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Foreword 

The revised and enlarged text of Aerothermodynamics of Gas 
Turbine and Rocket Propulsion by the late Gordon C. Oates, pub- 
lished in 1988, continued to fulfill the need for a comprehensive, 
modem book on the principles of propulsion, both as a textbook for 
propulsion courses and as a reference for the practicing engineer. 
The original edition of this book was published in 1984 as the sec- 
ond volume of the then newly inaugurated AIAA Education Series. 
The Third Edition of this text adds now a companion software rep- 
resenting a set of programs for use with the problems and design 
analyses discussed in the book. The computer software has been 
prepared by Daniel H. Daley (U.S. Air Force, retired), Williams H. 
Heiser (formerly with the U.S. Air Force Academy), Jack D. 
Mattingly (Seattle University), and David T. Pratt (University of 
Washington). 

The revised and enlarged edition contained major modifica- 
tions to the original text, and some of the text was rearranged to 
improve the presentation. Chapter 5 included performance curves, 
design parameters values, and illustrations of several typical mod- 
em turbofan engines. Chapter 7 included a method of analysis to 
account for the effect of nonconstant specific heats in the cycle 
analysis equations, and in Chapter 8 a new section was added for an 
analysis of engine behavior during transient operation. For com- 
pleteness, Appendices A and B were added: Standard Atmosphere 
and SAE (Society of Automotive Engineers) Gas Turbine Engine 
Notation. The Third Edition now has Appendix C, which gives an 
overview of the companion software. 

The AIAA Education Series of textbooks and monographs 
embraces a broad spectrum of theory and application of different 
disciplines in aeronautics and astronautics, including aerospace 
design practice. The series includes texts on defense science, engi- 
neering, and management. The complete list of textbooks published 
in the series (over 50 titles) can be found following page 456. A typ- 
ical book in the series presents subject material tutorially, dis- 
cussing the fundamental principles and concepts, and additionally 
gives perspective on the state of the art. Thus the series serves as 
teaching texts as well as reference materials for practicing engi- 
neers, scientists, and managers. 

J. S. PRZEMIENIECKI 
Editor-in-Chief 
AIAA Education Series 
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Preface 

This book was written with the intent of providing a text suitable for 
use in both graduate and undergraduate courses on propulsion. The 
format is such that some overlap will occur when the book is thus 
used, but the author has found that the diversified background typi- 
cally found in most graduate classes is such that some repetition of 
undergraduate material is appropriate. 

At the University of Washington, we have used this text for both 
graduate and undergraduate propulsion courses in two quarter se- 
quences. Typical subject lists considered in the sequences are: 

Undergraduate 

• The introduction (Chapter 1), which could be considered "prop- 
ulsion without equations," is discussed and assigned as outside reading. 

• Thermodynamics and quasi-one-dimensional flows are reviewed. 
Because of the frequent use of the results in off-design performance 
analysis, the expressions for mass flow behavior are emphasized. 

• The thermodynamics and fluid dynamics are first applied in the 
prediction of rocket nozzle behavior. Chemical thermodynamics is 
then reviewed so that rocket chamber conditions can be estimated. 

• Usually, consideration of solid-propellant and nonchemical 
rockets is delayed until the second quarter. The extent of the consider- 
ation depends on the relative emphasis of aeronautical vs astronautical 
subjects desired. 

• Airbreathing engines are introduced with the concepts of ideal 
cycle analysis. Simple design trends become evident and the simplicity 
of the equations helps to make the various optimal solutions somewhat 
transparent, as well as allowing time for the student to construct his 
own computer programs. Usually, time limitations do not allow con- 
siderations of the mixed-flow turbofan. 

• Real engine effects are introduced through definition of the 
component measures. The relationship of the additive drag to the inlet 
lip suction is stressed. 

• Selected examples of nonideal cycles are considered in detail and 
the student asked to "design" an engine. It is at this point that the 
student should realize that such a design cannot be determined 
properly without detailed information regarding the mission and the 
related aircraft configuration. 

• The design concepts are extended to off-design estimation and 
the restrictive effects of fixed-geometry engines are revealed. 

×i 



xii 

• The course concludes (about two-thirds of a quarter) with con- 
sideration of the elementary aerodynamics of rotating machinery. 
Three-dimensional effects are introduced via the free vortex theory 
(and its limitations) and through simple radial equilibrium concepts 
and examples. 

Graduate 

• Chapters 1 and 2 are briefly reviewed and given as a reading 
assignment. 

• Rockets are not considered in the graduate course; rather the 
subject proceeds directly to ideal cycle analysis. The optimal solution 
techniques are emphasized and the mixed-flow turbofan is studied in 
detail. 

• Component performance measures are reviewed, with emphasis 
placed upon the determination of appropriate average quantities. 
Supersonic inlet performance estimation is studied in detail. 

• Detailed studies of both design and off-design examples of 
several engine types, including component losses, are considered. 

• Blade aerodynamics is considered for both the turbine and 
compressor, including throughflow theory and cascade theory. 

• The course concludes with topics of current interest such as 
engine poststall behavior, the effects of inlet distortion, etc. 

An effort has been made throughout the text to develop the 
material to the point where computational examples may be easily 
obtained. Development of the required equations is often algebraically 
complex and somewhat tedious, but the ease of computation of the 
resulting equation sets through the use of modern calculators or small 
computers certainly justifies the effort required. In this respect, prob- 
lem sets are provided in Chapters 2-11, and the student is urged to 
attempt as many problems as possible to develop both his problem- 
solving technique and his understanding of the engine and component 
behaviors predicted by the related analyses. 

GORDON C. OATES 
University of Washington 
Seattle, Washington 
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1. INTRODUCTION 

1.1 Purpose 
The propulsion provided by airbreathing and rocket engines is basically 

similar in that thrust is obtained by generating rearward momentum in one 
or more streams of gas. In the case of a rocket the propulsive gas originates 
onboard the vehicle, whereas in the airbreathing engine most of the propel- 
lant gas originates from the free air surrounding the vehicle. This volume 
presents and explains the aerothermodynamics of rockets and airbreathing 
engines, detailing the mechanisms of the fluid and thermodynamic behavior 
in the engine components and revealing the overall behavior of engines and 
their interactions with the flight vehicles they power. 

The interaction of the various components of aircraft and rocket engines, 
as well as the interactive nature of the entire engine with the flight vehicle, 
necessitates the extensive use of simplified physical models to provide 
analytical estimates of performance levels. As a result, the detailed calcula- 
tions, although straightforward conceptually, can often be quite complex 
algebraically. For this reason, this introduction will outline many of the 
aspects of rocket and airbreathing engines in purely descriptive terms. The 
required analytical methods to support the stated behaviors are developed 
in subsequent chapters. 

1.2 Chemical Rockets 
Rockets are generally classified as either "chemical" or "nonchemical," 

depending upon whether the energy that eventually appears in the propel- 
lant stream arises from the release of internal chemical energy via a 
chemical reaction or is supplied to the propellant from an external source. 
Chemical rockets are further subdivided into the classes of solid-propellant 
and liquid-propellant rockets. 

Liquid-Propellant Rockets 
To date, the most frequently utilized rocket in large boosters has been of 

liquid-propellant design. Liquid-propellant rockets have several advantages 
for use as boosters, principal among which is that the most highly energetic 
propellants (in terms of enthalpy per mass) have been found to be liquid 
fuels and oxidizers. In addition, the separate fuel and oxidizer can be 
carried in low-pressure (and hence lightweight) tanks because the very 
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FUEL 

OXIDIZER 

PUMPS 

Fig. 1.1 Liquid-propellant rocket. 

high pressure of the combustion chamber--so beneficial to efficient propul- 
s i o n - n e e d  be contained only downstream of the fuel and oxidizer pumps. 
(See Fig. 1.1.) 

Further advantages of liquid-fuel rockets can be exploited for use in the 
upper stages of large rockets. Thus, if maneuvering is required, it can be of 
benefit-to have a variable thrust level capability: liquid propellants lend 
themselves to "throttling" much more easily than do solid propellants. 
Advantage can also be taken of the very energetic H2-O 2 reaction to achieve 
very high rocket exhaust velocities. It is to be noted that the hydrogen-oxygen 
rocket is not as attractive for first-stage booster use, because the very low 
density of molecular hydrogen leads to a requirement for high-volume 
tankage. In a first stage, such a high-volume requirement has both large 
structural and large drag penalties due to the large vehicle cross section 
required within low-altitude, high-density air. 

A disadvantage of a liquid-propellant rocket, as compared to a solid-pro- 
pellant rocket, is that in order to generate large thrust levels, the fuel and 
oxidizer pumps and all associated piping must be increased in size, with a 
consequent increase in the overall mass of the vehicle. Very large booster 
rockets operate with surprisingly low thrust levels, typical values being 
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J . ~ 1  

Fig. 1.2 Extendable exit cone (courtesy of United Technologies Chemical Systems 
Division). 

about 1.2 times the rocket's initial weight. Such low thrust levels are utilized 
both because of the difficulty of providing pumps of sufficient size and 
because of the desire to restrict the "g loadings" just prior to stage burnout, 
to acceptable levels. 

Design problems encountered in producing a successful liquid-propellant 
booster rocket include the provision of suitably matched pumps to supply 
the necessary fuel/oxidizer ratio to give maximum exhaust velocity, and to 
do so with such accuracy that the fuel and oxidizer tanks approach 
depletion at the same time. It is usual to maintain an almost constant 
combustion chamber pressure throughout a rocket firing; as a result, if the 
rocket climbs through a large altitude variation, a corresponding large 
variation in nozzle pressure ratio will occur. This variation in nozzle 
pressure ratio itself implies the use of a variable exit area nozzle if the 
maximum possible thrust for each altitude is to be approached, (Note that 
the maximum possible thrust occurs when the nozzle exhaust pressure is 
very near the ambient pressure.) It is a difficult task to provide a reliable, 
lightweight nozzle with variable geometry and an associated control system 
capable of adjusting appropriately for a given ambient pressure. For- 
tunately, however, several successful developments have occurred, giving the 
designer of modern rockets the possibility of exploiting rocket nozzles with 
more than one "design" altitude. Figure 1.2 shows an example of a recently 
developed rocket with an "extendable exit cone" (EEC) that allows exit 
pressure matching at three separate altitudes. 

Perhaps the most persistent problem area encountered by the designer of 
any system utilizing very-high-energy sources is that of instabilities. There 



4 GAS TURBINE AND ROCKET PROPULSION 

are several classes of instabilities to be found by an unfortunate designer of 
rocket engines. An example is that wherein a longitudinal disturbance of 
the rocket leads to a variation in the pumping rate of the fuel and oxidizer 
pumps (because of the associated pump inlet pressure fluctuation). The 
variation in pumping rate in turn leads to a variation in thrust level, which 
itself leads to a further variation in the pumping rate. Because many rockets 
are long and slender, and hence very flexible, such disturbances can couple 
("feedback") in a way that leads to very large accelerative loads being 
transmitted to the payload. This class of instability, for rather obvious 
reasons termed the "pogo" instability, can force unpleasant design require- 
ments, such as extra stiffening, upon the rocket designer. 

Two classes of combustion instabilities have been found in the practice of 
rocket engine design. "Chugging," a relatively low-frequency oscillation, 
occurs when combustion chamber pressure variations couple with the 
liquid-fuel and oxidizer supply system. It can happen that, when the 
combustion chamber pressure momentarily exceeds the time-averaged 
chamber pressure, the fuel and oxidizer flow rates will decrease because of 
the decreased pressure drop across the injectors. As a result, the chamber 
pressure may drop, leading to an increased fuel and oxidizer flow with a 
subsequent pressure increase, etc. Chugging is usually eliminated by raising 
the fuel and oxidizer supply pressures so that the injector pressure drop will 
be so substantial that the chamber pressure fluctuations will not cause 
significant input flow rate fluctuations. Such a "cure" leads to the require- 
ment for heavy piping and pump equipment. 

"Screaming" combustion instability is an acoustic instability identified 
with the increase in the thermal output of the fuel-oxidizer reaction found 
with the increases in pressure and temperature identified with an acoustic 
disturbance. Such disturbances can reflect from the chamber walls, leading 
to continued amplification of the waves to extreme levels. It appears that the 
primary source of energy for such disturbances exists in the two-phase 
region close to the injector heads, so careful development of the injector 
flow geometry is required to prevent the onset of screaming combustion. 
Screaming is further reduced by providing the chamber walls with "acoustic 
tiling" that greatly reduces the intensity of waves reflected from the walls. 

Solid- Propellant Rockets 
Several advantages of liquid-propellant rockets, as compared to solid-pro- 

pellant rockets, were discussed above. It is to be noted, however, that there 
are many missions for which the solid-propellant rocket is the most logical 
choice. Thus, the relative simplicity of a solid-propellant rocket encourages 
its use for such purposes as weapons and "strap-on" booster rockets to very 
large orbiting rockets. The relatively low exhaust velocity provided by solid 
rocket propellants does not create as great a penalty in the overall rocket 
mass needed for missions requiring relatively small vehicle velocity changes 
as it does for missions requiring large velocity changes. (This is because the 
liquid rocket pumping equipment becomes a larger fraction of the overall 
mass as the required vehicle velocity change is reduced.) Even though the 
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entire solid-propellant rocket is exposed to the high pressure of the "com- 
bustion chamber," the required structural weight is no longer extreme 
because of the development of the enormously structurally efficient filla- 
ment-wound rocket case. 

An area of great advantage for the solid-propellant rocket is that of 
propellant density. With the development of heavily aluminized solid pro- 
pellants, the propellant density has been greatly increased, leading to the 
production of rockets with very small cross sections and hence much 
reduced drag. Such an advantage is particularly pertinent for low-altitude 
weapons use. Recently, also, propellants with a high surface burning rate 
have been developed, with the result that it is relatively easy to design 
solid-propellant rockets with enormous thrust-to-weight ratios. 

Development efforts continue along the lines of developing high-energy, 
high-density, high-burning-rate propellants. In addition, methods of thrust 
level variation and rapid thrust termination continue to be investigated. 

As with liquid rockets, screaming instabilities continue to be of develop- 
ment concern. Methods to reduce such instabilities, or their effects, include 
use of resilient propellant material and propellant grain cross-sectional 
shapes that reduce wave reflection. 

1.3 Nonchemical Rockets 

When "very-high-energy" missions are contemplated (missions for which 
the required change in vehicle velocity is very large), it is found that even 
with the use of the most energetic of chemical propellants, the required 
fraction of propellant mass to overall vehicle mass becomes excessive. 
Elementary considerations reveal that the rocket "mass ratio" (initial mass 
divided by final mass) is very sensitive to the ratio of required vehicle 
velocity change to rocket exhaust velocity. In order to reduce the mass ratios 
required, alternative schemes are investigated that allow the addition of 
energy to the propellant from sources other than the chemical energy of the 
propellant itself. 

Once the possibility of an external energy source is considered, the 
problem of the energy supply becomes separate from the problem of 
choosing the most suitable propellant. Thus, the energy could be supplied to 
a propellant directly by thermally heating the propellant, the thermal energy 
itself being supplied by a nuclear reactor, a solar concentrator, radiative 
energy supplied from a remote energy source, or any other of a wide variety 
of schemes. 

When very-high-energy levels are desired, a variety of electrically powered 
devices deserve consideration, two examples of which are briefly described 
in the following. The electrical power for the electrically driven rocket might 
be supplied by a nuclear-powered motor-generator set or possibly by a 
solar-powered motor-generator set. Provision of space power at manageable 
power-to-mass ratios remains one of the most perplexing problems in the 
next generation of spacecraft. It is to be noted that systems delivering power 
for such high-energy levels of propellant must be equipped with "waste 
heat" radiators. Such radiators must be extremely large or must operate at 
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very high temperatures with a consequent penalty in the cycle thermody- 
namic efficiency (hence requiring a massive "engine"!). 

Nuclear-Heated Rocket 

A conceptually simple idea, the nuclear-heated rocket operates by having 
the propellant pass through heat-exchange passages within a nuclear reactor 
and then through a propelling nozzle. Conventional nuclear reactors must 
operate with a limit upon the maximum solid-surface temperature found 
within the reactor, in order to ensure the reactor's structural integrity. Thus, 
quite unlike the conditions found in chemical rockets where the energy 
release is within the propellant, the propellant temperature in nuclear 
reactors is restricted to being less than the wall temperatures and hence 
substantially less than that found within chemical rocket propellants. 

The advantage of a nuclear-heated rocket arises because of the freedom in 
the choice of propellants. The most desireable propellant for such a system 
is that which gives the maximum possible specific enthalpy for the given 
limiting temperature The specific enthalpy of a perfect gas is (nearly) 
inversely proportional to the molecular weight, so the logical choice of 
propellant for a nuclear-heated rocket is evidently molecular hydrogen 
(molecular weight of two). 

The Rover and Nerva programs successfully demonstrated that nuclear- 
heated rockets utilizing molecular hydrogen as a propellant could achieve 
exhaust velocities almost twice those of the best chemical rockets. The 
related mass ratio for a very-high-energy mission could be less than one-third 
that for a chemical rocket! 

It is unfortunate, however, that even such an enormous decrease in the 
mass ratio (or an equivalent increase in the payload) is such that even 
nuclear-heated propulsion gives an insufficient exhaust velocity for use in 
manned planetary missions. To date, it has also been found that the 
additional mass of the reactor and its shielding, as well as the enormity of 
the development problems expected, have precluded the use of nuclear- 
heated propulsion for lunar or near-Earth use. It is possible, however, that 
the future may see the use of "nuclear tugboats" for reusable lunar 
transport and synchronous orbit transport applications. 

Electrical Rockets 

At the very-high-energy end of the propulsion spectrum, so much energy 
must be added to the propellant that "self-cooling" schemes (such as the 
nuclear rocket) cannot provide sufficient energy; thus, systems that provide 
energy through use of a motor-generator configuration and its required 
radiator become mandatory. Relatively straightforward analysis shows that 
for such cases the optimum choice of exhaust velocity is not a limitingly 
large value. This is because the mass of the power supply and radiator 
increases as the propellant stream energy increases, so that the combination 
of propellant mass and power supply mass passes through a minimum at an 
intermediate value of exhaust velocity. Detailed studies of possible manned 
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solar missions indicate the optimal exhaust velocities to be in the range of 
30,000-50,000 ms 1. 

Electrothermal thrustors (arcjets). Electrothermal thrustors are con- 
ceptually simple devices that operate by passing an electrical current di- 
rectly through the propellant so that the electrical energy is deposited as 
thermal energy within the propellant. The high-enthalpy propellant is then 
expanded through a conventional nozzle. 

Electrothermal thrustors are limited in performance by the onset of high 
ionization (or dissociation) losses, as well as high thermal losses to the 
containing walls. At present, attainable exhaust velocities are limited to 
about 17,000 ms 1, so that the devices are inappropriate for planetary 
missions. Their relative simplicity makes them viable candidates for use in 
orbit perturbation and stationkeeping. 

Electrostatic rockets (ion rockets). When very-high-energy exhaust 
streams are considered, the particle energies are many times larger than 
typical ionization energies, so the loss (for propulsive purposes) of the 
ionization energy can be considered of small import. If the exhaust stream is 
fully ionized, however, the exhaust stream can be contained and directed 
through the use of electric (and possibly magnetic) fields alone. As a result, 
"viscous containment" by solid boundaries is not required and the problem 
of solid-surface erosion is vastly reduced. 

Electrostatic thrustors operate by accelerating a stream of ions in an 
electrostatic field and subsequently neutralizing the exhaust stream by the 
injection of electrons. With such very-high-energy devices, a performance 
limitation occurs because of the difficulty of creating sufficient thrust per 
area. The thrust limitation occurs because the beam flow rate is restricted 
due to the proximity of the departing ions to the ion emitter surface, which 
much reduces the ion departure rate. (The beam becomes "space charge 
limited.") Straightforward analysis shows that the beam thrust is propor- 
tional to the square of the mass/charge ratio, to the fourth power of the 
exhaust velocity, and to the inverse square of the anode-cathode spacing. As 
a result, very small spacings and propellants with very high mass/charge 
ratios (cesium or mercury) are used. 

To date, electrostatic thrustors have demonstrated successful performance 
in the range of exhaust velocities in excess of 50,000 ms 1. The great 
remaining problem for future electrical rocket development is the generation 
of the required power at acceptable power-to-mass ratios. 

1.4 Airbreathing Engines 

Performance Measures and Engine Selection Considerations 
The two most commonly used performance measures for airbreathing 

engines are specific thrust (the thrust force divided by the total mass flow 
rate of air through the engine) and specific fuel consumption (the mass flow 
rate of the fuel divided by the thrust force of the engine). These perfor- 
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mance measures are themselves related to the more fundamental efficiency 
measures, the engine thermal efficiency and the propulsive efficiency. 

It is to be noted that the (useful) mechanical output of the engine appears 
entirely as the rate of the generation of kinetic energy in the exhaust stream 
or streams. (Note that to a thermodynamicist kinetic energy is entirely 
equivalent to work.) It is fortunate for the aircraft engine designer that the 
kinetic energy of the exhaust stream is already in a form appropriate for the 
purpose of providing thrust. This is in contrast to (for example) a ground- 
based gas turbine engine that would have to be designed with subsequent 
turbine stages to remove the exhaust stream kinetic energy and convert it to 
shaft power. Such subsequent stages would have further component losses, 
leading to an engine thermal efficiency substantially less than that of an 
equivalent aircraft engine. Because of the equivalency of kinetic energy and 
work, the thermal efficiency can be obtained as the ratio of the rate of 
kinetic energy generation to the rate of thermal (chemical) energy input. 

The propulsive efficiency gives a measure of how well the energy output 
of the engine is utilized in transmitting useful energy to the flight vehicle. It 
is defined as the ratio of the power transmitted to the flight vehicle and the 
rate of kinetic energy generation. 

Elementary manipulations show that a propulsive efficiency increase will 
be accompanied by a specific thrust decrease, a situation that adds to the 
designer's dilemma. The specific fuel consumption is inversely proportional 
to the product of the thermal and propulsive efficiencies (as well as being 
proportional to the flight velocity). Hence, it is obvious that it would be 
desirable to increase the propulsive efficiency in order to reduce the specific 
fuel consumption. Inevitably, however, the amount of air handled by the 
engine would have to be increased (to maintain the same level of thrust) 
because of the related decrease in specific thrust. The requirement to 
increase the quantity of air handled by the engine can lead to difficult 
engine installation problems. The use of a very-large-diameter fan with a 
large bypass ratio, for example, might require an inordinately long landing 
gear as well as, perhaps, a gearbox to better match the fan tip speed with the 
tip speed of the turbine driving the fan. 

It is evident that the optimum choice will depend much on the "mission." 
Thus, because for long-range transport aircraft fuel consumption is of 
dominant concern, the optimal design favors use of an engine with a high 
bypass ratio and a low fan pressure ratio. Figure 1.3 shows the PW2037 
engine recently introduced into commercial service. This engine has a 5.8 
bypass ratio and 1.4 fan pressure ratio (giving a high propulsive efficiency 
and hence a low specific fuel consumption, but also a low specific thrust). 
The engine has a high compressor pressure ratio ( --- 32), which helps to give 
a very high thermal efficiency, but also somewhat further contributes to the 
low specific thrust. 

The extreme performance demands of the military environment lead to 
the selection of quite different design choices. Thus, high specific thrust is 
required for flight at high Mach numbers or for maneuvering flight at 
transonic Mach numbers. As a result, lower fan bypass ratios and higher fan 
pressure ratios are found to be suitable. Even then, such aircraft must have 
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acceptable subsonic cruise capability; thus, a compromise between high 
specific thrust and low specific fuel consumption is inevitable. The demand 
for compromise of such multimission aircraft is somewhat eased through 
incorporation of afterburning, which greatly increases the specific thrust at 
the high-performance condition and hence allows use of a more fuel-efficient 
system for subsonic cruise. Figure 1.4 shows the Pratt & Whitney F100 
afterburning turbofan engine. It is to be noted that this engine has a 
three-stage fan with a pressure ratio of = 3 and bypass ratio of 0.78. The 
compressor pressure ratio is 25, which is relatively high for this class of 

Fig. 1.4 FIO0 afterburning turbofan (courtesy of Pratt & Whitney). 
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engine and is clearly incorporated to aid the subsonic fuel efficiency. 
The choice of the appropriate engine is also much affected by the possibly 

conflicting requirements of takeoff thrust and cruise thrust. It is evident that 
for zero flight velocity the power required to supply a given thrust level is 
proportional to the exhaust velocity (inversely proportional to the mass 
flow). At high flight velocities, large powers are required; as a result engines 
with low specific thrusts sized for takeoff thrust requirements are found to 
be underpowered at high forward speeds (as is the case for conventional 
turboprops). Conversely, engines with very high specific thrust (turbojets) 
must be made oversize to satisfy the takeoff requirement and hence tend to 
be too powerful for cruise flight at subsonic speeds. This latter condition 
results in throttled-back operation at cruise with a consequent loss in 
thermal efficiency because of the related reduction in compressor pressure 
ratio. 

It is of interest to note the recent development of very-high-power 
turboprops designed to fly at Mach numbers up to 0.8 (Fig. 1.5). Such 
engines are so powerful that in the takeoff condition they are operated at 
part throttle so as to allow the use of lighter gearboxes and to prevent 
propeller stalling. 

It is also worthy of note that the turbofan, so popular in commercial 
airline use, provides an excellent balance between the takeoff thrust and 
cruise thrust requirements. 

Engine Components 
The major components of an aircraft gas turbine engine are the inlet, 

compressor (and fan), combustor, turbine, and nozzle. In this section the 

Fig. 1.5 Test model of high-disk-loading propfan in wind tunnel. 
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principles of operation of each component and the design limitations and 
problem areas still found in practice will be briefly described. 

Inlets. The design characteristics of an inlet very much depend on 
whether the inlet is to be flown at subsonic or supersonic speed. In either 
case, the requirement of the inlet is to provide the incoming air to the 
compressor (or fan) face at as high a (stagnation) pressure as possible and 
with the minimum possible variation in both stagnation pressure and 
temperature. For both supersonic and subsonic flight, modern design prac- 
tice dictates that the inlet should deliver the air to the fan or compressor 
face at a Mach number of approximately 0.45. As a result, even for flight in 
the (high) subsonic regime, the inlet must provide substantial retardation 
(diffusion) of the air. 

The design of subsonic inlets is dominated by the requirements to retard 
separation at extreme angle of attack and high air demand (as would occur 
in a two-engine aircraft with engine failure at takeoff) and to retard the 
onset of both internal and external shock waves in transonic flight. These 
two requirements tend to be in conflict, because a somewhat "fat" lower 
inlet lip best suits the high angle-of-attack requirement, whereas a thin inlet 
lip best suits the high Mach number requirement. Modern development of 
the best compromise design is greatly aided by the advent of high-speed 
electronic computation, which allows analytical estimation of the complex 
flowfields and related losses. 

Estimation of the losses within supersonic inlets is an easier task than for 
subsonic inlets for the simple reason that the major losses occur across the 
shock waves, and hence may be estimated using the relatively simple shock 
wave formulas. More exacting estimates require estimation of the 
boundary-layer and separation losses. 

There is a wide variety of design possibilities for supersonic inlets, 
ranging from the simple normal shock inlet (which has a single normal 
shock wave located in the flowfield ahead of the inlet lip) to the internal, 
external, or mixed compression inlets depicted in Fig. 1.6. 

The design of an inlet and its related control system is a demanding task, 
particularly for an aircraft with very high Mach number capability. Optimal 
performance at a given Mach number requires exacting definition of the 
inlet geometry. [This is so that the shock wave strengths as well as wall 
impingement locations (in the neighborhood of suction slots) can be accu- 
rately determined.] When such inlets are flown at speeds other than the 
design Mach number, complex geometrical variation must occur if the inlet 
performance is not to deteriorate excessively. 

It is to be noted that the great difficulty of providing acceptable inlet 
performance over a wide range interacts with the proper determination of 
an aircraft's flight envelope. The necessary variable geometry and actuation 
equipment can so increase the vehicle weight that insistence upon a high 
Mach number capability can greatly compromise the aircraft performance 
at lower Mach numbers. This situation is particularly true for military 
aircraft, where it is found in combat that the aircraft energy degradation in 
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Fig. 1.6 Supersonic inlets. 

severe maneuvering is so extreme that most actual combat occurs in the 
neighborhood of a unit flight Mach number! Clearly the F-16 aircraft, which 
has a simple normal shock inlet, has been designed to optimize its perfor- 
mance in this lower Mach number regime. 

Compressors and fans. There are two major classes of compressors 
used in aircraft gas turbines, the centrifugal and the axial. In the centrifugal 
compressor, air is taken into the compressor near the axis and "centrifuged" 
to the outer radius. Subsequently, the swirl of the outlet air is removed and 
the air diffused prior to entry into another compressor stage or into the 
combustor. Centrifugal compressors have the advantage in that they are 
rugged and deliver a high-pressure ratio per stage. In addition, they are 
easily made in relatively small sizes. The disadvantages of the centrifugal 
compressor are that it is generally less efficient than an axial compressor and 
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it has a large cross section compared to the cross section of the inlet flow. In 
modern usage, centrifugal compressors are used with relatively small engines 
or as a final stage (following an axial compressor) in larger engines. 

Axial compressors are used in the majority of the larger gas turbine 
engines. In such compressors, enthalpy addition occurs in the rotating rows 
(rotors) in which, usually, both the kinetic energy and static pressure are 
increased. The stator rows remove some of the swirl velocity, thereby 
decreasing the kinetic energy and consequently increasing the static pres- 
sure. The limiting pressure rise through an axial compressor row occurs 
when the adverse pressure gradient on the blade suction surface becomes so 
severe that flow separation occurs. When substantial separation occurs, the 
entire compressor may surge (that is, massive flow reversal will occur) or 
rotating stall may result. Rotating stall is the condition where the flow in 
several blades stalls (becomes almost stagnant) and the "package" of stalled 
fluid then rotates around the blade row. The rotating stall condition is 
particularly dangerous, because very large vibratory stresses can occur as 
the blades enter and depart the stall. 

In order to achieve a high limiting pressure rise per stage, it is beneficial 
to design the stage so that the static pressure rise in each row is almost the 
same (so that one row will not stall prematurely). The degree of reaction °R 
is defined as the ratio of the static pressure rise in the rotor divided by the 
static pressure rise across the stage and provides a measure of how well 
balanced the blade row loadings are. When detailed designs are investigated, 
however, it is found that, inevitably, the degree of reaction increases with 
increase in the radius. A related result is that stator blades are limited in 
their performance at the hub, whereas rotor blades are usually limited at the 
tip. Further, the effect of the variation in °R with the radius results in rows 
with large tip-to-hub ratios being more limited in attainable pressure rise 
than rows with small tip-to-hub ratios. This result in itself provides the 
designer with yet another compromise, in that a compressor with a small 
tip-to-hub ratio would require fewer stages to attain a given pressure ratio 
than would a compressor with a large tip-to-hub ratio, but would also 
require a greater outer diameter in order to handle the same quantity of air. 

By and large, fuel efficiency increases with an increase in the compressor 
pressure ratio. The optimal pressure ratio is, however, constrained by several 
design limitations and tradeoffs. A compressor with a very-high-pressure 
ratio could require an excessively heavy casing if the compressor was to be 
used to its maximum capability in low-altitude (high-ambient-pressure) 
conditions. In addition, the high pressure tends to increase the casing 
expansion and distortion. The effects of such expansion appear in increased 
losses due to the flow around the blade tips. This situation is even further 
aggravated for very-high-pressure-ratio compressors, because the high-pres- 
sure blades in even large engines are very small and the tip leakage affects a 
proportionately larger portion of the flowfield. 

High-pressure ratios also greatly compromise the off-design performance. 
It is evident that the overall contraction of the compressor annulus area will 
be chosen so as to provide the correct axial velocity throughout the 
compressor for the design condition. Thus, at off-design operation the axial 
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velocity distribution will not be appropriate for the then present blade 
speeds. Consider, for example, the conditions existing at very low blade 
speed as would be found during starting. Under such conditions, the 
increase in pressure, and hence density, across each stage is far below that to 
be found when the compressor is at design speed. As a result, the axial 
speed of the flow must increase greatly as the air proceeds rearward into the 
contracted annular cross section. This effect can be so extreme that the flow 
can approach "choking" (approach Mach 1). Under these conditions, the 
flow tends to drive the rearward blades ("windmilling"), whereas the 
resultant back pressure slows the incoming flow and causes the frontward 
blades to stall. 

The demands of these off-design considerations have lead to several 
ingenious "fixes." Thus, modern high-pressure-ratio compressors utilize 
"bleed valves" that release a portion of the air from the intermediate blade 
rows so as to reduce the axial velocity in subsequent stages. Several of the 
early stages of the compressor are equipped with variable stators so that the 
flow can be directed in the direction of the rotation of the rotor and so 
reduce the angle of attack and hence the tendency to stall. Finally, modern 
compressors are equipped with "multiple spools" such that portions of the 
compressors are driven by their own separate portions of the turbine. By so 
doing, each portion of the compressor (and its related turbine!) tends to 
adjust its speed better to the then present axial velocity. 

Problems of scale are to be found when larger engines are scaled down for 
use in smaller aircraft. Tip clearance problems will obviously become 
greater, and the high-pressure blading can become extremely small. For this 
reason, it is often advantageous to employ a centrifugal compressor as a 
final stage, rather than the equivalent several stages of an axial compressor. 
A further problem of considerable consequence arises in the design of the 
first rows of a small-scale compressor or fan. All aircraft compressors must 
have sufficient tolerance to withstand bird strikes, and it is a considerably 
more demanding task to provide the required structural integrity--while 
retaining aerodynamic performance--in a small-scale engine than in a 
large-scale one. 

Combustors. Combustors operate by having fuel sprayed into a central 
"flame-stabilized" region where the droplets evaporate and the fuel ignites. 
The fuel-rich gas of the combustion region is mixed with cooling air passed 
through holes in the combustion liner. Good combustor design is directed 
toward achieving complete burning of the fuel with minimal pressure loss. 
Sufficient mixing must be introduced to reduce the presence of "hot spots" 
as much as possible, provided that the pressure drop is not excessive. 

Present development efforts are directed toward the reduction of pollu- 
tant emissions, operation with alternative fuels, and the achievement of 
stable and efficient operation in off-design operation. 

Turbines. Virtually all turbines used in aircraft gas turbine engines are 
of the axial flow type and hence are superficially similar to an axial 
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compressor operating in reverse. The engineering limitations on the perfor- 
mance of a turbine stage are, however, very different than the engineering 
limitations for a compressor stage. The large decrease in pressure found in 
turbines much reduces the tendency of the suction surface flow to separate, 
so turbine stages can be designed with very large pressure ratios. The gas 
entering the turbine is at a very high temperature, however, and hence the 
initial turbine stages must be cooled by passing air from the compressor 
outlet through the turbine blades. 

Turbine cooling proves to have fairly severe performance penalties, so 
there is a premium on the development of very-high-temperature materials 
that will allow the use of high turbine inlet temperatures with only minimal 
cooling provided. Such material must exist in an extremely demanding 
environment, for not only are high temperatures encountered, but both the 
temperatures and centrifugal stresses are frequently cycled. Dimensional 
stability must be high, because if excessive creep occurs (brought about by 
the high thermal and centrifugal stresses), excessive rubbing of the blade 
tips on the outer annulus could occur. The problems of tip rubbing are so 
severe that in recent years "active clearance control" has been introduced. 
Active clearance control is achieved by actively cooling the turbine annulus 
wall to achieve the appropriate tip clearance. 

Nozzles .  The final component of the aircraft gas turbine engine, the 
nozzle, accelerates the high-pressure exhaust gas to close to the ambient 
pressure. The primary design difficulties arise with nozzles intended for use 
in aircraft with wide Mach number capability. Flight over a wide Mach 
number range introduces a wide range of ram pressure ratios, with a 
consequent wide range of nozzle pressure ratios. Optimum nozzle perfor- 
mance occurs when the nozzle exit pressure is not far from ambient; thus, 
for nozzles with a large operating pressure ratio range, substantial geometri- 
cal variation must be possible. 

As a result of the geometrical restraints required for good matching with 
the external flowfield, the major effects of nozzle performance tend to be 
identified with the effect of exit pressure mismatch and installation effects 
on the installed thrust through "boat-tail" drag or exhaust plume back 
pressuring. 

Because of the relative ease of geometrical variation, two-dimensional 
nozzles are presently under consideration for use on missions with large area 
variation requirements or for missions utilizing thrust vectoring. An addi- 
tional possible benefit of the geometric flexibility of two-dimensional noz- 
zles arises through the possibility of utilizing such flexibility to shield the 
internal hot surfaces from heat-seeking weapons. 

1.5 Summary 
In the foregoing, the principles of operation, design considerations, and 

present status of some of the aspects of rocket and airbreathing engines 
have been reviewed in purely descriptive terms. In the chapters to follow, 
the basic thermodynamics and fluid mechanics necessary to allow a quanti- 
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tative estimate of many of the behaviors described in this chapter will be 
reviewed. Subsequent chapters introduce many simplified models of the 
processes found within the engines and their components that lead to 
analytical estimates of the engine performances. The underlying method- 
ology of the modeling techniques has far greater applicability than the 
limited number of examples presented and the reader is urged to ponder the 
solution methodology itself, as well as the implications of the analytical 
results. 



2. T H E R M O D Y N A M I C S  
AND Q U A S I - O N E - D I M E N S I O N A L  FLUID FLOWS 

2.1 Introduction 
This chapter will be limited to a very brief review of the concepts and 

laws of thermodynamics and to the description of quasi-one-dimensional 
flows. It is important to understand that the subject of thermodynamics 
itself is restricted to the study of substances in equilibrium, including 
thermal, mechanical, and chemical equilibrium. Hence, thermodynamics is 
more nearly analogous to statics than to dynamics. This limitation might 
seem to be hopelessly restrictive to an engineer because he is most often 
concerned with flow processes, and the substances involved in flow processes 
are not, strictly speaking, in equilibrium. In fact, however, in most cases of 
interest to the engineer, such substances may be considered to be in 
"quasiequilibrium" such that local values of the thermodynamic properties 
may be meaningfully defined. 

Flow processes have losses associated with them that can be identified 
with the lack of equilibrium, and it should be realized that the quantitative 
prediction of such losses is beyond the scope of thermodynamics. The 
"theory of transport phenomena" must be applied in order to quantitatively 
estimate such losses, and the prediction of the various "transport coeffi- 
cients" must rely upon the techniques of kinetic theory. 

The complicated transport mechanism known as turbulence is an essen- 
tially macroscopic phenomenon. The accurate description of losses in 
turbomachines relies very heavily upon the accurate description of turbulent 
processes because the turbulent transport mechanisms contribute the domi- 
nant portion of the losses in virtually all turbomachine components. 

2.2 Definitions 
It is important to be precise in the definition of terms intended for use in 

the context of thermodynamics so that possible confusion with the col- 
loquial usage of a term may be avoided. A very abbreviated list of 
definitions, as will be utilized herein, follows. 

Property 
A property is a characteristic (of a system) that can in principle be 

quantitatively evaluated. Properties are macroscopic quantities that involve 
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no special assumptions regarding the structure of matter (i.e., temperature, 
pressure, volume, entropy, internal energy, etc.). 

Properties are grouped into two classes: (1) extensive properties that are 
proportional to the mass of the system, and (2) intensive properties that are 
independent of the mass of the system. Any extensive property can be made 
an intensive property simply by dividing by the mass of the system. 

Thermodynamic State 
The state of a system is its condition as described by a list of the values of 

its properties. 

Thermodynamic Process 
In the limiting case when a change in the properties of a thermodynamic 

system takes place very slowly, with the system at all times very close to 
equilibrium, the "in-between" states can be described in terms of properties. 
A change under such conditions is called a thermodynamic process. 

Work 
The concept of work is a familiar one from mechanics. Work is said to be 

done by a system when the boundary of the system undergoes a displace- 
ment under the action of a force. The amount of work is defined as the 
product of the force and the component of the displacement in the direction 
of the force. Work is so defined as to be positive when the system does work 
on its surroundings. It should be noted that work can by no means be 
considered a property, but rather is identified with the transitory process. In 
order to avoid possible confusion, the term "work interaction" will often be 
used when a system is undergoing a "work process." Thus, a positive work 
interaction occurs when the system does work on its surroundings and a 
negative work interaction occurs when the surroundings do work on the 
system. 

Heat 
In analogy to the work interaction defined above, a heat interaction can 

be defined. Thus, when a hot body is brought into contact with a cold body, 
the temperature of each changes. It is said that the cold body experiences a 
positive heat interaction. Similarly, the hot body simultaneously experiences 
a negative heat interaction. In order to define the heat interaction of a body 
quantitatively, the change in one or more properties (usually the tempera- 
ture) of a standard system is measured when the standard system and the 
body reach equilibrium after being placed in contact. Like the work 
interaction, the heat interaction is used only in connection with the transi- 
tory process. 
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In order to further emphasize that the work interaction and heat interac- 
tion are defined only in connection with the transitory process, when 
infinitesimal increments of work and heat interactions are considered, the 
special symbols d'W and d'Q will be introduced. The prime in these symbols 
is to remind the reader that " W "  and "Q"  are not properties, and hence the 
infinitesimal increments cannot be integrated to give the change in W 
and Q. 

2.3 The Laws of Thermodynamics 

In the following sections, the first three laws of thermodynamics will be 
discussed. Because thermodynamics is primarily concerned with heat and 
work interactions, the experiments leading to the formulation of the laws 
are in all cases considered to deal with macroscopically stationary materials. 
That is, although the material boundaries may be movable, there is no 
contribution to the interchanges of energy, etc., due to a change in potential 
energy or kinetic energy of the macroscopic sample. It is to be understood 
that when such contributions are of importance in an interaction (as they 
obviously are in most processes in turbomachinery), they may be included 
later in a straightforward manner by applying the laws of mechanics. The 
interaction of thermodynamic and overall mechanical energy effects is 
considered in Secs. 2.15-2.17. 

2.4 The Zeroth Law of Thermodynamics 

This law is so fundamental in classical thermodynamics that it was at first 
accepted as being self-evident and was not formally denoted a law until 
after the "first" and "second" laws had become established. However, it is 
now recognized that it is of fundamental importance to the foundation of 
classical thermodynamics. 

Experience has shown that if a hot body is brought into contact with a 
cold body, changes take place until eventually the hot body stops getting 
colder and the cold body stops getting hotter. At this point the bodies are in 
thermal equilibrium. The zeroth law states: 

If two bodies are separately in thermal equilibrium with a 
third body, they are in thermal equilibrium with each 
other. 

It is evident that bodies in thermal equilibrium have some property in 
common and this property is the temperature. Thus, if desired, any refer- 
ence temperature scale (a mercury thermometer, for example) can be used to 
determine the temperature of an object; but it can be shown that the second 
law allows the definition of a temperature scale independent of the proper- 
ties of the reference substance. 

Thus, the zeroth law allows definition of the property temperature, 
although it does not lead to the definition of any particular reference scale 
for temperature. The restriction of thermodynamics to the study of equi- 
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librium conditions is very evident here, because temperature could be 
defined as that property the bodies had in common only if the bodies were 
allowed to reach equilibrium. 

2.5 The First Law of Thermodynamics 

In 1840, Joule conducted his famous experiment to establish the equiva- 
lence of a heat interaction and a work interaction. His result, available in 
many texts, allowed the definition of a new property, the energy E. Thus, 
denoting d'Q as an incremental heat interaction and d 'W as an incremental 
work interaction results in 

E -  E x = f ( d ' Q  - d 'W)  (2.1) 

where E 1 is the energy in the reference state. (Recall the special notation d'Q 
and d 'W introduced in Sec. 2.2) 

Here it should be noted that (1) the energy can be defined in terms of the 
system properties only when the end states are equilibrium states, although 
the intervening states on the path need not be in equilibrium; and (2) the 
energy is given as a difference in magnitude between the two states and is 
not defined in absolute values. 

The definition of a simple system states that such a system is completely 
defined in terms of any two intensive properties, and the energy in such a 
restrictive case is usually termed the internal energy and denoted by U. 
Usually, any two of the three proper t ies-- temperature  (defined from the 
zeroth law), pressure (defined from mechanics), or volume per unit mass 
(defined from geometry) - -are  used as the independent properties. It is 
apparent also that the internal energy of a system can be " tapped"  so that a 
net outflow of energy is obtained in the form of either a heat or a work 
interaction. Any observant person, however, can sense that there must be 
some restriction on the form in which this outflow of energy can occur 
because of the comparative ease of obtaining a negative heat interaction 
from a system as compared to that of obtaining a positive work interaction. 
This restriction is formalized in the statement of the second law of thermo- 
dynamics. 

The differential form of the first law may be written 

d'Q = d E  + d 'W (2.2) 

2.6 The Reversible Process 

A very useful reference process in thermodynamics is that of the revers- 
ible process. A thermodynamic process is defined as a process in which 
changes take place so slowly that the "in-between" states of the system are 
at all times close to equilibrium so that the intermediate states can be 
described in terms of properties. In addition, in the case where all external 
constraints vary only infinitesimally from equilibrium, the process is said to 
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be "reversible." The terminology is obvious here in that if there is an 
infinitesimal change in the properties of the system or its surroundings, the 
process can be reversed and the system returned to its initial conditions. 

Our interest in this study is in gases, which are very close to ideal "simple 
systems," in that their thermodynamic state is (very nearly) completely 
determined by any two thermodynamic properties. For such a substance the 
element of work done in a reversible process is simply d'W = p dV, in which, 
by the definition of a reversible process, the pressure must be defined at all 
times throughout the process. Thus, the first law for a gas undergoing a 
reversible process may be written 

d'Qr = d U + p d V  (2.3) 

where U is the internal energy and V the volume of the gas. 

2.7 Derived Properties: Enthalpy and Specific Heats 
So far in this discussion of thermodynamics, only four properties have 

been defined and used--specific volume v, pressure p, temperature T, and 
internal energy U. These properties are defined very fundamentally, but 
there is great utility of notation allowed if certain properties derived from 
these fundamental properties are defined. It should be noted, of course, that 
any combination of properties is itself a property. 

One group of properties that occurs frequently for gasdynamicists is 
(u +pv),  which is given the symbol h and the name specific enthalpy, i.e., 

h = u +pv (2.4) 

The first law may be written in terms of enthalpy for a gas undergoing a 
reversible process as 

d'qr = dh - v d p  (2.5) 

where d'qr represents the heat increment per mass in a reversible process. 
[Henceforth, for convenience we shall refer to (specific) quantities.] 
Two further useful derived properties are the specific heat at constant 

pressure and the specific heat at constant volume. These specific heats (or 
specific heat capacities) are defined as the (differential) heat interaction (at 
constant pressure and volume) occurring in a reversible process, divided by 
the resultant (differential) temperature change. That is, 

(~qr) 
Cp = 8 ~  p = coast (2.6a) 

(~qr) v =cons t  (2.6b) 
Q =  8T 
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The two forms of the first law given above show that these terms are, in 
fact, properties and that they may be written 

C p = (  Oh 
-0--T ) p (2.7a) 

C,,=( Ou - ~ ) , ,  (2.7b) 

The ratio of the specific heats is also often used and is given the symbol ~,, 
where 

7 -  G/C, ,  (2.8) 

2.8 The Second Law of Thermodynamics 

Joule's experiment leading to the establishment of the first law of thermo- 
dynamics involved a negative work interaction with a system and the 
consequent increase of the internal energy of the system, rather than the 
reverse process of a positive work interaction at the expense of the internal 
energy of the system. The engineer is usually concerned with the latter 
procedure. It is clear that a very desirable type of engine--one that would 
not violate the first law--would be one using a very large reservoir of 
internal energy (the ocean, for example) and converting the energy drawn 
from the reservoir entirely into a work interaction. Even though, wittingly or 
unwittingly, inventors still attempt to obtain patents for devices capable of 
performing in the manner described above, no working model of such a 
device has ever been constructed; and the very long history of failures to do 
so has long since led to the belief that it is impossible. This restriction on the 
first law has been formalized in the second law of thermodynamics, which 
may be stated as, 

It is impossible for any engine, working in a cyclic process, 
to draw heat from a single reservoir and convert it to work. 

This statement (or any of its equivalent forms), when combined with the 
zeroth and first laws, allows many remarkable deductions to be drawn 
concerning the thermodynamic behavior of matter. 

These deductions are usually presented as theorems and include among 
them the definition of a new intensive property, the entropy s. Thus, 

d'q, (2.9) S - S l  = T 

The differential form is 

Tds  = d'qr (2.10) 
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Note here: 
(1) The entropy, like the internal energy, is given as a difference in 

magnitude between the two states and is not defined as an absolute value. 
(2) It is very important to note that the definition of entropy in no  way 

requires that the state to be described be reached reversibly from some 
reference state. The integral relation given above simply gives a procedure 
for calculating the entropy difference between the specified end states. The 
value of entropy itself, like temperature, pressure, or any other thermody- 
namic property, depends only on the (equilibrium) conditions at the specified 
state and in no way depends on the "history" of the processes leading to 
that state. As stated previously, the assignment of any two thermodynamic 
properties completely defines all further thermodynamic properties for a 
simple system. Hence, for example, if the pressure and temperature of the 
air in a given room are specified, so too is the entropy. Conversely, of 
course, if the temperature and entropy are specified, so too is the pressure. 

A further theorem of enormous consequence is that the entropy of an 
isolated system cannot decrease. This theorem has great utility in investigat- 
ing the possibility or impossibility of an assumed process. 

2.9 The Gibbs Equation 

An equation relating the five fundamental properties of thermodynamics 
--specific volume v (defined from geometry), pressure p (defined from 
mechanics), absolute temperature T (defined from the zeroth and second 
laws), internal energy u (defined from the first law), and entropy s (defined 
from the second law)--follows directly by combining Eqs. (2.3) and (2.10). 
Thus, 

T d s  = d u  + p d v  (2.11) 

This equation is known as the Gibbs equation and, as stated, relates the 
five fundamental properties of thermodynamics. Note that a similar equa- 
tion is obtained in terms of the derived property, enthalpy, by combining 
Eqs. (2.5) and (2.10) to give 

T d s = d h - v d p  (2.12) 

2.10 The Gibbs Function and the Helmholtz Function 

Two further derived properties are defined by the relationships, 

Gibbs function: G = h - Ts  (2.13) 

Helmholtz function: F = u - Ts  (2.14) 

In some applications, particularly those involving determination of chem- 
ical equilibrium, these newly defined properties have important physical 
interpretations. For the purposes here, however, note that expressions 
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obtained for differential changes in G and F may be promptly utilized to 
obtain a very useful set of relationships known as Maxwell's relations. 

2,11 Maxwell's Relations 

By definition, when a simple thermodynamic system is considered, specifi- 
cation of any two (intensive) properties completely defines the thermody- 
namic state (and hence all properties) of the system. Thus, the differential 
change dz in a property z is given in the form 

dz  = M ( x ,  y ) d x  + S ( x ,  y ) d y  (2.15) 

In this expression 

(oz t (oz) 
M =  -~x y and N =  -~y x 

If now z is to be an exact differential (and hence a property), then the 
second derivative with x and y will be independent of the order of 
differentiation. That is, 

or equivalently 

0 Oz Oz 

-~x) ~ (2.17) 

Before utilizing these equations to generate Maxwell's relations, it is 
appropriate to reflect upon the necessity of utilizing the partial differential 
notation in which the variable being held constant is explicitly indicated. 
This notation is required in thermodynamics because, although (for a simple 
system) only two properties may be separately specified, there is a wide 
choice of which two properties may be selected. Thus, for example, the rate 
of change of pressure with density with the entropy held constant is not 
equal to the rate of change of pressure with density with the temperature 
held constant. Thus, a notation is needed that clarifies which partial 
derivative is intended. 

Combining Eqs. (2.11-2.14) leads to 

du = T d s - p d v  (2.18) 

dh = Tds  + v d p  (2.19) 

dG = - s d T  + v d p  (2.20) 

d F =  - s d T - p d v  (2.21) 
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Systematic application of Eqs. (2.16) and (2.17) then leads to: 

27 

3T 3p 

3T 

r -3-T ) p (2.28) 

~-~)~ (2.29) 

This set of equations is known as Maxwell's relations. One of the prime 
utilizations of these relations is to obtain the behavior of certain properties 
in terms of the "properties of state," p, v, or T. Usually, a substance is 
described by its equation of state relating the three variables p, v, and T; 
and by appropriately manipulating the Maxwell's relations, the behavior of 
other properties may be deduced. Of course, the equation of state may not 
be available in an analytic form, but rather in the form of tables or graphs. 
However, turbomachinery problems most often involve gases that may be 
considered perfect. 

2.12 General Relationships between Properties 
An expression for a differential change in entropy, with the entropy 

considered to be a function of temperature and specific volume, is 

Yl d~ ds = (~-~)vdT+ (3v]T ( idv dT+, 

3G 
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which, with Eqs. (2.7), (2.22), and (2.29), results in 

Tds=CvdT+ T(~-~) ~dv (2.30) 

Similarly, the entropy is considered to be a function of temperature and 
pressure to give 

d s = ( ( - ~ p ) r d p - ( ~ _ s h ) "  dT ,Op]r dp 
Os +l o, l 

which, with Eqs. (2.7), (2.22), and (2.28), results in 

0v Tds= CpdT- T(-~-~)pdp (2.31) 

Applying the condition for exactness to the expressions for ds given by 
Eqs. (2.30) and (2.31) gives 

( OC,, = T( 02p 
--~-v ) r ) (2.32) 

°Cpt :-r( ( Op ] r - ~ ) p  (2.33) 

An expression for the difference of specific heats is obtained by subtract- 
ing Eq. (2.30) from Eq. (2.31) and in addition noting that the ratio dp/dT 
corresponds to (Op/OT),, for the case where dv = 0. Thus, 

~ ) p  (2.34) 

Combination of Eqs. (2.11) and (2.30) gives an expression for the dif- 
ferential change in internal energy, 

du = C,, dT + [ T(-~T ) ~. -p  ] dv (2.35) 

and combination of Eqs. (2.12) and (2.31) gives an expression for the 
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differential change in enthalpy, 

d h = C p d T + [ v -  T( Ov - ~ ) p ]  dp (2.36) 

A final example is an expression for the rate of change in pressure with 
density at constant entropy. This ratio is of particular importance in fluid 
mechanics because (as follows from momentum considerations) it is equal to 
the square of the speed of small disturbances relative to the local fluid 
velocity. First, 

Oh Os 
_ _ P " ~  

Noting (0s /0T)v =- (Os/OT)p and utilizing Eq. (2.22) and the chain rule of 
calculus, it follows that 

T -  q 
I )p 

and hence 

It is important to note that in the development of Eq. (2.37) no assump- 
tion was made regarding the equation of state. The expression is thus valid 
for situations in which the ratio of specific heats may vary substantially. 

2.13 The Perfect Gas 

A perfect gas is defined as a substance with equation of state given by 

pv = RT (2.38) 

In this expression, R is a constant termed the gas constant. 
If, in addition to satisfying Eq. (2.38), the gas has a constant ratio of 

specific heats, it is termed a "calorically perfect" gas. 
It should be noted that the gas constant R is given in terms of the 

"universal gas constant" R,  by 

R = R , / M  (2.39) 

where M -  molecular weight. 
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The value of R ,  in several systems is 

lbf S 2 ) ft 2 Ibm 
R .  = 1545 ~ fi- -~- Ibm-mole. °R 

= 49,700 
ft 2 Ibm 
s 2 Ibm-mole. °R 

= 8317 
m 2 kg 

s 2 kg-mole. K 
(2.40) 

For air of molecular weight 29 (approximately), R is 

R= lbf s2)( )2 1 oR 

1 =1714( )2o. 

= 286.8(m) 2 1  (2.41) 

It should be noted from Eq. (2.39) that when a gas is in a regime where 
dissociation is occurring, it is not, strictly speaking, a perfect gas. This is 
because dissociation changes the value of M and hence of R. However, if no 
dissociation occurs but substantial vibrational excitation occurs, then the 
gas would be perfect, but not calorically perfect. 

The behavior of a perfect gas may be illuminated by applying the 
relationships of Sec. 2.12. Thus, with Eq. (2.38) and Eqs. (2.32) and (2.33), 

hence, (7,,. is a function of temperature only; and 

0c, t 
J r = 0 (2.43) 

hence, Cp is a function of temperature only. 
From Eqs. (2.35) and (2.36) 

du = Q d T  (2.44) 

dh = CpdT (2.45) 
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Thus, Eqs. (2.42) and (2.43) show that both the internal energy and the 
enthalpy are functions of temperature only. From Eq. (2.34) 

Cp - C,, = R (2.46) 

and from Eq. (2.37) 

Op t 2 <  

Thus, the many familiar relationships peculiar to a perfect gas follow 
directly from the equation of state and Maxwell's relations. Note particu- 
larly that Eqs. (2.46) and (2.47) are valid whether or not the ratio of specific 
heats "r varies. 

2.14 Quasi-One-Dimensional Fluid Flows 

A quasi-one-dimensional flow is defined as a flow in which the fluid 
properties can be described in terms of a single spatial coordinate (the axial 
dimension), the specified axial area variation of the containing tube or 
channel, and (if the flow is time dependent) the time. The simplicity 
introduced by utilizing such an approximate description of the flow in a 
channel is clearly a virtue, but it is equally clear that the regimes of validity 
of any analysis incorporating such an approximation should be thoroughly 
investigated. 

Before investigating the expected regimes of validity of the quasi-one- 
dimensional approximation, note that the approximation is of particular 
utility in the study of aircraft gas turbine engines. In the first-order analysis 
of the various components of a turbomachine, it is customary to refer to the 
"inlet and outlet" conditions of each component. It is quite obvious that the 
conditions at the inlet and outlet of any component are not, in fact, 
uniform, and hence any single quantity chosen to represent a given property 
must be a properly chosen average quantity. When properly chosen, these 
average quantities may be utilized with ease in a cycle analysis to predict the 
overall performance of a given engine in terms of the performance of its 
individual components. 

In many situations, however, it is the effect of the non-one-dimensionality 
that is at the core of the problem considered. Thus, for example, when 
describing the performance of ejectors, careful distinction must be made 
between the use of such averaging methods as area weighted, mass weighted, 
and mixed out. Another example of the importance of the non-one-dimen- 
sionality of a flow appears in the study of inlet distortion, which by its 
definition involves the study of the variation of the stagnation temperature 
and stagnation pressure about their appropriately chosen averages. 

Considering a channel with solid walls in which a flow exists, it is clear 
that severe property variations will occur across the channel. To make this 
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statement clear, consider the example of the behavior of the velocity that is 
known to have a value of zero oh the wall and to be finite in the channel 
center. If the walls are heat conducting (or if the Mach number at the 
channel center is large), large variations in temperature across the channel 
would be expected. In such cases, the "temperature" or "velocity" appear- 
ing in the quasi-one-dimensional equations would in fact be an ap- 
propriately chosen average of the values found across the channel. The 
definition of this "average" would depend somewhat upon the particular 
problem to be investigated, but it can be seen that if the "shape" of the 
cross-channel property variation changes radically with the axial position, 
whatever averaging process is chosen will have to be modified with the axial 
position in order to obtain meaningful results from the analysis. Since the 
suitable averaging procedures would not be known a priori, such a proce- 
dure is tantamount to conducting a full two-dimensional investigation. 

Conversely, however, there are two limits in which a quasi-one-dimen- 
sional assumption could be expected to be of use. The first is the so-called 
"fully developed flow" in which, in fact, the shape of the cross-channel 
property variations varies only slowly with the axial position. In this case, 
the quasi-one-dimensional assumption leads to an accurate description of 
the behavior of the average fluid properties. The other limit of channel flow 
behavior that allows an accurate analysis under the restrictions of the 
approximation is that limit where a dominant portion of the flow in the 
channel satisfies the assumption of very nearly uniform cross-channel condi- 
tions and only a small portion, "the boundary layer," has rapidly varying 
properties in the cross-channel direction. In this latter case, it is tacitly 
assumed that the boundary layer entrains such a small portion of the flow 
that the average quantities are not affected by excluding the effects of the 
boundary layer. 

It would be well to mention here that a technique commonly used to 
extend the quasi-one-dimensional solution utilizes the results of the quasi- 
one-dimensional solution and applies these results as the boundary condi- 
tions (" freestream conditions") to be applied to the solution of the behavior 
of the (two-dimensional) boundary-layer equations. 

The effect of the curvature of the channel must be considered carefully, 
because it is evident that channel curvature introduces cross-channel pres- 
sure gradients which, in turn, introduce cross-channel gradients in other 
fluid properties. In general, if the radius of curvature of the channel 
centerline is large compared to the channel dimension in the radial direc- 
tion, the effects of the induced radial pressure fields will be small. This 
observation can be extended to indicate that the flow in individual stream 
tubes of a general three-dimensional flow can be expected to be described 
by the quasi-one-dimensional flow equations, although the determination of 
the behavior of the stream tube itself (through the pressure fields induced by 
other stream tubes) will rely upon solution of the complete equations. 

In what follows the first law of thermodynamics is extended to include the 
effects of the kinetic energy and the potential energy of the flowing fluid in a 
form suitable to adapt for use in the quasi-one-dimensional equations. In 
this derivation, the very useful concept of the "control volume" will be 
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introduced, which will be employed later in the derivation of the quasi-one- 
dimensional equations. 

2.15 The First Law for a Flowing System--The Control Volume 

An important application of the first law of thermodynamics is to be 
found in the analysis of a flowing system. A very convenient and often used 
concept is that of a "control volume," defined simply as a given region in 
space. This region in space may be moving, changing shape, etc., but most 
often in analyzing material behavior using the control volume technique, a 
simple control volume of fixed size, shape, and position is selected. The 
selection of the most suitable control volume will depend upon the problem 
at hand, but it can be stated in general that most often one is selected such 
that the material at the entrance and exit is in local thermodynamic 
equilibrium and in addition may have its behavior closely approximated by 
assuming that all properties at the entrance or exit are the average proper- 
ties at those positions. This latter requirement is the equivalent to stating 
that conditions at the entrance and exit are "quasi-one-dimensional." As 
will be seen shortly, also required is some information concerning the heat 
and work interactions at the boundaries of the control volume, but it should 
be noted carefully that no requirement of reversibility or one-dimensionality 
for the processes within the control volume will be imposed. 

An important point to recognize is that in the preceding sections on 
thermodynamics the first law was written as it pertained to a given mass of 
material (the thermodynamic system), and that now the focus is on a given 
volume in space through which the material passes. That portion of work, 
kinetic energy, or potential energy identified with the bulk motion of the 
thermodynamic system was not considered simply because such behavior 
was assumed to be already known from the laws of mechanics. In now 
considering a control volume through which the fluid enters and leaves, 
however, the energy identified with the bulk motion of the fluid must be 
included in order to account for any such bulk motion energy changes 
experienced by the fluid between the entrance and exit. 

The method for extending the first law for a thermodynamic system to a 
control volume is to first write the first law for that m a s s  contained within 
the control volume at time t. The mass is then followed until time t + d t and 
the first law of thermodynamics is applied to the change experienced 
by the mass. These changes may then be related to the changes experienced 
by the material passing through the control volume. 

Consider a control m a s s  that at time t occupies the volume bounded by 
the two dotted lines 1 and 1' and the solid walls of the container shown in 
Fig. 2.1. At time t + dt the control mass occupies the volume bounded by 
the two dotted lines 2 and 2' and the solid walls of the container. The 
control volume will be considered to be the volume bounded by the 
container and lines 2 and 1'. 

The change in "total energy" (i.e., internal plus kinetic plus potential 
energy) of the control mass is given by 

dEc M. = d'Q - d ' W  T (2.48) 
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Fig.  2.1 Control  vo lume and control  mass.  

where d'W T indicates the total work interaction of the control mass in the 
time dt. This work interaction can be considered to be of two parts: 

(1) The work interaction with mechanical contrivances (d'Wm) such as 
shafts, etc. 

(2) The net work interaction of the fluid in the control mass with the fluid 
external to the control mass by the moving interfaces at the entrance and 
exit. This form of work interaction, sometimes called the flow work, is equal 
to (F~V, d t  - ~ d t ) ,  in which F~ and F~ are the forces on the interfaces at 
the entrance and exit to the control volume, respectively. With the assump- 
tions of local thermodynamic equilibrium and quasi-one-dimensionality, 
these forces can be written as the product of the pressure times the area so 
that the flow work may be written 

PeAeV~dt  - p iA iV id t  

The expression for the change in energy of the control mass may then be 
written 

d EC.M. = d'Q - d'W,,, - (PeheV e -PiAiVi)dl (2.49) 

The energy within the control volume is related to that within the control 
mass at times t and t + dt  by 

Ec.v. ( t )  = ECM ( t ) -- ( A i V  i d t  )Pi [ ui + ( Vii 2/2) + P.E.~ ] 

E c v ( t  + d t ) =  EC.M (t + d t ) - ( A e V ~ d t ) p e [ u  e + ( V J / 2 ) +  P.E.~] 
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Thus 

d Ec.v. =dEcM.  + AiVidt oil ui + ( ~ 2 / 2 )  + P.E.i] 

- AeV~ dt &[ ue +(V~2/2) + P.E.e] (2.50) 

But A p V = / n ,  the mass transfer per second through the boundary. By 
equating the expressions for dEc.M., dividing by dt, and writing u + P/O as 
the enthalpy h, there is obtained 

td ) [ (  V2 )] [( V2 )] 
c v = rh h + T + P . E .  - rh h + T + P . E .  

i e 

d'Wm d'Q (2.51) 
- d------t - +  d t  

Example  2.1 

As a very simple example, consider the adiabatic, steady flow of a fluid in 
a nozzle. The control volume is that volume bounded by the solid walls of 
the nozzle and the dotted lines shown in Fig. 2.2. The assumption of steady 
flow requires (dE/d t )c . v .  = 0 and rh i = rh e, the assumption of adiabatic 
flow requires d ' Q / d t  = 0, and, because the nozzle has no work interaction 
with mechanical contrivances, d'W, J d t =  O. Assume very little, if any, 
change in potential energy across the nozzle so that the control volume form 
of the energy equation gives 

[h + ( v 2 / 2 ) ] ,  = [h + ( v 2 / 2 ) 1  e (2.52) 

If, as indicated in Fig. 2.2, the inlet surface is so chosen that the kinetic 
energy per unit mass of the fluid is very small compared to the enthalpy of 
the fluid, then 

V e= ~2(h i -  he) ( 2 . 5 3 )  

inlet  

~ 2< <h i 
I 
I 
! 

Fig. 2.2 Adiabatic nozzle .  

e x i t ,  e 
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This simple and convenient result can be interpreted in the following way. 
The function of the nozzle is to take the random thermal velocities of the 
fluid in the reservoir and to direct such velocities so as to give a directed 
kinetic energy to the expelled fluid. In addition, the pressure within the 
chamber also supplies "flow work" that adds further to the directed energy. 
Note that the flow work so supplied must come from a compressor or 
similar device if the reservoir conditions are not to change with time. Note 
also that without further specifying the process it cannot be stated what the 
conditions should be at a particular point in the nozzle. Thus, a very rough 
nozzle might cause the process to be highly irreversible, with the result that 
even if the pressure drops the same amount as it does in another smoother 
nozzle, the velocity at that point in the nozzle would be less than that in the 
smooth nozzle. The sum of the kinetic energy and enthalpy would be the 
same, however, indicating that the roughness has had the effect of slowing 
down the fluid and returning the directed velocity to the random thermal 
velocities identified with the temperature (and enthalpy). 

Example 2.2 

As a further example, consider the "blowdown" of a calorically perfect 
gas from a vessel through a nozzle. What is the relationship between the 
pressure, temperature, and density of the fluid in the container as mass is 
expelled? Again assume the container to be adiabatic. In this case, of course, 
the conditions in the control volume change with time and the control 
volume form of the energy equation hence gives 

(2.54) 

Now th e is the mass flow o u t  of the container, and may be written 
- d m / d t  where rn is the mass within the container. For simplicity, the "exit 
portion" of the control volume is the dotted line shown in Fig. 2.3, which by 
assumption exists where h = h e >> V2//2. In this case the energy E within 
the control volume consists of internal energy only, so that E = mC,.T,, and 

P ,p  etc. / ~ ~  

Fig. 2.3 Fluid container. 
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there is obtained 

C~ d(m T~.) dm dm 
at  - dt  h,.= ~-CpT~.  

Expanding the derivative on the left side, cancelling the differential of 
time, and rearranging, it follows that 

dTc_ ( 7 _  1) dm 
T c m 

This then integrates to give 

1 pq )' 1 

(2.55) 

It has been emphasized to this point that the assumptions leading to the 
control volume form of the first law do not require the presence of 
reversibility. If an adiabatic process is reversible, no entropy change occurs. 
Hence, calculate the entropy change occurring in this process. From the 
Gibbs' equation for a calorically perfect gas, it is found that 

dT ,~ d(1/p) 
d s = C " - - T - +  n 

hence 

T,. P{'I 
Sc~ - sq = C, ,Yn~-  + R En 

C1 PC2 
(2.56) 

Thus, in this case 

s , 2 - s c  = - C v ( v - X ) t , , ° "  + 
P,'2 Pc2 

This seems to be a paradox, because no explicit statement has been made 
to introduce the assumption of reversibility, yet the result indicates that the 
process described must have been reversible. It is apparent that an assump- 
tion of reversibility must have been made implicitly. A little thought 
indicates that by assuming the enthalpy at the exit was that of the entire 
container, or more particularly by assuming the pressure at the exit was that 
of the entire chamber, in fact no "viscous drop" was assumed for the 
pressure and hence that the process within the chamber was reversible. If 
the expulsion of the fluid had been particularly rapid or the fluid particu- 
larly viscous, a pressure drop across the chamber would be expected and 
hence assuming the pressure at the exit and in the chamber to be identical 
would be in error. 
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Example 2,3 
An example that will hopefully clarify the method and utility of utilizing 

the control volume or control mass method of "bookkeeping," the equation 
for the first law of thermodynamics follows by considering the combined 
behavior of Examples 2.1 and 2.2. 

Consider the "blowdown" of a calorically perfect gas from a large 
container through a nozzle to an (approximately) zero exit pressure (Fig. 
2.4). The behavior of the gas in the chamber and across the nozzle is that 
previously derived in Examples 2.1 and 2.2. Utilizing the control volume 
approach, find the directed kinetic energy per mass at the nozzle exit and 
integrate this energy over the entire mass outflow to determine the total 
directed kinetic energy in the departing fluid. This latter result will be 
checked by utilizing the control mass form of the first law. 

First note from the Gibbs equation for a calorically perfect gas that 

ds = Cp d--ff-ff - R d p 
P 

so that 

Pl ~-1 e ((s2 ~O/nl (2.57) 

Thus, for this case of expansion to zero exit pressure, the exit temperature 
and hence the exit internal energy and enthalpy are zero. Equation (2.53) 
thus gives 

Directed kinetic energy/mass = Ve2 / 2  = Cr T c 

PCl ~ Tcl  

po=o" 
ve 

Fig. 2.4 Container and nozzle. 
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At first this result might appear incongruous because the energy/mass 
escaping the container is larger (by a factor of "~) than the energy/mass 
within the container. Clearly, however, the additional energy is being 
transmitted to the escaping mass by the "flow work" of the internal fluid. 
This flow work is supplied by the expanding gas within the container that, 
as a result of its expansion (and hence work interaction), has its own 
internal energy and hence temperature reduced. The total outflow of energy 
from the nozzle is given by 

f m ~  1 Ve 2 r?l{ l 
Total energy=jo ~ d m = f 0  CpT Cdm 

cl T~, d( m 

With Eq. (2.55), this becomes 

1 m ~ 1 m 

T°talenergy=mqTqCpfo(mT) d(m77q ) 

This latter result follows immediately when the control mass form of the 
first law is considered, because the control mass statement would simply be 
that all the energy originally contained in the vessel (mlC,,T c ) must be equal 

1 . . . 

to all of the energy in the exhausted gas (namely, all of the d~rected kmettc 
energy). 

2.16 The Channel Flow Equations 

Consider now the steady flow of fluid in channels with rigid walls (Fig. 
2.5). Quasi-one-dimensionality will be assumed, the effects of potential 
energy changes will be ignored, and, in addition, the wall slope and hence 
rate of change of the cross-sectional area will be assumed to be small. The 
effect of this latter assumption is that the cosine of the wall angle 0 may be 
considered to be unity. 

The conservation equations are developed by"considering the conditions 
across a small axial segment of the duct, as indicated in Fig. 2.5. The 
conservation of mass gives immediately 

puA = const 

o r  

do + d u  + dA_= 0 (2.58) 
P u 
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P= Pl _ 

U= LII~ 

P 

Tw 
~P 

P +~-R "dx = P2 

bu 
u+~-~- dx = u2 

x x+dx 

Fig. 2.5 Element  of fluid in duct. 

The first law of thermodynamics follows directly from Eq. (2.51) as 
applied across the element. Thus, noting that &, = &,, and that 
(1 / /n ) (d 'Q/d t )=  d'q, the heat interaction per unit mass, the first law is 
obtained, 

dh + udu = d'q (2.59) 

The Gibbs equation may be applied directly, 

Tds = dh - ( l / p )  dp  (2.60) 

and the first law and Gibbs equation may be combined to give 

( 1 / p ) d p  + udu = d ' q -  Tds  (2.61) 

The momentum equation is found by writing Newton's law in a form 
appropriate for use with a control volume, namely 

Sum of the forces = rate of production of momentum 

o r  

Pressure forces + viscous forces = momentum convected out 
through surface 2 per s e c o n d - m o m e n t u m  convected in 
through surface 1 per second 

In symbols this is, 

p~A~ +£dfdA-p~A~- f~¢dx=(ou2A)~-(O.~A)~ 
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This expression introduces the shear stress ~" and the circumference c. 
Retaining terms only to the first order and utilizing the continuity equation 
(2.58) results in 

- d ( p A )  + p d A - "rc d x  = puA d u  

or the momentum equation 

(1/0) dp + u d u  = - ( ~ c / p A )  d x  (2.62) 

It may be noted that this equation closely resembles the familiar Bernoulli 
equation of elementary ideal fluid mechanics. The only addition to the ideal 
form of the equation arises from the viscous shear stress contribution. An 
equation for the entropy variation follows by combining Eqs. (2.61) and 
(2.62) to give 

T d s  = d 'q  + ( z c / p A )  d x  (2.63) 

It is apparent in this relationship that, for an ideal process in which the 
shear stress is zero, the entropy variation corresponds to that for reversible 
heat interaction, as already given in Eq. (2.10). The irreversibility of the 
viscous term is apparent in its contribution to the increase in entropy. 

2.17 Stagnation Properties 
A stagnation property is defined as that value of the property that would 

exist if the fluid were extracted and brought isentropically to rest. The 
process may be imagined to be that shown in Fig. 2.6 wherein the fluid flows 
isentropically through a duct from condition 1 to condition t 1. 

Application of Eq. (2.59) gives an expression for the stagnation enthalpy. 
Thus, noting d'q = 0 and integrating, 

h,~ = h 1 + u 2 / 2  (2.64) 

t I 

Fig. 2.6 Duct and imaginary duct for stagnation condition. 
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Obviously the location of point 1 in the duct in which the flow actually 
occurs is arbitrary, so in the following relationships between properties and 
their related stagnation values, the subscript 1 will be omitted. 

The equations take on particularly simple forms when a calorically 
perfect gas is considered. Thus, Eq. (2.64) becomes 

CpT~ = CpT + u2/2 (2.65) 

Further manipulation leads to 

T, 1 +  yR u 2 
-T = 2~p y R ~ -  1 + ~ M 2 (2.66) 

Here the Mach number is introduced, defined as M = u/a.  The speed of 
sound a as stated in Sec. 2.12, is equal to ( 0 p / 0 o ) ! ,  which combined with 
Eq. (2.47) gives a 2=  yRT. Equation (2.46) was utilized to give ,/R/Cp 
= 7 - 1 .  

Equation (2.57) may be applied directly (with s 2 = sl) to give 

( p~ = v/(~ 1)= l + - - f - M  ) 
P 

(2.67) 

Then, also 

O , _ P ,  T ( l + _ ~ M 2 )  1/(Y 1) 
P p T ,  

(2.68) 

Some important behaviors concerning the variation of stagnation proper- 
ties in ducts can be illuminated by applying Eq. (2.57) directly to the 
conditions at t I and t 2 (Fig. 2.7). Thus, 

Pt-.-22 = ( T ' 2 t v / ( Y - I '  -[(,2 ,,)/R, (2.69) 
P,~ 1Tq]  e 

where by definition s I = s t and s 2 = S ,  . 
1 . . ' 2  

In the special case of adlabaUc flow in the duct, from Eqs. (2.59) and 
(2.65) T,2 = Tq. Then 

Pt2/Pq = e l(,2-s,)/R] (2.70) 

The second law, or equivalently Eq. (2.63), showed that when shear exists 
in an adiabatic flow, s 2 > s 1. Thus, for adiabatic flow 

P,:/Pq = &J0q  < 1 (2.71) 
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t I 
t2 

Fig. 2.7 Stagnation conditions at two axial locations. 

This result has important consequences in turbomachinery, because the 
high performance of turbomachinery is dependent upon the efficient attain- 
ment of high stagnation pressures. It is clear from this application of the 
second law that nature naturally tends to erode the attained stagnation 
pressure. 

2.18 Property Variations in Channels 

Several important relationships may be obtained in a fairly general form 
by combining the conservation equations of Sec. 2.15. In so doing it will be 
appropriate to express the change in pressure in terms of corresponding 
changes in density and entropy. Thus Eq. (2.26) is used to obtain 

d p =  ~fi d p +  -~- s ds 
s P 

Op ) 2{ OT] 
= -~0 s d P + P  ,vv,|-~ZIsdS 

Then note that d T =  (OT/Op)pdp + (OT/Op)pdp gives 

Thus, utilizing Eq. (2.37) and the relationship 

Eqs. (2.72) and (2.73) may be combined to give 

(.) as d p =  N , d p - P 2 ( ? ' - I )  -~0 p 

(2.72) 

(2.73) 

(2.74) 
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This expression for the pressure increment may now be substituted into 
Eq. (2.61), whereupon by utilizing the continuity equation (2.58) together 
with ( Op/Oo)s  = a z and M 2 = uZ/a 2, 

dA + ( 1 _  M2) du 
A u 

1 OT 
d s -  d'q} (2.75) 

It will be recognized that this equation implies the requirement of the 
famous convergent-divergent duct shape if an adiabatic perfect flow (d'q 
= ds = 0) is to be accelerated from a Mach number less than unity to a 
Mach number greater than unity. When a perfect gas is considered, the 
equation reduces to 

dA + ( l _ M 2 ) d u  = 1 
A u y R T ( ' / T d s  - d'q) (2.76) 

Adiabatic Flow of a Perfect Gas 

When no heat interaction occurs, Eq. (2.76) further reduces to 

dA du ds 
+ ( I - M 2 )  u - R (2.77) 

(appropriate for a perfect gas with adiabatic flow). 
In an accelerating flow (i.e., in a nozzle), du is positive. In an adiabatic 

(real) flow, ds is positive. Thus, at the throat of a nozzle (dA = 0), M 2 must 
be less than unity. A method of estimating how much less than unity M 2 is 
at a nozzle throat will be developed shortly, but it is of interest at this point 
to relate this quasi-one-dimensional description to the two-dimensional 
description of a freestream interacting with a (growing) boundary layer. In 
the latter case, it is imagined that the growing boundary layer causes the 
effective throat of the nozzle (as "seen by the freestream") to shift slightly 
downstream, so that the Mach number at the geometrical throat remains 
less than unity. It can be seen that the two descriptions are not in 
opposition to each other. 

To estimate the effect of shear upon the Mach number at the throat in an 
adiabatic nozzle (dA = 0, d'q = 0), Eqs. (2.62), (2.63), and (2.77) are com- 
bined to give 

z 7 ( r c d x / A  dp)  (2.78) 
Mthroat = 1 + 1 - ( y -  1 ) ( T c d x / A d p )  

It can be seen that the group ( ' r c d x / A  dp)  is just the ratio of the shear 
force acting on the edges of an elemental volume of length dx to the 
pressure forces acting upon the cross section of the same volume. In order to 
further estimate the magnitude of this number, the skin-friction coefficient 
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Cf is introduced, 

C/= ~'/½0u 2 (2.79) 

Thus for a circular throat of diameter D, 

"cc dx 2TMeCf 
A d p  ( D / p ) ( d p / d x )  

(2.80) 

The denominator of Eq. (2.80) may be roughly approximated as unity 
with the assumption that the very rapid pressure changes found at a throat 
correspond to the pressure changing on the order of magnitude of its own 
value within one nozzle diameter. Such a coarse approximation is not wildly 
distant from the truth for typical nozzles. A typical value for CT would be 
approximately 0.005, so that Eq. (2.78) yields Mthroat ~ 0.995. (Note that 
d p / d x  is negative.) This somewhat justifies the almost universally used 
approximation that Mt~oa t = 1. 

Nonadiabatic Flow of a Perfect Gas 

As will be evident in Chap. 5, the behavior (and preservation) of the 
stagnation pressure has a vital effect upon the performance of gas turbine 
engines. The effects upon stagnation pressure of heat transfer and shear may 
be obtained by combining Eqs. (2.59) and (2.65), together with Eqs. (2.63) 
and (2.57). These may be written 

Cpd T t = d'q 

~_ "rc 
ds = + ~ dx 

dTt dpt 
ds, = ds = Cp--~- t - R - - p ,  

Combination of these three equations and Eq. (2.79) leads to 

dp r 7M2 ( d'q c ) 
p, 2 ~pT t + Cf-~dx (2.81) 

This expression makes it clear that both heat interaction and frictional 
effects cause a degradation in stagnation pressure when the Mach number is 
other than zero. The source of this degradation becomes clear when Eq. 
(2.69) is considered along with the above equations. Thus, from Eq. (2.69) it 
follows that, for a given stagnation temperature, the stagnation pressure 
decreases with increasing entropy. If a positive heat interaction is to occur 
and the entropy increase kept to a minimum, the (static) temperature at 
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which the heat interaction takes place must be kept as high as possible. 
Clearly, when a flow of given stagnation temperature exists at finite Mach 
number, the static temperature is reduced, leading to a lower stagnation 
pressure than that attainable for zero Mach number heat addition. 

This effect upon the stagnation pressure becomes of paramount impor- 
tance in both the combustion chamber and afterburner of an aircraft gas 
turbine engine. In some modern, high-performance aircraft, the maximum 
engine cross section is determined by the requirement to keep the Mach 
number at the entrance to the afterburner at an acceptably low value. 

It would appear at first glance that Eq. (2.81) implies that, in the case of a 
negative heat interaction, the stagnation pressure of the fluid could be 
increased. To investigate this concept, assume that the heat interaction may 
occur by either convective heat transfer (d'qr) or radiative heat transfer 
(d'qR). 

Introducing the heat-transfer coefficient h results in (by definition of h) 

~nd'qT = h(T.,- Tt)cdx (2.82) 

(See Fig. 2.8.) 
The Stanton number Nst is defined by 

hA 
Ns,- /n r (2.83) ,~p 

Thus 

d'qr = N s t T " - T  t c d x  

CpT t T t A (2.84) 

Hence Eq. (2.81) becomes 

( ~ ) yM2 d'qR (2.85) dp~p, _ 7M 22 AC dx Nst+Cf 2 CpT~ 

A remarkable relationship termed the "Reynolds analogy" relates the 
skin-friction coefficient and Stanton number over a wide range of flow 
conditions, 

Ns, = C//2 (2.86) 

' q 

Fig. 2.8 Element of channel. 
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Incorporating this relationship in Eq. (2.85) yields 

dP__!t = Y M2 c (Tw+Tt) 
Pt 4 A Cfdx 

7M 2 d'qR 
2 CpT, (2.87) 

This latter result indicates that (assuming the Reynolds analogy is ap- 
proximately valid) no matter how far the wall temperature is reduced, the 
stagnation pressure cannot be increased through convective transfer effects. 
The possibility remains, however, that extreme radiative transfer (as might 
occur in a high-powered gas laser) might contribute to a stagnation pressure 
increase. Similarly, if evaporation occurs, the heat transfer is not limited by 
the Reynolds analogy and the stagnation pressure can increase. 

Constant-Area Heat Interaction 

Combination of the continuity equation (2.58) (with dA =0), the 
momentum equation (2.62), and Eq. (2.79) yields 

d (p  + pu 2) = -½PuZCy(c /A)dx  

Then, noting M 2 = pu2/yp, this expression may be manipulated to give 

dp + "gdM 2 y c M 2 
. . . .  dx (2.88) 
P I+~ ,M 2 2 A C f l + • M  2 

The logarithmic derivative of Eq. (2.67) gives 

dp, dp (3,/2) d M  2 
- + ( 2 . 8 9 )  

P, P I + [ ( 7 -  a ) / 2 ] M  2 

Thus, noting that CpdTt= d'q, Eqs. (2.81), (2.88), and (2.89) may be 
combined to yield 

dTt c "yM2 dx + 2dM2 - dM2 

(2.90) 

If the heat interaction rate is known, this equation may be numerically 
integrated to give M vs x. Two special cases are considered in the following 
sections. 

Ideal constant-area heat in teract ion-- thermal  choking. In the limit 
where the flow may be considered to be ideal (Cf= 0), Eq. (2.90) may be 
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integrated directly to give 

Aq, 2 f ( M  2 ) 
T,: _ 1 + - -  - - -  (2.91) 
TI 1 CpTI 1 f ( M  2 ) 

where 

f ( M 2 ) _  - 1 + [ ( y -  1 ) / 2 1 M 2 M 2  (2.92) 
(1 + ~,M2) 2 

Clearly, when the stagnation temperature increases, f ( M  2) must be larger 
than f (M2) .  It is hence of interest to investigate the form of the function 
f ( M  2) to see if it is always possible to increase the stagnation temperature. 
Straightforward differentiation shows that O f ( M 2 ) / O M  = 0 at M =  1, so 
also noting that f(0)  = 0, f(1) = 1 /2 (y  + 1), and f(oa)  = (~, - 1 ) / 2 7 2 , f ( m  2) 
can be plotted vs M as indicated in Fig. 2.9. 

This figure aids in the prediction of certain famous characteristics of heat 
addition at constant area. Thus, Eq. (2.91) shows that if the stagnation 
temperature increases, f ( M  2) must be larger than f ( M  2). Figure 2.9 indi- 
cates it must then be true that, whether M 1 is greater than or less than unity, 
M 2 must be closer to unity than M 1. 

.20 

.16 

0.8 

f (M2!I 2 

0.4 
= 

/ 
0 

Y 

1.35) 

2 ( 7 + 1 )  

.24 

7"-I 
2 )'2 

f.o 1.5 2.0 2.5 3 . 0  
M 

Fig. 2.9 S(M 2) vs M, ideal constant-area heat interaction. 
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A further result, at first appearing to be a paradox, occurs when a heat 
interaction sufficient to require f (M 2) to be greater than 1/2(3' + 1) is 
imposed. Since this requirement is impossible to satisfy, it appears that the 
analysis flies in the face of reality, because it is apparent that the amount of 
heat interaction that can be imposed is not limited experimentally. It must 
be recalled, however, that Aql_2 is the heat interaction per unit mass, and 
the condition of M 2 = 1 represents that state when the maximum mass flow 
per unit area exists for the given pt  2 and T,. Thus, in an experiment, if this 
condition (termed "thermal choking") is ~reached and it is attempted to 
cause a further heat interaction, the upstream conditions must change 
(usually the stagnation pressure must increase) if the mass flow is to be 
passed. It can be recognized that this phenomenon of thermal choking can 
be of vital importance in determining the maximum allowable heat interac- 
tion in a ramjet, an afterburner, or even a conventional combustor. 

Equation (2.91) is a quadratic equation in M22, which may be solved and 
manipulated to yield 

M22 = 2f (2.93) 
1 - 23'f+ [1 - 2(3'+ 1)f]  ~ 

where 

kql 2 ] f =  M2 1 + [__(3'_= 1)/2] M 2 1 + 
(1 + yM2) 2 CpTq ] 

and where the + sign corresponds to subsonic flow and the - sign to 
supersonic flow. 

The stagnation temperature follows immediately from Eq. (2.91), and 
combination of the continuity and momentum equations for constant-area 
flow gives 

Pl + Pl u2 =P2 + P2 u2 (2.94) 

or 

P2 1 + yM ( 

Pl 1 + yM2 2 

Then 

Pt2 I+yM2{I+[(Y-1)/2IM~} ~'/''~-1, 
Pq l + 3 ' M  2 1+[(3 '  1 ) / 2 ] M  2 

(2.95) 

Example results are shown in Fig. 2.10. 
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Fig. 2.10 Mach number and stagnation pressure ratio vs Aq/CpTt, for ideal 
constant-area heat interaction. 

Adiabatic constant-area flow--viscous choking. When adiabatic 
flow is considered, no change in stagnation temperature occurs, so Eq. (2.90) 
yields 

c 1 - M  2 
yC/~- dx = d M  2 (2.96) 

M 4 ( l +  ~@-~-M 2) 

It is apparent that d M 2 / d x  is positive for M < 1 and negative for M > 1. 
Thus, as with thermal choking, the effect of viscosity is to drive the flow to 
Mach 1. This effect is termed viscous choking. As in the case of thermal 
choking, the condition represents that state where the maximum flow per 
unit area has been achieved for the given local values of stagnation pressure 
and temperature. If more flow is to be passed, the upstream conditions must 
change. 

Equation (2.96) may be integrated in a straightforward manner to yield 

X2 - x ,  = f (  Md ) -- f (  M2 ) (2.97) 

where 

1 
(2.98) 
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and 
2 C 

X2-- X1 : fl "~Cf-~ d x  =- f 2 d  X 

Combination of Eqs. (2.88) and (2.96) gives 

p 2 + 1 + [(7 1)/2] M 2 dM2 

from which 

P2 
Px 

1 

M2 1+[(3, 1 ) /2]M 2 

and 

pt2 _ MI { I +[(y-1)/2]M2 } (v+1)/2('~-l) 
P,, M2 1 + [ ( 7  1)/2]M12 

Example results are indicated in Fig. 2.11. 
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~'= 1.4 
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0 4 8 12 16 20 24 

X 2- X I 

Fig. 2.11 Variation of static pressure, stagnation pressure, and Mach number with 
axial position, adiabatic constant-area flow. 
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2.19 The Nozzle Flow Equations 

The flow of a calorically perfect gas in a channel of varying cross section 
is considered in this section. The mass flow rate & may be obtained in terms 
of the local area, Mach number, and stagnation properties directly from the 
continuity equation and Eqs. (2.67), (2.68), and a 2 = y R T  as follows: 

t;n = p u A  = p t a t A  p a u 
Pt at a 

Alternatively, this expression may be written in terms of the local static 
pressure by utilizing Eq. (2.67) to give 

I 

(2.103) 

It is also common to reference conditions to conditions at the throat, 
which are here denoted by an asterisk. In Sec. 2.18 it was shown that the 
Mach number at the throat can be expected to be very close to unity and 
that it is usual to include this approximation. Thus, 

~n = A * p * / C *  (2..104) 

where by definition C* is the characteristic velocity 

It should be pointed out here that it is not inconsistent to consider the 
Mach number to be unity at the throat, but not to insist that Pt =P* 
throughout. Thus, M * =  1 is an approximation that is numerically quite 
accurate, but it does not imply the assumption that the viscous effects are 
absent. It is possible to have the accumulated effects of viscosity upon the 
stagnation pressure be quite significant, but to still have the local viscous 
effect at the throat be very small. 

Expressions for the area variation with Mach number and static pressure 
can be obtained directly by dividing Eq. (2.104) into Eqs. (2.102) and 
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Pressure ratio and Mach number vs area ratio for isentropic nozzle flow. 

(2.103), respectively, to give 

A* p, V / ~ ' [ T + I \  2 1] M 

[ 1 
(2.106) 

Example results for isentropic flow ( p , = p * , T t =  T,*) are shown in 
Fig. 2.12. 

2.20 Numerical Solution of Equations 
In several of the examples to follow (see also Problem 7.1), the desired 

variables appear in transcendental equations. Many iterative techniques are 
available for the solution of such equations. The numerical complications of 
such techniques have been greatly reduced with the advent of small com- 
puters with branching and looping capability, so that graphical techniques, 
etc., are no longer necessary. In the following, two well-known techniques 
are described. 
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Newtonian Iteration 

Consider a transcendental equation of the form 

F ( x )  = 0 (2.107) 

Now consider a j t h  estimate of x to be x, and obtain a method of 
. J , 

estimating a next (closer) quanuty, xj+ 1. The function F(x j+l )  is expanded 
in a Taylor's series to give 

F(x2+I)  = F ( x j )  + (xj+ z - x j ) F ' ( x 2 )  + " "  (2.108) 

where F' (x : )  is the derivative of the function F ( x )  by x, evaluated at the 
value xj. Now if xj+ 1 is to be close to the solution of F ( x ) =  0, F(Xj+l) 
may be approximated as zero. Also, if xj is not far from xj+ 1, the 
higher-order terms in the series may be ignored to give the Newtonian 
iteration, 

xj+ 1 = x j -  [ F ( x j ) / F ' ( x j ) ]  (2.109) 

Equation (2.109) gives a method for obtaining the next estimate for the 
solution to the equation, xi+x, in terms of the previous approximation. In 
practice, the process would be continued until (xj+ 1 - x j)  was less than the 
desired accuracy. 

It is sometimes convenient to approximate the derivative of the function 
by a finite difference form, say 

F(x,+a)-U(xj-6) 
F ' ( x j )  = 26 (2.110) 

where 8 would be a suitably small quantity. The advantage of utilizing such 
an approximation is that if a computer is to be programmed to utilize the 
Newtonian iteration, only a subroutine to calculate the function F ( x )  itself 
need be supplied-- i t  is not necessary to provide a separate subroutine to 
calculate the derivative. 

Newtonian iteration is sometimes unstable, but it is fortunate in the 
examples to follow that, provided a suitable first guess for the desired 
variable is made, Newtonian iteration or the simpler functional iteration is 
stable in all of the examples considered herein. 

Functional Iteration 

A simple form of iteration related to the Newtonian is the functional 
iteration. Now assume a transcendental equation of the form 

x = / ( x )  (2.111) 
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This may be formally converted to a form suitable for solution by Newto- 
nian iteration by defining 

hence from Eq. (2.109) 

F ( x )  = x - f ( x )  

F(x j )  xj - f ( x j )  
xj+ 1 = xj F ' (x j )  = xj 1 - f ' ( x j )  (2.112) 

Now, if the function f ( x )  is slowly varying in x, then f ' ( x , )  may be 
J 

ignored compared to unity. In that case, Eq. (2.112) reduces to a functional 
iteration 

x++ 1 = f ( x j )  (2.113) 

This extremely simple form would then be iterated until (x j+ t _ x j) is less 
than the desired accuracy. This form is very simple and convement, but is 
suitable only when If'(xj)l << 1. 

Reference 

1Barclay, L. P., "Pressure Losses in Dump Combustors," AFAPL-TR-72-57, 
1972. 

Problems 

2.1 Consider a perfect gas for which the specific heat at constant 
volume C,, can be approximated by 

C,. =A + B T +  CT 2 + . . .  (A, B,etc. = const) 

Show that for such a gas undergoing an isentropic process, the density 
is given in terms of the temperature by 

[ cT2 t] JR p = k  Texp T + ~ 7 - +  . . .  

2.2 A Van der Waals fluid obeys the equation of state 

[p + ( a / v 2 ) ] ( v -  b )=  RT (a, b, R = const) 
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Show that for such a fluid 

(a) ( Ov } r = 0 

(b) 

3Cp ] R2T(2a/v3)[1 - ( 3 b / v ) ]  

Op ]r  [ p - ( a / v 2 ) + ( 2 a b / v 3 ) ]  3 

du = C , ,dT+(a /vZ)dv  

dh = CedT + v 
RTb - (2a /v2)(  v - b) 2 

RTv - (2a/v  2 )( v - b )  2 
dp  

2.3 The "Joule-Thomson coefficient" is defined as 

(Note that a fluid that is adiabatically "thrott led" through a porous plug 
undergoes a pressure change at constant enthalpy. The Joule-Thomson 
coefficient provides a measure of the expected temperature change.) 

(~) Show that for a Van der Waals fluid 

( OT) v R T b - ( 2 a / v 2 ) ( v - b )  2 

-~p h = --~p R T u _ ( 2 a / v Z ) ( v  6 )  2 

(b) Show that at the "inversion condition" [where (OT/Oph , = 0] 

p = ( 2 a / b v )  - (3a/v 2) 

2.4 Show that for any fluid 

Hence, for a Van der Waals fluid with C v given by C,, = A + BT, show 
that the equation relating v and T for an isentropic process is 

v - b = k e - B r / R / T  A/R (k = const) 
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Show also that, if G, were constant with temperature, the equation for 
an isentropic process could be written as 

[ p + ( a / v  2 )]( v - b)l + (R/c,.) = const 

2.5 Dieterici's equation of state is given by 

p(  v - b) = RTe -"/Rrv (a ,  b, R = const) 

Show that for such a fluid the Joule-Thomson coefficient is given by 

{ ( 2 a / v R T ) ( v -  b ) - b  

Show also that the difference in specific heats is given by 

Cp - C,, = Re -a/Rr'' (1 + a / R r v )  2 
1 - ( a / v 2 ) [ ( v -  b ) / R r ]  

2.6 Air is contained in a stepped cylinder fitted with a frictionless 
piston, as indicated in Fig. A. The air is cooled as a result of heat transfer to 
the surroundings. 

(a) What is the ratio of the temperature that would exist just as the 
piston reaches the step to the initial temperature T, in terms of the lengths 
L x and L 2 and related cross-sectional areas A1 and A2? 

(b) If the air is further cooled to a final temperature of Ty, what is the 
ratio of final pressure to initial pressure in terms of L a, L 2, A 1, A2, and 

2.7 A thin-walled metal can of volume V,. contains a calorically 
perfect gas at pressure Pc and temperature T C. Connected to the can is a 
capillary tube and stopcock. The stopcock is opened slightly and the gas 
leaks slowly into a heat-conducting cylinder equipped with a frictionless 
piston. The surroundings are at pressure p, and temperature T C. 

(a) Show that, after as much gas as possible has leaked out, a work 

LI 

Y 
L2 

± 

Fig. A 
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interaction in the amount of W = p , ( V I -  V<) has occurred. Here, V/is the 
final volume of the gas. Find V/in terms of p~, p<., and V,. 

(b) Show that the entropy gain of the system and surroundings is 
given by 

= - - d n - - - 1 -  r< v, 

2.8 A chamber contains a calorically perfect gas at pressure Pi and 
temperature T,. It is connected through a valve with a vertical cylinder that 
is closed on top by a frictionless piston. The piston is loaded by a weight of 
such magnitude that a pressure of Pi is maintained within the cylinder. (See 
Fig. B.) Initially the piston is at the bottom of the cylinder; then, the valve 
is slightly opened to allow the pressures in chamber and cylinder to become 
equal. It may be assumed that the volume of the piping is negligible, that 
the expansion process in the chamber is reversible and adiabatic (no heat 
transfer back through the valve), and that there is no heat transfer to any of 
the walls. 

Show that the final temperature in the cylinder is given by 

= 1 ~ 1 - p//p____~, I 3 

Tcl y ' X_(p/ /pi) l /~ J 
2.9 A highly evacuated, thermally insulated flask is placed in a room 
with air temperature T,. The outside air is then allowed to enter the flask 
through a slightly opened stopcock until the pressure inside equals the 
pressure outside, at which time the stopcock is closed. 

Assuming that the air is calorically perfect, what would be the temper- 
ature of the air inside the flask after the process was completed? 

2.10 Consider the frictionless flow of a calorically perfect gas in a 
channel with thermal interaction. For the case where the wall is shaped to 

CHAMBER 

Fig. 

F / I I I I I A  

CYLINDER 

B 



THERMODYNAMICS AND FLUID FLOWS 59 

keep the static temperature constant: 
(a) Find an expression for the area ratio A / A ,  in terms of 3', 

( ~ -  T~,)/T, and M, (i refers to initial conditions). 
(b) Find an expression for the ratio pJp,,  in terms of the same 

variables. 

2.11 Consider the frictionless flow of a calorically perfect gas in a 
channel with thermal interaction. For the case where the wall is shaped to 
keep the Mach number constant: 

(a) Find an expression for the area ratio A / A ,  in terms of 3', M, 
and TJT~ (i refers to initial conditions). 

(b) Find an expression for the ratio p,/p,, in terms of the same 
variables. 

2.12 Consider the frictionless flow of a calorically perfect gas in a 
channel with thermal interaction. The wall is shaped so as to keep the static 
pressure constant. The flow enters at condition 3 and departs at condition 4. 
Defined are "r b = T t / T  t and rrt, = P,,/Pt,. 

(a) Find an ~xpr~ssion for M 4 in-terms of y, M 3, and ~'b. 
(b) Show that 

[ ] '//'b = 
"r h + [ ( y -  1) /2]  M32('rt, - 1) 

- t / ( y - 1 )  

(c) Show that 

A 4 

A3 
r h + M ] ( 7  b - 1) 

2.13 Consider the frictionless flow of a calorically perfect gas in a 
constant-area channel with thermal interaction. The gas enters the duct at 
Mach number M, and thermal energy addition occurs until the flow chokes 
( M / =  1). 

(a) Obtain an expression for the related stagnation temperature ratio 
(T , i /T , )  in terms of 7 and M i. 

(b) Plot T,j/T~ vs M, over the range 0 < M, < 1. Assume y = 1.29. 
(c) Plot p, / /p , 'over  the same range. 

2.14 Consider the adiabatic flow of a calorically perfect gas in a duct. 
The duct is shaped so that the velocity remains constant. 

(a) Assuming the duct is of circular cross section and that the 
skin-friction coefficient C..( may be approximated as being constant, show 
that the duct diameter D is given by 

D = D i + 3'M2Cfx 

where i refers to the initial condition and x, is taken to be zero. 
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(b) Obtain an expression for Pt/Pt, in terms of g, M, Cf, and x / D  r 

2.15 A calorically perfect gas passing through a constant area duct 
enters a region where thermal addition occurs. The thermal addition is 
complete by station 2, after which the gas expands isentropically to station 
3. See Fig. C. Skin friction may be ignored. 

(a) Assuming ~, = 1.32, M t = 0.3, Tt,/Tt, = 2, and A3/A 2 = 0.9, find 
M3. 

(b) Find the value of T~/T, that will just cause the flow to choke 
• 2 I . , . " 

(c) Assuming that T, does not change, if T , /T ,  is further increased 
1 2 t 9 

by 10%, tO what must M~ be reduced to allow the process to continue. 
(d) If the mass flow is kept the same, what will be the required 

percentage increase in pt? 

2.16 A flow undergoes a sudden "dump" as indicated in Fig. D. A 
series of experiments has lead to the relationship of Pt2/P,, in terms of the 
upstream conditions and the area ratio A2/A x. We are to determine the 
effective average (static) pressure on the "dome" Pn, where the appropriate 
average is considered to be that which would satisfy a momentum balance. 

It is to be noted that such a pressure is indeed an average, because the 
Kutta condition at the pipe end would cause the local value of the wall 
pressure to be equal to the pressure in the stream at station 1. 

It may be assumed that the sidewall friction is zero and that conditions 
are quasi-one-dimensional at station 2. 

~ A q  

Fig. C 

I 

2 

~ D  

Fig. D 
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(a) Show that 

pc, I 
P~ Az 1 

A1 

M,(1 
u2(1 

1 

+ ~ M I 2 ) ' ,  (1 + y M 2 ) -  (1 + "l'Ml 2 ) 

and 

p,, 1 + " t -  l 
2 

M. 2 - M ~  1 + 7 - 1  
2 M~ 

(),+ 1)/2(y- 1) 

h i  

A2 

(b)  It has been found ~ that in the range 0.2 < A~/A: < 1, the ratio 
Pr,/P,~ is given approximately by 

P'~ exp( - ffL-(~ V 

where PLC =[1 - (A l /A2)]  2 + [1 -(A1/A2)] 6. 
Calculate and plot Po/P~ vs M~ over the range 0.1 < M~ _< 0.6 for the case 

7 = 1.30, A t /A 2 = 0.5. 

2.17 An independent group of investigators approached the problem 
of the dump flow from another viewpoint. They heavily instrumented the 
"dome" of the pipe with static pressure instrumentation so that they could 
measure Pc,. They then calculated Pt,/Ptt by assuming the sidewall friction to 
be zero. 

(a) Assuming that A~/A 2, Po/P~, Mx, and ",/will be prescribed, obtain 
a series of relationships for M 2, P2/Px, and p,~/p,, in terms of the prescribed 
variables. 

(b) For the case P o/Pl = 1, M~ =0.5, 7 = 1.3, calculate and plot 
Pt,/PtL. for the range 0.2 < A~/A2 < 1. Compare the ratio so obtained with 
that given by the formula of Problem 2.16(b). 

2.18 The flow processes in a ramjet may be approximated as indicated 
in Fig. E. Thus, there is isentropic compression in the inlet from the 
freestream conditions (0) past the minimum area location (m) up to the 
upstream edge of a normal shock wave (su). Following passage through 
the shock the flow diffuses isentropically to station 3. Constant-area thermal 
addition occurs from stations 3 to 4, after which the flow expands isentropi- 
cally through the nozzle. 
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0 ' SU SD 5 4 8 

Fig. E 

We are given 

As Tt, 
A4 - 0 .8 ,  Tt ' - 2.5, M,, = 1.3, M s = 1, 3' = 1.35 

The  s tagnat ion pressure ratio across a normal  shock wave, P,,,/Pt,, is given 
in terms of the ups t ream Mach number  b )  

Pt D 

Pt. 
2 • 1 +  2y ~ - 

1 + r _ - ' M ~  

l / ( - r -  1 )  

(a) What  is M3? 
(b) If T~,/T~, is increased to 2.7, what is M3? 
(c) What  is the required rat io of ( P t ) 2 . 7 / ( P t , ) 2 . 5  to bring about  the 

change in M3? 
(d) If the shock was originally located where M~, = 1.6, what  will the 

new value of M~, be? 
(e) If the freestream Mach number  is M 0 = 2, find the area ratios 

( AJA4)2.5, (As~A4)2.7, ( A,,/A4), ( Ao/A4) 

(f) What  is the max imum value for T, /T~,  that could be achieved 
. . . .  4 . 

with the shock wave still contained w~thm the ramjet? 



3. C H E M I C A L  ROCKETS 

3.1 Introduction 
Methods for estimating the performance of both liquid- and solid-propel- 

lant rockets will be developed in this chapter. In order to make such 
estimates, it is necessary to predict the nozzle performance when given the 
thermodynamic conditions existing at the completion of combustion within 
the combustion chamber. Large booster rockets pass through very large 
altitude ranges with related large variations in ambient pressure (see App. 
A, Standard Atmosphere). The variation in ambient pressure has a signifi- 
cant effect upon the thrust level. Methods to predict the thrust level are 
presented. 

In order to estimate conditions following combustion, it is necessary to 
apply concepts of equilibrium chemistry, and this subject is briefly reviewed. 
The designer can determine the mass flow rates of the fuel and oxidizer into 
the combustion chamber by correct pump design, and he can determine the 
chamber pressure by correct selection of the nozzle throat area. The 
chemical composition and temperature of the products of combustion can 
then be determined by applying the principles of equilibrium chemistry. 

The temperature levels experienced in rocket combustion chambers are so 
extreme that a sizeable portion of the product gas remains dissociated. As a 
result, as the gas is accelerated through the nozzle (with a consequent 
decrease in static temperature), the chemical reactions continue, giving rise 
to further changes in the gas properties. The two limiting cases of nozzle 
flow, frozen and equilibrium flows, are illustrated in this chapter and may 
be used to estimate the possible ranges of the effects of the continued 
reaction within the nozzle. 

Finally, simplified models are developed for the description of the 
processes within solid-propellant rockets. The models allow simple estimates 
of a solid-propellant rocket thrust history. 

3.2 Expression for the Thrust 
The thrust on a rocket can be expressed as the integral of the surface 

stresses over all of the rocket solid surfaces. Such an integral would include 
contributions over all the internal surfaces wetted by the fluid (chamber, 
pipes, pumps, etc.) and clearly would be most difficult to evaluate directly. 
Rather than attempting to do so, however, the internal force contributions 
are related to the fluid properties at the exit plane of the nozzle by use of the 
momentum equation. 

63 
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Thus, the expression for the force on the thrust stand, depicted in Fig. 3.1, 
may be written 

F= - ff~ (p -p.)ds +(visc)= +(visc)~.,, 
Zo+Z,.) 

(3.1) 

In this expression F is the vector force transmitted by the rocket to the 
thrust stand, ds the outwardly directed vector area element, Z o and Y~c the 
outer and inner (chamber) surface areas, respectively, and (visc) the viscous 
force over the given surface area. For later convenience, the pressure has 
been given relative to the ambient pressure p,. It is to be noted that the area 
integral of p, over the entire closed surface (E o + Z,) is zero. 

Equation (3.1) is of little calculational use because of the complexity of 
the internal integrals. A more useful form follows by utilizing the momen- 
tum equation to relate the internal forces to conditions at the nozzle exit. 
The internal surface is Y~c'. Note that the direction of the outward normal to 
the surface Z c, is opposite to that of Z,. (Fig. 3.2). Equating the internal 
forces to the rate at which momentum is convected through the surface 
results in 

- f f ~ , ,  + Ae( P - Pa) ds +(visc) :,., + (visc) A,, = ffA( pu)u" ds (3.2) 

Noting that the force contributions from the surface E C, are just of 
opposite sign to the force contributions from Zc, and that the normal 
viscous force at exit, (visc)Ae, is negligible, combination of Eqs. (3.1) and 
(3.2) gives 

v=-ffA(o.)..ds-ff A (p-po)ds +(visc) , - ff._ (p- po)ds 

(3.3) 

S Yo 

~ ~e 
\ 

Y'e 
Fig. 3.1 Rocket on stand. 



CHEMICAL ROCKETS 65 

y..c ;--~ 

d'~ T..c, 

t 
I 

Fig. 3.2 Chamber and nozzle. 

The third term in this expression represents the force of the external skin 
friction and is termed the skin drag. The fourth term represents the effect of 
the pressure imbalance on the external surface and is termed the form drag. 
The first two terms represent contributions to the thrust of the rocket, hence 

T =  -ff&(pu)u'ds-ffAe(p-p~)ds (3.4) 

If conditions at exit can be represented as one-dimensional, the magni- 
tude of the thrust may be written 

T=mue+(pe-pa)Ae (3.5) 

Effective Exhaust Velocity 
For convenience, the effective exhaust velocity C is defined by the 

relationship 

T = rhC (3.6) 

hence 

c = .e + [(pe-po)/ ,~]  Ae 

Note the alternative form 

C = u e [ 1  4 (Pe-pa)Ae] 
Ue(Pe"o&) 

(3.7) 

o r  

[±( C=u~ I + y M  2 1 P~ (3.8) 
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The Specific Impulse, Isp 
A commonly used measure of rocket performance is the specific impulse 

I~. e, defined as the ratio of thrust to the propellant weight flow per second. 
In the development leading to Eq. (3.5), it has been assumed that the units 
of the equation were in a "preferred" system, that is, one in which the units 
of force are defined to be those of mass times acceleration. In such a system 
weight is given in terms of mass by multiplying the mass by the magnitude 
of the standard acceleration of gravity, go (go = 9.8067 ms 2 or go = 32.174 
ft .  s-2). Note that although go has the magnitude of %, the gravitational 
constant, the dimensions of the latter are k g / N .  m / s  2 (or l b m / l b f - f t / s  2). 

It follows from Eq. (3.6) that 

Isp = C / g  o (in seconds) (3.9) 

3.3 Acceleration of a Rocket 

Trajectory analysis involves the analysis of a rocket flight path under the 
influence of the thrust, lift, drag, and gravitational force. However, rather 
than consider a complete trajectory analysis here, the simpler case of 
nonlifting motion with the thrust aligned in the direction of flight will be 
considered. The forces acting on the rocket (Fig. 3.3) may be resolved in the 
direction of flight to give 

T -  D -  g m c o s O  = m ( d v / d t )  (3.1o) 

Noting that the rate of mass flow through the nozzle is just equal to the 
negative of the rate of change of the vehicle mass, there is obtained 

d v  = - C ( d m / m ) - (  D / m ) d t -  gcos0d t  (3.11) 

0 / /  

/ 
/ 

/ 
i 

Fig. 3.3 Forces on rocket. 
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and 

dh = vcos O d t  (3.12) 

The drag is a complicated function of velocity and height: if the function 
is known analytically, this pair of equations may be numerically integrated 
in a straightforward manner. It is instructive to consider some simple special 
cases; if, for example, a suitable average value of the effective exhaust 
velocity can be obtained, the increment in vehicle velocity Av found for a 
mass "burn" of mp is seen to be given by 

m0 ) j0 O 
T m o - m p  - ~ m  d t  - J o  ~ d t  (3.13) 

where m 0 is the initial mass and ~" the burning time. 
The first integral is termed the drag loss and the second integral the 

gravity loss. The latter term arises because during the finite firing time the 
mass of the still unburned propellant must be raised in the gravitational 
field. Obviously, the gravity loss term could be decreased by increasing the 
thrust level of the rocket (increasing rh and thereby decreasing r), but this in 
itself would introduce its own complications. The larger required pumps and 
related piping would increase the rocket mass, the maximum allowable 
acceleration could be exceeded, and the acceleration to high velocities in the 
lower altitudes would increase the overall drag loss. Good rocket design 
involves selection of the optimal balance between these competing tenden- 
cies. 

In the very simple case of firing in "free space" where no drag or 
gravitational penalties exist, Eq. (3.13) reduces to 

M R  - m °  - e ~ v / c  (3.14) 
m o - m p  

This expression emphasizes the sensitivity of the required mass ratio M R  

to the attainable effective exhaust velocity. This is particularly true for 
high-energy (large Av) missions. 

Multiple-Stage Rockets 
Casual examination of Eqs. (3.13) or (3.14) indicates that if high-energy 

missions are to be contemplated utilizing the most energetic chemical 
propellants available to date (C<  4500 ms-:) ,  distressingly large mass 
ratios will be required. It is to be remembered that the final mass consists of 
the "dead weight mass" m d (mass of structure, engines, unused propellants, 
etc.), as well as the payload mass m L itself, so that methods to increase the 
possible payload for given overall rocket mass are of great importance. 

A fairly obvious method to accomplish an increase in payload capability 
is to stage the rocket so that unneeded mass can be discarded at opportune 
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times in the flight. The expressions for the velocity increments given by Eqs. 
(3.13) and (3.14) remain valid, only now the total velocity increment AVto t 
would be obtained as the sum of the velocity increments of all stages. As a 
simple examPle of the effects of staging consider the "free space" case 
where, again, the drag loss and gravity loss terms do not contribute. 
Introducing the payload ratio h and dead weight ratio 8, 

h = m y r a  o and 8 = m a / m  o (3.15) 

note the relationships 

m o m o 1 

m o - m p  rod+ m L 8 + h 
(3.16) 

Thus 

U 1 
At)t°t =/=IE C, En Si + h i (3.17) 

where i refers to the i th of a total of N stages. Note that the payload of the 
ith stage is the sum of all succeeding stages, so that the overall payload ratio 

o is equal to the product of all hi. That is, 

N 

ho = 1--I hi (3.18) 
i = l  

Optimization of Multiple-Stage Rockets 
The very simple formulas of Eqs. (3.17) and (3.18) allow simple de- 

termination of appropriate stage payload ratios to lead to a minimum 
overall mass for a given AUto t and payload mass. Normally, the engineer 
would be asked to consider the problem of designing the rocket for 
minimum overall mass given prescribed AUto t and payload mass. Mathemati- 
cally, however, it is simpler to consider a given overall payload ratio and 
maximize the Avto ~ obtained. If the assumed 8 i and C, are still found to be 
within reason after solution of the problem indicates the vehicle size, the h 0 
corresponding to the AVto t required, and hence the overall mass required, 
can be determined. 

The mathematical problem is to maximize Avto t for given 6", and 8, subject 
to the restriction 

N 

)to = I--I ?~, (3.19) 
i = 1  

Solution is facilitated by introduction of the Lagrange multiplier K and 
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definition of the function F where 

F =  ~_, C i d ~ 3 , ~  + K l~ h, - d n h  o 
i=1 

(3.20) 

Clearly F has a maximum at the same location as the maximum of AUto t. 
F can now be considered a function of all the h~, provided K is selected to 
ensure the restriction of Eq. (3.19). Taking the partial derivative, it follows 
that 

OF G K 
- -  -~ ( 3 . 2 1 )  

Oh~ 3 i+  h i h i 

Equating this expression to zero gives 

hi = [ ( C J K )  - 1] (3.22) 

A relationship for the unknown value of the Lagrange multiplier follows 
from Eqs. (3.19) and (3.22) 

N 

H 8, 

° 
(3.23) 

This is an Nth-order equation for K. Following solution for K the desired 
optimal payload ratios are obtained from Eq. (3.22). 

As a simple example consider the case where all the equivalent exhaust 
Velocities are equal. It follows that 

h i = Xlo/N ~ 

An even simpler example is that for which all the 6 i are equal, which gives 
h i = hi0/N and 

Avt°t = N dn 1 
C ( h ~ "  + 3) 

from which 

~o = ( e-Iav'°'/Wcl - 6)  N 
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Thus, for example, if AUtot/C = 2 and 3 = 0.1 are prescribed, 

N 1 2 3 

~0 0.035 0.072 0.071 

It would appear that for the given velocity ratio and dead weight ratio, a 
two-stage rocket would be the optimal choice. (Why doesn't ~'0 keep going 
up with N?!) 

As another example, consider a two-stage rocket. In this case, Eq. (3.23) is 
a quadratic equation for K, which upon solution yields 

2 61C 2 

( C  1 - C2) q- f f (C 1 - C2) 2 q- 4C1C2618z/2~0 

X2= 
2 32C 1 

( q  - C1) + ~(Cz - C1) 2 + 4C1C23132/Xo 

If At;to t, C1, C2, {~1, and 32 were again prescribed, ~0 would be obtained 
from Eq. (3.17). 

3.4 Rocket Nozzle Performance 

AS stated in the introduction, the variation in ambient pressure with 
altitude causes significant variations in thrust level. An estimate of such 
variations can be obtained by utilizing the very simple approximation that 
the flow within the nozzle is isentropic and that the gas is calorically perfect. 
The validity of these assumptions is further investigated in Sec. 3.7. 

Denoting by a subscript c the stagnation conditions within the rocket 
chamber, the first law of thermodynamics and the isentropic relationships 
give 

2 ] 
Ue h c - h e =  "Y RTc 1 -  Pe (v-1)/y 

hence 

pc, (v- 1)/r]'2 
(3.24) 

where C* is the characteristic velocity defined 
F = [2/('{ + 1)](v+l)/2(Y-1)~/~. 

The thrust coefficient C F is defined by 

in Eq. (2.104) and 

C v = T/pcA* (3.25) 
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With the relationship 

Me2 = - / -  1 P~ ! - 1 (3.26) 

and Eqs. (2.104), (3.6), (3.8), (3.24), and (3.25), it follows that 

CF= ~ y2/~Yl F[1--(~c)(V-1)/'r] '2 

and also 

- / 0 . 2 7 )  
X 1 +~yl(pe} [l__(pe/Pc)(V_X)/v] I 

C = C*C r (3.28) 

This is a convenient formulation for the effective exhaust velocity C, 
because C* is primarily a function of the propellants (it is a weak function, 
also, of the chamber pressure through the chamber pressure effect on T,. and 
hence "/). The functional dependence of the thrust coefficient is of the form 
CF('~' Pc/Pe, PIP, ,) ,  and hence C r is a function of the design choice Ofpc/p e 
(determined by choice of area ratio Ae/A* ) and choice of combustion 
chamber pressure and altitude (pc/pa). 

Nozzle Sizing 
It is easily verified analytically (see Problem 3.5) that the thrust coefficient 

has a maximum value (for prescribed ambient pressure and chamber 
pressure) when the exit pressure equals the ambient pressure. Such a 
relationship is obvious from physical reasoning also, as can be seen by 
imagining, for example, that the nozzle was equipped with an additional 
length of exit cone to continue the gas expansion to lower pressures (and 
higher velocities) than the local external pressure. Because the area is 
expanding and the internal wall static pressure is less than the external static 
pressure, it is evident that the additional length of nozzle would have a 
rearward force acting upon it. Similarly, if the nozzle was of insufficient 
expansion to reduce Pe to Pa, the additional forward force that would result 
on the length of nozzle necessary to reduce Pe to pa would not be available. 

The ratio of nozzle exit area to throat area required to provide the desired 
design pressure ratio Pea~Pc follows from Eq. (2.106) to give 

A* - \ ~ - ~  

(3.29) 
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It is to be noted that when a conventional rocket (fixed A e / A * )  is flown at 
altitudes above the design altitude (where Pea =P,a),  the exit pressure will 
be fixed at Pea and is larger than the local ambient pressure p~. Under these 
circumstances, the pressure of the exhaust stream adjusts to ambient pres- 
sure by passing through expansion fans attached to the nozzle lip. 

When flight at altitudes below the design altitude occurs, the ambient 
pressure exceeds the nozzle exit pressure. Under these conditions oblique 
shock waves are created that bring the fluid pressure up to the ambient 
pressure. When conditions are such that the ambient pressure greatly 
exceeds the design exit pressure, the strong oblique shock waves that are 
formed at the exit due to the overpressure move into the nozzle, thereby 
changing the effective exit pressure [for use in Eq. (3.27)]. 

The behaviors described above are illustrated and summarized in Fig. 3.4. 
Note that in addition to the design altitude h a the "separation altitude" h~ep 
has been introduced. This latter altitude is defined as the lowest altitude at 
which the oblique shock waves remain on the nozzle lip. It is apparent that 
above this altitude the exit pressure will be equal to the design pressure G J, 
whereas below this altitude the shocks move into the nozzle and the effective 
exit pressure becomes a function of altitude. 

A very simple approximate method of estimating the resulting effective 
exit pressure was suggested by Summerfield. 1 He observed that the flow in 
the vicinity of the walls just following the location of the strong oblique 
shock waves was largely separated, and as a result the wall static pressure 
downstream of the shock waves was nearly equal to the ambient pressure. 
As a result, the effective exit pressure [for use in Eq. (3.27)] could be 
considered the pressure just preceding the shock wave. Summerfield further 
suggested the use of the very simple estimate of this "shock pressure" p~ 
given by 

ps/p, = ( 1 / K  )( p,,/p,.) (3.30) 

where K is a constant of value approximately 2.7-2.8. 
The entire altitude performance of a given nozzle can now be calculated 

by utilizing Eq. (3.30) for altitudes below which the value of p, given by Eq. 
(3.30) is larger than the design exit pressure Pea and using Pe =Peal above 
this separation altitude hse p- 

Particularly simple results can be obtained if the pressure variation with 
altitude may be approximated as exponential. Thus 

Pa/PS.L. = e h/H~c, (3.31) 

where PSL. is the sea level pressure and H~c 1 the scale height. It follows 
directly (Problem 3.6) that 

hse p = h a - Hsclg'~ K (3.32) 
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ALTITUDE 

h 
~d 

Isep 

EXIT PRESSURE EXCEEDS AMBIENT PRESSURE, 

EXPANSION FAN EXISTS ON NOZZLE LIP, 

DESIGN ALTITUDE 

Pe = Pa Ped 

AMBIENT PRESSURE EXCEEDS EXIT PRESSURE, 

OBLIQUE SHOCK WAVES EXIST ON NOZZLE LIP, 

ABOVE THIS 

ALTITUDE Pe = 

AMBIENT PRESSURE GREATLY 

EXCEEDS DESIGN EXIT PRESSURE \ ~  

OBLIQUE SHOCK WAVES EXIST /-~// 

WITHIN THE NOZZLE 

Fig. 3.4 Nozzle behavior with altitude. 

Ped 

It is apparent that an "ideal" rocket would have a completely variable 
nozzle  area ratio, so that the exit area could be selected to give Pe = P, at all 
altitudes. It is hard to imagine a geometry that could give such capability, 
but a compromise concept is shown in Fig. 1.2 that illustrates a nozzle with 
three "design altitudes" capability. Optimal utilization of such a device 
would be obtained if the next larger area ratio skirt was translated at just 
the altitude where the thrust coefficients of  the two nozzles are equal. 

As an example, consider a rocket nozzle with a single translatable skirt 
and hence two design altitudes hal and hd2. Assume that an exponential 
pressure variation is valid, and consider the case hal = 30,000 ft, ha2 = 60,000 
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ft, K = 2.75, 3' = 1.28, Pc = 40 PS.L., and H~d = 23,000 ft. It can be shown 
(Problem 3.7) that the correct altitude for skirt translation, htrans, is given by 

htrans~--nscl{ce(PpL c " A17~22)B1-B2 (3.33) 

where 

1 - [ ( y  + 1)/2"/](  - ,(r-'}/v Pe,/Pc ) 
A i = (i = 1 or 2) 

[ 1 - ( p < / p c ) " - l ' / ' ]  '= 

n i 
[ ( y -  l ) / /2]t](pe,/ /pc)-t /7 

Pe, PS.L.e.-h~i/Hscl 
Pc Pc 

For the given conditions it follows that hse_ = 6733 ft, CFsep = 1.478, • P 
h trans = 45,825 ft, and CFtra~s = 1.6807. The entire altitude performance for 
0 < h _< 100,000 ft is shown in Fig. 3.5. The envelope of an ideally expanded 
nozzle has been included for comparison. Note the substantial improvement 
in performance evident for h > h tran s because of the two-design altitude 
capability. 

3.5 Elementary Chemistry 

In the preceding sections, methods were presented that allowed estima- 
tion of rocket nozzle performance in terms of prescribed combustion 
chamber conditions. In fact, the designer has at his disposal the ability to 
prescribe the combustion chamber pressure (by matching pump capacity 
and nozzle throat size) and the fuel-to-oxidizer of the "reactants." The 
properties of the products can be estimated by using the methods of 
equilibrium chemistry. 

Consider the flow of fuel and oxidizer (the reactants) into a duct wherein 
combustion occurs and products are formed. The process is approximated 
as adiabatic, it is assumed (for simplicity) that the flow Mach numbers are 
very low, and no work interaction occurs within the chamber. Under these 
circumstances the enthalpy of the product's hp will equal the enthalpy of the 
reactants hRr ~, so that 

hRr 3 = hpT 4 (3.34) 
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COMB 4 41 

Fig. 3.6 Heat of reaction. 

The reaction will bring about a change in temperature, and the "heat of 
reaction" AH is defined as the amount of (positive) heat interaction re- 
quired to bring the products back to the same temperature as the reactants 
(at the same pressure). The actual process of combustion and the imagined 
additional process of heat interaction can be represented as illustrated in 
Fig. 3.6. 

For the imagined process from point 4 to point 4', we have 

hpT4. - hpT  4 = A Hr4" (3.35) 

By definition T 4, = T3, so with Eq. (3.34), 

and 

hpT 3 -- hRr  3 = AHT3 (3.36) 

hpT " = hpT  3 -- AHT3 (3.37) 

Often, AH is available only at a reference value, say T d. Thus, 

AHT~ = hpT d -- hRr  ~ 

= ( h p T 3 - - h R T 3 ) - - ( h p T 3 - - h p T d ) + ( h R T 3 - - h R T a )  (3 .38 )  

Combining Eqs. (3.37) and (3.38) and writing the general form T in place 
of T 3, it follows that 

A H T = A H T ~  + ( h p y - h p y ~ ) - ( h n v - h R r ~ )  (3.39) 

Note that combination of Eqs. (3.37) and (3.39) gives 

hpT 4 = hpT d -- A HTd + ( h R T  3 -- h tcTd ) (3.40) 

The Heat of  Formation, A H r 

The heat of formation is defined as the (positive) heat interaction required 
to form a compound from its elements at constant pressure and prescribed 
temperature. For perfect gases, the heat of solution is zero and, as a result, 
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the heat of reaction may be obtained in terms of the heats of formation of 
the reactants and products. Thus, 

AH = E npAH} °, - E n nAH}° (3.41) 
p R 

where n_ and n R are the number of moles of the product and reactant, 
. P  

respectively, and A H~ is the heat of formation per mole. 

The Law of Mass Action 

It is usual to write the reaction equation for an example reaction in the 
form 

PlA1 -'k p2A2 + . . .  t,,~A,~ = 0 (3.42) 

In this expression the v i are numbers (the stoichiometric coefficients) and 
the A i units (usually moles) of the reactants and products. It is customary to 
write the products with positive stoichiometric coefficients and the reactants 
with negative coefficients. As an example consider the reaction 

2H 2 + 02 ~ 2H20 

With the suggested convention this equation would be written 

giving 

H 2 0  - H 2 - 1 0 2  = 0 

1 
P l = I ,  P2 = -1,  P3 = 2 

The second law of thermodynamics states that the entropy of an isolated 
system cannot decrease. An extension to this result can be made in the 
statement, " the  entropy of isolated systems tends to increase." Thus, the 
entropy of an isolated system will continue to increase until no further 
changes are possible. When the system reaches the state where no further 
increases in entropy are possible, it would hence have reached a state of 
equilibrium. 

By applying this reasoning to a chemical mixture (making allowances for 
the possibility of heat and work interactions of the system with its surround- 
ings), the condition for chemical equilibrium of a mixture can be deduced. 
The result is of a particularly simple form for perfect gases and is termed 
the law of mass action. Thus 

Pl ~2 Y3 • • P l  P2 P3 • = K p  (3.43) 

Here Kp is the equilibrium constant. The detailed derivation of the 
expression reveals that K is a function of temperature only Note that K is 

• . P . . " .  . . P 

not dimensionless and that xts value will depend on the units in which the 
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partial pressures are expressed. An  alternate form for the law of mass action 
is obtained in terms of the molal fractions of  the species x.. Thus, recalling 

• . . J • 

that  the molal  fracUon is equal to the rauo  of the parUal pressure to 
the total pressure, it follows that 

p J p = n i / Z n j = x  j (3.44) 

and hence 

", " 2 . . .  x ; ,  . . . .  p 'Kp 
X 1 X 2 (3.45) 

Tables of  values for the equilibrium constant  are available in several 
references. Tables 3.1-3.3 have been taken from Ref. 2. 

Symbols and Terminology for JANNAF Tables 

The standard state is taken as the state at 1 atm pressure at the temperature under 
consideration for the solid, liquid, and ideal gas states• Only homogeneous subs- 
tances are considered here. 

The reference state applies to elements in their stable standard state. Conse- 
quently, the reference state tables presented here are either single-phase or poly- 
phase tables; all other tables are single-phase. 

A circular superscript ° indicates the thermodynamic standard state• The numeri- 
cal subscript, as 298.15, denotes temperature in degrees Kelvin. 

Cp ° denotes the specific heat at the constant pressure of the substance in the 
thermodynamic standard state. S ° represents the absolute entropy of the thermody- 
namic standard state at the absolute temperature T. - ( F  ° - H~9s ~5)/T denotes the 
free energy function in the standard state at temperature T and is defined as 
S ° -  (H ° -  H~9sas)/T. (H ° -  H~9815 ) indicates the enthalpy (or heat content) in 
the standard state at the temperature T less the enthalpy in the standard state at 
298.15 K. A H/° represents the standard heat of formation, which is the increment in 
enthalpy associated with the reaction of forming the given compound from its 
elements, with each substance in its thermodynamic standard state at the given 
temperature. 

When the reaction or process evolves heat, the sign of the heat term is arbitrarily 
taken to be negative. Conversely, when the reaction or process absorbs heat, the sign 
of the heat term is positive. 

A F/° denotes the standard free energy of formation, which is the increment in free 
energy associated with the reaction of forming the given compound from its 
elements, with each substance in its thermodynamic standard state at the given 
temperature• 

Log Kp stands for the logarithm (to the base 10) of the equilibrium constant for 
the reaction forming the given compound from its elements, with each substance in 
its thermodynamic standard state at the given temperature• 



CHEMICAL ROCKETS 79 

Table 3.1 Equilibrium Constants for Hydrogen (H z) (ideal gas, reference state, 
molecular weight 2.016, H 2 ~ H 2 ,  Kt, H2 = P r l z / P n z  = 1) 

T(K) (cal. mole z. deg-1)  (kcal - mole 1) Log Kr 

0 0.000 0.000 Infinite - 2.024 0.000 0.000 01000 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -- i$63  . . . .  ~ - - -  o ~ o ~ - - - 0 ~ o o ~  100 5.393 24.387 37.035 
200 6.518 28.520 31.831 -0 .662  0.000 0.000 0.000 
298 6.892 31.208 31.208 0.000 0.000 0.000 0.000 

300 6.894 31.251 31.208 0.013 0.000 0.000 0.000 
400 6.975 33.247 31.480 0.707 0.000 0.000 0.000 
500 6.993 34.806 31.995 1.406 0.000 0.000 0.000 

600 7.009 36.082 32.573 2.106 0.000 0.000 0.000 
700 7.036 37.165 33.153 2.808 0.000 0.000 O.(X)O 
800 7.087 38.107 33.715 3.514 0.000 0.000 0,000 
900 7.148 38.946 34.250 4.226 0.000 0.000 0.000 

1000 7.219 39.702 34.758 4.944 0.000 0.000 0.000 

1100 7.300 40.394 35.240 5.670 0.000 0.000 0.000 
1200 7.390 41.033 35.696 6.404 0.000 0.000 0.000 
1300 7.490 41.628 36.130 7.148 0.000 0.000 0.000 

1400 7.600 42.187 36.543 7.902 0,000 0.000 0.000 
1500 7.720 42.716 36.937 8.668 0.000 0.000 0.000 

1600 7.823 43.217 37.314 9.446 0.000 0.000 0.000 
1700 7.921 43.695 37.675 10.233 0.000 0.000 0.000 
1800 8.016 44.150 38.022 11.030 0.000 0.000 0.000 
1900 8.108 44.586 38.356 11.836 0.000 0.000 0.000 
2000 8.195 45.004 38.678 12.651 0.000 0.000 0.000 

2100 8.279 45.406 38.989 13.475 0.000 0.000 0.000 
2200 8.358 45.793 39.290 14.307 0.000 0.000 0.(XX) 
2300 8.434 46.166 39.581 15.146 0.000 0.000 0.000 
2400 8.506 46.527 39.863 15.993 0.000 0.000 0.000 
2500 8.575 46.875 40.136 16.848 0.000 0,000 0.000 

2600 8.639 47.213 40.402 17.708 0.000 0.000 0.000 
2700 8.700 47.540 40.660 18.575 0.000 0.000 0.000 
2800 8.757 47.857 40.912 19.448 0.000 0.000 0.000 
2900 8.810 48.166 41.157 20.326 0.000 0.000 0.000 
3000 8.859 48.465 41.395 21.210 0.000 0.000 0.000 

3100 8.911 48.756 41.628 22.098 0.000 0.000 0.000 
3200 8.962 49.040 41.855 22.992 0.000 0.000 0.000 
3300 9.012 49.317 42.077 23.891 0.000 0.000 0.000 
3400 9.061 49.586 42.294 24.794 0.000 0.000 0.000 
3500 9.110 49.850 42.506 25.703 0.000 0.000 O.(X)O 

3600 9.158 50.107 42.714 26.616 0.000 0.000 0.000 
3700 9.205 50.359 42.917 27.535 0.000 0.000 0.000 
3800 9.252 50.605 43.116 28.457 0.000 0.000 0.000 
3900 9.297 50.846 43.311 29.385 0.000 0.000 0.000 
4000 9.342 51.082 43.502 30.317 0.000 0.000 0.000 

4100 9.386 51.313 43.690 31.253 0.000 0.000 0.000 
4200 9.429 51.540 43.874 32.194 0.000 0.000 0.000 
4300 9.472 51.762 44.055 33.139 0.000 0.000 0.000 
4400 9.514 51.980 44.233 34.088 0.000 0.000 0.000 
4500 9.555 52.194 44.407 35.042 0.000 0.000 0.000 
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Table 3.2 Equilibrium Constants for Diatomic Oxygen ( 0  2) (ideal gas, reference 
state, molecular weight 32.1111, 0 2  - ,  0 2 ,  K p o ~ = P o J P o2 = 1) 

T(K) (cal. mole-  1. deg-  1 ) (kcal • mole t ) Log K v 

0 0.000 0.000 Infinite 2.075 0.000 0.000 0.000 

100 6.958 41.395 55.205 - 1.381 0.000 0.000 0.000 
200 6.961 46.218 49.643 0.685 0.000 0.000 0.000 
298 7.020 49.004 49.004 O.O(X) 0.000 0.000 0.000 

300 7.023 49.047 49.004 0.013 0.000 O.(X)O 0.000 
400 7.196 51.091 49.282 0.724 0,000 0.000 0.000 
500 7.431 52.722 49.812 1.455 0.000 0.000 0.000 

600 7.670 54.098 50.414 2.210 0.000 0.000 O.O(X) 
700 7.883 55.297 51.028 2.988 0.000 0.000 0.000 
800 8.063 56.361 51.629 3.786 0.0(X) 0.000 O.(XX) 
900 8.212 57.320 52.209 4.600 0.000 0.(X)0 0.O(X) 

1000 8.336 58.192 52.765 5.427 0.000 O.(X)O 0.000 

1100 8.439 58.991 53.295 6.266 0.000 0.(X)0 0.000 
1200 8.527 59.729 53.801 7.114 0.0(X) 0.(X)0 0.(X)0 
1300 8.604 60.415 54.283 7.971 0,IXX/ 0,000 0.000 
1400 8.674 61.055 54.744 8.835 0.000 0.000 0.0(X) 
1500 8.738 61.656 55.185 9.706 O.0(X) 0000 0.000 

1600 8.800 62.222 55.608 10.583 O.(XX) 0,0(X) 0.000 
1700 8.858 62.757 56013 11.465 O.(X)O 0.000 0.000 
1800 8.916 63.265 56.401 t2.354 0.000 0.000 0.000 
1900 8.973 63.749 56.776 13.249 O.(XX) 0.000 0.000 
2000 9.029 64.210 57.136 14.149 0.000 O.(XX) O.(X)O 

2100 9.084 64.652 57.483 15.054 0.000 0.000 0.000 
2200 9.139 65.076 57.819 15.966 0.000 0.(X)0 0.000 
2300 9.194 65.483 58.143 16.882 0.000 O.(XX) 0.000 
2400 9.248 65.876 58.457 17.804 0.CXX) 0,(X)0 0.f~)0 
2500 9.301 66.254 58.762 18,732 0.00(l 0.(X)0 0.000 

2600 9.354 66,620 59.057 19.664 0.0(X) 0.000 0.000 
2700 9.405 66.974 59.344 20.602 0.000 O.(X)O O,(X)O 
2800 9.455 67.317 59.622 21.545 0.000 0.000 O.(X)O 
2900 9.503 67.650 59.893 22.493 0.000 0.000 0.000 
3000 9.551 67.973 60.157 23.446 0.000 0.000 0.000 

3100 9.596 68.287 60.415 24.403 0.000 O.(X)O 0.000 
3200 9.640 68.592 60.665 25.365 0.0(X) 0.000 0.000 

3300 9.682 68.889 60.910 26.331 0.000 0.000 0.000 
3400 9.723 69.179 61.149 27.302 0.O(X) O.(X)O 0.000 
3500 9.762 69.461 61.383 28.276 0.0(X/ 0.000 0.000 

3600 9.799 69.737 61.611 29.254 0.0(X) 0.000 0.000 
3700 9.835 70.006 61.834 30.236 0.(X)0 OAX)(/ 0.000 
3800 9.869 70.269 62.053 31.221 0.000 (/.O(X) O.0(X) 
3900 9.901 70.525 62.267 32.209 O.(X/O O.(X)O 0.000 
4000 9.932 70.776 62.476 33.201 0.000 O.(X)O ().000 

4100 9.961 71.022 62.682 34.196 0.000 O.(X)O 0.000 
4200 9.988 71.262 62.883 35.193 0.000 O.(X)O 0.000 
4300 10.015 71.498 63.081 36.193 O.(XX) 0.000 0.000 
4400 10.039 71.728 63.275 37.196 O.(X)O 0.(X)0 0.000 
4500 10.062 71.954 63.465 38.201 O.(X)O 0.0(X) 0.000 
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Table 3.3 Equilibrium Constants for Water (H20)  [ideal gas, molecular weight 

18.016, H 2 + }02  -" H20,  KpHzo =PH~o/(PH2 "Pozl)] 

T(K) ( c ~ . m o l e  1 . d e g  1) (kcal .  mole t) Log Kp 

0 0.000 .... .  0[()O0- Infinite = 2 . 3 6 7  = 57[iiJ3 Z57A03  ini ini te  

100 7.961 36.396 52.202 - 1 . 5 8 1  -57 .433  -56 .557  123.600 

200 7.969 41.916 45.837 0.784 57.579 55.635 60.792 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ - - - ~ ; ~ 7 9 ~  - - - - - 5 ~  ; ~ -  - - 4 ? ; £  298 8.025 45.106 45.106 

300 8.027 45.155 45.106 0.015 - 57.803 54.617 39.786 

400 8.186 47.484 45.422 0.825 - 58.042 - 53.519 29.240 

500 8.415 49.334 46.026 1.654 - 58.277 52.361 22.886 

600 8.676 50.891 46.710 2.509 - 5 8 . 5 0 0  51.156 18.633 

700 8.954 52.249 47.406 3.390 58.710 49.915 15.583 

800 9.246 53.464 48.089 4.300 - 58.905 48.646 13.289 

900 9.547 54.570 48.749 5.240 - .59.084 - 4 7 . 3 5 2  11.498 

1000 9.851 55.592 49.382 6.209 - 59.246 46.040 10.062 

1100 10.152 56.545 49.991 7.210 59.391 - 44.712 8.883 
1200 10.444 57.441 50.575 8.240 59.519 - 43.371 7.899 

1300 10.723 58.288 51.136 9.298 59.634 - 42.022 7.064 

1400 10.987 59.092 51.675 t0 .384 - 59.734 - 40.663 6.347 

1500 11.233 59.859 52.196 11.495 - 59.824 - 39.297 5.725 

1600 11.462 60.591 52.698 12.630 --59.906 37.927 5.180 

1700 11.674 61.293 53.183 13.787 59.977 36.549 4.699 

1800 11.869 61.965 53.652 14.964 60.041 - 3 5 . 1 7 0  4.270 

1900 12.048 62.612 54.107 16.160 - 60.099 - 33.786 3.886 

2000 12.214 63.234 54.548 17.373 60.150 32.401 3.540 

2 t00  12.366 63.834 54.976 18.602 - 60.198 - 31.012 3.227 

2200 12.505 64.412 55.392 19.846 60.242 29.621 2.942 

23(~ 12.634 64.971 55.796 21.103 - 60.282 --28.229 2.682 

2400 12.753 65.511 56.190 22.372 - 60.321 - 2 6 . 8 3 2  2.443 

2500 12.863 66.034 56.573 23.653 - 60.359 - 25.439 2.224 

2600 12.965 66.541 56.947 24.945 - 60.393 24.040 2.021 

2700 13.059 67.032 57.311 26.246 60.428 - 22.641 1.833 

2800 13.146 67.508 57.667 27.556 - 60.462 - 2 1 . 2 4 2  1.658 
2900 13.228 67.971 58.014 28.875 - 60.496 19.838 1.495 

3000 13.304 68.421 58.354 30.201 60.530 18.438 1.343 

3100 13,374 68.858 58.685 31.535 60.562 17.034 1.201 

3200 13.441 69.284 59.010 32.876 60.596 15.630 1.067 

3300 13.503 69.698 59.328 34.223 - 60.631 - 14.223 0.942 

3400 13.562 70.102 59.639 35.577 - 6 0 . 6 6 6  12.818 0.824 

3500 13.617 70.496 59.943 36.936 - 60.703 11.409 0.712 

3600 13.669 70.881 60.242 38.300 - 6 0 . 7 4 1  - 1 0 . 0 0 0  0.607 

3700 13.718 71.256 60.534 39.669 - 6 0 . 7 8 2  - 8.589 0.507 

3800 13.764 71.622 60.821 41.043 - 60.822 - 7.177 0.413 

3900 13.808 71.980 61.103 42.422 - 60.865 5.766 0.323 

4000 13.850 72.331 61.379 43.805 - 60.910 - 4.353 0.238 

4100 13.890 72.673 61.651 45.192 - 60.957 - 2.938 0.157 

4200 13.927 73.008 61.917 46.583 61.006 1.522 0.079 

4300 13.963 73.336 62.179 47.977 - 6 1 . 0 5 6  - 0.105 0.005 

4400 13.997 73.658 62.436 49.375 61.109 1.311 - 0.065 

4500 14.030 73.973 62.689 50.777 - 6 1 . 1 6 4  2.729 - 0.133 
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Example Calculation--Hydrogen-Oxygen Reaction 
As a relatively simple example of the calculational aspects of chemical 

equilibrium chemistry, the hydrogen-oxygen reaction is considered here. 
This reaction has special interest, in addition to its simplicity, in that it is 
one of the most energetic reactions available and hence is of particular use 
in propulsion. A very simple form of the reaction will be considered here in 
detail, but the procedure for a more exact (and complicated) form of the 
reaction will be outlined in the following. 

Thus consider 1 mole of molecular hydrogen to react with : moles of 
molecular oxygen as in the following equation: 

H 2 + : 0  2 ~ mH20 + n H  2 + qO 2 (3.46) 

The mole balances give 

H : m + n = l  

O: m + 2q = 2:  

In anticipation of considering the fuel-rich case ( : <  ½) and hence expect- 
ing q to be small, solve for m and n in terms of the prescribed :and q. Thus 

m = 2 ( : -  q), n = 1 - 2 ( g - q ) ,  n T = m + n + q = l +  q (3.47) 

The remaining equation for q is provided by the law of mass action 
[Eq. (3.45)], which gives (with v~ = 1, P2 = - 1 ,  P3 = - ~ )  

1 1 

( n r / q ) ~ ( m / n )  =p{K? (3.48) 

Combination of Eqs. (3.47) and (3.48) then gives a cubic equation for q, 
which may be written in the form 

where 

F( q ) = 0 = Aq 3 + Bq 2 + Cq + D 

A =4[1-(1/pcK2)]  

(3.49) 

B = 4 ( 1 -  2 : ) [ 1 -  (1/pcK2)] 

C = [ ( 1 -  2 : )  2 + (4:/pcK ff ) ( 2 -  : ) ]  

D = -4:2/p.K: 

This equation can be solved numerically using the procedure of 
Newtonian iteration (see Sec. 7.2). This procedure gives an updated value 
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for q, qj+i, in terms of the previous value of q, qj, by the formula 

qj+l = q j -  [ F( q ) /F ' (  q)] j (3.50) 

For the value of F(q)  given above, 

F(q) 3Aq 2 + 2Bq + C 

and hence with Eq. (3.50) 

2Aq + Bq 2 -  D )  

qj+l = 3Aq 2 + 2Bq + C j 
(3.51) 

An appropriate first guess for q is 

qo = - D / C  

As an example, assume ~'= 0.4, Pc = 10 atm, and T~ = 4000 K. Kp is 
obtained from Table 3.3 (=  10°238), and iteration of Eq. (3.51) gives (in 
four iterations, accurate to four significant figures) q = 0.092770. Then, 
m = 2(•- q) = 0.6145 and n = 1 - m = 0.3855. 

More General Hydrogen-Oxygen Reaction 
The reaction analyzed above is a very simple representation of the process 

actually experienced in a high-temperature reaction. A more general form 
can be written 

H 2 + d O  2 = mH20  + n H  2 + qO 2 + p H  + rO + sOH 

The equilibrium concentration of the products can be determined by 
introducing further equilibrium constants corresponding to the appearance 
of the given product. For example, equilibrium constants could be 

Po PH POH PH20 
Kp, ~ ,  Kp2 ½ ,  Kp3 1 1 ' Kp4 1 

n~ p~ pH2p~3 2 P~)2 PH2 "~H2 02 

These expressions give four additional equations to the two mole balance 
equations and hence provide six equations for the six unknowns rn ~ s. As 
can easily be imagined, the numerical complexity of these larger reaction 
equations can become severe. Reference 3 considers the numerical aspects of 
such complicated examples in detail. 
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3.6 Determination of Chamber Conditions 

The concepts developed in the preceding section can now be applied to 
the determination of chamber conditions. The incoming temperature T~,, 
fuel-to-oxidizer ratio, and chamber pressure will be provided. It will be 
necessary to determine the outgoing chamber temperature T~ and other 
thermodynamic properties. The procedure is complicated somewhat by the 
fact that T~ is an unknown of the problem, and hence must be determined 
by iteration. Whether or not a given value for T~ is correct is determined by 
comparing the enthalpy required to raise the reactants from ~ ,  to T d and 
the products from T d to To. This procedure is summarized in the following 
section. 

Calculation Procedure-- Summary 
(1) Assume a value for T c. 
(2) Determine the equilibrium composition of the products (np) for the 

assumed value of To. 
(3) Calculate the enthalpy released by the reaction ( - A H )  using the 

heats of formation at Td: 

" p R 

(4) Calculate the enthalpy required to raise the reactants from T~, to T d 
plus the enthalpy required to raise the products from T d to T~: 

a/-/.e. = + E . . ( n T c -  HT.) 
R p 

(5) Compare - A H  to AHre ~. If - A H  is larger than AHreq, assume a 
larger value for T c and repeat the process. 

(6) Calculate the specific enthalpy, entropy, etc., from the known com- 
position of the products and tabulated values of the molal quantities. 

Example Calculation--Hydrogen-Oxygen Reaction 
As an example calculation, consider the combustion of hydrogen and 

oxygen. Take Pc = 15 atm, : =  0.35, and assume for simplicity that the gases 
enter the chamber at T,, = 298 K and that the simplified reaction model [Eq. 
(3.46)] is appropriate. For these simplified conditions, the relationships of 
steps 3 and 4 above reduce to 

- A H  = - m  AHfn2o = m(57.798) 

AHre q = m (  H - H298)H20,Tc q" . (  H - H298)H2,T c -'1- q( H - H298)o.~,T~ 
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As a first guess, assume T~ = 3700 K, giving K p  = 10 °5°7, Eq. (3.49) gives 

m = 0.6531, n = 0.3469, and q = 0.02343 

Thus 

- A H  = 0.6531(57.798) = 37.751 

AOre  q = m (39.669) + n (27.535) + q(30.236) = 36.169 

The enthalpy required to raise the products  to 3700 K is less than that 
provided by  the reaction, so T C must  be higher than that assumed. 

Assuming T c = 3800 K leads to 

m = 0.6369, n = 0.3631, q = 0.3157, - A H  = 36.809, a n d  AOre q = 37.458 

It  is apparent  that  T~ is between the values 3700 and 3800 K. Linear 
interpolat ion gives the estimate 

37.751 - 36.169 
T c = 3700 + (37.751 - 36.169) - (36.809 - 37.458) (3800 - 3700) 

or  

T~ --- 3770 K 

Interpolat ion of the other quantities gives 

m = 0.6418, n = 0.3582, and q = 0.02913 

It  is of interest, also, to determine the enthalpy per mass of the products  
h m which may  be written 

h m -- hm298 -- 
m ( - A n ; H 2 0 ) 2 9 8  

2 + 32Y 
= 2.810 k c a l / g  

Note  that here the molecular weights of H 2 (2) and 0 2 (32) are intro- 
duced. 

3.7 Nozzle Flow of a Reacting Gas 

As the gases flow through the nozzle, the pressure and temperature 
decrease. As a result the gases would tend to react further to equilibrium 
conditions appropriate  for the local value of pressure and temperature.  With 
conventional  propellants, the effect of the decreasing temperature within the 
nozzle dominates  the effect of  the decreasing pressure and the reaction tends 
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further to completion. Such further reaction is beneficial, because the 
continued reaction releases the chemical energy to the translational energy 
and hence leads to an increased exit velocity. 

The extent to which reactions tend to go to completion within a nozzle is 
dependent on the relative times spent for a reaction process (that is, for the 
required collision processes to occur) and for the gas to traverse significant 
pressure and temperature changes within the nozzles. Thus, for example, a 
reaction that requires a three-body collision could occur quite rarely, and 
hence at long time intervals. In such a case the reaction could effectively 
"freeze" (discontinue) during the transit time of the gas in the nozzle. The 
detailed estimation of the extent of freezing requires kinetic theory, and will 
not be considered in this book. It is of interest, however, to investigate the 
two limits to flow within nozzles, "equilibrium" and "frozen" flows. 

Equilibrium Flow 
In that circumstance where all chemical reactions occur in times very 

short compared to the time of fluid passage through the nozzle, the fluid will 
be at all times (almost) in a state of chemical equilibrium. The reactions will 
occur continuously throughout the nozzle, leading to a continuous passage 
of energy from the chemical binding and excitation modes to the transla- 
tional modes. Because the fluid is at all times in equilibrium, the equivalent 
temperatures of all such modes of energy storage are equal and as a result 
the total entropy of the fluid remains constant. 

The total entropy may be obtained as the weighted sum of each con- 
stituent; thus 

S = ~ n j ~  (3.52) 
j=l  

From the Gibbs equation 

Sj r r  dT  R.ln p~ + 
= Jro Cp, --f - -  by (3.53) 

where R ,  is the universal gas constant, 0 refers to reference conditions 
( P0 = 1 atm, T o = 298 K), and bj = Sj at P0, To. 

The symbol S ° given in Tables 3.1-3.3 is related to these terms by 

Sj 0 = JTo PJ--~-[rc dT+ bj (3.54) 

So 

S = Zn jS  7 - R , Z n f n ~ o  (3.55) 
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Noting 

t~  pj  = t ~  p--- + t ~  pj = t ~  p-- + ~'~ x j  
Po P0 P Po 

Eq. (3.55) becomes 

S = Z n j S j  ° - R , n r g n  p - R , Z n j { n  x j  
Po 

(3.56) 

Note also that the further release of chemical energy will appear as an 
effective addition in enthalpy per mass. Thus, for the simplified H2-O 2 
reaction considered earlier, 

Additional enthalpy/mass 
A ( - A H )  m e - m c (  

mass - 2q--3"2--~ ~'--AH?H20)298 

(3.57) 

The nozzle exit velocity may then be calculated using the following 
procedure. The chamber conditions would have been previously determined. 

Calculation Procedure-- Equilibrium Flow 

(1) Assume a value for the nozzle exit temperature T e. 
(2) Calculate the composition for the resulting Kp and prescribed Pe" 

Note." In most cases of interest the exit temperature will be sufficiently low 
that the reaction may be assumed to have gone to completion. 

(3) Calculate Se and S c using Eq. (3.56). Iterate with T e until equality is 
obtained. 

(4) Calculate h e and A ( - A H ) / m a s s .  
(5) Obtain U~ = {2[h c + A(- -AH)/mass  - h~]}~ 

Frozen Flow 

In the limiting circumstance where the chemical reaction rates are so slow 
that the fluid passes through the nozzle with no further reaction (following 
combustion), the flow is said to be frozen. In this case, the mole fractions of 
all the constituents remain those in the combustion chamber. Further, 
because no chemical reactions occur, the entropy remains constant for this 
case of frozen flow, also. Note, however, that when the fluid eventually does 
reach equilibrium (outside the rocket) entropy increases will occur. 

It is to be noted that the condition for the equality of entropy s e = s c leads 
to a somewhat simpler form in this case of frozen flow. Thus, with Eq. 
(3.56), 

xxjs;e = s xjs;~ + R / .  pe (3.58) 
Pc 
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Calculation Procedure--Frozen Flow 

(1) Assume a value for the nozzle exit temperature T e. 
(2) Evaluate Zx~S 7 and compare to the known value of Z x y ~  

+ R,~'~ Pe/Pe" Continue until equality is obtained. 
(3) Calculate h e. 
(4) Obtain U e = [2(h e - he)]~. 
Example calculations (Problems 3.14-3.16) show that specific impulse 

differences of several percent can occur between some examples of frozen 
and equilibrium flow; so when particularly accurate estimates are required, 
it can become necessary to include estimates of the extent to which a given 
flow freezes. Note that the concept of "sudden freezing" is sometimes 
employed, wherein the flow is considered to be in equilibrium to an 
intermediate location (say the throat), at which point it "suddenly freezes" 
and retains the same composition from that point on. 

3.8 Solid-Propellant Rockets 
Solid-propellant rockets can be broadly classified as one of two types, end 

burning or erosive burning. In the end-burning type (Fig. 3.7), the propel- 
lant burns only at the end, the sidewall propellant being inhibited to prevent 
the flame front from traveling into the propellant along the sidewall. 

In the erosive-burning type (Fig. 3.8), the grain is inhibited on the ends 
and the propellant burns in a direction perpendicular to the gas flow. It is 
apparent that the erosive-burning type of rocket will usually be a higher 
thrust, shorter duration rocket because the large burning area leads to large 
mass flow rates. 

¢ 
f Pc ' T c ~  

Fig. 3.7 End-burning solid-propellant rocket. 

1 

/ / / / / / / / / l  

PI~ & & P2 

Fig. 3.8 Erosively burning solid-propellant rocket. 
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The combustion processes in the vicinity of the solid surface are extraor- 
dinarily complex, but it is fortunate that some purely empirical forms can 
be used to relate the local surface burning rate to the local fluid properties. 
Two often used forms are 

r = ap" (end-burning rocket) (3.59) 

r = a p "  + k ( p u )  (3.60) 

where r is the surface burning rate, p, O, and u the fluid pressure, density, 
and velocity, respectively, and a, n, and k are empirically determined 
constants. 

Calculation of the Chamber Pressure--End-Burning Grain 
It is apparent that the chamber pressure will be determined by the 

requirement that the mass of gas produced by the surface must be suffi- 
ciently compressed to pass through the nozzle throat. Assume that the gas is 
calorically perfect, that the chamber Mach number is very low, and that the 
propellant density is very large compared to the gas density. Then, equating 
the rate of mass produced at the surface to that passing through the throat 
and employing Eqs. (2.104) and (3.59), 

FAbP p = apnAbPp = peAt/C* 

hence 

pc = [aC*pp( Ab/At)] 1/(1-") (3.61) 

It is to be noted that the chamber pressure is a sensitive function of the 
exponent n. It is also clear that values of n in excess of (or equal to) unity 
will lead to unstable behavior. Thus, consider a rocket burning at "design" 
Pc, when a small increase in Pc occurs momentarily. The result would be that 
the surface burning rate would increase more than the flow rate through the 
throat. As a result, the propellant would accumulate in the chamber, leading 
to a further pressure rise with further increase in burning rate, etc. Practical 
propellants have values of n in the neighborhood of 0.75. 

Calculation of the Chamber Pressure--Erosive-Burning Grain 
It is evident that the determination of the chamber pressure will be 

substantially more complicated for an erosive-burning grain than for an 
end-burning grain, because determination of the mass flow rate from the 
surface will involve an integral over the entire surface in terms of the local 
fluid properties. In practice, the conditions within the rocket (at a given 
time) are determined by assuming a value for Pl (see Fig. 3.8 for terminol- 
ogy) and then integrating the appropriate equations of motion along the 
grain to determine P2. P2 is then related to Pc (either by the assumption of 
isentropic flow or by use of a loss coefficient) and compared to the required 
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p, to pass the flow through the throat. This process is repeated until 
convergence. It is then necessary to assume a small time step, with the 
burning rate, etc., as just calculated, to determine the amount of propellant 
consumed. The local conditions will then have changed because of the 
change in cross-sectional area, so the whole process is repeated for a new 
time step. 

This procedure in fact requires relatively little time for calculation on a 
high-speed computer. However, an even simpler approximate form can be 
obtained if it is assumed that the ratio of throat area to flow cross-sectional 
area A,/A is much less than 1. 

Expression for the Downstream Pressure P2 
The mass flow at station 2 is equal to that through the throat, so 

P~At pcAt 
U202A2 C* R ~  c I" 

then 

(3.62) 

= Pc F2 

For simplicity the process from station 2 to station c is approximated as 
isentropic, so that 

[ P c ' 2 / r ( A , )  2 2 , [ ] ( 3 . 6 3 ) P 2  ](~ 1)/~ 
u2=t772 ) RT~ Z F 2 = y - I R T ~  1 - ( p c /  

Now invoking the assumption that A,/A << 1, we may assume that 
P2/P~ = 1 - e where e << 1, which after use of the binomial expansion in Eq. 
(3.63) gives 

P2/P~ = 1 - ½[(a,/A2)r] 2 ( +  higher order terms) (3.64) 

Expression for the Local Pressure p 

An approximation for the mass flow rate at location X may be written 

o,,A =  Op&(X/L ) 

where the average burning rate ? is given by 

(3.65) 

1 L 
r = L f o  r d x  (3.66) 

The momentum equation may be written 

P u2 = Px - P (3.67) 
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from which, with Eq. (3.65) 

P l - P  L A u = - -  (3.68) 
~ppAb X 

The enthalpy equation coupled with Eq. (3.67) gives 

u2 ( 11 2 C p T c _  7 P q_ = 7 P + u (3.69) 
7 - 1  p 2-  7 - 1  P l - P  

so that with Eqs. (3.68) and (3.69) 

( V p 1 1  p l - P L A ) 2  _ = c 7 c  
3 ' -1  P l - P  2 rppAb X 

(3.70) 

The assumption A J A  << 1 again allows an approximation P/P1 = 1 - 6, 
6 << 1. Introducing this form into Eq. (3.70), noting that PJPx = 1 + higher 
order terms, and noting 

_ PeAt 
& = #OpA b R ~  c V (3.711 

it follows that 

Pl 7 ( + higher order terms) (3.72) 

It is consistent to assume A2/A ~ 1, so that 

P, Pl P2 Pc 1 _ - - [ ~  2 1 - ~  F (3.73) 

Continuing to expand the groups and retaining only terms to order 
(A, /A) 2, there is finally obtained 

1 ( At \2[ 1 (3.74) 

The Bumin9 Rate 
Equations (3.60), (3.65), and (3.74) give 

ap~{1 I A t ~2[ 1 X r = + nt-~--F j [ ~ - ( X ) 2 l } + k ? p p A b  L (3.75) 
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This expression can now be integrated as in Eq. 
expression for ~, 

? = a p ,  ~. 1 + ~  r 1 - - ~ p p - - £ ]  

Then with the continuity equation 

p p M  b = P c A t / C  * 

it follows that 

Pc = 

(3.66) to give an 

(3.76) 

. /  

a C . p p A  b 1 + g ~ F ~ - -  (3.77) 
k Ah At  1 - ~ p p - - ~ -  

The thrust behavior of the rocket can now be calculated because, with Pc, 
C*, and the exit pressure all known, the mass flow rate and exit velocity can 
be determined. In order to obtain the thrust behavior with time, it is 
necessary to calculate the variation of A h and A. This requires numerical 
integration. 

A simple and quite instructive example (Problem 3.17) is that of a grain 
so shaped that the burning area A b remains constant in time. Such behavior 
can be approximated by employing a star grain (Fig. 3.9). In such a case the 
burning area would be equal to the cylindrical chamber area existing just at 
burnout, i.e., 

A b = 7rDL (3.78) 

Also, the change in cross-sectional area in a small time interval 6 t would 
be given by 

6A = A j+ 1 - A j  = ~rD? 6t (3.79) 

Numerical integration for this simple case is very straightforward. It is to 
be noted that, for this case of constant Ab, the thrust history will be 
"regressive," that is, it will decrease in time. This is apparent from Eqs. 

Fig. 3.9 Star grain. 
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(3.76) and (3.77), which indicate that both ~ and Pc decrease as A increases. 
This result is simply a manifestation of the fact that the erosive contribution 
to the burning decreases as the cross-sectional area increases. 
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Problems 

3.1 An "optimal" two-stage rocket is to operate in a drag- and 
gravity-free environment. It is to provide a velocity increment Av of 5000 
ms -1 to a payload of 1000 kg. We are given (these figures are appropriate 
for a kerosene-oxygen first stage and hydrogen-oxygen second stage): 

C 1 = 3000 ms -1, C 2 = 4000 ms -1, 81 = 0.1, 82 = 0.15 

(a) Find m 0, M R  1, M R  2, )h, and )k 2. 
(b) Find the same parameters if C1 = C2 = 3000 ms 1, and 61 = 62 

=0.1.  

3.2 A rocket has identical stages in the sense that C i = C, 6i = 6, and 
)t i = )~ = )~I/N. Gravitational and drag losses can be neglected. If )t o = 0.05 
and 8~ = 0.1, what is the optimum number of stages for the rocket? 

3.3 Consider a rocket employing "continuous staging" in the sense 
that it discards all the dead weight (structural and engine weight) continu- 
ously at zero velocity relative to the rocket until only the payload is 
traveling at the final velocity. 

(a) Write the equation of motion for the rocket neglecting the drag 
and gravitational losses. 

(b) Integrate this equation to find Av, assuming the rate of dead 
weight rejection rnd, the propellant rejection rate rap, and the exhaust 
velocity C are constant in terms of 6 = m d / m  o and M R  = 1/)~ 0. 

(c) What is the penalty paid in terms of percentage of ideal Av (Av 
achieved if no dead weight was present), if 6 = 0.1 and )t o = 0.05? 

(d) How much better (in terms of Av achieved) is this continuously 
s t agedrocke t  than a three-stage rocket (optimized) with 6 = 0.1 and 
)to = 0.05? 
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3.4 Consider a four-stage rocket for which the first two stages and the 
last two stages are similar. That is, 

CI=C2=C, C3=C4=/3C and 6 1 = 3 2 = 3 ,  33 = 34 = ]£6 

There are no drag or gravitational losses. 
(a) Show that if the rocket is designed for a maximum Av for a given 

~0: 
2 6/3 

;~1 = ~'2 = 
[ ( / 3 -  1) 2 + 4ix/3 6z/h~o ] ~-  (/3 - 1) 

(b) Calculate At)to t given that C =  3000 ms -1, X 0 = 0.0016, 8 = 0.1, 
/~ = 1.3, and/3 = 1.2. 

3.5 Show that the derivative of the thrust coefficient is 

act f 3" - 1 

OPJPc W 23' 
- - F [ I _ ( P e ] ( r - 1 ) / v  ]- Pe] (Y+l)/Y(Pe Pa 

3' \Pc] J ~ ( Pc ] \ P, - P-~ ) 

3.6 Derive Eq. (3.32). 

3.7 Derive Eq. (3.33). 

3.8 Consider a rocket with a translatable skirt, such that it has two 
design altitudes, 10,000 and 20,000 m. The ambient pressure vs altitude may 
be approximated by the formula 

Pa = PS.L. e- h /7000 

For this rocket the Summerfield criterion is 

Ps = p J2 .718  

The ratio of specific heats is 3' = 1.22 and the chamber pressure Pc is 50 
atm. The skirt is translated at just the altitude where CF for the skirt in the 
10,000 m design condition equals C F for the skirt in the 20,000 m design 
condition. 

Calculate and carefully plot C F over the range 0 < h < 40,000 m. Care- 
fully locate the altitudes hsc_, hires, hD1, and hD2. Include on the graph the 
envelope of a perfectly expaVnded rocket. 

3.9 Molecular hydrogen (H2) passes through heat-transfer passages 
and emerges at 2500 K. At this temperature significant dissociation can 
occur. What mass fraction of the hydrogen exists as atomic hydrogen (H) at 
each of the chamber pressures Pc = 100, 10 -1, and 10 -4 atm? 
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At 2500 K the equilibrium constant Kp is approximately 

1 

Kp = P H / (  PH2)~= lO - 2 

where p is in atmospheres. 

3.10 Verify by direct calculation that Eq. (3.39) and the values 
tabulated in Tables 3.1-3.3 are in agreement for the case T = 4000 K. 

3.11 Consider the reaction 

H 2 + I O  2 --~ m H 2 0  + n H  2 + qO 2 

(a) Obtain and plot n and q as a function of ~' for the case where 
T = 3500 K. Plot in the range 0.2 < l <  0.5 for the three pressures pc = 1, 10, 
and 100 atm. 

(b) Repeat  part  (a) for the case T = 4000 K. 

3.12 t ~ moles of 02 are mixed with 1 mole of H 2. The entering 
temperature of the 02 is 100 K and of the H 2 is 200 K. Obtain and plot the 
enthalpy per  mass of the products for the case where Pc = 10 atm. Calculate 
for the values l =  0.2, 0.3, 0.4, and 0.5. 

3.13 Repeat  Problem 3.12 for the case Pc = 100 atm. 

3.14 The curves of enthalpy per mass vs Cobtained in Problems 3.12 
and 3.13 should each contain a maximum. Select the nearest value of t to 
the maximum that you calculated and for that case calculate the velocity at 
the exit of the rocket assuming frozen, isentropic flow to Pe = 0.1 atm for 
both chamber pressures. 

3.15 For the conditions of Problem 3.14, calculate the exit velocity 
assuming isentropic equilibrium flow. 

3.16 (a) For  the situation where a nozzle has a large pressure ratio, 
what value of twi l l  lead to the maximum exit velocity if equilibrium flow 
occurs in the nozzle? 

(b) Calculate the related exit velocities for the cases Pc = 10 and 100 
a tm with Pe = 0.1 atm. 

3.17 Consider a solid-propellant rocket designed to produce a velocity 
increment Ao in a gravity- and drag-free environment. The empty mass of 
the rocket is to be m I. The rocket may be considered to have a "s ta r"  grain, 
designed so that the burning area A b remains constant with time and hence 
equal to the area of the cylinder of fuel existing just at burnout. The grain 
has a constant-area A gas passage and the length-to-diameter ratio L / D  is 
prescribed, as are the initial value of A / A  t = A y A t ,  and Pc =Pc,. Other 
parameters to be provided are CF (assumed constant), C*, "/, Op, n, k, and a. 
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Obtain analytical expressions for the following quantities in terms of the 
above prescribed parameters, or possibly in terms of parameters obtained in 
the following, preceding the parameter in question. 

(a) The fuel volume V, 
• . f "  

(b) The raUo of burning area to throat area A J A t .  
(c) The outside diameter D of the fuel charge. 
(d) The burning area A b. 
(e) The throat a r e a  A t and throat diameter/9,. 
(f) Show that expressions for the chamber pressure and average 

burning rate may be obtained in the form 

= [/31 1 + ( / 3 2 / A  2) - 
pc -1 ]'/" "> 

1 + (/32/A 2) 
~" = ap~ 

1 - ( / 3 3 / A )  

and obtain/31, /32 '  and/33 analytically. 
(g) Summarize all of the above equations in a form that can be easily 

programmed for calculation, then noting the approximate form 

A = A i -t- TrD~6t 

and the rough estimate for overall firing time r given-by 

r = V/ /? iA  b 

Obtain and plot a time history of A, Pc, ~, and thrust F from t = 0 to 
burnout, for the following input parameters: 

Av = 4500 ms -x Pc, = 107N" m-2 pp = 1750 kg. m -3 
m f  = 9000 kg C F = 1.90 a = 0.22 × 10 -6 

A i / a  t = 2 C* = 1700 ms -1 n = 0.73 
L / D =  1 3' = 1.25 k = 0.5 × 10 -5 

(h) Find the rocket acceleration at beginning and end of firing. 

3.18 Consider an end-burning solid-propellant rocket with the same 
specifications as those listed in Problem 3.17. Find 

(a) The throat diameter. 
(b) The time of burning. 
(c) The (constant) thrust. 
(d) The initial and final accelerations. 



4. NONCHEMICAL ROCKETS 

4.1 Introduction 

When considering space missions with very large velocity changes, it 
becomes apparent that huge mass ratios are required. Chemical rockets, 
which have the energy source coincident with the propellant, are fundamen- 
tally limited in their achievable specific impulse by the strength of the 
chemical bonds of the propellants (to about Isp = 450 s). If higher specific 
impulses are to be obtained, an energy source other than, or in addition to, 
the propellant itself must be utilized. 

Several methods of external energy addition suggest themselves. Examples 
are thermal addition of energy with the thermal energy provided by a 
nuclear reactor or electrical energy input to the propellant with the electrical 
energy provided by solar collectors, a nuclear-electric generator, a solar 
heater-electric generator combination, or any of several other competing 
concepts. 

Before rational determination of the most promising concepts can be 
made, it is necessary to estimate the performance of the suggested systems. 
Simple performance models and example performance estimates are given 
in the following sections. 

4.2 The Nuclear-Heated Rocket 

A schematic diagram of a nuclear rocket is shown in Fig. 4.1. As 
illustrated, such a rocket operates by having the propellant pass through 
heat-transfer passages within the high-temperature core of the rocket where 
its enthalpy is raised by heat interaction with the walls of the passages. The 
energy necessary to maintain the core temperature is supplied by the nuclear 
reactions within the core material. 

It can be noted here that an important engineering limitation is present, 
in that the temperatures within the (solid) core must be restricted to values 
that do not cause structural weakening of the rocket. This is in contrast to a 
conventional rocket where the highest temperatures within the system occur 
within the gas. The advantage of the nuclear rocket is not, then, that high 
temperatures are available, but rather that the choice of propellant is limited 
only by the requirement of chemical compatibility with the core surfaces. 

97 
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PROPELLANTI~ ~ =  T¢,~' 
Po 

- C O R E  I ~  

Fig. 4.1 Nuclear-heated rocket. 

Choice of Propellant 
The first priority in the selection of a propellant would obviously be 

identified with the propellant giving the highest exhaust velocity. Assuming 
for simplicity that the nozzle exit pressure is extremely low, Eq. (3.24) gives 
for the effective exhaust velocity 

1 

t (4.1) 

where T~ is the chamber stagnation temperature, R ,  the universal gas 
constant, and ~t' the molecular weight. 

It is apparent that the largest exhaust velocity, for a given limited 
chamber stagnation temperature, will be found for hydrogen as propellant. 
Note that allowable temperatures are restricted to a range where virtually all 
of the hydrogen will be in molecular form. In this case, with 3' = 1.4, o# = 2, 
and R ,  = 8320 J (kg. mole)- 1. K -  1, the maximum specific impulse is found 
to be 

isp_ C _ 1 I2 (1 .4 )8320  1 '2 
a 0 9.8 0.4 T TC 

so Isp = 17.4 ~cc" 
The upper limit for the core temperature is approximately 2500 K, which 

gives for the related specific impulse 

( Isp )max = 870s 

This represents a substantial increase over the maximum specific impulse 
found in chemical rockets and justifies the considerable research and 
development directed toward the nuclear-heated rocket. It is clear that the 
advantages of a nuclear-heated rocket, as compared to a chemical rocket, 
will become more pronounced as more energetically demanding missions 
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are contemplated. This is because as the mission demand increases, and 
hence propellant mass increases, the savings provided by the large specific 
impulse increase. In the case of low-energy missions, the propellant savings 
do not overcome the large mass penalty incurred by the reactor and all its 
related equipment. 

With the success of the chemical rocket for manned missions to the moon, 
it appeared that the major hope for the nuclear rocket would be identified 
with manned planetary missions. 

It happens, however, that for manned planetary missions, the energy 
requirements are so enormous that even the nuclear-heated rocket has too 
low a specific impulse, and the class of electrical rockets emerges as the most 
viable candidates for such missions. 

With regard to the future, it is possible that nuclear rockets could be used 
on "space tugboats" between Earth orbit and the lunar surface or between 
vehicles in Earth orbit and geosynchronous orbit. 

Approximate Performance Analysis 
A relatively simple method for analyzing the performance of a nuclear- 

heated rocket was suggested in Ref. 1. An optimal design will include an 
appropriate choice of the length-to-diameter ratio of the heat-transfer tubes 
within the reactor core. It is evident that if tubes with very large length-to- 
diameter ratios are employed, then the propellant temperature will closely 
approach the allowable surface limit temperature T s. The high propellant 
temperature would favor high specific impulse; but, if carried to extreme, 
the related stagnation pressure drop found in the long slender tubes would 
become excessive and lead to a reduced specific impulse. 

In the following the temperature rise as a function of length-to-diameter 
ratio of the heat-transfer tubes is estimated. An approximation to the 
pressure loss is then obtained and the combined effect of temperature and 
pressure on the specific impulse estimated. 

Heat Transfer and Power Balance 
Consider a tube of length L and diameter D, as shown in Fig. 4.2. The 

thermal energy transferred into the flow in the elemental length element dx 
leads to a differential increase in stagnation temperature given by Eq. (2.84). 
This may be written in the form 

d T  t = 4 N s t ( T  w - T t ) ( d x / D  ) (4.2) 

It will be convenient when searching for the optimal tube length to 
diameter to relate the stagnation temperature increase to the stagnation 
pressure loss. Hence, Reynolds' analogy [Eq. (2.86)] is assumed to be valid. 
Then, denoting the skin-friction coefficient by f ,  the expression for the 
increment in stagnation temperature becomes 

d T  t = 2 f ( T  w - T t ) ( d x / D  ) (4.3) 
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I- -I _1_ 
0 ' ) / ; 

Fig. 4.2 Heat-transfer tube. 

In order to obtain T t as a function of x, it is necessary to know the 
variation of  f ( T  w - Tt) with x. This variation is determined by the distribu- 
tion of the power density within the reactor, because no matter what the 
local power density, the wall temperature (and hence Tt) must "float" to the 
value that equates the thermal transfer rate into the flow to the local 
generation of thermal energy by the nuclear reactions. 

The power density distribution within a reactor is determined by the 
distribution of nuclear fuel as well as by the amount and location of 
shielding material. The power density distribution is somewhat amenable to 
design choice, so two example distributions are considered here. In each 
case, for simplicity, it is assumed that the skin-friction coefficient is con- 
stant. 

Constant-power density. A constant-power density insures that the 
rate of increase of stagnation temperature and the temperature increment 
( T  w - Tt) are constant. The limiting wall temperature T s will occur at the 
end of the tube, where 

( rw-  r,) = (T , -  T,2) 

Equation (4.3) can be immediately integrated to give 

Tt2 T t , / T  , + 2 f L / D  

-ffs = 1 + 2 f L / D  (4.4) 

S i n e - p o w e r  d e n s i t y .  This power distribution would (approximately) 
exist if the ends of the core were unshielded and the nuclear fuel distribu- 
tion uniform. The power density is assumed to be proportional to sin ~rx /L ,  
so that the temperature increment is given by 

A T =  A T m s i n ( ~ r x / L  ) (4.5) 

where A T  = - T w - T t and AT,,, = maximum increment (located at x = L / 2 ) .  
With Eq. (4.5), Eq. (4.3) is easily integrated to give 

T t = Ttl + ( 2 f L / ~ r D )  A T  m [1 - c o s ( ~ r x / L ) ]  (4.6) 

thus 

AT,,  = ( r r D / 4 f L  )( Tt2 - Tq ) (4.7) 
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The limiting temperature T~ is located where the wall temperature T w has 
a maximum. Thus, writing 

( ~x) ~ x  
= - + ATmsm T (4.8) T w T t + A T = T q +  AT m 1 COS-~- 

taking the derivative of this expression, and equating the result to zero, it 
follows that the location where T w = T~ is given by 

1 1 tan( 2fL I (4.9) 
( L ) r , = 2 + g  arc ~rD] 

At that location 

rrx - 1 rrx rrD/2 fL 
c o s t  = V/1 +(rrD/2fL) 2 and sin-~- = }/1 + ( rrD/2 fL ) 2 

(4.10) 

Combination of Eqs. (4.8) and (4.10) then gives 

T,=Tq+2~f-~--~ATm[I+~/I+(~fL) 2 ] (4.11) 

And finally, Eqs. (4.6-4.8) and (4.11) give 

Tt 1 

Ts 1 + ~/1 +(rrD/2fL) 2 

vrD /2 - (1 - ~-~ts~ )cos-~ ] (4.12, T " V / I + ( 2 f L  ] x[l+~ 
[ l(j { o,2 )] T, 2 1 2 + 1 + - 1 (4.13) 

--T/= 1 + }/1 +(rrD/2fL) 2 ~ 2fL ] 

T~_ 1 

T, 1 + }/1 +(rrD/2fL) 2 

[ , ,  { o)2 ( 
X 1 + - ~ ] V l  + 2-~ + 1---~] - ~ s l n - - ~ - - c o s - £  

(4.14) 



102 GAS TURBINE AND ROCKET PROPULSION 

T 

Ts 

1.0 

0 . 8  

0 . 6  

0.4 

0.2 

0 

- -  

- -  T 

I I I I I I I I I 
0 0.2 0 .4  0.6 0.8 1.0 

x / L  

Fig. 4.3 Wall temperature and gas temperature vs length. ,.o[ 
"It SI 

F y ,  
0.6 

0.4 

0.2 

0 
0 I 2 5 4 5 

f L  

D 

Fig. 4.4 Outlet gas temperature vs fL/D. 
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Figure 4.3 illustrates the temperature variation with axial position for the 
casefL/D = 2.5 and T t/T~ = 0.1. The behavior of outlet stagnation temper- 
ature with fL/D for the constant-power density case and for the sine-power 
density case is shown in Fig. 4.4. 

Core Pressure Drop 
The preceding analysis led to simple expressions for the outlet stagnation 

temperature T t in terms of T~, Tt, and fL/D. As is obvious, if fL/D is 
• 2 .  1 . 

increased, T t will more nearly approach the maximum wall temperature T s. 
2 , 

However, an mcrease in fL/D causes some problems itself, in that the 
stagnation pressure drop will increase, the thrust coefficient will decrease, 
and the pressure drop across the core will increase, leading to possible 
structural problems. 

To estimate the related performance penalties, first consider a very 
simplified form of the momentum equation. Thus, the shear force is as- 
sumed to be given in terms of the average of the upstream and downstream 
shear stresses, 

Shear force = ½ ( r  1 + 'r 2) rrDL 

= ( f / 4 ) (  p tu  2 + P2u2 )rrOL 

The momentum equation thus becomes 

( P l  - -P2)-4  2 -- f (lOlU? "-b lo2u2)7"(nL = (p2 u2 - lOlU?)4D2 

hence 

pl[1 + yMlZ( 1 fL (4.15) 

SO 

] 
I + - ~ M  2 

1 + Y - ~ M  2 

v/(y-t) 

(4.16) 

An expression for the stagnation temperature ratio is obtained by first 
noting 

P = R o T = R ~  T= M - , /-1 2 ~ (1+ 
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which, when substituted into Eq. (4.15) yields 

v,, M2 1 I+yM2(I+  -) (4.17) 

Note that if Tt,, T~, and f L / D  were prescribed, Eqs. (4.4) or (4.13) would 
yield T t and Eq; (4.17) would then relate M 2 and M 1. In fact, M 2 can be 
prescrib~ed implicitly by the choice of the ratio of the nozzle throat area to 
core tube area, so M 1 could then be obtained from Eq. (4.17), which is a 
quadratic equation for M~ z. The stagnation pressure ratio then follows from 
Eq. (4.16), and hence the performance variables can be estimated. 

Performance Variables 

It is assumed that no further decrease in stagnation pressure occurs after 
station 2, so the exit velocity may be written 

1 

(4.18) 

The maximum imaginable specific impulse I m would be that for which 
the propellant reaches the maximum allowable wall temperature T s and no 
pressure drop occurs ( Pt2 = P,,)" The ratio of actual Isp to this maximum Isp 
is hence 

- t PJP,~  ) ] 

- t P J P , ,  ) ] 

(4.19) 

The thrust coefficient based on flow cross-sectional area and conditions at 
station 1 may be written 

F / A p t  ~ = m u e / A P q  (4.20) 

Combining Eqs. (2.102), (4.18), and (4.20) gives 

Apq - (1 + ~ M  1 y - 1 2 ) )'/()' 1)J(M2) 

(4.21) 
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where 

J(g,) = M2 fL (4.22) 
1 + 3,MzZ(1 + ~ - )  

With Tt, and pt  2 determined as suggested in the previous section, Eqs. 
(4.19) and (4.21) give the performance variables. An even simpler ap- 
proximation was suggested by the author of Ref. 1, however, who noted that 
in the usual case where T,1/T s << 1, the inlet Mach number would also be 
very small indeed. In such cases, approximate forms of Eqs. (4.16) and 
(4.21) may be used, 

" / -  1 M2] y/(v-1) 
p,~__. (1+  2 2] (4.23) 

2 

F - - ' Y  T ~ 2 1  a-(p@~ ] ]J(v:) (4.24) Apq 

Figure 4.5 shows the behavior of I/I,, and F/Apt vs M 2 for the case 
T,,/T, = 1/40, pJpq = 1/80, fL/D = 1.5, y = 1.4, ann power density con- 
stant. An erroneous drop in the thrust coefficient is predicted, which is 
introduced by the approximations leading to Eqs. (4.23) and (4.24). In any 
case, full calculation reveals that the thrust coefficient changes very slowly 
above the point that the false maximum is predicted to exist, whereas the 
specific impulse does continue to decrease. 

A further simplification is then suggested, in that the Mach number at the 
exit M~' will be taken to be that at the maximum of the function J(v2)" This 
maximum (Problem 4.1) occurs at 

1 
M~' (4.25) 

~/1 + TfL/D 

The resulting equation set for this "optimum" choice is summarized as 
follows: 

Inputs: y, fL/D, pJpt,, Tq/T~ 

Outputs: M~, I / I  m , F/Apq 
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Equations: 

1/1 + yfL/D 

Tt 2 Tt 1 [Eq. (4.4), (4.13), or as appropriate 
for chosen fuel loading] 

p~ __ Pa/Pt~ 
Pt2 PtJP,1 

1 

AFtl _Y y~_l [ 1 _ ( ~  )('~-1)/v] '2M2(l+~--~M22) 2 

Im V Ts (p,jpq)(r-1)/v 

An example calculation for the casepa/p t = 1/80, T t / T  s = 1/40, ~, = 1.4, 
. . . .  1 , 1 . 

and power density constant is shown m F~g. 4.6. It ~s to be noted that with 
typical values of the skin-friction coefficient o f f - -  0.005, the length-to-diam- 
eter ratios corresponding to the right portion of the graph can be very large. 
Note that L/D = 600 implies a tube diameter of 3.3 mm for a core length of 
2 m. It is probable that fabrication limitations and core pressure drop 
problems will cause the selection to be more in the neighborhood of 
fL/D = 1.5 or lower. 

4.3 Electrically Powered Rockets 

When very-high-energy missions are to be considered, the specific impulse 
must be extremely high if the overall mass ratio of the rocket is not to 
become extreme. There are several concepts for providing electrical energy 
directly to the propellant, but an example configuration will be considered 



108 GAS TURBINE AND ROCKET PROPULSION 

I 

i PROPEL LANT 

RADIATOR 

Fig. 4.7 

Qr 
I 

HEAT 

ENGINE I - ,  Qr' 
I ,we 

Electric rocket schematic diagram. 

first without regard to the details of the actual energy addition process. The 
major components of such a system are indicated schematically in Fig. 4.7. 

The diagram of Fig. 4.7 indicates the primary work and heat interactions 
of a typical system. No heat exchanger is indicated between the propellant 
and heat engine, simply because in cases of very high specific impulse, the 
stagnation enthalpy of the propellant leaving the accelerator is so enormous 
that the savings of energy through the use of a heat exchanger is probably 
not worth the complexity of the required additional equipment. 

It should be apparent that there will be some optimal choice of specific 
impulse for a given mission, because the required mass of the electrical 
supply equipment will increase with the increase in specific impulse, whereas 
the required mass of propellant decreases with the increase in specific 
impulse. In the following, a simple model is provided for estimating the 
optimum choice of specific impulse as a function of mission requirements 
and system parameters. 

Selection of the Optimum Specific Impulse 
A simple definition of the "optimum specific impulse" is that which leads 

to the minimum overall system mass. As a convenient approximation, it is 
assumed that the entire mass of the engine, radiator, heat exchanger, and 
accelerator (me) is proportional to the power delivered to the accelerator. 
Thus, the specific power a' (watt/kilogram) is defined by 

Or'= We/m e (4.26) 

The kinetic energy of the exhaust will be so enormous that to a good 
approximation the thermal energy remaining in the propellant may be 
ignored, so that 

~aWe = / ~  (C2/2) (4.27) 

where ~a is the accelerator efficiency. Hence, 

C 2 
me = (4 .28)  a'rla 2 
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The remaining mass of the vehicle may be considered to consist of the 
propellant mass mp and the payload mass m L (which includes the structural 
mass, etc.). Thus, 

m o = m e + m L + m p  (4.29) 

For a constant propellant flow rate, the firing time of the vehicle z will be 
given by ~- = mp//rJl,  SO there is obtained 

m L = l - -  1 +  
m 0 m 0 

(4.30) 

Equation (3.14) gives 

m p / m  o = 1 - e -a~'/¢ (4.31) 

and combination of Eqs. (4.30) and (4.31) gives 

where a = h v / c  and fl = A v / ~ .  

The optimum specific impulse (or C) occurs when the derivative of Eq. 
(4.32) with respect to a is zero. Hence, at the optimum condition 

° 

2(e" - 1) - a 

and the equation for the optimal value of a for a prescribed payload ratio 
may thus be written 

° - e °  - - - -  e " - I  - = 0  F ( a )  = 1 ~- m0 (4.34) 

This equation is easily solved numerically using Newtonian iteration (see 
Sec. 7.2). Thus, with 

F '  = - ½ + e -'~ - ( m L / m o ) ( e  '~ - ½) (4.35) 
it follows that 

%+1 = ( a  - F / F ' ) j  (4.36) 

A suitable first guess for a, %, is 

a o = 1 - m t . / m  o (4.37) 
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Once a has been obtained, the related optimum value of/3 follows from 
Eq. (4.33), thence C and • from the definitions of Eq. (4.32), and, finally, the 
initial acceleration a, from 

& C  c m p  C(1 e -" )  (4.38) 
ai  - _ _ 

m o y m o ~" 

These equations for electric rocket optimum specific impulse may be 
summarized as follows: 

Input: m L / m o ,  A v  ms -1, 7/~a' W.  kg -1 

Output: a, /3, /opt S, 'r S, a i ms -2 

Equations: 

ot o = 1 - m L / m  o 

ot e -  a m L ( e , ~ _  1 _ 2 )  
F = l  ~ - m 0  

F '  = - - 2 + e  " -  e " -  
m 0 

a i + l = ( O t - F / F ' ) j  

3 

/3= 
(2(e '~ - 1) - a 

C = z~v/a 

lopt = C/9.807 

.r = ( 1 / 2 a ' ~ l , , ) (  A v / f l )  2 

a, = (C/~)(1 - e -~) 

Example results for the case of Av = 20,000 ms 1 and a'~a = 100 W" kg 1 
are shown in Fig. 4.8 where the variation of/opt, ai, ~', and m _ / m  o is shown P 

plotted vs m L / m  o. As is evident, the initial accelerations and hence firing 
times get very small and very large, respectively, for this very-high-energy 
mission when large mass ratios are desired. The related specific impulses 
also become large, clearly indicating why it is that electrical rockets must be 
employed. 
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When more exacting mission analysis estimates are made, it is found that 
the optimum range of specific impulse for planetary missions is approxi- 
mately 3000 < I < 5000. It is a most unfortunate result that it is just this 
range of specific impulse that is the most difficult to achieve! 

Classification of Electric Thrustors 

Electric thrustors can be broadly classified in one of three categories, 
electrothermal, electromagnetic, or electrostatic. Each class has limitations 
that confine its use to a particular specific impulse range. In the following, 
the method of operation and operational limitations of each class will be 
briefly outlined. 

Electrothermal thrustors. In these devices the electrical energy pro- 
vided to the thrustor is first converted to thermal energy of the propellant 
and hence to kinetic energy in the exhaust by expansion of the propellant 
through a conventional nozzle. A simple form of the electrothermal thrustor 
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is the resisto jet, which operates by using the electrical energy to resistively 
heat filaments that in turn heat the propellant. Resisto jets are quite limited 
in attainable specific impulse (Isp < 800 s) because of the thermal limita- 
tions of the filaments. 

The most common form of the electrothermal thrustor is the arc jet, 
which operates by passing an electric current directly through the propel- 
lant itself, thereby depositing the electrical energy directly within the pro- 
pellant. This "ohmic heating" appears as random (thermal) energy in the 
propellant. The arc jet, by depositing energy directly in the propellant, 
avoids the solid-surface temperature limitation of the resisto jet and 
nuclear-heated rocket. Engineering limitations do arise, however, in that 
dissociation (H 2) or ionization (H 2 or H e) losses become substantial at high 
temperatures. Ionization losses are particularly aggravating because the 
electrical current tends to concentrate in filaments (much as do lightening 
bolts) where the ionization level becomes extremely high, far exceeding the 
level identified with the equilibrium temperature of the gas. 

Successful designs have employed settling chambers to allow the electrons 
to recombine with the ions. The use of a settling chamber introduces 
problems of its own, in that substantial heat-transfer losses occur in the 
chamber. Other techniques to enhance arc jet performance include swirling 
the flows so as to increase the length of the current path from the anode to 
the cathode. Magnetic fields have also been applied to spin the electrical 
filaments, thereby not only increasing the filament length, but also reducing 
the probability of the arc "spotting" and damaging the electrode surfaces. 

It appears, on the balance of performance to date, that arc jets show 
promise for specific impulses up to about 1500 s. 

Electromagnetic thrustors. Efforts to circumvent the ionization limit 
of the arc jet led to investigation of the electromagnetic thrustor. In this 
concept, it was hoped to utilize the Lorentz force (or j x B force) resuiting 
from interaction of an electrical current with a magnetic field. By so doing, 
it was hoped to add a substantial portion of the electrical energy directly in 
the form of directed kinetic energy of the propellant. In bypassing the 
intermediate condition of very high static temperature of the propellant, the 
ionization losses could be substantially reduced. 

Substantial investigations were conducted in the electromagnetic thrustor 
field, but were only moderately successful, primarily because two further 
engineering limitations on this class of device appeared. It was found that 
when the stagnation enthalpy of the propellant was increased (over that 
found in arc jets), the thermal transfer to the containing walls became so 
great that structural integrity could not be maintained. 

Attempts to reduce the wall thermal transport by reducing the operating 
pressure of the thrustor introduced yet another engineering limitation. 
When the thrustors were run at the very low pressures necessary to prevent 
wall structural failure, the fluid density became so low that the ions (which 
are acted upon directly by the Lorentz force) tended to slip through the 
neutral particles. When the resulting "ion slip" becomes extreme, the jet 
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exhaust tends to consist of rapidly moving electrons and ions and relatively 
slowly moving neutral particles. As a result, most of the electrical energy 
provided goes into accelerating the ions, but the neutral gas is accelerated 
much less, with a resulting inefficient and low specific impulse exhaust jet. 

It appears at the present time that the electromagnetic thrustors do not 
hold the promise originally hoped. 

Electrostatic thrustors. The performance limitations brought about by 
the requirements of viscous containment led to the investigation of methods 
of propellant stream acceleration that could use purely electrical (and 
possibly magnetic) methods of containing the propellant. It is clear that any 
such method must utilize a virtually completely ionized stream, because any 
neutral particles would be unaffected by the imposed electrical fields. Once 
it has been decided to utilize a fully ionized stream, there is no benefit to be 
found in using low-molecular-weight propellants. Rather, as will be evident 
in the following analysis, propellants with very high molecular weights are 
found to be most suitable. It follows then that the energy levels of the 
exhausting propellants are extremely high (in the thousands of electron 
volts), so that the energy lost to the ionization process, or to the remaining 
thermal energy, is virtually negligible. 

Figure 4.9 shows a schematic diagram of an electrostatic propulsion 
concept. As indicated, a source of ions is provided that is attracted to the 
highly negatively charged cathode. By properly shaping the anode and 
cathode, the beam can be held very nearly parallel. After passage through 
the cathode opening, the beam is immediately neutralized by electrons 
supplied by electron emitters. It is to be noted that the actual energy 
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Fig. 4.9 Electrostatic accelerator. 
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provided goes into raising the electrons from the anode to cathode potential. 
Note also that if the electron beam was not provided, the entire spaceship 
would become highly negatively charged and would hence attract the 
departing ions back to the ship! 

A highly simplified but revealing analysis can be constructed by assuming 
that conditions between the anode and cathode are one-dimensional and 
that only singly charged ions exist in the region. The geometry and related 
nomenclature are shown in Fig. 4.10. The voltage at location x is 9, the 
potential energy of a particle of charge q is qq~, and the kinetic energy is 

m u  . 

The conservation of total energy may be written 

1 2 ½mu 2 + q,p = const = ~ m u  a + qep A (4.39) 

hence 

u 2 = 2 ( q / m ) ( q ~  A - ep) + u~ (4.40) 

The electric current per area j may be written 

j = u n i q  (4.41) 

where n, is the number of ions/volume. 
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Geometry and nomenclature, one-dimensional electrostatic accelerator. 
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An expression for the variation of voltage with position can be obtained 
by invoking the second Maxwell equation and by noting that the current 
density is constant with x. Thus with 

d2~ niq 

dx 2 eo (4.42) 

it follows with Eqs. (4.40) and (4.41) that 

d2(p j 1 

dx  2 eo ~/2( q / m  )( epA - CO) + u~ 
(4.43) 

A first integral of this equation is obtained by noting 

d2~5 dq~ 1 td°t ,d   (4.44) 

and hence from Eq. (4.43) 

i 
dx  ] ~-dxx J A eoq 

(4.45) 

A second integral would now give the distribution of ~ with x, and hence 
with Eq. (4.40) of u with x. It is of more interest, however, to use Eq. (4.45) 
to obtain an expression for the maximum current attainable for a given 
electrode spacing and cathode voltage. For simplicity, consider the case 
where the velocity at the anode is very small and note that the current will 
be a maximum (equal to Jscl) when (dq~/dx)A = 0. In this case 

d0 
dx - - (dpA - ~p)' m J~scl (4.46) 

Integrating and rearranging there is obtained 

4e° 2 ~  (CA 2~,.)~ Zd= -U ~- (4.47) 

This relationship is known as the Child-Langmuir law. The Child- 
Langmuir law indicates that even if ions are made available at a high rate at 
the anode surface, the "space charge" existing because of the departing ions 
will limit the rate at which ions can be attracted from the surface. This 
limiting current has an important influence on the performance of electro- 
static thrustors through its related limitation on the thrust per area of the 
device. 
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Idealized Performance 
The preceding equations may be arranged in order to give the perfor- 

mance of an ideal electrostatic thrustor as follows: 

_ _ 1 ( c o , ,  - eOc V-m a 0 a 0 

F thrust _ m 2 ~  
A area q I (q~A - q~c) ~ 

3 (O Sc) =--q- 2 mq-- 
F 2 4 

( A ) s c l = ~ - ~ ( ~ ) 2 = ( 9 e o a o ) ( ~ d ) 2 I : p  

As an example calculation consider an electrostatic accelerator utilizing 
cesium, with the following characteristics: m/q = 1.38 (10 6) kg/C,  d = 0.01 
m, (q'A - ~,.) = 10,000 V, and e 0 = 8.85 (10 -12) F / m .  Then 

1 1/7~--6-~o (103)(102) = 12,200 s 
I sP -  9.807 v 1 . 3 o  

J~cl = 47.2 A / m  2 

( F/A )sd = 7.9 N / m  2 

These simple calculations indicate many of the engineering limitations of 
electrostatic thrusters. Thus, even for the very high specific impulse consid- 
ered, the thrust per area is extremely low. When it is noted that the thrust 
per area goes as llp, it can be realized that operating at lower I,p levels will 
cause even more unacceptable thrust levels to occur. 

It would seem that this problem could be alleviated by decreasing the 
electrode spacing, but the assumed value of d = 1 cm would seem to be as 
small as reasonable to support such a huge voltage difference. Several efforts 
have been directed to increasing the mass-to-charge ratio m/q. (Note that 
cesium has an extremely high mass-to-charge ratio for an ionizable atom.) 

One method suggested for increasing the mass-to-charge ratio is to attach 
charged particles to other tiny particles in the form of colloids. Although 
"colloid rockets" showed great promise, it was found to be very difficult to 
generate a uniform charge-to-mass ratio propellant. The resulting nonuni- 
form propellant stream led to unacceptable beam efficiencies, as well as to 
unacceptable problems in beam focusing. 

Another technique for increasing the thrust per area that has seen 
considerable success is to utilize an "accel-decel" system in which an 
intermediate electrode at very high voltage is utilized to increase the current 
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density. Prior to departing the rocket, however, the ions are decelerated to a 
suitable low exhaust velocity. It is to be noted that the intermediate 
electrode draws only that power identified with "leakage" currents, the 
majority of the power requirement being identified only with the power 
required to supply the electron emitter at the outlet cathode voltage. 
Accel-decel systems have proved quite successful in practice, although care 
must be taken in the design to avoid beam instabilities in the decel portion. 

The "space charge limitation" arises because the cloud of departing ions 
tends to reflect further ions. An attempt to surmount this difficulty that met 
with some success involved utilizing a (weak) magnetic field to contain 
electrons in the region between the cathode and anode. As a result the space 
charge was much reduced because, as they passed through the circling 
electrons, the ions would have their charge "cancelled" by a nearby electron. 

In conclusion, it may be said that ion rockets presently give acceptable 
performances at specific impulses as low as about 7000 s. The great 
remaining problems of electric rockets remain not so much in the thrustors 
as in the power supplies. The future will see whether a mission arises 
sufficient to warrant further development in this fascinating field. 

Reference 

~Stenning, A. H., "Rapid Approximate Method for Analyzing Nuclear Rocket 
Performance," ARS Journal, Vol. 30, Feb. 1960, pp. 169-172. 

Problems 

4.1 Prove Eq. (4.25). 

4.2 The nuclear fuel distribution in a nuclear reactor is chosen so that 
when in operation the wall temperature of the reactor is a constant equal to 
the maximum allowable temperature T~. 

(a) Find an expression for T t /T~ in terms of T~/T~ and fL/O. 
2 . 1 

(b) Show that if the rocket is to be designed to have the same T~, 
• . 1 

Tt2, and T s as a nuclear-heated rocket wnh a constant-power density, then 

G = dn(1 + F )  

where G = 2fL/D, where the L/D is that for the case of constant wall 
temperature; F = 2fL/D, where the L/D is that for the case of constant- 
power density. 

(c) Assuming that both rockets are designed for the "optimum case" 
M 2 = M~' and that the incoming Mach number is very small, find an 
expression for Pt2/Ptl in terms of fL/D. 

(d) Calculate p,Jp,, for both rockets for the case F = 1. 
(e) Show that if the performance of the constant-wall-temperature 

rocket, or of the sine-power-density rocket is plotted as in Fig. 4.6, only the 
curve of I/Im changes from that of Fig. 4.6. 
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4.3 Obtain the curve of F/Apt  ' vs M 2 for the case illustrated in 
Fig. 4.5, but utilizing the full equations (that is, do not assume M a = 0). 

4.4 Investigate the sensitivity of the "optimal" values of I / I , ,  and 
F/Apt,,  as shown in Fig. 4.6, to the assumed values of T t J T  s and P,/Pt,. 

4.5 An electrically powered rocket with ~ , c (=  80 W.  kg 1 and a 
mission requirement of Av = 17,000 ms -1 is designed to have a payload 
ratio of m t J m  o = 0.4. 

(a) Assuming the optimal exhaust velocity Cop t is selected, find (i) Cop t 
ms -1, (ii) 1" s, (iii) a, ms 2, (iv) m p / m  o and m e / m  o. 

(b) If instead of the optimal exhaust velocity, C = Copt/1.1 is selected, 
find r, a i, mp/mo,  and m J m  o. 

4.6 (a) Consider an electric rocket with optimum specific impulse 
for the case m L / m  o = 0.4 and Av = 20,000 ms 1. Plot the variation of/opt, 
'r, ai, mp/mo,  and me/m  o vs a '~ ,  for the range 50 < a '~, ,< 200. 

(b) Consider the rocket of part (a) for the case a ~, = 100. If it is 
possible to attain a"% = 200 and it is desired to keep the firing time the 
same, what will be the new payload ratio? 

4.7 Show that the time of firin~ for an optimal electric rocket with 
given m L / m  o and a'T/a goes like (Av)L Explain why this is so, rather than 
the time of firing being proportional to Av. 

4.8 (a) Helium is heated by an electric current in an arc jet chamber 
to a stagnation temperature of 4000 K. It is then expanded (almost) 
isentropically through a nozzle to very low pressure. Estimate the specific 
impulse, assuming that the ionization effects can be ignored. 

(b) Molecular hydrogen is used as a propellant in the arc jet of part 
(a). Estimate the specific impulse, assuming the approximations for the case 
of part (a) are valid and that in addition any dissociation effects can be 
ignored. 

(c) Using approximations similar to the preceding parts, obtain an 
expression giving the "effective" chamber stagnation temperature T~ in 
terms of the specific impulse and other required material properties. Calcu- 
late T, for the case with I,p = 1500 s and propellant H 2. 

4.9 (a) It may be assumed that virtually all the energy acquired by 
the propellant in an electrostatic thrustor appears as the kinetic energy of 
the jet, ~ 2 ~mu c. If the particles are singly charged, this energy may be 
expressed in terms of the "electron volts," eV, of the exhaust beam. Show 
that the electron volts of the exhaust may be expressed in terms of the 
specific impulse and molecular weight of the propellant by 

e V = K ~ ( l w / l O 3 ) Z  

where K is the constant of proportionality. 
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Noting that J g =  Nam, where N a = Avogadro's number = 6.03 (10 26) 
and m = mass of particle, and also that the charge on an electron qe 
= 1.6 (10 -19) C, find the numerical value of K. 

(b) If cesium is the propellant (..¢/= 133, monatomic), find the voltage 
of the exhaust if Isp = 6000 s. 

(c) Using the results of Problem 4.8(c), calculate the effective reservoir 
temperature for the conditions of part (b). 

(d) If the thrust level of this rocket is to be 100 N, what is the 
required power level in kilowatts? 

(e) What is the mass flow rate in kg / s -1?  

4.10 Consider a colloid rocket with the properties m/q = fl(m/q)R 
Io.-- 8Is . .  (Here, R refers to a reference electrostatic accelerator.) 
(as f 

Y R  

and - I  tlie same electrode spacing is used as for the reference accelera- 
tor, find the ratio of the following terms to their reference values in terms of 
/3 and 8: J~cl, (e& - ~c), and ( F / A )  sd. 

(b) Find the same ratios as in part (a) for the case where the electrode 
spacing is chosen to keep the voltage gradient at the cathode of the 
accelerator the same as that of the reference accelerator. 

4.11 Consider an "accel-decel" system consisting of an anode at 
voltage ~A, cathode at voltage ~c, and downstream cathode at ~0. Consider 
the current in the first region (A-C) to be space charge limited. 

(a) Show that the equation for the potential in the region downstream 
of C ( C -  D) may be written 

( d ~ b ] 2 - ( d ~ b ) 2 - 4 j s C l ~ q  ( ~ - d p - ~ ) d x ]  ~ x  c e 

(b) Introducing • = (~ - ~C)/(~A -- ~C) and 8 = x/dAc, where dAc is 
the distance between anode and first cathode and 8 = 0 when • = 0, show 
that the equation for 8 in terms of • may be written 

6 = ( I + 2 K ) v / 1 - K - [ ~ - - ~  + 2 K ] ~ / ~ / 1 - ~  - K  
where 

9 ( d ~ / 2  
K -  = 1 - ~-~-_ 

1 6 \  d8 Jc 

4.12 A method of ionic propulsion has been suggested that utilizes a 
series of electrodes. If such a device is constructed so that the slope of the 
potential to the left of each electrode is to be the same as that preceding it 
and the slope to the right of each electrode is to be zero, show that the 
magnitude of the voltage on the nth electrode is given in terms of the 
voltage on the first electrode by 

t~,l = n21~11 

(The voltage of the "zeroth electrode" is taken to be zero.) 



5. IDEAL CYCLE ANALYSIS 

5.1 Introduction 

In this chapter the systematic process termed "cycle analysis" will be 
applied to several different engine types. The object of cycle analysis is to 
obtain estimates of the performance parameters (primarily thrust and 
specific fuel consumption) in terms of design limitations (such as the 
maximum allowable turbine temperature), the flight conditions (the am- 
bient pressure and temperature and the Mach number), and design choices 
(such as the compressor pressure ratio, fan pressure ratio, bypass ratio, 
etc.). In this chapter all components are considered to be ideal, with the 
result that the various algebraic manipulations will be quite simplified and, 
consequently, the methodology of the analysis comparatively transparent. 
The analytical results will, of course, be far more optimistic than would be 
the case if component losses were included, but many of the general trends 
will be valid. The effects of component losses will be thoroughly investi- 
gated in Chap. 7. 

Gas turbine engine performance measures, selection considerations, and 
components are briefly discussed in Sec. 1.4. In order to further understand 
the engine components that are being idealized in the cycle analysis, and to 
be able to envision the individual engine parts and their relationships in 
engine configurations, it is useful at this point to examine illustrations, 
design parameter values, and performance curves of several typical modern 
turbofan engines. The design and performance data presented can serve as 
reference points for later numerical computations. 

The Pratt and Whitney JT8D two-spool low-bypass ratio mixed flow (fan 
air and turbine exit gases mix and leave through the common exhaust 
nozzle) turbofan engine used in medium-range commercial aircraft is shown 
schematically in Fig. 5.1. The nominal gas property values listed in the 
figure are for an early member of the JT8D family at sea-level static takeoff 
thrust where the design values are 1.1 bypass ratio, 15.9 compressor (cycle) 
pressure ratio, and 1.9 fan pressure ratio. Estimated performance data for 
the JT8D-17 engine model are presented in Figs. 5.2 and 5.3. 

The Pratt and Whitney JT9D two-spool high-bypass ratio separate flow 
turbofan engine shown in Fig. 5.4 is designed for long-range aircraft use. 
An early member of the JT9D family has a 5.1 bypass ratio, 21.5 compres- 
sor pressure ratio, and 1.5 fan pressure ratio at sea-level static takeoff 
thrust. Figures 5.5 and 5.6 contain estimated performance data for the 
JT9D-70/-70A engine models. 
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C O M P R E S S O R S  B U R N E R  T U R B I N E S  N O Z Z L E  

STATION 3 ' 3 4 9 

P, (psia) 1.4.7 28 233 220 29 
Tt (°F) 59 ° 190" 800 ° 1720 ° 890 ° 
c o r e  a i r  f l o w - -  150 Ibm/s  
b y p a s s  a i r  f l o w - -  165 Ibm/s  

Fig. 5.1 JT8D turbofan schematic with pressures and temperatures at takeoff 
thrust (courtesy o f  Pratt and Whitney).  
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I s , o o o  ~ V ~  

a4,ooo ~'~'~'e ~'04%, 

[- 13,ooo • 

1=.ooo ~ "  

Fig. 5.2 

1 1 , 0 0 0  

0 50  100  lSO 200  250  3 0 0  

F L I G H T  S P E E D - - k n o t s  

JT8D-17 turbofan takeoff  thrust (courtesy of Pratt and Whitney). 

0 . 8 0  

0 . 0 8  

0 . 8 8  

0 . 8 4  

-2 ~ o.82 
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0 . 7 4  

0 . 7 2  
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3 5 , 0 0 0 ~  

~ ~ ° "  ~ ~%~" ' ..... 
4 ' '  
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3 0 , 0 0 0  FT 

l / 

2400  2 8 0 0  3 2 0 0  aTO0 4 0 0 0  4 4 0 0  4 8 0 0  8200  5 6 0 0  

T H R U S T - - I b f  

Fig. 5.3 JTSD-17 turbofan cruise specific fuel consumption (courtesy of  
Pratt and Whitney).  



IDEAL CYCLE ANALYSIS 123 

Figures 1.3 and 1.4 are other examples of Pratt and Whitney turbofan 
engines. As already noted in Chap. 1, the values of some of the design 
parameters for the separate flow PW2037 (Fig. 1.3) are 5.8 bypass ratio, 32 
compressor pressure ratio, and 1.4 fan pressure ratio; for the mixed flow 
afterburning, F100 (Fig. 1.4), they are 0.78 bypass ratio, 25 compressor 
pressure ratio, and 3.0 fan pressure ratio, all at sea-level takeoff conditions. 

The Garrett TFE731 two-spool medium-bypass ratio separate flow 
turbofan engine of Fig. 5.7 serves the business aircraft type market. In 
contrast to the preceding engines, this engine has a geared fan, a centrifugal 
high-pressure compressor, and a reverse flow combustion chamber. The 
TFE731-5 engine model at sea-level static takeoff thrust has a 3.33 bypass 
ratio, 14.4 compressor pressure ratio, and 1.55 fan pressure ratio. Perfor- 
mance curves for the TFE731-5 are shown in Figs. 5.8 and 5.9. The thrust 
specific fuel consumption of this engine model at sea-level (73.4 F day) 
takeoff thrust is 0.484 (Ibm fuel/h)/ lbf thrust and 0.802 (Ibm fuel/h)/ lbf 
thrust at 0.8 Mach number and 40,000 ft. 

Figure 5.10 is a cutaway view of the Garrett ATF3 three-spool medium- 
bypass ratio mixed flow turbofan engine for business type aircraft. At 
sea-level static takeoff thrust the ATF3-6A engine model has a 2.81 bypass 
ratio and 21.35 compressor pressure ratio. The estimated performance of 
this engine model is given in Figs. 5.11 and 5.12. 

Figure 5.13 shows the unique engine spool arrangement of the ATF3. 
Note that the high-pressure centrifugal compressor spool is mounted aft of 
the two concentric spools containing the fan and the low-pressure compres- 
sor. What do you suppose are the advantages that led designers to this 
novel engine configuration? 

Figure 5.14 is an installed cross-sectional view of the engine showing the 
gas flow paths through the engine components. Referring to Fig. 5.14, it is 
seen that the engine core airflow passes through the fan, the low-pressure 
compressor, and eight carryover ducts leading to the rear of the engine 
where a 180-deg turn is made into the high-pressure centrifugal compressor. 
From this compressor the air enters the reverse flow combustion chamber. 
The gases leaving the combustion chamber proceed toward the front of the 
engine and in turn pass through the single-, three-, and two-stage turbines 
which drive the high-pressure compressor, the fan, and the low-pressure 
compressor, respectively. After leaving the last turbine stage, the gases are 
split into eight 180-deg turning vane modules that exhaust the gases into the 
fan airflow contained in an annular duct surrounding the engine. The fan 
air and the turbine gases mix and exit through a common exhaust nozzle. 

An installed cutaway view and a schematic of the high-bypass ratio 
separate flow Rolls-Royce RB.211-524 three-spool turbofan engine are 
shown in Figs. 5.15 and 5.16. 

Here it is worthy to note that the performance curves that are obtained 
by the ideal engine on-design cycle analysis of this chapter differ from the 
actual engine off-design performance curves presented in Figs. 5.2-5.3, 
5.5-5.6, 5.8-5.9, and 5.11-5.12, as indicated by the descriptive words ideal 
vs actual, and on-design vs off-design. Each point of an on-design cycle 
analysis performance curve represents the performance of a different engine 
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Fig. 5.13 ATF3 turbofan spool arrangement (courtesy of Garrett). 

Fig. 5.14 ATF3 turbofan installed cross-sectional view (courtesy of Garrett). 
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Fig. 5.15 RB.211-524 turbofan installed cutaway (courtesy of Rolls-Royce). 

LP COMPRESSOR ROTOR (FAN) HP COMPRESSOR 
" k ~  l IP TURBINE 

/ HPTURBINE / LPTURBINE 

EXTERNAL I 
GEARBOX 

Fig. 5.16 RB.211-524 turbofan schematic (courtesy of Rolls-Royce). 
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from a family of engines, each of which is operating at its own design point. 
The performance curves in the figures referenced above, on the other hand, 
are for a single engine operating at off-design conditions and are the subject 
of Chap. 8. This chapter's engine performance is also given only in terms of 
specific thrust and specific fuel consumption since engine size is not 
specified in the analysis. Thrust and fuel mass flow rate as given in Figs. 5.8 
and 5.9, for example, can be determined when engine size expressed in 
terms of engine air mass flow rate is known. 

5.2 Notation 

A systematic notation will facilitate simple manipulation of the equations 
to follow. Throughout this chapter the engine station numbers indicated in 
Fig. 5.17 will be used. The locations indicated in Fig. 5.17 are: 

0 Far upstream 
1 Inlet entry 
2 Compressor face 
3 Compressor exit 
3' Fan exit 
4 Turbine entry 
5 Turbine exit 
6 Afterburner entry 
6' Duct afterburner entry 
7 Primary nozzle entry 
7' Secondary nozzle entry 
8 Primary nozzle throat 
8' Secondary nozzle throat 
9 Primary nozzle exit 
9' Secondary nozzle exit 

Appendix B contains the standardized gas turbine engine station identifica- 
tion and nomenclature system recommended by SAE, Inc. Note that the 
station numbers defined above conform to Sec. 2.2 of App. B, but the 
bypass flow stations are identified here by 3', 6', 7', 8', and 9' in lieu of the 
two-digit numbering system in Sec. 2.3 of App. B. 

The ratio of stagnation pressures ¢r and ratio of stagnation temperatures 
"are introduced, where 

71"= 
stagnation pressure leaving component 
stagnation pressure entering component 

stagnation temperature leaving component 
stagnation temperature entering component 
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0 

[ I  < " r r  3' 6' ,~ 7' 8' 9' 
I 2 I I I I I l , t c  _ lll5 

Fig. 5.17 Station numbering. 

6 ~  i~r,~'-- 
7 8  9 

Examples 
T¢, 7r c - compressor stagnation temperature, pressure ratio 

%, % - burner stagnation temperature, pressure ratio, etc. 

Exceptions 
rr and 7T r are defined by 

- :17,o 
rr= l + ~ -  M2 =-T7 

% = 1 + = - -  (5 .1 )  
Po 

Thus, freestream stagnation temperature Tto = T0rr; freestream stagnation 
pressure Pto  = PO'#r • It should be noted that r r and 7r r represent the effects of 
the flight Mach number M 0. 

Further Exceptions 
It is often appropriate to introduce the effect of a design limitation such 

as the maximum allowable turbine inlet stagnation enthalpy, Cp,T,. The 
term r x is thus introduced, defined by 

r x - Cp,Tt,/CpT o (5.2) 

Similarly, rxA" and rxA,, will be used where the maximum stagnation en- 
thalpy referred to is the stagnation enthalpy following the primary stream 
afterburner or duct afterburner, respectively. 

Components 
Each component  will be identified by a subscript as follows: 

AB = afterburner (primary stream) 
AB' = afterburner (secondary stream) 

b = burner 
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c = compressor  
c '  = fan 
d = diffuser (or " in le t" )  
n = nozzle (pr imary  stream) 

n' = nozzle (secondary stream) 
t = turbine 

Table  5.1 gives the relat ionships between all defined ~r and • and the 
corresponding temperatures ,  pressures,  and Mach numbers .  

5.3 Ideal Component Behaviors 
In  the analysis to follow in this chapter ,  ideal pe r fo rmance  of all compo-  

nents will be  assumed.  In addit ion,  it is assumed that  the gas is calorically 

Table 5.1 Temperature and Pressure Relationships for All ,r and 

T,= 1 +  Y - ~ M o  2 

Cp, Tt4 

~'x CpcT ° 

CpAB TI8 
T~kAB Cp c To 

C OAB, T/8, 
T~AR' Cp¢ T O 

T~ P~3 T~. p~, 

Ttr Ptr Tt9 Pt9 
1"... = "~t 2 ~r~. = --p,2 ":" = T-~t~ % = --P,, 

Tt, p,, T~. p~. 

Tt Pt S 
~ r t = - -  

Pt4 

T~2 P~2 T~8 P'~ 
"a=T~o ~ra=p--:o TAB = T,~ IrAB = ~ 
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perfect throughout, with "r and Cp constant throughout, and that the fuel 
mass flow is so small that the fuel-to-air ratio may be ignored in comparison 
to unity. Under these circumstances, the following relationships for the 
components are valid. 

Diffuser 

To a very high degree of approximauon the flow through the diffuser may 
be considered to be adiabatic. In addition, when the flow is ideal it may also 
be considered to be isentropic. Thus with Eq. (2.57), 

"ia = 1 and 7r d = 1 (5.3) 

Compressor or Fan 

The compressor or fan pressure ratio is usually selected as a design choice 
and hence may be considered prescribed. For an ideal process, the process 
will be isentropic, so [again utilizing Eq. (2.57)] 

"ic = ~rc tY- 1)/y and "ic' = ~r,!Y- x)/y (5.4) 

Combustor or Afterburner 

For an ideal burner the stagnation pressure remains constant. It may be 
noted, as shown in Sec. 2.18, that this assumption implies burning at very 
low Mach number. Then 

% = 1 (5.5) 

Turbine 

Here, as with the compressor, the ideal process is an isentropic process so 
that 

,it = ~t(~, 1)/~, (5.6) 

Nozzle 

As with the diffuser, the flow through nozzles is very nearly adiabatic and 
is ideally isentropic. Thus, 

• i. = 1 and ~r. = 1 (5.7) 

5.4 The Ideal Thermodynamic Cycle 
An ideal turbojet is considered in this section and its behavior as a heat 

engine investigated. (See Fig. 5.18.) 
The pressure/specific volume and temperature/entropy diagrams for this 

ideal engine are indicated in Figs. 5.19 and 5.20. These diagrams represent 
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I 2 3 4 5 9 

INLET BURNER NOZZLE 
COMPRESSOR TURBINE 

Fig. 5.18 Ideal turbojet. 
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"Brayton cycle," which consists of 

0--,3 
3 - , 4  

4--*9 
9--,0 

Isentropic compression 
Constant-pressure combustion (equivalent to a constant- 
pressure heat interaction) 
Isentropic expansion 
Constant-pressure "heat rejection" 

When viewed as a thermal engine, the "work" of the engine, in the 
thermodynamic sense, appears as the change in kinetic energy between the 
incoming and outgoing fluid. It can be noted, for example, that if the engine 
were to be utilized for ground power, the kinetic energy of the jet could be 
extracted by a further turbine that in turn would supply a mechanical work 
interaction. Not all of the work of the turbojet engine appears as useful 
work (supplied to the aircraft), however, because the force from the engine 
provides work to the aircraft in an amount proportional to the flight speed. 

Performance parameters of direct utility to the aircraft designer are the 
thrust F and specific fuel consumption S. The specific fuel consumption is 
measured as the milligrams of fuel flow per second divided by the thrust in 
Newtons [or alternatively S = (Ibm fuel/h)/ lbf thrust]. Clearly, S is, in 
some sense, the inverse of the overall engine efficiency and both the 
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thermodynamic efficiency of the engine and the efficiency of transmitting 
the work of the engine into work on the aircraft [or equivalently of the 
"propulsive efficiency" (Sec. 5.6)] are of importance. 

The thermal efficiency rhh of this ideal engine may be obtained directly by 
writing 

Cp(T9 - T0) T o [ (T9 /To )  - 1] 

= ] c (r, - r , , )  - 1 r, ,  [ ( r , , / v , 3  ) _ 1] 

Note, however, 

To Po P9 T9 ] 

thus 

and hence 

T. /To = r , , / r ,~  

Thus, with T t J T  o = rrr,, 

~th = 1 -- 1/TrT c (5.8) 

Thus, it is apparent that the thermal efficiency of the ideal engine 
increases as the flight Mach number increases (~r increases) and as the 
compressor pressure ratio increases (~, increases). 

5.5 The Effect of Burning at Finite Mach Number 

It is of interest to consider the thermodynamic behavior of a turbojet that 
has ideal behavior in all components except that the burning within the 
combustor occurs at finite Mach number. The cycle is still to be a Brayton 
cycle, except now the static pressure is to be kept constant in the burner. 
Note that an inevitable loss in stagnation pressure will occur when the Mach 
number is finite [Eq. (2.81) and Problem 2.12]. 

Consider the case where "internally" the flow can be considered revers- 
ible. By this it is meant that the additional entropy gains created by burning 
at finite Mach number are due only to the decreased static temperature 
brought about by the finite Mach number, and are not due to the presence 
of viscous stresses. In this case the entropy gain is given in terms of the 
thermal addition by d s =  d ' q / T ,  and consequently the thermal energy 
added or removed during a process can be represented as the area under the 
process line on the temperature/entropy plot. 
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Three methods of obtaining the thermal efficiency are now given. 
(1) Classical method. Here use d'q = d'qR = Tds to write 

~ t h  = 

f 34Tds -  fo9Tds fo9Tds 
- 1  

f34Tds f34Tds 

The processes from 3-4  and 0 - 9  are both constant-pressure processes, so 

Tds = dh - ( l / p )  d p  = dh = CpdT 

Thus 

C,(T~- To) 7"0 (r,/To- ~) 
~th = 1 - 1 

Cp(T 4 - T3) 7"3 (T4 /T  3 - 1) 

but 

and it follows that ~th = 1 - To/T 3. 
(2) Method utilizing the "f low" form of the first law. Here the "heat  

added" per mass is given by Cv(Tt, - Tt3 ). Because the process in the burner 
is at constant pressure, the momentum per mass will not change, so that 
/-:4 = U3. Then 

1;,- 7;,=(7, + ~ v,~)- (T, +-~ V?) = r , -  73 

The expression for the heat rejected remains unchanged, so using the 
same algebra as above, ~th = 1 - To/T 3. 

(3) Method using industrial bookkeeping. The stagnation pressure de- 
crease in a burner is considered to be a loss mechanism, so it is customary to 
represent the performance of a burner in terms of the stagnation pressure 
ratio across it; ~r b - Pt,/Pt: The thermal efficiency would thus be written in 
the form 

Tg-  T o T O T91To-1 
nth= l Tt , _  Tr ' 1 Tt, T t , / T t , - 1  

But 

, Y - ' , .  

To = ~ po : ~ p, -;-2,, -= T9 "; I"- "/~I 
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So 

r9 r,, 
To Tt 7rh I(Y- 1)/YI = %rrh I(Y- l)/vl 

Hence 

To rb % [(y - 1)/rl _ 1 

vlth = 1 Tt 3 % -  1 

This form gives the impression that the thermal efficiency of a cycle is 
dependent upon the ambient static temperature and the stagnation tempera- 
tures in the combustor. This interpretation is unfortunate, because it is, in 
fact, the static temperatures that determine the efficiency of the cycle. For 
this particular example it is relatively easy to show (see Problem 2.12) that 

%7r~ I(Y- 1)/Y] = % +  [(~, - 1) /2]  M~(% - 1) 

which gives 71th = 1 - To/T 3, in agreement with methods 1 and 2. 
It is important to realize that the decrease in stagnation pressure brought 

about by burning at finite Mach number is absolutely unavoidable and is 
simply a reflection of the fact that thermal interaction at the reduced static 
temperature identified with the flow at finite Mach number causes a larger 
entropy increase. Hence, it is the static temperatures that determine the 
cycle thermal efficiency. 

5.6 The Propulsive Elfi¢ien¢y, ~lp 
The propulsive efficiency is a measure of how well the power produced by 

the engine is utilized in propelling the vehicle. It is defined by 

power delivered to vehicle 

~P = net (mechanical) power in the exhaust 

thrust × vehicle flight speed 
power produced by the engine 

An ideal engine has the nozzle exit pressure equal to the ambient 
pressure, so the thrust is simply equal to the rate of momentum production 
of the engine. Thus, 

F =  F?/-9U 9 --  I~/0U 0 = ~ / ( U  9 --  U 0)  ( 5 . 9 )  

im(u  9 --u2), SO for this ideal The power produced by the engine is x.  2 
engine 

np= 2Uo/(U9 + Uo) (5.10) 
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In order to increase the propulsive efficiency the exit velocity u 9 should 
be reduced. This, of course, will come with a penalty in thrust if the mass 
flow is not increased. An obvious way to obtain good propulsive efficiency is 
to utilize a large-diameter propeller in order to move a very large mass. 
Turboprop engines are, in fact, highly efficient engines, but have encoun- 
tered two major problems in the past. The large gearbox necessary to reduce 
the propeller speed has often caused weight and reliability problems, and 
the onset of high Mach numbers at the propeller tips (as the aircraft speed 
increases) has led to unacceptably low propeller efficiencies. 

Lately, a resurgence of interest has occurred in "very-high-bypass-ratio 
turbofans," however. Thus, engines with up to 10 relatively small-radius 
propeller blades are envisioned. These blades will be swept backward (in the 
relative flow) in order to forestall the onset of high Mach number effects; 
because of the relatively small radius of the blades, the amount of gear 
reduction required will be much reduced as compared to conventional 
turboprops. 

By ducting the "propeller" or fan, the tip Mach number problems can be 
avoided by diffusing the flow prior to the fan. An additional benefit occurs 
because the blades may be highly loaded, aerodynamically, right out to the 
blade tips because the cowl much reduces tip flow. Such ducted fan engines, 
termed turbofan engines, have been very successful when utilized for 
high-subsonic or low-supersonic flight regimes. Present turbofans used for 
subsonic flight have "bypass ratios" (the ratio of air passing through the 
outer duct to that passing through the core engine) of about 5 or 6, whereas 
it is imagined that the very-high-bypass engines discussed in the preceding 
paragraph will have (equivalent) bypass ratios of 25-50. (A turboprop has a 
bypass ratio of about 100.) A cowl for an engine with such a huge bypass 
ratio would not only be large and heavy, but would also present a large 
wetted area and projected area, with a consequent large drag penalty. 

The various "tradeoffs" for such engine choices are best determined by a 
systematic use of cycle analysis. 

5.7 Systems of Units 
In the following sections, the various dimensionless quantities will be 

calculated in the SI system of units. However, because of the greater 
familiarity to some readers of the British system of units (or of the British 
gravitational system of units), the various formulas will also be presented in 
these alternate systems. Table 5.2 gives a brief list of pertinent terms for use 
in propulsion, together with appropriate conversion factors. 

5.8 The Ideal Turbojet 

Methodology of Cycle Analysis 
The pertinent conservation equations will now be manipulated to obtain 

the performance variables specific thrust and specific fuel consumption in 
terms of assumed design variables, ambient conditions, and design limita- 
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Table 5.2 Units and Conversion Factors, British System to SI 
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Conversion Factor 
Units Units (multiply British system 

Item British System SI to get SI value) 

Length ft m 0.30480 
Mass slug, Ibm kg 14.594, 0.45359 
Rotational speed rpm rad/s 2 ~r/60 = 0.10472 
Power hp W 745.70 
Fuel heating value h Btu/lbm J/kg 2326.0 
Specific heat Cp Btu/(lbm - °R) J/(kg- K) 4186.8 
Gas constant R ft2/(S 2" °R) me/(s 2. K) 0.16723 

Specific fuel Ibm fuel/h lbm/h mg fuel/s _ mg 
consumption S lbf thrust lbf N thrust (N - s) 28.325 

Power specific Ibm fuel/h mg/s kg 
fuel consumption Sp hp W (W - s) 0.16897 

F lbf F N - s m 
Specific thrust 9.8067 

giFh (Ibm/s) hi kg s 

British system: gravitational constant go = 32.174 lbm/lbf,  f t /s  2. 
SI: acceleration of gravity 9.8067 m/s  2. 

tions. The methodology for all cycles to be considered will be the same. 
Thus, it will be found (even in the cases where losses are included) that to 
obtain the specific thrust both the ratio of the temperature at the nozzle exit 
to the ambient temperature and the ratio of the Mach number at the nozzle 
exit to the flight Mach number are required. By then writing the ratio of 
stagnation to static temperature, Ttg/T 9, at the exit as a function of exit 
Mach number, and then further writing the stagnation temperature at 
the exit in terms of the products of all the component  temperature ratios, an 
expression for the ratio T9/T 0 will be obtained in terms of M 9 and 
stagnation temperature ratios. A second equation for M 9 in terms of all 
the component  pressure ratios (and imposed exit pressure ratio P9fPo) 
is similarly obtained by writing the ratio of stagnation to static pres- 
sure, p,/Pg,  at the exit as a function of exit Mach number. The component  

• 9 . 

relataonships of Sec. 5.3 (or their nonideal equivalents) then allow descrip- 
tion of the engine specific thrust in terms of the component  performances 
and design choices. 

Not  all component  performances are independent, however, because, for 
example, the turbine and compressor work interaction rates must be equated. 
Such a power balance will lead to evaluation of the turbine temperature and 
pressure ratios in terms of the chosen compressor pressure ratio and other 
parameters. 

Finally, the specific fuel consumption is evaluated by considering an 
enthalpy balance across the combustor. Several example cycles are evaluated 
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in the following sections as well as in Chap. 7, and it will be seen that the 
methodology described in this section is systematically applied throughout. 

Cycle Analysis of the Ideal Turbojet 
Ideal behavior is assumed so that the component relationships are as in 

Sec. 5.3. Additionally, the gas is assumed to be calorically perfect 
throughout, the pressure at exit is assumed equal to the ambient pressure, 
and the fuel-to-air ratio, mf/rh o - f ,  is assumed to be much less than unity. 
With these assumptions (referencing Fig. 5.18) 

or  

F =  tr/(U 9 -- U0) 

Now write 

Specific thrust = ~ = u 0 - 1 = aoM o - 1 (5.11) 

,9.9 9( 9t 
3'oRoT ° Mo ] = To ~ Mo (5.12) 

(Note 3'9 = 3'0 = 3', t{9 = Ro = / { ' )  Now note 

_ T,, CT,, T,9 
Ttg = T9 ( I + ~ - ~  M2 ) = TO To Tt Tt~ 

~t~ = ~0~.~.  = ~0~.  = ~9(1 + ~ , , 9 ~ )  

Here % = 1, which follows from Eq. (5.7). Also note 

~ = Z  ~ o ~ 2 ~  v ~  

or  

(5.13) 

Thus, note that the minimum conceivable ~'x, which corresponds to no 
burning in the combustor, is 

(~'X)rm. = rrrc (5 .15)  

Hence, with Eq. (5.3) 

"rx = l",'rc% (5.14) 
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For the pressures, write 

Pt9 =P9( 1 + 7 - - M 9 )  y - 1 2 y/(r-1) 

Pto Ph Pt3 Pt, Ph P'9 
- Po = PoWrrra~r¢%~r,% (5.16) 

Po Pro Pt2 Pt3 Pt,t Pts 

or noting P9 =P0 and from Eqs. (5.1) and (5.3-5.7), 7ra= % = %  = 1 and 
~r/v-1)/r = r,, ~r~ r-~)/v = r c, rr, {v-~)/Y = rt, Eq. (5.16) leads to 

1 + [(7 - 1)/2] M 2 = TTcT , (5.17) 

Combination of Eqs. (5.1), (5.13), and (5.17) then gives 

T 9 / T  o = rx/rTc (5.18) 

and 

r . -  1 y -  1 (r.r.r t - 1) (5.19) 

The specific thrust then follows by combining Eqs. (5.11), (5.12), (5.18), 
and (5.19) to give 

{[ ] } m F 2 rx (rTcr , - 1) - M o (5.20) 
= a °  3' 1 r,r~ 

The  p o w e r  balance .  A power balance between the compressor and 
turbine is used to relate the turbine temperature ratio r t to other variables. 
It follows from the first law applied to a control volume (Sec. 2.15) that for 
steady-state conditions the mechanical work interaction per mass is equal to 
the negative of the change in stagnation enthalpies across the control 
volume. The turbine work output must be equal to the compressor work 
input, so applying the first law results in 

(m + e, , : )c . , (r , . -  r , , )  = .~c.,(rt,- rt,) 

o r  

( I + f ] C p , T t 4 ( 1  Th 
" C, ro --<,,) 

T,o T,~ T,, 1) 



144 GAS TURBINE AND ROCKET PROPULSION 

where f = m//rn or 

(1 + / ) r x ( l  - r t )  = r r r d ( r  c -- 1) 

But here f << 1 and r d = 1 (also Cp, = Cp, = Cp), so that 

r , =  1 - ( r r / r x ) ( r  ` - 1) (5.21) 

Equation (5.21) can now be substituted into Eq. (5.20) to give, after some 
manipulation 

_ = a  o - - - 1  ( r , . -  1) + - 
m ']/ - 1 ~ TrT c ~ o] 34o (5.22) 

Note that when a ramjet is considered (no compressor, so r, = 1), the 
equation for the specific thrust reduces to the very simple form 

__  = a o M  o - 1 (ideal ramjet) (5.23) 
m 

Note also, from Eq. (5.22), that the thrust goes to zero (of course) for no 
combustion in the burner (% = r x / r r r  , = 1 ) .  

S p e c i f i c  f u e l  c o n s u m p t i o n .  From the enthalpy balance across the 
combustor 

+ % )%T,, - = %1, 

where h is the "heating value of the fuel." 
Thus, again taking f<< 1, there is obtained 

f =  ( C : o / h  )( - v,) (5.24) 

The specific fuel consumption may hence be written 

S = mg fuel/s 
N thrust 

- rnf(106)F = F--~m (106) (5.25) 

Summary of the Equations--Ideal Turbojet (or Ramjet) 
The equations are summarized here in a form suitable for calculation. The 

pertinent equations and terms for the British system of units will be 
included in brackets. 

I npu ts: T o (K)[ o R l, y, h (J /kg)[  Btu/lbm],  



Outputs: 
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Cp(J/kg. K)[atu/ lbm. °R], rx, ~rc, M o 

- ~ g  ' lbm/s 

mg fuel/h S ( .~s .  s ) [ Ibm 
lbf thrust ] 

f( kg fuel/s )[ lbm fuel/s ] 
kg air/s lbm air/s 
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Equations: 

R _ Y - 1  - -  Cp m2//s 2. K [ R = Y - 1 
7 

Cp (2.505)(104 ) ft2/s 2. °R] 

(5.26) 

a o = ~ m/s  [ft/s] (5.27) 

"r~ = 1 + -Z-~Mo 2 (5.28) 

Tc = 7/ . (y-  1)/~, (5.29) 

F [[ 2¢r ( r  x ) r x M2] '2 ) -7- =ao/[-~- ~ -~-~- 1 ( r e - l ) + - -  - M  o m ~'Fc o 

[ F_ oo tl 
go ~ 32.174 ~ [ ), - 1 \ T,r c ] I] TX 2 ~ + %~.cMd - Mo 

f =  ( CpVo/h )( ~ - ~.~c) 

s = r---~m (106) 3600f ] 
S= F/( go,~ ) 

(5.30) 

(5.31) 

(5.32) 



146 GAS TURBINE AND ROCKET PROPULSION 

Fig. 5.21 
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Effect of compressor pressure ratio on performance, ideal turbojet. 

Example Results-- Ideal Turbojet and Ramjet 
As an example of the use of the performance equations, consider the 

problem of selecting an appropriate compressor pressure ratio for a given 
flight condition. Consider a turbojet to fly at M 0 = 2 with the conditions 
~, = 1.4, T O = 222.2 K [400°R], h = 4.4194(107) J / k g  [19,000 Btu/lbm], 
Cp = 1004.9 J / k g .  K [0.24 Btu/ lbm.  °R], ~'x = 7. Figure 5.21 indicates the 
results. 

It can be seen from Fig. 5.21 that even with the assumption of ideal 
engine behavior some important design trends become evident. Thus, this 
ideal analysis indicates that the specific fuel consumption tends to decrease 
as the compressor pressure ratio increases. (This trend is true also when the 
losses are included over a large pressure ratio range, but not out to extreme 
pressure ratios.) The specific thrust, however, maximizes at quite low values 
of the compressor pressure ratio. (Note that as the compressor pressure 
ratio increases, the stagnation temperature at entry to the burner increases, 
with the consequence that the allowable fuel addition is reduced because of 
the restricted ~x-) Hence, it is evident that (ignoring afterburning effects for 
the moment) if a designer wanted a high-thrust lightweight engine for use in 
an interceptor, he would favor a low-compression-ratio engine, whereas if 
the engine was to be used for transport purposes where fuel consumption is 
of paramount importance, a heavier, higher-compression-ratio but more 
efficient engine would be appropriate. 

Figures 5.22 and 5.23 show the expected performance of engines over a 
range of flight Mach numbers. 
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The conditions assumed for these examples are identical to those in the 
preceding example except that rx was taken to be equal to eight for the 
ramjet. It is important to note that these examples illustrate the behavior of 
what would be a series of ~ngines designed to fly at the illustrated Mach 
number at the indicated pressure ratio. In other words, the graphs represent 
the behavior of a family of engines, all with the game compressor pressure 
ratio but flying at various design Mach numbers. If an engine designed for a 
certain Mach number and pressure ratio is flown off-design (at a different 
Mach number), its compressor pressure ratio will change. These effects are 
analyzed in Sec. 8.2. 

It is apparent in Fig. 5.22 that, in the case of the turbojets, as the flight 
Mach number increases the resultant increase in compressor out!et temper- 
ature restricts the allowable fuel addition, causing a reduction in specific 
thrust. [Note that in an actual engine the airflow would increase as M 0 
increased, causing the thrust (but not specific thrust) to initially increase.] 
In the case of the ramjet, the thermal efficiency of the engine is so low at 
low Mach numbers that the specific thrust at first increases with increasing 
Mach numbers before eventually decreasing due to the limitation on fuel 
addition. 

Figure 5.23 indicates that the turbojet specific fuel consumption at first 
increases with increase in M 0. This is because the energy required for a 
given velocity change from inlet to exit (and hence thrust production) 
increases as the flight speed increases. At very low thrusts the specific fuel 
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Fig. 5.22 Specific thrust vs Mach number, ideal turbojets and ramjet. 
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Fig. 5.23 

S 

55 

50  

45 

4 0  

55 

5 0  

RAM dET 

25  ~ -  1 f \,l;=zo 
2 0  

0 I 2 ;5 4 

M o 

f . ~ =  I0 

5 6 

Specific fuel consumption vs Mach number, ideal turbojets and ramjet. 

consumption decreases (for this ideal engine) because the propulsive and 
thermal efficiencies increase. For the ramjet, the initial sharp drop in S 
reflects the increasing thermal efficiency. Later, the effect of the extra 
required energy for a given velocity change causes S to increase. 

As a final example calculation, again consider a family of turbojets with 
M o --- 2 and with 7r c = 20. Consider the effect of varying the turbine inlet 
temperature or, equivalently, of varying ¢ x. Figure 5.24 indicates the results. 

Figure 5.24 indicates how the specific fuel consumption decreases as the 
turbine inlet temperature decreases because of the increasing propulsive 
efficiency. However, if component losses were present, a finite fuel flow 
would be required as the thrust approached zero, with the result that the 
specific fuel consumption would increase dramatically. 

5.9 Interpretation of the Behavior of the Specific Fuel Consumption 

In the preceding sections the equations for S and F/r'n were deliberately 
formulated in a manner that led to easy algebraic manipulation and 
calculation. For interpretive purposes, write S in the alternative form 

rh, ( hrh/ )( uo/h ) 
S = ---~-(10 6 ) = (10 6 ) 

uoF 1 "  
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Fig. 5.24 
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o r  

S = u° 106 (5.33) 
h Uo F ( rh /2) (  u9 2 - Uo 2 ) 

( r h / 2 ) ( u 2 _ u ~ )  hrhf 

From Secs. 5.4 and 5.6 it can be seen that the expressions in brackets are 
just the propulsive and thermal efficiencies. That is, 

uoF 

~P = ( m / 2 ) (  u~ - Uo ~ ) 

and 

(r~/2)(  u 2 - Uo 2 ) (5.34) 
Bth = hfn / 

Hence, 

aoM o 106 s (5.35) 
h ~p~th 
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Equation (5.8) related the thermal efficiency to the thermodynamic vari- 
ables by 

1 1 
7It h = 1 1 

TrT c (,n,rTrc) ( 7 - 1 ) / Y  

An expression for the propulsive efficiency is obtained by combining Eqs. 
(5.10), (5.11), and (5.30) 

2 ~  
he= [ 2rr (r__ L ) ,rxM2] ~ (5.36) 

,rr,rc--1 ( r ~ - l ) + - ~  Ol + M  o 

Equation (5.35) indicates that the behavior of the specific fuel consump- 
tion can be interpreted as a combination of three influences. Thus, as the 
flight Mach number increases, the required increase in energy requirement 
appears in the factor M 0. This effect is somewhat compensated for by the 
increases in ,/p and ~th that occur for increases in M 0 for the ideal 
engine case. Figure 5.25 illustrates the variation in behavior of the thermal 
and propulsive efficiencies for the ideal turbojets and ramjets previously 
considered. 
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It can be seen that the trends support the comments made in the previous 
section in that the low thermal efficiency dominates the ramjet performance 
at low M 0, whereas the rapidly increasing propulsive efficiency leads to the 
reduced specific fuel consumption at high Mach numbers for the turbojet. 

As a final observation upon the behavior of the specific fuel consump- 
tion, it can be noted that for given Mo('rr) and compressor pressure ratio ~r~ 
(hence %), the thermal efficiency of the ideal engine is independent of 
turbine inlet temperature. Thus, the observed decrease in S with ~'x seen in 
Fig. 5.24 results solely from the increase in propulsive efficiency that occurs 
with decrease in T x. 

5.10 The Maximum Thrust Turbojet 
In Fig. 5.21 it is evident that a maximum specific thrust occurs for a 

specific value of compressor pressure ratio. This specific value of compres- 
sor pressure ratio can be directly obtained from Eq. (5.22) by equating the 
derivative of the specific thrust with % to zero. Noting that at fixed flight 
conditions and turbine inlet temperature, a o, "r r, M o, and 0- x are all 
constant, it is evident that F / r h  will be a maximum when 

O [  2"r r ( ' r  h _ l ) ( T c _ l ) +  Tx M2 ] 
0z c - / - l ~ r F c  T-~ ° ]  = 0  

or when 

Hence 

- r - 1  - 1 +  ,-~,%2 ~r~. i 

,r c = ~ x  /'rr (5.37) 

F / f n  is a maximum. The expression for the specific thrust in this when 
special case is hence 

F a 2 M2] -~ 

Also, it follows from Eqs. (5.31) and (5.37) that 

f = ( C, To/h )f~x ( f~x - 1) (5.39) 

Temperature Relationships at Maximum Thrust 
The relationship o f  Eq. (5.37) leads to the result that the stagnation 

temperature following the compressor is equal to the static temperature at 
nozzle exit. This can be shown as follows: 

Tt 3/  To = 'r  cTr  = ( "lr c'lr r ) ( Y -1) / Y = [/Pt3/Po" )X(Y-1)/Y 
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Fig. 5.26 Temperature entropy diagram for maximum thrust turbojet. 

But P0 = P9 and Pt3 = Pt, SO that with 

( Pt 3/Po )('r -1)/y = ( Pt,/P9 )(Y -1)/.r = Tt j 7,9 

Write 

7;,,/70 = ~ ,  = rt,/79 = 

or  

(r,,/ro)2 = r,,/r0 = (r,,/r9)2 

Thus, 

Tt3 = ~ t T 0  = T 9 Q.E.D. (5.40) 

The temperature entropy diagram is then as indicated in Fig. 5.26. Note 
that the T-s diagram is very "full" for the condition T~, = T 9. 

Example Results--Maximum Thrust Turbojet 
The performance of a maximum thrust turbojet may be plotted in a 

similar manner to the conventional turbojet and ramjet. Figure 5.27 shows 
the specific thrust vs flight Mach number for a family of maximum thrust 
turbojets. Shown for comparison is the equivalent performance of a family 
of turbojets with a compressor pressure ratio of 20. Conditions are as in 
Figs. 5.21-5.23, namely "y=l.4,  T0=222.2 K, h=4.4194(107) J/kg,  
Cp= 1004.9 J / k g -  K, and r x = 7. 

The related compressor pressure ratio giving maximum thrust is shown in 
Fig. 5.28. Note that each maximum thrust turbojet graph must terminate 
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Fig. 5.27 
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Compressor pressure ratio for maximum thrust. 

where ,r c = 1. This occurs when ~c = 1, giving from Eq. (5.37) Zr = TV/~-x" 
Hence 

(5.41) 

5.11 The Ideal Turbojet with Afterburning 

A well-established and relatively simple method of increasing the thrust 
level of a turbojet is to "afterburn" in the duct following the turbine outlet. 
The additional enthalpy coupled with the nozzle pressure ratio provides a 
substantial thrust augmentation, although at the expense of an increase in 
specific fuel consumption. The mechanical arrangement and related station 
numbering are indicated in Fig. 5.29. 



154 GAS TURBINE AND ROCKET PROPULSION 

0 

I 2 5 4 5 6  7 8  9 

Fig. 5.29 The turbojet with afterburning. 
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Fig. 5.30 Pressure-volume diagram, ideal 
afterburning turbojet. 
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Fig. 5.31 Temperature-entropy dia- 
gram, ideal afterburning turbojet. 

When the entire cycle is considered ideal, all the component relationships 
of Sec. 5.3 remain true, and in addition note ~rAa = 1. Usually the maximum 
temperature attainable in the afterburner is substantially higher than that 
attainable in the primary combustor because of the restriction placed upon 
the attainable temperature in the primary combustor by the presence of the 
turbine. Figures 5.3ff and 5.31 indicate the thermodynamic cycles ap- 
propriate for the ideal afterbuming turbojet. 

Cycle Analysis of the Ideal Afterburnlng Turbojet 
Again assume, as in Sec. 5.8, that all component etiiciencies are perfect, 

that the gas is calorically perfect, that the exit static pressure is equal to the 
ambient pressure, and that the fuel-to-air ratio in both primary combustor 
and afterburner is much less than unity, with the result 

Specific thrust = ~ = a o u--o (5.42) 

where as before [see Eq: (5.12)], 

(u91,o)  2 = ( T9/ To ) (MglMo)  2 (5.43) 
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Now write 

T,,= Tg(I + Z ~ - M Z ) =  Torx^B (5.44) 

(5.45) 

Hence, with Eqs. (5.1), (5.4), (5.6), and (5.45) 

1 + -~2-1-M~=rrr~rt (5.46) 

Equations (5.42-5.46) may now be combined to give 

F 2 rXAB(r,%r t -  1) - M  o 
-~ = a° y -1  "r/r;r t (5.47) 

The similarity between this expression and that obtained for the turbojet 
without afterburning [Eq. (5.20)] is evident when it is noted that the 
minimum value for rXA B that occurs for no afterburning is (rXhB)m~ n = Tar t. 
With this substitution Eq. (5.47) reduces immediately to Eq. (5.20). 

The power balance between the compressor and turbine remains un- 
changed, so that Eq. (5.21) remains valid, namely, 

rt= 1 - ( r J r x ) ( r  c - 1) 

The expression for the fuel-to-air ratio in the primary burner also remains 
as before [Eq. (5.24)]. The fuel-to-air ratio for the afterburner is obtained 
from an enthalpy balance across the burner to give 

%^~h = ( . ,  + % + %A,, ) c,, r,, - (m + %)C,,r,, 

o r  

%AB Cpr0 
fAa= r~ -- h (rxAB- rxrt ) (5.48) 

Combining Eqs. (5.21), (5.24), and (5.48) then gives 

%+ %^. Cpro 
]'tot = r~ = T ( r x a B  - "r,.) ( 5 . 4 9 )  

Summary of the Equations--Ideal Turbojet with Afterburning 

Inputs: To(K ) [°R],  ,/, h (J /kg)  [Btu/ lbm],  

Cp ( J / k g .  K) [B tu / lbm.  °R],  r x, rXA a, ~r c, M o 



156 GAS TURBINE AND ROCKET PROPULSION 

Outputs: 

E q u a t i o n s :  

R = , - 

s)[ r 
~ go-m ' lbm/s  ] 

mg fuel /h 
lbf thrust ] 

ftot( kg fuel/s )[ lbm fuel/s ] 
kg air /s  lbm air /s  

"1' Cp m2/s 2" K R = )' - 1 Cp(2.505)(104) ft2/s2" OR ] 
Y 

(5.50) 

a o = ~ m / s  [ f t / s ]  (5.51) 

~'r = 1 + -Z~-~- Mo2 (5.52) 

"c = ' # ' - " / '  (5.53) 

r, = 1 - ( % / ~ ' x ) ( ' r c -  1) (5.54) 

([ ] ) - - = a F  2 'rXAB (,r,r,r _ 1 ) ~ _ M  0 
o ~ - 1  TrTcT t \ rc, 

(5.55) 

F ao 2 "rxA.......~B ( TrZcTt __ 1) - M o 
go ~ 32.174 "y 1%Lzt 

Note: The minimum allowable value for rXA B is zX^ B = rX~" ,. 

/tot = (Cpro//h)(ThAB -- Tr) (5.56) 

[ 3600ft°t ] (5.57' 
S =  (10 6 ) S F/(gor'n) 

Example Results--Ideal Turbojet with Afterburning 
Consider a turbojet to fly at a flight Mach number of 2, with the 

conditions y = 1.4, To= 233 K, h = 4.54 (107) J kg -1, Cp--1005 J kg -1 
K - l ,  ~'x = 7, and zXAB = 8. Figure 5.32 compares the performance of the 
turbojet over a range of compressor pressure ratios operating with and 
without an afterburner. 
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Fig. 5.32 Effect of compressor pressure ratio on performance, ideal turbojet with 
afterburner. 

As predicted, the addition of afterburning leads to an increase in the 
specific thrust at the expense of an increase in the specific fuel consumption. 
It is of interest to note the location of the maximum in the specific thrust 
when afterburning is present. By formally taking the derivative of the 
specific thrust with ~'c [Eq. (5.55)], it is evident that the maximum occurs 
when the product Zrrc~', reaches a maximum. Such a maximum occurs when 
~rr'rr¢'n't = P t / / P o  = Pt l /P9 reaches a maximum and it is evident (and obvious) 

5 . 5 

that the maxamum thrust occurs when the nozzle pressure ratio reaches a 
maximum. Note also that because ]'tot is a function of Tx^ B and r r (and 
CpTo/h  ) only, the maximum in thrust corresponds to the minimum in 
specific fuel consumption! 

The analytical expression for the compressor pressure ratio giving maxi- 
mum thrust is obtained by noting with Eq, (5.54), 

Hence at the maximum 

1 - ( r r / r x ) ( 2 z c -  1)=  0 o r  ( ' rc)max thrus t = (Tk + "rr)12T r 

and 

'Tic max thrust = [ ( ' r h  q- "rr)/2"rr] 3' /( '¢-  1) ( 5 . 5 8 )  
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In the example given above, 

"Ire max thrust = [ ( 7  + 1.8)/3.6] 3.5 = 2 2 . 8 4  

It would appear then that such a value for the compressor pressure ratio 
would be near a suitable compromise for an aircraft that was to cruise 
efficiently with no afterburning, but was to engage in combat with high 
thrust and relatively efficient afterburning fuel consumption. 

5.12 The Turbofan with Separate Exhaust Streams 

Cycle Analysis of the Ideal Turbofan with Separate Exhaust Streams 
The methodology of cycle analysis, as described in Sec. 5.8, will again be 

applied. When applying the cycle analysis, the thrust of both the primary 
(core engine) and secondary (fan) streams must be accounted for and the 
turbine power output must now be equated to the power input to both the 
fan and compressor. It is again assumed that all component efficiencies are 
perfect, that the gas is calorically perfect, that the fuel-to-air ratio in the 
combustor is much less than unity, and that the exit static pressures of both 
the primary and secondary streams are equal to the ambient pressure. The 
nomenclature and notation are as in Fig. 5.17 and Sec. 5.2. 

The total thrust may be written as the sum of the thrust contributions of 
the two streams to give 

o r  

r =  m~("9-"o) + m~("9'- Uo) 

o0 0[(u9 1)] 
m~+m~ iZ~ ~o-1 + ~ " 0 -  (5.59) 

where rn c is the mass flow rate of the primary stream, rn r the mass flow rate 
of the secondary stream, and a = mF/mc the bypass ratio. 

Secondary stream. Again, 

( u9,/Uo ) ' =  ( T9,/ro )( g g , /  Mo ) ' (5.60) 

Thus, 

r,9 = rg ( l + Z ~ -  M~ ) = TO~r~c (5.61) 

(5.62) 



IDEAL CYCLE ANALYSIS 159 

With Eqs. (5.1), (5.4), and (5.62), 

So that 

1 + [(y - 1)/2] M9 z, = Trr c, (5.63) 

Thus 

This result could have been obtained more directly by noting P9' = Po and 
sg, = s o, hence T 9, = T 0. Equations (5.60), (5.63), and (5.64) then give 

or 

M°(~o '  1) [~_~21(rF,, 1)] 2̀ - -  ~ - -  _ m 0 (5.65) 

Pr imary  s t r eam.  Here, the relationships for temperatures and pressures 
are exactly as previously obtained for the turbojet (Sec. 5.8), so 

[ ] M o u9 - 1  = 2 rx (rrrcr , _ 1 )  - M  o (5.66) 
y 1 rrr c 

P o w e r  ba lance .  For this ideal cycle, the power output from the turbine 
will just equal the power input to the fan and compressor. Hence, 

,~,G(r,,- r,,) =,~G(r,,- r,2)+,~FG(v,,- vt2) 

rx(1 - Tt)= rr(r  ~ - 1) + eCrr(r C, - 1) 

or 

r t = 1 - ( r r / r x ) [ ( r  , - 1 )+  a( r , . , -  1)] (5.67) 

S p e c i f i c  fue l  c o n s u m p t i o n .  An enthalpy balance across the combustor 
gives 

mfh = I~lcCp(Tt4- Tta ) 

f =  , . / / , ~ ,  = ( Cpro/h )( ~ - V c )  

The specific fuel consumption then follows from 

r~/ m! 1 1 
S = T ( 1 0 6 ) = - -  m,, (mc+m,~)/,~, r/(m,+m,J 

(5.68) 

(106 ) 

T 9, = T O (5.64) 



160 

o r  

GAS TURBINE AND ROCKET PROPULSION 

S = f(106)  (5.69) 
( l  + + 

Combination of Eqs. (5.59) and (5.65-5.69) then gives the following 
summary of equations. 

Summary of the Equations--Ideal Turbofan, Bypass Ratio Prescribed 

Inputs: To(K ) [°R], "),, h(J/kg) [Btu/lbm] 

Cp (J/kg. K)[  Bt_u l Ibm. °R ]' ~'x, 7r,, rr,, Mo, a 

.F ( N ' s  F lbf ] 
Outpu t s :  ftl ( ..}_ fnF --~-g )[ go( fn,. + fnF) , lbm/s 

mg S(~.~ .  s ) [lbm fuel/h 
lbf thrust ] 

kg fuel/s 
fkg primary air/s 

Equations: 

R = ' Y - 1  [ "y-1 ft 2 ] 
"Y Cp m2/s 2. K R = "[ Cp(2.505)(104) s2--T~ ] (5.70) 

a o = ~ m / s  [ f t / s ]  (5.71) 

z r = 1 + Y - ~ M  2 (5.72) 

r,. = ~r,!~- 1)/~ (5.73) 

r,., = ~r,!Y- 1)/~ (5.74) 

'It = 1 --(  "/'r/'l'h )[(  T,.-  1)+ a ( r , . -  1)] ° (5.75) 

/[ ,] F = a o _2 rx _ 
m ,. + in F 1 + a "y 1 z?,. ( ~'FcT' 1 
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(To obtain British units of lbf/lbm/s, replace a o in meters/second with 
ao/32.174 where a o should be given in feet/second.) 

f = ( G T(,/h )( za - "r G. ) (5.77) 

f(106) [ 3600f ] (5.78) 
S= ( l+a)[F/(m, .+fnF)]  S= ( l + a ) [ F / g o ( f n . + m r )  ] 

Bypass Ratio for Minimum Specific Fuel Consumption 
It would be desirable to select the bypass ratio a to give the minimum 

specific fuel consumption possible for the given prescribed operating condi- 
tions (T 0, Mo), design limits (1"x), and design choices (~r,, ~r,). 

It is evident from Eqs. (5.76-5.78) that the minimum value for S will 
occur at the maximum value of the expression 

a o fn,.+mF M°-~o Mo+a Mo-~o-Mo 

Taking the derivative of this expression with a, it follows with Eqs. (5.65) 
and (5.66) that 

0[Mo(,./.o)]" 
Oa 

u 9 { u 9, = Mo 0tMoZ-Mo) (5.79) 

But with Eqs. (5.66) and (5.67) 

e[mo(u9/Uo)] 2 2 
- o,~ v - 1 ~ r ( ~ , , -  1)  

_ 2 2 
- (TF , . , -  1 ) -  - T - - 7 ( ~ ' ~ -  1) 1 Y y - - i  

u 2 
M 9' (5.80) 

Thus, combining Eqs. (5.79) and (5.80), 

I /  Ug, +Mo) MoU9 = 2 ( 

and 

2(M0  Mot=( ,o -Mo) 

(5.8a) 

(5.82) 

This latter form reveals that, when the bypass ratio is such as to give 
minimum specific fuel consumption, the thrust per mass per second of the 
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core stream is just one-half that of the fan stream. This somewhat surprising 
result follows primarily because, when the efficiency of energy transmission 
between the two streams is very high, the propulsive efficiency is improved 
by expending most of the energy in providing momentum to the denser 
(cooler) fan stream. It should be noted that when component losses are 
present, the optimal thrust per mass per second of the core stream is a much 
higher fraction of the fan stream thrust. 

The turbine temperature ratio corresponding to this optimal case ~t* 
follows from Eqs. (5.65), (5.66), and (5.81) to give 

~'t* = - -  + - - ~rr~r c ~ ~rr~rc" 1)~+('r~ 1) ~ (5.83) 

The related value of the bypass ratio a* follows from Eq. (5.75) to give 

t.¢-----Z~ 1 (1 - rt*) -(~¢ - 1) (5.84) 

The performance variables for this optimum case may now be obtained 
with the summary equations (5.70-5.78), except that Eq. (5.83) would 
replace Eq. (5.75) and a* would be calculated from Eq. (5.84) rather than 
input. 

Example Results--Ideal Turbofan with Separate Exhaust Streams 
An example of the use of the performance equations is the effect upon 

the performance parameters and the optimal bypass ratio of variations in 
the bypass pressure ratio. (See Figs. 5.33 and 5.34.) 
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Fig. 5.33 Optimal bypass ratio 
vs bypass pressure ratio. 
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Fig. 5.34 Specific thrust and 
specific fuel consumption vs 
bypass pressure ratio. 
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Conditions assumed for these calculations were "y = 1.4, T 0 = 233.3 K, 
h=4.4194(107 ) J /kg,  Cp=1004.9 J / k g . K ,  ~r =20,  "rx=6.5, M 0 = 2 .  
It is apparent that a tradeoff between high thrust per frontal area and low 
specific fuel consumption occurs. This clearly reflects the increase of propul- 
sive efficiency with a decrease in fan exit velocity (low ~-,,). The enormous 
optimal bypass ratios occurring for the very low bypass pressure ratios do 
not  in fact occur when losses are considered (see Chap. 7). The effect of 
losses is to much reduce the optimal fraction of energy to be supplied to the 
bypass stream. 

The variations of a* ,  S*, and F*/(rh c + rh~) with flight Mach number 
are shown in Figs. 5.35 and 5.36. The conditions assumed are as above with 
the additional value ~r c, = 2.0. 

The strong effect of flight at increasing Mach number is evident in these 
curves. Thus, because of the increase in the entering enthalpy of the fan and 
core streams, the work interaction per mass required to supply the needed 
fan and compressor pressure ratios increases greatly. As a result, the 
turbine, which has a fixed entry enthalpy, cannot supply the necessary 
energy to drive a large bypass ratio fan, and the bypass ratio must be 
decreased. 

Figures 5.37 and 5.38 indicate that increasing ~'x has a similar effect upon 
the optimal bypass ratio and specific thrust as does reducing the flight 
Mach number. (Conditions assumed are as above with M 0 = 2.) This is true, 
of course, because an increase in ~'x gives an increase in turbine power 
capability. The slight increase in specific fuel consumption with ~'x would 
appear to negate the thrust advantages of going to higher turbine tempera- 
tures. However, it should be noted that not only would the engine be 
smaller (particularly the core engine), but the specific fuel consumption will 
actually tend to decrease with increasing ~'x when the component losses are 
included. 
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As a final example of the ideal turbofan with separate exhaust streams, 
consider the effects of varying the bypass ratio from the optimum value. 
Conditions are as assumed in the above examples and the results are 
illustrated in Fig. 5.39. 

Figure 5.39 illustrates that a truly optimal choice of bypass ratio might be 
other than that leading to the minimum specific fuel consumption. Thus, for 
example, note that by selecting ct = 3 rather than a* = 3.91, a 21% increase 
in specific thrust can be obtained at a penalty of a 1.5% increase in specific 
fuel consumption. When the engine size, weight, and cowl diameter are all 
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considered for the installation effects, it is probable that a bypass ratio 
lower than that corresponding to a* would be selected. 

5.13 The Ideal Turbofan with Mixed Exhaust Streams 

In many installations, particularly aircraft with body-mounted engines, it 
is suitable and convenient to duct the primary and secondary streams 
through a common exit nozzle. In the event that little mixing of the streams 
occurs, the analysis in Sec. 5.12 would remain valid. In many applications, 
however, "forced mixers" are used to greatly enhance the mixing of the 
streams. Several benefits may accrue from mixing the streams, such as 
improvements in the performance parameters and reductions in the exhaust 
jet noise. 

In order to analyze the behavior of a turbofan with ideal stream mixing, 
the presence of an "ideal constant-area mixer" is assumed. An ideal 
constant-area mixer is defined as a constant-area mixer with no sidewall 
friction. Analysis of such a device provides the outlet stagnation conditions 
as a function of the two sets of inlet conditions. When the outlet conditions 
are known, the performance of the engine can be determined. 

Cycle Analysis of the Ideal Turbofan with Mixed Exhaust Streams 
This turbofan is shown in Fig. 5.40. Again assume that all efficiencies are 

perfect, that the nozzle exit pressure is equal to the ambient pressure, that 
the gas is calorically perfect, and that the combustor fuel-to-air ratio is 
much less than unity. The specific thrust may hence be written 

F/(mc + mF) = aoMo[(U9/Uo) - 1] (5.85) 

Also 

and 

( U 9/  U o ) 2= ( Tg// To ) ( m9// mo ) 2 

7 - 1 Mz] ~/~-1~ (P'9 
P,9 = P9(1 + - " ' ~  - 9 I =po~rr'tr,"~pt~.) 

(5.86) 

(5.87) 

(5.88) 

2 3' 

 -'li If o 7 e 9  

Fig. 5.40 The ideal turbofan with mixed exhaust streams. 
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An enthalpy balance gives 

mcCJ,~ + m~C~T,~ = (me + m~)CT, ~ 

or 

Tto/T o = [1/ (1  + a)] (~'x'r ' + at;re,) (5.89) 

Combination of Eqs. (5.85-5.89) then gives 

F 2 ~ , - 1 )  1 " 
]¢?'lc'-~t?l F - -a°  -+a  1 -  , _ -  ~tr-1)/v (rxrt+aT/c'"  - M  

"rrq'c' [ P t J  P'3, ) } 

(5.90) 

The power balance between the compressor, fan, and turbine remains 
unchanged, so T t is still given from Eq. (5.67). The following will obtain the 
ratio ptg/Pts, SO note here 

PI9 _ Pt9 Pt5 Pt.~ ~r,.q'r t 
= - -  - -  (5.91) 

Pt~, Pt 5 Pry Pt, ~r,, 

The expressions for f and S remain as in Eqs. (5.68) and (5.69). These 
equations will be summarized following the next section. 

The Ideal Constant-Area Mixer 

The constant-area mixer is shown in Fig. 5.41. Consider Pts, Tts, Ms,  
Pt3, , Tt3,, and a to be prescribed. The common static pressure at the splitter 
p can then be obtained directly from 

Pts 1 + M 
P 

(5.92) 

AS, Pt3 ' 
"rt3, 

As~s 
Tt5 

A7 

P*T 
T,T 

Fig. 5.41 The constant-area mixer. 
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from which 

2 p,~ ,r ~,/r 2 [(Pt3 1 [1 + Y--~M~ - 1  
M32,- y -  1 --p- - 1  = ~ T  L [ Pt~ ] 

o r  

Equation (2.102) for tJae mass flows may be utilized to give 

Ay _ I Tt3 M, ( Pt3. ] [(V-1)/2vl 

A5 a Tt~ My Pt~ } 

The momentum equation may be written as 

As( p5 + psu~ ) + A3. ( p3" + p,.,~,) = A7( P7 + p7u~ ) 

(5.93) 

(5.94) 

f = f ( M v ) = ( l + a  ) 1+ T t s ] [ ~ M 5  ) 

+ o ]2 
~/f(My) 

where 

(5.98) 

This is once again of the same functional form for the Mach number as 
occurred in the solution for the heat interaction at constant area in Sec. 

an equation for M 7 can be obtained by combining Eqs. (5.95-5.97) and may 
be written in the form 

Asps(1 + "rM~)+Aypy(1 + "rM~)=ATPT(1 + "rM~) (5.95) 

The equation for the mass flow [Eq. (2.102)] may be written in the form 

I 

p,A,= ~T~,~  1+  M, 2 rh, ( i = Y , 5 ,  or7) (5.96) 

Noting from the enthalpy balance that 

T~7 _ 1 + a(T~3./T~5 ) (5.97) 
TI5 l + a  
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2.18, so 

M72 = 2f (5.99) 
1 - 2yf+ ~/1 - 2(~, + 1)f 

Following solution for M v, the other downstream variables follow di- 
rectly. Thus, Eqs. (5.96) and (5.97) may be combined to give 

PtsPt--2=[(l+a)( 1 + 
" 1 + - ~ M  2 

1)/2(3' 1) 

Summary of the Equations--Ideal Constant-Area Mixer 

Inputs: P, 3,/Pt , , T, r /  Tt, , 345, a 

Outputs: P,7/Pt~ , M7 

Equations: 

where 

1'J (1 1] M¢= 7 _ l [ ~ p t ,  + ~ - - M ~ ) -  

f = ( l + a )  l + a  Tt , ] l  

M5 1 
M7 1-~ Ay 

A5 

(5 .lOO) 

(5.101) 

o ]2 
- - + ~  

(5.102) 

(5.103) 

Pt7 
Pt~ 

+ , , , 2 )  2 

1 - 2 ~ / +  ~1 - 2 ( , / +  1 ) f  

( l + a )  l + a - ~ t  5 M, 1 + - ~  Mvz 

A y  M 7 
l + - -  

A5 
1+ - ~ M ~  

(5.104) 

(y + 1)/2(y 1) 

(5.1o5) 
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Summary of the Equations--Ideal Turbofan with Mixed 
Exhaust Streams 

Inputs: To(K ) [°R],  y, h ( J / k g ) [ B t u / l b m ]  

Cp(J /kg  • K ) [ B t u / l b m  • °R],  ~'x, rr c, ~rc,, M o, a,  M 5 

F N - s  
Outputs: /jl, + /~,12 ( --~-g ) 

F lbf ] 
go(rhl + r~2) ' l b m / s  

1-U th-ff~st 1' 
kg fue l / s  

f k g  primary a i r / s  

Equations: 

R =  ) ' - 1  )' C e m2/s  2- K R = Y - 1 Cp(2.505)(104) ft2/s2 " OR ] 
Y 

(5.106) 

a o = ~ m / s  [ f t / s ]  (5.107) 

"r r = 1 + Y - ~ M o  z (5.108) 

% = ~ v - 1 ) / v  (5.109) 

~,=~,!,~-,/~ (5.11o) 

"r, = 1 - ('r,./ 'ra)[('r ,. - 1) + a( ' r  c, - 1)] (5.111) 

~'t = "rtV/('r- 1) (5.112) 

[Pt/Pt is then obtained from the equations for the ideal constant-area 
mixer 9. N~te  that Pt9 =Pt~, PtJPt~ = ~rc'/rrdr. and Tt~,/Tt~ = "rFc./%~'t]. 

P~. Pt. 7rdr~ 
Pt3. Pts rr,., 

(5.113) 

F . 1 -  1 

TF,"( PtJPt3,) 

(5.114) 
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(To obtain British units of lb f / lbm/s ,  replace a o in meters/second with 
ao/32.174 where a o should be given in feet/second.) 

f =  ( CpTo/h )('rx - ~'F,,) (5.115) 

f(10 6 ) [S = 3600f ] 
S = (1 + a)[F/(m c+ r~F) ] (1 + Ct){ F/[go(m ` + r~F)]} 

(5.116) 

Example Results-- Ideal Constant- Area Mixer 

In order to compare the performance of fully mixed streams and separate 
streams, consider the "gross thrust" capability of the two cases. Gross thrust 
is the thrust that would occur if all the momentum of the exit streams 
contributed entirely to thrust. Thus 

Fun = ?J'lclgel "]- ?J'lFlge2 f o r  u n m i x e d  streams (5.117) 

Fmix = (mc + ?~F)Ue for mixed streams (5.118) 

Noting that for all cases (Sec. 2.15) 

ue = y -  1 ~t (5.119) 

it follows immediately that 

r Pe ]" "'1" 
J 

--1,--  

Fun = (5.120) 
1 

+ + , ,  - 

Equations (5.101-5.105) and (5.120) allow direct calculation and com- 
parison of the ideal constant-area mixer performance with nonmixed stream 
performance. As an example, consider a mixer with a = 2, M5 = 0.5, and 
7 = 1.4, and investigate the effects of varying the temperature ratio Tt3,/T,,, 
stream pressure ratio Pt3,/Pts' and exit pressure ratio Pe/Pt~" 

Several trends are evident in Figs. 5.42 and 5.43. Thus, note that a mixing 
benefit occurs only when there is a difference in stagnation temperatures in 
the streams. This is because the stagnation pressure losses identified with 
mixing will cause a decrease in thrust unless one of the streams has a higher 
stagnation enthalpy, with a consequent possible benefit of equalizing the 
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Fmlx 

1.00 

. 9 9  

\ 

Fig. 5.42 

.98 
.95 .90 .85 
Pt 3 ' /Pt  5 

Effect of variation in stream pressure ratio, ideal constant-area mixer. 

Fmix 

%. 

1.06 ///~~ 

1.04 Pt3'_ Pe -0.3'~ 
Pt5 - I  Pt5 

1.02 "p 

, o o  
I 0.8 0.6 0.4 0.~ 

rt3,/rt5 
Fig. 5.43 Effect of variation in stream temperature ratio and exit pressure ratio, 
ideal constant-area mixer. 

enthalpies. It is to be noted also that when the exit pressure is further 
reduced, the penalty identified with stagnation pressure loss in mixing is 
reduced, because the overall pressure ratio is so large. 

It can be surmised, then, that real mixers (including viscous losses)" may 
show signs of performance gains when used on nozzles with large expansion 
ratios and in which substantial temperature differences between the two 
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M5 

Fig. 5.44' Effect of variation in inlet Mach number, ideal constant-area mixer. 

streams exist. It should be noted that "forced mixers" are being considered 
for transport aircraft, where the promise of performance benefits is not 
substantial. In such cases, the prime motivation for the use of mixers arises 
from the hope of substantially reducing the jet noise. 

As a final example, the effect of varying the inlet Mach numbers of the 
mixing streams is shown in Fig. 5.44. Consider the case a = 2, Tt3,/Tt~ = 1, 
Pt3,/Pt~ =0.9 ,  and Pe/Pt~ =0.5.  Note here that increasing the Mach 
number at entry to the mixer reduces the losses. This might at first ap- 
pear anomalous because one might expect interactions at low Mach number 
to be less vigorous. It is apparent, however, that as the Mach number M 5 
decreases, the pressure at the splitter plate increases, leading to a lower 
value of My. Thus the relative velocity difference increases as M 5 decreases, 
leading to the greater mixing losses predicted by the ideal analysis. It should 
be noted that when skin-friction losses are included, there will be an 
opposing effect because of the Mach number squared dependence of the 
skin-friction losses (see Secs. 2.17 and 2.18). The design of a real mixer will 
involve the optimal choice of the design parameters, including not only the 
effects just discussed, but also consideration of the many installation effects. 

Example Results--Ideal Turbofan with Mixed Exhaust Streams 
To compare  the performance of turbofans with and without mixing, 

consider a turbofan with bypass ratio a equal to two. Other conditions will 
be as those given for Fig. 5.39, that is: ~, = 1.4, T O = 420°R, h = 19,000 
B tu / lbm,  C_ = 0.24 B t u / l b m .  °R, ~r C = 20, ~rc, = 2, ~'x = 6.5, M 0 = 2. 

P . . . .  

The analysis utlhzed to obtain Fig. 5.39 yielded ~r = 1.8, *c = 2.3535, 
• ,, = 1.2190, T t = 0.50387, and ~r t = 0.090807. These values utilized with Eqs. 



IDEAL CYCLE ANALYSIS 173 

(5.101-5.105), with M5=0.5, then give p,7/pts = 1.0564. Finally, Eqs. 
(5.106-5.116) yield for the turbofan with mixed streams 

S --- 0.741 lbm/h / lb f  

F / [ g o ( m ,  + ~'/F)]  = 19.46 lbf / lbm/s  

These values are to be compared with the following values for the 
unmixed case 

S = 0.754 lbm/h/ lbf  

F / [ g o ( m c  + m F ) ]  ~-- 19.12 lbf / lbm/s  

Thus the ideal mixer, in this case, provides a thrust and specific fuel 
consumption improvement of almost 2%. 

5.14 The Ideal Constant-Pressure Mixer 

The behavior of a mixer designed with an area variation that gives 
constant-pressure flow will be examined in this section. It is again assumed 
that there is no sidewall friction. With these assumptions solution for the 
downstream variables becomes trivial, because the pressure is already known 
and the fluid momentum is conserved. As a result of the simplicity of the 
solution, analytical determination of the inlet conditions that lead to the 
maximum possible outlet stagnation pressure is straightforward. 

The geometry to be considered is shown in Fig. 5.45. Because the 
momentum is conserved in this device, it is convenient to consider the 
behavior of the velocity rather than the Mach number and so a dimension- 
less velocity is introduced for convenience, along with other convenient 
groupings. Thus define, 

V~ = ui /  yvf~T~, ~ (i = Y,5,7) 

= T , , . / T , ~  

s, = ( p, , /p, ,  ) ' 

3' 

5 7 

Fig. 5.45. Constant-pressure mixer. 
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The momentum equation gives immediately 

V5 + otV 3 , 
VT- l + a  

and conservation of energy gives 

In general 

T,7 1 + aT 

Tt~ l + a  

GTt, = GTi + u~/2 

Sn that 

( p  ]( '- ')/~ 7], y - I  T,, 
P,,! - Tt ' 1 ~- T~ V, 2 

It hence follows that 

= I p/p'' s ,  77 ,, : = 

(5.121) 

(5.122) 

(Note p = P r  =P5 =P7) 

(5.123) 

1 - [ ( y -  1 ) /2 ]  ~2 

1 - [(~ - 1)/2] ( l / z )  V3 z, 

Similarly, using Eqs. (5.121-5.123), there follows 
¢ 

1 y - 1  2 V52 
$7= 

1 -  "y-1  ( Vs + aV3,) 2 
2 (1 +a)(1 +aT) 

Area Relationships 
In general, 

i v ,  

Combination of Eqs. (5.123-5.126) then gives 

Ay = ° f f l ' S f  1 V 5 
A 5 I73, 

v~ 
&A~ = (1 + ,0(1 + ,~T)s; 1 v, + ,w3, 

(5.124) 

(5.125) 

(5.126) 

(5.127) 

(5.128) 
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Optimal Mixer Entrance Conditions 
These equations allow direct solution for the outlet conditions as well as 

the required area variation. It is of interest to note, however, that combina- 
tion of Eqs. (5.124) and (5.125) gives S 7 in terms of V 5 and the prescribed 
upstream stagnation conditions. This allows the analytical determination of 
the engine stream dimensionless velocity that gives the maximum outlet 
stagnation pressure. 

Carrying out the required manipulations (Problem 5.15), the conditions 
corresponding to the maxima are found to be 

Vy /V  5 = 1 or Vy /V  5 = r (5.129) 

The correct root is not identified with the presence of a maximum or 
minimum, but rather with the possibility of the gas streams attaining the 
desired ratio. Thus, the maximum imaginable value for V 5 occurs as 
M 5 --, oo. At this condition, V 5 = ~/2/(y - 1) .  

Utilizing Eqs. (5.124) and (5.129) and denoting by a subscript a the case 
where V3,/V 5 = 1 and by a subscript b the case where V y / V  5 = ~-, it follows 
that 

"/-  1 S~,/;---- 1 and Vs~ - "t - 1 *$3' z i 

(5.130) 

It thus follows that physically allowable solutions exist for 

. . . .  < l , r > l  V5 1 when > 1, ~" < 1 or when P,3. 
Pt~ P,~ 

- -  > l , , r > l  V5 = ~" when - -  < 1, T < 1 or when Pt~, 
Pt5 Pts 

(5.131) 

The performance of the optimal mixer now follows directly by substitu- 
tion of Eqs. (5.130) and (5.131) into Eq. (5.125) to give 

l + a r  l + a  
= STh = (5.132) S7a SY Sy + otr, Sy sy + a 

Further, Eqs. (5.127), (5.128), and (5.130) show that for both optimal 
cases 

Av= A3, + A 5 
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Thus the optimal constant-pressure mixer is also the optimal constant-area 
mixer! 

These remarkably simple results for the optimal mixer output stagnation 
quantities allow easy determination of the optimal conceivable performance 
of a mixed stream turbofan. Thus, for example (Problem 5.20), combination 
of Eqs. (5.90), (5.91), and (5.132) leads (for case a) to the expression for the 
specific thrust 

rn,.+hl F ~ ~.F--- ~ - 1  ~ - 1  (5.133) 

This result can be compared to the optimal results of the separate stream 
case (see also Problem 5.21). It is rather interesting to note that the fan 
pressure ratio does not appear explicitly in this expression. Thus provided 
only that conditions are appropriate to e n s u r e  ptr /Pt  5 > 1 and r < 1, the 
specific thrust, in this optimal mixed case, is not a function of fan pressure 
ratio. 

5.15 The Ideal Turbofan with Afterburning 
A cycle that somewhat combines the high thrust per frontal area of a 

turbojet at high Mach number while providing respectable specific fuel 
consumption for subsonic cruise conditions is the turbofan with duct 
burning. The turbofan utilizes duct burning (burning in the secondary 
stream) for supersonic cruise, but cruises subsonically without duct burning. 
In many cycles, the fan and compressor require so much power extraction 
from the primary stream that the turbine outlet pressure is greatly reduced. 
The resulting low primary nozzle pressure ratio renders primary stream 
afterburning unattractive. In the following analysis, however, the possibility 
of primary stream afterburning as well as secondary stream afterburning 
will be included. 

Cycle Analysis of the Ideal Turbofan with Afterburning 
It is again assumed that all component efficiencies are perfect, that the 

gas is calorically perfect, that the fuel-to-air ratio in all combustors is much 
less than unity, and that the exit static pressures of both primary and 
secondary streams are equal to the ambient pressure. The nomenclature and 
notation are as in Fig. 5.17 and Sec. 5.2. 

The expression for the total thrust remains as given by Eq. (5.59); thus, 

- I (  t( F = a ° M °  u9 - 1  +or - - - 1  (5.134) 
?J'/c + /~/F 1 + a. u o u 0 

Secondary stream. Again 

(ug,/Uo) 2= (rg,/ro)( Mg,/Mo)" (5.135) 



IDEAL CYCLE ANALYSIS 177 

Now write 

T~, = T9,(I + Y - ~  MgZ,)= ToTxAw (5.136) 

(5.137) 

With Eqs. (5.1), (5.4), and (5.137) 

1 + - ~ M  2 = T:-,, (5.138) 

Combining Eqs. (5.136) and (5.138) gives 

Tg,/T o = "rxAa,/'rr'r~, (5.139) 

so that with Eqs. (5.135), (5.138), and (5.139) 

( )[ U9...~, _ _ 1  = 2 ~'x^B~'(~'rrc,-1 ) - M  o (5.140) 
M° u o y - 1  ~':'~, 

Primary stream. The relationships for temperatures and pressures here 
are exactly as previously obtained for the turbojet with afterburning (Sec. 
5.11). So 

[ ] M o I U g _ I ) =  2 ZXA,( 1) ~ Mo 
\ u o y - 1 TrTcT t " T r T c T t  - -  - -  

(5.141) 

Power balance. The power balance between the fan, compressor, and 
turbine remains as for the turbofan without afterburning [Eq. (5.67)], so 

~'t = 1 - (~'Jzx) [(~" c - 1) + a(~'c,- 1)] (5.142) 

Specific fuel consumption. The specific fuel consumption could be 
obtained by writing an enthalpy balance for each burner separately and 
then summing the separate fuel consumptions. It is more direct, however, to 
write an enthalpy balance across the entire system and to equate the energy 
addition in the burners to the overall enthalpy change. Thus 

(%+ %,,,, + %^~.)h = ,%c,r,o + ,~,%~.- (,n,. + m ~) C:,: 

or 

m:+ rn:^B + rn:^B, CpTo 
/~o,--- ,~ = h [~.+~^~,--(1+~)~r] 

(5.143) 
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The specific fuel consumption then follows from 

(rnf+ rJ]fA B + rhfAB,)(106) ftot (106) 
S = = (5.144) 

F (1 + a)[  F/( fn , .  + mr)  ] 

These equations are summarized in the following section. It can be noted 
here, however, that in fact this analysis contains most of the preceding 
analyses of this chapter as special cases. Thus, note that if a duct burning 
turbofan with no primary stream burning is to be considered, rXAB need 
only be replaced by its minimum value, 

( rXAB )min = rXrt (5.145) 

If no duct burning is present, rXA w must be replaced by its minimum 
value, 

( ~'hAB')rnin = rrrc" (5.146) 

If a turbojet is to be considered (with or without afterburning), the bypass 
ratio a must be put equal to zero; and finally if a ramjet is to be considered, 
amust  be put equal to zero and also ~r c (or rc) must be put equal to unity. 

Summary of the Equations--Ideal Turbofan with Afterburning 

Inputs: To(K ) [°R], y, h ( J / k g ) [ B t u / l b m ] ,  

Cp(J /kg .  K) [Btu / lbm.  °R],  rx, rXAa, rxaa', ¢r¢, ~r¢,, Mo, a 

F N . s  
Outputs: ?~lc+?~lF(---~'-g ) 

F lbf ] 
go (me + rh r ) '  l b m / s  ' 

( m g ) { l b m f u e l / h ]  
S ~ s  lbfthrust  ' 

kg fuel /s  
LOtkg primary air /s  

Equations: The first six equations are identical to Eqs. (5.70-5.75); then: 

F a o 2 r X A a ( r r r c r _ l )  _ M  ° 
~n c + in F l + a 7 1 rFcr t 

[[ ] ]} 2 rxAa' 
+ a  - - ( r r r  c, - 1) - m o (5.147) 

~ , - 1  rr%, 

(To obtain British units of lbf / ( lbm/s) ,  replace a o in meters per second 
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with a0/32.174 where a 0 should be given in feet/second). 

CpT° - (1 + a)Tr] (5 .148)  )(tot = h [ "rkAB + OtThAB' 

S =  
ftot (10 6 ) 

(1 + a ) [ F / ( r n ¢  + r~r)] 

Note." In these equations the minimum values of ZXAB and TXA B, to be 
considered are 

( rXAB )rain = I"XZ, (5.149) 

(rX^B')r~n = Z,T~, (5.150) 

If either of these minimum values is used, the calculation corresponds to the 
case where burning is not present in the respective afterburner. 

Example Results--Ideal Turbofan with Afterburning 
As an example of the effect of afterburning, consider the family of 

turbofan engines discussed in Sec. 5.12 that gave the results of Fig. 5.39. 
Here, again consider the addition of burning in the secondary stream such 
that "rXA w = 7.5. Conditions are hence "/= 1.4, T O = 420°R, h = 19,000 
Btu / lbm,  Cp = 0.24 Btu / lbm.  °R, ~r c = 20, ~x = 6.5, M o = 2, and ~r¢, = 2. 
The results are indicated in Fig. 5.46. 

F/~fn 

,uf 
Ibm/see ~ - "  

AB 
50 

40  

5 0  

20  

I 0  
0 

S 

Ibm 
Ibf hr 

I.I 

1.0 

0.9 
, ~'~,~ NO AB 0.8 

I 2 3 4 5 
0 

Fig. 5.46 Specific thrust and specific fuel consumption vs bypass ratio, duct burning 
turbofan. 
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Figure 5.46 illustrates the very substantial increases in specific thrust that 
can be obtained by the use of duct burning. The results suggest, also, that if 
high thrust levels are to be attained for given flight conditions, whereas 
efficient cruising is desired for other (lower thrust) flight conditions, the duct 
burning turbofan shows promise of affecting a reasonable compromise. 

Problems 

5.1 (a) Calculate and carefully plot the specific thrust F/(go~n ), 
lb f / Ibm/s ,  and specific fuel consumption S, lbm/h / lb f ,  vs design pressure 
ratio ~r, for an ideal turbojet. The flight Mach number is to be 2.7, and you 
are given 3' = 1.4, T o = 400°R, h = 19,000 Btu/lbm, Cp = 0.24 Btu/ lbm.  °R, 
z x =- 6.8. Plot the results over the range from ~r c = 1 to where the thrust goes 
to zero. 

(b) Obtain an analytic expression for the compressor ratio that just 
leads to zero thrust ~r,,, in terms of 7, M0, and ~x. Check that the value 
calculated using the data of part (a) agrees with the graphical result of 
part (a). 

5.2 Calculate F/(gorh) and S for a ramjet with the conditions as 
given for the turbojet of Problem 5.1, except that ~'x = 8.0. 

5.3 A designer finds that because a new material has been discovered, 
he can increase the allowable turbine inlet temperature. He already has a 
turbojet design--say engine 1--and decides to redesign the engine to engine 
2, so that engine 2 has the same specific thrust as engine 1 (at the same flight 
Mach number). 

(a) Show that 
engine ~., is related 

the compressor stagnation temperature ratio of the new 
to %,, ~x,, Tr, and rx., by 

T~2 1 (1 + rx_______j.__~ r x , -  z~ 
T¢-'~ = ( T r T c , )  2 + ----=-'---'--TrTc! 

+ 1 *h, %2 - *x, _ + ~ l"x ' rXl - 4 + 2 TrTcl JI- T~I 
TrTcl 

(b) Given the conditions for engine 1 of "/'= 1.4, T O = 222 K, M 0 = 2, 
h= 4 .42  (107 ) J /kg,  C.=1005 J / k g . K ,  r x =7 ,  ~r c =20,  calculate the • .i v . 1 . ! 
specific thrust and speofic fuel consumption of engine 1. 

(c) Given that ~'x2 = 8, calculate ~rc., and the specific fuel consumption 
of engine 2. 

(d) Compare the thermal and propulsive efficiencies of the two en- 
gines. 

5.4 The designer described in Problem 5.3 decides to utilize the 
increased specific thrust at the same compressor pressure ratio. Calculate 
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the resulting specific thrust and specific fuel consumption. Again compare 
the thermal and propulsive efficiencies of the two engines. 

5.5 (a) Show that the specific thrust for an ideal afterburning turbo- 
jet operating at maximum thrust is given by 

111 ) afI2  A.(1 
- 2 

+'r) 
For the case ~, = 1.4, T O = 220 K, Cp = 1005 J / k g -  K, h = 4.42 (107) J /kg ,  
Mo = 2.5. 

(b) For T x = 7 plot the specific thrust and specific fuel consumption vs 
ZXA n over the range 7 < 'rXA B _~< 9. 

(c) For ZXA B = 8 plot the specific thrust and specific fuel consumption 
vs r x over the range 6.5 _< z x < 7.5. 

5.6 (a) A family of ideal afterburning turbojets with compressor 
pressure ratio rr, = 10 is to be considered. Calculate and plot the specific 
fuel consumption and specific thrust over the Mach number range 0 < M o < 
3.5. Take 3,=1.4,  T o = 2 1 0  K, Cp=1005 J / k g . K ,  h = 4 . 4 2  (107 ) J /kg ,  
T x = 7, and 'rXA B ~-" 8. 

(b) What  condition will determine the maximum Mach number at 
which these engines will be able to fly? Determine the numerical value of 
this maximum Mach number. 

5.7 (a) Consider an ideal turbofan engine with the conditions M o = 
2, ~r,. = 20, ~r,., = 2.2, ~'x = 7, a = 3, ~t = 1.4. Find the Mach number at the 
exit of the pr imary stream M 9 and at the exit of the secondary stream Mg,. 

(b) Find M 9 and M 9, if a = 6, all other parameters remaining un- 
changed. 

5.8 The "opt imal"  ideal turbofan was found to have 

2(u9 _ u0 ) = U 9  ' l U 0  

This opt imum was obtained by choosing the bypass ratio a to give mini- 
mum specific fuel consumption for given 7r c and ~c,. Actually, the specific 
fuel consumption S can be considered an analytidal function of a, rc, and 
T~,, all of which can be chosen independently. A true minimum in S would 
occur when a, rc, and r~, were all chosen to make the partial derivatives of S 
with all three variables be zero. 

(a) Show that when S is minimized with respect to r~, for given r~ 
and a, it is required to have u 9 = Ug,. 

(b) When the joint minimum of S with a and z C, is selected, what is 
the relationship required between u 9, u9,, and Uo? What is the related value 
of the bypass ratio a? Explain, in physical terms, why it is that this limit 
exists. 
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5.9 (a) Show that the propulsive efficiency of an ideal fan jet that 
has been optimized to give a = a* may be written in the form 

2(1 + 2a*) 
~P = 1 5t-(U9/Uo)(1 Jr 4a*) 

(b) Calculate and plot a*, u9/uo ,  and "O vs %, over the range 
1 < %, < 3.0 for the conditions M o = 0.85, 7 = 1.~, % = 30, and r x = 7. 

5.10 The ram rocket is a device contemplated for use over large Mach 
number ranges. It is hoped to achieve high Mach number performance 
similar to that of a ramjet, but to have the advantage of static thrust. 

The device operates as indicated in Fig A. Thus, the rocket plume mixes 
with the incoming air in an ideal constant-area mixer prior to expansion 
through the nozzle. The airstream itself has fuel added and burned between 
stations 2 and 3. For simplicity assume P0---P9, ~nf/~l << 1, "/= 7R, and 
Cp = CpR. We define fl = mR/~n ,  Tt , /Tt ,  = r,,,, PtJPt3 = Tim, T t J T o  = rxR, 
and T~3/T o = r x. 

(a) Find an expression for F / ( m U o )  in terms of r x, r m, r r, rr m, /3, 
and 7. 

(b) Find an expression for z m in terms of fl, r x, and rxR. 
(c) Describe how you would solve for ~',, in terms of the other 

variables. What additional information is necessary in order to solve for %,? 

5.11 The turborocket is another concept for airbreathing propulsion. 
Figure B indicates the concept, wherein a rocket chamber drives a small 

0 
IhUo 

0 

~ ,  1", R 

Fig. A 

4 9 

Fig. B 

4 <  
• . 4  9 
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turbine which in turn drives the compressor. The products of combustion 
and the incoming air mix between stations 3 and 4 and pass through the 
common exit nozzle. Additional combustion may or may not occur in the 
afterburner indicated. 

It may be assumed that (1) ~, = 7R and Cp = CpR; (2) P,E = P,~ and no 
stagnation pressure drop occurs in the mixing chamber; (3) Po = P9 and all 
component  performances are ideal. We define %, = T,4/T,3, ta r  = T,R/T o, 
Tab = TIg/T o, ~ = (pO/prR) ~Y-I~/~ and fl = rhR/m.  

(a) Show that in the case where no afterburning occurs 

F = (1 + fl)  Tm(TrT c -  1) - M o 
aom 

(b) Show that 

Trn= 1 - -~TrTc  + ( T r / T a R ) ( T  c --  1) 

(c) If afterburning occurs (with no further mass addition), find an 
expression for F/ (ao in )  in terms of M 0' ~'r, % /3, 6, zc, rxR, and rxb. 

5.12 Figure C shows a concept for an "aft  fan" engine with "aft-  
burning boost." The idea is that without the aft burner on, the engine will 
behave as a conventional fan jet, but extra thrust will be available when the 
aft burner is utilized. Ideal behavior of all components may be assumed 
with rh//rh << 1, etc. In addition, it is to be assumed that when the burner 
is on, all pressure ratios in the core engine remain unchanged, and the 
bypass ratio a remains unchanged. We define 1t~ = T,,./T,,, % = Tr,/T,4 ~, 
"rxh = T ~ , J T  o and reference the zero aft-burning case with an additional 0 
subscript. 

(a) Show that 

t u9 uo [ ] 
(u9/Uo)o *x - % ( ~ , -  1) 

(b) For conditions M0=2.2 ,  7 = 1.4, Cp=0.24,  B t u / l b m .  °R, h 
= 19,500 Btu / lbm,  T0=400°R,  -rx= 7, ~r,.~ = 1.5, and ~ r=  15, find a*, 

@ 

Fig. C 
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F/[go( fn  c + rhF) ], and S for the aft burner off case. 
(c) Find F/[go( fn  ~ + thF) ] and S (based on total fuel flow) for the 

configuration of part (b), but with ~'xb = 6.8. 

5.13 A ramjet has ideal performance in every component except that 
the combustion occurs at finite Mach number. Assuming that the combus- 
tion occurs at constant static pressure, show that the specific thrust is given 
by 

F / Y n = a o M o { I 1 " b - ( ' 6  - 1)(M3/Mo)2] ~ -  1} 

where r b -- Tt , /T ~ . 
Note." You mi~,ht get some help from Problem 2.12. 

5.14 A ramjet has ideal performance in every component except that 
combustion occurs at finite (fixed) Mach number M 3. 

(a) Show that the specific thrust is given by 

1 ( y - 1) Mo: ( "r["-1,/21M] _ 1) -- 1 

(b) Show that the thermal efficiency for this cycle is given by 

7It h = 1 
To ¢~+[(r-1)/zlM]_ 1 
Tt3 z b - 1 

5.15 In the text it was shown for an ideal constant-pressure mixer 

5 7 = 

1 3 ' - 1  
2 vsZ 

1 y - 1  ( I /5+aVy)  2 
2 (1 + a)(1 + a'r) 

and 

1 7 - 1  
2 ~2 Sy = 

1 T - 1 1  
2 r V32' 

The combination of these two equations can be considered to give S 7 a s  a 
function of V 5 and the prescribed ratios of upstream stagnation quantities 
a, r, and Sy. 
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Show that the maximum in S 7 with V 5 occurs when 

(Vy/Vs)2-(1 +r)(Vy/Vs)+r=O 

and hence when I,'3,/V 5 = 1 o r  r .  

Note." You may find it helps to solve for V32 from the second equation 
above and to solve for 21,'3,(0Vy/0V 5) prior to taking the derivative OST/OV 5. 

5.16 Consider the comparison in behavior of the gross thrusts of 
mixed vs unmixed streams when in the mixed case an ideal optimal 
constant-pressure mixer is used. With notation as in the text, but defining in 
addition 

(a = ambient) 

(a) Show that the ratio of mixed to unmixed gross thrusts is 

Fmix { ( l+a) ( l+ar ) [1 -S . /ST] )  '~ 

F..  (1 - so ) ;  +  G(1 - so~s3,)  '2 

(b) Show that the value of r that just causes the ratio Fmix/F.~ to 
equal unity is given by 

1-s  
r for case a 

1 - s . / s 3 ,  
, )  ( Pt3' >1, ' <1  

(pt3 , )  
1 - S, for case b 7,., < 1, ~ < 1 

(c) Show that the result of part (b) implies, in addition, that for case a 
the exit velocities of the separate stream case would be equal and, in fact, 
equal to the entrance and exit velocities of the mixer if it was used! 

(d) Plot the curve of r v s  Pt~/Pt~ for the "breakeven" cases obtained 
in part (b) over the range 0.5 < Pt~.?Pt~ < 1.5 for the two cases P,/Pt, = 0.3 
and 0.5 (take ~, = !.4). 

Indicate on the graph those regions in which incorporating a mixer would 
be beneficial and in which mixing would be detrimental. 

5.17 Figure D shows a novel concept to be considered for develop- 
ment. The device is to operate by having the air in the "secondary" stream 
expand through the turbine (which would be the fan in a conventional 
cycle). The turbine is coupled directly to the compressor that compresses the 
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core stream. Combust ion  then occurs followed by expansion to the entrance 
of the opt imal  constant-pressure mixer and, finally, expansion through the 
nozzle. 

(a) Is this opt imal  mixer case a or case b? 
(b) Show that the per formance  of the engine can be described by the 

following system of equations: 

Inputs :  y, h ,  Cp, T o, ~'x, Mo, ,r,., a 

F 
Outputs :  go(in,  , + inF)  ' S,  n,h 

Equations:  

r = 1 + - ~ ! - M o  2 

Tc = ,B.:y - l)/y 

T,~ 1 
v,~ = ,m - (1 + .)~ 

[T x + "5(1 + a - re)] 

ptg t ( v - 1 ) / v  
p , , }  = S i n  

1 + o~-- r  c 

1 + ( a  - 1)'r,. 

a o = t/(y - 1)CpT o 

M u9t2= 2 rx%~(1 1 ) 
o Uo } y - 1 TrTcS m 

_oo( u9 ) 
go(,~c +'~F) go MoG - Mo 

S = 3600 Cp T O 
rx - ~':'c 

h 0 + ~)(F/[go(,-c +,-F)]) 

(1 + a )  [ ('rx~',,/r:'cS,,) - 1] 
~th = 1 -- 

r x - r :c  
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(c) Investigate the predicted performance and determine whether the 
concept provides competition to conventional gas turbines in any Mach 
number range. (Note that rx is not as restricted as it would be for a burner 
followed by a turbine.) 

5.18 Consider a constant-pressure mixer of the form indicated in 
Fig. E. A supplemental flow is introduced along the sidewall of amount Sin. 
This supplemental flow is injected such that it introduces no axial mo- 
mentum. Also V=  u / ~  and r = Tts/Tt'. , 

(a) Find an expression for Pt,,,/Pt, .in terms of 3', V 1, S, and ~'. 
(b) Find an expression for .,42/A 1 m terms of y, S, ~, and Ptm/P,," 
(c) Calculate P,,,/Pt, and A z / A  1 for the case 3' = 1.3, S = 0.1, r = 0.4, 

Vx =0.5. 

5.19 Consider an ideal turbofan with conditions 3' = 1.4, T O = 215 K, 
Cp = 1000 J / k g .  K, h = 4.43 (107) J /kg,  1 x = 7, ~'XAB = I"X^B' = 8 (with 
burners on), ~r~ = 15, rr¢. = 2.0, and M 0 = 2.5. 

(a) Find a*, F/(fn c + fnr), and S*. 
(b) With a fixed at a*, find F/(m c + me) and S for the cases (1) core 

afterburner on, (2) fan afterburner on, and (3) core and fan afterburner on. 
(c) With a raised to (a* + 1), find F/(fn c + fnF) and S for the three 

cases of part (b) as well as for the case with both afterburners off. 

5.20 Consider an ideal turbofan engine that incorporates an ideal 
constant-pressure mixer to mix the fan and core streams prior to expulsion 
through the nozzle. The fan stream stagnation pressure is higher than that of 
the core stream, and the fan stream stagnation temperature is lower than 
that of the core stream. 

Assuming that the fan and core streams are mixed "optimally," show 
that the specific thrust is given by 

F = a0M0{ [1 + ~ 1  ( rx-~-'~ /]('rr'rc--l/]~ - 1  } 
fnc+mr "r',-1]~ rr-1 1] 

5.21 (a) Consider an ideal turbofan engine that utilizes separate 
expansion of the core and fan streams to ambient pressure. The bypass ratio 
is chosen to give minimum specific fuel consumption for prescribed r c, 
and ~'c. 

rh 

I 
f f t 

Fig. E 

m 
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Show that the prescribed r,., can be eliminated in terms of the bypass 
ratio a (actually a*) to give the expression for the specific thrust 

F (1 + 2a) 2 
m,. + & r  -- a ° m °  (1 + a)(1 + 4a) 

[ 1+4o/- } 
X 1 +  ( l + 2 a )  2 7 , . - 1  "r~-I ] - 1  

(b) Compare the ratio of the specific thrust of this engine to the 
specific thrust of the engine of Problem 5.20 (and hence the ratio of their 
specific fuel consumptions!) for the range 2 < a _< 7 for the case M 0 = 0.85, 
~', = 25, and T x = 6.5. 



6. COMPONENT PERFORMANCE 

6.1 Introduction 

In this chapter the behavior of the engine components including the 
nonideal effects are described. The performance of the various components 
are described in terms of "figures of merit," which allow cycle analyses 
including losses to be made efficiently. It should be noted, however, that 
both the accurate quantitative estimation of such figures of merit and the 
design of the components to reduce the losses are very demanding processes 
and absorb much of the industry effort. Prior to considering each individual 
component, the expression for the overall thrust of the engine when losses 
are present is considered. It is found that both internal and external losses 
are present and that an optimal design would be such as to minimize the 
combination of all losses. 

6.2 The Thrust Equation 

The momentum equation for a control volume (Fig. 6.1) may be written 
in the form: 

Force on volume of fluid = rate of production of momentum 

o r  

Pressure force + viscous force 
= rate of accumulation of momentum 

+ rate of convection of momentum through boundaries 

Each of these terms may be represented by an appropriate area or volume 
integral, but for simplicity of presentation the viscous force is noted simply 
as F v. The above word equation can then be written as, 

0 -ffpds+rv=- fffoudv+ffouu.ds (6.1) 

Note that the vector area element ds is defined to be positive when 
directed outwardly, and hence the pressure force from the surface onto the 
fluid has a negative sign identified with it. The engine operates in steady 
state (or "quasi-steady state"), so the integral denoting the volumetric 
accumulation of momentum with time is zero. 

189 



190 GAS TURBINE AND ROCKET PROPULSION 

~-'-V O L UM E E L E M E N T  
Fig. 6.1 General control volume. 
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Fig. 6.2 Pressure and viscous stresses on engine. 

The thrust equation may then be written 

F~,- f f  pds= f f  puu'ds (6.2) 

Usually the thrust of the engine is defined as the net force resulting from 
all the pressure and viscous stresses, less the external viscous drag. This 
means that the external viscous forces are included in the airplane drag as 
far as the "accounting" goes. 

To find the axial component of force only, define dA as the axial 
projection of an area element. The thrust Fp is defined as being positive in 
the negative x direction, so that applying Eq. (6.2) and referencing Fig. 6.2 
results in 

Fp= fii (Pint-P°)dA - F~'i"'- fextcB(Pext-P°)dA - 

- fii~ (Pext-Po)dA (6.3) 
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where int refers to the surfaces wetted by fluid passing through the engine, 
ext to the surfaces wetted by fluid passing outside the engine, and ext CB to 
that portion of the centerbody protruding forward of the inlet plane. 

It is clear that direct evaluation of the internal viscous and pressure forces 
is hopeless; so the internal forces are related to the changes in fluid 
properties occurring from the inlet to the exit of the engine. To do this, 
consider the effects of the internal forces acting inward on the fluid. The 
forces acting on the fluid between the inlet and exit will include the pressure 
and viscous forces acting on the interior engine parts. Thus, again applying 
Eq. (6.2), 

f e  f ( p i _ p o ) d A  f e ( p _ p o ) d  A -Fv,nt + ii.(Pint-Po)dA + 

= - fiou2dA + fePU2dA (6.4) 

Note here that the first two terms are identical to the same pair of terms 
appearing in Eq. (6.3). The effect of the minus sign that would appear 
because of the difference in direction of the outwardly directed area element 
is cancelled since Fp is defined to be positive in the negative x direction. For 
simplicity in writing the equations, it is assumed that the conditions are 
one-dimensional at the entrance and exit to obtain, by combining Eqs. (6.3) 
and (6.4), 

Fp = ~neU e - ~niu i + ( p e - p o ) A e - ( p i - p o ) A i -  fextcB(PCxt--p0) dA 

-F,~c.- f,~, (Pcxt-Po) dA (6.5) 

This form is not particularly useful, because not only is it difficult to 
determine u, without quite detailed engine information, but u i and hence 
the pressure integrals over the centerbody and exterior change with a change 

0 jrPext i ~  :~ 

Fig. 6.3 Control volume for approaching flow. 
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in the design of the inlet. It is better to relate Fp to the flow conditions far 
upstream. The control volume scheme shown in Fig. 6.3 is one way to do 
this. 

Again assuming one-dimensional conditions at the entrance (and far 
upstream), with application of Eq. (6.2) it is found 

rniui + ( P,-  Po) A, + fextCB ( Pext -- P0) dA + F~,c. 

f0i( = +thoUo + Pext-Po)dA (6.6) 

and hence with Eq. (6.5) 

Fp=l~leUe--l:?loU 0 +(pe-Po)A~-  foi(P~xt-Po)dA - fe(p~xt-Po)dA 
lexl 

(6.7) 

Now write 

FA = t~l eUe --  ??loUo + ( Pe - P o ) A e  (6.8) 

Dadd = f0i( Pext -- P0) d A = additive drag (6.9) 

Dext = ( Pext - Po) d A = external drag 
xt 

(6.10) 

then 

= FA - D a d d  - -  O e x ,  (6.11) 

It is usual to term F A the uninstalled thrust and Fp the installed thrust. 

Interpretation of the Terms Appearing In the Thrust Equation 
Equations (6.8-6.11) are in a suitable form for design purposes, but they 

are at first difficult to interpret. Thus, for example, it at first seems peculiar 
that a pressure integral over surfaces external to the engine ( 0 -  i) could 
have anything to do with the forces on the engine. The additive drag and 
external drag terms are interdependent, however, and something can be 
learned about this interdependence by considering a "perfect engine," that 
is, an engine with no external viscous drag or form drag. 

Consider the momentum equation for all of the fluid flowing external to 
the engine (Fig. 6.4). Because the flow is perfect (no shocks, no boundary 
layers) the fluid conditions externally are identical at 0 and ~ .  The pressure 
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Fig. 6.4 External fluid control volume. 

is P0 around the external contour and the contour is chosen to be a 
streamline so that no momentum is convected through the perimeter. The 
momentum fluxes through the ends of the control volume are equal because 
the velocities are equal, so that the momentum equation reduces to the 
simple statement that the sum of the pressure integrals over all of the 
internal surfaces must be zero. Thus, 

Dadd + Oext-I-fe°°( Pext-Po) da  = 0 (perfect flow) (6.12) 

It can be seen then, that for a correctly expanded nozzle (Pe = P0, the jet 
parallel to the mainstream) and for perfect external flow 

Dex t = - Dad d (6.13) 

and 

( Fp )perfect = FA (6.14) 

It is evident from Eq. (6.13) that when evaluating the drag terms for a real 
inlet the additive and external drags must be evaluated most carefully, 
because the net drag can be the difference between two quite large terms. 
(Note, of course, that in such a case the external "drag" would be negative.) 

It is common practice to break the external drag into two components: 
D w, the drag associated with the "front  end" of the engine, and D b, the drag 
associated with the back end. This is usually a reasonable approach because 
lip separation often dominates near the inlet and boat-tail drag near the 
exit. Assuming that this division is meaningful, the terms can be interpreted 
by considering the engine to be very long and parallel in the middle. In this 
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Fig. 6.5 Flow into inlets. 

case, perfect flow would give P0, etc., at the middle and the same argument 
as led to Eq. (6.12) would lead to 

and 

Dad d + D w = 0 (perfect flow) 

Db +re°° (  P~xt --Po) dA = 0 

(6.15) 

(perfect flow) (6.16) 

The negative forebody drag required to cancel the additive drag arises 
from the suction near the leading edge of the inlet. This is why supersonic 
inlets, with their sharp leading edges, have a large "additive drag penalty" 
when operated at mass flows other than their design mass flows--their 
sharp leading edge prevents the suction from occurring (Fig. 6.5). Note that 
the additive drag penalty for the supersonic inlet is much more severe than 
that for the subsonic inlet, even though the additive drags (in Fig. 6.5) are 
identical. 

Similarly, separation from the trailing body of the engine prevents the 
diffusion that would lead to large "forward thrusts," giving boat-tail drag. 

One-Dimensional Calculation of the Additive Drag 
For simplicity, consider an inlet without external centerbody and obtain 

from Eqs. (6.6) and (6.9), 

Dad d = m~u, - thoU o + ( p~ - po ) Ai  (6.17) 



Noting that m, 

or 
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= ~n o = p i u , A i  it follows that 

I ,.,21 _u0 (1 Dadd =Aipi[___~_ k u--T ) + _ Po 

195 

[ ( go)( Dadd Pi Ymi2 1-~- i  + 1 -  
A,po Po -~, 

The flow from far upstream to the inlet may be considered to be 
isentropic so that 

also 

so that 

)(v-~)/v 1 + ~ - ~ M o  2 

Too- (~o - ; ~ _ M i  2 (6.18) 

. i  T, M? 

Aipo Too 1 - - ~ -  i + 1 -  ~ (6.19) 

Thus, when the inlet "design Mach number" (that Mach number existing 
at the inlet plane for the given engine setting) is known, the dimensionless 
drag can be obtained as a function of the flight Mach number. It is to be 
noted that, when the flight Mach number is equal to the design Mach 
number, the inlet swallows its projected image. As a result, no curvature 
exists in the entering stream tube and the additive drag is zero. Figure 6.6 
shows the behavior of the dimensionless drag with flight Mach number for 
an inlet with design Mach number M i equal to 0.6 (~, = 1.4). 

A physical feel for the significance of the additive drag follows by 
considering it on a large engine, say at sea level (14.7 psi) and start of 
takeoff ( M  o = 0). If the inlet diameter is 7 ft, the additive drag is 

7r (49)(144)(14.7)(0.179) = 14,580 lbf Dadd = 
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Fig. 6.6 Dimensionless drag vs flight Mach number. 

A good inlet would, of course, recover most of this large force through lip 
suction, but the magnitude of the force tends to serve as a warning that 
great care must be taken to ensure that the inlet is designed to recover the 
additive drag without serious penalty. 

Some Realities of the Determination of Inlet Drag 
It has been emphasized in the preceding section that inlet drag must, in 

some cases, be determined as the difference between two large quantities, 
the additive drag and the external pressure drag. If various cowl shapes are 
to be compared for their drag characteristics, in some way the (net) inlet 
drag must be obtained accurately. One method of determining inlet drag is 
to heavily instrument a given cowl with static pressure taps and then to 
integrate the axial force implied by such measurements. 

The internal flow must also be simulated accurately in such a technique in 
order to give the proper additive drag and correct boat-tail/jet interactions. 
Even assuming correct internal flow simulation, the location of the contact 
point of the stagnation streamline must be very accurately determined and 
the upstream shape of the streamline and pressure at each location accu- 
rately estimated through the use of a compressible flow calculation. 1 

It is evident that the one-dimensional approximation for the additive drag 
will have serious shortcomings in accuracy for several reasons. First, as is 
evident from Fig. 6.7, the projected area of the stagnation stream tube 
increases abruptly in the immediate neighborhood of the cowl. It is in this 
regime that the one-dimensional estimate of the static pressure is poorest, 
because the local static pressure is approaching the stagnation pressure, 
whereas the one-dimensional estimate of the static pressure will be that 
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Fig. 6.7 Instrumented cowl and stagnation streamline. 

corresponding to the Mach number for one-dimensional flow through the 
area A i. The location of the area A, itself is not precisely determined, 
because in the one-dimensional approximation it is consistent to assume A i 
is the minimum area of the inlet, whereas in a two-dimensional calculation 
A i would be that area within the locus of stagnation points and would 
change with the operating condition. 

If the inlet is fully instrumented on the internal surface to give accurate 
static pressures and a station is available (station 2 in Fig. 6.3) where the 
internal flow may be assumed to be parallel and hence at constant static 
pressure, then a momentum balance may be applied to give the following 
expression for the additive drag /)add: 

Dadd=foi(p-p.)dA =f2(P2-Pa)dA-fi2(p-p.)d A+ rn(uz - Uo) 

+ "corrections" 

The term "corrections" here refers to those contributions arising from the 
viscous stresses and possibly from the "tunnel corrections" required if the 
ambient pressure must be adjusted to account for blockage effects. Even 
given that the corrections can be accurately estimated, it is evident that the 
additive drag is determined from the contributions of several large quanti- 
ties. The cowl drag is the difference of the lip suction and the additive drag, 
and it is hence imperative to accurately measure each separate quantity. 

6.3 Averages 
It is usual, particularly when conducting performance calculations, to 

refer to average quantities at a particular location. This is especially the case 
with stagnation properties. In fact, it can be extremely important to under- 
stand the implications of the particular averaging process being utilized, and 
to this end, three different averaging techniques will be applied to a "step 
profile" in order to reveal the effects that averaging methods can have (see 
Fig. 6.8). The three averaging methods (for the stagnation pressure) to be 
considered are: the mass, stream thrust, and continuity averages. 
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2 

1 
Fig. 6.8 Step profile. 

The Mass Average 
The mass average stagnation pressure is defined by 

P, .... = f p, dm/ f dm 

For the case of the step profile this reduces to 

(6.20) 

mlPtl+m2Pt2 I +~x(Pt2/P, ~) 
(6.21) Ptma-- fi?ll + hl 2 =Pt~ 1 + a 

Stream Thrust Average 
The stream thrust stagnation pressure Pt .... is defined as that stagnation 

pressure that would exist if the flow was allowed to completely mix 
(hence the sometimes used expression "mixed-out average") in a frictionless 
constant-area mixer. It is assumed here (and in virtually all averaging 
methods) that the appropriate stagnation temperature average is the mass 
average. (If such was not assumed we would find ourselves breaking the first 
law of thermodynamics, let alone the second law!) 

The appropriate equations for this case have already been worked out in 
Sec. 5.13, leading to Eq. (5.105). It is necessary to prescribe the Mach 
number of one of the streams (say 341) in order to fix the static pressure at 
the splitter plate. Utilizing the relationship for Pt . . . .  given above, and 
introducing lr-P,2/P,~ and ~'= T t / T  t , the expression for Pt for the 

2 .1 . st 
two-stream case can be arranged as a hierarchy of equaUons. Thus, 

Inputs: 7r,  'I", M 1 , o~ 

Equations: 

M?-y21[qr(r-1)/r(l-k~-M?)-1] ( 6 . 2 2 )  

A 2 M1 1 2 
- -  a ~ V ~ - - - ' n "  [(v ) /  ~] 

M2 
(6.23) 

q's.t. = (1 + o~)(1 + a~ - )  (6.24) 
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where: 

34,.2(1 +- Z - ~  Mi2 

(1 + 7Mi2) 2 
(6.25) 

A = ~/1 - 2(7 + 1)q,s.,. (6.26) 

1 

2 d#s.t 
Mst = 1 - 2"/d~s.t. + A (6.27) 

Pt .... l + a  [ (1+ a)(1 + ar)]~ 
Pt . . . .  1 + a~r 

1 + - ~ M : t  ](~'+1)/2(V-1) M1 
1A2 

1 + ~---~M 2 ] Ms't" 1 + A--'-~ 

(6.28) 

Continuity Average 
The continuity average stagnation pressure Pt is defined as that stagna- 

tion pressure calculated with the assumption th~tatrue one-dimensional flow 
exists at the station and given (measured) values of p, &, A, and T t. Here, 
of course, T t is the mass-averaged stagnation temperature. 

From Eq. (2.103) note 

i 27 A pl/V(y2_pt(y-1)/Vly)~ (6.29) 

where y - p[,~- l)/,~. 
This is easily inverted to give 

1+ j l+  p2 (6.30) 

In practice this just gives a formula for obtaining Pt in terms of the 
measured quantities. However, because the actual c~"nditions existing 
in the stream are "known," Pica can be calculated in terms of p,,, Pt2, etc. 

Thus, noting for the ith stream that 

Ai= i~ (~  1, {m~C~'~ t~Y ~'J2~'[~P')~ I'J~ I] ~} 
~pJ L~7 , 
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and 

A = A 1 + A 2 

and 

1 + a T  
- -  Tt~ T t -  l + a  

it follows that 

p}cVl 1)/v = P(V- 1)/v 
2 

x{l+I1 + 

~,~ ,~j2~[(~) ,~- 1 1)/'r 

- 1  

(6.31) 

then 

( Ptc a )(v-1)/~ =( l +a ](v-1)/)'l (ptl l-[('~-l)A'] 

x 1 + 1 +  

Ip¢ "~(r-1)/'l[Ipt ~(r-1)/y 1 4(1 + a ) ( 1  +a'r)Ip) [(p)  -1 

" / n ~ ( r - 1 ) / y  

(6.32) 

This form is appropriate for calculation because, given MI, PtJP follows, 
as does Pt2/P with rr, etc. The formula can be obtained explicitly in terms of 
~, r, M1, and a (for comparison with the stream thrust average, etc.), 
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however, and after some manipulation there is obtained 

Pt ~('y- 1)/y 1 + ( 7  - 1)M 2 

2 + (7 - 1)M ( 

x - 1 + 1  
(y -  1)M1212 +(y -  1)M 2] + 

[1 +(~'- 1)M?] 2 

× 

1 + 
,n. (~,- 1)/2y 

(-1-+ _ 

) (6.33) 

This has been written in this way to make it clear that when Tr and r go to 
one, the ratio is unity. 

Comments 

It is important to comprehend the implications of these various averaging 
techniques, because many serious problems have arisen in industry through 
improper interpretation. Thus note the following. 

Mass average. This is the thermodynamically appropriate average in 
the sense that Pt so defined would follow the dictates of the second law. 
Thus, for example, if two streams of the same stagnation temperature 
continued to flow adiabatically, the stagnation pressure so defined would 
decrease. (This is because the entropy is increasing.) Note that this would be 
true even if the sidewall friction was negligible, because the mixing process 
generates entropy. 

In practice, however, it is the very tendency of the stagnation pressure, 
mass averaged, to decrease that makes its use unpopular in some circum- 
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stances. Thus, for example, if a wake traverse is taken close behind a 
cascade of aerofoils, the stagnation pressure so measured would be higher 
than that measured some distance further downstream. Many companies 
feel that it is more appropriate to utilize the stream thrust average, which, of 
course, does not change (in a constant-area channel). Note the stream thrust 
average hence represents the "mixed-out" limit of the mass-averaged stag- 
nation pressure. 

Stream thrust average. As discussed above, this average is often 
utilized because it tends to represent a somewhat conservative value of the 
stagnation pressure for use in performance analysis. In utilizing this defini- 
tion, note that all other properties should also be defined as those that 
would exist at the exit from a constant-area ideal mixer. For example, the 
static pressure is not that actually measured in the channel, but rather is 
that calculated from the constant-area mixer equations. 

Continuity average. This average is popular in some cases where, 
because of physical restraints or adverse fluid properties (extreme tempera- 
tures etc.), direct stagnation probe traverses cannot be taken. It is easy to 
verify that for flows with uniform stagnation temperatures the continuity- 
averaged stagnation pressure is the lowest of the three. What this means is 
that, for flow in a constant-area duct with no sidewall friction (and uniform 
stagnation temperature), the mass-averaged stagnation pressure goes down, 
the stream-thrust-averaged stagnation pressure remains the same, and the 
continuity-averaged stagnation pressure goes up! 

There was a case in a highly respected research laboratory where, because 
of the difficulty in utilizing upstream stagnation pressure probes, the up- 
stream stagnation pressure was determined utilizing the continuity average. 
A careful traverse of the outlet flow (utilizing the mass average) then 
revealed that the cascade being tested had the remarkable property that it 
increased the stagnation pressure! 

Example 6.1 
A flow exists where unknown to the investigators a separation exists. This 

flow can be approximated as a flow with "freestream" stagnation pressure Pt 
through the area A B (area with blockage) and with no flow in the blocked 

! 

I'-% 

Fig. 6.9 Channel with blockage. 
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region. See Fig. 6.9. Obviously, the mass-averaged stagnation pressure is 
just Pt. 

Denoting by the subscript 0 conditions that would exist if no blockage 
were present: 

(1) Show that the ratio Ptca/Pt .... can be calculated from the following 
hierarchy of equations 

Inputs: 

Equations: 

y, Mo, A B/Ao 

f ( p 0 )  = 2 M2 (6.34) 

f (  Po) = f (  Po)(-~B ) 2 (6.35) 

[1 :tp,) Pt ( p/p,)2/v ] (6.36) 

Ptca. -- P 12 
:/(r - 1) 

Ptm a. Pt 
(6.37) 

(2) The limitingly small area at blockage will occur when M B --* 1, hence 
show for this case 

[ A ,  L ]2= M 2 (6.38) 
2 ~,-  1 2 (v+l)/(v 1) 

and show that for this case 

P =  
Pt 

~,/(v 1) 

6.4 The Inlet 

The remainder of this chapter will cover the internal behavior of the 
engine; the inlet will be considered first. 

Inlet losses arise because of the presence of wall friction, shock waves, 
and regimes of separated flow. See Fig. 6.10. All of these loss mechanisms 
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sHOCKSy" \/\ / I  

I_ S KIN FRICTION 

Fig. 6.10 Internal losses in an inlet. 

result in a reduction in stagnation pressure so that 

~r d < 1 (6.39) 

Virtually all inlets are adiabatic to a very high degree of approximation, 
s o  

~'d = 1 (6.40) 

The design of subsonic inlets is dominated by the requirements to retard 
separation at extreme angle of attack and high air demand (as would occur 
in a two-engine aircraft with engine failure at takeoff) and to retard the 
onset of both internal and external shock waves in transonic flight. These 
two requirements tend to be in conflict, because a somewhat "fat"  lower 
inlet lip best suits the high-angle-of-attack requirement, whereas a thin inlet 
lip best suits the high Mach number requirement. Modern development for 
the best compromise design is greatly aided by the advent of high-speed 
electronic computation, which allows analytical estimation of the complex 
flowfields and related losses. 

Supersonic Inlets 
Estimation of the losses within supersonic inlets is an easier task than for 

subsonic inlets for the simple reason that the major losses occur across 
shock waves, and hence may be estimated using the relatively simple shock 
wave formulas. More exacting estimates require estimation of the 
boundary-layer and separation losses. 

In order to gain an understanding of some of the physical processes 
involved, a deceptively simple apparatus--the fixed geometry inlet--is 
considered (see Fig. 6.11). When the performance penalties of such an inlet 
are understood, it becomes evident why more complicated geometries are 
considered in the higher Mach number ranges. Thus, first postulate the 
existence of an inlet designed to isentropically retard ("diffuse") the flow 
from a flight Mach number M 0 > 1, through Mach 1 at the throat, and 
subsequently to M < 1 at station 2. 

Unfortunately, the inlet suggested (and illustrated in Fig. 6.12) will not 
behave as postulated because (1) such an inlet cannot be "started" by 
conventional flight practice, and (2) the flow in such an inlet is unstable. 

In order to comprehend the "starting problem," consider the behavior of 
the flow in the inlet at a flight Mach number M0, less than the design flight 
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MO 

A I 

2 
_ 

Am 

Fig. 6.11 Fixed geometry inlet. 

I . . . . . .  
A I A m 

Fig. 6.12 Fixed geometry inlet in unstarted condition. 

Mach number, Moa. It is apparent that the inlet-to-throat area ratio AlIA  m 
must have a unique value in order to bring the flow from M0d at A 1 down 
to M = 1 at  Am. When the flight Mach number is less than Moa, this fixed 
area ratio A1/A m is too large, and the inlet cannot swallow the mass flow 
approaching the area A1. As a result, a normal shock wave appears in front 
of the inlet and the subsonic flow behind the normal shock wave is partially 
spilled around the inlet. 

It  is to be noted that even when the inlet is accelerated to give M 0 = M0d, 
the normal shock wave present in front of the inlet will decrease the 
stagnation pressure so that the throat will still be unable to pass the desired 
mass flow and the shock wave will remain in front of the inlet. It is possible 
to consider diving the aircraft in order to increase the flight Mach number 
sufficiently to have the shock wave pass into the inlet. Once this state is 
reached, a slight movement  of the shock wave further into the inlet will 
cause a decrease in the local Mach number entering the shock wave. As a 
consequence, the stagnation pressure behind the shock wave will increase 
slightly, leading to a larger mass flow capability for the throat that in turn 
leads to a reduction in the pressure behind the shock wave and the shock 
wave "snapping" through the throat. Following this rather demanding 
maneuver, the pilot could then carefully decelerate to M 0 = M0d, at which 
time the Mach number at the throat would be unity and the inlet would be 
shock free. 

Unfortunately, even if the difficult maneuvering described in the preced- 
ing paragraph was carried out, the inlet would not be stable to small flow 
disturbances. Thus, if an upstream gust occurred to momentarily reduce the 
flight Mach number to less than M0d, A1/A m would again be too large to 
swallow the flow supplied and a shock wave would form within the inlet and 
snap to the outside, thereby "unstar t ing" the inlet. Similarly, if a down- 
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stream disturbance such as a momentary decrease in engine air demand 
occurred, the throat would be back pressured, again causing a shock to form 
and the inlet to unstarc 

The Kantrowitz-Donaldson Inlet 

In an early paper 2 it was suggested that in view of the operational and 
stability problems inherent in the fixed geometry "ideal" inlet described in 
the preceding paragraphs, it would be appropriate to size a fixed geometry 
inlet so that the shock wave in front of the engine would be swallowed just 
as the inlet reached flight Mach number M0d. This, as will be shown 
quantitatively in the following, would require a larger throat area and would 
lead to a Mach number at the throat M m larger than unity. It was proposed 
that the inlet be operated with the engine air demand such as to cause the 
normal shock wave to stabilize slightly downstream of the throat. (That is to 
say, the inlet would be operated in a slightly "supercritical" condition.) By 
operating in this condition, the inlet would be made stable to both upstream 
and downstream (small) disturbances. It is to be noted that the presence of 
the shock wave will, of course, introduce stagnation pressure losses and that, 
by operating with the shock wave slightly downstream of the throat to 
enhance stability, an additional penalty is paid because the local Mach 
number approaching the shock wave will be larger than that at the throat 
and hence the shock wave will be stronger. 

Analysis 
Note that the very best performance for a fixed throat inlet will occur 

when the throat is sized so that, with a normal shock at the inlet face, the 
inlet will just swallow the air coming from the shock. As a result the shock 
wave will " just"  enter the inlet and hence be swallowed as described earlier. 
Then it is postulated that the shock wave be stabilized "a t"  the throat, even 
though that configuration would be unstable to downstream disturbances. 

Figure 6.13 shows conditions at the initiation of the shock swallowing 
process. The stagnation pressure ratio across the normal shock wave is given 
by 3 

y + 1 ~/(v-1) 

Ptl _ 2 M2 [[1+ 23, (M2_1)] -[1/(~] 1 ) 1  
(6.41) 

Pro 1 + Y - ~ M  2 3,+ 1 ~'~° 

M 0 

i Mm= I 

A I A m  

Fig. 6.13 Inlet at instant of starting. 
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Because the Mach number at the throat, at this instant of starting, is 
M m = 1, Eq. (2.105) gives 

A,,A____I = M° [ 2 ( ~  1 + ~ - M o  2 )] t(./+:)/z<v-a)lpt°pt-----~ (6.42) 

and hence 

AmA-~ = M°[('/+l)/('/-1)][ 2--~(1+~-M2)]½[ , +~]_(Mo22'Y 1)J 1/(./ 1) 

(6.43) 

This area ratio, which is the minimum area ratio that will allow the inlet 
to "self-start" at the Mach number M0, is referred to as the Kantrowitz- 
Donaldson contraction ratio. 

When the shock wave just enters the inlet, it will continue toward the 
throat, as described earlier. The limitingly good performance of the inlet will 
occur when the shock is stabilized right at the throat. In order to calculate 
the corresponding stagnation pressure ratio, it is necessary to obtain the 
Mach number at the throat Mm, immediately upstream of the shock wave. 
See Fig. 6.14. 

The flow prior to the shock wave is isentropic, so Eq. (2.105) may be 
utilized to obtain Minx. Thus write 

Mo F( M~,) =-~m ' 

(' /+1)/2(7"1) 

: 
1 + Z - ~  M2 A1 

= 0 (6.44) 

This equation is solved by Newtonian iteration. Thus, noting 

F, = Mo 
M 2 ml 

M 2 - 1 ml 
I +~M~, 

( . / +  l ) / 2 ( T  - I)  

M 0 

Fig. 6.14 Ideal fixed geometry inlet in started condition. 
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Table 6.1 Fixed Geometry Normal Shock Inlet Performance (X = 1.4) 

Mo A , , /  A1 Mm ~r a 

1.2 0.977 1.10 0.999 
1.6 0.893 1.40 0.957 
2.0 0.822 1.75 0.834 
2.4 0.770 2.11 0.670 
2.8 0.733 2.47 0.511 

leads to 

( M m l ) j + l  = ( M m , ) j - ( F / F ' ) j  

The iteration is to be initiated with a suitable supersonic first guess for 
M,, 1. Following solution for Mml, the stagnation pressure ratio 

Ptm 2 Pt2 
~r a 

Pt,~ l Pto 

follows directly from Eq. (6.41) with M 0 replaced by Mini. If the Mach 
number immediately following the shock Mm2 is desired, it follows from 

1 + ~-~-~ Mm2 
M 2 = (6.45) 

'~ ./M~ 1 " r - I  
2 

The on-design performance of a family of fixed throat inlets, calculated 
using the above equations, is tabulated in Table 6.1 for t = 1.4. 

Off-Design Performance-- Fixed Geometry 
It is evident from Table 6.1 that the design performance of a fixed 

geometry normal shock inlet degrades considerably for flight Mach numbers 
in excess of about M 0 = 1.6. It is the off-design performance that most 
restricts the acceptable performance of this class of inlet, however. First, 
consider the performance of a given fixed throat inlet as the flight Mach 
number is varied from M 0= 1 up to M 0> Mod and then returned to 
M 0 = 1. Assume that the engine demand is adjusted to keep the normal 
shock at the throat, if possible. 

The resulting performance is depicted in Fig. 6.15. Thus, as M 0 increases, 
~r d corresponds to that for a normal shock at the flight Mach number. At 
M o = Mod the shock snaps into the inlet, giving the design value of ~rd; then 
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as M 0 continues to increase, the shock wave at the throat strengthens, 
leading to increased shock losses. 

The performance of the inlet upon reduction of M 0 repeats that with 
increasing M0, except when M 0 passes through Mod. With good engine 
matching and no incoming disturbances, the shock wave can continue to be 
stabilized at the throat. This situation continues (but becomes progressively 
more unstable) until the throat Mach number reaches unity and the shock 
snaps into the freestream. 

The variation of inlet pressure ratio with mass flow rate at fixed flight 
Mach number is shown in Fig. 6.16. If engine mass flow demand is 
decreased from the design value, the inlet plenum pressure will rise, forcing 
the shock wave forward and hence unstarting the inlet. When engine mass 
flow demand increases, the inlet mass flow remains at the value passing 
through the throat, but the normal shock progresses further into the inlet. 
As a consequence the stagnation pressure decreases (leading to an increase 
in "corrected mass flow"). 

The off-design characteristics discussed here are quite unsuitable and for 
this reason fixed geometry, normal shock inlets are used only for aircraft 
with low supersonic Mach number capability. Inlet concepts offering in- 
creased performance over a wider operating range were illustrated in Fig. 
1.6. 

The external compression inlet offers the advantages of relatively simple 
construction, short axial length, and good off-design performance. Note that 
the final normal shock wave need not unstart in such an inlet, but rather 
need only move sufficiently far forward to allow the required spillage. The 
inlet ramp angles must be adjustable if the "shock-on-lip" design is to be 

M Od MO 

Fig. 6.15 Fixed geometry inlet off-design behavior with variation in flight Mach 
number. 
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ra 

Fig. 6.16 

rh d 
rh 

Fixed geometry inlet off-design behavior with variation in mass flow rate. 

maintained at other than a single design flight Mach number. A disad- 
vantage of the external compression inlet arises when used at high flight 
Mach numbers because the required flow turning is so great that the 
external cowl angle becomes excessive and generates strong external shocks 
with consequent high drag. 

The internal compression inlet does not suffer from the onset of excessive 
external drags at high design flight Mach numbers, but does have its own 
disadvantages. Thus, the geometry is such that excessive inlet lengths must 
be utilized, and the off-design characteristics can be unacceptable if 
sophisticated variable geometry is not employed. In order to "start" the 
inlet, the shock system must first be swallowed and the geometry then varied 
to locate the normal shock near the throat. Quick-acting throat and sub- 
sonic diffuser bleed systems must also be provided to prevent the sudden 
disgorging of the shock system (inlet "unstart") with a change in engine air 
demand. 

The mixed-flow inlet design offers a useful compromise to these two 
designs for use at high flight Mach numbers. Although it suffers from some 
of the disadvantages of both, it offers the possibility of decreased inlet 
length and geometrical complication compared to the internal compression 
inlet. 

Estimation of Losses in Supersonic Inlets 
An upper limit to supersonic inlet performance can be estimated by 

assuming that all the losses occur across the shock waves. 
Figure 6.17 indicates the geometry and nomenclature for shock wave 

interaction, and includes an example external compression inlet with three 
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/ 

. '  Me ~,.  

Fig. 6.17 Shock wave nomenclature and example of external compression inlet. 

oblique shock waves followed by a normal shock wave. With the availability 
of desk-top computers or calculators with branching and looping capability, 
it is now more convenient to calculate desired quantities directly, rather 
than to refer to tables. To this end, the following summary of equations is 
suggested for estimation of inlet shock losses. 

Summary-- Shock Losses 
Input for oblique shocks: 34,., 3, T 

Equations: 

, + 1  
Y = SSS,2 + + - -  - y "tan 6 (6.46) 

3/,. 2 

To solve this equation, assume y = 1/mi 2 on the right side and calculate 
a new value of y. Use this new value of y as an updated value on the right 
side. Continue until appropriate convergence. (Note y is actually sin20.) 

P t.....~ e 

Pt, 
7 + 1  

27Mi2y - ( 7 - 1) 

1/(~-1)[ ( 7 + l ) M 2 y  

t2 ;77_  2y ],j(, 1, (6.47) 

Me = 

1 

4 + 4(y - 1)Mi2y + (7 + 1)2Mcy - 47May 2 }: 
(6.48) 
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The equivalent expressions for the normal shock wave have already been 
presented as Eqs. (6.41) and (6.45). 

It is to be noted that two limiting values of the ramp angle occur, 6" 
which is that ramp angle just leading to M e = 1 and 6max, the maximum 
ramp angle for which an oblique shock solution exists. It can be shown 3 that 

1 
(sin20)Smax 43'M2 ((3' + 1)34, 2 -  4 

+ {(7 + 1)[(3'+ 1)M 4 + 8(3 ' -  1)Mi2+ 16]} '2) 

_ 1 
sin20 * 43'M2 ((3' + 1)Mi 2 - (3 - 3') 

(6.49) 

+ ( ( 7 +  1 ) [ (7+  1)M 4 -  2 ( 3 - 7 ) M i 2 +  y + 9 ] }  )) 

For both cases the related value of 3 follows from 

(6.50) 

tan6 = 2cotO(MiZs in20  - 1) 
(6.51) 

2 + MiZ(y + 1 - 2 sin2 0) 

The related value of stagnation pressure follows from Eq. (6.47) (with 
y - sin20). 

Effect of Distortion in Inlets 

It is important to note that a major problem with inlets centers about the 
lack of one-dimensionality of the flow. The shock system and wall friction 
lead to areas of reduced stagnation pressure at the exit from the diffuser. 
The static pressure is very nearly constant across the diffuser exit, so a 
reduced stagnation pressure corresponds to a reduced axial velocity. Such a 
reduced velocity will cause the rotor blade to encounter a sudden increase in 
the angle of attack with the consequent possibility of a blade stall. In 
addition, the shock system is unstable and produces time-varying fluctua- 
tions in the stagnation pressure. 

As a result of these distortion effects, engine compressors must be 
designed with sufficient tolerance for distortion to operate without stalling 
when distortion is present. Unfortunately, as is to be made evident in Sec. 
8.1, increased tolerance can be provided only at the expense of decreased 
design performance. 

6 .5  T h e  C o m p r e s s o r  

Compressors are, to a high degree of approximation, adiabatic, so that the 
work interaction across the compressor per mass is just equal to the change 
in the stagnation enthalpy per mass. Assuming that the gas is calorically 
perfect across the compressor makes it easy to relate the temperature change 
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to the desired pressure change. There are, in fact, three related definitions of 
efficiency of use in describing compressor behavior, each of which is 
described in the following sections. 

The Compressor Efficiency, ~lc 
The compressor efficiency is defined by 

ideal work interaction for a given pressure ratio 
~c actual work interaction for a given pressure ratio 

Cp(T , -  Tt2 ) [(T,3/T,~ ) - 11 % -  1 

The ideal process is an isentropic process so that from Eq. (2.57) 

Tt3iTt2 __ ( ~t 3 )(y,.-1)/7,.= ?T(c YC-1)/7" 

hence 

~r~V, 1)/v,_ 1 
~/c % -  1 (6.52) 

Thus, for example, if the desired pressure ratio is given and the compres- 
sor efficiency estimated, the stagnation temperature ratio and hence required 
work interaction may be obtained. 

The Compressor Polytropic Efficiency, e c 

This efficiency, which is related to the compressor efficiency, is defined by 

ideal work interaction for a given differential pressure change 
ec = actual work interaction for a given differential pressure change 

The concept embodied in the use of the polytropic efficiency is that if it 
may be assumed that the stage efficiencies are constant throughout a given 
compressor (it will be shown shortly that the stage efficiency is very nearly 
the polytropic efficiency), then by assuming that e C is a constant, the effect 
of increasing the compressor pressure ratio (by adding stages) upon the 
compressor efficiency may be estimated. Thus, when conducting a cycle 
analysis the most appropriate compressor pressure ratio may be selected. So, 

dhti (6.53) 
ec -  dh t 
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The Gibbs equation (2.12) gives 

T t ds  t = d h t -  ( l /p , )  dpt 

but for the ideal process d s t i  = 0, SO that 

dht i  = ( 1 / p t )  dp t  (6.54) 

Thus, writing d h t =  CpdT t, Eqs. (6.53) and (6.54) together with the 
equation of state give 

d Pt R d Pt/Pt 
e c -  p tCpdT  t - Cp d T J T  t 

hence 
dTt _ "rc-  1 dp t  

Tt "Yce c P t 
(6.55) 

Assuming that e c is constant over the range of interest (this is similar to 
assuming that each stage efficiency is the same), Eq. (6.55) may be in- 
tegrated immediately to give 

Tt3 ( Pt3 ) ('fc 1)/'tcec 
Tt2 ~ Pt2 or I" C = 7r~! ~' 1)/y,e, (6.56) 

Equations (6.52) and (6.56) give an equation relating Be, ec, and the 
compressor pressure ratio 7r c, 

7f  ( ) ' c -  1 ) / 'Y '  - 1 
(6.57) 

7~c = '/7 . ( . /¢-  1) / ' /ce '  - -  1 

This relationship is plotted in Fig. 6.18. 

Q95 

0.9 

0.85 

0.8  

0.75 

Fig. 6.18 

Ye=l.4 

- -  ec = 0.9 

, I  
I 5 I 0  15 2 0  2 5  3 0  35  4 0  

% 

Compressor design efficiency vs pressure ratio. 
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It can be seen that the compressor efficiency goes down with the increase 
in the compressor pressure ratio for a given fixed value of e¢. It must be 
emphasized here that this behavior of compressor efficiency with pressure 
ratio reflects the estimated behavior of a family of compressors designed to 
different pressure ratios (and hence incorporating different numbers of 
stages). Such a curve in no way reflects the expected behavior for a given 
compressor operating off-design. 

The Compressor Stage Efficiency 
The compressor stage efficiency is defined in a completely analogous 

manner to the compressor efficiency, except that the reference pressure ratio 
is that of the stage itself. Thus, 

( ~r "C "- "/~c 
~,, - 1 (6.58) 

where the subscript j refers to the j t h  stage of N total stages. 
To relate the stage efficiencies to the compressor efficiency, note 

T 5 1 [[ ~(yc-1)/y,. 1] 
T,, ~ - %, = 1 + --~, [ t rr c, ) 1 

and hence 

r~ = (T,) ° = %, = 1 t" ~," 
= = ~cj 

Thus 

Tic N "17 "(Yc-1)/yc -- 1 (6.60) 

FI (1 + 11 } - 1 
j = l  

Equation (6.60) gives a method of predicting the efficiency of a compressor 
from the (possibly measured) efficiencies of the individual stages. Note, of 
course, that 

N 

% = I--1%j (6.61) 
j = l  

In the special case where all stage efficiencies 0/$) and stage pressure 
ratios are equal, Eq. (6.60) reduces to the special form 

~c (Yc- l ) /Yc - -  1 
= (6.62)  

[1 + (1/rl,)(vr: ~ l ) / r ~ u _  1)] N_ 1 
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Relationship between the Compressor, Stage, 
and Polytropic Efficiencies 

Equations (6.57), (6.60), and (6.62) give analytical relationships between 
the various definitions of efficiency, but it should be of interest to see if ~s 
formally approaches e,. as the number of stages, for a given pressure ratio, 
gets very large. (That is, the pressure ratio per stage approaches a differen- 
tial pressure ratio per stage.) 

For convenience write 

y _ ~r,!y, x)/r,,~, (6.63) 

and 

1 + ( 1 / v l , ) ( y  È~/N-  1 ) =  x 1/N (6.64) 

Noting that y n s / N  = e x p ( ~ , / N l ~ y )  = 1 + ( ~ J N ) f n y  + O ( 1 / N 2 ) ,  the left 
side of Eq. (6.64) becomes 

[1 + 1 E~y] (6.65) 

Then writing 

x t/m = e x p ( 1 / N g n x )  = 1 + ( 1 / N ) g ~ x  + O ( 1 / N  2 ) (6.66) 

Comparison of Eqs. (6.62-6.66) shows that 

~r,! r , -  l~ /v ,  - 1 
~ as 

~r! v'-x)/v'"' - 1 
N ~ o c  

and hence ~,, ~ e,  as N becomes large. 
As an example calculation, say a 16-stage compressor of ~r~ = 25 is to be 

constructed. The compressor efficiency is to be estimated from the measured 
stage efficiency ~,. Note that % = 2 5 1 / 1 6  = 1.223 and say ~ is measured at 
0.93. Then from 

~r ,  - 1~/~, _ 1 

~s ,B.(y, 1 ) /3 ' , e (  _ 1 

it follows that 

[(7, . -  1)/Yc] f~ % 
e , . = [ l + ( 1 / ~ , ) ( % c ~ ,  1 , / ~ _ 1 )  ] =0.932 
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Two estimates for ~. are obtained from Eqs. (6.57) and (6.62), to give 
~. = 0.897 or 0.896, respectively. It can be noted that if e c was assumed to 
be equal to the measured ~s, Eq. (6.57) would have given ~c = 0.895. 

The point of these manipulations is that use of the polytropic efficiency 
allows rapid estimation of the compressor efficiency. In addition, for very 
rapid preliminary estimates it is sufficient to assume the polytropic efficiency 
is equal to the stage efficiency and then to utilize Eq. (6.57) to estimate ~ .  

6.6 The Burner 

The burner is usually approximated as having adiabatic combustion 
because no heat transfer is assumed at the boundaries. There are two 
measures of the burner performance, incomplete combustion and stagnation 
pressure loss. The burner efficiency ~b is defined as 

1 fnht~] 
Tl b = ~ f  h [ ( ?:?l b fn f ) h t 4 - 

-- l [(t:rl+ rh f ) fp tT t4-rn fp  Tt3] (6.67) 
&ih 

where h is the "heating value" of the fuel, h t the stagnation enthalpy 
(CpT~), and rh / the  fuel mass flow rate. 

The stagnation pressure loss arises from two effects, the viscous losses in 
the combustion chamber and the stagnation pressure losses due to enthalpy 
addition at finite Mach number. These effects are combined for the purposes 
of performance analysis in the burner stagnation pressure ratio vh, where 

~rb = Pt4/P,, < 1 (6.68) 

As with the inlet, there are many important limitations brought about by 
the lack of one-dimensionality of the flow (hot spots). These effects appear 
in the preliminary cycle analysis only indirectly through the required 
reduction in average combustor outlet temperature Tt4. 

The Behavior of the Thermodynamic Properties 
across the Combustor 

In the cycle analysis to follow in Chap. 7, it will be assumed that the gas 
prior to the combustor is calorically perfect with properties C_, ~,~, etc. / l ,  ' 

Similarly, the gas following the combustor will be assumed calorically 
perfect with properties Cp, ~'t, etc. In very-high-temperature engines this 
latter assumption is not highly accurate, and it should be understood 
that, if highly accurate results are required, the real gas tables should be 
used. The tendencies, and even magnitudes (provided ~'t is selected in the 
appropriate range), of the relatively simple calculations to follow are quite 
suitable for preliminary cycle analysis. 
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When considering changes in the thermodynamic properties C_ and 7, it 
• P 

should be remembered that these two properues are related. Thus note 

7 R -  7 Ru (6.69) 
~ = y - 1  y - 1 M  

where R,  is the universal gas constant and M the molecular "weight." 
Thus, if the chemical reaction in the combustion chamber causes the 

vibrational modes to be excited but does not cause appreciable dissociation, 
and also if the rather small percentage of fuel addition does not significantly 
change the molecular weight, then M would be approximately constant. In 
this case, a reduction in 7t is directly related to an increase in Cp, by the 
formula 

Cp, _ Yt 7c - 1 

Cpc Yc Yt-  1 
(6.70) 

This approximation will be used throughout Chaps. 7 and 8. 

One-Dimensional Estimation of the Burner Stagnation Pressure Ratio 
Consider the effect of flameholder drag and enthalpy increase at finite 

Mach number on the stagnation properties in a combustion chamber (Fig. 
6.19). For simplicity, consider a constant-area duct and assume that the 
drag may be estimated by relating the drag loss to the incoming dynamic 
pressure. (Such an analysis tends to be most suitable to the description of 
flow in a constant-area afterburner.) 

To simply analyze the combustion chamber behavior, assume the gases to 
be calorically perfect at the entrance and exit to the chamber, and in 
addition assume that the mass addition of fuel is extremely small compared 
to the air mass flow. The momentum equation may then be written 

P3 + P3 u2 =P4 + P4 u2 -1- ~2 3 3 ( 1p u2)CD 

FLAME HOLDERS 

3 < 
< 
< 

/Aq 

4 

Fig. 6.19 Constant-area combustion chamber. 
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from which 

o r  

P4 _ 1 +TcM~[1 - ( % / 2 ) ]  

P3 1 + YtM 2 
(6.71) 

The state equation and continuity equation (p3u3 = p 4 u 4 )  may be com- 
bined to give 

T,I =(P-~PTJ u3j ~ 
hence 

T4_ u 2 1 (P4t  2Y' ~'tMff(P412 (6.72) 

Also 

7;,, T4 a + k ~ M :  
Tt, T3 1 + ~ _ ~ M 3 2  

(6.73) 

Combining Eqs. (6.71-6.73) then gives 

( I + y , M : )  2 [ ~ cD)]2v,, 
V, 1 +  7eMil,1 _ ~ _  

- X ( 6 . 7 4 )  

This is an equation for M 4 in terms of the upstream variables and 
prescribed stagnation temperature ratio T , /T , .  This is once again of the 
same functional form for the Mach numbe} as3occurred in the solution for 
the heat interaction at constant area (Sec. 2.18), so as before 

M 2 = 2X (6.75) 
1 - 27t X + [1 - 2(7 ' + 1)X] '2 
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Fig. 6.20 
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Combustion stagnation pressure ratio and exit Mach number. 

Following solution for M4, the desired stagnation pressure ratio % is 
given by 

( ~ _  )v,/¢r,-~) 

p,, 1 + M 2 P4 (6.76) 

where P4/P3 is given by Eq. (6.71). 
As an example calculation consider an aircraft flying at Mach number 0.8 

with compressor pressure ratio % = 15. Given T q / T  o = 7, 3', = 1.4, "¢t = 1.3, 
e,. = 0.905, and C o = 1.5, the result is 

T, . Y, . /  Y. / To 

Tt 3 ( Tt 3/Yt2 ) ( Tt2/To ) TcTr 

Here r r = 1.128, and r,. = (15) ]/Os)m9°s) = 2.354, so Tt,/Tt~ = 2.637. Direct 
calculation then yields the results of Fig. 6.20. 

It is evident from Fig. 6.20 that for these conditions the inlet Mach 
number must be restricted to a value of 0.15 or less if the combustor 
pressure loss is not to become excessive. This restriction to low required 
Mach numbers, particularly in afterburners, can lead to design limitations 
upon the required burner cross-sectional area. 

6.7 The Turbine 
Unlike compressors, modern turbines are almost always cooled, at least in 

the first several high-pressure stages. Cooling is accomplished by passing air 
directly from the compressor to the turbine blades where any one of several 
cooling methods may be employed. The "accounting" of cooling losses is 
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best carried out by considering the cooling air and mainstream air to be a 
combined multiple-stream adiabatic flow. In this section, the so-called 
adiabatic efficiencies will be described and estimation of the effect of cooling 
will be considered to be separately determined. 

The Turbine Efficiency, ~t 

The turbine efficiency is defined in a manner analogous to that of the 
compressor efficiency to give 

actual work interaction for a given pressure ratio 
7/t = ideal work interaction for a given pressure ratio 

- T,,) 1 - , ,  

Cp(Tt - Tts, ) 1 - , , ,  

The ideal process is isentropic so 

1 - r  t 
'0t ] --  qTt(Y'- 1)/y,  

(6.77) 

The Turbine Polytropic Efficiency, e t 

Again, analogous to the compressor polytropic efficiency, define 

actual work interaction for a given differential pressure change 
et = ideal work interaction for a given differential pressure change 

Thus 

dh t CpdTt 
et dht, ( 1 / p t ) d p ,  

o r  

Yt dTJTt 
e t - -  - - - -  

2/,- 1 dPt /p  t 

Hence, if e t may be assumed approximately constant, integration gives 

( )e,., ,,., 
Tt---~, = ~ Pt, or "r t = rrt e'(v' 1)/v, (6.78) 
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Turbine design efficiency vs pressure ratio. 

Equations (6.77) and (6.78) then give 

1 - "lTt e t (y t -1 ) / y '  1 - r, 
(6.79) 

1 - %(~, l ) / v ,  1 --  rt 1/e'  

This relationship is plotted in Fig. 6.21. 
It can be seen that the turbine efficiency increases as the turbine design 

expansion ratio (1/~r,) increases. This occurs because energy that is not 
extracted in a given stage due to inefficiencies remains partly available to the 
succeeding stages. 

The Turbine Stage Efficiency 
The turbine stage efficiency is defined in a completely analogous manner 

to the turbine efficiency, to give 

1 - r,, 

T~ta = 1 - (~r,,)(v'- l)/y, 
(6.80) 

Noting 

r,, = 1 - 77,, [ 1 - trr,, ~ )~(v'- 1)/~,]1 
N 

and rt = 1-I r,, 
j = l  

it follows that 

N 

1-  FI 
j = l  

I - %(~, I ) /~,  
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T a b l e  6 .2  C o m p o n e n t  F i g u r e s  o f  Merit  

223 

Ideal Behavior Actual  Behavior "Figures  of Merit"  

Inlet 

Isentropic, hence Adiabatic,  not ,r d 
isentropic, hence 

rd = 1, ,n'd = 1 rd = 1, q'td :# 1 

Compressor 

Isentropic, hence 

- A w  m = Cp,.Tt2('r ,. - 1) 

~r c = zZ,./(~,c- 1) 

Adiabatic,  not isentropic 

- - m w  m = Cp Tt2(T c - 1) "O,. 

~r,. = [1 + "O,.(r,.- 1)] ~ ' / (~- 1) 

1 [,r,!, _ ,) / , ,  _ 11 r c = l  + ~ c  . "O(. 

~r,!v, 1)/y,_ 1 

T c --  1 

~,!Y,- 1)/yc __ 1 

qT'~! T' 1)/Yce(-- 1 

Burner 

No stagnation pressure 
loss, complete com- 
bustion 

~'b = 1 

( , .  + , b ) % T , .  

- thCp3Tt3 = t h f h  

Stagnation pressure loss, 
incomplete combus- 
tion 

%--/: 1 

( m  -~- m f ) f p  T/4 : 

thCp, .T o + "Obmfh 

~b 

"Oh = 

(,~ + % )  c .y , ,  - inc. T~, 

& f h  

Turbine 

Isentropic 

awo,  = C. T,.(I - ~,) 

~t = "rtY'/(Y' 1) 

Adiabatic,  not isentropic 

A w , ,  = Cp T t , (1  - T t )  

1 -,t)] ,r~= [ I  - ~ ( I  ~,/(~, i) 

• , = [I - ff,(l - ~(Y' I)/~,)] 

Note: Cooling to be 
considered separately 

I - ~ -  t 
~t 

1 - ,r/r' ~l/Y, 

l - r ,  
~t 

1 - ~'~/", 

Nozzle 

Isentropic Adiabat ic  % 

% = 1 , % = 1  % = 1 ,  % 4 : 1  
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In  the special case when all stage efficiencies ~/s and stage pressure ratios 
are equal, Eq. (6.81) reduces to 

1 - "lrt(rt-1)/Y' 

6,8 The Nozzle 

The major  loss mechanisms in a nozzle are usually identified with the 
pressure imbalance at the exit caused by over- or underexpansion. The 
degree of  over- or underexpansion is often selected for the best balance of 
internal (exit pressure) and external (boat-tail drag) losses. In any case, the 
boat-tail  losses are separately accounted for when the cowl drag is de- 
termined and the effect of exit pressure imbalance is included in the 
expression for F A [Eq. (6.8)]. 

For  convenience all losses occurring from the turbine exit to nozzle exit 
are included. Thus, 

G = P,9/P,~ < 1 (6.83) 

For  engines without  afterburners, ~r, is usually very nearly unity (0.99 o r  
larger), bu t  when the flameholder ducts are present ~r, can be much lower 
( -  0.97). W h e n  afterburning is present 7r, can be estimated by the analysis 
of  Sec. 6.6. 

Table 6.3 Typical Ranges of Parameters 

~ ° R  
~., ~., °R 

"Yt, "~AB, "/AB' 
h Btu/lbm 

Cp, = 0.24 

Subsonic 
~ra Supersonic 

qT" h 

"0/, 

9lAB, 9lAB' 

~ A B , ~ A B '  
~ , ~ ,  
~m 

e¢ 

e c , 

e t  

380 --* 580 (high altitude ---, very hot day, sea level) 
2400 ~ 2900 
2700 ---, 3400 (upper limit temperatures, not necessarily appropriate 

for best performance) 
1.35 ~ 1.25 (y goes down as T goes up) 
18,500 --, 19,500 

Btu 
Ibm °R 

0.98 ~ 0.998 
May approximate design value with formula such as 

9ld = 1.006 -- 0.016M 2 
0.93 ---, 0.98 
0.96 ---, 0.998 
0.93 --* 0.99 (high values if burner ring in place but no 

burning present) 
0.92 ~ 0.98 
0.99 -~ 0.998 (if afterburner present, as 9lAB, 9lAB') 

1 --, 0.9 (0.9 imphes substantial power takeoff) 
0.86 ~ 0.94 
0.85 - ,  0.92 
0.85 ~ 0.92 
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Usually nozzles are very nearly adiabatic, so that 

% = 1 (6.84) 

In some cases of afterburning, the nozzle may be cooled with compressor 
air, in which case it would be necessary to consider a two-stream analysis. 
Such an analysis is straightforward conceptually, although somewhat tedi- 
ous algebraically, and will not be included in this book. 

6.9 Summary of Component Figures of Merit 
The loss mechanisms and their measures considered in the preceding 

sections may be summarized as in Table 6.2. Table 6.3 provides typical 
ranges of parameters  found to be appropriate for present day technology. 
The table is given in British units, see Table 5.2 for conversion factors for SI 
units. 
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Problems 

6.1 Calculate and plot the dimensionless additive drag Dadd/Aip 0 
over a range of inlet design Mach numbers, 0.2 _< M i _< 1, for the two flight 
Mach numbers M 0 - -0  and 0.85. ;Use a one-dimensional estimate for the 
drag. 

6.2 Verify that Eqs. (6.22-6.28) are correct. 

6.3 Obtain Eq. (6.33). 

6.4 Obtain Eqs. (6.34-6.38). 

6.5 A flow within a duct closely approximates a "step profile." 
Denoting conditions in the stream by subscripts 1 or 2 and given a 
= rh2/r~ 1 = 1.2, Pt2/Ptl = 1.3, Tt2/Ttl = 0.6, and M 1 = 0.5, evaluate the ratios 

Pt~./Pt .... and P~.JP~m~: 

6.6 An internal compression inlet with variable geometry is designed 
to stabilize a normal shock "a t"  the throat at a value of M,, 1 for all flight 
Mach numbers above M 0 = M 1 = 1.5. (See Fig. A.) The flow elsewhere in 
the inlet may be considered to be isentropic. 
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uo 

Fig. A 

A 2 

(a) Show that the dimensionless thrust on the inlet F/AlP 1 may be 
calculated from the hierarchy of equations 

M 2 = 

m2 

A 1  • M m  2 

M =  lV7 

e l 2  - -  

Ptt 

Pt__.L = 

Pi 

P2 
Pl 

F 
AlP1 

1 + - ~ M 2 1  

7Mm21 7 -- 1 
2 

! L ~ M ~  ' 1  + Y - - ~  M22 ! + y_~M___.._~221+~ -I-M2 )(r+~,/2,r ~, 

27 1/(7 1) 
2 ,.t 1 + 77q_(M21 _ 1 

1 + Z - ~ M ~  1 

(I+Y-~-Mi2) v/tv-l, ( i =  l o r 2 )  

Pt2 Pq/Pl 
Pq Pt2/P2 

PzAz(l+yM2)-(1+yM2 ) 
plA1 

(b) Evaluate F/Axp I over the range 1.5 < M  1 < 3.0 for the case 
Mm~ = 1.3, y = 1.4, and A2/A 1 = 1. 

( c )  Evaluate F for the case M x = 3.0 for conditions as in part (b), and 
for To= 400°R, Po = P l  = 138 lbf / f t  2, and an inlet diameter of 5 ft. 

(d) If the engine specific thrust is 40 lb f / lbm/s ,  what is the ratio of 
this "inlet thrust" to the engine thrust? 

6.7 (a) You visit a facility and are shown an aircraft inlet design. 
You are told that when in operation the Mach number just downstream of 
the shock located. "at"  A m is M m2 = 0.83, that AI/A m = 1.20, that 7 = 1.39, 
and that the flight Mach number is "secret. Obtain an estimate of M 1 to 
three significant figures. 

(b) Can this inlet operate if its geometry is fixed? 
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i 

s S I 

Fig. B 

f l  I I .  

Fig. C 

6.8 An inlet is designed with a two-dimensional ramp that creates an 
oblique shock. The oblique shock is followed by a normal shock just 
preceding the cowl. (See Fig. B.) 

(a) With the assumption that the only losses occur across the shock 
waves, calculate ~r a for the cases: y = 1.4, M 0 = 1.9, and 6 = 8, 13, and 
18 deg. 

(b) Compare the performance of the 8 deg ramp to the 13 deg ramp if 
the aircraft is flown at M o = 1.4. 

6.9 A supersonic inlet is constructed with three two-dimensional 
ramps of progressively increasing slope change as indicated in Fig. C (angles 
measured in degrees). Prior to entry into the inlet a normal shock occurs. 

(a) Obtain ~r d for the cases M 0 = 2.5 and 3 = 9, 10, and 11 deg. 
(b) Select the inlet from part (a) that gives the best performance and 

accurately draw the required ramp geometries to cause all of the shocks to 
intersect at the cowl lip. The inlet height H is to be 4 cm on the drawing. 

6.10 A supersonic inlet is constructed with two two-dimensional 
ramps. Following the second oblique shock, a fixed throat inlet is used for 
internal compression (Fig. D). The inlet is designed to self-start when the 
flight Mach number M 0 is 2.2. For the case where 31 = 7 deg and 3 2 = 8 deg 
(y = 1.4): 

(a) Obtain ~r a assuming the inlet starts. Also, obtain the required 
Am/A1. 

(b) Obtain 7r a assuming the inlet does not start. 
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M o , - "  ,," A I 

Fig. D 

T 59*F 

P 14.7 psi(:1 

234 947 2343 1527 994 

36 352 330 88 21 

Fig. E 

6.11 In the text, the efficiency of an inlet is defined as its stagnation 
pressure ratio 7r d. Thermodynamically, an inlet may be considered to be a 
compressor that adiabatically compresses the air from Po to p , .  Thus, 
defining the "classical inlet efficiency" Ot the same way as 7/, was -defined, 
show that: 

(a) ~i - 
r r - -1  

(b) e I = 1 + gnrrtdY-l)/r/gnrr 

(c) Evaluate ~h and e I for an inlet that obtains ~rd= 0.88 when 
Mo = 2.8. 

6.12 The conditions existing throughout the core stream of a commer- 
cial turbofan engine (for takeoff setting) are indicated in Fig. E. 

(a) Given ~¢ = 1.4, 7, = 1.3, estimate 7/cL, */cn, eCL, ecru TItL, ~I,N, 
etL, and etn. Note that ~rcL = 36/14.7, ~'CL = (234 + 459.7)/(59 + 459.7), 
etc. 

(b) Some of the resulting efficiencies might seem inappropriate. Ex- 
plain what might be incorrect in your assumptions inherent in estimating 
the efficiencies as in part (a). 
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6.13 A compressor  of pressure ratio 32 has a measured efficiency of 
89%. 

(a) What  is the compressor  polytropic  efficiency? 
(b) If the compressor  is a " two-spoo l "  compressor  with the high-pres- 

sure spool contr ibut ing a pressure ratio of 6, est imate the low-pressure 
compressor  efficiency ~L and the high-pressure compressor  efficiency ~h. 

6.14 A compressor  is composed  of 15 stages, each with a pressure 
rat io of 1.24 and a stage efficiency of 0.92. 

(a) Wha t  is the compressor  pressure ratio? 
(b) What  is the compressor  efficiency? 
(c) What  is the polytropic efficiency? 
(d) Evaluate  the compressor  efficiency assuming that the polytropic  

efficiency is equal to the stage efficiency. 

6.15 A constant -area  burner  has an entering Mach number  of M 3 
= 0.1. Obta in  and plot  ~r b and M 4 vs Tt,/Tt3 in the range 1.5 < Tt4/Tt3 < 3.5. 
Take  7c = 1.4, ~'t = 1.28, and C D = 1.5. 

6.16 A constant  cross-sectional area af terburner  has C D = 1.7, ~, = 1.25 
(~' - 7c -- 7t), and an entering Mach  number  of 0.3. 

(a) Dete rmine  the burner  s tagnation tempera ture  ratio (T~:/Tt~)choke 
that  will just  cause choking in the (constant-area)  channel.  

(b) Plot 7/'AB VS Ttv/Tt5 over the range 1 < Tt:/T~ < (TtT/Tts)choke. 

6.17 A compressor  of pressure ratio ~r, = 30 and efficiency ~/, = 0.89 is 
driven by a turbine with e t = 0.90. Assume no leakage between the compres-  
sor and turbine and that  f =  0.02, 7c = 1.4, "¢t= 1.3, Tt2 = 460°R, and 
Tt, = 2600°R. Dete rmine  ~r t and ~/t. 

6.18 A nozzle has expansion ratio P t T / P 9  = P, 7t, and %. Find an 
expression for T 9 in terms of 7t, rr,, P,  and T~7. 



7. NONIDEAL CYCLE ANALYSIS 

7.1 Introduct ion 

In this chapter cycle analysis is again applied to several example engine 
types. The methodology will remain as in Sec. 5.8, the only difference 
between the results of this chapter and those of Chap. 5 arising because of 
the nonideal component processes assumed and because of the use of 
different thermodynamic properties following the primary burner and 
afterburners. The notation is that already introduced in Sec. 5.2. 

7.2 " The  Turboje t  

The performance equations for the turbojet will now be developed. It will 
be assumed that the gas is calorically perfect up to the compressor outlet 
with properties 7o Cp, etc. The gas will also be assumed calorically perfect 
following the burner~with properties 7, C_, etc. If an afterburner is in 
operation, the gas following the afterburner"will again be assumed calori- 
cally perfect with properties TAB, Cp^B, etc. It will be assumed that the gas 
constant remains unchanged throughout so that Eq. (6.70) (or the equiva- 
lent for Cp,,B and 7^B) remains valid. All components will be considered to 
be adiabatic (no turbine cooling) and the etficiencies of compressor and 
turbine will be described through the use of constant polytropic efficiencies. 
Finally, the effects of gas leakage and the use of drawn-off air for auxiliary 
power will not be included. The reference stations are indicated in Fig. 7.1. 

The analysis to follow will be developed in a form suitable for use 
whether or not an afterburner is present or in operation. 

Cycle Analysis of the Turbojet with Losses 
The expression for the uninstalled thrust is as given by Eq. (6.8). That is, 

with the station numbering of Fig. 7.1, 

F,4 = rh9u9 - rhouo + (P9 - p o ) A 9  (7.1) 

Because gas leakage and the use of auxiliary air is ignored, 

Fh9 = Fho '~ ~/f-'~- ?nfAB = fh0(1 + f +  fAB) (7.2) 

231 
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Also note 

i ) 
fno(P9-Po)A9 =(l  +f+fA.)  A9P9 ( l - P °  

pgU9A[9 ~ P9 

,,+,+~B/ uo .9~9(~0)  
= U91Uo u21(~[cRcTo) "~cRcTo ] -- P9 

or 

1 Uo 1 ( po)T9 
rho(pg-po)A9 = (1 + f + fAB)7~Mo 2 U9/U ° 1-- ~9 Too (7.3) 

In Eq. (7.3) R 9 = R c has been utilized. Equations (7.1-7.3) then give 

[ (u9)~o FA = a o (1 +f+fAB) Mo,-T- - Mo mo 

+ ( l + f + f A B )  , 1 . T9( l_PO]]  
Yc[Mo(u9/Uo)] To ~ -~9 1] 

(7.4) 

Mo~[ Ug l 2 rA.RAB :l"9 2 
I 'UoI Vca~ Yoo M~ (7.5) 

Then noting 

~t~: ~9(, + ~ 1 ~9~) = ~0~,~.  (7.6) 

and 

YAB-- 1 21 v^./(Y^B - I )  
Pt9 =P9 1 + ~ M ~  ) =po~r~a~rc~b~t~ n (7.7) 

0 

I 2 3 4, 5 6 

_ / 

7 8  

Fig. 7.1 Turbojet reference stations. 
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write 

and 

~s9~- VAB ------~ ~ j  

or 

u92 [,(  ] Mg ( ~o ) ~ABRAB Cp<. 2 Pt91--[(YArj--1)/'L~B] 
7<R,. CpA. YAB 1 'rXas P9 ] 

u9)2 ] ,9, (7.9) 

Also note 

Tg=  (Cp</CpA")'rxA" (7.10) 
T O / - "~(VAB--1)/VAB 

t Ptg/P9 ) 

Equations (7.9) and (7.10) allow determination of the principal terms in 
the expression for the specific thrust, except that the turbine pressure ratio 
~r t must be obtained from the power balance between the turbine and 
compressor. Thus, 

,~oC.,(r,,- 7;, 2) = (me + %)C., ,7, . (T, .-  r,,) 

Dividing by ~noCp, T o and rearranging 

1 ~'r (~.<_ 1) (7.11) 
~'t = 1 ~,,,(1 + f )  I"X 

and then 

~t = 'l'tY'/('/'- 1)e' (7.12) 

It should be noted here that the mechanical efficiency t/,, will normally be 
very high (approximately unity) for most gas turbine engines. However, by 
retaining ~,, in the equation, a convenient method of accounting for the 
auxiliary power takeoff is provided. 

Finally, expressions are obtained for the fuel-to-air ratios from the 
enthalpy balances across the appropriate burners. 

Primary burner. An enthalpy balance gives 

,not,, r,> + ,l~%h = ('~o + % )  C,,,r. 
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Dividing by fnoCp.T o and rearranging, there is obtained 

T h -- ,l'rT c 
f =  ( hilbl Cp To) -- ,r x 

(7.13) 

Afterburner. An enthalpy balance gives 

(too + eni )Cp,T, , + nA#nL..h = ( ~n o + ms+ m~..)CpA.T . 

Dividing by ~loCp, T o and rearranging, 

'/'hA. -- "r~'rt 
fA. = (1 + f ) ( h ~ A S . 7 - T ~  -- rx^~ (7.14) 

The specific fuel consumption may then be written as 

(#'hf + #'blAB) (106) f + f A B  (106) (7.15) 
s = r ,  VA/~ho 

Equations (7.1-7.15) may now be arranged in an order to allow direct 
calculation of the desired performance variables in terms of the imposed 
flight conditions, design limits, design choices, and component efficiencies. 
The equations are summarized in the next section. 

Summary of the Equations-- Turbojet with Losses 

Inputs: To(K)I°RI, 7¢,'lt, YAa, Cp , Cp,, 

Cp^,(J/kg. K)[Btu / lbm-°R] ,  h (J /kg)[Btu/ lbm],  

rrd, %, rr,, ~lh, ~l^a, ~1,,,, ec, et, 

P 9 / P o '  "rh, Tat, B, "tic, Mo  

Outputs: N ,be l mo( )  omo''bm" 
S( ~ .  s )[ lbm fuel/h ] ' f ' fga' thrust 

Equations: 

7c - 1 m2/s2. [ ---- ~C- K [R¢= y c - 1  Re Y¢ 
- -  Cp<(2.505)(104) ft2/s . OR] (7.16) 
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a o = ~ m/s  [ft/s] (7.17) 

"r r = 1 + Y~--@-~M02 (7.18) 

% = rT,./(y~- 1) ( 7 . 1 9 )  

"1" c = q'l "(Yc -1)/3'cec (7.20) 

rx - r r %  ( 7 . 2 1 )  
f=  (hnb/Cp~ro) - ¢x 

1 rr (rc_ 1) 
r t= l  r im( l+f )  rx (7.22) 

% = T v, / (r , -  x)e, ( 7 . 2 3 )  

Pt9 PO 
p--'-~ = -~9 %~r a%%% % (7.24) 

r9 = ( c , / G A . ) % .  
T O ( - -  X(YAB -- 1)/YAB 

P t g /  P 9  ) 

(7.25) 

Note: If no afterburning is present, %^, should be put equal to r;r t. Also, 
Cp^ B and YAB should be put equal to Cp, and Yt. 

~rXA B - -  TXT t 

lAB = (1 +f)(h~lA-~pTT-~-_rx^B (7.26) 

M o ~  ° = rXA s 1 -- \~'9] 1) (7.27) 

FA { +f+fAB)(MO~o)--M°+ ( I+f+fAB)(T9/T°) (1-P°)}  
rho = ao (1 y~[Mo(ug/Uo) ] P9 

(7.28) 

(To obtain British units of lbf/lbm/s, replace a o in meters/second with 
ao/32.174 where a o should be given in feet/second, 

(f+fAB) (106) [ S =  3600(f+fAB) ] (7.29) 
s= FA/rho F J g o r h  o 
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Example Results-- Turbojet with Losses 
As a first example consider a turbojet to be designed for flight at Mach 2 

without an afterburner. A range of possible pressure ratios is considered 
and the following characteristics assumed: 

T O = 233.3 K y,  = 1.4 e,. = 0.92, 0.89 
[420 °R] "t, = 1.35 e t = 0.91 

Cp, = 996.5 J / k g -  K ~r d = 0.9425 P9/Po = 1 
[0.238 Btu / lbm • °R] ~r b = 0.98 h = 4.5357(107) J / k g  

Cp, = 1098.2 J / k g -  K ~r, = 0.99 [19,500 Btu/lbm] 
[0.262 Btu / lbm • °R] *lb = 0.97 r x = 7.7 

,/,~ = 0.99 

Figure 7.2 indicates that the general trend in the performance of the 
turbojet with losses is quite similar to that of the ideal turbojet depicted in 
Fig. 5.21. The most notable difference in the trend is that when losses are 
present a minimum exists in the specific fuel consumption, whereas in the 
ideal case the specific fuel consumption continues to decrease with increas- 
ing compressor pressure ratio. 

If the engine were to be used without afterburning, the designer would 
again be faced with the choice of selecting an engine with low thrust, large 
pressure ratio, and low specific fuel consumption as compared to one with 
high thrust, low pressure ratio, and high specific fuel consumption. Another 
aspect of the designer's dilemma becomes apparent when comparing the 
curves obtained for the two different compressor efliciencies. Thus, for 
example, if a designer chose a compression ratio of 30 for use in a 
supersonic transport because his compressor design group had promised a 

F/rh 
N s / k g  

6OO 

400 

20C 

"%,, Vo.9z 
. . . .  %=0.89 - -  

~, ~ " ~  

0 
0 

Fig. 7.2 
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rng/N s 
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4 0  

3 5  

3 0  
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Effect of compressor pressure ratio. 
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Fig. 7.3 
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compressor with e C = 0.92 and then the group delivered a compressor with 
e c = 0.89, it can be seen that the choice of 7rc = 30 would be quite inap- 
propriate. That is, such a compressor would be of a higher pressure ratio 
than that leading to minimum fuel consumption. Thus, the designer would 
have a compressor that was heavier (and more expensive) than that leading 
to a minimum specific fuel consumption, and he would also have lower 
thrust per frontal area. 

The effects of nozzle off-design can be investigated by considering the 
engine to have the same parameters as those indicated above, but to have 
various values of p9//Po . Figure 7.3 shows the effect upon specific fuel 
consumption of varying the exit pressure for an engine with rr~= 16, 
e C = 0.92, and other parameters as given above. 

It is apparent from Fig. 7.3 that variations in the pressure ratio P9/Po in 
the neighborhood of p9//Po = 1 do not strongly affect the specific fuel 
consumption. Hence, it is of great importance to consider this mild sensitiv- 
ity of S to  p9//Po when designing a nozzle so as to select that nozzle giving 
the best combination of internal and external performances. 

In order to assess the effects of afterburning, an engine was considered 
with the same characteristics as those described above, but with the addition 
that ec = 0.92, ~AB = 0.96, % = 0.96 burner on or = 0.98 burner off, rxA B 
= 8.8, and )'AB = %- Figure 7.4 shows the results. 

7.3 The Turbofan 
The performance equations for the turbofan will be developed with the 

same, or equivalent, assumptions as utilized for the analysis of the turbojet 
in Sec. 7.2. The equations will be developed to allow for both primary 
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stream afterburning and/or secondary stream afterburning. Only the case 
of separate exhaust streams will be considered here, as it is hoped that the 
techniques of cycle analysis as developed herein together with the results of 
Sec. 5.13 will enable the interested reader to rapidly generate an analysis for 
the mixed stream case if so desired. The reference stations are indicated in 
Fig. 7.5. 

Cycle Analysis of the Turbofan with Losses 
The expression for the uninstalled thrust can be written as the sum of the 

thrust contributions of the primary and secondary streams to give 

FA = ( hlc + m /  + m/^B)u9 - racuo +(P9 -Po)A9 + ( m r +  rh/^B,) u9' 

--rhFUo + (P9'-p0)A9 ' (7.30) 
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This expression can then be manipulated in a manner completely analogous 
to that of Sec. 7.2 to give 

( (u9) 
FA - a° (1 +f+fAB) Mo~--~o -Mo  rn ,+tn  e 1 + a  

+(1 +f+SAB)7crMo(U9/Uo)'t 1 1 ---P9 

+fAB') .Yc[Mo(u9,1Uo)] To P9' 

(7.31) 

Secondary stream. The temperature and pressure relationships for the 
secondary stream may be written 

Tt9,=T9,(I+ "YAB2-'--IM2)=To~-~A:__'i'XAB, (7.32) 

Ptg,=P9,(l+TAB'--I ) YAB'/('/AB' - 1) ~ M  2 (7.33) 

where 

Pt9" Pc 
--~rr~r drrc,~ n, (7.34) P9' P9' 

Hence noting that 

M2( U9,12 2tAB'RAB'T9' ItA2 
o t~-o I ~ ~"9' 

the foUowing expression is obtained 

0 t --U'oo I = 'y¢-  1 ~'~AB' P9' ] 
(7.35) 

Primary stream. The relationships of Sec. 7.2 leading to Eqs. (7.9) and 
(7.10) remain identical for use in the description of the turbofan primary 
stream. The expression for the turbine temperature ratio must be modified, 
however, to include the effect of power extraction by the fan. Thus, for the 
power balance of fan compressor and turbine 

m<.C,,,.(T,,- :#;,.)+ ,i.,,<-C,,,.(r,,.- r , . )= ',l.,(,~<. + %)C,,,(:r,,,- :l';,,) 
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Dividing this expression by fn~Cp, T o and rearranging, 

1 r ~ [ ( r _ l ) + a ( r , _ l )  ] 
~', = 1 ,Ore( 1 + f )  Tx 

Also, 

q.rt = ,rt~t/(v,- 1)et 

(7.36) 

(7.37) 

are obtained by considering en- 

Hence, dividing by ~h FCpTo and rearranging, 

%^"'- l"Fc' (7.38) 
& " '  = ( ,7,,. ,h/C,, ro) - % .  

Finally, the specific fuel consumption is obtained from 

(rh/+ rhf^ s + rhf^B,) (106) = (f+fAB + "fA,') (106) 
S= FA (l +a)[FA/(rh~+rhr) ] 

(7.39) 

Equations (7.9), (7.10), (7.13), (7.14), and (7.30-7.39) completely describe 
the desired performance behavior of the turbofan. The equations are 
summarized in a form suitable for calculation in the following. 

Summary of the Equations-- Turbofan with Losses 
and Bypass Ratio Prescribed 

Inputs: To(K)[°R], "Yc' "}/t' ~AB' ]/AB" Cp, Cp, CpAI}, 

CpA, (J /kg.  K)[Btu/lbm. °R], h (J/kg)[Btu/lbm], 

qTd, qTb, ~n'  fTn" l~b' 1TAB' I"/AB" 1%a' 

ec, ec', et, P9/Po, Pg'/Po, "rx, Tx,,l], 'rx,,.,, 

~rc,Trc,,Mo,a 

mrCp, Ttr + th/,,,B'OAB,h = ( ~nr + fnL,,, )Cp^,,Tt" 

Expressions for the fuel-to-air ratios 
thalpy balances across each of the burners. The expressions for the primary 
burner and afterburner remain exactly as given by Eqs. (7.13) and (7.14). 
For the secondary afterburner 



Outputs: 

Equations: 
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rh,, --~-g ) go(rh,.+r~F)Ibm/s] 

mg ], f, fAB, fAW, etc. S(~_7~) [ Ibm fuel/h 
lbf thrust 

R~- ,/c-1 7~-- Cp~ m2/s 2" K 

241 

~,~- 1 C,~(2.505)(104)ft2/s2. OR ] R~ Y~ 

a o = ~ m/s [ft/s] 

(7.40) 

(7.41) 

(7.42) 

~r r = %vc/(Vc- 1) 

"ic =" ~(~'c- 1)/~cec 

(7.43) 

(7.44) 

"l'c, = (~n.c,) (Tc-1)/?cec' 

"ik -- "rrq'c 
f =  ( h b/c, cro) - "ix 

1 T r [ ( ' i c _ _ l ) . . ~ ( T c , _ _ l )  ] 
'l t = 1 r/,,(1 + f )  "ix 

(7.45) 

(7.46) 

(7.47) 

~r t = "i tv, /(v,-  1)e, 

Pt9 P o  
-~9 = ~9 ~rr~r d ~r c%~r' % 

(7.48) 

(7.49) 

T9= (C~,/Cp^~) %^~ 
TO ( " ~ ( ~  - 1 ) / ~ ^  s 

P t J P 9 )  
(7.50) 
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Note." If no primary stream afterburning is present, then rx~ ~ should be 
put equal to Tar t. Also, CpAB and 3'AB would be put equal to Cp, and yr. 

1 

2 • m ~0 u9uo/~.~[1 t~ '~ 1% ~ ~ 9  (7.51) 

Ptg, PO 
P9' P9' 

~r~d~c,~n , (7.52) 

7-9, (Go/G,. ,)%.,  
To-B (ptg,/p9,) (yAB,-1)/YA., (7.53) 

Note." If no secondary stream afterburning is present, then rXAB, should be 
put equal to "rrr¢,. Also, Cp^B, and YAW would be put equal to Cpc and 7~. 

U9 { ±  [ 1 ( ] )  ptg, ]--[(YAB'--I)/YAB'] I 

M°-~-o = Yc - 1 rx^"' P9"] (7.54) 

fAB = (1 + f ) ~ /~P  h~AB-'-'c'r" , 
TXAB 

(7.55) 

rX^B'- rr%' (7.56) 
f~B, = (h~AB, /Gro)  _ % .  

ao{ (u9) 
rh~+rh r l + a  ( 1 + f + f A B )  M°-~o - -Mo+(I+f+fAB)  

1 ~(1_  po 
X Yc[Mo(u9/uo) ] -~9) 

+a[(I + fAB')( Mo-~o ) -- Mo 

1 ~9(~o)]) 
+(1 + fAB,),~c[Mo(U9,/Uo)] "~0 1 - -fi79, (7.57) 

(To obtain British units of l b f / lbm/s ,  replace a o in meters/second with 
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ao/32.174 where a 0 should be given in feet/second.) 

(f+fAB+OtfhB') (106 ) [ S =  3600(f+fAB+OtfAB')]  
S = (1 + a)[FA/(rh~+ thr) ] (1 + a)[FA/go(rh~+ rhv) ] 

(7.5g) 

Operation with Convergent Exit Nozzles 
In the usual subsonic transport application of separate stream turbofan 

engines, no afterburning is utilized and the pressure ratio across both the 
primary and secondary nozzles is not very large. Often, therefore, only 
convergent nozzles are employed. In such cases, if the nozzles are choked, 

"~9'--(Pt9"--~c~) yc/(yc-1) and Pt-"Z9 = ( ~ t ~ )  (7.59) 

Thus 

Po Ptg,/P9' [(y~ + 1)/2] vc/(v~.- a) 
P9' Pt9,/Po ~rq'rdq'rc/ITn ' 

(7.60) 

and 

P___oo = Pte/P 9 _ [('Y/+ 1)/2] 3't(Y'-l) (7.61) 
P9 Ptg/PO qTr"lrd~cqrb~tqTn 

Equations (7.60) and (7.61) would then be utilized in Eq. (7.57) to give 
the specific thrust. Note that the expressions are valid for a convergent 
nozzle only when P9 and/or P9' are larger than P0. If Eqs. (7.60) and (7.61) 
predict that Po is larger than P9 or P9', the given nozzle will not be choked 
and in such a case the exit pressure should be taken equal to P0- 

Selection of Parameters Leading 
to Minimum Specific Fuel Consumption 

The hierarchy of the equations contained in the preceding summary can 
be viewed as a functional expression for the specific fuel consumption given 
in terms of the design parameters ~r c, 7re,, and a; thus, 

S=S( rc ,  1re,, a) 

Formally at least, the minimum value of S could be found by obtaining 
the three partial derivatives of S with respect to 7r c, ~rc,, and a and then 
equating the expressions to zero to obtain three equations for the values of 
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the parameters leading to the absolute minimum in S. In practice, it is 
relatively straightforward to obtain the minima with ~r,., and a, but algebrai- 
cally complex to obtain the minimum with ,r c. However, it is a simple 
matter top lo t  the resulting value of S vs ~r c at the joint minimum with ~'c' 
and a to locate the absolute minimum. Fuel efficiency is a paramount 
consideration for transport aircraft, so attention will be directed to non- 
afterburning engines with the exit pressure matched in both streams. For 
such a case, it is evident that the minimum in S occurs (with %, and a) 
when the denominator of Eq. (7.58) reaches a maximum, which itself occurs 
at the maximum of the function G given by 

G-= ( l + f )  M 0 -M0+a[V ~ 

Note the subsidiary relationships and definitions 

(7.62) 

2[  le,] 
o Uo ] = 7c- 1 ¢r%"- (qrdTt'n')(~'-l)/~'c (7.63) 

M u912 2~'x ~--'I't-t(1--et)/et] OUo ] = ~ - - 1  ('5-- ) (7.64) 

1 rr[r_l+a(rc,_l)] 
r, = 1 r/~(1 + f )  r x (7.65) 

7rc' = ' r~  c e c ' / ( ~ ' c - 1 ) ,  "//'c = 'rc "fcec/('rc- I) ,  'fit = "gt y t / ( ' t t - 1 ) e '  

'I" A = q'rq'~c'(~ll 'd~n,)  ( '~c-1) / '¢c  , I1 =- (~r#ra%%%) (r'-l)/v' ( 7 . 6 6 )  

It follows that 

O[Mo(u9,/Uo)] 2 2r r ( 1-ec,  ) 
0%, = Vc- 1 1 (7.68) r,4 

e[Mo(u91Uo)] 2 -2rr(%,-1) [ 1 [1-et) ] 
O0l = ('~c:l"i-~m(1 7 ? )  1 + " ~  ~ 'Tt -1let (7.69) 
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Optimum Bypass Ratio with %, and % Prescribed 
The bypass ratio leading to minimum specific fuel consumption for 

prescribed %, (and %) is obtained by equating aG/c~a to zero. It is to be 
noted, particularly for subsonic aircraft, that this optimum is by itself a 
particularly useful condition. Thus in the case of subsonic aircraft, because 
the bypass ratios leading to minimum specific fuel consumption are very 
large, most of the engine thrust is contributed by the fan stream. Hence, 
prescription of %, very nearly determines the specific thrust and, although 
this optimal solution creates the correct balance between the core and fan 
streams to provide the desired fan pressure ratio at minimum specific fuel 
consumption, the resultant configuration is quite close to that providing the 
minimum specific fuel consumption for the prescribed specific thrust. 

It follows directly from Eq. (7.62) that 

aG l + f  1 O[Mo(U9//Id°)]2I-J[Mo(u9'//Uo)] 2 - M O = O V  
Bet 2 M o (u9/u o) Oct 

hence 

2 

M° Uo] ] 2 Mo(U9,/Uo)-M 0 (~ol 
Combination of Eqs. (7.64), (7.69), and (7.70) gives 

1 , - [ (1 -e , ) / e t ]  .~,=.~*=~, 

+ l _ e t  ] 2 
1 r r (%,-1)  [ 1 + (  e, ] 2(]lc__l),Th{l~rn[Mo--~9,J'u~__Mo] l"rt*-l/et]} 

(7.71) 

The numerical value of z* may be obtained from this expression by 
functional iteration. A suitable starting value for r*, Zt*o, is obtained from 
Eq. (7.71) with e, = 1. Thus, 

1 1 [ rr(rc,- 1) ~2 
r't0 = ~ - +  2(,/c - 1)% ~ , / , , [ M 0 ~ 9 ~ _ M o  ] j (7.72) 

The related value of the bypass ratio a* can then be obtained from the 
power balance between the turbine, fan, and compressor. The equations 
necessary for performance calculation are summarized in the following 
section. 
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Summary of the Equations-- Turbofan with Losses, 
No Afterburning, Exit Pressures Matched, and Bypass Ratio 
Optimized for Fan Pressure Ratio and 
Compressor Pressure Ratio Prescribed 
Inputs: To (K)[°R], Y~, 7t, Cpc, Cp, (J/kg • K)[Btu/lbm • °R], 

h (J/kg)[Btu/lbm], 

%, %, %, %,, T/b, r/~, G, G', e,, ~r~, ~r¢,, Mo, ra 

Outputs: FA N'S [ F A lbf ] 
rh¢ + rnr (-~-g ) go(rh~ + mF) I bm/s ]' 

S ( ~  1[ Ibm fuel/h ] a* 
1[ lbf thrust J' 

Equations: The first seven equations are identical to Eqs. (7.40-7.46), then 

H = (%~ra%%%)<~'-l)h, (7.73) 

Pt 
P9" 'B'rTr d'B'c'q'gn' (7.74) 

Mo~o = ~ V--U- T 1- p~,j JJ 

r* 1 1 r.(r<- 1) 12 

~1,,, Mo-~o-M o 

1 • 
"rl* = ~ ¢ t  --[(l--et)/e,] 

1 r,(%,- I) fl 
t 

a ,  = _~m(1 + f ) ( 1  - r , . ) r  a r C -  1 

(%,- 1)'r %.--1 

[ 1 - e , i  1 1 ])2 

+t-v  "1t 

(7.75) 

(7.76) 

(7.77) 

(7.78) 
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1+ v (1 -Mo+.* Mo -Mo 

(For British units divide by go = 32.174.) 

f(106) [ 3600f ] 
S = ( l + a , ) F / ( r h ~ + r h v )  S =  ( l+a , )F / [go ( rh¢+rhF)  ] 

(7.79) 

(7.80) 

Optimum Fan Pressure Ratio with a and ~r c Prescribed 

An equation for the fan stagnation temperature ratio leading to minimum 
specific fuel consumption for prescribed a follows from OG/0%, = O. Thus 

OG 1 + f 1 0 [Mo(u9/uo)] 2 
0%, = 2 Mo(U9//Uo) O'rc, 

a 1 O[Mo(U9'//Uo)] 2 
+ 2 Mo(u9,/Uo) 0%, = 0 (7.81) 

Hence with Eq. (7.68) 

U 2 
M 9' _ (0 0) 

l 
1 + f  ~'c- 1 Yj ] \u0 

O[Mo(u9/Uo)] 2 
0%, 

(7.82) 

Combination of Equations (7.63), (7.67), and (7.82) then leads to an 
expression for %, that can be solved for the desired value leading to 
minimum specific fuel consumption. This particular optimum will not be 
further pursued here for the reason that such an optimum generally leads to 
too low a specific thrust. It is of interest, however, to investigate the joint 
minimum of S with "r,, and a because, even though the joint minimum 
generally corresponds to a configuration with a very low Zc' and very large a 
(and hence very low specific thrust), the solution does locate the minimum 
imaginable specific fuel consumption and thus tends to expose the design 
tradeoffs that must be considered when installation effects are to be 
accounted for. 

Optimum Bypass Ratio with ~r c Prescribed 

An equation giving the value of r,, that leads to the minimum specific fuel 
consumption for prescribed It, (only) follows by equating both OG/Oa and 



248 GAS TURBINE AND ROCKET PROPULSION 

aG/a%, to zero. Note first that Eq. (7.81) may be written [with Eq. (7.68)], 

(M u912] 2 
[M u912 I + f M  ug' 1 Ok Ouo]  (7.83) 

~ °u°] = ---d-- °-~° 2"rr ( - 1 1 ~'A 

Thus, combination of Eqs. (7.67), (7.69), (7.70), and (7.83) gives a single 
equation for %,, 

) , ,( ,_ ,-e.) 
Mo ,-:- - M 0  = i 

\ Uo ~'e - 1 ~A 
(7.84) 

Equations (7.63), (7.66), and (7.84) may then be manipulated into the 
following form, which may be solved by functional iteration with %8 = 1, 

[( 1-e.,) % , = 1 + 2  %, 1 -  1 e~,%, 1 + 
rA rr rA 

! 
+ ~ ( % , -  1) 2 2 (7.85) 

It is to be noted that this optimum value of %, is independent of the 
prescribed value of ~r~. Thus, desired performance and design variables can 
be obtained for this "joint minimum" case by using the value of ~r c, 
obtained from this calculation as an input in the summary [Eqs. (7.73-7.80)]. 
A family of solutions can be generated for a range of compressor pressure 
ratios 7r¢, and the minimum value of specific fuel consumption obtained (vs 
~r~) would hence be the minimum conceivable value for the given flight 
conditions. 

Example Results-- Turbofan with Losses 
As an example study, consider a "core engine" with ~r c = 25 and investi- 

gate the effect of the variation in bypass pressure ratio on the optimum 
bypass ratio a* (~rc and ~r~, prescribed) and on the performance parameters. 
In order to emphasize the effects upon the design configuration of changes 
in component efficiencies, three engines are considered: a perfect engine, an 
engine with high component efficiencies, and an engine with low component 
efficiencies. The flight Mach number is M 0 = 0.9 and the component 
efficiencies for the three engines are shown in Table 7.1. 

In addition, assume that the exit pressures are matched (09, =P9 = P 0 )  
and that h =4.4194(107) J /kg,  Cp = 1004.9 J / k g .  K, T O = 233.3 K, ~x 
= 7.71, and Yt = 1.35. The resultingCvalues for optimal bypass ratio a* vs 
the bypass pressure ratio ~r~. are shown in Fig. 7.6. 
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Table 7.1 Component Efliciencies of Three Engines 
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Engine ~r,, %,, 

Efficiency 

~r d ¢rt, ~ t, TI , ,  e ,  e , , e t 

1 1 1 
2 0.99 0.99 
3 0.96 0.96 

1 1 1 1 1 1 1 
0.98 0.98 0.98 1 0.93 0.93 0.92 
0.95 0.95 0.96 0.98 0.87 0.86 0.86 

32 \\ 
2 4  

8 

0 

Fig. 7.6 

1.2 1.4 I. 6 1.8 
r e , 

Optimal bypass ratio vs fan pressure ratio. 

Several tendencies are notable. It is clear that the optimum bypass ratio 
for a given ~r c, can change dramatically with changes in component perfor- 
mance, particularly at low values of fan pressure ratio. This again emphasizes 
the designer's problem in that he must have accurate component perfor- 
mance estimates in order to correctly select his engine configuration. The 
very large bypass ratios indicated to be optimum (as compared to present-day 
practice) result because of the very high turbine temperature capability 
assumed and further because the turbine cooling air penalty has not been 
included. 

Even when the bypass ratio is selected to be optimal for the given 
component efficiencies, the penalties in performance for the component 
inefficiencies are substantial, as is evident in Fig. 7.7. 

Similar results for higher Mach number flight are easily obtained, al- 
though, of course, the optimal bypass ratios are lower and the appropriate 
fan pressure ratios higher. 
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Fig. 7.8 Variation of specific fuel consumption with fan pressure ratio and compres- 
sor pressure ratio. 

The selection of appropriate compressor and fan pressure ratios is aided 
by graphs such as Figs. 7.8 and 7.9. The minimum specific fuel consumption 
attainable for the given conditions (of "engine 2") is indicated in Fig. 7.8 
where the minimum value of the "joint minimum" occurs. It is evident 
however, that the related specific thrust is rather low, the bypass ratio (17.9) 
rather high, and the compressor pressure ratio (80) very high indeed. 

It is readily apparent that installation problems increase for engines with 
low specific thrust because of the required large cowl diameters. In addition, 
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Variation of specific thrust with fan pressure ratio and compressor pressure 

the related bypass ratios are so large that fan-turbine matching becomes a 
significant problem even if the fan is driven by a separate spool. This in 
itself results because the fan tip speed limitation brought about by centri- 
fugal stressing requires too low an rpm (and hence tip speed) for the 
turbine. As a result, it is required either to provide an excessive number of 
turbine stages to drive the fan or to provide a gearbox to better match the 
fan and turbine tip speeds. The latter configuration--usually required for 
bypass ratios in excess of about lO--is referred to as a "geared fan." 

The very large compressor pressure ratios identified with minimum specific 
fuel consumption also introduce severe design problems. Not only does the 
large compression ratio incur the penalties of large weight and expense, but 
also, as will be evident in the following chapter, severe off-design penalties 
are identified with engines having very high-pressure ratios. 

A successful design represents an appropriate compromise between the 
lowest installed specific fuel consumption and the cost, weight, off-design 
behavior, etc., of the engine. 

Minimum Specific Fuel Consumption for a Given Specific Thrust 
The preceding analyses presented methods of obtaining the minimum 

specific fuel consumption for an appropriate choice of each of the major 
individual component design choices, ~r C, ~rc,, or a. In fact, an optimal 
design usually involves selection of the best component matching for a 
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prescribed specific thrust. Determination of the combined component con- 
figuration is not a difficult task now that high-speed computers (or calcula- 
tors) are available. 

Combination of Eqs. (7.13) and (7.58) gives 

f(106) ~x - -  "rr'rc (7.86) 
S =  (l  +a)[FAl (rh~+rhF)  ] , f =  (h,lb/CpcTo)_,rx 

It is evident from Eqs. (7.86) that S will reach a minimum for prescribed % 
and Fa/(rh ~ + rh F) when a reaches a maximum subject to the constrained 
value of specific thrust. It can be shown (Problem 7.12) that the expression 
for the specific thrust itself can be inverted to give an equation of the form 

FA ~., ~ , )  (7.87) 
Ol -~" Ol m c _l_ ?~Z F , 

Thus, for prescribed values of FA/(rh c + rhF) and %, the maximum value 
of a can be obtained numerically by successive calculation with differing 
values of %,. Perusal of Fig. 5.39 makes it evident that the required value of 
~rc, will be slightly less than that identified with a*, as will be the related 
value of a. A suggested calculation scheme is to estimate the required %, by 
first calculating that necessary to give the desired specific thrust in the fan 
stream only (Problem 7.13). Next, initiate the search for ama x from Eq. 
(7.87) with the given or slightly smaller value of ~r~,. It is to be noted that the 
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Fig. 7.10 Minimum specific fuel consumption vs specific thrust. 
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vs specific thrust .  

"true minimum" of S [given F A / ( &  ,. + ?J'IF) ] will involve repetition of this 
procedure for various values of ~r,.. Figures 7.10 and 7.11 show the results 
for engine configuration 2 of the preceding examples. Once again, the values 
of the compressor pressure ratio corresponding to minimum S are rather 
large. It is usually the case that off-design and compressor outlet tempera- 
ture considerations actually determine the final choice of compressor pres- 
sure ratio. Example results for ~r,. = 40 and 60 are shown in Figs. 7.10 and 
7.11. 

The Effect of Turbine Cooling 
It is readily evident from the preceding calculations that substantial 

performance benefits can be obtained with increases in the turbine inlet 
temperature. However, in practice, high turbine inlet temperatures can be 
achieved only with turbine cooling and the resulting cooling penalties can 
be substantial. In this section, a simplified approximate analysis of the 
effects of turbine cooling is developed. The methods are easily extended to 
more complicated examples, although the algebra can get very tedious. 

The configuration to be considered is shown in Fig. 7.12. As indicated in 
the figure, cooling air is drawn off from the compressor output and injected 
at the trailing edges of the first-stage nozzle (4a) and first-stage rotor (4b). 
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Turbine cooling stations. 

Mixing is assumed to occur at each station at the local mainstream stagna- 
tion pressure (with p~,, = Pt4). Conditions following the mixing behind the 
rotor are represented with the subscript 4c. Now define, 

&Y &l &2 
f =  & c -  &l - &2 ' E1 - m,.' e2 -  t~/,. 

Tt,h Pt,~ Pt,b 

r th-  T,,.' %h p~,o Pt, 

Tt~ Pt~ _ Pt5 
rtL = -~t,, ' ~rtL P~,, P~,~ 

Assuming, as previously, that the gas downstream of the burner is 
calorically perfect with properties ~'1, Cp,, etc., routine but tedious applica- 
tion of the power balance between the compressor, fan, and turbine and of 
the conservation of stagnation enthalpy in the mixing processes at stations 
4a and 4b-c  leads to the following equation set for use in determining the 
engine performance (Problem 7.15). 

Additional Inputs to Account for Cooling: 'nth, ¢1, ¢2, eth, etL 
Equations: Equations (7.47) and (7.48) of the summary [Eqs. (7.38-7.58)] 

should be replaced by 

,Tt h = , f i t ( ' / , -  1 )e , . , / - / ,  (7.88) 

( e l + e 2 ) , r , . % + ( l _ e l _ e 2 ) ( l + f ) , r x  'r.,. - - - ~ [ ' r ~ -  1 + a ( ' r c , -  1)] 

~'~ = [ ~ , ~  + (1 - ~1 - ~ ) ( 1  +f) . r~ , ]  "rt,, + ,~.,'rr'rc 

-_ .TtY~/ (Yt- 1)etL %L 

~r t = ~rth ~r, L 

(7.89) 

(7.90) 

(7.91) 



NONIDEAL CYCLE ANALYSIS 255 

Additionally, in the subsequent equations ~-x~-t and f should be replaced 
wherever they appear by 

"rtL {[ e 10";r c + (1 -- e 1 -- e2)(1 + f)'rx] ~'th + t~z'r;rc } 
'rx'rt = 1 + (1 -- e 1 -- t~2) f 

(7.92) 

f ~  (1 - e 1 - e2) f (7.93) 

Example calculations (Problem 7.16) indicate that engine performance is 
very sensitive to the required amount of compressor cooling air. 

7.4 The Turboprop or Prop Fan 

In recent years renewed interest in highly efficient flight transportation 
has spurred investigation into "very-high-bypass-ratio fans." Cycle analysis 
indicates that such bypass ratios (for subsonic flight) could approach those 
corresponding to the "old" turboprop engines (= 100/1). 

There are several reasons why the turbofan engines became much more 
popular than the turboprop engines, and it is prudent to review such reasons 
in order to comprehend why similar concepts are again gaining in popular- 
ity. A major reason for the success of the turbofan was its high (subsonic) 
Mach number capability. In a turboprop, the propeller tip Mach numbers 
become very large when the flight Mach number approaches about 0.7 and 
the resultant loss in propeller efficiency limits the turboprop use to M 0 < 0.7. 
With a turbofan, the onset of high Mach number effects is reduced by the 
diffusion within the inlet duct. In addition, the individual blade loading can 
be much reduced by utilizing many blades and the cowl much reduces blade 
tip losses. 

A further important benefit of conventional turbofans is that they require 
no gearbox to reduce the tip speeds of their relatively short blades. (Note, of 
course, that a turbofan engine usually has multiple spools.) Turboprop 
gearboxes have to date been heavy and subject to reliability problems. 

Finally, the high tip speed of the turboprops led to high noise levels, both 
in the airport vicinity and within the aircraft at flight speeds. 

Recent studies of engines with very high bypass ratios have, however, 
suggested some compromise designs that show great promise. Thus, if a 
bypass ratio of (say) 25 is selected, the corresponding cowl could have 
identified with it weight and drag penalties that are not compensated for by 
the benefits of the inlet diffusion and the reduction in tip losses. By 
considering this "in-between" bypass ratio (sometimes termed a "prop 
fan"), the required shaft speed will be increased with the result that a lighter 
and simpler gearbox may be utilized. Finally, the effects of tip losses and 
noise production may be somewhat curtailed by utilizing many (about eight) 
of the smaller diameter blades and by sweeping the blades to reduce the 
relative Math numbers. An additional benefit is available in that the blades 
may be made variable pitch, which will allow high propeller efficiencies to 
be maintained over a wide operating range. 
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It will be recalled (Sec. 5.6) that the propulsive efficiency can be written 

r/p = 2Uo/(U 9 + U0) 

where u 0 is the flight speed and u 9 the "jet speed." 
This expression is also appropriate for a propeller and serves to em- 

phasize that a large propeller [to reduce u 9 for a given thrust F = rh(u 9 - u0) ] 
is needed if the propulsive efficiency is to be high. The propulsive efficiency 
71p represents the ideal limit of the propeller efficiency defined by 

power to vehicle (7.94) 
V/pr°p = power to propeller 

Thus, 

1 • 2 
Fu° rh(u9 - u° )u°  2m(u9-u2) (7.95) 

1'/prop = Wprop = lvh(u2-u 2) Wprop ='tlPI"IL 

where W. rop p is the propeller power input, r IL = [ ½fn ( u ~ - u ~ ) ] / W p r o p ,  and 
"OL represents the power output of the propeller to the fluid stream (in 
the "axial" direction) divided by the power input to the propeller. 

Thus, the propeller efficiency would be expected to increase with propeller 
size simply because the ideal propeller efficiency (that is, the propulsive 
efficiency) increases as more mass is handled. This, of course, relates the 
propeller efficiency and the "bypass ratio." It should be noted that if the 
propeller size is increased to the extreme, ~L will begin to decrease because 
of high Mach number losses in the outer portion of the blades. 

Cycle Analysis of the Turboprop 
It is appropriate in analyzing the turboprop class of engine to consider 

the work interaction with the vehicle rather than the thrust. To facilitate 
this, the "work interaction coefficient" C is introduced, defined by 

total work interaction with vehicle/ 
mass of air through core engine 

C = CpoT ° (7.96) 

It is usual with turboprop engines to have the core stream exit nozzle 
unchoked, so the pressure imbalance term will not be included in the 
expression for the thrust. The numbering of the stations indicated in Fig. 
7.13 is used in the following analysis in much the same way as with the 
previously considered engine types. 
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Fig. 7.13 Turboprop reference stations. 

Core engine. With 

Tt9= T9(1 Jr- ~t~2 1M2) -D- To'l'h~',~ t 

= po,rl'rqrdTrc~b'lrtqTn (7.97) 

(7.98) 

and Po = P9 and again defining 

1-[ ~-" ( ql'r~dql"cqTbqT n )(Y'- 1)/7t (7.99) 

it follows directly that [just as for Eq. (7.64)] 

M u912 2~x { -~--'Tt--[(1--e')/e'] ) 
0U01 ---- ~--TZ-~ ~'-  

(7.100) 

Thus 

U9 -Mo ] Fc°re/,hc =ao[(1 - t - f ) M o ~  (7.101) 

The work interaction coefficient for the core C c is then given by 

c c = U o F c o r e a 2 o M o Y c R c [  U9 ] 
C, cT o fn¢ = y~R~---~o C,c (1 +/)Mo-~o - M o 
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o r  

U 9  __ M0] C~= ('Y~-l)Mo[(l + f )Mo-~o (7.102) 

Also, it may be noted here that f is still given by Eq. (7.13). 

Propeller output. The net work interaction of the turbine with the 
gearbox input shaft per mass of core engine air may be written 

( 1  + - T , , ) - G  (T,  ` - 

Hence the work interaction with the propeller per mass of core engine air is 

CpTo~g[~l,,(1 + f )  ~'x(1 - "rt) - 'r,.(~ - 1)] (7.103) 

where r/ is the efficiency of the gearbox 
g . . . " 

The work interaction coefficient for the propeller Cprop is then given by 

Cprop = ~p,oprts [r/,,,( 1 + f )  rx(1 - ~'t) - 1"r (1"~ -- 1)] (7.104) 

The total work interaction coefficient C is simply the sum of the core and 
propeller work interaction coefficients, hence 

c = Cprop + Cc (7.105) 

The work interaction coefficient can then be determined when the "work 
split" between the core engine and the propeller is decided upon. (This will 
determine ~',.) Analogously to the case with the turbofan engine, an opti- 
mum value of ~, may be determined that corresponds to the minimum 
specific fuel consumption, but before doing so it will be useful to relate the 
work interaction coefficient to more familiar quantities. Thus, note that the 
work interaction per second with the flight vehicle is given by the two 
expressions, Fu o and CpTorhcC. Hence, equating these expressions, 

Specific thrust = _.ff_F C mc = CpcT o u 0 (7.106) 

Similarly, the specific fuel consumption follows from 

S= F---~(IO6)= cSU~oc(106) (7.107) 



NONIDEAL CYCLE ANALYSIS 259 

In British units these expressions become 

F 
go lh 

778 CpTo~oo (778 = f t - lb f /B tu ,  CpcT o = Btu/ lbm,  etc.) 

(7.108) 

3600 fUo lbm fuel /h  (7 .109)  
S 778 CmToC lbfthrust  

A further parameter often used in describing the performance of pro- 
peller engines is the power specific fuel consumption Sp, where 

mg fuel/s  f (106)  
Sp W to vehicle - CpcToC (7.110) 

In the British system, Sp is defined by 

Ibm fuel /h 2545 f 
Se = hp to vehicle - CecToC (7.111) 

Selection of the optimal turbine temperature ratio. Turbopropeller 
or prop-fan engines will be designed primarily for low specific fuel con- 
sumption. Thus, r t is selected to make S a minimum, or equivalently make 
C a maximum. Thus, from Eqs. (7.102), (7.104), and (7.105) 

ac { 
a~'t = -~t  71pr°pr/g[*/"(1 + f ) r x ( 1  - rt) - rr('r~ - 1)] 

(3, _ 1 ) M  ° e[Mo(u9/uo)]21 
= (1 + f )  --l~propl~gl~m"l" h + 2Mo(ug/Uo) ar t j 

= 0 when st = rt* (7.112) 

The equation for r,, may then be written in the form 

(mUg12 { (~/c-1)mo O[mo(u9/Uo)]2} 2 
°Uo ] = 2,/--~,o-~,/g,/,.'----- x Oz t 

(7.113) 
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Equations (7.100) and (7.113) give, after some manipulation 

1 1--et] 1 2 

rx (T/propr/g.r/m) e, ] 

(7.114) 

This equation is similar in form to the equivalent equation for the turbofan 
[Eq. (7.71)] and is also easily solved using functional iteration. A suitable 
starting guess is obtained by taking e t = 1, to  g ive  

1 ~& - 1 M 2 

'/'t~ ~--- ~"  "1- ~ ,/. (~prop1791~m)2 (7.115) 

It might be noted here that the bypass ratio does not appear in these 
calculations. This is because the propeller size (and hence the bypass ratio) 
will be determined once r t. and hence the work interaction coefficient Cprop 
is obtained. The propeller will be sized to give the desired propeller 
efficiency. 

Summary of the Equations-- Turboprop 

Inputs: To(K)[°R], 35, Cp, (J/kg.  K)[Btu/lbm. °R], 

h (J/kg)[Btu/lbm], zrd, %, %, ~lb, ~,,, aTprop, 71g, e~, e,, ~r~, r x, M 0 

Note." Standard values for ~,c and Cp, have been incorporated within the 
summary. 

Outputs: oF  N • s F lbf ] (~ .gs )  ( lbm fuel/h ] 
S lbfthrust ' 

mg  ( )/,bmJhl 
], C, C C, Cprop, etc. 

Equations: 

a 0 = 20.05~00 [a0= 49.02~00 ft/s] (7.116) 

• , = 1 + Mo /5 (7.117) 

,ITr = ,r? "5 

- - 1 / 3 . 5 e  c 
r e=  % 

(7.118) 

(7.119) 

1-I = ( 'lTr'll'd 'lrc Ti'b q'i" n )()"-  1)/T' (7 .120)  
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If ~'t is provided (nonoptimum case), proceed directly to Eq. (7.123). If 
the optimum case is desired, calculate ~* from Eq. (7.122) using z* from to 
Eq. (7.121) as the start value. 

~., 1 m 2 
to = "~- "[- (7.121) 

5'T~( ~ prop~gl~m )2 

1 ( , e , ,  'l't* = 'l't* - [(1- e ' ) /  e'] + M E  1 -]- - -  "rt * - l /e t  

5,TX ( T/propT/gl~m ) 2 e I H 

(7.122) 

M o ~  0u9= I5,T~,( ,./- t -- a q ' t - [ ( 1 - e t ) / e ' ] ) } ~  (7.123) 

~'X - -  ~,~ (7.124) f=  (h~lb/CpTo)_Tx 

Cprop = */prop*/g [~/m( 1 +f)Tx( 1 -- ¢t) -- ~'r(% -- 1)] (7.125) 

C~ = 0.4Mo [(1 +f)Mo(u9/uo) - -  Mo] (7.126) 

C = (?prop + C~ (7.127) 

F To [ F T o ]  
~--c = 1005 a---~ C gorhc = 186.7 a - - -~C (7.128) 

f(106) [ 3600f ] (7.129) 
S= ( F/rh~---~ S= ( F/--~o~¢) 

f(106) [ (l '060)(10a)f] 
Sp = 1005To C Sp = ~ ] (7.130) 

Example Results-- Turboprop 
An engine suitable for use in an 8-10 passenger business aircraft is 

considered. The parameters assumed are those listed in Table 7.2, which 
reflect the somewhat modest values it is reasonable to assume for such 
small, high-reliability engines. The relatively high propeller efficiency has 
been taken from estimated propeller performance when modern transonic 
techniques are used in the blade design. 

With the values assumed in Table 7.2, a range of compressor pressure 
ratios is considered, and the thrust and specific fuel consumption corre- 
sponding to the minimum fuel consumption at each value of the pressure 
ratio obtained. Figure 7.14 shows the results. It is interesting to note, also, 
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Table 7.2 Parameters Assumed for Turboprop Example 

T O = 238.9 K 
[430°R] 

)'r = 1.35 
Cp, = 1098.2 J /kg-  K 

[0.262 Btuflbm • °R] 

h = 4.5357 (10 7) J /kg .  K ~/b = 0.98 7/g = 0.99 
[19,500 Btu/lbm] ~1,, = 0.95 e ,  = 0.90 

~r d = 0.97 (power takeoff e t = 0.90 
~r b = 0.98 ass.umed) rx = 6.05 
~r, = 0.99 rlorop = 0.83 M 0 = 0.8 

F / ~  

N~kg 1 
I IO0  / 

-1\ 
% 

\ 
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mg/Ns 
19 

18 

1 7  

9501 ~, 
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Fig. 7.14 Specific thrust and specific fuel consumption vs compressor pressure ratio 
for turboprop with optimum turbine temperature ratio. 

that  at the min imum specific fuel consumpt ion (~r c = 24.5), the ratio of 
propeller thrust to core thrust is 8.04. 

It  is of interest to note that when the turboprop of the above example is 
compared  to a turbofan also optimized to minimum specific fuel consump- 
t ion (with ~r c, = 1.4) and with the same parameters where appropriate, the 
tu rboprop  shows an approximately 13% improvement  in specific fuel con- 
sumption.  

7.5 The Effects of Nonconstant Specific Heats 
The range of accuracy of the cycle analysis equations can be extended 

substantial ly by including the variation of  the specific heats with tempera- 
ture. In the range of  temperatures found in gas turbines it is an appropriate 
approximat ion  to retain the assumption of a perfect gas, but to allow 
specific heat variation. This, in effect, implies that the molecular weight of  
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the air and fuel/air mixture changes very little. As a result of the perfect 
gas approximation, the convenient relationships of Eqs. (2.42-2.47) remain 
valid. 

For convenience of manipulation, three functions of temperature XI, X2, 
and X 3 are defined. Thus, 

Cp = R X  1 (7.131) 

h = R T X  2 (7.132) 

x 3 =  f - ~ d T  (7.133) 

The constant a~ is introduced for convenience. It is to be noted that the 
function X 1 is of the form 

X 1 = a 1 + f ( T )  (7.134) 

Note that Eq. (2.45) gives 

x2= l f x ar (7.135) 

In addition, 

(7.136)  =v-1 

Stagnation Properties 
Application of the flow form of the first law to the imaginary isentropic 

process connecting the static state to the stagnation state gives 

o r  

from which 

h t = h + (u2/2) 

ht TtX2, y R T  u z 
--~ = T X  2 = 1 + 2 7  y R T  

M2=2-~12 (X~-  1)( TtTX 2 X2' 1) (7.137) 

In this expression, the additional subscript t, on the symbol )(2,, indicates 
that the function X 2 is to be evaluated at the stagnation temperature T t. 
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The Gibbs equation, with ds = 0, gives 

_ ~  dT dT 
= S l - - ~ =  [al + ( g l -a l )] - - -  T- 

from which 

Pt ~- = exp( X3,- X3) (7.138) 

and 

P exp( X3'- X3) (7.139) 

The Expression for the Mass Flow Rate 

Expressions analogous to those obtained in Sec. 2.19 can be obtained 
directly with the relationships of Eqs. (7.137-7.139). Thus, 

th/A = Ou = RT, RT M 

Hence, 

, I r,x , 
- 1 ) l / 2 e x p [ - ( X 3 - X 3 ) ]  

(7.140) 

It is to be noted tlaat the combination of Eq. (7.137) and (7.140) 
effectively relates the area variation to the Mach number. Note also that 
when isentropic flow is considered, by formally taking the derivative of Eq. 
(7.140) with the temperature T, and equating the result to zero, it follows 
that M = 1 at the throat. This result is also apparent from Eq. (2.76). 

Application of the Results to the Turbine Power Balance 

As a simple example of the use of the perfect gas results, consider the 
cycle analysis of a separate stream turbofan engine. It will be assumed that 
the approximation of a calorically perfect gas in the fan and compressor is 
still appropriate. In such a case the relationships leading to the fan exit 
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velocity would be those previously obtained, but the expression for the core 
exit velocity must be rederived. To this end there is defined 

and 

rr [r , . -  1 + a(T,.,- 1)] (7.141) 
/4 = n~(1 + f )  

h ,, (7.142) 
"~-  Cp7 o 

Note the turbine power balance is simply 

h t , -h t5  n (7.143) 
Cpfo 

A further simplifying assumption is now made in which it is assumed that 
conditions at entry to and exit from the turbine are at effectively zero Mach 
number, so that the thermodynamic properties are determined in terms of 
the stagnation temperatures. 

The turbine pressure ratio is again related to the temperature ratio by use 
of the polytropic efficiency. Thus, 

So 

Hence, 

dh t Cp dT t /T  t 
et= dht, R dpt /p  t 

dpt 1 dTt 
p, et x l  Ttt 

I(  '1al )Xjet 
"/rt = ~ ] exp[(X3), 5 - ( X3),,] (7.144) 

Finally, the velocity at exit follows from 

u29 = 2( hts - h9 ) 

So, 

- 

Uo } = ~ ~ x -  U -  CpcT ° (7.145) 

With these results, the following summary is obtained. 
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Summary of the Equations-- Variable Specific Heat 

Inputs: Mo, ~rc, qrc. , c~, Cp,  To, %, Trd, ~rb, qr., e~., e~.., et, ~lb, ~lm, h 

Outputs: u 9 / u  o 
Equations: 

,T c __-- q7 c(1/3.5e,) 

%, _-- ¢Tc,(1/3.5e~.) 

",-r= l + ( Mg/5) 

TX - -  TrT c 

f= 
_ ___(hnJC. To)  - % 

H = ~ ( 1  + f )  ['rc - 1 + a ( ' r . , -  1)] 

h , .  = CpTo'r x = R ( T X 2 ) t ,  (gives T,,) 

ht5 = ht4 - Cp, T o n  = R (  TX2) t5  (gives Tt~ ) 

Tt5 t al 1/et 
~ ' = { (  Tt,] exp [ (X3) t s - (X3) t a ] )  

el9 
- -  = rr/r a rr ,~r hct t rt 
Po 

p,9 (v,,t°' p--~ = ~ ] exp[( X 3),, - ( X 3)9] (gives T 9) 

UO ] T r -  1 " r x -  H -  Cp T 0 

Effective Ratio of Specific Heats 
The preceding equations allow simple determination of the performance 

of a turbofan. However, the even simpler forms developed in the main text 
have advantages for rapid calculation, and it would be of use if an 
"equivalent 7{' say 7e, could be obtained that would lead to the same 
predicted performance as that obtained for the variable specific heat 
calculation described above. In fact, by assuming a calorically perfect gas, 
calculating u 9 / U o ,  and equating the result to that obtained from Eq. 
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(7.145), a simple expression for ~e follows. Thus, given "rx, H, Cp, T 0, and 
h 9, it follows that 

I"¢ = 1 - ( H / ~  x)  

- 1  

"~e = {1 + ~['Tt[(1/e')-l](h9/CpcTo'rh)]~ct(~r~d~cq.l.b~l.n) ) 
and 

- 1 raT0 Tt," = 3.5 ~e]t e 

Here, Tt, is the equivalent temperature corresponding to the given ~'x- It is 
to be noted that there is no calculational advantage to obtaining "{e, because 
if requires evaluation of h 9, which means that the performance of the core 
stream would already have been determined. The utility in the formulation 
arises simply because the formulas allow determination of 7e for a variety 
of parameter ranges, and hence provides a method of determining ap- 
propriate ranges for an effective ~/t. 

Example Functional Forms 
It is cust9mary to assume simple functional forms for the temperature 

functions, such as polynomial fits to the experimental data. The coefficients 
for such polynomial fits are chosen to minimize the least square error of the 
resultant curve. The reader should do his best to develop his own formulas, 
given access to experimental data. Failing that, the following forms are 
recommended from the limited experience of the present author in match- 
ing his own performance calculations to the published performance data of 
the major companies. 

Thus, take 

X l = a  1 + a2T+ a3T 2 

T T 2 a4 
X 2 = a l + a 2 - 2  + a 3 - - 3  - + T 

T 2 
X3 = a2T + a3 2 

Suggested values for the coefficients (SI system) and R are: 

a 1 = 3.06 a 3 = 0.25(10 6) R = 287 m2s-2K -1 

a 2 = 1.15(10 -3) a 4 = 213 
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Example calculations were performed with the values M o = 0.85, ~r c = 22, 
qr , ,= l .5 ,  c t = 5 ,  Cp =1004.5 J . k g  - 1 . K  -1, T o = 2 3 3  K, rr d=0.99,  
7r b = 0.97, 7r, --- 0.995, Ce C = e C, = e t = 0.9, "0b = 0.995, h = 4.42 (10 7) J /k g  1, 
T/m = 0.99, to give 

TX lg9/Uo "Ye Tt4e 
6.5 2.45 1.316 1273 
7.0 2.80 1.311 1355 
7.5 3.11 1.307 1436 
8.0 3.38 1.302 1514 

7.6 Summary and Conclusions 
In the preceding sections, equations capable of describing the expected 

on-design behavior of several different engine types were developed. The 
intent was twofold in the sense that it was hoped the reader would gain an 
understanding of the methodology of cycle analysis, as well as an apprecia- 
tion for the actual behavior of the several engine types considered. The very 
simple examples of the analyses considered in this chapter are quite suitable 
for preliminary design purposes, but it should be realized that more exacting 
analyses should be utilized if further accuracy is desired. The principal 
limitations of the analyses considered here arise because of the restriction to 
calorically perfect gases and because of  the lack of inclusion of the effects of 
power and air takeoffs to operate auxiliary systems. All these effects can be 
included in a straightforward manner utilizing the same conceptual ap- 
proaches as already utilized in this chapter, but at the cost of considerably 
more algebraic complexity. 

The very large number of possible input variables in the several example 
summaries make it difficult indeed to even attempt a comprehensive presen- 
tation of the effects of parameter variations. It is of interest, however, to 
note some of the design trends observable today, the reasons for which are 
easily shown by utilizing the preceding analyses. It is evident that the 
industry is spending considerable effort attempting to increase the turbine 
inlet temperature. The prime benefit for a turbojet resulting from such an 
increase is in the increased specific thrust. The turbofan engine also benefits 
from an increase in the turbine inlet temperature because the increased 
work capability of the turbine causes the optimal bypass ratio (for minimum 
S) to increase (giving better propulsive efficiency). 

Important related changes in the design of other components also occur 
when an increase in the turbine inlet temperature is attained. Thus, gener- 
ally, a higher compressor pressure ratio will be utilized to give higher 
thermal etticiencies. The burner cross section will usually have to be 
increased because the increased burner outlet temperature will cause in- 
creased losses in the stagnation pressure unless t h e  burner inlet Mach 
number is reduced. As a result of these combined effects, the later stages of 
even large compressors are becoming excessively small and the burners 
themselves excessively large. Because of this discrepancy, some modern 
designs incorporate a single-stage centrifugal compressor following an axial 
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compressor. The centrifugal compressor has the advantage of being rugged 
and not so subject to such things as tip losses as the several stages of the 
axial compressor it replaces. The traditional disadvantage of a centrifugal 
compressor (large cross-sectional area compared to inlet capture area) is not 
now significant because the compressor is handling high-density air (and 
hence is relatively small) and is located in front of the necessarily large 
combustion chambers. 

The design of other components is also affected. Thus, if the inlet 
efficiency as well as the turbine inlet temperature is high, preliminary cycle 
analysis indicates that the "optimal" bypass ratio will be very large (with a 
low bypass pressure ratio). Although such large bypass ratio engines look 
attractive from the point of view of low noise and high propulsive efficiency, 
the aircraft can be penalized by the requirement of enormous landing gear 
to accommodate the very-large-diameter engines. 

These and similar design interactions must all be considered in a success- 
ful aircraft design. If the design is to be successful, accurate estimates of the 
component efficiencies and an accurate description of the aircraft flight 
requirements must be available early in the design process. 

Problems 

7.1 The equation for the ratio of local area to throat area for an 
isentropic flow, in terms of the Mach number and 7, is given by 

(a) Show by example calculations that when this is written in the form 

M=-~-A*[ 2 ( 1 ~  + ~ - ~ M  2 )](y+l)/2(y 1) 

functional iteration always gives the subsonic value of M or, for large values 
of the first guess, diverges. 

(b) Similarly, show that when the equation is written in the form 

1 1112 
functional iteration gives the supersonic value for M, provided that the 
value of the first guess is not too low. 

(c) Show that when the equation is written in the form 

F ( M )  = - ~  ~ + M 2 A A* - 0 
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Newton ian  i teration (using the analytic evaluation of F ' )  usually leads to 
the subsonic value for M if the first guess is subsonic and to the supersonic 
value if the first guess is supersonic.  

7.2 Consider  a family of  turbojets with the following parameters :  

T O = 220 K ~r a = 1 - 0.015M02 ~/AB = 0.96 
3'c = 1.4 % = 0.98 '~m = 0.99 

Cp, = 1000 J / k g -  K % = 0.98 burner  off e ,  = 0.92 
~'t = 1.3 = 0.95 burner  on e t = 0.90 

Cv, = 1240 J / k g "  K ~/b = 0.99 h = 4.5 (107) J / k g  

(a) Plot the specific thrust  and specific fuel consumpt ion  in the range 
1 < M 0 _< 3.5 for the af terburning and nonaf te rburning  cases. Assume r x = 7, 
rxA" = 8.5, and 7r c = 15. 

(b) Plot the specific thrust  and specific fuel consumpt ion  in the range 
4 _< % < value giving zero thrust, for the af terburning and nonaf terburning 
cases. Assume r x = 7, rXA" = 8.5, and M 0 = 2.2. 

7.3 (a) Show that the compressor  pressure ratio giving max imum 
specific thrust when a f t e rbuming  is present  is given by 

~r c max F = 

~ m ( l + f ) ~ a  + 1 

" / ~ -  1 Yt 1 
- - + 1  

"~ , -  1 "yc ece , 

e~ , / (? , -1 )  

Note:  Ignore the effect of  f and lAB, compared  to unity, on the magni tude 
of the thrust. 

(b) Plot "ll'cmax F VS M 0 in the range 1 < M 0 <  3.5 for the parameter  
values listed in Problem 7.2. Take  r x = 7 and assume (for this calculation) 
that  7,,(1 + f ) =  1. 

(c) Plot the related values of  specific fuel consumpt ion  and specific 
thrust  for the values of % calculated in par t  (b) for both  the af terburning 
(rx^ B = 8.5) and nonaf te rburn ing  cases. 

(d) Obta in  and plot 'lrcmaxF, assuming y c = y t  = 1.4 and e c = e t =  1, 
over  the same range as for par t  (b). 

7.4 Invest igate  the effect of  exit pressure mismatch for an engine with 
pa ramete r s  as listed in Problem 7.2 and M 0 = 2.5, ~r, = 15, r x = 7, and 
rx^ B = 8.5. 
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7.5 Consider a family of nonafterburning turbofan engines with 
parameters 

T O = 220 K ~r d = 1 - 0.015 M 2 e, = 0.91 
7c = 1.4 ~r b = 0.98 e~, = 0.90 

Cp, = 1000 J / k g -  K ~r, = rr,, = 0.99 e t = 0.89 
7t = 1.32 ~b = 0.99 h = 4.5 (107) J / k g  

Cp, = 1200 J / k g "  K ~/,, = 0.99 P9 = P 9 '  = P0 

(a) Plot the bypass ratio a* identified with minimum specific fuel 
consumption for prescribed ~r c and rr,,, vs ~r,, in the (appropriate) range 
1.2 _< 7r~, < 2.5 for the case r x = 7.3, M 0 = 2.0, and 7r = 15. 

(b) Plot the related values of specific fuel consumption vs specific 
thrust, as in Fig. 7.7. 

(c) Plot the value of S vs % for the "joint  minimum" case, and by so 
doing locate the "absolute minimum" value of S for the prescribed condi- 
tions. Obtain the related specific thrust. 

7.6 Consider a nonafterburning family of turbofan engines with 
parameters as listed in Problem 7.5. 

(a) Plot a* vs M 0 in the range 1.5 < M 0 _< 3 for the case r x = 7.3 and 
~rc,= 1.6. 

(b) Plot the related values of specific fuel consumption vs specific 
thrust similar to those shown in Fig. 7.7. Indicate typical values of M 0 on 
the curves. 

7.7 Consider the effect of afterburning on the family of engines 
considered in Problem 7.6. For the same Mach number  range: 

(a) Obtain S and F/(r~ c + mF) when ~x^B = 8.5, no fan burning. 
(b) Obtain S and F/(fn¢ + fnF) when ~'xA,, = 8.5, no core burning. 
(c) Obtain S and F/(m~ + fn F) when ~x = ~-~A., = 8.5. 
(d) Investigate the effect on performance~]n the given Mach number 

range of varying a, ~rc,, TXA ~, and rx^B. 

7.8 You are to design an engine for a very-high-performance fighter 
aircraft. The aircraft, dubbed the "supercruiser," is to be able to cruise at 
M 0 = 2 with no afterburner on, but will then be able to "fight" (maneuver 
without aircraft energy loss) by utilizing afterburning. 

(a) Develop a preliminary design for a turbojet and give its perfor- 
mance for both  afterburning and nonafterburning cases. Investigate also the 
effects of the changes in your assumed input variables. 

(b) Consider the same "mission" as for part  (a), but for a turbofan 
engine. Take the input parameters to be the same as those of the reference 
case of part  (a) (where appropriate) and compare the performance of 
candidate turbofans. Include the effects of core a n d / o r  duct burning. 
Discuss the virtues and shortcomings of the various designs. 
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7.9  Consider  two engines with the common  parameters 

M o = 0.85 Cp, = 0.24 B t u / l b m  • °R  7/,, = 0.99 
T O = 420°R Cp, = 0.28 B t u / l b m  - °R e, = 0.90 
~,,. = 1.4 h 19,000 B t u / l b m  r x = 7.0 
"Yt ~- 1.32 % = 0.97 ~',. = 36 

~/b = 0.97 

The engines also have: 

7r a ~r, ~r,, e c e,, 

No. 1 0.990 0.990 0.990 0.90 0.90 
No. 2 0.995 0.995 0.995 0.92 0.91 

(a) Calculate 71"c, , Or, F//go(fllc'k-fglF) , and S for each case at the 
" jo in t  min imum" specific fuel consumption.  

(b) For  each engine calculate a*, F * / g o ( m  ,.+ m r ) ,  and S* for ~r, 
= 1.5. 

(c) For  each engine calculate F / g o ( M  c + m r )  and S for %. = 1.5 and 
a = 0.9a*. 

7.10 Consider  a turbofan engine that has been optimized to have a 
min imum specific fuel consumption for the case where ~r, and 7r, have been 
prescribed. 

(a) Show that, if all component  efficiencies are nonideal except that 
7/,, = 1 and e t - -  1 ,  the ratio of the thrust per mass in the primary stream to 

the thrust per mass in the secondary stream R A is given by 

where 

R A = ½ + K  

g ~  [1"~!'l-e")(Trd 7rn') [(Y, l ) / ) ' , ]_ l  ] 

( T o -  1)[ Mo( ug'/Uo) - Mo] 2 

(b) Evaluate K for the case ~,,. = 1.4, e,, = 0.9, % = 1.5, M 0 = 0.85, 
and (Ira%,) = 0.98. 

7.11 Verify in detail that Eq. (7.85) is correct. 

7.12 Equat ions  (7.40-7.57) give the specific thrust of a turbofan 
engine in terms of  prescribed variables. Show that, for the case where no 
af terburning is present and for which P9 = P 9 '  = P0, a hierarchy of  equations 
giving the bypass  ratio a in terms of  prescribed input variables may be 
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obtained in the following form: 

Input" "~t' Th'  °q6"---- 

Output: a 

Equations: 

F 
ao( m,. + m r )  ' Mo' h' Cp, .' T°' ~ra' % '  %'  %'' ~lh' 

B,,, ,e,. , ,e,. ,e,,~,.,%, (yc = 1.4) 

"~r = 1 + i g / 5  

71"r= T? "5 

T c = qT~!/35e, 

T c, = ,ffc!,/3"5e, " 

T h - -  TrT c 

f =  ( hTlb/Cp, To ) _ Tx 

Ptg,/P9 = ~rrCr d %' Tr,,' 

Mo-~o = 5TrT c, 1 - - \  P9 ] 

Dx =~-+ Mo 

0 2 = O x - M o ( u 9 , / U o )  

n 3 = (71"r~d*ffb~nq'l'c) [ ( r , -1 ) / r , l  

a = D ~  

b = 2DID 2 + 5(1 +f____~) r~(r~,- 1) 
r/,,, 

C O = O•-  5(1 + f )2 rx [1  

- b  + Ib 2 - 4aC o 

a° = 2a 

! )2 

( r ~ -  1) r~ °3] 
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1 ~r [r~-  1 + . , ( r . , -  1)] 
r,, = 1 T/,,(1 + f )  r x 

~+a = Co + 5(1 +f)2T~D3(TtT[(1-e')/e']--l) 

- b +  I b 2 -  4 a ~ + t  

O ~ J + l  - -  2a 

Calculat ion note: Particularly with high-bypass ratio turbofans, the parame- 
ter a can be very small indeed. Thus note 

a =  D ~ =  { , ~ -  [ M o ( u ' 9 / U o ) -  Mo]} 2 

The squared quantity is hence the square of the difference of the dimension- 
less specific thrust of the entire engine less that of the fan stream itself. 
Straightfoward example calculations indicate that this can be a very small 
quantity indeed. So small, in fact, that computer accuracy can be lost. In 
such cases, it is useful to apply an approximate form of the expression for 
a, which is obtained by binomial expansion of the radical. Thus, write 

7.13 (a) Show that the fan pressure ratio necessary to give a desired 
specific thrust in the fan stream Ff//fnr may be obtained from the expres- 
sions (with),~ = 1.4): 

~, = 
[(Fyao" ) + M0] 2 

5~ 
+ [ z ~I/3.sl -1 

rrt~ra%') ] r,9 -e ' )  

rr c, = r, 35e,  

(b) Plot %, vs F//~h F N - s kg- 1 in the range 50 < Ff/rh r -< 500 for 
the case M o = 0.85, ~ra%, = 0.99, a o = 300 ms -1, and e, ,--  0.9. 

7.14 Utilizing the technique suggested in the text [Eq. (7.87) with 
Problems 7.12 and 7.13], obtain curves of the bypass ratio, bypass pressure 
ratio, and specific fuel consumption vs specific thrust in the range 5 
< F / g o ( f n  c + f n r )  < 50 for the configuration giving minimum specific fuel 
consumption. Assume the parameters as given for engine 2 of Problem 7.9, 
including % = 36. 
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7.15 Der ive  Eqs. (7.88-7.93).  

7.16 (a) Cons ide r  a subsonic tu rbofan  engine with pa rame te r s  as 
l isted for engine 1 of Problem 7.9. Assuming  ~r,, = 1.5 and for the value of  
a* as ca lcula ted  for Problem 7.9(b), ca lcula te  the specific thrust  and  specific 
fuel consumpt ion ,  including the effects of  turb ine  cool ing for the cases 
e 1 = e 2 = 0 ,  0.01, 0.02, 0.03, 0.04, 0.05 and assuming ~rth = ½ and e t j  , = e , L  

= e t = 0.90. 
(b) Repea t  the calculat ions  of  pa r t  (a) for the case of  a = 0.9a*. 

7.17 Cons ide r  a family of t u r b o p r o p  engines with the character is t ics  

T O = 400°R ~r d = 0.99 7/g = 0.99 
~'t = 1.3 % = 0.98 e c = 0.93 
3'c = 1.4 % = 0.995 e t = 0.91 

Cp, = 0.27 B t u / l b m  • °R  ~b = 0.99 r x = 7.5 

CPl~ = 0.24 7/,, = 0.99 M 0 = 0.8 
19,000 B t u / l b m  ~prop = 0.83 

(a) P lo t  the specific fuel consumpt ion  and  specific thrust  vs 7r c in the 
range 15 _< % _< 35. Cons ider  the " o p t i m a l "  case, r, = f t . ,  

(b) F o r  the case % = 30, p lo t  the specific fuel consumpt ion  and  
specific thrust  vs r t in the range r t .  < r t < 1.1 r,.. 

7.18 Cons ide r  a t u rbop rop  engine that  has the tu rb ine  expans ion  ra t io  
selected to give the m i n i m u m  specific fuel consumpt ion .  I t  may  be assumed 
that  the fuel - to-a i r  ra t io  may  be ignored  c o m p a r e d  to 1 (i.e., that  1 + f =  1) 
and  that  the  turb ine  elficiency may  be taken as uni ty  ( e  t = 1) .  

(a) Ob ta in  an expression for the ra t io  of  core  engine thrus t  to 
p rope l lo r  thrust  in terms of  ~,~, r x, M 0, "t/prop, T/g, T/m , 'rr, "rc, and  I I  
.~  ( 71.r,.iT d Tr c,n.b qT n ) ( "Y t - 1) / Y t 

(b) Eva lua te  the ra t io  for the example  values 

Vc = 1.4 ~lprop = 0.8 rr a = 0.99 7r c = 25 
r x = 7.0 ~/g = 0.95 % = 0.98 ec = 0.92 

M 0 = 0.75 7,, -= 0.99 7r, = 1.0 ~'t = 1.35 



8. ENGINE OFF-DESIGN PERFORMANCE 

8.1 Introduction 
In the previous chapter, cycle analysis was applied to several example 

engine types in order to predict the expected performance of such engines as 
a function of design choices, design limitations, or environmental condi- 
tions. The various results obtained are hence to be interpreted as the 
expected behavior of a family of engines under the various imposed condi- 
tions. This chapter considers the related problem of how a given engine 
(designed for certain prescribed conditions) will behave at conditions other 
than those for which it was designed. 

It is to be noted that in the design process, prescription of the designer 
variables ~rc, Ire,, and a, in fact, actually determines the required turbine 
expansion ratio because of the required satisfaction of the power balance 
between the turbine and fan and compressor. The power balance itself is 
affected by the flight Mach number (through zr), the turbine temperature 
(through %), and the ambient temperature (also through %). Thus, when a 
given engine is operated at other than design conditions, ~rc, ~rc,, and a may 
all change, and it is the off-design problem to determine such changes in 
terms of the imposed changes of other variables. Once such changes have 
been determined, the new values of ~r~, ~rc, , and a may then be used in a 
computational program very similar to those developed in\Chap. 7. The 
most notable change in calculation procedure is evident in the use of 
component efficiencies rather than the polytropic efficiencies. 

Off-design performance analysis can be considered to be of two classes, 
the first being one where no component performances are available so that 
the component efficiencies as functions of operating conditions must be 
estimated, and the second being one where the components have been 
developed and tested so that the component characteristics are available. 
The former class of analysis is used in preliminary estimates of engine 
off-design performance, whereas the second class is used for more exact 
estimates of the expected performance of an engine that is approaching 
completion of construction. Both classes of analysis will be considered in 
the following. 

8.2 Off-Design Analysis of the Turbojet 
Consider the simple case where both the turbine entrance nozzle and 

primary nozzle are choked. This puts algebraically simple restrictions on the 

277 
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various relationships and is, in fact, true over a wide operating range for 
modern turbojets. Further simplifying assumptions consistent with those of 
Chap. 7 will be made. Thus, the gases will be assumed to be calorically 
perfect both upstream and downstream of the burner, turbine cooling will 
be ignored, and no power or air takeoffs will be considered. In addition, the 
fuel-to-air ratio f compared to unity and the variation of ~'t and Co. ~, with. the 
power setting will be ignored. These additional assumptions intro- 
duce little inaccuracy because it is, in fact, the ratios of the desired 
quantities to their design values, rather than their absolute values, that are 
needed. 

The station numbering is indicated in Fig. 8.1 with the same notation 
introduced in Sec. 5.2 and utilized throughout Chaps. 5-7. Equation (2.102), 
together with the assumption of choked flow at stations 4 and 8, allows 

Ft A4p& and & 8 -  Ft ASpt~ (8.1) 

where 

2 ] (7 + 1)/2(3,- 1) 
r--d(7  j 

Equating f?/4 and &8 results in 

=1 

"q _ A  8 "rraa 
(8.2) 

Note that the area ratio A8/A 4 will be prescribed by the control system and 
~AB will be prescribed by the afterburner setting. ~rAB will change relatively 
little, so the area ratio and afterburner settings determine the ratio r)/~r r 
Note from Eq. (6.77) that ,r t is a unique function of rt and the turbine 
efficiency, so if the turbine efficiency does not change much over the 
operating range, Eq. (8.2) becomes a single equation for T, and hence 7r t. As 
an example, note that for a conventional turbojet without afterburning, A 8 
and A 4 remain fixed. (When afterburning is present A 8 is varied so that 
AS(~rAB/r~Ae) remains constant.) For the conventional turbojet, then, the 

0 

1 2 3 4 5 6 

Fig. 8.1 The turbojet. 

7 8  9 
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turbine expansion ratio remains very nearly constant over the entire operat- 
ing range! (The only change in ~r t arises because of changes in 7,.) 

With r t determined from Eq. (8.2), r C may be obtained from the expres- 
sion for the power balance, Eq. (7.11) 

r c = 1 + O , , , , ( r x / r r ) ( 1  - "st) (8.3) 

Note here that ra is now not the design limit turbine inlet enthalpy 
divided by the ambient enthalpy, but rather is the selected turbine inlet 
enthalpy divided by the ambient enthalpy. Thus, r,, (and hence ~r,) is 
determined by the throttle setting (T,,), environment (To), and flight condi- 
tion ($r). 

The Mass Flow 

It will be necessary to determine the variation in the mass flow rate in 
order to determine the variation in thrust. Thus write (with the assumption 
f << 1) 

Ft A 4 P t 4  
?Jq t2=~ /4 - -  ~ - ?T~- 4 

o r  

c/-eZ t A4 
(8.4) 

The Corrected Mass Flow 

The corrected mass flow rh~ is defined as the group 

mc = (8.s)  

where & is the actual mass flow at the plane of interest, 0 = Tt /TsTP,  and 
= P t / P s T P "  STP refers to standard temperature and pressure so that 

TST P = 288.33 K [519°R] 

PsTP = 1.013(105) Pa [14.69 lbf/ in.  2] 

It can be noted from Eq. (2.102) that a given value of corrected mass flow 
corresponds to a particular value of the Mach number at a given reference 
area. Thus, a particular corrected mass flow corresponds to a particular 
engine face Mach number for a given engine. 

With Eq. (8.4) 

r~ c - 

)1] 
6 ~ -  PSTPF' RCp, .TsT  P rrt"n'~A4 (8.6) 
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Fig. 8.2 
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It is to be noted that, when the "schedule" of A s / A  4 is known, r t is fixed 
by Eq. (8.2) (assuming no afterburning is present). The chosen area ratio 
. / 1 8 / . 4  4 and r,. (hence IL) thus fully determine % / r  r, as is apparent from Eq. 
(8.3). It is then apparent from Eq. (8.6) that the corrected mass flow is a 
unique function of the compressor pressure ratio and the chosen area 
scheduling. If the area scheduling is related directly to the compressor 
pressure ratio, then a unique relationship exists between rh, and vr,. (The 
most obvious example is that occurring in a conventional engine where A 4 
and A 8 are fixed.) When the loci of the points defined by the relationship 
rh c vs % are plotted on a graph, the resulting line is termed the compressor 
operating line (i.e., Fig. 8.2). 

It is usually most convenient to obtain the off-design behaviors in terms 
of the ratio of the desired parameter to the value of the parameter at 
on-design. Denoting the reference, or on-design, quantities by a subscript 
R, Eq. (8.6) gives 

1 

m ,.R "lrhRWcR A4R \ "Th rrR / 
(8.7) 

Performance Parameters 

Now consider the behavior of the performance parameters when the 
engine is operated off-design. In order to simplify the equations algebrai- 
cally it will be assumed that the nozzle exit area is varied so as to keep 
P9 = P0 and in addition that f << 1. Also only nonafterburning turbojets will 
be considered so that with rx^ B = rxr t it follows from Eqs. (7.24) and (,7.27), 

Pt~/P9 = ~rr~r d ~r cTrb Trn~rl (8.8) 

1 (8.9) 
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The equation for the thrust becomes 

F = / ~ / ( u  9 - n o )  = t T l a o [ g o ( u 9 / U o )  -- M o ]  (8.10) 

from which, with Eq. (8.4) 

F 
1 

I 0 .9 .0t- 01  8,,i 
Po,, A.R [Mo("9/uo)-Mo]R 

With the assumption that f<< 1, or equivalently that h~Jb/CpcT 0 >> "rX, 
from Eq. (7.21) 

f=  ~ ( r a - r r r c )  (8.12) 

Then from S =f/(F/rh)  and Eqs. (8.10) and (8.12) 

S _ (  To )~[Mo(u9/uo)-Mo]R ( r ~ - r j , . )  (8.13) 
SR ~OR [Mo(u9/Uo)-Mo] ( T)~ -- TrTc) R 

Exit Area Variation 
It has been assumed that the nozzle exit area will be varied in a manner to 

keep P9 = Po. As discussed in Sec. 6.2, it is important to know the exit area 
variation so that installation penalties (boat-tail drag) can be estimated. 
Thus write, utilizing Eq. (2.106), 

A9 [ Yt-- 1 ~ 12 ( _ x(v,+l)/2y, Pt9/ Po ) '/TAB 

tP, JPo) - lj ~ 
% (8.14) 

The schedule of A 8 variation is separately prescribed, so that the exit area 
variation may be obtained from 

A 9 A9/A 8 As 
A9R ( A9/A8) R A8R 

(8.15) 

These equations and appropriate subsidiary equations are summarized in 
a manner suitable for sequential solution in the following. 

Summary of the Equations-- Off-Design Turbojet (Nonafterburning) 
Inputs: 3',~, Yt, A8/A8R, Po/PoR, To/ToR, ~rcR, and both the reference values 

and off-design values of As/A 4, M o, ~rd, ~rh, rrAB, rrn, ~5,, ~/m' ~/(', 
and 7/t 
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Outputs :  
F S A 9 r'n c rr c rgt 

F R ' S R ' A9R m~R ~rcR "rr m 

Equat ions (where appropriate,  valid for both  design and off-design cases): 

1_ 
A8 

= ~44 rrAn (8.16) 
[1 -- (1/~,)(1 -- z t ) ]  Y,/(v,-  1) 

% = [1 - ( 1 / T h ) ( 1  - rt) ] yj(-f,- 1) (8.17) 

r,. = 1 + [ ( y ¢ -  1 ) / 2 ]  M 2 ( 8 . 1 8 )  

~r~ = rr v`/~v~- 1) (8.19) 

r~ = 1 + ~1,,, ('rx/'rr)(1 - '5) (8.20) 

% =  [1 + ~lc (rc -  1)] YJ(~-I) (8.21) 

P t J P o  = Ptg/P9 = "trr'lr d'lr c'rrb'lrnCl't (8.22) 

M°~0u9 : t~c-,[ 2-~'[lt - ( P'9 ] -'Y'- 1'/~'] / ~ 2 p 9  ] J) (8.23) 

F 
F~ (Trd*ffbTrrTQ) R ~OR ~ T-'---h [Mo(tg9/Uo)-Mo]R 

S ( To ]½ [mo(u9/uo)-mo]R (T?~--~'rTc) 
(8.25) 

A9 [ ]¢t-  1 ]½ ( _ ,(yt+ 1)/23,, Ptg/ PO ) 'ffAB 

J~8 = r, ~ -~~t ] ' [(Ptg/Po)(Y,-1)/yt_ 1]~ qTn 
(8.26) 

A9 A 9 / A 8  A8 

A9R ( A 9 / A s )  R A8R 
(8.27) 

eric 
1 

(%~rcA4)R ~ rx rrR j 
(8.28) 

tJ'/cR 
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The Fixed-Area Turbojet (FAD 
To date, no main propulsion turbines have been used that incorporate a 

variable turbine inlet area (A4). Such "conventional" turbines are also 
usually coupled with a nozzle of fixed area A s except when an afterburner is 
utilized. However, it is customary to design a primary nozzle variable throat 
so that, when the afterburner is in operation, A 8 is varied just enough to 
keep the engine operating at its original setting. It can be seen from Eq. 
(8.2) that this would require AS(CRAB / ~AB) to remain constant. Now utilize 
the results of the preceding sections to estimate the off-design behavior of a 
fixed-area turbojet (FAT) operating without afterburner. 

The equations of the preceding sections can be simplified considerably in 
this special case, for from Eq. (8.2), 

@/CRt = const (8.29) 

Now make the further assumption that (many of) the component 
efficiencies remain constant in the regime of parameter variation to be 
considered. This is a very convenient numerical approximation for illustra- 
tive purposes, and the results obtained by utilizing this simplification still 
reveal the principal effects of the off-design behavior that result primarily 
from changes in the propulsive and thermal efficiencies, rather than from 
changes in the component efficiencies. If greater accuracy is desired, the 
more complete equations (8.16-8.28) may be utilized. 

With the assumed constant turbine efficiency, the turbine expansion ratio 
remains fixed. Equation (8.3) then gives 

%=l+(%R--1)~-~X R rrRrr (8.30) 

Utilizing this relationship and further assuming that ~,,, Be, ~t, %, CRAB, 
and % remain constant, the equations may be simplified and reordered to 
give the following summary. 

Summary of the Equations--Off-Design FAT 

Inputs: 3'c, ~,, Po/PoR, To/ToR, ~m, ~c, ~,, crcR, CraR, 

~xR, moR, cra, ~x, mo 

F S A 9 mc crc 
Outputs: 

FR' SR' A9R' mcR' crcR 
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Equations: 

rrR = 1 + ~ - M O 2 R ,  %R = r~/~v' 1, (8.31) 

r r = 1 + Y£@~-Mo 2, % = r / ' /~ ' -1 '  (8.32) 

%R = 1 + 1 ( ~ ( ~ ,  1 ) / ~ , _  1) ~c\"cR (8.33) 

rc = l + ( rcR _ l ) rx rrR 
tar rr 

%=[1 +rio(re- 1)1 v'/~r' l) (8.34) 

r,R = 1 1 rrR (rcR _ 1), r, = rtR (8.35)  
~m "/'~R 

%R = [1 - (1/rb)(1 --'rtR)] "&/('f'-l), "27"t=71"tR (8.36) 

(Ptg/Po) R = rrbrttrrn( ~d~(l ) R (8.37) 

Pt~ ( Ptg ] rrrrrdrrc (8.38) 
P9 \ Po ] R ('lrr'lrd"lTc) R 

t 

(8.39) 

(Note that the formula for [Mo(ug/Uo)] R is identical, but R quantities are 
to be used.) 

t 

F _ "r~.~,, P0 ('~R ]2 ["0(Ug/Uo)-- MO] 
FR (rr, rrjrr,,)R PoR \ rx ] [Mo(~Z-M--~-R 

(8.40) 

s _[Tol '2 [Mo(u9/Uo)-Mo]R (_>-vc_A 
SR 1 TOR] [ M o ( u 9 / u o ) - M o ]  ( rx - - rJc )R  

(y,+ 1)/2gt [ )(Ry , 1 )/'-/, 
A 9 __ P t / P o  1 ( p'/p---2 ~ 7 1 

A9R ( P,9/PO ) R J [ ( P, JPo 1 

fnc rrc ( r c R - - 1 )  ~: 
rn cR %R 

(8.41) 

]': (8.42) 

(8.43) 
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Fig. 8.3 S/SR vs F / F  R for a fixed-area turbojet. 
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Compressor characteristic, fixed-area turbojet. 

As an example calculation, consider an engine held at fixed altitude and 
Mach number. The parameters assumed are Z = 1.4, ~,,= 1.3, ~,, ,  = 1 ,  

~, = 0.88, ~t = 0.9, 7r b = 0.98, 7r, = 0.99, 7rj = 0.97, ~r,R = 20, %R = 7, and 
M 0 = 0.8. Figure 8.3 shows the resulting variation in specific fuel consump- 
tion with thrust. 

It is evident that the specific fuel consumption at first decreases with the 
decrease in thrust, but later increases at very reduced thrust levels. This 
behavior is of enormous importance in determining the proper sizing of an 
engine for use in such vehicles as a high-performance fighter. It is often 
desirable to have such a fighter have a subsonic "ferry" capability, and in 
such a case the engine could be required to operate at very low thrust levels. 
If the engine is very large, such low thrust levels could be well on the "back 
side of the SFC bucket." 

It should be noted that it is the increase in propulsive efficiency which 
causes the original reduction in specific fuel consumption. At lower thrust 
levels, however, the decreasing thermal efficiency (caused by decreasing ~r, ), 
coupled with the small output compared to the component  losses, causes the 
specific fuel consumption to rise. Figure 8.4 shows the related compressor 
characteristic as the thrust is decreased 

Finally, tile substantial contraction required of the exit nozzle to keep the 
exit pressure balanced is shown in Fig. 8.5. 
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Fig. 8.5 Exit area variation, fixed-area turbojet. 

A second example of some interest is that where an aircraft flies at the 
same Mach number but at two different altitudes. Consider the case where 
the turbine inlet temperature is held the same so that ~a/~~,R = ToR/To. 

Consider the case in which To/ToR = 0.759, Po/PoR = 0.162, and all other 
values are as given in the preceding example. (Note these ratios of To/ToR 
and Po/PoR correspond approximately to the changes experienced in going 
from sea level to 40,000 ft altitude.) Straightforward calculation yields 
F/F  R = 0.345, S / S  R = 0.900, t:nc/mcR = 1.57, ~r~/~r R = 1.80, and 
A9/A9R = 1 . 4 2 .  

At first it is surprising that the thrust decreases as little as indicated, 
particularly when the large reduction in pressure is considered. The prime 
reason for the relatively small decrease in thrust is that the reduced 
compressor inlet temperature reduces the compressor power requirement to 
sustain a given pressure ratio. Thus, because the turbine inlet temperature is 
fixed, the turbine has the power capability of providing much higher 
compression, with a consequent increase in corrected mass flow and hence 
thrust. There is some question whether, in fact, the compressor could be 
operated at 1.8 times the sea level value of compressor ratio, and it is 
possible that the engine would have to be throttled back at altitude. It is, of 
course, the high compression ratio that is primarily responsible for reducing 
the specific fuel consumption, even though the propulsive efficiency has 
decreased. 

As a final example of off-design performance of a fixed-area turbojet, 
consider the problem of designing an engine for an aircraft capable of flying 
at Mach 3 that is to be able to take off under its own power. Thus, consider 
an engine with ~,R = 9 at M0R = 0 and with To/ToR = 0.759, Po/PoR = 0.162, 
and M 0 = 3, Other conditions are as in the preceding examples. Straightfor- 
ward calculation then gives 7r,=3.34, fn,/fn,R=0.541, F/FR=0.841, 
S /S  R = 1.15, and A9/A9R = 5 . 0 4 ( ! )  

It can be seen that when an engine is to be used in an aircraft with such 
an extreme operating range, the restriction to fixed A 4 and A s presents a 
very serious design problem. Thus, it is hard to imagine how such a huge 
exit area variation could be accomplished, and it is probable that the engine 
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would have to be operated with substantial overexpansion in the nozzle at 
takeoff and substantial underexpansion at cruise. The large reduction in 
compressor pressure ratio, with corresponding reduction in corrected mass 
flow, would be difficult to achieve and would probably imply the use of 
compressor bleed at the cruise condition (see Sec. 8.5). 

These simple calculations serve to emphasize that the difficult task of 
designing an engine is further complicated when the engine must operate at 
more than one "design point" for a substantial length of time. Some of the 
restrictions are so severe that competing concepts to conventional engines 
have gained consideration as the demand for multiple-mission aircraft has 
grown. An example of such a concept is considered in the next section. 

Before considering more complicated examples of off-design perfor- 
mance, it is of use to note that very similar methodology can be used to 
predict the effect of engine redesigns, or of the effect of unexpected 
operational excursions such as afterburner blowout. 

It occurs more often than is desired, that a compressor characteristic map 
turns out to be other than that assumed in the preliminary design calcula- 
tions. If, as a result, the engine operating line ends out in too close 
proximity of the surge line, the components must be rematched. An often 
used technique to effect such a rematch is that of adjusting either or both of 
the areas A 4 or A 8. As is to be developed in Problem 8.4, for example, 
variation of A 4 and A 8 can be used to shift the location of the operating 
line. 

The Variable-Area Turbojet (VA T) 
A concept of considerable interest to industry today is that of the 

variable-area turbojet or VAT. With such a machine, it is planned to make 
both the turbine inlet area variable (by having movable turbine nozzles for 
example, Fig. 8.6) and the primary nozzle variable. 

In spite of the enormous complexity and difficulty of developing such a 
concept, the possible performance benefits are sufficiently substantial that 
considerable research and development effort is presently being devoted to 
such concepts. To investigate the possible performance benefits, again 
consider the first example in the preceding section, in which the behavior of 

Fig. 8.6 Variable-area turbine nozzles. 



288 GAS TURBINE AND ROCKET PROPULSION 

an engine at fixed Mach number and altitude was discussed. It was found 
that the specific fuel consumption rose at low thrust levels, primarily 
because the compressor pressure ratio decreased with thrust. 

Now consider a competitive engine in which the turbine and primary 
nozzle areas are varied in a manner to keep the compressor pressure ratio 
and corrected mass flow constant. Note that by so doing not only will the 
thermodynamic efficiency of the engine be maintained, but the inlet airflow 
will also be maintained, thereby preventing excessive inlet spillage drag. The 
required relationship for the area variation follows directly from Eq. (8.7) to 
give 

L 
A4/A4R = ( "rx/'rx R )2 (8.44) 

Equation (8.3) also gives directly 

• , = a - ( a  - (8.45) 

Thus this VAT is quite the opposite to the FAT, in that the VAT has a 
variable turbine expansion ratio but a fixed compressor pressure ratio, 
whereas the FAT has a variable compressor pressure ratio but a fixed 
turbine expansion ratio. 

The required primary nozzle area variation follows from Eq. (8.2) to give 

i 

AsR A4R "rtR ~, \ "r~,RrtR J 'n" t 
(8.46) 

The remaining equations follow directly from Eqs. (8.16-8.28). In the 
special case of flight at fixed Mach number and fixed altitude (i.e., fixed 
Mo,To, Po) for example, the necessary equations may be summarized as 
follows. 

$ummaq of tt~o Equations-- Ott-Oosion VA 1" 
(Note that ~r,, M 0, To, P0, and component efficiencies are fixed.) 

Inputs: Yc' ~/t' T~,., ~ t '  ~rn, 7Tb' qTd' qTn, qT"c' TXR' M o ,  T~ 

Outputs: 
F S A4 A 9 1 / ~  A s 

F R ' S R ' A4R '  A9R'  1 / % R ' ASR 

Equations: 

r ~ = l + ~ @ M o  2, T[ r = T r y , / ( )  ", 1) (8.47) 

r , = l +  1 ~ (y ~) /Y-1)  (8.48) 
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r 'R=  1 1 r r ( r , . - 1 ) ,  
"0m T)~R 

~TtR = [ 1 -  1 ( 1 -  rtR)] ~,,/(v, 1) 

(8.49) 

rx , ~, = 1 - (1 - r,) (8.50) 

= %,n'c%,n',.~d~R , - -  = 
\ P9 R P9 \ P9 R 7TtR 

1 )2 
U9 = e l 9 ]  - (y t -1) / ' { t"  

M°-~o "rif t 1 - ( P9 ] (8.52) 

(Note  that the formula for [Mo(u9/uo)]R is identical, but  R quantities are 
to be used.) 

F Mo(U9/HO) - M  0 
- -  = (8.53) 
FR [ Mo ( u9/uo ) - -  Mo] R 

= . % - $Fc 1 (8.54) 
SR F/FR 

1 

A4/A4R = ( "r~/'rXR)2 (8.55) 

A 8 
A8R 

A9/A8 
(A9/A8)R 

A9 

A9R 

1 
TX'I't 1 5 

rxR'CtR J ~rt 

PtJP9 

(Pt9/P9) R ) 

Ag/A8 

~R 

)(Y'+l)/2Yl[ (Pt9/P9)(~t-1)/Ve--1] 12 

L ~" Pt9/P9 ] -- 1 

A8 
( A9/A8) R A8R 

(8.56) 

(8.57) 

( 8 . 5 8 )  

As an example calculation, consider an engine with the same on-design 
characteristics as the engine considered in the first example of Sec. 8.3. 
Thus,  take Yc = 1.4, "5 = 1.3, ~,, = 1, ~/c = 0.88, ~t = 0.9, % = 0.98, % = 0.99, 
rr d = 0.97, % = 20, t a r  = 7, and M 0 = 0.8. Figure 8.7 shows the resulting 
variation in specific fuel consumpt ion vs thrust. Included for comparison is 
the FAT result (Fig. 8.3) and also the related turbine enthalpy ratio z x. 

The  potential  operating advantage for a VAT is evident here in that the 
superior thermal and propulsive efficiencies of the VAT at part- thrust  
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operation leads to substantial benefits in reduced specific fuel consumption. 
A further benefit is implied by the behavior of the turbine inlet enthalpy. 
Thus, the more rapid fall-off of the turbine inlet temperature with thrust for 
the VAT indicates the possibility that less cooling air will be required from a 
VAT during part-throttle operation than from a FAT. 

The required area variations for the VAT are shown in Fig. 8.8. 
It is evident that substantial variations in A 4 and A 8 are required, and 

there is some question as to whether the more extreme variations could be 
attained in a working design. Note, however, the very much reduced area 
variation required of the exit nozzle. (Note that this particular VAT requires 
an area increase, in contrast to the severe decrease required for the FAT.) 
This reduced exit area variation could lead to substantial benefits in reduced 
installation losses. 

The required variation in turbine expansion ratio is indicated in Fig. 8.9. 
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Variation in turbine expansion ratio. 

It is clear that at very low thrust levels the turbine expansion ratio 
compared to that required at the on-design point is very large. This required 
variation of expansion ratio would seem to imply the need for substantial 
research and development to extend the capabilities of present-day turbines. 
It would also seem to imply the use of a turbine with several more stages 
than would be required for operation at high thrust levels, so that the 
turbine would be capable of supporting the required large expansion ratios 
at low thrust levels. 

Further potential operating benefits of a VAT become apparent when 
flight at various altitudes, various Mach numbers, etc., is considered. It is 
these possible benefits that have stimulated industry interest in the VAT, as 
well as other variable geometry engines such as the variable bypass ratio 
turbofan. 

Although the analysis of other variable geometry engines will not be 
included here, a brief description of some possible engine types will be given 
to illustrate the extent of creative thought that has been directed to the 
problem of developing engines with efficient multimission capability. In Ref. 
1 the annulus inverting valve (AIV) is described and many possible cycles 
utilizing the valve are considered. The valve has the capability of switching 
half the flow it encounters from the inside of an annulus to the outside, and 
vice versa. Alternatively, it can be operated so that the flow passes straight 
through the valve. This capability offers the opportunity of varying the cycle 
bypass ratio and bypass pressure ratio to better suit the required operating 
point. The valve in its most simple utilization is illustrated in Fig. 8.10. 

It is evident from Fig. 8.10 that the AIV allows operation of the engine as 
a turbofan engine with a low compressor pressure ratio, or as a turbojet 
engine with a high compressor pressure ratio. (In the latter mode, half of the 
inlet air is bypassed.) The design calculations of Chap. 7 indicated that 
flight at low Mach numbers is best served by a turbofan, whereas flight at 
high Mach numbers is best served by a turbojet. Thus, the AIV offers the 
opportunity of substantially extending an engine's efficient flight envelope. 
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Fig. 8.10 Annulus inverting valve. 
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Fig. 8.11 Variable bypass ratio engine. 

Many other variable geometry concepts are possible, for example the 
variable bypass ratio engine illustrated in Fig. 8.11. 

In an engine such as that shown in Fig. 8.11, the bypass ratio would be 
selectively varied by varying the turbine inlet area at the entry to the 
low-pressure turbine. Use of a relatively simple bypass valve, as indicated, 
would allow efficient flow adjustment to deliver the required bypass ratio 
change. The configuration indicated has the advantage that the variable-area 
nozzles are in a portion of the flowfield where nozzle cooling is not required. 
As a consequence, the required mechanical complexity of the movable 
nozzles will be greatly reduced. 

The examples of variable geometry engines cited in this section represent 
only a few of the very large number of possible engine concepts that deserve 
consideration, and the future should see extensive study of such advanced 
concepts. The eventual development and production of such engines will 
depend upon the many technical tradeoffs obviously present, as well as the 
enormous economic tradeoffs required. 

Installation Effects 

The example calculations of the preceding sections illustrated the varia- 
tion of parameters with the "uninstalled" thrust and the specific fuel 
consumption based upon this value of thrust. Many of the major benefits of 
variable geometry engines are identified with the reduction of installation 
effects, however. 
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When a high Mach number aircraft is flown at low Mach number, the 
mass of air per second swallowed by the projection of the inlet area 
decreases, but not, in fact, as rapidly as the engine demand for air decreases. 
Thus, at low flight Mach numbers the inlet must spill air; and, in the case of 
a sharp-edged supersonic inlet, substantial spillage losses occur. It can be 
seen then that the VAT, by maintaining a high airflow demand, will much 
reduce such spillage losses at low thrust levels. 

A further installation benefit arises for the VAT because of the small 
required exit area variation as the thrust is reduced. Usually, the exit area 
when no afterburning is present, even with full thrust, is substantially less 
than the main engine cross-sectional area. This projected area can lead to 
serious drag penalties and it is important to design the engine af t  end so 
that substantial separation does not occur. When a conventional engine 
(FAT) is operated at very low thrust levels, the required exit area closure is 
so substantial that the prevention of separation is usually impossible, and as 
a result large boat-tail drag penalties are incurred. The VAT, because of its 
continued handling of a large mass flow rate that is delivered at an 
ever-decreasing exit velocity, leads to a requirement of very little area 
change. As a result, the VAT shows promise of leading to much reduced aft 
end installation losses as well as reduced inlet losses. 

In conclusion, it should be pointed out that the effects upon installation 
losses for a VAT are comparable to the effects upon uninstalled perfor- 
mance. Thus, the VAT, like all competing concepts, should be evaluated in 
terms of the installed behavior. Of course, this requires knowledge of the 
inlet and aft end losses, which generally must be obtained from experiment. 

8.3 Off-Design Analysis of the Turbofan 

When the off-design performance of a turbofan is considered, a slight 
additional complication arises in that the variation in performance of each 
separate stream must be determined. In order to determine these separate 
variations in performance, additional information must be provided to 
describe the "work split" between the two streams of the turbine output. To 
illustrate such a procedure, consider a turbofan in which the fan is driven by 
its own low-pressure turbine, and the high-pressure compressor is driven by 
the high-pressure turbine. The intermediate location between the two 
turbines is station 4a and the obvious definitions are 

Tt 3 __% _ Pt3 = 7r,~ T~4, 
%h = Tt----~. = zc ' , ~r'h P'3, ~rc'' r'h = T~, ' 

= - -  - (8.59) 
7rth P t , '  rtC = T t ,o '  ~rtL Pt,o 

The off-design analysis of the turbofan is much simplified algebraically if, 
analogously to the assumptions already utilized in the description of the 
off-design performance of the turbojet, the two exit nozzles and both 
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turbine entrance nozzles may  be assumed to be choked. These assumptions 
prove  to be valid over  a fairly wide operat ing range for flight at high Mach 
numbers ,  but  the exit nozzles tend to unchoke at only slightly reduced 
power  settings at low flight Mach numbers .  An algebraic method of han-  
dling the unchoked  nozzle p rob lem is given in Sec. 8.4 for the turboprop 
engine and is given as an assignment  in Problems 8.6 and 8.7 for the 
tu rbofan  engine. 

For  simplicity of  presentation, consider the example  of fixed turbine inlet 
areas and fixed exit nozzle throat  areas. Analogous to the result of Sec. 8.2, 
it then follows that  %, ~th, ~L, and ~rtL are all constant.  A power balance 
between the high-pressure compressor  and the high-pressure turbine then 
leads to 

% = 1 +(~'~hR -- 1) "rx/'rr'r" (8.60) 
('rx/'rr%, ) R 

Then  

[(  1j35 ] 
~rch = [ 1 + ~,.h ( ~ h  - 1)] 3.5 a n d  "rch R -- 1 = 1 ~rcR -- 1 

71chR ~c'R 

give 

(1+ [( R)lJ3, 1 / 35 = - -  - 1 (8.61) 
rich R ~c'R ( T;k/TrTc' ) R 

Utilizing Eq. (8.4) in both streams leads to 

"~,,,,,R [ "rX/'rr"c, ]'2 
1 

(8.62) 

Finally,  a power  balance between the fan and low-pressure turbine gives 

~'c, = 1 + (~'c,R -- 1) a R + l  ~'V/% ( 8 . 6 3 )  
, , + 1  (~V'*r) R 

These equat ions can be i terated rapidly to determine the desired values. 
Thus,  for example,  the iteration m a y  be started by assuming T,, = T(, R in Eq. 
(8.61) to give a first est imate of  ~rch and thence a f rom Eq. (8.62). The 
process is cont inued until the desired accuracy is obtained.  

Example-- Turbofan Off-Design 
As an example,  consider the variat ion of ~rc,, ~r c, and a with flight Mach 

nu mb er  for an engine with design conditions. M0R = 2, ~rc, R = 1.5, 7rcR = 15, 
a R = 1, ~/ch = 7/chR, and ~/c, = 0.90. 
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Calculation gives 

M o 1.0 1.5 2.0 2.5 3.0 
%, 2.02 1.73 1.50 1.34 1.24 
% 35.7 23.4 15.0 9.93 6.94 
a 0.661 0.805 1.0 1.23 1.48 

It is apparent from these results that variable geometry should be 
considered for use with turbofan engines. Thus, for example, it is evident 
that the bypass ratio increases with increase in flight Mach number. This 
tendency is opposite to that found for best on-design choice of bypass ratio. 

The parameters evaluated by the precedingmethods can be incorporated 
in the performance equations to provide the off-design performance. An 
example summary is provided here (for which it has been assumed that the 
exit areas have been varied to provide P9 = P 9 '  = P 0 )  

Summary-- Turbofan Off-Design 
Inputs: 

Yt, Cp,, Cp, rich, ~1c,, ~lb, rra, % ,  %,  %', To, Po/PoR, h, r a, M o, MOR, 

'taR, rrc'R, ~TcR, aR, ~chR, tic'R, rlbR, rgdR, g'[bR, grnR, "l'gn'R, TOR' 

Outputs: S, F / F  R, etc. 

Equations: 

r r = 1 + M ~ / 5  (8.64) 

% = r  35 (8.65) 

rrR = 1 + M~R/5 (8.66) 

a o =  20 .04~o [ao = 4 9 . 0 ~ o  ] (8.67) 

a o n =  20.04 T ~ o  R [ao = 49.0V/~OR ] (8.68) 

It, h, a, and r c, are obtained from Eqs. (8.61-8.63). 
If the turbine entry nozzles and primary and secondary main nozzles are 

choked, then r, = rtn and 

~r'=rr'R= [l + l ~ ( r ' R - - 1 ) ]  ~' (8.69) 



296 GAS TURBINE AND ROCKET PROPULSION 

(See Problems 8.6 and 8.7 if examples with unchoked nozzles are to be 
considered.) 

1 / 1/3.5 ] (8.70) 

%,=  [1 + rt~,(r~, - 1)] 3.5 (8.71) 

rx - rrr~ (8.72) 
f= ( h,~/CpcrO)_.~ 

e l  9 
- -  = ~r,.tra%,%h'rrblrt% (8.73) 
P9 

(8.74) 

e l  9 , 
- -  = ~ r ~ ' ~ . '  ( 8 . 7 5 )  
P9 

(u9t={ [ M °  ~ o  5"rr'rc" 1 -  \ p9" ] (8.76) 

F _ a o { ( l + f ) M o U 9  [ U 9, ]} 
r~, + r~ F 1 +-----a ~ -- M° + a Mo--~- ° - M o (8.77) 

S =  f 
(1 + a ) [ F / ( m c +  mr) ]  (8.78) 

[(VcO,, ]' F _ a R 'B'r~a~c, qT n, 2 PO 

F R a (rr;r,~Trc,~r.,)R rrr~" I PoR 

[ u9 (u9 
(1 + f ) Mo-~o - M o + a Mo--~o - M o 

× (8.79) 

( l + f ) g o  uo - g o  + ,~ Mo ~ - Mo ,~ 

8.4 Off-Design Analysis of the Turboprop 

This analysis of the off-design performance of the turboprop begins by 
again assuming that the entrance areas to both turbines are choked and that 
the turbine entrance areas and the nozzle exit area are fixed. The turboprop 
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2 3 4 % 5  
I I I I I ,,> 

Fig. 8.12 Turboprop station numbering. 

9 

station numbering is as shown in Fig. 8.12. The power balance between 
compressor and high-pressure turbine gives immediately 

r c - 1 = (r~ - 1) "r'x/"rr 
R (s.so) 

In virtually all operating conditions of a turboprop, the exit nozzle will 
not be choked, so with Eq. (2.102) 

6./4 _ __~._t4 ~ -  /t + 1 A4Pt4 2 (Yt+ 1)/2(7'- 1) (8.81) 

A9Pt9 r . , +  1) /2(y , -  1) 
m9 = 1 / - ~ M 9 1 1 + ~ M 9 2 |  (8.82) 

V l X  L ~ J  

Equating these two expressions and rearranging slightly, there follows 

A 4 1  ~t t [  2 ( y / - 1  2~] (~'' + 1)/=(~'- 1' 
M 9 h9~n *ITt ~ l + ~ M 6 ) ]  (8.83) 

Also 

Yt - 1 2] "¢t/(Tt-1) Pt9 -- PO 7rr~%%%% (8.84) 
1 + ~ M ~  -- P9 P9 

Thus, noting that Po/P9 = 1 because the exit is unchoked, 

~ 2" ] 'y, /(¥,- 1) 1 1 +  
*IT,~" *l?r*iTdTQelTb'Tl'n M~ ] (8.85) 

Equations (8.83) and (8.85), together with the intermediate equation 
relating 7r t and r t, may be easily solved by functional iteration. With the 
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thus  d e t e r m i n e d  values o f  M 9, ~r t, and  ~'t, the p e r f o r m a n c e  variables fol low 
direct ly.  Ut i l iz ing  the results of  the s u m m a r y  of  Sec. 7.4, with Eqs. (7.51) 
a n d  (8.4), the  results  of  the fol lowing s u m m a r y  are obta ined .  N o t e  that  the 
nozzle  efficiency varies very  little, so it is appropr i a t e  to assume ~r n = %n- 

Summary of the Equations--Off-Design Turboprop 

I npu t s :  y,, "~prop, ~g, 'Ore, ~c, ~t, Y~b, 'ffd, qTb, 'f in: qTnR, TO, PO/POR, h, "r x, M o, 

( F /gorh  )R ,  ~cR, rltR, IrdR, %R,  ToR, %R, MOR, ~r~,R, "rtR,MgR 

Outpu t s :  S, F / F  R, f n / f n  R, & J r h c R ,  ~r,., etc. 

Equa t ions :  

r r = 1 + 34o2/5, rrR = 1 + MffR/5  

~r = ,35,  ~r,, = (~rR) 35 

r,. R = 1 + (1/~, .R)(rr ,! /3s - 1) 

r,. = 1 + ( r,. R - 1) rx/rr  
( "~,/rr ) R 

rr,,= [1 + ~,,(~',.- 1)] 3.5 

rr m = [1 - ( 1 / , m ) ( 1  - rtR)] r,/(r, ') 

Y t - 1  z v,/(v,-1) 1 (I+TM ) 
N %Trd N % %  

r t = 1 - ~t(1 - ~rt(V' 1)/y,) 

(8.86) 

(8.87) 

(8.88) 

(8.89) 

(8.90) 

(8.91) 

(8.92) 

(8.93) 

(8.941 
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The latter three equations are to be iterated for ~r~, 5, and M 9. Start by 
assuming M 9 = MgR, calculate ~rt, % and M 9. Continue until (M%+ 1 - M%) 
< 1 0  6. 

M0 I/9 ~ (5T)~Tt[1--(qTr,ffdqTc,ffbtfftqTn)-[(Yt-1)/yt]]) 12 
UO 

(8.95) 

r x - "r,.% ( 8 . 9 6 )  

f =  ( h71b/CpcTo) _ % 

%rop = 'Oprop//g ['r/m ( 1 +f)~'x(  1 - ~'t) - I"r(% - 1)] 

C C = 0.4 3//0[(1 +f)Mo(u9/uo)  - -  M0] 

F ~oo (Cprop + Cc) 
- -  = 50.1 

M0 

(8.97) 

(8.98) 

F ~oo(Cp~op + C~) ] 
= 3.807 (8.99) 

go m Mo 

S = F / &  S = 3600 (8.100) 

& ¢ -  ~rbTr~ [(~'X/~r)R] ~ (8.101) 
t~ c R ( Irblr~ ) R ~'x/~'r 

~n _ Po i T°R Ira ( r r  ]3 r~ c (8.102) 
&R POR To "lrdR \ TrR ] ?~IcR 

F F / &  & 
(8.103) 

Sample Calculation-- Off-Design Turboprop 
As an example calculation, consider the off-design performance of the 

engine considered in Sec. 7.4. The engine on-design parameters are listed in 
Table 7.2. Assume the engine is operated at fixed altitude with fixed turbine 
inlet temperature. The variation of the thrust and specific fuel consumption 
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with the flight Mach number are to be found. As a simple approximation to 
real propeller efficiency variation with Mach number, %top is assumed to 
vary as in Fig. 8.13 and ~r c is taken to be 24. 

The results of the calculation are shown in Fig. 8.14. The results indicate 
that the prop fan (or turboprop) represents a very desirable engine for use 
in low Mach number aircraft (M 0 < 0.8), provided that the high propeller 
efficiencies indicated in Fig. 8.13 (particularly at the higher Mach numbers) 
can be attained. Thus, as was shown in Sec. 7.4, the prop fan gave 
substantially improved behavior at the design condition compared to a 
turbofan engine; it can be seen from Fig 8.14 that the high propulsive 
efficiency of a prop fan engine leads to very high thrusts and low fuel 
consumptions when operated at low Mach numbers. These results further 

"r/prop 

1.0 

0.8 

0 .6  ] / 
0 

Fig. 8.13 
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Assumed propeller efficiency. 
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Fig. 8.14 F / F  R and S / S  R vs M o for a turboprop. 
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explain the renewed interest in the development of advanced turboprop 
engines. 

It should be pointed out that the very-high-thrust capability evidenced 
for flight at low Mach numbers is often far in excess of that which can be 
usefully exploited. Thus, the related propeller blade loading can be so 
excessive that blade stalling will occur; and if the required propeller torque 
is to be provided, the main gearbox must be excessively heavy. As a result 
of these tendencies, turboprop engines designed for high Mach number 
capability are usually operated considerably derated in the (low-altitude) 
takeoff and climb condition. Restricting the engine output in this manner is 
referred to as "flat rating." 

8.5 The Use of Component Characteristics 
When the performance characteristics of the various components are 

available, the combined performance of the compressor, burner, and turbine 
can be predicted. These combined characteristics, termed the pumping 
characteristics, can then be utilized to predict the overall engine perfor- 
mance. Once a schedule of turbine area variation and primary nozzle area 
variation is selected, a unique operating characteristic can be determined. 

In what follows, the individual component characteristics will be de- 
scribed, and the method of combining these characteristics to obtain the 
pumping characteristics and then the operating characteristics will be devel- 
oped. 

The Compressor Characteristics 
When a new compressor has been developed, it will be subjected to a 

compressor rig test to determine its performance capability. It is most 
efficient to present the results of such a test in terms of dimensionless or 
pseudodimensionless variables. Routine dimensional analysis reveals that 
the compressor pressure ratio P t / P t  could be expected to be a function of 

• . 3 . 2  

four d~menslonless parameters which could be taken to be the ratio of 
specific heats 7¢, the Reynolds number R e, the Mach number at the engine 
face, and the ratio of the blade (tip) speed to the speed of sound. 

Experience has shown that variations in both Yc and R e have relatively 
little effect over much of the operating range of the typical compressor, so it 
is usual to present the performance in terms of the other dimensionless 
variables and to provide y¢ and R e corrections when necessary. (See Sec. 
8.6.) It is also usual to utilize variables related to the engine face Much 
number and "blade" Mach number, rather than to use those variables 
directly. Thus, as was shown in Sec. 8.2, a unique value of engine face Much 
number corresponds directly to a unique value of corrected mass flow rhc, 
and it is usual to utilize the as a "pseudodimensionless" variable. 

When a specific compressor (i.e., given geometry) is to be tested, it is 
apparent also that a given blade speed occurs for a specific value of 
rotational frequency, and that the reference speed of sound can be taken to 
be proportional to the square root of the incoming stagnation temperature 
Tt2. Thus, it is customary to utilize the corrected speed N C as the second 



302 GAS TURBINE AND ROCKET PROPULSION 

pseudodimensionless variable, where N~ is defined by 

N C = N / ~ / O  (8.104) 

where N is the actual rotational speed (in radians/second for the SI system 
of units, in rpm for the British system) and 0 is the dimensionless tempera- 
ture as already defined in Eq. (8.5). 

The method of obtaining a "map"  of the compressor characteristics is to 
set a given corrected speed for the compressor (on a separately driven 
motor) and to vary the corrected mass flow over the desired range by 
varying the exit valve opening. By operating at an appropriate number of 
corrected speed settings and over an appropriate range of corrected mass 
flows, the operating behavior of the compressor over its entire range can be 
determined. 

A schematic diagram of a typical compressor test facility is shown in Fig. 
8.15 and typical results are indicated in Fig. 8.16. 

The dotted line indicated in Fig. 8.16 represents the limit of pressure ratio 
that can be obtained for the given corrected speed. This limit occurs when 
the pressure rise across the compressor is so extreme that the blade loadings 
reach levels that cause boundary-layer separation over substantial portions 
of the blades. In this condition several forms of flow instability can occur, 
principal among which are rotating stall and compressor surge. 

The mechanism of rotating stall is complicated indeed, but some under- 
standing of the phenomenon can be attained from a relatively simple model, 
as depicted in Fig. 8.17. 

Figure 8.17 depicts a packet of fluid that, because of the large imposed 
pressure gradient, has undergone a severe flow reversal. To the surrounding 
fluid such a reversal region appears to be a blockage area, and the fluid 
divides to bypass the area. It can be seen in the figure that the blades on the 
lower side of the stall packet are thus confronted with a flow of reduced 
angle of attack, whereas the blades on the upper side of the stall packet are 
confronted with a flow at increased angle of attack. The result then is that 

POWER IN 

PLENUM 

COMPRESSOR 

Fig. 8.15 Compressor test facility. 

/ 



ENGINE OFF-DESIGN PERFORMANCE 303 

/ 

/ 

OPERATING -"  
L I N E - x  . - ' "  ~ 

/ 

~ c  

Fig. 8.16 Compressor characteristics. 

Fig. 8.17 Rotating stall packet. 

the lower blades tend to unstall and the upper blades tend to go into stall, 
leading to a net movement (or rotation) of the stall packet. 

Rotating stall, and its inception, are of enormous importance to the 
industry, because not only does rotating stall limit the attainable pressure 
ratio in some portions of the compressor characteristics, but the vibratory 
stresses set up in the blades can lead to very rapid and catastrophic failure 
of the compressor. 
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Surge is that phenomenon where a substantial fraction of the compressor 
blades simultaneously reach the limit of their load-carrying ability. As a 
result, flow breakdown occurs and the entire compressor loses its capability 
of supporting the overall pressure rise and massive flow reversal occurs. The 
frequency of such reversals is related to the storage volume following the 
compressor as well as to the compressor behavior itself. Compressor surge 
represents a very serious design limit, because when it occurs in an operat- 
ing engine, very often engine flameout occurs. 

The distance between the operating line and surge line, shown in Fig. 
8.16, is referred to as the surge margin. It usually happens that the best 
engine performance occurs when the compressor operates near the surge 
line. This introduces a difficult design problem in that "appropriate" 
precautions must be taken to prevent engine surge due to such things as 
severe inlet flow distortions occurring (caused by, for example, operation at 
extreme angle of attack), ingestion of combustibles from gun and rocket 
firing (leading to added combustion in the burner with consequent pressure 
rise), burner overpressuring from fuel surges during acceleration, etc. A 
careful balance must be struck between selecting an overly large surge 
margin with poor steady-state performance and selecting too small a surge 
margin with inherent low engine safety. 

Compressor Behavior during Starting 
Figure 8.18 depicts a typical compressor section. It is apparent that the 

overall contraction in the annulus area will be selected so that, when the 
compressor is on its design point, the axial velocity throughout will be 
appropriate to match the design angles of the many blades. When the 
compressor is operated at a pressure ratio other than the design one, then, 
the ratio of exit axial velocity to entrance axial velocity will not be the same 
as when the compressor is on-design, because the density ratio will be 
dependent on the pressure ratio. 

When the compressor is running at very low rotational speed, as during 
starting, the first stage will tend to induce a flow at an appropriate angle of 
attack to the first-stage blades. As the flow proceeds through the compres- 
sor, it will tend to accelerate because the low-stage compression ratios 
identified with the low rotational speed will not introduce a sufficient 
increase in density to compensate for the annulus area contraction. As a 
result, the axial velocity can become very large near the back of a high-com- 
pression-ratio compressor, leading to "windmilling" of the rear stages and, 
in severe cases, to choking of the flow. The net result is that during starting 
the early blade rows operate at high angle of attack (hence tending to stall), 

"_ I l l l l t ,  t 

Fig. 8.18 Compressor section. 
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the mid blade rows operate approximately on-design, and the rearmost 
blade rows operate at low angle of attack (hence tending to windmill). 

There are several design techniques available to relieve these starting 
problems, some or all of them being utilized in all modern high-compres- 
sion-ratio compressors. The first technique is to utilize bleed valves. Bleed 
valves operate by releasing air from an appropriate stage in order to reduce 
the axial velocity and thereby reduce the tendency to windmill the rear 
stages. 

A second technique to reduce the starting problem is to utilize variable- 
angle stators. By varying the angle of the stators the angle of attack to the 
rotor can be changed to more closely approach the design angle and thus 
the compression per stage can be improved. The effect of variable stators is 
both to reduce the tendency of the front blades to stall and to reduce the 
tendency of the rear blades to windmill. 

The third technique to reduce the starting problem is to drive the 
compressor with multiple spools (Fig. 8.19). Thus, the low-pressure portion 
of the compressor will be connected directly to the low-pressure portion of 
the turbine and the high-pressure portions of compressor and turbine will be 
directly connected on another "spool." 

It can be noted that the same argument used to explain the stalling and 
windmilling behavior of the compressor can be used to explain the turbine 
starting problem. Thus, by providing separate spools, the (for example) 
high-pressure portion of the compressor will be allowed to match with the 
high-pressure portion of the turbine, both components in fact operating 
closer to their design point if allowed to increase speed. 

It is obvious that the requirement for these additional complexities 
increases as the design pressure ratio of the compressor increases, which 
tends to explain why modern engines usually utilize all three of the 
techniques described above. Aircraft designed for operation over a wide 
Mach number range (as considered in the example of Sec. 8.2) are also 
required to fly with widely different compressor pressure ratios at their 
various flight conditions, and as a result may even be forced to fly with 
compressor bleed when cruising at a "design" flight Mach number. These 
complexities, and the demands that cause them, again serve to emphasize 
the need for design ingenuity in the development of modern engines. 

TO HIGH PRESSURE 

Fig. 8.19 Multiple spool compressor. 
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The Turbine Characteristics 

The same reasoning that lead to the use of the parameters of corrected 
mass flow and corrected speed for the compressor suggests that the turbine 
performance characteristics be plotted the same way with the simple excep- 
tion that the reference inlet and exit quantities are now those at stations 4 
and 5. Utilizing this procedure, the results of a turbine rig test would 
appear, typically, as those shown in Fig. 8.20. 

It is evident from Fig. 8.20 that in the case of the turbine an alternative 
presentation format is desirable because so much of the desired information 
collapses on the choke limit line, where in fact the turbines usually operate. 
A simple method for displaying the desired information is to multiply the 
corrected mass flow by the corrected speed. This has the effect of moving 
the separate corrected speed lines apart so that the efficiency contours, etc., 
may be discerned (Fig. 8.21). 
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Alternate form of turbine characteristics. 
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The Pumping Characteristics 
The group of the three components (the compressor, burner, and turbine) 

is termed the gas generator, and the performance of the gas generator is 
represented by the "pumping characteristics." The pumping characteristics 
simply give the output variables (station 5) in terms of the input variables 
(station 2). 

To obtain the pumping characteristics from the individual component 
characteristics, the matching of mass flow, shaft speeds, stagnation pres- 
sures, and power requirements are utilized. For. simplicity, consider the 
simple example of a nonafterburning, single-spool turbojet. Then 

N, = N~ = N (8.105) 

&4 = (1 +f)tJ ' t  2 (8.106) 

p,, = ptTcrrb (8.107) 

Cp,.(Tt- T,2) = ~m(1 + f ) G , ( T ,  - T~s) (8.108) 

From Eq. (8.106) (with r~ c = rnv/O/6) 

1 I 

1 m < 4  
&c2= l + f  C4pt2kTt2] = T T 7 % %  k -T-7, ~ (8.109) 

In the case where the turbine is choked, the corrected mass flow rh c will 
• . 4 

be a constant (or proportional to A 4 for a variable-area turbme), and for 
simplicity it is now assumed that this is the case. (Note that if this is not 
true, it is simply required to iterate to determine the value of &c,.) The 
burner characteristics will give % as a function of rnc2 and t h e  fuel- 

, " Tt4 
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Fig. 8.22 Compressor performance map. 
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to-air ratio f .  Thus, if Tt,/Tt~ is specified, &~= is specified as a function 
of rr~. (Note that the effect of f is small, but to be exact its value will be 
iterated upon when the actual value of f is determined more exactly later.) 
The relationship between Tt,/~2, try, and rh~= may be indicated on the 
compressor performance map as m Fig. 8.22. 

Once the compressor performance map has been obtained in the manner 
indicated in Fig. 8.22, the graph may be utilized to obtain 7rc and rhc~ when 
N/~/~2  and Tt,/Tt2 are prescribed. Note also that ~ may be obtained for a 
given location on the map because both ~r c and ,/~ are provided. 

The equation for the power balance [Eq. (8.108)] may be rearranged to 
give 

1 ' 

~'t = 1 nm(1 + f )  Cp, I Tt2 ('r c - 1) (8.110) 

When T,,/T,2 and N/~ are prescribed, ~rc, rhc2, 7,., and hence % can be 

obtained from Fig. 8.22. Then obtain zt from Eq. (8.110) and N/~/~4 from 

N/~ /~4  = N / ~ 2 2 ( T t , / T t ~ )  -~/2. This allows locating the position on the 
turbine performance map (Fig. 8.23), which in turn provides the correspond- 
ing value of %. 

The pumping characteristics (Fig. 8.24) then follow by noting 

P,5 T,~ T,, 
- -  = ~rt~rdr c and - 
Po Tt2 ~'T,, 

Finally, the fuel-to-air ratio is determined from an enthalpy balance 
across the combustor to give 

m2G T~, + n b h m l  = ra2(1 +/)Cp T~, 

'qt LOCATION OF POINT 
, / S U C H  THAT 

I / /NI  

Fig. 8.23 Turbine performance map. 
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Tt5 
r,z 

mc2 

Fig. 8.24 

~5  
~z 

rt4 

rt4 

The pumping characteristics. 

N/0,~Z 
Fig. 8.25 The fuel-to-air ratio. 

hence 

(Cp,/C~c)(~,/~2)-~c 
J= (,~h/CpT, b_(CjCp3(~,4/~) 

(8.111) 

Thus a relationship of the form of Fig. 8.25 may be obtained• 
Note that unlike the results of Fig. 8.24, the results of Fig. 8.25 are valid 

for only a single specified value of Tt2. 
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Gas Generator-Nozzle Matching 
The pumping characteristics allow determination of conditions at station 

5 in terms of those at station 2 when the corrected speed and the ratio 
T~,/Tt: are prescribed. When the gas generator is coupled with a nozzle of 
prescribed throat variation, however, N / ~ :  and Tt,/T~2 are not separately 
prescribable. (Recall the results of Sec. 8.2 where it was shown that by 
prescribing the ratio A4/A 8 a unique compressor operating line will be 
determined.) For simplicity again consider the case where the primary 
nozzle is choked, so that the group m8~/~8/A888 is a constant. Mass flow 
continuity then gives 

A8 
A2 

-1 [ Tt~ 1 ~ Pt2 (8.112) 
(1 +f)l Tt~] P,-7 

A8 

. . . .  /__ ~ _  __~___ FIXED 
NOZZLE 

N// '~  
Fig. 8.26 Area variation. 

- - -  % / ~ 2  ~ f .  5 5 / S a  

N//Y~a 

~ - -  rhc2 

T)4 / T#2 

Fig. 8.27 Gas generator-nozzle pumping characteristics. 
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Noting that for the nonafterburning case Tt~ = Tt~ and also that P,~/P,2 
= % Pt,/P,~, this expression may be written 

( l )1 
A__88 = Tt~]~[Pt~ ( l + f )  
A2 Tt2 ] [ Pt2 "Irn 

1 

(8.113) 

% will be known as a function of the corrected mass flow rate through the 
tail pipe and nozzle, so that if Tt4/Tt2 and N/~22 are prescribed, then 
m2~-z/82 , P~/P,2, T~/Tt2' and f will all be determined from the pumping 
characteristics. Thus, As/A 2 will also be prescribed and a graph of the form 
of Fig. 8.26 obtained. 

When the desired schedule for the nozzle area A 8 is prescribed a unique 
Tt,/Tt2 vs N/~22 curve is established. This allows determination of a 
unique set of gas generator-nozzle pumping characteristics as indicated in 
Fig. 8.27. 

Performance Prediction with Pumping Characteristics 
Once the gas generator-nozzle pumping characteristics are available, the 

performance parameters follow directly from the equations for the perfor- 
mance variables. Thus, with reference to the summary of Sec. 7.2, the 
performance variables may be obtained from the pumping characteristic 
variables from the following equations. (Note that Tt,/Tt2 would be as- 
sumed and the flight conditions, etc., would be known.) 

Pt9 _ ( Gfra% ~_) Pt~ (8.114) 
P9 \ 1-'9 Pt2 

T9 Tt, ( P,9 )-~,,-lV,, (8.115) 
T O - - T r T t Z \ p  9 

M° u-o = 7c- 1 Cp, rr TtZ 1 \ P9 ) (8.116) 

/= (hn~)/(GYo)-',r(GZ,)/(G,.~) 
(8.n7) 

(u9) ,a+j,  9(1_ 0 
~ = a  0 ( l + f )  Mo~ ° -Mo+ .Yc[Mo(U9/Uo)] To P9 

s= f 
F#n 

)] 
(8.118) 

(8.119) 
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8.6 Limitations on the Accuracy of Component Characteristics 

When utilizing component characteristics to generate pumping character- 
istics, it is important to be aware of any accuracy limitations. The most 
obvious accuracy limitations will occur because of the inevitable instrumen- 
tation and recording inaccuracies present in any test procedure and, of 
course, every effort must be made to minimize such sources of error. Other 
sources of error, however, arise when the effects of changes in Reynolds 
number and the ratio of specific heats are not included. 

In many large engines, the effect of Reynolds number variations are, in 
fact, very small over virtually the entire operating range of the engine. 
However, it can happen, particularly in small general aviation jet engines, 
that Reynolds number effects can become substantial for flight at extreme 
altitudes. In the compressor, for example, it is entirely possible that the flow 
over the first blade row will become largely laminar with the consequent 
onset of early (laminar) separation. Aside from reducing the performance of 
the first blade row, such separation causes velocity mismatches at all 
succeeding rows, with consequent substantial change in compressor perfor- 
mance. 

In a similar way, operation at extreme altitudes can lead to very low 
Reynolds numbers at the later turbine stages with a consequent deteriora- 
tion in performance (unless the blades had been designed "oversize" origi- 
nally to prevent such deterioration). The point, then, is that if operation 
over extreme Reynolds number ranges is to be expected, appropriate 
investigations of the effects of the Reynolds number variations should be 
included in the engine test program. 

An entirely different phenomenon arises when operation at very high 
humidity is carried out. Several effects arise when large amounts of water 
vapor are present in the flow, including change in the ratio of specific heats 
(so that the value of corrected mass flow at a choke condition changes, as 
does the reference speed of sound in the corrected speed). When condensa- 
tion (and later evaporation) occurs, substantial effects arise because of the 
release or absorption of the latent enthalpy of evaporation. As an example, 
if an inlet is considered, the presence of water vapor causes three major 
effects to occur: 

(1) Mass continuity. The specific density of water is so high that any 
droplets formed (due to the lowered static temperature as the air accelerates 
into the inlet) occupy effectively zero volume. The result is that this aspect 
of condensation allows the inlet to pass a larger mass flow than it can 
without condensation. 

(2) Stagnation enthalpy increase. When droplets form, their latent en- 
thalpy of vaporization is released to the surrounding gas, thereby increasing 
the stagnation temperature of the gas. This tends to reduce the mass flow 
handling capability of the inlet (recall rn - 1 / ~ ) .  

(3) Stagnation pressure decrease. The latent enthalpy of vaporization, 
released upon the formation of droplets, reduces the stagnation pressure, as 
was pointed out in the analysis of Sec. 2.18. This reduction in stagnation 
pressure tends to reduce the mass flow handling capability of the inlet 
(recall rn - Pt)" 
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The net of these effects is that when condensation occurs, less mass flow 
can be handled by the inlet than when no condensation occurs. Thus, inlet 
testing (and engine testing) at ground level on hot humid days can lead to 
substantial variations in performance (greater than 1% mass flow rate 
changes) and great care should be exercised in applying data correction 
procedures. 

8.7 Engine Acceleration 
In the preceding sections of this chapter, methods for predicting engine 

performance at various throttle settings or flight conditions were developed. 
In determining such off-design performance, steady-state operation is as- 
sumed, so that appropriate power balances between turbines, fans, and 
compressors can be applied. When the engine undergoes transient oper- 
ation, however, the power output of a turbine does not equal the power 
absorption of its related compression system, but rather a system accelera- 
tion exists as a result of such a power imbalance. 

The description of the accelerative behavior of the rotating components 
requires knowledge of the momentary angular velocity of the rotating 
system, and, as a result, the compressor (and turbine) characteristics must 
be known. In the following, a simplified representation of the compressor 
characteristics will be presented, but it is important to note first that to a 
very high degree of approximation, provided only that the acceleration 
maneuver does not introduce fluid mechanical instabilities, it is appropriate 
to assume quasisteady fluid flow throughout the system. This assumption is 
supported by the observation (and calculation) that engine acceleration 
transients occur over time periods of several seconds, whereas the residence 
time of a fluid element convecting through the entire engine is of the order 
of about 1/100th of a second. As a result, conditions may be assumed 
quasisteady throughout the transient time of a given fluid element even 
though conditions do change on a much larger time scale. The importance 
of such an approximation is that the component performance maps--that 
are obtained from steady-state tests--may be used to describe the engine 
behavior during transient operation. 

The Compressor Characteristics 
A schematic representation of a typical map of compressor characteristics 

is presented in Fig. 8.16. When transient operation is to be considered, the 
momentary operating point will depart from a location on the steady-state 
operating line, and will then tend to return to the operating line at a new 
steady-state operating condition. The determination of the "path" followed 
by the operating point requires knowledge of the compressor characteris- 
tics, and particularly of the momentary compressor angular velocity. In 
industrial practice, it is usual to represent the compressor characteristics in 
great detail within computer codes, so that the history of an operational 
excursion can be calculated. 

In order to facilitate the calculation of example transients, a simplified 
representation of a compressor map is presented. The resulting simplified 
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representation can be used in two ways. Thus, it may be used as an 
approximation to an actual compressor characteristic so that simple ap- 
proximate estimates of transient compressor behavior can be estimated, or 
alternatively, the representation can be considered a simple example of an 
actual compressor performance map for interpretive purposes. 

For future convenience the compressor characteristic_ map is represented 
in nondimensional form in terms of II, M, and N, where by definition 

ri  ~c b 
'TrCd 

~ t =  rhc 
,h co (8.120) 

 v=Uc 

Figure 8.28 presents a typical compressor characteristic map, and iden- 
tifies the stall-surge line (subscript S), the operating line, and seven points 
that will be used to establish the analytical description of the map. It is now 
assumed that the dimensionless compressor pressure ratio Hs, and dimen- 
sionless mass flow Ms, found on the stall-surge line, can be related 

IIz ----  

(~s~, n ~ ) ~  

\ 

I I 

I 

I 

I 
i 

I 

MLI ~¢t-2 ~/L3 

M 

Fig. 8.28 Compressor characteristic map. 
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quadratically, such that 

I1s= K 1 + K2aSI s + K3Mas (8.121) 

Similarly, it is assumed that both ~:/s and a;/L can be related quadrati- 
cally to the dimensionless speed N through the expressions 

"~L = K4 + Ks"~ + K6 ~2  (8.122) 

)kT/s = K 7 + K8)V + K9JV 2 (8.123) 

Note that the value of I l  L has no special physical significance, but rather 
is chosen as a matter of convenience to locate the outer "edge" of the 
compressor characteristic that is likely to be included in example calcula- 
tions. 

In practice the values of the constants K 1 ~ K 9 are determined by 
inserting the known values of M L, M s, and N in Eqs. (8.121-8.123) to give 
after inversion 

° 

K I = -~M [ MS,)(tsa ( )fgs, - Ms= ) i l  s, - Ms, Ms, ( a)is, - Ms, ) i l  s= 

(8.124) 

1 • j~ /2  

(8.125) 

(8.126) 

where 

DM= (&-  Ms )(Ms,- & ) ( & -  &) (8.127) 

Also, with J = L for K 4 ~ K 6 ,  J = S for K 7 + K 9 ,  have 

+ N2~1 (~2 - ~1) 3)/j,] (8.128) 
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K 6 or K 9 

where 

° 

Ks or Ks= -~  [-(  N32- N22)Mj~ 

+ - & ]  

~ =  ( ~ ,  - ~ 2 ) ( ~ ,  - ~ 1 ) ( ~ 2  - ~ , )  

(8.129) 

(8.13o) 

(8.131) 

Equations (8.121-8.131) describe the relationship be_tween the endpoints 
of the speed lines and the dimensionless speed N. To complete the 
description, an appropriate curve fit for the speed lines themselves is now 
introduced. Thus, it is assumed that 

I'i = H s - ~-L---- ~ S  (US- -  IIL) (8.132) 

The exponent n is determined by selecting the speed N2 as the design 
spee~ that is to say N2 = 1. The exponent n is then selected to ensure that 
for N 2 = 1, Eq. (8.132) not only passes through the endpoints (/hts2, IIs2 ) 
and (3;/L=, " IIL= ) (ensured by the assumed form), but also passes through 
(II  = 1, M = 1). It follows that 

(8.133) 

Recapitulating, it is seen that with K 1 ~ K 9 determined from Eqs. 
(8.124-8.131), then Eqs. (8.121-8.123), (8.132), and (8.133) provide a 
relationship of the form 

II = II(ll,t, N)  (8.134) 

The remaining task to complete the description of the compressor char- 
acteristic map is to provide the equation of the operating line. Here, for 
simplicity, it is assumed that the entrance and exit areas to the driving 
turbine are choked and that the areas are fixed. In this simple case, Eq. 
(8.43) is valid, and may be written in the form 

rhc = ~rc 
Cd tr~£ d 

r/~(rrc(~ - ' ) / r -  1) ]} 

rlc~ ( ~r~ (~- ')/~ - 1) J (8.135) 



ENGINE OFF-DESIGN PERFORMANCE 317 

which becomes in terms of the dimensionless quantities and ~r~, 

1 

= II T T - ~ ~ ~ -  1 ] 
% i t " % )  1 

(8.136) 

In the interest of reducing the complexity of the following analysis, an_d 
in the absence of a simple relationship relating ~c/~¢~ .to M and N, 
it is now assumed that ~c/~c~- 1. This assumption is consistent with that 
introduced in the steady-state off-design examples previously considered. 
The equation for the operating line then reduces to 

/1~¢= [ ~'c(f- 1)/~' -- 1 ] - H[ (8.137) 

This form may be used directly when a model compressor characteristic 
map is to be constructed. However, when the compressor characteristic map 
is intended to approximate an actual (experimentally obtained) map, it is 
appropriate to determine an "equivalent" design compressor pressure 
ratio, (~'cd)eq, b.y selecting (~cd)e q SO that Eq. (8.137) passes through the 
design point (M, H) = (1,1) and an appropriate reference point M R, H R. 

In such a case 

( Wcd)e q = 
(/¢/R/II R) 2 - 1 

(~:/R/HR)2H(R r-1)/~ - 1 

v/(r- 1) 

(8.138) 

Limiting Value for Angular Velocity 
This simplified representation of the compressor characteristic map de- 

veloped in the preceding section allows relatively simple estimation of 
transient operation. It is important to note, however, that the form assumed 
becomes inappropriate when the speed line becomes "more than vertical." 
That is, the limiting value of speed to be. considered, Nm, will be that 
corresponding to the speed line for which M s = M L. This limit occurs [see 
Eqs. (8.122) and (8.123)] when 

K4 +/~5~m +/~6~ =/~7 + rs~m + K9~ 

or 

1 

/Vm-- 2(K9 -__ K6) (K5 - K8 "1-[(K 5 - K8)e - 4(K7 - K4) (K  9 -- K6)] ~) 

(8.139) 
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In most cases of interest, the value of Nm so calculated will correspond to 
a system speed higher than that allowed from stress limitations. 

The Choking Relationship 
As previously stated, in the example considered herein, it is assumed that 

the turbine entrance and exit nozzles are choked, and that the geometry is 
fixed. It then follows from Eq. (8.7) that 

A/= n{ \ '= (8.140) 

It is to be noted that this relationship is valid throughout the transient 
maneuvers. It is only when the system is nonaccelerating that the turbine 
power output can be equated to the compressor input [as in Eq. (8.3)] to 
lead to the equation for the operating line, Eq. (8.137). 

The Stall Margin 
Figure 8.29 illustrates three locations on a compressor characteristic map: 

the initial location (A/i, Hi), the related location of the intersection of the 
speed line (for Mi) and the stall line (Ms,, Flsi), and the "endpoint" 
location to be described shortly. 

The stall margin S M  of the compressor operating at the initial location is 
defined by 

H s - I I  i 
S M  = Hi (8.141) 

II 

STALL LINE 

. OPERATING 
LINE 

& 

M 

Fig. 8.29 Stall margin. 
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It subsequently will be found that the acceleration limit is a sensitive 
function of the stall margin. In fact this can be somewhat foreshadowed by 
considering an engine acceleration carried out by a sudden ("step") in- 
crease of throttle setting ('rx/Tr) that moves the momentary operating point 
from ( /~ ,  1-I~) to (Ms,, Us,). It is apparent from Eq. (8.140) that the related 
value of "rx/~" ~ is given by 

(Tx/~)  s, = (~'x/'rr) d( rl s/l(Is,) 2 (8.142) 

The endpoint (3~t e, l ie )  is defined as the point on the compressor map 
that will be reached when the compressor reaches equilibrium at the new 
operating point without further changes in the ratio (~-x/~-~). Thus with 
(,rx/,r~)s, = (~'x/~'~)e, Eq. (8.140) gives 

3;/s (8.143) ME=li Ilsl 
The equation for the operating line, Eq. (8.137), may be inverted to give 

With Eq. (8.144) applied at both the initial (i) and end (E) locations, 
and with Eq. (8.143), it follows that 

__ r ( 1XHs/MS ]"" 1 q- 9 ( Y - 1 ) / Y  - -  1 1-Is/M s 

IIi [ 1 + (or(I- 1)/v _ 1) (H j3;//) 2 
(8.145) 

Example calculations show that II e is a sensitive function of the stall 
margin, with large stall margins leading to large ratios of He/I I i .  The 
implication of such a result is that care must be taken to restrict the throttle 
advance allowed (that is, the increase in Tx/~'r) if small stall margins exist 
and large increases in compressor pressure ratio are desired. The effect of 
these restrictions is to require automatic control systems to prevent intro- 
duction of values of rx/~'r that will cause compressor stall or surge. 

Determination of Starting Conditions 
Usually a starting condition will be prescribed in terms of the initial 

dimensionless pressure ratio IIi. The related dimensionless mass flow rate 
k;/i follows immediately from Eq. (8.137). An equation for the initial 
rotational speed follows from Eq. (8.132) to give 

F ( N i ) = I I s ' - l i i  / ~-~L,----~, ( I I s ' - I - I L ) = 0  (8.146) 
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The subsidiary equations, Eqs. (8.121-8.123), provide the explicit ex- 
pressions for the N, dependence. This equation may be solved by utilizing 
Newtonian iteration with 

so that 

F'(Ni) = F ( ~ i + 1 0 - 6 ) - F ( ~ - l O - 6 )  (8.147) 
2(10 -6 ) 

(/~/) j+ 1 = (/~/-- "~-, ) j (8.148) 

A simple starting guess is 

(N/)o =AIi (8.149) 

Determination of the System Acceleration 
The power extraction by the turbine may be written as the angular 

frequency of the system to times the turbine torque T t. The first law of 
thermodynamics states that the power extraction is equal to the mass flow 
rate times the stagnation enthalpy change across the turbine, which leads to 

1 T t = -drhcp, Torx(1 - r,) (8.150) 

Similarly the power absorption by the compressor gives for the compres- 
sor torque T~, 

1 
re = 1) (8.151) 

The angular acceleration times the angular momentum J is equal to the 
net torque, so that 

j d ~  1 

. -~rhc',T°[rx(1 - r,) - ¢,(% - 1)1 dt = 
(8.152) 

In the case considered here in which the turbine entrance and exit areas 
remain choked and the geometry remains fixed, Eq. (8.30) may be intro- 
duced to give 

dto [ %/rr ( r c _ l ) _ ( % _ l ) ]  (8.153) 

This latter expression is more conveniently written in terms of the 
corrected variables and the dimensionless forms. Thus write 

to/~/ff ( t o )  ~/ T°rr (8.154) 
to= (to/V/-/~)d -~- dV~=Nto~ TSTP 
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also 

' / ' =  ---3- = a;trh (8.155) 

Equations (8.153-8.155) give 

] 
dt 

J~I I'h Ca / TSTP 
V /'0¢r 

× [ (rx/r~)d 1 1) - (r~- 1)] (8.156) 

This equation can be numerically integrated to determine the angular 
velocity as a function of time. It is usually true, however, that engine 
accelerations occur on a somewhat smaller time scale than do airframe 
accelerations. In such cases it may be assumed that Po, To, )~o, etc., remain 
constant throughout the engine transient, and as a result Eq. (8.156) 
simplifies to the more compact form 

-I dN zx/rr ( z c a - 1 ) - ( % - l )  -~  
dt* = (%/rr)~ 

Here t* = t/tac~ has been introduced, where t~c c is the characteristic 
acceleration time defined by 

J~2a ~/0 1 
tact = 8 (8.158) rh ca cpcTs~ 

The expression for the characteristic acceleration time reveals some 
useful physics. Thus, for example, highly energetic systems (large J~2a) 
require larger times to acquire increased rotational speeds. Similarly, flight 
at high altitude (low 8) leads to large acceleration times. This latter effect 
occurs because the related reduced density leads to reduced torques, and 
hence lower accelerations. This effect can be dramatic (a factor of more 
than ten) for an aircraft with high altitude capability. 

Equation (8.157) may be integrated numerically by introducing the 
previously developed analytical representation of the compressor map. It 
will be assumed that the initial conditions are known, and that the schedule 
of r x / r  r as a function of time is prescribed. Integration is carried out by 
assuming suitably small time steps, St*, and calculating the related change 
in N. Iteration of the compressor map equations will be  required at each 
time step. A suggested sequence of equations to obtain Nj+ 1 from Nj is 

~ [ (~ /~ r ) ;+ l  [Ij+l=~,xj[ (,/.h/Yr)d ] 12 (8.159) 
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/~/L~--- K4 --I- K 5 N  j + K6/Vj 2 (8.160) 

-h';/S = g 7 + g 8 ~  + K92Vj 2 (8.161) 

1-I s = K:  + K2)('I s + K3)(42s (8.162) 

Mj+ =Ms+(ML_Ms)( ns-n-/+I ) " ~s__- ~--/L (8.163) 

This equation set is iterated by replacing ~ wi th  3;/./+1 until the values 
of IIg+ 1 and 2O-/+x stabilize. The new value of N, ~÷x,  then follows from 

I) (m+, 1)]3/* (8.164) 
t ( % -  - - 

where 

FI ~r ~(v- i)/v _ I 
*~/+i Cd] (8.165) 're,+ - 1 = ~lc 

Reference 
I Klees, G. W. and Welliver, A. D., "Variable-Cycle Engines for the Second 

Generation SST," Society of Automotive Engineers Paper 750630. Air Transporta- 
tion Meeting, Hartford, Conn., May 1975. 

Problems 

8.1 Consider the off-design performance of a nonafterburning turbo- 
jet. Ideal performance of all components may be assumed (~r a = % = 7/, = 1 
and )'c =Yt = Y, f<< 1, etc.). Both A 4 and A 8 may be considered choked. 
The engine is flown with fixed ~'x, but at varying Mach numbers. Reference 
conditions are MoR = 1, ~r<R = 20, y = 1.4, and T x = 7. 

(a) If A 4 and A 8 are fixed, find ~r, when M 0 = 2. 
(b) If the ratio A 4 / A  8 is varied in proportion to 1/~ r, find tr when 

Mo=2 .  

8.2 An ideal, nonafterburning turbojet engine operates with A 4 and 
A 8 choked. The engine has a variable A s that is varied to keep the 
compressor pressure ratio constant. 

(a) Obtain an expression for TtR in terms of "r,, "rrR, and taR. 
(b) Obtain an expression for ct in terms of TtR, ~'XR, rrR, ~'X, and r r. 
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(c) Find an expression for A s / A 8 R  in terms of 7, r,R, and r,. 
(d) Given rr c = 1 5 ,  7 = 1 . 4 ,  MOR=2, r a g = 7 . 0 ,  and M 0 = 2 ,  r x = 6  

evaluate ~tR/'tr t and A 8 / A s R .  

8.3 A concept to improve the off-design performance of a turbojet, 
which has already seen service, is that A 8 is varied but A 4 remains fixed. 
Consider a turbojet flying at fixed Mach number, with fixed component  
efficiencies, fixed 7,, 7 ,  etc., no afterburning, and both A a and A 8 choked. 
A s is varied to keep the corrected mass flow constant. 

Find and list equations giving ~r c, r~, %, r ,  and A s in terms of the input 
variables 3',, 7. ~,,,, 71c, 71t, ~r,R, rxR, Mo, and r~. 

8.4 "Off-design analysis" can be used also to "redesign" an engine 
from the reference condition. Thus, for example, we may wish to change the 
areas A 4 and A 8 to move the operating line further from the surge line. 

Consider a turbojet with ideal components, such that ~c = ~t = 7,, = 1, 
f << 1, "/t = 7~ = 7, etc. 

(a) Show that the compressor operating line may be determined from 
the hierarchy of equations: 

Inputs:  Mo, ~'a, A s / A a R ,  A 4 / A 4 R ,  MoR,  'taR, "trcR, rncR, "Y = 1.4 

Outputs: ~r~, rh~ 

Equations: 

'r~ = 1 + 34o2/5, rrR = 1 + M ~ R / 5  

rc R = q./.:~3.5 

TtR = 1 r~R -- 1 
( ) , ,  

A4/A4R ] 
,7. = ,r,R As/AsR ] 

~r~ = [1 + Tx/r~(1 - rt)] 3'5 

[ } A4 ~ (r~,/"'r),~ 
WI c = mcRA4 R ~rcR Tx/T r 

(b) Consider a reference condition with M0R = 2, TaR = 7, ~r, R = 25, 
and rhcR = 100. Calculate and plot ~r c vs rh c over the range 2.5 _< r a / r  r 
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< (Tx/~'r) R for the reference engine ( A 4 = A 4 R ,  A 8 =A8R ). Indicate the 
location of values of "rx/r r on the curve. 

(c) Obtain the compressor operating line over the same range of rx / ' r  r 
for an engine that has been redesigned to have A 4 = A4R , A 8 = 1.2AsR. Plot 
on the same graph as in part (b). 

(d) Similarly, obtain and plot Ire vs rh~ for an engine with A a / A  8 
= ( A 4 / A 8 )  R, A 4 = 1.1 A4R. 

8.5 A designer wishes to design a turbojet engine so that when the 
flight Mach number changes (at fixed altitude) the inlet will "just swallow 
its projected image." In order to achieve this objective, he decides to utilize 
a variable A8, but retain fixed A 4. 

Obtain a series of relationships that would allow the designer to estimate 
the required variation in A 8 / A s R  with prescribed variations in M 0 or ~'x. 

8.6 Consider a turbofan engine that operates with the fan stream 
unchoked (convergent only nozzle), but with the core stream choked at A 4, 
A4a, and A 8 (see Sec. 8.3 for nomenclature). 

Show that the following hierarchy of equations may be used to obtain the 
off-design performance of the engine: 

"r~h = 1 + ( 'r~h R -- 1) 'r~'-LR 'rx/'rr 
~'~' (~'X/'~r)R 

~ h  = [1 + nch(¢~h -- 1 ) 1 3 s  

Ir~,= [1 + rl~,(r¢, -- 1)] 3.5 

M~=5[('Zrr~rd'rr~,~r,,,)a/3s--1] 

[ ] a = ~rchR "g9" "r~'R "rx/'rr 

aR Itch -'g9'R re' ('r~,/'rr) R 

rc,= 1 +(To,R_ 1) 1 + aR "rx/'rr 
1 + a ( r X / r r )  R 

8.7 Consider a turbofan engine which operates with both the fan 
stream and core stream unchoked at the (convergent, A 8, = A 9, and A 8 = A9) 
exit nozzles, but with choked flow at A 4 and A4a. 
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Show that the following hierarchy of equations may be used to obtain the 
off-design performance of the engine: 

~'ch = 1 + (%h R - 1) "rx/'rr'r~" (~/~,)  

etch= [1 + ~,.h('r,.h -- 1)] 3'5 

~'c,= [1 + ,¢,('r¢, -- 1)] 3'5 

M9,={5[('lrrCrd'rrc,~'.,)l/3"'--i]} ~ 

'~9' 

0¢ 

O~ R 

~ .  = 

i~= 

..,t48= 

q?'ch "/~¢ 9'  R (Th//TrTc')R 

1 +(1.c,R_ 1) 1 + aR ~x/~'r 1 - 1"tL 
1 + a (T~//Tr)R 1 -- ~',LR 

1 - '~t(1 _ % ( / , -  ' ) / r ,  ) 

_ 1]) 

TtL = 
| 

"/~SR [ TtL t ~ 
~r,L = ~r, LR--~8 ~ T, LR J 

8.8 Verify that Eqs. (8.64-8.79) are correct. 

8.9 Verify that Eqs. (8.86-8.103) are correct. 

8.10 A turboprop engine is flown off-design. It has a very good 
turbine, so good that you may assume e t = ~?t = 1. 

(a) Defining II  as II--(~rrlrdlrdrblr,)¢~'-t)/~', show that for this case 
(71, = 1 )  

( I I )  (~,÷'/z(Y,-~) 
M 9 =  M9R 
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rt 
"rtR 

nR 1 ÷- Mg 

(b) Cons ide r ing  the case where ~rd~rb~r . = (~rd~rh~r,)R, M 0 = M0R , and 
%R = 2.944, r/¢ = r/c R = 0.845, M9R = 0.6643, ~'xR = 7, ~'x = 6, "r, = 1.4 and 
"5 = 1.35, f ind ~r,. R, ~'c, M9, and Tt//TtR. 

8.11 The tu rboprop  engine descr ibed in Table  7.2 (with rccR = 24) is to 
be flown off-design. The aircraft  will be held at cons tan t  Mach number  and 
al t i tude,  but  the throt t le  setting will be reduced.  It m a y  be assumed that all 
c o m p o n e n t  efficiencies remain  the same except  that  

Ob ta in  and plot  S / S  R vs F / F  R and  rrc/~r,. R vs m,./fncR over the (ap-  
p rox imate )  range ½ < F / F  R <_ 1. 



9. ELEMENTARY THEORY OF BLADE 
AERODYNAMICS 

9.1 Introduction 
In this chapter the relationships of the desired performance parameters to 

the related compressor or turbine blade loadings (and resultant fluid flow 
angles) will be investigated. It is apparent that the flowfield within an actual 
turbine or compressor is enormously complex; thus, it is desirable to create 
simplified models of the flowfields if any understanding of the physics of the 
flow processes is to be attained or if any analytical prediction techniques are 
to be formulated. 

Although several extensive efforts to model the flow through an entire 
compressor or turbine (including transonic effects, boundary layers, wakes, 
etc.) have been attempted and have met with some partial preliminary 
success, it is more common to model the flowfield as a "sum" of less 
complicated parts. Relatively simple flowfields will be described here and 
the various separate pieces considered. 

In order to analyze what appears at first to be an almost incomprehensi- 
bly complicated flowfield, it is customary to model the full three-dimen- 
sional flowfield as a compilation of three two-dimensional fields. These 
fields may be termed the "throughflow field," the "cascade field" (or 
blade-to-blade field), and the "secondary flowfield." Each of these fields is 
described in the following sections. 

The Throughflow Field 
This flowfield is considered to arise because of the influence of all the 

blades in a row (or rows). The effects of individual blades are not consid- 
ered, and hence the combined effects of all the blades in the row are 
obtained by assuming the blade forces to be "smeared out" in the azimuthal 
direction. Mathematically, this process is accomplished by replacing the 
blade surface pressures by volumetric (and continuous) body forces. As a 
result of the simplifications contained in this model, no 0 variations occur 
and the throughflow field is hence two-dimensional with variations occur- 
ring in the radial (r) and axial (z) directions. 

Figure 9.1 shows the coordinate system and the throughflow representa- 
tion of the flowfield. It can be noted that the flowfield identified with this 
approximation would be that approached if the blade row had a very large 
number of very thin blades. 

327 
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~ ~'SMEARED OUT 
BLADE ROW 

Fig. 9.! Coordinate system and throughflow representation. 
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Fig. 9.2 Typical axial velocity profiles. 

The solution to such a flowfield would give the axial and tangential 
velocities throughout. Figure 9.2 shows typical axial velocity profiles that 
could occur at stations 1 and 2 of Fig. 9.1. 

When axial velocity profiles of the form indicated in Fig. 9.2 at station 2 
develop, it is apparent from continuity that a downward flow of fluid must 
occur. Thus, a typical "stream surface" (to be more carefully defined in Sec. 
9.4) could appear as depicted in Fig. 9.3. 

The throughflow field can be considered the parent flowfield of the 
cascade and secondary flowfields, and because of this should be calculated 
with considerable accuracy. For this reason, a somewhat extensive descrip- 
tion of throughflow calculation techniques is given in Chap. 10. 

The Cascade Field 

In order to estimate the flow behavior in the neighborhood of individual 
blades, a meridional surface such as that indicated in Fig. 9.3 is expanded 
(" unwrapped") and the individual blade profiles considered (see Fig. 9.4). 
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Fig. 9.3 Typical stream surface. 

0 

$ 

/ / /  
Fig. 9.4 Meridional projections of blade profiles. 

When the meridional surface of Fig. 9.3 is unwrapped in this way, a 
two-dimensional flowfield in the 0 and meridional (almost z) coordinates is 
obtained. If the curvature of the stream surfaces in the throughflow field 
(Fig. 9.3) is not too great, the pressure gradients across such stream surfaces 
need not be considered, and hence the individual "strips" may be consid- 
ered separately (hence, the term "strip theory"). By considering a number of 
such strips, suitable blade profiles can be determined for a selected number 
of radial stations on the blade, and the complete blade shape necessary to 
describe the full three-dimensional blade can be obtained by fairing in the 
desired profile shape. 

Numerical methods may be utilized to calculate the flowfield in this plane 
(including the boundary layers), but classically the most widely used method 
is to run cascade tests to obtain the blade performance data. It is to be 
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noted that, in general, the flow between an example pair of stream surfaces 
in the throughflow field encounters a change in cross-sectional area. As a 
result, great care must be taken when the corresponding cascade test is 
conducted to include the effects of the axial variation in flow cross section 
and its related effect upon the streamwise pressure variation. It is to be 
further noted that the effect of the cascade sidewall boundary-layer buildup 
must also be accounted for in order to properly simulate the streamwise 
pressure variations. The cascade flowfield is more fully described in Chap. 
11. 

The Secondary Flowfield 
The third of the three two-dimensional flowfields considered to comprise 

the full three-dimensional flowfield of an axial turbomachine is the sec- 
ondary flowfield. This field exists because the fluid near the solid surfaces 
will have a lower velocity with respect to those surfaces than does the fluid 
in the "freestream" (external to the boundary layer). As a result the 
imposed pressure gradients (created because of the curvature of the 
freestream) will deflect the fluid within the boundary layers from regions of 
high pressure to regions of low pressure. Figure 9.5 indicates the possible 
secondary flows existing within a stator row. (Note that the blade boundary 
layers on a rotor would tend to be centrifuged outward, whereas the excess 
pressure existing at the outer annulus tends to deflect the stator blade 
boundary layer inward.) 

Secondary flows are notoriously difficult to analyze; but in spite of this, 
considerable progress has been made in the analysis of secondary flows in 
both compressors and turbines. The techniques of analysis for compressors 
are substantially different than those for turbines. This is because in 
compressors the adverse pressure gradient leads to low wall shears, so the 
flows can be analyzed fairly accurately by ignoring the viscous shearing 
terms. (The presence of the viscous shearing terms is included implicitly in 
the assumed entrance velocity profle.) The literature of this class of sec- 
ondary flows is quite extensive, and the interested reader is encouraged to 
obtain several excellent recent studies. 1- 3 

Fig. 9.5 Secondary flows within a stator row. 
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When secondary flows in turbines are to be considered, the large favor- 
able pressure gradients existing over much of the blade surface and annulus 
walls leads to thin boundary layers with high shearing rates and conse- 
quently high shear stresses. As a result (three-dimensional) boundary-layer 
calculation techniques must be employed. 

9.2 Two-Dimensional Incompressible Flow through Blade Rows 
In this section the changes in fluid velocity induced by blade rows are 

related to the changes in fluid thermodynamic properties. The discussion 
pertains to the cascade field, but for the present only the far upstream and 
far downstream conditions will be considered. In this way, description of 
the details of the flow in the vicinity of the blades will not be necessary, but 
rather only the changes in fluid properties will be required. The more 
difficult problem of obtaining the necessary blade geometries to efficiently 
induce the assumed velocity fields will be addressed in later sections. 

The Euler Equation 
Now consider the behavior of a single stream tube as it passes through a 

rotor row. The geometry and nomenclature of the interaction are indicated 
in Fig. 9.6. For the purposes of this section, it is not necessary to know the 
details of the interaction within the volume indicated by the dotted lines in 
the figure. Rather it is required only that stations 1 and 2 be sufficiently far 
removed from the region of rotor interaction that the flow may be consid- 
ered time independent. In addition, it is assumed that the entire process is 
adiabatic. 

Aw is defined as the work interaction per unit mass that the stream tube 
undergoes as it passes through the rotor, and for convenience is defined to 
be positive for a work "input." The first law of thermodynamics then gives 
(for this adiabatic flow) 

A w  = ht~ - h t l  (9.1) 

i ,.] 

~r~u 
: I ~W 

, ~V 

| 

~ m  

Fig. 9.6 Steam tube geometry and nomenclature. 
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The work interaction from the rotor is transmitted to the stream tube 
from the input shaft by the torque of the blades. Denoting that portion of 
the torque identified with the stream tube as 6T and the angular velocity of 
the shaft as co, the power input to the stream tube is given by 

Power input = 0a 8T (9.2) 

The torque on the stream tube itself is equal to the rate of production of 
angular momentum, so that with the mass flow rate through the stream tube 
denoted ~rh, 

ST=  [ ( r v ) z - ( r v ) l  ] ~rh (9.3) 

The work interaction per unit mass is just the power input divided by the 
mass flow rate, so from Eqs. (9.2) and (9.3) 

~T 
Aw = ¢o~-~ = co [ ( r v ) 2 -  (rv)l ] (9.4) 

Combination of Eqs. (9.1) and (9.4) then gives the famous Euler momen- 
tum equation, 

hi2- hq = ¢o[ ( rv )2 - ( rv ) l  ] (9.5) 

It is to be noted that no restriction to ideal flow was implied in the 
development of this equation, the only restriction being that the flow be 
adiabatic. It would, of course, be hoped that in a compressor the work 
interaction would occur in a primarily nonviscous manner so that after 
diffusion (in a stator row) the effects of the work interaction would appear 
primarily as a pressure increase rather than as a (static) temperature 
increase. Equation (9.5), however, is applicable no matter what the compres- 
sor efficiency. 

The Perfect Fluid Approximation 
When the flow of a perfect fluid is considered, the stagnation pressure 

ratio may be related to the stagnation enthalpy ratio because the entropy 
remains constant. Thus, utilizing Eq. (2.69) 

P'7 = ~ Tt, = I htl ] (9.6) 

These forms follow because of the assumption of a calorically perfect gas. 
Thus, with Eqs. (9.5) and (9.6), there follows 

v/(v- 1) 
Pt2 ( 1 +  co } 
p,7 = ~ [ (  rv)2-(rv) l]  (perfect fluid) (9.7) 
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Now introduce reference quantities denoted by a subscript 0 where such 
quantities are assumed to be the uniform values of the given quantities 
found in the approaching flow far upstream. The stagnation enthalpy does 
not change prior to the blade row, so that 

Tt°-'~RTo( l ~ l ) ( l + ~ - M o  2) h t , = h , o = "r R To -~R To 

o r  

htl=Wg~o2(T l~l)(l+~--Mg) (9.8) 

Equations (9.7) and (9.8) then give 

Pt--A2 = {1 
Pq + (y- 1)Mo 2 __w [(rv)2_(rv)a ] 

l + Y--~- Mo2 wo 2 

v / ( v - 1 )  

(perfect fluid) 

(9.9) 

If attention is now restricted to cases where the amount of turning is small, 
this expression may be approximated by retaining only the first term in the 
binomial expansion on the right-hand side. Thus, 

P,2 1= 7M2 ~ [(rv)2-(rv),] 
P,, a + Z_f!  Mg wg 

(perfect fluid) (9.10) 

It is to be noted that Eq. (9.10) would also be valid in the case of small 
Mach numbers. In such a case, Pti becomes an inconvenient reference 
quantity, and it is more appropriate to reference the "dynamic head," poW(~. 
Thus, noting 

 ._.0w2 + 1, 

Po Pt, Po Pq 

It follows that 

y - -  1 2 \ I / ( y - 1 )  Pt2--Ptt= I +_.._.~MO ) __[(rv)2_(rv)l] 
poWg wg 

(perfect fluid, small turning) (9.11) 
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In the limit as M 0 approaches zero, the relationship for incompressible 
perfect flow is obtained, which may be written 

p t  2 - p t  I : - - ;  [( - ( ) j  
po w2 wG 

(perfect incompressible fluid) (9.12) 

The expressions represented by Eqs. (9.5-9.12) allow calculation of the 
changes in stagnation enthalpy or stagnation pressure in terms of the 
imposed changes in swirl velocities. Each form of the equations should be 
used only in the regime for which it is valid, as indicated beneath each 
equation. It is to be noted from Eq. (9.5) that no change in stagnation 
enthalpy can occur unless the blade row is moving. This situation is quite 
obvious when it is realized that without a moving surface, no work interac- 
tion with the fluid would occur [Eq. (9.4)]. 

A similar result to that for the stagnation enthalpy occurs in the case of 
the stagnation pressure of a perfect fluid. When losses are present, however, 
the accompanying entropy gains will superimpose a stagnation pressure 
decrease upon the flow processes in the rotor and stator, and the stagnation 
pressure rise through the rotor will not be as large as it would be if the fluid 
was perfect. Also, there will be a decrease in stagnation pressure as the fluid 
passes through the stator. 

Velocity Triangles 
It was seen in the previous section that desired property changes are 

brought about by inducing swirl velocities with the rotors and stators. In 
this section the resulting vector triangles of the fluid velocities are consid- 

I 

Fig. 9.7 
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3 3 

Blade rows and station numbering. 
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ered in order to gain an appreciation for the fluid field the blades and vanes 
must create. The blade and vane angles will, of course, be closely related to 
the fluid flow angles. The flow is considered to be two-dimensional only and 
is considered to be approaching the first row from afar with conditions 
denoted by the subscript 0. The flow past three rows are considered: an inlet 
guide vane row, rotor, and stator. The rows and station numbering are 
indicated in Fig. 9.7. 

Inlet guide vane (IGV). The flow approaching and following the inlet 
guide vane (IGV) row is illustrated in Fig. 9.8. The notation for the angle of 
turning, velocity components, and magnitude of the velocity is indicated in 
the figure. 

An inlet guide vane row tends to be unique among all the rows in a 
compressor, because in all compressors with IGV rows built to date, the 
static pressure decreases across the row. The reason for this can be inferred 
from Fig. 9.8, where it is evident that the magnitude of the velocity has 
increased upon passage through the row. The IGV row is not moving and 
hence no increase in stagnation enthalpy occurs and, for an ideal fluid, no 
change in stagnation pressure occurs. As a result, the increased magnitude 
of the velocity will have attendant with it a decrease in static pressure. It is 
conceivable that a severe expansion in the annulus sidewalls could be 
incorporated, so that the axial velocity could be reduced to a sufficient 
extent to cause the overall velocity magnitude to reduce, but this has not 
been incorporated in any design to date. (There would seem to be no reason 
to do so.) Because of the overall favorable pressure gradient imposed across 
an IGV row, the tendency of the vane boundary layers to separate is much 
reduced; as a result, very high turning can be introduced by a single IGV 
stage. 

Fig. 9.8 

l w O 

vl 

Flow past an inlet guide vane row. 
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R o t o r .  When the air departs the IGV, it has a velocity V~ = ~ + w ( , 
which is directed at an angle 01 from the axial direction. The rotor itself has 
a velocity ~ore o, and hence sees a relative velocity at inlet given by 

Vre] l  : V 1 - ~ore o (9.13) 

The air is then turned within the rotor to the relative velocity Vrd,, so that 
the velocity in the absolute frame (the laboratory system of coordiriates). V 2 
is given by 

V 2 = V~e12 + ~ore o (9.14) 

These velocity relationships are indicated in Fig. 9.9. 

wr 

I 

Fig. 9.9 Flow past a rotor row. 

Fig. 9.10 Rotor row composite diagram. 
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S 

Fig. 9.11 Flow past a stator row. 
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The information shown in Fig. 9.9 can be more compactly displayed by 
utilizing a composite diagram wherein both entering and leaving velocity 
diagrams are superimposed. Such a diagram is indicated in Fig. 9.10. 

Stator. The stator accepts the flow departing from the rotor and turns it 
to a more axial direction. By reducing the swirl velocity in this way the 
magnitude of the total velocity is also reduced and the static pressure 
increases across the vane row. In those designs where the stator returns the 
velocity vector to that found at entrance to the rotor, the stage is said to be 
a repeating stage. The stator velocity relationships are indicated in Fig. 9.11. 

Pressure Relationships across Blade Rows-- The Degree of Reaction 
and the Diffusion Factor 

It is the purpose of a compressor stage to raise the stagnation pressure as 
much as possible and as efficiently as possible. In addition, it would be 
desirable to have the mass flow rate per cross-sectional area be as large as 
possible so as to reduce the required compressor cross-sectional area to the 
minimum possible. These desired design goals create several conflicting 
requirements and limitations. 

It is evident from Eq. (9.9) that a large stagnation pressure rise would 
require a large amount of turning in the rotor, and hence also in the stator, 
to return the velocity vector to (approximately) that entering the rotor. This 
large turning introduces two related deleterious effects. First, the large 
stagnation pressure change introduces a related large adverse static pressure 
gradient. This imposed static pressure gradient enhances the probability of 
boundary-layer separation on the blade. Second, the large required blade 
curvature leads to high blade aerodynamic loading with related very low 
values of minimum static pressure on the blade suction side. As a result, the 
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suction side boundary layer must surmount a locally severe adverse pressure 
gradient that has already been made worse by the superimposed static 
pressure gradient due to all other blades in the row, as just described above. 

It is apparent [Eq. (9.9)] that the attainment of high pressure ratios will be 
aided by the use of high blade speeds and high axial Mach numbers, but 
each of these techniques has its own limitations. It is obvious that the blade 
speed will be limited by mechanical stressing considerations, although it is 
notable that great strides in this direction have been made in the last two 
decades. (Blade speeds have increased from ---300 to = 500 m/s.)  Both 
increasing the blade speed and increasing the axial Mach number lead to 
large relative Mach numbers on the blades and, if carried to excess, can lead 
to large shock losses in the stage. 

It is the function of a designer to make as optimal a choice as possible of 
the various conflicting requirements, and some simplified design aids have 
been developed to help in the various choices. Two coefficients often utilized 
in the design of axial compressors or turbines, the degree of reaction and the 
diffusion factor, are defined in the following. Each coefficient is related to 
the behavior of the static pressure change across the blade rows, so prior to 
defining the coefficients, the behavior of the static pressure will be investi- 
gated. For simplicity, the incompressible perfect fluid case is considered. 

From Eq. (9.12), for the two-dimensional case (with P0 - P), 

])2 "Jr- l P( U2 q- W2 2 ) - pO)( EO )2 = pl  +½10(vl 2 q- W?)--p¢d(FU)I (9.15) 

Straightforward manipulation of this equation leads to the alternate form 

2 )2 
P,2,~,- ~P(  ¢or2) = Ptlr, t - ½p( wrl  (9.16) 

Here there has been introduced the relative stagnation pressure as seen by 
the rotor Pt,,,, which is defined by 

Ptrel=p+ l p [ w 2 + ( V - - c d r )  2] 

It can be seen that in an axial compressor, where r 1 = r 2, the relative 
stagnation pressure across the (ideal) rotor does not change. This, of course, 
is simply Bernoulli's equation for the relative coordinate system. The terms 
involving the square of the blade speed are related to the accounting of 
"energy" stored against the centrifugal forces, and can be of dominant 
importance in centrifugal compressors with their large change in radius 
from inlet to outlet. Equation (9.16) is equally valid for stators as well as 
rotors, where in the case of a stator the equation simply degenerates to the 
statement that the stagnation pressure does not change across an ideal stator 
row. 

Equation (9.16) is in a useful form for design purposes, because it makes 
evident that the change in static pressure across an axial compressor rotor 
row may be estimated simply by observing the fluid behavior in the relative 
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coordinate system (Fig. 9.10). As was evident in the discussion introducing 
this section, the effect of static pressure increase is of paramount importance 
upon the operating limit of a blade row, and it is evident that it would be 
desirable to have such a static pressure increase across a stage nearly evenly 
divided between the rotor and the stator. A measure of this static pressure 
split is the degree of reaction °R. 

Degree of reaction °R. The degree of reaction °R is defined as the 
static pressure rise across the rotor divided by the static pressure rise across 
the stage. Thus, 

°R Apr°t°r 1 A Pstat°r (9.17) 
A Pstage A Pstage 

In the case of incompressible perfect fluid flow and nearly axial flow, 
write (utilizing the station numbering of Fig. 9.7) 

( l / p )  A Pstag e = ( l / p ) A p ,  stage -- 21AVstag e 2  

or 

(1/p)APstage=Oa[(rv)z-(rv)l] - ½(V32 - V 2 ) (9.18) 

where Vi 2 denotes the scalar product V~- V~ and 

(1 /p )Aps ta to r=½(V:-V 2) (9.19) 

It follows that 

° R = I  - 
V 2 - V 2 + 2~0 [(rv)2 - ( rv) l  ] 

(incompressible, perfect flow, small radius changes) (9.20) 

A repeating stage is one for which, by definition, V 1 = V3, SO that with 
WI ~ W 2 =  W3, 

° R  = 1 - v2  - v12 

[ ( rv)2  - (r t )) l  ] 

(incompressible, perfect flow, small radius changes, 

repeating stages, w 1 = w 2 = w3) (9.21) 
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An even simpler form results if the radius change is so small that it does 
not affect the angular momentum difference. In this case, with r 1 = r 2 = r, 

° R  = 1 - v2 + vl  
2oor 

(incompressible, perfect flow, no radius change, repeating stages) (9.22) 

Diffusion factor D. This factor was developed in an attempt to describe 
the effects of both the imposed axial pressure gradient and blade turning 
angle. (It is more fully developed in Ref. 4.) It is intended to be a measure 
of how highly loaded a single blade row may be considered to be. It is 
defined by 

o;(, (9.23) 

where V e = magnitude of the relative velocity at exit to the blade row, 
V,= magnitude of the relative velocity at inlet to the blade row, IAol 
= magnitude of the change in tangential component of velocity across the 
blade row, and o = solidity =- chord/spacing = c/s. These relationships are 
shown in Fig. 9.12. 

A typical maximum value of D obtainable for a given family of blade 
profiles is about 0.6. This value should not be exceeded substantially or it 
can be expected that flow separation will occur. Such limiting values of the 
diffusion factor are usually obtained from cascade tests (Chap. 11). Such 
limiting values can vary substantially in some cases (for blades with ex- 

wi 

Verve 
w e 

Fig. 9.12 Geometry and velocity changes across blade row. 
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tremely long chords, for example), but the factor is very convenient to 
utilize so that possible problem areas can be pinpointed. 

Relationships in Terms of Flow Angles 
It is often useful to obtain expressions for the pressure change, degree of 

reaction, and diffusion factor in terms of the fluid flow angles, because the 
flow angles themselves can be fairly directly related to the blade angles. In 
particular, the relative velocity departing each row will have a relative angle 
not far from the blade geometric angle. In fact, relatively simple empirical 
rules are available to estimate the difference of the relative flow angle and 
blade angle at the exit to the blade row (Chap. 11), so in the following the 
desired relationships are obtained in terms of angles 01 , 132, and 03 . 

For simplicity of presentation the incompressible perfect fluid case is 
considered. Thus, Eq. (9.12) may be utilized to give with the relationships 
apparent from Fig. 9.10, namely 

v 1 = w  I tan01 (9.24) 

v z = ~0r 2 - w 2 tan132 (9.25) 

__ ¢0rl w 1 ) APt =(¢or212 - o~r2 W2tanfl2+ ~ootanOt 
po w2 ~ Wo ] Wo Wo Wo 

(incompressible, perfect fluid) (9.26) 

In the special case where no change in axial velocity or radius occurs, this 
form reduces to 

Ap t = ( wr ]2[1 _w0(tan132 + tan0x) ] 
PoW~) \ Wo ] t wr 

(incompressible, perfect fluid, r 1 = r 2 = r, w 1 = w 2 = w 0) (9.27) 

In Sec. 8.5, it was pointed out that when a compressor is operated at low 
rotational speeds (during starting, for example) the front blades tend to 
operate with a low ratio of axial velocity to blade speed, as compared to the 
design speed ratio. It can be seen from Eq. (9.27) that a further complica- 
tion will arise, in that the stagnation pressure rise near the tip of a finite 
length blade will tend to be larger than that near the hub. This is because 
the flow angles 132 and 01 tend to be relatively insensitive to flow velocity 
and because 132 and 01 , at all radii, would be chosen to be appropriate for 
the design condition. At off-design when Wo/~or decreases, so does the effect 
of the second term in the brackets of Eq. (9.27). As a result of the larger 
work interaction at the tip of the blades, the static pressures can become so 
excessive that a region of reverse flow can possibly exist (Fig. 9.13). The 
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Fig. 9.13 Recireulating region. 

fluid contained within such a region of reverse flow can rapidly have its 
temperature  raised (by the work interaction with the blades) to such an 
extent  that blade melting can occur! This is yet another  reason why the 
techniques ment ioned in Sec. 8.5 for preventing excessively low axial 
velocities must be employed. 

The following relationships are evident from Fig. 9.10: 

V12 = WlzSec201 (9.28) 

V2 = w2 + ( *°r2 _ w2ta n/32 )2 (9.29) 

1/32 = wZsec203 (9.30) 

Equat ions (9.20), (9.24), (9.25), and (9.28-9.30) may then be combined to 
give 

{22[ ( ° R = I -  w 1 +  
W 2 

tan 2t21 w sec203/ 
I  I(t(  rlwl )]I --" wZsec201 -- w32sec203 + 2 ~orz 2 ~or2 tan/32 + - - t a n 0 1  

w2 w2 w2 w2 

(9.31) 

In the special case where no change in axial velocity or radius occurs and 
the stage is repeating, this form reduces to 

° R  = 1 - ( ~ ° r / w ° )  - tan/32 + tan01 
2(  ¢or/wo ) 

(incompressible perfect flow, small radius changes; 

r 1 = r 2=  r 3 = r,  w 1=  w 2=  w 3 = Wo, V 1 = V3) (9.32) 
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Again utilizing Fig. 9.10, 

( ge)roto  r = w2sec/32 ( 9 . 3 3 )  

( Vi )rotor = w1 1 "l- - tan 01 
w0 

(9.34) 

AVroto~ = wrz - wztan/32 - wltan 01 (9.35) 

Equations (9.33-9.35) may then be substituted into Eq. (9.23) to give an 
expression for the rotor diffusion factor. In the special case where no 
change in axial velocity or radius occurs, there is obtained 

aro tor  ~ 1 
secfl2 - ( 1 / 2 0 ) [ ( ~ r / w  o) - (tan/32 + tan 01 )] 

t 

(1 + [ ( o ~ r / W o ) - t a n 0 1 ] 2 }  ~ 

(incompressible perfect flow, small radius changes, 
r 1 = r2 = r, w l = w z = w o )  (9.36) 

Finally, an expression for the stator diffusion factor is obtained by first 
noting 

( Ve)stator = w3sec 03 ( 9 . 3 7 )  

( Vi )stator = w2 1 + - t an /3 2  
W2 

(9.38) 

mOstator = o)r  2 --  w2tan/32 - w3tan03 (9.39) 

These equations may then be substituted into Eq. (9.23) to give an expres- 
sion for the stator diffusion factor. In the special case where no change in 
axial velocity or radius occurs, there is obtained 

Vstator 1 
sec 03 - (1 /2  o ) [ ( o~ r / w  0 ) - (tan/32 + tan 03 )] 

| 

{ l  + [ ( ¢ o r / w o ) - t a n f l 2 ] 2 }  ~ 

(incompressible perfect flow, small radius changes r~ = r 2 = r, w 1 = w 2 = w o) 

(9.40) 

Several tendencies for the degree of reaction and diffusion factor become 
evident in these expressions. For example, note from Eq. (9.32) that in the 
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case of a repeating stage with "symmetric blading" (f12 -- 01), the degree of 
reaction is one-half no matter what the ratio of blade speed to axial velocity. 
For such a stage, this means that the static pressure rise would remain 
equally split between the rotor and stator as the compressor was "throttled." 
When the compressor is throttled (outlet flow decreased, leading to an outlet 
pressure increase), an increased pressure rise must occur across the stage. 
The effect of such an increase in pressure rise is seen in Oroto r and Dstator, 
which both increase as cor/w o increases. This, of course, means that the 
compressor is moving toward its design limit. 

9.3 Free Vortex Flow 

The effects of finite blade height upon the required fluid flow angles is 
now considered. It is apparent from the preceding sections that the variation 
in fluid properties across the blade rows is a function of the blade velocity. 
The blade velocity will change substantially with the radius, so the corre- 
sponding effects upon the flowfield should be determined. In most compres- 
sor designs, it is desirable to obtain the same stagnation pressure rise across 
a stage at all radii. (Note that if this is consistently violated in a multistage 
machine, very large static pressure mismatches can occur with consequent 
recirculation regimes.) 

Consider the case where the change in stagnation enthalpy across the 
rotor is a constant with radius, so that from Eq. (9.5) 

hi2 - h t t  = co [(rv)2 - (rv)l  ] = const (9.41) 

Thus, a "constant work s tage"-- that  is, one for which the work interaction 
per mass is independent of radius--requires that the change in angular 
momentum be the same for all stream tubes. There are many types of flows 
that could satisfy this requirement, but the simplest such flow would seem to 
be that for which (for perfect, incompressible flow) the axial velocity 
remains a constant with radius (a parallel walled annulus is assumed.) It is 
apparent from the requirement of mass continuity that if no change in axial 
velocity occurs, no radial flows are induced. The radial momentum equation 
then reduces to the statement that the radial pressure gradient is balanced 
by the centrifugal forces. That is, 

Op v 2 
(9.42) Or P r 

The requirement that the stagnation pressure be constant with radius 
gives 

p +(p /2 ) (w  z + v 2 ) =p~ = const 

So that 

?p _ 3v 
Or OVer (9.43) 
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Equations (9.42) and (9.43) may be combined to given an equation for v 
in terms of r. Thus, noting that no changes in properties occur in the axial 
direction (except within blade rows), it follows that 

dv /v  + dr / r  = 0 or rv = const (9.44) 

It can hence be seen that a constant-work machine with a constant axial 
velocity throughout not only has the jump in angular momentum across the 
blade rows Arv equal to a constant, but also must have rv itself a constant 
in all regimes. Note that the "constant" to which rv is equal changes with 
passage through each blade row. A machine utilizing blade rows that induce 
this type of flowfield is termed a "free vortex" machine and is said to be in 
radial equilibrium throughout. An example free vortex calculation is dis- 
cussed in the next section and flows of a more general form are considered 
in Sec. 9.4 and Chap. 10. 

Example--Froo Vortex CalculaUon 
Several design variables will be prescribed and expressions for hub and 

tip values of the design limit parameters Oroto r and Ostator , a s  well as for °R 
are to be obtained. In generating these expressions, all of the velocity and 
relative velocity components necessary to determine the flow vector dia- 
grams will be obtained so that the velocity triangles can be constructed if 
desired. 

Consider a repeating stage and assume the following variables to be 
prescribed: 

oarh/Wo, A p,/PoW2 , r,/rh, °Rr,,, or. ' (9.45) 

Here OR r and o r refer to the degree of reaction and solidity at the 
"mass avergge radiu;" r m. The mass average radius is that radius which 
has half the mass flowing within it and the hub and half flowing within it 
and the tip. In this case of uniform axial velocity, 

rm= ~/(rt 2 + r2) /2  (9.46) 

Degree of reaction. 
Eq. (9.44) 

where 

Equation (9.22) is valid for this case, so that with 

°R = 1 - cons t / r  2 

2 [ ( r , / r h ) 2 + l ] (  
C ° n s t = r T " ( 1 - ° R ~ ) = r 2  2 1 -  °R~") 
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thus 

° R = I  
1 (rt/rh) 2 + 1 ] 

( r / rh)  2 2 (1 - -  °Rrm ) (9.47) 

Denoting the value of °R at the hub by °Rh, n o t e  also 

0 -4-  el) h 
°R h = 1 

2o~r h 

hence 

U2"-2"h + Ol~ = 2 t~rh (1 - °Rh) (9.48) 
Wo Wo Wo 

Tangen t i a l  veloci t ies. An expression for the difference in angular 
velocities follows from Eq. (9.12) to give 

v2~ vl~ 1 Apt 
Wo Wo o~rh/Wo poWo 2 

(9.49) 

and from Eqs. (9.48) and (9.49) there follows 

v2~ 1 [  ~hoh 1 A p t ]  (9.50) 
w o - 2  2 ( 1 - - ° R h ) + 6 0 r h / ~  PO w2 

w o - 2  2 (1- -°Rh)  ~orh/w ° Po w2 

Equation (9.44) then gives 

U2 - -O2h rh and Vx vl~ rh (9.52) 
w o W o r  w o W o r  

Diffusion factors. In order to obtain values for the diffusion factors, 
some assumption must be made with regard to the behavior of the solidity. 
It is clear that the spacing s will be proportional to the radius. The chord 
length can be tapered in a variety of ways, but for illustrative purposes it is 
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sufficient to consider the chord length constant. In such a case 

347 

(v2h Vl~)r~ (~2h v,h) 
Av w o w o r w o w o 

- (constant chord length) (9.53) 
2oV/ 2°rmr-mr V~ 2°r r m V i 

% "rhwo 

and with Eq. (9.23) 

Ve ( O2h//Wo ) -- ( Ulh/WO ) 
2Or,,( r,n/rh )( Vi/wo ) 

(constant chord length) (9.54) 

The relative velocities for use in this expression follow by reference to Fig. 
9.10 and may be written 

[( ~t~ ]1 [ wo~] , ~ r h r  v,h + 1  
V/rotor = ( o 2 r - v l )  2+  ~ = w  0 Wo rh W0 

V2hrh 2 [ w~] = - + 1  Ve rotor = ( w r -  u2) 2 + 2 W0 W 0 r h W o r 

~'a'°~ ~W0~+~=w0[a+I~;] ~ ,W0 

~st~to~= ~ w , + o ~ : w o l a + l ~ t 7  ,wo (9.55) 

Discussion. Equations (9.46-9.55) give the desired design limit param- 
eters in terms of the design input variables listed in Eq. (9.45). As an 
example consider the values 

APt - 0 . 9 ,  r t  = v/if ,  ° R  = 0 . 5 ,  a n d  or. ' = 
PoWg rh r~ 

Consider two values of the blade speed, namely wrh/W o = 0.5 and 0.7. 
Direct calculation leads to the results shown in Table 9.1. 
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Table 9.1 Example Results--Free Vortex Design 

Blade 
D rotor Drotor D stator D stator 

speed hub tip hub tip 

wrh/w o = 0.5 - 0.179 0.558 0.741 0.552 
w h , / w  o = 0.7 - 0.350 0.381 0.590 0.431 

°R, = 5/7, °R h = - 1  in both cases 

Several important trends are evident in this example calculation. Thus, 
for example, it is apparent that the large value for the diffusion factor found 
at the hub of the stator for the low blade speed case indicates that such a 
blade row is too heavily loaded. The designer of such a row would have 
several options open to him. Perhaps the most obvious change should be to 
increase the degree of reaction so that the rotor tip will become as highly 
loaded as the stator hub. A rather peculiar result appears to occur when the 
degree of reaction ° R r  m is raised to 0.7. As expected the stator hub diffusion 
factor is reduced (to 0.670), but the rotor tip diffusion factor is also reduced 
(to 0.540!). The explanation for this unexpected behavior lies in the fact 
that the introduction of a degree of reaction °Rr," (for this geometry) in 
excess of 0.55 leads to values of u~ that are negative. As a result, large 
relative velocities with the rotor occur, so that in spite of the increased static 
pressure rise, the diffusion factor decreases. This result is not without 
physical credence, because the larger relative dynamic pressure would help 
to transfer momentum to the fluid in the boundary layers and hence reduce 
the tendency to separate. The use of such negative swirl in actual aircraft 
engines would, however, introduce possible shock losses because of the large 
relative Mach numbers. It might be noted parenthetically, however, that the 
use of such negative swirl could hold promise in helium compressors (for 
use in gas-cooled nuclear reactors) where the Mach numbers are extremely 
low. 

It is obvious that if the designer could utilize materials that allowed a 
higher blade speed, he could decrease the diffusion factor, as indicated by 
the result for the higher blade speed case. If this option was not available to 
him he might choose to reduce the tip-to-hub ratio, thereby preventing the 
large negative degree of reaction near the hub. This option carries with it the 
undesirable side effect of reducing the mass flow per cross-sectional area 
capability of the compressor. Another option available would be to decrease 
the stagnation pressure rise per stage, but this of course would lead to the 
requirement of more stages for a given compressor pressure rise. 

It is apparent that the free vortex design carries with it some unpleasant 
design restrictions. Thus, the related rapid change with the radius of the 
degree of reaction causes the blades to be loaded so that the stator hub 
requires very high diffusion, as does the rotor tip. Note that the very large 
turning required in the rotor at the hub leads to such an acceleration that 
the static pressure actually decreases across the rotor at the hub for this 



ELEMENTARY THEORY OF BLADE AERODYNAMICS 349 

example (note ° R  h = - 1 ) .  This means that the stator must undergo an 
extreme pressure rise in order to return the fluid velocities to those entering 
the stage (as required for a repeating stage). A design of this sort that places 
the design limit so strongly at the limits of the blades is quite undesirable 
because, in effect, the remaining portions of the blades are relatively lightly 
loaded even when the stator hub and rotor tip are loaded to their limit. 

In the following sections alternative flow swirl distributions are consid- 
ered that reduce the disparity in loading along the blade length, but it 
should be noted that the tendency for the rotor tip and stator hub to be 
diffusion limited remains to some extent in all designs. As a result, the 
allowable stage loading is a function of the tip-to-hub ratio, with the smaller 
tip-to-hub ratio allowing the attainment of larger stage pressure ratios. A 
designer, then, can be faced with the choice of providing a large cross-sec- 
tional area compressor of fewer stages vs a small cross-sectional compressor 
of many stages. The appropriate choice often depends on the selected 
airplane mission. 

9.4 Radial Equilibrium Flows 
In the preceding section, it was seen that the very simple free vortex 

theory led to large variations with radius of the degree of reaction. As a 
result, the free vortex distribution led to blades with excessive diffusion 
factors at the rotor tip and at the stator hub. Other swirl distributions must 
hence be investigated and, as a result, the effects of radial flows must be 
considered. 

A very simple limiting case of flows in which radial flows exist is obtained 
by considering conditions very far from the blade rows. Again assume 
perfect incompressible flow and consider conditions in a parallel walled 
annulus, as shown in Fig. 9.14. 

The virtue of considering conditions far from the blade rows is that any 
radial flows will have ceased, because the flow will have become parallel to 
the containing annulus. In this way ordinary differential equations for the 
flow properties are obtained. At this stage it is not possible to estimate 

- - - - - - _ _ _  

L BLADE ROW 
TYPICAL STREAM SURFACE 

Fig. 9.14 Parallel walled annulus. 
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how long it takes the flow to approach this condition of "radial equilibrium," 
but good estimates do follow from the results of the through flow theory, 
Chap. 10. 

The Stream Function 
The stream function ~ is introduced here and, for future convenience, the 

possibility of axial variations in fluid properties is included. Still, consider 
incompressible flow only, so that the continuity equation may be written 

V ' u  = 0 (9.56) 

In cylindrical coordinates this becomes 

1 cgru + Ow = 
r Or Oz 0 (9.57) 

This latter equation is identically satisfied if the stream function q~ is 
introduced, defined by 

1 a¢ 1 a¢ 
w - u = - - -  (9.58) 

r Or r Oz 

An equation for ~ follows by considering the normal derivative of the 
momentum equation; but before developing such an equation, first consider 
a physical interpretation of the quantity ~. 

-Figure 9.15 shows an annulus bounded by two "meridional surfaces." A 
meridional surface is defined as a surface through which no fluid passes. 
Calculate the mass flow rate convected between the two meridional surfaces 
in either of the alternative ways, 

~n = pL~w(2~rrdr)= - p f ¢ 2 2 ~ ' d ¢  = - 2 ~ ' p ( ~ 2 -  ~, )  
qq 

SURFACE 2 - - ~  

. . . . . . .  I ~ "  SURFACE I 

Fig. 9.15 Flow in an annulus. 
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o r  

gn = - p  f z i2u (2rrrdz  ) = - -2q ' / ' p (4 '2  --  4 '1 )  (9.59) 

Thus, the mass flow rate between the surfaces is proportional to the 
difference in stream functions of the surfaces. It follows then that if 
4'2 = 4'1, there is no (net) flow through the surface, so that a constant 4' 
denotes a "stream surface." If the equations of the stream surfaces are 
known, the velocity components follow from Eq. (9.58). 

The Equations for Radial Equilibrium Flows 
It is apparent from the Euler equation (9.5) that the stagnation enthalpy 

does not vary along streamlines that are external to the blade rows. 
Similarly, it is apparent from Eq. (9.3) that the angular momentum also 
does not vary along streamlines that are external to blade rows. Because of 
this, it is convenient (particularly in throughflow theory, Chap. 10) to 
consider the stagnation enthalpy and angular momentum to be prescribed 
functions of the stream function 4'. The prescribed function will, of course, 
be determined by the history of blade loading that the stream tube has 
encountered. 

Note from Eq. (9.58) that for the case of no axial variations, 

1 d4' d( ) 1 d( ) (9.60) 
W . . . .  o r  - -  - -  

r d r  d4' wr d r  

This transformation is of particular utility when variations in the stagna- 
tion enthalpy and angular momentum are considered because, as previously 
described, these quantities will be given as functions of the stream function. 

For this case of perfect flow, there is no change in entropy throughout, so 
the Gibbs equation (2.12) gives 

dh = (1 /0)  dp  (9.61) 

The differential change in stagnation enthalpy may be written 

dh  t = d h  + w d w  + v d v  (9.62) 

S O  

( l / p )  dp  = dh t - w d w  - v d v  (9.63) 

Because the flow is in radial equilibrium, the radial momentum equation 
remains as in Eq. (9.42), so that 

1 dp _ /32 _ dht dw d/3 
p dr  r dr  w-~-r - V-~r 
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o r  

1 d w _  1 dh, v (  __-1 dry)  
r dr rw dr r rw dr 

(9.64) 

Utilizing Eq. (9.60), then obtain 

1 d ( l d ~ p ) _ d h  t v d r v  (9.65) 
r dr ~ d~b r d~ 

This is a second-order differential equation for the stream function ~ in 
terms of the prescribed stagnation enthalpy and angular momentum. It is, in 
general, nonlinear. There are several linear solutions of the equations 
corresponding to blade loadings of design interest, however, and such 
special cases will be considered in the next section. It is most convenient to 
consider a nondimensional form of Eq. (9.65), so introduce (see Fig. 9.16) 

w = w  v = &  ~ =  ~--~-- 
, , wor~' Wo Wo 

h t r R rt (9.66) 
H =  %2 v rh rh 

Routine substitution of the variables of Eq. (9.66) into Eq. (9.65) leads to 

1 d [ 1 dq)  dH V dyV (9.67) 
y d y \ 7 ~ - ;  =d~" y d'I' 

The related boundary conditions are obtained by first noting that the 
stream function may be prescribed within a constant. Thus, for future 

W--I 

W = W 0 

y=l 

r=  r h 

y--R 

r =  r t 
~--~- w,, 

Vt v 

y,r 

Fig. 9.16 Nomenclature for radial equilibrium flow. 
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convenience the stream function is assigned on the hub 't' h, 

1 't'h = 2 on y = 1 ( r = r h ) (9.68) 
Note also 

1 dq, 
W . . . .  (9.69) 

y d y  

so obtain (noting that W = 1 far upstream) 

1 R 2 
xttt = -- J l f R y W d y  2 2 on y = R (r = 6)  (9.70) 

Equations (9.67-9.70) prescribe the mathematical problem. 

Solution of the Radial Equilibrium Equations 
Equation (9.67) may be integrated for any arbitrary prescription of H and 

y V  (as a function of q'), but particularly simple forms arise with forms for 
which H and ( y V )  2 are quadratic in ~t'. Thus, for such flows, Eq. (9.67) 
reduces to a linear equation iv_ '4' and a solution can be obtained in terms of 
known functions. Thus, consider H and ( y V )  2 to be given by 

H = A ~ + H  o (9.71) 

(yV) 2 = + #): - (9.72) 

In these expressions, A, H0, a, fl, and 8 are constants that may be selected 
at the designer's discretion. Note 

d H  
- A  

d~I • 

, ] 
d,t, 2y dxI, y 

d d [ 1  d ~)] 
d y  ( 1  ~-~-~ ) = d--fy y ~y  (Y-'y- 

d2( ' t ' /Y) t- 1 d ( ' I ' / y )  1 ,t, 
d y  2 y d y  y2 y 
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With these expressions, Eq. (9.67) becomes 

d2(xIt/Y) + l d y  2 y d(ql/Y) +( - ~-71 )(_~) =yA + l(ctfl + ~6) (9.73) 

The inhomogeneous portion of this equation may be integrated im- 
mediately to give 

( - ~ )  inhom. A 
= a--~-y + 1 (~- +-~a2 ) (9.74) 

The homogeneous portion of the solution can be recognized as consisting 
of a linear combination of Bessel functions of the first and second kinds and 
of order one. Thus, 

q, 
( 7 )hom.= CtJl( °tY ) + C2Yl( °tY ) (9.75) 

and hence 

ff,=C, yjl(oty)+C2YYl(ay)+ A 2 + ~ +  ~ (9.76) a2 y 2a--~ 

The constants C x and C 2 are now determined by applying the boundary 
conditions [Eqs. (9.68) and (9.70)]. After straightforward but tedious mani- 
pulation, there results 

A + fl + 3 1)yUl(ay) 
• t ' = -  ~-~ ~- 2a--~+~- Ul(a ) 

ARE fl 6 RE]yWl(ay) A 2 fl+ 8 
_ _ + 2ot2 ] + a~Y + - -  2 a  2 a 2 +a - -  +--2 RUI(a ) a (9.77) 

where: 

Ui(ay) -J~(ay)Yl(aR) -Jl(aR)Yi(ay) (9.78) 

W , ( a y ) -  J t ( a ) ~ ( a y ) -  YtCa) J i (ay)  (9.79) 

where i is an integer. 
It is convenient to note that 

UI(otR ) = 0 = Wl(a ) and U~(ct) = WI(aR ) (9.80) 

With these relationships it can be easily checked that Eq. (9.77) satisfies 
the boundary conditions, 't' = - ½ on y = 1 and 't' = - R2/2 on y = R. 
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When the parameter a is equal to zero Eq. (9.77) becomes indeterminate. 
For this case, rather than taking the mathematical limit of the expression, it 
is simpler to return to Eq. (9.67), which for the case a = 0 becomes 

d (ld~I ') 8 (9.81) 
d y y -~y = Y A + 2~-fi 

Successive integration gives 

y2 +YA g = + " + 8 (2y2e,,y_y ) (9.82) 

The constants C 1 and C 2 are again determined through application of the 
boundary conditions [Eqs. (9,68) and (9.70)]. The solution may be written in 
the form 

y2 A 8 
~t' 2 8 ( y2 - l ) (  R2 - y2 ) 4 4( R2 - l ) 

×[(R 2- 1 ) y 2 E n y - ( y  2 -  1)R2EnR] (a=0) (9.83) 

Interpretation of the Parameters 
Equations (9.77) and (9.83) provide the solution to the equilibrium flow 

for a rather general swirl and enthalpy distribution leading to linear 
solutions of the governing equation. It is of interest to interpret each of the 
parameters a, /3, 6, and A individually, however. To do so, consider the 
flows prescribed for the cases where all parameters but one are zero. 

Free  vor tex  f low (/3). When A, a, and 6 are all zero, Eq. (9.72) shows 
that the angular momentum is constant with y, (y  V =/3), which is a free 
vortex distribution. Equation (9.83) then reduces to 

hence  

= - y 2 / 2  

W= 1 d'~'- 1 (free vortex) (9.84) 
y d y  

Thus, for a free vortex distribution, the axial velocity remains unper- 
turbed, just as previously established in Sec. 9.3. 

Solid-body-like rotation (<x). 
reduces to 

y V =  - a q "  

When A, /3, and 6 are all zero, Eq. (9.72) 

(solid body like) (9.85) 
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It is evident from Eq. (9.67) that a perturbation in axial velocity will be 
present for this case. In the case where very little swirl is introduced (a 
small), the variation of axial velocity with radius will itself be small. [This 
may be verified by calculation from Eq. (9.67).] In such a case 

f r y  1 y2 
~ =  -- W d Y - 2 =  2 (small swirl) (9.86) 

then 

V = ay /2  (small swirl) (9.87) 

Thus, for small swirl this swirl distribution approximates that correspond- 
ing to a "solid-body" swirl. Such a distribution is sometimes termed a 
forced vortex. 

Approximately constant swirl (6). When A, a, and /3 are zero, Eq. 
(9.72) reduces to 

1 

y V =  (-8"11) ~ (approximately constant swirl) (9.88) 

It can again be argued that for small swirl the perturbation in axial 
velocity may be expected to be small [see Eq. (9.83)], so that ~t' will be given 
approximately by '~' = -y2 /2 .  Hence 

V--- 6V/~ (9.89) 

Thus for small swirl, this swirl distribution approximates a constant-swirl 
velocity. 

Variable stagnation enthalpy (A). When a, /3, and ~ are zero, there is 
no swirl in the flow and because the flow is in radial equilibrium, no static 
pressure variation with y will be present. From the Gibbs equation, 
dh = Tds + 1/p dp = 0, and hence 

d H =  d (h /w  2) + W d W =  WdW (9.90) 

Thus, with d H  = A d'I' = - A y W d y ,  it follows that 

dW 
dy Ay (9.91) 

This result is consistent with Eq. (9.83), which simply emphasizes that for 
this case any change in stagnation enthalpy must be supplied by a variation 
in the axial velocity. 
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The stagnation enthalpy will be changed only across the rotor rows, so 
from the Euler momentum equation (9.5), together with Eq. (9.66) and the 
definition ~2 = ~orh/wo, 

H2-  H 1 = ~ [ ( y V ) 2 - ( y V ) I ]  (9.92) 

Thus, in terms of the parameters introduced in Eqs. (9.71) and (9.72), 

H 2 - H 1  =~~{[-0/2~..¢--~-~2)2-(~2~I*] 12 

-- [ ( -- 0Clair "{- el)2 -- ~1~I'¢ ] } } (9.93) 

It thus follows that if all terms in the expression for angular momentum 
are to be included when flow across a rotor is considered, the desired linear 
form for the stagnation enthalpy cannot be utilized. If the "approximately 
constant swirl" term is excluded, however, it follows that 

H 2 -  H1 = Ho 2 - Ho, + (A2  -A1)'tlt = ~[ -~x2~ +/~2 - ( -  °tl* +/~1)] 

( 8 = 0 )  (9.94) 

and hence 

902 = 901 "~- (/~2 - -  /~1) ~ (9.95) 

and 

A2 =al - (a2-  al)a (9.96) 

In a compressor, little, if any, variation of stagnation enthalpy with radius 
is desired, so it is usually appropriate to exclude variation of the parameter 

across a rotor row. Note, however, that the solid-body-like component of 
swirl may be introduced by the stator (or inlet guide vane row), which hence 
gives another parameter to utilize for design purposes. In the next section, a 
detailed example solution is considered. 

Example--Radial Equilibrium Calculation 
Consider an example calculation for a rotor-stator pair. The pair will be a 

repeating stage, with constant-work interaction with radius (A = 0) and 
with no "approximately constant swirl" term (6 = 0). For this special case, 
the solution of Eq. (9.77) reduces to 

aUl(a  ) + a (9.97) 
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The derivatives of Bessel functions may be obtained from any standard 
mathematics book (for example, Ref. 5). Note here the general relationship 

d 
dx  ( x[ C1JI ( ~X ) -}- C2YI ( OIX )] } = IIx[ C1Jo( ~X ) -~- C2Yo( °~X )] 

Hence, 

d [yUl(ay)] =ayUo(ay ) and dy 

Thus 

(9.98) 

d [ yWl( ay )] = ayWo( ay ) dy 

(9.99) 

1 dq' ( f l + ; )  U°(aY) -~-) W°(aY) (9.100) 
+  ,(oI 

Now consider AH = H 2 -H1,  f~, fix, R, and .Or, to be prescribed and 
arrange the equations in order to calculate the various velocity components, 
as well as the diffusion factor at stator hub and rotor tip and the degree of 
reaction at hub and tip. 

Summary--Radial Equilibrium Flows 

Inputs: A H, ~, a, /31, R, Orb, y 

, . ° R  Outputs: Vl(y ), Vz(y ) Wl(y ), Wz(y ), Ostator, Oroto r, h ,  °Rt 
hub tip 

Equations: 

/32 = /31 -'b A H / / ~  (9.101) 

4 I = - ( / 3 + ; )  yUI(ay) ( fl aR] yWI(ay) /3 
aUl(a) + -~--] -a--~l-(-- ~ + ~ (9.102) 

a Uo(ay) q) W°(aY) (9.103) 
/ 

V= ( l / y ) ( - a g g  + fl) (9.104) 
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[Note that Eqs. (9.102-9.104) may be used for any value of y and stations 1 
and 2 (with fl = fll or f12)]. It is convenient also to employ the relationships 
of Eq. (9.80) as well as the relationships 5 

2 2 
, ( 9 . 1 0 5 )  Vo ( ,, R ) ,, R Wo ( ) - ,, 

Vi stator = ( W:z + V22) 12 (9.106) 
hub 

Vestator = (Wh21 + < ) ½  (9.107) 
hub 

_ V .  2 ½ Vi rotor = [Wt 2 q - ( a R  tl ) ] (9.108) 
tip 

= _ V ,  2 12 
Ve rotor [ W'2t2 + ( ~ R  t2 ) ] (9.109) 

tip 

V e ) hH/a (9.110) 
D =  1 - ~ 7  + 2or V, " 

[Note that Eq. (9.110) may be used for both stator hub and rotor tip. The 
appropriate values for V e and V, follow from Eqs. (9.106-9.109). Note, also, 
it has again been assumed that the solidity is inversely proportional to the 
radius.] 

1 ( 2  2 )  (9.111) °R h = 1 + ~ Ve~t~tor-- Vistator 
hub hub 

1 
°R,-- 1+  + w > -  (9.112) 

As an example calculation, the case A H =  0.9, ~2 = 0.5, a = 0.15, fla 
= - 0.4, R = v~-, or~ = 2 was considered. This case is comparable to the first 
case considered in Sec. 9.3. Thus, the geometry and "stage loading" con- 
sidered are the same and the tip swirl velocity at the inlet to the rotor is very 
nearly the same, 0.0472 here compared to 0.0378. This configuration then 
does not acquire an advantage because of increased relative velocity at the 
rotor tip (where Mach losses could be important). Straightforward calcula- 
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Radial equilibrium velocity profiles. 

tion gives: 

Dstator = 0.689 (0.741) °R~ = - 0 . 3 5 2 ( - 1 )  
hub 

Orotor = 0 . 6 0 6  (0.558) 
tip 

°R t = 0.803 (0.714) 

The comparative values for the free vortex case are shown in parentheses. 
It can be seen that the introduction of a rather small amount of solid-body- 
like swirl has helped to reduce the stator hub diffusion factor substantially 
(even though the value is still rather large). Figure 9.17 shows the related 
equilibrium velocity profiles. 

These results give a relatively quick estimate of the flow profiles to be 
expected between the blade rows and may be utilized for simple approxi- 
mate design calculations. The behavior of the throughflow flowfield (which 
includes the axial variation of the fluid properties) will be investigated in 
Chap. 10. 

9.5 The Effects of Compressibility 
In modern axial flow turbomachinery, the pressure ratios found across 

typical stages, particularly across turbine stages, are so large that the effects 
of variation in fluid density cannot be ignored. In order to consider such 
compressibility effects, again consider the pseudo-two-dimensional flow of a 
perfect gas across a blade row. The Euler equation (9.5) relates the change 
in the stagnation enthalpy across a rotor row to the blade angular velocity 
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and the change in the fluid angular momentum. This change in stagnation 
enthalpy is, of course, the total change in stagnation enthalpy for the stage, 
so from Eqs. (6.58), (6.80), and (9.5), with the stage efficiency written ~c, for 
the compressor and ~/t, for the turbine, 

, ,  

-~t~ = l +--~q [(rv)2--(rv)l ] (compressor) (9.113) 

rl/('r,- 1) 
Pq 11tjhq 

(turbine) (9.114) 

In these expressions, in each case the conditions at 1 are those at the entry 
to the rotor and conditions at 2 are those at the exit from the rotor. 
Equation (9.113) is different from the previously obtained Eq. (9.7) only in 
that the effect of the stage efficiency has been included. Again introducing 
the upstream reference quantities denoted by a subscript 0, in a similar 
manner to Sec. 9.2, leads to 

Pt--3 = {1 
Pq 

~./(7c- 1) 
( 7 c -  1)Mo2"O~ ~o } 

+ 1 + Y-~M~ w~ [(rv)2- (rv),] (compressor) 

(9.115) 

p t 2 { ( J t _ _ l ) M o 2 o :  } ~,/(y,-1) 
P-~/I: 1 ,/tj(1 +~_.~M2 ) --~02[(rv)l-(rv)2] (turbine) 

(9.116) 

Simple approximate forms follow from these equations for the case of 
small turning or small Mach number by simply expanding the bracketed 
terms to only the first term in their binomial expansions. 

Turbine Aerodynamics 
The aerodynamic and engineering limitations of turbines are of a substan- 

tially different nature than those of compressors. First, the extremely 
favorable pressure gradients allow very high blade loadings before the local 
adverse pressure gradients on the blades approach values leading to 
boundary-layer separation. The expansion ratio can, in fact, be limited by 
choking of the downstream flow. The materials problem will clearly be 
aggravated as the blades are submerged in a high-temperature corrosive 
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environment. Modern blades are cooled, which in itself adds greatly to the 
complexity, from both the gasdynamic and stress points of view. 

In turbines it is possible to be confronted with a design tradeoff between 
mass flow capability and power output per stage. The mass flow per 
cross-sectional area increases as the approach axial Mach number nears 
unity, and the work interaction per mass increases as the nozzle outlet swirl 
velocity increases. It will be shown shortly that the maximum work interac- 
tion for a single stage occurs when the entire static pressure drop occurs 
across the stator, the function of the rotor then being to remove the kinetic 
energy identified with the swirl component of velocity with no further static 
pressure drop. There tend to be two restrictions on obtaining high swirl 
velocities. Thus, if the flow Mach number becomes too large severe shock 
losses can occur, and it also happens that a maximum possible swirl occurs 
because the flow will choke. This latter restriction is a function of the 
approach Mach number and conflicts with the desired high mass flow 
capability. 

To analyze the effect of this compressible limitation on the maximum 
attainable swirl, consider the flow of a perfect fluid through a turbine nozzle 
row (Fig. 9.18). The approaching flow is assumed to be uniform and swirl 
free and the cross-sectional areas at inlet and exit, respectively, are denoted 
A 0 and A 1. Then have 

Continuity: powoAo = o1V1Alcos a (9.117) 

,sent,opic: " Po Too (9.118) 

~ w = =  Vj cosa 
v, = v, 

Fig. 9.18 Turbine nozzle row. 
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These equations may be combined to give 

M 1 V  1 ITo =[ro]('+'~/2('-'Ao 1 

Mo Wo ~ ~r~] A1 cos~ 

hence 

M I _  1 + ~ - ~ M (  

Mo 1 + ~ - ~ M g  

(3,+ 1 ) / 2 ( 7 - 1 )  

A 0 1 
A 1 cos ot 

363 

(9.120) 

It is desired to find the maximum value of the swirl velocity for a given 
approach Mach number M o. Thus noting 

( Vlsina]2=-~oM?(1-c°s2a)a---~ ] 

1 +~-M[ 
( ao 

find 

2 / ( 7  - 1) 

M0 (Aot 2 
A1 } 

(9.121) 

The derivative of this equation with respect to M 2 may now be taken and 
equated to zero. After some manipulation, it follows that 

~-1 ] I1 ~ _ ~  =1  (9.122) 

Equations (9.120) and (9.122) then give immediately that the maximum 
possible swirl occurs when 

cos a = 1/M, (max swirl) (9.123) 

It is clear then that the maximum swirl occurs when the downstream axial 
Mach number is unity, or in other words, when the flow chokes. The 
maximum value of the swirl velocity follows from Eqs. (9.121) and (9.122) 
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to give 

{Vlsino; 
a o max=Y - 1  + M g - - -  

r + l ( 2  M°~[A°) 2(r-1)/(Y+l)] 

(9.124) 

Figure 9.19 shows the dimensionless kinetic energy of the swirl compo- 
nent plotted vs incoming Mach number (A 0 = A1, "/= 1.4). 

The related stage pressure ratio identified with a nozzle row producing 
this maximum swirl may be estimated by noting that the work interaction 
per mass for the stage will be equal to the kinetic energy identified with the 
swirl. (Note that the rotor simply removes this kinetic energy with no 
further pressure drop.) Thus, with 

a2 = 7RTo 7R To CpTt ° " / -  1 
Cp Tto 1 + _ ~ M o  2h'° (9.125) 

Eq. (9.124) gives 

1 2 ( hto- ht2)max='~(Vlsina)max 

= hto [1 - 
, z 

2"L C=o~ 
25 

2.0 

1.5 ~ \ 
i.o \ 

.5 
0 

0 

Fig. 9.19 

[ Ao ~2(y- 1)/(7+ 1) 

2 + ( 7 -  1)Mo 2 

\ 
\ 

0.2 0.4 0.6 0.8 1.0 
% 

Maximum swirl kinetic energy. 
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hence 

.4 0 ) 2('y- 1)/(¥+ 1) 
(3'+1) MO l 

k hto m a x  : (9.126) 2 + ( 3 ' -  a )M 2 

If the efficiency of the turbine stage ~tj can be estimated, the related stage 
pressure ratio can be approximated by 

ht2 7/('r- 1) 

\ ( Pt2 )max = Pro 1 -- B~, [1 -- ( h'77to ) max] } (9.127) 

Example results from the case for Ao/A 1 = 1, ~/tj = 1, and 3' = 1.3 are 
shown in Fig. 9.20. 

It is apparent that the power extraction from the fluid will soon drive the 
axial Mach number to unity unless an axial area change is incorporated; 
and, of course, turbines usually have increases in cross-sectional areas in the 
axial direction. A measure of the effectiveness of incorporating an axial area 
variation can be obtained by noting the increase in maximum swirl velocity 
attainable and the decrease in enthalpy ratio identified with an axial area 
change. Thus, choosing M 0 = 0.5 and 3' = 1.3, the results of Fig. 9.21 are 
obtained from Eqs. (9.124) and (9.126). 

The Impulse Turbine 
An impulse turbine stage is defined as a turbine stage in which the entire 

static pressure drop occurs across the stator. Equivalently, of course, the 
impulse turbine stage is a stage with a degree of reaction of zero. Because no 

PrO 

5 

3 

I 
0 

/ /  "9ht2 

-,-~ / - - , -  .shtO 
\ /  

/ \ .  
6 

.I .2 .5 .4 .5 
M 0 

Fig. 9.20 Stage pressure ratio vs axial Mach number. 
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12 

v I - .  

Fig. 9.22 Velocity diagram for an impulse turbine stage. 

pressure drop occurs in the rotor, the relative velocity in the rotor will not  
change if the fluid is assumed perfect. A typical velocity diagram would 
hence be as indicated in Fig. 9.22. 

The Euler momen tum equation gives 

Cp( Tq - Tt2) = w r (  vl - v2) 

It is apparent  f rom Fig. 9.22 that, for this case where the axial velocity 
has not changed across the rotor, /~1 = -/~z and hence 

V 1 - -  wr = ~or - v 2 
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and 

Cp(Tq - Tt2 ) = 2oar(v I - oar) (9.128) 

It is clear that the maximum work interaction per mass for the given 
pressure drop will occur when the rotor leaves no residual swirl (v 2 = 0). At 
this condition, v 1 = 2oar and from Eq. (9.128) 

Tt 2 2(oar) 2 
1 - (max work impulse turbine) (9.129) r,l gr, ,  

The Relative Stagnation Temperature 
The relative stagnation temperature, or that temperature the gas would 

achieve if brought to rest adiabatically on the rotor, is of great importance 
because it determines what the heat-transfer loading to the blade will be. 
Defining Tt, as the relative stagnation temperature as seen by the rotor, 
write 

CpTt =C?Tl+½[w2+(v~-oar) 2] 

=C?T l+½(w 2 +v21)+½[(v~-oar)Z-v 2] 

hence 

Tt, 1 

T l  1 - -  1 2CpTq [ °2 - (v l -  oar)2] (9.130) 

In the maximum work impulse turbine case, v~ = 2oar, so that 

Tt r 3(oar) 2 
- 1 (max work impulse turbine) (9.131) r,, 2c, , 

It can be seen that because the blades are retreating from the flow, 
the relative stagnation temperature is reduced. This effect can be quite 
significant and allows the rotors to operate at higher stress levels than 
might at first be expected. For example, with Tt, = 1600 K, oar = 400 m/s ,  
C? = 1250 J / k g .  K, it follows that T t / T  ~ = 0.88. Hence, the effective stag- 
nation temperature is reduced 192 K b~ ec~tuse of the blade movement. 

The Reaction Turbine 
The reaction turbine stage is defined simply as a turbine stage in which 

the degree of reaction is other than zero. As an illustrative example, consider 
a stage for which the velocity triangles are those that would give °R = 0.5 if 
the flow was incompressible and perfect. It is to be noted that, when losses 
are present and the Mach numbers are finite, the static pressure behavior 
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I. ' : 
Fig. 9.23 Velocity diagram for a reaction turbine stage. 

will not strictly correspond to °R = 0.5. As a further simplification, consider 
no change in axial velocity and assume a symmetric diagram as illustrated in 
Fig. 9.23. 

Because of the assumed symmetry of the velocity diagram, it follows that 
v 2 = o : r -  vl, so that the Euler momentum equation becomes 

Cp(Tq- Tt2)=oar(vl-v2)=(oar)2(2 v~7-1) 

Again restricting attention to the case where the maximum work interac- 
tion occurs, which as before corresponds to no residual swirl remaining in 
the flow, note that v 1 = ~or and hence 

r .  (,or) 2 
1 - - (max work "50%" reaction turbine) (9.132) C,T,I 

Equation (9.130) is valid generally and hence here reduces to 

Tt' 1 (~°r)2 
T,, 2CpT,, (max work "50%" reaction turbine) (9.133) 

Comparison of the Impulse Turbine and "'50%" Reaction Turbine 
It is of interest to compare the behavior of the impulse turbine and 50% 

reaction turbine. The behavior of important parameters is compared in 
Table 9.2. 
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Table  9 .2  Comparat ive  Turbine  Behavior  

369 

50% 50% 
Parameter Item Impulse reaction Impulse reaction 

T~2 Work 2(~r) 2 ( ~ r )  2 
1 - Tt ~ interaction Cp Tq Cp Tt, High 

Ttr Increment in 3(c0r) 2 (c0r) 2 
T~ - 1 rotor temperature 2CpTq 2CpT h High 

Efficiency Low 

Low 

Low 

High 

It can be seen from the summary of Table 9.2 that, for a given wheel 
speed, the impulse turbine has a larger work interaction and experiences a 
lower relative stagnation temperature on the rotor than does the 50% 
reaction turbine. (Note that the lower relative stagnation temperature could 
allow operation at a slightly higher wheel speed.) These advantages for the 
impulse turbine do not come without penalty, however, as the stage 
efficiencies tend to be lower than those of the reaction turbines. This is 
because the Mach numbers (and hence frictional and shock losses) tend to 
be large in impulse turbines, and also because the rotors operate without the 
benefit of an ambient favorable pressure gradient. 

In practice, impulse turbines are often used in very high thrust-to-weight 
engines where their enormous work capability is of direct benefit in reduc- 
ing the required number of stages and hence weight. In some cases, the first 
few stages of a turbine will have impulse blading so that the number of 
stages requiring cooling will be reduced. Transport aircraft, which require 
highly efficient engines, will usually have blading with 30-50% reactions. 
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Problems 

9.1 Consider the perfect flow of an incompressible fluid through 
a compressor stage. The stage is of "constant-work" design ( A p t  c o n s t a n t  
with radius) and has purely axial flow at inlet and exit from the rotor-stator 
pair. 

(a) Show that °R = 1 - A p y 2 p ( o ~ r )  2. 
(b) For the case where rt /r  h = 3, ~orh/W = 1, and the turning angle in 

the rotor at the hub is 30 deg, find Apt /pw2  and °R at r = r h and r = r r 

9.2 Consider the ideal flow of an incompressible fluid through a free 
vortex compressor  stage. For  the example values ~rh /W = 0.8, 
A p t / p w 2  = 1.0, r t / r  h = 2.8, o h = 1.9, and °R h = -0 .65 ,  (constant chord), 

(a) Find the diffusion factor at stator hub and rotor tip. 
(b) Find the degree of reaction at the tip. 
(c) Draw accurately the combined velocity triangles at the tip and at 

the hub. 

9.3 Consider the ideal flow of an incompressible fluid through a free 
vortex compressor stage. You are given Apt/PW 2 = 1.0, 81 = 0 3 ,  rt/r  h = 2.6, 
°R h = -0 .6 ,  o h = 1.7 [o r = O h ( r h / r ) ]  , and ~Orh/W = 0.7 and 0.8. 

(a) Calculate v l / w ,  v2/w,  (Ve/W) R, (Vyw)  R, ( V e / w )  s, ( ~ / w )  s, D R, 
and D s at the hub and at the tip. 

(b) Draw accurately the combined velocity triangles at the tip and at 
the hub for both cases ~orh/w = 0.7 and 0.8. 

9.4 Consider the ideal flow of an incompressible fluid through a 
rotor-stator pair. There are no inlet guide vanes, so the approaching flow is 
purely axial. The stage is a free vortex stage, with constant axial velocity, 
purely axial flow at the exit, and blades of constant chord. 

(a) Show that 

Apl w 1 1 

p(,,,rl)2 R (1/2o?R )_2(1 

× - 2 ( l - D )  + 1 - ( 1 - O )  2 

where D is the stator hub diffusion factor. 
(b) For the case o I = 0.4, w / ~ r  t = 7, D = 0.6 plot A p J p ( o ~ 6 )  2 vs R 

for 2 < R < 3. 
(c) Repeat (b) with w/o~r t = ¼. 
(d) Repeat (b) with o~ = 0.5. 
(e) Repeat (b) with D = 0.5. 
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9.5 Consider the ideal compressible flow of a calorically perfect gas 
through a fan stage. The entering and departing flows as well as the relative 
velocity at station 2 are all axial. The annulus cross section is varied so as to 
keep the axial velocity at the (single) radius considered constant. 

(a) Find an expression for PtJPt~ in terms of ~,, M i, and o~r/w. 
(b) Find an expression for M 2 in terms of y, M 1, and o~r/w. 
(c) Find an expression for M 3 in terms of y, M 1, and wr/w. 
(d) Show that the degree of reaction is given by 

OR= 

[1 + ~ ! M ( (  - ~  )2] ~/('~- 1) - 1 

[ l + ( y - 1 ) M 2 ( ~ ) 2 ]  v/(v 1 ) -1  

(e) Evaluate °R for 3' = 1.4, lor/w = 1 and 1.5, and M 1 = 0, 0.2, 0.4, 
and 0.6. 

9.6 A uniform flow of incompressible fluid passes through a stator 
row which imparts a swirl such that (y  V)2 = _ _  6 xlt. The flow process can be 
considered ideal. 

(a) Find expressions for the dimensionless velocities V and W that 
will exist far downstream in terms of y, 8, and R. 

(b) Find an expression, in terms of R, for the limiting value of 
dimensionless swirl velocity at the tip, VtL, that just leads to W t = 0. 

(c) For the case R = 3 and 8 = 4, plot W and V vs ( y -  1 ) / ( R -  1). 

9.7 A single-stage fan has a rotor followed by a stator. The flow may 
be approximated as incompressible and the annulus as parallel walled. The 
rotor is not a free vortex rotor. The stator removes all the swirl. Given that 
the departing stagnation enthalpy is given by 

H = const - ~2~' 

find an expression for the far downstream stream function in terms of y, ~2, 
and R. 

9.8 Consider the ideal flow of a calorically perfect gas through a 
single-stage turbine. The stage is an impulse stage, and the entering and 
departing flows are purely axial. Entering conditions are )'t = 1.3, M 0 = 0.4, 
Cp, = 7500 f t2/s  2. °R, Tt0= Tt~ = 2600 °R, ~0r= 1300 f t /s .  Given that 
A I/A o = 1.25, 

(a) Find the stagnation pressure ratio Pt2/Pq and stagnation temper- 
ature ratio T~/T~. 

(b) Check ~hat this stagnation temperature is allowable in this im- 
pulse turbine. 
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(c) If from part (b) it is found that such a stagnation temperature 
change is possible, find the Mach number M~ of the flow departing the 
nozzle and find the flow angle a. 

(d) Repeat parts (a-c) given that A1/A o = 1.5. 

9.9 "Ducted windmills" are being considered for energy production. 
It is apparent that such windmills can be viewed as "full-reaction turbines" 
(°R = 1) because there is no pressure drop across the [nonexistant (!)] stator. 

(a) Sketch the velocity triangles for such a (single radius) rotor. 
(b) If the rotor turns the flow by an angle A/L show that ideally 

Tt2 (¢°r)2 ~rrtan[(tan - +A/~] 1} { 
(c) Evaluate Tt2/Tt, and Ptz/Ptl to six significant figures for the 

conditions Tt, = 500 °R, Cp = 6000 ftZ/s 2- °R, ~0r = w = 36 fps, Aft = 10 
deg. 

9.10 An ideal impulse turbine is to be designed to operate with the 
maximum possible work interaction per mass for given inlet conditions and 
axial area ratio A~/A o. Given ~, = 1.32, M 0 = 0.3, Cp, = 7400 ft2/s 2- °R, 
Tto = 2500 °R, and A1/A o = 1.3, find the required blade speed ~or. 



10. THROUGHFLOW THEORY 

10.1 Introduction 
In an early paper, 1 Wu formulated the basic concept of representing the 

inviscid three-dimensional flowfield as the sum of two separate two-dimen- 
sional flowfields. These two separate flowfields were composed of surfaces 
located in the blade-to-blade direction (s x surfaces) and surfaces lying in the 
hub-to-tip direction (s 2 surfaces). The solution to the flowfield composed of 
these combined two-dimensional fields would formally require an iterative 
solution, since the solution for either surface requires a knowledge of the 
shape of the other surface. 

In practice, 2-4 the problem is simplified by taking appropriate averages 
for the blade-to-blade direction and then assuming the flow to be axisym- 
metric. In this way, the s 2 planes become meridional surfaces and the 
expressions for the derivatives along and normal to such surfaces are easily 
represented in terms of the derivatives in the radial and axial directions. 

When the complete throughflow equations are considered, the variations 
of the fluid properties in the axial direction are included. It is to be expected 
then that the radial equilibrium solutions obtained in Chap. 9 will again 
appear as the asymptotic limits of the far upstream and far downstream 
flows. 

The equations will be formulated in a manner that allows the inclusion of 
compressibility and entropy variation effects. However, the solution of the 
resulting rather general equation must rely upon the application of ad- 
vanced computer techniques that cannot reasonably be reported in detail in 
this book because of space limitations. Section 10.6 briefly describes some of 
the various calculational methods available and provides references for 
further reading. 

10.2 The Throughtlow Equations 
In the following, equations appropriate for the description of the (axisym- 

metric) throughflow are developed. The viscous stresses in the fluid will not 
be included explicitly, but a general "body force" F will be included. It is 
possible to utilize this general body force to artifically introduce the effects 
of viscosity, 2 but in any case the flowfield considered is primarily external to 
the blade rows, and it is consistent with throughflow theory to consider the 
viscous effects to be negligible in this region. The effects of viscous stresses 

373 
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within the blade row will appear implicitly in the variation of entropy in the 
direction normal to the stream surfaces and also in the effective body force 
of the related blade forces. (See Secs. 10.3 and 10.4.) 

The Conservation Equations 
When vector notation is utilized, the continuity, momentum, and Gibb's 

equations may be written 

Op 
OT + V "  (Ou) = 0 (10.1) 

Du 1 = F - - Vp (10.2) 
Dt p 

also 

1 
v h  - - V p  = T v s  (10.3) 

O 

Dh 1 Dp _ T D s  (10.4) 
Dt p Dt Dt 

The Convective Derivative 
The convective derivative, represented by the operator (u- V), may be 

expanded as 

0 v 0 0 
( u ' V ) = U O r + - r ~ + W ~ z  (10.5) 

It is important here to retain the partial derivative with respect to 0 
because, even though the fluid properties have no 0 variation (because of 
the assumption of axial symmetry), the coordinate directions themselves 
change with 0. Thus note in particular 

~e r 
O0 - e° (10.6) 

0 e 0  _ 
O0 er (10.7) 

Utilizing Eqs. (10.5-10.7), the convective derivative of the velocity vector 
may be expanded into the components, 

[ 02] { 1 ] + [ (u 'v )wlez  ( u - V ) u =  ( u ' V ) u -  r e~+ 7 ( u - v ) ( r v ) e o  

(10.8) 
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The Equation for the Tangential Momentum 
The equation for the tangential momentum follows immediately by taking 

the scalar product of Eq. (10.2) with e 0 and utilizing Eq. (10.8) to give 

D r y (  l l a p )  
- r  (10.9) 

It is to be noted that the tangential body force existing in this expression 
may include a viscous as well as a nonviscous term. The equation may be 
interpreted to explain the mechanism by which angular momentum is 
introduced into the flow. Thus, if perfect flow through an actual blade row is 
considered, no body forces exist and the angular momentum is imparted by 
the pressure forces of the blade-row. Clearly, if the contribution of such 
pressure forces to a control volume between repetitive streamlines of a 
cascade external to the cascade is considered (Fig. 10.1, case A), the stream 
surfaces cannot support a pressure change and the (net) angular momentum 
cannot change. Once within the blade row, however, the blade surfaces can 
support the pressure change and the angular momentum changes (Fig. 10.1, 
case B). 

It can be noted here that the formal mechanism for obtaining the 
throughflow form of the equations is to replace the term 

l l O p  
pr 00 

in Eq. (10.9) by an equivalent (artificial) body force fo. In this way the 0 
dependence of the properties is removed. The relationship between this 
artificial body force and the torque and forces existing on the blade is 
further developed in Sec. 10.4. 

•# P. 

2 - -  I 

I~ PI 

Fig. 10.1 Pressure stresses on stream surfaces. 
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The Euler Turbine Equation 

The vector form of the Euler turbine equation (see also Sec. 9.2) may be 
obtained directly by taking the scalar product of Eq. (10.2) with u and 
adding the result to Eq. (10.4), to give 

D h t _  1 Op Ds 
+ u ' F  + T - -  (10.10) 

Dt p at Dt 

The velocity may be written as the sum of the velocity relative to the blade 
Ure I and the blade velocity core o to give 

u "F = ( U r e  I "-b (oreo)"F = U r e  1 " F + wrfo (10.11) 

Combination of Eqs. (10.9-10.11) then gives 

D h t _ l l O  p ( l O p ) ]  ( TDs)  Dry 
Dt P - ~  + o~r ' ~  + Ur~l'F+ Dt + o~--~ (10.12) 

It can be noted that the expression within the first pair of brackets 
represents the pressure perturbation as viewed by an observer fixed to the 
rotating blade. Under normal circumstances where the pressure perturba- 
tions are created by the blades themselves, this group of terms is zero. When 
considering the terms in the second pair of brackets, note that because the 
body force term is identified with the blade forces, the product U re I 'F  
represents the effect of the frictional forces alone. (Note that if there were 
no frictional stress, F would be perpendicular to the relative velocity giving 
Ure I • F = 0.) The term Ure I ° F is hence the sole source of entropy generation, 
so as with Eq. (2.63), the terms in the second pair of brackets also cancel. 
There is thus obtained the vector form of the Euler turbine equation, 

Dht Dry 
=~o (10.13) 

Dt Dt 

The Compressible Form of the Stream Function 
When the throughflow limit of the equations is taken, the replacement of 

the group 

l l O p  
p r O 0  

by an equivalent body force not only reduces the equations to axisymmetric 
form, but, in addition, removes the time dependency. Thus, the continuity 
equation may be written 

10(pru) ~ O(ow)=0 (10.14) 
r Or ' Oz 
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This equation is identically satisfied with introduction of the compressible 
form of the stream function ~k, defined by 

1 0¢ 1 0¢ (10.15) 
p U =  Po r Oz ' O w =  -OO r Or 

In these expressions P0 is a suitable reference density. It follows, just as in 
the development in Sec. 9.4 of the incompressible form of the stream 
function, that the mass flow rate between two stream surfaces rh is related 
to the stream function by 

& = - 2 ~rOo ( ~2 - -  ~1 ) (10.16) 

The Natural Coordinate System 
The stream tube surfaces form natural coordinates for throughflow stud- 

ies and lead to the introduction of a coordinate system with directions n 
(normal to stream tube surfaces), e: (meridional component), and e 0 
(tangential). This coordinate system is depicted in Fig. 10.2. 

The velocity vector in the natural coordinate system has components 
given by 

u = ( 0 ,  v, v:) (10.17) 

is related to the cylindrical velocity compo- The meridional velocity v: 

nents by 

and the unit vectors 
quantities by 

V 2 = /d 2 "[- W 2 (10.18) 

are given in terms of the cylindrical coordinate 

1 
e:= ~(ue~ + w~) 

1 
n = e o X e:= ~(e o x u) 

(10.19) 

(10.20) 

•r, u 

,v 'w i 

Fig. 10.2 

ff 

eS,v 

Throughflow coordinate systems. 
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The scalar magnitude of the differential difference d n occurring for a 
differential displacement dr is given by 

dn = n ° d r  = w d r -  u dz (10.21) 
Ug, O E 

This may be related to the corresponding change in the stream function by 
utilizing Eqs. (10.15) to give 

dn 1 0 0 ( O +  Og, ) 1 po 
rv~ P -~r dr  + -~z dz  rvt P d~b (10.22) 

The unit derivative in the direction normal to the stream surfaces (n- x7 ) 
is thus given in terms of the stream function as 

0 _ Oq~ 0 orvt 0 (10.23) 
( n ' V ) -  On On Oq~ - Oo O +  

This same derivative in cylindrical coordinates follows directly from Eq. 
(10.20) and the definition of the operator V (in cylindrical coordinates) 
to give 

1 1 0 e 0 

o r  

w O  u O  
(n- V)  o I Or o t Oz (10.24) 

Equation for the Tangential Vorticity 
The Euler momentum equation and the conservation of angular momen- 

tum equation describe the behavior of the angular momentum and stagna- 
tion enthalpy along stream surfaces. It can be expected that the essence of 
the two-dimensional problem lies in the variation of properties across 
stream surfaces, so to this end the rate of change of properties normal to 
stream surfaces is investigated. 

The steady-state form of the momentum equation (10.2) may be added to 
Eq. (10.3) to give 

V h  t + to x u = T V s  + F (10.25) 

In obtaining this expression the vector identity 

u 2 

(u. v).= vT+, , ,x ,  
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has been utilized. This in turn introduces the vorticity to, defined by 

to = ~e~ + ~e  o + ~'e~ - ' 7  x u ( 1 0 . 2 6 )  

Utilizing Eq. (10.20) it follows from vector expansion that 

(to x u) 1 [(eo. tol(u, n) - (eo- u)(u- to)] n • = u-~ 

Thus expanding the vorticity into its components there is obtained 

U 
n" (to × u) = not -  r ( n "  V)(rv)  (10.27) 

An equation for the tangential vorticity 7/ follows by taking the scalar 
product of Eq. (10.25) with n and utilizing Eq. (10.27). Thus, 

~ = l [ n . F - ( n . ~ F ) h t + T ( n . ~ F ) s + ~ ( n . ~ F ) r u ]  (10.28) 

This expression may be written as an equation for the stream function ~, 
density ratio P/Po, and prescribed variables (h t, s, rv, F) by utilizing 

Ou Ow 
- Oz Or 

and Eqs. (10.15) and (10.23) to give 

( . ) 1  0rC°  0r ) 0 Po 1 0~/ Oo 1 Os v 
Oz O r O z  + - = - - n ' F +  - T  - o r ~ v~ To ~-Y~ a+ r a+ 

(10.29) 

The density ratio follows from Eq. (2.57) and the perfect gas equation of 
state to give 

p ( Z ,  1/(' 1) [ ht--½(W2-}-U2+U2) ] 1/(T 1) 
- -  = e -  [(s-so)/n] = _ _ _  e - [(s-so)/Rl 
Po k To ] h t o - ½ ( w Z  + uZ + v2)o 

Utilizing Eq. (10.15) this expression may be rearranged to give 

l ' "  Or, 0z) 
y-1 1 

+(~00) [ h'° 1 -z -w q-( 2 u2+v2)°]e(V/cP)( ' - ' ° ) - [  h' + - ~ r 2 ( r v ) 2 ] = O  

(10.30) 
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Equations (10.29) and (10.30) constitute two coupled, highly nonlinear 
equations for the stream function in terms of the reference 0 conditions and 
the prescribed quantities F, h,, s, and rv. 

10.3 The Actuator Disk 

The presence of the body force term F in Eq. (10.29) complicates the 
solution for the throughflow considerably. A useful approximate solution 
can be obtained by considering all the forces to be concentrated in an 
infinitesimally thin disk-- the actuator disk. The forces are chosen to have 
the same integral effect upon the tangential momentum, stagnation en- 
thalpy, and entropy as would the axially distributed forces of the actual 
blade rows (see Sec. 10.4). The result is then that the body forces themselves 
do not appear in the resulting equations, but the effects of the blade forces 
appear as matching conditions across the (infinitely thin) blade row. The 
approximation can be made as accurate as desired by taking a number of 
actuator disks to simulate a single blade row. 

The equation for the stream function (10.29) thus reduces to 

Oz p r Oz ~r p r Or = p o r ~ - T o ~  r O~ ] 

(10.31) 

Because in the actuator disk approximation the blade row is taken to be 
infinitely thin, the continuity of mass ensures that the value of the stream 
function on one side of the disk is identical to that at the same radial 
location on the other side. This simple relationship may be written 

[qJ]d = 0 (10.32) 

where the notation [ ] refers to the jump in the value of the quantity and the 
subscript d refers to conditions at the disk. 

A second matching condition may be obtained by considering the radial 
momentum equation. Thus, noting that by the assumption of axisymmetry 
no 0 derivatives of fluid properties are present and combining Eqs. (10.2) 
and (10.8), there is obtained 

0U 0 N  _ U 2 

OU r + OWTz o T  = oL (10.33) 

This equation is now integrated from an infinitesimal distance e upstream 
of the disk to an infinitesimal distance downstream of the disk. It is to be 
noted that no terms on the left side of the equation can become infinite 
except, possibly, those involving an axial derivative. Thus, integration over 
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the infinitesimal distance (noting pw is constant) gives 

fa. 
_ e--~- z dz = [U]d= _ ~Pfrdz 

Utilizing Eq. (10.15) there is then obtained 

- r Oz a = p - w f . e  Of~dz (10.34) 

The integral on the right side represents the effect of the total radial force of 
the blade row at the given radius of the actuator disk. In many applications, 
the radial force of the almost radial blades is very small and Eq. (10.34) is 
often approximated by 

Equations (10.30-10.32) and (10.35), together with the boundary condi- 
tions that the stream function is prescribed on the containing walls (or that 
the pressure be constant on the bounding streamline in the case of a free 
streamline), constitute the mathematical statement of the problem. In Sec. 
10.5 an example solution for incompressible flow will be presented and 
methods for calculating compressibility effects will be described in Sec. 10.6. 
Before proceeding to the calculational examples, however, the relationships 
of the overall torque applied to the blade row and the overall axial force on 
the blade row to the resulting changes in fluid properties are considered. 

10.4 Integral Relationships 
An equation for the tangential momentum was developed in Sec. 10.2, 

and the equivalence of the body force field utilized in the throughflow 
approximation and the pressure field existing on the actual blade surfaces 
was discussed. The relationship between the equivalent force field and the 
torque on the blade (taken about the axis) may be determined by noting 
that the differential contribution to the torque of an annular volume 
2 v r d r d z  is given by 

d'r = 2 ~ p f o r 2 d r d z  (10.36) 

The torque upon the entire blade row is then obtained by integrating 
from the blade leading edge to the trailing edge (z~ to z2) and from the hub 
radius to the tip radius (r h to 6). Hence, 

f :2  fr,i'or2fo "q - 2 = 2~ d r d z  (10.37) 
1 
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The throughflow form of the tangential momentum equation (10.9) gives 

Orv Oru 
rfo = U~-r- r + w Oz (10.38) 

By adding rv times the continuity equation (10.14) to this expression, 
there is obtained 

Prf°= rl [ O(pur)(rV)or + O(orw)(rV)oz ] (10.39) 

When Eq. (10.39) is substituted into Eq. (10.37), the resulting expression 
may be integrated immediately to give with Eq. (10.15) 

Tl_2 = 27rOoff{~'2~[(rv),-(rv)h] d e -  2~rpof¢j[(rv):2- (rv).~] d~ 

In this expression the first integral vanishes, because the value of the stream 
function does not change along the hub or tip (i.e., d~ = 0 on r t or rh). 
There is thus obtained a relationship that is itself obvious from first 
principles when the relationship between the stream function and the mass 
flow [(Eq. (10.16)] is recognized. Thus 

~l-2 = - 2~rOof¢h'[(rv):2- (rv):~] d• (10.40) 

Then noting from Eq. (10.16) that -2~rpod + = d&, 

tip 
~1 2= fhub[(rv)~:--(rv):,] d/n (10.41) 

When the desired angular momentum distribution with stream function is 
prescribed, the resulting torque on the blade row can be immediately 
determined from Eq. (10.40). It is to be noted that there is no need to obtain 
any of the detailed flow information through the blade row. The overall 
torque depends only upon the overall change in angular momentum through 
the blade row. 

The axial force on the blade row and containing annulus walls may be 
obtained by considering the control volume shown in Fig. 10.3. 

Equating the rate of production of momentum to the force applied to the 
fluid, it follows that the upstream directed force on the blade row and 
annulus wall F A is given by 
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f r  t /-z, /-za 

+ li i 
! 

,, 

~_rh I 2 

Fig. 10.3 Axial forces. 

When the actuator disk limit is considered, FA becomes the force on the 
blade row alone. It is convenient to write this expression in the form 

F A = 27tO o [ M l (10.43) 

where M is defined by 

M=fr~( P---+ Pw2)rdr 
J~h \ Po Po (10.44) 

It is clear from the way M has been defined that M will be constant with 
axial position if the walls are parallel and no blades are present. (Recall that 
the flow was assumed to be nonviscous outside the blade rows.) The 
quantity M is most easily evaluated by considering the radial equilibrium 
form of the solutions, which is possible because M will stay constant in a 
parallel-walled annulus until all radial flows vanish. The expression for M 
can be manipulated in the following manner (noting u = 0 in radial equi- 
librium): 

M = f ~ ' [ P  + 1  P u 2 -  1 P---(v2-w2)]rdr 
J~[Po 2po 2 p o  

rh L \ O0 2 PO PO 2r t- ~ -p- dr  (10.45) 

where as before u 2 denotes the scalar product u- u. Noting 

d ( p o ~ d ~ )  d ( P o l  d ~ b ) + P o l ( d ~ )  2 
drr p r dr =~bdrr p r dr  --P-r 

and utilizing the radial equilibrium form of Eq. (10.31), Eq. (10.45) may be 
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written 

":' 

arh t \ Po 2 po Po 2 dq, ] Po 2r r v -  ~ , ~  ) 

, 

+ 2 - ~ r  p r dr  P0 T ~  dr  (10.46) 

When the stagnation enthalpy, entropy, and angular momentum are 
prescribed, all terms in this integral may be evaluated [with the solution of 
Eqs. (10.30) and (10.31)] and the integral obtained. In the following section 
simple explicit solutions are obtained for special forms of the blade loading 
and for these cases evaluation of the integral is very straightforward. It may 
be noted here that when the flow considered is perfect and incompressible, 
the group 

p + l  _._p u2 
P0 2 P0 

is identical to the stagnation enthalpy h,. 

10.5 Example Solutions 

As an example set of solutions consider the simple case of flow of a 
perfect, incompressible fluid in a parallel-walled annulus. As indicated in 
Fig. 10.4, there are N actuator disks located at x = x~ (1 < j  < N) and 
N + 1 regions of flow in regions i(0 _< i < N). 

It is most convenient to consider the nondimensional form of the equa- 
tions so again utilize the dimensionless variables introduced in Eq. (9.66). 
Thus, with the addition of a dimensionless axial variable x, define 

W - w  V -  v ~ _  ~ H = h t  
Wo' Wo' Wor ' w• 

r z r, 
y = - - ,  x = - - ,  R = - -  (10.47) 

rh rh rh 

i=O 

_7- 
[H y~j'3" j=N i=N 

Fig. 10.4 Actuator disks and nomenclature. 
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With the restrictions listed above and with the introduction of these new 
variables, Eq. (10.31) reduces to 

1 02qL t t _ 0 ( 1 0 ' t ' )  OH v O y V  (10.48) 
y Ox 7-aTy 

The boundary conditions are 

' t ' = - ½  on y = l  and ' t ' = - R 2 / 2  on y = R  (10.49) 

The matching conditions are 

r 10't" 
[ , i ,] j= o and t ~ , ~ J  l-z-:: / / = °  (10.50) 

The mathematical statement of the problem is completed by prescribing 
the desired distribution of the stagnation enthalpy and angular momentum 
with the stream function. A particularly simple and instructive set of 
solutions is obtained when forms of H and y V leading to linear forms of 
the equations are considered. Thus, consider (as in Sec. 9.4) the special 
forms given by 

H i = H o - % ' t ' + O  i and ( y V ) i = - o t i ' , t ' + f l i  (10.51) 

It follows from the Euler momentum equation that 

~i = O~i-1 -1- a i (  Ogi- ~i-1) (10.52) 

Oi = Oi-1 -'1- a i ( ~ i -  ~i 1) (10.53) 

Here ~i is the nondimensional angular velocity (~orh/wo) of the rotor row 
located at xj where j = i. 

Equations (10.48-10.53) constitute the mathematical statement of the 
problem. Begin the solution by incorporating Eq. (10.51) into Eq. (10.48) 
to give 

0 ( 1 0 ' t '  ) + a~,t, = ai/3 ~ (10.54) 0 2 '~ ~_ y ff-~y y -~y - ¢oi y 2 
?x 2 

Solution of the Homogenous Equation--The Natural Eigenfunctions 
Now consider solution of the homogeneous form of Eq. (10.54) by 

separation of variables. Thus substitute 

"t' = y E (  y )d~( x ) 
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to obtain the two ordinary differential equations 

d20 ( h 2 -  a~)O = 0 (10.55) 
dx 2 

d2E t - l d E  ( - ~ - - ~ )  = 0  (10.56) d Y z y__d_f+ ~2 1 E 

where ?~2 is the separation constant. 
The solution of Eq. (10.56) is obtained in terms of Bessel functions of the 

first order and may be written 

E = C1J~(hy ) + CzY~(hy ) (10.57) 

In order to satisfy the boundary conditions that O~/Ox be zero on the 
hub, one of the constants may be chosen such that 

E= C3[ JI(h y)YI(?~ )-Jl(?~ )Yl(~ y)] (lO.58) 

In order to satisfy the remaining boundary condition that O"t'/Ox be zero 
on the tip, only selected values--the eigenvalues--of the separation con- 
stant ~ can be allowed. Thus a family of solutions is obtained, each solution 
having a corresponding eigenvalue ?~n. These eigenvalues follow from solu- 
tion of the equation 

s , ( x n R )  Y , ( x . )  - S l ( X . ) r l ( X n R )  = o (10.59) 

A series approximation to the value of A n is given on p. 261 of Ref. 5 and 
may be written 

? ~ ' = R - 1  1 +  ~ ]  ~ - ~ -  n~r / 

[ 21(R3-1) 9 1 ] } 
X 12~-~--R-__--i)+~--~-~ + . . .  

(10.60) 

This series is quite accurate, the third term reaching a value of only 0.015 
for the case R = 3, n = 1. This set of values corresponds to about the largest 
correction expected in practice. If a higher accuracy is desired for excep- 
tional cases, Eq. (10.59) is easily solved by iteration. 

The constant C remains arbitrary because the functions E have yet to be 
multiplied by the still to be determined functions ~. Because there is an 
infinite set of the functions ~ and E, the solution for q' is written in the 
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form 

"t' = E ~.(x)yEI.(Y)  (10.61) 
n = l  

here the subscript n denotes the eigenfunction corresponding to the eigen- 
value )~,, and the added subscript 1 in the function Eln has been intro- 
duced to indicate that the Bessel functions with argument )%y contained in 
Ea, are of first order. 

It is a very useful result that the functions E~,(y) are orthogonal, which 
can be shown directly from the two integral formulas (Ref. 6, p. 146) 

fyZp(ay)ZpCBy)dy 

_ 1 
or2 -f12 [ flYZp(aY)Z"p-I(flY)-aYZp I(aY)Zp (fly)] 

(10.62) 

y2 2p 1 
Zp_l(oty)Zp(ay ) + Z~-l(ay)] f dY= 

(10.63) 

In these expressions Zp(ay) and Z p(By) refer to any groups of the 
form C~Jp(ay)+C2Yp(ay) or C3Jp(fly)+CaYp(fly). It then follows di- 
rectly, with Eqs. (10.58) and (10.59), that 

flRYEtn( )~nY ) Elm( )%,y ) d y = 0 m ~ n  (10.64) 

fRy[El.(X.y)]2 d y =  C32{ R-~--Z [JO(X.R)Y~(X.)-JI(X.)Yo(X.R)]Z 

_ ½ [ jo (X.) yl(X. ) _ j I (X.)yo(X.)]  z) (10.65) 

Equation (10.65) may be greatly simplified by noting from Eq. (10.59) 

Y1(2 ") - J l (h")  (10.66) 
Yl()knR) Jl( nR) 

and the relationship (Ref. 6, p.  144) 

Yp_,(X)Jp(X) - Yp(x)Jp_l(x) = 2/~rx (10.67) 
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(10.68) 

This suggests the convenient choice for the constant C 3 as that value 
which will render the functions orthonormal. Thus, define the orthonormal 
set of functions El.(hny ) by 

rr JI(~.y)YI(X.)--JI_!h_~)__~YI(X.,y) (10.69) 
EI"(Y)=)~"~ / [___jl(a.) _]2 _ 1/ :  

~LJI(X.R)] J 

These functions have the property that 

fRyE>,(y)Ex,,(y)dy=O nCm 

= 1 n = m (10.70) 

In addition note from Eq. (10.56) 

d 1 -~y[yEln(y)] = -~k2nEl,,(y) (10.71) 

Also, it may be noted that 

1 d y dy [yE, n(y)] = )~.Eo,,(y ) (10.72) 

Solution of the Inhomogeneous Form of the Equation 
The emergence of the orthonormal functions E~.(y) from solution of the 

homogeneous equation suggests consideration of ~.(x) as a transformed 
variable defined by 

¢ , ( x )  = [R~(y, X)Eln(y ) dy (30.73) 
at 

- 2(732 t[ dl()~")]2-1} flRy[Eln()~nY)]2dy (---~--n) 2 ~ [ . J ~ )  
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Obviously, the inverse of the transformation is 

oc 

4l(y,x) = ~ ~,(x)yEx,(y ) (10.74) 
n = l  

The transformation of Eq. (10.54) is now taken by multiplying the 
equation by E~,(y) and integrating between y = 1 and y = R. The several 
terms appearing are evaluated as follows. 

Define 

R 2 

o r  

= ~-~ [ Eo, (1) - R2Eon( R )] (10.75) A, 

With the definition of Eo,(y) and with Eqs. (10.66) and (10.67), this 
expression may be rearranged to give 

A, = ~ R J t ( ~ " ) - J t ( ~ " R )  (10.76) 
~, [j2(Xn)-JZ(X,R)]'2 

Now define 

B =fBE,.(y)dy=~---~[Eo,(1 ) -Eo.  (R)] 

With Eqs. (10.66) and (10.67) this becomes 

B, = ~ (1/R)Jx(X')-JI(X"R) (10.77) 
X, [j2(2~.)_j~(2~,,R)]~ 

Then 

R O2xI t 0 2 R d 2 (I)n 

-~x2 f ~'EI,(y)dy= --~x 2 E I , (  y ) d y = d x  2 (10.78) 
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and 

Oq' = [E~.(y) O'I' R 0 l_~y)E>, (y )dy  [ ]; RO.t, 
f YffYY(Y ~ - ~ ' " f  ~7-y Eo,,dY 

= [ -X .Eo~(y )q ' ] f f -  X2,,fSq'Et.(y)d). ' 

An - 2 [E°"(1)-R2E°"(R)]-)t2'fb" 

With Eq. (10.75) this may be written 

fl" e (1 Y ~ y \ y - ~ y ) E l , ( y ) d y =  - k2,,*, (10.79) 

The last term in Eq. (10.54), a~'t', transforms directly to a,z~,,, so that by 
combining Eqs. (10.54) and (10.76-10.79) an equation for ~,, is obtained, 

where 

d 2 (I)n 
dx 2 (h2n-otZ)~Pn=-(~,Zn-a~)Tr[i} (10.80) 

The solution to Eq. (10.80) consists of exponentials and is conveniently 
grouped in the forms 

I) n 

~ exp[~?)(x - x,)] + T~ °) X ~ X  1 

D~Ocosh[rl~i}(x- x,)] -C{,"cosh[~{.i)(xi+ 1 - x)] 

~i)sinh[~(i}(xi+l - xi) ] 
+ Tn(i) 

~(N) 
- -  ""n ( N )  __ - -T~N)  _(N) exp[•, (x N x)] + 

"qn 

X i ~ X ~ Xi+ 1 

X N ~ X  

where there has been introduced r/~ i} defined by T/~ i, = ~ - a~. 

(10.81) 
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Note that the boundary conditions Orb/Ox ~ 0 as x --* _+ m are satisfied. 
The coefficients C~ ~) and D~ ~) are to be determined from the matching 
conditions at the disks [Eq. (10.50)]. The condition [ O ~ / O x ] j =  0 gives 
immediately that D_~ ~- n = C(~) and continuity of ~5 at each disk then gives 
the set of equations 

_ ,,, . ,  )]+ Cn (1) C `2) Cn ~ cosh[v/. (X 2 -- X 1 
- -  + T , [  ° )  = -,~ r21) 
~/~) 7/#)sinh[ ~(nl)( X 2 --  X l )  ] 

vl ~-  1)sinh [ ~j~ l)(xj - xj 1)] 
7t_ Tn( j - 1) 

c.,J + ' , -  c.,J,cosli[ n ? > ( x . ,  - xj )] 

• ( J )o inh[  ~ ( J ) / "  Y - 
- " " t " ~  ~ j + z  xj)] 

+ T~J~ 

c ( N ) c o s h [ ~ n N - I ( X N  _ X N _ I ) ]  _ c ( N  1) 

7/(~ N- ')sinh[ rt(~ N- ')( x u - x N_ ,)] 
T i  N - l )  CA N) 

~N) 

(10.82) 

Although unwieldy in appearance, this coefficient matrix is diagonally 
dominant and tridiagonal, and is solved extremely rapidly on a computer. 
Once the coefficients have been determined, the values of ~n follow from 
Eq. (10.81) and the values of ,t'(x, y) from Eq. (10.74). The tangential 
velocity then follows directly from 

V =  ( 1 / y ) ( - a , ~  + fl,) (10.83) 

and the axial velocity from 

W= 10ql ~ ?t.dP.(x)Eo.(y ) (10.84) 
y Oy n=l 

The Radial Equilibrium Limit of the Solutions 
Very useful summations are obtained by noting that, because the T~ J) are 

independent of x, the portions of the eigenfunction expansions with coeffi- 
cients T, (j) correspond to the radial equilibrium solutions already obtained 
in Sec. 9.4. Thus, with A of Eq. (9.77) replaced by - w  i [see Eq. (10.52)], it 
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follows that 

£ T~i)YEx"(Y) = -(--~i fl' l.]l ]yUl(aiy) 
n = l  ai Ul (o~i) 

-- O~i R2 fli R2 
a2 +--+ 

YWI(aiY) ~°i y2 + fl.~i (10.85) 

In the case where a i = 0, Eq. (9.83) gives 

£ Tn(i)yEln(Y) = -°~i4--~y + [-~(R2 + 1) - 1]Y-~ - -~-R~i 2 (10.86) 
n=l 

The summations relate principal contributions of the summations to the 
determination of the stream function. Similar summations are obtained for 
the axial velocity from the relationship W = - ( 1 / y ) ( d ' ~ ' / d y ) .  Thus, it 
follows directly from Eqs. (10.85) and (10.86) that 

1 d [£  Tn(i)yEln(y)]=- £ ~.nTn(i'Eon(Y)=(- °~i+fli+~'~) 
y d y  ai n = l  n = l  

( wi R2 a~_~Z ) Wo(aiY) 2°~, U°(aiY) + - - - + f l i  + +~S- (10.87) x , , ,  

and when a, = 0 

y dy T~i)yEa"(Y) = - y" X"T~"E°"(Y) 
n = l  n = l  

-- 6di" 2 0)i ( R 2  + 1) q- 1 (oti = O) --fy (10.88) 

Expressions for the Axial Force and Torque 
When the special forms of blade loading described by Eq. (10.51) are 

considered, particularly simple forms of the integrals of Eqs. (10.40) and 
(10.46) result. Thus, the dimensionless torque may be written as 

'1"1 - 2 

OoW2r 3 

With Eq. (10.51), integration leads to 

"q-2 (10.89) 
PoWgr  
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The dimensionless, incompressible, and perfect form of Eq. (10.46) may 
be written 

M R[ ( O/ dH) yV( _ dyV~ 1 d ('t' d~t')] 
r2wo2 = f y H 2 d ff' - 2-yy Y V -- 'al --d-'~- ) + 2 -d-fy y -d--fy d y 

(10.90) 

Utilizing the dimensionless radial equilibrium form of Eq. (10.31) to- 
gether with Eqs. (10.51), this expression may be manipulated to give 

Integration then gives 

M -(H- ~3ifl i 

1(1 o . .  
- 2  -2 + Wel + - ~ J  1 y,t, dy  (10.91) 

The integral in this expression is easily obtained in terms of elementary 
functions when Eq. (10.84) (for 'It) is used. The terms WeR and Wet refer to 
the equilibrium axial velocity at tip and hub, respectively, and follow 
directly from Eq. (10.87). The dimensionless axial force across the blade row 
then follows from 

2¢r ~ (10.92) 
por~w~ r~w~ 

Solution for a Single Row 

The equation set (10.82) allows rapid computer evaluation of the fluid 
velocities when a larger number of actuator disks exist in the annulus. For 
small numbers of actuator disks, however, there is some advantage to 
analytically inverting the matrix to obtain explicit forms for the desired 
quantities. The simplest imaginable case is that for which only one disk is 
present, and for this case the solution of Eq. (10.81) reduces to 

Cn (1) 
~,, = ---7~- exp[,r/?)(x - xl)] + T, (°) X < X  1 

C(1) Tn(1 ) exp[ff~'(x 1 -x)] + x 1 < x (10.93) 
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The matching condition equation (10.82) becomes simply 

C~l) T~ °)= Ca) T~ 1) (10.94) - -  + - -  v n  + 

It is thus evident that the flow adjusts in an exponential fashion from its 
far upstream equilibrium condition as it approaches the actuator disk, and 
then exponentially relaxes toward its far downstream value as it departs the 
disk. It is apparent from Eq. (10.60) that ?~, is given approximately by 
~ ,  --- n ~ r / ( R  - 1). Closer investigation of the terms 7 also indicates that a i 
must be quite small compared to ?~1 if reverse flow is not to occur. Thus, it 
can be seen that the slowest decaying harmonic of the series decays 
approximately as exp[-Trlx - x l l / ( R  - 1)] away from the row. This can be 
a useful approximation when attempting to estimate upstream effects. 

The final forms of the solutions will be summarized below, but before 
doing so it will be of value to note that when conditions at the blade row are 
considered, the terms may be regrouped somewhat to ensure more rapid 
convergence of the summational terms. This is particularly useful because 
the disappearance of the exponential decay terms in the summations causes 
a much slower convergence of the summational terms. A familiar result 
from linearized theories is that the stream function at the disk would be 
one-half of the far upstream and far downstream values. Utilizing this result 
leads to 

T (0) T (1) T (0) _ T(1) Cn(1) 
((I)rt) X = Xl 2 q 2 q 

with Eq. (10.94), this may be manipulated to give 

i 

Tn(°) -.{ - Zn (1) T(O)- Zn (1) (~?))2  - ('l~(nl))2 
(10.95) 

The second group in this expression will always be found to be very small 
and, further, will be found to decrease with increasing n much faster than 
the terms C , / , I ~  ~. 

As a particular example consider a uniform flow approaching a stator 
that introduces a "solid-body-like" rotation. In terms of the above parame- 
ters, this means 

/3o = ¢o = So = O, B1 = ~1 = O, al = 
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and 

y 2  
Tn(°)YEln (y )  = - -~  = ql_ oo 

n=l  

T~(1)yEI.(Y) 
n=l  

YUt(aY)  RyWI (aY)  
2 U l ( a )  2 U l ( a  ) 

- ~ ?%T~(°)Eo.(y) = 1 = W-oo 
n=l  

~.nTn(1)Eon( Y ) - aUo( aY ) 
n=l 2 U t ( a )  

Then with Eq. (10.80) 

T~O) = _ _ _  

so that 

Thus 

aRWo( aY ) _ - - +  
2vx(,~) 

An 

2 '  
T f  ) = _ h 2  A.  

h 2 - a 2  2 

Tn (0) -  T ( 1 ) -  _ _  
a 2 A.  -- Oi 2 A n 

?~2 _ a2 2 72 2 

OL2 ~-~. A . y E I . ( Y )  r .  , 
- - -  - -  m - - - ~  exP tA . tX  - x1)  ] ',I, = ,.t, 2 n . ( X . +  ~ . )  

n=l  

OI 2 
"t'='t% +-~- ~ X " A " y E l " ( Y l e x p [ ~ . ( X l - X ) l  

n=l  n2(Xn "-F "~n) 

2 O L 4 ~  A " y E I " ( Y )  
'~tt= (~It °°-b g/t°e)q---4- n=X "O2n(~kn+~n) 2 

The tangential velocity follows from Eq. (10.83) to give 

V = 0  x < x  1 

v =  -(c , /y) ' t"  x>  xl 

O~ Ol 5 V = - ~ y ( q F  oo + ~oo)-'~--fy ~ AnyEln(Y)  
.=~ n~.(x. + n . )  ~ 

= %  

X = X  1 

X < X  1 

X > X  1 

x = x~ 
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The axial velocities follow from Eqs. (10.84), (10.87), and (10.88) to give 

(X 2 
W = I + T  ~" X"A"E°"(Y)exp[X"(x-x')] 

n.(x.  + n.) 
X<X 1 

x2oA.eo°(y) 
W= W:¢--~- ~ exp['o,,(x,- x)] 

n=l  "02(}kn "1"- "On) X>X 1 

Og 4 W =½(1 + W~)--~ ~ ~'nAnE°n(Y) 
n=l Tl2n(Xn -F 'r/n) 2 

X=X 1 

Example values for the dimensionless velocities have been calculated for 
the case where R = 3 and a = 0.84. The results are shown in Figs. 10.5 and 
10.6. 

The results indicate that, for this rather large swirl introduced by the 
stator, substantial perturbations to the axial velocity profile are introduced. 
The resulting stream surface shapes and ambient diffusion or acceleration 
can now be obtained to determine the overall flowfield in which the blade 
row is imbedded. These results in turn will allow the establishment of the 
correct cascade geometry to determine the cascade flowfield. 

Examples with more blade rows are relatively easily obtained, although if 
more than two blade rows are considered, the analytic inversion of the 
coefficient matrix [Eq. (10.82)] becomes very messy algebraically. It is much 
easier to simply program the matrix and numerically invert it. More 
complicated example solutions are provided in Refs. 7 and 8. 
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10.6 Advanced Problems in Throughflow Theory 

The example solutions illustrated in Sec. 10.5 allow rapid calculation of 
the flowfields existing in an annulus with many blade rows, but the 
solutions, although quite instructive, have incorporated into them many 
limitations. Thus, it was necessary to assume that the fluid was perfect and 
incompressible, that the blade loading (in terms of H and yV) was such as 
to lead to linear equations, and that the annulus had parallel walls. More 
advanced investigations allow some or all of these restrictions to be relaxed, 
so in the following sections a brief description of some of the methods 
available for solution of the more general forms of the throughftow equation 
will be outlined. 

Effects of Compressibility 
When the flow has substantial compressibility effects, the full coupled 

equations (10.30) and (10.31) together with the boundary conditions and 
matching conditions must be utilized. In virtually all calculation schemes, 
these equations are solved in an iterative manner, with Eq. (10.31) solved 
first (by finite difference or finite element techniques) with an assumed 
density distribution and then the density "updated" by utilizing the ob- 
tained values for ~ in Eq. (10.30). Equation (10.30) is then solved (itera- 
tively) to determine a new set of values for the density, and the coupled 
iteration process continued until convergence is obtained. Simple Newto- 
nian iteration is usually used to solve Eq. (10.30) for the density ratio. Thus, 
write 

[(1 
- r T r )  + \ r  c~z) ] = 0  (10.96) 



398 GAS TURBINE AND ROCKET PROPULSION 

Then 

(~oo) = ( ~ o )  ~ (10.97) j +  1 j Fj '  

where 

 ,098, F'=2[2h'-V2]po Cpp 

Note that 

(10.99) 

where M m is the meridional Mach number. 
Equation (10.99) may be combined with Eq. (10.98) to give 

Po 2 h ~o )v lexp ( s - s  o) 
" L P 

It is evident from integration of the Gibbs equation (Sec. 2.9), however, 
that 

p y-I T 
- ~ ( ~ o )  e x p [ ~  ( s - s ° ) ]  =1  

and the equation for F' hence becomes 

F ' =  - 2 ( T -  1)h~oo ( 1 -  M~) (10.100) 

It is thus evident that it is the meridional Mach number (rather than the 
"total" Mach number) that plays the crucial role in determining the 
mathematical behavior o f  the solution. It is evident also that Newtonian 
iteration will fail in the vicinity of M,, = 1. As a result, most calculation 
schemes are limited to the description of flows with meridional Mach 
numbers less than unity, even though the total Mach number may be far in 
excess of unity. It is to be noted that because the density ratio itself is 
primarily dependent on the total Mach number, very large density changes 
can occur for flows with modest meridional Mach numbers. Thus, great care 
should be taken to properly calculate the resulting density distribution. 

Hawthorne and Ringrose 9 considered the perfect flow of a calorically 
perfect gas through actuator disks contained within a parallel-walled an- 
nulus. The flow considered had a free vortex distribution, but was consid- 
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ered to be compressible. The analysis, which is one of the very few 
analytical treatments (as compared to numerical) of compressible flows in 
turbomachines, was carried out by linearizing the equations. Both the radial 
velocity and meridional Mach number, as well as the turning induced by the 
blades, were considered to be small. The results are very useful, because by 
restricting the study to free vortex flows in parallel-walled annuli, the 
perturbations in axial velocity that arise must be caused by the effect of 
compressibility alone. Example cases can be calculated with ease because of 
the analytical form of the results leading to easy physical interpretation 
of the results. 

Fully numerical methods can usually be categorized into one of three 
methods: streamline curvature, finite difference, or finite element. The 
streamline curvature method utilizes an approximate method of solving the 
throughflow equations 1°-a3 and as such rests somewhat between the radial 
equilibrium method and methods that solve the full throughflow equations. 
The essence of the method is that approximate forms of the stream tube 
curvature are assumed, so that the describing equations become quite 
simplified. Various "curve fits" are assumed for the several example solu- 
tions detailed in Refs. 10-13. 

Finite difference methods, as might be expected, incorporate finite 
difference approximations to the various derivatives appearing in the 
throughflow equation. A finite number of "nodal points" are selected, and 
as a result a finite set of algebraic equations results to be solved for the 
values of the stream function at each point. This leads to the requirement to 
invert a sizable matrix, and such methods are hence often referred to as 
matrix methods. Wu 1 in his pioneering work utilized a finite difference 
technique and many investigators have utilized the method since that time. 
Examples are given in Refs. 14 and 15. 

In common with most techniques, the finite difference methods encounter 
computational difficulties when the meridional Mach numbers approach 
unity. A further difficulty arises when curved boundaries are encountered, 
because very complicated computational "stencils" are required to insure 
numerical stability. Davis 15 considers the flow in very highly curved chan- 
nels and finds a 15-point stencil is required to adequately represent the 
Taylor series expansion of the derivatives of the stream function. A quasior- 
thogonal finite difference net is introduced to aid the computation. It is to 
be noted that the extreme curvature of the boundaries in the Davis study are 
such as to render most streamline curvature techniques incapable of describ- 
ing the flowfield. This is because the curvature of the stream tube is very 
difficult to estimate in the approximate way required for streamline curva- 
ture techniques when such extreme boundary curvatures are present. 

In the fairly recent past, finite element methods have been developed in 
the hopes of circumventing some of the difficulties found in applying finite 
difference techniques. Hirsch and Warzee 3 describe an investigation where 
the finite element method is applied to the description of flows in axial 
turbomachines. The compressible throughflow equations are derived in the 
(r, z) plane and a Galerkin finite element method is applied, leading to a 
system of equations for the unknown stream function. The curved hub and 
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tip boundaries are well fit by utilizing high-order isoparametric quadrilateral 
elements. The method hence does not require approximation of the stream- 
line curvature (with possible introduction of numerical instabilities or 
errors), nor does it require the use of complicated and extensive stencils with 
the resultant programming difficulty and possibly increased computational 
times. 

Oates and Carey ~6 and Oates, Knight, and Carey ~7 present studies that 
also involve the use of a finite element approximation. In addition, a 
variational functional F is defined where 

where Pe is a (dimensionless) reference pressure. 
It is shown that when the formal variation of F and 6F is taken and put 

equal to zero, the throughflow equation, boundary conditions, and all 
matching conditions are automatically satisfied. The method developed in 
Refs. 16 and 17 then involves putting the discrete approximation (using 
finite elements) of 8F equal to zero. A further useful manipulation is 
introduced in that, rather than solving for ~/(y,z), the equations are 
transformed to solve for y(g,, z). By this artifice, the flow domain is mapped 
to a rectangular domain with + = - ½ and g, = - R 2 / 2  on the horizontal 
boundaries. These several manipulations lead to a very efficient computa- 
tional scheme. 

Reference 4 gives an extensive review and comparison of many through- 
flow calculation techniques. 

All of the fully numerical calculation schemes described above can 
include the effects of variations in hub and tip radii. Several analytic studies 
to explore such effects have been carried out, however, and offer the 
advantage of relative simplicity in calculation of desired example cases. 
References 2 and 18 consider a study that includes the effect of variation in 
annulus radii when both the wall slopes and the annulus contraction or 
expansion are restricted to be small. A similar study is reported in Ref. 8, 
except that the restriction to small contraction or expansion is not required, 
although the small wall slope must be retained. Finally, Ref. 19 describes 
the passage of swirling flows through conical ducts. In all of the investiga- 
tions into the effects of wall shape reported in Refs. 2, 8, 18, and 19, the 
flows are considered perfect and incompressible. 
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Problems 

10.1 "Magnetofluid-dynamics" (MFD) involves the study of the in- 
teraction of magnetic and electric fields and fluids. When a plasma is 
considered (such that there is no significant net electrical charge in the 
fluid), the effect of the added interactions is to introduce the "Lorentz 
force" j x B into the momentum equation and the energy addition/second 
j • E into the first law of thermodynamics. Thus, if the viscous contributions 
are negligible, the momentum equation and equation for the stagnation 
enthalpy become 

Ou 
p-DT=j  × B - Vp 

Dh t Op + j ' E  
P Dt = O---t 

where j is the electrical current density, B the magnetic field, and E the 
electric field. 

(a) Show that the equation for the variation in entropy may be 
written 

D S  • E' 
pT-b- S- =j 

and find E' in terms of u, B, and E. 
(b) Noting the second Maxwell equation V • B = 0 and the equation 

for current continuity V "j = 0, show that an equation for the variation in 
vorticity can be written in the form 

_Q• 1 1 
p = ( w ' V ) u +  V ~ × [j × B -  Vp] + ~ [ ( B - v ) j -  ( j ' V ) B ]  

10.2 Consider the ideal incompressible flow of a fluid through a stator 
represented as an actuator disk at z = 0. The flow approaches the disk from 
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a uniform state far upstream in the parallel-walled annulus, and swirl is 
imparted such that in terms of the dimensionless variables, 

y V =  - a ~ t  ' + f l  

(a) Obtain analytical forms for ,I', W, and V in terms of A,,  B,, and 
other prescribed variables for both the upstream and downstream quanti- 
ties. 

(b) Obtain somewhat simplified forms for '~', W, and V at a location 
just downstream of the disk (at z = 0+). 

(c) For  the case R = 2.8, a = 0.6, and fl = 0.84, calculate and plot 
( W -  1) vs (y  - 1 ) / (R  - 1) at z / ( r  t - rh) = 1 - X, 0, ~, and oo. 

(d) For  the value of 8 and R found in part  (c), calculate and plot 
( W -  1) vs (y  - 1 ) / ( R  - 1) at z / ( r  t - rh)  = - ~, 0, + 1, and oo. 

10.3 For conditions as in Problem 10.2, except that the stator imparts 
a swirl such that 

( y V )  2 = - 8 " t "  

(a) Obtain analytical forms for ,I,, W, and V in terms of y, 6, and R 
appropriate for each of the regions z < 0 and z > 0. 

(b) Obtain a closed-form solution for Wz= 0 in terms of y, 6, and R. 
(c) For the case R = 3 find the value of 6 that just leads to W o o ( R  ) = O. 
(d) For  the value of 8 and R found in part (c), calculate and plot 

( W -  1) vs ( y  - 1 ) / ( R  - 1) at z / ( r  t - rh)  = - ~, O, + 1 7, and oo. 
(e) For the same values as part  (c), plot V vs ( y -  1 ) / ( R -  1) at 

z / ( r ~  - r,) = 0 +, ~, and oo. 

10.4 Consider the ideal flow of an incompressible fluid through a 
rotor at x a and then through a stator at x 2. The annulus radii are constant 
and the rotor introduces a (dimensionless) swirl given by 

y V  = - a q l  

The stator removes all the swirl. 
(a) Obtain expressions for the swirl and stagnation enthalpy valid for 

each of the three regions 0, 1, and 2. Write the appropriate partial differen- 
tial equation for the stream function in each region. 

(b) Obtain the radial equilibrium form of the stream function in each 
of the three regions. 

(c) Utilize the matching conditions to solve for any remaining un- 
knowns so as to obtain analytical forms of the solutions in terms of y, a, R, 
and ~ (dimensionless rotor speed). 

(d) Obtain simplified forms of the solutions valid at each of the 
actuator disks. 
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(e) Calculate and plot ( W -  1) vs (y  - 1 ) / (R  - 1) at both x = x 1 and 
x = x  z for the c a s e a = 0 . 7 ,  f ~ = l ,  R = 3 ,  a n d x  l = 0 , x  2 = 2 .  

10.5 Consider the ideal flow of an incompressible fluid through a 
stator row at x 1 and then through a rotor row at x 2. The rows introduce 
swirl such that in each region 

y V  = 0 x < x t 

y V = - Oll~X¢ +/31  XI < X < X  2 

y V =  - a 2 g l  + f12 x2 < x < o~ 

(a) Obtain analytical solutions for W valid in each of the three 
regions in terms of y, al, a2,/31,/32, Xl, x2,  and ~2, the dimensionless rotor 
speed. 

(b) Indicate how you would obtain analytical forms for W valid at xl 
and x 2 that would hasten convergence of the series. 



11. CASCADE FLOWS 

11.1 Introduction 

When the throughflow field (Chap. 10) has been determined, the blade 
profiles necessary to induce the desired fluid conditions can then be (ap- 
proximately) determined by consideration of the cascade flowfield. As 
previously discussed (Sec. 9.1), a cascade flowfield is obtained by "unwrap- 
ping" the desired meridional surface that has been determined from the 
throughflow analysis. The required blade geometries necessary to give the 
desired flow turning efficiently for the particular "strip" considered are then 
obtained by experimental and/or  theoretical consideration of a quasi-two- 
dimensional configuration such as that indicated in Fig. 11.1. 

It should be noted that because the meridional surface will, in general, 
have a streamwise varying cross-sectional area (with its attendant imposed 
pressure gradients), the cascade wind tunnel should be constructed to 
impose this desired area variation. This is by no means a simple experimen- 
tal task, because the upper and lower walls will have to be adjusted (in a 
curved fashion) to include not only the area variation actually occurring in 
the throughflow, but also the corrections that have to be made for the 
growth of the wind-tunnel sidewall boundary layers. 

Even when the streamwise variation of the cross-sectional area is well 
approximated, a further problem of considerable difficulty remains. It is 
apparent that the flow is (very nearly) periodic in the actual (annular) blade 
row, so it is important that enough blades be incorporated in the two- 
dimensional cascade to ensure that the required periodicity occurs over the 
middle (test) blades. The results of considerable discussion on this matter 
are reported in Ref. 1. The specialists' estimates of the minimum number of 
blades required were 5-15 for subsonic cascades and 3-9 for supersonic 
cascades. The required minimum number of blades was considered to 
depend somewhat on the purpose of the tests, so that, for example, if only 
the surface pressure distribution of a blade was to be determined, relatively 
few blades would be required. In contrast, if an accurate estimate of the 
cascade losses was desired, a large number of blades would be required. 

It is apparent that the approximation to exact periodicity can be aided 
somewhat by shaping the sidewalls to approximate the expected approach 
streamline shape. In practice, this is rarely attempted because the shape of 
the approaching streamline will, of course, vary with the loading on the 

405 
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TURN T A B L E 7  

s,o  / - . j  % 

~TAILBOARDS 

Fig. 11.1 Typical cascade wind ~mnel. 

cascade. As indicated in Fig. 11.1, "tailboards" are sometimes used to 
reduce the effects of the external flow interaction at the sidewalls. 

Usually, the number of blades utilized in a given facility cannot be greatly 
increased because of the resulting small size of the blades (if the solidity is 
to be maintained at the desired value). Excessively small blades create 
difficulties in that it becomes hard to maintain the appropriate range of 
Reynolds numbers. Further, when detailed flow information such as the 
surface pressure distribution is desired, small blade sizes lead to great 
instrumentation difficulties. 

In spite of these many difficulties, the results of careful cascade tests 
remain a most important source of information for evaluating the perfor- 
mance of and determining the detailed flow behavior of the many candidate 
blade profiles considered for use in turbomachinery. It should be recog- 
nized, however, that even "rout ine" cascade tests should be carried out with 
a great deal of care. 

11.2 Cascade Losses 
When a cascade has been successfully constructed to minimize the 

problems discussed in the preceding section, the performance can be de- 
termined by traversing stagnation pressure probes and yaw meters across 
the exit plane. 

The detailed information obtained from the instrument traverses can be 
presented in the form indicated in Fig. 11.2. Each setting of the inlet 
incidence angle and Mach number will have identified with it one such 
graph. 

Customarily, the detailed information contained in Fig. 11.2 is averaged 
in one of several ways so that the effect of variation in the angle of attack 
can be presented in a single graph such as that shown in Fig. 11.3. 

A common form of averaging is that of mass flow averaging. Thus, for 
example, the gas exit angle/3 2 would be obtained in terms of the mass-flow- 
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averaged tangential momentum and mass-averaged axial momentum. Thus, 

tan ~2 = foSpuv d l /  foSpu: d{ (11.1) 

Similarly, the mass-flow-averaged pressure loss would be obtained from 

A pt = foSpu( pt~ - pt~) d(/~Spu d{ (11.2) 

It is evident, particularly in the case of the mass-flow-averaged pressure 
loss that considerable difficulty will arise when the results of different 
cascade measurements are compared. This is because AP t as defined by Eq. 
(11.2) will change (for the same cascade test) with the distance from the 
cascade exit at which the measurements are taken. This problem is present 
even if the cascade wall losses do not intrude into the measurement region, 
because the wake mixing process itself introduces further entropy gains. 

It will be recalled from Sec. 6.3 that great care must be taken when 
employing average values to describe component performance. The warn- 
ings and examples of that section can again be referenced with regard to the 
problem of depicting cascade performance. 

As a result of the difficulty of interpreting mass-flow-averaged pressure 
losses, it has been suggested (for example, Ref. 2) that "mixed-our '  values 
of the pressure loss be used to compare the performance as determined from 
different cascades. The mixed-out value corresponds to that value of the 
pressure loss that would exist if the fluid were allowed to fully mix in an 
ideal (no sidewall friction) constant-area mixer. It is also pointed out in Ref. 
2 that the results will have to be carefully interpreted no matter what 

I 

_! .... I 
P,2 =PtL 

/ J 

I 

Fig. 11.4 Simplified stagnation pressure profile. 
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averaging method is used, because the blade wakes will have a substantial 
interaction with the following blade rows. 

A measure of the expected size of the effect of averaging techniques can 
be obtained from a simple example. Thus, assume a simple abrupt wake to 
be imbedded in a flow that otherwise has experienced no stagnation 
pressure decrease, Fig. 11.4. Denoting the ratio of the mass flow with 
stagnation pressure decrement to the mass flow without stagnation pressure 
decrement as a, it follows that 

APt m a s s  a v  _ 1 _ a 1 

Pq Ptx foSpud~ 1 + ct pq j 
(11.3) 

The mixed-out stagnation pressure losses for this simple flow may be 
calculated by utilizing the results of Sec. 6.3 directly. As an example 
consider the case with a Mach number of the high-pressure stream M 1 equal 
to 0.6, a = 0.2, 3' = 1.4, and the stagnation temperature ratio of the two 
streams equal to unity. The result is shown in Table 11.1. 

These simple calculations indicate that it is very important to be aware of 
which averaging technique has been utilized for a given data set and, in 
addition, at which location the measurement traverse was taken. Note that 
an alternate way of looking at this problem is to realize that if two data sets 
were compared where one set of measurements were taken far downstream 
(where conditions approach mixed-out) and Apt m a s s  av/Pq were found to be 
0.0333, and then a second set of data taken in close proximity of the cascade 
exit, which also had Apt m a s s  av/Pq = 0.0333, the second cascade would in 
fact have almost double the losses of the first. 

In an actual turbomachine, the various loss mechanisms are quite interac- 
tive. Thus, the flow profiles departing one blade row affect the losses 
produced in the following row. In addition, losses occurring on the annulus 
walls and at the blade tips affect the total losses produced within the blade 
row and are themselves influenced by the blade losses. It is the hope in 
representing the entire flowfield as a compilation of three two-dimensional 
fields that knowledge of the "pure"  cascade flowfield will allow accurate 
estimates to be made of other losses. Thus, for example, when determining 
the performance of a cascade, every effort is made to remove the influence 

Table 11.1 Stagnation Pressure Losses 

PtL//Pq Apt m i x e d  o u t / / P t t  Apf m a s s  av/Ptt 
0.95 0.0090 0.0083 
0.9 0.0197 0.0167 
0.85 0.0336 0.0250 
0.8 0.0625 0.0333 
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of the cascade wall losses from the data. Later, however, the losses experi- 
enced in the turbomachine at the annulus walls will be estimated with the 
help of the cascade results. 

Several major flow interactions have been classified and attempts made to 
analyze them. An important example of such flows is termed the secondary 
flow. Secondary flows have been thoroughly reviewed in Ref. 3, where many 
example applications of secondary flow analyses are described. With regard 
to their applicability for use in the analysis of flows in turbomachines, 
secondary flow analyses are particularly useful in describing the flow 
through the compressor rows. Figure 11.5 depicts a distorted flow profile 
such as could be produced by the annuli walls approaching a stator row. 
When fluid with such a profile enters the pressure field of the blades, the 
low-momentum air is turned more ("overturned") than the high-momentum 
air, leading to the secondary flow patterns indicated. 

Secondary flow in compressors is particularly amenable to analysis be- 
cause to a good approximation the viscous stresses may be ignored in the 
region of the blades. This is an allowable approximation because the adverse 
pressure gradient imposed by the blades moves the flow toward separation 
with consequent low viscous stresses. The effects of viscosity are, of course, 
implicitly present in the distorted entry profile that has been developed by 
the long approach flow over the annulus walls. It is to be noted that the 
favorable high-pressure gradient found over much of the turbine blade 
profile leads to thin boundary layers that must be analyzed using (three- 
dimensional) boundary-layer techniques. 

Cascade tests are necessarily conducted with single rows of blades, so the 
effects of upstream blade rows (particularly moving blade rows) cannot be 
simulated. The effects of shed blade wakes can be substantial, however, and 
several extensive studies to describe the flow interactions have been con- 
ducted. Reference 4 extends the analytical models of the earlier studies of 
Refs. 5 and 6 and provides experimental verification of the analytical 

\ 
Fig. 11.5 Secondary flow patterns. 
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predictions. A more recent study is reported in Ref. 7, where a method of 
directly estimating the stagnation temperature profile following a stator in 
terms of the rotor blade loss factor is presented. The latter study has 
particular utility in the description of flow in high Mach number stages. 

In summary, it should be noted that the various losses occurring in 
turbomachines, other than two-dimensional profile losses described above, 
are not those to be found in a cascade wind-tunnel investigation. The 
cascade flowfield, however, appears as the "parent"  flowfield for all these 
secondary flows, just as the throughflow field appeared as the parent for the 
cascade flowfield. Hence the results of cascade studies are of utility not only 
in determining the blade losses, but also in establishing the cascade flowfield 
so that the secondary losses can be estimated. 

11.3 Cascade  Notation 

Typical cascade notation is illustrated in Fig. 11.6 where 

subscript 1 = 
subscript 2 = 

9= 
7 = 

"t,1 = 
0 " =  
~= 
3 =  

inlet condition 
outlet condition 
flow angle 
angle of blade camber line 
stagger angle 
blade camber angle = ~,~ - ~'2 
flow turning angle =/31 - / 3 2  
deviation angle =/32 - It2 

a = angle of attack =/31 - 71 
w = "axial" (x)  velocity 
v = magnitude of the velocity 
S = spacing 
C = chord 
o = solidity = C/S 

When presenting the data, as already depicted in Fig. 11.3, it is usual to 
depict the stagnation pressure loss in a dimensionless manner, such as 

A pt//½PlV~ 

It is customary to describe an airfoil shape in terms of its thickness 
distribution about a prescribed camber line. The camber line is often taken 
to be of parabolic shape (which reduces to a circular arc profile as a special 
case). Many attempts have been made to relate the blade camber angle and 
other geometric properties of the blade to the deviation angle. (See particu- 
larly Chap. 6 of Ref. 8.) A quite convenient approximate form has also been 
suggested 9"1° to relate the value of the deviation angle at design conditions 
3" to the blade geometry and flow exit angle at design /3" The suggested 2"  
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Fig. 11.6 Cascade notation. 

relationship is 

3* = ( r n / v ~  )O* (11.4) 

where 

m = 0 . 2 3 ( 2 a / C )  ~ + 0.1(]3~'/50) 

In this expression a is the distance from the blade leading edge to the point 
of maximum camber and fl~' is to be measured in degrees. 

By utilizing this approximate relation, the blade turning angle necessary 
to introduce the desired flow turning can be easily estimated. 

11.4 Calculational Methods 

Now consider the quasi-two-dimensional flow in the cascade plane. 
Figure 11.7 illustrates the coordinate system. The flow will be assumed to be 
of depth b, where b is a function of x alone. 

It is apparent that if vorticity is to be present in the flowfield it must be 
directed perpendicular to the cascade plane. With ideal (isentropic) flow 
assumed, with uniform properties far upstream, Eq. (10.25) then gives 
directly 

x u = o ( 1 1 . 5 1  

but because ~0 must be perpendicular to u, ~0 itself must be zero. It is thus 
possible to define a potential @, such that 

u = V@ (11 .6 )  
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,,v I 

Fig. 11.7 Cascade coordinate system. 

The quasi-two-dimensional form of the continuity equation may be 
written 

O(pub) O(pvb) 
O ~  -+ Oy 0 (11.7) 

Utilizing this equation, a stream function may be defined by the relation- 
ships 

1 0 ~  - 1 0 ~  (11.8) 
u pb Oy' v -  ob Ox 

The condition that the vorticity is zero, 

Ou Ov 
- 0 (11.9) 

Oy Ox 

then gives an equation for the stream function that may be written 

1 db 0+ 1 0p 0q, 1 0O 0+ 
V2+= b dx Ox ~- + (11.10) p Oy Oy p Ox Ox 

As in Sec. 10.2, a subsidiary equation for the density may be obtained by 
utilizing the isentropic condition. Thus 

p~ ~ J  h, -  ~(.1~ + 4 )  
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and hence with Eq. (11.8) 

(11.11) 

Equations (11.10) and (11.11) are two coupled nonlinear equations for 
and p in terms of the far upstream conditions and the prescribed area 
variations. When the flow can be approximated as incompressible, the 
equation for the stream function reduces to 

1 db O~ (11.12) 
V 2~ = b dx Ox 

The solution to the above equations is usually dependent upon the 
application of fully numerical techniques, although analytical methods have 
been applied in special cases. References 11 and 12 report on a study of 
incompressible flow with area variation. A perturbation analysis is carried 
out in which it is necessary to restrict the wall slope to be small. 

A method that applies conformal mapping techniques to two-dimensional 
(db/dx = 0) transonic flows is described in Ref. 13. This paper represents 
an application of a highly developed analytical technique. In conformal 
mapping techniques, the cascade geometry is transformed to a geometry 
that is much more simply analyzed (either analytically or numerically) and 
the results of the analysis in the simple plane are then transformed back to 
the more complex plane. Because of the utility of such techniques, the next 
section considers a relatively simple example problem that leads to an exact 
solution for the flowfield. 

Two-Dimensional, Inviscid, Incompressible Flow 
When the case of flow of an incompressible, inviscid fluid in a strictly 

two-dimensional channel is considered, the equations describing the flowfield 
simplify greatly and, in fact, both the velocity potential and the stream 
function satisfy Laplace's equation. As a result, the very powerful tech- 
niques of complex variable theory can be used, including the technique of 
conformal mapping. Before embarking upon a formal analysis of the 
problem, however, it is instructive to first consider the force relationships 
and circulation relationships for a two-dimensional cascade. Figure 11.8 
depicts the flow through such a cascade. 

Noting that the forces on the two streamlines depicted are equal and that 
continuity ensures that the axial (x) velocity remains unchanged, the 
momentum equation gives 

Fx = ( P l - - P 2 )  SAb (11.13) 
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Fig. 11.8 Flow through a two-dimensional cascade. 

and 

~, = pu( v 1 - vz)SAb (11.14) 

Utilizing Bernoulli's equation to relate the pressure difference to velocity 
differences, the vector force may then be written 

F = p S A b ( v l - v 2 ) [ - ½ ( v 2 + v l ) e x + u e v  ] (11.15) 

Thus the magnitude of the force F is given by 

F = p S A b ( v  1 - v z ) V  ~ 

Noting that 

where 

(11.16) 

v~ = ~(Vl + v2) 

The circulation about the contour follows immediately to give 

I" = S ( v l  - v2) 

so that just as with an isolated airfoil, there is obtained 

F =  orV~b 

(11.17) 

(11.18) 

(11.19) 

tan0 = (02 + 01)/2u = tan0'  

it can be seen that the force F is perpendicular to the velocity V~, where 
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The Complex Potential 
When, as in the case of frictionless two-dimensional flow through cascades, 

the flow may be considered irrotational, a velocity potential may be defined 
as in Eq. (11.6). The continuity equation (10.1) then gives for incompressible 
f lOW,  

V 2q, = 0 (11.20) 

The stream function also satisfies Laplace's equation, as may be seen 
directly from Eq. (11.10) for the case of incompressible flow with constant- 
flow depth b. Thus, define a complex potential W by 

W = q~ + i~ (11.21) 

and note that 

v 2 W  = 0 (11.22) 

If the complex potential is to satisfy Laplace's equation, it must be a 
function of z - x + t~v only. Thus, 

OW d W  Oz d W  
0~--  d~ Ox = d--~ (11.23) 

but from Eqs. (11.6) and (11.8) 

0~ 0~ 0q~ 0~ (11.24) U = - - = - -  U = - - - - - - -  - - - -  
Ox Oy Oy Ox 

and hence 

dW 
= u - iv (11.25) 

dz 

In the following sections, a transformation function is introduced to allow 
solution for the complex potential W (for special cases of the cascade 
geometry). Once W is obtained, the velocity components may be obtained 
directly from Eq. (11.25). 

The Cascade Transformation 
In order to illustrate the use of conformal mapping techniques, a transfor- 

mation is considered that maps a cascade of straight-line airfoils onto a 
circle. The resulting flow in the "circle plane" is relatively easy to analyze, 
and the cascade mapping function allows the flow in the circle plane to be 
mapped back into the "physical" plane. This is a relatively simple example 
of a highly developed analytical technique that has been extensively re- 
ported elsewhere. (For example, see Refs. 14 and 15.) 
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The transf, 'rmation function to be investigated is 

S ~ ( e  i ~ d n e ~ + ~  + ,~- e + + l / ~ "  t z =  e ~e---~-f_ ] (11.26) 
2~" 1 e* - ~" - 1/~" 

It will be shown that this function takes a unit circle in the ~" plane and 
maps it into a straight-line cascade in the z plane, with geometry as 
indicated in Fig. 11.9. Note that for notational convenience, the geometry 
has been rotated so that the flat-plate airfoils are horizontal in the z plane. 

To verify that Eq. (11.26) has the desired transformation properties, first 
note that on the unit circle (where ~ = e ~*) the second term in the brackets 
of Eq. (11.26) is the complex conjugate of the first. Thus, the imaginary part  
of the expression must be zero (or a constant) and hence the circle is 
mapped onto the x axis in the z plane. 

A further property of the transformation is evident in that the points 
= + e ~ map into _+ ~ in the z plane. It can be seen also that the mapping 

is multiple valued by considering the mapping in the neighborhood of the 
point ~ = e ~. Thus, consider the behavior of the related point z when 
proceeding around the point ~ = e ~ in a small circle of radius r. That is, 
consider 

= e+ q- re io 

and change 0 from 0 to 27r rad. It is evident from Eq. (11.26) that all of the 
logarithmic terms return to their original value except the term containing 
e ~ - ~. Thus, denoting the difference of the final and initial values of z as 
z 2 - z 1, there is obtained 

z 2 - z 1 = _ 2 - ~ e - i ~ [  d ~ ( - r e  i2~) - { ~ ( - r e i ° ) ]  

S 
- 2 ~  e-i~g~ei2~ 

¢ 
x+ly 

Fig. 11.9 The cascade transformation. 
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hence 

Z 2 - -  Z 1 = - -  iSe - i t~  = _ S sin fl - iScos/3 (11.27) 

Thus, the transformation from the ~ to the z plane is not unique, but 
rather a given point in the ~ plane can be reproduced n times in the z plane 
simply by going around the point 

~ = e  * ( o r ~ =  - e  ~) 

n times. Each point is removed from the previous by the vector 
- S  sin fl - iScos/3, which leads to the geometrical relationship indicated in 
Fig. 11.9. The ~ plane may be considered to consist of an infinite number of 
Riemann sheets, each sheet mapping to a given strip in the z plane. The z 
plane itself can be considered a two-sheet plane because both the inside and 
outside of the unit circle map into the same strip in the z plane. Only the 
mapping of the exterior of the circle will be considered here. 

It has been shown that Eq. (11.26) transforms the unit circle to a series of 
straight-line airfoils in the z plane. The airfoils are staggered at an angle of 
/3 and have a spacing of magnitude S. In order to determine the airfoil 
chord in terms of the properties of the mapping function, locate the 
transformation singularities that occur at d z / d ~  = 0. (It is at these singular- 
ities that the transformation is not conformal, and hence the angle of the 
circular profile is not conserved in transforming to the z plane.) Thus, note 

d---( = 0 = e - i a  + +e ia  ~ + e  -* ~ - e  '~ 

After some manipulation it follows that 

e i/~+* + e (i#+,~) 

~.2 = ~,o 2 _ e -'~+* + e ̀ a-* (11.28) 

It can be noted that the numerator and denominator are complex 
conjugates and, hence, of course, the singularities exist on the unit circle in 
the ~ plane. A more convenient form of Eq. (11.28) is obtained in terms of 
the angle to the location of the (rear) singularity ¢0 where 

~'0----" eiO° 

There is thus obtained 

~o 2 - 1 e i/~ --~-#~ e ¢ - e -¢  

~'o 2 + 1 e ~ + e - ~  e ¢ + e -* 
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hence 

i tan q)0 = i tan fl tanh 

o r  

q'o = tan l( tanfl  t anh~)  (11.29) 

The location of the blade leading edge in the ~ plane follows immediately 
by noting tan(~0 + ~r) = tan q~o. Hence, the leading-edge singularity occurs at 
q~o + ~'. 

A location x on the blade in the ~" plane may be determined by writing 
= e i*. Upon substituting into Eq. (11.26) and after some manipulation, 

there is then obtained 

(cosh +cos0) 1(sin0) 
2~x _ cosfl g'n + 2 sin fl tan (11.30) 

S cosh ~ - cos q, 

The location of the blade trailing edge is obtained by inserting the value 
of q~0 from Eq. (11.29) into Eq. (11.30) and the leading edge follows with 

= ~0 + ~r to give xl  = - x  v Then, with C = 2 x ,  

rrC [ Csinh2+ + cos2/3 + cosfl 
2--S- = cos fl En / sinh 

sinfl ) (11.31) 
+ sin/3 tan- 1 ¢sinh2~ b + cos2fl 

This expression relates the parameter ~ to the solidity o = C/S. Thus, when 
the solidity is prescribed, the equation may be solved (iteratively) for + and 
the appropriate transformation function determined. Before considering the 
behavior of the flowfield, one last characteristic of the transformation will 
be observed. Thus, it is noted that the point ~" ~ oo transforms to 

z ~ 2-~e-i~flct(-l )= 2~e-iBEet[ ei(2n+l)~r ] 

hence 

z ~ S(n + ½)(sin fl + icosf l)  

Thus, f ~ oo transforms into points midway between the blades. See Fig. 
11.10. 

This concludes the investigation of the properties of the transformation. 
The behavior of the flowfield will be considered in the next section. Note, 
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however, that the effect of the transformation has been to bring upstream 
and downstream infinity in the x plane and into the proximity of the circle 
in the f plane. When circulation about the circle exists, the angle of flow in 
the proximity of ~" = ±e* (z = ± oc) can be affected. Thus, unlike the case 
for an isolated two-dimensional airfoil, the angle of turning of the fluid can 
be made other than zero. 

T h e  C a s c a d e  F l o w f i e l d  

Figure 11.11 depicts aspects of the flowfield in the coordinate system 
being presently considered, 

The mean velocity V~ was previously defined in Eq. (11.16), so the mean 
complex velocity may be designated 

( U - i v )~  = V~e - i"  

Equation (11.18) gave the circulation in terms of the blade spacing change 
and tangential velocities, which here may be written 

av = F / 2 S  (11.32) 

Fig. 11.10 

+ 

4- • 

+ / 

Locat ion  of ~ ~ ~ in the Z plane. 

~ v 

" - . ( :Z2 /~  , ' 1 3 ,  
1/ - . . / H  , 

e 0 - I 

Fig. 11.11 Cascade velocities. 
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Thus, the desired far upstream and far downstream complex velocities 
may be written 

Uzz . r  d W  = V~e -'~ - t e 't~ 
oc 

(11.33) 

d ~  = Vooe ~+  i - ~ e  i~ (11.34) 
+ ~  

Figure 11.12 indicates these incremental velocity relationships. 
In order to create the desired velocities at upstream and downstream 

infinity, as prescribed in Eqs. (11.33) and (11.34), the flow behavior in the 
circle plane in the vicinity of the points + e  ~ is investigated. Thus, by 
placing (complex) sources at these points, the flow at _+ oo will be affected in 
the physical plane. It will then be necessary to adjust conditions in the 
vicinity of the circle in the ~" plane in order to satisfy both the boundary 
condition of no flow through the circle and the Kutta condition at the 
trailing edge of the blades in the z plane. It is to be noted that the 
adjustments to match the boundary and Kutta conditions can be carried out 
without further affecting the flow properties at z = + ~ because d z / d ~  
approaches infinity as ~" approaches +_ e + (i.e., as z approaches infinity) so 
the only terms that will contribute to d W / d z  at z = -t- oo are those causing 
d W / d ~  to also approach infinity. The only terms that lead to d W / d ~  
approaching infinity as ~" approaches _+ e ~ arise from the complex sources 
located at ~" = _+ e +. 

Now place a complex source of strength A at ~ = - e  ~, so that the 
complex potential in the vicinity of the source W s may be written 

W, = (A/2~r)Yn(~ + e +) (11.35) 

1" sin/~ 
2S 

gcosp 

_.F_ si./  
2S 

Fig. 11.12 Incremental velocity relationships. 
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To investigate the behavior near the source write f = - e + + 8, where 8 is 
very small, and obtain 

d W  s_ A 1 A 
d~ 27r ~" + e ~ 2~r8 

(11.36) 

From Eq. (11.26) note 

dz  - S ( e-'B e+ e-q~ ) (11.37) 
d~ ~r e2~b - -  ~ 2  ei~ ~ 2  - -  e 2~ 

In the vicinity of f = - e + (where 8 ~ 0) this approaches 

dz  Se i# 
d~ - ~  2 ~r---8 (11.38) 

Combination of Eqs. (11.36) and (11.38) then gives 

with Eq. (11.33), 

A = Vo, Se i(~,+#)_ i F (11.39) 

In a similar manner, placing a source of strength B at the location ~" = e ~ 
and satisfying Eq. (11.34) leads to 

B = - VaSe i(~,+#)_ i F (11.40) 

With the two sources at locations ~ = _ e ~, the complex potential F(~) in 
the ~ plane is given by 

1- '  
r ( ~ ' ) =  27r ~ ' - e  ~ i~ - -~{n(~Z-e  2 '~)  (11.41) 

A complex potential satisfying the boundary condition for flow around 
the circle can now be obtained by adding a complex function of the form of 
Eq. (11.41), but with i replaced by - i  (where i appears explicitly) and with 
~" replaced by 1/~'. This result (known as the circle theorem 16) follows 
because the added function becomes the complex conjugate of F(~) when ~" 
is on the unit circle; hence, tk is zero on the circle. (And, of course, the circle 
is thus a streamline.) Finally, a circulation F* is added at ~ = 0 (which does 
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not violate the boundary conditions) to give the complex potential W in the 
~" plane. Thus, 

SV~ i(~+o), e ¢ + F 
W =  - - e -  & - -  i 7 _ z & ( e 2 ¢  _ ~2) 

2~r e¢ - ~ ~ Tr 

+SV~e~U,+t~){ e ¢ + l / f + i F  ( 1 )  F* 27r e - - l ~  ~ -~--~{'~ e2~k- 7 + i~-~dn[ (11.42) 

Investigation of this expression reveals that application of the circle 
theorem has introduced further singularities at the conjugate points of _ e ¢, 
that is at ~" = _+ e ¢. Figure 11.13 indicates the location and strength of all 
the singularities in the circle plane. 

It is evident that, as must be the case, the total source strength is zero. 
The net circulation about the circle is F* and the net circulation about the 
entire field is F* - F. It will be recalled that when the ~" plane is entirely 
traversed at infinity, the image point in the z plane simply traverses a point 
midway between the blades. Obviously, the circulation about such a point 
must be zero, so F* = F. The expression for the velocity potential in the 
circle plane may hence be written 

SV~ [e_iU,+fl)ge¢+~+ei(,~+thd~+e-¢ 1 iF . e 2 ~ k - - ~  2 

W = ~ 1 e¢ - ~" ; - e-~ ] - 4~ ~e2~2-~- i 

(11.43) 

The complex potential given by Eq. (11.43) describes a flowfield that, 
when transformed to the z plane, matches the upstream and downstream 
conditions as well as the boundary conditions for flow around the blades. 

SOURCE SOU~RCE ~ SINK 
sv,.co,~,,,m / svoo,~+m svoo,~B~ \ sv=~o,~,,+o~ 

\ / / / 
-, \ , . - -  c,.cu.A O.- / CIRCULATION CIRCULATION 

Fig. 11.13 Singularities in the circle plane. 
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To complete  the description of the flowfield it remains to determine an 
appropria te  value for the circulation I'. Such a condit ion is obtained by 
applying the Kut ta  condit ion that the velocity not be infinite at the trailing 
edge of the blades. At the location of the trailing edge [where q~ = q~0 as in 
Eq. (11.29)] the derivative d z / d ~  is zero. Thus, to prevent  an infinite 
velocity at the trailing edge in the z plane, F must be chosen to put 
d W / d ~  = 0 at ~" = e ~*°. 

Taking d W / d ~  from Eq. (11.43) and putt ing ~ = e ~*, the complex velocity 
components  for the flow on the circle are obtained, to give after some 
manipulat ion.  

dWd_( ~=e'~ = e "~(u r -- iu~,) 

i e io 
= 2---~ cosh 2 ~p - cos 2 q~ { 4S Vo~ [ sin q~ cosh ~p cos( a +/3 ) 

- cosq~ s inh~ s in(a  + fl)] + F sinh2q~ } (11.44) 

It can be seen that as required, u, = 0. The Kut ta  condit ion requires u~ = 0 
when q~ = ~0- Thus, from Eq. (11.29) 

sin q~o = sinh ~k sin/3 , cos ¢o = cosh qJ cos/3 (11.45) 
~/sinh2ff + cos2/3 ~/sinh2+ + cos2/3 

The value of the circulation necessary to satisfy the Kut ta  condition F K 
then follows to give 

FK = 2SV~sin a (11.46) 
(sinhZ~p + COS2fl 

When this value of the circulation is substituted into Eq. (11.44), it 
follows after some manipulat ion that 

dW ~'=e'* i2SVoc e - io c o s h ~ s i n ~  s in (~o-~b)  

d~" ~" sin 2~0 ~/sinh2~ + cos2fl sinh2ff + sin2~ 

(.47) 

To obtain the complex velocity on the blade surface, note  that on the 
blade ~ = e i* and z = x, so that 

dz  d x  
d---( = - i e -  i* d---~ (11.48) 
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dx/dep may be obtained directly from Eq. (11.30). It follows that 

dz i2S e -i~ cosh ~ sinh ~, sin(~0 - q,) 
sin/3cos/3 

d~" 7r sinZq~ 0 ~/sinh2~ + cos2/3 (sinh2+ + sin2q,) 

(11.49) 

The velocity on the blade surface follows directly from Eqs. (11.47) and 
(11.49) to give 

cos[(~% + ~) /2 ]  } 
V~ cos/3sin(a+ /3)_sinacoS~ocos[(,#o_¢~)/2 ] 

sin/~ cos fl 

(11.5o) 

To complete the description of the flow in the cascade plane, the various 
flow angles will be obtained. With reference to Fig. 11.11, note the relation- 
ships 

Av 
= tan(a  +/3) - tan(a  2 +/3) 

v cos(  + 

= tan(a 1 +/3) - tan(a  + fi) (11.51) 

Equations (11.32), (11.46), and (11.51) then lead to 

O~ 1 = a r c  t a n  

O~ 2 = a r c  tan 

sin a 

sin a 

~/sinh2+ + cos2fl + cos/3 

V~sinh2~ + cos2/3 (cos a) + sin/3 sina 

~/sinh% + cos2fl - cos/3 

~/sinh2~b + cos2/3 (cos a) - sin/3 sina 
(11.52) 

These equations complete the desired description of the flowfield. They 
are summarized in a form suitable for calculation in the next section. 

Summary of the Equations--Cascade Transformation 

Inputs: /3, C/S,  a, ep 

Outputs: x / C ,  u//Voe, Oil, ol 2 
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Equations: 

~rC ~/sinh2~ + cos2/3 + cos/3 sin/3 
2S - cos/3& + sinfl tan -1 

sinh ff ~/sinh2~b -b C0S2/3 

~o = arc tan(tan/3 tanh g, ) 

x 1 [ cosh ~ + cos q~ 
C 2~rC/S [c°s/3dncosh~k- cos~ 

sinq~ ] 
+ 2 sin/3 tan-  1 sinh 

u , {  } Vo~ sin/3cos/3 cos/3sin(a +/3) - sinacos~,0 c ° s [ (~°+~ ' ) /2 ]  
cos[(~o ~)/21 

~/sinh2~b + cos2fl + cosfl ] 

a 1 = arc tan sin a ~/sinh2~k + cos2/3 (cos a) + sin/3 sin a 

~/sinh2~b + cos2fl - cosfl ] 

a 2 = arc tan sin a ~/sinh2q ~ + cos2fl (cos a) - sin 13 sin a 

Example Results--Two-Dimensional Straight-Line Cascade 
The equations summarized in the preceding section lead to rapid compu- 

tation of the performance variables of this ideal straight-line cascade. The 
results are useful for detecting the design trends of real cascades and, in 
fact, techniques to relate the performance of more complicated (and more 
realistic) geometries to an equivalent straight-line cascade have been devel- 
oped (for example, Ref. 15). The singularity in fluid velocity remains at the 
blade leading edges, but the fluid velocities at blade locations away from the 
leading edges exhibit the tendencies of the flowfields existing on real 
geometries. 

As an example calculation Fig. 11.14 shows the deviation angle (c~2) vs 
angle of attack (cq) for three values of blade stagger angle and two values of 
the solidity. 

It is apparent that the reduced blade loading existing for the case of high 
solidity greatly reduces the tendency of the flow to depart from the angle of 
the blade trailing edge. The deviation angle also varies strongly with the 
stagger angle, with large stagger angles causing increases in the deviation 
angle. It is evident from Fig. 11.15 that increasing the stagger angle leads to 
geometrical separation of the blades, so that the pressure fields of the blades 
do not interact as much at higher stagger angles. 

It is of interest to note that this effect of increasing stagger angle is not as 
limiting as it might at first appear. Thus, the example calculations of Secs. 
9.3 and 9.4 indicated that the required turning angles near the blade tips are 
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Fig. 11.14 
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Cascades at two stagger angles C / S  = 0.5. 

very much reduced, compared to those at the hub, for a compressor or 
turbine with a large tip-to-hub ratio. Thus, even though the geometry of a 
compressor or turbine is such that solidity decreases and the blade stagger 
angle increases with increasing radius, the effects of these geometry changes 
are much mitigated by the large reduction in required turning angle of the 
cascade. 

As a final calculational example, the deviation angle vs solidity has been 
calculated for the case of constant angle of attack for B = ~/4. (Note that 
this calculation required iteration of the input variable ~ to obtain the 
desired angle of attack ~z = 15 deg.) The results shown in Fig. 11.16 
indicate once again the sensitivity of the deviation angle to solidity. 
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Deviation angle vs solidity. 

These relatively simple results provide a method of quickly estimating the 
effects of design choices upon the overall cascade performance. Extensions 
of the method, such as those described in Refs. 13-15 lead to rapid 
computer solution for much of the detailed information of realistic (ideal) 
flowfields. As has hopefully been evident throughout this book, however, the 
analytical cascade results contribute only a portion of the information 
desired in the very complicated process of designing the optimum compres- 
sor. Careful experimental studies, in the form of cascade tests, have contrib- 
uted invaluable information for researchers and designers. Finally, the 
effects of interactive loss mechanisms, such as wake shedding and thence 
wake chopping by the following blade row, annulus wall boundary-layer 
buildup, and interaction with the blade pressure fields, blade boundary-layer 
buildup, and interaction with the centrifugal field, etc., must all be included 
in a careful program to develop the best possible compressor or turbine. 
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11.1 

(a) 

Problems 

Investigate the behavior of a flow with complex potential 

n__ t~_z 
W=2~r  a 

Find expressions for u r and u 0. 



430 GAS TURBINE AND ROCKET PROPULSION 

(b) Evaluate the volume flow rate Q through a contour encircling the 
origin. 

(c) Evaluate the divergence of the velocity. 
(d) Check that the divergence theorem is consistent with the results of 

parts (b) and (c). 

11.2 Investigate the behavior of a flow with complex potential 

i B  . z 
w =  - 2-gc  a 

(a) Find expressions for u r and u o. 
(b) Evaluate the circulation F about a contour encircling the origin. 
(c) Evaluate the vorticity. 
(d) Check that Stokes' theorem is consistent with the results of parts 

(b) and (c). 

11.3 Show that the complex potential 

W =  U a ( z / a )  ~/'~ 

corresponds to flow in a corner of a radians. 

11.4 Using the results of Problem 11.3 and the circle theorem, show 
that if a circular segment of radius a is placed at the origin in a corner of 
~r/2 rad, the velocities in the flowfield are given by 

U r ~  2U(~)COS(20)[1 -- (a) 4] 

u e = - 2 u ( r ) s i n ( 2 0 ) [ l + ( a )  4] 

11.5 (a) Use the circle theorem to obtain the complex potential for 
uniform flow past a circle of radius a, centered at the origin. 

(b) Find expressions for ~k, 0, Ur, and u0 in terms of the reference 
flow velocity U and a, r, and 0. 

(c) Show that the pressure coefficient on the body 

P -- Poo g 

is given by Cp = 1 - 4 sin20. Sketch Cp vs 0 in the range ~r/2 < 0 < ~r. 
(d) Show that the dimensionless axial force acting on the cylinder 

from the "nose"  back to the angle/3 is given by 

4 3 F = sin/3 - -~ sin/3 
½ p V 2 ( Z a )  
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-T: f 
S0 0,o 

Fig. A 

11.6 Consider a uniform stream to flow past a "source" of strength Q 
located at the origin (Fig. A). The complex potential of such a flow is 

W= Uz +(Q/2rr)•z 

(a) Show that the radial distance to the nose of the body from the 
origin r,, is given by r, = Q/2~rU. 

(b) Show that the source strength Q is given in terms of the eventual 
height of the body h by Q = 2Uh and hence also r,, = h/rr. 

(c) Show that the equation of the body may be written 

y = h [ 1 - ( O / ~ ) ]  

(d) Show that the pressure coefficient Cp = (p-px) / -~pU 2 m a y  be 
written in terms of the angle from the nose fl as 

sin2fl 2 sin fl cos fl 
B2 /~ 

(e) Show that the dimensionless axial force on the upper half body 

F 
lpU2 h ~ =  oCt d( -~ ) 

may be written F/½pU2h = sinzB ~./~. 

11.7 When axisymmetric flow past a point source of strength M is 
considered (Fig. B), solution to the equations yields 

1 M x  
~b= 2 Ur2 R 

where 

U ~ - -  - -  - - - -  W - - - - - - - - -  
r O X  ~ 

1 a~ 
r Or 
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I I. 
_1 

Fig. B 

(a) Show that 

Ol flR 
Ox 

- x  0 1 / R  = - r  

R s ' Or R 3 

(b) Show that U = M r / R  3 and w = U + M x / R  3. 
(c) Show that the equation for the body may be written 

M x =  ( ½ U r 2 -  M ) R  

and that r at x ~ oe = r m = 4V/-4M- / U. 
(d) Defining y by y = r/r. , ,  show that the pressure coefficient on the 

body is given by 

P - P ~  = 1 - 4 y  2 + 3 y  4 
2 

(e) Show by integrating the axial force that the dimensionless force 
(from the nose to y) 

F = frp_zpoc 2rrrdr 

, 2(~rr 2)  J0 ½pU 2 (~rr~) ~pu 

is given by 

F 
½PU2(~rr~) =y2(1 _ 2y2 +y4)  

11.8 Provide the detailed manipulations leading to Eq. (11.29). 

11.9 Provide the detailed manipulations leading to Eq. (11.31). 

11.10 (a) Show that the numerical value of the transformation vari- 
able ~k may be obtained from the Newtonian iteration expression 

xj+l = x  j -  F / F '  
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where 

x = sinh ~b 

F '-- 2s~rC cosfl &(  ~x2 + cos2/~ + cos/~ ) _ sin fl tan_ 1 ( x  V/x2 sinfl+ cos2/~ ) 

~x 2 + cos2~ 
F' = 

x ( l + x  2 ) 

(b) Show also + = tn(x + ~ x  z + 1 ). 
(c) Show that for the special case of ~ = 0, 

[ (expqrc/2S) + 1 ] 
~b = gn (exp ~c/2S) ---i 

and hence 

2expTrc/2S [sinh( ~rc )]-1 
sinh + (exp ~c/S) - 1 2-S 

11.11 Provide the detailed manipulations leading to Eq. (11.46). 

11.12 Provide the detailed manipulations leading to Eq. (11.50). 

11.13 Verify that dz/d~, as given by Eq. (11.49), does not go to zero 
as fl goes to zero. 

11.14 Show (using the results of Problem 10c, if you wish) that in the 
special case of zero stagger angle/3 the deviation angle a 2 is given in terms 
of the angle of attack a 1 by 

a 2 = arctan(exp - C ~ '~ tana l )  



APPENDIX A. CHARACTERISTICS OF THE 
STANDARD ATMOSPHERE 

h 
(f t / lO 3) 

T/TsL P/PsL P/PsL a/asL h 
(ft/lO 3) 

0 1.0000 1.0000 1.0000 1.0000 0 
1 0.9931 0.9644 0.9711 0.9366 1 
2 0.9863 0.9298 0.9428 0.9966 2 
3 0.9794 0.8963 0.9151 0.9395 3 
4 0.9725 0.8637 0.8881 0.9662 4 
5 0.9656 0.8321 0.8617 0.9827 5 

6 0.9583 0.8014 0.8359 0.9792 6 
7 0.9519 0.7717 0.8107 0.9757 7 
8 0.9450 0.7429 0.7861 0.9722 8 
9 0.9381 0.7149 0.7621 0.9636 9 

10 0.9313 0.6878 0.7386 0.9650 10 

11 0.9244 0.6616 0.7157 0.9615 11 
12 0.9175 0.6362 0.6933 0.9579 12 
13 0.9107 0.6115 0.6715 0.9543 13 
14 0.9038 0.5877 0.6502 0.9507 14 
15 0.8969 0.5646 0.6295 0.9471 15 

16 0.8901 0.5422 0.6092 0.9434 16 
17 0.8832 0.5206 0.5895 0.9382 17 
18 0.8764 0.4997 0.5702 0.9361 18 
19 0.8695 0.4795 0.5514 0.9325 19 
20 0.8626 0.4599 0.5332 0.9238 20 

21 0.8558 0.4410 0.5153 0.9251 21 
22 0.8489 0.4227 0.4980 0.9214 22 
23 0.8420 0.4051 0.4811 0.9176 23 
24 0.8352 0.3880 0.4646 0.9139 24 
25 0.8233 0.3716 0.4486 0.9101 25 

26 0.8215 0.3557 0.4330 0.9063 26 
27 0.8146 0.3404 0.4178 0.9026 27 
28 0.8077 0.3256 0.4030 0.8987 28 
29 0.8009 0.3113 0.3887 0.8949 29 
30 0.7940 0.2975 0.3747 0.8911 30 
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h 
( f t / lO 3) 

GAS 

T/TsL 

TURBINE AND ROCKET PROPULSION 

P/PsL P/PSL a/asL h 
(ft / lO 3) 

31 0.7872 0.2843 0.3611 0.8872 
32 0.7803 0.2715 0.3479 0.8834 
33 0.7735 0.2592 0.3351 0.8795 
34 0.7666 0.2474 0.3227 0.8758 
35 0.7598 0.2360 0.3106 0.8717 

36 0.7529 0.2250 0.2988 0.8677 
37 0.7519 0.2145 0.2852 0.8671 
38 0.7519 0.2044 0.2719 0.8671 
39 0.7519 0.1949 0.2592 0.8671 
40 0.7519 0.1858 0.2471 0.8671 
41 0.7519 0.1771 0.2355 0.8671 
42 0.7519 0.1688 0.2245 0.8671 
43 0.7519 0.1609 0.2140 0.8671 
44 0.7519 0.1534 0.2040 0.8671 
45 0.7519 0.1462 0.1945 0.8671 

46 0.7519 0.1046 0.1391 0.8671 
47 0.7519 0.1329 0.1767 0.8671 
48 0.7519 0.1267 0.1685 0.8671 
49 0.7519 0.1208 0.1606 0.8671 
50 0.7519 0.1151 0.1531 0.8671 

52 0.7519 0.1046 0.1391 0.8671 
54 0.7519 0.9507-1 0.1264 0.8671 
56 0.7519 0.8640 0.1149 56 
58 0.7519 0.7852 0.1044 58 
60 0.7519 0.7137 0.9492 - 1 0.8671 

62 0.7519 0.6486 -1  0.8627 -1  0.8671 
64 0.7519 0.5895 0.7841 0.8671 
66 0.7519 0.5358 0.7126 0.8671 
68 0.7519 0.4870 0.6477 0.8671 
70 0.7519 0.4426 0.5887 0.8671 

72 0.7519 0.4023 -1  0.5351 - 1 0.8671 
74 0.7519 0.3657 0.4864 0.8671 
76 0.7519 0.3324 0.4421 0.8671 
78 0.7519 0.3022 0.4019 0.8671 
80 0.7519 0.2747 0.3653 0.8671 

85 0.7602 0.2166 -1  0.2849- 1 0.8719 
90 0.7760 0.1715 0.2210 0.8809 
95 0.7917 0.1365 0.1724 0.8893 

100 0.8074 0.1091 0.1351 0.8986 

110 0.8388 0.7063 - 2 0.8420- 2 0.9159 
120 0.8702 0.4649 0.5342 0.9329 
130 0.9016 0.3106 0.3445 0.9495 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

46 
47 
48 
49 
5O 

51 
54 

60 

62 
64 
66 
68 
70 

72 
74 
76 
78 
8O 

85 
9O 
95 

100 

110 
120 
130 
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h T/Tst" P/Pst. O/PSL a / a s L  h 
( f t /103)  (f t /103)  

140 0.9329 0.2105 0.2257 0.9659 140 
150 0.9642 0.1446 0.1500 0.9819 150 

160 0.9809 0.1004 - 2 0 .1024-2  0.9904 160 
170 0.9809 0.6986 - 3 0.7122 - 3 0.9904 170 
180 0.9620 0.4855 0.5047 0.9808 180 
190 0.9215 0.3330 0.3614 0.9600 190 
200 0.8810 0.2246 0.2550 0.9386 200 

Notation: Single digit preceded by a minus sign indicates power of 10 by which 
associated and following tabulated values should be multiplied, e.g., 0 .2468-  2 = 
0.002468. 

Notes: (1) Data  from "U.S. Extension of the ICAO Standard Atmosphere," 1958. 
(2) Sea Level Values: TSL = 518.69 ° R, PSL = 2116.2 psf, #sL = 0.0023769 s lug / f t  3, 
and asL = 1116.4 fps. 



APPENDIX B. SAE GAS TURBINE ENGINE NOTATION 

1. Purpose 

1.1 This Aerospace Recommended Practice (ARP 755A) provides perfor- 
mance station identification and nomenclature systems for gas turbine 
engines. 

1.2 The systems presented herein are for use in all communications 
concerning engine performance such as computer programs, data reduc- 
tions, design activities, and published documents. 

2. Station Identification 

The following station numbering system will be used to identify the 
points in the gas flow path that are significant to engine performance 
definition. 

2.1 Basis of System The system provides for the consistent definition of 
the process being undergone by the gas, regardless of the type of engine 
cycle. The five main processes that are isolated are: air intake, compression 
in engine compressors, heat addition, expansion in turbines, and expansion 
in nozzles. 

2.2 Primary Stream The station numbers required to identify the 
processes for the primary gas flow are: 

0 Freestream air conditions 
1 Inlet/engine interface 
2 First compressor front face 
3 Last compressor discharge 
4 Burner discharge 

5 Last turbine discharge 
6 Available for mixer, afterbumer, etc. 
7 Engine/exhaust nozzle interface 
8 Exhaust nozzle throat 
9 Exhaust nozzle discharge 

2.3 Multiple Streams Extension of the primary flow numbering scheme 
to multiple streams (e.g., the bypass flow of a turbofan engine) is obtained 
by prefixing a digit to the numbers in Sec. 2.2. 

Copyright © 1974 by SAE, Inc. All rights reserved. Published with permission. 
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2.3.1 Unity (1) will be used for the innermost bypass duct. 

Examples: 12 First compressor front face tip section (if different from 
Station 2) 

13 End of compression of bypass flow 
17 Bypass duct/exhaust nozzle interface 
18 Bypass exhaust nozzle throat 

2.3.2 To avoid conflict with two-digit primary stream intermediate sta- 
tions (see Sec. 2.4), the prefixing of bypass duct streams with the digits 2 
through 8 should be avoided where possible. The digit 9 will be used to 
identify ejector nozzle flow or for a second bypass duct. 

Example: 98 Ejector exhaust nozzle throat 

2.3.3 If, however, two or more flow paths are mixed, succeeding numbers 
will be consistent with the innermost stream. For example, primary flow 
numbers are to be used when primary flow is mixed with a bypass flow. 

2.3.4 The first digit of the primary stream, and the first two digits of the 
innermost and second bypass ducts, will be numeric only. 

2.3.5 Property values (or flow rates) for individual streams are always 
average (or total) quantities. Where primary and bypass streams are dif- 
ferentiated by separate stations and there is a need to describe the average 
(or total) properties at a plane including both streams, an alphanumeric 
station will be created. This station will be coplanar with the primary and 
bypass stations and formed by appending a letter to the hub station 
identification. 

Appendage of the letter A (e.g., 1A, 6A) is reserved to describe the 
combined properties of all the streams in that plane. For example, when 
Stations 1 and 11 define the primary and innermost bypass streams at the 
inlet/engine interface, Station 1A is defined as encompassing both Stations 
1 and 11. More than two streams can be handed in a similar manner. 

2.4 Intermediate Stations For identification of intermediate stations, 
numeric or, if necessary, alphabetic subdivision will be used for the appended 
symbols. The numbering of stations intermediate to those indicated in Secs. 
2.2 and 2.3 should, where possible, be limited to two digits that will be 
chosen to prevent duplication, and will be assigned in an ascending or 
alphabetic sequence that corresponds to the direction of flow. For example, 
a primary intermediate station between Stations 1 and 2 for a bypass engine 
may be identified as 1B to avoid conflict with the innermost bypass duct 
first compressor front face tip section, Station 12. 

2.5 Figures Figures B1 and B2 are examples of the applications of this 
system to several typical engine configurations. 
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II 

S I N G L E  S P O O L  TURBOJET/TURBOSHAFT 

I I 12 ~ 17 I i  19 

TWIN SI:~OOL TURBOFAN 

- - - 6 ,._I 7 I 

MIXED TWIN SPOOL TURBOFAN 

" S e e  S e c .  2 . 4  

Fig. B1 Example of station identification--1. 

3. N o m e n c l a t u r e  

This nomenclature has been compiled to provide a uniform method of 
naming variables associated with gas turbine engines. Its use is encouraged 
for all communications involving engine performance including computer 
programs. There are two columns of symbols. The first column presents the 
recommended symbols for general use and is restricted to upper case letters 
to be compatible with the computer. The second column presents alternate 
symbols that are retained because of their widespread use. Lower case 
letters, subscripts and superscripts, Greek letters, and other specialized 
characters have been avoided in the recommended symbols. It is hoped that 
a single system will soon evolve, on one hand through changes in common 
usage resulting from greater familiarity with the computer, and on the other 
hand through development of computer practices permitting a wider range 
of symbols than is now possible. 

3.1 Basic Symbols This section includes the symbols used to derive basic 
parameters and will normally form the leading letter, or letters, in com- 
pound groups. Most of these symbols will be expanded by the addition of a 
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. l i t  
- -  7 II 9 

TRIPLE SPOOL TURBOFAN 

I i I i  17 io 

TWIN SPOOL DUCT HEATER 

- - -  

o t 1 3 4 4 - -  | 7 • 

FREE TURBINE T U R B O ~ / T U R B O  SHAFT 
"See Se¢. 2 .4  

Fig. B2 Example of station identification--2. 

station number, component symbol, or stream identification as contained in 
later sections. Examples of some resulting compound groups are contained 
in Sec. 4. 

3.1.1 Properties and Fundamental Parameters 

Recommended Alternate 

Area, geometric A 
Altitude (Geopotential pressure) ALT 
Angle ANG a,/3, 7, etc. 
Density RHO p 
Efficiency, adiabatic E ~/ 
Enthalpy--total per unit mass H 
Entropy--total per unit mass S 
Force, thrust F 
Frequency FY f 
Heat transfer rate QU Q 
Inertia--polar moment (see Sec. 3.4.3) XJ J 
Length XL L 
Mass GM m 
Mass flow rate W 
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Power PW 
Pressure--total P 
Rotational speed XN N 
Temperature--total T 
Time TIME t 
Torque TRQ 
Velocity V 
Viscosity VIS 
Volume VOL v 
Weight WT w 

3.1.2 Commonly Used Ratios, Functions, etc. This section contains sym- 
bol groupings which, although they are exceptions to the general system, 
have been retained because of their widespread use in industry. 

Recommended Alternate 

Blow-out margin BOM 
Bypass ratio BPR 
Coefficient or constant C 
Delta (pressure/standard SLS pressure) DEL 
Discharge coefficient CD 
Drag FD 
Entropy function PHI q~ 
Error Y 
Fuel/air ratio FAR 
Fuel lower heating value FHV 
Fuel specific gravity FSG 
Gas constant (per unit mass) R 
Light-off margin XLOM LOM 
Mach number XM M 
Mechanical equivalent of heat CJ 
Molecular weight XMW MW 
Power lever angle PLA 
Ratio of specific heats GAM ), 
Relative humidity RH 
Reynolds number RE 
Reynolds number index RNI 
Rotor blade angular position RIOP 
Specific fuel consumption SFC 
Specific gravity SG 
Specific heat at constant pressure CP 
Surge margin SM 
Stator blade angular position STP 
Tangential wheel speed U 
Theta (temperature/standard SLS temperature) TH 0 
Velocity dynamic head VH q 
Velocity of sound VS a 
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Water (liquid)/air ratio WARL 
Water (vapor)/air ratio WAR 

3.2 
will normally be embedded in compound groups. 

Operating Symbols The letters in this section describe operations and 

Recommended Alternate 

Derivative with respect to time U 
Derivative with respect to following symbol U_ 
Difference (see Sec. 3.4.2) D 
Quotient, ratio (when not followed by U) Q 
Square root R 

d/dt  
d / d _  

- orA 
/ 

3.3 Descriptive Symbols This section includes recommended symbols that 
describe the basic parameters and will usually be the trailing letter, or 
letters, in compound groups. It is subdivided into a part describing the 
fluid, another containing symbols describing parts of the engine, and a de- 
scriptive symbols part. No alternate symbols are recognized in this section. 

3.3.1 Fluid Description Some properties and fundamental parameters 
(e.g., pressure, flow rate) that refer to the fluid may require additional 
description to indicate the composition and use of the fluid. The following 
letters should be appended directly after the basic symbols of Sec. 3.1 (see 
Sec. 3.4.1 for additional notes on fluid description): 

Air A 
Bleed B 
Boundary layer BL 
Coolant CL 
Fuel F 
Leakage LK 
Water W 

3.3.2 Engine Description Some parameters that refer to engine compo- 
nents or rotors (e.g., efficiency, rotor speed, surge margin, torque) require 
more specific description. This should be provided by appending the station 
number (see Sec. 2) at inlet to the relevant component or rotor after the 
basic symbols of Sec. 3.1. (An alternate method, included because of its 
widespread use in industry, is to append the following symbols. The use of 
this alternate method is not encouraged because of possible confusion with 
other descriptive symbols.) 

Afterburner AB 
Boattail BT 
Burner B 
Compressor C 
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Engine E 
Heat exchanger EX 
High-pressure component or rotor H 
Intermediate pressure component or rotor I 
Low-pressure component or rotor L 
Power turbine or rotor PT 
Turbine T 

3.3.3 General Description The following general descriptive 
should be appended after the basic symbols of Sec. 3.1: 

Average AV 
Ambient AMB 
Conductivity K 
Controlled variable C 
Diameter DI 
Distortion DIST 
Effective E 
Extraction X 
Gross G 
High (maximum) H 
Ideal I 
Installed IN 
Low (minimum) L 
Map value M 
Net N 
Parasitic PAR 
Polytropic P 
Radius RAD 
Ram RAM 
Referred (corrected) R 
Relative REL 
Sea level SL 
Sensed parameter SE 
Shaft delivery (output) SD 
Standard STD 
Static S 
Swirl SW 
Tip TIP 
Total T 
True air speed TAS 

3.4 Additional Notes 

symbols 

3.4.1 To describe the position within the engine of parameters associated 
with a fluid, the numbers detailed in the station identification system of Sec. 
2 should be appended. The letters of Sec. 3.3.1 should precede these station 
numbers if both are required. 
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3.4.2 The embedded D, which identifies a difference (see Sec. 3.2), should 
be used wherever the compound group of of symbols is of an acceptable 
length. However, D may also be used as a leading symbol when contraction 
of the compound group of symbols is necessary. 

3.4.3 The symbols XJ (polar moment of inertia) should be appended by a 
component identification symbol (Sec. 3.3.2). The component should be 
that to which all associated inertias are algebraically referred. 

3.4.4 A gas property followed by S denotes a static quantity; otherwise a 
stagnation condition is implied. 

3.4.5 The symbol X was prefixed to leading symbols I, J, K, L, M, and N 
for computer purposes. 

3.4.6 It is recognized that it may be required to limit the number of 
characters per parameter name. When this limitation is not compatible with 
the recommended nomenclature of this ARP, the parameter name may be 
shortened. 

3.4.7 Throughout this document: 0 denotes the numeric symbol and O 
denotes the alphabetic symbol. 

4. Examples 
Some examples of compound groups formed from recommended symbols 

are contained in this section. 

4.1 Groups formed by basic symbols together with one or more descrip- 
tive symbols: 

AE 
ANGBT 
ANGSW 
CFG 
CPSTD 
CQU 
CQUBL 
CQUK 
CQUL 
CR 
CTSTD 
CV 
DTAMB 
DPW 
DTRQ 
EP 
ERAM 

Effective area 
Boattail angle 
Swirl angle 
Gross thrust coefficient 
Standard SLS pressure 
Overall heat-transfer coefficient 
Heat-transfer film (boundary-layer) coefficient 
Thermal conductivity 
Coefficient of linear thermal expansion 
Universal gas constant 
Standard SLS temperature 
Nozzle velocity coefficient 
Ambient temperature minus standard day ambient temperature 
Unbalanced power 
Unbalanced torque 
Polytropic efficiency 
Ram pressure recovery 
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FG Gross thrust 
FGI Ideal gross thrust 
FN Net thrust 
FNIN Installed net thrust 
FRAM Ram drag 
HF Enthalpy of fuel 
HS Static enthalpy 
PAMB Ambient pressure 
PB Bleed flow total pressure 
PREL Relative pressure 
PS Static pressure 
PWPAR Parasitic power 
PWSD Delivered shaft power 
PWX Power extraction 
SFCIN Installed specific fuel consumption 
TAMB Ambient temperature 
TLK Total temperature of leakage gas 
TRQSD Delivered shaft torque 
TS Static temperature 
UTIP Tangential wheel tip speed 
VANG Angular velocity 
VTAS Aircraft velocity (true air speed) 
WA Airflow rate 
WF Fuel flow rate 
WFT Total fuel flow rate 
WW Water flow rate 
XNSD Delivered shaft speed 

4.2 Groups formed by basic symbols together with descriptive symbols 
and station numbers: 

CD8 
CV8 
DT1 
FAR4 
FG19 
F7 
HA3 
PB3 
PS4QS3 
PW4 
P1QAMB 
P3 
P3U 
P4Q3 
P6D7 
TRQ2 
TSOSTD 
T2UN2 

Primary nozzle flow discharge coefficient 
Primary nozzle velocity coefficient 
Temperature to be added to T1 
Fuel/air ratio at Station 4 
Bypass nozzle gross thrust 
Stream thrust at Station 7 
Total enthalpy of air at Station 3 
Bleed flow total pressure at Station 3 
Static pressure ratio; Station 4 divided by Station 3 
High-pressure turbine power 
Ram pressure ratio 
Total pressure at Station 3 
Time rate of change of total pressure at Station 3 
Total pressure ratio; Station 4 divided by Station 3 
Total pressure change from Station 6 to Station 7 
Low-pressure compressor torque 
Standard atmospheric temperature 
Rate of change of T2 with respect to N2 
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WA2 
WB3 
WLK3 
W I R  
W3R2 
X J2 

XN2 
XN2H 
XN21L 

Airflow rate at Station 2 
Bleed flow rate at Station 3 
Leakage flow rate at Station 3 
Referred engine inlet flow rate 
Flow rate at Station 3 referred to Station 2 
Polar moment of inertia of spool containing 
low-pressure compressor with all inertias referred to 
that component 
Low-pressure compressor rotor speed 
Maximum low-pressure compressor rotor speed 
Minimum speed of rotor whose compressor inlet is 
at Station 21 



APPENDIX C. OATES COMPANION 
SOFTWARE 

Daniel H. Daley 
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Jack D. Mattingly 

David T. Pratt 

The enclosed software is intended for use with Aerothermodynamics of Gas 
Turbine and Rocket Propulsion, by Gordon C. Oates. This comprehensive 
set of programs may be used with the problems and design analyses dis- 
cussed in the book. The information below details the necessary system 
requirements, and describes installation and operation procedures. The soft- 
ware opening screen menus, their program titles, and associated topics in the 
textbook are also given. 

1. Getting Started 

1.1 System Requirements 

IBM PC 386/486/586/Pentium or compatible computer with at least 640 Kb 
RAM, a hard drive with 1.0 Mb of available disk space for storing OATES, 
and EGA or better video capability. OATES is designed to load and run on 
any DOS-based operating system. 

1.2 Installation 

Insert the distribution disk into the A: or B: drive as appropriate (the A: drive 
is assumed below), and log onto that drive. Assuming that you want to install 
OATES on the C: hard drive, then at the A:\ DOS prompt, type INSTALL 
A: C:, and press the <Enter> key. (To install OATES on a different hard 
drive, for example the D: drive, type INSTALL A: D: and press <Enter>.) 
The installation program will create a new directory OATES on the target 
hard drive, and will then transfer all the OATES executable files, as well as 
the required files ECAP.DEF and EOPP.DEF, to the new directory. 
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1.3 Operation 

With all of the files from the distribution disk installed in the directory 
c:\OATES, log on to that directory (type CD OATES and press <Enter>), 
and at the prompt c:\OATES, type OATES and press <Enter>. Respond to 
the menu selections and prompts with keyboard entries, arrow keys, mouse 
clicks, or a mixture of all modes. (Note that although there are many ".EXE" 
files present, only OATES.EXE can be launched by the user. All of the other 
".EXE" files are executed by OATES in response to the menu selectibns.) 

1.4 General Information 

After OATES has been installed on your hard disk, you can browse the 
menu on the opening screen to read the one-line descriptions of each pro- 
gram that appears at the bottom of the screen. Authoring credits and software 
information can be read from options on the opening screen menu as well. 

1.5 Writing Screens to File 

Input and output screens, in either graphics or text mode, can be saved to file 
as follows. 1) Run OATES from the Microsoft Windows MS-DOS prompt. 
2) Press the <Print Screen> key to copy the screen contents to the Windows 
Clipboard. 3) Use the Windows Clipboard Viewer, or a text editor or word 
processor that can access the Windows Clipboard to save either graphics or 
text mode screens to a file. 

2. Opening Screen Menu/Program 

2.1 Atmosphere 
Atmosphere 

Textbook Site 

Appendix A, p. 435 

2.2 Ouasi- lD Flows 
Ideal Constant-Area Interaction 
Adiabatic Constant-Area Flow with Friction 
Nozzle Flow Equations 
Rocket Nozzle Performance 
Normal Shock Waves 
Oblique Shock Waves 

Chapter 2, p. 47 
Chapter 2, p. 50 
Chapter 2, p. 52 
Chapter 3, p. 70 
Chapter 6, p. 206 
Chapter 6, p. 211 

2.3 Gas Turbine 
Engine Cycle Analysis, Ideal 
Engine Cycle Analysis, Nonideal 
Engine Off-Design Performance 

Chapter 5, p. 121 
Chapter 7, p. 231 
Chapter 8, p. 277 



2.4 Rocket Combustion 
T c and Pc given 
h c and Pc given 
Isentropic Expansion 

Chapter 3, p. 84 
Chapter 3, p. 84 
Chapter 3, p. 85 
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All programs can be run in either the SI or English unit system. 

3. Program Descriptions 

3.1 Atmosphere 

The Atmosphere program gives the variation of atmospheric properties 
with altitude from sea level to 86 km (282.15 kft), taken from U.S. 
Government Printing Office, "U.S. Standard Atmosphere, 1976," 
Washington, D.C., 1976. Please note that the atmospheric information in 
Appendix A is from 1958. 

3.2 Quasi- lD Flows 

The Quas i - lD  Flows menu contains a collection of utility programs for 
evaluating traditional compressible flow functions and rocket nozzle perfor- 
mance for calorically perfect gases and values of Cp/Cv prescribed by the 
user. The compressible flow functions take their structures from the venera- 
ble "Gas Tables" of Keenen and Kaye, published in 1948, and from the 1953 
NACA report 1135, "Equations, Tables and Charts for Compressible Flow." 
The program collection consists of Ideal Constant-Area Heat  Interaction, 
including Eq. (2.92) from the textbook; Adiabatic Constant-Area Flow 
with Friction, including Eq. (2.98) from the textbook, Nozzle Flow 
Equations (Isentropic Flows); Rocket Nozzle Performance; Normal 
Shock Waves; and Oblique Shock Waves. The Rocket  Nozzle 
Performance program is included to facilitate the calculation of the perfor- 
mance of a nozzle under a wide variety of conditions. 

With few exceptions, all of the compressible flow function programs can be 
entered with any property ratio listed, just as one would enter the Keenan 
and Kaye or NACA 1135 gas tables. When an entered variable is out of 
range, the appropriate range of the variable is displayed and the user is 
prompted to enter another value. Whenever an output function is double val- 
ued (usually subsonic or supersonic) for the input value, the user is queried 
for the output value of interest. 

3.3 Gas Turbine 

The Gas Turbine menu contains the Engine Cycle Analysis Program 
(ECAP) and the Engine Off-Design Performance Program (EOPP). 
Choosing one of these programs brings up that program's home screen, 
which has the following pull-down menus: File, Cycle, Data, Variable, 
Units, Output, and Help. 
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ECAP in the Gas Turbine menu provides a means for determining the vari- 
ation in gas turbine engine performance with cycle design variables such as 
compressor ratio. The program is based on the engine models contained in 
Chapter 5, Ideal Cycle Analysis, and Chapter 7, Nonideal Cycle Analysis. 
ECAP is very useful for examining the trends of an engine's specific thrust 
and specific fuel consumption with changes in applicable design variables. 
The following actions are required to run the ECAP program: with the 
Cycle menu, choose one of seven engine cycles and either an ideal or non- 
ideal analysis model; with the Data menu, enter the engine operating condi- 
tions in the edit fields of the data screen and/or select the variable to be opti- 
mized; with the Variable menu, choose one of eight iteration variables along 
with its applicable range and increment; with the Units and Output  menus, 
choose the desired units and output devices; and with the File menu, choose 
run. The seven engine cycles contained in the program are 1) ramjet, 2) tur- 
bojet, 3) turbojet with afterburner, 4) turbofan, 5) turbofan with afterburners, 
6) mixed turbofan, and 7) turboprop. 

EOPP of the Gas Turbine menu is based on the engine models contained in 
Chapter 8, Engine Off-Design Performance. EOPP is very usefill for exam- 
ining the variation of a given engine's performance with changes in flight 
conditions and throttle setting. The following actions are required to run the 
EOPP program: with the Cycle menu, choose one of four engine cycles; 
with the Data menu, enter the reference point data, calculate the reference 
point performance, enter off-design data, and/or select the variable to be 
optimized; with the Variable menu, choose one of nine iteration variables 
along with its applicable range and increment; with the Units and Output 
menus, choose the desired units and output devices; and with the File menu, 
choose run. The four engine cycles contained in the program are 1) fixed 
area turbine turbojet, 2) fixed area turbine turbofan, 3) fixed area turbine tur- 
boprop, and 4) variable area turbine turbojet. 

3.4 Rocket Combustion 

The Rocket Combustion menu contains three programs that calculate 
chemical equilibrium properties and composition of products of combustion 
for cryogenic and storable liquid bipropeilants. As opposed to the method of 
the textbook, the very robust ZGM (Zeleznik-Gordon-McBride) algorithm 
for Gibbs function minimization is used to calculate equilibrium states of 
combustion products in each of the programs. The T c and Pc given and H c 
and Pc given programs calculate the product's properties and composition 
for assigned rocket combustion chamber temperature/pressure and 
enthalpy/pressure, respectively. The Isentropic Expansion program calcu- 
lates the properties and composition for isentropic expansion or compres- 
sion from the rocket combustion chamber pressure to a prescribed pressure, 
for both equilibrium and frozen flows. 



Actuator disk, 380 
Adiabatic flow, 44, 50 
Afterburner: 

primary stream, 133 
secondary stream, 133 

Afterburning: 
turbofan, 176 
turbojet, 153 

Airbreathing engines, 7 
Angle of attack, 411 
Annulus inverting valve (AIV), 291 
Arcjets (see also electrothermal 

thrustors), 7, 112 
Averages: 

continuity, 197, 202 
mass, 197, 201,406, 408 
stream thrust, 197, 202, 408 

Axial compressors, 13 

Bernoulli equation, 41, 338,415 
Blade: 

aerodynamics, 327 
torque, 381, 392 
force, 382, 392 

Bleed valves, 15, 305 
Body force, 373 
Boundary layer, 204 
Brayton cycle, 136 
Burner, 133,217 

primary, 233 
stagnation pressure ratio, 218 

Burning: 
at finite Mach number, 137, 184 
end, 88 
erosive, 88, 89 
surface rate, 89 

Bypass ratio, 8, 10, 140 
optimal, 245,249 

Camber, 411 
Cascade: 

field, 328 
notation, 411 
theory, two-dimensional, 414 
transformation, 416, 425 
two-dimensional straight-line, 426 

Centrifugal compressors, 13, 123, 338 
Chamber pressure, solid rocket, 89 
Channel flow equations, 39 
Characteristic velocity, 70 
Chemical rockets, I, 63 
Chemical thermodynamics, 74 
Child-Langmuir law, 115 
Choked flow, 278 
Choking: 

thermal, 47, 49 
viscous, 50 
with swirl, 363 

Chord, 411 

Index 
Chugging, 4 
Circle theorem, 422 
Circulation, 415,422 
Combustor, 11, 15, 135,217 
Complex potential, 416, 422 
Component: 

behaviors, ideal, 134 
characteristics, 301 
performance, 189 

Compressibility: 
effects in throughflow, 397 
effects of, 360 

Compressor, 11, 13, 134, 212 
axial, 13 
centrifugal, 13, 123,268 
characteristics, 301, 313 
efficiency, 213 
map, 302, 307, 314 
off-design, 341 
operating line, 280, 314 
polytropic efficiency, 213 
stage efficiency, 215 
stall, 305 
stall margin, 318 
starting, 304 
transient operation, 313 

Conservation equations, 39 
Constant-area heat interaction, 47 
Continuity equation, 39, 47 
Control mass, 33, 34 
Control volume, 32, 33, 189 
Convective derivative, 374 
Conversion factors, 141 
Cooling, turbine, 16 
Coordinate system, natural, 377 
Core pressure drop, 103 
Cycle analysis: 

ideal, 121 
nonideal, 231 
notation for, 132 

Dead weight mass, 67 
Degree of reaction, 337, 339 
Deviation angle, 411,426 
Dieterici's equation, 57 
Diffuser, 134, 135 
Diffusion factor, 337, 340 
Dissociation, 112 
Drag: 

additive, 192, 194, 195, 225 
external, 192 
forebody, 194 
form, 63 
loss, 67 
skin, 65 

Dynamic head, 333 

Electric thrustors, 111 
Electrically powered rockets, 6, 107 
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Electromagnetic thrustors, 112 
Electrostatic thrustors, 7, 113, 116 
Electrothermal thrustors, 7, 111 
End burning, 88 
Energy, internal, 22 
Engine components, 11, 121, 123 
Engine station numbers, 132 
Enthalpy, 23, 35 
Enthalpy balance, 144, 159 
Entropy, 24 
Equilibrium constant, 77 
Erosive burning, 88 
Euler momentum equation, 331, 366, 376 
Exhaust velocity, effective, 65, 71 
Exit area variation, 281 
Extendable exit cone (EEC), 3 

Fan, 8, 11, 13, 123, 134 
Figures of merit, 223 
First law of thermodynamics, 22, 32, 33 
Flat rating, 301 
Flow work, 34, 36 
Form drag, 65 
Free vortex flow, 344, 355 
Fuel, 74 
Fuel-to-air ratio, 155 
Functional iteration, 54 

Gas: 
calorically perfect, 29 
perfect, 29 

Gas constant, 29 
Gas generator, nozzle matching, 310 
Gearbox, 301 
Gibbs equation, 25, 37, 38, 40, 86 
Gibbs function, 25 
Gravity loss, 67 
Gross thrust, 170 

Heat, 20 
interaction, 21, 46 
of formation, 76, 77 
of reaction, 76 
of solution, 76 
transfer coefficient, 46 

Helmholtz function, 25 
Hydrogen-oxygen reaction, 82 

Inlet, 11, 12, 192, 195, 203 
distortion, 212 
guide vane, 335 
Kantrowitz-Donaldson, 206, 207 
off-design, 208 
subsonic, 204 
supersonic, 204 

Ion slip, 112 
Ionization, 112 
Instabilities: 

pogo, 4 

screaming, 4 
Installation effects, 292 
Interaction: 

work, 21 
heat, 21 

Internal energy, 22 
Ion rockets (see also electrostatic rockets), 7 
Iteration: 

functional, 54 
Newtonian, 54, 82 

JANNAF tables, 78 
Joule, 22 

Joule's experiment, 24 
Joule-Thompson coefficient, 56 

Kutta condition, 424 

Law of mass action, 77 
Liquid propellant, 1 
Lorentz force, l l2  

Mach number, 42 
meridional, 398 

Mass flow, 279 
Mass flow, corrected, 279 
Mass: 

dead weight, 67 
payload, 67 
ratio, 67 

Maxwell's relations, 26 
Meridional surface, 329, 350 
Mission analysis, I l l 
Mixer: 

constant-area, 166 
constant-pressure, 173 
optimal constant-pressure, 175 

Molal fraction, 78 
Momentum equation, 153, 189 

tangential, 375 
Multiple spools, 15 
Multiple-stage rockets, 67, 68 

Newtonian iteration, 82, 231 
Newton's law, 40 
Nonchemical rockets, 1, 5 
Nozzle, l 1, 16, 52, 135, 224 

altitude performance, 72 
convergent, 243 
equilibrium flow, 63 
flow of reacting gas, 85 
frozen flow, 63, 87 
notation, 134 
rocket, 70 
sizing, 71 
throat, 44 

Nuclear electric generator, 97 
Nuclear-heated rockets, 6, 97 
Nuclear reactor, 97 



Off-design performance, 14, 123,277 
Oxidizer, 74 

Payload mass, 67 
Performance measures, 7 
Performance, off-design, 14 
Pogo instability, 4 
Power balance, 143, 155, 159, 177 
Power density: 

constant, 100 
sine, 100 

Power imbalance, 313 
Power specific fuel consumption, 259 
Pressure, partial, 78 
Primary stream, 159, 177 
Propellant: 

liquid, I 
solid, 1, 4 

Propeller efficiency, 256, 300 
Property, 19 
Prop fan, 255 
Propulsive efficiency, 8, 139, 150, 256 
Pumping characteristics, 307, 310 

Quasi-one-dimensional fluid flows, 19, 31 

Radial equilibrium, 349, 351, 391 
Ramjet, 144, 146 
Ram rocket, 182 
Ratio of specific heats, 24 
Reactants, 74 
Repeating stage, 339, 357 
Resisto jet, 112 
Reversible process, 22 
Reynolds analogy, 46, 99 
Rocket: 

chamber conditions, 84, 89 
chemical, 1 
electrical, 6, 107 
electromagnetic, 112 
electrostatic, 7, 113 
electrothermal, 7, 111 
nonchemical, 1, 5, 97 
nozzle, 70 
nuclear-heated, 6, 97 
solid-propellant, 4, 88 

Rotating stall, 14, 302 
Rotor, 310 

Screaming combustion, 4 
Second law of thermodynamics, 24 
Secondary flowfield, 330, 410 
Secondary stream, 158 
Separation altitude, 72 
Separation losses, 204 
Shear stress, 41 
Shock waves, 204, 211 
Skin drag, 65 
Skin-friction coefficient, 44, 99 
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Simple systems, 23 
Solar collectors, 97 
Solid-body-like rotation, 355 
Solid-propellant rockets, 1, 4, 88 
Solidity, 340, 411,427 
Space charge limited current, 115 
Specific fuel consumption, 7, 132, 144, 

148, 159, 177, 259 
joint minimum, 248 
minimum, 161,243,251 

Specific heat, 23, 55 
difference, 28 
nonconstant, 262 
ratio, 24 

Specific impulse, 66, 97, 104, 106, 108, 
113, 117 

Specific thrust, 7, 132, 144 
Speed of sound, 42 
Spools: 

multiple, 305 
three, 123 
two, 121, 123 

Stagger angle, 411,426 
Stagnation pressure, 45 
Stagnation properties, 41 
Stagnation temperature, relative, 367 
Stanton number, 46 
Star grain, 92 
Stream function, 350 

compressible, 376 
Stream surface, 328 
Strip theory, 329 
Summerfield criterion, 72 
Surface burning rate, 89, 91 
Surge, 14 

Thermal choking, 47, 49 
Thermal efficiency, 8, 138, 139, 150 
Thermodynamics, 19 

cycle, ideal, 135 
first law, 22 
process, 20 
second law, 24 
state, 20 
zeroth law, 21 

Throat, nozzle, 44 
Throughflow theory, 327, 373 
Thrust: 

equation, 189 
gross, 170, 185 
installed, 192 
maximum, 151 
uninstalled, 192 

Thrust coefficient, 70, 71, 75, 104, 106 
Trajectory analysis, 66 
Turbine, 11, 15, 135,221 

aerodynamics, 361 
characteristics, 306 
cooling, 16, 253 
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efficiency, 221 
expansion ratio, 291 
impulse, 365 
notation, 134 
optimal temperature ratio, 259 
performance map, 308 
polytropic efficiency, 221 
reaction, 367 
stage efficiency, 222 

Turbofan, 121, 140, 158, 237 
duct burning, 178 
off-design, 237 
optimal, 181 
with afterburning, 176, 178, 179 
with mixed exhaust streams, 165, 172 

Turbojet, 140, 146 
fixed-area, 283 
maximum thrust, 152 
off-design variable-area, 287 
with losses, 231 

Turboprop, 11, 140, 255 
off-design, 296 

Turborocket, 182 

Units: 
British, 140 
SI, 140 

Van der Waals fluid, 56 
Variable stators, 15, 305 
Velocity triangles, 334 
Viscous choking, 50 
Vorticity, tangential, 378, 379 

Wake: 
chopping, 428 
shedding, 428 

Windmilling, 15,305 
Work, 20 
Work interaction coefficient, 256, 258 
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