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Foreword

The revised and enlarged text of Aerothermodynamics of Gas
Turbine and Rocket Propulsion by the late Gordon C. Oates, pub-
lished in 1988, continued to fulfill the need for a comprehensive,
modern book on the principles of propulsion, both as a textbook for
propulsion courses and as a reference for the practicing engineer.
The original edition of this book was published in 1984 as the sec-
ond volume of the then newly inaugurated AIAA Education Series.
The Third Edition of this text adds now a companion software rep-
resenting a set of programs for use with the problems and design
analyses discussed in the book. The computer software has been
prepared by Daniel H. Daley (U.S. Air Force, retired), Williams H.
Heiser (formerly with the U.S. Air Force Academy), Jack D.
Mattingly (Seattle University), and David T. Pratt (University of
Washington).

The revised and enlarged edition contained major modifica-
tions to the original text, and some of the text was rearranged to
improve the presentation. Chapter 5 included performance curves,
design parameters values, and illustrations of several typical mod-
emn turbofan engines. Chapter 7 included a method of analysis to
account for the effect of nonconstant specific heats in the cycle
analysis equations, and in Chapter 8 a new section was added for an
analysis of engine behavior during transient operation. For com-
pleteness, Appendices A and B were added: Standard Atmosphere
and SAE (Society of Automotive Engineers) Gas Turbine Engine
Notation. The Third Edition now has Appendix C, which gives an
overview of the companion software.

The AIAA Education Series of textbooks and monographs
embraces a broad spectrum of theory and application of different
disciplines in aeronautics and astronautics, including aerospace
design practice. The series includes texts on defense science, engi-
neering, and management. The complete list of textbooks published
in the series (over 50 titles) can be found following page 456. A typ-
ical book in the series presents subject material tutorially, dis-
cussing the fundamental principles and concepts, and additionally
gives perspective on the state of the art. Thus the series serves as
teaching texts as well as reference matenals for practicing engi-
neers, scientists, and managers.

J. S. PRZEMIENIECKI
Editor-in-Chief
AlAA Education Series
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Preface

This book was written with the intent of providing a text suitable for
use in both graduate and undergraduate courses on propulsion. The
format is such that some overlap will occur when the book is thus
used, but the author has found that the diversified background typi-
cally found in most graduate classes is such that some repetition of
undergraduate material is appropriate.

At the University of Washington, we have used this text for both
graduate and undergraduate propulsion courses in two quarter se-
quences. Typical subject lists considered in the sequences are:

Undergraduate

«The introduction (Chapter 1), which could be considered *“prop-
ulsion without equations,” i1s discussed and assigned as outside reading.

-Thermodynamics and quasi-one-dimensional flows are reviewed.
Because of the frequent use of the results in off-design performance
analysis, the expressions for mass flow behavior are emphasized.

+The thermodynamics and fluid dynamics are first applied in the
prediction of rocket nozzle behavior. Chemical thermodynamics is
then reviewed so that rocket chamber conditions can be estimated.

«Usually, consideration of solid-propellant and nonchemical
rockets is delayed until the second quarter. The extent of the consider-
ation depends on the relative emphasis of aeronautical vs astronautical
subjects desired.

- Airbreathing engines are introduced with the concepts of ideal
cycle analysis. Simple design trends become evident and the simplicity
of the equations helps to make the various optimal solutions somewhat
transparent, as well as allowing time for the student to construct his
own computer programs. Usually, time limitations do not allow con-
siderations of the mixed-flow turbofan.

-Real engine effects are introduced through definition of the
component measures. The relationship of the additive drag to the inlet
lip suction 1s stressed.

-Selected examples of nonideal cycles are considered in detail and
the student asked to “design” an engine. It is at this point that the
student should realize that such a design cannot be determined
properly without detailed information regarding the mission and the
related aircraft configuration.

-The design concepts are extended to off-design estimation and
the restrictive effects of fixed-geometry engines are revealed.

Xi



Xii

-The course concludes (about two-thirds of a quarter) with con-
sideration of the elementary aerodynamics of rotating machinery.
Three-dimensional effects are introduced via the free vortex theory
(and its limitations) and through simple radial equilibrium concepts
and examples.

Graduate

-Chapters 1 and 2 are briefly reviewed and given as a reading
assignment.

-Rockets are not considered in the graduate course; rather the
subject proceeds directly to ideal cycle analysis. The optimal solution
techniques are emphasized and the mixed-flow turbofan is studied in
detail.

-Component performance measures are reviewed, with emphasis
placed upon the determination of appropriate average quantities.
Supersonic inlet performance estimation is studied in detail.

-Detailed studies of both design and off-design examples of
several engine types, including component losses, are considered.

-Blade aerodynamics is considered for both the turbine and
compressor, including throughflow theory and cascade theory.

«The course concludes with topics of current interest such as
engine poststall behavior, the effects of inlet distortion, etc.

An effort has been made throughout the text to develop the
material to the point where computational examples may be easily
obtained. Development of the required equations is often algebraically
complex and somewhat tedious, but the ease of computation of the
resulting equation sets through the use of modern calculators or small
computers certainly justifies the effort required. In this respect, prob-
lem sets are provided in Chapters 2-11, and the student is urged to
attempt as many problems as possible to develop both his problem-
solving technique and his understanding of the engine and component
behaviors predicted by the related analyses.

GORDON C. OATES
University of Washington
Seattle, Washington



Table of
Contents

[x] Preface

1

Chapter 1. Introduction
1.1 Purpose

1.2 Chemical Rockets

1.3 Nonchemical Rockets
1.4 Airbreathing Engines
1.5 Summary

Chapter 2. Thermodynamics and Quasi-One-Dimensional

Fluid Flows

2.1 Introduction

2.2 Definitions

23 The Laws of Thermodynamics

24 The Zeroth Law of Thermodynamics

2.5 The First Law of Thermodynamics

2.6 The Reversible Process

2.7 Derived Properties: Enthalpy and Specific Heats

2.8 The Second Law of Thermodynamics

29 The Gibbs Equation

2.10  The Gibbs Function and the Helmholtz Function

2.11  Maxwell’s Relations

2.12  General Relationships between Properties

2.13  The Perfect Gas

2.14  Quasi-One-Dimensional Fluid Flows

2.15 The First Law for a Flowing System—The Control
Volume

2.16  The Channel Flow Equations

2.17  Stagnation Properties

2.18  Property Variations in Channels

2.19 The Nozzle Flow Equations

220 Numerical Solutions of Equations
Problems

Chapter 3. Chemical Rockets
3.1 Introduction
32 Expression for the Thrust
33 Acceleration of a Rocket
34 Rocket Nozzle Performance
35 Elementary Chemistry
3.6 Determination of Chamber Conditions
3.7 Nozzle Flow of a Reacting Gas
3.8 Solid-Propellant Rockets
Problems



Chapter 4. Nonchemical Rockets

4.1
4.2
43

Introduction

The Nuclear-Heated Rocket
Electrically Powered Rockets
Problems

Chapter 5. Ideal Cycle Analysis

5.1
52
53
54
55
5.6
57
5.8
5.9

5.10
5.11
5.12
5.13
5.14
5.15

Introduction

Notation

Ideal Component Behaviors

The Ideal Thermodynamic Cycle

The Effect of Burning at Finite Mach Number
The Propulsive Efficiency, n,

Systems of Units

The Ideal Turbojet

Interpretation of the Behavior of the Specific Fuel
Consumption

The Maximum Thrust Turbojet

The Ideal Turbojet with Afterburning

The Turbofan with Separate Exhaust Streams
The Ideal Turbofan with Mixed Exhaust Streams
The Ideal Constant-Pressure Mixer

The Ideal Turbofan with Afterburning

Problems

Chapter 6. Component Performance

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Introduction

The Thrust Equation

Averages

The Inlet

The Compressor

The Burner

The Turbine

The Nozzle

Summary of Component Figures of Merit
Problems

Chapter 7. Nonideal Cycle Analysis

7.1
7.2
7.3
7.4
7.5
7.6

Introduction

The Turbojet

The Turbofan

The Turboprop or Prop Fan

The Effects of Nonconstant Specific Heats
Summary and Conclusions

Problems



B

'Y

ERENE

Chapter 8. Engine Off-Design Performance
8.1 Introduction
8.2 Off-Design Analysis of the Turbojet
8.3 Off-Design Analysis of the Turbofan
8.4 Off-Design Analysis of the Turboprop
8.5 The Use of Component Characteristics
8.6 Limitations on the Accuracy of Component Characteristics
8.7 Engine Acceleration
Problems

Chapter 9. Elementary Theory of Blade Aerodynamics

9.1 Introduction

9.2 Two-Dimensional Incompressible Flow through
Blade Rows

9.3 Free Vortex Flow

94 Radial Equilibrium Flows

9.5 The Effects of Compressibility
Problems

Chapter 10. Throughflow Theory

10.1  Introduction

10.2  The Throughflow Equations

10.3  The Actuator Disk

10.4 Integral Relationships

10.5 Example Solutions

10.6  Advanced Problems in Throughflow Theory
Problems

Chapter 11. Cascade Flows

11.1  Introduction

11.2  Cascade Losses

11.3  Cascade Notation

11.4  Calculation Methods
Problems

Appendix A. Standard Atmosphere
Appendix B. SAE Gas Turbine Engine Notation
Appendix C. Oates Companion Software

Subject Index



1. INTRODUCTION

1.1 Purpose

The propulsion provided by airbreathing and rocket engines is basically
similar in that thrust is obtained by generating rearward momentum in one
or more streams of gas. In the case of a rocket the propulsive gas originates
onboard the vehicle, whereas in the airbreathing engine most of the propel-
lant gas originates from the free air surrounding the vehicle. This volume
presents and explains the aerothermodynamics of rockets and airbreathing
engines, detailing the mechanisms of the fluid and thermodynamic behavior
in the engine components and revealing the overall behavior of engines and
their interactions with the flight vehicles they power.

The interaction of the various components of aircraft and rocket engines,
as well as the interactive nature of the entire engine with the flight vehicle,
necessitates the extensive use of simplified physical models to provide
analytical estimates of performance levels. As a result, the detailed calcula-
tions, although straightforward conceptually, can often be quite complex
algebraically. For this reason, this introduction will outline many of the
aspects of rocket and airbreathing engines in purely descriptive terms. The
required analytical methods to support the stated behaviors are developed
in subsequent chapters.

1.2 Chemical Rockets

Rockets are generally classified as either “chemical” or “nonchemical,”
depending upon whether the energy that eventually appears in the propel-
lant stream arises from the release of internal chemical energy via a
chemical reaction or is supplied to the propellant from an external source.
Chemical rockets are further subdivided into the classes of solid-propellant
and liquid-propellant rockets.

Liquid-Propellant Rockets

To date, the most frequently utilized rocket in large boosters has been of
liquid-propellant design. Liquid-propellant rockets have several advantages
for use as boosters, principal among which is that the most highly energetic
propellants (in terms of enthalpy per mass) have been found to be liquid
fuels and oxidizers. In addition, the separate fuel and oxidizer can be
carried in low-pressure (and hence lightweight) tanks because the very
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FUEL

OXIDIZER

PUMPS

Fig. 1.1 Liquid-propellant rocket.

high pressure of the combustion chamber—so beneficial to efficient propul-
sion—need be contained only downstream of the fuel and oxidizer pumps.
(See Fig. 1.1.)

Further advantages of liquid-fuel rockets can be exploited for use in the
upper stages of large rockets. Thus, if maneuvering is required, it can be of
benefit to have a variable thrust level capability: liquid propellants lend
themselves to *“throttling” much more easily than do solid propellants.
Advantage can also be taken of the very energetic H,-O, reaction to achieve
very high rocket exhaust velocities. It is to be noted that the hydrogen-oxygen
rocket is not as attractive for first-stage booster use, because the very low
density of molecular hydrogen leads to a requirement for high-volume
tankage. In a first stage, such a high-volume requirement has both large
structural and large drag penalties due to the large vehicle cross section
required within low-altitude, high-density air.

A disadvantage of a liquid-propellant rocket, as compared to a solid-pro-
pellant rocket, is that in order to generate large thrust levels, the fuel and
oxidizer pumps and all associated piping must be increased in size, with a
consequent increase in the overall mass of the vehicle. Very large booster
rockets operate with surprisingly low thrust levels, typical values being
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Fig. 1.2 [Extendable exit cone (courtesy of United Technologies Chemical Systems
Division).

about 1.2 times the rocket’s initial weight. Such low thrust levels are utilized
both because of the difficulty of providing pumps of sufficient size and
because of the desire to restrict the “g loadings™ just prior to stage burnout,
to acceptable levels.

Design problems encountered in producing a successful liquid-propellant
booster rocket include the provision of suitably matched pumps to supply
the necessary fuel /oxidizer ratio to give maximum exhaust velocity, and to
do so with such accuracy that the fuel and oxidizer tanks approach
depletion at the same time. It is usual to maintain an almost constant
combustion chamber pressure throughout a rocket firing; as a result, if the
rocket climbs through a large altitude variation, a corresponding large
variation in nozzle pressure ratio will occur. This variation in nozzle
pressure ratio itself implies the use of a variable exit area nozzle if the
maximum possible thrust for each altitude is to be approached. (Note that
the maximum possible thrust occurs when the nozzle exhaust pressure is
very near the ambient pressure.) It is a difficult task to provide a reliable,
lightweight nozzle with variable geometry and an associated control system
capable of adjusting appropriately for a given ambient pressure. For-
tunately, however, several successful developments have occurred, giving the
designer of modern rockets the possibility of exploiting rocket nozzles with
more than one “design” altitude. Figure 1.2 shows an example of a recently
developed rocket with an “extendable exit cone” (EEC) that allows exit
pressure matching at three separate altitudes.

Perhaps the most persistent problem area encountered by the designer of
any system utilizing very-high-energy sources is that of instabilities. There
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are several classes of instabilities to be found by an unfortunate designer of
rocket engines. An example is that wherein a longitudinal disturbance of
the rocket leads to a variation in the pumping rate of the fuel and oxidizer
pumps (because of the associated pump inlet pressure fluctuation). The
variation in pumping rate in turn leads to a variation in thrust level, which
itself leads to a further variation in the pumping rate. Because many rockets
are long and slender, and hence very flexible, such disturbances can couple
(“feedback™) in a way that leads to very large accelerative loads being
transmitted to the payload. This class of instability, for rather obvious
reasons termed the “pogo” instability, can force unpleasant design require-
ments, such as extra stiffening, upon the rocket designer.

Two classes of combustion instabilities have been found in the practice of
rocket engine design. “Chugging,” a relatively low-frequency oscillation,
occurs when combustion chamber pressure variations couple with the
liquid-fuel and oxidizer supply system. It can happen that, when the
combustion chamber pressure momentarily exceeds the time-averaged
chamber pressure, the fuel and oxidizer flow rates will decrease because of
the decreased pressure drop across the injectors. As a result, the chamber
pressure may drop, leading to an increased fuel and oxidizer flow with a
subsequent pressure increase, etc. Chugging is usually eliminated by raising
the fuel and oxidizer supply pressures so that the injector pressure drop will
be so substantial that the chamber pressure fluctuations will not cause
significant input flow rate fluctuations. Such a “cure” leads to the require-
ment for heavy piping and pump equipment.

“Screaming” combustion instability is an acoustic instability identified
with the increase in the thermal output of the fuel-oxidizer reaction found
with the increases in pressure and temperature identified with an acoustic
disturbance. Such disturbances can reflect from the chamber walls, leading
to continued amplification of the waves to extreme levels. It appears that the
primary source of energy for such disturbances exists in the two-phase
region close to the injector heads, so careful development of the injector
flow geometry is required to prevent the onset of screaming combustion.
Screaming is further reduced by providing the chamber walls with “acoustic
tiling” that greatly reduces the intensity of waves reflected from the walls.

Solid-Propellant Rockets

Several advantages of liquid-propellant rockets, as compared to solid-pro-
pellant rockets, were discussed above. It is to be noted, however, that there
are many missions for which the solid-propellant rocket is the most logical
choice. Thus, the relative simplicity of a solid-propellant rocket encourages
its use for such purposes as weapons and “strap-on” booster rockets to very
large orbiting rockets. The relatively low exhaust velocity provided by solid
rocket propellants does not create as great a penalty in the overall rocket
mass needed for missions requiring relatively small vehicle velocity changes
as it does for missions requiring large velocity changes. (This is because the
liquid rocket pumping equipment becomes a larger fraction of the overall
mass as the required vehicle velocity change is reduced.) Even though the
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entire solid-propellant rocket is exposed to the high pressure of the “com-
bustion chamber,” the required structural weight is no longer extreme
because of the development of the enormously structurally efficient filla-
ment-wound rocket case.

An area of great advantage for the solid-propellant rocket is that of
propellant density. With the development of heavily aluminized solid pro-
pellants, the propellant density has been greatly increased, leading to the
production of rockets with very small cross sections and hence much
reduced drag. Such an advantage is particularly pertinent for low-altitude
weapons use. Recently, also, propellants with a high surface burning rate
have been developed, with the result that it is relatively easy to design
solid-propellant rockets with enormous thrust-to-weight ratios.

Development efforts continue along the lines of developing high-energy,
high-density, high-burning-rate propellants. In addition, methods of thrust
level variation and rapid thrust termination continue to be investigated.

As with liquid rockets, screaming instabilities continue to be of develop-
ment concern. Methods to reduce such instabilities, or their effects, include
use of resilient propellant material and propellant grain cross-sectional
shapes that reduce wave reflection.

1.3 Nonchemical Rockets

When “ very-high-energy” missions are contemplated (missions for which
the required change in vehicle velocity is very large), it is found that even
with the use of the most energetic of chemical propellants, the required
fraction of propellant mass to overall vehicle mass becomes excessive.
Elementary considerations reveal that the rocket “mass ratio” (initial mass
divided by final mass) is very sensitive to the ratio of required vehicle
velocity change to rocket exhaust velocity. In order to reduce the mass ratios
required, alternative schemes are investigated that allow the addition of
energy to the propellant from sources other than the chemical energy of the
propellant itself.

Once the possibility of an external energy source is considered, the
problem of the energy supply becomes separate from the problem of
choosing the most suitable propellant. Thus, the energy could be supplied to
a propellant directly by thermally heating the propellant, the thermal energy
itself being supplied by a nuclear reactor, a solar concentrator, radiative
energy supplied from a remote energy source, or any other of a wide variety
of schemes.

When very-high-energy levels are desired, a variety of electrically powered
devices deserve consideration, two examples of which are briefly described
in the following. The electrical power for the electrically driven rocket might
be supplied by a nuclear-powered motor-generator set or possibly by a
solar-powered motor-generator set. Provision of space power at manageable
power-to-mass ratios remains one of the most perplexing problems in the
next generation of spacecraft. It is to be noted that systems delivering power
for such high-energy levels of propellant must be equipped with “waste
heat” radiators. Such radiators must be extremely large or must operate at
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very high temperatures with a consequent penalty in the cycle thermody-
namic efficiency (hence requiring a massive “engine”!).

Nuclear-Heated Rocket

A conceptually simple idea, the nuclear-heated rocket operates by having
the propellant pass through heat-exchange passages within a nuclear reactor
and then through a propelling nozzle. Conventional nuclear reactors must
operate with a limit upon the maximum solid-surface temperature found
within the reactor, in order to ensure the reactor’s structural integrity. Thus,
quite unlike the conditions found in chemical rockets where the energy
release is within the propellant, the propellant temperature in nuclear
reactors is restricted to being less than the wall temperatures and hence
substantially less than that found within chemical rocket propellants.

The advantage of a nuclear-heated rocket arises because of the freedom in
the choice of propellants. The most desireable propellant for such a system
is that which gives the maximum possible specific enthalpy for the given
limiting temperature. The specific enthalpy of a perfect gas is (nearly)
inversely proportional to the molecular weight, so the logical choice of
propellant for a nuclear-heated rocket is evidently molecular hydrogen
(molecular weight of two).

The Rover and Nerva programs successfully demonstrated that nuclear-
heated rockets utilizing molecular hydrogen as a propellant could achieve
exhaust velocities almost twice those of the best chemical rockets. The
related mass ratio for a very-high-energy mission could be less than one-third
that for a chemical rocket!

It is unfortunate, however, that even such an enormous decrease in the
mass ratio (or an equivalent increase in the payload) is such that even
nuclear-heated propulsion gives an insufficient exhaust velocity for use in
manned planetary missions. To date, it has also been found that the
additional mass of the reactor and its shielding, as well as the enormity of
the development problems expected, have precluded the use of nuclear-
heated propulsion for lunar or near-Earth use. It is possible, however, that
the future may see the use of “nuclear tugboats” for reusable lunar
transport and synchronous orbit transport applications.

Electrical Rockets

At the very-high-energy end of the propulsion spectrum, so much energy
must be added to the propellant that “self-cooling” schemes (such as the
nuclear rocket) cannot provide sufficient energy; thus, systems that provide
energy through use of a motor-generator configuration and its required
radiator become mandatory. Relatively straightforward analysis shows that
for such cases the optimum choice of exhaust velocity is not a limitingly
large value. This is because the mass of the power supply and radiator
increases as the propellant stream energy increases, so that the combination
of propellant mass and power supply mass passes through a minimum at an
intermediate value of exhaust velocity. Detailed studies of possible manned
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solar missions indicate the optimal exhaust velocities to be in the range of
30,000-50,000 ms 1.

Electrothermal thrustors (arcjets). Flectrothermal thrustors are con-
ceptually simple devices that operate by passing an electrical current di-
rectly through the propellant so that the electrical energy is deposited as
thermal energy within the propellant. The high-enthalpy propellant is then
expanded through a conventional nozzle.

Electrothermal thrustors are limited in performance by the onset of high
ionization (or dissociation) losses, as well as high thermal losses to the
containing walls. At present, attainable exhaust velocities are limited to
about 17,000 ms™*, so that the devices are inappropriate for planetary
missions. Their relative simplicity makes them viable candidates for use in
orbit perturbation and stationkeeping.

Electrostatic rockets (ion rockets). When very-high-energy exhaust
streams are considered, the particle energies are many times larger than
typical ionization energies, so the loss (for propulsive purposes) of the
ionization energy can be considered of small import. If the exhaust stream is
fully ionized, however, the exhaust stream can be contained and directed
through the use of electric (and possibly magnetic) fields alone. As a result,
“viscous containment” by solid boundaries is not required and the problem
of solid-surface erosion is vastly reduced.

Electrostatic thrustors operate by accelerating a stream of ions in an
electrostatic field and subsequently neutralizing the exhaust stream by the
injection of electrons. With such very-high-energy devices, a performance
limitation occurs because of the difficulty of creating sufficient thrust per
area. The thrust limitation occurs because the beam flow rate is restricted
due to the proximity of the departing ions to the ion emitter surface, which
much reduces the ion departure rate. (The beam becomes “space charge
limited.”) Straightforward analysis shows that the beam thrust is propor-
tional to the square of the mass/charge ratio, to the fourth power of the
exhaust velocity, and to the inverse square of the anode-cathode spacing. As
a result, very small spacings and propellants with very high mass/charge
ratios (cesium or mercury) are used.

To date, electrostatic thrustors have demonstrated successful performance
in the range of exhaust velocities in excess of 50,000 ms~'. The great
remaining problem for future electrical rocket development is the generation
of the required power at acceptable power-to-mass ratios.

1.4 Airbreathing Engines

Performance Measures and Engine Selection Considerations

The two most commonly used performance measures for airbreathing
engines are specific thrust (the thrust force divided by the total mass flow
rate of air through the engine) and specific fuel consumption (the mass flow
rate of the fuel divided by the thrust force of the engine). These perfor-
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mance measures are themselves related to the more fundamental efficiency
measures, the engine thermal efficiency and the propulsive efficiency.

It is to be noted that the (useful) mechanical output of the engine appears
entirely as the rate of the generation of kinetic energy in the exhaust stream
or streams. (Note that to a thermodynamicist kinetic energy is entirely
equivalent to work.) It is fortunate for the aircraft engine designer that the
kinetic energy of the exhaust stream is already in a form appropriate for the
purpose of providing thrust. This is in contrast to (for example) a ground-
based gas turbine engine that would have to be designed with subsequent
turbine stages to remove the exhaust stream kinetic energy and convert it to
shaft power. Such subsequent stages would have further component losses,
leading to an engine thermal efficiency substantially less than that of an
equivalent aircraft engine. Because of the equivalency of kinetic energy and
work, the thermal efficiency can be obtained as the ratio of the rate of
kinetic energy generation to the rate of thermal (chemical) energy input.

The propulsive efficiency gives a measure of how well the energy output
of the engine is utilized in transmitting useful energy to the flight vehicle. It
1s defined as the ratio of the power transmitted to the flight vehicle and the
rate of kinetic energy generation.

Elementary manipulations show that a propulsive efficiency increase will
be accompanied by a specific thrust decrease, a situation that adds to the
designer’s dilemma. The specific fuel consumption is inversely proportional
to the product of the thermal and propulsive efficiencies (as well as being
proportional to the flight velocity). Hence, it is obvious that it would be
desirable to increase the propulsive efficiency in order to reduce the specific
fuel consumption. Inevitably, however, the amount of air handled by the
engine would have to be increased (to maintain the same level of thrust)
because of the related decrease in specific thrust. The requirement to
increase the quantity of air handled by the engine can lead to difficult
engine installation problems. The use of a very-large-diameter fan with a
large bypass ratio, for example, might require an inordinately long landing
gear as well as, perhaps, a gearbox to better match the fan tip speed with the
tip speed of the turbine driving the fan.

It is evident that the optimum choice will depend much on the “mission.”
Thus, because for long-range transport aircraft fuel consumption is of
dominant concern, the optimal design favors use of an engine with a high
bypass ratio and a low fan pressure ratio. Figure 1.3 shows the PW2037
engine recently introduced into commercial service. This engine has a 5.8
bypass ratio and 1.4 fan pressure ratio (giving a high propulsive efficiency
and hence a low specific fuel consumption, but also a low specific thrust).
The engine has a high compressor pressure ratio ( = 32), which helps to give
a very high thermal efficiency, but also somewhat further contributes to the
low specific thrust.

The extreme performance demands of the military environment lead to
the selection of quite different design choices. Thus, high specific thrust is
required for flight at high Mach numbers or for maneuvering flight at
transonic Mach numbers. As a result, lower fan bypass ratios and higher fan
pressure ratios are found to be suitable. Even then, such aircraft must have



Fig. 1.3 PW2037 turbofan (courtesy of Pratt & Whitney).
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acceptable subsonic cruise capability; thus, a compromise between high
specific thrust and low specific fuel consumption is inevitable. The demand
for compromise of such multimission aircraft is somewhat eased through
incorporation of afterburning, which greatly increases the specific thrust at
the high-performance condition and hence allows use of a more fuel-efficient
system for subsonic cruise. Figure 1.4 shows the Pratt & Whitney F100
afterburning turbofan engine. It is to be noted that this engine has a
three-stage fan with a pressure ratio of = 3 and bypass ratio of 0.78. The
compressor pressure ratio is 25, which is relatively high for this class of

Fig. 1.4 F100 afterburning turbofan (courtesy of Pratt & Whitney).
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engine and is clearly incorporated to aid the subsonic fuel efficiency.

The choice of the appropriate engine is also much affected by the possibly
conflicting requirements of takeoff thrust and cruise thrust. It is evident that
for zero flight velocity the power required to supply a given thrust level is
proportional to the exhaust velocity (inversely proportional to the mass
flow). At high flight velocities, large powers are required; as a result engines
with low specific thrusts sized for takeoff thrust requirements are found to
be underpowered at high forward speeds (as is the case for conventional
turboprops). Conversely, engines with very high specific thrust (turbojets)
must be made oversize to satisfy the takeoff requirement and hence tend to
be too powerful for cruise flight at subsonic speeds. This latter condition
results in throttled-back operation at cruise with a consequent loss in
thermal efficiency because of the related reduction in compressor pressure
ratio.

It is of interest to note the recent development of very-high-power
turboprops designed to fly at Mach numbers up to 0.8 (Fig. 1.5). Such
engines are so powerful that in the takeoff condition they are operated at
part throttle so as to allow the use of lighter gearboxes and to prevent
propeller stalling.

It is also worthy of note that the turbofan, so popular in commercial
airline use, provides an excellent balance between the takeoff thrust and
cruise thrust requirements.

Engine Components

The major components of an aircraft gas turbine engine are the inlet,
compressar (and fan), combustor, turbine, and nozzle. In this section the

@

Fig. 1.5 Test model of high-disk-loading propfan in wind tunnel.
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principles of operation of each component and the design limitations and
problem areas still found in practice will be briefly described.

Inlets. The design characteristics of an inlet very much depend on
whether the inlet is to be flown at subsonic or supersonic speed. In either
case, the requirement of the inlet is to provide the incoming air to the
compressor (or fan) face at as high a (stagnation) pressure as possible and
with the minimum possible variation in both stagnation pressure and
temperature. For both supersonic and subsonic flight, modern design prac-
tice dictates that the inlet should deliver the air to the fan or compressor
face at a Mach number of approximately 0.45. As a result, even for flight in
the (high) subsonic regime, the inlet must provide substantial retardation
(diffusion) of the air.

The design of subsonic inlets is dominated by the requirements to retard
separation at extreme angle of attack and high air demand (as would occur
in a two-engine aircraft with engine failure at takeoff) and to retard the
onset of both internal and external shock waves in transonic flight. These
two requirements tend to be in conflict, because a somewhat “fat” lower
inlet lip best suits the high angle-of-attack requirement, whereas a thin inlet
lip best suits the high Mach number requirement. Modern development of
the best compromise design is greatly aided by the advent of high-speed
electronic computation, which allows analytical estimation of the complex
flowfields and related losses.

Estimation of the losses within supersonic inlets is an easier task than for
subsonic inlets for the simple reason that the major losses occur across the
shock waves, and hence may be estimated using the relatively simple shock
wave formulas. More exacting estimates require estimation of the
boundary-layer and separation losses.

There is a wide variety of design possibilities for supersonic inlets,
ranging from the simple normal shock inlet (which has a single normal
shock wave located in the flowfield ahead of the inlet lip) to the internal,
external, or mixed compression inlets depicted in Fig. 1.6.

The design of an inlet and its related control system is a demanding task,
particularly for an aircraft with very high Mach number capability. Optimal
performance at a given Mach number requires exacting definition of the
inlet geometry. [This is so that the shock wave strengths as well as wall
impingement locations (in the neighborhood of suction slots) can be accu-
rately determined.] When such inlets are flown at speeds other than the
design Mach number, complex geometrical variation must occur if the inlet
performance is not to deteriorate excessively.

It is to be noted that the great difficulty of providing acceptable inlet
performance over a wide range interacts with the proper determination of
an aircraft’s flight envelope. The necessary variable geometry and actuation
equipment can so increase the vehicle weight that insistence upon a high
Mach number capability can greatly compromise the aircraft performance
at lower Mach numbers. This situation is particularly true for military
aircraft, where it is found in combat that the aircraft energy degradation in
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Fig. 1.6 Supersonic inlets.

severe maneuvering is so extreme that most actual combat occurs in the
neighborhood of a unit flight Mach number! Clearly the F-16 aircraft, which
has a simple normal shock inlet, has been designed to optimize its perfor-
mance in this lower Mach number regime.

Compressors and fans. There are two major classes of compressors
used in aircraft gas turbines, the centrifugal and the axial. In the centrifugal
compressor, air is taken into the compressor near the axis and “centrifuged”
to the outer radius. Subsequently, the swirl of the outlet air is removed and
the air diffused prior to entry into another compressor stage or into the
combustor. Centrifugal compressors have the advantage in that they are
rugged and deliver a high-pressure ratio per stage. In addition, they are
easily made in relatively small sizes. The disadvantages of the centrifugal
compressor are that it is generally less efficient than an axial compressor and
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it has a large cross section compared to the cross section of the inlet flow. In
modern usage, centrifugal compressors are used with relatively small engines
or as a final stage (following an axial compressor) in larger engines.

Axial compressors are used in the majority of the larger gas turbine
engines. In such compressors, enthalpy addition occurs in the rotating rows
(rotors) in which, usually, both the kinetic energy and static pressure are
increased. The stator rows remove some of the swirl velocity, thereby
decreasing the kinetic energy and consequently increasing the static pres-
sure. The limiting pressure rise through an axial compressor row occurs
when the adverse pressure gradient on the blade suction surface becomes so
severe that flow separation occurs. When substantial separation occurs, the
entire compressor may surge (that is, massive flow reversal will occur) or
rotating stall may result. Rotating stall is the condition where the flow in
several blades stalls (becomes almost stagnant) and the “package” of stalled
fluid then rotates around the blade row. The rotating stall condition is
particularly dangerous, because very large vibratory stresses can occur as
the blades enter and depart the stall.

In order to achieve a high limiting pressure rise per stage, it is beneficial
to design the stage so that the static pressure rise in each row is almost the
same (so that one row will not stall prematurely). The degree of reaction °R
is defined as the ratio of the static pressure rise in the rotor divided by the
static pressure rise across the stage and provides a measure of how well
balanced the blade row loadings are. When detailed designs are investigated,
however, it is found that, inevitably, the degree of reaction increases with
increase in the radius. A related result is that stator blades are limited in
their performance at the hub, whereas rotor blades are usually limited at the
tip. Further, the effect of the variation in °R with the radius results in rows
with large tip-to-hub ratios being more limited in attainable pressure rise
than rows with small tip-to-hub ratios. This result in itself provides the
designer with yet another compromise, in that a compressor with a small
tip-to-hub ratio would require fewer stages to attain a given pressure ratio
than would a compressor with a large tip-to-hub ratio, but would also
require a greater outer diameter in order to handle the same quantity of air.

By and large, fuel efficiency increases with an increase in the compressor
pressure ratio. The optimal pressure ratio is, however, constrained by several
design limitations and tradeoffs. A compressor with a very-high-pressure
ratio could require an excessively heavy casing if the compressor was to be
used to its maximum capability in low-altitude (high-ambient-pressure)
conditions. In addition, the high pressure tends to increase the casing
expansion and distortion. The effects of such expansion appear in increased
losses due to the flow around the blade tips. This situation is even further
aggravated for very-high-pressure-ratio compressors, because the high-pres-
sure blades in even large engines are very small and the tip leakage affects a
proportionately larger portion of the flowfield.

High-pressure ratios also greatly compromise the off-design performance.
It is evident that the overall contraction of the compressor annulus area will
be chosen so as to provide the correct axial velocity throughout the
compressor for the design condition. Thus, at off-design operation the axial
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velocity distribution will not be appropriate for the then present blade
speeds. Consider, for example, the conditions existing at very low blade
speed as would be found during starting. Under such conditions, the
increase in pressure, and hence density, across each stage is far below that to
be found when the compressor is at design speed. As a result, the axial
speed of the flow must increase greatly as the air proceeds rearward into the
contracted annular cross section. This effect can be so extreme that the flow
can approach “choking” (approach Mach 1). Under these conditions, the
flow tends to drive the rearward blades (“windmilling”), whereas the
resultant back pressure slows the incoming flow and causes the frontward
blades to stall.

The demands of these off-design considerations have lead to several
ingenious “fixes.” Thus, modern high-pressure-ratio compressors utilize
“bleed valves” that release a portion of the air from the intermediate blade
rows so as to reduce the axial velocity in subsequent stages. Several of the
early stages of the compressor are equipped with variable stators so that the
flow can be directed in the direction of the rotation of the rotor and so
reduce the angle of attack and hence the tendency to stall. Finally, modern
compressors are equipped with “multiple spools” such that portions of the
compressors are driven by their own separate portions of the turbine. By so
doing, each portion of the compressor (and its related turbine!) tends to
adjust its speed better to the then present axial velocity.

Problems of scale are to be found when larger engines are scaled down for
use in smaller aircraft. Tip clearance problems will obviously become
greater, and the high-pressure blading can become extremely small. For this
reason, it is often advantageous to employ a centrifugal compressor as a
final stage, rather than the equivalent several stages of an axial compressor.
A further problem of considerable consequence arises in the design of the
first rows of a small-scale compressor or fan. All aircraft compressors must
have sufficient tolerance to withstand bird strikes, and it is a considerably
more demanding task to provide the required structural integrity-—while
retaining aerodynamic performance—in a small-scale engine than in a
large-scale one.

Combustors. Combustors operate by having fuel sprayed into a central
“flame-stabilized” region where the droplets evaporate and the fuel ignites.
The fuel-rich gas of the combustion region is mixed with cooling air passed
through holes in the combustion liner. Good combustor design is directed
toward achieving complete burning of the fuel with minimal pressure loss.
Sufficient mixing must be introduced to reduce the presence of “hot spots”
as much as possible, provided that the pressure drop is not excessive.

Present development efforts are directed toward the reduction of pollu-
tant emissions, operation with alternative fuels, and the achievement of
stable and efficient operation in off-design operation.

Turbines. Virtually all turbines used in aircraft gas turbine engines are
of the axial flow type and hence are superficially similar to an axial
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compressor operating in reverse. The engineering limitations on the perfor-
mance of a turbine stage are, however, very different than the engineering
limitations for a compressor stage. The large decrease in pressure found in
turbines much reduces the tendency of the suction surface flow to separate,
so turbine stages can be designed with very large pressure ratios. The gas
entering the turbine is at a very high temperature, however, and hence the
initial turbine stages must be cooled by passing air from the compressor
outlet through the turbine blades.

Turbine cooling proves to have fairly severe performance penalties, so
there is a premium on the development of very-high-temperature materials
that will allow the use of high turbine inlet temperatures with only minimal
cooling provided. Such material must exist in an extremely demanding
environment, for not only are high temperatures encountered, but both the
temperatures and centrifugal stresses are frequently cycled. Dimensional
stability must be high, because if excessive creep occurs (brought about by
the high thermal and centrifugal stresses), excessive rubbing of the blade
tips on the outer annulus could occur. The problems of tip rubbing are so
severe that in recent years “active clearance control” has been introduced.
Active clearance control is achieved by actively cooling the turbine annulus
wall to achieve the appropriate tip clearance.

Nozzles. The final component of the aircraft gas turbine engine, the
nozzle, accelerates the hugh-pressure exhaust gas to close to the ambient
pressure. The primary design difficulties arise with nozzles intended for use
in aircraft with wide Mach number capability. Flight over a wide Mach
number range introduces a wide range of ram pressure ratios, with a
consequent wide range of nozzle pressure ratios. Optimum nozzle perfor-
mance occurs when the nozzle exit pressure is not far from ambient; thus,
for nozzles with a large operating pressure ratio range, substantial geometri-
cal variation must be possible.

As a result of the geometrical restraints required for good matching with
the external flowfield, the major effects of nozzle performance tend to be
identified with the effect of exit pressure mismatch and installation effects
on the installed thrust through “boat-tail” drag or exhaust plume back
pressuring.

Because of the relative ease of geometrical variation, two-dimensional
nozzles are presently under consideration for use on missions with large area
variation requirements or for missions utilizing thrust vectoring, An addi-
tional possible benefit of the geometric flexibility of two-dimensional noz-
zles arises through the possibility of utilizing such flexibility to shield the
internal hot surfaces from heat-seeking weapons.

1.5 Summary

In the foregoing, the principles of operation, design considerations, and
present status of some of the aspects of rocket and airbreathing engines
have been reviewed in purely descriptive terms. In the chapters to follow,
the basic thermodynamics and fluid mechanics necessary to allow a quanti-
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tative estimate of many of the behaviors described in this chapter will be
reviewed. Subsequent chapters introduce many simplified models of the
processes found within the engines and their components that lead to
analytical estimates of the engine performances. The underlying method-
ology of the modeling techniques has far greater applicability than the
limited number of examples presented and the reader is urged to ponder the
solution methodology itself, as well as the implications of the analytical
results.



2. THERMODYNAMICS
AND QUASI-ONE-DIMENSIONAL FLUID FLOWS

2.1 Introduction

This chapter will be limited to a very brief review of the concepts and
laws of thermodynamics and to the description of quasi-one-dimensional
flows. It is important to understand that the subject of thermodynamics
itself is restricted to the study of substances in equilibrium, including
thermal, mechanical, and chemical equilibrium. Hence, thermodynamics is
more nearly analogous to statics than to dynamics. This limitation might
seem to be hopelessly restrictive to an engineer because he is most often
concerned with flow processes, and the substances involved in flow processes
are not, strictly speaking, in equilibrium. In fact, however, in most cases of
interest to the engineer, such substances may be considered to be in
“quasiequilibrium” such that local values of the thermodynamic properties
may be meaningfully defined.

Flow processes have losses associated with them that can be identified
with the lack of equilibrium, and it should be realized that the quantitative
prediction of such losses is beyond the scope of thermodynamics. The
“theory of transport phenomena” must be applied in order to quantitatively
estimate such losses, and the prediction of the various “transport coeffi-
cients” must rely upon the techniques of kinetic theory.

The complicated transport mechanism known as turbulence is an essen-
tially macroscopic phenomenon. The accurate description of losses in
turbomachines relies very heavily upon the accurate description of turbulent
processes because the turbulent transport mechanisms contribute the domi-
nant portion of the losses in virtually all turbomachine components.

2.2 Definitions

It is important to be precise in the definition of terms intended for use in
the context of thermodynamics so that possible confusion with the col-
loquial usage of a term may be avoided. A very abbreviated list of
definitions, as will be utilized herein, follows.

Property

A property is a characteristic (of a system) that can in principle be
quantitatively evaluated. Properties are macroscopic quantities that involve

19
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no special assumptions regarding the structure of matter (i.e., temperature,
pressure, volume, entropy, internal energy, etc.).

Properties are grouped into two classes: (1) extensive properties that are
proportional to the mass of the system, and (2) intensive properties that are
independent of the mass of the system. Any extensive property can be made
an intensive property simply by dividing by the mass of the system.

Thermodynamic State

The state of a system is its condition as described by a list of the values of
its properties.

Thermodynamic Process

In the limiting case when a change in the properties of a thermodynamic
system takes place very slowly, with the system at all times very close to
equilibrium, the “in-between” states can be described in terms of properties.
A change under such conditions is called a thermodynamic process.

Work

The concept of work is a familiar one from mechanics. Work is said to be
done by a system when the boundary of the system undergoes a displace-
ment under the action of a force. The amount of work is defined as the
product of the force and the component of the displacement in the direction
of the force. Work i1s so defined as to be positive when the system does work
on its surroundings. It should be noted that work can by no means be
considered a property, but rather is identified with the transitory process. In
order to avoid possible confusion, the term “ work interaction” will often be
used when a system is undergoing a “work process.” Thus, a positive work
interaction occurs when the system does work on its surroundings and a
negative work interaction occurs when the surroundings do work on the
system.

Heat

In analogy to the work interaction defined above, a heat interaction can
be defined. Thus, when a hot body is brought into contact with a cold body,
the temperature of each changes. It is said that the cold body experences a
positive heat interaction. Similarly, the hot body simultaneously experiences
a negative heat interaction. In order to define the heat interaction of a body
quantitatively, the change in one or more properties (usually the tempera-
ture) of a standard system is measured when the standard system and the
body reach equilibrium after being placed in contact. Like the work
interaction, the heat interaction is used only in connection with the transi-
tory process.
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In order to further emphasize that the work interaction and heat interac-
tion are defined only in connection with the transitory process, when
infinitesimal increments of work and heat interactions are considered, the
special symbols d’W and d’Q will be introduced. The prime in these symbols
is to remind the reader that “W ™ and “Q ™ are not properties, and hence the
infinitesimal increments cannot be integrated to give the change in W
and Q.

2.3 The Laws of Thermodynamics

In the following sections, the first three laws of thermodynamics will be
discussed. Because thermodynamics is primarily concerned with heat and
work interactions, the experiments leading to the formulation of the laws
are in all cases considered to deal with macroscopically stationary materials.
That is, although the material boundaries may be movable, there is no
contribution to the interchanges of energy, etc., due to a change in potential
energy or kinetic energy of the macroscopic sample. It is to be understood
that when such contributions are of importance in an interaction (as they
obviously are in most processes in turbomachinery), they may be included
later in a straightforward manner by applying the laws of mechanics. The
interaction of thermodynamic and overall mechanical energy effects is
considered in Secs. 2.15-2.17.

2.4 The Zeroth Law of Thermodynamics

This law is so fundamental in classical thermodynamics that it was at first
accepted as being self-evident and was not formally denoted a law until
after the “first” and “second” laws had become established. However, it is
now recognized that it is of fundamental importance to the foundation of
classical thermodynamics.

Experience has shown that if a hot body is brought into contact with a
cold body, changes take place until eventually the hot body stops getting
colder and the cold body stops getting hotter. At this point the bodies are in
thermal equilibrium. The zeroth law states:

If two bodies are separately in thermal equilibrium with a
third body, they are in thermal equilibrium with each
other.

It is evident that bodies in thermal equilibrium have some property in
common and this property is the temperature. Thus, if desired, any refer-
ence temperature scale (a mercury thermometer, for example) can be used to
determine the temperature of an object; but it can be shown that the second
law allows the definition of a temperature scale independent of the proper-
ties of the reference substance.

Thus, the zeroth law allows definition of the property temperature,
although it does not lead to the definition of any particular reference scale
for temperature. The restriction of thermodynamics to the study of equi-
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librium conditions is very evident here, because temperature could be
defined as that property the bodies had in common only if the bodies were
allowed to reach equilibrium.

2.5 The First Law of Thermodynamics

In 1840, Joule conducted his famous experiment to establish the equiva-
lence of a heat interaction and a work interaction. His result, available in
many texts, allowed the definition of a new property, the energy £. Thus,
denoting d'Q as an incremental heat interaction and d’W as an incremental
work interaction resuits in

E—&=f@0—dW) (2.1)

where E| is the energy in the reference state. (Recall the special notation d'Q
and d'W introduced in Sec. 2.2)

Here it should be noted that (1) the energy can be defined in terms of the
system properties only when the end states are equilibrium states, aithough
the intervening states on the path need not be in equilibrium; and (2) the
energy is given as a difference in magnitude between the two states and is
not defined in absolute values.

The definition of a simple system states that such a system is completely
defined in terms of any two intensive properties, and the energy in such a
restrictive case 1s usually termed the internal energy and denoted by U.
Usually, any two of the three properties—temperature (defined from the
zeroth law), pressure (defined from mechanics), or volume per unit mass
(defined from geometry)—are used as the independent properties. It is
apparent also that the internal energy of a system can be “tapped” so that a
net outflow of energy is obtained in the form of either a heat or a work
interaction. Any observant person, however, can sense that there must be
some restriction on the form in which this outflow of energy can occur
because of the comparative ease of obtaining a negative heat interaction
from a system as compared to that of obtaining a positive work interaction.
This restriction is formalized in the statement of the second law of thermo-
dynamics.

The differential form of the first law may be written

dQ=dE+dw (2.2)

2.6 The Reversible Process

A very useful reference process in thermodynamics is that of the revers-
ible process. A thermodynamic process is defined as a process in which
changes take place so slowly that the “in-between” states of the system are
at all times close to equilibrium so that the intermediate states can be
described in terms of properties. In addition, in the case where all external
constraints vary only infinitesimally from equilibrium, the process is said to
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be “reversible.” The terminology is obvious here in that if there is an
infinitesimal change in the properties of the system or its surroundings, the
process can be reversed and the system returned to its initial conditions.

Our interest in this study is in gases, which are very close to ideal “simple
systems,” in that their thermodynamic state is (very nearly) completely
determined by any two thermodynamic properties. For such a substance the
element of work done in a reversible process is simply d'W = pdV, in which,
by the definition of a reversible process, the pressure must be defined at all
times throughout the process. Thus, the first law for a gas undergoing a
reversible process may be written

dQ,=dU+pdV (2.3)
where U is the internal energy and V the volume of the gas.

2.7 Derived Properties: Enthalpy and Specific Heats

So far in this discussion of thermodynamics, only four properties have
been defined and used—specific volume v, pressure p, temperature 7, and
internal energy U. These properties are defined very fundamentally, but
there is great utility of notation allowed if certain properties derived from
these fundamental properties are defined. It should be noted, of course, that
any combination of properties is itself a property.

One group of properties that occurs frequently for gasdynamicists is
(u + pv), which is given the symbol 4 and the name specific enthalpy, i.e..

h=u+pv (2.4)

The first law may be written in terms of enthalpy for a gas undergoing a
reversible process as

dg,=dh—vdp (2.5)

where d’q, represents the heat increment per mass in a reversible process.

[Henceforth, for convenience we shall refer to (specific) quantities.]

Two further useful derived properties are the specific heat at constant
pressure and the specific heat at constant volume. These specific heats (or
specific heat capacities) are defined as the (differential) heat interaction (at
constant pressure and volume) occurring in a reversible process, divided by
the resultant (differential) temperature change. That is,

_(8q,) _
C,= 5T p = const (2.6a)
C,= (39,) v = const (2.6b)
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The two forms of the first law given above show that these terms are, in
fact, properties and that they may be written

c - (_g_;)p (2.7a)
C - (-g—;) (2.7b)

The ratio of the specific heats is also often used and is given the symbol v,
where

y=C,/C, (2.8)

2.8 The Second Law of Thermodynamics

Joule’s experiment leading to the establishment of the first law of thermo-
dynamics involved a negative work interaction with a system and the
consequent increase of the internal energy of the system, rather than the
reverse process of a positive work interaction at the expense of the internal
energy of the system. The engineer is usually concerned with the latter
procedure. It is clear that a very desirable type of engine—one that would
not violate the first law—would be one using a very large reservoir of
internal energy (the ocean, for example) and converting the energy drawn
from the reservoir entirely into a work interaction. Even though, wittingly or
unwittingly, inventors still attempt to obtain patents for devices capable of
performing in the manner described above, no working model of such a
device has ever been constructed; and the very long history of failures to do
so has long since led to the belief that it is impossible. This restriction on the
first law has been formalized in the second law of thermodynamics, which
may be stated as,

It is impossible for any engine, working in a cyclic process,
to draw heat from a single reservoir and convert it to work.

This statement (or any of its equivalent forms), when combined with the
zeroth and first laws, allows many remarkable deductions to be drawn
concerning the thermodynamic behavior of matter.

These deductions are usually presented as theorems and include among
them the definition of a new intensive property, the entropy s. Thus,

d’q,
S — Sl =
1

(2.9)

The differential form is

Tds=dyg, (2.10)
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Note here:

(1) The entropy, like the internal energy, is given as a difference in
magnitude between the two states and is not defined as an absolute value.

(2) It is very important to note that the definition of entropy in no way
requires that the state to be described be reached reversibly from some
reference state. The integral relation given above simply gives a procedure
for calculating the entropy difference between the specified end states. The
value of entropy itself, like temperature, pressure, or any other thermody-
namic property, depends only on the (equilibrium) conditions at the specified
state and in no way depends on the “history” of the processes leading to
that state. As stated previously, the assignment of any two thermodynamic
properties completely defines all further thermodynamic properties for a
simple system. Hence, for example, if the pressure and temperature of the
air in a given room are specified, so too is the entropy. Conversely, of
course, if the temperature and entropy are specified, so too is the pressure.

A further theorem of enormous consequence is that the entropy of an
isolated system cannot decrease. This theorem has great utility in investigat-
ing the possibility or impossibility of an assumed process.

2.9 The Gibbs Equation

An equation relating the five fundamental properties of thermodynamics
—specific volume v (defined from geometry), pressure p (defined from
mechanics), absolute temperature 7" (defined from the zeroth and second
laws), internal energy u (defined from the first law), and entropy s (defined
from the second law)—follows directly by combining Egs. (2.3) and (2.10).
Thus,

Tds=du+pdo (2.11)

This equation is known as the Gibbs equation and, as stated, relates the
five fundamental properties of thermodynamics. Note that a similar equa-
tion is obtained in terms of the derived property, enthalpy, by combining
Egs. (2.5) and (2.10) to give

Tds=dh—vdp (2.12)

2.10 The Gibbs Function and the Helmholtz Function
Two further derived properties are defined by the relationships,

Gibbs function: G=h—-Ts (2.13)
Helmholtz function: F=u—-Ts (2.14)

In some applications, particularly those involving determination of chem-
ical equilibrium, these newly defined properties have important physical
interpretations. For the purposes here, however, note that expressions
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obtained for differential changes in G and F may be promptly utilized to
obtain a very useful set of relationships known as Maxwell’s relations.

2.11 Maxwell’s Relations

By definition, when a simple thermodynamic system is considered, specifi-
cation of any two (intensive) properties completely defines the thermody-
namic state (and hence all properties) of the system. Thus, the differential
change dz in a property z is given in the form

dz=M(x,y)dx+ N(x, y)dy (2.15)
In this expression
a0z az
M—(E—;); and N—(—a';)x (216)

If now z is to be an exact differential (and hence a property), then the
second derivative with x and y will be independent of the order of
differentiation. That is,

AN

(&), (%), @)

Before utilizing these equations to generate Maxwell’s relations, it is
appropriate to reflect upon the necessity of utilizing the partial differential
notation in which the variable being held constant is explicitly indicated.
This notation is required in thermodynamics because, although (for a simple
system) only two properties may be separately specified, there is a wide
choice of which two properties may be selected. Thus, for example, the rate
of change of pressure with density with the entropy held constant is not
equal to the rate of change of pressure with density with the temperature
held constant. Thus, a notation is needed that clarifies which partial
derivative is intended.

Combining Egs. (2.11-2.14) leads to

or equivalently

du=Tds—pdv (2.18)
dh=Tds+vdp (2.19)
dG= —-sdT+vdp (2.20)
dF=—sdT—pdv (2.21)
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Systematic application of Egs. (2.16) and (2.17) then leads to:

) - () =
%)+ (3], =
) --(%), a0
28], -+-[38), &=
()--1%), o
%) (2), o
5,--(3) aan
), (%), =

This set of equations is known as Maxwell’s relations. One of the prime
utilizations of these relations is to obtain the behavior of certain properties
in terms of the “properties of state,” p, v, or T. Usually, a substance is
described by its equation of state relating the three variables p, v, and T;
and by appropriately manipulating the Maxwell’s relations, the behavior of
other properties may be deduced. Of course, the equation of state may not
be available in an analytic form, but rather in the form of tables or graphs.
However, turbomachinery problems most often involve gases that may be
considered perfect.

2.12 General Relationships between Properties

An expression for a differential change in entropy, with the entropy
considered to be a function of temperature and specific volume, is

(5),

(%),

dT+(§) dv
dv ) r

ds ds
ds = (ﬁ)UdTJr(b—U)Tdu—
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which, with Egs. (2.7), (2.22), and (2.29), results in
ap
Tds=C,dT+T ﬁ) dv (2.30)

Similarly, the entropy is considered to be a function of temperature and
pressure to give
(5]

as
(ﬂ) dT+($)po
35 P

which, with Egs. (2.7), (2.22), and (2.28), results in

ds ds
as=(57),97+( 35 4=

dv
Tds—deT—T(ﬁ)pdp (2.31)

Applying the condition for exactness to the expressions for ds given by
Egs. (2.30) and (2.31) gives

(‘?;;U)T: T(%) (2.32)
(‘Z—j’); —T(;—;';)p (2.33)

An expression for the difference of specific heats is obtained by subtract-
ing Eq. (2.30) from Eq. (2.31) and in addition noting that the ratio dp/dT
corresponds to (dp/dT), for the case where dv = 0. Thus,

_ (9P (9v
, Cv‘T(aT),,(ar)p (2.34)

Combination of Eqgs. (2.11) and (2.30) gives an expression for the dif-
ferential change in internal energy,

du=C,dT+[T(a—R) —p]dv (2.35)

and combination of Egs. (2.12) and (2.31) gives an expression for the
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differential change in enthalpy,

v
dh—deT+[v—T(ﬁ)p]dp (2.36)

A final example is an expression for the rate of change in pressure with
density at constant entropy. This ratio is of particular importance in fluid
mechanics because (as follows from momentum considerations) it is equal to
the square of the speed of small disturbances relative to the local fluid

velocity. First,
57, (%), (57)
G T Jp \ds)p\ 0T /p

=_r - =
T G
((?T v ds /. \NdT ),

Noting (ds/dT),= (ds/dT), and utilizing Eq. (2.22) and the chain rule of
calculus, it follows that

and hence

(%)), @

It is important to note that in the development of Eq. (2.37) no assump-
tion was made regarding the equation of state. The expression is thus valid
for situations in which the ratio of specific heats may vary substantially,

2.13 The Perfect Gas
A perfect gas is defined as a substance with equation of state given by

pv=RT (2.38)

In this expression, R is a constant termed the gas constant.

If, in addition to satisfying Eq. (2.38), the gas has a constant ratio of
specific heats, it 1s termed a “calorically perfect” gas.

It should be noted that the gas constant R is given in terms of the
“universal gas constant” R, by

R=R,/M (2.39)

where M = molecular weight.
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The value of R, in several systems is

Ibf s\ ft? Ibm
R.= 1545(?}5 T{)? lbm-mole - °R
_a9700f _fbm
’ g2 Ibm-mole- °R
_gyy ke (2.40)
s2 kg-mole- K '
For air of molecular weight 29 (approximately), R is
Ibf-s2 \(ft\* 1
R’53'3(1bm~f[)(?) °R
ft\? 1
= 1714(;) R
m\? 1
- 286.8(?) = (2.41)

It should be noted from Eq. (2.39) that when a gas is in a regime where
dissociation is occurring, it is not, strictly speaking, a perfect gas. This is
because dissociation changes the value of M and hence of R. However, if no
dissociation occurs but substantial vibrational excitation occurs, then the
gas would be perfect, but not calorically perfect.

The behavior of a perfect gas may be illuminated by applying the
relationships of Sec. 2.12. Thus, with Eq. (2.38) and Eqgs. (2.32) and (2.33),

(52) -0 (242)

hence, C, is a function of temperature only; and
ac
14
— 1] =0 243
( ap )T ( )

hence, C, is a function of temperature only.
From Egs. (2.35) and (2.36)

du=C,dT (2.44)

dh=C,dT (2.45)
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Thus, Egs. (2.42) and (2.43) show that both the internal energy and the
enthalpy are functions of temperature only. From Eq. (2.34)

¢,—-C =R (2.46)
and from Eq. (2.37)
ap\ _
( L ) — YRT (2.47)

Thus, the many familiar relationships peculiar to a perfect gas follow
directly from the equation of state and Maxwell’s relations. Note particu-
larly that Eqgs. (2.46) and (2.47) are valid whether or not the ratio of specific
heats vy varies.

2.14 Quasi-One-Dimensional Fluid Flows

A quasi-one-dimensional flow is defined as a flow in which the fluid
properties can be described in terms of a single spatial coordinate (the axial
dimension), the specified axial area variation of the containing tube or
channel, and (if the flow is time dependent) the time. The simplicity
introduced by utilizing such an approximate description of the flow in a
channel is clearly a virtue, but it is equally clear that the regimes of validity
of any analysis incorporating such an approximation should be thoroughly
investigated.

Before investigating the expected regimes of validity of the quasi-one-
dimensional approximation, note that the approximation is of particular
utility in the study of aircraft gas turbine engines. In the first-order analysis
of the various components of a turbomachine, it is customary to refer to the
“inlet and outlet” conditions of each component. It is quite obvious that the
conditions at the inlet and outlet of any component are not, in fact,
uniform, and hence any single quantity chosen to represent a given property
must be a properly chosen average quantity. When properly chosen, these
average quantities may be utilized with ease in a cycle analysis to predict the
overall performance of a given engine in terms of the performance of its
individual components.

In many situations, however, it is the effect of the non-one-dimensionality
that i1s at the core of the problem considered. Thus, for example, when
describing the performance of ejectors, careful distinction must be made
between the use of such averaging methods as area weighted, mass weighted,
and mixed out. Another example of the importance of the non-one-dimen-
sionality of a flow appears in the study of inlet distortion, which by its
definition involves the study of the variation of the stagnation temperature
and stagnation pressure about their appropriately chosen averages.

Considering a channel with solid walls in which a flow exists, it is clear
that severe property variations will occur across the channel. To make this
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statement clear, consider the example of the behavior of the velocity that is
known to have a value of zero on the wall and to be finite in the channel
center. If the walls are heat conducting (or if the Mach number at the
channel center is large), large variations in temperature across the channel
would be expected. In such cases, the “ temperature” or “ velocity” appear-
ing in the quasi-one-dimensional equations would in fact be an ap-
propriately chosen average of the values found across the channel. The
definition of this “average” would depend somewhat upon the particular
problem to be investigated, but it can be seen that if the “shape” of the
cross-channel property variation changes radically with the axial position,
whatever averaging process is chosen will have to be modified with the axial
position in order to obtain meaningful results from the analysis. Since the
suitable averaging procedures would not be known a priori, such a proce-
dure 1s tantamount to conducting a full two-dimensional investigation.

Conversely, however, there are two limits in which a quasi-one-dimen-
sional assumption could be expected to be of use. The first is the so-called
“fully developed flow” in which, in fact, the shape of the cross-channel
property variations varies only slowly with the axial position. In this case,
the quasi-one-dimensional assumption leads to an accurate description of
the behavior of the average fluid properties. The other limit of channel flow
behavior that allows an accurate analysis under the restrictions of the
approximation is that limit where a dominant portion of the flow in the
channel satisfies the assumption of very nearly uniform cross-channel condi-
tions and only a small portion, “the boundary layer,” has rapidly varying
properties in the cross-channel direction. In this latter case, it is tacitly
assumed that the boundary layer entrains such a small portion of the flow
that the average quantities are not affected by excluding the effects of the
boundary layer.

It would be well to mention here that a technique commonly used to
extend the quasi-one-dimensional solution utilizes the results of the quasi-
one-dimensional solution and applies these results as the boundary condi-
tions (“freestream conditions’) to be applied to the solution of the behavior
of the (two-dimensional) boundary-layer equations.

The effect of the curvature of the channel must be considered carefully,
because it is evident that channel curvature introduces cross-channel pres-
sure gradients which, in turn, introduce cross-channel gradients in other
fluid properties. In general, if the radius of curvature of the channel
centerline 15 large compared to the channel dimension in the radial direc-
tion, the effects of the induced radial pressure fields will be small. This
observation can be extended to indicate that the flow in individual stream
tubes of a general three-dimensional flow can be expected to be described
by the quasi-one-dimensional flow equations, although the determination of
the behavior of the stream tube itself (through the pressure fields induced by
other stream tubes) will rely upon solution of the complete equations.

In what follows the first law of thermodynamics is extended to include the
effects of the kinetic energy and the potential energy of the flowing fluid in a
form suitable to adapt for use in the quasi-one-dimensional equations. In
this derivation, the very useful concept of the “control volume” will be
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introduced, which will be employed later in the derivation of the quasi-one-
dimensional equations.

2.15 The First Law for a Flowing System—The Control Volume

An important application of the first law of thermodynamics is to be
found in the analysis of a flowing system. A very convenient and often used
concept is that of a “control volume,” defined simply as a given region in
space. This region in space may be moving, changing shape, etc., but most
often in analyzing material behavior using the control volume technique, a
simple control volume of fixed size, shape, and position is selected. The
selection of the most suitable control volume will depend upon the problem
at hand, but it can be stated in general that most often one is selected such
that the material at the entrance and exit is in local thermodynamic
equilibrium and in addition may have its behavior closely approximated by
assuming that all properties at the entrance or exit are the average proper-
ties at those positions. This latter requirement is the equivalent to stating
that conditions at the entrance and exit are “quasi-one-dimensional.” As
will be seen shortly, also required is some information concerning the heat
and work interactions at the boundaries of the control volume, but it should
be noted carefully that no requirement of reversibility or one-dimensionality
for the processes within the control volume will be imposed.

An important point to recognize is that in the preceding sections on
thermodynamics the first law was written as it pertained to a given mass of
material (the thermodynamic system), and that now the focus is on a given
volume in space through which the material passes. That portion of work,
kinetic energy, or potential energy identified with the bulk motion of the
thermodynamic system was not considered simply because such behavior
was assumed to be already known from the laws of mechanics. In now
considering a control volume through which the fluid enters and leaves,
however, the energy identified with the bulk motion of the fluid must be
included in order to account for any such bulk motion energy changes
experienced by the fluid between the entrance and exit.

The method for extending the first law for a thermodynamic system to a
control volume is to first write the first law for that mass contained within
the control volume at time ¢. The mass is then followed until time ¢ + dz and
the first law of thermodynamics is applied to the change experienced
by the mass. These changes may then be related to the changes experienced
by the material passing through the control volume.

Consider a control mass that at time ¢ occupies the volume bounded by
the two dotted lines 1 and 1’ and the solid walls of the container shown in
Fig. 2.1. At time ¢ + d¢ the control mass occupies the volume bounded by
the two dotted lines 2 and 2’ and the solid walls of the container. The
control volume will be considered to be the volume bounded by the
container and lines 2 and 1.

The change in “total energy” (i.e., internal plus kinetic plus potential
energy) of the control mass is given by

dEqy =d'Q - dW, (2.48)
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Fig. 2.1 Control volume and control mass.

where d'W;- indicates the total work interaction of the control mass in the
time ds. This work interaction can be considered to be of two parts:

(1) The work interaction with mechanical contrivances (d'W,,) such as
shafts, etc. v
" (2) The net work interaction of the fluid in the control mass with the fluid
external to the control mass by the moving interfaces at the entrance and
exit. This form of work interaction, sometimes called the flow work, is equal
to (F,V,dt— F¥,dt), in which F, and F, are the forces on the interfaces at
the entrance and exit to the control volume, respectively. With the assump-
tions of local thermodynamic equilibrium and quasi-one-dimensionality,
these forces can be written as the product of the pressure times the area so
that the flow work may be written

p.AV,dt—p AV de

The expression for the change in energy of the control mass may then be
written

dEcy =d'Q—dW, —{p.AV, - pAYV,)dt (2.49)

The energy within the control volume is related to that within the control
mass at times ¢ and ¢ + dr by

Ecy (t)=Ecp (1) - (Aind’)Pi[“f +(V,.2/2) + P-E-I]

Ecy(t+dt)=Ecy (1+dt)=(A4V,de)p,[u,+(V2/2)+PE.,]
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Thus
dEcy =dEcy +AVdip[u,+(V2/2)+PE. ]
—AV,dip,[u,+(V2/2)+PE.,) (2.50)

But ApV =i, the mass transfer per second through the boundary. By
equating the expressions for d E- ,, dividing by d¢, and writing u + p/p as
the enthalpy A, there is obtained

T N e

1

d'w, dQ
=47 T ay (2.51)
Example 2.1

As a very simple example, consider the adiabatic, steady flow of a fluid in
a nozzle. The control volume is that volume bounded by the solid walls of
the nozzle and the dotted lines shown in Fig. 2.2. The assumption of steady
flow requires (dE/d¢)-y =0 and =, the assumption of adiabatic
flow requires d'Q/dt =0, and, because the nozzle has no work interaction
with mechanical contrivances, d'W,,/dt=0. Assume very little, if any,
change in potential energy across the nozzle so that the control volume form
of the energy equation gives

[h+(v2/2)],=[r+(V?/2)], (2.52)

If, as indicated in Fig. 2.2, the inlet surface is so chosen that the kinetic
energy per unit mass of the fluid is very small compared to the enthalpy of
the fluid, then

V;::\/z(hi—he) (2.53)

Fig. 2.2 Adiabatic nozzle.
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This simple and convenient result can be interpreted in the following way.
The function of the nozzle is to take the random thermal velocities of the
fluid in the reservoir and to direct such velocities so as to give a directed
kinetic energy to the expelled fluid. In addition, the pressure within the
chamber also supplies “flow work™ that adds further to the directed energy.
Note that the flow work so supplied must come from a compressor or
similar device if the reservoir conditions are not to change with time. Note
also that without further specifying the process it cannot be stated what the
conditions should be at a particular point in the nozzle. Thus, a very rough
nozzle might cause the process to be highly irreversible, with the result that
even if the pressure drops the same amount as it does in another smoother
nozzle, the velocity at that point in the nozzle would be less than that in the
smooth nozzle. The sum of the kinetic energy and enthalpy would be the
same, however, indicating that the roughness has had the effect of slowing
down the fluid and returning the directed velocity to the random thermal
velocities identified with the temperature (and enthalpy).

Example 2.2

As a further example, consider the “blowdown” of a calorically perfect
gas from a vessel through a nozzle. What is the relationship between the
pressure, temperature, and density of the fluid in the container as mass is
expelled? Again assume the container to be adiabatic. In this case, of course,
the conditions in the control volume change with time and the control
volume form of the energy equation hence gives

(& e = o 7], 239

Now ri, is the mass flow out of the container, and may be written
—dm/dt where m is the mass within the container. For simplicity, the “exit
portion” of the control volume is the dotted line shown in Fig. 2.3, which by
assumption exists where A =h_> V2/2. In this case the energy E within
the control volume consists of internal energy only, so that E=mCT_ and

P.p etc. i —

Fig. 2.3 Fluid container.
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there is obtained

d(mT.) dm dm
Tdardr = a Gk

Expanding the derivative on the left side, cancelling the differential of
time, and rearranging, it follows that

This then integrates to give

T"x m, vl p"l v
=) =] 239

2

It has been emphasized to this point that the assumptions leading to the
control volume form of the first law do not require the presence of
reversibility. If an adiabatic process is reversible, no entropy change occurs.
Hence, calculate the entropy change occurring in this process. From the
Gibbs’ equation for a calorically perfect gas, it is found that

dr . d(1/p)
ds=C, ——+ R———=
1/p
hence
T.
Sy 7 8¢, —CfnT +an— (2.56)
Thus, in this case
[ P,
S, 7 S C(y—l)fnpl+an —=0

() (5]

This seems to be a paradox, because no explicit statement has been made
to introduce the assumption of reversibility, yet the result indicates that the
process described must have been reversible. It is apparent that an assump-
tion of reversibility must have been made implicitly. A little thought
indicates that by assuming the enthalpy at the exit was that of the entire
container, or more particularly by assuming the pressure at the exit was that
of the entire chamber, in fact no “viscous drop” was assumed for the
pressure and hence that the process within the chamber was reversible. If
the expulsion of the fluid had been particularly rapid or the fluid particu-
larly viscous, a pressure drop across the chamber would be expected and
hence assuming the pressure at the exit and in the chamber to be identical
would be in error.
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Example 2.3

An example that will hopefully clarify the method and utility of utilizing
the control volume or control mass method of “bookkeeping,” the equation
for the first law of thermodynamics follows by considering the combined
behavior of Examples 2.1 and 2.2.

Consider the “blowdown™ of a calorically perfect gas from a large
container through a nozzle to an (approximately) zero exit pressure (Fig.
2.4). The behavior of the gas in the chamber and across the nozzle is that
previously derived in Examples 2.1 and 2.2. Utilizing the control volume
approach, find the directed kinetic energy per mass at the nozzle exit and
integrate this energy over the entire mass outflow to determine the total
directed kinetic energy in the departing fluid. This latter result will be
checked by utilizing the control mass form of the first law.

First note from the Gibbs equation for a calorically perfect gas that

dr dp
ds=C —~R—
r T p
so that
y/(y—1
%z (%) 15250/ R) (2.57)
1 1

Thus, for this case of expansion to zero exit pressure, the exit temperature
and hence the exit internal energy and enthalpy are zero. Equation (2.53)
thus gives

Directed kinetic energy/mass = V> /2= C,T,

Pei , Tei

*

Fig. 2.4 Container and nozzle.
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At first this result might appear incongruous because the energy/mass
escaping the container is larger (by a factor of y) than the energy/mass
within the container. Clearly, however, the additional energy is being
transmitted to the escaping mass by the “flow work™ of the internal fluid.
This flow work is supplied by the expanding gas within the container that,
as a result of its expansion (and hence work interaction), has its own
internal energy and hence temperature reduced. The total outflow of energy
from the nozzle is given by

me, V2 e,
Total energy =f —26— dm =f C,T.dm
0 0

=l 7 )

Q

With Eq. (2.55), this becomes

. )
m,.

1 my\r!
Total energy=m_T,C (—) d(
&Y ' 1p'/(‘) \ 1)
=mT.C,

This latter result follows immediately when the control mass form of the
first law is considered, because the control mass statement would simply be
that all the energy originally contained in the vessel (m,C, T, ) must be equal
to all of the energy in the exhausted gas (namely, all of the directed kinetic

energy).

2.16 The Channel Flow Equations

Consider now the steady flow of fluid in channels with rigid walls (Fig.
2.5). Quasi-one-dimensionality will be assumed, the effects of potential
energy changes will be ignored, and, in addition, the wall slope and hence
rate of change of the cross-sectional area will be assumed to be small. The
effect of this latter assumption is that the cosine of the wall angle § may be
considered to be unity.

The conservation equations are developed by considering the conditions
across a small axial segment of the duct, as indicated in Fig. 2.5. The
conservation of mass gives immediately

puA = const

or

—t—t—= (2.58)
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Fig. 2.5 FElement of fluid in duct.

The first law of thermodynamics follows directly from Eq. (2.51) as
applied across the element. Thus, noting that s, =, and that
(1/mYd'Q/dt)=d’q, the heat interaction per unit mass, the first law is
obtained,

dh+udu=dyq (2.59)
The Gibbs equation may be applied directly,
Tds=dh—(1/p)dp (2.60)
and the first law and Gibbs equation may be combined to give
(1/p)dp+udu=dqg— Tds (2.61)

The momentum equation is found by writing Newton’s law in a form
appropriate for use with a control volume, namely

Sum of the forces = rate of production of momentum
or

Pressure forces + viscous forces = momentum convected out
through surface 2 per second — momentum convected in
through surface 1 per second

In symbols this is,

4, +f pdA—p,A, —f7cdx= (puzA)z—(puzA)1

side
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This expression introduces the shear stress 7 and the circumference c.
Retaining terms only to the first order and utilizing the continuity equation
(2.58) results in

—d(pA)+pdA —rcdx=puddu
or the momentum equation
(1/p)dp +udu= —(7c/pA)dx (2.62)

It may be noted that this equation closely resembles the familiar Bernoulli
equation of elementary ideal fluid mechanics. The only addition to the ideal
form of the equation arises from the viscous shear stress contribution. An
equation for the entropy variation follows by combining Egs. (2.61) and
(2.62) to give

Tds=dq+(1c/pA)dx (2.63)

It 1s apparent in this relationship that, for an ideal process in which the
shear stress is zero, the entropy variation corresponds to that for reversible
heat interaction, as already given in Eq. (2.10). The irreversibility of the
viscous term 1s apparent in its contribution to the increase in entropy.

2.17 Stagnation Properties

A stagnation property 1s defined as that value of the property that would
exist if the fluid were extracted and brought isentropically to rest. The
process may be imagined to be that shown in Fig. 2.6 wherein the fluid flows
1sentropically through a duct from condition 1 to condition ¢,.

Application of Eq. (2.59) gives an expression for the stagnation enthalpy.
Thus, noting d’q = 0 and integrating,

hy=hy +ul/2 (2.64)

Y

Fig. 2.6 Duct and imaginary duct for stagnation condition.
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Obviously the location of point 1 in the duct in which the flow actually
occurs is arbitrary, so in the following relationships between properties and
their related stagnation values, the subscript 1 will be omitted.

The equations take on particularly simple forms when a calorically
perfect gas is considered. Thus, Eq. (2.64) becomes

C,T,=C,T+u’/2 (2.65)

Further manipulation leads to

Ly R x1ype (2.66)
T 2C, YRT 2 '

Here the Mach number is introduced, defined as M = u/a. The speed of
sound ¢ as stated in Sec. 2.12, is equal to (dp/dp)2, which combined with
Eq. (2.47) gives a’=yRT. Equation (2.46) was utilized to give YR/ G
=y~1

Equation (2.57) may be applied directly (with 5, = s5,) to give

VIR ZAS )] - y/(y-D
%:(7') (1+ % ) (2.67)

Then, also

1+ ——-M

5 (2.68)

o _ P T_( y—1 2)1/‘*”

Some important behaviors concerning the variation of stagnation proper-
ties in ducts can be illuminated by applying Eq. (2.57) directly to the
conditions at ¢, and ¢, (Fig. 2.7). Thus,

y/(y—1
% — (%) e [s2751/R] (269)
I

n
where by definition s; =s, and s, = s,
In the special case of adlabatlc ﬁow in the duct, from Egs. (2.59) and
(2.65) T, = T, . Then
p./p, =e [Cam/Rl (2.70)

The second law, or equivalently Eq. (2.63), showed that when shear exists
in an adiabatic flow, s, > 5,. Thus, for adiabatic flow

P/ P, =P,/ Py <1 (2.71)
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Fig. 2.7 Stagnation conditions at two axial locations.

This result has important consequences in turbomachinery, because the
high performance of turbomachinery is dependent upon the efficient attain-
ment of high stagnation pressures. It is clear from this application of the
second law that nature naturally tends to erode the attained stagnation
pressure.

2.18 Property Variations in Channels

Several important relationships may be obtained in a fairly general form
by combining the conservation equations of Sec. 2.15. In so doing it will be
appropriate to express the change in pressure in terms of corresponding
changes in density and entropy. Thus Eq. (2.26) is used to obtain

d d
dp= (7?%) dp+(5§)pds

=(Z—§)Sdp+p2(—g—z)sds (2.72)
Then note that d7' = (dT/dp),dp + (dT/dp),dp gives
(%), ~(5), (&) (50), @13
Thus, utilizing Eq. (2.37) and the relationship
5.2, --(5
ar )\ ), "\,
Egs. (2.72) and (2.73) may be combined to give

dp=(%)sdp—pz(y—1)(g—z) ds (2.74)

P
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This expression for the pressure increment may now be substituted into
Eq. (2.61), whereupon by utilizing the continuity equation (2.58) together
with (dp/dp), = a? and M? =u?/a?,

d/TA +(1 —Mz)d—u" = %{[T—(y— l)p(%)p}ds—d’q} (2.75)

It will be recognized that this equation implies the requirement of the
famous convergent-divergent duct shape if an adiabatic perfect flow (d’g
=ds=0) is to be accelerated from a Mach number less than unity to a
Mach number greater than unity. When a perfect gas is considered, the
equation reduces to

d4 gy _ 1 _d
& - M) T = o (vTds — ) (2.76)

Adiabatic Flow of a Perfect Gas
When no heat interaction occurs, Eq. (2.76) further reduces to

dA ndu  ds
—+(1-M )7— R

= (2.77)

(appropriate for a perfect gas with adiabatic flow).

In an accelerating flow (i.e., in a nozzle), du is positive. In an adiabatic
(real) flow, ds is positive. Thus, at the throat of a nozzle (d 4 = 0), M? must
be less than unity. A method of estimating how much less than unity M? is
at a nozzle throat will be developed shortly, but it is of interest at this point
to relate this quasi-one-dimensional description to the two-dimensional
description of a freestream interacting with a (growing) boundary layer. In
the latter case, it is imagined that the growing boundary layer causes the
effective throat of the nozzle (as “seen by the freestream™) to shift slightly
downstream, so that the Mach number at the geometrical throat remains
less than unity. It can be seen that the two descriptions are not in
opposition to each other.

To estimate the effect of shear upon the Mach number at the throat in an
adiabatic nozzle (d4 =0, d’q =0), Egs. (2.62), (2.63), and (2.77) are com-
bined to give

y(rcdx/Adp)
M; =1+
throat 1—(y—])(7CdX/Adp)

(2.78)

It can be seen that the group (rcdx/A4dp) is just the ratio of the shear
force acting on the edges of an elemental volume of length dx to the
pressure forces acting upon the cross section of the same volume. In order to
further estimate the magnitude of this number, the skin-friction coefficient
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G is introduced,
C=r1/%pu? (2.79)
Thus for a circular throat of diameter D,

rcdx ZYMZC/
= 2.80
Adp = (D/p)dp/dx) (2.80)

The denominator of Eq. (2.80) may be roughly approximated as unity
with the assumption that the very rapid pressure changes found at a throat
correspond to the pressure changing on the order of magnitude of its own
value within one nozzle diameter. Such a coarse approximation is not wildly
distant from the truth for typical nozzles. A typical value for C, would be
approximately 0.005, so that Eq. (2.78) yields M., = 0.995. (Note that
dp/dx is negative.) This somewhat justifies the almost universally used
approximation that M, . = 1.

Nonadiabatic Flow of a Perfect Gas

As will be evident in Chap. 5, the behavior (and preservation) of the
stagnation pressure has a vital effect upon the performance of gas turbine
engines. The effects upon stagnation pressure of heat transfer and shear may
be obtained by combining Egs. (2.59) and (2.65), together with Eqgs. (2.63)
and (2.57). These may be written

CAdT,=dq
_dq TC
ds= T + _pTA dx
a9 o dp
ds’—ds_CPT, RPr

Combination of these three equations and Eq. (2.79) leads to

_%__YMz( d/q
P 2

¢

T, + CfA dx) (2.81)

This expression makes it clear that both heat interaction and frictional
effects cause a degradation in stagnation pressure when the Mach number is
other than zero. The source of this degradation becomes clear when Eq.
(2.69) is considered along with the above equations. Thus, from Eq. (2.69) it
follows that, for a given stagnation temperature, the stagnation pressure
decreases with increasing entropy. If a positive heat interaction is to occur
and the entropy increase kept to a minimum, the (static) temperature at
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which the heat interaction takes place must be kept as high as possible.
Clearly, when a flow of given stagnation temperature exists at finite Mach
number, the static temperature is reduced, leading to a lower stagnation
pressure than that attainable for zero Mach number heat addition.

This effect upon the stagnation pressure becomes of paramount impor-
tance in both the combustion chamber and afterburner of an aircraft gas
turbine engine. In some modern, high-performance aircraft, the maximum
engine cross section is determined by the requirement to keep the Mach
number at the entrance to the afterburner at an acceptably low value.

It would appear at first glance that Eq. (2.81) implies that, in the case of a
negative heat interaction, the stagnation pressure of the fluid could be
increased. To investigate this concept, assume that the heat interaction may
occur by either convective heat transfer (d’g;) or radiative heat transfer
(d'ge)-

Introducing the heat-transfer coefficient 4 results in (by definition of 4)

md'qr=h(T, - T)cdx (2.82)

(See Fig. 2.8.)
The Stanton number N, is defined by

hA
N, = G, (2.83)
Thus
dgr _ T,—T, ¢
CT = N, T 4 dx (2.84)
Hence Eq. (2.81) becomes
dp, _ yM’ ¢ I.—-T, yM* d'gg
0 > 1 dx T Ng, + G 2 Cr, (2.85)

A remarkable relationship termed the “Reynolds analogy” relates the
skin-friction coefficient and Stanton number over a wide range of flow
conditions,

Ny, = G2 (2.86)

Tw

Ty

l .

Fig. 2.8 Element of channel.
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Incorporating this relationship in Eq. (2.85) yields

dp,  yM* ¢

S ) _ M 44 (2.87)

T, 2 G,

This latter result indicates that (assuming the Reynolds analogy is ap-
proximately valid) no matter how far the wall temperature is reduced, the
stagnation pressure cannot be increased through convective transfer effects.
The possibility remains, however, that extreme radiative transfer (as might
occur in a high-powered gas laser) might contribute to a stagnation pressure
increase. Similarly, if evaporation occurs, the heat transfer is not limited by
the Reynolds analogy and the stagnation pressure can increase.

Constant-Area Heat Interaction

Combination of the continuity equation (2.58) (with dA =0), the
momentum equation (2.62), and Eq. (2.79) yields

d( p +pu?)= —pu’C/(c/A)dx
Then, noting M? = pu?/yp, this expression may be manipulated to give

g£+ ydM? Y ¢ M?

-2 = C———dx 2.88
Poo1+yM? 2471 +yM? (2.88)

The logarithmic derivative of Eq. (2.67) gives

dp, _dp _ (y/2)dM’
P 1+[(y—-1)/2] M?

(2.89)

Thus, noting that C,d7,=d’q, Eqgs. (2.81), (2.88), and (2.89) may be
combined to yield

a7, c YM? 2dMm? dm?
T =G T o drt — 5 - —
: 1+yM M2(1+yM?) MZ(H Y Mz)

(2.90)

If the heat interaction rate is known, this equation may be numerically
integrated to give M vs x. Two special cases are considered in the folowing
sections.

Ideal constant-area heat interaction—thermal choking. In the limit
where the flow may be considered to be ideal (G;=0), Eq. (2.90) may be
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integrated directly to give

where

T, -1+ Aq, -, - f(Mzz)

T’l CIJT’I f(Mlz)

1l -nalme

oy

(2.91)

(2.92)

Clearly, when the stagnation temperature increases, f( M5 ) must be larger
than f(M?). It is hence of interest to investigate the form of the function
f(M?) to see if it is always possible to increase the stagnation temperature.
Straightforward differentiation shows that df(M?)/dM =0 at M=1, so
also noting that f(0) =0, f(1)=1/2(y + 1), and f(c0) = (y — 1)/2¥2, f(M?)
can be plotted vs M as indicated in Fig. 2.9.

This figure aids in the prediction of certain famous characteristics of heat
addition at constant area. Thus, Eq. (2.91) shows that if the stagnation
temperature increases, f( M}) must be larger than f(M}). Figure 2.9 indi-
cates it must then be true that, whether M, is greater than or less than unity,
M, must be closer to unity than M.

24

20

2
tM9) 5

sl NG FYF 20

AR

10 M 15 20 25

Fig. 2.9 f(M?) vs M, ideal constant-area heat interaction.

3.0
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A further result, at first appearmg to be a paradox, occurs when a heat
interaction sufficient to require f(Mz) to be greater than 1/2(y+ 1) 1s
imposed. Since this requirement is impossible to satisfy, it appears that the
analysis flies in the face of reality, because it is apparent that the amount of
heat interaction that can be imposed is not limited experimentally. It must
be recalled, however, that Ag, _, is the heat interaction per unit mass, and
the condition of M, =1 represents that state when the maximum mass flow
per unit area exists for the given p, and 7, . Thus, in an expenment if this
condition (termed “thermal chokmg "} is reached and it is attempted to
cause a further heat interaction, the upstream conditions must change
(usually the stagnation pressure must increase) if the mass flow is to be
passed. It can be recognized that this phenomenon of thermal choking can
be of vital importance in determining the maximum allowable heat interac-
tion in a ramjet, an afterburner, or even a conventional combustor.

Equation (2.91) is a quadratic equation in M7, which may be solved and
manipulated to yield

M2 = 2/ (2.93)

1-2yf+[1-2(y+1)f)°

where

1+[(Y—1)/2]M12[ A‘hz}
= M} 1+
/=M (1+yM2)’ 61,

and where the + sign corresponds to subsonic flow and the — sign to
supersonic flow.

The stagnation temperature follows immediately from Eq. (2.91), and
combination of the continuity and momentum equations for constant-area
flow gives

Pyt pyui =py+ pyu3 (2.94)
or
Py _ 1H+yMP
Py 1+ yM}
Then
v/ (y—1)

&l - 1+YM12{1+[(Y—1)/2]M22 (295)

Py 1+yMP 1+ [(y=1)/2] M{

Example results are shown in Fig, 2.10.
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10
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Fig. 2.10 Mach number and stagnation pressure ratio vs Ag/ G, T, for ideal
constant-area heat interaction.

Adiabatic constant-area flow—viscous choking. When adiabatic
flow is considered, no change in stagnation temperature occurs, so Eq. (2.90)
yields

1-M?

——— M’ (2.96)
M“(l + 1= MZ)

¢
YC/Z dx =

It is apparent that d M2 /dx is positive for M <1 and negative for M > 1.
Thus, as with thermal choking, the effect of viscosity is to drive the flow to
Mach 1. This effect is termed viscous choking. As in the case of thermal
choking, the condition represents that state where the maximum flow per
unit area has been achieved for the given local values of stagnation pressure
and temperature. If more flow is to be passed, the upstream conditions must
change.

Equation (2.96) may be integrated in a straightforward manner to yield

Xo—xi=f(M7)—f(M}?) (2.97)
where

f(M)=Y;Ifn{H[(Y;;z)/z]Mz}—# (2.98)
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and
2 ¢ 2
—X = C—dx= | d 2.99
X2~ X1 fl G fl X (2.99)
Combination of Egs. (2.88) and (2.96) gives

P 2\ME 1+[(y-1)2]M?
from which
p M [1+[(y=1)2M )
e e (2100
and
Py _ M [1+[(y—1)/2] M} e (2.101)
Py My 1+[(y=1)/2] M} ’

Example results are indicated in Fig. 2.11.

10

0 4 8 12 T 20 24
Xy~ X,

Fig. 2.11 Variation of static pressure, stagnation pressure, and Mach number with
axial position, adiabatic constant-area flow.
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2.19 The Nozzle Flow Equations

The flow of a calorically perfect gas in a channel of varying cross section
is considered in this section. The mass flow rate 1 may be obtained in terms
of the local area, Mach number, and stagnation properties directly from the
continuity equation and Egs. (2.67), (2.68), and a® = yRT as follows:

m= pud = p,a,A

A ~y+1/2y-1)
Ll \/ ( ) M (2.102)

Alternatively, this expression may be written in terms of the local static
pressure by utilizing Eq. (2.67) to give

-l Gl e

It is also common to reference conditions to conditions at the throat,
which are here denoted by an asterisk. In Sec. 2.18 it was shown that the
Mach number at the throat can be expected to be very close to unity and
that it is usual to include this approximation. Thus,

'b|‘b
NN
Q=

M= A*p* /C* (2.104)

where by definition C* is the characteristic velocity

y+1 )<y+1)/2<yn RT*
7

It should be pointed out here that it is not inconsistent to consider the
Mach number to be unity at the throat, but not to insist that p,=p}*
throughout. Thus, M* =1 is an approximation that is numerically quite
accurate, but it does not imply the assumption that the viscous effects are
absent. It is possible to have the accumulated effects of viscosity upon the
stagnation pressure be quite significant, but to still have the local viscous
effect at the throat be very small.

Expressions for the area variation with Mach number and static pressure
can be obtained directly by dividing Eq. (2.104) into Egs. (2.102) and
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Fig. 2.12 Pressure ratio and Mach number vs area ratio for isentropic nozzle flow.

(2.103), respectively, to give

A _p T, 2 y—1, ,\]o+hae-b

- VT y+l(l+ 7 M ) i (2.105)
A [y=1( 2 b bpx [T p Y p ]
=T eI

(2.106)

Example results for isentropic flow (p,=p¥, T,= T*) are shown in
Fig. 2.12.

2.20 Numerical Solution of Equations

In several of the examples to follow (see also Problem 7.1), the desired
variables appear in transcendental equations. Many iterative techniques are
available for the solution of such equations. The numerical complications of
such techniques have been greatly reduced with the advent of small com-
puters with branching and looping capability, so that graphical techniques,
etc., are no longer necessary. In the following, two well-known techniques
are described.
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Newtonian lteration
Consider a transcendental equation of the form

F(x)=0 (2.107)

Now consider a jth estimate of x to be x, and obtain a method of
estimating a next (closer) quantity, x, ;. The function F(x,, ) is expanded
in a Taylor’s series to give

F(x; 1) =F(x;)+ (x5, = x,)F(x;) + -~ (2.108)

where F’(x;) is the derivative of the function F(x) by x, evaluated at the
value x;. Now if x, ., is to be close to the solution of F(x)=0, F(x,,,)
may be approximated as zero. Also, if x; is not far from x,,, the
higher-order terms in the series may be ignored to give the Newtonian
iteration,

X=X~ [F(xj)/F’(xj)] (2.109)

Equation (2.109) gives a method for obtaining the next estimate for the
solution to the equation, x,,,, in terms of the previous approximation. In
practice, the process would be continued until (x;,; — x;) was less than the
desired accuracy.

It 1s sometimes convenient to approximate the derivative of the function
by a finite difference form, say

F(xj+8) —F(xj—8)
28

'’

F(x;)= (2.110)
where § would be a suitably small quantity. The advantage of utilizing such
an approximation is that if a computer is to be programmed to utilize the
Newtonian iteration, only a subroutine to calculate the function F(x) itself
need be supplied—it is not necessary to provide a separate subroutine to
calculate the derivative.

Newtonian iteration is sometimes unstable, but it is fortunate in the
examples to follow that, provided a suitable first guess for the desired
variable is made, Newtonian iteration or the simpler functional iteration is
stable in all of the examples considered herein.

Functional Iteration

A simple form of iteration related to the Newtonian is the functional
iteration. Now assume a transcendental equation of the form

x=f(x) (2.111)



THERMODYNAMICS AND FLUID FLOWS 55

This may be formally converted to a form suitable for solution by Newto-
nian iteration by defining

F(x) =x—f(x)
hence from Eq. (2.109)

F(x)  x-f(x)
xj+1=xj_m—xj 1_f,(xj) (2.112)

Now, if the function f(x) is slowly varying in x, then f’(x;) may be
ignored compared to unity. In that case, Eq. (2.112) reduces to a functional
iteration

xj+1=f(xj) (2.113)

This extremely simple form would then be iterated until (x;,; — x;) is less
than the desired accuracy. This form is very simple and convenient, but is
suitable only when |f'(x;)| < 1.

Reference

'Barclay, L. P., “Pressure Losses in Dump Combustors,” AFAPL-TR-72-57,
1972.

Problems

2.1 Consider a perfect gas for which the specific heat at constant
volume C, can be approximated by

C.=A+BT+CT*+ --- (A, B,etc. = const)

Show that for such a gas undergoing an isentropic process, the density
is given in terms of the temperature by

B CT? A/R
p=lecxp(gT+ 74 + )]

2.2 A Van der Waals fluid obeys the equation of state

[p+(a/v?)](v—b)=RT (a. b, R = const)
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Show that for such a fluid

(f&) _ RT(2a/0°) —(3b/v)]
Ip |y [p—(a/vz)+(2ab/v3)]3

(b) du=C.dT +(a/v*)dv

2

— 2 —py
dh=C,dT+0 RTh—(2a/v*)(v—b) dp
RTv - (2a/v*)(v—b)

23 The “Joule-Thomson coefficient” is defined as

(%)
ap /),

(Note that a fluid that is adiabatically “throttled” through a porous plug
undergoes a pressure change at constant enthalpy. The Joule-Thomson

coefficient provides a measure of the expected temperature change.)
(a) Show that for a Van der Waals fluid

2

G RTv—(2a/v*)(v - b)’

(iT_) v RTb—(2a/v*)(v=b)
p/,

(b) Show that at the “inversion condition” [where (9T /dp), = 0]
p=(2a/bv) —(3a/v?)
24 Show that for any fluid
#%),- (%)
T\dv/ aT j .

Hence, for a Van der Waals fluid with C, given by C,= A + BT, show
that the equation relating v and 7 for an isentropic process is

v—b=ke B/R,/TA/R (k = const)
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Show also that, if C, were constant with temperature, the equation for
an isentropic process could be written as

[p+(a/v?)](v—-b)""* = const

2.5 Dieterici’s equation of state is given by
p(v—b)= RTe ¢/RT® (a, b, R = const)
Show that for such a fluid the Joule-Thomson coefficient is given by

(57~ 1=t by el |

Show also that the difference in specific heats is given by
(1+a/RTv)
1-(a/v*)[(v-b)/RT]

2.6 Air is contained in a stepped cylinder fitted with a frictionless
piston, as indicated in Fig. A. The air is cooled as a result of heat transfer to
the surroundings.

(a) What is the ratio of the temperature that would exist just as the
piston reaches the step to the initial temperature 7, in terms of the lengths
L, and L, and related cross-sectional areas 4, and 4,?

(b) If the air is further cooled to a final temperature of T;, what is the
ratio of final pressure to initial pressure in terms of L,, L,, 4,, 4,, and
T,/T?

= —a/RTe
C,— C,= Re™4/RT"

2.7 A thin-walled metal can of volume V. contains a calorically
perfect gas at pressure p, and temperature T,. Connected to the can is a
capillary tube and stopcock. The stopcock is opened slightly and the gas
leaks slowly into a heat-conducting cylinder equipped with a frictionless
piston. The surroundings are at pressure p, and temperature T,.

(a) Show that, after as much gas as possible has leaked out, a work

Fig. A
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interaction in the amount of W =p, (¥, — V,) has occurred. Here, V; is the
final volume of the gas. Find ¥} in terms of p,, p,, and V..
(b) Show that the emropy gain of the system and surroundings is

given by
N4 V.
Asw, = —TT |:f v 1 V}

C

2.8 A chamber contains a calorically perfect gas at pressure p; and
temperature T,. It is connected through a valve with a vertical cylinder that
is closed on top by a frictionless piston The piston is loaded by a weight of
such magnitude that a pressure of p, is maintained within the cylinder. (See
Flg B.) Initially the piston is at the bottom of the cylinder; then, the valve
is shightly opened to allow the pressures in chamber and cylinder to become
equal. It may be assumed that the volume of the piping is negligible, that
the expansion process in the chamber is reversible and adiabatic (no heat
transfer back through the valve), and that there is no heat transfer to any of
the walls.
Show that the final temperature in the cylinder is given by

1 1-p/p;
TC/ ; 7: 1/y
~(py/p))
29 A highly evacuated, thermally insulated flask is placed in a room

with air temperature 7,. The outside air is then allowed to enter the flask
through a slightly opened stopcock until the pressure inside equals the
pressure outside, at which time the stopcock is closed.

Assuming that the air is calorically perfect, what would be the temper-
ature of the air inside the flask after the process was completed?

2.10 Consider the frictionless flow of a calorically perfect gas in a
channel with thermal interaction. For the case where the wall i1s shaped to

CHAMBER
CYLINDER

P

Fig. B
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keep the static temperature constant:

(a) Find an expression for the area ratio A/A4, in terms of vy,
(T,— T,))/T, and M, (i refers to initial conditions).

(b) Find an expression for the ratio p,/p, in terms of the same
variables. '

2.11 Consider the frictionless flow of a calorically perfect gas in a
channel with thermal interaction. For the case where the wall is shaped to
keep the Mach number constant:

(a) Find an expression for the area ratio 4/4, in terms of y, M,
and T,/T, (i refers to initial conditions).

(b) Find an expression for the ratio p,/p, in terms of the same
variables. '

2.12 Consider the frictionless flow of a calorically perfect gas in a
channel with thermal interaction. The wall is shaped so as to keep the static
pressure constant. The flow enters at condition 3 and departs at condition 4.
Defined are 7,= T, /T, and m,=p, /p,..

(a) Find an expression for M, in terms of vy, M;, and 7,.

(b) Show that

T v/ (y—1)
Ty, = 3
T+ [(y - 1)/2] M; (1,—1)
(¢) Show that
A -1
ﬁ=7h+YTM32(Th_ 1)
2.13 Consider the frictionless flow of a calorically perfect gas in a

constant-area channel with thermal interaction. The gas enters the duct at
Mach number M, and thermal energy addition occurs until the flow chokes
(M, =1).
! (a) Obtain an expression for the related stagnation temperature ratio
(T,//T,') in terms of y and M,.
(b) Plot T,//T,, vs M, over the range 0 <M, < 1. Assume y = 1.29.
(c) Plot p,/p,, over the same range.

2.14 Consider the adiabatic flow of a calorically perfect gas in a duct.
The duct is shaped so that the velocity remains constant.

(a) Assuming the duct is of circular cross section and that the
skin-friction coefficient C, may be approximated as being constant, show
that the duct diameter D 1s given by

D=D,+yMCx

where i refers to the initial condition and x, is taken to be zero.
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(b) Obtain an expression for p,/p, in terms of vy, M, C;, and x/D.,.

2.15 A calorically perfect gas passing through a constant area duct
enters a region where thermal addition occurs. The thermal addition is
complete by station 2, after which the gas expands isentropically to station
3. See Fig. C. Skin friction may be ignored.

(a) Assuming y=132, M; =03, T, /T, =2, and 45/4,=0.9, find
M;.

(b) Find the value of 7| /T, that will just cause the flow to choke.

(c) Assuming that 7, does not change, if T, /T, 1s further increased
by 10%, to what must M, be reduced to allow the process to continue?

(d) If the mass flow is kept the same, what will be the required
percentage increase in p, ?

2.16 A flow undergoes a sudden “dump” as indicated in Fig. D. A
series of experiments has lead to the relationship of p, /p, in terms of the
upstream conditions and the area ratio 4,/4,. We are to determine the
effective average (static) pressure on the “dome” p,, where the appropriate
average is considered to be that which would satisfy a momentum balance.

It is to be noted that such a pressure is indeed an average, because the
Kutta condition at the pipe end would cause the local value of the wall
pressure to be equal to the pressure in the stream at station 1.

It may be assumed that the sidewall friction is zero and that conditions
are quasi-one-dimensional at station 2.

ol

\/

r>'\
0
N [ —————
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(a) Show that

1
- 2L (1 ymd) - (14 )
L Yy—1,0
A, 1 M2(1+ 5 Mz)
and
y-1,, (y+D/2y-1)
AL 4,
My=M = ———71 71
Pl 1+ Io=mi 2

(b) It has been found' that in the range 0.2 < 4,/4, <1, the ratio
P/Py 1S given approximately by

L exp( —W%Mlz)

1}

where PLC = [1 — (A4,/A))* +{1 = (A, /A)]°.
Calculate and plot pp/p, vs M, over the range 0.1 < M, < 0.6 for the case
'Y = 130, Al/A2 = 0.5.

2.17 An independent group of investigators approached the problem
of the dump flow from another viewpoint. They heavily instrumented the
“dome” of the pipe with static pressure instrumentation so that they could
measure p,,. They then calculated p, /p, by assuming the sidewall friction to
be zero. i

(a) Assuming that 4;/A4,, pp/P1. M. and y will be prescribed, obtain
a series of relationships for M, p,/p;. and p,,/p, in terms of the prescribed
variables. ’

(b) For the case p,/p =1, M =05, y=13, calculate and plot
p,./p,, for the range 0.2 < A,/A, < 1. Compare the ratio so obtained with
that given by the formula of Problem 2.16(b).

2.18 The flow processes in a ramjet may be approximated as indicated
in Fig. E. Thus, there is isentropic compression in the inlet from the
freestream conditions (0) past the minimum area location (m) up to the
upstream edge of a normal shock wave (su). Following passage through
the shock the flow diffuses isentropically to station 3. Constant-area thermal
addition occurs from stations 3 to 4, after which the flow expands isentropi-
cally through the nozzle.
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We are given

m

T
%08, —T’i=2.5, M,=13, M,=1, y=135
5

The stagnation pressure ratio across a normal shock wave, p, /p, , is given
in terms of the upstream Mach number by

Y+1 5 y/(y—1)
M; -1/(y-1
Po |2 v 1+ 2X (M2 -1)
plu 1+ ‘Y—le +1
— M,

(a) What is M3

(b) If T, /T is increased to 2.7, what is M,?

(c) What is the required ratio of (p., )2. 7/( P25 10 bring about the
change in M.?

(d) If the shock was originally located where M_, = 1.6, what will the
new value of M, be?

(e) If the freestream Mach number is M, = 2, find the area ratios

(4,/4)25.  (A,/4,)27,  (A,/4,),  (Ao/A,)

(f) What is the maximum value for 7, /T, that could be achieved
with the shock wave still contained within the ramjet‘7



3. CHEMICAL ROCKETS
3.1 Introduction

Methods for estimating the performance of both liquid- and solid-propel-
lant rockets will be developed in this chapter. In order to make such
estimates, it is necessary to predict the nozzle performance when given the
thermodynamic conditions existing at the completion of combustion within
the combustion chamber. Large booster rockets pass through very large
altitude ranges with related large variations in ambient pressure (see App.
A, Standard Atmosphere). The variation in ambient pressure has a signifi-
cant effect upon the thrust level. Methods to predict the thrust level are
presented.

In order to estimate conditions following combustion, it is necessary to
apply concepts of equilibrium chemistry, and this subject is briefly reviewed.
The designer can determine the mass flow rates of the fuel and oxidizer into
the combustion chamber by correct pump design, and he can determine the
chamber pressure by correct selection of the nozzle throat area. The
chemical composition and temperature of the products of combustion can
then be determined by applying the principles of equilibrium chemistry.

The temperature levels experienced in rocket combustion chambers are so
extreme that a sizeable portion of the product gas remains dissociated. As a
result, as the gas is accelerated through the nozzle (with a consequent
decrease in static temperature), the chemical reactions continue, giving rise
to further changes in the gas properties. The two limiting cases of nozzle
flow, frozen and equilibrium flows, are illustrated in this chapter and may
be used to estimate the possible ranges of the effects of the continued
reaction within the nozzle.

Finally, simplified models are developed for the description of the
processes within solid-propellant rockets. The models allow simple estimates
of a solid-propellant rocket thrust history.

3.2 Expression for the Thrust

The thrust on a rocket can be expressed as the integral of the surface
stresses over all of the rocket solid surfaces. Such an integral would include
contributions over all the internal surfaces wetted by the fluid (chamber,
pipes, pumps, etc.) and clearly would be most difficult to evaluate directly.
Rather than attempting to do so, however, the internal force contributions
are related to the fluid properties at the exit plane of the nozzle by use of the
momentum equation.

63
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Thus, the expression for the force on the thrust stand, depicted in Fig. 3.1,
may be written

F=—[[ _ (p—p)ds+(visc)z, +(viso)z, (3.1)
(Z,+Z)

In this expression F is the vector force transmitted by the rocket to the
thrust stand, ds the outwardly directed vector area element, 2, and Z, the
outer and inner (chamber) surface areas, respectively, and (visc) the viscous
force over the given surface area. For later convenience, the pressure has
been given relative to the ambient pressure p,. It is to be noted that the area
integral of p, over the entire closed surface (2, + 2 ) 1s zero.

Equation (3.1) is of little calculational use because of the complexity of
the internal integrals. A more useful form follows by utilizing the momen-
tum equation to relate the internal forces to conditions at the nozzle exit.
The internal surface is .. Note that the direction of the outward normal to
the surface 2. is opposite to that of 2, (Fig. 3.2). Equating the internal
forces to the rate at which momentum is convected through the surface
results in

_f./(z,,+A )(P—Pa)ds+(visc)y_(.,+(visc)Ae=ffA (pu)u-ds (32)

Noting that the force contributions from the surface Z_ are just of
opposite sign to the force contributions from Z_,, and that the normal
viscous force at exit, (visc) 4, is negligible, combination of Egs. (3.1) and
(3.2) gives

F= _ffAe(Pu)u‘ds—f//;e(p"pa)dS‘i‘(ViSC)y_"—fL“(p—pa)ds

(3.3)

Fig. 3.1 Rocket on stand.
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Fig. 3.2 Chamber and nozzle.

The third term in this expression represents the force of the external skin
friction and is termed the skin drag. The fourth term represents the effect of
the pressure imbalance on the external surface and is termed the form drag.
The first two terms represent contributions to the thrust of the rocket, hence

T= [ (pupu-ds=[f (p=p,)ds (3.4)

If conditions at exit can be represented as one-dimensional, the magni-
tude of the thrust may be written

T=mue+(pe—pa)Ae (35)

Effective Exhaust Velocity

For convenience, the effective exhaust velocity C is defined by the
relationship

T=mC (3.6)
hence
C=u,+[(p.—p.)/M] 4, (3.7)
Note the alternative form
Ceu [1 . (pg—pa)Ae]
‘I uelouA,)

or

® o

P.

C=u8[1+ ;4 (1—&)] (3.8)



66 GAS TURBINE AND ROCKET PROPULSION

The Specific Impulse, I,

A commonly used measure of rocket performance is the specific impulse
I,,, defined as the ratio of thrust to the propellant weight flow per second.
In the development leading to Eq. (3.5), it has been assumed that the units
of the equation were in a “preferred” system, that is, one in which the units
of force are defined to be those of mass times acceleration. In such a system
weight is given in terms of mass by multiplying the mass by the magnitude
of the standard acceleration of gravity, g, (g, = 9.8067 ms 2 or g, = 32.174
ft-s~?). Note that although g, has the magnitude of a,, the gravitational
constant, the dimensions of the latter are kg/N - m/s? (or Ibm/Ibf - ft/s?).

It follows from Eq. (3.6) that

1,,=C/g, (in seconds) (3.9)

3.3 Acceleration of a Rocket

Trajectory analysis involves the analysis of a rocket flight path under the
influence of the thrust, lift, drag, and gravitational force. However, rather
than consider a complete trajectory analysis here, the simpler case of
nonlifting motion with the thrust aligned in the direction of flight will be
considered. The forces acting on the rocket (Fig. 3.3) may be resolved in the
direction of flight to give

T—D—gmcosf=m(dv/de) (3.10)

Noting that the rate of mass flow through the nozzle is just equal to the
negative of the rate of change of the vehicle mass, there is obtained

dv=—-C(dm/m)—(D/m)dt — gcos@d: (3.11)

T,/ Mg

Fig. 3.3 Forces on rocket.
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and

dh=vcosfd? (3.12)

The drag is a complicated function of velocity and height: if the function
is known analytically, this pair of equations may be numerically integrated
in a straightforward manner. It is instructive to consider some simple special
cases; if, for example, a suitable average value of the effective exhaust
velocity can be obtained, the increment in vehicle velocity Av found for a
mass “burn” of m, is seen to be given by

Av _ mg (D . rrgcosf
“/”(—mo—m,,) fOCmdt fo o di (3.13)

where m,, is the initial mass and 7 the burning time.

The first integral is termed the drag loss and the second integral the
gravity loss. The latter term arises because during the finite firing time the
mass of the still unburned propellant must be raised in the gravitational
field. Obviously, the gravity loss term could be decreased by increasing the
thrust level of the rocket (increasing /n and thereby decreasing 7), but this in
itself would introduce its own complications. The larger required pumps and
related piping would increase the rocket mass, the maximum allowable
acceleration could be exceeded, and the acceleration to high velocities in the
lower altitudes would increase the overall drag loss. Good rocket design
involves selection of the optimal balance between these competing tenden-
cies.

In the very simple case of firing in “free space” where no drag or
gravitational penalties exist, Eq. (3.13) reduces to

MR=—"0 = bv/C (3.14)

This expression emphasizes the sensitivity of the required mass ratio MR
to the attainable effective exhaust velocity. This is particularly true for
high-energy (large Av) missions.

Multiple-Stage Rockets

Casual examination of Egs. (3.13) or (3.14) indicates that if high-energy
missions are to be contemplated utilizing the most energetic chemical
propellants available to date (C <4500 ms™?'), distressingly large mass
ratios will be required. It is to be remembered that the final mass consists of
the “dead weight mass” m , (mass of structure, engines, unused propellants,
etc.), as well as the payload mass m, itself, so that methods to increase the
possible payload for given overall rocket mass are of great importance.

A fairly obvious method to accomplish an increase in payload capability
is to stage the rocket so that unneeded mass can be discarded at opportune
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times in the flight. The expressions for the velocity increments given by Eqgs.
(3.13) and (3.14) remain valid, only now the total velocity increment Ay,
would be obtained as the sum of the velocity increments of all stages. As a
simple example of the effects of staging consider the “free space” case
where, again, the drag loss and gravity loss terms do not contribute.

Introducing the payload ratio A and dead weight ratio 8,
A=m;/m, and 8=my/m, (3.15)
note the relationships

my my 1

mo—mp=md+mL=6+>\ (3.16)
Thus
Al 1
Buy = '_gl Citn 5+ A, (3.17)

where i refers to the ith of a total of N stages. Note that the payload of the
ith stage is the sum of all succeeding stages, so that the overall payload ratio
A, is equal to the product of all A,. That is,

No=TTA, (318)

Optimization of Multiple-Stage Rockets

The very simple formulas of Egs. (3.17) and (3.18) allow simple de-
termination of appropriate stage payload ratios to lead to a minimum
overall mass for a given Ap,, and payload mass. Normally, the engineer
would be asked to consider the problem of designing the rocket for
minimum overall mass given prescribed Av,,, and payload mass. Mathemati-
cally, however, it is simpler to consider a given overall payload ratio and
maximize the Av,,, obtained. If the assumed 6, and C, are still found to be
within reason after solution of the problem indicates the vehicle size, the A,
corresponding to the Av,, required, and hence the overall mass required,
can be determined.

The mathematical problem is to maximize Av,, for given C, and §, subject
to the restriction

Ao=TTA, (3.19)

Solution is facilitated by introduction of the Lagrange multiplier K and
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definition of the function F where

N N
F= Z C"/ﬂﬁ-l-Kl:/ﬂ(I_[l}\’)—/ﬂ }\0} (3.20)
i=1 i 1 1=

Clearly F has a maximum at the same location as the maximum of Av,,.
F can now be considered a function of all the A;, provided K is selected to
ensure the restriction of Eq. (3.19). Taking the partial derivative, it follows
that

oF ¢ K
N, TSN A, (3.21)

Equating this expression to zero gives

é

N TeK) ) 3.2)

A relationship for the unknown value of the Lagrange multiplier follows
from Egs. (3.19) and (3.22)

1‘[(%—1): i) ' (3.23)

This is an Nth-order equation for K. Following solution for K the desired
optimal payload ratios are obtained from Eq. (3.22).

~ As a simple example consider the case where all the equivalent exhaust
velocities are equal. It follows that

A=y

N V2
1)
i=1
An even simpler example is that for which all the §; are equal, which gives
A, = N¢" and

Av

tot _

C T +e)
from which

Ao = (e71Ava/NCI 8)N
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Thus, for example, if 4v,,/C =2 and § = 0.1 are prescribed,

N 1 2 3
Ay 0.035 0.072 0.071

It would appear that for the given velocity ratio and dead weight ratio, a
two-stage rocket would be the optimal choice. (Why doesn’t A, keep going
up with N7!)

As another example, consider a two-stage rocket. In this case, Eq. (3.23) is
a quadratic equation for K, which upon solution yields

. 25,C,
1
(C,—C)+ \/(C1 - C2)2 +4C,G8,8,/X,
. 25,C,
2

(C,-C)+ \/(Cz - C1)2 +4C,G8,8, /A

If Avy,, C), G, 8,, and 8, were again prescribed, A, would be obtained
from Eq. (3.17).

3.4 Rocket Nozzle Performance

As stated in the introduction, the variation in ambient pressure with
altitude causes significant variations in thrust level. An estimate of such
variations can be obtained by utilizing the very simple approximation that
the flow within the nozzle is isentropic and that the gas is calorically perfect.
The validity of these assumptions is further investigated in Sec. 3.7.

Denoting by a subscript ¢ the stagnation conditions within the rocket
chamber, the first law of thermodynamics and the isentropic relationships
give

[4 e .Y_l

¢

2 (y=1/y
S=ho—h =—1—R7;.[1—(&) }

hence

(r-bsy]:
u, = \/—Yz_—yl I‘C*[l—(%) } (3.24)

where C* is the characteristic velocity defined in Eq. (2.104) and
T=[2/(y+ 1)) D20y
The thrust coefficient Cr is defined by

Cr=T/p,A* (3.25)
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With the relationship

2 P. (y=1/y
2__ <= L _1 .
M 7—1[(1%) (3.26)

and Eqgs. (2.104), (3.6), (3.8), (3.24), and (3.25), it follows that

o]

c

y=1(p\"" [(p/P) = (pu/P)] |
X{1+ 2y (Pe) [1_(Pe/Pc)(Y_l)/Y” (3.27)
and also
C=C*Cp (3.28)

This is a convenient formulation for the effective exhaust velocity C,
because C* is primarily a function of the propellants (it is a weak function,
also, of the chamber pressure through the chamber pressure effect on 7. and
hence v). The functional dependence of the thrust coefficient is of the form
Ce(v, p./P., P./D, ), and hence Cis a function of the design choice of p,/p,
(determined by choice of area ratio 4,/4*) and choice of combustion
chamber pressure and altitude (p./p, ).

Nozzie Sizing

It is easily verified analytically (see Problem 3.5) that the thrust coefficient
has a maximum value (for prescribed ambient pressure and chamber
pressure) when the exit pressure equals the ambient pressure. Such a
relationship is obvious from physical reasoning also, as can be seen by
imagining, for example, that the nozzle was equipped with an additional
length of exit cone to continue the gas expansion to lower pressures (and
higher velocities) than the local external pressure. Because the area is
expanding and the internal wall static pressure is less than the external static
pressure, it is evident that the additional length of nozzle would have a
rearward force acting upon it. Similarly, if the nozzle was of insufficient
expansion to reduce p, to p,, the additional forward force that would result
on the length of nozzle necessary to reduce p, to p, would not be available.

The ratio of nozzle exit area to throat area required to provide the desired
design pressure ratio p,,/p, follows from Eq. (2.106) to give

ii_ff:\/_ﬁ 2 \(rtD/2AY-D P 1/y - Pea (r=1y/yy
A* 2 Y+1 Ped P

(3.29)
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It is to be noted that when a conventional rocket (fixed 4,/A4*) is flown at
altitudes above the design altitude (where p,, = p,,), the exit pressure will
be fixed at p,, and is larger than the local ambient pressure p,. Under these
circumstances, the pressure of the exhaust stream adjusts to ambient pres-
sure by passing through expansion fans attached to the nozzle lip.

When flight at altitudes below the design altitude occurs, the ambient
pressure exceeds the nozzle exit pressure. Under these conditions oblique
shock waves are created that bring the fluid pressure up to the ambient
pressure. When conditions are such that the ambient pressure greatly
exceeds the design exit pressure, the strong oblique shock waves that are
formed at the exit due to the overpressure move into the nozzle, thereby
changing the effective exit pressure [for use in Eq. (3.27)].

The behaviors described above are illustrated and summarized in Fig. 3.4.
Note that in addition to the design altitude 4, the “separation altitude” A,
has been introduced. This latter altitude 1s defined as the lowest altitude at
which the oblique shock waves remain on the nozzle lip. It is apparent that
above this altitude the exit pressure will be equal to the design pressure p,,,
whereas below this altitude the shocks move into the nozzle and the effective
exit pressure becomes a function of altitude.

A very simple approximate method of estimating the resulting effective
exit pressure was suggested by Summerfield.! He observed that the flow in
the vicinity of the walls just following the location of the strong oblique
shock waves was largely separated, and as a result the wall static pressure
downstream of the shock waves was nearly equal to the ambient pressure.
As a result, the effective exit pressure [for use in Eq. (3.27)] could be
considered the pressure just preceding the shock wave. Summerfield further
suggested the use of the very simple estimate of this “shock pressure” p,
given by

p/p.=(/K)(p,/p.) (3.30)

where K is a constant of value approximately 2.7-2.8.

The entire altitude performance of a given nozzle can now be calculated
by utilizing Eq. (3.30) for altitudes below which the value of p, given by Eq.
(3.30) is larger than the design exit pressure p,, and using p, = p,, above
this separation altitude A .

Particularly simple results can be obtained if the pressure variation with
altitude may be approximated as exponential. Thus

Pa/Psy. =e "/ (3.31)

where pg; is the sea level pressure and H, the scale height. It follows
directly (Problem 3.6) that

he,=h,—HtnK (3.32)

sep
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Fig. 3.4 Nozzle behavior with altitude.

It is apparent that an “ideal” rocket would have a completely variable
nozzle area ratio, so that the exit area could be selected to give p, = p, at all
altitudes. It is hard to imagine a geometry that could give such capability,
but a compromise concept is shown in Fig. 1.2 that illustrates a nozzle with
three “design altitudes” capability. Optimal utilization of such a device
would be obtained if the next larger area ratio skirt was translated at just
the altitude where the thrust coefficients of the two nozzles are equal.

As an example, consider a rocket nozzle with a single translatable skirt
and hence two design altitudes h,, and h,,. Assume that an exponential
pressure variation is valid, and consider the case 4 4, = 30,000 ft, h 4, = 60,000
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ft, K=2.75 vy=128, p.=40 ps,, and Hg, = 23,000 ft. It can be shown
(Problem 3.7) that the correct altitude for skirt translation, # ., is given by

ps. Bi—B
htrans = Hscl{ ( IS)CL Al Az) (333)

where

B (r=1/y
A:l [(y+1)/2v](p., /P.) (i=1or2)

| [1-(x. /pc)”_m]%

[(v=1)/2v)(pe, /p.) "
[1=(p,/p)" "

B, =

& = _B_Si;e“hd,/ﬂscl
P P

For the given conditions it follows that A, = 6733 ft, Cpy,=1478,
P ang = 45,825 ft, and Cp,, = 1.6807. The entire altitude performance for
0 < h < 100 000 ft is shown i Fig. 3.5. The envelope of an ideally expanded
nozzle has been included for comparison. Note the substantial improvement
in performance evident for h> h,  because of the two-design altitude

capability.

3.5 Elementary Chemistry

In the preceding sections, methods were presented that allowed estima-
tion of rocket nozzle performance in terms of prescribed combustion
chamber conditions. In fact, the designer has at his disposal the ability to
prescribe the combustion chamber pressure (by matching pump capacity
and nozzle throat size) and the fuel-to-oxidizer of the “reactants.” The
properties of the products can be estimated by using the methods of
equilibrium chemistry.

Consider the flow of fuel and oxidizer (the reactants) into a duct wherein
combustion occurs and products are formed. The process is approximated
as adiabatic, it is assumed (for simplicity) that the fiow Mach numbers are
very low, and no work interaction occurs within the chamber. Under these
circumstances the enthalpy of the product’s /4, will equal the enthalpy of the
reactants h gy, so that

hRT3 = hpT,; {3.34)
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Fig. 3.5 Thrust coefficient vs altitude.
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Fig. 3.6 Heat of reaction.

The reaction will bring about a change in temperature, and the “heat of
reaction” AH is defined as the amount of (positive) heat interaction re-
quired to bring the products back to the same temperature as the reactants
(at the same pressure). The actual process of combustion and the imagined
additional process of heat interaction can be represented as illustrated in
Fig. 3.6.

For the imagined process from point 4 to point 4, we have

h,r,—h,r,=AHr, (3.35)
By definition T,. = T;, so with Eq. (3.34),
h,r,— hgr,=AHp, (3.36)
and

hyr, = h,7,— AHp, (3.37)

Often, A H is available only at a reference value, say 7. Thus,

AHp =h,r, = hgy,

= (h,r,~ hgr,) = (h,r,—h,r,) + (hgr, = her,)  (3.38)

Combining Eqgs. (3.37) and (3.38) and writing the general form 7 in place
of Ty, it follows that

AHTzAHTd+(hpT_hpTd)_(hRT_hRTd) (3-39)
Note that combination of Egs. (3.37) and (3.39) gives

hyr,=h,r,— AHp +(hgr, = hgr,) (3.40)

1zn

The Heat of Formation, AH,

The heat of formation is defined as the (positive) heat interaction required
to form a compound from its elements at constant pressure and prescribed
temperature. For perfect gases, the heat of solution is zero and, as a result,
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the heat of reaction may be obtained in terms of the heats of formation of
the reactants and products. Thus,

AH =) n,0H) =) ngAH} (3.41)
4 R

where n, and ny are the number of moles of the product and reactant,
respectively, and AHp is the heat of formation per mole.

The Law of Mass Action

It is usual to write the reaction equation for an example reaction in the
form

A A+ v,A,=0 (3.42)

In this expression the »; are numbers (the stoichiometric coefficients) and
the A, units (usually moles) of the reactants and products. It is customary to
write the products with positive stoichiometric coefficients and the reactants
with negative coefficients. As an example consider the reaction

2H, + 0, - 2H,0
With the suggested convention this equation would be written
H,0-H,-10,=0

giving

The second law of thermodynamics states that the entropy of an isolated
system cannot decrease. An extension to this result can be made in the
statement, “the entropy of isolated systems tends to increase.” Thus, the
entropy of an isolated system will continue to increase until no further
changes are possible. When the system reaches the state where no further
increases in entropy are possible, it would hence have reached a state of
equilibrium.

By applying this reasoning to a chemical mixture (making allowances for
the possibility of heat and work interactions of the system with its surround-
ings), the condition for chemical equilibrium of a mixture can be deduced.
The result is of a particularly simple form for perfect gases and is termed
the law of mass action. Thus

pypypy - =K, (3.43)
Here K, is the equilibrium constant. The detailed derivation of the

expression reveals that K, is a function of temperature only. Note that K, is
not dimensionless and that its value will depend on the units in which the
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partial pressures are expressed. An alternate form for the law of mass action
is obtained in terms of the molal fractions of the species x;. Thus, recalling
that the molal fraction is equal to the ratio of the partial pressure to
the total pressure, it follows that

p/p=n/Zn;=x; (3.44)
and hence

Xlixhe e leg... =p’("1+"2+""Kp (3.45)

Tables of values for the equilibrium constant are available in several
references. Tables 3.1-3.3 have been taken from Ref. 2.

Symbols and Terminology for JANNAF Tables

The standard state is taken as the state at 1 atm pressure at the temperature under
consideration for the solid, liquid, and ideal gas states. Only homogeneous subs-
tances are considered here.

The reference state applies to elements in their stable standard state. Conse-
quently, the reference state tables presented here are either single-phase or poly-
phase tables; all other tables are single-phase.

A circular superscript ° indicates the thermodynamic standard state. The numeri-
cal subscript, as 298.15, denotes temperature in degrees Kelvin.

C,; denotes the specific heat at the constant pressure of the substance in the
thermodynamic standard state. S° represents the absolute entropy of the thermody-
namic standard state at the absolute temperature 7. —( F° — Hyy,,5)/ T denotes the
free energy function in the standard state at temperature 7 and is defined as
S°—(H° - H3y,5)/T. (H° — H3yg,5) indicates the enthalpy (or heat content) in
the standard state at the temperature 7T less the enthalpy in the standard state at
298.15 K. A Hf represents the standard heat of formation, which is the increment in
enthalpy associated with the reaction of forming the given compound from its
elements, with each substance in its thermodynamic standard state at the given
temperature.

When the reaction or process evolves heat, the sign of the heat term is arbitranly
taken to be negative. Conversely, when the reaction or process absorbs heat, the sign
of the heat term is positive.

A F? denotes the standard free energy of formation, which is the increment in free
energy associated with the reaction of forming the given compound from its
elements, with each substance in its thermodynamic standard state at the given
temperature.

Log K, stands for the logarithm (to the base 10) of the equilibrium constant for
the reaction forming the given compound from its elements, with each substance in
its thermodynamic standard state at the given temperature.
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Table 3.1 Equilibrium Constants for Hydrogen (H, ) (ideal gas, reference state,
molecular weight 2.016, H, —» H ,, KI,Hz =pu,/Pu,=1)

F° — H3,
G s° | 2‘"‘) H° -~ Hiy  AHP AF?

T(K) (cal -mole ™! - deg ™) (kcal - mole 1) Log K,
] 0.000 0.000 Infinite —-2.024 0.000 0.000 0.000
100 5393 243871 37035 1265 0000 0000 0000
200 6.518 28.520 31.831 —0.662 0.000 0.000 0.000
298 6.892 31.208 31.208 0.000 0.000 0.000 0.000
300 6.894 31.251 31.208 0.013 0.000 0.000 0.000
400 6.975 33.247 31.480 0.707 0.000 0.000 0.000
500 6.993 34.806 31.995 1.406 0.000 0.000 0.000
600 7.009 36.082 32.573 2.106 0.000 0.000 0.000
700 7.036 37.165 33.153 2.808 0.000 0.000 0.000
800 7.087 38.107 33.715 3.514 0.000 0.000 0.000
900 7.148 38.946 34.250 4.226 0.000 0.000 0.000
1000 7.219 39.702 34.758 4.944 0.000 0.000 0.000
1100 7.300 40.394 35.240 5.670 0.000 0.000 0.000
1200 7.390 41.033 35.696 6.404 0.000 0.000 0.000
1300 7.490 41.628 36.130 7.148 0.000 0.000 0.000
1400 7.600 42187 36.543 7.902 0.000 0.000 0.000
1500 7.720 42.716 36.937 8.668 0.000 0.000 0.000
1600 7.823 43.217 37.314 9.446 0.000 0.000 0.000
1700 7.921 43.695 37.675 10.233 0.000 0.000 0.000
1800 8.016 44.150 38.022 11.030 0.000 0.000 0.000
1900 8.108 44.586 38.356 11.836 0.000 0.000 0.000
2000 8.195 45.004 38.678 12.651 0.000 0.000 0.000
2100 8.279 45.406 38.989 13.475 0.000 0.000 0.000
2200 8.358 45.793 39.290 14.307 0.000 0.000 0.000
2300 8.434 46.166 39.581 15.146 0.000 0.000 0.000
2400 8.506 46.527 39.863 15.993 0.000 0.000 0.000
2500 8.575 46.875 40.136 16.848 0.000 0.000 0.000
2600 8.639 47213 40.402 17.708 0.000 0.000 0.000
2700 8.700 47.540 40.660 18.575 0.000 0.000 0.000
2800 8.757 47.857 40.912 19.448 0.000 0.000 0.000
2900 8.810 48.166 41.157 20.326 0.000 0.000 0.000
3000 8.859 48.465 41.395 21.210 0.000 0.000 0.000
3100 8.911 48.756 41.628 22.098 0.000 0.000 0.000
3200 8.962 49.040 41.855 22.992 0.000 0.000 0.000
3300 9.012 49.317 42,077 23.891 0.000 0.000 0.000
3400 9.061 49.586 42.294 24.794 0.000 0.000 0.000
3500 9.110 49.850 42.506 25.703 0.000 0.000 0.000
3600 9.158 50.107 42.714 26.616 0.000 0.000 0.000
3700 9.205 50.359 42917 27.535 0.000 0.000 0.000
3800 9.252 50.605 43.116 28.457 0.000 0.000 0.000
3900 9.297 50.846 43.311 29.385 0.000 0.000 0.000
4000 9.342 51.082 43.502 30.317 0.000 0.000 0.000
4100 9.386 51.313 43.690 31.253 0.000 0.000 0.000
4200 9.429 51.540 43.874 32.194 0.000 0.000 0.000
4300 9.472 51.762 44.055 33.139 0.000 0.000 0.000
4400 9.514 51.980 44.233 34.088 0.000 0.000 0.000
4500 9.555 52.194 44.407 35.042 0.000 0.000 0.000




80 GAS TURBINE AND ROCKET PROPULSION
Table 3.2 Equilibrium Constants for Diatomic Oxygen (O, ) (ideal gas, reference
state, molecular weight 32.00, O, —» O,, K ro, = PO, /Po,=1)
o . £° — Hin o _ gro N .
G s - = H® — Hy A AFf
T(K) (cal - mole ! - deg™!) (kcal - mole " 1) Log K,
0 0.000 0.000 Infinite 2075 0.000 0.000  0.000
100 6958  41.395 55.205 ~1.381 0000 0000 0.000
200 6.961 46.218 49.643 —0.685 0.000 0000 0.000
298 7.020 49.004 49.004 0.000 0.000 0.000  0.000
300 7.023 49.047 49.004 0.013 0.000 0.000  0.000
400 7.196 51.091 49.282 0.724 0.000 0.000 0,000
S00  7.431 52.722 49.812 1.455 0.000 0000 0.000
600 7.670 54.098 50.414 2210 0.000 0.000  0.000
700 7.883 55.297 51.028 2.98% 0.000 0.000  0.000
800 8.063 56.361 51.629 3.786 0.000 0.000  0.000
900  8.212 57.320 52.209 4.600 0.000 0000 0.000
1000 8336 58.192 52.765 5.42 0.000 0.000 0,000
1100 8.439 58.991 53.295 6.266 0.000 0000 0.000
1200 8527 59.729 53.801 7.114 0.000 0.000  0.000
1300 8.604 60.415 54.283 7.971 0.000 0.000  0.000
1400 8674 61.055 54.744 8.835 0.000 0.000  0.000
1500 8738 61.656 55.185 9.706 0.000 0.000  0.000
1600 8.800 62.222 55.608 10.583 0.000 0.000  0.000
1700 8.858 62.757 56.013 11.465 0.000 0.000  0.000
1800 8916 63.265 56.401 12.354 0.000 0.000  0.000
1900 8973 63.749 56.776 13.249 0.000 0,000 0.000
2000 9.029 64.210 57.136 14.149 0.000 0.000  0.000
2100 9.084 64.652 57.483 15.054 0.000 0.000  0.000
2200 9139 65.076 57.819 15.966 0.000 0000 0.000
2300 9.194 65.483 58.143 16.882 0.000 0.000  0.000
2400 9248 65.876 58.457 17.804 0.000 0000 0.000
2500 9.301 66.254 58.762 18.732 0.000 0.000  0.000
2600 9.354 66.620 59.057 19.664 0.000 0.000 0.000
2700 9.405 66.974 59.344 20.602 0.000 0.000  0.000
2800 9.455 67.317 59.622 21.545 0.000 0.000  0.000
2900 9.503 67.650 59.893 22.493 0.000 0.000  0.000
3000 9551 67.973 60.157 23.446 0.000 0.000  0.000
3100 9.596 68.287 60415 24.403 0.000 0000 0.000
3200 9.640 68.592 60.665 25.365 0.000 0.000  0.000
3300 9.682 68.889 60.910 26331 0.000 0.000  0.000
3400 9.723 69.179 61.149 27.302 0.000 0000 0.000
3500 9.762 69.461 61.383 28.276 0.000 0.000 0000
3600 9.799 69.737 61611 29.254 0.000 0.000 0.000
3700 9835 70.006 61.834 30.236 0.000 0.000  0.000
3800 9.869 70.269 62.053 31.221 0.000 0.000  0.000
3900 9.901 70.525 62.267 32.209 0.000 0.000  0.000
4000 9.932 70.776 62.476 33.201 0.000 0.000  0.000
4100  9.961 71.022 62.682 34.196 0.000 0.000  0.000
4200 9.98% 71.262 62.883 35.193 0.000 0.000  0.000
4300 10015 71.498 63.081 36.193 0.000 0.000  0.000
4400 10.039 71.728 63.275 37.196 0.000 0.000  0.000
4500 10.062 71.954 63.465 38.201 0.000 0.000  0.000
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Table 3.3 Equilibrium Constants for Water (H,O) [ideal gas, molecular weight
18.016, H, + 30, > H,0,K 4,0 = Pu,0/(Pu, * Po,)]

Fo-H
o s° - (7r 2"") HC — Hygg AHP AFP

T(K) (cal -mole ™! -deg 1) (kcal - mole ™ 1) Log K,
0 0.000 0.000 Infinite —2.367 —57.103 -57.103 Infinite
100 7.961 36.396 52.202 —1.581 ~57.433 -56.557  123.600
200 7.969 41.916 45.837 -0.784 —57.579 - 55.635 60.792
7298 8025 45106 45106 0000 57798  -54636  40.048
300 8.027 45.155 45.106 0.015 —57.803 -54.617 39.786
400 8.186 47.484 45.422 0.825 - 58.042 -53.519 29.240
500 8.415 49.334 46.026 1.654 ~58.277 —52.361 22.886
600 8.676 50.891 46.710 2.509 ~58.500 - 51.156 18.633
700 8.954 52.249 47.406 3.390 —58.710 —49.915 15.583
800 9.246 53.464 48.089 4.300 —58.905 —48.646 13.289
900 9.547 54.570 48.749 5.240 —59.084 - 47.352 11.498
1000 9.851 55.592 49.382 6.209 —59.246 -46.040 10.062
1100 10.152 56.545 49.991 7.210 —59.391 —44.712 8.883
1200 10.444 57.441 50.575 8.240 —59.519 —43.371 7.899
1300 10.723 58.288 51.136 9.298 —59.634 —42.022 7.064
1400 10.987 59.092 51.675 10.384 —59.734 ~40.663 6.347
1500 11.233 59.859 52.196 11.495 —59.824 ~39.297 5.725
1600 11.462 60.591 52.698 12.630 - 59.906 —37.927 5.180
1700 11.674 61.293 53.183 13.787 -59.977 —36.549 4.699
1800 11.869 61.965 53.652 14.964 —60.041 —35.170 4.270
1900 12.048 62.612 54.107 16.160 - 60.099 ~33.786 3.886
2000 12.214 63.234 54.548 17.373 —60.150 —32.401 3.540
2100 12.366 63.834 54.976 18.602 —60.198 —31.012 3.227
2200 12.505 64.412 55.392 19.846 —60.242 —29.621 2.942
2300 12.634 64.971 55.796 21.103 —60.282 -28.229 2.682
2400 12.753 65.511 56.190 22.372 -60.321 - 26.832 2.443
2500 12.863 66.034 56.573 23.653 —60.359 —25.439 2.224
2600 12.965 66.541 56.947 24.945 - 60.393 —24.040 2.021
2700 13.059 67.032 57.311 26.246 —60.428 ~—22.641 1.833
2800 13.146 67.508 57.667 27.556 —60.462 —21.242 1.658
2900 13.228 67.971 58.014 28.875 —60.496 —19.838 1.495
3000 13.304 68.421 58.354 30.201 —60.530 —18.438 1.343
3100 13.374 68.858 58.685 31.535 —60.562 —17.034 1.201
3200 13.441 69.284 59.010 32.876 —60.596 —15.630 1.067
3300 13.503 69.698 59.328 34.223 —60.631 -14.223 0.942
3400 13.562 70.102 59.639 35.577 —60.666 —12.818 0.824
3500 13.617 70.496 59.943 36.936 -60.703 —11.409 0.712
3600 13.669 70.881 60.242 38.300 —60.741 —10.000 0.607
3700 13.718 71.256 60.534 39.669 —60.782 - 8.589 0.507
3800 13.764 71.622 60.821 41.043 —60.822 - 7177 0.413
3900 13.808 71.980 61.103 42.422 - 60.865 — 5.766 0.323
4000 13.850 72.331 61.379 43.805 -60.910 — 4353 0.238
4100 13.890 72.673 61.651 45.192 —-60.957 - 2938 0.157
4200 13.927 73.008 61.917 46.583 —61.006 — 1.522 0.079
4300 13.963 73.336 62.179 47.977 —61.056 - 0.105 0.005
4400 13.997 73.658 62.436 49.375 —61.109 1311 - 0.065
4500 14.030 73.973 62.689 50.777 —61.164 2729 - 0.133
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Example Calculation— Hydrogen-Oxygen Reaction

As a relatively simple example of the calculational aspects of chemical
equilibrium chemistry, the hydrogen-oxygen reaction is considered here.
This reaction has special interest, in addition to its simplicity, in that it is
one of the most energetic reactions available and hence is of particular use
in propulsion. A very simple form of the reaction will be considered here in
detail, but the procedure for a more exact (and complicated) form of the
reaction will be outlined in the following,

Thus consider 1 mole of molecular hydrogen to react with ¢ moles of
molecular oxygen as in the following equation:

H,+¢0,->mH,0+nH, +qO0O, (3.46)
The mole balances give
Hm+n=1
O:m+2q=2¢

In anticipation of considering the fuel-rich case (¢< ) and hence expect-
ing g to be small, solve for m and » in terms of the prescribed #and ¢. Thus

m=2(¢(—q), n=1-2(¢(—q), np=m+n+q=1+q (3.47)

The remaining equation for ¢ is provided by the law of mass action
[Eq. (3.45)], which gives (with», =1,»,= =1, v, = — 1)

(n1/q) (m/n)=p:iK, (3.48)

Combination of Egs. (3.47) and (3.48) then gives a cubic equation for ¢,
which may be written in the form

F(q)=0=Aq¢*>+ Bg*+ Cq+ D (3.49)

where
4=4[1-(1/p.K;)|
B=4(1-2¢)[1-(1/p.K})]
c=[(1-2¢)+(4t/p.k2)(2-¢)|

- 2 2
D=-4¢°/p K,

This equation can be solved numerically using the procedure of
Newtonian iteration (see Sec. 7.2). This procedure gives an updated value
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for q,4,.,, in terms of the previous value of ¢, ¢, by the formula
9,1=4,~ [ F(q)/F(q)], (3.50)
For the value of F(gq) given above,
F,=3A4q"+2Bq+C

and hence with Eq. (3.50)

24¢°+ Bq*— D
q,+1=( = ) (3.51)
J

34>+ 2Bg+ C
An appropriate first guess for g is
q0=—-D/C

As an example, assume /= 0.4, p,=10 atm, and T,=4000 K. K, is
obtained from Table 3.3 (=10%2%®), and iteration of Eq. (3.51) gives (in
four iterations, accurate to four significant figures) g = 0.092770. Then,
m=2({—q)=10.6145 and n=1— m = 0.3855.

More General Hydrogen-Oxygen Reaction

The reaction analyzed above is a very simple representation of the process
actually experienced in a high-temperature reaction. A more general form
can be written

H,+¢0,=mH,0+nH,+4¢0,+pH+rO0+ sOH

The equilibrium concentration of the products can be determined by
introducing further equilibrium constants corresponding to the appearance
of the given product. For example, equilibrium constants could be

K ___&, K =p_H K =_p0H K = Pu,0

12 1 P2 Lo P3 1oL Ps 1
2
Po, Py, PHZPO2 PHZPO2

These expressions give four additional equations to the two mole balance
equations and hence provide six equations for the six unknowns m — s. As
can easily be imagined, the numerical complexity of these larger reaction
equations can become severe. Reference 3 considers the numerical aspects of
such complicated examples in detail.



84 GAS TURBINE AND ROCKET PROPULSION

3.6 Determination of Chamber Conditions

The concepts developed in the preceding section can now be applied to
the determination of chamber conditions. The incoming temperature T},
fuel-to-oxidizer ratio, and chamber pressure will be provided. It will be
necessary to determine the outgoing chamber temperature 7, and other
thermodynamic properties. The procedure is complicated somewhat by the
fact that 7, is an unknown of the problem, and hence must be determined
by iteration. Whether or not a given value for T, is correct is determined by
comparing the enthalpy required to raise the reactants from 7, to 7, and
the products from T, to T,. This procedure is summarized in the following
section.

Calculation Procedure— Summary

(1) Assume a value for T..

(2) Determine the equilibrium composition of the products (n,) for the
assumed value of T,.

(3) Calculate the enthalpy released by the reaction (—AH) using the
heats of formation at T:

—AH= —(anAHf"Td— Y ngAHY,
P R

(4) Calculate the enthalpy required to raise the reactants from 7;, to T,
plus the enthalpy required to raise the products from 7} to 7.

AH,, =Z”R(HT,,_ HT,,,) +Z”p(HT[" HT.z)
R ?

(5) Compare —AH to AH, .. If —AH is larger than AH,
larger value for 7, and repeat the process.

(6) Calculate the specific enthalpy, entropy, etc., from the known com-
position of the products and tabulated values of the molal quantities.

eq ASSUME a

Example Calculation— Hydrogen-Oxygen Reaction

As an example calculation, consider the combustion of hydrogen and
oxygen. Take p, = 15 atm, = 0.35, and assume for simplicity that the gases
enter the chamber at 7, = 298 K and that the simplified reaction model [Eq.
(3.46)] is appropriate. For these simplified conditions, the relationships of
steps 3 and 4 above reduce to

—AH = —mAHpy 0 =m(57.798)

AH, . =m(H — Hyg)u,o0.r. + n(H = Hypg)u, 7.+ q(H — Hygg)0, 1.



CHEMICAL ROCKETS 85
As a first guess, assume 7, = 3700 K, giving K, = 10%°"", Eq. (3.49) gives
m = 0.6531, n = 0.3469, and ¢ = 0.02343
Thus
—AH=0.6531(57.798) = 37.751

AH,, =m(39.669) +n(27.535) + ¢(30.236) = 36.169

The enthalpy required to raise the products to 3700 K is less than that
provided by the reaction, so 7, must be higher than that assumed.
Assuming T, = 3800 K leads to

m=0.6369, n=0.3631, ¢ = 0.3157, —AH = 36.809, and A H,, = 37.458

It is apparent that T, is between the values 3700 and 3800 K. Linear
interpolation gives the estimate

37.751 — 36.169
(37.751 — 36.169) — (36.809 — 37.458)

T.= 3700 + (3800 — 3700)

or

T.=3770K
Interpolation of the other quantities gives
m = 0.6418, n = 0.3582, and ¢ = 0.02913

It is of interest, also, to determine the enthalpy per mass of the products
h,, which may be written

m( - AH;’Hzo)
2+ 32¢

By —hpags = 2% — 2.810 keal /g

Note that here the molecular weights of H, (2) and O, (32) are intro-
duced.

3.7 Nozzle Flow of a Reacting Gas

As the gases flow through the nozzle, the pressure and temperature
decrease. As a result the gases would tend to react further to equilibrium
conditions appropriate for the local value of pressure and temperature. With
conventional propellants, the effect of the decreasing temperature within the
nozzle dominates the effect of the decreasing pressure and the reaction tends
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further to completion. Such further reaction is beneficial, because the
continued reaction releases the chemical energy to the translational energy
and hence leads to an increased exit velocity.

The extent to which reactions tend to go to completion within a nozzle is
dependent on the relative times spent for a reaction process (that is, for the
required collision processes to occur) and for the gas to traverse significant
pressure and temperature changes within the nozzles. Thus, for example, a
reaction that requires a three-body collision could occur quite rarely, and
hence at long time intervals. In such a case the reaction could effectively
“freeze” (discontinue) during the transit time of the gas in the nozzle. The
detailed estimation of the extent of freezing requires kinetic theory, and will
not be considered in this book. It is of interest, however, to investigate the
two limits to flow within nozzles, “equilibrium” and “frozen” flows.

Equilibrium Flow

In that circumstance where all chemical reactions occur in times very
short compared to the time of fluid passage through the nozzle, the fluid will
be at all times (almost) in a state of chemical equilibrium. The reactions will
occur continuously throughout the nozzle, leading to a continuous passage
of energy from the chemical binding and excitation modes to the transla-
tional modes. Because the fluid is at all times in equilibrium, the equivalent
temperatures of all such modes of energy storage are equal and as a result
the total entropy of the fluid remains constant.

The total entropy may be obtained as the weighted sum of each con-
stituent; thus

§=YnS (3.52)
j=1

From the Gibbs equation

_ (T dT P
Sj—‘/;'on'T Rulw, b, (3.53)

where R, is the universal gas constant, 0 refers to reference conditions
(po =1 atm, T; = 298 K), and b, = §; at p,, T;,.

The symbol §° given in Tables 3.1-3.3 is related to these terms by

o (T dT
S; =fr G, 7+ (3.54)
0
So
o b
S=3n;S’ —R,Entn—" (3.55)

Po
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Noting

/ﬂ&= /ﬂ—p—+ /ﬂ&—_— /ﬂ£+ nx,
Po Po p Po /
Eq. (3.55) becomes

S=3n,S° —Runrfﬂpio—Ruzn,/ﬂ X, (3.56)

Note also that the further release of chemical energy will appear as an
effective addition in enthalpy per mass. Thus, for the simplified H,-O,
reaction considered earlier,

A(—AH)_me—mc(__A o )
mass 2+ 32¢ fH;0 /598

(3.57)

Additional enthalpy/mass =

The nozzle exit velocity may then be calculated using the following
procedure. The chamber conditions would have been previously determined.

Calculation Procedure— Equilibrium Flow

(1) Assume a value for the nozzle exit temperature 7.

(2) Calculate the composition for the resulting K, and prescribed p,.
Note: In most cases of interest the exit temperature will be sufficiently low
that the reaction may be assumed to have gone to completion.

(3) Calculate S, and S, using Eq. (3.56). Iterate with 7, until equality is
obtained.

(4) Calculate #, and A(—AH)/mass.

(5) Obtain U, = {2[h, + A(— AH)/mass — h,]}*

Frozen Flow

In the limiting circumstance where the chemical reaction rates are so slow
that the fluid passes through the nozzle with no further reaction (following
combustion), the flow is said to be frozen. In this case, the mole fractions of
all the constituents remain those in the combustion chamber. Further,
because no chemical reactions occur, the entropy remains constant for this
case of frozen flow, also. Note, however, that when the fluid eventually does
reach equilibrium (outside the rocket) entropy increases will occur.

It is to be noted that the condition for the equality of entropy s, = s, leads
to a somewhat simpler form in this case of frozen flow. Thus, with Eq.
(3.56),

xS0 = 2x,82 + R, fn ke (3.58)
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Calculation Procedure— Frozen Flow

(1) Assume a value for the nozzle exit temperature 7,.

(2) Evaluate 2x,S; and compare to the known value of Zx;S;
+ R ¢~ p,/p,. Continue until equality is obtained.

(3) Calculate h,.

(4) Obtain U,=[2(h,— h )]

Example calculations (Problems 3.14-3.16) show that specific impulse
differences of several percent can occur between some examples of frozen
and equilibrium flow; so when particularly accurate estimates are required,
it can become necessary to include estimates of the extent to which a given
flow freezes. Note that the concept of “sudden freezing” is sometimes
employed, wherein the flow is considered to be in equilibrium to an
intermediate location (say the throat), at which point it “suddenly freezes”
and retains the same composition from that point on.

3.8 Solid-Propellant Rockets

Solid-propellant rockets can be broadly classified as one of two types, end
burning or erosive burning. In the end-burning type (Fig. 3.7), the propel-
lant burns only at the end, the sidewall propellant being inhibited to prevent
the flame front from traveling into the propellant along the sidewall.

In the erosive-burning type (Fig. 3.8), the grain is inhibited on the ends
and the propellant burns in a direction perpendicular to the gas flow. It is
apparent that the erosive-burning type of rocket will usually be a higher
thrust, shorter duration rocket because the large burning area leads to large
mass flow rates.

r |
] P Te ':A,
LR AN
\Ab

Fig. 3.7 End-burning solid-propellant rocket.

{ ; i ; i \
R R N & §P2
' Y R N |
RTe

Fig. 3.8 Erosively burning solid-propellant rocket.




CHEMICAL ROCKETS 89

The combustion processes in the vicinity of the solid surface are extraor-
dinarily complex, but it is fortunate that some purely empirical forms can
be used to relate the local surface burning rate to the local fluid properties.
Two often used forms are

r = ap” (end-burning rocket) (3.59)
r=ap"+ k(pu) (3.60)

where r is the surface burning rate, p, p, and u the fluid pressure, density,
and velocity, respectively, and a, n, and & are empirically determined
constants.

Calculation of the Chamber Pressure— End-Burning Grain

It is apparent that the chamber pressure will be determined by the
requirement that the mass of gas produced by the surface must be suffi-
ciently compressed to pass through the nozzle throat. Assume that the gas is
calorically perfect, that the chamber Mach number is very low, and that the
propellant density is very large compared to the gas density. Then, equating
the rate of mass produced at the surface to that passing through the throat
and employing Eqgs. (2.104) and (3.59),

rAbpp = apanbpp =pcAl/C*

hence

p.=[aC*0,(4,/4)] 7" (3.61)

It is to be noted that the chamber pressure is a sensitive function of the
exponent n. It is also clear that values of n in excess of (or equal to) unity
will lead to unstable behavior. Thus, consider a rocket burning at “design”
p.. when a small increase in p, occurs momentarily. The result would be that
the surface burning rate would increase more than the flow rate through the
throat. As a result, the propellant would accumulate in the chamber, leading
to a further pressure rise with further increase in burning rate, etc. Practical
propellants have values of n in the neighborhood of 0.75.

Calculation of the Chamber Pressure— Erosive-Burning Grain

It is evident that the determination of the chamber pressure will be
substantially more complicated for an erosive-burning grain than for an
end-burning grain, because determination of the mass flow rate from the
surface will involve an integral over the entire surface in terms of the local
fluid properties. In practice, the conditions within the rocket (at a given
time) are determined by assuming a value for p, (see Fig. 3.8 for terminol-
ogy) and then integrating the appropriate equations of motion along the
grain to determine p,. p, is then related to p, (either by the assumption of
isentropic flow or by use of a loss coefficient) and compared to the required
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p, to pass the flow through the throat. This process is repeated until
convergence. It is then necessary to assume a small time step, with the
burning rate, etc., as just calculated, to determine the amount of propellant
consumed. The local conditions will then have changed because of the
change in cross-sectional area, so the whole process is repeated for a new
time step.

This procedure in fact requires relatively little time for calculation on a
high-speed computer. However, an even simpler approximate form can be
obtained if it is assumed that the ratio of throat area to flow cross-sectional
area A,/A is much less than 1.

Expression for the Downstream Pressure p,
The mass flow at station 2 is equal to that through the throat, so

peA, _ pA
C* JRT,

c

2 A 2
u% = (_p_f) RT. LT
) A
For simplicity the process from station 2 to station c is approximated as
isentropic, so that

2/y A 2 2 p (y—1/vy
uzz(&) RT(—’) r:=-2Y_grr 1—(—2) 3.63
2 pZ ¢ Az Y_l ¢ pc ( )

uypr4, = (3.62)

then

Now invoking the assumption that A,/4 <1, we may assume that
P2/P. =1 — € where € < 1, which after use of the binomial expansion in Eq.
(3.63) gives

py/p.=1— %[(A,/AZ)F]2 (+ higher order terms) (3.64)

Expression for the Local Pressure p
An approximation for the mass flow rate at location x may be written

pud = 7p, A, (x/L) (3.65)

where the average burning rate 7 is given by

1L
r—LfO rdx (3.66)

The momentum equation may be written

pul=p —p (3.67)
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from which, with Eq. (3.65)

u=1"PL, (3.68)
rppA,, X

The enthalpy equation coupled with Eq. (3.67) gives
y p,u y p 1
Cﬂ.=——;+ =(——+—)u2 (3.69)

so that with Egs. (3.68) and (3.69)

Y 14 +1)(P1_P£
Yy=1pi—p 2

2
Il = Al =CT. 3.70
’PpAb X ) prC ( )
The assumption 4,/4 < 1 again allows an approximation p/p, =1— 98,
6 << 1. Introducing this form into Eq. (3.70), noting that p_/p, = 1 + higher
order terms, and noting

s pA,
m=rp A, = r 3.71
PpAb RT. ( )
it follows that
P _y_(rAx) (+ higher ord ) 3.72)
o ( y L) gher order terms (3.

It is consistent to assume A,/A4 = 1, so that

£_£ﬂ&=1—[F(A,/A)(x/L)]2[ YRS
Pe P1L P2 P 1—[F(A,/A)]2 1 Z(FA ) ] (3.73)

Continuing to expand the groups and retaining only terms to order
(A,/A)*, there is finally obtained

(p%)”an(%gr)zB_(%)z] (3.74)

The Burning Rate
Equations (3.60), (3.65), and (3.74) give

A, \? 2 A
r=apc"{1+n(—jl‘) [%—(l) ]}+k?pp7b% (3.75)
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This expression can now be integrated as in Eq. (3.66) to give an

expression for 7,
A \? A
F=ap! 1+%(r7')]/{1—§pp7”] (3.76)

Then with the continuity equation
p,7A4,=p A, /C*

it follows that

1+£(1‘A’)2 1/(=n)
p. = ac*pf_”# (3'77)
‘ PA kA

2774

The thrust behavior of the rocket can now be calculated because, with p,,
C*, and the exit pressure all known, the mass flow rate and exit velocity can
be determined. In order to obtain the thrust behavior with time, it is
necessary to calculate the variation of A, and A. This requires numerical
integration,

A simple and quite instructive example (Problem 3.17) is that of a grain
so shaped that the burning area 4, remains constant in time. Such behavior
can be approximated by employing a star grain (Fig. 3.9). In such a case the
burning area would be equal to the cylindrical chamber area existing just at
burnout, i.e.,

A,=7DL (3.78)

Also, the change in cross-sectional area in a small time interval 8, would
be given by

SA=A;, —A;=nDrdt (3.79)

Numerical integration for this simple case is very straightforward. It is to

be noted that, for this case of constant 4,, the thrust history will be
“regressive,” that is, it will decrease in time. This is apparent from Egs.

Fig. 3.9 Star grain.
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(3.76) and (3.77), which indicate that both 7 and p, decrease as 4 increases.
This result is simply a manifestation of the fact that the erosive contribution
to the burning decreases as the cross-sectional area increases.
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Problems

3.1 An “optimal” two-stage rocket is to operate in a drag- and
gravity-free environment. It is to provide a velocity increment Av of 5000
ms~! to a payload of 1000 kg. We are given (these figures are appropriate
for a kerosene-oxygen first stage and hydrogen-oxygen second stage):

C,=3000ms™!, C,=4000ms~!, 8,=01, 6,=015

(a) Find m,, MR;, MR,, A}, and A,.
(b) Find the same parameters if C, = C,=3000 ms™ !, and 8, =9,
=0.1.

3.2 A rocket has identical stages in the sense that ;= C, §,= 8, and
A, =A=N¢". Gravitational and drag losses can be neglected. If A, =0.05
and 8, = 0.1, what is the optimum number of stages for the rocket?

33 Consider a rocket employing “continuous staging” in the sense
that it discards all the dead weight (structural and engine weight) continu-
ously at zero velocity relative to the rocket until only the payload is
traveling at the final velocity.

(a) Write the equation of motion for the rocket neglecting the drag
and gravitational losses.

(b) Integrate this equation to find Av, assuming the rate of dead
weight rejection s, the propellant rejection rate m,, and the exhaust
velocity C are constant in terms of 8 = m,/m; and MR =1/A,.

(c) What is the penalty paid in terms of percentage of ideal Av (Av
achieved if no dead weight was present), if 6 = 0.1 and A, = 0.05?

(d) How much better (in terms of Av achieved) is this continuously
g\taged _rocket than a three-stage rocket (optimized) with 6=0.1 and

o= 0.05?
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34 Consider a four-stage rocket for which the first two stages and the
last two stages are similar. That is,

There are no drag or gravitational losses.
(a) Show that if the rocket is designed for a maximum Av for a given

0-

B 208
2 1

[(B-1) +4uBs2/Rs |- (B-1)
}‘3=}‘4=m/}‘1

(b) Calculate Av,, given that C=3000 ms™}, Ay, =0.0016, 6=0.1,
p=13 and f=1.2.

A=A

35 Show that the derivative of the thrust coefficient is
Z (r-v/y]-3 —(y+1y/y
i AT R
36 Derive Eq. (3.32).
3.7 Derive Eq. (3.33).
38 Consider a rocket with a translatable skirt, such that it has two

design altitudes, 10,000 and 20,000 m. The ambient pressure vs altitude may
be approximated by the formula

Pa=pspe "™

For this rocket the Summerfield criterion is

p,=p,/2.718

The ratio of specific heats is y = 1.22 and the chamber pressure p, is 50
atm. The skirt is translated at just the altitude where C for the skirt in the
10,000 m design condition equals Cr for the skirt in the 20,000 m design
condition.

Calculate and carefully plot Cr over the range 0 < 4 < 40,000 m. Care-
fully locate the altitudes A, 2 yn5, 2y, and A ;. Include on the graph the
envelope of a perfectly expanded rocket.

3.9 Molecular hydrogen (H,) passes through heat-transfer passages
and emerges at 2500 K. At this temperature significant dissociation can
occur. What mass fraction of the hydrogen exists as atomic hydrogen (H) at
each of the chamber pressures p, = 100, 10~*, and 10™* atm?
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At 2500 K the equilibrium constant K, is approximately

K,=pu/(pu,) =107

where p is in atmospheres.

3.10 Verify by direct calculation that Eq. (3.39) and the values
tabulated in Tables 3.1-3.3 are in agreement for the case T'= 4000 K.

3.11 Consider the reaction

H,+ 70, »mH,0+nH, + g0,

(a) Obtain and plot n and ¢ as a function of ¢ for the case where
T = 3500 K. Plot in the range 0.2 < £< 0.5 for the three pressures p, = 1, 10,
and 100 atm.

(b) Repeat part (a) for the case T = 4000 K.

3.12 ¢ moles of O, are mixed with 1 mole of H,. The entering
temperature of the O, is 100 K and of the H, is 200 K. Obtain and plot the
enthalpy per mass of the products for the case where p. = 10 atm. Calculate
for the values £= 0.2, 0.3, 0.4, and 0.5.

3.13 Repeat Problem 3.12 for the case p, = 100 atm.

3.14 The curves of enthalpy per mass vs £ obtained in Problems 3.12
and 3.13 should each contain a maximum. Select the nearest value of ¢ to
the maximum that you calculated and for that case calculate the velocity at
the exit of the rocket assuming frozen, isentropic flow to p, = 0.1 atm for
both chamber pressures.

3.15 For the conditions of Problem 3.14, calculate the exit velocity
assuming isentropic equilibrium flow.

3.16 (a) For the situation where a nozzle has a large pressure ratio,
what value of #will lead to the maximum exit velocity if equilibrium flow
occurs in the nozzle?

(b) Calculate the related exit velocities for the cases p, = 10 and 100
atm with p, = 0.1 atm.

317 Consider a solid-propellant rocket designed to produce a velocity
increment Av in a gravity- and drag-free environment. The empty mass of
the rocket is to be m,. The rocket may be considered to have a “star” grain,
designed so that the burning area A, remains constant with time and hence
equal to the area of the cylinder of fuel existing just at burnout. The grain
has a constant-area A gas passage and the length-to-diameter ratio L/D is
prescribed, as are the initial value of A4/4,=4,/4,, and p,=p,_. Other
parameters to be provided are C, (assumed constant), C*, v, 0y, 1y k, and a.
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Obtain analytical expressions for the following quantities in terms of the
above prescribed parameters, or possibly in terms of parameters obtained in
the following, preceding the parameter in question.

(a) The fuel volume V.

(b) The ratio of burning area to throat area 4,/A4,.

(¢) The outside diameter D of the fuel charge.

(d) The burning area 4,.

(e) The throat area 4, and throat diameter D,.

(f) Show that expressions for the chamber pressure and average
burning rate may be obtained in the form

- [petevnt

P 1= (By/4)
. [M]
‘ 1‘(33//4)

and obtain 8, B,, and 8, analytically.
(2) Summarize all of the above equations in a form that can be easily
programmed for calculation, then noting the approximate form

A=A, +wDrét
and the rough estimate for overall firing time 7 given-by
T= V// rA,

Obtain and plot a time history of 4, p,, 7, and thrust F from ¢ =0 to
burnout, for the following input parameters:

Av=4500 ms™! p,=10N-m? p,=1750kg-m™>

m ;= 9000 kg Cr=1.90 a=022%x10"°
AJjA, =2 * =1700 ms ™! n=0.73
L/D=1 y=1.25 k=05x10"°

(h) Find the rocket acceleration at beginning and end of firing.

3.18 Consider an end-burning solid-propellant rocket with the same
specifications as those listed in Problem 3.17. Find

(a) The throat diameter.

(b) The time of burning.

(¢) The (constant) thrust.

(d) The initial and final accelerations.



4. NONCHEMICAL ROCKETS

4.1 Introduction

When considering space missions with very large velocity changes, it
becomes apparent that huge mass ratios are required. Chemical rockets,
which have the energy source coincident with the propellant, are fundamen-
tally limited in their achievable specific impulse by the strength of the
chemical bonds of the propellants (to about 7, =450 s). If higher specific
impulses are to be obtained, an energy source other than, or in addition to,
the propellant itself must be utilized.

Several methods of external energy addition suggest themselves. Examples
are thermal addition of energy with the thermal energy provided by a
nuclear reactor or electrical energy input to the propellant with the electrical
energy provided by solar collectors, a nuclear-electric generator, a solar
heater-electric generator combination, or any of several other competing
concepts.

Before rational determination of the most promising concepts can be
made, it is necessary to estimate the performance of the suggested systems.
Simple performance models and example performance estimates are given
in the following sections.

4.2 The Nuclear-Heated Rocket

A schematic diagram of a nuclear rocket is shown in Fig. 4.1. As
illustrated, such a rocket operates by having the propellant pass through
heat-transfer passages within the high-temperature core of the rocket where
its enthalpy is raised by heat interaction with the walls of the passages. The
energy necessary to maintain the core temperature is supplied by the nuclear
reactions within the core material.

It can be noted here that an important engineering limitation is present,
in that the temperatures within the (solid) core must be restricted to values
that do not cause structural weakening of the rocket. This is in contrast to a
conventional rocket where the highest temperatures within the system occur
within the gas. The advantage of the nuclear rocket is not, then, that high
temperatures are available, but rather that the choice of propellant is limited
only by the requirement of chemical compatibility with the core surfaces.

97
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PROPELLANT

Tes R —_—

o

- 4

LCORE
Fig. 4.1 Nuclear-heated rocket.

Choice of Propellant

The first priority in the selection of a propellant would obviously be
identified with the propellant giving the highest exhaust velocity. Assuming
for simplicity that the nozzle exit pressure is extremely low, Eq. (3.24) gives
for the effective exhaust velocity

{2y R, :
C= ZCPE_(y—l/IlE) (4.1)

where 7. is the chamber stagnation temperature, R, the universal gas
constant, and .# the molecular weight.

It is apparent that the largest exhaust velocity, for a given limited
chamber stagnation temperature, will be found for hydrogen as propellant.
Note that allowable temperatures are restricted to a range where virtually all
of the hydrogen will be in molecular form. In this case, with y = 1.4, # =2,
and R, = 8320 J (kg - mole)~!- K !, the maximum specific impulse is found
to be

cC 1 [2(1.4) 8320 ]i

so 1, =174 \/TC
The upper limit for the core temperature is approximately 2500 K, which
gives for the related specific impulse

(15,,)max =870 s

This represents a substantial increase over the maximum specific impulse
found in chemical rockets and justifies the considerable research and
development directed toward the nuclear-heated rocket. It is clear that the
advantages of a nuclear-heated rocket, as compared to a chemical rocket,
will become more pronounced as more energetically demanding missions



NONCHEMICAL ROCKETS 99

are contemplated. This is because as the mission demand increases, and
hence propellant mass increases, the savings provided by the large specific
impulse increase. In the case of low-energy missions, the propellant savings
do not overcome the large mass penalty incurred by the reactor and all its
related equipment.

With the success of the chemical rocket for manned missions to the moon,
it appeared that the major hope for the nuclear rocket would be identified
with manned planetary missions.

It happens, however, that for manned planetary missions, the energy
requirements are so enormous that even the nuclear-heated rocket has too
low a specific impulse, and the class of electrical rockets emerges as the most
viable candidates for such missions.

With regard to the future, it is possible that nuclear rockets could be used
on “space tugboats” between Earth orbit and the lunar surface or between
vehicles in Earth orbit and geosynchronous orbit.

Approximate Performance Analysis

A relatively simple method for analyzing the performance of a nuclear-
heated rocket was suggested in Ref. 1. An optimal design will include an
appropriate choice of the length-to-diameter ratio of the heat-transfer tubes
within the reactor core. It is evident that if tubes with very large length-to-
diameter ratios are employed, then the propellant temperature will closely
approach the allowable surface limit temperature 7,. The high propellant
temperature would favor high specific impulse; but, if carried to extreme,
the related stagnation pressure drop found in the long slender tubes would
become excessive and lead to a reduced specific impulse.

In the following the temperature rise as a function of length-to-diameter
ratio of the heat-transfer tubes is estimated. An approximation to the
pressure loss is then obtained and the combined effect of temperature and
pressure on the specific impulse estimated.

Heat Transfer and Power Balance

Consider a tube of length L and diameter D, as shown in Fig. 4.2. The
thermal energy transferred into the flow in the elemental length element d x
leads to a differential increase in stagnation temperature given by Eq. (2.84).
This may be written in the form

dT,= 4N, (T, - T,)(dx/D) (42)

It will be convenient when searching for the optimal tube length to
diameter to relate the stagnation temperature increase to the stagnation
pressure loss. Hence, Reynolds’ analogy [Eq. (2.86)] is assumed to be valid.
Then, denoting the skin-friction coefficient by f, the expression for the
increment in stagnation temperature becomes

d7,=2/(T, - T,)(dx/D) (43)
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L ~ 0l
- ) "
| ax| 2

Fig. 4.2 Heat-transfer tube.
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In order to obtain 7, as a function of x, it is necessary to know the
variation of f(T,, — T,) with x. This variation is determined by the distribu-
tion of the power density within the reactor, because no matter what the
local power density, the wall temperature (and hence 7,) must “float” to the
value that equates the thermal transfer rate into the flow to the local
generation of thermal energy by the nuclear reactions.

The power density distribution within a reactor is determined by the
distribution of nuclear fuel as well as by the amount and location of
shielding material. The power density distribution is somewhat amenable to
design choice, so two example distributions are considered here. In each
case, for simplicity, it is assumed that the skin-friction coefficient is con-
stant.

Constant-power density. A constant-power density insures that the
rate of increase of stagnation temperature and the temperature increment
(T, — T,) are constant. The limiting wall temperature 7, will occur at the
end of the tube, where

(T,-T)=(T,-T,)
Equation (4.3) can be immediately integrated to give
T, T/T,+2/L/D
T.  1+2fL/D

s

(4.4)

Sine-power density. This power distribution would (approximately)
exist if the ends of the core were unshielded and the nuclear fuel distribu-
tion uniform. The power density is assumed to be proportional to sin 7x /L,
so that the temperature increment is given by

AT = AT, sin(7x/L) (4.5)

where AT= T, — T, and AT,, = maximum increment (located at x = L/2).
With Eq. (4.5), Eq. (4.3) is easily integrated to give

T,=T, +(2fL/nD) AT, [1 - cos(mx/L)] (4.6)
thus
AT, = (7D/4fL)(T, - T,) (4.7)
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The limiting temperature 7, is located where the wall temperature 7,, has
a maximum. Thus, writing

=T, +AT=T, +2fLAT W(1-cosTE) +aT,sin 5 (43)

taking the derivative of this expression, and equating the result to zero, it
follows that the location where T, = T, is given by

X\ 1,1
(L)n—2+warctan( 'H'D) (4.9)
At that location
cosw—lf = 1 and sineri = mD/2/L
V1+(aD/2fL)’ V1+(aD/2fL)’
(4.10)

Combination of Eqgs. (4.8) and (4.10) then gives

2fL aD \*
T,=T, +—5AT, 1 +(2fL) (4.11)
And finally, Egs. (4.6-4.8) and (4.11) give
T _ 1
T, 2
S 14+ y1+(aD/2fL)
aD \? 7;1 7X
|:1+?5 1+(2—f‘.z) —(1——S)COST:| (412)
T T 2
. ! [2+—T’—1 1+(—;’£L) —1)] (4.13)
s 1+y1+(aD/2fL) s /
T, 1
T 2
s 1+ y1+(xD/2fL)
7D \? Txl aD .« X
1+ - 1+(7f_L_) + 1—?3 (ﬁsmL COS"L—)
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Fig. 44 Outlet gas temperature vs fL /D.
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Figure 4.3 illustrates the temperature variation with axial position for the
case fL/D =2.5 and T, /T, = 0.1. The behavior of outlet stagnation temper-
ature with fL/ D for the constant -power density case and for the sine-power
density case is shown in Fig. 4.4.

Core Pressure Drop

The preceding analysis led to simple expressions for the outlet stagnation
temperature 7, in terms of T, T, and fL/D. As is obvious, if fL/D is
increased, T, v will more nearly approach the maximum wall temperature 7.
However, an increase in fL/D causes some problems itself, in that the
stagnation pressure drop will increase, the thrust coefficient will decrease,
and the pressure drop across the core will increase, leading to possible
structural problems.

To estimate the related performance penalties, first consider a very
simplified form of the momentum equation. Thus, the shear force is as-
sumed to be given in terms of the average of the upstream and downstream
shear stresses,

Shear force = 4(r, + 7,)7DL
= (f/4)(p,u} + pyu})7DL
The momentum equation thus becomes

T T
(pr=22) 507~ L (pyu? + pyu3) mDL = (0yu3 = pyuf) 7 D?

hence
pl[l + ny(l —%)] =p, [1 + yM22(1 + %)} (4.15)
SO
Leym2(1-LE)| [ 1422 [0
P, D 2 2
—= I 5 (4.16)
Pa [1+7M2(1 -5)] 1+ 5= M}

An expression for the stagnation temperature ratio is obtained by first

noting
m R m\/T 1
N 11—
(1475 Mz)
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which, when substituted into Eq. (4.15) yields

-1 L
T M21+ 3 M2 1+yM12( —%)

(4.17)

o MPgLY 21M1 1+yM22(1+%)

Note that if 7,, T;, and fL/D were prescribed, Eqgs. (4.4) or (4.13) would
yield T, and Eq (4 17) would then relate M, and M,. In fact, M, can be
prescnbed implicitly by the choice of the ratio of the nozzle throat area to
core tube area, so M, could then be obtained from Eq. (4.17), which is a
quadratic equation for M. The stagnation pressure ratio then follows from
Eq. (4.16), and hence the performance variables can be estimated.

Performance Variables

It is assumed that no further decrease in stagnation pressure occurs after
station 2, so the exit velocity may be written

a-bay
u, = {% T, 1—(—5—“) }} (4.18)
2

The maximum imaginable specific impulse 7,, would be that for which
the propellant reaches the maximum allowable wall temperature 7, and no
pressure drop occurs ( p,, = p, ). The ratio of actual /, to this maximum /,,
is hence

1 1. [1-(purp,)" "] % (419)

n \ T[1=(purp,) "

The thrust coefficient based on flow cross-sectional area and conditions at
station 1 may be written

F/Ap, = rw,/Ap, (4.20)

Combining Egs. (2.102), (4.18), and (4.20) gives

1 /L
F _y 2 [1 (pa )(7*1)/7}2 1+YM12(1_3) J
Ap, —1{ — v/(y=1 " (M)
pr, Y prz (1 + Y > 1M12)

(4.21)
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where

i

[1+-—Y;1M§]2

1+yM22(1+%)

Jup=M, (4.22)

With 7, and p, determined as suggested in the previous section, Egs.
(4.19) and (4.21) give the performance variables. An even simpler ap-
proximation was suggested by the author of Ref. 1, however, who noted that
in the usual case where 7, /T, <1, the inlet Mach number would also be
very small indeed. In such cases, approximate forms of Egs. (4.16) and

(4.21) may be used,

-1 y/(y=1

Y 2
ptz~(1+_2 ;

p_’1~ [l +yM22(l +%)]

F ) . )(Y‘l)/)’ 3
=v/ 5 |1 2* J 4.4
ap, TV y-1 [ (p,Z () (429

Figure 4.5 shows the behavior of I/I, and F/Ap, vs M, for the case
I,/T,=1/40, p,/p, =1/80, fL/D =15, y= 1.4, and power density con-
sthnt. An’ erroneous drop in the thrust coefficient is predicted, which is
introduced by the approximations leading to Eqgs. (4.23) and (4.24). In any
case, full calculation reveals that the thrust coefficient changes very slowly
above the point that the false maximum is predicted to exist, whereas the
specific impulse does continue to decrease.

A further simplification is then suggested, in that the Mach number at the
exit M3 will be taken to be that at the maximum of the function J, . This
maximum (Problem 4.1) occurs at

(4.23)

Mi=———1 (4.25)

! J1+v/L/D

The resulting equation set for this “optimum” choice is summarized as
follows:

Inputs: Y,fL/D, Pa/P;,’ 7—;1/7}

Outputs: My, 1/L,, F/Ap,
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Fig. 4.6 Optimum performance parameters vs fL /D.
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Equations:
Mp=—>L
* J1+y/L/D
y—-1 , y/(y=1
" =[1+—2 w3
p fL
h 1+YM22(1+3)
It_z_f L1y [Eq. (4.4), (4.13), or as appropriate
T, '\D’T, for chosen fuel loading]
&: Pa/Ptl
P,  Pu/Py
1M 1+Y—~1M2 :
F \/T{l <pa )““W]z M
=y == 1| £
Ap,, v—1 Py, [1+yM22<1-+—f—L)]
D
<—1)/ 2
1 [T, Pa/p,z e
I, \\'T, ) n/y

An example calculation for the case Pa/Py =1/ 80, T, /T,=1/40, vy =

and power density constant is shown in Flg 4.6. It is to be noted that w1th
typical values of the skin-friction coefficient of f = 0.005, the length-to-diam-
eter ratios corresponding to the right portion of the graph can be very large.
Note that L /D = 600 implies a tube diameter of 3.3 mm for a core length of
2 m. It is probable that fabrication limitations and core pressure drop
problems will cause the selection to be more in the neighborhood of
fL/D =1.5 or lower.

4.3 Electrically Powered Rockets

When very-high-energy missions are to be considered, the specific impulse
must be extremely high if the overall mass ratio of the rocket is not to
become extreme. There are several concepts for providing electrical energy
directly to the propellant, but an example configuration will be considered
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first without regard to the details of the actual energy addition process. The
major components of such a system are indicated schematically in Fig. 4.7.

The diagram of Fig. 4.7 indicates the primary work and heat interactions
of a typical system. No heat exchanger is indicated between the propellant
and heat engine, simply because in cases of very high specific impulse, the
stagnation enthalpy of the propellant leaving the accelerator is so enormous
that the savings of energy through the use of a heat exchanger is probably
not worth the complexity of the required additional equipment.

It should be apparent that there will be some optimal choice of specific
impulse for a given mission, because the required mass of the electrical
supply equipment will increase with the increase in specific impulse, whereas
the required mass of propellant decreases with the increase in specific
impulse. In the following, a simple model is provided for estimating the
optimum choice of specific impulse as a function of mission requirements
and system parameters.

Selection of the Optimum Specitic Impulse

A simple definition of the “optimum specific impulse” is that which leads
to the minimum overall system mass. As a convenient approximation, it is
assumed that the entire mass of the engine, radiator, heat exchanger, and
accelerator (m,) is proportional to the power delivered to the accelerator.
Thus, the specific power a’ (watt /kilogram) is defined by

o« =W,/m, (4.26)

The kinetic energy of the exhaust will be so enormous that to a good
approximation the thermal energy remaining in the propellant may be
ignored, so that

W, = (C?/2) (4.27)

where 7, is the accelerator efficiency. Hence,

m
a'n, 2

m,=

(4.28)
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The remaining mass of the vehicle may be considered to consist of the
propellant mass m, and the payload mass m; (which includes the structural
mass, etc.). Thus,

mo=m,+m;+m, (4.29)

For a constant propellant flow rate, the firing time of the vehicle 7 will be
given by 7= m,/r, so there is obtained

m 2
ﬂ=1——"[1+ < J (4.30)
mg m 2a'n,7
Equation (3.14) gives
m,/my=1—e 8/ (4.31)

and combination of Egs. (4.30) and (4.31) gives

a

Z—§=1—(1—e‘“)[1+(ﬁ)2} (4.32)

where a = Av/c and 8= Av/ 2a'q,7.
The optimum specific impulse (or C) occurs when the derivative of Eq.
(4.32) with respect to a is zero. Hence, at the optimum condition

(g)2=m (4.33)

and the equation for the optimal value of a for a prescribed payload ratio
may thus be written

Fla)=1-F-e "= "L(e"=1-7)=0 (4.34)

This equation is easily solved numerically using Newtonian iteration (see
Sec. 7.2). Thus, with

F=—3+e*—(my/my)(e*—1) (4.35)
it follows that
&1 = (a=F/F), (4.36)
A suitable first guess for a, a,, is

ay=1-m;/m, (4.37)
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Once a has been obtained, the related optimum value of 8 follows from
Eq. (4.33), thence C and 7 from the definitions of Eq. (4.32), and, finally, the
initial acceleration a, from

a="1C_CT_C(y_ e (4.38)

These equations for electric rocket optimum specific impulse may be
summarized as follows:

Input: my/mgy, Ao ms™!, n,a W-kg!
Output: a B, Iy s, 7s, a, ms™>
Equations:
=1-m;/m,
1Y e MLy &
F=1 5 € mO(e 1 2)
ol e Mef o 1
F 2+e m0(e 2)
=(a—F/F')j
o
B=——
J2(e*~1)—«a
C=Av/a

= C/9.807

opl
7= (1/2a'n,)(8v/B)’
a,=(C/m)(1-e")

Example results for the case of Av = 20,000 ms ' and a’n, =100 W - kg~
are shown in Fig. 4.8 where the vanation of 1, a;, 7, and m,/m is shown
plotted vs m; /m,. As is evident, the initial acceleratlons and hence firing
times get very small and very large, respectively, for this very-high-energy
mission when large mass ratios are desired. The related specific impulses
also become large, clearly indicating why it is that electrical rockets must be
employed.
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Fig. 48 Optimum performance of electric rocket vs payload ratio.

When more exacting mission analysis estimates are made, it is found that
the optimum range of specific impulse for planetary missions iS approxi-
mately 3000 < I < 5000. It is a most unfortunate result that it is just this
range of specific impulse that is the most difficult to achieve!

Classification of Electric Thrustors

Electric thrustors can be broadly classified in one of three categories,
electrothermal, electromagnetic, or electrostatic. Each class has limitations
that confine its use to a particular specific impulse range. In the following,
the method of operation and operational limitations of each class will be
briefly outlined.

Electrothermal thrustors. In these devices the electrical energy pro-
vided to the thrustor is first converted to thermal energy of the propellant
and hence to kinetic energy in the exhaust by expansion of the propellant
through a conventional nozzle. A simple form of the electrothermal thrustor
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is the resisto jet, which operates by using the electrical energy to resistively
heat filaments that in turn heat the propellant. Resisto jets are quite limited
in attainable specific impulse (/;, < 800 s) because of the thermal limita-
tions of the filaments.

The most common form of the electrothermal thrustor is the arc jet,
which operates by passing an electric current directly through the propel-
lant itself, thereby depositing the electrical energy directly within the pro-
pellant. This “ohmic heating” appears as random (thermal) energy in the
propellant. The arc jet, by depositing energy directly in the propellant,
avoids the solid-surface temperature limitation of the resisto jet and
nuclear-heated rocket. Engineering limitations do arise, however, in that
dissociation (H,) or ionization (H, or H,) losses become substantial at high
temperatures. lonization losses are particularly aggravating because the
electrical current tends to concentrate in filaments (much as do lightening
bolts) where the ionization level becomes extremely high, far exceeding the
level identified with the equilibrium temperature of the gas.

Successful designs have employed settling chambers to allow the electrons
to recombine with the ions. The use of a settling chamber introduces
problems of its own, in that substantial heat-transfer losses occur in the
chamber. Other techniques to enhance arc jet performance include swirling
the flows so as to increase the length of the current path from the anode to
the cathode. Magnetic fields have also been applied to spin the electrical
filaments, thereby not only increasing the filament length, but also reducing
the probability of the arc “spotting” and damaging the electrode surfaces.

It appears, on the balance of performance to date, that arc jets show
promise for specific impulses up to about 1500 s.

Electromagnetic thrustors. Efforts to circumvent the ionization limit
of the arc jet led to investigation of the electromagnetic thrustor. In this
concept, it was hoped to utilize the Lorentz force (or j X B force) resulting
from interaction of an electrical current with a magnetic field. By so doing,
it was hoped to add a substantial portion of the electrical energy directly in
the form of directed kinetic energy of the propellant. In bypassing the
intermediate condition of very high static temperature of the propellant, the
ionization losses could be substantially reduced.

Substantial investigations were conducted in the electromagnetic thrustor
field, but were only moderately successful, primarily because two further
engineering limitations on this class of device appeared. It was found that
when the stagnation enthalpy of the propellant was increased (over that
found in arc jets), the thermal transfer to the containing walls became so
great that structural integrity could not be maintained.

Attempts to reduce the wall thermal transport by reducing the operating
pressure of the thrustor introduced yet another engineering limitation.
When the thrustors were run at the very low pressures necessary to prevent
wall structural failure, the fluid density became so low that the ions (which
are acted upon directly by the Lorentz force) tended to slip through the
neutral particles. When the resulting “ion slip” becomes extreme, the jet
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exhaust tends to consist of rapidly moving electrons and ions and relatively
slowly moving neutral particles. As a result, most of the electrical energy
provided goes into accelerating the ions, but the neutral gas is accelerated
much less, with a resulting inefficient and low specific impulse exhaust jet.

It appears at the present time that the electromagnetic thrustors do not
hold the promise originally hoped.

Electrostatic thrustors. The performance limitations brought about by
the requirements of viscous containment led to the investigation of methods
of propellant stream acceleration that could use purely electrical (and
possibly magnetic) methods of containing the propellant. It is clear that any
such method must utilize a virtually completely ionized stream, because any
neutral particles would be unaffected by the imposed electrical fields. Once
it has been decided to utilize a fully ionized stream, there is no benefit to be
found in using low-molecular-weight propellants. Rather, as will be evident
in the following analysis, propellants with very high molecular weights are
found to be most suitable. It follows then that the energy levels of the
exhausting propellants are extremely high (in the thousands of electron
volts), so that the energy lost to the ionization process, or to the remaining
thermal energy, is virtually negligible.

Figure 4.9 shows a schematic diagram of an electrostatic propulsion
concept. As indicated, a source of ions is provided that is attracted to the
highly negatively charged cathode. By properly shaping the anode and
cathode, the beam can be held very nearly parallel. After passage through
the cathode opening, the beam is immediately neutralized by electrons
supplied by electron emitters. It is to be noted that the actual energy

! ELECTRON
|
SOURCE

EMITTER
\/ J/ o
OF
IONS l—\_— - R ______

ANODE CATHODE
Fig. 49 Electrostatic accelerator.

ANSNR AN
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provided goes into raising the electrons from the anode to cathode potential.
Note also that if the electron beam was not provided, the entire spaceship
would become highly negatively charged and would hence attract the

departing ions back to the ship!

A highly simplified but revealing analysis can be constructed by assuming
that conditions between the anode and cathode are one-dimensional and
that only singly charged ions exist in the region. The geometry and related
nomenclature are shown in Fig. 4.10. The voltage at location x is ¢, the
potential energy of a particle of charge g is g¢, and the kinetic energy is

1
smu-.
The conservation of total energy may be written

imu’ + q¢ = const = mu? + q¢,
hence
ur=2(q/m)(¢, — &) +uj

The electric current per area j may be written

J=ungq

where 7, is the number of ions/volume.

F—d -

Pa b¢

[

(4.39)

(4.40)

(4.41)

Fig. 4.10 Geometry and nomenclature, one-dimensional electrostatic accelerator.
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An expression for the variation of voltage with position can be obtained
by invoking the second Maxwell equation and by noting that the current
density is constant with x. Thus with

d’¢ nq
— = - 4.42
dx? ) (4.42)
it follows with Egs. (4.40) and (4.41) that
2 .
-;1% --L ! : (4.43)
x 0 y2(g/m)(¢s—¢)+u}
A first integral of this equation is obtained by noting
2 2
o _dofd de) 14 (dg) (4.44)
dx? dxide¢ dx 2 de\dx

and hence from Eq. (4.43)

S ] 2 T ]

4 &9 m

A second integral would now give the distribution of ¢ with x, and hence
with Eq. (4.40) of u with x. It is of more interest, however, to use Eq. (4.45)
to obtain an expression for the maximum current attainable for a given
electrode spacing and cathode voltage. For simplicity, consider the case
where the velocity at the anode is very small and note that the current will
be a maximum (equal to j4) when (d¢/dx), = 0. In this case

do AN m e

€y

Integrating and rearranging there is obtained

ey g (99
Jsclz-é_o 2; AT (447)

This relationship is known as the Child-Langmuir law. The Child-
Langmuir law indicates that even if ions are made available at a high rate at
the anode surface, the “space charge” existing because of the departing ions
will limit the rate at which ions can be attracted from the surface. This
limiting current has an important influence on the performance of electro-
static thrustors through its related limitation on the thrust per area of the
device.
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Idealized Performance

The preceding equations may be arranged in order to give the perfor-
mance of an ideal electrostatic thrustor as follows:

M1 LTy gy
Isp_ao_ao 2m(¢A ¢c)

F _ thrust _ m

A area q

A2 d (0= .)°

ﬁg 2_1 __(¢A —9)°
m d?

jscl= 9
F\ _Be (4= 0\ _ (2 \[m\}a
(F )= st (2™ = (Geot) (2]

As an example calculation consider an electrostatic accelerator utilizing
cesium, with the following characteristics: m/q = 1.38 (10" %) kg/C,d=0.01
m, (¢, — ¢,) = 10,000 V, and &, = 8.85 (10~'?) F/m. Then

= ; _2_ 3 2\ —
Iy=ggo7 | T3 (10°)(10%)=12.200'5

Ja=472A/m’
(F/A)=1.9N/m?

These simple calculations indicate many of the engineering limitations of
electrostatic thrusters. Thus, even for the very high specific impulse consid-
ered, the thrust per area is extremely low. When it is noted that the thrust
per area goes as pr, it can be realized that operating at lower /,, levels will
cause even more unacceptable thrust levels to occur.

It would seem that this problem could be alleviated by decreasing the
electrode spacing, but the assumed value of d =1 cm would seem to be as
small as reasonable to support such a huge voltage difference. Several efforts
have been directed to increasing the mass-to-charge ratio m/q. (Note that
cesium has an extremely high mass-to-charge ratio for an ionizable atom.)

One method suggested for increasing the mass-to-charge ratio is to attach
charged particles to other tiny particles in the form of colloids. Although
“colloid rockets” showed great promise, it was found to be very difficult to
generate a uniform charge-to-mass ratio propellant. The resulting nonuni-
form propellant stream led to unacceptable beam efficiencies, as well as to
unacceptable problems in beam focusing.

Another technique for increasing the thrust per area that has seen
considerable success is to utilize an “accel-decel” system in which an
intermediate electrode at very high voltage is utilized to increase the current
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density. Prior to departing the rocket, however, the ions are decelerated to a
suitable low exhaust velocity. It is to be noted that the intermediate
electrode draws only that power identified with “leakage” currents, the
majority of the power requirement being identified only with the power
required to supply the electron emitter at the outlet cathode voltage.
Accel-decel systems have proved quite successful in practice, although care
must be taken in the design to avoid beam instabilities in the decel portion.

The “space charge limitation™ arises because the cloud of departing ions
tends to reflect further ions. An attempt to surmount this difficulty that met
with some success involved utilizing a (weak) magnetic field to contain
electrons in the region between the cathode and anode. As a result the space
charge was much reduced because, as they passed through the circling
electrons, the ions would have their charge “cancelled” by a nearby electron.

In conclusion, it may be said that ion rockets presently give acceptable
performances at specific impulses as low as about 7000 s. The great
remaining problems of electric rockets remain not so much in the thrustors
as in the power supplies. The future will see whether a mission arises
sufficient to warrant further development in this fascinating field.

Reference

IStenning, A. H., “Rapid Approximate Method for Analyzing Nuclear Rocket
Performance,” ARS Journal, Vol. 30, Feb. 1960, pp. 169-172.

Problems
4.1 Prove Eq. (4.25).

4.2 The nuclear fuel distribution in a nuclear reactor is chosen so that
when in operation the wall temperature of the reactor is a constant equal to
the maximum allowable temperature T;.

(a) Find an expression for T, /T; in terms of T, /T, and fL/D.

(b) Show that if the rocket is to be designed to have the same T,
T,, and T; as a nuclear-heated rocket with a constant-power density, then

G=/¢(#(1+F)

where G=2fL/D, where the L/D is that for the case of constant wall
temperature; F=2fL/D, where the L/D is that for the case of constant-
power density.

(c) Assuming that both rockets are designed for the “optimum case”
M, = M3 and that the incoming Mach number is very small, find an
expression for p,, /p, in terms of fL/D.

(d) Calculate p,,/p, for both rockets for the case F = 1.

(e) Show that if the performance of the constant-wall-temperature
rocket, or of the sine-power-density rocket is plotted as in Fig. 4.6, only the
curve of I/, changes from that of Fig. 4.6.
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43 Obtain the curve of F/Ap, vs M, for the case illustrated in
Fig. 4.5, but utilizing the full equauons (that is, do not assume M, = ().

4.4 Investigate the sensitivity of the “optimal” values of I/I,, and
F/Ap, . as shown in Fig. 4.6, to the assumed values of 7, /7; and p,/p, .
4.5 An electrically powered rocket with n,0' =80 W-kg™' and a
mission requirement of Av=17,000 ms~! is designed to have a payload
ratio of m; /my=0.4.

(a) Assuming the optlmal exhaust velocity C,, is selected, find (i) C,,
ms !, (i) 7 s, (iii) @, ms~ 2, (iv) m o/ Mo and m,/my.

(b) If instead of the opumal exhaust velocity, C = C,,./1.1 is selected,
find 7, a;, m,/my, and m,/my,.

4.6 (a) Consider an electric rocket with optimum specific impulse
for the case m; /m,=0.4 and Av = 20,000 ms ", Plot the variation of Lopes
T, a;, m,/mgy, and m,/mg vs a'n, for the range 50 < a'n, < 200.

(b) Consider the rocket of part (a) for the case a'n,=100. If it 1s
possible to attain am, =200 and it is desired to keep the firing time the
same, what will be the new payload ratio?

4.7 Show that the time of ﬁrin% for an optimal electric rocket with
given m; /mg, and a'n, goes like (Av)~. Explain why this is so, rather than
the time of firing being proportional to Av.

4.8 (a) Helium is heated by an electric current in an arc jet chamber
to a stagnation temperature of 4000 K. It is then expanded (almost)
isentropically through a nozzle to very low pressure. Estimate the specific
impulse, assuming that the ionization effects can be ignored.

(b) Molecular hydrogen is used as a propellant in the arc jet of part
(a). Estimate the specific impulse, assuming the approximations for the case
of part (a) are valid and that in addition any dissociation effects can be
ignored.

(¢) Using approximations similar to the preceding parts, obtain an
expression giving the “effective” chamber stagnation temperature 7. in
terms of the specific impulse and other required material properties. Calcu-
late T, for the case with /;, =1500 s and propellant H,.

4.9 (a) It may be assumed that virtually all the energy acquired by
the propellant in an electrostatic thrustor appears as the kinetic energy of
the jet, imu?. If the particles are singly charged, this energy may be
expressed in terms of the “electron volts,” eV, of the exhaust beam. Show
that the electron volts of the exhaust may be expressed in terms of the
specific impulse and molecular weight of the propellant by

eV =Ka(1,/10%)’

where K 1s the constant of proportionality.
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Noting that # = N,m, where N, = Avogadro’s number = 6.03 (10%¢)
and m = mass of particle, and also that the charge on an electron ¢,
=1.6 (107 ') C, find the numerical value of K.

(b) If cesium is the propellant (# = 133, monatomic), find the voltage
of the exhaust if I, = 6000 s.

(¢) Using the results of Problem 4.8(c), calculate the effective reservoir
temperature for the conditions of part (b).

(d) If the thrust level of this rocket is to be 100 N, what is the
required power level in kilowatts?

() What is the mass flow rate in kg,/s!?
4.10 Consider a colloid rocket with the properties m/q= B(m/q)x
and [ . (Here, R refers to a reference electrostatic accelerator.)

(af If the same electrode spacing is used as for the reference accelera-
tor, find the ratio of the following terms to their reference values in terms of
B and §: 4, (¢, — ¢c), and (F/A),.

(b) Find the same ratios as in part (a) for the case where the electrode
spacing is chosen to keep the voltage gradient at the cathode of the
accelerator the same as that of the reference accelerator.

4.11 Consider an “accel-decel” system consisting of an anode at
voltage ¢,, cathode at voltage ¢, and downstream cathode at ¢,,. Consider
the current in the first region (A-C) to be space charge limited.

(a) Show that the equation for the potential in the region downstream
of C (C— D) may be written

do\* (do\? 4ja [m
(d—x) _(d_);)c_T\/z_q(‘/‘bA_‘b—\/‘bA_‘bC)

(b) Introducing ® = (¢ — ¢-)/(¢, — ¢} and 6 = x /d ,, where d ;- is
the distance between anode and first cathode and 8§ = 0 when ® = 0, show
that the equation for § in terms of ® may be written

§=(1+2KW1-K -[VI—® +2K]W1-® — K

where
“1- 2 (dey
16 \ dé
4.12 A method of ionic propulsion has been suggested that utilizes a

series of electrodes. If such a device is constructed so that the slope of the
potential to the left of each electrode is to be the same as that preceding it
and the slope to the right of each electrode is to be zero, show that the
magnitude of the voltage on the nth electrode is given in terms of the
voltage on the first electrode by

|| = 1|9y

(The voltage of the “zeroth electrode” is taken to be zero.)



5. IDEAL CYCLE ANALYSIS

5.1 Introduction

In this chapter the systematic process termed “cycle analysis” will be
applied to several different engine types. The object of cycle analysis is to
obtain estimates of the performance parameters (primarily thrust and
specific fuel consumption) in terms of design limitations (such as the
maximum allowable turbine temperature), the flight conditions (the am-
bient pressure and temperature and the Mach number), and design choices
(such as the compressor pressure ratio, fan pressure ratio, bypass ratio,
etc.). In this chapter all components are considered to be ideal, with the
result that the various algebraic manipulations will be quite simplified and,
consequently, the methodology of the analysis comparatively transparent.
The analytical results will, of course, be far more optimistic than would be
the case if component losses were included, but many of the general trends
will be valid. The effects of component losses will be thoroughly investi-
gated in Chap. 7.

Gas turbine engine performance measures, selection considerations, and
components are briefly discussed in Sec. 1.4. In order to further understand
the engine components that are being idealized in the cycle analysis, and to
be able to envision the individual engine parts and their relationships in
engine configurations, it is useful at this point to examine illustrations,
design parameter values, and performance curves of several typical modern
turbofan engines. The design and performance data presented can serve as
reference points for later numerical computations.

The Pratt and Whitney JT8D two-spool low-bypass ratio mixed flow (fan
air and turbine exit gases mix and leave through the common exhaust
nozzle) turbofan engine used in medium-range commercial aircraft is shown
schematically in Fig. 5.1. The nominal gas property values listed in the
figure are for an early member of the JT8D family at sea-level static takeoff
thrust where the design values are 1.1 bypass ratio, 15.9 compressor (cycle)
pressure ratio, and 1.9 fan pressure ratio. Estimated performance data for
the JT8D-17 engine model are presented in Figs. 5.2 and 5.3.

The Pratt and Whitney JTID two-spool high-bypass ratio separate flow
turbofan engine shown in Fig. 5.4 is designed for long-range aircraft use.
An early member of the JTID family has a 5.1 bypass ratio, 21.5 compres-
sor pressure ratio, and 1.5 fan pressure ratio at sea-level static takeoff
thrust. Figures 5.5 and 5.6 contain estimated performance data for the
JT9D-70/-70A engine models.

121



122 GAS TURBINE AND ROCKET PROPULSION

FAN COMPRESSORS BURNER TURBINES NOZZLE
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Fig. 5.1 JT8D turbofan schematic with pressures and temperatures at takeoff
thrust (courtesy of Pratt and Whitney).
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Fig. 5.2 JT8D-17 turbofan takeoff thrust (courtesy of Pratt and Whitney).
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Fig. 5.3 JT8D-17 turbofan cruise specific fuel consumption (courtesy of
Pratt and Whitney).
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Figures 1.3 and 1.4 are other examples of Pratt and Whitney turbofan
engines. As already noted in Chap. 1, the values of some of the design
parameters for the separate flow PW2037 (Fig. 1.3) are 5.8 bypass ratio, 32
compressor pressure ratio, and 1.4 fan pressure ratio; for the mixed flow
afterburning, F100 (Fig. 1.4), they are 0.78 bypass ratio, 25 compressor
pressure ratio, and 3.0 fan pressure ratio, all at sea-level takeoff conditions.

The Garrett TFE731 two-spool medium-bypass ratio separate flow
turbofan engine of Fig. 5.7 serves the business aircraft type market. In
contrast to the preceding engines, this engine has a geared fan, a centrifugal
high-pressure compressor, and a reverse flow combustion chamber. The
TFE731-5 engine model at sea-level static takeoff thrust has a 3.33 bypass
ratio, 14.4 compressor pressure ratio, and 1.55 fan pressure ratio. Perfor-
mance curves for the TFE731-5 are shown in Figs. 5.8 and 5.9. The thrust
specific fuel consumption of this engine model at sea-level (73.4 F day)
takeoff thrust is 0.484 (Ibm fuel /h)/Ibf thrust and 0.802 (Ibm fuel /h) /1bf
thrust at 0.8 Mach number and 40,000 ft.

Figure 5.10 is a cutaway view of the Garrett ATF3 three-spool medium-
bypass ratio mixed flow turbofan engine for business type aircraft. At
sea-level static takeoff thrust the ATF3-6A engine model has a 2.81 bypass
ratio and 21.35 compressor pressure ratio. The estimated performance of
this engine model is given in Figs. 5.11 and 5.12.

Figure 5.13 shows the unique engine spool arrangement of the ATF3.
Note that the high-pressure centrifugal compressor spool is mounted aft of
the two concentric spools containing the fan and the low-pressure compres-
sor. What do you suppose are the advantages that led designers to this
novel engine configuration?

Figure 5.14 is an installed cross-sectional view of the engine showing the
gas flow paths through the engine components. Referring to Fig. 5.14, it is
seen that the engine core airflow passes through the fan, the low-pressure
compressor, and eight carryover ducts leading to the rear of the engine
where a 180-deg turn is made into the high-pressure centrifugal compressor.
From this compressor the air enters the reverse flow combustion chamber.
The gases leaving the combustion chamber proceed toward the front of the
engine and in turn pass through the single-, three-, and two-stage turbines
which drive the high-pressure compressor, the fan, and the low-pressure
compressor, respectively. After leaving the last turbine stage, the gases are
split into eight 180-deg turning vane modules that exhaust the gases into the
fan airflow contained in an annular duct surrounding the engine. The fan
air and the turbine gases mix and exit through a common exhaust nozzle.

An installed cutaway view and a schematic of the high-bypass ratio
separate flow Rolls-Royce RB.211-524 three-spool turbofan engine are
shown in Figs. 5.15 and 5.16.

Here it is worthy to note that the performance curves that are obtained
by the ideal engine on-design cycle analysis of this chapter differ from the
actual engine off-design performance curves presented in Figs. 5.2-5.3,
5.5-5.6, 5.8-5.9, and 5.11-5.12, as indicated by the descriptive words ideal
vs actual, and on-design vs off-design. Each point of an on-design cycle
analysis performance curve represents the performance of a different engine
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Fig. 5.15 RB.211-524 turbofan installed cutaway (courtesy of Rolls-Royce).
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Fig. 5.16 RB.211-524 turbofan schematic (courtesy of Rolls-Royce).
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from a family of engines, each of which is operating at its own design point.
The performance curves in the figures referenced above, on the other hand,
are for a single engine operating at off-design conditions and are the subject
of Chap. 8. This chapter’s engine performance is also given only in terms of
specific thrust and specific fuel consumption since engine size is not
specified in the analysis. Thrust and fuel mass flow rate as given in Figs. 5.8
and 5.9, for example, can be determined when engine size expressed in
terms of engine air mass flow rate is known.

5.2 Notation

A systematic notation will facilitate simple manipulation of the equations
to follow. Throughout this chapter the engine station numbers indicated in
Fig. 5.17 will be used. The locations indicated in Fig. 5.17 are:

Far upstream

Inlet entry
Compressor face
Compressor exit

Fan exit

Turbine entry

Turbine exit
Afterburner entry
Duct afterburner entry
Primary nozzle entry
Secondary nozzle entry
Primary nozzle throat
Secondary nozzle throat
Primary nozzle exit
Secondary nozzle exit

< ~ ~

ORI ~-1ITADNUNPBWWLWN=O

Q

Appendix B contains the standardized gas turbine engine station identifica-
tion and nomenclature system recommended by SAE, Inc. Note that the
station numbers defined above conform to Sec. 2.2 of App. B, but the
bypass flow stations are identified here by 3/, 67, 7/, 8/, and 9’ in lieu of the
two-digit numbering system in Sec. 2.3 of App. B.

The ratio of stagnation pressures # and ratio of stagnation temperatures
rare introduced, where

stagnation pressure leaving component
stagnation pressure entering component

__ stagnation temperature leaving component
stagnation temperature entering component
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Fig. 5.17 Station numbering.

Examples
T., T, = COmMPIESSOr stagnation temperature, pressure ratio
T,, T, = burner stagnation temperature, pressure ratio, etc.
Exceptions
7. and 7, are defined by

=1+ 3 M, 7,
y—1 2)7/(7—1) Py,
r ( 2 0 pO ( )

Thus, freestream stagnation temperature 7, = Ty7,; freestream stagnation
pressure p, = p,m,. It should be noted that 7. and =, represent the effects of
the flight Mach number M,.

Further Exceptions

It 1s often appropriate to introduce the effect of a design limitation such
as the maximum allowable turbine inlet stagnation enthalpy, C, T, . The
term 7, 1s thus introduced, defined by

n=GCT1/C T (5.2)

Similarly, 7, and 7,  will be used where the maximum stagnaticn en-

thalpy referred to is the stagnation enthalpy following the primary stream
afterburner or duct afterburner, respectively.

Components
Each component will be identified by a subscript as follows:
AB = afterburner (primary stream)

AB’ = afterburner (secondary stream)
b = burner
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¢ = compressor
¢’ = fan
d = diffuser (or “inlet”)
n = nozzle (primary stream)
n’ = nozzle (secondary stream)
t = turbine

Table 5.1 gives the relationships between all defined # and 7 and the
corresponding temperatures, pressures, and Mach numbers.

5.3 Ideal Component Behaviors

In the analysis to follow in this chapter, ideal performance of all compo-
nents will be assumed. In addition, it is assumed that the gas is calorically

Table 5.1 Temperature and Pressure Relationships for All 7 and «

- -1 v/(y-1)
r,=1+7—51Mg n,=(1+7—2—Mg)
e Gl
* Cpc TO
T = CPAB L
AaB Cp( Y
T = CPAB’ ﬂ
Aap Cpc TO
T,= _T’_z M, = f’_z T, = i 7, = ﬁ
T, < py ABCT, AR by
T, .o P . T, " Py
T = — = — , = —_— = e
c le c pl; AB le AB plz,
e oy L ool _ P
5 <oy " T, "D,
.= L 2 oy _ P
bT, *" b, "~ T, " P
T = ES_ ‘”I = ﬁ
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perfect throughout, with y and C, constant throughout, and that the fuel
mass flow is so small that the fuel-to-air ratio may be ignored in comparison
to unity. Under these circumstances, the following relationships for the
components are valid.

Diffuser

To a very high degree of approximation the flow through the diffuser may
be considered to be adiabatic. In addition, when the flow is ideal it may also
be considered to be isentropic. Thus with Eq. (2.57),

=1 and m,=1 (5.3)

Compressor or Fan

The compressor or fan pressure ratio is usually selected as a design choice
and hence may be considered prescribed. For an ideal process, the process
will be isentropic, so [again utilizing Eq. (2.57)]

— oy 1) — gD
7, =q b/ and 1, =gy~ /Y (5.4)

Combustor or Afterburner

For an ideal burner the stagnation pressure remains constant. It may be
noted, as shown in Sec. 2.18, that this assumption implies burning at very
low Mach number. Then

=1 (5.5)

Turbine

Here, as with the compressor, the ideal process is an isentropic process so
that

=m0/ (5.6)

Nozzle

As with the diffuser, the flow through nozzles is very nearly adiabatic and
1s ideally isentropic. Thus,

7 =1 and 7 =1 (5.7)

5.4 The Ideal Thermodynamic Cycle

An ideal turbojet is considered in this section and its behavior as a heat
engine investigated. (See Fig. 5.18.)

The pressure /specific volume and temperature /entropy diagrams for this
ideal engine are indicated in Figs. 5.19 and 5.20. These diagrams represent
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Fig. 5.18 Ideal turbojet.
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Fig. 5.19 Pressure-specific volume Fig. 520 Temperature-entropy

diagram. diagram.

“Brayton cycle,” which consists of

0 — 3 Isentropic compression

3 -4 Constant-pressure combustion (equivalent to a constant-
pressure heat interaction)

4 - 9 Isentropic expansion

9 - 0 Constant-pressure “heat rejection”

3

When viewed as a thermal engine, the “work” of the engine, in the
thermodynamic sense, appears as the change in kinetic energy between the
incoming and outgoing fluid. It can be noted, for example, that if the engine
were to be utilized for ground power, the kinetic energy of the jet could be
extracted by a further turbine that in turn would supply a mechanical work
interaction. Not all of the work of the turbojet engine appears as useful
work (supplied to the aircraft), however, because the force from the engine
provides work to the aircraft in an amount proportional to the flight speed.

Performance parameters of direct utility to the aircraft designer are the
thrust F and specific fuel consumption S. The specific fuel consumption is
measured as the milligrams of fuel flow per second divided by the thrust in
Newtons [or alternatively S = (lbm fuel/h)/1bf thrust]. Clearly, S is, in
some sense, the inverse of the overall engine efficiency and both the
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thermodynamic efficiency of the engine and the efficiency of transmitting
the work of the engine into work on the aircraft [or equivalently of the
“propulsive efficiency” (Sec. 5.6)] are of importance.

The thermal efficiency 7,, of this ideal engine may be obtained directly by
writing

G0 L [(TyT) -]
M C(T,,—-T,) T, [(T:/Tl,)—l]

14 I3

Note, however,

7; v/(y-1 D, 12 T: y/(y-1)
(To) _E_E_(f)

thus

T:]/To = T:4/T9

and hence
L/T,=T/T,
Thus, with 7, /T, = 77,
N,=1-1/17, (5.8)

Thus, it 1s apparent that the thermal efficiency of the ideal engine
increases as the flight Mach number increases (7, increases) and as the
COMPTIEssor pressure ratio increases (7, INCreases).

5.5 The Etfect of Burning at Finite Mach Number

It 1s of interest to consider the thermodynamic behavior of a turbojet that
has ideal behavior in all components except that the burning within the
combustor occurs at finite Mach number. The cycle is still to be a Brayton
cycle, except now the static pressure is to be kept constant in the burner.
Note that an inevitable loss in stagnation pressure will occur when the Mach
number is finite [Eq. (2.81) and Problem 2.12].

Consider the case where “internally” the flow can be considered revers-
ible. By this it is meant that the additional entropy gains created by burning
at finite Mach number are due only to the decreased static temperature
brought about by the finite Mach number, and are not due to the presence
of viscous stresses. In this case the entropy gain is given in terms of the
thermal addition by ds=d'q/T, and consequently the thermal energy
added or removed during a process can be represented as the area under the
process line on the temperature /entropy plot.
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Three methods of obtaining the thermal efficiency are now given.
(1) Classical method. Here use d'q =d'qg = Tds to write

f3“Tds—f0°Tds f Tds

Ton f:Tds f Tds

The processes from 3-4 and 0-9 are both constant-pressure processes, so
Tds=dh—(1/p)dp=dh=C,dT
Thus

=1 9B h) T (T/T-1)
& C(T,-Ty) T (T,/T,- 1)

but

T3 Ps (y=1)/vy Pa (r—1/y n
72)_(P0) _(Pg) _T9

and it follows that n,=1-T,/T;.

(2) Method uti]iz.ing the “ ﬂow” form of the first law. Here the “heat
added” per mass is given by C,(7;, — T;,). Because the process in the burner
is at constant pressure, the momentum per mass will not change, so that
U, = U;. Then

L-T,=(L+3U)-(L+1U7)=T,- T,
The expression for the heat rejected remains unchanged, so using the
same algebra as above, n,,=1-T;,/T;.
(3) Method using industrial bookkeeping. The stagnation pressure de-
crease in a burner is considered to be a loss mechanism, so it is customary to
represent the performance of a burner in terms of the stagnation pressure

ratio across it; m, = p, /p, . The thermal efficiency would thus be written in
the form

a1 BT b B/h-
th T,-T, T,/T, -1

13
But

(y—1)/ (y—1)/
ﬁ?—:(&) Y y=(ﬂ_p_l_3) ! 7=L7rb_[(7_1)/7]
T, Po Ps Py, T,
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So
T
5 = Lo lr=0/v] = g g Y= 1/Y]
T b bTb
0 3
Hence
T. 1. r-b/yl_q
n,=1- 0% 000 -
T, T,— 1
3

This form gives the impression that the thermal efficiency of a cycle is
dependent upon the ambient static temperature and the stagnation tempera-
tures in the combustor. This interpretation is unfortunate, because it is, in
fact, the static temperatures that determine the efficiency of the cycle. For
this particular example it is relatively easy to show (see Problem 2.12) that

Tymy U=+ [(y - 1) /2] M (7, - 1)

which gives n,, =1 ~ T, /T, in agreement with methods 1 and 2.

It is important to realize that the decrease in stagnation pressure brought
about by burning at finite Mach number is absolutely unavoidable and is
simply a reflection of the fact that thermal interaction at the reduced static
temperature identified with the flow at finite Mach number causes a larger
entropy increase. Hence, it is the static temperatures that determine the
cycle thermal efficiency.

5.6 The Propulsive Efficiency, n,

The propulsive efficiency is a measure of how well the power produced by
the engine is utilized in propelling the vehicle. It is defined by

_ power delivered to vehicle
T~ et (mechanical) power in the exhaust

_ _thrust X vehicle flight speed
power produced by the engine

An ideal engine has the nozzle exit pressure equal to the ambient
pressure, so the thrust is simply equal to the rate of momentum production
of the engine. Thus,

F = rigug — gty = (g — ttg) (5.9)
The power produced by the engine is 3r(u3 —uj), so for this ideal
engine

n, = 2uo/(ug + 1) (5.10)
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In order to increase the propulsive efficiency the exit velocity u, should
be reduced. This, of course, will come with a penalty in thrust if the mass
flow is not increased. An obvious way to obtain good propulsive efficiency is
to utilize a large-diameter propeller in order to move a very large mass.
Turboprop engines are, in fact, highly efficient engines, but have encoun-
tered two major problems in the past. The large gearbox necessary to reduce
the propeller speed has often caused weight and reliability problems, and
the onset of high Mach numbers at the propeller tips (as the aircraft speed
increases) has led to unacceptably low propeller efficiencies.

Lately, a resurgence of interest has occurred in “ very-high-bypass-ratio
turbofans,” however. Thus, engines with up to 10 relatively small-radius
propeller blades are envisioned. These blades will be swept backward (in the
relative flow) in order to forestall the onset of high Mach number effects;
because of the relatively small radius of the blades, the amount of gear
reduction required will be much reduced as compared to conventional
turboprops.

By ducting the ““ propeller” or fan, the tip Mach number problems can be
avoided by diffusing the flow prior to the fan. An additional benefit occurs
because the blades may be highly loaded, aerodynamically, right out to the
blade tips because the cowl much reduces tip flow. Such ducted fan engines,
termed turbofan engines, have been very successful when utilized for
high-subsonic or low-supersonic flight regimes. Present turbofans used for
subsonic flight have *“bypass ratios” (the ratio of air passing through the
outer duct to that passing through the core engine) of about 5 or 6, whereas
it is imagined that the very-high-bypass engines discussed in the preceding
paragraph will have (equivalent) bypass ratios of 25-50. (A turboprop has a
bypass ratio of about 100.) A cowl for an engine with such a huge bypass
ratio would not only be large and heavy, but would also present a large
wetted area and projected area, with a consequent large drag penalty.

The various *“tradeoffs” for such engine choices are best determined by a
systematic use of cycle analysis.

5.7 Systems of Units

In the following sections, the various dimensionless quantities will be
calculated in the SI system of units. However, because of the greater
familiarity to some readers of the British system of units (or of the British
gravitational system of units), the various formulas will also be presented in
these alternate systems. Table 5.2 gives a brief list of pertinent terms for use
in propulsion, together with appropriate conversion factors.

5.8 The Ideal Turbojet

Methodology of Cycle Analysis

The pertinent conservation equations will now be manipulated to obtain
the performance variables specific thrust and specific fuel consumption in
terms of assumed design variables, ambient conditions, and design limita-
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Table 5.2 Units and Conversion Factors, British System to SI

Conversion Factor

Units Units (multiply British system

Item British System SI to get SI value)
Length ft m 0.30480
Mass slug, lbm kg 14.594, 0.45359
Rotational speed rpm rad/s 27 /60 =0.10472
Power hp w 745.70
Fuel heating value 4 Btu/lbm J/kg 2326.0
Specific heat C, Btu/(Ilbm - °R) J/(kg - K) 4186.8
Gas constant R ft?/(s*- °R) m’/(s%-K) 0.16723

Specific fuel Ibm fuel/h  Ibm/h mgfuel/s  mg

consumption § Tof thrast — ~ Tbf N thrust (N 9 28.325
Power specific
fuel consumption S, W %/S= (“l/(g ) 0.16897
°S
F Ibf F N's m
Specific th —= - = =— .
pecific thrust gom _ (Ibmy/s) " 2 s 9.8067

British system: gravitational constant g, = 32.174 lbm/1bf - ft /s>,
SI: acceleration of gravity 9.8067 m/s>.

tions. The methodology for all cycles to be considered will be the same.
Thus, it will be found (even in the cases where losses are included) that to
obtain the specific thrust both the ratio of the temperature at the nozzle exit
to the ambient temperature and the ratio of the Mach number at the nozzle
exit to the flight Mach number are required. By then writing the ratio of
stagnation to static temperature, T, /Ty, at the exit as a function of exit
Mach number, and then further wntmg the stagnation temperature at
the exit in terms of the products of all the component temperature ratios, an
expression for the ratio 7,/7T; will be obtained in terms of M, and
stagnation temperature ratios. A second equation for M, in terms of all
the component pressure ratios (and imposed exit pressure ratio po/pg)
is similarly obtained by writing the ratio of stagnation to static pres-
sure, p, /Py, at the exit as a function of exit Mach number. The component
relatxonshlps of Sec. 5.3 (or their nonideal equivalents) then allow descrip-
tion of the engine specific thrust in terms of the component performances
and design choices.

Not all component performances are independent, however, because, for
example, the turbine and compressor work interaction rates must be equated.
Such a power balance will lead to evaluation of the turbine temperature and
pressure ratios in terms of the chosen compressor pressure ratio and other
parameters.

Finally, the specific fuel consumption is evaluated by considering an
enthalpy balance across the combustor. Several example cycles are evaluated
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in the following sections as well as in Chap. 7, and it will be seen that the
methodology described in this section is systematically applied throughout.

Cycle Analysis of the Ideal Turbojet

Ideal behavior is assumed so that the component relationships are as in
Sec. 5.3. Additionally, the gas is assumed to be calorically perfect
throughout, the pressure at exit is assumed equal to the ambient pressure,
and the fuel-to-air ratio, rir;/m, = f, is assumed to be much less than unity.
With these assumptions (referencing Fig. 5.18)

F=""(“9““0)

or
L _F_ (4 _\_ Y _
Specific thrust = — = uo( as ) = aOMO( ™ ) (5.11)
Now write
E EIR FT R
Uy YoR Ty I\ M, '

(Note vy =7v,=7v, Rg=R,;=R.) Now note

_ -1 L, T,
T, T9(1+ 3 M) T0T07;,,T:
5
or
y—-1,.,
T,=Tynmt,=Tyng =T 1 + —2—-M9 (5.13)

Here 7, =1, which follows from Eq. (5.7). Also note
, T,T, T, T,

PO Y el P
"L T,T, T, "4

Iy
Hence, with Eq. (5.3)
Ty = 7T (514)

Thus, note that the minimum conceivable 7,, which corresponds to no
burning in the combustor, is

(T)\)nlin=TrTc (515)
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For the pressures, write

vy—-1 y/(r-1)
P, =P9(1 + TM92)

Py Pi, Pty Py, Pig P,
=py— — — — — — = p WA, T LA, 5.16
D0 Pry Py iy Py By, OO (3.16)

or noting py = p, and from Eqgs. (5.1) and (5.3-5.7), m,=m,=m,=1 and
a0y Y=g gD/ Y= g(~D/Y =1 Eq. (5.16) leads to

1+[(y - 1)/2] M = 777, (5.17)
Combination of Egs. (5.1), (5.13), and (5.17) then gives
Ty/ Ty =1\/77, (5.18)

and

M, = (rr7,—1) (5.19)

M, Z_Tr’l'c'l',“l 2 1
Con-1 Y12

The specific thrust then follows by combining Egs. (5.11), (5.12), (5.18),
and (5.19) to give

Yy—-1r71,

=a0{[_2_ ™ (T,T;,—l)r—Mo} (5.20)

The power balance. A power balance between the compressor and
turbine is used to relate the turbine temperature ratio 7, to other variables.
It follows from the first law applied to a control volume (Sec. 2.15) that for
steady-state conditions the mechanical work interaction per mass is equal to
the negative of the change in stagnation enthalpies across the control
volume. The turbine work output must be equal to the compressor work
input, so applying the first law results in

(m+1i,)C, (T, ~ T,) = mC, (T, — T,,)

or
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where = /m or
1+f)n(d=1)=77,(7.-1)
But here f< 1 and 7,=1 (also G, =G, =C,), so that
=1-(r/mn)(1.—1) (5.21)

Equation (5.21) can now be substituted into Eq. (5.20) to give, after some
manipulation

Tf T(' rc

F 27 (7T T :
- =a0{[y—_—1-(—)‘ —1)(7(.—1)+—)‘M02J —MO} (5.22)

Note that when a ramjet is considered (no compressor, so 7.= 1), the
equation for the specific thrust reduces to the very simple form

F ™ . .
o —aOMO[\/ m 1] (ideal ramjet) (5.23)

Note also, from Eq. (5.22), that the thrust goes to zero (of course) for no
combustion in the burner (7, = 7, /7,7, = 1).

Specific fuel consumption. From the enthalpy balance across the
combustor

(m+m,)C,T, — mC,T, =mh

where 4 is the “ heating value of the fuel.”
Thus, again taking f <1, there is obtained

f= (CpTO/h)(T)\ - TrT(') (524)
The specific fuel consumption may hence be written

_ mgfuel/s My o f 6
5= "N thrust F (10°) F/r‘n(lo ) (5.25)

Summary of the Equations— Ideal Turbojet (or Ramjet)

The equations are summarized here in a form suitable for calculation. The
pertinent equations and terms for the British system of units will be
included in brackets.

Inputs: T, (K)[°R].y,#(J /kg)[Btu/Ibm],
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C,(J/kg- K){Btu/Ibm - °R], 7,, 7., M,

Outputs: F(N:s F Ibt
puts: m\ kg || g,m’ Ibm/s

mg \[ Ibm fuel/h]
S( )[ 1bf thrust

f kg fuel/s \[ 1bm fuel /s
kg air/s /| 1bm air/s

Equations:

_ Y_l Y_l o
= Tcp m?/s?- K [R = Tcp(2.505)(104) ft?/s?-°R

(5.26)
a,= JYRT, m/s [ft/s] (5.27)
=1+ Y—;—lMOZ (5.28)
7, =aly /Y (5.29)
F 21, (1,
;=ao{[ _1(— )(T—l)+ ] M}
(5.30)
F a 27, (7 T :
2o = 32174 {[y— 1 (ﬁ_ 1)("— 1)+T:(M°2] _MO}}
f=(C,Ty/h) (1~ 17,) (5.31)

S= —(106) [s= %J (5.32)
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Fig. 5.21 Effect of compressor pressure ratio on performance, ideal turbojet.

Example Results— Ideal Turbojet and Ramjet

As an example of the use of the performance equations, consider the
problem of selecting an appropriate compressor pressure ratio for a given
flight condition. Consider a turbojet to fly at M,=2 with the conditions
y=14, T,=2222 K [400°R], 7 =4.4194(10") J/kg [19,000 Btu/lbm],
C,=1004.9 J/kg - K [0.24 Btu/lbm - °R], 7, = 7. Figure 5.21 indicates the
results.

It can be seen from Fig. 5.21 that even with the assumption of ideal
engine behavior some important design trends become evident. Thus, this
ideal analysis indicates that the specific fuel consumption tends to decrease
as the compressor pressure ratio increases. (This trend is true also when the
losses are included over a large pressure ratio range, but not out to extreme
pressure ratios.) The specific thrust, however, maximizes at quite low values
of the compressor pressure ratio. (Note that as the compressor pressure
ratio increases, the stagnation temperature at entry to the burner increases,
with the consequence that the allowable fuel addition is reduced because of
the restricted 7,.) Hence, it is evident that (ignoring afterburning effects for
the moment) if a designer wanted a high-thrust lightweight engine for use in
an interceptor, he would favor a low-compression-ratio engine, whereas if
the engine was to be used for transport purposes where fuel consumption is
of paramount importance, a heavier, higher-compression-ratio but more
efficient engine would be appropriate.

Figures 5.22 and 5.23 show the expected performance of engines over a
range of flight Mach numbers.
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The conditions assumed for these examples are identical to those in the
preceding example except that 7, was taken to be equal to eight for the
ramjet. It is important to note that these examples illustrate the behavior of
what would be a series of éngines designed to fly at the illustrated Mach
number at the indicated pressure ratio. In other words, the graphs represent
the behavior of a family of engines, all with the S5ame compressor pressure
ratio but flying at various design Mach numbers. If an engine designed for a
certain Mach number and pressure ratio is flown off-design (at a different
Mach number), its compressor pressure ratio will change. These effects are
analyzed in Sec. 8.2.

It is apparent in Fig. 5.22 that, in the case of the turbojets, as the flight
Mach number increases the resultant increase in compressor outlet temper-
ature restricts the allowable fuel addition, causing a reduction in specific
thrust. [Note that in an actual engine the airflow would increase as M
increased, causing the thrust (but not specific thrust) to initially increase.]
In the case of the ramjet, the thermal efficiency of the engine is so low at
low Mach numbers that the specific thrust at first increases with increasing
Mach numbers before eventually decreasing due to the limitation on fuel
addition.

Figure 5.23 indicates that the turbojet specific fuel consumption at first
increases with increase in M. This is because the energy required for a
given velocity change from inlet to exit (and hence thrust production)
increases as the flight speed increases. At very low thrusts the specific fuel
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Fig. 5.22 Specific thrust vs Mach number, ideal turbojets and ramjet.
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Fig. 523 Specific fuel consumption vs Mach number, ideal turbojets and ramjet.

consumption decreases (for this ideal engine) because the propulsive and
thermal efficiencies increase. For the ramjet, the initial sharp drop in §
reflects the increasing thermal efficiency. Later, the effect of the extra
required energy for a given velocity change causes S to increase.

As a final example calculation, again consider a family of turbojets with
M, =2 and with .= 20. Consider the effect of varying the turbine inlet
temperature or, equivalently, of varying ,. Figure 5.24 indicates the results.

Figure 5.24 indicates how the specific fuel consumption decreases as the
turbine inlet temperature decreases because of the increasing propulsive
efficiency. However, if component losses were present, a finite fuel flow
would be required as the thrust approached zero, with the result that the
specific fuel consumption would increase dramatically.

5.9 Interpretation of the Behavior of the Specific Fuel Consumption

In the preceding sections the equations for § and F/m were deliberately
formulated in a manner that led to easy algebraic manipulation and
calculation. For interpretive purposes, write S in the alternative form

6 (hring)(uo/h) o
7 (10%) = 52— (10°)
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Fig. 5.24 Specific fuel consumption and specific thrust vs r,, ideal turbojet.

or
uy 10°

7[ uoF “(m/z)(u%—u%)]

(5.33)

S =

(rin/2)(u5 — u3) hin

From Secs. 5.4 and 5.6 it can be seen that the expressions in brackets are
just the propulsive and thermal efficiencies. That is,

uyF

" (D) (- ud)
and
= 2),("':5_"‘2’) (5.34)
Hence,
S agM, 10° (5.35)
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Equation (5.8) related the thermal efficiency to the thermodynamic vari-
ables by

1 1
Np=1- =1-

TT. (Wr,”c)(vﬂ)/v

An expression for the propulsive efficiency is obtained by combining Egs.
(5.10), (5.11), and (5.30)

M,
= 0 (5.36)

14 1
21 (1 T o
[—Y—I(TTC 1)(Tc—l)+1_ MO +MO

rc

Equation (5.35) indicates that the behavior of the specific fuel consump-
tion can be interpreted as a combination of three influences. Thus, as the
flight Mach number increases, the required increase in energy requirement
appears in the factor M;. This effect is somewhat compensated for by the
increases in 7, and 7w, that occur for increases in M, for the ideal
engine case. Figure 5.25 illustrates the variation in behavior of the thermal
and propulsive efficiencies for the ideal turbojets and ramjets previously
considered.
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Fig. 5.25 Thermal and propulsive efficiencies.
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It can be seen that the trends support the comments made in the previous
section in that the low thermal efficiency dominates the ramjet performance
at low M, whereas the rapidly increasing propulsive efficiency leads to the
reduced specific fuel consumption at high Mach numbers for the turbojet.

As a final observation upon the behavior of the specific fuel consump-
tion, it can be noted that for given M,(7,) and compressor pressure ratio m,
(hence 7.), the thermal efficiency of the ideal engine is independent of
turbine inlet temperature. Thus, the observed decrease in S with 7, seen in
Fig. 5.24 results solely from the increase in propulsive efficiency that occurs
with decrease in 7y.

5.10 The Maximum Thrust Turbojet

In Fig. 5.21 it is evident that a maximum specific thrust occurs for a
specific value of compressor pressure ratio. This specific value of compres-
sor pressure ratio can be directly obtained from Eq. (5.22) by equating the
derivative of the specific thrust with 7. to zero. Noting that at fixed flight
conditions and turbine inlet temperature, a,, 7,, M,, and 7, are all
constant, it is evident that F/ri will be a maximum when

i[ 2% (T* - )(70—1)+ i MOZ]=O

7.

or. |vy—1 T,
or when
27 T T
-1+ A | - 2AM2=0
y—1 ( 'r,'rcz ) 'r,'rcz 0
Hence
T, = R/‘r, (5.37)

when F/m is a maximum. The expression for the specific thrust in this
special case is hence

F 2 :
(E)muﬂ"{[(y—l)(\[g'1)2+Moz] -Mo} (5.38)
Also, it follows from Eqgs. (5.31) and (5.37) that
f=(GTo/m)n (frn =1) (5.39)

Temperature Relationships at Maximum Thrust

The relationship of Eq. (5.37) leads to the result that the stagnation
temperature following the compressor is equal to the static temperature at
nozzle exit. This can be shown as follows:

-1 (y—-1)
T, /Ty=71=(7m)" """ =(p,/po)" "
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Fig. 526 Temperature entropy diagram for maximum thrust turbojet.

But p,=p, and P, =Py, SO that with

(Pr,/Po)(y_l)/yz (p’/pg)(y—l)/v - T,‘/Tg

Write
TIJ/TO =TT = 7;4/T9 = ‘/a
or
2 2
(/) =T,/T,=(T,/T)
Thus,

T,=|T.T,=T, QE.D. (5.40)

The temperature entropy diagram is then as indicated in Fig. 5.26. Note
that the T—s diagram is very “full” for the condition 7, = T;.

Example Results— Maximum Thrust Turbojet

The performance of a maximum thrust turbojet may be plotted in a
similar manner to the conventional turbojet and ramjet. Figure 5.27 shows
the specific thrust vs flight Mach number for a family of maximum thrust
turbojets. Shown for comparison is the equivalent performance of a family
of turbojets with a compressor pressure ratio of 20. Conditions are as in
Figs. 5.21-5.23, namely y=14, T,=2222 K, h=44194(10") J/kg,
C,=1004.9 J/kg- K, and 7, =7.

The related compressor pressure ratio giving maximum thrust is shown in
Fig. 5.28. Note that each maximum thrust turbojet graph must terminate
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Fig. 5.28 Compressor pressure ratio for maximum thrust.

where 7,=1. This occurs when 7,=1, giving from Eq. (5.37) 1,= \/a .
Hence

(Mg} = {[2/(r = D] (frr — 1)}’ (5.41)

5.11 The Ideal Turbojet with Afterburning

A well-established and relatively simple method of increasing the thrust
level of a turbojet is to “afterburn” in the duct following the turbine outlet.
The additional enthalpy coupled with the nozzle pressure ratio provides a
substantial thrust augmentation, although at the expense of an increase in
specific fuel consumption. The mechanical arrangement and related station
numbering are indicated in Fig. 5.29.
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When the entire cycle is considered ideal, all the component relationships
of Sec. 5.3 remain true, and in addition note 7,5 = 1. Usually the maximum
temperature attainable in the afterburner is substantially higher than that
attainable in the primary combustor because of the restriction placed upon
the attainable temperature in the primary combustor by the presence of the
turbine. Figures 5.30° and 5.31 indicate the thermodynamic cycles ap-
propriate for the ideal afterburning turbojet.

Cycle Analysis of the Ideal Afterburning Turbojet

Again assume, as in Sec. 5.8, that all component efficiencies are perfect,
that the gas is calorically perfect, that the exit static pressure is equal to the
ambient pressure, and that the fuel-to-air ratio in both primary combustor
and afterburner is much less than unity, with the result

Specific thrust = — = aoMo(ﬁ - 1) (5.42)

where as before [see Eq: (5.12)],

(ug/ug)’ = (To/To)( Mo/ M,)? (5.43)
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Now write

T, =1+ 15 M2 ) = Tyruas (5.44)

y—1 5 v/(y=1)
Py =P9(1 + TM9 = DT, T T, (5.45)

Hence, with Egs. (5.1), (5.4), (5.6), and (5.45)

1+ 1;—1M92 =11, (5.46)

Equations (5.42-5.46) may now be combined to give

y— 1 77,

§=a0{[i M('r;rc'r,—l)] —MO} (5.47)
The similarity between this expression and that obtained for the turbojet
without afterburning [Eq. (5.20)] is evident when it is noted that the
minimum value for 7, .5 that occurs for no afterburning is (7, sg) min = %
With this substitution Eq. (5.47) reduces immediately to Eq. (5.20).
The power balance between the compressor and turbine remains un-
changed, so that Eq. (5.21) remains valid, namely,

n=1=(7/n)(r.~1)

The expression for the fuel-to-air ratio in the primary burner also remains
as before [Eq. (5.24)]. The fuel-to-air ratio for the afterburner is obtained
from an enthalpy balance across the burner to give

mfABh = (’h + mf+ mfAB)CPT;B _(’h + mf)CPT‘IS
or

_ fanB CP TO

fap = " = T(TMB —T\7,) (5.48)

Combining Egs. (5.21), (5.24), and (5.48) then gives

i+ iy G,
fou= = == (nap—17) (5.49)

m
Summary of the Equations— Ideal Turbojet with Afterburning
Inputs: T,(K) [°R], v, & (J/kg) [Btu/Ibm],

G (J/kg - K)[Btu/Ibm - °R], 7y, Taag> 7., M,
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Outouts: F(N:-s\[ F Ibf
utputs: m\ kg )| gom’ Tom/s

mg \[ lbm fuel/h]
S( )[ 1bf thrust

f kg fuel /s \ | 1bm fuel /s
ot kgair/s || lbm air/s

Equations:

Y_l -1 o
R= Tcp m?/s?- K [R = YTcp(z.sos)(lo“) ft2/s?- °R

(5.50)
ay = YRT, m/s [ft/s] (5.51)
Tr=l+——Y;1M02 (5.52)
T, =7rc(7‘1)/y (5‘53)
=1—(7/n)(7.—1) (5.54)
F_ 2 TAAB
(5.55)
F __% TAAB B ;_
[gor'n_32.174{[ -1 777, (n7a, 1)] Mo}]
Note: The minimum allowable value for 7, g iS T\ o = 727,
for=(C,T/h)(Taap — 7,) (5.56)
3600
S= f:m (10 ) [S=_flﬁt] (5.57)
F/( gom)

Example Results— Ideal Turbojet with Afterburning

Consider a turbojet to fly at a flight Mach number of 2, with the
conditions y=14, ;=233 K, h=4.54 (10") J kg™}, C,= 1005 J kg!
K™Y 7,=7, and 7,5 = 8. Figure 5.32 compares the perf rmance of the
turbojet over a range of compressor pressure ratios operating with and
without an afterburner.
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Fig. 532 Effect of compressor pressure ratio on performance, ideal turbojet with
afterburner.

As predicted, the addition of afterburning leads to an increase in the
specific thrust at the expense of an increase in the specific fuel consumption.
It is of interest to note the location of the maximum in the specific thrust
when afterburning is present. By formally taking the derivative of the
specific thrust with =, [Eq. (5.55)}, it is evident that the maximum occurs
when the product 7,77, reaches a maximum. Such a maximum occurs when
AN, = Pr,/Po = Py, /p9 reaches a maximum and it is evident (and obvious)
that the maximum thrust occurs when the nozzle pressure ratio reaches a
maximum. Note also that because f,, is a function of 7,5 and 7, (and
C,Ty/h) only, the maximum in thrust corresponds to the minimum in
specxﬁc fuel consumption!

The analytical expression for the compressor pressure ratio giving maxi-
mum thrust is obtained by noting with Eq. (5.54),

drz, ] T,
31.c _3_1.6 c—,r_}‘(‘rc _Tc)]
Hence at the maximum
1_(Tr/7}\)(27c_1)=0 or (Tc)maxlhrust=(1.}\+1'r)/27r

and

Wc max thrust = [(1.}\ + 1',)/21',] Vo (558)
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In the example given above,

m =[(7+1.8)/3.6]° =22.84

¢ max thrust

It would appear then that such a value for the compressor pressure ratio
would be near a suitable compromise for an aircraft that was to cruise
efficiently with no afterburning, but was to engage in combat with high
thrust and relatively efficient afterburning fuel consumption.

5.12 The Turbofan with Separate Exhaust Streams

Cycle Analysis of the Ideal Turbofan with Separate Exhaust Streams

The methodology of cycle analysis, as described in Sec. 5.8, will again be
applied. When applying the cycle analysis, the thrust of both the primary
(core engine) and secondary (fan) streams must be accounted for and the
turbine power output must now be equated to the power input to both the
fan and compressor. It is again assumed that all component efficiencies are
perfect, that the gas is calorically perfect, that the fuel-to-air ratio in the
combustor is much less than unity, and that the exit static pressures of both
the primary and secondary streams are equal to the ambient pressure. The
nomenclature and notation are as in Fig. 5.17 and Sec. 5.2.

The total thrust may be written as the sum of the thrust contributions of
the two streams to give

F=rm(ug— “0)+mF(“9'— uy)
{
or

F _agM,

m.+mp l+a

(ﬁ—l)+a(%—-l)] (5.59)

Uy 0

where ri1. is the mass flow rate of the primary stream, 1 the mass flow rate
of the secondary stream, and a = rii /. the bypass ratio.

Secondary stream. Again,

('49'/“0)2 = (Tc)'/To)(Mt)'/Mo)2 (5.60)
Thus,
y—1,.,\_
I, =T,(1+ TMgl = Ty, (5.61)
y—1 y/(y—1)
P =P9'(1 + TM92') =Po7, T (5.62)
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With Egs. (5.1), (5.4), and (5.62),
1+[(y=-1)/2] Mg =17, (5.63)

So that
Iy =T, (5.64)

This result could have been obtained more directly by noting py. = p, and
sg- =5y, hence Ty, = T;,. Equations (5.60), (5.63), and (5.64) then give

Mo(ﬂ_1)=[YE1(7,7(.,—1)};—M0 (5.65)

U

Primary stream. Here, the relationships for temperatures and pressures
are exactly as previously obtained for the turbojet (Sec. 5.8), so

Mo(f‘—"—l)= 2 TA(T,T(_T,—l)}Z—MO (5.66)

ugy y-1r11

Power balance. For this ideal cycle, the power output from the turbine
will just equal the power input to the fan and compressor. Hence,

mC (T, —T,,)=mC,(T,~ T,) +myC,(T, - T,)
or
n(l=-7)=7(r.—-1)+ar(r.—1)
Thus
r=1—(r/m)(1.- 1) +a(r. —1)] (5.67)

Specific fuel consumption. An enthalpy balance across the combustor
gives

mfh = m(Cp(Y;4 - Th)
or

f=ry/m = (C,To/h)(m\—17,) (5.68)

The specific fuel consumption then follows from

. . . )
— (106 = L
s==L(109) =~

s (m(+ mF)/m( F/(mc+ mF) (106)
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or

- f(10°)
(1 + a)[F/(rn, + rng) (5-69)

Combination of Egs. (5.59) and (5.65-5.69) then gives the following
summary of equations.

Summary of the Equations— Ideal Turbofan, Bypass Ratio Prescribed

Inputs: T,(K) [°R], v, A(J/kg) [Btu/Ibm]
Btu
C, (J/kg-K) [m y Tas Ty Ty My, @
Outouts. F (N-s) F Ibf
puts: i +rmp\ kg || go(m, +rny) Ibm/s
Ibm fuel/h
1bf thrust
f kg fuel /s
kg primary air/s
Equations:
y—-1 2 /:2 ft?
R=1_=C, nt/s" K |R= ——C * (2.505)(10° )Sz | 679
a,= (YRTy, m/s [ft/s] (5.711)
=14 1M (5.72)
T(_='rr(f7_”/7 (5.73)
1. = .,,(f,v-l)/v (5.74)
—(r/m)[(r.- D +a(r. -1} (5.75)
F _ a N N
m o+mp l+a {[y—l T, (77, 1)]
_Mo+a( Yil(r,r(,—l)]z—Mo)} (5.76)
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(To obtain British units of 1bf/Ibm/s, replace a, in meters/second with
a,/32.174 where a, should be given in feet/second.)

[={C,T,/h)(ry = 17.) (5.77)

S— /(10°%) 6o 3600/
(1+ a)[F/(rh + )] (1+a)[F/gy(rm, +ihnp)]

Bypass Ratio for Minimum Specific Fuel Consumption

It would be desirable to select the bypass ratio a to give the minimum
specific fuel consumption possible for the given prescribed operating condi-
tions (T, M,)), design limits (), and design choices (7, 7).

It is evident from Eqs. (5.76-5.78) that the minimum value for S will
occur at the maximum value of the expression

(5.78)

(1+a«) F oy
a, m.+mgp Uy

Taking the derivative of this expression with a, it follows with Egs. (5.65)
and (5.66) that

3[M0(“9/“0)]2 _ Ug Uy
[ PO _2M0u_0(M074; _MO) (5.79)
But with Egs. (5.66) and (5.67)
_ 3[M0(“9/“0)]2 __2 (r.—1)
da y—174¢
2 2
- _l(Tth"—l)_Y_l(Tr_l)
- ug \* 2
—(MO—) - M; (5.80)
0

Thus, combining Egs. (5.79) and (5.80),

LI Y VLTS
My 2(M0 . +Mo) (5.81)
and
2(M0'—‘3 —M0)=(M05°—' —MO) (5.82)
Uy uy

This latter form reveals that, when the bypass ratio is such as to give
minimum specific fuel consumption, the thrust per mass per second of the
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core stream is just one-half that of the fan stream. This somewhat surprising
result follows primarily because, when the efficiency of energy transmission
between the two streams is very high, the propulsive efficiency is improved
by expending most of the energy in providing momentum to the denser
(cooler) fan stream. It should be noted that when component losses are
present, the optimal thrust per mass per second of the core stream is a much
higher fraction of the fan stream thrust.

The turbine temperature ratio corresponding to this optimal case 7*
follows from Egs. (5.65), (5.66), and (5.81) to give

1 1 1 12
m+4_n[(”"’" 1)} +(7,- 1)}] (5.83)

=
The related value of the bypass ratio a* follows from Eq. (5.75) to give

a* =

Ter

The performance variables for this optimum case may now be obtained
with the summary equations (5.70-5.78), except that Eq. (5.83) would
replace Eq. (5.75) and a* would be calculated from Eq. (5.84) rather than
input.

Example Results— Ideal Turbofan with Separate Exhaust Streams

An example of the use of the performance equations is the effect upon
the performance parameters and the optimal bypass ratio of variations in
the bypass pressure ratio. (See Figs. 5.33 and 5.34.)

F/th s

a}O 140 [ 21
/

20 \ 100 }/ 20
10 60 19
- /[

N
o 20 I8
I 15 20 25 | 15 20 26
L %
Fig. 533 Optimal bypass ratio Fig. 534 Specific thrust and
vs bypass pressure ratio. specific fuel consumption vs

bypass pressure ratio.
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Conditions assumed for these calculations were y =14, T,=233.3 K,
h =4.4194(10") J/kg, C,=10049 J/kg-K. 7. =20, 7,=65 M,=2.
It is apparent that a tradeoff between high thrust per frontal area and low
specific fuel consumption occurs. This clearly reflects the increase of propul-
sive efficiency with a decrease in fan exit velocity (low ). The enormous
optimal bypass ratios occurring for the very low bypass pressure ratios do
not in fact occur when losses are considered (see Chap. 7). The eflect of
losses is to much reduce the optimal fraction of energy to be supplied to the
bypass stream.

The variations of a*, S*, and F* /(w1 + m) with flight Mach number
are shown in Figs. 5.35 and 5.36. The conditions assumed are as above with
the additional value =, = 2.0.

The strong effect of flight at increasing Mach number is evident in these
curves. Thus, because of the increase in the entering enthalpy of the fan and
core streams, the work interaction per mass required to supply the needed
fan and compressor pressure ratios increases greatly. As a result, the
turbine, which has a fixed entry enthalpy, cannot supply the necessary
energy to drive a large bypass ratio fan, and the bypass ratio must be
decreased.

Figures 5.37 and 5.38 indicate that increasing 7, has a similar effect upon
the optimal bypass ratio and specific thrust as does reducing the flight
Mach number. (Conditions assumed are as above with M, = 2.) This is true,
of course, because an increase in 7, gives an increase in turbine power
capability. The slight increase in specific fuel consumption with 7, would
appear to negate the thrust advantages of going to higher turbine tempera-
tures. However, it should be noted that not only would the engine be
smaller (particularly the core engine), but the specific fuel consumption will
actually tend to decrease with increasing 7, when the component losses are
included.
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Fig. 535 Optimal bypass Fig. 536 Specific thrust and
ratio vs flight Mach number. specific fuel consumption vs

flight Mach number.
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As a final example of the ideal turbofan with separate exhaust streams,
consider the effects of varying the bypass ratio from the optimum value.
Conditions are as assumed in the above examples and the results are
illustrated in Fig. 5.39.

Figure 5.39 illustrates that a truly optimal choice of bypass ratio might be
other than that leading to the minimum specific fuel consumption. Thus, for
example, note that by selecting a = 3 rather than a* = 3.91, a 21% increase
in specific thrust can be obtained at a penalty of a 1.5% increase in specific
fuel consumption. When the engine size, weight, and cowl diameter are all
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Fig. 537 Optimal bypass Fig. 538 Specific thrust and
ratio vs T,. specific fuel consumption vs 7.
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Fig. 539 Specific thrust and specific fuel consumption vs bypass ratio.
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considered for the installation effects, it is probable that a bypass ratio
lower than that corresponding to a* would be selected.

5.13 The Ideal Turbofan with Mixed Exhaust Streams

In many installations, particularly aircraft with body-mounted engines, it
is suitable and convenient to duct the primary and secondary streams
through a common exit nozzle. In the event that little mixing of the streams
occurs, the analysis in Sec. 5.12 would remain valid. In many applications,
however, “forced mixers” are used to greatly enhance the mixing of the
streams. Several benefits may accrue from mixing the streams, such as
improvements in the performance parameters and reductions in the exhaust
jet noise.

In order to analyze the behavior of a turbofan with ideal stream mixing,
the presence of an ‘“ideal constant-area mixer” is assumed. An ideal
constant-area mixer is defined as a constant-area mixer with no sidewall
friction. Analysis of such a device provides the outlet stagnation conditions
as a function of the two sets of inlet conditions. When the outlet conditions
are known, the performance of the engine can be determined.

Cycle Analysis of the Ideal Turbofan with Mixed Exhaust Streams

This turbofan is shown in Fig. 5.40. Again assume that all efficiencies are
perfect, that the nozzle exit pressure is equal to the ambient pressure, that
the gas is calorically perfect, and that the combustor fuel-to-air ratio is
much less than unity. The specific thrust may hence be written

F/(m +mg)=aoMy[(ug/uy)—1] (5.85)
Also
(ug/up)* = (To/ Ty ) My/My)? (5.86)
and
T,= T9(1 + %M;)A (5.87)
-1 v/ (y=1) p
P, =P9(1 + YTM92) =p0’”r'”c’(—_li) (5.88)
P,
2 3
o+ |‘ <
0 ' | 2 45 78 9

Fig. 5.40 The ideal turbofan with mixed exhaust streams.
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An enthalpy balance gives
mCT, +meCT, =(m +mg)C,T,
or
T/Ty=[1/(1 + &)|(ny1, + ars.) (5.89)

Combination of Egs. (5.85-5.89) then gives

F__ JlvG=0(, 1

m,.+m 0 1+a (y-1/y
¢ F TrTc’( pt.,/ 3 )

(nyr, +arr.)| — M,

(5.90)

The power balance between the compressor, fan, and turbine remains
unchanged, so 7, is still given from Eq. (5.67). The following will obtain the
ratio p, /p,,, so note here

_’i‘l=&&=&ﬂ (5_91)
p,,, p15 prjr p15 e

The expressions for f and S remain as in Eqs. (5.68) and (5.69). These
equations will be summarized following the next section.

The Ideal Constant-Area Mixer

The constant-area mixer is shown in Fig. 5.41. Consider p,, T,, M;,
P.,» T,,, and a to be prescribed. The common static pressure at the splitter
p can then be obtained directly from

— y/(y—1
%=(1+—721M52) (5.92)

A .Pfs' \\\__//
3 A7

Ttg,'

P P t
Ag 'ts 7

Tt5 T'7

Fig. 5.41 The constant-area mixer.
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from which

2 p,. (y—h/y 2 p,. (r—1/y y-1
2_ 2 |[Ea Y PN | Y-l -
" Y-ll(z’) e o I e

]

Equation (2.102) for the mass flows may be utilized to give

ﬁ =qa i ﬂi(fﬂ)[(y_n/h] (5.94)
As T, M\ p, '

The momentum equation may be written as
As(ps + psul) + Ay (py + pyud ) = A;( p + pqul)
or
Asps(1+yME) + Ay py (1 +yME) = A;p,(1 +YMF)  (5.95)

The equation for the mass flow [Eq. (2.102)] may be written in the form

= _Ii L y—-1,, ) "3 . L ay
pA;= V y \/T, Mi(l + =M m (i=3,50r7) (5.96)
Noting from the enthalpy balance that

T, 1+a(T, /T,)

7 _ 3
T e (5.97)

an equation for M, can be obtained by combining Eqgs. (5.95~5.97) and may
be written in the form

1+a

[=f(M}) = (1+a)

T) 1 +a¢T,]/Tzs o
TV (M) Jf(My)

where
f(M)EM2(1+%MZ)(HYMZ)‘2 (5.98)

This is once again of the same functional form for the Mach number as
occurred in the solution for the heat interaction at constant area in Sec.
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2.18, so

M? 2/ (5.99)

RN e TeER,

Following solution for M,, the other downstream variables follow di-
rectly. Thus, Egs. (5.96) and (5.97) may be combined to give

y—1 s (y+1)/2y—1)
P, T\l L M My 1
;l= (l+a) l+aTJ 7 ﬁ 1
' t - 2 7 Ay
s s 1+ 3 M; 1+ 4,
(5.100)
Summary of the Equations— Ideal Constant-Area Mixer
Inputs: P/ T, /T Ms, &
Outputs: P./Piys My
Equations:
(y=1ly/y _
M2 = Y%[(f’i) (1 + %M;) —1] (5.101)
s
~l(y-1
Ay _, f_l("_) e (5.102)
5 T, M\ p,
-2
T, 1 o/T, /T,
f=(1+a) l+a(—’—)] + ' (5.103)
T r(ms) (M)
where
— Aq2 y-1,., 2y 2
f(M)=M (1+——2—M )(l+yM )
M, = 2/ (5.104)
1-2yf+{1-2(y+1)f
T;. ; (y+1)/2(y-1)
(1+a)(1+a—’” y-1,.2\"
Py _ [ T, M, 1+ 3 M;
12 Ay M, y-1,,
s 1+ Y 1+ =M

(5.105)
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Summary of the Equations— Ideal Turbofan with Mixed
Exhaust Streams

Inputs: T,(K) [°R], v, h(J/kg) [Btu/lbm]

C,(J/kg- K)[Btu/lbm - °R], 1y, 7, 7, Mo, &, My

Outouts: F N-s) F Ibf
utputs: i, +m,| kg go(rit, + hy) " Tbm/s

] f kg fuel /s
1bf thrust |’ kg primary air/s

S( mg ) Ibm fuel /h
N-s

Equations:

-1 -1 ]
R= '—Yy—Cp m?/s%- K [R = 1—7—Cp(2.505)(104) ft2/82 : R]

(5.106)
ay=\YRT, m/s [ft/s] (5.107)
=1+ %MOZ (5.108)
=g/ (5.109)
1., =qr O/ (5.110)
=1—(1/n)[(r.— 1) +a(r.—1)] (5.111)
m =1/ D (5.112)

[p.,/p,, is then obtained from the equations for the ideal constant-area
mixer. Note that p, =p,, p, /p, =7 /77, and T, /T, = 17./7\1,].

p’o — p’u T,

— <L (5.113)
pl;« p15 T
F 2/(y—1) 1 i
——— =a, 1- — (11, +arr.) | — M,
m,.+ mg { l1+a 1. P:.,/P:,,)(y /v !

(5.114)
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(To obtain British units of 1bf/lbm/s, replace a, in meters/second with
a,/32.174 where a, should be given in feet/second.)

f=(CT/h) (1= 17.) (5.115)
_ £(10°) S 3600/
(1+a)[F/(m + )] (1 +a){ F/[go(m +p)]}
(5.116)

Example Results— Ideal Constant-Area Mixer

In order to compare the performance of fully mixed streams and separate
streams, consider the “gross thrust” capability of the two cases. Gross thrust
is the thrust that would occur if all the momentum of the exit streams
contributed entirely to thrust. Thus

F,=rmu, +mpu, for unmixed streams (5.117)

Fo.=(m.+mg)u, for mixed streams (5.118)

Noting that for all cases (Sec. 2.15)

(r=1)/vy
ul = %RT,[l —(&) J (5.119)
t

it follows immediately that

1_(&)(7—1)/7 %+ T_ 1_(&)(7—1)/7];
Fun pr, T pry J

o —— (5.120)
mix T{3 P -D/y |2
{(1+a)(1+aT’ )[1—(;) }}

Equations (5.101-5.105) and (5.120) allow direct calculation and com-
parison of the ideal constant-area mixer performance with nonmixed stream
performance. As an example, consider a mixer with a« =2, M;=0.5, and

= 1.4, and investigate the effects of varying the temperature ratio 7, /T,
stream pressure ratio p, /p,,, and exit pressure ratio p,/p,,.

Several trends are evident in Figs. 5.42 and 5.43. Thus, note that a mixing
benefit occurs only when there is a difference in stagnation temperatures in
the streams. This is because the stagnation pressure losses identified with
mixing will cause a decrease in thrust unless one of the streams has a higher
stagnation enthalpy, with a consequent possible benefit of equalizing the
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Fig. 542 Effect of variation in stream pressure ratio, ideal constant-area mixer.

.04 /

P P
'_ =I _2:0.3__’_
P5 Pis

y

P
/--ho.s

Pis

.02

I_oo B

| 0.8 0.6 0.4 0.2
T'3| / Tt 5

Fig. 543 Effect of variation in stream temperature ratio and exit pressure ratio,
ideal constant-area mixer.

enthalpies. It is to be noted also that when the exit pressure is further
reduced, the penalty identified with stagnation pressure loss in mixing is
reduced, because the overall pressure ratio is so large.

It can be surmised, then, that real mixers (including viscous lossesy may
show signs of performance gains when used on nozzles with large expansion
ratios and in which substantial temperature differences between the two
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Fig. 544 Effect of variation in inlet Mach number, ideal constant-area mixer.

streams exist. It should be noted that “forced mixers” are being considered
for transport aircraft, where the promise of performance benefits is not
substantial. In such cases, the prime motivation for the use of mixers arises
from the hope of substantially reducing the jet noise.

As a final example, the effect of varying the inlet Mach numbers of the
mixing streams is shown in Fig. 5.44. Consider the case a =2, T, /T, =1,
p.,./p,, =09, and p,/p, =05 Note here that increasing the Mach
number at entry to the mixer reduces the losses. This might at first ap-
pear anomalous because one might expect interactions at low Mach number
to be less vigorous. It is apparent, however, that as the Mach number M;
decreases, the pressure at the splitter plate increases, leading to a lower
value of M;.. Thus the relative velocity difference increases as M; decreases,
leading to the greater mixing losses predicted by the ideal analysis. It should
be noted that when skin-friction losses are included, there will be an
opposing effect because of the Mach number squared dependence of the
skin-friction losses (see Secs. 2.17 and 2.18). The design of a real mixer will
involve the optimal choice of the design parameters, including not only the
effects just discussed, but also consideration of the many installation effects.

Example Results— Ideal Turbofan with Mixed Exhaust Streams

To compare the performance of turbofans with and without mixing,
consider a turbofan with bypass ratio a equal to two. Other conditions will
be as those given for Fig. 5.39, that is: y=14, T,=420°R, h=19,000
Btu/lbm, C,=0.24 Btu/Ibm - °R, 7, =20, 7, =2, 1, = 6.5, M;=2.

The ana1y51s utilized to obtain F1g 539" yielded 7,=1.8, 7. = 2.3535,
7. = 12190, 7,=0.50387, and =, = 0.090807. These values utilized with Egs.
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(5.101-5.105), with M;=025, then give p, /p, =1.0564. Finally, Egs.
(5.106-5.116) yield for the turbofan with mixed streams

S =0.741 Ibm/h/Ibf
F/[go(r, + )] = 19.46 Ibf /lbm /s

These values are to be compared with the following values for the
unmixed case

S =0.754 Ibm/h/1bf
F/[gy(m + mg)] =19.12 Ibf/lbm/s

Thus the ideal mixer, in this case, provides a thrust and specific fuel
consumption improvement of almost 2%.

5.14 The Ideal Constant-Pressure Mixer

The behavior of a mixer designed with an area variation that gives
constant-pressure flow will be examined in this section. It is again assumed
that there is no sidewall friction. With these assumptions solution for the
downstream variables becomes trivial, because the pressure is already known
and the fluid momentum is conserved. As a result of the simplicity of the
solution, analytical determination of the inlet conditions that lead to the
maximum possible outlet stagnation pressure is straightforward.

The geometry to be considered is shown in Fig. 5.45. Because the
momentum is conserved in this device, it is convenient to consider the
behavior of the velocity rather than the Mach number and so a dimension-
less velocity is introduced for convenience, along with other convenient
groupings. Thus define,

V,=u,/[RT, (i=3,57)

=T,/T,

S, - ( Pr,/P:s)(y— Ly

3!

5 7

Fig. 5.45. Constant-pressure mixer.
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The momentum equation gives immediately

_ Vital;
V,= Tra (5.121)
and conservation of energy gives
T17 1+ar
In general
GT, =CT + ul/2
So that
-b/y T -1T
P i Y s 1,2
-~ =—==1--——=V, Note p =p; =ps=
(pl') Tl, 2 T/, i ( P =D; Ps p?)
(5.123)
It hence follows that
(y=1)/
_(p/p,s)’ S el (07 7 S
3 - .
p/p., 1-[(y—-1)/2](0/7)V3
Similarly, using Eqgs. (5.121-5.123), there follows
{
1~ % V52
S, = (5.125)
7 2
1- y=1 (Vs+aly)
2 (1+a)(1+ar)
Area Relationships
In general,
_P 17
=g YRT,, _1 -T,’ V.A, (5.126)
Combination of Eqs. (5.123-5.126) then gives
4y _ b
A, = a7S; v, (5.127)
4, _ a_
) =(1+a)1+ar)s; Vit al, (5.128)
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Optimal Mixer Entrance Conditions

These equations allow direct solution for the outlet conditions as well as
the required area vanation. It is of interest to note, however, that combina-
tion of Eqgs. (5.124) and (5.125) gives S, in terms of V; and the prescribed
upstream stagnation conditions. This allows the analytical determination of
the engine stream dimensionless velocity that gives the maximum outlet
stagnation pressure.

Carrying out the required manipulations (Problem 5.15), the conditions
corresponding to the maxima are found to be

V,/V,=1 or Vo/Vi=1 (5.129)

The correct root is not identified with the presence of a maximum or
minimum, but rather with the possibility of the gas streams attaining the
desired ratio. Thus, the maximum imaginable value for ¥V occurs as
M — oo. At this condition, V= 2/(y—1).

Utilizing Egs. (5.124) and (5.129) and denoting by a subscript a the case
where V,./Vs =1 and by a subscript b the case where V. /V; =7, it follows
that

2 [ Sy—1 2 [ Sy-1
2 _ 3 2 _ 3
Vsa y—1(s3,/7—1) and Vs y—1(Ts3,—1)

(5.130)

It thus follows that physically allowable solutions exist for

V' 1y 14

= =1 when p—3>1,fr<1 orwhengi<l,1'>l
Vs P, ‘s

V., - ,

73=fr when —p—3<1,fr<1 [orwhen&i>l,fr>l]
S 1 1s

(5.131)

The performance of the optimal mixer now follows directly by substitu-
tion of Eqs. (5.130) and (5.131) into Eq. (5.125) to give

1+ ar S l+a

SS, T ar ) 7 = SS’W (5132)

S7a = S3'

Further, Egs. (5.127), (5.128), and (5.130) show that for both optimal
cases

Ay = Ay + A
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Thus the optimal constant-pressure mixer is also the optimal constant-area
mixer!

These remarkably simple results for the optimal mixer output stagnation
quantities allow easy determination of the optimal conceivable performance
of a mixed stream turbofan. Thus, for example (Problem 5.20), combination
of Eqgs. (5.90), (5.91), and (5.132) leads (for case a) to the expression for the
specific thrust

_F
m,+mp

14+ ( o 1)35543—1]; —-1} (5.133)

aoMO{ 1+al71T, 7,— 1

This result can be compared to the optimal results of the separate stream
case (see also Problem 5.21). It is rather interesting to note that the fan
pressure ratio does not appear explicitly in this expression. Thus provided
only that conditions are appropriate to ensure p, /p, > 1 and 7 <1, the
specific thrust, in this optimal mixed case, is not a function of fan pressure
ratio.

5.15 The Ideal Turbofan with Afterburning

A cycle that somewhat combines the high thrust per frontal area of a
turbojet at high Mach number while providing respectable specific fuel
consumption for subsonic cruise conditions is the turbofan with duct
burning. The turbofan utilizes duct burning (burning in the secondary
stream) for supersonic cruise, but cruises subsonically without duct burning.
In many cycles, the fan and compressor require so much power extraction
from the primary stream that the turbine outlet pressure is greatly reduced.
The resulting low primary nozzle pressure ratio renders primary stream
afterburning unattractive. In the following analysis, however, the possibility
of primary stream afterburning as well as secondary stream afterburning
will be included.

Cycle Analysis of the Ideal Turbofan with Afterburning

It is again assumed that all component efficiencies are perfect, that the
gas is calorically perfect, that the fuel-to-air ratio in all combustors is much
less than unity, and that the exit static pressures of both primary and
secondary streams are equal to the ambient pressure. The nomenclature and
notation are as in Fig. 5.17 and Sec. 5.2.

The expression for the total thrust remains as given by Eq. (3.59); thus,

.F.=%%(ﬁﬂ%4ﬁ—% (5.134)
m +mp  1+a|l\y u,

Secondary stream. Again

(ug/ug)* = (To./ Ty ( Mo/ M)’ (5.135)
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Now write
y-1_ .,
T, =T, 1+ TMg, =TyThap (5.136)
y—1 5 y/(y-1)
., =p9,(l + TMgr) = o7, (5.137)
With Egs. (5.1), (5.4), and (5.137)
1+ ————1M9 =TT, (5.138)

2
Combining Egs. (5.136) and (5.138) gives

Ty /Ty = Thap /7T (5-139)

so that with Egs. (5.135), (5.138), and (5.139)

v N_[2 maw, ]
Mo(uo )-[Y_l M (1) <My (5.140)

Primary stream. The relationships for temperatures and pressures here
are exactly as previously obtained for the turbojet with afterburning (Sec.
5.11). So

MO(;;- )=[ — T“"( 'r'r—l];—Mo (5.141)

rtl

Power balance. The power balance between the fan, compressor, and
turbine remains as for the turbofan without afterburning [Eq. (5.67)}, so

=1-(r/m)[(n.— 1) +a(1.—-1)] (5.142)

Specific fuel consumption. The specific fuel consumption could be
obtained by writing an enthalpy balance for each burner separately and
then summing the separate fuel consumptions. It is more direct, however, to
write an enthalpy balance across the entire system and to equate the energy
addition in the burners to the overall enthalpy change. Thus

(g + tag + tgap )R =m CT, +mpC T, —(m +mp)CT,

or

m,+ m + Mppn C T
_ my fAB fAB 0
St = . = [TAAB+aT>\AB -(1+a)7 ]

m,

(5.143)
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The specific fuel consumption then follows from

g (m[+m/AB+m/AB’)(106) _ [ (10%)

F T (1 +a)[F/ (i +mg)] (5.144)

These equations are summarized in the following section. It can be noted
here, however, that in fact this analysis contains most of the preceding
analyses of this chapter as special cases. Thus, note that if a duct burning
turbofan with no primary stream burning is to be considered, 7,,p need
only be replaced by its minimum value,

(TMB)mm =\ (5.145)

If no duct burning is present, 7, ,p must be replaced by its minimum
value,

(T)\AB' )min =TT (5146)
If a turbojet is to be considered (with or without afterburning), the bypass
ratio a must be put equal to zero; and finally if a ramjet is to be considered,
amust be put equal to zero and also #, (or 7,) must be put equal to unity.
Summary of the Equations— Ideal Turbofan with Afterburning
Inputs: T,(K) [°R], v, #(J/kg) [Btu/1bm],

C,(J/kg-K) [Btu/lbm - °R], 7y, Tyaps Trap Tes Ter My, @

Outputs: F (N-s) F 1bf
puts: m, +mg\ kg go(m, +mg) lbm/s [’

S( mg )[ 1bm fuel /h kg fuel /s
N-s /i Ibf thrust |’ Joo kg primary air/s

Equations: The first six equations are identical to Eqgs. (5.70-5.75); then:

F _ a 2 Tap _ :
r'nc+mF_l+a{ (r77,—1)| = Mo

y—1 717
taf| 2 Tam ) M (5.147)
y-1 77, ' 7°¢ 0

(To obtain British units of 1bf/(Ibm/s), replace a, in meters per second
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with a,/32.174 where a,, should be given in feet/second).
CT,
for= =5 [mas + anan — (1 + @) 7] (5.148)

_ fa109
L+ @) F/ (i, + )]

Note: In these equations the minimum values of 7,5 and 7,,p5 to be
considered are

(TAAB)min =T\ (5.149)
(TAAB')min =TT (5.150)

If either of these minimum values is used, the calculation corresponds to the
case where burning is not present in the respective afterburner.

Example Results— Ideal Turbofan with Afterburning

As an example of the effect of afterburning, consider the family of
turbofan engines discussed in Sec. 5.12 that gave the results of Fig. 5.39.
Here, again consider the addition of burning in the secondary stream such
that 7,,5 = 7.5. Conditions are hence y=14, T,=420°R, h=19,000
Btu/lbm, C,=0.24 Btu/lbm-°R, 7, =20, 7, =65, M;=2, and 7.=2.
The results are indicated in Fig. 5.46.

F/g, S
Ibf Ibm
Ibm/sec 14”’( Ibf hr
B
50 a 1.1
40 1.0
30— 0.9
200 <2y NO[ABl los
10 ~l 0.7
O1I 2 3 4 5
a

Fig. 546 Specific thrust and specific fuel consumption vs bypass ratio, duct burning
turbofan.
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Figure 5.46 illustrates the very substantial increases in specific thrust that
can be obtained by the use of duct burning. The results suggest, also, that if
high thrust levels are to be attained for given flight conditions, whereas
efficient cruising is desired for other (lower thrust) flight conditions, the duct
burning turbofan shows promise of affecting a reasonable compromise.

Probiems

5.1 (a) Calculate and carefully plot the specific thrust F/(gyrm),
Ibf /1bm /s, and specific fuel consumption S, Ibm/h/Ibf, vs design pressure
ratio 7, for an ideal turbojet. The flight Mach number is to be 2.7, and you
are given y = 1.4,.T; = 400°R, h = 19,000 Btu/lbm, C,=0.24 Btu/Ibm - °R,
m, = 6.8. Plot the results over the range from 7, =1 to where the thrust goes
to zero.

(b) Obtain an analytic expression for the compressor ratio that just
leads to zero thrust =, in terms of y, M,, and r,. Check that the value

cm

calculated using the data of part (a) agrees with the graphical result of
part (a).

52 Calculate F/(gy,m) and S for a ramjet with the conditions as
given for the turbojet of Problem 5.1, except that 7, = 8.0.

53 A designer finds that because a new material has been discovered,
he can increase the allowable turbine inlet temperature. He already has a
turbojet design—say engine 1—and decides to redesign the engine to engine
2, so that engine 2 has the same specific thrust as engine 1 (at the same flight
Mach number).

(a) Show that the compressor stagnation temperature ratio of the new
engine 7, is related to 7., 7, 7,, and 7, by

Tey 1 Tx, sz W
T =3 1+
T TT
a ( L q) ra

2 3

™, "A, - Tz )
1- - : - T\ 4+ 2 17, + :
(77,)° ( )? ' b
e, e, !

(b) Given the conditions for engine 1 of y= 1 4 T,=222K, M;=2,
h=4.42 (10") J/kg, C,=1005 J/kg-K, ™, = = 20, calculate the
specific thrust and specnﬁc fuel consumption of engme 1.

(c) Given that 7,, =8, calculate 7, and the specific fuel consumption
of engine 2.

(d) Compare the thermal and propulsive efficiencies of the two en-
gines.

54 The designer described in Problem 5.3 decides to utilize the
increased specific thrust at the same compressor pressure ratio. Calculate
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the resulting specific thrust and specific fuel consumption. Again compare
the thermal and propulsive efficiencies of the two engines.

5.5 (a) Show that the specific thrust for an ideal afterburning turbo-
jet operating at maximum thrust is given by

2 4 :
R (SN
m Y (T)\+Tr)

For the case y =14, T, =220 K, C,=1005 J/kg - K, h=4.42 (107) J /kg,
=25.
(b) For 7, = 7 plot the specific thrust and specific fuel consumption vs
Tyap OVeET the range 7 < 7y 45 < 9.
(¢) For 7,5 = 8 plot the specific thrust and specific fuel consumption
vs T, over the range 6.5 <1, <7.5.

5.6 (a) A family of ideal afterburning turbojets with compressor
pressure ratio #. = 10 is to be considered. Calculate and plot the specific
fuel consumption and specific thrust over the Mach number range 0 < M, <
3.5. Take y=14, T;=210 K, C,=1005 J/kg-K, h=4.42 (10") J/kg,
m=7,and 7,5 = 8.

(b) What condition will determine the maximum Mach number at
which these engines will be able to fly? Determine the numerical value of
this maximum Mach number.

5.7 (a) Consider an ideal turbofan engine with the conditions M, =
2, 7,=20, m.=22, 1,=7, a=3, y=14. Find the Mach number at the
exit of the primary stream M; and at the exit of the secondary stream M,.

(b) Find M, and M, if a =06, all other parameters remaining un-
changed.

58 The “optimal” ideal turbofan was found to have
2(ug —uy) = ug — ug

This optimum was obtained by choosing the bypass ratio a to give mini-
mum specific fuel consumption for given 7, and 7. Actually, the specific
fuel consumption S can be considered an analytlcal function of «, 7, and

., all of which can be chosen independently. A true minimum in S would
occur when a, 7., and 7. were all chosen to make the partial derivatives of S
with all three variables be zero.

(a) Show that when S is minimized with respect to 7. for given 7,
and a, it is required to have ugy = uq..

(b) When the joint minimum of S with a and 7. is selected, what is
the relationship required between ug, ug, and uy? What is the related value
of the bypass ratio a? Explain, in physical terms, why it is that this limit
exists.
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5.9 (a) Show that the propulsive efficiency of an ideal fan jet that
has been optimized to give a = a* may be written in the form

_ 2(1+ 2a%)
1+ (ug/uy)(1+ 4a*)

My

(b) Calculate and plot a*, uy/u,, and 7m, vs m,. over the range
1 < 7. < 3.0 for the conditions My;=0.85, y=14, #.=130, and 7, =7.

5.10 The ram rocket is a device contemplated for use over large Mach
number ranges. It is hoped to achieve high Mach number performance
similar to that of a ramjet, but to have the advantage of static thrust.

The device operates as indicated in Fig A. Thus, the rocket plume mixes
with the incoming air in an ideal constant-area mixer prior to expansion
through the nozzle. The airstream itself has fuel added and burned between
stations 2 and 3. For simplicity assume pg=p,, rir;/m <1, y =Yz, and
C,= C,r. We define B=rg/n, T, /T, =7, P,./Pt;="Tms T,/ To=Tag
and T, /Ty = 7).

(a) Find an expression for F/(mUj,) in terms of 7,, 7,
and 7.

(b) Find an expression for 7,, in terms of 8, 7,, and 7, 4.

(c) Describe how you would solve for 7, in terms of the other
variables. What additional information is necessary in order to solve for m,?

Tpo T B,

5.1 The turborocket is another concept for airbreathing propulsion.
Figure B indicates the concept, wherein a rocket chamber drives a small

Jhy
T ~—_ Y \
0 2 <3
thu, /\_/\—~ 4 9
- iy J - __. - - - —_
/
Fig. A
3 4
0 2 E <
N\ R




IDEAL CYCLE ANALYSIS 183

turbine which in turn drives the compressor. The products of combustion
and the incoming air mix between stations 3 and 4 and pass through the
common exit nozzle. Additional combustion may or may not occur in the
afterburner indicated.

It may be assumed that (1) y=1vg and C,= C: (2) pr=p, and no
stagnation pressure drop occurs in the mixing chamber (3) po= p9 and all
componem performances are ideal. We define 7, =T, /T, m\g=T, /T,

T./Ty. 8= (po/pp)" /7 and B =rng /.
(a) Show that in the case where no afterburning occurs

1

F 2
— *rm(*r;r(.— 1) — M,

agh

2
- (148|255

(b) Show that

_ 1-46r1,

(c) If afterburning occurs (with no further mass addition), find an
expression for F/(a,m) in terms of M, 7,, v, 8, 8, 7., Tz, and 7,,.

5.12 Figure C shows a concept for an “aft fan” engine with ““aft-
burning boost.” The idea is that without the aft burner on, the engine will
behave as a conventional fan jet, but extra thrust will be available when the
aft burner is utilized. Ideal behavior of all components may be assumed
with i,/ <1, etc. In addition, it is to be assumed that when the burner
1S on, all pressure ratios in the core engine remain unchanged and the

bypass ratio a remains unchanged. We define 7,,=7, /T, r/T,.
™= T,,,/ Ty and reference the zero aft-burning case w1th an addmonal 0
subscnpt

(a) Show that

ug/uy  _ [ Tab }

(u9/u0)0 T)\_Tr(Tc‘_ 1)
(b) For conditions M,=22, y=14, Cp =(0.24, Btu/lbm-°R, 4
=19,500 Btu/lbm, T;=400°R, 7, =7, 7, =15, and 7, =15, find a*,

A\

HC Ili
3 4 40

Fig. C

au
©

o -
o
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F/[go(mm, + mg)], and S for the aft burner off case.
(¢) Find F/[g,(m + )] and S (based on total fuel flow) for the
configuration of part (b), but with 7,, = 6.8.

513 A ramjet has ideal performance in every component except that
the combustion occurs at finite Mach number. Assuming that the combus-
tion occurs at constant static pressure, show that the specific thrust is given
by

F/m= aoMo{[Tb (- 1)(M3/Mo)2]12 - 1}

where 7,=T, /T,.
Note: You' mlght get some help from Problem 2.12.

5.14 A ramjet has ideal performance in every component except that
combustion occurs at finite (fixed) Mach number M,.
(a) Show that the specific thrust is given by

2 y-h/Mi _ !2_
=aOMO{{Tb[ (Y——M(T’E( 72 1)]} 1}

(b) Show that the thermal efficiency for this cycle is given by

¥

T, 7t tr-b/aAME _q

nlh - 1 h _]T] Th - 1
5.15 In the text it was shown for an ideal constant-pressure mixer
y—1
S7 = 2 2
1 y-1 (V;+aVy)
2 (1+a)1+ar)
and
1- % V52
Sy = 11
1-Y " 1y2
2 13

The combination of these two equations can be considered to give S, as a
function of V¥, and the prescribed ratios of upstream stagnation quantities
a, 1, and S;..
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Show that the maximum in S; with V5 occurs when

(V3,/V5)2—(1 +7)(Vy/Vs)+7=0

and hence when V5. /V;=1or 7.
Note: You may find it helps to solve for ¥;} from the second equation
above and to solve for 2V;.(dV5./ dV5) prior to taking the derivative 9S,/dVs.

5.16 Consider the comparison in behavior of the gross thrusts of
mixed vs unmixed streams when in the mixed case an ideal optimal
constant-pressure mixer is used. With notation as in the text, but defining in
addition

S,

a

p y-b/y
= (—0) (a = ambient)
P,

(a) Show that the ratio of mixed to unmixed gross thrusts is

1

Fux _ {(1+0)(1+a7)[1-5,/5,]}"

mix

F  (1-58,) +a/r(1-8,/5,)

(b) Show that the value of 7 that just causes the ratio F_;,/F,, to
equal unity is given by

1S for case a Py >1, i <1
T= ase
1-S8,/Sy 'y T,
_ 1- Su/SB’ p’3 T
T=qC S, for case b ( . <1, Tu <1

(c) Show that the result of part (b) implies, in addition, that for case a
the exit velocities of the separate stream case would be equal and, in fact,
equal to the entrance and exit velocities of the mixer if it was used!

(d) Plot the curve of 7 vs p, /p, for the “breakeven” cases obtained
in part (b) over the range 0.5 <p,, /p, < 1.5 for the two cases p,/p, = 0.3
and 0.5 (take y=14),

Indicate on the graph those régions in which incorporating a mixer would
be beneficial and in which mixing would be detrimental.

517 Figure D shows a novel concept to be considered for develop-
ment. The device is to operate by having the air in the “secondary” stream
expand through the turbine (which would be the fan in a conventional
cycle). The turbine is coupled directly to the compressor that compresses the
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" 9

AA

Fig. D

core stream. Combustion then occurs followed by expansion to the entrance
of the optimal constant-pressure mixer and, finally, expansion through the
nozzle.

(a) Is this optimal mixer case a or case b?

(b) Show that the performance of the engine can be described by the
following system of equations:

Inputs: y,h,Cp,TO,r)\, My, 7., «a

F

Outputs: _—,
p go(mc+ mF)

S, N
Equations:

'r,=1+y—;1—M02

___F ﬁ(Moﬁ _ Mo)
go(m +mgp) & Uy
s = 36002 LS

h (1 +a){F/[g0(r'nt,+ mF)]}

(1+ a)[('r)\'rm/'r,'r(.Sm) - 1]

™ — T

TIm:l_
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(c) Investigate the predicted performance and determine whether the
concept provides competition to conventional gas turbines in any Mach
number range. (Note that 7, is not as restricted as it would be for a burner
followed by a turbine.)

5.18 Consider a constant-pressure mixer of the form indicated in
Fig. E. A supplemental flow is introduced along the sidewall of amount Sw1.
This supplemental flow is injected such that it introduces no axial mo-
mentum. Also V'=u/\/yRT, and =T, /T,.

(a) Find an expression for p,m/p, in terms of ¥, Vi, S, and 7.

(b) Find an expression for AZ/A1 in terms of v, S, 7, and p,,./p, .

(c) Calculate p,,./p, and A4,/A, for the case y = 1.3, S =0.1, 7= 04,

=0.5

5.19 Consider an ideal turbofan with conditions y = 1.4, T, = 215 K,
C,=1000 J/kg-K, h=4.43 (107) J/kg, 7, =7, Taap = Taap =8 (With
burners on), .= 15, m. =2.0, and M,=25.

(a) Fmd a*, F/(m + m), and S*.

(b) Witha ﬁxed at o*, find F/(r_ + ) and S for the cases (1) core
afterburner on, (2) fan afterburner on, and (3) core and fan afterburner on.

(¢) With a raised to (a* + 1), find F/(,+ rirz) and S for the three
cases of part (b) as well as for the case with both afterburners off.

5.20 Consider an ideal turbofan engine that incorporates an ideal
constant-pressure mixer to mix the fan and core streams prior to expulsion
through the nozzle. The fan stream stagnation pressure is higher than that of
the core stream, and the fan stream stagnation temperature is lower than
that of the core stream.

Assuming that the fan and core streams are mixed “optimally,” show
that the specific thrust is given by

1 T 1. —1 :
1+1+a('r;rc 1)( T.—1 )] 1}
5.21 (a) Consider an ideal turbofan engine that utilizes separate
expansion of the core and fan streams to ambient pressure. The bypass ratio

is chosen to give minimum specific fuel consumption for prescribed r.
and 7.

_F
m, + iy

= aoMo{

Fig. E
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Show that the prescribed 7. can be eliminated in terms of the bypass
ratio a (actually a*) to give the expression for the specific thrust

F__, (1+2a)
mo+me 201+ a)(1 + 4a)

x 1+—1+4°‘2( T —1)(—”“—1) -1
(1+2a)* \ 7% n-1
(b) Compare the ratio of the specific thrust of this engine to the
specific thrust of the engine of Problem 5.20 (and hence the ratio of their

specific fuel consumptions') for the range 2 < a < 7 for the case M, = 0.85,
. =25, and T, = 6.5.




6. COMPONENT PERFORMANCE

6.1 Introduction

In this chapter the behavior of the engine components including the
nonideal effects are described. The performance of the various components
are described in terms of “figures of merit,” which allow cycle analyses
including losses to be made efficiently. It should be noted, however, that
both the accurate quantitative estimation of such figures of merit and the
design of the components to reduce the losses are very demanding processes
and absorb much of the industry effort. Prior to considering each individual
component, the expression for the overall thrust of the engine when losses
are present is considered. It is found that both internal and external losses
are present and that an optimal design would be such as to minimize the
combination of all losses.

6.2 The Thrust Equation

The momentum equation for a control volume (Fig. 6.1) may be written
in the form:

Force on volume of fluid = rate of production of momentum
or

Pressure force + viscous force
= rate of accumulation of momentum
+ rate of convection of momentum through boundaries

Each of these terms may be represented by an appropriate area or volume
integral, but for simplicity of presentation the viscous force is noted simply
as F,. The above word equation can then be written as,

- ffpive 5o fffmare ffomeis 6

Note that the vector area element ds is defined to be positive when
directed outwardly, and hence the pressure force from the surface onto the
fluid has a negative sign identified with it. The engine operates in steady
state (or “quasi-steady state”), so the integral denoting the volumetric
accumulation of momentum with time is zero.

189
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SURFACE ELEMENT

VOLUME ELEMENT

Fig. 6.1 General control volume.

i ,’th e
’:xt_\ : \P. ‘:
FvCB :{é‘ vint J

Lpim‘

Fig. 6.2 Pressure and viscous stresses on engine.

The thrust equation may then be written

E,—f/pds=f/puu°ds (6.2)

Usually the thrust of the engine is defined as the net force resulting from
all the pressure and viscous stresses, less the external viscous drag. This
means that the external viscous forces are included in the airplane drag as
far as the ““accounting” goes.

To find the axial component of force only, define dA as the axial
projection of an area element. The thrust F, is defined as being positive in
the negative x direction, so that applying Eq. (6.2) and referencing Fig. 6.2
results in

F, =/ (Pint—Po)dA — Evin( _‘/;.xtCB( Pext —Po)dA — Fcp

fint

~ [ (Pos— o) d 4 (6.3)

ext
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where int refers to the surfaces wetted by fluid passing through the engine,
ext to the surfaces wetted by fluid passing outside the engine, and extCB to
that portion of the centerbody protruding forward of the inlet plane.

It is clear that direct evaluation of the internal viscous and pressure forces
is hopeless; so the internal forces are related to the changes in fluid
properties occurring from the inlet to the exit of the engine. To do this,
consider the effects of the internal forces acting inward on the fluid. The
forces acting on the fluid between the inlet and exit will include the pressure

and viscous forces acting on the interior engine parts. Thus, again applying
Eq. (6.2),

f(pmt Po dA+f(p ~Ppo)dA - f(pe Po)dA

= — fourda + [purda (6.4)

Note here that the first two terms are identical to the same pair of terms
appearing in Eq. (6.3). The effect of the minus sign that would appear
because of the difference in direction of the outwardly directed area element
is cancelled since F, is defined to be posmve in the negative x direction. For
simplicity in wr1t1ng the equations, it is assumed that the conditions are
one-dimensional at the entrance and exit to obtain, by combining Egs. (6.3)
and (6.4),

Fy= g, = +(p,—po) A~ (p=po) A~ | oy Pexi o) dA

ext

vCB /(pext pO (65)

Lext

This form is not particularly useful, because not only is it difficult to
determine u, without quite detailed engine information, but u; and hence
the pressure integrals over the centerbody and exterior change with a change

e

Fig. 6.3 Control volume for approaching flow.
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in the design of the inlet. It is better to relate F, to the flow conditions far
upstream. The control volume scheme shown in Fig. 6.3 is one way to do
this.

Again assuming one-dimensional conditions at the entrance (and far
upstream), with application of Eq. (6.2) it 1s found

miui+(pi-pO)Ai+f tCB( pext_pO)dA + FuCB
€X

= +rngtio + [ ( Pexe = Po) 44 (6.6)
0
and hence with Eq. (6.5)

i e
Fp=meue_m0u0+(pe_pO)Ae_'/(;(pext—pO)dA _f (pext_pO)dA

Text

(6.7)

Now write
FA=meue_m0u0+(pe_p0)Ae (68)
Dys= [ "( o — Po) 4 = additive drag (6.9)

0
D, =f ( Pext — Po) dA = external drag (6.10)
then

Fp=E4 _Dadd—Dext (611)

It is usual to term F, the uninstalled thrust and F, the installed thrust.

Interpretation of the Terms Appearing in the Thrust Equation

Equations (6.8-6.11) are in a suitable form for design purposes, but they
are at first difficult to interpret. Thus, for example, it at first seems peculiar
that a pressure integral over surfaces external to the engine (0 — i) could
have anything to do with the forces on the engine. The additive drag and
external drag terms are interdependent, however, and something can be
learned about this interdependence by considering a “perfect engine,” that
is, an engine with no external viscous drag or form drag.

Consider the momentum equation for all of the fluid flowing external to
the engine (Fig. 6.4). Because the flow 1s perfect (no shocks, no boundary
layers) the fluid conditions externally are identical at 0 and oo. The pressure
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Fig. 6.4 External fluid control volume.

is p, around the external contour and the contour is chosen to be a
streamline so that no momentum is convected through the perimeter. The
momentum fluxes through the ends of the control volume are equal because
the velocities are equal, so that the momentum equation reduces to the
simple statement that the sum of the pressure integrals over all of the
internal surfaces must be zero. Thus,

D44 + Doy +f°o( Pext —Po)dA =0 (perfect flow) (6.12)

It can be seen then, that for a correctly expanded nozzle ( p, = p,, the jet
parallel to the mainstream) and for perfect external flow

Dext= _Dadd (613)

and
(ED )perfect = E4 (614)

It is evident from Eq. (6.13) that when evaluating the drag terms for a real
inlet the additive and external drags must be evaluated most carefully,
because the net drag can be the difference between two quite large terms.
(Note, of course, that in such a case the external “drag” would be negative.)

It is common practice to break the external drag into two components:
D, , the drag associated with the “front end” of the engine, and D,, the drag
associated with the back end. This is usually a reasonable approach because
lip separation often dominates near the inlet and boat-tail drag near the
exit. Assuming that this division is meaningful, the terms can be interpreted
by considering the engine to be very long and parallel in the middle. In this
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Fig. 6.5 Flow into inlets.

case, perfect flow would give p,, etc., at the middle and the same argument
as led to Eq. (6.12) would lead to

D+ D,=0 (perfect flow) (6.15)

a

and

D, +f°o( Pext —Po)dA =0 (perfect flow) (6.16)

The negative forebody drag required to cancel the additive drag arises
from the suction near the leading edge of the inlet. This is why supersonic
inlets, with their sharp leading edges, have a large ““additive drag penalty”
when operated at mass flows other than their design mass flows—their
sharp leading edge prevents the suction from occurring (Fig. 6.5). Note that
the additive drag penalty for the supersonic inlet is much more severe than
that for the subsonic inlet, even though the additive drags (in Fig. 6.5) are
identical.

Similarly, separation from the trailing body of the engine prevents the
diffusion that would lead to large “forward thrusts,” giving boat-tail drag.

One-Dimensional Calculation of the Additive Drag

For simplicity, consider an inlet without external centerbody and obtain
from Eqgs. (6.6) and (6.9),

Ddd=mi”i‘m0”0+(Pi-P0)Ai (6.17)

a
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Noting that #,=m,= p,u,;A4, it follows that

2
Dygq=A4:p; f;,i(l_@)'*'(l'&)]

or

D,y4 Pi- 2( uo) ( Po)
—add _ Bl opm2 (1 -2 )+ (1 -2
Aipy  Po _Y ' u; P

The flow from far upstream to the inlet may be considered to be
isentropic so that

y—-1

7;_ P, (v—l)/v_1+_5__M02
7= =— 7 (6.18)
0 Po 1+—Y M?
2 1
also
ug _ [T Mg |’
u; T; M}
so that
D T v/ (y— 1 M T 7.\~ D
o FA I A A E TR

Thus, when the inlet “design Mach number” (that Mach number existing
at the inlet plane for the given engine setting) is known, the dimensionless
drag can be obtained as a function of the flight Mach number. It is to be
noted that, when the flight Mach number is equal to the design Mach
number, the inlet swallows its projected image. As a result, no curvature
exists in the entering stream tube and the additive drag is zero. Figure 6.6
shows the behavior of the dimensionless drag with flight Mach number for
an inlet with design Mach number M, equal to 0.6 (y = 1.4).

A physical feel for the significance of the additive drag follows by
considering it on a large engine, say at sea level (14.7 psi) and start of
takeoff (M, = 0). If the inlet diameter is 7 ft, the additive drag is

Doy = % (49)(144)(14.7)(0.179) = 14,580 Ibf

a



196 GAS TURBINE AND ROCKET PROPULSION

0.2

w
0.1 \

AN

N7

o 0.2 0.4 0.6 0.8 1.0

Mo

Fig. 6.6 Dimensionless drag vs flight Mach number.

A good inlet would, of course, recover most of this large force through lip
suction, but the magnitude of the force tends to serve as a warning that
great care must be taken to ensure that the inlet is designed to recover the
additive drag without serious penalty.

Some Realities of the Determination of Inlet Drag

It has been emphasized in the preceding section that inlet drag must, in
some cases, be determined as the difference between two large quantities,
the additive drag and the external pressure drag. If various cowl shapes are
to be compared for their drag characteristics, in some way the (net) inlet
drag must be obtained accurately. One method of determining inlet drag is
to heavily instrument a given cowl with static pressure taps and then to
integrate the axial force implied by such measurements.

The internal flow must also be simulated accurately in such a technique in
order to give the proper additive drag and correct boat-tail /jet interactions.
Even assuming correct internal flow simulation, the location of the contact
point of the stagnation streamline must be very accurately determined and
the upstream shape of the streamline and pressure at each location accu-
rately estimated through the use of a compressible flow calculation.!

It is evident that the one-dimensional approximation for the additive drag
will have serious shortcomings in accuracy for several reasons. First, as is
evident from Fig. 6.7, the projected area of the stagnation stream tube
increases abruptly in the immediate neighborhood of the cowl. It is in this
regime that the one-dimensional estimate of the static pressure is poorest,
because the local static pressure is approaching the stagnation pressure,
whereas the one-dimensional estimate of the static pressure will be that
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Fig. 6.7 Instrumented cowl and stagnation streamline.

corresponding to the Mach number for one-dimensional flow through the
area A,. The location of the area A, itself is not precisely determined,
because in the one-dimensional approximation it is consistent to assume A4,
is the minimum area of the inlet, whereas in a two-dimensional calculation
A; would be that area within the locus of stagnation points and would
change with the operating condition.

If the inlet is fully instrumented on the internal surface to give accurate
static pressures and a station is available (station 2 in Fig. 6.3) where the
internal flow may be assumed to be parallel and hence at constant static
pressure, then a momentum balance may be applied to give the following
expression for the additive drag D, :

Dys=[(p=p)aA=[(p=p.) a4~ [((p=p.)dd + (s = o)

+ “corrections”

The term “corrections” here refers to those contributions arising from the
viscous stresses and possibly from the “tunnel corrections” required if the
ambient pressure must be adjusted to account for blockage effects. Even
given that the corrections can be accurately estimated, it is evident that the
additive drag is determined from the contributions of several large quanti-
ties. The cowl drag is the difference of the lip suction and the additive drag,
and it is hence imperative to accurately measure each separate quantity.

6.3 Averages

It is usual, particularly when conducting performance calculations, to
refer to average quantities at a particular location. This is especially the case
with stagnation properties. In fact, it can be extremely important to under-
stand the implications of the particular averaging process being utilized, and
to this end, three different averaging techniques will be applied to a “step
profile” in order to reveal the effects that averaging methods can have (see
Fig. 6.8). The three averaging methods (for the stagnation pressure) to be
considered are: the mass, stream thrust, and continuity averages.



198 GAS TURBINE AND ROCKET PROPULSION

Fig. 6.8 Step profile.

The Mass Average
The mass average stagnation pressure is defined by

=fp,dr'n/fdrn (6.20)
For the case of the step profile this reduces to

_myp tryp,  1+alp/p,)
Poui™ Ty +m, P 1ta

(6.21)

Stream Thrust Average

The stream thrust stagnation pressure p, is defined as that stagnatlon
pressure that would exist if the ﬂow was allowed to completely mix
(hence the sometimes used expression “mixed-out average”) in a frictionless
constant-area mixer. It is assumed here (and in virtually all averaging
methods) that the appropriate stagnation temperature average is the mass
average. (If such was not assumed we would find ourselves breaking the first
law of thermodynamics, let alone the second law!)

The appropriate equations for this case have already been worked out in
Sec. 5.13, leading to Eq. (5.105). It is necessary to prescribe the Mach
number of one of the streams (say M,) in order to fix the static pressure at
the splitter plate. Utilizing the relatlonshlp for p, given above. and
introducing 7 = p,/p, and 7=T /T , the expression for p,, . for the
two-stream case can be arranged as a hlerarchy of equations. Thus,

Inputs: 7,7, M), a
Equations:
M= 2 [W(y-l)/7(1+ﬁ_1M2).—1] (6.22)
27y 2 1 '
4, = M, —Uy—1)/27]
v afr T (6.23)
1+a)(1+ayr
b = ( )( ) (6'24)

(161 + a7 /3, ]
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where:

(1+ym2)’

A=y1-2(y+1)¢,, (6.26)

(6.25)

o
I

29;..

M. = (———1 “ 216, 8 (6.27)
) X 1+y—1 2 (y+1/2Av-D y .
1 s.1.
P 1S 14y o)1+ an)]}| — 22— 1
p'm.a. 1+a77 1+;1M MS[ 1+A2
2 ! A,
(6.28)

Continuity Average

The continuity average stagnation pressure p, is defined as that stagna-
tion pressure calculated with the assumption that true one-dimensional flow
exists at the station and given (measured) values of p, i, A4, and T,. Here,
of course, 7, is the mass-averaged stagnation temperature.

From Eq. (2.103) note

2 4
Y 2 p(y2 - plr /) (6.29)

R(y-1) |T,

m=

where y = p{Y~ D/,
This is easily inverted to give

(r=1/v —1) RT, r?
y_=.pr(7—1)/7=p—2—[1+\/1 +2(Y_)_'_"_1_} (6.30)

c.a. Y A2 p2

In practice this just gives a formula for obtaining p, in terms of the
measured quantities. However, because the actual conditions existing
in the stream are “known,” p, can be calculated in terms of p,, p,, etc.

Thus, noting for the ith stream that

_ [RGy=1) [ T [ p\ v p D 1
A= ——= {(m— -1
2y p\p p ;
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and
A=A4,+4,
and
1+ ar
T= l1+a T’l
it follows that
-1
vy PV
’C a. 2

[y

(y—1/y
4(1+ a)(1 +at'r)(-pi
X{1+|1+ L 5
Py YDy -3 afr P\ YOy -1
{ R = I }
(6.31)
then
P (y-1)/y 14+a \(¥"D/7q P, ~l(y—1/v]
P, _(l+a77) —2—(7)
(y=1yy (y—l/y
4(l+a)(l+a'r)(&) [(&) —IJ
X{1+ {1+ L P 5
D, (y-1/y 3
— -1
o ( P )
a(y-1/2y W(yl)/v(ﬂ’i)(rl)/y_l
, ]

(6.32)

This form is appropriate for calculation because, given M,, p, /p follows,
as does p, /p with 7, etc. The formula can be obtained explicitly in terms of
7, 7, M}, and a (for comparison with the stream thrust average, etc.),
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however, and after some manipulation there is obtained

(Prc . )”‘1’”: RS CaR L
Py, 2+(7_1)M12

(v— 1)M12[2 +(y - 1)M12]
[1+(v-1)m2]°

X{—=1+{1+

(1+a)(1+ar)

y—-1..,
ayr 2 M,

m (D 77(7”1)/27<1 + 1= ; L M12) -1

-1 (6.33)

1+

This has been written in this way to make it clear that when = and = go to
one, the ratio is unity.

Comments

It is important to comprehend the implications of these various averaging
techniques, because many serious problems have arisen in industry through
improper interpretation. Thus note the following.

Mass average. This is the thermodynamically appropriate average in
the sense that p, so defined would follow the dictates of the second law.
Thus, for example, if two streams of the same stagnation temperature
continued to flow adiabatically, the stagnation pressure so defined would
decrease. (This is because the entropy is increasing.) Note that this would be
true even if the sidewall friction was negligible, because the mixing process
generates entropy.

In practice, however, it is the very tendency of the stagnation pressure,
mass averaged, to decrease that makes its use unpopular in some circum-
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stances. Thus, for example, if a wake traverse is taken close behind a
cascade of aerofoils, the stagnation pressure so measured would be higher
than that measured some distance further downstream. Many companies
feel that it is more appropriate to utilize the stream thrust average, which, of
course, does not change (in a constant-area channel). Note the stream thrust
average hence represents the “mixed-out” limit of the mass-averaged stag-
nation pressure.

Stream thrust average. As discussed above, this average is often
utilized because it tends to represent a somewhat conservative value of the
stagnation pressure for use in performance analysis. In utilizing this defini-
tion, note that all other properties should also be defined as those that
would exist at the exit from a constant-area ideal mixer. For example, the
static pressure is not that actually measured in the channel, but rather is
that calculated from the constant-area mixer equations.

Continuity average. This average is popular in some cases where,
because of physical restraints or adverse fluid properties (extreme tempera-
tures etc.), direct stagnation probe traverses cannot be taken. It is easy to
verify that for flows with uniform stagnation temperatures the continuity-
averaged stagnation pressure is the lowest of the three. What this means is
that, for flow in a constant-area duct with no sidewall friction (and uniform
stagnation temperature), the mass-averaged stagnation pressure goes down,
the stream-thrust-averaged stagnation pressure remains the same, and the
continuity-averaged stagnation pressure goes up!

There was a case in a highly respected research laboratory where, because
of the difficulty in utilizing upstream stagnation pressure probes, the up-
stream stagnation pressure was determined utilizing the continuity average.
A careful traverse of the outlet flow (utilizing the mass average) then
revealed that the cascade being tested had the remarkable property that it
increased the stagnation pressure!

Example 6.1

A flow exists where unknown to the investigators a separation exists. This
flow can be approximated as a flow with “freestream” stagnation pressure p,
through the area A, (area with blockage) and with no flow in the blocked

—

—
%

Fig. 6.9 Channel with blockage.
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region. See Fig. 6.9. Obviously, the mass-averaged stagnation pressure is
just p..

Der;oting by the subscript 0 conditions that would exist if no blockage
were present:

(1) Show that the ratio p, /p, can be calculated from the following
hierarchy of equations o

Inputs: Y, My, Ap/A,
Equations:
Y;l MO2
f(pO)_ ( 'Y—l , (y+1)/(y~1) (634)
1+—M,
;M3
Ay \?
f(PB)=f(P0) A, (6-35)
B
Y/Ar—1)
2_ [1 —%} (6.36)
P (p/p)
1 Y/ (y-1)
1+[1+4—f(1’°) ]
2
P;cva_ =£ (p/pt) (637)
P 2 2

m.a.

(2) The limitingly small area at blockage will occur when M, — 1, hence
show for this case

ABL 2_ MO2
(70_) - 1 Y+ /G- 1) (6.38)
| )

_._2__(14,7;

y+1 2

and show that for this case
p ( 2 )Y/(Yl)

6.4 The inlet

The remainder of this chapter will cover the internal behavior of the
engine; the inlet will be considered first.

Inlet losses arise because of the presence of wall friction, shock waves,
and regimes of separated flow. See Fig. 6.10. All of these loss mechanisms
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sHocks ="\ /\/|

\_s, KIN FRICTION

Fig. 6.10 Internal losses in an inlet.

result in a reduction in stagnation pressure so that
my < 1 (6.39)

Virtually all inlets are adiabatic to a very high degree of approximation,
SO

=1 (6.40)

The design of subsonic inlets is dominated by the requirements to retard
separation at extreme angle of attack and high air demand (as would occur
in a two-engine aircraft with engine failure at takeoff) and to retard the
onset of both internal and external shock waves in transonic flight. These
two requirements tend to be in conflict, because a somewhat “fat” lower
inlet lip best suits the high-angle-of-attack requirement, whereas a thin inlet
lip best suits the high Mach number requirement. Modern development for
the best compromise design is greatly aided by the advent of high-speed
electronic computation, which allows analytical estimation of the complex
flowfields and related losses.

Supersonic Inlets

Estimation of the losses within supersonic inlets is an easier task than for
subsonic inlets for the simple reason that the major losses occur across
shock waves, and hence may be estimated using the relatively simple shock
wave formulas. More exacting estimates require estimation of the
boundary-layer and separation losses.

In order to gain an understanding of some of the physical processes
involved, a deceptively simple apparatus—the fixed geometry inlet—is
considered (see Fig. 6.11). When the performance penalties of such an inlet
are understood, it becomes evident why more complicated geometries are
considered in the higher Mach number ranges. Thus, first postulate the
existence of an inlet designed to isentropically retard (“diffuse™) the flow
from a flight Mach number M, > 1, through Mach 1 at the throat, and
subsequently to M <1 at station 2.

Unfortunately, the inlet suggested (and illustrated in Fig. 6.12) will not
behave as postulated because (1) such an inlet cannot be “started” by
conventional flight practice, and (2) the flow in such an inlet is unstable.

In order to comprehend the “starting problem,” consider the behavior of
the flow in the inlet at a flight Mach number M,, less than the design flight
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I, 'S S S

Fig. 6.12 Fixed geometry inlet in unstarted condition.

Mach number, M,,. It is apparent that the inlet-to-throat area ratio 4, /4,,
must have a unique value in order to bring the flow from M,, at 4, down
to M =1 at 4,,. When the flight Mach number is less than M, this fixed
area ratio A,/A,, is too large, and the inlet cannot swallow the mass flow
approaching the area A;. As a result, a normal shock wave appears in front
of the inlet and the subsonic flow behind the normal shock wave is partially
spilled around the inlet.

It is to be noted that even when the inlet is accelerated to give M, = M,,,
the normal shock wave present in front of the inlet will decrease the
stagnation pressure so that the throat will still be unable to pass the desired
mass flow and the shock wave will remain in front of the inlet. It is possible
to consider diving the aircraft in order to increase the flight Mach number
sufficiently to have the shock wave pass into the inlet. Once this state is
reached, a slight movement of the shock wave further into the inlet will
cause a decrease in the local Mach number entering the shock wave. As a
consequence, the stagnation pressure behind the shock wave will increase
slightly, leading to a larger mass flow capability for the throat that in turn
leads to a reduction in the pressure behind the shock wave and the shock
wave “snapping”’ through the throat. Following this rather demanding
maneuver, the pilot could then carefully decelerate to M, = M,,, at which
time the Mach number at the throat would be unity and the inlet would be
shock free.

Unfortunately, even if the difficult maneuvering described in the preced-
ing paragraph was carried out, the inlet would not be stable to small flow
disturbances. Thus, if an upstream gust occurred to momentarily reduce the
flight Mach number to less than M,,, A4,/A,, would again be too large to
swallow the flow supplied and a shock wave would form within the inlet and
snap to the outside, thereby “unstarting” the inlet. Similarly, if a down-
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stream disturbance such as a momentary decrease in engine air demand
occurred, the throat would be back pressured, again causing a shock to form
and the inlet to unstart.

The Kantrowitz-Donaldson Inlet

In an early paper? it was suggested that in view of the operational and
stability problems inherent in the fixed geometry “ideal” inlet described in
the preceding paragraphs, it would be appropriate to size a fixed geometry
inlet so that the shock wave in front of the engine would be swallowed just
as the inlet reached flight Mach number M,,. This, as will be shown
quantitatively in the following, would require a larger throat area and would
lead to a Mach number at the throat M,, larger than unity. It was proposed
that the inlet be operated with the engine air demand such as to cause the
normal shock wave to stabilize slightly downstream of the throat. (That is to
say, the inlet would be operated in a slightly “supercritical” condition.) By
operating in this condition, the inlet would be made stable to both upstream
and downstream (small) disturbances. It is to be noted that the presence of
the shock wave will, of course, introduce stagnation pressure losses and that,
by operating with the shock wave slightly downstream of the throat to
enhance stability, an additional penalty is paid because the local Mach
number approaching the shock wave will be larger than that at the throat
and hence the shock wave will be stronger.

Analysis

Note that the very best performance for a fixed throat inlet will occur
when the throat is sized so that, with a normal shock at the inlet face, the
inlet will just swallow the air coming from the shock. As a result the shock
wave will “just” enter the inlet and hence be swallowed as described earlier.
Then it is postulated that the shock wave be stabilized “at” the throat, even
though that configuration would be unstable to downstream disturbances.

Figure 6.13 shows conditions at the initiation of the shock swallowing
process. The stagnation pressure ratio across the normal shock wave is given
by

p lilMo2 v 2 /(v
W
ik N zfl [1 +%(M02—1)] (6.41)
Mpp= !
A‘ Am

Fig. 6.13 Inlet at instant of starting.
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Because the Mach number at the throat, at this instant of starting, is
M, =1, Eq. (2.105) gives

A, 2 1 —l(y+1)/2(y-1)] P,
A—l—M{Y+1(1+TM )] —[1 (642)

and hence

/(x-D
ﬁ = M(;[(YH)/(Y_”]

1

L y-1,. ‘ 2y 2 _
7+1(1+ 5 MO)] [1+ —1(Mi-1)

(6.43)

This area ratio, which is the minimum area ratio that will allow the inlet
to “self-start” at the Mach number M,, is referred to as the Kantrowitz-
Donaldson contraction ratio.

When the shock wave just enters the inlet, it will continue toward the
throat, as described earlier. The limitingly good performance of the inlet will
occur when the shock is stabilized right at the throat. In order to calculate
the corresponding stagnation pressure ratio, it is necessary to obtain the
Mach number at the throat M,, immediately upstream of the shock wave.
See Fig. 6.14.

The flow prior to the shock wave is isentropic, so Eq. (2.105) may be
utilized to obtain M,, . Thus write

- y—1 M2 (y+1)/2(y-1)
M m A
F(M,, )= 72—1 . —Zm=0  (6.44)
=M 1

This equation is solved by Newtonian iteration. Thus, noting

Y_l 5 (r+1)/2(y—-1
M() M2 1 1 +_2 _Mm1

my

F'=

2 —
Mo {1+ 21M7- 1+%MO2

T ) N

) - M- '/ \'Mmz

ml
Fig. 6.14 Ideal fixed geometry inlet in started condition.
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Table 6.1 Fixed Geometry Normal Shock Inlet Performance (y = 1.4)

MO Am/Al Mm 776/

1.2 0.977 1.10 0.999

1.6 0.893 1.40 0.957

2.0 0.822 1.75 0.834

2.4 0.770 211 0.670

2.8 0.733 2.47 0.511
leads to

(Mml)j+1 = (Mml)j_(F/F’)j

The iteration is to be initiated with a suitable supersonic first guess for
M,, . Following solution for M,, , the stagnation pressure ratio

px,,,2 _ f)_'l
b P,

my

=7Td

follows directly from Eq. (6.41) with M, replaced by M,, . If the Mach
number immediately following the shock M,, is desired, it follows from

1+Y~;—1—M,f,l
2 _y—1
™, 2

M2 = (6.45)

The on-design performance of a family of fixed throat inlets, calculated
using the above equations, is tabulated in Table 6.1 for y = 1.4.

Off-Design Performance— Fixed Geometry

It is evident from Table 6.1 that the design performance of a fixed
geometry normal shock inlet degrades considerably for flight Mach numbers
in excess of about M,=1.6. It is the off-design performance that most
restricts the acceptable performance of this class of inlet, however. First,
consider the performance of a given fixed throat inlet as the flight Mach
number is varied from M,=1 up to M;> M,, and then returned to
M,=1. Assume that the engine demand is adjusted to keep the normal
shock at the throat, if possible.

The resulting performance is depicted in Fig. 6.15. Thus, as M|, increases,
m, corresponds to that for a normal shock at the flight Mach number. At
M, = M, , the shock snaps into the inlet, giving the design value of =,; then
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as M, continues to increase, the shock wave at the throat strengthens,
leading to increased shock losses.

The performance of the inlet upon reduction of M, repeats that with
increasing M,, except when M, passes through M,,. With good engine
matching and no incoming disturbances, the shock wave can continue to be
stabilized at the throat. This situation continues (but becomes progressively
more unstable) until the throat Mach number reaches unity and the shock
snaps into the freestream.

The variation of inlet pressure ratio with mass flow rate at fixed flight
Mach number is shown in Fig. 6.16. If engine mass flow demand is
decreased from the design value, the inlet plenum pressure will rise, forcing
the shock wave forward and hence unstarting the inlet. When engine mass
flow demand increases, the inlet mass flow remains at the value passing
through the throat, but the normal shock progresses further into the inlet.
As a consequence the stagnation pressure decreases (leading to an increase
in “corrected mass flow”).

The off-design characteristics discussed here are quite unsuitable and for
this reason fixed geometry, normal shock inlets are used only for aircraft
with low supersonic Mach number capability. Inlet concepts offering in-
creased performance over a wider operating range were illustrated in Fig.
1.6.

The external compression inlet offers the advantages of relatively simple
construction, short axial length, and good off-design performance. Note that
the final normal shock wave need not unstart in such an inlet, but rather
need only move sufficiently far forward to allow the required spillage. The
inlet ramp angles must be adjustable if the “shock-on-lip” design is to be

4

b e e et r - - .-

Mo Moqg

Fig. 6.15 Fixed geometry inlet off-design behavior with variation in flight Mach
number.
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My
m
Fig. 6.16 Fixed geometry inlet off-design behavior with variation in mass flow rate.

maintained at other than a single design flight Mach number. A disad-
vantage of the external compression inlet arises when used at high flight
Mach numbers because the required flow turning is so great that the
external cowl angle becomes excessive and generates strong external shocks
with consequent high drag.

The internal compression inlet does not suffer from the onset of excessive
external drags at high design flight Mach numbers, but does have its own
disadvantages. Thus, the geometry is such that excessive inlet lengths must
be utilized, and the off-design characteristics can be unacceptable if
sophisticated variable geometry is not employed. In order to “start” the
inlet, the shock system must first be swallowed and the geometry then varied
to locate the normal shock near the throat. Quick-acting throat and sub-
sonic diffuser bleed systems must also be provided to prevent the sudden
disgorging of the shock system (inlet “unstart”) with a change in engine air
demand.

The mixed-flow inlet design offers a useful compromise to these two
designs for use at high flight Mach numbers. Although it suffers from some
of the disadvantages of both, it offers the possibility of decreased inlet
length and geometrical complication compared to the internal compression
inlet.

Estimation of Losses in Supersonic Inlets

An upper limit to supersonic inlet performance can be estimated by
assuming that all the losses occur across the shock waves.

Figure 6.17 indicates the geometry and nomenclature for shock wave
interaction, and includes an example external compression inlet with three
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Fig. 6.17 Shock wave nomenclature and example of external compression inlet.

oblique shock waves followed by a normal shock wave. With the availability
of desk-top computers or calculators with branching and looping capability,
it is now more convenient to calculate desired quantities directly, rather
than to refer to tables. To this end, the following summary of equations is
suggested for estimation of inlet shock losses.

Summary— Shock Losses
Input for oblique shocks: M, 8, y

Equations:

1

L —y)(lfy)ztanS (6.46)

To solve this equation, assume y = 1/M, on the right side and calculate
a new value of y. Use this new value of y as an updated value on the right
side. Continue until appropriate convergence. (Note y is actually sin?f.)

ﬁ= Y+1 1/¢(y—1) (Y+1)M,2)’ v/ (y—1) (6 47)

P, | 2yMAy—(y-1) 2+(y—1)M?2y '
4+4(y=1)M2y+(y+ 1) My — dyM*y2 )’

Mﬁ{ (Y= D)M2y+(v+ 1)’ My -4y ,y} (6.48)

[2yM?2y =y +1][2+ (v - 1) MPy]
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The equivalent expressions for the normal shock wave have already been
presented as Egs. (6.41) and (6.45).

It is to be noted that two limiting values of the ramp angle occur, §*
which is that ramp angle just leading to M,=1 and §,_,,, the maximum
ramp angle for which an oblique shock solution exists. It can be shown® that

sin’f =
( ) 8 max 4,YM2

I

((r+1)M? -4

{(y+ D[y + )M+ 8(y—1) M2+ 16] } ) (6.49)

1
sin?0* = +1)M2-(3—
in 4YM,2((Y )M? - (3-v)

A+ D[+ DM =20 -y) M +y+9] )] (6:50)
For both cases the related value of 8 follows from

2cot §( M?2sin’@ — 1)
tand = : (6.51)
2+ My +1-2sin%0)

The 2related value of stagnation pressure follows from Eq. (6.47) (with
y =sing).

Effect of Distortion in Inlets

It is important to note that a major problem with inlets centers about the
lack of one-dimensionality of the flow. The shock system and wall friction
lead to areas of reduced stagnation pressure at the exit from the diffuser.
The static pressure is very nearly constant across the diffuser exit, so a
reduced stagnation pressure corresponds to a reduced axial velocity. Such a
reduced velocity will cause the rotor blade to encounter a sudden increase in
the angle of attack with the consequent possibility of a blade stall. In
addition, the shock system is unstable and produces time-varying fluctua-
tions in the stagnation pressure.

As a result of these distortion effects, engine compressors must be
designed with sufficient tolerance for distortion to operate without stalling
when distortion is present. Unfortunately, as is to be made evident in Sec.
8.1, increased tolerance can be provided only at the expense of decreased
design performance.

6.5 The Compressor

Compressors are, to a high degree of approximation, adiabatic, so that the
work interaction across the compressor per mass is just equal to the change
in the stagnation enthalpy per mass. Assuming that the gas is calorically
perfect across the compressor makes it easy to relate the temperature change
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to the desired pressure change. There are, in fact, three related definitions of
efficiency of use in describing compressor behavior, each of which is
described in the following sections.

The Compressor Efficiency, y.
The compressor efficiency is defined by

_ideal work interaction for a given pressure ratio
e ™ actual work interaction for a given pressure ratio

Cp(T;zi_ 7;2) _ [(7;3'/7;2)_1] — Tci_l

¢(r,-1,) [(n/1,)-1] 71

The ideal process is an isentropic process so that from Eq. (2.57)

I,

=D/
_ [P ) = 7D/

?’z- - ( p’z
hence

B WC(Y(-*I)/Yr -1

1, (6.52)

T.—1

Thus, for example, if the desired pressure ratio is given and the compres-
sor efficiency estimated, the stagnation temperature ratio and hence required
work interaction may be obtained.

The Compressor Polytropic Efficiency, e
This efficiency, which is related to the compressor efficiency, is defined by

o — ideal work interaction for a given differential pressure change
¢ actual work interaction for a given differential pressure change

The concept embodied in the use of the polytropic efficiency is that if it
may be assumed that the stage efficiencies are constant throughout a given
compressor (it will be shown shortly that the stage efficiency is very nearly
the polytropic efficiency), then by assuming that e, is a constant, the effect
of increasing the compressor pressure ratio (by adding stages) upon the
compressor efficiency may be estimated. Thus, when conducting a cycle
analysis the most appropriate compressor pressure ratio may be selected. So,

_dh,

€~ dn,

(6.53)
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The Gibbs equation (2.12) gives
T,ds,=dh,—(1/p,)dp,
but for the ideal process ds,; = 0, so that
dh,;=(1/p,)dp, (6.54)

Thus, writing dh,= C,dT,, Egs. (6.53) and (6.54) together with the
equation of state give

o —_9dp__ R dp/p
<~ pC,dT, C, dT/T,
hence
dT,_y.—1dp,
—_—= 6.55
7-; .YCeC pl ( )

Assuming that e, i1s constant over the range of interest (this is similar to
assuming that each stage efficiency is the same), Eq. (6.55) may be in-
tegrated immediately to give

i= (&z)(vcl)/nec
T, \p,

)

or 7, =mrh/ve (6.56)

Equations (6.52) and (6.56) give an equation relating 7, e, and the

COMPressor pressure ratio ,,

Ve

,,,C(n—l)/n -1

N=—-—— (6.57)

B 776(7“_1)/7"8‘ -1

This relationship is plotted in Fig. 6.18.
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Fig. 6.18 Compressor design efficiency vs pressure ratio.
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It can be seen that the compressor efficiency goes down with the increase
in the compressor pressure ratio for a given fixed value of e.. It must be
emphasized here that this behavior of compressor efficiency with pressure
ratio reflects the estimated behavior of a family of compressors designed to
different pressure ratios (and hence incorporating different numbers of
stages). Such a curve in no way reflects the expected behavior for a given
compressor operating off-design.

The Compressor Stage Efficiency

The compressor stage efficiency is defined in a completely analogous
manner to the compressor efficiency, except that the reference pressure ratio
1s that of the stage itself. Thus,

(WCJ)(n—l)/n -1
Ne, = T s -1

J T,

(6.58)

where the subscript j refers to the jth stage of N total stages.
To relate the stage efficiencies to the compressor efficiency, note

T, 1
o 1 Ye=1/Ye _
’I; 1 B TCJ 1 + nc. [(WC/) 1]
j— J
and hence
T N N B
T, = (Ti/\), =] ITC]= I—[l{l +T’L[(m/)(n 1)/Y[_1]} (6.59)
/o J= J= €
Thus

.n-c(n*l)/n -1

Me="n (6.60)
[+l a])

Equation (6.60) gives a method of predicting the efficiency of a compressor
from the (possibly measured) efficiencies of the individual stages. Note, of
course, that

N
=117 (6.61)
=17

In the special case where all stage efficiencies (n,) and stage pressure
ratios are equal, Eq. (6.60) reduces to the special form

.n-c(n*l)/n -1

Ne=
[1+@/n) (a0 —1)] ¥ -1

(6.62)
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Relationship between the Compressor, Stage,
and Polytropic Efficiencies

Equations (6.57), (6.60), and (6.62) give analytical relationships between
the various definitions of efficiency, but it should be of interest to see if 7,
formally approaches e, as the number of stages, for a given pressure ratio,
gets very large. (That is, the pressure ratio per stage approaches a differen-
tial pressure ratio per stage.)

For convenience write

y =g/ (6.63)
and
a1 = (064

Noting that y"/"N =exp(n,/Nény)=1+(n,/N)tny + O(1/N?), the left
side of Eq. (6.64) becomes

1
[1 s /ny] (6.65)
Then writing
xU/N = exp(1/Ntnx) =1+(1/N)tnx + O(1/N?) (6.66)

Comparison of Egs. (6.62-6.66) shows that

/v ]

T as N—- o0
e 7,({7(*1)/71",\ -1

and hence 1, — ¢, as N becomes large.

As an example calculation, say a 16-stage compressor of 7, =25 is to be
constructed. The compressor efficiency is to be estimated from the measured
stage efficiency 7,. Note that 7, = 25'/'¢ =1.223 and say 7, is measured at
0.93. Then from

,,,Swrl)/m -1

M= ,,,Swﬁl)/wn -1

it follows that

. [(v.— D) /v [ ¢nm,
Ctn[l4 (1) (a0 1)

= 0.932
]
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Two estimates for m, are obtained from Eqgs. (6.57) and (6.62), to give
n.= 0.897 or 0.896, respectively. It can be noted that if ¢, was assumed to
be equal to the measured 7,, Eq. (6.57) would have given 1, = 0.895.

The point of these manipulations is that use of the polytropic efficiency
allows rapid estimation of the compressor efficiency. In addition, for very
rapid preliminary estimates it is sufficient to assume the polytropic efficiency
is equal to the stage efficiency and then to utilize Eq. (6.57) to estimate 7.

6.6 The Burner

The burner is usually approximated as having adiabatic combustion
because no heat transfer is assumed at the boundaries. There are two
measures of the burner performance, incomplete combustion and stagnation
pressure loss. The burner efficiency 7, is defined as

1o .
o= rch [(m +og)h, - mh,}]
1o .
ik [(7n+ 1)) C, T, = G, T, | (6.67)

where h is the “heating value” of the fuel, h, the stagnation enthalpy
(CpT,), and n‘1f the fuel mass flow rate.

The stagnation pressure loss arises from two effects, the viscous losses in
the combustion chamber and the stagnation pressure losses due to enthalpy
addition at finite Mach number. These effects are combined for the purposes
of performance analysis in the burner stagnation pressure ratio 7,, where

Wb=p14/pt3 <1 (668)

As with the inlet, there are many important limitations brought about by
the lack of one-dimensionality of the flow (hot spots). These effects appear
in the preliminary cycle analysis only indirectly through the required
reduction in average combustor outlet temperature T, .

The Behavior of the Thermodynamic Properties
across the Combustor

In the cycle analysis to follow in Chap. 7, it will be assumed that the gas
prior to the combustor is calorically perfect with properties C,, v, etc.
Similarly, the gas following the combustor will be assumed calorlcally
perfect with properties C, , v,, etc. In very-high-temperature engines this
latter assumption is not highly accurate, and it should be understood
that, if highly accurate results are required, the real gas tables should be
used. The tendencies, and even magnitudes (provided vy, is selected in the
appropriate range), of the relatively simple calculations to follow are quite
suitable for preliminary cycle analysis.
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When considering changes in the thermodynamic properties C, and v, it
should be remembered that these two properties are related. Thus note

Y Yy R,
» =71 -1 M (6.69)
where R, is the universal gas constant and M the molecular ““weight.”
Thus, if the chemical reaction in the combustion chamber causes the
vibrational modes to be excited but does not cause appreciable dissociation,
and also if the rather small percentage of fuel addition does not significantly
change the molecular weight, then M would be approximately constant. In
this case, a reduction in v, is directly related to an increase in C, by the
formula

G _ Y Y—1

Py
— 6.70
G Yen—l (6.70

This approximation will be used throughout Chaps. 7 and 8.

One-Dimensional Estimation of the Burner Stagnation Pressure Ratio

Consider the effect of flameholder drag and enthalpy increase at finite
Mach number on the stagnation properties in a combustion chamber (Fig.
6.19). For simplicity, consider a constant-area duct and assume that the
drag may be estimated by relating the drag loss to the incoming dynamic
pressure. (Such an analysis tends to be most suitable to the description of
flow in a constant-area afterburner.)

To simply analyze the combustion chamber behavior, assume the gases to
be calorically perfect at the entrance and exit to the chamber, and in
addition assume that the mass addition of fuel is extremely small compared
to the air mass flow. The momentum equation may then be written

Pt P3u§ =pst P4”3 + (%Paug)co

FLAME HOLDERS

AN N
D

/

/nq

Fig. 6.19 Constant-area combustion chamber.
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from which

)2 1+

2
93“3( CD)
1+ 1--=+1)|=
p3 2 p4

pa¥s
4

or

Ps _ 1+ .MP1-(Cp/2)]
P3 1+y,M;

(6.71)

The state equation and continuity equation (p;u; = p,u,) may be com-

3

hence
T, _ uj 1 Pay Y _ Y M} P :
= L4 (6.72)
T, YRT, u2/(y.RT,)\Ps) Y. v M2\ Ps
Also
Y — 1 2
L, T, 3 M (6.73)
T, T, v.-1 '
14t~ oM
Combining Eqs. (6.71-6.73) then gives
-1 -1
M2 (1+ 2 M1+Y—m2)
2 'Yc 2 s _
232 Ty, 2! CAI2 T~ x (6.74)
e s I

This is an equation for M, in terms of the upstream variables and
prescribed stagnation temperature ratio 7, /T, This is once again of the
same functional form for the Mach number as occurred in the solution for
the heat interaction at constant area (Sec. 2.18), so as before

M2= 2X - (6.75)
1-2yx+[1-2(v,+ x|’
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™ / M,
Lo = 0.

T~ /_.. 4
095 \,\ 0.3
090 // \ 0.2
0.85 /( Jo!
0 .05 I0 15 20 25

3

Fig. 6.20 Combustion stagnation pressure ratio and exit Mach number.

080

Following solution for M,, the desired stagnation pressure ratio m, is

given by
( -1 s L ZASTaRY
)

= 2 Ps
;’— = ’7Th = 1 NPT p3 (676)
’ (1 + 2 M3)

where p,/p; is given by Eq. (6.71).

As an example calculation consider an aircraft flying at Mach number 0.8
with compressor pressure ratio =, = 15. Given T, /T, =7, vy, =14, v,= 1.3,
e, =0.905, and Cp, = 1.5, the result 1S

T, T/T_T/h
T, (LyT)T/%)

Here 7,=1.128, and 7, = (15)!/ 33099 =2354 so0 T, /T, = 2.637. Direct
calculation then yields the results of Fig. 6.20. '

It is evident from Fig. 6.20 that for these conditions the inlet Mach
number must be restricted to a value of 0.15 or less if the combustor
pressure loss is not to become excessive. This restriction to low required
Mach numbers, particularly in afterburners, can lead to design limitations
upon the required burner cross-sectional area.

6.7 The Turbine

Unlike compressors, modern turbines are almost always cooled, at least in
the first several high-pressure stages. Cooling is accomplished by passing air
directly from the compressor to the turbine blades where any one of several
cooling methods may be employed. The “accounting” of cooling losses 1s
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best carried out by considering the cooling air and mainstream air to be a
combined multiple-stream adiabatic flow. In this section, the so-called
adiabatic efficiencies will be described and estimation of the effect of cooling
will be considered to be separately determined.

The Turbine Efficiency, n,

The turbine efficiency is defined in a manner analogous to that of the
compressor efficiency to give

__actual work interaction for a given pressure ratio
*  ideal work interaction for a given pressure ratio

CP(Y;«a_ 7;5) — 1'—71
¢(r,-1,) 1-m

The ideal process is isentropic so

1-1

, (6.77)

- 1— 7,[(7,—1)/71

The Turbine Polytropic Efficiency, e,
Again, analogous to the compressor polytropic efficiency, define

_ actual work interaction for a given differential pressure change
*  ideal work interaction for a given differential pressure change

Thus

dh

! _—

C,dT,
e = =
! dhl, (1/p1)dpl

or

PR Y 74
! Yl_l dpl/pl

Hence, if e, may be assumed approximately constant, integration gives

T )4 e, (v~ 1)/,
s = ($) or 1= 77131(7171)/71 (6.78)
I, \np,
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100
m =13
! d-09
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/] d
0.9

| 10 20 30 40
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Fig. 6.21 Turbine design efficiency vs pressure ratio.

Equations (6.77) and (6.78) then give

1- 77"’1(71_1)/71 1- T,

M= 1-— ,,T’(le)/h B 1-— Tll/t’, (6.79)

This relationship is plotted in Fig. 6.21.

It can be seen that the turbine efficiency increases as the turbine design
expansion ratio (1/7,) increases. This occurs because energy that is not
extracted in a given stage due to inefficiencies remains partly available to the
succeeding stages.

The Turbine Stage Efficiency

The turbine stage efficiency is defined in a completely analogous manner
to the turbine efficiency, to give

1-r

N, = (711/—1)/71 (6.80)
1- (771])

Noting
(v,— 1/ N
'r,j=1—n,j[1—(w,1)” 7’] and TI=I]1T,1
j=
it follows that

1= T1{1=n,[1=(=)7")

j=1

= 1— g/ (6.81)
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Table 6.2 Component Figures of Merit

“Figures of Merit”

Ideal Behavior Actual Behavior
Inlet
Isentropic, hence Adiabatic, not T,
isentropic, hence
=1 m=1 =1 m,%1
Compressor
Isentropic, hence Adiabatic, not isentropic
.,Tl(vfh/vc -1
- AWm = CpL.TIZ(T(' - l) - AWm = Cp(TIZ(Tc - l) Ne= -1
;
7 = .,l_v(-/(vc-l) 7= +n.(r.— l)]YC/(Yc_l)
1 .,T(.(vrl)/vc_l
r.=1 +_[.,T‘_(v(»—1)/v(- 1] M=t
1, ive Yeee — 1
‘ Burner
No stagnation pressure  Stagnation pressure loss, ™
loss, complete com- incomplete combus-
bustion tion
m, =1 m,#* 1 Ny =
(i + mf)CplTia — mcltha
(m+mf)CP4T14 (m+mf)CP17;4=
- mcﬁaTh = mfh me(-le + nbmfh
Turbine
Isentropic Adiabatic, not isentropic
1-r1
Aw,=C, T, (1—1) Aw,=C, T, (1~-1) n,= Tfr“/”
I3
1 v/ (v~ 1)
77[:7171/(71*1) 771= l_'——'(l_’T[)
LA
_ 1-—r1
= [1 - 7)1(1 — 1)/v,)] n, = - Tl;e‘
I
Note: Cooling to be
considered separately
Nozzle
Isentropic Adiabatic Ty
. =1L =1 =17 #1
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In the special case when all stage efficiencies 7, and stage pressure ratios
are equal, Eq. (6.81) reduces to

T
- 1 — 7=/

(6.82)

M

6.8 The Nozzle

The major loss mechanisms in a nozzle are usually identified with the
pressure imbalance at the exit caused by over- or underexpansion. The
degree of over- or underexpansion is often selected for the best balance of
internal (exit pressure) and external (boat-tail drag) losses. In any case, the
boat-tail losses are separately accounted for when the cowl drag is de-
termined and the effect of exit pressure imbalance is included in the
expression for F, [Eq. (6.8)].

For convenience all losses occurring from the turbine exit to nozzle exit
are included. Thus,

T, = P/ Py, <1 (6.83)

For engines without afterburners, =, is usually very nearly unity (0.99 or
larger), but when the flameholder ducts are present 7, can be much lower
(~ 0.97). When afterburning is present , can be estimated by the analysis
of Sec. 6.6.

Table 6.3 Typical Ranges of Parameters

380 — 580 (high altitude — very hot day, sea level)
T, °R 2400 — 2900

T.T,.°R 2700 — 3400 (upper limit temperatures, not necessarily appropriate
for best performance)
Ys YAB: YaB' 1.35 — 1.25 (y goes down as T goes up)
h Btu/lbm 18,500 — 19,500
Btu
G, =024 bm °R
Subsonic 0.98 — 0.998

7 .
4 Supersonic

May approximate design value with formula such as
7, =1.006 — 0.016 M?

m, 0.93 - 098

N, 0.96 — 0.998

TAgs TAl’ 0.93 — 0.99 (high values if burner ring in place but no
burning present)

NaB> Nap’ 0.92 - 0.98

LA 0.99 — 0.998 (if afterburner present, as 7,p, Top')

Ny 1 — 0.9 (0.9 implies substantial power takeoff)

e, 0.86 — 0.94

€. 0.85 - 0.92

e 0.85-0.92
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Usually nozzles are very nearly adiabatic, so that
T =1 (6.84)

In some cases of afterburning, the nozzle may be cooled with compressor
air, in which case it would be necessary to consider a two-stream analysis.
Such an analysis is straightforward conceptually, although somewhat tedi-
ous algebraically, and will not be included in this book.

6.9 Summary of Component Figures of Merit

The loss mechanisms and their measures considered in the preceding
sections may be summarized as in Table 6.2. Table 6.3 provides typical
ranges of parameters found to be appropriate for present day technology.
The table is given in British units, see Table 5.2 for conversion factors for SI
units.
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Problems

6.1 Calculate and plot the dimensionless additive drag D,,4/A,;p,
over a range of inlet design Mach numbers, 0.2 < M, < 1, for the two flight
Mach numbers M, =0 and 0.85. Use a one-dimensional estimate for the
drag.

6.2 Verify that Egs. (6.22-6.28) are correct.

6.3 Obtain Eq. (6.33).

6.4 Obtain Egs. (6.34-6.38).

6.5 A flow within a duct closely approximates a “step profile.”

Denoting conditions in the stream by subscripts 1 or 2 and given «
=rm,y/m =12, p, /p,=13,T, /T, =0.6,and M, = 0.5, evaluate the ratios

. /P, a0d p /p, .

6.6 An internal compression inlet with variable geometry is designed
to stabilize a normal shock “at” the throat at a value of M,, for all flight
Mach numbers above M, =M, =1.5. (See Fig. A.) The flow elsewhere in
the inlet may be considered to be isentropic.
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Fig. A

(a) Show that the dimensionless thrust on the inlet F/A4, p, may be
calculated from the hierarchy of equations

1+ X1y
2 2 i
Mm2= —
2 _ 1 -
M, 2
y—1 ) y-1 s (r+1)/2(y—1)
— —M
Mz:ﬁMlez 1+ 3 Mm11+ 2 5
A M, vy—1 y—1
2 ! 1+—2—sz 1+—2-——M12
y+1, , y/(y—1)
Ty My -l/(y—D
plZ: —2—1_ 1+ = ZY (M2_1)
P y-1 y+1
0 1+ M2
2
_ y/(y—1)
Z,- (1+ 21M,.> (i=1or2)

Py _ Py /P
Py Py P,/Pa

F _ p A4,

—= 1+ yM37)—(1+yM}
A p P1A1( Y 2) ( Y 1)

(b) Evaluate F/A,p, over the range 1.5< M, <3.0 for the case
M, =13, y=14,and 4,/4,=1.

(c) Evaluate F for the case M, = 3.0 for conditions as in part (b), and
for T, = 400°R, p,=p, =138 lbf/ft2 and an inlet diameter of 5 ft.

(d) If the engine specific thrust is 40 1bf/1bm /s, what is the ratio of
this “inlet thrust” to the engine thrust?

6.7 (a) You visit a facility and are shown an aircraft inlet design.
You are told that when in operation the Mach number just downstream of
the shock located “at” A,, is M,, = 0.83, that 4,/4,, = 1.20, that y=1.39,
and that the flight Mach "humber is “secret.” Obtain an estimate of M, to
three significant figures.

(b) Can this inlet operate if its geometry is fixed?
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3 3+1) 3+2)
Fig. C

6.8 An inlet is designed with a two-dimensional ramp that creates an
oblique shock. The oblique shock is followed by a normal shock just
preceding the cowl. (See Fig. B.)

(a) With the assumption that the only losses occur across the shock
waves, calculate 7, for the cases: y=14, M;=1.9, and §=28, 13, and
18 deg.

(b) Compare the performance of the 8 deg ramp to the 13 deg ramp if
the aircraft is flown at M, =1.4.

6.9 A supersonic inlet is constructed with three two-dimensional
ramps of progressively increasing slope change as indicated in Fig. C (angles
measured in degrees). Prior to entry into the inlet a normal shock occurs.

(a) Obtain 7, for the cases M,=2.5 and § =9, 10, and 11 deg.

(b) Select the inlet from part (a) that gives the best performance and
accurately draw the required ramp geometries to cause all of the shocks to
intersect at the cowl lip. The inlet height H is to be 4 cm on the drawing.

6.10 A supersonic inlet is constructed with two two-dimensional
ramps. Following the second oblique shock, a fixed throat inlet is used for
internal compression (Fig. D). The inlet is designed to self-start when the
flight Mach number M, is 2.2. For the case where 8, = 7 deg and 8, = 8 deg
(y=1.4):

(a) Obtain =, assuming the inlet starts. Also, obtain the required
A, /A,

(b) Obtain =, assuming the inlet does not start.
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T 59°F 234 947 2343 1527 994

P 14.7 psia 36 352 330 88

IIIIII[I}JMM‘C[ jl“llllllu

______—_ﬁ_'\_

6.11 In the text, the efficiency of an inlet is defined as its stagnation
pressure ratio m,. Thermodynamically, an inlet may be considered to be a
compressor that adiabatically compresses the air from p, to p,. Thus,
defining the “classical inlet efficiency” n, the same way as 7, was defined,
show that:

(a) =

1',77}7_1)/7 -1
7.—1

(b) e;=1+¢nalty V'Y /bnr

(c) Evaluate n, and ¢; for an inlet that obtains =,=0.88 when
M,=238.

6.12 The conditions existing throughout the core stream of a commer-
cial turbofan engine (for takeoff setting) are indicated in Fig. E.

(a) Given y.=14, y,=1.3, estimate M, Mcp €crs €crr Ners Mens
e,., and e, Note that n., =36/14.7, 7., = (234 + 459.7) /(59 + 459.7),
etc.

(b) Some of the resulting efficiencies might seem inappropriate. Ex-
plain what might be incorrect in your assumptions inherent in estimating
the efficiencies as in part (a).
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6.13 A compressor of pressure ratio 32 has a measured efficiency of
89%.

(a) What is the compressor polytropic efficiency?

(b) If the compressor is a “two-spool” compressor with the high-pres-
sure spool contributing a pressure ratio of 6, estimate the low-pressure
compressor efficiency n, and the high-pressure compressor efficiency 1,,.

6.14 A compressor is composed of 15 stages, each with a pressure
ratio of 1.24 and a stage efficiency of 0.92.

(a) What is the compressor pressure ratio?

(b) What is the compressor efficiency?

(c) What is the polytropic efficiency?

(d) Evaluate the compressor efficiency assuming that the polytropic
efficiency is equal to the stage efficiency.

6.15 A constant-area burner has an entering Mach number of M,
= 0.1. Obtain and plot m, and M, vs T, /T, intherange 1.5 <T, /T, <3.5.
Take y,= 1.4, y,=1.28, and Cp, = 1.5. ’ ’

6.16 A constant cross-sectional area afterburner has C,, = 1.7, y =1.25
(y=v.=v,), and an entering Mach number of 0.3.

(a) Determine the burner stagnation temperature ratio (7, /T, ) hoke
that will just cause choking in the (constant-area) channel. ‘

(b) Plot myy vs T, /T, over therange 1 <T, /T, <(T,./T,)cnoke-

6.17 A compressor of pressure ratio 7. = 30 and efficiency 7, = 0.89 is
driven by a turbine with e, = 0.90. Assume no leakage between the compres-
sor and turbine and that f=0.02, y,=14, y,=1.3, T,= 460°R, and
T,,= 2600°R. Determine 7, and 7,.

6.18 A nozzle has expansion ratio p, /py=P, v,, and 7. Find an
expression for Ty in terms of v, m,, P, and 7, .



7. NONIDEAL CYCLE ANALYSIS

7.1 Introduction

In this chapter cycle analysis is again applied to several example engine
types. The methodology will remain as in Sec. 5.8, the only difference
between the results of this chapter and those of Chap. 5 arising because of
the nonideal component processes assumed and because of the use of
different thermodynamic properties following the primary burner and
afterburners. The notation is that already introduced in Sec. 5.2.

7.2 The Turbojet

The performance equations for the turbojet will now be developed. It will
be assumed that the gas is calorically perfect up to the compressor outlet
with properties v, C,, etc. The gas will also be assumed calorically perfect
following the burner with properties v, C,, etc. If an afterburner is in
operation, the gas following the afterburner will again be assumed calori-
cally perfect with properties y,p, C,,, etc. It will be assumed that the gas
constant remains unchanged throughout so that Eq. (6.70) (or the equiva-
lent for C, = and y,p) remains valid. All components will be considered to
be adiabatic (no turbine cooling) and the efficiencies of compressor and
turbine will be described through the use of constant polytropic efficiencies.
Finally, the effects of gas leakage and the use of drawn-off air for auxiliary
power will not be included. The reference stations are indicated in Fig. 7.1.

The analysis to follow will be developed in a form suitable for use
whether or not an afterburner is present or in operation.

Cycle Analysis of the Turbojet with Losses

The expression for the uninstalled thrust is as given by Eq. (6.8). That is,
with the station numbering of Fig. 7.1,

F,4=’h9u9"’h0u0+(P9_P0)A9 (7‘1)

Because gas leakage and the use of auxiliary air is ignored,

thg=rivg+ i+ =mo(1+f+fup) (7.2)

231
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Also note

1 Ap D
i (o= o) Ag= (141 + fg) 202 ( ;g)

- (1+1+fan) Up RT, ( Po)

ug/uy  ud/(v.R.T,) YR.Ty Py
or

1 1 Po\ T
s (Po=Po)As=(1+f+fup) Mzu/uo(l pg)Tz (7.3)

In Eq. (7.3) Ry= R, has been utilized. Equations (7.1-7.3) then give

=a,|(1 +f+fAB)(MOZ—§) -M,

1 T, P
+(1+f+ *—9(1 O) 7.4
(1+f fAB)Yc[MO(”9/u0)] Ty Py (7.4)
2
2( ¥o YapRap Ts,
MO("O) B Ych' T0M9 (75)
Then noting
Yap 1 G
T,9=T9(1+ A M92)=T0(/,’+’Arm (7.6)
and
YaB — 1 Yap/(Yap— 1)
Prg*P9(1+ AB2 M92) = PoT My T T, (7.7)
| 2 3 4 56 78 9
N AR SR A O S €
STIIC ] < &

X

Fig. 7.1 Turbojet reference stations.
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write

0 )2 (vYaB—1)/7vaB
M2=——|[ 22 -1 78
® Yap~—1 [( Ps ) (78)

and

M2 b 2= YABRAB Cp(_ 2 . 1- & —[(vap—1)/vaBl
0 Uy YCRC C YAB_l Aap J2)

PaB

2 —[(vaB—1)/vas]
o U\ _ 2 _ (P
MO(uo) - vc—l”“[l (Pg) ] (79)

or

Also note

IE P (Cpc/CpAB)'r}‘AB (7 10)

T, (Yas— 1)/
0 (Plg/Pg) YAB YAB

Equations (7.9) and (7.10) allow determination of the principal terms in
the expression for the specific thrust, except that the turbine pressure ratio
7, must be obtained from the power balance between the turbine and
compressor. Thus,

mOCp((T;j - T;z)= (m0+mf)cp,nm(7;4_— 7:5)

Dividing by r,C, T, and rearranging

1 T

RN (E5

(r,—1) (7.11)

T

and then

a, = 11/ De (1.12)

It should be noted here that the mechanical efficiency 7, will normally be
very high (approximately unity) for most gas turbine engines. However, by
retaining 7,, in the equation, a convenient method of accounting for the
auxiliary power takeoff is provided.

Finally, expressions are obtained for the fuel-to-air ratios from the
enthalpy balances across the appropriate burners.

Primary burner. An enthalpy balance gives

ioC, T, + mytit h = (g + i) C, T,,
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Dividing by m,C, T, and rearranging, there is obtained
o%~p .t 0

™\ e (7.13)
(hm,/Ccho) — T

f=

Afterburner. An enthalpy balance gives

(g +m,)C, T, + napty b= (g +m, +m, )C

Pap 'x
Dividing by r1,C, T, and rearranging,
Tra,e — TaTy
=(1+f) - 7.14
AP (h"AB/Ccho) " Thus ( )
The specific fuel consumption may then be written as

P +

S= U+ g) (106) = f f“’ e (10°) (7.15)

F

Equations (7.1-7.15) may now be arranged in an order to allow direct
calculation of the desired performance variables in terms of the imposed
flight conditions, design limits, design choices, and component efficiencies.
The equations are summarized in the next section.

Summary of the Equations— Turbojet with Losses
Inputs: To(K)[°R]. Y., ¥s Yap» G, G, ,»

C, (J/kg- K)[Btu/Ibm - °R], 4 (J/kg)[Btu/lbm],
'”dy"rhy nh’nAB’nm’ LA

P9/ Pos Tas Thags Ter Mo

) i N-s F, 1bf
OQutputs: mo( kg )[gomo’ lbm/s]

mg \[ lbm fuel/h] .
S(N-s)[ 1bf thrust + /> Jas, €12
Equations:

1 Y
R ,=~<—C, m’/s* K [RC—

c

2. OR] (7.16)
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ag=\v.R.T, m/s[ft/s] (7.17)
-1
=1+ 221y (718)
7, = 1Y/ =D (7.19)
7, = m D/ v (7.20)
- ™" e (7.21)
1= U/ G T0) =12
1 T,
- Mre_ _ 7.22
Tt 1 nm(l +f) T)\(Tc 1) ( )
7w, = T['Yr/('Yt_ e, (7 23)
P, D
R Y— 024
5 _ (Cpc/CpAB)T)‘AB (7 25)

TO (PIQ/PQ)(YAB_D/YAB

Note: 1f no afterburning is present, 7,  should be put equal to 7,7, Also,

G,,, and v,p should be put equal to C, and v,

fan=(1+7) e T (7.26)
AB (hnAB/ Ccho) T TAns
ug 2 P, —[(YaB—1)/Yazl 2

=52t (5 7

L. ao{(l + 1+ fyw) Moy2 )~ Mo+ (1:{1\;{2\33%5]%) 1- 2_2)}

(7.28)

(To obtain British units of 1bf/Ibm/s, replace a, in meters/second with
a,/32.174 where a, should be given in feet/second,

(f+fan) _ 3600(f+fAB)]

S="Fm, 10°) [S Fy/goMo

e (7.29)
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Example Results— Turbojet with Losses

As a first example consider a turbojet to be designed for flight at Mach 2
without an afterburner. A range of possible pressure ratios is considered

and the following characteristics assumed:

T,=2333K Y. =14 e.=092,0.89
[420°R] Y, =135 e,= 091
G, =996.5J/kg-K 7, = 0.9425 Po/Po=1
[0.238 Btu/Ibm - °R] 7, = 0.98 h=4.5357(107) J /kg
G, =10982J/kg-K 7, = 0.99 [19,500 Btu/1bm]
[0.262 Btu/1bm - °R] 7, = 0.97 =17
7, =0.99

Figure 7.2 indicates that the general trend in the performance of the
turbojet with losses is quite similar to that of the ideal turbojet depicted in
Fig. 5.21. The most notable difference in the trend is that when losses are
present a minimum exists in the specific fuel consumption, whereas in the
ideal case the specific fuel consumption continues to decrease with increas-
ing compressor pressure ratio.

If the engine were to be used without afterburning, the designer would
again be faced with the choice of selecting an engine with low thrust, large
pressure ratio, and low specific fuel consumption as compared to one with
high thrust, low pressure ratio, and high specific fuel consumption. Another
aspect of the designer’s dilemma becomes apparent when comparing the
curves obtained for the two different compressor efficiencies. Thus, for
example, if a designer chose a compression ratio of 30 for use in a
supersonic transport because his compressor design group had promised a

F/m S
Ns/kg \\ ——ec=0.92 mg/Ns
600 \\-—-ec=0.89 — 45

\\\\;\
400 S 40
b~
20 35
ce| o
0 30
0 0 7 20 30 40

[
Fig. 7.2 Effect of compressor pressure ratio.
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Fig. 7.3 Effect of exit pressure variations on specific fuel consumption.

compressor with e, = 0.92 and then the group delivered a compressor with
e.=0.89, it can be seen that the choice of 7. =30 would be quite inap-
propriate. That is, such a compressor would be of a higher pressure ratio
than that leading to minimum fuel consumption. Thus, the designer would
have a compressor that was heavier (and more expensive) than that leading
to a minimum specific fuel consumption, and he would also have lower
thrust per frontal area.

The effects of nozzle off-design can be investigated by considering the
engine to have the same parameters as those indicated above, but to have
various values of po/p,. Figure 7.3 shows the effect upon specific fuel
consumption of varying the exit pressure for an engine with = =16,
e. = 0.92, and other parameters as given above.

It is apparent from Fig. 7.3 that variations in the pressure ratio py/p, in
the neighborhood of py/p,=1 do not strongly affect the specific fuel
consumption. Hence, it is of great importance to consider this mild sensitiv-
ity of S to py/p, when designing a nozzle so as to select that nozzle giving
the best combination of internal and external performances.

In order to assess the effects of afterburning, an engine was considered
with the same characteristics as those described above, but with the addition
that e =0.92, 1,5 =0.96, 7, = 0.96 burner on or = 0.98 burner off, Trns
= 8.8, and v, = v,. Figure 7.4 shows the results.

7.3 The Turbofan

The performance equations for the turbofan will be developed with the
same, or equivalent, assumptions as utilized for the analysis of the turbojet
in Sec. 7.2. The equations will be developed to allow for both primary
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stream afterburning and/or secondary stream afterburning. Only the case
of separate exhaust streams will be considered here, as it is hoped that the
techniques of cycle analysis as developed herein together with the results of
Sec. 5.13 will enable the interested reader to rapidly generate an analysis for
the mixed stream case if so desired. The reference stations are indicated in
Fig. 7.5.

Cycle Analysis of the Turbofan with Losses

The expression for the uninstalled thrust can be written as the sum of the
thrust contributions of the primary and secondary streams to give

Fy=(m +m+m, Yug—rus+(py—py)ds + (et Jug

—Mmguy+ (Ps'_Po)As' (7.30)



NONIDEAL CYCLE ANALYSIS 239

This expression can then be manipulated in a manner completely analogous
to that of Sec. 7.2 to give

F,
mt,+r'n,=lioa{(l+f+fAB)(M°:_z)_MO
SR N YA
+(1 +f+fAB)Y¢-[MO(u9/u0)] To(l Pg)
ug) 1 L, P
+a (1+fAB’)(M0uO) M0+(1+fABI)‘Yc[M0(u9'/u0)] T, (1 pgf)}}
(1.31)

Secondary stream. The temperature and pressure relationships for the
secondary stream may be written

= Yap — 1 G,
T, = Tg,(l + 55 Mg%) = Tb‘C;i:TAAE (7.32)
Yap — 1 Yap/(Yap'—1)
P = o1+ 22 (7.33)
where
Py, P
70 P—:w,wdwc,wn, (7.34)

Hence noting that
2
Uy YapRap Ty 5
Mz(—9) = A AR 2
0 Up YcRcTO °

the following expression is obtained

2 —[(Yap' = 1)/7ap]
o U\ _ 2 [P
Mo ( Uo ) R [1 ( Py ) ] (7.35)

Primary stream. The relationships of Sec. 7.2 leading to Egs. (7.9) and
(7.10) remain identical for use in the description of the turbofan primary
stream. The expression for the turbine temperature ratio must be modified,
however, to include the effect of power extraction by the fan. Thus, for the
power balance of fan compressor and turbine

1. Gy (T, = T) + G, (T, = T,) =, (in, + i )G, (T, = T,,)

fs
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Dividing this expression by ri1 C, T, and rearranging,

1 T,
=l G “[(1.-1) + a(r, —1)] (7.36)
Also,
= 10/ De (7.37)

Expressions for the fuel-to-air ratios are obtained by considering en-
thalpy balances across each of the burners. The expressions for the primary
burner and afterburner remain exactly as given by Eqgs. (7.13) and (7.14).
For the secondary afterburner

ipC, T, +r, nap ——(mF+mfAB)

PAB’ ’x

Hence, dividing by m C, T, and rearranging,

T - TT.
Fap = Aap < (7.38)
(nAB’h/Cp(.TO) T Thap

Finally, the specific fuel consumption is obtained from

(rhf+ rhfﬁﬂ‘*"h/u,) (109) = (f+fap+ @fap) (10°) (7.39)
y

1 +0‘)[FA/(’hc+’hF)]

Equations (7.9), (7.10), (7.13), (7.14), and (7.30-7.39) completely describe
the desired performance behavior of the turbofan. The equations are
summarized in a form suitable for calculation in the following.

S =

Summary of the Equations— Turbofan with Losses
and Bypass Ratio Prescribed

Inputs:  To(K)[°R], Y, Y Yap+ Yan» G Gpo G
C,.. (J/kg- K)[Btu/lbm - °R], & (J/kg)[Btu/Ibm],
Tas Ty Tus Tt Moo NABs MAB M »
€cs €05 €5 Po/Pos P9/ Pos Ths Th s Thap

M, o

C’ C’
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F, N-s
Outputs: o mF( kg )

F, Ibf
go(r, + ) tbm/s

mg \[ Ibm fuel/h]
S( N-s )[ Ibf thrust o[+ fans fap's €tc.

Equations:

Ye—1
<~ Ty, G, m’/s*-K

v.—1 °

ag=y.R.T, m/s [ft/s]

Y.—1
2

=1+ Mo2

= Y /(=D
=1

= (Y1) /e
T =al% e

T, = (,”c’)(n—l)/nerl

™ — T,7,

hn,/C, To) — T

=1

1 T,

- %(1—_”)77[(%— 1) +a(r, - 1)]

T=1

t”’ = TfY:/('Yr—l)el

5 — ( CP/ CPAB) has

TO ( p")/pg)(hn —1)/Yap

241

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)
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Note: If no primary stream afterburning is present, then T\, Should be
put equal to 7,7, Also, C,  and vy, would be put equal to C *and Y

ug 2 P, ~va—1)/vaBl |\ 2
Moy = {“77—1% [l - (;;) (7.51)
Py, P
P_:/ = P_;),Wrﬂa'ﬂc Ty (752)

& - (C / PAp’ )’r}‘AB'
T, (Ptg,/Pg/)('YAB 1/ Yap

(1.53)

Note: If no secondary stream afterburning is present, then Ty, Should be
put equal to 7,7.. Also, C, = and v,p would be put equal to G, and v,

Ez 3 2 Pt [(vap'—1)/7ap’]
MO Ug = {FT)\AB, [l ( Do ) (754)
=(1+f) I (7.55)
+ AB .
Tu (hﬂAB/C To) T Tang
f Ty, — TT. ( )
)= > 7.56
AR (hnAB’/CchO) = Thap

F, ay

i = T | (17 o) (Mo ) — Mo+ (1414 £up)

1 5 Po
X YC[MQ(“‘)/“O)] Ty (l Pg)
+a[(l +fAB’)(MoZ_:) - M,

Y[ Mo (ug/up)| To Py

+(1+fAB/)+&(l— &)}} (7.57)

(To obtain British units of lbf/lbm/s, replace a, in meters/second with
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a,/32.174 where a, should be given in feet/second.)

_ (f+fan + afan) 6 _ 3600( f + fan + afan’)
S= v ES Gt ] 0 5™ Wr ) Fu/goln, + 1r)]
(7.58)

Operation with Convergent Exit Nozzles

In the usual subsonic transport application of separate stream turbofan
engines, no afterburning is utilized and the pressure ratio across both the
primary and secondary nozzles is not very large. Often, therefore, only
convergent nozzles are employed. In such cases, if the nozzles are choked,

% _ (inl)”/(”_l) ind _p;,_: _ (Y,; 1 )y’m’_l) (7.59)
Thus
Po _ Pu/Py _ [(y+1)/2]77 (7.60)
Py Pi,/Po T Ma e My
and
po _ Po/Ps _ [+ 1)/2]"" 70 (7.61)

Py P 19/ Po Ty T T Ty

Equations (7.60) and (7.61) would then be utilized in Eq. (7.57) to give
the specific thrust. Note that the expressions are valid for a convergent
nozzle only when p, and/or p,. are larger than p,. If Egs. (7.60) and (7.61)
predict that p, is larger than py or py, the given nozzle will not be choked
and in such a case the exit pressure should be taken equal to p,.

Selection of Parameters Leading
to Minimum Specific Fuel Consumption
The hierarchy of the equations contained in the preceding summary can

be viewed as a functional expression for the specific fuel consumption given
in terms of the design parameters 7,, 7., and «a; thus,

S=8(nr, w., a)
Formally at least, the minimum value of S could be found by obtaining

the three partial derivatives of S with respect to 7, 7., and a and then
equating the expressions to zero to obtain three equations for the values of
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the parameters leading to the absolute minimum in S. In practice, it is
relatively straightforward to obtain the minima with =, and «, but algebrai-
cally complex to obtain the minimum with =. However, it is a simple
matter to plot the resulting value of S vs = at ‘the Jjoint minimum with 7.
and a to locate the absolute minimum. Fuel efficiency is a paramount
consideration for transport aircraft, so attention will be directed to non-
afterburning engines with the exit pressure matched in both streams. For
such a case, it is evident that the minimum in S occurs (with 7, and «)
when the denominator of Eq. (7.58) reaches a maximum, which itself occurs
at the maximum of the function G given by

G=(1+f) (MOZ—Z)Z—MO+a[ (Mou—o’)z—Mo] (7.62)

Note the subsidiary relationships and definitions

2 (l—e.)
w2 | e
(Mo u, ) T y.—-1 [T’TC’ (,”d,”n/)(vc—l)/vc} (7.63)
2
W\ _ 20 (1 ey
(Moge) =32 (n oo (7.64)
1 T,
T, 1—mg[%—1+a(n/—1)] (7.65)
7. = ,,-Cycec'/(vrl)’ 7, = 7Y/ (=1 7, =¥/ (v De
TA = Tr’rce;c'(wdﬂn’)(yc—l)/yc’ H = (Wr'”d'”c'”b'”n)(y'—l)/y‘ (766)

It follows that

3[M0(u9/u0)]2_ —2ar, [ 1 l-e) _ e,]
I (Y= D, (0 +f) 1+H( e )T’ 7| 067)

3[M0(u9,/u0)]2 27, ( l_ec’)
3 =y -1\l
Tc' Yc

(7.68)

el 0 4155 oo
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Optimum Bypass Ratio with n.. and =, Prescribed

The bypass ratio leading to minimum specific fuel consumption for
prescribed 7. (and =) is obtained by equating dG/da to zero. It is to be
noted, particularly for subsonic aircraft, that this optimum is by itself a
particularly useful condition. Thus in the case of subsonic aircraft, because
the bypass ratios leading to minimum specific fuel consumption are very
large, most of the engine thrust is contributed by the fan stream. Hence,
prescription of = very nearly determines the specific thrust and, although
this optimal solution creates the correct balance between the core and fan
streams to provide the desired fan pressure ratio at minimum specific fuel
consumption, the resultant configuration is quite close to that providing the
minimum specific fuel consumption for the prescribed specific thrust.

It follows directly from Eq. (7.62) that

9 [ M, :
3_g=1_2i_fMo(u19/u0) [ O(gz/u())] + [Mo(“9'/“o)]2_Mo=0

hence

[MO(Z_Z)r: { 1 ;f Mo(ug,/to) . 9 [Mo(;;/uo)]z }2 (7.70)

Combination of Egs. (7.64), (7.69), and (7.70) gives
1

T, = T[* - ﬁ,rt*“"[(l“‘er)/er]

O { nm[MoT(iTg/uo) ] [1 * (

2
)
11 7

(1.11)

The numerical value of 7* may be obtained from this expression by
functional iteration. A suitable starting value for 7%, 77, is obtained from
Eq. (7.71) with e,= 1. Thus,

*_1 1 (7, —1) 2
Ol 2<yc—1)n{nm[Mo<u9/uo) Mol} (7.72)

The related value of the bypass ratio a* can then be obtained from the
power balance between the turbine, fan, and compressor. The equations

necessary for performance calculation are summarized in the following
section.
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Summary of the Equations— Turbofan with Losses,

No Afterburning, Exit Pressures Matched, and Bypass Ratio
Optimized for Fan Pressure Ratio and

Compressor Pressure Ratio Prescribed
Inputs: T, (K)[°R],v,,7,, G0 G, (3/kg - K)[Btu/lbm - °R],

h (J/kg)[Btu/lbm],

Tas Tps 77",7":, Nos nm’ec’ec” €, T Ters MO’ b

Outputs: £ (N'S) £, Ibf
puts: o+ \ kg | | go(m, +rin,) Tomys |

mg lbmfuel/h] .
S(N-s)[ Ibf thrust | &

Equations: The first seven equations are identical to Eqs. (7.40-7.46), then

H = ( M7, chbwn )(YI B

Dy,

9
— =ra,7.7,
P9’ rid¥c'¥p
we | 2rr. Do\ DA B
M0—9= dlirg 1= i)
Uy Y.—1 Py
2
1 1 1,(7.—1)
*=_+ r\'c
IR B C2Er )P MY
m OuO 0
1
T[* — ﬁ7.(*—[(1—8,)/8.]

o = 7,,(1 +)1—-1)7, T.—1

(Tc'_l)Tr TC'_I
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F, _ 4
m.+mp 1+a*

1+ )M — M+ o My=2 - M, || (7.79)
0 0 0 0
Uy Uy

(For British units divide by g, =32.174.)

- £(10°)
1+ a*)F/(rir + 1)

3600

s T+ o) F/[go (i, + rnp)]

S

] (7.80)

Optimum Fan Pressure Ratio with a and n, Prescribed

An equation for the fan stagnation temperature ratio leading to minimum
specific fuel consumption for prescribed a follows from dG/d7. = 0. Thus

4G _1+f 1 ‘9[1‘40(“9/140)]2
a"rc, T2 Mo(ug/uo) a"rc,

o 1 3[My(ue/up)]’ _
3 M (ag/a) 03; O/l =9 (7.81)

Hence with Eq. (7.68)
2a T, 1—e, ( Uy )
1- M| —=
(M ug,)2= 1+fYc_1( T4 ) o\ uy

O_u; 3[1‘40(“9/“0)]2
ar,

(7.82)

Combination of Equations (7.63), (7.67), and (7.82) then leads to an
expression for 7, that can be solved for the desired value leading to
minimum specific fuel consumption. This particular optimum will not be
further pursued here for the reason that such an optimum generally leads to
too low a specific thrust. It is of interest, however, to investigate the joint
minimum of S with 7. and a because, even though the joint minimum
generally corresponds to a configuration with a very low 7,. and very large a
(and hence very low specific thrust), the solution does locate the minimum
imaginable specific fuel consumption and thus tends to expose the design
tradeoffs that must be considered when installation effects are to be
accounted for.

Optimum Bypass Ratio with = Prescribed

An equation giving the value of 7. that leads to the minimum specific fuel
consumption for prescribed 7. (only) follows by equating both dG/da and
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3G/ a7, to zero. Note first that Eq. (7.81) may be written [with Eq. (7.68)],

2 12
o[ o

(7.83)

Thus, combination of Egs. (7.67), (7.69), (7.70), and (7.83) gives a single
equation for 7.,

(4

7.1 1-e,.
MuO(M();;-—MO)—-Ty_l(l— o ) (7.84)

Equations (7.63), (7.66), and (7.84) may then be mampulatcd into the
following form, which may be solved by functional iteration with 7, =1,

1.=1+2|r (1—l)(ﬂ“—'—l+1_e“')
Ty Ty T, Ty
1-—e,. 2 1-—e, :
) (2— - )] (785)

It is to be noted that this optimum value of 7. is independent of the
prescribed value of =,. Thus, desired performance and design variables can
be obtained for this “joint minimum” case by using the value of =
obtained from this calculation as an input in the summary {Egs. (7.73-7.80)].
A family of solutions can be generated for a range of compressor pressure
ratios 7,, and the minimum value of specific fuel consumption obtained (vs
7.) would hence be the minimum conceivable value for the given flight
conditions.

Example Results— Turbofan with Losses

As an example study, consider a “core engine” with 7. = 25 and investi-
gate the effect of the variation in bypass pressure ratio on the optimum
bypass ratio a* (7, and 7, prescribed) and on the performance parameters.
In order to emphasize the effects upon the design configuration of changes
in component efficiencies, three engines are considered: a perfect engine, an
engine with high component efficiencies, and an engine with low component
efficiencies. The flight Mach number is M,=0.9 and the component
efficiencies for the three engines are shown in Table 7.1.

In addition, assume that the exit pressures are matched ( po. = pg=p,)
and that h= 44194(107) J/kg, C, =1004.9 J/kg- K, T;=233. 3 K T
=771, and y,=1.35. The rcsultlng values for optimal bypass ratio a* vs
the bypass pressure ratio =, are shown in Fig. 7.6.
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Table 7.1 Component Efficiencies of Three Engines

Efficiency
Engl ne Ty My Ty T s Nm €. €. €
1 1 1 1 1 1 1 1 1 1
2 0.99 0.99 0.98 0.98 0.98 1 0.93 093 092

3 0.96 0.96 0.95 0.95 0.96 0.98 0.87 0.86 0.86

\

24 AN

TN
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/ \3\\Q

32

N

1.2 1.4 1.6 1.8
1’é|

Fig. 7.6 Optimal bypass ratio vs fan pressure ratio.

Several tendencies are notable. It is clear that the optimum bypass ratio
for a given 7. can change dramatically with changes in component perfor-
mance, particularly at low values of fan pressure ratio. This again emphasizes
the designer’s problem in that he must have accurate component perfor-
mance estimates in order to correctly select his engine configuration. The
very large bypass ratios indicated to be optimum (as compared to present-day
practice) result because of the very high turbine temperature capability
assumed and further because the turbine cooling air penalty has not been
included.

Even when the bypass ratio is selected to be optimal for the given
component efficiencies, the penalties in performance for the component
inefficiencies are substantial, as is evident in Fig. 7.7.

Similar results for higher Mach number flight are easily obtained, al-
though, of course, the optimal bypass ratios are lower and the appropriate
fan pressure ratios higher.
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Fig. 7.7 Turbofan performance.
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Fig. 7.8 Variation of specific fuel consumption with fan pressure ratio and compres-
Sor pressure ratio.

The selection of appropriate compressor and fan pressure ratios is aided
by graphs such as Figs. 7.8 and 7.9. The minimum specific fuel consumption
attainable for the given conditions (of “engine 2”) is indicated in Fig. 7.8
where the minimum value of the “joint minimum” occurs. It is evident
however, that the related specific thrust is rather low, the bypass ratio (17.9)
rather high, and the compressor pressure ratio (80) very high indeed.

It is readily apparent that installation problems increase for engines with
low specific thrust because of the required large cowl diameters. In addition,
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Fig. 7.9 Variation of specific thrust with fan pressure ratio and compressor pressure
ratio.

the related bypass ratios are so large that fan-turbine matching becomes a
significant problem even if the fan is driven by a separate spool. This in
itself results because the fan tip speed limitation brought about by centni-
fugal stressing requires too low an rpm (and hence tip speed) for the
turbine. As a result, it is required either to provide an excessive number of
turbine stages to drive the fan or to provide a gearbox to better match the
fan and turbine tip speeds. The latter configuration—usually required for
bypass ratios in excess of about 10—is referred to as a “geared fan.”

The very large compressor pressure ratios identified with minimum specific
fuel consumption also introduce severe design problems. Not only does the
large compression ratio incur the penalties of large weight and expense, but
also, as will be evident in the following chapter, severe off-design penalties
are identified with engines having very high-pressure ratios.

A successful design represents an appropriate compromise between the
lowest installed specific fuel consumption and the cost, weight, off-design
behavior, etc., of the engine.

Minimum Specific Fuel Consumption for a Given Specific Thrust

The preceding analyses presented methods of obtaining the minimum
specific fuel consumption for an appropriate choice of each of the major
individual component design choices, 7, 7., or a. In fact, an optimal
design usually involves selection of the best component matching for a
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prescribed specific thrust. Determination of the combined component con-
figuration is not a difficult task now that high-speed computers (or calcula-

tors) are available.
Combination of Egs. (7.13) and (7.58) gives

_ £(10%)
1+ “)[FA/(’hc'*' mF)] '

L (7.86)
h"lb/ccho) — T

S

=1

It is evident from Egs. (7.86) that S will reach a minimum for prescribed =,
and F,/(r, + ;) when a reaches a maximum subject to the constrained
value of specific thrust. It can be shown (Problem 7.12) that the expression
for the specific thrust itself can be inverted to give an equation of the form

F,
a——a(m,wc,wc,) (7.87)

Thus, for prescribed values of F,/(r1,+ rirg) and 7, the maximum value
of a can be obtained numerically by successive calculation with differing
values of .. Perusal of Fig. 5.39 makes it evident that the required value of
., will be slightly less than that identified with a*, as will be the related
value of a. A suggested calculation scheme is to estimate the required 7. by
first calculating that necessary to give the desired specific thrust in the fan
stream only (Problem 7.13). Next, initiate the search for a,, from Eq.
(7.87) with the given or slightly smaller value of 7. It is to be noted that the

165

| | T |
Smin — / _]
m@/Ns | T = 40 _
(]
60;\< /
15.5 7/

15 | 1 1 1
50 90 130 170 210

F
S — Ns/kg
(thﬂ'hc)

Fig. 7.10 Minimum specific fuel consumption vs specific thrust.
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Fig. 7.11 Bypass ratio and fan pressure ratio for minimum specific fuel consumption
vs specific thrust.

“true minimum” of § {given F,/(m + m )] will involve repetition of this
procedure for various values of «.. Figures 7.10 and 7.11 show the results
for engine configuration 2 of the preceding examples. Once again, the values
of the compressor pressure ratio corresponding to minimum S are rather
large. It is usually the case that off-design and compressor outlet tempera-
ture considerations actually determine the final choice of compressor pres-
sure ratio. Example results for #, = 40 and 60 are shown in Figs. 7.10 and
7.11.

The Effect of Turbine Cooling

It is readily evident from the preceding calculations that substantial
performance benefits can be obtained with increases in the turbine inlet
temperature. However, in practice, high turbine inlet temperatures can be
achieved only with turbine cooling and the resulting cooling penalties can
be substantial. In this section, a simplified approximate analysis of the
effects of turbine cooling is developed. The methods are easily extended to
more complicated examples, although the algebra can get very tedious.

The configuration to be considered is shown in Fig. 7.12. As indicated in
the figure, cooling air is drawn off from the compressor output and injected
at the trailing edges of the first-stage nozzle (4a) and first-stage rotor (45).
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Fig. 7.12 Turbine cooling stations.

Mixing is assumed to occur at each station at the local mainstream stagna-
tion pressure (with p.,,=p,,)- Conditions following the mixing behind the
rotor are represented with the subscript 4c. Now define,

r'n/ i m,
f= S o o, & ==, €)= —
m.—m; —m, m. m.
1__T’4h W_plu,_plah
th — ’ th T T T
T’Au p’u ph
T, P, P
T = — 4 = e IR ——
(L ’ (L
T’« p’« pldh

Assuming, as previously, that the gas downstream of the burner is
calorically perfect with properties v,, G, etc., routine but tedious applica-
tion of the power balance between the compressor, fan, and turbine and of
the conservation of stagnation enthalpy in the mixing processes at stations
4a and 4b-c leads to the following equation set for use in determining the

engine performance (Problem 7.15).

Additional Inputs to Account for Cooling: Ty, €,, €5, €4, €4,
Equations: Equations (7.47) and (7.48) of the summary [Eqs. (7.38-7.58)]

should be replaced by
Tlh = WI(’,YI_I)erh/'YI (7_88)
(ey +e)mm +(1- e =&)L+ f)m— .,;r_r["'c_ 1+a(r, - 1)]

[ElTrTC + (l —& - 52)(1 +f)"'>\] Tin t €277,

L=
(7.89)

7, =13/ Dew (7.90)

M= T, T, (7.91)
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Additionally, in the subsequent equations 7,7, and f should be replaced
wherever they appear by

T = TtL{[elTrTc_l_ (1 —& 82)(1 +f)T)\] Tih + EZTrTc}
A 1+(1—¢—¢&)f

(1.92)

f=0-e-8)f (7.93)

Example calculations (Problem 7.16) indicate that engine performance is
very sensitive to the required amount of compressor cooling air.

7.4 The Turboprop or Prop Fan

In recent years renewed interest in highly efficient flight transportation
has spurred investigation into “ very-high-bypass-ratio fans.” Cycle analysis
indicates that such bypass ratios (for subsonic flight) could approach those
corresponding to the “old” turboprop engines (= 100/1).

There are several reasons why the turbofan engines became much more
popular than the turboprop engines, and it is prudent to review such reasons
in order to comprehend why similar concepts are again gaining in popular-
ity. A major reason for the success of the turbofan was its high (subsonic)
Mach number capability. In a turboprop, the propeller tip Mach numbers
become very large when the flight Mach number approaches about 0.7 and
the resultant loss in propeller efficiency limits the turboprop use to M, <0.7.
With a turbofan, the onset of high Mach number effects is reduced by the
diffusion within the inlet duct. In addition, the individual blade loading can
be much reduced by utilizing many blades and the cowl much reduces blade
tip losses.

A further important benefit of conventional turbofans is that they require
no gearbox to reduce the tip speeds of their relatively short blades. (Note, of
course, that a turbofan engine usually has multiple spools.) Turboprop
gearboxes have to date been heavy and subject to reliability problems.

Finally, the high tip speed of the turboprops led to high noise levels, both
in the airport vicinity and within the aircraft at flight speeds.

Recent studies of engines with very high bypass ratios have, however,
suggested some compromise designs that show great promise. Thus, if a
bypass ratio of (say) 25 is selected, the corresponding cowl could have
identified with it weight and drag penalties that are not compensated for by
the benefits of the inlet diffusion and the reduction in tip losses. By
considering this “in-between” bypass ratio (sometimes termed a “prop
fan”), the required shaft speed will be increased with the result that a lighter
and simpler gearbox may be utilized. Finally, the effects of tip losses and
noise production may be somewhat curtailed by utilizing many (about eight)
of the smaller diameter blades and by sweeping the blades to reduce the
relative Mach numbers. An additional benefit is available in that the blades
may be made variable pitch, which will allow high propeller efficiencies to
be maintained over a wide operating range.
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It will be recalled (Sec. 5.6) that the propulsive efficiency can be written
n, = 2uo/(ug+ ug)

where u,, is the flight speed and u, the “jet speed.”

This expression is also appropriate for a propeller and serves to em-
phasize that a large propeller [to reduce u, for a given thrust F = rit(ug — u)]
is needed if the propulsive efficiency is to be high. The propulsive efficiency
n, represents the ideal limit of the propeller efficiency defined by

power to vehicle

prop

Mprop = power to propeller (7.94)
Thus,
Fuy _ ri(uy—ug)ug %’h(“g_“(z))
= = = 7.95
Mprop W rop %rh(ug— u%) W nelL ( )

P

where W, is the propeller power input, 7, = [4m(u - u(z,)] / Wprop» and
1, represents the power output of the propeller to the fluid stream (in
the “axial” direction) divided by the power input to the propeller.

Thus, the propeller efficiency would be expected to increase with propeller
size simply because the ideal propeller efficiency (that is, the propulsive
efficiency) increases as more mass is handled. This, of course, relates the
propeller efficiency and the “bypass ratio.” It should be noted that if the
propeller size is increased to the extreme, 7, will begin to decrease because

of high Mach number losses in the outer portion of the blades.

Cycle Analysis of the Turboprop
It is appropriate in analyzing the turboprop class of engine to consider

the work interaction with the vehicle rather than the thrust. To facilitate
this, the “work interaction coefficient” C is introduced, defined by

total work interaction with vehicle /

C- mass of air thém;gh core engine (7.96)
P~ 0

It is usual with turboprop engines to have the core stream exit nozzle
unchoked, so the pressure imbalance term will not be included in the
expression for the thrust. The numbering of the stations indicated in Fig.
7.13 is used in the following analysis in much the same way as with the
previously considered engine types.
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Fig. 7.13 Turboprop reference stations.

Core engine. With

—1 Y/ (11
p,= p(1+ 5 Mg)

-1, , G
ng=T9 1+ 2 M Tymyr, C

and p,= p, and again defining

= ( Ty T T Ty )(Yr b

it follows directly that [just as for Eq. (7.64)]

2
w\ ' 2n (1 _jaeysen
(MO“O) =25

Thus

E:ore u
core _ ao[(l +f)M0u—Z — MO]

mC

The work interaction coefficient for the core C, is then given by

Uy E:ore aOMO Yc c

C_

|
LI

= PoT, Ty WM™, T,

<TCT, m. YR, G [(Hf)M__M]

257

(7.97)

(7.98)

(7.99)

(7.100)

(7.101)
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or
u
Com (o) Mo (1) My32 = My (1102

Also, it may be noted here that f is still given by Eq. (7.13).

Propeller output. The net work interaction of the turbine with the
gearbox input shaft per mass of core engine air may be written

(1 +f)n'"CP,(T;4 - 7-;5) - CPl(T;J - T;:)
Hence the work interaction with the propeller per mass of core engine air is
C, Tong[ (1 +)n(1 = 17) = 7.(7.~1)] (7.103)

where 7, is the etﬁmency of the gearbox.

The work interaction coefficient for the propeller C___ is then given by

prop
Cprop = npropng[nm(l +f)7)\(1 - Tl) - Tr( T 1)] (7104)

The total work interaction coefficient C is simply the sum of the core and
propeller work interaction coefficients, hence

c=¢C,,+C, (7.105)

pr °P

The work interaction coefficient can then be determined when the “work
split” between the core engine and the propeller is decided upon. (This will
determine 7,.) Analogously to the case with the turbofan engine, an opti-
mum value of 7, may be determined that corresponds to the minimum
specific fuel consumption, but before doing so it will be useful to relate the
work interaction coefficient to more familiar quantities. Thus, note that the
work interaction per second with the flight vehicle is given by the two
expressions, Fu, and C, Ty C. Hence, equating these expressions,

F C
Specific thrust = = C, T u (7.106)

Similarly, the specific fuel consumption follows from

= 5 109 = e (109 (7.107)
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In British units these expressions become

F 9
g~ 118G Toy (778 = ft - 1bf/Btu, C, T, = Btu/Ibm, etc.)

(7.108)

S 3600 fu, 1bm fuel/h (7.109)

778 C, T,C Ibf thrust

A further parameter often used in describing the performance of pro-
peller engines is the power specific fuel consumption S, where

mg fuel/s _ f(10°)

> = W to vehicle — C, IT,C (7.110)
In the British system, S, is defined by
_ lbmfuel/h 2545 f
S, = hp to vehicle ~ C, T,C (7.111)

Selection of the optimal turbine temperature ratio. Turbopropeller
or prop-fan engines will be designed primarily for low specific fuel con-
sumption. Thus, 7, is selected to make S a minimum, or equivalently make
C a maximum. Thus, from Egs. (7.102), (7.104), and (7.105)

aC _ d
3 e mdlna1 (1= 5) = 10 1)

+(y,- 1)M0[(1 +f)\/ (M0:—§)2 - MO]}

(Y= 1M, 8 [My(ug/uo)]’
=(1+f){-npropngnm'r>\+ 2M0(u9/u(;)) [ : 3:‘ o ] }

=0 when T, =T, (7.112)

The equation for 7,. may then be written in the form

(M ﬁ)2={ (v.— )M, B[Mo(ug/uo)]2}2 (7.113)

0 L 2npropngnm'r>\ a’rt
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Equations (7.100) and (7.113) give, after some manipulation

— 2 _ 2
Tx = Tll"’T;:[(l_e‘)/e'] + Yc2 L MO 2 [1 + ( 1 e i ) %thl/e':‘
T)\( npropngnm ) !

(7.114)

This equation is similar in form to the equivalent equation for the turbofan
[Eq. (7.71)] and is also easily solved using functional iteration. A suitable
starting guess is obtained by taking e,= 1, to give

1 y,—-1 M}
T‘3=ﬁ+ 0

. (7.115)
T)\( npropngnm)

It might be noted here that the bypass ratio does not appear in these
calculations. This is because the propeller size (and hence the bypass ratio)
will be determined once 7,. and hence the work interaction coefficient C,
is obtained. The propeller will be sized to give the desired propeller

efficiency.

Summary of the Equations— Turboprop
Inputs: To(K)[°R], ., C,, (J/kg-K)[Btu/Ibm- °R],

h (J/kg)[Btu/Ibm], 7, 7y, 7y My s s Mprops Mg €cs €45 ey Trs M

Note: Standard values for v, and C, have been incorporated within the
summary.

F
Outputs: o (

c

N-s F  1bf S( mg )[lbm fuel/h]
mg /| go/, lbm/s |’ N-s /| Ibfthrust |’

s (ﬁ)[lbm—/h],c,q,c etc.

P\ W -s hp prop*
Equations:
a,=2005/T,  [a,=49.02/T, f1/s] (7.116)
=1+ M}/5 (7.117)
7, =133 (7.118)
T, =7}/ 3 (7.119)

I = (mm mmm )7 /" (7.120)
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If =, is provided (nonoptimum case), proceed directly to Eq. (7.123). If
the optimum case is desired, calculate 7,* from Eq. (7.122) using 7* from
Eq. (7.121) as the start value.

M2
R e a (1121)
STA(npwpngnm)
2 2
1"* _ %T’*‘[(I_e:)/t’t]_‘_ Mo 2(1 + 1 _e’ 11[7.1* 1/e,
STX(nprOpngnm) et
(7.122)
MoZ—Z = [Sn(r,— %f,‘“l‘e"”")]i (7.123)
™~ T
= 7.124
! (hnb/CpCTO) — T ( )
Corop = Tprogg [Mm(1 + ) 1a(1 = 7,) = 7,(7,— 1)] (7.125)
Cc=0-4M0[(1 + [ YM(ug/uy) _Mo] (7.126)
C=Cyop+C. (7.127)
F T, F T, ]
— =1 5 C —.=186.7 C 7.128
m, 00 oMo [8omc aogM, ( )
f(10%) [ 3600f ]
S=7173 S=7— 7.129
_ S(109) _ (1.060)(10%)/
S = 1005T,C S="1¢ (7.130)

Example Results— Turboprop

An engine suitable for use in an 8-10 passenger business aircraft is
considered. The parameters assumed are those listed in Table 7.2, which
reflect the somewhat modest values it is reasonable to assume for such
small. high-reliability engines. The relatively high propeller efficiency has
been taken from estimated propeller performance when modern transonic
techniques are used in the blade design.

With the values assumed in Table 7.2, a range of compressor pressure
ratios is considered. and the thrust and specific fuel consumption corre-
sponding to the minimum fuel consumption at each value of the pressure
ratio obtained. Figure 7.14 shows the results. It is interesting to note. also,
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Table 7.2 Parameters Assumed for Turboprop Example

T,=2389K h=4.5357(10")J/kg-K n,=0.98 17, =0.99
[430°R] {19,500 Btu/tbm] 7,, = 0.95 e, =0.90
v, =1.35 m,=0.97 (power takeoff e,=0.90
C, =1098.2J/kg-K m, = 0.98 assumed) T, = 6.05
[0.262 Btu/lbm - °R] =, =0.99 Nprop = 0.83 M,=038
F/m S
Ns/kg \ mg/Ns
1100 AN 19

1050 \ 18

000 NENEEH
T

950 16
o 8 16 24 32

T

Fig. 7.14 Specific thrust and specific fuel consumption vs compressor pressure ratio
for turboprop with eptimum turbine temperature ratio.

that at the minimum specific fuel consumption (m, = 24.5), the ratio of
propeller thrust to core thrust is 8.04.

It is of interest to note that when the turboprop of the above example is
compared to a turbofan also optimized to minimum specific fuel consump-
tion (with 7. = 1.4) and with the same parameters where appropriate, the
turboprop shows an approximately 13% improvement in specific fuel con-
sumption.

7.5 The Etfects of Nonconstant Specific Heats

The range of accuracy of the cycle analysis equations can be extended
substantially by including the variation of the specific heats with tempera-
ture. In the range of temperatures found in gas turbines it is an appropriate
approximation to retain the assumption of a perfect gas, but to allow
specific heat variation. This, in effect, implies that the molecular weight of



NONIDEAL CYCLE ANALYSIS 263

the air and fuel/air mixture changes very little. As a result of the perfect
gas approximation, the convenient relationships of Eqs. (2.42-2.47) remain
valid.

For convenience of manipulation, three functions of temperature X,, X,,
and X, are defined. Thus,

C,= RX, (7.131)
h=RTX, (1.132)

X —
X, = [ 24T (7.133)

The constant a, is introduced for convenience. It is to be noted that the
function X, is of the form

X,=a,+f(T) (7.134)
Note that Eq. (2.45) gives
= lexldT (7.135)
In addition,
X, = YYTI (7.136)

Stagnation Properties

Application of the flow form of the first law to the imaginary isentropic
process connecting the static state to the stagnation state gives

+(u?/2)
or
h, T X, 14 YRT u?
h TX, 2h YRT
from which
X, T, X,
M2=271(X1—1)(7'—)—(2——1) (7.137)

In this expression, the additional subscript ¢, on the symbol X,,, indicates
that the function X, is to be evaluated at the stagnation temperature T,.



264 GAS TURBINE AND ROCKET PROPULSION

The Gibbs equation, with ds =0, gives

9 5 F = [a+ (i -a)] F
from which
%’ = (%)alexp(XL - X3) (7.138)
and
b (%)(a‘_l)exp(X3‘ _x,) (7.139)

The Expression for the Mass Flow Rate

Expressions analogous to those obtained in Sec. 2.19 can be obtained
directly with the relationships of Egs. (7.137-7.139). Thus,

. P p
m/A=pu=4==—YRTM
/A=p RT, p, V"

Hence,

7 T\ ~la~/2) T,X,, 172
a5 2(F) "R ] el (6 x0)]
t

(7.140)

It is to be noted that the combination of Eq. (7.137) and (7.140)
effectively relates the area variation to the Mach number. Note also that
when isentropic flow is considered, by formally taking the derivative of Eq.
(7.140) with the temperature T, and equating the result to zero, it follows
that M =1 at the throat. This result is also apparent from Eq. (2.76).

Application of the Results to the Turbine Power Balance

As a simple example of the use of the perfect gas results, consider the
cycle analysis of a separate stream turbofan engine. It will be assumed that
the approximation of a calorically perfect gas in the fan and compressor is
still appropriate. In such a case the relationships leading to the fan exit
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velocity would be those previously obtained, but the expression for the core
exit velocity must be rederived. To this end there is defined

H=n’h(—1'_*_f—)[1'c—l+a(1'c,—l)] (7.141)

h

and
i (7.142)

Note the turbine power balance is simply

u'j =H (7.143)
G.T )

A further simplifying assumption is now made in which it is assumed that
conditions at entry to and exit from the turbine are at effectively zero Mach
number, so that the thermodynamic properties are determined in terms of
the stagnation temperatures.

The turbine pressure ratio is again related to the temperature ratio by use
of the polytropic efficiency. Thus,

So

Hence,

T \@ 1/e,
e (|7 el - (.| (1:14)

Finally, the velocity at exit follows from

ui=2(h,,~ hy)

Pe C, Ty
So,
2
Ug\=_ 1 R(TX,),
(“_0) - ['r)\— H-=¢ 1> (7.145)

With these results, the following summary is obtained.
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Summary of the Equations— Variable Specific Heat

Inputs: M, 7, 7., a, Cp(: Ty, T Tyy Ty Wy €0y €0y €, Ny My B
Outpqts: uy/ g
Equations:

— (1/35¢)
T(' 7T(' ¢

— (1/35e.)
T, =m

7.=1+(MZ/5)

r

T — T,T,

roc

hn,/C, Ty) = 1

=1

H - 1+a(r, —-1)]

Tr [
= s | T.
N(1+f) "
h, =C, Ty =R(TX,),, (gives T, )

h,=h,—C,T,H=R(TX,),  (givesT,)

s

1/¢,

4

A
= {(TIS) CXp[(X3),5— (X3)14]}

P,
— =W AT,
P, T\“ _
— = CXP[(X3)15_(X3)9] (gives Ty)
Po T,

Uy )2 1 R(TXZ)9

fud 2 T - H— 729

( Ug 7.1 [ A G T

Effective Ratio of Specific Heats

The preceding equations allow simple determination of the performance
of a turbofan. However, the even simpler forms developed in the main text
have advantages for rapid calculation, and it would be of use if an
“equivalent y,” say v,, could be obtained that would lead to the same
predicted performance as that obtained for the variable specific heat
calculation described above. In fact, by assuming a calorically perfect gas,
calculating uy/u,, and equating the result to that obtained from Eq.



NONIDEAL CYCLE ANALYSIS 267

(7.145), a simple expression for v, follows. Thus, given 75, H, C,, T, and
h, it follows that

n=1- (H/TA)

tn|1}0/€0- 0 (hy/C, Tyry)]

{n ( T4 Ty )

Ye = {1+
and

‘Ye‘

e

T, =35

L.

1o

Here, T, is the equlvalent temperature corresponding to the given 7. It is
to be noted that there is no calculational advantage to obtaining vy,, because
it requires evaluation of /,, which means that the performance of the core
stream would already have been determined. The utility in the formulation
arises simply because the formulas allow determination of vy, for a variety
of parameter ranges, and hence provides a method of determining ap-
propriate ranges for an effective v,.

Example Functional Forms

It is customary to assume simple functional forms for the temperature
functions, such as polynomial fits to the experimental data. The coefficients
for such polynomial fits are chosen to minimize the least square error of the
resultant curve. The reader should do his best to develop his own formulas,
given access to experimental data. Failing that, the following forms are
recommended from the limited experience of the present author in match-
ing his own performance calculations to the published performance data of
the major companies.

Thus, take

Xl =a, + 02T+ a3T2

2
X2=(11-+-(12§+(13TT+a—]:t

2
Xy=a,T+ a3TT

Suggested values for the coefficients (SI system) and R are:

a, =3.06 a;=025(10"°%) R =287 m?s 2K !
a,=1.15(10"%) a,=213
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Example calculations were performed with the values M, = 0.85, 7, = 22,

«=15 a=5 C,=10045 J- kg ! K™Y, T,=233 K, 7,=099,

7, =097, m,=0.995 ¢, =e.=e,=09, 1,=0.995, h=442(10") J/kg "},
7., = 0.99, to give

2 Us/ Uy Ye L.,
6.5 245 1.316 1273
7.0 2.80 1.311 1355
7.5 311 1.307 1436
8.0 3.38 1.302 1514

7.6 Summary and Conclusions

In the preceding sections, equations capable of describing the expected
on-design behavior of several different engine types were developed. The
intent was twofold in the sense that it was hoped the reader would gain an
understanding of the methodology of cycle analysis, as well as an apprecia-
tion for the actual behavior of the several engine types considered. The very
simple examples of the analyses considered in this chapter are quite suitable
for preliminary design purposes, but it should be realized that more exacting
analyses should be utilized if further accuracy is desired. The principal
limitations of the analyses considered here arise because of the restriction to
calorically perfect gases and because of the lack of inclusion of the effects of
power and air takeoffs to operate auxiliary systems. All these effects can be
included in a straightforward manner utilizing the same conceptual ap-
proaches as already utilized in this chapter, but at the cost of considerably
more algebraic complexity.

The very large number of possible input variables in the several example
summaries make it difficult indeed to even attempt a comprehensive presen-
tation of the effects of parameter variations. It is of interest, however, to
note some of the design trends observable today, the reasons for which are
easily shown by utilizing the preceding analyses. It is evident that the
industry is spending considerable effort attempting to increase the turbine
inlet temperature. The prime benefit for a turbojet resulting from such an
increase is in the increased specific thrust. The turbofan engine also benefits
from an increase in the turbine inlet temperature because the increased
work capability of the turbine causes the optimal bypass ratio (for minimum
S) to increase (giving better propulsive efficiency).

Important related changes in the design of other components also occur
when an increase in the turbine inlet temperature is attained. Thus, gener-
ally, a higher compressor pressure ratio will be utilized to give higher
thermal efficiencies. The burner cross section will usually have to be
increased because the increased burner outlet temperature will cause in-
creased losses in the stagnation pressure unless the:burner inlet Mach
number is reduced. As a result of these combined effects, the later stages of
even large compressors are becoming excessively small and the burners
themselves excessively large. Because of this discrepancy, some modern
designs incorporate a single-stage centrifugal compressor following an axial
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compressor. The centrifugal compressor has the advantage of being rugged
and not so subject to such things as tip losses as the several stages of the
axial compressor it replaces. The traditional disadvantage of a centrifugal
compressor (large cross-sectional area compared to inlet capture area) 1 not
now significant because the compressor is handling high-density air (and
hence is relatively small) and is located in front of the necessarily large
combustion chambers.

The design of other components is also affected. Thus, if the inlet
efficiency as well as the turbine inlet temperature is high, preliminary cycle
analysis indicates that the “optimal” bypass ratio will be very large (with a
low bypass pressure ratio). Although such large bypass ratio engines look
attractive from the point of view of low noise and high propulsive efficiency,
the aircraft can be penalized by the requirement of enormous landing gear
to accommodate the very-large-diameter engines.

These and similar design interactions must all be considered in a success-
ful aircraft design. If the design is to be successful, accurate estimates of the
component efficiencies and an accurate description of the aircraft flight
requirements must be available early in the design process.

Problems

7.1 The equation for the ratio of local area to throat area for an
isentropic flow, in terms of the Mach number and v, 1s given by

A B 2 Y_l 5 (7+1)/2(7'*1)—1_
A*_[y+1(1+’2 M)] M

(a) Show by example calculations that when this is written in the form

A* 2 y—1 2) (y+1)/ 2y -1}
= — —M
M= [y+1(1+ 2

functional iteration always gives the subsonic value of M or, for large values
of the first guess, diverges.
(b) Similarly, show that when the equation is written in the form

M={ 2

+1 Ay—1)/(y+1) :
e el U |

2 A*

functional iteration gives the supersonic value for M, provided that the
value of the first guess is not too low.
(c) Show that when the equation is written in the form
1 2 y—1_ ., (y+1H/2vy-1H 4 B
F(M)—M[Y+1(1+ ; M)] =0
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Newtonian iteration (using the analytic evaluation of F’) usually leads to
the subsonic value for M if the first guess is subsonic and to the supersonic
value if the first guess is supersonic.

7.2 Consider a family of turbojets with the following parameters:
T,=220K m,=1-0015M¢ Nap = 0.96
v, =14 m, = 0.98 1,, = 0.99
G, =1000 J/kg - K m, = 0.98 burner off e, =0.92
v, =13 = 0.95 burner on e, = 0.90
G, =1240J/kg K 1, = 0.99 h=45(107)J/kg

(a) Plot the specific thrust and specific fuel consumption in the range
1 < M, < 3.5 for the afterburning and nonafterburning cases. Assume 7, = 7,
T, = 8-9, and 7 = 15.

(b) Plot the specific thrust and specific fuel consumption in the range
4 < m, < value giving zero thrust, for the afterburning and nonafterburning
cases. Assume 7, = 7, Trns = 8.5, and M,=2.2.

73 (a) Show that the compressor pressure ratio giving maximum
specific thrust when afterburning is present is given by

eY/(y.~ 1)

.
1,(1+f)2+1

cmax F Yc_lﬁ 1

Y, - l Yc ecel

Note: Ignore the effect of f and f,5, compared to unity, on the magnitude
of the thrust.

(b) Plot 7, . r Vs M, in the range 1 < M, <3.5 for the parameter
values listed in Problem 7.2. Take 7, =7 and assume (for this calculation)
that 9,,(1+f)=1.

(c) Plot the related values of specific fuel consumption and specific
thrust for the values of 7, calculated in part (b) for both the afterburning
(7\,, = 8.5) and nonafterbummg cases.

*(d) Obtain and plot 7. . F» assuming y.=vy,=14 and e, =e¢,=1,
over the same range as for part (b).

7.4 Investigate the effect of exit pressure mismatch for an engine with
parameters as listed in Problem 7.2 and M,=25, #,=15, 7,=7, and
Thnp = 8-
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75 Consider a family of nonafterburning turbofan engines with
parameters
T,=220K m,=1-0.015 M¢ e. =091
v.,=14 m, = 0.98 e.=0.90
G, =1000J/kg- K m, =, = 0.99 e, = 0.89
y,=132 7 =0.99 h=4510")J/kg
G, =1200J/kg-K 1, = 0.99 Dy = Po =Pg

(a) Plot the bypass ratio a* identified with minimum specific fuel
consumption for prescribed 7, and 7. vs . in the (appropriate) range
1.2 <m.<2.5 for the case 7, = 7.3, My=2.0, and 7, = 15.

(b) Plot the related values of specific fuel consumption vs specific
thrust, as in Fig. 7.7.

(c) Plot the value of S vs 7, for the “joint minimum” case, and by so
doing locate the “absolute minimum” value of S for the prescribed condi-
tions. Obtain the related specific thrust.

7.6 Consider a nonafterburning family of turbofan engines with
parameters as listed in Problem 7.5.

(a) Plot a* vs M, in the range 1.5 < M, < 3 for the case 7, = 7.3 and
7. =1.6.

(b) Plot the related values of specific fuel consumption vs specific
thrust similar to those shown in Fig. 7.7. Indicate typical values of M, on
the curves.

17 Consider the effect of afterburning on the family of engines
considered in Problem 7.6. For the same Mach number range:

(a) Obtain S and F/(m, + rp) when 7, = 8.5, no fan burning.

(b) Obtain S and F/(r,+ mg) when 7, = 8.5, no core burning.

(c) Obtain S and F/(n + ) when 7, =7, = 8.5.

(d) Investigate the effect on performance in the given Mach number
range of varying a, 7., T\, and 7, .

78 You are to design an engine for a very-high-performance fighter
aircraft. The aircraft, dubbed the “supercruiser,” is to be able to cruise at
M, =2 with no afterburner on, but will then be able to “fight” (maneuver
without aircraft energy loss) by utilizing afterburning.

(a) Develop a preliminary design for a turbojet and give its perfor-
mance for both afterburning and nonafterburning cases. Investigate also the
effects of the changes in your assumed input variables.

(b) Consider the same “mission” as for part (a), but for a turbofan
engine. Take the input parameters to be the same as those of the reference
case of part (a) (where appropriate) and compare the performance of
candidate turbofans. Include the effects of core and/or duct burning,
Discuss the virtues and shortcomings of the various designs.
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19 Consider two engines with the common parameters
M,=0.85 G, = 0.24 Btu/Ibm - °R 7,, = 0.99
T, = 420°R C,,=0.28 Btu/Ibm - °R e,=0.90
Y. =14 h =19,000 Btu/lbm =70
Y, =132 7, =0.97 7. =36
1, =0.97

The engines also have:

T, m, T, e, e,
No. 1 0.990 0.990 0.990 0.90 0.90
No. 2 0.995 0.995 0.995 0.92 0.91

(a) Calculate 7., a, F/gy(mm, +mg), and S for each case at the
“joint minimum” specific fuel consumption.

(b) For each engine calculate a*, F*/g. (s + mg), and S* for 7.
=1.5.

(c) For each engine calculate F/g,(rm, + i) and S for 7. = 1.5 and
a=0.9a*.

7.10 Consider a turbofan engine that has been optimized to have a
minimum specific fuel consumption for the case where 7, and 7. have been
prescribed.

(a) Show that, if all component efficiencies are nonideal except that
1,, =1 and e, =1, the ratio of the thrust per mass in the primary stream to

the thrust per mass in the secondary stream R , is given by
R,=1+K
where
1-e,. “lr. = /v
[Tz'(' “ )(Wd'”n') —1]

K 2
(v.— 1)[M0(u9,/u0) - MO]

(b) Evaluate X for the case v,=14, ¢.=09, 7m. =15, M,=0.85,
and (m,m,)=0.98.

7.11 Verify in detail that Eq. (7.85) is correct.

7.12 Equations (7.40-7.57) give the specific thrust of a turbofan
engine in terms of prescribed variables. Show that, for the case where no
afterburning is present and for which py = py. = p,, a hierarchy of equations
giving the bypass ratio « in terms of prescribed input variables may be
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obtained in the following form:

F

Input: o F=—
P Yoo T = (i + )

,Mo,h,Cp(_,%,Wd,Wb,W Tors Ny s

Nops €09 € €y Moy T (v.,=1.4)

Output: a
Equations:

7,=1+Mg/5

m =15

7, = ml/3se

T.= ,”1/3 Se,

f= T~ 1,7,

(hnb/Cp‘.TO) Y

plg/p9—7r7rd T

“1/357)
iz -(5) )
0 9

D, =F+ M,

D,=D,—- Mo(“9'/“o)

T )*{(v,-l)/vll

Co=D}=5(1+f)n |1 ("(H}) =D
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T =
’I

1 T,
1*m:}\‘[’rt— 1 +aj('rc,— 1)]

Cror=Cot 5(1+ ) m\ Dy (710 e0 e — 1)

—b+ /b?—4aC,,,
a =

'+ 1 2a

Calculation note: Particularly with high-bypass ratio turbofans, the parame-
ter a can be very small indeed. Thus note

a=D}={F- [ M(u's/uo) - My]}’

The squared quantity is hence the square of the difference of the dimension-
less specific thrust of the entire engine less that of the fan stream itself.
Straightfoward example calculations indicate that this can be a very small
quantity indeed. So small, in fact, that computer accuracy can be lost. In
such cases, it is useful to apply an approximate form of the expression for
a, which is obtained by binomial expansion of the radical. Thus, write

C aC
a= — F (1 + ?)
7.13 (a) Show that the fan pressure ratio necessary to give a desired

specific thrust in the fan stream F;/m; may be obtained from the expres-
sions (with y, = 1.4): '

B [(F/agig) + M)

1/3.5] -1 (l1-e.)
T, = 57 +['r,(7rd7r",) ] A
— 3.5,
'”(”—T(’

(b) Plot 7, vs F/imz N-skg™! in the range 50 < F,/rn ;<500 for
the case M, =0.85, m,m, =0.99, a,=300 ms !, and e, =0.9.

7.14 Utilizing the technique suggested in the text [Eq. (7.87) with
Problems 7.12 and 7.13), obtain curves of the bypass ratio, bypass pressure
ratio, and specific fuel consumption vs specific thrust in the range 5
< F/gy(m + mg)< 50 for the configuration giving minimum specific fuel
consumption. Assume the parameters as given for engine 2 of Problem 7.9,
including =, = 36.
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715 Derive Eqgs. (7.88-7.93).

7.16 (a) Consider a subsonic turbofan engine with parameters as
listed for engine 1 of Problem 7.9. Assuming == 1.5 and for the value of
a* as calculated for Problem 7.9(b), calculate the specific thrust and specific
fuel consumption, including the effects of turbine cooling for the cases
e, =¢,=0, 0.01, 0.02, 0.03, 0.04, 0.05 and assuming 7,,= ; and ¢, =¢,,
=¢,=0.90.

(b) Repeat the calculations of part (a) for the case of a =0.9a*.

7.17 Consider a family of turboprop engines with the characteristics
T, = 400°R m;=0.99 n,=0.99
Y, =13 m, = 0.98 e, =093
y.=14 m, = 0.995 e, =091
G, =0.27 Btu/Ibm- °R 7, =0.99 =15
G, =024 1,, = 0.99 M,=08

h =19,000 Btu/1bm =0.83

Nprop

(a) Plot the specific fuel consumption and specific thrust vs 7, in the
range 15 < 7, < 35. Consider the “optimal” case, 7, = 7,..

(b) For the case w. =30, plot the specific fuel consumption and
specific thrust vs 7, in the range 7. <7, < 1.1 7..

7.18 Consider a turboprop engine that has the turbine expansion ratio
selected to give the minimum specific fuel consumption. It may be assumed
that the fuel-to-air ratio may be ignored compared to 1 (i.e., that 1 + f= 1)
and that the turbine efficiency may be taken as unity (e, = 1).

(a) Obtain an expression for the ratio of core engine thrust to
propellor thrust in terms of vy, 7y, My, Myops Ngs Mms T T, and 11
= (mmymmym, ) D/

(b) Evaluate the ratio for the example values

Y. =14 Nprop = 0.8 7, =0.99 m, =25
=170 n,=0.95 m, = 0.98 e, =092
M,=0.75 1, = 0.99 m,=1.0 v,=1.35



8. ENGINE OFF-DESIGN PERFORMANCE

8.1 Introduction

In the previous chapter, cycle analysis was applied to several example
engine types in order to predict the expected performance of such engines as
a function of design choices, design limitations, or environmental condi-
tions. The various results obtained are hence to be interpreted as the
expected behavior of a family of engines under the various imposed condi-
tions. This chapter considers the related problem of how a given engine
(designed for certain prescribed conditions) will behave at conditions other
than those for which it was designed.

It is to be noted that in the design process, prescription of the designer
variables =, ., and a, in fact, actually determines the required turbine
expansion ratio because of the required satisfaction of the power balance
between the turbine and fan and compressor. The power balance itself is
affected by the flight Mach number (through 7,), the turbine temperature
(through 7,), and the ambient temperature (also through ,). Thus, when a
given engine is operated at other than design conditions, =, 7., and a may
all change, and it is the off-design problem to determine such changes in
terms of the imposed changes of other variables. Once such changes have
been determined, the new values of =, ., and a may then be used in a
computational program very similar to those developed in“Chap. 7. The
most notable change in calculation procedure is evident in the use of
component efficiencies rather than the polytropic efficiencies.

Off-design performance analysis can be considered to be of two classes,
the first being one where no component performances are available so that
the component efficiencies as functions of operating conditions must be
estimated, and the second being one where the components have been
developed and tested so that the component characteristics are available.
The former class of analysis is used in preliminary estimates of engine
off-design performance, whereas the second class is used for more exact
estimates of the expected performance of an engine that is approaching
completion of construction. Both classes of analysis will be considered in
the following.

8.2 Off-Design Analysis of the Turbojet

Consider the simple case where both the turbine entrance nozzle and
primary nozzle are choked. This puts algebraically simple restrictions on the

277
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various relationships and is, in fact, true over a wide operating range for
modern turbojets. Further simplifying assumptions consistent with those of
Chap. 7 will be made. Thus, the gases will be assumed to be calorically
perfect both upstream and downstream of the burner, turbine cooling will
be ignored and no power or air takeoffs will be considered. In addition, the
fuel-to-air ratio f compared to unity and the variation of vy, and C,, with the
power setting will be ignored. These additional assumptlons intro-
duce little inaccuracy because it is, in fact, the ratios of the desired
quantities to their design values, rather than their absolute values, that are
needed.

The station numbering is indicated in Fig. 8.1 with the same notation
introduced in Sec. 5.2 and utilized throughout Chaps. 5-7. Equation (2.102),
together with the assumption of choked flow at stations 4 and 8, allows

T, 4,p, T, Agp,
M, = : and Mg = —= s 8.1
4 \/E 7.;4 8 \/E 7.;8 ( )
where
2 (y+1)/2y=1)
r=vi (5]
Equating w1, and g results in
T As s (8.2)
M A, TAB

Note that the area ratio 43/A, will be prescribed by the control system and
7ap Will be prescribed by the afterburner setting. =, ; will change relatively
little, so the area ratio and afterburner settings determine the ratio 7:/7,.
Note from Eq. (6.77) that =, is a unique function of 7, and the turbine
efficiency, so if the turbine efficiency does not change much over the
operating range, Eq. (8.2) becomes a single equation for 7, and hence =,. As
an example, note that for a conventional turbojet without afterburning, Ay
and A, remain fixed. (When afterburning is present A4 is varied so that

Ag( T/ m ) remains constant.) For the conventional turbojet, then, the

2 3 4 l56 78
|

TR N A N |
SIIC 0] < &

Wl

Fig. 8.1 The turbojet.
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turbine expansion ratio remains very nearly constant over the entire operat-
ing range! (The only change in =, arises because of changes in 7,.)

With 7, determined from Eq. (8.2), 7. may be obtained from the expres-
sion for the power balance, Eq. (7.11)

T.=1+m,(n/7)1~-1) (8.3)

Note here that 7, is now not the design limit turbine inlet enthalpy
divided by the ambient enthalpy, but rather is the selected turbine inlet
enthalpy divided by the ambient enthalpy. Thus, 7, (and hence 7,) is
determined by the throttle setting (7, ), environment (7;), and flight condi-
tion (7,).

The Mass Flow

It will be necessary to determine the variation in the mass flow rate in
order to determine the variation in thrust. Thus write (with the assumption
<l

o=, = L A4P,4
2 4 \/ﬁ_ \/’7:
or
L Cp Po Ay
m,= L mymmm — (8.4)
2 ‘/1—{' Cp( d'b c . \/"T)\

The Corrected Mass Flow
The corrected mass flow #1, is defined as the group

m, =m0 /8 (8.5)

where m is the actual mass flow at the plane of interest, § = T,/ Tgrp, and
8 = p,/psre- STP refers to standard temperature and pressure so that

Tsrp = 288.33 K [519°R]
pste = 1.013(10%) Pa [14.69 Ibf/in.?]

It can be noted from Eq. (2.102) that a given value of corrected mass flow
corresponds to a particular value of the Mach number at a given reference
area. Thus, a particular corrected mass flow corresponds to a particular
engine face Mach number for a given engine.

With Eq. (8.4)

1

mz\/’ﬁz Cp % T )i
- - — P 4.1 ]
m 5, |:pSTPFt( RC, Tyrp TpTe 4( ~ (8.6)
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LYY
¢ )

2

Fig. 82 Compressor operating line.

It is to be noted that, when the “schedule” of A;/A, is known, 7, is fixed
by Eq. (8.2) (assuming no afterburning is present). The chosen area ratio
Ag/A, and 7. (hence 7.) thus fully determine 7, /7,, as is apparent from Eq.
(8.3). It is then apparent from Eq. (8.6) that the corrected mass flow is a
unique function of the compressor pressure ratio and the chosen area
scheduling. If the area scheduling is related directly to the compressor
pressure ratio, then a unique relationship exists between sz, and 7. (The
most obvious example is that occurring in a conventional engine where A4,
and A, are fixed.) When the loci of the points defined by the relationship
m, vs 7. are plotted on a graph, the resulting line is termed the compressor
operating line (i.e., Fig. 8.2).

It i1s usually most convenient to obtain the off-design behaviors in terms
of the ratio of the desired parameter to the value of the parameter at
on-design. Denoting the reference, or on-design, quantities by a subscript
R, Eg. (8.6) gives

Mo e i(ﬁ_ki)z (8.7)

Mg TorTer Asr \ T TR

Performance Parameters

Now consider the behavior of the performance parameters when the
engine is operated off-design. In order to simplify the equations algebrai-
cally it will be assumed that the nozzle exit area is varied so as to keep
Pg =P, and in addition that f << 1. Also only nonafterburning turbojets will
be considered so that with 7, = 7,7, it follows from Egs. (7.24) and (7.27),

Pzg/ Po = WMy T AT, T, (8.8)

Ug 2 P, —y.=b/vI]) 2
M,— = 1—|— .
0”0 {Yc‘lT)‘Tt[ (P9) (89)
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The equation for the thrust becomes
F=r'n(u9—u0)=r'na0[M0(u9/u0)—M0] (8.10)

from which, with Eq. (8.4)

F _ mmmm, _go_i(ﬁ)% [Mo(ug/uo)“Mo]

= 8.11
Fr (mymmm.) g Por Aar\ T [Mo(“9/“0)_M0]R ( )

With the assumption that f< 1, or equivalently that hn,/C, T,> 1),
from Eq. (7.21)

2.0
f= h—nb(n—ﬁ%) (8.12)

Then from S = f/(F/#) and Egs. (8.10) and (8.12)

S
Sk

i)%[Mo(%/“o)_Mo]R (r,—77)
Tor [Mo(“9/“0)_M0] (T/\_TrTc)R

(8.13)

Exit Area Variation

It has been assumed that the nozzle exit area will be varied in a manner to
keep py = p,. As discussed in Sec. 6.2, it is important to know the exit area
variation so that installation penalties (boat-tail drag) can be estimated.
Thus write, utilizing Eq. (2.106),

)(Y,+l)/2w

T (8.14)

A5, y,—1)5 (p.,/Po
Aq 12y, (v.— /v, 5om,
[(plg/po) _l]

The schedule of A, variation is separately prescribed, so that the exit area
variation may be obtained from

A9 — A9/A8 AS

79 et 2% 8.
A9R (Ag/As)R ASR ( 15)

These equations and appropriate subsidiary equations are summarized in
a manner suitable for sequential solution in the following.

Summary of the Equations— Off-Design Turbojet (Nonafterburning)

Inputs: v, 7,, Ag/Agg, Po/Por> To/ Ty g+ 7., and both the reference values
and off-design values of Ag/A,, My, m;, Ty, Tap, Ty Trs Mo Moo
and 7,
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Outputs: T e g T, T

Equations (where appropriate, valid for both design and off-design cases):

"j)-—

Ay
= A—4'”AB

(1= (/m)( -7
m=[1-(1/m)( - )] 0
n,=1+[(y.—1)/2] Mg

7 = 1/
r.=1+7,(n/7)1-1)

m = [l +79.(7, - l)] ve/(re= 1)

P/ Po= Ptg/P9 = My T Ty Ty

u9 B 2 3 ﬂ == /7 2
Mou0 —{Yc_lﬂr,"r,[l (Pg)

F_ mymmm (&)_AL(IA_R)% [Mo(“9/“o)_Mo]
[Mo(“9/“o)_Mo]R

Fp ('”d'”b'”r'”c)R Por ] Aar\ T

S Ty \ [ Mo(us/up) = My 5 (1= 17,)
7]

Sk Tor ] [Mo(ug/uy)—My] (mh—17.) 5
Ay _ . ( y,—1 ) (Prg/po)”’ﬂ)/z” Tng
Ay 2y, [(plg/po)(v,—l)/v, _ 1]2 M,

Ay Ay/Ay Ay
A9R (A9/A8)R ABR
m, _ mmA, (T_Agi)%
"R ("Tb"TcA4)R

™ TR

(8.16)

(8.17)
(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)
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The Fixed-Area Turbojet (FAT)

To date, no main propulsion turbines have been used that incorporate a
variable turbine inlet area (A,). Such “conventional” turbines are also
usually coupled with a nozzle of fixed area A4 except when an afterburner is
utilized. However, it is customary to design a primary nozzle variable throat
so that, when the afterburner is in operation, A; is varied just enough to
keep the engine operating at its original setting. It can be seen from Eq.
(8.2) that this would require Ag(Tag/ \/ﬁ ) to remain constant. Now utilize
the results of the preceding sections to estimate the off-design behavior of a
fixed-area turbojet (FAT) operating without afterburner.

The equations of the preceding sections can be simplified considerably in
this special case, for from Eq. (8.2),

72 /m = const (8.29)

Now make the further assumption that (many of) the component
efficiencies remain constant in the regime of parameter variation to be
considered. This is a very convenient numerical approximation for illustra-
tive purposes, and the results obtained by utilizing this simplification still
reveal the principal effects of the off-design behavior that result primarily
from changes in the propulsive and thermal efficiencies, rather than from
changes in the component efficiencies. If greater accuracy is desired, the
more complete equations (8.16-8.28) may be utilized.

With the assumed constant turbine efficiency, the turbine expansion ratio
remains fixed. Equation (8.3) then gives

r=1+(rz— )T" TR (8.30)

T

Utilizing this relationship and further assuming that 7, 1., %,, 7,, Tag,
and 7, remain constant, the equations may be simplified and reordered to
give the following summary.

Summary of the Equations— Off-Design FAT

Inputs: Yes Yos Po/Pors 1o/ Tors Mms Mes N> Ters Tags
T™ars Mors Ty Tas My

F S Ay r'n. T

< <

Outputs:
SR Agg’ M g’ meg
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Equations:
Ye=1,0. /(=D
TR=1+ 3 My, TR = TH/ Y (8.31)
Ye—1,., /v
T.=1+ 3 My, @, = T/ (8.32)
nr=1+ nl(wg,zﬁww— 1) (8.33)
- 1 TR
T.=1+ (7.5 1) P
=[1+q9,(r, - 1))V (8.34)
1 TrR
r=1——=-""(1x—1), T = TR (8.35)
Mm AR
= [1 _(1/7,[)(1 _TIR)] y’/(y,Al)* 7rt=7rzR (8'36)
(ptg/pO)R =7Tb7T,7T"(7Tr7Td7T(.)R (837)
P =(ﬂ) _ T (8.38)
Do Po ) g(mmm.) g
-y
Ug 2 Prg)
M—={—n1|l-|— (8.39)
ug {Yc—l M[ (P9 ' ]}

(Note that the formula for [ M,(ue/u,)] g is identical, but R quantities are
to be used.)

F __ mmT Po (T}\R) [ My (us/uy) — My ] (8.40)
Fy (WrWdﬂ') Por\ T [ Mo (ug/u) = My]
S _ ey )z “9/“0 Myl g (1 —77) (8.41)
S 9/“0 Mo] (T}\ - TrT(')R
( 171)/1
Prg/P (v, +1)/2y, (Prg/Po)Ry T _q (8 42)
A9R Ptg/Po (ptg/p0 )(Y'AWY' -1

Mo Me (T 1Y’ (8.43)
mCR TR Tc_l
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Fig. 83 S /S8y vs F/Fy for a fixed-area turbojet.
20
16 2]

12 >

04 0.6 0.8 1.0
mc/mcR

Fig. 84 Compressor characteristic, fixed-area turbojet.

As an example calculation, consider an engine held at fixed altitude and
Mach number. The parameters assumed are vy, =14, y,=13, 5, =1,
n.=088, 7,=09, 7,=098, 7,=099, 7,=097, 7,,=20, 1,,=7, and
M, = 0.8. Figure 8.3 shows the resulting variation in specific fuel consump-
tion with thrust.

It is evident that the specific fuel consumption at first decreases with the
decrease in thrust, but later increases at very reduced thrust levels. This
behavior is of enormous importance in determining the proper sizing of an
engine for use in such vehicles as a high-performance fighter. It is often
desirable to have such a fighter have a subsonic “ferry” capability, and in
such a case the engine could be required to operate at very low thrust levels.
If the engine is very large, such low thrust levels could be well on the “back
side of the SFC bucket.”

It should be noted that it is the increase in propulsive efficiency which
causes the original reduction in specific fuel consumption. At lower thrust
levels, however, the decreasing thermal efficiency (caused by decreasing 7).
coupled with the small output compared to the component losses, causes the
specific fuel consumption to rise. Figure 8.4 shows the related compressor
characteristic as the thrust is decreased

Finally, the substantial contraction required of the exit nozzle to keep the
exit pressure balanced is shown in Fig. 8.5.



286 GAS TURBINE AND ROCKET PROPULSION
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Fig. 8.5 [Exit area variation, fixed-area turbojet.

A second example of some interest is that where an aircraft flies at the
same Mach number but at two different altitudes. Consider the case where
the turbine inlet temperature is held the same so that 7,/7\z = Tyr/ T

Consider the case in which T,/ T, = 0.759, p,/por = 0.162, and all other
values are as given in the preceding example. (Note these ratios of T,/T;,
and p,/p,r correspond approximately to the changes experienced in going
from sea level to 40,000 ft altitude.) Straightforward calculation yields
F/Fy = 0345, S/Sz =0900, m./m., =151, =/7, =180, and
Ag/Agp=142.

At first it is surprising that the thrust decreases as little as indicated,
particularly when the large reduction in pressure is considered. The prime
reason for the relatively small decrease in thrust is that the reduced
compressor inlet temperature reduces the compressor power requirement to
sustain a given pressure ratio. Thus, because the turbine inlet temperature is
fixed, the turbine has the power capability of providing much higher
compression, with a consequent increase in corrected mass flow and hence
thrust. There is some question whether, in fact, the compressor could be
operated at 1.8 times the sea level value of compressor ratio, and it is
possible that the engine would have to be throttled back at altitude. It is, of
course, the high compression ratio that is primarily responsible for reducing
the specific fuel consumption, even though the propulsive efficiency has
decreased.

As a final example of off-design performance of a fixed-area turbojet,
consider the problem of designing an engine for an aircraft capable of flying
at Mach 3 that is to be able to take off under its own power. Thus, consider
an engine with 7., = 9 at M =0 and with T, /T, = 0.759, p,/pyr = 0.162,
and M, = 3. Other conditions are as in the preceding examples. Straightfor-
ward calculation then gives =,.=3.34, rm /m =0.541, F/F,=0.841,
S/Sg=115,and A4/Aqz = 5.04(")

It can be seen that when an engine is to be used in an aircraft with such
an extreme operating range, the restriction to fixed 4, and A, presents a
very serious design problem. Thus, it is hard to imagine how such a huge
exit area variation could be accomplished, and it is probable that the engine
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would have to be operated with substantial overexpansion in the nozzle at
takeoff and substantial underexpansion at cruise. The large reduction in
compressor pressure ratio, with corresponding reduction in corrected mass
flow, would be difficult to achieve and would probably imply the use of
compressor bleed at the cruise condition (see Sec. 8.5).

These simple calculations serve to emphasize that the difficult task of
designing an engine is further complicated when the engine must operate at
more than one “design point” for a substantial length of time. Some of the
restrictions are so severe that competing concepts to conventional engines
have gained consideration as the demand for multiple-mission aircraft has
grown. An example of such a concept is considered in the next section.

Before considering more complicated examples of off-design perfor-
mance, it is of use to note that very similar methodology can be used to
predict the effect of engine redesigns, or of the effect of unexpected
operational excursions such as afterburner blowout.

1t occurs more often than is desired, that a compressor characteristic map
turns out to be other than that assumed in the preliminary design calcula-
tions. If, as a result, the engine operating line ends out in too close
proximity of the surge line, the components must be rematched. An often
used technique to effect such a rematch is that of adjusting either or both of
the areas 4, or A, As is to be developed in Problem 8.4, for example,
variation of 4, and A, can be used to shift the location of the operating
line.

The Variable-Area Turbojet (VAT)

A concept of considerable interest to industry today is that of the
variable-area turbojet or VAT. With such a machine, it is planned to make
both the turbine inlet area variable (by having movable turbine nozzles for
example, Fig. 8.6) and the primary nozzle variable.

In spite of the enormous complexity and difficulty of developing such a
concept, the possible performance benefits are sufficiently substantial that
considerable research and development effort is presently being devoted to
such concepts. To investigate the possible performance benefits, again
consider the first example in the preceding section, in which the behavior of

Fig. 8.6 Variable-area turbine nozzles.
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an engine at fixed Mach number and altitude was discussed. It was found
that the specific fuel consumption rose at low thrust levels, primarily
because the compressor pressure ratio decreased with thrust.

Now consider a competitive engine in which the turbine and primary
nozzle areas are varied in a manner to keep the compressor pressure ratio
and corrected mass flow constant. Note that by so doing not only will the
thermodynamic efficiency of the engine be maintained, but the inlet airflow
will also be maintained, thereby preventing excessive inlet spillage drag. The
required relationship for the area variation follows directly from Eq. (8.7) to
give

i
Ay/Asg = (1/T\g) (8.44)

Equation (8.3) also gives directly
T=1=(1=1x)(Tap/T\) (8.45)

Thus this VAT is quite the opposite to the FAT, in that the VAT has a
variable turbine expansion ratio but a fixed compressor pressure ratio,
whereas the FAT has a variable compressor pressure ratio but a fixed
turbine expansion ratio.

The required primary nozzle area variation follows from Eq. (8.2) to give

_A8 =_A4 (i)zh=(—7)‘7’ ):h (8.46)
Agg Asr\Tr) ™ T™\RTR/ T

The remaining equations follow directly from Egs. (8.16-8.28). In the
special case of flight at fixed Mach number and fixed altitude (i.e., fixed
M,.T,, p;) for example, the necessary equations may be summarnized as
follows.

Summary of the Equations— Off-Design VAT
(Note that m., M, T, p,, and component efficiencies are fixed.)

Inputs: Yoo Yoo Mes Mys M Mo Tys Ty Ty Tags My, T,
A A 1 A
Outputs: FS A A l/m Ay
Fr' Sg’ Ayr Agr’ 1/mp’ Ay
Equations:
- Y(‘—l 2 YAy~ 1
T.=1+ 3 M;, m, =Y/ (8.47)
1 —1
T.=1+ — (=" D/% 1) (8.48)

M.
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1 7 1 Y/ (%=1
T’R=1_Tl_m1'>\rR(Tc_l)’ W1R=|:1_;'—’(1_71R)j|
(8.49)
1 v/ (v, = 1)
R=1-(- 7 28, w,=[1—n—<1—7,)} (8.50)
H
4 4
(ﬂ) =MW AT TR == (J) i (8.51)
Py /g Py Py | R ™R
Uy 2 i E’_‘i —(v—D/v ]\ 2
M, we {—Yc T [1 ( s ) (8.52)

{(Note that the formula for [ M,(us/u,)] is identical, but R quantities are
to be used.)

F My (uy/uy) — My

- (8.53)
Fr [Mo(“9/“0)_M0]R
S T =TT, 1
R d 8.54
Se (-1 F/Fx (859
Ay/Asr = (TA/TAR)E (8.55)
AS ( AT )%WIR
—_— =] = 8.56
Agp T™"RTR/ ™ ( )
(v +1)/2v, (v—= /v, b
A/ (/e VT (o/ps) SN
(A/4)x  \ (P,,/Po) (po/po) " "1
i —A9/A3 ig_ (8 58)

A9R B (A9/A8)R ASR

As an example calculation, consider an engine with the same on-design
characteristics as the engine considered in the first example of Sec. 8.3.
Thus, take y,=14, v,=13,1, =1, v,=0.88, 7,=0.9, 7, =098, 7, =0.99,
7;=0.97, m.=20, 1., =7, and M, =0.8. Figure 8.7 shows the resulting
variation in specific fuel consumption vs thrust. Included for comparison is
the FAT result (Fig. 8.3) and also the related turbine enthalpy ratio ,.

The potential operating advantage for a VAT is evident here in that the
superior thermal and propulsive efficiencies of the VAT at part-thrust



290 GAS TURBINE AND ROCKET PROPULSION

U eFraT
S /g ; .
T
o |t Lot
11z T 65
0.9 Ay °
Y02 04 06 08 10
F/F,
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operation leads to substantial benefits in reduced specific fuel consumption.
A further benefit is implied by the behavior of the turbine inlet enthalpy.
Thus, the more rapid fall-off of the turbine inlet temperature with thrust for
the VAT indicates the possibility that less cooling air will be required from a
VAT during part-throttle operation than from a FAT.

The required area variations for the VAT are shown in Fig. 8.8.

It is evident that substantial variations in 4, and A4y are required, and
there is some question as to whether the more extreme variations could be
attained in a working design. Note, however, the very much reduced area
variation required of the exit nozzle. (Note that this particular VAT requires
an area increase, in contrast to the severe decrease required for the FAT.)
This reduced exit area variation could lead to substantial benefits in reduced
installation losses.

The required variation in turbine expansion ratio is indicated in Fig. 8.9.
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Fig. 8.9 Variation in turbine expansion ratio.

It is clear that at very low thrust levels the turbine expansion ratio
compared to that required at the on-design point is very large. This required
variation of expansion ratio would seem to imply the need for substantial
research and development to extend the capabilities of present-day turbines.
It would also seem to imply the use of a turbine with several more stages
than would be required for operation at high thrust levels, so that the
turbine would be capable of supporting the required large expansion ratios
at low thrust levels.

Further potential operating benefits of a VAT become apparent when
flight at various altitudes, various Mach numbers, etc., is considered. It is
these possible benefits that have stimulated industry interest in the VAT, as
well as other variable geometry engines such as the variable bypass ratio
turbofan.

Although the analysis of other variable geometry engines will not be
included here, a brief description of some possible engine types will be given
to illustrate the extent of creative thought that has been directed to the
problem of developing engines with efficient multimission capability. In Ref.
1 the annulus inverting valve (AIV) is described and many possible cycles
utilizing the valve are considered. The valve has the capability of switching
half the flow it encounters from the inside of an annulus to the outside, and
vice versa. Alternatively, it can be operated so that the flow passes straight
through the valve. This capability offers the opportunity of varying the cycle
bypass ratio and bypass pressure ratio to better suit the required operating
point. The valve in its most simple utilization is illustrated in Fig. 8.10.

It is evident from Fig. 8.10 that the AIV allows operation of the engine as
a turbofan engine with a low compressor pressure ratio, or as a turbojet
engine with a high compressor pressure ratio. (In the latter mode, half of the
inlet air is bypassed.) The design calculations of Chap. 7 indicated that
flight at low Mach numbers is best served by a turbofan, whereas flight at
high Mach numbers is best served by a turbojet. Thus, the AIV offers the
opportunity of substantially extending an engine’s efficient flight envelope.
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Fig. 8.11 Variable bypass ratio engine.

Many other variable geometry concepts are possible, for example the
variable bypass ratio engine illustrated in Fig. 8.11.

In an engine such as that shown in Fig. 8.11, the bypass ratio would be
selectively varied by varying the turbine inlet area at the entry to the
low-pressure turbine. Use of a relatively simple bypass valve, as indicated,
would allow efficient flow adjustment to deliver the required bypass ratio
change. The configuration indicated has the advantage that the variable-area
nozzles are in a portion of the flowfield where nozzle cooling is not required.
As a consequence, the required mechanical complexity of the movable
nozzles will be greatly reduced.

The examples of variable geometry engines cited in this section represent
only a few of the very large number of possible engine concepts that deserve
consideration, and the future should see extensive study of such advanced
concepts. The eventual development and production of such engines will
depend upon the many technical tradeoffs obviously present, as well as the
enormous economic tradeoffs required.

Installation Effects

The example calculations of the preceding sections illustrated the varia-
tion of parameters with the “uninstalled” thrust and the specific fuel
consumption based upon this value of thrust. Many of the major benefits of
variable geometry engines are identified with the reduction of installation
effects, however.
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When a high Mach number aircraft is flown at low Mach number, the
mass of air per second swallowed by the projection of the inlet area
decreases, but not, in fact, as rapidly as the engine demand for air decreases.
Thus, at low flight Mach numbers the inlet must spill air; and, in the case of
a sharp-edged supersonic inlet, substantial spillage losses occur. It can be
seen then that the VAT, by maintaining a high airflow demand, will much
reduce such spillage losses at low thrust levels.

A further installation benefit arises for the VAT because of the small
required exit area variation as the thrust is reduced. Usually, the exit area
when no afterburning is present, even with full thrust, is substantially less
than the main engine cross-sectional area. This projected area can lead to
serious drag penalties and it is important to design the engine aft end so
that substantial separation does not occur. When a conventional engine
(FAT) is operated at very low thrust levels, the required exit area closure is
so substantial that the prevention of separation is usually impossible, and as
a result large boat-tail drag penalties are incurred. The VAT, because of its
continued handling of a large mass flow rate that is delivered at an
ever-decreasing exit velocity, leads to a requirement of very little area
change. As a result, the VAT shows promise of leading to much reduced aft
end installation losses as well as reduced inlet losses.

In conclusion, it should be pointed out that the effects upon installation
losses for a VAT are comparable to the effects upon uninstalled perfor-
mance. Thus, the VAT, like all competing concepts, should be evaluated in
terms of the installed behavior. Of course, this requires knowledge of the
inlet and aft end losses, which generally must be obtained from experiment.

8.3 Off-Design Analysis of the Turbofan

When the off-design performance of a turbofan is considered, a slight
additional complication arises in that the variation in performance of each
separate stream must be determined. In order to determine these separate
variations in performance, additional information must be provided to
describe the “work split” between the two streams of the turbine output. To
illustrate such a procedure, consider a turbofan in which the fan is driven by
its own low-pressure turbine, and the high-pressure compressor is driven by
the high-pressure turbine. The intermediate location between the two
turbines is station 4a and the obvious definitions are

A A .
ch - s ch — T th = s
le Ter ply T T’4
2 T, 12
_ Fig, - s - s
Tin = > (L T ° L (859)
p14 t4y p’Aa

The off-design analysis of the turbofan is much simplified algebraically if,
analogously to the assumptions already utilized in the description of the
off-design performance of the turbojet, the two exit nozzles and both
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turbine entrance nozzles may be assumed to be choked. These assumptions
prove to be valid over a fairly wide operating range for flight at high Mach
numbers, but the exit nozzles tend to unchoke at only slightly reduced
power settings at low flight Mach numbers. An algebraic method of han-
dling the unchoked nozzle problem is given in Sec. 8.4 for the turboprop
engine and is given as an assignment in Problems 8.6 and 8.7 for the
turbofan engine.

For simplicity of presentation, consider the example of fixed turbine inlet
areas and fixed exit nozzle throat areas. Analogous to the result of Sec. 8.2,
it then follows that 7, m,, 7,,, and =, are all constant. A power balance
between the high-pressure compressor and the high-pressure turbine then
leads to

) T}\/
(T}\/ TL)R

Ton =1+ (Thr — (8.60)

Then

o \1/35
ma=[1+n,(1, - 1] and 7,,—1= 1 (—R) -1
Newr |\ TR

give

17 h 1/3.5 T}\/ 3.5
{1  enn Nerr [( W(_,R) 1} (7'}\/ o ) } (8.61)

Utilizing Eq. (8.4) in both streams leads to

N [( T://:)R} (8.62)

ch
Finally, a power balance between the fan and low-pressure turbine gives

=14 (r—1) 2L/ (8.63)
‘ ‘ a+tl (1/7)g

These equations can be iterated rapidly to determine the desired values.
Thus, for example, the iteration may be started by assuming 7., = 7.5 in Eq.
(8.61) to give a first estimate of 7, and thence a from Eq (8. 62) The
process is continued until the desired accuracy is obtained.

Example— Turbofan Off-Design

As an example, consider the variation of 7., 7., and « with flight Mach
number for an engine with design conditions. Mz =2, m.x=1.5, m.x =15,
ag =1, ., =Nugr> and n.=0.90.
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Calculation gives

M, 1.0 1.5 2.0 2.5 3.0

o 2.02 1.73 1.50 1.34 1.24
m, 35.7 23.4 15.0 9.93 6.94
« 0.661 0.805 1.0 1.23 1.48

It is apparent from these results that variable geometry should be
considered for use with turbofan engines. Thus, for example, it is evident
that the bypass ratio increases with increase in flight Mach number. This
tendency is opposite to that found for best on-design choice of bypass ratio.

The parameters evaluated by the preceding methods can be incorporated
in the performance equations to provide the off-design performance. An
example summary is provided here (for which it has been assumed that the
exit areas have been varied to provide p, = py = p,)

Summary— Turbofan Off-Design
Inputs:

Yir Coo Gy s N> Mes Mys Ty Ty Ty Trs Tow Po/Pors By The My, Mg,

TAR» TeR> Ters ORs Nenrs Mer> Mors Tars Thr> Tur> Twrs Lors

Uy Uy
(Mou ) ,(Mou' ) » TiR> TR
0/ R 0/R

Outputs: S, F/Fy, etc.

Equations:
1=1+MZ/5 (8.64)
m, =13 (8.65)
=1+ M/5 (8.66)
aq=20.04/T, [a,=49.0/T;] (8.67)
aor = 20.04/Tox [20=49.0/T;z | (8.68)

.., @, and 7. are obtained from Egs. (8.61-8.63).

[4
If the turbine entry nozzles and primary and secondary main nozzles are

choked, then 7,=7,; and

7,

Y/(v,— D
= TR™

1
1+ —(mg—1
,',,,R(tR )

(8.69)
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(See Problems 8.6 and 8.7 if examples with unchoked nozzles are to be
considered.)

T, =TT, =7.]1+ 771 (7r3,(3'5 - 1) (8.70)
ch
T, = [1 +n.(1., — 1)]3'5 (8.71)
T\~ TT,
fe (8.72)
(hn,/C,T5) =
Py
= —gmm T, (8.73)
Py
“ 1=/l ?
u9 pt9 f3 3
O(uo) { TAT'[ (P9) }} (&7
P,
= g, (8.75)
Py
~1/35) ?
Mo(u_9)= St 1—(&) (8.76)
Ug p9'
F 0

a Ug
a{(1+f)M0u0 M,+a

MOZ—Z - MO]} (8.77)

= f
S (1 + a)[F/(m, + mp)] (8.78)

(TrTc’)R :IZ&

T T P OR

agp TG,
a

( '”r'”d T My ) R

R

(1 +f)My=2 - M, + a(Moﬁ - MO)]
Uy Uy

(8.79)
[(1 +YMy=2 — M, + a(Moﬂ - MO)]

Uy Uy R
8.4 Oftf-Design Analysis of the Turboprop

This analysis of the off-design performance of the turboprop begins by
again assuming that the entrance areas to both turbines are choked and that
the turbine entrance areas and the nozzle exit area are fixed. The turboprop
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Fig. 8.12 Turboprop station numbering.

station numbering is as shown in Fig. 8.12. The power balance between
compressor and high-pressure turbine gives immediately

T)\/ T

Tc—lz(TC_l)R(TA/T)R

(8.80)

In virtually all operating conditions of a turboprop, the exit nozzle will
not be choked, so with Eq. (2.102)

Ap, 77 2 etV

my = 2 8.81
T, VR A (8.81)
Aspy, [, [ Y, — — Y+ D/2Ay,~ 1)
g = =1/ % Ms|1+ 5= 92] (8.82)
/T, ' R

Equating these two expressions and rearranging slightly, there follows

A T -1 (r.+1)/2(v,— 1
A1 2 (1+Y' Mz)] (8.83)

MQ—Ag;r: 7 [y, +1 2 9

Also

'Y’—l 2]71/(71_1) Py Po
1+ M, =— = —q{,TMATT, 8.84
[ 2 9 Do Do d b"t ( )

Thus, noting that p,/p, =1 because the exit is unchoked,

R v,—1 2]71/(7,-1)
e [1 + M (8.85)

Equations (8.83) and (8.85), together with the intermediate equation
relating #, and 7,, may be easily solved by functional iteration. With the
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thus determined values of M,, =, and ,, the performance variables follow
directly. Utilizing the results of the summary of Sec. 7.4, with Egs. (7.51)
and (8.4), the results of the following summary are obtained. Note that the
nozzle efficiency varies very little, so it is appropriate to assume =, =7, .

Summary of the Equations— Off-Design Turboprop

Inputs: v, Nprops Mgs Moms Mer Mos Ms Tas Mo 7= Mo Tos Po/Pors 1o Tae Mo,

(F/gOm)R’ Ner> Mr> Tars Tors Tor> Tars Mors> Ter»> Tir> Mog

Outputs: S, F/Fy, m/mg, m /M g, 7, etc.
Equations:
=1+ MZ/5, Tr=1+ Mj/5
=133, 7= (TrR)a.s
Tr=1+(1/n.)(7l4>° - 1)

T}\/ 7

T.=1+(T(,R—‘1)(T>\/T)
r/R

mr=[1—=(1/n,)(1 = 7g)] """

1 -1 Y/ (%~ D)
= ( 1+ % Mgz)
7T, 2

G

7=1-7, (1 -l D/m)

y,—1 , (i +1)/2(v,— 1
T %WrR 1+ 2 Mg
M9—M9R - | .
TR 7 1+ Yt_le
9R

2

(8.86)

(8.87)

(8.88)

(8.89)

(8.90)

(8.91)

(8.92)

(8.93)

(8.94)
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The latter three equations are to be iterated for =,, 7,, and M,. Start by
assuming My = My, calculate =,, 7,, and M,. Continue until (M, —M,)
<108

MOZ—Z = {51-)\1-,[1 —(mmmmmm) [(7“1)/7‘]] }E (8.95)
Ty — T.7
f= A (8.96)
(hn,/ G, Ty) —
Cprop = npropng[nm(l +f)7)\(1 - T!) - Tr(TC - 1)] (897)
C.=04 My[(1+f)My(ug/ug) — My] (8.98)

\/TO ( Cprop + Cc)

F
% =50.1 M,
F \/TO(Cprop + Cc) .
— =3807T——F757—— 8.99
gom M, ( )
_ f(10°) _ f
S= F/m S = 3600 F/gom (8.100)
mc — TrbTrc I: (T)\/Tr)R :I% (8101)
mcR (Wbﬂc)R T)\/T’

_r'i=& h_ﬂi(i)S m, (8102)
Mg Por \/ Ty mr\ TR/ Mg

F .

== (8.103)

Sample Calculation— Off-Design Turboprop

As an example calculation, consider the off-design performance of the
engine considered in Sec. 7.4. The engine on-design parameters are listed in
Table 7.2. Assume the engine is operated at fixed altitude with fixed turbine
inlet temperature. The variation of the thrust and specific fuel consumption
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with the flight Mach number are to be found. As a simple approximation to
real propeller efficiency variation with Mach number, 7, 1s assumed to
vary as in Fig. 8.13 and =, is taken to be 24.

The results of the calculation are shown in Fig. 8.14. The results indicate
that the prop fan (or turboprop) represents a very desirable engine for use
in low Mach number aircraft (M, < 0.8), provided that the high propeller
efficiencies indicated in Fig. 8.13 (particularly at the higher Mach numbers)
can be attained. Thus, as was shown in Sec. 7.4, the prop fan gave
substantially improved behavior at the design condition compared to a
turbofan engine; it can be seen from Fig 8.14 that the high propulsive
efficiency of a prop fan engine leads to very high thrusts and low fuel
consumptions when operated at low Mach numbers. These results further

1.O
Tprop
0.8
T
0.6 I
0 0.2 0.4 0.6 0.8
MO
Fig. 8.13 Assumed propeller efficiency.
3.0 |
25 0.8
F/ FR S/S

20 _‘\ / —* 0.6 "

/N

! 0,
0 o0z o4 06 087
Mo

Fig. 8.14 F/Fy and S/Sg vs M, for a turboprop.
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explain the renewed interest in the development of advanced turboprop
engines.

It should be pointed out that the very-high-thrust capability evidenced
for flight at low Mach numbers is often far in excess of that which can be
usefully exploited. Thus, the related propeller blade loading can be so
excessive that blade stalling will occur; and if the required propeller torque
is to be provided, the main gearbox must be excessively heavy. As a result
of these tendencies, turboprop engines designed for high Mach number
capability are usually operated considerably derated in the (low-altitude)
takeoff and climb condition. Restricting the engine output in this manner is
referred to as “flat rating.”

8.5 The Use of Component Characteristics

When the performance characteristics of the various components are
available, the combined performance of the compressor, burner, and turbine
can be predicted. These combined characteristics, termed the pumping
characteristics, can then be utilized to predict the overall engine perfor-
mance. Once a schedule of turbine area variation and primary nozzle area
variation is selected, a unique operating characteristic can be determined.

In what follows, the individual component characteristics will be de-
scribed, and the method of combining these characteristics to obtain the
pumping characteristics and then the operating characteristics will be devel-
oped.

The Compressor Characteristics

When a new compressor has been developed, it will be subjected to a
compressor rig test to determine its performance capability. It is most
efficient to present the results of such a test in terms of dimensionless or
pseudodimensionless variables. Routine dimensional analysis reveals that
the compressor pressure ratio p, /p, could be expected to be a function of
four dimensionless parameters which could be taken to be the ratio of
specific heats y,, the Reynolds number R, the Mach number at the engine
face, and the ratio of the blade (tip) speed to the speed of sound.

Experience has shown that variations in both y, and R, have relatively
little effect over much of the operating range of the typical compressor, so it
is usual to present the performance in terms of the other dimensionless
variables and to provide y, and R, corrections when necessary. (See Sec.
8.6.) It is also usual to utilize variables related to the engine face Mach
number and “blade” Mach number, rather than to use those variables
directly. Thus, as was shown in Sec. 8.2, a unique value of engine face Mach
number corresponds directly to a unique value of corrected mass flow 1,
and it is usual to utilize 71, as a “pseudodimensionless” variable.

When a specific compressor (i.e., given geometry) is to be tested, it is
apparent also that a given blade speed occurs for a specific value of
rotational frequency, and that the reference speed of sound can be taken to
be proportional to the square root of the incoming stagnation temperature
T,,. Thus, it is customary to utilize the corrected speed N, as the second
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pseudodimensionless variable, where N, is defined by
N.=N//8 (8.104)

where N is the actual rotational speed (in radians/second for the SI system
of units, in rpm for the British system) and § is the dimensionless tempera-
ture as already defined in Eq. (8.5).

The method of obtaining a “map” of the compressor characteristics is to
set a given corrected speed for the compressor (on a separately driven
motor) and to vary the corrected mass flow over the desired range by
varying the exit valve opening. By operating at an appropriate number of
corrected speed settings and over an appropriate range of corrected mass
flows, the operating behavior of the compressor over its entire range can be
determined.

A schematic diagram of a typical compressor test facility is shown in Fig.
8.15 and typical results are indicated in Fig. 8.16.

The dotted line indicated in Fig. 8.16 represents the limit of pressure ratio
that can be obtained for the given corrected speed. This limit occurs when
the pressure rise across the compressor is so extreme that the blade loadings
reach levels that cause boundary-layer separation over substantial portions
of the blades. In this condition several forms of flow instability can occur,
principal among which are rotating stall and compressor surge.

The mechanism of rotating stall is complicated indeed, but some under-
standing of the phenomenon can be attained from a relatively simple model,
as depicted in Fig. 8.17.

Figure 8.17 depicts a packet of fluid that, because of the large imposed
pressure gradient, has undergone a severe flow reversal. To the surrounding
fluid such a reversal region appears to be a blockage area, and the fluid
divides to bypass the area. It can be seen in the figure that the blades on the
lower side of the stall packet are thus confronted with a flow of reduced
angle of attack, whereas the blades on the upper side of the stall packet are
confronted with a flow at increased angle of attack. The result then is that

POWER IN
f VALVE
\
& PLENUM
-/
COMPRESSOR

Fig. 8.15 Compressor test facility.
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Fig. 8.16 Compressor characteristics.
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Fig. 8.17 Rotating stall packet.

the lower blades tend to unstall and the upper blades tend to go into stall,
leading to a net movement (or rotation) of the stall packet.

Rotating stall, and its inception, are of enormous importance to the
industry, because not only does rotating stall limit the attainable pressure
ratio in some portions of the compressor characteristics, but the vibratory
stresses set up in the blades can lead to very rapid and catastrophic failure
of the compressor.
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Surge is that phenomenon where a substantial fraction of the compressor
blades simultaneously reach the limit of their load-carrying ability. As a
result, flow breakdown occurs and the entire compressor loses its capability
of supporting the overall pressure rise and massive flow reversal occurs. The
frequency of such reversals is related to the storage volume following the
compressor as well as to the compressor behavior itself. Compressor surge
represents a very serious design limit, because when it occurs in an operat-
ing engine, very often engine flameout occurs.

The distance between the operating line and surge line, shown in Fig.
8.16, is referred to as the surge margin. It usually happens that the best
engine performance occurs when the compressor operates near the surge
line. This introduces a difficult design problem in that “appropriate”
precautions must be taken to prevent engine surge due to such things as
severe inlet flow distortions occurring (caused by, for example, operation at
extreme angle of attack), ingestion of combustibles from gun and rocket
firing (leading to added combustion in the burner with consequent pressure
rise), burner overpressuring from fuel surges during acceleration, etc. A
careful balance must be struck between selecting an overly large surge
margin with poor steady-state performance and selecting too small a surge
margin with inherent low engine safety.

Compressor Behavior during Starting

Figure 8.18 depicts a typical compressor section. It is apparent that the
overall contraction in the annulus area will be selected so that, when the
compressor is on its design point, the axial velocity throughout will be
appropriate to match the design angles of the many blades. When the
compressor is operated at a pressure ratio other than the design one, then,
the ratio of exit axial velocity to entrance axial velocity will not be the same
as when the compressor is on-design, because the density ratio will be
dependent on the pressure ratio.

When the compressor is running at very low rotational speed, as during
starting, the first stage will tend to induce a flow at an appropriate angle of
attack to the first-stage blades. As the flow proceeds through the compres-
sor, it will tend to accelerate because the low-stage compression ratios
identified with the low rotational speed will not introduce a sufficient
increase in density to compensate for the annulus area contraction. As a
result, the axial velocity can become very large near the back of a high-com-
pression-ratio compressor, leading to “windmilling” of the rear stages and,
in severe cases, to choking of the flow. The net result is that during starting
the early blade rows operate at high angle of attack (hence tending to stall),

Fig. 8.18 Compressor section.
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the mid blade rows operate approximately on-design, and the rearmost
blade rows operate at low angle of attack (hence tending to windmill).

There are several design techmiques available to relieve these starting
problems, some or all of them being utilized in all modern high-compres-
sion-ratio compressors. The first technique is to utilize bleed valves. Bleed
valves operate by releasing air from an appropriate stage in order to reduce
the axial velocity and thereby reduce the tendency to windmill the rear
stages.

A second technique to reduce the starting problem is to utilize variable-
angle stators. By varying the angle of the stators the angle of attack to the
rotor can be changed to more closely approach the design angle and thus;
the compression per stage can be improved. The effect of variable stators is
both to reduce the tendency of the front blades to stall and to reduce the
tendency of the rear blades to windmill.

The third technique to reduce the starting problem is to drive the
compressor with multiple spools (Fig. 8.19). Thus, the low-pressure portion
of the compressor will be connected directly to the low-pressure portion of
the turbine and the high-pressure portions of compressor and turbine will be
directly connected on another “spool.”

It can be noted that the same argument used to explain the stalling and
windmilling behavior of the compressor can be used to explain the turbine
starting problem. Thus, by providing separate spools, the (for example)
high-pressure portion of the compressor will be allowed to match with the
high-pressure portion of the turbine, both components in fact operating
closer to their design point if allowed to increase speed.

It is obvious that the requirement for these additional complexities
increases as the design pressure ratio of the compressor increases, which
tends to explain why modern engines usually utilize all three of the
techniques described above. Aircraft designed for operation over a wide
Mach number range (as considered in the example of Sec. 8.2) are also
required to fly with widely different compressor pressure ratios at their
various flight conditions, and as a result may even be forced to fly with
compressor bleed when cruising at a “design” flight Mach number. These
complexities, and the demands that cause them, again serve to emphasize
the need for design ingenuity in the development of modern engines.

TO HIGH PRESSURE
TURBINE

llHlI“““: TO LOW PRESSURE
/-TURBINE

-\

Fig. 8.19 Muitiple spool compressor.
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The Turbine Characleristics

The same reasoning that lead to the use of the parameters of corrected
mass flow and corrected speed for the compressor suggests that the turbine
performance characteristics be plotted the same way with the simple excep-
tion that the reference inlet and exit quantities are now those at stations 4
and 5. Utilizing this procedure, the results of a turbine rig test would
appear, typically, as those shown in Fig. 8.20.

It 1s evident from Fig. 8.20 that in the case of the turbine an alternative
presentation format is desirable because so much of the desired information
collapses on the choke limit line, where in fact the turbines usually operate.
A simple method for displaying the desired information is to multiply the
corrected mass flow by the corrected speed. This has the effect of moving
the separate corrected speed lines apart so that the efficiency contours, etc.,
may be discerned (Fig. 8.21).

e
Rs N
VRN
+ CHOKE
/: LIMIT
m /B4
%4
Fig. 8.20 Turbine characteristics.
EFFICIENCY
fra
t5

m/B/ 8, (N//Q;)

Fig. 8.21 Alternate form of turbine characteristics.
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The Pumping Characteristics

The group of the three components (the compressor, burner, and turbine)
is termed the gas generator, and the performance of the gas generator is
represented by the “pumping characteristics.” The pumping characteristics
simply give the output variables (station 5) in terms of the input variables
(station 2).

To obtain the pumping characteristics from the individual component
characteristics, the matching of mass flow, shaft speeds, stagnation pres-
sures, and power requirements are utilized. For. simplicity, consider the
simple example of a nonafterburning, single-spool turbojet. Then

N,=N.=N (8.105)
iy=(1+f)m, (8.106)
Pi, = Py (8.107)
G (T, - T,)=1.0+/)G(T,~T,) (8.108)

From Eq. (8.106) (with 11, = /8 /8)

i = L BT} e (T (8.109)
Cy 1 +f Cq ptz 7‘[2 1 +f7TC7Tb 7;2 .

In the case where the turbine is choked, the corrected mass flow rz,, will
be a constant (or proportional to 4, for a variable-area turbine), and for
s1mphclty it is now assumed that this is the case. (Note that if this is not
true, it is simply required to iterate to determine the value of rt .) The
burner characteristics will give m, as a function of s and the fuel-

oq

Me2

Fig. 8.22 Compressor performance map.
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to-air ratio f. Thus, if 7, /T, is specified, i, is specified as a function
of .. (Note that the effect of f is small, but to be exact its value will be
iterated upon when the actual value of f is determined more exactly later.)
The relationship between T, /T,, ., and s, may be indicated on the
compressor performance map as m Flg 8.22.

Once the compressor performance map has been obtained in the manner
indicated in Fig. 8.22, the graph may be utilized to obtain 7, and s, when
N/\/F and T, /T, are prescribed. Note also that 7, may be obtamed fora
given locanon on the map because both 7, and 7, are provided.

The equation for the power balance [Eq. (8.108)] may be rearranged to
give

1 G (T )\
=] | 2 -1 8.110
; nm(1+f)c,,,(r,2) (1) (8.110)

When 7, /T, and N/\/E are prescribed, =, 1., 7., and hence 7, can be
obtained from Fig. 8.22. Then obtain 7, from Eq. (8.110) and N/\/E from
N/ 6, =N/\6,(T, /T, )""/% This allows locating the position on the
turbine performance map (Fig. 8.23), which in turn provides the correspond-
ing value of =,.

The pumping characteristics (Fig. 8.24) then follow by noting

P T AT and L, L,
T T TT, - T T
P, T, I,

Finally, the fuel-to-air ratio is determined from an enthalpy balance
across the combustor to give

ﬁ’lchrzs + nbhﬁ’l/= ﬁ’lz(l +f)Cp17;4

LOCATION OF POINT
SUCH THAT

]
,Tt(l—r,))z’-‘n

m.G; /8, (N/A))

Fig. 8.23 Turbine performance map.
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Fig. 8.25 The fuel-to-air ratio.

hence

(Cp/cp )(Tt /T )'—Tc
= £ < a2 8.111
1= (a6, 1.) (G, /G, )T/ T,) (811D

Thus a relationship of the form of Fig. 8.25 may be obtained.
Note that unlike the results of Fig. 8.24, the results of Fig. 8.25 are valid
for only a single specified value of T,..
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Gas Generator- Nozzle Matching

The pumping characteristics allow determination of conditions at station
5 in terms of those at station 2 when the corrected speed and the ratio
T, /T, are prescribed. When the gas generator is coupled with a nozzle of
prescrlbed throat variation, however, N/ \/—0; and T, /T,, are not separately
prescribable. (Recall the results of Sec. 8.2 where it was shown that by
prescribing the ratio 4,/A4; a unique compressor operating line will be
determined.) For simplicity again consider the case where the primary
nozzle is choked, so that the group r'ng‘/O_8 /Ag8g is a constant. Mass flow

continuity then gives

A mz\/— tg)/bg T, %Pzz
el ool 5

153

“FIXED
NOZZLE

T

t2

N#/B,

Fig. 8.26 Area variation.

Tia/ Tyo

Fig. 8.27 Gas generator-nozzile pumping characteristics.
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Noting that for the nonafterburning case 7, =T, and also that p,/p,
=, P, /P, this expression may be written i

fﬁ=(_@)i(&)l<l+ﬂ

AZ th pr2 7,

r b

-1
15, ) (8.113)

m, will be known as a function of the corrected mass flow rate through the
tail pipe and nozzle, so that if 7, /T, and N /\/E are prescribed, then
mz\/E/SZ, /Py T/Th, and f will all be determined from the pumping
characteristics. Thus, 44/ A, will also be prescribed and a graph of the form
of Fig. 8.26 obtained.

When the desired schedule for the nozzle area Ay is prescribed a unique
/T, vs N/ \/E curve is established. This allows determination of a
unique set of gas generator-nozzle pumping characteristics as indicated in
Fig. 8.27.

4,0,

n

mzﬁ)

Performance Prediction with Pumping Characteristics

Once the gas generator-nozzle pumping characteristics are available, the
performance parameters follow directly from the equations for the perfor-
mance variables. Thus, with reference to the summary of Sec. 7.2, the
performance variables may be obtained from the pumping characteristic
variables from the following equations. (Note that T, /7, would be as-
sumed and the flight conditions, etc., would be known.)

2y (w,wdwn@)ﬂ (8.114)
Py 9 pt2
T9 Tt< (pl )‘('Y:‘D/'Yt
- =T, — 8.115
T, T\ po ( )
ug 2 G 7;5 (Ptq )(le)/w :
M,— = — 1 |1=— 8.116
0 L) { Yo~ 1 Cpl. le Py ( )

_ llerangr) -+
(h"'lb)/(cp‘To) - 'rr(Cp,Tt“)/(Cpth2

f j (8.117)

o) s 005G

YL-[MO(“g/“o)] ?0 - Py
(8.118)

s=-1_ (8.119)
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8.6 Limitations on the Accuracy of Component Characteristics

When utilizing component characteristics to generate pumping character-
istics, it is important to be aware of any accuracy limitations. The most
obvious accuracy limitations will occur because of the inevitable instrumen-
tation and recording inaccuracies present in any test procedure and, of
course, every effort must be made to minimize such sources of error. Other
sources of error, however, arise when the effects of changes in Reynolds
number and the ratio of specific heats are not included.

In many large engines, the effect of Reynolds number variations are, in
fact, very small over virtually the entire operating range of the engine.
However, it can happen, particularly in small general aviation jet engines,
that Reynolds number effects can become substantial for flight at extreme
altitudes. In the compressor, for example, it 1s entirely possible that the flow
over the first blade row will become largely laminar with the consequent
onset of early (laminar) separation. Aside from reducing the performance of
the first blade row, such separation causes velocity mismatches at all
succeeding rows, with consequent substantial change in compressor perfor-
mance.

In a similar way, operation at extreme altitudes can lead to very low
Reynolds numbers at the later turbine stages with a consequent deteriora-
tion in performance (unless the blades had been designed “oversize” origi-
nally to prevent such deterioration). The point, then, is that if operation
over extreme Reynolds number ranges i1s to be expected, appropnate
investigations of the effects of the Reynolds number vanations should be
included in the engine test program.

An entirely different phenomenon arises when operation at very high
humdity 1s carried out. Several effects arise when large amounts of water
vapor are present in the flow, including change in the ratio of specific heats
(so that the value of corrected mass flow at a choke condition changes, as
does the reference speed of sound in the corrected speed). When condensa-
tion (and later evaporation) occurs, substantial effects arise because of the
release or absorption of the latent enthalpy of evaporation. As an example,
if an 1nlet 1s considered, the presence of water vapor causes three major
effects to occur:

(1) Mass continuity. The specific density of water 15 so high that any
droplets formed (due to the lowered static temperature as the air accelerates
into the inlet) occupy effectively zero volume. The result is that this aspect
of condensation allows the inlet to pass a larger mass flow than it can
without condensation.

(2) Stagnation enthalpy increase. When droplets form, their latent en-
thalpy of vaporization is released to the surrounding gas, thereby increasing
the stagnation temperature of the gas. This tends to reduce the mass flow
handling capability of the inlet (recall 1 ~ 1/ \/f ).

(3) Stagnation pressure decrease. The latent enthalpy of vapornzation,
released upon the formation of droplets, reduces the stagnation pressure, as
was pointed out in the analysis of Sec. 2.18. This reduction in stagnation
pressure tends to reduce the mass flow handling capability of the inlet
(recall i ~ p,).
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The net of these effects is that when condensation occurs, less mass flow
can be handled by the inlet than when no condensation occurs. Thus, inlet
testing (and engine testing) at ground level on hot humid days can lead to
substantial variations in performance (greater than 1% mass flow rate
changes) and great care should be exercised in applying data correction
procedures.

8.7 Engine Acceleration

In the preceding sections of this chapter, methods for predicting engine
performance at various throttle settings or flight conditions were developed.
In determining such off-design performance, steady-state operation is as-
sumed, so that appropriate power balances between turbines, fans, and
compressors can be applied. When the engine undergoes transient oper-
ation, however, the power output of a turbine does not equal the power
absorption of its related compression system, but rather a system accelera-
tion exists as a result of such a power imbalance.

The description of the accelerative behavior of the rotating components
requires knowledge of the momentary angular velocity of the rotating
system, and, as a result, the compressor (and turbine) characteristics must
be known. In the following, a simplified representation of the compressor
characteristics will be presented, but it is important to note first that to a
very high degree of approximation, provided only that the acceleration
maneuver does not introduce fluid mechanical instabilities, it is appropriate
to assume quasisteady fluid flow throughout the system. This assumption is
supported by the observation (and calculation) that engine acceleration
transients occur over time periods of several seconds, whereas the residence
time of a fluid element convecting through the entire engine is of the order
of about 1/100th of a second. As a result, conditions may be assumed
quasisteady throughout the transient time of a given fluid element even
though conditions do change on a much larger time scale. The importance
of such an approximation is that the component performance maps—that
are obtained from steady-state tests—may be used to describe the engine
behavior during transient operation.

The Compressor Characteristics

A schematic representation of a typical map of compressor characteristics
is presented in Fig. 8.16. When transient operation is to be considered, the
momentary operating point will depart from a location on the steady-state
operating line, and will then tend to return to the operating line at a new
steady-state operating condition. The determination of the “path” followed
by the operating point requires knowledge of the compressor characteris-
tics, and partlcularly of the momentary compressor angular velocity. In
industrial practice, it is usual to represent the compressor characteristics in
great detail within computer codes, so that the history of an operational
excursion can be calculated.

In order to facilitate the calculation of example transients, a simplified
representation of a compressor map is presented. The resulting simplified
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representation can be used in two ways. Thus, it may be used as an
approximation to an actual compressor characteristic so that simple ap-
proximate estimates of transient compressor behavior can be estimated, or
alternatively, the representation can be considered a simple example of an
actual compressor performance map for interpretive purposes.

For future convenience the compressor characteristic map is represented
in nondimensional form in terms of II, M, and N, where by definition

M=
T,
.,
M= ., (8.120)
= Nc
N-7

d

Figure 8.28 presents a typical compressor characteristic map, and iden-
tifies the stall-surge line (subscript S), the operating line, and seven points
that will be used to establish the analytical description of the map. It is now
assumed that the dimensionless compressor pressure ratio Ilg, and dimen-
sionless mass flow M, found on the stall-surge line, can be related

I (Ms,, Hs,)
STALL LINE

OPERATING

LINE

(Msz’ Hs,) - —

(Ms Hs) -— (Msd’ Hsd)E(l!l)
I 1

mt—-~%-= -

1 M’-z M’-J

Fig. 8.28 Compressor characteristic map.
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quadratically, such that
M=K, + K,Mg+ K M¢ (8.121)

Similarly, it is assumed that both Mg and M, can be related quadrati-
cally to the dimensionless speed N through the expressions

M,=K,+K.N+KN? 8.122
L 4 5 6

M=K, + KN+ K,N? (8.123)

Note that the value of IT; has no special physical significance, but rather
is chosen as a matter of convemence to locate the outer “edge” of the
compressor characteristic that is likely to be included in example calcula-
tions.

In practice the values of the constants K, — K, are determined by
1nsert1ng the known values of M I M, and N in Egs. (8.121-8.123) to give
after inversion

K= D, [Mngsz(Msa - Msz)H& - MSSMSI(MS3 B Msx)Hsz

+ MszMsl(Msz - MSI)HSS] (8124)
K D [ Msz)H +(Ms Mszl)Hsz_(Mszz_Mszl)Hss
(8.125)
K, =DL[(MS3‘MSZ)HSI‘ (Mg, — My, JTTg,+ ( M, = M ) L,
(8.126)
where
Dy = (M, — M, ) (Mg, — M, )( Mg, — M) (8.127)

Also, with J=L for K, — K¢, J= S for K; - K, have

1
[N No(N, = M) M, = N NN, = W) M,

K,orK,= Dy

+ N,N(N, - )M, | (8.128)
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+(N? - N2)M,, - (N2 - N2) M, | (8.129)

1 ¢, — . — . - .
K, orK9=D—N[(N3—N2)Mjl—(N3—N1)MJZ+(N2~N1)M13] (8.130)

Dy=(Ny— N,)(N;— N,)(N, - N,) (8.131)

Equations (8.121-8.131) describe the relationship between the endpoints
of the speed lines and the dimensionless speed N. To complete the
description, an appropriate curve fit for the speed lines themselves is now
introduced. Thus, it is assumed that

M- M

H=HS_(M M
L A

) (I -11,) (8.132)

The exponent n is determined by selecting the speed JVZ as the design
speed, that is to say N, = 1. The exponent » is then selected to ensure that
for N,=1, Eq. (8.132) not only passes through the endpoints (MS, IIs))
and (ML ,I1;,) (ensured by the assumed form), but also passes through
(IT=1, M= 1) It follows that

M -1 1
n=~¢n m {n —_—

Recapitulating, it is seen that with K; — K, determined from Egs.
(8.124-8.131), then Egs. (8.121-8.123), (8.132), and (8.133) provide a
relationship of the form

(8.133)

I=II(M, N) (8.134)

The remaining task to complete the description of the compressor char-
acteristic map is to provide the equation of the operating line. Here, for
simplicity, it is assumed that the entrance and exit areas to the driving
turbine are choked and that the areas are fixed. In this simple case, Eq.
(8.43) is valid, and may be written in the form

[ nc(ﬂc(v—l)/v - 1) ]% (.135)

2 (77 1)

m

c
mcd

=l (5‘
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which becomes in terms of the dimensionless quantities and Te»

L
2

nc(ﬂc(]—l)/v - 1)
n,, [(HWCd)(Y—l)/Y _ 1]

In the interest of reducing the complexity of the following analysis, and
in the absence of a simple relationship relating 1 /M., to M and N,
it is now assumed that 5./n, = 1. This assumption is consistent with that
introduced in the steady-state off-design examples previously considered.
The equation for the operating line then reduces to

M=1

(8.136)

™

ar—D/v 1
M=T1I ‘4 (8.137)
(Hw )(7 1)/1r_1

Ca

This form may be used directly when a model compressor characteristic
map is to be constructed. However, when the compressor characteristic map
is intended to approximate an actual (experimentally obtained) map, it is
appropriate to determine an “equivalent” design compressor pressure
ratio, (7, )., by selecting (7 ), so that Eq. (8.137) passes through the
design pomt (M, TIy=(1,1) and an appropriate reference point Mg, I1,.
In such a case

(MR/HR)2 -1 v/(y=1)

(Mg/T1R) TIG /7 -1

(7))o= (8.138)

Limiting Value for Angular Velocity

This simplified representation of the compressor characteristic map de-
veloped in the preceding section allows relatively simple estimation of
transient operation. It is important to note, however, that the form assumed
becomes inappropriate when the speed line becomes “more than vertical.”
That is, the limiting value of speed to be considered, N, will be that
corresponding to the speed line for which M= M, . This hrmt occurs [see
Eqgs. (8.122) and (8.123)] when

K.+ KN, +K(N2=K,+ KN, + K,N?
or

N = ml—To{Ks—Kw (Ko~ o) - 4K~ K)(Ky - KO )

(8.139)
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In most cases of interest, the value of ]Vm so calculated will correspond to
a system speed higher than that allowed from stress limitations.

The Choking Relationship

As previously stated, in the example considered herein, it is assumed that
the turbine entrance and exit nozzles are choked, and that the geometry is
fixed. It then follows from Eq. (8.7) that

y (T /Tr) %
M=H{#} (8.140)

It is to be noted that this relationship is valid throughout the transient
maneuvers. It is only when the system is nonaccelerating that the turbine
power output can be equated to the compressor input [as in Eq. (8.3)] to
lead to the equation for the operating line, Eq. (8.137).

The Stall Margin

Figure 8.29 illustrates three locations on a compressor characteristic map:
the initial location (M;, II,), the related location of the intersection of the
speed line (for M;) and the stall line (Mg, IIg), and the “endpoint”
location to be described shortly. ‘ ‘

The stall margin SM of the compressor operating at the initial location is
defined by

SM=———" (8.141)

STALL LINE
(ME’ HE)

OPERATING
LINE

M
Fig. 8.29 Stall margin.
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It subsequently will be found that the acceleration limit is a sensitive
function of the stall margin. In fact this can be somewhat foreshadowed by
considering an engine acceleration carried out by a sudden (“step”) in-
crease of throttle setting (7, /7,) that moves the momentary operating point
from (M,, I1,) to (Mg, I1). It is apparent from Eq. (8.140) that the related
value of 7, /7, is given by '

(T)\/Tr)S,= (Tx/Tr)d(Hs,/Ms,)z (8-142)

The endpoint (M, I1;) is defined as the point on the compressor map
that will be reached when the compressor reaches equilibrium at the new
operating point without further changes in the ratio (7, /7). Thus with
(12 /7)s,= (12/7,) > Eq. (8.140) gives

: My,
Mp=Ue (8.143)
S,

The equation for the operating line, Eq. (8.137), may be inverted to give

(8.144)

| )2] v/ (r=1)

M=o |1+ (a7 1)(ﬁ

Cd

With Eq. (8.144) applied at both the initial (i) and end (E) locations,
and with Eq. (8.143), it follows that

1+ (nO0/7— 1)(1_[3,./1"43,.)2 v/(r=1)

1+ (n0 v —1)(1/0,)

Hp
= (8.145)

Example calculations show that I1, is a sensitive function of the stall
margin, with large stall margins leading to large ratios of II £/I1;. The
implication of such a result is that care must be taken to restrict the throttle
advance allowed (that is, the increase in 7, /7,) if small stall margins exist
and large increases in compressor pressure ratio are desired. The effect of
these restrictions is to require automatic control systems to prevent intro-
duction of values of , /7, that will cause compressor stall or surge.

Determination of Starting Conditions

Usually a starting condition will be prescribed in terms of the initial
dimensionless pressure ratio I1;. The related dimensionless mass flow rate
M, follows immediately from Eq. (8.137). An equation for the initial
rotational speed follows from Eq. (8.132) to give

M, — M,

(3 i

F(N,) =I5 —TI,- (Mg —T,)=0  (8.146)
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The subsidiary equations, Eqs. (8.121-8.123), provide the explicit ex-
pressions for the N, dependence. This equation may be solved by utilizing
Newtonian iteration with

F(N,+107%) - F(N,—107°)

F(N)= 2109) (8.147)
so that _ (= F
(M),0=(F-F), (3.148)
A simple starting guess is
(N.)o=M, (8.149)

Determination of the System Acceleration

The power extraction by the turbine may be written as the angular
frequency of the system w times the turbine torque T,. The first law of
thermodynamics states that the power extraction 1s equal to the mass flow
rate times the stagnation enthalpy change across the turbine, which leads to

T,= Line, T, (1~ 7) (8.150)

Similarly the power absorption by the compressor gives for the compres-
sor torque T,

1.
T,= e, Tyr,(1.— 1) (8.151)

The angular acceleration times the angular momentum J is equal to the
net torque, so that

deo 1,
I 47 = 576 Dln—1) - n(r.—1)] (8.152)
In the case considered here in which the turbine entrance and exit areas
remain choked and the geometry remains fixed, Eq. (8.30) may be intro-

duced to give

Ji‘i= %mcchOTrli%(Tcd_l)'—(Tc_l)] (8.153)

This latter expression is more conveniently written in terms of the
corrected variables and the dimensionless forms. Thus write

_ %(%)Wﬁw\/z (8.154)
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also

8 . 8
h=——|—=|=Mm_|— 8.155
"t (ﬁ ) ’”(ﬁ) (8.155)
Equations (8.153-8.155) give

d[N1/ To/Tw) | M ., Tm 5
dr

= =—-— Ty,

N o V8 r

[(:://: - (1.— 1)] (8.156)

This equation can be numerically integrated to determine the angular
velocity as a function of time. It is usually true, however, that engine
accelerations occur on a somewhat smaller time scale than do airframe
accelerations. In such cases it may be assumed that P,, T,, M,, etc., remain
constant throughout the engine transient, and as a result Eq. (8.156)
simplifies to the more compact form

dﬁ T)\/T’_ M
S =M (o —1) = (r,—-1)|= .
a7 (TA/Tr)d( W~ D)= (n-D| % (8.157)

Here t*=1t/t,.. has been introduced, where 7, is the characteristic
acceleration time defined by

(8.158)

The expression for the characteristic acceleration time reveals some
useful physics. Thus, for example, highly energetic systems (large wad)
require larger times to acquire increased rotational speeds. Similarly, flight
at high altitude (low &) leads to large acceleration times. This latter effect
occurs because the related reduced density leads to reduced torques, and
hence lower accelerations. This effect can be dramatic (a factor of more
than ten) for an aircraft with high altitude capability.

Equation (8.157) may be integrated numerically by introducing the
previously developed analytical representation of the compressor map. It
will be assumed that the initial conditions are known, and that the schedule
of 7, /7 as a function of time is prescribed. Integration is carried out by
assuming suitably small time steps, 8 *, and calculating the related change
in N. Iteration of the compressor map equations will be required at each
time step. A suggested sequence of equations to obtain N, ; from N; is

(TA/T )_/+1 jll

(n /7)), (8.159)

ool
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M, =K + KN+ KsN? (8.160)
Mg=K,+ K¢N,+ K,N? (8.161)
M=K, + K,M+ K;M? (8.162)

. . . . HS_Hj+1 %
Mj+1=MS+(ML—MS) TS—_H—L) (8.163)

This equation set is iterated by replacing Mj with Mj +1 until the values
of II,,, and M,,, stabilize. The new value of N, N, ,, then follows from

Mj+1 [(Tx/"})jn (T _ 1) __(

L —1)18e* (8.164
N | (n/7)4 oo )} - )

Cj+

ﬁj+1=Nj+

where

(8.165)

Reference

'Klees, G. W. and Welliver, A. D., “Variable-Cycle Engines for the Second
Generation SST,” Society of Automotive Engineers Paper 750630. Air Transporta-
tion Meeting, Hartford, Conn., May 1975.

Probiems

8.1 Consider the off-design performance of a nonafterburning turbo-
Jet. Ideal performance of all components may be assumed (m,=7, =7,.=1
and y,=v,=Y, f<1, etc.). Both 4, and A4; may be considered choked.
The engine is flown with fixed 7,, but at varying Mach numbers. Reference
conditions are Mz =1, 7., =20, y=14,and 7, =7.

(a) If 4, and Ay are fixed, find 7, when M, =2,

(b) If the ratio 4,/A, is varied in proportion to 1/7,, find 7, when
M,=2,

82 An ideal, nonafterburning turbojet engine operates with 4, and
Ay choked. The engine has a variable A; that is varied to keep the
COmPressor pressure ratio constant.

(a) Obtain an expression for 7,z in terms of 7., 7.5, and 7).

(b) Obtain an expression for 7, in terms of 7,5, T\ g, T,z» T», and 7,.
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(c) Find an expression for Ay/Agg in terms of vy, 7, and 7,.
(d) Given 7w, =15, y=14, Myg=2, 1,z=70, and M;=2, 7,=6
evaluate 7 5 /m, and Ag/Agpg.

83 A concept to improve the off-design performance of a turbojet,
which has already seen service, is that A4 is varied but 4, remains fixed.
Consider a turbojet flying at fixed Mach number, with fixed component
efficiencies, fixed vy,, y,, €tc., no afterburning, and both 4, and A4, choked.
Ay is varied to keep the corrected mass flow constant.

Find and list equations giving 7, 7,, 7,, 7, and A in terms of the input
variables v, ¥,, M, Mo Mp> Ters Tags Mg, and 7y,

84 “Off-design analysis” can be used also to “redesign” an engine
from the reference condition. Thus, for example, we may wish to change the
areas A, and A4, to move the operating line further from the surge line.

Consider a turbojet with ideal components, such that n,=7%,=1,,=1,
<1, y,=y.=y,etc

(a) Show that the compressor operating line may be determined from
the hierarchy of equations:

Inputs: My, 7\, As/Asg> As/Aars Mogs Tars Ters Mo, Y=14

Outputs: m,
Equations:
=1+ MZ/5, =1+ M/5
TR= ’”}%3.5
Tp—1
=1—-—R__
TR (T/\/Tr)R
=7 As/Asr
© R A/ Agg

7= [1+n/m(1-7)]

o, AL Te (T/\/Tr)R:lz

cR
Ayg TR ™7,

(b) Consider a reference condition with My, =2, 1,,=7, 7,5 =25,
and m_,=100. Calculate and plot w, vs rm_ over the range 2.5 <7, /7,
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<(m/7,)g for the reference engine (A, = Az, As = Agg). Indicate the
location of values of 7,/7, on the curve.

(c) Obtain the compressor operating line over the same range of 7, /7,
for an engine that has been redesigned to have A, = Az, Az =1.2A445. Plot
on the same graph as in part (b).

(d) Similarly, obtain and plot =, vs m_ for an engine with A,/A4;
=(Ay/Ag)p, Ag=11 Ayp.

85 A designer wishes to design a turbojet engine so that when the
flight Mach number changes (at fixed altitude) the inlet will “just swallow
its projected image.” In order to achieve this objective, he decides to utilize
a variable Ay, but retain fixed A4,.

Obtain a series of relationships that would allow the designer to estimate
the required variation in Ag/Agg with prescribed variations in M, or 7,.

8.6 Consider a turbofan engine that operates with the fan stream
unchoked (convergent only nozzle), but with the core stream choked at A4,,
A,,, and Ag (see Sec. 8.3 for nomenclature).

Show that the following hierarchy of equations may be used to obtain the
off-design performance of the engine:

Te'R T)\/ Tr

T (T\/T) g

Teh = 1 +(TchR_ 1)

Ten = [1 + nch(Tch - 1)]3‘5
T = [1 + nc’(Tc’ - 1)]3‘5

Mg = 5[(7r,7rd7rc,7rn,)1/3'5 - 1]

MZ\|?
ﬂ9,=[%(1+—51)] My,

1
o _Thpr Ay [Ter /T |
ap  Tp MHor| o (T\/T)r

1+ap /7,

e e VTR G

8.7 Consider a turbofan engine which operates with both the fan
stream and core stream unchoked at the (convergent, Ag. = Aq and A; = A4,)
exit nozzles, but with choked flow at 4, and 4,,.
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Show that the following hierarchy of equations may be used to obtain the
off-design performance of the engine:

™/ 17,
T, =l+( -1
g TenR ™ )('r)\/ Tc)R
3.5
Ten = [1 + nch(Tch - 1)]
Mer = [1 + nc’(Tc’ - 1)13‘5

= {5[(w,wdwc,wn,)l/3‘5 - l] }lz

N
ﬂ9/=[%(1+—39—)] Mg/

a TehR ‘/”9 T)\/TrTc

ag Ty HAeg| (1/77.

_ 1+ap, 7/1 1-7,
=1+ (1) l+a (n/1)g 1~ 7

1

2 ( 1—1 t !
My = {'Y ] [("Tr”Td'”ch"c'"b"TmR'”,LWn) v 1]}
t

M=

M,

2 'Y;_l R =y + D/2y, - D)
Y,+1(1+ 2 Mg)

TL= 1- Th(l - WI(LYI'U/YI)

1
m. = ‘/,{BR(TIL )1
(L~ "““MLR
My

TiLR
8.8 Verify that Eqgs. (8.64-8.79) are correct.
89 Verify that Eqs. (8.86-8.103) are correct.
8.10 A turboprop engine is flown off-design. It has a very good

turbine, so good that you may assume e, =7, = 1.
(a) Defining IT as I = (7 m,mmm, )"~ D/ show that for this case

(n,=1)

I (,+1)/2(y,— D
M= M9R(

T,
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'Y,—l 2

LA PR
I1 -1

TR 1+712 M92R

(b) Considering the case where n,mm, = (7, m,m,)p, My= My, and
TR =2944, n,=1_,=0.845 M;,=0.6643, 7,,=7, 7,=6, v,=1.4 and
Y, =135, find =z, 7, My, and 7,/7,5.

8.11 The turboprop engine described in Table 7.2 (with 7, = 24) is to
be flown off-design. The aircraft will be held at constant Mach number and
altitude, but the throttle setting will be reduced. It may be assumed that all
component efficiencies remain the same except that

Norop = (T’prop) R + 004( TAR ™ 7)\)

Obtain and plot S/S; vs F/Fy and n,/7., vs m,/m_ over the (ap-
proximate) range 3 < F/F, < 1.



9. ELEMENTARY THEORY OF BLADE
AERODYNAMICS

9.1 Introduction

In this chapter the relationships of the desired performance parameters to
the related compressor or turbine blade loadings (and resultant fluid flow
angles) will be investigated. It is apparent that the flowfield within an actual
turbine or compressor is enormously complex; thus, it is desirable to create
simplified models of the flowfields if any understanding of the physics of the
flow processes is to be attained or if any analytical prediction techniques are
to be formulated.

Although several extensive efforts to model the flow through an entire
compressor or turbine (including transonic effects, boundary layers, wakes,
etc.) have been attempted and have met with some partial preliminary
success, it is more common to model the flowfield as a “sum” of less
complicated parts. Relatively simple flowfields will be described here and
the various separate pieces considered.

In order to analyze what appears at first to be an almost incomprehensi-
bly complicated flowfield, it is customary to model the full three-dimen-
sional flowfield as a compilation of three two-dimensional fields. These
fields may be termed the “throughflow field,” the “cascade field” (or
blade-to-blade field), and the “secondary flowfield.” Each of these fields is
described in the following sections.

The Throughfiow Field

This flowfield is considered to arise because of the influence of all the
blades in a row (or rows). The effects of individual blades are not consid-
ered, and hence the combined effects of all the blades in the row are
obtained by assuming the blade forces to be “smeared out” in the azimuthal
direction. Mathematically, this process is accomplished by replacing the
blade surface pressures by volumetric (and continuous) body forces. As a
result of the simplifications contained in this model, no 6 variations occur
and the throughflow field is hence two-dimensional with variations occur-
ring in the radial (r) and axial (z) directions.

Figure 9.1 shows the coordinate system and the throughflow representa-
tion of the flowfield. It can be noted that the flowfield identified with this
approximation would be that approached if the blade row had a very large
number of very thin blades.

327
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Fig. 9.1 Coordinate system and throughflow representation.
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Fig. 9.2 Typical axial velocity profiles.

The solution to such a flowfield would give the axial and tangential
velocities throughout. Figure 9.2 shows typical axial velocity profiles that
could occur at stations 1 and 2 of Fig, 9.1.

When axial velocity profiles of the form indicated in Fig. 9.2 at station 2
develop, it is apparent from continuity that a downward flow of fluid must
occur. Thus, a typical “stream surface” (to be more carefully defined in Sec.
9.4) could appear as depicted in Fig. 9.3.

The throughflow field can be considered the parent flowfield of the
cascade and secondary flowfields, and because of this should be calculated
with considerable accuracy. For this reason, a somewhat extensive descrip-
tion of throughflow calculation techniques is given in Chap. 10.

The Cascade Field

In order to estimate the flow behavior in the neighborhood of individual
blades, a meridional surface such as that indicated in Fig. 9.3 is expanded
(“ unwrapped”) and the individual blade profiles considered (see Fig. 9.4).
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Fig. 9.3 Typical stream surface.
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Fig. 94 Meridional projections of blade profiles.

When the meridional surface of Fig. 9.3 is unwrapped in this way, a
two-dimensional flowfield in the ¢ and meridional (almost z) coordinates is
obtained. If the curvature of the stream surfaces in the throughflow field
(Fig. 9.3) is not too great, the pressure gradients across such stream surfaces
need not be considered, and hence the individual “strips” may be consid-
ered separately (hence, the term “strip theory”). By considering a number of
such strips, suitable blade profiles can be determined for a selected number
of radial stations on the blade, and the complete blade shape necessary to
describe the full three-dimensional blade can be obtained by fairing in the
desired profile shape.

Numerical methods may be utilized to calculate the flowfield in this plane
(including the boundary layers), but classically the most widely used method
is to run cascade tests to obtain the blade performance data. It is to be
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noted that, in general, the flow between an example pair of stream surfaces
in the throughflow field encounters a change in cross-sectional area. As a
result, great care must be taken when the corresponding cascade test is
conducted to include the effects of the axial variation in flow cross section
and its related effect upon the streamwise pressure variation. It is to be
further noted that the effect of the cascade sidewall boundary-layer buildup
must also be accounted for in order to properly simulate the streamwise
pressure variations. The cascade flowfield is more fully described in Chap.
11.

The Secondary Flowfield

The third of the three two-dimensional flowfields considered to comprise
the full three-dimensional flowfield of an axial turbomachine is the sec-
ondary flowfield. This field exists because the fluid near the solid surfaces
will have a lower velocity with respect to those surfaces than does the fluid
in the “freestream” (external to the boundary layer). As a result the
imposed pressure gradients (created because of the curvature of the
freestream) will deflect the fluid within the boundary layers from regions of
high pressure to regions of low pressure. Figure 9.5 indicates the possible
secondary flows existing within a stator row. (Note that the blade boundary
layers on a rotor would tend to be centrifuged outward, whereas the excess
pressure existing at the outer annulus tends to deflect the stator blade
boundary layer inward.)

Secondary flows are notoriously difficult to analyze; but in spite of this,
considerable progress has been made in the analysis of secondary flows in
both compressors and turbines. The techniques of analysis for compressors
are substantially different than those for turbines. This is because in
compressors the adverse pressure gradient leads to low wall shears, so the
flows can be analyzed fairly accurately by ignoring the viscous shearing
terms. (The presence of the viscous shearing terms is included implicitly in
the assumed entrance velocity profile.) The literature of this class of sec-
ondary flows is quite extensive, and the interested reader is encouraged to
obtain several excellent recent studies.' ™

Fig. 9.5 Secondary flows within a stator row.
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When secondary flows in turbines are to be considered, the large favor-
able pressure gradients existing over much of the blade surface and annulus
walls leads to thin boundary layers with high shearing rates and conse-
quently high shear stresses. As a result (three-dimensional) boundary-layer
calculation techniques must be employed.

9.2 Two-Dimensional Incompressible Flow through Blade Rows

In this section the changes in fluid velocity induced by blade rows are
related to the changes in fluid thermodynamic properties. The discussion
pertains to the cascade field, but for the present only the far upstream and
far downstream conditions will be considered. In this way, description of
the details of the flow in the vicinity of the blades will not be necessary, but
rather only the changes in fluid properties will be required. The more
difficult problem of obtaining the necessary blade geometries to efficiently
induce the assumed velocity fields will be addressed in later sections.

The Euler Equation

Now consider the behavior of a single stream tube as it passes through a
rotor row. The geometry and nomenclature of the interaction are indicated
in Fig. 9.6. For the purposes of this section, it is not necessary to know the
details of the interaction within the volume indicated by the dotted lines in
the figure. Rather it is required only that stations 1 and 2 be sufficiently far
removed from the region of rotor interaction that the flow may be consid-
ered time independent. In addition, it is assumed that the entire process is
adiabatic.

Aw i1s defined as the work interaction per unit mass that the stream tube
undergoes as it passes through the rotor, and for convenience is defined to
be positive for a work “input.” The first law of thermodynamics then gives
(for this adiabatic flow)

Aw=h, —h, (9.1)

Fig. 9.6 Steam tube geometry and nomenclature.
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The work interaction from the rotor is transmitted to the stream tube
from the input shaft by the torque of the blades. Denoting that portion of
the torque identified with the stream tube as 87 and the angular velocity of
the shaft as w, the power input to the stream tube is given by

Power input = w T (9.2)

The torque on the stream tube itself is equal to the rate of production of
angular momentum, so that with the mass flow rate through the stream tube
denoted s,

8T = [(rv), —(rv),] 8 (9.3)

The work interaction per unit mass is just the power input divided by the
mass flow rate, so from Egs. (9.2) and (9.3)

M=o = o[ (), ~ ()] (9.4)

Combination of Egs. (9.1) and (9.4) then gives the famous Euler momen-
tum equation,

he = h, = w[(r0); = (ro)] (9.5)

It is to be noted that no restriction to ideal flow was implied in the
development of this equation, the only restriction being that the flow be
adiabatic. It would, of course, be hoped that in a compressor the work
interaction would occur in a primarily nonviscous manner so that after
diffusion (in a stator row) the effects of the work interaction would appear
primarily as a pressure increase rather than as a (static) temperature
increase. Equation (9.5), however, is applicable no matter what the compres-
sor efficiency.

The Perfect Fluid Approximation

When the flow of a perfect fluid is considered, the stagnation pressure
ratio may be related to the stagnation enthalpy ratio because the entropy
remains constant. Thus, utilizing Eq. (2.69)

&3___ i Y/(Y'1)= i’j y/(y—1y (96)
p, \T, h, '

These forms follow because of the assumption of a calorically perfect gas.
Thus, with Egs. (9.5) and (9.6), there follows

P 2 (), (rv
= {1 = (o]

n

v/(y—1)
} (perfect fluid) (9.7)



ELEMENTARY THEORY OF BLADE AERODYNAMICS 333

Now introduce reference quantities denoted by a subscript 0 where such
quantities are assumed to be the uniform values of the given quantities
found in the approaching flow far upstream. The stagnation enthalpy does
not change prior to the blade row, so that

C TO 1 -1
ht]=hto=7RT0_RTI_YRTO(Y_1)(1+72 MOZ)

or

hy=w 21;2( 11)(1+71M2) (9.8)

Equations (9.7) and (9.8) then give

; y/(y—1)
P _ {1 +(7_—E)M°_%[(ru)2—(rv)l] (perfect fluid)
Py 1+ I mg %0
(9.9)

If attention is now restricted to cases where the amount of turning is small,
this expression may be approximated by retaining only the first term in the
binomial expansion on the right-hand side. Thus,

) Mg :
P _ 1= 'Y— — [(r0)2— (ro)] (perfect fluid) (9.10)
Py -1 2 wi
1+ 2 ——M; "0

It is to be noted that Eq. (9.10) would also be valid in the case of small
Mach numbers. In such a case, p, becomes an inconvenient reference
quantity, and it is more appropriate to reference the “dynamic head,” powg.
Thus, noting

YMO

PoWe p0w02 Py, powy y—1,,\7"D
Do _Po¥ (9 0 Y72 g
Po pq Po pt1 2

It follows that

- y—1 L/(y=1
z(1"' D) Moz) _2[(”))2‘(”))1]
o

(perfect fluid, small turning) (9.11)
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In the limit as M, approaches zero, the relationship for incompressible
perfect flow is obtained, which may be written

plz — P,

i % [(r), = (ro)y] (perfect incompressible fluid) (9.12)

PoWo wo

The expressions represented by Egs. (9.5-9.12) allow calculation of the
changes in stagnation enthalpy or stagnation pressure in terms of the
imposed changes in swirl velocities. Each form of the equations should be
used only in the regime for which it is valid, as indicated beneath each
equation. It is to be noted from Eq. (9.5) that no change in stagnation
enthalpy can occur unless the blade row is moving. This situation is quite
obvious when it is realized that without a moving surface, no work interac-
tion with the fluid would occur [Eq. (9.4)].

A similar result to that for the stagnation enthalpy occurs in the case of
the stagnation pressure of a perfect fluid. When losses are present, however,
the accompanying entropy gains will superimpose a stagnation pressure
decrease upon the flow processes in the rotor and stator, and the stagnation
pressure rise through the rotor will not be as large as it would be if the fluid
was perfect. Also, there will be a decrease in stagnation pressure as the fluid
passes through the stator.

Velocity Triangles

It was seen in the previous section that desired property changes are
brought about by inducing swirl velocities with the rotors and stators. In
this section the resulting vector triangles of the fluid velocities are consid-

0
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‘;ﬁ\ROTOR

/SZTATOR
3

Fig. 9.7 Blade rows and station numbering.
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ered in order to gain an appreciation for the fluid field the blades and vanes
must create. The blade and vane angles will, of course, be closely related to
the fluid flow angles. The flow is considered to be two-dimensional only and
is considered to be approaching the first row from afar with conditions
denoted by the subscript 0. The flow past three rows are considered: an inlet
guide vane row, rotor, and stator. The rows and station numbering are
indicated in Fig. 9.7.

Inlet guide vane (IGV). The flow approaching and following the inlet
guide vane (IGV) row is illustrated in Fig. 9.8. The notation for the angle of
turning, velocity components, and magnitude of the velocity is indicated in
the figure.

An inlet guide vane row tends to be unique among all the rows in a
compressor, because in all compressors with IGV rows built to date, the
static pressure decreases across the row. The reason for this can be inferred
from Fig. 9.8, where it is evident that the magnitude of the velocity has
increased upon passage through the row. The IGV row is not moving and
hence no increase in stagnation enthalpy occurs and, for an ideal fluid, no
change in stagnation pressure occurs. As a result, the increased magnitude
of the velocity will have attendant with it a decrease in static pressure. It is
conceivable that a severe expansion in the annulus sidewalls could be
incorporated, so that the axial velocity could be reduced to a sufficient
extent to cause the overall velocity magnitude to reduce, but this has not
been incorporated in any design to date. (There would seem to be no reason
to do so.) Because of the overall favorable pressure gradient imposed across
an IGV row, the tendency of the vane boundary layers to separate is much
reduced; as a result, very high turning can be introduced by a single IGV
stage.

Fig. 9.8 Flow past an inlet guide vane row.
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Rotor. When the air departs the IGV, it has a velocity V, = yv} + wi,
which is directed at an angle 8, from the axial direction. The rotor itself has
a velocity wreg, and hence sees a relative velocity at inlet given by

V

wet, = Vi — wreg (9.13)
The air is then turned within the rotor to the relative velocity V, , so that
the velocity in the absolute frame (the laboratory system of coordinates). V,

is given by
V,=YV

rel,

+ wre, (9.14)

These velocity relationships are indicated in Fig. 9.9.

| = wr 1

Fig. 9.9 Flow past a rotor row.

wr

Fig. 9.10 Rotor row composite diagram.
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Fig. 9.11 Flow past a stator row.

The information shown in Fig. 9.9 can be more compactly displayed by
utilizing a composite diagram wherein both entering and leaving velocity
diagrams are superimposed. Such a diagram is indicated in Fig. 9.10.

Stator. 'The stator accepts the flow departing from the rotor and turns it
to a more axial direction. By reducing the swirl velocity in this way the
magnitude of the total velocity is also reduced and the static pressure
increases across the vane row. In those designs where the stator returns the
velocity vector to that found at entrance to the rotor, the stage is said to be
a repeating stage. The stator velocity relationships are indicated in Fig. 9.11.

Pressure Relationships across Blade Rows— The Degree of Reaction
and the Diffusion Factor

It is the purpose of a compressor stage to raise the stagnation pressure as
much as possible and as efficiently as possible. In addition, it would be
desirable to have the mass flow rate per cross-sectional area be as large as
possible so as to reduce the required compressor cross-sectional area to the
minimum possible. These desired design goals create several conflicting
requirements and limitations.

It is evident from Eq. (9.9) that a large stagnation pressure rise would
require a large amount of turning in the rotor, and hence also in the stator,
to return the velocity vector to (approximately) that entering the rotor. This
large turning introduces two related deleterious effects. First, the large
stagnation pressure change introduces a related large adverse static pressure
gradient. This imposed static pressure gradient enhances the probability of
boundary-layer separation on the blade. Second, the large required blade
curvature leads to high blade aerodynamic loading with related very low
values of minimum static pressure on the blade suction side. As a result, the
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suction side boundary layer must surmount a locally severe adverse pressure
gradient that has already been made worse by the superimposed static
pressure gradient due to all other blades in the row, as just described above.

It is apparent [Eq. (9.9)] that the attainment of high pressure ratios will be
aided by the use of high blade speeds and high axial Mach numbers, but
each of these techniques has its own limitations. It is obvious that the blade
speed will be limited by mechanical stressing considerations, although it is
notable that great strides in this direction have been made in the last two
decades. (Blade speeds have increased from = 300 to =500 m/s.) Both
increasing the blade speed and increasing the axial Mach number lead to
large relative Mach numbers on the blades and, if carried to excess, can lead
to large shock losses in the stage.

It is the function of a designer to make as optimal a choice as possible of
the various conflicting requirements, and some simplified design aids have
been developed to help in the various choices. Two coefficients often utilized
in the design of axial compressors or turbines, the degree of reaction and the
diffusion factor, are defined in the following. Each coefficient is related to
the behavior of the static pressure change across the blade rows, so prior to
defining the coefficients, the behavior of the static pressure will be investi-
gated. For simplicity, the incompressible perfect fluid case is considered.

From Eq. (9.12), for the two-dimensional case (with p, = p),

Pt ip(vi+wi)—pw(rv),=p, +ip(v} +w2)—pw(r), (9.15)

Straightforward manipulation of this equation leads to the alternate form
2
p’zm—%p(wrZ) =p,ml—%p(wr1)2 (916)

Here there has been introduced the relative stagnation pressure as seen by
the rotor p, , which is defined by

P, =p+ip[wi+(v=wr)]

It can be seen that in an axial compressor, where r, =r,, the relative
stagnation pressure across the (ideal) rotor does not change. This, of course,
1s simply Bernoulli’s equation for the relative coordinate system. The terms
involving the square of the blade speed are related to the accounting of
“energy” stored against the centrifugal forces, and can be of dominant
importance in centrifugal compressors with their large change in radius
from inlet to outlet. Equation (9.16) is equally valid for stators as well as
rotors, where in the case of a stator the equation simply degenerates to the
statement that the stagnation pressure does not change across an ideal stator
row.

Equation (9.16) is in a useful form for design purposes, because it makes
evident that the change in static pressure across an axial compressor rotor
row may be estimated simply by observing the fluid behavior in the relative
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coordinate system (Fig. 9.10). As was evident in the discussion introducing
this section, the effect of static pressure increase is of paramount importance
upon the operating limit of a blade row, and it is evident that it would be
desirable to have such a static pressure increase across a stage nearly evenly
divided between the rotor and the stator. A measure of this static pressure
split is the degree of reaction °R.

Degree of reaction °R. The degree of reaction °R is defined as the
static pressure rise across the rotor divided by the static pressure rise across
the stage. Thus,

°R

— API’O(OI’ = 1 _ APS(?X(OI’ (9‘17)
Apstage APS(ﬂgC

In the case of incompressible perfect fluid flow and nearly axial flow,
write (utilizing the station numbering of Fig. 9.7)

(1/P)A Puage = (1/P) AP, sage = 38V,
or
(1/P)A Patage = @[ (r0)s = (ro)1] = 3(VF = V) (9.18)
where V?2 denotes the scalar product V;-V, and
(1/0)A pyaior = 3 (Vi = Vi) (9.19)
It follows that

vV} -V}

°R=1-
V- VZ+20[(r), = (ro)]

(incompressible, perfect flow, small radius changes) (9.20)

A repeating stage is one for which, by definition, V, =V,, so that with
W =W,=W,,

2_ .2
vy — UY

20[(rv),— (rv))]

°R=1

(incompressible, perfect flow, small radius changes,
repeating stages, w; =w, =wj;) (9.21)
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An even simpler form results if the radius change is so small that it does
not affect the angular momentum difference. In this case, with r, =r, = r,

°R=1- Uy + Vg
2wr
(incompressible, perfect flow, no radius change, repeating stages) (9.22)

Diffusion factor D. This factor was developed in an attempt to describe
the effects of both the imposed axial pressure gradient and blade turning
angle. (It is more fully developed in Ref. 4.) It is intended to be a measure
of how highly loaded a single blade row may be considered to be. It is
defined by

(9.23)

D= (1-3|+ 1o

v, 207,

where ¥, = magnitude of the relative velocity at exit to the blade row,
V;=magnitude of the relative velocity at inlet to the blade row, |Ap|
= magnitude of the change in tangential component of velocity across the
blade row, and o = solidity = chord /spacing = c¢/s. These relationships are
shown in Fig. 9.12.

A typical maximum value of D obtainable for a given family of blade
profiles is about 0.6. This value should not be exceeded substantially or it
can be expected that flow separation will occur. Such limiting values of the
diffusion factor are usually obtained from cascade tests (Chap. 11). Such
limiting values can vary substantially in some cases (for blades with ex-

wi

Fig. 9.12 Geometry and velocity changes across blade row.
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tremely long chords, for example), but the factor is very convenient to
utilize so that possible problem areas can be pinpointed.

Relationships in Terms of Flow Angles

It is often useful to obtain expressions for the pressure change, degree of
reaction, and diffusion factor in terms of the fluid flow angles, because the
flow angles themselves can be fairly directly related to the blade angles. In
particular, the relative velocity departing each row will have a relative angle
not far from the blade geometric angle. In fact, relatively simple empirical
rules are available to estimate the difference of the relative flow angle and
blade angle at the exit to the blade row (Chap. 11), so in the following the
desired relationships are obtained in terms of angles 6,, 8,, and 6.

For simplicity of presentation the incompressible perfect fluid case is
considered. Thus, Eq. (9.12) may be utilized to give with the relationships
apparent from Fig. 9.10, namely

v, = w, tané, (9.24)

v, =wr,— w, tan B, (9.25)

Ap wn\? [en w wr, w
= —2) —| =2 =2tanB, + — —Ltang,
PoWo Wo Wo Wo Wo Wo

(incompressible, perfect fluid) (9.26)

In the special case where no change in axial velocity or radius occurs, this
form reduces to

A 2
p,2 = (_@_r) [1 —ﬁ(tanﬁ2 + tan()l)}
PoW5 Wo wr

(incompressible, perfect fluid, r,=r,=r, w;=w, =w,)  (9.27)

In Sec. 8.5, it was pointed out that when a compressor is operated at low
rotational speeds (during starting, for example) the front blades tend to
operate with a low ratio of axial velocity to blade speed, as compared to the
design speed ratio. It can be seen from Eq. (9.27) that a further complica-
tion will arise, in that the stagnation pressure rise near the tip of a finite
length blade will tend to be larger than that near the hub. This is because
the flow angles 8, and 8, tend to be relatively insensitive to flow velocity
and because 8, and 6,, at all radii, would be chosen to be appropriate for
the design condition. At off-design when w,/wr decreases, so does the effect
of the second term in the brackets of Eq. (9.27). As a result of the larger
work interaction at the tip of the blades, the static pressures can become so
excessive that a region of reverse flow can possibly exist (Fig. 9.13). The
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Fig. 9.13 Recirculating region.

fluid contained within such a region of reverse flow can rapidly have its
temperature raised (by the work interaction with the blades) to such an
extent that blade melting can occur! This is yet another reason why the
techniques mentioned in Sec. 8.5 for preventing excessively low axial
velocities must be employed.

The following relationships are evident from Fig. 9.10:

Vi =wisec?d, (9.28)
V2 =w2+(wr,— wtanB,)’ (9.29)
Vi = wisec?d, (9.30)

_ Equations (9.20), (9.24), (9.25), and (9.28-9.30) may then be combined to
give

wr, 2
°R=1-{wil +(7— tan,Bz) — wisec?d,

2

2
wr. wr. wr; w
+ {wfseczﬂl — wlsec6, + 2w} [( 72) - ( 2tan B8, + —w~1 Vltanﬂl)]}
2

) W, )
(9.31)

In the special case where no change in axial velocity or radius occurs and
the stage is repeating, this form reduces to

(wr/wy) —tan B, + tané,

°R=1-—
2(‘*”/“’0)

(incompressible perfect flow, small radius changes; (9.32)

NEnRsSR=rH w=w,=ws=w,, V1=V3)
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Again utilizing Fig. 9.10,

(V;’)rotor = WZSeCBZ (933)
wr, 2|2
(V;)rotor =W 1+ (_ - tanal) (934)
Wo
AUrotor =wr, — wytan Bz — wtan 01 (935)

Equations (9.33-9.35) may then be substituted into Eq. (9.23) to give an
expression for the rotor diffusion factor. In the special case where no
change in axial velocity or radius occurs, there is obtained

_secB, —(1/20)[(wr/wy) —(tan B, + tand, )]

D 1
{1 +[(wr/wy) — tan01]2}2

rotor

(incompressible perfect flow, small radius changes,
n=rn=r,w=w=w) (9.36)

Finally, an expression for the stator diffusion factor is obtained by first
noting

(V;’)stator = w;sec 03 (937)
wr, 2]
(V;)stator=w2 1 +(7_ tanﬁZ) (938)
2
AUstator =wr, — wytan ﬁz — wytan b, (939)

These equations may then be substituted into Eq. (9.23) to give an expres-
sion for the stator diffusion factor. In the special case where no change in
axial velocity or radius occurs, there is obtained

_ secb; —(1/20)[(wr/wy) —(tan B, + tané, )]
{1 + [(wr/wo) —tanﬁz]z}i

D,

stator

(incompressible perfect flow, small radius changes r, =r, =r, w; = w, = w;)
(9.40)

Several tendencies for the degree of reaction and diffusion factor become
evident in these expressions. For example, note from Eq. (9.32) that in the



344 GAS TURBINE AND ROCKET PROPULSION

case of a repeating stage with “symmetric blading” (8, = 6,), the degree of
reaction is one-half no matter what the ratio of blade speed to axial velocity.
For such a stage, this means that the static pressure rise would remain
equally split between the rotor and stator as the compressor was “ throttled.”
When the compressor is throttled (outlet flow decreased, leading to an outlet
pressure increase), an increased pressure rise must occur across the stage.
The effect of such an increase in pressure rise is seen in D, and D, .

which both increase as wr/w, increases. This, of course, means that the
compressor is moving toward its design limit.

9.3 Free Vortex Flow

The effects of finite blade height upon the required fluid flow angles is
now considered. It is apparent from the preceding sections that the variation
in fluid properties across the blade rows is a function of the blade velocity.
The blade velocity will change substantially with the radius, so the corre-
sponding effects upon the flowfield should be determined. In most compres-
sor designs, it 1s desirable to obtain the same stagnation pressure rise across
a stage at all radii. (Note that if this is consistently violated in a multistage
machine, very large static pressure mismatches can occur with consequent
recirculation regimes.)

Consider the case where the change in stagnation enthalpy across the
rotor is a constant with radius, so that from Eq. (9.5)

h,z—h,l=w[(ru)2—(rv)l] = const (9.41)
Thus, a “constant work stage”—that is, one for which the work interaction
per mass is independent of radius-—requires that the change in angular
momentum be the same for all stream tubes. There are many types of flows
that could satisfy this requirement, but the simplest such flow would seem to
be that for which (for perfect, incompressible flow) the axial velocity
remains a constant with radius (a parallel walled annulus is assumed.) It is
apparent from the requirement of mass continuity that if no change in axial
velocity occurs, no radial flows are induced. The radial momentum equation
then reduces to the statement that the radial pressure gradient is balanced
by the centrifugal forces. That is,

d v?
a—’r’ =0 (9.42)

The requirement that the stagnation pressure be constant with radius
gives

p+(p/2)(w?+v?)=p, = const
So that

dp _dv

or = ,DUW (943)
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Equations (9.42) and (9.43) may be combined to given an equation for v
in terms of r. Thus, noting that no changes in properties occur in the axial
direction (except within blade rows), it follows that

do/v+dr/r=0 or rv = const (9.44)

It can hence be seen that a constant-work machine with a constant axial
velocity throughout not only has the jump in angular momentum across the
blade rows Arv equal to a constant, but also must have rv itself a constant
in all regimes. Note that the “constant” to which rv is equal changes with
passage through each blade row. A machine utilizing blade rows that induce
this type of flowfield is termed a “free vortex” machine and is said to be in
radial equilibrium throughout. An example free vortex calculation is dis-
cussed in the next section and flows of a more general form are considered
in Sec. 9.4 and Chap. 10.

Example—Free Vortex Calculation

Several design variables will be prescribed and expressions for hub and
tip values of the design limit parameters D, and D, as well as for °R
are to be obtained. In generating these expressions, all of the velocity and
relative velocity components necessary to determine the flow vector dia-
grams will be obtained so that the velocity triangles can be constructed if
desired.

Consider a repeating stage and assume the following variables to be
prescribed:

wr,/ Wy, APz/l"owoz’ n/Ths °R, , o, (9.45)

m m

Here °R, and o, refer to the degree of reaction and solidity at the
“mass average radius” r,. The mass average radius is that radius which

m

has half the mass flowing within it and the hub and half flowing within it
and the tip. In this case of uniform axial velocity,

r, = (r,2+rh2)/2 (9.46)

m

Degree of reaction. Equation (9.22) is valid for this case, so that with
Eqg. (9.44)

°R=1 - const/r?

where

(r/r)’ +1
2

Const=r2(1-"°R, )= rhz[ (1-°R,)
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thus

°R=1-

1 [(’r/’h)2+1
(’/’h)2 2

(1-°R, ) (9.47)

m

Denoting the value of °R at the hub by °R,, note also

o (UZ+Ul)h
Ry=1 2wr,
hence
TR VN
T2 (1-°R,) (9.48)

Tangential velocities. An expression for the difference in angular
velocities follows from Eq. (9.12) to give

Uy, Uy, 1 Ap,
T . S : (9.49)
Wo Wy @Iy/Wyp W
and from Egs. (9.48) and (9.49) there follows
Y, 1 [ wry 1 Ap, |
—==[2—2(1-°R,) + — 9.50
W, 2 | "o ( ") wry/wy Powoz_ ( )
v [ Ap |
Gy 1T _ogy__1_ 2P (9.51)
Wy 2 | %o wr,/w, PoWozj
Equation (9.44) then gives
P2 _ "l and LW (9.52)
Wo Wo r Wo W T

Diffusion factors. In order to obtain values for the diffusion factors,
some assumption must be made with regard to the behavior of the solidity.
It is clear that the spacing s will be proportional to the radius. The chord
length can be tapered in a variety of ways, but for illustrative purposes it is
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sufficient to consider the chord length constant. In such a case
(Z _ o ) " (‘i _ ”_1)
Av Wo Wol T o Wo

A — = — (constant chord length) (9.53)
i 2 2 m i

m 1

g 2L
rm rm
r wy 'n Wy

and with Eq. (9.23)

vV Uy /Wy ) = U /W,
D= (1—75) +( /%) = {01/ %) (constant chord length) (9.54)

20rm(rm/rh)(Vi/w0)

The relative velocities for use in this expression follow by reference to Fig.
9.10 and may be written

i rotor

o= [(or o ol =22 2 28] ]

1
% [( P+ w2 or r Y|’ f
=|(wr—v ws |l =w|| —————
e rotor 2 0 0 Wy T Wy F
[ 273
1 1)) 2
1 2, T
— w2 2] h_h
Vistator—[W0+UZ] =W 1+( )
Wy I
_ -
1 v r 2
—Tw2a2li b lh
Vestator_[w0+v3] =" 1+(WO r) (955)

Discussion. Equations (9.46-9.55) give the desired design limit param-
eters in terms of the design input variables listed in Eq. (9.45). As an
example consider the values

A
___pLzzo.g, i=\/7, °R, =0.5, and o =1
PoWs Ty "

Consider two values of the blade speed, namely wr,/w,=0.5 and 0.7.
Direct calculation leads to the results shown in Table 9.1.
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Table 9.1 Example Results—Free Vortex Design

Bladg D rotor Dmtor D stator D stator
Spee hub tip hub tip

wr,/wy=0.5 -0.179 0.558 0.741 0.552
wry/wy=0.7 -0.350 0.381 0.590 0431

°R,=5/7,°R, = —1in both cases

Several important trends are evident in this example calculation. Thus,
for example, it is apparent that the large value for the diffusion factor found
at the hub of the stator for the low blade speed case indicates that such a
blade row is too heavily loaded. The designer of such a row would have
several options open to him. Perhaps the most obvious change should be to
increase the degree of reaction so that the rotor tip will become as highly
loaded as the stator hub. A rather peculiar result appears to occur when the
degree of reaction °R,  is raised to 0.7. As expected the stator hub diffusion
factor is reduced (to 0.670), but the rotor tip diffusion factor is also reduced
(to 0.540'"). The explanation for this unexpected behavior lies in the fact
that the introduction of a degree of reaction °R, (for this geometry) in
excess of 0.55 leads to values of v, that are negative. As a result, large
relative velocities with the rotor occur, so that in spite of the increased static
pressure rise, the diffusion factor decreases. This result is not without
physical credence, because the larger relative dynamic pressure would help
to transfer momentum to the fluid in the boundary layers and hence reduce
the tendency to separate. The use of such negative swirl in actual aircraft
engines would, however, introduce possible shock losses because of the large
relative Mach numbers. It might be noted parenthetically, however, that the
use of such negative swirl could hold promise in helium compressors (for
use in gas-cooled nuclear reactors) where the Mach numbers are extremely
low.

It is obvious that if the designer could utilize materials that allowed a
higher blade speed, he could decrease the diffusion factor, as indicated by
the result for the higher blade speed case. If this option was not available to
him he might choose to reduce the tip-to-hub ratio, thereby preventing the
large negative degree of reaction near the hub. This option carries with it the
undesirable side effect of reducing the mass flow per cross-sectional area
capability of the compressor. Another option available would be to decrease
the stagnation pressure rise per stage, but this of course would lead to the
requirement of more stages for a given compressor pressure rise.

It is apparent that the free vortex design carries with it some unpleasant
design restrictions. Thus, the related rapid change with the radius of the
degree of reaction causes the blades to be loaded so that the stator hub
requires very high diffusion, as does the rotor tip. Note that the very large
turning required in the rotor at the hub leads to such an acceleration that
the static pressure actually decreases across the rotor at the hub for this
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example (note °R, = —1). This means that the stator must undergo an
extreme pressure rise in order to return the fluid velocities to those entering
the stage (as required for a repeating stage). A design of this sort that places
the design limit so strongly at the limits of the blades is quite undesirable
because, in effect, the remaining portions of the blades are relatively lightly
loaded even when the stator hub and rotor tip are loaded to their limit.

In the following sections alternative flow swirl distributions are consid-
ered that reduce the disparity in loading along the blade length, but it
should be noted that the tendency for the rotor tip and stator hub to be
diffusion limited remains to some extent in all designs. As a result, the
allowable stage loading is a function of the tip-to-hub ratio, with the smaller
tip-to-hub ratio allowing the attainment of larger stage pressure ratios. A
designer, then, can be faced with the choice of providing a large cross-sec-
tional area compressor of fewer stages vs a small cross-sectional compressor
of many stages. The appropriate choice often depends on the selected
airplane mission.

9.4 Radial Equilibrium Flows

In the preceding section, it was seen that the very simple free vortex
theory led to large variations with radius of the degree of reaction. As a
result, the free vortex distribution led to blades with excessive diffusion
factors at the rotor tip and at the stator hub. Other swirl distributions must
hence be investigated and, as a result, the effects of radial flows must be
considered.

A very simple limiting case of flows in which radial flows exist is obtained
by considering conditions very far from the blade rows. Again assume
perfect incompressible flow and consider conditions in a parallel walled
annulus, as shown in Fig. 9.14.

The virtue of considering conditions far from the blade rows is that any
radial flows will have ceased, because the flow will have become parallel to
the containing annulus. In this way ordinary differential equations for the
flow properties are obtained. At this stage it is not possible to estimate

L L BLADE ROW
TYPICAL STREAM SURFACE

Fig. 9.14 Parallel walled annulus.
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how long it takes the flow to approach this condition of “radial equilibrium,”
but good estimates do follow from the results of the through flow theory,
Chap. 10.

The Stream Function

The stream function ¥ is introduced here and, for future convenience, the
possibility of axial variations in fluid properties is included. Still, consider
incompressible flow only, so that the continuity equation may be written

v-ou=0 (9.56)
In cylindrical coordinates this becomes

1 dru | dw
rar Va0 (9.57)

This latter equation is identically satisfied if the stream function ¢ is
introduced, defined by

__ 1y _1ay
YT T ar “TT ez (9.58)

An equation for ¢ follows by considering the normal derivative of the
momentum equation; but before developing such an equation, first consider
a physical interpretation of the quantity y.

~Figure 9.15 shows an annulus bounded by two “meridional surfaces.” A
meridional surface is defined as a surface through which no fluid passes.
Calculate the mass flow rate convected between the two meridional surfaces
in either of the alternative ways,

m= pf 27rrdr)~—pf 27rdtl»——27fp( 21— %)

SLRFACE 2 .

Iz\ SURFACE |
|

re T

Fig. 9.15 Flow in an annulus.
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or
= —p [ u@rrdz) = =2m (¥, ¥,) (9.59)

Thus, the mass flow rate between the surfaces is proportional to the
difference in stream functions of the surfaces. It follows then that if
¥, =y, there is no (net) flow through the surface, so that a constant ¥
denotes a “stream surface.” If the equations of the stream surfaces are
known, the velocity components follow from Eq. (9.58).

The Equations for Radial Equilibrium Flows

It is apparent from the Euler equation (9.5) that the stagnation enthalpy
does not vary along streamlines that are external to the blade rows.
Similarly, it is apparent from Eq. (9.3) that the angular momentum also
does not vary along streamlines that are external to blade rows. Because of
this, it is convenient (particularly in throughflow theory, Chap. 10) to
consider the stagnation enthalpy and angular momentum to be prescribed
functions of the stream function . The prescribed function will, of course,
be determined by the history of blade loading that the stream tube has
encountered.

Note from Eq. (9.58) that for the case of no axial variations,

d() _ _ 1 40)
’ or —C_l-\[/__—WTr— (960)

<

1d
w=——
P

(=9

This transformation is of particular utility when variations in the stagna-
tion enthalpy and angular momentum are considered because, as previously
described, these quantities will be given as functions of the stream function.

For this case of perfect flow, there is no change in entropy throughout, so
the Gibbs equation (2.12) gives

dh=(1/p)dp (9.61)
The differential change in stagnation enthalpy may be written
dh,=dh+wdw+uvdo (9.62)
SO
(1/p)dp=dh,—wdw—vdv (9.63)

Because the flow is in radial equilibrium, the radial momentum equation
remains as in Eq. (9.42), so that
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or
ldw 1 dh, v(-1dr
@ war e (9:64)
Utilizing Eq. (9.60), then obtain
1d(1dy\_dk, ovdr
rarlr ) (9:65)

This is a second-order differential equation for the stream function ¢ in
terms of the prescribed stagnation enthalpy and angular momentum. It is, in
general, nonlinear. There are several linear solutions of the equations
corresponding to blade loadings of design interest, however, and such
special cases will be considered in the next section. It is most convenient to
consider a nondimensional form of Eq. (9.65), so introduce (see Fig. 9.16)

W= v=", y=-Y
wo Wo wor?
h r,

H==t, y=2_, R=2 (9.66)
Wg Ty T

Routine substitution of the variables of Eq. (9.66) into Eq. (9.65) leads to

1d(1d¥\ dH Vdyv
ydy<y dy)_d‘l' y d¥ (9.67)

The related boundary conditions are obtained by first noting that the
stream function may be prescribed within a constant. Thus, for future

}
W= =R
-—— y W,w
W=WO r:rt ;
V,v
[ y=! Yt
r-rh

Fig. 9.16 Nomenclature for radial equilibrium flow.
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convenience the stream function is assigned on the hub ¥,
¥, =3 on y=1(r=r,) (9.68)

Note also

W=—-== (9.69)

so obtain (noting that W =1 far upstream)

R 1 R?
\I',=—j;dey—§=—T on y=R(r=r) (9.70)

Equations (9.67-9.70) prescribe the mathematical problem.

Solution of the Radial Equilibrium Equations

Equation (9.67) may be integrated for any arbitrary prescription of H and
yV (as a function of ¥), but particularly simple forms arise with forms for
which H and (yV)? are quadratic in ¥. Thus, for such flows, Eq. (9.67)
reduces to a linear equation in ¥ and a solution can be obtained in terms of
known functions. Thus, consider H and (yV)? to be given by

H=AY +H, (9.71)

(Y)Y =(—a¥+pB) -8¥ (9.72)

In these expressions, A, H,, a, 8, and & are constants that may be selected
at the designer’s discretion. Note

dH
v A

dyV_Ld(yV)z_l[ 2 ﬁ}
Var T, e 1% Y ("‘“2)

i(lﬂ)=i{li( i)]
dy\ydy/ dy|ydy 7y

_eypy) 1d¥/y) 1 ¥
dy? y dy y2y
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With these expressions, Eq. (9.67) becomes

d*(¥/y) 1d(¥/y) ( _L)z | 8
e +y dy +1{a? = (y) yA+y(aB+2) (9.73)

The inhomogeneous portion of this equation may be integrated im-

mediately to give
¥ A I(B ) )
— ==y+-|E+— 9.74

(y)inhom. 2’ T y\la T g ©.74)

The homogeneous portion of the solution can be recognized as consisting
of a linear combination of Bessel functions of the first and second kinds and
of order one. Thus,

¥
(5] = e +ana (9.75)
Y hom.
and hence
A, B )
¥=Ch(ay) + GyY(ay)+ =i+ +— (9.76)
o 2a

The constants C, and C, are now determined by applying the boundary
conditions [Egs. (9.68) and (9.70)]. After straightforward but tedious mani-
pulation, there results

q/=_(i+ﬁ+_3_+l)yU1(a)’)

o @ 2a2 2] Ula)
A, B, & R\yWl(ay) 4, B, 38
—(?R +E g'i'—z—)m'i'zy +E+m (9.77)
where:
U(ay) =J(ay) Ty(aR) - Jy (aR) Y, (ay) (9.78)
Wi(ay)=J(a)Y (ay) - Y (a)J)(ay) (9.79)

where / is an integer.
It is convenient to note that

U(aR)=0=W(«a) and U(a)= W (aR) (9.80)

With these relationships it can be easily checked that Eq. (9.77) satisfies
the boundary conditions, ¥ = — 4 on y=1and ¥= -R?/20n y=R.
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When the parameter a is equal to zero Eq. (9.77) becomes indeterminate.
For this case, rather than taking the mathematical limit of the expression, it
is simpler to return to Eq. (9.67), which for the case a = 0 becomes

d (1 d\I') )
A+ = 9.81
dy (y dy 2y (©.81)
Successive integration gives
2 4
¢=C1y7+C2+%A +%(zy2/ﬁy—y2) (9.82)

The constants C, and C, are again determined through application of the
boundary condltlons [Egs. (9 68) and (9.70)). The solution may be written in
the form

0

2
=—2 %
2 4(R*-1)

oo

(P-1)(R=y*)+

x [(R* = 1) y*ny — (y* - 1) R*nR] (a=0) (9.83)

Interpretation of the Parameters

Equations (9.77) and (9.83) provide the solution to the equilibrium flow
for a rather general swirl and enthalpy distribution leading to linear
solutions of the governing equation. It is of interest to interpret each of the
parameters «, B, 8, and A individually, however. To do so, consider the
flows prescribed for the cases where all parameters but one are zero.

Free vortex flow (B). When A, a, and § are all zero, Eq. (9.72) shows
that the angular momentum is constant with y, (yV = ), which is a free
vortex distribution. Equation (9.83) then reduces to

¥=-y2
hence -
1 d¥
= ——— =1 free vortex 9.84
D ( ) (9.84)

Thus, for a free vortex distribution, the axial velocity remains unper-
turbed, just as previously established in Sec. 9.3.

Solid-body-like rotation (o). When A, B, and 6 are all zero, Eq. (9.72)
reduces to

yV=—a¥  (solid body like) (9.85)



356 GAS TURBINE AND ROCKET PROPULSION

It is evident from Eq. (9.67) that a perturbation in axial velocity will be
present for this case. In the case where very little swirl is introduced (a
small), the variation of axial velocity with radius will itself be small. [This
may be verified by calculation from Eq. (9.67).] In such a case

¥ fl " owdy - % ~ % (small swirl) (9.86)

then

V=ay/2  (small swirl) (9.87)

Thus, for small swirl this swirl distribution approximates that correspond-
ing to a “solid-body” swirl. Such a distribution is sometimes termed a
forced vortex.

Approximately constant swirl (§). When A, a, and B are zero, Eq.
(9.72) reduces to

yV=(- 8‘1’)% (approximately constant swirl) (9.88)

It can again be argued that for small swirl the perturbation in axial

velocity may be expected to be small [see Eq. (9.83)], so that ¥ will be given
approximately by ¥ = —y?/2. Hence

V=.,8/2 (9.89)

Thus for small swirl, this swirl distribution approximates a constant-swirl
velocity.

Variable stagnation enthalpy (A). When a, 8, and & are zero, there is
no swirl in the flow and because the flow is in radial equilibrium, no static
pressure variation with y will be present. From the Gibbs equation,
dh=Tds+1/pdp =0, and hence

dH=d(h/w})+ WdW = wdw (9.90)
Thus, with dH = Ad¥ = —AyWd y, it follows that

- —ay (9.91)

This result is consistent with Eq. (9.83), which simply emphasizes that for
this case any change in stagnation enthalpy must be supplied by a variation
in the axial velocity.
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The stagnation enthalpy will be changed only across the rotor rows, so

from the Euler momentum equation (9.5), together with Eq. (9.66) and the
definition @ = wr,/w,

HZ—H1=Q[(yV)2—(yV)1] (9.92)

Thus, in terms of the parameters introduced in Eqgs. (9.71) and (9.72),

Hy— H = 0{[-a ¥ + 4,) - 59|

—[(—al‘I'+B1)2—81‘I']%> (9.93)

It thus follows that if all terms in the expression for angular momentum
are to be included when flow across a rotor is considered, the desired linear
form for the stagnation enthalpy cannot be utilized. If the “approximately
constant swirl” term is excluded, however, it follows that

Hz—Hl=H02—H0]+(A2—A1)‘I'=Q[—a2‘1'+Bz—(—a1‘I'+B1)]

(6=0) (9.94)
and hence
Hy,=H, +(B,— )% (9.95)
and
Ay= A, —(ay— 0,9 (9.96)

In a compressor, little, if any, variation of stagnation enthalpy with radius
is desired, so it is usually appropriate to exclude variation of the parameter
a across a rotor row. Note, however, that the solid-body-like component of
swirl may be introduced by the stator (or inlet guide vane row), which hence
gives another parameter to utilize for design purposes. In the next section, a
detailed example solution is considered.

Example—Radial Equilibrium Calculation

Consider an example calculation for a rotor-stator pair. The pair will be a
repeating stage, with constant-work interaction with radius (4 =0) and
with no “approximately constant swirl” term (8 = 0). For this special case,
the solution of Eq. (9.77) reduces to

‘I’=—(B+%)M—(E ﬂ)M B (9.97)

+_
aly(a) R 2 alj(a) @
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The derivatives of Bessel functions may be obtained from any standard
mathematics book (for example, Ref. 5). Note here the general relationship

i{x[ClJl(cwc)+C2Y1(ooc)] } = ax[CJy(ax) + Y, (ax)] (9.98)

dx
Hence,
diy[yUl(ay)] =ayly(ay) and %[le(ay)] = ayWy(ay)
(9.99)
Thus
(o g o

Now consider AH =H,— H;, €, B,, R, and o, to be prescribed and
arrange the equations in order to calculate the various velocity components,
as well as the diffusion factor at stator hub and rotor tip and the degree of
reaction at hub and tip.

Summary— Radial Equilibrium Flows
Inputs: AH, Q» a, Bh R’ or,,’ Yy

OUtplnS: Vl(y)’ Vz()’)’ Wl(y)7 Wz()’)’ Dsmor’ Dmmr* oRh* oRt
hub tip

Equations:

B= B, +AH/Q (9.101)

L e L e L

Uo(ay)+(§ aR) Wo(tzy) (9.103)

V=>1/y)(—a¥ +8) (9.104)
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[Note that Egs. (9.102-9.104) may be used for any value of y and stations 1
and 2 (with 8= f8; or B,)]. It is convenient also to employ the relationships
of Eq. (9.80) as well as the relationships®

2 2
Up(aR) = - ——, Wola) == (9.105)
V;’lsgilor= (Vth2 + thz)i (9106)
Ve stator = (thl + thl)i (9107)
hub
2 2 %
Vi rotor [Vth +(QR - th) ] (9108)
tip
Ve totor = [VV,? + (QR - VIZ)Z] : (9109)
tip
[, _YV.\ AH/Q
D= (1 7 ) + 20,V (9.110)

[Note that Eq. (9.110) may be used for both stator hub and rotor tip. The
appropriate values for V, and V; follow from Egs. (9.106-9.109). Note, also,
it has again been assumed that the solidity is inversely proportional to the
radius.]

o 1

Rh =1+ 2AH (V%nftt)alor_ Vz'nslgnor) (9111)
o 1 ,
R,=1+m(W,f+ Vi-wi-v2) (9.112)

As an example calculation, the case AH=0.9, =05, a=0.15, B,
=—04, R= V7, 0, = 2 was considered. This case is comparable to the first

case considered in Sec. 9.3. Thus, the geometry and “stage loading” con-
sidered are the same and the tip swirl velocity at the inlet to the rotor is very
nearly the same, 0.0472 here compared to 0.0378. This configuration then
does not acquire an advantage because of increased relative velocity at the
rotor tip (where Mach losses could be important). Straightforward calcula-
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Fig. 9.17 Radial equilibrium velocity profiles.

tion gives:
D gia10r = 0.689 (0741) ORh = —0352("1)
hub
D ror0r = 0.606 (0.558) °R,=0.803(0.714)

tip

The comparative values for the free vortex case are shown in parentheses.
It can be seen that the introduction of a rather small amount of solid-body-
like swirl has helped to reduce the stator hub diffusion factor substantially
(even though the value is still rather large). Figure 9.17 shows the related
equilibrium velocity profiles.

These results give a relatively quick estimate of the flow profiles to be
expected between the blade rows and may be utilized for simple approxi-
mate design calculations. The behavior of the throughflow flowfield (which
includes the axial variation of the fluid properties) will be investigated in
Chap. 10.

9.5 The Effects of Compressibility

In modern axial flow turbomachinery, the pressure ratios found across
typical stages, particularly across turbine stages, are so large that the effects
of variation in fluid density cannot be ignored. In order to consider such
compressibility effects, again consider the pseudo-two-dimensional flow of a
perfect gas across a blade row. The Euler equation (9.5) relates the change
in the stagnation enthalpy across a rotor row to the blade angular velocity
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and the change in the fluid angular momentum. This change in stagnation
enthalpy is, of course, the total change in stagnation enthalpy for the stage,
so from Eqgs. (6.58), (6.80), and (9.5), with the stage efficiency written 7., for
the compressor and 7, for the turbine,

L {1 A
ptl hil

&z_={1_
Py

In these expressions, in each case the conditions at 1 are those at the entry
to the rotor and conditions at 2 are those at the exit from the rotor.
Equation (9.113) is different from the previously obtained Eq. (9.7) only in
that the effect of the stage efficiency has been included. Again introducing
the upstream reference quantities denoted by a subscript 0, in a similar
manner to Sec. 9.2, leads to

Ye/ (Ve
- (rv)l]} (compressor) (9.113)

® Y/ (=1 '
% [(rv), —(rv)z]} (turbine) (9.114)

/(ve—1)
(ve— 1) Mg !
%: 1+—12—[(rv)2 (ro)] (compressor)
h Wo
1+ 5 M;
(9.115)
1)M2 v/ (vi—1)
%= 1—— (v _10 _[(,,,)1 (rv)4] (turbine)
h (1+ > MO)
(9.116)

Simple approximate forms follow from these equations for the case of
small turning or small Mach number by simply expanding the bracketed
terms to only the first term in their binomial expansions.

Turbine Aerodynamics

The aerodynamic and engineering limitations of turbines are of a substan-
tially different nature than those of compressors. First, the extremely
favorable pressure gradients allow very high blade loadings before the local
adverse pressure gradients on the blades approach values leading to
boundary-layer separation. The expansion ratio can, in fact, be limited by
choking of the downstream flow. The materials problem will clearly be
aggravated as the blades are submerged in a high-temperature corrosive
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environment. Modern blades are cooled, which in itself adds greatly to the
complexity, from both the gasdynamic and stress points of view.

In turbines it is possible to be confronted with a design tradeoff between
mass flow capability and power output per stage. The mass flow per
cross-sectional area increases as the approach axial Mach number nears
unity, and the work interaction per mass increases as the nozzle outlet swirl
velocity increases. It will be shown shortly that the maximum work interac-
tion for a single stage occurs when the entire static pressure drop occurs
across the stator, the function of the rotor then being to remove the kinetic
energy identified with the swirl component of velocity with no further static
pressure drop. There tend to be two restrictions on obtaining high swirl
velocities. Thus, if the flow Mach number becomes too large severe shock
losses can occur, and it also happens that a maximum possible swirl occurs
because the flow will choke. This latter restriction is a function of the
approach Mach number and conflicts with the desired high mass flow
capability.

To analyze the effect of this compressible limitation on the maximum
attainable swirl, consider the flow of a perfect fluid through a turbine nozzle
row (Fig. 9.18). The approaching flow is assumed to be uniform and swirl
free and the cross-sectional areas at inlet and exit, respectively, are denoted
A, and A,. Then have

Continuity: poWo Ay = p1V1 A 08 (9.117)
1/(y—1
. Py T,
Isentropic: === 9.118
P Po ( 75) ( )
Enthalpy: To(l +—Y—;—1M02)= Tl(l +%M12) (9.119)

A/w0<1"‘l= V| cosa

v|= Vlsina

Fig. 9.18 Turbine nozzle row.
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These equations may be combined to give

% __V_l_ TO B (—7‘2)(7+1)/2(7_1)—® 1

My, w\\ T} T A cosa
hence
y—1 5 (y+1)/2(y—-1)
M, 1+ 5 M; 4, 1
M, -1 A, cosa (9120)
° 1o !

It is desired to find the maximum value of the swirl velocity for a given
approach Mach number M,. Thus noting

Visina\* T
( 1 a) =L M2(1 - cos’a)

4y T,
find
y=-1_, y-1,, 2/(y—1)
V,sine 2 1+TM° ) 1+——2—M1 A Ay 2
w | a1 T e, Ml
0 1+-—=—M; 1+-——M; !
(9.121)

The derivative of this equation with respect to M may now be taken and
equated to zero. After some manipulation, it follows that

- (y+1/(y—D
4121 + X 1 M}

Mg(—o — 2
AT 1+
2

1 (9.122)

Equations (9.120) and (9.122) then give immediately that the maximum
possible swirl occurs when

cosa=1/M, (max swirl) (9.123)

It is clear then that the maximum swirl occurs when the downstream axial
Mach number is unity, or in other words, when the flow chokes. The
maximum value of the swirl velocity follows from Egs. (9.121) and (9.122)
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to give

Visina)* 2 LY=L Y1 A 2y =1/ (r+ 1)
4o max y—1 2 0 2 OAl

(9.124)

Figure 9.19 shows the dimensionless kinetic energy of the swirl compo-
nent plotted vs incoming Mach number (4, = 4,, y = 1.4).

The related stage pressure ratio identified with a nozzle row producing
this maximum swirl may be estimated by noting that the work interaction
per mass for the stage will be equal to the kinetic energy identified with the
swirl. (Note that the rotor simply removes this kinetic energy with no
further pressure drop.) Thus, with

T —
ai=yRT, =R Locp Y71 4 (9.125)
Cp Tr Pt vy—1 , 10
0 1+TM0
Eq. (9.124) gives
(hiy = 1) = 3 (Fisine)
to 2/ max 2 lSlI’lO( max
Ay-L/(y+1)
s (Y"'l)(MoZ)
e 2+(y-1)M¢
__L[Vlsinalz
2 a5
25
20
1.5
1.0 \\
AN
AN

o
0O 02 04 06 08 |0

Fig. 9.19 Maximum swirl kinetic energy.
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hence

A\ A DAY ED
h, _(Y+1)(M0A_T)
( )max_ 2+(y—1)M2

(9.126)

Ly

If the efficiency of the turbine stage 1 , can be estimated, the related stage
pressure ratio can be approximated by

» h v/(y—1
: 1 t
Po)y o _ Ll (2= 9.127
(pfo)max { n’;|: (h’o)max:l} ( )

Example results from the case for 4,/4,=1, n, =1, and y=1.3 are
shown in Fig. 9.20. ’

It is apparent that the power extraction from the fluid will soon drive the
axial Mach number to unity unless an axial area change is incorporated;
and, of course, turbines usually have increases in cross-sectional areas in the
axial direction. A measure of the effectiveness of incorporating an axial area
variation can be obtained by noting the increase in maximum swirl velocity
attainable and the decrease in enthalpy ratio identified with an axial area
change. Thus, choosing M,=0.5 and y = 1.3, the results of Fig. 9.21 are
obtained from Egs. (9.124) and (9.126).

The Impulse Turbine

An impulse turbine stage is defined as a turbine stage in which the entire
static pressure drop occurs across the stator. Equivalently, of course, the
impulse turbine stage is a stage with a degree of reaction of zero. Because no

t2 5 -.\\ A Bhfo
3 / \\ .7
[ [ \\.6
o 1 2 .3 4 5

Mo

Fig. 920 Stage pressure ratio vs axial Mach number.
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Fig. 9.21 Enthalpy ratio and maximum swirl velocity vs area ratio.

wr ,11 ‘l-—wr—ol
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Fig. 9.22 Velocity diagram for an impulse turbine stage.

pressure drop occurs in the rotor, the relative velocity in the rotor will not

change if the fluid is assumed perfect. A typical velocity diagram would
hence be as indicated in Fig. 9.22.

The Euler momentum equation gives
CAT, ~T,)=wr(v;,—v,)

It is apparent from Fig. 9.22 that, for this case where the axial velocity
has not changed across the rotor, 8; = — 8, and hence

UV —wr=wr—»n,
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and
C,(T, - T,)=2wr(v, — wr) (9.128)
It is clear that the maximum work interaction per mass for the given

pressure drop will occur when the rotor leaves no residual swirl (v, = 0). At
this condition, v; = 2wr and from Eq. (9.128)

1— L _ 2wr)’ (max work impulse turbine) (9.129)
Tn CPT’1 " e - |

The Relative Stagnation Temperature

The relative stagnation temperature, or that temperature the gas would
achieve if brought to rest adiabatically on the rotor, is of great importance
because it determines what the heat-transfer loading to the blade will be.
Defining T, as the relative stagnation temperature as seen by the rotor,
write

C,T,=CT, +[wi+ (v, —wr)]
= T +3(wi+02) +4[ (v, —wr)’ — 3]

hence

v — (v, — wr)’ (9.130)
2CpTll[ 1 1 ]

L =1~ 3wr)’ (max work impulse t rB‘ne) (9.131)
T, T, X W pulse turbi .

It can be seen that because the blades are retreating from the flow,
the relative stagnation temperature is reduced. This effect can be quite
significant and allows the rotors to operate at higher stress levels than
might at first be expected. For example, with T, = 1600 K, wr =400 m/s,
C,=1250 J/kg - K, it follows that T, /T, = 0.88. Hence, the effective stag-

P .
nation temperature 1s reduced 192 K because of the blade movement.

The Reaction Turbine

The reaction turbine stage is defined simply as a turbine stage in which
the degree of reaction is other than zero. As an illustrative example, consider
a stage for which the velocity triangles are those that would give °R = 0.5 if
the flow was incompressible and perfect. It is to be noted that, when losses
are present and the Mach numbers are finite, the static pressure behavior
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e
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———(M_v )—-—o—
wr 2

Fig. 9.23 Velocity diagram for a reaction turbine stage.

will not strictly correspond to °R = 0.5. As a further simplification, consider
no change in axial velocity and assume a symmetric diagram as illustrated in
Fig. 9.23.

Because of the assumed symmetry of the velocity diagram, it follows that
v, = wr — vy, so that the Euler momentum equation becomes

G (T, = T.) = wr(v, = o) = (wr)(2 25 ~1)

AN

Again restricting attention to the case where the maximum work interac-
tion occurs, which as before corresponds to no residual swirl remaining in
the flow, note that v, = wr and hence

T;Z (wr )2 113 5 - :
1—-—= (max work “50%” reaction turbine) (9.132)
T;l CP 7;1

Equation (9.130) is valid generally and hence here reduces to

2 =1- (wr)’ (max work “50%” reaction turbine) (9.133)
T;x ZCPT;1 '

Comparison of the Impulse Turbine and “50%”’ Reaction Turbine

It is of interest to compare the behavior of the impulse turbine and 50%
reaction turbine. The behavior of important parameters is compared in
Table 9.2.
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Table 9.2 Comparative Turbine Behavior

50% 50%
Parameter Item Impulse reaction Impulse reaction
T Work Awr)’ (wr)
1 - =2 or . .
T, interaction GT, G T, High Low
T, Increment in 3(“”)2 (“’r)z .
Tll -1 rotor temperature 2G,T,, N 2G,T, High Low
Efficiency Low High

It can be seen from the summary of Table 9.2 that, for a given wheel
speed, the impulse turbine has a larger work interaction and experiences a
lower relative stagnation temperature on the rotor than does the 50%
reaction turbine. (Note that the lower relative stagnation temperature could
allow operation at a slightly higher wheel speed.) These advantages for the
impulse turbine do not come without penalty, however, as the stage
efficiencies tend to be lower than those of the reaction turbines. This is
because the Mach numbers (and hence frictional and shock losses) tend to
be large in impulse turbines, and also because the rotors operate without the
benefit of an ambient favorable pressure gradient.

In practice, impulse turbines are often used in very high thrust-to-weight
engines where their enormous work capability is of direct benefit in reduc-
ing the required number of stages and hence weight. In some cases, the first
few stages of a turbine will have impulse blading so that the number of
stages requiring cooling will be reduced. Transport aircraft, which require
highly efficient engines, will usually have blading with 30-50% reactions.
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Problems

9.1 Consider the perfect flow of an incompressible fluid through
a compressor stage. The stage is of “constant-work” design (A p, constant
with radius) and has purely axial flow at inlet and exit from the rotor-stator
pair.

(a) Show that °R=1—Ap,/2p(wr)>.

(b) For the case where r,/r, =3, wr,/w =1, and the turning angle in
the rotor at the hub is 30 deg, find Ap,/pw? and °R at r=r, and r=r,.

9.2 Consider the ideal flow of an incompressible fluid through a free
vortex compressor stage. For the example values wr,/w = 0.8,
Ap,/ow*=10, r,/r,=238, 0,= 1.9, and °R,, = —0.65, (constant chord),

(a) Find the diffusion factor at stator hub and rotor tip.

(b) Find the degree of reaction at the tip.

(c) Draw accurately the combined velocity triangles at the tip and at
the hub.

93 Consider the ideal flow of an incompressible fluid through a free
vortex compressor stage. You are given Ap,/ow? =10, 8, =6,, r,/r,=2.6,
°R,= -0.6, 0,= 1.7 [0,=0,(r,/r)], and wr,/w=0.7 and 0.8.

(a) Calculate vy /w, vy/w, (V,/W)g, (Vi/W)g, (Vo/W)s, (Vi/W)s, Dg,
and D; at the hub and at the tip.

(b) Draw accurately the combined velocity triangles at the tip and at
the hub for both cases wr,/w=10.7 and 0.8.

94 Consider the ideal flow of an incompressible fluid through a
rotor-stator pair. There are no inlet guide vanes, so the approaching flow is
purely axial. The stage is a free vortex stage, with constant axial velocity,
purely axial flow at the exit, and blades of constant chord.

(a) Show that

Ap, _ w1 1

p(wr)’ @ R (1/202R?)-2(1- D)

1 1 nE
X{UzR_2(1_D)[402R2+1_(1_D)]}

4

where D is the stator hub diffusion factor.

(b) For the case 0,= 0.4, w/wr,=%, D=0.6 plot Ap,/p(wr,)? vs R
for2<R<3.

(¢) Repeat (b) with w/wr, = L.

(d) Repeat (b) with g,=0.5.

(e) Repeat (b) with D=10.5.
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9.5 Consider the ideal compressible flow of a calorically perfect gas
through a fan stage. The entering and departing flows as well as the relative
velocity at station 2 are all axial. The annulus cross section is varied so as to
keep the axial velocity at the (single) radius considered constant.

(a) Find an expression for p, /p, in terms of y, M, and wr/w.

(b) Find an expression for M, in terms of vy, M|, and wr/w.

(¢) Find an expression for M; in terms of y, M, and wr/w.

(d) Show that the degree of reaction is given by

y/(y—1)
A
OR=

L+ (y =m0V
et (S)]

(¢) Evaluate °R for y=1.4, wr/w=1and 1.5, and M, =0, 0.2, 0.4,
and 0.6.

9.6 A uniform flow of incompressible fluid passes through a stator
row which imparts a swirl such that (y¥)?> = —§¥. The flow process can be
considered ideal.

(a) Find expressions for the dimensionless velocities V' and W that
will exist far downstream in terms of y, 8, and R.

(b) Find an expression, in terms of R, for the limiting value of
dimensionless swirl velocity at the tip, ¥;;, that just leads to W, = 0.

(¢) For the case R=3 and 6 =4, plot W and V' vs (y— 1/(R-1).

9.7 A single-stage fan has a rotor followed by a stator. The flow may
be approximated as incompressible and the annulus as parallel walled. The
rotor is not a free vortex rotor. The stator removes all the swirl. Given that
the departing stagnation enthalpy is given by

H = const — Q¥

find an expression for the far downstream stream function in terms of y, &,
and R.

9.8 Consider the ideal flow of a calorically perfect gas through a
single-stage turbine. The stage is an impulse stage, and the entering and
departing flows are purely axial. Entering conditions are y,= 1.3, M, = 0.4,
C =7500 ft?/s*-°R, T, =T, =2600 °R, wr=1300 ft/s. Given that
1 /A =1.25,
(a) Find the stagnation pressure ratio p, /p, and stagnation temper-
ature ratio 7, ST
b) Check that this stagnation temperature is allowable in this im-
pulse turbine.
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(c) If from part (b) it is found that such a stagnation temperature
change is possible, find the Mach number M,; of the flow departing the
nozzle and find the flow angle a.

(d) Repeat parts (a—c) given that A4,/4,=1.5.

9.9 “Ducted windmills” are being considered for energy production.
It is apparent that such windmills can be viewed as “full-reaction turbines”
(°R = 1) because there is no pressure drop across the [nonexistant (!)] stator.
(a) Sketch the velocity triangles for such a (single radius) rotor.
(b) If the rotor turns the flow by an angle AB, show that ideally

T, (wr) w _wr
A cr {wrtan[(tan —w—)+AB]—1}

(c) Evaluate T, /T, and p,/p, to six significant figures for the

conditions 7; = 500 °R C = 6000 ft?/s?-°R, wr=w =136 fps, AB=10
deg.

9.10 An ideal impulse turbine is to be designed to operate with the

maximum possible work interaction per mass for given inlet conditions and

ax1a1 area ratio A4,/A,. Given y=1.32, M,=0.3, C, =7400 ft>/s*- °R,
= 2500 °R, and A,/A,=1.3, find the required blade speed wr.



10. THROUGHFLOW THEORY

10.1 Introduction

In an early paper,! Wu formulated the basic concept of representing the
inviscid three-dimensional flowfield as the sum of two separate two-dimen-
sional flowfields. These two separate flowfields were composed of surfaces
located in the blade-to-blade direction (s, surfaces) and surfaces lying in the
hub-to-tip direction (s, surfaces). The solution to the flowfield composed of
these combined two-dimensional fields would formally require an iterative
solution, since the solution for either surface requires a knowledge of the
shape of the other surface.

In practice,>"* the problem is simplified by taking appropriate averages
for the blade-to-blade direction and then assuming the flow to be axisym-
metric. In this way, the s, planes become meridional surfaces and the
expressions for the derivatives along and normal to such surfaces are easily
represented in terms of the derivatives in the radial and axial directions.

When the complete throughflow equations are considered, the variations
of the fluid properties in the axial direction are included. It is to be expected
then that the radial equilibrium solutions obtained in Chap. 9 will again
appear as the asymptotic limits of the far upstream and far downstream
flows.

The equations will be formulated in a manner that allows the inclusion of
compressibility and entropy variation effects. However, the solution of the
resulting rather general equation must rely upon the application of ad-
vanced computer techniques that cannot reasonably be reported in detail in
this book because of space limitations. Section 10.6 briefly describes some of
the various calculational methods available and provides references for
further reading.

10.2 The Throughflow Equations

In the following, equations appropriate for the description of the (axisym-
metric) throughflow are developed. The viscous stresses in the fluid will not
be included explicitly, but a general “body force” F will be included. It s
possible to utilize this general body force to artifically introduce the effects
of viscosity,? but in any case the flowfield considered is primarily external to
the blade rows, and it is consistent with throughflow theory to consider the
viscous effects to be negligible in this region. The effects of viscous stresses

373
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within the blade row will appear implicitly in the vanation of entropy in the
direction normal to the stream surfaces and also in the effective body force
of the related blade forces. (See Secs. 10.3 and 10.4.)

The Conservation Equations

When vector notation is utilized, the continuity, momentum, and Gibb’s
equations may be written

%+V'(pu)=0 (10.1)
Du 1
1
Vh—;Vp= Tvs (10.3)
also
Dh 1 Dp Ds
Dt p Dt "Dt (104)

The Convective Derivative

The convective derivative, represented by the operator (u* v), may be
expanded as

d v d d
(U'V)=MW+7%+WE (105)

It is important here to retain the partial derivative with respect to 6
because, even though the fluid properties have no 8 variation (because of
the assumption of axial symmetry), the coordinate directions themselves
change with §. Thus note in particular

de,

= (10.6)
de,
W—- —€, (107)

Utilizing Eqs. (10.5-10.7), the convective derivative of the velocity vector
may be expanded into the components,

(u-‘v)u=[(u'v)u—072

&+ |1 (u ) (0) e + [(w- 9 )wle,

(10.8)
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The Equation for the Tangential Momentum

The equation for the tangential momentum follows immediately by taking
the scalar product of Eq. (10.2) with e, and utilizing Eq. (10.8) to give

E:,(fa_%%‘ig) (10.9)

It is to be noted that the tangential body force existing in this expression
may include a viscous as well as a nonviscous term. The equation may be
interpreted to explain the mechanism by which angular momentum is
introduced into the flow. Thus, if perfect flow through an actual blade row is
considered, no body forces exist and the angular momentum is imparted by
the pressure forces of the blade row. Clearly, if the contribution of such
pressure forces to a control volume between repetitive streamlines of a
cascade external to the cascade is considered (Fig. 10.1, case A), the stream
surfaces cannot support a pressure change and the (net) angular momentum
cannot change. Once within the blade row, however, the blade surfaces can
support the pressure change and the angular momentum changes (Fig. 10.1,
case B).

It can be noted here that the formal mechanism for obtaining the
throughflow form of the equations is to replace the term

1ap
p

0

|

in Eq. (10.9) by an equivalent (artificial) body force fy. In this way the 6
dependence of the properties is removed. The relationship between this
artificial body force and the torque and forces existing on the blade is
further developed in Sec. 10.4.

-
-

1 Py

Fig. 10.1 Pressure stresses on stream surfaces.
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The Euler Turbine Equation

The vector form of the Euler turbine equation (see also Sec. 9.2) may be
obtained directly by taking the scalar product of Eq. (10.2) with u and
adding the result to Eq. (10.4), to give

L ru-F+T— (10.10)

The velocity may be written as the sum of the velocity relative to the blade
u,; and the blade velocity wre, to give
u-F=(uy+wre) F=u, F+aorf, (10.11)

rel

Combination of Egs. (10.9-10.11) then gives

Dh, 1 dp lap] Ds
D¢ _p[8t+wr(r 80) +(u'€1 F+TDt

It can be noted that the expression within the first pair of brackets
represents the pressure perturbation as viewed by an observer fixed to the
rotating blade. Under normal circumstances where the pressure perturba-
tions are created by the blades themselves, this group of terms is zero. When
considering the terms in the second pair of brackets, note that because the
body force term is identified with the blade forces, the product u ,+F
represents the effect of the frictional forces alone. (Note that if there were
no frictional stress, F would be perpendicular to the relative velocity giving
u_*F=0.) The term u, *F is hence the sole source of entropy generation,
so as with Eq. (2.63), the terms in the second pair of brackets also cancel.
There 1s thus obtained the vector form of the Euler turbine equation,

+w—- (10.12)

Ds ) Drv
D¢

Dh, Drv
Tt_wﬁ (1013)

The Compressible Form of the Stream Function

When the throughflow limit of the equations is taken, the replacement of
the group

1dp
r a6

|-

by an equivalent body force not only reduces the equations to axisymmetric
form, but, in addition, removes the time dependency. Thus, the continuity
equation may be written

1 3(pru) | d(pw) _

5ty =0 (10.14)



THROUGHFLOW THEORY 377

This equation 1s identically satisfied with introduction of the compressible
form of the stream function ¢, defined by
19y 1 dy
pu—'por 3z’ pw = pOr ar (1015)
In these expressions p, is a suitable reference density. It follows, just as in
the development in Sec. 94 of the incompressible form of the stream
function, that the mass flow rate between two stream surfaces r1 is related
to the stream function by

= —2mpo (¥, — Y1) (10.16)

The Natural Coordinate System

The stream tube surfaces form natural coordinates for throughflow stud-
ies and lead to the introduction of a coordinate system with directions n
(normal to stream tube surfaces), e, (meridional component), and e,
(tangential). This coordinate system is depicted in Fig. 10.2.

The velocity vector in the natural coordinate system has components
given by

u=(0,v,0,) (10.17)

The mernidional velocity v, is related to the cylindrical velocity compo-
nents by

vi=u’+w? (10.18)
and the unit vectors are given in terms of the cylindrical coordinate
quantities by

o= %/(ue,-i—wez) (10.19)

n=e Xe= %{(eaXu) (10.20)

Fig. 10.2 Throughflow coordinate systems.
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The scalar magnitude of the differential difference dn occurring for a
differential displacement dr is given by

dn=n-dr=2dr-%d; (10.21)
Uy Uy

This may be related to the corresponding change in the stream function by
utilizing Egs. (10.15) to give

=_Lpo(3\l/ \l/ ) 1 p
dn= =2 2 Gy dr+grd L (10.22)

The unit derivative in the direction normal to the stream surfaces (n+ v)
is thus given in terms of the stream function as

9 _awd_ e
m - d oy 9% (10.23)

(n-v)

This same derivative in cylindrical coordinates follows directly from Eq.
(10.20) and the definition of the operator v (in cylindrical coordinates)
to give

(n.v)=l( X ).( i_*. li_*_ _a_)
AN TR PN T R
or
(mev)=22_u9 (10.24)

Equation for the Tangential Vorticity

The Euler momentum equation and the conservation of angular momen-
tum equation describe the behavior of the angular momentum and stagna-
tion enthalpy along stream surfaces. It can be expected that the essence of
the two-dimensional problem lies in the variation of properties across
stream surfaces, so to this end the rate of change of properties normal to
stream surfaces is investigated.

The steady-state form of the momentum equation (10.2) may be added to
Eq. (10.3) to give

Vh,+woXu=Tvs+F (10.25)

In obtaining this expression the vector identity

2

(u'V)u=Vu7+u>><u
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has been utilized. This in turn introduces the vorticity «, defined by
w==E¢e +ne+e. =V Xu (10.26)

Utilizing Eq. (10.20) it follows from vector expansion that
1
n:(wxu) =;{[(eo'w)(u'u) — (g u)(u+w)]
Thus expanding the vorticity into its components there is obtained
n-(wxu)=nu,—§(n-v)(w) (10.27)

An equation for the tangential vorticity n follows by taking the scalar
product of Eq. (10.25) with n and utilizing Eq. (10.27). Thus,

n=%{[n-F—(n-v)h,+ T(n-9)s+(n- v)ru] (10.28)

This expression may be written as an equation for the stream function v,
density ratio p/p,, and prescribed variables (4,, s, rv, F) by utilizing

_du _dw
=%, or

and Egs. (10.15) and (10.23) to give
O (P loy) 9 (ploy) 1 e (0h 05 vir
8z(p r 8z)+8r(p r or _U(n F+p0r ay Ta¢ r dy
(10.29)

The density ratio follows from Eq. (2.57) and the perfect gas equation of
state to give

l/(yv—1)
e Ws—s0)/R]

Ve (w4t U+ 02
P (T) - msoymi = | P 3w rut 407
T, ho—3(w?+u?+0%),

Utilizing Eq. (10.15) this expression may be rearranged to give

HE R

_P_Y_l[ Lo, 2 2](Y/Cp)(5—50)_ IR SIS
+(p0) h,, 2(w +u’+ v )le h, 2r2(w) 0

(10.30)
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Equations (10.29) and (10.30) constitute two coupled, highly nonlinear
equations for the stream function in terms of the reference O conditions and
the prescribed quantities F, 4, s, and rv.

10.3 The Actuator Disk

The presence of the body force term F in Eq. (10.29) complicates the
solution for the throughflow considerably. A useful approximate solution
can be obtained by considering all the forces to be concentrated in an
infinitesimally thin disk—the actuator disk. The forces are chosen to have
the same integral effect upon the tangential momentum, stagnation en-
thalpy, and entropy as would the axially distributed forces of the actual
blade rows (see Sec. 10.4). The result is then that the body forces themselves
do not appear in the resulting equations, but the effects of the blade forces
appear as matching conditions across the (infinitely thin) blade row. The
approximation can be made as accurate as desired by taking a number of
actuator disks to simulate a single blade row.

The equation for the stream function (10.29) thus reduces to

K2 _ol_¢)+_(_ol_i)=£ Oh, . 9s vdr
3z\prd ar\p r 0 "oy " "9y T r oy

(10.31)

Because in the actuator disk approximation the blade row is taken to be
infinitely thin, the continuity of mass ensures that the value of the stream
function on one side of the disk is identical to that at the same radial
location on the other side. This simple relationship may be written

[¥]s=0 (10.32)

where the notation [ ] refers to the jump in the value of the quantity and the
subscript d refers to conditions at the disk.

A second matching condition may be obtained by considering the radial
momentum equation. Thus, noting that by the assumption of axisymmetry
no 6 derivatives of fluid properties are present and combining Egs. (10.2)
and (10.8), there i1s obtained

du d v 9
quvaw 3u_p—+8—]r)=pf’ (10.33)

This equation is now integrated from an infinitesimal distance ¢ upstream
of the disk to an infinitesimal distance downstream of the disk. It is to be
noted that no terms on the left side of the equation can become infinite
except, possibly, those involving an axial derivative. Thus, integration over
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the infinitesimal distance (noting pw is constant) gives
£ du 1

[ 55 de=lula=5 f_spf,dz

Utilizing Eq. (10.15) there is then obtained

[ 1
[FO75;£L=_ of.dz (10.34)

owJ_,

The integral on the right side represents the effect of the total radial force of
the blade row at the given radius of the actuator disk. In many applications,
the radial force of the almost radial blades is very small and Eq. (10.34) is
often approximated by

19y] _
[;EL—O (10.35)

Equations (10.30-10.32) and (10.35), together with the boundary condi-
tions that the stream function is prescribed on the containing walls (or that
the pressure be constant on the bounding streamline in the case of a free
streamline), constitute the mathematical statement of the problem. In Sec.
10.5 an example solution for incompressible flow will be presented and
methods for calculating compressibility effects will be described in Sec. 10.6.
Before proceeding to the calculational examples, however, the relationships
of the overall torque applied to the biade row and the overall axial force on
the blade row to the resulting changes in fluid properties are considered.

10.4 Integral Relationships

An equation for the tangential momentum was developed in Sec. 10.2,
and the equivalence of the body force field utilized in the throughflow
approximation and the pressure field existing on the actual blade surfaces
was discussed. The relationship between the equivalent force field and the
torque on the blade (taken about the axis) may be determined by noting
that the differential contribution to the torque of an annular volume
2wrdrdz is given by

dr=2mpfyridrdz (10.36)

The torque upon the entire blade row is then obtained by integrating
from the blade leading edge to the trailing edge (z, to z,) and from the hub
radius to the tip radius (r, to r,). Hence,

ny=2a [ [Tor’fydrdz (10.37)
IR
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The throughflow form of the tangential momentum equation (10.9) gives

drv drv
rfg—uwﬁ-wﬁ (1038)

By adding rv times the continuity equation (10.14) to this expression,
there is obtained

_ 1] a(pur)(rv) | 3(prw)(rv)
ptfy = P [ EP + P (10.39)

When Eq. (10.39) is substituted into Eq. (10.37), the resulting expression
may be integrated immediately to give with Eq. (10.15)

TH=2wp0[bfifj’[(rv),—(rv)h1 d¢—2vrpof\:'[(rv):2—(rv)zl] dy

In this expression the first integral vanishes, because the value of the stream
function does not change along the hub or tip (i.e., d¢ =0 on r, or r)).
There is thus obtained a relationship that is itself obvious from first
principles when the relationship between the stream function and the mass
flow [(Eq. (10.16)] is recognized. Thus

Ty = —2ﬂpof\p¢'[(rv)zz—(rv);l]dxp (10.40)

h

Then noting from Eq. (10.16) that ~2ap,dy = dm,
71,2=f"p[(rv)zz—(rv)z,]dr'n (10.41)
hub

When the desired angular momentum distribution with stream function is
prescribed, the resulting torque on the blade row can be immediately
determined from Eq. (10.40). It is to be noted that there is no need to obtain
any of the detailed flow information through the blade row. The overall
torque depends only upon the overall change in angular momentum through
the blade row.

The axial force on the blade row and containing annulus walls may be
obtained by considering the control volume shown in Fig. 10.3.

Equating the rate of production of momentum to the force applied to the
fluid, it follows that the upstream directed force on the blade row and
annulus wall F, is given by

F, = [fr[(p + pw2)27rrdr] - {fr[( p+pw?)2mrdr (10.42)

Tn Th 1
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AV

F
A

|

X . | 2
Th

Fig. 10.3 Axial forces.

When the actuator disk limit is considered, F, becomes the force on the
blade row alone. It is convenient to write this expression in the form

F,=2mp,[M] (10.43)

where M is defined by

M= /(Po Loy )rdr (10.44)

It is clear from the way M has been defined that M will be constant with
axial position if the walls are parallel and no blades are present. (Recall that
the flow was assumed to be nonviscous outside the blade rows.) The
quantity M is most easily evaluated by considering the radial equilibrium
form of the solutions, which is possible because M will stay constant in a
parallel-walled annulus until all radial flows vanish. The expression for M
can be manipulated in the following manner (noting ¥ =0 in radial equi-
librium):

e 1p w2
M= St —u - v rdr
/rh P 2p 2 Po( )}
2
P p (o) 1 p ( 0\.’/)
= —u | - — dr (10.45
/h[( 2p0 ) po 2r 2rp ( )
where as before u? denotes the scalar product u - u. Noting

Powdy)_ d(pldy dy )’
dr(77a7) %(77?)* )

and utilizing the radial equilibrium form of Eq. (10.31), Eq. (10.45) may be
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written

_.[2 lﬁz_ﬁidhr)_ﬁ(’v)( _ drv)
M -/[r(90+2pou py 2 dy Py 2r ‘Pd‘l’

Tn

Ppoydy\ p ¥ _ds
+2dr(p rdr)+p02 d\l/}dr (10.46)

When the stagnation enthalpy, entropy, and angular momentum are
prescribed, all terms in this integral may be evaluated [with the solution of
Egs. (10.30) and (10.31)] and the integral obtained. In the following section
simple explicit solutions are obtained for special forms of the blade loading
and for these cases evaluation of the integral is very straightforward. It may
be noted here that when the flow considered is perfect and incompressible,
the group

£+1P
2Po

is identical to the stagnation enthalpy #,.

10.5 Example Solutions

As an example set of solutions consider the simple case of flow of a
perfect, incompressible fluid in a parallel-walled annulus. As indicated in
Fig. 10.4, there are N actuator disks located at x=x;, (1<j<N) and
N + 1 regions of flow in regions /(0 <i < N).

Tt is most convenient to consider the nondimensional form of the equa-
tions so again utilize the dimensionless variables introduced in Eq. (9.66).
Thus, with the addition of a dimensionless axial variable x, define

) h
WZ—M—’ V=—U_, ‘I’= ‘P N H='_l
Wo Wo wor/ wi
=L x=< R=21 (10.47)
4 ' ' Ty
i=O R li=l]iz2] © - - i=N
=l 1j=2 j=3 j=N
I Y

Fig. 104 Actuator disks and nomenclature.



THROUGHFLOW THEORY 385

With the restrictions listed above and with the introduction of these new
variables, Eq. (10.31) reduces to

2
13\1f+a(1a\1f) 0H ayV (10.48)
y 9x® 9y

I R A
The boundary conditions are

¥=-1 on y=1 and ¥=-R%2 on y=R (10.49)

The matching conditions are
[¥];=0 and [?—:I,- =0 (10.50)
ax |

The mathematical statement of the problem is completed by prescribing
the desired distribution of the stagnation enthalpy and angular momentum
with the stream function. A particularly simple and instructive set of
solutions is obtained when forms of H and yV leading to linear forms of
the equations are considered. Thus, consider (as in Sec. 9.4) the special
forms given by

H =Hy—w¥+9, and (yV);=—a ¥+, (10.51)

It follows from the Euler momentum equation that
w=w_1+Q(a;—a;,_;) (10.52)
0,=6_,+9(B—B 1) (10.53)

Here @, is the nondimensional angular velocity (wr,/w,) of the rotor row
located at x; where j =1i.

Equations (10.48-10.53) constitute the mathematical statement of the
problem. Begin the solution by incorporating Eq. (10.51) into Eq. (10.48)
to give

> ¥ 8(1ﬂ

A el 2 =aq.8 — w2
Py +y8y " ay)+oz,‘l’ a,f—wy (10.54)

Solution of the Homogenous Equation— The Natural Eigenfunctions

Now consider solution of the homogeneous form of Eq. (10.54) by
separation of variables. Thus substitute

¥ =yE(y)®(x)
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to obtain the two ordinary differential equations

d’®

— —(NM-a})®=0 10.55

(e (10.55)
2
Lk 19~€+(>\2—~1—)E=0 (10.56)
dy? ydy y?

where A? is the separation constant.
The solution of Eq. (10.56) is obtained in terms of Bessel functions of the
first order and may be written

E=CJ(Ay)+GY,(Ay) (10.57)

In order to satisfy the boundary conditions that d¥ /dx be zero on the
hub, one of the constants may be chosen such that

E=G[5(A0) 1A =4 (MY (A)] (10.58)

In order to satisfy the remaining boundary condition that ¥ /dx be zero
on the tip, only selected values—the eigenvalues—of the separation con-
stant A can be allowed. Thus a family of solutions is obtained, each solution
having a corresponding eigenvalue A . These eigenvalues follow from solu-
tion of the equation

Jl(AnR)Yl(An)—Jl(An)Yl(AnR)'__O (1059)

A series approximation to the value of A, is given on p. 261 of Ref. 5 and
may be written
nw R—-1\*3 R—-1\*
An= —1{1+( nw ) 8_R*( nw )

[MR_’—H+1%J+ } (10.60)

=

X

128R3(R—-1) 64

This series is quite accurate, the third term reaching a value of only 0.015
for the case R =3, n=1. This set of values corresponds to about the largest
correction expected in practice. If a higher accuracy is desired for excep-
tional cases, Eq. (10.59) is easily solved by iteration.

The constant C remains arbitrary because the functions E have yet to be
multiplied by the still to be determined functions ®. Because there is an
infinite set of the functions ® and E, the solution for ¥ is written in the
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form
¥= T 0,(x)5E,0) (10.61)

here the subscript n denotes the eigenfunction corresponding to the eigen-
value A,, and the added subscript 1 in the function E,, has been intro-
duced to indicate that the Bessel functions with argument A, y contained in
E,, are of first order.

It is a very useful result that the functions E,,(y) are orthogonal, which
can be shown directly from the two integral formulas (Ref. 6, p. 146)

[y2,(a»)Z,(By)dy

B2, ()2, (B 027, () 7,(8)]

(10.62)

fy[Z,,(ay)]zdy =X; [Z,f(ay) —27p2p_1(ay)2,,(ay) +Z,3A1(ay)]
(10.63)

In these expressions Z,(ay) and Z »(BY) refer to any groups of the
form CyJ,(ay)+ CY,(ay) or G3J, (By)+C4Y(By) It then follows di-
rectly, w1th Egs. (10. 58) and (10.59), that

fRyEln(k,,y)Elm(Amy)dy=0 m#n (10.64)
1

‘/;R}’[Eln(kn}’)]zd)’= CSZ{%E[JO(AnR)YI(An) _Jl(>‘n)Yo(>‘nR)]2

3 BB =LA BT (10.65)
Equation (10.65) may be greatly simplified by noting from Eq. (10.59)

n(A) _ A(A)
Y(A,R)  J(A,R)

(10.66)

and the relationship (Ref. 6, p. 144)

Y, ()4, (x) = Y, (x) oy (x) = 2/mx (10.67)
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to obtain

R 2 _ 2C32 Jl(}\n) 2_
fly[El,,(My)] dy—( 2{[110\"13)] 1} (10.68)

WA")

This suggests the convenient choice for the constant C; as that value
which will render the functions orthonormal. Thus, define the orthonormal
set of functions E (A, y) by

7 SN )Y (N) =S (X)) Y (A, p)

Eln(y)z}\n 1 (1069)
‘/5 Jl(}\n) : -1 :
Jl(AnR)
These functions have the property that
f yEln lm )dy 0 n#m
=1 n=m (10.70)
In addition note from Eq. (10.56)
d (1 d
d {y dy[y ln )]}__AzEln( ) (1071)
Also, it may be noted that
2L, ()] =M, E(y) (10.72)
y dy 1n n=0n .

Solution of the Inhomogeneous Form of the Equation

The emergence of the orthonormal functions E;,(y) from solution of the
homogeneous equation suggests consideration of ®,(x) as a transformed
variable defined by

q>,,(x)=f1"qf(y,x)zs1,,(y)dy (10.73)
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Obviously, the inverse of the transformation is

oc

Y(y.x)= )Y @,(x)yE;,(y) (10.74)

n=1

The transformation of Eq. (10.54) is now taken by multiplying the
equation by E;,( ) and integrating between y =1 and y = R. The several
terms appearing are evaluated as follows.

Define

2 R

R 1
An=f1 yzEln(y)dy=,\—[yz()\—

E, —E
ny 1n On)]1

or

A =

v =3 | Eon(1) = Ry (R)] (10.75)

With the definition of E,,(y) and with Egs. (10.66) and (10.67), this
expression may be rearranged to give

V2 RL(A,) =4 (A,R)
M [2(N,) = JE(AR))F

A,= (10.76)

Now define
B 1
B, =/ Eln(J’)d)’ =)\—[Eon(1) - EOn(R)]
1 n
With Egs. (10.66) and (10.67) this becomes

B =Q(1/R)-,1(}‘n)_jx(}‘nR) (10.77)

Mo 22 =22 (AR

Then

RV 3% (R d*®
—E dy=—|[ YE dy= . 10.78
[ En 0y =5 [YE, () dy =2 (1078)
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and

1 0¥ v R IV
/yay(;—a—)Eln(y)dy [Eln(y)a_y] _A/ ()ndy

R
[_AnEOH(y)\P]IR _Azn'/; \PEln(y)dy

AH 2 2
__Z—[EON(I)—R EOn(R)] _A (I)

With Eq. (10.75) this may be written

R 1 0¥ _ 2 An
/ ay(y ay) E,(y)dy=—Nd —=24, (10.79)

The last term in Eq. (10.54), o} ¥, transforms directly to «?®, , so that by
combining Egs. (10.54) and (10.76-10.79) an equation for ®, is obtained,

a2,

dx?

— (X —a})®,= - (N, — )T (10.80)

n

where

; 1 A%
)= .
T;l _7\7‘—01-2 [(w 2 ) aBl n

The solution to Eq. (10.80) consists of exponentials and is conveniently
grouped in the forms

(0)

O(x=x))] +T© X < xq

0
T’()

D,f”cosh[n”’ (x—-x )] - C(')Cosh[n(,,’v)(x,+1 - x)]
')smh[n(" Xi+1 xi)]

T

X, <X <X

(N)
exp[ 1M (xy = x)] + T Xy <X

T](

n

(10.81)

where there has been introduced 7! defined by 7%= yA% — .
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Note that the boundary conditions d®/dx — 0 as x — + oo are satisfied.
The coefficients C{” and D! are to be determined from the matching
conditions at the disks [Eq. (10.50)]. The condition [d®/dx]; =0 gives
immediately that DY~ = C!" and continuity of ® at each disk then gives
the set of equations

C(l) T(()) _ CrSZ) _ C'fl)coSh[ngll)(xz - X )] + T(l)
n 1 "
n© nﬁll)smh[nﬁ,l)(xz - xl)]
) =D — -CGYh
clY cosh[(n,,’ (x; xj—l)] G’ + TU-D
i . P "
'/ ”smh[nﬁ,’ D(x, - xj*l)]
Cn(j+1)— C,ff)cosh[nﬁ,j)(xjﬂ _xj)] T
= N . +
ni,”smh[ni,”(xjﬂ - xj)] "
Cn(N)COSh[TI,,N_l(xN—xN-I)]_C;N71)+T(N_l)= iN)+ Y
A Vsoh[n (e )]

(10.82)

Although unwieldy in appearance, this coefficient matrix is diagonally
dominant and tridiagonal, and is solved extremely rapidly on a computer.
Once the coefficients have been determined, the values of ®, follow from
Eq. (10.81) and the values of ¥(x, y) from Eq. (10.74). The tangential
velocity then follows directly from

V=0/)(-a¥ +8) (10.83)

and the axial velocity from

w=-1 2 S8 (x)Ean(y) (10.84)
n=1

The Radial Equilibrium Limit of the Solutions

Very useful summations are obtained by noting that, because the 7, are
independent of x, the portions of the eigenfunction expansions with coeffi-
cients 7./) correspond to the radial equilibrium solutions already obtained
in Sec. 9.4. Thus, with 4 of Eq. (9.77) replaced by —w, [see Eq. (10.52)], it
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follows that

0
. B 1\ rUilay)
()] = — Bl A TS A
ngl Tn yEln(y) ( a + a 2

i Ul(ai)

—oR B R\ yWiley) w , B
S . LN R A Rl R R SR 10.85
( a? a; 2| RU/(a,) aizy a; ( )

In the case where «; = 0, Eq. (9.83) gives

o0

O TN TR E
n=1

The summations relate principal contributions of the summations to the
determination of the stream function. Similar summations are obtained for
the axial velocity from the relationship W= —(1/y}Xd¥/dy). Thus, it
follows directly from Eqgs. (10.85) and (10.86) that

d | & rioyE e Y ATV, () =[S p 4%
- H n Y ln(y) - nin On(y)_( a Bi 2)

n=1 n=1

< | —

‘ R2 R2 . 2
Uoley) [ o 1 p+ 4R Wolawy) | 26, (10.87)
Up(a,) a, 2 | RU(a;,)) a?

I

and when a,=0

‘<I>—A
°‘|o_

[i T,"yE, (y)]= - f A TVEg,(y)

n=1
=%y2_%(1{2+1)+1 (a,=0) (10.88)

Expressions for the Axial Force and Torque

When the special forms of blade loading described by Eq. (10.51) are
considered, particularly simple forms of the integrals of Eqs. (10.40) and
(10.46) result. Thus, the dimensionless torque may be written as

T~ R°/2
2o 2 [V ), = (V)] ¥
PoWo I 172

With Eq. (10.51), integration leads to

R?+1

Ti-2 _ 2
T—W(R —1)[
PoWo s

(a— ) +(B,— B1) (10.89)
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The dimensionless, incompressible, and perfect form of Eq. (10.46) may
be written

M _ (R _Y dH) v dyvy, 1d (¥ d¥
_fl [y(H ) ( V- \I'd‘lf)+2dy(y dy)]dy

(10.90)

Utilizing the dimensionless radial equilibrium form of Eq. (10.31) to-
gether with Egs. (10.51), this expression may be manipulated to give

riws —f { (H_——) \P+2d)’[wgi]}d)}

Integration then gives

M _ w,’ﬂ,‘ Rz_l 1 RZ B,‘
,hzwoz‘(H“za,.) 2 +§(T+Z We

11 B

-5|7+ )Wel+—f y¥dy (10.91)

The integral in this expression is easily obtained in terms of elementary
functions when Eq. (10.84) (for ¥) is used. The terms W, and W, refer to
the equilibrium axial velocity at tip and hub, respectively, and follow
directly from Eq. (10.87). The dimensionless axial force across the blade row
then follows from

E4 =277[ M ] (10.92)

2.2 2.2
Pory Wo T Wo

Solution for a Single Row

The equation set (10.82) allows rapid computer evaluation of the fluid
velocities when a larger number of actuator disks exist in the annulus. For
small numbers of actuator disks, however, there is some advantage to
analytically inverting the matrix to obtain explicit forms for the desired
quantities. The simplest imaginable case is that for which only one disk is
present, and for this case the solution of Eq. (10.81) reduces to

(1)

n 0
.n()

[(7O(x - x)] + T x <X

C(l)
= o ——exp[qP(x, - x)] + 7D X <x (10.93)
M
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The matching condition equation (10.82) becomes simply

c C(l)
A TO= -2 T® (10.94)

0 1
7 7))

It is thus evident that the flow adjusts in an exponential fashion from its
far upstream equilibrium condition as it approaches the actuator disk, and
then exponentially relaxes toward its far downstream value as it departs the
disk. It is apparent from Eq. (10.60) that A, is given approximately by
A, =nw/(R—1). Closer investigation of the terms’ also indicates that a;
must be quite small compared to A; if reverse flow is not to occur. Thus, it
can be seen that the slowest decaying harmonic of the series decays
approximately as exp[ —7|x — x,|/(R — 1)] away from the row. This can be
a useful approximation when attempting to estimate upstream effects.

The final forms of the solutions will be summarized below, but before
doing so it will be of value to note that when conditions at the blade row are
considered, the terms may be regrouped somewhat to ensure more rapid
convergence of the summational terms. This is particularly useful because
the disappearance of the exponential decay terms in the summations causes
a much slower convergence of the summational terms. A familiar result
from linearized theories is that the stream function at the disk would be
one-half of the far upstream and far downstream values. Utilizing this result
leads to

];,(0)_+_ 7;:(1) ];,(0) — Tn(l) C(l)
(q)n)x=x1= 2 2 1](0)
n

with Eq. (10.94), this may be manipulated to give

7;1(0) + T;l(l) Tn(O) — Tn(l) n(o) n(nl)
(q)n )x=x1 = + ( ) ( 2)
R Wty

(10.95)

The second group in this expression will always be found to be very small
and, further, will be found to decrease with increasing n much faster than
the terms C, /7.

As a particular example consider a uniform flow approaching a stator
that introduces a “solid-body-like” rotation. In terms of the above parame-
ters, this means

Bo=wy=0a,=0, By=w =0, o =uo

n(nO)_A , (1)__ />\2 _az Eﬂn
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and
oC

2
Z 7:1(0)yE1n(y)= - yTE \I"oo

R __yUlay) RyWi(ay) _
Z Tn( )yEln(y)_ 2U1((X) 2U1((X) —\I’oo

n=1

- Z >\nT;1(0)E0n(y)= 1= W—oo

n=1

- Up(ay)  aRWy(ay)
- A, TVE -0 + 0 =W
LM E D=0 T )
Then with Eq. (10.80)
T(0)=_ﬂ TO = N Ay
n 2 n >\2n—(12 2
so that
A al
© _ 7 = Ap_a” A4,
L TR S
Thus
ot & A, pEL(y)
v=v¥ _-= ——=exp| A, (x — x X<x
2 L, o) SR 0) :
L2 AAYE(y)
V=¥ +— 7nex X, — X x> x
2 nz=:1 T’n(>\n+ n) P[’?n( 1 )] 1
at & A yE
\I,z%(\l, +\I’ )+ Z ny 1n(y) X=X1

4 i\, )’
The tangential velocity follows from Eq. (10.83) to give
V=90 x < x
V=—(a/y)¥ x> x

5 X A yE
V=_i(?7w+qyw)_:_ Z ny 1n(y)2 x +
2y y"=1 T’i(kn_*‘nn)

395
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The axial velocities follow from Egs. (10.84), (10.87), and (10.88) to give

2 X A AE
W=1+%_Z n nOn(.y)

exp{A (x—x x<x
o nﬂ(}\"+n") p[ n( 1)] 1

W=W _9_3 i >\2"A"Eon(y)

€X - X x> X
oo 2 2 Tli(>ﬂ,+n,,) P[Tl,,(xl )] 1

~]

4 & NALE ()
Z nfn=0n\ Y/

1
W==(1+W,)-
2 n=1 ni(kn+nn)2

|

Example values for the dimensionless velocities have been calculated for
the case where R =3 and a = 0.84. The results are shown in Figs. 10.5 and
10.6.

The results indicate that, for this rather large swirl introduced by the
stator, substantial perturbations to the axial velocity profile are introduced.
The resulting stream surface shapes and ambient diffusion or acceleration
can now be obtained to determine the overall flowfield in which the blade
row is imbedded. These results in turn will allow the establishment of the
correct cascade geometry to determine the cascade flowfield.

Examples with more blade rows are relatively easily obtained, although if
more than two blade rows are considered, the analytic inversion of the
coeflicient matrix [Eq. (10.82)] becomes very messy algebraically. It is much
easier to simply program the matrix and numerically invert it. More
complicated example solutions are provided in Refs. 7 and 8.

10
EEAN \i\ \' i
—]

R-1 N

o I\
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Q.B =4 0 4 .8

w-I|
Fig. 10.5 Axial velocity profiles.
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Fig. 10.6 Tangential velocity profiles.

10.6 Advanced Problems in Throughflow Theory

The example solutions illustrated in Sec. 10.5 allow rapid calculation of
the flowfields existing in an annulus with many blade rows, but the
solutions, although quite instructive, have incorporated into them many
limitations. Thus, it was necessary to assume that the fluid was perfect and
incompressible, that the blade loading (in terms of H and yV') was such as
to lead to linear equations, and that the annulus had parallel walls. More
advanced investigations allow some or all of these restrictions to be relaxed,
so in the following sections a brief description of some of the methods
available for solution of the more general forms of the throughflow equation
will be outlined.

Effects of Compressibility

When the flow has substantial compressibility effects, the full coupled
equations (10.30) and (10.31) together with the boundary conditions and
matching conditions must be utilized. In virtually all calculation schemes,
these equations are solved in an iterative manner, with Eq. (10.31) solved
first (by finite difference or finite element techniques) with an assumed
density distribution and then the density “updated” by utilizing the ob-
tained values for ¢ in Eq. (10.30). Equation (10.30) is then solved (itera-
tively) to determine a new set of values for the density, and the coupled
iteration process continued until convergence is obtained. Simple Newto-
nian iteration is usually used to solve Eq. (10.30) for the density ratio. Thus,
write

F=(2h,- ’)2)(‘0%)2 - 2h0exp[%(s - so)}(;“’;)y+1

_{(%ﬂ)2+(li‘k)z]=o (10.96)
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Then
F
(i) =(£) - (10.97)
Po/ ;41 Py 13
where
Y
F =202k, - 2] 2~ 2(y + Dhgexp| L (s —s,) (i) (10.98)
Po G Py
Note that

(2h,—u2)=(2h+u2+w2)=2h(1+%M},) (10.99)

where M,, is the meridional Mach number.
Equation (10.99) may be combined with Eq. (10.98) to give

Do 2 U T\ C

_ h y—1
F,=4h£{1+uMz__v_tl_o(£) exp{l(s_so)}}
f4

It is evident from integration of the Gibbs equation (Sec. 2.9), however,

that
ho( p vl Y _
7("‘)—0‘) CXP[FP(S SO) =1

and the equation for F’ hence becomes

F= —2(y—l)hp£(l—M,,2,) (10.100)
0

It is thus evident that it is the meridional Mach number (rather than the
“total” Mach number) that plays the crucial role in determining the
mathematical behavior of the solution. It is evident also that Newtonian
iteration will fail in the vicinity of M, = 1. As a result, most calculation
schemes are limited to the description of flows with meridional Mach
numbers less than unity, even though the total Mach number may be far in
excess of unity. It is to be noted that because the density ratio itself is
primarily dependent on the total Mach number, very large density changes
can occur for flows with modest meridional Mach numbers. Thus, great care
should be taken to properly calculate the resulting density distribution.

Hawthorne and Ringrose® considered the perfect flow of a calorically
perfect gas through actuator disks contained within a parallel-walled an-
nulus. The flow considered had a free vortex distribution, but was consid-
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ered to be compressible. The analysis, which is one of the very few
analytical treatments (as compared to numerical) of compressible flows in
turbomachines, was carried out by linearizing the equations. Both the radial
velocity and meridional Mach number, as well as the turning induced by the
blades, were considered to be small. The results are very useful, because by
restricting the study to free vortex flows in parallel-walled annuli, the
perturbations in axial velocity that arise must be caused by the effect of
compressibility alone. Example cases can be calculated with ease because of
the analytical form of the results leading to easy physical interpretation
of the results.

Fully numerical methods can usually be categorized into one of three
methods: streamline curvature, finite difference, or finite element. The
streamline curvature method utilizes an approximate method of solving the
throughflow equations!®~!* and as such rests somewhat between the radial
equilibrium method and methods that solve the full throughflow equations.
The essence of the method is that approximate forms of the stream tube
curvature are assumed, so that the describing equations become quite
simplified. Various “curve fits” are assumed for the several example solu-
tions detailed in Refs. 10-13.

Finite difference methods, as might be expected, incorporate finite
difference approximations to the various derivatives appearing in the
throughflow equation. A finite number of “nodal points” are selected, and
as a result a finite set of algebraic equations results to be solved for the
values of the stream function at each point. This leads to the requirement to
invert a sizable matrix, and such methods are hence often referred to as
matrix methods. Wu' in his pioneering work utilized a finite difference
technique and many investigators have utilized the method since that time.
Examples are given in Refs. 14 and 15.

In common with most techniques, the finite difference methods encounter
computational difficulties when the meridional Mach numbers approach
unity. A further difficulty arises when curved boundaries are encountered,
because very complicated computational “stencils” are required to insure
numerical stability. Davis'® considers the flow in very highly curved chan-
nels and finds a 15-point stencil is required to adequately represent the
Taylor series expansion of the derivatives of the stream function. A quasior-
thogonal finite difference net is introduced to aid the computation. It is to
be noted that the extreme curvature of the boundaries in the Davis study are
such as to render most streamline curvature techniques incapable of describ-
ing the flowfield. This is because the curvature of the stream tube is very
difficult to estimate in the approximate way required for streamline curva-
ture techniques when such extreme boundary curvatures are present.

In the fairly recent past, finite element methods have been developed in
the hopes of circumventing some of the difficulties found in applying finite
difference techniques. Hirsch and Warzee® describe an investigation where
the finite element method is applied to the description of flows in axial
turbomachines. The compressible throughflow equations are derived in the
(r, z) plane and a Galerkin finite element method is applied, leading to a
system of equations for the unknown stream function. The curved hub and
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tip boundaries are well fit by utilizing high-order 1soparametric quadrilateral
elements. The method hence does not require approximation of the stream-
line curvature (with possible introduction of numerical instabilities or
errors), nor does it require the use of complicated and extensive stencils with
the resultant programming difficulty and possibly increased computational
times.

Oates and Carey'® and Oates, Knight, and Carey'’ present studies that
also involve the use of a finite element approximation. In addition, a
variational functional I is defined where

F=/°° /Fip p_pe+£(U2+ WZ) ydydz (10101)
—oo*hub Po

where p, 1s a (dimensionless) reference pressure.

It is shown that when the formal variation of I and 81 is taken and put
equal to zero, the throughflow equation, boundary conditions, and all
matching conditions are automatically satisfied. The method developed in
Refs. 16 and 17 then involves putting the discrete approximation (using
finite elements) of 8I' equal to zero. A further useful manipulation is
introduced in that, rather than solving for ¢(y,z), the equations are
transformed to solve for y(¥, z). By this artifice, the flow domain is mapped
to a rectangular domain with ¢ = — 1 and ¢ = —R?/2 on the horizontal
boundaries. These several manipulations lead to a very efficient computa-
tional scheme.

Reference 4 gives an extensive review and comparison of many through-
flow calculation techniques.

All of the fully numerical calculation schemes described above can
include the effects of variations in hub and tip radii. Several analytic studies
to explore such effects have been carried out, however, and offer the
advantage of relative simplicity in calculation of desired example cases.
References 2 and 18 consider a study that includes the effect of variation in
annulus radii when both the wall slopes and the annulus contraction or
expansion are restricted to be small. A similar study is reported in Ref. 8,
except that the restriction to small contraction or expansion is not required,
although the small wall slope must be retained. Finally, Ref. 19 describes
the passage of swirling flows through conical ducts. In all of the investiga-
tions into the effects of wall shape reported in Refs. 2, 8, 18, and 19, the
flows are considered perfect and incompressible.
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Problems

10.1 “Magnetofluid-dynamics” (MFD) involves the study of the in-
teraction of magnetic and electric fields and fluids. When a plasma is
considered (such that there is no significant net electrical charge in the
fluid), the effect of the added interactions is to introduce the “Lorentz
force” j X B into the momentum equation and the energy addition/second
j* E into the first law of thermodynamics. Thus, if the viscous contributions
are negligible, the momentum equation and equation for the stagnation
enthalpy become

Du
th—JXB—Vp
Dh, dp
th 3t+J E

where j is the electrical current density, B the magnetic field, and E the
electric field.

(a) Show that the equation for the variation in entropy may be
written

pTDS —jE

and find E’ in terms of u, B, and E.

(b) Noting the second Maxwell equation ¥ -B = 0 and the equation
for current continuity v *j =0, show that an equation for the variation in
vorticity can be written in the form

p%#wv)ﬁv%xﬁx"‘vl’“%[(B'v)i—(i-v)B]

10.2 Consider the ideal incompressible flow of a fluid through a stator
represented as an actuator disk at z = 0. The flow approaches the disk from
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a uniform state far upstream in the parallel-walled annulus, and swirl is
imparted such that in terms of the dimensionless variables,

yWW=—-a¥+8

(a) Obtain analytical forms for ¥, W, and V in terms of 4,, B,, and
other prescribed variables for both the upstream and downstream quanti-
ties.

(b) Obtain somewhat simplified forms for ¥, W, and V' at a location
just downstream of the disk (at z=0").

(¢) For the case R=2.8, a=0.6, and B =0.84, calculate and plot
W-Dvs(y—1)/(R=1yat z/(r,—r,)=—1%,0, % and .

(d) For the value of 8 and R found in part (c), calculate and plot
W-Dvs(y-1)/(R-Datz/(r,~r,)=~1%,0,+3, and .

10.3 For conditions as in Problem 10.2, except that the stator imparts
a swirl such that

(yV) = —5¥

(a) Obtain analytical forms for ¥, W, and V in terms of y, 8, and R
appropriate for each of the regions z <0 and z > 0.

(b) Obtain a closed-form solution for W,_, in terms of y, §, and R.

(¢) For the case R = 3 find the value of § that just leads to W_(R)=0.

(d) For the value of § and R found in part (c), calculate and plot
W-1Dvs(y~-1)/(R—Dyat z/(r,—r,)=—1%,0,+ 1, and .

(e} For the same values as part (c), plot V' vs (y —1)/(R—1) at
z/(r,—r,)=0" 4, and oo.

10.4 Consider the ideal flow of an incompressible fluid through a
rotor at x; and then through a stator at x,. The annulus radii are constant
and the rotor introduces a (dimensionless) swirl given by

yV=—a¥

The stator removes all the swirl.

(a) Obtain expressions for the swirl and stagnation enthalpy valid for
each of the three regions 0, 1, and 2. Write the appropriate partial differen-
tial equation for the stream function in each region.

(b) Obtain the radial equilibrium form of the stream function in each
of the three regions.

(c¢) Uulize the matching conditions to solve for any remaining un-
knowns so as to obtain analytical forms of the solutions in terms of y, a, R,
and @ (dimensionless rotor speed).

(d) Obtain simplified forms of the solutions valid at each of the
actuator disks.
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(e) Calculate and plot (W —1)vs (y —1)/(R —1) at both x = x, and
x=x, for thecase a=0.7, =1, R=3,and x, =0, x,=2.

10.5 Consider the ideal flow of an incompressible fluid through a
stator row at x; and then through a rotor row at x,. The rows introduce
swirl such that in each region

yV=20 x<x
y=—-a¥ + 8, Xy, <x<oo

(a) Obtain analytical solutions for W valid in each of the three
regions in terms of y, a;, a5, By, B,, x;, x,, and &, the dimensionless rotor
speed.

(b) Indicate how you would obtain analytical forms for W valid at x,
and x, that would hasten convergence of the series.



11. CASCADE FLOWS

11.1 Introduction

When the throughflow field (Chap. 10) has been determined, the blade
profiles necessary to induce the desired fluid conditions can then be (ap-
proximately) determined by consideration of the cascade flowfield. As
previously discussed (Sec. 9.1), a cascade flowfield is obtained by ““ unwrap-
ping” the desired meridional surface that has been determined from the
throughflow analysis. The required blade geometries necessary to give the
desired flow turning efficiently for the particular “strip” considered are then
obtained by experimental and /or theoretical consideration of a quasi-two-
dimensional configuration such as that indicated in Fig. 11.1.

It should be noted that because the meridional surface will, in general,
have a streamwise varying cross-sectional area (with its attendant imposed
pressure gradients), the cascade wind tunnel should be constructed to
impose this desired area variation. This is by no means a simple experimen-
tal task, because the upper and lower walls will have to be adjusted (in a
curved fashion) to include not only the area variation actually occurring in
the throughflow, but also the corrections that have to be made for the
growth of the wind-tunnel sidewall boundary layers.

Even when the streamwise variation of the cross-sectional area is well
approximated, a further problem of considerable difficulty remains. It is
apparent that the flow is (very nearly) periodic in the actual (annular) blade
row, so it is important that enough blades be incorporated in the two-
dimensional cascade to ensure that the required periodicity occurs over the
middle (test) blades. The results of considerable discussion on this matter
are reported in Ref. 1. The specialists’ estimates of the minimum number of
blades required were 5-15 for subsonic cascades and 3-9 for supersonic
cascades. The required minimum number of blades was considered to
depend somewhat on the purpose of the tests, so that, for example, if only
the surface pressure distribution of a blade was to be determined, relatively
few blades would be required. In contrast, if an accurate estimate of the
cascade losses was desired, a large number of blades would be required.

It is apparent that the approximation to exact periodicity can be aided
somewhat by shaping the sidewalls to approximate the expected approach
streamline shape. In practice, this is rarely attempted because the shape of
the approaching streamline will, of course, vary with the loading on the

405
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Fig. 11.1 Typical cascade wind tinnel.

cascade. As indicated in Fig. 11.1, “tailboards” are sometimes used to
reduce the effects of the external flow interaction at the sidewalls.

Usually, the number of blades utilized in a given facility cannot be greatly
increased because of the resulting small size of the blades (if the solidity is
to be maintained at the desired value). Excessively small blades create
difficulties in that it becomes hard to maintain the appropriate range of
Reynolds numbers. Further, when detailed flow information such as the
surface pressure distribution is desired, small blade sizes lead to great
instrumentation difficulties.

In spite of these many difficulties, the results of careful cascade tests
remain a most important source of information for evaluating the perfor-
mance of and determining the detailed flow behavior of the many candidate
blade profiles considered for use in turbomachinery. It should be recog-
nized, however; that even “routine” cascade tests should be carried out with
a great deal of care.

11.2 Cascade Losses

When a cascade has been successfully constructed to minimize the
problems discussed in the preceding section, the performance can be de-
termined by traversing stagnation pressure probes and yaw meters across
the exit plane.

The detailed information obtained from the instrument traverses can be
presented in the form indicated in Fig. 11.2. Each setting of the inlet
incidence angle and Mach number will have identified with it one such
graph.

Customarily, the detailed information contained in Fig. 11.2 is averaged
in one of several ways so that the effect of variation in the angle of attack
can be presented in a single graph such as that shown in Fig. 11.3.

A common form of averaging is that of mass flow averaging. Thus, for
example, the gas exit angle 8, would be obtained in terms of the mass-flow-
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averaged tangential momentum and mass-averaged axial momentum. Thus,
s s
tan B, = uwdf utde 11.1
B, /o p / /0 [y ( )
Similarly, the mass-flow-averaged pressure loss would be obtained from
s s
Ap=[Coulp, ~p,)d¢] ["pude (11.2)
0 0

It is evident, particularly in the case of the mass-flow-averaged pressure
loss that considerable difficulty will arise when the results of different
cascade measurements are compared. This is because AP, as defined by Eq.
(11.2) will change (for the same cascade test) with the distance from the
cascade exit at which the measurements are taken. This problem is present
even if the cascade wall losses do not intrude into the measurement region,
because the wake mixing process itself introduces further entropy gains.

It will be recalled from Sec. 6.3 that great care must be taken when
employing average values to describe component performance. The warn-
ings and examples of that section can again be referenced with regard to the
problem of depicting cascade performance.

As a result of the difficulty of interpreting mass-flow-averaged pressure
losses, it has been suggested (for example, Ref. 2) that “mixed-out” values
of the pressure loss be used to compare the performance as determined from
different cascades. The mixed-out value corresponds to that value of the
pressure loss that would exist if the fluid were allowed to fully mix in an
ideal (no sidewall friction) constant-area mixer. It is also pointed out in Ref.
2 that the results will have to be carefully interpreted no matter what

Fig. 11.4 Simplified stagnation pressure profile.
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averaging method is used, because the blade wakes will have a substantial
interaction with the following blade rows.

A measure of the expected size of the effect of averaging techniques can
be obtained from a simple example. Thus, assume a simple abrupt wake to
be imbedded in a flow that otherwise has experienced no stagnation
pressure decrease, Fig. 11.4. Denoting the ratio of the mass flow with
stagnation pressure decrement to the mass flow without stagnation pressure
decrement as g, it follows that

S

u — ds

Ap,massav=ifop (P, = ps) _ ( _g_,é) (11.3)
P, P, fspud/ l+al p,

0

The mixed-out stagnation pressure losses for this simple flow may be
calculated by utilizing the results of Sec. 6.3 directly. As an example
consider the case with a Mach number of the high-pressure stream M, equal
to 0.6, a=0.2, y=1.4, and the stagnation temperature ratio of the two
streams equal to unity. The result is shown in Table 11.1.

These simple calculations indicate that it is very important to be aware of
which averaging technique has been utilized for a given data set and, in
addition, at which location the measurement traverse was taken. Note that
an alternate way of looking at this problem is to realize that if two data sets
were compared where one set of measurements were taken far downstream
(where conditions approach mixed-out) and A p, g ./P;, Were found to be
0.0333, and then a second set of data taken in close proximity of the cascade
exit, which also had Ap, . ./P,, = 0.0333, the second cascade would in
fact have almost double the losses of the first.

In an actual turbomachine, the various loss mechanisms are quite interac-
tive. Thus, the flow profiles departing one blade row affect the losses
produced in the following row. In addition, losses occurring on the annulus
walls and at the blade tips affect the total losses produced within the blade
row and are themselves influenced by the blade losses. It is the hope in
representing the entire flowfield as a compilation of three two-dimensional
fields that knowledge of the “pure” cascade flowfield will allow accurate
estimates to be made of other losses. Thus, for example, when determining
the performance of a cascade, every effort is made to remove the influence

Table 11.1 Stagnation Pressure Losses

plL/p!l Apl mixed out/ptl Apl mass av/»p‘tl

0.95 0.0090 0.0083
0.9 0.0197 0.0167
0.85 0.0336 0.0250

0.8 0.0625 0.0333
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of the cascade wall losses from the data. Later, however, the losses experi-
enced in the turbomachine at the annulus walls will be estimated with the
help of the cascade results.

Several major flow interactions have been classified and attempts made to
analyze them. An important example of such flows is termed the secondary
flow. Secondary flows have been thoroughly reviewed in Ref. 3, where many
example applications of secondary flow analyses are described. With regard
to their. applicability for use in the analysis of flows in turbomachines,
secondary flow analyses are particularly useful in describing the flow
through the compressor rows. Figure 11.5 depicts a distorted flow profile
such as could be produced by the annuli walls approaching a stator row.
When fluid with such a profile enters the pressure field of the blades, the
low-momentum air is turned more (“overturned”) than the high-momentum
air, leading to the secondary flow patterns indicated.

Secondary flow in compressors is particularly amenable to analysis ‘be-
cause to a good approximation the viscous stresses may be ignored in the
region of the blades. This is an allowable approximation because the adverse
pressure gradient imposed by the blades moves the flow toward separation
with consequent low viscous stresses. The effects of viscosity are, of course,
implicitly present in the distorted entry profile that has been developed by
the long approach flow over the annulus walls. It is to be noted that the
favorable high-pressure gradient found over much of the turbine blade
profile leads to thin boundary layers that must be analyzed using (three-
dimensional) boundary-layer techniques.

Cascade tests are necessarily conducted with single rows of blades, so the
effects of upstream blade rows (particularly moving blade rows) cannot be
simulated. The effects of shed blade wakes can be substantial, however, and
several extensive studies to describe the flow interactions have been con-
ducted. Reference 4 extends the analytical models of the earlier studies of
Refs. 5 and 6 and provides experimental verification of the analytical

.
I

N

Fig. 11.5 Secondary flow patterns.
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predictions. A more recent study is reported in Ref. 7, where a method of
directly estimating the stagnation temperature profile following a stator in
terms of the rotor blade loss factor is presented. The latter study has
particular utility in the description of flow in high Mach number stages.

In summary, it should be noted that the various losses occurring in
turbomachines, other than two-dimensional profile losses described above,
are not those to be found in a cascade wind-tunnel investigation. The
cascade flowfield, however, appears as the “parent” flowfield for all these
secondary flows, just as the throughflow field appeared as the parent for the
cascade flowfield. Hence the results of cascade studies are of utility not only
in determining the blade losses, but also in establishing the cascade flowfield
so that the secondary losses can be estimated.

11.3 Cascade Notation
Typical cascade notation is illustrated in Fig. 11.6 where

subscript 1 = inlet condition
subscript 2 = outlet condition
B = flow angle
v = angle of blade camber line
y; = stagger angle
6* = blade camber angle =y, — v,
¢ = flow turning angle = 3, — f3,
§ = deviation angle = 3, — v,
a = angle of attack =, — v,
w =“axial” (x) velocity
v = magnitude of the velocity
S = spacing
C = chord
= solidity = C/S

When presenting the data, as already depicted in Fig. 11.3, it is usual to
depict the stagnation pressure loss in a dimensionless manner, such as

Apt/%prlz

It is customary to describe an airfoil shape in terms of its thickness
distribution about a prescribed camber line. The camber line is often taken
to be of parabolic shape (which reduces to a circular arc profile as a special
case). Many attempts have been made to relate the blade camber angle and
other geometric properties of the blade to the deviation angle. (See particu-
larly Chap. 6 of Ref. 8.) A quite convenient approximate form has also been
suggested™!° to relate the value of the deviation angle at design conditions
8* to the blade geometry and flow exit angle at design 5. The suggested
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Fig. 11.6 Cascade notation.

relationship is
8*=(m/Vo )0* (11.4)
where
m=0.23(2a/C)* + 0.1( B /50)

In this expression a is the distance from the blade leading edge to the point
of maximum camber and S5 is to be measured in degrees.

By utilizing this approximate relation, the blade turning angle necessary
to introduce the desired flow turning can be easily estimated.

11.4 Calculational Methods

Now consider the quasi-two-dimensional flow in the cascade plane.
Figure 11.7 illustrates the coordinate system. The flow will be assumed to be
of depth b, where b is a function of x alone.

It is apparent that if vorticity is to be present in the flowfield it must be
directed perpendicular to the cascade plane. With ideal (isentropic) flow
assumed, with uniform properties far upstream, Eq. (10.25) then gives
directly

wXu=0 (11.5)

but because w must be perpendicular to u, w itself must be zero. It is thus
possible to define a potential ¢, such that

u=vo (11.6)
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The quasi-two-dimensional form of the continuity equation may be
written

d(pub) . 8(pvb)

- 5 =0 (11.7)

Utilizing this equation, a stream function may be defined by the relation-
ships

43 p= L0V (11.8)

——5—-=0 (11.9)

then gives an equation for the stream function that may be written

dp

ax

Q)'Q)
= |e
&

Q..|Q..
| =
o |-

+

Qe
Qv
2l

+

=N

(11.10)

D

X

o =

v =

As in Sec. 10.2, a subsidiary equation for the density may be obtained by
utilizing the isentropic condition. Thus

[h,—%(uuﬁ) ]‘/”“

h,—%(u12+vf)

o _ (1)1/<7~1)_
Py T,
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and hence with Eq. (11.8)

o= n s Dl £) k| (2 + (22 |0

(11.11)

Equations (11.10) and (11.11) are two coupled nonlinear equations for y
and p in terms of the far upstream conditions and the prescribed area
variations. When the flow can be approximated as incompressible, the
equation for the stream function reduces to

1db
b dx

|2

v = (11.12)

X

X

The solution to the above equations is usually dependent upon the
application of fully numerical techniques, although analytical methods have
been applied in special cases. References 11 and 12 report on a study of
incompressible flow with area variation. A perturbation analysis is carried
out in which it is necessary to restrict the wall slope to be small.

A method that applies conformal mapping techniques to two-dimensional
(db/dx = 0) transonic flows is described in Ref. 13. This paper represents
an application of a highly developed analytical technique. In conformal
mapping techniques, the cascade geometry is transformed to a geometry
that is much more simply analyzed (either analytically or numerically) and
the results of the analysis in the simple plane are then transformed back to
the more complex plane. Because of the utility of such techniques, the next
section considers a relatively simple example problem that leads to an exact
solution for the flowfield.

Two-Dimensional, Inviscid, Incompressible Flow

When the case of flow of an incompressible, inviscid fluid in a strictly
two-dimensional channel is considered, the equations describing the flowfield
simplify greatly and, in fact, both the velocity potential and the stream
function satisfy Laplace’s equation. As a result, the very powerful tech-
niques of complex variable theory can be used, including the technique of
conformal mapping. Before embarking upon a formal analysis of the
problem, however, it is instructive to first consider the force relationships
and circulation relationships for a two-dimensional cascade. Figure 11.8
depicts the flow through such a cascade.

Noting that the forces on the two streamlines depicted are equal and that
continuity ensures that the axial (x) velocity remains unchanged, the
momentum equation gives

F.=(p,—p,)SAb (11.13)
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Fig. 11.8 Flow through a two-dimensional cascade.

and
F,=pu(v, —v,)SAb (11.14)

¥y

Utilizing Bernoulli’s equation to relate the pressure difference to velocity
differences, the vector force may then be written

F=pSAb(v, —v,)[ — 3 (v, + vy)e, + ue, ] (11.15)

Thus the magnitude of the force F is given by

F=pSAb(v, —0,)V,,

where
vy + 01 \? 5 3
v, = (——2 ) +u (11.16)

Noting that
tan8 = (v, + v,)/2u = tan8’

it can be seen that the force F is perpendicular to the velocity V, where

V,=31(V,+V,) (11.17)
The circulation about the contour follows immediately to give
['=S(vy—v,) (11.18)
so that just as with an isolated airfoil, there is obtained
(11.19)

F=pI'V, Ab
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The Complex Potential

When, as in the case of frictionless two-dimensional flow through cascades,
the flow may be considered irrotational, a velocity potential may be defined
as in Eq. (11.6). The continuity equation (10.1) then gives for incompressible
flow.

vi=0 (11.20)
The stream function also satisfies Laplace’s equation, as may be seen
directly from Eq. (11.10) for the case of incompressible flow with constant-
flow depth b. Thus, define a complex potential W by
W=¢+ iy (11.21)
and note that

Vi =0 (11.22)

If the complex potential is to satisfy Laplace’s equation, it must be a
function of z = x + iy only. Thus,

ow _dWw 9z dW

x " dz ox " dz (11.23)
but from Egs. (11.6) and (11.8)
_9y _9¢_ _ 9y
8x 3y v= 3y~ ax (11.24)
and hence
%V:u—w (11.25)

In the following sections, a transformation function is introduced to allow
solution for the complex potential W (for special cases of the cascade
geometry). Once W is obtained, the velocity components may be obtained
directly from Eq. (11.25).

The Cascade Transformation

In order to illustrate the use of conformal mapping techniques, a transfor-
mation is considered that maps a cascade of straight-line airfoils onto a
circle. The resulting flow in the “circle plane” is relatively easy to analyze,
and the cascade mapping function allows the flow in the circle plane to be
mapped back into the “physical” plane. This is a relatively simple example
of a highly developed analytical technique that has been extensively re-
ported elsewhere. (For example, see Refs. 14 and 15.)
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The transfrrmation function to be investigated is

v
R YAl ST VN el Vi (11.26)
27 =% ev—1/%

It will be shown that this function takes a unit circle in the { plane and
maps it wito a straight-line cascade in the z plane, with geometry as
indicated in Fig. 11.9. Note that for notational convenience, the geometry
has been rotated so that the flat-plate airfoils are horizontal in the z plane.

To verify that Eq. (11.26) has the desired transformation properties, first
note that on the unit circle (where { = e'?) the second term in the brackets
of Eq. (11.26) is the complex conjugate of the first. Thus, the imaginary part
of the expression must be zero (or a constant) and hence the circle is
mapped onto the x axis in the z plane.

A further property of the transformation is evident in that the points
{ = +e¥ map into + oo in the z plane. It can be seen also that the mapping
is multiple valued by considering the mapping in the neighborhood of the
point {=e* Thus, consider the behavior of the related point z when
proceeding around the point §{ =e* in a small circle of radius r. That is,
consider

{=eY+re?

and change 6 from 0 to 27 rad. It is evident from Eq. (11.26) that all of the
logarithmic terms return to their original value except the term containing
e¥ — ¢. Thus, denoting the difference of the final and initial values of z as
z, — z,, there is obtained

Z,— 7= — %e_iﬁ[/n(—reiz”) - /n(—re’o)]

_ S ibgypirm

2

T L=€+im y

AR 7 ,57
e 7

Fig. 11.9 The cascade transformation.
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hence
z,—z,=—iSe A= —Ssin B —iScosB (11.27)

Thus, the transformation from the { to the z plane is not unique, but
rather a given point in the { plane can be reproduced » times in the z plane
simply by going around the point

{=e¥ (or¢=—e¥)

n times. Each point is removed from the previous by the vector
— Ssin B — iScos S, which leads to the geometrical relationship indicated in
Fig. 11.9. The { plane may be considered to consist of an infinite number of
Riemann sheets, each sheet mapping to a given strip in the z plane. The z
plane itself can be considered a two-sheet plane because both the inside and
outside of the unit circle map into the same strip in the z plane. Only the
mapping of the exterior of the circle will be considered here.

It has been shown that Eq. (11.26) transforms the unit circle to a series of
straight-line airfoils in the z plane. The airfoils are staggered at an angle of
B and have a spacing of magnitude S. In order to determine the airfoil
chord in terms of the properties of the mapping function, locate the
transformation singularities that occur at dz/d{ = 0. (It is at these singular-
ities that the transformation is not conformal, and hence the angle of the
circular profile is not conserved in transforming to the z plane.) Thus, note

E=O=e"ﬂ( L, 1 )+ei'g( LI
d§ ev+¢ ev-¢ $+e ¥ (—e¥

After some manipulation it follows that

eiBHY 4 oo ()
e BtV 4 B

§2=8= (11.28)

It can be noted that the numerator and denominator are complex
conjugates and, hence, of course, the singularities exist on the unit circle in
the { plane. A more convenient form of Eq. (11.28) is obtained in terms of
the angle to the location of the (rear) singularity ¢, where

§0 = gi%o
There is thus obtained

§6=1 e —gmiBo¥—e¥
§8+1 efreBevie
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hence
itan¢, =i tan B tanhy
or
¢, = tan !(tan B tanh ') (11.29)

The location of the blade leading edge in the { plane follows immediately
by noting tan(¢, + 7 ) = tan$,. Hence, the leading-edge singularity occurs at
¢y + 7.

A location x on the blade in the { plane may be determined by writing
¢ =¢'*. Upon substituting into Eq. (11.26) and after some manipulation,
there is then obtained

2mx ( coshy + cos ¢

5 —CosBtn coshy — cos ¢

S )+2sinBtanl(M) (11.30)

sinh y

The location of the blade trailing edge is obtained by inserting the value
of ¢, from Eq. (11.29) into Eq. (11.30) and the leading edge follows with
¢ = ¢, + 7 to give x,= —x,. Then, with C=2x,,

ysinh% + cos?B + cos B )

aC
25~ cos,B{’n( Snh ¥

t+sinBan-!| —S0B8 ) 11.31
sinf tan (\/sinh2¢+ cos’B ( )

This expression relates the parameter ¥ to the solidity ¢ = C/S. Thus, when
the solidity is prescribed, the equation may be solved (iteratively) for ¥ and
the appropriate transformation function determined. Before considering the
behavior of the flowfield, one last characteristic of the transformation will
be observed. Thus, it is noted that the point { => oo transforms to

S _. S _ .
2 _,-iB _1y\=2_,-iB iQn+Dyn
z=o—e ¢n(—1) P tnle ]

hence
z=8(n+4%)(sinB+icosB)

Thus, { = oo transforms into points midway between the blades. See Fig.
11.10.

This concludes the investigation of the properties of the transformation.
The behavior of the flowfield will be considered in the next section. Note,
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however, that the effect of the transformation has been to bring upstream
and downstream infinity in the x plane and into the proximity of the circle
in the { plane. When circulation about the circle exists, the angle of flow in
the proximity of { = +e¥ (z = + oc) can be affected. Thus, unlike the case
for an isolated two-dimensional airfoil, the angle of turning of the fluid can
be made other than zero.

The Cascade Flowfield

Figure 11.11 depicts aspects of the flowfield in the coordinate system
being presently considered.

The mean velocity ¥, was previously defined in Eq. (11.16), so the mean
complex velocity may be designated

(u—iv)y =V e '™

Equation (11.18) gave the circulation in terms of the blade spacing change
and tangential velocities, which here may be written

Av=T/2S (11.32)

+

7
P-4 ;"’25

+ 7s/2

Fig. 11.10 Location of { — oo in the Z plane.

Fig. 11.11 Cascade velocities.
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Thus, the desired far upstream and far downstream complex velocities
may be written

dw r

R — —da __ ;_~ _if8
a | V. e izge (11.33)
dw . r .
— —ia . i
o |, = Vet “¥inge (11.34)

Figure 11.12 indicates these incremental velocity relationships.

In order to create the desired velocities at upstream and downstream
infinity, as prescribed in Egs. (11.33) and (11.34), the flow behavior in the
circle plane in the vicinity of the points +e¥ is investigated. Thus, by
placing (complex) sources at these points, the flow at + oo will be affected in
the physical plane. It will then be necessary to adjust conditions in the
vicinity of the circle in the { plane in order to satisfy both the boundary
condition of no flow through the circle and the Kutta condition at the
trailing edge of the blades in the z plane. It 1s to be noted that the
adjustments to match the boundary and Kutta conditions can be carried out
without further affecting the flow properties at z= 4+ oo because dz/d{
approaches infinity as § approaches +e¥ (i.e., as z approaches infinity) so
the only terms that will contribute to dW /dz at z = + oo are those causing
dW,/d¢ to also approach infinity. The only terms that lead to dW/d{
approaching infinity as { approaches +e¥ arise from the complex sources
located at { = +e¥.

Now place a complex source of strength 4 at {= —e¥, so that the
complex potential in the vicinity of the source W,  may be written

W,_=(A/27)¢n(§ + e¥) (11.35)

Fig. 11.12 Incremental velocity relationships.
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To investigate the behavior near the source write { = —e¥ + 8, where § is
very small, and obtain

aw._ A 1 A
df 27 f4ev 2w (11.36)
From Eq. (11.26) note
dz § s ev s eV
- _ = —if _ LiB
a al€ pET e TR (11.37)

In the vicinity of { = —e¥ (where & = 0) this approaches

dz Se
FTaRgEr (11.38)
Combination of Egs. (11.36) and (11.38) then gives
aw | _(dw | (dzl VA,
dz | o a¢ |_\d8 | —Se
with Eq. (11.33),
—_ —i(a+B) r
A=V_Se —iy (11.39)

In a similar manner, placing a source of strength B at the location { = e¥
and satisfying Eq. (11.34) leads to

B= —VmSe’i‘“*B’—ig (11.40)

With the two sources at locations ¢ = + e¥, the complex potential F({) in
the { plane is given by

{+e?

o —i(a+ r
F(§)———— (@tBify, §_e¢—lE/n(§2—ew) (11.41)

A complex potential satisfying the boundary condition for flow around
the circle can now be obtained by adding a complex function of the form of
Eq. (11.41), but with i replaced by —i (where i appears exphcltly) and with
¢ replaced by 1/¢. This result (known as the circle theorem'®) follows
because the added function becomes the complex conjugate of F({) when ¢
is on the unit circle; hence, ¥ is zero on the circle. (And, of course, the circle
is thus a streamline.) Finally, a circulation I'* is added at ¢ = 0 (which does
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not violate the boundary conditions) to give the complex potential W in the
{ plane. Thus,

SV, . 4
oSV iaipry, €8 ,-_F_gﬂ(ew ~¢)

v, 4 *
S ooe:mw)gﬁLl/fHL/ﬂ(ezul +i§—7;f¢z§ (11.42)

* 27 ev—1/¢ 47 ¢?

Investigation of this expression reveals that application of the circle
theorem has introduced further singularities at the conjugate points of +e¥,
that is at { = +e Y. Figure 11.13 indicates the location and strength of all
the singularities in the circle plane.

It is evident that, as must be the case, the total source strength is zero.
The net circulation about the circle is T* and the net circulation about the
entire field is T'* — I. It will be recalled that when the { plane is entirely
traversed at infinity, the image point in the z plane simply traverses a point
midway between the blades. Obviously, the circulation about such a point
must be zero, so I'* =T. The expression for the velocity potential in the
circle plane may hence be written

¥ -y ; 2¢ _ g2
w3V | -itarrp, €8 | iarmyp, S| _IT ﬂf’?_f_
27 ev—¢ {—e¥ 4 Q22

(11.43)

The complex potential given by Eq. (11.43) describes a flowfield that,
when transformed to the z plane, matches the upstream and downstream
conditions as well as the boundary conditions for flow around the blades.

SOURCE SOURCE SINK SINK
SVcos(atB) SV cos(asB) SV cos(a+B) S\,cosla+B)
NN A AET YA N
] +
LN AN N /:w\J
CIRCULATION CIRCULATION CIRCULATION

g+skuln(a*ﬁ) g-SVmsln(mB)

- g ~SV,o8in(a+h) - % + 8\, sin{a+pB)

Fig. 11.13  Singularities in the circle plane.
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To complete the description of the flowfield it remains to determine an
appropriate value for the circulation I'. Such a condition is obtained by
applying the Kutta condition that the velocity not be infinite at the trailing
edge of the blades. At the location of the trailing edge {where ¢ = ¢, as in
Eq. (11.29)] the derivative dz/d{ is zero. Thus, to prevent an infinite
velocity at the trailing edge in the z plane, I' must be chosen to put
dW/d§ =0 at { = e,

Taking dW /d{ from Eq. (11.43) and putting { = e'®, the complex velocity
components for the flow on the circle are obtained, to give after some
manipulation.

dw

Raddds = i —
dg' (et € (ur lu¢)

L e {
27 cosh2y —cos2¢

48V, [sin¢coshy cos(a + B)

—cos ¢ sinh ¢ sin(a + B)] + I'sinh2y } (11.44)

It can be seen that as required, u, = 0. The Kutta condition requires u, = 0
when ¢ = ¢,. Thus, from Eq. (11.29)

sinh ¢ sin cosh ¢ cos 8

Vsinh®y + cos?B T /sinh%y + cos?B

The value of the circulation necessary to satisfy the Kutta condition I'y
then follows to give

sing, = (11.45)

r, - 28V sina (11.46)

ysinh®y + cos?B

When this value of the circulation is substituted into Eq. (11.44), it
follows after some manipulation that

A [pmee 7 sin2¢, Jsinh?y + cos?g Sinh*y + sine

dw _ 028V, e  coshysing _sin(¢,—¢)

cos[( ¢ + ¢)/2]
cos[ (¢ —9)/2]

} (11.47)

X {cos,B sin(a + B) — sinacos ¢,

To obtain the complex velocity on the blade surface, note that on the
blade ¢ = ¢‘® and z = x, so that
E = —je ¢ dx

AT (11.48)
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dx/d¢ may be obtained directly from Eq. (11.30). It follows that

: —i¢p 1 1 —
dz 28 e coshysinhy  sin(¢,— ¢) sin B cos B

&~ T sin2g Jsinh?y + cos28 (sinh’y + sin’y)

(11.49)

The velocity on the blade surface follows directly from Egs. (11.47) and
(11.49) to give

dw

aw|  _dw(dz\!
dz

blade B d—§ a’i

cos[( ¢, + ¢) /2]
cos[ () — ¢)/2]

(11.50)

Vo Bsin(a + B) —sinaco
= — sin S
sin Bcos B cos p sin( a sina (02

To complete the description of the flow in the cascade plane, the various
flow angles will be obtained. With reference to Fig. 11.11, note the relation-
ships

Av
m: tan(a + B) —tan(a, + B)
=tan(a, + B) —tan(a + B) (11.51)

Equations (11.32), (11.46), and (11.51) then lead to

— ysinh®y + cos?B + cos 8 W

@, = arctan|sin @ ——————
ysinh*y + cos?B (cosa) + sin B sina

L

i sinh®y + cos?8 — cos
a, = arctan|sina Y B B (11.52)

ysinh®) + cos’B (cos &) — sin B sina |

These equations complete the desired description of the flowfield. They
are summarized in a form suitable for calculation in the next section.

Summary of the Equations— Cascade Transformation
Inputs: IB» C/S» «a, ¢

Outputs: x/C,u/Vy, ap, a,



426 GAS TURBINE AND ROCKET PROPULSION

Equations:
ysinh?y + cos’B + cos '
%=cos,8/7z L T A 'B+sin,8tan'1—sm'8
sinh ¢ ysinh?y + cos?B

¢, = arc tan(tan § tanh ¢/)

x_ 1 cosh{ + cos ¢ ) _; Sing

C 27C/S [cosﬁ/ﬂcosh¢—cos¢+2sm’3tan sinh\p]

u 1 . ) cos[ (¢, + ¢)/2]
Z—W{COSBSID(G+B)—SID¢XCOS¢OW

r

Vsinh%y + cos?B + cos 8

sinh?y + cos’B (cos ) + sin B sina

Vsinh?y + cos’B — cos B
ysinh?y + cos?B (cos &) — sin Bsina ]

Example Results— Two-Dimensional Straight-Line Cascade

The equations summarized in the preceding section lead to rapid compu-
tation of the performance variables of this ideal straight-line cascade. The
results are useful for detecting the design trends of real cascades and, in
fact, techniques to relate the performance of more complicated (and more
realistic) geometries to an equivalent straight-line cascade have been devel-
oped (for example, Ref. 15). The singularity in fluid velocity remains at the
blade leading edges, but the fluid velocities at blade locations away from the
leading edges exhibit the tendencies of the flowfields existing on real
geometries.

As an example calculation Fig. 11.14 shows the deviation angle (a,) vs
angle of attack (a;) for three values of blade stagger angle and two values of
the solidity.

It is apparent that the reduced blade loading existing for the case of high
solidity greatly reduces the tendency of the flow to depart from the angle of
the blade trailing edge. The deviation angle also varies strongly with the
stagger angle, with large stagger angles causing increases in the deviation
angle. It is evident from Fig. 11.15 that increasing the stagger angle leads to
geometrical separation of the blades, so that the pressure fields of the blades
do not interact as much at higher stagger angles.

It is of interest to note that this effect of increasing stagger angle is not as
limiting as it might at first appear. Thus, the example calculations of Secs.
9.3 and 9.4 indicated that the required turning angles near the blade tips are

a; = arctan|sina

-

a, = arctan|{sina
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Fig. 11.14 Deviation angle vs angle of attack.

Fig. 11.15 Cascades at two stagger angles C /S = 0.5.

very much reduced, compared to those at the hub, for a compressor or
turbine with a large tip-to-hub ratio. Thus, even though the geometry of a
compressor or turbine is such that solidity decreases and the blade stagger
angle increases with increasing radius, the effects of these geometry changes
are much mitigated by the large reduction in required turning angle of the
cascade.

As a final calculational example, the deviation angle vs solidity has been
calculated for the case of constant angle of attack for 8 = 7 /4. (Note that
this calculation required iteration of the input variable a to obtain the
desired angle of attack «;, =15 deg.) The results shown in Fig. 11.16
indicate once again the sensitivity of the deviation angle to solidity.
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C/S
Fig. 11.16 Deviation angle vs solidity.

These relatively simple results provide a method of quickly estimating the
effects of design choices upon the overall cascade performance. Extensions
of the method, such as those described in Refs. 13-15 lead to rapid
computer solution for much of the detailed information of realistic (ideal)
flowfields. As has hopefully been evident throughout this book, however, the
analytical cascade results contribute only a portion of the information
desired in the very complicated process of designing the optimum compres-
sor. Careful experimental studies, in the form of cascade tests, have contrib-
uted invaluable information for researchers and designers. Finally, the
effects of interactive loss mechanisms, such as wake shedding and thence
wake chopping by the following blade row, annulus wall boundary-layer
buildup, and interaction with the blade pressure fields, blade boundary-layer
buildup, and interaction with the centrifugal field, etc., must all be included
in a careful program to develop the best possible compressor or turbine.
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Problems
11.1 Investigate the behavior of a flow with complex potential

W=l
27 a

(a) Find expressions for u, and u,.
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(b) Evaluate the volume flow rate Q through a contour encircling the
origin.

(¢) Evaluate the divergence of the velocity.

(d) Check that the divergence theorem is consistent with the results of
parts (b) and ().

11.2 Investigate the behavior of a flow with complex potential
w18,z
27 a

(a) Find expressions for u, and uy.

(b) Evaluate the circulation I' about a contour encircling the origin.

(c) Evaluate the vorticity.

(d) Check that Stokes’ theorem is consistent with the results of parts
(b) and (¢).

11.3 Show that the complex potential
W= Ua(z/a)""

corresponds to flow in a corner of a radians.

114 Using the results of Problem 11.3 and the circle theorem, show
that if a circular segment of radius a is placed at the origin in a corner of
7 /2 rad, the velocities in the flowfield are given by

u, = 2U(%)cos(20)[l —(%)4]

uy= —2U(£)Sin(20)[1 + (%)4]

11.5 (a) Use the circle theorem to obtain the complex potential for
uniform flow past a circle of radius a, centered at the origin.

(b) Find expressions for ¢, ¢, u,, and u, in terms of the reference
flow velocity U and a, r, and 6.

(c) Show that the pressure coefficient on the body

_P7Ps
Po3pU?
is given by C, =1 — 4sin*g. Sketch C, vs § in the range 7/2 <0 <.
(d) Show that the dimensionless axial force acting on the cylinder
from the “nose” back to the angle B is given by

F

. 4 .
%pT(Za) = sm,B - §Sln3,3
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h
Y, t 0,0 I
N
Fig. A
11.6 Consider a uniform stream to flow past a “source” of strength Q

located at the origin (Fig. A). The complex potential of such a flow is
W=Uz+(Q/2n)tnz

(a) Show that the radial distance to the nose of the body from the
origin r, is given by r, = Q/2xU.

(b) Show that the source strength Q is given in terms of the eventual
height of the body 4 by Q = 2Uh and hence also r, = h /.

{¢c) Show that the equation of the body may be written

y=h[1-(0/m)]

(d) Show that the pressure coeflicient C,=(p —p, )/ tpU? may be
written in terms of the angle from the nose 8 as

. 5 .
C=- sin“B + 2sin BcosfB
B’ B

(e) Show that the dimensionless axial force on the upper half body

rE A

)
may be written F/1pU%h = SI:BB .

11.7 When axisymmetric flow past a point source of strength M is
considered (Fig. B), solution to the equations yields

where
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(a) Show that
/R _—x J1/R _—r

dx R’ ar R3

(b) Show that U= Mr/R* and w= U + Mx/R’>.
(c) Show that the equation for the body may be written

Mx=(4Ur*~M)R

and that r at x > 0 =r, = /AM/U.
(d) Defining y by y =r/r,, show that the pressure coefficient on the

body is given by
p—poc 2 4
—= =1~4y°+ 3y
boU?

(e) Show by integrating the axial force that the dimensionless force
(from the nose to y)

F rp—p, 2mrdr
ipv(mr}) - fo LoU? (nr})
is given by
e R
11.8 Provide the detatled manipulations leading to Eq. (11.29).
119 Provide the detailed manipulations leading to Eq. (11.31).
11.10 (a) Show that the numerical value of the transformation vari-

able y may be obtained from the Newtonian iteration expression

X1 =x;,—F/F



CASCADE FLOWS 433

where
x =sinh ¢
FLTC B \/x2+0052,3+COS,3) in f tan~1 sin 8 )
=—=—cosfn —sinBtan " ——
28 X Vx? + cos’B
yx2 + cos’B
x(1+x?)

(b) Show also y =(x + Vx> +1).
(¢) Show that for the special case of =0,

y- /ﬁ[ (expme/28) +1

(expmc/28)—1

and hence
. 2expmc/2S [ . ('nc )]‘1
hy=—"—"""—= hi =—=
sinhy (expme/S) — 1 sinh{ 5=
1111 Provide the detailed manipulations leading to Eq. (11.46).
11.12 Provide the detailed manipulations leading to Eq. (11.50).
11.13 Verify that dz/d{, as given by Eq. (11.49), does not go to zero

as 8 goes to zero.

11.14 Show (using the results of Problem 10c, if you wish) that in the
special case of zero stagger angle § the deviation angle a, is given in terms
of the angle of attack «; by

C
a, = arc tan(exp —mgtan al)



APPENDIX A. CHARACTERISTICS OF THE

STANDARD ATMOSPHERE
h T/Ts, P/Pg p/Pst a/ag; h

(ft/10%) (ft/10%)
0 1.0000 1.0000 1.0000 1.0000 0
1 0.9931 0.9644 0.9711 0.9366 1
2 0.9863 0.9298 0.9428 0.9966 2
3 0.9794 0.8963 0.9151 0.9395 3
4 0.9725 0.8637 0.8881 0.9662 4
5 0.9656 0.8321 0.8617 0.9827 5
6 0.9583 0.8014 0.8359 0.9792 6
7 0.9519 0.7717 0.8107 0.9757 7
8 0.9450 0.7429 0.7861 09722 8
9 0.9381 0.7149 0.7621 0.9636 9
10 0.9313 0.6878 0.7386 0.9650 10
1 0.9244 0.6616 0.7157 0.9615 1
12 0.9175 0.6362 0.6933 0.9579 12
13 0.9107 0.6115 0.6715 0.9543 13
14 0.9038 0.5877 0.6502 0.9507 14
15 0.8969 0.5646 0.6295 0.9471 15
16 0.8901 0.5422 0.6092 0.9434 16
17 0.8832 0.5206 0.5895 0.9382 17
18 0.8764 0.4997 0.5702 0.9361 18
19 0.8695 0.4795 0.5514 0.9325 19
20 0.8626 0.4599 0.5332 0.9238 20
21 0.8558 04410 0.5153 0.9251 21
22 0.8489 04227 0.4980 0.9214 22
23 0.8420 0.4051 0.4811 0.9176 23
24 0.8352 03880 0.4646 0.9139 24
25 0.8233 03716 0.4486 0.9101 25
26 0.8215 03557 0.4330 0.9063 26
27 0.8146 0.3404 04178 0.9026 27
28 0.8077 0.3256 0.4030 0.8987 28
29 0.8009 03113 0.3887 0.8949 29
30 0.7940 0.2975 0.3747 0.8911 30

435
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h T/Ts, P/Fg p/Pst. a/agy h
(ft/10%) (ft/10%)
31 0.7872 0.2843 0.3611 0.8872 31
32 0.7803 0.2715 0.3479 0.8834 32
33 0.7735 0.2592 0.3351 0.8795 33
34 0.7666 0.2474 0.3227 0.8758 34
35 0.7598 0.2360 0.3106 0.8717 35
36 0.7529 0.2250 0.2988 0.8677 36
37 0.7519 0.2145 0.2852 0.8671 37
38 0.7519 0.2044 0.2719 0.8671 38
39 0.7519 0.1949 0.2592 0.8671 39
40 0.7519 0.1858 0.2471 0.8671 40
41 0.7519 0.1771 0.2355 0.8671 4
42 0.7519 0.1688 0.2245 0.8671 2
43 0.7519 0.1609 0.2140 0.8671 43
44 0.7519 0.1534 0.2040 0.8671 44
45 0.7519 0.1462 0.1945 0.8671 45
46 0.7519 0.1046 0.1391 0.8671 46
47 0.7519 0.1329 0.1767 0.8671 47
48 0.7519 0.1267 0.1685 0.8671 48
49 0.7519 0.1208 0.1606 0.8671 49
50 0.7519 0.1151 0.1531 0.8671 50
52 0.7519 0.1046 0.1391 0.8671 51
54 0.7519 0.9507 -1 0.1264 0.8671 54
56 0.7519 0.8640 0.1149 56
58 0.7519 0.7852 0.1044 58
60 0.7519 0.7137 0.9492 -1 0.8671 60
62 0.7519 0.6486 — 1 0.8627 -1 0.8671 62
64 0.7519 0.5895 0.7841 0.8671 64
66 0.7519 0.5358 0.7126 0.8671 66
68 0.7519 0.4870 0.6477 0.8671 68
70 0.7519 0.4426 0.5887 0.8671 70
72 0.7519 0.4023 -1 0.5351 -1 0.8671 72
74 0.7519 0.3657 0.4864 0.8671 74
76 0.7519 0.3324 0.4421 0.8671 76
78 0.7519 0.3022 0.4019 0.8671 78
80 0.7519 0.2747 0.3653 0.8671 80
85 0.7602 0.2166 — 1 0.2849 -1 0.8719 85
90 0.7760 0.1715 0.2210 0.8809 90
95 0.7917 0.1365 0.1724 0.8893 95
100 0.8074 0.1091 0.1351 0.8986 100
110 0.8388 0.7063 -2 0.8420 -2 0.9159 110
120 0.8702 0.4649 0.5342 0.9329 120

130 0.9016 0.3106 0.3445 0.9495 130
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h T/T P/Pgy 0/Psi. a/ag h
(ft/10°) (ft/10%)
140 0.9329 0.2105 0.2257 0.9659 140
150 0.9642 0.1446 0.1500 0.9819 150
160 0.9809 0.1004 -2 0.1024 -2 0.9904 160
170 0.9809 0.6986 — 3 0.7122-3 0.9904 170
180 0.9620 0.4855 0.5047 0.9808 180
190 0.9215 0.3330 0.3614 0.9600 190
200 0.8810 0.2246 0.2550 0.9386 200

Notation: Single digit preceded by a minus sign indicates power of 10 by which
associated and following tabulated values should be multiplied, e.g., 0.2468 -2 =
0.002468.

Notes: (1) Data from “U.S. Extension of the ICAO Standard Atmosphere,” 1958.
(2) Sea Level Values: Tg; = 518.69°R, P;; =2116.2 psf, pg; = 0.0023769 slug/ft3,
and ag; =1116.4 fps.



APPENDIX B. SAE GAS TURBINE ENGINE NOTATION

1. Purpose

1.1 This Aerospace Recommended Practice (ARP 755A) provides perfor-
mance station identification and nomenclature systems for gas turbine
engines.

1.2 The systems presented herein are for use in all communications
concerning engine performance such as computer programs, data reduc-
tions, design activities, and published documents.

2. Station Identification

The following station numbering system will be used to identify the
points in the gas flow path that are significant to engine performance
definition.

2.1 Basis of System The system provides for the consistent definition of
the process being undergone by the gas, regardless of the type of engine
cycle. The five main processes that are isolated are: air intake, compression
in engine compressors, heat addition, expansion in turbines, and expansion
in nozzles.

2.2 Primary Stream The station numbers required to identify the
processes for the primary gas flow are:

0 Freestream air conditions 5 Last turbine discharge

1 Inlet/engine interface 6 Available for mixer, afterburner, etc.
2 First compressor front face 7 Engine /exhaust nozzle interface

3 Last compressor discharge 8 Exhaust nozzle throat

4 Burner discharge 9 Exhaust nozzle discharge

2.3 Multiple Streams Extension of the primary flow numbering scheme
to multiple streams (e.g., the bypass flow of a turbofan engine) is obtained
by prefixing a digit to the numbers in Sec. 2.2.

Copyright © 1974 by SAE, Inc. All rights reserved. Published with permission.
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2.3.1 Unity (1) will be used for the innermost bypass duct.

Examples: 12 First compressor front face tip section (if different from
Station 2)
13 End of compression of bypass flow
17 Bypass duct/exhaust nozzle interface
18 Bypass exhaust nozzle throat

23.2 To avoid conflict with two-digit primary stream intermediate sta-
tions (see Sec. 2.4), the prefixing of bypass duct streams with the digits 2
through 8 should be avoided where possible. The digit 9 will be used to
identify ejector nozzle flow or for a second bypass duct.

Example: 98 Ejector exhaust nozzle throat

2.3.3 If, however, two or more flow paths are mixed, succeeding numbers
will be consistent with the innermost stream. For example, primary flow
numbers are to be used when primary flow is mixed with a bypass flow.

2.3.4 The first digit of the primary stream, and the first two digits of the
innermost and second bypass ducts, will be numeric only.

2.3.5 Property values (or flow rates) for individual streams are always
average (or total) quantities. Where primary and bypass streams are dif-
ferentiated by separate stations and there is a need to describe the average
(or total) properties at a plane including both streams, an alphanumeric
station will be created. This station will be coplanar with the primary and
bypass stations and formed by appending a letter to the hub station
identification.

Appendage of the letter A (e.g., 1A, 6A) is reserved to describe the
combined properties of all the streams in that plane. For example, when
Stations 1 and 11 define the primary and innermost bypass streams at the
inlet/engine interface, Station 1A is defined as encompassing both Stations
1 and 11. More than two streams can be handed in a similar manner.

2.4 Intermediate Starions For identification of intermediate stations,
numeric or, if necessary, alphabetic subdivision will be used for the appended
symbols. The numbering of stations intermediate to those indicated in Secs.
2.2 and 2.3 should, where possible, be limited to two digits that will be
chosen to prevent duplication, and will be assigned in an ascending or
alphabetic sequence that corresponds to the direction of flow. For example,
a primary intermediate station between Stations 1 and 2 for a bypass engine
may be identified as 1B to avoid conflict with the innermost bypass duct
first compressor front face tip section, Station 12.

2.5 Figures Figures Bl and B2 are examples of the applications of this
system to several typical engine configurations.
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Fig. Bl Example of station identification—1.

3. Nomenclature

This nomenclature has been compiled to provide a uniform method of
naming variables associated with gas turbine engines. Its use is encouraged
for all communications involving engine performance including computer
programs. There are two columns of symbols. The first column presents the
recommended symbols for general use and is restricted to upper case letters
to be compatible with the computer. The second column presents alternate
symbols that are retained because of their widespread use. Lower case
letters, subscripts and superscripts, Greek letters, and other specialized
characters have been avoided in the recommended symbols. It is hoped that
a single system will soon evolve, on one hand through changes in common
usage resulting from greater familiarity with the computer, and on the other
hand through development of computer practices permitting a wider range
of symbols than is now possible.

3.1 Basic Symbols This section includes the symbols used to derive basic
parameters and will normally form the leading letter, or letters, in com-
pound groups. Most of these symbols will be expanded by the addition of a
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Example of station identification—2.

station number, component symbol, or stream identification as contained in
later sections. Examples of some resulting compound groups are contained

in Sec. 4.

31.1 Properties and Fundamental Parameters

Area, geometric

Altitude (Geopotential pressure)
Angle

Density

Efficiency, adiabatic
Enthalpy—total per unit mass
Entropy—total per unit mass
Force, thrust

Frequency

Heat transfer rate
Inertia—polar moment (see Sec. 3.4.3)
Length

Mass

Mass flow rate

Recommended

Alternate

A
ALT
ANG
RHO
E

H

S

F

FY
QU
XJ
XL
GM
W

a, B, v, etc.
P
n

Br=0O™
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Power
Pressure—total
Rotational speed
Temperature—total
Time

Torque

Velocity

Viscosity

Volume

Weight

31.2 Commonly Used Ratios, Functions, etc.

443

PW
P
XN
T
TIME t
TRQ

A"

VIS

VOL %
wT w

This section contains sym-

bol groupings which, aithough they are exceptions to the general system,
have been retained because of their widespread use in industry.

Recommended Alternate

Blow-out margin

Bypass ratio

Coefficient or constant

Delta (pressure /standard SLS pressure)
Discharge coefficient

Drag

Entropy function

Error

Fuel /air ratio

Fuel lower heating value

Fuel specific gravity

Gas constant (per unit mass)
Light-off margin

Mach number

Mechanical equivalent of heat
Molecular weight

Power lever angle

Ratio of specific heats
Relative humidity

Reynolds number

Reynolds number index
Rotor blade angular position
Specific fuel consumption
Specific gravity

Specific heat at constant pressure
Surge margin

Stator blade angular position
Tangential wheel speed
Theta (temperature/standard SLS temperature)
Velocity dynamic head
Velocity of sound

BOM
BPR

<
asi
® 0
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Water (liquid) /air ratio WARL
Water (vapor) /air ratio WAR

3.2 Operating Symbols The letters in this section describe operations and
will normally be embedded in compound groups.

Recommended  Alternate

Derivative with respect to time U d/dt
Derivative with respect to following symbol U_ d/d-
Difference (see Sec. 3.4.2) D —orA
Quotient, ratio (when not followed by U) Q /
Square root R

3.3 Descriptive Symbols  This section includes recommended symbols that
describe the basic parameters and will usually be the trailing letter, or
letters, in compound groups. It is subdivided into a part describing the
fluid, another containing symbols describing parts of the engine, and a de-
scriptive symbols part. No alternate symbols are recognized in this section.

3.3.1 Fluid Description Some properties and fundamental parameters
(e.g., pressure, flow rate) that refer to the fluid may require additional
description to indicate the composition and use of the fluid. The following
letters should be appended directly after the basic symbols of Sec. 3.1 (see
Sec. 3.4.1 for additional notes on fluid description):

Air A
Bleed B
Boundary layer BL
Coolant CL
Fuel F
Leakage LK
Water W

3.3.2 Engine Description Some parameters that refer to engine compo-
nents or rotors (e.g., efficiency, rotor speed, surge margin, torque) require
more specific description. This should be provided by appending the station
number (see Sec. 2) at inlet to the relevant component or rotor after the
basic symbols of Sec. 3.1. (An alternate method, included because of its
widespread use in industry, is to append the following symbols. The use of
this alternate method is not encouraged because of possible confusion with
other descriptive symbols.)

Afterburner AB
Boattail BT
Burner B

Compressor C
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Engine

Heat exchanger EX
High-pressure component or rotor H
Intermediate pressure component or rotor I
Low-pressure component or rotor L
Power turbine or rotor PT
Turbine T

3.3.3 General Description The following general descriptive symbols
should be appended after the basic symbols of Sec. 3.1:

Average AV
Ambient AMB
Conductivity K
Controlled variable C
Diameter D1
Distortion DIST
Effective E
Extraction X
Gross G
High (maximum) H
Ideal I
Installed IN
Low (minimum) L
Map value M
Net N
Parasitic PAR
Polytropic P
Radius RAD
Ram RAM
Referred (corrected) R
Relative REL
Sea level SL
Sensed parameter SE
Shaft delivery (output) SD
Standard STD
Static S
Swirl SwW
Tip TIP
Total T
True air speed TAS

3.4 Additional Notes

3.4.1 To describe the position within the engine of parameters associated
with a fluid, the numbers detailed in the station identification system of Sec.
2 should be appended. The letters of Sec. 3.3.1 should precede these station
numbers if both are required.
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3.4.2 The embedded D, which identifies a difference (see Sec. 3.2), should
be used wherever the compound group of of symbols is of an acceptable
length. However, D may also be used as a leading symbol when contraction
of the compound group of symbols is necessary.

3.4.3 The symbols XJ (polar moment of inertia) should be appended by a
component identification symbol (Sec. 3.3.2). The component should be
that to which all associated inertias are algebraically referred.

3.4.4 A gas property followed by S denotes a static quantity; otherwise a
stagnation condition is implied.

3.45 The symbol X was prefixed to leading symbols I, J, K, L, M, and N
for computer purposes.

3.4.6 It is recognized that it may be required to limit the number of
characters per parameter name. When this limitation is not compatible with
the recommended nomenclature of this ARP, the parameter name may be
shortened.

3.4.7 Throughout this document: 0 denotes the numeric symbol and @
denotes the alphabetic symbol.

4. Examples

Some examples of compound groups formed from recommended symbols
are contained in this section.

4.1 Groups formed by basic symbols together with one or more descrip-
tive symbols:

AE Effective area
ANGBT Boattail angle
ANGSW Swirl angle

CFG Gross thrust coefficient
CPSTD  Standard SLS pressure
CQU Overall heat-transfer coefficient

CQUBL  Heat-transfer film (boundary-layer) coefficient
CQUK  Thermal conductivity
CQUL Coefficient of linear thermal expansion

CR Universal gas constant
CTSTD  Standard SLS temperature
Ccv Nozzle velocity coefficient

DTAMB Ambient temperature minus standard day ambient temperature
DPW Unbalanced power

DTRQ Unbalanced torque

EP Polytropic efficiency

ERAM Ram pressure recovery
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Gross thrust

Ideal gross thrust

Net thrust

Installed net thrust

Ram drag

Enthalpy of fuel

Static enthalpy

Ambient pressure

Bleed flow total pressure
Relative pressure

Static pressure

Parasitic power

Delivered shaft power

Power extraction

Installed specific fuel consumption
Ambient temperature

Total temperature of leakage gas
Delivered shaft torque

Static temperature

Tangential wheel tip speed
Angular velocity

Aircraft velocity (true air speed)
Airflow rate

Fuel flow rate

Total fuel flow rate

Water flow rate

Delivered shaft speed

42 Groups formed by basic symbols together with descriptive symbols
and station numbers:

CD8
CV8
DTI
FAR4
FG19
F7

HA3
PB3
PS4QS3
PW4
P1QAMB
P3

P3U
P4Q3
P6D7
TRQ2
TSOSTD
T2UN2

Primary nozzle flow discharge coefficient

Primary nozzle velocity coefficient

Temperature to be added to T1

Fuel /air ratio at Station 4

Bypass nozzle gross thrust

Stream thrust at Station 7

Total enthalpy of air at Station 3

Bleed flow total pressure at Station 3

Static pressure ratio; Station 4 divided by Station 3
High-pressure turbine power

Ram pressure ratio

Total pressure at Station 3

Time rate of change of total pressure at Station 3
Total pressure ratio; Station 4 divided by Station 3
Total pressure change from Station 6 to Station 7
Low-pressure compressor torque

Standard atmospheric temperature

Rate of change of T2 with respect to N2
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WA2
WB3
WLK3
WI1R
W3R2
XJ2

XN2
XN2H
XN21L

GAS TURBINE AND ROCKET PROPULSION

Airflow rate at Station 2

Bleed flow rate at Station 3

Leakage flow rate at Station 3

Referred engine inlet flow rate

Flow rate at Station 3 referred to Station 2

Polar moment of inertia of spool containing
low-pressure compressor with all inertias referred to
that component

Low-pressure compressor rotor speed

Maximum low-pressure compressor rotor speed
Minimum speed of rotor whose compressor inlet is
at Station 21
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SOFTWARE
Daniel H. Daley

William H. Heiser
Jack D. Mattingly
David T. Pratt

The enclosed software is intended for use with Aerothermodynamics of Gas
Turbine and Rocket Propulsion, by Gordon C. Oates. This comprehensive
set of programs may be used with the problems and design analyses dis-
cussed in the book. The information below details the necessary system
requirements, and describes installation and operation procedures. The soft-
ware opening screen menus, their program titles, and associated topics in the
textbook are also given.

1. Getting Started

1.1 System Requirements

IBM PC 386/486/586/Pentium or compatible computer with at least 640 Kb
RAM, a hard drive with 1.0 Mb of available disk space for storing OATES,
and EGA or better video capability. OATES is designed to load and run on
any DOS-based operating system.

1.2 Installation

Insert the distribution disk into the A: or B: drive as appropriate (the A: drive
is assumed below), and log onto that drive. Assuming that you want to install
OATES on the C: hard drive, then at the A:\ DOS prompt, type INSTALL
A: C:, and press the <Enter> key. (To install OATES on a different hard
drive, for example the D: drive, type INSTALL A: D: and press <Enter>.)
The installation program will create a new directory OATES on the target
hard drive, and will then transfer all the OATES executable files, as well as
the required files ECAP.DEF and EOPP.DEF, to the new directory.

449
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1.3 Operation

With all of the files from the distribution disk installed in the directory
c:\OATES, log on to that directory (type CD OATES and press <Enter>),
and at the prompt c:\OATES, type OATES and press <Enter>. Respond to
the menu selections and prompts with keyboard entries, arrow keys, mouse
clicks, or a mixture of all modes. (Note that although there are many “.EXE”
files present, only OATES.EXE can be launched by the user. All of the other
“ EXE” files are executed by OATES in response to the menu selections.)

1.4 General Information

After OATES has been installed on your hard disk, you can browse the
menu on the opening screen to read the one-line descriptions of each pro-
gram that appears at the bottom of the screen. Authoring credits and software
information can be read from options on the opening screen menu as well.

1.5 Writing Screens to File

Input and output screens, in either graphics or text mode, can be saved to file
as follows. 1) Run OATES from the Microsoft Windows MS-DOS prompt.
2) Press the <Print Screen> key to copy the screen contents to the Windows
Clipboard. 3) Use the Windows Clipboard Viewer, or a text editor or word
processor that can access the Windows Clipboard to save either graphics or
text mode screens to a file.

2. Opening Screen Menu/Program Textbook Site
2.1 Atmosphere
Atmosphere Appendix A, p. 435
2.2 Quasi-1D Flows
Ideal Constant-Area Interaction Chapter 2, p. 47
Adiabatic Constant-Area Flow with Friction Chapter 2, p. 50
Nozzle Flow Equations Chapter 2, p. 52
Rocket Nozzle Performance Chapter 3, p. 70
Normal Shock Waves Chapter 6, p. 206
Oblique Shock Waves Chapter 6, p. 211
2.3 Gas Turbine
Engine Cycle Analysis, Ideal Chapter 5, p. 121
Engine Cycle Analysis, Nonideal Chapter 7, p. 231

Engine Off-Design Performance Chapter 8, p. 277
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2.4 Rocket Combustion

T, and p_ given Chapter 3, p. 84
h. and p given Chapter 3, p. 84
Isentropic Expansion Chapter 3, p. 85

All programs can be run in either the SI or English unit system.

3. Program Descriptions

3.1 Atmosphere

The Atmosphere program gives the variation of atmospheric properties
with altitude from sea level to 86 km (282.15 kft), taken from U.S.
Government Printing Office, “U.S. Standard Atmosphere, 1976,”
Washington, D.C., 1976. Please note that the atmospheric information in
Appendix A is from 1958.

3.2 Quasi-1D Flows

The Quasi-1D Flows menu contains a collection of utility programs for
evaluating traditional compressible flow functions and rocket nozzle perfor-
mance for calorically perfect gases and values of Cp/Cv prescribed by the
user. The compressible flow functions take their structures from the venera-
ble “Gas Tables” of Keenen and Kaye, published in 1948, and from the 1953
NACA report 1135, “Equations, Tables and Charts for Compressible Flow.”
The program collection consists of Ideal Constant-Area Heat Interaction,
including Eq. (2.92) from the textbook; Adiabatic Constant-Area Flow
with Friction, including Eq. (2.98) from the textbook, Nozzle Flow
Equations (Isentropic Flows); Rocket Nozzle Performance; Normal
Shock Waves; and Oblique Shock Waves. The Rocket Nozzle
Performance program is included to facilitate the calculation of the perfor-
mance of a nozzle under a wide variety of conditions.

With few exceptions, all of the compressible flow function programs can be
entered with any property ratio listed, just as one would enter the Keenan
and Kaye or NACA 1135 gas tables. When an entered variable is out of
range, the appropriate range of the variable is displayed and the user is
prompted to enter another value. Whenever an output function is double val-
ued (usually subsonic or supersonic) for the input value, the user is queried
for the output value of interest.

3.3 Gas Turbine

The Gas Turbine menu contains the Engine Cycle Analysis Program
(ECAP) and the Engine Off-Design Performance Program (EOPP).
Choosing one of these programs brings up that program’s home screen,
which has the following pull-down menus: File, Cycle, Data, Variable,
Units, Output, and Help.
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ECAP in the Gas Turbine menu provides a means for determining the vari-
ation in gas turbine engine performance with cycle design variables such as
compressor ratio. The program is based on the engine models contained in
Chapter 5, Ideal Cycle Analysis, and Chapter 7, Nonideal Cycle Analysis.
ECAP is very useful for examining the trends of an engine’s specific thrust
and specific fuel consumption with changes in applicable design variables.
The following actions are required to run the ECAP program: with the
Cycle menu, choose one of seven engine cycles and either an ideal or non-
ideal analysis model; with the Data menu, enter the engine operating condi-
tions in the edit fields of the data screen and/or select the variable to be opti-
mized; with the Variable menu, choose one of eight iteration variables along
with its applicable range and increment; with the Units and Output menus,
choose the desired units and output devices; and with the File menu, choose
run. The seven engine cycles contained in the program are 1) ramjet, 2) tur-
bojet, 3) turbojet with afterburner, 4) turbofan, 5) turbofan with afterburners,
6) mixed turbofan, and 7) turboprop.

EOPP of the Gas Turbine menu is based on the engine models contained in
Chapter 8, Engine Off-Design Performance. EOPP is very useful for exam-
ining the variation of a given engine’s performance with changes in flight
conditions and throttle setting. The following actions are required to run the
EOPP program: with the Cycle menu, choose one of four engine cycles;
with the Data menu, enter the reference point data, calculate the reference
point performance, enter off-design data, and/or select the variable to be
optimized; with the Variable menu, choose one of nine iteration variables
along with its applicable range and increment; with the Units and Output
menus, choose the desired units and output devices; and with the File menu,
choose run. The four engine cycles contained in the program are 1) fixed
area turbine turbojet, 2) fixed area turbine turbofan, 3) fixed area turbine tur-
boprop, and 4) variable area turbine turbojet.

3.4 Rocket Combustion

The Rocket Combustion menu contains three programs that calculate
chemical equilibrium properties and composition of products of combustion
for cryogenic and storable liquid bipropellants. As opposed to the method of
the textbook, the very robust ZGM (Zeleznik—Gordon—McBride) algorithm
for Gibbs function minimization is used to calculate equilibrium states of
combustion products in each of the programs. The T, and P, given and H,
and P, given programs calculate the product’s properties and composition
for assigned rocket combustion chamber temperature/pressure and
enthalpy/pressure, respectively. The Isentropic Expansion program calcu-
lates the properties and composition for isentropic expansion or compres-
sion from the rocket combustion chamber pressure to a prescribed pressure,
for both equilibrium and frozen flows.



Actuator disk,
Adiabatic flow, 44, [50
Afterburner:
primary stream, [[33
secondary stream, [[33]
Afterburning:
turbofan,
turbojet, [33
Airbreathing engines, []
Angle of attack, [4T]]
Annulus inverting valve (AIV),[29]
Arcjets (see also electrothermal
thrustors), [7, (12
Averages:
continuity, [93,[202
mass, [[97), [201] [408, [408
stream thrust, [[97, 202, [403

Axial compressors, [3

Bernoulli equation, [31], B38J[413
Blade:

aerodynamics,

torque, [381], 352
force, [382, 392
Bleed valves, [13] 303

Body force, 373
Boundary layer, [204
Brayton cycle, [39
Burner,
primary,[233
stagnation pressure ratio, 28]
Burning:
at finite Mach number, [37, [[84]
end,
erosive, [88,
surface rate, [89
Bypass ratio,[8, 140
optimal, 2451[249

Camber,
Cascade:
field, 328§
notation, [4T]]
theory, two-dimensional, [§T4
transformation, [416,
two-dimensional straight-line, [426
Centrifugal compressors, [3], [23, B33
Chamber pressure, solid rocket,
Channel flow equations, [39
Characteristic velocity,[70
Chemical rockets, [Il,
Chemical thermodynamics, [T4
Child-Langmuir law, [IT3
Choked flow, 27§
Choking:
thermal, [43,
viscous,
with swirl, 363
Chord, [411

Index
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Chugging,[q

Circle theorem, [422
Circulation, [413] [422
Combustor, [T, 13 35,211

Complex potential,[414, [423
Component:
behaviors, ideal, [34
characteristics, 301
performance,
Compressibility:
effects in throughflow, 397
effects of, 360
Compressor, [1], [3] [[34] 213
axial,
centrifugal, [3] [231[268
characteristics, [301],
efficiency, 213
map, 302, B14
off-design, B41l
operating line, [280, B14
polytropic efficiency, 213
stage efficiency,[2T3

stall, [303
stall margin,
starting, 304

transient operation,
Conservation equations, [39]
Constant-area heat interaction,
Continuity equation, 39, [47
Control mass, B3, 34
Control volume, 32,33, 39
Convective derivative,
Conversion factors, [T4]]
Cooling, turbine,
Coordinate system, natural,[377
Core pressure drop, [T03
Cycle analysis:

ideal, [IZ1]

nonid

notation for, 132

Dead weight mass, [67
Degree of reaction, [337], 339
Deviation angle, [411[424
Dieterici’s equation, [57]
Diffuser, [34, 3
Diffusion factor, 337,
Dissociation, [[T9
Drag:

additive, [[92, 194, 193] 223

external,

forebody, [[94

form, [63]

loss,

skin, [63]
Dynamic head, 333

Electric thrustors, [[T]]
Electrically powered rockets, [6,
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Electromagnetic thrustors, [12
Electrostatic thrustors, [7, [13] [[16]
Electrothermal thrustors, [3, [I11]
End burning, [8§

Energy, internal, [22

Engine components, [T], [Z1], [[23
Engine station numbers, [[32
Enthalpy, [23,[33

Enthalpy balance, @
Entropy,

Equilibrium constant,[77
Erosive burning,

Euler momentum equation, 331, 364, 376

Exhaust velocity, effective, [63, [7]
Exit area variation, [28]
Extendable exit cone (EEC), 3]

Fan,[8, [T} [T3} (23, [139]

Figures of merit,[223

First law of thermodynamics, 221 32 33

Flat rating, [301

Flow work, 34,34

Form drag,[63

Free vortex flow, 333
Fuel,[74

Fuel-to-air ratio,
Functional iteration,

Gas:
calorically perfect,[29
perfect,
Gas constant%
Gas generator, nozzle matching, [310}
Gearbox, [301]
Gibbs equation, 23} [37, B8,
Gibbs function, [23]
Gravity loss,
Gross thrust, [T70]

Heat,[20

interaction, [21],

of formation, |

of reaction,

of solution,

transfer coefficient,
Helmbholtz function, 23
Hydrogen-oxygen reaction,

Inlet, [T] [[2) [92, [T95] 203
distortion, 212
guide vane, 333
Kantrowitz-Donaldson, [206,[207

off-design,
subsonic, %
supersonic,
Ion slip, 12
Ionization,
Instabilities:

pogo, 4

screaming, [4
Installation effects,
Interaction:

work, [2]

heat,[Z]]

Internal energy, [23

Ion rockets (see also electrostatic rockets),m

Iteration:
functional,
Newtonian, [54,

JANNAF tables,[7§

Joule, 22]
Joule’s experiment, [24]
Joule-Thompson coefficient,

Kutta condition,

Law of mass action,
Liquid propellant, [1I
Lorentz force, [13

Mach number, [42
meridional,
Mass flow,[279
Mass flow, corrected,[Z79
Mass:
dead weight, [67
payload, [67]
ratio,
Maxwell’s relations, 26
Meridional surface,[329,
Mission analysis, [[11
Mixer:
constant-area,
constant-pressure, [73]
optimal constant-pressure,
Molal fraction,[7§
Momentum equation, [I53] [T8Y
tangential,
Multiple spools, [I3]
Multiple-stage rockets,

Newtonian iteration, [82, 231]
Newton’s law, [4]
Nonchemical rockets, [[] B
Nozzle, [T][T6] 32 (33} [2Z4]
altitude performance,
convergent, 243
equilibrium flow, [63]
flow of reacting gas, [§3
frozen flow, [63]
notation, [134
rocket, [70
sizing, [71
throat, [44
Nuclear electric generator, B3
Nuclear-heated rockets, [6, [97]
Nuclear reactor, [77]



Off-design performance, [[3 123,271
Oxidizer, [[4

Payload mass, [67]
Performance measures, [J
Performance, off-design, [[4]
Pogo instability,[d
Power balance, [[43, [[53] 3
Power density:
constant,
sine,
Power imbalance, 313
Power specific fuel consumption, 239
Pressure, partial,
Primary stream,
Propellant:
liquid,
solid, [, [d
Propeller efficiency,[256,
Property, [19]
Prop fan,[253
Propulsive efficiency,[§, [39, [30,[254

Pumping characteristics, 307,

Quasi-one-dimensional fluid flows, [[9] B1]

Radial equilibrium, 349, 331}, B97]
Ramjet,

Ram rocket, [[82

Ratio of specific heats,[24
Reactants, [74

Repeating stage, [339, 337
Resisto jet,

Reversible process,

Reynolds analogy, [48,[99

Rocket:
chamber conditions,
chemical, |l

electrical, [4, [[07]
electromagnetic, [12]
electrostatic, [7,
electrothermal, [, [11
nonchemical, [} @, B7
nozzle, [7Q
nuclear-heated, [d, 7
solid-propellant,[4,
Rotating stall, [[4] [303
Rotor, B17

Screaming combustion, 4

Second law of thermodynamics,[24
Secondary flowfield, 330, B10
Secondary stream, [[38

Separation altitude,

Separation losses,

Shear stress,

Shock waves, [204, 217

Skin drag,

Skin-friction coefficient, [44] 59
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Simple systems, 23
Solar collectors, [0
Solid-body-like rotation, 353
Solid-propellant rockets, [ [,
Solidity, [340, [4T1], [421
Space charge limited currerﬁ, ﬂa =
Specific fuel consumption, [4, 132, [[44],
(148, [(39, 172 2539
joint minimum, 24§
minimum, [I61],[243,[251]
Specific heat,[23, 53]
difference,
nonconstant,
ratio,[24
Specific impulse, [66,[97, [[04]
3

Specific thrust, [7, [32,
Speed of sound, [42]
Spools:

multiple, 303

three,

two, [21] [23)

Stagger angle, [411][426
Stagnation pressure, [43

Stagnation properties, [41]

Stagnation temperature, relative,

Stanton number,

Star grain, [92

Stream function, 330
compressible,

Stream surface,

Strip theory,

Summerfield criterion,

Surface burning rate, [89,[91]

Surge, [[4]

Thermal choking, @7,
Thermal efficiency, [, 138}, [39, [30
Thermodynamics,

cycle, ideal, |£

first law,[22

process,

second law, 24

state,

zeroth law, [Z]]
Throat, nozzle, [44
Throughflow theory, 327, B73
Thrust:

equation,

gross,

installed, [192|

maximum,

uninstalled, [92
Thrust coefficient, [70} [71], [73, [[04]
Trajectory analysis,
Turbine, [T} [3] (33, 221

aerodynamics, [361]

characteristics,

cooling, [T6][253
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efficiency, 221

expansion ratio,

impulse, 363

notation, [34]

optimal temperature ratio,
performance map, %
polytropic efficiency,

reaction, [367]

stage efficiency,

Turbofan, [21], [[40] 158] 237

duct burning,

off-design,[237

optimal, [[81]

with afterburning, [[76 [78, [79

with mixed exhaust streams, [[63]

Turbojet, [[40] [144]

fixed-area, [283

maximum thrust, [[53
off-design variable-area,
with losses, 23]

Turboprop, [T], [[40, [233
off-design,
Turborocket, [82

Units:

British, [[4Q
sI,

Van der Waals fluid,

Variable stators, [[3]

Velocity triangles, 334
Viscous choking, [50
Vorticity, tangential, 78, B79

Wake:
chopping,
shedding, [428
Windmilling, [[5][303
Work,
Work interaction coefficient, 256,[25§
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