyltyramine hydrochloride [60-20-8] M 215.7, m 218°, pK₁ 10.2 (phenolic OH), pK₂ 12.4 (guanidino N). Purify the salt on a phosphocellulose column and elute with a gradient of aqueous NH₃ (0-10%). The second major peak has the characteristic tryptamine spectrum and is collected, and lyophilised to give white crystals of the *dihydrate* which dehydrates at 100°. It has UV λ_{max} at 274.5nm (ε 1,310) in 0.1N NaOH and 274.5nm (ε 1,330) at pH 7.0. Excitation λ_{max} is at 280nm and emission λ_{max} is at 330nm. [Mekalanos et al. *J Biol Chem* 254 5849 1979.]

S-Histidine [71-00-1] M 155.2, m 287°(dec), $[\alpha]_{D}^{25}$ -39.7° (c 1, H₂O), +13.0° (6M HCl), pK₁²⁵ 1.96, pK₂²⁵ 6.12, pK₃²⁵ 9.17. A likely impurity is arginine. S-Histidine is adsorbed from aqueous solution onto a Dowex 50-H⁺ ion-exchange resin, washed with 1.5M HCl (to remove other amino acids), then eluted with 4M HCl as the *dihydrochloride*. This purified *dihydrochloride* (see below) is finally dissolved in water, the pH adjusted to 7.0, and the *free zwitterionic base* crystallises out on addition of EtOH. Its solubility in H₂O is 4.2% at 25°. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 1971-1993 1961, Beilstein 25 III/IV 4344.]

S-Histidine dihydrochloride [1007-42-7] M 242.1, m 245°, $[\alpha]_{D}^{20}$ +47.5° (c 2, H₂O). The dihydrochloride crystallises from water or aqueous EtOH and is washed with acetone, then diethyl ether. Alternatively convert it to the histidine *di-(3,4-dichlorobenzenesulfonate) salt* by dissolving 3,4-dichlorobenzenesulfonic acid (1.5g/10mL) in the aqueous histidine solution with warming, and then the solution is cooled in ice. The resulting crystals (m 280° dec) can be recrystallised from 5% aqueous 3,4-dichlorobenzenesulfonic acid, then dried over CaCl₂ under vacuum, and washed with diethyl ether to remove

excess reagent. The dihydrochloride can be regenerated by passing the solution through a Dowex-1 (Cl⁻ form) ion-exchange column. The solid is obtained by evaporation of the solution on a steam bath or better in a vacuum. [Greenstein & Winitz, The Amino Acids **Vol 3** p 1976 *1961*, *Beilstein* **25/16** V 366.]

S-Histidine monohydrochloride (H₂O) [5934-29-2 (H₂O), 7048-02-4] M 209.6, m 80° monohydrate, 254°(dec, anhydrous), $[\alpha]_D^{25}$ +13.0° (6M HCl). Crystallise the monohydrochloride from aqueous EtOH or 60% aqueous EtOH (m 259°dec). Alternatively dissolve 10g in 50mL of H₂O, decolourise with Norite, filter, evaporate it in a vacuum to a syrup, cool to room temperature, add 95% EtOH with stirring until slightly turbid, scratch the sides of the vessel until crystals form, then add slowly 40mL of EtOH and keep at 0° overnight, filter the solid off, wash it several times with EtOH and dry it in a vacuum. [Cox J Biol Chem **78** 475 1929, Cox et al. J Biol Chem **81** 73 1929, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, **Vol 3** pp 1972, 2098 1961, Beilstein **25** II 407, **25** III/IV 4346.]

L-Homocysteine (2-amino-4-mercaptobutyric acid) [6027-13-0] M 135.2, m 232-233°, $[\alpha]_{D}^{25}$ +153° (c 13, 5N HCl), pK $_{1}^{25}$ 2.22 (CO₂H), pK $_{2}^{25}$ 8.87 (NH₃⁺), pK $_{3}^{25}$ 10.86 (SH). Crystallise L-homocysteine from aqueous EtOH. All operations should be carried out under N₂ as the thiol readily oxidizes in air. The acid (3g) is dissolved in freshly boiled H₂O (30mL) under N₂ cooled under N₂ (all operations should be under N₂), add absolute EtOH (100mL), the acid is filterd off, and a second crop is obtained by diluting the filtrate to 500mL with absolute EtOH, kept overnight in a refrigerator, filtering, washing with EtOH and drying in a vacuum. Store it under N₂ or Ar.

The S-benzyl derivative is repeatedly crystallised from H₂O, or by dissolving it in HCl followed by slow addition of ammonia. It has **m** 240-241°, $[\alpha]_{D}^{25}$ +27° (c 13, 5N HCl). [Riedel & du Vigneaud J Biol Chem **112** 149 1935, du Vigneaud & Patterson J Biol Chem **109** 101 1935, du Vigneaud J Biol Chem **126** 217 1938, du Vigneaud & Brown Biochemical Preparations **5** 93, 95 1975, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, **Vol 3** pp 2667-2670 1961, Beilstein **4** IV 3189, IR: Koegel et al. J Am Chem Soc **77** 5708 1955.]

dl-Homocysteine (2-amino-4-mercaptobutyric acid) [454-29-5] M 135.2, m 234-235°(corr, dec). Purify it as for the L-isomer. [Allen & Steinmann J Am Chem Soc 74 3932 1952, and references for the L-isomer above, *Beilstein* 4 IV 3189.]

dl-Homocystine [462-10-2, 870-93-9 (±)] M 268.4, m 263-265°(dec), pK_1^{25} 1.59 (CO₂H), pK_2^{25} 2.54 (CO₂H), pK_3^{25} 8.52 (NH₃⁺), pK_4^{25} 9.44 (NH₃⁺). *dl*-Homocystine crystallises in platelets from water with 1H₂O and m 258-260°(dec), all operations should be carried out under N₂. [Sudo J Chem Soc Jpn (Pure Chem Sect) 79 81, 86, 87 1958, Beilstein 4 IV 3199.]

L(*S*,*S*)-Homocystine [626-72-2] M 268.4, m 281-284°(dec), $[\alpha]_D^{26} + 79°$ (c 1, M HCl), $[\alpha]_D^{21}$ -16° (c 0.06, H₂O), pK (see above). The acid (3g) is dissolved in freshly boiled H₂O (30mL) under N₂, cooled under N₂ (all operations should be under N₂), absolute EtOH (100mL) is added, the acid is filtered off, and a second crop is obtained by diluting the filtrate to 500mL with absolute EtOH, kept overnight in a refrigerator, filtered, washed with EtOH and dried in a vacuum. The D(*R*,*R*)-form has similar properties but is –ve in M HCl and +ve in H₂O. [du Vigneaud & Patterson J Biol Chem 109 101 1935, du Vigneaud & Brown Biochemical Preparations 5 93, 95 1975, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2667-2670 1961, Beilstein 4 III 1643, 4 IV 3199, Koegel et al. J Am Chem Soc 77 5708 1955.]

L-Homoserine (2-amino-4-hydroxybutyric acid) [672-15-1] M 119.1, m 203°, $[\alpha]_{D}^{26}$ +18.3° (in 2M HCl), pK_{Est(1)} ~2.1, pK_{Est(2)} ~9.3. Likely impurities are *N*-chloroacetyl-L-homoserine, *N*-chloroacetyl-D-homoserine, L-homoserine lactone, homoserine anhydride (formed in strong solutions of homoserine if slightly acidic). It cyclises to the lactone in strongly acidic solution. It crystallises from water by adding 9 volumes of EtOH. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2612-2616 *1961*, *Beilstein* 4 IV 3187.]

erythro-3-Hydroxy-*RS*-aspartic acid [6532-76-9] M 149.1, pK₁²⁵ 1.91, pK₂²⁵ 3.51, pK₃²⁵ 9.11. Likely impurities are 3-chloromalic acid, ammonium chloride, *threo-3*-hydroxyaspartic acid. Crystallise

it from water. [Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 1 p 214, Vol 3 p 2416 1961.]

B-Hydroxyglutamic acid [533-62-0] **M 163.1, m 100°(dec), pK_1^{25} 2.27, pK_2^{25} 4.29, pK_3^{25} 9.66. Crystallise the acid from water. [Greenstein & Winitz** *The Chemistry of the Amino Acids* **J. Wiley, Vol 1** pp 211-213, **Vol 3** p 2422 1961.]

5-Hydroxy-L-lysine monohydrochloride [32685-69-1; 13204-98-3] **M 198.7, m 225°(dec),** $[\alpha]_{D}^{25}$ +17.8° (6M HCl), pK $_{2}^{25}$ 8.85, pK $_{3}^{25}$ 9.83. Likely impurities are 5-allo-hydroxy-(D and L)-lysine, histidine, lysine, ornithine. Crystallise the hydrochloride from water by adding 2-9 volumes of EtOH stepwise. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, **Vol 3** p 2000-2009 1961.]

DL-erythro-3-Hydroxynorvaline (2-amino-3-hydroxypentanoic acid) [34042-00-7] M 133.2, m 257-259°(dec), 263°(dec), pK₁²⁰ 2.32, pK₂²⁰ 9.12. Purify it by recrystallisation from aqueous EtOH. The *Cu salt* has m 255-256° (dec), the *benzoyl* derivative has m 181°, and the *N*-phenylcarbamoyl derivative has m 164°. [Buston et al. *J Biol Chem* 204 665 1953, *Beilstein* 4 IV 3220.]

N-(*p*-Hydroxyphenyl)glycine [22818-40-2] M 167.2, m >240°(dec), $[\alpha]_{D}^{20}$ -156° (c 1, M HCl), pK_{Est(1)}~2, pK_{Est(2)}~4.5, pK_{Est(3)}~10.3. Crystallise it from water and dry it *in vacuo*. [Beilstein 14 I 659.]

trans-L-4-Hydroxyproline [51-35-4] M 131.1, m 274°, $[\alpha]_{D}^{20}$ -76.0° (c 5, H₂O), pK₁²⁵ 1.86, pK₂²⁵ 9.79. Crystallise it from MeOH/EtOH (1:1). Separation from normal *allo*-isomer can be achieved by crystallisation of the copper salts [see Levine *Biochemical Preparations* 8 114 1961]. Separation from proline is achieved *via* the crystalline picrate, CdCl₂, or acid ammonium rhodanate salts [see Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 2182 1961, Kapfhammer & Mohn Z Physiol Chem 306 76 1956]. [Beilstein 22/5 V 7.]

5-Hydroxy-L-tryptophan [4350-09-8] M 220.2, m 273°(dec), $[\alpha]_{22}^{22}$ -32.5°, $[\alpha]_{546}^{20}$ -73.5° (c 1, H₂O), pK_{Est(1)}~2.4, pK_{Est(2)}~9.0, pK_{Est(3)}~9.4, pK_{Est(4)} 16 (NH). Likely impurities are 5-hydroxy-D-tryptophan and 5-benzyloxytryptophan. Crystallise 5-hydroxy-L-tryptophan under nitrogen from water by adding EtOH. Store it under nitrogen. Also dissolve it in the minimum volume of hot H₂O (~0.7g in 4mL) under nitrogen (charcoal) and allowed it to crystallise at 5°. The *picrolonate* crystallises from H₂O with m 184-186°(dec). [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 2732-2737 *1961*, Morris & Armstrong J Org Chem 22 306 1957, Beilstein 22/14 V 278.]

(±)-Ibotenic acid monohydrate (α -[3-hydroxy-5-isoxazolyl]-glycine, α -amino-3-hydroxy-5-isoxazoleacetic acid) [2552-55-8] M 176.1, m 144-146° (monohydrate), 151-152° (anhydrous), 148-151°, pK₁ 2, pK₂ 5.1, pK₃ 8.2. It has been converted to the ammonium salt (m 121-123° dec) dissolved in H₂O, passed through an Amberlite IR 120 resin (H⁺ form) and eluted with H₂O. The acidic fractions are collected, evaporated to dryness and the residue recrystallises from H₂O as the *monohydrate* (m 144-146°). The anhydrous acid is obtained by making a slurry with MeOH, decanting and evaporating to dryness, and repeating the process twice more to give the *anhydrous acid* (m 151-152°). Recrystallisation from H₂O gives the *monohydrate*. [Nakamura *Chem Pharm Bull Jpn* 19 46 *1971*.] The *ethyl ester* forms needles when crystallised from a small volume of Et₂O and has m 78-79° and IR (CHCl₃) with ν_{max} 3500–2300 (OH), 1742 (ester C=O), 1628, 1528cm⁻¹, and UV with λ_{max} (EtOH) at 206nm (ε 7,080). The *hydrazide* has m 174-175° (from MeOH) with IR (KBr) 1656 (C=O)cm⁻¹.

Iminodiacetic acid [142-73-4] M 133.1, m 225°(dec), 240°(dec), 247.5°(dec), b 126-127°/14mm, pK₁²⁵ 2.50, pK₂²⁵ 9.40. Crystallise the acid several times from water. The *N*-Methyl derivative m 215° is purified by dissolving it in an equal weight of warm H₂O and adding 3 volumes of MeOH [Kiematsu et al. Org Synth Coll Vol II 397 1943]. [Laberek & Martell J Am Chem Soc 74 5052 1952, Beilstein 4 III 2428, 4 IV 1176.]

3-Iodo-L-tyrosine [70-78-0] **M 307.1, m 205-208°(dec),** $[\alpha]_{D}^{25}$ -4.4° (c 5, 1M HCl), **pK**_{Est(2)}~2.1, **pK**_{Est(3)}~6.4, **pK**₄²⁵ 8.7. Likely impurities are tyrosine, diiodotyrosine and iodide. Crystallise it by dissolving it in concentrated ammonia (~200mg in ~20mL), evaporate to ~5mL and NH₄Cl is added to pH4.5–5.0. After a few hours at 0°, the amino acid crystallises in needles. It is filtered off, washed with a little ice-cold H₂O and dried in a vacuum. Alternatively dissolve it in dilute ammonia at room temperature, then add dilute acetic acid to pH 6. Store it at 0°. Recrystallisation of ~250mg from H₂O (~5mL) removes any diiodotyrosine. It is an inhibitor of tyrosine hydroxylase with a Ki of ~500nM. [Harrington & Rivers *Biochem J* **38** 320 *1944*, Rivers *Chem & Ind (London)* 21 *1956*, *Beilstein* **14** III 1562, **14** IV 1562.]

L-Isoleucine [73-32-5] **M 131.2, m 285-286°(dec),** $[\alpha]_{D}^{20}$ +40.6° (6M HCl) pK₁²⁵ 2.66, pK₂²⁵ 9.69. Crystallise L-isoleucine from H₂O by addition of 4 volumes of EtOH or from aqueous MeOH. It sublimes at 170-181°/0.3mm with 99.7% recovery, unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 1 p 183-191, Vol 3 pp 2043-2073 1961, Huffman & Ingersoll *J Am Chem Soc* 73 3366 1951, *Beilstein* 4 IV 2775.]

DL-Isoserine (±-3-amino-2-hydroxypropionic acid) [632-12-2] M 105.1, m 235°(dec), 237°(dec), 245°(dec), 250-252°(dec), pK₁²⁵ 2.78 (acidic), pK₂²⁵ 9.27 (basic). Recrystallise it from H₂O or 50% aqueous EtOH. It has an isoelectric pH of 6.02. [Rinderknecht & Niemann J Am Chem Soc 75 6322 1953, Gundermann & Holtmann Chem Ber 91 160 1958, Emerson et al. J Biol Chem 92 451 1931.] The hydrobromide has m 128-130° (from aqueous HBr) [Schöberl & Braun Justus Liebigs Ann Chem 542 288 1939]. [Beilstein 4 H 503, 4 IV 3116.]

L-Isovaline (2-amino-2-methylbutyric acid) [595-40-4] M 117.2, m ca 300° (sublimes in vac), $[\alpha]_{D}^{25}$ +113.1° (c 5, H₂O), $[\alpha]_{D}^{25}$ +10° (5M HCl), pK_{Est(1)}~2.4, pK_{Est(2)}~9.7. Crystallise it from aqueous Me₂CO, or better by dissolving in H₂O and adding excess Me₂CO. [Baker et al. *J Am Chem Soc* 74 4701 1952, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 2573-2577 1961.]

L-Leucine [61-90-5] M 131.2, m 293-295°(dec), $[\alpha]_{D}^{25}$ +15.6° (5M HCl), pK_{1}^{25} 2.33, pK_{2}^{25} 9.74. Likely impurities are isoleucine, valine, and methionine. Crystallise L-leucine from water by adding 4 volumes of EtOH. It sublimes at 180-188°/0.3mm with 99.1% recovery, and unracemised [Gross & Gradsky J Am Chem Soc 77 1678 1955]. [Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p 2075-2094 1961, Kameda et al. J Pharm Soc Jpn 78 763 1958, Beilstein 4 IV 2738.]

L-Lysine [56-87-1] M 146.2, [39665-12-8 monohydrate] M 164.2, $m > 210^{\circ}(dec)$, $[\alpha]_{D}^{20} + 25^{\circ}$ (c 2, 6M HCl), pK_1 2.18, pK_2 8.95, pK_3 10.53. Crystallise L-lysine from aqueous EtOH. [Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2097-2122 1961, Kearley & Ingersoll J Am Chem Soc 73 5783 1951, Beilstein 4 IV 2717.]

L-Lysine dihydrochloride [657-26-1] M 219.1, m 193°, 199-201°, 203-204°, $[\alpha]_D^{25} + 25.9°$ (5M HCl). Crystallise it from MeOH, in the presence of excess HCl, by adding diethyl ether. [Yoneya J Biochem (Tokyo) 38 343 1951, Kearley & Ingersoll J Am Chem Soc 73 5783 1951, Beilstein 4 IV 2717.]

L-Lysine monohydrochloride [657-27-2] **M 182.7, m 256°(dec),** $[\alpha]_{D}^{25}$ +20.5° (c 5, 5M **HCl).** Likely impurities are arginine, D-lysine, 2,6-diaminoheptanedioic acid and glutamic acid. Crystallise the monohydrochloride from water at pH 4-6 by adding 4 volumes of EtOH. At above 60% relative humidity it forms a *dihydrate*. [Birhbaum et al. *J Biol Chem* **194** 455, 468 1952, Kearley & Ingersoll *J Am Chem Soc* **73** 5783 1951, *Beilstein* **4** IV 2717.]

\alpha-Melanotropin [581-05-5] (a tridecapeptide, α -MSH, melanocyte stimulating hormone), M 1664.9, $[\alpha]_{D}^{25}$ -58.5° (c 0.4, 10% aqueous AcOH). Its solubility in H₂O is 1mg/mL. It is separated from the extract by ion-exchange on carboxymethyl cellulose, desalted, evaporated and lyophilised, then chromatographed on Sephadex G-25. [Lande et al. *Biochemical Preparations* 13 45 1971.] **B-Melanotropin** [9034-42-8] (octadeca to docosa peptides), amorphous. An extract of β-melanotropin is purified by ion-exchange on carboxymethyl cellulose, desalted, evaporated and lyophilised, then chromatographed on Sephadex G-25. [Lande et al. *Biochemical Preparations* 13 45 1971.]

Melphalan (4-[bis-{2-chloroethyl}amino]-L-phenylalanine) [148-82-3] M 305.2, m 182-183° (dec), 183-185°, $[\alpha]_{D}^{25}$ +7.5° (c 1.33, 1.0 N HCl), $[\alpha]_{D}^{20}$ -28° (c 0.8, MeOH), pK_{Est} ~6.4. Purify melphalan by recrystallisation from MeOH, and its solubility is 5% in 95% EtOH containing one drop of 6N HCl. It is soluble in EtOH and propylene glycol but is almost insoluble in H₂O. The *RS-form* has m 180-181°, and the *R-form* crystallises from MeOH with m 181.5-182° and $[\alpha]_{D}^{21}$ -7.5° (c 1.26, 1.0 N HCl). [Bergel & Stock *J Chem Soc* 2409 1954, *Beilstein* 14 IV 1689.]

dl-Methionine (*RS*-2-amino-4-methylthiobutyric acid) [59-51-8] M 149.2, m 281°(dec), pK_1^{25} 2.28, pK_2^{25} 9.21. Crystallise it from hot water or EtOH. Also purify it by dissolving it in H₂O and passing through an Amberlite IR-120 resin (NH₄⁺ form). The eluate is concentrated and then passed through Amberlite IR-4B resin, and this eluate is evaporated to dryness. The residue is washed with EtOH, then Me₂CO, dried and recrystallised from aqueous EtOH (colourless plates) [Baddiley & Jamieson *J Chem Soc* 4283 1954]. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 2125 1961, Beilstein 4 IV 3190.]

L-Methionine [63-68-3] M 149.2, m 277-279°(dec), 283°(dec), $[\alpha]_D^{25} + 21.2°$ (0.2M HCl), pK_1^{25} 2.13, pK_2^{25} 9.73. Crystallise L-methionine from aqueous EtOH. Also purify it by dissolving ~0.5g of amino acid in ~10mL of hot H₂O, filtering, adjusting the pH to 5.8 with 5N HCl, collecting the solid after addition of ~20mL of EtOH. It is recrystallised by dissolving in H₂O and adding EtOH. It sublimes at 197-208°/0.3mm with 99.8% recovery and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Milne & Peng *J Am Chem Soc* 79 647 1957, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2125-2152 1961, Beilstein 4 IV 3189.]

dl-Methionine sulfoxide [454-41-1, 62697-73-8] M 165.2, m >240°(dec), 241-242°(dec). Likely impurities are *dl*-methionine sulfone and *dl*-methionine. Crystallise the sulfoxide by dissolving it in hot H₂O and adding excess EtOH. [Lepp & Dunn *Biochemical Preparations* **4** 80 1955, Micheel & Schmitz *Chem Ber* **72** 518 1939, *Beilstein* **4** III 1650, **4** IV 3192.]

S-Methyl-L-cysteine [1187-84-4] M 135.2, m 207-211°, ~240°(dec), 267-270°, $[\alpha]_{D}^{26}$ -32.0° (-34.5°) (c 5, H₂O), pK₁²⁵ 1.94 (COOH), pK₂²⁵ 8.73 (NH₂, 8.97). Likely impurities are cysteine and S-methyl-*dl*-cysteine. Crystallise it from H₂O by adding 4volumes of EtOH. It also crystallises from MeOH with m 234-236°(dec), but after sublimation it has m 267-270° and $[\alpha]_{D}^{27}$ -31.6° (c 1, H₂O). [Rinderknecht et al. *Helv Chim Acta* 41 1, 10 1958, Theodoropoulos *Acta Chem Scand* 13 383 1959, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 p 1904 1961, Beilstein 4 IV 3145.]

α-Methylmethionine [562-48-1] M 163.0, m 283-284°, pK_{Est}(1) ~ 2.1, pK³⁰ 9.45. Crystallise α-methylmethionine from aqueous EtOH or H₂O. [Pfister et al. J Am Chem Soc 77 697 1955, Potts J Chem Soc 1623 1955, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p 2566 1961.]

S-Methyl-L-methionine chloride See Vitamin U in "Miscellaneous Compounds", this chapter.

N-Methyltryptophan (L-abrine) [526-31-8] M 218.3, m 295°(dec with darkening and sintering), $[\alpha]_{D}^{21}$ +44.4° (c 2.8, 0.5M HCl), $[\alpha]_{D}^{20}$ +65° (c 1, 0.5N NaOH), pI 10.10, pK_{Est(1)}~2.3, pK_{Est(2)}~9.7. Crystallise L-abrine from H₂O or EtOH/H₂O mixture and dry it for 2days at 60° in high vacuum; it has m 275-290°(dec with browning at 230°) and $[\alpha]_{D}^{21}$ +47.2° (c 2, 0.5N HCl) [Peter et al. *Helv Chim Acta* 46 577 1963]. [Gregory & Morley *J Chem Soc* 913 1968, *Beilstein* 22/14 V 40.]

*dl-5-***Methyltryptophan** [951-55-3] **M 218.3, m 275°(dec)** [**pK see tryptophan**]. Crystallise *dl-*5-methyltryptophan from aqueous EtOH after dissolving it in aqueous NaOH, precipitating with AcOH, filtering the solid off and drying for 24hours at 50°. [Jackman & Archer J Am Chem Soc 68 2105 1946, Beilstein **22** IV 6815.] The *picrate* crystallises from MeOH with **m** 202°(dec). The *N-phenylcarbamoyl* derivative crystallises from aqueous MeOH with **m** 202°. [Gordon & Jackson J Biol Chem **110** 151, 154 1935.]

Nisin [1414-45-5] **M 3354.2.** This polypeptide from *S. lactis* is purified by crystallisation from 80% (v/v) EtOH and by countercurrent distribution. The synthetic polypeptide antibiotic can also be purified by preparative HPLC and assayed by HPLC on a Nucleosil 3007C₁₈ (6 x 250mm) column using a MeCN-0.01M HCl gradient (30-50%), at 2%/minute, and flow rate of 1.5mL/minute to give a retention time of 8.1 minutes; or MeCN-0.3M guanidine-HCl gradient (30-50%), at 2%/minute, and flow rate of 1.5mL/minute to give a retention time of 10.9minutes. FAB-MS gave the pseudomolecular ion m/z at 3352.7 (M + H)⁺. It is soluble in dilute acid and is stable even on boiling. [Berridge et al. *Biochem J* **52** 529 1952, synthesis by Fukase et al. *Tetrahedron Lett* **29** 795 1988.]

Norleucine (α -amino-*n*-caproic acid) [*R*(+) 327-56-0, *S*(-) 327-57-1] M 117.2, m 301°, [α] $_{346}^{20}$ (+) and (-) 28° (c 5, 5M HCl), [*RS*: 616-06-8] m 297-300° (sublines partially at ~280°), pK₁ 2.39, pK₂ 9.76 (for *RS*). Crystallise norleucine from water or aqueous MeOH. [Huffman & Ingersoll J Am Chem Soc 73 3366 1951, Beilstein 4 III 1386, 4 IV 2628.]

Norvaline (R- α -amino-n-valeric acid) [R(+) 2031-12-9, S(-) 6600-40-4] M 117.2, m 305°(dec), [α] $_{546}^{20}$ (+) and (-) 25° (c 10, 5M HCl), pI 6.04, pK $_{1}^{25}$ 2.36, pK $_{2}^{25}$ 9.87 (9.72). Crystallise norvaline from aqueous EtOH or water. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2390-2399 1961, Beilstein 4 III 1331-1333, 4 IV 128, 2629.]

L-Ornithine [70-26-8] M 132.2, m 140°, $[\alpha]_D^{25}$ +16° (c 0.5, H₂O), pK_1^{20} 2.11, pK_2^{20} 8.39, pK_3^{25} 10.59. Crystallise L-ornithine from water containing 1mM EDTA (to remove metal ions). [Perrin J Chem Soc 3125 1958, Rivard Biochemical Preparations 3 97 1955, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2477-2491 1961, Beilstein 4 III 1346, 4 IV 2644.]

L-Ornithine monohydrochloride [3184-13-2] **M 168.6, m 230-232°(dec), 233°(dec), 236.5-237.5°(dec),** $[\alpha]_{D}^{25}$ +28.3° (5M HCl). Likely impurities are citrulline, arginine and D-ornithine. Crystallise the monohydrochloride from water by adding 4volumes of EtOH and dry it in a vacuum desiccator over fused CaCl₂. [Rivard *Biochemical Preparations* **3** 98 1955.] The *dihydrochloride* [6211-16-1] has **m** 202-203° and $[\alpha]_{D}^{20}$ +18.4° (c 2.3, 6N HCl) after recrystallisation from MeOH/Et₂O [Zaoral & Rudinger *Collect Czech Chem Commun* **24** 2009 1959]. [Beilstein **4** IV 2644.]

Oxytocin [50-56-6] **M 1007.2, m dec on heating,** $[\alpha]_{D}^{22}$ -26.2° (c 0.53, N AcOH). It is a cyclic nonapeptide which is purified by countercurrent distribution between solvent and buffer. It is soluble in H₂O, *n*-BuOH and isoBuOH. [Bodanszky & du Vigneaud *J Am Chem Soc* 81 2504 1959, Cash et al. *J Med Pharm Chem* 5 413 1962, Sakakibara et al. *Bull Chem Soc Jpn* 38 120 1965; solid phase synthesis: Bayer & Hagenmyer *Tetrahedron Lett* 2037 1968.] It was also synthesised on a solid phase matrix and finally purified as follows: A Sephadex G-25 column is equilibrated with the aqueous phase of a mixture of 3.5% AcOH (containing 1.5% of pyridine)/*n*-BuOH/*C₆H₆ (2:1:1) and then the organic phase of this mixture is run through. A solution of oxytocin (100mg) in H₂O (2mL) is applied to the column which is then eluted with the organic layer of the above mixture. The fractions containing the major peak [as determined by the Folin-Lowry protein assay: Fryer et al. *Anal Biochem* 153 262 1986] are pooled, diluted with twice their volume of H₂O, evaporated to a small volume and lyophilised to give oxytocin as a pure white powder (20mg, 508 U/mg). [Ives *Can J Chem* 46 2318 1968, *Beilstein* 22 III/IV 82.]

dl-Phenylalanine [150-30-1] M 165.2, m 265-266°(capillary, dec), 271-273°(dec), 282-284°(dec), pK₁²⁵ 2.58, pK₂²⁵ 9.24. *dl*-Phenylalanine crystallises from H₂O or H₂O/EtOH in large plates and is dried under vacuum over P₂O₅. *S-Phenylalanine ethyl ester hydrochloride* [3182-93-2] has m 156-158° and $[\alpha]_{D}^{20}$ -7.8° (c 2, H₂O) after crystallisation from EtOH/Et₂O [Billimoria & Cook *J Chem Soc* 2328 1949, *Beilstein* 14 IV 1556]. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2156-2175 1961, *Beilstein* 14 III 1229, 14 IV 1553.]

L-Phenylalanine [63-91-2] **M 165.2, m 280°(dec), 281-183°(dec),** $[\alpha]_{D}^{25}$ -34.0° (c 2, H₂O). Likely impurities are leucine, valine, methionine and tyrosine. Crystallise L-phenylalanine from water by adding 4volumes of EtOH. Dry it *in vacuo* over P₂O₅. Also crystallise it from saturated refluxing aqueous solutions at neutral pH, or 1:1 (v/v) EtOH/water solution, or conc HCl. It sublimes at 176-184°/0.3mm with 98.7% recovery and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2156-2175 1961, Beilstein 14 IV 1552.]

L- α -Phenylglycine [2935-35-5] M 151.2, m 305-310°, 305-308°(capillary, dec), $[\alpha]_{546}^{25}$ +188° (c 1, M HCl), pK $_{1}^{25}$ 1.83, pK $_{2}^{25}$ 4.39 (for *dl*). Crystallise it from EtOH. [Kaneko J Chem Soc Jpn 60 538 1939, Rudman et al. J Am Chem Soc 74 551 1952, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2694-2697 1961, Beilstein 14 III 1187, 14 IV 1317.]

Phenylglycine-o-carboxylic acid [N-(2-carboxyphenyl)glycine] [612-42-0, 64241-57-2 Me Ester, 67990-19-6 mono-Na Salt, 71807-57-3 di-Na Salt] M 195.2, m 206°, 208°, 220°, pK_1^{20} 5.44 (CO₂H), pK_2^{20} 6.96 (CO₂H) (in 50% aqueous dioxane). Crystallise the acid from hot water (charcoal). It forms complexes with Cu²⁺, Zn²⁺, Cd²⁺, Co²⁺ and Ni²⁺ in aqueous dioxane. [Roileanu et al. *Rev Roum Chim* 12 105 1967, Aldrich library of ¹³C, ¹H FTNMR Spectra, NMR 2 1181A, Beilstein 14 H 348, 14 I 544, 14 II 225, 14 III 938.]

D-Pipecolinic acid (*R*-piperidine-2-carboxylic acid) [1723-00-8] M 129.2, m 264°(dec), 267°(dec), ~280°(dec), $[\alpha]_D^{19}$ +26.2° (c 2, H₂O), $[\alpha]_D^{25}$ +35.7° (H₂O), pK_1^{20} 2.29 (CO₂H), pK_2^{20} 10.77 (NH⁺). D-Pipecolinic acid recrystallises as platelets from EtOH and is soluble in H₂O. The hydrochloride has m 256-257°(dec) from H₂O and $[\alpha]_D^{25}$ +10.8° (c 2, H₂O). [cf p 422, Lukés et al. Collect Czech Chem Commun 22 286 1957, Bayerman Recl Trav Chim Pays-Bas 78 134 1959, Asher et al. Tetrahedron Lett 22 141 1981, Beilstein 22/1 V 220.]

L-Pipecolinic acid (S-piperidine-2-carboxylic acid) [3105-95-1] M 129.2, m 268°(dec), 271°(dec), ~280°(dec), $[\alpha]_D^{20}$ -26° (c 4, H₂O), $[\alpha]_D^{25}$ -34.9° (H₂O). Recrystallise L-pipecolinic acid from aqueous EtOH, and it sublimes as needles in a vacuum. It is sparingly soluble in absolute EtOH, Me₂CO or CHCl₃ but insoluble in Et₂O. The *hydrochloride* has m 258-259°(dec, from MeOH) and $[\alpha]_D^{25}$ -10.8° (c 10, H₂O). [cf p 422, Fuji & Myoshi *Bull Chem Soc Jpn* 48 1241 1975, *Beilstein* 22/1 V 220.]

Piperidine-4-carboxylic acid (isonipecotic acid) [498-94-2] M 129.2, m 336°(dec, darkens at ~300°), $pK_{Est(1)}$ ~ 4.3 (CO₂H), $pK_{Est(2)}$ ~ 10.6 (NH⁺). It crystallises from H₂O or EtOH as needles. The hydrochloride recrystallises from H₂O or aqueous HCl with m 293°dec (also 298°dec, 300°dec). [Wibaut Recl Trav Chim Pays-Bas 63 141 1944, IR: Zacharius et al. J Am Chem Soc 76 2908 1954, Beilstein 22/1 V 244.]

Polypeptides. These are strings of α -amino acids usually with the natural *S*(L) [L-cysteine is an exception and has the *R* absolute configuration] or sometimes "unnatural" *R*(D) configuration at the α -carbon atom. They generally have less than ~100 amino acid residues. They can be naturally occurring or, because of their small size, can be synthesised chemically from the desired amino acids. Their properties can be very similar to those of small proteins. Many are commercially available, and can be custom made commercially or locally with a peptide synthesiser. They are purified by HPLC and can be used without further purification. Their purity can be checked as described under proteins (Introduction).

L-Proline [147-85-3] M 115.1, m 215-220°(dec)(D-isomer), 220-222°(dec) (L-form), 205°(dec)(DL-isomer), $[\alpha]_{D}^{20}$ -53° (c 0.6, 0.5N HCl), -93° (c 2.4, 6N KOH) for L-isomer), pI 6.3, pK₁²⁵ 1.95, pK₂²⁵ 10.64. A likely impurity is hydroxyproline. Purify L-proline *via* its *picrate* which is crystallised twice from water, then decomposed with 40% H₂SO₄. The picric acid is extracted with diethyl ether, the H₂SO₄ in solution is precipitated with Ba(OH)₂, and the filtrate is evaporated. The residue is crystallised from hot absolute EtOH [Mellan & Hoover J Am Chem Soc 73 3879 1951] or EtOH/Et₂O. Its solubility in H₂O is >100%. It sublimes at 182-187°/0.3mm with 99.4% recovery and unracemised [Gross & Gradsky J Am Chem Soc 77 1678 1955]. It is hygroscopic and is stored in a desiccator. [Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 pp 2178-2199 1961, Beilstein 22 III/IV 8, 22/1 V 31.]

L-Prolylglycine [2578-57-6] M 172.2, m 236°, $[\alpha]_{D}^{20}$ +21.1° (c 4, H₂O), pK₁²⁵ 3.19, pK₂²⁵ 8.97. Recrystallise L-prolylglycine from water at 50-60° by addition of EtOH. [Appel et al. *Chem Ber* 108 2680 1975, Rydon & Smith J Chem Soc 3642 1956.]

L-Propargylglycine (S-2-aminopent-4-ynoic acid) [23235-01-0] M 113.1, m 230°(dec starting at 210°), $[\alpha]_{D}^{20}$ -35° (c 1, H₂O), -4° (c 5, 5N HCl), pK_{Est(1)}~ 2.3 (CO₂H), pK_{Est(2)}~ 9.8 (NH₂). The acid crystallises readily when ~4g in 50mL H₂O are treated with absolute EtOH at 4°/3hours, and is collected, washed with cold absolute EtOH and Et₂O and dried in a vacuum. Also, it recrystallises from aqueous Me₂CO, R_F on SiO₂ TLC plates with *n*-BuOH/H₂O/AcOH (4:1:1) is 0.26. The *racemate* has m 238-240°. [Leukart et al. *Helv Chim Acta* **59** 2181 *1976*, Eberle & Zeller *Helv Chim Acta* **68** 1880 *1985*, Jansen et al. *Recl Trav Chim Pays-Bas* **88** 819 *1969*.] It is a suicide inhibitor of γ -cystathionase and other enzymes [Washtier & Abeles *Biochemistry* **16** 2485 *1977*, Shinozuka et al. *Eur J Biochem* **124** 377 *1982*].

R-Pyroglutamic acid (5-oxo-D-proline, *R*-2-pyrrolidone-5-carboxylic acid) [4042-36-8] M **129.1, m 156-158°,** $[\alpha]_{D}^{20}$ +11.2° (c 1, H₂O). Purify *R*-pyroglutamic acid by dissolving it in H₂O, filtering, passing the filtrate through Dowex 50 (H⁺ form), washing with H₂O, pooling washings, evaporating, removing H₂O azeotropically with Me₂CO and *C₆H₆, washing the residue with Et₂O and recrystallising from EtOH/pet ether. [Pradeller et al. *Collect Czech Chem Commun* **42** 79, 80 *1977, Beilstein* **22/6** V 7.]

S-Pyroglutamic acid (5-oxo-L-proline) [98-79-3] M 129.1, m 156-158°, 162-164°, $[\alpha]_{546}^{20}$ -11° (c 5, H₂O), pK²⁵ 12.7 (by electron spin resonance). Crystallise S-pyroglutamic acid by dissolving it in boiling EtOH (20g in 100mL), cooling and after a few minutes additing pet ether (b 40-60°, 120mL), then after 5 minutes adding a further 120mL, and cooling to room temperature with 90% recovery. This has m 155.5-157.5° and $[\alpha]_{D}^{20}$ -11.4° (c 4.4, H₂O) [Hardy Synthesis 290 1978, Pellegata et al. Synthesis 614 1978]. The NH₄ salt has m 184-186° (from EtOH). [Beilstein 22/6 V 7.]

Quisqualic acid (3-[3,5-dioxo-1,2,4-oxadiazolin-2-yl]-L-alanine) [52809-07-1] M 189.1, m 190-191°, $[\alpha]_{D}^{20}$ +17° (c 2, 6M HCl), $pK_{Est(1)} \sim 2.1$ (CO₂H), $pK_{Est(2)} \sim 8.9$ (NH₂). It has been purified by ion-exchange chromatography on Dowex 50W (x 8, H⁺ form); the desired fractions are lyophilised and recrystallised from H₂O/EtOH. It has IR (KBr) v_{max} : 3400-2750br, 1830s, 1775s, 1745s and 1605s cm⁻¹; and ¹H NMR (NaOD/D₂O, pH 13) δ : 3.55-3.57 (1H m, X of ABX, H-2), 3.72-3.85 (2H, AB of ABX, H-3), ¹³C NMR (D₂O) δ : 50.1t, 53.4d, 154.8s, 159.7s and 171.3s. [Baldwin et al. *J Chem Soc, Chem Commun* 256 *1985*.] It is a quasiqualate receptor agonist [Joels et al. *Proc Natl Acad Sci USA* **86** 3404 *1989*].

Sarcosine (N-methylglycine) [107-97-1] M 89.1, m 2 12-213°(dec), pK_1^{20} 2.12, pK_2^{20} 10.19. Crystallise sarcosine from absolute EtOH, 95% EtOH or H₂O. It sublimes at 180-185°/0.3mm with 99.1% recovery [Gross & Gradsky J Am Chem Soc 77 1678 1955]. [Cocker & Harris J Chem Soc 1291 1940, Cocker & Lapworth J Chem Soc 1897 1931, Greenstein & Winitz The Chemistry of the Amino Acids J. Wiley, Vol 3 p 2750 1961, Beilstein 4 III 1121, 4 IV 2363.]

Sarcosine anhydride (1,4-dimethylpiperazin-2,5-dione) [5076-82-4] M 142.2, m 146-147°, 148°, $pK_{Est(1)}$ ~-4.2, $pK_{Est(2)}$ ~-1.9. Crystallise the anhydride from H₂O, EtOH or EtOAc. Dry it in a vacuum at room temperature. [Karrer et al. *Helv Chim Acta* 5 140 1922, *Beilstein* 24 II 144, 24 IV 1072.]

L-Serine [56-45-1] **M 105.1, m 228°(dec), 233-235°(dec),** $[\alpha]_{D}^{25}$ +14.5° (1M HCl), $[\alpha]_{346}^{20}$ +16° (c 5, 5M HCl), pK_{1}^{25} 2.15, pK_{2}^{25} 9.21. A likely impurity is glycine. Crystallise L-serine from H₂O by adding 4volumes of EtOH. Dry and store it in a desiccator. It sublimes at 160-170°/0.3mm with 99.7% recovery, and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2202-2235 1961, Beilstein 4 IV 3118.]

Somatostatin [38916-34-6] M 1637.9, $[\alpha]_D^{25}$ -36° (c 0.57, 1% AcOH). Somatostatin is a tetradecapeptide which is purified by gel filtration on Sephadex G-25, eluting with 2N AcOH, and then by liquid

partition chromatography on Sephadex G-25 using *n*-BuOH/AcOH/H₂O (4:1:5) and has $R_F = 0.4$. It is a brain growth hormone releasing-inhibiting factor which has also been synthesised. [Burgus et al. *Proc Natl Acad Sci USA* **70** 684 *1973*, Sorantakis & McKinley *Biochem Biophys Res Commun* **54** 234 *1973*, Hartridt et al. *Pharmazie* **37** 403 *1982*.]

L-Threonine [72-19-5] M 119.1, m 251-253°, 254°(dec), 262-263°(dec), $[\alpha]_{\rm D}^{26}$ -28.4° (H₂O), pK₁²⁵ 2.17, pK₂²⁵ 9.00. Likely impurities are *allo*-threonine and glycine. Crystallise L-threonine from H₂O by adding 4volumes of EtOH. Dry and store it in a desiccator. It also crystallises from 80% EtOH to give hexagonal plates m 262-263°(dec). It sublimes at 200-226°/0.3mm with 99.6% recovery and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Elliot *J Chem Soc* 62 1950, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, **Vol 1** pp 176-183, **Vol 3** pp 2238-2257 1961, Beilstein **4** IV 3171.]

L-Thyroxine sodium salt (5H₂O) [6106-07-6] M 888.9, $[\alpha]_{546}^{20}$ +20° (c 2, 1M HCl + EtOH, 1:4). Crystallise the sodium salt from absolute EtOH and dry it for 8hours at 30°/1mm. [Canepa Acta Cryst 4 283 1951, Beilstein 14 II 378, 14 III 1566, 14 IV 2374.]

D-Thyroxine {*O*-[3,5-diiodo-4-oxyphenyl]-3,5-diiodo-D-(-)-tyrosine, 3,3',5,5'-tetraiodo-D-thyronine} [51-49-0] M 776.9, m 235°(dec), 235-236°(dec), 340°(dec), $[\alpha]_{D}^{20}$ +4.5° (c 3, aqueous 0.2N NaOH in 70% EtOH), $[\alpha]_{D}^{20}$ -17° (c 2, aqueous N HCl + EtOH 1:4), pK₁²⁵ 2.2 (CO₂H), pK₂²⁵ 8.40 (OH), pK₃²⁵ 10,1 (NH₂). Recrystallise D-thyroxine from H₂O (needles) or from an ammonical solution by dilution with H₂O, MeOH or Me₂CO. It has also been purified by dissolving ~6.5 g in a mixture of MeOH (200mL) and 2N HCl (20mL), adding charcoal, filtering then adding NaOAc solution to pH 6. On standing the thyroxine separates, it is filtered off, washed with MeOH then Me₂CO and dried *in vacuo. N-Formyl-D-thyroxine* has m 210° and $[\alpha]_{346}^{21}$ -26.9° (c 5, EtOH). (±)-Thyroxine has m 256° and is purified in the same way. [Nahm & Siedel Chem Ber 96 1 1963, Salter Biochem J 24 471 1930, Beilstein 14 I 671, 14 II 384, 14 III 1566, 14 IV 2374.]

L-Thyroxine (*O*-[3,5-diiodo-4-oxyphenyl]-3,5-diiodo-L-(+)-tyrosine, 3,3',5,5'-tetraiodo-Lthyronine) [51-48-9] M 776.9, m 229-230°(dec), ~235°(dec), 237°(dec), $[\alpha]_D^{22}$ -5.1° (c 2, aqueous N NaOH + EtOH 1:2), $[\alpha]_D^{22}$ +15° (c 5, aqueous N HCl in 95% EtOH 1:2), $[\alpha]_D^{22}$ +26° (EtOH/1M aqueous HCl, 1:1) (pK²⁵ 6.6). Purification is the same as for the D-isomer above. Likely impurities are tyrosine, iodotyrosine, iodothyroxines and iodide. Dissolve it in dilute ammonia at room temperature, then crystallise it by adding dilute acetic acid to pH 6. *N-Formyl-L-thyroxine* has m 214°(dec) and $[\alpha]_{546}^{21}$ +27.8° (c 5, EtOH). [Harrington et al. *Biochem J* **39** 164 *1945*, Nahm & Siedel *Chem Ber* **96** 1 *1963*, Reineke & Turner *J Biol Chem* **161** 613 *1945*, Chalmers et al. *J Chem Soc* 3424 *1949*, *Beilstein* **14** II 378, **14** III 1566, **14** IV 2373.]

N-Tosyl-L-lysine chloromethyl ketone (3*S*-1-chloro-3-tosylamino-7-amino-2-heptanone HCl) [4272-74-6] M 369.3, m 150-153°(dec), 156-158°(dec), ~165°(dec), $[\alpha]_D^{20}$ -7.3° (c 2, H₂O), pK_{Est} ~ 10.6 (7-NH₂). The hydrochloride slowly crystallises from a concentrated solution in absolute EtOH, thinned with EtOH/Et₂O for collection and dried *in vacuo*. It is a suicide enzyme inhibitor of serine proteases, e.g. trypsin and clostripain. [Matsuda et al. *Chem Pharm Bull Jpn* 30 2512 *1982*, Shaw et al. *Biochemistry* 4 2219 *1965*].

Triglycyl glycine (tetraglycine) [637-84-3] M 246.2, m 270-275°(dec), pK₁²⁵ 3.21(CO₂H), pK₂²⁵ 7.94(NH₃⁺). Crystallise it from H₂O (optionally, by the addition of EtOH). [Li et al. *J Am Chem Soc* 79 5859 1957, Rising et al. *J Am Chem Soc* 56 1179 1934, Beilstein 4 II 807, 4 III 1201, 4 IV 2472.]

Trigonelline (1-methylnicotinic acid zwitterion) [535-83-1] **M 137.1, m 218°(dec), pK_1^{25} 2.10,.** Crystallise trigonelline (as *monohydrate*) from aqueous EtOH, then dry it at 100°. It also crystallises from H₂O as the monohydrate with **m** 230-233°(dec). It has been crystallised from EtOH with **m** 214-215°(dec). The *picrate* crystallises from EtOH with **m** 204-206°. [Green & Tong J Am Chem Soc **78** 4896 1956, Kosower & Patton J Org Chem **26** 1319 1961, Beilstein **22** III/IV 462, **22/2** V 143.] **3,3',5-Triiodo-S-thyronine** [6893-02-3] **M 651.0, m 236-237°(dec),** $[\alpha]_D^{29.5}$ +21.5° (EtOH/1M aqueous HCl, 2:1), pK₁²⁵ 6.48, pK₂²⁵ 7.62, pK₃²⁵ 7.82. Likely impurities are as in *thyroxine*. Purify it by dissolving in dilute NH₃ at ~20°, then crystallise it by addition of dilute acetic acid to pH 6. Alternatively 35g are purified by dissolving it in a mixture of EtOH (250mL) and 2N NaOH (100mL), then hot 2N HCl is added to the boiling solution until the pH is 4-5. After cooling for a few hours, the solid is filtered off and dried in a vacuum [m 233-235°(dec)]. [Chambers et al. *J Chem Soc* 2433 *1949*, *Beilstein* **14** III 1566, **14** IV 2373.]

N,N,N-Trimethyl glycinehydrazide chloride (Girard Reagent T, 2-hydrazino-N,N,N-trimethyl-2-oxo-ethanaminium chloride) [123-46-6] M 167.6, m 192°. It is purified by crystallisation from absolute EtOH (slight decomposition) until it has only a slight odour. Store it in well-stoppered containers because it is very hygroscopic. It is very soluble in H₂O, AcOH and glycerol but slightly soluble in EtOH (0.66%). It forms water-soluble hydrazones with carbonyl compounds. [*Beilstein* 4 III 1133.]

N-Tris-(hydroxymethyl)methylglycine (TRICINE) [5704-04-1] M 179.2, m 186-188°(dec), $pK_1^{20} \sim 2.3$, $pK_2^{20} 8.15$. Crystallise Tricine from EtOH and water. [Good et al. Methods Enzymol 24B 53 1968, McGothlin & Jordan Analyt Lett 9 245 1976, Beilstein 18 III/IV 3454.]

L-Tryptophan [73-22-3] M 204.3, m 278°, 281-282°, 290°, $[\alpha]_{D}^{20}$ -33.4° (EtOH), $[\alpha]_{546}^{20}$ -36° (c 1, H₂O), $[\alpha]_{D}^{28}$ +28° (c 2.1, 10% HCl), pK₁²⁵-6.23 (aqueous H₂SO₄), pK₂²⁵ 2.46, pK₃²⁵ 9.41, pK₄²⁵ 14.82 (acidic NH, in aqueous NaOH). Crystallise L-tryptophan from H₂O/EtOH, wash it with anhydrous diethyl ether and dry it at room temperature in a vacuum over P₂O₅. It sublimes at 220-230°/0.03mm with 99% recovery and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Cox & King *Org Synth* Coll Vol II 612 1943, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2316-2345 1961, Beilstein 22 IV 6765.]

Tyrocidine A (cyclic decapeptide antibiotic with two D-Phe amino acids) [1481-70-5] M 1268.8, m 240°(dec), $[\alpha]_D^{25}$ -115° (c 0.91, MeOH). Crystallise tyrocidine A as the hydrochloride from MeOH or EtOH/HCl. [Paladin & Craig J Am Chem Soc 76 688 1954, King & Craig J Am Chem Soc 77 6624 1955, Okamoto et al. Bull Chem Soc Jpn 50 231 1977, Beilstein 26 III/IV 4280.]

L-Tyrosine [60-18-4] M 181.2, m 290-295°(dec), 294-300°(dec), $[\alpha]_{D}^{25}$ -10.0° (5M HCl), pK₁²⁵ 2.18 (CO₂H), pK₂²⁵ 9.21 (OH), pK₃²⁵ 10.47 (NH₃+). Likely impurities are L-cysteine and the ammonium salt. L-Tyrosine is dissolved in dilute ammonia, then crystallised by adding dilute acetic acid to pH 5. Also, crystallise it from H₂O or EtOH/H₂O, and dry it at room temperature in a vacuum over P₂O₅. It sublimes at 235-240°/0.03mm with 99.2% recovery and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Albert *Biochem J* 50 690 1952, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2348-2366 1961, Beilstein 14 IV 2264.]

L-Valine [72-18-4] M 117.2, m 305-308°(dec), 315°, $[\alpha]_{D}^{17}$ +28.4° (c 2, 5M HCl), pK₁²⁰ 2.38 (CO₂H), pK₂²⁰ 9.59 (NH₃⁺). Crystallise L-valine from water by addition of EtOH. It sublimes at 178-188°/0.03mm with 99.3% recovery and unracemised [Gross & Gradsky *J Am Chem Soc* 77 1678 1955]. [Perrin *J Chm Soc* 3125 1958, Greenstein & Winitz *The Chemistry of the Amino Acids* J. Wiley, Vol 3 pp 2368-23771961, *Beilstein* 4 IV 2659.]

PROTEINS, ENZYMES, DNA and RNA

Abrin A and C (agglutinins from *Abrus seeds*) [1393-62-0] M_r 63,000-67,000. These are toxic lectins (proteins) from seeds of *Abras precatorius*. The yellow-white powder is purified by successive chromatography on DEAE-Sephadex A-50, carboxymethylcellulose, and DEAE-cellulose. Abrin A is more positively charged on the DEAE-cellulose column and has been crystallised from $(NH_4)_2SO_4$ by the free interface diffusion technique. Its molecular weight (by sedimentation equilibrium) is 60,000, whereas Abrin C has molecular weight of 63,800. Treatment of A with mercaptoethanol at 100°/2hours followed by SDSPAGE gave a main band with M_r 32,000 and two very weak bands, whereas C (which is more toxic) gave two intense bands with M_r 28,000 and 33,000. [Wei et al. *J Biol Chem* 249 3061 1974.] Abrin C has been crystallised for X-ray analysis by the free interface diffusion technique described by Salemme [*Arch Biochim Biophys* 151 533 1972]. The crystals were grown at 37° in Pyrex tubes (5 x 30 cm) by layering 50µl of protein solution (22mg/mL) over 100µl of unbuffered 70% saturated (NH₄)₂SO₄ [Wei & Einstein *J Biol Chem* 249 2985 1974.] [UV and CD: Hermann & Behnke *Biochem Biophys Acta* 621 43 1980, for physical and chemical properties see *Biochem Biophys Acta* 667 397 1981, *Beilstein* 22 III/IV 6776.]

Acetoin dehydrogenase [from beef liver, acetoin NAD oxidoreductase] [9028-49-3] M_r 76000, [EC 1.1.1.5]. Purify it *via* the acetone cake, then Ca-phosphate gel filtration (unabsorbed), lyophilised and then fractionated through a DEAE-22 cellulose column. The Km for diacetyl is 40 μ M, and for NADH it is 100 μ M in phosphate buffer at pH 6.1. [Burgos & Martin *Biochim Biophys Acta* 268 261 1972, 289 13 1972.]

β-D-*N***-Acetylglucosaminidase [from M sexta insects]** [9012-33-3] $M_r \sim 61,000$, [EC 3.2.1.52]. Purify it by chromatography on DEAD-Biogel, hydroxylapatite chromatography and gel filtration through Sephacryl S200. Two isoforms: a hexosaminidase EI with Km 177µM (V_{max} 328 sec⁻¹) and EII a chitinase with Km 160µM (V_{max} 103 sec⁻¹) with 4-nitrophenyl-β-acetylglucosamine as substrate. [Dziadil-Turner Arch Biochem Biophys 212 546 1981.]

β-D-*N*-Acetylhexosaminidase A and B (from human placenta) [9012-33-3] M_r ~61,000, [EC 3.2.1.52]. Purify it by Sephadex G-200 filtration and DEAE-cellulose column chromatography. The hexosaminidase A is further purified by DEAE-cellulose column chromatography, followed by an ECTEOLA-cellulose column, Sephadex-200 filtration, electrofocusing and Sephadex G-200 filtration. Hexosaminidase B is purified by a CM-cellulose column, electrofocusing and Sephadex G-200 filtration. [Srivastava et al. *J Biol Chem* 249 2034 1974.]

N-Acetyl neuraminic acid aldolase [from *Clostridium perfringens, N*-acetylneuraminic acid pyruvate lyase] [9027-60-5] M_r 32,000 [EC 4.1.3.3]. Purify the aldolase by extraction with H₂O, protamine precipitation, (NH₄)₂SO₄ fractionation, Me₂CO precipitation, acid treatment at pH 5.7 and precipitation at pH 4.5. The equilibrium constant for pyruvate + *n*-acetyl-D-mannosamine \checkmark *N*acetylneuraminidate at 37° is 0.64. The Km for *N*-acetylneuraminic acid is 3.9mM in phosphate at pH 7.2 and 37°. [Comb & Roseman *Methods Enzymol* 5 391 1962.] The enzyme from hog kidney (cortex) has been purified 1700-fold by extraction with H₂O, protamine sulfate precipitation, (NH₄)₂SO₄ fractionation, heating between 60-80°, a second (NH₄)₂SO₄ fractionation and starch gel electrophoresis. The Km for *N*acetylneuraminic acid is 1.5mM. [Brunetti et al. *J Biol Chem* 237 2447 1962.]

Acyl-coenzyme A Synthase [from beef liver] [9013-18-7] M_r 57,000, [EC 6.2.1.2]. Purify the synthase by extraction with sucrose/HCO₃ buffer, protamine sulfate precipitation, (NH₄)₂SO₄ (66-65%) fractination (pH 4.35) and a second (NH₄)₂SO₄ (35-60%) fractionation (pH 4.35). It has Km 0.15mM (V_{rel} 1.0) for octanoate and 0.41mM (V_{rel} 2.37) for heptanoate. The Km for ATP is 0.5mM, all at pH 9.0 in ethylene glycol buffer at 38°. [Jencks et al. J Biol Chem 204 453 1953, Methods Enzymol 5 467 1962.]

Acyl-coenzyme A Synthase (from yeast) [9012-31-1] $M_r \sim 151,000$, [EC 6.2.1.1]. This enzyme has been purified by extraction into phosphate buffer pH 6.8-7.0 containing 2-mercaptoethanol and

EDTA, protamine sulfate precipitation, polyethylene glycol fractionation, Alumina γ gel filtration, concentration by $(NH_4)_2SO_4$ precipitation, Bio-Gel A-0.5m chromatography and DEAE-cellulose gradient chromatography. It has Km (apparent) 0.24mM (for acetate) and 0.035mM (for CoA); 1.2 mM for ATP and Mg²⁺ 4.0mM. [Frenkel & Kitchens *Methods Enzymol* **71** 317 *1981*.]

ADP-Ribosyl transferase (adenylyl transferase, polynucleotide, from human placenta) [9026-30-6] $M_r \sim 115,000$, [EC 2.4.2.30]. Purify the transferase by making an affinity absorbent for ADP-ribosyltransferase by coupling 3-aminobenzamide to Sepharose 4B. [Burtscher et al. Anal Biochem 152 285 1986.]

Agglutinin (from peanuts) [*Arachis hypogaea*] [1393-62-0] M_r 134,900 (tetramer). Agglutinin is purified by affinity chromatography on Sepharose-ζ-aminocaproyl-β-D-galactopyranosylamine. [Lotan et al. *J Biol Chem* 250 8518 1974.]

Albumin (bovine and human serum) [9048-46-8 (bovine), 70024-90-7 (human)] $M_r \sim 67,000$ (bovine), 69 000 (human), UV: $A_{280nm}^{1\%}$ 6.6 (bovine) and 5.3 (human) in H₂O, [α] $_{546}^{25}$ -78.2^o (H₂O). Albumin is purified by dissolving it in conductivity water and passage at 2-4^o through two ion-exchange columns, each containing a 2:1 mixture of anionic and cationic resins (Amberlite IR-120, H-form, Amberlite IRA-400, OH⁻form). This treatment removes ions and lipid impurities. Care is taken to exclude CO₂, and the solution is stored at -15^o. [Möller et al. *Trans Faraday Soc* 57 312 1961.] More complete lipid removal is achieved by lyophilising the de-ionised solution, covering the dried albumin (human serum) with a mixture of 5% glacial acetic acid (v/v) in iso-octane (previously dried with Na₂SO₄) and allowing it to stand at 0^o (without agitation) for upwards of 6hours before decanting and discarding the extraction mixture, washing with iso-octane, re-extracting, and finally washing twice with iso-octane. The purified albumin is dried under vacuum for several hours, then dialyzed against water for 12-24hours at room temperature, lyophilised, and stored at -10^oC [Goodman *Science* 125 1296 1957]. It has been recrystallised in high (35%) and in low (22%) EtOH solutions from Cohn's Fraction V.

The high EtOH recrystallisation is as follows: To 1kg of Fraction V albumin paste at -5° is added 300mL of 0.4 M pH (pH 5.5) acetate buffer in 35% EtOH pre-cooled to -10° and 430 mL of 0.1 M NaOAc in 25% EtOH also at -10° . Best results are obtained by adding all of the buffer and about half of the NaOAc and stirring slowly for 1hour. The rest of the NaOAc is added when all the lumps have disintegrated. The mixture is set aside at -5° for several days to crystallise. 35% EtOH (1 L) is then added to dilute the crystalline suspension and lower the ionic strength prior to centrifugation at -5° (yield 80%). The crystals are further dissolved in 1.5 volumes of 15% EtOH/0.02M NaCl at -5° and clarified by filtration through washed, calcined diatomaceous earth. This solution may be recrystallised by re-adjusting to the conditions in the first crystallisation, or it may be recrystallised at 22% EtOH with the aid of a very small amount of decanol (enough to give a final concentration of 0.02%). Note that crystallisation from lower EtOH concentration gave better purification (i.e. by removing globulins and carbohydrates) and producing a more stable product.

The low EtOH recrystallisation is as follows: To 1kg of Fraction V at -10° to -15° is added 500mL of 15% EtOH at -5°, stirred slowly until a uniform suspension is formed. To the 15% EtOH (500mL) is added sufficient 0.2M NaHCO₃ solution (125-150mL) at 0° to bring the pH (1:10 dilution) to 5.3. Some temperature rise occurs, and care must be taken to keep the temperature $< -5^{\circ}$. If the albumin is incompletely dissolved a small amount of H_2O is added (100mL at a time at 0°, allowing 15minutes between additions). Undissolved albumin can be easily distinguished from small amounts of undissolved globulins, or as the last albumin dissolves, the appearance of the solution changes from milky white to hazy grey-green in colour. Keep the solution at -5° for 12hours and filter by suspending in 15g of washed fine calcined diatomaceous earth, and filtering using a Büchner funnel precoated with coarser diatomaceous earth. The filtrate may require two or more similar filtrations to give a clear solution. To crystallise the filtrate, add through a capillary pipette, and with careful stirring, 1/100volume of a solution containing 10% decanol and 60% EtOH (at -10°), and seed with the needle-type albumin crystals. After 2-3days, crystallisation is complete. The crystals are centrifuged off. These are suspended with gentle mechanical stirring in one-third their weight of 0.005 M NaCl pre-cooled to 0°. With careful stirring, H₂O (at 0°) is added slowly in an amount equal to 1.7 times the weight of the crystals. At this stage there is about 7% EtOH, and the temperature cannot be made lower than -2.5° to -1° . Clarify, and collect as above. [Cohn et al. J Am Chem Soc 69 1753 1947.]

Human serum albumin has been purified similarly with 25% EtOH and 0.2% decanol. The isoelectric points of bovine and human serum albumins are 5.1 and 4.9, respectively.

Angiotensin (from rat brain) [70937-97-2] M_r 1524.8. Angiotensin is purified using extraction, affinity chromatography and HPLC [Hermann et al. Anal Biochem 159 295 1986].

Angiotensin-converting enzyme (ACE, peptidyl peptide hydrolase) (from rabbit lung) [9015-82-1] M 129,000 Dal (equilibrium sedimentation), $M_r \sim 140,000$ (SDS-PAGE) [EC 3.14.15.1]. Purify ACE by fractionation on DEAE-cellulose, Ca phosphate gel chromatography, elution from Sephadex G-200 and lectin affinity chromatography. The MW varied with glycosidation and is higher by gel filtration. It contains one atom of Zn/mol and has Km values for hydrolysis of hippurylhistidinylleucine and angiotensin I of 2.3 and 0.07 mM, and turnover of 15,430 and 792 mol/min/mol at 37°, respectively. The activity is inhibited by EDTA and increased amounts of Ca ions but required Ca ions. [Das & Soffer J Biol Chem 250 6762 1975, Reviewed by Ehlers & Riordan Biochemistry 28 5311 1989.]

Angiotensinogen (from procine plasma) [64315-16-8] M_r 59,400, 60,000, 62,600, 63,600 depending on sialic acid content. This rennin substrate is purified 390-fold from the serum by chromatography on Blue Sepharose, phenyl sepharose, hydroxyapatite and finally by affinity chromatography on 5-hydroxytryptamine (5-HT) sepharose to which it specifically binds to the 5-HT. It is applied to the latter column in 50mM sodium phosphate at pH 7 and after washing, it is eluted by increasing the ionic strength with 100mM sodium phosphate buffer containing 250mM NaCl. The multiple forms are separated by SDSPAGE and have pI 4.40-4.82. [Campbell et al. *Biochem J* 243 121 1987.]

Avidin (from egg white) [1405-69-2] $M_r \sim 70,000$. Avidin is purified by chromatography of an ammonium acetate solution on CM-cellulose [Green *Biochem J* 101 774 1966]. It is also purified by affinity chromatography on 2-iminobiotin-6-aminohexyl-Sepharose 4B [Orr *J Biol Chem* 256 761 1981]. It is a biotin-binding protein.

Azurin (from *Pseudomonas aeruginosa*) [12284-43-4] M_r 30,000. Azurin with $A_{625/280} = 0.56$ is purified by gel chromatography on G-25 Sephadex with 5mM phosphate pH 7 buffer as eluent [Cho et al. J *Phys Chem* 91 3690 1987]. It is a blue Cu protein used in biological electron transport, and its reduced form is obtained by adding a slight excess of Na₂S₂O₄. [See *Structure and Bonding* Springer Verlag, Berlin 23 1 1975.]

Bromelain (anti-inflammatory Ananase from pineapple) [37189-34-7] $M_r \sim 33,000$, [EC 3.4.33.4]. This protease has been purified *via* the acetone powder, G-75 Sephadex gel filtration and Bio-Rex 70 ion-exchange chromatography, and has $A_{lcm}^{1\%}$ 20.1 at 280nm. The protease from pineapple hydrolyses benzoyl glycine ethyl ester with a Km (app) of 210mM and k_{cat} of 0.36 sec⁻¹. [Murachi *Methods Enzymol* 19 273 1970, Balls et al. *Ind Eng Chem* 33 950 1941.]

Carbonic anhydrase (carbonate hydrolase) [9001-03-0] M_r 31,000 [EC 4.2.1.1]. Purify carbonic anhydrase by hydroxylapatite and DEAE-cellulose chromatography [Tiselius et al. Arch Biochem Biophys 65 132 1956, Biochim Biophys Acta 39 218 1960], and is then dialysed for crystallisation. A 0.5 to 1% solution of the enzyme in 0.05 M Tris-HCl pH 8.5 is dialysed against 1.75M solution of (NH₄)₂SO₄ in the same buffer, and this solution is slowly increased in salt concentration by periodic removal of small amounts of dialysate and replacing with an equal volume of 3.5M (NH₄)₂SO₄. The final salt concentration, in which the DEAE-cellulose fractions give beautiful birefringent suspensions of crystals, ranged from 2.4 to 2.7M and appeared first as fine crystals, then underwent transition to thin fragile plates. Carbonic anhydrase is a Zn enzyme which exists as several isoenzymes of varying degrees of activity [*J Biol Chem* 243 6474 *1968*, crystal structure: *Nature, New Biology* 235 131 *1972*; see also P.D. Boyer Ed. *The Enzymes* Academic Press NY, pp 587-665 *1971*].

Carboxypeptidase A (from bovine pancreas, peptidyl-L-aminoacid lyase) [11075-17-5] M_r 34,600 [EC 3.4.17.1]. Carboxypeptidase A is purified by DEAE-cellulose chromatography, activation with

trypsin and dialysed against 0.1M NaCl, yielding crystals. It is recrystallised by dissolving in 20 mL of M NaCl and dialysed for 24hours each against the following salts present in 500mL of 0.02M sodium veronal pH 8.0, 0.5M NaCl, 0.2M NaCl and 0.15M NaCl. The last dialysate usually induces crystallisation. If it does not crystallise, then dialyse the last solution against 0.02M sodium veronal containing 0.10M NaCl. Only 2 or 3 recrystallisations are required to attain maximum activity. [Cox et al. *Biochemistry* **3** 44 *1964*.] Enzyme activity is measured by hydrolysing hippuryl-L-phenylalanine (or phenylacetic acid) and observing the rate of change of optical density at 254nm (reaction extinction coefficient is ~0.592 cm²/ μ mole at pH 7.5) [Bergmyer *Methods in Enzymatic Analysis* (Academic Press) **1** 436 *1974*].

Cathepsin B (from human liver) [9047-22-7] M_r 27,500, [EC 3.4.22.1]. Cathepsin B is purified by affinity chromatography on the semicarbazone of Gly-Phe-glycinal-linked to Sepharose 4B, with elution by 2,2'-dipyridyl disulfide [Rich et al. *Biochem J* 235 731 1986, *Methods Enzymol* 80 551 1981].

Cathepsin D (from bovine spleen) [9025-26-7] M_r 56,000, [EC 3.4.23.5]. Cathepsin D is purified on a CM column after (NH₄)₂SO₄ fractionation and dialysis, then starch-gel electrophoresis and by ultracentrifugal analysis. Finally chromatograph on a DEAE column [Press et al. *Biochem J* 74 501 1960].

Ceruloplasmin (from human blood plasma) [9031-37-2] M_r **134,000.** This blue protein is the principal Cu transporter (up to 90% of circulating Cu) and is purified by precipitation with polyethylene glycol 4000, batchwise adsorption and elution from QAE-Sephadex, and gradient elution from DEAE-Sepharose CL-6B. Ceruloplasmin is thus purified 1640-fold and is homogeneous on anionic polyacrylamide gel electrophoresis (PAGE), SDS-PAGE, isoelectric focusing and low-speed equilibrium centrifugation. It has λ_{max} at 280, 260nm ($A_{1cm}^{1\%}$ 14.9, 0.68). [Oestnuizen Anal Biochem **146** 1 1985, Cohn et al. J Am Chem Soc **68** 459 1946.]

Chemokines. These are small proteins formed from longer precursors and are chemo-attractants for lymphocytes and lymphoid organs. They are characterised by having cysteine groups in specific relative positions. The two largest families are the α and β families that have four cysteine residues arranged (C-X-C) and (C-C) respectively. The mature chemokines have ~70 amino acids with internal cys S-S bonds and attract myeloid type cells *in vitro*. The γ -family (Lymphotactin) has only two cys residues. The δ -family (Neurotactin, Fractalkine) has the C-C-X-X-X-C sequence (*ca* 387 amino acids), binds to membrane and promotes adhesion of lymphocytes. The soluble domain of human Fractalkine 'chemo-attracts' monocytes and T cells. Several chemokines are available commercially (some prepared by recombinant DNA techniques), including 6Ckine/exodus/SLC which belongs to the β -family with 6 cysteines (110 amino acids, mature protein), as the name implies (C-C-C-X....X-C-C) and homes lymphocytes to secondary lymphoid organs with lymphocyte adhesion antitumor properties. Other chemokines available are C10 (β CC) and Biotaxin. Several chemokine receptors and antibodies are available commercially and can generally be used without further purification. [Murphy "Molecular biology of lymphocyte chemo-attractant receptors" in *Ann Rev Immunol* **12** 593 *1994*.]

Chirazymes. These are commercially available enzymes, e.g. lipases, esterases, that can be used for the preparation of a variety of optically active carboxylic acids, alcohols and amines. They can cause regio and stereospecific hydrolysis and do not require cofactors. Some can be used also for esterification or transesterification in neat organic solvents. The proteases, amidases and oxidases are obtained from bacteria or fungi, whereas esterases are from pig liver and thermophilic bacteria. For preparative work the enzymes are covalently bound to a carrier and do not therefore contaminate the reaction products. Chirazymes are available from Roche Molecular Biochemicals and are used without further purification.

\alpha-Chymotrypsin [9004-07-3] $M_r \sim 25000$, [EC 3.4.21.1]. α -Chymotrypsin is crystallised twice from four-tenths saturated ammonium sulfate solution, then dissolved in 1mM HCl and dialysed against 1mM HCl at 2-4°. The solution is stored at 2° [Lang et al. J Am Chem Soc 80 4923 1958].

Citric acid cycle components (from rat heart mitochondria). These are resolved by anionexchange chromatography [LaNoue et al. *J Biol Chem* 245 102 *1970*].

611

Clostripain [9028-00-6] $M_r \sim 55,000$, [EC 3.4.22.8]. Clostripain is isolated from *Clostridium* histolyticum callogenase by extraction in pH 6.7 buffer, followed by hydroxylapatite chromatography with a 0.1-0.2 M phosphate gradient, then Sephadex G-75 gel filtration with 0.05M phosphate pH 6.7, dialysis and a second hydroxylapatite chromatography (gradient elution with 0.1M \rightarrow 0.3M phosphate, pH 6.7). It has proteinase and esterase activity and is assayed by hydrolysing *N*-benzoyl-L-arginine methyl ester. [Mitchell & Harrington *J Biol Chem* 243 4683 1968, Methods Enzymol 19 635 1970.]

Colicin E1 (from *E.coli*) [11032-88-5]. M_r 56,000, pI 9.5. Colicin E1 is purified (8.6-fold to Specific Activity of 1.5 x 10⁵ units/mg) from *E.coli* JC411 by salt extraction of extracellular-bound colicin followed by $(NH_4)_2SO_4$ (40-60% saturation) fractionation and ion-exchange chromatography on a DEAE-Sephadex A 50 column, and then by CM-Sephadex column chromatography [Schwartz & Helinski *J Biol Chem* 246 6318 1971].

Collagenase (from human polymorphonuclear leukocytes) [9001-12-1] M_r 68,000-125,000 [EC 3.4.24.3]. Collagenase is purified by using *N*-ethylmaleimide to activate the enzyme, and wheat germ agglutinin-agarose affinity chromatography [Callaway et al. *Biochemistry* 25 4757 1986].

Copper-zinc-superoxide dismutase (from blood cell haemolysis) [9054-89-1] $M_r \sim 32,000$ [EC 1.15.1.1]. The dismutase is purified by DEAE-Sepharose and copper chelate affinity chromatography. The preparation is homogeneous by SDS-PAGE, by analytical gel filtration chromatography and by isoelectric focusing [Weselake et al. *Anal Biochem* 155 193 1986, Fridovich J Biol Chem 244 6049 1969].

Cytochrome c_1 (from horse, beef or fishes' heart, or pigeon breast muscle) [9007-43-6] $M_r \sim 13,000$. Cytochrome c_1 is purified by chromatography on CM-cellulose (CM-52 Whatman) [Brautigan et al. *Methods Enzymol* 53D 131 1978]. It has a high PI (isoelectric point) and has been purified further by adsorption onto an acidic cation exchanger, e.g. Amberlite IRC-50 (polycarboxylic) or in ground form Amberlite XE-40 (100-200 mesh) or Decalso-F (aluminium silicate), where the non-cytochrome protein is not adsorbed and is readily removed. The cytochrome is eluted using a solution containing 0.25g ions/L of a univalent cation at pH 4.7 adsorbed onto the NH₄⁺ salt of Amberlite IRC-50 at pH 7, washed with H₂O and then with 0.12M NH₄OAc to remove non-cytochrome protein. When the cytochrome begins to appear in the eluate, then the NH₄OAc concentration is increased to 0.25 M. The fractions with *ca* Fe = 0.465-0.467 are collected, dialysed against H₂O and adsorbed onto a small IRC-50 column and eluted with 0.5M NH₃, then dialysed and lyophilised. (A second fraction II can be eluted from the first resin with 0.5M NH₃ but is discarded). [Keilin & Hartree *Biochemical Preparations* **1** 1 1952, Margoliash *Biochemical Preparations* **8** 33 1957.]

Cytochrome c has been recrystallised as follows: The above eluate (ca 100mL) is dialysed against H₂O (10 vols) at 4° for 24hours (no more), then passed through an XE-40 column (2 x 1 cm above) which is equilibrated with 0.1M NH₄OAc pH 7.0. The column is washed with 0.1% (NH₄)₂SO₄ pH 8.0, and the dark red resin in the upper part of the column is collected and in 0.1% (NH₄)₂SO₄ pH 8.0 is transferred to another column (7mm diameter) and the cytochrome c is eluted with 5% (NH₄)₂SO₄ pH 8.0. More than 98% of the red colour is collected in a volume of ca 4mL in a weighed centrifuge tube. Add a drop of octanol and 0.43g of (NH₄)₂SO₄/g of solution. When the salt has dissolved, ascorbic acid (5mg) is added as well as a few drops of 30% NH₃, and it is kept at 10° for 10minutes (turns lighter colour due to reduction). Then add finely powdered $(NH_4)_2SO_4$ in small portions (stir with a glass rod) until the solution becomes turbid. Stopper the tube tightly, and set aside at 15-25° for 2 days while the cytochrome c separates as fine needles or rosettes. Further $(NH_4)_2SO_4$ (20mg) are added per mL of suspension and kept in the cold for a few days to complete the crystallisation. The crystals are collected by centrifugation (5000xg), suspended in saturated (NH₄)₂SO₄ (pH 8.0 at 10°), then centrifuged again. For recrystallisation the crystals are dissolved in the least volume of H_2O , one drop of ammonia and 1 mg of ascorbic acid are added and the above process is repeated. The yield of twice recrystallised cytochrome c from 2Kg of muscle is *ca* 200 mg, but this varies with the source and freshness of the muscle used. The crystals are stored as a solid after dialysis against 0.08M NaCl or 0.1M sodium buffer and lyophilising, or as a suspension in saturated (NH₄)₂SO₄ at 0°. [Hagihara et al. Biochemical Preparations 6 1 1958.]

Purity of cytochrome c: This is checked by the ratio of the absorbance at 500nm (reduced form) to 280nm (oxidised form), i.e. $\varepsilon_{500}/\varepsilon_{280}$ should be between 1.1 and 1.28, although values of up to 1.4 have been obtained for pure preparations.

For the preparation of the *reduced form* see Margoliash *Biochemical Preparations* **5** 33 1957 and Yonetani *Biochemical Preparations* **11** 19 1966.

Cytochrome from *Rhodospirillum rubrum* ($\varepsilon_{270}/\varepsilon_{551}$ 0.967) is purified by chromatography on a column of CM-Whatman cellulose [Paleus & Tuppy *Acta Chem Scand* **13** 641 *1959*].

Cytochrome c oxidase (from bovine heart mitochondria). [9001-16-5] M_r 100,000/haeme, [EC 1.9.3.1]. The oxidase is purified by selective solubilisation with Triton X-100 and subsequently with lauryl maltoside, finally by sucrose gradient centrifugation [Li et al. *Biochem J* 242 417 1978].

It has also been purified by extraction in 0.02 M phosphate buffer (pH 7.4) containing 2% of cholic acid (an inhibitor which stabilises as well as solubilises the enzyme) and fractionated with $(NH_4)_2SO_4$ collecting the 26-33% saturation cut and refractionating again and collecting the 26-33% saturation fraction. The pellet collected at 10,000xg appears as an oily paste. The cholate needs to be removed to activate the enzyme as follows: The precipitate is dissolved in 10mL of 0.1M phosphate buffer pH 7.4, containing 1% of Tween-80 and dialysed against 1L of 0.01 M PO₄ buffer (pH 7.4) containing 1% of Tween-80 for 10hours at 0° and aliquoted. The enzyme is stable at 0° for 2 weeks and at -15° for several months. It is assayed for purity (see reference) by oxidation of reduced cytochrome c (Km 10 μ M). [Yonetani *Biochemical Preparations* **11** 14 *1966*, *J Biol Chem* **236** 1680 *1961*.]

Cytokines See chemokines, interferons, interleukins.

Deoxyribonucleic acid (from plasmids). These are purified by two buoyant density ultracentrifugations using ethidium bromide-CsCl. The ethidium bromide is extracted with Et_2O , and the DNA is dialysed against buffered EDTA and lyophilised. [Marmur & Doty *J Mol Biol* **5** 109 *1962*, Guerry et al. *J Bacteriol* **116** 1064 *1973*.] See "Introduction" in Chapter 6.

Dermatan sulfate (condroitin sulfate B from pig skin) M_r 20,000-36,000 [54328-33-5 (Na salt)]. Dermatan sulfate is purified by digestion with papain and hyaluronidase, and fractionation using aqueous EtOH. [Gifonelli & Roden *Biochemical Preparations* 12 1 1968.]

Dihydrofolate reductase (from *Mycobacterium phlei*) [9002-03-3] $M_r \sim 18,000$ [EC 1.5.1.3]. Dihydrofolate reductase is purified by (NH₄)₂SO₄ precipitation, then fractionation on a Sephadex G-75 column, applied to a Blue Sepharose column and eluted with 1mM dihydrofolate. [Al Rubeai & Dole *Biochem J* 235 301 1986.]

Dihydropteridine reductase (from sheep liver) [9074-11-7] M_r 52,000, [EC 1.6.99.7]. Dihydropteridine reductase is purified by fractionation with ammonium sulfate, dialysed against Tris buffer, adsorbed and eluted from hydroxylapatite gel. It is then run through a DEAE-cellulose column and also subjected to Sephadex G-100 filtration. [Craine et al. J Biol Chem 247 6082 1972.]

Dihydropteridine reductase (from human liver) [9074-11-7] M_r 52,000, [EC 1.6.99.7]. Dihydropteridine reductase is purified to homogeneity on a naphthoquinone affinity adsorbent, followed by DEAE-Sephadex and CM-Sephadex chromatography. [Firgaira, Cotton and Danks, *Biochem J* 197 31 1981.] [For other dihydropteridine reductases see Armarego et al. *Med Res Rev* 4(3) 267 1984.]

3,4-Dihydroxyphenylalanine-containing proteins. Boronate affinity chromatography is used in the selective binding of proteins containing 3,4-dihydroxyphenylalanine to a *m*-phenylboronate agarose column and eluted with 1M NH₄OAc at pH 10. [Hankus et al. *Anal Biochem* **150** 187 *1986*.]

Dipeptidyl aminopeptidase (dipeptidyl peptidase IV, from rat brain) [9031-94-1, 54249-88-6] M_r 87,500 (monomer SDS-PAGE), (88,107 from nucleotide sequence), up to 4000,000 [EC 3.4.14.5]. The aminopeptidase is purified about 2000-fold by column chromatography on CMcellulose, hydroxylapatite and Gly-Pro AH-Sepharose. [Imai et al. J Biochem (Tokyo) 93 431 1983, Schomburg & Schomburg Springer Handbook of Enzymes 2nd Edn vol 6 p 286 2002.] **DNA (deoxyribonucleic acids).** The essential structures of chromosomes are DNA and contain the genetic "blueprint" in the form of separate genes. They are made up of the four deoxyribonucleic acids (nucleotides): adenylic acid, guanylic acid, cytidylic acid and thymidylic acid (designated A, G, C, T respectively) linked together by their phosphate groups in ester bonds between the 3' and 5' hydroxy groups of the 2'-deoxy-D-ribose moiety of the nucleotides. The chains form a double-stranded spiral (helix) in which the two identical nucleotide sequences run antiparallel with the heterocyclic bases hydrogen bonded (A....T, G....C) forming the "ladder" between the strands. Short sequences of DNA are available commercially, are commercially custom made or synthesised in a DNA synthesiser and purified by HPLC. Their purity can be checked by restriction enzyme cleavage followed by gel electophoresis, or directly by gel electrophoresis or analytical HPLC. Commercial DNAs are usually pure enough for direct use but can be further purified using commercially available kits involving binding to silica or other matrices and eluting with Tris buffers. There are now rapid "throughput" techniques for sequencing DNA which are very accurate.

Dopamine-β-hydroxylase (from bovine adrenal medulla) [9013-38-1] M_r ~290,000, [EC **1.14.17.1**]. The Cu-containing glycoprotein enzyme has been isolated by two procedures. The first is an elaborate method requiring extraction, two (NH₄)₂SO₄ fractionations, calcium phosphate gel filtration, EtOH fractionation, DEAE-cellulose chromatography followed by two Sephadex-G200 gel filtrations giving enzyme with a specific activity of 65 Units/mg. [Friedman & Kaufman J Biol Chem 240 4763 1965, Rush et al. Biochem Biophys Res Commun 61 38 1974.] The second procedure is much gentler and provides good quality enzyme. Sedimented chromaffin vesicles are lysed in 10 volumes of 5mM K-phosphate buffer pH 6.5 using a loosely fitting Teflon-glass homogeniser. The mixture is centrifuged at 40,000xg/0.5hours, and the supernatant is diluted with an equal volume of 100mM phosphate buffer (pH 6.5) containing 0.4M NaCl. This lysate is applied to a concanavelin A-Sepharose column (4 x 0.7cm) which had been equilibrated with 50 mM of phosphate buffer (pH 6.5 + 0.2M NaCl) with a flow rate of ~ 0.3 mL/minute. The column is washed thoroughly with the buffer until OD_{280nm} is 0.005. The enzyme is then eluted with the same buffer containing $10\% \alpha$ -methyl-D-mannoside (flow rate 0.1 mL/minute), and the enzyme is collected in 20-column volumes. The pooled eluate is concentrated by ultrafiltration in an Amicon Diaflo stirrer cell using an XM100A membrane. The concentrated enzyme is dialysed against 50mM phosphate buffer (pH 6.5) containing 0.1% NaCl. The enzyme gives one band (+ two very weak bands) on disc gel electrophoresis indicating better than 93% purity (67% fold purification) and has a specific activity of 5.4 Units/mg. [Rush et al. Biochem Biophys Res Commun 57 1301 1974, Stewart & Klinman Ann Rev Biochem 57 551 1988.]

Exonucleases. Like the endonucleases they are restriction enzymes which act at the 3' or 5' ends of linear DNA by hydrolysing off the nucleotides. Although they are highly specific for hydrolysing nucleotides at the 3' or 5' ends of linear DNA, the number of nucleotides cleaved is time dependent and usually has to be estimated from the time allocated for cleavage. Commercially available exonucleases are used without further purification.

Ferritin (from human placenta) [9007-73-2] $M_r \sim 445,000$ (Fe free protein). The purification of this major iron-binding protein is achieved by homogenisation in water and precipitation with ammonium sulfate, repeating the cycle of ultracentrifugation, and molecular sieve chromatography through a Sephadex 4B column. Isoelectric focusing reveals a broad spectrum of impurities which can be separated by ion-exchange chromatography on Sephadex A-25 and stepwise elution. [Konijn et al. Anal Biochem 144 423 1985.]

Fibrinogen (from human plasma) [9001-32-5] M_r 341,000. This protein is made up of $2A\alpha,2B\beta$ and 2γ subunits connected by disulfide bridges. A likely impurity is plasminogen. It is purified by glycine precipitation [Mosesson & Sherry *Biochemistry* 5 2829 1966] to obtain fractions 1-2, then further purified [Blombäck & Blombäck *Arkiv Kemi* 10 415 1956] and contaminating plasminogen is removed by passage through a lysine-Sepharose column. Such preparations are at least 95% clottable as determined by Mosesson and Sherry's method (above ref.) in which the OD₂₈₀ is measured before and after clotting with 5 Units/mL of thrombin (> 3000U/mg). All fibrinogen preparations are treated with calf intestinal alkaline phosphatase to convert any fibrinogen peptide-AP to fibrinogen peptide-A by removing serine-bound phosphate. Solutions are then lyophilised and stored at -20°. [Higgins & Shafer *J Biol Chem* 256 12013 1981.] It is sparingly soluble in H₂O. Aqueous solutions are viscous with isoelectric point at pH 5.5. It is readily denatured by heating

above 56° or by chemical agents, e.g. salicylaldehyde, naphthoquinone sulfonates, ninhydrin or alloxan. [Edsall et al. *J Am Chem Soc* **69** 2731 *1947*, Purification: Cama et al. *Naturwissenschaften* **48** 574 *1961*, Lorand & Middlebrook *Science* **118** 515 *1953*, *cf.* Fuller in *Methods Enzymol* **163** 474 *1988*.]

For plasminogen-deficient fibrinogen from blood plasma, the anticoagulated blood is centrifuged and the plasma is frozen and washed with saline solution. It is treated with charcoal, freeze-thawed and dialysed *versus* Tris/NaCl buffer. [Maxwell & Nikel *Biochemical Preparations* **12** 16 *1968*.]

Fibronectin (from human plasma) [86088-83-7] $M_r \sim 220,000$. This glycoprotein contains 5-12% of carbohydrate. It has been purified by glycine fractionation and DEAE-cellulose chromatography. This material is dissolved in 0.25M Tris-phosphate buffer pH 7.0, diluted to 20% and glycine added gradually till 2.1M when the temperature falls to below 15°. The precipitate contains mainly fibrinogen. The supernatant is discarded, and the precipitate is treated with an equal volume of H₂O, cooled (to 0°) and precipitated by adding EtOH to 16% (v/v) at -4°. The precipitate contains some CI (Cold Insoluble) globulin, fibronectin and small quantities of other proteins. To remove these the precipitate is dissolved in 0.25M Tris-phosphate buffer (pH 7.0) *ca* 0.5% and purified by DEAE-cellulose chromatography after diluting the buffer to 0.05M buffer. [Morrison et al. *J Am Chem Soc* 70 3103 1948, Mosesson & Umfleet *J Biol Chem* 245 5728 1970, Mosesson & Amrani *Blood* 56 145 1980, Akiyama & Yamada *Adv Enzymol* 59 51 1987.]

Follicle Stimulating Hormone (FSH, follitropin) [9002-68-0] $M_r \sim 36,000$. FSH is purified by Sephadex G100 gel filtration followed by carboxymethyl-cellulose with NH₄OAc pH 5.5. The latter separates luteinising hormone from FSH. Its solubility in H₂O is 0.5%. It has an isoelectric point of 4.5. A solution of 1mg in saline (100mL) can be kept at 60° for 0.5hour. Activity is retained in a solution at pH 7-8 for 0.5hour at 75°. The activity of a 50% aqueous EtOH solution is destroyed at 60° in 15minutes. [Bloomfield et al. *Biochim Biophys Acta* 533 371 1978, Hartree *Biochem J* 100 754 1966, Pierce & Parsons Ann Rev Biochem 50 465 1981.]

B-Galatosidase (from bovine testes) [9031-11-2] M_r 510,000, [EC 3.2.1.23]. It is purified 600-fold by (NH₄)₂SO₄ precipitation, acetone fractionation and affinity chromatography on agarose substituted with terminal thio-β-galactopyranosyl residues. [Distlern & Jourdian *J Biol Chem* 248 6772 1973.]

Glucose oxidase (from *Aspergillus niger)* [9001-37-0] M_r **186,000, [EC 1.1.3.4].** The oxidase is purified by dialysis against deionized water at 6° for 48hours and by molecular exclusion chromatography with Sephadex G-25 at room temperature. [Holt & Cotton J Am Chem Soc **109** 1841 1987.]

Glucose-6-phosphate dehydrogenase [9001-40-5] Mr 128,000 (from Baker's yeast), 63,300 (from rat mammary gland), [EC 1.1.1.49]. The enzyme is useful for measuring pyridine nucleotides in enzyme recycling. The enzyme from Baker's yeast has been purified by (NH₄)₂SO₄ fractionation, Me₂CO precipitation, a second (NH₄)₂SO₄ fractionation, concentration by DEAE-SF chromatography, a third (NH₄)₂SO₄ fractionation and recrystallisation. Crystallisation is induced by addition of its coenzyme NADP, which in its presence causes rapid separation of crystals at (NH₄)₂SO₄ concentration much below that required to precipitate the amorphous enzyme. To recrystallise, the crystals are dissolved in 0.01M NADP (pH 7.3) with $(NH_4)_2SO_4$ at 0.55 saturation, and the crystals appear within 10 to 60minutes. After standing for 2-3days (at 4°) the (NH₄)₂SO₄ is increased to 0.60 of saturation, and more than 80% of the activity in the original crystals is recovered in the fresh crystals. [Noltmann et al. J Biol Chem 236 1255 1961]. Large amounts can be obtained from rat livers. The livers are extracted with 0.025M phosphate buffer (pH 7.5) and precipitated with $3M (NH_4)_2SO_4 (70\% \text{ of activity})$. The precipitate is dissolved in 3volumes of 0.025M phosphate (pH 7.5), dialysed against this buffer + 0.2mM EDTA at 4° for 5hours, then diluted to 1% protein and the nucleic acids are precipitated by addition of 0.4volumes of 1% protamine sulfate. (NH₄)₂SO₄ is added to a concentration of 2M (pH adjusted to 7.0 with NH₃), the precipitate is discarded and the supernatant is adjusted to 2.8M $(NH_4)_2SO_4$, dialysed, and the protein is adjusted to 1% and treated with $Ca_3(PO_4)_2$ gel. The gel is added in three steps (1.5mL of 0.4% gel/mL per step), and the gel is removed by centrifugation after each addition. The third gel adsorbed 50% of the activity. The gel is eluted with 0.2M phosphate buffer (pH 7.4, 40mL/g of gel; 60% recovery). The extract is precipitated in 3volumes of $(NH_4)_2SO_4$ (adjusted to 4M) to give enzyme with an activity of 30µmoles/mg of protein per hour. [Lowry et al. J Biol Chem 236 2746 1961.] The Km values for the yeast enzyme are 20μ M for G-6P and 2μ M for NADP (Tris pH 8.0, 10^{-2} M MgCl₂, 38°) [Noltmann & Kuby *The Enzymes* VII 223 *1963*].

Glutathione S-transferase (human liver) [50812-37-8] M_r 25,000, [EC 2.5.1.18]. It is purified by affinity chromatography using a column prepared by coupling glutathione to epoxy-saturated Sepharose. After washing contaminating proteins, the pure transferase is eluted with buffer containing reduced glutathione. The solution is then concentrated by ultrafiltration, dialysed against phosphate buffer at pH ~7 and stored in the presence of dithiothreitol (2mM) in aliquots at <-20°. [Simons & Vander Jag Anal Biochem 52 334 1977.]

Glyceraldehyde-3-phosphate dehydrogenase [9001-50-7] M_r **144,000,** [EC 1.2.1.12]. Purify the dehydrogenase from rabbit muscle by extraction with 0.03N KOH and precipitate it with (NH₄)₂SO₄ (0.52 of saturation). The clear supernatant is adjusted to pH 7.5, and NH₃ is added dropwise to pH 8.2-8.4. Crystals appear sometimes even without seeding. The crystals are dissolved in H₂O, filtered to remove suspended material and 2 volumes of saturated (NH₄)₂SO₄ at pH 8.2-8.4 is added. After 1hour the crystals appear. Recrystallise it in the same way. [Cori et al. *J Biol Chem* **173** 605 *1948*, Furfine & Velick *J Biol Chem* **240** 844 *1965*, *The Enzymes* **7** 243 *1963*, Lui & Huskey *Biochemistry* **31** 6998 *1992*.] The Km values are: NADH (3.3µM) and 1,3-diphosphoglycerate (8x10⁻⁷M) in pH 7.4 imidazole buffer at 26°, NAD (13µM), glyceraldehyde-3-P (90µM), P_i (2.9x10⁻⁴M), and arsenate (69µM) in 8.6 M NaHCO₃ buffer at 26°C. [Orsi & Cleland *Biochemistry* **11** 102 *1972*.]

Glycerol kinase (from *Candida mycoderma*, *E coli*, rat or pigeon liver glycerokinase) [9030-66-4] M_r 251,000, [EC 2.7.1.30]. Commercial enzyme has been dialysed against 2mM Hepes, 5mM dithiothreitol and 0.3mM EDTA, followed by several changes of 20mM Hepes and 5mM dithiothreitol prior to storage under N₂ at -20°. [Knight & Cleland *Biochemistry* 28 5728 1989.] The enzyme from pigeon liver is purified by acid-precipitation (acetate buffer at pH 5.1), (NH₄)₂SO₄ fractionation, heat treatment (60°/ 1hour), calcium phosphate gel filtration, a second (NH₄)₂SO₄ fractionation, dialysis, elution of inert proteins and crystallisation. This is done by repeatedly extracting the precipitate from the last step with 0.05M sodium pyrophosphate (pH 7.5) containing 1mM EDTA and 0.2M (NH₄)₂SO₄ is added. Careful addition of solid (NH₄)₂SO₄ to this solution leads to crystallisation of the enzyme. Recrystallisation is repeated. The enzyme is activated by Mg²⁺ and Mn²⁺ ions and is most stable in solutions in the pH 4.5-5.5 range. The stability is greatly increased in the presence of glycerol. It has Km for glycerol of 60µM and for ATP 9µM in glycine buffer pH 9.8 and 25°. [Kennedy *Methods Enzymol* 5 476 1962.]

L-Glycerol-3-phosphate dehydrogenase (GDH, from rabbit muscle) [9075-65-4] M_r 78,000 [EC 1.1.1.8]. The dehydrogenase is recrystallised by adding (NH₄)₂SO₄ to 0.45 saturation at pH 5.5 at 4°C, and the small amount of precipitate is removed, then a saturated solution of (NH₄)₂SO₄ is added dropwise from time to time over several days in the cold room. The crystals are collected and recrystallised until they have maximum activity. The enzyme is stable in half-saturated (NH₄)₂SO₄ for several weeks at 4°. The equilibrium [dihydroxyacetone][NADH][H⁺]/[G-3-P][NAD] is 1.0 x 10⁻¹²M in Tris buffer at 25°. It uses NAD ten times more efficiently than NADP. The Km for G-3-P is 1.1 x 10⁻⁴M, for NAD it is 3.8 x 10⁻⁴M and for dihydroxyacetone it is 4.6 x 10⁻⁴M in phosphate buffer pH 7.0 and at 23.3°. Dihydroxyacetone phosphate and fructose-1,6-diphosphate are inhibitors. [Branowski *J Biol Chem* 180 515 *1949*, *The Enzymes* 7 85 *1963*, Young & Pace Arch Biochem Biophys 75 125 *1958*, Walsh & Sallach Biochemistry 4 1076 *1965*.]

Glycogen synthase (from bovine heart) [9014-56-6] M_r 60,000, [EC 2.4.1.11]. Purify the synthase by precipitation in the presence of added glycogen by polyethylene glycol, chromatography on DEAE-Sephacel and high-speed centrifugation through a sucrose-containing buffer. [Dickey-Dunkirk & Kollilea Anal Biochem 146 199 1985.]

Haemoglobin A (from normal human blood) [9008-02-0] $M_r \sim 64,500$, amorphous. Purify it from blood using CM-32 cellulose column chromatography. [Matsukawa et al. J Am Chem Soc 107 1108 1985.] For the purification of the α and β chains see Hill et al. Biochemical Preparations 10 55 1963.

Histones (from S4A mouse lymphoma). The purification of histones uses a macroprocess column, heptafluorobutyric acid as solubilising and ion-pairing agent and an acetonitrile gradient. [McCroskey et al. *Anal Biochem* **163** 427 *1987*.]

Hyaluronidase [9001-54-1, 37326-33-3] M_r 43,000 (bovine testes), 89,000 (bacterial), [EC 3.2.1.35]. Hyaluronidase is purified by chromatography on DEAE-cellulose prior to use. [Distler & Jourdain J Biol Chem 248 6772 1973.]

3-Hydroxy butyrate dehydrogenase (from *Rhodopseudomonas spheroides)* [9028-38-0] M_r ~85,000, [EC 1.1.1.30], amorphous. Purify the dehydrogenase by two sequential chromatography steps on two triazine dye-Sepharose matrices. [Scavan et al. *Biochem J* 203 699 1982.]

Interferons [α **IFN**, β **IFN and** γ **IFN**]. Interferons are a family of glycosylated proteins and are cytokines which are produced a few hours after cells have been infected with a virus. Interferons protect cells from viral infections and have antiviral activities at very low concentrations (~3 x 10⁻⁴ M; less than 50 molecules are apparently sufficient to protect a single cell). Double-stranded RNAs are very efficient inducers of IFNs. There are three main types of IFNs. The α IFNs are synthesised in lymphocytes, and the β IFNs are formed in infected fibroblasts. The α and β families are fairly similar, consisting of *ca* 166 to 169 amino acids. Although γ IFNs are also small glycosylated proteins (*ca* 146 amino acids), they are different because they are not synthesised after viral infections but are produced by lymphocytes when stimulated by **mitogens** (agents that induced cell division).

Several of these IFNs of mouse and human lymphocytes and fibroblasts are available commercially and have been best prepared in quantity by recombinant DNA procedures because they are produced in very small amounts by the cells. The commercial materials do not generally require further purification for their intended purposes. [Pestkas, Interferons and Interferon standards and general abbreviations, *Methods Enzymol*, Wiley & Sons, **119** *1986*, ISBN 012182019X, Lengyel, Biochemistry of interferons and their actions, *Ann Rev Biochem* **51** 251-282 *1982*, De Maeyer & De Maeyer-Guignard, Interferons in *The Cytokine Handbook*, 3rd Edn, Thomson et al. Eds, pp. 491-516 *1998* Academic Press, San Diego, ISBN 0126896623.]

Interleukin (from human source). Purify these using lyophilisation and desalting on a Bio-Rad P-6DC desalting gel, then two steps of HPLC, first with hydroxylapatite, followed by a TSK-125 size exclusion column. [Kock & Luger *J Chromatogr* **296** 293 *1984*.]

Interleukin-2 (recombinant human) [94218-72-1] M_r ~15,000, amorphous. Purify it by reverse phase HPLC. [Weir & Sparks *Biochem J* 245 85 1987, Robb et al. *Proc Natl Acad Sci USA* 81 6486 1984.]

Interleukins (IL-1, IL-2 —IL18]. Interleukins are cytokines which cause a variety of effects including stimulation of cell growth and proliferation of specific cells, e.g. stem cells, mast cells, activated T cells, colony stimulating factors etc., as well as stimulating other ILs, prostaglandins release etc. They are small glycosylated proteins (*ca* 15 kD, 130-180 amino acids produced from longer precursors) and are sometimes referred to by other abbreviations, e.g. IL-2 as TCGF (T cell growth factor), IL-3 as multi-CSF (multilineage colony stimulating factor, also as BPA, HCSF, MCSF and PSF). They are produced in very small amounts and are commercially made by recombinant DNA techniques in bacteria or Sf21 insect cells. Interleukins for human (h-IL), mouse (m-IL) and rat (r-IL) are available, and up to IL-18 are available commercially in such purity that they can be used directly without further refinement, particularly those that have been obtained by recombinant DNA procedures which are specific. As well as the interleukins, a variety of antibodies for specific IL reactions are available for research or IL identification. [Symons et al. Lymphokines and Interferons, *A Practical Approach*, Clemens et al. Eds, p.272 *1987*, IRL Press, Oxford, ISBN 1852210354, 1852210362, Thomson et al. Eds, *The Cytokine Handbook*, 3rd Edn, *1998*, Academic Press, San Diego, ISBN 0126896623.]

Lactate dehydrogenase (from dogfish, Beef muscle) [9001-60-9] M_r 140,000, [EC 1.1.1.27]. A forty-fold purification of the dehydrogenase is effected by affinity chromatography using

Sepharose 4B coupled to 8-(6-aminohexyl)amino-5'-AMP or -NAD⁺. [Lees et al. *Arch Biochem Biophys* **163** 561 *1974*, Pesce et al. *J Biol Chem* **239** 1753 *1964*.]

Lactoferrin (from human whey) [55599-62-7, Fe Salt] $M_r \sim 90,000$. This iron-binding protein is purified by direct adsorption on cellulose phosphate by batch extraction, then eluted by a stepped salt and pH gradient. The Fe bound protein forms red crystals with λ max at 465nm (pH 8.2). [Foley & Bates Anal Biochem 162 296 1987.]

Lectins (proteins and/or glycoproteins of non-immune origin that agglutinate cells, e.g. from seeds of *Robinia pseudoacacia*), $M_r \sim 100,000$. Lectins are purified by precipitation with $(NH_4)_2SO_4$ and dialysed, then chromatographed on DE-52 DEAE-cellulose anion-exchanger, hydroxylapatite and Sephacryl S-200. [Wantyghem et al. *Biochem J* 237 483 1986.]

Lectins are a group of proteins that are classed as sugar-binding proteins or glycoproteins of non-immune origin and which agglutinate cells and/or precipitate glyco-conjugates. They are present in plants (seeds, roots, leaves or bark) and some invertebrates (snails, clams, crabs) and have M_r values of 10,000-400,000. They may contain Mn^{2+} and/or Ca²⁺. Mono- or oligo- saccharides of appropriate specificity inhibit lectins. Some lectins are specific to human blood groups and induce mitosis in lymphocytes. [Goldstein *Nature* **286** 66 *1980*.]

Lipoprotein lipase (from bovine skimmed milk) [9004-02-8] M_r ~34,000 and 63,000 (SDSPAGE), 96,900 (sedimentation and diffusion), 100,000-120,000 (gel filtration) [EC 3.1.1.34]. Purify the lipase by affinity chromatography on heparin-Sepharose; Ki 0.026mM for very low density lipoprotein. It is inhibited by 2-mercaptoethanol, Cys, Ca, Hg, Mg and Mn ions. Protamine sulfate, 1mg of bovine serum albumin/mL or in 50% glycerol at -70°, stabilises the lipase for several days. 60% loss of activity occurs at 0°/1hour in the presence of 1% of bovine serum albumin. [Shirai et al. *Biochim Biophys Acta* 665 504 1981.]

Lipoproteins (from human plasma). Individual human plasma lipid peaks are removed from plasma by ultracentrifugation; then they are separated and purified by agarose-column chromatography. Fractions are characterised immunologically, chemically, electrophoretically and by electron microscopy. [Rudel et al. *Biochem J* **13** 89 *1974*.]

Lipoteichoic acids (from gram-positive bacteria) [56411-57-5]. The acids are extracted by hot phenol/water from disrupted cells. Nucleic acids are also extracted and are removed by treatment with nucleases. Nucleic resistant acids, proteins, polysaccharides and teichoic acids are separated from lipoteichoic acids by anion-exchange chromatography on DEAE-Sephacel or by hydrophobic interaction on octyl-Sepharose [Fischer et al. *Eur J Biochem* **133** 523 *1983*].

Lysozyme (Muramidase, N-acetylmuramyl hydrolase, N-acetylmuramide, peptidoglycan Nacetylmuramoyl hydrolase, Globulin G₁) [human 174883-18-2, from human neutrophils 9001-63-2, from human milk 12671-19-1, from chicken egg white 126050-88-3, chloride from chicken egg white 9066-59-5] M 14,400 ± 100 , E_{280nm} 2.65 (c 1mg/mL) Isoelectric Point (IP) 10.5-11.0, [EC 3.2.1.17]. Lysozymes from human and bird sources are 129 amino acid enzymes that contain four disulfide bonds. Hen lysozyme was isolated in quantity from chicken egg white, crystallised, and its X-ray crystalline structure was determined [Phillips Proc Natl Acad Sci USA 57 484 1967]. Lysozyme occurs in many tissues of invertebrate and vertebrate animals. It is found in milk, blood serum and various secretions (saliva, nasal mucus and tears). It also occurs in some moulds and in the latex of certain plants. Lysozyme from human milk was studied in some detail and is very similar to the hen enzyme [Jolles & Jolles Helv Chim Acta 52 2671 1969 and 54 2668 1971]. Lysozyme is a glycosidase which dissolves various bacterial cell walls [particularly Gram-positive bacteria (which have surface lipoproteins) to give spheroblasts, and various Gram-negative bacteria in the presence of EDTA in hypotonic solutions, or non-ionic detergents]. Bacterial cell walls contain $1,4-\beta$ -N-acetylglycosaminyl oligosaccharides which are cleaved by the enzyme at the glycosidic C-O bond between the 4th and 5th sugar residues from the non-reducing end of the chain. The mechanism and kinetics of this hydrolysis have been studied extensively [cf Fersht Enzyme Structure and Mechanism, 2nd edn, W.H. Freeman & Co, Reading 1985, ISBN 0716716151]. Lysozyme was an extremely useful antibacterial in

the pre-antibiotic era. It is a basic protein with 20-22 basic residues and only 3-4 acidic groups (see their isoelectric points); it forms soluble salts and is stable up to 55° .

It is purified from egg white by chromatography through Amberlite IRC50 at pH 7.18 in 0.2M phospate buffer followed by recrystallisation at pH 9.5 by adding NaCl to a concentration of 5%. Alternatively ~1L of homogenised egg white in the absence of air (from 3 dozen eggs) is added to a 10% suspension of Bentonite [1302-78-9] (150mL, a native hydrated aluminium silicate) in 1% aqueous KCl, and stirred vigorously enough to avoid excessive foaming for ~5minutes to give a smooth suspension. Separate the clay by centrifugation, wash it twice with 0.5M phosphate buffer (300mL each, pH 7.5) and three times with 5% aqueous pyridine (300mL each) while decanting from the clay and discarding inactive supernatants. From the combined washed clay, lysozyme is extracted out twice with 300mL of 5% aqueous pyridine (adjusted to pH5 with H₂SO₄ using a glass electrode). The combined extracts are dialysed against running tap H₂O (at 12-15^o) until free from pyridine odour and dialysed further for 24hours. Essentially pure amorphous lysozyme is obtained by lyophilising the dialysate below 25°. Crystalline isoelectric lysozyme is obtained from the amorphous powder by adding 0.5g of NaCl to a 5% aqueous solution of the enzyme (10mL), adjusting the pH to 9.5-10 (glass electrode) with aqueous NaOH and storing at 4°, whereby it crystallises out. Crystalline lysozyme carbonate is obtained from the amorphous powder by adding 0.5g of NaHCO₃ to a 5% aqueous solution of the enzyme (10mL), giving a final pH of 8.0-8.5 (glass electrode) with aqueous NaOH and allowing to stand at room temperature, whereby the carbonate crystallises out. Crystalline lysozyme chloride is obtained from a 5% solution of amorphous powder by adjusting the pH to 4.5 with hydrochloric acid (glass electrode) followed by solid NaCl to 5%, and storing at 4°, whereby the chloride crystallises out in 4 to 5days. [Alderton & Fevold J Biol Chem 164 1 1946, Fevold & Alderton *Biochemical Preparations* I 67 1949.] Other salts include the L-ascorbate [119189-24-1], the lactate [72497-48-4], the phosphate [72497-47-3] and the 2,3-dihydroxypropyl dihydrogen phosphate [119189-23-01.

Dialysis and recrystallisation are simple and yield enzyme of high purity. Several forms of crystals are obtained depending on the pH of the crystallising solution. The activity of lysozyme is measured by the rate of decrease of turbidity (at 570nm) as hydrolysis of acetone-dried cell walls of the Gram-positive bacterium *Micrococcus lysodeikitus* (as substrate) occurs on addition of the enzyme [Hirs *Methods Enzymol* I 124 *1968*].

At high concentrations or in the presence of albumin, lysozyme can be lyophilised or desalted without loss of activity. Freezing and thawing does not inactivate it, and Na⁺, Mg²⁺, Ag⁺, Ca²⁺, and Cu²⁺ exert an activating effect. It can be stored for several weeks at -20° without inactivation, and in the presence of 0.1% of bovine serum albumin it can be stored for months at -20° without inactivation. [*Springer Handbook of Enzymes* 2nd edn. Schonburg & Schonburg eds (A. Chang co-ed) Springer-Verlag Berlin, Heidelberg, **Volume** 12 2003 ISBN 3-540-00519-6.]

Agarose-bound lysozyme from hen egg (5,000-10,000 Units/g of solid), a lysozyme Biotin-caproyl solution (20,000 U/mg) and a carboxymethylated-maleylated lysozyme (Lysozyme-RCM, reduced form), and lysozyme of up to 100,000 U/mg protein are commercially available.

A T_4 bacteriophage lysozyme (from phage grown on *E.coli* B¹) [12585-29-4] was extracted and freed from DNA, cell debris, intact cells and acidic proteins by precipitation with Rivanol (6,9-diamino-2-ethoxyacridine *dl*-lactate). The filtrate was purified by concentration through an Amberlite IRC50 column which was thoroughly washed with 0.1M phosphate buffer pH 6.5 containing 10^{-3} M MgSO₄ and eluted with the phosphate buffer at pH 5.8 containing a 0 to 0.5M NaCl gradient. This was repeated twice, followed by gel filtration through Sephadex G-75 in pH 5.8 phosphate buffer and eluted with 0.5M NaCl. The eluate was dialysed against H₂O and lyophilised to give a 1500-fold purification with 40% recovery. Like the hen lysozyme it is a basic protein but with 164 amino acid residues, and it is unstable >40°. [Tsugita et al. *J Biol Chem* **243** 391 *1968*, Inouye et al. *J Biol Chem* **245** 3439, 3479 *1970*, Matthews *Biochim Biophys Acta* **405** 442 *1975*].

Metallothionein (from rabbit liver) [9038-94-2]. Purify it by precipitation to give Zn- and Cdcontaining protein fractions and running it on a Sephadex G-75 column, then isoelectric focusing to give two protein peaks [Nordberg et al. *Biochem J* 126 491 1972, Comeau et al. *Prep Biochem* 22 151 1992]. **Myoglobin (from sperm whale muscle).** [9047-17-0] $M_r \sim 17,000$. Myoglobin is purified by CMcellulose chromatography and Sephadex G-50 followed by chromatography on Amberlite IRC-50 Type III or BioRex 70 (<400mesh). The crystalline product as a paste in saturated (NH₄)₂SO₄ at pH 6.5-7.0 may be stored at 4° for at least 4years unchanged, but must not be kept in a freezer. [Anres & Atassi *Biochemistry* **12** 942 1980, Edmundson *Biochemical Preparations* **12** 41 1968.]

5'-Nucleotidase (from Electric ray, *Torpedo sp*) [9027-73-0] [EC 3.1.3.5], amorphous. Purify it by dissolving it in Triton X-100 and deoxycholate, and by affinity chromatography on concanavalin A-Sepharose and AMP-Sepharose [Grondal & Zimmerman *Biochem J* 245 805 1987].

Orosomucoid (glycoprotein α_1 acid, from human plasma) [66455-27-4] M_r 42000-44000, amorphous. Purify the glycoprotein α_1 acid by passage through a carboxymethyl cellulose column, then through a Sephadex G-25 column. [Aronson et al. J Biol Chem 243 4564 1968.]

Papain [9001-73-4] $M_r \sim 21,000$, [EC 3.4.22.2], amorphous. A suspension of 50g of papain (freshly ground in a mortar) in 200mL of cold water is stirred at 4° for 4hours, then filtered through a Whatman No 1 filter paper. The clear yellow filtrate is cooled in an ice-bath while a rapid stream of H₂S is passed through it for 3hours, and the suspension is centrifuged at 2000rpm for 20minutes. Sufficient cold MeOH is added slowly with stirring to the supernatant to give a final MeOH concentration of 70 vol%. The precipitate, collected by centrifuged, and the enzyme is again precipitated with MeOH. The process is repeated four times. [Bennett & Niemann J Am Chem Soc 72 1798 1950.] Papain has also been purified by affinity chromatography on a column of GlyGlyTyrArg-agarose [Stewart et al. J Am Chem Soc 109 3480 1986].

Pepsin [9001-75-6] M_r 31,500(human), 6000(hog), [EC 3.4.23.1]. Pepsin is re-chromatographed on a column of Amberlite CG-50 using a pH gradient prior to use. Crystallise it from EtOH. [Richmond et al. *Biochim Biophys Acta* 29 453 1958, Huang & Tang, *J Biol Chem* 244 1085 1969, 245 2189 1970.]

Pertussis toxin (from *Bordetella pertussis)* [70323-44-3] M_r **117,000.** Purify the toxin by stepwise elution from 3 columns comprising Blue Sepharose, Phenyl Sepharose and hydroxylapatite, and the purity is checked by SDS-PAGE. [Svoboda et al. *Anal Biochem* **159** 402 *1986*, *Biochemistry* **21** 5516 *1982*, *Biochem J* **83** 295 *1978*.]

Phosphatase alkaline (alkaline phosphatase) [9001-78-9] M_r ~40,000 (bovine liver), ~140,000 (bovine intestinal mucosa), 80,000 (E.coli), [EC 3.1.3.1]. The *E.coli* supernatant in sucrose (20%, 33mM) in Tris-HCl pH 8.0 is purified through a DEAE-cellulose column and recrystallised. To the column eluates in 0.125M NaCl is added MgCl₂ (to 0.01M) and brought to 50% saturation in (NH₄)₂SO₄ by adding the solid (0.20g/mL). The mixture is centrifuged to remove bubbles and is adjusted to pH 8.0 (with 2N NaOH). Saturated (NH_4)₂SO₄ at pH 8.0 is added dropwise until the solution becomes faintly turbid (~61% saturation). It is set aside at ~25° for 1hour (turbidity will increase). The mixture is placed in an ice bath for several minutes when turbidity disappears and a clear solution is obtained. It is then placed in a large ice bath at 0° (~5L) and allowed to warm slowly to room temperature in a dark room whereby crystals are formed appearing as a silky sheen. The crystals are collected by centrifugation at 25° if necessary. The crystalline solutions are stable at $\sim 25^{\circ}$ for many months. They can be stored at 0° , but are unstable when frozen. Cysteine at 10⁻³M and thioglycolic acid at 10⁻⁴M are inhibitory. This is reversed on addition of Zn²⁺ ions. Many organic phosphates are good substrates for this phosphatase. [Molamy & Horecker Methods Enzymol 9 639 1966, Torriani et al. Methods Enzymol 12b 212 1968, Engstrom Biochim Biophys Acta 92 71 1964.]

Alkaline phosphatase from rat osteosarcoma has been purified by Me₂CO precipitation and chromatography on DEAE-cellulose, Sephacryl S-200, and hydroxylapatite. [Nair et al. *Arch Biochem Biophys* **254** 18 *1987*.]

Phosphoproteins (various). These are purified by adsorbing onto an iminodiacetic acid substituted agarose column to which are bound ferric ions. This chelate complex acts as a selective immobilised metal affinity adsorbent for phosphoproteins. [Muszyfiska et al. *Biochemistry* **25** 6850 *1986*.]

5'-Phosphoribosyl pyrophosphate synthetase (from human erythrocytes, or pigeon or chicken liver) [9015-83-2] M_r 60,000, [EC 2.7.6.1]. It is purified 5100-fold by elution from DEAE-cellulose, fractionation with (NH₄)₂SO₄, filtration on Sepharose 4B and ultrafiltration. [Fox & Kelley J Biol Chem 246 5739 1971, Flaks Methods Enzymol 6 158 1963, Kornberg et al. J Biol Chem 15 389 1955.]

Pituitary Growth Factor (from human pituitary gland) [336096-71-0]. It is purified by heparin and copper affinity chromatography, followed by chromatography on carboxymethyl cellulose (Whatman 52). [Rowe et al. *Biochemistry* **25** 6421 1986.]

Plasmids. These are circular lengths of *double-stranded* DNA which invade bacteria or other cells, e.g. insect cells, yeast cells, and have sequences which are necessary for their replication using enzymes and other ingredients, e.g. nucleotides, present in the cells. They contain engineered, or already have, genes which produce enzymes that provide the cells with specific antibiotic resistance and are thus useful for selecting bacteria containing specific plasmids. Plasmids have been extremely useful in molecular biology since they can be very easily identified (from their size or the sizes of the DNA fragments derived from their restriction enzyme digests) and can be readily engineered in vitro (outside the cells). Genes coding for specific enzymes or other functional proteins can be inserted into these plasmids which have DNA sequences that allow the expression of large quantities of bacterial or non-bacterial (e.g. human) proteins. They have also been engineered in such a way as to produce "fusion proteins" (in which the desired protein is fused with a specific "reporter, marker or carrier protein" which will facilitate the isolation of the desired protein (e.g. by binding strongly to a nickel support), and then the desired protein can be cleaved from the eluted fusion protein and obtained in very pure form. A large number of plasmids with a variety of sequences for specific purposes are commercially available in very pure form. They can be used to infect cells and can be isolated and purified from cell extracts in large amounts using a number of available procedures. These procedures generally involve lysis of the cells (e.g. with alkaline sodium dodecylsulfate, SDS), separation from nuclear DNA, precipitation of plasmid DNA from the cell debris, adsorbing it on columns which specifically bind DNA, and then eluting the DNA from the column (e.g. with specific Tris buffers as recommended by the suppliers) and precipitating it (e.g. with Tris buffer in 70% EtOH at -70°C). The purity is checked on agarose gels (containing ethidium bromide to visualise the DNA) by electrophoresis. A large number of plasmids are now commercially available (see Clontech GmbH, http://www.clontech.com, Invitrogen http://www.invitrogen.com, among other suppliers) and used as vectors for bacterial, mammalian, yeast and insect cells, and for baculovirus expression.

Protamine kinase (from rainbow trout testes) [37278-10-7] [EC 2.7.1.70]. Partial purification of the kinase is achieved by hydoxylapatite chromatography followed by biospecific chromatography on nucleotide coupled Sepharose 4B [the nucleotide is 8-(6-aminohexyl)amine coupled cyclic-AMP]. It requires Mg ions specifically but is inactivated by Ca, Mn, Cu, Zn ions and thiol compounds. [Jergil & Dixon J Biol Chem 245 1425 1970, Jergil et al. Biochem J 139 441 1974.]

Protamine sulfate (from herring sperm) [9007-31-2] $[\alpha]_{D}^{22}$ -85.5° (saturated H₂O), pK²⁵ 7.4-8.0. Protamine sulfate is a strongly basic protein (white powder, see pK) used to precipitate nucleic acids from crude protein extracts. It dissolves to the extent of 1.25% in H₂O. It is freely soluble in hot H₂O but separates as an oil on cooling. It has been purified by chromatography on an IRA-400 ion-exchange resin in the SO²₄form and is washed with dilute H₂SO₄. Eluates are freeze-dried under high vacuum below 20°. This method is used to convert proteamine and protamine hydrochloride to the sulfate. [UV: Rasmussen *Hoppe Seyler's Z Physiol Chem* **224** 97 *1934*, Ando & Sawada *J Biochem (Tokyo)* **49** 252 *1961*, Felix & Hashimoto *Hoppe Seyler's Z Physiol Chem* **330** 205 *1963*.]

Protease nexin (from cultured human fibroblasts) [148263-58-5]. It is purified by affinity binding of protease nexin to dextran sulfate-Sepharose. [Farrell et al. *Biochem J* 237 707 1986.]

Proteins. These are usually naturally occurring (or deliberately synthesised in microorganisms, e.g. bacteria, insect cells, or animal tissues), and are composed of a large number of α -*S* (L)amino acid residues (except for L-cysteine which has the *R* absolute configuration), selected from the 20 or so natural amino acids, in specific sequences and in which the α -amino group forms an amide (peptide) bond with the α -carboxyl group of the neighbouring amino acid. The number of residues is usually upwards of 100. Proteins with less than 100 amino acids are better referred to as **polypeptides**. Aqueous soluble proteins generally fold into ball-like structures mainly with hydrophilic residues on the outside of the "balls" and hydrophobic residues on the inside. Proteins can exist singly or can form dimers, trimers, tetramers etc., consisting of similar or different protein subunits. They are produced by cells for a large variety of functions, e.g. enzymology, reaction mediation as in regulation of DNA synthesis or chaperonins for aiding protein folding, formation of pores in membranes for transport of ions or organic molecules, or for intra or intercellular signalling etc. The purity of proteins can be checked in denaturing (SDS, sodium dodecylsulfate) or non-denaturing polyacrylamide gels using electrophoresis (PAGE), and staining appropriately (e.g. with Coommassie Blue, followed by silver staining for higher sensitivity). If the protein is partly impure, then it should be purified further according to the specific literature procedures for the individual protein (see specific proteins in the *Methods Enzymol*, Wiley series).

Proteoglycans (from cultured human muscle cells). These are separated by ion-exchange HPLC using a Bio-gel TSK-DEAE 5-PW analytical column. [Harper et al. *Anal Biochem* **159** 150 *1986*.]

Prothrombin (Factor II, from equine blood plasma) [9001-26-7] M_r 72,000. Prothrombin is purified by two absorptions on a barium citrate adsorbent, followed by decomposition of the adsorbents with a weak carboxylic cation-exchanger (Amberlite IRF-97), isoelectric precipitation (pH 4.7-4.9) and further purification by chromatography on Sephadex G-200 or IRC-50. Finally it is recrystallised from a 1% solution adjusted to pH 6.0-7.0 and partial lyophilisation to *ca* 1/5 to 1/10th volume and set aside at 2-5° to crystallise. Occasionally seeding is required. [Miller *Biochemical Preparations* 13 49 1971.]

Prymnesin (toxic protein from phytoflagellate *Pyrymnesium parvum*) [11025-94-8]. Prymnesin is purified by column chromatography, differential dissolution and precipitation in solvent mixtures and differential partition between diphasic mixtures. The product has at least 6 components as observed by TLC. [Ulitzur & Shilo *Biochim Biophys Acta* **301** 350 1970.]

Pyruvate kinase isoenzymes (from Salmonella typhimurium) [9001-59-6] M_r 64,000, [EC 2.7.1.40], amorphous. These are purified by $(NH_4)_2SO_4$ fractionation and gel filtration, ion-exchange and affinity chromatography. [Garcia-Olalla & Garrido-Pertierra *Biochem J* 241 573 1987.]

Renal dipeptidase (from porcine kidney cortex) [9031-96-3] M_r 47,000, [EC 3.4.13.11]. The dipeptidase is purified 700-fold by homogenising the tissue, extracting with Triton X-100, elimination of insoluble material, and ion-exchange, size exclusion and affinity chromatography. [Hitchcock et al. *Anal Biochem* 163 219 1987.]

Restriction enzymes (endonucleases). These are enzymes which cleave double-stranded DNA (linear or circular) at specific nucleotide sequences within the DNA strands which are then used for cloning (by ligating bits of DNA sequences together) or for identifying particular DNA materials, e.g. plasmids, genes etc. A very large number of restriction enzymes are now available commercially and are extensively used in molecular biology. They are highly specific for particular nucleotide arrangements and are sensitive to the reaction conditions, e.g. composition of the medium, pH, salt concentration, temperature etc, which have to be strictly adhered to.

Endonucleases are essentially of two types. One type cleaves the DNA producing *blunt ends*, i.e. the nucleotides are paired at each end. The second type cleaves the DNA leaving *hanging ends*, i.e. the nucleotides at the ends of each strand (usually four nucleotides) of the double strands protrude ahead of the paired nucleotides. The latter enzymes particularly allow ligation of the cleaved sequence to occur in a desired direction.

The enzymes do not require further purification, and the reaction conditions are also provided by the suppliers from which the necessary reaction media can also be purchased (see commercial catalogues).

Reverse transcriptase (from avian or murine RNA tumour viruses) [9068-38-6] M_r ~170,000, [EC 2.7.7.49]. This enzyme produces the complementary DNA from the RNA (as template). These are purified by solubilising the virus with non-ionic detergents. Lysed virions are adsorbed on DEAE-cellulose or DEAE-Sephadex columns, and the enzymes are eluted with a salt gradient, then chromatographed on a phosphocellulose column and fractions with enzyme activity are eluted in a salt gradient. They are also purified from other viral proteins by affinity chromatography on a pyran-Sepharose column. [Verna *Biochim Biophys Acta* 473 1 1977, Smith *Methods Enzymol* 65 560 1980; see commercial catalogues for other transcriptases.]

Ribonuclease (from human plasma) [9001-99-4] $M_r \sim 13,700$, [EC 3.1.27.5], amorphous. Purify it by $(NH_4)_2SO_4$ fractionation, followed by PC cellulose chromatography and affinity chromatography (using Sepharose 4B to which $(G)_n$ is covalently bonded). [Schmukler et al. J Biol Chem 250 2206 1975.]

Ribozymes. These are ribonucleic acids which act like protein enzyme in catalyzing the making and breaking of peptide bonds as well as catalyzing reactions and cleavage of DNA and RNA molecules. The short RNAs are being intensively studied (see RNAi below). MicroRNAs (miRNA, see also below) are ubiquitous and are also genetically produced. They are involved in numerous reactions from splicing RNA, e.g. mRNA (messenger RNA) to controlling transcription of DNA to RNA, and translation of RNA to protein. Each miRNA is capable of being involved in a small number to hundreds of interactions with nucleic acids and with proteins.

Ricin (toxin from Castor bean *Ricinus communis*) [A chain 96638-28-7, B chain 96638-29-8] $M_r \sim 30,000$, amorphous. Crude ricin, obtained by aqueous extraction and $(NH_4)_2SO_4$ precipitation, is chromatographed on a galactosyl-Sepharose column with sequential elution of pure ricin. The second peak is due to ricin agglutinin. [Simmons & Russell Anal Biochem 146 206 1985.] It is an inhibitor of protein synthesis. EXTREMELY DANGEROUS, USE EXTREME CARE [instructions accompany product].

RNA (ribonucleic acids). Ribonucleic acids are like DNA except that the 2'-deoxy-D-ribose moiety is replaced by a D-ribose moiety and the fourth nucleotide thymidylic acid (T) is replaced by uridylic acid (U). RNA does not generally form complete duplex molecules like DNA, i.e. it is generally monomeric, except in certain viruses. The two main classes of RNA are messenger-RNA (mRNA) and transfer-RNA (tRNA). Pre-mRNAs are transcribed from the DNA genes, and non-coding segments (the introns) are spliced out to give the mRNAs which code for specific proteins. There are many different tRNAs, at least one of which is linked to a specific α -amino acid that binds to the mRNA via the ribosome (a set of proteins) to the RNA triplets (three nucleotides) which code for the particular α -amino acids. An enzyme then joins the α -amino acids of two adjacent tRNA- α -amino acid ribosome complexes bound to the mRNA to form a peptide bond. Thus peptide bonds and consequently polypeptides and proteins coded by the DNAs, via the respective mRNA, are produced. Martin et al. [Biochem J 89 327 1963] purified RNA by dissolving it (5g) in 90mL of 0.1mM EDTA, then homogenised this with 90mL of 90% (w/v) phenol in water using a Teflon pestle. The suspension was stirred vigorously for 1 hour at $\sim 20^{\circ}$, then centrifuged for 1 hour at 0° at 25000 rpm. The lower (phenol) layer was extracted four times with 0.1mM EDTA, and the aqueous layers were combined, then made 2% (w/v) with respect to AcOK and 70% (v/v) with respect to EtOH. After standing overnight at -20°, the precipitate was centrifuged down, dissolved in 50mL of 0.1mM EDTA, made 0.3M in NaCl and kept for 3days at 0°. The purified RNA was then centrifuged down at 10000xg for 30minutes, dissolved in 100mL of 0.1mM EDTA, dialysed at 4° against water, and freeze-dried. It was stored at -20° in a desiccator. Michelson [J Chem Soc 1371 1959] dissolved 10g of RNA in water, added 2M ammonia to adjust the pH to 7, then dialysed in Visking tubing against five volumes of water for 24hours. The process was repeated three times; then the material after dialysis was treated with 2M HCl and EtOH to precipitate the RNA which was collected, washed with EtOH, ether and dried [see commercial catalogues for further examples]. RNAs are now routinely sequenced.

RNAi (*interfering* **RNA**). RNAi technology has exploded during the past five years and has become invaluable for exploring gene function, interaction and control. It has considerable potential in therapeutics. This came about from the discovery that a double-stranded RNA (**dsRNA**) complementary to the coding sequence of a muscle protein "turned off" the gene instead of enhancing the effect. It seemed that the dsRNA activated the cellular machinery to degrade the target mRNA. This led to the development and the use of

interfering RNA (RNAi) to "silence" specific genes. This silencing of genes comes in various different forms. It can be brought about by *short interfering* RNA (**siRNA**), *micro* RNA (**miRNA**) and *short-hairpin* RNA (**shRNA**). RNA can be notoriously unstable in biological systems, e.g. its half-life in serum is ~6minutes, but recently methods have been devised (using nanoparticle delivery systems) where they are more stable and can be used to target specific cancer cells.

About 50% of the human genome is apparently transcribed into mRNA and translated into protein or used to produce small RNA fragments. miRNAs are small molecules of about 23 or less ribonucleotides which are cleaved from larger fragments of RNA transcripts encoded from within genes, or large tracts of DNA between the genes. miRNAs are a special group of non-coding RNAs which work by blocking (silencing) gene expression. More than 400 have been discovered in the human genome so far and some appear to regulate many genes, as in embryonic development, e.g., cell growth, apoptosis. A cancer-causing miRNA was identified and called *onco-mi*RNA. miRNA expression in particular cancers can now be quantified.

Single stranded RNAs consisting of 100s of bases fold back on themselves and undergo complementary baseparing to form double-stranded "short-hairpin" RNA (shRNA). The loop of the hair-pin is excised by endonucleases, e.g *Dicer*, to produce multiple functional miRNAs.

Many of the above RNAs for specific purposes are available commercially from several firms in high purity because they are synthetic. These firms will also synthesise particular RNAi's to suit one's requirements.

Subtilisin (from *Bacillus subtilis*) [9014-01-1] M_r 27,000 (sedimentation equilibrium) [EC 3.4.21.62]. This alkaline protease is purified 211-fold by affinity chromatography using 4-(4aminophenylazo)phenylarsonic acid complex to activated CH-Sepharose 4B. It is inhibited by 2-phenylethane boronic acid, PMSF, 3,4-dichloroisocoumarin, acetone and benzamide. [Chandraskaren & Dhar *Anal Biochem* **150** 141 *1985*, Schomburg & Schomburg *Springer Handbook of Enzymes* 2nd Edn vol 7 p 286 2002.]

Synexin (from bovine liver) M 47,000 Da. This Ca binding protein is purified by $(NH_4)_2SO_4$ precipitation, then by a specific pH step elution from a chromatofocusing medium in the absence of ampholytes. The pI is 7.5. [Scott et al. *Anal Biochem* **149** 163 *1985*.]

Thrombin (from bovine blood plasma) [9002-04-4] M_r 32,600, [EC 3.4.4.13]. Thrombin is purified by chromatography on a DEAE-cellulose column, while eluting with 0.1M NaCl, pH 7.0, followed by chromatography on Sephadex G-200. The final preparation is free from plasminogen and plasmin. [Yin & Wessler *J Biol Chem* 243 112 1968.] Thrombin from bovine blood is also purified by chromatography using *p*-chlorobenzylamino- ε -aminocaproyl agarose, and gel filtration through Sephadex G-25. [Thompson & Davie *Biochim Biophys Acta* 250 210 1971.]

Thrombin from various species was purified initially by precipitation of impurities with rivanol. [Miller *Nature* **184** 450 *1959*.]

Tissue inhibitor of metalloproteins (TIMP, from human blood plasma), $M_r \sim 30,000$. These are purified by an [anti-human amniotic fluid-TIMP]-Sepharose immuno-affinity column and eluted with 50mM glycine/HCl pH 3.0 buffer that is 0.5M in NaCl, and followed by gel filtration [Cawston et al. *Biochem J* 238 677 1986].

Transferrin (from human or bovine serum) [11096-37-0] $M_r \sim 80,000$. This transferrin is purified by affinity chromatography on phenyl-boronate agarose followed by DEAE-Sephacel chromatography. The product is free from haemopexin. [Cook et al. Anal Biochem 149 349 1985, Aisen & Listowsky Ann Rev Biochem 49 357 1980.]

Trehalase (from kidney cortex, α,α -trehalose glycohydrolase) [9025-52-9] M_r ~80,000, [EC 3.2.1.28]. This trehalase is purified by solubilising in Triton X-100 and sodium deoxycholate, and submitting to gel filtration, ion-exchange chromatography, conA-Sepharose chromatography, phenyl-Sepharose CL-4B hydrophobic interaction chromatography, Tris-Sepharose 6B affinity and hydrolyapatite chromatography. Activity is increased 3000-fold. [Yoneyama Arch Biochem Biophys 255 168 1987.]

T4-RNA ligase (from bacteriophage-infected *E.coli*) M_r **43,500, [EC 6.5.1.3** for RNA lyase]. This ligase is purified by differential centrifugation and separation on a Sephadex A-25 column, then through hydroxylapatite and DEAE-glycerol using Aff-Gel Blue to remove DNAase activity. (Greater than 90% of the protein in the enzyme preparation migrated as a single band on gradient polyacrylamide gels containing SDS during electrophoresis.) [McCoy et al. *Biochim Biophys Acta* **562** 149 *1979.*]

Ubiquinol-cytochrome c reductase (from beef heart mitochondria) [9027-03-6] [EC 1.10.2.2]. This reductase is purified by solubilising the crude enzyme with Triton X-100, followed by hydroxylapatite and gel chromatography. The minimum unit contains nine polypeptide subunits of M_r 6000 - 49000 kD. [Engel et al. *Biochim Biophys Acta* 592 211 1980.]

Uridine 5'-diphosphoglucose pyrophosphorylase (from rabbit skeletal muscle) [9029-22-6] M_r 350,000, [EC 2.7.7.9]. The pyrophosphorylase is purified by two hydrophobic chromatographic steps and gel filtration. [Bergamini et al. Anal Biochem 143 35 1984.] It is also purified from calf liver by (NH₄)₂SO₄ (40-58%) precipitation, Ca₃(PO₄)₂ gel filtration, DEAE-cellulose chromatography and recrystallisation [by dialysis against concentrations of (NH₄)₂SO₄ (from 10%) in 0.02M TEA, at 2.5% increments, until 20% (NH₄)₂SO₄ when it crystallises out [Hansen et al. Methods Enzymol 8 248 1966].

Urokinase (from human urine) [9039-53-6] M_r 53,000, [EC 3.4.21.31]. Crystallisation of this enzyme is induced at pH 5.0 to 5.3 (4°) by careful addition of NaCl with gentle stirring until the solution becomes turbid (silky sheen). The NaCl concentration is increased gradually (over several days) until 98% of saturation is achieved whereby urokinase crystallises out as colourless thin brittle plates. It can be similarly recrystallised to maximum specific activity [104K CTA units/mg of protein (Sherry et al. *J Lab Clin Med* 64 145 1964)]. [Lesuk et al. *Science* 147 880 1965, NMR: Bogusky et al. *Biochemistry* 28 6728 1989.] It is a plasminogen activator [Gold et al. *Biochem J* 262 1989, de Bock & Wang *Med Res Rev* 24(1) 13 2004].

Xylanase (from *Streptomyces lividans*) [37278-89-0] M_r 43,000, [EC 3.2.1.8]. This xylanase is purified by anion-exchange chromatography on an Accell QMA column and finally by HPLC using a ProteinPak DEAE 5PW anion-exchange column. Solutions are stored frozen at -70°. [Morosoli et al. *Biochem J* 239 587 1986, Wong et al. *Microbiol Rev* 52 305 1988.]

CAROTENOIDS

General

Carotenoids are polyene pigments that are mostly naturally occurring in bacteria, plants and animals. They have been isolated from the natural sources and obtained first by extraction with solvents and then purified by column chromatography through Al₂O₃ of various grades, Ca(OH)₂ alone or with CaCO₃, MgO or Silica Gel and eluted with solvents of various polarities. The progress of separation can be followed visually because the bands of most carotenoids are of various colours. The bands can be collected by elution, or the column can be extruded and the bands cut out and extracted with a polar solvent, e.g. MeOH. This chromatography can be repeated with the separate bands, and finally the carotenoids are recrystallised to analytical purity. The purity can be checked by TLC on Silica Gel or Al₂O₃ plates or paper chromatography and eluted in two dimensions. Gas-liquid or HPLC has been used for preparative work as well as for checking the purity and identifying them using internal standards such as tocopherol acetate (vitamin E acetate) and retinyl acetate.

Carotenoids are generally light sensitive, easily oxidised by air and are affected by traces of acid, e.g. in solvents. These cause the polyenes to bleach or polymerize. The necessary precautions are therefore required to minimize these effects during isolation, purification and storage. They are identified by their UV-VIS spectra, and their molar extinction coefficients at specific wavelengths (λ max) have been used for characterisation and for quantitation. More recently ORD, CD, NMR, IR and mass spectroscopy have been used extensively.

Bibliography

Carotenoids: Karrer & Jucker, Elsevier, 1950.

The Comparative Biochemistry of the Carotenoids: Goodwin, Chapman & Hall Ltd, 1952.

Carotenoids, Vol 2, IARC Handbooks of Cancer Prevention; International Agency for Research on Cancer, 1998; ISBN 92-832-0027 and 1207-5622.

Structures and Properties of Carotenoids in Relation to Function: Britton, FASEB J, 9 1551 1995.

Carotenoids: Goodwin, Ann Rev Biochem 24 497 1955.

Carotenoids, Vol 1A, Isolation and Analysis: Britton et al. Birkhaüser Verlag, Basel, 201 1995.

Carotenoids, Vol 1B, Spectroscopy: Britton et al. Birkhaüser Verlag, Basel, 201 1995.

Synthesis, Isolation and Spectra of 11 isomers of Zeaxanthin: Englert et al. Helv Chim Acta 74 969 1992.

Chromtography: Kushwaha et al. J Biol Chem 245 4708 1970.

HPLC: Khachik et al. Anal Chem 69 1873 1997.

HPLC: Khachik et al. Pure & Appl Chem 63 71 1996.

UV-VIS spectra: Zechmaster *Experientia* **10** 1 1954.

Classification of CD Spectra of Carotenoids: Sturzenegger et al. Helv Chim Acta 63 1074 1980.

ORD of Carotenoids: Bartlett et al. J Chem Soc (C) 2527 1969.

Carotenoids, Physical Chemical and Biological Functions and Properties: J.T.Lendrum, Taylor & Francis Ltd, 2008; ISBN 9781420052305.

Carotenoids handbook: H.P. Pfander, G. Britton and L-J. Synnove, Birkhauser Verlag AG, 2004; ISBN 9783764361808.

Carotenoids, Vol 5, Nutrition and Health, G. Britton, L-J. Synnove and H. Pfander, Birkhauser Verlag AG, 2008; ISBN 0783764375003.

Antheraxanthin (5,6-epoxy-zeaxanthin) [68831-78-7] M 584.8, m 205°, λ_{max} 460.5, 490.5nm, in CHCl₃. Likely impurities are violaxanthin (see later) and mutatoxanthin (which contains a dihydrofuran ring derived from the epoxy group of antheraxanthin). Purify it by chromatography on columns of Ca(OH)₂ and of ZnCO₃. It crystallises from *C6H6/MeOH as needles or thin plates. Store it in the dark, under N₂ or Ar at -20°. In CHCl₃/SbCl₂ it gives a blue colour with λ_{max} at 587nm and gives a stable blue colour with conc HCl. [Karrer & Oswald *Helv Chim Acta* 18 1303 *1935*, Karrer & Jucker *Helv Chim Acta* 28 300 *1945*.]

B-Apo-4'-carotenal [12676-20-9] M 414.7, m 139°, $A_{1cm}^{1\%}$ 2640 at 461nm. Recrystallise B-apo-4'carotenal from CHCl₃/EtOH mixture or *n*-hexane. [Bobrowski & Das J Org Chem 91 1210 1987, Beilstein 7 IV 1857.] *trans-*B-Apo-8'-carotenal [1107-26-2] M 414.7, m 136-139°. Recrystallise B-apo-8'-carotenal from CHCl₃/EtOH mixture or *n*-hexane. [Bobrowski & Das J Org Chem 91 1210 1987, Beilstein 7 III 2622, 7 IV 1782.]

B-Apo-8'-carotenoic acid ethyl ester [1109-11-1] **M 526.8, m 134-138°, A** $_{1cm}^{1\%}$ 2550 at 449nm. Recrystallise the ester from pet ether or pet ether/EtOAc. Store it in the dark under N₂ or Ar at -20°. [Beilstein 9 IV 2701 for Me ester]

B-Apo-8'-carotenoic acid methyl ester [16266-99-2] M 512.7, m 136-137°, $A_{1cm}^{1\%}$ 2575 at 446nm and 2160 at 471nm, in pet ether. Recrystallise the methyl ester from pet ether or pet ether/EtOAc. Store it in the dark in an inert atmosphere at -20°. [Beilstein 9 IV 2701.]

Astacin (β , β -carotene-3,3',4,4'-tetraone) [514-76-1] M 592.8, m 228°, 240-243°(evacuated tube), $\epsilon_{1cm}^{1\%}$ 550,000 at 498nm (pyridine). A probable impurity is astaxanthin (3,3'-dihydroxy- β , β -carotene-4,4'-dione). Purify astacin by chromatography on alumina/fibrous clay (1:4) or sucrose, or by partition between pet ether and MeOH (alkaline). Crystallise it from pyridine/water. Store it in the dark under N₂ at -20°. [Davis & Weedon *J Chem Soc* 182 *1960*, *Beilstein* 7 III 4797, H **30** 102.]

Bixin (6,6'-diapo- ψ , ψ -carotenedioic acid monomethyl ester) [6983-79-5] M 394.5, m 198°, 217°(dec), λ_{max} (CHCl₃) 209, 475 and 443nm, pK_{Est} ~4.3. Crystallise bixin from Me₂CO (violet prisms) [Pattenden et al. J Chem Soc (C) 235 1970]. [Beilstein 2 III 2020, 2 IV 2455, H 30 110.]

Canthaxanthin (*trans*) (β , β -carotene-4,4'-dione) [514-78-3] M 564.9, m 211-212°, 213°, ε_{mol} 124,100 (at 466nm, pet ether), 118,000 (at 484nm *C₆H₆). Purify canthaxanthin by chromatography on a column of deactivated alumina or magnesium oxide, or on a thin layer plate of silica gel G (Merck), using dichloromethane/diethyl ether (9:1) to develop the chromatogram. Crystallise it from CH₂Cl₂ or CH₂Cl₂/MeOH. Store in the dark and in an inert atmosphere at -20°. [*Beilstein* 7 III 4364, 7 IV 2680.]

Capsanthin $[(3R,3'S,5'R)-3,3'-dihydroxy-\beta,\kappa-carotene-6-one)$ [465-42-9] M 584.9, m 170°, λ_{max} 484 (ε_{mol} 121,000), inflexion at 515 nm, in hexane. Possible impurities are zeaxanthin and capsorubin (below). Purify capsanthin by chromatography on a column of alumina (grade IV) and develop with 0.2% EtOH in *C₆H₆. It crystallises from pet ether in red needles, IR: v_{max} 3600, 1664cm⁻¹, $\varepsilon_{1033}/\varepsilon_{1664} \sim 4.1$. [Baker et al. *J Chem Soc* 4019 1961, ORD & absolute config: Bartlett et al. *J Chem Soc* (*C*) 2527 1969.] The *di-O-acetate* is purified on an alumina (grade II) column in *C₆H₆ and it is recrystallised from MeOH with m 160-162°. [Faigle & Karrer *Helv Chim Acta* 44 1257 1961, Beilstein 8 II 415, 8 III 3047, 8 IV 2657.]

Capsorubin (3,3'-dihydroxy- κ , κ -carotene-6,6'dione) [470-38-2] M 604.9, m 218°, λ_{max} 443, 468, 503 nm, in hexane. Possible impurities are zeaxanthin and capsanthin. Purify capsorubin by chromatography on a column of CaCO₃ or MgO. Crystallise it from *benzene/pet ether or CS₂. [Beilstein 1 III 3327, 8 III 3873, 8 IV 3304.]

α-Carotene (6'*R*-α-carotene) [7488-99-5] M 536.9, m 184-188°, 187.5° (evacuated tube), [α] $_{643}^{20}$ +385° (c 0.08, *C₆H₆), [α] $_{D}^{25}$ +538°, λ_{max} 422, 446, 474 nm, in hexane, $A_{1cm}^{1\%}$ 2725 (at 446nm), 2490 (at 474nm), ε_{mol} 145,300 (at 455nm, hexane), and 456 (at 485nm, *C₆H₆). Purify α-carotene by chromatography on columns of calcium hydroxide, alumina or magnesia. Crystallise it from CS₂/MeOH, toluene/MeOH, diethyl ether/pet ether, or acetone/pet ether. Store it in the dark, under N₂ or Ar at -20°. It gives a blue colour with λ_{max} at 542nm when mixed with SbCl₃ in CHCl₃. [Karrer & Walker *Helv Chim Acta* 16 641 1933, Eugster et al. *Helv Chim Acta* 52 1729 1969, Eugster & Karrer *Helv Chim Acta* 38 610 1955, Strain J Biol Chem 105 523 1934, Beilstein 5 III 2457, 5 IV 2620.]

all-trans- β -Carotene [7235-40-7] M 536.9, m 178-179°, 179-180°, 180°, 181°, 183° (evacuated capillary), ε_{mol} 138,900 (at 450 nm, pet ether), 124,300 (at 462nm, *C₆H₆). It

forms purple prisms when crystallised from C_6H_6 /MeOH and red rhombs from pet ether. Its solubility in hexane is 0.1% at 0°. It is **oxygen sensitive** and should be stored under N₂ at -20° in the dark. It gives a deep blue colour with λ_{max} at 590nm when mixed with SbCl₃ in CHCl₃. UV: (C_6H_6) 429infl, λ_{max} at 454 and 484nm. The principal peak at 454nm has $A_{1cm}^{1\%}$ 2000. [Synthesis: Surmatis & Ofner *J Org Chem* **26** 1171 *1961*; Milas et al. *J Am Chem Soc* **72** 4844 *1950*.] β -Carotene is also purified by column chromatography (Al₂O₃ activity I-II). It is dissolved in pet ether/ C_6H_6 (10:1), applied to the column and eluted with pet ether/EtOH; the desired fraction is evaporated and the residue is recrystallised from C_6H_6 /MeOH (violet-red plates). [UV: Inhoffen et al. *Justus Liebigs Ann Chem* **570** 54, 68 *1950*; Review: Fleming *Selected Organic Synthesis* (J Wiley, Lond) pp. 70-74 *1973*.] Alternatively it can be purified by chromatography on a magnesia column, thin layer of Kieselguhr or magnesia. Crystallise it from CS₂/MeOH, Et₂O/pet ether, acetone/pet ether or toluene/MeOH. Store it in the dark, under an inert atmosphere, at -20°. Recrystallise it also from 1:1 EtOH/CHCl₃. [Bobrowski & Das *J Phys Chem* **89** 5079 *1985*, Johnston & Scaiano *J Am Chem Soc* **108** 2349 *1986*, Strain *J Biol Chem* **105** 523 *1934*, *Meth Biochem Anal* **4** 1 *1957*, *Beilstein* **5** II 638, **5** III 2453, **5** IV 2617.]

δ-Carotene (6*R*-ε,ψ-carotene) [472-92-4] M 536.9, m 140.4°, 142° (evacuated capillary) $[\alpha]_D^{25}$ +352° (c 16 hexane), $[\alpha]_{Cd}$ +317° (CS₂), λ_{max} 430, 456, 486nm (hexane). δ-Carotene crystallises from CS₂/hexane/EtOH as red needles. The **racemic** carotene is purified through an alumina (Grade II) column by elution with 15% *C₆H₆/pet ether (b 60-80°), and the main band eluent is evaporated and the residue is crystallised from MeOH/pet ether (b 60-80°) to give δ-carotene with m 150-151°. [Porter & Anderson *Arch Biochem* 32 211951, Synthesis: Manchand et al. *J Chem Soc* 2019 1965, Absolute Config: Buchecher & Eugster *Helv Chim Acta* 54 327 1971, 5 III 2453, 5 IV 2617.]

γ-Carotene (β ,ψ-carotene) [472-93-5, 10593-83-6] M 536.9, m 152-153.5° (synthetic), 177.5° (polymorph), A $_{1m}^{1\%}(\lambda_{max})$ 2055 (at 437nm), 3100 (at 462nm), 2720 (at 494nm) in hexane. Purify γ-carotene by chromatography on alumina [Grade II in pet ether (b 60-80°) and elute with *C₆H₆], or magnesia columns. When crystallised from *C₆H₆/MeOH (2:1), it had m 177.5°. Store it in the dark, under an inert atmosphere at 0°, or in an evacuated tube at -20°. The purity is verified by TLC on Ca(OH)₂/Kieselgel (8:2) using pet ether (b 60-80°) as eluant. [Manchand et al. *J Chem Soc* 2019 1965, Beilstein **5** III 2453, **5** IV 2617.]

ξ-Carotene [38894-81-4] M 536.9, m 38-42°, λ_{max} 378, 400, 425nm, $A_{1m}^{1\%}(\lambda_{max})$ 2270 (400nm), in pet ether. Purify ξ-carotene by chromatography on 50% magnesia-HyfloSupercel, developing with hexane and eluting with 10% EtOH in hexane. It crystallises from toluene/MeOH. [Gorman et al. *J A m Chem Soc* 107 4404 1985.] Store it in the dark under N₂ or Ar at -20°. Also purify it like γ-Carotene. [*Beilstein* 5 IV 2623.]

Citranaxanthin [5,9,14,18-tetramethyl-20-(2,6,6-trimethyl-1-cyclohex-1-enyl)- 3,5,7,9, 11,13,15,17,19-eicosanonen-2-one] [3604-90-8] M 456.7, m 155-156°, $A_{1m}^{1\%}(\lambda_{max})$ 410 (349nm), 275 (466nm) in hexane. Purify it by chromatography on a column of 1:1 MgO and HyfloSupercel (diatomaceous filter aid). Crystallise it from pet ether. Store it in the dark under N₂ or Ar at 0°.

Crocetin diethyl ester (8,8'-diapo- ψ , ψ -carotenedioic acid diethyl ester) [5056-14-4] M 384.5, m 218-219°, 222.5°, A $\frac{1\%}{1m}(\lambda_{max})$ 2340 (at 400nm), 3820 (at 422nm), 3850 (at 450nm) in pet ether. Purify the diethyl ester by chromatography on a column of silica gel G. Recrystallise it from *benzene. Store it in the dark, under N₂ or Ar, at 0°. [*Beilstein* 2 III 2018, H 30 106.]

α-Cryptoxanthin (all-*trans*-3*R*,6*R*'-β,ε-carotene-3-ol, zeinoxanthin, physoxanthin) [24480-38-4] M 552.9, m 175-176° (racemate 157.5-158.5°), $[α]_D^{25}$ -508° (c 0.4 Me₂CO), CD_{max} Δε -3.6 (218nm), +4.4 (245nm) and -9.0 (283nm), λ_{max} (hexane) 421, 446, 474nm, ε_{mol} 145,500 (at 446nm, hexane), 130,000 (at 459nm, *C₆H₆). It crystallises from *C₆H₆/MeOH in red needles. The *racemate* is purified through an Al₂O₃ column, eluting with *C₆H₆ and recrystallising from MeOH/Et₂O. It has λ_{max} (ε 10⁻³) (hexane) at 421, 444, 471nm (90, 133, 122). [Loeber et al. *J Chem Soc* (*C*) 404 1971, Goodfellow et al. *J Chem Soc*, *Chem Commun* 1578 1970, *Beilstein* 6 IV 5113.] **β-Cryptoxanthin (all-***trans*-3*R*-β,β-carotene-3-ol, caricaxanthin) [472-70-8] M 552.9, m 169° (natural), (racemate m 172-173°), ε_{mol} 131,900 (at 449nm, pet ether). Purify it by chromatography on MgO, CaCO₃ or deactivated alumina, using EtOH or diethyl ether to develop the column. Crystallise it from *C₆H₆/EtOH (metallic prisms), or needles from *C₆H₆. Store it in the dark under N₂ or Ar at -20°. The *acetate* has m 117.5°. The *racemate* is purified through a column of alumina (grade IV), eluted with *C₆H₆ then EtOAc/*C₆H₆ (1:9) and recrystallised from pet ether (b 60-80°) with m 172-173°. [Loeber et al. *J Chem Soc* (*C*) 404 *1971*, Goodfellow et al. *J Chem Soc Chem Commun* 1578 *1970*, Isler et al. *Helv Chim Acta* 40 456 *1957*, *Beilstein* 6 III 3772, 6 IV 5111.]

3,30-Diketospirilloxanthin (all-*trans*-2,31-dimethoxy-2,6,10,14,19,23,27,31-octamethyl-4,6,8,10,12,14,16,18,20,22,24,26,28-dotriacontatridecene-3,30-dione [24009-17-4] M 624.9, m 225-227°, $\epsilon_{1m}^{1\%}(\lambda_{max})$ 550 (at 349nm), 820 (at 422nm), 2125 (at 488nm), 2725(516nm), 2130(at 551nm) in hexane. Purify it by chromatography on a column of partially deactivated alumina. Recrystallise it from acetone/pet ether. Store it in the dark, in an inert atmosphere at 0°. [cf *Beilstein* 1 III 2297, 1 IV 2750.]

Echinenone (β , β -caroten-4-one) [432-68-8] M 550.8, m 178-179°, $A_{1m}^{1\%}(\lambda_{max})$ 2160 (at 458nm) in pet ether. Purify β , β -caroten-4-one by chromatography on partially deactivated alumina or magnesia, or by using a thin layer plate of silica gel G with 4:1 cyclohexane/diethyl ether as the developing solvent. Recrystallise it from *C₆H₆/MeOH. Store it in the dark at -20°. The *oxime* crystallises from *C₆H₆ with m 208°. [*Beilstein* 7 III 2858, 7 IV 1881.]

Ethyl bixin (6,6'-diapo- Ψ , Ψ -carotenedioic acid monomethyl ester monoethyl ester) [6895-43-8] M 436.6, m 138°. Crystallise the ester from EtOH. [cf. *Beilstein* 2 III 2020, 2 IV 2356.]

Lutein See xanthophyll.

Lycopene (all-*trans*- Ψ , Ψ -carotene) [502-65-8] M 536.9, m 172-173°, 174°, ε_{mol} 184,900 (470nm pet ether), 180,600 (at 487nm *C₆H₆). Crystallise lycopene from CS₂/MeOH, diethyl ether/pet ether, or acetone/pet ether. Also purify it by column chromatography on deactivated alumina, CaCO₃, calcium hydroxide or magnesia. It is oxygen sensitive and is stored in the dark, in an inert atmosphere. Also purified like γ -Carotene. [*Beilstein* 1 III 1076, 1 IV 1165.]

Lycoxanthin (all*trans*– Ψ , Ψ –carotene-16,16'-ol) [19891-74-8] M 268.3, m 173-174°, $\varepsilon \frac{1\%}{1cm}$ 3360 (472.5nm), also λ_{max} 444 and 503nm in pet ether. Crystallise lycoxanthin from diethyl ether/light petroleum, *C₆H₆/pet ether or CS₂. Purify it also by chromatography on columns of CaCO₃, Ca(OH)₂ or deactivated alumina, and washing with *benzene and eluting with 3:1 *C₆H₆/MeOH. Store it in the dark, in an inert atmosphere, at -20°. The *dipalmitate ester* crystallises from *C₆H₆/MeOH and has m 76°. [*Beilstein* 1 III 2051, 1 IV 2368.]

Methylbixin (6,6'-diapo- Ψ , Ψ -carotenedioic acid dimethyl ester) [26585-94-4] M 408.5, m stable *trans* form 203°, 205-206° (corr), unstable *cis* form 164°, λ_{max} 405, 425, 450, 484nm in hexane. Crystallise the dimethyl ester from EtOH/CHCl₃, or *benzene. Also purify it by chromatography on alumina (Grade III) and eluting with 9:1 *C₆H₆/pet ether (b 60-80°), and recrystallise it from EtOAc. [Pattenden et al. *J Chem Soc* (*C*) 235 1970, *Beilstein* 2 III 2020, 2 IV 2356.]

Physalien (all-*trans* β-carotene-3,3'(R,R)-diol dipalmitate) [144-67-2] M 1044, m 98.5-99.5°, $A_{1m}^{1\%}(\lambda_{max})$ 1410 (at 449nm), 1255 (at 478nm) in hexane. Purify it by chromatography on water-deactivated alumina, using hexane/diethyl ether (19:1) to develop the column. It crystallises from *benzene/EtOH in red needles. Store in the dark, in an inert atmosphere, at 0°. [See Zeaxanthin dipalmitate.] [*Beilstein* **6** III 5970.]

Phytoene $(7,7',8,8',11,11',12,12'-octahydro-\psi,\psi-carotene)$ [540-04-5] M 544.9, A $_{1m}^{1\%}(\lambda_{max})$ 850 (at 287nm) in hexane, λ_{max} 275, 287 and 297nm. Purify phytoene by chromatography on columns of magnesium oxide-Supercel (a diatomaceous filter aid) or alumina [Rabourn et al. Arch Biochem Biophys 48 267 1954]. Store it as a solution in pet ether under nitrogen at -20°. [Beilstein 1 IV 1155.]

Phytofluene (all-*trans*- 5,6,7,8,9,10,10',9',8',7',6',5'-dodecahydrolycopene) [540-05-6] M 549.0, b 140-185°(bath temperature)/0.0001mm, $A_{1m}^{1\%}(\lambda_{max})$ 1350 (at 348nm) in pet ether, λ_{max} 331, 348, 267. Purify it by chromatography on partially deactivated alumina [Goodwin *Biochem J* 53 538 1953, Kushwaha et al. *J Biol Chem* 245 4708 1970]. Store it as a solution in pet ether under N₂ at -20°. [*Beilstein* 1 III 1072, 1 IV 1159.]

Prolycopene (all-*cis* [Z]- ψ , ψ -carotene or lycopene) [2361-24-2] M 536.5, m 111°, λ_{max} 443.5, 470nm in pet ether. Purify prolycopene by chromatography on deactivated alumina [Kushwaha et al. *J Biol Chem* 245 4708 1970]. Crystallise it from pet ether. Store it in the dark, under N₂ or Ar at -20°. [*Beilstein* 1 III 1079, 1 IV 1167.]

Proneurosporene (3,4,7',8'-tetrahydrolycopene) [10467-46-6] M 538.9, λ_{max} 408, 432, 461 nm, $\epsilon_{1cm}^{1\%}$ 2040 (at 432nm) in hexane. Purify proneurosporene by chromatography on deactivated alumina [Kushwaha et al. J Biol Chem 245 4708 1970]. Store it in the dark, in an inert atmosphere at 0°. [Beilstein 1 IV 1156.]

Retinol (vitamin A alcohol), retinoic acid (vitamin A acid), retinyl acetate (vitamin A acetate), retinal (vitamin A aldehyde) and reinyl palmitate (vitamin A palmitate) See in "Miscellaneous", this chapter.

Spirilloxanthin (rhodoviolascein) [34255-08-8] M 596.9, m 216-218°, 218°, λ_{max} 463, 493, 528 nm, $\varepsilon_{1cm}^{1\%}$ 2680 (at 493nm) in pet ether (b 40-70°). Spirilloxanthin crystallises from CHCl₃/pet ether, acetone/pet ether, *C₆H₆/pet ether or *C₆H₆ as deep red spindle-like crystals. Purify it also by chromatography on a column of CaCO₃/Ca(OH)₂ mixture, Ca(OH)₂ or deactivated alumina and elute it with a *C₆H₆/MeOH mixture. It gives a blue colour with SbCl₃ in CHCl₃ with λ_{max} at 642nm. [Polgar et al. Arch Biochem Biophys 5 243 1944, Synthesis: Surmatis & Ofner J Org Chem 28 2735 1963, Karrer & Koenig Helv Chim Acta 23 460 1940.] Store it in the dark in an inert atmosphere at -20°. [Beilstein 1 III 2297, 1 IV 2750.]

Squalane (Cosbiol, 2,6,10,15,19,23-hexamethyltetracosane, perhydrosqualene) [111-01-3] M 422.8, m -38°, b 176°/0.05mm, 210-215°/1mm, 274°/10mm, ~350°/760mm, $d_4^{20}0.80785$, n_D^{20} 1.416. Purify squalane by fractional distillation *in vacuo* or evaporative distillation. It is soluble in pet ether, *C₆H₆, Et₂O and CHCl₃, slightly soluble in alcohols, Me₂CO and AcOH but insoluble in H₂O. Small quantities can be purified by TLC as for squalene below. It is used as a marker in GLC and HPLC. [Staudinger & Leupold *Helv Chim Acta* 15 223 *1932*, Sax & Stross *Anal Chem* 29 1700 *1951*, Mandai et al. *Tetrahedron Lett* 22 763 *1981*, *Beilstein* 1 IV 593.]

Squalene (all-trans-2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene) [111-02-4] M 410.7, m ~75°, b 203°/0.1mm, 213°/1mm, 285°/25mm, d^{25} 0.8670, n_D^{20} 1.4905. Crystallise squalene repeatedly from Me₂CO (1.4mL/g) using a Dry-ice bath, wash the crystals with cold acetone, then freeze the squalene under vacuum. Squalene is further purified by passage through a column (or TLC plate) of silica gel or chromatographed on activated alumina, using pet ether as eluent and stored in a vacuum in the dark. Dauben et al. [J Am Chem Soc 74 4321 1952] purified squalene via its hexachloride which is bactericidal. It is a key intermediate in sterol biosynthesis. [Capstack et al. J Biol Chem 240 3258 1965, Krishna et al. Arch Biochem Biophys **114** 200 1966, Heilbron & Thompson J Chem Soc 883 1929, Karrer et al. Helv Chim Acta **13** 1084 1930, UV: Farmer et al. J Chem Soc 544 1943, Beilstein **1** III 1071.]

Violaxanthin (55,65,5'S,6'S-diepoxyzeaxanthin) [126-29-4] M 600.9, m 200°, 207-208°, $[\alpha]_{Cd}^{18}$ +35° (c 0.1, CHCl₃). Crystallise violaxanthin from MeOH (orange prisms) by adding a little Et₂O in MeOH, or CS₂ (red brown crystals). Also purify it by column chromatography, and the purity is checked by TLC (see δ -carotene). It has λ_{max} at 415, 440 and 469nm. [Kuhn & Winterstein *Ber* 64 326 1931, Karrer et al. *Helv Chim Acta* 14 1044 1931, Absolute Config: Bartlett et al. *J Chem Soc* (C) 2527 1969, *Beilstein* 19 III/IV 1139.]

Xanthophyll (Lutein, $3R, 3'R-\alpha$ -carotene-3,3'-diol) [127-40-2] M 568.9, m 183°, 193°, 196°, [α] $^{18}_{Cd}$ +165° (c 0.7, *C₆H₆)[NB: Cd I and II have λ 533 & 537 nm], $\varepsilon^{1\%}_{1cm}(\lambda_{max})$ 1750 (423nm), 2560 (446nm), 2340 (477.5nm) and ε_{mol} 144,800 (at 445nm) in EtOH; λ_{max} in C S₂ 446, 479 and 511nm, and ε_{mol} 127,000 (at 458nm, *C₆H₆). Crystallise lutein from MeOH (1g/700mL; copper-coloured prisms) or from diethyl ether by adding MeOH. Also purify it by chromatography on columns of magnesia or calcium hydroxide, and recrystallise it from CS₂/EtOH. It may be purified *via* the *dipalmitate ester* which crystallises from EtOH with m 92°. Store it in the dark, in an inert atmosphere, e.g. Ar. [Buchecker et al. *Helv Chim Acta* 57 631 1974, Karrer *Helv Chim Acta* 34 2060 1951, Absolute Config: Goodfellow et al. J Chem Soc, Chem Commun 1578 1970, Beilstein 6 II 1026, 6 III 5871, 6 IV 7017.]

Zeaxanthin [alltrans-β-carotene-3,3'(R, R')-diol] [144-68-3] M 568.9, m 205-206° (natural), 207°, 215.5°, [α] $_{Cd}^{18}$ -44° (c 0.7, CHCl₃), [NB: Cd I and II have λ 533 & 537 nm], λ_{max} 275nm (log ε 4.34), 450nm (log ε 5.14), 480nm (log ε 5.07) in EtOH, ε_{mol} 132,900 (at 452nm, Me₂CO). Zeaxanthin forms yellow plates (with a blue lustre) from MeOH, EtOH and with 0.5 MeOH from *C₆H₆/MeOH. The *diacetate* (from natural) has m 154-155° (from CH₂Cl₂/MeOH), UV: λ_{max} ($\varepsilon_{1cm}^{1\%}$) at 452, 480nm (2210, 1945). The *dipalmitate* (*Physalein*) (from natural source) has m 95-96° (from CH₂Cl₂/MeOH), UV: λ_{max} ($\varepsilon_{1cm}^{1\%}$) at 452, 480nm (2210, 1945). The *dipalmitate* (*Physalein*) (from natural source) has m 95-96° (from CH₂Cl₂/MeOH), UV: λ_{max} ($\varepsilon_{1cm}^{1\%}$) at 452, 480nm (1335, 1190). [Isler et al. *Helv Chim Acta* 31 2041 1956, Hlubeck et al. J Chem Soc, Perkin Trans 1 848 1974.] The racemate is purified by chromatography on an alumina (Grade IV) column by elution with a gradient of pet ether (b 60-80°), *C₆H₆ and EtOAc. The red band gives a solid which recrystallises from MeOH with m 211°, and UV: λ_{max} at 439inf1, 462, 589nm (ε_{10}^{-3} : 90, 126, 110 respectively). [Loeber et al. J Chem Soc (C) 404 1971, Beilstein 6 II 1026, 6 III 5865, 6 IV 7017.]

CARBOHYDRATES

This section includes natural and synthetic carbohydrates and glycosides.

Z-O-(2-Acetamido-2-deoxy-D-glycopyranosylideneamino)-N-phenyl-carbamate

(PUGNAC) [132063-05-9] M 335.3, m 171-174° (dec), 174-180°(dec), $[\alpha]_{\rm D}^{20}$ +67.5° (c 0.2, MeOH). Purify PUGNAC by flash chromatography (silica gel and elute with EtOAc/hexane 3:2), evaporate, and the foam is recrystallised from EtOAc/MeOH. The purity is checked by TLC on Merck SiO₂ gel 60 F₂₅₄ and the spots are detected by spraying with 0.025M I₂ in 10% aqueous H₂SO₄ and heating at 200°. It has R_F 0.21. The acetate is hydrolysed with NH₃/MeOH. [*Helv Chim Acta* 68 2254 1985, *Helv Chim Acta* 73 1918 1990.]

Acetobromo- α -D-galactose [3068-32-4] M 411.2, m 87°, $[\alpha]_{546}^{20} + 255°$, $[\alpha]_D^{20} + 210°$ (c 3, CHCl₃). Purify acetobromo- α -D-galactose as for the glucose analogue (next entry). If the compound melts lower than 87° or is highly coloured, then dissolve it in CHCl₃ (*ca* 3 volumes) and extract with H₂O (2 volumes), 5% aqueous NaHCO₃, and again with H₂O and dry it over Na₂SO₄. Filter and evaporate it in a vacuum. The partially crystalline solid or syrup is dissolved in dry Et₂O (must be very dry) and recrystallised by adding pet ether (b 40-60°) to give a white product. [McKellan & Horecker *Biochemical Preparations* 11 111 *1960*, *Beilstein* 17/6 V 369.]

Acetobromo- α -D-glucose (α -acetobromoglucose 2,3,4,6-tetraacetyl- α -D-glucopyranosyl bromide) [572-09-8] M 411.2, m 87-88°, 88-89°, [α] $_{546}^{20}$ +230°, [α] $_{20}^{20}$ +195° (c 3, CHCl₃). If nicely crystalline, recrystallise it from Et₂O/pentane or pet ether (b 40-60°). Alternatively dissolve it in diisopropyl ether (dried over CaCl₂ for 24hours, then over P₂O₅ for 24hours) by shaking and warming (for as short a period as possible), and filter warm. Cool to *ca* 45°, then slowly to room temperature and finally at 5° for more than 2hours. Collect the solid, wash it with cold dry diisopropyl ether and dry it in a vacuum over Ca(OH)₂ and NaOH. Store it dry in a desiccator in the dark. Solutions can be stabilised with 2% CaCO₃. [Redemann & Niemann *Org Synth* 65 236 *1987*, Coll Vol III 11 *1955*, *Beilstein* 17/6 V 368.]

α-Acetyldigitoxin [1111-39-3] M 807.0, m 153-180° (monohydrate, dec), 217-221°, 258°(dec), $[\alpha]_{D}^{20}$ +5.0° (c 0.7, pyridine), +24.5° (c 1, MeOH). α-Acetyldigitoxin is obtained from the commercial mixture [α:β (2:1)] [25395-32-8]. The α-form is obtained from the β-form by heating in anhydrous or aqueous organic solvent (e.g. aqueous MeOH) at pH 3.5-8. It crystallises from MeOH as plates, CHCl₃/Et₂O or Me₂CO/Et₂O. At 20° 1g dissolves in 16mL of MeOH, 66mL of Me₂CO and ~880mL of EtOAc. [Stoll & Kreis *Helv Chim Acta* 35 1318, 1322 1952, *Beilstein* 18 III/IV 1479.] It is a cardenolide.

 β -Acetyldigitoxin [1264-51-3] M 807.0, m 225°, [α] $_{D}^{20}$ +18.7° (c 0.7, pyridine), +24.3° (c 0.7, MeOH). β -Acetyldigitoxin crystallises from MeOH as a methanolate which loses MeOH in a vacuum desiccator. The solubility at room temperature is: H₂O (0.0005%), EtOAc (0.4%), MeOH (0.6%), Me₂CO (1.6%) and CHCl₃(12%). [Stoll & Renz *Helv Chim Acta* 35 1310 1952, Kreis US 2776963, 1957 to Sandoz; *Beilstein* 18 III/IV 1479]. It is a cardenolide.

N-Acetyl-D-lactosamine [2-acetylamino-*O*-β-D-lactopyranosyl-2-deoxy-D-glucose] [32181-59-2] M 383.4, m 169-171°, 170-171°, $[\alpha]_{D}^{18}$ +51.5°→ +28.8° (in 3hours, c 1, H₂O]. Purify *N*-acetyl-D-lactosamine by recrystallisation from MeOH (with 1 mol of MeOH) or from H₂O. It is available commercially as a solution of 0.5g/mL of H₂O. [Zilliken *J Biol Chem* 271 181 1955, *Beilstein* 17 IV 3452.]

1-O-Acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose [6974-32-9] M 504.5, m 128-130°, 130-131°, 131-132°, $[α]_D^{20}$ +44.2° (c 1, CHCl₃). Recrystallise it from EtOH or isoPrOH. [Helv Chim Acta 42 1171 1959, NMR: J Org Chem 33 1799 1968, IR: Chem Pharm Bull Jpn 11 188 1963, Beilstein 17/6 V 213.]

N-Acetyl muramic acid [NAM] See "Miscellaneous" in Chapter 6.

Alginic acid [9005-32-7] M 48,000-186000. To 5g of acid in 550mL water containing 2.8g KHCO₃ are added 0.3mL of acetic acid and 5g potassium acetate. EtOH is added to make the solution to 25% (v/v) in EtOH, and any insoluble material is discarded. Further addition of EtOH, to 37% (v/v), precipitated alginic acid. Collect the acid and dry it *in vacuo*. [Pal & Schubert *J Am Chem Soc* 84 4384 1962.]

Aloin [10-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10*H*)anthracenone, Barbaloin] [8015-61-0, 5133-19-7, 1415-73-2] M 418.4, m 148-148.5°, 148-150°. Aloin forms the monohydrate as lemon yellow crystals on crystallisation from H₂O (450g/1.5L) which has a lower m ~70-80° than the anhydrous substance. [Cahn & Simonsen J Chem Soc 2573 1932, Hay & Haynes J Chem Soc 3141 1956.]

D-Altrose [1990-29-0] **M 180.2, m 103-105°**, $[\alpha]_{546}$ +35° (c 7.6, H₂O). Crystallise D-altrose from aqueous EtOH. If it is obtained by the hydrolysis of the acetate, then it may contain sodium and acetate ions. Ions are best removed by dissolving in H₂O, passing through suitable columns of ion-exchange resins, e.g. Amberlite IR-120 and Duolite A, and concentrating in a vacuum to a syrup. This is dissolved in MeOH, filtered and evaporated in a vacuum desiccator over granular CaCl₂. The thick syrup is inoculated with seed crystals, stirred, and before it sets to a magma of crystals, transfer the crystals with MeOH to a Büchner funnel. Recrystallise them in the same way. β -D-Altrofuranoside has initial $[\alpha]_{D}^{20} \sim -69^{\circ}$ (c 4, H₂O) which mutarotates to +33°. [Richtmeyer *Methods in Carbohydrate Chemistry* I 107 Academic Press *1962, Beilstein* 1 IV 4301, see Angyal *Adv Carbohydrate Chem Biochem* 42 15 *1984* for ratio of anomers in solution.]

D-Amygdalin (D-mandelonitrile-\beta-gentiobioside) [29883-15-6] **M 457.4, m 214-216°**, $[\alpha]_{D}^{22}$ -38° (c 1.2, H₂O). D-Amygdalin recrystallises from water as the *trihydrate*, or from EtOH. It is present in bitter almonds. [Smith *Chem Ber* 64 1115 1931, *Beilstein* 17/8 V 188.]

Amylose [9005-82-7] ($C_6H_{10}O_5$)_n(for use in iodine complex formation). Amylopectin is removed from impure amylose by dispersing in aqueous 15% pyridine at 80-90° (concentration 0.6-0.7%) and allowing the solution to stand at 44-45° for 7days. The precipitate is re-dispersed and recrystallises during 5days. After a further dispersion in 15% pyridine, it is cooled to 45°, allowed to stand at this temperature for 12hours, then cooled to 25° and left for a further 10hours. The combined precipitates are dispersed in warm water, precipitated with EtOH, washed with absolute EtOH, and dried *in vacuo* [Foster & Paschall J Am Chem Soc **75** 1181 1953].

B-L-(+)-Arabinose (natural) [87-72-9] **M 150.1, m 158°**, $[\alpha]_D$ +104° (c 4, H₂O after 24h), **pK**_a¹⁷ 12.4. B-L-(+)-Arabinose is recrystallised slowly, twice, from 80% aqueous EtOH, then dried under vacuum over P₂O₅. It can also be purified by heating the arabinose (200g) with glacial acetic acid (300mL) on a boiling water bath for 45minutes, cooling, filtering, washing with 95% EtOH (500mL) in four portions and drying at 56-60° over P₂O₅. It has been recrystallised from 5times its weight of 76% EtOH using charcoal (10g) to yield 127g, **m** 155-157°, $[\alpha]_D^{20}$ +190.6° and mutarotating to +104° (c 4, H₂O). [Anderson & Sands *Org Synth* Coll Vol **I** 67 *1941*, Wolfrom & Christian *J Am Chem Soc* **48** 3172 *1926*, *Beilstein* **1** IV 4217.]

D-(-)-Arabinose [10323-20-3, 28697-53-2 (pyranoside)] M 150.1, m 164°, $[\alpha]_D^{20}$ -104.5° (c 1, H₂O), $[\alpha]_{546}$ -123° (c 10, H₂O after 24hours), pK²⁵ 12.54. Crystallise D-(-)-arabinose three times from EtOH, dry it *in vacuo* at 60° for 24hours and store it in a vacuum desiccator. It also crystallises from a mixture of H₂O/MeOH/EtOH with m 158-160°, or H₂O with m 160-161°. [Whistler & Schweiger J Am Chem Soc 81 5190 1959, Fletcher et al. J Am Chem Soc 72 4546 1950, Beilstein 1 IV 4215, see Angyal Adv Carbohydrate Chem Biochem 42 15 1984 for ratio of anomers in solution.]

D-Arabitol (D-arabinitol) [488-82-4] **M 152.2, m 103°**, $[\alpha]_{546}^{20}$ +13° (c 5, 8% borax solution). This pentol, which occurs in lichens and fungi, is purified by recrystallisation from 90% EtOH or MeOH. [Ashina & Yamagita Chem Ber 67 801 1934, derivarives: Nakagawa et al. Bull Chem Soc Jpn 40 2150 1967, Prince & Reichstein Helv Chim Acta 20 101 1937, Hough & Theobald Methods in Carbohydrate Chemistry I 94 1962, Academic Press, Beilstein 1 IV 2832.]

L-Arabitol (L-arabinitol) [7643-75-6] M 152.2, m 102°, 103°, $[\alpha]_{546}$ -13° (c 5, 8% borax solution). This pentol, which occurs in the urine of pentosuric subjects, is purified by recrystallisation from 90% EtOH or MeOH. It has a higher rotation in the presence of molybdate: $[\alpha]_{D}^{20}$ -130° (c 0.16, acidified molybdate) [Richtmeyer & Hudson J Am Chem Soc 73 2249 1957]. [Gätzi & Reichstein Helv Chim Acta 21 197 1938, Beilstein 1 IV 2832.]

DL-Arabitol (**DL-arabinitol**) [2152-56-9] **M 152.2, m 105-106**°. This synthetic arabitol is purified by recrystallisation from 90% EtOH, MeOH or EtOH/Me₂CO. [Raphael J Chem Soc, Supplement, 48 1949, Ashina & Yamagita Chem Ber 67 802 1934, Beilstein 1 IV 2832.]

p-Arbutin (*p*-hydroquinone-*O*-β-D-glucopyranoside) [497-76-7] M 272.3, m 195-198°, 199°, 200°(sintering at 163-164°), $[\alpha]_{D}^{20}$ -65° (c 2, H₂O), pK_{Est}~10.0. The glycoside from *Protea exima* is purified by recrystallisation from H₂O or moist EtOAc (as *monohydrate*), after chromatography through silica Gel using EtOAc/MeOH. Crystallisation from EtOH/CHCl₃ gives crystals m 199-200° with intermediate melting at 164° and resolidifying. The *pentaacetate* crystallises from EtOH in fine needles with m 145-146°, $[\alpha]_{D}^{20}$ -28.2° (c 2, Me₂CO). [Robinson & Waters *J Chem Soc* 2729 *1930*, IR, NMR, MS: Perold et al. *J Chem Soc*, *Perkin Trans 1* 239 *1979*, *Beilstein* **17**/7 V 110.]

L(+)-Ascorbic acid [50-81-7] M 176.1, m 193°(dec), $[\alpha]_{546}$ +23° (c 10, H₂O), pK₁²⁵ 4.04, pK₂²⁵ 11.34. Crystallise it from MeOH/Et₂O/pet ether [Herbert et al. *J Chem Soc* 1270 1933]. [Beilstein 18/5 V 26.]

6-Bromo-2-naphthyl-\alpha-D-galactopyranoside [25997-59-5] M 385.2, m 178-180°, 224-226°, 225°, $[\alpha]_{D}^{28}$ +60° (c 1.2, pyridine). It is prepared from penta-*O*-acetyl-D-galactoside, 6-bromo-2-naphthol and ZnCl₂. The resulting tetra-acetate (2g) is hydrolysed by dissolving in 0.3N KOH (100mL) and heating until the solution is clear, then filtering and cooling to give colourless crystals of the α -isomer which are collected and recrystallised twice from hot MeOH. The high specific rotation is characteristic of the α -isomer. The *tetraacetate* has m 155-156°, $[\alpha]_{D}^{20}$ +60° (c 1, CHCl₃) [Dey & Pridham *Biochem J* 115 47 *1969*] [reported m 75-85°, $[\alpha]_{D}^{24}$ +94° (c 1.3, dioxane), Monis et al. *J Histochem Cytochem* 11 653 *1963*]. [*Beilstein* 17 IV 2972.]

\lambda-Carrageenan [9064-57-7 (κ), 9000-07-1 (κ + little of λ)]. This D-galactose-anhydro-D or L-galactoside polysaccharide is precipitated from 4g of Carrageenan in 600mL of water containing 12g of KOAc by addition of EtOH. Collect the fraction that precipitates between 30 and 45% (v/v) of EtOH and dry them *in vacuo*. [Pal & Schubert J Am Chem Soc **84** 4384 1962.]

Colchicoside $[7S-7N-[3-(\beta-D-glucopyranosyloxy)-1,2,10-tetramethoxy-9-oxobenzo[a]-heptalen-7-yl-(7S)]-acetamide, 7-glucosylcolchicine] [477-29-2] M 547.5, m 216-218° (block), <math>[\alpha]_D^{15}$ -128.5° (c 1, CHCl₃), $[\alpha]_D^{15}$ -231° (c 1, MeOH), $[\alpha]_D^{15}$ -355° (c 1, H₂O). Purify colchicoside by chromatography through alumina and eluting with CHCl₃, then recrystallising from Me₂CO, m 275-280° (after releasing solvent at 180°). It also crystallises from EtOH; see colchicine [64-86-8]. The *tetraacetate* has m 175-177°, $[\alpha]_D^{15}$ -57° (c 1, CHCl₃). [Bellet et al. Ann Pharm Fr 10 241 1952, Chem Abstr 47 3323 1953, Beilstein 14 IV 946 for colchicine.]

Convallatoxin (α -cardenolide mannoside) [508-75-8] M 550.6, m 238-239°, 238-241° (dec), [α] $_{D}^{20}$ -9.4° (c 0.7, dioxane), [α] $_{D}^{16}$ -1.0 ±3° (c 0.7, EtOH). Crystallise convallatoxin from EtOAc, CHCl₃/EtOH (9:1) or MeOH/Et₂O. The *tetraacetate* has m 238-242° (from MeOH/Et₂O), [α] $_{D}^{25}$ -5° (CHCl₃). [Reyle et al. *Helv Chim Acta* 33 1541 1950, Fieser & Jacobson J Am Chem Soc 59 2335 1937 Beilstein 18 III/IV 3142.]

α-Cyclodextrin (H₂O) [10016-20-3] M 972.9, m >280°(dec), $[\alpha]_{546}$ +175° (c 10, H₂O). Recrystallise α-cyclodextrin from 60% aqueous EtOH, then twice from water, and dry it for 12hours in a vacuum at 80°. It is also purified by precipitation from water with 1,1,2-trichloroethylene. The precipitate is collected, washed and resuspended in water. This is boiled to steam distil the trichloroethylene. The solution is then freeze-dried to recover the cyclodextrin. [Armstrong et al. J Am Chem Soc 108 1418 1986]. [Beilstein 19/12 V 789.]

B-Cyclodextrin (H₂O) [7585-39-9, 68168-23-0] **M 1135.0, m >300°(dec), [\alpha]₅₄₆ +170° (c 10, H₂O). Recrystallise ß-cyclodextrin from water and dry it for 12hours in a vacuum at 110°, or 24hours in a vacuum at 70°. The purity is assessed by TLC on cellulose containing a fluorescent indicator. [Taguchi,** *J Am Chem Soc* **108 2705 1986, Tabushi et al.** *J Am Chem Soc* **108 4514 1986, Orstam & Ross** *J Phys Chem* **91 2739 1987.] [***Beilstein* **19 IV 6287, 19/12 V 801.]**

N-Decanoyl-*N*-methylglucamine (Mega-10, *N*-D-glucidyl-*N*-methyl deconamide) [85261-20-7] M 349.5, m 91-93°, 92°. Possible impurities are decanoic acid and *N*-methylglycamine. The former is removed by grinding the solid with Et_2O and then with pet ether and drying over P_2O_5 . It is twice recrystallised from MeOH/ Et_2O by dissolving in the minimum volume of MeOH, adding Et_2O and drying in a vacuum. To remove the glycamine, the solid (800mg) is dissolved in hot H_2O (10mL) and set aside. Mega-10 crystallises as colourless needles. These are filtered off and dried in a vacuum to constant weight. It is a good non-ionic non-hygroscopic detergent with a critical micelle concentration (CMC) of 7.4mM (0.26%) in 0.1M Tris-HCl pH 7.4 at 25°. [Hildreth *Biochem J* 207 363 1982.]

Dehydro-L(+)-ascorbic acid [490-83-5] **M 174.1, m 196**°(**dec**), $[\alpha]_{546}^{20}$ +42.5° (c 1, H₂O), pK²⁵ **3.90.** Crystallise dehydro-L(+)-ascorbic acid from MeOH. The *anhydrous acid* is formed by heating it in a vacuum at 100°/1hour to give a crisp glassy product which when shaken with absolute EtOH and then kept at 0° for 2days gives microcrystals of the anhydrous acid. This is then washed with absolute EtOH and dried in a vacuum. It has m 225°(dec) and is stable in acidic solution but decomposes rapidly in alkaline solution. A 1% solution of the anhydrous acid when dissolved in phthalate/HCl buffer pH 3.5 at 60° and cooled to 20° has $[\alpha]_D^{20}$ +56°(0minutes), +53.5°(2hours), +19°(3days), -2°(5days) and -6°(6days); then it becomes orange in colour. A freshly prepared 1% solution in H₂O has $[\alpha]_D^{20}$ +50°(0minutes), +44°(2hours), +16°(3days) and 0°(5days). [Herbert et al. *J Chem Soc* 1270 *1933*, Kenyon et al. *J Chem Soc* 158 *1948*, *Beilstein* **18/5** V 411.]

2-Deoxy-D-allose (2-deoxy-D-*ribo***-hexose)** [6605-21-6] **M 164.2, m 140-142°**, $[\alpha]_{D}^{24}$ +57.5° (**c 1.2, H₂O**). Purify 2-deoxy-D-allose by two recrystallisations from absolute EtOH. The *p*nitrophenylhydrazone has m 61-62°, $[\alpha]_{D}^{16.5}$ -55° (MeOH). An equilibrium solution at 31° in D₂O contains 15% α -pyranose, 58% β -pyranose, 12% α -furanose and 15% β -furanose forms as estimated by ¹HNMR spectroscopy. [see Angyal Adv Carbohydrate Chem Biochem **42** 15 1984 for ratio of anomers in solution, Zorbach & Ollapally J Org Chem **129** 1790 1964.] [Beilstein **1** IV 4283.]

2-Deoxy-β-D-galactose (2-deoxy-D-*lyxo*-hexose) [1949-89-9] **M 164.2, m 110°, 120-121°,** (**126-128°),** $[\alpha]_{D}^{20}$ +60° (c 2, H₂O, 2hours). Crystallise 2-deoxy-β-D-galactose from MeOH or diethyl ether. The *aniline derivative* has **m** 142-143°, $[\alpha]_{D}^{16.5}$ -149° (c 0.8, pyridine). [Overend et al. *J Chem Soc* 671, 675 1950 and 992 1951.] A 30% equilibrium solution at 31° in D₂O contains 40% α-pyranose, 44% β-pyranose, 8% α-furanose and 8% β-furanose forms as estimated by ¹HNMR spectroscopy [Angyal & Pickles Aust J Chem 25 1711 1972]. [Beilstein 1 IV 4283.]

2-Deoxy-\alpha-D-glucose (2-deoxy-D-arabino-hexose) [154-17-6] **M 164.2, m 148-151°,** $[\alpha]_{20}^{20}$ +46° (c 0.5, H₂O after 45hours). Crystallise 2-deoxy- α -D-glucose from MeOH/Me₂CO, Me₂CO or butanone to give a mixture of α - and β - anomers, **m** 142-144°, $[\alpha]_{D}^{18}$ +38° (35minutes) to +46° (c 0.5, H₂O). Recrystallisation from *iso*PrOH gives mainly the α -anomer **m** 134-136°, $[\alpha]_{D}^{25}$ +156° to +103° (c 0.9, pyridine). ¹H NMR studies showed that at 44° in D₂O the solution contained 36% of α -pyranose and 64% of β pyranose sugar, but furanose structures were undetectable. [Snowden & Fischer J Am Chem Soc **69** 1048 1947, derivatives: Bollinger & Schmidt Helv Chim Acta **34** 989 1951; see Angyal & Pickles Aust J Chem **25** 1711 1972 for ratio of isomers in solution, Beilstein **1** IV 4282.]

6-Deoxy-D-glucose (D-quinovose) [7658-08-4] M 164.2, m 146°, $[\alpha]_D^{20}$ +73° (after 5 minutes) and +30° (final, after 3hours) (c 8.3, H₂O). 6-Deoxy-D-glucose is purified by

recrystallisation from EtOAc and is soluble in H₂O, EtOH but insoluble in Et₂O and Me₂CO. [Srivastava & Lerner *Carbohydr Res* 64 263 1978; NMR: Angyal & Pickles *Aust J Chem* 25 1711 1972, *Beilstein* 1 IV 4260.]

2-Deoxy- β -**L-ribose** [18546-37-7] **M 134.1, m 77°, 80°,** $[\alpha]_{D}^{25}$ +91.7° (c 7, pyridine, +40° final). Crystallise 2-deoxy- β -L-ribose from diethyl ether. It can also be purified by dissolving the ribose (7.3g) in EtOAc (3L) by reflux, decanting from any insoluble material and evaporating at 50°/vacuum to 2.2L, setting aside for 1-2hours, filtering, and concentrating to 840mL. The ribose separates as compact nodules during 3-5days at 0° and has **m** 87-93°, and after repeated recrystallisations it has **m** 92-95°. Mutarotation is as follows: $[\alpha]_{D}^{16.5}$ +80°(0minutes), +71°(6minutes), +59°(21minutes) and +59°(41minutes) (c 1.14, H₂O); $[\alpha]_{D}^{20}$ +105°(0minutes), +71°(9.5minutes), +67°(12.5minutes), +49°(81minutes), +49°(136minutes) (c 0.9, MeOH). [Deriaz et al. *J Chem Soc* 1879 1949, Beilstein **1** IV 4181.]

2-Deoxy- β -D-ribose [533-67-5] M 134.1, m 86-87°, 87-90°, $[\alpha]_{10}^{20}$ -56° (c 1, H₂O after **24hours).** Dissolve 2-deoxy- β -D-ribose in a little H₂O, evaporate to a syrup (in a vacuum), and seed to crystallise. Triturate the crystals with a little EtOAc containing 5% MeOH, decant and dry in vacuum over P_2O_5 . It is best purified via the **anilide** which separates from a mixture of the ribose (100-125g) in MeOH (100mL) and redistilled aniline (40mL) in a few minutes. After standing for 20hours at room temperature, it is cooled to 0°, filtered, washed with 50% aqueous MeOH and Et₂O followed by recrystallisation from ethylene glycol monomethyl ether. The anilide has m 172-173°, $[\alpha]_{D}^{25}$ +46° (equilibrium in pyridine). The anilide (5g), benzaldehyde (5mL) and benzoic acid (0.5g) in H_2O (150mL) are shaken mechanically for 20-24hours. The aqueous phase is extracted with Et_2O (3x), decolourised with a little charcoal and evaporated in a vacuum to a syrup. This is dried over P_2O_5 in high vacuum. The syrupy sugar weighs 3.1g and crystallises in a few days, but more rapidly on seeding. Triturate it with a little EtOAc containing 5% MeOH, decant and dry it over P₂O₅. At this stage it has m 78-82°, $[\alpha]_{D}^{25}$ -57° (c 1, H₂O final). This is a mixture of α - and β anomers. Pure β -anomer is obtained by recrystallisation from EtOAc The β -anomer when recrystallised from EtOAc and isoPrOH has m 96-98°, $[\alpha]_{D}^{25}$ -55° (c 0.5, H₂O final). [Sowden Biochemical Preparations 5 75 1957.] The mutarotation is as follows: $[\alpha]_{D}^{20.5}$ +96.3°(0minutes), -76°(33minutes), -56° (24hours) (c 5.8 MeOH). It is moderately hygroscopic and should be kept in a well stoppered bottle. It also crystallises from diethyl ether. [Deriaz et al. J Chem Soc 1879 1949, Beilstein 1 IV 4181, Hauske & Rapoport J Org Chem 44 2472 1979.]

The 1,3,4-tribenzoate (α - and β -mixture), obtained by benzoylation, has m 127° (after crystallisation from EtOH), $[\alpha]_{D}^{23}$ -65° (c 1, CHCl₃). The crude syrupy mixture in *C₆H₆ is applied to an acid-washed Alorco Al₂O₃ column. Elution with *C₆H₆/hexane (1:1) affords (after crystallisation from MeOH), β -1,3,4-tri-O-benzoyl-2-deoxy-D-ribose, m 159-169°, $[\alpha]_{D}^{20}$ -196° (c 1, CHCl₃). Further elution with *C₆H₆ gives, after recrystallisation from MeOH pure α -1,3,4-tri-O-benzoyl-2-deoxy-D-ribose, m 151-152°, $[\alpha]_{D}^{20}$ +41.6° (c 083, CHCl₃). [Pedersen et al. J Am Chem Soc 82 3425 1960; see Angyal Adv Carbohydrate Chem Biochem 42 15 1984 for ratio of anomers and ring forms.]

Dextran [9004-54-0] M_r 6,000-220,000. Solutions of dextran keep indefinitely at room temperature if 0.2mL of Roccal (10% alkyldimethylbenzylammonium chloride) or 2mg phenyl mercuric acetate are added per 100mL solution. This inhibits mould growth. [Scott & Melvin Anal Biochem 25 1656 1953.]

Diacetone-D-glucose (1,2:5,6-di-*O*-isopropylidene- α -D-glucofuranoside) [582-52-5] M 260.3, m 107-110°, 110.5°, 111-113°, 112°, $[\alpha]_{D}^{15}$ -18.4° (c 1, H₂O). Diacetone-D-glucose crystallises from Et₂O, (needles), pet ether or *C₆H₆ and sublimes *in vacuo*. It is soluble in 7 volumes of H₂O and 200 volumes of pet ether at their boiling points. The solubility in H₂O at 17.5° is 4.3%. It precipitates from aqueous solutions on basification with NaOH. [Schmid & Karrer *Helv Chim Acta* 32 1371 *1949*, Fischer & Rund *Chem Ber* 49 90, 93 *1916*, IR: Kuhn *Anal Chem* 22 276 *1950*, *Beilstein* 19/12 V 318.]

N,*N*'-Diacetylchitobiose (2-acetyl- O^4 -[2-acetylamino-2-deoxy-β-D-glucopyranosyl]-2-deoxy-D-glucose) [35061-50-8] M 424.4, m 245-247°(dec), 251.5-252.5°, 260-262°, [α] $_D^{25}$ +39.5° (extrapolated) → +18.5° (after 60 minutes, c 1, H₂O). Recrystallise *N*,*N*'-Diacetylchitobiose from aqueous MeOH or aqueous EtOH/1,2-dimethoxyethane. [Zilliken et al. J Chem Soc 77 1296 1955, Beilstein 18/11 V 147.] 1,3,4,6-Di-*O*-benzylidene-D-mannitol [28224-73-9] M 358.4, m 192-195°, 193°, $[\alpha]_D^{20}$ -11.9° (c 0.7, Me₂CO). 1,3,4,6-Di-*O*-benzylidene-D-mannitol recrystallises from Et₂O in long fine needles with λ_{max} at 256nm (ϵ 435) in 95% EtOH, R_F 0.21 (1:1 CCl₄/EtOAc) on TLC Silica Gel G. [Sinclair *Carbohydr Res* 12 150 1970, ORD, CD, NMR, IR, MS: Brecknell et al. *Aust J Chem* 29 1749 1976, *Beilstein* 19/11 V 640.]

Digitonin [11024-24-1] **M 1229.3, m >270°(dec),** $[\alpha]_{546}^{20}$ -63° (c 3, MeOH). This digitoxin hexa-glycoside can be recrystallised from aqueous 85% EtOH or MeOH/diethyl ether. It is purified by preparative paper chromatography and developed with the upper phase of a mixture of nBuOH/H₂O/AcOH (4:5:1), and the spot (R_F 0.36) is eluted with 25% CCl₃CO₂H in CHCl₃. It has also been purified by countercurrent distribution. It forms an ethanolate, and complexes with cholesterol and other sterols. [Ruhenstroth-Bauer & Breitenfeld *Hoppe Seyler's Z Physiol Chem* 302 111 1955, Grisvold J Am Pharm Assoc 23 664 1934, Beilstein 19 IV 1243.]

Digitoxin [71-63-6] **M 764.9, m 256-257**° (anhydrous), $[\alpha]_{D}^{20}$ +16.7° (c 1, CHCl₃), +4.8° (c 1, dioxane). Digitoxin crystallises from MeOH, aqueous EtOH with 0.5 to 1 H₂O and from H₂O as the *dihydrate*. It also crystallises from CHCl₃/Et₂O as *anhydrous* crystals. The hydrate dehydrates at 120°/vacuum. Its solubility is 2.5% in CHCl₃, 1.7% in EtOH, 0.25% in EtOAc, and 0.001% in H₂O; and has $E_{1cm}^{1\%}$ 202.5 at 219-220nm (50% EtOH). [Stoll et al. *Helv Chim Acta* **37** 1134 *1954*, Demoen & Janssen *J Am Pharm Assoc* **42** 635 *1953*, *Beilstein* **18** IV 1478.]

D(+)-Digitoxose (2,6-dideoxy-D-*ribo*-hexose) [527-52-6] M 148.2, m 110°, 112°, $[\alpha]_{546}^{20}$ +57° (c 1, H₂O). Crystallise D(+)-digitoxose from MeOH/Et₂O, Et₂O, EtOAc, EtOAc/Et₂O/pet ether or Me₂CO/Et₂O and dry it over P₂O₅/vacuum. It has $[\alpha]_D^{20}$ +45.2° (6minutes) mutarotating to +50.2° (16hours constant) (c 1.65, H₂O). [Gut & Prins *Helv Chim Acta* **20** 1229 *1947*, Bollinger & Ulrich *Helv Chim Acta* **35** 93 *1952*, NMR of derivs: Tsukamoto et al. *J Chem Soc, Perkin Trans 1* 2621 *1988*, *Beilstein* **1** IV 4191.]

Digoxin $[5\beta,20(22)$ -cardenolide- $3\beta,12\beta,14\beta$ -triol-3-(O-2,6-dideoxy- β -D-*ribo*-hexopyranosyl- $(1 \rightarrow 4)$ -O-2,6-dideoxy- β -D-*ribo*-hexopyranosyl)-oxy-), 12 β -isomer] [20830-75-5] M 781.0, m 265°(dec), $[\alpha]_{546}^{20}$ +14.0° (c 10, pyridine), $[\alpha]_{546}^{25}$ +15.6° (c 0.5, CHCl₃/MeOH 1:1). Crystallise digoxin from aqueous EtOH, aqueous pyridine, EtOH/CHCl₃, and dry it in a vacuum at 100°. The melting point depends on heating rate, but when placed in a bath at 260° and heated slowly it decomposes at 265°. In EtOH it has λ max at 220nm (ϵ 12,800). [Smith J Chem Soc 508 1930, X-ray: Go et al. Cryst Struct Commun 8 149, 1031 1979, Beilstein 18/4 V 381.] HIGHLY TOXIC.

(-)-2,3:4,6-Di-O-isopropylidene-2-keto-L-gulonic acid monohydrate (-DAG) [18467-77-1] M 292.3, m 100-101°, 103°, $[\alpha]_{D}^{25}$ -21.6° (c 2.3, MeOH). Dissolve -DAG in Et₂O, filter, dry (MgSO₄) it, filter it again and evaporate to give a yellow oil. Addition of one drop of H₂O induces crystallisation to the *monohydrate*, which also forms rhombic crystals on recrystallisation from 95% EtOH/H₂O at room temperature. [Flatt et al. *Synthesis* 815 1979, Reichstein & Grussner *Helv Chim Acta* 17 311 1934, Takagi & Jeffrey *Acta Crystallogr Sect B* 34 2932 1978, cf *Org Synth* 55 80 1976, *Beilstein* 19/12 V 520.]

1,2:5,6-Di-O-isopropylidene-D-mannitol [1707-77-3] M 262.3, m 121-125°, 122°, $[\alpha]_D^{25}$ +1.2° (c 3, H₂O). Although quite soluble in H₂O, it gives a purer product when crystallised from this solvent, forming needles [Baer J Am Chem Soc 67 338 1945, NMR: Curtis et al. J Chem Soc, Perkin Trans 1 1756 1977]. [Beilstein 19/11 V 589.]

Dulcitol (galactitol) [608-66-2] **M 182.2, m 188-189°, b 276-280°/1.1mm, pK¹⁸ 13.5.** Crystallise dulcitol from water by addition of EtOH. It is optically inactive and is prepared by reduction of D-galactose. Its *hexaacetate* crystallises from EtOH and has **m** 168-169°. [IR: Thompson et al. *Discuss Farad Soc* **9** 222 1950, Wolfrom & Thompson *Methods in Carbohydrate Chemistry* **II** 671963, Academic Press, *Beilstein* **1** IV 2844.] *meso*-Erythritol [149-32-6] M 122.1, m 122°, b 329-331°, pK¹⁸ 13.9. *meso*-Erythritol crystallises from distilled water or absolute EtOH and is dried at 60° in a vacuum oven. It sublimes at 110° in a high vacuum. It is optically inactive. [Jeans & Hudson J Org Chem 20 1565 1955, IR: Kuhn Anal Chem 22 276 1950, Beilstein 1 IV 2807.]

Erythrityl tetranitrate (Cordite) [7297-25-8] **M 302.1, m 61°.** Crystallise cordite from EtOH. It explodes on percussion at ~220-460° and is a vasodilator. [*Beilstein* 1 III 2358, 1 IV 2809.]

D(-)-Fructose [57-48-7] **M 180.2, m 103-106°,** $[\alpha]_{546}^{20}$ **-190° (after 1hour, c 10, H₂O), pK²⁵ 12.03.** Dissolve D(-)-fructose in an equal weight of water (charcoal, previously washed with water to remove any soluble material), filter and evaporate under reduced pressure at 45-50° to give a syrup containing 90% of fructose. After cooling to 40°, the syrup is seeded and kept at this temperature for 20-30hours with occasional stirring. The crystals are removed by centrifugation, washed with a small quantity of water and dried to constant weight under a vacuum over conc H₂SO₄. For higher purity, this material is recrystallised from 50% aqueous ethanol [Tsuzuki et al. *J Am Chem Soc* **72** 1071 *1950*]. [*Beilstein* **31** H 321, **1** IV 4401.]

D(+)-Fucose (6-deoxy-d-galactose) [3615-37-0] M 164.2, m 144°, $[\alpha]_{546}^{20}$ +89° (after 24hours, c 10 in H₂O), α -form mutarotates: $[\alpha]_D^{20}$ +124° (10 minutes) to +75.6° (24hours) (c 9, EtOH). Crystallise D(+)-fucose from EtOH or 95% EtOH. Its 1,2:3,4-diisopropylidene derivative has b 83-84°/0.45mm and crystallises on seeding with m 37° and $[\alpha]_D^{19}$ -52° (melt). [Schmidt Methods in Carbohydrate Chemistry I 191 1962, Academic Press, Haskett et al. J Am Chem Soc 61 1658 1939, Beilstein 31 H 76, 1 IV 4265.]

D-Galactal (1.5-anhydro-2-deoxy-D-*lyxo*-hex-1-enitol) [21193-75-9] M 146.2, m 100°, 100-102°, 104°, 103-106°, $[\alpha]_{D}^{20}$ -21.3° (c 1, MeOH). Recrystallise D-galactal from EtOAc, EtOH or EtOAc/MeOH. [Overend et al. *J Chem Soc* 675 1950, Wood & Fletcher *J Am Chem Soc* 79 3234 1957, Distler & Jourdian *J Biol Chem* 248 6772 1973, *Beilstein* 17 III/IV 2332.]

Galactaric acid (mucic acid) [526-99-6] M 210.1, m 212-213°(dec) pK $_1^{25}$ 3.09 (3.29), pK $_2^{25}$ 3.63 (4.41). Dissolve mucic acid (40g) in the minimum (calculated) volume of N aqueous NaOH (~ 335mL) without heating, decolorise this with charcoal, filter and precipitate it by adding 5N HCl (~ 57mL). Cool for 1hour at 0°, filter off, wash with cold H₂O and dry it *in vacuo*. All temperatures should be kept below 25°. It is optically inactive. [Barker et al. *J Chem Soc* 4128 1958, Lewis et al. *Methods in Carbohydrate Chemistry* II 39 1963, Academic Press, *Beilstein* **3** IV 1292.]

D-Galactonic acid [576-36-3] **M 196.2, m 141°** (hydrate), 148° (anhydrous) $pK_{Est} \sim 3.5$. Crystallise D-galactonic acid from EtOH or aqueous EtOH. It cyclises to *D-galactono-1,4-lactone*, **m** 134-136°, and mutarotates in 1hour to $[\alpha]_{546}^{30}$ -92° (c 5, H₂O). It can also be obtained from the Na salt by adding 10times its weight of acetic acid, warming till just brown, cooling, filtering off the crystals and drying them. It has **m 145-146°**, $[\alpha]_{D}^{25}$ -13.6° (c 1, H₂O, 2minutes and mutarotates to -57.6°). [Blackburn & Upson *J Am Chem Soc* 55 2514 *1933*, *Beilstein* 3 IV 1257, and for the γ -lactone see below.]

D(-)-Galactono-1,4-lactone [2782-07-2] M 178.1, m 134-135°, 134-137°, $[\alpha]_{D}^{20}$ -78° (c 5, H₂O, 1hour). Crystallise the lactone from EtOH, aqueous EtOH, MeOH or EtOAc. It is also purified by passage through a column of Amberlite IR-120 (H⁺ form), and the effluent and washings are then freeze-dried [Wolfrom & Thompson *Methods in Carbohydrate Chemistry* I 67 *1963*, Academic Press]. The *5,6-O-isopropylidene-D-galactono-1,4-lactone* is purified by chromatography (EtOAc) and has m 165-167° (from EtOH/hexane), and 167.5-168.5° (from Me₂CO/*C₆H₆) [NMR: Copel & Stick *Aust J Chem* **31** 1371 *1978*.] [*Beilstein* **18** III/IV 3026, **18/5** V 18.]

D(+)-Galactosamine hydrochloride [1772-03-8] M 215.6, m 181-185°, $[\alpha]_D^{25}$ +96.4° (after 24hours, c 3.2 in H₂O), pK_{Est} ~7.7 (free base). Dissolve the hydrochloride in a small volume of

H₂O. Then add three volumes of EtOH, followed by acetone until faintly turbid and keep overnight in a refrigerator. [Roseman & Ludoweig *J Am Chem Soc* **76** 301 *1954*, *Beilstein* **4** IV 2024.]

α-D-Galactose [59-23-4, 3646-73-9 pyranose] **M 180.2, m 167-168°,** $[\alpha]_{D}^{20}$ +80.4° (after 24hours, c 4 in H₂O), pK²⁵ 12.48. α-D-Galactose is crystallised twice from aqueous 80% EtOH at -10°, then dried in a vacuum oven at 90° over P₂O₅ for 10hours. [Link *Biochemical Preparations* 3 75 1953, Hansen et al. *Biochemical Preparations* 4 2 1955.] Also purify it by recrystallising the dried solid (150g) in hot H₂O (150mL), then adding hot MeOH (250mL) and hot EtOH (500mL), stirring to mix, filtering through a bed of charcoal, and the clear filtrate is stirred to initiate crystallisation. After standing overnight at 10°, the crystals of the α-anomer are filtered off by suction, washed with MeOH, then EtOH, and dried (yield 130g), and more can be obtained by evaporation of the filtrate and washing as before. [Wolfrom & Thompson *Methods in Carbohydrate Chemistry* I 120 1962, Academic Press, *Beilstein* 1 IV 4336.]

β-D-Galactose [7296-64-2 (pyranose)] **M 180.2, m 167°,** [α] $_{D}^{20}$ +52° (initial, c 4 in H₂O). α-D-Galactose (40g) is dissolved in hot H₂O to establish the equilibrium of α- and β- anomers; then the solution is cooled to 0° and poured into absolute EtOH (500mL). Stir vigorously and crystallisation occurs within a few minutes, and more rapidly if seeded, filter the crystals immediately (7g, [α] $_{D}^{20}$ +65° (initial, c 4 in H₂O). This mixture of α- and β- anomers is further separated by dissolving in an equal weight of cold H₂O, filtering and adding to ice cold absolute EtOH (250mL) and stirring for 1minute when crystals separate, then filter them off. After two such crystallisations, the initial [α] $_{D}^{20}$ is +53°. This can be further purified by shaking with 80% EtOH for 2minutes, filtering, washing with EtOH and Et₂O, and drying in a vacuum desiccator to give β-D-galactose (15g) with **m** 167°, [α] $_{D}^{20}$ +52° (initial, c 4 in H₂O) mutarotating to +80.4°. Acetylation of D-galactose with hot NaOAc/Ac₂O gives β-D-galactopyranoside pentaacetate **m** 142°, [α] $_{D}^{25}$ +25 (c 4 in CHCl₃). [Wolfrom & Thompson *Methods in Carbohydrate Chemistry* I 120 *1962*, Academic Press, *Beilstein* 1 IV 4336.]

D(+)-Galacturonic acid [685-73-4, 91510-62-2 (H₂O)] **M 194.1, m 159-161°**, $[\alpha]_{D}^{20}$ +36° (c 6, H₂O, 2h), pK_{Est} ~ 4.8. Crystallisation of the acid from 95% EtOH and drying it in a vacuum desiccator (12mm) over P₂O₅ gives the *monohydrate* mixture of α - and β - anomers (mostly α -) as white micro needles, which sinter at ~100-111° and melt at 159-160°, $[\alpha]_{D}^{20}$ +107° (initial, c 4 in H₂O mutarotating to +51°). [Link & Sell *Biochemical Preparations* 3 74, 78 1953, *Beilstein* 3 IV 2000.] The **β-anomer** is obtained by warming the α -anomer in EtOH, AcOH or EtOAc and has **m 160°** (165°, sinters at 140°), $[\alpha]_{D}^{20}$ +27° (initial, c 2 in H₂O mutarotating to +55.3° in 24hours). The *sodium salt* [14984-39-5] M 216.1 has $[\alpha]_{D}^{20}$ +27° (c 10 in H₂O after 5hours). The *phenylhydrazone* has **m 141°**(from MeOH). [Ehrlich & Schubert *Chem Ber* 62 1974, 2014 1929, Anderson & King J Chem Soc 5333 1961, *Beilstein* 3 IV 2001.]

Genistin (4',5,7-trihydroxyisoflavone-7-D-glucoside) [529-59-9] M 432.4, m 256°, $[\alpha]_{\rm D}^{22}$ -28° (c 0.6, 0.02N NaOH). Genistin is repeatedly crystallised from hot 80% EtOH/water and treated with charcoal (Nuchar) until free from saponin. The presence of saponin is detected by adding crystals to conc H₂SO₄ when the citron yellow colour changes to red, then purple. Pure genistin does not change colour. UV in 85% EtOH has max at 262.5nm. [Walter *J Am Chem Soc* 63 3273 1941, Beilstein 18 III/IV 2732.]

α-Gentiobiose (amygdalose, 6-*O*-α-D-glucopyranosyl-D-glucopyranose) [5995-99-5 (bipyranose)] M 342.3, m 86° (2MeOH), 189-195°, 195-197° (anhydrous), $[α]_{546}^{20}$ +11° (after 24hours, c 4, H₂O). Crystallise α-gentiobiose from MeOH (retains solvent of crystallisation). It is best purified by conversion to the α-octaacetate, m 191-192° (recrystallise from absolute EtOH or CHCl₃ and excess absolute EtOH), $[α]_D^{20}$ +51.6° (c 4.3, CHCl₃) [Goldstein & Whelan Methods in Carbohydrate Chemistry I 3131962, Academic Press, Hudson & Johnson J Am Chem Soc 39 1271 1917] directly or from the βoctaacetate (see below) obtained by acetylation with Ac₂O and ZnCl₂, and hydrolysed (see below). It mutarotates from $[α]_D^{22}$ +16° (3minutes) to +9.5° (c 2, H₂O). [Reynolds & Evans J Am Chem Soc 60 2559 1938, NMR of anomers: Bradbury et al. Carbohydrate Research 53 1970 1957, Beilstein 17/7 V 203.]

β-Gentiobiose (6-*O*-**β-D-glucopyranosyl-D-glucopyranose**) [5996-00-9 (bi-pyranose), 554-91-6 (one open ring)] M 342.3, m 190-195°, $[\alpha]_{546}^{20}$ +8° (after 6hours, c 3, H₂O). β-Gentiobiose is best purified via the octaacetate which is recrystallised from MeOH, EtOH or better from methyl cellosolve by

heating at 80°. The octaacetate (15g) is hydrolysed by suspending it in dry 0.05N NaOMe in MeOH (180mL) for 1hour with occasional shaking at room temperature. Dilute this with H₂O to dissolve suspended matter, pass through Amberlite IR-120 and Duolite A-4 columns and the eluate is evaporated under reduced pressure to a syrup. Residual H₂O is removed by repeated distillation with absolute EtOH under reduced pressure. The syrup is dissolved in methyl cellosolve (~40mL), filtered, nucleated and placed in an oven at 80°. The crystals are filtered off, washed with absolute EtOH (yield 6.7g, 89%), dried and have **m** 187-189°. Further recrystallisation from methyl cellosolve gives **m** 190°, and mutarotates from $[\alpha]_D^{28}$ -1.5° (initial) to +10.6° (final, c 4, H₂O). The β -octaacetate has **m** 193° (crystallised from 95% EtOH) and has $[\alpha]_D^{20}$ -5° (c 1.8, CHCl₃). [Goldstein & Whelan Methods in Carbohydrate Chemistry **I** 313 1962, Academic Press, Beilstein **17**/7 V 203.]

Glucamine (glycamine, 1-amino-1-deoxy-D-glucitol) [488-43-7] M 181.2, m 127°, $[\alpha]_{D}^{20}$ -8° (c 10, H₂O), pK_{Est} ~9.0. Crystallise glucamine from MeOH or aqueous MeOH and store it in a CO₂-free atmosphere. For the *N*-methylglucamine derivative see below. [Holly et al. J Am Chem Soc 72 5461 1950, Karrer et al. Helv Chim Acta 20 83 1937.]

D-Gluconamide [3118-85-2] **M 197.2, m 142-143°, 144°,** $[\alpha]_{D}^{23} + 31°$ (c 2, H₂O). Crystallise D-gluconamide from EtOH or 1,2-dimethoxyethane. It mutarotates slowly and hydrolytically in aqueous solution from +30.7° to +13.8° in 80hours to give *ammonium D-gluconate* which recrystallises from 95% EtOH with **m 153-154°** and $[\alpha]_{D}^{25}$ +11.8° (c 3, H₂O). [Wolfrom et al. *J Am Chem Soc* 80 944 1958, *Beilstein* 3 VI 1259.]

D-Glucono- δ -lactone [90-80-2] **M** 178.1, **m** 152-153°, $[\alpha]_{546}^{20}$ +76° (**c** 4, **H**₂**O**). Crystallise Dglucono- δ -lactone from ethylene glycol monomethyl ether and dry for 1hour at 110°. It can be freed from other sugars *via* a column of Celite and charcoal (750g of each, 90 x 7.5cm) which is washed with 0.01N formic acid until the pH of the wash is equal to that of the entering acid. The lactone is applied in H₂O and eluted with 0.01N formic acid (7L), then eluted with 7.5% EtOH/0.01N formic acid (8L), then 15% EtOH/0.01N formic acid (8L) which removes pentose and isomaltose (the optical rotation of the eluates are used for sugar detection) and finally elution with aqueous formic acid provides glucolactone which is obtained by evaporating or freeze drying. Its solubility in H₂O is 60% and 1% in EtOH. A solution in H₂O is slightly acidic, and the lactone dissolves in an equivalent of aqueous NaOH to form **sodium D-gluconate** [527-07-1] **M** 218.1, **m** 200-206°(dec), $[\alpha]_{D}^{25}$ +12° (**c** 10, H₂O), **pK**²⁵ 3.6. [cf p 553, Smith & Whelan *Biochemical Preparations* 10 127 *1963*, *Beilstein* 3 IV 1255.]

α- and β- Glucosamine (2-amino-2-deoxy-D-glucose) [3416-24-8] **M 179.2, m 110°(dec),** $[\alpha]_{D}^{20}$ +28° to +48° (c 5, H₂O), pK²⁴ 7.71. Crystallise the amines from MeOH. The free base has been obtained from the hydrochloride (21.5g, see below) in a mixture of Et₃N (15mL) and EtOH (125mL) by shaking for 2days at room temperature, and the solid Et₃N.HCl is filtered off and the process repeated with more Et₃N (3-4 times) until the **α-D-glucosamine** (15g) is free from Cl ions. It has **m 88°**, $[\alpha]_{D}^{20}$ +100° **mutarotating to +47.5**° (c 1, H₂O). When Et₂NH is used as base, the α- to β- conversion is complete giving **β-D-glucosamine**. The *pentaacetate* is purified by dissolving in CHCl₃, treating with charcoal, drying (MgSO₄), evaporating the solvent, and adding a little dry Et₂O to induce crystallisation. It has **m** 124-126°, $[\alpha]_{D}^{20}$ +113° (c 1, CHCl₃) after 16hours in a desiccator. [Leaback *Biochemical Preparations* 10 118 *1963.*] The *N-acetyl* derivative, **m** 203-205° from MeOH/Et₂O (dry in vacuum P₂O₅) has $[\alpha]_{D}^{20}$ +75° to +41° (c 2, H₂O); this derivative can also be purified by dissolving in the minimum volume of H₂O to which is added 7-8volumes of EtOH followed by Et₂O until turbid and keeping at ~20° to crystallise. Wash the crystals with MeOH then Et₂O and dry *in vacuo* over P₂O₅. [Horton *Biochemical Preparations* 11 1 *1966*.]

D-Glucosamine hydrochloride [66-84-2] **M 215.6, m >300°**, $[\alpha]_{D}^{25}$ +71.8° (after 20hours, c 4, H₂O), pK²⁴ 7.71. Crystallise the hydrochloride from 3M HCl, water, and finally water/EtOH/acetone as for galactosamine hydrochloride. [Purchase & Braun Org Synth 26 36 1946, Stacey & Webber Methods in Carbohydrate Chemistry I 228 1962, Academic Press.] The salt has also been purified by dissolving in the minimum volume of boiling H₂O (charcoal), filtering and adding a large excess of 95% EtOH (~4 volumes) and stirring vigorously for several hours. Collect the crystals after 4-6hours to give α - anomer which mutarotates from $[\alpha]_{D}^{25}$ +100° to +72° (equilibrium, c 1, H₂O). A large amount of the β -anomer stays in solution. This can be precipitated from the filtrate by adding excess Et₂O. The mixture of α - plus β -anomers has $[\alpha]_{D}^{25.5}$ +68.8° (c 4.75, H₂O, mutarotating to +70.1°)[Leaback *Biochemical Preparations* **10** 118 *1963*]. *Note that if Et₂NH is used instead of Et₃N, conversion to the* β -anomer *can be complete* (see above). [Stacey et al. *Methods in Carbohydrate Chemistry* **I** 306*1962*, Academic Press; *Beilstein* **4** IV 2018.]

α-D-Glucose [492-62-6] M 180.2, m 83° (monohydrate), 146° (anhydrous), mutarotates from $[α]_{D}^{20}$ +112° to +52.5° (after 24hours, c 4, H₂O), pK²⁵ 12.46. Recrystallise α-D-glucose slowly from aqueous 80% EtOH, then dry it over P₂O₅ *in vacuo*. Alternatively, crystallise it from water at 55°, then dry it for 6hours in a vacuum oven between 60-70°/2mm. Its solubilities are: H₂O (~50%), EtOH (1.7%). [Hendricks et al. J Am Chem Soc 56 99 1934, Beilstein 1 IV 4302.] [For equilibrium forms see Angyal Adv Carbohydr Chem 42 15 1984, Angyal & Pickles Aust J Chem 25 1711 1972.]

β-D-Glucose [50-99-7] **M 180.2, m 148-150°, mutarotates from** $[α]_{D}^{20}$ +18.7° to +52.5° (after 24hours, c 4, H₂O), Crystallise β-D-glucose from hot glacial acetic acid or pyridine. Traces of solvent are removed by drying in a vacuum oven at 75° for >3hours. [Gottfried Adv Carbohydr Chem 5 127 1950, Kjaer & Lindberg Acta Chem Scand 13 1713 1959, Whistler & Miller Methods in Carbohydrate Chemistry I 1301962, Academic Press, Beilstein 1 IV 4306.] [For equilibrium forms see Angyal Adv Carbohydr Chem 42 15 1984, Angyal & Pickles Aust J Chem 25 1711 1972.]

α-D-Glucose pentaacetate [604-68-2] M 390.4, m 110-111°, 112-113°, $[α]_{546}^{20}$ +119°, $[α]_D^{20}$ +102° (c 5, CHCl₃). Crystallise it from MeOH, EtOH or three recrystallisations from 95% EtOH. [Wolfrom & Thompson *Methods in Carbohydrate Chemistry* II 212 1963, Academic Press, *Beilstein* 17/7 V 318.]

β-D-Glucose pentaacetate [604-69-3] **M 390.4, m 131-132°**, $[\alpha]_{546}^{20}$ +5° (c 5, CHCl₃). Crystallise the pentaacetate from MeOH or EtOH. It is best purified by recrystallising 160g from 1L of hot 95% EtOH (charcoal) and filtering hot. It is important that as soon as the temperature of the filtrate cools to ~20° it is filtered off. Note that some α-D-isomer will crystallise out if a prolonged crystallisation period is allowed. Further crystallisation in this manner and drying in a vacuum over CaCl₂ will give pure β-D-anomer which has **m** 132°, $[\alpha]_{D}^{20} + 4^{\circ}$ (c 5, CHCl₃). [Wolfrom & Thompson *Methods in Carbohydrate Chemistry* **II** 212 *1963*, Academic Press, Krahl & Cori *Biochemical Preparations* **1** 33 *1955*, *Beilstein* **17**/7 V 319.]

D-Glucose phenylhydrazone [3713-25-5] **M 358.4, m three forms.** Crystallise the hydrazone from 70% aqueous EtOH or EtOH/Et₂O. Three forms have been described: " α " form **m** 159°, 160° which mutarotates from [α] $_{D}^{20}$ -87° to -50° (H₂O) [Fischer *Ber* **20** 821 *1887*, Behrends *Justus Liebigs Ann Chem* **353** 106 *1907*], " β " form **m** 140-141°, 142° which mutarotates from [α] $_{D}^{20}$ -2° to -50° (H₂O) [Behrends & Lohr *Justus Liebigs Ann Chem* **362** 78 *1908*], and Skraup's form **m** 115-116° which mutarotates from [α] $_{D}^{20}$ -70° to -47° (H₂O) [Skraup *Monatsh Chem* **10** 406 *1889*, Butler & Crechter *J Am Chem Soc* **51** 3161 *1921*]. These mutarotate to the **formazan**. [*Beilstein* **1** IV 4322, Mester & Major *J Am Chem Soc* **77** 4297 *1955*, Stanek et al. The Monosaccharides, Academic Press *1963*, pp 539-541, 543.]

D-Glucuronic acid [6556-12-3] **M 194.1, m 159-161°, 165°,** $[\alpha]_{D}^{20}$ +36° (c 6, H₂O, 2hours, **mutarotating from** +11.5°), pK_{2}^{20} 3.18. Crystallise the acid from EtOH or EtOAc, wash it with MeOH and dry it *in vacuo* to give the " β " form. Heating converts it to the lactone (see below). The *sodium salt monohydrate* [207300-70-7] **M** 234.1 has **m** ~136-138°(dec) $[\alpha]_{D}^{20}$ +21° (c 2, H₂O after 2hours). [Sutter & Reichstein *Helv Chim Acta* 21 1210 *1938*, *Beilstein* 3 H 886, 3 IV 1997.]

D-Glucurono-6,3-(\delta)-lactone [32449-92-6] **M 176.1, m 175-177°**, $[\alpha]_{546}^{20} + 22°$ (after 24hours, c 10, H₂O). Dissolve the lactone or mixture of lactone and acid in H₂O and concentrate on a steam bath until crystallisation begins. Cool rapidly to room temperature with stirring. After 2hours the product is filtered off, washed with cold EtOH and dried to m 174-175° and $[\alpha]_D^{25} + 19.8°$ (c 5.2, H₂O). The amount of free acid can be obtained by titration of an ice-cold aqueous solution with standard alkali. It can be recrystallised from EtOH, EtOH/H₂O or MeOH, and the highest recorded m is 180°. [Stacey J Chem Soc 1529 1939, Mehltretter et al. J Am Chem Soc 73 2424 1951, Beilstein 18 III/IV 3055, 18/5 V 33.]

D(+)-Glycogen [9005-79-2] **M 25,000-100,000, m 270-280°(dec),** $[\alpha]_{546}^{20}$ +216° (c 5, H₂O). A 5% aqueous solution (charcoal) of D(+)-glycogen is filtered, and an equal volume of EtOH is added. After standing overnight at 3° the precipitate is collected by centrifugation, washed with absolute EtOH, then EtOH/diethyl ether (1:1) and diethyl ether, and dried. [Sutherland & Wosilait *J Biol Chem* **218** 459 1956.]

Glycyrrhizic acid ammonium salt (3H₂O) [53956-04-0] M 823.0, m 210°(dec), 220°(dec, sintering at 170°), $[\alpha]_{546}^{20}$ +60° (c 1, 50% aqueous EtOH), pK_{Est}~4.0. Crystallise the ammonium salt from glacial acetic acid, then dissolve it in ethanolic ammonia and evaporate. The *pentahydrate* forms needles from 75% aqueous EtOH, m 212-217°. The free acid crystallises from glacial acetic acid. [Karrer et al. *Helv Chim Acta* 4 100 *1921*, Lithgoe & Tripett *J Chem Soc* 1983, 1987 *1950*, *Beilstein* 18 IV 5156.]

Heparin (from pig intestinal mucosa) [9005-49-6] $M_r \sim 3,000$, amorphous, $[\alpha]_D^{20} \sim +55^{\circ}$ (H₂O). Most likely contaminants are mucopolysaccharides including heparin sulfate and dermatan sulfate. Purify heparin by precipitation with cetylpyridinium chloride from saturated solutions of high ionic strength. [Cifonelli & Roden *Biochemical Preparations* 12 12 1968, Wolfrom et al. J Org Chem 29 540 1946, Huggard Adv Carbohydr Chem 10 336-368 1955]

Heparin (sodium salt) [9041-08-1] $M_r \sim 3000$ (low Mol Wt, Bovine), amorphous, $[\alpha]_D^{20} + 47^\circ$ (c 1.5, H₂O). Dissolve the salt in 0.1M NaCl (1g/100mL) and precipitate it by additing EtOH (150mL). [Wolfrom et al. J Org Chem 29 540 1946, Huggard Adv Carbohydr Chem 10 336-368 1955.]

Heptyl- β -D-glucopyranoside [78617-12-6] M 278.4, m 74-77°, 76-77°, $[\alpha]_{D}^{20}$ -34.2° (c 5, H₂O). Purify the glucoside by repeated crystallisation from Me₂CO which is a better solvent than EtOAc. The *acetate* has m 66-68.5° and $[\alpha]_{D}^{20}$ -20.5° (c 4, CHCl₃) [Pigman & Richtmyer J Am Chem Soc 64 369 1942]. [Beilstein 17 IV 2936.]

Heptyl-β–D-1-thioglucopyranoside [85618-20-8] M 294.4, m 98-99°. The *tetraacetyl* derivative is purified by silica gel column chromatography and eluted with a C_6H_6/Me_2CO gradient (up to 5% of Me₂CO) and recrystallises from *n*-hexane as colourless needles m 72-74° (Erbing & Lindberg Acta Chem Scand B30 611 1976 gave m 69-70°). Hydrolysis with an equivalent of base in methanol gives the desired glucoside. This is a non-ionic detergent for reconstituting membrane proteins and has a critical micelle concentration of 30 mM. [Shimamoto et al. J Biochem (Tokyo) 97 1807 1985; Saito & Tsuchiya Chem Pharm Bull Jpn 33 503 1985].

D(-)-Isoascorbic acid (araboascorbic acid, 5R-[R-1,2-dihydroxyethyl-3,4-dihydroxy-5H-furan-2-one]) [89-65-6] M 176.1, m 169°, 174°(0.5 H₂O, dec), $[\alpha]_D^{25}$ -16.8° (c 2, H₂O), $[\alpha]_D^{20}$ +77° (c 2, Me₂CO, acetonylidene derivative), pK¹⁸ 3.99 (4.23). Crystallise D(-)-isoascorbic acid from H₂O, EtOH or dioxane. λ_{max} is at 245nm with ε 7,500 (EtOH). [Reichstein et al. *Helv Chim Acta* 17 510, 516 1934, Heslop et al. *J Chem Soc* 225 1944, Beilstein 18 III/IV 3037, 18/5 V 26.]

2-Keto-L-gulonic acid (xylo-2-hexulonic acid) [526-98-7] M 194.1, m 159-162°, 171°, $[\alpha]_{D}^{20}$ -34.8° (c 2, MeOH), $[\alpha]_{D}^{18}$ -48° (c 1, H₂O), pK_{Est} ~ 2.2. Crystallise 2-keto-L-gulonic acid from half its weight of water, wash it with Me₂CO and dry it *in vacuo*. [Reichstein et al. *Helv Chim Acta* 17 311 1934, NMR: Crawford et al. *J Am Chem Soc* 102 2220 1980. Beilstein 3 IV 1985.]

Lactobionic acid (4-0- β -D-galactopyranosyl-D-gulonic acid) [96-82-2] M 358.3, m 128-130°, mutarotates from $[\alpha]_{D}^{20}$ +53° to +22.6° (c 3, after 4hours in H₂O), pK²⁵ 3.6. Crystallise lactobionic acid from water by addition of EtOH. [NMR: Taga et al. *Bull Chem Soc Jpn* 51 2278 1978, *Beilstein* 17 III/IV 3392, 17/7 V 436.]

α-Lactose (H₂O) [63-42-3] M 360.3, m 220°(dec), 253-255° (252.4°), $[\alpha]_{D}^{20}$ +52.3° (c 4.2, H₂O), pK²⁵ 12.2 (OH). α-Lactose crystallises from water below 93.5° as the *hydrate* which can be dried at 80°/14mm. [Horst *Recl Trav Chim, Pays-Bas* 72 878 1953, *Beilstein* 17 III/IV 3066.]

Lactulose (4-0- β -D-galactopyranosyl-D-fructose) [4618-18-2] M 342.2, m 168.5-169°(dec), [α] $_{546}^{20}$ -57° (c 1, H₂O). Crystallise lactulose from MeOH or 50% MeOH. It mutarotates from [α] $_{D}^{20}$ -11.9° to -50.7° (c 1, H₂O). [Montgomery & Hudson *J Am Chem Soc* 32 2101, 2104 1930, *Beilstein* 17 III/IV 3094, 17/7 V 214.] NMR in Me₂SO at 24° shows 0% α -pyranose, 27% β -pyranose, 20% α -furanose and 52% β -furanose fforms [Angyal *Adv Carbohydr Chem* 42 15 1984].

Lanatoside A (digitoxigenin nonoacetyl-tetraglycoside) [17575-20-1] M 969.1, m 245-248°, $[\alpha]_{D}^{20}$ +32° (EtOH). Crystallise lanatoside A from MeOH or 95% aqueous EtOH. Its solubility is 1/16000 (H₂O), 1/20 (MeOH), 1/40 (EtOH) and 1/225 (CHCl₃). [Stoll et al. *Helv Chim Acta* 16 1049 1933, Kuhn et al. *Helv Chim Acta* 45 881 1962, *Beilstein* 18 III/IV 1480.] It is cardiotonic.

Lanatoside B (gitoxigenin nonoacetyl-tetraglycoside) [17575-21-2] M 985.1, m 233°(dec), 245-248°(dec), $[\alpha]_{D}^{20}$ +35° (MeOH). Crystallise lanatoside B from MeOH. Its solubility is: 1/20 (MeOH), 1/40 (EtOH), 1/5600 (CHCl₃), and is insoluble in H₂O. [Stoll et al. *Helv Chim Acta* 16 1049 1933, Miyatake et al. *Chem Pharm Bull Jpn* 5 171 1957, *Beilstein* 18 III/IV 2465.] It is cardiotonic.

Lanatoside C (digoxigenin nonoacetyl-tetraglycoside) [17575-22-3] M 297.1, m 246-248°, $[\alpha]_{D}^{20}$ +33.5° (c 1.85, 95% EtOH). Crystallise lanatoside C from MeOH. Its solubility is : 1/17000 (H₂O), 1/45 (EtOH) and 1/1500-2000 (CHCl₃). [Stoll et al. *Helv Chim Acta* 16 1049 1933, Stoll & Kreis *Helv Chim Acta* 35 1318 1952, Okada et al. *Chem Pharm Bull Jpn* 23 2039 1975, *Beilstein* 18 III/IV 2455.] It is cardiotonic.

 α -L(+)-Lyxose [1949-78-6] M 150.1, m 106-108°, $[\alpha]_{D}^{20}$ +14° after 1hour (c 6, H₂O). The α -anomer crystallises from propan-1-ol or EtOH, and the β -anomer crystallises from propan-2-ol. The 2,4dinitrophenylhydrazone has m 171-172° and $[\alpha]_{D}^{20}$ -31° (pyridine). In D₂O it has 21% of the α -pyranose form. The 2-methyl ether has m 120-121° and $[\alpha]_{D}^{20}$ +6° (c 1, H₂O). [Angyal Adv Carbohydr Chem 42 15 1984, Bently J Am Chem Soc 79 1720 1959, Beilstein 1 I 439, 1 IV 4232.]

β-D-Lyxose [1114-34-7] **M 150.1, m 118-119°, 120-122°,** [α] $_{D}^{20}$ -14° (c 4, H₂O), α-anomer has m 105-107° mutarotates from [α] $_{D}^{20}$ +5.6° to -18.8° (c 4, H₂O). Crystallise β-D-lyxose from EtOH or aqueous 80% EtOH by slow crystallisation. Dry it under vacuum at 60°, and store it in a vacuum desiccator over P₂O₅ or CaSO₄. [*Beilstein* **1** IV 4230, Overend et al. *J Chem Soc* 3496 1961.] ¹H NMR in D₂O has δ: α-H (pyranose) 5.39ppm (*J* 4.0 Hz), β-H (pyranose) 5.19ppm (*J* ~0 Hz), α-H (furanose) 5.26ppm (*J* 4.0 Hz), β-H (furanose) 5.24ppm (*J* 4.5 Hz), and at 31° in D₂O it consists of 70% α-pyranose, 28% β-pyranose, 1.5% α-furanose and 0.5% β-furanose [Angyal & Pickles *Aust J Chem* **25** 1711 1972].

Maltose (H₂O) (4-*O*- α -D-glucopyranosyl-D-glucose) [6363-53-7] M 360.3, m 109-110°, 118°, mutarotates from [α] $_{D}^{20}$ +111.7° to +130.4° (c 4, H₂O). Purify maltose by chromatography from aqueous solution on to a charcoal/Celite (1:1) column, wash it with water to remove glucose and other monosaccharides, then elute it with aqueous 75% EtOH. Crystallise it from water, aqueous EtOH or EtOH containing 1% nitric acid. Dry it as the *monohydrate* at room temperature under vacuum over H₂SO₄ or P₂O₅. Also purify it by dissolving it in MeOH, evaporating to a syrup which on standing for 12hours in contact with 1/10th its volume of H₂O gives crystals of the *monohydrate*. Its iodine number is 55.5. The osazone has m 200°(dec) and [α] $_{D}^{20}$ +58° (c 1.4, H₂O). [Howarth et al. *J Chem Soc* 793 *1937*, *Beilstein* **17** III/IV 3057, **17** V 189.]

D-Mannitol [69-65-8] **M 182.2, m 166.1°, 168-170°,** $[\alpha]_{546}^{20}$ + 29° (c 10, after 1hour in 8% borax solution), $[\alpha]_{D}^{22}$ -4.0° (c 0.5, DMF), pK¹⁸ 13.5. D-Mannitol is crystallised from EtOH, MeOH or H₂O and dried at 100°. [Thomson *Acta Chem Scand* 6 270, 279, 280 1952, *Beilstein* 1 IV 2841.]

Mannitol hexanitrate [15825-70-4] M 452.2, m 112-113°, $[\alpha]_{D}^{22}$ +45.8° (c 1.4, EtOH). The hexanitrate crystallises from EtOH or dilute EtOH as silky white needles. **EXPLOSIVE** (on detonation). [Hayward J Am Chem Soc 73 1974 1951, Patterson & Todd J Chem Soc 2876 1929, Beilstein 1 IV 2841.]

 α -D(+)-Mannose [3458-28-4] M 180.2, m 132°, $[\alpha]_D^{20}$ mutarotates from +29.9° to +14° (c 4, H₂O). Crystallise α -D(+)-mannose repeatedly from EtOH, aqueous 80% EtOH, AcOH or MeOH/propan-2-ol and then dry it *in vacuo* over P₂O₅ at 60°. [For ¹H NMR and equilibrium forms; Angyal *Adv Carbohydr Chem* 42 15 1984, Angyal & Pickles *Aust J Chem* 25 1711 1972, *Beilstein* 1 IV 4328.]

D(+)-Melezitose (H₂O) ($O \cdot \alpha \cdot D \cdot glucopyranos yl \cdot (1 3)-\beta$ -fractofuranosyl- α -D-glucopyranose [597-12-6] M 540.5, m 153-154°(dec), 2H₂O, 160°(dec), [α] $_D^{20}$ +88° (c 2, H₂O for dihydrate) and [α] $_D^{20}$ +91.7° (c 2, H₂O for anhydrous). D(+)-Melezitose crystallises from aqueous EtOH as the *monohydrate* and water as the *dihydrate*, and is then dried at 110° (anhydrous). It is also purified by dissolving in an equal volume of H₂O, filtering into a crystallising dish and allowing to stand (loosely covered) for several weeks undisturbed at 20°. The crystals of clear prisms are wiped carefully and dried in air. They effloresce at once losing 3.35% of their weight, and after 3days in air the loss is for 1H₂O from the dihydrate. Drying at 110° for 6hours *in vacuo* yields the *anhydrous* form which after 2days in air it absorbs H₂O to give the monohydrate. The monohydrate is also obtained by dissolving it in an equal weight of H₂O at 60° and adding 4 volumes of 95% EtOH and drying in air overnight. [Richtmeyer & Hudson *J Org Chem* 11 610 *1946*, *Beilstein* 17 III/IV 3815, 17/8 V 414.]

D(+)-Melibiose (2H₂O) (6-*O*- α -D-galactopyranosyl-D-glucose) [585-99-9, monohydrate 66009-10-7] M 360.3, m 84-85°, 178-181°, 184-185°, [α] $_{\rm D}^{20}$ +135° (c 5, after 10hours H₂O). D(+)-Melibiose crystallises as a hydrate from water or aqueous EtOH. The α -anomer is obtained by recrystallising 1g from a mixture of 0.35mL of H₂O and 0.2mL of EtOH. It crystallises easily with m 179° and mutarotates from [α] $_{\rm D}^{20}$ +166° to +142.3° (220minutes, c 4, H₂O). Crystallisation from MeOH gives the *anhydrous* form which hydrates to the monohydrate in air. The β -anomer dihydrate m 85-86° mutarotates from [α] $_{\rm D}^{20}$ +123.5° to +143.1° (c 4, H₂O for anhydrous). [Fletcher & Diehl J Am Chem Soc 74 5774 1952, Beilstein 17 III/IV 3075, 17/7 V 206.]

N-Methyl-D(-)-glucamine (Meglumine) [6284-40-8] M 195.2, m 128-129°, $[\alpha]_{546}^{20}$ -19.5°(c 2, H₂O), pK²⁸ 9.62. Crystallise *N*-methyl-D(-)-glucamine from MeOH. Its solubility in H₂O is 10%. [Karrer & Herkenrath *Helv Chim Acta* 20 83 1957 also for other N-alkyl derivatives, *Beilstein* 4 IV 1914.]

N-Methyl α -L-glucosamine [42852-95-9] M 193.2, m glass, $[\alpha]_D^{25}$ -65° (c 1, MeOH) pK_{Est} ~9. The *hydrochloride* crystallises from EtOH as hygroscopic needles with m 160-163°, $[\alpha]_D^{25}$ +103° mutarotating to -88° after 24hours (c 0.6, H₂O), and gives the free base as a glass. The *Pentaacetate* crystallises from CHCl₃/Et₂O with m 160.5-161.5°, $[\alpha]_D^{25}$ -100° (c 0.7, CHCl₃), and the *N*-acetate crystallises from CHCl₃/MeOH with m 165-166°, $[\alpha]_D^{25}$ -51° (c 0.4, H₂O). [Kuehl et al. *J Am Chem Soc* 68 536 1946, 69 3032 1947, Lemieux & Wolfrom Adv Carbohydr Chem 3 337 1948, Beilstein 4 IV 2032.]

Methyl α -D-glucoside (methyl α -D-glucopyranoside) [97-30-3] M 194.2, m 168°, 166-169°, [α]_D²⁰ +158.9° (c 10, H₂O), pK₁²⁵ 13.71. Crystallise methyl α -D-glucoside from MeOH or EtOH. Its solubility in H₂O is 10%. [Ferrier et al. *Carbohydr Research* 27 55,59 1973, *Beilstein* 17/7 V 13.]

Methyl β -D-glucoside (methyl β -D-glucopyranoside [7000-27-3] M 203.2 (0.5 H₂O), m 107-109°, $[\alpha]_{D}^{20}$ -33° (c 10, H₂O). Crystallise methyl β -D-glucoside from MeOH or EtOH. Its solubility in H₂O is 10%. [Ferrier et al. *Carbohydr Research* 27 55,59 1973, *Beilstein* 17/7 V 10.]

4-Methylumbellifer-7-yl-\alpha-D-glucopyranoside [17833-43-1] M **338.3**, m **209-210**°, **221-222**°, [α] $_{D}^{20}$ **+162**° (c **0.5**, pyridine). Recrystallise 4-methylumbellifer-7-yl- α -D-glucopyranoside from hot H₂O or EtOH. [Courtin-Duchateau & Veyrière *Carbohydr Research* **65** 23, 29 1978, *Beilstein* **18** IV 443.]

4-Methylumbellifer-7-yl-\beta-D-glucopyranoside [18997-57-4] M 338.3, m 211-213°, 211°, [α] $_{D}^{20}$ -68° (c 0.5, pyridine), -89.5° (c 0.5, H₂O for half hydrate). 4-Methylumbellifer-7-yl- β -D-glucopyranoside crystallises as the half hydrate from hot H₂O. [Constantzas & Kocourek *Collect Czech Chem Commun* 24 1099 1959, De Re et al. Ann Chim (Rome) 49 2089 1959, Courtin-Duchateau & Veyrière Carbohydr Research 65 23, 29 1978, Beilstein 18 III/IV 5152, 8 IV 433, 18/7 V 616.]

Naringin (4',5,7-trihydroxyflavanone 7-rhamnoglucoside) [10236-47-2] M 580.5, m ~83° (6H₂O), 171° (2H₂O), $[\alpha]_{D}^{19}$ -90° (c 1, EtOH), $[\alpha]_{546}^{20}$ -107° (c 1, EtOH). This bitter principle from grape juice crystallises from water to give the hydrate with 6-8 H₂O which when dried at 110° gives the *dihydrate*. Its solubility in H₂O is 0.1% at 40° and 10% at 75°. The 2,4-*dinitrophenylhydrazone* crystallises from aqueous dioxane with m 246-247° [Douglass et al. J Am Chem Soc 73 4023 1951]. [Pulley & von Loesecke J Am Chem Soc 61 175 1939, Beilstein 18 III/IV 2637, 18 V 528.]

2-Nitrophenyl- β -D-galactopyranoside [369-07-3] M 301.3, m 185-190°, 193°, 193-194°, [α] $_{\rm D}^{18}$ -51.9° (c 1, H₂O). Purify 2-nitrophenyl- β -D-galactopyranoside by recrystallisation from EtOH. [Seidman & Link J Am Chem Soc 72 4324 1950, Snyder & Link J Am Chem Soc 75 1758 1953]. It is a chromogenic substrate for β -galactosidases [Jagota et al. J Food Sci 46 161 1981]. [Beilstein 17/7 V 52.]

4-Nitrophenyl-\alpha-D-galactopyranoside [7493-95-0] M 301.3, m 166-169°, 173°, $[\alpha]_{D}^{25}$ +248° (c 1, H₂O). Purify 4-nitrophenyl- α -D-galactopyranoside by recrystallisation from H₂O or aqueous EtOH. The *monohydrate* has m 85° which resolidifies and melts again at 151-152° (the *hemihydrate*), then resolidifies again and melts at 173° to give the *anhydrous* form. Drying the monohydrate at 60° yields the hemihydrate, and drying at 100° gives the anhydrous compound. The *tetraacetate* has m 147° after drying at 100°. [Jermyn Aust J Chem 15 569 1962, Helfreich & Jung Justus Liebigs Ann Chem 589 77 1954.] It is a substrate for α -galactosidase [Dangelmaier & Holmsen Anal Biochem 104 182 1980]. [Beilstein 17/7 V 55.]

4-Nitrophenyl-β-D-galactopyranoside [3150-24-1] M 301.3, m 178°, 178-181°, 181-182°, [α] $_{D}^{20}$ -83° (c 1, H₂O). Purify the galactoside by recrystallisation from EtOH. [Horikoshi J Biochem (Tokyo) 35 39 1042, Goebel & Avery J Exptl Medicine 50 521 1929, Snyder & Link J Am Chem Soc 75 1758.] It is a chromogenic substrate for β-galactosidases [Buoncore et al. J Appl Biochem 2 390 1980]. [Beilstein 17/7 V 55.]

4-Nitrophenyl-\alpha-D-glucopyranoside [3767-28-0] M 301.3, m 206-212°, 216-217° (sinters at 210°), $[\alpha]_{D}^{20}$ +215° (c 1, H₂O). Purify 4-nitrophenyl- α -D-glucopyranoside by recrystallisation from H₂O, MeOH or EtOH. [Jermyn Aust J Chem 7 202 1954, Montgomery et al. J Am Chem Soc 64 690 1942.] It is a chromogenic substrate from α -glucosidases [Oliviera et al. Anal Biochem 113 1881981], and is a substrate for glucansucrases [Binder & Robyt Carbohydr Research 124 2871983]. [Beilstein 17/7 V 53.]

4-Nitrophenyl-β-D-glucopyranoside [2492-87-7] **M 301.2, m 164°, 164-165°, 165°,** $[\alpha]_D^{20}$ -107° (c 1, H₂O). Purify 4-nitrophenyl-β-D-glucopyranoside by recrystallisation from EtOH or H₂O. [Montgomery et al. *J Am Chem Soc* 64 690 1942, Snyder & Link *J Am Chem Soc* 75 1758 1953.] It is a chromogenic substrate for β-glucosidases [Weber & Fink *J Biol Chem* 255 9030 1980]. [Beilstein 17/7 V 53.]

N-Nonanoyl-*n*-methylglucamine (Mega-9) [85261-19-4] M 335.4, m 87-89°. It is a non-ionic detergent which is purified as for *n*-decanoyl-*N*-methylglucamine above. [Hildreth *Biochem J* 207 363 1982.]

Nonyl- β -D-glucopyranoside [69984-73-2] M 306.4, m 67.5-70°, 70-71°, $[\alpha]_D^{20}$ -34.4° (c 5, H₂O), $[\alpha]_D^{25}$ -28.8° (c 1, MeOH). Purify nonyl- β -D-glucopyranoside by recrystallisation from Me₂CO or hexane/Et₂O and store it in well-stoppered containers as it is *hygroscopic*. [Pigman & Richtmyer J Am Chem Soc 64 369 1942.] It is a UV transparent non-ionic detergent for solubilising membrane proteins [Schwendener et al. Biochem Biophys Res Commun 100 1055 1981]. [Beilstein 17 III/IV 2937, 17/7 V 39.]

Octyl-\beta-D-glucopyranoside [29836-26-8] **M 292.4**, **m 62-65°**, **63.8-65°**, $[\alpha]_{D}^{20}$ **s**-34° (**c** 4, **H**₂**O**). Purify octyl- β -D-glucopyranoside by recrystallisation from Me₂CO. It is *hygroscopic* and should be stored in a well-stoppered container. [Noller & Rockwell J Am Chem Soc **60** 2076 1938, Pigman & Richtmyer J Am Chem Soc **64** 369 1942.] It is a UV transparent non-ionic dialysable detergent for solubilising membrane proteins. The α -D-isomer with $[\alpha]_{D}^{20} + 118°$ (c 1, MeOH) has similar solubilising properties. [Lazo & Quinn Anal Biochem **102** 68 1980, Stubbs et al. Biochim Biophys Acta **426** 46 1976, Beilstein **17**/7 V 38.]

Pectic acid [9046-40-6] M_r ($C_6H_8O_6$)_n~500,000, amorphous, $[\alpha]_p+250^\circ$ (c 1, 0.1M NaOH). Citrus pectic acid (500g) is refluxed for 18hours with 1.5L of 70% EtOH, and the suspension is filtered hot. The residue is washed with hot 70% EtOH and finally with ether. It is dried in a current of air, ground and dried for 18hours at 80° under vacuum. [Morell & Link *J Biol Chem* 100 385 1933.] It can be further purified by dispersing it in water and adding just enough dilute NaOH to dissolve the pectic acid, then passing the solution through columns of cation- and anion-exchange resins [Williams & Johnson *Ind Eng Chem* (*Anal Ed*) 16 23 1944], and precipitating with two volumes of 95% EtOH containing 0.01% HCl. The precipitate is worked with 95% EtOH, then Et₂O, dried and ground. [Rees & Walsh *Angew Chem Int Edn* 16 214 1977, Rees *Adv Carbohydr Chem* 24 267 1969.]

Pectin (1-4 linked) [9000-69-5] M_r 30,000-100,000, amorphous. Dissolve the pectin in hot water to give a 1% solution, then cool, and make it to about 0.05M in HCl by addition of conc HCl, and precipitate it by pouring it slowly, with vigorous stirring into two volumes of 95% EtOH. After standing for several hours, the pectin is filtered through a nylon cloth, then redispersed in 95% EtOH and stood overnight. The precipitate is filtered off, washed with EtOH/Et₂O, then Et₂O and dried in air. [Rees & Walsh Angew Chem, Int Edn 16 214 1977, Rees Adv Carbohydr Chem 24 267 1969.]

Pentaerythritol (2,2-bis[hydroxymethyl]-1,3-propanediol) [115-77-5] M 136.2, m 260.5°, 268-269°. Reflux pentaerythritol with an equal volume of MeOH, then cool, and the precipitate is collected and dried at 90°. It can also be crystallised from dilute aqueous HCl. After sublimation under high vacuum at 200° it has m 265.5°. Its solubility in H₂O is 10%. [Beilstein 18 III 2361, 1 IV 2812.]

Pentaerythritol tetraacetate [597-71-7] **M 304.3, m 83-84°, 84-86°.** Crystallise pentaerythritol tetraacetate from hot water, then leach it with cold water until the odour of acetic acid is no longer detectable. It also crystallises from 95% EtOH after dissolving in CHCl₃, washing with saturated NaHCO₃, then H₂O, drying over anhydrous CaCl₂ and evaporating. It has been prepared by acetolysis of the tetranitrate in 95% yield [Wolfrom et al. *J Am Chem Soc* **73** 874 *1951*]. [Breusch & Oguzer *Chem Ber* **88** 1511 *1955*, LeFèvre et.al. *J Chem Soc* 16 *1958*, *Beilstein* **1** IV 1812, **2** IV 264.]

Pentaerythrityl laurate (pentaerythrityl tetra*-n***-dodecanoate)** [13057-50-6] **M 864.6, m 50°.** Crystallise the laurate from Me₂CO, Et₂O or pet ether. [Breusch & Oguzer *Chem Ber* **88** 1511 1955.]

Pentaerythritol tetranitrate [78-11-5] **M 316.2, m 140.1°.** Crystallise pentaerythritol tetranitrate from acetone or acetone/EtOH. When crystallised from H₂O at 0°, it may have **m** 26-28° (hydrate?). It detonates more easily than TNT on percussion. The *O-acetate*, when crystallised from EtOH, has **m** 87-88°. Although it has been distilled at 60°/2mm, distillation should **NOT** be attempted as it is **VERY EXPLOSIVE.** It is a vasodilator. [Marans et al. *J Am Chem Soc* **76** 1304 *1954*, Camp et al. *J Am Chem Soc* **77** 751 *1955*, *Beilstein* **1** IV 2816, **2** IV 264.]

2-Phenylethyl-β-D-thiogalactoside [63407-54-5] **M** 300.4, **m** 108°, $[\alpha]_D^{23}$ -32.2° (c 5, MeOH). Recrystallise the thiogalactoside from H₂O and dry in air to give the 1.5.H₂O which has **m** 80°. The anhydrous surfactant is obtained by drying it at 78° over P₂O₅. [Heilfrich & Türk Chem Ber 89 2215 1856.]

Phenyl-β-D-galactopyranoside [2818-58-8] M 256.3, m 153-154°, 146-148°, 155-156°(dried at 105°), $[α]_{D}^{20}$ -42° (c 1, H₂O). Recrystallisation of phenyl-β-D-galactopyranoside from H₂O gives the 0.5H₂O. [Conchie & Hay *Biochem J* 73 327 1959, IR: Whistler & House *Analyt Chem* 25 1463 1953.] It is

an acceptor substrate for fucosyltransferase [Chester et al. *Eur J Biochem* **69** 583 1976]. [*Beilstein* **17**/7 V 46.]

Phenyl-β-D-glucopyranoside [1464-44-4] M 256.3, m 174-175° 174-176°, 176°, $[\alpha]_{D}^{20}$ -72.2° (c 1 for dihydrate, H₂O). Phenyl-β-D-glucopyranoside recrystallises from H₂O with 2H₂O and can be dried *in vacuo* at 100°/P₂O₅. The dry preparation has $[\alpha]_{D}^{25}$ -70.7° (c 2, H₂O). [Robertson & Waters J Chem Soc 2729 1930, IR: Bunton et al. J Chem Soc 4419 1955, Takahashi Yakugaku Zasshi (J Pharm Soc Jpn) 74 7436 1954, Whixtler & House Anal Chem 25 1463 1953, UV: Lewis J Am Chem Soc 57 898 1935.] It is a substrate for β-D-glucosidase [deBryne Eur J Biochem 102 257 1979]. [Beilstein 17 III/V 2946.]

Phlorizin (2H₂O) [phloretin 2'-*O*-β-D-glucoside] [60-81-1] M 472.5, m 110°, $[\alpha]_{546}^{20}$ -62° (c 3.2, EtOH). Phlorizin crystallises as the *dihydrate* from water and causes glycosuria. [Brazy & Dennis Am J Physiol 234 1279 1978, Zemplen & Bognár Chem Ber 17B 1040 1943, Beilstein 17/7 V 177.]

D(+)-Raffinose (5H₂O) (Melitose, 6-O-α-D-galactopyranosyl-D-glucopyranosyl-β-D-fructo-furanose [17629-30-0 (5H₂O), 512-69-6 (anhydrous)] **M 594.5, m 80°, 80-82°,** [α] $_{546}^{20}$ +124° (c 10, H₂O), [α] $_{D}^{20}$ +105° (c 1 for pentahydrate, H₂O), pK $_{1}^{25}$ 12.40, pK $_{2}^{25}$ 13.44, pK $_{3}^{25}$ 13.52. D(+)-Raffinose crystallises from H₂O, 90% aqueous EtOH or MeOH as the *pentahydrate*. The anhydrous sugar has **m** 132-135°. It has R_F 0.8 on TLC (Silica Gel, and 1:3:3 CHCl₃/butanone:/MeOH). The undecaacetate has been purified through an alumina column by elution with CHCl₃, and recrystallised from EtOH/MeOH/H₂O (3:2:5), with **m** 99-100°, [α] $_{D}^{20}$ +92.8° (c 5.14, EtOH). [pK : Coccioli & Vicedomini Ann Chim (Rome) **66** 269, 275 1976, ¹H NMR: Suami et al. Carbohydr Research **26** 234 1973, Beilstein **17** III/IV 3801, **17/8** V 403.]

L(+)- α -Rhamnose (H₂O) (6-deoxy-L-mannose) [10030-85-0 (H₂O), 3615-41-6 (anhydrous)] M 182.2, m 90-92°, 101°, 105°, [α] ¹⁸_D -6.8° mutarotating to +9.1° (c 1, H₂O). Crystallise the rhamnose from H₂O or EtOH. It crystallises easily as the *monohydrate* by evaporating a solution in MeOH (90%) and H₂O (10%). It is also purified by dissolving in a small volume of EtOH, adding a few drops of H₂O and cooling. ¹H NMR in D₂O at 44° contains 60% α -pyranose and 40% β -pyranose forms [Angyal Adv Carbohydr Chem 42 15 1984.] [Smith J Chem Soc 1035 1940, McGeachin & Beevers Acta Cryst 10 227,230 197, Beilstein 1 IV 4261.]

D-(+)-Ribonic acid- γ -lactone [5336-08-3] **M 148.12, m 80°, 84-86°,** $[\alpha]_{D}^{20}$ +18.3° (c 5, **H**₂**O**). Purify D-(+)-ribonic acid- γ -lactone by recrystallisation from EtOAc. The *tribenzoate* has **m** 54-56° (from AcOH), $[\alpha]_{D}^{25}$ +27° (c 2.37, Me₂NCHO), and the 3,5-O-*benzylidene* derivative has **m** 230-231.5° (needles from Me₂CO-pet ether) and $[\alpha]_{D}^{25}$ -177° (CHCl₃). [Chen & Joulié *J Org Chem* **49** 2168 1984, Zinner & Voigt *J Carbohydr Research* **7** 38 1968.]

α-D(-)-Ribose [50-69-1] **M 150.1, m 90°**, $[α]_{546}^{20}$ -24° (after 24hours, c 10, H₂O), pK²⁵ 12.22. Crystallise α-D(-)-ribose from aqueous 80% EtOH, dry it under vacuum at 60° over P₂O₅ and store it in a vacuum desiccator. It exhibits a complex mutarotation with : $[α]_D^{10}$ -23.1° (1.5minutes), -21.3° (5minutes), -19.5° (10minutes), -19.1° (30minutes), -21.2° (60minutes), -23.1° (120minutes), -23.7° (300minutes), (c 4.5, H₂O) [Phelps et al. *J Am Chem Soc* 56 748 *1934*]. ¹H NMR in D₂O at 44° shows 17% α-pyranose, 59% β-pyranose, 9% α-furanose and 15% β-furanose forms with furanose α-H at 5.34ppm (*J* 3.0Hz) and β-H at 5.31 (*J* 1.7Hz) [Angyal *Adv Carbohydr Chem* 42 15 *1984*, Angyal & Pickles *Aust J Chem* 25 1711 *1972*]. The phenylhydrazone crystallises from aqueous pyridine in yellow needles, **m** 163-164°, and the *benzylphenylhydrazone* has **m** 127-128° [Snowden *J Am Chem Soc* 72 808 *1950*.] [*Beilstein* 1 IV 4211.]

(+)-Rutin (quercetin-3-rubinoside) See Vitamin P in "Miscellaneous", this chapter.

Saccharides. They are separated by anion-exchange chromatography. [Walberg & Kando *Anal Biochem* **37** 320 *1970*.]

D(-)-Salicin [2-(hydroxymethyl)phenyl- β -D-glucopyranoside) [138-52-3] M 286.3, m 204-208°, [α] $_{D}^{25}$ -63.5° (c ca 3, H₂O). Crystallise D(-)-salicin from EtOAc, EtOH or water and sublime it at 190-195°/12mm. [Armour et al. J Chem Soc 412 1961, IR: Pearl & Darling J Org Chem 24 731 1959, Beilstein 17 III/IV 2986, 17/7 V 113.]

Sennoside A (bianthraquinonyl-bis-glucoside *R*,*R*-enantiomer) [81-27-6] M 862.7, m 220-240°(dec), $[\alpha]_{D}^{20}$ -164° (c 0.1, Me₂CO/H₂O 6:4), $[\alpha]_{D}^{20}$ -24° (c 0.2, 70% aqueous dioxane). Sennoside A forms yellow crystals from aqueous acetone, 2-ethoxyethanol or large volumes of H₂O. [Stoll et al. *Helv Chim Acta* 32 1896 *1900*, *Beilstein* 17 III/IV 3403.]

Sennoside B (bianthraquinonyl-bis-glucoside *R*,*S*-enantiomer) [128-57-4] M 862.7, m 209-212°(dec), $[\alpha]_D^{20}$ -100° (c 2, Me₂CO/H₂O 7:1), $[\alpha]_D^{20}$ -67° (c 0.2, 70% aqueous dioxane). Sennoside B forms yellow crystals from aqueous acetone or large volumes of H₂O. [Stoll et al. *Helv Chim Acta* 32 1896 1900, *Beilstein* 17 III/IV 3402.]

Sinigrin monohydrate (Myronate K, 1-thio- β -D-glucopyranose 1-[N-(sulfooxy)-3-butenimidate] monopotassium salt) [64550-88-5] M 415.5, m 125-127°, 127-129°, 179°(anhydrous), [α] $_{D}^{20}$ -17° (c 0.2, H₂O), pK_{Est} <0. Purify sinigrin by recrystallising it three times from EtOH and once from MeOH. The *tetraacetate* has m 193-195°, [α] $_{D}^{20}$ -16° (c 0.14, H₂O). [Benn et al. J Chem Soc, Chem Commun 445 1965, Kjaer et al. Acta Chem Scand 10 432 1956, Marsh et al. Acta Cryst (Sect B) 26 1030 1970.] It is a β -D-thioglucopyranoside substrate for thiogluconidase [MacLeod & Rossiter Phytochem 25 1047 1986]. [Beilstein 31 H 476, 17 III/IV 3738.]

α-Solanine (solan-5-en-3β-yl-[O^3 -β-D-glucopyranosyl- O^2 -α-L-rhamnopyranosyl-β-D-galacto -pyranoside]) [20562-02-1] M 868.1, m 285°(dec), 286°(dec) (sintering >190°), [α] $_D^{20}$ -58° (c 0.8, pyridine), pK¹⁵ 6.66. Recrystallise α-solanine from EtOH, 85% aqueous EtOH, MeOH or aqueous MeOH as *dihydrate* m 276-278°. It solubility in H₂O is 25mg/L and 5% in pyridine, but it is very soluble in Et₂O and CHCl₃. The *hydrochloride* is gummy or amorphous but has been crystallised (m ~212° dec). It has insecticidal properties. [Kuhn et al. *Chem Ber* 88 1492 1955, *Beilstein* 21 III/IV 1402.]

Solasonine (solasodine-3-O-triglycoside) [19121-58-5] M 884.0, m 301-303° (sinters at ~296°), $[\alpha]_{D}^{20}$ -75° (c 0.5, MeOH), pK_{Est} ~ 7.7. Solasonine crystallises from aqueous 80% dioxane or MeOH in needles. [Bell & Briggs J Chem Soc 1 1942, Briggs et al. J Chem Soc 4645 1961, Briggs et al. J Chem Soc 2848 1963.] The picrate crystallises from 30% aqueous EtOH with m 197-198°(dec) [Briggs & Cambie J Chem Soc 1422 1958]. [Beilstein 27 III/IV 2006.]

D(-)-Sorbitol (D-glucitol) [50-70-4] M 182.2, m 89-93° (hemihydrate), 110-111° (anhydrous), $[\alpha]_{546}^{20}$ -1.8° (c 10, H₂O), pK⁶⁰ 13.00. Crystallise D(-)-sorbitol (as hemihydrate) several times from EtOH/water (1:1), then dry it by fusing and storing over anhydrous MgSO₄. [Koch et al. J Am Chem Soc 75 953 1953, Beilstein 1 IV 2839.]

Starch [9005-84-9] **M** (162.1)_n. Starch is de-fatted by Soxhlet extraction with Et_2O or 95% EtOH. For fractionation of starch into "amylose" and "amylopectin" fractions, see Lansky et al. [*J Am Chem Soc* 71 4066 1949].

Streptozotocin (*N*-[methylnitrosocarbamoyl]- α -D-glucosamine, streptozocin) [18883-66-4] M 265.2, m 111-114°(dec), 114-115°(dec), 115°(dec with evolution of gas), $[\alpha]_{D}^{20} \sim +39^{\circ}$ (H₂O, may vary due to mutarotation). Recrystallise streptozotocin from 95% EtOH. It is soluble in H₂O, MeOH and Me₂CO. It has UV λ_{max} at 228nm (ϵ 6360) in EtOH. The *tetraacetate* has m 111-114°(dec), and $[\alpha]_{D}^{25}$ +41° (c 0.78, 95% EtOH) after recrystallisation from EtOAc. [Herr et al. *J Am Chem Soc* 89 4808 1967, NMR: Wiley et al. *J Org Chem* 44 9 1979.] It is a potent methylating agent for DNA [Bennett & Pegg *Cancer Res* 41 2786 1981].

 sucrose from water (solubility: 1g in 0.5mL H₂O at 20°, 1g in 0.2mL in boiling H₂O). It is soluble in EtOH (0.6%) and MeOH (1%). *Sucrose diacetate hexaisobutyrate* is purified by melting and, while molten, treated with NaHCO₃ and charcoal, then filtered. [*Beilstein* **17/8** V 399.]

D(+)-Sucrose octaacetate [126-14-7] **M 678.6, m 83-85°, b 260°/1mm,** $[\alpha]_{546}^{20}$ +71° (c 2.5, **EtOH).** After three recrystallisations from EtOH or 95% EtOH (charcoal), the **m** of the *octaacetate* rises to 88-90°, or Et₂O with **m** 89° and $[\alpha]_{D}^{25}$ +58.5° (c 2.6, EtOH). It has a bitter taste. [Linstead et al. J Am Chem Soc **62** 3260 1940, Lemieux & Huber J Am Chem Soc **78** 4117 1956, Beilstein **17/8** V 410.]

D(-)-**Tagatose** [87-81-0] **M** 180.2, **m** 131-132°, 134-135°, $[\alpha]_{546}$ -6.5° (c 1, H₂O). Crystallise D(-)-tagatose from EtOH/H₂O (6:1). It mutarotates from $[\alpha]_D^{22}$ +2° (2minutes) to -5.0° (30minutes) (c 4, H₂O). The *phenylosazone* crystallises from aqueous EtOH with **m** 185-187°(dec), and $[\alpha]_D^{23}$ +47° (c 0.82, 2-methoxyethanol). [Totton & Lardy *J Am Chem Soc* **71** 3076 *1949*, Gorin et al. *Canad J Chem* **33** 1116 *1955*, Reichestein & Bossard *Helv Chem Acta* **17** 753 *1934*, Wolfrom & Bennett *J Org Chem* **30** 1284 *1965*, *Beilstein* **1** IV 4414.] In D₂O at 27° ¹H NMR showed the following ratios: α-pyranose (79), β-pyranose (16), α-furanose (1) and β-furanose (4) [Angyal *Adv Carbohydr Chem* **42** 15 *1984*, Angyal & Pickles *Aust J Chem* **25** 1711 *1972*].

Thevetin A (cardenolide glycoside) [37933-66-7] M 858.9, m softens at 194°, m 208-210°, $[\alpha]_D^{26}$ -72° (c 1.48, MeOH), Crystallise thevetin A from H₂O. The *acetyl derivative* crystallises from MeOH/Et₂O at -15° with m 145-149°, and $[\alpha]_D^{26}$ -54.2° (c 1.86, CHCl₃). [Block et al. *Helv Chim Acta* 43 652 1960, ¹³C NMR: Tori et al. *Tetrahedron Lett* 717 1977, *Beilstein* 18 III/IV 2552, 18/4 V 439.]

Thevetin B (cardenolide glycoside) [11018-93-2] M 858.9, m 197-201°, $[\alpha]_D^{24}$ -61.4° (c 1.5, MeOH). It crystallises (as *trihydrate*) from isopropanol. Dry it at 100°/0.01mm to give the *hemihydrate* (very *hygroscopic*). [Block et al. *Helv Chim Acta* 43 652 1960, ¹³C NMR: Tori et al. *Tetrahedron Lett* 717 1977, *Beilstein* 18 III/IV 1493.]

 α,α' -D(+)-Trehalose (2H₂O) [6138-23-4] M 378.3, m 96.5-97.5°, 94-100° (dihydrate), 214-216° (anhydrous), $[\alpha]_{D}^{20}$ +180° (dihydrate, c 4, H₂O), $[\alpha]_{D}^{20}$ +199° (anhydrous, c 4, H₂O). α,α' -D(+)-Trehalose crystallises (as the *dihydrate*) from aqueous EtOH. Dry it at 13°. For the *anhydrous* compound dissolve 10g in pyridine (200mL) and distil off this solvent at atmospheric pressure, and when the temperature rises to 115.3° all the H₂O is removed and 73mL of distillate is collected. Most of the anhydrous material crystallises out at this stage. The crystals are collected (6.8g), washed with Et₂O to give 6.1g of anhydrous product. Higher yields are obtained by slightly more prolonged distillation. [Birch *J Chem Soc* 3489 *1965*, X-ray cryst: Brown et al. Acta Cryst **28** 3145 *1972*, Beilstein **17/8** V 3.]

D(+)-**Turanose** [3-*O*-α–D-glucosido)-D-fructose] [547-25-1] **M** 342.3, **m** 168-170°, $[\alpha]_{D}^{20}$ +88° (c 4, H₂O). Crystallise D(+)-turanose from H₂O by addition of EtOH (its solubility is 5.3% in 95% EtOH). Form **m** 157° is obtained by crystallisation from hot MeOH, and mutarotates from +27.3° to $[\alpha]_{D}^{20}$ +88° (c 4, H₂O). The *phenylosazone* crystallises from 15 parts of 95% EtOH with **m** 200-205°, $[\alpha]_{D}^{20}$ 24.5° mutarotating to +33°[24hours, c 0.82, pyridine/EtOH (4:6)]. [Pascu *Methods in Carbohydrate Chemistry* **I** 353 *1962*, Academic Press, *Beilstein* 17/7 V 213.] In D₂O at 36° ¹H NMR showed the following ratios: αpyranose (<4), β-pyranose (39), α-furanose (20) and β-furanose (41)[Angyal *Adv Carbohydr Chem* **42** 15 *1984*].

Vicine (2,4-diamino-5- β -D-glucopyranosidoxy-6-hydroxypyrimidine) [152-93-2] M 304.3, m 243-244°, [α] $_{D}^{20}$ -12° (c 4, 0.2N NaOH). Crystallise Vicine from water (1%) or aqueous 85% EtOH, and dry it at 135°. [Bendich & Clements *Biochim Biophys Acta* 12 462 1953, *Beilstein* 31 H 163, 25 III/IV 4285.]

Ustilagic acid (Ustizeain B, di-D-glucosyldihydroxyhexadecanoic acid) [8002-36-6] M ~780, m 146-147°, $[\alpha]_{\rm p}^{23}$ + 7° (c 1, pyridine), pK²⁵ ~ 4.9. Ustilagic acid is a mixture of partly

acetylated di-D-glucosyldihydroxyhexadecanoic acid which crystallises from diethyl ether. It has also been purified from the culture by dissolving it in hot MeOH, filtering and concentrating by blowing a current of air until the solution becomes turbid, then heating to 50° and adding 4volumes of H₂O (also at 50°), and cooling very slowly. Filter off the white solid and dry it in air. It crystallises from Et₂O, and is soluble in MeOH, butan-1,2-diol, poorly soluble in EtOH, *n*-BuOH, Me₂CO and insoluble in H₂O, EtOAc and *C₆H₆. [Lemieux et al. *Can J Chem* **29** 409, 415 *1951*, Boothroyd et al. *Can J Biochem Physiol* **33** 289 *1955*.]

Xanthorhamnin (xanthene rhamnoside) [1324-63-6] M 770.7, m 195°, $[\alpha]_D^{20}$ +3.75° (EtOH), pK₁²⁴ 8.69, pK₂²⁴ 11.28, pK₃²⁴ 12.22. Crystallise xanthorhamnin from a mixture of ethyl and isopropyl alcohols, dry it in air, then dry it further for several hours at 110°. The UV (EtOH) has λ_{max} at 258 and 362nm. [Nystrom et al. J Org Chem 22 1272 1957, Beilstein 18 III/IV 3498.]

 α -D(+)-Xylose [58-86-6] M 150.1, m 146-147°, 153-154°, [α] $_{D}^{20}$ +92° mutarotating to +18.8° (16hours, c 10, H₂O), pK¹⁸ 12.14. α-D(+)-Xylose forms needles or prisms (which have a very sweet taste) by slow crystallisation from aqueous 80% EtOH or absolute EtOH, which are then dried at 60° *in vacuo* over P₂O₅. Store it in a vacuum desiccator over CaSO₄. 1Gram dissolves in 0.8mL H₂O. [Bragg & Hough *J Chem Soc* 4347 1957, Hudson & Yanovsky *J Am Chem Soc* 39 1029 1917, Monroe *J Am Chem Soc* 41 1002 1919, *Beilstein* 1 IV 4223.] In D₂O at 31°, ¹H NMR showed the following ratios: α-pyranose (36.5), β-pyranose (63), α-furanose + β-furanose (~1) [Angyal *Adv Carbohydr Chem* 42 15 1984, Angyal & Pickles *Aust J Chem* 25 1711 1972].

STEROIDS

This section also includes steroidal hormones, steroidal alkaloids and cardenolides.

(-)-3- β -Acetoxy-5-etienic acid [3- β -acetoxy-5-etiocholenic acid, androst-5-ene-17- β -carboxylic acid] [51424-66-9] M 306.5, m 238-240°, 241-242°, 243-245°, 246-247°, [α] $_{D}^{20}$ -19.9° (c 1, Me₂CO), -36° (c 1, dioxane), -33.5° (CHCl₃), pK_{Est} ~ 4.7. The acid is purified by recrystallisation from Me₂CO, Et₂O/pentane, or AcOH, dried in a vacuum oven (105°/20mm) and sublimed at high vacuum. [Staunton & Eisenbram *Org Synth* 42 4 1962, Steiger & Reichstein *Helv Chim Acta* 20 1404 1937.]

21-Acetoxypregnenolone (3β -21-acetoxypregn-5-en-20-one) [566-78-9] M 374.5, m 184-185°. Crystallise 21-acetoxypregnenolone from Me₂CO by allowing the solvent to evaporate in a vacuum, then dry it *in vacuo*. The crystals become opaque on standing. [Steiger & Reichstein *Helv Chim Acta* 20 1164 *1937*.]

Adrenosterone (Reichstein's G, androst-4-ene-3,11,17-trione) [382-45-6] M 300.4, m 214-217°, 220-224°, 224-226°, [α] $_{546}^{20}$ + 364° (c 0.18, EtOH). Dissolve adrenosterone in Me₂CO, decolorise it with charcoal, filter, add H₂O, Me₂CO evaporate and the solid is recrystallised from aqueous EtOH. Also recrystallise it from Et₂O or Et₂O/pentane and dry it at 110°/0.1mm for 2hours. It can be sublimed under high vacuum. [Reichstein *Helv Chim Acta* 20 953, 979 *1937*, Mason et al. *J Biol Chem* 116 267 *1936*, *Beilstein* 7 III 4601.]

Aldosterone (18-aldocorticosterone) [52-39-1] M 360.5, m 108-112°(hydrate), 164°(anhydrous), $[\alpha]_D^{25}$ +161° (c 1, CHCl₃). Crystallise aldosterone from aqueous acetone. It exists in solution as an equilibrium mixture of free aldehyde and its cyclic hemiacetal, favouring the hemiacetal. The 21-acetate crystallises from Me₂CO/Et₂O or CH₂Cl₂/EtOAc and has m 198-199°, $[\alpha]_D^{25}$ +121.7° (c 0.7, CHCl₃). [Barton et al. J Chem Soc Perkin Trans 1 2243 1975, Beilstein 8 IV 3491.]

5α-Androstane (etioallocholane) [5α- 438-22-2, 24887-75-0] **M 260.5**, **m 50-50.5**°, $[α]_D + 2°$ (c 0.12, CHCl₃). Purify 5α-androstane by chromatography through Al₂O₃ (grade III) and elute with pet ether and recrystallise from MeOH (2x) and Me₂CO/MeOH. It sublimes at 60°/high vacuum. Also dissolve it in pet ether, filter it through silica gel, evaporate and recrystallise it. [Steiger & Reichstein *Helv Chim Acta* **20** 817 *1937*, Prelog et al. *Helv Chim Acta* **27** 66 *1944*, IR, NMR: Halkes & Havinga *Rec Trav Chim Pays-Bas* **84** 889 *1965*, Allinger et al. *Tetrahedron* **27** 5073 *1971*, *Beilstein* **5** III 1110, **5** IV 1211.]

5β-Androstane (etiocholane, testane) [438-23-3] M 260.5, m 78-79°, 78-80°, $[\alpha]_D^{20}$ +2.03°, [α] $_{546}^{18}$ +5° (c 1, CHCl₃). Crystallise etiocholane from acetone. The method of purification for 5αandrostane (above) could be used here. [Shoppee *Helv Chim Acta* 27 246, 260 1944, Butenandt & Dannerbaum *Hoppe Seyler's Z Physiol Chem* 229 192 1934, *Beilstein* 5 III 1110, 5 IV 1211.]

4-Androstene-3,17-dione (androstenedione) [63-05-8] M 286.4, m 170-171°, 173-174°, $[\alpha]_D^{20}$ +196° (c 0.13, EtOH). Crystallise the dione from hexane. It is soluble in *C₆H₆, CHCl₃ and EtOH. It has λ_{max} at 239nm. It is a precursor of estrone or testosterone and has androgenic activity. [Ruzicka & Wettstein *Helv Chim Acta* 18 980 1935, *Beilstein* 7 III 3636, 7 IV 2381.]

Androsterone (*Cis*) ($3\alpha,5\alpha-3$ -hydroxyandrostan-17-one) [53-41-8] M 290.4, m 185-185.5°, $[\alpha]_{546}$ +118° (c 1, EtOH), $[\alpha]_{D}^{20}$ +94.6° (c 0.7, EtOH). Crystallise androsterone from Me₂CO/Et₂O or Me₂CO and sublime it in high vacuum. The *acetate* [1164-95-0] crystallises from Et₂O, Me₂CO/Et₂O or aqueous EtOH and sublimes in high vacuum with m 165-166°, $[\alpha]_{D}^{25}$ +87° (c 2, EtOH). [Ruzicka *Helv Chim Acta* 17 1389 1934, Marker J Am Chem Soc 57 1755 1935, Göndös & Orr J Chem Soc Chem Commun 1239 1982, Beilstein 8 IV 462.]

epi-Androsterone (*Trans*) [481-29-8] M 290.4, m 172-173°, (161-162° *dl*-), $[\alpha]_{546}$ +115° (c 1, MeOH), $[\alpha]_{D}^{20}$ +44.4° (c 0.27, CHCl₃). Purify *epi*-androsterone *via* the acetate, hydrolyse this and

recrystallise it from CHCl₃/hexane or aqueous EtOH. The *acetate* [1239-31-2] is purified by chromatography and when crystallised from pet ether has **m** 103-104°, $[\alpha]_D$ +68.5° (c 1, CHCl₃). The *oxime* has **m** 194-196° (from MeOH), $[\alpha]_D$ +17.5° (c 6.2, CHCl₃). The **racemic ketone** is sublimed at 130°/high vacuum and after two crystallisations from methylcyclohexane it gives prisms with **m** 161-162° (which changed crystal form at 140-145°). [Ruzicka & Wettstein *Helv Chim Acta* **18** 1264 *1935*, Johnson et al. *J Am Chem Soc* **75** 2275 *1953*, **78** 6331 *1956*, Cordwell et al. *J Chem. Soc* 361 *1953*, *Beilstein* **8** IV 462.]

Betamethasone (9α-fluoro-11β,17α,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione) [378-44-9] M 392.5, m 231-136°(dec), 235-237°(dec), $[\alpha]_{D}^{20}$ +108° (c 1, Me₂CO). Betamethasone crystallises from ethyl acetate, and has λ_{max} at 238nm (log ε 4.18) in MeOH. The 21-acetate [287-24-6] crystallises from Me₂CO/Et₂O (charcoal) m 196-201° (205-208°) and has $[\alpha]_{D}^{20}$ +140° (CHCl₃). [Taub et al. J Am Chem Soc 82 4012 1960, Olivetto et al. J Am Chem Soc 80 6688 1958, Beilstein 8 IV 3501.]

Bisnorcholanic acid (pregnane-20-carboxylic acid) [28393-20-6] M 332.5, m 214° (α-form), 242° (β-form), 210-211° (γ-form), 184° (δ-form), 181° (ε-form), pK_{Est} ~5.0. Bisnorcholanic acid crystallises from EtOH (α-form), or acetic acid (all forms). The α-form has $[\alpha]_D^{20}$ -7.5° (c 0.8, EtOH), and its *ethyl ester* has **m** 106-107°; the β-form has $[\alpha]_D^{20}$ +23.3° (c 0.86, EtOH), and its *ethyl ester* is an oil; the γform has $[\alpha]_D^{20}$ 0°, and its *ethyl ester* has **m** 82-83°; the δ-form has $[\alpha]_D^{20}$ +31.7° (c 0.76, EtOH), and its *methyl ester* has **m** 99°; the ε-form has $[\alpha]_D^{20}$ +14.3° (c 0.8, EtOH), and its *methyl ester* has **m** 117°. [Wieland et al. *Hoppe Seyler's Z Physiol Chem* 161 80 1926, *Beilstein* 9 III 2650.]

Campesterol (24*R*-24-methylcholest-5-en-3β-ol) [474-62-4] M 400.7, m 156-159°, 157-158°, $[\alpha]_{D}^{24}$ -35.1° (c 1.2, CHCl₃). Campesterol is recrystallised twice from hexane and once from Me₂CO. The *benzoyl* derivative has m 158-160° $[\alpha]_{D}^{23}$ -8.6° (CHCl₃), and the *acetyl* derivative has m 137-138° (EtOH) and $[\alpha]_{D}^{23}$ -35.1° (c 2.9, CHCl₃) [Fernholz & MacPhillamy *J Am Chem Soc* 63 1155 1941]. [*Beilstein* 6 III 2680.]

CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate betaine) [75621-03-3 anhydrous], [313223-04-0 hydrate] M 614.89, m 157°(dec), $pK_{Est(1)} \sim 2$ (acidic), $pK_{Est(2)} \sim 10$ (basic). Triturate this zwitterionic detergent (~50g) with MeOH (200ml), then triturate it with Me₂CO (500mL), collect it by vacuum filtration and dry it thoroughly at ~20°. Recrystallise it at 0° from absolute MeOH followed by drying *in vacuo* to constant weight. It should give one spot with R_F 0.32 by TLC on silica gel G in 95% MeOH/5% NH₄OH and visualized with iodine vapour; the tertiary amine precursor has R_F 0.40. It has low UV absorption (1% in H₂O: A280nm is 0.029 and A260nm is 0.035), and the CMC (critical micellar concentration) is 8mM. It is soluble in H₂O, MeOH, Me₂SO but insoluble in Me₂CO, MeCN, hexane, toluene and xylene. [Hjelmeland et al. Anal Biochem 130 72 1983, Matuo et al. Methods Enzymol 198 155 1991.]

CHAPSO (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate betaine) [82473-24-3] M 630.89, m 184-196°, $[\alpha]_{D}^{20} + 19^{\circ}$ (c 2, H₂O), pK_{Est(1)} ~<2 (acidic), pK_{Est(2)} ~9 (basic). Dissolve this zwitterionic detergent (~ 60g) in 40% aqueous MeOH and stir it with the mixed-bed ion-exchange resin RG-501 x 8 (100g, Bio-Rad) until the pH of the supernatant is ~ 7. Filter off the resin and evaporate the filtrate to dryness under reduced pressure. Check for homogeneity by TLC on silica gel G in 95% MeOH/5% NH₄OH and visualize the spot with iodine vapour (see CHAPS above). [Hjelmeland et al. Anal Biochem 130 72 1983, Matuo et al. Methods Enzymol 198 155 1991.]

Chenodeoxycholic acid (chenodiol, $3\alpha,7\alpha$ -dihydroxycholan-24-oic acid) [474-25-9] M 392.6, m (119°), 143°, 165-167°, [α] $_{546}^{20}$ +14° (c 2, EtOH), pK_{Est}~4.9. This major bile acid in vertebrates (~80mg) is chromatographed on silica gel (5g) and eluted with CHCl₃/EtOAc (3:2) and crystallised from EtOAc/hexane. It has IR: v_{max} 1705 cm⁻¹(CHCl₃). It also crystallises from EtOAc, EtOAc/heptane after purifying via the poorly soluble Na and K salt if necessary. [Kametani et al. J Org Chem 47 2331 1982, Beilstein 10 IV 1604.] **5α-Cholanic acid** (allocholanic acid) [546-98-4] M 360.6, m 170, $[\alpha]_{D}^{20}$ +22° (CHCl₃), pK_{Est}~4.9. Purify 5α-cholanic acid by chromatography on silica gel and eluting with MeOH/EtOAc/hexane (1:5:10) and recrystallising from Et₂O/hexane, MeOH or AcOH. The *methyl ester* has m 91° (from MeOH) and ¹H NMR (CDCl₃) for C18 & C19 at 0.66 and 0.78ppm [see 5β-cholanic acid below, Mandava et al. *Steroids* 23 357 1974]. [Demir et al. *Org Prepn Proced Int* 19 197 1987, Stoll et al. *Helv Chim Acta* 18 644 1935, *Beilstein* 9 III 2656, 9 IV 1992.]

5β-Cholanic acid (ursocholanic acid) [546-18-9, 25312-65-6] **M** 360.6, **m** 164-165°, $[\alpha]_{D}^{20}$ +21.7° (CHCl₃), **pK**_{Est}~4.9. Crystallise 5β-cholanic acid from EtOH, Me₂CO or AcOH. The *ethyl ester* has **m** 93-94° (from 80% EtOH), **b** 273°/12mm, $[\alpha]_{D}^{20}$ +21° (CHCl₃), and the *methyl ester* has **m** 86-87° (from MeOH) after purification through Al₂O₃ and eluting with *C₆H₆, and $[\alpha]_{D}^{20}$ +21.2° (CHCl₃). The ¹H NMR (CDCl₃) for the C18 & C19 protons has δ at 0.65 and 0.92ppm [see 5α-cholanic acid above, Mandava et al. *Steroids* 23 357 1974]. [Stoll et al. *Helv Chim Acta* 18 644 1935, Huang-Minlon *J Am Chem Soc* 71 330 1949, *Beilstein* 9 III 2656, 9 IV 1992.]

5α-Cholestane [481-21-0] M 372.7, m 80°, $[\alpha]_{546}^{20}$ +29.5° (c 2, CHCl₃). Crystallise 5αcholestane from Et₂O/EtOH or EtOAc. [Ruzicka et al. *Helv Chim Acta* 16 327 1933, *Beilstein* 5 III 1132, 5 IV 1227.]

5α-Cholestan-3β-ol (dihydrocholesterol) [80-97-7] M **388.7, m 142-143°(monohydrate),** [α] $_{546}^{20}$ **(c 1, CHCl₃),** [α]_D **+27.4° (in CHCl₃).** Purify 5-α-cholestan-3β-ol *via* acetylation, crystallisation and de-acetylation, then recrystallisation from EtOH or slightly aqueous EtOH, or MeOH. Its solubility is: 0.5% (MeOH) and 1% (EtOH) at 25°. [Mizutani & Whitten J Am Chem Soc 107 3621 1985.] The acetate has **m** 114-115° from EtOAc/MeOH and, [α] $_{D}^{20}$ +13° (c 2, CHCl₃). [Bruce & Ralls Org Synth Col Vol **II** 191 1943, Beilstein **6** IV 3577.]

Cholest-2-ene [15910-23-3] **M 370.6, m 75-76°,** $[\alpha]_{D}^{20}$ + 66° (c 1.65, CHCl₃). Purify cholest-2ene by chromatography on Al₂O₃ (Spence H) and elute with pet ether (b 40-60°), and recrystallise the residue from EtOAc/MeOH. Also recrystallise it from MeOH or diethyl ether/acetone. [Alt & Barton J Chem Soc 4284 1954, Bergbreiter & Chandran J Am Chem Soc 109 174 1987, Beilstein 5 III 1320, 5 IV 1507.]

Cholesterol (cholest-5-en-3B-ol) [57-88-5] **M 386.7, m 148.9-149.4**°, $[\alpha]_{D}^{25}$ -35° (hexane). Crystallise cholesterol from ethyl acetate, EtOH or isopropyl ether/MeOH. [Hiromitsu & Kevan *J Am Chem Soc* **109** 4501 1987.] For extensive details of purification through the dibromide, see Fieser [*J Am Chem Soc* **75** 5421 1953] and Schwenk and Werthessen [*Arch Biochem Biophys* **40** 334 1952], and by repeated crystallisation from acetic acid; see Fieser [*J Am Chem Soc* **75** 4395 1953]. Like many sterols, cholesterol gives colour reactions with conc H₂SO₄: When cholesterol is dissolved in a small volume of CHCl₃ and mixed with conc H₂SO₄, the colour of the organic layer becomes crimson, then changes to purple and on further standing in air it turns to blue, then green and finally yellow. The H₂SO₄ layer develops a green fluorescence. [*Beilstein* **6** III 2607, **6** IV 4000.]

Cholesteryl acetate [604-35-3] **M 428.7, m 113-115^o, 115-116^o, [\alpha]_{546}^{20} -51^o (c 5, CHCl₃). Crystallise the acetate from** *n***-pentanol or Me₂CO. Also purify it by chromatography through silica gel and eluting with MeOH. [Beilstein 6 III 2607, 6 IV 4004.]**

Cholesteryl myristate [1989-52-2] **M 597.0**, **m 69-71**°, $[\alpha]_{D}^{20}$ -25.4° (c 1, CHCl₃). Crystallise the myristate ester from Me₂CO, EtOH/EtOAc or EtOH/Et₂O or *n*-pentanol. Purify it also by column chromatography on silica gel and eluting with MeOH then evaporating to dryness. Recrystallise it and finally, dry it *in vacuo* over P₂O₅ and store it at -20°. [Labarière et al. *Analyt Chem* **30** 1466 1958, Malanik & Malat *Anal Chim Acta* **76** 464 1975, *Beilstein* **6** III 2638].

Cholesteryl oleate [303-43-5] M 651.1, m 48.8-49.4°, $[\alpha]_D^{20}$ -24° (c 1, CHCl₃). Purify the oleate ester by chromatography on silica gel and eluting with MeOH. [*Beilstein* 6 III 2642.]

3α-5β-7α-12α-Cholic acid [81-25-4] **M 408.6 (anhydrous), 426.6 (hydate) m 198-200°,** $[\alpha]_{546}$ +41° (c 0.6, EtOH), pK²⁰ 4.98. This bile acid crystallises from H₂O or wet Et₂O (as hydrate) or EtOH (as alcoholate). Dry it under vacuum at 94°. When an alcoholic solution of cholic acid + I₂ is added to aqueous KI, it forms a molecular compound (C₂₄H₄₀O₅I)₄ KI. H₂O. The *methyl ester* is dimorphic with **m** 155° and 162° and $[\alpha]_{D}^{20}$ +25° (EtOH). [Anderson et al. *Biochem J* 67 323 1957, 85 236 1962, Beilstein 10 III 2162, IV 2071.]

4,5-Coprosten-3-ol (cholest-4-ene-3B-ol, allocholesterol) [517-10-2] M 386.7, m 132°, $[\alpha]_D^{24}$ +43.7°, (c 1, *C₆H₆). Purify 4,5-coprosten-3-ol by dissolving it in Et₂O, adding an equal volume of MeOH and removing the Et₂O with a stream of CO₂ until crystallisation begins. The sterol crystallises in needles when cooled in an ice-salt bath. Dry it *in vacuo*. The *acetate* crystallises from aqueous MeOH m 85°. [Schoenheimer & Evans J Biol Chem 114 567 1936, Stoll Hoppe Seyler's Z Physiol Chem 246 10 1937, Beilstein 6 IV 3577.]

Coprosterol (5β-cholestan-3β-ol) [360-68-9] M 388.7, m 101°, $[\alpha]_D^{20} + 28^\circ$ (c 1.8, CHCl₃). A possible impurity is the 3α-ol from which it can be separated by chromatography on Al₂O₃ and eluting with Et₂O/*C₆H₆ (1:24) whereby the 3α-ol runs first (m 116-117°) and further elution gives the pure coprosterol (m 99-101°). Crystallise it from MeOH or aqueous EtOH. Its solubility is 0.79% in H₂O at 25°. [Bridgewater & Shoppee J Chem Soc 1709 1953, Shoppee & Summers J Chem Soc 687 1950.]

Corticosterone (11 β , 21-dihydroxypregn-4-en-3,20-dione) [50-22-6] M 346.5, m 180-181°, 180-182°, 181-184°, [α] $_{D}^{15}$ +223° (c 1.1, EtOH), [α] $_{D}^{23-25}$ +194° (c 0.1, dioxane). Purify corticosterone by recrystallisation from Me₂CO (trigonal plates), EtOH or isoPrOH. It has UV λ_{max} at 240nm, and gives an orange-yellow solution with strong fluorescence on treatment with concentrated H₂SO₄. It is insoluble in H₂O but soluble in organic solvents. [Reichstein & Euw *Helv Chim Acta* 21 1197 *1938*, 27 1287 *1944*; Mason et al. *J Biol Chem* 114 613 *1936*; ORD: Foltz et al. *J Am Chem Soc* 77 4359 *1955*; NMR: Shoolery & Rogers *J Am Chem Soc* 80 5121 *1958*.] The 21-O-acetyl derivative [1173-26-8] crystallises from Me₂CO/Et₂O with m 152.5-153°, [α] $_{D}^{20}$ +195° (c 0.6, Me₂CO), and the 21-O-benzoyl derivative crystallises from AcOH/Et₂O with m 201-202° [Reichstein *Helv Chim Acta* 20 953 *1937*]. [*Beilstein* 8 IV 2907.]

Cortisol See hydrocortisone on p 656.

Cortisone [53-06-5] **M 360.5, m 230-231°, [\alpha]_{546}^{20} +225° (c 1, EtOH).** Crystallise cortisone from 95% EtOH or acetone. The UV has ε 14,000 M⁻¹cm⁻¹ at 237nm (EtOH). [Beilstein 8 IV 3480, Hems J Pharm Pharmacol 5 409 1953, Beilstein 8 IV 3480.]

Cortisone-21-acetate [50-04-4] **M 402.5, m 242-243**°, $[\alpha]_{546}^{20}$ +227° (c 1, CHCl₃). Crystallise cortisone-21-acetate from acetone or CHCl₃. The UV has ε 15,800 M⁻¹cm⁻¹ at 238nm in dioxane. [Sarett J Biol Chem 162 601 1946, Beilstein 8 III 4058, 5 IV 3481.]

Deoxycholic acid [83-44-3] M 392.6, m 171-174°, 176°, 176-178°, $[\alpha]_{346}^{20} + 64°$ (c 1, EtOH), $[\alpha]_{D}^{20} + 55°$ (c 2.5, EtOH), pK²⁵ 6.58. Reflux the acid with CCl₄ (50mL/g), filter, evaporate under vacuum at 25°, recrystallise the residue from acetone and dry it under vacuum at 155° [Trenner et al. *J A m Chem Soc* 76 1196 1954]. A solution of (cholic acid-free) material (100mL) in 500mL of hot EtOH is filtered, evaporate it to less than 500mL on a hot plate, and pour it into 1500mL of cold diethyl ether. The precipitate, filtered off by suction, is crystallised twice from 1-2 parts of absolute EtOH, to give an *alcoholate*, m 118-120°, which is dissolved in EtOH (100mL for 60g) and poured into boiling water. After boiling until free of the EtOH, the precipitate is filtered off, dried, ground and dried to constant weight *in vacuo* [Sobotka & Goldberg *Biochem J* 26 555 1932]. Deoxycholic acid is also freed from fatty acids and cholic acid by silica gel chromatography and elution with 0.5% acetic acid in ethyl acetate [Tang et al. *J Am Chem Soc* 107 4058 1985]. It can also be recrystallised from butanone. Its solubility in H₂O at 15° is 0.24g/L, but in EtOH it is 22.07g/L. [*Beilstein* 10 IV 1608.]

11-Deoxycorticosterone (21-hydroxyprogesterone) [64-85-7] M 330.5, m 141-142°, $[\alpha]_{546}^{20}$ +178° and $[\alpha]_{546}$ +223° (c 1, EtOH). Crystallise 11-deoxycorticosterone from diethyl ether. [Schindler et al. *Helv Chim Acta* 24 360 1941, Steiger & Reichstein *Helv Chim Acta* 20 1164 1937.]

11-Deoxycorticosterone acetate (21-acetoxy-4-pregnen-3,20-dione) [56-47-3] M 372.5, m 154-159°, 154-160°, 155-157°, 155-161°, $[\alpha]_{D}^{20}$ +174° (c 1, dioxane), $[\alpha]_{D}^{22-24}$ +196° (c 1, CHCl₃). 11-Deoxycorticosterone acetate recrystallises from EtOH as needles or Me₂CO/hexane, and sublimes at high vacuum. It is partly soluble in MeOH, Me₂CO, Et₂O and dioxane but insoluble in H₂O. [Reichstein & Euw *Helv Chim Acta* 23 136 *1940*, Romo et al. *J Am Chem Soc* 79 5034 *1957*; NMR: Shoolery & Rogers *J Am Chem Soc* 80 5121 *1959*, *Beilstein* 8 IV 2195.]

Dexamethasone (9- α -fluoro-16- α -methylprednisolone) [50-02-2] M 392.5, m 262-264°, 268-271°, [α] $_{D}^{25}$ +77.5° (c 1, dioxane). Dexamethasone has been recrystallised from Et₂O or small volumes of EtOAc. Its solubility in H₂O is 10 mg/100mL at 25°; and is freely soluble in Me₂CO, EtOH and CHCl₃. [Arth et al. J Am Chem Soc 80 3161 1958; for the β -methyl isomer see Taub et al. J Am Chem Soc 82 4025 1960, see Beilstein 8 IV 3501.]

Dexamethasone 21-acetate (9- α -fluoro-16- α -methylprednisolone-21-acetate) [1177-87-3] M 434.5, m 215-225°, 229-231°, [α] $_{D}^{25}$ +77.6° (c 1, dioxane), +73° (c 1, CHCl₃). Dexamethasone 21-acetate is purified on neutral Al₂O₃ using CHCl₃ as eluent, the fractions are evaporated, and the residue is recrystallised from CHCl₃. It has λ_{max} at 239nm. [Oliveto et al. J Am Chem Soc 80 4431 1958]. [Beilstein 8 IV 3501.]

Digitoxigenin (3 β ,14 β -dihydroxy-20(22)-norcholenic acid lactone) [143-62-4] M 374.5, m 253°, 249-255°, [α] $_{546}^{20}$ +17° (c 1, MeOH). Dissolve digitoxigenin in EtOAc, wash it with H₂O, dry it (Na₂SO₄), evaporate and recrystallise it from 40% aqueous EtOH or aqueous MeOH then EtOAc/Et₂O. The UV has λ_{max} at 218nm (ϵ 14,500 M⁻¹cm⁻¹). The 3-acetate crystallises from Me₂CO/Et₂O with m 222-227°, [α] $_{D}^{20}$ +21° (c 1, CHCl₃). [Wyss et al. Helv Chim Acta 43 644 1960, Cruz et al. J Org Chem 42 3580 1977, Beilstein 18 IV 1468.]

Dihydrotachysterol [67-96-9] **M 398.7, m 125-127°,** $[\alpha]_{D}^{20} + 97°$ (CHCl₃). Crystallise the sterol from 90% MeOH, UV: λ_{max} at 242, 251 and 261nm ($E_{1cm}^{1\%}$ 760, 1010 and 650) in EtOH. The *acetate* has **m** 108-110° and $[\alpha]_{D}^{20} + 32.8°$ (CHCl₃), UV: λ_{max} at 242, 251 and 261nm ($E_{1cm}^{1\%}$ 780, 910 and 600) in EtOH. The *propionate* has **m** 97-98° and $[\alpha]_{D}^{20} + 37°$ (CHCl₃), UV: λ_{max} at 242, 251 and 261nm ($E_{1cm}^{1\%}$ 780, 910 and 600) in EtOH. The *propionate* has **m** 97-98° and $[\alpha]_{D}^{20} + 37°$ (CHCl₃), UV: λ_{max} 242, 251 and 261nm ($E_{1cm}^{1\%}$ 750, 860 and 570) in EtOH. [Werder *Hoppe Seyler's Z Physiol Chem* **260** 119 *1939*, Windaus et al. *Justus Liebigs Ann Chem* **499** 1978 *1932*, *Beilstein* **6** III 2833, **6** IV 3994, 4161.]

Diosgenin (25*R*-spirostaen-3 β -ol) [512-04-9] M 294.5, m 204-207°, [α] $_{25}^{25}$ -129° (in Me₂CO). Crystallise diosgenin from acetone, and chromatograph it on Al₂O₃ and elute with *C₆H₆/Et₂O (9:1), then recrystallise it from MeOH. Its solubility is ~4% in H₂O and 5% in CHCl₃. The *acetate* crystallises from AcOH with m 198°; and has [α] $_{20}^{20}$ -119° (pyridine). [Marker et al. *J Am Chem Soc* 65 1199 1943. Mazur et al. *J Am Chem Soc* 82 5889 1960, Beilstein 19 IV 862.]

α-Ecdyson [3604-87-3] **M 464.7, m 239-242°, 242°,** $[α]_D^{20}$ +72° (**c 1, EtOH**). Recrystallise αecdyson from tetrahydrofuran/pet ether and from H₂O as a *hydrate*. It has been purified by chromatogaphy on Al₂O₃ and elution with EtOAc/MeOH. It has λ_{max} at 242nm (ε 12,400). Its *acetate* has **m** 214-216° from EtOAc/pet ether, and the 2,4-*dinitrophenylhydrazone* has **m** 170-175°(dec) from EtOAc. [Karlson & Hoffmeister Justus Liebigs Ann Chem **662** 1 1963, Karlson Pure Appl Chem **14** 75 1967, Beilstein **8** IV 3613.]

β-Ecdyson (**β-echdysterone, crustecdyson, 20-hydroxyechdyson**) [5289-74-7] M **480.7, m 240-242°, 245-247°,** [**α**] $_{\rm D}^{20}$ +66° (c 1, MeOH). Crystallise β-ecdyson from water, tetrahydrofuran/pet ether, MeOH and EtOAc after chromatographic purification. It has $\lambda_{\rm max}$ (EtOH) at 240nm (ε 12,670 M⁻¹cm⁻¹). [Also IR & NMR: Hüppi & Siddall *J Am Chem Soc* **89** 6799 1967, Kametani et al. *Tetrahedron Lett* **21** 4855 1980, Beilstein **8** IV 343.] (+)-Equilenin [517-09-9] M 266.3, m 258-259° (vac), $[\alpha]_{D}^{16}$ +87° (c 0.1, dioxane). Crystallise (+)-equilenin from EtOH (solubility is 0.63% at 18°, 2.5% at 78°), aqueous EtOH or *C₆H₆ (Norite) and dry it in a vacuum. It sublimes on melting and at 170-180°/0.01mm. The *acetate* crystallises from MeOH with m 165-167° and $[\alpha]_{D}^{20}$ +71° (c 1, CHCl₃). [Bachmann et al. *J Am Chem Soc* 62 824 1940, Beilstein 8 III 1522, 1523, 1525, 8 IV 1420.]

Ergosterol (Provitamin D₂) [57-87-4] **M 396.7, m 165-166°,** $[\alpha]_{546}^{20}$ -171° (c 1, CHCl₃), $[\alpha]_{D}^{20}$ -135° (c 1, CHCl₃). Crystallise ergosterol from EtOAc, then from ethylene dichloride or EtOH/*C₆H₆ (3:1). It has been purified by conversion to the *isobutyl ester* which crystallises from Et₂O/Me₂CO (1:3) with **m**: turbid at 148°, melts at 159° and becomes clear at 162°, followed by hydrolysis, [Bill & Honeywell *J Biol Chem* **80** 15 *1938*]. When crystallised from EtOH, it forms the *1.5-hydrate* **m** 168°. The water is difficult to remove giving an amorphous solid **m** 166-183°, **b** 250°/high vacuum. It is light sensitive. The *benzoate* has **m** 169-171°, after crystallisation from Me₂CO/*C₆H₆ (4:1) after prolonged standing at 0° and becomes highly charged, with $[\alpha]_{D}^{20}$ -177° (c 1, CHCl₃). [UV of sterols: Hogness et al. *J Biol Chem* **120** 239 *1937*, *Beilstein* **6** IV 4407.]

17α-Estradiol [57-91-0] **M 272.3, m 223, [α]**²⁰_D **+57**^o (**c 1, EtOH**). 17α-Estradiol recrystallises from aqueous EtOH (80%) as the *hemihydrate* and differs from the β-anomer (below) by not precipitating with digitonin in 80% aqueous EtOH. The *diacetate* [1474-52-8] crystallises from aqueous EtOH in needles with **m** 139-140°. The *3-benzoate* crystallises in three forms **m** 158°, 153° and 63°. [See references for 17β-Estradiol below.]

17β-Estradiol (1,3,5-estratrien-3,17β-diol, 17-β-estradiol was incorrectly called αestradiol) [50-28-2] M 272.4, m 173-179°, 176-178°, $[\alpha]_{D}^{20}$ +76° to +83° (c 1, dioxane). 17β-Estradiol (previously known as α-estradiol) is purified by chromatography on SiO₂ (toluene/EtOAc 4:1) and recrystallised from CHCl₃/hexane or 80% EtOH. It is stable in air, is insoluble in H₂O, and is precipitated by digitonin. The UV has λ_{max} at 225 and 280 nm. The *diacetate* [3434-88-6] has m 97-98° and forms leaflets from aqueous EtOH. The 3-benzoate [50-50-0] crystallises from aqueous MeOH with m 193° and $[\alpha]_{D}^{25}$ +58° to 63° (c 1, dioxane). [Meischer & Scholz Helv Chim Acta 20 263, 1237 1937, Biochem J 32 1273 1938, Oppolzer & Roberts Helv Chim Acta 63 1703 1980, Inhoffen & Zühlsdorff Chem Ber 74 1914 1941, Beilstein 6 IV 6611.]

β-Estradiol-6-one (1,3,5-estratriene-3,17β-diol-6-one) [571-92-6] M 359.4, m 278-280°, 281-283°, [α] $_{\rm D}^{20}$ +4.2° (c 0.7, EtOH). β-Estradiol-6-one forms plates from EtOH. The 3,17-diacetate has m 173-175° after recrystallisation from aqueous EtOH. [Longwell & Wintersteiner J Biol Chem 133 219 1940.] The UV has $\lambda_{\rm max}$ at 255 and 326nm in EtOH [Slaunwhite et al. J Biol Chem 191 627 1951]. [Beilstein 8 IV 2398.]

Estriol (1,3,5-estratrien-3B,16a,17B-triol) [50-27-1] M 288.4, m 278.5-284°, 283°, $[\alpha]_{546}^{20}$ +66° (c 1, dioxane). Crystallise estriol from EtOH/ethyl acetate. Also purify it by countercurrent distribution with cyclohexane/EtOAc (1:1) and EtOH/H₂O (1:1). The UV (EtOH) has λ_{max} at 280nm (ϵ 2,090 M⁻¹cm⁻¹). [Huffmann & Lott 71 719 1949, Leeds et al. J Am Chem Soc 76 2943 1954, Beilstein 6 IV 7550.]

Estrone (1,3,5-Estratrien-3-ol-17-one, Folliculin) [53-16-7] M 270.4, m 260-261°, polymorphs have m 254° and 256°, $[\alpha]_{546}^{20}$ +198° (c 1, dioxane), pK²⁵ 0.91. Purify estrone by chromatography on silica gel, eluting with 2:1 hexane/EtOAc and recrystallising from EtOH or Et₂O/EtOH. [Danishefsky & Cain J Am Chem Soc 98 4975 1976.] The acetate [901-93-9] crystallises from EtOH with m 125-127°. [Beilstein 8 III 1171.]

Estrone 3-O-sulfamate [148672-09-7] **M 349.5.** Estrone 3-O-sulfamate is purified by silica gel flash chromatography to give a product with one spot on TLC. It is an active site-directed inhibitor of estrone sulfatase, i.e. a time-dependent enzyme inactivator. [Woo et al. J Med Chem **39** 1349 1996, Purohit et al. Biochemistry **34** 11508 1995.]

17-α-Ethynylestradiol [57-63-6] **M 296.4**, **m 141-146°**, **145-146°**, $[\alpha]_{D}^{20}$ + 4° (c 1, CHCl₃). 17-α-Ethynylestradiol forms a *hemihydrate* on recrystallising from MeOH/H₂O. It dehydrates on melting and remelts on further heating at **m** 182-184°. The UV has λ_{max} at 281nm (ε 2040) in EtOH. Its solubility is 17% in EtOH, 25% in Et₂O, 20% in Me₂CO, 25% in dioxane and 5% in CHCl₃. [Petit & Muller *Bull Soc Chim Fr* 121 1951.] The *diacetyl* derivative has **m** 143-144° (from MeOH) and $[\alpha]_{D}^{20}$ +1° (c 1, CHCl₃) [Mills et al. *J* Am Chem Soc **80** 6118 1958]. [Beilstein **6** IV 6877.]

Etiocholanic acid [438-08-4] M 304.5, m 228-229°, pK_{Est} ~4.7. Crystallise etiocholanic acid from glacial acetic acid and sublime it at 160°/0.002mm. The *ethyl ester* has m 77.5-78.5° (from EtOH) $[\alpha]_{546}^{20}$ +52.5° (c 0.61, pyridine). [Jacobs & Elderfield J Biol Chem 108 497 1935, Weiland et al. Hoppe Seyler's Z Physiol Chem 161 80 1926, Beilstein 9 III 2644.]

Gitoxigenin (3 β ,14,16 β ,21-tetrahydroxy-20(22)-norcholenic acid lactone) [545-26-6] M 390.5, m 223-226°, 234°, 239-240° (anhydrous by drying at 60°), $[\alpha]_{D}^{20}$ +30° (c 1, MeOH). Recrystallisation of gitoxigenin from aqueous EtOH produces plates of the *sesquihydrate* which dehydrate on drying at 100° *in vacuo*. It also recrystallises from Me₂CO/MeOH and from EtOAc (the crystals contain 1 mol of EtOAc) with $[\alpha]_{D}^{21}$ +24.8° (c 1, dioxane). It has UV with λ_{max} at 310, 485 and 520nm in 96% H₂SO₄. On heating with ethanolic HCl it yields *digitaligenin* with loss of H₂O. [Smith *J Chem Soc* 23 *1931*, *Beilstein* **8** IV 2456.]

Glycocholic acid (*N*-cholylglycine) [475-31-0] M 465.6, m 130° (hydrate) 154-155°, 165-168°(anhydrous), $[\alpha]_{546}^{20}$ +37° (c 1, EtOH), pK²⁵ 4.4. Glycocholic acid crystallises from hot water as the *sesquihydrate*. Dry it at 110° *in vacuo*. An analytical sample is prepared by suspending the acid (4g) in H₂O (400mL) at ~20°, heating to boiling with slow stirring, filtering hot and allowing to cool to ~20°. The acid is filtered off, washed with H₂O, dried in air, recrystallised from 5% aqueous EtOH, washed well and dried over P₂O₅ in a moderate vacuum to constant weight. Recrystallisation from EtOH/EtOAc, and drying, gave the *anhydrous* acid. [Cortese & Bauman J Am Chem Soc 57 1393 1935, Bergstrom & Norman Acta Chem Scand 7 1126 1953, Beilstein 10 IV 2077.]

Glycodeoxycholic acid monohydrate (*N*-[3α-12α-dihydroxy-5β-cholan-24-oyl]glycine) [360-65-6] M 467.6, m 186-177°(dec), 187-188°, $[\alpha]_{D}^{23}$ +45.9° (c 1, EtOH), pK_{Est} ~ 4.4. Glycodeoxycholic acid recrystallises from H₂O or aqueous EtOH with 1 mol of H₂O and is dried at 100° *in vacuo*. Its solubility in EtOH is ~5%. [UV: Lindstedt & Sjövall Acta Chem Scand 11 421 1957.] The Na salt recrystallises from EtOH/Et₂O with m 245-250° and $[\alpha]_{D}^{23}$ +41.2° (c 1, H₂O) [Wieland Hoppe Seyler's Z Physiol Chem 106 181 1919, Cortese J Am Chem Soc 59 2532 1937]. [Beilstein 10 IV 1611.]

Hecogenin (25*R*-5 α -spirostan-3 β -ol-12-one) [467-55-0] M 430.6, m 245-250°, 253°, 264-266°, 268°, [α] $_{D}^{23}$ +8° (c 1, CHCl₃). The saponin (~35 mg) in EtOAc is chromatographed on Al₂O₃ and eluted with *C₆H₆/Et₂O, and the residue on evaporation is recrystallised from Me₂CO. [Mazur et al. *J Am Chem Soc* 82 5889 1960, Marker et al. *J Am Chem Soc* 69 2167 1947, Beilstein 19 III/IV 2581.]

Hecogenin acetate [915-35-5] M 472.7, m 265-268°, $[\alpha]_{D}^{20}$ -6.0° (c 1, CHCl₃). Crystallise the acetate from MeOH. [*Beilstein* 19 IV 2583.]

Hydrocortisone (Cortisol, 11β,17α,21-trihydroxypregn-4-ene-3,20-dione) [50-23-7] M 362.5, m 212-213°, 214-217°, 218-221°, 220-222°, $[\alpha]_{D}^{22}$ +167° (c 1, EtOH). Recrystallise hydrocortisone from EtOH or isoPrOH. It is bitter tasting and has UV with λ_{max} at 242 nm (log ε 4.20). Its solubility at 25° is: H₂O (0.28%), EtOH (1.5%), MeOH (0.62%), Me₂CO (0.93%), CHCl₃ (0.16%), propylene glycol (1.3%) and Et₂O (0.35%). It gives an intense green colour with conc H₂SO₄. [Wendler et al. *J Am Chem Soc* 72 5793 1950, Beilstein 8 IV 3422.]

Hydrocortisone acetate (21-acetoxy-11β,17α-trihydroxypregn-4-ene-3,20-dione) [50-03-3] M 404.5, m 218-221.5°, 221-223°, 222-225°, [α] $_{D}^{25}$ +166° (c 0.4, dioxane), +150.7° (c 0.5, Me₂CO). The acetate recrystallises from Me₂CO/Et₂O or aqueous Me₂CO as *hygroscopic* monoclinic crystals. UV has λ_{max} at 242 nm ($A_{1cm}^{1\%}$ 390) in MeOH. Its solubility at 25° is: H₂O (0.001%), EtOH (0.45%), MeOH (0.04%), Me₂CO (1.1%), CHCl₃ (0.5%), Et₂O (0.15%), and it is very soluble in Me₂NCHO. [Wendler et al. *J* Am Chem Soc 74 3630 1952; Antonucci et al. *J* Org Chem 18 7081 1953, Beilstein 8 IV 3424.]

19-Hydroxy-4-androsten-3,17-dione [510-64-5] **M 302.4, m 167-169°, 168-170°, 169-170°, 172-173°,** $[\alpha]_{D}^{20}$ **+190° (c 1, CHCl₃).** Recrystallise 19-hydroxy-4-androsten-3,17-dione from Me₂CO/hexane or Et₂O/hexane. It has UV with λ_{max} at 242nm in EtOH or MeOH. The 19-acetoxy derivative has $[\alpha]_{D}^{26}$ +185° (CHCl₃) and λ_{max} 237.5nm in EtOH. [Ehrenstein & Dünnenberger J Org Chem **21** 774 1956, Beilstein **8** IV2162.]

25-Hydroxycholesterol (cholest-5-en-3 β ,25-diol) [2140-46-7] M 402.7, m 177-179°, 178-180°, 181.5-182.5°, [α] $_{D}^{25}$ -39° (c 1.05, CHCl₃). 25-Hydroxycholesterol forms colourless needles from MeOH [Schwartz *Tetrahedron Lett* 22 4655 1981]. The 3β -acetoxy derivative has m 142-142.8° (from Me₂CO) and [α] $_{D}^{25}$ -40.4° (c 2, CHCl₃). The 3β ,25-diacetoxy derivative has m 119-120.5° (from MeOH) and [α] $_{D}^{25}$ -35.5° (CHCl₃). [Dauben & Bradlow *J Am Chem Soc* 72 4248 1950, Ryer et al. *J Am Chem Soc* 72 4247 1950, *Beilstein* 6 IV 6437.]

18-Hydroxy-11-deoxycorticosterone (18,21-dihydroxypregn-4-en-3,20-dione tautomeric with 18,20-epoxy-20,21-dihydroxypregn-4-en-3-one) [379-68-0] M 346.5, m 168-170°, 171-173°, 191-195°, 200-205°, $[\alpha]_{D}^{20}$ +151° (c 1, CHCl₃). Recrystallise 18-hydroxy-11-deoxycorticosterone from Et₂O/Me₂CO to give crystals m 200-205°. When it is recrystallised from M₂CO, it has m 191-195°. It has UV with λ_{max} at 240nm. The 21-O-acetoxy-18-hydroxy derivative has m 158-159° (from Et₂O/*C₆H₆), and the 21-O-acetoxy-18,20-epoxy derivative has m 149-154° (from Et₂O). [Kahnt et al. Helv Chim Acta 38 1237 1955; Pappo J Am Chem Soc 81 1010 1959.]

17β-Hydroxy-17α-methyl-3-androsterone (Mestanolone) [521-11-9] M 304.5°, m 192-193°. Dissolve mestanolone in Et₂O, wash it with N NaOH, H₂O, dry it (Na₂SO₄), evaporate and recrystallise it from EtOAc. The *semicarbazone* has m 235-236° (from EtOH). [Ruzicka et al. *Helv Chim Acta* 18 1487 1935.]

17α-Hydroxy-6α-methylprogesterone (Medroxyprogesterone) [520-85-4] M 344.5, m 220°, $[\alpha]_D^{25}$ +75° (CHCl₃). If it contains the *epi*-isomer (TLC), then dissolve it in CHCl₃, bubble dry HCl gas to epimerise it, evaporate and recrystallise it from chloroform. The UV has λ_{max} at 241nm (ε 16,150) in EtOH. The *17-acetate* [71-58-9] crystallises from MeOH with m 207-208° and $[\alpha]_D^{25}$ +61° (CHCl₃). Its UV has λ_{max} at 240nm (ε 15,950) in EtOH. [Babcock et al. *J Am Chem Soc* 80 2904 *1958*, *Beilstein* 8 IV 2212.]

α-Hyodeoxycholic acid [83-49-8] M 392.6, m 196-197°, $[α]_{546}^{20}$ +8° (c 2, EtOH), pK_{Est} ~4.9. Crystallise α-hyodeoxycholic acid from EtOAc or Me₂CO. The K salt separates in needles from an alcoholic solution of the acid when an equivalent of KOMe is added (see lithocholic acid). [Weiland & Gumlish Hoppe Seyler's Z Physiol Chem 215 18 1933, Windaus & Bohne Justus Liebigs Ann Chem 433 278 1923, Beilstein 10 III 1631.]

Lanosterol [79-63-0] **M 426.7, m 138-140°,** $[\alpha]_{D}^{20}$ +62.0° (c 1, CHCl₃). If very impure, then it should be acetylated, converted to the *dibromide acetate* [crystallised from EtOAc with slow cooling, **m** 168-170°, $[\alpha]_{D}^{20}$ +214° (CHCl₃)], de-brominated with Zn dust to give the acetate (below) which is recrystallised from 3-4 parts of Me₂CO/MeOH (4:1) and hydrolysed as for stigmasterol (below). Recrystallise it from anhydrous MeOH. Dry it *in vacuo* over P₂O₅ for 3hours at 90°. The purity is checked by proton magnetic resonance. The *acetate* crystallises from MeOH with **m** 131-133° and $[\alpha]_{D}^{25}$ +62° (c 1,CHCl₃). [Block & Urech *Biochemical Preparations* **6** 32 *1958*. van Tamelen et al. *J Am Chem Soc* **104** 6479, 6480 *1982*, *Beilstein* **6** III 2880, **6** IV 4188.]

Lithocholic acid (3α -hydroxycholanic acid) [434-13-9] M 376.6, m 184-186°, [α] $_{D}^{23}$ +35° (c 1, EtOH), pK_{Est}~4.8. Lithocholic acid can be purified by conversion to the rather insoluble Na or K salt by addition of the equivalent amount of aqueous NaOH or KOH, filtering off the alkali salt, washing it with ice cold H₂O, dissolving it in the least volume of boiling H₂O, acidifying with the dilute HCl (slight excess), filtering off the acid, washing with cold H₂O and drying it thoroughly in a vacuum. Recrystallise it from Me₂CO, EtOH or acetic acid. The *methyl ester* crystallises from MeOH, with 0.5 mol of MeOH, and has m 92-93°, [α] $_{D}^{25}$ +34° (MeOH). It has also been purified by recrystallisation from pet ether (b 40-60°) and, after chromatography on Al₂O₃ in pet ether, gave a labile form m 92-93° which is transformed to the stable form m 125-126° after standing for 2days in a vacuum desiccator. [Hoelm & Mason J Am Chem Soc 62 569 1940, Sarel & Yanuka J Org Chem 24 2018 1959, Beilstein 10 IV 785.]

6-α-Methylprednisolone (Medrol, 11β,17-21-trihydroxy-6α-methylpregna-1,4-dien-3,20dione) [83-43-2] M 347.5, m 226-237°, 228-237°, 240-242°, [α] $_{D}^{24}$ +91° (c 0.5, dioxane). Recrystallise medrol from EtOAc. The UV has λ_{max} at in 95% EtOH 243nm (ε 14,875). The 21-acetoxy derivative has m 205-208° (from EtOAc), and [α] $_{D}^{24}$ +95° (c 1, CHCl₃). [Spero et al. J Am Chem Soc 78 6213 1956; Fried et al. J Am Chem Soc 81 1235 1959; ¹H NMR: Slomp & McGarvey J Am Chem Soc 81 2200 1959, Beilstein 8 IV 3498.]

17α-Methyltestosterone (Android, Mesterone) [58-18-4] M 302.5, m 162-168°, 164-165°, [α] $_{546}^{20}$ +87° (c 1, dioxane), [α] $_{D}^{20}$ +82.3° (c 1, EtOH) A $_{1cm}^{1\%}$ 241nm is 495-530 (EtOH). This anabolic steroid is crystallised from hexane or hexane/*benzene. It has $E_{1cm}^{1\%}$ 495-530 at 241nm (EtOH). The colour reaction with 2,4-dinitrophenyl hydrazine is used for assaying it. [Gornall & Macdonald J Biol Chem **201** 279 1953.] In another colour reaction the sterone (1mg) in acetic acid (0.2ml) + 88% H₃PO₄ (2mL) is allowed to stand for 1hour when it becames fluorescent. After 1hour it is diluted with acetic acid (~3mL) and provides a strong yellow fluorescence with the intensity of 50-100 times that of estrone. [Stuart & Stuckey J Pharm Pharmacol 1 130 1949, Openauer Rec Trav Chim Pays-Bas 56 137 137, Beilstein 8 IV 1010.]

Norcholanic acid (5 β -24-norcholan-23-oic acid) [511-18-2] M 346.5, m 175.5-176.5°, 186°, [α] $_{D}^{20}$ +32° (EtOH), pK_{Est}~4.8. Recrystallise the acid from AcOH. The *methyl ester* has m 74° (needles from MeOH), and the *ethyl ester* has m 65-66°. [Yanuka et al. *Tetrahedron Lett* 1725 1968, Beilstein 9 III 2652, 10 IV 2083.]

 α -Oestradiol See estradiol above.

β-Oestradiol-3-benzoate See estradiol 3-benzoate above.

Ouabain [3-{(6-deoxy- α -L-mannopyranosyl)oxy}-1,5,11a,14,19-pentahydroxycard-20(22)enolide. G-Strophanthin, Acocantherine] [630-60-4, 312619-45-7 (hydrate), 11018-89-6 (octahydrate)] M 728.8 (8 H₂O), m 190°(dec), 200-202°(dec), $[\alpha]_{546}^{20}$ -30° (c 1, H₂O). It crystallises from water as the octahydrate. Dry it at 130°. It decomposes at 190° when dry. Store it in the dark as it is light sensitive, but it is stable in air. Its solubility (g/100mL) in H₂O is 1.3 (~25°), 20 (~100°), and in EtOH it is 1.0 (~25°) and 12.5 (~78°). It is highly TOXIC as it is an inhibitor of cation transport and of Na⁺ and K⁺ ATPase. [Beilstein 18/5 V 625.]

Pancuronium bromide (2β ,16 β -dipiperidino- 5α -androstan- 3α ,17 β -diol diacetate dimethobromide) [15500-66-0] M 732.7, m 212-215°, 215°. The bromide forms odourless crystals with a bitter taste which are purified through acid-washed Al₂O₃ and eluted with isoPrOH/EtOAc (3:1) to remove impurities (e.g. the monomethobromide) and eluted with isoPrOH to give the pure dibromide which is recrystallised from CH₂Cl₂/Me₂CO or isoPrOH/Me₂CO. It is soluble in H₂O (10%) and CHCl₃ (3.3%) at 20°. It is a non-depolarising muscle relaxant. [Buckett et al. *J Med Chem* 16 1116 1973.] Prednisolone acetate (21-acetoxypregna-1,4-diene-11β-17α-diol-3,20-dione) [52-21-1] M 402.5, m 237-239°, 240-242°, 240-243°, 244°, $[\alpha]_{D}^{20}$ +116° (c 1, dioxane). Recrystallise prednisolone acetate from EtOH, Me₂CO, Me₂CO/hexane, and it has UV with λ_{max} at 243nm in EtOH. [Joly et al. Bull Soc Chim Fr 366 1958; Herzog et al. J Am Chem Soc 77 4781 1955, Beilstein 8 IV 3468.]

Prednisone (17,21-dihydroxypregna-1,4-diene-3,11,20-trione, deltacortisone) [53-03-2] M 358.5, m 238° (dec), $[\alpha]_D^{20}$ +172° (c 0.5, dioxane), λ_{max} 238nm (log ϵ 4.18) in MeOH. Crystallise prednisone from acetone/hexane, then recrystallise it from Me₂CO. The *monoacetate* crystallises from Me₂CO/hexane with m 227-233°(dec), $[\alpha]_D^{25}$ +186° (c 1, dioxane), and the *diacetate* crystallises from Me₂CO/hexane with m 219-221°(dec), $[\alpha]_D^{25}$ +125° (c 1, CHCl₃). [Hertzog et al. *Tetrahedron* 18 581 1962, *Beilstein* 8 IV 3531.]

5 α -Pregnane (allopregnane) [641-85-0] M 288.5, m 84.5-85°, $[\alpha]_D^{20} + 21.7°$ (c 1.3, CHCl₃). Recrystallise 5 α -pregnane several times from Me₂CO. The melting point is lowered (e.g. to 50-71°) if it is contaminated with the 5 β -isomer (see below). [Butenandt et al. *Chem Ber* 64 2529 1931, Steiger & Reichstein *Helv Chim Acta* 21 161 1938, *Beilstein* 5 III 1120, 1121, 1125.]

5β-Pregnane [481-26-5] M 288.5, m 82-83°, 83.5°, $[\alpha]_D^{20}$ +21.2° (c 0.75, CHCl₃). Crystallise 5β-pregnane from MeOH or Me₂CO. The mixed melting point with allopregnane (above) is ~50-71°. [Butenandt et al. *Chem Ber* 64 2529 1931, Steiger & Reichstein *Helv Chim Acta* 21 161 1938.]

5 α -Pregnane-3 α ,20 β *R*-diol [566-57-5] M 320.5, m 207-209°, $[\alpha]_{D}^{26}$ +12° (c 1.1, CHCl₃). Crystallise 5 α -pregnane-3 α ,20 α -diol from Me₂CO. Its *diacetate* [6170-22-5] M 404.5, has two melting points 134-140° and 152.4°, and $[\alpha]_{D}^{26}$ +40.5° (c 0.8, CHCl₃). It is a progesterone metabolite in urine during pregnancy. [See references below.]

5a-Pregnane-3a, **20a**S-**diol** [566-58-5] **M 320.5**, **m 248**°, **[a]** $_{\rm D}^{20}$ +17° (**c 0.15**, **EtOH**). Crystallise 5a-pregnane-3a, 20a-diol from EtOH. Its *diacetate* [6003-18-5] has **m** 142° and [a] $_{\rm D}^{20}$ +18° (c 0.4, *C₆H₆). It is a progesterone metabolite in urine during pregnancy. [See references below.]

5β-Pregnane-3α,20β*R*-diol [80-91-1] **M 320.5, m 239**°, $[\alpha]_D^{20}$ +10° (c 1, EtOH). Crystallise pregnane-diol (which is abundant in the urine of pregnant women) from EtOH or Me₂CO and dry it *in vacuo*. It can be oxidised to progesterone (see below) and it is not precipitated by digitonin. Its *diacetate* [6100-28-3] has **m** 112-113° and $[\alpha]_D^{26}$ +60° (c 1, CHCl₃). It is a progesterone metabolite in urine during pregnancy. [Marian *Biochem J* **23** 1090 *1929*, Johnson et al. *J Chem Soc*1302 *1954*, Mattox et al. *J Org Chem* **32** 708 *1967*, *Beillstein* **6** III 4778, **6** IV 6111.]

5β-Pregnane-3α,20αS-diol [80-92-2] **M 320.5, m 243-244°**, $[\alpha]_{546}^{20}$ +31° (c 1, EtOH). Crystallise the diol from acetone. The *diacetate* [1174-69-2] crystallises from pet ether with **m** 180° (also 182-183°) and $[\alpha]_{D}^{20}$ +35° (c 1.1, CHCl₃). [Marian *Biochem J* 23 1090 1929, Fish et al. J Biol Chem 143 716 1942, Hieschmann J Biol Chem 140 797 1941, Johnson et al. J Chem Soc 1302 1954, Glick et al. J Org Chem 27 3121 1962, Beillstein 6 III 4778, 6 IV 6111.]

Progesterone [57-83-0] **M 314.5, m 128.5°,** $[\alpha]_{546}^{20}$ +230° (c 1, EtOH), +214.7° (c 1.3, Me₂CO). The α-form crystallises from EtOH with **m** 127-131°. The β-form crystallises from pet ether or aqueous pet ether/aqueous Et₂O with **m** 119-120° or 121°. It also crystallises from Et₂O, Me₂CO/EtOAc, MeOH, aqueous Et₂O, aqueous MeOH, wet pet ether, Et₂O/pet ether, pet ether/*C₆H₆, Et₂O/pentane and isopropyl ether. The λ_{max} is at 240nm with log ε 4.25 (EtOH). [Wintersteiner & Allen J Biol Chem 107 321 1934, Beilstein 7 III 3648, 7 IV 2395.]

Rubijervine (slanid-5-ene-3 β -12 α -diol) [79-58-3] M 413.6, m 242-244°, 240-246°, [α] $_{D}^{20}$ +19° (EtOH), [α] $_{D}^{27.5}$ +20° (c 1.04, MeOH), pK_{Est} ~7.0. Rubijervine crystallises from 95% EtOH as colourless rods. It has solvent of crystallisation and is dried at 120°/2mm. It is precipitated by digitonin. The *hydrobromide* crystallises from MeOH/Me₂CO with m 265-270°(dec). The *diacetate* crystallises from MeOH with **m** 160-163°. The *3-benzoate* gives colourless prisms from C_6H_6 with **m** 156-159° and $[\alpha]_D^{27.5}$ +22° (c 1.6, CHCl₃). [Pelletier & Locke *J Am Chem Soc* **79** 4531 1957, Jacobs & Craig *J Biol Chem* **148** 41 1943, Beilstein **21** III/IV 2310.]

β-Sitosterol (stigmast-5-ene-3β-ol) [83-46-5] M 414.7, m 136.5-137.5°, 140°, [α] $_{546}^{20}$ -42° (c 2, CHCl₃). Crystallise β-sitosterol from EtOH, MeOH, Me₂CO, Me₂CO/EtOH or Me₂CO/MeOH. It has also been purified by zone melting. The *acetate* crystallises from MeOH or EtOH as plates with m 127-128° and [α] $_{D}^{20}$ -41° (c 2, CHCl₃). The *benzoate* crystallises from EtOH as needles with m 146-147° and [α] $_{D}^{20}$ -13.8° (c 2, CHCl₃). [Fujimoto & Jacobson J Org Chem 29 3377, 3381 1964, Shoppee J Chem Soc 10431948, Heilbron et al. J Chem Soc 344, 347 1941, Beilstein 6 III 2696.]

Smilagenin (25*R*-spirostan-3β-ol, isosarsasapogenin) [126-18-1] M 416.6, m 185°, $[\alpha]_D^{25}$ -69°, $[\alpha]_{546}^{25}$ -80° (c 0.3, CHCl₃). Chromatograph smilagenin on active Al₂O₃ and elute with *C₆H₆, then recrystallise it from Me₂CO, aqueous EtOH (m 187-188°) or MeOH. The *acetate* crystallises from MeOH with m 152° and $[\alpha]_D^{25}$ -59.6°, $[\alpha]_{546}^{25}$ -68.9° (c 0.25, CHCl₃). [Askew J Chem Soc 1399 1936 and 1402 1936, Scheer et al. J Am Chem Soc 77 6411955, Beilstein 19 III/IV 826.]

Solanidine (solanid-5-en-3 β -ol) [80-78-4] M 397.6, m 218-219°(sublimes), [α] $_{D}^{20}$ -29° (c 0.5, CHCl₃), pK¹⁵ 6.66. Solanidine crystallises from CHCl₃/MeOH, aqueous EtOH or aqueous MeOH as needles. TLC on Al₂O₃ plates using CH₂Cl₂/MeOH (98:2) gives a spot at R_F 0.47. The *hydrochloride* crystallises from aqueous EtOH with m 345°(dec). The *acetate* crystallises from EtOH with m 208°. [Schreiber & Roensch *Tetrahedron* 21 6451965, Kessar et al. *Tetrahedron* 27 2153 1971, Reichestein & Reich *Ann Rev Biochem* 15 155 1946, *Beilstein* 21 III/IV 1398, 27 III/IV 2000.]

α-Solanine (solan-5-en-3β-yl-[O^3 -β-D-glucopyranosyl- O^2 -α-L-rhamnopyranosyl-β-D-galacto -pyranoside]) See "Carbohydrates "in this chapter.

Solasodine $(22\alpha, 25R$ -spirosol-5-en-3 β -ol) [126-17-0] M 413.6, m 202°, $[\alpha]_D^{25}$ -100° (c 2, MeOH), pK²⁵ 7.7. Solasodine crystallises (as *monohydrate*) from MeOH as lustrous plates (on heating, the plates change to needles as they melt and resolidify in needles), or aqueous 80% EtOH, and sublimes at high vacuum. After recrystallisation from H₂O, m 198-199°, then from Me₂CO/H₂O, m 199-201°, it has $[\alpha]_D^{22}$ -109.3° (c 0.581, CHCl₃). On TLC with silica gel G (*C₆H₆/absolute EtOH, 8:2) it has R_F 0.45. IR (KBr): v_{max} at 10.3, 10.4, 11.2, 11.5 μ (azaoxaspirane bands). [Schreiber & Rönsch *Tetrahedron* 20 1939 1964, Uhle J Org Chem 27 656 1962, Kessar et al. *Tetrahedron* 27 2153 1971, Beilstein 27 III/IV 2000.]

Stigmasterol (3 β -hydroxy-24-ethylcholesta-5,22-diene) [83-48-7] M 412.7, m 170°, $[\alpha]_{22}^{22}$ -51° (CHCl₃), $[\alpha]_{546}^{20}$ -59° (c 2, CHCl₃). Stigmasterol is best purified via the tetrabromide-acetate. The impure sterol (3g) is acetylated with Ac₂O (60mL) by refluxing for 1.5hour. The mixture is cooled at 20° for 1 hour, and the crude acetate is collected. The acetate (3g) in Et_2O (30mL) is then treated with $Br_2/AcOH$ (38mL, from 5g Br₂ in 100mL AcOH), and after cooling at 6° overnight, the tetrabromoacetate is filtered off and washed with Et₂O. After six recrystallisations from CHCl₃/MeOH the tetrabromoacetate has m 194-196°. This product (1g) in AcOH (12mL) and Zn dust (1g) is refluxed for 1.5hours, filtered hot, diluted with H₂O (30mL) and extracted with Et₂O. The extract is washed with dilute aqueous sodium sulfite, then H₂O, the extract is dried (Na₂SO₄) and the stigmasterol acetate (~550mg) is recrystallised (4x) from EtOH and twice from MeOH/CHCl₃ (2:1) to give the acetate with **m** 139-148°. This acetate (400mg) is hydrolysed in boiling 10% alcoholic KOH (1mL) for 1hour. Then H_2O (30mL) is added and the mixture is extracted with Et₂O. The extract is washed with aqueous Na_2CO_3 , then H_2O , the solvent is distilled off and the residue is recrystallised (3x) from 95% EtOH to give ~110mg of pure stigmasterol. It is dried in a vacuum over P_2O_5 for 3hours at 90°. The purity is checked by NMR. The *acetate* crystallises from MeOH with **m** 145°, $[\alpha]_{D}^{25}$ -56° (c 2, CHCl₃). [Byerrum & Ball Biochemical Preparations 7 86 1959, Thornton et al. J Am Chem Soc 62 2006 1940, Colin et al. Anal Chem 51 1661 1979, Beilstein 6 IV 4170.]

Taurocholic acid $(3\alpha, 7\alpha, 12\alpha$ -trihydroxy-5 β -cholestan-24-oic acid *N*-(2-sulfoethyl) amide Na salt, *N*-coloyotaurine) [81-24-3] M 515.6, m 125°(dec), $[\alpha]_D$ +38.8° (c 2, EtOH), pK²⁵ 1.4. Crystallise the acid from EtOH/EtOAc/Et₂O (amorphous m 125°) or EtOH/Et₂O [Josephson *Biochem J* 29 1484 1935]. The sodium salt (hydrate) [312693-83-7, 345909-26-4 (xH₂O)] crystallises from aqueous EtOH/Et₂O with m 231-232°, $[\alpha]_D^{23}$ +25.2° (c 1, H₂O); and has λ_{max} (H₂SO₄) at 303, 389 and 480nm. [*Beilstein* 10 III 2177, 10 IV 2078.]

Taurodeoxycholic acid sodium salt monohydrate $(3\alpha, 12\alpha$ -dihydroxy-5 β -cholestan-24-oic acid *N*-(2-sulfoethyl) amide Na salt monohydrate, *N*-[desoxycholyl)taurine Na salt H₂O) [1180-95-6, 207737-97-1 (x H₂O)] M 539.7, m 171-175°, $[\alpha]_D^{23} + 37°$ (c 1, H₂O), pK²⁵ 1.4 (free acid). The Na salt is dissolved in the smallest volume of H₂O, a saturated solution of aqueous NaCl/Et₂O is added and the mixture is stored at 0° for 24hours. Then shake the mixture well, keep it in the cold for another day and filter the crystals with gentle shaking, wash them with ice-cold saturated aqueous NaCl saturated with Et₂O, dry them over CaCl₂ and extract them with absolute EtOH. Add ~10mL of H₂O to the solid followed by enough Et₂O to incipient cloudiness. Store it overnight at 0°. Add ice-cold Et₂O to make 250mL, collect the crystals, wash them with Et₂O then pet ether and dry them in air. The purification can be repeated with NaCl and Et₂O with ~85% recovery. NB: precipitation will not occur unless enough H₂O is present. Its solubility in H₂O is 10%. [Cortese *J Am Chem Soc* **59** 2532 *1937*.] The *free acid* has **m** 141-144°. [Norman *Ark Kemi* **8** 331 *1956*.] It forms mixed micelles and solubilises some membrane proteins [Hajjar et al. *J Biol Chem* **258** 192 *1983*]. [*Beilstein* **10** IV 1611.]

Testosterone (17-β-hydroxyandrost-4-ene-3-one) [58-22-0] M 288.4, m 155°, $[\alpha]_{546}^{20}$ +130° (c 1, dioxane). Crystallise testosterone from aqueous acetone, hexane or isoPrOH. The long needles that separated from EtOH/AcOH were used for X-ray crystallography [Roberts et al. *J Chem Soc Perkin Trans II* 1978 1973.] The *acetate* [1045-69-8] crystallises from MeOH or aqueous Me₂CO, with m 140-141° and $[\alpha]_{D}^{20}$ +87.8° (c 1, EtOH). [Ruzicka et al. *Helv Chim Acta* 18 1478 1935 and 19 99, 842 1936, Beilstein 8 IV 974.]

Testosterone propionate [57-85-2] **M 344.5, m 118-122°,** $[\alpha]_{546}^{20}$ +102° (c 2, dioxane). Crystallise the propionate from aqueous EtOH, or Et₂O/pet ether (m 121°), and it has λ_{max} at 240nm (EtOH), and $[\alpha]_{546}^{20}$ +114° (c 1, CHCl₃). Also purify it by HPLC. [Ercol & de Ruggieri *J Am Chem Soc* **75** 650, 652 1953, polymorphism: Brandstätter-Kuhnert & Kofler *Mickokim Acta* 847, 850 1959, *Beilstein* **8** IV 977.]

Ursodiol (ursodeoxycholic acid) [128-13-2] M 392.5, m 203°, $[\alpha]_{D}^{20}$ +60° (c 0.2, EtOH), pK_{Est} ~4.8. Recrystallise ursodiol from wet Et₂O, EtOH or EtOH/MeOH. [Iwasaki Hoppe Seyler's Z Physiol Chem 244 181, 183 1936, Beilstein 10 III 1635.]

MISCELLANEOUS COMPOUNDS (including biologically useful reagents, low-molecular-weight bioactive substances, antibiotics, coenzymes, vitamins, lipids, phospholipids, nucleosides, nucleotides and polynucleotides)

Acetoacetyl coenzyme A trisodium salt trihydrate [102029-52-7] M 955.6, pK_1 4.0 (NH₂), pK_2 6.4 (PO₄⁻). Purification can be carried out by passage through a DEAE-cellulose formate column, then through a Dowex 50 (H⁺) column to remove Na ions, concentrated by lyophilisation and redissolved in H₂O. It is commercially available as a solution of 0.05g/mL of H₂O. The concentration of acetoacetylcoenzyme A is determined by the method of Stern et al. [*J Biol Chem* 221 15 1956]. It is stable at pH 7-7.5 for several hours at 0° (half-life *ca* 1-2hours). At room temperature it is hydrolysed in *ca* 1-2hours at pH 7-7.5. At pH 1.0/20° it is more stable than at neutrality. A solution of the trisodium salt (0.05g/mL H₂O) adjusted to pH 5 with 2N NaOH can be stored frozen for several weeks. It is stable at pH 2-3/-17° for at least 6 months. [Hersch & Jencks *J Biol Chem* 242 3468 1967, Clikenbeard et al. *J Biol Chem* 250 3108 1975, Simon & Shemin *J Am Chem Soc* 75 2520 1953, Moffatt & Khorana 81 1265 1959, Salem et al. *Biochem J* 258 563 1989, Beilstein 26 III/IV 3668.]

Acetylcholine bromide [66-23-9] M 226.1, m 143°, 146°. The bromide is a *hygroscopic* solid, but less so than the hydrochloride salt. It crystallises from EtOH as prisms. Some hydrolysis occurs in boiling EtOH, particularly if it contains some H_2O . It can also be recrystallised from EtOH or MeOH by adding dry Et₂O. [Heilbronn Acta Chem Scand 12 1492 1958, Beilstein 4 IV 1446.]

Acetylcholine chloride [60-31-1] M 181.7, m 148-150°, 151°. It is very soluble in H_2O (>10%), and is very *hygroscopic*. If pasty, dry it in a vacuum desiccator over H_2SO_4 until a solid residue is obtained. Dissolve this in absolute EtOH, filter it and add dry Et_2O , when the hydrochloride separates. Collect by filtration and store it under very dry conditions. [Jones & Major J Am Chem Soc 52 307 1930.] The *chloroplatinate* crystallises from hot H_2O in yellow needles and can be recrystallised from 50% EtOH, m 242-244° [Dudley *Biochem J* 23 1069 1929]; other m given is 256-257°. The *perchlorate* crystallises from EtOH as prisms m 116-117°. [J Am Pharm Assocn 36 272 1947, Beilstein 4 IV 1446.]

*N*⁴-Acetylcytosine [14631-20-0] M 153.1, m >300°, 326-328°, pK_{Est(1)} ~1.7, pK_{Est(2)} ~10.0. If TLC or paper chromatography shows that it contains unacetylated cytosine, then reflux it in Ac₂O for 4hours, cool at 3-4° for a few days, collect the crystals, wash them with cold H₂O, then EtOH and dry at 100°. It is insoluble in EtOH and dissolves in H₂O with difficulty, but crystallises in prisms from hot H₂O. It is hydrolysed by 80% aqueous AcOH at 100°/1hour. [UV: Brown et al. *J Chem Soc* 2384 *1956*, Codington et al. *J Am Chem Soc* 80 5164 *1958*.] It forms an Hg salt [Fox et al. *J Am Chem Soc* 79 5060 *1957*]. [*Beilstein* 25 III/IV 3657.]

O-Acetyl-β-methylcholine chloride [Methacholine chloride, Amechol, Provocholine, 2acetoxypropyl-ammonium chloride] [62-51-1] M 195.7, m 170-173°, 172-173°. It forms white hygroscopic needles from Et₂O and is soluble in H₂O, EtOH and CHCl₃. It decomposes readily in alkaline solutions and slowly in H₂O. It should be handled and stored in a dry atmosphere. The bromide is less hygroscopic, and the picrate has m 129.5-131° (from EtOH). [racemate: Annis & Ely Biochem J 53 34 1953, IR of iodide: Hansen Acta Chem Scand 13 155 1959, Beilstein 4 IV 1670.]

N-Acetyl neuraminic acid (NANA, *O*-Sialic acid, 5-acetamido-3,5-dideoxy-D-glycero-Dgalacto-2-nonulosonic acid, lactaminic acid) [131-48-6] M 309.3, m 159°(dec), 181-183°(dec), 185-187°(dec), $[\alpha]_D^{25}$ -33° (c 2, H₂O), pK²⁵ 2.6. A Dowex-1x8 (200-400 mesh) in the formate form is used, and is prepared by washing with 0.1M NaOH, then 2N sodium formate; excess formate is removed by washing with H₂O. *N*-Acetyl neuraminic acid in H₂O is applied to this column, washed with H₂O, then eluted with 2N formic acid at a flow rate of 1mL/minute. Fractions (20mL) are collected and tested (Bial's orcinol reagent, *cf Biochemical Preparations* 7 1 1960). NANA elutes at a formic acid molarity of 0.38, and the Bial positive fractions are collected and lyophilised. The residue is recrystallised from aqueous AcOH: suspend 1.35g of residue in AcOH, heat rapidly to boiling, add H₂O dropwise until the suspension dissolves (do not add excess H₂O), filter hot and then keep at +5° for several hours until crystallisation is complete. Collect NANA and dry it in a vacuum over P₂O₅. Alternatively dissolve 1.35g of NANA in 14mL of H₂O, filter, add 160mL of MeOH followed by 360mL of Et₂O. Then add pet ether (b 40-60°) until heavy turbidity. Cool at 20° overnight. The yield of NANA is *ca* 1.3g. Dry it over P₂O₅ at 100°/1mm to constant weight. It mutarotates in Me₂SO: $[\alpha]_D^{20}$ -115° (after 7minutes) to -32° (after 24hours). It is commercially available as an aqueous solution (0.01g/mL). [IR and synthesis: Cornforth et al. *Biochem J* **68** 57 *1958*; Zillikin & O'Brien *Biochemical Preparations* **7** 1 *1960*; ¹³C NMR and 1-¹³C synthesis: Nguyen & Perry J Org Chem **43** 551 *1978*; Danishefski & DeNinno J Org Chem **51** 2615 *1986*; Gottschalk, *The Chemistry and Biology of Sialic Acids and Related Substances*, Cambridge University Press, London, *1960*, *Beilstein* **4** IV 3288.]

N-Acetyl penicillamine (*N*-acetyl-3-mercapto-D-valine) [D- 15537-71-0, DL -59-53-0] M 191.3, m 183°, 186-187° (DL-form), 189-190° (D-form), D-form $[\alpha]_{D}^{25}+18°$ (c 1, 50% EtOH), $pK_{Est(1)}\sim3.0$ (CO₂H), $pK_{Est(2)}\sim8.0$ (SH). Both forms are recrystallised from hot H₂O. A pure sample of the D-form is obtained after five recrystallisations. [Crooks in *The Chemistry of Penicillin* Clarke, Johnson and Robinson eds, Princeton University Press, 470 1949, Review: Chain et al. *Antibiotics* (Oxford University Press) 2 1949, *Beilstein* 4 III 1662.]

p-Acetylphenyl sulfate potassium salt, [38533-41-4] M 254.3, m dec on heating, pK_{Est} ~2.1. Purify the salt by dissolving it in the minimum volume of hot water (60°) and adding EtOH, with stirring, then leave at 0° for 1hour. The crystals are filtered off and recrystallised from H₂O until free of Cl⁻ and SO₄²⁻ ions. Dry it in a vacuum over P₂O₅ at room temperature. It is a specific substrate for arylsulfatases which hydrolyse it to *p*-acetylphenol [λ_{max} 327nm (ϵ 21700 M⁻¹cm⁻¹)] [Milsom et al. *Biochem J* 128 331 1972].

S-Acetylthiocholine bromide [25025-59-6] **M 242.2, m 217-223°(dec).** It is a *hygroscopic* solid which can be recrystallised from ligroin/EtOH (1:1), dried and kept in a vacuum desiccator. Crystallisation from $*C_6H_6$ /EtOH gives **m** 227° or from propan-1-ol the **m** is 213°. [Hansen *Acta Chem Scand* **11** 537 1957, Heilbronn *Acta Chem Scand* **12** 1481 1958, *Beilstein* **4** IV 1585.]

S-Acetylthiocholine chloride [6050-81-3] **M 197.7, m 172-173**^o The chloride can be purified in the same way as the bromide, and it can be prepared from the iodide. A few milligrams dissolved in H₂O can be purified by applying onto a Dowex-1 Cl⁻ resin column (prepared by washing with N HCl followed by $CO_3^{2^-}$ -free H₂O until the pH is 5.8). After equilibration for 10minutes, elution is started with $CO_3^{2^-}$ -free distilled H₂O, and 3mL fractions are collected and their OD values at λ 229nm are measured. The fractions with appreciable absorption are pooled and lyophilised at 0-5°. Note that at higher temperatures decomposition of the ester is appreciable; hydrolysis is appreciable at pH >10.5/20°. The residue is dried *in vacuo* over P₂O₅, checked for traces of iodine (add conc H₂SO₄ and heat, violet vapours are released), and recrystallise it from propan-1-ol. [Gal & Roth *Clin Chim Acta* **2** 316 *1957, Beilstein* **4** IV 1585.]

S-Acetylthiocholine iodide [1866-15-5] **M 289.2, m 203-204°, 204°, 204-205°.** Recrystallise the iodide from propan-1-ol (or *iso*-PrOH, or EtOH/Et₂O) until almost colourless and dry it in a vacuum desiccator over P_2O_5 . Its solubility in H_2O is 1% w/v. A 0.075M (21.7mg/mL) solution in 0.1M phosphate buffer pH 8.0 is stable for 10-15 days if kept refrigerated. Store it away from light. It is commercially available as a 1% solution in H₂O. [Ellman et al. *Biochemical Pharmacology* **7**, 88 1961, IR: Hansen Acta Chem Scand **13** 151 1959, **11** 537 1957, Clin Chim Acta **2** 316 1957, Ivin Zh Obshch Khim **22** 267 1952, Beilstein **4** III 726, **4** IV 1585.]

Actinomycin C (Cactinomycin) [8052-16-2] M ~1255. (A commercial mixture of Actinomycin C₁ ~5%, C₂~30% and C₃~65% is available). Actinomycin C₁ (native) crystallises from EtOAc as red crystals, is soluble in CHCl₃, *C₆H₆ and Me₂CO, and has m 246-247°(dec), $[\alpha]_D^{20}$ -328° (0.22, MeOH) and λ_{max} 443nm (ϵ 25,000) and 240nm (ϵ 34,000). Actinomycin C₂ (native) crystallises as red needles from EtOAc and has m 244-246°(dec), $[\alpha]_D^{20}$ -325° (c 0.2, MeOH), λ_{max} 443nm (ϵ 25,300) and 240nm (ϵ 33,400). Actinomycin C₃ (native) recrystallises from cyclohexane, or *C₆H₆/MeOH/cyclohexane as red needles with m 238-241° (dec), $[\alpha]_D^{20}$ -321° (c 0.2, MeOH), λ_{max} 443nm (ϵ 25,000) and 240nm (ϵ 33,300). [Brockman & Lackner, Chem Ber 101 1312 1968.] It is light sensitive. [Beilstein 27 III/IV 9642.]

Actinomycin D (Dactinomycin) [50-76-0] M 1255.5, m 241-243°(dec), $[\alpha]_D^{22}$ -296° (c 0.22, MeOH). It crystallises as bright red rhombic crystals from absolute EtOH or from MeOH/EtOH (1:3). It will also crystallise from EtOAc/cyclohexane (m 246-247° dec), CHCl₃/pet ether (m 245-246° dec), and EtOAc/MeOH/*C₆H₆ (m 241-243° dec). Its solubility in MeCN is 1mg/mL. $[\alpha]_D^{20}$ varies from -296° to -327° (c 0.2, MeOH). λ_{max} (MeOH) 445, 240nm (log ε 4.43, 4.49), λ_{max} (MeOH, 10N HCl, 1:1) 477nm (log ε 4.21) and λ_{max} (MeOH, 0.1N NaOH) 458, 344, 285 (log ε 3.05, 4.28, 4.13). It is **HIGHLY TOXIC**, light sensitive and anti-neoplastic. [Bullock & Johnson, *J Chem Soc* 3280 1957, Beilstein 27 III/IV 9642.]

Adenosine-5'-diphosphate [adenosine-5'-pyrophosphate, ADP] [58-64-0] M 427.2, $[\alpha]_D^{25}$ -25.7° (c 2, H₂O), pK₁²⁵ <2 (PO₄H), pK₂²⁵ <2 (PO₄H), pK₃²⁵ 3.95 (NH₂), pK₄²⁵ 6.26 (PO₄H). It is characterised by conversion to the *acridine salt* by addition of alcoholic acridine (1.1g in 50mL), filtering off the yellow salt and recrystallising from H₂O. The salt has m 215°(dec), λ_{max} 259nm (ϵ 15,400) in H₂O. [Baddiley & Todd J Chem Soc 648 1947, 582 1949, cf LePage Biochemical Preparations 1 1 1949, Martell & Schwarzenbach Helv Chim Acta 39 653 1956]. [Beilstein 26 III/IV 2369.]

Adenosine-3'-monophosphoric acid hydrate [3'-adenylic acid, 3'-AMP] [84-21-9] M 347.3, m 197°(dec, as $2H_2O$), 210°(dec), m 210°(dec), [α]₅₄₆ -50° (c 0.5, 0.5M Na₂HPO₄), pK₁²⁵ 3.65, pK₂²⁵ 6.05. It crystallises from large volumes of H₂O in needles as the *monohydrate*, but is not very soluble in boiling H₂O. Under acidic conditions it forms an equilibrium mixture of 2' and 3' adenylic acids *via* the 2',3'-cyclic phosphate. When heated with 20% HCl, it gives a quantitative yield of furfural after 3hours, unlike 5'-adenylic acid which only gives traces of furfural. The yellow *monoacridine salt* has m 175°(dec), and the *diacridine salt* has m 177° (225°)(dec). [Brown & Todd J Chem Soc 44 1952, Takaku et al. Chem Pharm Bull Jpn 21 1844 1973, NMR: Ts'O et al. Biochemistry 8 997 1969, Beilstein 26 III/IV 3607.]

Adenosine-5'-monophosphoric acid monohydrate [5'-adenylic acid, 5'-AMP] [18422-05-4] M 365.2, m 178°, 196-200°, 200° (sintering at 181°), $[\alpha]_{D}^{20}$ -47.5°, $[\alpha]_{546}$ -56° (c 2, in 2% NaOH), -26.0° (c 2, 10% HCl), -38° (c 1, 0.5M Na₂HPO₄), pK₁²⁵ 3.89, pK₂²⁵ 6.14, pK₃²⁵ 13.1. The acid has been recrystallised from H₂O (fine needles) and is freely soluble in boiling H₂O. It crystallises also from H₂O on addition of acetone. Alternatively purify it by chromatography on Dowex 1 (in formate form), eluting with 0.25M formic acid. It is then adsorbed onto charcoal (which had been boiled for 15minutes with M HCl, washed free of chloride and dried at 100°) and recovered by stirring three times with isoamyl alcohol/H₂O (1:9 v/v). The aqueous layer from the combined extracts is evaporated to dryness under reduced pressure, and the product is crystallised twice from hot H₂O. [Morrison & Doherty *Biochem J* 79 433 1961]. It has λ_{max} 259nm (ϵ 15,400) in H₂O at pH 7.0. [Alberty et al. *J Biol Chem* 193 425 1951, Martell & Schwarzenbach *Helv Chim Acta* 39 653 1956]. The *acridinium salt* has m 208° [Baddiley & Todd *J Chem Soc* 648 1947, Pettit Synthetic Nucleotides, van Nostrand-Reinhold, NY, Vol 1 252 1972, NMR: Sarma et al. *J Am Chem Soc* 96 7337 1974, Norton et al. *J Am Chem Soc* 98 1007 1976, IR of *diNa salt*: Miles *Biochem Biophys Acta* 27 324 1958]. [*Beilstein* 26 III/IV 3615.]

Adenosine 5'-[β -thio]diphosphate tri-lithium salt [73536-95-5] M 461.1. Purify it by ionexchange chromatography on DEAE-Sephadex A-25 using gradient elution with 0.1-0.5M triethylammonium bicarbonate. [Goody et al. *Biochem Biophys Acta* 276 155 1972.]

Adenosine 5'-[α -thio]monophosphate di-lithium salt [19341-57-2] M 375.2. Purify it as for the diNa salt [Murray & Atkinson *Biochemistry* 7 4023 1968]. Dissolve 0.3g in dry MeOH (7mL) and 1M LiI (6mL) in dry Me₂CO containing 1% of mercaptoethanol, and the Li salt is precipitated by adding Me₂CO (75mL). The residue is washed with Me₂CO (4 x 30mL) and dried at 55°/25mm. UV: λ_{max} (HCl, pH 1.2) 257nm (ϵ 14,800); (0.015M NaOAc, pH 4.8) 259nm (ϵ 14,800); and (0.015M NH₄OH, pH 10.1) 259nm (ϵ 15,300).

Adenosine-5'-triphosphate (ATP) [56-65-5] M 507.2, $[\alpha]_{546}$ -35.5 (c 1, 0.5 M Na₂HPO₄), pK₁²⁵ 4.00, pK₂²⁵ 6.48. ATP is purified by precipitating it as the barium salt on adding excess barium acetate solution to a 5% solution of ATP in water. The precipitate is filtered off, washed with distilled water, dissolved in 0.2M HNO₃ and again precipitated with barium acetate. The precipitate, after several washings with distilled water, is redissolved in 0.2M HNO₃, and slightly more than an equivalent of 0.2M H₂SO₄ is

added to precipitate all the barium as BaSO₄ which is filtered off. The ATP is then precipitated by addition of a large excess of 95% ethanol. It is filtered off, washed several times with 100% EtOH and finally with dry diethyl ether. It is dried *in vacuo*. [Kashiwagi & Rabinovitch *J Phys Chem* **59** 498 1955, *Beilstein* **26** III/IV 3654.]

S-(5'-Adenosyl)-L-homosysteine [979-92-0] M 384.4, m 202°(dec), 204°(dec), 205-207°(dec), $[\alpha]_{D}^{25}$ +93° (c 1, 0.2N HCl), $[\alpha]_{D}^{23}$ +44° (c 0.1, 0.05N HCl), (pK see SAM hydrochloride below). It has been recrystallised several times from aqueous EtOH or H₂O to give small prisms and has λ_{max} 260nm in H₂O. The *picrate* has m 170°(dec) from H₂O. [Baddiley & Jameison J Chem Soc 1085 1955, de la Haba & Cantoni J Biol Chem 234 603 1959, Borchardt et al. J Org Chem 41 565 1976, NMR: Follmann et al. Eur J Biochem 47 187 1974, Beilstein 26 III/IV 3676.]

(-)-S-Adenosyl-L-methionine chloride (SAM hydrochloride) [24346-00-7] M 439.9, pK_{Est(1)}~ 2.13, pK_{Est(2)}~ 4.12, pK_{Est(3)}~ 9.28. Purify it by ion exchange on Amberlite IRC-150 and eluting with 0.1-4M HCl. [Stolowitz & Minch J Am Chem Soc 103 6015 1981.] It has been isolated as the tri-reineckate salt by adding 2volumes of 1% solution of ammonium reineckate in 2% perchloric acid. The reineckate salt separates at once but is kept at 2° overnight. The salt is collected on a sintered glass funnel, washed with 0.5% of ammonium reineckate, dried (all operations at 2°) and stored at 2°. To obtain adenosylmethionine, the reineckate is dissolved in a small volume of methyl ethyl ketone (MEK) and centrifuged at room temperature to remove a small amount of solid. The clear dark red supernatant is extracted (in a separating funnel) with a slight excess of 0.1N H₂SO₄. The aqueous phase is re-extracted with fresh MEK until it is colourless. [Note that reineckates have UV absorption at 305nm (ε 15,000), and the optical density at 305nm is used to detect and estimate reineckate ions.] MEK is removed from the aqueous layer containing adenosylmethionine sulfate; the pH is adjusted to 5.6-6.0 and extracted with two volumes of Et₂O. The *sulfate* is obtained by evaporating the aqueous layer in vacuo. The hydrochloride can be obtained in the same way but using HCl instead of H_2SO_4 . SAM-HCl has a solubility of 10% in H_2O . The salts are stable in the cold at pH 4-6 but decompose in alkaline media. [Cantoni Biochemical Preparations 5 58 1957.] The purity of SAM can be determined by paper chromatography [Cantoni J Biol Chem 204 403 1953, Methods Enzymol 3 601 1957], electrophoretic methods or enzymic analysis [Cantoni & Vignos J Biol Chem 209 647 1954]. [Beilstein 26 III/IV 3676.]

L-Adrenaline [*R*-(-)-epinephrine, L(-)-(3,4-dihydroxyphenyl)-2-methylaminoethanol] [51-43-4] M 183.2, m 210°(dec), 211°(dec), 211-212°(dec), 215°(dec), $[\alpha]_{546}^{20}$ -61° (c 5, 0.5M HCl), $[\alpha]_{D}^{20}$ -52° (c 2, 5% HCl), pK₁²⁵ 8.88 (8.75), pK₂²⁵ 9.90 (9.89), pK₃²⁵ 12.0 (~13). L-Adrenaline has been recrystallised from EtOH/AcOH/NH₃ [Jensen *J Am Chem Soc* 57 1765 1935]. It is sparingly soluble in H₂O, readily in acidic or basic solutions but insoluble in aqueous NH₃, alkali carbonate solutions, EtOH, CHCl₃, Et₂O or Me₂CO. It has also been purified by dissolving in dilute aqueous acid, then precipitating it by adding dilute aqueous ammonia or alkali carbonates. It is readily oxidised in air and turns brown on exposure to light and air. (Epinephrine readily oxidises in neutral alkaline solution. This can be diminished if a little sulfite is added). Store it in the dark under N₂. [Lewis *Br J Pharmacol Chemother* 9 488 1954]. The hydrogen oxalate salt has m 191-192°(dec, evacuated capillary) after recrystallisation from H₂O or EtOH [Pickholz *J Chem Soc* 928 1945]. [*Beilstein* 13 H 830, 13 III/IV 2927.]

Adrenolone hydrochloride [3',4'-dihydroxy-2-methylaminoacetophenone hydrochloride] [62-13-5] M 217.7, m 244-249°(dec), 248°(dec), 256°(dec), pK²⁵ 5.5. It is purified by recrystallisation from EtOH or aqueous EtOH. [Gero J Org Chem 16 1222 1951, Kindler & Peschke Arch Pharm 269 581, 603 1931, Beilstein 14 IV 832.]

Amethopterin (Methotrexate, 4-amino-4-deoxy- N^{10} -methylpteroyl-L-glutamic acid) [59-05-2] M 454.4, m 185-204°(dec), $[\alpha]_{D}^{20}$ +19° (c 2, 0.1N aqueous NaOH), pK₁ <0.5 (pyrimidine²⁺), pK₂ 2.5 (N5-Me⁺), pK₃ 3.49 (α -CO₂H), pK₄ 4.99 (γ -CO₂H), pK₅ 5.50 (pyrimidine⁺). Most common impurities are 10-methylpteroylglutamic acid, aminopterin and pteroylglutamic acid. Purify it by chromatography on Dowex-1 acetate, followed by filtration through a mixture of cellulose and charcoal. It has been recrystallised from aqueous HCl or by dissolution in the minimum volume of N NaOH and acidified until precipitation is complete, filter or *better* collect by centrifugation, wash with H₂O (also by centrifugation) and dry at 100°/3mm. It has UV: λ_{max} at 244 and 307nm (ϵ 17300 and 19700) in H₂O at pH 1; 257, 302 and 370nm (ε 23000, 22000 and 7100) in H₂O at pH 13. [Momle *Biochemical Preparations* **8** 20 *1961*, Seeger et al. *J Am Chem Soc* **71** 1753 *1949*.] It is a potent inhibitor of dihydrofolate reductase and is used in cancer chemotherapy. [Blakley *The Biochemistry of Folic Acid and Related Pteridines*, North-Holland Publ Co., Amsterdam, NY, pp157-163 *1969*, *Beilstein* **26** IV 3833.] It is **CARCINOGENIC; HANDLE WITH EXTREME CARE.**

(4-amino-4-deoxypteroyl-L-glutamic acid) Aminopterin [54-62-6] M 440.4, m 231-235°(dec), $[\alpha]_{D}^{20}$ +18° (c 2, 0.1N aqueous NaOH), pK₁ <0.5 (pyrimidine²⁺), pK₂ 2.5 (N5-Me+), pK₃ 3.49 (a - C O₂H), pK₄ 4.65 (y - C O₂H), pK₅ 5.50 (pyrimidine+). Purify aminopterin by recrystallisation from H₂O. It has properties similar to those of methotrexate (above). It has UV at λ_{max} 244, 290 and 355nm (£ 18600, 21300 and 12000) in H₂O at pH 1; 260, 284 and 370nm (£ 28500, 26400 and 8600) in H₂O at pH 13. [Seeger et al. J Am Chem Soc 71 1753 1949, Angier & Curran J Am Chem Soc 81 2814 1959, Blakley The Biochemistry of Folic Acid and Related Pteridines, North-Holland Publ Co., Amsterdam, NY, pp 157-163 1969.] For small quantities, chromatograph it on DEAE cellulose with a linear gradient of ammonium bicarbonate pH 8 and increase the molarity from 0.1 to 0.4. Monitoring is by following the UV absorption of the fractions. For larger quantities, a near boiling solution of aminopterin (5g) in H_2O (400mL) is slowly treated with small portions of MgO powder (~0.7g, calcined magnesia) with vigorous stirring until a small amount of MgO remained undissolved and the pH rises from 3-4 to 7-8. Charcoal (1g) is added to the hot solution and filtered immediately through a large sintered glass funnel of medium porosity and lined with a hot wet pad of Celite (~2-3 mm thick). The filtrate is cooled in ice, and the crystals of the Mg salt are collected by filtration and recrystallised from boiling H₂O (200mL). The crystals are washed with EtOH and dried in vacuo. The Mg salt is redissolved in boiling H₂O (200mL) and carefully acidified with vigorous agitation with AcOH (2mL). Pure aminopterin (3g) separates in fine yellow needles (dihydrate) which are easily filtered. The solid is washed with cold H₂O, then Me₂CO and dried *in vacuo*. If a trace of impurity is still present as shown by DEAE cellulose chromatography or TLC, repetition of the process will remove it; see UV above. [Loo J Med Chem 8 139 1965, Beilstein 26 IV 3831.] CARCINOGENIC.

3-Aminopyridine adenine dinucleotide [21106-96-7] **M 635.4** (see NAD for pK) Purify it by ion-exchange chromatography as described [Fisher et al. J Biol Chem 248 4293 1973, Anderson & Fisher Methods Enzymol 66 81 1980].

Anion exchange resins. These should be conditioned before use by successive washing with water, EtOH and water, and taken through two $OH^--H^+-OH^-$ cycles by successive treatment with N NaOH, water, N HCl, water and N NaOH, then washed with water until neutral to give the OH⁻ form. (See commercial catalogues on ion-exchange resins.)

Aniracetam (1-[4-methoxybenzyl]-2-pyrrolidinone) [72432-10-1] M 219.1, m 121-122^o. Purify aniracetam by recrystallisation from EtOH. It is a nootropic (Alzheimer) drug. [Gouliaev & Senning *Brain Research Rev* 19 180 1994.]

Apocodeine [641-36-1] M 281.3, m 124°, $pK_{Est(1)} \sim 7.0$, $pK_{Est(2)} \sim 8.2$. Crystallise apocodeine from absolute EtOH by boiling and allowing to stand at 0° to give the alcoholate, m 104.5-106.5°; EtOH is lost slowly at 25°/2mm but readily at 78°/2mm, and the anhydrous base has m 122.5-124.5°. It is soluble in Et₂O. [Folkers *J Am Chem Soc* 58 1814 1936.] It has also been crystallised from MeOH or MeOH with a little CH₂Cl₂ as a waxy solid and dried at 80°/2mm. It softens above 100° before melting and is sensitive to air and light. The *hydrochloride*, which is formed from the base in EtOH containing an equivalent amount of HCl followed by addition of Et₂O, is recrystallised from 95% EtOH and adding Et₂O until crystals separate. It melts at 260-263° (dec, with softening at 140°) and has $[\alpha]_{D}^{20}$ -41.3° to - 43.3° (c 0.81, H₂O). [Neumyer et al. *J Med Chem* 16 1223 1973.]

*R***-Apomorphine** [58-00-4] **M** 267.3, **m** 195°(dec), **pK**₁¹⁵ 7.20 (NH₂), **pK**₂¹⁵ 8.91 (phenolic **OH**). Crystallise *R*-apomorphine from CHCl₃ and a little pet ether, also from Et₂O with 1 mol of Et₂O which it loses at 100°. It sublimes in a high vacuum. It is white but turns green in moist air or in alkaline solution. UV: λ_{max} 336, 399 (98% EtOH). The *di-O-methylether* is an oil **b** 175°/high vacuum, whose *picrate* crystallises from MeOH and has **m** 140° (dec). The *di-O-acetate* crystallises from EtOAc/pet ether with **m** 127-

128°, $[\alpha]_{D}^{25}$ -88° (c 1, 0.1 N HCl). The *di-O-benzoyl* derivative has **m** 156-158° (from EtOH) and $[\alpha]_{D}^{18}$ +43.44° (c 3.3, CHCl₃). [Pachorr et al. *Chem* Ber **35** 4377 *1902*, *Beilstein* **21** H 246.] **NARCOTIC.**

R-Apomorphine hydrochloride [41372-20-7] M 312.8, m 285-287°(dec), $[\alpha]_{D}^{20}$ -48° (c 1, H₂O). Crystallise the salt from H₂O (*hemihydrate*) and from EtOH. Crystals turn green on exposure to light. (see previous entry). NARCOTIC.

Aureomycin (7-chlorotetracycline) [57-62-5] M 478.5, m 172-174°(dec), $[\alpha]_{D}^{23}$ -275° (MeOH), pK₁ 3.3, pK₂ 7.44, pK₃ 9.27. Aureomycin is dehydrated by azeotropic distillation of its solution with toluene. On cooling, the anhydrous material crystallises out and is recrystallised from *C₆H₆, then dried under vacuum at 100° over paraffin wax. (If it is crystallised from MeOH, it contains MeOH which is not removed on drying.) [Stephens et al. *J Am Chem Soc* 76 3568 1954, Laskin & Chan *Biochem Biophys Res Commun* 14 137 1964]. [*Beilstein* 14 IV 2631.]

Aureomycin hydrochloride (7-chlorotetracycline hydrochloride) [64-72-2] M 514.0, m 234-236°(dec), $[\alpha]_{D}^{25}$ -23.5° (H₂O). Purify the salt by dissolving 1g rapidly in 20mL of hot water, cooling rapidly to 40°, treating with 0.1mL of 2M HCl, and chilling in an ice-bath. The process is repeated twice. It is also recrystallised from Me₂NCHO/Me₂CO. [Stephens et al. *J Am Chem Soc* 76 3568 1954, UV: McCormick et al. *J Am Chem Soc* 79 2849 1975, *Beilstein* 14 IV 2631.]

Bacitracin (Altracin, Topitracin) [1405-87-4] M 1422.7, $[\alpha]_{D}^{23} + 5^{\circ}$ (H₂O). Bacitracin has been purified by carrier displacement using *n*-heptanol, *n*-octanol and *n*-nonanol as carriers and 50% EtOH in 0.1 N HCl. The pure material gives one spot with R_F ~0.5 on paper chromatography using AcOH:*n*-BuOH:H₂O (4:1:5). [Porath Acta Chem Scand 6 1237 1952.] It has also been purified by ion-exchange chromatography. It is a white powder soluble in H₂O and EtOH but insoluble in Et₂O, CHCl₃ and Me₂CO. It is stable in acidic solution but unstable in base. It is a strong antibacterial. [Abraham & Bewton *Biochem J* 47 257 1950, Synthesis: Munekata et al. *Bull Chem Soc Jpn* 46 3187, 3835 1973, *Beilstein* 27 III/IV 5746.]

*N*⁶-Benzyladenosine [4294-16-0] M 357.4, m 177-179°, 185-187°, $[\alpha]_D^{25}$ -68.6° (c 0.6, EtOH)(see pK of adenosine). Purify it by recrystallisation from EtOH. It has λ_{max} 266nm (aqueous EtOH/HCl) and 269 nm (aqueous EtOH/NaOH). [Kissman & Weiss *J Org Chem* 21 1053 1956, Beilstein 26 III/IV 3682.]

N-Benzylcinchoninium chloride (*N*-benzyl-9*S*-hydroxycinchonanium chloride) [69221-14-3] M 421.0, m 265° (dec), $[\alpha]_{D}^{20}$ +169° (c 0.4, H₂O), pK_{Est} ~ 5. Recrystallise the chloride from isoPrOH, toluene or small volumes of H₂O. It is a good chiral phase transfer catalyst [Julia et al. *J Chem Soc*, *Perkin Trans 1* 574 1981, Hughes et al. *J Am Chem Soc* 106 446 1984, Hughes et al. *J Org Chem* 52 4745 1987]. See cinchonine below.

9*R*-(-)-*N*-Benzylcinchonidinium chloride [69257-04-1] M 421.0, m 212-213° (dec), $[\alpha]_{D}^{20}$ -175.4°, -183° (c 5, H₂O), pK_{Est} ~5. Dissolve the chloride in the minimum volume of H₂O and add absolute Me₂CO. Filter it off and dry it in a vacuum. It can also be recrystallised from hot EtOH or EtOH/Et₂O. (A good chiral phase transfer catalyst-see above) [Colonna et al. *J Chem Soc*, *Perkin Trans 1* 547 1981, Imperali & Fisher *J Org Chem* 57 757 1992]. [*Beilstein* 23 H 446.] See cinchonidine below.

N-Benzylpenicillin sodium salt (penicillin G Na salt) [69-57-8] **M 356.37, m 215**° (charring and dec), 225° (dec), $[\alpha]_{D}^{20}$ +269° (c 0.7, MeOH), $[\alpha]_{D}^{25}$ +305° (c 1, H₂O), pK²⁵ 2.76 (4.84 in 80% aqueous EtOH)(for free acid). Purify the salt by dissolving it in a small volume of MeOH (in which it is more soluble than EtOH) and treating gradually with ~5 volumes of EtOAc. This gives an almost colourless crystalline solid (rosettes of clear-cut needles) and recrystallising twice more if slightly yellow in colour. The salt has also been conveniently recrystallised from the minimum volume of 90% Me₂CO and adding an excess of absolute Me₂CO. A similar procedure can be used with wet *n*-BuOH. If yellow in colour, then dissolve (~3.8g) in the minimum volume of H₂O (3mL), add *n*-BuOH and filter through a bed of charcoal. The salt forms long white needles on standing in a refrigerator overnight. More crystals can be

obtained on concentrating the mother liquors *in vacuo* at 40°. A further recrystallisation (without charcoal) yields practically pure salt. A good preparation has ~600 Units/mg. The presence of H₂O in the solvents increases the solubility considerably. The solubility in mg/100mL at 0° is 6.0 (Me₂CO), 15.0 (Me₂CO/0.5% H₂O), 31.0 (Me₂CO/1.0% H₂O), 2.4 (methyl ethyl ketone), 81.0 (*n*-butanol) and 15.0 (dioxane at 14°). Alternatively it is dissolved in H₂O (solubility is ~10%), filtered if necessary and precipitated by addition of EtOH and dried in a vacuum over P₂O₅. A sample can be kept for 24hours at 100° without loss of physiological activity. It also crystallises from MeOH/EtOAc. [IR: Barnes et al. *Anal Chem* **19** 620 *1947*, *The Chemistry of Penicillin* (Clarke, Johnson and Robinson eds.) Princeton University Press, Princeton NJ, Chapter V 85 *1949*, *Beilstein* **27** III/IV 5861.]

Other salts, e.g. the **potassium salt** (M 372.5 [113-58-4]) can be prepared from the Na salt by dissolving it (147mg) ice-cold in H₂O acidified to pH 2, extracting with Et₂O (~50mL), washing once with H₂O, and extracting with 2mL portions of 0.3% KHCO₃ until the pH of the extract rises to ~6.5 (~7 extractions). The combined aqueous extracts are lyophilised, and the white residue is dissolved in *n*-BuOH (1mL, absolute) with the addition of enough H₂O to effect solution. Remove insoluble material by centrifugation and add absolute *n*-BuOH to the supernatant. Crystals should separate on scratching, and after 2.5hours in a refrigerator they are collected, washed with absolute *n*-BuOH and EtOAc and dried (yield 51.4mg). It also crystallises from aqueous Me₂CO. The *potassium salt* has **m** 214-217° (dec) (block preincubated at 200°; heating rate of 3°/min) and $[\alpha]_{D}^{22} + 285°$ (c 0.748, H₂O). [*Beilstein* **27** III/IV 5861.]

The free acid (penicillin G) (M 334.5, [61-33-6]) has m 186-187° (MeOH/Me₂CO), and m 190-191° (H₂O) [α] $_{D}^{25}$ +282°(EtOH). [Review: Sheehan & Henery-Logan *J Am Chem Soc* **84** 2983 1962, Chain et al. *Antibiotics* (Oxford University Press) **2** 1949, and Cook *Quarterly Reviews (Chemical Society)* **2** 46 1948.]

Bergapten (5-methoxypsoralen) [484-20-8] **M 216.2, m 190-193**°, **191-193**°. Crystallise it from EtOH or aqueous MeOH, and it sublimes *in vacuo*. Its properties are similar to those of its 9-methoxy isomer (xanthotoxin, see below). It is slightly soluble in $*C_6H_6$, CHCl₃ and AcOH but insoluble in H₂O. Its fluorescence has λ_{ex} at 352nm with λ_{em} at 480nm. It is a DNA intercalator and **possible carcinogen**. [Howell & Robertson J Chem Soc 293 1937, Boyer et al. Biochemistry **27** 3011 1988, Beilstein **19/6** V 4.]

(+)-Bicuculine [R-6(5,6,7,8-tetrahydro-6-methyl-1,3-dioxolo[4,5-g]isoquinolin-5-yl)-furo-[3,4-c]-1,3-benzodioxolo-8(6H)-one] [485-49-4] M 367.4, m 177°, 193-195°, 193-197°, 215°, [α] $_{D}^{20}$ +126° (c 1, CHCl₃), [α] $_{546}^{20}$ +159° (c 1, CHCl₃), pK²⁵ 4.84. It crystallises from CHCl₃/MeOH as plates. The crystals melt at 177°, then solidify and re-melt at 193-195° [Manske *Canad J Research* 21B 13 1943]. It is soluble in CHCl₃, *C₆H₆, EtOAc but sparingly soluble in EtOH, MeOH and Et₂O. [Stereochem: Blaha et al. *Collect Czech Chem Commun* 29 2328 1964, Snatzke et al. *Tetrahedron* 25 5059 1969, Pharmcol: Curtis et al. *Nature* 266 1222 1970, *Beilstein* 27 III/IV 1900].

L-erythro-Biopterin (2-amino-4-hydroxy-6-[{1*R*,2*S*}-1,2-dihydroxypropyl]pteridine) [22150-76-1] M 237.2, m >300°(dec), $[\alpha]_{546}^{20}$ -80°, $[\alpha]_{D}^{20}$ -65° (c 2.0, M HCl), pK₁²⁵ 2.23(2.45), pK₂²⁵ 7.89(8.05). Purify L-erythro-biopterin by chromatography on Florisil, which was washed thoroughly with 2M HCl, and elute with 2M HCl. The fractions with UV-fluorescence are pooled, evaporated *in vacuo* and the residue recrystallised. Biopterin is best recrystallised (90% recovery) by dissolving in 1% aqueous NH₃ (α 100 parts), and adding this solution dropwise to an equal volume of M aqueous formic acid at 100° and allowing to cool at 4° overnight. It is dried at 20° to 50°/0.1mm in the presence of P₂O₅. [Schircks et al. *Helv Chim Acta* 60 211 1977, Armarego et al. *Aust J Chem* 35 785 1982.] It also crystallises from *ca* 50 parts of water or 100 parts of hot 3M aqueous HCl by adding hot 3M aqueous NH₃ and cooling. It has UV: λ_{max} at 212, 248 and 321nm (log ε 4.21, 4.09 and 3.94) in H₂O at pH 0.0; 223infl, 235.5, 274.5 and 345nm (log ε 4.07infl, 4.10, 4.18 and 3.82) in H₂O at pH 5.0; 221.5, 254.5 and 364nm (log ε 3.92, 4.38 and 3.84) in H₂O at pH 10.0. [Sugimoto & Matsuura *Bull Chem Soc Jpn* 48 3767 1875, *Beilstein* 26 III/IV 4032.]

D-(+)-Biotin (vitamin H, hexahydro-2-oxo-1*H*-thieno[3,4-d]imidazole-4-pentanoic acid) [58-85-5] M 244.3, m 229-231°, 230.2°(dec), 230-231°, 232-234°(dec), $[\alpha]_{546}^{20}$ +108°, $[\alpha]_{D}^{20}$ +91.3° (c 1, 0.1N NaOH), pK_{Est} ~ 4.8. D-(+)-Biotin crystallises from hot water in fine long needles with a solubility of 22 mg/100mL at 25°. Its solubility in 95% EtOH is 80 mg/100 mL at 25°. Its isoelectric point is at pH 3.5. Store solid and solutions under sterile conditions because it is susceptible to mould growth. [Confalone J Am Chem Soc 97 5936 1975, Wolf et al. J Am Chem Soc 67 2100 1945, Synthesis: Ohuri &

Emoto *Tetrahedron Lett* 2765 1975, Harris et al. *J Am Chem Soc* **66** 1756 1944.] The (+)-methyl ester has **m** 166-167° (from MeOH/Et₂O), $[\alpha]_{D}^{22}$ +57° (c 1, CHCl₃) [du Vigneaud et al. *J Biol Chem* **140** 643, 763 1941]; the (+)-*S*-oxide has **m** 200-203°, $[\alpha]_{D}^{20}$ +130° (c 1.2, 0.1N NaOH) [Melville *J Biol Chem* **208** 495 1954]; the *SS*-dioxide has **m** 274-275°(dec, 268-270°), and the *SS*-dioxide methyl ester has **m** 239-241° (from MeOH/Et₂O) [Hofmann et al. *J Biol Chem* **141** 207, 213 1941]. [Beilstein **27** III/IV 7979.]

D-(+)-Biotin hydrazide [66640-86-6] M 258.4, m 238-240°, 245-247°, $[\alpha]_D^{20}$ +66° (c 1, Me₂NCHO). Wash the hydrazide with H₂O, dry it, wash it with MeOH then Et₂O, and dry. Recrystallise it from hot H₂O (clusters of prisms) [Hofmann et al. *J Biol Chem* 144 513 1942]. [*Beilstein* 27 III/IV 7980.]

D-(+)-Biotin N-hydroxysuccinimide ester (+-biotin N-succinimidyl ester) [35013-72-0] M 342.4, m 210°, 212-214°, $[\alpha]_{D}^{20}$ +53° (c 1, Me₂NCHO). Recrystallise the ester from refluxing isoPrOH and dry it in a vacuum over P₂O₅ + KOH. [Jasiewicz et al. *Exp Cell Biol* 100 213 1976.]

D-(+)-Biotin 4-nitrophenyl ester [33755-53-2] **M 365.4, m 160-163°, 163-165°,** $[\alpha]_{D}^{25}$ +47° (c 2, Me₂NCHO containing 1% AcOH). The ester has been recrystallised by dissolving 2g in 95% EtOH (30mL), heated to dissolve, then cooled in an ice-water bath. The crystals are collected, washed with ice-cold 95% EtOH (5mL) and dried over P₂O₅. The R_F on silica plates (CHCl₃/MeOH 19:1) is 0.19 [Bodanszky & Fagan *J Am Chem Soc* **99** 235 1977].

N-(+)-Biotinyl-4-aminobenzoic acid [6929-40-4] M 363.4, m 295-297°, 295-300°, $[\alpha]_{D}^{23}$ +56.55° (c 0.5, 0.1N NaOH), pK_{Est}~4.0. Dissolve the acid in NaHCO₃ solution, cool and precipitate it by adding N HCl. Collect the solid, dry it at 100° and recrystallise it from MeOH. Note that it is hydrolysed by aqueous 3M, 1M and 0.2M HCl at 120°, but can be stored in 5% aqueous NaHCO₃ at -20° without appreciable hydrolysis [Knappe et al. *Biochem Zeitschrift* 338 599 1963, Wolf et al. *J Am Chem Soc* 73 4142 1951, Bayer & Wilchek *Methods Enzymol* 26 1 1980]. [Beilstein 27 III/IV 7984.]

N-Biotinyl-6-aminocaproic *N*-succinimidyl ester [72040-63-2] M 454.5, m 149-152°. Dissolve ~400mg of the ester in dry propan-2-ol (~25mL) with gentle heating. Reduce the volume to ~10mL by gentle boiling and allow the solution to cool. Decant the supernatant carefully from the white crystals, dry the crystals in a vacuum over P_2O_5 at 60° overnight. This material gives one spot on TLC. [Costello et al. *Clin Chem* 25 1572 1979, Kincaid et al. *Methods Enzymol* 159 619 1988.]

N-(+)-Biotinyl-6-aminocaproyl hydrazide (biotin-6-aminohexanoic hydrazide) [109276-34-8] **M** 371.5, **m** 189-191°, 210°, $[\alpha]_{D}^{20}$ +23° (c 1, Me₂NCHO). Suspend the hydrazide in ice-water (100mg/mL), stand overnight at 4°, filter and dry the solid in a vacuum. Recrystallise it from isoPrOH. R_F is 0.26 on SiO₂ plate using CHCl₃/MeOH (7:3) as eluent. [O'Shannessy et al. *Anal Biochem* 163 204 1987.]

N-(+)-Biotinyl-L-lysine (Biocytin) [576-19-2] M 372.5, m 228.5°, 228-230° (dec), 241-243°, 245-252° (dec, sintering at 227°), $[\alpha]_{D}^{25}$ +53° (c 1.05, 0.1 N NaOH). Recrystallise biocytin rapidly from dilute MeOH or Me₂CO. It can also be recrystallised from H₂O by slow evaporation or by dissolving in the minimum volume of H₂O and adding Me₂CO until solid separates. It is freely soluble in H₂O and AcOH but insoluble in Me₂CO. [Wolf et al. *J Am Chem Soc* 74 2002 *1952*, 72 1048 *1950*.] It has been purified by chromatography on superfiltrol-Celite, Al₂O₃ and by countercurrent distribution and then recrystallised [IR: Peck et al. *J Am Chem Soc* 74 1991 *1952*]. The *hydrochloride* recrystallises from aqueous Me₂CO/HCl and has m 227° (dec). [Beilstein 27 III/IV 7984.]

Brefeldin A [1-*R*-2*c*,15*c*-dihydroxy-7*t*-methyl-(1*r*,13*t*)-6-oxa-bicyclo[11.3.0]hexadeca-3*t*,11*t*-dien-5-one, Decumbin] [20350-15-6] M 280.4, m 200-202°, 204°, 204-205°, $[\alpha]_D^{22}$ +95° (c 0.81, MeOH). Brefeldin A was isolated from *Penicillium brefeldianum* and recrystallised from aqueous MeOH/EtOAc or MeOH. Its solubility in H₂O is 0.6mg/mL, 10mg/mL in MeOH and 24.9mg/mL in EtOH. The *O*-acetate recrystallises from Et₂O/pentane and has m 130-131°, $[\alpha]_D^{22}$ +17° (c 0.95, MeOH). [Sigg *Helv Chim Acta* 47 1401 1964, UV and IR: Härri et al. *Helv Chim Acta* 46 1235 1963, total synthesis: Kitahara et al. *Tetrahedron* 3021 1979, X-ray : Weber et al. *Helv Chim Acta* 54 2763 1971, *Beilstein* 18 III/IV 1220.] **5-Bromo-2'-deoxyuridine** [59-14-3] M 307.1, m 193-197°(dec), 217-218°, $[\alpha]_{D}^{25}$ -4.1° (c 0.1, H₂O), pK²⁵ ~ 8.1. Recrystallise the uridine from EtOH or 96% EtOH. It has λ_{max} 279 nm at pH 7.0, and 279 nm (log ε 3.95) at pH 1.9. Its R_F values are 0.49, 0.46 and 0.53 in *n*-BuOH/AcOH/H₂O (4:1:1), *n*-BuOH/EtOH/H₂O (40:11:19) and *i*-PrOH-25% aqueous NH₃-H₂O (7:1:1), respectively. [*Nature* 209 230 1966, Prystãs & Sorm Collect Czech Chem Comm 29 2956 1964, Beilstein 24 III/IV 1234.]

5-Bromouridine [957-75-5] **M 323.1, m 215-217°, 217-218°,** $[\alpha]_{D}^{22}$ -24.1° (c 2, H₂O), pK²⁵ **8.1.** Recrystallise it from 96% EtOH. UV λ_{max} 279nm (log ε 3.95) in H₂O pH 1.9. R_F in *n*-BuOH/AcOH/H₂O (4:4:1) is 0.49; in *n*-BuOH/EtOH/H₂O (40:11:9) it is 0.46 and in isoPrOH/25%NH₃/H₂O (7:1:2) it is 0.53 using Whatman No 1 paper. [Prystãs & Sorm Collect Czech Chem Commun 29 2956 1964, Beilstein **31** H 24.]

Brucine $[357-57-3 \ (anhydrous), 5892-11-5 \ (4H_2O)]$ M 430.5, m 178-179°, $[\alpha]_{26}^{20}$ -149.9° (anhydrous; c 1, in CHCl₃), $[\alpha]_{D}^{20}$ -119° (anhydrous; c 2, in CHCl₃), pK_1^{15} 2.50, pK_2^{15} 8.16 (pK_2^{25} 8.28). Crystallise brucine once from water or aqueous Me₂CO (as the *tetrahydrate*), then suspend it in CHCl₃ and shake with anhydrous Na₂SO₄ (to dehydrate the brucine, which then dissolves). Precipitate it by pouring the solution into a large bulk of dry pet ether (b 40-60°), filter and heat to 120° in a high vacuum [Turner *J Chem Soc* 842 *1951*]. The *tetrahydrate* crystallises from a mixture of EtOH and H₂O as colourless elongated needles [Eeles Acta Cryst 6 809 *1953*, Beilstein 27 III/IV 7875.] VERY POISONOUS

Brucine sulfate (hydrate) [4845-99-2] M 887.0, m ~180°(dec), $[\alpha]_{546}^{20}$ -36° (dry; c 1, H₂O). The *heptahydrate* crystallises from water as colourless laths. [Eeles *Acta Cryst* 6 809 1953, *Beilstein* 27 III/IV 7875.]

Butyryl choline iodide [(2-butyryloxyethyl)trimethyl ammonium iodide] [2494-56-6] M 301.7, m 85-89°, 87°, 93-94°. Recrystallise the iodide from isoPrOH or Et₂O. [Tammelin Acta Chem Scand 10 145 1956.] The perchlorate has m 72° (from isoPrOH). [Aldridge Biochem J 53 62 1953, Beilstein 4 IV 1448.]

S-Butyryl thiocholine iodide [(2-butyrylmercaptoethyl)trimethyl ammonium iodide] [1866-16-6] **M 317.2, m 173°, 173-176°.** Recrystallise S-butyryl thiocholine iodide from propan-1-ol and dry it *in vacuo*; store it in the dark under N₂. The *bromide* has **m** 150° (from Me₂CO) or **m** 140-143° (from butan-1-ol). [Gillis *Chem Ind (London)* 111 1957, Hansen Acta Chem Scand **11** 537 1957, Beilstein **4** IV 1586.]

Carminic acid $(7-\alpha$ -D-glucopyranosyl-9,10-dihydro-3,5,6,8-tetrahydroxy-1-methyl-9,10dioxo-2-anthracene carboxylic acid, Neutral Red 4: CI 75470) [1260-17-9] M 492.4, m 120°(dec), $[\alpha]_{654}^{15}$ +51.6° (H₂O), (several phenolic pKs). Carminic acid forms red prisms from EtOH. It gives a red colour in Ac₂O and yellow to violet in acidic solution. UV: λ_{max} (H₂O) 500nm (ε 6,800); (0.02N HCl) 490-500nm (ε 5,800) and (0.0001N NaOH) 540nm (ε 3,450). IR: v_{max} (Nujol) 1708s, 1693s, 1677m, 1648m, 1632m, 1606s, 1566s, 1509 cm⁻¹. Periodate oxidation is complete after 4hours at 0° with the consumption of 6.2 mols. The *tetra-O-methyl carminate* has m 186-188° (yellow needles from *C₆H₆/pet ether). [IR: Ali & Haynes J Chem Soc 1033 1959, Bhatia & Venkataraman Indian J Chem 3 (2) 92 1965, Synthesis: Davis & Smith Biochemical Preparations 4 38 1955, Beilstein 18 III/1V 6697.]

Cation exchange resins. These should be conditioned before use by successive washing with water, EtOH and water, and taken through two H^+ -OH⁻- H^+ cycles by successive treatment with M HCl, water, M NaOH, water and M HCl, then washed with water until neutral to give the H^+ form. (See commercial catalogues on ion exchange resins).

Cephalosporin C potassium salt [28240-09-7] M 453.5, $[\alpha]_D^{20}$ +103° (H₂O), pK₁ <2.6, pK₂ 3.1, pK₃ 9.8. Purify the salt by dissolving it in the minimum volume of H₂O (filter) and adding EtOH until separation of solid is complete. A solution is stable in the pH range 2.5-8. It has UV with λ_{max} at 260nm (log ε 3.95) in H₂O. The **Ba salt** has $[\alpha]_D^{20}$ +80° (c 0.57, H₂O) [Woodward et al. J Am Chem Soc 88 852 1966, Abraham & Newton *Biochem J* **79** 377 1961, Hodgkin & Maslen *Biochem J* **79** 402 1961; see also *Quart Reviews Chem Soc* London **21** 231 1967]. [*Beilstein* **27** III/IV 5902.]

Chlorambucil [4-{bis(2-chloroethyl)amino)-phenylbutyric acid] [305-03-3] M 304.2, m 64-66°, pK₁ 5.8 (6.0 at 66°, 50% aqueous Me₂CO), pK₂ 8.0. Chlorambucil is recrystallised from pet ether (flat needles) and has a solubility at 20° of 66% in EtOH, 40% in CHCl₃, 50% in Me₂CO but is insoluble in H₂O [Everett et al. *J Chem Soc* 2386 1953]. [*Beilstein* 14 IV 1715.] CARCINOGEN.

Chloramphenicol [Amphicol, $1R, 2R \cdot (-) \cdot 2 \cdot \{2, 2 \cdot dichloroacetylamino\} \cdot 1 \cdot \{4 \cdot nitrophenyl\}$ propan-1,3-diol] [56-75-7] M 323.1, m 149-151°, 150-151°, 151-152°, $[\alpha]_{D}^{20} + 20.5°$ (c 3, EtOH), $[\alpha]_{D}^{25} \cdot 25.5°$ (EtOAc). Purify chloramphenicol by recrystallisation from H₂O (solubility is 2.5mg/mL at 25°) or ethylene dichloride as needles or long plates, and by sublimation at high vacuum. It has $A_{1cm}^{1\%}$ 298 at λ_{max} 278nm, and it is slightly soluble in H₂O (0.25%) and propylene glycol (1.50%) at 25° but is freely soluble in MeOH, EtOH, BuOH, EtOAc and Me₂CO. [Relstock et al. J Am Chem Soc 71 2458 1949, Confroulis et al. J Am Chem Soc 71 2463 1949, Long & Troutman J Am Chem Soc 71 2469, 2473 1949, Ehrhart et al. Chem Ber 90 2088 1957, Beilstein 13 IV 2742.]

Chloramphenicol palmitate [530-43-8] **M 561.5, m 90°,** $[\alpha]_{D}^{26}$ +24.6° (c 5, EtOH). The palmitate crystallises from *benzene or xylene with **m** 105-106° and $[\alpha]_{D}^{21}$ -39.5° (c 2, Et₂O), λ_{max} 267.3nm. [Edgerton et al. J Am Chem Soc 77 27 1955, Beilstein 13 IV 2753.]

2-Chloroadenosine [146-77-0] M **301.7, m 145-146°(dec), 147-149°(dec), pK**_{Est(1)}~ **0.5,** $pK_{Est(2)}$ ~ **7.6.** Purify 2-chloroadenosine by recrystallisation from H₂O (~1% in cold), and it has λ_{max} at 264 nm (pH 1 and 7) and 265 nm (pH 13) in H₂O. [Brown & Weliky J Org Chem **23** 125 1958, Schaeffer & Thomas J Am Chem Soc **80** 3738 1958, IR: Davoll & Lewy J Am Chem Soc **74** 1563 1952, Beilstein **26** III/IV 3725.]

Chlorophyll a [479-61-8] M 983.5, m 117-120°, 150-153°, 178-180° (sinters at ~150°), $[\alpha]_{D}^{20}$ -262° (Me₂CO). It forms green crystals from Me₂CO, Et₂O/H₂O, Et₂O/hexane/H₂O or Et₂O/pentane /H2O. It is sparingly soluble in MeOH and insoluble in pet ether. In alkaline solution it gives a blue-green colour with deep red fluorescence. A very crude chlorophyll mixture has been purified by chromatography on low melting polyethylene (MI 0.044; "Dow" melting index MI <2) and developed with 70% aqueous Me₂CO. The order of effluent from the bottom of the column is: xanthophylls, chlorophyll b, chlorophyll a, phaeophytins and carotenes. A mixture of chlorophylls a and b is best separated by chromatography on sugar, and the order is chlorophyll b elutes first followed by chlorophyll a. To an Me₂CO/H₂O solution of chlorophylls 200mL of iso-octane are added, and the mixture shaken in a separating funnel and the H_2O is carefully removed. The iso-octane layer is dried (Na_2SO_4) and applied onto a glass column (5cm diameter) dry packed with 1000mL of powdered sucrose which has been washed with 250mL of iso-octane. Elution with 0.5% of isopropanol in iso-octane gives chlorophyll a. Keeping the eluate overnight at 0° yields micro crystals which are collected by filtration or centrifugation (Yield 40mg). UV_{EtOH} has λ_{max} 660, 613, 577, 531, 498, 429 and 409 nm. Note that anhydrous chlorophylls can be easily enolized, epimerized or allomerized in dry polar organic solvents. [Anderson & Calvin Nature 194 285 1962, Stoll & Weidemann Helv Chim Acta 16 739 757 1933, NMR: Katz et al. J Am Chem Soc 90 6841 1968, 85 3809 1963 for a and b; ORD: Inhoffen et al. Justus Liebigs Ann Chem 704 208 1967, Willstätter & Isler Justus Liebigs Ann Chem 390 269, 233 1912, Beilstein 26 III/IV 3243.]

Chlorophyll *b* [519-62-0] M 907.52, sinters at 86-92°, sinters at 170°, dec at 160-170°, m 183-185°, 190-195°, $[\alpha]_{D}^{20}$ -267° (Me₂CO/MeOH), $[\alpha]_{720}^{25}$ -133° (MeOH/Pyridine 95:5). See purification of chlorophyll *a*, and is separated from "*a*" by chromatography on sucrose [UV, IR: Stoll & Weidemann *Helv Chim Acta* 42 679, 681 1959]. It forms red-black hexagonal bipyramids or four-sided plates from dilute EtOH and has been recrystallised from CHCl₃/MeOH. It is soluble in MeOH, EtOH, EtOAc and insoluble in pet ether. [Dougherty et al. *J Am Chem Soc* 88 5037 1966, *Beilstein* 26 III/IV 3787.]

6-Chloropurine riboside (6-chloro-9-β-D-ribofuranosyl-9*H*-purine) [2004-06-0] M 286.7, m 158-162^o(dec), 165-166^o(sintering at 155^o), 168-170^o(dec), $[\alpha]_D^{26}$ -45^o (c 0.8, H₂O). Purify

the riboside by suspending the dry solid (~12 g) in hot MeOH (130 mL) and then adding enough hot H₂O (~560mL) to cause solution, filter and set aside at 5° overnight. The colourless crystals of the riboside are filtered off, washed with Me₂CO, Et₂O and dried at 60°/0.1mm. More material can be obtained by evaporating the filtrate to dryness and recrystallisation of the residue from MeOH/H₂O (2:1) (15mL/g). It has λ_{max} 264nm (ϵ 9140) in H₂O. [Robins *Biochemical Preparations* **10** 145 *1963*, Baker et al. *J Org Chem* **22** 954 *1957*.]

Chromomycin A₃ [7059-24-7] **M** 1183.3, **m** 185°dec, $[\alpha]_{D}^{23}$ -57° (c 1, EtOH). Dissolve the antibiotic (10g) in EtOAc and add to a column of Silica Gel (Merck 0.05-0.2microns, 4x70cm) in EtOAc containing 1% oxalic acid. Elute with EtOAc+1% oxalic acid and check fractions by TLC. Pool fractions, wash with H₂O thoroughly, dry and evaporate. Recrystallise the residue from EtOAc. The *heptaacetate* has **m** 214°, $[\alpha]_{D}^{23}$ -20° (c 1, EtOH). [Miyamoto et al. *Tetrahedron* 23 421 *1967*, Harada et al. *J Am Chem Soc* 91 5896 *1969*, *Beilstein* 17/5 V 673.]

Cinchonidine [485-71-2] M 294.4, m 210.5°, $[\alpha]_{546}^{20}$ -127.5° (c 0.5, EtOH), pK₁¹⁵ 4.17, pK₂¹⁵ 8.4. Crystallise cinchonidine from aqueous EtOH. For the *N*-benzylcinchonidinium chloride see above entry in this section. [Beilstein 23 III/IV 2824.]

Cinchonine [118-10-5] M 294.4, m 265°, $[\alpha]_{546}^{20}$ +268° (c 0.5, EtOH), pK₁¹⁵ 4.28, pK₂¹⁵ 8.35. Crystallise cinchonine from EtOH or diethyl ether. For the *N*-benzylcinchoninium chloride see above entry in this section. [Rabe Justus Liebigs Ann Chem 365 366, 371 1909, Beilstein 23 III/IV 2819, 2832.]

Clonidine hydrochloride [Catapres, 2-(2,6-dichloroanilino)-2-imidazoline hydrochloride] [4205-91-8] M 266.6, m 305°, pK^{25} 5.88 (free base). This antihypertensive is recrystallised from EtOH/Et₂O and dried in a vacuum (solubility in H₂O is 5%). The *free base* has m 124-125° and is recrystallised from hexane. [Jen et al. J Med Chem 18 90 1975, NMR: Jackman & Jen J Am Chem Soc 97 2811 1975.]

Cloxacillin sodium salt (sodium 3-*o*-chlorophenyl-5-methyl-4-isoxazolyl penicillin monohydrate) [642-78-4] M 457.9, m 170°, $[\alpha]_{D}^{20}$ +163° (H₂O pH 6.0-7.5), pK_{Est} ~ 2.8 (COOH). Purify cloxacillin sodium salt by dissolving it in isoPrOH containing 20% of H₂O, and diluting with isoPrOH to a water content of 5% and chilling. Recrystallise it again in this manner. The sodium salt is collected and dried at 40° in air to give the colourless *monohydrate*. It is soluble in H₂O (5%), MeOH, EtOH, pyridine and ethylene glycol. [Doyle et al. *J Chem Soc* 5838 1963, Naylor et al. *Nature* 195 1264 1962.]

(-)-Cocaine {ecogonine methyl ester benzoate, 2β -carbomethoxy-3- β -benzoxytropane, methyl 1*R*-(*exo*,*exo*)]-3-(benzoyloxy)-2-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate} [50-36-2] M 303.4, m 98°, b 187-188°/0.1mm, $[\alpha]_D^{20}$ -15.8° (c 4, CHCl₃), $[\alpha]_D^{20}$ -35° (50% EtOH), pK²⁵ 5.59 and 8.61 (8.39). (-)-Cocaine crystallises from EtOH and sublimes below 90° in a vacuum in an amorphous form. The *hydrochloride* crystallises from MeOH/Et₂O with m 195° and $[\alpha]_D^{20}$ -72° (c 2 in H₂O, pH 4.5), -78.5° (50% aqueous EtOH). [Sam & Reynolds *J Chem Soc* 97 1335 *1910*, Tufariello et al. *J Am Chem Soc* 101 2435 *1979*.] α -Cocaine is the (+) enantiomer. [*Beilstein* 22 I 547, 22 II 150.]

Cocarboxylase tetrahydrate (aneurine pyrophosphoric acid tetrahydrate, thiamine pyrophosphoric acid tetrahydrate) [136-09-4] M 496.4, m 220-222°(sinters at 130-140°), 213-214°, pK_{Est(1)}~2, pK_{Est(2)}~6, pK_{Est(3)}~9. Cocarboxylase tetrahydrate recrystallises from aqueous Me₂CO. [Wenz et al. Justus Liebigs Ann Chem 618 210 1958, UV: Melnick J Biol Chem 131 615 1939, X-ray: Carlisle & Cook Acta Cryst (B) 25 1359 1969.] The hydrochloride salt has m 242-244°(dec), 241-243°(dec) or 239-240°(dec) and crystallises from aqueous HCl/EtOH, EtOH containing HCl or HCl/Me₂CO. [Weijlard J Am Chem Soc 63 1160 1941, Synthesis: Weijlard & Tauber J Am Chem Soc 60 2263 1938, Beilstein 27 III/IV 1777.]

Codeine [76-57-3] M 299.4, m 151-154°, 154-156°, $[\alpha]_{D}^{20}$ -138° (in EtOH), pK¹⁵ 6.06(OH), pK²⁵ 8.21 (NMe). Codeine crystallises from water or aqueous EtOH. Dry it at 80°. Evaporation of a CHCl₃ extract gives a colourless glass which crystallises on scratching. It crystallises from H₂O as the *monohydrate*, m 157-158.5°, and has $[\alpha]_{D}^{25}$ -136° (c 2.8, EtOH). The *hydrobromide* crystallises in needles from

 H_2O , and effervesces at 151-160°, solidifies and remelts with extensive decomposition at 273-278°. It sublimes at 100°/0.03mm. [Gates *J Am Chem Soc* **75** 4340 *1953*, Dauben et al. *J Org Chem* **44** 1567 *1979*, *Beilstein* **27** II 136, **27** III/IV 2228.]

Coenzyme A trihydrate [85-61-0] **M 821.6, pK₁ 4.0 (adenine NH₂), pK₂ 6.5 (PO₄H), pK₃ 9.6 (SH).** The white powder is best stored in an inert atmosphere in the dark in sealed ampoules after drying *in vacuo* over P₂O₅ at 34°. It has UV: λ_{max} 259 nm (ϵ 16,800) in H₂O. [Buyske et al. *J Am Chem Soc* **76** 3575 1954.] It is soluble in H₂O but insoluble in EtOH, Et₂O and M₂CO. It is readily oxidised in air and is best kept as the more stable *trilithium salt* [Moffat & Khorana *J Am Chem Soc* **83** 663 1961; see also Beinert et al. *J Biol Chem* **200** 384 1953, De Vries et al. *J Am Chem Soc* **72** 4838 1950, Gregory et al. *J Am Chem Soc* **74** 854 1952 and Baddiley *Adv Enzymol* **16** 1 1955]. [Beilstein **26** III/IV 3663.]

Coenzyme Q_0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, 3,4-dimethoxy-2,5-toluquinone, fumigatin methyl ether) [605-94-7] M 182.2, m 56-58°, 58-60°, 59°. It crystallises in red needles from pet ether (b 40-60°) and sublimes at high vacuum at a bath temperature of 46-48° [Ashley et al. J Chem Soc 441 1938, UV in EtOH: Vischer J Chem Soc 815 1953, UV in cyclohexane: Morton et al. Helv Chim Acta 41 2343 1858, Aghoramurthy et al. Chem Ind (London) 1327 1954]. [Beilstein 8 IV 2721.]

Coenzyme Q₄ (Ubiquinone-4, 2,3-dimethoxy-5-methyl-6-[3,7,11,15-tetramethyl-hexadeca-2t,6t,10t,14-tetraenyl]-1,4-benzoquinone) [4370-62-1] M 454.7, m 30°, 33-45°. It is a red oil which can be purified by chromatography on SiO₂ plates and eluted with Et₂O/hexane. The purity is checked by HPLC (silica column using 7% Et₂O/hexane). It has λ_{max} 270 nm (ϵ 14,800) in pet ether. [NMR and MS: Naruta J Org Chem 45 4097 1980, cf Morton Biochemical Spectroscopy (Adam Hilger, London, 1975) p 491]. It has also been dissolved in MeOH/EtOH (1:1 v/v) and kept at 5° until crystals appear [Lester & Crane Biochim Biophys Acta 32 497 1958].

Coenzyme Q₉ (Ubiquinone-9, 2,3-dimethoxy-5-methyl-6-[3,7,11,15,19,23,27,31,35nonamethyl-hexatriaconta-2t,6t,10t,14t,18t,22t,26t,30t,34-nonaenyl]-1,4-benzoquinone) [303-97-9] M 795.3, m 40.5-42.5°, 44-45°, 45°. The yellow crystals are purified by recrystallisation from pet ether and by chromatography on SiO₂ plates and eluted with Et₂O/hexane. The purity can be checked by HPLC (silica column using 7% Et₂O/hexane). It has λ_{max} 270nm (ε 14,850) in pet ether. [NMR and MS: Naruta J Org Chem 45 4097 1980, Le et al. Biochem Biophys Acta 32 497 1958, cf Morton Biochemical Spectroscopy (Adam Hilger, London, 1975) p 491, IR: Lester et al. Biochim Biophys Acta 33 169 1959, UV: Rüegg et al. Helv Chim Acta 42 2616 1959, Shunk J Am Chem Soc 81 5000 1959, Beilstein 8 IV 3313.]

Coenzyme Q_{10} (Ubiquinone-10, 2,3-dimethoxy-5-methyl-6-[3,7,11,15,19,23,27,31,35,-39decamethyl-tetraconta-2t,6t,10t,14t,18t,22t,26t,30t,34t,38-decaenyl]-1,4-benzoquinone) [303-98-0] M 795.3, m 48-49°,49°, 49.5-50.5°, 50°. Purify it by recrystallisation from EtOH, EtOH/Me₂CO or Et₂O/EtOH and by chromatography on silica gel using isoPrOH/Et₂O (3:1) to give orange crystals. It has λ_{max} 270nm (ϵ 15,170) in pet ether. [Terao et al. J Org Chem 44 868 1979, NMR and MS: Naruta et al. J Org Chem 45 4097 1980, IR: Lester et al. Biochem Biophys Acta 42 1278 1959, NMR: Planta et al. Helv Chim Acta 42 1278 1959; Morton Biochemical Spectroscopy (Adam Hilger, London, 1975) p 491].

Colcemide (Demecocine) [477-30-5] M 371.4, m 182-185°, 183-185°, 186°, $[\alpha]_D^{20}$ -129° (c 1, CHCl₃). Colcemide is purified by chromatography on silica and eluting with CHCl₃/MeOH (9:1), and by recrystallisation from EtOAc/Et₂O to form yellow prisms. UV in EtOH has λ_{max} 243nm (ε 30,200) and 350nm (ε 16,3000). [Synthesis, IR, NMR, MS: Capraro & Brossi *Helv Chim Acta* 62 965 1979, *Beilstein* 8 IV 3319.]

Colchicine {N-[(7S)-1,2,3,10-tetramethoxy-5,6,7,9-tetrahydro-9-oxo-benzo[*a*]heptalen-7-yl]-acetamide} [64-86-8] M 399.5, m 150-160° (dec), 155-157°(dec), 156-157°, $[\alpha]_{546}^{20}$ -570° (c 1, H₂O), $[\alpha]_{D}^{20}$ -443° (c 1.7, H₂O), $[\alpha]_{D}^{20}$ -120° (c 1, CHCl₃), pK²⁰ 1.85 and 12.4. Commercial material contains up to 4% desmethylcolchicine. Purify colchicine by chromatography on alumina and eluting with CHCl₃ [Ashley & Harris *J Chem Soc* 677 1944]. Alternatively, an acetone solution on alkalifree alumina has been used, and eluting with acetone [Nicholls & Tarbell *J Am Chem Soc* 75 1104 1953]. It

crystallises as yellow needles from EtOAc or CHCl₃ with solvent of crystallisation which can be removed at ~70°. It is soluble in Et₂O (0.5%), $*C_6H_6$ (1%) and H₂O (4%). It is sold as "Colgout" for the treatment of gout and binds to tubulin. [Schreiber et al. *Helv Chim Acta* **44** 540 *1961*, Scott et al. *Tetrahedron* **21** 3605 *1965*, van Tamelen et al. *Tetrahedron* **14** 8 *1961*, *Beilstein* **14** IV 946.]

Compactin (Mevastatin) [73573-88-3] M 390.5, m 151-153°, 152°, $[\alpha]_{D}^{22}$ +283° (c 0.48, acetone). Purify compactin by recrystallisation from aqueous EtOH. UV (EtOH): λ_{max} 230, 237 and 246nm (log ε 4.28, 4.30 and 4.11); IR (KBr): ν 3520, 1750 (lactone CO) and 1710 (CO ester) cm⁻¹. [Clive et al. *J Am Chem Soc* 110 6914 1988, Review: Rosen & Heathcock *Tetrahedron* 42 4909 1986, IR, NMR, MS: Brown et al. *J Chem Soc Perkin Trans 1* 1165 1976.] It is a potent inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), an enzyme in cholesterol biosynthesis, and lowers cholesterol levels [Brown et al. *J Biol Chem* 253 1121 1978, Nakamura & Ableles *Biochemistry* 24 1364 1985, *Beilstein* 18/3 V 145].

Crotaline (monocrotaline, 12,13-dihydroxy-(13 β -14 β H)-14,19-dihydro-20-norcrotalanan-11,15-dione) [315-22-0] M 325.4, m 196-197°(dec), 197-198°(dec), 203°(dec), $[\alpha]_D^{20}$ -55° (c 1, EtOH). Crotaline forms prisms from absolute EtOH and recrystallises also from CHCl₃. UV in 96% EtOH has λ_{max} 217nm (log ε 3.32). [Adams et al. J Am Chem Soc 74 5612 1952, Culvenor & Smith Aust J Chem 10 474 1957.] The hydrochloride has m 212-214° (from MeOH/Et₂O) and $[\alpha]_D^{28}$ -38.4° (c 5, H₂O) [Adams & Gianturco J Am Chem Soc 78 1922 1956]. The picrate has m 230-231.5°(dec) [Adams et al. J Am Chem Soc 74 5614 1952]. [Beilstein 27 III/IV 6660.]

Cytidine [65-46-3] M 243.2, m 210-220°(dec), 230°(dec), 251-252°(dec), $[\alpha]_{546}^{20} + 37°$ (c 9, H₂O), $[\alpha]_D^{20} + 29°$ (c 9, H₂O), pK^{25} 3.85. Cytidine crystallises from 90% aqueous EtOH. It has also been converted to *sulfate* by dissolving (~200mg) in a solution of EtOH (10mL) containing H₂SO₄ (50mg), whereby the salt crystallises out. It is collected, washed with EtOH and dried for 5hours at 120°/0.1mm. The *sulfate* has m 225°. The *free base* is obtained by shaking the salt solution with a weak ion-exchange resin, filtering, evaporating and recrystallising the residue from EtOH as before. [Fox & Goodman J Am Chem Soc **73** 3256 1956, Fox & Shugar Biochim Biophys Acta **9** 369 1952; see Prytsas & Sorm in Synthetic Procedures in Nucleic Acid Chemistry (Zorbach & Tipson Eds) Vol 1 404 1973.] [Beilstein 25 III/IV 3667.]

Cytisine, See entry in "Heterocyclic Compounds", Chapter 4.

Cytochalasin B (from dehydrated mould matter) [14930-96-2] **M** 479.6, m 218-221°. Purify it by MeOH extraction, reverse phase C18 silica gel batch extraction by selective elution with 1:1 v/v hexane/tetrahydrofuran, crystallisation, subjected to TLC and recrystallisation [Lipski et al. Anal Biochem 161 332 1987]. It is soluble in EtOH (3.6%), Me₂CO (1%), Me₂SO (37%) and Me₂NCHO (49%) at 24°, and can be crystallised from the first two solvents. It interferes with cellular movement [Korm Physiol Reviews 62 672 1982].

Cytosine (4-amino-2-hydroxypyrimidine) [71-30-7] M 111.1, m 313° (hydrate, dec), 320-325° (anhydrous, dec), pK_1^{25} 4.6, pK_2^{25} 12.1. Cytosine crystallises from H₂O as the *monohydrate* which loses water on heating above 100°. Its solubility in H₂O is 0.77%. UV: λ max 267nm (ϵ 6,100) in H₂O pH 8.8 and 275nm (ϵ 10,400) in 0.1N HCl. [Hilbert & Johnson J Am Chem Soc 52 1152 1930, Hilbert et al. J Am Chem Soc 57 552 1935, Beistein 25 III/IV 3654.]

Cytosine-1- β -O-arabinofuranoside (Cytarabin) [147-94-4] M 243.2, m ~220°(dec), 212-213.5°, [α] $_{D}^{20}$ +155° (c 1, H₂O), pK²⁵ 4.3. Purify cytarabin by recrystallisation from aqueous EtOH or a large volume of H₂O (it solubility at ~20° is 5%). It has λ_{max} 212 and 279nm at pH 2 and 272nm at pH 12. It is an acute leukaemic agent. [Walwick et al. *Proc Chem Soc (London)* 84 1959, *Beilstein* 25 III/IV 3669.]

Demeclocycline hydrochloride (7-chloro-6-demethyltetracycline hydrochloride, Clortetrin) [64-73-3] M 501.3, m 174-178°(dec, for sesquihydrate), $[\alpha]_D^{25}$ -258° (c 0.5, 0.1N H₂SO₄), pK²⁵ 4.45 [H₂O-Me₂NCHO (1:1)]. Crystallise the salt from EtOH/Et₂O or H₂O and

675

dry it in air [McCormick et al. J Am Chem Soc **79** 4561 1957, Dobrynin et al. Tetrahedron Lett 901 1962]. [Beilstein **14** IV 2625.]

2'-Deoxyadenosine (adenine 2'-deoxyriboside) [16373-93-6] **M 269.3, m 187-189°, 189-191°,** $[\alpha]_{D}^{20}$ -25° (c 0.5, H₂O), $[\alpha]_{589}^{25}$ -26°, $[\alpha]_{310}^{25}$ -206° (c 0.5, H₂O), pK^{20} 3.79. Purify it by recrystallisation from H₂O (hydrated crystals; solubility of the *monohydrate* is 1.1% in H₂O at 20°). It has λ_{max} 258nm (pH 1), 260nm (pH 7) and 261nm (pH 13). [Ness & Fletcher J Am Chem Soc 81 4752 1959, Walker & Butler Can J Chem 34 1168 1956.] The 3',5'-O-diacetyl derivative has **m** 151-152° (from EtOAc/pet ether). [Beilstein 26 III/IV 3589.]

3'-Deoxyadenosine (Cordycepin, adenine 3'-deoxyriboside) [73-03-0] M 251.2, m 225-226°, 225-229°, $[\alpha]_{D}^{20}$ -47° (H₂O), pK_{Est} ~ 4.8. 3'-Deoxyadenosine forms needles from EtOH, *n*-BuOH and *n*-PrOH, and a *monohydrate* from H₂O. It has λ_{max} 260nm (ϵ 14,600) in EtOH. The *picrate* has m 195°(dec, yellow crystals from H₂O). [Kaczka et al. *Biochim Biophys Acta* 14 456 1964, Todd & Ulbricht *J Chem Soc* 3275 1960, Lee et al. *J Am Chem Soc* 83 1906 1961, Walton et al. *J Am Chem Soc* 86 2952 1964, *Beilstein* 26 III/IV 3594.]

2'-Deoxycytidine monohydrate [951-77-9, 652157-52-3 (hydrate), 207121-53-7] M 245.2, m 119-200°, 207-209°, 213-215°, $[\alpha]_{D}^{25}$ +78° (c 0.4, N NaOH), $[\alpha]_{D}^{23}$ +57.6° (c 2, H₂O), pK²⁵ 4.25. Purify 2'-deoxycytidine by recrystallisation from MeOH/Et₂O or EtOH and dry it in air. [NMR: Miles J Am Chem Soc 85 1007 1963, UV: Fox & Shugar Biochim Biophys Acta 9 369 1952.] The hydrochloride crystallises from H₂O/EtOH and has m 174°(dec, 169-173°). [Walker & Butler Can J Chem 34 1168 1956.] The picrate has m 208°(dec). [Fox et al. J Am Chem Soc 83 4066 1961, Beilstein 25 III/IV 3662.]

2'-Deoxycytidine 5'-monophosphoric acid (deoxycytidylic acid) [1032-65-1] M 307.2, m 170-172°(dec), 183-184°(dec), 183-187°(dec), $[\alpha]_D^{21}$ +35° (c 0.2, H₂O), pK₁ 4.6, pK₂ 6.6. Recrystallise the acid from H₂O or aqueous EtOH and dry it in a vacuum. [Volkin et al. J Am Chem Soc 73 1533 1951, UV: Fox et al. J Am Chem Soc 75 4315 1953, IR: Michelson & Todd J Chem Soc 3438 1954, Beilstein 25 IV 3664.]

2'-Deoxyguanosine monohydrate (9-[2-deoxy- β -D-ribofuranosyl]guanidine) [961-07-9] M 285.3, m ca 200°(dec), $[\alpha]_D^{20}$ +37.5° (c 2, H₂O), $[\alpha]_D^{14}$ -47.7° (c 0.9, N NaOH), pK_{Est(1)}~ 3.3, pK_{Est(2)}~ 9.2. 2'-Deoxyguanosine recrystallises from H₂O as the monohydrate. [Brown & Lythgoe J Chem Soc 1990 1950, Levene & London J Biol Chem 81 711 1929, 83 793 1929, UV: Hotchkiss J Biol Chem 175 315 1948, ORD: Levendahl & James Biochim Biophys Acta 26 89 1957.] The 3',5'-di-O-acetyl derivative crystallises from aqueous EtOH with m 222°(dec), and $[\alpha]_D^{18}$ -38° (c 0.3, 10% aqueous EtOH) [Hayes et al. J Chem Soc 808, 813 1955]. [Beilstein 26 III/IV 3897.]

2'-Deoxyinosine [890-38-0] M 252.2, m 206°(dec), 218-220°(dec), $[\alpha]_{D}^{25}$ -21° (c 2, N NaOH), $[\alpha]_{D}^{21.5}$ -21° (c 1, H ₂O), pK_{Est(1)}~ 8.9, pK_{Est(2)}~ 12.4. Purify 2'-deoxyinosine by recrystallisation from H₂O. [Brown & Lythgoe J Chem Soc 1990 1950, UV: MacNutt Biochem J 50 384 1952, Beilstein 26 III/IV 2086.]

5-Deoxy-5-(methylthio)adenosine [2457-80-9] M 297.3, m 210-213°(dec), 211°, 212°, 213-214°, $[\alpha]_{D}^{20}$ -23.7° (c 0.02, pyridine), $[\alpha]_{D}^{20}$ -8° (c 1, 5% aqueous NaOH), $[\alpha]_{D}^{25}$ +15° (c 0.4-1.0, 0.3N aqueous AcOH), pK_{Est} ~3.5. Recrystallise it from H₂O and sublime it at 200°/0.004mm. [v.Euler & Myrbäck *Hoppe Seyler's Z physiol Chem* 177 237 *1928*, Weygand & Trauth *Chem Ber* 84 633 *1951*, Baddiley et al. *J Chem Soc* 2662 *1953*.] The *hydrochloride* has m 161-162° [Kuhn & Henkel *Hoppe Seyler's Z Physiol Chem* 269 41 *1941*]. The *picrate* has m 183°(dec) (from H₂O). [*Beilstein* 26 III/IV 3675.]

Deoxyribonucleic acid (from plasmids). Purify plasmid DNA by two buoyant density ultracentrifugations using ethidium bromide-CsCl. The ethidium bromide is extracted with Et₂O, and the DNA is dialysed against buffered EDTA and lyophilised. [Marmur & Doty *J Mol Biol* **5** 109 *1962*, Guerry et al. *J Bacteriol* **116** 1064 *1973*.] See "Introduction" in this Chapter.

3'-Deoxythymidine {2',3'-dideoxythymidine, 1-[(2r)-5c-hydroxymethyltetrahydro(2r)furyl]-5-methylpyrimidine-2,4-dione} [3416-05-5] M 226.2, m 145°, 149-151°, $[\alpha]_{D}^{26}$ +18° (c 1, H₂O), pK_{Est} ~ 9.2. Crystallise it from Me₂CO/MeOH. [Michelson & Todd J Chem Soc 816 1955, Beilstein 24 III/IV 1297.]

2'-Deoxyuridine [1-(β-D-*erythro*-2-deoxypentofuranosyl)-1*H*-pyrimidine-2,4-dione] [951-78-0] M 228.2, m 163°, 163-163.5°, 165-167° 167°, [α] $_{D}^{26}$ +30° (c 2, H₂O), [α] $_{D}^{22}$ +50° (c 1, N NaOH), pK²⁵ 9.3. 2'-Deoxyuridine forms needles from absolute EtOH or 95% EtOH. [Dekker & Todd *Nature* 166 557 1950, Brown et al. *J Chem Soc* 3035 1958, NMR Jardetzky *J Am Chem Soc* 83 2919 1961, Fox & Shugar *Biochim Biophys Acta* 9 369 1952, UV: MacNutt *Biochem J* 50 384 1952, *Beilstein* 24 III/IV 1200.]

3'-Deoxyuridine {1-[(2R)-5c-hydroxymethyltetrahydro(2r)furyl]-5-methylpyrimidin-2,4dione, 2'.3'-dideoxythymidine} [7057-27-4, 3416-05-5] M 226.2, m 149-151°, $[\alpha]_{D}^{20}$ +18° (c 1, H₂O), pK_{Est} ~ 9.3. 3'-Deoxyuridine is recrystallised from Me₂CO/MeOH and is dried in a vacuum. [Michelson & Todd J Chem Soc 816 1955.]

Desthiobiotin (4*R*-cis-5-methyl-2-oxo-4-imidazolidinehexanoic acid) [533-48-2] M 214.3, m 156-158°, $[\alpha]_{D}^{20}$ +10.5° (c 2, H₂O), pK_{Est} ~2.8. Dissolve desthiobiotin in 0.5% Na₂CO₃, filter, acidify with HCl to Congo Red, concentrate to a small volume (2-3 mL) to give fine needles, filter it off and recrystallise it twice from H₂O, m 157-158°. It also crystallises from 95% EtOH. The *methyl ester* crystallises from MeOH and sublimes at 100°/high vacuum, m 69-70°, $[\alpha]_{D}^{27.5}$ +2.6° (c 2, CHCl₃). [Melville et al. *Science* 98 497 1943, J Am Chem Soc 66 1422 1944, Beilstein 25 III/IV 1543.]

Di- and tri-carboxylic acids. These are separated by anion-exchange chromatography. [Bengtsson & Samuelson *Anal Chim Acta* **44** 217b *1969*.]

7,8-Dihydrofolic acid (7,8-dihydropteroyl-L-glutamic acid, DHFA) [4033-27-6] M 443.4, pK₁ 2.0 (basic 10-NH), pK₂ 2.89 (2-NH₂), pK₃ 3.45 (α -CO₂H), pK₄ 4.0 (basic 5N), pK₅ 4.8 (γ -CO₂H), pK₆ 9.54 (acidic 3NH). DHFA is best purified by suspending (1g mostly dissolved)) in ice-cold sodium ascorbate (300mL of 10% at pH 6.0, prepared by adjusting the pH of 30g of sodium ascorbate in 150mL of H₂O by adding 1N NaOH dropwise using a glass electrode till the pH is 6.0). This gives a clear solution with pH ~5. While stirring at 0°, add N HCl dropwise slowly (0.1mL/min) until the pH drops to 2.8 when white birefringent crystals separate. These are collected by centrifugation (1000xg for 5minutes), washed 3x with 0.001N HCl also by centrifugation and decantation. The residue is then dried in a vacuum (0.02mm) over P₂O₅ (change the P₂O₅ frequently at first) and KOH at 25° in the dark. After 24hours the solid reaches constant weight.

For the assay of *dihydrofolate reductases* (see p 612): suspend ~66.5mg of DHFA in 10mL of 0.001M HCl containing 10mM dithiothreitol (DTT stock made from 154mg in 10mL H₂O making 0.1M), shake well and freeze in 400 μ L aliquots. Before use, mix 400 μ L of this suspension with 0.1M DTT (200 μ L, also made in frozen aliquots), and the mixture is diluted with 200 μ L of 1.5M Tris-HCl pH 7.0 and 1.2mL of H₂O (making a total volume of ~2mL) to give a clear solution. To estimate the concentration of DHFA in this solution, dilute 20 μ L of this solution to 1mL with 0.1M Tris-HCl pH 7.0 and read the OD at 282nm in a 1cm path length cuvette. ϵ at 282nm is 28,000M⁻¹cm⁻¹. [Futterman *Methods Enzymol* **6** 801 *1963*, Reyes & Rathod *Methods Enzymol* **122** 360 *1986*, *Beilstein* **26** III/IV 3934.]

DL-erythro-Dihydrosphingosine (dl-erythro-2-aminooctadecan-1,3-diol) [3102-56-5] M 301.5, m 85-86°, 85-87°, pK_{Est} ~ 8.8. Purify it by recrystallisation from pet ether/EtOAc or CHCl₃. The (\pm)-*N*-dichloroacetyl derivative has m 142-144° (from MeOH). [Shapiro et al. J Am Chem Soc 80 2170 1958, Shapiro & Sheradsky J Org Chem 28 2157 1963.] The D-isomer crystallises from pet ether/Et₂O and has m 78.5-79°, [α] ²⁸/₅₄₆ +6° (CHCl₃/MeOH, 10:1). [Grob & Jenny Helv Chim Acta 35 2106 1953, Jenny & Grob Helv Chim Acta 36 1454 1953, Beilstein 4 I 448, 4 II 757, 4 III 854, 4 IV 1887.]

Dihydrostreptomycin sesquisulfate [5490-27-7] M 461.4, m 250°(dec), 255-265°(dec), $[\alpha]_D^{20}$ -92.4° (c 1, H₂O), pK_{Est(1)}~ 9.5 (NMe), pK_{Est(2,3)}~ 13.4 (guanidino). It crystallises from H₂O, MeOH, *n*-BuOH or methyl ethyl ketone. The crystals are not hygroscopic like the amorphous powder; however, both forms are soluble in H₂O but the amorphous solid is about 10 times more soluble than the crystals. The *free base* also crystallises from H₂O/Me₂CO and has $[\alpha]_D^{26}$ -92° (aqueous solution pH 7.0). [Solomons & Regina *Science* **109** 515 *1949*, Wolf et al. *Science* **109** 515 *1949*, McGilveray & Rinehart *J Am Chem Soc* **87** 4003 1956]. [*Beilstein* **18** III/IV 7538.]

3,4-Dihydroxyphenylalanine-containing proteins. Boronate affinity chromatography is used in the selective binding of proteins containing 3,4-dihydroxyphenylalanine to a *m*-phenylboronate agarose column and eluting with 1M NH_4OAc at pH 10. [Hankus et al. *Anal Biochem* **150** 187 *1986*.]

1,2-Dilauroyl-sn-glycero-3-phosphoethanolamine (\pm -dilauroyl- α -cephalin, 3-sn-phosphatidylethanolamine 1,2-didodecanoyl) [59752-57-7] M 579.8, m 210°, pK_{Est(1)}~ 5.8 (PO₄H), pK_{Est(2)}~ 10.5 (NH₂). Recrystallise it from EtOH or tetrahydrofuran. [Bevan & Malkin J Chem Soc 2667 1951, IR: Bellamy & Beecher J Chem Soc 728 1953, Beilstein 4 IV 1417.]

1,2-Dimyristoyl-sn-glycero-3-phosphocholine monohydrate (dimyristoyl-L- α -lecithin) [18194-24-6 (1H₂O)] M 696.0, $[\alpha]_{D}^{24} + 7^{\circ}$ (c 8, EtOH-CHCl₃ 1:1 for α_{1} form), pK_{Est} ~ 5.8 (PO₄). It has three forms α_{1} , α_{2} and β' . Recrystallise it from aqueous EtOH or EtOH/Et₂O. Its solubility at 22-23° in Et₂O is 0.03%, in Me₂CO it is 0.06% and in pyridine it is 1.3%. [Baer & Kates *J Am Chem Soc* 72 942 1950, Baer & Maurakas *J Am Chem Soc* 74 158 1952, IR: Marinetti & Stotz *J Am Chem Soc* 76 1347 1954.] The *S-isomer* with 1H₂O is recrystallised from 2,6-dimethylheptan-4-one and has m 226-227° (sintering at 90-95°), and $[\alpha]_{D}^{20}$ -7° (c 6, MeOH/CHCl₃ 1:1). [Baer & Martin *J Biol Chem* 193 835 1951, *Beilstein* 4 IV 1463.]

(±)-1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (dimyristoyl- α -kephalin) [998-07-2] M 635-9, m 207°, pK_{Est(1)}~ 5.8 (PO₄H), pK_{Est(2)}~ 10.5 (NH₂). Recrystallise the kephalin from EtOH [Bevan & Malkin J Chem Soc 2667 1951]. The *R*-isomer has m 195-196° (sintering at 130-135°) after recrystallisation from CHCl₃/MeOH, and [α] $_{D}^{26}$ +6.7° (c 8.5, CHCl₃/AcOH 9:1). [Baer Can J Biochem Physiol 35 239 1957, Baer et al. J Am Chem Soc 74 152 1952, Beilstein 4 IV 1463.]

S(-)-1,2-Dipalmitin (S-1,2-dipalmitoyl-sn-glycerol) [30334-71-5] M 568.9, m 68-69° $[\alpha]_{D}^{20}$ -2.9° (c 8, CHCl₃), the *R*(+)-isomer (2,3-dipalmitoyl-sn-glycerol) [6076-30-8] has m 67.5-68.2°, $[\alpha]_{D}^{20}$ -2.8° (c 8, CHCl₃). Crystallise S(-)-1,2-dipalmitin from chloroform/pet ether (b 40-60°) ~1:1.5. [S(-)-isomer: Baer & Kates *J Am Chem Soc* 72 942 1950, Hanahan & Vercamer *J Am Chem Soc* 76 1804 1954, *R*(+)-isomer: Tattrie et al. Arch Biochem 78 319 1958, Beilstein 2 IV 1173.] The racemate [40290-32-2] is polymorphic with different IR spectra. When crystallised from hexane, or other solvents, the higher melting form with m 71.5-72.5° is obtained. The melt then solidifies to give the lower melting α -form with m 49.7-50°. The β -form has m 61° (65-66° is also reported). When the lower melting forms are kept at their melting temperatures for a while, they are converted to the higher melting form. [Howe & Malkin *J Chem Soc* 2663 1951, Baer & Kates *J Am Chem Soc* 72 942 1950, Beilstein 2 IV 1173.]

*R***-Dipalmitoyl-sn-glycero-3-phosphatidic acid** [7091-44-3] **M** 648.9, $[\alpha]_{D}^{26}$ +4° (c 10, CHCl₃), pK_{Est(1)}~ 1.6, pK_{Est(2)}~ 6.1. Recrystallise the acid from Me₂CO at low temperature. At 21° it is soluble in *C₆H₆ (4.2%), pet ether (0.01%), MeOH (2%), EtOH (2.5%), AcOH (1.3%), Me₂CO (1.76%), and Et₂O (1.5%). [Baer J Biol Chem 189 235 1951.]

*R***-1,2-Dipalmitoyl-sn-glycero-3-phosphocholine monohydrate** (dipalmitoyl- α -L-lecithin) [63-89-8] M 752.1, m sinters at 120°, $[\alpha]_{D}^{25}$ +7.0° (c 5.6, absolute CHCl₃), pK_{Est} ~ 5.8 (PO₄). It has three crystalline forms α_1 , α_2 and β' which change at 60-70° and at 229°, respectively. In order to obtain a fine powder, ~2 g are dissolved in CHCl₃ (15mL) and pet ether (b 35-60°) is added; the solution is evaporated to dryness *in vacuo* at <20° and then dried at 0.1mm over CaCl₂. [Baer & Maurukas *J Am Chem Soc* 74 158 1952, Baer & Kates *J Biol Chem* 185 615 1950, *Beilstein* 4 IV 1463.] *d*,*l*-βγ-Dipalmitoylphosphatidyl choline [2797-68-4] M 734.1, m 230-233°, pK_{Est} ~ 5.8 (PO₄). Recrystallise the choline from chloroform and dry it for 48hours at 10^{-5} Torr [O'Leary & Levine J Phys Chem 88 1790 1984].

1,2-Distearoyl-sn-glycerol [1429-59-0] **M 625.0.** The *dl*-form recrystallises from CHCl₃/pet ether (b 40-60°), **m** 59.5° (α form) and 71.5-72.5° (β form). Recrystallisation from solvents such as EtOH, MeOH, toluene, Et₂O gives the higher melting form, and resolidification gives the lower melting form. [IR: Chapman *J Chem Soc* 4680 1958, 2522 1956.] The *S-isomer* is recrystallised from CHCl₃/pet ether and has **m** 76-77°, [α] $_{2^{4}}^{2^{4}}$ -2.8° (c 6, CHCl₃). [cf p 134, Baer & Kates *J Am Chem Soc* 72 942 1950, *Beilstein* 2 IV 1231.]

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (distearoyl- α -kephalin) [1069-79-0] M 748.1, m 180-182° (*R*-form, sintering at 130-135°), m 196° (± form), pK_{Est(1)}~ 5.8 (PO₄H), pK_{Est(2)}~ 10.5 (NH₂). The *R*-form is recrystallised from CHCl₃/MeOH, and the ±-form is recrystallised from EtOH. [Bevan & Malkin *J Chem Soc* 2667 1951, Baer Can J Biochem Physiol 81 1758 1959, Beilstein 4 IV 1420.]

Dolichol (from pig liver) [11029-02-0] C_{80} - C_{105} polyprenols. Crystallise each dolichol 6 times from pet ether/EtOH at -20°. The pure individual prenol should run as an entity on a chromatogram on paraffin impregnated paper, with acetone as the mobile phase. [Burgos *Biochem J* 88 470 1963.]

Domoic acid [4-(2-carboxyhexa-3,5-dienyl)-3-carboxymethylproline] [14277-97-5] M 311.3, m 215°, 217°, $[\alpha]_{D}^{20}$ -108° (c 1, H₂O), pK₁ 2.20 (2-CO₂H), pK₂ 3.72 (CO₂H), pK₃ 4.93 (3-CH₂CO₂H), pK₄ 9.82 (NH). Domoic acid (~300 mg) is purifed on a Dowex1 column (3.5 x 40 mm, 200-400 mesh, acetate form), washed with H₂O until neutral, then eluted with increasing concentrations of AcOH (8L) from 0 to 0.25M. The fraction containing domoic acid (in 50mL) is collected, evaporated to dryness under reduced pressure and recrystallised from aqueous EtOH. It is a glutamate and a Kainate receptor agonist. [Impellizzeri et al. *Phytochemistry* 14 1549 1975, Takemoto & Diago Arch Pharm 293 627 1960, Beilstein 22/4 V 371.]

Enniatin A [11113-62-5] M 681.9, m 122-122.5°, $[\alpha]_{D}^{18}$ -92° (c 0.9, CHCl₃). It is a cyclic peptidic ester antibiotic which is recrystallised from EtOH/water but is deactivated in alkaline solution. [Ovchinnikov & Ivanov in *The Proteins* (Neurath and Hill eds) Academic Press, NY, Vol V pp. 365 and 516 1982, Tomeda et al. J Antibiot 45 1626 1992.]

(-)-Ephedrine (1*R*,2*S*-2-methylamino-1-phenylpropanol) [299-42-3] M 165.2, m ~34°, 36°, 38.1°, 40°, b 126-129°/7mm, 225-227°/760mm, d²² 1.0085, $[\alpha]_{546}^{20}$ -47° and $[\alpha]_{D}^{26}$ -42° (c 4, 3% HCl), $[\alpha]_{D}^{225}$ +15.1° (c 0.8, H₂O), -9.36° (c 3, MeOH), pK²² 9.58 (pK²⁵ 8.84 in 80% aqueous methoxyethanol). Purify (-)-ephedrine by vacuum distillation (dehydrates) and forms waxy crystals or granules, and may pick up 0.5 H₂O. The presence of H₂O raises its melting point to 40°. [Moore & Taber *J Amer Pharm Soc* 24 211 *1935*.] The *anhydrous base* crystallises from dry ether [Fleming & Saunders *J Chem Soc* 4150 *1955*]. It gradually decomposes on exposure to light and is best stored in an inert atmosphere in the dark (preferably at -20°). Its solubility in H₂O is 5%, in EtOH it is 1% and it is soluble in CHCl₃, Et₂O and mineral oils. It has pKa values in H₂O of 10.25 (0°) and 8.69 (60°) [Everett & Hyne *J Chem Soc* 1136 *1958*, Prelog & Häflinger *Helv Chim Acta* 33 2021 *1950*] and pK²³ 8.84 in 80% aqueous methoxyethanol [Simon *Helv Chim Acta* 41 1835 *1958*]. The *hydrochloride* has m 220° (from EtOH/Et₂O) and $[\alpha]_{D}^{20}$ -38.8° (c 2, EtOH). [IR: Chatten & Levi Anal Chem 31 1581 *1959*.] The *anhydrous base* crystallises from Et₂O [Fleming & Saunders *J Chem Soc* 4150 *1957*]. [Beilstein 13 H 373, 13, III 1720, 13 IV 1879.]

(+)-Ephedrine hydrochloride (1S-2*R*-2-methylamino-1-phenylpropan-1-ol hydrochloride) [24221-86-1] M 201.7, m 216-219°, $[\alpha]_{D}^{20}$ +34° (c 11.5, H₂O). Recrystallise the hydrochloride from EtOH/Et₂O. The *free base* crystallises from *C₆H₆ with m 40-41° (Skita et al. *Chem Ber* 66 974 1933]. [*Beilstein* 13 H 254, 13 II 375, 13 III 1721, 13 IV 1879.]

(-)Ephedrine hydrochloride [50-98-6] M 201.7, m 218°, $[\alpha]_{546}^{20}$ -48° (c 5, 2M HCl). It crystallises from water. [*Beilstein* 13 H 254.]

α-Erythroidine (3R,5S,12S) [466-80-8] M 273.3, m 52-55°, 58-60°, [α] $_{D}^{27}$ +136° (c 0.5, H₂O), pK_{Est(3)}~7.4 Recrystallise α-erythroidine from pentane. It is best prepared freshly from the more stable hydrochloride. The hydrochloride (1.3g) in H₂O (20mL) is basified with NaHCO₃ to pH ~8 and extracted with *C₆H₆ (6 x 10mL). The combined extracts are evaporated to a small volume and refrigerated. The free base separates as white hygroscopic crystals m 52-55°, which are recrystallised from pentane. Although stable in solution, the crystals turn brown on exposure to air.

α-Erythroidine hydrochloride is best purified by dissolving 10g in H₂O (100mL), adjusting the pH to 8 with aqueous NaHCO₃, extracting with *C₆H₆ (4 x 20mL), evaporating to 20mL, passing through activated Al₂O₃ and eluting with *C₆H₆. The eluate is evaporated to a small volume and the crystals are collected, dissolved in EtOH and dry HCl gas passed through to give the pure hydrochloride. When recrystallised from EtOH, it has m 226-228°(dec), and [α] $_{\rm D}^{32}$ +118° (c 0.5, H₂O). It has $\lambda_{\rm max}$ 224nm (ε 35,500); compare with β-erythroidine hydrochloride below. [Boelkeleide & Grundon *J Am Chem Soc* 75 2563 *1953*, Boekeleide & Morrison *J Am Chem Soc* 80 3905 *1958*, abs config: Hill & Shearer *J Org Chem* 27 3342 *1955*, *Beilstein* 27 III/IV 3569.]

β-Erythroidine (3R,5S) [466-81-9] M 273.3, m 97-99°, 99.5-100°, $[\alpha]_D^{25}$ +89° (c 0.5, H₂O). Purify it like the α-isomer but recrystallise it from EtOH. The *free base* is unstable in air and light, but the hydrochloride is more stable and best stored as such. The *methiodide* has m 211° (prisms from EtOH).

β-Erythroidine hydrochloride can be obtained from the α-isomeric salt as follows: The α-hydrochloride (1.2g) in 10% aqueous NaOH (12mL) is refluxed for 3hours under N₂, cooled in ice and conc HCl added to pH 2. After standing for 3hours, NaHCO₃ is carefully added to pH 7, the solution is extracted with CHCl₃ (5x), and the extracts are dried, filtered, and concentrated to give an oil which on seeding gives β-erythroidine **m** 97-99°. When dissolved in EtOH and dry HCl gas is passed through the solution, the pure β-erythroidine hydrochloride crystallises out with **m** 230.5-231.5°, $[\alpha]_D^{25}$ +10° (c 0.5, H₂O). It is a muscle relaxant with a curare-like-action and is more active than the α-isomer. [Koniuszy & Folkers *J Am Chem Soc* 72 519 *1950*, Boekelheide et al. *J Am Chem Soc* 75 2550 *1953*, Boekelheide & Morrison *J Am Chem Soc* 80 3905 *1958*, Wenzinger & Boekelheide *J Org Chem* 29 1307 *1964*, Berger & Schwartz *J Pharmacol Exp Therap* 93 362 *1948*, *Beilstein* 4 IV 3568.]

Erythromycin A [114-07-8] M 733.9, m 133-135°(dec), 135-140°, 137-140°, $[\alpha]_{D}^{20}$ -75° (c 2, EtOH), pK²⁵ 8.9. It recrystallises from H₂O to form hydrated crystals which melt at *ca* 135-140°, resolidifies and melts again at 190-193°. The melting point after drying at 56°/8mm is that of the *anhydrous* material and is at 137-140°. Its solubility in H₂O is ~2mg/mL. The *hydrochloride* has m 170°, 173° (from aqueous EtOH, EtOH/Et₂O). [Flynn et al. *J Am Chem Soc* 76 3121 1954, constitution: Wiley et al. *J Am Chem Soc* 79 6062 1957]. [Beilstein 18/10 V 398.]

Ethidium bromide [1239-45-8] M 384.3, m 260-262°. Crystallise it from MeOH or EtOH [Lamos et al. J Am Chem Soc 108 4278 1986]. Its solubility in H_2O is 1%. [Beilstein 22/11 V 352.] POSSIBLE CARCINOGEN.

Farnesol (*trans-trans-3*,7,11-trimethyl-2,6,10-dodecatrien-1-ol) [106-28-5, 4602-84-0 (transtrans, E,E)] M 222.4, b 111°/0.35mm, 126-127°/0.5mm, 142-143°/2mm, d_4^{20} 0.8871, n_D^{25} 1.4870. The main impurity is the *cis-trans* isomer. Purify it by gas chromatography using a 4ft x 0.125in 3%OV-1 column at 150°. [Corey et al. *J Am Chem Soc* 92 6637 1970, Popjak et al. *J Biol Chem* 237 56 1962.] It has also been fractionated through a 14-in Podbielniak column (p 11) at 11°/0.35mm. Alternatively it has been purified by gas chromatography using SF96 silicone on Fluoropak columns or Carbowax 20M on Fluoropak or base-washed 30:60 firebrick (to avoid decomposition, prepared by treating the firebrick with 5N NaOH in MeOH and washed with MeOH to pH 8) at 210° with Helium carrier gas at 60 mL/min flow rate. The *diphenylcarbamoyl* derivative has m 61-63° (from MeOH) and has an IR band at 3500 cm⁻¹. [Bates et al. *J Org Chem* 28 1086 1963, Beilstein 1 IV 2335.] Farnesyl acetate (*trans-trans-3*,7,11-trimethyl-2,6,10-dodecatrien-1-yl acetate) [4128-17-0 (*trans-trans, E,E*); 29548-30-9 (*isomeric mixture*)] M 264.4, b 115-125% (0.3mm, 167-169% (0.3mm, d_4^{20} 0.91, n_D^{20} 1.4870. Purify farnesyl acetate in the same way as the alcohol above. [Beilstein 2 I 66, 2 II 154, 2 III 303.]

Farnesyl pyrophosphate [13058-04-3, E,E: 372-97-4] M 382.3, $pK_{Est(1)} \sim 2$, $pK_{Est(2)} \sim 2$, $pK_{Est(3)} \sim 3.95$, $pK_{Est(4)} \sim 6.26$. Purify the pyrophosphate by chromatography on Whatman No3 MM paper in a system of isopropanol-isobutanol/ammonia/water (40:20:1:30) (v/v). Store it as the Li or NH₄ salt at 0°. See geranylgeranyl pyrophosphate below.

Flavin adenine dinucleotide (di-Na, 2H₂O salt, FAD) [146-14-5, 84366-81-4 (anhydrous)] M 865.6, $[\alpha]_{546}$ -54° (c 1, H₂O). Small quantities of FAD are purified by paper chromatography using *tert*butyl alcohol/water, cutting out the main spot and eluting with water. Larger amounts can be precipitated from water as the uranyl complex by adding a slight excess of uranyl acetate to a solution at pH 6.0, dropwise and with gentle stirring. The solution is set aside overnight in the cold, and the precipitate is centrifuged off, washed with small portions of cold EtOH, then with cold peroxide-free diethyl ether. It is dried in the dark under vacuum over P₂O₅ at 50-60°. The uranyl complex is suspended in water, and, after adding sufficient 0.01M NaOH to adjust the pH to 7, the precipitate of uranyl hydroxide is removed by centrifugation [Huennekens & Felton *Methods Enzymol* **3** 954 1957]. It can also be crystallised from water. It should be kept in the dark. More recently it was purified by elution from a DEAE-cellulose (Whatman DE 23) column with 0.1M phosphate buffer pH 7, and the purity was checked by TLC. [Holt & Cotton, *J Am Chem Soc* **109** 1841 1987, Beilstein **26** III/IV 3632.]

Flavin mononucleotide (Na, 2H₂O salt, riboflavin-5'-phosphate [Na salt, 2H₂O], FMN) [130-40-5, 6184-17-4 (Na salt)] M 514.4, pK₁ 2.1 (PO₄H₂), pK₂ 6.5 (PO₄H⁻), pK₃ 10.3 (CONH), fluorescence λ_{max} 530nm (870nm for reduced form). Purify FMN by paper chromatography using *tert*-butanol/water, cutting out the main spot and eluting it with water. It can also be purified by adsorption onto an apo-flavodoxin column, followed by elution and freeze drying. It crystallises from aqueous acidic solution. [Mayhew & Strating *Eur J Biochem* 59 539 1976, *Beilstein* 26 III/IV 2555.]

5-Fluorouridine (5-fluoro-1-β-D-ribofuranosyl-1*H*-pyrimidine-2,4-dione) [316-46-1] M 262.2, m 180-182°, 182-184°, [α] $_{D}^{20}$ +18° (c 1, H₂O), pK_{Est(1)}~ 8.0, pK_{Est(2)}~ 13. 5-Fluorouridine is recrystallised from EtOH/Et₂O and dried at 100° in a vacuum. UV: λ_{max} 269nm (pH 7.2, H₂O), 270nm (pH 14, H₂O). [Liang et al. *Mol Pharmacol* 21 224 1982, *Beilstein* 24 III/IV 1231.]

Folic acid (FA, pteroyl-S-glutamic acid) [59-30-3, 75708-92-8 (2H₂O)] M 441.4, m >250°(dec), $[\alpha]_{D}^{25}+23°$ (c 0.5, 0.1N NaOH), pK₁ 2.35 (protonation N10), pK₂ 2.75 (protonation N1), pK₃ 3.49 (α -CO₂H), pK₄ 4.65 (γ -CO₂H), pK₅ 8.80 (acidic N3). If paper chromatography indicates impurities, then recrystallise it from hot H₂O or from dilute acid [Walker et al. *J A m Chem Soc* 70 19 1948]. Impurities may be removed by repeated extraction with *n*-BuOH of a neutral aqueous solution of folic acid (by suspending in H₂O and adding N NaOH dropwise till the solid dissolves, then adjusting the pH to ~7.0-7.5) followed by precipitation with acid, filtration, or *better* collected by centrifugation and recrystallised form hot H₂O. [Blakley *Biochem J* 65 331 1975, Kalifa et al. *Helv Chim Acta* 61 2739 1978.] Chromatography on cellulose followed by filtration through charcoal has also been used to obtain pure acid. [Sakami & Knowles *Science* 129 274 1959.] UV: λ_{max} 247 and 296nm (ε 12,800 and 18,700) in H₂O pH 1.0; 282 and 346nm (ε 27.600 and 7,200) in H₂O pH 7.0; 256, 284 and 366nm (ε 24600, 24,500 and 86,00) in H₂O pH 13 [Rabinowitz in *The Enzymes* (Boyer et al. Eds), 2 185 1960]. [*Beilstein* 26 III/IV 3944.]

Fructose-1,6-diphosphate (trisodium salt) [38099-82-0] **M 406.1, pK_1^{25} 1.48, pK_2^{25} 6.14, pK_3^{25} 6.29, pK_4^{25} 6.93 (free acid). Fructose-1,6-diphosphate is best purified** *via* **the acid strychnine salt which is stable for several months. To remove the strychnine, dissolve 5g in H₂O (150mL), and add 5N NaOH (or KOH to obtain the K salt) to pH 8.3 (phenolphthalein) with vigorous stirring. Remove the precipitate by centrifugation, wash with cold H₂O (2x 25mL), extract with CHCl₃ until the extract is free of strychnine (***ca* **8 to 10times, Mandelein spot test). Freeze-dry the aqueous solution to give the Na salt which is hygroscopic. It has been recrystallised from aqueous EtOH as the** *octahydrate***, m** 125°, $[\alpha]_{D}^{20}$ +2.6° (c 1, H₂O). A neutral

681

solution of the salt keeps well in a frozen state for over several months. [Neuberg et al. Arch Biochem 3 33 1943, Sable Biochemical Preparations 2 52 1952, Stumpf J Biol Chem 182 261 1950]. The calcium salt can be partially purified by dissolving in ice-cold N HCl (1g per 10mL) and re-precipitating by dropwise addition of 2N NaOH: the precipitate and supernatant are heated on a boiling water bath for a short time, then filtered, and the precipitate is washed with hot water. The magnesium salt can be precipitated from a cold aqueous solution by adding four volumes of EtOH. The tetramethyl ester is an oil with n_{D}^{10} 1.4648, $[\alpha]_{D}^{18}$ +20.2 (c 0.4, MeOH). [Schulbach & Rauchenberger Chem Ber 60 1178 1927, Beilstein 1 IV 4424.]

Fructose-6-phosphate [643-13-0] **M 260.1,** $[\alpha]_D^{21} + 2.5^\circ$ (c 3, H₂O), pK₁²¹ 0.97, pK₂²¹ 6.11, (pK₂²⁵ 5.84). Crystallise fructose-6-phosphate as the barium salt from water by adding 4-volumes of EtOH. The barium can be removed by passage through the H⁺ form of a cation exchange resin, and the free acid is collected by freeze-drying. Alternatively the Ba salt is dissolved in H₂O, and one equivalent of Na₂SO₄ is added in small portions with stirring, filter off BaSO₄ and freeze dry to give the Na salt. The 6-phosphate hydrolyses more slowly than the 1-phosphate and considerably slower than pyrophosphoric acid (10² times) and triphosphoric acid (10³ times). [Neuberg *Biochem Zeitschrift* 88 432 1918, pKa: Meyerhof & Lohmann *Biochem Zeitschrift* 185 113, 131 1927, Neuberg et al. Arch Biochem 3 33, 40 1944, Hydrolysis: Friess J Am Chem Soc 74 5521 1954, Beilstein 1 I 464, 1 IV 4423, H 31 537.]

Gangcyclovir [9-{(1,3-dihydroxy-2-propoxy)methyl}guanine; 2-amino-1,9-{(2-hydroxy-1-hydroxymethyl)-ethoxymethyl}-6*H*-purin-6-one; Cytovene; Cymeva(e)n(e)] [82410-32-0] M 255.2, m >290°(dec), >300°(dec), monohydrate m 248-249°(dec), $pK_{Est(1)} \sim -1.1$, $pK_{Est(2)} \sim 4.1$, $pK_{Est(3)} \sim 9.7$. Recrystallise gangcyclovir from MeOH. Alternatively dissolve ~90g of it in 700mL of H₂O, filter and cool (*ca* 94% recovery). UV: λ_{max} in MeOH 254nm (ε 12,880), 270sh nm (ε 9,040); its solubility in H₂O at 25° is 4.3mg/mL at pH 7.0. ANTIVIRAL. [Ogilvie et al. *Can J Chem* 60 3005 1982, Ashton et al. *Biochem Biophys Res Commun* 108 1716 1982, Martin et al. *J Med Chem* 26 759 1983.]

Geraniol [trans, E-form 106-24-1] M 145.2, b 114-115^o/12mm, 229-230^o/757mm, d_{4}^{20} ¹⁵ 0.889, n $_{D}^{20}$ 1.4628. Purify geraniol by fractional distillation. It has a sweet rose odour when pure, and the UV has λ_{max} 190-195nm (ϵ 18,000). [See also p 146, *Beilstein* 1 H 457, 1 IV 2277.]

Geranyl acetate [trans, E-form 105-87-3; 16409-44-2] M 196.3, b 118°/12mm, 138°/25mm, 236-242°/760mm(dec), d_{15}^{15} 0.9174, n_D^{15} 1.4766. Purify the fragrant smelling geranyl acetate by fractional distillation at as high a vacuum as possible. It is very soluble in EtOH but insoluble in H₂O. [Beilstein 2 H 140, 2 I 65, 2 II 153, 2 III 299, 2 IV 204.]

Geranylgeranyl pyrophosphate [6699-20-3 (NH_4 salt), 64732-91-8] M 450.5, $pK_{Est(1)} \sim <2$, $pK_{Est(2)} \sim <2$, $pK_{Est(3)} \sim 3.95$, $pK_{Est(4)} \sim 6.26$. Purify the pyrophosphate by countercurrent distribution between two phases of a butanol/isopropyl ether/ammonia/water mixture (15:5:1:19) (v/v), or by chromatography on DEAE-cellulose (linear gradient of 0.02M KCl in 1mM Tris buffer, pH 8.9). Alternatively purify it through a column of Dowex 1-x8 (formate form previously washed with MeOH) and eluted with a linear gradient of 0.053-0.43M ammonium formate in a total volume of 300mL of MeOH. The purity can be checked by TLC on Silica gel G on buffered plates (pH 6.5), eluted with CHCl₃/MeOH/H₂O (60:40:9) and developed with I₂ vapour. Store it as a powder at 0°. [Altman et al. J Am Chem Soc 94 3257 1972.] It is more stable as the di(tri-n-butylammonium)hydrogen phosphate salt which can be obtained from the acid by evaporation in a rotary evaporator below 32° [Upper & West J Biol Chem 242 3285 1967]. [Gregonis & Rilling Biochemistry 13 1538 1974, Gregonis & Rilling Biochem Biophys Res Commun 54 449 1973.]

Geranyl pyrophosphate [*E-form 763-10-0 tri-(NH₄ salt*), *Z-form 16751-02-3*] M 314.2, $pK_{Est(1)} \sim <2$, $pK_{Est(2)} \sim <2$, $pK_{Est(3)} \sim 3.95$, $pK_{Est(4)} \sim 6.26$. Purify the pyrophosphate by paper chromatography on Whatman No 3 MM paper in a system of isopropyl alcohol/isobutyl alcohol/ammonia/water (40:20:1:39), R_F 0.77-0.82. Store it in the dark as the ammonium salt at 0°. The *E*-form crystallises in platelets from aqueous Me₂CO, m ~120°. It dissolves in dry MeCN. Alternatively purify it through a column of Dowex AG 1x8(200-400mesh) equilibrated with 50mM NH₄ formate, and elute with MeOH/H₂O/NH₄OH (95:5:05), then freeze-dry. [Dixit et al. *J Org Chem* 46 1967 *1981*, *Beilstein* 1 IV 3580.]

Gliotoxin (3*R*-6*t*-hydroxy-3-hydroxymethyl-2-methyl-(5*at*)-2,3,6,10-tetrahydro-5*aH*-3,10*ac*-epidisulfido[1,2-*a*]-indol-1,4-dione) [67-99-2] M 326.4, m 191-218°(dec), 220°(dec), 221°(dec), $[\alpha]_{D}^{20}$ -254° (c 0.6, CHCl₃), $[\alpha]_{D}^{25}$ -270° (c 1.7, pyridine). Purify gliotoxin by recrystallisation from MeOH. Its solubility in CHCl₃ is 1%. The *dibenzoyl* derivative has m 202° (from CHCl₃/MeOH). [Glister & Williams *Nature* 153 651 *1944*, Elvidge & Spring *J Chem Soc* Suppl 135 *1949*, Johnson et al. *J Am Chem Soc* 65 2005 *1943*, Bracken & Raistrick *Biochem J* 41 569 *1947*.]

Glucose-1-phosphate [59-56-3] **M 260.1,** $[\alpha]_{D}^{25} + 120^{\circ}$ (c 3, H₂O), $[\alpha]_{D}^{20} + 78^{\circ}$ (c 4, H₂O of di-K salt), pK₁ 1.11, pK₂ 6.13 [pK²⁵ 6.50]. Two litres of a 5% aqueous solution of the phosphate are purified by adjusting the pH to 3.5 with glacial acetic acid (+ 3g of charcoal) and filtering. An equal volume of EtOH is added, the pH is adjusted to 8.0 (glass electrode) and the solution is stored at 3° overnight. The precipitate is filtered off, dissolved in 1.2L of distilled water, filtered and an equal volume of EtOH is added. After standing at 0° overnight, the crystals are collected at the centrifuge and washed with 95% EtOH, then absolute EtOH, ethanol/diethyl ether (1:1), and diethyl ether. [Sutherland & Wosilait, *J Biol Chem* 218 459 *1956*.] Its barium salt can be crystallised from water and EtOH. Heavy metal impurities are removed by passage of an aqueous solution (*ca* 1%) through an Amberlite IR-120 column (in the appropriate H⁺, Na⁺ or K⁺ forms). *Di-K salt* crystallises as a *dihydrate* from EtOH. [see McGready *Biochemical Preparations* 4 63 *1955*.] [*Beilstein* 17/8 V 247.]

Glucose-6-phosphate [acid 156-73-5; Ba salt 58823-95-3; Na salt 54010-71-8] M 260.1, m 205-207°(dec) mono Na salt, $[\alpha]_{546}^{20}$ +41° (c 5, H₂O), pK₁ 1.65, pK₂ 6.11, pK₃²⁵ 11.71 [-C₁(OH)O⁻]. It can be freed from metal impurities as described for glucose-1-phosphate. The solubility of the Na salt is 5% in H₂O at 20°. Its *barium* salt can be purified by solution in dilute HCl and precipitation by neutralising the solution. The precipitate is washed with small volumes of cold water and dried in air. Alternatively the barium salt is dissolved in H₂O, 4volumes of EtOH are added, the precipitate is collected, washed with 90% EtOH, absolute EtOH, 75% EtOH/25% Et₂O, 25% EtOH/75% Et₂O and finally dry Et₂O. The dry Barium salt has $[\alpha]_D^{25}$ +17.9° (c 1, H₂O). [Beilstein 1 IV.]

G-6-P is relatively more stable to hydrolysis than G-1-P, with 12% hydrolysis in N HCl/100° in 4hours and 45% hydrolysis in N HCl/20° in 20hours, respectively. [Lardy & Fischer *Biochemical Preparations* **2** 39 *1952*.]

L- α -Glycerol phosphocholine (Cadmium Chloride)_x complex [64681-08-9] M 257.2 + $(183.3)_x$, pK_{Fst} ~ 5.5. Glycerol phosphocholine is purified via the CdCl₂ complex which is recrystallised four times from 99% EtOH by standing at 0° for 1 hour. The white precipitate is collected, washed with EtOH, Et₂O and dried in a vacuum. The amorphous Cd complex can be converted to the crystalline form $[C_8H_{20}O_6NP.CdCl_2.3H_2O]$ by dissolving 34.4g in H₂O (410mL), and 99% EtOH (1650mL total) is added slowly with stirring and allowing the clear solution to stand at 25° for 12hours, then at 5° for 12hours. The crystalline complex is filtered off, washed with cold 80% EtOH and dried in air. Glycerol phosphocholine can be recovered from the complex by dissolving it in H₂O (2% solution) and passing it through an ion-exchange column (4.9 x 100cm, of 1volume IRC-50 and 2volumes of IR-45). The effluent is concentrated to a thick syrup at 45°. It is dried further at $50^{\circ}/P_2O_5/48$ hours. The vitreous product (~8.25g) is dissolved in 99% EtOH (50mL), and the clear solution is cooled at 5°, whereby crystals appear and then at -15° for 16hours. The crystals are filtered off, washed with 99% EtOH, and Et₂O then dried at 50° in vacuo over P_2O_5 . It can be recrystallised from 99.5% EtOH (long prisms). It is hygroscopic and must be handled in a H₂O-free atmosphere [Tattrie & McArthur Biochemical Preparations 6 16 1958, Baer & Kates J Am Chem Soc 70 1394 1948, Acta Cryst 21 79, 87 1966].

Hematin (ferrihaeme hydroxide) [15489-90-4] M 633.5, m 200°(dec), $pK_{Est} \sim 4$. Crystallise it from pyridine. Dry it at 40° *in vacuo*. [Beilstein 26 III/IV 3047.]

Hematoporphyrin IX (8,13-bis(1-hydroxyethyl)-3,7,12,17-tetramethyl-21*H*-23*H*-porphin-2,18-dipropionic acid, 3,3'-[7,12-bis-(1-hydroxyethyl)-3,8,13,17-tetramethyl-porphyrin-2,18-diyl]-dipropionic acid) [14459-29-1] M 598.7, pK_{Est}~4.8. Purify it by dissolving it in EtOH and adding H₂O or Et₂O to give deep red crystals. It has also been recrystallised from MeOH. UV has λ_{max} at 615.5, 565, 534.4 and 499.5nm in 0.1N NaOH, and 597, 619, 634, 653, 683 and 701nm in 2N HCl [Falk *Porphyrins and Metalloporphyrins* Elsevier, NY, p 175 *1964*, LCCCNo 63-19821.] It is used in the affinity chromatographic purification of Heme proteins [Olsen *Methods Enzymol* 123 324 *1986*]. The *O-methyl-dimethyl ester* has **m** 203-206° (from CHCl₃/MeOH), and the *O,O'-dimethyl-dimethyl ester* has **m** 145° (from CHCl₃/MeOH). [Paul *Acta Chem Scand* **5** 389 *1951*, *Beilstein* **26** III/IV 3157, and 3158 for the HCl.]

Hematoporphyrin dimethyl ester [33070-12-1] M 626.7, m 212°. It crystallises from CHCl₃/MeOH. [Beilstein 26 III/IV 3157.]

Hematoxylin (±-11bc-7,11b-dihydroindeno[2,1-c]-chromen-3,4-6ar-9,10-pentaol) [517-28-2] M 302.3, m 200°(dec), 210-212°(dec). Hematoxylin recrystallises from H₂O (as *trihydrate*) in whiteyellow crystals which become red on exposure to light and then melt at 100-120°. It has been recrystallised from Me₂CO/*C₆H₆. It has been recrystallised as well from dilute aqueous NaHSO₃ until colourless and is soluble in alkali, borax and glycerol. Store it in the dark below 0°. [Morsingh & Robinson *Tetrahedron* 26 182 1970, Dann & Hofmann *Chem Ber* 98 1498 1955, *Beilstein* 17/8 V 469.]

Hemin (ferriproptoporphyrin IX chloride) [16009-13-5] M 652.0, m sinters at 240°, pK_{Est} ~4.8. Hemin is purified by recrystallisation from AcOH. Also, hemin (5g) is shaken in pyridine (25mL) till it dissolves, then CHCl₃ (40mL) is added, the container is stoppered and shaken for 5minutes (releasing the stopper occasionally). The solution is filtered under slight suction, and the flask and filter are washed with a little CHCl₃ (15mL). During this period, AcOH (300mL) is heated to boiling, and saturated aqueous NaCl (5mL) and conc HCl (4mL) are added. The CHCl₃ filtrate is poured in a steady stream, with stirring, into the hot AcOH mixture and set aside for 12hours. The crystals are filtered off, washed with 50% aqueous AcOH (50mL), H₂O (100mL), EtOH (25mL), Et₂O and dried in air. [Fischer *Org Synth* Coll Vol **III** 442 *1955*, *Beilstein* **26** III/IV 3048.]

(+)-Hydroquinidine anhydrous (9S-6'-methoxy-10,11-dihydrocinchonan-9-ol) [1435-55-8] M 326.4, m 168-169°, 169°, 169-170°, 171-172°, $[\alpha]_{D}^{20}$ +231° (c 2, EtOH), +299° (c 0.82, 0.1N H₂SO₄), pK_{Est} ~ 8.8. (+)-Hydroquinidine forms needles from EtOH and plates from Et₂O. It is slightly soluble in Et₂O and H₂O but readily soluble in hot EtOH. [Heidelberger & Jacobs J Am Chem Soc 41 826 1919, King J Chem Soc 523 1946.] The hydrochloride has m 273-274°, $[\alpha]_{D}^{26}$ +184° (c 1.3, MeOH) and is very soluble in MeOH and CHCl₃, but less soluble in H₂O, EtOH and still less soluble in dry Me₂CO. [Kyker & Lewis J Biol Chem 157 707 1945, Emde Helv Chim Acta 15 557 1932, Beilstein 23/13 V 340.]

Hydroquinine [522-66-7] M 326.4, m 168-171°, 171.5°, $[\alpha]_D^{16}$ -143° (c 1.087, EtOH), pK¹⁵ 5.33 and 8.87. Recrystallise hydroquinine from EtOH, Et₂O or *C₆H₆. [Rabe & Schultz Chem Ber 66 120 1933, Beilstein 23 III/IV 3193, 23/13 V 340.] The racemate has m 175-175.5° (from EtOH).

R-(-)-2-Hydroxy-3,3-dimethyl-γ-butyrolactone (3-hydroxy-4,4-dimethyl-4,5-dihydrofuran-2-one, D-pantolactone) [599-04-2] M 130.1, m 89-91°, 90.5-91.5°, 91°, 92-93°, b 120-122°/15mm, $[\alpha]_D^{20}$ -28° (c 5, MeOH), $[\alpha]_D^{20}$ -51° (c 3, H₂O). Recrystallise the lactone from Et₂O/pet ether, diisopropyl ether or *C₆H₆/pet ether and sublime it at 25°/0.0001mm. It hydrolyses readily to the hydroxy-acid and racemises when heated above 145°. The *Brucine salt* has m 211-212° (from EtOH). [Kuhn & Wieland *Chem Ber* 73 1134 1940, and Stiller et al. *J Am Chem Soc* 62 1779 1940, Bental & Tishler *J Am Chem Soc* 68 1463 1946, *Beilstein* 18/1 V 22.]

(-)-Inosine [58-63-9] M 268.2, m 90° (dihydrate), 218° (dec, anhydrous), $[\alpha]_{546}^{20}$ -76° (c 1, 0.1M NaOH), pK₁²⁵ 1.06, pK₂²⁵ 8.96, pK₃²⁵ 11.36. (-)-Inosine forms *anhydrous* crystals from aqueous 80% EtOH but the *dihydrate* from H₂O. [*Beilstein* 31 H 25, 26 III/IV 2087.]

myo-Inositol (cyclohexane[1r, 2c, 3c, 4t, 5c, 6t]-hexol) [87-89-8] M 180.2, m 218° (dihydrate), 225-227°, 226-230°. Recrystallise *myo*-inositol from aqueous 50% ethanol or H₂O forming a *dihydrate*, or *anhydrous* crystals from AcOH. The dihydrate is efflorescent and becomes anhydrous when heated at 100° . The anhydrous crystals are not hygroscopic. Its solubility in H₂O at 25° is 14%, at 60° it is 28%; it is slightly soluble in EtOH but insoluble in Et₂O. [Ballou & Anderson *J Am Chem Soc* **75** 748 1953, Anderson & Wallis *J Am Chem Soc* **70** 2931 1948, Beilstein **6** II 1157, **6** IV 7919.]

5-Iodouridine (**5-iodo-1-[β-D-ribofuranosyl]-pyrimidine-2,4**(1*H*)-dione) [1024-99-3] **M 370.1, m 205-208°(dec), 210-215°(dec),** $[\alpha]_{D}^{20}$ -23.5° (c 1, H₂O), pK²⁰ 8.5. Recrystallise 5iodouridine from H₂O and dry it *in vacuo* at 100°. UV has λ_{max} 289nm (0.01N HCl) and 278nm (0.01N NaOH). [Prusoff et al. *Cancer Res* **13** 221 1953, *Beilstein* **24** III/IV 1235.]

Isopentenyl pyrophosphate [358-71-4] **M 366.2, pK**_{Est(1)}~<2, pK_{Est(2)}~<2, pK_{Est(3)}~3.95, pK_{Est(4)}~6.26. Purify the pyrophosphate by chromatography on Whatman No 1 paper using *tert*-butyl alcohol/formic acid/water (20:5:8, R_F 0.60) or 1-propanol/ammonia/water (6:3:1. R_F 0.48). Alternatively purify it by chromatography on a DEAE-cellulose column or a Dowex-1 (formate form) ion-exchanger using formic acid and ammonium formate as eluents. A further purification step is to convert it to the *monocyclohexylammonium salt* by passage through a column of Dowex-50 (cyclohexylammonium form) ion-exchange resin. It can also be converted into its lithium salt. (See geranyl pyrophosphate above.)

Kanamycin B (Bekanamycin, 4-*O*-[2,6-diamino-2,6-dideoxy- α -D-glucopyranosyl]-6-*O*-[3-amino-3-deoxy- α -D-glucopyranosyl]-2-deoxystreptamine) [4696-76-8, 29701-07-3 (sulfate salt)] M 483.5, m 170-179°(dec), 178-182°(dec), $[\alpha]_{\rm D}^{18}$ +130° (c 0.5, H₂O), pK²⁵ 7.2. A small quantity of kanamycin B (24mg) can be purified on a small Dowex-1 x 2 column (6 x 50mm); the required fraction is evaporated to dryness and the residue crystallised from EtOH containing a small amount of H₂O. [Umezawa et al. *Bull Chem Soc Jpn* 42 537 1969.] It has been crystallised from H₂O by dissolving ~1g in H₂O (3mL), adding Me₂NCHO (3mL) and setting aside at 4° overnight. The needles are collected and dried to constant weight at 130°. It has also been recrystallised from aqueous EtOH. It is slightly soluble in CHCl₃ and isoPrOH. [IR: Wakazawa et al. *J Antibiot* 14A 180, 187 1961, Ito et al. *J Antibiot* 17 A 189 1964, *Beilstein* 18 III/IV 7631.]

Lecithin (1,2-diacylphosphatidylcholine mixture) [8002-43-5] M ~600-800, amorphous. Lecithin from hen egg white is purified by solvent extraction and chromatography on alumina. It is suspended in H₂O and kept frozen until required [Lee & Hunt J Am Chem Soc 106 7411 1984, Singleton et al. J Am Oil Chem Soc 42 53 1965]. For purification of commercial egg lecithin, see Pangborn [J Biol Chem 188 471 1951].

Leucopterin (2-amino-5,8-dihydropteridine-4,6,7(1*H*)-trione) [492-11-5] M 195.1, m >300° (dec), pK_{1}^{20} -1.66, pK_{2}^{20} 7.56, pK_{3}^{20} 9.78, pK_{4}^{20} 13.6. Leucopterin is purified by dissolving it in aqueous NaOH, stirring with charcoal, filtering and precipitating by adding aqueous HCl, then drying at 100° in a vacuum. It separates with 0.5 mole of H₂O. Its solubility in H₂O is 1g/750 litres [Albert et al. *J Chem Soc* 4219 1952, Albert & Wood *J Appl Chem* (London) **2** 591 1952, Pfleiderer *Chem Ber* **90** 2631 1957]. [Beilstein **26** III/IV 4017.]

DL-α-Lipoamide (±-6,8-thioctic acid amide, 5-[1,2]-dithiolan-3-ylvaleric acid amide) [940-69-2; 3206-73-3] M 205.3, m 124-126°, 126-129°, 130-131°. DL-α-Lipoamide is recrystallised from EtOH and has UV with λ_{max} 331nm in MeOH. [Reed et al. J Biol Chem 232 143 1958, IR: Wagner et al. J Am Chem Soc 78 5079 1956, Beilstein 19/7 V 238.]

DL-α-Lipoic acid (±-6,8-thioctic acid, 5-[1,2]-dithiolan-3-ylvaleric acid) [1077-28-7] M 206.3, m 59-61°, 60.5-61.5° and 62-63°, b 90°/10⁻⁴mm, 150°/0.1mm, pK²⁵ 4.7. It forms yellow needles from cyclohexane or hexane and has been distilled at high vacuum; and sublimes at ~90° and very high vacuum. It is insoluble in H₂O but dissolves in alkaline solution. [Lewis & Raphael J Chem Soc 4263 1962, Soper et al. J Am Chem Soc 76 4109, Reed & Niu J Am Chem Soc 77 416 1955, Tsuji et al. J Org Chem 43 3606 1978, Calvin Fed Proc USA 13 703 1954.] The S-benzylisothiuronium salt has m 153-154° (evacuated capillary, from MeOH), 132-134°, 135-137° (from EtOH). The d- and l- forms have m 45-47.5° and

 $[\alpha]_{D}^{23} \pm 113^{\circ}$ (c 1.88, $C_{6}H_{6}$) and have UV in MeOH with λ_{max} at 330nm (ϵ 140). [*Beilstein* **19**/7 V 237.] The reduced form, (\pm)-6,8-dimercaptooctanoic acid, [7516-48-5] **M 208.3**, is a light yellow liquid which is sold in sealed ampoules.

D-Luciferin (firefly luciferin, S-2[6-hydroxybenzothiazol-2-yl]-4,5-dihydrothiazol-4carboxylic acid), [2591-17-5] M 280.3, m 189.5-190°(dec), 196°(dec), 201-204°, 205-210°(dec, browning at 170°), $[\alpha]_{22}^{22}$ -36° (c 1.2, DMF), pK_{Est(1)}~ 1.2 (benzothiazole-N), pK_{Est(2)}~ 1.6 (thiazolidine-N), pK_{Est(3)}~ 6.0 (CO₂H), pK_{Est(4)} 8.5 (6OH). D-Luciferin crystallises as pale yellow needles from H₂O, or MeOH (83mg/7mL). It has UV λ_{max} at 263 and 327nm (log ε 3.88 and 4.27) in 95% EtOH. The Na salt has a solubility of 4mg in 1 mL of 0.05M glycine. [White et al. *J Am Chem Soc* 83 2402 1961, 85 337 1963, UV and IR: Bitler & McElroy Arch Biochem 72 358 1957, Review: Cormier et al. Fortschr Chem Org Naturst 30 1 1973, Beilstein 27 III/IV 8934.]

Lumiflavin (7,8,10-trimethylbenzo[g]pteridine-2,4(3H,10H)-dione) [1088-56-8] M 256.3, m 330°(dec), 340°(dec), pK²⁵ 10.2. Lumiflavin forms orange crystals upon recrystallisation from 12% aqueous AcOH, or from formic acid. It sublimes at high vacuum. It is freely soluble in CHCl₃, but not very soluble in H₂O and most organic solvents. In H₂O and CHCl₃ solution it has a green fluorescence. UV has λ_{max} at 269, 355 and 445nm (ϵ 38,800, 11,700 and 11,800, respectively) in 0.1N NaOH and 264, 373 and 440nm (ϵ 34,700, 11,400 and 10,400, respectively) in 0.1N HCl, while the UV in CHCl₃ has λ_{max} at 270, 312, 341, 360, 420, 445 and 470nm. [Hemmerich et al. *Helv Chim Acta* **39** 1242 1956, Holiday & Stern *Chem Ber* **67** 1352 1834, Yoneda et al. *Chem Pharm Bull Jpn* **20** 1832 1972, Birch & Moye J Chem Soc 2622 1958, Fluorescence: Kuhn & Moruzzi Chem Ber **67** 888 1934, Beilstein **26** III/IV 2539.]

Magnesium protoporphyrin dimethyl ester [14724-63-1] **M 580.7**, **m 214-217**° (others found **m 228-230**°). The Mg complex can be prepared from protoporphyrin dimethyl ester (see below) and Mg(ClO₄)₂ in boiling pyridine under N₂ for 3-4hours until the band at 630nm (free porphyrin) is absent. Filter, wash the insolubles with Et₂O until the filtrate is colourless. Evaporate the solvent *in vacuo* at 50-60° to a very small volume, then add excess peroxide free Et₂O in a separating funnel, shake with H₂O (2x), evaporate the Et₂O, and remove the H₂O and pyridine by evaporating (azeotropically) with *C₆H₆ (4x). Purify the residue by dissolving the Mg complex in as little hot *C₆H₆ (50mL for 800mg) as possible, and add cold pet ether (b 30-60°), leave at room temperature until crystallisation begins, then further in a refrigerator to give twinned prisms, **m** >330°. IR:v_{max} 3080(w CH=CH₂), 1610, 1698, 1740 (s CO₂Me) cm⁻¹, but no NH. UV (Et₂O) has λ_{max} (ε): 588nm (19,000), 550nm (19,300), 417nm (Soret, 252,000). [Ramsey *Biochemical Preparations* **3** 39 *1953*, Fuhrhop & Graniek *Biochemical Preparations* **13** 55 *1971*.]

6-Mercaptopurine-9-β-D-ribofuranoside [574-25-4] M 284.3, m 208-210°(dec), 210-211°(dec), 220-223°(dec), 222-224°(dec), $[\alpha]_D^{25}$ -73° (c 1, 0.1N NaOH), pK²⁵ 7.56. Recrystallise the riboside from H₂O or EtOH. It has UV λ_{max} in H₂O at 322nm (pH 1), 320 nm (pH 6.7) and 310nm (pH 13). [IR: Johnson et al. *J Am Chem Soc* 80 699 1958, UV: Fox et al. *J Am Chem Soc* 80 1669 1958, Beilstein 26 III/IV 2100.]

R-(-)-Methadone (Levomethadone, 6-dimethylamino-4,4-diphenylheptan-3-one) [125-58-6] M 309.4, m 98-100°, $[\alpha]_{D}^{20}$ -32° (c 1.8, EtOH), see below for pKa. This pharmacologically active (against narcotic addiction) enantiomer was obtained by optical resolution (using D-tartaric acid) of the racemate and was purified by precipitation of the hydrochloride from aqueous solution at pH >6, dried and recrystallised from propan-2-ol. The *R*-hydrochloride [5967-73-7], when recrystallised from propan-2-ol, has m 245-246°, $[\alpha]_{D}^{20}$ -169° (c 2, EtOH). The *S*-(+)-enantiomer [5653-8-5] also recrystallises from propan-2-ol and has recorded m of 100-101°, $[\alpha]_{D}^{25}$ + 26° (c 1.2, H₂O). The *S*-hydrochloride [15284-15-8], when crystallised from propan-2-ol, has m 243-244°, $[\alpha]_{D}^{20}$ +169° (c 2, EtOH). [Larsen et al. *J Am Chem Soc* **70** 4194 1948, Brode & Hill *J Org Chem* **13** 191 1948, Schultz et al. *J Am Chem Soc* **69** 2454 1947, Easton et al. *J Am Chem Soc* **69** 2941 1947, Winter & Flataker *J Pharmacol Exp Ther* **98** 305 1950, Beilstein **14** III 278, **14** III/IV 300.] (±)-Methadone hydrochloride (6-dimethylamino-4,4-diphenylheptan-3-one HCl) [1095-90-5] M 345.9, m 241-242°, pK_1^{25} 8.94, pK_2^{20} 10.12 (free base). The salt (see above) crystallises from EtOH, or EtOH/Et₂O. [see methadone references in the above entry.]

Methoxantin coenzyme (PQQ, pyrrolo quinoline quinone, 2,7,9-tricarboxy-1*H*-pyrrolo-[2,3-*f*]-quinoline-4,5-dione, 4,5-dihydro-4,5-dioxo-1*H*-pyrrolo[2,3-*f*]quinoline-2,7,9-tricarboxylic acid) [72909-34-3] M 330.2, m 220°(dec). Efflorescent yellow-orange needles of PQQ are formed on recrystallising from H₂O by addition of Me₂CO, or better from a supersaturated aqueous solution, as it forms an acetone adduct. [Forrest et al. *Nature* 280 843 1979.] It has also been purified by passage through a C-18 reverse phase silica cartridge or a silanized silica gel column in aqueous solution whereby methoxantin remains behind as a red-orange band at the origin. This band is collected and washed thoroughly with dilute aqueous HCl (pH 2) and is then eluted with MeOH/H₂O (7:3) and evaporated *in vacuo* to give the coenzyme as a red solid. It has also been purified by dissolving it in aqueous 0.5M K₂CO₃ and acidified to pH 2.5 whereby PQQ precipitates as a deep red solid which is collected and dried *in vacuo*. Methoxantin elutes at 3.55 retention volumes from a C18 µBondapak column using H₂O/MeOH (95:5) + 0.1% AcOH pH 4.5. It has UV λ_{max} at 247 and 330nm (shoulder at 270nm) in H₂O and λ_{max} at 250 and 340nm in H₂O at pH 2.5. With excitation at λ_{ex} 365nm it has a λ_{max} emission at 483nm. The ¹³C NMR has δ : 113.86, 122.76, 125.97, 127.71, 130.68, 137.60, 144.63, 146.41, 147.62, 161.25, 165.48, 166.45, 173.30 and 180.00ppm.

When a solution in 10% aqueous MeCO is adjusted to pH 9 with aqueous NH₃ and kept at 25° for 30minutes, the *acetone adduct* is formed; UV has λ_{max} at 250, 317 and 360nm (H₂O, pH 5.5), and with λ_{ex} at 360nm it has max fluorescence at λ_{max} at 465nm; and the ¹³C NMR [(CD₃)₂SO, TMS] has δ : 29.77, 51.06, 74.82, 111.96, 120.75, 121.13, 125.59, 126.88, 135.21, 139.19, 144.92, 161.01, 161.47, 165.17, 168.61, 190.16 and 207.03ppm. It also forms a *methanol adduct*.

When it is reacted with Me₂SO₄/K₂CO₃ in dry Me₂NCHO at 80° for 4hours, it forms the *trimethyl ester* which has **m** 265-267°(dec) [260-263°(dec) also reported] after recrystallisation from hot MeCN (orange crystals) with UV λ_{max} at 252 and 344nm (H₂O) and 251, 321 and 373nm (in MeOH; MeOH adduct ?). [Duine et al. *Eur J Biochem* **108** 187 *1980*, Duine et al. *Adv Enzymology* **59** 169 *1987*, Corey & Tramontano *J Am Chem Soc* **103** 5599 *1981*, Gainor & Weinreb *J Org Chem* **46** 4319 *1981*, Hendrickson & de Vries *J Org Chem* **17** 1148 *1982*, McKenzie et al. *J Chem Soc, Chem Commun* 1372 *1983*.]

Methyl benzylpenicillinate [653-89-4] M 348.3, m 97°, $[\alpha]_D^{20}$ +328° (c 1, MeOH), $[\alpha]_D^{20}$ +286° (c 1, CHCl₃). Crystallise the ester from CCl₄ or EtOAc/hexane. [Sheehan et al. *J Am Chem Soc* 84 2983 1962, Review: Chain et al. *Antibiotics* (Oxford University Press) 2 1949.]

5-Methyltetrahydrofolic acid disodium salt (prefolic A) [68792-52-9] M 503.4, pK₁ 2.4 (N10 protonation), pK₂ 2.7 (pyrimidine N1 protonation), pK₃ 3.5 (α -CO₂H), pK₄ 4.9 (γ -CO₂H), pK₅ 5.6 (N5-Me) , pK₆ 8.5 (3NHCO acidic). First check the purity by measuring the UV at pH 7.0 (use phosphate buffer), and it should have λ_{max} at 290nm and λ_{min} at 245nm with a ratio of A₂₉₀/A₂₅₀ of 3.7. This ratio goes down to 1.3 as oxidation to the dihydro derivative occurs. The latter can be reduced back to the tetrahydro compound by reaction with 2-mercaptoethanol at room temperature. If oxidation has occurred, then the compound should be chromatographed on DEAE-cellulose (~0.9 milliequiv/g, in AcO⁻ form) in (NH₄)₂CO₃ (1.5 M) and washed with 1M NH₄OAc containing 0.01M mercaptoethanol till free from UV absorption and then washed with 0.01M mercaptoethanol. All is done in a nitrogen atmosphere. The reduced folate is then eluted with a gradient between 0.01M mercaptoethanol and 1M NH₄OAc containing 0.01M mercaptoethanol, and the fractions with absorption at 290nm are collected. These are evaporated under reduced pressure at 25°, and traces of NH₄OAc and H₂O are removed at high vacuum/25° (~24-48hours). The residue is dissolved in the minimum volume of 0.01M mercaptoethanol, and an equivalent of NaOH is added to convert the acid to the diNa salt and evaporated to dryness at 25°/high vacuum. The pure product has λ_{max} 290nm (ϵ 32,000) in pH 7.0 buffer. [Sakami *Biochemical Preparations* 10 103 *1963*.]

Mevalonic acid lactone [674-26-0] **M 130.2, m 28°, b 145-150°/5mm.** Purify the lactone *via* the *dibenzyl-ethylenediammonium salt* (**m** 124-125°) [Hofmann et al. *J Am Chem Soc* **79** 2316 1957], or by chromatography on paper or on a Dowex-1 (formate) column. [Bloch et al. *J Biol Chem* **234** 2595 1959.] Store it as the *N*,*N*'-dibenzylethylenediamine (DBED) salt, or as the lactone in a sealed container at 0°. [Beilstein **18**/1 V 19.]

Mevalonic acid 5-phosphate [1189-94-2] M 228.1, $pK_{Est(1)} \sim 1.5$ (PO₄H₂), $pK_{Est(2)} \sim 4.4$ (CO₂H), $pK_{Est(3)} \sim 6.31$ (PO₄H⁻). Purify the acid by conversion to the *tricyclohexylammonium salt* (m 154-156°) by treatment with cyclohexylamine. Crystallise it from water/acetone at -15°. Alternatively, the phosphate is chromatographed through an ion-exchange resin or paper (Whatman No 1) in a system of isobutyric acid/ammonia/water (66:3:30; R_F 0.42). Store it as the cyclohexylammonium salt.

Mevalonic acid 5-pyrophosphate [1492-08-6] M 258.1, $pK_{Est(1)} < 2$, $pK_{Est(2)} < 2$, $pK_{Est(3)} > 3.95$ (PO₄), $pK_{Est(4)}$ 4.4 (CO₂H), $pK_{Est(5)} > 6.26$ (PO₄). Purify the pyrophosphate by ion-exchange chromatography on Dowex-1 formate [Bloch et al. *J Biol Chem* 234 2595 1959], DEAE-cellulose [Skilletar and Kekwick, *Anal Biochem* 20 171 1967], or by paper chromatography [Rogers et al. *Biochem J* 99 381 1966]. Likely impurities are ATP and mevalonic acid phosphate. Store it as a dry powder or in a slightly alkaline (pH 7-9) solution at -20°.

Mithramycin A (Aureolic acid, Plicamycin) [18378-89-7] M 1085.2, m 180-183°, $[\alpha]_{D}^{20}$ -51° (c 0.3, EtOH), pK_{Est} ~ 9.2. Purify mithramycin A by crystallisation from CHCl₃. It is soluble in MeOH, EtOH, Me₂CO, EtOAc, Me₂SO and H₂O, and moderately soluble in CHCl₃, but is slightly soluble in *C₆H₆ and Et₂O. It is a fluorescent antitumour agent used in flow cytometry. [Thiem & Meyer *Tetrahedron* 37 551 1981, NMR: Yu et al. *Nature* 218 193 1968, *Beilstein* 17/1 V 672.]

Mitomycin C [50-07-7] **M 334.4, m >360°, pK**_{Est(2)}~ **8.0.** Mitomycin C forms blue-violet crystals from C_6H_6 /pet ether. It is soluble in Me₂CO, MeOH and H₂O, moderately soluble in C_6H_6 , CCl₄ and Et₂O but insoluble in pet ether. It has UV λ_{max} at 216, 360 and a weak peak at 560nm in MeOH. [Stevens et al. *J* Med Chem **8** 1 1965, Shirahata & Hirayama J Am Chem Soc **105** 7199 1983, Beilstein **25** III/IV 516.]

Muramic acid [R-2(2-amino-2-deoxy-D-glucose-3-yloxy)-propionic acid] [1114-41-6] M 251.2, m 145-150°(dec), 152-154°(dec), 155°(dec), $[\alpha]_{D}^{25}$ +109° (c 2, H₂O), +165.0° (extrapolated to 0 time) \rightarrow +123° [after 3hours (c 3, H₂O)], pK_{Est(1)}~ 3.8 (CO₂), pK_{Est(2)}~ 7.7 (NH₂). Muramic acid crystallises from H_2O or aqueous EtOH as the *monohydrate* which loses H_2O at 80° in vacuo over P₂O₅. It sometimes contains some NaCl. It has been purified by dissolving 3.2g in MeOH (75mL), filtering from some insoluble material, concentrating to ~10mL and refrigerating. The colourless crystals are washed with absolute MeOH. This process does not remove NaCl; to do so, the product is recrystallised from an equal weight of H_2O to give a low recovery yield of very pure acid (0.12g). On paper chromatography $0.26\mu g$ give one ninhydrin positive spot after development with 75% phenol ($R_F 0.51$) or with sec-BuOH/HCO₂H/H₂O (7:1:2) (R_F 0.30). [Matsushima & Park Biochemical Preparations 10 109 1963, J Org Chem 27 3581 1962.] The acid has also been purified by dissolving 990mg in 50% aqueous EtOH (2mL), cooling, collecting the colourless needles on a sintered glass funnel and drying over P_2O_5 at 80% (0.1 mm to give the anhydrous acid. [Lambert & Zilliken Chem Ber 93 2915 1960.] Alternatively the acid is dissolved in a small volume of H₂O, neutralised to pH 7 with ion-exchange resin beads (IR4B in OH⁻ form), filtered, evaporated and dried. The residue is recrystallised from 90% EtOH (v/v) and dried as above for 24hours. [Strange & Kent Biochem J 71 333 1959.] The N-acetyl derivative (NAMA, R-2-(acetylamino)-3-O-(1-carboxyethyl)-2-deoxy-D-glucose, R-2(2-acetylamino-2-deoxy-D-glucose-3-yloxy)propionic acid) [10597-89-4], M 292.3, has m ~125° (dec) and $[\alpha]_{20}^{20}$ +41.2° after 24hours (c 1.5, H₂O), pK_{Est} ~ 3.6. [Watanabe & Saito J Bacteriol 144 428 1980, Beilstein 4 IV 2029.]

Muscimol (pantherine, 5-aminoethyl-3[2*h*]-isoxazolone) [2763-96-4] M 114.1, m 170-172°(dec), 172-174°(dec), 172-175°, 175°, 176-178°(dec), $pK_{Est(1)} \sim 6$ (acidic, ring 2-NH), $pK_{Est(2)} \sim 8$ (CH₂CH₂NH₂). Recrystallise muscimol from MeOH/tetrahydrofuran or EtOH and sublime it at 110-140° (bath) at 10⁻⁴ mm to give a yellow spot with ninhydrin which slowly turns purple [NMR: Bowden et al. *J Chem Soc* (*C*) 172 1968]. It can also be purified by dissolving in the minimum volume of hot H₂O and adding EtOH dropwise until cloudy, cool, and colourless crystals separate; IR: v_{max} 3445w, 3000-2560w br, 2156w, 1635s and 1475s cm⁻¹. [NMR: Jager & Frey *Justus Liebigs Ann Chem* 817 1982.] Alternatively it has been purified by two successive chromatographic treatments on Dowex-1 x 8, with the first elution with 2M AcOH and a second with a linear gradient between 0–2M AcOH, evaporating the desired fractions and recrystallising the residue from MeOH. [McCarry & Savard Tetrahedron Lett 22 5153 1981, Nakamura Chem Pharm Bull Jpn 19 46 1971.]

Mycophenolic acid (6-[1,3-dihydro-7-hydroxy-5-methoxy-4-methyl-1-oxoisobenzofuran-6yl]-4-methylhex-4-enoic acid) [24280-93-1] M 320.3, m 141°, 141-143°, pK_{Est(1)}~ 2.5 (CO₂H), pK_{Est(2)}~ 9.5 (phenolic OH). Purify the acid by dissolving it in the minimum volume of EtOAc, applying onto a silica gel column (0.05-0.2 mesh) and eluting with a mixture of EtOAc/CHCl₃/AcOH (45:55:1) followed by recrystallisation from heptane/EtOAc, from aqueous EtOH or from hot H₂O and drying *in vacuo*. It is a weak dibasic acid, moderately soluble in Et₂O, CHCl₃ and hot H₂O but weakly soluble in *C₆H₆ and toluene. [Birch & Wright *Aust J Chem* 22 2635 1969, Canonica et al. *J Chem Soc, Perkin Trans 1* 2639 1972, Birkinshaw et al. *Biochem J* 50 630 1952, *Beilstein* 18 II 393, 18 III/IV 6513.]

Myricetin (Cannabiscetin, 3,3',4',5,5',7-hexahydroxyflavone) [529-44-2] M 318.2, m >300°, 357°(dec) (polyphenolic pK_{Est}~8-11). Recrystallise myricetin from aqueous EtOH (m 357° dec, as *monohydrate*) or Me₂CO (m 350° dec, with one mol of Me₂CO) as yellow crystals. It is almost insoluble in CHCl₃ and AcOH. The *hexaacetate* has m 213°. [Hergert J Org Chem 21 534 1956, Spada & Cameroni Gazzetta 86 965, 975 1956, Kalff & Robinson J Chem Soc 127 181 1925, Beilstein 18/5 V 670.]

Nalidixic acid (1-ethyl-7-methyl-1,8-naphthyridin-4-one-3-carboxylic acid) [389-08-2] M 232.3, m 226.8-230.2°, 228-230°, 229-230°, pK^{25} 6.0. Nalidixic acid crystallises from H₂O or EtOH as a pale buff powder. It is soluble at 23° in CHCl₃ (3.5%), toluene (0.16%), MeOH (0.13%), EtOH (0.09%), H₂O (0.01%) and Et₂O (0.01%). It inhibits nucleic acid and protein synthesis in yeast. [Lesher et al. J Med & Pharm Chem 5 1063 1962.]

Naloxone hydrochloride hydrate (Narcan, 1-*N*-propenyl-7,8-dihydro-14-hydroxymorphinan-6-one hydrochloride) [51481-60-8] M 399.9, m 200-205°, $[\alpha]_D^{20}$ -164° (c 2.5, H₂O), pK_{Est(1)}~ 6 (N-propenyl), pK_{Est(2)}~ 9.6 (phenolic OH). This opiate antagonist has been recrystallised from EtOH/Et₂O or H₂O. It is soluble in H₂O (5%) and EtOH but insoluble in Et₂O. The *free base* has m 184° (177-178° also reported) after recrystallisation from EtOAc, and $[\alpha]_D^{20}$ -194.5° (c 0.93, CHCl₃). [Olofson et al. *Tetrahedron Lett* 1567 1977, Gold et al. *Med Res Rev* 2 211 1982.]

Naltrexone hydrochloride dihydrate (1-*N*-cyclopropylmethyl-7,8-dihydro-14-hydroxymorphinan-6-one hydrochloride) [16676-29-2] M 413.9, m 274-276°, $[\alpha]_D^{20}$ -173° (c 1, H₂O), pK_{Est(1)}~ 6 (N-cyclopropylmethyl), pK_{Est(2)}~ 9.6 (phenolic OH). This narcotic antagonist has been purified by recrystallisation from MeOH and dried in air. The *free base* has m 168-170° after recrystallisation from Me₂CO. [Cone et al. J Pharm Sci 64 618 1975, Gold et al. Med Res Rev 2 211 1982.]

1-Naphthyl phosphate disodium salt [2183-17-7] **M 268.1, pK_1^{26} 0.97, pK_2^{26} 5.85 (for free acid)**. Purify the salt through an acid ion-exchange column (in H⁺ form) to give the *free acid* [1136-89-6], M 224.2, which is obtained by freeze drying and recrystallising from Me₂CO/*C₆H₆, or by adding 2.5volumes of hot CHCl₃ (or 20 parts of boiling *C₆H₆) to a hot solution of 1 part acid and 1.2 parts Me₂CO and cooling (**m** 155-157°, 157-158°). The acid is dissolved in the minimum volume of H₂O to which 2 equivalents of NaOH are added and then freeze dried, or by adding the equivalent amount of MeONa in MeOH to a solution of the acid in MeOH and collecting the Na salt, washing with cold MeOH, then Et₂O, and drying in a vacuum. [Friedman & Seligman *J Am Chem Soc* **72** 624 *1950*, Chanley & Feageson *J Am Chem Soc* **77** 4002 *1955*.] The *monosodium salt* [1136-89-6] is similarly prepared but by using 1 equivalent of NaOH. The phosphate group is hydrolysed at pH 1.1-5.85 at 70°. [*Beilstein* **6** IV 4226.] It is a substrate for alkaline phosphatase [Gomori *Methods Enzymol* **4** 381 *1957*, **128** 212 *1968*], and prostatic phosphatase [Babson *Clin Chem* **30** 1418 *1984*]. [See p 538 in "Metal-organic Compounds", Chapter 5, *Beilstein* **6** IV 4226.]

2-Naphthyl phosphate monosodium salt [14463-68-4] M 246.2, m 177-178°, 296° (sintering at 228°), pK₁²⁶ 1.28, pK₂²⁶ 5.53, pK₃²⁶ 6.57 (for free acid). The *free acid* [41845-15-2] is purified as for the preceding 1-isomer and has m 176-177° (also 177-178°) after several recrystallisations by adding 2.5volumes of hot CHCl₃ to a hot solution of 1 part of acid in 1.3volumes of

Me₂CO as for the 1-isomer above. It is neutralised with one equivalent of NaOH and freeze dried or prepared as the 1-isomer above. Its solubility in H₂O is ~5%. It also forms a 0.5 Na.1 H₂O salt which has **m** 203-205° (244° also reported). [Friedman & Seligman *J Am Chem Soc* **72** 624 *1950*, Chanley & Fegeason *J Am Chem Soc* **77** 4002 *1955*, See p 538 in "Metal-organic Compounds", Chapter 5, Beilstein **6** IV 4285.]

D(+)-Neopterin [2009-64-5] **M 253.2, m >300°(dec),** $[\alpha]_{546}^{20}$ +64.5° (c 0.14, 0.1M HCl), $[\alpha]_D^{25}$ +50.1° (c 0.3, 0.1N HCl), pK_1 2.23 (basic), pK_2 7.89 (acidic). Purification is as for biopterin. Also purify it on a Dowex-1 x 8 (formate form) column and elute with 0.03M ammonium formate buffer pH 8.0 then pH 7.2. The fluorescent neopterin fraction is evaporated under reduced pressure, leaving neopterin and ammonium formate (the latter sublimes out at high vacuum) behind. Stir the residue for 24hours with EtOH, collect the solid and recrystallise it from H₂O. [Viscontini et al. *Helv Chim Acta* 53 1202 1970, cf Wachter et al. Eds *Neopterin* W de Gruyter, Berlin 1992, ISBN 9783110117905, *Beilstein* 26 IV 4038.]

β-Nicotinamide adenine dinucleotide (diphosphopyridine nucleotide, NAD, DPN) [53-84-9] M 663.4, $[\alpha]_{23}^{23}$ -34.8° (c 1, H₂O), pK₁ 2.2 (PO₄H), pK₂ 4.0 (adenine NH₂), pK₃ 6.1 (PO₄⁻). NAD is purified by paper chromatography or better on a Dowex-1 ion-exchange resin. The column is prepared by washing with 3M HCl until free of material absorbing at 260nm, then with water, 2M sodium formate until free of chloride ions and, finally, with water. NAD, as a 0.2% solution in water, is adjusted with NaOH to pH 8, and adsorbed onto the column, washed with water, and eluted with 0.1M formic acid. Fractions with strong absorption at 360nm are combined, acidified to pH 2.0 with 2M HCl, and cold acetone (ca 5L/g of NAD) is added slowly and with constant agitation. It is left overnight in the cold, then the precipitate is collected in a centrifuge, washed with pure acetone and dried under vacuum over CaCl₂ and paraffin wax shavings [Kornberg Methods Enzymol 3 876 1957]. It has been purified by anion-exchange chromatography [Dalziel & Dickinson Biochemical Preparations 11 84 1966.] The purity is checked by reduction to NADH (with EtOH and yeast alcohol dehydrogenase) which has ε_{340mn} 6220 M⁻¹cm⁻¹. [Todd et al. J Chem Soc 3727, 3733 1957.] [pKa, Lamborg et al. J Biol Chem 231 685 1958.] The free acid crystallises from aqueous Me₂CO with 3H₂O and has m 140-142°. It is stable in cold neutral aqueous solutions in a desiccator (CaCl₂) at 25°, but decomposes at strong acid and alkaline pH. Its purity is checked by reduction with yeast alcohol dehydrogenase and EtOH to NADH and noting the OD at 340nm. Pure NADH (see below) has ε_{340} 6.2 x 10⁴ M⁻¹cm⁻¹, i.e. 0.1 μ mole of NADH in 3mL and in a 1cm path length cell has an OD at 340nm of 0.207. [Beilstein 26 IV 3644.]

β-Nicotinamide adenine dinucleotide reduced di-Na salt trihydrate (reduced diphosphopyridine nucleotide sodium salt, NADH) [606-68-8] M 763.5, pKa as for NAD. This coenzyme is available in high purity, and it is advisable to buy a fresh preparation rather than to purify an old sample as purification will invariably lead to a more impure sample contaminated with the oxidised form (NAD). It has UV λ_{max} at 340nm (ε 6,200 M⁻¹cm⁻¹) at which wavelength the oxidised form NAD has no absorption. At 340nm a 0.161mM solution in a 1cm (pathlength) cell has an absorbance of 1.0 unit. The purity is best checked by the ratio A_{280nm}/A_{340nm} ~2.1, a value which increases as oxidation proceeds. The dry powder is stable indefinitely at -20°. Solutions in aqueous buffers at pH ~7 are stable for extended periods at -20° and for at least 8hours at 0°, but are oxidised more rapidly at 4° in a cold room (e.g. almost completely oxidised overnight at 4°). [UV: Drabkin *J Biol Chem* **175** 563 *1945*, Fluorescence: Boyer & Thorell *Acta Chem Scand* **10** 447 *1956*, Redox: Rodkey *J Biol Chem* **234** 188 *1959*, Schlenk in *The Enzymes* **2** 250, 268 *1951*, Kaplan in *The Enzymes* **3** 105, 112 *1960*.] Deuterated NADH, i.e. NADD, has been purified through the anion exchange resin AG-1 x 8 (100-200 mesh, formate form) and through a Bio-Gel P-2 column. [Viola et al. *Anal Biochem* **96** 334 *1979*, *Beilstein* **26** III/IV 3639.]

β-Nicotinamide adenine dinucleotide phosphate (NADP, TPN) [53-59-8] **M 743.4, pK**₁ **1.1** (**PO**₄**H**₂), **pK**₂ **4.0** (adenine **NH**₂), **pK**₃ **6.1** (**PO**₄⁻). Purify it by anion-exchange chromatography in much the same way as for NAD [Dalziel & Dickinson *Biochem J* **95** 311 1965, *Biochemical Preparations* **11** 87 1966]. Finally it is purified by dissolving in H₂O and precipitating with 4volumes of Me₂CO and dried *in vacuo* over P₂O₅. It is unchanged by storing *in vacuo* at 2°. [Hughes et al. *J Chem Soc* 3733 1957, Schuster & Kaplan *J Biol Chem* **215** 183 1955.] Deuterated NADPH, i.e. NADPD, has been purified through the anion exchange resin AG-1 x 8 (100-200 mesh, formate form) and through a Bio-Gel P-2 column. λ_{min} 259nm (ε 18.000) at pH 7.0. [Viola et al. Anal Biochem **96** 334 1979, Beilstein **26** IV 3669, 3672.]

β-Nicotinamide adenine dinucleotide phosphate reduced tetrasodium salt (reduced diphosphopyridine nucleotide phosphate sodium salt, NADPH) [2646-71-1] M 833.4, pKa as for NADP. Purification is mostly similar to that of NADH above. [Beilstein 26 III/IV 3671.]

β-Nicotinamide mononucleotide (NMN) [1094-61-7] **M 334.2,** [**α**] $_{D}^{23}$ -38.3° (**c 1, H**₂**O**), **pK**_{Est} ~ 6.1 (**PO**₄⁻). Purify NMN by passage through a column of Dowex-1 (Cl⁻ form) and washing with H₂O until no absorbance is observed at 260 nm. The tubes containing NMN are pooled, adjusted to pH 5.5-6 and evaporated *in vacuo* to a small volume. This is adjusted to pH 3 with dilute HNO₃ in an ice-bath and treated with 20volumes of Me₂CO at 0-5°. The heavy white precipitate is collected by centrifugation at 0°. It is best stored wet and frozen or it can be dried to give a gummy residue. It has λ_{max} 266nm (ε 4,600) and λ_{min} 249nm (ε 3600) at pH 7.0 (i.e. no absorption at 340nm). It can be estimated by reaction with CN⁻ or hydrosulfite which form the 4-adducts (equivalent to NADH) which have UV λ_{max} 340nm (ε 6,200). Thus after reaction, an OD₃₄₀ of one is obtained from a 0.1612mM solution in a 1cm path cuvette. [Plaut & Plaut *Biochemical Preparations* **5** 56 1957, Maplan & Stolzenbach *Methods Enzymol* **3** 899 1957, Kaplan et al. *J Am Chem Soc* **77** 815 1955, *Beilstein* **22/2** V 168.]

(-)-Nicotine ((2S)-1-methyl-2[3-pyridyl]-pyrrolidine) [54-11-5] M 162.2, b 123-125°/17mm, 243-248°/760mm (partial dec), d_4^{20} 1.097, n_D^{20} 1.5280, $[\alpha]_D^{20}$ -169° (c 1, Me₂CO), pK₁¹⁵ 6.16 (pyridine N⁺), pK₂¹⁵ 10.96 (pyrrolidine N⁺). (-)-Nicotine is a very pale yellow hygroscopic oil with a characteristic odour (tobacco extract) which turns brown in air on exposure to light. It is purifed by fractional distillation under reduced pressure in an inert atmosphere. A freshly distilled sample should be stored in dark sealed containers under N₂. It is a strong base; a 0.05 M aqueous solution has a pH of 10.2. It is very soluble in organic solvents. It is soluble in H₂O and readily forms salts. [UV: Parvis J Chem Soc 97 1035 1910, Dobbie & Fox J Chem Soc 103 1194 1913.] The hydrochlorides (mono- and di-) form deliquescent crystals soluble in H₂O and EtOH but insoluble in Et₂O. It has also been purified via the ZnCl₂ double salt. [Ratz Monatsh Chem 26 1241 1905, Biosynthesis: Nakan & Hitchinson J Org Chem 43 3922 1978.] The picrate has m 218° (from EtOH). [Beilstein 23/6 V 64.] POISONOUS.

(±)-Nicotine [22083-74-5] M 162.2, b 113-115%/10mm, 242.3%/atm, d_4^{20} 1.082 (pKa see above). It is purified by fractional distillation. Its solubility in EtOH is ~5%. The *picrate* forms yellow needles from hot H₂O and has m 219%. The *methiodide* has m 219% (from MeOH). [Craig J Am Chem Soc 55 2854 1933, Nakane & Hutchinson J Org Chem 43 3922 1978, Beilstein 23/6 V 64.] POISONOUS.

Nonactin [6833-84-7] **M 737.0, m 147-148**°, $[\alpha]_{D}^{20}$ 0° (±2°) (c 1.2, CHCl₃). This macrotetrolide antibiotic crystallises from MeOH as colourless needles and is dried at 90°/20hours/high vacuum. [Cordaz et al. *Helv Chim Acta* 38 1445 1955, crystal structure: Dobler *Helv Chim Acta* 55 1371 1972, Gambos et al. *Tetrahedron Lett* 3391 1975, *Beilstein* 19/12 V 751.]

L-Noradrenaline (Adrenor, *R*-2-amino-1-[3,4-dihydroxyphenyl]ethan-1-ol, L-norepinephrine) [51-41-2, 69815-49-2, 636-88-4 (bitartrate salt)] M 169.2, m 216.5-218°(dec), ~220-230°(dec), $[\alpha]_{D}^{20}$ -45° (c 5, N HCl), $[\alpha]_{D}^{25}$ -37.3° (c 5, 1 equivalent aqueous HCl), pK_{1}^{25} 5.58 (phenolic OH), pK_{2}^{25} 8.90 (phenolic OH), pK_{3}^{25} 9.78 (NH₂). Recrystallise adrenor from EtOH and store it in the dark under N₂. [pKa, Lewis *Brit J Pharmacol Chemother* 9 488 1954, UV: Bergström et al. *Acta Physiol Scand* 20 101 1950, Fluorescence: Bowman et al. *Science NY* 122 32 1955, Tullar *J Am Chem Soc* 70 2067 1948.] The *L*-tartrate salt monohydrate has m 102-104.5°, $[\alpha]_{D}^{25}$ -11° (c 1.6, H₂O), after recrystallisation from H₂O or EtOH. [*Beilstein* 13 III 2382.]

L-Noradrenaline hydrochloride (Arterenol) [329-56-6] M 205.6, m 145.2-146.4°, $\sim 150^{\circ}(dec)$, $[\alpha]_{D}^{25}$ -40° (c 6, H₂O), pKa see above. Recrystallise arterenol from isoPrOH and store it in the dark as it is oxidised under light (see preceding entry). [Tullar J Am Chem Soc 70 2067 1948, Beilstein 13 III 2382.]

1*R*,2*R*-(-)-Norpseudoephedrine (1*R*,2*S*-2-amino-1-phenyl-1-propanol) [37577-07-4] M 151.2, m ~50°, 50-52°, 77°, 77.5-78°, $[\alpha]_{D}^{20}$ -34° (c 3.5, EtOH), pK²⁵ 8.92. Purify (-)-nor- ψ -ephedrine by recrystallisation from H₂O, MeOH, EtOH, Et₂O/pet ether or *C₆H₆ (plates). The *mandelate salt* has m 163.5° (from EtOH/Et₂O) and $[\alpha]_{D}^{32}$ -41.3° (c 0.8, H₂O) [Jarowski & Hartung *J Org Chem* **8** 564 566 567 *1943*]. The *hydrochloride* is purified by dissolving 1.44g in 96% EtOH (5mL), adding Et₂O (16mL) and cooling; it has **m** 178-179° (**m**180-181° is also reported) and $[\alpha]_{D}^{30}$ -42.9° (c 1.8, H₂O) [Fles & Markovac-Prpic *Croat Chem Acta* **29** 186 *1957*]. [*Beilstein* **13** I 252, **13** II 370, **13** III 1716, **13** IV 1874.]

Novobiocin $(7-[O^3-carbamoyl-5-O^4-dimethyl-\beta-L-lyso-6-desoxyhexahydropyranosyloxy]-4-hydroxy-3[4-hydroxy-3-{3-methylbut-2-enyl}-benzylamino]-8-methylcoumarin) [303-81-1] M 612.6, two forms m 152-156° and m 172-174°, 174-178°, <math>\lambda_{max}$ at 330nm (acidic EtOH), 305nm (alkaline EtOH), $[\alpha]_{D}^{25}$ -63° (c 1, EtOH), pK_1 4.03 (4.2), pK_2 9.16. Crystallise novobiocin from EtOH and store it in the dark. It has also been recrystallised from Me₂CO/H₂O. [Hoeksema et al. J Am Chem Soc 77 6710 1955, Kaczka et al. J Am Chem Soc 77 9404 1955.]

The sodium salt [1476-53-5] M 634.6, m 210-215°, 215-220°(dec), 222-229°, $[\alpha]_{D}^{25}$ -38° (c 1, H₂O) has been recrystallised from MeOH, then dried at 60°/0.5mm. [Sensi et al, *Anal Chem* 29 1611 1957, Kaczka et al. *J Am Chem Soc* 78 4126 1956, *Beilstein* 18/8 IV 8125.]

Nucleotide thiophosphate analogues. The preparation and purification of $[{}^{3}H]ATP\gamma S$, $[{}^{3}H]GTP\gamma S$, $S^{6}ITP\gamma S$ (6-thioinosine), $Cl^{6}ITP\gamma S$ (6-chloroinosine) and $[{}^{3}H]ATP\gamma S$ were described, and the general purification was achieved by chromatography of the nucleotide thiophosphates in the minimum volume of H₂O placed onto a DEAE-Sephadex A25 column and eluting with a linear gradient of triethylammonium bicarbonate (0.1 to 0.6M for G and I nucleotides and 0.2 to 0.5M for A nucleotides). [Googy et al. *Biochim Biophys Acta* **276** 155 *1972*.]

Nystatin dihydrate (Mycostatin, Fungicidin) [1400-61-9] M 962.1, m dec>160° (without melting by 250°), $[\alpha]_{D}^{25}$ -7° (0.1N HCl in MeOH), -10° (AcOH), +12° (Me₂NCHO), +21° (pyridine). Nystatin is a light yellow powder with the following solubilities at ~28°: MeOH (1.1%), ethylene glycol (0.9%), H₂O (0.4%), CCl₄ (0.12%), EtOH (0.12%), CHCl₃ (0.05%) and *C₆H₆ (0.03%). It has been precipitated from MeOH solution by addition of H₂O. Aqueous suspensions of this macrolide antifungal antibiotic are stable at 100°/10minutes at pH 7.0 but decompose rapidly at pH <2 and >9, and in the presence of light and O₂. [Birch et al. *Tetrahedron Lett* 1491, 1485 *1964*, Weiss et al. *Antibiot Chemother* 7 374 *1957*.] It may contain a mixture of components A₁, A₂ and A₃. [Beilstein 18 III/IV 7480.]

Oxacillin sodium salt (5-methyl-3-phenyl-4-isoxazolylpenicillin sodium salt) [1173-88-2] M 423.4, m 188°(dec), $[\alpha]_{D}^{20}$ +29° (c 1, H₂O), pK_{Est} ~ 2.7. This antibiotic, which is stable to penicillinase, is purified by recrystallisation from isoPrOH and dried *in vacuo*. Its solubility in H₂O at 25° is 5%. [Doyle et al. *Nature* 192 1183 1961, Review: Chain et al. *Antibiotics* (Oxford University Press) 2 1949.]

Oxiracetam (4-hydroxy-2-oxo-1-pyrrolidine acetamide) [62613-82-5 unspecified, 68567-97-5 racemate] M 158.2, m 165-168°. This nootropic (Alzheimer) drug is purified by recrystallisation from MeOH or aqueous Me₂CO and dried *in vacuo*. [NMR, IR: Pifferi & Pinza Farmaco Ed Sci 32 602 1977, Banfi et al. Farmaco Ed Sci 39 16 1984, Gouilaev & Senning Brain Research Rev 19 180 1994.]

*R***-(+)-oxiracetam** [68252-28-8] m 135-136^o, $[\alpha]_{D}^{20}$ +36^o (c 1, H₂O), and *S*-(-)-oxiracetam [88929-35-5] m 135-136^o, $[\alpha]_{D}^{20}$ +36.5^o (c 1, H₂O), have been recrystallised from aqueous Me₂CO. [Gouilaev & Senning Brain Research Rev 19 180 1994.]

Palmitoyl coenzyme A [1763-10-6] **M 1005.9.** Possible impurities are palmitic acid, S-palmitoyl thioglycolic acid and S-palmitoyl glutathione. These are removed by placing *ca* 200mg in a centrifuge tube and extracting with Me₂CO (20mL), followed by two successive extractions with Et₂O (15mL) to remove S-palmitoyl thioglycolic acid and palmitic acid. The residue is dissolved in H₂O (4 x 4 mL), adjusted to pH 5 and centrifuged to remove insoluble S-palmitoyl glutathione and other insoluble impurities. To the clear supernatant is added 5% HClO₄ (6mL) whereby S-palmitoyl CoA precipitates. The precipitate is washed with 0.8% HClO₄ (10mL) and finally with Me₂CO (3x 5mL) and dried *in vacuo*. It is stable for at least one year in dry form at 0° in a desiccator (dark). Solutions are stable for several months at -15°. Its solubility in H₂O is

4%. The adenine content is used as the basis of purity with λ_{max} at 260 and 232nm (ϵ 6.4 x 10⁶ and 9.4 x 10⁶ cm²/mol, respectively). Higher absorption at 232nm would indicate other thio ester impurities, e.g. S-palmitoyl glutathione, which absorb highly at this wavelength. Also the phosphate content should be determined, and acid phosphate can be titrated potentiometrically. [Seubert *Biochemical Preparations* **7** 80 *1960*, Srer et al. *Biochim Biophys Acta* **33** 31 *1959*, Kornberg & Pricer *J Biol Chem* **204** 329 , 345 *1953*, *Beilstein* **26** III/IV 3665.]

3-Palmitoyl-sn-glycerol (*R*-glycerol-1-palmitate, L- β -palmitin) [32899-41-5] M 330.5, d^{27.3} **0.9014, m 66.5° (\alpha-form), 74° (\beta'-form) and 77° (\beta-form). The stable \beta-form is obtained by crystallisation from EtOH or Skellysolve B, and recrystallisation from Et₂O provides the \beta'-form. The \alpha-form is obtained on cooling the melt. [Malkin & el Sharbagy J Chem Soc 1631 1936, Chapman J Chem Soc 58 1956, Luton & Jackson J Am Chem Soc 70 2446 1948, Beilstein 2 III 966.]**

D-Panthenol (Provitamin B, R-2,4-dihydroxy-3,3-dimethylbutyric acid 3-hydroxypropylamide) [81-13-0] M 205.3, b 118-120% 0.02mm, d_{20}^{20} 1.2, n_D^{20} 1.4935, $[\alpha]_D^{20} + 30$ % (c 5, H₂O). Purify D-panthenol by distillation *in vacuo*. It is a slightly *hygroscopic* viscous oil and is soluble in H₂O and organic solvents. It is hydrolysed by alkali and strong acid. [Rabin J Am Pharm Assoc (Sci Ed) 37 502 1948, Bonati & Pitré Farmaco Ed Scient 14 43 1959, Beilstein 4 IV 1652.]

R-(+)-Pantothenic acid sodium salt (*N*-[2,4-dihydroxy-3,3-dimethylbutyryl] β -alanine Na salt) [867-81-2] M 241.2, $[\alpha]_D^{25}$ +27.1° (c 2, H₂O), pK²⁵ 4.4 (for free acid). Crystallise the salt from absolute EtOH. It is very hygroscopic (keep in sealed ampoules). The *free acid* is a viscous hygroscopic oil with $[\alpha]_D^{25}$ +37.5° (c 5, H₂O), easily destroyed by acids and bases. See next entry. [*Beilstein* 4 IV 2569.]

R-(+)-Pantothenic acid Ca salt [(D(+) 137-08-6, 63409-48-3] M 476.5, m 195-196°, 200-201°, $[\alpha]_{D}^{20}$ +28.2° (c 5, H₂O). The salt crystallises as needles from MeOH, EtOH or isoPrOH (with 0.5mol of isoPrOH). It is moderately *hygroscopic*. The *S-benzylisothiuronium salt* has m 151-152° (149° when crystallised from Me₂CO). [Kagan et al. *J Am Chem Soc* 79 3545 1957, Wilson et al. *J Am Chem Soc* 76 5177 1954, Stiller & Wiley *J Am Chem Soc* 63 1239 1941, Beilstein 4 IV 2569.]

Paromomycin sulfate {amminosidin, $O \cdot 2,6$ -diamino-2,6-dideoxy- β -L-idopyranosyl-(1 \rightarrow 3)- $O \cdot \beta$ -D-ribofuranosyl(1 \rightarrow 5)-O-[2-amino-2-deoxy- α -D-glucopyranosyl-(1 \rightarrow 4)]-2-deoxystrepta amine sulfate} [1263-89-4] M 713.7, amorphous, $[\alpha]_{D}^{25} + 50^{\circ}$ (c 1.5, H₂O pH6), pKest ~ 9. Purify it by dissolving it in H₂O (0.5g/10mL) and adding excess EtOH, filter or collect and wash with EtOH, then Et₂O by centrifugation, and dry it *in vacuo*. An aqueous solution is stable at 37° for a week but longer at 0-5°. The *free base* [7542-37-2] is a white amorphous powder which should be stored under N₂ because it is strongly basic and can absorb CO₂ from the atmosphere. It is soluble in MeOH (less soluble in EtOH) and has $[\alpha]_{D}^{25} + 65^{\circ}$ (c 1.5, MeOH). It is an antimicrobial against Gram +ve and Gram –ve bacteria and is antiamoebic. It inhibits initiation and peptide elongation during protein synthesis. [Haskell et al. J Am Chem Soc 81, 3480, 3482 1959, Hichens & Rinehart J Am Chem Soc 85 1547 1963, Beilstein 18 III/IV 7534.]

D-(-)-Penicillamine (*R*-3-mercapto-D-valine, 3,3-dimethyl-D-cysteine, from natural penicillin) [52-67-5] M 149.2, m 202-206°, 214-217°, $[\alpha]_{D}^{21}$ -63° (c 1, N NaOH or pyridine). The melting point of D-(-)-penicillamine depends on the rate of heating (m 202-206° is obtained by starting at 195° and heating at 2°/minute). It is soluble in H₂O and alcohols but insoluble in Et₂O, CHCl₃, CCl₄ and hydrocarbon solvents. Purify it by dissolving it in MeOH and adding Et₂O slowly. Dry it *in vacuo* and store it under N₂. [Weight et al. *Angew Chem, Int Ed* (English) 14 330 *1975*, Cornforth in *The Chemistry of Penicillin* (Clarke, Johnson and Robinson eds) Princeton Univ Press, 455 *1949*, Review: Chain et al. *Antibiotics* (Oxford University Press) 2 *1949*, Polymorphism: Vidler *J Pharm Pharmacol* 28 663 *1976*]. The D-S-*benzyl* derivative has m 197-198° (from H₂O), $[\alpha]_{D}^{17}$ -20° (c 1, N NaOH), -70° (N HCl). [*Beilstein* 4 IV 3228.]

L-(-)-Penicillamine [1113-41-3] M 149.2, m 190-194°, 202-206°, 214-217°, $[\alpha]_{D}^{21}$ +63° (c 1, N NaOH or pyridine). Same as preceding entry for its enantiomer. [*Beilstein* 4 IV 3228.]

D-Penicillamine disulfide hydrate (S,S'-di-[D-penicillamine] hydrate) [20902-45-8] M 296.4 + aqueous, m 203-204°(dec), 204-205°(dec), $[\alpha]_D^{23}$ +27° (c 1.5, N HCl), -82° (c 0.8, N NaOH), pK_{Est(1)}~ 2.4 (CO₂), pK_{Est(2)}~ 10.7 (NH₂). Purify it by recrystallisation from EtOH or aqueous EtOH. [Crooks in *The Chemistry of Penicillin* (Clarke, Johnson and Robinson Eds) Princeton University Press, 469 1949. Use as a thiol reagent for proteins: Garel *Eur J Biochem* 123 513 1982, Süs *Justus Liebigs Ann Chem* 561 31 1948, *Beilstein* 4 IV 3231.]

Penicillic acid (5-hydroxy-5-isopropenyl-4-methoxy-2(5*H*)furanone) [90-65-3] M 158.2, m 58-64°, 64-65° (monohydrate, acid), 83-84°, 87° (anhydrous, lactone), pK²⁵ 5.9. The lactone (furanone, *anhydrous*) hydrolyses to the acid (3-methoxy-4-oxo-hexa-2,5-dienoic acid, *hydrate*). It crystallises from water as the *monohydrate* (acid), or from pet ether as the *anhydrous* (lactone) compound. The free acid is in equilibrium with the lactone. UV: λ_{max} 221nm (ε 12,500) in 0.02M KOH; 228nm (ε 11,500) in 0.02M HCl [Raphael J Chem Soc 1508 1948]. [Beilstein 3 II 519, 3 III 1467.] It is a possible antineoplastic.

3-sn-Phosphatidylethanolamine (L- α -cephalin, from Soya bean) [39382-08-6] M_r ~600-800, amorphous, pK_{Est(1)}~ 5.8 (PO₄⁻), pK_{Est(2)}~ 10.5 (NH₂). Purify the cephalin by dissolving it in EtOH, adding Pb(OAc)₂.3H₃O (30g in 100mL H₂O) until excess Pb²⁺ is present. Filter off the solid. Pass CO₂ gas through the solution until precipitation of PbCO₃ ceases. Filter the solid off and evaporate (while bubbling CO₂) under vacuum. An equal volume of H₂O is added to the residual oil and extracted with hexane. The hexane extract is washed with H₂O until the aqueous phase is free from Pb [test with dithizone (2 mg in 100 mL CCl₄; Feigel *Spot Tests* Vol I, Elsevier p. 10 *1954*)]. The hexane is dried (Na₂SO₄), filtered and evaporated to give a yellow waxy solid which should be dried to constant weight *in vacuo*. It is practically insoluble in H₂O and Me₂CO, but freely soluble in CHCl₃ (5%) and Et₂O, and slightly soluble in EtOH. [Schofield & Dutton *Biochemical Preparations* 5 5 *1957*.]

O-Phosphocolamine (2-aminoethyl dihydrogen phosphate) [1071-23-4] M 141.1, m 237-240°, 242.3°, 234.5-244.5°, 244-245°(capillary), $pK_1^{20} < 1.5$ (PO₄H₂), $pK_2^{20} 5.77$ (PO₄H⁻), pK_2^{30} 10.26 (NH⁺). Purification by recrystallisation from aqueous EtOH gives a hydrate (m 140-141°). Its solubility in H₂O is 17% and 0.003% in MeOH or EtOH at 22°. [Fölisch & Österberg J Biol Chem 234 2298 1959, Baer & Staucer Can J Chem 34 434 1956, Christensen J Biol Chem 135 399 1940.] It is a potent inhibitor of ornithine decarboxylase [Gilad & Gilad Biochem Biophys Res Commun 122 277 1984]. [Beilstein 4 IV 1415.]

Phosphoenolpyruvic acid monopotassium salt (KPEP) [4265-07-0] **M 206.1, pK**₁²⁵ **3.4** (**CO**₂), **pK**₂²⁵ **6.35 (PO**₄**H**⁻) (for free acid). KPEP is purified *via* the monocyclohexylamine salt (see next entry). The salt (534mg) in H₂O (10mL) is added to Dowex 50Wx4 H⁺ form (200-400 mesh, 2mL, H₂O washed) and stirred gently for 30minutes and filtered. The resin is washed with H₂O (6mL), and the combined solutions are adjusted to pH 7.4 with 3N KOH (~1.4mL) and the volume adjusted to 18.4mL with H₂O to give a solution of 0.1M KPEP which can be lyophilised to a pure powder and is very good for enzyme work. It has been recrystallised from MeOH/Et₂O. [Clark & Kirby *Biochemical Preparations* **11** 103 *1966*, Wold & Ballou *J Biol Chem* **227** 301 *1957*, Cherbuliez & Rabinowitz *Helv Chim Acta* **39** 1461 *1956*, *Beilstein* **3** IV 977.] **The triNa salt** [*5541-93-5*] **M 360.0**, is purified as follows: the salt (1g) is dissolved in MeOH (40mL) and dry Et₂O is added in excess. The white crystals are collected and dried over P₂O₅ at 20°. [Cramer & Voges

Chem Ber **92** 952 1959, Beilstein **3** IV 977.]

Phosphoenolpyruvic acid tris(cyclohexylamine) salt [35556-70-8] M 465.6, m 155-180°(dec). Recrystallise it from aqueous Me₂CO and dry it in a vacuum. At 4° it is stable for >2 years and has IR at 1721cm⁻¹ (C=O). [Wold & Ballou J Biol Chem 227 301 1957, Clark & Kirby Biochemical Preparations 11 103 1966 for the monocyclohexylamine salt, Beilstein 12 IV 8.]

D-3-Phosphoglyceric acid disodium salt (D-glycerate 3-phosphate di-Na salt) [80731-10-8] M 230.0, $[\alpha]_{D}^{25}$ +7.7° (c 5, H₂O), -735° (in aqueous NH⁺₄ molybdate), pK_{Est(1)}~1.0 (PO₄H₂), pK_{Est(2)}~ 6.66 (PO₄H⁻) (for free acid). It is best purified by conversion to the Ba salt by precipitation with BaCl₂, which is recrystallised three times before conversion to the sodium salt. The Ba salt (9.5g) is shaken with 200mL of a 1:1 slurry of Dowex 50 (Na⁺ form) for 2hours. The mixture is filtered, and the resin

is washed with H₂O (2 x 25mL). The combined filtrates (150mL) are adjusted to pH 7.0 and concentrated *in* vacuo to 30-40mL and filtered if not clear. Absolute EtOH is added to make 100mL, and then *n*-hexane is added whereby a white solid and/or a second phase separates. When set aside at room temperature, complete precipitation of the Na salt as a solid occurs. The salt is removed by centrifugation, washed with Me₂CO, dried in air then in an oven at 55° to give a stable powder (4.5g). It did not lose weight when dried further over P₂O₅ at 78°/8hours. The high rotation in the presence of (NH₄)₆Mo₇O₂₄ is not very sensitive to the concentration of molybdate or pH as it did not alter appreciably in 1/3 volume between 2.5 to 25% (w/v) of molybdate or at pH values ranging between 4 and 7. [Cowgill *Biochim Biophys Acta* **16** 613 *1955*, Embdan et al. *Hoppe Seyler's Z Physiol Chem* **230** 20 *1934*, *Beilstein* **3** IV 1051.]

Phospholipids. For the removal of ionic contaminants from raw zwitterionic phospholipids, most lipids are purified twice by mixed-bed ionic exchange resins (Amberlite AB-2) of methanolic solutions. (About 1g of lipid in 10mL of MeOH). With both runs the first 1mL of the eluate is discarded. The main fraction of the solution is evaporated at 40°C under dry N₂ and recrystallised three times from *n*-pentane. The resulting white powder is dried for about 4hours at 50° under reduced pressure and stored at 3°. Some samples are purified by mixed-bed ion exchange of aqueous suspensions of the crystal/liquid crystal phase. [Kaatze et al. *J Phys Chem* **89** 2565 *1985*.]

O-Phospho-L-serine [407-41-0] M 185.1, m 175-176°, $[\alpha]_{D}^{20}$ +4.3° (c 3.2, H₂O), +16.2° (c 3.2, 2N HCl), $pK_{1}^{25} < 1$ (PO₄H₂), $pK_{2}^{25} 2.08$ (CO₂H), $pK_{3}^{25} 5.65$ (PO₄H⁻), $pK_{4}^{25} 9.74$ (NH₃⁺). Recrystallise the phospho-serine by dissolving 10g in H₂O (150mL) at 25°, stirring for up to 20minutes. Undissolved material is filtered off (Büchner), and 95% EtOH (85mL) is added dropwise during 4minutes, and set aside at 25° for 3hours, then at 3° overnight. The crystals are washed with 95% EtOH (100mL), then dry Et₂O (50mL), and dried in a vacuum (yield 6.5g). A further quantity (1.5g) can be obtained by keeping the mother liquors and washings at -10° for 1 week. The *DL-isomer* has m 167-170°(dec) after recrystallisation from H₂O/EtOH or MeOH. [Neuhaus & Korkes *Biochemical Preparations* 6 75 *1958*, Neuhaus & Byrne *J Biol Chem* 234 113 *1959*, IR: Fölsch & Mellander *Acta Chem Scand* 11 1232 *1957*, *Beilstein* 4 IV 3120.]

O-Phospho-L-threonine (L-threonine-O-phosphate) [1114-81-4] M 199.1, m 194°(dec), $[\alpha]_D^{24}$ -7.4° (c 2.8, H₂O) (pKa as above). Dissolve the phosphate in the minimum volume of H₂O, add charcoal, stir for a few minutes, filter and apply onto a column of Dowex 50W (H⁺ form), then elute with 2N HCl. Evaporate the eluates under reduced pressure whereby the desired fraction produces crystals of the phosphate which can be recrystallised from H₂O/MeOH mixtures and the crystals are then dried *in vacuo* over P₂O₅ at ~80°. [de Verdier Acta Chem Scand 7 196 1953, Beilstein 4 IV 3175.]

O-Phospho-L-tyrosine (L-tyrosine-O-phosphate) [21820-51-9] M 261.2, m 225°, 227°, 253°, $[\alpha]_{D}^{20}$ -5.5° (c 1, H₂O), -9.2° (c 1, 2N HCl), pK_{Est(1)}~ 1.6 (PO₄H₂), pK_{Est(2)}~ 2.02 (CO₂H), pK_{Est(3)}~ 5.65 (PO₄H⁻), pK_{Est(4}) 9.2 (NH₃⁺). Purify it by recrystallisation from H₂O or H₂O/EtOH. [Levene & Schormüller J Biol Chem 100 583 1933, Posternak & Graff Helv Chim Acta 28 1258 1945, Beilstein 14 III 1510.]

Phytol (d-2E-3,7R,11R,15-tetramethylhexadec-2-en-1-ol) [150-86-7] M 296.5, b 145% 0.03mm, 150-151% 0.06mm, 202-204% 10mm, d_4^{25} 0.8497, n_D^{25} 1.437, $[\alpha]_D^{22} + 0.06\%$ (neat). Phytol is purified by distillation under high vacuum. It is almost insoluble in H₂O but soluble in most organic solvents. It has UV λ_{max} at 212nm (log ε 3.04) in EtOH and IR has v_{max} at 3300 and 1670 cm⁻¹. [Demole & Lederer *Bull Soc Chim Fr* 1128 1958, Burrell J Chem Soc (C) 2144 1966, Bader Helv Chim Acta 34 1632 1951, Beilstein 1 IV 2208.]

Piracetamide (2-oxo-1-pyrrolidine acetamide) [7491-74-9] **M 142.2, m 151.5-152.5°.** This typical nootropic (Alzheimer) drug modulates Na flux in AMPA receptors and is purified by recrystallisation from isoPrOH. [Gouilaev & Senning *Brain Research Rev* **19** 180 *1994*.]

Podophylotoxin [518-28-5] M 414.4, m 181-181°, 183-184°, 188-189°, $[\alpha]_D^{20}$ -132° (c 1, CHCl₃). The toxin recrystallises form *C₆H₆ (with 0.5C₆H₆), EtOH/*C₆H₆, aqueous EtOH (with 1-1.5H₂O,

m 114-115°) and CH₂Cl₂/pentane. When dried at 100°/10mm it has **m** 183-184°. [UV: Stoll et al. *Helv Chim Acta* **37** 1747 1954, IR: Schecler et al. *J Org Chem* **21** 288 1956.] It is an inhibitor of microtubule assembly [Prasad et al. *Biochemistry* **25** 739 1986]. [*Beilstein* **19/10** V 666.]

Polyethylene glycol [25322-68-3] M_r various, from PEG ~200 to ~35,000. PEG is available commercially as a powder or as a solution in various degrees of polymerization depending on the average molecular weight, e.g. PEG 400 and PEG 800 have average molecular weights of 400 and 800, respectively. They may be contaminated with aldehydes and peroxides. Solutions deteriorate in the presence of air due to the formation of these contaminants. Methods available for purification are as follows:

Procedure A: A 40% aqueous solution of PEG 400 (2L, average molecular weight 400) is de-aerated under vacuum and made 10mM in sodium thiosulfate. After standing for 1hour at 25°, the solution is passed through a column (2.5x20cm) of mixed-bed R-208 resin which has a 5cm layer of Dowex 50-H⁺ at the bottom of the column. The column was previously flushed with 30% aqueous MeOH, then thoroughly with H₂O. A flow rate of 1mL/minute is maintained by adjusting the fluid head. The first 200mL are discarded, and the effluent is then collected at an increased flow rate. The concentration of PEG solution is checked by density measurement, and it is stored (preferably anaerobically) at 15°.

Procedure B: A solution of PEG 800 (500g in 805mL H₂O) is made 1mM in H₂SO₄ and stirred overnight at 25° with 10g of treated Dowex 50-H⁺ (8% crosslinked, 20-50 mesh). The resin, after settling, is filtered off on a sintered glass funnel. The filtrate is treated at 25° with 1.5g of NaBH₄ (added over a period of 1minute) in a beaker with tight but removable lid through which a propeller-type mechanical stirrer is inserted and continuously flushed with N₂. After 15minutes, 15g of fresh Dowex 50-H⁺ are added, and the rate of stirring is adjusted to maintain the resin suspended. The addition of an equal quantity of Dowex 50-H⁺ is repeated and the reaction times are 30 and 40minutes. The pH of a 1 to 10 dilution of the reaction mixture should remain above pH 8 throughout. If it does not, more NaBH₄ is added or the addition of Dowex 50-H⁺ is curtailed. (Some samples of PEG can be sufficiently acidic, at least after the hydrolysis treatment, to produce a pH that is too low for efficient reduction when the above ratio of NaBH₄ to Dowex 50-H⁺ is used.) About 30minutes after the last addition of NaBH₄, small amounts of Dowex 50-H⁺ (~0.2g) are added at 15minute intervals until the pH of a 1 to 10 dilution of the solution is less than 8. After stirring for an additional 15minutes the resin is allowed to settle, and the solution is transferred to a vacuum flask for brief de-gassing under a vacuum. The de-gassed solution is passed through a column of mixed-bed resin as in procedure A. The final PEG concentration would be about 40% w/v.

Assays for aldehydes by the purpural method and of peroxides are given in the reference below.

Treatment of Dowex 50- H^+ (8% crosslinked, 20-50 mesh): The Dowex (500g) is suspended in excess 2N NaOH, and 3mL of liquid Br₂ is stirred into the solution. After the Br₂ has dissolved, the treatment is repeated twice, and then the resin is washed with 1N NaOH on a sintered glass funnel until the filtrate is colourless. The resin is then converted to the acid form (with dilute HCl, H₂SO₄ or AcOH as required) and washed thoroughly with H₂O and sucked dry on the funnel. The treated resin can be converted to the Na salt and stored. [Ray & Purathingal Anal Biochem **146** 307 1985.]

Porphobilinogen (5-amino-4-carboxymethyl-1*H*-pyrrole-3-propionic acid) [487-90-1] M 226.2, m 172-175°(dec), 175-180°(dec, darkening at 120-130°), pK₁ 3.70 (4-CH₂CO₂H), pK₂ 4.95 (3-CH₂CH₂CO₂H), pK₃ 10.1 (NH⁺). Porphobilinogen recrystallises as the monohydrate (pink crystals) from dilute NH₄ OAc solutions of pH 4, and is dried *in vacuo*. The hydrochloride monohydrate has m 165-170°(dec) (from dilute HCl). [Jackson & MacDonald Can J Chem 35 715 1957, Westall Nature 170 614 1952, Bogarad J Am Chem Soc 75 3610 1953, Beilstein 22/14 V 210.]

Porphyrin a (from ox heart) [5162-02-1] **M 799.0, m dec on heating.** It is purified on a cellulose powder column followed by extraction with 17% HCl and fractionated with HCl. [Morell et al. *Biochem J* **78** 793 1961.] It recrystallises from CHCl₃/pet ether or $Et_2O/*C_6H_6$ [detailed UV-VIS and NMR data: Caughey et al. *J Biol Chem* **250** 7602 1975, Lemberg *Adv Enzymol* **23** 265 1961].

Prazosin hydrochloride (2[4-{(2-furoyl)piperazin-1-yl}4-amino-6,7-dimethoxyquinazoline hydrochloride) [19237-84-4] M 419.9, m 278-280°, 280-282°, pK²⁵ 6.5. The salt is recrystallised by dissolving it in hot MeOH, adding a small volume of MeOH/HCl (dry MeOH saturated with dry HCl gas) followed by dry Et₂O until crystallisation is complete. Dry it *in vacuo* over solid KOH till the

odour of HCl is absent. It has been recrystallised from hot H₂O, the crystals are washed with H₂O, and the H₂O is removed azeotropically with CH₂Cl₂, and dried in a vacuum. [NMR and IR: Honkanen et al. *J Heterocycl Chem* **17** 797 *1980*, *cf* Armarego & Reece *Aust J Chem* **34** 1561 *1981*.] It is an antihypertensive drug and is an α_1 -adrenergic antagonist [Brosman et al. *Proc Natl Acad Sci USA* **82** 5915 *1985*].

Procaine hydrochloride (Novocain, 2-diethylaminoethyl-4-aminobenzoate) [51-05-8] M 272.8, m 153-156°, 154-156°, 156°, $pK_{Est(1)} \sim 2.52$ (NH₂⁺) pK_2^{20} 9.0 (Et₂N⁺). Novocain is recrystallised from aqueous EtOH. It is soluble at 25° in H₂O (86.3%), EtOH (2.6%) and Me₂CO (1%), it is slightly soluble in CHCl₃, but is almost insoluble in Et₂O. The anhydrous *free base* is recrystallised from ligroin or Et₂O and has m 61°. [Einhorn *Justus Liebigs Ann Chem* 371 125 *1909*, IR: Szymanski & Panzica *J Amer Pharm Assoc* 47 443 *1958*, *Beilstein* 14 IV 1138.]

*R***-Propranalol hydrochloride** (*R*-1-isopropylamino-3-(1-naphthyloxy)-2-propanol HCl) [13071-11-9] M 295.8, m 192°, 193-195°, $[\alpha]_{D}^{20}$ -25° (c 1, EtOH), pK²⁰ 9.5 (for free base). The hydrochloride is recrystallised from *n*-PrOH or Me₂CO. It is soluble in H₂O and EtOH but is insoluble in Et₂O, *C₆H₆ or EtOAc. The *racemate* has m 163-164°, and the *free base* recrystallises from cyclohexane with m 96°. [Howe & Shanks *Nature* 210 1336 1966.] The S-isomer (below) is the physiologically active isomer.

S-Propranalol hydrochloride (S-1-isopropylamino-3-(1-naphthyloxy)-2-propanol HCl) [4199-10-4] M 295.8, m 192°, 193-195°, $[\alpha]_{D}^{20}$ +25° (c 1, EtOH) pK²⁰ 9.5. See preceding entry for physical properties and purification. The (+)-salt is the active isomer which blocks isoprenaline tachycardia and is a β -adrenergic blocker. [Leclerc et al. *Trends Pharmacol Sci* 2 18 1981, Howe & Shanks *Nature* 210 1336 1966.]

Protoporphyrin IX (3,18-divinyl-2,7,13,17-tetramethylporphin-8,12-dipropionic acid, ooporphyrin) [553-12-8] M 562.7, pK_{Est} ~ 4.8. Protoporphyrin IX is purified by dissolving (4g) in 98-100% HCOOH (85mL), diluting with dry Et₂O (700mL) and keeping at 0° overnight. The precipitate is collected and washed with Et₂O, then H₂O, and dried in a vacuum at 50° over P₂O₅. It crystallises from aqueous pyridine and from Et₂O in monoclinic, brownish-yellow prisms. The UV λ_{max} values in 25% HCl are 557.2, 582.2 and 602.4nm. It is freely soluble in ethanolic HCl, AcOH, CHCl₃, and Et₂O containing AcOH. It forms sparingly soluble diNa and diK salts. [Ramsey *Biochemical Preparations* **3** 39 1953, UV: Holden Aust J. Exptl Biol and Med Sci **15** 412 1937, Garnick J Biol Chem **175** 333 1948, IR: Falk & Willis Aust J Sci Res [A] **4** 579 1951, Beilstein **26** IV 3042.]

Protoporphyrin IX dimethylester [5522-66-7] **M 590.7, m 228-230°.** The crude dimethyl ester (1g) in CHCl₃ (200 mL) is mixed with pet ether (b 70-90°, 600mL), and any porphyrin (m > 260°) which is insoluble in this mixture is filtered off. The filtrate is passed through a column of CaCO₃ [from CaCO₃ (130g) which is kept overnight in a mixture of CHCl₃/pet ether (b 70-90°, 1:3), and the slurry is poured into a glass tube (2.5 x 26cm) to form the column]. After all the filtrate is applied, the column is eluted with a solution of CHCl₃/pet ether (b 70-90°, 1:3). All the coloured eluates are collected, evaporated at room temperature in a vacuum to give a residue (0.8g), **m** 208-211°. The residue (0.8g) in CHCl₃ (66mL) is heated briefly to its boiling point, then boiling MeOH (198mL) is added immediately to it. The mixture is allowed to cool to room temperature, refrigerated for 2days and the solid is filtered off. The solid is washed on the filter funnel with CHCl₃/MeOH (1:9, 50mL) and dried at 50°/vacuum (yield 0.62-0.66g). It can also be recrystallised by dissolving in as little hot dry *C₆H₆ as possible and left overnight at 20°, **m** 228-230°.

It has also been purified by dissolving (0.4g) in CHCl₃ (33mL) by boiling for a few minutes, then diluting with boiling MeOH (100mL) and refrigerating for 2days. The crystals are collected, washed with CHCl₃/MeOH (1:9) and dried at 50° in a vacuum (yield 0.3g). The UV has λ_{max} at 631, 576, 541, 506 and 407nm in CHCl₃ and 601, 556 and 406nm in 25% HCl. [Ramsey *Biochemical Preparations* **3** 39 *1953*, *Beilstein* **26** III/IV 3052.]

Pterin-6-carboxylic acid (2-amino-4-oxo-3,4-dihydropteridine-6-carboxylic acid) [948-60-7] M 207.2, m >360°, pK₁²⁰ 1.43, pK₂²⁰ 2.88, pK₃²⁰ 7.72. The acid gives yellow crystals by repeated dissolution in aqueous NaOH and adding aqueous HCl. It has UV with λ_{max} at 235, 260 and 265nm (ϵ 11,000, 10,500 and 9,000) in 0.1N HCl and 263 and 365nm (ϵ 20,500 and 9,000) in 0.1N NaOH. [UV: Pfleiderer et al.

696

697

Justus Liebigs Ann Chem **741** 64 1970, Stockstad et al. J Am Chem Soc **70** 5 1948, Fluorescence: Kavanagh & Goodwin Arch Biochem **20** 315 1949, Beilstein **26** III/IV 4053.]

Purine-9-β-ribofuranoside (Nebularin) [550-33-4] M 252.2, m 178-180°, 181-182°, $[\alpha]_{D}^{25}$ -48.6° (c 1, H₂O), -22° (c 0.8, 0.1N HCl) and -61° (c 0.8, 0.1N NaOH), pK²⁵ 2.05. Nebularin is recrystallised from butanone/MeOH or EtOH and forms a MeOH photo-adduct. It is a strong inhibitor of adenosine deaminase [EC 3.5.4.4]. [Nair & Weichert *Bioorg Chem* 9 423 1980, Löfgren et al. Acta Chem Scand 7 225 1953, UV: Brown & Weliky J Biol Chem 204 1019 1953, Beilstein 26 III/IV 1740.]

Puromycin dihydrochloride (*O*-methyl-1-tyrosine[N^6 , N^6 -dimethylaminoadenosin-3'-yl-amide]) [58-58-2] M 616.5, m 174°, [α] $_D^{25}$ -11° (free base in EtOH), pK₁ 6.8, pK₂ 7.2. Puromycin dihydrochloride is purified by recrystallisation from H₂O. The *free base*, [58-60-6] M 294.3, has m 175.5-177° (172-173°) (from H₂O). The *sulfate* has m 180-187° dec (from H₂O), and the *picrate monohydrate* has m 146-149° (from H₂O). [Baker et al. *J Am Chem Soc* 77 1 1955, Fryth et al. *J Am Chem Soc* 80 3736 1958.] It is an inhibitor of aminopeptidase and terminates protein synthesis [Reboud et al. *Biochemistry* 20 5281 1981]. [*Beilstein* 26 III/IV 3704.]

Pyridoxal hydrochloride [65-22-5] **M 203.6, m 176-180**°(dec), pK_1^{20} **4.23** (**3-OH**), pK_2^{20} **8.7** (**Pyridinium**⁺), pK_3^{20} **13.04** (**CH**₂**OH**?). Dissolve it in water and adjust the pH to 6 with NaOH. Set aside overnight to crystallise. The crystals are washed with cold water, dried in a vacuum desiccator over P₂O₅ and stored in a brown bottle at room temperature. The *free base* is then converted to the hydrochloride with one equivalent of HCl. [Fleck & Alberty *J Phys Chem* **66** 1678 *1962*, *Beilstein* **21/13** V 44.]

Pyridoxal-5'-phosphate monohydrate (PLP, codecarboxylase) [54-47-7] M 265.2, pK_1^{25} <2.5 (PO₄), pK_2^{25} 4.14 (3-OH), pK_3^{25} 6.20 (PO₄), pK_4^{25} 8.69 (pyridinium⁺). PLP has been purified by dissolving 2g in H₂O (10-15mL, in a dialysis bag a third full) and dialysing with gentle stirring against 1L of H₂O (+ two drops of toluene) for 15hours in a cold room. The dialysate is evaporated to 80-100mL, then lyophilised. Lemon yellow microscopic needles of the monohydrate remain when all the ice crystals have been removed. The purity is checked by paper chromatography (in EtOH or *n*-PrOH/NH₃) and the spot(s) visualised under UV light after reaction with a spray of *p*-phenylene diamine, NH₃ and molybdate. Solutions stored in a freezer are 2-3% hydrolysed in 3weeks. At 25°, only 4-6% hydrolysis occurs even in N NaOH or HCl, and 2% is hydrolysed at 37° in 1day-but is complete at 100° in 4hours. It is best stored as a dry solid at -20°. In aqueous acid the solution is colourless but is yellow in alkaline solutions. It has UV λ_{max} at 305nm (ε 1100) and 380nm (ε 6550) in 0.1 N NaOH; 330nm (ε 2450) and 388nm (ε 4,900) in 0.05M phosphate buffer pH 7.0 and 295nm (ε 6700) in 0.1N HCl. [Peterson et al. *Biochemical Preparations* **3** 34, 119 *1953*.] The oxime decomposes at 229-230° and is practically insoluble in H₂O, EtOH and Et₂O. The *O*-*methyloxime* decomposes at 212-213°. [Heyl et al. J Am Chem Soc **73** 3430 1951.] It has also been purified by column chromatography through Amberlite IRC-50 (H⁺) [Peterson & Sober J Am Chem Soc **76** 169 1954]. [Beilstein **21/13** V 46.]

Pyridoxamine hydrochloride [5103-96-8, 524-36-7 (free base)] **M** 241.2, **m** 226-227°(dec), pK_1^{25} 3.54 (3-OH), pK_2^{25} 8.21 (ring N⁺), pK_3^{25} 10.63 (NH₂). The amine salt is crystallised from hot MeOH. The *free base* crystallises from EtOH with **m** 193-193.5° [Harris et al. *J Biol Chem* 154 315 1944, *J Am Chem Soc* 66 2088 1944]. [*Beilstein* 22 IV 6064, 22/12 V 324.]

Quizalofop ethyl {[ethyl 2-[4-(6-chloro-2-quinoxalinyloxy)phenoxy]propionate} $[(\pm)$ 76578-14-8; *R*- 100646-51-3, 100646-52-4, 100760-08-5, 100760-10-9] M 372.8, m 92-93°, m 220°/0.2mm. This (\pm)-herbicide forms white crystals from Me₂CO/EtOH and sublimes *in vacuo*. Large quantities can be distilled at high vacuum. Its solubilities at 20° in g/10mL are 0.09 (EtOH), 1.1 (Me₂CO), 1.2 (xylene), 2.9 (*C₆H₆), and is nearly insoluble in H₂O (0.3mg/L). The (\pm)-acid has [95977-28-9]. The *R*-ester enantiomer has m 76-77° (pale brown crystals from EtOH), $[\alpha]_{D}^{20}$ +35.9° (EtOH). It is the more active fatty acid synthase inhibitor (designated DPX-Y6202) used to control grassy weeds in broadleaf crops. The *R*-acid has [94051-08-8]. **Resorufin** (7-hydroxy-3*H*-phenoxazin-3-one Na salt) [34994-50-8] M 252.2, decomp on heating, pK²⁵ 5.8 (H₂O), 6.10 (50% aqueous MeOH). The free acid is purified by dissolving it in conc H₂SO₄ which on dilution precipitates resorufin and is filtered off, washed well with hot H₂O and dried. [Eichler *J Prakt Chem* 139 113 1934.] Detailed UV and IR studies were reported by Musso & Mattheis *Chem Ber* 90 1814 1957]. [pKa: Musso & Rathjen *Chem Ber* 92 751 1959, *Beilstein* 27 1V 2263.]

The monoacetate [1152-14-3] M 252.2, m 223^o is a fluorogenic substrate used for hydrolytic enzymes, and its fluorescence has Emax 593nm (Eex 500nm, in 0.1M phosphate pH 8.0 with lipase) [Kitson & Kitson *Biochem J* 322 701 1997]. [*Beilstein* 27 IV 2263.]

The **O7-methylresorufin** (7-methoxy-3*H*-phenoxazin-3-one) [5735-89-3] M 227.2, m >220° has fluorescence at E_{max} 585nm (Eexcit 571 nm in deacylase solution) and is used to differentiate isoenzymes of cytochrome P-450. It is insoluble in H₂O and dilute alkali but is soluble in EtOH and CHCl₃ to give an orange yellow colour. [Kehrmann Justus Liebigs Ann Chem **372** 352 1910, Beilstein **27** II 108.]

Riboflavin See vitamin B_2 or lactoflavin below.

Riboflavin-5'-phosphate (Na salt, $2H_2O$) See flavin mononucleotide (FMN) above.

Rifampicin (**Rifampin**) [13292-46-1] **M 823.0, m 183-185°, pK₁ 1.7, pK₂ 7.9.** This macrolide antibiotic crystallises form Me₂CO in red-orange plates. It has UV λ_{max} at 237, 255, 334, and 475nm (ε 33,200, 32,100, 27,000 and 15,400) at pH 7.38. It is stable in Me₂SO and H₂O and is freely soluble in most organic solvents but slightly soluble in H₂O at pH <6. [Binda et al. *Arzneim.-Forsch* **21** 1907 1971.] It inhibits cellular RNA synthesis without affecting DNA [Calvori et al. *Nature* **207** 417 1965].

Rifamycin B [13929-35-6] **M** 755.8, **m** 300° (darkening at 160-164°), $[\alpha]_D^{20}$ -11° (MeOH), **pK**₁ 2.60, **pK**₂ 7.76. Rifamycin B forms yellow needles from *C₆H₆. Its solubilities are: H₂O (0,027%), MeOH (2.62%) and EtOH (0.44%). It has UV λ_{max} at 223, 304 and 245nm ($A_{lcm}^{1\%}$ 555, 275 and 220). [Oppolzer & Prelog *Helv Chim Acta* 56 2287 1973, Oppolzer et al. *Experientia* 20 336 1964, X-ray: Brufani et al. *Experientia* 20 339 1964.]

Rifamycin SV [6998-60-3] **M 697.8, m 300°(darkening >140°),** $[\alpha]_{D}^{20}$ -4° (MeOH), pK_{Est} ~7.8. Rifamycin SV gives yellow-orange crystals from Et₂O/pet ether or aqueous EtOH, is very soluble in MeOH, EtOH, Me₂CO and EtOAc, and is less soluble in Et₂O and HCO₃⁻, but slightly soluble in H₂O and pet ether. Its UV has λ_{max} at 223, 314 and 445nm ($A_{1cm}^{1\%}$ 586, 322 and 204) in phosphatebuffer pH 7. [NMR: Bergamini & Fowst Arzneim.-Forsch **15** 951 1965.]

(-)-Scopolamine hydrobromide $3H_2O$ (6 β ,7 β -epoxy-3 α -tropanyl S(-)-tropate HBr, hyoscine HBr) [114-49-8] M 438.3, m 193-194°, 195°, 195-199°, $[\alpha]_D^{25}$ -25°(c 5, H₂O), pK^{2°} 8.15. The hydrobromide is recrystallised from Me₂CO, H₂O or EtOH/Et₂O and dried. It is soluble in H₂O (60%) and EtOH (5%) but insoluble in Et₂O and slightly in CHCl₃. The hydrochloride has m 300° (from Me₂CO). The *free base* is a viscous liquid which forms a crystalline *hydrate* with m 59° and $[\alpha]_D^{20}$ -28° (c 2.7, H₂O). It hydrolyses in dilute acid or base. [Meinwald *J Chem Soc* 712 *1953*, Fodor *Tetrahedron* 1 86 *1957*, *Beilstein* 6 III 4185.]

Serotonin hydrochloride (5-HT, 3-[2-aminoethyl]-5-hydroxyindole HCl) [153-98-0] M 212.7, m 167-168°, 178-180°, pK_1^{25} 4.9, pK_2^{25} 9.8 (10.0, NH_2), pK_3^{25} 11.1 (5-OH), pK_4^{25} 18.25 (acidic indole NH). 5-HT is purified by recrystallisation from EtOH/Et₂O or Et₂O to give the hygroscopic salt. Store it in the dark as it is light sensitive. The *free base* has m 84-86° (from Et₂O). The 5-benzyloxy derivative has m 84-86° (from Et₂O). [Ek & Witkop J Am Chem Soc 76 5579 1954, Hamlin & Fischer J Am Chem Soc 73 5007 1951.] The picrate 1H₂O has m 196-197.5° (dec with sintering at 160-165°) after crystallisation from Et₂O. Serotonin is a natural neurotransmitter [Chuang Life Sci 41 1051 1987]. [Beilstein 22/12 V 16.]

Spectinomycin dihydrochloride pentahydrate (Actinospectacin) [21736-83-4] M 495.3, m 205-207°(dec), $[\alpha]_{D}^{20}$ + 14.8° (c 0.4, H₂O), pK₁ 6.95, pK₂ 8.70. The salt is purified by recrystallisation from aqueous Me₂CO and is soluble in H₂O, MeOH and dilute acid and base, but only slightly soluble in Me₂CO, EtOH, CHCl₃ and *C₆H₆. The *free base* is an amorphous solid, m 184-194° with $[\alpha]_{D}^{20}$ -20° (H₂O). [Wiley et al. *J Am Chem Soc* 93 2652 *1963*, X-ray: Cochran et al. *J Chem Soc Chem Commun* 494 *1972*.] It is an aminoglycoside antibiotic which interacts with 16S ribosomal RNA [Moazet & Noller *Nature* 327 389 *1987*] and is used for the treatment of gonorrhea [Rinehart *J Infect Dis* 119 345 *1969*].

D-Sphingosine (2*S*,3*S*-D-*erythro*-2-aminooctadec-4*t*-ene-1,3-diol from bovine brain) [123-78-4] M 299.5, m 79-82°, 82° 82.5° (softens at ~70°), $[\alpha]_{D}^{22}$ -3.4° (c 2, CHCl₃), pK_{Est} ~ 8.8. D-Sphingosine is purified by recrystallisation from EtOAc, Et₂O or pet ether (60-80°). It is insoluble in H₂O but is soluble in Me₂CO, EtOH and MeOH. It has IR bands at 1590 and 875 cm⁻¹, and is characterised as the *tribenzoate* m 122-123° (from 95% EtOH). [Tipton *Biochemical Preparations* 9 127 1962.]

Squalene precursor of cholesterol See "Carotenoids" in this chapter.

Sterigmatocystin (3a,12c-dihydro-8-hydroxy-6-methoxy-3*H*-furo[3',2',:4,5]furo[2,3-c]xanthen-7-one) [10048-13-2] M 324.3, m 246°, 247-248°, $[\alpha]_{D}^{20}$ -398° (c 0.1, CHCl₃), pK_{Est} ~ 8.0. It crystallises from amyl acetate, Me₂CO or EtOH and sublimes *in vacuo*. It has UV λ_{max} at 208, 235, 249 and 329nm (log ε 4.28, 4.39, 4.44 and 4.12). [UV: Bullock et al. *J Chem Soc* 4179, 1962, UV, IR: Holker & Mulheirn *J Chem Soc*, *Chem Commun* 1576, 1576 1968, Birkinshaw & Hammady *Biochem J* 65 162 1957.] This mycotoxin induces bone marrow changes in mice [Curry et al. *Mutation Res* 137 111 1984]. [*Beilstein* 19/10 V 575.]

Stigmatellin A (2-[4,6-dimethoxy-3,5,11-trimethyltridecatri-7*t*,9*t*,11*t*-enyl]-8-hydroxy-5,7-dimethoxy-3-methyl-4*H*-1-benzopyran-4-one) [91682-96-1] M 514.6, m 128-130°, $[\alpha]_{D}^{20}$ +38.5° (c 2.3, MeOH), pK_{Est} ~7 (phenolic OH). Stigmatellin A is stable in aqueous solution at neutral pH but decomposes at pH <5. It is purified by recrystallisation from toluene/hexane. It has UV λ_{max} : nm (ϵ) 248sh (4,100), 258 (59,500), 267 (65,500), 279 (1,400) and 335 (5,200) in MeOH; 249sh (45,600), 258 (60,000), 268 (72,700), 277 (54,100), 320 (2,500) and 370 (3,000) in MeOH + 1 drop of N KOH; 243sh (29,300), 264 (63,200), 274 (64,100), 283sh (45,800), 329 (4,800) and 420 (21,000) in MeOH + 6N HCl; and IR (CHCl₃) ν_{max} : 3550m, 1645chs, 1635ss, 1620ss, 1590s, 1510m and 905m cm⁻¹. It gives colour reactions at 110° with vanillin/H₂SO₄ (grey), Ce(IV)/(NH₄)₂SO₄ (yellow) and phosphomolybdate (blue-grey). [Höfle et al. *Justus Liebigs Ann Chem* 1882 1984.] It inhibits electron transport [Jagow & Link *Methods Enzymol* 126 253 1986, Robertson et al. *Biochemistry* 32 1310 1933], and has antibiotic properties [Kunze et al. J Antibiot 37 454 1984]. The 7*t*,9*t*,11*c*-isomer is *Stigmatellin B*.

Streptomycin sulfate [3810-74-0] M 1457.4, $[\alpha]_{D}^{20}$ -84.3° (c 3, H₂O), pK_{Est(1)}~ 9.5 (MeNH), pK_{Est(2,3)}~ 13.4 (guanidino). The sulfate is recrystallised from H₂O/EtOH, washed with a little EtOH, Et₂O and dried in a vacuum. [UV and IR: Grove & Randall Antibiotics Monographs 2 163 1855, Heuser et al. J Am Chem Soc 75 4013 1953, Kuehl et al. J Am Chem Soc 68 1460 1946, Regna et al. J Biol Chem 165 631 1946.] During protein synthesis it inhibits initiation and causes misreading of mRNA [Zierhut et al. Eur J Biochem 98 577 1979, Chandra & Gray Methods Enzymol 184 70 1990]. [Beilstein 18/11 V 82.]

Streptonigrin (nigrin, 5-amino-6-[7-amino-5,8-dihydro-6-methoxy-5,8-dioxo-2-quinolinyl]-4-[2-hydroxy-3,4-dimethoxyphenyl]-3-methyl-2-pyridinecarboxylic acid) [3930-19-6] M 506.5, m 262-263°, 275°(dec), pK²⁵ 6.3 (1:1 aqueous dioxane). Streptonigrin is purified by TLC on pH 7-buffered silica gel plates (made from a slurry of Silica Gel 60 and 400mL of 0.05M phosphate buffer pH 7.0) and eluted with 5% MeOH/CHCl₃. Material from the extracted band recrystallises from Me₂CO or dioxane as almost black plates or needles. It is soluble in pyridine, Me₂NCHO, aqueous NaHCO₃ (some dec), and slightly soluble in MeOH, EtOH, EtOAc and H₂O. It has UV λ_{max} 248, 375-380nm (ϵ 38,400 and 17,400). [Weinreb et al. J Am Chem Soc 104 536 1982, Rao et al. J Am Chem Soc 85 2532 1963.] It is antineoplastic and causes severe bone marrow depression [Wilson et al. Antibiot Chemother 11 147 1961]. Succinyl coenzyme A trisodium salt [108347-97-3] M 933.5. If it should be purified further, then it should be dissolved in H₂O (0.05g/mL) adjusted to pH 1 with 2M H₂SO₄ and extracted several times with Et₂O. Excess Et₂O is removed from the aqueous layer by bubbling N₂ through it and is stored frozen at pH 1. When required, the pH should be adjusted to 7 with dilute NaOH and used within 2 weeks (samples should be frozen). Succinyl coenzyme A is estimated by the hydroxamic acid method [Hersch & Jencks *J Biol Chem* 242 3468 *1967*]. It is more stable in acidic than in neutral aqueous solutions, but neutral solutions can be stored at -15° with negligible decomposition. [Jordan & Laghai-Newton *Methods Enzymol* 123 435 *1986*, *Beilstein* 26 III/IV 3666.]

Terramycin (oxytetracycline) [79-57-2; 6153-64-6 (2H₂O)] M 460.4 (anhydrous), 496.5 (2H₂O), sinters at 182°, melts at 184-185°(dec), $[\alpha]_{D}^{20}$ -196.6° (equilibrium in 0.1M HCl), -2.1° (equilibrium in 0.1M NaOH). Terramycin crystallises (as dihydrate) from water or aqueous EtOH and is soluble in MeOH, EtOH, Me₂CO and H₂O (0.25mg/mL at 25°) but insoluble in Et₂O and pet ether. It is amphoteric, and an aqueous solution has pH 2.0-5.0. It has λ_{max} at 247, 275 and 353nm in 0.1 M phosphate (pH 4.5). [Finlay et al. *Science* 111 85 1951.] The *hydrochloride*, [2058-46-0] M 496.9 [*Beilstein* 14 IV 2630], crystallises from MeOH in needles and from H₂O at 50° it forms plates. Terramycin has also been purified *via* the *hydrochloride* by dissolving it in H₂O, adjusting to pH 6, and the solid is filtered off after 1hour. The crystals of the *dihydrate* are dried to constant weight in vacuum/CaCl₂/25°. Drying at 60° *in vacuo* gives the *anhydrous base* m 184.5-185.5° (sintering at 180°). The *dihydrate* has m 181-182°. Its optical rotation in MeOH decreases from $[\alpha]_{D}^{25}$ +26° (c 0.5%) to $[\alpha]_{D}^{25}$ +11.3° after standing for 16hours. It forms a *sodium salt* and a *CaCl₂ complex*. [Regna et al. *J Am Chem Soc* 73 4211 1951, *Beilstein* 14 IV 2633.]

Tetracycline [60-54-8] **M 444.4, m 172-174°(dec),** $[\alpha]_{546}^{20}$ -291° (c 1, MeOH), pK_1^{25} 3.30, pK_2^{25} 7.68, pK_3^{25} 9.69. Tetracycline crystallises from toluene or aqueous MeOH as the *trihydrate*. [Stephen et al. J Am Chem Soc 76 3568 1954, Beilstein 14 IV 2625.]

Tetracycline hydrochloride [64-75-5] M 480.9, m 214°(dec), 215-220°, $[\alpha]_D^{25}$ -258° (c 0.5, 0.1N HCl), $[\alpha]_D^{20}$ -245° (c 1, MeOH), $[\alpha]_D^{25}$ -257.9° (c 0.5, aqueous HCl), pK₁ 1.4 (enolic OH), pK₂ 3.30, pK₃ 7.68 (phenolic OH), pK₄ 9.27 (Me₂N). The hydrochloride is recrystallised from MeOH/*n*-BuOH or *n*-BuOH/HCl. It is insoluble in Et₂O and pet ether. It has UV λ_{max} at 270 and 366nm in MeOH. [Gottstein et al. J Am Chem Soc 81 1198 1959, Conover et al. J Am Chem Soc 84 3222 1962, Stephen et al. J Am Chem Soc 78 4155 1956, Beilstein 14 IV 2627.]

6R-Tetrahydro-erythro-biopterin dihydrochloride (BH₄.2HCl, 6R-2-amino-4-hydroxy-6-[{1*R*,2*S*}-1,2-dihydroxypropyl]-5,6,7,8-tetrahydropteridine 2HCl) [69056-38-8] M 316.2, m 245-246°(dec), [a] ²⁵₂₅ -6.8° (c 0.67, 0.1N HCl), pK₁ 1.37 (pyrimidine⁺), pK₂ 5.6 (5-NH⁺), **pK**₃ **10.6** (acidic, 3NH). Recrystallisation of BH₄.2HCl from HCl enriches BH₄ in the natural 6*R* isomer. Dissolve the salt (~6g) in conc HCl (15mL) under gentle warming, then add EtOH (30mL) dropwise, chill and collect the colourless needles (67%, up to 99% if the mother liquors are concentrated), and dry it in vacuo immediately over P2O5 and KOH. It is stable indefinitely at -20° in a dry atmosphere. Better store it in sealed ampoules under dry N₂. It can be recrystallised from 6N aqueous HCl. It has UV λ_{max} (in 2N HCl) at 264nm (£ 16,770; pH 3.5 phosphate buffer) 265nm (£ 13,900); (in pH 7.6) at 297nm (£ 9,500) and 260nm sh (£ 4,690). It has been separated from the 6S-isomer by HPLC on a Partisil-10SCX column using 30mM ammonium phosphate buffer (pH 3.0) containing 3mM NaHSO3 (2mL/minute flow rate; 275nm detector) with retention times of 5.87 minutes (6R) and 8.45 minutes (6S). It is stable in acidic solutions and can be stored for extended periods at -20° in 0.04M HCl. Above pH 7 the neutral species are obtained, and these are readily oxidised by the oxygen in the solvent to the quinonoid species, and then further oxidation and degradation occurs at room temperature. These changes are slower at 0°. The sulfate salt can be obtained by recrystallisation from 2M H_2SO_4 and is less soluble in water than the hydrochloride salt. The 6R-2,5,1',2'-tetraacetylbiopterin derivative has m 292°(dec) after recrystallisation from MeOH (100 parts) and $[\alpha]_{589}^{20}$ -144° (c 0.5, CHCl₃), $[\alpha]_{589}^{20}$ +12.8° (c 0.39, Me₂SO). [NMR, UV: Matsuura et al. *Heterocycles* **23** 3115 1985, Viscontini et al. Helv Chim Acta 62 2577 1979, Armarego et al. Aust J Chem 37 355 1984, Beilstein 26 III/IV 4032.]

Tetrahydrofolic acid dihydrochloride 2H₂O (THFA, 6S- or 6RS- 5,6,7,8-tetrahydrofolic acid 2HCl 2H₂O, 5,6,7,8-tetrahydropteroyl-L-glutamic acid 2HCl 2H₂O) [135-16-0] **M** 544.4, m >200°(dec), $[\alpha]_{D}^{27}$ +16.9° (H₂O pH 7.0 + 2-mercaptoethanol), pK₁ 1.7 (pyrimidine N⁺), pK₂ 2.4 (10N⁺), pK₃ 3.5 (α-CO₂H), pK₄ 4.9 (γ-CO₂H), pK₅ 5.6 (5-NH⁺), pK_6 10.4 (acidic, 3NH). Very high quality material is now available commercially, and it should be a white powder. It can be dried over P₂O₅ in a vacuum desiccator and stored in weighed aliquots in sealed ampoules. It is stable at room temperature in sealed ampoules for many months and for much more extended periods at -10°. When moist, it is extremely sensitive to air whereby it oxidises to the yellow 7,8-dihydro derivative. In solution it turns yellow in colour as it oxidises, and then particularly in the presence of acids it turns dark reddish brown in colour. Hence aqueous solutions should be frozen immediately when not in use. It is always advisable to add 2-mercaptoethanol (if it does not interfere with the procedure for which it is used) which stabilises it by depleting the solution of O_2 . The *sulfate salt* is more stable but is much less soluble. The best way to prepare standard solutions of this acid is to dissolve it in the desired buffer and estimate the concentration by UV absorption in pH 7 buffer at 297nm (£ 22,000 M⁻¹cm⁻¹). If a sample is suspect, it is not advisable to purify it because it is likely to deteriorate further as "dry box" conditions are necessary. Either a

new sample is purchased or one is freshly prepared from folic acid. It has the above pKa values. [Hafeti et al. *Biochemical Preparations* **7** 89 1960, UV: Mathews & Huennekens J Biol Chem **235** 3304 1960, Osborn & Huennekens J Biol Chem **233** 969 1958, O'Dell et al. J Am Chem Soc **69** 250 1947, Blakley Biochem J **65** 331 1957, Asahi Yakugaku Zasshi (J Pharm Soc Jpn) **79** 1548 1959, Beilstein **26** III/IV 3879.]

5,6,7,8-Tetrahydropterin sulfate (2-amino-5,6,7,8-tetrahydropteridin-4-one H₂SO₄) [20350-44-1] M 265, m >200°(dec), pK₁²⁵ 1.3 (pyrimidine⁺), pK₂²⁵ 5.6 (5-NH⁺), pK₃²⁵ 10.6 (acidic, 3NH). If its colour has become strongly violet, then it will need to be reduced again. It is best to check the UV absorption in N HCl where it has a peak at ~265nm which drops sharply to zero having no absorption at ~340nm. The presence of absorption at 340nm indicates oxidation to quinonoid or 7,8-dihydropterin. If the absorption is weak, then dissolve it in the minimum volume of anhydrous trifluoroacetic acid (fume hood), add charcoal, filter, then add two drops of N H₂SO₄ followed by dry Et₂O at 0°, allow the white tetrahydro salt to settle, collect, and wash it with dry Et₂O, by centrifugation. Dry the residue *in vacuo* over P₂O₅ and KOH. Store it in aliquots in the dark at <0°. It has UV λ_{max} at 265nm (ϵ 16,980) at pH -1.0 (dication); 219nm (ϵ 9,330) at pH 8.0 (neutral species); and 218nm (ϵ 10,000), [240nm (ϵ 5,500)sh] and 287nm (ϵ 5,500) at pH 13 (anion). [Blakley *Biochem J* 72 707 *1959*, Asahi *Yakugaku Zasshi (J Pharm Soc Jpn)* 79 1557 *1959*, Pfleiderer in *Pterins and Folate* (Benkovic and Blakley Eds) J Wiley Vol 2 p 97 *1985*.]

Thiamine monophosphate chloride $2H_2O$ (Aneurine monophosphate chloride) [532-40-1] M 416.8, m 193°(dec), 200°(dec), 200-203°(dec), pK₁ 2.40, pK₂ 4.80, pK₃ 6.27, pK₄ 9.65, pK₅ 10.20. Purify it by recrystallisation from aqueous HCl, EtOH slightly acidified with HCl, EtOH/Me₂CO, H₂O, or H₂O/EtOH/Et₂O. Dissolve it in a small volume of H₂O and mix it with EtOH/Me₂CO (1:1) to give the HCl.H₂O as crystals. Filter it off, wash it with Et₂O and dry it in a vacuum. The *chloride hydrochloride*, m 215-217°(dec) is obtained when it is crystallised from aqueous HCl. [Wenz et al. *Justus Liebigs Ann Chem* 618 2280 1958, Viscontini et al. *Helv Chim Acta* 34 1388 1951, Leichssenring & Schmidt *Chem Ber* 95 767 1962, McCormick & Wright *Methods Enzymol* 18A 141, 147 1970, *Beilstein* 27 III/IV 1766.]

Thiamphenicol (Thyocymetin, 1*R*,2*R*-2-[2,2-dichloroacetylamino]-1-[4-methanesulfonylphenyl]-propan-1,3-diol) [15318-45-3 (D-threo), 90-91-5] M 356.2, m 163-166°, 165.2-165.6°, 165-166°, [α] $_{D}^{25}$ +15.6° (c 2, EtOH), pK²⁵ 7.2. Recrystallise thiamphenicol from H₂O or CHCl₃. The UV has λ_{max} at 224, 266 and 274nm (ε 13,700, 800 and 700) in 95% EtOH. The *1S*,2*S*-isomer [14786-51-7] has m 164.3-166.3° (from H₂O/EtOAc/pet ether) and [α] $_{D}^{25}$ -12.6° (c 1, EtOH); and the racemate *1RS*,2*RS*-Racefenical [847-25-6] has m 181-183° (dec) from CHCl₃/EtOAc/pet ether. [Cutler et al. *J Am Chem Soc* 74 5475, 5482 1952, UV: Nachod & Cutler J Am Chem Soc 74 1291 1952, Suter et al. *J Am Chem Soc* 75 4330 1953, Cutler et al. *J Am Pharm Assoc* 43 687 1954, *Beilstein* 13 IV 2957.]

ε-[2-(4-Thiazolidinone)]hexanoic acid (Mycobacidin, Acidomycin, 6[4-oxothiazolidin-2yl]hexanoic acid) [539-35-5] M 215.3, m 140°, pK²⁵ 5.1. The *dl-form is dimorphic*; it crystallises from CHCl₃ with **m** 116-117°, and from H₂O with **m** 123°. The *l*(-)-enantiomer (from Actinomyces) crystallises from H₂O, MeOH (**m** 139-140°), aqueous EtOH (**m** 140-141°) or EtOAc, and has $[\alpha]_D^{20}$ -54° (c 1, MeOH). The *d*(+)-enantiomer (from optical resolution of the brucine salt) has **m** 138-139° (from H₂O) and $[\alpha]_D^{25}$ +57° (c 1, MeOH). The optically active acids racemise in hot alkali. [McLamore et al. *J Am Chem Soc* **75** 105 *1953*, *Beilstein* **27** III/IV 4281.]

6-Thioguanosine (2-amino-6-mercapto-9-β-D-ribofuranosylpurine) [85-31-4] M 299.3, m 224-227°(dec), 230-231°(dec), $[\alpha]_{D}^{20}$ -64° (c 1.3, 0.1N NaOH), pK²⁵ 8.33. Thioguanosine is crystallised (as *hemihydrate*) from hot H₂O (charcoal) and cooled slowly to give tapered prisms. It also crystallises by dissolving in dilute NH₃ and acidifying with acetic acid, and then recrystallising from H₂O. UV: (pH 4-6) λ_{max} at 257nm (ε 8,820) and 342nm (ε 24,800), and (pH 10.4-12.0) λ_{max} at 252nm (ε 14,700) and 319.5nm (ε 21,000). [Fox et al. J Am Chem Soc 80 1667 1958, Beilstein 26 III/IV 3927.]

dl-α-Tocopherol (see vitamin E) [10191-41-0] M 430.7, $A_{1cm}^{1\%}$ 74.2 at 292 nm in MeOH. Dissolve *dl*-α-tocopherol in anhydrous MeOH (15mL/g) cool to -6° for 1hour, then chill in a Dry-ice/acetone bath; crystallisation is induced by scratching with a glass rod. The *dl*-α-acetate [52225-20-4] (see *DL*-vitamin E actetate below) is a viscous yellow liquid with **m** -7°, **b** 184°/0.01mm, 224°/0.3mm, d_4^{20} 0.953, n_D^{20} 1.496. It is used as a standard for Vitamin E activity where the unit of activity is attained with 1mg of pure *dl*-α-acetate. [Friedrich "Vitamins" Water de Guyter Publ, Berlin 1988, *Beilstein* 17/4 V 168.]

γ-Tocopherol (3,4-dihydro-2,7,8-trimethyl-2-(4,8,12-trimethyltridecyl)-2*H*-benzopyran-6ol) [54-28-4] M 416.7, m -30°, b 200-210°/0.1mm, d_4^{20} 0.951, n_D^{20} 1.505, $[\alpha]_D^{20}$ -2.4° (EtOH). γ-Tocopherol is purified by distillation at high vacuum and stored in dark ampoules under N₂. UV: λ_{max} at 298nm ($A_{1cm}^{1\%}$ 92.8). It is insoluble in H₂O but soluble in organic solvents. The *allophanate* (used for separating it from its isomers) has m 136-138°, $[\alpha]_{1B}^{18}$ +3.4° (CHCl₃). [Baxter et al. J Am Chem Soc 65 918 1943, Emerson et al. Science 83 421 1936, J Biol Chem 113 319 1936, Beilstein 17/4 V 158.]

Tomatidine $(5\alpha, 20\beta, 22\alpha, 25\beta, 27\text{-}azaspirostan-3\beta\text{-}ol)$ [77-59-8] M 415.7, m 202-206°, $[\alpha]_D^{20}$ +5.9° (c 1, MeOH), $[\alpha]_D^{20}$ +8° (CHCl₃). Tomatidine forms plates from EtOAc. It is also purified by dissolving 80mg in *C₆H₆ and applying to an Al₂O₃ column (3.0g) and eluting with *C₆H₆, evaporating and recrystallising the residue three times from EtOAc. The *hydrochloride* has m 265-270° from EtOH and $[\alpha]_D^{25}$ -5° (MeOH). [IR: Uhle *J Am Chem Soc* 83 1460 1961, Kessar et al. *Tetrahedron* 27 2869 1971, Schreiber & Adams *Experientia* 17 13 1961, *Beilstein* 27 III/IV 1950.]

Tomatine $(22S,25S-3\beta,\beta-lycotetraosyloxy-5\alpha-spirosolan)$ [17406-45-0] M 1034.2, m 263-268°(dec), 290-291°(evacuated capillary), 283.5-287°(dec), 272-277°(dec), 300-305°(dec), $[\alpha]_D^{20}$ -18° to -34° (c 0.55, pyridine). Tomatine is recrystallised from MeOH, EtOH, aqueous EtOH or dioxane/NH₃. It is almost insoluble in pet ether, Et₂O or H₂O. [Reichstein Angew Chem 74 887 1962, Beilstein 27 III/IV 1954.]

Tubercidin (7-deazaadenosine) [69-33-0] M 266.3, m 247-248°, $[\alpha]_{D}^{17}$ -67° (50% aqueous AcOH), pK¹⁰ 5.2-5.3. 7-Deazaadenosine forms needles from hot H₂O. It is soluble in H₂O (0.33%), MeOH (0.5%) and EtOH (0.05%). It has UV λ_{max} at 270nm (ϵ 12,100) in 0.001N NaOH. The *picrate* has m 229-231°(dec). [Tolman et al. *J Am Chem Soc* 91 2102 *1969*, Mizuno et al. *J Org Chem* 28 3329 *1963*, IR: Anzai et al. *J Antibiot (Japan)* [9] 10 201 *1957*, *Beilstein* 26 IV 1117.]

Tunicamycin [11089-65-9] M ~780, m 234-235°(dec), $[\alpha]_{D}^{20}$ +52° (c 0.5, pyridine), pK_{Est} ~ 9.4. The components of this nucleotide antibiotic from *Streptomyces sp.* are purified by recrystallising 3 times from hot glass-distilled MeOH, and the white crystals are dissolved in 25% aqueous MeOH and separated on a Partisil ODS-10 μ column (9.4 x 25 cm) [Magnum-9 Whatman] using a 260nm detector. The column is eluted with MeOH/H₂O mixture adjusted to 1:4 (v/v) then to 2:4 (v/v). The individual components are recovered and lyophilised. Ten components have been isolated, and all were active (to varying extents) depending on the lengths of the aliphatic side-chains. The mixture has UV λ_{max} at 205 and 260nm ($A_{1cm}^{1\%}$ 230 and 110). It is stable in H₂O at neutral pH but unstable in acidic solution. It inhibits protein glycosylation. [Mahoney

& Duskin J Biol Chem 254 6572 1979, Elnein Trends Biochem Sci 6 219 1981, Takatsuki J Antibiot 24 215 1971.]

Uracil, uridine and uridine nucleotides. These are resolved by ion-exchange chromatography with AG1 (Cl⁻ form). [Lindsay et al. *Anal Biochem* **24** 506 *1968*.]

Uridine 5'-(1-thio) monophosphate [15548-52-4, 18875-72-4 (Absolute Stereochem specified)] and Uridine 5'-(α -thio) diphosphate [RS(α -P) 27988-67-6; R(α -P) 72120-52-6], pK_{Est(1)}~ 6.4, pK_{Est(2)}~ 9.5 The Et₃N salts are purified by dissolving ~4g in 500mL of H₂O (adding a drop or two of Et₃N if they do not dissolve) and chromatograph by applying to a column (3 x 30cm) of DEAE-Sephadex A-25 and eluting with 1.4L of a linear gradient of Et₃NH.HCO₃ from 0.05 to 0.55M, pH 7.8 and 4°. The product elutes between 0.2-0.3M Et₃N.HCO₃. The pooled fractions are evaporated, and the residue is twice taken up in EtOH and evaporated to dryness to remove the last traces of Et₃NH.HCO₃. ³¹P NMR: P_{α} is a doublet at -40.81 and -40.33, and P_{β} at 7.02ppm, J_{α,β} 32.96Hz. [Sheu et al. *Biochemistry* **18** 5548 1979.]

Uridylic acid (di-Na salt) [27821-45-0] M 368.2, m 198.5°, pK₃²⁵ 6.63, pK₄²⁰ 9.71. Crystallise it from MeOH. It may contain some Ba salt(s); hence stir it with Amberlite IR-120 cation exchanger (25mL, wet resin, 15-50 mesh in H⁺ form) in H₂O (50mL) until the nucleotide dissolves. Filter, wash resin with H₂O until the eluate is neutral. Combine the filtrate and washings, and adjust the pH to 8.0 with 2.0 M aqueous NaOH. Concentrate it *in vacuo* to a small volume (~ 20mL), and add Me₂CO dropwise until crystallisation begins. Cool to 0°, and the shiny plates of di Na uridine-5'-phosphate dihydrate are filtered off and dried over P₂O₅ at 25°/0.1mm for 24hours (>76% recovery). UV: λ_{max} at 262nm (ϵ 10,000 M⁻¹cm⁻¹) in 0.1 M HCl. [Boon et al. *J Chem Soc* 408 *1950*, Smith *Biochemical Preparations* **8** 130 *1960*.] [*Beilstein* **24** IV 1214.]

(+)-Usnic acid (2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyldibenzofuran-1,3(2H,9bH)dione) [7562-61-0, 125-46-2] M 344.3, m 201-204°, 203-206°, $[\alpha]_{546}^{20}$ +630° (c 0.7, CHCl₃), pK₁ 4.4, pK₂ 8.8, pK₃ 10.7. This very weak acid is the natural form which is recrystallised from Me₂CO, MeOH or *C₆H₆. At 25° it is soluble in H₂O (<0.01%), Me₂CO (0.77%), EtOAc (0.88%), MeOCH₂CH₂OH (0.22%) and furfural (7.32%). [Curd & Robertson J Chem Soc 894 1937, Barton & Brunn J Chem Soc 603 1953, resolution: Dean et al. J Chem Soc 1250 1953, synthesis: Barton et al. J Chem Soc 538 1956, Beilstein 18/5 V 586.]

(-)-Usnic acid (2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyldibenzofuran-1,3(2*H*,9b*H*)-dione) [6159-66-6, 7562-61-0] M 344.3, m 201-204°, 204°, $[\alpha]_{D}^{20}$ -495° (c 0.9, CHCl₃). Its properties are similar to those of the acid in the preceding entry. [Beilstein 18 II 241, 18 III/IV 3522.]

Valinomycin (Potassium ionophore I) [2001-95-8] M 111.3, m 186-187°, 190°, $[\alpha]_{D}^{20}$ +31.0° (c 1.6, * C ₆H₆). Recrystallise valinomycin from dibutyl ether or Et₂O. It is dimorphic: modification A crystallises from *n*-octane, and modification B crystallises from EtOH/H₂O. It is soluble in pet ether, CHCl₃, AcOH, BuOAc and Me₂CO. [Smith et al. J Am Chem Soc 97 7242 1975, UV, IR and NMR see Brocknmann & Schmidt-Kastner Chem Ber 88 57 1955, Beilstein 27 I 9728. 17 IV 9728.]

(±)-Verapramil hydrochloride (5-[*N*-{3,4-dimethoxyphenylethyl}methylamino]-2-[3,4-dimethoxyphenyl]-2-isopropylvaleronitrile HCl) [23313-68-0] M 491.1, m 138.5-140.5°, 142°(dec), pK_{Est} ~ 10.6. The salt is purified by dissolving it in EtOH, filtering (if insoluble particles are present) and adding Et₂O, filtering the salt, washing it with Et₂O and drying it *in vacuo*. It has the following solubilities: hexane (0.001%), CH₂Cl₂ (~10%), MeOH (~10%), EtOH (20%) and H₂O (8.3%). It has UV λ_{max} at 232 and 278nm. The *free base* is a viscous yellow oil b 243-246°/0.01mm (n²⁵_D 1.5448) and is almost insoluble in H₂O but soluble in organic solvents. It is a Ca channel antagonist and is a coronary vasodilator. [Ramuz *Helv Chim Acta* 58 2050 *1975*, Harvey et al. *Biochem J* 257 95 *1989*.]

Veratridine (3-veratroylveracevine) [71-62-5] M 673.8, m ~180° (after drying at 130°, pK 9.54 (quinolizidine N), $[\alpha]_{D}^{20}$ +8.0° (c ~5, EtOH). It is an alkaloid neurotoxin which prevents inactivation of Na⁺ channels. Its solubility in EtOH is ~5%; and it separates as a pale yellow powder from an ethanolic solution on addition of Et₂O. It forms nitrate, sulfate and perchlorate salts. [McKinney et al. *Anal Biochem* 153 33 1986, *Beilstein* 21 V/13 709.]

Vinblastine sulfate (VLB, vincaleucoblastine sulfate) [143-67-9] M 909.5, m 284-285°(dec), 267°(dec), $[\alpha]_{D}^{26}$ -28° (MeOH), pK₁ 5.5, pK₂ 7.4. Crystallise the sulfate from MeOH or EtOH and dry it *in vacuo* over conc H₂SO₄. The *free base* crystallises from EtOH or MeOH m 211-216° (+ 2MeOH .1 H₂O) and forms a stable etherate from Et₂O with m 201-211°, and $[\alpha]_{D}^{25}$ +42° (CHCl₃), and UV λ_{max} at 214 and 259nm (log ε 4.73 and 4.21). The *dihydrochloride* has m 244-246°(dec)(MeOH). It is a monoamine oxidase B inhibitor and induces microtubule aggregation. It is an antineoplastic drug for Hodgkin's lymphoma. [Neuss et al. J Am Chem Soc 81 4754 1959, Jong-KeunSon et al. J Med Chem 33 1845 1990, Warfield & Bouck Science 186 1219 1974, Beilstein 26 III/IV 3167.]

Vincristine sulfate (22-oxovincaleucoblastine sulfate) [2068-78-2] M 925.1, m 218-220°, $[\alpha]_{D}^{25}$ +26.2° (CH₂Cl₂), pK₁ 5.0, pK₂ 7.4 (in 33% Me₂NCHO/H₂O). The salt is recrystallised from MeOH. It has UV λ_{max} at 220, 255 and 296nm (log ε 4.65, 4.21 and 4.18). It is a monoamine oxidase inhibitor and is used in cancer research [Son et al. *J Med Chem* 33 1845 *1990*, Horio et al. *Proc Natl Acad Sci USA* 85 3580 *1988*].

Viomycin sulfate (Viocin, Tuberactinomycin B) [37883-00-4] M 685.7, m 266°(dec), $[\alpha]_{\rm D}^{17}$ -29.5° (c 1, H₂O), pK₁ 7.2 (8.2), pK₂ 10.3. Viocin crystallises from H₂O/EtOH and is dried in a vacuum. The dry material is *hygroscopic* and should be stored dry. The UV has $\lambda_{\rm max}$ at 268 and 285nm (log ε 4.4 and 4.2) in H₂O. [Kitigawa et al. *Chem Pharm Bull Jpn* 20 2176 *1972.*] The *hydrochloride* forms *hygroscopic* plates with m 270°(dec), $[\alpha]_{\rm D}^{18}$ -16.6° (c 1, H₂O) with $\lambda_{\rm max}$ at 268nm (log ε 4.5) in H₂O; 268nm (log ε 4.4) in 0.1N HCl and at 285nm (log ε 4.3) in 0.1N NaOH. [*Beilstein* 26 III/IV 4245.]

Vitamin A acetate (retinyl acetate) [127-47-9] M 328.5, m 57°. The acetate is separated from retinol by column chromatography, then crystallised from MeOH. [Kofler and Rubin *Vitamins and Hormones* (*NY*) 18 315 1960 for purification methods]. Store it in the dark, under N₂ or Ar, at 0°. [*Beilstein* 6 IV 4135.]

Vitamin A acid [Retinoic acid, 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8nonatetraen-1-oic acid] [302-79-4] M 300.4, m 180-181°, 180-182°, pK_{Est} ~ 4.2. Purify the acid by chromatography on silicic acid columns, and eluting it with a small amount of EtOH in hexane. Also dissolve it in Et₂O, wash it with H₂O, dry (Na₂SO₄), evaporate and the solid residue is recrystallised from MeOH (0.53g /3.5mL MeOH to give 0.14g) or EtOH. It also recrystallises from *i*-PrOH, or as the *methyl ester* from MeOH. UV in MeOH has λ_{max} at 351nm (ϵ 45,000). 9-*Cis*-acid forms yellow needles from EtOH, with m 189-190°, and its UV in MeOH has λ_{max} at 343nm (ϵ 36,500); the 13-*cis*-acid forms red-orange plates from *i*-PrOH with m 174-175°, and UV has λ_{max} at 345nm (ϵ 39,800). Store it in the dark, in an inert atmosphere, at 0° [Robeson et al. J Am Chem Soc 77 4111 1955]. [Beilstein 9 IV 2387.]

Vitamin A alcohol (retinol) [68-26-8] M 286.5, $A_{1cm}^{1\%}$ (max) (all-trans) 1, 832 (325 nm), (13cis) 1686 (328nm), (11-cis) 1230 319 nm), (9-cis) 1480 (323 nm), (9,13-di-cis) 1379 (324 nm), (11,13-di-cis) 908 (311 nm) in EtOH. Purify retinol by chromatography on columns of waterdeactivated alumina and elute with 3-5% acetone in hexane. Separate the isomers by TLC plates on silica gel G, developed with pet ether (low boiling)/methyl heptanone (11:2). Store it in the dark, under N₂, at 0°, or in Et₂O, Me₂CO or EtOAc. [See Gunghaly et al. Arch Biochem Biophys 38 75 1952, Beilstein 6 IV 4133.]

Vitamin A aldehyde [all-trans-retinal; 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8-nonatetraen-1-al] [116-31-4] M 284.4, m 61-64°. The aldehyde is separated from retinol by column chromatography on water-deactivated alumina. Elute with 1-2% acetone in hexane, or on TLC plates of silica gel G and using the same eluting solvent. It crystallises from pet ether or *n*-hexane as yellow-orange crystals, and the UV in hexane has λ_{max} at 373nm ($A_{1cm}^{1\%}$ 1,548) and 368nm (ϵ 48,000). It is an **irritant** and is light sensitive. Store it in sealed ampoules under N₂. The *semicarbazone* forms yellow crystals from CHCl₃/Et₂O or EtOH, **m** 199-201°(dec). The 9-*cis-isomer* [514-85-2] and the 13-*cis-isomer* [472-86-6] [λ_{max} at 375nm (ϵ 1,250) in EtOH] are also available commercially. [*Beilstein* **7** III 1742.]

Vitamin A palmitate (retinyl palmitate) [79-81-2] M 524.9, m 28-29°, $\epsilon_{1cm}^{1\%}$ (all-trans)1000 (325 nm) in EtOH. The palmitate is separated from retinol by column chromatography on waterdeactivated alumina with hexane containing a very small percentage of acetone. It is also chromatographed on TLC silica gel G, using pet ether/isopropyl ether/acetic acid/water (180:20:2:5) or pet ether/acetonitrile/acetic acid/water (190:10:1:15) to develop the chromatogram. It is then recrystallised from propylene at low temperature (below -47°). [Beilstein 6 IV 4135.]

Vitamin B₁ Hydrochloride [Aneurine hydrochloride, Thiamine hydrochloride, $3{(4-amino-2-methyl-5-pyrimidinyl)methyl}-4-methylthiazolium chloride monohydrochloride] [67-03-8] M 337.3, m 248°(dec), 249-250°, monohydrate m 135°(dec), pK₁²⁵ 4.8, pK₂²⁵ 9.2. The hydrochloride crystallises from 95% EtOH (solubility is$ *ca*1%). The*monohydrate*is dehydrated at 100°*in vacuo*over H₂SO₄, but is*hygroscopic*and picks up one molecule of H₂O readily. It can be sterilised at 100° if the pH of the solution is below 5.5. The*nitrate*has m 196-200°(dec) and is more stable than the hydrochloride. The*picrolonate*crystallises from H₂O and is*dimorphic*, m 164-165° and 228-229°(dec). [Todd & Bergel J Chem Soc 364, 367 1937, J Am Chem Soc 58 1063, 1504 1936, 59 526 1937, Beilstein 27 IV 1766.]

Vitamin B₂ [Riboflavin, Lactoflavin, 6,7-dimethyl-9-(D-1'-ribityl)isoalloxazine] [83-88-5] M 376.4, m 278-282°(dec with darkening at 240°), 281-282°, $[\alpha]_{D}^{25}$ -9.8° (H₂O), $[\alpha]_{D}^{25}$ -112° to -125° (c 2.5, 0.02N NaOH), $[\alpha]_{D}^{20}$ -59° (c 0.23, AcOH), pK₁ 1.7, pK₂ 9.69 (10.2, acidic NH). It crystallises from H₂O as a yellow-orange powder in three different forms with differing amounts of H₂O. It melts if placed in an oil bath at 250°, but decomposes at 280° if heated at a rate of 5°/minute. It is also purified by crystallisation from 2M acetic acid, then extracted with CHCl₃ to remove lumichrome impurity. [Smith & Metzler J Am Chem Soc 85 3285 1963.] Its solubility in H₂O is 1g in 3-15L depending on the crystal structure. Its solubility in EtOH at 25° is 4.5mg in 100mL. Store it in the dark because it is decomposed to lumichrome by UV light. [Pearson *The Vitamins* vol V pp1-96 1967 and vol VII pp 1-96 1972, Gyögy and Pearson eds, Academic Press, *Beilstein* 26 IV 2542.]

Vitamin B₃ (vitamin PP, Niacin) See nicotinamide in "Heterocyclic Compounds", Chapter 4.

Vitamin B₆ hydrochloride (adermine, pyridoxine HCl, 3-hydroxy-4,5-bis[hydroxymethyl]-2-methylpyridine HCl) [58-56-0] M 205.6, m 208-208.5°, 208-209°(dec), 209-210°(dec), 205-212° (sublimes), pK₁²⁵ 5.0 (3-OH), pK₂²⁵ 8.96 (pyridinium⁺). Purify the vitamin by recrystallisation from EtOH/Me₂CO, *n*-BuOH or MeOH/Et₂O. Its solubility in H₂O is 22%, and in EtOH it is 1.1%. It is insoluble in Et₂O and CHCl₃. Acidic aqueous solutions are stable at 120°/30minute. The *free base* has m 159-160° after recrystallisation from Me₂CO and sublimation at 140-145°/0.0001mm. It has UV λ_{max} at 290nm (ϵ 84,000), 253 and 325nm (ϵ 3,700 and 7,100) in 0.1N aqueous HCl. [Khua & Wendt Chem Ber 71 780 1938, 72 311 1939, Harris & Folkers J Am Chem Soc 61 1242 1939, Harris et al. J Am Chem Soc 62 3198 1940, Beilstein 21/5 V 492.] See also Pyridoxal-5'-phosphate H₂O above.

Vitamin B₁₂ (cyanocobalamine, α -[5,6-dimethylbenzimidazolyl]cyano cobamide) [68-19-9] M 1355.4, m darkens at 210-220° and does not melt below 300°, $[\alpha]_{656}^{23}$ -59° (H₂O). Vitamin B₁₂ crystallises from de-ionized H₂O, with a solubility in H₂O of 1g/80g, and is dried under vacuum over Mg(ClO₄)₂. The dry red crystals are *hygroscopic* and can absorb ~12% of H₂O. A solution at pH 4.5-5 can be autoclaved for 20minutes at 120° without decomposition. Aqueous solutions are stabilised by addition of (NH₄)₂SO₄. [Golding *Comprehensive Organic Chem* Vol 5 (Ed. Haslam; Pergamon Press, NY, 1979) pp 549-584.]

Alternatively an aqueous solution of the coenzyme can be concentrated, if necessary in a vacuum at 25° or less, until the concentration is 0.005 to 0.01M (as estimated by the OD at 522nm of an aliquot diluted with 0.01M K-phosphate buffer pH 7.0). If crystals begin to form on the walls of the container, they should be re-dissolved with a little H₂O. The concentrated solution is placed in a glass stoppered flask and diluted with 5volumes of Me₂CO. After 2-3hours at 3° it is centrifuged (10,000xg/10minutes) in Me₂CO-insoluble plastic tubes to

remove some amorphous precipitate. The clear supernatant is inoculated with a small crystal of the vitamin and allowed to crystallise overnight at 3°. Crystals are formed on the walls and the bottom of the container. A further 2volumes of Me₂CO are added and set aside at 3° to further crystallise. Crystallisation is followed by observing the OD₅₂₂ of the supernatant. When the OD falls to 0.27, then ca 94% of the crystals have separated. The supernatant is decanted (saved for obtaining a second crop), and the crystals are washed with a little cold 90% aqueous Me₂CO (2x), 100% Me₂CO (2x), Et₂O (2x) at which time the crystals separate from the glass walls. Allow them to settle and remove residual Et_2O with a stream of dry N_2 . The process can be repeated if necessary. The crystals can be dried in air or in a vacuum for 2hours over silica gel at 100° with an 8-9% weight loss. [Barker et al. Biochemical Preparations 10 33 1963.] This material gives a single spot on paper chromatography [see Weissbach et al. J Biol Chem 235 1462 1960.] The vitamin is soluble in H₂O (16.4mM at 24°, 6.4mM at 1°), in EtOH and PhOH but insoluble in Me₂CO, Et₂O, CH₂Cl₂ and dioxane. UV: λ_{max} at 260, 375 and 522nm (ε 34.7 x 10⁶, 10.9 x 10⁶ and 8.0 x 10⁶ / mole) in H₂O. The dry crystals are stable for months in the dark, but aqueous solutions decompose on exposure to VIS or UV light or alkaline CN-, but are stable in the dark at pH 6-7. The vitamin is inactivated by strong acids or alkalies. [Barker et al. J Biol Chem **235** 480 1960, see also Vitamin B_{12} (Zagalak & Friedrich Eds) Walter de Gruyter, Berlin 1979, Beilstein **26** IV 3117.]

Vitamin C See ascorbic acid entry in "Carbohydrates" in this chapter.

Vitamin D₂ [50-14-6] **M 396.7, m 114-116^o,** $[\alpha]_{546}^{20}$ +122^o (c 4, EtOH) It is converted into its 3,5-dinitrobenzoyl ester and crystallised repeatedly from acetone. The ester is then saponified and the free vitamin is isolated. [Laughland & Phillips Anal Chem 28 817 1956, Beilstein 6 IV 4404.]

Vitamin D₃ [67-97-0] **384.6, m 83-85°,** $[\alpha]_{546}^{20}$ +126° (c 2, EtOH). It is converted into its 3,5dinitrobenzoyl ester and crystallised repeatedly from acetone. The ester is then saponified and the free vitamin is isolated. [Laughland & Phillips Anal Chem 28 817 1956, Beilstein 6 III 2811, 6 IV 4149.]

Vitamin E $(2R, 4'R, 8'R-\alpha$ -tocopherol, natural active isomer) [59-02-9] M 430.7, m 2.5-3.5°, b 200-220°/0.1mm, 200°/0.005mm, d_4^{25} 0.950, n_D^{25} 1.5045, $[\alpha]_D^{25}$ +3.58° (c 1, *C₆H₆). Vitamin E is a viscous yellow oil which is distilled at high vacuum. It has λ_{max} at 294nm (E^{1%}_{1cm} 71). It is oxygen and light sensitive and is best stored as its stable *D*- α -acetate [58-95-7] which is purified by evaporative distillation at b 180-200°(bath temperature)/0.7mm, and has $[\alpha]_D^{25}$ +3.3° (c 5.1, EtOH). It forms needles at -30° and has m 26.5-27.5°, $[\alpha]_D^{25}$ +0.25° (c 10, CHCl₃). [NMR: Cohen et al. *Helv Chim Acta* 64 1158 1981, Burton & Ingold Acc Chem Res 19 194 1986, Karrer et al. *Helv Chim Acta* 21 520 1938, Robeson J Am Chem Soc, 64 1487 1942, 65 1660 1943.] Of the eight isomers the D- α -isomer is the most active. [See W. Friedrich "Vitamins" Walter de Guyter Publ, Berlin 1988.] [Beilstein 17/4 V 168.]

DL-Vitamin E acetate (DL-\alpha-tocopheryl acetate) [7695-91-2] **M 472.8, m -27.5°, b 194-196°/0.01mm, 222-224°/0.3mm, d**²⁰₄ **0.958, n**²⁰_D **1.4958.** It is a viscous liquid which is purified by distillation under high vacuum under N₂ or Ar and stored in sealed ampoules in the dark. It is considerably more stable to light and air than the parent unacetylated vitamin. It is insoluble in H₂O but freely soluble in organic solvents. All eight stereoisomers have been synthesised. The commercially pure *d*- α -*tocopheryl acetate* (2*R*,4'*R*,8'*R*) has **b** 180-200°/0.7mm and [α]²⁰_D +3.9° (c 5, EtOH); see above. [Cohen et al. *Helv Chim Acta* **64** 1158 *1981, Beilstein* **17/4** V 169.]

Vitamin K₁ (2-methyl-3-phytyl-1,4-naphthoquinone) [84-80-0] M 450.7, m -20°, b 141-140/0.001mm, b 140-145°/10⁻³ mm, d_{25}^{25} 0.967, n_D^{25} 1.527, $[\alpha]_D^{20}$ -0.4° (c 57.5, *C₆H₆). Vitamin K₁ is a yellow viscous oil, which can be distilled at high vacuum practically unchanged. It is insoluble in H₂O, but soluble in common organic solvents. Store it in the dark under N₂ as it is oxygen sensitive. It has $A_{1cm}^{1\%}$ 328 at 248nm. [Fieser et al. J Am Chem Soc 61 2557 1939, Hirschmann et al. J Am Chem Soc 76 4592 1954, Isler & Doebel Helv Chim Acta 27 225 1954, Beilstein 7 IV 2496.]

Vitamin K₃ (2-methyl-1,4-naphthoquinone, Menadione, Menaphthone) [58-27-5] M 172.2, m 105-106°, 105-107°. Recrystallise it from 95% EtOH, or MeOH after filtration. It forms bright yellow crystals which are decomposed by light. Its solubility in EtOH is 1.7% and in $*C_6H_6$ it is 10%. It **IRRITATES** mucous membranes and skin. [Fieser *J Biol Chem* **133** 391 *1940*, *Beilstein* **7** IV 2430.]

Vitamin K₅ (4-Amino-2-methyl-1-naphthol hydrochloride) [130-24-5] M 209.6, m 283°(dec), pK_{Est(1)} ~5.6 (NH₂), pK_{Est(2)} ~10.4 (OH). Crystallise it from dilute HCl. [Sah Recl Trav Chim Pays-Bas 59 458 1941, Sah Recl Trav Chim Pays-Bas 60 373 1940, Veldstra & Wiardi Recl Trav Chim Pays-Bas 61 547 1942, Veldstra & Wiardi Recl Trav Chim Pays-Bas 62 75 1943, Beilstein 13 III 1921.]

Vitamin P [(+)-Rutin, quercetin-3-rubinoside] [153-18-4] M 610.5, 664.5 (trihydrate), m 188-189°, 195-196°, $[\alpha]_{546}^{20}$ +13° (c 5, EtOH), $[\alpha]_D^{24}$ -37.6° (c 1.24, pyridine), (polyphenolic flavone pKs 7–10). The vitamin crystallises from MeOH or water/EtOH, dry it in air, then dry it further for several hours at 110° or in high vacuum at 120°. It forms yellow crystals from EtOH/Me₂CO/H₂O (2:1:1). It has also been purified by passing (0.5g) through a Kieselgel column (30 x 5cm) with EtOAc/MeOH/H₂O (100:20:15), and after 750mL have passed through, the yellow fraction of 250mL gives the glycoside (0.3g) on evaporation. [Hörhammer et al. *Chem Ber* 101 1183 *1968*, Marini-Bettòlo *Gazz Chim Ital* 80 631 *1950*, *Beilstein* 18/5 V 519.]

Vitamin U (S-Methyl-L-methionine chloride) [S- 1115-84-0, S-ion- 6708-35-6, RS- 44901-24-8] M 199.5, m 135° (dec), 139° (dec), $[\alpha]_{D}^{23} + 33°$ (0.2M HCl), pK₁ 1.9, pK₂ 7.9. Likely impurities are methionine, methionine sulfoxide and methionine sulfone. Crystallise Vitamin U from water by adding a large excess of EtOH. It is *hygroscopic*. It should be stored in a cool, dry place and protected from light. It has also been purified on a column of Dowex 50 H⁺ form, washed with H₂O and eluted with 6N ammonia, lyophilised, the residue is dissolved in dilute HCl, lyophilised again and then it is obtained as colourless prisms by vapour diffusion of Et₂O in a 1:1 (v/v) mixture of MeOH/EtOH in which the *hydrochloride* is dissolved [Del Re Acta Cryst B 33 3289 1977]. The *iodide salt*, m ~ 150°(dec), is obtained by dissolving it in 50% aqueous EtOH and adding ~3.5 volumes of absolute EtOH. The *bromide salt* has m 140°(dec) [Toennies & Kolb J Amer Chem Soc 67 849 1945].

dl-Warfarin (Coumafene, 4-hydroxy-3-(3-oxo-1-phenylbutyl)-2H-1-benzopyran-2-one) [81-81-2] M 308.3, m 162-164°, pK^{20} 4.85 (the 4-mercapto derivative has pK^{20} 6.60). dl-Warfarin crystallises from EtOH or MeOH. UV: λ_{max} at 308nm (ε 13,610) in H₂O. The acetate has m 117-118°, the *O*-triflate has m 90-91°, and the 2,4-dinitrophenylhydrazone has m 215-216°. It is an effective anticoagulant and rodenticide. [West et al. J Am Chem Soc 83 2676 1961, HPLC: Banfield & Rowland J Pharm Sci 72 921 1983, Beilstein 17 III/IV 6794.]

R-(+)-Warfarin has m 170-171°, $[\alpha]_{D}^{23}$ +149° (c 1.2, in 0.5N NaOH), +25.5° (c 2, AcOH), +15.5° (c 2, MeCN) and -19° (c 1.1, propan-2-ol), and *S*-(-)-Warfarin (*more active enantiomer*) has m 172-173°, $[\alpha]_{D}^{23}$ -148° (c 1.2, in 0.5N NaOH), -25.5° (c 2, AcOH), -15.5° (c 2, MeCN) and +19° (c 1.1, propan-2-ol). *dl*-Warfarin is resolved *via* recrystallisation of the quinidine salt, and the free acids are recrystallised (70g) from 600mL of 80% aqueous Me₂CO. Large prismatic crystals of the pure enantiomers are obtained by slow crystallisation from Me₂CO or AcOH. The solubilities of the pure enantiomers at 25° are 11.2% in Me₂CO and 2.6% in AcOH, whereas the racemate has solubilities of 6.5% in Me₂CO and 2% in AcOH. The IR spectra are the same with v_{max} (CHCl₃) at 2.78 (w), 5.88, 6.16 and 6.38µ. [West et al. *J Am Chem Soc* 83 2676 *1961*, Cbz-proline diastereoisomeric esters were used for HPLC analysis: Banfield & Rowland *J Pharm Sci* 72 921 *1983*.] Poisonous, anticoagulant and rodenticide.

Xanthopterin monohydrate (2-amino-4,6-dihydroxypteridine, 2-amino-pteridin-4,6(1*H*,5*H*)-dione) [5979-01-1 (H_2O), 119-48-8 (anhydrous)] M 197.2, m <300°, pK₁ 1.6 (basic), pK₂ 6.59 (acidic), pK₃ 9.31 (acidic)(anhydrous species), and pK₁ 1.6 (basic), pK₂ 8.65 (acidic), pK₃ 9.99 (acidic)(7,8-hydrated species). Purification is as for isoxanthopterin (see "Heterocyclic Compounds", Chapter 4). It is crystallised by acidifying a hot ammoniacal solution with formic acid, and collecting the crystals by centrifugation followed by washing with EtOH, ether and drying at 100° *in* *vacuo*. Its R_F values on paper chromatography are 0.15 (*n*-PrOH, 1% aqueous NH₃, 2:1), 0.36 (*n*-BuOH/AcOH/H₂O, 4:1:1) and 0.47 (3% aqueous NH₃). [Inoue & Perrin J Chem Soc 260 1962, Inoue Tetrahedron **20** 243 1964, see also Blakley Biochemistry of Folic Acid and Related Pteridines North Holland Publ Co, Amsterdam 1969, Beilstein **26** II 313, **26** III/IV 4000.]

Xanthotoxin (Methoxalen, 9-methoxypsoralen, Ammoidin, 9-methoxyfuro[3,2-g][1]benzopyran-7-one) [298-81-7] M 216.2, m 146-148°, 148°, 148-149°. Purify xanthotoxin by recrystallisation from C_6H_6 /pet ether (b 60-80°) to give silky needles, or from EtOH/Et₂O to give rhombic prisms or from hot H₂O to give needles. It is soluble in aqueous alkali due to ring opening of the cyclic lactone but recyclises upon acidification. It has UV λ_{max} in EtOH at 219, 249 and 300nm (log ε 4.32, 4.35 and 4.06) and ¹H NMR in CDCl₃ with δ at 7.76 (d, 1H, J 10 Hz), 7.71 (d, 1H, J 2.5 Hz), 7.38 (s, 1H), 6.84 (d, 1H, J 2.5 Hz), 6.39 (d, 1H, J 10 Hz) and 4.28 (s, 3H)ppm. [Nore & Honkanen J Heterocycl Chem 17 985 1980.] It is a DNA intercalator, is used in the treatment of dermal diseases, and is a human carcinogen [Tessman et al. Biochemistry 24 1669 1985.] [Beilstein 19 I 711, 19/6 V 15.]

Zeatin (*trans-N*⁶-[4-hydroxy-3-methylbut-2-en-1-yl]adenine) [1637-39-4] M 219.3, m 207-208, 209-209.5°, pK₁ 4.4 (basic), pK₂ 9.8 (acidic). Purify zeatin by recrystallisation from EtOH or H₂O. The UV has λ_{max} at 207 and 275nm (ϵ 1,400 and 14,650) in 0.1N aqueous HCl; 212 and 270nm (ϵ 17,050 and 16,150) in aqueous buffer pH 7.2; 220 and 276nm (ϵ 15,900 and 14,650) in 0.1N aqueous NaOH. The *picrate* has m 192-194° (from H₂O) from which zeatin can be recovered by treatment with Dowex-1 x 8 (200-400 mesh, OH⁻ form). [Letham et al. *Aust J Chem* 22 205 1969, *Proc Chem Soc (London)* 230 1964, Shaw & Wilson *Proc Chem Soc (London)* 231 1964.] It is a cell division factor (plant growth regulator) [Letham & Palni *Ann Rev Plant Physiol* 34 163 1983] and inhibits mitochondrial function [Miller *Plant Physiol* 69 1274 1982]. The commercially available *trans*-9-*riboside* derivative, [6025-53-2], M 351.4, is a cytokine which separates from aqueous AcOH with m 177-179°. It solubility in AcOH is ~5%. [McDonald & Morris *Methods Enzymol* 100 347 1985].

GENERAL SUBJECT INDEX

A

Abbreviations 88, 445, 582 Abderhalden pistol 27 L-Abrine 601 Acacetin 384 ACE 609 ACES 89 AcetamidoTEMPO 353 Acetazolamide 353 Acidomycin 701 Acrinol 379 Actarit 224 Actidione 377 Actinospectacin 699 ADA 89 Adermine 705 ADP 664 Adrenor 690 Adsorbents, graded 43 solvents 43 Aerosol-OT 551 Affinity chromatography 24, 26, 51, 578, 580 AIBN 101 AICAR HCl 359 ALA-HCl 587 Aldrithiol 2 & 4 388 Algin 549 Alkaline base bath 3 n-Alkylammonium chlorides 84,97 n-Alkyltrimethylammonium bromides 97 Allocholanic acid 652 Allocholesterol 653 Allopregnane 659 Aloin, Barbaloin 632 Altracin 667 Alumina, 28 activation 116 **TLC 19** preparation 20 standardisation 20 Amberlite IRA-904 226 Ambucetamide 271 Amechol 662

 α -Amino acids 585 Aminometradine 357 Aminopentamide 281 Aminopterin 666 Amiphenazole 380 Amitrol 362 Amminosidin 692 Ammoidin 708 Amanozine 358 3'-AMP 664 5'-AMP 664 Amphicol 671 Ananase 609 Anaprel 431 Android 658 Aneurine HCl 705 Aneurine monophosphate 701 Anhydrone (Dehydrite) 5, 29,475 Anion exchange resin (s) 21, 23, 43, 44, 62, 666 **ANTU 315** Apiezon L, M and T 12, 42 Apigenin 440 Apoterin 431 Aquamycin 94 Aqua regia 450 D-arabinitol 632, 633 Archin, Emodin 291 Aristolene, calarene 198 Arterenol 690 Ascarite 451, 478 Aspirin 226 Atebrine, Mepacrine 429 Atophen, Cinchophen 420 ATP 664 Aureolic acid 687 Aurin, corallin 336 Automated column chromatography 27

B

Bacitracin 667 BAL 128 BAO 368 Barbital 383 Baryta water 452 Bathocuproine 385 9BBN 513

BBOD 368 Bekanamycin 684 Benzene, care in use of 88, 445,582 purification 236 Benzocaine 292 S-Benzylisothiuronium chloride 245 **BES 102** Betol 315 BH₄ HCl 700 **BHT 272** BICINE 593 (+)-Bicuculine 668 BINAP 511 Biocytin 669 L-erythro-Biopterin 668 D-(+)-Biotin 668, 669 Bisphenol A 3, 303 **BIS-TRIS** 103 Bitoscanate 329 Blue stone (blue vitriol) 461 BOC-ON 255 Boiling point(s), effect of pressure 8, 12, 36, 37 of useful gases 50 nomogram 35 Bombesin 590 BMS 103 **BPD 367** Bradykinin 590 Brown ring test for NO 464 BSA 513 **BTFA 103 BTI 250** BTMSA 513 Büchner funnel 14 Buffers, aqueous (Table) 47 Bunsen coefficients 33. (Table) 48 Butamben 255 Butyrine 586

C

Cactinomycin 663 Cadion 515 Calcein 516 Calcimycin 517 Calcium hydride, in purification 63

Cannabiscetin 688 Capsaicin 257 Captopril 371 Carbon Black 113 Carbostyril 399 Caricaxanthin 627 Caro's acid 486 λ-Carrageenan 633 Castro's reagent 510 Catapres, Clonidine hydrochloride 672 Cation exchange resin(s) 43, 44, 257, 670 Cbz-Cl 246 CDT 372 **CDTA 203** Celite 7, 15, 20, 21 Cellulose, 15, 19, 20, 21, 24, 39 preparation 24 Centrifugation 15, 577 L-a-Cephalin 693 Chalcone 235 CHAPS 651 CHAPSO 651 Charcoal, 20, 21, 30, 68, 115 animal 21 Darco 21 Norit (from Birch wood) 21 Nuchar 21 ORBO 21 purification of 115 Chelex-20 24 Chelex-100 24, 43, 62, 578 Chemical hazards, with anhydrides 6 with explosives 5 with heavy-metalcontainingperchlorates 5 with perchloric acid 5 with peroxides 5 with picric acid 6 in purification 5 with reactive halides 6 with salts 6 with solvents 6 with strong acids 6 Chemokines 610 Chiral chromatography 51 CHIRAPHOS 511 Chirazymes 610 Chloramine-T 518

Chloramphenicol 671 Chlornaphthazine 249 Chloroplatinic acid 467, 482 7-Chlorotetracycline 667 Chromatography 18, 51 adsorption 19, 21, 25 affinity 24, 26, 51, 578, 580 biospecific 26 charge transfer 27 chiral 51 column 20 covalent 27 flash 21.22 gas 18,53 GC-MS 27 GC-MS-MS 27 hydrophobic 26 ion exchange 23, 56 LC-MS 27 LC-MS-MS 27 liquid 18 mass spectrometry 18, 27 metal chelate 26 paper 20 spot detection in TLC 42 stationary phases for GLC 42 thin layer (TLC) 19, 60 vapour phase 18 Chromatotron 19 Chromic acid bath 3 Chromotropic acid di-Na salt, 526 Cisplatin 463 Citiolone 584 Citric acid cycle components 610 Claisen alkali 460 Claisen flask 10 Clavatin 418 Cleaning practices, 3 with chromic acid 3, 5, 6.14 of glassware 3 Cleland's reagent 134 Clofazimine 376 (-)-Cocaine 672 Cocculin (picrotoxin) 220 Codeine 672 Coenzyme Q 673

Colcemide 673 Colchicine 673 Collector 62, 63 Column packings, 10, 11 balls or beads 11 Dixon rings 11 Fenske rings 11 helices 11 Heli-Grid 11 Heli-Pack 11 Lessing rings 11 Raschig rings 11 wire 11 Column types Bruun 10 Bubble-cap 10 Dufton 10 Hempel 10 Oldershaw 10 Podbielniack 10 Stedman 11 Todd 11 Vigreux 11 Widmer 11 Combinatorial chemistry 83, 86 Condensers Allihn 11 Bailey-Walker 11 coil 11 double surface 11 Friedrichs 11 Graham 11 Hopkins 11 Liebig 11 Othmer 11 West 11 Wiley 11 Congressane (diamantane) 210 α-Conhydrine 398 Cooling baths 17, (Table) 41 Coumafene 707 Cordite 637 Cordvcepin 675 Cortisol 656 Cosbiol, squalane 629 **CTAB** 114 Cupferron 521 Cuproine 511 Crystallisation 14, 52 from the melt 17 isothermal 14 Cyanocobalamine 705 Cyclam 434

Cycloleucine 587 Cytarabin 674 Cytokines 612, 616 Cytovene 681

D

2,4-D 275 DABCO 380 DABITC 280 -DAG 636 Dactinomycin 664 Danishefsky's diene 535 Danthrone 277 Daphnetin 383 **DATD** 120 Davy's reagent methyl 512 **DBED 270 DBN 380** DBP 272 DBU 380 DCC 211 o,p'-DDD 263 p,p'-DDD 249 *p*,*p*'-DDE 249 DDQ 274 p,p'-DDT 249 DEAD 82, 121, 124 Dean-Stark apparatus 67 DEC, EDCI 82, 129 Debrox (UHP) 470 Decumbin 669 Dehydrite (Anhydrone) 5, 29,475 Deltacortisone 659 Demecocine 673 Deoxy-L-mannose 646 Deoxyribonucleic acid (DNA) 577, 581, 582, 612, 613, 675 **DEP** 127 Desiccants 28 alumina 28 aluminium amalgam 28 barium oxide 29 barium perchlorate 29 boric anhydride 29 calcium chloride 29 calcium hydride 29,63 calcium oxide 29 calcium sulfate 29 capacity 28 common 28

copper (II) sulfate 29 lithium aluminium hydride 63 magnesium amalgam 29 magnesium perchlorate 5, 29, 475 magnesium sulfate 29 molecular sieves 30 phosphorus pentoxide 29 potassium 29 potassium carbonate 29 silica gel 29 sodium 29 sodium hydroxide 29 sodium-potassium alloy 30 sodium sulfate 30 sulfuric acid 30 **DHFA 676** DHNP-Celite 116 **DIAD 128** Dialysis 578, 579 Di- and tri-carboxylic acids 676 Diatomaceous earth 10, 18, 20, 21 Diazald 310 Dicer 623 Dichloramine-T 272 Dichloran 275 Dilauroyl-a-cephalin 677 Dilituric acid 415 Dimethyl Yellow 280 Dimevamide 594 Dimyristoyl-a-kephalin 677 **DIOP 531** Dipalmitoyl-a-L-lecithin 677 DIPHOS 512 Diprophylline 384 Distearoyl-a-kephalin 678 Distillation 8, 52 azeotropic 13 columns 10 fractional 10 isopiestic or isothermal 14 Kügelrohr 13 of liquid mixtures 9 procedure for 9 reflux ratio 9

spinning-band 12 steam 12 techniques of 8 types of 10 vacuum 11 Distilling flask 10 Dithizone 63, 291 Diuron 275 DMAB (Ehrlich's reagent) 280 **DMAP 384** DMAP-PS 384 **DMBA 282 DMDT 304** DMF 130 DMPSCI 524 DMSO 133 DMT 280 DNA 552 from plasmids 675 purification 552, 579-582,613 DNPH 83.287 DNPH-cartridges 83 Domoic acid 678 DOPA, EUODOPA, LEVO-**DOPA 594** 2,4-DP 275 Drierite 29, 456 Drying, 27, 28-30, 53 liquids for drying pistols 44 removal of water 28 of solvents 27, 43 Drying agents for organic compounds 46 DTBCl₂ 522 DTE 134 **DTPA 125** DTT 134 Dyphylline (Diprophylline) 384

E

Ebullioscopic Constant 9 α -Ecdyson 654 EDCI 129 EDDA 141 EDTA 141 EDTA H₂Na₂ salt 525 EDTA Na₂Ca salt 525 EDTA Na₂ Mg salt 526 EEDQ 390 EGTA 141 Ehrlich's Reagent 280 Electrophoresis 27, 53, 578-579 Enzymes [EC 1.1.1.5] 607 [EC 1.1.1.8] 615 [EC 1.1.1.27] 616 [EC 1.1.1.30] 616 [EC 1.1.1.49] 614 [EC 1.1.3.4] 614 [EC 1.2.1.12] 615 [EC 1.5.1.3] 612 [EC 1.6.99.7] 612 [EC 1.9.3.1] 612 [EC 1.10.2.2] 624 [EC 1.14.17.1] 613 [EC 1.15.1.1] 611 [EC 2.4.1.11] 615 [EC 2.4.2.30] 608 [EC 2.5.1.18] 615 [EC 2.7.1.30] 615 [EC 2.7.1.40] 621 [EC 2.7.1.70] 620 [EC 2.7.6.1] 620 [EC 2.7.7.9] 624 [EC 2.7.7.49] 622 [EC 3.1.1.34] 617 [EC 3.1.27.5] 622 [EC 3.1.3.1] 619 [EC 3.1.3.5] 619 [EC 3.2.1.8] 624 [EC 3.2.1.17] 617 [EC 3.2.1.23] 614 [EC 3.2.1.28] 623 [EC 3.2.1.35] 616 [EC 3.2.1 52] 607 [EC 3.4.4.13] 623 [EC 3.4.13.11] 621 [EC 3.4.14.5] 612 [EC 3.4.17.1] 609 [EC 3.4.21.1] 610 [EC 3.4.21.31] 624 [EC 3.4.21.62] 623 [EC 3.4.22.1] 610 [EC 3.4.22.2] 619 [EC 3.4.22.8] 611 [EC 3.4.23.1] 619 [EC 3.4.23.5] 610 [EC 3.4.24.3] 611 [EC 3.4.33.4] 609 [EC 3.5.4.4] 697 [EC 3.14.15.1] 609 [EC 4.1.3.3] 607 [EC 4.2.1.1] 609 [EC 6.2.1.1] 607

[EC 6.2.1.2] 607 [EC 6.5.1.3] 624 Ephedrines 678 Epsom salt, magnesium sulfate 476 α - and β -Erythroidine 679 Esculetin, cichorigenin 389 Estrone 655 Ethacridine 379 Ethanol 136 Ethidium bromide 679 Ethionamide 390 Ethotoin 391 Etiocholane 650 Eu(dcm)₃ 573 Euflavin 356 $Eu(tfc)_3$ 574 Eutonyl 322 Exaltone 208 Exonucleases 613

F

FA folic acid 680 FAD 680 Fenazox (azoxybenzene) 235 Fieser's solution 478 Filters, micro 39 Whatman 38 Filtration 15 Flavanol 396 Florisil 15 Fluorous chemistry 84, 87 Fluram, fluorescamine 392 FMN 680 FMOC 82 FMOC-Cl 293 Folliculin 655 Follitropin 614 Forskolin, Colforsin 392 Fractogels 24, 44 Freeze-pump-thaw and purging 31 Fremy's Salt 485 Freon 12 122 Freon 13B1 105 FSH, follicle stimulating hormone 614 Fumarine 424 Fungicidin 691 Fuschin, rosaniline HCl 336 Fullerenes 213-215

Fumagillin 392

G

GABA 586 GABOB 587 Galactitol 636 Galvinoxyl 295 Gangcyclovir 681 Gas chromatography 18, 53 GDH 615 Gel electrophoresis 579 Gel filtration 25, 577 Gentian violet 266 Girard Reagent T 606 Glass powder 466 Globulin G₁ 617 Glovebox techniques 31 D-Glucitol 647 Glycamine 639 Graded adsorbents 20 Green chemistry 80, 81, 83, 85 Grubbs catalyst 510 Guaiacic acid 296 Guanabenz 296 Guanazole 380 Gypsum 456

Η

Haematoporphyrin IX 682 Hagemann's ester 200 **HBTU 365** Heating baths 38 **HEDTA 151** Heimgartner's reagent 513 Heteroauxin 401 HEPES 62, 396 HETP, height equivalent to a theoretical plate 9 Hexesterol 249 HFIP 149 HIMDA 151 Histones 616 **HMDS 530 HMPA 530 HMPT 530** HOBt 82, 396 HPLC, high performance liquid chromatography 18, 25, 55, 579 gel filtration 18, 25, 26, 54

reverse-phase 55 HPTLC, high performance thin layer chromatography 19 5-HT 698 Hünig's Base 128 Hyamine (1622) 239 Hydralazine 396 Hydranal 2, 28 Hydrogen ionophore II 417 Hydrogen ionophore IV 417 Hydroxylapatite 25, 578 Hyflo-supercel 15 Hyperol 470

I

Ibuprofen 301 Impurities, sources of 1-3 Ionic equilibria 32, 55 Ion exchange 24, 56, 62 bead form 44 Cellex CM 25 Cellex D 25 celluloses 24, 43 Chelex 24, 25, 43 resins 23, 43 Sephadex 24 Sepharose 24 Ionic liquids (ILs) 84, 87 Ionisation constants 32, 88, 445, 582 pK and temperature 33 pK and solvent 33 Interferons 616 Interleukins 616 Iproniazid 403 Isoelectric focusing 578 Isoniazide 402 Isosarsasapogenin 660 isothermal distillation 14

J

Janus Green B 403 Janus Red B 303 Juglone 300

K

Kemp's acid 221 Kerosene 156 Keton Muschus 303 Kinetin 394 Koser's reagent 301 Koshland's reagent 300 KPEP 693

L

Laboratory techniques 56 Laburnine 378 Lactaminic acid 662 Lactide 385 Lactoferrin 617 Lactoflavin 705 Lanthanide (Europium) shift reagents 156, 531 Lauth's Violet 342 Lectins 617 Levallorphan 358 Levocarnitine 590 Levomethadone 685 Ligroin 16 Lipoproteins 617 Lithium aluminium hydride, in purification 63 Lithium hydride 474 D-Luciferin 685 Lutein 630 (+)-Lysergic acid 406 Lysozyme 617

M

MAAN 163 Macleyine 424 McLeod type gauge 12 Mafenide HCl 229 Magenta I 336 Magneson -I 316 Magon, Xylidyl Blue 533 Maltol 406 Maneb 534 Marsilide 403 Martius Yellow 286 MCPA 261 MCPBA 262 Medrol 658 Medroxyprogesterone 657 Mega-9 644 Mega-10 634 Meglumine 643 Meglutol 151 **MEK 106** Meldrum's acid 385 Melphalan 601

MEMCl 160 Mercurochrome 534 **MES 414** MESNA 554 Mestanolone 657 Mesterone 658 Metacetamol 223 Metal hydrides 78 Metal impurities, by complexation 61, 63 by ion-exchange resins 62 by precipitation 62 removal by extraction 63 removal from reagents 63 removal of lead 62 removal of iron 62 Metalphthalein 265 Metals, trace analysis 79 R-(-)-Methadone 685 Methotrexate, amethopterin 665 Methoxalen 708 5-Methoxypsoralen 668 9-Methoxypsoralen 708 Methylarenes 306 Methyldopa 594 Methyl Red 551 Metol 306 Metrazol, Cardiazol 414 Mevastatin 674 Michler's base 341 Microwave technologies 81, 85 Mixed solvents 16 **MMPP 537** Mohr's salt 448 Molecular sieves 30, 57 MOMCl 116 Monacrin 358 Monocrotaline 674 MONO-TRIS 151 Monuron 263 Morin 414 Mosher's acid 305 **MPTP** 410 α-MSH 600 **MTAD 413 MTPA 305** MTT 437 Muramidase 617 Muriatic acid (conc HCl) 468, 469 Muscimol 687 Mycobacidin 701 Mycostatin 691

Myronate K 647

N

Nabam 526 NAD (DPN) 689 NADH, reduced NAD 689 NADP (TPN) 689 NADPH, reduced NADP 689,690 Naloxone HCl 688 Naltrexone HCl 688 NAM 355 NAMA 687 NANA 662 NaPAA 556 Naptalam 315 Narcan 688 Naringin 644 NBD-chloride 374 NDELA 169 Nebularin 697 Nembutal, Pentobarbital 418 Neocuproine 385 Neo-oxine 396 D(+)-Neopterin 689 cis-, trans-, cis/trans-Nerolidol 168 Niacin 415 Nigrin 699 Nioxime 205 Nisin 602 Nitrin 227 Nitromethane 168 NMN 690 Nonactin 507 Norspermidine 269 NPS-Cl 317 NTA 168 Nucleotide thiophosphates 691 Nylon powder 169

0

Oil of vitriol, H₂SO₄ 499 Optochin 390 ORBO cartridges 21, 22 Orcine 322 Organocatalysis 80, 85 Ostwald coefficient, 33 (Table) 49 Ouabain 658 Oxine 399 Oxone 486 Oxycincophen 397 Oxytetracycline 700 Oxytocin 602

P

PAGE, polyacrylamide gel electrophoresis 579, 580 L-β-Palmitin 692 PAN 428 Paper chromatography 20 PAR 428 Paracetamol 223 Paraffin wax 171 Paraquat 2HCl 384 Patulin, Clavatin 418 PBN (free radical trap) 257 Pectic acid 645 Pectin 645 PEG, polyethylene glycol 695 Penicillin G 667, 668 Pentaphene 270 Perex test for peroxides 73 Pericyazine 418 Petroleum ether 34, 40, 174 Petroleum spirit 16 PFBHA HCl HCl 323 Phenacetin 224 Phenamisal 327 Phenozin 576 Phlorizin 646 Phloron 283 Phospholipids 694 Phosphoproteins 620 Photol (Metol) 306 Physostigmine, Eserine 389 PIC, chromatography 22 PIPES 422 PIPES-Na salt 555 Pituitary Growth Factor 620 Pixyl chloride 374 pK 32 pKa and pKb 33 and temperature 33 and solvent 33 Plasmids (DNA) 612, 620, 675

Plicamycin 687 PLP, codecarboxylase 697 Plumbagin 299 PMSF 331 PNBP 416 Polymer supported reactants 82 Polypeptides, purification 577 Polyprenols 678 Polystyrene 334 Potassium borohydride, in purification 64 PPD 387 PPO 387 POO 686 Prefixes for quantities 50 Prefolic A 686 Preparative GC 18, 53 Primaguine 423 Proclavine 423 Proflavin sulfate 379 Progesterone 659 Propacil 424 Propyail 424 Proteins 621 purification 577 Proteoglycans 621 Proteomics 581 Proton ionophore 417 Proton sponge 341 Protopine 424 Provitamin B, D-panthenol 692 Provocholine 662 Proxyphylline 398 PTAD 421 PUGNAC 631 Purification, via derivatives 64 of alcohols 64 of aldehydes 65 of amines 65 of aromatic hydrocarbons 66 of carboxylic acids 66 of hydroperoxides 67 of ketones 67 of phenols 67 of phosphate esters 68 of phosphonate esters 68 Purification, general procedures for: acetals 70 acids 70 carboxylic 70 sulfinic 70 sulfonic 70

General Subject Index

acid chlorides 71 alcohols 71 monohydric 71 polyhydric 71 aldehydes 71 amides 71 amines 72 amino acids 72 anhydrides 72 carotenoids 72 esters 73 ethers 73 halides 74 hydrocarbons 74 hydrocarbons by zone melting 75 imides 75 imino compounds 75 ketones 75 macromolecules 577 nitriles 75 nitro compounds 76 nucleic acids 577 phenols 76 polypeptides 577 proteins 577, 621 quinones 76 salts (organic) 76 with metal ions 76 with organic cations 77 with sodium alkane sulfonates 77 sulfur compounds 77 disulfides 77 sulfones 77 sulfoxides 77 thioethers 77 thiols 77 thiolsulfonates (disulfoxides) 77 Purity, criteria of 69 question of 1 Purpald 359 Putrescine 2HCl 120

Q

Quercetin-3-rubinoside 707 D-Quinovose 634

R

Raoult's law 9 Rapid purification of benzene 237 of tert-butyl alcohol 107 of carbon tetrachloride 113 of chloroform 116 of cyclohexane 203 of dichloromethane 123 of diethyl ether 126 of N,N-dimethylformamide 130 of dimethylsulfoxide 133 of 1.4-dioxane 386 of ethanol 136 of ethyl acetate 138 of *n*-hexane 149 of methanol 159 of petroleum ether 174 of tetrahydrofuran 434 of toluene 343 **RDX 377** Reagents and purity 58 Recrystallisation 14, 52 choice of solvents 15 from the melt 17 techniques 14 Reichstein's G, adrenosterone 650 Reineckate salt 449 Restriction enzymes 613, 621 endonucleases 621 exonucleases 613 Retinal 704 Retinoic acid 704 Retinol 704 Retinyl acetate 704 Retinyl palmitate 705 Reverse-phase thin layer chromatography 19 Riboflavin 705 Ribozymes 622 Rifamycin B 698 Rivanol 379 RNA, ribonucleic acids 622 RNAi 622 dsRNA 622 mRNA 622

miRNA 622, 623 shRNA 623 siRNA 623 Rongalite 553 Rubeanic acid 134 Rubene, naphthacene 311 Rubrene 342 Ruppert's reagent 570 (+)-Rutin 707

S

Saccharides 646 Safety 58 disclaimer 6 in the chemical laboratory 58 precautions 4.58 Salcomine 513 Salol, phenyl salicylate 332 Salsalate acetate 226 Saltpetre 485 Salts, vapour pressure of saturated solutions 45 SAM-HCl, 665 Sanger's reagent 286 Scavenger resins 62, 82 Schlenk techniques 31 Schlippe's salt 496 Scopolamine, hyoscine, atroscine 400, 698 SDS 552 Selectophore 513 **SEMC1 568** Sephadex 24, 25, 44 Sepharose 24, 44 Sephasorb HP 25 Septazen 247 SES-C1 568 O-Sialic acid (NANA) 662 Sicacide 30 Sicapent 29 Silica gel 489 Silica, preparation 489 Silvan 409 Silylation, of glassware 4 of plasticware 4 solutions 4 Sinigrin 647 Skatole, 3-methylindole 409 Skellysolves A-L 178 Sodium n-alkylsulfates 549 Sodium borohydride, in purification 63

General Subject Index

Sodium silicate solution 496 Solid phase synthesis (SPS) 81,86 of deoxyribonucleotides 82 of peptides (SPPS) 82 Solvent(s) 5, 6, 59 for crystallisation 40 distribution 7, 59 extraction 7,59 immiscible 7, 34 miscible 40 removal of acids from 7 removal of organic bases from 7 removal of phenols from 7 Solvents, mixed 16 Somatostatin 604 Soxhlet extraction 7.14 SPOS, SPPS, SPS, 81, 82 Spectinomycin 699 Spectroscopy 59,78 Stilbesterol 277 Streptozocin 647 Sublimation 17 Sulfacetamide 226 Sulfuric acid (conc) for removal of alcohols 7 removal of ethers 7 removal of unsaturated hydrocarbons 7 Supercritical CO₂ 83 Supercritical fluids (SCF) 83,87 Supelco columns 25 Schwartz' Reagent 576

Т

2,4,5-T 347 TBD 439 TBDMSCI 515 TBDPSCI 515 TBHP 110 TCT, cyanuric chloride 377 TDM spray 353 TEHP 573 TEMED 184 TEMPO 435 Terramycin 700 TES 62, 191

Testane 650 Testosterone 661 Tetralone test 341 Tetraphene (1,2benzanthracene) 236 Theocin, theophylline 436 Theoretical discussion 56 Theoretical Plate 9 Thevetin A, and B 648 **THFA 701** Thiamine 705 Thiazolsulfone 232 Thimerosal 552 6,8-Thioctic acid 684 Thiosinamine 99 Thiram 185 Thyocymetin 701 TIMP 623 TIRON 523 TLG, thin layer gel filtration 19 **TMCTS 560 TMEDA** 184 TMS 561 TMSAN 567 **TMSF 529** TMSI 531 **TNBS 349** TNT 349 Tolan 288 Topitracin 667 TOSMIC 346 Toyopearl 24, 44 **TPAP 562** TPP 435 trans-Traumatic acid 186 Traut's Reagent 400 **TREN 191** TRICINE 606 TRIEN (TETA) 188 TRIEN.HCl 189 Triphosgene 103 TRIS 62, 191 TRIS-HCl 191 Triton B 247 Tropine 441 TTC (TTZ) 441 TTMSS 574 Tuberactinomycin 704

U

Ubiquinone, Coenzyme Q 673

UHP 470 Ulexine 378 Ultrafiltration 579 Ultragels 24 Uracil, uridine and uridine nucleotides 703 Uridine 5'-(1-thio) monophosphate 703 Urotropin, HMTA 395 Ursocholanic acid 652 Ursodeoxycholic acid 661 Ursodiol 661 Ustizeain B 648

V

Vacuum lines 31 (±)-Vinclozolin 443 Viocin 704 Violuric acid 403 Vitamins 704-707 VLB, vinblastine 704

W

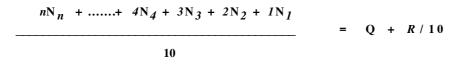
Wanzlick's Reagent 289 Warfarin 707 White vitriol 504 Wilkinson's catalyst 519 Woodward's Reagent 391 Wurster's reagent 341

X

Xanthene rhamnoside 649 Xanthone 444 Xanthopterin 707 Xanthotoxin 708

Y

 α -Yohimbine 444 γ -Yohimbine 357


Ζ

Zeatin 708 Zeinoxanthin 627 Zinc-copper couple 126 Zincon 576 Zineb 575 Zone refining 17

CAS Registry Numbers Index

Almost all the entries in Chapters 4, 5 and 6 have CAS (Chemical Abstract Service) Registry Numbers to identify them and have been entered for each substance. The registry numbers are an efficient way for identifying substances and are independent of the nomenclature of substances. Unlike chemical names which may have more than one synonymous name, there is only one CAS Registry Number for each substance (with only a few exceptions, e.g. where a substance may have another number before purification, or before determination of absolute configuration).

The registry numbers are made up of three sets of digits separated by two hyphens with the general form: $nN_n + \dots + 4N_4 + 3N_3 - 2N_2 + 1N_1 - R$ where the Ns are sequential numbers and R is the *check digit*. The first set can be up to six digits (but not less than two), and the second is made of two digits (a zero is included as a digit) and the third is a single digit which checks the validity of the sequential numbers, e.g. 379669-72-4 for *but-3-enylboronic acid* or 83-32-9 for *acenaphthene*. The validity of a registry number can be checked by the following formula (computer generated):

where \mathbf{Q} represents an integer (fractions not included) which, although it is disregarded, does make the value of \mathbf{R} equal to the *check digit* in a valid Registry Number.

The following are two examples which demonstrate the application of the formula:

1.	1,5-Dihydroxynaphthalene	83-56-7
· ·	ije Dinjurokynupnenurene	00 00 /

(4x8) + (3x3) + (2x5) + (1x6)		57	7	
	=	= 5 +		[Note: the last (check) digit of the CAS number 7
10		10	10	is not included.]

When the value of Q is made to 5 (by trial and error), the check digit R becomes equal to 7; thus the Registry Number is valid.

2. 4,5-Diamino-6-hydroxypyrimidine hemisulfate	102783-18-6	
(8x1) + (7x0) + (6x2) + (5x7) + (4x8) + (3x3) + (2x1) + (1x8)	= <u>106</u> = 10 +	6
10	10	10

When the value of Q is made to 10 (by trial and error), the check digit R becomes equal to 6; thus the Registry Number is valid.

The CAS Registry Handbook (Number Section) and supplements should be consulted for obtaining the substance name and elemental formula corresponding to a Registry Number.

To simplify the method for locating the purification of a substance, a CAS Registry Number Index of the numbers of the entries with their respective page numbers is included here. This will also provide the reader with a rapid way to see if the purification of a particular substance has been reported in the book.

50-00-0	144	53-06-5	653	57-44-3	383	60-10-6	291
50-01-1	147	53-16-7	655	57-47-6	389	60-11-7	280
50-02-2	654	53-19-0	263	57-48-7	637	60-12-8	329
50-03-3	657	53-41-8	650	57-50-1	647	60-18-4	606
50-04-4	653	53-59-8	689	57-53-4	157	60-19-5	350
50-07-7	687	53-70-3	269	57-55-6	175	60-20-8	597
50-14-6	706	53-84-9	689	57-57-8	417	60-23-1	592
50-22-6	653	53-96-3	223	57-62-5	667	60-24-2	157
50-23-7	656	54-06-8	356	57-63-6	656	60-27-5	591
50-27-1	655	54-11-5	690	57-67-0	338	60-29-7	126
50-28-2	655	54-28-4	702	57-68-1	432	60-31-1	662
50-29-3	249	54-47-7	697	57-83-0	659	60-34-4	163
50-30-6	274	54-62-6	666	57-85-2	661	60-35-5	89
50-32-8	241	54-64-8	552	57-87-4	655	60-46-8	594
50-33-9	420	54-85-3	402	57-88-5	652	60-54-8	700
50-36-2	672	54-92-2	403	57-91-0	655	60-56-0	407
50-45-3	273	54-95-5	414	57-94-3	441	60-80-0	362
50-50-0	655	54-96-6	380	57-97-6	282	60-81-1	646
50-55-5	431	55-21-0	236	58-00-4	666	60-82-2	333
50-56-6	602	55-22-1	402	58-08-2	371	61-25-6	418
50-69-1	646	55-55-0	306	58-15-1	361	61-33-6	668
50-70-4	647	56-03-1	102	58-18-4	658	61-54-1	441
50-71-5	357	56-04-2	413	58-22-0	661	61-72-3	304
50-76-0	664	56-06-4	380	58-27-5	706	61-73-4	408
50-78-2	226	56-10-0	100	58-46-8	434	61-78-2	248
50-79-3	122	56-12-2	586	58-55-9	436	61-78-9	587
50-79-3	273	56-17-7	591	58-56-0	705	61-82-5	362
50-81-7	633	56-18-8	120	58-58-2	697	61-90-5	600
50-84-0	273	56-23-5	113	58-60-6	697	62-13-5	665
50-85-1	266	56-23-1	277	58-61-7	356	62-23-7	317
50-89-5	439	56-34-8	182	58-63-9	683	62-38-4	541
50-98-6	679	56-40-6	585	58-64-0	664	62-44-2	224
50-99-7	640	56-41-7	585	58-85-5	668	62-51-1	662
51-05-8	696	56-45-1	604	58-86-6	649	62-53-3	232
51-17-2	364	56-47-3	654	58-90-2	339	62-54-4	516
51-21-8	392	56-54-2	429	58-95-7	706	62-55-5	185
51-28-5	286	56-55-3	236	58-96-8	442	62-56-6	186
51-34-3	400	56-57-5	416	59-00-7	444	62-57-7	587
51-35-4	599	56-65-5	664	59-02-9	706	62-74-8	553
51-36-5	274	56-75-7	671	59-05-2	665	62-75-9	132
51-41-2	690	56-81-5	146	59-14-3	670	62-76-0	555
51-43-4	665	56-82-6	146	59-23-4	638	63-05-8	650
51-44-5	274	56-84-8	589	59-30-3	680	63-42-3	642
51-45-6	396	56-85-9	595	59-31-4	399	63-45-6	423
51-48-9	605	56-86-0	595	59-46-1	334	63-68-3	601
51-49-0	605	56-87-1	600	59-49-4	365	63-89-8	677
51-52-5	424	56-88-2	592	59-50-7	261	63-91-2	603
51-55-8	363	56-89-3	<i>593</i>	59-51-8	601	63-92-3	326
51-60-5	315	56-92-8	396	59-52-9	128	64-04-0	324
51-67-2	350	56-93-9	247	59-53-0	663	64-10-8	333
51-74-1	396	57-00-1	591	59-56-3	682	64-17-5	136
51-78-5	231	57-06-7	99	59-66-5	353	64-18-6	145
51-79-6	192	57-09-0	114	59-67-6	415	64-19-7	90
52-21-1	659	57-10-3	148	59-85-8	518	64-20-0	184
52-39-1	650	57-11-4	179	59-88-1	330	64-67-5	127
52-52-8	587	57-13-6	192	59-92-7	594	64-69-7	152
52-67-5	692	57-14-7	131	59-96-1	326	64-72-2	667
52-89-1	592	57-24-9	432	59-99-4	315	64-73-3	674
52-90-4	592	57-27-2	414	60-00-4	141	64-75-5	700
53-03-2	659	57-41-0	387	60-09-3	227	64-85-7	654

718

64-86-8	633	70-49-5	186	75-24-1	506	76-84-6	350
64-86-8	673	70-55-3	343	75-25-2	103	76-86-8	519
65-22-5	697	70-69-9	231	75-26-3	155	76-87-9	572
65-45-2	336	70-70-2	301	75-28-5	153	76-93-7	239
65-46-3	674	70-78-0	600	75-29-6	155	77-06-5	216
65-49-6	231	71-00-1	597	75-30-9	155	77-09-8	325
65-71-4	439	71-23-8	176	75-33-2	175	77-21-4	391
65-82-7	584	71-30-7	674	75-34-3	122	77-26-9	358
65-85-0	240	71-36-3	106	75-36-5	94	77-47-4	216
65-86-1	417	71-41-0	100	75-44-5	480	77-48-5	381
66-22-8	442	71-43-2	236	75-47-8	152	77-49-6	164
66-23-9	662	71-55-6	187	75-50-3	190	77-53-2	200
66-27-3	164	71-58-9	657	75-52-5	168	77-59-8	702
66-71-7	419	71-62-5	704	75-54-7	535	77-71-4	385
66-77-3	311	71-63-6	636	75-56-9	424	77-73-6	208
66-81-9	377	71-67-0	514	75-57-0	184	77-85-0	191
	639		182	75-58-1		77-86-1	191
66-84-2		71-91-0			184		
66-99-9	311	72-12-0	181	75-59-2	184	77-92-9	118
67-03-8	705	72-18-4	606	75-60-5	515	77-93-0	118
67-42-5	141	72-19-5	605	75-62-7	105	77-95-2	220
67-43-6	125	72-40-2	359	75-63-8	105	77-99-6	190
67-47-0	397	72-43-5	304	75-64-9	108	78-00-2	559
67-48-1	117	72-48-0	357	75-65-0	107	78-09-1	183
67-51-6	386	72-54-8	249	75-66-1	166	78-10-4	558
67-52-7	364	72-55-9	249	75-71-8	122	78-11-5	645
67-56-1	159	72-80-0	382	75-72-9	117	78-27-3	212
67-63-0	154	73-03-0	675	75-73-0	114	78-28-4	165
67-64-1	90	73-22-3	606	75-75-2	159	78-40-0	564
67-66-3	116	73-24-5	356	75-76-3	561	78-42-2	573
67-68-5	133	73-32-5	600	75-77-4	568	78-46-6	522
67-71-0	133	74-11-3	259	75-78-5	524	78-50-2	570
67-72-1	148	74-31-7	290	75-79-6	536	78-53-5	523
67-96-9	654	74-39-5	316	75-83-2	130	78-59-1	217
67-97-0	706	74-79-3	588	75-84-3	132	78-61-1	101
67-99-2	682	74-82-8	158	75-85-4	101	78-71-7	368
68-04-2	573	74-83-9	161	75-86-5	91	78-76-2	103
68-05-3	182	74-84-0	136	75-87-6	115	78-77-3	153
68-11-1	185	74-85-1	140	75-89-8	189	78-78-4	161
68-12-2	130	74-86-2	94	75-91-2	110	78-79-5	154
68-19-9	705	74-80-2	162	75-94-5	574	78-82-0	154
68-26-8	704	74-88-4	163	75-97-8	111	78-83-1	166
68-41-7	591	74-89-5	161	75-98-9	174	78-84-2	154
68-81-9	206	74-90-8	469	76-01-7	172	78-85-3	158
68-81-5	402	74-96-4	138	76-03-9	187	78-86-4	115
68-94-0	<i>39</i> 8	74-98-6	175	76-05-1	189	78-87-5	123
69-05-6	429	74-99-7	178	76-06-2	117	78-90-0	175
69-33-0	702	75-00-3	139	76-09-5	174	78-92-2	107
69-57-8	667	75-03-6	142	76-13-1	187	78-93-0	106
69-65-8	642	75-04-7	138	76-16-4	149	78-94-4	167
69-72-7	337	75-05-8	91	76-19-7	170	78-95-5	115
69-81-8	356	75-07-0	89	76-24-4	357	78-98-8	163
69-89-6	443	75-08-1	136	76-32-4	199	79-00-5	187
	442		123		183		187
69-93-2		75-09-2		76-37-9		79-01-6	
70-11-1	251	75-11-6	128	76-39-1	164	79-05-0	176
70-18-8	595	75-12-7	145	76-57-3	672	79-06-1	96
70-23-5	139	75-15-0	456	76-59-5	255	79-07-2	115
70-26-8	602	75-18-3	133	76-60-8	252	79-08-3	103
70-30-4	296	75-19-4	209	76-73-3	432	79-09-4	176
70-34-8	286	75-21-8	390	76-74-4	418	79-10-7	96
70-47-3	589	75-22-9	514	76-83-5	350	79-11-8	115
		-				-	-

79-14-1	146	82-22-4	234	85-83-6	338	88-75-5	318
79-15-2	103	82-24-6	227	85-84-7	237	88-88-0	334
79-16-3	160	82-38-2	306	85-85-8	428	88-89-1	334
79-19-6	186	82-57-5	443	85-86-9	338	88-99-3	333
79-20-9	161	82-58-6	406	86-00-0	317	89-01-0	425
79-24-3	168	82-62-2	347	86-28-2	390	89-05-4	238
79-27-6	180	82-68-8	323	86-29-3	288	89-25-8	410
79-29-8	130	82-71-3	337	86-34-0	326	89-32-7	238
79-31-2	154	82-86-0	223	86-35-1	391	89-51-0	296
79-33-4	156	82-94-0	308	86-38-4	382	89-52-1	224
79-34-5	181	83-07-8	358	86-42-0	362	89-56-5	266
79-38-9	117	83-12-5	330	86-48-6	313	89-57-6	231
79-39-0	158	83-30-7	348	86-54-4	396	89-61-2	275
79-40-3	134	83-32-9	223	86-55-5	312	89-63-4	261
79-41-4	158	83-34-1	409	86-57-7	318	89-65-6	641
79-43-6	122	83-38-5	273	86-59-9	430	89-69-0	347
79-44-7	130	83-40-9	266	86-73-7	293	89-73-6	337
79-46-9	169	83-43-2	658	86-74-8	372	89-82-7	220
79-49-2	172	83-44-3	653	86-84-0	315	89-86-1	278
79-57-2	700	83-46-5	660	86-87-3	314	89-91-2	127
79-58-3	659	83-48-7	660	86-88-4	315	89-98-5	258
79-63-0	657	83-49-8	657	86-93-1	420	90-00-6	292
79-69-6	217	83-56-7	278	86-98-6	382	90-01-7	298
79-74-3	269	83-60-3	431	87-13-8	126	90-02-8	336
79-77-6	217	83-67-0	436	87-17-2	336	90-04-0	233
79-81-2	705	83-72-7	300	87-32-1	584	90-05-1	296
80-05-7	303	83-73-8	384	87-41-2	333	90-11-9	253
80-11-5	310	83-74-9	400	87-42-3	374	90-12-0	308
80-15-9	266	83-88-5	705	87-48-9	369	90-13-1	261
80-43-3	276	84-11-7	324	87-51-4	401	90-15-3	313
80-46-6	232	84-12-8	419	87-52-5	394	90-19-7	431
80-48-8	311	84-15-1	339	87-56-9	168	90-20-0	230
80-59-1	186	84-16-2	249	87-59-2	282	90-26-6	328
80-62-6	164	84-21-9	664	87-61-6	347	90-30-2	331
80-70-6	184	84-24-2	333	87-62-7	282	90-33-5	397
80-72-8	220	84-54-8	306	87-68-3	148	90-41-5	228
80-78-4	660	84-58-2	274	87-72-9	632	90-43-7	298
80-91-1	659	84-65-1	234	87-81-0	648	90-44-8	234
80-92-2	659	84-66-2	277	87-85-4	296	90-45-9	358
80-97-7	652	84-68-4	273	87-86-5	323	90-46-0	444
81-07-2	431	84-74-2	272	87-87-6	277	90-47-1	444
81-08-3	433	84-76-4	288	87-88-7	258	90-52-8	360
81-13-0	692	84-79-7	303	87-89-8	683	90-65-3	693
81-14-1	303	84-80-0	706	88-04-0	260	90-80-2	639
81-16-3	314	84-86-6	312	88-06-2	347	90-82-4	334
81-24-3	661	84-88-8	399	88-14-2	393	90-90-4	251
81-25-4	653	84-89-9	314	88-15-3	354	90-91-5	701
81-27-6	647	85-01-8	324	88-16-4	259	90-93-7	249
81-31-2	351	85-02-9	365	88-16-4	373	90-94-8	311
81-54-9	335	85-18-7	375	88-19-7	343	90-96-0	279
81-61-8	335		702			90-98-2	
		85-31-4		88-21-1	322		274
81-64-1	335	85-32-5	395	88-27-7	272	90-99-3	290
81-77-6	400	85-41-6	333	88-30-2	348	91-00-9	290
81-81-2	707	85-42-7	204	88-31-1	438	91-01-0	239
81-84-5	312	85-44-9	333	88-58-4	272	91-02-1	365
	431		312		251		
81-88-9		85-46-1		88-65-3		91-08-7	346
81-92-5	325	85-47-2	312	88-67-5	302	91-10-1	280
81-93-6	419	85-52-9	242	88-72-2	321	91-13-4	271
82-02-0	404	85-61-0	673	88-73-3	261	91-15-6	333
82-05-3	236	85-66-5	424	88-74-4	316	91-16-7	279
02 00 0	200	00 00 0			210	21 10 1	-, /

720

91-17-8	210	93-18-5	292	95-88-5	263	98-54-4	256
91-18-9	424	93-20-9	315	95-93-2	341	98-56-6	259
91-19-0	430	93-25-4	305	95-94-3	339	98-58-8	251
91-20-3	311	93-31-9	439	95-95-4	347	98-59-9	344
91-22-5	430	93-35-6	442	95-96-5	385	98-60-2	259
91-23-6	316	93-40-3	280	96-09-3	337	98-79-3	604
91-40-7	288	93-53-8	331	96-10-6	523	98-80-6	541
91-47-4	329	93-56-1	337	96-14-0	165	98-82-8	266
91-48-5	329	93-58-3	307	96-20-8	99	98-83-9	310
91-52-1	279	93-59-4	324	96-22-0	126	98-85-1	329
91-53-2	390	93-62-9	151	96-31-1	133	98-86-2	224
91-56-5	402	93-76-5	347	96-33-3	161	98-88-4	242
91-57-6	309	93-91-4	241	96-34-4	162	98-89-5	203
91-58-7	261	93-95-8	330	96-37-7	218	98-92-0	415
91-59-8	314	93-97-0	240 236	96-43-5	375	98-95-3	316
91-60-1 91-62-3	342 412	93-98-1 93-99-2	230 328	96-45-7 96-47-9	390 412	98-96-4 98-97-5	425 425
91-02-3 91-63-4	412 412	93-99-2 94-09-7	528 292	96-47-9 96-48-0	412 112	98-97-5 98-98-6	423 422
91-03-4 91-64-5	412 376	94-09-7 94-20-2	292 334	96-49-1	386	99-03-6	422 227
91-65-6	212	94-20-2 94-25-7	255	96-50-4	362	99-04-7	344
91-66-7	276	94-25-7	233	96-53-7	436	99-05-8	227
91-94-1	270	94-41-7	235	96-54-8	412	99-06-9	298
92-06-8	339	94-53-1	334	96-77-5	325	99-08-1	321
92-24-0	311	94-59-7	432	96-82-2	641	99-09-2	316
92-29-5	297	94-62-2	423	96-97-9	320	99-11-6	376
92-32-0	428	94-67-7	336	96-98-0	310	99-14-9	186
92-35-3	437	94-74-6	261	97-00-7	260	99-24-1	308
92-41-1	311	94-75-7	275	97-02-9	285	99-28-5	271
92-51-3	197	95-03-4	260	97-23-4	275	99-30-9	275
92-52-4	248	95-13-6	301	97-30-3	643	99-32-1	373
92-59-1	245	95-14-7	365	97-39-2	291	99-33-2	286
92-61-5	432	95-15-8	365	97-41-6	212	99-34-3	286
92-62-6	423	95-20-5	409	97-44-9	505	99-35-4	349
92-66-0	252	95-45-4	131	97-53-0	293	99-52-5	309
92-67-1	228	95-46-5	255	97-56-3	227	99-54-7	275
92-69-3	298	95-47-6	352	97-59-6	357	99-55-8	309
92-70-6	313	95-48-7	265	97-62-1	142	99-56-9	319
92-71-7	387	95-49-8	263	97-63-2	143	99-57-0	230
92-76-2	299	95-50-1	273	97-65-4	156	99-61-6	316
92-77-3	299	95-51-2	258	97-67-6	157	99-65-0	285
92-82-0	419	95-52-3	295	97-88-1	111	99-73-0	254
92-83-1	443	95-53-4	344	97-90-5	141	99-76-3	308
92-84-2	419	95-54-5	329	97-93-8	506	99-77-4	292
92-85-3	436	95-55-6	231	97-94-9	564	99-81-0	253
92-86-4	270	95-56-7	254	97-95-0	139	99-87-6	267
92-87-5	239	95-57-8	262	97-97-2	115	99-90-1	250
92-88-6	278 327	95-63-6 05-64-7	348 282	98-00-0 08-01-1	394 393	99-92-3 99-93-4	227 297
92-91-1 92-92-2	248	95-64-7 95-65-8	282 284	98-01-1 98-03-3	393 438	99-93-4 99-94-5	297 344
92-92-2 92-94-4	248 339	95-68-1	284 282	98-05-5 98-05-5	438 541	99-94-3 99-96-7	544 298
92-94-4 93-00-5	339 314	95-71-6	282 344	98-05-5 98-06-6	255	99-90-7 99-97-8	298 285
93-04-9	309	95-73-8	276	98-08-8	233 348	99-99-0	321
93-04-9 93-05-0	228	95-75-0	276	98-09-9 98-09-9	238	100-00-5	262
93-07-2	228	95-76-1	270	98-09-9 98-11-3	238	100-01-6	202 316
93-07-2	279	95-77-2	272	98-11-5	258	100-02-7	310 319
93-09-4	312	95-77-2	275	98-29-3	259	100-06-1	304
93-10-7	429	95-80-7 95-80-7	343	98-29-5 98-48-6	230	100-09-4	304
93-11-8	312	95-83-0	263	98-50-0	508	100-10-7	280
93-15-2	293	95-84-1	203	98-51-1	257	100-11-8	317
93-17-4	297	95-87-4	284	98-53-3	198	100-13-0	321
	_~ /				1,0		

100-14-1	317	102-82-9	186	105-56-6	140	107-40-4	190
100-15-2	309	102-85-2	563	105-57-7	89	107-41-5	165
100-16-3	319	102-87-4	187	105-58-8	125	107-43-7	589
100-17-4	316	102-92-1	264	105-60-2	371	107-46-0	530
100-19-6	316	102-94-3	264	105-61-3	157	107-51-7	539
100-20-9	338	102-91-9	332	105-65-6	177	107-59-5	109
100-21-0	338	103-16-2	246	105-74-8	157	107-71-1	111
100-22-1	341	103-19-5	346	105-87-3	681	107-81-3	104
100-23-2	283	103-29-7	247	106-02-5	172	107-82-4	153
100-25-4	285	103-30-0	337	106-22-9	118	107-83-5	165
100-26-5	427	103-32-2	243	106-24-1	146	107-84-6	153
100-28-7	319	103-33-3	235	106-24-1	681	107-86-8	178
100-39-0	243	103-34-4	388	106-28-5	679	107-87-9	167
100-42-5	337	103-36-6	292	106-31-0	112	107-89-1	97
100-43-6	443	103-41-3	244	106-34-3	335	107-91-5	118
100-44-7	244	103-49-1	270	106-36-5	178	107-92-6	112
100-46-9	243	103-50-4	245	106-37-6	270	107-93-7	118
100-47-0	240	103-63-9	324	106-38-7	255	107-94-8	117
100-48-1	377	103-70-8	295	106-40-1	251	107-95-9	585
100-51-6	243	103-71-9	330	106-41-2	254	107-97-1	604
100-52-7	235	103-72-0	330	106-42-3	352	107-98-2	177
100-53-8	246	103-73-1	325	106-43-4	263	108-01-0	129
100-54-9	377	103-79-9	326	106-44-5	265	108-03-2	169
100-57-2	541	103-81-1	326	106-45-6	344	108-05-4	193
100-61-8	306	103-82-2	326	106-46-7	273	108-08-7	132
100-63-0	330	103-83-3	244	106-47-8	258	108-10-1	165
100-64-1	205	103-84-4	224	106-48-9	262	108-11-2	165
100-65-2	330	103-85-5	332	106-49-0	345	108-13-4	157
100-66-3	233	103-86-6	231	106-50-3	329	108-18-9	128
100-69-6	443	103-88-8	250	106-51-4	241	108-19-0	103
100-71-0	391	103-89-9	224	106-54-7	263	108-20-3	155
100-76-5	431	103-90-2	223	106-57-0	596	108-21-4	155
100-83-4	298	104-01-8	305	106-70-7	163	108-24-7	90
100-85-6	247	104-03-0	319	106-88-7	136	108-29-2	442
100-97-0	395	104-04-1	316	106-89-8	136	108-30-5	179
	350	104-12-1	263	106-89-8	292	108-31-6	393
101-01-9							
101-02-0	572	104-24-5	327	106-93-4	121	108-32-7	423
101-43-9	207	104-51-8	255	106-94-5	177	108-38-3	352
101-49-5	366	104-54-1	264	106-95-6	98	108-39-4	265
101-53-1	247	104-74-5	388	106-97-8	105	108-41-8	263
101-54-2	228	104-81-4	255	106-99-0	105	108-43-0	262
101-61-1	341	104-82-5	307	107-02-8	95	108-44-1	345
101-63-3	250	104-83-6	259	107-03-9	175	108-45-2	329
101-64-4	305	104-85-8	345	107-04-0	116	108-46-3	336
101-75-7	237	104-87-0	343	107-05-1	98	108-47-4	405
101-77-9	269	104-88-1	259	107-06-2	122	108-48-5	406
101-81-5	290	104-91-6	321	107-07-3	116	108-52-1	360
	366		251			108-64-5	
101-82-6		104-92-7		107-08-4	177		142
101-84-8	329	104-93-8	306	107-10-8	177	108-67-8	304
101-97-3	293	104-94-9	233	107-11-9	98	108-68-9	284
102-01-2	224	104-96-1	308	107-12-0	176	108-69-0	282
	328	104-98-3	442				
102-02-3				107-13-1	96	108-70-3	347
102-04-5	270	105-30-6	165	107-14-2	115	108-73-6	333
102-06-7	289	105-34-0	162	107-15-3	140	108-75-8	440
102-08-9	291	105-36-2	139	107-18-6	98	108-77-0	377
	289		143				407
102-09-0		105-37-3		107-19-7	175	108-78-1	
102-25-0	348	105-39-5	139	107-21-1	141	108-79-2	385
102-54-5	528	105-53-3	127	107-27-7	528	108-80-5	377
102-69-2	191	105-54-4	139	107-30-2	116	108-85-0	206
102-71-6	187	105-55-5	127	107-31-3	163	108-86-1	251
102-71-0	10/	105-55-5	12/	107-31-3	105	100-00-1	231

108-87-2	218	110-44-1	179	111-77-3	125	115-11-7	153
108-88-3	343	110-45-2	154	111-78-4	207	115-25-3	219
108-89-4	411	110-49-6	<i>93</i>	111-82-0	162	115-27-5	200
108-90-7	259	110-51-0	514	111-83-1	170	115-37-7	436
108-91-8	206	110-53-2	101	111-84-2	169	115-39-9	254
108-93-0	205	110-54-3	149	111-87-5	170	115-40-2	252
108-94-1	205	110-58-7	101	111-88-6	170	115-41-3	546
108-95-2	325	110-59-8	193	111-90-0	125	115-53-7	432
108-97-4	428	110-61-2	179	111-92-2	121	115-69-5	100
108-98-5	342	110-62-3	192	111-96-6	127	115-76-4	127
108-99-6	411	110-63-4	105	112-00-5	135	115-77-5	645
109-00-2	<i>39</i> 8	110-65-6	112	112-02-7	115	115-85-5	519
109-02-4	409	110-66-7	173	112-04-9	539	115-86-6	571
109-04-6	370	110-71-4	129	112-05-0	171	115-87-7	511
109-06-8	411	110-74-7	177	112-07-2	93	116-17-6	566
109-07-9	410	110-75-8	116	112-24-3	188	116-31-4	704
109-08-0	411	110-80-5	137	112-27-6	188	116-63-2	230
109-09-1	375	110-81-6	125	112-29-8	119	116-85-8	229
109-12-6	361	110-82-7	203	112-30-1	119	117-08-8	340
109-13-7	111	110-83-8	206	112-34-5	125	117-10-2	277
109-52-4	193	110-85-0	422	112-36-7	125	117-12-4	234
	153						
109-53-5		110-86-1	425	112-38-9	192	117-18-0	339
109-57-9	99	110-87-2	383	112-40-3	134	117-34-0	288
109-60-4	176	110-88-3	441	112-42-5	192	117-37-3	233
109-64-8	121	110-89-4	422	112-47-0	119	117-39-3	429
109-65-9	108	110-91-8	414	112-48-1	142	117-80-6	274
109-66-0	172	110-94-1	146	112-49-2	188	117-81-7	277
109-68-2	173	110-97-4	128	112-53-8	135	118-00-3	395
109-69-3	108	110-98-5	133	112-54-9	156	118-10-5	672
109-70-6	117	110-99-6	127	112-55-0	135	118-48-9	402
109-73-9	108	111-01-3	629	112-57-2	183	118-52-5	382
109-74-0	112	111-02-4	629	112-62-9	165	118-55-8	332
109-75-1	98	111-11-5	165	112-72-1	182	118-65-0	217
109-77-3	157	111-15-9	<i>93</i>	112-73-2	121	118-69-4	276
109-79-5	106	111-16-0	174	112-78-8	192	118-71-8	406
109-82-0	163	111-17-1	185	112-79-8	135	118-74-1	296
109-85-3	160	111-20-6	178	112-80-1	171	118-75-2	258
109-86-4	160	111-25-1	150	112-82-3	114	118-78-5	442
109-87-5	144	111-26-2	150	112-85-6	134	118-79-6	346
109-89-7	124	111-27-3	150	112-86-7	136	118-90-1	344
							259
109-90-0	142	111-30-8	146	112-89-0	104	118-91-2	
109-92-2	144	111-34-2	112	112-92-5	169	118-92-3	227
109-94-4	142	111-40-0	120	112-95-8	135	118-96-7	349
109-97-7	428	111-41-1	151	113-00-8	147	118-97-8	260
109-99-9	434	111-42-2	124	113-15-5	389	119-24-4	424
110-00-9	393	111-43-3	177	113-58-4	668	119-26-6	287
110-01-0	435	111-44-4	102	113-73-5	597	119-27-7	285
110-02-1	438	111-46-6	125	114-07-8	679	119-30-2	302
110-03-2	131	111-47-7	134	114-21-6	554	119-32-4	309
110-05-4	122	111-49-9	395	114-25-0	367	119-36-8	310
110-13-4	92	111-55-7	141	114-49-8	698	119-39-1	421
110-14-5	179	111-61-5	143	114-70-5	555	119-48-8	707
110-15-6	179	111-63-7	193	114-76-1	555	119-53-9	240
110-16-7	157	111-65-9	170	114-80-7	315	119-59-5	269
110-17-8	146	111-66-0	170	114-83-0	226	119-61-9	240
110-18-9	184	111-68-2	148	115-02-6	589	119-64-2	340
110-20-3	91	111-69-3	97	115-07-1	175	119-65-3	403
110-21-4	150	111-70-6	148	115-08-2	185	119-68-6	306
110-26-9	102	111-71-7	147	115-09-3	535	119-91-5	368
110-42-9	162	111-76-2	107	115-10-6	163	119-93-7	343
110-42-9	102	111-70-2	107	113-10-0	105	117-93-1	545

120-12-7	233	123-07-9	293	126-29-4	630	132-64-9	381
120-14-9	351	123-08-0	298	126-30-7	132	132-65-0	381
120-18-3	312	123-11-5	232	126-33-0	433	132-66-1	315
120-20-7	297	123-19-3	134	126-71-6	565	133-11-9	327
120-23-0	313	123-25-1	127	126-73-8	563	133-32-4	401
120-29-6	441	123-30-8	231	126-81-8	212	133-38-0	128
120-36-5	275	123-31-9	297	126-98-7	158	133-49-3	323
120-46-7	269	123-32-0	386	127-06-0	92	134-32-7	314
120-57-0	334	123-33-1	157	127-07-1	470	134-58-7	363
120-61-6	284	123-38-6	176	127-09-3	548	134-81-6	239
120-66-1	224	123-39-7	163	127-17-3	178	134-84-9	307
120-72-9	400	123-42-2	151	127-18-4	181	134-85-0	259
		123-46-6					
120-73-0	424		606	127-19-5	129	134-96-3	338
120-78-8	<i>388</i>	123-51-3	152	127-40-2	630	135-16-0	701
120-80-9	257	123-54-6	<i>93</i>	127-41-3	216	135-19-3	313
120-82-1	347	123-56-8	179	127-47-9	704	135-20-6	521
120-83-2	275	123-62-6	176	127-63-9	290	135-48-8	323
120-92-3	209	123-63-7	418	127-82-2	576	135-49-9	355
120-93-4	390	123-68-3	299	127-95-7	544	135-52-4	576
121-00-6	256	123-73-9	118	127-96-8	545	135-59-1	438
121-14-2	287	123-75-1	429	128-00-7	548	135-61-5	313
121-19-7	539	123-78-4	699	128-04-1	552	135-67-1	419
121-33-5	351	123-86-4	107	128-08-5	105	135-68-2	228
121-40-4	339	123-90-0	438	128-13-2	661	135-70-6	335
121-43-7	566	123-91-1	386	128-37-0	272	135-73-9	331
121-44-8	188	123-92-2	152	128-39-2	272	135-88-6	331
				128-57-4			
121-45-9	567	123-93-3	185		647	136-09-4	672
121-46-0	219	123-95-5	112	128-64-3	303	136-36-6	269
121-47-1	304	123-99-9	101	128-95-0	268	136-64-8	299
121-54-0	239	124-02-7	119	129-00-0	335	136-72-1	334
121-57-3	338	124-04-9	96	129-16-8	534	136-95-8	358
121-60-8	223	124-09-4	149	129-44-2	268	137-08-6	692
121-69-7	281	124-12-9	113	129-64-6	219	137-18-8	<i>283</i>
121-70-0	542	124-18-5	119	129-66-8	349	137-26-8	185
121-72-2	284	124-20-9	179	129-73-7	303	137-30-4	575
121-73-3	261	124-22-1	135	129-79-3	349	137-32-6	161
121-79-9	334		456	130-14-3	555		556
		124-38-9				137-40-6	
121-82-4	377	124-40-3	129	130-15-4	313	138-37-4	229
121-88-0	230	124-41-4	554	130-22-3	505	138-52-3	647
121-89-1	316	124-42-5	89	130-24-5	707	138-84-1	543
121-91-5	302	124-43-6	470	130-26-7	376	138-89-6	283
121-92-6	317	124-47-0	192	130-40-5	680	139-02-6	555
121-98-2	306	124-58-3	535	130-86-9	424	139-13-9	168
122-00-9	306	124-63-0	159	130-95-0	430	139-59-3	326
122-03-2	266	124-64-1	559	131-08-8	549	139-65-1	269
122-04-3	317	124-65-2	550	131-11-3	284	139-66-2	290
	245						
122-19-0		124-68-5	100	131-14-6	268	139-85-5	334
122-25-8	308	124-70-9	537	131-18-0	269	140-10-3	264
122-37-2	298	124-73-2	121	131-22-6	327	140-11-4	243
122-39-4	288	124-76-5	217	131-28-2	315	140-22-7	289
122-51-0	189	124-83-4	199	131-48-6	662	140-28-3	270
122-52-1	565	124-87-8	220	131-56-6	278	140-29-4	244
122-57-6	235	125-46-2	703	131-69-1	333	140-40-9	353
122-59-8	326	125-58-6	685	131-74-8	507	140-66-9	322
122-61-8	167	126-00-1	250	131-91-9	320	140-87-4	119
122-66-7	290	126-07-8	395	132-27-4	555	140-88-5	138
122-79-2	326	126-11-4	191	132-28-5	573	140-89-6	544
122-80-5	226	126-14-7	648	132-29-6	511	140-93-2	554
122-85-0	223	126-17-0	660	132-53-6	320	140-95-4	132
122-88-3	262	126-18-1	660	132-60-5	420	141-22-0	178
	- •						

141-32-2	107	148-24-3	399	244-69-9	372	302-79-4	704
141-43-5	100	148-82-3	601	248-13-5	364	302-95-4	551
141-52-6	552	149-29-1	418	252-47-1	239	303-07-1	278
							270
141-53-7	553	149-30-4	407	253-52-1	421	303-21-9	
141-75-3	112	149-32-6	637	253-66-7	376	303-43-5	652
141-78-6	138	149-44-0	553	253-82-7	429	303-81-1	691
141-79-7	158	149-45-1	523	254-60-4	415	303-97-9	673
141-82-2	157	149-74-6	535	254-79-5	415	303-98-0	673
141-84-4	431	149-91-7	295	259-56-3	240	304-06-3	332
141-86-6	380	150-13-0	227	259-57-4	364	304-20-1	396
141-90-2	439	150-25-4	593	259-79-0	248	304-21-2	395
141-97-9	138	150-30-1	602	259-84-7	381	304-28-2	512
142-04-1	232	150-39-0	151	260-94-6	355	304-55-2	129
142-08-5	398	150-46-9	564	271-44-3	400	304-59-6	545
142-09-6	150	150-60-7	270	271-63-6	363	304-88-1	243
142-18-5	147	150-61-8	289	271-89-6	364	304-91-6	302
142-29-0	209	150-68-5	263	272-13-2	365	305-01-1	389
142-45-0	94	150-76-5	305	273-09-6	364	305-03-3	671
142-59-6	526	150-78-7	279	273-40-5	363	305-33-9	403
142-62-1	113	150-86-7	694	273-77-8	365	305-84-0	590
142-63-2	422	150-90-3	526	273-77-8	518	306-07-0	322
142-64-3	422	151-10-0	279	274-40-8	401	306-67-2	179
142-68-7	434	151-21-3	552	274-76-0	363	309-43-3	432
142-71-2	521	151-50-8	483	275-51-4	235	311-03-5	573
142-72-3	533	151-56-4	363	275-94-5	380	311-28-4	180
142-73-4	152	151-63-3	99	280-57-9	380	311-89-7	174
142-73-4	599	152-02-3	358	280-64-8	513	312-30-1	249
142-87-0	550	152-93-2	648	281-23-2	194	315-22-0	674
142-90-5	135	153-18-4	707	286-20-4	206	316-42-7	389
142-96-1	109	153-78-6	229	286-62-4	208	316-46-1	680
143-07-7	157	153-98-0	698	287-23-0	201	316-66-5	397
143-18-0	544	154-08-5	595	287-24-6	651	319-84-6	216
143-19-1	555	154-17-6	634	287-27-4	437	326-91-0	436
143-24-8	182		437	287-92-3	208	327-56-0	430 602
		154-42-7					
143-27-1	114	156-06-9	332	288-13-1	425	327-57-1	602
143-28-2	171	156-10-5	320	288-32-4	400	327-62-8	545
143-62-4	654	156-38-7	300	288-88-0	439	327-97-9	260
143-66-8	556	156-39-8	300	288-94-8	436	328-42-7	171
143-67-9	704	156-54-7	550	290-37-9	424	328-50-7	171
144-02-5	549	156-57-0	592	291-21-4	441	329-56-6	690
144-48-9	152	156-59-2	123	291-64-5	202	329-71-5	287
144-55-8	492	156-60-5	123	294-93-9	520	329-98-6	331
144-62-7	171	156-73-5	682	295-17-0	210	330-54-1	275
144-67-2	628	156-83-2	373	295-37-4	434	331-39-5	257
144-68-3	630	157-03-9	593	297-90-5	397	333-18-6	141
144-80-9	226	188-87-4	351	298-07-7	512	333-20-0	487
144-83-2	433	191-07-1	265	298-07-7	482	333-27-7	487 167
144-90-1	587	191-24-2	240	298-81-7	708	333-49-3	437
145-42-6	556	192-97-2	241	298-93-1	437	333-93-7	120
146-14-5	680	195-19-7	240	298-96-4	441	334-48-5	113
146-48-5	444	195-84-6	440	299-11-6	410	334-50-9	179
146-68-9	402	198-55-0	324	299-28-5	517	335-27-3	219
146-77-0	671	206-44-0	293	299-42-3	678	335-57-9	173
147-14-8	521	208-96-8	223	300-39-0	594	335-67-1	172
147-71-7	180	213-14-3	333	301-04-2	531	338-69-2	585
147-73-9	180	217-59-4	350	302-01-2	468	338-83-0	174
147-82-0	346	218-01-9	263	302-17-0	115	339-72-0	591
147-85-3	603	222-93-5	270	302-27-2	354	340-05-6	332
147-93-3	342	222-93-3	270 419	302-66-9	167	340-05-0	332
147-93-3 147-94-4	542 674	230-27-3	365	302-72-7	585	341-92-4	332 294
14/-74-4	0/4	230-27-3	505	502-72-7	202	341-92-4	294

343-27-1	395	425-75-2	144	470-38-2	626	488-43-7	639
343-65-7	404	429-06-1	559	470-82-6	212	488-82-4	632
343-94-2	441	429-07-2	559		171	488-93-7	393
				471-46-5			
345-78-8	334	429-42-5	558	472-70-8	628	489-84-9	296
350-03-8	354	431-03-8	102	472-86-6	705	490-02-8	363
350-46-9	294	431-06-1	122	472-92-4	627	490-11-9	427
352-21-6	587	432-68-8	628	472-93-5	627	490-55-1	380
352-32-9	295	434-13-9	658	473-30-3	232	490-79-9	278
352-70-5	295	437-11-6	560	473-34-7	272	490-83-5	634
352-93-2	127	438-08-4	656	474-07-7	368	491-33-8	407
352-97-6	596	438-22-2	650	474-25-9	651	491-35-0	412
355-02-2	220	438-23-3	650	474-62-4	651	491-37-2	375
355-42-0	173	440-17-5	440	475-31-0	656	492-11-5	684
355-68-0	219	441-38-3	240	475-38-7	312	492-17-1	248
357-57-3	670	442-16-0	379	476-28-8	406	492-22-8	439
358-23-6	189	442-51-3	395	476-66-4	291	492-27-3	404
358-71-4	684	443-72-1	408	477-29-2	633	492-37-5	331
360-65-6	656	445-29-4	294	477-30-5	673	492-62-6	640
360-68-9	653	445-38-9	294	477-73-6	432	492-70-6	297
361-37-6	327	446-72-0	415	478-61-5	367	492-94-4	394
363-03-1	328	447-31-4	267	478-94-4	406	492-99-9	205
363-72-4	323		295		402		203
		448-37-3		478-95-5		493-01-6	
366-18-7	367	448-71-5	356	479-18-5	384	493-02-7	210
366-29-0	341	451-13-8	278	479-27-6	269	493-52-7	310
367-12-4	294	451-40-1	267	479-59-4	404	494-03-1	249
367-51-1	556	452-58-4	380	479-61-8	671	494-38-2	355
368-39-8	189	452-86-8	279	480-16-0	414	495-08-9	278
369-07-3	644	453-17-8	146	480-22-8	234	495-20-5	398
369-35-7	294	454-29-5	598	480-41-1	415	495-48-7	235
370-69-4	574	454-41-1	601	480-44-4	384	495-69-2	589
372-09-8	119	454-49-9	188	480-63-7	348	495-84-1	403
372-75-8	591	456-22-4	294	480-66-0	333	496-11-7	301
372-97-4	680	456-27-9	539	480-68-2	415	496-16-2	383
373-44-4	120	458-09-3	294	481-21-0	652	496-41-3	364
374-12-9	221	458-35-5	265	481-26-5	659	496-67-3	105
375-22-4	173	458-37-7	266	481-29-8	650	496-78-6	349
375-96-2	173	461-06-3	590	481-39-0	300	497-19-8	492
378-44-9	651	461-58-5	119	481-42-5	299	497-23-4	376
379-68-0	657	462-06-6	294	481-74-3	278	497-25-6	417
379-79-3	389	462-08-8	361	482-05-3	288	497-38-1	219
381-73-7	127	462-10-2	598	482-74-6	377	497-59-6	406
382-45-6	650	462-18-0	187	482-89-3	400	497-76-7	633
383-63-1	144	462-94-2	120	483-04-5	356	498-02-2	299
383-64-2	144	463-49-0	97	483-55-6	333	498-21-5	167
389-08-2	688	463-51-4	156	483-65-8	336	498-23-7	117
392-12-1	401	463-58-1	457	484-11-7	385	498-24-8	158
392-56-3	296	463-82-1	168	484-20-8	668	498-59-9	594
394-31-0	297	464-10-8	104	484-50-0	267	498-66-8	219
404-86-4	257	464-43-7	198	485-35-8	378	498-94-2	603
405-50-5	295	464-48-2	199	485-47-2	315	499-06-9	283
405-79-8	294	464-49-3	199	485-49-4	668	499-83-2	387
407-24-9	103	464-72-2	241	485-71-2	672	500-05-0	376
407-25-0	189	465-42-9	626	485-89-2	<i>397</i>	500-22-1	426
407-41-0	694	466-80-8	679	486-25-9	293	500-38-9	322
408-35-5	555	466-81-9	679	486-35-1	383	500-40-3	296
420-04-2	462	467-15-2	417	487-21-8	424	500-99-2	280
420-37-1	566	467-55-0	656	487-51-4	200	501-30-4	404
	500 529		336				331
420-56-4		467-62-9		487-79-6	404	501-52-0	
421-06-7	105	468-28-0	217	487-90-1	695	501-53-1	246
422-05-9	172	469-59-0	403	488-23-3	341	501-58-6	279

501-65-5	288	513-36-0	153	525-82-6	391	532-32-1	550
501-97-3	300	513-38-2	153	526-08-9	420	532-40-1	701
501-98-4	298	513-44-0	166	526-26-1	557	532-54-7	302
502-41-0	202	513-48-4	152	526-31-8	601	532-55-8	242
502-42-1	202	513-53-1	106	526-55-6	441	532-78-5	372
502-49-8	207	513-81-5	130	526-75-0	284	532-82-1	264
502-65-8	628	513-85-9	105	526-94-3	554	533-01-7	521
502-72-7	208	513-86-0	150	526-98-7	641	533-30-2	358
502-74-2	156	514-10-3	194	526-99-6	637	533-48-2	676
503-17-3	112	514-35-5	112	527-07-1	553	533-58-4	302
503-28-6	102	514-76-1	626	527-07-1	639	533-62-0	599
503-29-7	363	514-78-3	626	527-17-3	291	533-67-5	635
503-30-0	417	514-85-2	705	527-52-6	636	533-73-3	239
503-49-1	151	515-30-0	234	527-53-7	341	533-75-5	350
504-02-9	205	515-42-4	550	527-54-8	349	533-87-9	97
504-15-4	322	515-74-2	556	527-60-6	349	533-90-4	517
504-17-6	437	515-84-4	144	527-61-7	283	534-00-9	104
504-20-1	174	516-05-2	164	527-62-8	228	534-07-6	122
504-24-5	361	516-12-1	152	527-72-0	438	534-15-6	89
504-29-0	361	517-09-9	655	527-76-4	232	534-17-8	457
504-31-4	428	517-10-2	653	527-85-5	343	534-22-5	409
504-63-2	175	517-23-7	94	528-29-0	285	534-52-1	286
505-22-6	386	517-28-2	683	528-44-9	348	534-85-0	228
505-23-7	388	517-51-1	342	528-45-0	285	534-94-1	358
505-48-6	179	518-05-8	312	528-71-2	397	535-11-5	139
505-54-4	148	518-28-5	694	528-76-7	285	535-15-9	140
505-66-8	396	518-82-1	291	529-19-1	345	535-46-6	510
505-95-3	151	519-05-1	322	529-23-7	227	535-80-8	259
506-03-6	115	519-23-3	388	529-34-0	340	535-83-1	440
506-12-7	147	519-44-8	287	529-36-2	342	535-83-1	605
506-17-2	192	519-62-0	671	529-44-2	688	535-87-5	268
506-30-9	101	519-73-3	350	529-59-9	638	536-10-6	325
506-46-7	148	519-88-0	271	529-64-6	350	536-33-4	390
506-59-2	129	520-26-3	395	529-69-1	403	536-40-3	259
506-64-9	490	520-33-2	395	529-86-2	234	536-69-6	394
506-65-0	466	520-36-5	440	530-36-9	229	536-74-3	327
506-68-3	462	520-85-4	657	530-43-8	671	536-75-4	391
506-78-5	462	521-11-9	657	530-44-9	281	536-90-3	233
506-96-7	93	521-24-4	538	530-47-2	290	537-00-8	518
507-02-8	95	521-31-3	405	530-48-3	289	537-17-7	358
507-19-7	104	521-35-7	371	530-50-7	290	537-47-3	332
507-20-0	109	521-74-4	381	530-55-2	279	537-64-4	526
507-25-5	114	522-66-7	683	530-57-4	338	537-65-5	268
507-28-8	561	522-75-8	438	530-59-6	298	537-92-8	224
507-32-4	527	523-21-7	547	530-62-1	372	537-98-4	299
508-04-3	197	523-27-3	270	530-75-6	226	538-14-7	584
508-75-8	633	523-44-4	540	530-85-8	320	538-28-3	245
509-14-8	185	523-67-1	533	530-93-8	340	538-51-2	245
509-34-2	431	524-36-7	697	531-14-6	376	538-56-7	264
510-13-4	303	524-38-9	300	531-53-3	364	538-58-9	269
510-64-5	657	524-42-5	313	531-55-5	364	538-62-5	289
511-08-0	389	524-63-0	377	531-57-7	364	538-74-9	270
511-09-1	389	524-64-4	269	531-72-6	517	538-75-0	211
511-18-2	658	524-80-1	372	531-81-7	376	538-81-8	288
512-04-9	654	524-97-0	424	531-84-0	296	539-03-7	258
512-35-6	238	525-03-1	229	531-85-1	239	539-12-8	334
512-47-0	115	525-05-3	539	531-91-9	288	539-15-1	297
512-56-1	567	525-27-9	256	531-99-7	225	539-17-3	227
512-69-6	646	525-64-4	293	532-02-5	555	539-30-0	245
513-35-9	101	525-79-1	394	532-27-4	258	539-35-5	701

539-47-9	393	547-25-1	648	556-10-5	320	574-93-6	542
539-64-0	594	547-57-9	551	556-32-1	533	574-98-1	252
539-88-8	142	547-58-0	535	556-33-2	593	575-44-0	278
540-04-5	629	548-04-9	301	556-50-3	596	575-47-3	549
540-05-6	629	548-24-3	526	556-52-5	394	576-19-2	669
540-23-8	345	548-42-5	356	556-56-9	99	576-24-9	275
540-37-4	302	548-43-6	389	556-63-8	532	576-26-1	284
540-38-5	302	548-62-9	266	556-65-0	475	576-36-3	637
540-54-5	177	548-65-2	323	556-67-2	539	577-11-7	551
540-59-0	123	548-93-6	297	556-88-7	168	577-19-5	253
540-67-0	143	549-38-2	307	556-89-8	169	577-56-0	225
540-69-2	507	549-56-4	430	556-91-2	506	577-71-9	287
540-72-7	497	550-33-4	697	556-99-0	191	577-85-5	396
540-80-7	111	550-44-7	310	557-01-7	398	578-57-4	251
540-84-1	190	550-57-2	300	557-09-5	575	578-66-5	362
540-88-5	107	550-60-7	318	557-11-9	99	578-68-7	361
541-14-0	590	550-74-3	422	557-17-5	167	578-76-7	409
541-15-1	590	551-06-4	315	557-21-1	503	578-86-9	384
541-41-3	139	551-16-6	360	557-24-4	157	578-95-0	355
541-47-9	129	552-16-9	317	557-41-5	575	579-10-2	305
541-59-3	428	552-23-8	321	557-59-5	181	579-18-0	242
541-73-1	273	552-32-9	315	557-61-9	169	579-43-1	297
541-88-8	115	552-38-5	533	557-66-4	138	579-92-0	288
542-05-2	91	552-46-5	314	557-99-3	95	580-13-2	253
542-11-0	232	552-62-5	414	558-13-4	113	580-15-4	361
542-18-7	201	552-79-4	308	558-17-8	111	580-17-6	361
542-28-9	442	552-86-3	394	558-32-7	560	581-05-5	600
542-32-5	586	552-89-6	316	560-09-8	199	581-40-8	283
542-55-2	153	553-12-8	696	561-07-9	379	581-42-0	283
542-59-6	93	553-17-3	296	561-20-6	371	581-64-6	438
542-69-8	110	553-24-2	415	562-48-1	601	581-89-5	318
542-90-5	143	553-26-4	367	562-90-3	548	581-96-4	314
542-92-7	208	553-39-9	299	563-41-7	178	582-25-2	543
543-21-5	94	553-53-7	415	563-63-3	548	582-52-5	635
543-24-8	583	553-54-8	532	563-79-1	130	582-60-5	384
543-27-1	153	553-70-8	533	563-80-4	162	583-39-1	407
543-38-4	590	553-79-7	320	563-83-7	154	583-59-5	218
543-59-9	101	553-90-2	132	564-02-3	190	583-61-9	405
543-63-5	515	553-97-9	307	564-36-3	389	583-75-5	228
543-80-6	508	554-00-7	272	565-00-4	199	583-78-8	275
543-88-4	516	554-01-8	408	565-48-0	221	583-93-7	593
543-94-2	557	554-05-2	575	565-50-4	221	584-02-1	173
544-01-4	153	554-12-1	166	565-80-0	128	584-04-3	128
544-15-0	507	554-13-2	474	566-57-5	659	584-08-7	483
544-17-2	516	554-68-7	188	566-58-5	659	584-13-4	362
544-25-2	202	554-70-1	564	566-78-9	650	584-48-5	252
544-40-1	122	554-73-4	350	568-93-4	316	584-84-9	346
544-47-8	260	554-84-7	319	569-61-9	336	584-85-0	588
544-62-7	102	554-91-6	638	571-61-9	283	585-07-9	111
544-63-8	168	554-95-0	239	571-92-6	655	585-47-7	237
544-76-3	148	555-06-6	549	572-09-8	631	585-48-8	382
	461		316		287		251
544-92-3		555-16-8		573-56-8		585-76-2	
545-26-6	656	555-21-5	317	573-57-9	277	585-79-5	253
546-06-5	376	555-30-6	594	573-58-0	264	585-84-2	95
546-18-9	652	555-31-7	506	573-83-1	545	585-99-9	643
546-56-5	540	555-44-2	191	573-97-7	253	586-11-8	287
546-67-6	532	555-45-3	190	574-15-2	239	586-38-9	304
546-68-9	559	555-48-6	596	574-16-3	239	586-75-4	252
546-74-7	552	555-68-0	317	574-25-4	685	586-76-5	251
546-98-4	652	555-75-9	506	574-66-3	241	586-77-6	252

586-78-7	253	594-61-6	152	606-20-2	287	614-80-2	223
586-89-0	225	594-65-0	187	606-22-4	285	615-18-9	373
586-96-9	320	595-30-2	199	606-23-5	301	615-20-3	373
587-04-2	258	595-40-4	600	606-26-8	317	615-28-1	329
587-85-9	525	595-46-0	132	606-35-9	349	615-43-0	301
587-90-6	286	595-49-3	133	606-40-6	261	615-57-6	270
587-98-4	535	595-90-4	561	606-68-8	689	615-58-7	271
589-02-6	510	596-03-2	381	606-81-5	286	615-67-8	260
589-15-1	252	596-38-3	421	606-83-7	290	615-93-0	274
589-16-2	292	597-12-6	643	607-24-9	318	615-95-2	385
589-17-3	252	597-43-3	132	607-34-1	416	616-02-4	117
589-18-4	346	597-71-7	645	607-57-8	318	616-06-8	602
589-21-9	254	597-80-8	511	607-93-2	346	616-13-7	101
589-34-4	2 <i>54</i> 163	598-04-9	122	608-33-3	271	616-29-5	120
						616-38-5	
589-90-2	212	598-10-7	209	608-36-6	121		130 524
589-92-4	218	598-31-2	103	608-37-7	121	616-38-6	524
589-93-5	405	598-50-5	167	608-40-2	132	616-44-4	413
590-18-1	106	598-53-8	156	608-66-2	636	616-47-7	409
590-28-3	483	598-55-0	162	608-71-9	323	616-75-1	245
590-46-5	590	598-58-3	164	608-91-3	347	617-33-4	140
590-47-6	589	598-75-4	161	608-92-4	347	617-35-6	143
590-73-8	131	598-78-7	117	609-19-8	347	617-45-8	589
590-92-1	104	599-04-2	683	609-72-3	284	617-48-1	157
591-08-2	95	599-66-6	291	609-89-2	275	617-52-7	132
591-22-0	406	599-67-7	289	609-93-8	286	617-73-2	152
591-23-1	218	600-37-3	151	609-99-4	287	617-84-5	126
591-27-5	231	601-89-8	320	610-02-6	348	617-86-7	565
591-31-1	232	602-01-7	287	610-09-3	203	617-89-0	394
591-35-5	275	602-09-5	247	610-27-5	320	618-36-0	307
591-49-1	218	602-38-0	286	610-28-6	285	618-39-3	236
591-50-4	302	602-55-1	327	610-30-3	285	618-41-7	238
591-54-8	361	602-60-8	316	610-39-9	287	618-51-9	302
591-55-9	361	602-94-8	323	610-54-8	286	618-80-4	275
591-76-4	163	602-99-3	349	610-71-9	270	618-95-1	309
591-80-0	98	603-00-9	398	610-72-0	282	619-04-5	283
591-87-7	98	603-02-1	287	610-94-6	307	619-05-6	268
591-93-5	172	603-11-2	320	611-01-8	282	619-15-8	287
592-04-1	476	603-12-3	285	611-08-5	417	619-17-0	230
592-13-2	131	603-32-7	203 571	611-32-5	412	619-19-1	320
592-20-1	92	603-33-8	571	611-33-6	375	619-23-8	317
592-31-4	167	603-34-9	350	611-34-7	361	619-31-8	283
592-51-4 592-41-6	149	603-35-0	571	611-35-8	375	619-42-1	283 307
592-41-0 592-42-7	149	603-36-1	571	611-71-2	303	619-50-1	309
592-42-7 592-57-4	203	603-45-2	336	611-73-4	303 242	619-58-9	309 302
592-76-7	148	603-54-3	291	611-95-0	242	619-65-8	267
592-84-7	110	603-71-4	318	611-97-2	283	619-67-0	297
592-85-8	476	603-79-2	282	611-98-3	268	619-73-8	317
593-45-3	169	603-83-8	309	612-14-6	237	619-84-1	281
593-51-1	161	604-35-3	652	612-37-3	413	620-22-4	345
593-56-6	160	604-44-4	261	612-42-0	603	620-24-6	298
593-81-7	190	604-53-5	248	612-60-2	412	620-40-6	346
593-85-1	147	604-59-1	414	612-62-4	375	620-45-1	522
593-95-3	457	604-68-2	640	612-71-5	350	620-50-8	283
594-09-2	567	604-69-3	640	612-94-2	331	621-02-3	291
594-15-0	186	604-88-6	296	612-95-3	420	621-09-0	288
594-18-3	120	605-48-1	273	612-98-6	321	621-23-8	348
594-20-7	123	605-60-7	321	613-12-7	306	621-37-4	300
594-27-4	562	605-69-6	286	613-31-0	277	621-42-1	223
594-36-5	101	605-91-4	422	613-78-5	315	621-59-0	303
594-44-5	136	605-94-7	673	614-75-5	300	621-66-9	299

621-82-9	264	627-84-9	141	635-78-9	546	674-76-0	165
621-84-1	244	627-93-0	129	635-93-8	263	674-82-8	409
622-15-1	289	627-95-2	588		342	675-20-7	442
				636-04-4			
622-21-9	276	628-02-4	113	636-09-0	277	676-97-1	536
622-32-2	236	628-13-7	427	636-30-6	347	677-53-6	342
622-47-9	310	628-28-4	111	636-70-4	188	677-69-0	147
622-51-5	346	628-41-1	203	636-73-7	427	680-31-9	530
622-78-6	245	628-63-7	100	636-88-4	690	681-84-5	560
622-97-9	310	628-73-9	113	636-98-6	302	684-16-2	148
623-05-2	298	628-81-9	109	637-01-4	341	685-73-4	638
623-12-1	258	629-04-9	148	637-39-8	188	685-87-0	125
623-24-5	271	629-05-0	171	637-44-5	331	685-91-6	124
623-25-6	276	629-11-8	149	637-59-2	332	687-38-7	597
623-26-7	276	629-14-1	142	637-84-3	605	688-71-1	573
623-27-8	338	629-20-9	207	637-87-6	260	688-73-3	563
623-33-6	596	629-25-4	552	637-88-7	205	688-74-4	562
623-42-7	162	629-31-2	147	637-92-3	109	690-02-8	132
				638-32-4			
623-49-4	140	629-41-4	170		179	691-38-3	165
623-51-8	143	629-45-8	109	638-38-0	534	693-02-7	150
623-65-4	171	629-54-9	114	638-53-9	187	693-23-2	135
623-70-1	139	629-59-4	181	638-95-9	197	693-65-2	101
623-73-4	140	629-70-9	114	639-58-7	572	693-72-1	192
	177						
623-84-7		629-96-9	101	639-81-6	389	693-98-1	409
623-91-6	126	629-97-0	134	640-19-7	144	694-59-7	427
624-03-3	141	630-01-3	148	640-60-8	332	695-34-1	360
624-31-7	302	630-02-4	169	641-13-4	234	696-54-8	426
624-38-4	279	630-08-0	457	641-36-1	666	696-62-8	302
624-60-2	163	630-10-4	547	641-70-3	320	697-82-5	349
624-64-6	107	630-18-2	109	641-85-0	659	697-91-6	274
624-65-7	175	630-60-4	658	642-31-9	234	698-69-1	281
624-73-7	128	631-36-7	559	642-44-4	357	700-12-9	324
624-84-0	145	631-40-3	185	642-71-7	348	700-13-0	349
624-91-9	164	631-61-8	506	642-78-4	672	700-16-3	418
624-92-0	130	632-12-2	600	643-13-0	681	700-56-1	218
625-35-4	118	632-22-4	185	643-43-6	287	700-57-2	195
625-45-6	160	632-25-7	338	644-32-6	242	700-58-3	195
625-47-8	116	632-46-2	282	644-97-3	542	701-99-5	326
625-51-4	89	632-51-9	342	645-48-7	332	703-59-3	296
625-52-5	167	632-52-0	342	645-49-8	337	703-80-0	353
625-53-6	143	632-56-4	183	645-96-5	509	704-00-7	267
625-77-4	119	632-69-9	547	646-04-8	173	704-15-4	597
626-05-1	381	632-92-8	350	646-06-0	387	706-35-2	416
626-15-3	271	632-93-9	382	646-31-1	181	708-06-5	299
626-35-7	143	632-99-5	336	652-04-0	307	708-79-2	413
626-39-1	346	633-03-4	250	653-89-4	686	709-49-9	302
626-48-2	413	633-65-8	367	657-26-1	600	709-63-7	348
626-51-7	163	633-71-6	299	657-27-2	600	712-74-3	340
626-56-2	410	633-96-5	540	657-84-1	557	716-53-0	258
626-58-4	410	633-99-8	261	658-78-6	320	719-22-2	271
626-60-8	375	634-35-5	430	660-68-4	124	723-62-6	234
626-61-9	375	634-36-6	348	660-88-8	588	725-12-2	387
626-64-2	398	634-65-1	284	661-19-8	134	732-26-3	346
626-72-2	598	634-66-2	339	661-69-8	530	733-52-4	151
626-97-1	192	634-67-3	347	665-66-7	196	734-77-0	248
627-06-5	167	634-83-3	339	666-99-9	97	741-03-7	182
627-11-2	116	634-90-2	339	670-54-2	181	751-38-2	342
627-20-3	173	634-93-5	347	672-15-1	598	754-05-2	570
627-20-3	173	635-21-1	228	673-40-5	251	754-34-7	173
627-45-2	145	635-51-8	332	673-84-7	97	758-96-3	132
627-83-8	141	635-65-4	367	674-26-0	686	759-24-0	125

760-21-4	139	821-06-7	120	870-50-8	121	937-14-4	262
760-32-7	523	821-48-7	102	870-93-9	598	938-55-6	384
760-93-0	158	822-16-2	556	872-35-5	407	938-79-4	328
761-65-9	121	822-23-1	169	872-36-6	443	938-85-2	409
762-21-0	124	822-36-6	409	872-50-4	412	939-26-4	253
762-62-9	132	822-67-3	206	872-85-5	426	939-52-6	262
762-72-1	506	823-18-7	204	872-93-5	412	940-31-8	326
763-10-0	681	823-76-7	194	873-32-5	259	940-69-2	684
763-29-1	165	823-96-1	566	873-55-2	549	940-71-6	480
764-13-6	131	824-07-9	338	873-66-5	310	941-98-0	225
	150		517		426		304
764-35-2		824-35-1		873-69-8		943-89-5	
764-85-2	171	824-72-6	542	873-74-5	228	946-82-7	205
765-30-0	209	824-79-3	556	873-83-6	362	947-04-6	363
765-43-5	210	824-94-2	304	874-14-6	386	947-42-2	525
			555				
766-39-2	132	825-90-1		874-23-7	194	947-84-2	248
767-00-0	267	826-73-3	241	874-42-0	273	948-60-7	696
767-15-7	359	826-74-4	351	877-24-7	544	951-55-3	601
767-92-0	379	826-81-3	397	877-44-1	348	951-77-9	675
768-32-1	566	827-19-0	552	879-39-0	339	951-78-0	676
768-33-2	524	827-21-4	551	880-52-4	196	952-23-8	379
768-90-1	196	827-52-1	267	882-06-4	317	957-75-5	670
768-91-2	218	827-54-3	351	882-33-7	289	958-80-5	280
768-92-3	196	828-01-3	300	883-99-8	308	959-10-4	248
768-93-4	196	828-51-3	195	886-38-4	289	959-28-4	269
768-94-5	196	828-60-3	<i>39</i> 8	890-38-0	675	960-71-4	571
768-95-6	195	830-03-5	319	892-21-7	318	961-07-9	675
769-42-6	384	830-09-1	304	893-33-4	313	961-68-2	286
770-12-7	542	830-81-9	314	901-93-9	655	971-74-4	432
770-71-8	216	830-96-6	401	902-47-6	286	975-17-7	330
771-29-9	340	831-23-2	342	914-45-4	181	977-96-8	383
771-51-7	401	831-59-4	237	915-35-5	656	979-92-0	665
771-61-9	323	831-61-8	292	917-23-7	435	981-40-8	515
771-97-1	269	835-64-3	397	917-61-3	<i>493</i>	989-38-8	431
772-14-5	328	836-30-6	318	919-62-0	565	992-59-6	510
772-15-6	328	838-85-7	524	920-46-7	158	992-92-7	562
772-33-8	300	840-78-8	368	920-66-1	149	993-13-5	536
773-76-2	382	842-07-9	237	921-01-7	592	994-32-1	565
775-12-2	525	845-10-3	551	921-53-9	545	994-89-8	528
776-34-1	230	845-46-5	551	922-32-7	591	995-45-9	563
779-02-2	306	846-70-8	538	922-67-8	166	996-50-9	523
781-43-1	282	847-25-6	701	923-73-9	102	996-70-3	183
781-73-7	225	852-38-0	367	924-49-0	529	998-07-2	677
782-92-3	243	853-35-0	549	924-49-2	587	998-30-1	564
784-04-3	224	853-68-9	508	926-39-6	100	998-40-3	563
784-62-3	437	860-22-0	531	928-04-1	505	999-90-6	112
787-70-2	248	863-57-0	553	928-49-4	150	999-97-3	530
789-25-3	572	865-34-9	532	930-88-1	164	1000-84-6	138
791-28-6	572	865-44-1	472	931-19-1	421	1001-53-2	94
791-31-1	572	865-47-4	543	931-71-5	204	1002-62-6	550
793-41-9	232	865-48-5	550	931-87-3	207	1002-84-2	172
804-63-7	430	866-83-1	543	931-88-4	207	1003-03-8	209
811-93-8	166	866-97-7	180	932-90-1	236	1003-32-3	436
813-19-4	529	867-13-0	565	933-18-6	563	1003-67-4	421
814-68-6	96	867-81-2	692	933-52-8	221	1003-73-2	421
814-80-2	517	868-14-4	544	934-34-9	396	1003-78-7	133
814-81-3	521	868-19-9	557	935-30-8	371	1003-78-7	386
814-95-9	557	868-77-9	151	935-31-9	202	1005-24-9	372
818-08-6	522	869-24-9	117	935-56-8	196	1005-56-7	328
			95				
818-88-2	178	869-29-4		935-92-2	348	1006-94-6	408
819-83-0	526	870-46-2	108	935-95-5	340	1007-32-5	245

1007-42-7	597	1119-34-2	589	1195-16-0	584	1317-36-8	473
1008-72-6	508	1119-94-4	135	1195-45-5	295	1321-74-0	291
1009-61-6	268	1119-97-7	182	1197-55-3	231	1324-63-6	649
1009-93-4	530	1120-01-0	553	1198-27-2	230	1327-53-3	451
1010-95-3	413	1120-02-1	539	1198-33-0	414	1330-20-7	351
1010-98-1	478	1120-44-1	521	1199-03-7	430	1330-43-4	492
1012-72-2	271	1120-49-6	123	1200-93-7	407	1330-78-5	574
1020-31-1	272	1121-22-8	211	1202-34-2	387	1332-52-1	510
1024-41-5	247	1121-60-4	426	1204-06-4	401	1333-74-0	469
1024-99-3	684	1121-89-7	422	1205-72-7	358	1333-82-0	459
1025-70-4	498	1122-17-4	123	1207-72-3	410	1344-09-8	496
1032-65-1	675	1122-58-3	384	1210-12-4	266	1344-28-1	446
1034-39-5	571	1123-40-6	386	1212-08-4	327	1344-58-7	502
1041-01-6	594	1123-54-2	363	1214-39-7	366	1393-62-0	607, 608
1045-69-8	661	1124-13-6	201	1215-59-4	366	1395-18-2	235
1046-56-6	428	1126-34-7	554	1217-45-4	276	1400-61-9	691
1048-08-4	561	1126-71-2	284	1218-34-4	584	1405-69-2	609
1066-26-8	94	1126-79-0	256	1220-94-6	229	1405-87-4	667
1066-26-8	548	1128-87-6	353	1224-69-7	368	1414-45-5	602
1066-54-2	528	1132-21-4	279	1226-46-6	342	1415-73-2	632
	90		595		505	1429-59-0	134
1068-57-1		1132-68-9		1235-21-8			
1068-90-2	124	1134-35-6	384	1239-31-2	651	1429-59-0	678
1069-79-0	678	1135-24-6	299	1239-45-8	679	1435-55-8	683
1070-89-9	550	1135-66-6	217	1245-13-2	367	1435-88-7	299
1071-23-4	693	1136-89-6	688	1260-17-9	670	1436-34-6	371
	435		228		692		211
1072-72-6		1137-41-3		1263-89-4		1436-59-5	
1072-86-2	204	1137-42-4	243	1264-51-3	631	1443-80-7	225
1072-98-6	358	1139-30-6	200	1271-19-8	562	1445-69-8	421
1074-82-4	544	1141-59-9	428	1271-24-5	520	1445-73-4	410
1076-22-8	413	1143-74-4	243	1271-28-9	539	1446-61-3	210
	396					1450-14-2	
1076-38-6		1148-79-4	433	1271-42-7	529		530
1076-43-3	237	1152-14-3	698	1271-51-8	574	1453-82-3	402
1077-28-7	684	1152-90-5	426	1271-55-2	505	1454-85-9	147
1079-66-9	518	1153-05-5	571	1287-13-4	547	1455-77-2	380
1079-71-6	322	1155-00-6	250	1291-32-3	576	1457-42-7	425
	433	1163-67-3	415		529		346
1081-34-1				1291-48-1		1460-02-2	
1083-48-3	416	1164-95-0	650	1293-87-4	529	1460-57-7	204
1085-92-3	522	1170-02-1	595	1294-74-2	531	1461-15-0	516
1086-80-2	405	1173-26-8	653	1295-35-8	511	1461-22-9	563
1088-56-8	685	1173-88-2	691	1301-96-8	490	1461-25-2	558
1094-61-7	690	1174-69-2	659	1302-78-9	618	1461-94-5	201
1095-90-5	686	1176-74-5	339	1303-58-8	466	1464-42-2	547
1099-45-2	527	1177-87-3	654	1303-82-6	453	1464-44-4	646
1100-88-5	510	1180-95-6	661	1303-96-4	492	1465-25-4	315
1107-26-2	626	1185-53-1	191	1305-62-0	455	1466-76-8	279
1109-11-1	626	1185-55-3	536	1309-64-4	450	1468-83-3	354
1111-39-3	631	1186-49-8	553	1310-53-8	465	1470-61-7	548
1112-67-0	180	1187-58-2	166	1310-58-3	485	1470-94-6	298
1113-41-3	692	1187-84-4	601	1310-65-2	474	1474-52-8	655
1113-59-3	104	1188-37-0	583	1310-66-3	474	1474-78-8	565
1114-34-7	642	1188-58-5	134	1310-73-2	494	1476-23-9	99
1114-41-6	687	1188-92-7	565	1311-10-0	498	1476-53-5	691
1114-81-4	694	1188-95-0	190	1312-43-2	471	1481-70-5	606
1115-84-0	707	1189-94-2	687	1313-27-5	477	1482-97-9	593
1116-54-7	169	1191-50-0	556	1313-82-2	496	1484-09-9	403
1116-76-3	190	1191-95-3	201	1313-84-4	496	1484-12-4	408
1116-98-9	109	1192-40-1	520	1313-97-9	478	1484-13-5	443
1117-86-8	170	1192-52-5	382	1314-56-3	481	1484-28-2	369
1118-02-1	569	1193-92-6	426	1314-80-3	481	1492-08-6	687
1118-12-3	112	1194-65-6	274	1314-85-8	481	1492-24-6	586
						1.72210	200

1493-13-6	167	1694-31-1	107	1923-70-2	181	2150-48-3	546
1498-88-0	440	1696-20-4	353	1928-38-7	307	2152-56-9	633
1499-10-1	288	1699-51-0	405	1936-15-8	540	2152-56-7	272
1499-17-8	200 541	1701-93-5	491	1937-54-8	179	2158-04-5	325
1502-03-0	202	1707-03-5	525	1941-24-8	184	2161-31-1	420
1502-06-3	202	1707-75-1	290	1941-27-1	181	2170-03-8	156
1503-53-3	225	1707-77-3	636	1941-30-6	185	2176-62-7	418
1515-76-0	92	1709-54-2	247	1945-77-3	536	2179-57-9	99
1522-22-1	148	1710-98-1	256	1948-33-0	256	2181-42-2	190
1523-11-1	314	1720-32-7	290	1949-78-6	642	2183-17-7	538
1528-74-1	286	1722-12-9	375	1949-89-9	634	2183-17-7	688
1530-32-1							
	528	1722-26-5	514	1950-85-2	159	2197-63-9	523
1530-45-6	527	1723-00-8	422	1972-28-7	124	2208-07-3	138
1544-68-9	295	1723-00-8	603	1983-26-2	519	2210-25-5	155
1552-12-1	207	1730-91-2	162	1985-12-2	254	2213-63-0	383
1552-96-1	281	1733-12-6	265	1988-89-2	330	2216-12-8	318
1559-02-0	212	1739-84-0	385	1989-52-2	652	2216-33-3	165
1562-94-3	235	1746-03-8	575	1990-29-0	632	2216-51-5	218
1564-64-3	251	1750-12-5	359	2001-45-8	561	2216-69-5	309
1565-80-6	161	1754-47-8	524	2001-95-8	703	2210 09 9	291
1569-69-3	206	1758-73-2	145			2217-07-4	
				2002-24-6	100		416
1570-64-5	260	1762-95-4	450	2004-06-0	671	2219-31-0	590
1570-65-6	274	1763-10-6	691	2004-14-0	533	2227-29-4	523
1571-33-1	542	1772-03-8	637	2004-70-8	172	2234-75-7	221
1574-41-0	172	1779-48-2	542	2009-64-5	689	2235-00-9	443
1576-35-8	344	1779-49-3	537	2018-61-3	584	2235-54-3	506
1591-31-7	302	1779-58-4	535	2026-48-4	587	2236-60-4	424
1592-20-7	351	1783-81-9	308	2030-63-9	376	2240-25-7	368
1600-27-7	534	1787-61-7	527	2031-12-9	602	2243-27-8	171
1600-44-8	435	1798-04-5	256	2031-67-6	536	2243-42-7	326
1602-97-7	114	1798-09-0	305	2033-24-1	385	2243-62-1	269
1603-40-3	360	1805-32-9	274	2035-66-7	480	2243-76-7	357
1603-41-4	360	1806-29-7	278	2039-82-9	255	2243-82-5	312
1606-67-3	231	1811-28-5	379	2043-06-3	368	2244-11-3	357
1608-26-0	530	1817-74-9	250	2044-56-6	532	2244-40-8	552
1609-47-8	127	1820-81-1	375	2045-00-3	508	2246-46-0	437
1609-86-5	111	1821-12-1	328	2050-76-2	274	2247-00-9	512
1611-35-4	444	1822-51-1	374	2051-28-7	378	2290-65-5	569
1615-02-7	260	1824-81-3	360	2051-85-6	277	2292-79-7	210
1618-26-4	144	1826-28-4	420	2057-84-3	192	2294-76-0	362
1632-73-1	213	1832-07-1	480	2058-46-0	700	2305-32-0	204
1633-22-3	322	1833-53-0	545	2067-33-6	105	2305-34-2	187
	522 111			2068-78-2	704		
1634-04-4		1846-92-2	292			2309-49-1	435
1637-39-4	708	1850-14-2	184	2082-84-0	119	2321-07-5	391
1641-41-1	298	1863-63-4	506	2086-83-1	367	2338-20-7	348
1643-19-2	180	1866-15-5	663	2090-05-3	516	2348-71-2	437
1643-20-5	135	1866-16-6	670	2091-46-5	545	2361-24-2	629
1653-19-6	122	1871-22-3	368	2092-17-3	453	2361-96-8	584
1655-29-4	526	1871-96-1	178	2092-55-9	337	2370-18-5	295
1656-44-6	285	1873-77-4	574	2094-72-6	195	2370-63-0	137
1663-39-4	107	1875-48-5	231	2094-98-6	197	2370-88-9	560
1663-45-2	512	1878-65-5	262	2107-69-9	279	2373-80-0	307
1666-13-3	524	1878-66-6	262	2116-65-6	367	2379-55-7	386
1667-99-8	524 520	1878-68-8	202 254	2121-67-7	131	2379-33-7 2385-77-5	118
1668-10-6	596	1878-87-1	319	2122-61-4	228	2386-53-0	552
1670-46-8	194	1878-91-7	254	2127-03-9	388	2386-60-9	106
1674-10-8	212	1910-42-5	384	2131-55-7	263	2387-71-5	589
1676-73-9	595	1913-93-5	343	2136-75-6	572	2390-54-7	437
1678-91-7	212	1918-77-0	438	2138-24-1	183	2396-60-3	304
1689-82-3	327	1921-70-6	184	2140-46-7	657	2402-78-0	382

2403-88-5	399	2623-36-1	554	2961-50-4	362	3282-56-2	256
2408-37-9	221	2627-86-3	307	2963-79-3	370	3282-73-3	124
2411-89-4	265	2627-95-4	526	2966-50-9	548	3284-79-5	262
2412-14-8	438	2635-26-9	277	2978-58-7	162	3287-99-8	243
2414-98-4	533	2636-31-9	303	2978-59-8	162	3289-28-9	212
2421-28-5	241	2637-34-5	427	2985-59-3	298	3307-39-9	262
2423-65-6	425	2642-52-6	413	2996-92-1	542	3320-87-4	319
2425-51-6	532	2644-70-4	468	3001-72-7	380	3326-32-7	391
2425-95-8	368	2645-22-9	388	3002-78-6	410	3350-30-9	207
2433-84-9	425	2646-71-1	690	3007-31-6	124	3375-31-3	540
2435-53-2	339	2650-53-5	150	3011-89-0	261	3376-24-7	257
2436-90-0	118	2658-24-4	385	3012-37-1	247	3378-72-1	244
2436-96-6	286	2679-01-8	408	3016-19-1	97	3383-21-9	271
2437-29-8	303	2687-43-6	245	3018-12-0	122	3385-94-2	513
2440-42-8	528	2688-77-9	405	3019-22-5	217	3387-26-6	393
2444-68-0	351	2696-92-6	479	3022-16-0	249	3399-67-5	100
2446-83-5	128	2700-22-3	245	3024-83-7	592	3400-45-1	208
2451-01-6	221	2712-78-9	250	3025-95-4	583	3411-95-8	<u>3</u> 97
2452-74-3	145	2719-27-9	203	3029-19-4	335	3413-58-9	390
2457-47-8	382	2739-12-0	306	3029-30-9	276	3416-05-5	676
2457-80-9	675	2743-38-6	120	3029-40-1	290	3416-24-8	639
2465-27-2	235	2744-08-3	378	3034-55-7	370	3425-46-5	486
2466-76-4	353		378	3051-09-0	414	3434-88-6	655
		2744-09-4					
2475-44-7	250	2749-11-3	585	3054-95-3	96	3443-45-6	335
2475-93-6	174	2757-04-2	328	3068-32-4	631	3458-28-4	643
2482-00-0	97	2763-96-4	687	3076-34-4	496	3460-18-2	271
2487-90-3	566	2765-29-9	202	3076-91-3	534	3463-36-3	318
2492-02-9	254	2767-84-2	199	3084-10-4	561	3465-72-3	442
2492-87-7	644	2768-90-3	334	3087-16-9	532	3468-11-9	384
2494-56-6	670	2768-90-3	422	3097-08-3	533	3473-63-0	145
2498-20-6	180	2769-72-4	111	3102-56-5	676	3481-20-7	339
2498-66-0	236	2782-07-2	637	3105-95-1	422	3535-83-9	183
2504-11-2	583	2797-68-4	678	3105-95-1	603	3562-69-4	440
2507-55-3	152	2799-21-5	399	3109-63-5	180	3564-14-5	527
2508-19-2	349	2818-58-8	645	3112-31-0	425	3564-26-9	557
2511-17-3	560	2835-68-9	227	3118-85-2	639	3575-31-3	322
2516-34-9	201	2835-81-6	586	3141-04-6	206	3588-17-8	168
2524-64-3	525	2835-82-7	586	3143-02-0	410	3588-91-8	276
2533-00-8	417	2835-98-5	229	3144-16-9	200	3603-99-4	210
2537-36-2	560	2835-99-6	229	3147-14-6	257	3604-87-3	654
2538-85-4	527	2836-32-0	553	3150-24-1	644	3604-90-8	627
2549-67-9	390	2840-02-0	228	3153-26-2	574	3608-75-1	415
2552-55-8	599	2840-28-0	228	3167-49-5	360	3612-20-2	366
2554-06-5	561	2851-68-5	426	3173-56-6	245	3615-37-0	637
2563-97-5	347	2857-97-8	515	3182-93-2	602	3615-41-6	646
2564-83-2	435	2861-02-1	507	3182-95-4	327	3618-43-7	444
2566-90-7	134	2861-99-6	190	3184-13-2	602	3625-57-8	415
2567-83-1	182	2869-83-2	403	3205-94-5	209	3632-91-5	533
2578-28-1	547	2892-51-5	220	3206-73-3	684	3634-56-8	531
2578-45-2	373	2916-68-9	568	3207-12-3	100	3646-73-9	638
2578-57-6	604	2916-76-9	536	3211-76-5	547	3680-02-2	167
2591-17-5	685	2922-54-5	554	3219-63-4	569	3682-32-4	321
2592-95-2	396	2923-16-2	545	3238-62-8	398	3682-35-7	441
	535		557				
2605-67-6		2923-18-4		3240-34-4	267	3688-79-7	304
2610-05-1	518	2923-28-6	548	3244-41-5	545	3699-66-9	565
2611-82-7	538	2935-35-5	603	3251-23-8	461	3700-67-2	133
2615-25-0	211	2937-50-0	<u>98</u>	3264-82-2	538	3710-27-8	538
2620-63-5	583	2949-92-0	164	3277-26-7	560	3713-25-5	640
2622-14-2	564	2950-43-8	470	3279-54-7	526	3721-95-7	201
2622-26-6	418	2957-95-1	211	3282-30-2	174	3722-51-8	399

3733-85-5	417	4233-33-4	421	4746-97-8	205	5392-67-6	515
3734-67-6	543	4254-02-8	208	4781-83-3	400	5396-89-4	243
3737-95-9	257	4264-83-9	526	4786-20-3	118	5407-87-4	359
3739-30-8	151	4265-07-0	693	4792-83-0	235	5412-98-6	182
3739-38-6	326	4271-30-1	586	4819-77-6	188	5415-44-1	440
3739-64-8	98	4272-74-6	605	4837-88-1	309	5427-03-2	272
3740-52-1	319	4286-15-1	328	4839-46-7	131	5428-64-8	418
3767-28-0	644	4294-16-0	667	4845-50-5	383	5433-88-7	239
3775-72-2	586	4316-93-2	382	4845-99-2	670	5437-38-7	310
3790-78-1	168		183		305		244
		4328-13-6		4900-63-4		5437-45-6	
3806-59-5	207	4329-75-3	387	4901-51-3	339	5439-14-5	383
3810-74-0	699	4337-75-1	531	4916-57-8	388	5440-00-6	379
3811-04-9	483	4350-09-8	599	4930-98-7	396	5442-44-4	263
3811-73-2	534	4360-12-7	357	4942-47-6	195	5451-09-2	587
3829-86-5	419	4368-51-8	183	4961-10-4	189	5451-40-1	382
3856-25-5	201	4370-62-1	673	5006-66-6	398	5452-35-7	203
3859-41-4	208	4373-34-6	356	5015-75-8	550	5460-29-7	254
3871-20-3	570	4403-89-8	507	5051-62-7	296	5464-70-0	292
3881-33-2	359	4403-90-1	507	5056-14-4	627	5466-22-8	99
3886-69-9	307	4410-48-4	357	5061-35-8	583	5466-84-2	320
3886-70-2	314	4411-25-0	197	5070-13-3	250	5468-37-1	226
3902-71-4	441	4411-26-1	197	5076-82-4	604	5469-45-4	223
3930-19-6	699	4414-88-4	364	5080-50-2	583	5470-11-1	470
	357						
3952-78-1		4419-47-0	559	5098-14-6	100	5470-18-8	374
3966-30-1	234	4426-47-5	515	5103-96-8	697	5470-96-2	430
3966-32-3	305	4430-20-0	262	5108-96-3	429	5471-63-6	387
3970-21-6	160	4431-00-9	235	5122-82-7	196	5490-27-7	676
3978-81-2	371	4432-31-9	414	5130-24-5	193	5515-64-0	204
3982-91-0	481	4436-27-5	334	5133-19-7	632	5522-66-7	696
3993-78-0	358	4436-74-2	107	5137-55-3	97	5538-51-2	226
4023-34-1			203		550		
	209	4441-63-8		5138-90-9		5539-53-7	<i>95</i>
4023-65-8	95	4466-59-5	276	5138-92-1	550	5541-93-5	693
4033-27-6	676	4477-28-5	351	5138-93-2	551	5558-66-7	290
4036-30-1	332	4511-42-6	385	5144-89-8	419	5593-70-4	558
4041-95-6	122	4525-33-1	524	5153-67-3	321	5600-21-5	358
4042-36-8	604	4542-57-8	135	5162-02-1	695	5625-37-6	422
4043-87-2	422	4547-57-3	255	5182-30-9	573	5635-50-7	249
	329		374	5188-07-8	554	5657-17-0	
4044-65-9		4548-45-2					141
4050-45-7	150	4551-15-9	542	5266-20-6	417	5673-07-4	280
4052-59-9	588	4552-64-1	439	5267-34-5	290	5676-48-2	340
4054-38-0	202	4556-23-4	427	5267-64-1	327	5680-79-5	596
4067-16-7	172	4562-27-0	399	5283-66-9	540	5704-04-1	606
4071-88-9	528	4568-71-2	366	5289-74-7	654	5707-04-0	509
4075-81-4	517	4592-94-3	252	5292-43-3	108	5735-89-3	698
4088-22-6	133	4602-84-0	679	5296-64-0	226	5743-04-4	516
4097-89-6	191	4611-62-5	528	5310-10-1	167	5743-26-0	516
4105-21-9	420	4618-18-2	642	5321-87-8	211	5743-36-2	516
4111-54-0	532	4628-94-8	512	5324-84-5	555	5762-56-1	191
4113-06-8	188	4636-73-1	188	5326-23-8	374	5776-72-7	249
4113-12-6	114	4645-32-3	575	5327-44-6	285	5785-66-0	267
4114-31-2	139	4648-54-8	568	5328-01-8	292	5794-04-7	199
4128-17-0	680	4656-81-9	183	5329-14-6	498	5794-13-8	589
			274				594
4130-42-1	272	4659-45-4		5336-08-3	646	5796-17-8	
4156-16-5	391	4675-64-3	544	5341-61-7	468	5798-49-2	250
4199-10-4	696	4693-91-8	305	5343-41-9	555	5798-94-7	254
4199-88-6	416	4695-62-9	213	5344-58-1	198	5802-65-3	208
4205-91-8	672	4696-76-8	684	5348-42-5	268	5807-14-7	439
4206-67-1	531	4707-71-5	324	5351-69-9	332	5808-22-0	526
4221-98-1	220	4712-70-3	368	5391-88-8	253	5838-82-4	187
4223-11-4	193	4733-39-5	385	5392-28-9	433	5850-86-2	540
7223-11-4	173	-100-07-0	505	JJ72-20-9	+33	5050-00-2	540

5854-52-4	196	6090-09-1	194	6402-36-4	186	7114-03-6	308
5856-63-3	99	6091-44-7	423	6409-77-4	539	7148-03-0	345
5858-62-2	99	6091-45-8	423	6410-10-2	322	7188-38-7	111
5892-11-5	670	6091-58-3	174	6418-56-0	521	7205-91-6	261
5897-76-7	231	6094-40-2	422	6459-94-5	537	7205-98-3	261
5908-77-0	508	6099-90-7	333	6484-52-2	449	7212-44-4	168
5908-94-1	234	6100-05-6	543	6487-48-5	544	7216-56-0	97
5913-13-3	206	6100-20-5	545	6505-50-6	534	7235-40-7	626
5922-92-9	183	6100-28-3	659	6528-53-6	335	7250-67-1	373
5934-29-2	598	6106-07-6	605	6532-76-9	598	7295-85-4	372
5936-98-1	564	6106-24-7	556	6533-73-9	500	7296-64-2	638
5937-77-9	588	6108-23-2	532	6554-98-9	301	7297-25-8	637
5949-05-3	118	6112-76-1	407	6556-12-3	640	7322-88-5	224
5949-24-6	264	6119-70-6	430	6575-24-2	275	7343-51-3	151
5949-24-6	376	6132-04-3	573	6586-05-6	538	7356-11-8	310
5949-29-1	118	6136-37-4	413	6600-40-4	602	7365-44-8	191
5956-60-5	367	6138-23-4	648	6605-21-6	634	7365-45-9	396
5959-52-4	230	6138-41-6	440	6609-64-9	519	7365-82-4	89
5965-83-3	338	6146-52-7	416	6627-34-5	275	7369-44-0	264
5967-42-0	304	6147-53-1	520	6627-72-1	198	7379-35-3	375
5967-73-7	685	6148-75-0	557	6627-89-0	256	7393-43-3	558
5968-90-1	444	6151-25-3	429	6627-91-4	257	7397-62-8	110
5970-45-6	575	6152-43-8	332	6628-04-2	360	7411-49-6	268
5977-14-0	90	6153-39-5	322	6628-37-1	554	7413-60-7	596
5978-75-6	229	6153-56-6	171	6635-20-7	321	7422-32-4	561
5979-01-1	707	6153-64-6	700	6651-43-0	569	7439-88-5	472
5979-11-3	590	6156-78-1	534	6674-22-2	380	7439-89-6	472
5995-86-8	295	6159-66-6	703	6699-20-3	681	7439-91-0	472
5995-99-5	638	6160-12-9	432	6708-35-6	707	7439-93-2	473
5996-00-9	638	6160-65-2	437	6722-15-2	408	7439-95-4	475
6000-43-7	596	6163-58-2	574	6833-84-7	690	7439-97-6	477
6001-51-0	249	6170-22-5	659	6833-86-7	507	7440-01-9	478
6003-18-5	659	6183-68-2	430	6834-92-0	495	7440-22-4	489
6004-24-6	373	6184-17-4	680	6892-68-8	134	7440-23-5	491
6007-26-7	408	6192-12-7	545	6893-02-3	606	7440-31-5	501
6009-70-7	507	6192-52-5	343	6895-43-8	628	7440-33-7	502
6011-14-9	99	6203-18-5	281	6915-15-7	157	7440-37-1	451
6018-19-5	549	6211-16-1	602	6920-22-5	149	7440-39-3	452
6018-89-9	538	6217-54-5	134	6921-35-3	385	7440-43-9	454
6020-87-7	591	6221-55-2	197	6929-40-4	669	7440-44-0	115
6025-53-2	708	6232-88-8	255	6939-89-5	338	7440-55-3	465
6027-13-0	598	6271-79-0	268	6948-88-5	313	7440-56-4	465
6032-29-7	173	6278-91-7	246	6950-84-1	315	7440-59-7	467
6034-57-7	354	6283-24-5	506	6964-21-2	438	7440-62-2	503
6044-68-4	96	6283-74-5	119	6967-12-0	359	7440-66-6	503
6046-93-1	521	6284-40-8	643	6974-32-9	631	7440-69-9	453
6050-13-1	288	6294-89-9	163	6976-37-0	103	7440-70-2	455
6050-81-3	663	6297-03-6	170	6983-79-5	626	7440-74-6	471
6055-52-3	149	6303-21-5	471	6995-79-5	204	7446-07-3	500
			326		204 509		<i>488</i>
6055-71-6	96 240	6303-58-8		6996-92-5		7446-08-4	
6057-60-9	249	6306-07-6	223	6998-60-3	698	7446-09-5	499
6066-82-6	152	6318-55-4	95	7000-27-3	643	7446-18-6	501
6068-62-8	146	6326-79-0	369	7048-02-4	598	7446-19-7	504
6068-72-0	267	6358-69-6	573	7048-04-6	592	7446-20-0	504
6074-84-6	558	6359-98-4	543	7057-27-4	676	7446-70-0	446
6076-30-8	677	6363-53-7	642	7059-24-7	672	7447-39-4	461
6078-64-4	594	6380-21-8	334	7065-46-5	107	7447-40-7	483
6080-33-7	432	6381-59-5	545 525	7080-50-4	518	7447-41-8	474
6080-56-4	531	6381-92-6	525	7087-68-5	128	7449-74-3	536
6088-51-3	300	6402-23-9	379	7091-44-3	677	7460-82-4	125

7464-93-9	441	7699-35-6	442	7782-41-4	464	7787-70-4	461
7486-35-3	575	7699-43-6	504	7782-42-5	467	7788-98-9	447
7487-88-9	476	7699-45-8	503	7782-44-7	479	7788-99-0	459
7487-94-7	476	7704-34-9	498	7782-49-2	488	7789-00-6	483
7488-54-2	488	7705-07-9	501	7782-50-5	458	7789-02-8	459
7488-99-5	626	7705-08-0	463	7782-61-8	463	7789-06-2	498
7491-74-9	694	7707-57-5	377	7782-63-0	464	7789-09-5	448
7493-95-0	644	7710-35-2	130	7782-68-5	471	7789-12-0	493
7516-48-5	685	7718-54-9	478	7782-86-7	477	7789-17-5	458
7529-22-8	409	7719-09-7	501	7782-89-0	473	7789-18-6	458
7542-37-2	692	7719-12-2	482	7782-92-5	491	7789-20-0	463
7550-35-8	474	7721-01-9	499	7783-00-8	488	7789-24-4	474
7550-45-0	501	7722-43-7	453	7783-06-4	470	7789-29-9	485
7553-56-2	471	7722-64-7	486	7783-20-2	449	7789-30-2	454
7558-79-4	463	7722-76-1	448	7783-21-3	449	7789-33-5	472
7558-80-7	494	7722-84-1	470	7783-28-0	463	7789-38-0	492
7562-61-0	703	7722-86-3	486	7783-34-8	477	7789-39-1	487
7580-67-8	474	7723-14-0	481	7783-36-0	477	7789-40-4	500
7585-39-9	634	7724-15-4	345	7783-49-5	504	7789-41-5	455
7597-56-0	142	7726-95-6	454	7783-56-4	450	7789-42-6	454
7598-10-9	253	7727-15-3	446	7783-66-6	472	7789-43-7	460
7601-89-0	495	7727-18-6	503	7783-70-2	450	7789-45-9	460
7601-90-3	480	7727-21-1	486	7783-77-9	477	7789-47-1	476
7606-79-3	584	7727-37-9	478	7783-81-5	502	7789-48-2	475
7612-98-8	280	7727-54-0	449	7783-83-7	448	7789-60-8	482
7631-86-9	489	7727-73-3	496	7783-85-9	448	7789-68-6	501
7631-90-5	492	7732-18-5	503	7783-89-3	489	7789-69-7	481
7631-94-9	494	7733-02-0	504	7783-90-6	489	7789-77-7	477
7631-99-4	495	7749-47-5	359	7783-92-8	489	7789-80-2	455
7632-00-0	495	7757-79-1	485	7783-93-9	491	7790-21-8	486
7637-07-2	454	7757-82-6	496	7783-95-1	490	7790-28-5	495
7641-77-2	216	7757-83-7	496	7783-97-3	490	7790-30-9	500
7643-75-6	633	7757-93-9	477	7783-98-4	491	7790-32-1	475
7646-78-8	497	7758-01-2	482	7783-99-5	490	7790-44-5	450
7646-79-9	460	7758-02-3	483	7784-01-2	490	7790-47-8	497
7646-85-7	503	7758-05-6	485	7784-17-0	446	7790-60-5	487
7646-93-7	482	7758-09-0	485	7784-18-4	446	7790-69-4	474
7647-01-0	468, 469	7758-19-2	493	7784-24-9	446	7790-79-6	454
7647-10-1	480	7758-29-4	497	7784-26-1	446	7790-80-9	455
7647-14-5	493	7758-89-6	461	7784-27-2	446	7790-84-3	455
7647-15-6	492	7758-94-3	464	7784-29-4	446	7790-91-2	458
7647-17-8	457	7758-95-4	473	7784-31-8	446	7790-94-5	458
7658-08-4	634	7758-98-7	461	7784-33-0	451	7790-94-5	519
7664-38-2	480	7761-88-8	490	7784-34-1	451	7790-98-9	449
7664-39-3	468, 469	7772-98-7	497	7784-45-4	451	7790-99-0	472
7664-41-7	447	7772-99-8	498	7785-20-8	449	7791-03-9	475
7664-93-9	499	7773-01-5	476	7785-23-1	489	7791-11-9	488
7669-54-7	317	7773-06-0	449	7785-26-4	220	7791-12-0	500
7677-21-8	184	7774-29-0	476	7785-70-8	220	7791-12-0	
							460
7677-24-9	568	7774-34-7	455	7785-84-4	497	7791-18-6	475
7681-11-0	485	7775-09-9	493	7787-20-4	213	7791-20-0	478
7681-49-4	494	7775-41-9	490	7787-32-8	452	7791-25-2	499
7681-55-2	495	7778-50-9	483	7787-33-9	452	7791-28-8	452
7681-65-4	461	7778-74-7	485	7787-34-0	452	7803-49-8	470
7681-82-5	495	7778-77-0	483	7787-35-1	452	7803-51-2	480
7685-44-1	585	7778-80-5	486	7787-38-4	453	7803-55-6	450
7688-21-3	149	7781-49-9	400	7787-50-0	453	7803-57-8	467
7688-25-7	511	7782-24-3	331	7787-56-6	453	7803-58-9	498
7695-91-2	706	7782-26-5	331	7787-60-2	453	7803-63-6	447
7697-37-2	478	7782-39-0	463	7787-69-1	457	7803-65-8	448

7002 (0.1	500	0015 00 1	600	10001 06 0	162	10004.06.5	10.1
7803-68-1	500	9015-82-1	609	10031-26-2	463	10294-26-5	491
8002-36-6	648	9015-83-2	620	10031-43-3	461	10294-28-7	466
8002-43-5	684	9025-26-7	610	10033-92-8	130	10294-31-2	466
8003-05-2	541	9025-52-9	623	10033-92-8	385	10294-34-5	454
8004-87-3	311	9026-30-6	608	10034-76-1	456	10294-38-9	452
8008-20-6	156	9027-03-6	624	10034-81-8	475	10294-46-9	461
8012-95-1	171	9027-60-5	607	10034-82-9	493	10294-54-9	458
8015-61-0	632	9027-73-0	619	10034-85-2 468,		10294-66-3	487
8032-32-4	174	9028-00-6	611	10034-93-2	468	10303-95-4	211
8048-52-0	356	9028-38-0	616	10034-96-5	476	10315-85-2	149
8052-16-2	663	9028-49-3	607	10035-04-8	455	10318-18-0	593
8063-24-9	356	9029-22-6	624	10035-10-6 468	469	10323-20-3	632
9000-07-1	633	9030-66-4	615	10038-98-9	466	10326-27-9	452
9000-69-5	645	9031-11-2	614	10039-54-0	470	10324-26-6	199
9001-03-0	609	9031-37-2	610	10039-56-2	495	10343-99-4	378
9001-12-1	611	9031-94-1	612	10041-06-2	400	10361-79-2	487
9001-16-5	612	9031-96-3	621	10042-76-9	498	10373-78-1	199
9001-26-7	621	9034-42-8	601	10043-01-3	446	10377-48-7	475
9001-32-5	613	9038-94-2	618	10043-35-3	453	10377-51-2	474
9001-37-0	614	9039-53-6	624	10043-52-4	455	10377-58-9	475
9001-40-5	614	9041-08-1	641	10045-89-3	448	10381-37-0	501
9001-50-7	615	9046-40-6	645	10048-13-2	699	10381-75-6	370
9001-54-1	616	9047-17-0	619	10048-95-0	491	10389-65-8	590
9001-59-6	621	9047-22-7	610	10049-05-5	459	10415-75-5	477
9001-60-9	616	9048-46-8	608	10049-07-7	487	10416-59-8	513
9001-63-2	617	9050-98-0	226	10049-21-5	494	10420-89-0	314
9001-73-4	619	9054-89-1	611	10075-50-0	369	10424-65-4	184
9001-75-6	619	9062-61-7	597	10075-62-4	279	10441-45-9	299
9001-78-9	619	9064-57-7	633	10075-63-5	280	10466-65-6	486
9001-99-4	622	9066-59-5	617	10097-28-6	489	10467-46-6	629
9002-03-3	612	9068-38-6	622	10097-84-4	434	10407 40 0	498
9002-03-3	623	9074-11-7	612	10097-84-4	473	10470-81-0	120
9002-68-0	614	9075-65-4	615	10101-41-4	456	10519-96-7	545
9002-81-2	175	10009-70-8	104	10101-63-0	473	10523-68-9	196
9002-88-4	175	10016-20-3	633	10101-89-0	502	10527-16-9	258
9003-04-7	556	10022-31-8	453	10102-17-7	497	10531-50-7	332
9003-20-7	175	10022-68-1	455	10102-18-8	496	10534-87-9	460
9003-21-8	175	10024-97-2	479	10102-40-6	495	10534-89-1	467
9003-39-8	423	10025-65-7	482	10102-43-9	478	10544-72-6	463
9003-53-6	334	10025-67-9	499	10102-45-1	500	10545-99-0	499
9004-02-8		10025-73-7	458		<i>456</i>	10550-58-0	
	617			10102-68-8			115
9004-07-3	610	10025-77-1	463	10108-64-2	454	10569-72-9	587
9004-32-4	550	10025-82-8	471	10118-76-0	456	10593-83-6	627
9004-54-0	635	10025-87-3	481	10124-36-4	455	10595-51-4	310
9005-32-7	632	10025-91-9	450	10124-41-1	456	10597-89-4	687
9005-38-3	549	10025-98-6	486	10124-43-3	460	10601-80-6	140
9005-49-6	641	10025-99-7	486	10124-65-9	544	11018-89-6	658
9005-79-2	641	10026-04-7	489	10138-04-2	448	11018-93-2	648
9005-82-7	632	10026-06-9	497	10139-47-6	504	11024-24-1	636
9005-84-9	647	10026-08-1	501	10170-69-1	476	11025-94-8	621
	620	10026-11-6			421		678
9007-31-2			504	10181-37-0		11029-02-0	
9007-43-6	611	10026-12-7	478	10191-18-1	102	11029-61-1	597
9007-73-2	613	10026-13-8	481	10191-41-0	702	11032-88-5	611
9008-02-0	615	10026-22-9	460	10199-89-0	374	11075-17-5	609
9012-31-1	607	10026-24-1	460	10210-68-1	463	11089-65-9	702
9012-33-3	607	10028-17-8	502	10213-10-2	497	11096-37-0	623
9013-18-7	607	10028-22-5	464	10217-52-4	468	11113-62-5	678
9013-38-1	613	10020-22-5	646	10236-47-2	400 644	11120-25-5	450
9013-38-1 9014-01-1	623	10031-20-6	476	10230-47-2 10248-30-3	405	11120-23-3	430 547
9014-56-6	615	10031-22-8	473	10281-56-8	118	11171-61-9	118

12012-95-2	505	13389-42-9	170	13716-45-5	523	14268-66-7	307
12026-06-1	500	13396-41-3	496	13718-50-8	452	14271-10-9	264
12027-06-4	448	13400-13-0	458	13719-97-6	255	14277-97-5	678
12027-43-9	489	13408-09-8	526	13746-66-2	484	14282-91-8	467
12036-10-1	488	13410-01-0	496	13755-29-8	494	14283-07-9	475
12037-01-3	500	13411-42-2	568	13756-40-6	303	14284-36-7	446
12037-29-5	<i>4</i> 87	13419-61-9	550	13762-51-1	482	14284-93-6	547
12044-50-7	451	13429-83-9	198	13765-03-2	474	14293-70-0	485
12078-25-0	522	13435-12-6	567	13770-18-8	461	14306-25-3	555
12082-08-5	509	13446-03-2	476	13776-84-6	496	14320-04-8	576
12093-10-6	529	13446-09-8	448	13780-06-8	456	14324-55-1	575
12099-10-4	182	13446-18-9	475	13780-42-2	465	14338-32-0	374
12122-67-7	575	13446-34-9	476	13795-24-9	246	14350-52-8	191
12124-97-9	447	13446-67-8	487	13811-71-7	127	14358-33-9	589
12125-02-9	447	13446-71-4	488	13812-88-9	455	14370-45-7	219
12150-46-8	512	13450-90-3	465	13821-06-2	452	14376-79-5	221
12192-57-3	508	13450-92-5	466	13821-08-4	455	14389-77-6	588
12230-71-6	452	13453-30-0	500	13825-74-6	502	14401-91-3	422
12257-42-0	510	13453-40-2	500	13826-83-0	449	14402-88-1	526
12284-43-4	609	13454-84-7	458	13842-46-1	485	14444-77-0	277
12333-90-4	203	13455-01-1	482	13845-17-5	452	14459-29-1	682
12389-34-3	567	13455-20-4	484	13889-98-0	354	14459-95-1	484
12427-38-2	534	13455-24-8	482	13894-21-8	293	14463-68-4	538
12501-23-4	482	13462-88-9	402 478	13929-35-6	293 698	14463-68-4	688
12501-25-4	482 618	13462-93-6	478 448	13933-23-8	098 464		000 448
						14481-29-9	
12671-19-1	617	13463-40-6	472	13939-06-5	477	14508-49-7	374
12676-20-9	625	13464-82-9	471	13963-57-0	506	14532-22-9	487
13007-92-6	459	13464-92-1	454	13963-58-1	483	14540-59-1	570
13011-54-6	491	13465-95-7	453	14002-51-8	248	14618-80-5	366
13057-50-6	645	13472-35-0	494	14019-81-9	566	14620-72-5	129
13058-04-3	680	13472-36-1	496	14024-18-1	528	14630-40-1	513
13059-60-4	596	13473-90-0	446	14024-41-1	484	14631-20-0	662
13071-11-9	696	13476-99-8	574	14024-48-7	520	14637-34-4	507
13072-69-0	197	13477-00-4	452	14024-58-9	534	14649-03-7	330
13073-35-3	595	13477-34-4	456	14024-61-4	541	14691-89-5	353
13100-82-8	592	13477-89-9	477	14024-63-6	575	14694-95-2	519
13106-76-8	449	13478-00-7	478	14040-11-0	502	14698-29-4	418
13113-71-8	234	13478-10-9	464	14055-02-8	539	14704-14-4	535
13114-62-0	315	13478-18-7	477	14074-80-7	576	14724-63-1	685
13126-12-0	488	13478-33-6	460	14075-53-7	487	14737-80-5	339
13138-48-2	283	13494-80-9	500	14090-77-8	239	14777-27-6	161
13149-00-3	203	13494-91-2	465	14098-24-9	364	14786-51-7	701
13183-20-5	332	13510-42-4	488	14098-44-3	364	14871-79-5	452
13194-68-8	229	13520-83-7	502	14103-61-8	288	14898-67-0	488
	229 599		502 504		288 518	14906-55-9	400 391
13204-98-3		13520-92-8		14110-97-5			
13250-12-9	108	13537-24-1	464	14121-36-9	434	14930-96-2	674
13257-51-7	534	13545-04-5	133	14121-89-2	371	14977-61-8	460
13257-81-3	570	13548-38-4	459	14165-55-0	529	14984-39-5	638
13268-42-3	507	13548-43-1	458	14166-21-3	204	14990-02-4	388
13269-52-8	150	13566-22-8	449	14167-18-1	513	14999-66-7	186
13274-43-6	413	13568-33-7	474	14172-90-8	520	15014-25-2	270
13280-60-9	230	13573-16-5	449	14172-92-0	539	15016-43-0	575
13283-01-7	502	13596-22-0	460	14174-09-5	381	15023-99-1	271
13291-61-7	203	13596-46-8	460	14187-32-7	381	15042-77-0	256
13292-46-1	698	13600-98-1	494	14217-21-1	494	15123-90-7	557
13323-81-4	329	13601-11-1	484	14221-01-3	559	15170-57-7	543
13346-19-0	475	13601-19-9	494	14221-02-4	560	15206-55-0	307
13361-64-3	570	13601-63-3	455	14242-05-8	491	15207-30-4	597
13362-78-2	388	13623-25-1	305	14260-41-4	257	15231-91-1	253
13388-75-5	280	13637-61-1	504	14264-16-5	513	15244-36-7	476

15284-15-8	685	16853-85-3	473	17728-88-0	528	19719-28-9	275
15318-45-3	701	16856-13-6	589	17768-41-1	195	19767-45-4	554
15321-51-4	472	16871-60-6	484	17833-43-1	643	19780-67-7	143
15421-51-9	216	16871-90-2	484	17872-92-3	569	19780-84-8	150
15448-47-2	424	16872-11-0	465	17873-08-4	542	19810-31-2	246
15489-90-4	682	16883-45-7	560	17896-21-8	584	19836-78-3	410
15500-66-0	658	16893-85-9	494	17927-65-0	446	19883-78-4	595
15525-13-0	184	16903-35-8	466	18016-24-5	517	19891-74-8	628
15537-71-0	663	16919-19-0	448	18027-10-6	557	19980-43-9	569
15548-52-4	703	16920-56-2	484	18043-71-5	559	20039-37-6	546
15610-76-1	460	16921-30-5	484	18069-17-5	163	20049-65-4	464
15663-27-1	463	16923-95-8	484	18123-20-1	396	20082-71-7	541
			492			20230-89-1	
15667-21-7	389	16940-66-2		18125-46-7	595		190
15699-18-0	449	16940-92-4	448	18143-30-1	568	20312-36-1	300
15743-47-5	517	16941-11-0	448	18162-48-6	515	20350-15-6	669
15780-02-6	561	16941-12-1	467	18166-02-4	569	20350-44-1	701
15825-70-4	643	16941-92-7	472	18194-24-6	677	20357-25-9	280
15861-24-2	377	16949-15-8	474	18197-26-7	551	20411-57-8	342
15892-23-6	107	16965-08-5	257	18223-42-2	462	20439-47-8	211
15910-23-3	652	17026-42-5	120	18263-08-6	534	20440-95-3	291
15914-84-8	314		471		104	20445-31-2	305
		17069-79-3		18263-25-7			
15936-16-0	415	17084-13-8	484	18282-10-5	498	20445-33-4	305
15956-28-2	547	17125-60-9	518	18293-53-3	567	20461-99-8	390
15962-47-7	583	17140-60-2	517	18293-54-4	570	20462-00-4	390
15988-11-1	420	17146-86-0	589	18293-71-5	568	20562-02-1	647
16009-13-5	683	17199-29-0	303	18378-89-7	687	20624-25-3	551
16029-98-4	531	17252-51-6	388	18390-55-1	532	20667-12-3	490
16039-53-5	575	17257-71-5	305	18395-90-9	522	20717-86-6	519
16039-55-7	516	17279-31-1	284	18404-47-2	544	20734-56-9	269
16052-42-9	218	17325-85-8	246	18422-05-4	664	20734-57-0	269
16055-80-4	404	17331-79-2	589	18467-77-1	636	20734-58-1	341
16069-36-6	383	17334-55-3	198	18480-07-4	<i>498</i>	20756-92-7	574
16088-62-3	424	17338-96-4	414	18531-94-7	247	20730-92-7	479
16093-66-6	349	17372-87-1	527	18531-99-2	247	20826-04-4	369
16156-59-5	331	17397-89-6	114	18534-18-4	422	20830-75-5	636
16182-04-0	137	17406-45-0	702	18546-37-7	635	20861-69-2	449
16266-99-2	626	17422-32-1	373	18636-55-0	283	20902-45-8	693
16298-03-6	408	17430-98-7	206	18666-68-7	572	21106-96-7	666
16355-00-3	329	17435-72-2	139	18685-01-3	327	21124-40-3	588
16357-59-8	390	17448-65-6	135	18699-02-0	224	21132-76-3	102
16373-93-6	675	17455-13-9	377	18714-16-4	420	21151-51-9	105
16409-44-2	681	17463-35-3	170	18740-59-5	562	21193-75-9	637
16420-13-6	133	17501-44-9	576	18742-02-4	369	21205-91-4	513
16454-60-7	478	17534-15-5	238	18875-72-4	703	21205 91 4	318
16456-81-8	531	17539-31-0	342	18883-66-4	647 522	21286-54-4	200
16495-13-9	366	17549-30-3	532	18917-37-1	533	21291-99-6	186
16526-68-4	205	17564-64-6	261	18997-57-4	644	21293-29-8	194
16564-43-5	553	17575-20-1	642	19005-93-7	401	21302-43-2	359
16574-43-9	254	17575-21-2	642	19010-79-8	516	21324-39-0	494
16586-35-7	117	17575-22-3	642	19121-58-5	647	21436-03-3	211
16626-02-1	595	17579-79-2	309	19132-06-0	105	21679-31-2	520
16674-78-5	533	17579-99-6	537	19237-84-4	695	21679-46-9	520
16676-29-2	688	17615-97-3	135	19341-57-2	664	21715-90-2	216
16691-43-3	359	17629-30-0	646	19342-01-9	284	21736-83-4	699
16713-15-8	228	17640-15-2	162	19444-84-9	151	21799-87-1	530
16751-02-3	681 457	17680-01-2	546 502	19597-69-4	473	21816-08-0	198 604
16774-21-3	457	17685-52-8	502	19617-43-7	137	21820-51-9	694 271
16834-13-2	436	17687-47-7	225	19694-02-1	335	21860-03-7	271
16836-95-6	548	17697-12-0	509	19701-83-8	584	21908-53-2	476
16849-91-5	325	17702-41-9	462	19718-36-6	485	22037-28-1	369

22083-74-5	690	25316-59-0	247	28407-51-4	467	32899-41-5	692
22115-41-9	253	25322-68-3	695	28469-92-3	276	33008-18-3	310
22135-49-5	328	25379-20-8	420	28529-34-2	584	33070-12-1	683
22150-76-1	668	25395-32-8	631	28553-12-0	288	33100-27-5	377
22282-75-3	392	25465-65-0	217	28562-53-0	353	33325-40-5	95
22282-76-4	392	25535-16-4	423	28643-94-9	589	33375-06-3	330
22373-78-0	555	25675-29-0	253	28697-53-2	632	33450-09-8	368
22483-09-6	99	25704-18-1	543	28728-55-4	130	33628-84-1	589
22509-74-6	257	25717-83-3	371	28822-58-4	402	33725-74-5	558
22719-01-3	515	25779-13-9	329	28832-64-6	360	33755-53-2	669
22810-82-2	437	25836-74-2	102	28903-20-0	532	33850-87-2	186
22818-40-2	599	25895-60-7	493	28920-43-6	293	33884-43-4	369
22990-77-8	359	25952-53-8	129	28994-41-4	247	33973-59-0	435
23007-85-4	410	25997-59-5	633	29106-32-9	200	33998-38-8	267
23110-15-8	392	26062-79-3	174	29159-23-7	200	34006-16-1	438
23190-16-1	229	26078-96-6	557	29139-25-7	392	34017-20-4	583
23220-52-2	593	26093-31-2	360	29270-30-2	544	34017-20-4 34042-00-7	599
23220-32-2	181	26164-26-1	300 305	29420-49-3	164	34202-69-2	148
			305 89				
23235-01-0	604 702	26239-55-4		29428-34-0	583	34255-08-8	629
23313-68-0	703	26299-14-9	546	29548-30-9	680	34271-24-4	583
23398-40-5	551	26412-87-3	557	29576-14-5	118	34275-72-4	458
23519-77-9	576	26444-49-5	525	29617-66-1	117	34305-47-0	313
23537-25-9	592	26472-41-3	216	29701-07-3	684	34316-15-9	373
23897-15-6	566	26550-55-0	177	29836-26-8	645	34430-73-4	486
23978-55-4	435	26562-81-2	195	29870-99-3	557	34464-40-9	154
24009-17-4	628	26585-94-4	628	29883-15-6	632	34521-09-0	549
24161-30-6	248	26593-50-0	309	29943-42-8	434	34713-94-5	161
24221-86-1	678	26614-21-1	249	30108-39-5	566	34830-11-0	574
24280-93-1	688	26614-22-2	249	30145-40-5	544	34836-53-8	521
24295-03-2	354	26628-22-8	491	30334-71-5	677	34837-55-3	509
24346-00-7	665	26632-17-7	152	30345-24-5	413	34946-82-2	521
24347-58-8	105	26651-23-0	335	30409-21-3	413	34994-50-8	698
24424-99-5	121	26791-73-1	222	30587-85-0	557	35005-61-9	230
24425-40-9	229	26851-19-9	403	30802-37-0	583	35011-47-3	399
24448-89-3	398	26908-82-7	226	30983-70-1	292	35013-72-0	669
24463-19-2	260	27025-41-8	596	31111-21-4	486	35061-50-8	635
24480-38-4	627	27061-78-5	585	31250-06-3	435	35112-53-9	453
24589-37-3	297	27072-45-3	391	31317-17-6	384	35193-64-7	510
24589-78-4	537	27126-76-7	301	31362-50-2	590	35231-44-8	369
24677-78-9	278	27215-10-7	512	31366-25-3	436	35455-24-4	58 <i>3</i>
24752-66-7	244	27428-57-5	252	31469-15-5	535	35486-42-1	359
24815-24-5	431	27440-00-2	583	31642-12-3	518	35556-70-8	693
24828-59-9	200	27496-82-2	308	31857-42-8	381	35963-20-3	199
24830-94-2	585	27565-41-9	134	31915-82-9	154	36042-94-1	518
24850-33-7	505	27599-63-9	391	32014-70-3	379	36193-63-6	510
24857-20-3	522	27738-96-1	115	32161-06-1	354	36362-97-7	238
24887-75-0	650	27757-85-3	436	32181-59-2	631	36394-75-9	93
24994-60-3	362	27779-29-9	217	32248-43-4	488	36411-99-1	515
25014-41-9	174	27821-45-0	703	32305-98-9	531	36520-39-5	363
25025-59-6	663	27854-88-2	428	32315-10-9	103	36635-61-7	346
25043-00-9	364	27926-72-3	443	32449-92-6	640	36653-82-4	114
25067-59-8	423	27988-67-6	703	32483-15-1	584	37002-48-5	531
25103-23-5 57		28059-64-5	229	32503-27-8	180	37026-85-0	186
25103-25-3 51	219	28039-04-3	229	32507-32-7	248	37189-34-7	609
25134-21-8	325	28110-20-1	237 294	32551-87-4	248 342	37222-66-5	486
25155-30-0	523 552	28169-46-2	294 287	32551-87-4	342 342	37278-10-7	480 620
			287 636				
25232-41-1	423	28224-73-9		32580-92-0	170 546	37278-89-0	624 616
25246-27-9	197 123	28240-09-7	670 543	32638-88-3	546 500	37326-33-3	616 576
25249-54-1	423	28300-74-5	543 651	32685-69-1	599	37342-97-5	576 197
25312-65-6	652	28393-20-6	651	32864-38-3	110	37349-36-3	487

37577-07-4	690	47797-98-8	342	56320-90-2	458	63363-93-9	227
37883-00-4	704	49637-59-4	523	56411-57-5	617	63393-96-4	97
37933-66-7	648	49716-63-4	574	56484-13-0	576	63401-12-7	<i>39</i> 8
37933-88-3	584	49759-20-8	355	56602-33-6	510	63407-54-5	645
38099-82-0	680	50471-44-8	443	56660-19-6	513	63409-48-3	692
38183-12-9	392	50525-27-4	573	56680-61-5	277	63451-28-5	551
38222-83-2	381	50541-93-0	358	56962-08-4	276	63451-29-6	546
38345-66-3	281	50696-65-6	526	57044-25-4	394	63451-34-3	511
38353-09-2	<i>39</i> 8	50795-24-9	553	57233-86-0	319	63451-35-4	530
38533-41-4	663	50812-37-8	615	57266-56-5	197	63462-65-7	465
38664-03-8	102	50840-23-8	360	57295-30-4	299	64241-57-2	603
38894-81-4	627	50887-69-9	417	57605-95-5	314	64242-26-8	288
38916-34-6	604	50936-05-5	439	57707-91-2	331	64315-16-8	588
38928-89-1	543	51019-43-3	224	57794-08-8	204	64315-16-8	609
39070-63-8	268	51063-97-9	134	57981-02-9	323	64550-88-5	647
39145-52-3	584	51146-56-6	301	58477-85-3	120	64681-08-9	682
39199-93-4	327	51146-57-7	301	58479-61-1	515	64732-91-8	681
39208-14-5	525	51206-73-6	374	58632-95-4	255	64896-28-2	511
39254-48-3	509	51424-66-9	650	58648-09-2	246	64918-47-4	585
39262-22-1	200	51481-60-8	688	58801-34-6	517	64936-53-4	585
39269-10-8	195	51524-84-6	306	58821-96-8	523	65058-23-3	588
39382-08-6	693	51569-18-7	537	58823-95-3	682	65253-04-5	331
39416-48-3	427	51877-53-3	534	58888-58-7	426	65373-82-2	<i>437</i>
39637-74-6	<i>198</i>	51901-85-0	514	59025-03-5	93	66009-10-7	643
39637-99-5	305	52225-20-4	702	59572-10-0	562	66019-20-3	508
39648-67-4	510	52273-54-8	348	59752-57-7	677	66455-27-4	619
39665-12-8	600	52351-64-1	573	59855-11-7	227	66575-29-9	392
39717-48-1	413	52417-22-8	358	60046-49-3	221	66640-86-6	669
39864-68-1	523	52429-99-9	573	60295-51-4	324	66778-08-3	526
39961-95-0	211	52509-14-5	524	60314-43-4	449	67333-70-4	211
40018-26-6	383	52665-69-7	517	60456-23-7	394	67373-56-2	562
40290-32-2	677	52698-84-7	524	60459-08-7	460	67488-50-0	407
40499-83-0	399	52746-49-3	525	60469-70-7	108	67990-19-6	603
40615-36-9	280	52766-61-2	197	60469-70-7	255	67999-30-8	198
	280 168		604	60669-69-4	522	68168-23-0	634
40716-66-3		52809-07-1					
40835-96-9	360	52813-63-5	151	60676-86-0	489	68206-45-1	416
40835-97-0	513	53402-10-1	221	60705-62-6	370	68252-28-8	691
40876-98-0	551	53408-96-1	416	60819-00-3	519	68567-97-5	691
41024-90-2	247	53518-15-3	362	60835-69-0	416	68696-18-4	182
41345-70-4	95	53563-56-7	249	60871-83-2	533	68792-52-9	686
41372-08-1	594	53585-93-6	216	61183-76-4	554	68831-78-7	625
41372-20-7	667	53956-04-0	641	61475-31-8	216	68971-82-4	370
41498-71-9	219	54010-71-8	682	61537-20-0	335	69026-14-8	246
41372-20-7	667	54010-75-2	576	61550-02-5	570	69056-38-8	700
41498-71-9	219	54078-29-4	381	61792-26-5	544	69098-15-3	478
41845-15-2	688	54125-02-9	535	62087-82-5	196		356
	372		197		508	69150-58-9	
41864-22-6		54162-90-2		62337-00-2		69221-14-3	667
42151-56-4	308	54249-88-6	612	62418-65-9	565	69257-04-1	667
42177-25-3	314	54328-33-5	612	62476-56-6	359	69477-27-6	376
42196-31-6	541	54656-96-1	428	62571-86-2	371	69815-49-2	690
42344-05-8	283	54678-23-8	521	62613-82-5	691	69984-73-2	644
42506-03-6	374	54712-57-1	558	62625-24-5	327	70024-90-7	608
42766-10-9	408	54816-44-5	511	62648-72-0	455	70268-36-9	417
42852-95-9	643	55310-46-8	551	62667-64-5	528	70323-44-3	619
42882-31-5	314	55441-72-0	441	62697-73-8	601	70658-61-6	513
43189-45-3	588	55441-82-2	441	62708-56-9	120	70693-62-8	486
44901-24-8	707	55453-09-3	537	62758-12-7	528		480 609
	232				528 294	70937-97-2	
45497-73-2		55599-62-7	617	63082-45-1		71626-98-7	456
46022-05-3	204	55605-27-1	251	63231-67-4	489	71626-99-8	455
46292-93-7	332	55870-50-3	514	63277-17-8	551	71807-57-3	603

72040-63-2	669	80731-10-8	693	96638-29-8	622	123333-53-9	396
72120-52-6	703	81290-20-2	570	97731-02-7	595	123333-55-1	367
72432-10-1	666	81360-42-1	435	97945-19-2	197	123333-68-6	338
72497-47-3	618	81484-86-8	562	98327-87-8	511	123334-16-7	340
72497-48-4	618	81790-10-5	514	99685-96-8	213	123334-29-2	520
72909-34-3	686	81927-55-1	247	100243-39-8	399	125829-24-5	520
73018-10-7	427	82203-66-5	453	100312-29-6	422	126050-88-3	617
73476-18-3	569	82410-32-0	681	100622-34-2	507	127184-05-8	382
73487-00-0	516	82473-24-3	651	100646-51-3	697	127280-17-5	401
73500-82-0	372	82495-75-8	569	100646-52-4	697	129476-47-7	517
73536-95-5	664	82737-61-9	512	100760-04-1	253	129880-73-5	554
73573-88-3	674	82911-69-1	294	100760-08-5	697	131347-76-7	588
73597-16-7	301	83646-41-7	404	100760-10-9	697	132063-05-9	631
74050-98-9	404	84227-47-4	366	101055-56-5	365	132873-57-5	319
74267-27-9	517	84366-81-4	680	101055-57-6	365	135105-52-1	214
74839-84-2	511	84665-66-7	537	102029-52-7	662	135113-15-4	215
74866-28-7	270	85017-77-2	460	102783-18-6	380	135113-16-5	215
75507-26-5	397	85051-91-8	547	103225-02-1	417	136316-32-0	215
75513-72-3	533	85261-19-4	644	104371-20-2	323	140472-69-1	253
75621-03-3	651	85261-20-7	634	104371-21-3	323	145224-92-4	551
75708-92-8	680	85272-31-7	522	104706-47-0	399	145626-87-5	103
75853-08-6	324	85362-85-2	249	106018-85-3	568	146651-75-4	250
76058-33-8	293	85362-86-3	249	106268-95-5	394	148263-58-5	620
76155-78-7	253	85618-20-8	641	106868-21-7	522	148672-09-7	655
76189-55-4	511	86088-83-7	614	107054-29-5	382	150760-95-5	146
76189-56-5	511	86688-08-6	270	107439-61-2	549	156150-40-2	555
76231-37-3	353	87720-90-9	170	108347-97-3	700	172222-30-9	510
76284-65-6	270	87720-91-0	170	108448-77-7	200	174883-18-2	617
76422-63-4	513	88020-97-7	170	108503-47-5	575	175883-78-0	215
76496-51-0	234	88020-99-9	322	108703-35-1	546	206752-36-5	236
76513-69-4	568	88496-88-2	515	108750-13-6	516	207121-53-7	675
76571-64-7	583	88929-35-5	691	109276-34-8	669	207233-95-2	552
76578-14-8	697	89059-06-3	429	109669-56-9	263	207300-70-7	640
76650-89-7	562	89976-15-8	402	109682-26-0	225	207399-11-9	472
76836-02-7	555	91159-79-4	235	109704-53-2	560	207683-22-5	556
76855-69-1	505	91510-62-2	638	110827-07-1	225	207737-97-1	661
76899-34-8	511	91682-96-1	699	112926-00-8	489	303136-74-5	405
77060-21-0	550	92212-70-9	512	112945-52-5	489	312619-45-7	658
77287-29-7	162	92307-52-3	591	114200-15-6	253	312693-53-1	661
77882-24-7	523	93670-18-9	254	114234-09-2	513	312693-83-7	661
78092-53-2	370	94051-08-8	697	114615-82-6	562	313223-04-0	651
78338-22-4	438	94218-72-1	616	115383-22-7	214	336096-71-0	620
78508-96-0	397	94548-75-1	526	115459-65-9	394	345909-26-4	661
78617-12-6	641	94594-90-8	200	116797-51-5	593	379669-72-4	515
78905-09-6	570	94790-37-1	365	118336-86-0	373	652157-52-3	675
79004-97-0	555	95977-28-9	697	119110-37-1	533		
79410-20-1	221	96476-01-6	508	119189-23-0	618		
80403-59-4	554	96638-28-7	622	119189-24-1	618		