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PREFACE 

Interpretation of much of the research in the engineering and computing sciences 
increasingly depends on statistical methods. Furthermore, the practicing engineer 
will be expected to understand and help implement statistical quality control tech- 
niques in the workplace. For these reasons, it is essential that students in these fields 
be exposed to statistical reasoning early in their careers. This text is intended as a 

first course in probability and applied statistics for students in the engineering and 

computing sciences. It is hoped that this first course will occur on the undergradu- 
ate level. However, the text can be used to advantage by graduate students who have 

little or no prior experience with statistical methods. 

This text is not a statistical cookbook, nor is it a manual for researchers. We 

attempt to find a middle road—to provide a text that gives the student an under- 

standing of the logic behind statistical techniques as well as practice in using them. 

A one-year course in elementary calculus should provide an adequate background 

for understanding everything presented here. 

We chose the examples and exercises specifically for the student in the engi- 

neering and computing sciences. Most data sets are simulated. However, the simu- 

lation was done with care, so that the results of the analysis are consistent with 

recently reported research. References to reports upon which the data are based are 

given whenever possible. In this way, the student will gain some insight into the 

types of engineering problems that can be handled statistically. Many exercises are 

left open-ended in hopes of stimulating some classroom discussion. 

It is assumed that the student has access to some type of electronic calculator. 

Many such calculators are on the market, and most have some built-in statistical 

capability. The use of these calculators is encouraged, for it allows the student 

to concentrate on the interpretation of the analysis rather than on the arithmetic 

computations. 
We should point out that many of the data sets are rather small so that the 

student will not be overwhelmed by the computational aspects of statistics. We do 

not intend to imply that very small data sets are routinely used in the engineering 

fields. In fact, most major research projects involve a tremendous investment in 

time and money and result in a large body of data. New to the fourth edition, we 

have added some large data sets to better reflect the reality students will encounter 

after graduation. 

xill 



Xiv PREFACE 

Such data lend themselves to analysis by computer. For this reason, we in- 

clude some instruction in the interpretation of statistical packages. The packages 

chosen for illustrative purposes are SAS and MINITAB. This was done because of 

their widespread availability and ease of use. We do not intend to imply that they 

are superior to other well-known packages such as SPSS (Statistical Package for 

the Social Sciences) or BMD (Biomedical Computer Programs, University of Cal- 

ifornia Press). 
Each chapter ends with a chapter summary that is intended to remind the stu- 

dent of the major topics presented in the chapter. This chapter summary also in- 

cludes a list of important terms. A set of exercises is provided for each section of 

each chapter. In addition, each chapter has a set of review exercises in which the 

problems are presented in random order. It is hoped that this will help the student 

develop the ability to recognize the appropriate analysis. The appendices include 

statistical tables, selected derivations, and answers to all odd numbered and review 

exercises. 
A number of different courses can be taught from this book. They can vary in 

length from one quarter to one year. It is difficult to determine exactly what mater- 

ial can be covered in a given time, since this is a function of class size, academic 

maturity of the students, and inclination of the instructor. However, we do offer 

some guidelines for the use of this text. In particular, the type of course presented 

can vary from one whose chief aim is to familiarize the student with the computa- 

tional aspects of probability and the handling of data sets to one of a more theoreti- 

cal nature. In many cases we include the proof or derivation of theorems in the text 

labeled as such. If an instructor wants to deemphasize theory, these proofs can be 

skipped easily with no loss of continuity. 

Supplements to the text include an Instructor’s Solution Manual (ISBN 

0072468378), Student’s Solution Manual (ISBN 0072468386), data disk, and web- 

site. The Instructor’s Solutions Manual contains detailed solutions for the problems 

whose answers do not appear in the text. The Student’s Solution Manual contains 

detailed solutions to the odd-numbered problems. The data disk contains data sets 

associated with exercises and examples in the text. The data disk is packaged with 

the Instructor’s Solution Manual. Instructors should feel free to duplicate the data 

disk for their students. The website also contains the data files appearing on the data 

disk. The website may be found at www.mhhe.com/miltonarnold. 

CHANGES IN THE FOURTH EDITION 

At the suggestion of users of the first three editions of the text, some changes have 
been made to enhance the fourth edition. New exercises have been added through- 
out. A data disk containing all data sets that appear in the text as part of examples or 
exercises is provided with the Instructor’s Solution Manual. Students may down- 
load these data sets from the website: www.mhhe.com/miltonarnold. At the sugges- 
tion of the reviewers, some of the data sets are rather large so the student can learn 
to manipulate such data via computer. The SAS computer supplements that ap- 
peared in earlier editions have been deleted. However, more discussion of the 
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interpretation of computer output is now included in the text. Some of the more dif- 
ficult derivations have been placed in an Appendix. This gives the text a more ap- 
plied flavor while preserving the material for those who are particularly interested 
in the mathematical foundations of the statistical concepts presented. The discussion 
of the F distribution and comparison of two means has been simplified by making 
use of the folded F test for comparing variances. Other new material includes a dis- 
cussion of Tukey’s method of paired comparisons and a section on the use of toler- 
ance limits in quality control. 

Chapter 1 This chapter provides an introduction to probability and counting. 
Chapter 2 The study of probability is continued. The laws governing prob- 

ability are presented, and the notions of conditional probability and independence 
are introduced. 

Chapter 3 The notion of random variables is introduced. General properties 
of discrete distributions are discussed. The notion of expected value is introduced, 
and the idea of the mean and variance of a distribution is developed. The moment 

generating function is presented as a means of finding the first two moments of a 

distribution. Important discrete distributions are studied in detail. The chapter closes 
with an optional section on simulating discrete distributions. 

Chapter 4 parallels Chap. 3 with an emphasis on continuous distributions. 

Chapter 5 discusses joint distributions of both the discrete and continuous 
types. The notions of covariance, correlation, and regression are introduced in the 

theoretical sense. 

Chapter 6 is the link between the more theoretical concepts of statistics and 
the methods of data analysis. Here we present an introduction to classical data- 

handling techniques and descriptive statistics. We also introduce some of the newer 

techniques of exploratory data analysis. 

Chapter 7 considers the notion of point and interval estimation of population 

parameters. Method of moments, maximum likelihood, and unbiased estimators are 

considered. Some distribution theory is also discussed. In particular, the distribution 
of X is investigated. The moment generating function is used as a fingerprint to help 

pinpoint the distribution of some important random variables that will underlie the 

statistical methods developed in later chapters. 

Chapter 8 begins the study of the classical methods of data analysis. The 

topic of interest is inferences on the location and variability of a distribution based 
on a single sample. Both estimation and hypothesis testing are discussed and the 

T distribution is introduced. A full discussion of significance testing is included. The 

methods presented assume that sampling is from a normal distribution. The chapter 

closes with a section on nonparametric tests for location. These tests are especially 

useful when the normality assumption appears to be violated. 

Chapter 9 In this chapter inferences on a single proportion are considered. 

The study of two sample problems is begun by showing how to compare two pro- 

portions based on independent random samples. 
Chapter 10 is concerned with methods used to compare two variances and 

two means. The F distribution is introduced as a means of comparing variances. 

Means are compared first when variances are assumed to be equal. The Smith- 

Satterthwaite procedure is used to compare means when variances appear to be 
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unequal. These procedures all assume independent sampling. A procedure for 

comparing means based on paired data is presented. The chapter ends with a section 

on nonparametric two-sample tests for location. 

Chapter 11 studies simple linear regression and correlation. The least-squares 

method is given for estimating parameters in the regression model. Estimation and 

hypothesis testing is presented. Development for the simple linear regression model 

is quite thorough as preparation for the more general regression cases discussed in 

Chap. 12. The bivariate normal distribution is presented as needed for estimation 

and testing for product-moment correlation. A new section on the analysis of resid- 

uals is included. 
Chapter 12 The simple linear regression model is extended to multiple and 

polynomial models. The methods of Chap. 11 are extended in matrix form. Variable 

selection procedures are discussed along with examples. 

Chapter 13 The analysis of variance procedure is studied for various one- 

factor experimental designs. This chapter includes a discussion of randomized com- 

plete blocks, and some results on the effectiveness of blocking are given. A section 

on Latin squares is included as well as material on Bonferroni-type and Tukey-type 

multiple comparisons. Variance component estimation in random effects models is 
discussed. 

Chapter 14 This chapter discusses factorial experiments and contains mate- 

rial on fractional factorials. 

Chapter 15 is an introduction to the study of categorical data. Chi-squared 

goodness of fit tests are presented. Contingency table tests for independence and 

homogeneity are discussed in both the 2 x 2 and r X ¢ cases. 

Chapter 16 discusses the basic concepts of statistical quality control. Process 

control is discussed using control charts, and basic ideas of acceptance sampling are 

presented. The relationship of acceptance sampling with usual hypothesis testing is 

presented. Taguchi methods are discussed briefly. A new section on tolerance limits 
is included. 

You should be aware that statistics is an art as well as a science. For this 
reason, there is always room for debate on how to properly analyze a given data set. 
We have presented in this text methods that have stood the test of time as well as 
some that are relatively new. In many cases we have intentionally left to you the de- 
cision of whether or not to reject a particular null hypothesis. The reason for this is 
simple: No one can really say how small a probability must be in order to claim that 
it is too small to have occurred by chance. You might disagree with our conclusions 
at times. Feel free to do so! 
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CHAPTER 

l 
INTRODUCTION 

TO PROBABILITY 
AND COUNTING 

hat is “statistics,” and why is its study important to engineers and scientists? 

To answer this question, let us describe an aspect of the work of a scientist 

known as “model building.” 

Basically, the job of a scientist is to describe what he or she sees, to try to ex- 

plain what is observed, and to use this knowledge to predict events in the world in 

which we live. The explanation often takes the form of a physical model. A model 

is a theoretical explanation of the phenomenon under study and, at the outset, is usu- 

ally expressed verbally. To use the model for predictive purposes, this verbal de- 

scription must be translated into one or more mathematical equations. These 
equations can be used to determine the value of a specific variable in the model 

based on the knowledge of the values assumed by other model variables. For ex- 

ample, the Perfect Gas Law states that the pressure and volume of a gas may both 

vary simultaneously when the temperature of the gas is changed. This verbal model 

can be translated into a mathematical equation by writing 

Perfect Gas Law: PV = RT 

where P is the pressure of the gas, V is its volume, 7 is its temperature, and R is a 

constant, called the gas constant. The numerical value of the gas constant depends 

on the physical units chosen for the other terms in the model. Once we know the 
values assumed by two of the three variables P, V, or T, we can calculate the value 

of the third via this mathematical model. For example, under a pressure of 760 mm 

mercury and a temperature of 273 kelvins, a mole of any gas is thought to have a 

volume of 22.4 liters. The gas constant in this case has a value of approximately 
62.36. Based on the Perfect Gas Law, a gas with a volume of 5 liters at a tempera- 

ture of 100 kelvins has pressure P given by 
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PV = RT= 62367 

OF P(5) = 62.36(100) 

P = 1247.2 mm mercury 

That is, our model leads us to expect the pressure to be 1247.2 mm mercury. A 

model such as the Perfect Gas Law is said to be “deterministic.” It is deterministic 

in the sense that it allows us to determine an exact value for the variable of interest 

under specified experimental conditions. The Perfect Gas Law does describe some 

real gases at moderate temperatures and pressures. Unfortunately, many real gases 

cannot be described by this or any other deterministic model, especially at extreme 

temperatures and pressures! Under these circumstances we must find another way 

to predict the behavior of the gas with some degree of certainty. This can be done 

with the aid of statistical methods. 
What do we mean by statistical methods? These are methods by which decisions 

are made based on the analysis of data gathered in carefully designed experiments. 

Since experiments cannot be designed to account for every conceivable contingency, 
there is always some uncertainty in experimental science. Statistical methods are 

designed to allow us to assess the degree of uncertainty present in our results. These 

methods can be classed roughly into three categories: descriptive statistics, inferential 

statistics, and model building. By descriptive statistics we mean those techniques, 

both analytic and graphical, that allow us to describe or picture a data set. Inferential 

statistics concerns methods by which conclusions can be drawn about a large group of 

objects, based on observing only a portion of the objects in the larger group. 

This idea leads to the following definition: 

Definition: The overall group of objects about which conclusions are to be 
drawn is called the population. A subset or portion of the population that is 

actually obtained and that is used to draw conclusions about the population 
is called a sample. 

Model building entails the development of prediction equations from experi- 

mental data. These equations are called statistical models; they are models that al- 

low us to predict the behavior of a complex system and to assess our probability of 

error. These categories are not mutually exclusive. That is, methods developed to 

solve problems in one area often find application in another. We shall be concerned 

with all three areas in this text. 

A statistician or user of statistics is always working in two worlds. The ideal 

world is at the population level and is theoretical in nature. It is the world that we 
would like to see. The world of reality is the sample world. This is the level at which 
we really operate. We hope that the characteristics of our sample reflect well the 
characteristics of the population. That is, we treat our sample as a microcosm that 

mirrors the population. This idea is illustrated in Fig. 1.1. 
The mathematics on which statistical methods rest is called probability theory. 

For this reason, we begin the study of statistics by considering the basic concepts of 
probability. 
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The sample is viewed as a miniature population. We hope that the behavior of the variable under 

study over the sample gives an accurate picture of its behavior in the population. 

1.1 INTERPRETING PROBABILITIES 

When asked, “Do you know anything about probability?” most people are quick to 

answer, “no!” Usually that is not the case at all. The ability to interpret probabilities 

is assumed in our culture. One hears the phrases “the probability of rain today is 

95%” or “there is a 0% chance of rain today.” It is assumed that the general public 

can interpret these values correctly. The interpretation of probabilities is summa- 

rized as follows: 

Interpretation of Probabilities 

a Probabilities are numbers between 0 and 1, inclusive, that reflect the chances of 

a physical event occurring. 

Probabilities near 1 indicate that the event is extremely likely to occur. They 

mean not that the event will occur, only that the event is considered to be a 

common occurrence. 

3. Probabilities near zero indicate that the event is not very likely to occur. They 

do not mean that the event will fail to occur, only that the event is considered to 

be rare. 

4. Probabilities near 1/2 indicate that the event is just as likely to occur as not. 

5. Since numbers between 0 and | can be expressed as percentages between 0 and 

100, probabilities are often expressed as percentages. This is particularly com- 

mon in writings of a nontechnical nature. 

SS 

These properties are guidelines for interpreting probabilities once they are 

available, but they do not indicate how to assign probabilities to events. Three 
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methods are widely used: the personal approach, the relative frequency approach, 

and the classical approach. These methods are illustrated in the following examples. 

Example 1.1.1. An oil spill has occurred. An environmental scientist asks, “What is 

the probability that this spill can be contained before it causes widespread damage to 

nearby beaches?” Many factors come into play, among them the type of spill, the 

amount of oil spilled, the wind and water conditions during the clean-up operation, 

and the nearness of the beaches. These factors make this spill unique. The scientist is 

called upon to make a value judgment, that is, to assign a probability to the event 

based on informed personal opinion. 

The main advantage of the personal approach is that it is always applicable. 

Anyone can have a personal opinion about anything. Its main disadvantage is, of 

course, that its accuracy depends on the accuracy of the information available and 

the ability of the scientist to assess that information correctly. 

Example 1.1.2. An electrical engineer is studying the peak demand at a power plant. 

It is observed that on 80 of the 100 days randomly selected for study from past 

records, the peak demand occurred between 6 and 7 p.m. It is natural to assume that 

the probability of this occurring on another day is at least approximately 

80 _ 
100 > °82 

This figure is not simply a personal opinion. It is a figure based on repeated experi- 

mentation and observation. It is a relative frequency. 

The relative frequency approach can be used whenever the experiment can be 

repeated many times and the results observed. In such cases, the probability of the 

occurrence of event A, denoted by P[A], is approximated as follows: 

Relative Frequency Approximation 

f _ number of times event A occurred 
OA eet eran er orn one gen aa 

n number of times experiment was run 

The disadvantage in this approach is that the experiment cannot be a one-shot situ- 

ation; it must be repeatable. Remember that any probability obtained this way is an 

approximation. It is a value based on nv trials. Further testing might result in a dif- 

ferent approximate value. However, as the number of trials increases, the changes 

in the approximate values obtained tend to become slight. Thus for a large number 

of trials, the approximate probability obtained by using the relative frequency ap- 
proach is usually quite accurate. 

Example 1.1.3. What is the probability that a child born to a couple heterozygous 
for eye color (each with genes for both brown and blue eyes) will be brown-eyed? 
To answer this question, we note that since the child receives one gene from each par- 
ent, the possibilities for the child are (brown, blue), (blue, brown), (blue, blue) and 
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(brown, brown), where the first member of each pair represents the gene received 

from the father. Since each parent is just as likely to contribute a gene for brown eyes 

as for blue eyes, all four possibilities are equally likely. Since the gene for brown eyes 

is dominant, three of the four possibilities lead to a brown-eyed child. Hence the prob- 

ability that the child will be brown-eyed is 3/4 = .75. 

The above probability is not a personal opinion, nor is it based on repeated ex- 

perimentation. In fact, we found this probability by the classical method. This 

method can be used only when it is reasonable to assume that the possible outcomes 

of the experiment are equally likely. In this case, the probability of the occurrence 
of event A is given by the following classical formula: 

Classical Formula 

n(A) number of ways A can occur PIAl= 5 ESTE SAT eho se eae ar TA 
[A] n(S) number of ways the experiment can proceed 

One advantage to this method is that it does not require experimentation. Further- 

more, if the outcomes are truly equally likely, then the probability assigned to event 

A is not an approximation. It is an accurate description of the frequency with which 

event A will occur. 

1.2 SAMPLE SPACES AND EVENTS 

To determine what is “probable” in an experiment, we first must determine what is 

“possible.” That is, the first step in analyzing most experiments is to make a list of 

possibilities for the experiment. Such a list is called a sample space. We define this 

term as follows: 

Definition 1.2.1 (Sample space and sample point). A sample space for an 

experiment is a set S with the property that each physical outcome of the 

experiment corresponds to exactly one element of 5. An element of S is 

called a sample point. 

When the number of possibilities is small, an appropriate sample space usu- 

ally can be found without difficulty. For instance, we have seen that when a couple 

heterozygous for eye color parents a child, the possible genotypes for the child are 

given by 

S = {(brown, blue), (blue, brown), (blue, blue), (brown, brown) } 

As the number of possibilities becomes larger, it is helpful to have a system for de- 

veloping a sample space. One such system is the tree diagram. The next example il- 

lustrates the idea. 
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FIGURE 1.2 
Constructing a tree diagram. 

Example 1.2.1. During a space shot the primary computer system is backed up by 

two secondary systems. They operate independently of one another in that the failure 

of one has no effect on any of the others. We are interested in the readiness of these 

three systems at launch time. What is an appropriate sample space for this experiment? 

Since we are primarily concerned with whether each system is operable at 

launch, we need only find a sample space that gives that information. To generate the 

sample space, we use a tree. The primary system is either operable (yes) or not opera- 

ble (no) at the time of launch. This is indicated in the tree diagram of Fig. 1.2(a), 

where yes = y and no = n. Likewise the first backup system either is or is not opera- 

ble. This is shown in Fig. 1.2(b). Finally, the second backup system either is or is not 

operable. The tree is completed as shown in Fig. 1.2(c). A sample space S for the ex- 

periment can be read from the tree by following each of the eight distinct paths 

through the tree. Thus 

S = {yyy, yyn, yny, ynn, nyy, nyn, nny, nnn} 

Once a suitable sample space has been found, elementary set theory can be 

used to describe physical occurrences associated with the experiment. This is done 

by considering what are called events in the mathematical sense. 

Definition 1.2.2 (Event). Any subset A of a sample space is called an event. 

The empty set @ is called the impossible event; the subset S is called the 
certain event. 

Example 1.2.2. Consider a space shot in which a primary computer system is backed 

up by two secondary systems. The sample space for this experiment is 

S = {yyy, yyn, yny, ynn, nyy, nyn, nny, nnn} 

where, for example, yny denotes the fact that the primary system and second backup 

are operable at launch, whereas the first backup is inoperable (see Example 1.2.1). Let 
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A: primary system is operable 

B: first backup is operable 

C: second backup is operable 

The mathematical event corresponding to each of these physical events is found by 

listing the sample points that represent the occurrence of the event. Thus we write 

A = {yyy, yyn, yny, ynn} 

C = {yyy, yny, nyy, nny} 

Other events can be described using these events as building blocks. For example, the 

event that “the primary system or the first backup is operable” is given by the set A U B, 

the union of set A with set B. Recall from elementary mathematics that the union of A 

with B consists of all sample points that are in set A or set B or are in both. Thus 

AUB= ey eae = {yyy, yyn, yny, ynn, nyy, nyn} 
backup is operable ee ES teee tale. 

Note that the word “or” will denote set union. The event that “the primary system and 

the first backup is operable” is given by the set A M B, the intersection of set A with 

set B. The intersection of two sets consists of all sample points that are in both sets. 

That is, it is the set of points that they have in common. Here 

A‘ B = primary and first backup operable = {yyy, yyn} 

Note that the word “and” will denote the set intersection. The event that “the primary 

system or the first backup is operable but the second backup is inoperable” is given by 

(A 1 B) | C’, where C’ denotes the complement of set C. The complement of a set 

consists of the sample points in the sample space that are not in the given set. Thus 

rimary or first backup operable 
(A UB) nc =P y mn P = {yyn, ynn, nyn} 

but second backup inoperable 

Note that the word “but” is also translated as a set intersection; the word “not” trans- 

lates as a set complement. 

Let us pause briefly to consider a basic difference between the sample space 

S, = {(brown, blue), (blue, brown), (blue, blue), (brown, brown) } 

of Example 1.1.3 and 

S> = {yyy, yyn, yny, ynn, nyy, nyn, nny, nnn} 

of Example 1.2.1. Since each parent is just as likely to contribute a gene for brown 

eyes as for blue eyes, the sample points of S, are equally likely. This allows us to 

use the classical method to find the probability that a child born to a couple het- 

erozygous for eye color will be brown-eyed. If we denote this event by A, then we 

can conclude that 

P[A] = P[{ (brown, blue), (blue, brown), (brown, brown) } ] 

he® wh 5 

ans) 4 
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Sampling a production line for defective parts. 

However, it is not correct to assume that the sample points of S, are equally likely. 

This would be true if and only if each of the three computer systems is just as likely 

to fail as to be operable at launch time. Our technology is much better than that! The 

primary question to be answered is “What is the probability that at least one system 

will be operable at the time of the launch?” That is, what is 

Pli{yyy, yyn, yny, ynn, nyy, nyn, nny})? 

As will be shown later, this question can be answered. However, since the sample 

points are not equally likely, it cannot be answered using the classical method. 

Not all trees are symmetric as is that pictured in Fig. 1.2. In some settings, 

paths end at different stages of the game. Example 1.2.3 illustrates an experiment of 
this sort. 

Example 1.2.3. Consider a production process that is known to produce defective 

parts at the rate of one per hundred. The process is monitored by testing randomly se- 

lected parts during the production process. Suppose that as soon as a defective part is 

found, the process will be stopped and all machine settings will be checked. We are in- 

terested in studying the number of parts that are tested in order to obtain the first de- 

fective part. In the tree of Fig. 1.3, c represents that the sampling continues and s 

represents that production is stopped. Notice that as soon as a defective item is found, 

the process ends and the path also ends. For this reason, some paths are much shorter 

than others. Notice also that theoretically this tree continues indefinitely. The sample 
space generated by the tree is 

Si nS CONC ON NCCCMMCCCONMEE 

Since defective parts occur with probability .01, it should be evident that the paths of 
this tree are not equally likely. 
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Mutually Exclusive Events 

Occasionally interest centers on two or more events that cannot occur at the same 
time. That is, the occurrence of one event precludes the occurrence of the other. 
Such events are said to be mutually exclusive. 

Example 1.2.4. Consider the sample space 

Chee Bee) ie 

of Example 1.2.1. The events 

A,: primary system operable = {yyy, yyn, yny, ynn} 

A,: primary system inoperable = {nyy, nyn, nny, nnn} 

are mutually exclusive. It is impossible for the primary system to be both operable and 
inoperable at the same time. Mathematically, A, and A, have no sample points in com- 

mon. That is, A; 1 A, = ©. 

Example 1.2.4 suggests the mathematical definition of the term “mutually ex- 

clusive events.” 

Definition 1.2.3 (Mutually exclusive events). Two events A, and A, are 

mutually exclusive if and only if A, A, = W. Events A), A>, A3,... are 

mutually exclusive if and only if A; U A; = © for i # j. 

1.3 PERMUTATIONS AND COMBINATIONS 

As indicated in Sec. 1.1, there are several ways to determine the probability of an 

event. When the physical description of the experiment leads us to believe that the 

possible outcomes are equally likely, then we can compute the probability of the oc- 

currence of an event using the classical method. In this case the probability of an 

event A is given by 

n(A) 

n(S) 
P[A] = 

Thus to compute a probability using the classical approach, you must be able to 

count two things: n(A), the number of ways in which event A can occur, and n(S), 

the number of ways in which the experiment can proceed. As the experiment be- 

comes more complex, lists and trees become cumbersome. Alternative methods for 

counting must be found. 

Two types of counting problems are common. The first involves permutations 

and the second, combinations. These terms are defined as follows: 
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Definition 1.3.1 (Permutation). A permutation is an arrangement of objects 

in a definite order. 

Definition 1.3.2 (Combination). A combination is a selection of objects 
without regard to order. 

Note that the characteristic that distinguishes a permutation from a combina- 

tion is order. If the order in which some action is taken is important, then the prob- 

lem is a permutation problem and can be solved using a technique called the 

multiplication principle. If order is irrelevant, then it is a combination problem and 
can be solved using a formula that we shall develop. 

Example 1.3.1 

1. Twenty different amino acids are commonly found in peptides and proteins. A 

pentapeptide consisting of the five amino acids 

alanine-valine-glycine-cysteine-tryptophan 

has different properties and is, in fact, a different compound from the pentapeptide 

alanine-glycine-valine-cysteine-tryptophan 

which contains the same amino acids. Peptides are permutations of amino acid 
units because the sequence, or order, of the amino acids in the chain is important. 

2. A foundry ships engine blocks in lots of size 20. Before a lot is accepted, three 
blocks are selected at random and tested for hardness. Only three are tested be- 
cause the testing requires that the blocks be cut in half, and is therefore destruc- 
tive. The three blocks selected constitute a combination of engine blocks. We are 
interested only in which three are selected; we are not interested in the order in 
which they are chosen. 

Counting Permutations 

Once a problem has been identified as being one in which order is important, the 
next question to be answered is, “How many permutations or arrangements of 
the given objects are possible?” This question usually can be answered by means 
of the multiplication principle. 

Multiplication principle. Consider an experiment taking place in k stages. Let 
n, denote the number of ways in which stage i can occur for i = 1, 2, cetev aang 6 
Altogether the experiment can occur in IT4_ jn, = n, - Ny * Ny ** * Mm Ways. 

The next example illustrates the use of this principle. 
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Example 1.3.2. In how many ways can the five amino acids, alanine, valine, glycine, 
cysteine, tryptophan, be arranged to form a pentapeptide? This is a five-stage experi- 
ment, since there are five amino acids that must fall into place in the chain. This is in- 
dicated by drawing five slots and mentally noting what they represent. 

Ist 2d 3d 4th Sth 
acidin acidin acidin acidin acid in 

chain chain chain chain chain 

In how many ways can the first stage of the experiment occur? Answer: Five. There 
are five acids available, any one of which could fall into the first position. Indicate this 
by placing a 5 in the first slot. 

5 

Ist 2d 3d Ath Sth 
acidin acidin acidin acidin  acidin 

chain chain chain chain chain 

Once the first stage is complete, in how many ways can stage 2 be performed? An- 
swer: Four. Since each pentapeptide is to contain the five amino acids mentioned, rep- 
etition of the acid first in the chain is not permitted. The second member of the chain 
must be one of the four acids remaining. Indicate this by placing a 4 in the second slot. 

B) 4 

Ist 2d 3d 4th Sth 

acidin acidin acidin acidin acidin 

chain chain chain chain chain 

Similar reasoning leads us to conclude that stage 3 can take place in 3 ways, stage 4 in 

2 ways, and stage 5 in | way. By the multiplication principle there are 

Sa et ee ees I = 120 

Ist 2d 3d Ath 5th 

acidin acidin acidin acidin acidin 

chain chain chain chain chain 

pentapeptides that can be formed from these five amino acids. 

There are several guidelines to keep in mind when using the multiplication 

principle: 

Guidelines for Using the Multiplication Principle 

1. Watch out for repetition versus nonrepetition. Sometimes objects can be re- 

peated; sometimes they cannot. Whether or not repetition is allowed is deter- 

mined by the physical context of the problem. 

2. Watch out for subtraction. Consider event A. Occasionally it will be difficult, 

if not impossible, to find n(A) directly. However, S = A U A’. Since A and A’ 

have no points in common, n(S) = n(A) + n(A'). This implies that n(A) = 

nis) = nA. 
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3. If there is a stage in the experiment with a special restriction, then you should 

think about the restriction first. 

These points are illustrated in the next example. 

Example 1.3.3. The DNA-RNA code is a molecular code in which the sequence of 

molecules provides significant genetic information. Each segment of RNA is com- 

posed of “words.” Each word specifies a particular amino acid and is composed of a 

chain of three ribonucleotides. Each of the ribonucleotides in the chain is either ade- 

nine (A), uracil (U), guanine (G), or cytosine (C). 

1. How many words can be formed? Here repetition is allowed. By the multiplica- 

tion principle there are 4 - 4 - 4 = 64 possible RNA words. 

2. How many of these words involve some repetition? To answer this question, we 

use subtraction. There are 64 words possible. By the multiplication principle, 

4-3-2 = 24 of these have no repeated nucleotides. The remaining 64 — 24 = 

40 words must involve some repetition. 

3. How many of the 64 words end with the nucleotides uracil or cytosine and have 

no repetition? Since there is a restriction on the last position of the chain, we con- 

sider it first by placing a 2 in the third position. 

5) 

Ist 2d 3d 

Once this restriction has been taken care of, we note that repetition is not allowed. This 

means that the nucleotide in position 3 cannot be used again. The first position can be 

filled with any of the three remaining nucleotides, and the second by either of the two 

that will be left at that point. By the multiplication principle the number of words that 

end with uracil or cytosine and have no repetition is 

ne et es bo 

Ist 2d 3d 

The use of the multiplication principle often results in a product of the form 

n(n — 1)(n — 2)+++3+2+ 1, where 7 is a positive integer. For example, we found 

that the number of pentapeptides that can be formed from the five different amino 

acids is 5+ 4-+-3.+2-+ 1. This product can be denoted by using what is called factor- 

ial notation. 

Definition 1.3.3 (Factorial notation). Let n be a positive integer. The 
product n(n — 1)(n — 2)+++3+2- 1 is called n factorial and is denoted 

by n!. Zero factorial, denoted by 0!, is defined to be 1. 

When we use this notation, the number of pentapeptides that can be formed 
from five different amino acids is 5!. Even though the need for zero factorial is not 

obvious yet, its purpose will become apparent soon. 
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One formula for counting permutations can be derived easily from the multi- 
plication principle. Suppose that we have n distinct objects but we are going to use 
only r of these objects in each arrangement. How many permutations are possible in 
this case? Let us denote this number by ,,P.. Note that the subscript on the left de- 
notes the number of distinct objects available, the P denotes the fact that we are 
counting permutations, and the subscript on the right denotes the number of objects 
used per arrangement. Since each permutation is to be an arrangement of r different 
objects, we need r slots: 

Ist 2d SCT Seah 
object object object object 

Since n distinct objects are available, we have n choices for the first slot. Repetition 
is not allowed, so the number of permutations is given by 

Time Mae (Tee |) 2 tee, eae (?) 

Ist 2d 3d rth 
object object object object 

To find the last number in the product, note that the number subtracted from n in 

each factor is one less than the slot number. Thus the rth factor will be n — (r — 1) 

=n—rt+t 1. We now have that 

es SUNG = ARG r= ay sa Oa gen) 

Note that 

rene (en) ee eee (Weta) (ear) (a) ea oe 

(n—r)! CT Gie= ae = Bho 2 Ono PL Oni 

=e Ti oala 

Substituting, we have shown that the formula for finding the number of permuta- 
tions of n distinct objects taken r at a time is as stated in the next theorem. 

Theorem 1.3.1. The number of permutations of n distinct objects used r at a 
time, denoted by ,,P., is 

Example 1.3.4 

9! ) Oe eee 

7! MeL 
— = 5040 <8 OS eT ah 
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Note that in order to apply Theorem 1.3.1, the objects to be arranged must be 

distinct, no repetition is allowed, and there can be no restrictions on any position in 

the arrangement. This formula will not solve all your permutation problems! The 

multiplication principle should be the first thing that comes to mind once you real- 

ize that a problem involves order, either natural or imposed. 

Counting Combinations 

Thus far we have considered counting problems in which order is important. We 

now turn our attention to situations in which order is irrelevant. That is, we now 

consider problems involving combinations rather than permutations. One very use- 

ful formula for finding the number of combinations of n distinct objects selected 

rat atime can be derived. Note that arranging r objects taken from n that are avail- 

able is a two-stage process. The r objects must first be selected; denote the number 

of ways to select these objects by ,,C,. The r objects selected must then be arranged 

in order; this can be done in r! ways. By the multiplication principle the number of 

arrangements of r objects taken from n is 

n EF, = om r} 

Solving this equation for ,C, and applying Theorem 1.3.1, we see that 

nay = ni aa a 
ri or! (i)! 

This result is summarized in the next theorem and illustrated in Example 1.3.5. 

Theorem 1.3.2. The number of combinations of n distinct objects selected r at 

a time, denoted by ,,C,, or a) is given by 

Fi rn — 

Example 1.3.5 

~3\(Sieayl  310t @ 3'D e1 

5 5! 5! 
eh 5.0.5 ee 

(°) 2) © Ol(Si= OV) DIS! 

It is usually difficult at first to distinguish combinations from permutations. 
Look for the key words “select” and “arrange.” The former signals that the problem 
involves combinations; the latter, that a permutation is sought. 
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Example 1.3.6. A foundry ships a lot of 20 engine blocks of which five contain in- 
ternal flaws. The purchaser will select three blocks at random and test them for hard- 
ness. The lot will be accepted if no flaws are found. What is the probability that this 
lot will be accepted? To answer this question, we must count two things: the number 
of ways to select 3 engine blocks from 20, and the number of ways to select 3 engine 
blocks from 20 and obtain no flawed engines. The former quantity is given by 

_ 20! _ 20-19. Ss 17! 
2003 3117! Zee eal RI nee cae 

In order to obtain no flawed engines, all 3 of the sampled engines must be selected 
from among the 15 unflawed engines in the lot. This can be done in 

loin (514 os 12! 
mel 1213! 3231 19! aap 

ways. Since the engines selected for testing are chosen at random, each of the 1140 

possible samples is equally likely. Using the classical approach to probability, we have 

455 
P[lot is accepted] = 1140 

Permutations of Indistinguishable Objects 

Thus far we have been concerned only with permutation problems that may or may 

not involve repetition. Now we consider situations in which repetition is inevitable. 

The question to be answered 1s, “How many distinct arrangements of n objects are 

possible if some of the objects are identical and therefore cannot be distinguished 

one from the other?” An example will show that we already have available the tools 

to answer this question. 

Example 1.3.7. Consider a computer with 16 ports and assume that at any given time 

each port is either in use (), not in use but operable (1), or inoperable (i). How many 

configurations are possible in which 10 ports are in use, 4 are not in use but are oper- 

able, and 2 are inoperable? A typical sequence of this sort is 

UULUINNUNUUNUUUU 

To determine the number of ways that these letters can be permuted to form other 

arrangements, consider the 16 ports. If we could control port usage, then we are faced 

with a three-step process. These steps are: 

Step 1: Select 10 ports for usage. This can be done in ;¢C\y = 8008 ways. 

Step 2: Select 4 of the remaining 6 ports to represent ports that are not in use but 

which are operable. This can be done in 6C, = 15 ways. 

Step 3: Select the remaining 2 ports to represent inoperable ports. This can be 

done in ,C, = 1 way. 
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The multiplication principle guarantees that the entire three-step process can be 

done in 

16C10* 6C4* 2C2 = (8008) (15) (1) 

120,120 ways 

Let us use the solution to the above problem to suggest a general formula that 

can be used to solve other problems involving permutations of indistinguishable ob- 

jects. The expression jgCjo * 6C4 * »C, can be written as 

16! 6! 2! 
w6C10 * 64 * 2 = THV6T 4191 2101 

16! 
~ 101412! 

Notice that the terms of this product are predictable from the original problem. The 

16! appears in the numerator because there is a total of 16 ports. The three terms 

10!, 4!, and 2! arise due to the fact that there are three types of letters, 10 w’s, 4 n’s, 
and 2 i’s, being permuted. This suggests that to solve a permutation problem of this 

sort, we need to determine n, the total number of objects being permuted, and 

Ny, No, .. . MN, the number of each of the k types of objects involved. The general for- 

mula for the total number of distinguishable arrangements of these objects is then 

given by 

Permutations of Indistinguishable Objects 

n! 
1 Secath WW 3 1 a aye tae Pa sg fs 

n,!ny! rah 2 el ny! 

A general argument similar to that given above will show that this formula does 
hold for any values of n, n,, No, . . . Ny. 

Example 1.3.8. A traffic engineer is setting the timing on a series of 10 stoplights on 

the main street of a small town. At any given time a light can be either red, yellow, or 

green. How many color patterns are possible for the series of lights at startup? If the 

lights come on at random at startup, what is the probability that the initial setting will 

consist of 3 red, 5 yellow, and 2 green lights? 

This is a 10-step process with 3 choices for each step. By the multiplication prin- 
ciple, the number of ways to form color patterns is 

3. Bo See 8 #3 aD a5 seat 5 aes Meer UaG 

The formula for permutations of indistinguishable objects yields 

10! 
rere a ere 
J.-J. 4. 
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ways to obtain a 3 red, 5 yellow, 2 green color split. Thus, the probability of obtaining 
this split at startup is given by 

2520 
59049 ~ 0427 

CHAPTER SUMMARY 

In this chapter we discussed how to interpret probabilities. We also presented three 
methods for assigning probabilities to events. These are called the personal, relative 
frequency, and classical approaches. We also introduced and defined important 
terms that you should know. These are 

Sample space Mutually exclusive events 
Sample point Permutation 
Event Combination 
Impossible event n! 

Certain event 0! 

In solving permutation problems, we used the multiplication principle. This prin- 

ciple was used to derive a formula for ,,P., the number of permutations of n distinct 

objects arranged r at a time. We also derived a formula for finding ,,C,, the number 
of combinations of n distinct objects selected r at a time. 

EXERCISES 

Section 1.1 

1. One environmental hazard recently identified is overexposure to airborne as- 

bestos. In a sample of 10 public buildings over 20 years old, three were found 

to be insulated with materials that produced an excess number of airborne as- 

bestos bodies. What is the approximate probability that another building of 

this type will have this problem? What method are you using to assign this 

probability? 

2. Asample of 75 bridges in a given state is selected, and the bridges chosen are 

inspected for structural weaknesses. If 30 of the bridges sampled are found to 

have serious problems, what is the estimated probability that the next bridge 

sampled in the state will have serious structural problems? What method for as- 
signing probabilities are you using to obtain this estimate? 

3. Hemophilia is a sex-linked hereditary blood defect of males characterized by 

delayed clotting of the blood which makes it difficult to control bleeding, even 

in the case of a minor injury. When a woman is a carrier of classical hemo- 

philia, there is a 50% chance that a male child will inherit the disease. If a car- 

rier gives birth to two sons, what is the probability that both boys will have the 

disease? What approach to probability are you using to answer this question? 
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4. A foundry produces brake pads for use in Ford motor cars. A particular lot of 
50 such pads contains 2 that have burrs (or rough spots) that were missed in the 

grinding process. If one part is selected at random from the lot to be installed in 

your car, what is the probability that it will have a burr? Is this a relative fre- 

quency approximation or a classical probability? 

Section 1.2 

5. Fission occurs when the nucleus of an atom captures a subatomic particle 

called a neutron and splits into two lighter nuclei. This causes energy to be re- 

leased. At the same time other neutrons are emitted, two or three on the aver- 

age. If at least one of these is captured by another fissionable nucleus, then a 

chain reaction is possible. 

(a) Consider a reaction in which three neutrons are emitted initially. Let c de- 

note that a given neutron is captured by another nucleus; let n denote that 

the neutron is not captured by another nucleus. Construct a tree denoting 

the possible behavior for these three neutrons. 

(b) List the sample points generated by the tree. 

(c) List the sample points that constitute each of these events: 

A,: achain reaction is possible 

A,: all three neutrons are captured 

A,;: achain reaction is not possible 

(d) Are A, and A, mutually exclusive? 

Are A, and A; mutually exclusive? 

Are A, and A; mutually exclusive? 

Are A,, A>, and A; mutually exclusive? 
(e) The probability that a neutron will be captured depends on its neutron en- 

ergy and is not the same for each neutron. Under these circumstances, is it 
correct to say that the probability that all three neutrons will be captured is 
1/8 because this can occur in only one way and there are eight paths 
through the tree of part (a)? Explain your answer. 

6. In ballistics studies conducted during World War II it was found that, in 
ground-to-ground firing, artillery shells tended to fall in an elliptical pattern 
such as that of Fig. 1.4. The probability that a shell would fall in the inner el- 
lipse is .50; the probability that it would fall in the outer ellipse is .95. (“Statis- 
tics and Probability Applied to Problems of Antiaircraft Fire in World War II,” 
E. S. Pearson, Statistics: A Guide to the Unknown, Holden-Day, San Francisco, 
1972, pp. 407-415.) 
(a) A firing is considered to be a success (s) if the shell falls within the inner 

ellipse; otherwise it is failure (f). Construct a tree to represent the firing of 
three shells in succession. 

(b) List the sample points generated by the tree. 
(c) Let A, denote the event that the first firing is successful, A, the event that 

the second firing is successful, and A; the event that the third firing is suc- 
cessful. List the sample points that make up each of these three events. Are 
the events mutually exclusive? Explain from both a practical and a mathe- 
matical point of view. 
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FIGURE 1.4 

50% of the shells fall in the inner ellipse. 

(d) Describe the event A; verbally, and then list the sample points that make up 
this event. 

(e) Describe the event A, M A; M A; verbally, and list the sample points that 
make up this event. 

(f) Explain why classical probability can be used to find the probability of the 

event described in part (e), and find this probability. 

7. Ahome computer is tied to a mainframe computer via a telephone modem. The 

home computer will dial repeatedly until contact is made. Once contact has been 

established, the dialing process will, of course, end. Let c denote the fact that 

contact is made on a particular attempt and n denote that contact is not made. 

(a) Construct a tree diagram to represent the dialing process. 

(b) Are the paths through the tree equally likely? 

(c) List the sample points generated by the tree. Can this list ever be com- 

pleted? 

(d) List the sample points that constitute event A: contact is made in at most 

four attempts. 

(e) Give an example of two events that are not impossible but that are mutu- 

ally exclusive. 

8. A missile battery can fire five missiles in rapid succession. As soon as the tar- 

get is hit, firing will cease. Let h denote a hit and m a miss. 

(a) Draw the tree to represent the possible firing of these missiles at a single 

incoming target. 
(b) Is there any difference in the tree drawn here and that illustrated in Ex- 

ample 1.2.3? Explain. 

(c) List the sample points generated by the tree. 

(d) List the sample points that constitute the events 

A,: exactly two shots are fired 

A,: at most two shots are fired 

Are these events mutually exclusive? Explain. 

Section 1.3 

9. Evaluate each of these expressions: 

(a) 9! (6) 6! 

(c) 7P3 (@) 6P>2 

(Oy des ea) ae, 
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FIGURE 1.5 
A simplified diagram of the Apollo system. 
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In investigating the Ideal Gas Law, experiments are to be run at four different 

pressures and three different temperatures. 

(a) How many experimental conditions are to be studied? 

(b) If each experimental condition is replicated (repeated) 5 times, how many 

experiments will be conducted on a given gas? 

(c) How many experiments must be conducted to obtain five replications on 

each experimental condition for each of six different gases? 
In setting up a computer system for the home firm to use in quality control, an 

engineer has four choices for the main unit: IBM, VAX, Honeywell, or HP. 

There are six brands of CRTs that can be purchased and three types of graphics 

printers. 

(a) If all equipment is compatible, in how many ways can the system be 

designed? 

(b) If the engineer wants to be able to use a statistical software package that is 

only available on IBM and VAX equipment, in how many ways can the 

system be designed? 

In Exercise 6 we considered the experiment of firing three artillery shells in 

succession. Each firing was classed as being either a success or a failure. Use 

the multiplication principle to verify that the number of paths through the tree 
representing this experiment is 8. 

The Apollo mission to land humans on the moon made use of a system whose 

basic structure is shown in Fig. 1.5. For the system to operate successfully, all 

five components shown must function properly. Let us identify each compo- 

nent as being either operable (O) or inoperable (7). Thus the sequence OOOOi 

denotes a state in which all components except the LEM engine are operable. 

(“Striving for Reliability,” Gerald Lieberman, Statistics: A Guide to the Un- 

known, Holden-Day, San Francisco, 1972, pp. 400-406.) 
(a) How many states are possible? 
(b) How many states are possible in which the LEM engine is inoperable? 
(c) The mission is deemed at least partially successful if the first three com- 

ponents are operable. How many states represent at least a partially suc- 
cessful mission? 

(d) The mission is a total success if and only if all five components are oper- 
able. How many states represent a totally successful mission? 

The basic storage unit of a digital computer is a “bit.” A bit is a storage posi- 
tion that can be designated as either on (1) or off (0) at any given time. In 
converting picture images to a form that can be transmitted electronically, 
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a picture element, called a pixel is used. Each pixel is quantized into gray 
levels and coded using a binary code. For example, a pixel with four gray 
levels can be coded using two bits by designating the gray levels by 00, 01, 
10, and 11. 
(a) How many gray levels can be quantized using a four-bit code? 
(b) How many bits are necessary to code a pixel quantized to 32 gray levels? 
Tests will be run on five different coatings used to protect fiber optics cables 
from extreme cold. These tests will be conducted in random order. 
(a) In how many orders can the tests be run? 
(b) If two of the coatings are made by the same manufacturer, what is the 

probability that tests on these coatings will be run back to back? 
The effectiveness of irradiated polymers in the removal of benzene from water 
is being investigated. Three polymers are to be studied. Each is to be tested at 
four different temperatures and three different radiation levels. 

(a) How many different experimental conditions are under study? 

(b) If each experimental condition is to be replicated (repeated) five times, 

how many experiments must be conducted? 

Evaluate each of these expressions: 

(a) Cy (b) 3C; 

(c) (8) ) (5) 
A contractor has 8 suppliers from which to purchase electrical supplies. He will 

select 3 of these at random and ask each supplier to submit a project bid. In 

how many ways can the selection of bidders be made? If your firm is one of the 

8 suppliers, what is the probability that you will get the opportunity to bid on 

the project? 

A chemical engineer has 7 different treatments that she wishes to compare for 

effectiveness in producing a sand cast to be used in casting molten iron. She 

wants to compare each treatment to each of the others. How many pairwise 

comparisons will she have to make? That is, in how many ways can these treat- 

ments be selected two at a time? 
To get the opportunity to enter the McNeill River Brown (Grizzly) Bear Sanc- 

tuary in Alaska, one must enter a lottery. For a given year there are 2000 indi- 

viduals entered, and of these a set of 120 names will be randomly selected. 

Assume that you and a friend are both entered into the lottery. 

(a) In how many ways can a set of 120 names be randomly selected from 

among the 2000 entered in the drawing? 

(b) In how many ways can the drawing be done in such a way that you and 

your friend are both selected? 
(c) What is the probability that you and your friend will both be chosen? 

A firm employs 10 programmers, 8 systems analysts, 4 computer engineers, 

and 3 statisticians. A “team” is to be chosen to handle a new long-term project. 

The team will consist of 3 programmers, 2 systems analysts, 2 computer engi- 

neers, and | statistician. 

(a) In how many ways can the team be chosen? 
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(b) If the customer insists that one particular engineer with whom he or she 

has worked before be assigned to the project, in how many ways can the 

team be chosen? 
A company receives a shipment of 20 hard drives. Before accepting the ship- 

ment, 5 of them will be randomly selected and tested. If all 5 meet specifica- 

tions, then the shipment will be accepted; otherwise all 20 will be returned to 

the manufacturer. If, in fact, 3 of the 20 drives are defective, what is the proba- 

bility that the shipment will not be accepted? 

A control chart is used to monitor the average thread count produced by a ma- 

chine making spandex cloth. Samples are taken periodically, and each sample 

is Classified into one of 5 categories. These are: in control but above average, in 

control and average, in control but below average, out of control and high, and 

out of control and low. In taking a series of 20 samples, in how many ways can 

we obtain a series in which there are exactly 

(a) 5 samples in control but above average, 5 samples in control but below ay- 

erage, 5 samples in control and average, 3 samples out of control and high, 

and the rest out of control and low? 
(b) 18 samples in control and 2 out of control? 

The oil embargo of 1973 spurred a study of the possibility of using automatic 

meter readings to reduce costs to power companies. One procedure studied 
entailed the use of 128-bit messages. Occasionally transmission errors occur 

resulting in a digit reversal of one or more bits. How many messages can be 

sent that contain exactly two transmission errors? Hint: Think of a message 

as being a permutation of 128 objects, each of which is either correct (c) or 
not correct (7). 

In studying a chemical reaction, 12 experiments will be conducted. Four dif- 
ferent temperatures will be used 3 times, each with the temperatures run 
in random order. In how many orders can the series of experiments be con- 
ducted? 
A garage door opener has six toggle switches, each with three settings: up, cen- 
ter, and down. 

(a) In how many ways can these switches be set? 
(b) Ifathief knows the type of opener involved but does not know the setting, 

what is the probability that he or she can guess the setting on the first 
attempt? 

(c) How many settings are possible in which two switches are up, two are 
down, and two are in the center? 

Consider Example 1.2.1. 

(a) Without looking at the tree diagram, how many paths through the tree will 
represent the fact that exactly two of the three computers are ready at the 
time of the launch? Verify your answer by listing these paths. 

(b) If 10 computers were used instead of 3, the tree given in Fig. 1.1 could be 
expanded to answer questions posed concerning the number of computers 
that are ready at launch time. How many paths would such a tree entail? 
How many of these paths would represent the fact that exactly 7 of the 10 
computers are ready at launch time? 
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The configuration of a particular computer terminal consists of a baud-rate set- 

ting, a duplex setting, and a parity setting. There are 11 possible baud-rate set- 
tings, two parity settings (even or odd), and two duplex settings (half or full). 

(a) How many configurations are possible for this terminal? 

(b) In how many of these configurations is the parity even and the duplex full? 

(c) Aline surge occurs that causes these settings to change at random. What is 

the probability that the resulting configuration will have even parity and be 
full duplex? 

A firm offers a choice of 10 free software packages to buyers of their new home 

computer. There are 25 packages from which to choose. In how many ways can 

the selection be made? Five of the packages are computer games. How many 

selections are possible if exactly three computer games are selected? 

A project manager has 10 chemical engineers on her staff. Four are women and 

six are men. These engineers are equally qualified. In a random selection of three 

workers, what is the probability that no women will be selected? Would you con- 

sider it unusual for no women to be selected under these circumstances? Explain. 

A computer system uses passwords that consist of five letters followed by a sin- 

gle digit. 

(a) How many passwords are possible? 

(b) How many passwords consist of three A’s and two B’s, and end in an even 

digit? 
(c) If you forget your password but remember that it has the characteristics de- 

scribed in part (b), what is the probability that you will guess the password 

correctly on the first attempt? 
A mainframe computer has 16 ports. At any given time each port is either in use 

or not in use. How many possibilities are there for overall port usage of this 

computer? How many of these entail the use of at least 1 port? 

A flashlight operates on two batteries. Eight batteries are available, but three 

are dead. In a random selection of batteries, what is the probability that exactly 

one dead battery will be selected? 
An electrical control panel has three toggle switches labeled I, I, and III, each 

of which can be either on (QO) or off (F). 

(a) Construct a tree to represent the possible configurations for these three 

switches. 

(b) List the elements of the sample space generated by the tree. 

(c) List the sample points that constitute the events 

A: at least one switch is on 

B: switch I is on 

C: no switch is on 
D: four switches are on 

(d) Are events A and B mutually exclusive? Are events A and C mutually ex- 

clusive? Are events A and D mutually exclusive? 
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(e) What is the name given to an event such as D? 

(f) If at any given time each switch is just as likely to be on as off, what is the 

probability that no switch is on? 

. Two items are randomly selected one at a time from an assembly line and 

classed as to whether they are of superior quality (+), average quality (0), or 

inferior quality (—). 

(a) Construct a tree for this two-stage experiment. 

(b) List the elements of the sample space generated by the tree. 

(c) List the sample points that constitute the events 

A: the first item selected is of inferior quality 

B: the quality of each of the items is the same 

C: the quality of the first item exceeds that of the second 

(d) Are the events A and B mutually exclusive? Are the events A and C mutu- 

ally exclusive? 

(e) Give a brief verbal description of these events: 

AGGUE SAS Bs 
ANB PASC eB 

(f) It is known that 90% of the items produced are of average quality, 1% are 
of superior quality, and the rest are of inferior quality. It is argued that 

since the classification experiment can proceed in nine ways with only one 

of these resulting in two items of average quality, the probability of ob- 

taining two such items is 1/9. Criticize this argument. 

An experiment consists of selecting a digit from among the digits 0 to 9 in such 

a way that each digit has the same chance of being selected as any other. We 

name the digit selected A. These lines of code are then executed: 

IFA < 2 THEN B = 12; ELSE B = 17; 

IF B= I2THEN C=A =); ELSE C= 0: 

(a) Construct a tree to illustrate the ways in which values can be assigned to 
the variables A, B, and C. 

(b) Find the sample space generated by the tree. 

(c) Are the 10 possible outcomes for this experiment equally likely? 
(d) Find the probability that A is an even number. 

(e) Find the probability that C is negative. 

(f) Find the probability that C = 0. 

(g) Find the probability that C = 1. 
Consider Exercise 16. If experimental runs are to be done in random order, how 
many different sequences are possible? (Set up only!) In experiments of this 
sort, runs are not usually done randomly. Rather, they are carefully designed so 
that the researcher has control of the order of experimentation. Can you think 
of some practical reasons for why this is necessary? 
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PROBABILITY 
LAWS 

[ Chap. | we considered how to interpret probabilities. In this chapter we con- 

sider some laws that govern their behavior. The laws that we shall present are 

those that will have a direct application to problem solving. These laws will be 

stated and illustrated numerically. Their derivations are not hard, and most of them 

are left as exercises. 

2.1 AXIOMS OF PROBABILITY 

You have probably seen the development of a mathematical system in your study of 

high school geometry. In developing any mathematical system, one begins by stat- 

ing a few basic definitions and axioms that underlie the system. The definitions are 

the technical terms of the system; axioms are statements that are assumed to be true 

and therefore require no proof. Usually one starts with as few axioms as possible 

and then uses these axioms and the technical definitions to develop whatever theo- 

rems follow logically. Some technical terms such as sample space, sample point, 

event, and mutually exclusive events have already been introduced. One can de- 

velop a useful system of theorems pertaining to probability with the aid of these de- 

finitions and three axioms, called the axioms of probability. 

Axioms of probability. 
1. Let S denote a sample space for an experiment: 

P(S] =1 

2. P [A] = 0 for every event A. 

3. Let Aj, A>, A;,... bea finite or an infinite collection of mutually exclusive 

events. Then P[A, UA,U A,+:-] = PIA;] + P[A,] + PIA] +-::. 
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Axiom | states a fact that most people regard as obvious; namely, the proba- 

bility assigned to the certain event S is 1. Axiom 2 ensures that probabilities can 

never be negative. Axiom 3 guarantees that when one deals with mutually exclusive 

events, the probability that at least one of the events will occur can be found by 

adding the individual probabilities. An important consequence of this axiom is that 

it gives us the ability to find the probability of an event when the sample points in 
the same space for the experiment are not equally likely. Example 2.1.1 illustrates 

this point. 

Example 2.1.1. The distribution of blood types in the United States is roughly 41% type 

A, 9% type B, 4% type AB, and 46% type O. An individual is brought into an emergency 

room and is to be blood-typed. What is the probability that the type will be A, B, or AB? 

The sample space for this experiment is 

S = {A, B, AB, O} 

The sample points are not equally likely, so the classical approach to probability is not 

applicable. That is, we cannot say that since there are four blood types and three of 

them are A, B, or AB the probability of obtaining one of these types is 4. Let A), A>, 
and A; denote the events that the patient has type A, B, and AB blood, respectively. 

The events A,, A>, and A; are mutually exclusive because one cannot have two differ- 

ent blood types at the same time. We are looking for P[A,; U A, U A]. By axiom 3, 

P[A, UA, U A3] = P[A,] + P[A2] + P[A3] 

Ah ot O09 + 04 

= 54 

An immediate consequence of these axioms is the fact that the probability 

assigned to the impossible event is 0, as you should suspect. The derivation of this 
result is outlined in Exercise 12. 

Theorem 2.1.1. P[@] = 0. 

Another consequence of the axioms is that the probability that an event will 
not occur is equal to | minus the probability that it will occur. For example, if the 
probability of a successful space shuttle mission is .99, then the probability that it 
will not be successful is | — .99 = .01. This idea is stated in Theorem 2.1.2. Its deri- 
vation is outlined in Exercise 12. 

Theorem 2.1.2. P[A’] = 1 — P[A]. 

The General Addition Rule 

We have seen how to handle questions concerning the probability of one or another 
event occurring if those events are mutually exclusive. We now develop a more 
general rule that will allow us to find the probability that at least one of two events 
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ex 
will occur when the events are not necessarily mutually exclusive. This rule is sug- 
gested by considering the Venn diagram of Fig. 2.1. Assume that the shaded region 
in the diagram, A, M A), is not empty so that A, and A, are not mutually exclusive. 
If we-claim that 

FIGURE 2.1 

P[A, U Ap] = PIA] + P[Ag] 

we have committed an obvious error. Since A, M A; is contained in A, and A, M A, 

is contained in A,, P[A,; M A,] has been included twice in our calculation. To correct 

this error, we subtract P[A, M A,] from the right-hand side of the equation to obtain 

the general addition rule: 

General addition rule 

PIA; U Ay) = PIA\| © PIAg) — PIA) 1) As) 

This rule can be derived from the axioms of probability and the theorems that we 

have already developed. Its proof is outlined in Exercise 12. The key word that sig- 

nals its use is the word “or.” 

Example 2.1.2. Components of a propulsion system can be arranged in series. How- 

ever, this arrangement has a serious drawback; if one component fails, the system fails. 

This is obviously a risky arrangement for space travel! Consider a system in which the 

main engine has a backup. These engines are designed to operate independently in that 

the success or failure of one has no effect on the other. The engine component is opera- 

ble if one or the other of these two engines is operable. Such a system is said to have the 

engine component in parallel. Assume that each engine is 90% reliable. That is, each 

functions correctly with probability .9. As we shall show later, it is then reasonable to as- 

sume that both engines operate correctly with probability .81. Find the probability that 

the engine component is operable. Let A,: the main engine is operable, and A): the 

backup engine is operable. We are given that P[A,] = P[A,] = .9 and that P[A; M A;] = 

.81. We want to find P[A, U A]. By the addition rule 

P[A, U Ay] = P[A,] + PLA] — PIA; 9 Ap] 
=O a 9.81 = 99 

The addition rule links the operations of union and intersection. If P[A, M Ap] 

is known, the addition rule can be used to find P[A,; U A,]. Similarly, if P[A,; U Ap] 
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FIGURE 2.2 
(a) P[A, 1 Ag] = .10; (b) PIA, AS] = .22; (c) P[A, M Aa] = .06; (d) PIA, MAS] = .62. 

is known, we can use the rule to find P[A; M A,]. Venn diagrams are helpful when 
using this rule. 

Example 2.1.3. A chemist analyzes seawater samples for two heavy metals: lead and 
mercury. Past experience indicates that 38% of the samples taken from near the mouth 
of a river on which numerous industrial plants are located contain toxic levels of lead 
or mercury: 32% contain toxic levels of lead and 16% contain toxic levels of mercury. 
What is the probability that a randomly selected sample will contain toxic levels of 
lead only? Let A, denote the event that the sample contains toxic levels of lead, and let 
A, denote that the sample contains toxic levels of mercury. We are given that 
P[A,] = .32, P[A,] = .16, and P[A, U A)] = .38. By the addition rule 

P[A, U Aj] = P[A,] + P[A,] — P[A, N Aj] 

or 38: = 32ib16-— PiAp(iAsl 

Solving this equation, we obtain P[A, M A] = .10. This is indicated in Fig. 2.2(a). 
Since P[A,] = .32 and A, /Q A, is contained in A, the probability associated with the 
shaded region in Fig. 2.2(b) is .22. Similarly, since A, N A, is contained in A), a prob- 
ability of .06 is associated with the shaded region of Fig. 2.2(c). Finally, since 
P[S] = 1, the probability assigned to the shaded area in Fig. 2.2(d) is .62. We are asked 
to find the probability that the sample will contain only lead. That is, we want to find 
P[A, M A5]. This probability, .22, can be read from Fig. 2.2(b). 

Notice that if the percentages reported in problems such as these are based on 
population data, then the probabilities calculated by use of the general addition rule 
are exact. However, if the percentages reported are based on samples drawn from a 
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| — S (all pregnant women) 
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FIGURE 2.3 

Partition of S. 

larger population, then the probabilities computed are relative frequency probabili- 
ties. They are approximations to the true probability of the occurrence of the event 
in question. Since most percentages reported in the literature are based on samples, 
most of them are properly viewed as being relative frequency probabilities. We use 
the word “probability” with the understanding that the probabilities given and com- 
puted by using the theorems in this chapter are, in most cases, only approximations. 

2.2 CONDITIONAL PROBABILITY 

In this section we introduce the notion of conditional probability. The name itself is 

indicative of what is to be done. We wish to determine the probability that some 

event A, will occur, “conditional on” the assumption that some other event A, has 

occurred. The key words to look for in identifying a conditional question are “if” 

and “given that.” We use the notation P[A,|A,] to denote the conditional probability 

of event A, occurring given that event A, has occurred. A simple example will sug- 

gest the way to define this probability. 

Example 2.2.1. In trying to determine the sex of a child a pregnancy test called 

“starch gel electrophoresis” is used. This test may reveal the presence of a protein 

zone called the pregnancy zone. This zone is present in 43% of all pregnant women. 

Furthermore, it is known that 51% of all children born are male. Seventeen percent of 

all children born are male and the pregnancy zone is present. The Venn diagram for 

these data is shown in Fig. 2.3. Let A, denote the event that the pregnancy zone is 

present, and A, that the child is male. We know that, for a randomly selected pregnant 

woman, P[A,] = .43, P[A2] = .51, P[A, M A,] = .17. If asked, “What is the probabil- 

ity that the child is male?” the answer is .51. Suppose we are given the information 

that the pregnancy zone is present and asked, “What is the probability that the child is 

male?” We now have information that was not available originally. What effect, if any, 

does this new information have on our belief that the child is male? That is, what is 

P[A,|A,]? Once we know that the pregnancy zone is present, our sample space no 

longer includes all pregnant women; it consists only of the 43% with this characteris- 

tic. Of these, .17/.43 = .395 have male children. Logic implies that 

P[male|zone present] = P[A,|A,] = .395 

Receipt of the information that the pregnancy zone is present reduces from .51 to .395 

the probability that the child is male. 
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To formalize the reasoning used in the previous example, note that P[A,| A;] 

is found by forming a ratio whose denominator is P[A,], the probability that the 

given event will occur. The numerator is P[A, M A>], the probability that both the 

given event and the event in question will occur. That is, we define the conditional 

probability as follows: 

Definition 2.2.1 (Conditional probability). Let A, and A, be events such 

that P[A,] # 0. The conditional probability of A, given A,, denoted by 

P[A,|A,], is defined by 

P[A, M Ap] 
P[A)] 

P[A,IA,] = 

Sometimes receipt of the information that event A, has occurred has no effect 

on the probability assigned to event A. That is, 

P[A,IA,] = P[A)] 

When this happens, A, and A, have a special relationship to one another. The nature 
of this relationship will be explored in the next section. In the meantime don’t be 
surprised if you find that a particular conditional probability does not differ from the 
original probability assigned to the event! 

2.3. INDEPENDENCE AND THE 
MULTIPLICATION RULE 

We have used the word “independent” informally in several previous examples. 
Webster’s dictionary defines independent objects as objects acting “irrespective of 
each other.” Thus two events are independent if one may occur irrespective of the 
other. That is, the occurrence or nonoccurrence of one does not alter the likelihood 
of occurrence or nonoccurrence of the other. In some cases it is reasonable to as- 
sume that two events are independent from the physical description of the events 
themselves. For example, suppose that a couple heterozygous for eye color has two 
children. Since the eye color of a child is affected only by the genetic makeup of the 
parents and not by the eye color of the other child, it is reasonable to assume that the 
events A;: the first child has brown eyes, and A: the second child has brown eves, 
are independent. However, in most instances the issue is not clear-cut. In these cases 
we need a mathematical definition of the term to determine without a doubt whether 
two events are, in fact, independent. 

To see how to characterize independence, let us consider a simple experiment 
that consists of rolling a single fair die once and then tossing a fair coin once. Let 
the first member of each ordered pair denote the number appearing on the die and 
the second, the face showing on the coin (H = heads, T = tails). A sample space for 
this experiment is 
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Dee 7), (2) A), PT), CG. A).G,D, 
(4, H), (4, T), GS, H), G, 7), (6, A), (6, T)} 

Since the die and the coin are considered to be fair, these 12 outcomes are equally 
likely. Consider these events: 

A: the die shows one or two 

B: the coin shows heads 

A 1 B: the die shows one or two and the coin shows heads 

Since knowing the result of the die roll gives us no additional information on how 

the coin will land, it is reasonable to assume that the events A and B are indepen- 

dent. Using classical probability, we easily see that 

PIA] = PL{(1, H), (1, D), (2, H), (2, D)}] = 4/12 = 1/3 
PIB] = PL{(1, A), (2, H), (3, H), (4, H), (5, H), (6, H)}] 

= 6/12 = 1/2 

P[A M B] = P[{(, A), (2, H)}] = 2/12 = 1/6 

More importantly, it is easy to see that for these physically independent events 

P|A 1 B] = P{A]~- P[B] 

Consider now an experiment that consists of drawing two coins in succession 

from a box containing a nickel (NV), a dime (D), and a quarter (Q). The first coin is 

not replaced before the second is drawn. A sample space for this experiment is 

Dee 1N, DCN. OQ), N) (DO) (ON) (OD); 

These outcomes are equally likely. Consider these events: 

A: the first coin is a dime 

B: the second coin is a dime 

Since we do not replace the first coin before the second draw, it is evident that if 

event A occurs, event B cannot occur. That is, knowledge that event A has occurred 

does give us information on whether or not event B will occur! These events are not 

independent. Using classical probability, we easily see that 

PIANO DO) hl 2/6 

PLB ier (NED) AO.) l= 2/0 
P[A N B] = P[@] = 0 

More importantly, it is easy to see that for these events that are not independent 

P[A  B] # P[A]P[B] 

Thus we have noticed that when A and B are clearly independent, P[A M B] = 

P[{A]P[B]; when they are clearly dependent, P[A ) B] # P[A]P[B]. This is not coin- 

cidental. It is natural to use this mathematical characterization as our technical defi- 

nition of the term “independent events.” 
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Definition 2.3.1 (Independent events). Events A, and A, are independent if 
and only if 

P[A; M Az] = P[A)JP[Ap] 

This definition is useful in two ways. If exact probabilities are available, then 

it serves as a test for independence. However, since most probabilities encountered 

in scientific studies are approximations, it is most useful as a way to find the prob- 

ability that two events will occur when the events are clearly independent. Example 
2.3.1 illustrates its use as a test for independence. 

Example 2.3.1. Consider the experiment of drawing a card from a well-shuffled deck 
of 52 cards. Let 

A,: a spade is drawn 

A: an honor (10, J, Q, K, A) is drawn 

Classical probability is used to see that P[A,] = 13/52 and P[A,] = 20/52. The proba- 

bility that a spade and an honor, P[A, M Aj], is drawn is 5/52. Notice that these prob- 

abilities are exact. They are not approximations based on observations of card draws. 
Are the events A, and A, independent? To decide, note that 

P[A,]P[A>] = (13/52)(20/52) = 5/52 

and P[A, M A,] = 5/52 

Since P[A; M A>] = P[A,]P[A>], we can conclude that these events are independent. 

In Chap. 15 a test for independence will be developed that can be used when 
working with real data rather than with classical probabilities. Its derivation is based 
on the definition of eee events just discussed. 

Example 2.3.2 illustrates the use of Definition 2.3.1 in finding the probability 
that two events will occur simultaneously when the events are clearly independent. 

Example 2.3.2. In Example 1.1.3, we found that the probability that a couple het- 
erozygous for eye color will parent a brown-eyed child is 3/4 for each child. Genetic 
studies indicate that the eye color of one child is independent of that of the other. Thus 
if the couple has two children, then the probability that both will be brown-eyed is 

first second first second 
an = (e 

brown brown brown brown 

eA 3. 3 

4 a 

9 

Definition 2.3.1 defines independence for any events A, and A,. If at least 
one of the events A, or A, occurs with nonzero probability, then an appealing ~ 
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characterization of independence can be obtained. To see how this is done, assume 
that P[A,] # 0. By Definition 2.3.1, A; and A, are independent if and only if 

P[A; M As] = P[A,]P[A)] 

Dividing by P[A,], we can conclude that A, and A, are independent if and only if 

P[A, NA)] PIA) PAalAi] = PLA 

A similar argument holds if P[A,] # 0. We have thus derived the result given in 

Theorem 2.3.1. = 

Theorem 2.3.1. Let A, and A, be events such that at least one of P[A,] or P[A)] 

is nonzero. A, and A, are independent if and only if 

P[A,|A,]=P[A,] if P[A,]#0 and 

P[A,|A] = P[A,] if P[A,] 0 

Since most events of real interest do occur with nonzero probability, Theorem 

2.3.1 is used as a test for independence. To understand the logic behind the theorem, 

let us reconsider the data of Example 2.3.1. 

Example 2.3.3. Consider the events A,, a spade is drawn, and A;, an honor is drawn. 

We know that P[A,] = 13/52, P[A,] = 20/52, and P[A,; M A,] = 5/52. Suppose we are 

asked, “What is the probability that a randomly selected card is an honor?” Our answer 

is 20/52. Suppose we are now told that the card is a spade and are asked, “What is the 

probability that the card is an honor?” That is, “What is P[A,|A,]?” If A, and A, are in- 

dependent, the new information is irrelevant and our answer should not change. That 

is, P[A,|A,] = P[A,]. Otherwise our answer should change, and P[A,|A,] # P[Aj]. In 

this setting, is P[A,|A,] = P[A,]? To answer this question, note that 

P[A,MAg] _ 5/52 
P[A] 13/52 

and | PUA 20/52. 5/15 

P{A,\A,) = = 15 

Since these probabilities are the same, we conclude via Theorem 2.3.1 that A, and A, 

are independent. 

Occasionally we must deal with more than two events. Again, the question 

arises, “When are these events considered independent?” Definition 2.3.2 answers 

this question by extending our previous definition to include more than two events. 

Definition 2.3.2. Let C = {A; i= 1,2,...,n} bea finite collection of 

events. These events are independent if and only if, given any subcollection 

A, Aa, + - +» Am Of elements of C, 

PlAgy NAg +++ OC Ag = PAG IPA) +++ PLAg] 
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Although this definition can be used to test a collection of events for indepen- 

dence, its main purpose is to provide a way to find the probability that a series of 

events that are assumed to be independent will occur. To illustrate, we reconsider a 

problem encountered in Chap. | (Example 1.2.1). 

Example 2.3.4. During a space shot, the primary computer system is backed up by 

two secondary systems. They operate independently of one another, and each is 90% 

reliable. What is the probability that all three systems will be operable at the time of 

the launch? Let 

A,: the main system is operable 

A,: the first backup is operable 

A,: the second backup is operable 

We are given that P[A,] = P[A] = P[A3] = .9. We want P[A, M A M Ag]. Since these 

events are assumed to be independent, 

P[A, M Ay M A3] = P[A,]P[A2] PIAS] 
(.9)(.9)(.9) 

= .729 

Definition 2.3.2 must be used with care. In particular, one must be certain that 

it is reasonable to assume that events are independent before it is applied to compute 

the probability that a series of events will occur. The danger of erroneously assumed 

independence is illustrated in Example 2.3.5. 

Example 2.3.5. An Atomic Energy Commission Study, WASH 1400, reported the 

probability of a nuclear accident such as that which occurred at Three Mile Island in 

March 1978 to be one in 10 million. Yet the accident did occur. According to Mark 

Stephens, “The methodology of WASH 1400 made use of event trees—sequences of ac- 

tions that would be necessary for accidents to take place. These event trees did not as- 

sume any interrelation between events—that they might be caused by the same error in 

judgment or as part of the same mistaken action. The statisticians who assigned proba- 

bilities in the writing of WASH 1400 said, for example, that there was a one-in-a- 

thousand risk of one of the auxiliary feed-water control valves—the twelves—being 

closed. And if there is a one-in-a-thousand chance of one valve being closed, the chances 

of both valves being closed is one-thousandth of that, or a million to one. But both of the 

twelves were closed by the same man on March 26—and one had never been closed 

without the other.” The events A;: the first valve is closed, and A,: the second valve is 

closed were not independent. However, they were treated as such when calculating the 

probability of an accident. This, among other things, led to an underestimate of the ac- 

cident potential (from Three Mile Island by Mark Stephens, Random House, 1980). 

The Multiplication Rule 

There is one further point to be made before we conclude this section. We can find 
P|A, ( A,] if the events are assumed to be independent. Furthermore, if the proper 
information is given, the general addition rule can be used to find this probability. 
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Is there any other way to find the probability of the simultaneous occurrence of two 
events if the events are not independent? The answer is yes, and the method is easy 
to derive. We know that 

P[A, NA] 

P[A,] 

regardless of whether the events are independent. Multiplying each side of this 

equation by P[A,], we obtain the following formula, called the multiplication rule: 

P[A|A,] = P[A,] #0 

Multiplication rule 

P[A, A] = P[AIA,|PIA,] 

The use of this rule is illustrated in Example 2.3.6. 

Example 2.3.6. Recent research indicates that approximately 49% of all infections in- 
volve anaerobic bacteria. Furthermore, 70% of all anaerobic infections are polymicro- 

bic; that is, they involve more than one anaerobe. What is the probability that a given 

infection involves anaerobic bacteria and is polymicrobic? Let A; denote the event that 

the infection is anaerobic, and A, that it is polymicrobic. We are given that P[A,] = .49 

and that P[A,|A,] = .70. We want to find P[A, M A,]. By the multiplication rule, 

P[A, M Ay] = P[AgIA;]PIA,] 
= (.70)(.49) 
= 333 

2.4 BAYES’ THEOREM 

The topic of this section is the theorem formulated by the Reverend Thomas Bayes 

(1761). It deals with conditional probability. Bayes’ theorem is used to find P[AIB] 

when the available information is not immediately compatible with that required to 

apply the definition of conditional probability directly. 

Example 2.4.1 is a typical problem calling for the use of Bayes’ theorem. You 

will find applying Bayes’ rule quite natural without having seen a formal statement 

of the theorem! 

Example 2.4.1. Assume that 40% of all interstate highway accidents involve exces- 

sive speed on the part of at least one of the drivers (event E) and that 30% involve al- 

cohol use by at least one driver (event A). If alcohol is involved there is a 60% chance 

that excessive speed is also involved; otherwise, this probability is only 10%. An ac- 

cident involves speeding. What is the probability that alcohol is involved? We are 

given these probabilities: 

P[E] = 40 P[A]=.30 P[EIA] = .60 

Pie} = .60 PiA =.70 PLEIA’] = 10 

We are being asked to find P[AIE]. Since this is a conditional question, it is natural to 

turn to the definition of conditional probability for a solution. In this case, 
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P[ENA] 
PIAIE] =~ pram 

Unfortunately, neither of the probabilities needed for the solution is immediately avail- 

able. However, each can be obtained easily. By the multiplication rule, 

P{EM A] = P[EI\AJP[A] 

Note that if excessive speed was involved, alcohol use either was or was not also 

involved. Hence event E can be subdivided into two mutually exclusive events as 

follows: 

E=(ENA)U(ENA’) 

Thus P[E] = PIEN A] + P[IEN A’) 

An expression has already been found for the first probability on the right; the multi- 

plication rule can be applied to the second probability to see that 

P[EN A’) = P[EIA'JP[A’] 

Substitution now yields 

PEGA 
PE eae 

2 P[E\A]P[A] 
~ P[E|IA]P[A] + P[EIA']P[A’] 

Note the pattern in this solution. In the numerator the conditional expression is the re- 

verse of that in the original question; in the denominator, the conditional expressions 

run through all of the alternatives to the event in question, in this case A and A’. The 

numerical solution can now be obtained by substitution as follows: 

P[E\A]P[A] 
PALE |= ae Se Se 

P[E\IA)P[A] + P[EIA']P[A’] 

zi (.60) (.30) 

(.60) (.30) + (.10) (.70) 

= .72 

If excessive speed was involved in an accident, there is a 72% chance that alcohol was 

also involved. 

In the previous example, there were two mutually exclusive events, A and A’, 

whose union is S. Bayes’ theorem can also be applied when S is subdivided into more 

than two mutually exclusive events. We state the theorem in this more general setting. 

Theorem 2.4.1 (Bayes’ theorem). Let A;, A>, A3,...,A, be a collection of 
mutually exclusive events whose union is S. Let B be an event such that 

P[B] # 0. Then for any of the events Aj, j = 1, 2, 3,...,n, 

P(BIA)| PLA) 

> PIBIA PLA) 
i=1 

P[A|IB] = 
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To see that Bayes’ theorem could have been used directly to answer the ques- 
tion posed in Example 2.4.1, note that events A and A’ are mutually exclusive 
events whose union is S and that event E occurs with nonzero probability. Hence we 
can make the following identifications: 

A, =A A, = A’ B=E 

By applying Bayes’ theorem directly we obtain 

ob earat lb A valAb Yes P[A,|B] ~ P[BIA,]P[A,] + P[BIA,]P[A)] 2 anes P[E\A]P[A] 
P|E\IA|P[A] + P[E\A’)P[A‘’] 

A quick comparison will show that this is the same as the solution derived in Ex- 

ample 2.4.1 using the multiplication rule. 

The next example illustrates the use of Bayes’ theorem in a setting in which 

the sample space is subdivided into four mutually exclusive events rather than two. 

Example 2.4.2. The blood type distribution in the United States is type A, 41%; type 
B, 9%; type AB, 4%; and type O, 46%. It is estimated that during World War II, 4% of 

inductees with type O blood were typed as having type A; 88% of those with type A 

were correctly typed; 4% with type B blood were typed as A; and 10% with type AB 

were typed as A. A soldier was wounded and brought to surgery. He was typed as hav- 

ing type A blood. What is the probability that this is his true blood type? Let 

A: he has type A blood 

A,: he has type B blood 

A;: he has type AB blood 

Ax: he has type O blood 

B: he is typed as type A 

Note that the events A,, A>, A3, Ay are mutually exclusive, and their union is S because 

each individual can have only one blood type and all possible blood types have been 

listed. We are being asked to find P[A,B]. We are given that 

P[A,] = 41 P[BIA,] = .88 

P[A,] = .09 P[BIA,] = .04 

P[A3] = .04 P[BIA;] = .10 

P[A,] = .46 P[BIA,] = .04 

Substitution into the expression given by Bayes’ theorem yields 

(.88) (.41) 

(.88)(.41) + (.04) (.09) + (.10) (.04) + (.04) (.46) 

= .93 

PAT le 

If a person was typed as having type A blood, there was approximately a 93% chance 

that his true type was in fact type A. 
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CHAPTER SUMMARY 

In this chapter we presented some of the laws that govern the behavior of probabili- 

ties. We began with the axioms, and from those we were able to derive the remaining 

laws. In particular, we derived the addition rule, which deals with the probability of 

the union of two events; the multiplication rule, which deals with the probability of the 

intersection of two events; and Bayes’ theorem, which deals with conditional proba- 

bility. We introduced and defined important terms that you should know. These are: 

Conditional probability Independent events 

Care must be taken when using the concept of independence. In an applied problem, 

be sure that it is reasonable to assume that events A and B are independent before find- 

ing the probability of their joint occurrence via the definition P[A  B] = P[A]P[B]. 

EXERCISES 

Section 2.1 

1. The probability that a wildcat well will produce oil is 1/13. What is the prob- 
ability that it will not be productive? 

2. The theft of precious metals from companies in the United States was and is 

a serious problem. The estimated probability that such a theft will involve a 

particular metal is given below: (Based on data reported in “Materials Theft,” 

Materials Engineering, February 1982, pp. 27-31.) 

tin? 1/35 platinum: 1/35 nickel: 1/35 

steel: 11/35 gold: 5/35 zine: 1/35 

copper: 8/35 aluminum: 2/35 silver: 4/35 

titanium: 1/35 

(Note that these events are assumed to be mutually exclusive.) 
(a) What is the probability that a theft of precious metal will involve gold, sil- 

ver, or platinum? 
(b) What is the probability that a theft will not involve steel? 

3. Assuming the blood type distribution to be A: 41%, B: 9%, AB: 4%, O: 46%, 
what is the probability that the blood of a randomly selected individual will 
contain the A antigen? That it will contain the B antigen? That it will contain 
neither the A nor the B antigen? 

4. Assume that the engine component of a spacecraft consists of two engines in 
parallel. If the main engine is 95% reliable, the backup is 80% reliable, and 
the engine component as a whole is 99% reliable, what is the probability that 
both engines will be operable? Use a Venn diagram to find the probability that 
the main engine will fail but the backup will be operable. Find the probability 
that the backup engine will fail but the main engine will be operable. What is 
the probability that the engine component will fail? 

5. When an individual is exposed to radiation, death may ensue. Factors affecting 
the outcome are the size of the dose, the length and intensity of the exposure, 
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and the biological makeup of the individual. The term LD, is used to denote 
the dose that is usually lethal for 50% of the individuals exposed to it. Assume 
that in a nuclear accident 30% of the workers are exposed to the LD, and die; 
40% of the workers die; and 68% are exposed to the LDs, or die. What is the 
probability that a randomly selected worker is exposed to the LD,,? Use a Venn 
diagram to find the probability that a randomly selected worker is exposed to 
the LD, but does not die. Find the probability that a randomly selected worker 
is not exposed to the LDs, but dies. 

. When a computer goes down, there is a 75% chance that it is due to an over- 
load and a 15% chance that it is due to a software problem. There is an 85% 
chance that it is due to an overload or a software problem. What is the proba- 
bility that both of these problems are at fault? What is the probability that 
there is a software problem but no overload? 

- Due to the recent energy crisis in California, rolling blackouts were necessary 
and more might be necessary in the future. Assume that there is a 60% chance 
that the temperature will exceed 85° F on any given day in July in a particular 

area. Assume that there is a 30% chance that a rolling blackout will be needed 

in that area. There is a 20% chance that both events will occur. Find the prob- 

ability that the temperature will exceed 85° F on a given July day but that no 
rolling blackout will be needed on that day. 

. Experience shows that 25% of all complaints about home telephone lines in- 

volve static on the line. Fifty percent involve line deterioration. Thirty-five per- 

cent involve only line deterioration. What is the probability that a randomly 

selected complaint will involve both problems? Will involve neither problem? 

. Assume that in a particular military exercise involving two units, Red and 

Blue, there is a 60% chance that the Red unit will successfully meet its objec- 

tives and a 70% chance that the Blue unit will do so. There is an 18% chance 

that only the Red unit will be successful. What is the probability that both 

units will meet their objectives? What is the probability that one or the other 

but not both of the units will be successful? 

It has been found that 80% of all accidents at foundries involve human error 

and 40% involve equipment malfunction. Thirty-five percent involve both 

problems. An accident at a foundry is investigated. What is the probability that 
human error alone was involved? 

Assume that 1% of all tires of a particular brand are defective due to a problem 

with a supplier of an important chemical component of the tire. Assume that 

5% of this brand of tire will eventually fail due to sidewall blowouts. Also, 

1.4% of this brand of tire experience at least one of these problems. What is the 

probability that in a future accident involving these tires, a blowout will occur 

but there will be no problem found with the chemical composition of the tire? 

(a) Derive Theorem 2.1.1. 

Hint: Note that S = S U @ and that S and © are mutually exclusive. Ap- 
ply axioms 3 and 1. 

(b) Derive Theorem 2.1.2. 

Hint: Note that S = A U A’ and that A and A’ are mutually exclusive. Ap- 

ply axioms 3 and 1. 
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(c) Let A be a subset of B. Show that P[A] = P[B]. 

Hint: B = A U (A' 1 B). Apply axioms 3 and 2. 

(d) Show that the probability of any event A is at most I. 

Hint: A C S. Apply Exercise 12C and axiom 1. 

(e) Let A, and A, be mutually exclusive. By axiom 3, P[A, U Aj] = P[A\] + 

P[A,]. Show that the general addition rule yields the same result. 

Section 2.2 

13. 

14. 

15; 

16. 

17. 

Use the data of Exercise 5 to answer these questions. 
(a) What is the probability that a randomly selected worker will die given 

that he is exposed to the lethal dose of radiation? 
(b) What is the probability that a randomly selected worker will not die given 

that he is exposed to the lethal dose of radiation? 

(c) What theorem allows you to determine the answer to (b) from knowledge 

of the answer to (a)? 
(d) What is the probability that a randomly selected worker will die given 

that he is not exposed to the lethal dose? 
(e) Is P[die] = P[dielexposed to lethal dose]? Did you expect these to be the 

same? Explain. 

Use the data of Exercise 4 to answer these questions. 

(a) What is the probability that in an engine system such as that described the 

backup engine will function given that the main engine fails? 

(b) Is P[backup functions] = P[backup functions|main fails]? Did you expect 

these to be the same? Explain. 

In a study of waters near power plants and other industrial plants that release 

wastewater into the water system it was found that 5% showed signs of chem- 

ical and thermal pollution, 40% showed signs of chemical pollution, and 35% 

showed evidence of thermal pollution. Assume that the results of the study ac- 

curately reflect the general situation. What is the probability that a stream that 

shows some thermal pollution will also show signs of chemical pollution? 

What is the probability that a stream showing chemical pollution will not 

show signs of thermal pollution? 

A random digit generator on an electronic calculator is activated twice to sim- 

ulate a random two-digit number. Theoretically, each digit from 0 to 9 is just 

as likely to appear on a given trial as any other digit. 

(a) How many random two-digit numbers are possible? 

(b) How many of these numbers begin with the digit 2? 

(c) How many of these numbers end with the digit 9? 

(d) How many of these numbers begin with the digit 2 and end with the digit 9? 

(¢) What is the probability that a randomly formed number ends with 9 given 
that it begins with a 2. Did you anticipate this result? 

In studying the causes of power failures, these data have been gathered. 

5% are due to transformer damage 

80% are due to line damage 

1% involve both problems 
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Based on these percentages, approximate the probability that a given power 
failure involves 
(a) line damage given that there is transformer damage 
(b) transformer damage given that there is line damage 
(c) transformer damage but not line damage 
(d) transformer damage given that there is no line damage 
(e) transformer damage or line damage 

Section 2.3 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

Os 

Let A, and A, be events such that P[A,] = .5, P[A,] = .7. What must 
P[A, M A] equal for A, and A, to be independent? 
Let A, and A, be events such that P[A,] = .6, P[A,] = .4, and P[A, UA] =.8. 
Are A,and A, independent? 
Consider your answer to Exercise 14(b). Are the events A,: the backup engine 
functions, and A,: the main engine fails independent? 
Studies in population genetics indicate that 39% of the available genes for de- 
termining the Rh blood factor are negative. Rh negative blood occurs if and 
only if the individual has two negative genes. One gene is inherited indepen- 

dently from each parent. What is the probability that a randomly selected in- 
dividual will have Rh negative blood? 

An individual’s blood group (A, B, AB, O) is independent of the Rh classifi- 
cation. Find the probability that a randomly selected individual will have AB 

negative blood. Hint: See Example 2.1.1 and Exercise 21. 

The use of plant appearance in prospecting for ore deposits is called geobotan- 

ical prospecting. One indicator of copper is a small mint with a mauve-colored 
flower. Suppose that, for a given region, there is a 30% chance that the soil has 

a high copper content and a 23% chance that the mint will be present there. If 

the copper content is high, there is a 70% chance that the mint will be present. 

(a) Find the probability that the copper content will be high and the mint will 

be present. 

(b) Find the probability that the copper content will be high given that the 
mint is present. 

The most common water pollutants are organic. Since most organic materials 
are broken down by bacteria that require oxygen, an excess of organic matter 

may result in a depletion of available oxygen. In turn this can be harmful to 

other organisms living in the water. The demand for oxygen by the bacteria is 

called the biological oxygen demand (BOD). A study of streams located near 

an industrial complex revealed that 35% have a high BOD, 10% show high 
acidity, and 40% of streams with high acidity have a high BOD. Find the 

probability that a randomly selected stream will exhibit both characteristics. 
A study of major flash floods that occurred over the last 15 years indicates that 

the probability that a flash flood warning will be issued is .5 and that the prob- 
ability of dam failure during the flood is .33. The probability of dam failure 
given that a warning is issued is .17. Find the probability that a flash flood 
warning will be issued and a dam failure will occur. (Based on data reported 
in McGraw-Hill Yearbook of Science and Technology, 1980, pp. 185-186.) 
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27. 

28. 
29. 

30. 

31. 

32. 
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The ability to observe and recall details is important in science. Unfortu- 

nately, the power of suggestion can distort memory. A study of recall is con- 
ducted as follows: Subjects are shown a film in which a car is moving along 

a country road. There is no barn in the film. The subjects are then asked a se- 

ries of questions concerning the film. Half the subjects are asked, “How fast 

was the car moving when it passed the barn?” The other half is not asked the 

question. Later each subject is asked, “Is there a barn in the film?” Of those 
asked the first question concerning the barn, 17% answer “yes”; only 3% of 

the others answer “yes.” What is the probability that a randomly selected par- 

ticipant in this study claims to have seen the nonexistent barn? Is claiming to 

see the barn independent of being asked the first question about the barn? 

Hint: 

P{yes] = Pl[yes and asked about barn] + Plyes and not asked about barn] 

(Based on a study reported in McGraw-Hill Yearbook of Science and Tech- 

nology, 1981, pp. 249-251.) 

The probability that a unit of blood was donated by a paid donor is .67. If the 

donor was paid, the probability of contracting serum hepatitis from the unit is 

.0144. If the donor was not paid, this probability is .0012. A patient receives a 

unit of blood. What is the probability of the patient’s contracting serum hepa- 

titis from this source? 

Show that the impossible event is independent of every other event. 

Consider the percentages given in Exercise 7. Find the probability of a rolling 

blackout occurring on a day on which the temperature exceeds 85° F. If the 

probabilities given are assumed to be exact, is the event that a rolling blackout 

occurs independent of the event that the temperature exceed 85° F ? Explain 
based on the probability that you just computed. 

Assume that there is a 50% chance of hard drive damage if a power line to 

which a computer is connected is hit during an electrical storm. There is a 5% 
chance that an electrical storm will occur on any given summer day in a given 
area. If there is a .1% chance that the line will be hit during a storm, what is 
the probability that the line will be hit and there will be hard drive damage 
during the next electrical storm in this area? 
A foundry is producing cast iron parts to be used in the automatic transmis- 
sions of trucks. There are two crucial dimensions to the part, A and B. As- 
sume that if the part meets specifications on dimension A then there is a 98% 
chance that it will also meet specifications on dimension B. There is a 95% 
chance that it will meet specifications on dimension A and a 97% chance that 
it will meet specifications on dimension B. A part is randomly selected and 
inspected. What is the probability that it will meet specifications on both di- 
mensions? 

Let A, and A, be mutually exclusive events such that P[A,]|P[A,] > 0. Show 
that these events are not independent. 
Let A, and A, be independent events such that P[A,]P[A,] > 0. Show that 
these events are not mutually exclusive. 
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Section 2.4 

34. 

35: 

36. 

37. 

Use the data of Example 2.4.2 to find the probability that an inductee who was 
typed as having type A blood actually had type B blood. 
A test has been developed to detect a particular type of arthritis in individu- 
als over 50 years old. From a national survey it is known that approxi- 
mately 10% of the individuals in this age group suffer from this form of 
arthritis. The proposed test was given to individuals with confirmed arthritic 
disease, and a correct test result was obtained in 85% of the cases. When the 

test was administered to individuals of the same age group who were known 
to be free of the disease, 4% were reported to have the disease. What is the 

probability that an individual has this disease given that the test indicates its 
presence? 

It is reported that 50% of all computer chips produced are defective. Inspec- 

tion ensures that only 5% of the chips legally marketed are defective. Unfor- 

tunately, some chips are stolen before inspection. If 1% of all chips on the 

market are stolen, find the probability that a given chip is stolen given that it 

is defective. 

As society becomes dependent on computers, data must be communicated via 

public communication networks such as satellites, microwave systems, and 

telephones. When a message is received, it must be authenticated. This is done 

by using a secret enciphering key. Even though the key is secret, there is al- 

ways the possibility that it will fall into the wrong hands, thus allowing an 

unauthentic message to appear to be authentic. Assume that 95% of all mes- 

sages received are authentic. Furthermore, assume that only .1% of all unau- 

thentic messages are sent using the correct key and that all authentic messages 

are sent using the correct key. Find the probability that a message is authentic 

given that the correct key is used. 

REVIEW EXERCISES 

38. 

39. 

A survey of engineering firms reveals that 80% have their own mainframe 

computer (M), 10% anticipate purchasing a mainframe computer in the near 

future (B), and 5% have a mainframe computer and anticipate buying another 

in the near future. Find the probability that a randomly selected firm: 

(a) has a mainframe computer or anticipates purchasing one in the near future 

(b) does not have a mainframe computer and does not anticipate purchasing 

one in the near future 
(c) anticipates purchasing a mainframe computer given that it does not cur- 

rently have one 

(d) has a mainframe computer given that it anticipates purchasing one in the 

near future 

In a simulation program, three random two-digit numbers will be generated 

independently of one another. These numbers assume the values 00, 01, 02, 

..., 99 with equal probability. 

(a) What is the probability that a given number will be less than 50? 
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(b) What is the probability that each of the three numbers generated will be 

less than 50? 

A power network involves three substations A, B, and C. Overloads at any of 

these substations might result in a blackout of the entire network. Past history 

has shown that if substation A alone experiences an overload, then there is a 

1% chance of a network blackout. For stations B and C alone these percent- 

ages are 2% and 3%, respectively. Overloads at two or more substations s1- 
multaneously result in a blackout 5% of the time. During a heat wave there is 

a 60% chance that substation A alone will experience an overload. For stations 

B and C these percentages are 20 and 15%, respectively. There is a 5% chance 

of an overload at two or more substations simultaneously. During a particular 

heat wave a blackout due to an overload occurred. Find the probability that the 
overload occurred at substation A alone; substation B alone; substation C 

alone; two or more substations simultaneously. 

A computer center has three printers, A, B, and C, which print at different 

speeds. Programs are routed to the first available printer. The probability that 

a program is routed to printers A, B, and C are .6, .3, and .1, respectively. Oc- 

casionally a printer will jam and destroy a printout. The probability that print- 

ers A, B, and C will jam are .01, .05, and .04, respectively. Your program is 

destroyed when a printer jams. What is the probability that printer A is in- 

volved? Printer B is involved? Printer C is involved? 

A chemical engineer is in charge of a particular process at an oil refinery. Past 

experience indicates that 10% of all shutdowns are due to equipment failure 

alone, 5% are due to a combination of equipment failure and operator error, 

and 40% involve operator error. A shutdown occurs. Find the probability that 

(a) equipment failure or operator error is involved 

(b) operator error alone is involved 

(c) neither operator error nor equipment failure is involved 

(d) operator error is involved given that equipment failure occurs 

(e) Operator error is involved given that equipment failure does not occur 

Assume that the probability that the air brakes on large trucks will fail on a par- 

ticularly long downgrade is .OO1. Assume also that the emergency brakes on 

such trucks can stop a truck on this downgrade with probability .8. These brak- 

ing systems operate independently of one another. Find the probability that 

(a) the air brakes fail but the emergency brakes can stop the truck 

(b) the air brakes fail and the emergency brakes cannot stop the truck 

(c) the emergency brakes cannot stop the truck given that the air brakes fail 

Consider the problem of Example 1.2.3. Assume that sampling is independent 

and that at each stage the probability of obtaining a defective part when the 
process 1s working correctly is .O1. If the process is working correctly, what is 
the probability that the first defective part will be obtained on the fourth sam- 
ple? On or before the fourth sample? 



CHAPTER 

DISCRETE 
DISTRIBUTIONS 

In the sciences one often deals with “variables.” Webster’s dictionary defines a vari- 
able as a “quantity that may assume any one of a set of values.” In statistics we deal 
with random variables—variables whose observed value is determined by chance. 
Many of the examples presented in previous chapters involved random variables 

even though the term was not used at the time. Random variables usually fall into 

one of two categories; they are either discrete or continuous. We begin by learning 

to recognize discrete random variables. The remainder of the chapter is devoted to 
the study of random variables of this type. 

3.1 RANDOM VARIABLES 

We begin by considering three examples, each of which involves a random variable. 

Random variables will be denoted by uppercase letters and their observed numeri- 

cal values by lowercase letters. 

Example 3.1.1. Consider the random variable X, the number of brown-eyed children 

born to a couple heterozygous for eye color. If the couple is assumed to have two chil- 

dren, a priori, before the fact, the variable X can assume any one of the values 0, 1, or 

2. The variable is random in that brown eyes depend on the chance inheritance of a 

dominant gene at conception. If for a particular couple there are two brown-eyed chil- 

dren, we write x = 2. 

Example 3.1.2. The basic premise underlying the field of immunology is that an an- 

imal is immunized by injection of a suitable antigen. In one study malignant plasmacy- 

toma cells are exposed to lymphocytes carrying a specific antigen. It is hoped that these 

cells will fuse, because the fused cells retain the ability to grow continuously and also 

to retain the antibody characteristics of the antigen fused. In this way the animal is 

quickly immunized. Cells are exposed to the lymphocytes one at a time in the presence 

45 
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of polyethylene glycol, a fusion-promoting agent. It is known that the probability that 

such a cell will fuse is 1/2. Let Y denote the number of cells exposed to obtain the first 

fusion. The variable Y is random; a priori it can assume any value in the set {1, 2, 3, 

_..}. Recall from your study of calculus that a set such as this that consists of an infi- 

nite collection of isolated points is called a countably infinite set. 

Example 3.1.3. In Example 1.1.2 we considered the variable 7, the time at which the 
peak demand for electricity occurs per day. This variable is random, since its value is 

affected by such chance factors as time of the year, humidity, and temperature. It can 

conceivably assume any value in the 24-hour time span from 12 midnight one day to 

12 midnight the next day. 

It is easy to distinguish a discrete random variable from one that is not dis- 

crete. Just ask the question, “What are the possible values for the variable?” If the 

answer is a finite set or a countably infinite set, then the random variable is discrete; 

otherwise it is not. This idea leads to the following definition: 

Definition 3.1.1 (Discrete random variable). A random variable is discrete 

if it can assume at most a finite or a countably infinite number of possible 
values. 

The random variable X, the number of brown-eyed children in a two-child 

family, is discrete. Its set of possible values is the finite set {0, 1, 2}. The set {1, 2, 

3, .. .} of possible values for Y, the number of cells exposed to obtain the first fu- 

sion of Example 3.1.2, is countably infinite. Thus Y is also a discrete random vari- 

able. The random variable 7; the time of the peak demand for electricity at a power 

plant, is different from the others. Time is measured continuously, and T can con- 

ceivably assume any value in the interval [0, 24), where 0 denotes 12 midnight one 

day and 24 denotes 12 midnight the next. This set of real numbers is neither finite 

nor countably infinite. Any time that you ask yourself the question, “What are the 
possible values for the random variable?” and are forced to admit that the set of pos- 
sibilities includes some interval or continuous span of real numbers, then the ran- 
dom variable being studied is not discrete. 

3.2. DISCRETE PROBABILITY DENSITIES 

When dealing with a random variable, it is not enough just to determine what values 
are possible. We also need to determine what is probable. We must be able to predict 
in some sense the values that the variable is likely to assume at any time. Since the 
behavior of a random variable is governed by chance, these predictions must be 
made in the face of a great deal of uncertainty. The best that can be done is to de- 
scribe the behavior of the random variable in terms of probabilities. Two functions 
are used to accomplish this. We shall refer to these as the density function and the cu- 
mulative distribution function. The former is known by a variety of names in the dis- 
crete case, some of the most commonly encountered ones being the probability 



DISCRETE DISTRIBUTIONS 47 

function, the probability mass function, and the probability density function. In the 
discrete case, the density is denoted by either p(x) or f(x); in the continuous case it is 
almost always denoted by f(x). For consistency we shall use f(x) for the density in 
both cases. We begin by defining the density function for discrete random variables. 

Definition 3.2.1 (Discrete density). Let X be a discrete random variable. 

The function f given by 

JO) = PIX — x] 

for x real is called the density function for X. 

There are several facts to note concerning the density in the discrete case. 

First, fis defined on the entire real line, and for any given real number x, f(x) is the 

probability that the random variable X assumes the value x. For example, f(2) is the 

probability that the random variable X assumes the numerical value of 2. Second, 

since f(x) is a probability, f(x) = O regardless of the value of x. Third, if we sum f 

over all values of X that occur with nonzero probability, the sum must be |. The fol- 

lowing two conditions are necessary and sufficient conditions for a function f to be 

a discrete density. That is, if a function satisfies both of these conditions then it can 

be viewed as representing the density for some discrete random variable; if it fails 

to satisfy both then it cannot be the density for any discrete random variable: 

Necessary and Sufficient Conditions 
for a Function to be a Discrete Density 

1. f(x) =0 

2 > i@e1 
all x 

The next example illustrates these ideas. 

Example 3.2.1. Consider the random variable Y, the number of cells exposed to 

antigen-carrying lymphocytes in the presence of polyethylene glycol to obtain the first 

fusion (see Example 3.1.2). We know that under these conditions the probability that 

a given cell will fuse is 1/2. Thus the probability that it will not fuse is also 1/2. It is 

reasonable to assume that the cells behave independently. The possible values for Y are 

{1, 2,3, ...}. The probability that the first cell will fuse is 1/2. That is, 

PL) — 1/2 

The probability that the first cell will not fuse but the second one will, yielding a value 

of 2 for Y, is 

P[Y = 2] = f(2) = Plfirst cell does not fuse]P[second cell does fuse] 

= 1/2-1/2= 1/4 
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Similarly, 

PY = 3) =f) 22. V2 Vas 

We can summarize the entire probability structure for Y in a density table (see 

Table 3.1). This is a table giving the possible values for the random variable in the first 

row and their corresponding probabilities in the second row. Note that there is an ob- 

vious pattern to the entries in row 2. When this occurs, we can find a closed-form ex- 

pression for the density. In this case 

(1/2)? Ve ee ee 

0 elsewhere 
io) 

Is this really a density? This function is obviously nonnegative, but does it sum to 1? 

To see this, note that 

S/o) = 4 apy 
y=] all y 

is a geometric series with first term a = 1/2 and common ratio r = 1/2. The properties 

of geometric series are well known. In particular, recall from elementary calculus that 

such a series can converge or diverge. The following fact will be useful in the mater- 

ial that follows: 

Convergence of geometric series 

Let S\ ar‘~! be a geometric series. 
k=1 

, a ; 
The series converges to provided |r| < 1. 

{| = ip 

If we apply this result here, we see that 

ze 1/2 
> (1/27 == / =] 
y=1 

and the function fis a density. 

Even though a discrete density is defined on the entire real line, it is only nec- 
essary to specify the density for those values y for which f(y) ¥ 0. For instance, in 
the previous example we can write 

fo) = d/2y 0 ind Oe oe 

It is understood that f(y) = 0 for all other real numbers. 
Once it is known that a function is a density, it can be used to answer ques- 

tions concerning the behavior of Y. 

TABLE 3.1 

Hn beh: = Lead 3 4 
PLY = yl = fO) 12. ADAP 12:1 awiiesOiesinsde. 
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Example 3.2.2. What is the probability that we will need to expose four or more 
cells to antigen-carrying lymphocytes in the presence of polyethylene glycol to obtain 
the first fusion? That is, what is P[Y = 4]? The density for Y is 

SO) = Ay yield Oa 

Although the desired probability can be found directly, it is easier to use subtraction: 

PiY=4])=1—P[Y <4] 

= j=Ply = 3] 

=]— (Pi = 1] + PLY = 2] + Ply = 3)) 

Sele (i) 172) +73) 

= 1 — ((1/2)! + (1/2)? + (1/2)) 

=1-(1/2+4+ 1/44 1/8) 

=| — 7/3 — 1/8 

Cumulative Distribution 

The second function used to compute probabilities is the Cumulative distribution 
function F: Most of the statistical tables used in the material that follows are tables 

of the cumulative distribution function for some pertinent random variable. 

The word “cumulative” suggests the role of this function. It sums or accumu- 

lates the probabilities found by means of the density. This function is defined as 

follows: 

Definition 3.2.2 (Cumulative distribution—discrete). Let X be a discrete 
random variable with density f. The cumulative distribution function for X, 

denoted by F, is defined by 

F(x) = P[X Sx] for x real 

Consider a specific real number x. To find P[X = xo] = F(%), we sum the 

density f over all values of X that occur with nonzero probability that are less than 

or equal to x9. That is, computationally, 

FO) = >TO) 
xX 

This idea is illustrated in Example 3.2.3. 

Example 3.2.3. Certain genes produce such a tremendous deviation from normal 

that the organism is unable to survive. Such genes are called lethal genes. An example 

is the gene that produces a yellow coat in mice, ¥. This gene is dominant over that for 

gray, y. Normal genetic theory predicts that when two yellow mice heterozygous for 

this trait (Yy) mate, 1/4 of the offspring will be gray and 3/4 will be yellow. Biologists 

have observed that these predicted proportions do not, in fact, occur, but that the actual 
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TABLE 3.2 

x 0 I 2 3 
Pie | ha) 1/27 PT Maa Oley Mig Ae, 

TABLE 3.3 

x | 0 2 3 
PIXS<xJ=FQ@) | 1/27 PC) 

TABLE 3.4 

y | 2 3 4... 

PLY <= y] = FO) 8/16 12/16. ~—Ss«1AV/16—«1S/16- -- 

percentages produced are 1/3 gray and 2/3 yellow. It has been established that this 

shift is caused by the fact that 1/4 of the embryos, those homozygous for yellow (YY), 

do not develop. This leaves only two genotypes, Yy and yy, occurring in a ratio of 2 to 

1, with the former producing a mouse with a yellow coat. For this reason, the gene Y 

is said to be lethal. 

The density for X, the number of yellow mice in a litter of size 3, is shown in 

Table 3.2, and its cumulative distribution is given in Table 3.3. Notice that 

F(O) = P[X = 0] = P[X = 0] = 1/27 

F(1) = P[X = 1] = P[X = 0] + P[X = 1) = 1/27 + 6/27 

FQ) =P|4 S2| = P(X = 0] + Pix = 1) + PIX = 2] 

= 1/27 + 6/27 + 12/27 

F(3) = P[X $3] =1 

For discrete random variables that can assume only a finite number of possible values, 

the last entry in the bottom row of the cumulative table will always be 1. 

Although cumulative probabilities are often given in table form as in the pre- 
ceding example, it is sometimes possible to find express F in equation form. Exam- 
ple 3.2.4 illustrates this idea. 

Example 3.2.4. Consider the random variable Y of Example 3.2.1 with density 

Io) =C72y eee) aes ear 

A partial cumulative table for Y is shown in Table 3.4. It is formed by summing the 
probabilities given in the density table, Table 3.1. It is helpful to have a closed-form 
expression for /: In this case it is easy to obtain such an expression. By definition, 

EiYo) aed 
ys Yo 

If we let [yo] denote the greatest integer less than or equal to yo, then in this case F (yo) 
can be expressed as 
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[yo] 

a) = yy Gl 2)? 
y=] 

[yo] 

med l2) (1722 
y=1 

Recall from elementary calculus that the sum of the first n terms of a geometric 
series is given by 

Sum of first n terms: Geometric series 

where a is the first term of the series and r is the common ratio. 

Apply this result with a = 1/2 and r = 1/2, to obtain 

el ZC] 
ay 

— 1 — (1/2) ll 

F(¥5) = 

The probability that at most seven cells must be exposed to obtain the first fusion is 
given by 

ey 
= i) = — Tie ee | S| = Op) = = Cp) 128 

3.3. EXPECTATION AND DISTRIBUTION 
PARAMETERS 

The density function of a random variable completely describes the behavior of the 

variable. However, associated with any random variable are constants, or “parame- 

ters,” that are descriptive. Knowledge of the numerical values of these parameters 

gives the researcher quick insight into the nature of the variables. We consider three 

such parameters: the mean p, the variance a”, and the standard deviation a. If the 

exact density of the random variable is known, then the numerical value of each pa- 
rameter can be found from mathematical considerations. That is the topic of this 

section. If the only thing available to the researcher is a set of observations on the 

random variable (a data set), then the values of these parameters cannot be found 

exactly. They must be approximated by using statistical techniques. That is the topic 
of much of the remainder of this text. 

To understand the reasoning behind most statistical methods, it is necessary to 

become familiar with one general concept, namely, the idea of mathematical expec- 

tation or expected value. This concept is used in defining many statistical parameters 
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and provides the logical basis for most of the methods of statistical inference pre- 

sented later in this text. 

A simple example will illustrate the basic idea of expectation. Consider the 

roll of a single fair die, and let X denote the number that is obtained. The possible 

values for X are 1, 2, 3, 4, 5, 6, and since the die is fair, the probability associated 

with each value is 1/6. The density for X is given by 

if os) an. Md; 2,035.5. 0 

When we ask for the expected value of X, we are asking for the long-run theoreti- 

cal average value of X. If we imagine rolling the die over and over and recording 

the value of X for each roll, then we are asking for the theoretical average value of 

the rolls as the number of rolls approaches infinity. Since the density for X is sym- 

metric and known, this average can be found intuitively. Notice that since P[X = 1] 

= P[X = 6] = 1/6, in the long run we expect to roll as many |’s as 6’s. These values 

should counterbalance one another, and their average value is (6 + 1)/2 = 3.5. We 

also expect to roll as many 2’s as 4’s; these numbers also average to 3.5. Likewise, 

the numbers 3 and 4 are expected to counterbalance one another; they average 3.5. 

Logic dictates that, in the long run the average or expected value of X is 3.5. We 

write this as E[X] = 3.5. Notice that this value can be calculated from the density 

for X as follows: 

E[X) =1°1/6 #2" 1/6 + 3° 1/6 + 4= 1/6 + 571/640 7116 — 3 

Or 

E[X] = (value of x)(probability) 
all x 

Of course, the characteristic that makes finding this expectation easy is the symme- 

try of the density. Can we develop a definition of expectation that will work for non- 

symmetric densities and that will apply not only to X, but also to random variables 

that are functions of X? The answer is “yes,” and the desired definition is given in 

Definition 3.3.1. Let us point out that in most problems interest centers first on 

E[X]. However, expectations for functions of X such as X’, (X — c)*, where c is a 

constant and e‘* are especially useful in statistical theory. For this reason, the defi- 

nition of expected value is given in general terms. We now define what we mean by 

the expected value of some function of X which we denote by H(X). 

Definition 3.3.1 (Expected value). Let X be a discrete random variable 
with density f- Let H(X) be a random variable. The expected value of H(X), 

denoted by E[H(X)], is given by 

E[H(X)] = >) A(x)f(x) 
all x 

provided >, JH(x)| f(x) is finite. Summation is over all values of X that 
occur with nonzero probability. 
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Note that in the special case in which H(X) =X, we obtain the expected value of X 

from this definition. Thus we see that 

Expected Value of X 

EIX] = > xf) 
all x 

One other thing to note concerning this definition is the fact the restriction that 

Dn |H(x) f(x) exists is not particularly restrictive in practice. If the set of possible 

values for X is finite, it will be satisfied; if the set of possible values for X is count- 

ably infinite, it will usually be satisfied. However, it is possible to concoct a density 

f and a function H(X) for which the series &,), JH(x) f(x) does not converge. (See 

Exercise 22.) In this case we say that the expected value of the random variable 

H(X) does not exist. An example will illustrate the use of Definition 3.3.1. Please re- 

alize that the density has been greatly oversimplified for purposes of illustration! 

Example 3.3.1. A drug is used to maintain a steady heart rate in patients who have 

suffered a mild heart attack. Let X denote the number of heartbeats per minute ob- 

tained per patient. Consider the hypothetical density given in Table 3.5. What is the 

average heart rate obtained by all patients receiving this drug? That is, what is EX]? 

By Definition 3.3.1, 

E[X] = S H(x)f(x) 
all x 

> xf) 
all x 

= 40(.01) + 60(.04) + 68(.05) +-* + + 100(.01) 

= 70 

Since the number of possible values for X is finite, ees F(x) exists. Thus we can say 

that the average heart rate obtained by patients using this drug is 70 heartbeats per 

minute. Intuitively, we should have expected this result. Notice the symmetry of the 

density. In the long run we would expect as many patients with heart rates of 100 as 

with heart rates of 40; as many with a rate of 60 as with a rate of 80. Similarly, the 

rates of 68 and 72 occur with the same frequency. Each of these pairs averages to 70, 

the value obtained by the remaining 80% of the patients. Common sense points to 70 

as the expected value for X. 

When used in a statistical context, the expected value of a random variable X 

is referred to as its mean and is denoted by p or py. That is, the terms expected 

TABLE 3.5 

ye 40 60 68 70 72 80 100 

f(x) O1 04 05 80 .05 04 01 
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value and mean are interchangeable, as are the symbols E[X] and yw. The mean can 

be thought of as a measure of the “center of location” in the sense that it indicates 

where the “center” of the density lies. For this reason, the mean is often referred 

to as a “location” parameter. To emphasize these points, let us summarize the pre- 

ceding discussion. 

Notes on the Expected Value of a Random Variable X 

1. The expected value of a random variable is its theoretical average value. It is 

denoted by E[X] and can be calculated from knowledge of the density for X. 

2. Ina statistical setting, the average value of X is called its mean value. Hence the 

terms average value, mean value, and expected value are interchangeable. 

3. The mean value of X is denoted by the Greek symbol yz (mu). Hence the sym- 

bols ww and E[X] are interchangeable. 

4. The mean or expected value of X is one measure of the location of the center of 

the X values. For this reason, pz is called a “location” parameter. 

There are three rules for handling expected values that are useful in justifying 

statistical procedures in later chapters. These rules hold for both continuous and dis- 

crete random variables. The rules are stated and illustrated here. We outline the proofs 

of the first two as exercises; the proof of rule 3 must be deferred until Chap. 5. 

Theorem 3.3.1 (Rules for expectation). Let X and Y be random variables and 

let c be any real number. 

1. E{c] = c (The expected value of any constant is that constant.) 

2. E[cX] = cE[X] (Constants can be factored from expectations.) 

3. E[X + Y] = E[X] + E[Y] (The expected value of a sum is equal to the sum 

of the expected values.) 

Example 3.3.2. Let X and Y be random variables with E[X] = 7 and E[Y] = —5. Then 

E[4X — 2¥+ 6] = E[4X] + E[—2Y] + E[6] Rule 3 

= 4E[X] + (—2)E[Y] + E[6] Rule 2 

= 4E[X] — 2E[Y] + 6 Rule | 

= 4(7) — 2(-5) + 6 
= 44 

Variance and Standard Deviation 

Knowledge of the mean of a random variable is important, but this knowledge alone 
can be misleading. The next example should show you the problem. 

Example 3.3.3. Suppose that we wish to compare a new drug to that of Example 
3.3.1, Let X denote the number of heartbeats per minute obtained using the old drug 
and Y the number per minute obtained with the new drug. The hypothetical density of 
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TABLE 3.6 

5 etc 68 1G 72 80100 
ie) | Kel A ie ea 

y Ome OO NGS On 7280! 8100 
fo) HOME 05 048 02) S049 05 140 

each of these variables is given in Table 3.6. Since each of the densities is symmetric, 
inspection shows that wy = fy = 70. Each drug produces on the average the same 
number of heartbeats per minute. However, there is obviously a drastic difference be- 
tween the two drugs that is not being detected by the mean. The old drug produces 
fairly consistent reactions in patients, with 90% differing from the mean by at most 2; 
very few (2%) have an extreme reaction to the drug. However, the new drug produces 
highly diverse responses. Only 10% of the patients have heart rates within 2 units of 
the mean, whereas 80% show an extreme reaction. If we examined only the mean, we 
would conclude that the two drugs had identical effects—but nothing could be further 
from the truth! 

It is obvious from Example 3.3.3 that something is not being measured by the 
mean. That something is variability. We must find a parameter that reflects consis- 

tency or the lack of it. We want the measure to assume a large positive value if the 

random variable fluctuates in the sense that it often assumes values far from its 

mean; the measure should assume a small positive value if the values of X tend to 

cluster closely about the mean. There are several ways to define such a measure. 
The most widely used is the variance. 

Definition 3.3.2 (Variance). Let X be a random variable with mean w. The 

variance of X, denoted by Var X, or a, is given by 

Var X = 07 = El(X — p)?} 

Note that the variance measures variability by considering X — yp, the differ- 

ence between the variable and its mean. The difference is squared so that negative 

values will not cancel positive ones in the process of finding the expected value. 

When expressed in the form E[(X — j2)*], it is easy to see that a7 has the properties 

that we want. When the variable X often assumes values far from xz, a7 will be a 

large positive number; when the values of X tend to fall close to w, a” will assume 

a small positive value. Figure 3.1 illustrates the idea. 
Usually, the definition of a” is not used to compute the variance. Rather, we 

use an alternative form which is given in the following theorem. 

Theorem 3.3.2 (Computational formula for o7) 

o? = Var X = E[X?] — (E[X])? 
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(b) rs 

FIGURE 3.1 
(a) A distribution with a small variance. Most of the data points, denoted by dots, lie fairly close to the 

average value, jz. Hence most of the differences, x — 1, will be small; (5) a distribution with a large 

variance. Many of the data points lie far from the average value, j. 

Proof. By definition 

Var X = E[(X — p)?] 

= E[X? — 2uX + p’] 

Using the rules of expectation, Theorem 3.3.1, we obtain 

Var X = E[X?] — 2wE[X] + p? 

Since the symbols yz and E[X] are interchangeable, 

Var X = E[X?] — 2(E[X])? + (E[X])” 

= E[X*] — (E1X])" 

We illustrate the theorem by computing the variance of each of the random 
variables of Example 3.3.3. 

Example 3.3.4. To find oy and oF for the variables of Example 3.3.3, we first use 
Table 3.6 to find E[X *] and E[Y?]. We know that E[X] = E[Y] = 70. 

E(X?] = > x°f(x) 
all x 

= (407) (.01) + (60°) (.04) + - ++ + (1002) (.01) 

= 4926.4 

E[Y?] = > yy) 
all y 

= (40°) (.40) + (607) (.05) + +++ + (1002) (.40) 

= 5630.32 
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By Theorem 3.3:2, 

Var X = E[X2] — (E[X]) 
= 4926.4 — 70? = 26.4 

Var Y = E[Y?] — (E[Y])° 
= 5630.32 — 70? = 730.32 

As expected, Var Y > Var X. Even though the drugs produce the same mean number 

of heartbeats per minute, they do not behave in the same way. The new drug is not as 
consistent in its effect as the old. 

Note that the variance of a random variable reported alone is not very infor- 

mative. Is a variance of 26.4 large or small? Only when this value is compared to 

the variance of a similar variable does it take on meaning. Hence variances are used 

often for comparative purposes to choose between two variables that otherwise ap- 

pear to be identical. Also, note that the variance of a random variable is essentially 

a pure number whose associated units are often physically meaningless. When this 

occurs, the unit can be omitted. For example, the unit associated with the variance 

of Example 3.3.4 is a “squared heartbeat.’ This makes little sense, so in this case 

variance can be reported with no unit attached. To overcome this problem, a second 

measure of variability is employed. This measure is the nonnegative square root of 

the variance, and it is called the standard deviation. It has the advantage of having 

associated with it the same units as the original data. 

Definition 3.3.3 (Standard deviation). Let X be a random variable with 

variance a. The standard deviation of X, denoted by o, is given by 

C= \VVa x No 

Example 3.3.5. The standard deviations of variables X and Y of Example 3.3.4 are, 

respectively, 

Oy = V Var X = \V 26.4 = 5.14 heartbeats per minute 

Oy= \/Var Y= \/730.32 = 27.02 heartbeats per minute 

To emphasize these points we present a brief summary of the important aspects of 

the standard deviation of a random variable X. 

Properties of standard deviation 

1. The standard deviation of X is defined as the nonnegative square root of its 

variance. 

2. The standard deviation is denoted by a, and the variance of X is denoted by a. 

3. A large standard deviation implies that the random variable X is rather incon- 

sistent and somewhat hard to predict; a small standard deviation is an indication 

of consistency and stability. 
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4. Standard deviation is always reported in physical measurement units that match 

the original data. Variance is often unitless. 

Just as there are three rules for expectation that help in simplifying complex 

expressions, so are there three rules for variance. These rules parallel those for ex- 

pectation. Rules | and 2 can be proved by using the rules for expectation (see Exer- 

cise 20). The proof of rule 3 must be deferred until the notion of “independent 

random variables” has been formalized. 

Theorem 3.3.3 (Rules for variance). Let X and Y be random variables and c 

any real number. Then 

1. Varc=0 

2. Var. eX = c* Var X 
3. If X and Y are independent, then Var(X + Y) = Var X + Var Y 

(Two variables are independent if knowledge of the value assumed by one gives 

no clue to the value assumed by the other.) 

Example 3.3.6. Let X and Y be independent with 0% = 9 and oj: = 3. Then 

Var[4X — 2Y+ 6] = Var[4X] + Var[—2Y] + Var 6 Rule 3 

= 16 Var X + 4 Var Y + Var 6 Rule 2 

= 16 Var X + 4 Var Y +0 Rule | 

= 16(9) + 4(3) = 156 

| 

In this section we discussed three theoretical parameters associated with a 
random variable X. We showed not only how to determine their numerical values 
from knowledge of the density, but also how to interpret them physically. Keep 
these things in mind, for they play a major role in the study of statistical methods for 
analyzing experimental data. 

3.4 GEOMETRIC DISTRIBUTION AND 
THE MOMENT GENERATING FUNCTION 

In this section we consider two important topics. We introduce the first family of 
discrete random variables to be discussed in this text. Random variables are mem- 
bers of a family in the sense that each member of the family is characterized by a 
density function of the same mathematical form, differing only with respect to the 
numerical value of some pertinent parameter or parameters. This first family, called 
geometric, is used extensively in the areas of games of chance and in statistical 
quality control. It is named geometric because, as you will see, its theoretical prop- 
erties are derived by applying the mathematical properties of the geometric series 
that you encountered in elementary calculus. The second topic is a discussion of the 
moment generating function. This is a function, derived from the density, that 
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allows one to calculate ordinary moments of a distribution easily. This in turn makes 
it possible to calculate the mean and variance of a random variable without having 

to use the definitions of these terms to do so. In many cases, this approach is much 

simpler than a direct calculation from the definition. The function also provides a 

fingerprint or a unique identifier for each distribution. This idea will be illustrated 

later in this section. 

Geometric Distribution 

We begin by considering the family of geometric random variables. As you shall 
see, you have already encountered some random variables of this type even though 

the name “geometric random variable” was not mentioned at the time. 

Geometric random variables arise in practice in experiments characterized by 

the following properties: 

Geometric properties 

1. The experiment consists of a series of trials. The outcome of each trial can be 

classed as being either a “success” (s) or a “failure” (f). A trial with this prop- 

erty is called a Bernoulli trial. 

2. The trials are identical and independent in the sense that the outcome of one 

trial has no effect on the outcome of any other. The probability of success, p, re- 

mains the same from trial to trial. 

3. The random variable X denotes the number of trials needed to obtain the first 

success. 

The sample space for an experiment such as that just described is 

Wee A An Omni Rino ol 

Since the random variable X denotes the number of trials needed to obtain the first 

success, X assumes the values 1, 2, 3, 4,... . To find the density for X, we look for 

a pattern. Note that 

P[X = 1] = P{success on first trial] = p 

P[X = 2] = P{fail on first trial and succeed on second trial] 

Since the trials are independent, the latter probability can be found by multiplying. 

That is, 

P[X = 2] = P [fail on first trial and succeed on second trial] 

= P{fail on first trial]P[succeed on second trial] 

i Le DUD) 

Similarly, 

P[X = 3] = P[fail on first trial and fail on second trial and succeed on third trial] 

= (1-p)(1-p)(p) = (1—p)’p 
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TABLE 3.7 

x ! 2 3 4 5 

fix) p (1-p)p (1-p)p (1-p)’p (U-p)’p 

You should be able to see that the density for X is given by Table 3.7, where the 

probabilities given in row 2 of the table exhibit a definite pattern. This pattern can 

be expressed in closed form as 

f@) =(1-p)"'p Nie ooo Ans 

We now define a geometric random variable as being any random variable with a 

density of this form. 

Definition 3.4.1 (Geometric distribution). A random variable X is said to 
have a geometric distribution with parameter p if its density fis given by 

POs ape Dt O= pd 
Ne | to ee 

The function f given in this definition is a density. It is obviously nonnegative. 

Furthermore, 

yi (1 = pjyrip 

c= 1 

is a geometric series with first term a = p and common ratio r = (1 — p). Thus the 
series sums to 

a P 
= ———— = ] 

hen Tite dP ag: 

as desired. From this argument the reason for the name “geometric” distribution 
should be apparent. 

In Exercise 26 you are asked to verify that the general expression for the cu- 
mulative distributions function for a geometric random variable is 

F(x) = 1-q""! 

where q is the probability of failure and [x] is the greatest integer less than or equal 
to x. 

Example 3.4.1. Random digits are integers selected from among {0, 1, 2, 3, 4, 5, 6, 
7,8, 9} one at a time in such a way that at each stage in the selection process the inte- 
ger chosen is just as likely to be one digit as any other. In simulation experiments it is 
often necessary to generate a series of random digits. This can be done in a number of 
ways, the most common being by means of a computerized random number generator. 
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In generating such a series, let X denote the number of trials needed to obtain the first 

zero. This experiment consists of a series of independent, identical trials with “suc- 

cess” being the generation of a zero. The probability of success is p = 1/10. Since X 

denotes the number of trials needed to obtain the first success, X is a geometric ran- 

dom variable. Its density is found by substituting the value 1/10 for p in the expression 

for f given in Definition 3.4.1. That is, 

f@) = (1 — py |p io ag ie aa 

or 

= OO) ae iLO mex — al 2 3 tee 

The cumulative distribution function for X is given by 

F(x) = 1-(.9)") 

Finding the mean of a geometric random variable from the definition is tricky! 

Consider the next example. 

Example 3.4.2. Let us find the mean of the random variable X, the number of trials 

needed to obtain a zero when generating a series of random digits. By Definition 3.3.1, 

w= EX) = Sxfle) 
x=1 

= ¥ x(9/10)-"1/10 

That is, 

E[X] = 1/10 + 18/100 + 243/1000 + 2916/10,000 + - -- 

This series is not geometric. Consider the series (9/10)E[X]. 

(9/10)E[X] = 9/100 + 162/1000 + 2187/10,000 + 26,244/100,000 + - - - 

Subtracting the latter from the former, we obtain 

(1/10)E[X] = 1/10 + 9/100 + 81/1000 + 729/10,000 + - - : 

This series is geometric with first term 1/10 and common ratio 9/10. Thus 

1/10 oe ee | 
i SSYA® 

(1/10) 21x] = 

or 

Moment Generating Function 

As we have seen, the two expectations E[X] and E[X 2] are very useful, as they allow 

us to find the mean and variance of the random variable. These, and other expectations 
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of the form E[X*] for k a positive integer, are examples of what are called ordinary 

moments. This term is defined as follows: 

Definition 3.4.2 (Ordinary moments). Let X be a random variable. The ek 

ordinary moment for X is defined as E[X*]. 

Thus E[X] = pis the first ordinary moment for X; E[X?] is its second ordinary mo- 

ment. The preceding example shows that finding ordinary moments, even the first 

moment, from the definition of expectation is not always easy. Fortunately, it is of- 

ten possible to obtain a function, called the moment generating function, which will 

enable us to find these moments with less effort. 

Definition 3.4.3 (Moment generating function). Let X be a random 

variable with density f. The moment generating function for X (m.g.f.) is 

denoted by mm (ft) and is given by 

mt) = Efe] 

provided this expectation is finite for all real numbers f in some open interval 
(1h). 

Since each geometric random variable has a density of the same general form, 

it is possible to find a general expression for the moment generating function for 

such a variable. This expression is given in Theorem 3.4.1. 

Theorem 3.4.1 (Geometric moment generating function). Let X be a 
geometric random variable with parameter p. The moment generating function 
for X is given by 

pe! 
Lege, 

tte iig my(t) = 

where q = | —p. 

Proof. The density for X is given by 

f(x) = q*"'p bg =i Ad lege Ag 

By definition 

my = E[e*] 

II Pq > (ge)? 
x=] 
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The series on the right is a geometric series with first term ge‘ and common ratio ge’. 
Thus 

eee henge: 
my(t) = pq 1 ; — ge 

eee 
lige: 

provided |r| = get | < 1. Since the exponential function is nonnegative and 0 < q < 1, 
this restriction implies that ge’ < 1. The inequality is solved for t as follows: 

Ge <I 

e’< I/q 

In e' < In I/g 

one nC 

PS = ling 

The next theorem shows how the moment generating function can be used to 
generate ordinary moments for a random variable X. Its proof is based on the 

Maclaurin series expansion for e’. Recall that this series is as follows: 

Maclaurin Series Expansion for e% 

@elez7e 22 cls ite 

Theorem 3.4.2. Let my(t) be the moment generating function for a random 

variable X. Then 

d‘mx(t) 
dt* t= 

= E[X*] 
0 

Proof. To prove this theorem, let z = tX. The Maclaurin series expansion for e“ is 

Cr exer) 21 UX) oe GX) (Al 

By taking the expected value of each side of this equation, we obtain 

it) — Blen| = Bll (x tex 2! FX Bt X 4) 

= 1 + tE[X] + 12/2!E[X?] + 13/31E[X3] + t4/41E[X4] + - + - 

Differentiating this series term by term with respect to 1, we see that 

ain = E[X] + tE[X2] + 22/21E[X3] + 23/31B[X4] +-- 
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When this derivative is evaluated at t = 0, every term except the first becomes 0. Hence 

dmy(t) 

dt 1=0 

Taking the second derivative of m,(t), we obtain 

d*m,(t) ‘ : . 4 
Sie EMA) rE [x ee 2B [x] ee dt2 

Evaluating this derivative at t = 0 yields 

d’*my(t) . 
eee = E[X- 

dt? 1=0 | 

This procedure can be continued to show that 

d‘my(t) pce BEL =F xk 

dt* |:=0 Fs 

for any positive integer k as desired. 

Let us use the moment generating function to find a general expression for the 

mean and variance of a geometric distribution with parameter p. 

Theorem 3.4.3. Let X be a geometric random variable with parameter p. Then 

E[X] = 1/p and Var X = q/p* 

Proof. For a geometric random variable with parameter p 

pe' 

mx\t) ef 

dmy(t) _ (1 — ge')pe' + pe'ge' 

dt (l= ger 

5 pe' 

(1 = ge'*)* 

Evaluating this derivative at tf = 0, we obtain 

E[X] = dmy(t) 2 P 

dt t=0 «(1 “yap 

= p/p* 

= 1/p 

Taking the second derivative of m,(t), we obtain 

d’*my(t) . (i= gel)*pe\ opel = get)ge' 

dt? Cl: = ger)? 

= pe’ (Lge) tl get coe | 

(l= gery? 
_ pel + ge') 

(i= ger)* 
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Evaluating this derivative at t = 0, we see that 

Be) pila) leg) AOS: 
ES dt?~ |=0 (1-—q)3 p? 

Now 

Var X = E[X2] — (E[X])? 

We illustrate the use of these theorems by finding the moment generating 
function, mean, and variance for the random variable of Example 3.4.1. 

Example 3.4.3. Consider the random variable X, the number of trials needed to ob- 

tain the first zero when generating a series of random digits. Since this random 

variable is geometric with parameter p = 1/10, 

Pare 1/10) 2° 

1 ge al (9/0 yer 

w= E[X] = 1/p= 10 

My(t) = 

9/10 _ 
Got 

Note that this value for 44 agrees with that obtained in Example 3.4.2. 

o- =VarX =4/p° = 

The importance of the moment generating function for a random variable is 

not completely evident at this time. It does give us a way to find general expressions 

for the mean and variance as well as for the ordinary moments of an entire family 

of random variables. As we shall see later, the moment generating function, when it 

exists, serves as a fingerprint that completely identifies the random variable under 
study. That is, if a distribution has a moment generating function then it is unique. 

Thus, to identify a distribution from its moment generating function we need only 

look for and recognize a pattern and then the distribution is evident. For example, if 

an unknown random variable has moment generating function 

Ae! 

Li. 62! 

then we know that the random variable follows a geometric distribution with p = .4, 

because the moment generating function assumes the general form 

my(t) 

eae 
Le Ge: 

which is the geometric fingerprint. 

3.5 BINOMIAL DISTRIBUTION 

The next distribution to be studied is the binomial distribution. Once again, you 

have already seen some binomial random variables even though they were not 
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labeled as such at the time. The theoretical basis for working with this distribution 

is the binomial theorem presented in most beginning algebra courses. The statement 

of this theorem is as follows: 

Binomial theorem 

For any two real numbers a and b and any positive integer n, 

(a+b)"= > (kao 

ARN X n! 
where (i) is given by Rye at aii 

To recognize a situation that involves a binomial random variable, you must be fa- 

miliar with the assumptions that underlie this distribution, which are as follows: 

Binomial properties 

1. The experiment consists of a fixed number, n, of Bernoulli trials, trials that re- 

sult in either a “success” (s) or a “failure” (f). 

2. The trials are identical and independent, and therefore the probability of suc- 

cess, p, remains the same from trial to trial. 

3. The random variable X denotes the number of successes obtained in the 7 trials. 

Once we realize that the binomial model is appropriate from the physical de- 

scription of the experiment, we shall want to describe the behavior of the binomial 

random variable involved. To do so, we need to consider the density for the random 

variable. To get an idea of the general form for the binomial density, let us consider 

the case in which n = 3. The sample space for such an experiment is 

S = { fi Sita Ste IPS: SST) SISs L5 5s SSS} 

Since the trials are independent, the probability assigned to each sample point is 

found by multiplying. For example, the probabilities assigned to the sample points 

fff and sff are (1 — p)(1 — p)(1 — p) = (1 — p) and p(1 — p)( — p) = pC — p)’, 
respectively. The random variable X assumes the value 0 only if the experiment re- 
sults in the outcome fff. That is, 

P[X = 0) = (1 — py 

However, X assumes the value | if the experiment results in any one of the out- 
comes sff, fsf, or ffs. Thus 

P(X = 1] =3: pil — py 

Similarly, 

and 
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P[X = 3) = p® 

It is evident that for x = 0, 1, 2,3 

PR cap (lp) ss 
where c(x) denotes the number of sample points that correspond to x successes. 
Such a sample point is expressed as a permutation of three letters, with x of these 
being s’s and the rest, 3 — x, of these being f’s. Using the formula for the number 
of permutations of indistinguishable objects studied in Chap. 1, we see that 

ex) = = (3) 
DCS aey.).! mis 

Thus the density for this binomial random variable is given by 

ead (ea pete = Old. 
To generalize this idea to n trials, we replace 3 by n to obtain the expression 

fey =O el ae CRO Oe ot ole 

This suggests the formal definition of the binomial distribution. 

Definition 3.5.1 (Binomial distribution). A random variable X has a 

binomial distribution with parameters n and p if its density is given by 

To) = ("Prd py x= 0712). on 

Qa pi 

where v7 is a positive integer. 

To see that the function given in this definition is a density, note that it is non- 

negative. Furthermore, by applying the binomial theorem with k = x, a = p, and 

= | — pitcan be seen that 

SE p= =p alr as 
x=0 

as desired. 

Example 3.5.1. Recent studies of German air traffic controllers have shown that it 

is difficult to maintain accuracy when working for long periods of time on data display 

screens. A surprising aspect of the study is that the ability to detect spots on a radar 

screen decreases as their appearance becomes too rare. The probability of correctly 

identifying a signal is approximately .9 when 100 signals arrive per 30-minute period. 

This probability drops to .5 when only 10 signals arrive at random over a 30-minute 

period. The hypothesis is that unstimulated minds tend to wander. Let X denote the 

number of signals correctly identified in a 30-minute time span in which 10 signals 
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arrive. This experiment consists of a series of n = 10 independent and identical 

Bernoulli trials with “success” being the correct identification of a signal. The proba- 

bility of success is p = 1/2. Since X denotes the number of successes in a fixed num- 

ber of trials, X is binomial. Its density is found by letting n = 10 and p = 1/2 in the 

expression for f given in Definition 3.5.1. That is, 

f(x) = (Cpa = oN x= Oe sears n 

or 

f(x) = (are ¥=0 boo 10 

The next theorem summarizes other theoretical properties of the binomial dis- 

tribution. Its proof is left as an exercise (Exercise 43). 

Theorem 3.5.1. Let X be a binomial random variable with parameters n and p. 

1. The moment generating function for X is given by 

my(t) = (q+ pe)" q=1-—p 

2. E[X] = w = np 
3. Var X = 07 = npg 

Example 3.5.2.The random variable X, the number of radar signals properly iden- 
tified in a 30-minute period, is a binomial random variable with parameters n = 10 

and p = 1/2. The moment generating function for this random variable is 

my(t) = (1/2 + 1/2e')© 

Its mean is “= np = 10(1/2) = S, and its variance is 0? = npq = 10(1/2)(1/2) = 10/4. 

In statistical studies we shall usually be interested in computing the probability 

that the random variable assumes certain values. This probability can be computed 

from the density function, f, or from the cumulative distribution function, F. Since the 
binomial distribution comes into play in such a wide variety of physical applications, 
tables of the cumulative distribution function for selected values of n and p have been 
compiled. Table I of App. A is one such table. That is, Table I gives the values of 

F(t) = > ( 
x=0 

for selected values of n and p, where [t] represents the greatest integer less than or 
equal to f. Its use is illustrated in the following example. 

Example 3.5.3 Let X denote the number of radar signals properly identified in a 
30-minute time period in which 10 signals are received. Assuming that X is binomial 
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(a) +} —$§he- $e pe 

0 1 2; 3 4 5) 6 vi 8 9 10 

(b) o—_—__{_e—_____ + ste —————— rte ee 

0 1 2 3 4 5) 6 7 8 9 10 

oe 
PIX S 7) =.9453 

P({2 < X <7] =.9453 — .0107 = .9346 

FIGURE 3.2 
(a) The probability that X lies between 2 and 7 inclusive is the probability associated with the starred 

points; (b) P[X <= 7] = .9453 includes the probability associated with O and 1; (c) the probability 

associated with the unwanted points 0 and 1 is .0107; (d) the desired probability is found by 

subtraction. 

with n = 10 and p = 1/2, find the probability that at most seven signals will be iden- 

tified correctly. This probability can be found by summing the density from x = 0 to 

x = 7. That is, 
; 

PIX Ss 7] = > (2)C/2)"1/2) 0 
x=0 

Evaluating this probability directly entails a large amount of arithmetic. However, its 

value can be read from Table I of App. A. We first look at the group of values labeled 

n = 10. The desired probability of .9453 is found in the column labeled .5 and the row 

labeled 7. That is, 

P[X = 7] = F(7) =.9453 

Other probabilities can be found. For example, find P[2 = X = 7]. Figure 3.2 suggests 

how this is done. Notice that in Fig. 3.2 we want the probability associated with points 

that are starred. To determine the desired probability, we first find the number 7 in 

Table I of App. A. Since the table is cumulative, the probability given, .9453, is the 
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probability that X is at most 7. This probability includes the probability that X = 0 or 

X = 1. Since we did not want to include those values, PLX = 1] = F(1) = .0107 must 

be subtracted from .9453. Thus 

PI2 SX <7) = PIX $7] — PIX <2] 
= PIX <7] - P[IX=1] 
= F(7) — F(1) 
= 9453 — .0107 
= 9346 

Later in the text we shall show ways of approximating binomial probabilities 

when the values of n and p are such that no appropriate binomial table is available. 

3.6 NEGATIVE BINOMIAL DISTRIBUTION 

The negative binomial distribution is a distribution that can be thought of as a “re- 

versal” of the binomial distribution. In the binomial setting the random variable X 

represents the number of successes obtained in a series of m independent and iden- 

tical Bernoulli trials; the number of trials is fixed and the number of successes will 

vary from experiment to experiment. The negative binomial random variable repre- 

sents the number of trials needed to obtain exactly r successes; here, the number of 

successes is fixed and the number of trials will vary from experiment to experiment. 

In particular, the negative binomial random variable arises in situations character- 

ized by the following properties: 

Negative binomial properties 

1. The experiment consists of a series of independent and identical Bernoulli tri- 
als, each with probability p of success. 

2. The trials are observed until exactly r successes are obtained, where r is fixed 
by the experimenter. 

3. The random variable X is the number of trials needed to obtain the r successes. 

It is not hard to derive the density function for X. To do so, let us consider a 
setting in which r = 3. Typical outcomes for such an experiment are 

ssffffs Sffffss Tffsss SSS ssfs 

Here X assumes the values 7, 7, 7, 3, and 4, respectively. There are several things to 
notice immediately. First, each outcome must end with a successful trial. Second, the 
remaining x — | trials must result in exactly two successes and x — 3 failures in some 
order. Third, different outcomes can yield identical values for X. To determine the 
number of outcomes that result in a given value of X, we ask, “How many permuta- 
tions can be formed consisting of x — 1 objects of which exactly two represent suc- 
cess and the rest, x ~ 3, represent failure?” The formula on page 16 can be applied 

to see that the answer to this question is fs a ), For example, there are (5) = 15 
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ways in which X can assume the value 7. Three of these outcomes are given on 
page 70. Since trials are independent with probability p of success and probability 
| — p of failure, the probability of an outcome for which X = x is given by 

P[X=x] = (F5, ie —p)*-3p3 x =3,4,5,... 

You can use this expression to verify that the probability that ¥ = 7 is 

(5) Dias 

The argument given for r = 3 can be generalized easily. We simply replace 3 

by r and 2 by r — | in the argument given to obtain the following definition for the 
negative binomial random variable: 

Definition 3.6.1 (Negative binomial distribution). A random variable X is 

said to have a negative binomial distribution with parameters p and r if its 
density fis given by 

So yeee I eae Pat 2 3. Ge 
ie) 27) PP Yerrt lye, 

Theorem 3.6.1 gives the moment generating function for the negative bi- 

nomial distribution. The expectations stated in the theorem are obtained from the 

moment generating function. 

Theorem 3.6.1. Let X be a negative binomial random variable with parameters 

rand p. Then 

1. the moment generating function for X is given by 

(pe')" RS EE =|- 

ey es my(t) = 

2. E[X] = rip 

3. Var(X) = rq/p* 

An example will illustrate the use of this distribution in a practical setting. 

Example 3.6.1. Cotton linters used in the production of rocket propellant are sub- 

jected to a nitration process that enables the cotton fibers to go into solution. The 

process is 90% effective in that the material produced can be shaped as desired in a 

later processing stage with probability .9. What is the probability that exactly 20 lots 

will be produced in order to obtain the third defective lot? Here “success” is obtaining 

a defective lot, and hence p = .1 and r = 3. The probability that X = 20 is given by 
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f(20) = Galouieve 
a 

The expected value of X is r/p = 3/.1 or 30, and the variance of X is rq/p* = 3(.9)/(.1)? 

= 270. (Based on a study to compare different sources of cotton linters conducted by 

the Radford University Statistical Consulting Service for the Radford Army Ammuni- 

tion Plant.) 

One other point should be made. When r = |, the negative binomial distribu- 

tion reduces to the geometric distribution studied earlier. (See Exercise 51.) 

3.7 HYPERGEOMETRIC DISTRIBUTION 

Sampling from a finite population can be done in one of two ways. An item can be 

selected, examined, and returned to the population for possible reselection; or it can 

be selected, examined, and kept, thus preventing its reselection in subsequent 

draws. The former is called sampling with replacement, whereas the latter is called 

sampling without replacement. Sampling with replacement guarantees that the 

draws are independent. In sampling without replacement the draws are not inde- 

pendent. Thus if we sample without replacement, the random variable X, the num- 

ber of successes in n draws, is no longer binomial. Rather, it follows a distribution 

known as the hypergeometric distribution. 

Hypergeometric properties 

1. The experiment consists of drawing a random sample of size n without re- 

placement and without regard to order from a collection of N objects. 

2. Of the N objects, r have a trait of interest to us; the other N — r do not have the 
trait. 

3. The random variable X is the number of objects in the sample with the trait. 

To derive the density for this distribution, suppose that we have a group of N ob- 

jects and that r of these objects have a trait of interest to us. We are to select n objects 
from the group randomly without replacement. Let X denote the number of objects 
chosen that have the trait. The idea is depicted in Fig. 3.3. Since we are not interested 
in the order in which the items are selected, we can use combinatorial techniques 

to conclude that there are 4 ways to choose the n objects. In a random selection 

we are just as likely to obtain one set of n objects as any other. That is, there are 

a equally likely ways in which this experiment can proceed. In order to have x 

successes, we must select exactly x objects from the r objects with the trait of inter- 

est. This can be done in iw) ways. We must select the remaining n — x objects from 

the N —r objects that do not have the trait; this can be done in ie ways. Using 

classical probability and the multiplication rule for counting, we obtain 
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N objects 

Don't have trait 

(failure) 

N-r 

Select n 

FIGURE 3.3 General hypergeometric setting. 

number of ways to select x objects with the trait 
Pix =a] = and n — x objects without the trait 

number of ways the experiment can proceed 

This argument suggests the definition of the hypergeometric distribution. 

Definition 3.7.1 (Hypergeometric distribution). A random variable X has 
a hypergeometric distribution with parameters N, n, and r if its density is 

given by 

(n=) 
OS ee ee ee max(O.,7= GV =7)l=x = mn, 7) 

where N, 1, and 7 are positive integers. 

Notice the unusual bounds for X. A simple numerical example should show 

you why these bounds are as stated. 

Example 3.7.1. Suppose that X is hypergeometric with N = 15, r = 6, andn = 12. 

This situation is depicted in Fig. 3.4. Since only six items have the desired trait, X can- 

not exceed 6. Note that 6 = min(n, r) = min(12, 6). Since we can select at most nine 

items from among those without the trait, we must select at least three items from 

among those with the trait. Note that 

3 = max[0,n — (N—7)] = max[0, 12 — (15 —6)] = max[0, 3} 

Just be careful when stating the bounds for a hypergeometric random variable. 

They are tricky! Since the bounds for X are unusual, the theoretical development of 

the hypergeometric distribution is not easy. However, it can be shown that 



74 INTRODUCTION TO PROBABILITY AND STATISTICS 

Have trait 

r=6 Don't have 

trait 

Select 12 

N-r=9 

FIGURE 3.4 Hypergeometric setting with N = 15, r = 6, and n = 12. 

E[X] -»(2) 

and 

Example 3.7.2. A foundry ships engine blocks in lots of size 20. Since no manufac- 

turing process is perfect, defective blocks are inevitable. However, to detect the defect, 

the block must be destroyed. Thus we cannot test each block. Before accepting a lot, 

three items are selected and tested. Suppose that a given lot actually contains five de- 

fective items. Let X denote the number of defective items sampled. The density for X is 

lee) 
f(x) =———__-x¥=0,1,2,3 

The expected number of defective blocks in a sample of size 3 is 

r eh hae 

Hels (2) = (3)-3 

Var X = (2% = “a = ") 
N N Ne 

An) \s) ~\ 20 /\ 20 /\ 19 

eX, 

~ 304 

The variance for X is 

If the number of items sampled (7) is small relative to the number of objects 
from which the sample is drawn (N), then the binomial distribution can be used to 
approximate hypergeometric probabilities. A rule of thumb is that the approxima- 
tion is usually satisfactory if n/N = .05. The proof of this result depends upon 
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Stirling’s formula, which is studied in courses in advanced calculus. We shall not at- 
tempt the proof here. However, the result should not be surprising. If m is small rel- 
ative to N, then the composition of the sampled group does not change much from 
trial to trial even though we are keeping the sampled items. Thus the probability of 
success is not changing much from trial to trial, and for all practical purposes it can 
be viewed as being constant. Thus the distribution of X, the number of successes ob- 
tained in n draws, can be approximated by the binomial distribution with parame- 
ters n and p = r/N. 

Example 3.7.3. During the course of an hour 1000 bottles of beer are filled by a par- 
ticular machine. Each hour a sample of 20 bottles is randomly selected and the num- 
ber of ounces of beer per bottle is checked. Let X denote the number of bottles selected 
that are underfilled. Suppose that during a particular hour 100 underfilled bottles are 
produced. Find the probability that at least 3 underfilled bottles will be among those 
sampled. The exact value of this probability is given by 

PPX 1 Pe ExX= 3] 

soil 9 EAD. = Al 

= Exe xa Pix 2) 

100) (900 100) (900 100) (900 Uo )G0) ()G9) CG) 
zi: 1000 (000, gn Yc1000) mia a Weigh cealeae Mea 

As you can see, calculating this probability directly, even with the aid of a cal- 

culator, is time-consuming. However, since n/N = 20/1000 S .05, our rule of thumb 

indicates that this probability can be approximated by using the binomial distribution 

with parameters n = 20 and p = r/N = 100/1000 = .1. From Table I of App. A, the 

cumulative binomial table, we find that 

PX 3) = Pix = 3) 

lS PX =] 

= ih = {ony 

=v 231 

3.8 POISSON DISTRIBUTION 

The last discrete family to be considered is the family of Poisson random variables, 
named for the French mathematician Simeon Denis Poisson (1781-1840). The 

Maclaurin series expansion for the function e* studied in beginning calculus courses 

provides the theoretical basis for this distribution. This series is given by 

Maclaurin series 

For z a real number, 

elt 27) et Al 
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We begin by considering the mathematical properties of this important family of 

random variables. 

Definition 3.8.1 (Poisson distribution). A random variable X is said to 

have a Poisson distribution with parameter k if its density fis given by 

oe *k* V0 

x! k>0 f(x) = 

The function f given in this definition is nonnegative. To see that it sums to I, 

note that 

Z en*k* gE. 5) 3 
Set AO ned oN al PAB ee Sal EN a oe) 

-| 
x=0 x: 

The series on the right is the Maclaurin series for e*. Thus 

2 e *k* 

3 
x=0 

=e k= =] 
x! 

as desired. 
The moment generating function for this distribution is easy to obtain, as is its 

mean and variance. The following theorem gives these results. Its proof is outlined 

as an exercise. (Exercise 69.) 

Theorem 3.8.1. Let X be a Poisson random variable with parameter k. 

1. The moment generating function for X is given by 

my(t) = eke) 

2. E[X)=k 

SaenVatke— K 

Poisson random variables usually arise in connection with what are called 

Poisson processes. Poisson processes involve observing discrete events in a contin- 

uous “interval” of time, length, or space. We use the word “interval” in describing 

the general Poisson process with the understanding that we may not be dealing with 

an interval in the usual mathematical sense. For example, we might observe the 

number of white blood cells in a drop of blood. The discrete event of interest is the 

observation of a white cell, whereas the continuous “interval” involved is a drop of 

blood. We might observe the number of times radioactive gases are emitted from a 

nuclear power plant during a 3-month period. The discrete event of concern is 

the emission of radioactive gases. The continuous interval consists of a period of 

3 months. The variable of interest in a Poisson process is X, the number of occur- 

rences of the event in an interval of length s units. Although the derivation is a 

bit tricky, it can be shown using differential equations that X is a Poisson random 



DISCRETE DISTRIBUTIONS 77 

variable with parameter k = As, where A is a positive number that characterizes the 
underlying Poisson process. To understand the physical significance of the constant 
X, note that by Definition 3.8.1 the density for X is given by 

AS Xr x 

f(x) = P20) LO. 

By Theorem 3.8.1 the expected value of X is As. That is, the average number of oc- 
currences of the event of interest in an interval of s units is As. Thus the average 
number of occurrences of the event in | unit of time, length, area, or space is As/s = 
X. That is, physically, the parameter X of a Poisson process represents the average 
number of occurrences of the event in question per measurement unit. 

The following steps are used in the solution of an applied Poisson problem: 

Steps in Solving a Poisson Problem 

1. Determine the basic unit of measurement being used. 

2. Determine the average number of occurrences of the event per unit. This num- 
ber is denoted by A. 

3. Determine the length or size of the observation period. This number is denoted 
by s. 

4. The random variable X, the number of occurrences of the event in the interval 

of size s follows a Poisson distribution with parameter k = As. 

These steps are illustrated in Example 3.8.1. 

Example 3.8.1. The white blood cell count of a healthy individual can average as 

low as 6000 per cubic millimeter of blood. To detect a white-cell deficiency, a .001 

cubic millimeter drop of blood is taken and the number of white cells X is found. How 

many white cells are expected in a healthy individual? If at most two are found, is 

there evidence of a white cell deficiency? 

This experiment can be viewed as involving a Poisson process. The discrete 

event of interest is the occurrence of a white cell; the continuous interval is a drop of 

blood. 

Let the measurement unit be a cubic millimeter; then s = .001 and A, the aver- 

age number of occurrences of the event per unit, is 6000. Thus X is a Poisson random 

variable with parameter As = 6000(.001) = 6. By Theorem 3.8.1, E[X] = As = 6. In 

a healthy individual we would expect, on the average, to see six white cells. How rare 

is it to see at most two? That is, what is PLX = 2]? From Definition 3.8.1, 

2 2 e 6 BG 

Tare ADS ACI) DS ar 
x=0 x¥=0 2-5 

e °69 e °6! e 662 

7 1! 2! 

Evaluating this type of expression directly does entail some arithmetic. 

Once again, because of the wide appeal of the Poisson model, the values of the 

cumulative distribution function for selected values of the parameter k = As are tabu- 

lated. Table II of App. A is one such table. The desired probability of .062 is found by 
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Discrete distributions: A summary 
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Bernoulli 
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Mean 

np 

Zils 

Variance 

looking under the column labeled k = 6 in the row labeled 2. Is there evidence of a 
white-cell deficiency? There are no rules that say at what point probabilities are con- 
sidered to be small. To answer this question, a value judgment must be made. If you 
consider .062 to be small, then the natural conclusion is that the individual does have 
a white-cell deficiency. 

3.9 
DISTRIBUTION 

In designing operating systems of various types, one often needs to simulate the 
system before it is built. Simulation is usually done with the aid of a computer. 
However, the idea behind simulation can be illustrated by using a random digit 
table. A portion of such a table is given in Table III of App. A. Its use is illustrated 
in the following example. 

SIMULATING A DISCRETE 

Example 3.9.1. Table 3.9 presents a portion of the random digit table in the appen- 
dix. Let us read a sequence of random two-digit numbers from this table. To do so, we 
must get a random start. This can be done by writing the integers | through 14 on slips 
of paper, placing the slips in a bowl, stirring, and drawing one slip at random from the 
bowl. The number selected identifies the column in which our starting number is lo- 
cated. In a similar way, we can select the row in which the starting number is located. 
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TABLE 3.9 

Column Random digits 

Row (1) (2) (3) 

1 10480 15011 01536 
2 22368 46573 25595 

3 24130 48360 252i 

4 42167 93093 06243 

5 37570 39975 81837 

6 77921 06907 11008 

vi 99562 72905 56420 

8 96301 91977 05463 

9 89579 14342 63661 
10 85485 36857 43342 

Suppose that this process results in the selection of column 2 and row 5. This identi- 

fies the random starting point as 39975. 

Since we want two-digit numbers, we need only read the first two digits of this 

number. Thus our first random number is 39. Since a random digit table is constructed 

in such a way that the digit appearing at each position in the table is just as likely to be 
one digit as any other, the table can be read in any way. Let us agree to read down the 

second column so that the next four two-digit numbers are 06, 72, 91, and 14. 

The next example illustrates the use of a random digit table in a simple simu- 

lation experiment. 

Example 3.9.2. Suppose that at a particular airport planes arrive at an average rate 

of one per minute and depart at the same average rate. We are interested in simulating 

the behavior of the random variable Z, the number of planes on the ground at a given 

time. We will simulate Z for five consecutive one-minute periods. Note that for each 

of these periods the random variables X, the number of arrivals, and Y, the number of 

departures, are both Poisson variables with parameter k = 1. The density for X and Y 

is obtained from Table II of App. A and is shown below: 

xX O82 P[X = 0] = PLY = 0] = .368 
} P(X = 1] = P[Y = 1] = .368 

P[X = 2] = P[Y = 2] = .184 

P[X = 3] = P[Y = 3] = .061 

P[X = 4] = P[Y = 4] = .015 

P(X = 5] = P[Y = 5] = .003 

P[X = 6] = P[Y = 6] = .001 

P[X > 6] = P[Y > 6] =0 

There are 1000 possible three-digit numbers. We divide them into seven categories to 

reflect the above probabilities. This division is shown in Table 3.10. To perform the 

simulation, we read a total of 10 random three-digit numbers using the procedure 

demonstrated in Example 3.9.1. Assume that at the beginning of the simulation there 
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TABLE 3.10 
Rant ee STS SS Se ee 

Random Number of Number of 

number arrivals (x) departures (y) PIX Ss] = Fir 1 

000-367 0 0 368 

368-735 | ] 368 

736-919 2 2 184 

920-980 3 3 061 

981-995 4 4 O15 

996-998 5 5 003 

999 6 6 001 

TABLE 3.11 

Time Random Number of Number of Number on ground at 

span, 3-digit arrivals departures end of time period 

min number (x) (y) (z) 

1 O15 0 100 

DSS) 0 100 

2 PD 0 

062 0 100 

3 818 D 

110 0 102 

4 564 1 

054 0 103 

5) 636 1 

433 1 103 

are 100 planes on the ground and that our random starting point is the number 01536 

found in line | and column 3 of Table 3.9. The first number read corresponds to the ar- 

rivals during the first minute of observation, the second to the departures during this 

time span, and so forth. The results of the simulation are shown in Table 3.11. If this 

simulation were continued over a long period of time, we could begin to answer such 

questions as: “On the average, how many planes are on the ground at a given time?” 
and “How much variability is there in the number of planes on the ground?” 

CHAPTER SUMMARY 

In this chapter we introduced the concept of a random variable and showed you how 
to distinguish a discrete random variable from one that is not discrete. We studied 
two functions, the density function and the cumulative distribution function, that are 
used to compute probabilities. The density gives the probability that X assumes a 
specific value x, the cumulative distribution gives the probability that X assumes a 
value less than or equal to x. The concept of expected value was introduced and 
used to define three important parameters, the mean (j2), the variance (o2), and the 
standard deviation (0). The mean is a measure of the center of location of the dis- 
tribution; the variance and standard deviation measure the variability of the random 
variable about its mean. The moment generating function was introduced as a 
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means of finding the mean and variance of X. Special discrete distributions that find 
extensive use in all areas of application were presented. These are the geometric, 
hypergeometric, negative binomial, binomial, Bernoulli, uniform, and Poisson dis- 
tributions. We also discussed briefly how to simulate a discrete distribution. We in- 
troduced and defined terms that you should know. These are: 

Random variable Variance 

Discrete random variable Standard deviation 

Discrete density Bernoulli trial 

Cumulative distribution Moment generating function 

Expected value Sampling with replacement 

Mean Sampling without replacement 

EXERCISES 

Section 3.1 

In each of the following, identify the variable as discrete or not discrete. 
1b; 

2. 
a 

T: the turnaround time for a computer job (the time it takes to run the program 

and receive the results). 

M: the number of meteorites hitting a satellite per day. 

N: the number of neutrons expelled per thermal neutron absorbed in fission of 

uranium-235. 

Neutrons emitted as a result of fission are either prompt neutrons or delayed 

neutrons. Prompt neutrons account for about 99% of all neutrons emitted and 

are released within 10~'* s of the instant of fission. Delayed neutrons are emit- 

ted over a period of several hours. Let D denote the time at which a delayed 

neutron is emitted in a fission reaction. 

Electrical resistance is the opposition offered by electrical conductors to the 

flow of current. The unit of resistance is the ohm. For example, a 22-inch elec- 

tric bell will usually have a resistance somewhere between 1.5 and 3 ohms. Let 

O denote the actual resistance of a randomly selected bell of this type. 

The number of power failures per month in the Tennessee Valley power net- 

work. 

Section 3.2 

tks Grafting, the uniting of the stem of one plant with the stem or root of another, 

is widely used commercially to grow the stem of one variety that produces fine 

fruit on the root system of another variety with a hardy root system. Most 

Florida sweet oranges grow on trees grafted to the root of a sour orange variety. 

The density for X, the number of grafts that fail in a series of five trials, is given 

by Table 3.12. 

TABLE 3.12 

x 

Sx) 
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TABLE 3.13 

x | 2 3 4 5 ran 57 MS 
fame 0a Cs eS 2 A EE alls, 

(a) Find f(5). 
(b) Find the table for F. 

(c) Use F to find the probability that at most three grafts fail; that at least two 

grafts fail. 

(d ) Use F to verify that the probability of exactly three failures is .03. 

8. In blasting soft rock such as limestone, the holes bored to hold the explosives 

are drilled with a Kelly bar. This drill is designed so that the explosives can be 

packed into the hole before the drill is removed. This is necessary since in soft 

rock the hole often collapses as the drill is removed. The bits for these drills 

must be changed fairly often. Let X denote the number of holes that can be 

drilled per bit. The density for X is given in Table 3.13. 

(a) Find f(8). 
(b) Find the table for F. 

(c) Use F to find the probability that a randomly selected bit can be used to 

drill between three and five holes inclusive. 

(d) Find P[X = 4] and P[X < 4]. Are these probabilities the same? 

(e) Find F(—3) and F(10). Hint: Express these in terms of the probabilities 

that they represent and their values will become obvious. 

9. Consider Example 1.2.1. Let X denote the number of computer systems oper- 

10. 

able at the time of the launch. Assume that the probability that each system is 
operable is .9. 

(a) Use the tree of Fig. 1.2 to find the density table. 
(b) There is a pattern to the probabilities in the density table. In particular, 

F(x) = k(x)(.9)*(.1)3 

where k(x) gives the number of paths through the tree yielding a particular 

value for X. Verify that k(x) = (") for x = 0,1, 2,3 

(c) Find the table for F. : 
(d) Use F to find the probability that at least one system is operable at launch 

time. 

(e) Use F to find the probability that at most one system is operable at the time 
of the launch. 

It is known that the probability of being able to log on toa computer from a re- 
mote terminal at any given time is .7. Let X denote the number of attempts that 
must be made to gain access to the computer. 
(a) Find the first four terms of the density table. 
(b) Find a closed-form expression for f(x). 
(c) Find P[X = 6]. 

(d ) Find a closed-form expression for F(x). 
(e) Use F to find the probability that at most four attempts must be made to 

gain access to the computer. 
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TABLE 3.14 

x eae) 1 D 3 4 5 6 
EC eens eer 5 eas teics! Uta og | 4G 

(f) Use F to find the probability that at least five attempts must be made to 
gain access to the computer. 

11. Knitting machines at a factory making elastic use a laser to detect broken 

threads. When a thread breaks, the machine must be stopped and the broken 

thread must be found and repaired by a technician. Assume that the density for 
X, the number of times per day that a specific machine is stopped, is given by 

mmelon (ale 2 = (32)(5) ~—0,1,2,3,4 

(a) Find the density table for X, and verify that the sum of the probabilities 

given in the table is 1. 

(b) If x < 0, what is the numerical value of F(x)? 

(c) Ifx > 4, what is the numerical value of F(x)? 

12. Past experience shows that over time the rivets in bridge supports can become 
dangerously loose. Assume that X, the number of loose rivets found per 10 feet 

beam on bridges over 20 years old, has the cumulative distribution shown in 

Table 3.14. 
(a) Find the density table for X. 

= 9) —_ 

(b) Verify that f(x)= Capes x=1,2,3,4,5 

AL x - 3} =. 
f@= 0 x=0 or 6 

13. Explain why the cumulative distribution function for a discrete random vari- 

able can never decrease in value. 

Section 3.3 

14. In an experiment to graft Florida sweet orange trees to the root of a sour orange 

variety, a series of five trials is conducted. Let X denote the number of grafts 

that fail. The density for X is given in Table 3.12. 

(a) Find E[X]. 
(b) Find py. 
(c) Find E[X’]. 

(d ) Find Var X. 

(e) Find o%. 
(f) Find the standard deviation for X. 

(g) What physical unit is associated with oy? 

15. The density for X, the number of holes that can be drilled per bit while drilling 

into limestone is given in Table 3.13. ; 

(a) Find E[X] and E[X’]. | 

(b) Find Var X and oy. 

(c) What physical unit is associated with oy? 

/ 
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16. 

17s 

18. 

19. 

20. 

21. 

22. 
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Use the density derived in Exercise 9 to find the expected value and variance 

for X, the number of computer systems operable at the time of the launch. Can 

you express E[X] and Var X in terms of n, the number of systems available, and 

p, the probability that a given system will be operable? 

The probability p of being able to log on to a computer from a remote terminal 

at any given time is .7. Let X denote the number of attempts that must be made 

to gain access to the computer. Find E[X]. Can you express E[X] in terms of p? 

Hint: The series 2*_,x(.7)(.3)*"! = E[X] is not geometric. To find E[X], ex- 

pand this series and the series .3E[X]. Subtract the two to form the series 

.JE|X]. Evaluate this geometric series, and solve for E[X]. 

The probability that a cell will fuse in the presence of polyethylene glycol is 

1/2. Let Y denote the number of cells exposed to antigen-carrying lymphocytes 

to obtain the first fusion. Use the method of Exercise 17 to find E[Y]. 

Let X be a discrete random variable with density f. Let c be any real number. 

Show that 

(a) E[c] = c. Hint: Remember that constants can be factored from summa- 

tions and that >, , f(x) = 1. 
(b) E[cX] = cE[X]. 

Use the rules for expectation to verify that Var c = 0 and Var cX = c? Var X for 
any real number c. Hint: Var c = E[c?] — (E[c]). 

Let X and Y be independent random variables with E[X] = 3, E[X?] = 25, 
E(Y] = 10 and E[Y?] = 164. 
(a) Find/Z]3X04= Y¥ 18). 
(ob) eFind Ei2X = 3 Y FFI. 
(c) Find Var X. 

(d ) Find oy. 

(e) Find Var Y. 

(f) Find ay. 

(g) Find Var[3X + Y — 8]. 

(hy Pind Vari2. = 3Y -. 71 

(i) Find E[(X — 3)/4] and Var[(X — 3)/4]. 
() Find E[(¥Y — 10)/8] and Var[(Y — 10)/8). 
(k) The results of parts (7) and (/) are not coincidental. Can you generalize and 

verify the conjecture suggested by these two exercises? 
Consider the function f defined by 

Sie) = C227 ox Sa | ee ee 

(a) Verify that this is the density for a discrete random variable X. Hint: Expand 
the series 241, f(x) for a few terms. A recognizable series will develop! 

(b) Let g(X) = (—1)*!-! [2!*1/(2|X] — 1)]. Show that Lan Ziof(x) < 2%. Hint: 
Expand the series for a few terms. You will obtain an alternating series that 
can be shown to converge. 

(c) Show that &,,, ; g(x) f(x) does not converge. This will show that El g(X)] 
does not exist. Hint: Expand the series for a few terms. You will obtain a 
series that is term by term larger than the diverging harmonic type series 
CLS) ey sie 
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23. (An application to sort algorithms.) In studying various sort algorithms in com- 

puter science, it is of interest to compare their efficiency by estimating the av- 

erage number of interchanges needed to sort random arrays of various sizes. It 

is also of interest to compare these estimated averages to the “ideal” average, 

where by “ideal” we mean the expected minimum number of interchanges 

needed to sort the array. In this exercise you will derive this ideal average. 

(American Mathematical Association of Two-Year Colleges, “A Note on the 

Minimum Number of Interchanges Needed to Sort a Random Array,” with 

T. McMillan, I. Liss, and J. Milton, Fall 1990.) 

(a) Consider a random array of length n. When the positions of exactly two el- 

ements of the array are exchanged, we say that an “interchange” has taken 

place. Let X,, denote the minimum number of interchanges necessary to 

sort an array of size n. Note that 

X, 
n a Oe aed 

where J = 0 if the last element of the array is in the correct position and 

I = 1 otherwise. Argue that P[J = 0] = 1/n and P[J = 1] = 1 — (1/n). 

(b) Show that 

| 
Ea 

n 

(c) Argue that 

1 
E[X,] a IS =r a, 

1 
EA al = 1 | Xo | cal ee hi, 

E[X,-2] = E[ Xio3] sat Wee 

E[Xs] = EG] +13 
1 

E[X)] = E[X] +1-5 

FIX, 1=0 

(d) Use a recursive argument to show that 

n 1 

j=2 C= 

(e) Illustrate the expression given in part (d ) by finding E[Xs]. 

(f) Elementary calculus can be used to approximate E[X,,] by noting that 

n 1 Pee) | 

[= Sead 
a: f if 
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Use this idea to approximate E[X;] and to compare the result to the exact 

solution found in part (e@). 

(g) A random digit generator is used to generate sets of 100 different three- 

digit numbers lying between 0 and 1. What is the ideal average number of 

interchanges needed to sort such an array? 

Section 3.4 

24. 

25% 

26. 

Zi. 

28. 

29. 

The probability that a wildcat well will be productive is 1/13. Assume that a 

group is drilling wells in various parts of the country so that the status of one 

well has no bearing on that of any other. Let X denote the number of wells 

drilled to obtain the first strike. 
(a) Verify that X is geometric, and identify the value of the parameter p. 

(b) What is the exact expression for the density for X? 

(c) What is the exact expression for the moment generating function for X? 

(d ) What are the numerical values of E[X], E[X7], 77, and 0? 

(e) Find P[X = 2]. 

The zinc-phosphate coating on the threads of steel tubes used in oil and gas 

wells is critical to their performance. To monitor the coating process, an un- 

coated metal sample with known outside area is weighed and treated along with 

the lot of tubing. This sample is then stripped and reweighed. From this it is 

possible to determine whether or not the proper amount of coating was applied 

to the tubing. Assume that the probability that a given lot is unacceptable is .0S5. 

Let X denote the number of runs conducted to produce an unacceptable lot. 
Assume that the runs are independent in the sense that the outcome of one run 

has no effect on that of any other. 

(a) Verify that X is geometric. What is “success” in this experiment? What is 
the numerical value of p? 

(b) What is the exact expression for the density for X? 

(c) What is the exact expression for the moment generating function for X? 

(d ) What are the numerical values of E[X], E[X?], 7*, and a? 

(e) Find the probability that the number of runs required to produce an unac- 

ceptable lot is at least 3. 

Let X be geometric with probability of success p. Prove that when x is a posi- 

tive integer, F(x) = | — q*. Verify that this result holds true for the density 

given in Example 3.2.4. Argue that, in general, F(x) = 1 — g*". 
Find the expression for the cumulative distribution function for the random 
variable of Exercise 25. Use this function to find the probability that at most 
three runs are required to produce an unacceptable lot. 
A system used to read electric meters automatically requires the use of a 
| 28-bit computer message. Occasionally random interference causes a digit re- 
versal resulting in a transmission error. Assume that the probability of a digit 
reversal for each bit is 1/1000. Let X denote the number of transmission errors 
per 128-bit message sent. Is X geometric? If not, what geometric property fails? 
Verify that the random variable X of Exercise 17 is geometric. Use Theorem 
3.4.3 to find E[X], and compare your answer to that obtained in Exercise 17. 
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Verify that the random variable Y of Exercise 18 is geometric. Use Theorem 
3.4.3 to find E[Y], and compare your answer to that obtained in Exercise 18. 
Consider the random variable X whose density is given by 

CESS 

5 

(a) Verify that this function is a density for a discrete random variable. 
(b) Find E[X] directly. That is, evaluate &,y , xf(x). 

(c) Find the moment generating function for X. 

(d ) Use the moment generating function to find E[X], thus verifying your an- 

swer to part (b) of this exercise. 

(e) Find E[X?] directly. That is, evaluate >, , x2A(x). 
(f) Use the moment generating function to find E[X?], thus verifying your an- 

swer to part (e) of this exercise. 

(g) Find a? ando. 
A discrete random variable has moment generating function 

ys RIO 55 

my(f) = ele 1) 

(a) Find E[X]. 
(b) Find E[X?]. 
(c) Find a? ando. 
A quality engineer is monitoring a process that produces timing belts for auto- 

mobiles. Each hour he samples 4 belts from the production line and determines 

the average breaking strength for the sample. If the average is too low, then this 
is a signal that the process is not operating correctly and that adjustments need 

to be made. Assume that when the process is working correctly the probability 

of obtaining a sample that produces an average that is too low is .025. Assume 

that this probability remains the same for each sample drawn. 

(a) Argue that X, the number of samples that are drawn in order to obtain the 

first sample that produces an average that is too low, follows the geomet- 

ric distribution, and identify the numerical value of p. 

(b) Write the formula for the moment generating function for X. 
(c) On the average, how many samples will be drawn in order to obtain the 

first sample whose average is too low? 
(Discrete uniform distribution.) A discrete random variable is said to be uni- 

formly distributed if it assumes a finite number of values with each value oc- 

curring with the same probability. If we consider the generation of a single 

random digit, then Y, the number generated, is uniformly distributed with each 

possible digit occurring with probability 1/10. In general, the density for a uni- 

formly distributed random variable is given by 

n a positive integer 
f(x) =1/n 

8 == OSil5 Alp OS) 0 0 oO Oa 

(a) Find the moment generating function for a discrete uniform random 

variable. 

(b) Use the moment generating function to find E[X], E[X “and a2: 
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(c) Find the mean and variance for the random variable Y, the number ob- 

tained when a random digit generator is activated once. Hint: The sum of 

the first n positive integers is n(n + 1)/2; the sum of the squares of the first 

n positive integers is n(n + 1)(2n + 1)/6. 

35. Let the density for X be given by 

f(x) = ce™ oS eee 

(a) Find the value of c that makes this a density. 

(b) Find the moment generating function for X. 

(c) Use my(t) to find E[X]. 

Section 3.5 

36. Let X be binomial with parameters n = 15 and p = .2. 

(a) Find the expression for the density for X. 

(b) Find the expression for the moment generating function for X. 

(c) Find E[X] and Var X. 

(d) Find E[X], E[X?], and Var X using the moment generating function, thus 

verifying your answer to part (c) of this exercise. 
(e) Find P[X = 1] by evaluating the density directly. Compare your answer to 

that given in Table I of App. A. 
(f) Draw dot diagrams similar to that of Fig. 3.2 to illustrate each of these 

probabilities, and find the probabilities using Table I of App. A. 

PIX = 3] P[X = 3] 

Pix] F(9) 

Pi2<XS7] F(20) 

Pigs x7 PLee lol 

37. Albino rats used to study the hormonal regulation of a metabolic pathway are 
injected with a drug that inhibits body synthesis of protein. The probability that 

arat will die from the drug before the experiment is over is .2. If 10 animals are 

treated with the drug, how many are expected to die before the experiment 

ends? What is the probability that at least eight will survive? Would you be sur- 

prised if at least five died during the course of the experiment? Explain, based 
on the probability of this occurring. 

38. Consider Example 1.2.1. The random variable X is the number of computer 

systems operable at the time of a space launch. The systems are assumed to op- 

erate independently. Each is operable with probability .9. 

(a) Argue that X is binomial and find its density. Compare your answer to that 

obtained in Exercise 9(b). 

(b) Find E[X] and Var X. 

39. In humans, geneticists have identified two sex chromosomes, R and Y. Every 

individual has an R chromosome, and the presence of a Y chromosome distin- 

guishes the individual as male. Thus the two sexes are characterized as RR 

(female) and RY (male). Color blindness is caused by a recessive allele on the 

R chromosome, which we denote by r The Y chromosome has no bearing on 



40. 

41. 

42. 

DISCRETE DISTRIBUTIONS 89 

color blindness. Thus relative to color blindness, there are three genotypes for 
females and two for males: 

Female Male 

RR (normal) RY (normal) 

Rr (carrier) rY (color-blind) 

rr (color-blind) 

A child inherits one sex chromosome randomly from each parent. 

(a) A carrier of color blindness parents a child with a normal male. Construct 

a tree to represent the possible genotypes for the child. Use the tree to find 

the probability that a given child will be a color-blind male. 

(b) Ifthe couple has five children, what is the expected number of color-blind 

males? What is the probability that three or more will be color-blind 
males? 

In scanning electron microscopy photography, a specimen is placed in a vac- 

uum chamber and scanned by an electron beam. Secondary electrons emitted 

from the specimen are collected by a detector, and an image is displayed on a 

cathode-ray tube. This image is photographed. In the past a 4- X 5-inch camera 

has been used. It is thought that a 35-millimeter (mm) camera can obtain the 

same clarity. This type of camera is faster and more economical than the 4- x 

5-inch variety. 

(a) Photographs of 15 specimens are made using each camera system. These 

unmarked photographs are judged for clarity by an impartial judge. The 

judge is asked to select the better of the two photographs from each pair. 

Let X denote the number selected taken by a 35-mm camera. If there is re- 

ally no difference in clarity and the judge is randomly selecting pho- 

tographs, what is the expected value of X? 

(b) Would you be surprised if the judge selected 12 or more photographs taken 

by the 35-mm camera? Explain, based on the probability involved. 

(c) If X =12, do you think that there is reason to suspect that the judge is not 

selecting the photographs at random? 
It has been found that 80% of all printers used on home computers operate cor- 

rectly at the time of installation. The rest require some adjustment. A particular 

dealer sells 10 units during a given month. 
(a) Find the probability that at least nine of the printers operate correctly upon 

installation. 
(b) Consider 5 months in which 10 units are sold per month. What is the prob- 

ability that at least 9 units operate correctly in each of the 5 months? 

It is possible for a computer to pick up an erroneous signal that does not show 

up as an error on the screen. The error is called a silent paging error. A particu- 

lar terminal is defective, and when using the system word processor, it intro- 

duces a silent paging error with probability .1. The word processor is used 20 

times during a given week. 
(a) Find the probability that no silent paging errors occur. 



90 INTRODUCTION TO PROBABILITY AND STATISTICS 

(b) Find the probability that at least one such error occurs. . 

(c) Would it be unusual for more than four such errors to occur? Explain, 

based on the probability involved. 

43. (a) Find the moment generating function for a binomial random variable with 

parameters n and p. Hint: Let 

(Rep —— p)"-* — (7) vers 1 aa 

and apply the binomial theorem. 

(b) Use my (t) to show that ELX] = np. 

(c) Use my(t) to show that E[X*] = n’p? — np? + np. 
(d ) Show that Var X = npq, where g = | —p. 

44. Assume that each time a metal detector at an airport signals, there is a 25% 

chance that the cause is change in the passenger’s pocket. During a given hour, 

15 passengers are stopped because of a signal from the metal detector. 

(a) Find the probability that at least 3 persons will have been stopped due to 

change in their pockets. 

(b) If 15 passengers are stopped by the detector, would it be unusual for none 

of these to have been stopped due to change in the pocket? Explain based 

on the probability of this occurring. 

45. (Point binomial or Bernoulli distribution.) Assume that an experiment is con- 

ducted and that the outcome is considered to be either a success or a failure. Let 

p denote the probability of success. Define X to be | if the experiment is a suc- 

cess and 0 if it is a failure. X is said to have a point binomial or a Bernoulli dis- 

tribution with parameter p. 

(a) Argue that X is a binomial random variable with n = 1. 

(b) Find the density for X. 

(c) Find the moment generating function for X. 

(d ) Find the mean and variance for X. 

(e) In DNA replication errors can occur that are chemically induced. Some of 

these errors are “silent” in that they do not lead to an observable mutation. 

Growing bacteria are exposed to a chemical that has probability .14 of in- 

ducing an observable error. Let X be | if an observable mutation results, 
and let X be 0 otherwise. Find E[X]. 

46. A binomial random variable has mean 5 and variance 4. Find the values of n 
and p that characterize the distribution of this random variable. 

Section 3.6 

47. A company is manufacturing highway emergency flares. Such flares are sup- 
posed to burn for an average of 20 minutes. Every hour a sample of flares is 
collected, and their average burn time is determined. If the manufacturing 
process 1s working correctly, there is a 68% chance that the average burn time 
of the sample will be between 14 minutes and 26 minutes. The quality engineer 
in charge of the process believes that if 4 of 5 samples fall outside these bounds 
then this is a signal that the process might not be performing as expected. Each 
morning the sampling begins anew. Let X denote the number of samples drawn 
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in order to obtain the fourth sample whose average value is outside of the above 
bounds. Find the probability that for a given morning X = 5 and hence there 
seems to be a problem right away. 
A particular pitching machine is manufactured so that it will throw the ball into 
the strike zone of a 6-foot batter 90% of the time. What is the average number 
of pitches that it will throw in order to walk a batter (that is, throw 4 pitches 
outside of the strike zone)? What is the probability that the fourth ball will be 
thrown on the seventh pitch? 

Use the moment generating function to show that the mean of a negative bino- 

mial distribution with parameters r and p is r/p. 

Use the moment generating function to show that E[X*] = (r? + rq)/p? and that 
Var X = rgq/p? for the negative binomial distribution with parameters r and p. 

Show that the geometric distribution is a special case of the negative binomial 

distribution with r = 1. Find the mean and variance of a geometric random 

variable with parameter p using Exercises 49 and 50. Compare your answer 

with the results of Theorem 3.4.3. 

A vaccine for desensitizing patients to bee stings is to be packed with three 

vials in each box. Each vial is checked for strength before packing. The proba- 

bility that a vial meets specifications is .9. Let X denote the number of vials that 

must be checked to fill a box. Find the density for X and its mean and variance. 

Would you be surprised if seven or more vials have to be tested to find three 

that meet specifications? Explain, based on the probability of this occurrence. 

Some characteristics in animals are said to be sex-influenced. For example, the 

production of horns in sheep is governed by a pair of alleles, H and h. The allele 

H for the production of horns is dominant in males but recessive in females. The 

allele h for hornlessness is dominant in females and recessive in males. Thus, 

given a heterozygous male (Hh) and a heterozygous female (Hh), the male will 

have horns but the female will be hornless. Assume that two such animals mate 
and the offspring is just as likely to be male as female. The lamb inherits one 
gene for horns randomly from each parent. Use a tree diagram to show that the 

probability that a lamb will be a hornless female is 3/8. Find the average num- 

ber of lambs born to obtain the second hornless female. Would you be surprised 
if at most five lambs were born to obtain the second hornless female? Explain. 

Section 3.7 
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Suppose that X is hypergeometric with N = 20, r = 17, andn = 5. What are the 

possible values for X? What is E[X] and Var X? 
Suppose that X is hypergeometric with N = 20, r = 3, and n = 5. What are the 

possible values for X? What is E[X] and Var X? 
Suppose that X is hypergeometric with N = 20, r = 10, and n = 5. What are the 

possible values for X? What is E[X] and Var X? 

Twenty microprocessor chips are in stock. Three have etching errors that can- 

not be detected by the naked eye. Five chips are selected and installed in field 

equipment. 

(a) Find the density for X, the number of chips selected that have etching 

errors. 
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(b) Find E[X] and Var X. 

(c) Find the probability that no chips with etching errors will be selected. 

(d) Find the probability that at least one chip with an etching error will be 

chosen. 

Production line workers assemble 15 automobiles per hour. During a given 

hour, four are produced with improperly fitted doors. Three automobiles are se- 

lected at random and inspected. Let X denote the number inspected that have 

improperly fitted doors. 

(a) Find the density for X. 

(b) Find E[X] and Var X. 

(c) Find the probability that at most one will be found with improperly fitted 

doors. 
A distributor of computer software wants to obtain some customer feedback 

concerning its newest package. Three thousand customers have purchased the 

package. Assume that 600 of these customers are dissatisfied with the product. 

Twenty customers are randomly sampled and questioned about the package. 

Let X denote the number of dissatisfied customers sampled. 

(a) Find the density for X. 

(b) Find E[X] and Var X. 

(c) Set up the calculations needed to find P[X = 3]. 

(d ) Use the binomial tables to approximate P[X = 3]. 

A random telephone poll is conducted to ascertain public opinion concerning 

the construction of a nuclear power plant in a particular community. Assume 

that there are 150,000 numbers listed for private individuals and that 90,000 of 

these would elicit a negative response if contacted. Let X denote the number of 

negative responses obtained in 15 calls. 

(a) Find the density for X. 

(b) Find E[X] and Var X. 

(c) Set up the calculations needed to find P[X = 6]. 

(d ) Use the binomial tables to approximate P[X = 6]. 

Section 3.8 

61. Let X be a Poisson random variable with parameter k = 10. 
(a) Find E[X]. 
(b) Find Var X. 

(c) Find ay. 

(d ) Find the expression for the density for X. 

(e) Find P[X S 4]. 
(f) Find P[X < 4]. 
(g) Find P[X = 4]. 

(h) Find P[X = 4]. 
(i) Find P[4=X = 9}. 
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A particular nuclear plant releases a detectable amount of radioactive gases 
twice a month on the average. Find the probability that there will be at most 
four such emissions during a month. What is the expected number of emissions 
during a 3-month period? If, in fact, 12 or more emissions are detected during 
a 3-month period, do you think that there is a reason to suspect the reported 
average figure of twice a month? Explain, on the basis of the probability 
involved. 
Geophysicists determine the age of a zircon by counting the number of uranium 
fission tracks on a polished surface. A particular zircon is of such an age that 
the average number of tracks per square centimeter is five. What is the proba- 

bility that a 2-centimeter-square sample of this zircon will reveal at most three 
tracks, thus leading to an underestimation of the age of the material? 
California is hit by approximately 500 earthquakes that are large enough to be 

felt every year. However, those of destructive magnitude occur on the average 

once every year. Find the probability that California will experience at least 

one earthquake of this magnitude during a 6-month period. Would it be un- 

usual to have 3 or more earthquakes of destructive magnitude in a 6-month pe- 
riod? Explain, based on the probability of this occurring. 

Load-bearing structures in underground mines are often required to carry addi- 

tional loads while mining operations are in progress. As the structures adjust to 

this new weight, small-scale displacements take place that result in the release 

of seismic and acoustic energy, called rock noise. This energy can be detected 

using special geophysical equipment. Assume that in a particular mine the av- 

erage number of rock noises recorded during normal activity is 3 per hour. 

Would you consider it unusual if more than 10 were detected in a 2-hour pe- 

riod? Explain, based on the probability involved. 

A burr is a thin ridge or rough area that occurs when shaping a metal part. 

These must be removed by hand or by means of some newer method such as 

water jets, thermal energy, or electrochemical processing before the part can 

be used. Assume that a part used in automatic transmissions typically averages 

two burrs each. What is the probability that the total number of burrs found on 

seven randomly selected parts will be at most four? 

Cast iron is an alloy composed primarily of iron together with smaller amounts 

of other elements, including carbon, silicon, sulfur, and phosphorus. The car- 

bon occurs as graphite, which is soft, or iron carbide, which is very hard and 

brittle. The type of cast iron produced is determined by the amount and distri- 

bution of carbon in the iron. Five types of cast iron are identifiable. These are 

gray, compacted graphite, ductile, malleable, and white. In malleable cast iron 

the carbon is present as discrete graphite particles. Assume that in a particular 

casting these particles average 20 per square inch. Would it be unusual to see a 
1/4-inch-square area of this casting with fewer than two graphite particles? 

Explain, based on the probability involved. 
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A Poisson random variable is such that it assumes the values 0 and | with equal 

probability. Find the value of the Poisson parameter k for this variable. 

Prove Theorem 3.8.1. Hint: Note that 

2) ein tel AES bd o PAINS 
my(t) = Ele | = See e*(kel)* 

x=0 oo x=0 

and use the Maclaurin series. 
If the sensitivity of a motion-activated light is set correctly, the average number 

of times that it will be activated per week by squirrels and other small woods 

animals is .5. What is the average number of times that you would expect the 

light to be activated by these animals in a two-week period? If this occurred at 

least 5 times during a two-week period, would you suspect that the sensitivity 

needed to be adjusted? Explain based on the probability involved. 

Escherichia coli, a bacterium often found in the human digestive tract, can mu- 

tate from being streptomycin sensitive to being streptomycin resistant, which 

can cause the individual involved to become resistant to the antibiotic strepto- 

mycin. Assume that there is an average of two streptomycin-resistant bacte- 

ria on cultures drawn from a particular patient. Each culture has an area of 

80 square centimeters. What is the probability that a one-square-centimeter ran- 

dom sample from a single culture will contain at least one resistant bacterium? 

What is the probability that at least one will be found in 5 randomly selected 

one-square-centimeter samples? (Assume that the 5 samples are independent of 

one another.) 

Section 3.9 
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An engine contains 5 seals that operate independently. If 3 or more seals fail, 

then the engine will fail. It is thought that when the temperature drops below 

0° F each seal has a 10% chance of failure. Let X denote the number of seals 

that fail so that X is binomial with n=5 and p=.10. Simulate the performance 

of 10 such engines under 0° conditions. Use the 10 simulations to estimate the 

average number of seals that will fail per engine by averaging your 10 values 

of X. Compare your estimate to the theoretical mean of .5. In your simulation, 
how many of the 10 engines would have failed? 

Use Table II of App. A to simulate the arrival and departure of planes to the air- 
port described in Example 3.9.2 for 10 more I-minute periods. Based on these 
data, approximate the average number of planes on the ground at a given time 
by finding the arithmetic average of the values of Z simulated in the experiment. 
Consider the random variable X, the number of runs conducted to produce an 
unacceptable lot when coating steel tubes (see Exercise 25.) X is geometric 
with p = .0S. Divide the 100 possible two-digit numbers into two categories, 
with numbers 00-04 denoting the production of an unacceptable lot and the re- 
maining numbers denoting the production of an acceptable lot. Simulate the ex- 
periment of producing lots until an unacceptable one is obtained 10 times. 
Record the value obtained for X in each simulation. Based on these data, ap- 
proximate the average value of X. Does your approximate value lie close to the 
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theoretical mean value of 20? If not, run the simulation 10 more times. Is the 

arithmetic average of your observed values for X closer to 20 this time? 

REVIEW EXERCISES 

Ss 

76. 

TAs 

78. 

79. 

A large microprocessor chip contains multiple copies of circuits. If a circuit 

fails, the chip knows it and knows how to select the proper logic to repair itself. 

The average number of defects per chip is 300. What is the probability that 10 

or fewer defects will be found in a randomly selected region that comprises 5% 

of the total surface area? What is the probability that more than 10 defects will 
be found? 

When a program is submitted to the computer in a time-sharing system, it is 

processed on a space-available basis. Past experience shows that a program 

submitted to one such system is accepted for processing within | minute with 

probability .25. Assume that during the course of a day five programs are sub- 

mitted with enough time between submissions to ensure independence. Let X 

denote the number of programs accepted for processing within | minute. 

(a) Find E[X] and Var X. 

(b) Find the probability that none of these programs will be accepted for pro- 

cessing within | minute. 

(c) Five programs are submitted on each of two consecutive days. What is 

the probability that no programs will be accepted for processing within 

| minute during this two-day period? 
A new type of brake lining is being studied. It is thought that the lining will last 

for at least 70,000 miles on 90% of the cars in which it is used. Laboratory tri- 

als are conducted to simulate the driving experience of 100 cars in which this 

lining is used. Let X denote the number of cars whose brakes must be relined 

before the 70,000-mile mark. 
(a) What is the distribution of X? What is E[X]? 

(b) What distribution can be used to approximate probabilities for X? 

(c) Suppose that we agree that the 90% figure is too high if 17 or more of the 

100 cars require a relinement prior to the 70,000-mile mark. What is the 

probability that we will come to this conclusion by chance even though the 

90% figure is correct? 

A bank of guns fires on a target one after the other. Each has probability 1/4 of 

hitting the target on a given shot. Find the probability that the second hit comes 

before the seventh gun fires. 

In a video game the player attempts to capture a treasure lying behind one of 

five doors. The location of the treasure varies randomly in such a way that at any 

given time it is just as likely to be behind one door as any other. When the player 

knocks on a given door, the treasure is his if it lies behind that door. Otherwise 

he must return to his original starting point and approach the doors through a 

dangerous maze again. Once the treasure is captured, the game ends. Let X de- 

note the number of trials needed to capture the treasure. Find the average num- 

ber of trials needed to capture the treasure. Find P[X = 3]. Find P[X > oh 
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An automobile repair shop has 10 rebuilt transmissions in stock. Three are not 

in correct working order and have an internal defect that will cause trouble 
within the first 1000 miles of operation. Four of these transmissions are ran- 

domly selected and installed in customers’ cars. Find the probability that no 

defective transmissions are installed. Find the probability that exactly one de- 

fective transmission is installed. 

A computer terminal can pick up an erroneous signal from the keyboard that 

does not show up on the screen. This creates a silent error that is difficult to de- 
tect. Assume that for a particular keyboard the probability that this will occur 

per entry is 1/1000. In 12,000 entries find the probability that no silent errors 

occur. Find the probability of at least one silent error. 

It is thought that 1 of every 10 cars on the road has a speedometer that is mis- 

calibrated to the extent that it reads at least 5 miles per hour low. During the 

course of a day 15 drivers are stopped and charged with exceeding the speed 

limit by at least 5 miles per hour. Would you be surprised to find that at least 5 

of the cars involved have miscalibrated speedometers? Explain, based on the 

probability of observing a result this unusual by chance. 
Let 

(a) Show that fis the density for a discrete random variable. 

(b) Find E[X] and E[X?] from the definition of these terms. 

(c) Find = my(t). 

(d ) Use = mj(t) to verify your answers to part (b). 
(e) Find Var X and o. 
Find the expression for the cumulative distribution function for the random 
variable of Exercise 24. Use this function to find the probability that at least 
three wells must be drilled to obtain the first strike. 
Consider the moment generating function given below. In each case, state the 
name of the distribution involved and the numerical value of the parameters 
that identify the distribution. For example, if the distribution is binomial, state 
the value of n and p; if geometric, give the value of p. 
(a) (286) 
(b) ee'-) 

(c) (7+ .3e') 

6e' 

[i="i4e? 

(.3e')? 

( lee ee 

(f) ef! 
For each of the distribution in Exercise 85, give the numerical values of the 
mean, variance, and standard deviation. 

(d ) 

(é) 
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87. Consider the problem of Example 1.2.3. Assume that sampling is independent 

and that at each stage the probability of obtaining a defective part when the 

process is working correctly is .01. Let X denote the number of samples taken 
to obtain the first defective part. 

(a) Find the density for X. 

(b) What is the average value of X? 
(c) What is the equation for the cumulative distribution function for X? Use F 

to find the probability that the first defective part will be found on or be- 

fore the 90th sample. 



CHAPTER 

CONTINUOUS 
DISTRIBUTIONS 

n Chap. 3 we learned to distinguish a discrete random variable from one that is 

| Eee discrete. In this chapter we consider a large class of nondiscrete random vari- 

ables. In particular, we consider random variables that are called continuous. We 
first study the general properties of variables of the continuous type and then pre- 

sent some important families of continuous random variables. 

4.1 CONTINUOUS DENSITIES 

In Chap. 3 we considered the random variable 7; the time of the peak demand for 

electricity at a particular power plant. We agreed that this random variable is not dis- 

crete since, “a priori’ —before the fact—we cannot limit the set of possible values for 

T to some finite or countably infinite collection of times. Time is measured continu- 

ously, and T can conceivably assume any value in the time interval [0, 24), where 0 
denotes 12 midnight one day and 24 denotes 12 midnight the next day. Furthermore, 

if we ask before the day begins, What is the probability that the peak demand will oc- 

cur exactly 12.013 278 650 931 271? the answer is 0. It is virtually impossible for 

the peak load to occur at this split second in time, not the slightest bit earlier or later. 

These two properties, possible values occurring as intervals and the a priori proba- 

bility of assuming any specific value being 0, are the characteristics that identify a 

random variable as being continuous. This leads us to our next definition. 

Definition 4.1.1 (Continuous random variable). A random variable is 

continuous if it can assume any value in some interval or intervals of real 

numbers and the probability that it assumes any specific value is 0. 

98 
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Note that the statement that the probability that a continuous random variable 
assumes any specific value is 0 is essential to the definition. Discrete variables have 
no such restriction. For this reason, we calculate probabilities in the continuous case 
differently than we do in the discrete case. In the discrete case we defined a function 
f, called the density, which enabled us to compute probabilities associated with the 
random variable X. This function is given by 

F(x) = P[X = x] x real 

This definition cannot be used in the continuous case because P[X = x] is always 0. 
However, we do need a function that will enable us to compute probabilities asso- 
ciated with a continuous random variable. Such a function is also called a density. 

Definition 4.1.2 (Continuous density). Let X be a continuous random 

variable. A function f such that 

Baga 20 for x real 

2, [fonder =1 

b 
3. Pla=xX=pb|= | feoax for a and b real 

is called a density for X. 

Although this definition may look arbitrary at first glance, it is not. Note that, 
as in the discrete case, f is defined over the entire real line and is nonnegative. Re- 

call from elementary calculus that integration is the natural extension of summation 

in the sense that the integral is the limit of a sequence of Riemann sums. In the dis- 

crete case we require that &,, , f(x) = 1. The natural extension of this requirement 

to the continuous case is that the density integrate to 1. Therefore the necessary and 

sufficient conditions for a function to be a density for a continuous random variable 

are as follows: 

Necessary and Sufficient Conditions 

for a Function to be a Continuous Density 

1. f(x) =0 

2 [flay a] 

In the discrete case we find the probability that X assumes a value in some set A by 

summing f(x) over all values of x in A. That is, 

Pl XferA > 770) 
xeA 
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In the continuous case we shall be interested in finding the probability that X assumes 

values in some interval [a, b]. Replacing A by [a, b] and substituting integration for 

summation in the previous expression suggest property 3 of Definition 4.1.2. That is, 

b 
Plasx=sbl|= | f(x)dx 

It is evident that the term “density” in the continuous case is just an extension of the 

ideas presented in the discrete case, with summation being replaced by integration. 

This is an important notion, as it will allow us to define the concept of expected 

value in the continuous case quite naturally. 

Example 4.1.1. The lead concentration in gasoline currently ranges from .1 to .5 

grams per liter. What is the probability that the lead concentration in a randomly se- 

lected liter of gasoline will lie between .2 and .3 grams inclusive? To answer this ques- 

tion, we need a density, f, for the random variable X, the number of grams of lead per 

liter of gasoline. Consider the function 

fix) uae L250 eyo eee 
x)= 

; 0 elsewhere 

The graph of f is shown in Fig. 4.1. The function is nonnegative. Furthermore, 

fc 
| fenay = | iwc Aiki es: 
J-© HA 

Ai! 

1 125C35) 12.5(.1)? 
-| - 1.28(.5)| : L250) 

= 9375 — ( — .0625) = 1 
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Thus f satisfies properties 1 and 2 of Definition 4.1.2. Property 3 allows us to use f to 
find the desired probability. In particular, 

3 
= | (175% = 1225) 0% 

OE |- ees 
a 15s) > = OCD) 

There are several important points to be made concerning the density in the 
continuous case. First, we shall follow the convention of defining f only over inter- 
vals for which f(x) may be nonzero. For values of x not explicitly mentioned, f(x) is 
assumed to be 0. In Example 4.1.1 we could have written fas 

iON 1D 15S Sa 

with the understanding that f(x) = 0 elsewhere. Second, since the integral of a non- 

negative function can be thought of as an area, properties 2 and 3 of Definition 4.1.2 

can be expressed in terms of areas. In particular, property 2 requires that the total 

area under the graph of f be 1. Property 3 implies that the probability that the vari- 

able assumes a value between two points a and b is the area under the graph of f be- 

tween x = a and x = b. These ideas as they apply to Example 4.1.1 are demonstrated 

in Figs. 4.2(a) and (b), respectively. Third, since PLX = a] = P[X = b] = 0 in the 

continuous case, 

Pla <X <b] = Pla<X <b] =Pla<X <b] =Pla<X<b]. 

In Example 4.1.1 the probability that the lead concentration in a liter of gasoline lies 

between .2 and .3 gram inclusive, P[.2 = X < .3], is the same as P[.2 < X < .3], the 

probability that it lies strictly between .2 and .3 gram. See Fig. 4.2(c). Fourth, prop- 

erties | and 2 of Definition 4.1.2 are necessary and sufficient conditions for a func- 

tion to be a density for a continuous random variable X. However, the density 
chosen for X cannot be just any function satisfying these conditions. It should be a 

function that assigns reasonable probabilities to events via property 3 of Definition 
4.1.2. Whether or not the function f given in Example 4.1.1 satisfies this criteria is 

debatable. It was chosen for illustrative purposes only. Finding an appropriate den- 

sity is not always easy. Some methods for helping in the selection of a density are 

discussed in Chap. 6. 

Cumulative Distribution 

The idea of a cumulative distribution function in the continuous case is useful. It is 

defined exactly as in the discrete case although found by using integration rather 

than summation. 
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(a) ee f(x)dx = 1 implies that the total area under the graph of fis 1; (b) P[.2 =X S .3] = 

|} (12.5x — 1.25)dx = .1875 implies that the area under the graph of f between x = .2 and x = .3 is 

1875 3(C) P= Pl SX = 3 io: 

Definition 4.1.3 (Cumulative distribution—continuous). Let X be 
continuous with density f, The cumulative distribution function for X, 

denoted by F, is defined by 

F(x) = P[X =x] x real 

To find F(x) for a specific real number x, we integrate the density over all real 

numbers that are less than or equal to x. 

Computing F Continuous Case 

P[X <x] = F(x) = [finar x real 

Graphically, this probability corresponds to the area under the graph of the density 
to the left of and including the point x. 

Example 4.1.2. The density for the random variable X, the lead content in a liter of 
gasoline, 1s 

FAC) NWPe ays = Ns) AS Ss 
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The cumulative distribution function for X is 

PIX sx] = F(x) = | float 

For x < .1 this integral has value 0 since for these values of a7) is itself 0 For. = 
eS Ss 

aE 

1 

Ae | far = | Moe eniosy a: 

X 

= 1251| 
- 1D Sy? 

2 i 

= 6.25x* — 1.25x + .0625 

For x > .5 the integral has value | since for these values of x we have integrated the 
density over its entire set of possible values. Summarizing, F is given by 

0 EK Il 

F(x) =§ 6.25x2 — 1.25x + .0625 Js ess 5) 

1 cS 5S 

What is the probability that the lead concentration in a randomly selected liter of gaso- 
line will lie between .2 and .3 gram per liter? To answer this question, we rewrite it in 
terms of the cumulative distribution 

Jal lpn OSS Si IAD. Sil De | 

=J/ARCSS 3] = JAD Ss 2D) (X is continuous) 

= F(.3) — F(.2) 

By substitution, 

FC i= 632.963) etl 203) ate 0623: 500 

G2 et 25(@2) ee (2) 0625 0625 

Thus 

Bi XS C3 FC) 

= JUN sy thei 

Note that this agrees with the result obtained in Example 4.1.1 using direct integration. 

Note also that F(.3) gives the area to the left of .3 shown in Fig. 4.3(a); F(.2) gives the 

area to the left of .2 shown in Fig. 4.3(b). When we form the difference F(.3) — F(.2), 

we naturally obtain the area between .2 and .3 given in Fig. 4.3(c). 

Recall that in the discrete case, the cumulative distribution, F} was obtained 

from the density by addition; if F was available, fcould be obtained by subtraction, 

the operation that reverses addition. The same sort of thing happens in the continu- 

ous case. We obtain the cumulative distribution from the density by integrating f; if 

F is available, we can retrieve f by reversing the integration operation via differen- 

tiation. That is, in the continuous case, 
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Obtaining f from F in the Continuous Case 

a) 

Example 4.1.3. In Example 4.1.2, we derived the cumulative distribution 

F(x) = 6.25x* — 1.25x + .0625 Aah teas 

Note that 

Fx) 12 ot — Leo ty De 

This is, as expected, the expression for the density for X that was given in Example 
4.1.2. 

Uniform Distribution 

Perhaps the simplest continuous distribution with which to work is the uniform dis- 

tribution. This distribution parallels the discrete uniform distribution presented in 

Exercise 34 of Chap. 3 in that, in a sense, events occur with equal or uniform prob- 
ability. Since it is easy and instructive to develop the properties of this family of ran- 
dom variables directly from the definition, we leave the derivations to you. 
Important properties and applications are given in Exercises 5, 6, 10, 11, 18, and 19. 
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4.2 EXPECTATION AND DISTRIBUTION 
PARAMETERS 

In this section we define the term expected value for continuous random variables. 

We also discuss how to use the definition to find the moment generating function, 

the mean, and the variance of a variable of the continuous type. As you will see, the 

definition parallels that given in the discrete case, with the summation operation be- 

ing replaced by integration. 

Definition 4.2.1 (Expected value). Let X be a continuous random variable 
with density f, Let H(X) be a random variable. The expected value of H(X), 

denoted by E[H(X)], is given by 

ELH(X)] = | “HOof(xyas 
provided we 

| mcolfendy 
is finite. 

As in the discrete case, the mean or expected value of X is a special case of the 

above definition. 

Expected Value of X 

E[X] = [afoyax = = 

We illustrate the use of this definition by finding the mean and variance of the 

random variable X of Example 4.1.1. Recall that, by Theorem 3.3.2, the variance for 

X can be found via the computational shortcut 

On = Var) = BLX- te xy 

Example 4.2.1. The density for X, the lead concentration in gasoline in grams per 

liter, is given by 

f@) = 125x> 1.23 phe: 0D 

The mean or expected value of X is 

w= EX] =| iL as 

5 
= | R22 heel 20) ae 

Ml 

, [258 base 
Sih eae 
= | 22srcsi _125c5)t| _| aes 12s 
a 3 2 3 2 

3667 g/liter I| 
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Since integration is over an interval of finite length 

| “|x| f(x)dx 

exists, We can conclude that, on the average, a liter of gasoline contains approximately 

3667 g of lead. How much variability is there from liter to liter? To answer this ques- 

tion, we find E[X2] and apply Theorem 3.3.2 to find the variance of X: 

oO 

E{X?] = | ar eM CLN 
—o 

5 
= | x?(12.5x — 1.25) dx 

nl 

iS eet? lees eg 

es 3 

By Theorem 3.3.2, 

Var X = E[X2] — (E[X])? = .1433 — (.3667)? = .00883 

The standard deviation of X is 

o = V Var X = V .00883 = .09396 g/liter 

As in the discrete case, the moment generating function for a continuous ran- 

dom variable X is defined as E[e'*] provided this expectation exists for ¢ in some 

open interval about 0. Its use is illustrated in the following example. 

Example 4.2.2. The spontaneous flipping of a bit stored in a computer memory is 

called a “soft fail.” Let X denote the time in millions of hours before the first soft fail 

is observed. Suppose that the density for X is given by 

f(x) =e" mf) 

The mean and variance for X can be found directly using the method of Example 4.2.1. 

However, to find E[ X] and E[ X°], integration by parts is required. This method of in- 

tegration, although not difficult, is time-consuming. Let us find the moment generat- 

ing function for X and use it to compute the mean and variance. By definition, 

my(t) = E[e*] = | e'f(x)dx 

In this case, 

my(t) = | ee “dx 
0 
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Assume that |t] < 1. This guarantees that the exponent (t — 1) x < 0, allowing us to 
evaluate the above integral. In particular, 

Ae Mes 
‘ h=% 

Since e* > 0, |e’*| = e®. Thus the above argument has shown that 

le™| f(x) dx 

exists, as required in Definition 4.2.1. To use my (t) to find E[X] and E[X2], we apply 
Theorem 3.4.2. Note that 

dmy(t) oa =i)! 
— Mee sh) ee 

dt dt 

ie =O (1 f)e 

E[X] = oe etal 

Vat OS FLX eae (x)= 2 1 | 

The average or mean time that one must wait to observe the first soft fail is 1 million 

hours. The variance in waiting time is 1, and the standard deviation is 1 million hours. 

To find the distribution parameters ., 07, and a, we can use either Definition 

4.2.1 or the moment generating function technique. In practice, use whichever 
method is easier. 

It should be pointed out that there is a nice geometric interpretation of the 

mean in the case of a continuous random variable. Imagine cutting out of a piece of 

thin rigid metal the region bounded by the graph of fand the x axis, and attempting 

to balance this region on a knife-edge held parallel to the vertical axis. The point at 
which the region would balance, if such a point exists, is the mean of X. Thus, py is 

a “location” parameter in that it indicates the position of the center of the density 

along the x axis. The variance can also be interpreted pictorially. In the continuous 

case variance is a “shape” parameter in the sense that a random variable with small 

variance will have a compact density; one with a large variance will have a density 

that is rather spread out or flat. 

4.33 GAMMA, EXPONENTIAL, AND 
CHI-SQUARED DISTRIBUTIONS 

In this section we consider the gamma distribution. This distribution is especially 
important in that it allows us to define two families of random variables, the expo- 

nential and chi-squared, that are used extensively in applied statistics. The theoreti- 

cal basis for the gamma distribution is the gamma function, a mathematical function 

defined in terms of an integral. 
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Definition 4.3.1 (Gamma function). The function T defined by 

(a) = | aumegas a>0 
0 

is called the gamma function. 

Theorem 4.3.1 presents two numerical properties of the gamma function that 
are useful in evaluating the function for various values of a. Its proof is outlined in 

Exercise 26. 

Theorem 4.3.1 (Properties of the gamma function) 

1) = 1. 

2. Fora > 1,I(a) = (a — 1)I(a — 1). 

The use of Theorem 4.3.1 is illustrated in the next example. 

Example 4.3.1 

(a) Evaluate 6 ze~< dz. To evaluate this integral using the methods of elementary cal- 

culus requires repeated applications of integration by parts. To evaluate the inte- 
gral quickly, rewrite it as 

[ co ike) 

| ze-dz= | z*-le-2dz 
0 

The integral on the right is I(4). By applying Theorem 4.3.1 repeatedly, it can be 
seen that 

| Sesde= (4) =3-T(3) 
0 

=a 2412) 
oY Bd 
=3°2-1=6 

(b) Evaluate |, (1/54)x?e~"/3 dx. To evaluate this integral, we make a change of vari- 
able, a technique that is used extensively in deriving the properties of the gamma 
distribution. In particular, let z = x/3 or 3z = x. Then 3 dz = dx and the problem 
becomes 

| (1/54) x2e*3dx = | “1/54 (3z)2e-*3dz 
10) 0 

= 21154 “cede 
0 
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However, 

| cte-tde = ["o-tetde = 103) 
0 0 

=2:-1(2) 

=) 0 Ih > IP CL} 

=2:1=2 

Thus 

| 4 W546 en de S4t | 
0 

Note that since the nonnegative function 

f(x) = (1/54)x2e*3 

has been shown to integrate to 1, it can be thought of as being a density for a con- 
tinuous random variable X. 

It is now possible to define the gamma distribution. 

Gamma Distribution 

Definition 4.3.2 (Gamma distribution). A random variable X with density 

1 
fe) == er x 0 

D(a) p* Z St uy ays oe0 Us)s 

MOG aie one 
is said to have a gamma distribution with parameters a and B. 

Although the mean and variance of a gamma random variable can be found 

easily from the definitions of these parameters (see Exercise 31), we shall use the 

moment generating function technique. As you will see later, it is very helpful to 

know the form of the moment generating function for a random variable. 

Theorem 4.3.2. Let X be a gamma random variable with parameters a and 

B. Then 

1. The moment generating function for X is given by 

mft)=(1— pret < 1/8 
2. E[X] =a 

3. Vax = ap" 
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@a=1,8=1, py =1,¢%=1; 6) a =2;8 = 1, py = 2, 0; — 2; Ca —2, B —2, py —4 

or = 8. 

The proof of this theorem is found in Appendix C. 

Figure 4.4 shows the graphs of some gamma densities for a few values of @ 

and B. Note that a and B both play a role in determining the mean and the variance 

of the random variable. Note also that the curves are not symmetric and are located 

entirely to the right of the vertical axis. It can be shown that for @ > 1, the maxi- 

mum value of the density occurs at the point x = (@ — 1)B. (See Exercise 32.) 

{xponential Distribution 

As mentioned earlier, the gamma distribution gives rise to a family of random vari- 

ables known as the exponential family. These variables are each gamma random 

variables with a = |. The density for an exponential random variable therefore as- 
sumes the form 

Exponential density 

fix) = ne" ie) 

B>0 
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The graph of a typical exponential density is shown in Fig. 4.4(a). This distribution 

arises often in practice in conjunction with the study of Poisson processes, which 

were discussed in Sec. 3.8. Recall that in a Poisson process discrete events are be- 

ing observed over a continuous time interval. If we let W denote the time of the oc- 

currence of the first event, then W is a continuous random variable. Theorem 4.3.3 

shows that W has an exponential distribution. 

Theorem 4.3.3. Consider a Poisson process with parameter A. Let W denote the 
time of the occurrence of the first event. W has an exponential distribution with 

B= 1X. 

Proof. The distribution function F for W is given by 

F(w) =P[(Wsw]=1-P[W>w] 

The first occurrence of the event will take place after time w only if no occurrences of the 

event are recorded in the time interval [0, w]. Let X denote the number of occurrences of 

the event in this time interval. X is a Poisson random variable with parameter Aw. Thus 

e (hwy? , 

P[W>w] =P[xX=0]= 01 ew 

By substitution we obtain 

Fw) =1—>P([W>wi=1-e” 

Since in the continuous case the derivative of the cumulative distribution function is 

the density 

F'(w) =f(w) = rAe” 

This is the density for an exponential random variable with B = 1/A. 

The next example illustrates the use of this theorem. 

Example 4.3.2. Some strains of paramecia produce and secrete “killer” particles that 

will cause the death of a sensitive individual if contact is made. All paramecia unable 

to produce killer particles are sensitive. The mean number of killer particles emitted 

by a killer paramecium is | every 5 hours. In observing such a paramecium, what is 

the probability that we must wait at most 4 hours before the first particle is emitted? 

Considering the measurement unit to be one hour, we are observing a Poisson process 

with A = 1/5. By Theorem 4.3.3, W, the time at which the first killer particle is emit- 

ted, has an exponential distribution with 8 = 1/A = 5. The density for W is 

fiw) =(/s)e? w>0 

The desired probability is given by 

Il 
4 

P{(W =4] | (1/5)e-"°>dw 
0 

—eW/5|° 

= 1-645 = 5507 
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Since an exponential random variable is also a gamma random variable, the average 

time that we must wait until the first killer particle is emitted is 

E(W] =aB = 1-5 =5 hours 

Chi-Squared Distribution 

The gamma distribution gives rise to another important family of random variables, 
namely, the chi-squared family. This distribution is used extensively in applied sta- 

tistics. Among other things, it provides the basis for making inferences about the 

variance of a population based on a sample. At this time we consider only the theo- 

retical properties of the chi-squared distribution. You will see many examples of its 

use in later chapters. 

Definition 4.3.3 (Chi-squared distribution). Let X be a gamma random 
variable with B = 2 and a = y/2 for y a positive integer. X is said to have a 

chi-squared distribution with y degrees of freedom. We denote this variable 

by X5. 

Note that a chi-squared random variable is completely specified by stating its 

degrees of freedom. By applying Theorem 4.3.2, we see that the mean of a chi- 

squared random variable is y, its degrees of freedom; its variance is 2y, twice its de- 

grees of freedom. Figure 4.4(c) gives the graph of the density of a chi-squared 

random variable with 4 degrees of freedom. 

Since the chi-squared distribution arises so often in practice, extensive tables 

of its cumulative distribution function have been derived. One such table is Table IV 

of App. A. In the table, degrees of freedom appear as row headings, probabilities ap- 
pear as column headings, and points associated with those probabilities are listed in 
the body of the table. Notationally, we shall use y? to denote that point associated 
with a chi-squared random variable such that 

P[X2= x2] =r 

That is, x? is the point such that the area to its right is r: Technically speaking, we 
should write x; , since the value of the point does depend on both the probability 
desired and the number of degrees of freedom associated with the random variable. 
However, in applications the value of y will be obvious. Therefore to simplify no- 
tation, we use only a single subscript. The use of this notation is illustrated in the 
following example. 

Example 4.3.3. Consider a chi-squared random variable with 10 degrees of free- 
dom. Find the value of x }s. This point is shown in Fig. 4.5. By definition the area to 
the right of this point is .05; the area to its left is .95, The column probabilities in Table 
IV give the area to the /eff of the point listed. Thus to find Xs. We look in row 10 and 
column .95 and see that x45 = 18.3. 
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FIGURE 4.5 

PX = Vos) 05 and P(X = X45 = 95: 

4.4 NORMAL DISTRIBUTION 

The normal distribution is a distribution that underlies many of the statistical meth- 

ods used in data analysis. It was first described in 1733 by De Moivre as being the 

limiting form of the binomial density as the number of trials becomes infinite. This 

discovery did not get much attention, and the distribution was “discovered” again 

by both Laplace and Gauss a half-century later. Both men dealt with problems of as- 

tronomy, and each derived the normal distribution as a distribution that seemingly 

described the behavior of errors in astronomical measurements. The distribution is 

often referred to as the “gaussian” distribution. 

Definition 4.4.1 (Normal distribution). A random variable X with density 

J) = a e 1/2)La— w/a? SOO <1 

TT Oo 

—O2< wo 

a >0 

is said to have a normal distribution with parameters mw and o. 

One implication of this definition is that 

| see e  U/2)La-mw/oP dy = | 

-o\/ Ino 

To verify this requires a transformation to polar coordinates. This technique is be- 

yond the mathematical level assumed here. A detailed proof can be found in [49]. 

Note that Definition 4.4.1 states only that pz is a real number and that @ is positive. 

As you might suspect from the notation used, the parameters that appear in the 
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equation for the density for a normal random variable are, in fact, its mean and its 

standard deviation. This can be verified once we know the moment generating func- 

tion for X. Our next theorem gives us the form for this important function. 

Theorem 4.4.1. Let X be normally distributed with parameters yz and o. The 

moment generating function for X is given by 

my(t) se ebita 1/2 

For the proof of this theorem, see Appendix C. 

It is now easy to show that the parameters that appear in the definition of the 

normal density are actually the mean and the standard deviation of the variable. 

Theorem 4.4.2. Let X be a normal random variable with parameters w and a. 

Then yp is the mean of X and @ is its standard deviation. 

Proof. The moment generating function for X is 

my(t) = eb eta 

and 

dmy(t) 
— pett+o7t?/2 + g2 

dt ‘ Seay ts 

By Theorem 3.4.2 the mean of X is given by 

dmy(t) 

dt |r=0 

5 
E[X} = = eh: 0+070? z( +o7-(0) ob 

as claimed. The proof of the remainder of the theorem is left as an exercise. 

The graph of the density of a normal random variable is a symmetric, bell- 
shaped curve centered at its mean. The points of inflection occur at uw + o. 

Example 4.4.1. One of the major contributors to air pollution is hydrocarbons emitted 
from the exhaust system of automobiles. Let X denote the number of grams of hydro- 
carbons emitted by an automobile per mile. Assume that X is normally distributed with 
a mean of | gram and a standard deviation of .25 gram. The density for X is given by 

l 
f(x) = Se" 20 1)//.25 7 

\V/ 2m (.25) 

The graph of this density is a symmetric, bell-shaped curve centered at bt = | with in- 
flection points at w+ o, or | + .25. A sketch of the density is given in Fig. 4.6. 

One point must be made. Theoretically speaking, a normal random variable 
must be able to assume any value whatsoever. This is clearly unrealistic here. It is 



CONTINUOUS DISTRIBUTIONS 115 

Inflection 

point 
Inflection 

point 

0.0 

FIGURE 4.6 
Graph of the density for a normal random variable with mean 1 and standard deviation .25. 

impossible for an automobile to emit a negative amount of hydrocarbons. When we 
say that X is normally distributed, we mean that over the range of physically reason- 
able values of X, the given normal curve yields acceptable probabilities. With this un- 
derstanding, we can at least approximate, for example, the probability that a randomly 

selected automobile will emit between .9 and 1.54 grams of hydrocarbons by finding 
the area under the graph of f between these two points. 

Standard Normal Distribution 

There are infinitely many normal random variables each of which is uniquely char- 

acterized by the two parameters ys and a. To calculate probabilities associated with 

a specific normal curve requires that one integrate the normal density over a partic- 
ular interval. However, the normal density is not integrable in closed form. To find 

areas under the normal curve requires the use of numerical integration techniques. 

A simple algebraic transformation is employed to overcome this problem. By means 

of this transformation, called the standardization procedure, any question about any 

normal random variable can be transformed to an equivalent question concerning a 

normal random variable with mean O and standard deviation 1. This particular nor- 

mal random variable is denoted by Z and is called the standard normal variable. 

Theorem 4.4.3 (Standardization theorem). Let X be normal with mean yu and 

standard deviation a. The variable (X — y1)/o is standard normal. 

You have already verified that the transformation yields a random variable 

with mean 0 and standard deviation | (see Chap. 3, Exercise 21). To prove that the 

transformed variable is normal requires the use of moment generating function tech- 

niques to be introduced in Chap. 7. 
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Shaded area = P[.9 = X S 1.54]. 

The cumulative distribution function for the standard normal random variable 

is given in Table V of App. A. The use of the standardization theorem and this table 

is illustrated in the following example. 

Example 4.4.2. Let X denote the number of grams of hydrocarbons emitted by an 

automobile per mile. Assuming that X is normal with « = | gram and o = .25 gram, 

find the probability that a randomly selected automobile will emit between .9 and 1.54 

grams of hydrocarbons per mile. The desired probability is shown in Fig. 4.7. To find 

P{.9 = X = 1.54], we first standardize by subtracting the mean of | and dividing by 

the standard deviation of .25 across the inequality. That is, 

Te (Ah 0 cov VAR) = ANY ss (Oe IS) SS (ae yea sy 

The random variable (X — 1)/.25 is now Z. Therefore the problem is to find P[—.4 = 

Z = 2.16] from Table V. We first express the desired probability in terms of the cumu- 

lative distribution as follows: 

Pi 422-5 2:16] = Pi2Z 32.16] —Pi2=— — 4 

= ef VPS ed ee el (Z is continuous) 

Se des) Orme ht ety ) 

F(2.16) is found by locating the first two digits (2.1) in the column headed z; since the 

third digit is 6, the desired probability of .9846 is found in the row labeled 2.1 and the 

column labeled .06. Similarly, F(—.4) or .3446 is found in the row labeled —0.4 and 

the column labeled .00. We now see that the probability that a randomly selected au- 

tomobile will emit between .9 and 1.54 grams of hydrocarbons per mile is 

PIS SX S154) = Pla See 216] 

= F(2.16) = F(=4) 

.9846 — .3446 = .64 

Interpreting this probability as a percentage, we can say that 64% of the automobiles 
in operation emit between .9 and 1.54 grams of hydrocarbons per mile driven. 
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P[X = x] = .05. 

We shall have occasion to read Table V in reverse. That is, given a particular 

probability r we shall need to find the point with r of the area to its right. This point 

is denoted by z,.. Thus, notationally, z, denotes that point associated with a standard 

normal random variable such that 

lw 
To see how this need arises, consider Example 4.4.3. 

Example 4.4.3. Let X denote the amount of radiation that can be absorbed by an in- 

dividual before death ensues. Assume that X is normal with a mean of 500 roentgens 

and a standard deviation of 150 roentgens. Above what dosage level will only 5% of 

those exposed survive? Here we are asked to find the point x) shown in Fig. 4.8. In 

terms of probabilities, we want to find the point x, such that 

P[X = xo] = .05 

Standardizing gives 

De 5 00 Ree 00 
— > — 

AR Se r| (50a 050 | 
| iY) | =f r= 829] - 0 

Thus (x) — 500)/150 is the point on the standard normal curve with 5% of the area un- 

der the curve to its right and 95% to its left. That is, (vy — 500)/150 is the point Z 95. 

From Table V the numerical value of this point is approximately 1.645 (we have in- 

terpolated). Equating these, we get 

359) 500 
150. 1.645 
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Solving this equation for x) gives the desired dosage level: 

X9 = 150(1.645) + 500 = 746.75 roentgens 

4.55 NORMAL PROBABILITY RULE AND 
CHEBYSHEV’S INEQUALITY 

It is sometimes useful to have a quick way of determining which values of a random 

variable are common and which are considered to be rare. In the case of a normally 

distributed random variable, a rule of thumb, called the normal probability rule, can 

be developed easily. This rule is given in Theorem 4.5.1. 

Theorem 4.5.1 (Normal probability rule). Let X be normally distributed with 

parameters ps and ao. Then 

P[-o <X-pw<oa]=.68 

Pim 20h — 1G | 95 

Pi=30.= X= ju 30] =.997 

Proof. Note that division by o yields 

xX - 

P[-o <X-p<o] =p) -1<XSH ey 

By Theorem 4.4.3, (X — 1)/o follows the standard normal distribution. From Table V 
of App. A, 

P[-1<Z< 1] =.8413:—.1587 =.6826 

This probability can be rounded to .68. The other results given in the theorem are 
proved similarly. 

The normal probability rule can be expressed in terms of percentages. In par- 
ticular, it implies that in repeated sampling from a normal distribution approxi- 
mately 68% of the observed values of X should lie within 1 standard deviation of its 
mean; 95% should lie within two standard deviations, and 99.7% within 3 standard 
deviations of the mean. Thus an observed value that falls farther than 3 standard de- 
viations from y is indeed rare, since such values occur with probability .003. This 
rule will be used later to obtain a quick estimate of the standard deviation of a nor- 
mally distributed random variable. 

Figure 4.9 illustrates the normal probability rule as it applies to the standard 
normal distribution. Recall that for this distribution @ = 1, 20 = 2, and 3a = 3. 7a 

Chebyshev’s Inequality 

A second rule of thumb that can be used to gauge the rarity of observed values of 
a random variable is Chebyshev’s inequality. This inequality was derived by the 



0.4 

0.3 

Ow 
I@ 

0.1 

0.0 
| | 

(a) 

0.4 4 

Oks) = 

I 
oS bho —_ 

a 

(b) 

0.4 4 

0.3 5 

F(@ ve 
tw 

l 

(c) 
FIGURE 4.9 
(a) The probability that a normally distributed random variable will lie within one standard deviation 

of its mean is approximately .68 or 68%. 

(b) The probability that a normally distributed random variable will lie within two standard deviations 

of its mean is approximately .95 or 95%. 

(c) The probability that a normally distributed random variable will lie within three standard 

deviations of its mean is approximately .997 or 99.7%. 

119 
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Russian probabilist P. L. Chebyshev (Tchebysheff, 1821-1894). The inequality dif- 

fers from the normal probability rule in that it does not require that the random vari- 

able involved be normally distributed. Although we shall prove the theorem in the 

continuous setting, continuity is not required. The inequality holds for any random 

variable. 

Theorem 4.5.2 (Chebyshev’s inequality). Let X be a random variable with 
mean yw and standard deviation o. Then for any positive number k, 

1 
PIX =| <ko] = 1-7 

See Appendix C for the proof of this theorem. 

Some examples will clarify the difference between Theorems 4.5.1 and 4.5.2. 

Example 4.5.1. The viscosity of a fluid can be measured roughly by dropping a 
small ball into a calibrated tube containing the fluid and observing X, the time that it 
takes for the ball to drop a measured distance. Assume that this random variable is nor- 
mally distributed with a mean of 20 s and a standard deviation of .5 s. By the normal 
probability rule, approximately 95% of the observed values of X will lie within 1 s 
(2 standard deviations) of the mean. That is, X will fall between 19 and 21 s with prob- 
ability .95. Since Chebyshev’s inequality applies to any random variable, it is appro- 
priate here. This inequality guarantees that X will fall between 19 and 21 s (within 
k = 2 standard deviations of its mean) with probability at least 1 — 1/k2 = .75. Note 
that when the random variable in question is normally distributed, the normal proba- 
bility rule yields a stronger statement than does Chebyshev’s inequality. 

Example 4.5.2. The safety record of an industrial plant is measured in terms of M, 
the total staffing-hours worked without a serious accident. Past experience indicates 
that M has a mean of 2 million with a standard deviation of .1 million. A serious acci- 
dent has just occurred. Would it be unusual for the next serious accident to occur 
within the next 1.6 million staffing-hours? To answer this question, we must assess 
P[M = 1.6]. Since we have no reason to assume that M is normally distributed, the 
normal probability rule is inappropriate here. However, we know from Chebyshev’s 
inequality with k = 4 that 

P[1.6 <M < 2.4] = 1 — (1/16) = .9375 

This implies that 

P[M = 1.6] + P[M = 2.4] = .0625 

Since it is possible for M to exceed 2.4, we can safely say that 

P[M = 1.6] < .0625 

No stronger statement can be made without some knowledge of the shape of the den- 
sity of M. However, if it is known that the density is symmetric, then we can go one 
step further and state that 

P(M S:1.6)20625/2; 2.03125 
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4.6 NORMAL APPROXIMATION TO THE 
BINOMIAL DISTRIBUTION 

The binomial tables given in this text or in any other text are necessarily limited in 
scope due to the fact that n can vary from | to infinity and p can assume any value 
between 0 and 1. It is impossible to table every combination of n and p. Due to the 
advances in computer and calculator technology, it is now possible to find exact bi- 
nomial probabilities for any combination of n and p. Prior to this time, the normal 
curve was used to give good approximations of binomial probabilities. The technique 
introduced in this section is still useful in situations in which the needed technology 
tools are not readily available. To see how such approximations were suggested, we 
consider four binomial random variables each with probability of success .4 but with 
differing values for n. The densities for these variables, obtained from Table I of App. 

A, together with a sketch for each, are given in Fig. 4.10(a) to (d). 

The point to note from these diagrams is made in Fig. 4.10(d). Namely, it is 

not hard to imagine a smooth bell curve that closely fits the block diagram shown. 
This suggests that binomial probabilities represented by one or more blocks in the 

diagram can be approximated reasonably well by a carefully selected area under an 

appropriately chosen normal curve. Which of the infinitely many normal curves is 

appropriate? Common sense indicates that the normal variable selected should have 

the same mean and variance as the binomial variable that it approximates. Theorem 

4.6.1 summarizes these ideas. 

Theorem 4.6.1 (Normal approximation to the binomial distribution). Let X 
be binomial with parameters n and p. For large n, X is approximately normal 

with mean np and variance np(1 — p). 

The proof of this theorem is based on the Central Limit Theorem, which will be 

considered in Chap. 7. Admittedly, Theorem 4.6.1 is a bit vague in the sense that the 

word “large” is not well defined. In the strictest mathematical sense, “large” means as 
n approaches infinity. For most practical purposes the approximation is acceptable for 

values of n and p such that either p = .5 andnp > 5 orp > .5 andn(1 — p) > 5. 

Example 4.6.1. A study is performed to investigate the connection between mater- 

nal smoking during pregnancy and birth defects in children. Of the mothers studied, 

40% smoke and 60% do not. When the babies were born, 20 were found to have some 

sort of birth defect. Let X denote the number of children whose mother smoked while 

pregnant. If there is no relationship between maternal smoking and birth defects, then 

X is binomial with n = 20 and p = .4. What is the probability that 12 or more of the 

affected children had mothers who smoked? 
To answer this question, we need to find P[X = 12] under the assumption that 

X is binomial with n = 20 and p = .4. This probability, .0565, can be found from Table 

I of App. A. Note that since p = .4 = .5 and np = 20(.4) = 8 > 5, the normal approx- 

imation should give a result quite close to .0565. We shall approximate probabilities 

associated with X using a normal random variable Y with mean np = 20(.4) = 8 and 

standard deviation \V/np(1 — p) = V 20(.4)(.6) = V4.8. 
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FIGURE 4.10 

Density for X binomial: (a) n = 5, p = .4; (b) n = 10, p = .4; (c) n = 15, p = .4; (d) n = 20, p = .4. 

The exact probability of .0565 is given by the sum of the areas of the blocks cen- 

tered at 12, 13, 14, 15, 16, 17, 18, 19, and 20, as shown in Fig. 4.11. The approximate 

probability is given by the area under the normal curve shown above 11.5. That is, 

B[X.212) = P( Ye iio 
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FIGURE 4.11 

P[X = 12] = area of shaded blocks = area under curve beyond 11.5. 

The number .5 is called the half-unit correction for continuity. It is subtracted 
from 12 in the approximation because otherwise half the area of the block centered at 
12 will be inadvertently ignored, leading to an unnecessary error in the calculation. 
From this point on the calculation is routine: 

Pee Pl y= 1125) 

=| 8 115 - 
\/ ANS NARS 

= P[Z= 1.59] 

= 1— .9441 = .0559 

Note that even with n as small as 20, the approximated value of .0559 compares quite 

favorably with the exact value of .0565. In practice, of course, one would not approx- 

imate a probability that could be found directly from a binomial table. This was done 

here only for comparative purposes. 

4.7 WEIBULL DISTRIBUTION 
AND RELIABILITY 

In 1951 W. Weibull introduced a distribution that has been found to be useful in a 

variety of physical applications. It arises quite naturally in the study of reliability as 

we shall show. The most general form for the Weibull density is given by 

f@)=o0B@ —yPete yy aS y 
a>QO 

B>O0 

The implication of this definition of the density is that there is some minimum or 
“threshold” value y below which the random variable X cannot fall. In most physi- 

cal applications this value is 0. For this reason, we shall define the Weibull density 
with this fact in mind. Be careful when reading scientific literature to note the form 

of the Weibull density being used. 
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Definition 4.7.1 (Weibull distribution). A random variable X is said to 

have a Weibull distribution with parameters a and f if its density is given by 

fx) = aBx8 lena? KL 

a>0O 

Geo 

It is easy to verify that the function given in Definition 4.7.1 is a density. (See 

Exercise 61.) We shall find the mean of this distribution directly rather than by 

means of the moment generating function. 

Theorem 4.7.1. Let X be a Weibull random variable with parameters a and B. 
The mean and variance of X are given by 

w=a'/PT(1 + 1/B) 

and 

a* =a ~8T 1 + 2/6) — we? 

Proof. By Definition 4.2.1, 

E[X] = | xaBx® lenox 
( JO 

= | aBxPe~2"dx 
JO 

Let z = ax?, This implies that 

x = (z/a)"8 and dx = (1/aB)(z/a)/8—! dz 

By substitution, it is seen that 

J( 

= | (z/a)! Be~ dz 
0 

a8 | z!/Be- dz 
0 

ll 

The integral on the right is, by definition, [(1 + 1/B). (See Definition 4.3.1.) Thus we 
have shown that the mean of the Weibull distribution is 

uw = E[X] = aT (1 + 1/8) 
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as claimed. The remainder of the proof is outlined as an exercise. (See Exercises 62 
and 63.) 

The graph of the Weibull density varies depending on the values of a and (by, 
The general shape resembles that of the gamma density with the curve becoming 
more symmetric as the value of B increases. 

Example 4.7.1. Let X be a Weibull random variable with 8 = 1. The density for X is 

jC) = ie ie () 

a>0 

Note that this is the density for an exponential random variable. That is, the exponential 
distribution is a special case of the Weibull distribution with B = 1. By Theorem 4.7.1 

pon “(1 + 1/8) = Wa)TQ) = Ve- 1! = a 

a =we Fld a 2/8) = a 

1/o?T(3) — (1/a)? 
= 2/a? — 1/a? = 1/a? 

Note that these results are consistent with those obtained by viewing this random vari- 

able as being exponential. (See Exercise 33.) 

Reliability 

As we have said, the Weibull distribution frequently arises in the study of reliabil- 

ity. Reliability studies are concerned with assessing whether or not a system func- 

tions adequately under the conditions for which it was designed. Interest centers on 

describing the behavior of the random variable X, the time to failure of a system 

that cannot be repaired once it fails to operate. Three functions come into play 

when assessing reliability. These are the failure density f, the reliability function R, 

and p, the failure or hazard rate of the distribution. To understand how these func- 

tions are defined, consider some system being put into operation at time tf = 0. We 

observe the system until it eventually fails. Let X denote the time of the failure. 

This random variable is continuous and a priori can assume any value in the inter- 

val (0, ©). The density f, for X, is called the failure density for the component. The 

reliability function, R, is defined to be the probability that the component will not 

fail before time ¢. Thus 

R(t) = 1 — P[component will fail before time f] 

= [= | Fe ax 

—=| =F (f) 

where F is the cumulative distribution function for X. To define p, the hazard rate 

function, consider a time interval [f, t + Ar] of length At. We define the force of 

mortality or hazard rate function over this interval by 
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FIGURE 4.12 pe 

At time ¢,, the graph of F is steep. Failures are likely to occur in the time interval near f,. At time 15, 

the graph of F is rather flat. Failures are not highly likely in the time interval near f. 

l 
p(t) = lim P(t =X= i+ Alt=x) 

At—0 At 

probability of failure in [,t+ At] 1 

~ AO probability of failure in [t, ©] At 

Notice that 

._ probability of failure in [4 t+ Ar] GHEE AL) SED 
GY 
At—0 At At0 At 

This, by definition, is the derivative of the cumulative distribution function for X. 

Since the derivative of a function in general can be interpreted as giving the “in- 

stantaneous rate of change” of the function, this portion of the definition of p(t) 

gives the instantaneous rate of change of F at time ¢. Since a cumulative distribution 

function cannot decrease, the derivative of F will always be nonnegative. Its magni- 

tude tells us how fast failures are occurring at any given time. A large value of F''(t) 

implies a steep curve at ¢, which in turn implies that failures are coming rapidly in an 

interval near /; a small value of F’(f) implies that failures are occurring at a slower 

pace. (See Fig. 4.12.) Thus we can say that p(/) gives us a picture of the instanta- 

neous rate of failure at times f given that the system was operable prior to this time. 

Theorem 4.7.2 relates the three functions f, R, and p. 

Theorem 4.7.2, Let X be a random variable with failure density f, reliability 
function R, and hazard rate function p. Then 

p(t) a 
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Proof. By definition, 

BU etn probabiny of failure uly ots 

Ar>0 probability of failure in [4, ©] At 

1! 

At 

pea 

| f(x) dx 
= lim = : 

At>0 

[fax 

(E(t sie (AA) = IE) pet 

At>0 Il = PG) At 

Bee GaRAT) = EG) I 
= Lim Mm _ . —_ 

Ar0 At R(t) 

LE) AS 
~— R(t) R(t) 

The job of the scientist is to find the form of these functions for the problem 

at hand. In practice, one often begins by assuming a particular form for the hazard 

rate function based on empirical evidence. To do so, one must have some practical 

way to interpret p. A rough interpretation is as follows: 

Interpretation of the Hazard Rate 

1. If p is increasing over an interval, then as time goes by a failure is more likely 

to occur. This normally happens for systems that begin to fail primarily due 

to wear. 

2. If p is decreasing over an interval, then as time goes by a failure is less likely to 
occur than it was earlier in the time interval. This happens in situations in which 

defective systems tend to fail early. As time goes by, the hazard rate for a well- 

made system decreases. 

3. A steady hazard rate is expected over the useful life span of a component. A 

failure tends to occur during this period due mainly to random factors. 

Since one often has an idea of the form only of p, the natural question to ask is: “Can 

we derive the failure density and the reliability function from knowledge of p?” 

Theorem 4.7.3 shows how this can be done. 

Theorem 4.7.3. Let X be a random variable with failure density f, reliability 
function R, and hazard rate p. Then 

R(t) = exp| [ow te 

and f(t) = p(t)R(2). 
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Proof. Note that since R(x) = 1 — F(x), R'(x) = —F’(@). Therefore 

CAE Poe es =I x) 

Heese Ine((az)) Rie) 
pix) = 

We integrate each side of this equation to obtain 

a rt Rx) 

() dx = — ix = —[In R(t) —In R(0)] 
[poy a Jo R(x) mY un 

Note that R(0) = 1 since the component will not fail before time t = 0, the moment 

that it is put into operation. Since In R(O) = In 1 = 0, we see that 

= aes dx = In R(t) 
) J( 

or that 

exp| [ots ax| = en RW) = R(t) 

C ) 

as claimed. 

Example 4.7.2 illustrates the use of Theorem 4.7.3 and shows how the Weibull 

distribution arises in reliability studies. 

Example 4.7.2. One hazard rate function in widespread use is the function 

p(t) = aBre! t>0 

a>0oO 

p>0 
This function has the property that if 8 = 1, the hazard rate is constant, indicating that 

the occurrence of a failure is due primarily to random factors; if 8 > 1, the hazard rate 

is increasing, indicating that a failure is due primarily to a system wearing out over 

time; if B < 1, the hazard rate is decreasing, indicating that an early failure is likely 

due to a malfunctioning system. (See Exercise 64.) The reliability function is given by 

R(t) = exp ‘aBxe as| 
JO 

= exp 
t = B—nB = B -ax =e aite—OF) et 

The failure density is given by 

f(t) = p(t)R(t) = aBth-lte-e" 

This is the density for a Weibull random variable with parameters a and B. 

This section can be summarized as follows: 

Properties of Reliability Studies 

1. The random variable of interest is X, the time of failure of a system or a com- 
ponent of a system. 
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2. The failure density, f is the probability density function for X. 
3. The reliability function, R, gives the probability that the system or component 

will not fail before time ¢. 

4. The function F is the cumulative distribution function for X. 

5. The hazard rate function, p, gives a picture of the instantaneous rate of failures 
at time f given that the system or component was operable prior to time t. 

6. These functions are connected to one another through the following relationships: 

Pity 7 OR) 
t 

R(t) = exp |- | p(x)d| 
0 

7. The Weibull distribution is often appropriate as a failure density in applied en- 
gineering problems. 

Reliability of Series and Parallel Systems 

Components in multiple component systems can be installed within the system in 

various ways. Many systems are arranged in a “‘series” configuration, some are in 

“parallel,” and others are combinations of the two designs. These terms are defined 
as follows: 

Definition 4.7.2 (Series system). A system whose components are arranged 
in such a way that the system fails whenever any of its components fail is 

called a series system. 

Definition 4.7.3 (Parallel system). A system whose components are 

arranged in such a way that the system fails only if all of its components fail 

is called a parallel system. 

Recall that the reliability function for a component is the probability that it 

will not fail before time ¢. Consider a system consisting of k components connected 

in series. Let R,(t) denote the reliability of component 7 and assume that the compo- 

nents are independent in the sense that the reliability of one is unaffected by the re- 

liability of the others. The reliability of the entire system is the probability that the 

system will not fail before time ¢. The system will not fail if and only if no compo- 

nent fails before time ¢. Thus the reliability of the system, R,(Z), is given by 

k 

Ke T]Ri@ 
i=1 

The next two examples illustrate the use of this equation. 



130 INTRODUCTION TO PROBABILITY AND STATISTICS 

Example 4.7.3. Consider a system with five components connected in series. If 

each component has reliability .95 at time ¢, then the system reliability at that time is 

R(t) = (.95)° = .774. 

Example 4.7.4. Suppose that we are designing a system of five independent com- 

ponents and we want the system reliability at time ¢ to be at least .95. If the reliability 

of each component at f is to be the same, what is the minimum reliability required per 

component? Here we want x° = .95, where x is the reliability of each component. The 

solution is x = (.95)!5 = .9898. 

A more practical design for most equipment is the parallel system. Consider k 

independent components arranged in parallel. When the first fails, the second is 

used; when the second fails, the third comes on line. This continues until the last 

component fails, at which time the system fails. The system reliability at time fin 

this case is the probability that at least one of the k components does not fail before 

time f. This probability is given by 

R(t) = 1 — P[all components fail] 

k 

Less | [eRe 
i=1 

It should be noted that in both series and parallel systems the reliability of individ- 
ual components can differ. Example 4.7.5 illustrates a system that makes use of both 
types of configurations. 

Example 4.7.5. Consider a system consisting of eight independent components con- 
nected as shown in Fig. 4.13. Note that the system consists of five assemblies in se- 
ries, where assembly I consists of component 1; assembly II consists of components 2 
and 3 in parallel; assembly II consists of components 4, 5, and 6 in parallel; assem- 
blies IV and V consist of components 7 and 8, respectively. To calculate the system re- 
liability, we first calculate the reliability of the two parallel assemblies. The reliability 
of assembly II is 

PiU 05)* 9975 

FIGURE 4.13 
System with five assemblies, with assemblies II and III in parallel. 
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and that of assembly III is 

[hi 7.96) .92)( 1 — <85)] = 99952 

The system reliability is the product of the reliabilities of the five assemblies and is 
given by 

R(t) = (.99)(.9975)(.99952)(.95)(.82) = .7689 

It is evident that a system with many independent components connected in 
series may have a very low system reliability, even if each component alone is 

highly reliable. For example, a system of 20 components, each with a reliability of 
-95 connected in series, has a system reliability of (.95)?° = .358. One way to in- 
crease system reliability is to replace single components with several similar com- 

ponents arranged in parallel. Of course, the cost of providing this sort of redundancy 
is usually high. 

4.88 TRANSFORMATION OF VARIABLES 

Consider a continuous random variable X with density fy. Suppose that interest cen- 

ters on some random variable Y, where Y is a function of X. Can we determine the 

density for Y based on knowledge of the distribution of X? The next theorem allows 

us to answer this question whenever Y is a strictly monotonic function of X. 

Theorem 4.8.1. Let X be a continuous random variable with density fy. Let 

Y = g(X), where g is strictly monotonic and differentiable. The density for Y 

is denoted by fy and is given by 

dg '(y) fo) = fle oy | 

Proof. Assume that Y = g(X) is a strictly decreasing function of X. By definition the 

cumulative distribution function for Y is 

Fy(y) = PIY = y] = Plg(X) =] 

Since g is strictly decreasing, g_' exists and is also decreasing. Therefore 

| Plg(X) = yl = Ple '(e(X) = 810) 
SX a) 
=1—P(X=g “y)) 

By definition P[X < g~'(y)] = Fx(g" '(y)), and thus substitution yields 

Ey ies ieee om) 

Since the derivative of the cumulative distribution function yields the density, 

f(y) = Dfle (yy) S— ow) 
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Note that since g~! is decreasing, dg '(y)/dy < 0 and 

dg '(y) 

dy 

eg y) 

dy 

By substitution fy(y) can be written as 

. : dg'(y) 
fry) =fx(e7 10) a 

as claimed. The proof in the case in which g is increasing is similar and is left as an ex- 

ercise. (See Exercise 69.) 

An example will illustrate the idea. 

Example 4.8.1, Let X be a random variable with density 

x(x) = 2x Wie pecs 1 

and let g(X) = Y = 3X + 6. Since g(x) = 3x + 6is strictly increasing and differen- 

tiable, Theorem 4.8.1 is applicable. To obtain the expression for g-', we solve the 

equation y = 3x + 6 for x and see that 

ys 
x=g l(y)= 3 

and 

Ags. (eee 

dy 3 

An application of Theorem 4.8.1 yields 

de '(y 
fy(y) = f(g '(y)) dg (y) 

dy 
or 

CeO ie Leen y(y a - clk ane a 

ae 3 3 9 @ 6) 6<y<9 

It should be pointed out that the results given in Theorem 4.8.1 can be applied 
to piecewise monotonic functions as well as to those that are strictly monotonic. In 
this case several different equations might be required to define the density for Y. 
The idea is illustrated in the next example. 

Example 4.8.2. Let X be uniformly distributed over (0, 4) and let Q(X) = Y= 
(X — 3)*. The graph of this function is shown in Fig. 4.14. Note that since g is strictly 
decreasing on (0, 3) and strictly increasing on (3, 4), it is piecewise monotonic. It can 
be defined in terms of the two one-to-one functions g, and &> given by 

g(x) = (x - 3)? Oy S3 
g(x) = ; 
— (5) (0) a (ee) Breas A 
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FIGURE 4.14 

Graph of g(x) = (x — 3)°, 0 < x < 4 partitioned into two monotonic functions g,(x) = (x — 3), 

ORa—srandie, (60) "(ge oe 
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Each of the functions g, and g, is invertible, and their inverses are given by 

gii(y)=3-Vy O05y<9 

1) =o Vy ala! 

Functions h, and h, used to determine the density for Y are found by applying Theo- 

rem 4.8.1 to each of the above. With this done, we then add those functions having 

common domains to obtain the final expression for fy. In this case the density is 

formed from the functions 

4 

dg> =“ | 

hy(y) =feler( |" | | aa y Ai OY 2V/y 8\/y f 

hy(y) =fx(82 | arn 8p 

To obtain the density for Y, we note that the interval [0, 1] is common to the domain of 

both h, and hj. Thus 

fry) =hy(y) + iy(y) ae =n 1 

The interval [1, 9] is contained only in the domain of h,. Hence 

1 
FO) BOS os l=y<9 

You can verify for yourself that f, is a valid density. 
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4.9 SIMULATING A CONTINUOUS 

DISTRIBUTION 

In Sec. 3.9 we showed how to simulate a discrete distribution using a random digit 

table. The table also can be used to simulate a continuous distribution. The idea is 

as follows: 

1. We find the cumulative distribution function F for the random variable and its 

inverse. 

2. We select a random two- (or three-) digit number from Table II of App. A and 

interpret this number as a probability, that is, as a number between 0 and 1. 

3. We evaluate F! at this randomly selected point to obtain a randomly generated 

value for the random variable X. 

This procedure is illustrated in Example 4.9.1. 

Example 4.9.1. Consider the random variable X, the time to failure of a computer 

chip. Assume that X has a Weibull distribution with parameters a = .02 and B = 1. 

The density for X is 

Tey =0le eo 0 

and its cumulative distribution is 

y = F(x) = 1 — e7 

The inverse of F is found by solving this equation for x as follows: 

y= — e 02x 

e a= ly 

—.02x = In(1 — y) 

Sin Cli= y) 

02 

To simulate an observation on X, we select a random two-digit number from Table II 
of App. A. Suppose the number selected is 77, which is interpreted as the probability 
y = .77. For this value of y our simulated observation on X is 

2% ae) eee) 

.02 
= 73.48 years 

This procedure can be repeated to generate as many random values for X as desired. 
Figure 4.15 illustrates this procedure graphically. 

CHAPTER SUMMARY 

In this chapter we considered the general properties underlying random variables of 
the continuous type. These are random variables that assume their values in intervals 
of real numbers rather than at isolated points. The density function was introduced 
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1.0 
F(x) =y=.77 

) 

F-\(.77) = x = 73.48 years 

FIGURE 4.15 

F(x) = y = .77 if and only if F-'(.77) = x = 73.48 years. 

as a means of computing probabilities. These densities are defined in such a way that 

probabilities correspond to areas. The ideas of expected value and moment generat- 

ing function were defined by replacing the summation operation, used in the discrete 

case, with integration. A number of continuous distributions were studied. See Table 

4.1. The gamma distribution was presented. We noted that the exponential distribu- 

tion and the chi-squared distribution are special cases of the gamma distribution. We 
studied the normal distribution and showed how to use this distribution to approxi- 

mate binomial and Poisson probabilities. The Weibull distribution was introduced, 

and its use in reliability studies was examined. The log-normal, uniform, and 

Cauchy distributions were introduced as exercises. We saw how to simulate contin- 

uous distributions. We introduced and defined important terms that you should 

know. These are: 

Continuous random variable Continuous density 

Continuous distribution function Gamma function 

Half-unit correction Failure density 
Reliability function Hazard rate function 

Standard normal 

In the last two chapters we have presented some commonly encountered dis- 

crete and continuous distributions and have looked at some of the relationships that 

exist among them. The chart given in Fig. 4.16 summarizes the results that have 

been obtained. It is an adaptation of the more complete chart developed by 

Lawrence Leemis in “Relationships Among Common Univariate Distributions,” 

The American Statistician, May 1986, vol. 40, no. 2. (Used with permission of the 

author.) In the chart two types of relationships, namely, special cases and approxi- 

mations, are depicted. Special cases are indicated by a solid arrow, and approxima- 

tions are shown by a dashed arrow. In each case the name of the distribution along 

with its associated parameters are given. 
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Some interrelationships among common distributions. 
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EXERCISES 

Section 4.1 

1. Consider the function 

f(x) =kx ne ae 

(a) Find the value of k that makes this a density for a continuous random 
variable. 

(b) Find P[2.5 S433]. 

(c) Find P[X = 2.5]. 

(2) Find P[2 =x ei 
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2. Consider the areas shown in Fig. 4.17. In each case, state what probability is 
being depicted. What is the relationship between the areas depicted in Figs. 
4.17(a) and (b)? Between those in Figs. 4.17(d) and (e)? 

3. Let X denote the length in minutes of a long-distance telephone conversation. 
Assume that the density for X is given by 

F(x) = (1/10) e719 = 0 

(a) Verify that fis a density for a continuous random variable. 
(b) Assuming that f adequately describes the behavior of the random variable 

X, find the probability that a randomly selected call will last at most 
7 minutes; at least 7 minutes; exactly 7 minutes. 

(c) Would it be unusual for a call to last between 1 and 2 minutes? Explain, 
based on the probability of this occurring. 

(d) Sketch the graph of f and indicate in the sketch the area corresponding to 
each of the probabilities found in part (b). 

4. Some plastics in scrapped cars can be stripped out and broken down to recover 
the chemical components. The greatest success has been in processing the flex- 
ible polyurethane cushioning found in these cars. Let X denote the amount of 
this material, in pounds, found per car. Assume that the density for X is given by 

iat 
ie ae Zp = OU) 

(a) Verify that fis a density for a continuous random variable. 

(b) Use fto find the probability that a randomly selected auto will contain be- 
tween 30 and 40 pounds of polyurethane cushioning. 

(c) Sketch the graph of f, and indicate in the sketch the area corresponding to 

the probability found in part (b). 

5. (Continuous uniform distribution.) A random variable X is said to be uni- 

formly distributed over an interval (a, b) if its density is given by 

1 
)\ = EK f(x) apes a=x=—b 

(a) Show that this is a density for a continuous random variable. 

(b) Sketch the graph of the uniform density. 

(c) Shade the area in the graph of part (b) that represents PLX S (a + b)/2]. 

(d) Find the probability pictured in part (c). 

(e) Let(c, d) and (e, f) be subintervals of (a, b) of equal length. What is the re- 

lationship between P[c = X < d] and P[e = X S f]? Generalize the idea 

suggested by this example, thus justifying the name “uniform” distribution. 

6. If a pair of coils were placed around a homing pigeon and a magnetic field 

was applied that reverses the earth’s field, it is thought that the bird would be- 

come disoriented. Under these circumstances it is just as likely to fly in one 

direction as in any other. Let 6 denote the direction in radians of the bird’s ini- 

tial flight. See Fig. 4.18. 6 is uniformly distributed over the interval [0, 27]. 

(a) Find the density for 6. 
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Home (0) 

Pidgeon 

FIGURE 4.18 
6 = direction of the initial flight of a homing pigeon measured in radians. 

(b) Sketch the graph of the density. The uniform distribution is sometimes 

called the “rectangular” distribution. Do you see why? 

(c) Shade the area corresponding to the probability that a bird will orient 

within 77/4 radians of home, and find this area using plane geometry. 

(d) Find the probability that a bird will orient within 77/4 radians of home by 

integrating the density over the appropriate region(s), and compare your 

answer to that obtained in part (c). 

(e) If 10 birds are released independently and at least seven orient within 77/4 

radians of home, would you suspect that perhaps the coils are not disori- 

enting the birds to the extent expected? Explain, based on the probability 

of this occurring. 

7. Use Definition 4.1.2 to show that for a continuous random variable X, 

P[X = a] = 0 for every real number a. Hint: Write P[X = a] as Pla S X Sal. 

Express each of the probabilities depicted in Fig. 4.16 in terms of the cumula- 
tive distribution function F: 

Consider the random variable of Exercise 1. 

(a) Find the cumulative distribution function F 

(b) Use F to find P[2.5 = X = 3], and compare your answer to that obtained 

previously. 

(c) Find F’(x), and verify that your result is the density given in Exercise 1. 

(Uniform distribution.) Find the general expression for the cumulative distri- 

bution function for a random variable X that is uniformly distributed over the 
interval (a, b). See Exercise 5. 

(Uniform distribution.) Consider the random variable of Exercise 6. 

(a) Use Exercise 10 to find the cumulative distribution function F. 
(b) Find F"(x), and verity that your result is, as expected, the uniform density 

over the interval [O, 277]. 

12. Find the cumulative distribution function for the random variable of Exercise 
3. Use F to find P[| = X = 2], and compare your answer to that obtained 
previously. 
Find the cumulative distribution function for the random variable of Exercise 
4. Use F to find P[30 = X = 40], and compare your answer to that obtained 
previously. 

Sad 

— 

10 

11 

13 . 
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14. In parts (a) and (b) proposed cumulative distributions are given. In each case, 
find the “density” that would be associated with each, and decide whether it 
really does define a valid continuous density. If it does not, explain what 
property fails. 
(a) Consider the function F defined by 

0 x= 1 

F(x) <x | eee () 

1 0) 

(b) Consider the function defined by 

0 en) 

x? CORRS 1/2 FC 
2 CV te 

1 se > 1 

Section 4.2 

15. Consider the random variable X with density 

f(x) = (1/6)x Deane, 

(a) Find E[X]. 

(b) Find E[X?]. 
(c) Find a anda. 

16. Let X denote the amount in pounds of polyurethane cushioning found in a car. 

(See Exercise 4.) The density for X is given by 

Find the mean, variance, and standard deviation for X. 

17. Let X denote the length in minutes of a long-distance telephone conversation. 
The density for X is given by 

oo) Ely LO yen mee () 

(a) Find the moment generating function, my, (f). 

(b) Use my(t) to find the average length of such a call. 

(c) Find the variance and standard deviation for X. 

18. (Uniform distribution.) The density for a random variable X distributed uni- 

formly over (a, b) is 

1 
as SRS ies) es Ce ANSD 

Use Definition 4.2.1 to show that 

Garey Oi a) 
5 and Vat X=" Xe) 
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0 10 

FIGURE 4.20 

19. (Uniform distribution.) Let @ denote the direction in radians of the flight of a 

bird whose sense of direction has been disoriented as described in Exercise 6. 

Assume that @ is uniformly distributed over the interval [0, 277]. Use the re- 

sults of Exercise 18 to tind the mean, variance, and standard deviation of 0. 

20. Figure 4.19 gives the graphs of the densities of four continuous random vari- 

ables whose means do exist. In each case, approximate the value of ry from 
the graph. 

21. Consider the two densities given in Fig. 4.20. What is py? What is wy? Which 
random variable has the larger variance? 

22. (Cauchy distribution.) A random variable X with density 

== OOM <2 00 

EX Io —x<b<o 

a>0 
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is said to have a Cauchy distribution with parameters a and b. This distribu- 
tion is interesting in that it provides an example of a continuous random vari- 
able whose mean does not exist. Let a = | and b = 0 to obtain a special case 
of the Cauchy distribution with density 

fen 
Css 

w1it+x? 
—69 = F< eo 

Show that f2e; x| f(x) dx does not exist, thus showing that E[X] does not exist. 
Hint: Write 

eal 1 IL fO = 3% Il Pee 3 ea ~dx = lla 

| fas ‘ sib cee = aaa 

and recall that |(du/u) = In |u|. 
23. Let X denote the amount of time in hours that a battery on a solar calculator 

will operate adequately between exposures to light sufficient to recharge the 

battery. Assume that the density for X is given by 

f(x) = (50/6)x-> Dex 10) 

(a) Verify that this is a valid continuous density. 

(b) Find the expression for the cumulative distribution function for X, and use 

it to find the probability that a randomly selected solar battery will last at 

most 4 hours before needing to be recharged. 

(c) Find the average time that a battery will last before needing to be 

recharged. 

(d) Find E[X?], and use this to find the variance of X. 

24. Assume that the increase in demand for electric power in millions of kilowatt 

hours over the next 2 years in a particular area is a random variable whose 

density is given by 

fG)= /64)x2 0< <4 
(a) Verify that this is a valid density. 

(b) Find the expression for the cumulative distribution for X, and use it to find 

the probability that the demand will be at most 2 million kilowatt hours. 

(c) If the area only has the capacity to generate an additional 3 million kilo- 

watt hours, what is the probability that demand will exceed supply? 

(d) Find the average increase in demand. 

Section 4.3 

25. Evaluate each of these integrals: 

(a) |} ce~* dz 

(b) |g zle7* dz 
(C)mhoex cate dx 

(d) {5 (1/16)xe* dx 
26. Prove Theorem 4.3.1. Hint: To prove part 1, evaluate (1) directly from the 

definition of the gamma function. To prove part 2, use integration by parts 

with 
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27. 

28. 

29. 

30. 

SL: 

32. 

SRP 

34. 

55; 
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Th Alin dv =| ede 

du = (a — 1)z*~*dz v=-e? 

Use L’ Hospital’s rule repeatedly to show that 

—z2-le-2" = 0 

(a) Use Theorem 4.3.1 to evaluate I'(2), P(3), P(4), PS), and P(6). 

(b) Can you generalize the pattern suggested in part (a)? 

(c) Does the result of part (b) hold even if n = 1? 

(d) Evaluate [(15) using the result of part (D). 

Show that for a > 0 and B > 0, 

eae 
a Oe 
| T(a)p 

thereby showing that the function given in Definition 4.3.2 is a density for a 

continuous random variable. Hint: Change the variable by letting z = x/. 

Let X be a gamma random variable with a = 3 and B = 4. 

(a) What is the expression for the density for X? 
(b) What is the moment generating function for X? 

(c) Find p, 07, and a. 
Let X be a gamma random variable with parameters a and 6. Use the moment 

generating function to find E[X] and E[X?]. Use these expectations to show 

that Var X = a’. 
Let X be a gamma random variable with parameters a@ and B. 

(a) Use Definition 4.2.1, the definition of expected value, to find E[X] and 

E[X?] directly. Hint: z* = z@t)~! and z@*! = z(@#9)-1 
(b) Use the results of (a) to verify that Var X = aB?. 
Show that the graph of the density for a gamma random variable with para- 

meters @ and B assumes its maximum value at x = B(@ — 1) fora > 1. Sketch 

a rough graph of the density for a gamma random variable with @ = 3 and 

B = 4. Hint: Find the first derivative of the density, set this derivative equal to 

0, and solve for x. 
Let X be an exponential random variable with parameter B. Find general ex- 

pressions for the moment generating function, mean, and variance for X. 

A particular nuclear plant releases a detectable amount of radioactive gases 

twice a month on the average. Find the probability that at least 3 months will 

elapse before the release of the first detectable emission. What is the average 
time that one must wait to observe the first emission? 

The average number of lightning strikes on transformers during the severe 

thunderstorm season in a given area is two per week. Assume that a Poisson 

process is in operation, and find the probability that during the next storm 

season one must wait at most | week in order to see the first transformer 
strike. 



36. 

S77. 

38. 
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Rock noise in an underground mine occurs at an average rate of three per 
hour. (See Exercise 65, Chap. 3.) Find the probability that no rock noise will 
be recorded for at least 30 minutes. 
California is hit every year by approximately 500 earthquakes that are large 
enough to be felt. However, those of destructive magnitude occur, on the av- 
erage, once a year. Find the probability that at least 3 months elapse before the 
first earthquake of destructive magnitude occurs. (See Exercise 64, Chap. 3.) 
Consider a chi-squared random variable with 15 degrees of freedom. 
(a) What is the mean of X{;? What is its variance? 
(b) What is the expression for the density for X?,? 
(c) What is the expression for the moment generating function for Xe? 
(d) Use Table IV of App. A to find each of the following: 

PIX eos le P6200 Ke] 5) 2 

Xie 22.3] X01 Xs 

Section 4.4 

39. Use Table V of App. A to find each of the following: 

(ay TAS ail, (DO) RRP (Zeg oar] 

(c) P[Z = 157]. (GaP Ze alo 
(Al area seZ eI OG Fave 

(8) Z90- 

40. 

41. 

(h) The point z such that P[-z = Z = z] = .95. 

(i) The point z such that P[—-—z = Z = z] = .90. 

The bulk density of soil is defined as the mass of dry solids per unit bulk vol- 

ume. A high bulk density implies a compact soil with few pores. Bulk density 

is an important factor in influencing root development, seedling emergence, 

and aeration. Let X denote the bulk density of Pima clay loam. Studies show 

that X is normally distributed with w = 1.5 and 0 = .2 g/cm’. 

(a) What is the density for X? Sketch a graph of the density function. Indicate 

on this graph the probability that X lies between 1.1 and 1.9. Find this 

probability. 

(b) Find the probability that a randomly selected sample of Pima clay loam 

will have bulk density less than .9 g/cm’. 

(c) Would you be surprised if a randomly selected sample of this type of soil 

has a bulk density in excess of 2.0 g/cm?? Explain, based on the probabil- 

ity of this occurring. 

(d) What point has the property that only 10% of the soil samples have bulk 

density this high or higher? 

(e) What is the moment generating function for X? 

Most galaxies take the form of a flattened disc, with the major part of the light 

coming from this very thin fundamental plane. The degree of flattening differs 

from galaxy to galaxy. In the Milky Way Galaxy most gases are concentrated 

near the center of the fundamental plane. Let X denote the perpendicular dis- 

tance from this center to a gaseous mass. X is normally distributed with mean 
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42. 

43. 

44. 

45. 
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0 and standard deviation 100 parsecs. (A parsec is equal to approximately 19.2 

trillion miles.) Be, 
(a) Sketch a graph of the density for X. Indicate on this graph the probability 

that a gaseous mass is located within 200 parsecs of the center of the fun- 

damental plane. Find this probability. 
(b) Approximately what percentage of the gaseous masses are located more 

than 250 parsecs from the center of the plane? 

(c) What distance has the property that 20% of the gaseous masses are at 

least this far from the fundamental plane? 
(d) What is the moment generating function for X? 

Among diabetics, the fasting blood glucose level X may be assumed to be ap- 

proximately normally distributed with mean 106 milligrams per 100 milliliters 

and standard deviation 8 milligrams per 100 milliliters. 

(a) Sketch a graph of the density for X. Indicate on this graph the probability 

that a randomly selected diabetic will have a blood glucose level between 

90 and 122 mg/100 ml. Find this probability. 

(b) Find P[X = 120 mg/100 ml]. 
(c) Find the point that has the property that 25% of all diabetics have a fast- 

ing glucose level of this value or lower. 

(d) If a randomly selected diabetic is found to have fasting blood glucose 

level in excess of 130, do you think there is cause for concern? Explain, 
based on the probability of this occurring naturally. 

Let X denote the time in hours needed to locate and correct a problem in 

the software that governs the timing of traffic lights in the downtown area of 

a large city. Assume that X is normally distributed with mean 10 hours and 
variance 9. 
(a) Find the probability that the next problem will require at most 15 hours to 

find and correct. 
(b) The fastest 5% of repairs take at most how many hours to complete? 
Assume that during seasons of normal rainfall the water level in feet at a par- 
ticular lake follows a normal distribution with mean of 1876 feet and standard 
deviation of 6 inches. 
(a) During such a season, would it be unusual to observe a water level of at 

most 1875 feet? Explain based on the probability of this occurring. 
(b) Suppose that the water will crest the spillway if the level exceeds 1878 

feet. What is the probability that this will occur during a season of normal 
rainfall? 

(Log-normal distribution.) The log-normal distribution is the distribution of a 
random variable whose natural logarithm follows a normal distribution. Thus 
if X is anormal random variable, then Y = e* follows a log-normal distribu- 
tion. Complete the argument below, thus deriving the density for a log-normal 
random variable. 

Let X be normal with mean p and variance a2. Let G denote the cumulative 
distribution function for Y = e*, and let F denote the cumulative distribution 
function for X. 
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(a) Show that Gy) = F(n y). 

(b) Show that G'(y) = F'(In y)/y. 
(c) Show that the density for Y is given by 

C8 fi, < C9 
i Iino) 

g(y) Pear exp | ee! = P20 
TOY y=0 

Note that 4 and o are the mean and standard deviation of the underlying 
normal distribution; they are not the mean and standard deviation of Y itself. 

46. Let Y denote the diameter in millimeters of Styrofoam pellets used in packing. 
Assume that ¥ has a log-normal distribution with parameters w = .8 anda = .1. 
(a) Find the probability that a randomly selected pellet has a diameter that 

exceeds 2.7 millimeters. 

(b) Between what two values will Y fall with probability approximately .95? 

Section 4.5 

47. Verify the normal probability rule. 

48. The number of Btu’s of petroleum and petroleum products used per person in 

the United States in 1975 was normally distributed with mean 153 million 

Btu’s and standard deviation 25 million Btu’s. Approximately what percent- 

age of the population used between 128 and 178 million Btu’s during that 

year? Approximately what percentage of the population used in excess of 228 
million Btu’s? 

49. Reconsider Exercises 40(a), 41(a), and 42(q) in light of the normal probabil- 

ity rule. 

50. For a normal random variable, P[IX — ul < 3a] = .997. What value is as- 

signed to this probability via Chebyshev’s inequality? Are the results consis- 

tent? Which rule gives a stronger statement in the case of a normal variable? 

51. Animals have an excellent spatial memory. In an experiment to confirm this 

statement, an eight-armed maze such as that shown in Fig. 4.21 is used. At the 

beginning of a test, one pellet of food is placed at the end of each arm. A hun- 

gry animal is placed at the center of the maze and is allowed to choose freely 

from among the arms. The optimal strategy is to run to the end of each arm ex- 

actly once. This requires that the animal remember where it has been. Let X 

denote the number of correct arms (arms still containing food) selected among 

its first eight choices. Studies indicate that u = 7.9. 

(a) Is X normally distributed? 

(b) State and interpret Chebyshev’s inequality in the context of this problem 

for k = .5, 1, 2, and 3. At what point does the inequality begin to give us 

some practical information? 

Section 4.6 

52. Let X be binomial with n = 20 and p = .3. Use the normal approximation to 

approximate each of the following. Compare your results with the values ob- 

tained from Table I of App. A. 
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FIGURE 4.21 

An eight-armed maze. 

=BE 

(ayne (Xs 3 |: 

(Pye ois = 6): 
(Oe Pix 4]. 
(d) P[X = 4]. 
Although errors are likely when taking measurements from photographic im- 

ages, these errors are often very small. For sharp images with negligible dis- 

tortion, errors in measuring distances are often no larger than .0004 inch. 

Assume that the probability of a serious measurement error is .05. A series of 

150 independent measurements are made. Let X denote the number of serious 

errors made. 

(a) In finding the probability of making at least one serious error, is the nor- 

mal approximation appropriate? If so, approximate the probability using 

this method. 

(b) Approximate the probability that at most three serious errors will be 
made. 

. Achemical reaction is run in which the usual yield is 70%. A new process has 

been devised that should improve the yield. Proponents of the new process 

claim that it produces better yields than the old process more than 90% of the 

time. The new process is tested 60 times. Let X denote the number of trials in 
which the yield exceeds 70%. 

(a) If the probability of an increased yield is .9, is the normal approximation 
appropriate? 

(b) If p = .9, what is E[X]? 

(c) Ifp > .9 as claimed, then, on the average, more than 54 of every 60 trials 
will result in an increased yield. Let us agree to accept the claim if X is at 



a5: 

56. 
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least 59. What is the probability that we will accept the claim if p is really 
only .9? 

(d) What is the probability that we shall not accept the claim (X < 58) if it is 
true, and p is really .95? 

Opponents of a nuclear power project claim that the majority of those living 
near a proposed site are opposed to the project. To justify this statement, a ran- 
dom sample of 75 residents is selected and their opinions are sought. Let X de- 
note the number opposed to the project. 
(a) If the probability that an individual is opposed to the project is .5, is the 

normal approximation appropriate? 

(b) If p = .5, what is E[X]? 

(c) If p > .5 as claimed, then, on the average, more than 37.5 of every 75 in- 

dividuals are opposed to the project. Let us agree to accept the claim if X 

is at least 46. What is the probability that we shall accept the claim if p is 
really only .5? 

(d) What is the probability that we shall not accept the claim (X < 45) even 

though it is true and p is really .7? 

(Normal approximation to the Poisson distribution.) Let X be Poisson with 

parameter As. Then for large values of As, X is approximately normal with 

mean As and variance As. (The proof of this theorem is also based on the Cen- 

tral Limit Theorem and will be considered in Chap. 7.) Let X be a Poisson 

random variable with parameter As = 15. Find P[X = 12] from Table II of 

App. A. Approximate this probability using a normal curve. Be sure to employ 

the half-unit correction factor. 
The average number of jets either arriving at or departing from O’ Hare Air- 

port is one every 40 seconds. What is the approximate probability that at least 

75 such flights will occur during a randomly selected hour? What is the prob- 

ability that fewer than 100 such flights will take place in an hour? 

Section 4.7 

58. 

uP. 

The length of time in hours that a rechargeable calculator battery will hold ; 
charge is a random variable. Assume that this variable has a Weibull distrib: 

tion with a = .01 and 6 = 2. 

(a) What is the density for X? 

(b) What are the mean and variance for X? Hint: It can be shown that I'(a) = 

(a — 1)I'(@ — 1) for any a > 1. Furthermore, (1/2) = V7. 

(c) What is the reliability function for this random variable? 

(d) What is the reliability of such a battery at f = 3 hours? At t = 12 hours? 

At t = 20 hours? 
(e) What is the hazard rate function for these batteries? 

(f) What is the failure rate at t = 3 hours? At t = 12 hours? At t = 20 hours? 

(g) Is the hazard rate function an increasing or a decreasing function? Does 

this seem to be reasonable from a practical point of view? Explain. 

Computer chips do not “wear out” in the ordinary sense. Assuming that de- 

fective chips have been removed from the market by factory inspection, it is 
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64. 

65. 

INTRODUCTION TO PROBABILITY AND STATISTICS 

reasonable to assume that these chips exhibit a constant hazard rate. Let the 

hazard rate be given by p(t) = .02. (Time is in years.) 

(a) Ina practical sense, what are the main causes of failure of these chips? 
(b) What is the reliability function for chips of this type? 

(c) What is the reliability of a chip 20 years after it has been put into use? 

(d) What is the failure density for these chips? 

(e) What type of random variable is X, the time to failure of a chip? 

(f) What is the mean and variance for X? 

(g) What is the probability that a chip will be operable for at least 30 years? 

The random variable X, the time to failure (in thousands of miles driven) of 

the signal lights on an automobile has a Weibull distribution with @ = .04 and 

B= 2. 
(a) Find the density, mean, and variance for X. 

(b) Find the reliability function for X. 

(c) What is the reliability of these lights at 5000 miles? At 10,000 miles? 
(d) What is the hazard rate function? 

(e) What is the hazard rate at S000 miles? At 10,000 miles? 

(f) What is the probability that the lights will fail during the first 3000 miles 
driven? 

Show that for a > 0 and B > 0, 

| ABxP Vege 
0 

thereby showing that the nonnegative function given in Definition 4.7.1 is a 
density for a continuous random variable. Hint: Let z = ax’. 
Let X be a Weibull random variable with parameters a@ and B. Show that 
E[X?] = a ~®T(1 + 2/8). Hint: In evaluating 

f co 

co Bx? te -o* de 
JO 

let < = ax®, Evaluate the integral in a manner similar to that used in the proof 
of Theorem 4.7.1. 

Use the result of Exercise 62 to find Var X for a Weibull random variable with 
parameters a and £, thus completing the proof of Theorem 4.7.1, 
Consider the hazard rate function 

p(t) = ape! t>0 

a>ov0 

B>0 

(a) Show that p(t) is constant if B = 1. 
(b) Find p'(t). Argue that p'(t) > 0 if B > 1, thus producing an increasing 

hazard rate. Argue that p'(t) < 0 if B < 1, thus producing a decreasing 
hazard rate. 

A system has eight components connected as shown in Fig. 4.22. 
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FIGURE 4.22 

(a) Find the reliability of each of the parallel assemblies. 
(b) Find the system reliability. 

(c) Suppose that assembly II is replaced by two identical components in par- 

allel, each with reliability .98. What is the reliability of the new assembly? 

(d) What is the new system reliability after making the change suggested in 
part (c)? 

(e) Make changes analogous to that of part (c) in each of the remaining sin- 

gle component assemblies. Compute the new system reliability. 

66. A system consists of two independent components connected in series. The 

life span of the first component follows a Weibull distribution with a = .006 

and B = .5; the second has a life span that follows the exponential distribution 
with B = .00004. 

(a) Find the reliability of the system at 2500 hours. 

(b) Find the probability that the system will fail before 2000 hours. 

(c) If the two components are connected in parallel, what is the system relia- 

bility at 2500 hours? 

67. Suppose that a missile can have several independent and identical computers, 

each with reliability .9 connected in parallel so that the system will continue 

to function as long as at least one computer is operating. If it is desired to have 

a system reliability of at least .999, how many computers should be connected 

in parallel? 

68. Three independent and identical components, each with a reliability of .9, are 

to be used in an assembly. 

(a) The assembly will function if at least one of the components is operable. 
Find the system reliability. 

(b) The assembly will function if at least two of the components are operable. 

Find the reliability of the system. 

(c) The assembly will function only if all three of the components are opera- 

ble. Find the reliability of the system. 

Section 4.8 

69. Prove Theorem 4.8.1 in the case in which g is strictly increasing. 
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70. 

7Ar 

72. 

TBE 

74. 

1} 

76. 
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Let X be a random variable with density 

fx(x) = (1/4) x Q=xs \/8 

and let Y= X + 3. : 

(a) Find E[X], and then use the rules for expectation to find EY]. 

(b) Find the density for Y. 

(c) Use the density for Y to find E[Y], and compare your answer to that found 

in part (a). 

Let X be a random variable with density 

fx(x) = (1/4) xe? x=0 

and let Y = (—1/2)X + 2. Find the density for Y. 

Let X be a random variable with density 

f(x) =e" Pal 

and let Y = e*. Find the density for Y. 
Let C denote the temperature in degrees Celsius to which a computer will be 

subjected in the field. Assume that C is uniformly distributed over the interval 

(15, 21). Let F denote the field temperature in degrees Fahrenheit so that F = 

(9/5)C + 32. Find the density for F. 

Let X denote the velocity of a random gas molecule. According to the 

Maxwell-Boltzmann law, the density for X is given by 

Bix) =cte x0 

Here c is a constant that depends on the gas involved, and B is a constant 

whose value depends on the mass of the molecule and its absolute tempera- 

ture. The kinetic energy of the molecule, ¥, is given by Y = (1/2)mX? where 
m > 0. Find the density for Y. 

Let X be a continuous random variable with density fy, and let Y = X°. 

(a) Show that for y = 0, 

Fy(y) = P| - Vy=xX< V)| 

(b) Show that for y = 0, 

Fy(y) = Fx( Vy) — Fx(- Vy) 
(c) Use the technique given in the proof of Theorem 4.8.1 to show that 

fo) = /(2Vy)hi(-V¥) +.fe(-V9)] 
(d) Use the technique illustrated in Example 4.8.2 to show that 

fly) = 1/(2 Vy)|A( Vy) +&(-Vvy)| 
Let Z be a standard normal random variable and let Y = Z2. 

(a) Show that ['(1/2) = |p x~/2e> dx. 
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(b) Show that ['(1/2) = Vr. Hint: Use the results of part (a) with x = 17/2 

and make use of the fact that the standard normal density integrates to 1 
when integrated over the set of real numbers. 

(c) Use the results of Exercise 75 to find fy. 

(d) Argue that Y follows a chi-squared distribution with | degree of freedom. 

Let X be normally distributed with mean yz and variance a. Let Y = e*. Show 
that Y follows the log-normal distribution. (See Exercise 45.) 

78. Let Z be a standard normal random variable and let Y = 2Z? — 1. Find the 
density for Y. 

Section 4.9 

79. Use Table HI of App. A to generate nine more observations on the random 

variable X, the time to failure of a computer chip. (See Example 4.9.1.) Based 

on these data, approximate the average time to failure by finding the arith- 

metic average of the values of X simulated in the experiment. Does this value 

agree well with the theoretical mean value of 50 years? 

80. Simulate 20 observations on the random variable X, the time to failure of the 

signal lights on an automobile. (See Exercise 60.) Approximate the average 

time to failure for these lights based on the simulated data. Does this value 

agree well with the theoretical mean value for X? 

81. A satellite has malfunctioned and is expected to reenter the earth’s atmosphere 

sometime during a 4-hour period. Let X denote the time of reentry. Assume 

that X is uniformly distributed over the interval [0, 4]. Simulate 20 observa- 

tions on X. (See Exercise 18.) 

REVIEW EXERCISES 

82. Let X be a continuous random variable with density 

83. 
84. 

f(x) = cx? ee a3 

(a) Assuming that f(x) = 0 elsewhere, find the value of c that makes this a 

density. 
(b) Find E[X] and E[X?] from the definitions of these terms. 

(c) Find Var X.and o. 

(d) Find P[X = 2]; P[-1 = X = 2]; P[X > 1] by direct integration. 

(e) Find the closed-form expression for the cumulative distribution function F: 

(f) Use F to find each of the probabilities of part (d), and compare your an- 

swers to those obtained earlier. 

Find [5 ze? dz. 
A computer firm introduces a new home computer. Past experience shows that 

the random variable X, the time of peak demand measured in months after its 

introduction, follows a gamma distribution with variance 36. 

(a) If the expected value of X is 18 months, find a@ and B. 

(b)-Find PiX = 7.01]; PIX = 26]; Pi13.7 = xX = 315). 
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86. 

87. 

88. 
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Let X denote the lag time in a printing queue at a particular computer center. 

That is, X denotes the difference between the time that a program is placed in 
the queue and the time at which printing begins. Assume that X is normally 

distributed with mean 15 minutes and variance 25. 

(a) Find the expression for the density for X. 
(b) Find the probability that a program will reach the printer within 3 minutes 

of arriving in the queue. 
(c) Would it be unusual for a program to stay in the queue between 10 and 20 

minutes? Explain, based on the approximate probability of this occurring. 

You do not have to use the Z table to answer this question! 
(d) Would you be surprised if it took longer than 30 minutes for the program 

to reach the printer? Explain, based on the probability of this occurring. 

A computer center maintains a telephone consulting service to troubleshoot 

for its users. The service is available from 9 a.m. to 5 p.m. each working day. 

Past experience shows that the random variable X, the number of calls re- 

ceived per day, follows a Poisson distribution with A = 50. For a given day, 

find the probability that the first call of the day will be received by 9:15 a.m.; 
after 3 p.m.; between 9:30 a.m. and 10 a.m. 

Let H(X) = X? + 3X + 2. Find E[H(X)] if 
(a) X is normally distributed with mean 3 and variance 4. 

(b) X has a gamma distribution with a = 2 and B = 4. 

(c) X has a chi-squared distribution with 10 degrees of freedom. 

(d) X has an exponential distribution with B = 5. 

(e) X has a Weibull distribution with a = 2 and B = 1. 

Let X denote the time required to upgrade a computer system in hours. As- 
sume that the density for X is given by 

Tey = kexp (22) 0<x<o& 

(a) Find the numerical value of k that makes this a valid density. 
(b) Find the probability that it will take at most 1 hour to upgrade a given 

system. 
(c) Find the average time required to upgrade a system. 
(d) Find the standard deviation in the time required for the upgrade. 
Let X denote the time to failure in years of a telephone modem used to access 
a mainframe computer from a remote terminal. Assume that the hazard rate 
function for X is given by 

p(t) = aBte-! 

where a = 2 and B = 1/5. 

(a) Find the failure density for X. 

(b) Find the expected value of X. 

(c) Find the reliability function for X. 
(d) Find the probability that the modem will last for at least 2 years. 
(e) What is the hazard rate at t = 1 year? 
(f) Describe roughly the theoretical pattern in the causes of failure in these 

modems. 
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Past evidence shows that when a customer complains of an out-of-order 
phone there is an 8% chance that the problem is with the inside wiring. Dur- 
ing a 1-month period, 100 complaints are lodged. Assume that there have been 
no wide-scale problems that could be expected to affect many phones at once, 
and that, for this reason, these failures are considered to be independent. Find 
the expected number of failures due to a problem with the inside wiring. Find 
the probability that at least 10 failures are due to a problem with the inside 
wiring. Would it be unusual if at most 5 were due to problems with the inside 
wiring? Explain, based on the probability of this occurring. 
The cumulative distribution function for a continuous random variable X is 
defined by 

Find the density for X. 

The density for a continuous random variable is given by 

f(x) =xe™* 0<x<0 

(a) Show that |j xe~* dx = 1. Hint: Use the gamma function. 
(b) Find E[X], E[X*], and Var X. 

(c) Show that m,(t) = 1/(1 — 1)”, where t < 1. 
(d) Use m,(t) to find E[X]. 

An electronic counter records the number of vehicles exiting the interstate at 
a particular point. Assume that the average number of vehicles leaving in a 

5-minute period is 10. Approximate the probability that between 100 and 120 

vehicles inclusive will exit at this point in a |-hour period. 

Consider the following moment generating functions. In each case, identify 

the distribution involved completely. Be sure to specify the numerical value of 

all parameters that identify the distribution. For example, if X is normal, give 

the numerical value of w and co; if gamma, state a and B. 
(a) e3tt 1617/2 

OVO Sse! 
(C)m(li=t2)) as 

et = Be P 

(@) 2t 
( e) et /2 

USD 
( g) e3tt 7/2 

For each random variable in Exercise 94, state the numerical value of the av- 

erage for X and its variance. 



CHAPTER 

JOINT 
DISTRIBUTIONS 

hus far interest has centered on a single random variable of either the discrete 

or the continuous type. Such random variables are called univariate. Problems 

do arise in which two random variables are to be studied simultaneously. For ex- 

ample, we might wish to study the yield of a chemical reaction in conjunction with 

the temperature at which the reaction is run. Typical questions to ask are: “Is the 

yield independent of the temperature?” or, “What is the average yield if the temper- 

ature is 40° C?” To answer questions of this type, we need to study what are called 

two-dimensional or bivariate random variables of both the discrete and continuous 

type. In this chapter we present a brief introduction to the basic theoretical concepts 

underlying these variables. These concepts form the basis for the study of regression 

analysis and correlation, topics of extreme importance in applied statistics. (See 

Chaps. 11 and 12.) 

5.1 JOINT DENSITIES AND 
INDEPENDENCE 

We begin by considering two-dimensional random variables and their density func- 

tions. The definitions presented here are natural extensions of those presented for a 

single random variable in Chaps. 3 and 4. (See Definition 3.2.1 and 4.1.2.) 

Definition 5.1.1 (Discrete joint density). Let X and Y be discrete random 

variables. The ordered pair (X, Y) is called a two-dimensional discrete 

random variable. A function fyy such that 

Fur(% y) = P[X = xand Y = y] 

is called the joint density for (X, Y). 



JOINT DISTRIBUTIONS 157 

Again, let us point out that in the discrete case some statisticians prefer to use 

the term “probability function” or “probability mass function” rather than the term 

“density.” We shall use the term “density” and the notation fyy in both the discrete 

and the continuous cases for consistency of notation and terminology. 

Note that the purpose of the density here is the same as in the past—to allow 

us to compute the probability that the random variable (X, Y) will assume specific 

values. As in the one-dimensional case, fyy is nonnegative since it represents a prob- 
ability. Furthermore, if the density is summed over all possible values of X and Y, it 

must sum to |. That is, the necessary and sufficient conditions for a function to be a 

joint density for a two-dimensional discrete random variable are as follows: 

Necessary and Sufficient Conditions 

for a Function to Be a Discrete Joint Density 

1) xy yy) 0 

2. >; > fry y) 1 

allx ally 

The joint density in the discrete case is sometimes expressed in closed form. 

However, it is more common to present the density in table form. 

Example 5.1.1. In an automobile plant two tasks are performed by robots. The first 

entails welding two joints; the second, tightening three bolts. Let X denote the number 

of defective welds and Y the number of improperly tightened bolts produced per car. 

Since X and Y are each discrete, (X, Y) is a two-dimensional discrete random variable. 

Past data indicates that the joint density for (X, Y) is as shown in Table 5.1. Note that 

each entry in the table is a number between 0 and 1 and therefore can be interpreted as 

a probability. Furthermore, 

Sr 840+ 030.020 00l a1 
x=0 y=0 

as required. The probability that there will be no errors made by the robots is given by 

P[X = Oand Y = 0] = fxy(0, 0) = .840 

The probability that there will be exactly one error made is 

TABLE 5.1 
EN 

x/y 0 1 2 3 

0 .840 .030 .020 O10 

1 .060 O10 .008 002 

2 .010 00S .004 001 
ne 
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P[X = 1 and Y = 0] + P[X = Oand Y= 1] =fyy(1, 0) + fav(O, 1) 

060 + .030 

= 09 

The probability that there will be no improperly tightened bolts is P[Y = OJ. Note that 

this probability, which concerns only the random variable ¥, can be obtained by sum- 

ming fyy (x, 0) over all values of X. That is, 

REM Bo Se TD) 
x=0 

= P[X = Oand Y = 0] + P[X = land Y= 0] 
+ P[X = 2 and Y = 0] 

= .840 + .060 + .010 = .91 

Marginal Distributions: Discrete 

Given the joint density for a two-dimensional discrete random variable (X, Y), it is 
easy to derive the individual densities for X and Y. The manner in which this is done 

is suggested by the method used to answer the last question posed in Example 5.1.1. 

To find the density for Y alone, we sum the joint density over all values of X; to find 
the density for X alone, we sum over ¥. When the joint density is given in table 

form, it is customary to report the individual densities for X and Y in the margins of 

the joint density table. For this reason, the densities for X and Y alone are called 
marginal densities. This idea is formalized in Definition 5.1.2. 

Definition 5.1.2 (Discrete marginal densities). Let (X, Y) be a two- 

dimensional discrete random variable with joint density fyy. The marginal 

- density for X, denoted by fy, is given by 

kG) = D far y) 
all y 

The marginal density for ¥, denoted by fy, is given by 

fr(y) = dS fol y) 
all x 

Example 5.1.2. Table 5.2 gives the joint density for the random variable (X, Y) of 

Example 5.1.1. It also displays the marginal densities for X, the number of defective 

welds, and ¥, the number of improperly tightened bolts per car. Note that the marginal 

density for X is obtained by summing across the rows of the table; that for Y is ob- 
tained by summing down the columns. 

Joint and Marginal Distributions: Continuous 

The idea of a two-dimensional continuous random variable and continuous joint 
density can be developed by extending Definition 4.1.1 to more than one variable. 
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TABLE 5.2 
Se ee 

x/y 0 1 2 3 Fy) 

0 .840 .030 .020 .010 900 

I .060 O10 .008 002 080 

2 O10 005 004 001 .020 

fy) 910 045 .032 .013 1.000 

Definition 5.1.3 (Continuous joint density), Let X and Y be continuous 
random variables. The ordered pair (X, Y) is called a two-dimensional 
continuous random variable. A function fyy such that 

1. fxy(% y) 20 Fi 
= oR OS ee 

2. |" [fers ») dy dx = 1 
bd 

3.PlasX=s=bandc=Ysd|= | | Frys y) dy dx 

for a, b, c, d real is called the joint density for (X, Y). 

Even though the joint density is defined for all real values x and y, we shall 

follow the convention of specifying its equation only over those regions for which 

it may be nonzero. Recall that in the case of a single continuous random variable, 

probabilities correspond to areas. In the case of a two-dimensional continuous ran- 

dom variable, probabilities correspond to volumes. These ideas are illustrated in 

Example 5.1:3. 

Example 5.1.3. Ina healthy individual age 20 to 29 years, the calcium level in the 

blood, X, is usually between 8.5 and 10.5 milligrams per deciliter (mg/dl) and the cho- 

lesterol level, Y, is usually between 120 and 240 mg/d]. Assume that for a healthy in- 

dividual in this age group the random variable (X, Y) is uniformly distributed over the 

rectangle whose corners are (8.5, 120), (8.5, 240), (10.5, 120), (10.5, 240). That is, as- 

sume that the joint density for (X, Y) is 

Tey rac OeS.5 = = 105 

120 < y < 240 

To be a density, c must be chosen so that 

10.5 (240 

| | cdy dx = 1 
8.5 J120 

That is, c must be chosen so that the volume of the rectangular solid shown in Fig. 

5.1(a) is 1. To find c, we can use geometry or complete the indicated integration as 

shown below. 
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FIGURE 5.1 
(a) Volume of the solid whose base is a rectangle with corners (8.5, 120), (8.5, 240), (10.5, 120), and 
(10.5, 240) and height c is 1; (b) P[I9 = X S 10 and 125 = Y < 140] = volume of solid whose base is 
a rectangle with corners (9, 125), (9, 140), (10, 125), (10, 140) and height c = 1/240. 

ll 
r10.5 7240 

| | c dy dx 
J8.5  J120 

palo 

3 | (240 — 120) dx = 1 
J8.5 

120¢(10.5 — 8.5) =1 
240c = 1 

c= 1240 

Let us now use the joint density to find the probability that an individual’s calcium 
level will lie between 9 and 10 mg/dl, whereas the cholesterol level is between 125 
and 140 mg/dl. This probability corresponds to the volume of the solid shown in Fig. 
5.1(b). This probability is 
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10 (140 
P(9 =X = 10 and 125 = Y= 140] | | 1/240 dy dx 

9 125 

10 
1/240 | (140 — 125) dx 

9 

= 15/240 

To define “marginal” densities in the continuous case, we replace summation 

by integration. This yields the following definition. 

Definition 5.1.4 (Continuous marginal densities). Let (X, Y) be a two- 

dimensional continuous random variable with joint density fyy. The marginal 

density for X, denoted by fy, is given by 

Fil) = | far »ddy 
The marginal density for Y, denoted by fy, is given by 

fy) = [fir y)dx 

We illustrate the idea of marginal densities in Examples 5.1.4 and 5.1.5. 

Example 5.1.4. Let X denote an individual’s blood calcium level and Y his or her 

blood cholesterol level. The joint density for (X, Y) is 

fyy(% y) = 1/240 So. ay = 105 

120 = y = 240 

The marginal densities for X and Y are 

. 240 
fx(x) = | 1/240 dy = 1/2 eye es press Is) 

120 

10.5 

eal) =e | 1/240 dx = 2/240 120s y = 240 
8.5 

To find the probability that a healthy individual has a cholesterol level between 150 

and 200, we can use either the joint density or the marginal density for Y. That 1s, 

10.5 200 
Pri 04200 |= | | 1/240 dy dx = 100/240 

8.5 J150 

or 

200 
P{150 = Y = 200] = | 2/240 dy = 100/240 

150 

Note that both X and Y are uniformly distributed. 
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(a) 

FIGURE 5.2 ' 
(a) The joint density f(x, y) = c/x is defined over the triangular region bounded by y = 27, y = 2, 

and x = 33. 

(b) - 

P[X = 30 and Y S 28] = clx dy dx + | | clx dy dx 
JR, JR, 
28 fx 30 £28 

~ | | c/x dy dx + | | c/x dy dx 
27 J27 J28 J27 

or 
28 r 30 

c/x dx dy. P[X = 30 and Y S 28] 
J27 Jy 

Example 5.1.5. In studying the behavior of air support roofs, the random variables 

X, the inside barometric pressure (in inches of mercury), and Y, the outside pressure, 

are considered. Assume that the joint density for (X, Y) is given by 

Fey y) = clx 2 Spee 

ec = 1/6 — 27 In 33/27) = 1.72 

The region in the plane over which this joint density is defined is shown in Fig. 5.2(a). 

The marginal densities for X and Y are given by 

x 

f(x) = [ cle dy =(clx)y| =c(l-27x) 27=x<33 
J27 27 

psi 

fy) = lk clx dx = c(in 33 — Iny) 7 sys33 

Let us find the probability that the inside pressure is at most 30 and the outside pres- 

sure is at most 28. That is, let us find P[X = 30 and Y S 28]. The region over which 

the joint density is to be integrated is shown in Fig. 5.2(b). Integration can be done 

with respect to y and then x or vice versa. In the former case the problem must be split 

into two pieces, since the boundaries for y change at the point (28, 28). In the latter 

case integration can be accomplished more easily. The integrals required in the two 
cases are 
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Case I: 

5 

P[X < 30 and Y < 28] = | 
27 

x 30 (28 
| clx dy dx + | | clx dy dx 
27 28 J27 

Case II: 

28 £30 
xe=33 Vrandsy4=28)|— | | clx dx dy 

5 

Since case II requires less effort, we find P[X < 30 and Y < 28] as follows: 

28 (30 

| | clx dx dy 

28 
=C | [In 30 — In yJdy 

27 

28 2 
c|y In = | In y dy 

é 27 

P[X = 30 and Y S 28] 

= clin 30 — (y ny — yi 

c{In 30 — 28 In 28 + 271In27 + 1] 
= c(.09) = 1172(.09) = 15 

It is left as an exercise to show that the same result is obtained via case I. (See Exer- 

cise 6.) 

Independence 

There is one other point to be made in this section. Recall that two events are inde- 

pendent if knowledge of the fact that one has occurred gives us no clue as to the 

likelihood that the other will occur. Suppose that X and Y are discrete random vari- 

ables such that knowledge of the value assumed by one gives us no clue as to the 

value assumed by the other. We would like to think of these random variables as be- 

ing “independent” and would like a mathematical characterization of this property. 
The characterization is suggested by the following argument. Let X and Y be dis- 

crete. Let A, denote the event that X = x, and let A, denote the event that Y = y. If 

X and Y are independent in the intuitive sense, then A, and A, are independent 

events. By Definition 2.3.1 

P[A, 1 Aj] = P[A,]PIA2] 

Substituting, we see that 

P[X = x and Y= y] = P[X = x]P[Y = y] 

or 

fv % Y) = fx fr (Y) 

It seems that, at least in the discrete case, independence implies that the joint den- 

sity can be expressed as the product of the marginal densities. This idea provides the 
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basis for the definition of the term “independent random variables” in both the dis- 

crete and continuous cases. 

Definition 5.1.5 (Independent random variables). Let X and Y be random 

variables with joint density fyy and marginal densities fy and fy, respectively. 

X and Y are independent if and only if 

fry (% Y) = fk Of) 

for all x and y. 

Example 5.1.6 

(a) 

(b) 

(c) 

The random variables X, the number of defective welds, and Y, the number of im- 

properly tightened bolts per car of Examples 5.1.1 and 5.1.2, are not independent. 

To verify this, note that from Table 5.2 

The random variables X, an individual’s blood calcium level, and Y, his or her 

blood cholesterol level as described in Examples 5.1.3 and 5.1.4, are independent. 
To verify this, note that 

Fry @ y) =, 1/240 = 1/2 n 2/240 =f(x) fr) 

An important point should be made here. The assumption that (X, Y) is uniformly 
distributed leads to the conclusion that X and Y are independent. If this conclusion 
is medically unsound, then another more realistic density should be sought to de- 
scribe the behavior of the two-dimensional random variable (X, Y). 

The random variables X and Y, the inside and outside pressure, respectively, on an 
air support roof of Example 5.1.5 are not independent. This is seen by noting that 

fay (% y) = clx # c(1 — 27/x)c(In 33 — In y) = fy(x) fy(y) 

The assumption of nonindependence here is realistic from a physical point of 
view. 

The exercises for Sec. 5.1 provide some practice in dealing with these theo- 
retical ideas. You will see their relationship to data analysis in chapters to come. 

5.2. EXPECTATION AND COVARIANCE 

In this section we introduce the idea of expectation in the case of a two-dimensional 
random variable. We also study a specific expectation, called the covariance, that is 
useful in describing the behavior of one variable relative to another. 

We begin by extending Definitions 3.3.1 and 4.2.1 to the two-dimensional 
case. 
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Definition 5.2.1 (Expected value). Let (X, Y) be a two-dimensional random 
variable with joint density fyy. Let H(X, Y) be a random variable. The 
expected value of H(X, Y), denoted by E[H(X, Y)] is given by 

ACD > SY AG iG) 
allx ally 

provided |’ S* |H(x, y)| fey (x, y) exists for (X, Y) discrete; 
allx ally 

2. ELH(X, Y= |" [Hex ») fora, dy ds 

provided | | (x, y) txy(%, y)dy dx exists for (X, Y) continuous. 

oO 

— 00 

As in the case of one-dimensional random variables, some functions of X and 
Y are of more interest than others. In particular, if the joint density for (X, Y) is 
known, then the average value of X and of Y can be found easily. These are deter- 
mined as follows: 

Univariate Averages Found Via the Joint Density 

BIX\= > ) iinG@ y) for (X, Y) discrete 
all x all y 

Ey > SS yxy (% y) 
all x ally 

E{X] = ic | : X fxy(x, y)dx dy _ for (X, Y) continuous 

BY] = [| yf yar dy 

Examples 5.2.1 and 5.2.2 illustrate the use of this definition. 

Example 5.2.1. The joint density for the random variable (X, Y) of Example 5.1.1 is 
given in Table 5.3. X denotes the number of defective welds and Y, the number of im- 
properly tightened bolts produced per car by assembly line robots. Let us use Defini- 

tion 5.2.1 to find E[X], E[Y], E[X + Y], and E[XY]. 

2F3 
E[X] = > > Xfxy (% y) 

x=0 y=0 

= 0(.840) + 0(.030) + 0(.020) + 0(.010) + 1(.060) + - - - + 2(.001) 

= .12 
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TABLE 5.3 

x/y 0 1 2 3 reeks 

0 840 030 020 010 900 
060 010 008 002 080 

2 010 005 004 001 020 

fA) 910 045 032 013 1.000 

2s 
EY] = » SS Vhxy(% y) 

x=0 y=0 

= 0(.840) + 1(.030) + 2(.020) + 3(.010) + 0(.060) + - - - + 3(.001) 

= 148 

Dee 
Ei Xe ey |e Sey) iy) 

x=0 y=0 

= (0 + 0)(.840) + (0 + 1)(.030) + (0 + 2)(.020) + --- + (2 + 3)(.001) 

= .268 

2 } 

EIXY] = > > fers y) 
x+=0 y=0 

= (0 - 0)(.840) + (0 - 1)(.030) + (0 - 2)(.020) + - - - + (2+ 3)(.001) 

= .064 

There are two points to be made. First, both E[X] and E[Y] were found via the joint 
density and Definition 5.2.1. These expectations could have been found just as easily 
from the marginal densities and Definition 3.3.1. (See Exercise 18.) Second, note that 
E|X + Y] = E[X] + E[Y]. This result is consistent with the rules of expectation given 
in Theorem 3.3.1. 

Example 5.2.2. The joint density for the random variable (X, ¥), where X denotes 
the calcium level and Y denotes the cholesterol level in the blood of a healthy individ- 
ual, is given by 

fy (% y) = 1/240 St LU 

1200=y 5 240 

For these variables, 

E[X] = [_ Xfyy (x, y) dy dx 

r 10.5 (240 

=| | x(1/240)dy dx 
8.5 120 

II 
10.5 10.5 

(1/2)x dx = x7/4 = 9.5 mg/dl 
J85 8.5 
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BWI= [| »folw dvdr 
10.5 (240 
| | y(1/240) dy dx 
8.5 J120 

240 

dx 
120 

0.5 5) 
Wai 

i 
1/240 | 

8.5 

10.5 
240) | 21,600 dx = 180 mg/dl 

8.5 

E(XY] | | Xyfxy (x, y) dy dx 

10.5 (240 
| | xy(1/240) dy dx 
8.5 J120 

240 
dx 

120 

10.5 
= 1/240 | oy ie 

8 =) 

8.5 

= (21,600/240)(x?/2) 

10.5 
1/240 | 21,600x dx 

10.5 
1710 

8.5 

Covariance 

Occasionally the expected value of a function of X and Y is of interest in its own 
right. For instance, in Example 5.2.1, E[X + Y] gives the theoretical average num- 

ber of errors made by the robots overall. However, we shall be concerned primarily 

with those expectations that are needed to compute the covariance between X and Y. 
This term is defined as follows: 

Definition 5.2.2 (Covariance). Let X and Y be random variables with 

means [Ly and py respectively. The covariance between X and Y, denoted by 

Cov(X, Y) or dyxy is given by 

Cov(X, Y) = E[(X — py)(V — my)] 

Note that if small values of X tend to be associated with small values of Y and 

large values of X with large values of Y, then X — wy and Y — py will usually have 

the same algebraic signs. This implies that (X — x)(Y — fy) will be positive, yield- 

ing a positive covariance. If the reverse is true and small values of X tend to be asso- 

ciated with large values of Y and vice versa, then X — pry and Y — py will usually 

have opposite algebraic signs. This results in a negative value for (X — uy)(Y — py), 

yielding a negative covariance. In this sense covariance is an indication of how X and 

Y vary relative to one another. 



168 INTRODUCTION TO PROBABILITY AND STATISTICS 

Covariance is seldom computed from Definition 5.2.2. Rather, we apply 

the following computational formula whose derivation is left as an exercise. (See 

Exercise 24.) 

Theorem 5.2.1 (Computational formula for covariance) 

Cov(X, Y) = E[XY] — E[X]E[Y] 

We illustrate the use of Theorem 5.2.1 by finding the covariance for the ran- 

dom variables of Examples 5.2.1 and 5.2.2. 

Example 5.2.3 

(a) The covariance between X, the number of defective welds, and Y, the number of 

improperly tightened bolts of Example 5.2.1, is given by 

Cov(X, Y) = E[XY] — E[XJELY] 

= .064 — (.12)(.148) = .046 

Since Cov(X, Y) > 0, there is a tendency for large values of X to be associated 

with large values of Y and vice versa. That is, a car with an above average number 

of defective welds tends also to have an above average number of improperly 

tightened bolts and vice versa. 

S The covariance between X, an individual’s blood calcium level, and Y, his or her 

blood cholesterol level, has covariance given by 

Cov(X, Y) = E[XY] — E[X]E[Y] 

= 1710 — (9.5)(180) = 0 

A covariance of 0 implies that knowledge that X assumes a value above its mean 

gives us no indication as the value of Y relative to its mean. 

The fact that the covariance between X and Y is 0 in Example 5.2.2 is not a co- 

incidence. It is, of course, due to the fact that E[XY] = E[X]E[Y]. It can be shown 

that this property will hold whenever the random variables X and Y are independent, 

as they are in Example 5.2.2. This important result is formalized in the following 

theorem: 

Theorem 5.2.2. Let (X, Y) be a two-dimensional random variable with joint 

density fyy. If X and Y are independent then 

E[XY] = E[X]E[Y] 

Proof. We shall prove this theorem in the continuous case. The proof in the discrete 

case is similar. Assume that (X, Y) has joint density fy and that X and Y are indepen- 

dent. Let fy and f, denote the marginal densities for X and Y, respectively. By Defini- 

tion 5.2.1, 
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TABLE 5.4 
ee ee ee eee ae 

x/y —2 al 1 2 Sx) 
ca 

0 1/4 1/4 0 1/2 
4 1/4 0 0 1/4 1/2 

fy) 1/4 1/4 1/4 1/4 i 
I ee 

XVfyy (x%, y)dy dx 

| xy fy (x) fy (y) dy dx (X and Y are independent) 

hs) | yfy(oddy a 
ore) 

E[XY] = i 

[ 

i 
[ve @oEL dx 

= EY] | afl dde = ELYIELXI 

An immediate consequence of this theorem is the result that we have already 

noted and observed relative to Example 5.2.2. In particular, if X and Y are indepen- 

dent, then Cov(X, Y) = 0. Unfortunately, the converse of this statement is not true. 

That is, we cannot conclude that a zero covariance implies independence. The next 

example verifies this contention. 

Example 5.2.4. The joint density for (X, Y) is given in Table 5.4, from which we see 

that E[X] = 5/2, E[Y] = 0, and E[XY] = 0, yielding a covariance of 0. It is also easy to 

see that X and Y are not independent. The value assumed by Y does have an effect on that 

assumed by X. In fact, X = Y*. The value of Y completely determines the value of X! 

Covariance gives us only a very rough idea of the relationship between X and 

Y. We are concerned only with its algebraic sign and not with its magnitude. How- 

ever, covariance is used to define another measure of the relationship between X and 

Y which is easier to interpret. This measure, called the correlation, is discussed in 

the next section. 

5.3 CORRELATION 

Recall that the covariance between X and Y gives only a rough indication of any as- 

sociation that may exist between X and Y. No attempt is made to describe the type 
or strength of the association. Often it is of interest to know whether or not two ran- 

dom variables are linearly related. One measure used to determine this is the Pear- 

son coefficient of correlation, p. In this section we define this theoretical measure of 

linearity; in Chap. 11 we shall discuss how to estimate its value from a data set. 
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Definition 5.3.1 (Pearson coefficient of correlation). Let X and Y be 

random variables with means pry and pry and variances ox and 0}, 

respectively. The correlation, pyy, between X and Y is given by 

CoVvexe) 

Pxv~ “\/ (Vat X) (Vat Y) 

Since we already know how to calculate each of the terms appearing in the 

above definition, calculating pyy (or p) from the joint density for (X, Y) is easy. The 

question is, “How do we interpret p once we know its numerical value?” To inter- 

pret p, we must know its range of possible values. The next theorem shows that, un- 

like the covariance which can assume any real value, the correlation coefficient is 

bounded. 

Theorem 5.3.1. The correlation coefficient pyy for any two random variables X 

and Y lies between —1 and | inclusive. 

The proof of this theorem is found in Appendix C. 

The next theorem indicates how p measures linearity. The point of the theo- 

rem is twofold. First, if there is a linear relationship between X and Y, then this fact 

is reflected in a correlation coefficient of 1 or —1. Second, if p = 1 or —1, then a 

linear relationship exists between X and Y. The formal statement of this result is 

given in Theorem 5.3.2. 

Theorem 5.3.2. Let X and Y be random variables with correlation coefficient 

Pxy- Then |pyyl = 1 if and only if Y = By + B, X for some real numbers By and 

B, #0. 

See Appendix C for the proof of this theorem. 

If p = 1, then we say that X and Y have perfect positive correlation. Perfect 
positive correlation implies that Y = By + B, X, where B, > 0. This in turn implies 
that small values of X are associated with small values of Y, and large values of X 
with large values of Y. Perfect negative correlation implies that Y = By + B, X, 
where B, < 0. Practically speaking, this means that small values of X are associated 
with large values of Y and vice versa. Unfortunately, random variables seldom as- 
sume the easily interpretable values of | or —1. However, values of p near 1 or —1 
do occur and indicate a linear trend. That is, they indicate that, even though no sin- 
gle straight line passes through the points of positive probability, there is a straight 
line passing through the graph with the property that most of the probability is as- 
sociated with points lying on or near this straight line. It is equally important to re- 
alize what Theorem 5.3.2 is not saying. If p = 0, we say that X and Y are 
uncorrelated, but we are not saying that they are unrelated. We are saying that if a 
relationship exists, then it is not linear. These ideas are illustrated in Fig. 5.3. 
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uy y 

Seren fee 

Y = By + B\X 

(a) (Db) 
y y 

(c) (d) 

2 

a] x 

(e) 

FIGURE 5.3 

(a) Perfect positive correlation: p = 1, 8, > 0, all points lie on a straight line with positive slope; 

(b) perfect negative correlation: p = —1, B, < 0, all points lie on a straight line with negative slope; 

(c) p near 1, points exhibit a linear trend; (d) uncorrelated: p = 0, points indicate a relationship 

between X and Y, but the relationship is not linear; (e) uncorrelated: p = 0, points are randomly 

scattered. 

Example 5.3.1. To find the correlation between X, the number of defective welds, 

and Y, the number of improperly tightened bolts produced per car by assembly line ro- 

bots, we use Table 5.3 to compute E[X*] and E[Y 7]. For these variables 

E[X?] = 0°(.90) + 17(.08) + 27(.02) = .16 

E[Y2] = 07(.910) + 17(.045) + 27(.032) + 37(.013) = .29 

In Example 5.2.1, we found that E[X] = .12 and E[Y] = .148. Therefore 
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Var X = E[X2] — (E[X])? = .16 — (.12)*= .146 

Var Y = E[Y2] — (E[Y])? = .29 — (.148)? = .268 

In Example 5.2.3 we found that Cov(X, Y) = .046. By Definition 5.3.1, 

Cov(X, Y) .046 a = = 33 
\/Var X VarY (146) (.268) Pxy 

Since this value does not appear to lie close to 1, we would not expect the observed 

values of X and Y to exhibit a strong linear trend. 

Exercise 36 points out the relationship between correlation and independence. 

5.4 CONDITIONAL DENSITIES AND 
REGRESSION 

In this section we consider two topics that are closely related. These are conditional 

densities and regression. To see what is to be done, let us reconsider Example 5.1.5. 

Example 5.4.1. In Example 5.1.5 we considered the random variable (X, Y) where 

X is the inside and Y the outside barometric pressure on an air support roof. Suppose 

we are interested in studying the inside pressure when the outside pressure is fixed at 

y = 30. There are three important points to understand: 

1. The inside pressure will vary even though the outside pressure is constant. There- 

fore it makes sense to talk about “the random variable X given that y = 30.” We 

shall denote this new random variable by X| y = 30. 

Since X| y = 30 is a random variable in its own right, it has a probability distrib- 

ution. Therefore it makes sense to ask, “What is the density for X| y = 30?” We 

shall call this density the “conditional density for Y given that y = 30” and shall 

denote it by fy, = 30- 

Since the inside pressure varies even though the outside pressure is constant, it 

makes sense to ask, “What is the mean or average pressure on the inside of the roof 

when the outside pressure is 30?” That is, we can ask, “What is the mean value 

for the random variable X| y = 30?” This mean value is denoted by E[X| y = 30] 

OF My] y = 30: 

In general, the conditional density for X given Y = y, denoted by fly» 1S a 
function that allows us to find the probability that XY assumes specific values based 
on knowledge of the value assumed by the random variable ¥. To see how to define 
fx\y let us assume that (X, Y) is discrete with joint density fyy and marginal densities 
fy and fy. Let A, denote the event that X = x and A, denote the event that Y = y. 
From Definition 2.2.1, 

P[A, N A>] 
P[A\|A2] = Aran 

Substituting, we see that 

P(X =xand Y= y] _ fxr y) 
P[X=x|Y=y] = P{Y=y] fy(y) 
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In the discrete case the conditional density for X given Y = y is the ratio of the joint 

density for (X, Y) to the marginal density for Y. This observation provides the mo- 

tivation for the definition of the term “conditional density” in both the discrete 

and continuous cases. In the formal definition, note that the roles of X and Y can be 

reversed. 

Definition 5.4.1 (Conditional density). Let (X, Y) be a two-dimensional 

random variable with joint density fyy and marginal densities fy and fy. Then 

1. The conditional density for X given Y = y, denoted by fy, is given by 

ee _ Say y) 

fy) Fry) = 0 

2. The conditional density for Y given X = x, denoted by fy),, is given by 

_ Sx y) GLO) re 

The use of this definition is illustrated in Example 5.4.2. 

Example 5.4.2. The joint density for the random variable (X, Y), where X is the in- 

side and Y is the outside pressure on an air support roof, is given by 

fry (% y) = clx 2 SWS BSS 

c = 1/6 — 27 In 33/27) 

From Example 5.1.5 the marginal densities for X and Y are 

x(x) = cl — 27/x) 21 =x ='33 

and 

fy(y) = c(n 33 — In y) My] SWS OS 

The conditional density for X given Y = y is 

= fyy(% y) 

Fry (*) fry) 
c/x 1 

— Sess 33 
c(In33—Iny) x(n33-Iny) ; 

To find the probability that the inside pressure exceeds 32 given that the outside pres- 

sure is 30, we let y= 30 in the above expression. We then integrate the conditional 

density over values of X that exceed 32. That 1s, 

33 1 oN d 
P[X > 32|y = 30] ere Boney 

a Inx 33 

~ In 33 — In 30|32 

_ In 33 — In 32, 
Seis SON 
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To find the expected or mean value of X given y = 30 we apply Definition 4.2.1 to the 

random variable X| y = 30. That is, 

E[Xly = 30] = Myx\y=30 = [xh y=30 dx 

33 if d 

2 Loge Bein 10) 
33 1 : 

e if m33= 30 
g 

fi ca 130 Boe 

When the outside pressure on the roof is 30, the average value of the inside pressure is 

31.48 inches of mercury. 

Curves of Regression 

In the previous example, note that we did not find the mean for X. We found the 

mean for X when y = 30. The mean value obtained depended on the value chosen 

for Y. In general, the mean of X given Y = y or fy, is a function of y. When this 

function is graphed, we obtain what is called the curve of regression of X on Y. This 

term is defined formally in Definition 5.4.2. Note that, once again, the roles of X 

and Y can be reversed. 

Definition 5.4.2 (Curve of regression). Let (X, Y) be a two-dimensional 

random variable. 

1. The graph of the mean value of X given Y = y, denoted by py, is called 

the curve of regression of X on Y. 

2. The graph of the mean value of Y given X = x, denoted by py,, 1s called 

the curve of regression of Y on X. 

We illustrate the use of this definition by finding the curve of regression of 

X on Y and the curve of regression of Y on X for the random variable (X, Y) of 

Example 5.4.2. 

Example 5.4.3. The conditional density for X given Y = y, where X is the inside and 

Y is the outside pressure on an air support roof, is given by 

l 

Ixiy(2) = x(n 33. Ina) 
YS SSS 

The equation for the curve of regression of X on Y is given by 

33: | 

dj || x Ix 
rm I sol Vhay SS} Vaya) os 

33 | 

a ra Non Nar 
I iho 333) = Iba 

55 sy 

nis Se ainny 

lx 
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FIGURE 5.4 
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(a) A nonlinear curve of regression: Ly, = (33 — y)/(In 33 — In y); (b) a linear curve of regression: 
by, = (1/2) + 27). 

Note that this equation is nonlinear. Its graph is not a straight line. A sketch of the 

graph is found by plotting 1x, for selected values of y. The graph is shown in Fig. 

5.4(a). The conditional density for Y given X = x is 

fxy(% Y) 
Ix(x) 

H Gx 

~ e(1— 27/x) 

a agtl 

ST 

Srx (y) = 

LY Ey SE 3 

The equation for the curve of regression of Y on X is given by 
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i 

ne [23H 
2. See 
~ 2(x— 27) |a7 

See 

Die 2T) 

=. (1/2) a7) 

Note that this equation is linear. Its graph is the straight line shown in Fig. 5.4(b). 

These curves can be used now to find the mean of X for any specified value of Y or 

vice versa. For example, the average value of Y, the outside pressure, given that the in- 

side pressure is 29 is 

My|x=29 = (1/2)(x + 27) = (1/2)(56) = 28 inches of mercury 

We have introduced only the basic ideas underlying the topic of regression. To 

find the theoretical regression curves, you must know the joint density for (X, Y). In 

practice, this density is seldom known with certainty. Thus, in practice, we are forced 

to approximate these theoretical curves from a data set—a set of observations on the 

random variable (X, Y). Methods for doing so are presented in Chaps. 11 and 12. 

5.55 TRANSFORMATION OF VARIABLES 

In Sec. 4.8 we considered the problem of transforming continuous variables in the 

univariate case. That is, given a continuous random variable X whose density is 

known, we saw how to find the density for the random variable ¥, where Y is a func- 

tion of X. Here we reconsider the problem in the bivariate case. To do so, we must 
first introduce the notation of Jacobians. 

Suppose that we are working in the xy plane and that uv and v are variables, 

each of which is a function of x and y. That is, 

u = g(x, y) and Vv = g(x, y) 

These two equations define a transformation T from some region in the xy plane into 

the uv plane, as pictured in Fig. 5.5(a). Assume that g; and g, have continuous par- 

tial derivatives with respect to x and y. The Jacobian of T is denoted by J; and is 
given by the following determinant: 

Ou ou 

‘OO: 
Jr =|. = 

ov ov 

Ox oy 

Example 5.5.1 illustrates the idea. 

Example 5.5.1. Consider the transformation 7 from the xy plane into the uv plane 
defined by 
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p= 81 9) 
WS 8% y) 

x= h (u, Vv) = 

y= h(u, v) 

(a) (b) 

FIGURE 5.5 
(a) T maps from the xy plane into the wv plane; (b) T-! maps from the uv plane into the xy plane. 

u = g,\(% y) = By - x)/6 

Vv = g(x, y) = x/3 

The Jacobian of T is 

au du - =O lly 
ox oy 

Jr = Gi arly) (CO) 2) (3) /6)) 
dv ov 
= = Ws 0 
Ox dy 

If a transformation T is one-to-one, then it is invertible. Assume that the in- 

verse transformation, T', is defined by the equations 

x = h,(u, v) and y = holy, v) 

and that h, and h, have continuous partial derivatives. [See Fig. 5.5(b).] The Jaco- 

bian of this inverse transformation is given by the determinant 

ax ax 
du OV 

ay ay 
du OV 

This is the sort of Jacobian that will be useful to us in the statistical setting. 

Assume that we have two continuous random variables X and Y whose joint 

density fyy is known. Let U and V be random variables, each of which is a function 

of X and Y. We want to determine the form of fy, the joint density for (U, V), based 

on knowledge of the form of fyy. The method for doing so parallels Theorem 4.8.1 

and is given in Theorem 5.5.1. 
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Theorem 5.5.1. Let (X, Y) be continuous with joint density fyy. Let 

U = gi(X, Y) and V = gi(X, Y) 

where g, and g, define a one-to-one transformation. Let the inverse 

transformation be defined by 

X = h,(U, V) and Y = h,(U, V) 

where /, and h, have continuous first partial derivatives. Then the joint density 

for (U, V) is given by 

fur, v) = fry (Ay(u, v), Ao(u, v))|J| 

where J + 0 is the Jacobian of the inverse transformation. That is, 

ax ax 
du dv 

ayer oy 

au av 

It is easy to see that Theorem 4.8.1 is a special case of this theorem with fy 

corresponding to fyy, g '(y) playing the role of the inverse transformation, and 

|\dg~'(y)/dy| being equivalent to the absolute value of the Jacobian of the inverse 
transformation. 

Example 5.5.2. Assume that X and Y are independent uniformly distributed random 

variables over (0, 2) and (0, 3), respectively. The joint density for (X, Y) is given by 

tray @ y) = 1/6 0 pk 4S 2 

0<y<3 

Let U = X — Yand V= X + ¥. What is the joint density for (U, V)? To apply Theo- 
rem 5.5.1, we first note that the transformation 

U=X-Y 
rae 

is a linear transformation from the xy plane into the uv plane. A result from advanced 
calculus states that a linear transformation from two-dimensional space into two- 
dimensional space is one-to-one whenever the determinant of its matrix of coefficients 
is not zero. Here the determinant is 

Le) 
k =a) = (yen =2 

so Tis invertible. The inverse transformation is found by solving the above system of 
equations for X and Y. Here T”! is given by 

aap cnet 
AY=(V= OU) 
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FIGURE 5.6 

(a) (X, Y ) lies in the rectangle with corners (0, 0), (2, 0), (O, 3), and (2, 3); (b) (U, V) lies in the region R. 

The Jacobian of T~! is 

= = V2 ely 2 

fen befall seal 2) 1/2) 2) Ga 272 

— = =I ily? 
du ov 

By Theorem 5.5.1, 

Fuv™ V) = fey (@ + u)/2, (Vv — u)/2)\J| 

= (1/6)(1/2) = 1/12 

To find the set of values for which fy > 0, we note that since 0 << x < 2 and0 << y <3, 

(X, Y) lies in the rectangle shown in Fig. 5.6(a). It is easy to see that U = X — Y must lie 

between —3 and 2 and that V = X + Y must lie between O and 5. Furthermore, U and V 

must satisfy the inequalities 

O< Ww + My <2 

O(a) a8 

or 

OR vpeuKxa 

O<p=L<XG 

Solving these inequalities simultaneously yields the region R shown in Fig. 5.6(b). 

Thus the density for (U, V) is given by 

Juv Vv) — MAD (u,v) ER 

We leave it to you to verify that fj is, in fact, a valid density. 
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Other transformation theorems can be derived from Theorem 5.5.1. Some of 

these are given in Exercises 48, 50, and 51. For a more detailed discussion of this 

topic, please see [49]. : 

CHAPTER SUMMARY 

In this chapter we considered random variables of more than one dimension. Em- 
phasis was on random variables of two dimensions. The joint density was defined 

by extending the notion of a density for a single variable in a logical way. This func- 

tion was used to calculate probabilities associated with two-dimensional random 
variables (X, Y). We saw how to obtain the marginal densities for both X and Y from 

the joint density. These marginal densities are the usual densities for X or Y when 

considered alone. The correlation coefficient p was introduced as a measure of lin- 

earity between X and ¥. The notion of independence between X and Y was defined 

formally, and its relationship to p was investigated. We saw how to define the con- 

ditional densities for X given Y and Y given X from knowledge of the joint density 

for (X, Y) and the marginal densities for X and Y. The conditional densities were 

used to find the equations for the curves of regression of Y on X and X on Y. These 

regression curves are the graphs of the mean value of Y as a function of X or vice 

versa. We saw that these curves may be linear or nonlinear. 

We introduced and defined important terms that you should know. These are: 

Two-dimensional discrete n-dimensional discrete 
random variable random variable 

Two-dimensional continuous n-dimensional continuous 

random variable random variable 

Discrete joint density Bivariate normal distribution 

Discrete marginal density Continuous joint density 
Independent random variables Continuous marginal density 
Covariance Expected value of H(X, Y) 
Perfect positive correlation Correlation coefficient 
Uncorrelated Perfect negative correlation 
Curve of regression Conditional density 

EXERCISES 

Section 5.1 

1. Use Table 5.2 to find each of these probabilities: 
(a) The probability that exactly two defective welds and one improperly tight- 

ened bolt will be produced by the robots. 
(b) The probability that at least one defective weld and at least one improperly 

tightened bolt will be produced. 
(c) The probability that at most one defective weld will be produced. 
(d) The probability that at least two improperly tightened bolts will be 

produced. 
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TABLE 5.5 

x/y 0 1 2 3 4 

0 0 0 0 0 1/35 

| 0 0 0 12/35 0 

2 0 0 18/35 0 0 

3 0 4/35 0 0 

2. In conducting an experiment in the laboratory, temperature gauges are to be 

used at four junction points in the equipment setup. These four gauges are ran- 

domly selected from a bin containing seven such gauges. Unknown to the sci- 

entist, three of the seven gauges give improper temperature readings. Let X 

denote the number of defective gauges selected and Y the number of nondefec- 

tive gauges selected. The joint density for (X, Y) is given in Table 5.5. 

(a) The values given in Table 5.5 can be derived by realizing that the random 

variable X is hypergeometric. Use the results of Sec. 3.7 to verify the val- 

ues given in Table 5.5. 
(b) Find the marginal densities for both X and Y. What type of random variable 

is Vac 
(c) Intuitively speaking, are X and Y independent? Justify your answer mathe- 

matically. 

The joint density for (X, Y) is given by 

eke ¥) = Une Pt eo een 

fF EVE oot. 

(a) Verify that fyy(x, y) satisfies the conditions necessary to be a density. 

(b) Find the marginal densities for X and ¥. 

(c) Are X and Y independent? 
The joint density for (X, Y) is given by 

Fay(% y) = 2/n(n + 1) [PSR sy ea) n a positive integer 

(a) Verify that fyy (x, y) satisfies the conditions necessary to be a density. Hint: 

The sum of the first n integers is given by n(n + 1) /2. 

(b) Find the marginal densities for X and Y. Hint: Draw a picture of the region 

over which (X, Y ) is defined. 

(c) Are X and Y independent? 

(d) Assume that n = 5. Use the joint density to find P[X = 3 and Y = 2]. Find 

P[X < 3] and P[Y S 2]. Hint: Draw a picture of the region over which 

(X, Y) is defined. 

The two most common types of errors made by programmers are syntax errors 

and errors in logic. For a simple language such as BASIC the number of such 

errors is usually small. Let X denote the number of syntax errors and Y the 

number of errors in logic made on the first run of a BASIC program. Assume 

that the joint density for (X, Y) is as shown in Table 5.6. 
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TABLE 5.6 

x/y 0 1 2 3 

0 400 100 020 005 
300 040 O10 004 

2 040 O10 009 003 
3 009 008 007 003 
4 008 007 005 002 
5 005 002 002 001 

(a) Find the probability that a randomly selected program will have neither of 

these types of errors. 

(b) Find the probability that a randomly selected program will contain at least 

one syntax error and at most one error in logic. 

(c) Find the marginal densities for X and Y. 

(d) Find the probability that a randomly selected program contains at least two 

syntax errors. 

(e) Find the probability that a randomly selected program contains one or two 

errors in logic. 

(f) Are X and Y independent? 

6. Consider Example 5.1.5. Verify that PLX = 30 and Y S 28] = .15 by integrat- 

ing the joint density first with respect to y, then with respect to x. 
7. (a) Use the joint density of Example 5.1.5 to find the probability that the inside 

pressure on the roof will be greater than 30, and the outside pressure is less 
than 32. 

(b) Use the marginal density for X to find P[X = 28]. 

(c) Use the marginal density for Y to find P[Y > 30]. 
8. Let X denote the temperature (°C) and let Y denote the time in minutes that it 

takes for the diesel engine on an automobile to get ready to start. Assume that 
the joint density for (X, Y) is given by 

Sxy(% y) = c(4x + 2y + 1) 0sx= 40 

Q=ys2 

(a) Find the value of c that makes this a density. 
(b) Find the probability that on a randomly selected day the air temperature 

will exceed 20° C and it will take at least | minute for the car to be ready 
to start. : 

(c) Find the marginal densities for X and Y. 
(d) Find the probability that on a randomly selected day it will take at least one 

minute for the car to be ready to start. 
(e) Find the probability that on a randomly selected day the air temperature 

will exceed 20° C. 
(f) Are X and ¥ independent? Explain on a mathematical basis. 

9. An engineer is studying early morning traffic patterns at a particular intersec- 
tion. The observation period begins at 5:30 a.m. Let X denote the time of arrival 
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11. 
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of the first vehicle from the north-south direction; let Y denote the first arrival 
time from the east-west direction. Time is measured in fractions of an hour af- 
ter 5:30 a.m. Assume that the density for (X, Y) is given by 

Fay (% y) = Ix OR rapes il 

(a) Verify that this is a joint density for a two-dimensional random variable. 
(OC) erind Pie rand —=05 |: 
(Om rind PLX =a ony 251) 

(oePindiP| Me=s oandiye=n5 10 

(e) Find the marginal densities for X and Y. 
ME MiceP LXe=65 | 
(ee indie i925 
(h) Are X and Y independent? Explain. 
The joint density for (X, Y) is given by 

Fav (% y) = x y3/16 OF RSIS yD 

(a) Find the marginal densities for X and Y. 

(b) Are X and Y independent? 

(A ehindPiLe = 1] 

(d) If itis known that y = 1, what is PLX < 1]? (Do not use any computation 
to answer this question!) 

Economic conditions cause fluctuations in the prices of raw commodities as 

well as in finished products. Let X denote the price paid for a barrel of crude oil 

by the initial carrier, and let Y denote the price paid by the refinery purchasing 

the product from the carrier. Assume that the joint density for (X, Y) is given by 

Txv(% y) =c DNS So) SA) 

(a) Find the value of c that makes this a joint density for a two-dimensional 
random variable. 

(b) Find the probability that the carrier will pay at least $25 per barrel and the 

refinery will pay at most $30 per barrel for the oil. 

(c) Find the probability that the price paid by the refinery exceeds that of the 

carrier by at least $10 per barrel. 
(d) Find the marginal densities for X and Y. 

(e) Find the probability that the price paid by the carrier is at least $25. 

(f) Find the probability that the price paid by the refinery is at most $30. 

(g) Are X and Y independent? Explain. 

(n-dimensional discrete random variables.) Random variables of dimension 

n > 2 can be defined and studied by extending the definitions presented in the 

two-dimensional case in a logical way. For example, an n-tuple (X,, X>, X3,..., 

X,,) in which each of the random variables X,, X>, X3,..., X,, 1S a discrete ran- 

dom variable is called an n-dimensional discrete random variable. The density 

for such a random variable is given by 

i ainkion te: ce at) al P(X, = x1, X = 3895 X3 = IAs co 6 Oe = x 

This problem entails the use of a three-dimensional random variable. 
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Items coming off an assembly line are classed as being either nondefec- 

tive, defective but salvageable, or defective and nonsalvageable. The probabil- 

ities of observing items in each of these categories are .9, .08, and .02, 

respectively. The probabilities do not change from trial to trial. Twenty items 

are randomly selected and classified. Let X, denote the number of nondefective 

items obtained, X, the number of defective but salvageable items obtained, and 

X, the number of defective and nonsalvageable items obtained. 

(a) Find P[X, = 15, X, = 3, X3 = 2]. Hint: Use the formula for the number of 

permutations of indistinguishable objects, page 16, Chap. 1, to count the 

number of ways to get this sort of split in a sequence of 20 trials. 

(b) Find the general formula for the density for (X,, X>, X3). 

(n-dimensional continuous random variables.) An n-tuple (X;, X>, X3, ..., X,); 

where each of the random variables X,, X>,..., X,, is continuous, is called an 

n-dimensional continuous random variable. The density for an n-dimensional 

continuous random variable is defined by extending Definition 5.1.3 in a nat- 

ural way. State the three properties that identify a function as a density for (Xj, 
Nor Agree kh): 

Let f(x, %2, %3) = cy x2 © Xs) for OS 4, S10 aa = 10 Se ind 

the value of c that makes this a density for the three-dimensional random vari- 
able (X,, X>, X3). 

Section 5.2 

15. 

16. 

We 

18. 

1) 

Four temperature gauges are randomly selected from a bin containing three de- 
fective and four nondefective gauges. Let X denote the number of defective 
gauges selected and Y the number of nondefective gauges selected. (See Exer- 
cise 2.) The joint density for (X, Y) is given in Table 5.5. 
(a) From the physical description of the problem, should Cov(X, Y) be posi- 

tive or negative? 

(b) Find E[X], E[Y], E[XY], and Cov(X, Y). 
Let X denote the number of syntax errors and Y the number of errors in logic 
made on the first run of a BASIC program. (See Exercise 5.) The joint density 
for (X, Y) is given in Table 5.6. 
(a) X and Y are not independent. Does this give any indication of the value of 

the covariance? 
(b) Find E[X], E[Y], E[XY], and Cov(X, Y). Give a rough physical interpreta- 

tion of the covariance. 
(c) Find E[X + Y]. What is the practical interpretation of this expectation? 
Consider the random variable (X, Y) of Exercise 3. Without doing any addi- 
tional computation, find Cov(X, Y ). 
Use the marginal densities given in Table 5.3 to compute E[X] and E[Y]. Com- 
pare your results to those obtained in Example 5.2.1. 
The joint density for (X, Y), where X is the inside and Y is the outside baro- 
metric pressure on an air support roof (see Example 5.1.5), is given by 

fv(syl=ex Wsy<x<33 

6 1/(6. 2927 In33/27). = 1.72 
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(a) Find £[X], E[Y], E[XY], and Cov(X, Y). 

(b) Find E[X — Y]. What is the practical physical interpretation of this expec- 
tation? 

The joint density for (X, Y ), where X is the temperature and Y is the time that it 

takes for a diesel engine on an automobile to get ready to start (see Exercise 8), 
is given by 

IA 10 

y=2 

Txy (x, y) = (1/6640)(4x + 2y + 1) 0 

0 IA 

(a) From a physical standpoint, do you think Cov(X, Y) should be positive or 

negative? 

(b) Find E[X], E[Y], E[XY], and Cov(Xx, Y). 
The joint density for (X, Y), where X is the arrival time of the first vehicle from 

the north-south direction and Y is the arrival time of the first vehicle from the 

east-west direction at an intersection (see Exercise 9), is given by 

Ta ny) ae IX (URS ois= gare dl 

Find E[X], E[Y], E[XY], and Cov(X, Y). 
Find the covariance between the random variables X and Y of Exercise 10. 

Let X denote the price paid for a barrel of crude oil by the initial carrier, and let 

Y denote the price paid by the refinery purchasing the oil. (See Exercise 11.) 

The joint density for (X, Y) is given by 

fey (% y) = 1/200 - 20<x<y<40 

(a) From a physical standpoint, should Cov(X, Y ) be positive or negative? 

(b) Find E[X], E[Y], E[XY], and Cov(x, Y). 
(c) Find E[Y — X]. Interpret this expectation in a practical sense. 

Show that Cov(XY) = E[XY] — E[X]E[Y]. Hint: By definition, Cov(X, Y) = 
E[(X — y)(Y — wy)]. Expand this product, and apply the rules for expectation 

(Theorem 3.3.1). Remember that wy = E[X] and py = ELY]. 

Prove that Var(X + Y) = Var X + Var Y + 2 Cov(X, Y ). Hint: Var(X + Y) = 

E{(X + Y)?] — (E[X + Y])’. Square these terms, and apply the rules for expec- 
tation. (Theorem 3.3.1.) 

Use the result of Exercise 25 to show that if X and Y are independent, then 

Var(X + Y) = Var X + Var Y. This proves the third rule for variance. (Theorem 

sehen) 

Show that if X = Y, then Cov(X, Y) = Var X = Var Y. 

Let the joint density for (X, Y) be given by 

fay) =apha| 2+ | We exe== c ls oy Sre 

(a) Show that |§ |< f(x, y) dy dx = 1. 
(b) Find E[X] and E[Y]. 

(c) Find E[XY]. 

(d) Are X and Y independent? Explain, based on your answers to parts (b) and 

(c) and Theorem 5.2.2. 
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Section 5.3 

29. The joint density for (X, Y), where X denotes the number of defective and Y 

the number of nondefective temperature gauges selected from a bin containing 

three defective and four nondefective gauges, is given in Table 5.5. (See 

Exercise?2:) 

(a) From the physical interpretation of the problem, should pyy be positive or 

negative? Should pyy be +1 or —1? Explain. 

(b) Find E[X2] and E[Y?]. Use the information from Exercise 15 to find pxy. 

In Exercises 30 to 34, find E[X?], E[Y?], Var _X, Var Y, and pyy for the random vari- 

ables in the exercises referenced. In each case decide whether or not you would ex- 

pect the graph of Y versus X to exhibit a strong linear trend. 

30. Exercise 16. 

SIE xerciseny9: 

32. Exercise 205 

33..bxercise 21) 

34.9 Exercise 23; 
35. Assume that Y = By + B, X, B, # 9. 

(a) Show that Cov(X, Y) = B, Var X. Hint: Cov(X, Y) X(Bo + B; X)] 

E[X]E[B + B, X]. Use the rules for expectation. 

(b) Show that Var Y = B,° Var X. Hint: Use the rules for variance. (Theorem 

B54) 
(c) Find pyy. 

(d) Argue that pyy = | if B,, the slope of the line Y = By + B, X, is positive 

and that pyy = —1 if the slope of this line is negative. 

36. Prove that if X and Y are independent, then pyy = 0. Can we conclude that if X 

and Y are uncorrelated, then they are independent? Explain. 

37. Without doing any additional computation, find pyy for the random variables of 

Exercises. 

38. What is the correlation between the random variables X and Y of Exercise 10? 

Section 5.4 

39. Consider Example 5.4.3. 

(a) What is the expected value of X when y = 31? 

(b) What is the expected value of Y when x = 30? 

40. Consider Example 5.1.4. 

(a) Find fy,. Note that fy, = fy. From a physical standpoint, can you explain 
why these densities are the same? 

(b) Find fy. IS fy. = fy? 
(c) Find the curve of regression of X on Y and the curve of regression of Y on 

X. Are these curves linear? 

41. Consider the random variable (X, Y) of Exercise 4. 

(a) Find the curve of regression of X on Y. Is the regression linear? 

(b) Assume that n = 10 and find the mean value of X when y = 4. 

(c) Find the curve of regression of Y on X. Is the regression linear? 

(d) Assume that n = 10 and find the mean value of Y when x = 4. 
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Consider the random variable (X, Y) of Exercise 9. 

(a) Find the curve of regression of X on Y. Is the regression linear? 

(b) Find the mean value of X when y = .5. 

(c) Find the curve of regression of Y on X. Is the regression linear? 

(d) Find the mean value of Y when x = .75. 

Consider Exercise 11. 

(a) Find the curve of regression of X on Y. Is the regression linear? 
(b) Find the mean price paid by the carrier for a barrel of crude oil given that 

the refinery price is $30 per barrel. 
(c) Find the curve of regression of Y on X. Is the regression linear? 

(da) Find the mean price paid by the refinery for a barrel of crude oil given that 

the carrier paid $35 per barrel. 
Note that if |p| = 1, then Y = By + B, X. For fixed values of X, Yjx = By + 
6, x. Argue that jy, is a linear function of x. That is, argue that if X and Y are 

perfectly correlated, then the curve of regression of Y on X is linear. Is the con- 

verse true? Explain. 

Section 5.5 

45. 

46. 

47. 

48. 

Consider the linear transformation T defined by 

T:u=2x+y 

v=x+t 3y 

(a) Is this transformation invertible? If so, find the defining equations for T~'. 

(b) Find the Jacobian for T~!. 

Consider the linear transformation T defined by 

Tou = 32 2y 

v=x-y 

(a) Is this transformation invertible? If so, find the defining equations for T~'. 

(b) Find the Jacobian for T~!. 

Assume that X and Y are independent and uniformly distributed over (0, 1) and 

(0,2), respectively. Find the joint density for (U, V), where U and V are as de- 

fined in Exercise 45. 

(Distribution of one function of two continuous random variables.) Let X and Y 

be continuous random variables with joint density fyy. Let U = X + Y. Prove 

that fy, the density for X + Y, is given by 

fy) = [far SEY TD aa 

Hint: Define a transformation T by 

u=gi(%y)=xty 
v = go(% y) = y 

Follow the procedure given in Theorem 5.5.1 to obtain the joint density for 

(U, V). Integrate the joint density to obtain the marginal density for U. 
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49. Let X and Y be independent standard normal random variables. Let U = X + ¥. 

Use Exercise 48 to prove that U follows a normal distribution with mean 0 and 

variance 2. Hint: In integrating over v, complete the square in the exponent and 

remember that a normal density integrated over the real line is equal to 1. 

50. Let X and Y be continuous random variables with joint density fyy. Let U = XY. 

Prove that f;, the density for XY, is given by 

fy) = “fey(u/v, v)|1/y| dv 

Hint: Let u = g(x, y) = xy and v = y, and apply Theorem 5.5.1. 

51. Let X and Y be continuous random variables with joint density fyy. Let U = X/Y. 

Prove that f;,, the density for X/Y, is given by 

ax 

fxy(uy, v)|vidv 
oO 

Tul UN) | 

Hint: Let u = g,(x, y) = x/y and v = y, and apply Theorem 5.5.1. 

52. Let X and Y be independent exponentially distributed random variables with 

parameters B, and 5, respectively. 

(a) Find the joint density for (X, Y). 

(b) Let U = X + Y, and verify that 

fy(u) = iy u—v,v) dv 
JO 

Hint: Remember that 0 < x < © and thatx =u —v. 

(c) Assume that B, = 3 and B, = 1. Show that 

fi (w) = eW3 = eu? 0= u <0 

53. Let X and Y be independent uniformly distributed random variables over the in- 

tervals (0, 2) and (0, 3), respectively. 

(a) Let U = XY and find fy. 

(b) Let U = X/Y and find fy. 

REVIEW EXERCISES 

54. An electronic device is designed to switch house lights on and off at random 

times after it has been activated. Assume that the device is designed in such a 

way that it will be switched on and off exactly once in a l-hour period. Let Y 

denote the time at which the lights are turned on and X the time at which they 

are turned off. Assume that the joint density for (X, Y) is given by 

fyy(% y) = 8xy OS ee! 

(a) Verity that fyy satisfies the conditions necessary to be a density. 

(b) Find E[XY]}. 
(c) Find the probability that the lights will be switched on within 1/2 hour af- 

ter being activated and then switched off again within 15 minutes. 
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TABLE 5.7 
ee ee 

x/y 1 p 3 4 

0 059 100 O50 001 

I 093 120 082 003 

2 065 102 .L00 010 

3 050 075 .070 .020 

35: 

56. 

Mls 

(d) Find the marginal density for X. Find E[X] and HLX@). 
(e) Find the marginal density for ¥. Find E[Y] and E[Y?]. 
(f) Are X and Y independent? 

(g) Find the conditional distribution of X given Y. 
(h) Find the probability that the lights will be switched off within 45 minutes 

of the system being activated given that they were switched on 10 minutes 
after the system was activated. 

(i) Find the curve of regression of X on Y. Is the regression linear? 

(j) Find the expected time that the lights will be turned off given that they 

were turned on 10 minutes after the system was activated. 

(k) Based on the physical description of the problem, would you expect p to 

be positive, negative, or 0? Explain. Verify by computing p. 
Verify that 

Say (35) = Aye We x > 0 y>0 

satisfies the conditions necessary to be a density for a continuous random vari- 

able (X, Y). Find the marginal densities for X and Y. Are X and Y independent? 
Find pyy. 

Let X denote the number of “do loops” in a Fortran program and Y the number 

of runs needed for a novice to debug the program. Assume that the joint density 

for (X, Y) is given in Table 5.7. 

(a) Find the probability that a randomly selected program contains at most one 

“do loop” and requires at least two runs to debug the program. 

(b) Find E[XY]. 
(c) Find the marginal densities for X and Y. Use these to find the mean and 

variance for both X and Y. 
(d) Find the probability that a randomly selected program requires at least two 

runs to debug given that it contains exactly one “do loop.” 

(e) Find Cov(X, Y ). Find the correlation between X and Y. Based on the ob- 

served value of p, can you claim that X and Y are not independent? 

Explain. 

Vehicles arrive at a highway toll booth at random instances from both the south 

and north. Assume that they arrive at average rates of five and three per 5- 

minute period, respectively. Let X denote the number arriving from the south 

during a 5-minute period, and let Y denote the number arriving from the north 

during this same time. Assume that X and Y are independent. 

(a) Find the joint density for (X, Y). 
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(b) Find the probability that a total of four vehicles arrives during a five- 

minute time period. 
(c) Find the correlation between X and Y. 

(d) Find the conditional density for X given Y = y. 
(Bivariate normal distribution.) A random variable (X, Y) is said to have a bi- 

variate normal distribution if its joint density is given by 

See) Se) 
2T0,oyV 1 — p? 

Try( 6) SS 

where x and y can assume any real value. The parameters py, My, Ty, Ty 

denote the respective means and standard deviations for X and Y. The parame- 

ter p is the correlation coefficient. The name of this distribution comes from the 

fact that the marginal densities for X and Y are both normal. Show that in the 

case of a bivariate normal distribution, if p = 0, then X and Y are independent. 



CHAPTER 

6 
DESCRIPTIVE 

STATISTICS 

hus far we have considered random variables from a theoretical point of view. 

We have studied two functions, the density and the cumulative distribution 

function, that enable us to predict the behavior of the variable in a probabilistic 
sense. We have also considered three parameters that characterize or describe a ran- 

dom variable, namely, 41, 07, and a. In practice, the exact distribution of a random 

variable is seldom known. Rather, we must determine a reasonable form for the den- 

sity and appropriate values for the distribution parameters from a data set. In this 
chapter we consider some simple graphical and analytic methods for doing so. 

6.1 RANDOM SAMPLING 

We begin by considering a typical problem that calls for a statistical solution. Sup- 

pose that we wish to study the performance of the lithium batteries used in a partic- 
ular model of pocket calculator. The purpose of our study is to determine the mean 

effective life span of these batteries so that we can place a limited warranty on them 

in the future. Since this type of battery has not been used in this model before, no 

one can tell us the distribution of the random variable, X, the life span of a battery. 

We must attempt to discover its distribution for ourselves. This is inherently a sta- 

tistical problem. What characteristics identify it as such? Simply the following: 

Characteristics of a Statistical Problem 

1. Associated with the problem is a large group of objects about which inferences 

are to be made. This group of objects 1s called the population. 

2. There is at least one random variable whose behavior is to be studied relative to 

the population. 

3. The population is too large to study in its entirety, or techniques used in the 

study are destructive in nature. In either case we must draw conclusions about 

191 
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the population based on observing only a portion or “sample” of objects drawn 

from the population. 

In our example the population is large and hypothetical in the sense that it 

consists of all lithium batteries used in this model calculator in the past, present, and 

future. Since we cannot observe the life span of batteries not yet produced, the pop- 

ulation obviously cannot be studied in its entirety! Furthermore, to determine the 

life span of a battery, it must be used until it fails. That is, the method of study de- 
stroys the object being studied. For these reasons, we must devise methods for ap- 

proximating the characteristics of the life span of a lithium battery based on 

observing only a sample of these batteries. 

To draw inferences about a population using statistical methods, the sample 

drawn should be “random.” To understand what we mean by this term, let us return 

to our example. Here we have a large population that consists of all lithium batter- 

ies produced for a certain model of pocket calculator. Associated with the popula- 

tion is arandom variable X. We do not know the form of its density, nor do we know 

its mean or variance. We want to select a subset of n batteries from the population 

“at random.” That is, we want to select n batteries for study in such a way that the 

selection of one battery neither ensures nor precludes the selection of any other. In 

this way the selection of one battery is independent of the selection of any other. 

This collection of objects can be thought of as a “random sample.” 

Note that, prior to the actual selection of the batteries to be studied, X; (i = 1, 

2,3,...,m), the life span of the ith battery selected is a random variable. It has the 

same distribution as X, the life span of batteries in the population. Furthermore, 
these random variables are independent in the sense that the value assumed by one 

has no effect on the value assumed by any of the others. The random variables X), 

X5, X3,..., X,, and can be thought of as a “random sample.” 

Once we have actually selected 1 batteries for study and have observed the 

life span of each battery, we shall have available n numbers, x), .%5,.%3,... .- x [hese 

numbers are the observed values of the random variables X,, X>, X3,..., X,, and can 

be thought of as a “random sample.” 

As you can see, the term “random sample” is used in three different but 
closely related ways in applied statistics. It may refer to the objects selected for 
study, to the random variables associated with the objects to be selected, or to the 
numerical values assumed by those variables. It is usually clear from the context of 
the discussion which is intended. These ideas are illustrated in Fig. 6.1. 

Even though the term “random sample” is used in these three ways, the formal 
definition of the term is mathematical in nature. When we use the term in stating 
theoretical results, we mean the following: 

Definition 6.1.1 (Random sample). A random sample of size n from the 
distribution of X is a collection of n independent random variables, each with 
the same distribution as X. 
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A statistician has a population about which to draw inferences 

Population 

Prior to the selection of the objects for study, interest centers on the n 
independent and identically distributed random variables 

A set of n objects is selected from the population for study 

+ 
Population 

The objects selected generate n numbers x), x, X3,..., X, which 

are the observed values of the random variables X,, X>, X3,..., X, 

FIGURE 6.1 

The objects selected generate n numbers x), X>, X3,..., X,, Which are the observed values of the 

random variables X,, X>, X3,..., X,» 

The theorems and definitions presented later use the term “random sample” in 

the sense just described. When objects are selected from a finite population, this 

type of sample results only when sampling is done with replacement. That is, an ob- 

ject is drawn, observed, and placed back in the population for possible reselection. 

This ensures that X,, X, X3, .. . , X,, are indeed independent and identically distrib- 

uted. Usually, sampling from a finite population is done without replacement. This 

means that the random variables X,, X>, X3, ..., X,, are not independent. However, 

if the sample is small relative to the population itself, then removal of a few items 

does not drastically alter the composition of the population. A generally accepted 

guideline is that for all practical purposes we may assume independence whenever 

the sample constitutes at most 5% of the population. If this is not true, then the tech- 

niques used to estimate parameters must be altered to take this into account. We 
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shall be assuming that for all practical purposes X,, X>, X3, .. . , X, are independent 

in the discussions that follow. 

Once a random sample has been drawn, we commonly use the data gathered to 

evaluate pertinent statistics. What is a statistic? Roughly speaking, a statistic is a ran- 

dom variable whose numerical value can be determined from a random sample. That 

is, a Statistic is a random variable that is a function of the elements of a random sample 
X,, X>, X3, ..., X» Typical statistics of interest to statisticians are D>7_,X;, 2%, X?, 

y"_, X;/n, max,{X;}, and min,{X;}. These ideas are illustrated in Example 6.1.1. 

Example 6.1.1. Consider the random variable X, the number of times per hour that 

a television signal is interrupted by random interference. Assume that this random 

variable has a Poisson distribution with unknown mean p and unknown variance o”. 

To approximate the value of each of these parameters, we intend to observe the signal 

for ten randomly selected nonoverlapping one-hour periods over a week’s time. Let X; 

(i = 1, 2, 3,..., 10) denote the number of interruptions that occur during the ith ob- 

servation period. The random variables X,, X>, X3,..., Xj9 constitute a random sam- 

ple of size 10 from a Poisson distribution with unknown mean yp and unknown 

variance 0”. When the experiment is conducted, these data result: 

x,=1 x; = 0 x5; = 1 x, =0 X= 3 

x, = 0 X,=2 X= 1 x, = 0 X19 = 0 

The observed values of the statistics 2X;, 2X7, ©X,/n, max;{X;}, and min,{X,} based on 

this sample are 8, 16, .8, 3, and 0, respectively. Note that the random variable X; — 

is not a Statistic. Since yz is unknown, we cannot determine its numerical value from a 
random sample. 

6.2 PICTURING THE DISTRIBUTION 

When studying a random variable X, one important question to be answered is, “To 
which family of random variables does X belong?” That is, we need to determine 
whether X is binomial, Poisson, normal, exponential, or belongs to some other 
family of variables. In the discrete case it is often possible to determine the appro- 
priate family from the physical description of the experiment. The only job left for 
the statistician is to approximate the values of the parameters that characterize the 
distribution. Continuous random variables are more difficult to handle. To deter- 
mine the family to which such a variable belongs, we must get an idea of the shape 
of its density. For example, if the density appears to be flat, then it is reasonable to 
suspect that X is uniformly distributed; if it is bell-shaped, then X may be normally 
distributed. 

If the distribution appears to be nonsymmetric with a long tail to the left or 
the right, then it is called skewed left or skewed right, respectively. Distributions 
such as the exponential, chi-squared, and gamma distributions exhibit this prop- 
erty. For example, see Fig. 4.4. In each case the distribution pictured is skewed to 
the right. 
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Stem-and-Leaf Diagram 

Here we consider some graphical methods for studying the distribution of a contin- 

uous random variable. The first method entails constructing what is called a stem- 

and-leaf diagram. This method was first introduced by John Tukey in 1977 [SO]. 

A stem-and-leaf diagram consists of a series of horizontal rows of numbers. 

Each row is labeled via a number called its stem; the other numbers in the rows are 

called leaves. There are no rigid rules as to how to construct such a diagram. Basi- 

cally these steps are followed: 

Constructing a Stem-and-Leaf Diagram 

ib, 

4, 

Choose some convenient numbers to serve as stems. The stems are usually the 

first one or two digits of the numbers in the data set. 

. Label the rows via the stems selected. 

Reproduce the data set graphically by recording the digit following the stem as 

a leaf. 

Turn the graph on its side to get an idea of the shape of the distribution. 

These ideas are illustrated in Example 6.2.1. 

Example 6.2.1. To study the random variable X, the life span in hours of the lithium 

battery in a particular model of pocket calculator, we obtain a random sample of 50 

batteries and determine the life span of each we obtain. These data result: 

4285 564 1278 205 3920 

2066 604 209 602 1379 

2584 14 349 3770 We) 

1009 4152 478 726 510 

318 IST 3032 3894 582 

1429 852 1461 2662 308 

981 1560 701 497 3367 

1402 1786 1406 35 99 

1137 520 261 27798 373 

414 396 83 1379 454 

To construct a stem-and-leaf diagram for these data, we first choose numbers to serve as 

“stems.” It is often convenient to use the first digit of a number as its stem. If a three- 

digit number such as 318 is expressed as a four-digit number (0318) by including a lead- 

ing zero, then this data set entails the use of the five stems 0, 1, 2, 3, 4. We shall use the 

second digit of a number as its “leaf.” The diagram is constructed by listing the stems as 

a vertical column as shown in Fig. 6.2(a). The first observation, 4285, has a stem of 4 

and a leaf of 2. It is represented in the diagram as shown in Fig. 6.2(b). The entire data 

set, recorded in the order in which the observations appear, is shown in Fig. 6.2(c). 

Is it reasonable to assume that X is normally distributed? To answer this question, 

turn the stem-and-leaf diagram on its side and look for the bell-shape characteristic of 
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0 0 0 | 3945607853234720267400553034 

1 | 1 | 04415724433 

2 2 2 | 0567 

3 3 3 | 07893 

AN 2 4] 21 

FIGURE 6.2 

(a) The integers 0, 1, 2, 3, 4 form the stems for a stem-and-leaf diagram; (b) the number 4285 has a 

stem of 4 and a leaf of 2; (c) complete stem-and-leaf diagram for the sample of battery life spans of 

Example 6.2.1. 

i} uw oO Stem-and-leaf of hours N 

iu(=yene Whailfe =} al (0) 

17 0 00000222333334444 

(11) OPS55566777 89 

oy) 1 012334444 

13 i Sy) 

diab 2. 

10 2a i! 

7 } (OE 

5 S789 

2 4 12 

FIGURE 6.3 

A double stem-and-leaf diagram with leaves in order. 

a normal density. This bell shape is not present, leading us to suspect that X is not a 

member of the family of normal random variables. 

Notice that, in the above example, the first stem has a very large number of 

leaves. This often occurs when data sets are large or when there is not much vari- 

ability in the data. In this case it is usually constructive to create what is called a 

double stem-and-leaf diagram. This is done by using each stem twice. We plot the 

low leaves of 0, 1, 2, 3, 4 on the first stem and the high leaves of 5, 6, 7, 8, 9 on the 

second. The double stem-and-leaf diagram for the data of Example 6.2.1 is shown 

in Fig. 6.3. This diagram was produced by MINITAB. This diagram shows even 

more clearly than that of Fig. 6.2 that the distribution from which this sample was 

drawn 1s probably not normal. In fact, it resembles a distribution that is exponential. 

We know now that a reasonable density for X assumes the general form 

f(x) = C1/B) exp(—1/B) x= 0 B>0 

It is now the job of the researcher to estimate the numerical value of B so that prob- 
abilities can be estimated in the future via the exponential density. 

Histograms and Ogives 

The stem-and-leaf diagram provides a quick look at a data set. It is a useful way to 

get an idea of the shape of a distribution when the data set is moderate in size. It has 
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TABLE 6.1 

Suggested number of categories to be used 
in subdividing numeric data as a function of 
sample size 

Sample size Number of categories 

Fewer than 16 Not enough data 

16-31 5 

32-63 6 

64-127 7 

128-255 8 

256-511 9 

512-1023 10 

1024-2047 il 

2048-4095 12 

4096-8190 13 

the advantage of preserving, to some extent, the ability to read the actual data values 

from the diagram. However, the technique does not work well when data sets are 

large. In this case, we turn to a technique that has been used for many years and that 

is often seen in data displays in journals, newspapers, corporate reports, and other 

presentations. This plot, called a histogram, 1s a vertical or horizontal bar graph. The 

bars or categories are defined in such a way that each observation belongs to one and 

only one category. We make the width of each bar the same so that the area of the bar 
is proportional to the number of observations in the respective category. This allows 

for easy visual comparisons of category frequencies and percentages. It also allows 

us to get an idea of the family of random variables to which the variable under study 

belongs by observing the shape of the histogram. 

There are many ways to select category boundaries. Statistical packages each 

use their own algorithm for doing so, and these may differ from package to package. 
If several different packages are used to plot a given data set via its default tech- 

nique, then the histograms can vary slightly in terms of number of categories cho- 

sen and category boundary values. They will all give the same general impression 

of shape. 
We present here an algorithm for selecting the number of categories and cate- 

gory boundaries. This algorithm will guarantee that each data point falls into exactly 

one category, that categories are the same width, and that no data point can assume 

a boundary value. Some computer packages allow the user to select the number of 

categories or to specify boundary values. If so, then this algorithm can be used to 

control the construction of the histogram if desired. 

Rules for Breaking Data into Categories 

1. Decide on the number of categories wanted. The number chosen depends on the 

number of observations available. Table 6.1 gives suggested guidelines for the 

number of categories to be used as a function of sample size. It is based on 

Sturges’ rule, a formula developed by H. A. Sturges in 1926. 
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TABLE 6.2 

Units and half units for data reported to the stated degree of accuracy 

Data reported to nearest Unit 1/2 unit 

Whole number 1 8) 

Tenth (1 decimal place) Ail 05 

Hundredth (2 decimal places) 01 005 

Thousandth (3 decimal places) 001 000 5 

Ten thousandth (4 decimal places) 000 1 0000 5 

2. 

3. 

= 

Locate the largest observation and the smallest observation. 

Find the difference between the largest and the smallest observations. Subtract 

in the order of the largest minus the smallest. This difference is called the range 
of the data. 

Find the minimum length required to cover this range by dividing the range by 
the number of categories desired. This length is the minimum length required to 
cover the range if the lower boundary for the first category is taken to be the 
smallest data point. However, to ensure that no data point falls on a boundary, 
we shall define boundaries in such a way that they involve one more decimal 
place than the data. Hence we shall start the first category slightly below the 
first data point. By doing this, the minimum category length required to cover 
the range is not long enough to trap the largest data point in the last category. 
For this reason, the actual length used must be a little longer than minimum. 

- The actual category length to be used is found by rounding the minimum length 
up to the same number of decimal places as the data itself. If the minimum 
length by chance already has the same number of decimal places as the data, we 
shall round up 1| unit. For example, if we have data reported to one decimal 
place accuracy and the minimum length required to cover the range 1s found to 
be 1.7, we bump this up to 1.8 to obtain the actual category length to be used. 
The lower boundary for the first category lies 1/2 unit below the smallest ob- 
servation. Table 6.2 gives units and half units for various types of data sets. 
The remaining category boundaries are found by adding the category length to 
the preceding boundary value. 

Example 6.2.2. Consider the data of Example 6.2.1. The data set has 50 observa- 
tions. From Table 6.1 we see that the suggested number of categories to be used is 6. 
Now we locate the largest data point (4285) and the smallest (14). These are used to 
find the range, that is, the length of the interval containing all the data points. In this 
case the data are covered by an interval of length 4285 — 14 = 4271 units. To find the 
minimum length required for each category, we divide this number by the number of 
categories desired. Here the minimum category length is 4271/6 = 711.83 units. To 
find the actual category length to be used in splitting the data, we round up the mini- 
mum length to the same number of decimal places as the data. Here the data are re- 
ported in whole numbers. Thus we round up the minimum length, 711.83, to the 
nearest whole number, 712. The categories actually used will be of length 712. The 
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TABLE 6.3 
a a eee 
Category Boundaries Frequency Relative frequency 

1 13.9) t@ 725.5) 24 24/50 = 48% 
2 725.5 to 1437.5 12 12/50 = 24% 
3} 1437.5 to 2149.5 4 4/50 = 8% 
4 2149.5 to 2861.5 3 3/50 = 6% 
5 2861.5 to 3573.5 2) 2/50 = 4% 
6 3573.5 to 4285.5 5 5/50 = 10% 

-—e——————————————————————— eee 

first category starts 1/2 unit below the smallest observation. From Table 6.2 we see 
that 1/2 unit is .5 in the case of integer data. That is, the lower boundary for the first 

category is 14 — .5 = 13.5. The remaining category boundaries are found by succes- 

sively adding the category length (712) to the preceding boundary until all data points 

are covered. In this way we obtain the following six finite categories for the battery 
lives: 

13}3) t@ /25).5 2149.5 to 2861.5 

TZ 1ONA3S TD 286lS40135/13-5 

1437.5 to 2149.5 39/3:5 t04285.5 

Note that since the boundaries have one more decimal place than the data, no data 

point can fall on a boundary; each data point must fall into exactly one category. The 

data can be summarized now in table form by recording the number (frequency) and 

the percentage (relative frequency) of the observations in each category, as shown in 

Table 6.3. From this table we can construct a histogram of the data. If the frequency 

per category is plotted along the vertical axis, the resulting bar graph is called a fre- 

quency histogram; if the vertical axis is used to plot the relative frequency per cate- 

gory, then the diagram is called a relative frequency histogram. Both plots provide a 

visual display of the data that conveys an idea of the shape of the density of the ran- 

dom variable X under study. The relative frequency histogram for the data of Example 

6.2.1 is shown in Fig. 6.4. Since the histogram does not exhibit a bell shape, we see 

once again that these data do not support an assumption of normality. In fact, the dis- 

tribution suggested by the data is the exponential distribution. In this case it is now the 

job of the researcher to estimate 8, the parameter that describes this distribution. By 

so doing, we are able to estimate the density for X. This estimated density can then be 

used to approximate probabilities in the future. 

Figure 6.5 shows the histogram produced by MINITAB’s default settings. No- 

tice that more categories and different boundaries are chosen by the computer algo- 

rithm than is the case with the textbook procedure. We still get the same impression of 

a distribution that is skewed to the right. 

Cumulative Distribution Plots (Ogives) 

In addition to the frequency distribution among categories, it is of interest to con- 

sider the cumulative frequency distribution of the observations. The cumulative 



200 INTRODUCTION TO PROBABILITY AND STATISTICS 

SOstes 

40 - 

30) |— 

Percent 

0 x 
val Va ’ val va 
foo) al | Oo — ioe) La 
ack fon fom) + \Oo | Ses foo) 

t+ -_ foe) La) NN 
cl nN nN a) t+ 

Hours 

FIGURE 6.4 
Relative frequency histogram for the sample of battery life spans of Example 6.2.1. 
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FIGURE 6.5 

Histogram produced via MINITAB default settings. 

frequency distribution is found by determining for each category the number and 

percentage of observations falling in or below that category. The cumulative distri- 

bution of the data of Example 6.2.1 is shown in Table 6.4. 
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TABLE 6.4 

Relative 

Cumulative cumulative 

Category Boundaries Frequency frequency frequency 

| So) Si) 24 24 24/50 = 48% 

2 725.5 to 1437.5 i? 36 36/50 = 72% 

3 1437.5 to 2149.5 4 40 40/50 = 80% 

4 2149.5 to 2861.5 3 43 43/50 = 86% 

5) 2861.5 to 3573.5 ?) 45 45/50 = 90% 

6 3573.5 to 4285.5 5 50 50/50 = 100% 
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FIGURE 6.6 
Relative cumulative frequency ogive for the sample of battery life spans of Example 6.2.1. 

When the random variable under study is continuous, the cumulative distri- 

bution can be used to construct a graph that approximates its cumulative distribution 

function F. The graph is a line graph obtained by plotting the upper boundary of 

each category on the horizontal axis against the relative cumulative frequency. This 

type of graph is called a relative cumulative frequency ogive. The ogive for the data 

of Example 6.2.1 is shown in Fig. 6.6. From the ogive we can answer questions 

such as, “Approximately what percentage of batteries fail during the first 1500 

hours of operation?” and “What time represents the midway point in the sense that 

half the batteries fail on or before this time?” 

The first question can be answered graphically by locating 1500 on the hori- 

zontal axis, projecting a vertical line up to the ogive, and then projecting a horizontal 
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Relative cumulative frequency 

FIGURE 6.7 
Projective method of approximating probabilities using a relative cumulative frequency ogive. 

line over to the vertical axis, as shown in Fig. 6.7. The desired percentage is seen to be 

approximately 72%. The second question is answered by locating .5 on the vertical 

axis and reversing the process. The answer is seen to be a little over 725 hours. (See 

Fig. 6.7.) 

6.3 SAMPLE STATISTICS 

We have seen that the behavior of a random variable X is determined by its density. 

We have also seen that the parameters sj, the theoretical average value of the ran- 

dom variable, and a”, its variability about the mean, are helpful in describing X. In 

the last section we considered some graphical methods for getting an idea of the 

shape of the density. In this section we consider some statistics that allow us to sum- 

marize a data set analytically. Since it is hoped that the data set reflects the popula- 

tion as a whole, these statistics also give us some idea of the values of the 

parameters that characterize X over the population under study. In particular, we 

consider two measures of location or central tendency in a data set, the sample mean 

and the sample median. We also consider three measures of variability within the 

data set, the sample variance, the sample standard deviation, and the sample range. 

The word “sample” is used to emphasize the fact that the data sets presented are 

based on experiments involving only a small portion of objects that constitute the 

population being studied. That is, they represent a random sample from the distri- 
bution of X. 
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Location Statistics 

The mean or theoretical average value of X is our primary measure of the center of 

location of X. The primary measure of the center of location of a data set is its 

arithmetic average. Since we view a data set as a set of observations on X, the 
arithmetic average for a particular set of observations is just the observed value of 

the statistic X_ ,X;/n. This statistic, called the sample mean, is defined formally in 

the next definition. 

Definition 6.3.1 (Sample mean). Let X,, X>, X3,..., X, be arandom 

sample from the distribution of X. The statistic =?_ , X;/n is called the sample 

mean and is denoted by X. 

Note that x and X are not the same. The parameter jy is the theoretical aver- 

age value for X over the entire population; X is a statistic which, when evaluated 

over a particular random sample, gives the average value of X for that sample. It is 

hoped, of course, that the observed value of X is close to wy. In reporting sample 

means, we shall usually retain one more decimal place than that of the data. Round- 

ing will be used rather than truncation. 

Example 6.3.1. A random sample of size 9 yields the following observations on the 

random variable X, the coal consumption in millions of tons by electric utilities for a 

given year: 

406 395 400 450 390 410 415 401 408 

The observed value of the sample mean for these data is 

E= Sx,/n= (406 + 395 + 400 +» + 408)/9 

= 3675/9 = 408.3 million tons 

The average value for X for this sample is 408.3 million tons. What is the average 

number of tons of coal used by electric utilities across the country in this particular 

year? That is, What is wx? Unfortunately, this question cannot be answered with cer- 

tainty from this sample. However, the sample leads us to believe that px lies close to 

408.3 million tons. Admittedly, the word “close” is a bit vague. In Chap. 8 we shall 

consider a method for determining how close pry is likely to be to 408.3 million tons. 

A second measure of the center of location of a random variable X is its me- 

dian. The median of a random variable is its 50th percentile (see Exercise 12). That 

is, the median for X is that number M such that 

PIX<M])<.50 and P[X<M]=.50 

If X is continuous, then its median is the “halfway point” in the sense that an obser- 

vation on X is just as likely to fall below M as it is to fall above it. We define the me- 

dian for a sample with this in mind. 
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Definition 6.3.2. Let x,, x5, ..., x, be a sample of observations arranged in 

order from the smallest to the largest. The sample median is the middle 

observation if 1 is odd. It is the average of the two middle observations if n 
is even. We shall denote the median of a sample by Xx. 

If n is small, it is easy to spot the middle of a data set. However, if 7 is large, 
it is useful to have a formula that pinpoints the location of the middle observation or 

observations. The formula is given below, and its use is illustrated in Example 6.3.2. 

jae AI 
Median location = 

Example 6.3.2, The nine observations on X, the coal consumption in millions of 

tons by electric utilities for a given year, arranged in order, are 

390 395 400 401 406 408 410 415 450 

neti) Use 
— = 

5 The median location is = 5. The median is the fifth data point in the 

ordered list. In this case, ¥ = 406. This observation is the middle value in our ordered 
list. Note that this is the median for this data set. It gives us a rough idea of the median 
coal consumption across the country during the year. 

Measures of Variability 

Recall that we are usually concerned not only with the mean of a random variable. 
but also with its variance. The variance of a random variable, given by 

o* = E[(X— p)*] 
measures the variability of X about the population mean. We want to develop an 
analogous measure of variability within a sample. To do so, we parallel the logic 
used in defining 07. We do not know the value of the population mean, but we shall 
have available an observed value for the sample mean. We cannot observe the dif- 
ferences (X — yw)’ for all members of the population, but we can observe the differ- 
ence (X; — X)? for each element X, of the random sample. Since o is an expectation, 
a theoretical average value, logic dictates that we replace this operation by an arith- 
metic average of sample values. That is, the natural measure of variability within a 
sample that parallels our definition of variability within the population is 

n (X; — X)?2 

Dee 
= n 

This method of measuring variability within a sample is acceptable. In fact, many 
electronic calculators with built-in statistical capability utilize this formula to com- 
pute the variance of a sample. In most cases we shall be using the variability in the 
sample to approximate o*. However, it can be shown that this statistic tends, on the 
average, to underestimate a”. To improve the situation, we divide 2 (Xe by 



mn DESCRIPTIVE STATISTICS 20 

FIGURE 6.8 

(a) The statistic D7_, (X, — X)/n tends to underestimate o2. On the average, it will produce estimates 
that are a bit too small. It is not an unbiased estimator for o”; (b) the statistic 27_, (X, — X)?/(n — il} 
is unbiased for a7. On the average, it will produce estimates that are centered at o2. 

n — | rather than by n. In this way we obtain a statistic that is unbiased for a2. The 
term “unbiased” is a technical term. It is defined formally in Sec. 7.1. Basically, it 
means “centered at the right spot.” Since the sample variance is used to estimate o?, 
in this case “the right spot” is a”. Successive estimates for a? based on the formula 
[~7_ | (X; — X)?]/(n — 1) should be centered at o?. Figure 6.8 illustrates the expected 
behavior of the two statistics just discussed. So that the statistic used to estimate a? 
will be unbiased for o*, we choose to define the variance of a sample as given in 
Definition 6.3.3. The definition of the term “sample standard deviation” follows 
logically. 

Definition 6.3.3 (Sample variance and sample standard deviation). Let 

X,, Xz, X3,..., X,, be a random sample of size n from the distribution of X. 

Then the statistic 

is called the sample variance. Furthermore, the statistic S = \/'§2 is called 

the sample standard deviation. 

Recall that when we computed the value of 07 in Chap. 3, the actual definition 

of the term “variance” was seldom used; a computational formula was developed 

that was arithmetically easier to handle than the definition. The same is true here. 

When S? is evaluated from a sample, Definition 6.3.3 is not commonly used. 

Rather, we use a computational formula. 

Theorem 6.3.1 (A computational formula for S”). Let X,, X,, X;,...,X, bea 

random sample of size n from the distribution of X. The sample variance is 

given by 

n>, X?— Sa
 

i=1 i=1 

n(n = 1) 

The above formula was convenient before the advent of calculators with built- 

in statistical capabilities and statistical computer packages. Since most calculators 
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will find s for you by simply entering the data in a statistical mode, this formula is 

not often needed. We present it here because you might encounter it in some other 

setting and wonder about its validity. You are encouraged to use whatever comput- 

ing aids you have available to find x, s?, and s. However, the use of the formula is 

illustrated in Example 6.3.3. In reporting s2, we shall usually retain two more deci- 

mal places than that of the data; s will be reported to one more decimal place. 

Rounding will be used. 

Example 6.3.3. These data constitute a sample of observations on X, the coal con- 

sumption in millions of tons by electric utilities for a given year: 

390 400 406 410 450 395 401 408 415 

To compute the sample variance, we must evaluate the statistics D"_,X; and D7_, X? 

for this sample. The observed values are 

9 

i=1 

L 

9 

v= 3675 = Sx? = 1,503,051 
i=] 

The observed value of S? is 

gO, 
oa — yx) a Ae 

es es is © 9C1503,051) = (s6la) means 
9(8) 9(8) 

Remember that variance is usually considered to be unitless because the physical unit 

attached to it is often meaningless. The observed value of S is 

s= Vs? = 303.25 = 17.4 million tons 

Notice that the physical measurement unit associated with s matches that of the origi- 

nal data and that 17.4 million tons is the standard deviation for this sample. It is not the 

standard deviation in coal consumption for all electric utilities across the country for 

the given year. However, it does indicate that o probably has a value close to 17.4 mil- 

lion tons. 

The last sample statistic to be considered is the sample range. This statistic 

was used in categorizing data in Sec. 6.2. 

Definition 6.3.4 (Sample range). The sample range is defined to be the 

difference between the largest and smallest observations with subtraction in 

the order largest minus smallest. 

The sample range for the data of Example 6.3.3 is 450 — 390 = 60 million tons. 

One word of caution is in order. We have assumed that the data set presented 

in this section represents a random sample drawn from a larger population because 

this is the situation most often encountered in practice. Occasionally you will en- 

counter a data set that is not a sample. Rather, it represents an observation on X for 

every member of the population. If this is the case, then the population mean is just 
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the arithmetic average of these observations; that is, 4. = x. Furthermore, the popu- 
lation variance is given by 

Population Variance 

Be careful! Be sure that you understand the nature of your data set before you begin 
to summarize its properties. 

6.4 BOXPLOTS 

In summarizing data, it is useful to report all the statistics considered in Sec. 6.3. 
This is especially true if the data set contains a value that is unusually large or un- 
usually small. A value that appears to be atypical in that it seems to be far removed 
from the bulk of the data is called an outlier or a “wild” number. It is important to 
be able to detect such numbers and to understand the effect that they have on the 
usual sample statistics. 

Outliers arise for two reasons: (1) They are legitimate observations whose val- 

ues are simply unusually large or unusually small, or (2) they are the result of an er- 

ror in measurement, poor experimental technique, or a mistake in recording or 

entering the data. In the first case it is suggested that the presence of the outlier be 

reported and that sample statistics be reported both with and without the outlier. In 

the second case the data point can be corrected if possible or else dropped from the 

data set. 

Of the statistics presented thus far the sample mean, the variance, the standard 

deviation, and the range are adversely affected by the presence of an outlier; how- 

ever, the sample median is not so affected. Thus in the presence of an outlier the 

sample median may be preferable to the sample mean measure of location. We say 

that the median is resistant to outliers. 

Sometimes outliers are so obvious that their presence can be detected by in- 

spection. However, it is useful to have an analytical and graphical technique for 

identifying values that are truly unusual. One such technique is the boxplot. Its con- 

struction is based on the interquartile range, a measure of variability that is resistant 

to outliers. The sample interquartile range, iqr, represents the length of the interval 

that contains roughly the middle 50% of the data. If the iqr is small, then much of 

the data lies close to the center of the distribution; if it is large, the data tend to be 

widely dispersed. These steps are used to calculate the iqr. 

Finding the Sample Interquartile Range 

1. Find the median location (n + 1) /2, where n is the sample size. 

2. Truncate the median location by rounding it down to the nearest whole number. 
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Find the quartile location q by 

truncated median location + | 
, igs SP ig a aan * 

Find g,; by counting up from the smallest data point to location q. If q is an in- 

teger, then q, is the data point in position q. If q is not an integer, then q, is the 

average of the data points in positions g — .5 and q + .5. Approximately 25% 

of the data will fall on or below q). 

Find g; by counting down from the largest data point to position q as in part 4. 

Approximately 75% of the data will fall on or below q;. 

Define igr by iqr = 43 — q\. 

Example 6.4.1. A study of the type of sediment found at two different deep-sea 

drilling sites is conducted. The random variable of interest is the percentage by vol- 

ume of cement found in core samples. By cement we mean dissolved and reprecipi- 

tated carbonate material. The following data are obtained: 

Site I, % cement Site II, % cement 

KO) il PY | 10 14 

XO) NS} Dal 3k 9 21 19 

Sul IRS ily 1K} 15 17 13 

Syl IG 3p als} 25 22 20 

ah aly GYRE) 24 12 23 

bah SF ey 15 20 18 

The double stem-and-leaf diagram for the data of site | is shown in Fig. 6.9. The sam- 

ple is size n = 23. The median location is (n + 1)/2 = 12. The quartile location is 

q = (12 + 1)/2 = 6.5. To find q;, we use the stem-and-leaf diagram to locate the sixth 

and seventh data points, counting from the smaller numbers up. These values are 13 

and 14, respectively. Hence g, = (13 + 14)/2 = 13.5. To find q3, we find the sixth and 

seventh data points counting from the higher numbers down. These points are 31 and 

27, respectively, yielding g; = (31 + 27)/2 = 29. The sample interquartile range is 

43 — q; = 29 — 13.5 = 15.5. For site II you can verify that g, = 13 and q3 = 21. 

A word of caution is in order. All computer software and statistical calculators 

calculate the median as we have done. However, different algorithms are sometimes 

used to find the quartiles; some will agree with our values, but others will not. All 

produce good estimates of the population quartiles. For example, if the TI83 calcu- 

lator is used to find g, and gq; for the data of Example 6.4.1, site I, it reports g, = 13 
and q3, = 31. These values differ slightly from those that we found previously. That 

calculator’s answers will agree with ours for the data of site I. MINITAB reports 

q, = 13 and qg, = 31 for site I and thus agrees with the TI83 calculator. However, it 

yields q, = 12.75 and q, = 21.25 for the quartiles of site II. These do not agree with 
Our estimates or those of the TI83. Just be aware that different technologies can 
yield slightly different quartiles and therefore will produce slightly different box- 
plots when applied to the same set of data. 
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FIGURE 6.9 
Double stem-and-leaf diagram for the percentage by volume of cement in core samples taken at deep- 
sea drilling site I. 

Once the interquartile range has been found, it can be used to construct a box- 
plot. The boxplot is a graphical representation of a data set that gives a visual im- 
pression of location, spread, and the degree and direction of skewness. For an 
approximately bell-shaped distribution the boxplot also allows us to identify out- 
liers. It is especially useful when we want to compare two or more data sets. 

Constructing a Boxplot 

1. 

. Find the sample median, qg, q3, and igr. 

A horizontal or vertical reference scale is constructed. 

. Find two points f, and f;, called inner fences, by 

d= q; — loGar) 

jo G, + 1 oigr) 

These points will be used to identify outliers. 

They are not a visible part of the boxplot. 

. Find two points a, and a3, called adjacent values. The point a, is the data point 

that is closest to f; without lying below f, in value. The point a; is the data point 

that is closest to f; without lying above f, in value. 

. Find two points F, and F3, called outer fences, by 

Fp 9g, = 215) Gqr) 

F, = q, + 20..5)Gqr) 

These fences, as with inner fences, are not visible on the boxplot. 

. Locate the points found thus far on the horizontal or vertical scale. Their rela- 

tive positions are shown in Fig. 6.10(a). 

. Construct a box with ends at g, and gq; with an interior line drawn at the median, 

as shown in Fig. 6.10(b). 

. Indicate adjacent values by x, and connect them to the box with dashed lines. 

Locate any data points falling between the inner and outer fences, and denote 

these by open circles. These points are considered to be mild outliers. Indicate 

data points that fall beyond the outer fences with asterisks. These points are 

considered to be extreme outliers [see Fig. 6.10(c)]. 
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(b) 

(c) 

FIGURE 6.10 
(a) Relative positions of median (X), quartiles (g, and q3), adjacent values (a, and a;), inner fences 

(f, and f;), and outer fences (F, and F;); (b) a box is drawn with ends at q, and q; and interior line at x; 

(c) adjacent values are indicated by x. Mild outliers are indicated by open circles; extreme outliers are 

given by asterisks. 

The location of the midline of the box is an indication of the shape of the dis- 

tribution. If the line is badly off center, then we know that the distribution is skewed 

in the direction of the longer end of the box. 
Before we illustrate this technique, the notion of fences needs to be clarified. 

It can be shown that when sampling from a normal distribution, only about 7 values 

in every 1000 fall beyond the inner fences. You are asked to verify this result in Ex- 

ercises 26 and 27. Since these values are very unusual, they are deemed to be out- 

liers. Outliers must be treated with care since, as you have already seen, their 

presence can have a dramatic impact on x, s°, and s, the usual measures of location 

and variation. When an outlier is found, we should consider its source. Is it a legit- 

imate data point whose value is simply unusually large or small? Is it a misrecorded 

value? Is it the result of some error or accident in experimentation? In the last two 

instances the point can be deleted from the data set and the analysis completed on 

the remaining data. In the first case we suggest that the presence of the outlier be 

made known and that statistics be reported both with and without the outlier. In this 

way the decision of whether or not to include the outlier in future analyses can be 
made by the researcher who is the subject matter expert. 

Example 6.4.2. A study of posttraumatic amnesia after a closed head injury is con- 

ducted. One variable studied is the length of hospitalization in days. The stem-and-leaf 

diagram for the data is shown in Fig. 6.11. (Based on information found in Jerry Mysia 

et al., “Prospective Assessment of Posttraumatic Amnesia: A Comparison of GOAT and 

the OGMS,” Journal of Head Trauma Rehabilitation, March 1990, pp. 65-77.) For 
these data the median location is (n + 1)/2 = 11 and the median is 40 days. Quartile lo- 
cation is q = (truncated median location + 1)/2 = 6. The points q, and q, are 32 and 
47, respectively. The interquartile range is iqr = g; — g; = 15. The inner fences are 

r= ay Latiar) fy = 93 + 1.5(iqr) 

32 — 22.5 47 + 22.5 

= 9.5 = 69.5 

ll 
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The adjacent values are a, = 12 and a, = 61. The outer fences are 

Tf PAG Vo pas 0) bay (tare) 

= 32 — 45 = 47+ 45 

els = 92 

The data set contains two points, 8 and 89, that qualify as mild outliers. The 

point 108 qualifies as an extreme outlier. Notice that since F, is negative, it is physi- 

cally impossible to see an extreme outlier on the lower end of the scale. The boxplot 

is shown in Fig. 6.12. Notice that the midline of the box is near its center, indicating a 

nearly symmetric distribution. Are the outliers real observations that must be taken 

into account, or are they the result of errors in data collection? In this case it would be 

easy to check patient records to find the answer, and this should be done before pro- 

ceeding with any further analysis of the data. 

As with any other statistical technique, the method given here for detecting 

outliers must be used with care. Since the location of the fences is chosen to detect 
unusual values when sampling from a normal distribution, this fact must be kept in 

mind when interpreting the boxplot. If the data set is large enough so that a his- 

togram or a stem-and-leaf plot exhibits the bell characteristic of a normal curve, 

then legitimate data points that are flagged as outliers are unusual enough to warrant 

investigation. If the data set is small or appears to be drawn from a distribution that 
is not normal, then no real conclusions concerning outliers can be drawn. For ex- 

ample, the exponential distribution is far from symmetric and by nature has a long 

tail. In this case it is quite likely that the technique demonstrated in this section 

would flag the largest data point as an outlier. In fact, the point might not be unusual 
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FIGURE 6.11 ee 

Stem-and-leaf diagram for the data of Example 6.4.2. Data represent length of hospitalization in days 

of posttraumatic amnesia patients (n = 21). 

FIGURE 6.12 
Boxplot for the data of Example 6.4.2. 
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at all. David Hoaglin and John Tukey [50] have a nice discussion of the use of box- 

plots and outliers for distributions that are not normal. 

CHAPTER SUMMARY 

This chapter is a link between the study of probability in its own right and the use 

of probability in the study of applied statistics. We began by defining exactly what 

we mean by the term “random sample.” In particular, we noted that the term is used 

in three ways. It can denote the objects sampled, the random variables associated 

with those objects, or the numerical values assumed by these random variables. We 

noted also that in this text we are assuming that either sampling is from an infinite 
population, sampling is done with replacement from a finite population, or sampling 

without replacement from a finite population is done in such a way that the sample 

constitutes at most 5% of the population. This ensures that it is reasonable to assume 

that the random variables X,, X>,..., X,, are, for all practical purposes, independent. 

We introduced three graphical methods for picturing the distribution of a data set. 

These methods, the stem-and-leaf chart, histograms, and boxplots, help to deter- 

mine the type of random variable with which we are dealing. That is, they help us 

get an idea of the shape of the density f associated with the random variable. The 

relative cumulative frequency ogive was introduced as a means of approximating 

the cumulative distribution function, F} of a continuous random variable. We intro- 

duced some summary statistics that serve two purposes. They describe the data set 

at hand, and they help approximate the value of corresponding parameters associ- 

ated with the population from which the sample was drawn. We introduced and de- 
fined important terms that you should know. These are: 

Population 

Percentile 

Median 

Statistic 

Decile 

Sample variance 

Frequency histogram 

Relative frequency histogram 

Relative cumulative frequency ogive 
Inner fences 

Outer fences 

Adjacent values 

Resistant statistic 

?XERCISES 

Section 6.1 

Sample mean 

Random sample 

Quartile 

Sample median 

Stem and leaf 
Interquartile range 

Sample standard deviation 

Sample range 

Outlier 

Mild outliers 

Extreme outliers 

Boxplots 

In Exercises | through 5 a problem is described. In each case, decide whether a sta- 
tistical study is appropriate. If so, explain why you think this is the case and iden- 
tify the population(s) of interest. 
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1. A bridge is to be built across a deep canyon. An engineer is interested in deter- 
mining the distribution of the random variable X, the maximum wind speed per 
day at the site, so that the bridge can be designed to withstand potential stresses 
that will be placed upon it from this source. 

2. A botanist thinks that indoleacetic acid is effective in stimulating the formation 
of roots in cuttings from lemon trees. In an experiment to verify this contention 
two groups of cuttings are to be used. One group is to be treated with a dilute 

solution of indoleacetic acid; the other is given only water. Later a comparison 
of the root systems of the two groups will be made. 

3. An architectural firm is to sublet a contract for a wiring project. Seven electri- 

cal contractors are available for the job. We want to determine the average es- 

timated cost of the job and the average projected time required to complete the 

job for these seven contractors. 

4. A computer system has a number of remote terminals attached to it. To decide 
whether or not to increase this number, it is necessary to study the random vari- 

able X, the length of time expended per session by users of the terminals cur- 

rently in place. 

5. Prior to changing from the traditional 8-hour-a-day, 5-day-a-week work sched- 

ule to a 10-hour-a-day, 4-day-a-week schedule, the opinion of the 50,000 work- 

ers who would be affected is to be sought. 

6. Air quality is of concern to everyone. It is judged by the number of micrograms 

of particulate present per cubic meter of air. Assume that this variable is nor- 

mally distributed with unknown mean and unknown variance. Monitoring sta- 

tions sample air by sucking it through a thin fiberglass sheet that collects the 

fine particles suspended in the air. In a particular locality this is done for five 

randomly selected 24-hour periods each month. Thus each month a random 

sample of size n = 5 from a normal distribution is available. 

(a) Consider the random variable X,, the particulate level for the first 24-hour 

period studied during a given month. What is the distribution of this ran- 

dom variable? 

(b) Fora given month, these readings result: 

x, = 45 x, = 50 x3 = 62 x4 = 57 x5 = 70 

For these data, evaluate the statistics }X,, 2X7, =X,/n, max,{X;}, min,{X;}. 
(c) Is the random variable X; — wp a Statistic? Is the random variable 

(X; — p)/o a Statistic? Explain. 

Section 6.2 

7, A data set containing 70 observations, each reported to one decimal place, is to 

be split into seven categories. The largest observation is 75.1, and the smallest 

is 16.3. 
(a) These data are covered by an interval of what length? 

(b) Using the method outlined in this section, each category will be of what 

length? 

(c) What is the lower boundary for the first category? 

(d) What are the boundaries for each of the seven categories? 
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Acute exposure to cadmium produces respiratory distress and kidney and liver 

damage, and may even result in death. For this reason, the level of airborne 

cadmium dust and cadmium oxide fume in the air is monitored. This level is 

measured in milligrams cadmium per cubic meter of air. A sample of 35 read- 

ings yields the following data: 

044 030 052 044 046 

020 066 052 049 030 

040 045 039 .039 039 

O57 O50 056 061 042 

055 037 062 062 070 

061 061 058 053 .060 

047 O51 054 042 051 

(a) Construct a stem-and-leaf diagram for these data. Use the numbers 02, 03, 
04, 05, 06, and 07 as stems. 

(b) Would you be surprised to hear someone claim that the random variable X, 

the cadmium level in the air, is normally distributed? Explain. 

(c) Use the method outlined in this section to break these data into six cate- 

gories. (Here a unit is .OO1 and a half unit is .0005.) 

(d) Construct a frequency table and a relative frequency histogram for these 

data. Does the histogram exhibit the bell-shape characteristic of a normal 

density? 

(e) Construct a cumulative frequency table and a relative cumulative fre- 

quency ogive for these data. Use the ogive to approximate that point above 

which 50% of the readings should fall. 

Let X denote the time in minutes that a vehicle must wait to get through a traf- 

fic light at a busy intersection. The following data are obtained from a random 
sample of 36 vehicles: 

“D 5S oll Le 2 12 1.3 1.4 1.4 1.4 

I iN) 1.6 1.6 Py) 1:9 2.0 2.1 pial! 2.2 

23 PES 2.6 29 2.8 3.0 ail 3.0 Shy 

4.0 4.1 4.5 el 5.8 1.4 

(a) Construct a double stem-and-leaf diagram for these data. 

(b) Do the data suggest that the distribution of X is skewed? If so, what is the 
direction of the skew? 

Liquid products were first obtained from coal in England during the 1700s. 
Lamp oil was produced trom coal in the United States as early as 1850, but the 
domestic coal chemicals industry did not develop until World War I. A modern 
coal-for-recovery system uses a battery of coke ovens to produce liquid prod- 
ucts from the coal feed. These observations are obtained on the random vari- 
able X, the number of gallons of liquid product obtained per ton of coal feed: 

7.6 8.2 Tal 10.0 6.5 9.6 

6.1 6.2 7.6 6.2 95 6.7 

7.4 9.5 9.2 8.0 8.5 9.3 

8.8 9.6 9.7 6.8 Ten ey 

8.7 7.8 8.7 8.2 8.2 7.4 

9.0 8.8 we 7.9 7.1 7.9 

7.6 6.7 8.1 6.2 5,6) 7.4 

Ged 911 Te 8.7 8.4 8.1 
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(a) Construct a stem-and-leaf diagram for these data. Use the numbers 5, 6, 7, 
8, 9, 10 as stems. 

(b) Is the assumption that X is normally distributed justifiable? Explain. 
(c) Use the method outlined in this section to break these data into six cate- 

gories. 
(d) Construct a frequency table and a relative frequency histogram for these 

data. Does the histogram exhibit the bell-shape characteristic of a normal 
density? 

(e) Construct a cumulative frequency table and a relative cumulative frequency 
ogive for these data. Use the ogive to approximate the probability that a ran- 
domly selected ton of coal will yield less than 7 gallons of liquid product. 

Some efforts are currently being made to make textile fibers out of peat fibers. 
This would provide a source of cheap feedstock for the textile and Paper in- 
dustries. One variable being studied is X, the percentage ash content of a par- 
ticular variety of peat moss. Assume that a random sample of 50 mosses yields 
these observations: 

oS) 1.8 4.0 1.0 2.0 

il 1.6 ee) 3) Pep) 

2.0 3.8 3.0 2.3 1.8 

3.6 2.4 8 3.4 ik. 

169) 3} 2 189) 3) 

2.6 3h, es) Ly 5.0 

Wd 3.0 Boll 2 1S) 

B 2.4 Des) io oll 

2.4 2.8 Dhl 4.5 PFI 

eS) ol Joi 1.8 Ly 

(a) Construct a stem-and-leaf diagram for these data. Use the numbers 0, 1, 2, 

3, 4, 5 as stems. 

(b) Is there any reason to suspect that X is not normally distributed? Explain. 

(c) Use the method outlined in this section to break these data into six 

categories. 

(d) Construct a frequency table and a relative frequency histogram for these 

data. Does the histogram suggest that X might not be normally distributed? 

If so, what distribution might be appropriate? 

(e) Construct a cumulative frequency table and a relative cumulative fre- 

quency ogive for these data. Use the ogive to approximate the probability 

that a randomly selected specimen of this variety of moss will have an ash 

content that exceeds 2%. 

(Percentiles.) Let X be a random variable. The point pyjjo9 (K = 1, 2,3,..., 

100) such that 

P[X <= Pioo] = k/100 and IAD — Pinool = k/100 

is called the kth percentile for X. For example, let X be binomial with n = 20 
and p = .5. The 25th percentile for X is the point p5/;9) = 8 since, from Table 

I of App. A, we see that 

Ri Xe— 8 13165725 and eS ee eS 



216 

13: 

14. 

Ise 

16. 

INTRODUCTION TO PROBABILITY AND STATISTICS 

(a) Let X be binomial with n = 20 and p = .5. Find the 60th percentile for X. 

(b) Let X be Poisson with As = 10. Find the 30th percentile for X. 

(c) Argue that in the case of a continuous random variable the kth percentile is 

that point such that PLY = px ;o0] = k/100. 

(d) Let X be exponentially distributed with B = 1. Show that the 20th per- 

centile for X is —In .80. Hint: Find the point p such that 

ies dx = .20 
0 

(Quartiles.) The 25th, 50th, 75th, and 100th percentiles for X are called its first, 

second, third, and fourth quartiles, respectively. 
(a) State the definition of the first quartile in terms of probabilities. 

(b) Let X be binomial with n = 20 and p = .5S. Find the first quartile for X. 

(c) Let X be exponentially distributed with B = 1. Find the first quartile for X. 

(Deciles.) The 10th, 20th, 30th, 40th, SOth, 60th, 70th, 80th, 90th, and 100th 

percentiles for X are called its deciles. 

(a) State the definition of the 4th decile for X in terms of probabilities. 

(b) Let X be Poisson with As = 10. Find the 6th decile for X. 

(c) Let X be exponentially distributed with 8 = |. Find the third decile for X. 

The percentiles, quartiles, and deciles for a continuous random variable can be 

approximated from a relative cumulative frequency ogive using the projective 

method. For instance, in Fig. 6.5 we approximated the 50th percentile for X, the 

life span of a lithium battery, to be a little over 725 hours. 

(a) Approximate the first quartile for X, the cadmium level in the air, using the 

data of Exercise 8. 

(b) Approximate the fourth decile for X, the number of gallons of liquid prod- 

uct obtained per ton of coal fuel, using the data of Exercise 10. 

(c) Approximate the 50th percentile for X, the percentage ash content for a 

particular variety of moss, using the data of Exercise 11. 

In running computer programs on a time-sharing basis, the costs vary from ses- 

sion to session. These observations are obtained on the random variable X, the 
cost per session to the user: 

$1.08 84 1.41 .99 82 

89 38 1.05 P19 65 

1.09 1.03 31 PP) od 

1.89 7 9 1.22 Le27 

1.02 1.09 1.02 .86 123 

Ire, 85 1.02 20 80 

Construct a relative cumulative frequency ogive for these data. Use the ogive 
to approximate the 50th percentile; the first quartile; the third quartile. 

Section 6.3 

Ly; Consider these data sets: 

Bp wi nN We Wh MN — NO = Wn Wn An 

Nn 
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(a) Find the sample mean and sample median for each data set. 
(b) Find the sample range for each data set. 
(c) Find the sample variance and sample standard deviation for each data set. 
(d) Would you be surprised to hear someone claim that these data were drawn 

from the same population? Explain. Hint: Consider the shape of the distri- 
bution as well as the observed values of the sample statistics. 

The observed values of the statistics 272, X, and 53°, X? for the data of Exam- 
ple 6.2.1 are 272%; = 63,707 and 22 ,x? = 154,924,261. 
(a) Would you be surprised to hear someone claim that the mean lifespan of 

the lithium batteries used in this model calculator is 1270 hours? Explain. 
(b) Find the sample variance and sample standard deviation for these data. 
Use the data of Example 6.1.1 to approximate the mean and variance of the ran- 
dom variable X, the number of times per hour that a television signal is inter- 
rupted by random interference. 
Use the data of Exercise 8 to approximate the mean, variance, and standard de- 
viation of the random variable X, the level of airborne cadmium dust and cad- 
mium oxide fumes. Assume that these approximations are fairly accurate. 
Between what two values would you expect approximately 95% of the readings 
to fall? Explain. 

Use the data of Exercise 10 to approximate the mean, variance, and standard 

deviation of the random variable X, the number of gallons of liquid product ob- 
tained per ton of coal feed. 

Use the data of Exercise 11 to approximate the mean, variance, and standard 

deviation of the random variable X, the percentage ash content of a particular 
variety of peat moss. 

Consider the data of Exercise 9. 

(a) Find the mean and median for these data. 

(b) Find the standard deviation and variance for these data. 

(c) What physical measurement unit is associated with each of the statistics in 
parts (a) and (b)? 

There have been many improvements made in lighting in the last 10 years. 

One new bulb, the Philips’ Earth Light, uses a compact screw-in fluorescent 

bulb with an electronic ballast incorporated in its base. It is thought to last 

10 to 13 times longer than household bulbs used in the past. These data are 

obtained on the life span of a sample of these new bulbs (time is in thousands 

of hours): 

9, II 10.1 9.0 11.4 

10.5 OS) 12.0 9, II 

lee Sie it 10.0 9.3 

9.0 9.6 IHN tl Ql 

13). 10.7 Dell OX) 

9.0 11.0 QD IBIEG 

(Based on information found in “Lighting Comes of Age with New Technol- 

ogy,” Research and Development, November 1992, pp. 30-31.) 

(a) Construct a stem-and-leaf diagram for these data, and suggest a distribu- 

tion from which these data might have been drawn. 
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(b) Based on these data, approximate the value of jx, the average life span of 

these bulbs. 
(c) Approximate the median life span of these bulbs, and explain exactly what 

this value means. 
(d) Find the sample variance and sample standard deviation for these data. 

(e) Criticize the following statement: 

“Based on the normal probability rule, it is estimated that approximately 

95% of all bulbs have a life span between 7,530 and 13,050 hours.” 

(f) Based on Chebyshev’s inequality, what can be said about the proportion of 

bulbs whose life span is expected to fall between 7,530 and 13,050 hours? 
(Approximating o via the range.) The range can play an important role in the 

design of statistical studies. To obtain a prespecified degree of accuracy when 

estimating population parameters, an adequate sized sample must be drawn. 

Most formulas used to determine sample size require knowledge of o, the pop- 
ulation standard deviation. Often the researcher will not have an estimate of o 

available but will have an idea of the expected range of his or her data. In Sec. 

4.5 we saw that when sampling from a normal distribution, 

Pl Lor Xe fb ee 2 

If X is not normally distributed, then Chebyshev’s inequality can be applied to 
conclude that 

P[l=3¢ =X =) = Say 69 

That is, X always lies within at most 3 standard deviations of its mean with high 

probability. From this it can be concluded that the estimated range covers an in- 

terval of roughly 40 for normally distributed random variables and 6c otherwise. 

In the normal case an estimate of a can be obtained by solving the equation 

4a = estimated range 

for a. Thus we see that 

o = (estimated range)/4 

when X is normally distributed. If X is not normally distributed, then 

o = (estimated range)/6 

These data are obtained on the random variable X, the cpu time in seconds re- 
quired to run a program using a statistical package: 

6.2 5.8 4.6 4.9 al 5.2 

8.1 A) 3.4 4.5 8.0 79 

6.1 5.6 3) Syl 6.8 4.6 

3.8 2.6 4.5 4.6 Ted! 3.8 

4.1 Gal 4.1 4.4 a2 IS 

(a) Construct a stem-and-leaf diagram for these data. Is the assumption justi- 
fied that X is normally distributed? 

(b) Approximate o via the sample standard deviation s. 
(c) Find the sample range for these data, and use it to approximate a. Com- 

pare your result to that obtained in part (b). 
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Section 6.4 

26. 

27. 

28. 

29. 

Consider the standard normal distribution. 
(a) Use the Z table to verify that g, is approximately —.67 and q3 1S approxi- 

mately .67. 
(b) Find the interquartile range for Z, and explain what this means. 
(c) Verify that the inner fences for Z are f, = —2.68 and fy = 2.68. 
(d) Verify that the probability that a standard normal random variable will fall 

beyond the inner fences is approximately .007. 
(e) Find the outer fences for Z. 

(f) Find the probability that a standard normal random variable will fall be- 
yond the outer fences. 

Let X be normally distributed with mean p and variance o”. 

(a) Verify that g, = w+ .67o and that g, = uw — .670. 
(b) Find the interquartile range for X. 

(c) Verify that the inner fences for X are f, = w — 2.680 and f; = pw + 2.680. 

(d) Verify that the probability that X will fall beyond the inner fences is ap- 
proximately .007. 

Temperature differences between the warm upper surface of the ocean and the 

colder deeper levels can be utilized to convert thermal energy to mechanical en- 

ergy. This mechanical energy can in turn be used to produce electrical power 

using a vapor turbine. Let X denote the difference in temperature between the 

surface of the water and the water at a depth of 1 kilometer. Measurements are 

taken at 15 randomly selected sites in the Gulf of Mexico. These data result in 

the following temperatures: 

DDE) 23.8 IRA) 22.8 NOSIS 

UB) 24.0 Mai} 24.2 24.3 

233 23.4 23.0 72339) 22.8 

(a) Construct a double stem-and-leaf diagram for these data. 

(b) Find the sample mean, sample median, and sample standard deviation for 

these data. 

(c) Note that the starred observation in the data set is very different from the 

others. It is a potential outlier. Construct a boxplot for these data to verify 

that the value 10.1 does, in fact, qualify as an outlier. 

(d) To see the effect of this outlier, drop it from the data set and calculate the 

sample mean, median, and standard deviation for the remaining 14 obser- 

vations. Which measure is least affected by the presence of the outlier? Do 

you see why it is desirable to report both the mean and median of a data set? 

Most homes utilize a variety of electronic equipment and appliances. For this 

reason, both suppliers and consumers of these products have become interested 

in product reliability. One aspect of reliability is the ability of the appliance to 

withstand power surges. In a study of this phenomena the following data are 

obtained on the strength of a surge in kilovolts required to damage or upset the 

appliance (based on figures found in “The Effects of Surges on Electronic Ap- 
pliances,” Stephen B. Smith and Ronald B. Standler, IEEE Power Engineering 

Review, July 1992, p. 50): 
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Clocks 

SES) Sy 4.0 

I: PES 3.0 

4.0 4.9 DNS, 

a Dah 4.2 

Shi Shs! 6.0 

1.8 5.6 5.] 

3.8 SF Si) 

Television receivers 

2.0 

2 

apy? 

D2 

4.6 

She) 

5.0 4.5 5.4 

4.3 =)! 5.6 

4.7 4.4 5.8 

7.8 5.4 4.9 

4.6 5.0 4.8 

522 3:9 a) 

dc power supplies 

4.2 

4.5 

5.0 

4.7 

4.9 

(a) 

(b) 

(c) 

(d) 

4.4 ell 4.] 6.1 

ee 3.9 5.0 58 

4.8 4.3 5.4 

rl 2 HG) 

4.7 4.6 4.8 

Sketch a double stem-and-leaf diagram for the clock data. Based on this 

diagram, would you be surprised to hear a claim that these data are drawn 

from an exponential distribution? Explain. 

Use the boxplot technique to check for outliers in the clock data. Based on 

your results, which measure of location, the sample mean or the sample 

median, is probably the better measure of the location of the bulk of the 

data for these data? 

Sketch a stem-and-leaf diagram for the television data. Use the stem 4 five 

times and the stem 5 five times. Based on this diagram, does there appear 
to be at least one outlier in the data set? 

Use the boxplot technique on the television data to test the suspicious 

points. Do you think that they are truly outliers? If so, are they mild outliers 

or extreme outliers? Which measure of variability, the sample variance or 

the iqr, is probably a better measure of the variability of the bulk of the data? 
Sketch a double stem-and-leaf diagram for the de power supply data. 

These data contain an outlier due to a misplaced decimal point. Do you see 

it? Calculate the mean for the data using the bad data point as written. Now 

correct the data point and recalculate the sample mean. In light of this, ex- 

plain what it means to say that x is not resistant to outliers. 

REVIEW EXERCISES 

30. Bricks are produced in lots of size 1000. Before shipping a lot, a sample of 25 
bricks is selected and inspected for quality. Two random variables are of interest. 
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These are X, the number of chips per brick, and Y, the hardness of the brick. As- 
sume that hardness is measured on a continuous scale from | to 10 with larger 

numbers indicating a harder brick: 

x y 
2 5 0 1 2 3.2 63 6.4 6.7 13 
0 3 0 0 2 7A 5.4 4.6 5.8 9.1 
rl | 0 1 3 es 6.1 8a 5.9 6.2 
2 l 1 7 4 6.0 6.8 Wo) 6.3 Wo) 
0 2 3 5 1 5.1 4.2 6.9 4.5 5.0 

(a) What is the name of the family of random variables to which X belongs? 

(b) Approximate the mean, variance, standard deviation, and median of X 

based on these data. 

(c) Construct a stem-and-leaf diagram for the hardness measurements. Based 

on this diagram, would it be unrealistic to assume that Y is approximately 

normally distributed? 

(d) Approximate the mean, variance, standard deviation, and median of Y. 

In an attempt to study the problem of failure in field-installed computer equip- 

ment, data is collected on fifty field trips made to repair equipment. The ran- 

dom variables studied are X, the time in hours required to locate and rectify the 

problem, and Y, the cause of the failure. We define Y by 

1 if the failure is due to a faulty microprocessor chip 
Y= 

0 otherwise 

These data are obtained: 

x y 
Pee. 830225 ams 280m) F140 134 C0 FOO. Or Oe 
DAS ae OOM TO aml ss ssa 4.59) 7407 1 WW Oe Ow Oo. 6 
S01) 2.76) 93.03.0352 597) 1.45 CHa Ox @ 
27a? See 380204 149, 1.11 ecu 0. 0210 
fOAmed C4me? 82 es dGn 458) 3.28 Of A ee Oe 
1305 3.01N 1120 93.42 186 3.49 Phe Oy 
3.93 256 2.63 5.60 4.60 5.34 (Vac OMmEr Oar (MRO alee) 
162M? SPA 88 02 04 162e 224 nr 2 Pn ee 

(a) Construct a relative frequency histogram for the data on the time required 

to locate and rectify the problem. Use six categories. Based on this his- 

togram, would you be surprised to hear someone claim that X is approxi- 

mately normally distributed? Explain. 

(b) Approximate the mean, variance, and standard deviation for X. 

(c) Construct a relative cumulative frequency ogive. Use this ogive to approx- 

imate the median for X. Approximately what percentage of problems can 

be located and rectified in 1.5 hours or less? 

(d) Let p denote the probability that the failure is due to a faulty microproces- 

sor chip. Assume that even though p is unknown its value is the same for 

each chip. Theoretically, Y follows a point binomial distribution with para- 

meter p. What is the theoretical mean for Y? Approximate this mean based 

on these data. If asked to approximate the probability that a future failure 

is due to the failure of a microprocessor chip, what would you say? 
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(e) What is the theoretical variance for Y? Use your answer to part (d ) to ap- 

proximate the variance of Y. Use the sample variance to approximate Cy. 

Did you get the same result? Which answer is unbiased for ay? 

(f) Use the technique of Exercise 25 to estimate oy. Compare your answer to 

that of part (db). 

(g) Construct a boxplot for the data on x. 

Most people are familiar with sparklers burned to celebrate New Year’s Day 

and the Fourth of July. Two random variables are of interest. These are X, the 

length of the chemical coating that covers the tip of the sparkler, and ¥, the burn 

time of the sparkler in seconds. These data are obtained on these random vari- 

ables (based on data gathered in 1993-1994 by students at Radford University 

and Virginia Polytechnic Institute and State University): 

x y ot y 

(in) (s) (in) yD 

4.5 29 4.3 22 

3.6 26 3 21 

4.0 os) 4.5 30 

3s] 25 4.6 22 

4.0 27 4.6 25 

3H 27 59 20 

4.0 28 3)9) 13 

4.0 25 3.8 19 

3.8 25 yy 28) 

4.0 28 3.6 25 

3.8 24 3.6 27 

4.] is 3.6 18 

og 22 She) 1] 

4.] 25 ahi 24 

BY) 24 Sif! 23 

4.2 26 4.3 26 

3.8 24 3h) 2 

(a) Construct a stem-and-leaf diagram for the burn time data. Use each stem 5 
times so that each stem will involve two leaves. 

(b) Construct a boxplot for the burn time data. Are any data points flagged as 
outliers? 

(c) Take a good look at the shape of the distribution as indicated by the stem- 
and-leaf diagram. Does the distribution appear to be skewed? If so, what is 
the direction of the skew? If we assume in this case that all data points are 
legitimate and not due to poor technique or recording errors, then from 
what family of random variables might these data have been drawn? Do 
you think that the “outliers” should be treated as such? Explain. 

(d) Construct a stem-and-leaf diagram for the length data. Again, use each 
stem 5 times. Does the normality assumption appear fairly reasonable 
here? 

(e) Construct a boxplot for the length data, and comment on any outliers that 
might be identified. 
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33. Let X denote the gasoline mileage obtained in tests on a newly designed SUV 

(sport utility vehicle). A sample of 21 simulated test runs yields these data: 

34. 

15 

16 

18 

17 

(a) 

(b) 
(c) 

(d) 

16 17 18 17 20 

17 18 20 18 

19 19 V7 2 

19 18 17 22 

Construct a stem-and-leaf diagram for these data. Do the data suggest that 

X is normally distributed? 

Calculate the mean and median for this sample. 

Calculate the standard deviation and variance for this sample. 

Find the values of g, and q; and the iqr for the sample. Compare these val- 

ues to those obtained via a TI83 calculator or any other technology tool 

that you have at your disposal. 

In designing airplanes and airplane seats it is important to consider such vari- 

ables as height and weight of passengers. A random sample of 100 adult male 

passengers yielded these weights: 

212.8 256.3 278.1 298.3 

N37) 257.0 278.2 298.4 

214.2 258.6 279.1 299% 

PTI 259.1 279.6 300.8 

219.8 DID 279.9 300.9 

220.0 261.6 283.0 301.1 

224.5 262.5 283.1 SOMES, 

YAS 3 265.2 283.6 B02 

227.8 267.0 284.9 304.8 

230.8 267.9 285.0 306.6 

Payal 268.1 286.0 306.8 

233.8 268.3 286.3 310.5 

BHO Il 269.1 286.6 310.6 

Pea T 269.5 286.6 310.9 

239%), DIDI 286.8 310.9 

241.0 Paes 286.9 312.4 

243.3 271.8 289.3 313.8 

244.7 Dei 290.4 316.0 

246.1 HIBS 291.0 316.9 

249.8 274.8 291.2 B20 

250.9 Die 293.8 SAS 

DW) ZIP 296.1 Bylo) 

USP] 275.8 296.1 3395) 

254.9 276.8 2 Oia 342.4 

255.4 277.6 DoS) 353.6 

(a) 
(D) 

(c) 

(d) 

Calculate x and s. 

Use whatever technology tools you have available to construct a histogram 

for these data. 

It is thought that adult male weight is normally distributed with 4. = 213 

pounds and a = 30 pounds. Do your findings tend to support this notion? 

Figure 6.13 shows the ogive, the graph of the relative cumulative frequency 

distribution, for these data. Use it to estimate g,, g3, and the median. 
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FIGURE 6.13  Ogive for the data of Exercise 6.34. 

35 

36 . 

(e) Use the textbook method or any other technology tool to estimate qj), 43, 

and the median, and compare these values to your graphical estimates. 

A study of the lights used at railroad-highway grade crossings is conducted. The 

purpose of the study is to compare two types of lamps. These are 25-watt lamps 

to which a low warming voltage is applied during the off portion of the flashing 

cycle and 25-watt standard lamps. The data obtained in the study are found on 

the website. Variables are observation number, type of lamp with | = warmed 

lamp and 2 = standard lamp, and life span in thousands of hours. 

(a) Plot a histogram for each type of lamp, and discuss the shape of the distri- 

bution from which each sample was drawn. 

(b) Find the mean, median, standard deviation, and variance for each sample. 

Compare the values of these statistics. Do the samples seem similar in any 
way? 

(c) Construct a boxplot for each sample, and note any outliers that are identified. 

(d) If outliers are found, delete them and recompute the statistics requested in 

part(b) to see the effect that these outliers have on each statistic. 

It is known that power surges or line spikes can damage sensitive electronic 

equipment. A study of these surges is conducted. The purpose of the study is to 

ascertain whether or not there are differences in the frequency of these surges 

among the seven days of the week. Date for the study is found on the website. 

Variables are observation number; day, with m = Monday, t = Tuesday, w = 
Wednesday, th = Thursday, f = Friday, s = Saturday, and sn = Sunday; and 
number of spikes per day. 

(a) Obtain descriptive statistics on the number of spikes per day for each day 
of the week. Discuss any differences among days that appear to exist. 

(b) Construct boxplots for each day, and use the boxplots for a visual compar- 
ison of days. 



CHAPTER 

ESTIMATION 

n Chap. 6, we found that once the family to which a random variable belongs is 
determined, the problem of approximating or estimating the numerical value of 

pertinent parameters remains. Even though we were able to define sample statistics 
that allow us to estimate the mean, variance, and standard deviation of a random 

variable in a logical manner, we were unable to assess their effectiveness. In this 

chapter we consider the mathematical properties of these statistics. We also present 

a brief introduction to the theory of estimation. The ideas developed here will be 
used extensively throughout the remainder of the text. 

7.1 POINT ESTIMATION 

In an estimation problem there is at least one parameter 6 whose value is to be ap- 

proximated on the basis of a sample. The approximation is done by using an appro- 

priate statistic. A statistic used to approximate or estimate a population parameter 0 

is called a point estimator for 6 and is denoted by 6 (the symbol is called a “hat”); 

the numerical value assumed by this statistic when evaluated for a given sample is 

called a point estimate for 0. For example, in estimating the mean coal consumption 

by electric utilities for a given year (see Example 6.3.1), the statistic X was used. 

Thus X is a point estimator for jz and we write & = X. In Example 6.3.1 we evalu- 

ated this statistic for a particular sample and obtained the value 408.3 million tons. 

This number is called a point estimate for w. Note that there is a difference in the 

terms “estimator” and “estimate.” The estimator is the statistic used to generate the 

estimate; it is a random variable. An estimate is a number. 

Once a logical point estimator for a parameter 6 has been developed, the nat- 

ural question to ask is, “How good is this estimator?” Obviously, we want the esti- 

mator to generate estimates that can be expected to be close in value to 6. This can 

be expected to occur if the estimator 6 possesses two properties. 

225 
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Desirable Properties of a Point Estimator 

1. 6 to be unbiased for 0. 

2. @ to have a small variance for large sample sizes. 

The word “unbiased” was explained graphically in Chap. 6. Basically, it means 

“centered at the right spot,” where the right spot is the parameter being estimated. 

The term “unbiased” is a technical term. To be able to prove analytically that an es- 

timator 6 is an unbiased estimator for a parameter 6, we need a formal definition for 

the term. This definition is given here. 

Definition 7.1.1 (Unbiased). An estimator @ is an unbiased estimator for a 

parameter 6 if and only if E[@] = 0. 

Recall that 6 is a statistic; therefore it is also a random variable and, as such, 

has a mean, or expected, value. To say that 0 is unbiased for @ implies that the mean 

of the estimator 4 is equal to the parameter 6 that it is estimating. Thus an estimator 

fi is an unbiased estimator for yz if and only if E[@] = uw; an estimator & is unbi- 

ased for o? if and only if E[é?] = o°; an estimator & is unbiased for o if and only 
if E[G] = o. Let us reexamine the estimators X, S*, and S developed in Chap. 6 in 

light of this new definition. 

Theorem 7.1.1. Let X;, X, X3, ..., X, be a random sample of size n from a 

distribution with mean jp. The sample mean, X, is an unbiased estimator for LL. 

Proof. By Definition 6.3.1, 

E[X] = E[1/n(X, + X, + X3+---+X,)] 

By the Rules for Expectation (Theorem 3.3.1), 

E[X] = 1m(E[X,] + E[X,] + ELX3] + +--+ E[X,]) 

INCE A] 5X5, ay ney « X,, constitutes a random sample from a distribution with mean j, 
each of these random variables has mean yj. Therefore 

EIX]=Wn(u + wtp t---+p)=1/n(mm) = 
n terms 

and the proof is complete. 

It is important to realize that since 6 is a statistic, in repeated sampling the es- 
timates generated will vary from sample to sample. To say that 6 is unbiased for @ 
implies that these estimates vary about 6; it also implies that the average value of 
these estimates can be expected to lie reasonably close to @. For example, since X is 
unbiased for ju, for k repetitions of an experiment the observed sample means x, 
X9, X3,..., X, will vary about yz and the average value of these k estimates should 
lie reasonably close to pw. 
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FIGURE 7.1 

Plot of experimental x values of Example 7.1.1. 

Example 7.1.1. Consider the experiment of rolling a single fair die. Let X denote the 
number obtained. X is discrete, with density given by 

f(x) = 1/6 Ml 2 As, 6 

The average value of X is 

p= EX] =a x7 @) = 3.5 

Now consider tossing a single die 30 times and recording the average toss, x. If 
this process is repeated many times the x values will vary from sample to sample. 

Since X is an unbiased estimator for the true average value, jz, the observed xX values 

are expected to vary around the value 3.5. This experiment was conducted in class 56 
times. The results were as follows: 

3.43 8:33 3.60 7) 3750) AO ee O U7 3:33 3.86 3.80 3.00 

3.30 3.40 4.00 3.83 3.43 Je) Oi 3.47 3:28 3.20 3.76 

3.50 3.70 4.13 JO 3.42 Boo) 3.47 3.80 Boe 3.20 Boll 

3.63 3.98 3138 B50 3.47 4.33 3)3)3) 3.33 3.47 S03} 3.90 

B32 4.21 3.63 3.67 SS) 3.43 3.40 BS)3) 3.63 3.42 3.67 
Za) 

Figure 7.1 shows a dot plot of these data. Notice that, as expected, the x values vary 

and the value 3.5 is close to the center of the data points. The average of the 56 x val- 

ues 1s 3.548, a little higher than the ideal theoretical value of 3.5. 

It is equally important to understand what the term “unbiased” does not imply. 

It does not imply that any one estimate will be close in value to the parameter being 

estimated. In reference to Example 6.3.1, the estimated mean coal consumption by 

electric utilities was = x = 408.3 million tons. This estimate is unbiased in the 
sense that it was generated by means of the unbiased estimator X. This alone does 

not guarantee that the actual mean coal consumption by electric utilities across the 

country is anywhere close to 408.3 million tons. This is unfortunate. Usually, statis- 

tical studies are not repeated over and over so that the estimates obtained can be av- 

eraged. In general, only one sample is drawn; one estimate is obtained. To have 

some assurance that this estimate is close in value to 6, the parameter being esti- 

mated, ideally the estimator used not only should be unbiased, but also it should 

have a small variance for large sample sizes. In this way, even though the estimated 

values fluctuate about 6, the variability is small. Each estimate produced can be ex- 
pected to be fairly close in value to 6. Theorem 7.1.2 shows that X has this property. 
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Theorem 7.1.2. Let X be the sample mean based on a random sample of size n 

from a distribution with mean y and variance o*. Then 

The proof of this theorem is based on the Rules for Variance (Theorem 3.3.3) 

and is similar to that of Theorem 7.1.1. Note that since a? is constant, as the sample 

size n increases, the variance of X, 77/n, decreases and can be made as small as we 

wish by choosing n sufficiently large. This implies that a sample mean based on a 

large sample can be expected to lie reasonably close to 44; one based on a small 

sample may vary widely from the actual population mean. This points out the ad- 

vantages of working with a large sample and the danger of placing too much em- 

phasis on conclusions drawn from small samples. Keep in mind that many of the 

examples and exercises presented in this text are based on small samples. This is 

done for illustrative purposes only. We do not mean to imply that samples this small 

are common in research. 

Since the standard deviation of any random variable is the square root of its 

variance, the standard deviation of the sample mean is the square root of the variance 
of X. Thus the standard deviation of X is \/a?/n = a/\/n. This standard deviation 

plays a vital role in the development of techniques used in making inferences on the 

true value of uw based on information concerning the observed value of x. The name 

given to this special standard deviation is standard error of the mean. 

Definition 7.1.2 (Standard error of the mean). Let X denote the sample 
mean based on a sample of size n drawn from a distribution with standard 

deviation a. The standard deviation of X is given by a/ Van and is called the 
standard error of the mean. 

In Chap. 6 we defined the sample variance S? by dividing S"_ ,(X, — X)? by 
n — |. This was done so that the resulting estimator would be unbiased for a. This 

result is stated formally in Theorem 7.1.3. The proof of this theorem is found in 
Appendix C. 

Theorem 7.1.3, Let S* be the sample variance based on a random sample of 
size n from a distribution with mean yw and variance o. S$? is an unbiased 
estimator for o?. 

It should be noted that even though S? is an unbiased estimator for 0, it can 
be shown that S is not unbiased for o (see Exercise 8). This emphasizes the fact that 
unbiasedness is desirable in an estimator but not essential. 
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7.2 THE METHOD OF MOMENTS AND 
MAXIMUM LIKELIHOOD 

In this section we consider two methods for deriving point estimators for distribu- 
tion parameters. The first, called the method of moments, is a simple method that 
was first proposed by Karl Pearson in 1894. The second, called the method of max- 
imum likelihood, is more complex. It was used by C. F. Gauss to solve isolated 
problems over 170 years ago. In the early 1900s the method was formalized by 
R. A. Fisher and has been used extensively since that time. 

To begin, recall that terms of the form E[X*] (k = 1, 2, 3,...) are called the 
kth moments for X. Since an expectation is a theoretical average, logic implies that 
the moments for X can be estimated via an arithmetic average. That is, an estimator 
M, for E[X*] based on a random sample of size n is 

n Yk M=>= 
i=1 7 

For example, 

M, = 3) (X,/n) = X 

M, Ss (X?/n) 

M, = S (X3/n) 
i=1 

and so forth. 

The method of moments exploits the fact that in many cases the moments for 

X can be expressed as a function of 6, the parameter to be estimated. We can often 
obtain a reasonable estimator for 6 by replacing the theoretical moments by their es- 

timators and solving the resulting equation for 0. 

You have already used the technique quite naturally in solving some of the 

problems in the last section! We now formalize the idea. The technique is illustrated 

by finding the method of moments estimator for the parameter p of a binomial ran- 

dom variable. 

Example 7.2.1. A forester plants five rows of 20 pine seedlings, each row to serve as 

an eventual windbreak. The soil and wind conditions to which the seedlings are sub- 

jected are identical. The variable being studied is X, the number of seedlings per row 

that survive the first winter. We are dealing with a random sample of size m = 5 from 

a binomial distribution with parameters n = 20 and p unknown. We want to use the 

method of moments to derive an estimator for p. To do so, note that since X is binomial, 

E[X] = np = 20p 

We now replace the first moment of X, E[X], by its estimator M, = (2}_,X;)/5 = oe 

to obtain the equation 

xX =20p 

This equation is solved for p to obtain the estimator 
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p=x/20 

When the experiment is conducted, these data result: 

x, = 18 x; =15 x; = 20 

xX, = 17 x, = 19 

For these data x = (>}_,x;)/S = 17.8. The method of moments estimate for p, the 

probability that a seedling will survive the first winter, is 

p = x/20 = 17.8/20 = .89 

Occasionally there are two parameters, 6, and 63, to be estimated from a sin- 

gle sample. To use the method of moments in this case, we must obtain two equa- 

tions relating the moments of the distribution to these parameters. We then replace 

the theoretical moments by their estimators and solve the resulting equations simul- 

taneously for A, and 4. This idea is illustrated by finding estimators for @ and f, the 

parameters that identify the gamma distribution. 

Example 7.2.2. Let X;, X>, X3,..., X,, be a random sample from a gamma distri- 

bution with parameters a and 8. From Theorem 4.3.2 we know that E[X] = aB and 

Var X = aB?. Recall that since Var X = E[X?] — (E[X])?, the first two moments of 

X are functions of @ and f. The equations relating the moments to these unknown pa- 
rameters are 

E[X] = aB 

E[X?] — (E[X])?? = aB? 

We now replace E[X] and E[X?] by their estimators, M, and M), respectively, to 
obtain 

M, = @B 

M, =F Mj = ap’ 

Solving this set of equations simultaneously, we see that 

M, — M?=M,B 

This implies that 

B =(M, — MIM, 

and 

& = M,/B = M3/(M, — M2) 

Maximum Likelihood Estimators 

The maximum likelihood method for deriving estimators is more complex than the 
method of moments. However, it is based on an appealing notion. Recall that the 
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density f for a random variable X usually has at least one parameter 6 associated 

with it. Assume that we have a random sample x,, x, x3, ..., Xx, available. The 

method of maximum likelihood in a sense picks out of all the possible values of 6 

the one most likely to have produced these observations. Before formalizing the 

method, let us demonstrate the idea in a simple context. 

Example 7.2.3. Water samples of a specific size are taken from a river suspected of 

having been polluted by improper treatment procedures at an upstream sewage dis- 

posal plant. Let X denote the number of coliform organism found per sample, and as- 

sume that X is a Poisson random variable with parameter k. Let x), x2, x3,..., x, bea 

random sample from the distribution of X. We want to determine the value of k that 

gives the highest probability of observing this sample. Since random sampling implies 

independence, 

PLX, = x1, Xo = X2, sietees X,, = ml 

= P[X, = x, JP[X, = X>] on 6 P[X, = Xa 

i=1 

Recall that the density for X is given by 

1 hes 

P[X =x] =f = Ole 
x! 

Therefore the probability of obtaining the given sample is 

n =K yo 

T% =) = [fe = I 
i=] i=l i* i=1 

Note that this probability is a function of k, which we denote by L(k). Using the laws 

of exponents, 

ek krta% 

LU age 
I]:! 
= 

This function is called the “likelihood function.” It gives us the probability of observ- 

ing the values x), x7, ... ,X, as a function of the parameter k. We want to find the value 

of k that maximizes this probability. That is, of all the possible values for k, we want 

to find the one that gives us the highest probability of observing the values that we did 

observe. To find this value of k, we use elementary calculus to maximize the likeli- 

hood function. This can be done directly. However, to simplify the process, we first 

take the natural logarithm of L(k) and use the laws of logarithms to simplify the re- 

sulting expression 

n 

In L(k) = —nk + >) x; Ink — In]; 
; i=l i=1 

The value of k that maximizes In L(k) also maximizes L(k). Therefore, to complete the 

derivation, we differentiate In L(k) with respect to k, set the derivative equal to 0, and 

solve for k: 
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Since this procedure does not give us the exact value of & but rather provides a logical 

method for estimating k, we write k = X. That is, the sample mean is the “maximum 

likelihood estimator” for the parameter k of a Poisson random variable. 

Suppose that a random sample of size 4 yields these data: 

x; = 12 x, = 15 x, = 16 xy=17 

Since the value of k that is most likely to have produced this sample is x = 15, it is nat- 

ural to take this value as our estimate for k. 

Although our example involves a discrete random variable, the same general 

method is used in the continuous case. This method is summarized as follows: 

Method of Moments Technique for Estimating 6 

1. Obtain a random sample x), x2, x3, ..., %, from the distribution of a random 

variable X with density f and associated parameter 0. 

2. Define a function L(@) by 

E(@) = [][f@)) 
i=1 

This function is called the likelihood function for the sample. 

3. Find the expression for @ that maximizes the likelihood function. This can be 
done directly or by maximizing In L(6@). 

4. Replace 0 by @ to obtain an expression for the maximum likelihood estimator 
for 6. 

5. Find the observed value of this estimator for a given sample. 

As with the method of moments, the maximum likelihood procedure can be 
applied when the density for X is characterized by two parameters. We illustrate the 
technique by finding the maximum likelihood estimators for jw and o?, the mean 
and variance of a normal random variable. 

Example 7.2.4. Let x),.¥),.43,...,x, be a random sample from a normal distribution 
with mean yu and variance a. The density for X is 

f(x) = the e 2 pyloP 

V200 

The likelihood function for the sample is a function of both yz and o. In particular, 
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Li jh, G&) = Oe 
= TO 

fitalkay e (/2e?) 3" (4j-p)y? 

Oo 

The logarithm of the likelihood function is 

=(1/2)[(x,— w/o}? 

In L(w, 0) = -nIn V2m - ning — (1202) 8 (x; — wy? 
i 

To maximize this function, we take the partial derivatives with respect to yz and a, set 
these derivatives equal to 0, and solve the equations simultaneously for ww and a: 

A Taig GO Tees) 

OM 

] n 

ee 
AGN) add. n (4p)? a be 

00 : 

Sie SHI AW) or r=| osu] 
i=1 

Realizing that these are not the true values of ps and co? but are only estimates, we see 

that the maximum likelihood estimators for these parameters are 

The method of moments estimator for a parameter and the maximum likeli- 
hood estimator often agree. However, if they do not, the maximum likelihood esti- 

mator is usually preferred. 

7.3 FUNCTIONS OF RANDOM _ 
VARIABLES—DISTRIBUTION OF X 

There is one drawback to point estimation. It yields a single value for the unknown 

parameter 0. Is there any assurance that this estimate is even close in value to 6? 

The best answer is that in most cases the point estimators used are logical. To get an 
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idea not only of the value of the parameter being estimated, but also of the accuracy 

of the estimate, researchers turn to the method of interval estimation or confidence 

intervals. An interval estimator is what the name implies. It is a random interval, an 

interval whose endpoints L, and L, are each statistics. It is used to determine a nu- 
merical interval based on a sample. It is hoped that the numerical interval obtained 
will contain the population parameter being estimated. By expanding from a point 

to an interval, we create a little room for error and in so doing gain the ability, based 
on probability theory, to report the confidence that we have in the estimate. 

In later chapters we shall derive confidence intervals for many important pa- 

rameters. To do so, we must know the distribution of some key random variables. In 

this section we consider a technique for identifying the distribution of a random 

variable from its moment generating function. This technique depends on the result 

given in Theorem 7.3.1. 

Theorem 7.3.1. Let X and Y be random variables with moment generating 

functions my(t) and my(t), respectively. If my(t) = my(t) for all t in some open 

interval about 0, then X and Y have the same distribution. 

The proof of this theorem is based on transform theory and is beyond the 

scope of this text. The theorem implies that the moment generating function, when 

it exists, Serves as a “fingerprint” for the random variable. We illustrate this idea by 

proving Theorem 4.4.3, the “standardization” theorem for normal random variables. 

Example 7.3.1. (Proof of the standardization theorem) Let X be a normal random 

variable with mean yw and variance a’. Recall from Theorem 4.4.1 that the moment 

generating function for X is 

my(t) = E[e*] = enttee2 

The moment generating function for a standard normal random variable Z is 

m,(t) = ett (y772 = et? 

Let Y= (X — p)/o = (1/a)X — w/o. The moment generating function for Y is given by 

my(t) —_ E| e*] = E [eGo = Hie) 

= E[ ee! pio) 

=— e! mo R | eda)x) 

4 

Note that Ele“*] = m(/a) = e+e", Substituting, we obtain 

my(t) = el -Mo)te(ulo)t+ 17/2 — et !2 = m,(t) 

We have shown that Y and Z have the same moment generating function. By Theorem 
7.3.1 these variables have the same distribution. In particular, they are both standard 
normal random variables. 

Many of the statistics used in data analysis entail summing a collection of ran- 
dom variables. The following theorem together with Theorem 7.3.1 will help to de- 
termine the distribution of such statistics. 
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Theorem 7.3.2. Let X, and X, be independent random variables with moment 

generating functions my (t) and my,(t), respectively. Let Y = X, + X>. The 

moment generating function for Y is given by 

my(t) = my (t)my,(t) 

Proof. By definition 

my(t) = Ele | = Eee | = Ele te 2 

Since X, and X, are independent, e’*' and e'* are also independent. By Theorem 5.2.2 

my(t) = E[e*1e%] = Efe™ |E[e™] = my (t)my,(t) 

This theorem can be extended easily to include a sum of more than two ran- 

dom variables. That is, we can say that the moment generating function for the sum 

of a finite number of independent random variables is the product of the moment 

generating functions of the individual variables. The requirement that the random 

variables be independent is not restrictive, since in most cases the sum of interest is 

a function of the elements of a random sample. The term “random sample” implies 

independence. (See Definition 6.1.1.) Theorem 7.3.2 is illustrated by showing that 

the sum of a collection of independent normal random variables is normal. 

Example 7.3.2. (Distribution of the sum of independent normally distributed 

random variables) Let X,, X>, X3, ..., X,, be independent normal random vari- 

ables with means j1;, (>, [3,..- , My and variances a7, 03, 03,..., 04, respectively. 
Let Y= X, + X, + X; +--+ + X,,. Note that the moment generating function for X; 

is given by 

TG So ae P= th DS, anes 

and the moment generating function for Y is 

Mmy(t) = Tm) = ex ( > a) ar & ai)e/2| 
i=] i=" i=l 

The function on the right is the moment generating function for a normal random vari- 

able with mean ps = D?_, 1; and variance 0? = D'_, 07. 

Distribution of X 

One of the more useful statistics that we have studied is X, the sample mean. Since 

Xisa statistic, it is also a random variable. It makes sense to ask, “What is the dis- 

tribution of X?” We have already seen that the center of location for X is p, the 

mean of the population from which the sample is drawn. We have also seen that its 

variance is o2/n, the original population variance divided by the sample size. We 

have not yet mentioned the type of distribution possessed by the statistic. Does X 

follow some distribution such as the gamma, uniform, or normal distributions that 
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we have already studied, or must we introduce a new distribution now? The next 

theorem, whose derivation is outlined in Exercise 38, will help us to answer this 

question. 

Theorem 7.3.3. Let X be a random variable with moment generating function 
my(t). Let Y = a + BX. The moment generating function for Y is 

my(t) = e*'my( Br) 

We illustrate the use of this theorem in a numerical context. 

Example 7.3.3. Let X denote the maximum wind speed per day recorded at the 

weather station of a particular locality. Assume that X is normally distributed with 

mean 10 miles per hour (mph) and standard deviation 4 mph. Engineers are construct- 

ing a bridge over a deep canyon in the area. They suspect that the maximum wind 

speed at the bridge site is given by Y = 2X — 5. What is the distribution of Y? To an- 
swer this question we first note that the moment generating function for X is 

my ( t) — ebttaot/2 

= grt 1617/2 

We next apply Theorem 7.3.3 with a = —5S and B = 2 to see that the moment gener- 
ating function for Y is 

my(f) = ete 10(21) + 16(2t)7/2 

a elstt 6417/2 

This is the moment generating function for a normal random variable with mean 15 
mph and variance 64. Since the moment generating function for a random variable is 
its fingerprint, we know that the maximum speed at the bridge site is normally dis- 
tributed with an average speed of 15 mph and a standard deviation of 8 mph. 

Theorem 7.3.3 is interesting in its own right, but its primary purpose at this 
time is to help us derive the next very important theorem. This theorem answers the 
question posed earlier concerning the distribution of X. In particular, it assures us 
that when sampling from a normal distribution the random variable Y will itself be 
normally distributed. 

Theorem 7.3.4 (Distribution of Y—normal population). Let X,, X5,..., X, 
be a random sample of size n from a normal distribution with mean be and 
variance o*. Then X is normally distributed with mean and variance a7/n. 

The derivation of this theorem is not hard. It is outlined in Exercises 38 to 42. 
We feel that by working through the derivation for yourself you will have a better 
understanding of the point being made. The other exercises presented are also im- 
portant. They contain some results that will have major practical consequences later. 
Be sure to give them all a try! 
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7.4 INTERVAL ESTIMATION AND THE 
CENTRAL LIMIT THEOREM 

As mentioned previously, point estimation does not give us the ability to report the 

accuracy of our estimate. To do this, we must turn to the method of interval estima- 

tion. The statistics used to extend a point estimate for a parameter @ to an interval of 
values that should contain the true value of 6 vary from parameter to parameter. 

However, the method for deriving these statistics is basically the same in each case. 

In this section we illustrate the method by deriving a “confidence interval” for the 

mean of a normal random variable when its variance is assumed to be known. In 

later chapters we apply the general technique illustrated here to find confidence in- 

tervals for other important parameters. 

The term “confidence interval” is a technical term that we now define. 

Definition 7.4.1 (Confidence interval). A 100(1 — a)% confidence 

interval for a parameter 0 is a random interval [L,, L,] such that 

PL =0=1)| 1-64 

regardless of the value of 0. 

One general statement will guide in the construction of most of the confidence 

intervals presented in this text: 

To construct a 100(1 — a)% confidence interval for a parameter 6, we shall find a ran- 

dom variable whose expression involves 6 and whose probability distribution is 

known at least approximately. 

Confidence Interval on the Mean: Variance 

Known 

To use this guideline to find a 100(1 — a@)% confidence interval for the mean of a 

normal random variable whose variance is known, we must find a random variable 

whose expression involves yz and whose distribution is known. This is easy to do. 

Note that in Theorem 7.3.4, we showed that under the given conditions the sample 

mean, X, is normally distributed with mean and variance o7/n. This implies that 

the random variable 

Xie 

a 

is standard normal. Note that this random variable involves the parameter yz and its 

distribution is known. We illustrate how this random variable can be used to gener- 

ate a 95% confidence interval for jz. The technique used can be generalized easily 

to obtain any desired degree of confidence. 

Example 7.4.1. Acute myeloblastic leukemia is among the most deadly of cancers. 

Past experience indicates that the time in months that a patient survives after initial 
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FIGURE 7.2 

Partition of Z needed to obtain a 95% confidence interval for pu. 

diagnosis of the disease is normally distributed with a mean of 13 months and a stan- 

dard deviation of 3 months. A new treatment is being investigated which should pro- 

long the average survival time without affecting variability. Let X,, X5, X3,..., xe 

denote a random sample from the distribution of X, the survival time under the new 

treatment. We are assuming that X is normally distributed with 0? = 9 and uw unknown. 

We want to find statistics L,; and L, so that P[L; S w = L,] = .95. To do so, consider 

the partition of the standard normal curve shown in Fig. 7.2. It can be seen that 

P[—1.96 = Z = 1.96] = .95 

In this case Z = (X — p)l(ol\V/n), and hence we may conclude that 

phage oe 4 66 hata 
a/\in 

To find L and L>, we algebraically isolate yw in the center of the preceding inequality 
as follows: 

P[-1.960/\/n < X — p < 1.960/\/n] = .9 

P[-X — 1.960/Vn < —p <= —X + 1,.960/\/n] = 95 

PLX — 1.960/\V/n < wp < X + 1.960/\V/n] = 95 

From this we see that the lower and upper bounds for a 95% confidence interval are 

L,=X-1960/V/n  L,=X+1.960/\/n 

These statistics have the property that in repeated sampling from the population, 95% 
of the numerical intervals generated are expected to contain jz; by chance, 5% will not. 
This idea is illustrated in Fig. 7.3. 

i Note that since we are assuming that a? is known, the confidence bounds, 
X + 1.96a/ Vn, just derived are statistics. Given a particular set of observations on 
X, their numerical values can be determined easily. 
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Of the intervals constructed by using [L;, L,], 95% are expected to contain jy, the true but unknown 
population mean. 

Example 7.4.2. In Example 7.1.1 fifty-six samples, each of size 30, were generated. 

Each sample was obtained by tossing of a single fair die 30 times. The sample mean 

was found for each sample. For the single die experiment, it can be shown that 

E[X?] = 15.167, and hence the variance of X is given by 

o2= Var(X) = E[X7|— E(X/? = 15:167 — G5)? = 2.92 

The standard deviation of X is \/2.92 = 1.7088. The standard error of the mean, 

o/\/ 30, has the value .3119. Thus the formula for a 95% confidence interval on yw in 

this case 1s 

X+1.96(c/\V/n) or  X+1.96(.3119) 

Each of the x values found in Example 7.1.1 is substituted into the above formula. We 

thus generate fifty six 95% confidence intervals on py. Each is trying to trap the true 

mean value of 3.5. Some will succeed, and others will fail. Theoretically, 95% or 

about 53 will succeed and 5% or about 3 will fail. How well did the experiment 
work? Figure 7.4 gives the results of this exercise. The first column gives the value 

of x, the second gives the lower 95% confidence limit, and the third shows the upper 

95% confidence limit. The fourth column, result, is coded so that its value is | if the 

true mean of 3.5 falls between the lower and upper confidence limits. The last col- 

umn states whether or not the interval in question actually trapped or missed the true 

mean. In this case, the results of our experiment agree extremely well with those pre- 

dicted by theory even though X is not normal. You will soon see why. 

Example 7.4.3. When the experiment of Example 7.4.1 is conducted, the following 

observations on X, the survival time under the new treatment, result: 
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xbar| lower] | upper result | caught | 

29 | 3.47| 2.85868 | 4.08132 | _1 | trapped | 
3.18868 | 4.41132 

3.53 | 2.91868 [4.14132 | __1 | trapped | 
20 | 2.58868 | 3.81132 | _1 | trapped | 

33 | 3.13 | 2.51868 
trapped 

trapped 

50} 2.88868 | 4.11132 | | trapped 

4.20 Smee 
| | trapped i 3.94132 

8 | 3.33] 2.71868] 3.94132] 1 | trapped| —|_36 
3.24868 | 4.47132 | | | trapped 37 | 3.56| 2.94868 | 4.17132 I 

|| trapped 38 | 3.47 
3.61132 1 | trapped 39 | 4.33] 3.71868 | 4.94132 0 | missed 
3.91132 1 | trapped ) | 3.53] 2.91868 

i cm 33 2.71868 
4.61132 1 | trapped 42 | 3.47| 2.85868 | 4.08132 
4.44132 1 | trapped 43 | 3.73] 3.11868 | 4.34132 1 | trapped 

| | trapped .90 | 3.28868 [4.51132 | 1 | trapped 

4.51132 | | trapped 5 | 3.32] 2.70868 | 3.93132 I 
3.68132 1 | trapped 4.21] 3.59868 | 4.82132 0 

; 1 | trapped 47 | 3.63 | 3.01868 | 4.24132 | | trapped 
2.61868 | 3.84132 1 | trapped 48 | 3.67] 3.05868 | 4.28132 | __1 | trapped | 

3.81132 I 49 | 3.53] 2.91868 [4.14132 | _1 | trapped | 
] 50 
] 51 | 3.40| 2.78868 | 4.01132 | _1 | trapped | 

3.70 | 3.08868 | 4.31132 I 52 | 3.53| 2.91868 | 4.14132 | 1 | trapped | 
4.13 | 3.51868 | 4.74132 0| missed | 3.63 | 3.01868 | 4.24132 | _1 | trapped | 

| 26 | 3.97| 3.35868] 4.58132| 1 2.80868 A tas 
2.80868 | 4.03132 1 ch 4.28132 | 1 | trapped | 
2.95868 | 4.18132 I 56 | _3.57| 2.95868 | 4.18132 | _1 | trapped | 

FIGURE 7.4 

Results of the experiment of Example 7.4.2. 

8.0 13.6 52 13.6 

P73) 14.2 14.9 14.5 

13.4 8.6 Hil 16.0 

14.2 19.0 L.9 17.0 

Based on these data, 44 = x = 13.88 months. This point estimate is extended to 
a 95% confidence interval by evaluating the statistics L, and L,. In particular, 

L, = % — 1.960/\V/n = 13.88 — 1.96(3/\/'16) 
= 13.88 — 1.47 
= 12.41 months 

L) =X + 1.960/\/n = 13.88 + 1.47 

= 15.35 months 

Based on these data, the interval estimate for je is [12.41, 15.35]. Does the true mean 
survival time for patients receiving the new treatment really lie between 12.41 and 
15.35 months? Unfortunately, there is no way of knowing. The interval [12.41, 15.35] 
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FIGURE 7.5 
Partition of Z to obtain a 100(1 — a)% confidence interval for LL. 

is a 95% confidence interval. This means that the procedure used is expected to trap 
95% of the time. We hope that the interval obtained from our particular sample does so. 

To obtain the general formula for a 100(1 — a@)% confidence interval on the 
mean of a normal random variable whose variance is known, we need only to parti- 
tion the standard normal curve as shown in Fig. 7.5. The algebraic argument of Ex- 
ample 7.4.1 goes through exactly as presented with the point x9); = 1.96 being 

replaced by Z,/.. This change results in the general formula given in Theorem 7.4.1. 

Theorem 7.4.1 [100(1 — a)% Confidence interval on « when co? is known]. 

Let X,, X>, X3,..., X, be arandom sample of size n from a normal distribution 

with mean yw and variance 07. A 100(1 — a)% confidence interval on p is 

given by 

Xe ZanolVn 

Let us point out that the preceding confidence interval is very idealistic. It is 

usable only in settings in which the population standard deviation, a, is known. In 

practice, this is seldom the case. In most real life problems both 4 and a must be 

estimated from available data. When this occurs, the previous confidence interval is 

not appropriate. In Sec. 8.2 we shall show how to overcome this problem. Mean- 

while, view this interval as a prototype for confidence intervals in general. It is use- 

ful as an aid for understanding how confidence intervals are derived and interpreted. 

There are several things to notice concerning the preceding formula. First, 

every confidence interval on w is centered at x, the unbiased point estimate for pu. 

Second, the length of the confidence interval is dependent on three factors. These 

are the desired confidence, the amount of variability in X, and the sample size (7). 

The desired confidence determines the value of the z point used. The higher the con- 

fidence desired, the larger this value becomes. When a random variable displays a 

high degree of variability, it is hard to predict its behavior. Thus the larger o be- 

comes, the longer the confidence interval must become. Sample size works in re- 

verse. With all other factors held constant, as n increases, the length of the 
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confidence interval decreases. We can say that the length of a confidence interval on 

yt is directly proportional to o and to the confidence desired and inversely propor- 

tional to the sample size. 

Central Limit Theorem 

There is one further point to be made. Theorem 7.4.1 does require that the base vari- 

able X be normal. If this condition is not satisfied, then the confidence bounds given 
can be used as long as the sample is not too small. Empirical studies have shown 

that for samples as small as 25, the above bounds are usually satisfactory even 

though approximate. This is due to a remarkable theorem, first formulated in the 

early nineteenth century by Laplace and Gauss. This theorem, known as the Central 

Limit Theorem, gives the distribution of X when sampling from a distribution that 

is not necessarily normal. 

Theorem 7.4.2 (Central Limit Theorem). Let X,, X,,...,X,, be a random 

sample of size n from a distribution with mean yw and variance a”. Then for large 

n, X is approximately normal with mean yp and variance o?/n. Furthermore, for 

large n, the random variable (X — p1)/(a/ Vn) is approximately standard normal. 

Example 7.4.4 illustrates the Central Limit Theorem graphically. 

Example 7.4.4. Consider a single die toss. We have tossed a single die 30 times and 

have repeated the experiment 56 times to obtain 56 x values. According to the Central 

Limit Theorem, a histogram of these data is expected to exhibit an approximate bell 

shape. The center of the bell is expected to lie close to 3.5, the true value of yu; the 

variance of the data should be close in value to .0973, the true value of o?/n; and the 

standard deviation of the data should approximate well the true value of the standard 

error of the mean, .3119. Figure 7.6 shows the histogram for the data of Example 

7.1.1, Notice that the bell shape is not perfect. There is a slight right skew due to the 

fact that there were a few relatively large ¥ values obtained via the experimentation. 
The mean for these data is 3.548, a little higher than the true mean of 3.5; the sample 
variance is .0911, a little smaller than the theoretical value of .0973; the estimated 
value of the standard error of the mean based on these data is .3019, a little smaller 
than the theoretical value of .3119. As the size of the sample upon which each x value 
is based increases, the histogram is expected to exhibit a more pronounced bell shape 
and the estimates for the mean, variance, and standard deviation of X are expected to 
agree more closely with those predicted by theory. 

Please note the differences between the Central Limit Theorem and Theorem 
7.3.4. The former does not require that sampling be from a normal distribution, 
whereas normality is assumed in the latter; the former claims that X will be ap- 
proximately normally distributed for large sample sizes, whereas the latter claims 
that X will be exactly normally distributed regardless of the sample size involved. 

The Central Limit Theorem is important to us for two reasons. First, it allows 
us to make inferences on the mean of a distribution based on relatively large samples 
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FIGURE 7.6 Histogram of the 56 x values given in Example 7.1.1. 

without having to be overly concerned as to whether or not we are sampling from a 

normal distribution. Second, it allows us to justify analytically the normal approxi- 
mations to the binomial distribution. 

Example 7.4.5. (Normal Approximation to the Binomial Distribution) Let X,, 

X,,...,X, be arandom sample drawn from a point binomial distribution (see Exer- 

cise 45, Chap. 3). Recall that each of these random variables is binomial with para- 

meters | and p. Each has mean p, variance p(1 — p), and moment generating function 

of the form q + pe’. Let X = 2#_,X;. Since Xj, X,... , X,, are independent, the mo- 

ment generating function for X is given by 

Tien (Ga pe le (gape). 
i= 

This is the moment generating function for a binomial random variable with parame- 

ters n and p. By the Central Limit Theorem X = (2"_,X;)/n = X/n is approximately 

normal with mean p and variance p (1 — p)/n. Now consider the binomial random 

variable n(X/n) = X. Since X is a linear function of the approximately normal random 

variable X/n, we can apply Exercise 41 with a, = n and a; = 0,7 # 1, to conclude that 
X is approximately normal with mean np and variance [n*p(1 — p)\/n = np(1 — p). 

Exercises 49, 50, 55, 56, 58,61, and 62 will give you practice in the applica- 

tion of the Central Limit Theorem. 

CHAPTER SUMMARY 

In this chapter we considered the ideas of point and interval estimation. We intro- 

duced three types of point estimators. These are unbiased estimators, method of 
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moments estimators, and maximum likelihood estimators. Unbiased estimators are 

estimators whose mean value is equal to the parameter being estimated. We 

showed that X is unbiased for js, that S? is unbiased for o?, but that S is not unbi- 
ased for a. Method of moments estimators are derived by noting that the parame- 

ters that characterize a distribution are often functions of the k th moments of the 

distribution. Maximum likelihood estimators are found by choosing the value of 

the parameter @ that maximizes the likelihood function. In this way in some sense 

we pick out of all possible values of @ the one that is most likely to have produced 

the observed data. 

In order to develop the idea of interval estimation, we introduced some theo- 

rems that help us to determine the distribution of a random variable. In particular, 

we noted that the moment generating function for a random variable is its “finger- 

print.” To determine its distribution we look at its moment generating function. This 

technique was used to verify the standardization theorem used in earlier chapters. It 

was also used to show that a linear function of independent normal random vari- 

ables is normal, that a sum of independent chi-squared random variables is chi- 

squared, and that X is normally distributed when sampling from a normal 

distribution. 

We introduced the general concept of a 100(1 — a@)% confidence interval on a 

parameter 6. This is a random interval, an interval of the form [L,, L,], where L, and 

L, are statistics with the property that a priori @ will be trapped between L, and L, 

with probability | — a. We used information just developed on the distribution of X 

to develop specific formulas for constructing a 100(1 — a@)% confidence interval on 

the mean of a normal distribution. Finally, we considered the Central Limit Theo- 
rem. This theorem concerns the approximate distribution of X when sampling from 

a nonnormal distribution. It allows us to make inferences on the mean of any distri- 

bution when relatively large samples are available. It also allows us to justify some 

of the approximation techniques presented earlier in the text. 

We introduced and defined important terms that you should know. These are: 

Point estimator Point estimate 

Unbiased Weighted mean 

kth moments Likelihood function 

Confidence interval or interval estimator Interval estimate 

Methods of moments estimator Sample standard error 
Standard error of the mean Maximum likelihood estimator 
Central Limit Theorem 

EXERCISES 

Section 7.1 

Li Leta aa Ate X59 be a random sample from a distribution with mean 8 
and variance 5. Find the mean and variance of X. 

2. Let X\, X>, X3,..., Xj; be a random sample from a Poisson distribution with 
parameter As. Give an unbiased estimator for this parameter. 



3: 

ESTIMATION 245 

Let X denote the number of paint defects found in a square yard section of a car 
body painted by a robot. These data are obtained: 

8 5 0 10 

0 3 1 12 

2 7 9 6 

Assume that X has a Poisson distribution with parameter As. 
(a) Find an unbiased estimate for As. 

(b) Find an unbiased estimate for the average number of flaws per square yard. 
(c) Find an unbiased estimate for the average number of flaws per square foot. 
An interactive computer system is available at a large installation. Let X denote 
the number of requests for this system received per hour. Assume that X has a 

Poisson distribution with parameter As. These data are obtained: 

2) 20 20 

30 24 15 

10 28 + 

(a) Find an unbiased estimate for As. 

(b) Find an unbiased estimate for the average number of requests received per 
hour. 

(c) Find an unbiased estimate for the average number of requests received per 

quarter hour. 

. Let X,, Xz, X3, X4, X; be a random sample from a binomial distribution with 

n = 10 and p unknown. 

(a) Show that X/10 is an unbiased estimator for p. 

(b) Estimate p based on these data: 3, 4, 4, 5, 6. 

An experiment is conducted to study the effect of a power surge on data stored 

in a digital computer. A “word” is a sequence of 8 bits. Each bit is either “on” 

(activated) or “off” (not activated) at any given time. Twenty 8-bit words are 

stored, and a power surge is induced. Let X denote the number of bit reversals 

that result per word. Assume that X is binomially distributed with n = 8 and p, 

the probability of a bit reversal, unknown. These data result: 

] a Oe) 

0 0 1 1 

0 1 2 1 

1 0 1 0 

2 2 3) 0 

(a) Find an unbiased estimate for p. 

(b) Based on the estimate for p just found, approximate the probability that in 
another 8-bit word a similar power surge will result in no bit reversals. 

(c) A data line utilizes 64 bits. Based on the estimate for p just found, approx- 
imate the probability that at most one bit reversal will occur. 

Stress tests are conducted on fiberglass rods used in communications networks. 

The random variable studied is X, the distance in inches from the anchored end 

of the rod to the crack location when the rod is subjected to extreme stress. As- 

sume that X is uniformly distributed over the interval (0, b). These data are ob- 

tained on 10 test rods: 
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10 

8 

(a) 

(b) 

(c) 

(d) 

7 1] 12 

9 10 9 13 

Find an unbiased estimate for the average distance from the anchored end 

of the rod to the crack. 

Find an unbiased estimate for the variance of X. 

Find an unbiased estimate for b. 

Find an estimate for a, the standard deviation of X. Is this estimate 

unbiased? 

Note that S is a statistic, and unless X is constant, its value will vary from sam- 

ple to sample. Therefore Var § > 0. To show that S is not unbiased for a, use 

proof by contradiction. That is, assume that E[S] = o and obtain a contradic- 

tion. Hint: Use Theorem 3.3.2. 
(Weighted means.) Assume that one has k independent random samples of sizes 

Li Tiaw lis cen n, from the same distribution. These samples generate k unbi- 

ased estimators for the mean, namely, X,, X>, X3,..., Xx. 

(a) 

(b) 

(c) 

(d) 

Show that the arithmetic average of these estimators, (X, + X, + X3 ++ °° 

+ X,)/k, is also unbiased for pe. 

Certain mineral elements required by plants are classed as macronutrients. 

Macronutrients are measured in terms of their percentage of the dry weight 

of the plant. Proportions of each element vary in different species and in 

the same species grown under differing conditions. One macronutrient is 

sulfur. In a study of winter cress, a member of the mustard family, these 

data, based on three independent random samples, are obtained: 

x, = 8 X, = .95 %3 = .7 

ny =9 ny = 3 nz, = 200 

Use the result of part (a) to obtain an unbiased estimate for yz, the mean 

proportion of sulfur by dry weight in winter cress. By averaging the three 

values .8, .95, and .7 to obtain the estimate for u, each sample is being 

given equal importance or “weight.” Does this seem reasonable in this 
problem? Explain. 

To take sample sizes into account, a “weighted” mean is used. This esti- 
mator, fly, 18 given by 

- Loe § +n X,+ mike +n, X, 

ous Ry or Ng chy 

Show that fi is an unbiased estimator for ju. 
Use the data of part (D) to find the weighted estimate for the mean propor- 
tion of sulfur by dry weight in winter cress. Compare your answer to the 
estimate found in part (>). 

Let X denote the number of heads obtained when a fair coin is tossed 4 times. 
(a) 

(b) 

What is E[X] and Var X? 

Perform the experiment of tossing a fair coin 4 times and recording the 
number of heads obtained 10 times. You thus obtain a random sample of 
size 10 from a binomial distribution with n = 4 and p = 1/2. 
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(c) Based on your 10 observations, estimate the mean and variance of X. Com- 
pare your answers to those of your classmates. Do the observed values of 
X fluctuate about the theoretical mean of 2? Do the observed values of $2 
fluctuate about the theoretical variance of 1? 

(d) Average the values of X that you have available. Is the average value close 
to 2? Average the values of S? that you have available. Is the average value 
of S? close to 1? 

Let X denote the number of heads obtained when a fair coin is tossed 4 times. 
Perform this experiment 3 times, and record the value of X for each set of four 

tosses. In this way you obtain a single sample of size 3 from a binomial distri- 
bution with n = 4 and p = 1/2. 

(a) Find the numerical value of X for your sample. 

(b) Repeat the experiment 9 more times, recording the value of X each time. 

(c) What is E[ X]? Average your 10 values of X. Is the average value close to 

the theoretical mean of 2? 
(d) What is Var X? Find the value of S? for the 10 observations on X. Does 

this value lie close to the theoretical value of 1/3? 

Consider the experiment of rolling a pair of fair dice until a sum of 7 is ob- 

tained. Let X denote the number of trials needed to obtain a sum of 7. 

(a) Notice that X is discrete. What is the distribution of X? 

(b) What is the theoretical average value of X? That is, what is ju? 

(c) What is the theoretical variance of X? That is, what is 07? 

(d) Perform the experiment described 25 times, and thus obtain a sample of 

size n = 25 observations on X. Plot a stem-and-leaf diagram for your data. 

Does the distribution appear to be symmetric? Use your data to obtain un- 

biased estimates for jz and a”. Compare your answers to the true values of 

these parameters found in parts (b) and (c), respectively. 

(e) Consider the random variable X, the average number of trials needed to 

roll a sum of 7 based on 25 trials. What is E[ X]? What is Var X? 

(f) Pool the class observations on X. Plot these values on a number line. Do 

they fluctuate about yx as expected? Find the average value of these ob- 

served X values. Is it close to z as expected? Find the variance of the X 

values. Is this sample variance close in value to 07/25 as expected? 

Ozone levels around Los Angeles have been measured as high as 220 parts per 

billion (ppb). Concentrations this high can cause the eyes to burn and are a haz- 
ard to both plant and animal life. These data were obtained on the ozone level 

in a forested area near Seattle, Washington (based on information found in 

“Twigs,” Americans Forests, April 1990, p. 71): 

160 176 160 180 167 164 

165 163 162 168 Ws 179 

170 196 185 163 162 163 

172 162 167 161 169 178 

161 

(a) Construct a double stem-and-leaf diagram for these data. Do these data ap- 

pear to be skewed? If so, in which direction? 
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(b) Construct a boxplot for these data, and identify the potential outlier that is 

flagged by this technique. Assume that the point in question is a legitimate 

data point. In this case, do you believe that it is truly an outlier or probably 

simply a natural consequence of the distribution involved? Explain. 

(c) Use these data to estimate the mean and variance of the ozone level in this 

area. 

In this exercise you will show that the most logical estimator for 07, namely, 

Y"_,(X, — X)?/n, is a biased estimator for a? and tends to underestimate the 
tiuevatiance, Lenn yer ae, X,, be arandom sample of size 7 from a distribu- 

tion with mean yw and variance o°. 

(a) Show that 27_,(X; — X)?/n = (n — 1)S?/n. 
(b) Verify that E[!_,(X; — X)?/n] # o?, thus showing that this estimator is 

not an unbiased estimator for 07. Argue that it tends to underestimate o°. 

(c) Consider the theoretical setting described in Exercise 12. Based on sam- 

ples of size n = 25, what is E[S*]? What is E[=?_, (X; — X)?/25]? 

Section 7.2 

i be, 

16. 

17, 

18. 

1); 

Suppose that when the experiment described in Example 7.2.1 is conducted, 
these data result: 

x=13, . xy =15 x5= 17 
x%=12 x= 10 

Use the method of moments to estimate p, the probability that a seedling will 
survive the first winter. 

et A ee eee X,, be a random sample of size m from a binomial distribution 
with parameters n, assumed to be known, and p. Show that the method of mo- 
ments estimator for p is p = X/n. 

Let Stee rae X, be a random sample from a Poisson distribution with para- 
meter As. Find the method of moments estimator for As. Find the method of 
moments estimator for A, the parameter underlying the Poisson process under 
observation. 
In the study of traffic flow at an intersection a Poisson process with para- 
meter A is assumed. The basic unit of time assumed is | minute. These data are 
obtained on X, the number of vehicles arriving at the intersection during a 
2-minute period: 

2 > | 3 

PP) on Gane 
te 

mn 

Use these data to estimate As, the average number of vehicles arriving during a 
two-minute period, and A, the average number arriving per minute. (Use the re- 
sults of Exercise 17.) 
Use the information obtained in Example 7.2.2 to find an estimator for a, the 
variance of a gamma random variable. Is the estimator obtained unbiased for 
a? Hint: Express M, and M, as arithmetic averages, and compare your result 
to that of Theorem 6.3.1. 
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An acid solution made by mixing a powder compound with water is used to 
etch aluminum. The pH of the solution, X, will vary due to slight variations in 
the amount of water used, the potency of the dry compound, and the pH of the 
water itself. Assume that X is gamma distributed with a and 6 unknown. From 
these data, estimate a, B, w, and a? using the method of moments: 

TZ 2.0 1.6 1.8 1 

JUD, Ye 2.6 Les Ih 3 

thes) ey 2.0 3.0 1.8 

Assume that the data of Exercise 13 are drawn from an exponential distribution 
with parameter £. Find the method of moments estimate for B. Use this to find 
the method of moments estimate for a”. Is this the same estimate as that ob- 
tained in Exercise 13(c)? 

Assume that the burn time of a sparkler as described in Exercise 32 of Chap. 6 

follows a gamma distribution with parameters @ and . Use the data of Exer- 
cise 32 to 

(a) find an unbiased estimate for the average burn time. 

(b) find the method of moments estimate for the average burn time. 
(c) find an unbiased estimate for the variance in burn time. 

(d) find the method of moments estimate for the variance in burn time. 

Find the method of moments estimator for the parameter p of a geometric 
distribution. 

Use the results of Exercise 23 and your data from Exercise 12(d) to find the 

method of moments estimate for p, the probability of rolling a sum of 7 on a sin- 

gle roll of a pair of fair dice. Compare your estimate to the true probability of 1/6. 

Using the method of moments estimator for p found in Exercise 23, find an es- 

timator for a” for the geometric distribution. Use this estimator to estimate o7 

for your data from Exercise 12(d ). Does this estimate differ from that found in 

Exercise 12(d)? If so, which estimate is closest to the true value of a7? 

Let X be normal with mean p and variance a7, both of which are unknown. 

Find the method of moments estimators for these parameters. Are the estima- 
tors obtained unbiased for their respective parameters? Explain. 

Carbon dioxide is an odorless, colorless gas that constitutes about .035% by 

volume of the atmosphere. It affects the heat balance by acting as a one-way 

screen. It lets in the sun’s heat to warm the oceans and the land but blocks some 
of the infrared heat that is radiated from the earth. This reflected heat is ab- 

sorbed into the lower atmosphere, producing a greenhouse effect which causes 

the earth’s surface to become warmer than it would be otherwise. Systematic 
measurements of CO, began in 1957 with Charles D. Keeling monitoring at 

Mauna Loa in Hawaii. 
(a) Assume that these CO, readings (in ppm) are obtained: 

319 338 S05) aay) 328 

es 340 331 34] 336 

330 330, 321 32] Shey 

320 343 350 BZ 334 

S27 pM SAO OUI G4 338T lk 332 
330 mauboeSieny 33511 334) 9 234 
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Construct a stem-and-leaf diagram for these data using 31, 32, 32, 33, 33, 

34, 34, 35 as stems. Graph leaves 0-4 on the first of each repeated stem 

and leaves 5—9 on the other. Is it reasonable to assume that the CO, level 

in the atmosphere is normally distributed? Explain. 

(b) Estimate « and a? using the method of moments estimators. 

(c) Find an unbiased estimate for a. 

Based on the data of Exercise 18, what is the maximum likelihood estimate for 

X, the average number of vehicles arriving at an intersection per minute? 

Based on the data of Exercise 27, what are the maximum likelihood estimates 

for the mean and variance of the atmospheric CO, level? 

Let X,, X>, X3,..., X,, be a random sample of size m from a binominal distri- 

bution with parameters n, assumed to be known, and p. Find the maximum 

likelihood estimator for p. Does it differ from the method of moments estima- 

tor found in Exercise 16? 

Let W be an exponential random variable with parameter B unknown. Find the 

maximum likelihood estimator for B based on a sample of size n. Does it differ 

from the method of moments estimator? 

A computer center employs consultants to answer users’ questions. The center 

is open from 9 a.m. to 5 p.m. each weekday. Assume that calls arriving at the 

center constitute a Poisson process with unknown parameter A calls per hour. 

To estimate A, these observations were obtained on X, the number of calls ar- 
riving per hour: 

8 6 12 2 

4 9 7 20 10 

(a) Find the maximum likelihood estimate for A. 

(b) Estimate the average time of arrival of the first call of the day. Hint: Con- 
sider Theorem 4.3.3. 

A study of the noise level on takeoff of jets at a particular airport is studied. The 
random variable is X, the noise level in decibels of the jet as it passes over the 
first residential area adjacent to the airport. This random variable is assumed to 
have a gamma distribution with a = 2 and B unknown. 
(a) Find the maximum likelihood estimate for B based on a sample of size n. 
(b) Use B to find an estimate for the mean value of X. Is this estimator unbi- 

ased for ju? 
(c) Find the maximum likelihood estimate for 8B based on these data: 

55 65 60 13 80 

64 oy) IB) 62 86 

69 = 100 70 82 65 

2 67 6] 95 52 

(d) Estimate the average decibel reading of these jets. 
Computer terminals have a battery pack that maintains the configuration of the 
terminal. These packs must be replaced occasionally. Let X denote the life span 
in years of such a battery. Assume that X is exponentially distributed with un- 
known parameter B. Find the maximum likelihood estimate for B based on 
these data: 
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lod 4.0 tg) 2.0 od 

Mosh Dell 4.2 1.8 2 

Jel 1S) 2.4 6.2 7.0 

3.6 1.4 5.0 3.8 1.6 

To estimate the proportion of defective microprocessor chips being produced 

by a particular maker, samples of five chips are selected at 10 randomly se- 

lected times during the day. These chips are inspected, and X, the number of de- 

fective chips in each batch of size 5, is recorded. Assume that X is binomially 

distributed with n = 5 and p unknown. Use these data to find the maximum 
likelihood estimate for p: 

1 0 l 2 0 

0 0 0 ! 0 

A new material is being tested for possible use in the brake shoes of automo- 
biles. These shoes are expected to last for at least 75,000 miles. Fifteen sets of 

four of these experimental shoes are subjected to accelerated life testing. The 

random variable X, the number of shoes in each group of four that fail early, is 

assumed to be binomially distributed with n = 4 and p unknown. Find the max- 

imum likelihood estimate for p based on these data: 

1 0 1 0 2 1 0 I 

0 I 0 0 0 1 0 

If an early failure rate in excess of 10% is unacceptable from a business point 

of view, would you have some doubts concerning the use of this new material? 

Explain. 

Section 7.3 

SF 

38. 

39. 

In each part the moment generating function for a random variable X is given. 

Identify the family to which the random variable belongs, and give the numer- 

ical values of pertinent distribution parameters. 
(a) my(t) == e2tt 9t7/2 

(b) my(t) = & 
(c) my(t) = .25e/(1 — .75e’) 
(Gyan) = (oe): 

(Cn Oe ae 
(f) my(t) = (1 - 303 
(g) m(t) = (1 - 20° 
(h) my(t) = (1 — 50)! 
(Distribution of a linear function of X.) 

(a) Let X be a random variable with moment generating function m (1). Let 

Y = a + BX. Show that my(t) = e*'my(Bt). Hint: my(t) = Ele™] = 
Efe + Pe), 

(b) Let X be anormal random variable with mean 10 and variance 4. Find the 

moment generating function for the random variable Y = 8 + 3X. What is 

the distribution of Y? 

(Distribution of a sum of independent random variables.) WetexXq Gane ve 

X, be a collection of independent random variables with moment generating 
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functions my(t) (i = 1, 2, 3,...,n, respectively). Let ap, ay, d>, .. . , @, be real 

numbers, and let 

Y= do aii a,X Eig a,X 4 sig axX3 SR 22 ae Gk, 

Show that the moment generating function for Y is given by 

n 

my(t) = eT] my (ait) 
i=] 

Note that this extends the result of Exercise 38(a) to more than one variable. 

Let X, and X, be independent normal random variables with means 2 and 5 and 

variances 9 and 1, respectively. Let Y = 3X, + 6X, — 8. Use Exercise 39 to 

find the moment generating function for Y. What is the distribution of Y? 
(Distribution of a linear combination of independent normally distributed ran- 

dom variables.) In this exercise you will prove that any linear combination of in- 

dependent normally distributed random variables is also normally distributed. Let 

X,, X>, X3, .. . , X,, be independent normal random variables with means ju; and a? 

(i = 1,2, 3,...,n, respectively). Let Gp, a), a, .. ., a, be real numbers, and let 

Y= do ate a,X ci a,X 4 a RGMOM ES FF aX. 

Use Exercise 39 to show that Y is normal with mean uw = ay + L!_,a;; and 

variance o? = 7_,a707%. 
In this exercise you will prove that when sampling from a normal distribution, 

X is normally distributed. Let X,, X,, X3,..., X,, be arandom sample from a 

normal distribution with mean p and variance o*. Use Exercise 41 to show that 

X is normal with mean mw and variance o7/n. 

Let X, and X, be independent chi-squared random variables with 5 and 10 de- 

grees of freedom, respectively. Show that X,+ X, is a chi-squared random vari- 
able with 15 degrees of freedom. 

(Distribution of a sum of independent chi-squared random variables.) In this 

exercise you will prove that the sum of a collection of independent chi-squared 
random variables also has a chi-squared distribution. Let X,, X>, X3,...,X, be 
independent chi-squared random variables with y,, y>, y3..... y, degrees of 
freedom, respectively. Let 

Foe XA oh a chs eee 

Show that Y is a chi-squared random variable with y degrees of freedom where 
Y= Die 
(Distribution of Z*.) It can be shown that the square of a standard normal ran- 
dom variable has a chi-squared distribution with y = 1. That is, the random 
variable Z* follows a chi-squared distribution with | degree of freedom. Let X), 
X5, X3,...,X,, be arandom sample from a normal distribution with mean fe and 
variance a”. Use Exercise 44 to show that 

LAO. Coy 
= 

i=1 Oe 
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has a chi-squared distribution with n degrees of freedom. 
Let X denote the time required to do a computation using an algorithm written 
in programming language A, and let Y denote the time required to do the same 
calculation using an algorithm written in programming language B. Assume 
that X is normally distributed with mean 10 seconds and standard deviation 3 
seconds and that Y is normally distributed with mean 9 seconds and standard 
deviation 4 seconds. 
(a) What is the distribution of the random variable X — Y? 
(b) Find the probability that a given calculation will run faster using A than 

when using B. 

Section 7.4 

47. 

48. 

As heat is added to a material its temperature rises. The heat capacity is a quan- 

titative statement of the increase in temperature for a specified addition of heat. 

These data are obtained on X, the measured heat capacity of liquid ethylene 

glycol at constant pressure and 80° C. Measurements are in calories per gram 
degree Celsius: 

645 654 .640 627 626 

649 .629 631 643 .633 

.646 .630 .634 631 651 

659 638 645 655 624 

658 658 658 647 665 

Past experience indicates that 7 = .01. 
(a) Evaluate X for these data, thereby obtaining an unbiased point estimate for jw. 

(b) Assume that X is normally distributed. Find a 95% confidence interval for ju. 

(c) Would you expect a 90% confidence interval for based on these data to 

be longer or shorter than the interval of part (b)? Explain. Verify your an- 

swer by finding a 90% confidence interval on yx. Hint: Begin by sketching 

a curve similar to that shown in Fig. 7.3 with 1 — a = .90 and a/2 = .05. 

(d) Would you expect a 99% confidence interval for w based on these data to 

be longer or shorter than the interval of part (b)? Explain. Verify your an- 

swer by finding a 99% confidence interval on yp. 

The late manifestation of an injury following exposure to a sufficient dose of 

radiation is common. These data are obtained on the variable X, the time in 

days that elapses between the exposure to radiation and the appearance of peak 

erythema (skin redness): 

16 12 14 16 13 9) 15 i] 

20 19 11 14 Y 13 iil 3 

8 21 16 16 12 16 14 20 

vi 14 18 14 18 13 11 16 

18 16 11 13 14 16 15 15 

(a) Even though the time at which the peak redness appears is recorded to the 
nearest day, time is actually a continuous random variable. Sketch a stem- 

and-leaf diagram for these data. Does the diagram lend support to the as- 

sumption that X is normally distributed? 
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(b) Evaluate X for these data. 

(c) Assume that 0 = 4 and find a 95% confidence interval on the mean time 

to the appearance of peak redness. Would you be surprised to hear a claim 

that 4p = 17 days? Explain, based on the confidence interval. 

When fission occurs, many of the nuclear fragments formed have too many 

neutrons for stability. Some of these neutrons are expelled almost instanta- 

neously. These observations are obtained on X, the number of neutrons released 

during fission of plutonium-239: 

ee ny hae ee 
A Nie i gs eames SO ak ic ete 
cag) same aR: Vale Sila’ ‘eek ehlnee di 
Bo aoe Niet aarp ean 
a9 ES Innit nitet 238 eae 

(a) Is X normally distributed? Explain. 
(b) Estimate the mean number of neutrons expelled during fission of 

plutonium-239. 

(c) Assume that 0 = .5. Find a 99% confidence interval on yz. What theorem 

justifies the procedure you used to construct this interval? 

(d) The reported value of yz is 3.0. Do these data refute this value? Explain. 

(Central Limit Theorem.) Consider an infinite population with 25% of the ele- 

ments having the value 1, 25% the value 2, 25% the value 3, and 25% the value 

4. If X is the value of a randomly eee item, then X is a discrete random 

variable whose possible values are 1, 2, 3, and 4. 

(a) Find the population mean mw and reat eh variance o* for the random 
variable X. 

(b) List all 16 possible distinguishable samples of size 2, and for each calcu- 

late the value of the sample mean. Represent the value of the sample mean 

X using a probability histogram (use one bar for each of the possible val- 

ues for X). Note that although this is a very small sample, the distribution 
of X does not look like the population distribution and has the general 
shape of the normal distribution. 

(c) Calculate the mean and variance of the distribution of X and show that, as 

expected, they are equal to «4 and o7/n, respectively. 

REVIEW EXERCISES 

SH Consider the random variable X with density given by 

f(x) = (1 + 0x? O Sax} @>-1 

(a) Show that etl v)dx = | regardless of the specific value chosen for 0. 

(b) Find E[X]. 

(c) Find the method of moments estimator for @. 

(d) Find the method of moments estimate for 9 based on these data: 

B) 2 4! a] v3 
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(e) Find the maximum likelihood estimator for 6. 
(f) Find the maximum likelihood estimate for @ based on these data of part 

(d). Does this value agree with the method of moments estimate? 
Consider the random variable X with density given by 

f(x) = 1/0 02% =86 

(Aye bind 2X) 

(b) Find the method of moments estimator for 6. Is this estimator unbiased for 0? 
(c) Find the method of moments estimate for @ based on these data: 

1 S) 1.4 2.0 ye) 

Studies have shown that the random variable X, the processing time required to 
do a multiplication on a new 3-D computer, is normally distributed with mean 
# and standard deviation 2 microseconds. A random sample of 16 observations 
is to be taken. 

(a) What is the distribution of X? 
(b) These data are obtained: 

42.65 45.15 319), 3) 44.44 

41.63 41.54 41.59 45.68 

46.50 41.35 44.37 40.27 

43.87 43.79 43.28 40.70 

Based on these data, find an unbiased estimate for yu. 

(c) Find a 95% confidence interval for 4. Would you be surprised to read that 

the average time required to process a multiplication on this system is 42.2 

microseconds? Explain, based on the confidence interval. 

Let X denote the unit price of a 3.5-inch floppy diskette. These observations are 

obtained from a random sample of 10 suppliers: 

$3.83 3.54 3.44 3.89 3.65 
3.70 399) 337 4.04 3.93 

(a) Find an unbiased estimate for the mean price of these diskettes. 

(b) Find an unbiased estimate for the variance in the price of these diskettes. 

(c) Find the sample standard deviation. Is this an unbiased estimate for a? 

(d) Assume that X is normally distributed. Find the maximum likelihood esti- 

mate for 0. Does this agree with your answer to (b)? 

(Central Limit Theorem.) In an attempt to approximate the proportion p of im- 

properly sealed packages produced on an assembly line, a random sample of 

100 packages is selected and inspected. Let 

y= I if the ith package selected 1s improperly sealed 

Po otherwise 

(a) What is the distribution of X;? 
(b) Based on the Central Limit Theorem, what is the approximate distribution 

Olexe4 
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(c) When the experiment is conducted, we observe five improperly sealed 

packages. Find a point estimate for the proportion of improperly sealed 

packages being produced on this assembly line. 

56. (Central Limit Theorem.) In a study of the size of various computer systems the 

random variable X, the number of files stored, is considered. Past experience 

indicates that 9 = 5. These data are obtained: 

7 4 5 9 9 

4 2 8 | 8 7 

3 2 | Ibi 7 

12 : 6 2 1 13 

14 10 2 4 ) 1] 

3 5 12 6 10 7 

(a) Find an unbiased estimate for 4, the mean number of files per system. 

(b) Based on the Central Limit Theorem, what is the approximate distribution 

of X? 
(c) Find an approximate 98% confidence interval on pL. 

(da) In describing the size of such systems, an executive states that the average 

number of files exceeds 10. Does this statement surprise you? Explain. 

Let X denote the time expended by a terminal user in a computing session (time 

from log on to log off). Assume that X is normally distributed with wy = 15 

minutes and oy = 4 minutes. Let Y denote the time required to access the sys- 

tem. Assume that Y is normally distributed with mean 1.5 minutes and ay = .5 

minutes. Assume that X and Y are independent. 

(a) Find m,(t) and mt). 

(b) The random variable T= X + Y denotes the total time required by the user 

to run a job. Find the moment generating function for 7: 
(c) What is the distribution of 7? 

(d) Find the probability that the total time required exceeds 20 minutes. 

58. Let X,, X>,..., Xjo9 be a random sample of size 100 from a gamma distribu- 

tion with a = 5 and B = 3. 

(a) Find the moment generating function for Y = Y!°X,. 
(b) What is the distribution of Y? 

(c) Find the moment generating function for X = Y/n. 
(d) What is the distribution of X ? 

(e) Use the Central Limit Theorem to approximate the probability that X is at 
most 14. 

59. Consider the random variable X with density given by 

57 

f(x) = (1/07)xe~”” x>0 6>0 

(a) What is the distribution of X? 

(b) What is E[X]? 

(c) Find the method of moments estimator for 0. 

(d) Find the maximum likelihood estimator for 6 based on a random sample of 
size n. Does this estimator differ from that found in part (c)? 

(e) Estimate 0 based on these data: 
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(f) Are the estimators found in parts (c) and (d) unbiased estimators for 0? 
Let X be normally distributed with mean 2 and variance 25. 
(a) What is the distribution of the random variable OS AS? 
(b) What is the distribution of the random variable [XS 257? 
(c) Let X,, Xz, X3,..., X19 represent a random sample from the distribution 

of X. What is the distribution of the random variable 

a 
(Central Limit Theorem.) In this problem you will use the Central Limit Theo- 
rem to justify the normal approximation to the Poisson distribution given ear- 
lier. That is, you will show that a Poisson random variable X with parameter As 
can be approximated using a normal random variable with mean and variance 
Xs. To do so, let Y;, Y5, Y3,..., Y,, be a random sample of size n from a Pois- 
son distribution with parameter As/n. 

(a) Use moment generating function techniques to show that 

x= Dy, 
i=1 

has a Poisson distribution with parameter As. 

(b) Use the Central Limit Theorem to find the approximate distribution of Y. 

(c) Note that nY = X. Use this observation to argue that X is approximately 

normally distributed with mean As and variance As. 

(Central Limit Theorem.) Consider the experiment of tossing a fair die once. 

Let X denote the number that occurs. Theoretically, X follows a discrete uni- 
form distribution. 

(a) Find the theoretical density, mean, and variance for X. 

(b) Now consider an experiment in which the die is tossed 20 times and the re- 

sults averaged. By the Central Limit Theorem, what is the theoretical mean 

and variance for the random variable X ? 2 

(c) Perform the experiment of part (b) 25 times and record the value of X each 

time. (You will toss the die 500 times and obtain a data set that consists of 

25 averages.) What shape should the stem-and-leaf diagram for these data 

assume? Explain. Construct a stem-and-leaf diagram for your data. Did the 

diagram take the shape that you expected? 

(d) Approximately what value would you expect to obtain if you averaged the 

data of part (c)? Average your 25 observations on X. Did the result come 

out as expected? 

(e) Approximately what value would you expect to obtain if you found the 

sample variance for the data of part (c)? Explain. Find s* for your 25 ob- 

servations on X. Did the result come out as expected? 

(f) If you were to construct 95% confidence intervals on wz based on each of 

the values of X found in part (c), approximately how many of them would 
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you expect to contain the true value of ~? From your data, can you find an 

example of a confidence interval that does contain jz? of a confidence in- 

terval that does not contain j1? 

63. Consider Example 6.2.1. Assume that X follows the exponential distribution 

with parameter #. 

(a) Find the method of moments estimate for B. 

(b) Find the maximum likelihood estimate for B. 

(c) Are the answers to parts (a) and (b) the same? 

(d) Use the estimated value of 8 to approximate the probability that a battery 

of this type will last at least 1000 hours. 
64. Assume that a single fair die is tossed 30 times. Let X denote the number ob- 

tained per toss. Suppose that x assumes the value 2.83 for these 30 tosses. 

(a) Find a 95% confidence interval for the mean value of X. Did the interval 

you constructed trap the true mean of 3.5? 

(b) If we construct a 90% confidence interval on yw, will the interval have a 

chance of trapping 4? Explain based on what you learned in part (a). 

(c) If we construct a 99% confidence interval on p, will the interval have a 

chance of trapping the true mean? Explain. 

(d) Construct a 99% confidence interval on yz. Did this interval trap the mean? 
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ne of the modern-day “miracles” is the rise of Japan’s industrial strength after 

World War II. Much of this success has been attributed to the work of the 

American statistician W. Edwards Deming. This man not only helped the Japanese 

to implement the methods of statistical process control, but he also developed and 

taught his system of total quality management (TQM). TQM is a management sys- 

tem that is based on Deming’s 14 points. One of the aims of TQM is to reduce vari- 

ability. That is, with respect to a process, the aim is to produce goods that not only 

satisfy some target average value, but that also do so consistently. To achieve this, 

random variation must be reduced at every stage of the production process from the 

procurement of raw material through the marketing and servicing of the finished 

product. For this reason, there is interest in both the mean (the target value) and the 

variance of the random variable involved. In this chapter we present some statisti- 

cal techniques that can be used to draw conclusions about these population parame- 

ters based on information obtained from samples. 
We have seen how to estimate both the mean and the variance of a distribution 

via point estimation. We have also seen how to generate a confidence interval for the 

mean of a normal distribution when its variance is assumed to be known. Unfortu- 

nately, in most statistical studies, the assumption that ois known is unrealistic. If it 

is necessary to estimate the mean of a distribution, then its variance is usually un- 

known also. In this chapter we turn our attention to the problem of making infer- 

ences on the mean and variance of a distribution when both of these parameters are 

259 
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assumed to be unknown. We begin by considering the construction of a confidence 

interval for a7. 

8.1 INTERVAL ESTIMATION 
OF VARIABILITY 

In Theorem 7.1.3 we showed that the statistic S? is an unbiased estimator for 0°. To 

obtain a 100(1 — a@)% confidence interval for 7”, we need a random variable whose 

expression involves a and whose probability distribution is known. In Exercise 45, 
Chap. 7, we showed that the random variable Y/_, (X, — 2)’°/a* has a chi-squared 

distribution with n degrees of freedom. The next theorem shows that if the popu- 

lation mean p is replaced by the sample mean X, the resulting random variable 

D"_, (X, — X)°/o? follows a chi-squared distribution with n — | degrees of free- 
dom. This theorem provides the random variable needed to construct a confidence 

interval for a. Its proof is found in Appendix C. 

Theorem 8.1.1 [Distribution of (n — 1)S?/o0?]. Let X,, Xo, X3,...,X, bea 
random sample from a normal distribution with mean yz and variance a *. The 

random variable 

(n— 1) S/o? = 3 (X,— Xo? 
i=1 

has a chi-squared distribution with n — | degrees of freedom. 

To use the random variable (n — 1)S?/a* to derive a 100(1 — a)% confidence 
interval on o@’, we first partition the X?_, curve as shown in Fig. 8.1. Remember 

that in our notational convention, the subscript associated with a point denotes the 

area to the right of the point. If we partition the chi-squared curve so that (1 — a)% 

of the area is in the center of the curve, then the missing a is divided in half. Thus 

the right-hand chi-squared point has a/2% of the area to its right; it is denoted by 

X22. Since the chi-squared distribution is never negative, the left-hand chi-squared 

point is not the negative of the right-hand point as was the case in the Z-type confi- 

dence interval on the mean developed in Sec. 7.4. Rather, it is simply a point with 

a/2 area to its left and | — a/2 area to its right; it is denoted by y7_ ,/. To derive the 
confidence interval, we begin by giving a probability statement based on Fig. 8.1 
that can be set equal to | — a. It is evident that 

Ply} PP he 3d O/ dcaed © Pe Fe Gn ie a 

To find the lower and upper bounds for the confidence interval, we isolate o? in the 
center of the inequality by inverting each term and solving for a. 

P| 1x2, =o47/(n-—1)S?7s 1x4 -a| =l-a 

or 

POWs 29? GUS) 
Xal2 X1-al2 
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is) 

FIGURE 8.1 

Partition of the X2_, curve needed to derive a 100(1 — a)% confidence interval on 0. 

The desired confidence bounds can be read from the latter inequality and are given 
in Theorem 8.1.2. 

Theorem 8.1.2 [100(1 — a)% confidence interval on 07]. Let X,, X>, X3, 

...,X, be arandom sample of size n from a normal distribution with mean 

wz and variance a”. The lower and upper bounds, L, and L,, respectively, for a 

100(1 — a)% confidence interval on o’, are given by 

Ey =(— DS and Loe St ap 

As one would suspect, to obtain the bounds for a 100(1 — a)% confidence in- 

terval on the standard deviation of a normal random variable, we take the nonnega- 

tive square root of the bounds given in Theorem 8.1.2. 

Example 8.1.1. In computing, “workload” is defined as a collection of processor 

and input-output (I/O) resource requests during a particular period of time. Work- 

loads are compared via a measure called relative I/O content. The average commercial 

batch MVS installation provides the base for this measure and is given a relative I/O 

content rating of 1. Other installations are rated relative to this base. These observa- 

tions on the relative I/O content for a large consulting firm over randomly selected 

1-hour periods are obtained: 

3.4 3.6 4.0 0.4 2.0 

3.0 3p 4.1 1.4 PS) 

1.4 2.0 Sl 1.8 1.6 

3:5) D5) log Sell ol 

4.2 ES 3.0 3.9 3.0 

Let us construct a 95% confidence interval on the standard deviation of the relative I/O 

content for this installation. The stem-and-leaf diagram for these data is shown in 

Fig. 8.2. This diagram does not suggest a serious departure from normality. The parti- 

tion of the X3, curve needed to construct the confidence interval is shown in Fig. 8.3. 

The values of s and s? obtained via a statistical calculator are s = 1.186381052 and 

s2 = 1.4075. Since the sample variance is reported to two more decimal places than 

the data, s? = 1.408. The sample standard is reported to one more decimal place than 

the data. Here s = 1.19. 
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sone diagram of the relative I/O content of the consulting firm of Example 8.1.1. 

0.10 

0.09 

0.08 

0.07 

0.06 

0.05 
f(x’) 

0.04 

0.03 

0.02 

0.01 

0.00 

FIGURE 8.3 

Partition of the X3, curve needed to construct a 95% confidence interval on the variance in relative 

I/O content of the consulting firm of Example 8.1.1. 

The bounds for a 95% confidence interval on o are 

L, = (n — 1)s*/x%5 = 24(1.408)/39.4 = .858 

L. = (n — 1)s*/¥%5 = 24(1.408)/12.4 = 2.725 

The bounds for a 95% confidence interval on o are 

DeeeNy 858 4,926 

[a= \i2.725, 2165 

Thus we can say that we are 95% confident that the true variance in the relative I/O 

content at this consulting firm lies between .858 and 2.725; we are 95% confident that 
the true standard deviation lies between .926 and 1.65. 

8.2. ESTIMATING THE MEAN AND THE 
STUDENT-t DISTRIBUTION 

Note that to obtain a point estimate for a population mean yp, it is not necessary to 
know the population variance; the sample mean X provides an unbiased estimator for 
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bu regardless of the value of a2. However, the bounds for a 100(1 — a)% confidence 
interval on w given in Sec. 7.4 are X + z,/.0/ Vn. It is assumed that even though the 
population mean is unknown, the population variance is known. Practically speaking, 
this assumption is not very realistic. In most instances when a statistical study is be- 
ing conducted, it is being done for the first time; there is no way to know prior to the 
study either the mean or the variance of the population of interest. We consider in this 
section the more realistic problem of constructing a confidence interval on a popula- 
tion mean when the population variance is assumed to be unknown. 

To derive a general formula for a 100(1 — @)% confidence interval on js un- 
der these circumstances, it is natural to begin by considering the random variable 
used earlier, namely, 

There are two problems to overcome: 

1. The value of o is not known and must be estimated. 

2. The distribution of the random variable obtained by replacing o by an estima- 
tor is not known. 

The first problem is easy to overcome. We shall use the sample standard devi- 

ation S as an estimator for a. The second problem is a little more difficult to solve. 
When we replace o by its estimator S, the random variable (X — j2)/(S/ \/n) results. 

It can be shown that the distribution of this random variable is no longer standard 

normal. Rather, when sampling from a normal distribution, it follows what is called 

a Student-t, or simply a T distribution. This distribution was first described by W. S. 
Gosset in 1908. He used the pen name “Student” because his employers, an Irish 

brewery, did not want their competitors to know that they were using statistical 

methods in their work. We pause briefly to consider this distribution. 

The T Distribution 

Definition 8.2.1 (7 Distribution). Let Z be a standard normal random 
variable and let X> be an independent chi-squared random variable with 

y degrees of freedom. The random variable 

L 

V Xs /y 

is said to follow a T distribution with y degrees of freedom. 

This definition implies that to show that a random variable follows a T distri- 

bution, we must show that it can be written as a ratio of a standard normal random 

variable to the square root of an independent chi-squared random variable divided 

by its degrees of freedom. 
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We note here the characteristics of 7 distributions that will be useful in the 

work that follows: 

Properties of the 7 Distribution 

1. There are infinitely many 7 distributions, each identified by one parameter y, 
called degrees of freedom. This parameter is always a positive integer. The no- 

tation 7, denotes a T random variable with y degrees of freedom. 

2. Each Trandom variable is continuous. The density for a 7 random variable with 

y degrees of freedom is given by 

ai Fi 2\=(y-E 12 

fy = PO AD2 (6) —o < f< © 

['(y/2) Vary y 

3. The graph of the density of a 7, random variable is a symmetric bell-shaped 

curve centered at 0. 

4. The parameter y is a shape parameter in the sense that as its value increases, the 

variance of the random variable 7, decreases. Thus as the value of y increases, 

the bell-shaped curve associated with 7, becomes more compact. 

As the number of degrees of freedom increases, the bell-shaped curve associ- 

ated with the 7, random variable approaches the standard normal curve. 

ui 1 

These ideas are illustrated in Fig. 8.4. 

A partial summary of the cumulative distribution for selected values of y is 

given in Table VI of App. A. The table is read just as the chi-squared table is read. 

That is, the degrees of freedom are listed as row headings, pertinent probabilities 

are listed as column headings, and the points associated with those probabilities 

are listed in the body of the table. We use our previous convention of denoting by 

t, the point associated with the 7, curve such that the area to the right of the point 
is r. 

Example 8.2.1. Consider the random variable 7p. 

1. From Table VI of App. A, P[T;) = 1.372] = F(1.372) = .90. By our notational 

convention, fj) = 1.372. [See Fig. 8.5(a).] 

2. Due to the symmetry of the T curve, fo) = —t 19 = —1.372. 

3. The point f such that P[—t S Tp = t] = .95 is to, = 2.228. [See Fig. 8.5(b).] 

The last row in Table VI of App. A is labeled %. The points listed in that row 
are actually points associated with the standard normal curve. Note that as y in- 
creases, the values in each column of the table approach the value listed in the last 
row. This occurs because, for large values of y, the graph of the density for the {Es 
random variable, for all practical purposes, coincides with that of the standard nor- 
mal or Z curve. For small values of y there is quite a bit of difference between the 
two curves. 
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FIGURE 8.4 

(a) Typical relationship between two T curves with y, > y>; (b) typical relationship between a T curve 

and the standard normal curve. 
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Let us now show that the random variable (X — w)/(S/\/n) follows a T dis- 

tribution as claimed. The proof of this theorem depends on a result that is beyond 

the scope of this discussion mathematically. In particular, it can be shown that when 

sampling from a normal distribution, the sample mean X and the sample standard 

deviation S are independent. This result is not surprising. It says simply that knowl- 

edge of the center of location of a normal random variable does not contribute 
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to knowledge of its variability. The next theorem provides the basis for the con- 

struction of a 100(1 — a)% confidence interval on 4 when co is assumed to be 

unknown. 

Theorem 8.2.1. Let X,, X>, X3, ..., X, be a random sample from a normal 

distribution with mean yw and variance a’. The random variable 

XH 
siV/n 

follows a T distribution with n — | degrees of freedom. 

Proof. We shall show that the random variable (X — w)(S/V/n) can be written as the 

ratio of a standard normal random variable to the square root of an independent chi- 

squared random variable divided by its degrees of freedom. By Theorem 7.3.4, 

X is normal with mean yw and variance o7/n. Standardizing, (X — p)i(o/V/n) is stan- 

dard normal. By Theorem 8.1.1, (2 —1)S?/o? is a chi-squared random variable with 
n — | degrees of freedom. Consider the random variable 

Zs (X—p)KolVn) _ X-p 
VX2ly Vin-WSo2(n-1) SIV/n 

Since X and S are independent, this random variable follows a T distribution with n — 1 
degrees of freedom as claimed. 

Confidence Interval on the Mean: Variance 
Estimated 

It is now easy to determine the general form for a 100(1 — a@)% confidence interval 
on « when a is unknown. We need only note that the two random variables 

X- x — 
= oe and l= a 

o/\V/n S/Vn 

have the same algebraic structure. Thus the algebraic argument given in Sec. 7.4 
will hold with o being replaced by S and z,,,5 being replaced by f,,,>. These substi- 

Z 

Theorem 8.2.2 [10011 — a@)% Confidence interval on se when o? is 
unknown]. Let X,, X>, X3,...,X,, be a random sample from a normal 
distribution with mean jz and variance 0. A 100(1 — a)% confidence interval 
on 1s given by 

X +t).S/Vn 

Example 8.2.2 illustrates the use of this theorem. 
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FIGURE 8.6 

Partition of the T,, curve needed to construct a 95% confidence interval on the mean sulfur dioxide 

concentration in a Bavarian forest. 

Example 8.2.2. Sulfur dioxide and nitrogen oxide are both products of fossil fuel 

consumption. These compounds can be carried long distances and converted to acid 

before being deposited in the form of “acid rain.” These data were obtained on the sul- 

fur dioxide concentration (in micrograms per cubic meter) in a Bavarian forest thought 

to have been damaged by acid rain: 

57) 43.9 41.7 ales) 47.6 Sop 

62.2 56.5 33.4 61.8 54.3 50.0 

45.3 63.4 Sy) 65.5 66.6 70.0 

52.4 38.6 46.1 44.4 60.7 56.4 

A statistical calculator yields these values: 

xX = 53.91666667 s = 10.07371382 s? = 101.4797102 

Our rounding guidelines yield 

X = 53.92 wg/m? s = 10.07 pg/m3 s? = 101.480 

The partition of the 7,3 curve needed to find a 95% confidence interval on the mean 

sulfur dioxide concentration in this forest is shown in Fig. 8.6. The confidence bounds 

for the interval are 

¥+t,ps/V/n = 53.92 + 2.069(10.07)/V24 

That is, we are 95% confident that the mean sulfur dioxide concentration in this forest 

lies in the interval [49.67, 58.17]. The average concentration of this compound in un- 

damaged areas of the country is 20 4g/m’. Since this value is not included in the above 

interval, there is evidence of an elevated sulfur dioxide concentration in the damaged 

forest. 
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Several things should be pointed out. First, the number of degrees of freedom 

involved in finding a confidence interval on ~# when a? is unknown is n — I, the 

sample size minus |. For large samples this value may not be listed in Table VI of 

App. A. In this case the last row in the table (%) is used to find points of interest. 

Thus in the case of large samples we are in effect estimating a desired ¢ point via a 

z point. As mentioned earlier, this is appropriate, since for large samples the Z and 
T curves are virtually identical. Second, once again, a normality assumption has 

been made. We can check the validity of this assumption graphically using a stem- 

and-leaf diagram or a histogram. More precise methods for testing for normality are 

available. If there is reason to suspect that the variable under study has a distribu- 

tion that is not normal and the sample size is small, then methods based on the 7 dis- 

tribution may nor be appropriate. Rather, some nonparametric technique should be 

employed. Some of these techniques are discussed in Sec. 8.7. 

8.3. HYPOTHESIS TESTING 

We have considered the basic ideas of estimation in some detail. Recall that in a typ- 

ical estimation problem there is some population parameter, 6, whose value is to be 

approximated based on a sample. Usually, there is no preconceived notion concern- 

ing the actual value of this parameter. We are attempting simply to ascertain its 

value to the best of our ability. In contrast, when testing a hypothesis on 6, there is 

a preconceived notion concerning its value. This implies that two theories, or hy- 

potheses, are, in fact, involved in any statistical study of this sort: the hypothesis be- 

ing proposed by the experimenter and the negation of this hypothesis. The former, 

denoted by H,, is called the alternative or research hypothesis; the latter is denoted 

by Hp and is called the null hypothesis. The purpose of the experiment is to decide 

whether the evidence tends to refute the null hypothesis. These three guidelines help 

in deciding how to state Hy and H;: 

Guidelines for Hypothesis Testing 

1. When testing a hypothesis concerning the value of some parameter 0, the state- 

ment of equality will always be included in Ho. In this way Hp pinpoints a spe- 

cific numerical value that could be the actual value of @. This value is called the 
null value and is denoted by 6p. 

2. Whatever is to be detected or supported is the alternative hypothesis. 

3. Since our research hypothesis is H,, it is hoped that the evidence leads us to re- 
ject Hy and thereby to accept H). 

An example will help to clarify these ideas. 

Example 8.3.1. Highway engineers have found that many factors affect the perfor- 
mance of reflective highway signs. One is the proper alignment of the automobile’s 
headlights. It is thought that more than 50% of the automobiles on the road have mis- 
aimed headlights. If this contention can be supported statistically, then a new 
tougher inspection program will be put into operation. Let p denote the proportion of 
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automobiles in operation that have misaimed headlights. Since we wish to support 
the statement that p > .5, this contention is taken as the alternative or research hy- 

pothesis, H,. The null hypothesis is automatically the negation of H,, namely, p = .5. 
Thus the two hypotheses are 

lake OSs 

(He D> D 

Note that the statement of equality appears in the null hypothesis. This pinpoints the 

value .5 as a possible value for p; that is, the “null value” for p is pp = .5. Note also 

that if Ho is rejected, then our research hypothesis is accepted and the new inspection 

program will be implemented. 

Once a sample has been selected and the data have been collected, a decision 

must be made. The decision will be either to reject Hp or to fail to do so. The deci- 

sion is made by observing the value of some statistic whose probability distribution 

is known under the assumption that the null value is the true value of 8. Such a sta- 

tistic is called a fest statistic. If the test statistic assumes a value that is rarely seen 
when @ = @ and tends to lend credence to the alternative hypothesis, then we reject 

Hp in favor of H;; if the value observed is a commonly occurring one under the as- 

sumption that 6 = 0, then we do not reject the null hypothesis. This means that at 

the end of any study we shall be forced into exactly one of the following situations: 

Possible End Results for Any Test of a Hypothesis 

1. We shall have rejected Hy when it was true and shall have committed what is 

known as a Type I error. 

2. We shall have made the correct decision of rejecting H) when the alternative, 

H,, was true. 

3. We shall have failed to reject Hy when the alternative, H,, was true. In this case 

we shall have committed what is known as a Type II error. 

4. We shall have made the correct decision of failing to reject Hyp when Hy was 

true. 

Example 8.3.2. In Example 8.3.1 we were testing 

Ao: D =a) 

Helis) =? 32) (majority of automobiles in operation 

have misaimed headlights) 

If a Type I error is made, we shall have rejected Hy when H, is true. Practically speak- 

ing, we shall have concluded that a majority of cars on the road have misaimed head- 

lights when, in fact, this is not true. This error could lead to the implementation of an 

unnecessary inspection program. A Type II error occurs if we fail to reject Ho when H, 

is true. In this case, the inspection program would not be implemented when, in fact, 

it is needed. 

Note that regardless of what is done, an error is possible. Any time Ho is re- 

jected, a Type I error might occur; any time Hp is not rejected, a Type II error might 
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occur. There is no way to avoid this dilemma. The job of the statistician is to design 

methods for deciding whether or not to reject Hy that keep the probabilities of mak- 

ing either error reasonably small. 
Philosophically, there are two ways to determine whether or not to reject Ho. 

The first method, which we discuss in this section, is called hypothesis testing. This 

method has been used extensively in the past and is still used today. The second 

method, called significance testing, is becoming increasingly popular. It is discussed 

in the next section. 
Hypothesis testing involves a procedure in which the values of the test statis- 

tic that lead to rejection of the null hypothesis are set before the experiment is con- 

ducted. These values constitute what is called the critical, or rejection, region for 

the test. The probability that the observed value of the test statistic will fall into this 

region by chance even though 6 = 6 is called alpha (aq), the size of the test or the 

level of significance of the test. If this occurs, a Type I error is committed. That is, 
in a hypothesis testing study, @ is the probability of committing a Type I error. These 

ideas are summarized in Definition 8.3.1. 

Definition 8.3.1 (Type I error and level of significance). Consider a test of 

a hypothesis. A Type I error is an error that is made when the null hypothesis 

is rejected when, in fact, it is true. The probability of committing a Type I 

error is called the level of significance of the test and is denoted by the 
Greek letter alpha (a). 

Example 8.3.3. To test the hypothesis of Example 8.3.1, 

Ay: p = .5 

leks ja 3) (majority of automobiles in operation 

have misaimed headlights) 

a random sample of 20 cars is selected and the headlights are tested. Let us design a 

test so that a, the probability of rejecting Hy) when p is equal to the null value of .5, is 

about .05. The test statistic that we shall use is X, the number of cars in the sample 
with misaimed headlights. If p is, in fact, equal to the null value, then X is binomial 
with n = 20, p =.5, and E[X] = np =10. Thus if p = .5, then, on the average, 10 of 
every 20 cars tested will have misaimed headlights; if H, is true, this average value 
will be higher than 10. Logically, we should reject H, if the observed value of the test 
statistic X is somewhat larger than 10. Note from Table I of App. A that 

PIX= 14lp = 5] = 1— P[X< l4lp = 5] 

=1-P[X= 13lp = 5] 

= 1-— .9423 

= .0577 

Let us agree to reject Hy in favor of H, if the observed value of the test statistic, X, 
is 14 or greater. In this way we have split the possible values of X into two sets: 
C= (14, 15; 16; 17718; 19.20} and C'=401 9). ee 13}. If the observed value 
of X lies in C, we reject Hy and conclude that the majority of cars in operation have 
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misaimed headlights. The set of values of the test statistic that leads to rejection of 
the null hypothesis C is the critical, or rejection, region for the test. We chose C so 
that the probability that the test statistic will fall into C by chance, even though 
p = .5, is .0577. That is, we designed the test so that the probability of committing a 
Type I error (a) is approximately .05 as desired. 

There is one point to note. In the previous example we use the null value 

Po = .5 to determine the critical region for the test, even though the null hypothesis 

allows for values of p that are less than .5. It is safe to do this, since values of X that 

are too large to occur by chance when p = .5 are also certainly too large to occur by 

chance when p < .5. That is, any value of X that leads us to reject .5 as a reasonable 

value for p also leads us to reject any value less than .5. (See Exercise 29.) 

It is possible that the observed value of the test statistic does not fall into the 

rejection region, even though A, is not true and should be rejected. If this occurs, a 

Type II error will be committed. The probability of this occurring is called beta (). 

Definition 8.3.2 summarizes these ideas. 

Definition 8.3.2 (Type I error and beta). Consider a test of a hypothesis. 

A Type II error is an error that is made when the null hypothesis is not 

rejected when, in fact, the research theory is true. The probability of 

committing a Type I error is denoted by the Greek letter beta (6). 

Beta is a little harder to handle than alpha, which can be dictated by the ex- 

perimenter. For a particular test, 8 depends on the alternative. That is, B can be 

found only if a particular value of the alternative is specified. To illustrate, let us 

find B for the test designed in Example 8.3.3. 

Example 8.3.4. The critical region for the test of Example 8.3.3 is C = {14, 15, 16, 

17, 18, 19, 20}. Suppose that, unknown to the researcher, the true proportion of cars 

with misaimed headlights is .7. What is the probability that our test, as designed, is un- 

able to detect this situation? To answer this question, we calculate 6, the probability 

that Hp will not be rejected given that p = .7. By definition 

B = P{Type I error] 

= P[fail to reject Holp = .7] 

= P[X is not in the critical region|p = .7] 

= P[X = 13lp = .7] = .3920 (Table I, App. A) 

That is, for the test as designed there is not a very high probability that we shall be able 

to distinguish between p = .5 and p = .7. Beta is a function of the alternative in that if 

p is changed from .7 to .8, then 8 will change also. In this case 

B = P[X < 13lp = .8] = .0867 

Note that as the difference between the null value of .5 and the alternative value of p 

increases, decreases. 
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There is one other important probability to consider. Put yourself in the posi- 

tion of a researcher who has put a great deal of time, effort, and money into de- 

signing and carrying out an experiment to gather evidence to support a research 

theory. We want the study designed in such a way that, if the research theory is 

true, there is a high probability that the study will show it to be true. That is, we 

want the probability of rejecting the null hypothesis when the research theory is 

true to be high. The probability of coming to this important correct decision is 

called the power of the test. 

Definition 8.3.3 (Power). Consider a test of a hypothesis. The probability 

that the null hypothesis will be rejected when, in fact, the research theory is 
true is called the power of the test. 

Power and beta are related. Notice that both of these probabilities are com- 
puted under the assumption that the research theory is true. In this case, we will ei- 

ther fail to reject the null hypothesis with probability 6 or we will reject the null 

hypothesis with probability power. Hence, 

B + power = 1 or power= 1-8 

Example 8.3.5. In Example 8.3.3 we designed an experiment to test 

lake) 3 = 

We discovered that if the research theory is true and p = .7, there is a 39.2% chance 

that we will not be able to detect this fact. That is, 8 = .392. The power of the test for 
detecting this alternative value of p is 

power = 1 — B = 1 — .392 = .608 

If it is important to detect the difference between a 50% rate of misaimed headlights 
and a 70% rate, then the test as designed will not do a very good job. 

There is an obvious balancing act that must be played in designing experi- 
ments. We want both a and f to be small, and we want the power for detecting cru- 
cial differences to be high. This is accomplished in practice by choosing an 
appropriate sample size. Exercise 46 illustrates this idea in the context of testing a 
hypothesis on the average value of a distribution. 

Remember that the hypothesis-testing procedure entails deciding on the level 
of significance (@) before the data are gathered and the test statistic is evaluated. 
That is, it involves presetting a. There are several reasons for wanting to do this. It 
gives a clear-cut way of making a decision. Once a is set, the critical region for the 
test is fixed also. If the observed value of the test statistic falls into this region, we 
reject Hy; otherwise we do not. There is no room for debate after the data are gath- 
ered. Hence there can be no charge that the statisticians are manipulating the results 
to suit themselves. In addition, if the consequences of making a Type I error are 
very serious, then by presetting a we are able to specify before the fact exactly how 
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Actual situation 

Decision Ho true Hy, true 

Reject Type I error Correct 

Ay (probability a) decision (probability power) 

Fail to Correct Type II error 

reject Ho decision (probability B) 

FIGURE 8.7 

large a risk we are willing to tolerate. The language underlying hypothesis testing is 

summarized in Fig. 8.7. 

8.4 SIGNIFICANCE TESTING 

In the last section we considered a method for deciding whether or not to reject a 

null hypothesis, called hypothesis testing. In this section we consider another 

method for doing so. This method, called significance testing, is coming into wide- 

spread use. This is due to its logical appeal and to the increasing use of computer 

packages in analyzing statistical data. 

To understand why significance testing is so appealing, let us point out a both- 

ersome aspect of hypothesis testing that might have occurred to you already. It is 

easy to spot the problem with a simple example. Suppose that we want to test 

eae) 

feb oye 

based on a sample of size 20. The test statistic is X, the number of “successes” that 

are observed in the 20 trials. Since the null value is pp = .1, when p = Pp the test sta- 

tistic follows a binomial distribution with ELX] = npy = 20(.1) = 2. Values of X 

somewhat larger than 2 tend to lend credence to the alternative hypothesis. Suppose 

that we want a to be “very small,” so we define the critical region to be C = {9, 10, 

hee 20 ) For this test 

a = P[Type I error] 

= P{reject Hylp = pol 

= P[X is in the critical regionlp = .1] 

— Piee39lp =" 1 

ele ke ip | 

=i —79R ipa 

— tle 9999 

= .0001 

This is indeed a “very small value”! Now suppose that we conduct our test and ob- 

serve 8 “successes.” Via our rather rigid rules for hypothesis testing, we are unable 

to reject Hp, since 8 does not lie in the critical region. However, a little thought 
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should make you a bit uneasy with this decision! Note that 8 is very close to 9, our 

rather arbitrarily selected lower boundary for the critical region. Let us see what the 

chances are of obtaining a value of 8 or more when p = .1: 

P[X = 8lp = .1] = 1 — P[X <‘8lp = .1] 

l= Pix = Tip= 1) 

19996 

= .0004 

II 

This probability is certainly also “very small.” It is hard to imagine a situation in 

which we would be willing to tolerate | chance in 10,000 of making a Type I error 

but would declare vehemently that 4 chances in 10,000 of making such an error is 

much too large to risk! There is so little difference between these probabilities that 
it seems a bit silly to insist that we adhere rigidly to our original cutoff point of 9. 

The problem just demonstrated can be avoided by performing what is called a 

significance test rather than a hypothesis test. This method of deciding whether or 

not to reject Hp entails setting up Hy) and H, exactly as before. However, we do not 

then preset @ and specify a rigid critical region. Rather, we evaluate the test statis- 

tic and then determine the probability of observing a value of the test statistic at 
least as extreme as the value noted under the assumption that 6 = 69. This probabil- 

ity is referred to by a variety of names, including the critical level, the descriptive 

level of significance, and the probability, or P value of the test. We use the term “P 

value” in this text. Note that the P value is the smallest level at which we could have 

preset a and still have been able to reject Hy. We reject Hy if we consider this P 
value to be small. 

Example 8.4.1. Automotive engineers are using more and more aluminum in the 

construction of automobiles in hopes of reducing the cost and improving gas mileage. 

For a particular model the number of miles per gallon obtained on the highway cur- 

rently has a mean of 26 mpg with a standard deviation of 5 mpg. It is hoped that a new 

design, which utilizes more aluminum, will increase the mean mileage rating. Assume 

that o is not affected by this change. Since our research hypothesis is taken as the al- 
ternative hypothesis, we are testing 

Hy: bh = 26 

H,: 2 > 26 (the new design increases gas mileage on the highway) 

Since the sample mean is an unbiased estimator for the population mean, a logical test 
statistic is X. Let us agree to reject Hp in favor of H, if the observed value of the sam- 
ple mean is “somewhat larger” than 26. By “somewhat larger” we mean too large to 
have reasonably occurred by chance if the true mean highway mileage is still 26 mpg. 
These data are obtained during road testing: 

33.8 24.3 18.8 BBG] SYS) 29.6 

24.9 31.5 34.4 28.0 20.5 36.7 

30.3 oh) 3) 27.4 27.6 22.5 30.7 

28.6 27.1 28.8 16.5 S27) Zoe 

3h Bie 25.1 34.5 29.5 26.8 

30.0 28.4 ZOO) 19.8 28.9 Zieh 
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The sample mean for these data is ¥ = 28.04 mpg. This vajue is larger than the null 
value for x of 26 mpg. To see if there is enough difference to cause us to reject Hy, we 
find the P value for the test. That is, we compute the probability of observing a sam- 
ple mean of 28.04 or larger if t= 26 and o = 5. This is done by noting if w = 26 
and o0 = 5, then the test statistic X is, by the Central Limit Theorem (Theorem 7.4.2), 
at least approximately normally distributed with mean sz = 26 and standard deviation 
o/ Vn = 5/6. Therefore 

X20 26.0426 
SS ——————— P[X = 28.04|u = 26,0 =5] =P > 

| e oa) (5/6) (5/6) 
= P[Z = 2.45] 

— Pi Z = 2.45 

= 1 — .9929 (Table V, App. A) 

= .0071 

There are two explanations for this very small probability. The null hypothesis is true, 

and we have observed a very rare sample that by chance has a large sample mean; the 

null hypothesis is not true, and the new process has, in fact, resulted in a higher mean 

mileage rating. We prefer the latter explanation! That is, we shall reject Hy and report 
that the P value of our test is .0071. 

There is a very easy way to deal with the difference between hypothesis tests 

and significance tests. For every test, simply calculate the P value. If an a level has 

been preset to ensure that a traditional or industry maximum acceptable level of risk 

is met, then compare the P value to the preset alpha value. Jf P = a, then we can re- 

ject the null hypothesis at the stated level of significance. If one uses this technique, 

there is no need to find critical points and preset critical regions as was done in Ex- 

ample 8.3.3. This method is especially viable today when P values are available as 

a routine part of statistical packages and statistical calculator output. 

Significance testing is a widely used concept. For right- or left-tailed tests the 

method of calculating the P value is clear. For a right-tailed test (H,: 6 > 0), the 

P value is the area to the right of the observed value of the test statistic; for a left- 

tailed test (H,: 8 < 6p), it is the area to the left. However, one question still to be re- 

solved is, “How do we compute a P value for a two-tailed test?” (H: 6 # 6) If the 

distribution of the test statistic is symmetric, as it is for a Z or T statistic, then it is log- 

ical to double the apparent one-tailed P value. If the distribution is not symmetric, as 

with a chi-squared statistic, then presumably the two-tailed P value is nearly double 

the one-tailed value. This is only one of several proposed solutions to the problem, 

but it is the convention that we shall use. 

8.5 HYPOTHESIS AND SIGNIFICANCE 
TESTS ON THE MEAN 

One of the most commonly encountered problems is that of testing a hypothesis 

concerning the value of the mean. We have seen how this can be done if it is as- 

sumed that a2 is known. Since this assumption is usually not valid, we turn our at- 

tention to a method that can be used to test hypotheses concerning 4 when o? is 

unknown and must be estimated from the data at hand. Consider these examples. 
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Example 8.5.1. The maximum acceptable level for exposure to microwave radiation 

in the United States is an average of 10 microwatts per square centimeter. It is feared 

that a large television transmitter may be polluting the air nearby by pushing the level 

of microwave radiation above the safe limit. Since our research hypothesis is taken as 

the alternative, we are testing 

Hy: » = 10 

lake jf, = NY) (unsafe) 

Example 8.5.2. Design engineers are working on a low-effort steering system that 

can be used in vans modified to fit the needs of disabled drivers. The old-type steering 

system required a force of 54 ounces to turn the van’s 15-inch-diameter steering 

wheel. It is hoped that the new design will reduce the average force required to turn 

the wheel. In this case we are testing 

Ho: wp = 54 

Hy: p< 54 (new system requires less force to operate than the old) 

Example 8.5.3. A computer system currently has 10 terminals and uses a single 

printer. The average turnaround time for the system is 15 minutes. Ten new terminals 

and a second printer are added to the system. We want to determine whether or not the 

mean turnaround time is affected. To decide, we want to test 

Hp: w = 15 

Hy: wp #15 (the new equipment has an impact on turnaround time) 

As you can see, a hypothesis on x can take one of three general forms. With 

{My denoting the null value of the mean, these are as follows: 

Three Forms for Tests of Hypotheses on the Mean of a Distribution 

Delia = ila Il Ao: p= Mo Tl Ao: wp = po 

Hy: bh > Mo Hy: W < Mo Hy: bh F Mo 
Right-tailed test Left-tailed test Two-tailed test 

Form Lis called a right-tailed test because when a hypothesis of this form is tested, 

the natural region leading to the rejection of Hp is the upper- (or right-) tailed re- 

gion of the distribution of the test statistic. This point is explained in Example 

8.5.4. Similarly form II is a left-tailed test because the natural region of rejection 

of Ho is the lower- (or left-) tailed region of the appropriate distribution. In a two- 

tailed test the critical region consists of both the lower- and upper-tail regions of 

the distribution of the test statistic. This is easy to remember because in a one-sided 

test, forms I and I, the inequality in the alternative hypothesis points toward the 
critical region. 

There is one general statement to keep in mind when you test a hypothesis on 
any parameter: 
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To test a hypothesis on a parameter 9, you must find a statistic whose probability dis- 
tribution is known at least approximately under the assumption that 6 = 6). 

This statistic will serve as a test statistic. In the case at hand such a statistic is easy 
to find. From the discussion of Sec. 8.2 we know that if X is normal, the statistic 
Oy [y)(S/\/n) follows a T,,_; distribution. Tests based on this statistic are com- 
monly called T tests. 

Tests of hypotheses on py are actually conducted by testing Hy: w = py against 

one of the alternatives pp > py, W < My Or wu # pp. It is safe to do this for reasons 

analogous to those discussed in Sec. 8.3. In particular, values of the test statistic that 

lead us to reject pry and to conclude that pp > pry will also lead us to reject any value 

less than jo; values of the test statistic that lead us to reject jz, and to conclude that 

|Z < My will also lead us to reject any value greater than jy. For this reason, many 

statisticians prefer to express the three forms as 

I Ho: & = bo Il Ao: = Mo Tl Ho: w= Lo 

Ay: bh > Mo Ay: LW < po A: bw # Mo 

Right-tailed test Left-tailed test Two-tailed test 

This emphasizes the fact that when performing a hypothesis test on pz, @ is com- 

puted assuming that pp = fo; when performing a significance test on ys, the P value 

is computed under the assumption that 2 = fy. We shall follow this notational con- 

vention in the remainder of this text. 

Example 8.5.4. To determine whether a large television transmitter is polluting the 

nearby air (see Example 8.5.1), we intend to test 

Ao: w = 10 

Imbie [Ub 2 10 

Notice that since the inequality associated with the alternative hypothesis points to the 

right, the test is right-tailed. A sample of 25 readings is to be obtained at randomly se- 

lected times over a 1-week period. Our test statistic, (X — LOy/(S/\/25), follows a T4 

distribution if Hp is true. Since X is an unbiased estimator for the mean, we expect the 

observed value of X to be close to 10 if Hy is true. This forces the numerator of the test 

statistic, (X - 10), to be small, causing the observed value of the test statistic to be 

small also. However, if H, is true, we expect X to be larger than 10, forcing X — 10 to 

be large and positive. This in turn results in a large positive value for the test statistic. 

Hence logically we should reject Hy in favor of H; whenever the observed value of the 

test statistic is positive and too large to have reasonably occurred by chance. Thus the 

natural critical region for the test is the right-tail, or upper, region of the 7, distribu- 

tion. To decide how large a value is needed in order to reject Hp, let us preset a. If we 

make a Type I error, we shall shut down the transmitter unnecessarily; if we make a 

Type II error, we shall fail to detect a potential health hazard. We want a to be small 

but not so small as to force B to be extremely large. Let us choose a to be .1. The crit- 

ical point for the test, read from Table VI of App. A and shown in Fig. 8.8, is 1.318. 
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f(t) 

FIGURE 8.8 
Critical region for an a = .1 level right-tailed test (n = 25). 

We shall reject Hy in favor of H, if the observed value of the test statistic is 1.318 or 

larger. When the experiment is conducted, it is found that x = 10.3 and s = 2. The ob- 

served value of the test statistic is 

(x — 10)/(s//25) = (10.3 — 10)/(2/5) =.75 

Since this value falls below the critical point of 1.318, we are unable to reject Hp. 

These data do not support the contention that the transmitter is forcing the average mi- 

crowave level above the safe limit. 

It should be pointed out that, in practice, it is not really necessary to find a crit- 

ical point even if a has been preset. Rather, we can simply always evaluate the test 

statistic and find the P value. If the P value is at most equal to the preset a, then Hp 

can be rejected at that @ level. For instance, in the previous example @ was preset at 

.10. The observed value of the test statistic is .75. This value and the associated P 

value is pictured in Figure 8.9(a). From the T table with 24 degrees of freedom we 

see that this value lies between .685 and 1.318. [See Fig. 8.9(b).] The area to the 

right of .685 is .25; the P value is clearly smaller than .25. The area to the right of 

1.318 is .10; the P value is larger than this. By combining these results, we can con- 

clude that .10 < P < .25. Since this P value exceeds the preset a of .05, Hy cannot 

be rejected at this level. This technique is especially useful now, as the most serious 

data analysis is done using one of the commercially available computer packages. 

These packages typically report a P value automatically. To conduct a test in which 

@ 1s preset, compare the report P value to a. If P = a, then Hp can be rejected at the 

a level of significance; otherwise it cannot be rejected. 

Some packages allow the user to indicate whether the test is right-, left-, or 

two-tailed; others automatically conduct a two-tailed test. In the latter case, the true 
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FIGURE 8.9 

(a) Since the test is right-tailed, P = shaded area = area to the right of .75; (b) since P is smaller than 

the area to the right of .685 and larger than the area to the right of 1.318, .10 <P <.25. 

P value is half that reported by the computer. Check the package documentation to 

be sure that you understand exactly what probability is being given. 

The next example illustrates the use of significance testing in testing a two- 

tailed hypothesis. 

Example 8.5.5. In studying the effect of adding 10 new terminals and one printer to 

an existing computer system (see Example 8.5.3), we are testing 

A: b= 15 

H,: wp # 15 (the new equipment has an impact on turnaround time) 
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, 

Since we do not have any preconceived notion as to whether the new equipment in- 

creases or decreases the mean turnaround time, we are conducting a two-tailed test. 

We shall reject Hy in favor of H, if the observed value of the test statistic is too large 

in either the positive or negative sense to have occurred by chance. When the data are 

gathered, a sample of size 30 yields x = 14.0 and s = 3. The observed value of the test 

statistic 1s 

(¥ — 15)/(s/\V30) = (14 — 15)/(3/V30) = -1.83 

From Table VI of App. A we see that 

P[Ty) = —1.699] = .05 and P{T 9 = —2.045] = .025 

Since — 1.83 lies between — 1.699 and —2.045, the probability of observing a value as 

large in the negative sense as that observed lies between .025 and .05. However, we 

were running a two-tailed test. This means that the P value of the test is the probabil- 

ity of observing a value as extreme as that observed in either the positive or the nega- 

tive sense. That is, the P value is assumed to be double that computed above. We can 

report that for this test 05 < P < .1. Since this probability is still small, we reject Ho 

and conclude that the new equipment does affect the mean turnaround time. 

It should be emphasized that the statistic (XY — p19)/(S/\Vn) follows the T,, —, 

distribution if X is normal. If X is not normal, then care must be taken. It has been 
found that for samples of moderate to large size (n = 25), violating this assumption 

does not seriously affect the distribution of the test statistic in that the probability of 

committing a Type I and a Type II error is not appreciably changed [6]. This prop- 

erty is called robustness. However, if the sample size is small, then 7 tests should 

not be run on nonnormal data. Many statistical software packages include some sort 

of test of normality. In this case, we are testing 

Hy: data are drawn from a distribution that is normally distributed 

H;,: data are drawn from a distribution that is not normally distributed 

The results of such a test along with sample size considerations can be used to 

decide whether to proceed with a 7 test or turn to one of the nonparametric tests de- 
scribed in Sec. 8.7. 

8.6 HYPOTHESIS TESTS ON THE 
VARIANCE 

We now turn our attention to testing hypotheses on the value of a? or o. These tests 
take the same general form as tests on the mean. These are summarized below with . ; : ; 
a denoting the null value of the population variance. 

Three Forms for Tests of Hypotheses on the Variance of a Distribution 
I Hy: o?=02 UH ot oe Il Ay: 0? = 0% 

Hose oe Hii oa oF Hy: 07 #0} 
Right-tailed test Left-tailed test Two-tailed test 
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The test statistic used to test each of these is (n — 1)/S */o}. When sampling from a 
normal distribution, this statistic is known to follow a chi-squared distribution with 
n — | degrees of freedom provided a? = o3. As expected, the critical regions for 
right- and left-tailed tests are the upper- and lower-tail regions of the X?_, distri- 
bution, respectively; the critical region for the two-tailed test consists of both the 
upper- and lower-tail regions of the distribution. 

Example 8.6.1. One random variable studied while designing the front-wheel-drive 
half-shaft of a new model automobile is the displacement (in millimeters) of the con- 
stant velocity (CV) joints. With the joint angle fixed at 12°, 20 simulations were con- 
ducted, resulting in the following data: 

6.2 IES) 4.4 4.9 35) 

l 4.6 4.2 ail 153 4.8 

4.1 Sef, 2) Sho) 4.2 

1.4 2.6 IES) 39) 32 

For these data x = 3.39 and s = 1.41. Engineers designing the front-wheel-drive half- 
shaft claim that the standard deviation in the displacement of the CV shaft is less than 
1.5 millimeters. The estimated standard deviation based on the given 20 observations 
is 1.41 millimeters. Do these data support the contention of the engineers? To answer 
this question, we test 

Ay: o = 1.5 

leks <M 

This is equivalent to testing 

Hy: 0? = (1.5) 
He oa (15) 

The observed value of the test statistic is 

(Ge | Ga 
Se ee 16.79 

Gh Cb)? 

Since the test is left-tailed, we reject Hy if this value is too small to have occurred by 

chance when H is true. From the chi-squared table we see that 

Piao =14,6) 025 8 wand © P[Xqy=18.3)i— 150 

Since the observed value of the test statistic, 16.79, lies between 14.6 and 18.3, the 

P value of the test lies between .25 and .50. Since this P value is rather large, we 

are unable to reject Hp. These data are not sufficient to allow us to claim that 0 < 1.5 

millimeters. 

Recall that when sample sizes are moderate to large (n = 25), the T statistic can 

be used to make inference on yz even though the normality assumption may be vio- 

lated. It is when sample sizes are small that this becomes a serious problem. Unfor- 

tunately, the same cannot be said concerning the use of the X7_, statistic for making 

inferences on a? and a. For this reason, when constructing confidence intervals on 

a or testing hypotheses on the value of this parameter, a check for normality must 
be made. If the data are nonnormal then these methods should not be used. 
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8.7. ALTERNATIVE NONPARAMETRIC 

METHODS 

We have seen how to use the Z and T statistics to test hypotheses concerning the 

mean of a normal distribution. The procedures presented assume that either we are 

sampling from a normal distribution or sample sizes are large enough so that devi- 

ations from the normality assumption do not seriously affect our results. In reality, 

experimenters often obtain data for which it is clearly unreasonable to assume an 

underlying normal distribution and for which sample sizes are small. When this oc- 

curs, usually the experimenter is advised to use a “nonparametric” test for location 

rather than the usual Z or T test. In this section we examine the meaning of the term 

“nonparametric” test. We also present some nonparametric alternatives for the usual 

Z and T tests for location. 

The terms “nonparametric” and “distribution free” are often used inter- 

changeably. When we use the term “nonparametric test,” we shall mean a test with 

the property that no assumption is being made concerning the specific distribution 

from which the sample is drawn. Although we usually assume that the distribution 

is continuous, we do not have to specify the family to which the random variable 

under study belongs. In particular, we shall no longer have to assume that the ran- 

dom variable being studied is normally distributed. Hence nonparametric methods 

are applicable to a larger class of distributions than their normal theory analogs. 

When comparing two statistical procedures designed to test essentially the 

same thing, we look at two characteristics: the probability of committing a Type I 

error and the power of the test. We want a to be small, but at the same time we want 
a high probability of rejecting a false null hypothesis. Typically, for a fixed a level 

the normal theory procedures are more powerful than their nonparametric counter- 

parts when the assumptions underlying the normal theory test are met. However, 

studies have shown that when these assumptions are not met, the use of normal the- 

ory procedures leads to tests that are approximate in the sense that the apparent a 

level is suspect. For example, if we run a chi-squared test for variance on data that 

is far from normal at an apparent a@ level of .05, the actual probability of rejecting a 

true null hypothesis may be far from .05. In some cases the approximations are ex- 
cellent, but in others they are so bad as to be completely unacceptable. In any case, 
using a normal theory procedure in situations in which the normal theory assump- 
tions are not valid is dangerous. In such cases we turn to nonparametric procedures. 
These methods are usually superior for analyzing data when the normal theory as- 
sumptions are not met; they compare very favorably to the normal theory tests even 
when the normal theory assumptions are met. The safe course of action is to follow 
the advice: when in doubt use a nonparametric test! 

In this section we shall discuss the sign test and the Wilcoxon signed-rank test, 
both of which can be used to test for location in the form of population medians. 

Sign Test for Median 

Recall that for a continuous distribution the median for a random variable X is de- 
fined to be the value M such that 

P(X <M) = P(X > M) = 1/2 
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That is, the median is the 50th percentile of the distribution. For a symmetric distri- 
bution such as the normal, the population mean and median are identical. We shall 
see that the sign test is simply a form of the binomial test, which was discussed in 
Sec. 8.3. Let X denote a continuous random variable with median M and let X iy XO 
...,X, denote a random sample of size n from this unspecified distribution. If My 
denotes the hypothesized value of the population median, then the usual forms of 
the hypothesis to be tested can be stated as follows: 

Three Forms for Tests of Hypotheses on the Median of a Distribution 

Hy: M = My Hy: M = My Hy: M = My 

A: M>M) A,;M<M) H,: M #M) 

Right-tailed test Left-tailed test Two-tailed test 

Under the assumption of a continuous distribution, each of the differences X; — My 

has probability 1/2 of being positive, probability 1/2 of being negative, and proba- 
bility O of being zero. 

Let Q, denote the number of positive differences obtained. If Hp is true, QO, is 

binomially distributed with parameters n and 1/2 and the expected value of Q. is 

n/2. That is, if Ho is true, half the differences should be positive and the rest are neg- 

ative. Note that in running a left-tailed test we want to detect a situation in which the 

true median M lies below the hypothesized median M,. If this is true, we expect more 

than half the differences to be negative. This creates fewer positive differences than 

expected. Thus a logical procedure is to reject Hp: M = M, in favor of H,: M < Mj if 

the observed value of Q,, is too small to have occurred by chance. In conducting a 

right-tailed test, the situation is reversed. In this case we reject Hy: M = M, in favor 

of H,: M > M) if the observed value of Q_, the number of negative differences ob- 

tained, is too small to have occurred by chance. A two-tailed test is conducted by re- 

jecting Hy): M = M, in favor of H,: M # M, if the smaller of Q, and Q_ is too small 

to have occurred by chance. The next example illustrates the use of the sign test. 

Example 8.7.1. A standard method for completing a task on an assembly line yields 

a median completion time of 55 seconds. A new procedure is developed that should re- 

duce the median time required. We want to test 

Hy: M = 55 

lake Mi SDS 

To do so, 15 subjects are asked to complete the task, and these observations are ob- 

tained on the random variable X, the time required: 

BS) 65 48 40 70 50 58 36 

47 41 49 39 34 3/3) 31 

The stem-and-leaf diagram for these data is shown in Fig. 8.10. Note that the diagram 

does suggest that X is not normally distributed. Since the sample size is rather small, 

we shall test for location using the nonparametric sign test. The test is left-tailed. 

Hence the test statistic is Q,, the number of positive differences obtained when 55 is 
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FIGURE 8.10 
Stem-and-leaf diagram for the time required to complete a task on an assembly line: diagram suggests 

a nonnormal population. 

subtracted from each observation. From the stem-and-leaf diagram it is easy to see that 

only three observations exceed 55. Thus the observed value of the test statistic Q, is 

3. The P value of the test is found by computing the probability of seeing a value this 

small or smaller under the assumption that Q, is binomially distributed with n = 15 

and p =1/2. From Table I of App. A, P = P[Q, = 3ln = 15, p = 1/2] = .0176. Since 

this P value is small, we reject Hy. We do have strong statistical evidence that the new 

procedure reduces the median time required to complete the task. 

Since we assume that the underlying distribution is continuous, theoretically 

zero differences should not occur when conducting a sign test. However, as you 

might guess, sometimes zeros do occur in practice. These occur for various reasons, 

but the primary problem is the lack of instruments capable of precise measurement 

of continuous phenomena such as time, length, speed, and volume. Treatment of 

zero differences has been considered extensively. Various recommendations as to 

how to treat those differences have resulted. These are our recommendations: 

Handling Zeros in a Sign Test 

1. Assign to the zero differences the algebraic sign least conducive to the rejection 

of the null hypothesis. Thus for a left-tailed test we would consider zero differ- 

ences to be positive; for a right-tailed test they would be considered to be neg- 
ative. In a two-tailed test we assign to zero differences the algebraic sign of the 

less frequently occurring difference. For example, if one observed 3 negative 

signs, 15 positive signs, and 6 zeros in running a two-tailed test, then the 6 ze- 

ros would all be treated as though they were negative. This procedure makes 

sense because a zero difference supports the null hypothesis that M = M,. The 

suggested technique gives the null hypothesis the benefit of the doubt by mak- 
ing it harder to reject Hp. 

2. If the number of zeros is small relative to the sample size n, discard these dif- 
ferences and reduce the sample size accordingly. 

Occasionally a situation arises in which the differences X; — M, are such that 
we can observe the algebraic sign of each difference but not its magnitude. In this 
case, the sign test is about the only choice available for testing location. Exercise 53 
is an example of this type of problem. Usually, the actual numerical value of the dif- 
ferences can be obtained. Unfortunately, the sign test does not make use of this ad- 
ditional information. It treats a negative difference of —.1 in exactly the same way 
as it does a negative difference of — 1000. For data in which the actual differences 
can be found, a second nonparametric test is available for testing for location. This 
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test, the Wilcoxon signed-rank test, makes use of both the sign and magnitude of the 
observed differences X; — Mp. 

Wilcoxon Signed-Rank Test 

In this test we assume that X,, X>,..., X, is arandom sample of size n from a con- 

tinuous distribution that is symmetric about an unknown median M. Consider the set 

of differences X; — My, i = 1, 2,3,...,n, where Mp is the hypothesized median of 

the distribution from which the sample is drawn. The null hypothesis to be tested is 

Hy: M = Mb versus the usual alternatives H,: M > M,, H;:M< Mb), or H;:M#M). 

If Ho is true, the differences X; — Mp are drawn from a distribution that is symmetric 

about zero. It is assumed that the differences are such that the magnitude as well as 

the algebraic sign of each can be obtained. To conduct the test, we form the set of n 

absolute differences |X, — MoI. These are then ranked from | to 7 in order of absolute 

magnitude, with the smallest absolute difference receiving a rank of |. These ranks, 

which we denote by Rj, R,..., R,, are then assigned the algebraic sign of the dif- 

ference score that generated the rank. If H, is true, then each rank is just as likely to 

be assigned a positive sign as a negative one. Consider the statistics 

Wilcoxon Test Statistic 

and Wk SIR 
all all 

positive negative 
ranks ranks 

If H, is true, then we should expect W, and IW_| to be approximately equal. If 

M > M,, then W, would tend to be too large and |W_| too small. Similarly, if 

M < Mp, we would expect the reverse to be true. Hence, we define our test statistic 

to be W = min(W,,, |W_1). The exact distribution of W has been tabled for various 

values of the sample size n and significance level a. One such table is Table VIII of 

App. A. Using this table, we reject Hy if the observed value of W is less than or 

equal to the stated critical value. 

In practice, ties in the difference scores X; — My can occur. If ties occur, the 

values for each tied group should be given the midrank of the group. For example, 

suppose that we observe difference scores of 3, —3, and 3, which should occupy 

ranks 8, 9, and 10. We would assign each of the three values a rank of 9 and then as- 

sign the next largest difference score a rank of 11. Example 8.7.2 illustrates the idea. 

Example 8.7.2. The melting point for a new lightweight material designed for use in 

automobile interiors is being investigated. It is known that due to impurities in the ma- 

terial, the melting point is a random variable uniformly distributed over a small tem- 

perature interval. It is thought that the median melting point is less than 120° C. Do 

these data support this contention? 

CS 17.8 11655-1210 

1206 119.0) 119.8" 118.5 
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We are testing 

Hy: M = 120 

H,: M < 120 

We first subtract 120 from each observation and then find the absolute value of each 

difference. 

3 Lise 120.3 117.8 119.0 116.5 119.8 121.0 118.5 

Ee => {1PAD) —4,9 ) apy} == lB) HS" ao 1.0 SS 

ee — PAO) 4.9 3 og) 1.0 Shs) 2 1.0 eS 

We next rank these absolute differences from | to 8. Note that the value 1.0 occurs 

twice in what would normally be positions 3 and 4. We assign a rank of 3.5 to each of 

these values. The algebraic sign attached to each rank is the same as that of the differ- 

ence that generated the rank. 

20) 4.9 pe} 2 1.0 ae we 1.0 io: 

Rank 8 2, 6 SiS" W) 1 3.5 > 

Signed rank =i 2 == = 5h a sik 3:2 =, 

For these data 

W.= Dy Se tek is, 

positive 
ranks 

WAS OS) (R= 8-64-35 2 ar dee) 

sees 
ranks 

Since the test is a left-tailed test, the test statistic is W,. We reject Hp if the observed 

value of this statistic is too small to have occurred by chance. From Table VIII of App. 

A with n = 8 we see that we can reject Hp at the a =.05 level (critical point = 6), but 

we are unable to reject Hy at a = .025 (critical point = 4). Thus the P value of the test 

lies between .025 and .0S. Since this P value is fairly small, we reject Hy and conclude 

that the median melting point of this material is below 120° C. 

If the sample size n exceeds values given in Table VIII of App. A, a large sam- 

ple normal approximation may be used. 

The following theorem states the approximate distribution of the Wilcoxon 

signed rank statistic: 

Theorem 8.7.1 (Approximate Distribution of W). Let W denote the Wilcoxon 
signed rank statistic. For large sample sizes, W is approximately normally 
distributed with mean 

Nn aeral) 
E([W] = mi 

and variance 

_n(nt ID (Aese by 

24 
Var W 
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To use this theorem, we simply standardize W by subtracting its mean and dividing 
by its standard deviation. P values can then be found via the standard normal or Z 
table. This approach can be used when sample sizes exceed those listed in Table 
VIII of Appendix A. Exercise 57 illustrates this approximation procedure. 

The Wilcoxon signed-rank test is almost as sensitive to departures from the 
null hypothesis as the normal theory T test even when the underlying distribution is 
normal. For other symmetric distributions the signed-rank test is usually more pow- 
erful than the 7 test. Hence this test should be considered a strong competitor to the 
T test for practical problems. This is particularly true for small samples where vio- 
lations of the normal theory tests assumptions are of greatest concern. 

Note that although a Wilcoxon signed-rank test does not assume normality, it 
does assume symmetry. Procedures have been developed to test the validity of this 
assumption. One such test is given in [20]. 

CHAPTER SUMMARY 

In this chapter we considered confidence interval estimation of the variance and 

standard deviation of a normal distribution. We also considered interval estimation 

of a mean when the population variance is unknown. This procedure entails the use 

of the Student-t or T distribution. We discussed this new continuous distribution in 
detail and saw that its properties are similar to those of the Z or standard normal dis- 

tribution. In particular, we saw that for large sample sizes ¢ points are well approxi- 

mated by z points. 

We next turned our attention to methods used in testing a statistical hypothe- 

sis. We found that we are always dealing with two hypotheses, the null hypothesis 

A and its alternative H,. The point of view of the researcher is stated as the alter- 

native hypothesis. Thus we hope that our data will allow us to reject Ho, thereby 

accepting H,. We design our tests in such a way so that we always know the prob- 

ability of rejecting a true null hypothesis. We found that we are always subject to 

error when testing a hypothesis. If we reject a true null hypothesis, we commit a 

Type I error; if we fail to reject a false null hypothesis, a Type II error is commit- 

ted. Two methods were described for deciding whether or not to reject Hy. The first 

method is referred to as hypothesis testing. In conducting a hypothesis test, we pre- 

set a. This is done by setting up a rejection or critical region prior to data collec- 

tion. We reject H, if the observed value of the test statistic falls into this critical 

region. The second method for deciding whether to reject Hy is called significance 

testing. Here no critical region is set prior to data gathering. Rather, we evaluate 

the test statistic and find the probability or P value of the test. The P value is the 
probability of observing a value of the test statistic as unusual or more unusual 

than that observed if the null value of the parameter @ is correct. Thus the P value 

is the smallest value at which we could have preset a and still have been able to re- 

ject Hy. We reject Hy if the P value is deemed to be small. There are advantages and 

disadvantages to each method. You should be familiar with both as they are both 

used extensively. 
We considered in some detail what are commonly called T tests. These are 

tests specifically designed to test a hypothesis on the mean of a normal distribution. 
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We saw that these tests require that sampling be from a normal distribution and that 

this restriction is especially important for small samples. In Sec. 8.7 we presented 
some nonparametric alternatives to the T test if the normality assumption appears to 

be invalid. Nonparametric tests are tests that make no assumption as to the family 
of distribution from which sampling is done. 

Finally, we considered a method for testing a hypothesis on the variance or 

standard deviation of a normal distribution. 

We introduced and discussed many new important terms and concepts that 

you should know. Some of these are: 

Student-r distribution Null hypothesis 

Alternative hypothesis Research hypothesis 

Null value P Test statistic 

Type I error Type I error 

a B 
Power Size of test 

Critical or rejection region Level of significance 

Significance test Hypothesis test 
Probability or P value Critical level 

Descriptive level of significance Right-tailed test 

Left-tailed test Two-tailed test 

Nonparametric test Median 

EXERCISES 

Section 8.1 

1. When programming from a terminal, one random variable of concern is the re- 
sponse time in seconds. These data are obtained for one particular installation: 

1.48 1.26 oe 1.56 1.48 1.46 

1.30 1.28 1.43 1.43 1.55 1.57 

If oul 1.53 1.68 1.37 1.47 1.61 

1.49 1.43 1.64 1.51 1.60 1.65 

1.60 1.64 yl Le) rope 1.74 

(a) Construct a stem-and-leaf diagram. Does the assumption of normality ap- 
pear reasonable? 

(b) Find the unbiased point estimate for 02. 
(c) Find a 95% confidence interval on o°?. 
(d) Find a 95% confidence interval on a. 
(e) Would you be surprised to hear the director of this installation claim that 

the standard deviation in response time is more than .2 second? Explain. 
2. Highway engineers have found that the ability to see and read a sign at night 

depends in part on its “surround luminance.” That is, it depends on the light in- 
tensity near the sign. These data are obtained on the surround luminance (in 
candela per square meter) of 30 randomly selected highway signs in a large 
metropolitan area. (Based on “Use of Retroreflectors in the Improvement of 
Nighttime Highway Visibility,” H. Waltman, Color, 1990, pp. 247-251.): 
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10.9 oll 5) Ze) 9), 1 32 
Ol 7.4 13).3) Ii 6.6 Wei 
Re) 6.3 7.4 9.9 13.6 V3 
0 4.9 IS. 7.8 10.3 10.3 
9.6 Si) 2.6 Deval 9) 16.2 

(a) Find the sample variance for these data. 
(b) Assume that the data are drawn from a normal distribution. Find a 90% 

confidence interval on the variance in the surround luminance in this area. 
(c) Find a 90% confidence interval on the standard deviation in surround 

luminance. 
(d) The normal probability rule (Sec. 4.5) implies that a normal random vari- 

able will lie within two standard deviations of its mean with probability 
-95. Use X and S to estimate the mean and standard deviation of the sur- 
round luminance in this area. Would it be unusual for the surround lumi- 
nance for a randomly selected sign to exceed 18 cd/m?? Explain. 

. X-ray microanalysis has become an invaluable method of analysis. With the 
electron microprobe, both quantitative and qualitative measures can be taken 

and analyzed statistically. One method for analyzing crystals is called the two- 

voltage technique. These measurements are obtained on the percentage of 

potassium present in a commercial product which theoretically contains 26.6% 
potassium by weight: 

AMY) 23.4 Dial Daal 24.7 24.6 

24.0 24.1 24.2 26.5 23.8 WDeo) 

24.8 24.8 24.5 ZAeS 24.9 

DY D) Zam Dae) ASI 26.5 

22.0 26.7 Dae Aaek 25.4 

(a) Check the reasonableness of the normality assumption by constructing a 

stem-and-leaf diagram for these data. 

(b) Find the sample variance for these data. 

(c) Find a 99% confidence interval for a. 

(d) Find a 99% confidence interval for 0. Note that this confidence interval is 

fairly long. Suggest a way to improve the interval estimate for 0 based on 

these data. Try your suggestion to see if the new estimate is more informa- 

tive than that given by the 99% confidence interval. 

. (One-sided confidence interval on 0.) Since variance is a measure of consis- 

tency, it is usually hoped that a? will be small. For this reason, it is sometimes 

useful to construct what is called a one-sided confidence interval for 0. That 

is, we want to find an interval of the form [0, L], where L is a statistic with the 

property that P[a*S L] = 1 — a. The formula for such an interval is 

L=(n— 1)S2/y3_,. 

The point x,_, is the lower-tailed chi-squared point with @ area to its left 

and 1 — a to the right. For example, to construct a 95% one-sided confidence 

interval on a the chi-squared point used would be that with n — 1 degrees of 

freedom and .05 area to the left. Use these data on X, the actual length of 63-mm 

nails, to find a 95% one-sided confidence interval on the variance in length: 
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63.0 63.1 63.0 63.0 62.9 63.0 63.0 

63.1 62.8 63.1 63.1 63.0 62.9 63.2 

The manufacturer wants to check to be sure that the population variance of the 

nails being produced does not exceed .03. Does this sample indicate that this 

is the case? Explain. 

Robotic technology is an area of rapid growth. It was reported that 315,000 in- 

dustrial robots would be in use in American industry by the year 1995. One im- 

portant feature of a robot is its accuracy. In a study of a particular robot used to 

apply adhesive to a specified location, these data are obtained on the error (in 

inches) in the placement of the adhesive: 

001 002 .003 002 002 

.007 003 004 003 006 

006 003 OOS 004 004 

001 008 001 004 — ».003 

001 .003 003 005 .006 

(a) Construct a stem-and-leaf diagram. Does the assumption that the place- 

ment error is normally distributed appear reasonable? 

(b) Find the sample variance for these data. 
(c) Use Exercise 4 to find 90% one-sided confidence intervals on 0? and o. 

(d) This robot is acceptable if its standard deviation does not exceed .005 inch. 

Does this criteria appear to be met? Explain. 

In Theorem 7.1.3 we showed that the sample variance is an unbiased estimator 

for a? regardless of the distribution of the random variable X. If X is normal, this 

property is obtained more easily by making use of Theorem 8.1.1 and the prop- 

erties of the chi-squared distribution given in Sec. 4.3. Use these results to show 

that for a normal random variable X, E[S*] = a? and Var S? = 204/(n —1). 

Recent research indicates that heating and cooling commercial buildings with 

groundwater-source heat pumps is economically sound. The crucial random 

variable being studied is the water temperature. A sample of 15 wells in the state 

of California yields a sample standard deviation of 7.5° F. Find a 95% confi- 

dence interval on the standard deviation in temperature of wells in California. 

In pouring glass for use in automobile windshields uniformity of thickness is 

desirable to prevent distortion. Find a 95% one-sided confidence interval on the 

standard deviation in thickness if a sample of 10 windshields yields a sample 
standard deviation of 0.01 inch. 

Section 8.2 

a, Use the T table to find each of these points: 

(a) tos (y = 8); 

(b) bos (VY = 8); 

(C) toys Cy = 12); 
(d) toys (y = 12); 

(€) tosty= 121); 

(7) tos. Cy = 150); 
(g) Point t such that P[—t = T,; = t] = .90; 
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12. 
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(hy Pomt? such that P[—1 = T,, = | = .95; 
Cm Eomty such that (7) 705: 
(j) Point ¢ such that P[T,, = t] = .10; 
(k) Point t such that P[T,, < —f] = .05: 
(1) Point t such that P[T;) = —f] = .10. 
The “supergopher” is a device invented to drill through arctic pack ice. It is a 
cone-shaped apparatus 5 feet high, 4 feet wide, and wound with a copper coil. 
Water heated to 180° F is pumped through the coil. This allows the gopher to 
melt a vertical round shaft through the ice. Let X denote the distance or depth 
that the gopher can drill per hour. These data are obtained on 10 test holes 
(depth is in feet): 

2.0 hed 2.6 LS) 1.4 

Al 3.0 De) 1.8 1.4 

(a) Use these data to find x, s?, and s. 

(b) Find a 90% confidence interval on the average distance that can be drilled 
in an hour. (Based on information from “The Lost Squadron,” by Steven 
Petrow, LIFE, December, 1992.) 

Metal conduits or hollow pipes are used in electrical wiring. In testing 1-inch 

pipes, these data are obtained on the outside diameter (in inches) of the pipe: 

WARSI (ANS) Te IS) 

128 ee el) eS 

1292 29 PSO Oe 

Lows) AES) se) AML 

129 2S Seen eS eS 

(a) Find x, s?, and s for this sample. 

(b) Assume that sampling is from a normal distribution. Find a 95% confi- 

dence interval on the mean outside diameter of pipes of this type. 

(c) The makers of this type of pipe claim that the mean outside diameter is 

1.29 inches. Does the confidence interval lead you to suspect this reported 

figure? Explain. 

Lightweight hand-held, laser rangefinders are now used by civil engineers in hy- 

drographic surveys. In testing one brand of rangefinder these data are obtained 

on the error (in meters) made in locating an object at a distance of 500 meters: 

=,II@ =(02 .10 = 08 09 

OL = (05 05 = 06 O01 

.03 .06 02 = 0) .03 

(a) Find point estimates for the mean and standard deviation in the error made 

by the laser. 
(b) Assume that these measurement errors are normally distributed. Find a 

90% confidence interval on the mean measurement error. 
(c) A competitor claims that this particular model, on the average, overesti- 

mates the distance by at least .05 meter. Is there reason to doubt the claim 

based on the observed data? Explain. 
(d) Based on the normal probability rule (Sec. 4.5), would you consider it un- 

usual for a single measurement error to be in excess of .15 meter? Explain. 
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One of the classic problems of operations research is the vehicle routing prob- 

lem (VRP). This problem entails studying a system consisting of a given num- 

ber of customers with known locations and demand for a commodity who are 

being supplied from a single depot by a number of vehicles with known capac- 

ity. The object of the study is to route the vehicles in such a way that the total 

distance traveled is minimized. The characteristics of a new algorithm are be- 

ing investigated. These data are obtained on the cpu time required to solve the 

problem: é 
mand) 

AV lpi cena pA ey Loe fe ), UWVE 
NSS DORAL OMT dae BST eee 

20 =o og iain allan exo, MI 
3.1 Sue See. ees 8) aS 
Dee ao Se is eS. 

(a) Estimate the mean and standard deviation in the time required to solve a 

problem via this algorithm. 
(b) Find a 99% confidence interval on the mean time required to solve a 

problem. 

(c) Another algorithm, written in a different language, requires an average of 

‘y 6.6 seconds of cpu time. The solutions obtained are equivalent. Does the 

“« new algorithm appear to be more efficient than the other with respect to 

14. 

iS; 

computing time? Explain. 
To estimate the average number of pounds of copper recovered per ton of ore 

mined, a sample of 150 tons of ore is monitored. A sample mean of 11 pounds 

with a sample standard deviation of 3 pounds is obtained. Construct a 95% con- 

fidence interval on the mean number of pounds of copper recovered per ton of 

ore mined. 
A certain amount of natural gas is produced with each barrel of crude oil. This 

gas escapes from the oil near the top of the well pipe. In an attempt to estimate 

the amount of natural gas available from wells in Kuwait these data are ob- 

tained on X, the number of cubic feet of gas obtained per barrel of crude oil 

(based on information found in “The Oil/Gas Separator: A New Cap for 

Quenching Oil Well Fires,” Energy and Technology, December 1991, p. 1): 

290, 610 790 670 770 

420 600 350, 800, 920 

410 810 620 560 550 

610 510 390 480 630 

470 380 550 S70) 730 

680, 530, 650, 1000 720 

(a) Construct a stem-and-leaf diagram for these data. Does the normality as- 

sumption that underlies the T procedures appear to be met? Explain. 

(b) Construct a boxplot for these data. Are any data points flagged as outliers? 

(c) Find a 99% confidence interval for the average volume of natural gas pro- 
duced per barrel of crude oil by wells in Kuwait. 

(d) If we wanted an interval based on these data that was shorter than the one 
found in part (c), what could be done to accomplish this? 



16. 

(Wh 

18. 

INFERENCES ON THE MEAN AND VARIANCE OF A DISTRIBUTION 293 

Surface finishing for corrosion protection is usually the last manufacturing 
process that takes place before the sale or assembly of metal parts used in such 
things as automobiles and electrical appliances. This process is often done in 

shops that specialize in this procedure. A technique for applying bright zinc 

plating to steel is being tested. The variable under study is the thickness of the 

resulting coating in microns. These data are obtained on 25 test strips (based on 

figures found in “The Cinderella of Manufacturing,” D. J. C. Hemsley, Profes- 

sional Engineering, vol. 5, no. 7, July/August 1992, pp. 18-20): 

6.4 8.3 7.9 AS 6.9 

8.5 7.0 7.4 ee 6.8 

el 8.1 eS el 8.5 

7.8 es 8.4 8.0 7.8 

WS 7.8 7.6 8.4 OY) 

(a) Construct a double stem-and-leaf diagram for these data. Comment on the 

possible distribution of this random variable. 

(b) Construct a boxplot for these data, and identify the data point that is 

flagged as an outlier. 

(c) Suppose that upon investigation it is found that the unusual data point dis- 

covered via your boxplot was for a strip that was inadvertently left in the 

coating solution longer than the procedure specified. What should be done 

with this data point? 
(d) Construct a 95% confidence interval on the average thickness of the coat- 

ing obtained via the new process. 
(e) Would you be surprised to hear a claim that this average is 7.7 microns? 

Explain based on your confidence interval. 

(One-sided confidence interval on yz.) A “one-sided” confidence interval can be 

used to approximate the maximum or minimum value of a population mean. An 

interval of the form (— %, L] such that P[w = L] = 1 — a allows us to place 

bounds on the maximum value of the population mean. The formula for such 

an interval is given by 

L=X+t,S/Vn 

An interval of the form [L, ©] allows us to place bounds on the minimum fea- 

sible value of the population mean. The formula for an interval of this type is 

L=X-1,S/Vn 

Use the following data on X, the time that a commercial airliner stays at the 

gate during a through flight, to find a 95% one-sided confidence interval that 

puts a bound on the minimum time in minutes expected for 

25S 3 570 0 oy oe 41) 42” 459 45 47) 49! *50" 557 53) 00 

These data are obtained on the total nitrogen concentration (in ppm) of water 

drawn from a lake being considered for use as a source of drinking water for a 

locality: 
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042 023 049 .036 045 .025 

048 .035 048 043 044 055 

045 052 049 028 025 .039 

LOWS: 045 038 035 .026 O59 

Find a 95% one-sided confidence interval on the largest feasible value for pz. To 

be acceptable as a source of drinking water, the mean nitrogen content must lie 

below .07 ppm. Does this lake appear to meet this criterion? Explain. 

(Sample size required to estimate jz.) Three factors determine the length of a 

confidence interval on yw. These are the confidence desired, the variability in 

the data, and the sample size. In an undesigned experiment it is possible that the 

resulting confidence interval is so long that it is almost useless. If 7 is known 

or can be estimated from a small preliminary or “pilot” study, then it is possi- 

ble to design an experiment in such a way that the resulting confidence interval 

will be short enough to be useful. This is done by selecting the sample size 

carefully. a 
(a) Let d denote the distance between X, the center of the confidence interval, 

and X + z,pa/ Vn, the upper confidence bound. Thus d = z,,.07/ Vn. Note 

that the confidence interval itself is of length 2d. Solve this equation for n 

to show that the sample size required to estimate yz to within d units with 

100(1 — a)% confidence is 

9 | 

(Zao) 0 : 
n Pp o known 

Sa 9 

(Zar) O- A 
n DP o unknown 

(b) Reading digital displays in bright light poses a problem. Engineers want to 

design a filter to maximize both the luminance (brightness) and the chromi- 

nance (color) contrast. To do so, they intend to estimate the average number 

of footcandles in the cockpit of commercial airliners where the filter will be 
used. A preliminary pilot study is run, and an estimated standard deviation 
of 500 footcandles is obtained. How large a sample is needed to estimate ju 
to within 50 footcandles with 95% confidence? 

(c) To determine whether or not the copper ore in a particular area is pure 
enough for open pit mining to be feasible, mining engineers must estimate 
the average grade of the ore. Past experience with this type of ore indicates 
that the grade ranges from 1% to 4% copper. The normal probability rule 
and Exercise 25, Chap. 6, imply that a rough estimate of o is 1/4 of the 
range, or .75. How many test holes must be drilled to estimate jz to within 
1% with 90% confidence? 

A study is being designed to estimate the mean time required to assemble a 
panel of microprocessor chips for use in color television sets. An estimate of 
this mean is needed in order to set reasonable quotas for assembly line workers. 
A small pilot study is conducted, and these data are obtained on the assembly 
time in minutes: 
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1.0 iS deh 3.0 oe 

2.0 2.4 2.6 2) ad 

(a) Based on these data, estimate a. 

(b) How large a sample is required to estimate yz to within .2 minute with 99% 
confidence? 

Section 8.3 

21. 

22. 

23. 

24. 

In 1969 in the United States, on average, 8% of household waste was metal. 

Because of the increase in recycling efforts, it is hoped that this figure has been 

reduced. An experiment is run to verify this contention. 

(a) Set up the appropriate null and alternative hypotheses for the experiment. 

(b) Explain in a practical sense what has occurred if a Type I error has been 
committed. 

(c) Explain in a practical sense what has occurred if a Type II error has been 
committed. 

(d) Explain in a practical sense what it means to say that Hp has been rejected 

at the a = .05 level of significance. 

The mean level of background radiation in the United States is .3 rem per year. 

It is feared that as a result of the increased use of radioactive materials, this fig- 

ure has increased. 

(a) Set up the appropriate null and alternative hypotheses to document this 

claim. 

(b) Explain in a practical sense the consequences of making a Type I and a 

Type II error. 

As mentioned in Chap. 1, an important aspect of the engineering sciences is 

model building. Once a theoretical model is devised to explain a physical phe- 

nomenon, it must be tested to see that it yields results that are realistic. This 

testing is often done via computer simulation. In testing a model, we are testing 

Hp: model is credible 

H,: model is not credible 

(a) Explain in a practical sense what has occurred if a Type I error is commit- 

ted. The probability of committing this error is referred to as the “model 

builder’s risk.”” Do you see why this language is appropriate? 

(b) Explain in a practical sense what has occurred if a Type II error is com- 

mitted. The probability of committing an error of this type is called the 

“model user’s risk.” Does this seem appropriate? 

A DNA test is conducted to see if the evidence can clear a suspect. From the 

suspect’s perspective we are testing 

H: DNA is that of the suspect 

H,: DNA is not that of the suspect 

Suppose that a Type I error is made. In this setting, what has occurred? Suppose 

that the DNA test has high power. What does this mean? 
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25. Suppose we want to test 

Hy: p = 4 

H,: p> 4 

based on a sample of size 15. 

(a) Find the critical region for an a = .05 level test. 

(b) If when the data are gathered, x = 11, will Hp) be rejected? What type of er- 

ror is possible at this point? 

26. Suppose we want to test 

ep ad 

Fie pis 

based on a sample of size 10. 
(a) Find the critical region for an a = .05 level test. 

(b) If when the data are gathered, x = 5, will Hp be rejected? What type of er- 

ror might you be making? 

27. It is acommon practice to subject long-life items to larger than usual stress so 

that failure data can be obtained in a short amount of test time. Such tests are 
called accelerated life tests. Equipment used in computing makes use of metal 

oxide semiconductors (MOS). It is thought that “oxide short circuits” account 

for a majority of the early failures found in MOS integrated circuits. To verify 

this contention, a high-voltage screen test is applied to a number of circuits and 

15 early failures are observed. Let X denote the number of failures due to oxide 

short circuits. 

(a) Set up the appropriate null and alternative hypotheses. 

(b) If Hp is true and p = .5, what is the expected number of failures due to ox- 

ide short circuits in the 15 trials? 

(c) Let us agree to reject Hp in favor of H, if X is 11 or more. In this way we 

are presetting @ at what level? 

(d) Find B if p = .6; if p = .7; if p = .8; if p = .9. 

(e) Find the power of the test if p = .6; if p = .7; if p = .8; if p = .9. 

(f) If, when the data are gathered, we observe 12 early failures that are due 

to oxide short circuits, will Hp be rejected? What type error might be 
committed? 

(g) If, when the data are gathered, we observe 10 early failures due to oxide 

short circuits, will Hy be rejected? What type error might be committed? 
28. Quality and reliability are becoming important aspects of computer hardware 

and software. Past experience shows that the probability of failure during the 
first 1000 hours of operation for 16-kbit dynamic RAM produced by a United 
States firm is .2. It is hoped that new technology and stricter quality controls 
have reduced this failure rate. To verify this contention, 20 systems will be 
monitored for 1000 hours and the number of failures will be recorded. 
(a) Set up the appropriate null and alternative hypotheses. 
(b) Explain in a practical sense the consequences of making a Type I and a 

Type II error. 
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(c) If Hp is true and p = .2, what is the expected number of failures during the 

first 1000 hours in the 20 trials? 
(d) Let us agree to reject H, in favor of H, if the observed number of failures, 

X, is at most 1. In this way we are presetting a@ at what level? 

(e) Suppose that it is essential that the test be able to distinguish between a 

failure rate of .2 and a failure rate of .1. Find the probability that the test as 

designed will be unable to do so. That is, find B if p = .1. Find the power 

of the test if p = .1. 
(f) The results of part (e) indicate that the test as designed cannot distinguish 

well between p = .| and p = .2. Keeping the sample size fixed at n = 20, 

can you suggest a way to modify the test that will lower 6 and to increase 

the power for detecting a failure rate of .1? Will @ still be small enough to 

be acceptable? If not, can you suggest a way to redesign the experiment 

that will make both a and B low enough to be acceptable? 

29. In Example 8.3.3 we test 

HH ApeS5 

Beppe. (majority of automobiles in operation 

have misaimed headlights) 

at the a = .0577 level by agreeing to reject Hp if at least 14 of the 20 cars sam- 

pled have misaimed headlights. We claim that values of X that are too large to 

occur by chance when p = .5 are also too large to occur by chance when 
p < .5. That is, if these values are rare when p = .5, they are even more rare 

when p < .5. To help see that this is true, find PLX = 14] when p = .4; .3; .2; 

.1. Are each of these probabilities less than .0577 as expected? 

30. A sample of size 9 from a normal distribution with o* = 25 is used to test 

Ao: w= 20 

Hy: wp = 28 

The test statistic used is the sample mean, X. Let us agree to reject Hy in favor 

of H, if the observed value of X is greater than 25. 

(a) If Hy is true, what is the distribution of Nie 

(b) Inthe diagram of Fig. 8.11, shade the region whose area is a. 

(c) Find a. Remember that a is computed under the assumption that Hi is true. 

(d) If H, is true, what is the distribution of X? 

FIGURE 8.11 



298 INTRODUCTION TO PROBABILITY AND STATISTICS 

(e) In the diagram of Fig. 8.11, shade the region whose area is 8. Remember 

that B is computed under the assumption that H, is true. 

(f) Find p. 
(g) Find the power of the test. & 

(h) If the sample size is increased, the standard deviation of X will decrease. 

What is the geometric effect of this on the two curves of Fig. 8.11? 

(i) If the sample size is increased but the critical point is not changed, what 

will be the effect on a and B? 

Section 8.4 

Sil. 

32. 

SKB 

34. 

Whenever a motorist encounters braking problems, especially an unpredictable 

pulling to one side, the villain is always held to be the brake pad. Trace ele- 
ments, especially titanium, can combine with other elements to form minute 

particles of titanium carbonitride which alter the degree of friction between the 

pad and disc and lead to unequal wear. The percentage of titanium in a brake 

pad should not exceed 5%. A study is conducted to detect a situation in which 

the mean percentage of titanium in the brake pads being produced by a partic- 

ular manufacturer exceeds 5%. 

(a) Set up the appropriate null and alternative hypotheses. 

(b) Discuss the practical consequences of making a Type I and a Type II error. 

(c) Asample of 100 brake pads yields a mean percentage of x = .051. Assume 

that ao = .008. Find the P value for the test. Do you think that Hp should be 

rejected? Explain. To what type of error are you now subject? 

The current particulate standard for diesel car emission is .6 g/mi. It is hoped that 

a new engine design has reduced the emissions to a level below this standard. 

(a) Set up the appropriate null and alternative hypotheses for confirming that 

the new engine has a mean emission level below the current standard. 

(b) Discuss the practical consequences of making a Type I and a Type I error. 

(c) Asample of 64 engines tested yields a mean emission level of ¥ = .5 g/mi. 

Assume that o = .4. Find the P value of the test. Do you think that H, 

should be rejected? Explain. To what type of error are you now subject? 

It is thought that more than 15% of the furnaces used to produce steel in the 

United States are still open-hearth furnaces. To verify this contention, a random 

sample of 40 furnaces is selected and examined. 

(a) Set up the appropriate null and alternative hypotheses required to support 
the stated contention. 

(b) When the data are gathered, it is found that 9 of the 40 furnaces inspected 
are open-hearth furnaces. Use the normal approximation to the binomial 
distribution (Sec. 4.6) to find the P value for the test. Do you think that H, 
should be rejected? Explain. To what type of error are you now subject? 

It is Known that defective items will be produced even on automated assembly 
lines. A particular process typically produces 5% defectives. If the proportion 
of defectives exceeds 5%, then the line must be shut down and adjusted. 
(a) Set up the appropriate null and alternative hypotheses needed to detect a 

situation in which the proportion of defectives produced exceeds .05. 
(b) Discuss the practical consequences of committing a Type I and a Type II 

error. 
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(c) Arandom sample of 100 items is selected and tested. Of these, 7 are found 
to be defective. Use the normal approximation to the binomial distribution 
to find the P value of the test. Do you think that Hy should be rejected? 

Section 8.5 

5: 

36. 

AME 

38. 

Find the critical point(s) for conducting a hypothesis test on the mean with v2 
unknown for a 

(a) left-tailed test with n = 25; a = .05 

(b) left-tailed test with n = 150; a = .10 

(c) right-tailed test with n = 20; a = .025 

(d) right-tailed test with n = 16; a = .01 

(e) two-tailed test with n = 20; a = .10 

(f) two-tailed test with n = 30; a = .05 
A new 8-bit microcomputer chip has been developed that can be reprogrammed 
without removal from the microcomputer. It is claimed that a byte of memory 
can be programmed in less than 14 seconds. 

(a) Setup the appropriate null and alternative hypotheses needed to verify this 
claim. 

(b) What is the critical point for an a = .05 level test based on a sample of 

SIZEg1 On, 

(c) These data are obtained on X, the time required to reprogram a byte of 
memory: 

11.6 14.7 2S 13},3 3, 

13k 14.2 Sj, 1h 12.5) 153 

3% 13.4 1320) 13.8 23 

Construct a stem-and-leaf diagram for these data. Does the normality as- 

sumption look reasonable? 

(d) Test the null hypothesis. Can Hy be rejected at the a = .05 level? Interpret 

your result in a practical sense. To what type error are you now subject? 

Ozone is a component of smog that can injure sensitive plants even at low lev- 

els. In 1979 a federal ozone standard of .12 ppm was set. It is thought that the 

ozone level in air currents over New England exceeds this level. To verify this 

contention, air samples are obtained from 30 monitoring stations set up across 

the region. 
(a) Set up the appropriate null and alternative hypotheses for verifying the 

contention. 
(b) What is the critical point for an a = .01 level test based on a sample of size 

30? 
(c) When the data are analyzed, a sample mean of .135 and a sample standard 

deviation of .03 are obtained. Use these data to test Hy. Can Hp be rejected 

at the a = .01 level? What does this mean in a practical sense? 

(d) What assumption are you making concerning the distribution of the ran- 

dom variable X, the ozone level in the air? 
A model of Saudi Arabia’s oil export strategy has been devised based on inter- 

views with informed economists. The model is to be used to estimate the mean 
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number of barrels of oil produced per day by this country. The usefulness of the 

model is to be partially checked by comparing the predicted mean for the year 

1980 to its known value for that year, namely, 9.5 million barrels per day. 

(a) Find the critical points for testing 

Hp: w = 9.5 

H,: wp #95 

at the a = .05 level based on a sample of 50 simulations. 

(b) For the data collected, x = 9.8 and s = 1.2. Test Hy. Can Ho be rejected at 

the a = .05 level? Based on these data, is there evidence that the model is 

not adequate? To what type of error are you now subject? 

A low-noise transistor for use in computing products is being developed. It is 

claimed that the mean noise level will be below the 2.5-dB level of products 

currently in use. 
(a) Set up the appropriate null and alternative hypotheses for verifying the 

claim. 
(b) Asample of 16 transistors yields ¥ = 1.8 with s = .8. Find the P value for 

the test. Do you think that H, should be rejected? What assumption are you 

making concerning the distribution of the random variable X, the noise 

level of a transistor? 

(c) Explain, in the context of this problem, what conclusion can be drawn con- 

cerning the noise level of these transistors. If you make a Type I error, 

what will have occurred? What is the probability that you are making such 

an error? 

The Elbe River is important in the ecology of central Europe, as it drains much 

of this region. Due to increased industrialization, it is feared that the mineral 

content in the soil is being depleted. This will be reflected in an increase in the 

level of certain minerals in the water of the Elbe. A study of the river conducted 

in 1982 indicated that the mean silicon level was 4.6 mg/l. 

(a) Set up the appropriate null and alternative hypotheses needed to gain evi- 

dence to support the contention that the mean silicon concentration in the 
river has increased. 

(b) Asample of size 28 yields x = 5.2 with s = 1.6. Find the P value for the 

test. Do you think that Hy should be rejected? 

(c) What practical conclusion can be drawn from these data? 

Coal-handling maintenance is a very young technology. The emission standard 

for coal-burning plants is 4.8 pounds SO,/per million Btu’s/per 24-hour aver- 

age. In an attempt to get emissions below this level, engineers are experiment- 
ing with burning a blend of high- and low-sulfur coal. 

(a) Set up the null and alternative hypotheses needed to support the con- 
tention that the new mixture falls below the emission standard set by the 
government. 

(b) Find the P value for the test if a sample of 200 readings yields a sample 
mean of 4.7 with a sample standard deviation of .5. Do you think that Hy 
should be rejected? What does this mean in a practical sense? 
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Lasers are now used to detect structural movement in bridges and large build- 
ings. These lasers must be extremely accurate. In laboratory testing of one such 
laser, measurements of the error made by the device are taken. The data ob- 
tained are used to test 

Ay: w= 0 

A: wp #0 

A sample of 25 measurements yields x = .03 millimeter over 100 meters and 

s = .1. Find the P value for this two-tailed test. Do you think that Hj should be 

rejected? Interpret your result in a practical sense. 

Clams, mussels, and other organisms that adhere to the water intake tunnels of 

electrical power plants are called macrofoulants. These organisms can, if left 

unchecked, inhibit the flow of water through the tunnel. Various techniques 

have been tried to control this problem, among them increasing the flow rate 

and coating the tunnel with Teflon, wax, or grease. In a year’s time at a partic- 

ular plant an unprotected tunnel accumulates a coating of macrofoulants that 

averages 5 inches in thickness over the length of the tunnel. A new silicone oil 

paint is being tested. It is hoped that this paint will reduce the amount of macro- 

foulants that adhere to the tunnel walls. The tunnel is cleaned, painted with the 

new paint, and put back into operation under normal working conditions. At the 

end of a year’s time the thickness in inches of the macrofoulant coating is mea- 

sured at 16 randomly selected locations within the tunnel. These data result 

(based on information from “Consider Non-fouling Coatings for Relief from 
Macrofouling,” A. Christopher Gross, Power, October 1992, pp. 29-34): 

(a) State the research hypothesis. 
(b) Do these data support the contention that the new paint reduces the aver- 

age thickness of the macrofoulants within this tunnel? Explain, based on 

the P value of the test. 
(c) If a had been preset at .05, would Hp have been rejected? 

(d) Data in this problem are fictitious. Actually, the paint discussed in the jour- 

nal article was much more effective than these data indicate. If these data 

had been real, do you think from a practical engineering point of view that 

the paint would be considered a major breakthrough in controlling the ac- 

cumulation of macrofoulants? Explain. 

Refineries, steel mills, food processing plants, and other industries separate oil 

and water using polyelectrolytes. These work better when pH is closely con- 

trolled. For example, chrome plating waste typically has a pH of 2.5. This waste- 

water must be neutralized before it is released into the environment. These data 

are obtained on the pH of wastewater samples that have been treated (based on 

a discussion found in “How to Choose a pH Measurement System,” David M. 

Gray and Jeff Marshall, Pollution Engineering, November 1992, pp. 45-47): 
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6.2 6.5 7.6 Her 7.0 

7.0 Tee 6.8 TS 8.1 

ofl 7.0 Tin 7.8 8.5 

Based on these data, is there evidence that the treatment process does not yield 

an average pH of 7 as desired? Explain based on the P value of the two-tailed 

test. If a had been preset at the .10 level, would Hy have been rejected? 

Due to the threat of terrorism there is a move to use “bag matching” on domes- 

tic flights in the United States. This means that a flight would not be permitted 

to leave whenever a passenger checks a bag but does not board the plane. It is 

thought that the average delay caused by such a check would be less than 7 

minutes. These data are obtained on a sample of 100 flights in which bag 

checking was employed: 

8.8 8.3 7.2 8.3 6.6 Wl 8.0 8.6 72 7.4 

7.4 ay) 7.6 6.6 S4/ 6.3 7.4 7.6 7.6 6.8 

8.9 8.0 ao) 4.8 7.8 6.2 B.S. 6.3 6.8 6.5 

7.9 The 7.7 6.8 6.9 6.2 7.8 io 8.1 1p 

6.5 6.1 6.1 322 4.9 6.6 Ded 5.8 8.9 7.0 

ell 6.2 Wes D2 7.4 6.6 ast 6.4 7.3 a) 

Te 7.8 8.1 6.2 7.8 7.0 9.8 5.4 7.4 5.6 

Tee 6.4 S55 6.9 6.2 6.7 da 7.4 5.6 7.4 

6.5 6.2 6.6 6.5 aes 7.8 6.6 5.8 6.3 6.3 

8.0 6.2 7.6 6.2 6.4 9.0 6.7 7.5 6.5 5.6 

State the research hypothesis, and calculate the P value of the test. If a delay of 

an average of less than 7 minutes is acceptable to the public and would not 

cause undue disruption of schedules, would you advise that this procedure be 

implemented based on the results of this study? 

(Approximating sample sizes.) In testing the hypothesis Hp: 46 = Mo, the exper- 

imenter can set @ at any desired level. However, the value of 6 depends not 

only on the choice of a, but also on the difference between fp and the alterna- 

tive value y,;. The farther apart these values lie, the more likely it is that we 

shall be able to distinguish them from one another. In designing an experiment, 

we want to pick a sample size that gives us a high probability of rejecting Hp 

when there is a real practical difference between fy and y;. That is, we want B 

to be small. Choosing the appropriate size for a T test is not easy. The problem 

is due to the fact that when Hp is not true, our test statistic no longer follows a 

T distribution. Rather, it has what is called a noncentral 7 distribution. Fortu- 

nately, tables have been constructed using this distribution that allow us to de- 

termine the proper sample size for testing Hp: &@ = fo for various values of a, 

B, and A, where A = |W) — p,l/o and o is the standard deviation of X. Table 

VII of App. A is one such table. Its use is illustrated here. 

Example. Let us test Hy: uw = 10 versus H,: w > 10 at the a = .05 level. As- 

sume that we want to be 90% sure of detecting a situation in which yw has gotten 

as large as 12. Assume also that a pilot study has been run and that ¢ = 4. Here 

A = |po — py l/o = 110 — 121/4 = .5 

605 and B=.1 II a 
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From Table VII of App. A we see that for a one-sided test with these character- 
istics we need a sample of size n = 36. 

(a) A pilot study indicates that the standard deviation of a particular random 
variable X is 1.25. How large a sample is required to test 

Ao: Ub = 20 

Hat 20 

at the a = .05 level and B = .05 level if it is important to be able to distin- 
guish between yp = 20 and ww = 21? 

(b) In Exercise 37 we tested 

Ao: bh = ll? 

at the a = .01 level based on a sample of size 30. From this study we see 

that o = .03. Suppose that a mean ozone level of .14 is so serious that we 

must have a probability of .95 of detecting the situation. Approximately 
how large a sample is required? 

(c) In Exercise 39 we tested 

Ho: pw = 2.5 

deb 2, << O)es) 

A sample of size 16 yielded s = .8. Assume that the new transistors are not 

financially worth marketing unless they reduce to mean noise level to at 
most 2 dB. Approximately how large a sample is needed to distinguish be- 

tween a mean of 2.5 and a mean of 2.0 if a =.025 and B =.05? 

Section 8.6 

47. Anew process for producing small precision parts is being studied. The process 

consists of mixing fine metal powder with a plastic binder, injecting the mix- 

ture into a mold, and then removing the binder with a solvent. These data are 

obtained on parts that should have a 1-inch diameter and whose standard devi- 

ation should not exceed .0025 inch: 

1.0030 9997 .9990 1.0054 9991 

1.0041 .9988 1.0026 1.0032 9943 

1.0021 1.0028 1.0002 9984 .9999 

For these data x = 1.00084 and s = .00282. 

(a) Test 

Hy: w= 1 

A,;: nF 1 

at the a = .05 level. 

(b) Test 

Hy: o = .0025 

Ja eS OLD 

at the a = .05 level. 
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Indoor natatoriums or swimming pools are noted for their poor acoustical prop- 

erties. The goal is to design a pool in such a way that the average time that it 

takes a low-frequency sound to die is at most 1.3 seconds with a standard devi- 

ation of at most .6 second. Computer simulations of a preliminary design are 

conducted to see whether these standards are exceeded. These data are obtained 

on the time required for a low-frequency sound to die: 

1.8 Su 5.0 5.3) 6.1 2S 

2.8 5.6 3) 8) 24), 3.8 3) 8) 

4.6 3 Pies eS 4.4 4.6 

33) 4.3 S)") Pers Pie Teh. 

6.6) @19sr ob ewe aoe 

For these data x =3.97 and s =1.89. 

(a) Test 

Ap: w = 1.3 

Hye ee les 

at the a = .01 level. 

(b) Test 

Ho: a= 6 

Tica =6 

at the a = .01 level. Does it appear that the design specifications are be- 

ing met? 

Incompatibility is always a problem when working with computers. A new dig- 

ital sampling frequency converter is being tested. It takes the sampling fre- 

quency from 30 to 52 kilohertz word lengths of 14 to 18 bits and arbitrary 

formats and converts it to the output sampling frequency. The conversion error 

is thought to have a standard deviation of less than 150 picoseconds. These data 

are obtained on the sampling error made in 20 tests of the device: 

13352) = Wray says (bys, 139.4 

= Oley 314.8 147.1 —70.4 104.3 

56.9 44.4 is) —47 96.1 

= Pyle —43.8 Oi) atl 9.9 

For these data x = 28.69 and s = 104.93. 

(a) Test 

Ap: w= 0 

H,: w #0 

at the a = .1 level. 

(pb) Test 

Hy: « = 150 

Hat Omen U 

at the a = .1 level. Does the converter appear to be as accurate as claimed? 
Use the data of Exercise 17 to test the null hypothesis that the standard devia- 
tion in gate time is less than 10 minutes. 
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Section 8.7 

roll 

52. 

So: 

54. 

Geb 

In each case, use the sign test to decide whether Hy: M = My will be rejected in 
favor of the stated alternative at the a =.05 level based on the data given. Do 
not discard zeros. 

(a) H,:M>M);n = 15, O. = 13, no zeros 

(b) H,: M > Mp);n = 20, O, = 15, no zeros 

(c) Hy: M > Mo; n = 20, Q, = 15, three zeros 

(dq) Hi: M<M);n = 10, O, = 1, no zeros 

(e) H,:M<M);n = 10, O, = 1, one zero 

(f) H,: M # Mj;n = 15, O. = 2, no zeros 

(g) H,: M # M);n = 15, O, = 2, one zero 

In each case above, what is the P value of the test? 

Engineers are designing the safety devices for use in a new amusement-park 

ride. They think that the median height of patrons of rides of this sort exceeds 

68 inches. Based on the sign test, do these data support this contention? Sup- 

port your answer by finding the P value of the conservative sign test. 

Height in inches 

65 13 2 71 68 

74 74 66 68 69 

70 66 72 67 Ws 

69 70 73 70 74 

Even with careful workmanship, digital scales may need some adjustment be- 

fore being put into use. Unless there are systematic errors being made, the ap- 

parent zero of the scales before adjustment should fluctuate about true zero. 

That is, some scales should weigh a little heavy, whereas others should give 

readings that are a little light. Ten such scales are randomly selected and tested. 

These data are obtained on the accuracy of the zero reading: 

heavy light heavy heavy heavy 

light light light heavy heavy 

Based on these data, can we reject Hp: M = 0 in favor of H,: M > 0 at the 

a = .05 level? 
In Example 8.7.2 we were able to reject 

H,: M = 120 

H,:M < 120 

at the a = .05 level. If we had used the sign test, which ignores the magnitude 

of the difference scores, could we have rejected Hy at the a = .05 level? Ex- 

plain by finding P[Q, = 2In =8 and p =1/2]. 
An experiment for treating tar sand wastewater was conducted to determine 

whether a new treatment process removed more total organic carbon than a 

standard treatment process that is known to remove a median of 40 mg/l in a 

fixed detention time. Under the same experimental conditions the new process 

was replicated 10 times, yielding total organic carbon amounts removed of 

38.8, 53.6, 39.0, 51.6, 40.1, 46.9, 40.9, 44.9, 41.0, and 43.2. 
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(a) What is E[W]? 

(b) Using the signed-rank test, is there evidence that the new process removes 

significantly more total organic carbon than the standard process at the .05 

level? 
In an attempt to determine how many consultants are needed to answer ques- 

tions of users at a computer center, these data are collected on X, the time in 

minutes required to answer a telephone inquiry: 

56 

iho: 1.0 5.0 1.9 3.0 

IIe: Ze 1.7 6.5 4.2 

6.3 5.6 5.1 Dy 6.9 

(a) What is E[W]? 
(b) Based on the signed-rank test, can we conclude that the median time re- 

quired is less than 5 minutes? Explain, based on the P value of your test. 

(A zero score should be given the lowest rank and should be assigned the 

algebraic sign least conducive to rejecting the null hypothesis.) 

57. A study of the expansion joints used in bridge beds is conducted. It is thought that 

these joints are expanding more than they were designed to expand, thus creating 

cracks in the pavement near the joint. The median design expansion at 95° F is 

2 inches. Laboratory tests of 100 such joints are conducted at this temperature. 

(a) What is E[W]? 

(b) What is Var[W]? 

(c) Set up the appropriate null and alternative hypotheses. 

(d) If|W_l = 1600, can Hp be rejected? Explain, based on the P value of the test. 

REVIEW EXERCISES 

58. A consumer group wants to estimate the mean cost of the base system for a per- 

sonal computer with certain specifications. It is thought that these computers 
range in price from $2390 to $4000. 
(a) How large a sample should be taken to estimate uw to within $100 with 

90% confidence? 

(b) Arandom sample of size 50 yields these data (data in thousands of dollars): 

2.43 2.86 2.74 TBS) 2.69 2.64 2.91 

2.89 3.18 3.00 eye 3.07 Sele 3.24 

Sy) Boi Shel! 3.56 3.30 Pays 3.09 

2.99 SAU) Bn 3.70 3.45 2.82 2.88 

eae Bi25 2.86 2.93 3.45 Salil 3.86 

2.96 3.00 2.88 3.19 3.56 Seal B33 

3.39 3.14 2.90 3.49 3.02 3.56 2.87 
DBZ 

Construct a stem-and-leaf chart for these data. Use the digits 2 and 3 as 
stems 5 times each. Graph numbers beginning 2.0 and 2.1 on the first stem, 
those beginning 2.2 and 2.3 on the second stem, and so forth. Does the 
stem-and-leaf chart lead you to suspect that these data are not drawn from 
a distribution that is at least approximately normal? 

(c) Find unbiased estimates for jz and a based on these data. Estimate o. Is 
the estimate for o unbiased? 



59. 

INFERENCES ON THE MEAN AND VARIANCE OF A DISTRIBUTION 307 

(d) Find 90% confidence intervals on 0? and a. 
(e) Find a 90% confidence interval on pu. 
Researchers are experimenting with a new compound used to bond Teflon to 
steel. The compounds currently in use require an average drying time of 3 min- 
utes. It is thought that the new compound dries in a shorter length of time. 
(a) Set up the null and alternative hypotheses needed to support the claim that 

the new compound dries faster than those currently in use. 

Discuss the practical consequences of making a Type I error; a Type II error. 

A pilot study shows that 6 = .5. Suppose that the new product is worth 

marketing if the average drying time can be shown to be 2.5 minutes or 

less. How large a sample is required to detect this situation with probabil- 
ity .95 with a set at .05? 

(d) When the experiment is conducted, these data are obtained: 

(b) 
(c) 

1.4 2.1 2.8 9) 

2.4 Ils Jef ral 

2.6 eS) 2.8 2.8 

22 Dee 3.4 Ve) 

Test the null hypothesis of part (a) at the a = .05 level. Would you suggest 

marketing this new product? 
60. It is thought that a majority of the procedures used in a statistical computer 

61. 

62. 

package run in less than .1 second. To verify this contention, a random sample 

of 20 programs that entail exactly one procedure is to be examined. 

(a) Setup the appropriate null and alternative hypotheses needed to verify the 

claim. 
(b) Let X denote the number of programs in which the procedure used runs in 

less than .1 second. Find the critical region for an a = .025 level test. 

When the test is conducted, 14 programs are found in which the procedure 

used runs in less than .1 second. Will H, be rejected? To what type error 

are you now subject? 

(d) Find B if p = .6; if p = .7; 1f p = .8; if p = .9. 

(e) Find the power of the test if p = .6; 1f p = .7; if p = .8; 1f p = 9. 

Nickel powders are used in coatings used to shield electronic equipment from 

electromagnetic interference. It is thought that the mean size of the individual 

nickel particles in one such coating is less than 3 micrometers. Do these data 

support this contention? Explain, based on the P value of the appropriate test. 

(c) 

3.26 B07 2.46 1.76 

1.89 2.95 3).35) Shee 

BED 1.39 1.56 DANO) 

2.03 3.06 1.79 2.96 

We want to test 

Ay: w= 5 

labie eo = 5 

based on a random sample of size 25. The sample standard deviation is 2, and 

the observed value of the sample mean is 5.5. What is the P value for the test? 
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=~ 
Tank Center of target 

(a) 

Aiming error 

(c) 

FIGURE 8.12 

(a) A direct hit on the center of the target; (b) any shell fired within the window shown should hit the 

target; (c) angular measure from center of target to actual impact point = aiming error that still allows 

for a hit. 

63. The accuracy of a tank’s artillery is obviously affected by target size, distance 

of the tank from the target, and other random factors such as wind and terrain. 

A series of tests is conducted on a standard target of size 2.3 by 3.4 meters. This 

is the average size of targets that NATO tanks are likely to encounter. Each tar- 

get is 3000 meters from the tank. The angular measure from the center of the 

target to the point of impact on the target is given in mils. A mil is an angle of 

size 1/6400th of a 360° circle. (See Fig. 8.12.) The system aiming error that can 

be tolerated and still hit the target is investigated. These data are obtained. Note 

that zero denotes a direct center hit (no error); positive errors result in a high 

hit; negative errors in a low hit. (Based on information found in “Tank Gun Ac- 

curacy,’ Major Bruce Held and Master Sergeant Edward Sunoski, Armor, Jan- 

uary 1993, p. 6.): 

me) a) ef) e 0 0 

Se 0 O (2 2 

4 0 0 0 sll | 

ae a al l =] 0 

=p) “ll = = =¥1 0 

ae ee ml 0) 0 = 

ag 

(a) Sketch a stem-and-leaf diagram for these data. Are there any suspicious 
values in the data set? 

(b) Sketch a boxplot for the data, and see if the one rather large data point 
qualifies as an outlier. 

(c) It is thought that the “hit” that occurred when the outlier was obtained 
was, in fact, not a hit at all but, rather, an error in coding the data. For this 
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reason, the outlier will be dropped from the data set in future analyses. 
Use the data given to find a 95% confidence interval on the average sys- 

tem error that occurs in firings that result in a hit. 

A pattern recognition device involves 3000 bits. Each bit can be either on (the 

bit value is 1) or off (the bit value is 0). These bits are either fixed or change- 

able. If they are fixed, they cannot be reversed by the programmer. If more than 

95% of the bits are fixed, then the system will crash. Bits will be tested se- 

quentially until a changeable bit is found. We want to detect a situation in 

which the system will crash. The test statistic is X, the number of bits sampled 
in order to obtain the first changeable bit. Note that if the system will crash, 

then the probability of finding a fixed bit exceeds .95 and the probability of 

finding a changeable bit is less than .05. The random variable X is approxi- 

mately geometrically distributed. We are testing 

~ Je hover = A 0's) (system will not crash) 

Hep 05 (system will crash) 

(a) Explain why X is only approximately geometrically distributed. That is, 

what geometric property is not strictly met? 

(b) If Ho is true, what is E[X]? 

(c) If H, is true, would you expect X to exceed E[X] or to be smaller than 

E[X]? 
(d) Find the critical point for the test if you want @ to be between .05 and .10. 

(e) Ona particular run 30 consecutive fixed bits are found. Is this evidence yet 

that the system will crash using the a level of part (d)? In this case, what 

type error is possible? In the context of this problem, what are the conse- 

quences of making this error? 

(f) Ona particular run 60 consecutive fixed bits are found. What conclusion 

can you draw from this? What type error is possible? In the context of this 

problem, what are the consequences of making this error? (Based on a 

study conducted in 1993-1994 by Eyal Schwartz, Department of Com- 

puter Science, Radford University.) 

To study the cost effectiveness of energy-saving programs, data are gathered on 

the cost of such programs. These data are obtained on the cost of various pro- 

grams per kilowatt hour of electricity saved: 

Residential programs (cost in cents) 

3 8 7 = V 7 

6 4 8 8 5 8 

6 9 g 11 8 8 

10 8 3 8 9 9 

i 9 6 11 13 5 

10 12 q 12 8 8 

8 10 11 10 14 6 
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Commercial and industrial programs (cost in cents) 

Wo khW— 

3 3 2 3 
2 4 °) 3 

3 3 6 
4 5 3 

(d) 

(e) 

(f) 

Construct stem-and-leaf diagrams for each data set. Comment on the like- 

lihood that the normality assumption underlying 7 statistics is satisfied in 

each case. 
Construct a boxplot for each data set. Identify the extreme outlier in the 

residential data set. Suppose that upon investigation it is found that this 

data point was obtained in a very atypical program in an affluent region of 

the country. Since the program is so unusual, it is decided not to include it 

in trying to estimate the cost of programs that could be put in place in most 

areas of the country. Use the remaining data to construct a 95% confidence 

interval on the average cost of residential energy-saving programs cur- 

rently in use. If the outlier had been included, what effect would it have in 

the confidence interval obtained? 

Find a 95% confidence interval on the variance of the cost of residential 

energy-saving programs. Do not use the extreme outlier in your calcula- 

tion. If the outlier were used, what would be the effect on the length of the 
confidence interval obtained? 

Find 95% confidence interval, on the mean, variance, and standard devia- 

tion of the cost of energy-saving programs in the industrial and commer- 
cial sectors. 

If the true average cost of electricity to residential customers is 8 cents per 

kilowatt hour, is there reason to question the cost effectiveness of residen- 
tial energy-saving programs? Explain. 

If the true average cost of electricity to industrial and commercial cus- 

tomers is 5 cents per kilowatt hour, is there reason to question the cost ef- 

fectiveness of commercial energy-saving programs? Explain. (Based on 

information found in “The Real Cost of Saving Electricity,” Technology 
Review, February/March 1993, p. 12.) 

Consider the information given in Exercise 6.35. Construct 95% confidence in- 
tervals on the average life span for each type of lamp. Based on these intervals, 
is there clear evidence that the mean life spans differ in value? Explain. 
The Nuclear Regulatory Commission is responsible for monitoring companies 
using radioactive materials. Data obtained in a study of past accidents are given 
on the website. Variables in the data set are: 

Number = accident number 

Type = type of company with p = privately run, g = government 
not military, and m = military 

Accident = type of accident with wh = whole body exposure and 
e = exposure to extremities only 

Expose = exposure dose in rems 
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(a) Sort the data by accident, and obtain stem-and-leaf plots for the exposure 

dose for each type of accident. 
(b) Find 90% confidence intervals for the mean exposure dose for each type of 

accident. Is there clear evidence that these means differ in value? Explain. 

(c) Sort the data by accident and type to obtain 6 subgroups. Obtain descrip- 

tive statistics and boxplots for each subgroup. Discuss any similarities or 

differences that you observe from these descriptive tools. 



CHAPTER 

INFERENCES 
ON PROPORTIONS 

n this chapter we discuss inferences on one proportion and the comparison of two 

| Pere As we have already seen, the binomial distribution can be used to 

test hypotheses on a proportion p when sample sizes are small. Here we see how to 

use the standard normal distribution to construct confidence intervals on p and test 

hypotheses concerning its value for large samples. We also begin our study of two 

sample problems by learning how to compare proportions based on samples drawn 

from two distinct populations. 

9.1 ESTIMATING PROPORTIONS 

The typical situation calling for the estimation of a proportion is as follows: There 

is a population of interest, a particular trait is being studied, and each member of the 

population can be classed as either having or failing to have the trait. We want to 

make inferences on p, the proportion of the population with the trait. 

Example 9.1.1. Quality and reliability are important aspects of software. The small- 

est of bugs in computer software once foiled a space shuttle launch; in Japan a signal 

malfunction in an electronic telephone exchanger shut down phone lines for hours. To 

estimate the reliability of 16-kilobit (kbit) dynamic RAMs being produced by a par- 

ticular company, a sample of size 100 is to be drawn and tested. We are interested in 

estimating p, the proportion of circuits that operate correctly during the first 1000 

hours of operation. Here the population consists of all 16-kbit dynamic RAMs pro- 

duced by the company; the trait being studied is the ability of the circuit to function 
correctly during the first 1000 hours of use. Each circuit either will have the trait, that 
is, it will operate correctly, or else it will not. 
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To develop a logical point estimator for p, note that associated with a random 
sample of size n drawn from the population is a collection of n independent random 
variables X,, X>, X3,..., X,, where 

ee | if the ith member of the sample has the trait 

0 if the ith member of the sample does not have the trait 

For example, if we sample 100 circuits, we are dealing with a sample that would 
look something like this: 

x = I x,= 1 Xog = | 

xX, = 0 x5 =0 6 546 X99 = O 

x3=0 X09 = 0 

In this case the fist circuit sampled operates correctly during the first 1000 hours of 

use, SO x, = 1; the second circuit does not operate correctly for this period of time, 

and so x, = O, and so forth. Note that, in general, X = 2"_,X; gives the number of 

objects in the sample with the trait and that the statistic X/n gives the proportion of 

the sample with the trait. This statistic, called the sample proportion, 1s a logical 

point estimator for p: 

Point estimator for p 

X _ number in sample with trait 

sample size 

Example 9.1.2. Suppose that when the 100 tests mentioned in Example 9.1.1 are 

conducted, it is found that 91 of the 100 circuits tested perform properly during the 

first 1000 hours of operation. Thus 91 of the random variables X,, X, X3, .. . , X00 

have value 1 and 9 assume the value 0. Based on these data, 2x; = x = 91 and 

p =n = 91/100 = .91 

Confidence Interval on p 

To develop a confidence interval on p, the distribution of p must be determined. 

This is accomplished by noticing that p = =X;/n is actually nothing more than a 

very special sample mean. That is p = X is the average of the point binomial or 

zero-one random variables X;. By the Central Limit Theorem p is approximately 

normally distributed with the same mean as the X;’s and with variance equal to 

(Var X,)/n. The mean and variance of X; is determined easily. Since X; = 1 only if 

an object with the trait is sampled and the true proportion of objects in the sample 

with the trait is p, P[X; = 1] = p. Consequently, P[X; = 0] = 1 — p. The density for 

X; is as follows: 
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x; 1 0 

f(x) | P ip 

From this density it is easy to see that 

E[X;] =1(p) +O —p) =p 

E( x7] =1*(p) + 0-(L—p) =p 

and 

Vat X;= E[X7) — CELA) =p pp) 

By the Central Limit Theorem we can conclude that p is approximately normally 

distributed with mean p and variance p(1 — p)/n. Notice that we have just shown 

that p has the properties desirable in a point estimator. It is unbiased for p and has a 

small variance for large sample sizes. 

To obtain a random variable that involves p whose distribution is known to 

serve as a Starting point for the confidence interval derivation, standardize p. The re- 

sulting random variable, 

(p—p)/\Vp(1—p)/n 

follows an approximate Z distribution for large sample sizes. The partition of 

the standard normal curve shown in Fig. 9.1 is needed to derive the bounds for a 

100(1 — a@)% confidence interval on p. From this diagram it can be seen that 

Pl za <(p-p)/VpU-p)n Zan| mae 

Isolating p in the middle of this inequality, we see that 

Pip — Zan Vp(1 — p)in = p = B+ Zan Vp —pyin ane 

It appears that the confidence bounds for p are 

PE Zoi Vp —pyin 

However, there is a problem here that has not been encountered before. The bounds 
for a confidence interval must be statistics. That is, they must be random variables 
whose expression contains no unknown parameters so that their numerical value 
can be obtained from a sample. Unfortunately, as written, the above bounds are not 

a/2 

~ 24/2 0 <a/2 < 

FIGURE 9.1 
Partition of the Z curve needed to construct a 100(1 — a)% confidence interval on p. 
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statistics, since the unknown parameter p appears in the expressions given. This 

means that we are attempting to use p to estimate p, a seeming impossible situation! 
The problem can be overcome easily. The obvious method is to replace p by its un- 

biased estimator p, to yield these bounds: 

P2=GioVP\l—p)in 

A legitimate question to ask is, “Since we are replacing the true standard de- 
viation of p by an estimator for this standard deviation, should we switch from Z to 

T,,-; aS was done when estimating 2?” The answer to this question lies in consider- 

ing the sample size. The derivation of the confidence bounds is based on the Cen- 

tral Limit Theorem, which assumes that a large sample is available. Furthermore, in 

experimental settings in which this formula is to be applied the sample size is ex- 

pected to be large enough so that there is very little difference between a z and at 

point. Thus we shall write the confidence bounds as 

™ 

Confidence interval on p 

P=Za2VP\1 = p)in 

and use z points when the formula is applied. Confidence bounds for samples of 

size 1 through 30 have been developed based on the binomial distribution, and 
should be used for samples this small. Tables for these are found in [10]. The use of 

this method is illustrated in the next example. 

Example 9.1.3. The point estimate for the proportion of 16-kbit dynamic RAMs that 
function correctly for at least 1000 hours based on a sample of size 100 is .91. From 

the standard normal table the point required to construct a 95% confidence interval on 

P iS Zs = 1.96. The bounds for the confidence interval are 

Pe care VL —p)in 

or 

91 + 1.96 .91(.09)/100 

91 056 

We can be approximately 95% confident that the true proportion of circuits that func- 

tion correctly during the first 1000 hours of operation lies between .854 and .966. 

Converting to percentages, we can be approximately 95% confident that the true per- 

centage of satisfactory circuits produced by this company lies between 85.4% and 

96.6%. The word “approximately” is employed because we are approximating the dis- 

tribution of p via the Central Limit Theorem and are also approximating p by p in find- 

ing the confidence bounds. 

Sample Size for Estimating p 

As when estimating a mean, it is possible that an experiment yields a confidence 

interval on p that is so long that it is virtually useless. This brings up one other 
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d d 
———X——_——_—_— oo 0. 0 rr 

| | sill 

P-ZypVP(1-P )/n P P+Z pV R1-P)/n 

FIGURE 9.2 
100(1 — a)% confidence interval on p. 

important question: “How large a sample should be selected so that p lies within a 

specified distance d of p with a stated degree of confidence?” There are two ways to 

answer this question. The first is applicable when an estimate of p based on some 

prior experiment is available. Consider the diagram of Fig. 9.2. 
Since we are 100(1 — @)% sure that p lies in the interval shown, we are 

100(1 — a@)% sure that p and p differ by at most d, where d is given by 

d = Zai2 VpP(1 — p)in 

This equation is solved for n to obtain the following formula for finding the sample 

size needed to estimate p with a stated degree of accuracy and confidence when a 

prior estimate of p is available: 

Sample size for estimating p, prior estimate available 

Zn 7p) 
REET ORs 

Example 9.1.4. How large a sample is required to estimate the proportion of 16-kbit 

dynamic RAMs that function properly during the first 1000 hours of use to within .01 

(1 percentage point) with 95% confidence? We do have a prior estimate of p available, 

namely p = .91. By the above formula 

a Zag POL ep) 
de 

nN 

Since we want 95% confidence, the point z,, = Z 25 = 1.96. The maximum desired 

difference between p and p is d = .01. Substituting, we obtain 

be 1.96)?(.91) (09) _ 
5 3 

(AOU al 

To get the desired accuracy, we need substantially more data than we now have 
available! 

The second method for determining sample size for estimating proportions 
is based on a result from elementary calculus. It can be shown (Exercise 9) that 
p(1 — p) will never exceed 1/4. Therefore this term can be replaced by 1/4 in the 
previous sample size formula to obtain the following formula for use when no prior 
estimate of p is available: 
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Sample size for estimating p, no prior estimate available 

2 
£al2 

4d? 

This expression will be very useful to you since in most applications no prior esti- 
mate of p is available. 

Example 9.1.5. A new method of precoating fittings used in oil, brake, and other 
fluid systems in heavy-duty trucks is being studied. How large a sample is needed to 
estimate the proportion of fittings that leak to within .02 with 90% confidence? Since 
no prior estimate of p is available, 

5 2 pen 7 
2, SCIP! 

"Ad? 

Here Z9/2 = Zos = 1.645 and d = .02. Substituting, we have 

_ (1.645)? 
i = 4(.02)2 = 1692 

It should be pointed out that sampling from a large finite population is usually 

done without replacement. Strictly speaking, the proportion of objects in the popu- 

lation with the given trait does vary from trial to trial. However, the change is so 

slight that its effect on our calculations is negligible. For this reason, the methods of 
this section can be used to study large populations even though the mathematical as- 

sumptions underlying the methods are not met completely. 

9.2 TESTING HYPOTHESES 
ON A PROPORTION 

When we have a preconceived idea of the value of a proportion or a percentage and 

we want Statistical evidence to support our contention, we are in a hypotheses- 
testing situation. The hypotheses tested can assume any one of the usual three 

forms, depending on the purpose of the study. Let pp) denote the null value of p. 

These forms are 

I Ab: p = Po Il Ao: p = Po Ill Ap: p = Po 

Hip | po Ay: p < po A: p F Po 

Right-tailed test Left-tailed test Two-tailed test 

In Sec. 8.3 we saw how to test these hypotheses for small samples. The test 

statistic used is X, the number of objects in the sample with the trait of interest. 
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When the null hypothesis is true, this statistic has a binomial distribution with para- 

meters 1 and py. When sample sizes are large, appropriate binomial tables usually 

are not available. In this case we must find another logical test statistic. 

Consider the random variable used to generate the confidence bounds for p. 

That is, consider the statistic 

Test Statistic for Testing Ho: p = po 

(P — Po)/V pol — po)in 

The statistic 1s a logical choice since 1t compares the unbiased point estimator for p, 

p, to the null value pp. Furthermore, if Hy is true, then by the Central Limit Theorem 

this statistic has a standard normal distribution. Tests are conducted as you would 

expect. Namely, for a right-tailed test Hp is rejected in favor of H, if the observed 

value of the test statistic is a large positive number; large negative numbers lead to 

rejection in a left-tailed test. In a two-tailed test Hp 1s rejected for values of the test 

statistic that are too large in either the positive or the negative sense. These ideas are 
illustrated in the next example. 

Example 9.2.1. The majority of faults on transmission lines are the result of exter- 

nal influences and are usually transitory. It is thought that more than 70% of all faults 

are caused by lightning. To gain evidence to support this contention we test 

Ho: p = .7 

Ep eal 

Data gathered over a year-long period show that 151 of 200 faults observed are due to 
lightning. The observed value of the test statistic is 

(P — Po)/V po(1 — po)/n = (151/200 — .7)/\/.7(.3)/200 

= 1.697 

Since we are conducting a right-tailed test, we reject H, if this value is unusually large. 
To decide whether 1.697 is a large positive value, we find the P value. From the stan- 
dard normal table we see that P[Z = 1.69] = .0455 and P[Z = 1.70] = .0446. Since 
our observed value, 1.697, lies between 1.69 and 1.70, the P value lies between .0446 
and .0455. There are two explanations for this small P value. The null hypothesis is 
true, and we have just observed a rare event, one that occurs only about 4 times in 
every 100 trials; or the null hypothesis is not true, and the true percentage of faults due 
to lightning exceeds 70%. The latter explanation seems more plausible, so we shall re- 
ject Hy and conclude that p > .7. 

This method for testing a hypothesis on p does assume that the sample size is 
“large.” Following the guidelines given in Sec. 4.6, this is interpreted to mean that n 
and py are such that py = .S and npp > 5 or py > .S and n(1 — Po) > 5. These criteria 
are met in Example 9.2.1 since p) = .7 > .5 and n(1 — Po) = 200(.3) = 60 > 5. 
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9.3. COMPARING TWO PROPORTIONS: 
ESTIMATION 

The problem of comparing two proportions arises frequently in the engineering sci- 
ences. The general situation can be described as follows: There are two populations 

of interest, the same trait is studied in each population, each member of each popu- 
lation can be classed as either having the trait or failing to have it, and in each popu- 
lation the proportion having the trait is unknown. Random samples are drawn from 
each population. These samples are independent of one another in the sense that the 

objects drawn from one population do not determine in any way which objects are 

selected from the second population. Inferences are to be made on p,, p>, and p; — Po, 

where p, and p, are the proportions in the first and second populations with the trait, 
respectively. 

Example 9.3.1. A study is conducted to compare computer usage in Canadian busi- 

ness to that of businesses in the United States. Interest centers on the proportion of 

businesses in each country with an on-site mainframe computer. Here the two popula- 

tions being studied are “businesses” in Canada and “businesses” in the United States. 

Remember that before sampling is done we must clearly specify what constitutes a 

“business.” That is, we must clearly define the target populations. The trait under 

study is that of having an on-site computer; each business sampled either does or does 

not own such equipment. We draw a sample at random from each population. We use 

the sample data to compare the proportion of Canadian businesses with an on-site 

mainframe computer to that of businesses in the United States. (See Fig. 9.3.) 

The problem of point estimation of the difference between two proportions is 

solved in the obvious way. We simply estimate p, and p, individually and take as our 

estimate for p, — p> the difference between the two. That is, our point estimator is 

Point estimator for p, — p, 

Dp =P, — p, = X,/n, — X,/ny 

Population I (Canadian businesses) Population II (businesses in United States) 

Has Has 
mainframe mainframe 

computer computer 

Sample of size n Sample of size n, 

No mainframe 

computer 
No mainframe 

computer 

FIGURE 9.3 

Independent samples drawn to estimate p; — P2- 
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where n, and n, are the sizes of the samples drawn from the two populations and X, 

and X, are the number of objects, respectively, in the samples with the trait. 

Example 9.3.2. Independent random samples of size 375 are selected from the pop- 

ulation of Canadian businesses and from the population of businesses in the United 

States. It is found that 221 of the Canadian firms and 232 of the firms in the United 

States have mainframe computers. For these data 

P, = X/n, = 221/375 = 589 

Po = X,/n, = 232/375 = .619 

Confidence Interval on p, — p; 

To extend the point estimator p; — P> to an interval estimator, we must pause to 
consider the probability distribution of this statistic. Its approximate distribution is 

given in Theorem 9.3.1. 

Theorem 9.3.1. For large samples, the estimator p,; — p> is approximately 

normal with mean p, — p> and variance p,(1 — p,)/n, + po — pr)/n. 

Proof. We have shown in Sec. 9.1 that both p, and p, are approximately normal with 

means p, and p, and variances p,(1 — p,)/n, and p3(1 — p>)/n>, respectively. Since the 

sum or difference of two normal random variables is normal (Exercise 41, Chap. 7), we 

can conclude that the statistic p, — p> is at least approximately normally distributed. 

Furthermore, by the rules for expectation and the rules for variance 

E[p, — p2] = E[p,] - E([p2) =p; — pr 

and 

Var [p, — p2] = Var p, + Var p; = p,(1 — p,)/n, + po(1 — pr) /ny 

Note that Theorem 9.3.1 shows that the statistic p; — p, is an unbiased esti- 
mator for py — p>. To construct a 1O0(1 — @)% confidence interval on p; — p>, we 
need a random variable whose expression involves this parameter and whose prob- 
ability distribution is known at least approximately. This is easy to do via Theorem 
9.3.1. We simply use the results of this theorem to standardize the statistic p,; — py. 
In particular, we now know that the random variable 

(Pi — Po) — (Pi — Pr) 
Vp, ( 1 =: py)/ny po 1 =p») ine 

is at least approximately standard normal. Rather than repeat an algebraic argument 
given previously, let us consider three intervals that have been derived already and 
note their similarities. 
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Parameter Began 

being derivation 

estimated with Distribution Bounds 

pL(o7 known) Rep Ib X+z,nolVn 
al\/n eae 

(a? unknown) Kit iF eR siV/n Sea etY /i2 

P—P e P ———— ~Z D = Za Wid =jo)h 
Vp(1—p)in ; Ee ee 

The algebraic structure of each of the beginning variables is the same and is of the 
form 

no Estimator — parameter 

D 

where D is either the standard deviation of the estimator or an estimator for this 

standard deviation. This is also the algebraic form assumed by the variable 

(pit Py) =pieops) 

Vi — p,)/n, + po(1 — po) /ng 

The confidence bounds in the previous cases took the form 

Estimator + probability point - D 

Applying the notion to the case at hand, we find that the proposed confidence 

bounds for a confidence interval on p, — p> will be 

(DP, — Pr) * Zan Vii — py)/n, + po — pp) /ny 

Once again there is a slight problem. The proposed bounds are not statistics. 

They include the unknown population proportions p, and p>. As in the one sample 

case, this problem can be overcome by replacing the population proportions with 

their estimators p, and p,. This leads to the following formula for finding confi- 

dence intervals on the difference between two population proportions: 

Confidence interval on p, — p, 

(Di Dy) 25 VPi(1 — p,)/n, + pol — Pr) In, 

Example 9.3.3. The point estimate for the difference in the proportion of businesses 

in Canada and the proportion of businesses in the United States with on-site main- 

frame computers is Pp; — Pp. = .589 — .619 = —.03. A 95% confidence interval for this 

difference is 
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(Pp, — Pr) = aus VPC — p\)In, + pol — p2)Iny 

or 

—.03 + 1.96 V/(.589) (.411)/375 + (.619) (.381)/375 

=e US er, 

That is, we are 95% confident that the true difference in proportions lies in the inter- 
val [—.10, .04]. Note that since this interval contains the number 0, it is possible that 

there is really no difference in the two population proportions p, and pp. 

The question of determining the sample size needed to estimate the difference 

between two proportions with a stated degree of accuracy and confidence is more 
complex than in the one sample case. However, if samples of equal size are chosen 

from each population, then the problem can be solved just as in the one sample case. 

The procedure is outlined in Exercise 21. 

9.4 COMPARING TWO PROPORTIONS: 
HYPOTHESIS TESTING 

Sometimes problems arise in which it is theorized prior to the experiment that one 

proportion or percentage differs from another by a specified amount. The purpose 

of the experiment is to gain statistical support for the contention. These hypotheses 
take any one of these three forms, where (p,; — p>) represents the null value of the 

difference in proportions: 

I Ao: P) — P2 = (Pi — Pro UW Ao: pi: — p2 = (Pi — Pro 

Ay py — p2> Py > Pao «= sys py = D2 = (Pi — Pro 

Right-tailed test Left-tailed test 

Il Ao: py — pr = (Pi — Pro 

A: py — Pr = (Pi — Prdo 

Two-tailed test 

To test such hypotheses, a test statistic must be found. To derive such a statis- 
tic, consider the approximately standard normal random variable 

(Pi — P2) — (Pi = Pro 
Vpi( 1 — p,)/n, + p2(1 — pr) /n, 

that was used to construct confidence intervals on p, — p) in the previous section. 
This random variable is not a statistic, since it contains the unknown population pro- 
portions p, and p. We again overcome this problem in the logical way. In particu- 
lar, we replace p, and p) by their unbiased estimators p, and p, to obtain the 
approximately standard normal test statistic 

VAC — D; in, +po( = po)ins 
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This is a logical choice for a test statistic, since it compares the estimated dif- 
ference in proportion p, — p, with the hypothesized difference (p, — p»)o. If the hy- 
pothesized value is correct, then the estimated difference and the hypothesized 
difference should be close in value. This forces the numerator above to be close to 
zero and thus yields a small value for the test statistic. Large positive or large nega- 
tive values of the test statistic indicate that the null hypothesis is not true and should 
be rejected in favor of an appropriate alternative. 

Example 9.4.1. A corporation operates two foundries that are similar in size and that 
are engaged in the same production operations. An experimental safety program has 
been implemented at one location. Before expanding the program, the management 

wants to compare the proportion of workers injured during the trial period at the ex- 

perimental site to that of its other plant. It is thought that the program is cost effective 
if these proportions differ by more than .05. We are testing 

oP Hy: p; — pa = .05 

A: p; = Dy = 05 

where p, and p, denote the proportions of injured workers at the control and experi- 

mental plants, respectively. Since making a Type I error is costly, let us preset a at .01. 

The critical point for this right-tailed test is zp; = 2.33. When the trial period ends, it 

is found that 24 of the 263 workers at the control plant were injured, whereas only 5 

of the 250 workers at the experimental site received injuries. Based on these data, 

Py = 24/263 = 091 p, = 5/250= 020 p, — p, = 071 

Is this difference large enough to allow us to conclude that the true difference in pro- 

portions exceeds .05? To decide, we evaluate the test statistic 

(Pi — Pr) — (Pi ~ Pr)o = O71 — .05 

VBC — pi)/n, + By(1 — ps)/n. ~—-V'(.091) (.909)/263 + (.02) (.98)/250 
= 1.059 

Since this value does not exceed the critical point of 2.33, we are unable to reject the 

null hypothesis at the a = .01 level. We do not have the evidence that is felt necessary 

to justify expanding the safety program. 

Pooled Proportions 

Although the hypothesized difference (p, — p2)) can be any value at all, the most 

commonly proposed value is zero. In this case the hypotheses considered previously 

compare p, and p, and take these forms: 

I Hg: Pi = Ps I Ao: p; = P2 TH Ho. py = ps 

A: p\ > P2 Ay: py < pz Hy: p; # Po 

Right-tailed test Left-tailed test Two-tailed test 
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Hypotheses of this sort can be tested via the previously developed test statistic with 

(p; — Pr) Set equal to zero. However, an alternative procedure is available. This al- 

ternative procedure, which is preferred by many statisticians, makes use of the fact 

that if Hy is true, p; and p, are both estimators for the same proportion, which we 

denote by p. To see how to use this information, note that the variance of p, — p> is 

given by 

pi — p,)/ny + po — p2)/ny 

If Hp is true, we can write this variance as 

p(l — p)/n, + pl — p)/n, = pi — p)A/n, + 1/n2) 

We see that the random variable 

Pi — Pr 

Vp [—p) (i/n,; + line) 

has a distribution that is approximately standard normal. We are now faced with the 

problem of estimating the unknown common population proportion p. Since p, and 

p> are both unbiased estimators for p, it makes sense to combine them in some way. 

We can simply average these estimators, but in so doing we ignore whatever differ- 

ences might exist between the two sample sizes involved. To take these differences 

into account, we use a weighted average. Namely, we multiply each estimator by its 

corresponding sample size to obtain this “pooled” estimator for p- 

Pooled estimator for p when p, = p, 

MP; + Ny P2 
ny + Ny 

p= 

The test statistic that results when p is replaced by /p is 

Test Statistic for Comparing Two Proportions 

P [es Pr 

V p(1 — p) (Am, + In) 

The use of this statistic is demonstrated in our next example. 

example 9.4.2. | Many consumers think that automobiles built on Mondays are more 
likely to have serious defects than those built on any other day of the week. To support 
this theory, a random sample of 100 cars built on Monday is selected and inspected. 
Of these, eight are found to have serious defects. A random sample of 200 cars pro- 
duced on other days reveals 12 with serious defects. Do these data support the stated 
contention? To decide, we test 

Ho: P; = P2 

H\: p, > pr 
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where P; denotes the proportion of cars with serious defects produced on Mondays. 
Estimates for p, and p, are 

P, = x,/n, = 8/100 = .08 and Pz = X,/ny = 12/200 = .06 

The pooled estimate for the common population proportion is 

ny py + mzpy _ 100(.08) + 200(.06) 
nN, + Ny 100 + 200 

= 20/300 

p= 

The observed value of the test statistic is 

Bi — po ‘ 08 — .06 

Vp-p), + In) \V.066(.934) (1/100 + 1/200) 
, = 658 

From the standard normal table (see Table V in Appendix B), we see that the proba- 

bility of observing a value this large or larger is approximately .2546. That is, the P 

value is approximately .2546. Since this probability is large, we shall not reject Hp. We 

do not have sufficient statistical evidence to support the claim that cars built on Mon- 

days are more likely to have serious defects than those built on other days. 

Either one of the test statistics presented can be used to test Hp: p; — po = 0 or 

Ho: p, = P2, although the pooled statistic is preferable, since it is thought to be more 

powerful. To test Hp: pj — P2 = (P; — P2)o, where (Pp; — Pr)o # O, pooling is not ap- 

propriate because p, and p, are estimating different proportions. In this case the first 
statistic presented is the proper test statistic. 

Note that we are comparing proportions based on independent random sam- 

ples drawn from two populations. In Chap. 14 we shall consider a method for com- 

paring two proportions when the samples drawn are not independent. 

CHAPTER SUMMARY 

In this chapter, we considered methods that can be used to make inferences on a 

single proportion when sample sizes are large. We also saw how to determine the 

sample size required to estimate p to any desired degree of accuracy when we do 

and do not have prior estimates for p available. 
We began our study of two sample problems by considering both point and 

interval estimation of the difference between two population proportions. The 

methods presented assume that samples are drawn independently. We also saw that 

Ho: P; — P2 = (P1 — P2)o an be tested using as a test statistic the same random vari- 

able used to generate our confidence interval on p, — p, namely, 

Be at) ee 2) Ome 
VPC — p,)/n, + po — pr)/m 
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However, if (p, — p2)p = 9, then a pooled procedure is preferable. This procedure 

makes use of the fact that if H, is true, p; = p>. Since p,, and py, are estimating 

the same thing, we pool them to form this estimator for the common population 

proportion p: 

Np, + Mp. _X,+ Xp 

Ny + Ny ny + Ny 

A 

as 

Using this estimator, the test statistic used to test Hp: pj — p2 = 0 is 

Pi — Pr 

Vp — p) (Um, + In) 

We introduced the following term: Pooled estimator for p. 

EXERCISES 

Section 9.1 

1; 

3 

In order to be effective, reflective highway signs must be picked up by the au- 

tomobile’s headlights. To do so at long distances requires that the beams be on 

“high.” A study conducted by highway engineers reveals that 45 of 50 ran- 

domly selected cars in a high-traffic-volume area have the headlights on low 

beam. 

(a) Find a point estimate for p, the proportion of automobiles in this type area 

that use low beams. 

(b) Find a 90% confidence interval on p. 

(c) How large a sample is required to estimate p to within .02 with 90% 

confidence? 

A study of the electromechanical protection devices used in electrical power 

systems showed that of 193 devices that failed when tested, 75 were due to me- 
chanical parts failures. 

(a) Find a point estimate for p, the proportion of failures that are due to me- 
chanical failures. 

(b) Find a 95% confidence interval on p. 

(c) How large a sample is required to estimate p to within .03 with 95% 
confidence? 

In 1980 the Bureau of Labor Statistics conducted a study of 1000 minor eye in- 

juries received by workers in the workplace. The study revealed that 600 of the 
workers involved were not wearing eye protection at the time of the injury. It 
also revealed that 900 of the injuries received could have been prevented 
through the proper use of protective eyewear. Assume that current conditions in 
the workplace have not changed substantially from those encountered in 1980 
relative to the use of eye protection. 

(a) Find a 90% confidence interval on the proportion of workers who receive 
minor eye injuries this year that will not be wearing eye protection at the 
time of the injury. 
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(b) Find a 95% confidence interval on the proportion of minor eye injuries oc- 

curring this year that could be prevented through the proper use of protec- 
tive eyewear. 

4. Asurvey of companies using industrial robots showed that of 200 robots in use, 
48 were used for loading and unloading. 

(a) Find a 95% confidence interval on p, the proportion of industrial robots 
currently being used for loading and unloading. 

(b) Would you be surprised to hear someone claim that a majority of the ro- 

bots in use are used for loading and unloading? Explain. 

5. One problem associated with the use of the supersonic transport (SST) is the 

sonic boom. In the late 1960s and early 1970s preliminary tests were run over 

Oklahoma City, St. Louis, and other areas. After the tests were run a survey was 

to be conducted to estimate the percentage of people who felt that they could 

not live with the sonic booms. How large a sample should have been chosen to 

estimate this peony to within 3 percentage points with 95% confidence? 

6. The Environmental Protection Agency recently identified 30,000 waste dump- 

ing sites in the United States that were considered to be at least potentially dan- 

gerous. How large a sample is needed to estimate the percentage of these sites 

that do pose a serious threat to health to within 2 percentage points with 90% 

confidence? 
7. It is said that “doctors bury their mistakes, architects cover them with ivy, and 

engineers write long reports that never see the light of day.” One area in which 

engineering mistakes are critical is dam-building. How large a sample is nec- 

essary to estimate the percentage of nonfederal earthen dams in the United 

States that are in need of immediate repair to within 1 percentage point with 

90% confidence? 
8. A market research study is to be conducted among users of a particular type of 

computer system. How many users should be sampled to estimate the percent- 

age of users who plan to add terminals to within 4 percentage points with 90% 

confidence? 
9. Consider the function g(p) = p(1 — Pp). 

(a) Find g'(p). 

(b) Find the critical point for g. 
(c) Find g’(p), and use this to argue that g assumes its maximum value at the 

critical point. 
(d) What is the maximum value assumed by the function g? 

Section 9.2 

10. A poll of investment analysts taken earlier suggests that a majority of these indi- 

viduals think that the dominant issue affecting the future of the solar energy in- 

dustry is falling energy prices. A new survey is being taken to see if this is still 

the case. Let p denote the proportion of investment analysts holding this opinion. 

(a) Set up the appropriate null and alternative hypotheses. 

(b) When the survey is conducted, 59 of the 100 analysts sampled agreed that 

the major issue is falling energy prices. Is this sufficient to allow us to re- 

ject Hy? Explain, based on the P value of the test. 
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(c) Interpret your results in the context of this problem. 

A new computer network is being designed. The makers claim that it is com- 

patible with more than 99% of the equipment already in use. 

(a) Set up the null and alternative hypotheses needed to get evidence to sup- 

port this claim. 

(b) A sample of 300 programs is run, and 298 of these run with no changes 

necessary. That is, they are compatible with the new network. Can Hy be 

rejected? Explain, based on the P value of the test. 

(c) What practical conclusion can be drawn on the basis of your test? 

It is thought that the no defect rate for 64-K-RAM devices produced in Japan is 

less than 8%. 

(a) Set up the null and alternative hypotheses needed to support this claim. 

(b) Asample of 64 of these devices is tested, and 4 are found to have no de- 

fects. Can Hp be rejected? Explain, based on the P value of the test. 

(c) In the context of this problem, what conclusion can be drawn from your 
data? 

It is thought that over 60% of the business offices in the United States have a 

mainframe computer as part of their equipment. 

(a) Set up the appropriate null and alternative hypotheses for supporting this 
claim. 

(b) Find the critical point for an a = .05 level test. 

(c) When data are gathered, it is found that 233 of the 375 offices studied have 

mainframe computers. Can H, be rejected at the a = .05 level? To what 

type of error are you now subject? 
(d) Explain, in the context of this problem, the practical consequences of mak- 

ing the type of error to which you are subject. 
Opponents of the construction of a dam on the New River claim that less than 
half the residents living along the river are in favor of its construction. A survey 
is conducted to gain support for this point of view. 

(a) Set up the appropriate null and alternative hypotheses. 

(b) Find the critical point for an a = .1 level test. 

(c) Of 500 people surveyed, 230 favor the construction. Is this sufficient evi- 
dence to justify the claim of the opponents of the dam? 

(d) To what type of error are you now subject? Discuss the practical conse- 
quences of making such an error. 

A battery-operated digital pressure monitor is being developed for use in cali- 
brating pneumatic pressure gauges in the field. It is thought that 95% of the 
readings it gives lie within .01 Ib/in? of the true reading. Ina series of 100 tests, 
the gauge is subjected to a pressure of 10,000 Ib/in2. A test is considered to be 
a success if the reading lies within 10,000 + .01 lb/in2. We want to test 

Hp: p = .95 

Hi: p # 95 

at the a = .05 level. 
(a) What are the critical points for the test? 
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(b) When the data are gathered, it is found that 98 of the 100 readings were 
successful. Can H, be rejected at the a = .05 level? To what type error are 
you now subject? 

Power line noise, voltage variations, and power outages all can affect computer 
performance. When noise enters a television set, the result is static and snow; 
when noise enters a computer, errors can occur and circuits can be damaged. It 
is thought that more than 80% of all line disturbances at a particular computer 
site are noise. 
(a) Set up the appropriate null and alternative hypotheses needed to verify this 

contention. 

(b) Find the critical point for an a = .01 level test. 

(c) Of 150 line disturbances that occur during the study time, 133 are due to 

noise. Can Ho be rejected at the a = .01 level? Interpret your results in the 
context of this problem. 

Section 9.3 ? 

ieee 

18. 

19. 

A random sample of 500 workers engaged in research and development 

(R & D) last year is selected. Of these, 178 earn over $72,000 per year. Of the 

450 workers in R & D studied during the current year, 220 earn in excess of 

$72,000 per year. 
(a) Let p, and p, denote the proportion of workers engaged in research and de- 

velopment who earned over $72,000 per year last year and this year, re- 

spectively. Find point estimates for p,, p2, and p, — Po. 

(b) Find a 95% confidence interval for p; — po. 

(c) Would you be surprised to hear someone claim that the proportion of 

R & D workers earning over $72,000 was the same this year as it was last 

year? Explain, on the basis of the confidence interval of part (D). 

Superplasticized concrete is formed by adding chemicals to conventional con- 

crete to make it more fluid so that it can be placed more easily. Suppose that a 

sample of 50 new construction projects in the Dallas-Fort Worth area yields 15 

that are using this type of concrete. A sample of 60 new projects in the Boston 

area also yields 15 using superplasticized concrete. 

(a) Let p, and p, denote the proportion of new construction projects in Dallas- 

Fort Worth and Boston, respectively, that are using superplasticized con- 

crete. Find point estimates for p;, p2, and p, — P». 

(b) Find a 95% confidence interval for p,; — po. 

(c) Would you be surprised to hear someone claim that the proportion of 

Dallas-Fort Worth projects using this type of concrete is clearly larger 

than that in the Boston area? Explain, based on the confidence interval of 

part (b). 

A study of the computer market is conducted. Random samples are drawn from 

among the users of the two leading mainframes. The purpose of the study is to 

estimate the proportion of users in each population that either do use or would 

like to use the small office system built by the mainframe supplier. These data 

result: 
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Type I Type I 

n, = 200 nz = 190 

x, = 62 x, = 76 

(a) Find point estimates for p;, p2, and p; — Po. 

(b) Find a 90% confidence interval for p; — p>. 

(c) Would you be surprised to hear someone claim that p,; = p2? Explain, 

based on the confidence interval of part (b). 

20. The computer is expected to play an increasingly important role in crime con- 

trol in the years to come. In 1983 the FBI had a noncomputerized Ident system 

containing the records of thousands of persons across the country. A random 

sample of 500 records shows that only 70% of these records include informa- 

tion on the disposition of the case. This is unfortunate, since approximately 1/3 

of all cases are eventually dismissed. If the dismissal is not a part of the record, 
then an innocent person could be stigmatized. 

(a) Assume that anew computerized criminal history system is developed and 

implemented. A random sample of size 500 is selected from the cases 

recorded in the new system. It is found that 410 of these include informa- 
tion on the disposition of the case. Estimate the proportion of cases in the 

new system that include information on the disposition of the case. 

(b) Estimate the difference in proportions between the old Ident system and 

the new computerized system. (Subtract in the order New — Ident.) 

(c) Find a 95% confidence interval on the difference in proportions. 
(d) Is it safe to say that the new system is superior to Ident in the sense that it 

contains more “disposition of case” information? Explain, based on the 
confidence interval of part (c). 

21. (Sample size for estimating p, — p>.) The difference between two population 

proportions, p, — Po, is to be estimated based on independent random samples 

drawn from the respective populations. Each of the samples is each to be of 

size n. Show that in order to estimate p, — p to within d with 100(1 — a)% 
confidence, n is given by 

Sample size for estimating p, — p, 

Sample size for estimating p, — p>, prior estimates for p, and p, available 

roe LPs Die Oe eee 
“a/2 a2 

Sample size for estimating p, — p>, no prior estimates for p, and p, available 

22. What common sample size must we take from the populations of R & D work- 
ers last year and this year to estimate p; — p) to within .02 with 90% confi- 
dence? Use the data of Exercise 17 to obtain estimates for p, and Po. 



23. 

24. 

25. 

INFERENCES ON PROPORTIONS 331 

What common sample size should be selected from the Ident files and the new 
computer files to estimate p, — p, to within .03 with 95% confidence? Use the 
data of Exercise 20 to obtain estimates for p, and p>. 
A study is to be conducted to estimate the difference in the proportions of de- 
fective items produced during two different shifts of assembly line workers. 
What common sample size should be used to estimate this difference to within 
.04 with 90% confidence? 
Automotive engineers want to compare the performance of their new six- 
cylinder front-wheel-drive automobiles to their four-cylinder model. Let p, 
and p, denote the proportion of automobiles experiencing engine problems 
during the first 5000 miles of use for the two models, respectively. What com- 
mon sample size should be used to estimate p, — p, to within .05 with 90% 
confidence? 

¢ 
Section 9.4 

26. 

Pa 

The use of optical fibers in telecommunications, the military, and industry is in- 

creasing rapidly. These fibers must be strong, durable, able to operate over a 

wide temperature range, and insensitive to radiation. Most fiber failures are 

due to a brittle fracture that grows into a complete crack. Two different fiber- 

drawing heat sources are being studied. These are carbon furnaces and CO, 

laser heating. A company currently uses a carbon furnace but will switch to 

laser heating if it can be shown that the latter method reduces the proportion of 
failures by more than .02. 

(a) Let p, and p, denote the proportions of failures occurring using the carbon 

furnace and CO, laser heating, respectively. Set up the appropriate null and 
alternative hypotheses needed to support a move to the laser technique. 

(b) Find the critical point for an a = .05 level test. 

(c) Of 100 test fibers produced using the carbon furnace, 5 failed, whereas 

only 1 of the 100 fibers produced using the laser technique resulted in fail- 

ure. Estimate p,, p2, and p,; — pz. Can Hy be rejected at the a = .05 level? 

Would you recommend that the company switch production methods? 

(d) To what type of error are you now subject? Discuss the practical conse- 

quences of making this error. 

The cost of correcting a defect in a bipolar digital integrated circuit depends on 

when the defect 1s discovered. If it is discovered before it is integrated into a 

computer system, the cost may be only pennies. However, if it is not found un- 

til after the device is in the field it could cost thousands of dollars to repair. The 
electrical defect rate of two types of circuits produced by a particular company 

is being studied. It is suspected that the defect rate of their ALS circuits (ad- 
vanced lower-power Schottky) is smaller than that of their LPS circuits (lower- 

power Schottky). 
(a) Let p, and p, denote the proportions of ALS circuits and LPC circuits pro- 

duced, respectively, that have electrical defects. Set up the null and alter- 

native hypotheses needed to confirm their suspicions. 

(b) What is the critical point for an a = .1 level test? 
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(c) Two thousand circuits of each type are randomly selected and tested. It is 
found that three of the ALS and five of the LPS circuits have electrical de- 

fects. Estimate p,, p>, and p, — p>. Based on these data, can Hp be rejected 

at the a = .1 level? 
Today’s diesel engines require smoother surface finishes and better consistency 

than in the past. Two types of abrasives are being tested for use on the mi- 

crofinishers that are used to polish crankshafts. The first uses a paper and cloth 

abrasive; the second, a coated abrasive film. Both come on rolls that can tear, 
causing downtime and delay in the polishing process. It is thought that the pro- 

portion of rolls that tear is higher for the paper-cloth abrasive than for the abra- 

sive film. However, since the abrasive film is the more expensive of the two, 

the difference in these proportions must exceed .10 in order for the abrasive 
film to be economical. 

(a) Set up the null and alternative hypotheses needed to support the contention 

that the abrasive film is economical. Let p, denote the proportion of rolls 

of the paper-cloth abrasive that tear during testing. 

(b) What is the critical point for an a = .025 level test? 

(c) Fifteen of 50 rolls of the paper-cloth abrasive tear during testing, whereas 

only two of the 40 rolls of the abrasive film do so. Estimate p,, p>, and 

P| — P2. Can Ho be rejected at the a = .025 level? 

(d) To what type of error are you now subject? Discuss the practical conse- 

quences of committing such an error. 

Two types of metal detectors are in use in airports around the world. One is 

called a continuous wave detector, and the other is called a pulse field wave de- 

tector. Both devices are equally efficient at detecting large metal objects such 

as guns or knives. However, it is thought that the continuous wave detector 
tends to be less efficient in that it can be triggered more easily by objects such 
as coins, lipstick holders, and other small harmless metal objects. 
(a) Let p, and p, denote the proportions of passengers that pass through the 

continuous wave and the pulse wave detectors, respectively, that trigger 
the device. Set up the null and alternative hypotheses needed to support the 
contention that the continuous wave detector will be triggered by a higher 
proportion of passengers than will the pulse wave device. 

(b) Random samples of 175 passengers are observed passing through each of 
these types of devices. Of those passing through the continuous wave de- 
vice, 113 triggered a warning. However, only 4 of those passing through 
the pulse field detector activated an alarm. Do you think that H, should be 
rejected? What is the P value of the test? What practical conclusion can be 
drawn from these data? 

Shot peening is used to compress the surface area of metal parts to make them 
more resistant to fractures. It is done by bombarding the surface with small par- 
ticles hurled at high velocity. Each time a particle hits, it puts a small dent in the 
surface and compresses the area directly beneath the surface. The bombard- 
ment continues until eventually the entire surface is compressed. Tests are con- 
ducted on a particular part to see if shot peening reduces the proportion of parts 
that fracture when put into use. These data result: 
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Not shot peened Shot peened 

n, = 35 ny = 40 

number fractured = 7 number fractured = 3 

Set up the appropriate null and alternative hypotheses. Based on these data, do 
you think that shot peening reduces the probability that a part will fracture 
when put into use? Explain, based on the P value of the test. 
Show that p = (X; — X,)/(n, + n). That is, show that f can be found by com- 
bining the two samples into one and by finding the usual sample proportion for 
the new sample. Verify this numerically using the data of Exercise 30. 
Let X, and X, denote the number of objects with the trait of interest in indepen- 
dently drawn random samples of sizes n, and ny, respectively. Assume that 
these random variables are binomially distributed with parameters p, and p>. 
(a) Find the expected value of the pooled estimator p. 
(b) Show that if Hp: p; = po is true, then p is an unbiased estimator for the 

common population proportion Dp. 

REVIEW EXERCISES 

58h 
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A survey of mining companies is to be conducted to estimate p, the proportion 

of companies that anticipate hiring either graduating seniors or experienced en- 

gineers during the coming year. 

(a) How large a sample is required to estimate p to within .04 with 94% con- 
fidence? 

(b) A sample of size 500 yields 105 companies that plan to hire such engi- 

neers. Find a point estimate for p. Find a 94% confidence interval for p. 

It is thought that the majority of the mining engineers that graduated in 1970 

from U.S. schools are now employed in the coal mining industry. 

(a) Set up the null and alternative hypotheses needed to gain statistical evi- 

dence to support this contention. 

(b) Arandom sample of 50 of these individuals is selected, and their current 

place of employment is determined. Twenty-six are working in the coal 

mining industry. Do you think that H, should be rejected? Explain, based 

on the P value of the test. 
A procedure used to produce identical twins in cattle entails the microsurgical 

division of the embryo into two groups of cells followed by immediate embryo 

transfer. This procedure is thought to be more than 50% effective. 

(a) Set up the null and alternative hypotheses needed to support this claim. 

(b) Find the critical point for an a = .05 level test based on a sample of 

size 100. 
(c) When the experiment is conducted, 55 of the transplants result in the birth 

of twins. Can H, be rejected at the a = .05 level? Interpret your results in 

the context of this problem. 
A programmable lighting control system is being designed. The purpose of the 

system is to reduce electricity consumption costs in buildings. The system 
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eventually will entail the use of a large number of transceivers. Two types are 

being considered. In life testing these data are gathered on the number of trans- 

ceiver failures for each type: 

Type I Type Il 

n, = 100 ny, = 100 2 

x, =2 xX =4 

(a) Find point estimates for p; — p>, the difference in the failure rates for the 

two types of transceivers. 

(b) Find a 95% confidence interval for p, — po. 

(c) Based on the interval of part (b), can we claim that p,; < p,? Explain. 

(d) Is the interval found in part (b) short enough to give us a good idea of the 

actual value of p, — p»? What common sample size is needed to estimate 

P, — p2 to within .O1 with 95% confidence? 

One measure of quality and customer satisfaction is repeat business. A supplier 

of paper used for computer printouts sampled 75 customer accounts last year 

and found that 40 of these had placed more than one order during the year. A 

similar survey conducted at the end of the current year revealed that 35 of 50 

customers ordered again. Do these data support the contention that there has 

been an increase in the proportion of repeat business over the 2-year period? 

Explain, based on the P value of your test. 

A company is experimenting with a new method for etching circuits that should 

decrease the proportion of circuits that must be etched a second time. To be cost 

effective the difference in proportions between the old and new methods must 

exceed. |, 

(a) Letting p, denote the proportion of circuits that must be redone using the 

old method, set up the null and alternative hypotheses required to show 

that the new method is cost effective. 

(b) Find the critical point for a = .05 level test of the hypothesis of part (a). 

(c) These data are obtained on the number of circuits that must be reworked 
using each method: 

Old New 

ny, = 25 ny = 50 

x,=4 xX, =2 

Can Hy be rejected at the a = .05 level? To what type error are you now sub- 
ject? What are the practical consequences of making such an error? 

- One source of water pollution is gasoline leakage from underground storage 
tanks. A random sample of 100 gasoline stations is selected, and the tanks are 
inspected. Twenty are found to have at least one leaking tank. 
(a) Find a 95% confidence interval on the proportion of stations across the 

country with a leakage problem. 
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(b) Assume that there are approximately 375,000 stations in the United States. 

Find a 95% confidence interval on the number of stations with a leakage 

problem. 

(c) How large a sample is required to estimate the proportion of stations with 

a leakage problem to within .02 with 95% confidence? 

“The Desert Storm rules of engagement dictated that when an aircrew could not 

locate or positively identify their primary or secondary targets they were to re- 

turn to base with their weapons.” This rule was intended to minimize damage 

to civilian populations. During Desert Storm and Desert Shield 72,000 combat 

sortees were flown by allied forces. In 18,000 cases planes returned to base 

with their weapons. (Based on information taken from “Operations Law and 

the Rules of Engagement in Operations Desert Shield and Desert Storm,” Lt. 

Col. John G. Humphries, Airpower Journal, Fall 1992, pp. 25-41.) 
(a) Based on these data, find a point estimate for p, the proportion of combat 

missions which will return to base with their weapons in similar future en- 

gagements in which thes@ rules of engagement are in force. 

(b) Find a 95% confidence interval on p. 
(c) Suppose that, in a future engagement, 10,000 combat missions are flown. 

Find a 95% confidence interval on the number of missions in which planes 

will return to base with their weapons. 



CHAPTER 

10 
COMPARING 
TWO MEANS 

AND TWO 
VARIANCES 

- this chapter, we continue the study of two sample problems by considering 

methods for comparing the means of two populations. This problem is considered 

under two different experimental conditions, namely, when the samples drawn are 

independent and when the data are paired. These terms are explained in depth in the 

sections to come. 

10.1 POINT ESTIMATION: 
INDEPENDENT SAMPLES 

The general situation that we consider now is described as follows: 

There are two populations of interest, each with unknown mean. One random sample 

is drawn from the first population and one from the second in such a way that the ob- 

jects selected from the first population have no bearing on those selected from the sec- 

ond. Samples selected in this way are said to be independent of one another. We want 

to estimate (4; — fo, the difference in population means, via a point estimator. 

Example 10.1.1 illustrates this idea in a practical context. 

336 

Example 10.1.1. A study is conducted to compare the time required to inspect the 
wiring connections and insulation in two types of circuit breakers. Population I con- 
sists of all circuit breakers of the vacuum-interruptor type, and population II consists 
of all air-magnetic circuit breakers. A random sample is selected from each of these 
populations, and each circuit breaker chosen is inspected and the time in minutes re- 
quired for the inspection is recorded. The samples are independent in the sense that the 
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Population I Population I 
(all vacuum-interruptor (all air-magnetic circuit 
type circuit breakers) breakers) 

Sample of n, 

circuit breakers 
Sample of 1, 

circuit breakers 

My — My =? 

FIGURE 10.1 

Independent samples of circuit breakers drawn from two different populations. 

choice of a circuit breaker from population I has no effect whatsoever on the choice of 

circuit breakers from population I. We want to estimate 4, — (45, the difference in the 

mean times required to perform the inspection for the two populations. The study is 

visualized in Fig. 10.1. 

The logical way to estimate 4, — p22 is to estimate each mean separately via 

its corresponding sample mean and then estimate jz, — [> to be the difference be- 

tween these sample means. That is, a logical point estimator for the difference in 

population means is the difference in sample means. 

Point Estimator for the Difference Between Two Means 
er 

phy — Mo = fy — fy = X, - Xp 

Example 10.1.2. When the study of Example 10.1.1 is completed, these data result: 

Vacuum-interruptor (I) Air-magnetic (I) 

3. 0s 69 4.1 Wl 913 8.2 
5:0 Oy 6.3 10.4 9.1 8.7 
Wall 4.2 V2 Dal 10.7 10.6 
Sal SS) 5.8 10.5 11.3 LES 

Based on these data, 

fy = X, = 75.2/13 = 5.78 min 

ln = X_ = 119.5/12 = 9.96 min 

The estimated difference in mean inspection times is 

ji, = B= fil = XX, 5.18 = 9.96 = = 4.18 
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Based on these data, it appears that, on the average, the vacuum-interruptor circuit 

breaker can be inspected in about 4.18 minutes less time than the air-magnetic type 

breaker. 

When finding the confidence intervals for 4; — 4) or when testing a hypoth- 

esis concerning the value of this difference, it is necessary to know the distribution 

of the random variable X,; — X>. The next theorem pinpoints its distribution under 
the assumption that both samples are drawn from normal distributions. The theorem 

also shows that the estimator X, — X, is an unbiased estimator for 4“; — p>. We 

shall use this theorem to motivate many of the statistical procedures presented later. 

Theorem 10.1.1 (Distribution of X, — X,). Let X, and X, be the sample means 

based on independent random samples of sizes n,; and n, drawn from normal 

distributions with means jz, and 25 and variances a7 and o3, respectively. Then 

X, — X, is normal with mean pw, — p2 and variance a7/n, + o3/np. 

Proof. In Theorem 7.3.4 we show that when sampling from a normal distribution, 

the sample mean is normal with mean yw and variance o7/n. Applying the result, we 

can conclude that X, and X, are normal with means 1, and p, and variances o7/n, 

and o3/n3, respectively. Exercise 41, Chap. 7, shows that any linear combination of 

independent normal random variables is normal. Since X, and X, are based on sam- 

ples drawn independently from two populations, X, and X, are themselves indepen- 

dent. Applying Exercise 41, we can conclude that X, — X, is normal with mean 

fy — #2 and variance o7/n, + o3/n, as claimed. 

As in the one-sample case, because of the Central Limit Theorem, it is safe to 
assume that for large sample sizes X, — X, is at least approximately normal even if 
the samples are drawn from populations that are not themselves normal. 

10.2 COMPARING VARIANCES: 
THE F DISTRIBUTION 

There are two opinions as to the best way to compare the means of two normal pop- 
ulations. This is due to the fact that there are two distinct possibilities. These are 

1. oj and a3 are unknown and equal. 
9 

2. oj and a3 are unknown and unequal. 

One philosophy is that the experimental data or past experience should be used as a 
guide to determine the prevailing situation. Then one of two possible test statistics 
is chosen to compare means, with the choice dependent on the perceived relation- 
ship between the population variances. A second philosophy disregards the rela- 
tionship between the variances and uses the same test statistic to compare means in 
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both cases. Since you will see both approaches used in research literature, we shall 
discuss them both. You can decide for yourself which you prefer. 

The first philosophy mentioned requires that we develop a test for comparing 
the variances of two normal populations. Theoretically, tests on the relationship be- 
tween two variances can take any of the usual three forms. In practice, only two are 
needed. These are: 

I Ay: o¢ = 3 Il Ay: 0% = 03 

Heo = oF H,: of # a3 

Right-tailed test Two-tailed test 

where, in the right-tailed case, a} denotes the population variance thought to be the 
larger of the two. To test either of these hypotheses, a test statistic must be devel- 
oped. The statistic should be logical, but more importantly, it must be such that its 

probability distribution is known under the assumption that the null hypothesis is 

true. That is, its distribution must be known when it is assumed that the population 

variances are equal. 

It is easy to find a logical statistic for comparing variances. Recall that the 
sample variances Sj and S3 are unbiased estimators for the population variances o? 
and a3, respectively. Thus to compare oj with 03, we simply compare S? with $3. 
This is done not by looking at the difference of the two, but, rather, by looking at 

their ratio, S{/S4. If the null hypothesis is true and the population variances are really 

equal, then we expect Sj and S3 to be close in value, forcing 57/53 to be close to 1. 
If S7/S4 is much larger than 1, then we conclude that the population variances 

are different. When we use the phrase “much larger than 1” we are speaking in 

terms of probabilities. That is, an observed value of the statistic is much larger than 

1 if it is too large to have reasonably occurred by chance if, in fact, the population 

variances are equal. To determine the probability of observing various values of the 

statistic S7/S3, we must know its probability distribution. We shall show that this 

statistic follows a distribution previously unencountered. In particular, if the popu- 

lation variances are equal, it follows what is called an F distribution. This distribu- 

tion is defined in terms of a distribution previously studied, namely, the chi-squared 

distribution. In particular, any F random variable can be written as the ratio of two 

independent chi-squared random variables, each divided by their respective degrees 

of freedom. The formal definition of the F distribution is given in Definition 10.2.1. 

Definition 10.2.1 (F distribution). Let >. and x? be independent 

chi-squared random variables with y, and y, degrees of freedom, 

respectively. The random variable 

C1 
X3,/ V2 

follows what is called an F distribution with y, and y, degrees of freedom. 
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FIGURE 10.2 

A typical F density. 

The important properties of the family of F random variables are summarized 

as follows: 

Properties of F Distributions 

1. There are infinitely many F random variables, each identified by two parame- 

ters, y, and y>, called degrees of freedom. These parameters are always positive 

integers: y, is associated with the chi-squared random variable of the numera- 

tor of the F random variable, and y, is associated with the chi-squared random 

variable of the denominator. The notation F, ,, denotes an F random variable 

with y, and y, degrees of freedom. 

2. Each F random variable is continuous. 

3. The graph of the density of each F random variable is an asymmetric curve of 

the general shape shown in Fig. 10.2. 

4. F random variables cannot assume negative values. 

A partial summary of the cumulative distribution for F random variables with se- 

lected degrees of freedom is given in Table IX of App. A. In the table y,, the degrees 

of freedom for the numerator, appears as column headings; y>, the degrees of free- 

dom for the denominator, appears as row headings. F points for degrees of freedom 

that exceed 120 may be approximated well via row or column 120. Once again, we 

use the notational convention of denoting the point of the F, ,, curve with area r to 

its right by f,. Example 10.2.1 illustrates the use of Table IX. 

Example 10.2.1. Consider Fy, ;;, the F random variable with 10 and 15 degrees of 

freedom. 

(a) Find P[F\o, ;5 = 2.544]. This probability can be read directly from Table IX. Sim- 

ply scan the numbers in column 10 and row 15 until you locate 2.544. It can be 
seen that P[F io, ;5 S 2.544] = F(2.544) = .95. 

(b) Find P[F\o, \5 > 2.059]. Since the F distribution is continuous, this probability is 

1 — F(2.059). From Table IX, F(2.059) = .90. Hence P[F jo ;5 > 2.059] = .10. 

(c) Via our notational convention we can say that fy; = 2.544 and fj) = 2.059. 

We are now in a position to verify that our proposed statistic for testing 
Ho: 77 = 03 does indeed follow an F distribution when Hy is true. 



COMPARING TWO MEANS AND TWO VARIANCES 341 

Theorem 10.2.1 (Distribution of S7/S3). Let S? and 53 be sample variances 
based on independent random samples of sizes n, and n, drawn from normal 
populations with means yw, and 2, and variances a? and a3, respectively. If 
oj = 03, then the statistic $?/S3 follows an F distribution with a, 1 ond 
n, — | degrees of freedom. 

Proof. We have already shown that the random variable (n — 1)S*/a? follows 
a chi-squared distribution with n — 1 degrees of freedom. (Theorem 8.1.1.) 
Applying this result here, we can conclude that the random variables (ny = WSdor 
and (n) — 1)S3/o3 are chi-squared random variables with id, = | inl @y — || Cepmees 
of freedom, respectively. Furthermore, since sampling is independent, these chi- 
squared random variables are independent. By Definition 10.2.1 the random variable 

Cite lsc 

(iy 1) O55} 

(ny — 1983/03 3 S3 

(Wa = i) 

follows an F distribution with n, — 1 and n, — | degrees of freedom. If o7 = 3, then 

the above ratio reduces to S7/S% as desired. 

Note that the degrees of freedom associated with the statistic 57/S4 are n, — 1 

and n, — 1. That is, the number of degrees of freedom for the numerator is | less 

than the size of the sample drawn from population I; that of the denominator is | 

less than the size of the sample drawn from population II. 

There are several things to realize concerning this F test. 

Assumptions Underlying the F Test for Equal Variances 

1. Normality is assumed, and the test is sensitive to violations of this assumption. 

If it appears from the stem-and-leaf diagram or a histogram that either popula- 

tion does not have at least an approximate bell shape, then the test should not 

be used. 

2. The test for equality of variances performs best when sample sizes are equal. If 

they are very different and there is any doubt concerning the normality of the 

two sampled populations, then the test should not be used. 

3. The test is not very powerful. That is, the null hypothesis that a} = o3 will not 
be rejected fairly often when, in fact, the variances are different. To minimize 
this problem, it is suggested that the test be performed at a relatively high a 

level. (a levels as high as .20 are satisfactory.) 

These restrictions on the use of the F test partially explain the preference of some 

statisticians for the second philosophy mentioned for comparing means. 

Example 10.2.2. A study of two types of materials used in electrical conduits, tubes 

used to house electrical wires, is to be conducted. The purpose of the study is to com- 

pare the strength of one to the other. Strength is to be assessed by measuring the load 



342 

10.3 

INTRODUCTION TO PROBABILITY AND STATISTICS 

in pounds required to crush a 6-inch piece of material to 40% of its original diameter. 

Two questions are posed. Each is to be answered statistically, based on information 

obtained from independently drawn samples of the two materials. The primary ques- 

tion is, “Does material A on the average withstand a heavier load than material B?” 

That is, “Is 2, > py?” However, before this question can be answered, we want to 

consider the question, “Is 7% = 0?” 
We wish first to test 

Hy: 0% = Oo 

. 

Hy: ox Oo th 
Dr Wr 

These data are obtained: 

Material A Material B 

Ny = 25 np = 16 

X, = 380 lb Xp = 370 Ib 

s4 = 100 sp = 400 

To compare variances, we form the ratio S7/S3, where Sj is the larger of 
the two sample variances. In this case sj is the sample variance for material B, 400, 

and s3 is the sample variance for material A, 100. The observed value of the test sta- 

tistic 1s 

s2/st =4 

Since this value is somewhat larger than 1, there is some evidence that the variances 

of the two materials differ. To be sure, a P value must be calculated. The number of 

degrees of freedom associated with the test statistic are ng — 1 = 16 — 1 = 15 and 

ny — | = 25 — 1 = 24. We enter Table IX of App. A with 15 and 24 degrees of free- 

dom. We see that 

P[F 5 24 > 2.108] = .05 

The probability of seeing a value larger than 4 is even smaller than this. If the test were 

one-tailed, we would report that P < .05; however, the test is two-tailed. In this case 

the above value is doubled. We can reject the null hypothesis of equal variances 

and conclude that the two variances are different with P < .10. To compare averages, 

we should use a test procedure that does not assume that population variances are 
the same. 

COMPARING MEANS: VARIANCES 
EQUAL (POOLED TEST) 

Suppose that the primary objective of a study is to compare means and, after con- 
sidering the information at hand, we have no reason to believe that population vari- 
ances are unequal. In this case we can use a procedure called the pooled, 
independent, or uncorrelated T test to compare j1 to 4». The comparison can be 
done via confidence interval estimation or by means of a hypothesis or a signifi- 
cance test. We begin by developing the bounds for a 100(1 — a@)% confidence in- 
terval on the differences in population means. 
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Confidence Interval on 2, — 2,: Pooled 

It has been shown that X, — X, is an unbiased estimator for jw; — jz». To extend this 
point estimator to a confidence interval, once again, we must find a random variable 
whose expression involves the parameter of interest, in this case 1, — [o, whose 
distribution is known. Such a random variable is provided by Theorem 10.1.1. This 
theorem states that when normal populations are sampled, the random variable 
X, — X, is normal with mean jf; — 2 and variance o7/n, + o3/n>. By standardiz- 
ing this random variable, it can be concluded that the random variable 

(X= Xo) = Cu = py) 
V o7qiny = asin, 

is standard normal. If the population variances have been compared and no differ- 

ence has been detected, then we assume that they are equal. Let 0 denote this com- 

mon population variance. That is, let 7] = 73 = a. Substituting into the above 
expression, we conclude that 

(y= X5) = Ua = by) 

Vo2(1/n, + 1/n,) 
is standard normal. Since a” is unknown, it must be estimated from the data. This is 

done by a pooled sample variance. Note that we already have two unbiased estima- 

tors for 0”, namely, Sj and S3. The idea is to pool, or combine, these estimators to 
form a single unbiased estimator for a? in such a way that sample sizes are taken 

into account. It is natural to want to attach greater importance, or “weight,” to the 

sample variance associated with the larger sample. The pooled variance, as defined 
now, does exactly this. 

Definition 10.3.1 (Pooled variance). Let S{ and S3 be the sample 
variances based on independent samples of sizes n, and np, respectively. 

The pooled variance, denoted by S?, is given by 

(m — 1)S7 + (m = 1)S3 
P Ans = 2 

S2= 

Note that we weight Sj and S$ by multiplying by n, — 1 and n, — 1, respec- 
tively. The more natural way to weight is to multiply by the corresponding sample 

sizes n, and n>. We choose to weight in this somewhat odd way so that the random 

variable (n, + n, — 2)S7/a? will follow a chi-squared distribution. This is neces- 
sary so that the test statistic that we use to test for equality of means will follow a 

T distribution. 

Example 10.3.1. Consider a sample variance sj = 24 based on a sample of size 16 

and a second sample variance s3 = 20 based on a sample size of 121. The value of the 

ratio s?/ s3 is 24/20 = 1.20. Based on these sample variances, the population variances 
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o?, and o cannot be declared to be different even with a set at 2 (f; = 1.545). The 

pooled estimate for the common population variance is 

ue dees (n, — 1)s7 + (ny = 1)83 

af) Nik ee 

15(24) + 120(20) 

VW ety sal WA Ls 

2760 
= = 20.44 

135 

Note that this estimate is quite different from 22, the value obtained by ignoring 

sample sizes and arithmetically averaging s7 and s3. 

To obtain a random variable that can be used to construct a 100(1 — @)% con- 

fidence interval on 4; — 42, we replace the unknown population variance a in the 

Z random variable 

(Xiah ie (Mes | 

Vo2(1/n, + 1/n3) 

by the pooled estimator S;, to obtain the random variable 

(X, — Xp) — (i — My) 
V'S2( I/n, + I/n) 

As in the one-sample case, replacing the population variance by its estimator does 

affect the distribution. The former random variable is a Z random variable; the lat- 

ter has a T distribution with n, + n, — 2 degrees of freedom. The algebraic structure 

of this random variable is the same as that encountered previously, namely, 

Estimator — parameter 

D 

Therefore the confidence interval on 4; — [> takes the same general form as most 

of the intervals encountered previously. These bounds are given in Theorem 10.3.1. 

Theorem 10.3.1 (Confidence interval on 4, — 42: Pooled variance). Let x | 

and X, be sample means based on independent random samples drawn from 

normal distributions with means j1; and (15, respectively, and common variance 

o*. Let S* denote the pooled sample variance. The bounds for a 100(1 — a)% 

confidence interval on 4; — {L> are 

(Xy = Xe NV S2 aye li) 

where the point /, /. is found relative to the T,, ,,,-> distribution. 
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Example 10.3.2. A study is conducted to estimate the difference in the mean occu- 
pational exposure to radioactivity in utility workers in the years 1973 and 1979. These 
data based on independent samples of workers for the 2 years are obtained: 

1973 1979 

n, = 16 Ny = 16 

xX, = .94 rem X, = .62 rem 

s? = 040 55 = .028 

We first check for equality of variances by testing 

4 
Hy: 0} = a3 

9 

Hy ots a5 

at the a = .2 level. Since the larger sample variance is the numerator of the test statis- 

tic, we see that the observed value of the test statistic is s7/.s5 = .040/.028 = 1.43. We 

enter the F table, Table IX, with n, — 1 = 15 and n, — 1 = 15 degrees of freedom. It 
can be seen that 

PIF 5.15 > 1-972] = .10 

The probability of observing an F value of 1.43 is even larger than this. Hence the P 

value for a two-tailed test exceeds 2(.10) = .20. We are unable to reject the null hy- 

pothesis of equal variances, even at an @ level of .20. We do not have strong evidence 

that the population variances differ. We, therefore, pool st and 53 and estimate a? by 

15(.040) + 15(.028) _ 

= tery 
C2 

To compare means, let us find a 95% confidence interval on , — 4. The partition of 

the 716 + 16 2 = 739 curve needed is shown in Fig. 10.3. The bounds for the confidence 

interval are 

(X, — X) # tan Vs2(1/n, + Ung) = (.94 — .62) * 2.042/.034(1/16 + 1/16) 
= 32+ .13 

We can be 95% confident that the difference in mean occupational exposure to ra- 

dioactivity for the 2 years in between .19 and .45 rem. This interval does not contain 

the number 0 and is positive-valued throughout, an indication that the mean exposure 

in 1973 was, in fact, higher than in 1979. 

Pooled T Test 

As in previous instances, the random variable used to derive confidence bounds for 

a parameter also serves as a test statistic for testing various hypotheses concerning 

the parameter. In this case the following random variable serves as a test statistic for 

testing any of the usual hypotheses, where (4; — [2)o denotes the hypothesized dif- 

ference in population means: 
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FIGURE 10.3 
Partition of the 73) curve needed to obtain a 95% confidence interval on p14; — [o. 

Pooled T Test Statistic 

CX = Xe) = (py > B22) 

VS7(1/n, + Inp) 
Wie Y baie ie: © 

The hypothesized difference can be any value whatsoever. However, the most com- 

monly encountered hypothesized value is zero. In this case the purpose is to deter- 

mine whether the population means differ and, if so, which is the larger. Such 

hypotheses take these forms: 

I Ao: fy = be Tl Ho: bi = be TT Ho: fy = be 

Ay: py > by Ay: by < py Ay: by # My 
Right-tailed test Left-tailed test Two-tailed test 

We can distinguish between Hp and H, by presetting a and performing a hypothesis 

test or by performing a significance test and then reporting its P value, leaving to the 
researcher the final decision of whether or not to reject Hp. 

Example 10.3.3. The tensile strength of a material is the ability that the material 

possesses to resist deformation when a force or a load is applied to it. A study of the 

tensile strength of ductile iron annealed or strengthened at two different temperatures 

is conducted. It is thought that the lower temperature will yield the higher mean ten- 
sile strength. These data result: 

1450°F 1650°F 

n, = 10 Nz = 16 

xX, = 18,900 psi X, = 17,500 psi 

sj = 1600 s% = 2500 

We first test Hy: o7 = 03 to be sure that pooling is appropriate. By using the larger 
sample variance as the numerator of the test statistic we obtain 2500/1600 = 1.5625 



COMPARING TWO MEANS AND TWO VARIANCES 347 

as the observed value of the F test statistic. The number of degrees of freedom associ- 
ated with the statistic are 15 and 9. From Table IX of App. A we see that 

PFs 9 > 2.340] = .10 

The probability of observing a value greater than 1.5625 is larger than this. Hence the 
P value for the two-tailed test is larger than 2(.10) = .20. Since this P value is large, 
we are unable to reject the null hypothesis and therefore we shall pool s? and s3 to es- 
timate the common population variance. In this case 

> _ (m = 1)s} + (ny — 1)s3 _ 9(1600) + 15(2500) 
2 aaa) Wie 2 ah” 

The primary purpose of the study is to test 

Ao: by = by 

Ay: py > by 

The observed value of the test statistic is 

(x, = 365) re (wy = b2)0¢ am (18,900 = 17,500) =( = 74.68 

V/s2(1im, + Ting) V/2162.5(1/10 + 1/16) 
Based on the To 4 16 — 2 = T4 distribution, the P value, the probability of observing a 

value of 74.68 or larger if w; = fo, is less than .0005(t 999; = 3.745). We have very 

strong evidence that the mean tensile strength of iron annealed at 1450° F is higher 

than the mean strength of that annealed at 1650° F. 

10.4 COMPARING MEANS: 
VARIANCES UNEQUAL 

If a difference is detected when the population variances are compared, then pool- 

ing is inappropriate. It is still possible to compare means using an approximate T 

statistic. Again, the desired statistic is found by modifying the Z random variable. 

(X = Xp) = Ci = Ba) 

Von, + O5ins 

in a logical way. Since now there is evidence that a} # a4, each population vari- 

ance is estimated separately; these estimates are not combined. Instead, the popula- 

tion variances in the Z random variable above are replaced by their respective 

estimators, $7 and $3, to obtain this test statistic: 

Unequal Variance Test Statistic 

(X, cE X) 7 (hi Bo) 0 

V Sa/n, + S3/n, 

As in the past, making this change results in a change in distribution from Z to 

an approximate 7. This time, however, the number of degrees of freedom must be 
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estimated from the data. Several methods have been suggested for doing this. Here 

we demonstrate the Smith-Satterthwaite procedure. According to this procedure, y, 

the number of degrees of freedom, is given by 

Smith-Satterthwaite Degrees of Freedom 

a) [S?nyaS3/n3 | 2 

[Sin P| [S3/nP 
noe saz 

The value for y will not necessarily be an integer. If it is not, we round it down to 

the nearest integer. We round down rather than up in order to take a conservative ap- 

proach. As the number of degrees of freedom associated with T random variables in- 

creases, the corresponding bell-shaped curves become more compact. Practically 

speaking, this means that, for example, the point to; associated with the 7\) curve 

(1.812) is a little larger than the point fy; associated with the 7,, curve (1.796). If we 

can reject a null hypothesis based on the 7), distribution, it will also be rejected 

based on the 7), distribution. The converse does not necessarily hold. 

The Smith-Satterthwaite procedure is illustrated in a significance testing con- 
text in the next example. 

Example 10.4.1. In Example 10.2.2 we began a study of the load-bearing properties 

of two materials used in electrical conduits. The primary question posed was, “Is ma- 

terial A, on the average, better able to withstand a heavy load than material B?” That 
is, “Is Wa > Wg?” These data were gathered: 

Material A Material B 

ny = 25 ng = 16 

X, = 3801lb = xg = 3701b 
si = 100 s% = 400 

We tested for equality of variances and found evidence that 7, # 7}. Therefore, to test 

Ho: ka = bp 

Hy: dy > bp 

we do not pool si and sg. Rather, we use the Smith-Satterthwaite procedure. The de- 
grees of freedom required are 

[st/na + sting |? 
{=F : : : 

[sa/mal’ | Lsp/np]? 
Oy all Tipe 

[100/25 + 400/16}? 
~ [100/25]? [400/16]? 

25-1 16-1 
= 19.86 
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This value is rounded down to 19. The observed value of the test statistic is 

COGS Vin Sy Te (380 — 370) —0 
z : = = (857 

Vszing + 53/ np V 100/25 + 400/16 
Based on the 7, distribution, fo; = 1.729 and to95 = 2.093. Since the observed value 
of our test statistic lies between these two values, the P value of our test lies between 
-025 and .05. Since these values are relatively small, we can reject Hy and conclude that 
material A is capable of withstanding heavier loads on the average than is material B. 

The Smith-Satterthwaite procedure can be used to construct confidence 
bounds on 44; — 42 when the population variances are unequal. The use of these 
bounds is outlined in Exercise 27. 

We mentioned earlier that there are two opinions concerning the best course 
of action when comparing two means. The first, which entails the use of a prelimi- 
nary F test run at a high a@ level to decide whether or not to pool, has been demon- 
strated in the last two sections. It embraces a philosophy that might be called a 
“sometimes pool” point of view. The second philosophy makes use of a very nice 
property of the Smith-Satterthwaite procedure. Namely, recent simulation studies 
have shown that not only does it perform well when variances are unequal, but it 
yields results that are virtually equivalent to those obtained with the pooled T test 
when variances are equal. For this reason, there seems to be no real need to pool; 
simply use the Smith-Satterthwaite procedure in all cases. Neither philosophy is 
clearly “best.” However, the latter may be the safer road to take, as it avoids the pit- 

falls inherent in the use of the F test for variances. You are free to choose the pro- 
cedure that appeals to you. 

10.5 COMPARING MEANS: PAIRED DATA 

In many instances problems arise in which two random samples are available but 

they are not independent; rather, each observation in one sample is naturally or by 

design paired with an observation in the other. To see what we mean, consider 

Example 10.5.1. 

Example 10.5.1. One important aspect of computing is the cpu time required by a 

particular algorithm to solve a problem. A new algorithm is developed to solve zero-one 

multiple objective problems in linear programming. It is thought that the new algorithm 

will solve problems faster than the algorithm currently used. To obtain statistical evi- 

dence to support this research hypothesis, a number of problems will be selected at ran- 

dom. Each problem will be solved twice; once using the current algorithm and once 

using the newly developed one. Thus each test problem generates two observations, 
and we have two data sets. One data set represents a random sample of cpu times using 

the old algorithm; the other represents a sample of cpu times for the new one. These 

data sets are not independent; they are based on the same problems solved by two dif- 

ferent methods and so are paired by design. The idea is illustrated in Fig. 10.4. 

When pairing as we just illustrated occurs, the methods of Secs. 10.3 and 10.4 

are no longer applicable. Rather, a procedure for answering the question, “What is 



350 INTRODUCTION TO PROBABILITY AND STATISTICS 

Population I Population II : 

(problem solved using the (problem solved using the 

old method) new algorithm) 

Sample 

of 

size n 

Matched sample 

of size n 

FIGURE 10.4 
Matched or paired samples of cpu times drawn from two different populations. 

[Ly — My?” must be developed that takes into account the fact that the observations 

are paired. This is done easily. Note that when data are paired, we can define a new 

random variable D by D = X — Y. The n differences D; = X; — Y;; = 1,2,3,...,n 

constitute a set of observations on D; that is, they constitute a random sample of 

size n drawn from the population of differences. Since, by the rules for expectation, 

pee SIX) SEP im ES TS BL es 

the original question, “What is wy — My?” is equivalent to, “What is “wp?” We are 

reduced from the original two-sample problem to the one-sample problem of mak- 

ing an inference on the mean of the population of differences. This problem is not 

new, and it can be handled using the methods of Chap. 8. In particular, the formula 

for the 100(1 — a)% confidence bounds on phy — fy = Mp IS 

Confidence bounds on pry — py for paired data 

D+ teSalVn 

In this formula D and S$, are the sample mean and sample standard deviation of the 

sample of difference scores, respectively, and f,,5 1s the appropriate point relative to 

the 7), — , distribution. 

aired T test 

The null hypothesis wy = ry is equivalent to the hypotheses wp = 0. The test sta- 

tistic for testing this hypothesis based on the sample of difference scores is 

Paired T Test Statistic 

D-0O 

SIV n 
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which follows a T distribution with n — 1 degrees of freedom if H, is true. The use 
of this statistic is now illustrated. 

Example 10.5.2. When the experiment described in Example 10.5.1 is conducted, 
these data result: 

cpu time, s 

Difference 
Program Old (x) New (y) d=x-y 

I 8.05 fll 7.34 

2 24.74 74 24.00 

3 28.33 74 Dif NS) 

4 8.45 oii 7.68 

5 O19 .80 3.39 

6 25.20 83 24.37 

7 14.05 82 S228 

8 V3 Hy 19.56 

9 4.82 ey 4.11 

10 8.54 af 7.82 

For these data d = 14.409 and s, = 8.653. We want to test 

Ay: Wy = by 

Ay: [by > [by 

This is equivalent to testing 

Ay: bp = 0 

1a. 2 [ym = © 

The observed value of the test statistic is 

a 409 — Os 14409 UB 

sain  8.653/\/10 

Based on the 7, »—1 = Ty distribution, the P value for this test is less than .0005 

(to905 = 4.781). Since this probability is very small, we reject Hy and conclude that, on 

the average, the new algorithm is faster than the old. 

In using the “paired 7” procedures, it is assumed that the random variable 

D = X — Y is at least approximately normally distributed. Note that in the case of a 

paired comparison we do not need to check for equality of variances. This is due to 

the fact that we are actually studying a single population, the population of differ- 
ences. We are concerned only with the variance of this one population. 

10.6 ALTERNATIVE NONPARAMETRIC 
METHODS 

In Sec. 10.3 the T test for testing equality of population means for two independent 

samples was discussed. Under the assumptions of normally distributed random vari- 

ables with equal but unknown population variances, this is the most powerful test 
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for testing means. However, as one might expect, these rather restrictive assump- 

tions are not always reasonable to assume in applications. For such situations an al- 

ternative nonparametric test is available that is almost as good as the 7 test even 

when all the necessary assumptions are met and may be considerably superior to the 

T test when the assumptions are clearly not met. If the sample sizes are reasonably 

large, the T test is quite robust. That is, the test is not very sensitive to departures 

from normality. However, for small samples, and particularly when the variances 

are unequal, the 7 test can lead to invalid conclusions. Under these circumstances a 

nonparametric test should be strongly considered as an alternative approach for test- 

ing equality of location for two populations. The most widely used such test is the 

Wilcoxon rank-sum test. 

Wilcoxon Rank-Sum Test 

Let X and Y be continuous random variables. Let X,, X>,.... Anan Yio eee. ke 

be independent random samples of size m and n from the underlying distribution of 

X and Y, respectively. For convenience we assume that the X sample represents the 

smaller sample, and hence m = n. The null hypothesis to be tested is that the X and 
Y populations are identical. However, the test that we use is especially sensitive to 

differences in location. For this reason, the null hypothesis is usually stated in terms 
of equal population medians. Thus the three forms that hypotheses may take are: 

Ho: My = My Ho: My = My Ho: My = My 

H,: My > My H,: My < My H,: My # My 
Right-tailed test Left-tailed test Two-tailed test 

To perform the test, the m + n observations are pooled to form a single sam- 

ple with the group identity of each observation retained. These observations are then 

ordered smallest to largest and ranked from | to N = m + n. If ties occur, each tied 

value receives the average group rank as in previous Wilcoxon procedures. The test 

Statistic, denoted by W,,,, is the sum of the ranks associated with the observations 
that originally constituted the smaller sample (X values). The logic behind this 
choice of test statistic is this. If the X population is located below the Y population, 
then the smaller ranks will tend to be associated with the X values. This produces a 
small value of W,,,. If the reverse is true, then W,, will tend to be large. Thus, logi- 
cally, we should reject Ho: My = My in favor of Hy: My < My for small values of 
W,,+ We reject Ho: My = My in favor of H\: My > My for large values of W,,,. Upper 
and lower critical points for selected values of m, n, and @ are found in Table X of 
App. A. Example 10.6.1 demonstrates the use of this table. 

Example 10.6.1. An experiment is conducted on two brands of kerosene heaters. 
The manufacturer of brand A claims that his model will heat an 8-foot room from 60° 
to 70° F in less time than a competitor’s brand B. Hence to test the manufacturer’s 
claim, the following hypothesis is to be tested: 

Hy: Mp = M, 

H,: Mp > My 
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A random sample of 12 heaters is selected from brand B; an independent sample of 15 
heaters is selected from brand A. The observations are time in seconds to raise the 
room temperature the 10° specified. 

Brand B Brand A 

69.3 32.46) 28.6 30.6 

56.0 34.4 Del 31.8 

MPLA 60.2 26.4 41.6 

47.6 43.8 34.9 Pile 

58 29.8 36.0 

48.1 28.4 37.9 

23:2 38.5 13.9 

13.8 30.2 

Ordering the pooled observations from the smallest to the largest, retaining group 

identity, we obtain the following corresponding ranks: 

Observation 13.8 Ho) AIH 22K 23) 2a Zon 26.4 28.4 28.6 

Brand B A A B B A A A A 

Rank I 2 3 4 > 6 7 8 9 

Observation Ais S032 OHS) Bilas 34.4 34.9 36.0 37.9 38.5 

Brand A A A A B A A A A 

Rank 10 11 12, 13 14 is) 16 iy) 18 

Observation 41.6 AS) Seen OMA Onl WHS D3? 56.0 60.2 69.3 

Brand A B B B B B B B B 

Rank 19 20 Dil 22 23 24 DS) 26 Dif 

Brand B is the smaller sample (m = 12), and hence the test statistic W,,, 1s 

We ae SA 2021 2223 242) 26 427 = 212 

From Table X, form = 12,n =m + 3 = 15 and a = .05, the critical value for a right- 

tailed test is 202. Since W,, = 212 > 202, we reject Hp and conclude that brand A 

heaters do, in fact, raise the temperature in less time than brand B. 

When the sample sizes m or n exceed the values in Table X, a large sample 

normal approximation can be used to test Ho. The test statistic is 

W,, — E (Wa) 
\V Var W,, 

This statistic is approximately distributed as a standard normal random variable, 

where 

E(W,,) = [m(m + n + 1)/2] 

and Var W,, = mn(m + n + 1)/12 
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Several things should be pointed out concerning the Wilcoxon statistic. First, 

although the null hypothesis is stated in terms of medians, if the distributions of X 

and Y are symmetric, we are also testing equality of means. Thus for normal popu- 

lations the Wilcoxon statistic is analogous to the normal theory T test for indepen- 

dent samples. Second, the Wilcoxon statistic can be used with data that cannot be 

measured but that can, nevertheless, be ranked. Examples of data of this sort are 

given in Exercises 39 and 40. 

Wilcoxon Signed-Rank Test for 
Paired Observations 

In Sec. 10.5 the T test for paired data was discussed. The signed-rank test for paired 

observations is the nonparametric analog when the normal assumptions are not met. 

This test is almost as good as the paired 7 test even when the underlying distribu- 

tion is normal, and it is usually preferred to the paired T test for other distributions. 

We discussed the Wilcoxon signed-rank test for a single sample in Sec. 8.7. 

The corresponding test for paired data is a simple modification of the method given 

in Sec. 8.7. Here we let X and Y be continuous random variables that are assumed to 

have symmetric distributions. We want to test the hypothesis that the medians of 

these two distributions are equal. Thus our hypotheses takes the form 

Hy: My = My Hy: My=My Hy My = My 
H,: My > My H,: My < My H,: My # My 

Right-tailed test Left-tailed test Two-tailed test 

Consider a random sample (X;, Y;), (X>, Y>),..., (X,,, Y,,) of paired observations on 

X and Y. We first form the differences X, — Y,, X, — Y>, ...,X, — Y,. If the null 

hypothesis is true, the population of difference scores is symmetric about 0. Thus to 

test Ho: My = My, we test Ho: My — y = 0. The test is performed exactly as before. 

We first order the absolute values of the differences from the smallest to the largest 

and rank them from | to n. Tied scores are assigned the average group rank. Each 

rank is assigned the sign of the difference that generated the rank. Once again, the 
test statistics used are 

W.= > R, and (Wels Sauleel 

eae Mec 
ranks ranks 

Right-tailed tests are conducted via |W_|, and left-tailed tests utilize W,, as the test 
statistic. In each case we reject Hy for values that are too small to have occurred by 
chance based on the critical points found in Table VIII of App. A. 

The next example should refresh your memory of the Wilcoxon signed-rank 
procedure. 

Example 10.6.2. An experiment is conducted to compare the amount of memory 
required to analyze a data set using the two leading statistical packages. These data are 
obtained: 
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Program Package X Package Y Difference X¥ — Y 

1 512K SO00K 12 

2) 650K 600K 50 

3 890K 890K 0 

4 410K 400K 10 

S) 1050K 1025K De) 

6 1500K 1400K 100 

7 600K 625K =5) 

8 750K TIOK 40 

Let us test 

Ay: My = My 

H,: My # My 

at the a = .1 level. To do so, we order the absolute values of the differences from the 

smallest to the largest and rank them from 1 to 8. We then assign to each rank the al- 

gebraic sign of the difference that generated the rank. The zero difference is assigned 

the algebraic sign that is least conductive to the rejection of Ho. In this case the zero 

difference is considered to be negative. We thus obtain these signed ranks: 

ix=ty| | On) Fith S C5 a5) 40h 50 100 
Rank ee Bee Gee 8 
SignedRank | —1 2 gh SAAS 4.5 6 7] 8 

For these data 

WW. = 2 ap 3) ae GES) se @ se ae} = SOS 

|W_| = [= Al + |-4.5| = 55) 

For a two-tailed test the test statistic is W, the smaller of W., and |W_|. From Table VIII 

of App. A we see that the critical point for a two-tailed test at the a = .1 level is 6. 

Since 5.5 < 6, we can reject H, and claim that there are differences in the medians of 

these two populations. 

One other comment should be made. If the differences are such that we only 

know whether a difference is positive or negative, then the null hypothesis can be 

tested via the sign test. This idea was discussed in the one-sample context in Sec. 

8.7. An example of data of this sort is given in Exercise 44. 

10.7 ANOTE ON TECHNOLOGY 

As you probably suspect, most of the techniques that have been demonstrated in this 

chapter can be implemented by available technology. However, in order to use the 

technology tools properly, the material in this chapter must be thoroughly under- 

stood or the tools can be misused and abused. In this section, we discuss briefly 

some of these statistical computing aids. 

The TI83 calculator has been especially designed with statisticians and users 

of statistics in mind. It will perform many of the functions discussed in this chapter. 

In particular, it can perform a preliminary F' test to compare variances using either 

raw data or summary statistics. The test chosen can be either right-tailed, two-tailed, 
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or left-tailed. As demonstrated in this chapter, the latter test is not needed if the test 

is performed in such a way that the larger of the two sample variances is chosen as 

the numerator of the test statistic. The output generated will include the exact P 

value of the test. This P value can be compared to a preset @ level if so desired. 

Based on the results of this test, either pooled or Smith-Satterthwaite 7 type confi- 

dence intervals or T tests can be found or conducted. These can be implemented us- 

ing either raw data or summary statistics. In each case, you will be asked whether 

you want to pool variances. 

There are many statistical packages on the market. Some, like SAS, include a 

preliminary F test and automatically include the results of the two-tailed F test for 

comparing variances as part of the output of the two-sample means comparison pro- 

cedure. SAS, by default, runs both the pooled and Smith-Satterthwaite tests for 

comparing means. It is the responsibility of the user to choose the proper test based 

on the reported results of the F test for comparing variances. Example 10.7.1 gives 

the SAS output and its interpretation for the data of Exercise 26. 

Example 10.7.1. In this example, the ability of a plasma coating to reduce wear in 

rotary valves used in the pulp and paper industry is investigated. Two samples of sizes 

8 (coated valves) and 10 (uncoated valves) are selected. It is thought that the coating 

will reduce wear and hence the primary test is a left-tailed test to compare means. It is 
given by 

A: be = By 

A: Bes Ky 

where C denotes coated values and U denotes uncoated ones. The preliminary F test 
is two-tailed and is given by 

Hy: 02 = 02 

H,: 02 # o? 

The output of the SAS procedure and its interpretation is given below. 

TESTING FOR EQUALITY OF MEANS AND VARIANCES 

T TEST PROCEDURE 

VARIABLE: WEAR 

GROUP N MEAN STD DEV STD ERROR MINIMUM MAXIMUM 
Cc 8 0.08300000 — 0.00924276 0.0032678 1 0.07200000 0.09900000 
U 10 0.10420000 — 0.03342587 0.01057019 0.05200000 0.15600000 

VARIANCES T DF PROB> !7! 

UNEQUAL el. 162 eG) Osean OLO82500G) 
EQUAL Sei 2) 16.0 0.1025 

FOR HO: VARIANCES ARE EQUAL, F’ = 13.08 WITH 9 AND 7 DF 

® PROB > F’ = 0.0027 
@ 

The value of the F statistic used to compare variances is 13.08. This value is shown in ©. The P value for the two- 
tailed F test is .0027. This is the P value listed in @, Since this value is small, we conclude that 7? # a2, and use the 
Smith-Satterthwaite procedure to compare means. The T statistic and its corresponding degrees of freedom are shown 
in @ and ®, respectively. The P value for the two-tailed test is .0825. This value is shown in ©, The one-tailed P value 
is 0825/2 = .04125. 
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Since this P value is small, we reject the null hypothesis and conclude that the average 
wear for coated valves is less than that for uncoated ones. You should compare these 
results with those you obtained by hand earlier. 

In Example 10.7.2, you will see the MINITAB output for the same data as that 
analyzed in Example 10.7.1. 

Example 10.7.2. The MINITAB package does not have an option to run a prelimi- 
nary F test to compare variances, and it does not do so by default. This test can be run 
by hand, or a more informa! approach can be taken. Since it is safer to not pool when 
pooling is appropriate than to pool when it should not be done, the easiest path to take 
is simply to never pool. This is the MINITAB default option. If it is thought that pool- 
ing is appropriate, then MINITAB allows you to select a pooling option. You must in- 
dicate whether your means test is to be right-, left-, or two-tailed. The MINITAB 
output for the data of Exercise 26 is shown below. Note that it includes a 95% confi- 
dence interval on the difference in means shown at © as well as the results of the left- 
tailed test to compare means given at @. You should compare the values given here 
with those shown on the SAS output. 

Two Sample T Test and Confidence Interval 

Two sample T for c vs u 

N Mean StDev SE Mean 

G 8 0.08300 0.00924 0.0033 

u 10 0.1042 0.0334 0.011 

® 95% CI for mu c — mu u: (—0.0459, 0.003) 
@ T-Test mu c = muu (vs <):T = —1.92 P=0.042 DF=10 

CHAPTER SUMMARY 

In this chapter we continued our study of two sample problems by learning how to 

compare the means, variances, and medians of two populations. We considered two 

different experimental settings, namely, those problems in which independent sam- 

ples are drawn from the two populations and problems in which data are paired. 

To compare variances based on independent samples, it was necessary to in- 

troduce a new continuous distribution called the F distribution. Although some stud- 

ies are designed specifically to compare variances, more often variances are 

compared as a first step in comparing means. If there is statistical evidence based 

on the F test that the population variances are not equal, then we use the Smith- 

Satterthwaite T procedure to compare means. Otherwise we can use either a 
pooled T procedure or the Smith-Satterthwaite procedure. The choice is yours. Each 

of these procedures assumes that sampling is from normal distributions. A non- 

parametric alternative to these tests was presented. This alternative procedure, 
called the Wilcoxon rank-sum test, does not require normality, and no knowledge of 

population variances 1s necessary. 
When data are paired, we do not need to consider the individual population 

variances. In this case we work with a population of difference scores. It is assumed 

that this population is normally distributed and inferences are made on the difference 
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in population means via a one-sample “paired” T test. The Wilcoxon signed-rank test 

for paired data was introduced as a nonparametric test for location when it is evident 

that the population of difference scores is not normally distributed. 

We introduced and defined important terms that you should know. These are: 

F distribution Smith-Satterthwaite test 

Pooled estimator for a? Paired T test 

Pooled T test 

EXERCISES 

Section 10.1 

1. A firm receives integrated circuits in lots of 100 from two different suppliers. 

These data are obtained on the number of defective items found per lot: 

Supplier I Supplier II 

3 8 5 7 0 2 3 ] 3 
2 3 8 | l 1 a 4 0 
5 0 6 2 

Estimate 2;, M2, and Ly — fo. 

2. Many gold and silver deposits that were once considered uneconomical are 

now being exploited, thanks to improvements in methods for recovering pre- 

cious metals from ore. In a study to compare the potential of two different 

open-pit gold mines, ore samples are obtained from each mine. The mean num- 

ber of ounces of gold recovered per ton of ore is .233 for the first mine and .127 

for the second. Estimate the difference in the mean number of ounces of gold 

per ton of ore for these two mines. 

3. Apress used to remove water from copper-bearing materials is being tested us- 

ing two different types of filter plates. These data are obtained on the percent- 

age of moisture remaining in the material after treatment: 

Regular chamber (I) Diaphragm chamber (II) 

8.10 8.16 8.16 7.58 7.65 7.69 
7.96 7.98 7.93 7.66 7.67 7.67 
7.97 8.08 8.06 7.58 7.62 7.65 
8.02 7.87 7.94 7.65 7.58 ee 
7.82 8.11 7.92 7.63 7.54 
8.15 7.91 8.00 7.46 7.40 

Estimate j1;, fl, and fy — My. 

4. Let X; be the sample mean based on a sample of size 25 drawn from a normal 
distribution with mean 8 and variance 16. Let X, be the sample mean based on 
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FIGURE 10.5 

a sample of size 36 drawn from a normal distribution with mean 5 and vari- 

ance 9. What is the distribution of each of these random variables? 

(a) X, 

(b) X, 
(c) (X; — 8)/(4/5) 
(d) (X, —5)/(G3/6) 
(ey XG XG) 

CA ie (8 35) 

- VG) 296 9/36 

Section 10.2 

5: 

N 

Use Table IX of App. A to find each of the following: 

(a) Pl Pio 5 = 2.416] (b) f,(10, 9 df) 

(c) Pl F357 = 9-803] (d) fos(30, 30 df) 

(e) PLF 2,129 2 1.659] (f) fos(20, 4 df) 
. In each part of Fig. 10.5, find the point indicated. 
. In each case, test for equality of variances at the indicated level. 

l| 
Sa 3 Nn aie 

g l| 

(a) n, = 10 Ny = 8 a= .20 

So 25) 55 =.05 
(b) n, = 13 m=20 a=.10 

si=4 55 = 2 
CQ) =O ay = 10 

2 
2 in tS) 

I| io 
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8. The cost of repairing a fiberoptic component may depend on the stage of pro- 

duction at which it fails. These data are obtained on the cost of repairing parts 

that fail when installed in the system and on the cost of repairing parts that fail 

after the system is installed in the field: 

System failure Field failure 

n, = 21 Ny = 25 

xX, = $65 v, = $120 

sg; = 25 s3 = 100 

(a) Itis thought that the variance in cost of repairs made in the field is larger 

than the variance in cost of repairs made when the component is placed 

into the system. Set up the null and alternative hypotheses needed to gain 

statistical evidence to support this contention. 

(b) Use the given data to test Hy at the a = .10 level. 

9, A study of the sodium content in a 6-fluid ounce serving of a soft drink is con- 

ducted. These data are obtained on various types of ginger ales and cola drinks: 

Ginger ale Cola 

n, = 10 ny = 10 

xX, = 9.6 xX, = 9.9 

sj =10.89 s3 = 11.90 

(a) It is thought that the variability in the sodium content in ginger ales is 

smaller than that of colas. Set up the null and alternative hypotheses 

needed to support this contention. 
(b) Use the given data to test Hp at the a = .1 level. 

10. Prices for regular unleaded gasoline can vary widely from day to day and loca- 

tion to location. These data were obtained on June 1, 2001, from a sample of 

stations across the respective state (price is in dollars per gallon): 

South Carolina Michigan 

1.46 1.47 1.42 1.51 leas 1.69 1.79 ily fe? 1.76 1.80 

IL op) 1.48 1.47 1.53 1.50 1.59 1.89 1.72 1.63 hae 

1.9] iA 

Use these data to test for equality of variances. What is the P value of your test, 

and what conclusion do you draw? 

11. A study is conducted to compare the variability in the number of hours that a 

rechargable flashlight will operate after its battery has been fully charged. 

These data are obtained for two different brands of batteries: 

Brand X Brand Y 

ny = 25 Ny = 21 

si =.021 55 = .018 NN rn 
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Use these data to test for equality of variances. What is the P value of your 
test? Can you conclude that the variances are unequal at the a = .2 level? at the 
a =".1 level? 

Section 10.3 

12. 

13. 

14. 

ly 

(a) Let sj = 42, s} = 37, n, = 10, ny = 14. Find s?. 
(b) Let sj = 28, 83 = 30, n, = 20, ny = 20. Find s?. Do not use your calculator! 
(c) Let st = 20, s3 = 40, n, = 10, ny = 50. Find s?. Why is s? closer in value 

to s% than to s7?. 
A study of report writing by engineers is conducted. A scale that measures the 

intelligibility of engineers’ English is devised. This scale, called an “index of 

confusion,” is devised so that low scores indicate high readability. These data 

are obtained on articles randomly selected from engineering journals and from 

unpublished reports written in 1979: 

Journals Unpublished reports 

LY ETS 1.67 1.65 3-359) 2.551 2.86 2.14 
1.87 1.74 1.94 2.56 2S) 2.49 
1.62 2.06 1233 2.36 2.58 2,33 
1.96 1.69 1.70 2.62 2.41 1.94 

(a) Test Hy: of = 

(b) Find s>. 

(c) Find a 90% confidence interval on pu, — Mo. 

(d) Does there appear to be a difference between wz, and 41,” Explain, based on 

the confidence interval of part (c). 

To decide whether or not to purchase a new hand-held laser scanner for use in 

inventorying stock, tests are conducted on the scanner currently in use and on 

the new scanner. These data are obtained on the number of 7-inch bar codes 

that can be scanned per second: 

a3 at the a = .2 level to be sure that pooling is appropriate. 

New 

Test Hy: «7 = a3 at the a = .2 level to be sure that pooling is appropriate. 

Find s°. 
Find a 90% confidence interval on ,; — [. 

Does the new laser appear to read more bar codes per second on the aver- 

age? Explain. 

Since the number of bar codes that can be scanned per second is discrete, 

we have not satisfied the normality requirement. What theorem justifies 

the use of the pooled T procedure in this case? 

Environmental testing is an attempt to test a component under conditions that 

closely simulate the environment in which the component will be used. An 

(e) 
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16. 

17: 

18. 

19) 
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electrical component is to be used in two different locations in Alaska. Before 

environmental testing can be conducted, it is necessary to determine the soil 

composition in these localities. These data are obtained on the percentage of 

SiO, by weight of the soil: 

Anchorage Kodiak 

(a) Test Hp: 77 = o% at the a = .2 level. 
(b) Find s?. 
(c) Find a 99% confidence interval on ; — (>. 

(d) Based on the interval of part (c), does there appear to be a difference 

between jz, and yy? Explain. 

Show that E[S?] = o*, thus proving that the pooled variance is an unbiased 
estimator for the common population variance. 
During a total solar eclipse the temperature drops quickly as the moon passes 

between the earth and the sun. These data are obtained on the drop in tempera- 

ture in degrees Fahrenheit at two types of locations in southern Africa during 

the June 2001 eclipse: 

Mountainous terrain River-level terrain 

15 12 16 16 13 1S its) LT 19 16 15 19 

lil 19 LS 18 20 21 pp. 24 

Is there evidence at the a = .20 level of significance that there is a difference 
in the variances in temperature drop seen in these two terrains? 

Use the data of Exercise 17 to form a 95% confidence interval on the difference 

in the average temperature drop between the two types of terrain. Based on this 

interval, is there evidence that a real difference exists? If so, which region ap- 

pears to exhibit the greatest average change? Explain, based on the interval that 

you constructed. 

The time in seconds required to connect to the Internet via a dial-in service is 

influenced by a variety of factors such as number of phone lines available in the 

local calling area, time of day, day of the week, number of users in the area, and 

so on. These data are obtained in a given area at two different times of the day 
but always on the same day of the week: 

Morning (9:00 A.M. to 11:00 A.M.) Night (10:00 p.M. to midnight) 

M0) AAO hl 42 44 44 15 10 11 21 31 LS 40) Di) 
33 oS eer 47 45 22S PR = BP SSI Pp aN | 39 

Pal ay. Is} 2 eo pi: ae 2A OD ee 2) 35 30.5, 42 43 
50) Oss OU 48 49 Spr SYy/ BP B 
(sy foil 
LS 
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(a) Is pooling appropriate? Explain by comparing variances. 
(b) Find a 99% confidence interval on the difference in the average time re- 

quired to access the Internet during these two time periods. Which time pe- 
riod appears to give the fastest average access time? 

(c) Why is the interval that you obtained so long? How could you use these 
same data to obtain a shorter interval? 

Section 10.4 

20. 

21. 

22. 

Calculate the number of degrees of freedom for a Smith-Satterthwaite proce- 
dure based on these data: 

(DQ) ht een O 
5? = 38.07 52 = 16.89 

(b) nm, = 25 ny = 25 
si = 42 =i 

Strontium-90, a radioactive element produced by nuclear testing, is closely re- 

lated to calcium. In dairy lands, strontium-90 can make its way into milk via 

the grasses eaten by dairy cows. It then becomes concentrated in the bones of 

those who drink the milk. In 1959 a study was conducted to compare the mean 

concentration of strontium-90 in the bones of children to that of adults. It was 
thought that the level in children was higher because the substance was present 
during their formative years. 

(a) Set up the null and alternative hypotheses needed to verify this contention. 

(b) Based on these data, is pooling appropriate? 

Children Adults 

n, = 121 ny = 61 

x, = 2.6 picocuries per gram xX, = .4 picocurie per gram 

sj =1.44 s3 = 0121 

(c) Test the null hypothesis of part (a). Can Hp be rejected? Explain, based on 

the P value of your test. What practical conclusion can be drawn from 

these data? 
Water and other nonaqueous volatiles are present in differing concentrations in 

coal from different seams. To measure the percentage by weight of these sub- 

stances for a particular seam, readings are taken at two different temperatures. 

These data result: 

Water 

105° C 160° C 

15.11 15.30 15.44 15.14 15.33 15.40 

1523} 15332) 15.48 15.28 15.34 IS WF 

1527 ID.37) 1S). 0 15.26 15.38 ISsy? 
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Nonaqueous volatiles 

105° C 160° C 

343 .601 .676 538 1.780 1.625 

481 543 54] 1.190 1.636 1.692 

475 108 106 2.015 1.464 eg eH| 

(a) Use the water data to test 

Ho: by = bo 

Ay: by F py 

at the a = .05 level. Does the temperature at which the readings are taken 

appear to affect the mean reading of the water concentration of the coal? 

Explain. Be ready to defend your choice of a test statistic. 

(b) Use the nonaqueous volatiles data to test 

Ao: ky = bo 

Ay: by F py 

at the a = .05 level. Does the temperature at which the readings are taken 

appear to affect the mean reading of the concentration of nonaqueous 
volatiles in the coal? Explain. 

It is thought that the gas mileage obtained by a particular model of automobile 

will be higher if unleaded premium gasoline is used in the vehicle rather than 
regular unleaded gasoline. To gather evidence to support this contention, 10 
cars are randomly selected from the assembly line and tested using a specified 
brand of premium gasoline; 10 others are randomly selected and tested using 
the brand’s regular gasoline. Tests are conducted under identical controlled 
conditions. These data result: 

Premium Regular 

35.4 31.7 29.7 34.8 

34.5 35.4 29.6 34.6 

leo) Sey 32.1 34.8 

32.4 36.6 35.4 32.6 

34.8 36.0 34.0 S22 

(a) Set up the null and alternative hypotheses needed to compare the mean 
mileage for these two gasolines. 

(b) Decide whether or not to reject Hy via a significance test. What is the 
approximate P value of the test? Be ready to defend your choice of a test 
Statistic. 

(c) Interpret your results in the context of this problem. 
A new coal liquefaction process is being studied. It is claimed that the new 
process results in a higher yield of distillate synthetic fuel than the current 
process. These observations are obtained on the number of kilograms of distil- 
late synthetic fuel produced per kilogram of hydrogen consumed in the process: 
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New Old 

16.4 12.8 15.4 17.0 11.1 10.5 10.9 10.1 

7H 12.2 18.7 12.8 32 12.6 

15.9 lay 19.1 DA 14.5 1526 

at} 14.1 16.5 14.2 5.3 14.2 

(a) Set up the null and alternative hypotheses needed to support the stated 
claim. 

(b) Since putting the new process into production is very expensive, a Type I 

error is costly. To compensate for this, test the null hypothesis of part (a) at 

the a = .01 level. Would you recommend that the new process be used? 

Explain. 

. A study is conducted to compare the tensile strength of two types of roof coat- 

ings. It is thought that, on the average, butyl coatings are stronger than acrylic 

coatings. These data are gathered: 

Tensile strength, Ib / in? 

Acrylic 2 Butyl 

246.3 247.7 287.5 248.3 340.7 263.4 272.6 271.4 

255.0 246.3 284.6 243.7 270.1 341.6 332.6 303.9 
245.8 214.0 268.7 PO 371.6 307.0 362.2 324.7 

250.7 242.7 302.6 254.9 306.6 S LOM 358.1 360.1 

(a) Set up the null and alternative hypotheses needed to verify the research hy- 

pothesis. 

(b) Is pooling appropriate? Explain. 
(c) Test the null hypothesis of part (a). Can Hp be rejected? Explain, based on 

the P value of your test. What practical conclusion can be drawn in this case? 

. It is thought that the application of a plasma coating that contains submicron 

particles of tungsten carbide will reduce wear to rotary valves used in the pulp 

and paper industry. Tests are conducted to compare the wear in coated and un- 

coated valves. These data are gathered on the wear of the part in millimeters 

over the test period: 

Coated Uncoated 

.075 099 095 074 104 

.078 082 .096 149 052 

092 088 AIS6 08 1 

.078 072 156 .099 

(a) Set up the null and alternative hypotheses needed to support the contention 

that the plasma coating on the average reduces the wear in these valves. 

(b) Based on these data, is pooling appropriate? 

(c) Test the null hypothesis of part (a). Does it appear that the coating is ef- 

fective in reducing wear? Explain, based on the P value of your test. 
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27. (Confidence interval on 4, — fr: Variances unequal.) The lower and upper 

28. 

29 

bounds for a 100(1 — a)% confidence interval on jz, — fy When of # 3 are 
given by 

'&e = Xs) ae lolz V S7/n; =i S3/n, 

Consider the data of Exercise 10. Use these data to find a 95% confidence in- 

terval on the difference in the average gasoline price per gallon in South Car- 

olina and Michigan on the day that the data were collected. Does this interval 

provide good evidence that the average price was higher in Michigan on 

this day than it was in South Carolina? Explain, based on your confidence 

interval. 

A manufacturer of power-steering components buys hydraulic seals from two 

sources. Samples are selected from among the seals obtained from these two 

suppliers, and each seal is tested to determine the amount of pressure that it can 
withstand. These data result: 

Supplier I Supplier I 

n, = 10 ny = 10 

X, = 1350 Ib/in? X, = 1338 Ib/in? 1 2 

?=100 s3 = 29 

(a) We want to find a 95% confidence interval on 414; — fy. Is pooling appro- 
priate? 

(b) Construct a 95% confidence interval on w, — [. 
(c) Is there evidence based on the confidence interval that, on the average, the 

seals from supplier I can withstand higher pressures than those from sup- 
plier IT? Explain. 

Aseptic packaging of juices is a method of packaging that entails rapid heating 
followed by quick cooling to room temperature in an air-free container. Such 
packaging allows the juices to be stored unrefrigerated. Two machines used to 
fill aseptic packages are compared. These data are obtained in the number of 
containers that can be filled per minute: 

Machine I Machine II 

n, = 25 Ny = 25 

x, = 115.5 Xx = 112.7 

si =25.2 54 = 7.6 

(a) Is pooling appropriate? 
(b) Find a 90% confidence interval on a, — [. 
(c) Is there evidence based on the confidence interval that machine I is faster, 

on the average, than machine IT? Explain. 
. These data are obtained on the power output in kilowatts of two new diesel mo- 

tors for small cars: 
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Direct fuel injection Indirect fuel injection 

38.5 38.2 39.2 38.5 38.9 38.3 38.4 39.0 

38.9 38.0 3) 39.1 Mal! Bie.) 38.4 

37.4 BSS 39.0 38.0 882 87/20 37.9 

39.0 37.7 38.1 37.4 Bow Bile 39.7 

Construct a 95% confidence interval on jz, — > using the appropriate T pro- 

cedure. Based on your confidence interval, does there appear to be a difference 

in the mean power of these two engines? Explain. 

Section 10.5 

31. 

32. 

Information about ocean weather can be extracted from radar returns with the 

aid of a special algorithm. A study is conducted to estimate the difference in 

wind speed as measured on the ground and via the Seasat satellite. To do so, 

wind speeds are measured using the two methods simultaneously at 12 speci- 

fied times. These data result: 

Windspeed, m/s 

Ground Satellite Differences 

Time (x) (y) (d=x—y) 

il 4.46 4.08 

2 3.99 3.94 

3 8/3 5.00 

4 3.29 5.20 

5 4.82 3.92 

6 6.71 6.21 

7 4.61 5.95 

8 3.87 3.07 

9 Selly 4.76 

10 4.42 325 

11 3.76 4.89 

1, 3.30 4.80 

(a) Find the difference scores for the above data subtracting in the order 

indicated. 

(b) Find d and sy. 
(c) Find a 95% confidence interval on the mean difference in measurements 

taken by these methods. Based on this interval, is there reason to believe 

that, on the average, the satellite measurements differ from those taken on 

the ground? Explain. 

A study is conducted to estimate the average difference in the cost of analyzing 

data using two different statistical packages. To do so, 15 data sets are used. 

Each is analyzed by each package, and the cost of the analysis is recorded. 

These observations result: 
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33: 

34. 
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Program Package I Package II Program Package I Package II 
eS See se eee Ot Sees eee 

$ $ $ $ 
l 26 29 9 19 3 

2 24 “ehh 10 ws sof) 

3 26 24 1] 29 33 

4 PP) oo) 12 PS) 28 

5 2) 28 13 1s 30 

6 3 2H, 14 .20 24 

7 18 2D 15 Zo Be 

8 25 26 

(a) Find the set of difference scores subtracting in the order package I minus 

package II. 

(b) Find d and s,. 
(c) Find a 90% confidence interval on the mean difference in the cost of run- 

ning a data analysis using the two packages. 

Post Three Mile Island regulations require provisions by which people within 10 

miles of a nuclear power plant can be notified promptly in the event of a general 

nuclear emergency. In a study of one such system the sound level at 69 locations 

within 10 miles of the plant is first simulated and then field tested. Subtracting 

in the order measured siren level minus simulated siren level, it is found that 
d = .04 decibels and s, = 2.43. Find a 95% confidence interval on the mean dif- 

ference between the actual siren level and the simulated level. Based on this in- 
terval, is there reason to suspect that a difference exists? Explain. 

A new method for measuring the concentration of Pu**? based on the registra- 
tion of a-particles and fission-fragment tracts is studied. Test solution media of 

various concentrations are obtained, and each is split into two portions. The 

concentration of the first portion is determined using the new method; the sec- 

ond portion is measured using the standard technique. It is thought that the new 

procedure tends to give a higher average reading than the standard techniques. 

Do the following data support this research hypothesis? Explain, based on the 
P value of your test. 

Concentration of Pu’ (j4/ml) 

Sample 

number New Old 

| 3.78 Shale" 

2 3.58 3.60 

3 SYA 3.41 

4 3.82 3.69 

a] 3.67 3.48 

6 3.66 3.50 

TI 3.48 3.33 

8 3.63 3.64 

9 3.88 3.65 

=> oO 5.05 3.64 



COMPARING TWO MEANS AND TWO VARIANCES 369 

35. Highway engineers studying the effects of wear on dual-lane highways suspect 
that more cracking occurs in the travel lane of the highway than in the passing 
lane. To verify this contention, 30 one-hundred-feet-long test strips are se- 
lected, paved, and studied over a period of time. It is found that the mean dif- 
ference in the number of major cracks is 4.5 with a sample standard deviation 
of 8.1. Do these data support the research hypothesis? Explain, based on the P 
value of the test. 

36. Two different compilers are compared for efficiency. The comparison is done 
by running 25 randomly selected programs using each compiler. These data on 

the compile time in seconds are obtained: 

Program Compilerl CompilerII Program Compiler I Compiler II 

1 3.76 4.28 14 4.02 4.25 

Z 4.78 3.89 15 4.34 4.28 

3 4.66 3.30 16 4.10 3).3)5) 

4 3.38 Bas 17 S25 3.83 
5 /NaV Dal 18 4.52 3.82 

6 3.46 Sy 1S) 19 4.24 3515) 

7 4.19 3.34 20 51.3)8) 3.66 
8 4.15 4.71 21 3.84 4.14 

y 3.61 4.21 22 35) 3.68 

10 Bol 3.76 2B 4.32 3.09 

11 4.47 B02 24 4.22 Bal2 

12 3.53 3.26 25 4.25 S077 

13 4.14 2.87 

(a) It is thought that the second compiler is the faster of the two. Set up the 

null and alternative hypotheses needed to support this contention. 

(b) What is the critical point for an a = .05 level test of this hypothesis? Can 

H) be rejected at the .0S level? Interpret your results in the context of this 

problem. 

Section 10.6 

37. A study is conducted to determine the effect of acid rain and other industrial 
pollutants on lake water. Random samples are drawn from 10 lakes in a heav- 

ily industrialized area and from eight lakes in a primitive forested area. These 

data are obtained on the pH of the water: 

Industrial area (J) Primitive area (P) 

6.9 7.0 7.0 6.8 

6.2 6.5 6.9 Ill 

6.3 6.6 6.7 7.0 

a9) 59) Wel V2 

6.0 WB 

At the a = .025 level, can we claim that the pH of the water in the industrial- 

ized area tends to be lower than that in the primitive area? 
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38. 

39: 

40. 

41. 

INTRODUCTION TO PROBABILITY AND STATISTICS 

Polychlorinated biphenyls (PCB) are worldwide environmental contaminants 

of industrial origin that are related to DDT. They are being phased out in the 

United States, but they will remain in the environment for many years. An ex- 

periment is run to study the effects of PCB on the reproductive ability of 

screech owls. The purpose is to compare the shell thickness of eggs produced 

by birds exposed to PCB to that of birds not exposed to the contaminant. It is 

thought that shells of the former group will be thinner than those of the latter. 

Do these data support this research hypothesis? Explain. 

Shell thickness, mm 

Exposed to PCB (£) Free of PCB (F) 

21 .226 PH! 27 

223 PANS) .265 18 

25 24 PA 187 

si) 136 256 Gee, 

.20 .20 

An automobile manufacturer is experimenting with a new type of paint de- 

signed to resist corrosion. Five automobile hoods are painted with the new 
paint; seven are painted using the old mixture. All hoods are subjected to iden- 

tical accelerated life testing. At the end of the testing period an impartial judge 

is asked to rank the hoods from 1 to 12, with lower ranks indicating less corro- 

sion. These data result (V = new. O = old): 

Rank f-—-2 3 f~ Se 6 ‘oe ees ee Poe 

aC Gat Cea 

At the a = .05 level, can we reject Hy: My = Mo and conclude that the new 

paint resists corrosion better than the old? 

A study is conducted to compare a new drill tip to be used in drilling oil wells to 

the drill tips currently in use. Four new tips (NV) are field tested. The length of 

time each is usable is recorded. After comparison with file data on the old tips 

(O), these data are obtained (a lower rank indicates a longer lasting drill tip): 

Rank | 2 3 4 5 6 7 8 9 

Type N O O N N N O O O 

At the a = .05 level, can we claim that the new drill tips tend to last longer than 
the old ones? 

Manufacturers of brand A mainframe computers claim that maintenance costs 
are lower for their equipment than for that of their nearest competitor. Before 
purchasing brand A, a company makes an independent investigation of this 
claim. Samples of repair records are obtained from users of the two types of 
equipment. These data result: 

Brand A Competitor 

m= 75 n= 100 

W,,, = 5937 
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(a) What is E[W,,]? 
(b) What is Var W,,,? 

(c) Do the data support the claim of the makers of brand A equipment? Ex- 
plain, based on the P value of your test. 

A study of visual and auditory reaction time is conducted for a group of college 
basketball players. Visual reaction time is measured by the time needed to re- 
spond to a light signal, and auditory reaction time is measured by the time 
needed to respond to the sound of an electric switch. Fifteen subjects were mea- 
sured with time recorded to the nearest millisecond: 

Subject Visual Auditory 

i 161 ley 

2 203 207 

3 235 198 

4 176 161 

5 201 234 
6 188 197 

7 228 180 

8 211 165 

9 ey 202 

10 178 193 

11 159 TH) 

12 Da, 137 

13 193 182 

14 192 159 

15 212 156 

Is there evidence that the visual reaction time tends to be slower than the audi- 
tory reaction time? 

A firm has two possible sources for its computer hardware. It is thought that 

supplier X tends to charge more than supplier Y for comparable items. Do these 

data support this contention at the a = .05 level? 

Item Price (X), $ Price (Y), $ 

1 6000 5900 

2 a/5 580 

3 15,000 15,000 

4 150,000 145,000 

> 76,000 75,000 

6 5650 5600 

il 10,000 9975 

8 850 870 

9 900 890 

10 3000 2900 

Would the sign test have yielded the same results? If not, explain the discrepancy. 

An experiment was conducted to compare the appearance of two types of paint 

on houses after normal exposure for a period of 2 years. Twenty pairs of similarly 
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constructed homes were selected, and brand A paint was applied to one house of 
each pair and brand B was applied to the other member of each pair. After 2 years 

a paint expert was asked to judge the appearances of the two brands for each pair 

of houses. A > B and B > A denotes the order of preferred appearance of A pre- 

ferred to B and B preferred to A, respectively. The outcome of the experiment is 

as follows: 

Pair Pair Pair Pair 

| A>B 6 B>A 1] A>B 16 Av B 

2, Alea Bs 7 B>A 12 HN 183 7 Bea A 

3 Bes 8 A>B 13 Ab 18 A>B 

4 A>B 9 B>A 14 B>A 19 A>B 

2) A>B 10 A>B 15 AB 20 A>B 

Using an appropriate test, test the hypothesis that the two brands of paint are 

equally preferred in terms of appearance after 2 years. 

REVIEW EXERCISES 

45. 

46. 

Researchers are experimenting with the use of microprocessors to help reduce 

fuel and power consumption in furnaces used to process magnetite ore. A par- 

ticular system is designed to maintain gas flow through the machine in such a 

way as to ensure that sufficient heat is available to raise the raw ore pellets to 

1300° C. A study is conducted to compare the temperature setting needed to ac- 

complish this using the computerized system to that setting needed using the 

conventional method. It is thought that the computerized system will result in a 

lower average required setting with a smaller variability in settings than the 
conventional system. 
(a) We are interested in testing two null hypotheses. State these null hypothe- 

ses and their alternatives. 
(b) Sample runs yield these data: 

Computerized Conventional 

ny 25 Ny = 25 

x; = 733°C X= 822°C 
s,=10°C s,5= SO0°C 

Assuming normality, test the null hypotheses of part (a). Be ready to de- 
fend your choice of test statistics. Do these data support the two con- 
tentions stated concerning the computerized system? Explain. 

Dross is scum that forms on the surface of molten metal during processing. A 
new technique is being developed to reduce the formation of this substance. To 
be profitable, the reduction must amount to an average of more than 15 kilo- 
grams per ton over the current method. 
(a) Setup the null and alternative hypotheses needed to support the contention 

that the new process will be profitable. 
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(b) Trial runs produce these data: 

Old method New method 

n, = 10 Ny = 10 

x, = 20 kg/t xX, = | kg/t 

S, = 2.5 kg/t S, = Skg/t 

Assuming normality, test the null hypothesis of part (a). Be ready to de- 
fend your choice of test statistics. Does it appear that the new process will 
be profitable? Explain. 

A composite of 6/6 nylon and steel is being studied for possible use in cam 
gears. Sixteen gears of different types are produced, and the noise level ob- 
tained using these gears is compared to that of an identical gear made of cast 
iron. These data are obtained: 

Noise level in dB 

Gear Cast iron Composite 

75 74 

2 90 88 

3 80 81 
4 60 60 

3) 110 107 

6 95 92 

7 93 90 

8 88 84 

9 70 66 
10 65 64 

1] 91 86 

12 100 OT 

13 85 83 

14 50 44 

15 62 60 

16 67 64 

(a) Construct a stem-and-leaf diagram for the differences in the noise levels 

for the two gears. Subtract in the order cast iron minus composite. Does it 

appear that these differences are approximately normally distributed? 

(b) Find a 95% confidence interval on the mean difference in the reduction in 

the noise level. Does it appear that gears made from the composite have a 

lower average decibel level than those made from cast iron? Explain. 

Chains have long been used in kilns in cement plants to help reduce heat con- 

sumption. A study is conducted to determine if chains will have the same effect 
when using cheaper raw materials with high sulfur and chlorine content. The 

purpose of the study is to estimate the difference in specific heat consumption 

in kilns with and without the use of chains. Independent samples of sizes 14 

and 16, respectively, are used in the study. These data result: 
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Without chains With chains 

n, = 16 n, = 14 

x, = 6150 kJ/kg X5 2 

s, = 80 kJ/kg Sy = 75 

Find a 95% confidence interval on 4, — (>. Be ready to defend your choice of 

the confidence bounds used. Does it appear that the chains are effective? Explain. 

49. It is thought that the heat loss in glass pipes is smaller than that in steel pipes of 

the same size. To verify this contention, nine pairs of pipes of assorted diame- 

ters are obtained. Various liquids at identical starting temperatures are run 

through 50-meter segments of each type of pipe, and the heat loss is measured 

in each case. These data result: 

Heat loss (in C’) 

Pair Steel Glass 

l 4.6 2 

2 i i 

3 4.2 2.0 

4 iL@) | 

5) 4.8 Di 

6 ‘Onl 52 

7 4.7 30) 

8 S15) Sk) 

9 5.4 3.4 

Assuming normality, can we conclude that the mean heat loss is higher in steel 

pipes than in those made of glass? Explain, based on the P value of your test. 
50. A study is conducted to compare the total printing time in seconds of two 

brands of laser printers on various tasks. Data below are for the printing of 
charts. (Based on information found in MACWORLD, March 1993, p. 1980.) 

Task Brand 1 time Brand 2 time 

| 21.8 36.5 

2 22.6 35.2 

a 21.0 oe? 

4 19.7 34.0 

5 21.9 36.4 

6 21.6 36.1 

i 22:5 SM 

8 2351 38.0 

9 pyyy) 36.3 

10 20.1 35.9 

lI 21.4 Soe! 

12 20.5 34.9 

13 STOR oN 

14 20.5 34.2 

15 Dales 35.4 
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(a) Estimate the average difference in printing time for these two lasers. 
(b) Find a 95% confidence interval on the average difference in printing times. 
(c) Based on the confidence interval found in part (b), would you be surprised 

to hear a claim that these two printers are equally fast in printing charts? 
Explain. 

Two drugs, amantadine (A) and rimantadine (R), are being studied for use in 
combatting the influenza virus. A single 100-milligram dose is administered 
orally to healthy adults. The variable studied is T.,,,,, the time in minutes re- 
quired to reach maximum plasma concentration. These data are obtained (based 
on information found in “Drug Therapy”, Gordon Douglas, Jr., New England 
Journal of Medicine, vol. 322, February 1990, pp. 443-449): 

ProrelV\ ) ry ) 

105 123 12.4 221 22, 280 

126 108 134 261 264 238 

120 112 130 250 236 240 

ie, 132 130 230 246 283 

133 136 142 258 HH) 516 

145 156 170 256 271 
200 

(a) Construct a boxplot for each data set, and identify outliers. 

(b) Assume that the outlier 12.4 of set A is the result of a misplaced decimal 

point. Replace the outlier 12.4 with the true value 124. Test for equality of 
variances at the a = .20 level. 

(c) Construct a 95% confidence interval on the difference in the average time 

required to reach maximum plasma concentration for these two drugs. 

(d) Based on the confidence interval of part (c), can it be concluded that there 

is a difference in means? Explain. 

A study is conducted to help understand the effect of smoking on sleep patterns. 

The random variable considered is X, the time in minutes that it takes to fall 

asleep. Samples of smokers and nonsmokers yield these observations on X: 

Nonsmokers Smokers 

THA, 7 Wi S51 1 Seon NEO IS POS Wee V3 16.0 24.8 

16.2 199 19.8 23.6 249 20.1 16 Ql Wei Bw IS Dp 

19.8 226 20.0 24.1 2, Oe 2 ee 22) Se Aen 93 eee, 183 DO 

MD WO AD BOG Aa3) Boy 253 OA NSO) AT PUG 1.8! 

DV AGS ABO) AOE es INS AS OB IB MSO) BBS 1) 

Digs Des Dis PADS — BOS PROT DP Mj 1, 72 PAG IO 

OFS iG. S 19.2 22.4 i Ko ic eee We ey IS lOO Bit B30) DS, 1 

(a) Construct a stem-and-leaf diagram for each of these data sets. Use the in- 

tegers from 15 to 25 inclusive as stems. 
(b) Would you be surprised to hear someone claim that there is no difference 

in the distribution of X for the two groups? Explain. 
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(c) Perform any statistical tests that you believe are appropriate to detect differ- 

ences that might exist. They can be either normal theory or nonparametric. 

53. Recycling has become important as landfills become harder to obtain. A study 

54 

of white paper disposal is conducted. These data are obtained on the amount of 

white paper thrown out per year by bank employees and employees in other 

businesses. (Data are in hundreds of pounds.) 

Bank employees Other Businesses 

3.1 2.6 6.9 o}3) 

PE) 2.0 6.4 oy? 

3.8 3h) 4.7 2), 

3)3) 2.4 4.3 Sy) 

Psi 73% onl 5.8 

3.0 Sal 6.3 4.9 

2.8 val Dee, 4.8 

DS, 3.4 5.4 4.0 

2.0 1.9 Die 4.0 

a9 ya Se) Sy 

2.1 je) 6.2 5.0 

Pref AL8) 4.2 4.1 

Peps 23 5.0 3) 

1.8 ils) Shi) Bal 

Ie) 2 Dal 3.4 

iho 1.7 

(Based on information found in “White Paper 

Recycling,” MIT Technology, Review, Au- 

gust/September 1992, p. 20.) 

Do these data support the contention that, on the average, bank employees dis- 

pose of more white paper per year than do employees in other businesses? Ex- 

plain by conducting appropriate statistical tests (either normal theory or 

nonparametric). Be ready to defend your choice of tests. 

A builder has a choice of two fairly comparable building sites. Since a septic 

system is to be installed, it is essential that each site be tested for its ability to 

perk, or absorb, water. Test holes are dug at randomly selected locations and 

filled with water. The variable of interest is the time in seconds that it takes for 
the water to drain from the hole. Use the MINITAB output given below to an- 

swer each of the following questions. 

(a) How many holes were dug at each site? 

(b) How many degrees of freedom would be associated with a pooled T test? 

(c) How many degrees of freedom did MINITAB use in conducting the means 
comparison? 

(d) Do you think that it would have been an acceptable approach to pool in 
this case? Explain. 

(e) Is the 7 test a right-, left-, or two-tailed test? 

(f) What is the P value of the test? 

(g) Can it be concluded that the average perk time differs at the a = .05 level? 
Could this conclusion be reached at the a = .10 level? 
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Two-Sample T Test and Confidence Interval 

lwo -semple i? "sor jsmue i vs. “Sate 2 

N Mean StDev SE Mean 

Site 1 ly 13) 5 00 iL. 58 Omsis 

Site 2 ils} VARS Ley 0.44 

Jo Cl iOm ith Siiee iL ay sais Qa (S235, W025) 

[Recs mu cLice =m site 2. (vey mot =): 

T=-1.99 P=0.058 DF=26 

In Example 10.5.2 a paired T test was run to compare the mean cpu times for 

two computing algorithms. It was thought that the old algorithm (X) runs 

slower than the newer algorithm (Y ). Thus, the research hypothesis is 

Hy: [ly > [by or Heine 0 

where D = X — Y. 

Use the following SAS output to answer each of the questions posed: 

PAIRED T TEST 

VARIABLE MEAN STANDARD STD ERROR We RReea i! 

DEVIATION OF MEAN 

DIFF 14.40900000 8.65276635 2.73624497 Hil 0.0005 

® ® © ® @ 

(a) Identify what each of the numbered values ()-©) represents, and com- 

pare these values to those found by hand earlier. 

(b) Based on these data, has H, been supported at the a = .05 level? at the 

a = .10 level? 
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e introduced the idea of regression in the theoretical sense in Chap. 5. There 

we assumed that both X and Y were random variables. We used the theoreti- 

cal densities to find the graph of jzy),, the mean value of Y given that X has assumed 

the value x. That is, we graphed the mean of Y as a function of x. 
In this chapter we study a similar problem, but with one important difference. 

We shall now assume that the variable X is not a random variable. Rather, it 1s a 

mathematical variable—an entity that can assume different values but whose value 

at the time under consideration is not determined by chance. To illustrate, suppose 

that we are developing a model to describe the temperature of the water off the con- 

tinental shelf. Since the temperature depends in part on the depth of the water, two 

variables are involved. These are X, the water depth, and Y, the water temperature. 

We are not interested in making inferences on the depth of the water. Rather, we 

want to describe the behavior of the water temperature under the assumption that 

the depth of the water is known precisely in advance. Even if the depth of the water 

is fixed at some value x, the water temperature will still vary due to other random 
influences. For example, if several temperature measurements are taken at various 

places each at a depth of x = 1000 feet, these measurements will vary in value. For 

this reason, we must admit that for a given x we are really dealing with a “‘condi- 

tional” random variable, which we denote by Y|x (Y given that X = x). This condi- 

tional random variable has a mean denoted by j1y\,. It is obvious that the average 

378 
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temperature of ocean water depends in part on the depth of the water; we do not ex- 
pect the average temperature at x = 1000 feet to be the same as that at x = 5000 
feet. That is, it is reasonable to assume that jy), is a function of x. We call the graph 
of this function the curve of regression of Y on X. Since we assume that the value of 

X is known in advance and that the value assumed by Y depends in part on the par- 

ticular value of X under consideration, Y is called the dependent or response vari- 
able. The variable X whose value is used to help predict the behavior of Y|x is called 
the independent or predictor variable or the regressor. 

Our immediate problem is to estimate the form of wy), based on data obtained 

at some selected values x), x, x3, ..., xX, of the predictor variable X. The actual val- 

ues used to develop the model are not overly important. If a functional relationship 

exists, it should become apparent regardless of which X values are used to discover 

it. However, to be of practical use, these values should represent a fairly wide range 

of possible values of the independent variable X. Sometimes the values used can 

be preselected. For example, in studying the relationship between water tempera- 

ture and water depth, we might know that our model is to be used to predict water 

temperature for depths from 1000 to 5000 feet. We can choose to measure water 

temperatures at any depths that we wish within this range. For example, we might 

take measurements at 1000-foot increments. In this way we preset our X values at 

x, = 1000, x, = 2000, x, = 3000, x, = 4000, and x; = 5000 feet. When the X val- 

ues used to develop the regression equation are preselected, the study is said to be 

controlled. Sometimes the X values used to develop the equation are chosen via 

some random mechanism. For example, in studying the effect of air quality on the 

pH of rainwater, we shall be forced to select a sample of days, record the air quality 

reading for the day, and measure the pH of the rainwater. In this case the values of 

X used to develop the regression equation are not preselected by the researcher. 

They do represent a set of typical X values. Studies of this sort are called observa- 

tional studies. Regardless of how the X values for study are selected, our random 

sample is properly viewed as taking the form 

(Cay Cee cae einer, Con YI Xa) | 

Note that the first member of each ordered pair denotes a value of the indepen- 

dent variable X; it is a real number. The second member of each pair is a random 

variable. 

In this chapter we learn to estimate the curve of regression of Y on X when the 

regression is considered to be linear. In this case the equation jy), is given by 

Linear Curve of Regression of Y on X 

by|x — Bo oe Bix 

where (3) and £, denote real numbers. 

Much of the theory behind the techniques presented depends on linear alge- 

bra. For this reason, we cannot prove some of the results based on material from this 

text. Where it is possible to verify results we shall do so. 
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11.1 MODELAND PARAMETER 
ESTIMATION 

Description of Model 

Recall from elementary algebra that the equation for a straight line is y = b + mx, 

where b denotes the y intercept and m denotes the slope of the line. In the simple lin- 

ear regression model 

by|x = Bo + Bix 

Bo denotes the intercept and B, the slope of the regression line. To estimate the 

regression line, we must find a logical way to estimate the theoretical parameters 

By and B,. To understand how this is done, we first rewrite our model in an alterna- 

tive form. 

In conducting a regression study, we shall be observing the variable X at n 

points x), X>, X3,..., X,. These points are assumed to be measured without error. 

When they are preselected by the experimenter, we say that the study is a controlled 

study; when they are observed at random, then the study is called an observational 

study. Both situations are handled in the same way mathematically. In either case 

we shall be concerned with the n random variables Y|x,, Y|x>, Y|x3...., Y|x,. Re- 
call that a random variable varies about its mean value. Let E; denote the random 

difference between Y|.x; and its mean, y|x,- That is, let 

E; a Y |x; a Ky\x, 

Solving this equation for Y|x,;, we conclude that 

Y |x; = ye, 0 E; 

In this expression it is assumed that the random difference E; has mean 0. Since we 
are assuming that the regression is linear, we can conclude that Heyiz, — Bo © Pix 
Substituting, we see that 

Y |x; a Bo aE By Xx; 7 E; 

It is customary to drop the conditional notation and to denote Y 

ternative way to express the simple linear regression model is 
x; by Y;. Thus an al- 

Simple Linear Regression Model 

i Bot Bites He (11.1) 

where £; is assumed to be a random variable with mean 0. 
Our data consist of a collection of n pairs (x;, y;), Where x; is an observed value 

of the variable X and y, is the corresponding observation for the random variable Y. 
The observed value of a random variable usually differs from its mean value by 
some random amount. This idea is expressed mathematically by writing 

yi = Bo > Big €j (11.2) 
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FIGURE 11.1 

(a) A scattergram of hypothetical data on depth of water (x) versus its temperature (y)—the data 

exhibits a linear trend, indicating that linear regression is reasonable; (b) theoretical and unknown 

line of regression passes through the data points; (c) e; is the distance from y, to its mean value, py,. 

In this equation ¢; denotes a realization of the random variable E; when Y;, takes on 

the value y,. 

In a regression study it is useful to plot the data points in the xy plane. Such a 

plot is called a scattergram. We do not expect these points to lie exactly in a straight 
line. However, if linear regression is applicable, then they should exhibit a linear 

trend. These theoretical ideas are illustrated in Fig. 11.1 in the context of our water 
temperature study. Note that since we do not know the true values for B, and B,, we 

shall not know the true value for ¢;, the vertical distance from the point (x;, y;) to the 

true regression line. 
Once B, and B, have been approximated from the available data, we can re- 

place these theoretical parameters by their estimated values in the regression model. 

Letting b, and b, denote the estimates for By and B,, respectively, the estimated line 

of regression takes the form 

fry |x SD NS 

Just as the data points do not all lie on the theoretical line of regression, they also do 

not all lie on this estimated regression line. If we let e; denote the vertical distance 

from a point (x;, y;) to the estimated regression line, then each data point satisfies 

the equation 

yj = Dy + D1 %; + @; 

The term e; is called the residual. Figure 11.2 illustrates this idea and points out the 

difference between ¢; and e; graphically. 
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FIGURE 11.2 

g; is the vertical distance from the point (x;, y,) to the true regression line fLy;, = Bo + B,x; e; is the 

vertical distance from the point (x;, y,) to the estimated regression line fy), = by + b,x. 

(%5, Y5) 

FIGURE 11.3 
The least-squares procedure minimizes the sum of the squares of the residuals e;. 

Least-Squares Estimation 

The parameters By and #, are estimated by the method of least squares. The rea- 

soning behind this method is quite simple. From the many straight lines that can be 

drawn through a scattergram we wish to pick the one that “best fits” the data. The 

fit is “best” in the sense that the values of b) and b, chosen are those that minimize 

the sum of the squares of the residuals. In this way we are essentially picking the 

line that comes as close as it can to all data points simultaneously. For example, if 

we consider the sample of five data points shown in Fig. 11.3, then the least-squares 

procedure selects that line which causes e7 + e3 + e} + ej + e2 to be as small as 
possible. 

The residuals are squared before summing for a very practical reason. Notice 

that the residual for a data point that lies above the estimated regression line is pos- 

itive; for a point that lies below the line the residual is negative. If the residuals 
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themselves are summed, the negative and positive values will counteract one an- 

other and the sum will always be 0. You are asked to verify this fact in Exercise 5. 

The general derivation of the least-squares estimates for By) and 8, depends on 

the minimization technique studied in elementary calculus. In particular, we shall 

express the sum of squares of the residuals as a function of the two variables by and 

b,, differentiate this function with respect to these variables, set these derivatives 

equal to 0, and solve the resulting equations for bp) and b,. Before presenting the der- 
ivation, let us note that the residual e; is sometimes called the residual error. For this 

reason the sum of squares of the residuals often is called the error sum of squares 
and is denoted by SSE (sum of squares error). Since the word “error” tends to sug- 

gest that a mistake has been made, this language is somewhat misleading. However, 

it is recognized widely, and so we shall adhere to its use. 
The sum of squares of the errors about the estimated regression line is given by 

SSE= Se2= ¥ (yj - by — bx)? 
=| i=] 

Differentiating SSE with respect to by and b,, we obtain 

OSSE Z 

OSSE i 
“ab, =-2 > (y; — Bo — By x;)x; 

We now set these partial derivatives equal to 0 and use the rules of summation to 

obtain the equations 

nby +b x= Sy, 
i=1 i=] 

n n A n 

Do SS x; + db, »S xi; = ») Xi Yj 
i=] i=1 i=1 

These equations are called the normal equations. They can be solved easily to ob- 

tain these estimates for By and B;: 

Least-squares estimates for By and B, 

Die 

Before illustrating these ideas, let us point out a very practical aspect of re- 

gression that we have not yet mentioned. Namely, even though the regression equa- 

tion actually estimates the mean value of Y for a given value x, it is used extensively 
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to estimate the value of Y itself. Common sense tells us that a logical choice for the 

predicted value of Y for a given value x is its estimated average value (4 y),. For ex- 

ample, if asked to predict the ocean water temperature at a depth of 1000 feet, a log- 

ical choice is the average temperature at this depth. To emphasize this use of the 

estimated regression line, we rewrite it in the form 

Example 11.1.1. Since humidity influences evaporation, the solvent balance of water- 

reducible paints during sprayout is affected by humidity. A controlled study is conducted 

to examine the relationship between humidity (X) and the extent of solvent evaporation 

(Y). Knowledge of this relationship will be useful in that it will allow the painter to ad- 

just his or her spraygun setting to account for humidity. These data are obtained: 

(x) (y) 
Relative Solvent 

humidity, evaporation, 

Observation (%) (%) wt 

1 85.3 EO) 

2 29.7 siya 

3 30.8 12S 

4 58.8 8.4 

5 61.4 9.3 

6 ales 8.7 

7 74.4 6.4 

8 76.7 8.5 

9 LOW 7.8 

10 ee) 9.1 

1] 46.4 8.2 

12 28.9 122 

13 28.1 11.9 

14 39.1 9.6 

KS 46.8 10.9 

16 48.5 9.6 

17 59.3 10.1 

18 70.0 8.1 

19 70.0 6.8 

20 74.4 8.9 

21 eon Tail 

22 58.1 8.5 

23, 44.6 8.9 

24 33.4 10.4 

25 28.6 11.1 

Summary statistics for these data are 

n n=2 Sx = 1314.90 Dy = 235.70 

>? = 76,308.53 Dy? = 2286.07 > xy = 11,824.44 

To estimate the simple linear regression line, we estimate the slope B, and intercept Bo. 
These estimates are 

OO 
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FIGURE 11.4 
A graph of the estimated line of regression of Y, the extent of evaporation on X, the relative humidity. 

nx |(Sx)(39)] 
ee ( Ss oi 

2 25( 11,824.44) — [ (1314.90) (235.70) ] 

XN(WO308.53)) = (1314.90)? 

= — (8 

Bo Sy ye Oe 

= 9.43 — (—.08) (52.60) 

= 13.64 

A 

esi 

Hence the estimated regression equation is 

Byin — 9 — 13.64 08x 

The graph of this equation is shown in Fig. 11.4. To predict the extent of solvent evapo- 

ration when the relative humidity is 50%, we substitute the value 50 for x in the equation 

y = 13.64 — .08x 

to obtain y = 13.64 — .08(50) = 9.64. That is, when the relative humidity is 50%, we 

predict that 9.64% of the solvent, by weight, will be lost due to evaporation. 

In modern statistical analysis the computer is routinely used. There is pedagogical 

merit in going through the methods of calculations as we do in this text. However, in 
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practice, we recommend the use of modern statistical software packages. Some of 

the major packages are SAS (Statistical Analysis System), MINITAB, BMDPC (Bio- 

medical Computer Programs) and SPSS (Statistical Package for the Social Sciences). 

We will present here some typical outputs using SAS. It would be helpful to compare 

the calculations with the SAS output. Note that the estimated regression line slope 

and intercept are given at () and @) respectively. We will refer to @) and @) in 

Example 11.3.1. 

ESTIMATED LINE 

OF REGRESSION 

GENERAL LINEAR MODELS PROCEDURE 

DEPENDENT VARIABLE: Y 

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE 

MODEL I 45.8296608 | 45.8296608 1 58.36 

ERROR 23 18.06073919 0.78524953 PR>F 

CORRECTED TOTAL 24 63.89040000 0.0001 

R-SQUARE CV. ROOT MSE Y MEAN 
0.717317 9.3991 0.88614306 9.42800000 

SOURCE DF TYPE ISS F VALUE PR>F 
X 1 45.82966081 58.36 0.0001 

SOURCE DF TYPE III SS F VALUE PR>F 
x 1 45.82966081 58.36 0.0001 

T FOR HO: STD ERROR OF 
PARAMETER ESTIMATE PARAMETER = 0 PR > !T! ESTIMATE 
INTERCEPT 13.63886687(2) 23.56 0.0001 0.57898306 
x —0.08006059(1) —7.64G) 0.00014) 0.01047971 

Recall from elementary calculus that the slope of a line gives the change in y 

for a unit change in x. If the slope is positive, then as x increases so does y; as x de- 

creases, so does y. If the slope is negative, things operate in reverse. An increase in 

x signals a decrease in y, whereas a decrease in x yields an increase in y. In the pre- 

vious example the slope is —.08. If the relative humidity increases by | percentage 

point, then the mean solvent evaporation decreases by .08. If the relative humidity 

decreases by 3 percentage points, then the mean solvent evaporation should increase 

by 3(.08) = .24. 

We end this section with a word of caution. A given data set gives evidence of 

linearity only over those values of X spanned by the data set. For values of X beyond 

those covered there is no evidence of linearity. Thus it is dangerous to use an esti- 

mated regression line to predict values of Y corresponding to values of X that lie far 
beyond the range of the X values included in the data set. 

11.2 PROPERTIES OF LEAST-SQUARES 
ESTIMATORS 

For a given set of observations on (X, Y) the method of least squares yields estimates 

by and b, for By and f,, the intercept and slope of the true regression line, respec- 
tively. Since the values obtained for by and b, vary from data set to data set, it is 
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evident that they are actually observed values of random variables, which we denote 
by 6, and B,. These random variables are estimators for Bo and f, and are given by 

Least-squares estimators for By and B, 

In this section we derive the mathematical properties of these estimators. Knowl- 
edge of these properties will allow us to find confidence intervals on Bo, B:, My|x> 
and Y|x as well as to test hypotheses on the values of Bo and B,. 

Recall that one way to express the simple linear regression model is 

SN OYy a HERR Mel 

where E; is assumed to be a random variable with mean 0. To determine the proper- 

ties of By and B,, we must make certain other assumptions concerning E,. In partic- 

ular, we assume that E,, E;, E3,...,E, is arandom sample from a distribution that 

is normal with mean 0 and variance a”. We express this by writing 

Ee N (Oro) 

Note that this implies that the random variables E,, E>, E3,..., E,, are independent. 

Since our model expresses Y; as a linear function of E;, the assumptions concerning 

E,, E>, E3,..., E,, impose some restrictions on the random variables Y,, Y>, Y3,..., 

Y,. Namely, we are assuming the following: 

Model assumptions: Simple linear regression 

1. The random variables Y; are independently and normally distributed. 

2. The mean of Y; is By + B,x;- 

3. The variance of Y; is a. 

We express these assumptions by writing 

1 (EH oe free te) 

Notice that a is a measure of the variability of the responses about the true regres- 

sion line. These assumptions are demonstrated in Fig. 11.5. Note that the mean val- 

ues of Y;, Y>, Y3,..., Y, may differ but that each is assumed to have the same 

variance. Thus the associated normal curves may differ in location, but all of them 

have the same shape. 
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Distribution of YIx, 

Distribution of Ylx, 

Fyix = B, +B, 

FIGURE 11.5 

For each i, Y; is normally distributed with mean fry), = Bo + Bx; and variance ay 

Before using the assumptions just made to determine the distribution of By 

and B,, we pause to state some results that will make our work simpler. These re- 

sults can be verified easily by applying the rules governing the behavior of the sum- 
mation symbol. 

Some properties of summation 

S (4) %) =0 
i=] 

3 (4-2 (%,-%) = Sy -DY, 
i=1 i=1 

3 (4 -¥)(%),-¥) = (San Sta: vi) 
im i=l i=1 i=] 

Distribution of B, 

To develop confidence intervals or test hypotheses or the slope of a regression line, 
we need to know the distribution of B,, the estimator for this slope. We shall show 
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that the model assumptions on Y, ensure the B | 1S normally distributed with 
E[B,] = B, and Var B, = 0? />"_, (x, — x). Notice that this implies that the least- 
Squares estimator for B, is an unbiased estimator for this parameter. 

To derive the distribution of B,, we first use properties 2, 3, and 5 above to 
rewrite the estimators as shown: 

Bie n n 2 

> peed X; 
i=1 i=1 

2 (4 — (KV) 

> (GaaaX). 
i=1 

SiGe x) Y; 

= t= 

»> (ea) a 
i=1 

Letting 

CUnaet) 
Co FG (ily? eee 

SS Cae 
1=1 

we have expressed B, in the form 

BRC ie lon oc), 

That is, we have expressed B, as a linear function of the independent normal ran- 

dom variables Y,, Y5,..., Y,. Since any linear function of independent normal ran- 

dom variables is normally distributed (see Exercise 41, Chap. 7), we can conclude 
that B, is normal. Using the rules for expectation, we see that 

EA By RBC hy teed oe eC, Yel 

=E (Cr eis (Cees Woes ee pee a 

& (x; — HELY| 
n 

> % — x)? 
i=1 
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For each i, E[Y;] = By + B,x;. Substituting, we see that 

n 

>, Gp) bo = Beni ae 
_ i=l i=1 

S (x, —*)? 
i=l 

By summation properties | and 4, 

1h ala ice 8 

This result shows that B, is an unbiased estimator for B,. We apply the rules of vari- 

ance to find Var B, as follows: 

Var B, = Var| — 

> Os cate Es 
i=1 

] 2 n 2 

=| Var Sg as 
tas — x)? i=1 

i=] 

\ 2 

ll S Var (x7= x) Y, 

> (x; — x)? | = 

1 2 n 

=| =———_} ¥ (4, — 3)? Var Y, 
Dena ta 
i=l 

Since Var Y; is assumed to be a for each i, we can substitute to obtain 

9 

| men 

1 

> (x,-x)2 i=1 

i=1 

Oo 

Var B, = (Xpek ore 
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These results are summarized by writing 

Distribution of B, 

a. N(Bi o/'§ (3; oan 

Distribution of By 

Confidence intervals on the intercept of the regression line and hypothesis tests on 

this parameter are based on knowledge of the distribution of Bo, the estimator for 

this intercept. We shall show that this estimator is normally distributed with 
E[ Bo] = Bp and Var By = 0? 27_,x?/n=?_, (x; — x). Once again, the least-squares 
estimator for Bp is an unbiased estimator for this parameter. 

To derive the distribution of the estimator Bp, we note first that it can be 

shown that Y and B, are independent. (See Exercise 14.) Since 

By = Y — Bix 

By is a linear function of independent normal random variables and therefore is 
itself normally distributed. Using the rules of expectation, we see that 

E[ Bo] = ELY — B,x] 

HIG a2 NSPS oe TAA e 

= (Eye 2 ole Ee Ed Bi 

= [(Bo + Bix) + (Bo + Bix2) + * +> + (Bo + BixX,)\/n — XE[ Bi] 

= (v8 Hs Bid «fr — xE[B)] 

= Bo + xB, — xB; 

= 18h) 

This result shows that By is an unbiased estimator for By. The variance of Bo is 

given by 

Var By = Vary — Bix) 

= Var Y + x? Var B, 

Note that 

Var (Y) = Var(Y, + Y2 +--- + Y,)/n 

ee VaryqriV arg ae Vary, 
2 n- 

i) 
on 

ils n 



392 INTRODUCTION TO PROBABILITY AND STATISTICS 

By substituting, we see that 

To summarize, we have shown that 

Distribution of By 

n 

> x 
By ~ N 8. = 

Estimator of a? 

To test hypotheses and construct confidence intervals on various parameters, we 

must estimate the unknown variance o*. Recall that 7? denotes the variability of 

each of the random variables Y; about the true regression line. To estimate this vari- 

ability, we use information concerning the variability of the data points about the 
fitted regression line. 

Since the residual measures the unexplained or random deviation of a data 

point from the estimated line of regression, the residuals are used to estimate a’. 

That is, our estimate makes use of SSE, the sum of the squares of the residuals. In 
particular, we shall estimate a? by 

Estimator for o? 

S? = 6? = SSE/(n — 2) 

We divide SSE by n — 2 so that the estimate will be unbiased for a7. (See Exer- 
cise 13.) 
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Summary of Theoretical Results 

Before closing this section, let us introduce some notation that will make the results 

obtained here easier to remember. Namely, we shall denote 2?_, (x; — x)? by S,,. The 

symbol S,,, will denote 2?7_,(y; — y)? or 27_, (Y; — Y ). Whether we are dealing with 

the random variables Y; or their observed values y; should be clear from the context 

in which the symbol is used. Similarly, S,., will denote either 2?_ ,(x; — x)Q; — y) 

or D%_,(x, — x)(¥, — Y) and SSE will denote 2%,(y, — by — b,x)? or 
>"_(Y; — By — B,x;)*. This notation can be used to rewrite the error sum of squares 

as follows: 

SSE = S (Y; = Bo cs Bix)? 

Liesl 

= SS Cha Y sie Bitte Bik 

i=1 

SY, — ¥) — By, - DP 
i=1 

II 

SO SO SCR OE OG AB OSC ay 
Al i=1 i=] 

SN, Oe Ee 

Note that 

DiGi) Creare 
i=1 = xy 

S xX 
B, = n 

Digan): 
pal 

By substituting, we see that 

Se 
SSE = Sy — 2BiSzy + Bry Sxa 

a Sy a B,Syy 

Let us summarize the theoretical results that we have obtained in this section. 

We have shown that 

DiaG,— x)= Se 
SDH PSS, 

5, nO: ONG = Wes 

. B, = S,,/S,, is an unbiased estimator for f). This estimator is normally distrib- 

uted with variance 0% = 07/S,.. 

5. By = Y — B,x is an unbiased estimator for Bo. This estimator is normally dis- 

tributed with variance 0}, = (27_)x707)/nS,.. 

6. S2 = SSE/(n — 2) is an unbiased estimator for UF. 

awn = 
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11.3. CONFIDENCE INTERVAL ESTIMATION 
AND HYPOTHESIS TESTING 

In the previous sections we considered point estimation procedures for the parame- 

ters associated with the simple linear regression model. We showed that the estima- 

tors given are unbiased. With this information alone, we can estimate a regression 

line from a sample of paired observations (x;, y,) and predict the value of Y or esti- 

mate the mean value of Y for a given value x. As in the past, we do not end our study 
with point estimation. We continue by developing pertinent confidence intervals and 

by learning how to test hypotheses on the model parameters. In this section we con- 

sider these topics: 

1. Hypothesis testing and confidence interval estimation on the slope of the 
regression line 

2. Hypothesis testing and confidence interval estimation on the intercept of the 
regression line 

3. Confidence interval estimation on the mean value of Y for a given value x 

= . Prediction interval estimation on the value of Y itself for a given value x 

We consider these ideas in the order listed. 

Inferences about Slope 

One of the first questions that a scientist wants to answer is, “Is the regression ‘sig- 
nificant’?” The term “significant regression” as used here means that there is suffi- 
cient statistical evidence to conclude that the slope of the true regression line is not 
zero. Note that if 8, = 0, then our regression model is 

Y; = Bo ap E; 

This implies that the variation in Y is due solely to random fluctuations about the 
line Y = Bo. If B,; # 0, then at least some of the variation in Y is explained by the 
fact that Y is being observed at different x values. In the latter case our regression 
model is helpful in estimating jy), and predicting Y| x. 

To develop a test statistic for testing Hp: B, = 0, we reconsider B,, the point 
estimator for B,. Recall that 

B, ~ N(B;, o7/S,.) 

By standardizing, we can conclude that the random variable 

(B, = B,)/(a/ V oe) 

is standard normal. It can be shown that the random variable (n — 2)S2/¢2 = 
SSE/o* has a chi-squared distribution with n — 2 degrees of freedom and that B, 
and S$? are independent [19]. By applying Definition 8.2.1, the definition of a T ran- 
dom variable, we can conclude that the random variable 

(B, — B,)/(a/ Vines) oe B, — B, 

V (n= 2)S%o2(n = 2) SIy/5_ 

has a T distribution with n — 2 degrees of freedom. If 6, = 0, then this random vari- 
able can be used to test for significant regression: 
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Test Statistic Hy: B, = 0 

This statistic serves as the test statistic for testing any of the usual three hypotheses: 

Hy: B, = 0 Hp: B, = 0 Ho: B, = 9 

H,: B, >0 Ho b= 0 H,: B, #0 
Right-tailed test Left-tailed test Two-tailed test 

The null hypothesis is rejected for large positive values of the test statistic in con- 

ducting a right-tailed test; large negative values lead to rejection of Hp in a left- 

tailed test. In a two-tailed test Ho is rejected for large values in either the positive or 

negative direction. The three cases for the regression line slope of B, > 0, B, < 0, 

and 8, = 0 are illustrated in Fig. 11.6. 

One other point needs to be made. We have considered the null value to 

be O because this is the value most often encountered in practice. We can test 

Ho: B, = BY, where BY denotes any hypothesized value for the slope of the regres- 

sion line. The test statistic for this generalized null hypothesis is 

Test Statistic for Inferences on the Slope 

To. (B, — BY) 

7 SINS 

Positive slope (8,> 0) Negative slope (8, < 0) 

Wf = By + Bix 

Zero slope (8,= 0) 

FIGURE 11.6 et 

Relative positive, negative, and zero slopes for a linear regression line. 
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Example 11.3.1. In Example 11.1.1 we estimated the regression equation of ¥, the 

extent of solvent evaporation while spray painting, on X, the relative humidity, to be 

Ay|x = 13.64 — .08% 

We now determine whether the regression is significant. That is, we test 

Ho: B, = 0 

H;: B, #0 

Summary statistics for the data given previously are 

n= 25 >x = 1314.90 Dy = 235.70 

Dx? = 76,308.53 dy? = 2286.07 xy = 11,824.44 

For these data 

Sy. = nde + (S21) |/n 

= [25(76,308.53) — (1314.90)7]/25 

= 7150.05 

S\, = indy? - (d»)'|/n 

= [25(2286.07) — (235.70)7]/25 

= 63.89 

Sx = nDxy = Vedy]/n 

= [25(11,824.44) — (1314.90) (235.70)]/25 

—572.44 

Using these data, we obtain 

SSE ='S,,. — bi Sus 
= 63.89 — (—.08)(—572.44) 
= 18.09 

Hence 

s? = SSE/(n — 2) 

= 18.09/23 

= ,79 

The observed value of the 7, _ 5 = 7}, test statistic is 

b, 

s/ V hie 

—{0hs 

V .79/V/7150.05 

m= 7.02 
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From Table VI of App. A we see that P[T); = —7.62] < .000S. Since this is a two- 
tailed test, P < 2(.0005) = .001. We can reject H, and conclude that the slope of the 
true regression line is not zero. That is, knowledge of the x value does help in esti- 
mating #y), and predicting Y|x. Refer also to the SAS output following Example 
11.1.1. The T statistic for testing B, = 0 is given at @), and the corresponding P value 
is given at ®. To derive the bounds for a confidence interval on the slope, note that 
the random variable 

_ BB, 
= = 

Wav Ss. 

is of the form 

Estimator — parameter 

D 

where D is the estimator for the standard deviation of B,. This is the same algebraic 

structure encountered several times in the past. (See Secs. 9.3 and 10.3.) The resulting 
confidence interval for 8, assumes the familiar form 

Estimator + probability point - D 

In this case the confidence interval is 

Confidence interval on f,, the slope of the regression line 

By 1,5) VS 

where f,,/2 is the appropriate point based on the 7, _ 5 distribution. 

Inferences about Intercept 

Hypothesis tests on Bo, the intercept of the true regression line, are conducted by 

noting that since 

Bo — N(Bo, BS eee) 

the random variable 

Bo — Bo 

is standard normal. It can be shown that By and S are independent. Thus the ran- 

dom variable 
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teas se sa ema 
— Vn —DSo%(n—2) (VE) 

V nsx 

follows a T distribution with n — 2 degrees of freedom. 

The test statistic for testing Ho: By = 01s 

Test Statistic Hy: By = 0 

Te ee fe (S¥2z) 

V nS, 

Confidence intervals on the value of By are found as follows: 

Confidence interval on By, the intercept of the regression line 

SND ee 
Bo = tera 

V nS 

where ¢,/> is the appropriate point based on the 7, _ , distribution. 

The next example illustrates the use of these confidence intervals. 

Example 11.3.2. We continue the analysis of the data on the extent of solvent evap- 

oration during spray painting and relative humidity by finding confidence intervals on 

Bo and B,. These summary statistics, found earlier, are needed: 

st =.79 Dx? = 76,308.53 by = 13.64 
Sx = 7150.05 b, = —.08 n= 25 

A 99% confidence interval on the slope of the regression line is given by 

bit tooss/VSq~ or = —.08 + 2.807°/.79/1/7150.05 

The point fo95 1s based on the 7, 5 = T; distribution. Completing the calculations, we 

see that we can be 99% confident that the slope of the true regression line lies in the 
interval [—.109, —.051]. Note that this interval does not contain 0. This is expected, 
since we rejected Hy: B, = 0 in our last example. 

A 90% confidence interval on the intercept of the regression line is given by 

by + toss Vax?/ VnS,, or 13.64 + 1.71479 76,308.53 //25(7150.05) 

We can be 90% confident that the true regression line crosses the y axis between the 
points y = 12.64 and y = 14.64. 

Inferences about Estimated Mean 

In addition to finding a point estimate for jzy),, the mean value of Y for a given x 
value, it is useful to be able to obtain a confidence interval on this parameter. To do 
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So, we consider the distribution of the point estimator for /y|, by rewriting this es- 
timator in the form 

fy}. = Bot Br. 

= W ie B,x ie Bx 

Y + B(x — x) 

Since Y and B, are both normally distributed and independent, fy, is normal. In 
Exercise 12 we found that this estimator is unbiased for /y|,- The only other infor- 
mation needed is its variance. Using the rules for variance, we see that 

Var (fy,) = War[Y + B,(x — x)] 
= Var ¥ + (x — x)?Var B, 

ai Mar tp) 

eae 
= Lim + a 

XX 

To summarize, we can conclude that 

Distribution of My|x 

yo 
fyi Wel Un aa w= 9) 

By the standardization process it can be shown that 

pov Myix 

Me Vee —ree 
Op eee 

n Se 

is standard normal. Dividing by Vin — 2)S7/a7(n — 2) = S/o, we find that the 

random variable 

(igs Myix 

S| ee emt) a 
nN Se 

follows a T distribution with n — 2 degrees of freedom. Since the random variable 

- is of the same algebraic form as those encountered earlier, confidence intervals on 
/4y|, are found using this formula: 

Confidence interval on py),, the mean value of Y when X = x 

| Sadeece ee: 

by = Lops ees 

n Oy 

where f,,,7 18 the appropriate point based on the 7), _ , distribution. 
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Upper confidence limit for 

Lower 

confidence 

limit for 

Myix 
Estimated 

regression 

line 

0 

FIGURE 11.7 

95% confidence band on py),. 

This formula can be used to construct what is called a confidence band about 

the estimated regression line. To do so, one simply constructs 100(1 — a)% confi- 

dence intervals at several selected points and then joins the endpoints of these in- 

tervals with a smooth curve. The true regression line should lie within the band. 
Figure 11.7 illustrates this idea. 

Inferences about a Single Predicted Value 

One of the primary uses of the estimated regression line is to predict the value of Y 

itself for a specified value x. We know that the point estimator for Y|x is the same 
as the point estimator for wy),, namely, 

Yix= fy|x = By + Bix 

Note that Y|x is a random variable, not an unknown constant. When we ask for a 
“prediction interval” on Y|x, we are asking for two statistics L; and L, with the 
property that 

P[L, = YixsL,]=1-a 

That is, we are asking for two statistics that will trap the observed value of Y|x be- 
tween them (1 — a@)100% of the time. To find these statistics, we use the guideline 
for constructing a confidence interval given in Chap. 7. This guideline requires that 
we find a random variable whose expression involves Y|x and whose distribution 
we know. Recall that 
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Z 1 x — x)? 
My\x ~ Np E os we s Jo 

n § 
XX 

and that, via our model assumptions 

Y|x ~ N(My|, 07) 
It can be shown that the random variable Y|x — Y|x is normally distributed [19]. 
Using the rules for expectation, we obtain 

E(¥|x — Y|x] = E[¥ |x] — ELY|.x] 

~ Mylx ~ By|x = 0 

Similarly, the rules for variance are used to show that 

Var [Y |x — ¥|x] = Var ¥ |x + Var Y|x 
ae Xe 5 

= | — + ——— “ 2 F 5 lo IPG 
XX 

ie Liars (XY | ey =|i+4+ 5. le 

In conclusion, it can be seen that 

XX 

(Y|x—Y|x) ~ 0 c +14 G—¥),) 
n S 

In this case standardization and division by S/o results in the T random variable 

¥|x—Y|x 

5/1 ,1, @=» 
n wee 

The algebraic structure of this random variable parallels that seen earlier. For this 

reason, we can conclude that a 100(1 — a@)% “prediction interval” on Y|x is given by 

Prediction interval on Y|x, the value of Y when X = x 

i mee 
Y|x + taS (eee 

n ples 

where f£,/7 is the appropriate point based on the 7, _ 5 distribution. 

By evaluating the prediction limits at several x values, we can construct a pre- 

diction band on Y|x. Note that the confidence limits for My), and Y |x are similar. 

The difference is that the former entails the term 
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Estimated line of regression 

90% prediction band on Y|x 

16.5 LS 

90% confidence band on 4 y,, 

— x 
1.0 1.1 1.2 1.3 1.4 bees 1.6 1.7 1.8 1) 2.0 

FIGURE 11.8 

Relative positions of a 90% confidence band on jy), and a 90% prediction band on Y|.x. 

ne i (x - x)? 

n ie 

whereas the corresponding term in the latter is a little larger, namely, 

a aimee 
n ty 

This is to be expected, since we should be able to estimate an average response 

more precisely than we can predict an individual observation. Graphically, the con- 
fidence band on pry), will be contained in the corresponding prediction band for Y|.x. 
This idea is illustrated in Fig. 11.8. 

The next example should demonstrate clearly the difference between these 
two types of intervals. 

Example 11.3.3. An investigation is conducted to study gasoline mileage in auto- 
mobiles when used exclusively for urban driving. Ten properly tuned and serviced 
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automobiles manufactured during the same year are used in the study. Each automo- 
bile is driven for 1000 miles, and the average number of miles per gallon (mi/gal) ob- 
tained (Y) and the weight of the car in tons (X) are recorded. These data result: 

Car number 1 2 3 4 5 6 7 8 9 10 

Miles per 

gallon (y) IG OTR LC SMG OAY SIGS MET S:8 ann 1S:5unnt Se GA 15.90) 18:3 
Weight in 

tons (x) ls 190 170 i180 130 205 140 180 IRs i140 

Summary statistics for these data are 

n= 10 D286] — 290) 408s 581s = 2.345 
SSS GS 17.0.0) Dy = 282 405 ae 10.46 yy 

> Lyi Y, 
(Ci iieM eh aces conan) 

n> x2 — (Sx) 

= 10(282.405) — (16.75) (170.0) 

tO (2S208 10) een CLOn ie 

= —4.03 
Po = 09 = y — Bix 

= 17/0 = (S40 Co) 

ee he) 

The estimated line of regression is 

lone = bo + b,x = 23.75 — 4.03x 

The reader can verify that Hj: 8B, = 0 can be rejected with P < .0001. Thus the re- 

gression is significant; the model is useful in predicting gasoline mileage based on au- 

tomobile weight. Suppose that we are interested in all cars weighing 1.7 tons. The 

estimated average mileage for these cars is 

fiyjx=17 = 23.75 — 4.03(1.7) = 16.899 mi/gal 

This estimate is not very useful without some idea of its accuracy. To pinpoint the ac- 

curacy, we construct a 90% confidence interval on fiy), = ;7. To do so, we must com- 

pute SSE and s? for these data: 

SSE = S,y — b,Syy 
= 10.46 — (—4.03)(—2.345) 
= 1.01 

s*? = SSE/(n — 2) = 1.01/8 = .126 

A 90% confidence interval on fy), is 

— = \2 

fy ix 2 bo/2S ih ie (Cre #) 

n See 
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or 

16.899 + 136126, | 4 (Uelisel O73) 
581 

16:899 4.21 

We can be 90% confident that the average gas mileage for cars weighing 1.7 tons lies 

between 16.689 and 17.109 mi/gal. 
To predict the gas mileage for a single car weighing 1.7 tons, we use the interval 

Sl Ng Gel pee 
n Se 

For these data this interval is 

16.899 + 186.126 1 oe 

NOrS9OFsn 69 

We can be 90% confident that the gas mileage for any individual automobile weigh- 

ing 1.7 tons lies between 16.209 and 17.589 mi/gal. As expected, the prediction inter- 

val used to predict the gas mileage for a single auto is wider than that used to predict 

the average mileage for a group of automobiles. 

We should note here that the width of a confidence or prediction band is a 

function of x. To see why this is true, consider the formula for constructing a pre- 

diction interval of Y|x. The width of the interval is determined in part by the term 

n Ate 

It is evident that this term is smallest when x = x. Hence we can predict the value 

of Y more precisely for values of x that are near the average value x. This fact is ev- 

ident graphically in the confidence bands shown in Fig. 11.8. In this figure the 
bands are narrowest at x = 1.675. 

11.4 REPEATED MEASUREMENTS AND 
LACK OF FIT 

When we fit a straight line to a set of paired observations via the least-squares pro- 
cedure, we are assuming at the outset that linear regression is appropriate. The rea- 
sonableness of this assumption can be checked visually via a scattergram. 
Unfortunately, two people can view the same scattergram differently; it might ap- 
pear to exhibit a linear trend to one but not to the other! We need an analytic 
method to test the appropriateness of the linear regression model. In this section we 
present a statistical method for detecting model “lack of fit.” The method is based 
on an examination of the residuals—the differences between the observed values 
of the dependent variable Y and the values predicted for Y via the estimated re- 
gression line. 
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Table 11.1 

Value of x 

xX} X2 X3 Xx; 

Yu Y, Y3) Yu 
Yio Yo Y3 Yo 

Yi Yy3 ¥33 Yi3 

Vv Yo, Mayne My. 

The residual or error sum of squares, SSE, may be large either because Y ex- 

hibits a high variability naturally or because the assumed model is inappropriate. 

The method used to detect model lack of fit entails partitioning SSE into two com- 
ponents attributable to these sources of error. The portion attributable to natural 

variability in Y is called pure or experimental error; that attributable to inappropri- 
ateness of the model is called error due to lack of fit. If the model is appropriate, 
then logically we expect most of SSE to be pure error; if the model is inappropriate, 
then a large portion of SSE should be attributed to lack of fit. Our test is to deter- 

mine the portion of SSE due to lack of fit and to reject our model if this appears to 

be too large to have occurred by chance. 
To measure pure error, we must have available what are called repeated or 

replicated measurements. That is, at one or more points x; (i = 1, 2,...,k) we must 
have at least two observations on Y. Let ¥;; denote the jth observation on Y at point 

x;(j = 1,2,...,n,). Using this notation, the data layout for our experiment is as 

shown in Table 11.1. Note that the total number of observations is 

n=n,+nt+nt+---+nH= dn; 

Recall that we measure the natural variability in a random variable by considering 

its deviation about its mean. For each i = 1, 2, 3,..., k, we can view Yj, Yj2, 

Yj3,..-, Yin, aS arandom sample size n; from the distribution of the random variable 
l 

Y|x,. An unbiased estimator for jy), is the sample mean Y, where 

The statistic 

measures the natural variability of Y at the point x; and is called an internal sum of 

squares. 
To obtain a measure of the natural variability in Y over all x values, we pool 

the k internal sums of squares to form the statistic 
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This statistic is called the sum of squares due to pure error, denoted by SSE... It is 

left to the reader to argue that the random variable 

SSE, ./a* 

follows a chi-squared distribution with n — k degrees of freedom (see Exercise 40). 

The portion of SSE due to lack of fit is denoted by SSE); It is found by sub- 

traction. That is, 

SSE); = SSE — SSE, 

Since SSE/o? has a chi-squared distribution with n — 2 degrees of freedom, it is rea- 

sonable to conclude that SSE, ;/a-* follows a chi-squared distribution with (n — 2) — 

(n — k) = k — 2 degrees of freedom. 

To detect lack of fit, we test 

Hy): the linear regression model is appropriate 

H,: the linear regression model is not appropriate 

The test statistic used is the ratio 

Testing for Lack of Fit 

Tok cel (hime, Ore aes Uncen 
eg: Te ees — 

ruta ith SSB pal Gh ee) O-© ESSE ad (rasa to) 

This statistic follows an F distribution with k — 2 and n — k degrees of freedom. 

Note that a poor fit will be reflected in an inflated value for SSE,; and a large 

F value. We reject Ho for values of the F ratio that are too large to have occurred by 
chance. 

The test for lack of fit is illustrated in the next example. 

Example 11.4.1. Consider these data on X, the temperature, in degrees centigrade 
(°C), at which a chemical reaction is conducted, and Y, the percentage yield obtained: 

Value of X 

30 40 50 60 70 

S39 Rey) 18.5 AAI 15.0 

14.0 16.0 20.0 18.1 15.6 

14.6 17.0 all 18.5 16.5 

For these data k = 5, n; = 3 fori = 1, 2, 3, 4,5, and 

5 
n=S\ n; = 15 

i=| 
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The internal sum of squares for error at x = 30 is 

3 3 

YOu - Ivy? = Ory — 14.1)? = 42 

j=l i 

The sum of squares for pure error is found by computing the internal error sum of 
squares for each x value and then summing these values. That is, 

For these data S,,, = 66.437, S,, = 154, and b, = .051. The total error sum of squares, 
SSE, is given by 

SSE = S,, — b,S,, = 58.583 

The sum of squares for lack of fit is found by subtraction. It is given by 

SSE,; = SSE — SSE,. 
= 58.583 — 6.453 = 52.13 

The observed value of the F, _ 5, _, = F, jo Statistic used to test 

A: the linear regression model is appropriate 

H,;: the linear regression model is not appropriate 

1S 

p= SSEw/(k 2) 
SSE,./(n = fe) 

52.13/3 
~ 6.453/10 
= 26.928 

Based on the F; ;9 distribution, we can reject H) with P < 05 (fos= 3.708) 
(Table LX of App. A). 

There is evidence that a linear regression model is not appropriate. 

A word of warning is in order. The least-squares procedure can be used to fit 

a straight line to any set of paired observations. This line can be used to predict the 

value of Y for a given x value. However, these predictions probably will be useless 

if the linear regression model is inappropriate. It is your responsibility as a re- 

searcher to find a satisfactory model. Some techniques for choosing an alternative 

model are considered in Chap. 12. 

11.5 RESIDUAL ANALYSIS 

Recall that to construct confidence intervals on Bo, B;, and jy), and prediction in- 

tervals on Y|x or to test hypotheses concerning B, and B,, we need to make some 

model assumptions. When the simple linear regression model is written as 
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Simple Linear Regression Model 

Y¥; = Bo + Bix, + E; 

then the model assumptions are expressed as assumptions concerning the behavior 

of the random variables E;, E>, ... , E,. In particular, it is assumed that these ran- 

dom variables are independent, normally distributed random variables with mean 0 

and common variance o”. Before a fitted regression line is used to make predictions 

in practice, an effort should be made to check the validity of these assumptions. In 

this section we present some graphical techniques that can be used to do so. These 

procedures utilize the residuals, whose behavior under ideal conditions should mir- 

ror that of the random variables E,. 

Residual Plots 

Recall that e;, the ith residual, is the vertical distance from the ith data point to the 

fitted regression line. Therefore 

e; = y; — [bo + b,x; ] 

For a given value x; the predicted response is found by substitution into the re- 

gression equation. That is, ); = bp + b,x;. It can be seen that the ith residual can be 

written as 

Cia) ie ott 

The ith residual is the difference between the ith observed response and its predicted 

value. To check the model assumptions, we construct residual plots. A residual plot 

is a scattergram of the points (x;, e;). In such a plot we are plotting the regressor 

value (horizontal axis) versus the residual value (vertical axis). A residual plot can 

be used to help answer two questions: 

1. Do the model assumptions underlying simple linear regression appear to be 

met? 

2. If the model assumptions do not appear to be met, then which assumptions fail? 

Since residual plots are useful in pinpointing or diagnosing problems that might ex- 

ist, they are sometimes referred to as “diagnostic tools.” 

Figure 11.9(a) shows a plot of a data set for which simple linear regression is 

appropriate. The data points exhibit an upward linear trend; they cluster tightly 

about the estimated line of regression; and the spread of the data points at each 

value of the regressor is about the same. The residual plot associated with an ideal 

data set of this sort is shown in Fig. 11.9(b). Notice that the residual plot depicts a 

set of points that scatter randomly about 0. The fact that these points vary about 0 is 

to be expected, since it has been shown that the average value of the residuals is al- 

ways 0. However, notice also that the spread of the residuals is about the same 

throughout the plot. This is expected whenever the assumption of a common vari- 
ance @° is valid. 
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y (response) 

Xx (regressor) 

e (residual) 

a ae caaet Ore x (regressor) 

one © mews OO8 ee? 

(db) 

FIGURE 11.9 

(a) The scattergram of a data set for which simple linear regression is appropriate. Points exhibit a 

linear trend with uniform spread about the estimated line of regression; (b) a residual plot for the ideal 

case. Residuals scatter randomly about 0 with a uniform spread. 

In Fig. 11.10(a) a data set that signals trouble is shown. Notice that although 

there is an upward linear trend, the spread of the responses appears to increase as 

x increases. This is an indication that the common variance assumption might not 
be met. That is, the variance in response for small values of the regressor seems to 

be different from that for large values of x. How is this problem seen on a residual 

plot? Probably just as you suspect—the residual plot will show a random scatter 

about 0, with the spread of the points increasing as the value of x becomes larger. 

See Fig. 11.10(b). 

Two other problems can be spotted with the help of a residual plot. They are 

model misspecification and gaps in the data. Model misspecification occurs when 

we try to fit a straight line to data that is not linear; gaps in the data occur due to 

poor experimental design or perhaps due to the loss of some data during experi- 

mentation. Both problems make the use of a linear prediction equation risky at best. 

Figure 11.11(q) illustrates a set of data that is clearly not linear together with a “re- 

gression line” that has nevertheless been forced through the data. Figure 11.11(b) 

shows how this error is seen on a residual plot. Notice that the residuals do vary 
about 0, but there appears to be a pattern in the residuals. The scatter is not random. 

This lack of randomness is what we are looking for, since it signals the possibility 
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y (response) “oe 

Jj = do + DX; 

x (regressor) 

(a) 

e (residual) 

x (regressor) 

FIGURE 11.10 
(a) A data set that signals that the common variance assumption is probably not valid; (b) a residual 

plot that throws doubt on the validity of the common variance assumption. Residuals scatter randomly 

about 0, but the spread of the points is not uniform. 

that simple linear regression does not adequately describe the relationship between 

the regressor and the response. 
In Fig. 11.12(a) a data set that contains gaps with respect to the regressor val- 

ues is Shown. Even though it is possible to fit a line to these data, to do so is risky. 

We are assuming that the linear trend suggested by the responses for low and high 

values of the regressor continues in the midrange of x. We really have no evidence 

that this is the case, and it is not appropriate to assume this. Figure 11.12(b) shows 

the residual plot for a data set with a definite gap in the data. 

Residual plots are helpful in spotting potential problems. However, they are not 

always as easy to interpret as are those given in Figs. 11.9 through 11.12. Since pat- 

terns are hard to spot with small data sets except in extreme cases, residual plots are 

most useful with fairly large collections of data. Furthermore, to get a clear picture 

of the validity of the variance assumption, we should design experiments in such a 

way that multiple observations are taken at each distinct value of the regressor. 
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y (response) 

x (regressor) 

(a) 

e (residual) 

>~— soe, x (regressor) 

(b) 

FIGURE 11.11 
(a) A data set for which the simple linear regression model is inappropriate; (b) a residual plot in 

which a linear prediction equation has been fitted to a set of data points that do not exhibit a linear 
trend. The residuals exhibit a pattern rather than a random scatter about 0. 

Checking for Normality: Stem-and-Leaf Plots 
and Boxplots 

One model assumption that has not been investigated yet is that of normality. This 

assumption can be checked visually as was done in previous chapters or analytically 

by using a standard software package such as SAS. Here we consider two visual 

checks that do not require formal testing. They work best for fairly large samples, 

since they both require that some value judgments be made concerning shape. Such 
judgments are hard to make with small samples because patterns do not appear in 

such data sets unless the violations in the assumptions are extreme. 

The first visual technique is one that should come to mind immediately. 

Namely, construct a stem-and-leaf diagram of the residuals as explained in Chap. 6. 

If the normality assumption is valid, we expect the plot to exhibit the approximate 

bell shape indicative of a normal curve. 
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y (response) 

x (regressor) 

(a) 

e (residual) 

FIGURE 11.12 
(a) A data set with a midrange gap. Simple linear regression is risky. (b) A residual plot showing gaps 

in the regressor values. 

The boxplot can also be used as a diagnostic tool. It allows us to check for 

possible violations of the normality assumption and also to detect the presence of 

outliers. A boxplot for residuals obtained when the normality assumption is valid 

should be symmetric with the median line near or at 0. Outliers are not expected, 
since these values are extremely rare whenever the random variable involved is nor- 

mally distributed. (See Exercise 26 of Chap. 6.) Thus asymmetry or the presence of 

outliers signals that the normality assumption might not hold. 

Outliers are very troublesome in regression studies. They can greatly influ- 

ence the regression line in that the line tends to be pulled toward the outlier. This 

can cause the fitted line not to pass through the center of the bulk of the data as is 

desired. If outliers are detected via a boxplot, then they must be investigated. If the 

data point is found to be an error or suspect in some way, then it should not be used 

in the analysis. 

Example 11.5.1 illustrates the use of residual and stem-and-leaf plots in a re- 
gression study. In this example you will see that the plots associated with real data 
are not always as easy to interpret as you would like. 
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FIGURE 11.13 
(a) Scattergram of data with an estimated line of regression. 

Example 11.5.1. Consider the problem described in Example 11.1.1 in which we 
found an equation by which the extent of solvent evaporation (Y) can be predicted 

based on knowledge of the humidity (X). The scattergram for the data given in Exam- 

ple 11.1.1 is shown in Fig. 11.13(a). The line shown in the picture is the graph of the 
estimated line of regression. Its equation is given by 

fiy|, = 13.64 — 08x 

There is a linear trend to the data, and the data points appear to lie reasonably close to 

the estimated line of regression. Figure 11.13(b) shows the residual plot. Notice that 

this plot does not reveal a pattern that might indicate that the linear model is not ap- 

propriate; the points do appear to scatter randomly about 0 as desired. There are no ob- 

vious differences in spread as x increases. However, the experiment was not designed 

with multiple observations at distinct values of the regressor, so this assumption is not 

easy to verify. To check for normality, we construct a stem-and-leaf plot of the resid- 

uals. The residuals are given in Table 11.2, and the stem-and-leaf plot for these resid- 

uals is shown in Fig. 11.14. In the plot we use double stems, with the “leaf” being the 

first decimal place of the residual. For example, the value .18727 is graphed as 0| 1 on 
the “low” 0 stem. Does this plot give convincing evidence of normality? Does it 

clearly exhibit the bell-shape characteristic of a normal curve? The answer to these 

questions is probably “no.” The shape is rather nondescript. To determine whether 

there is enough evidence to indicate that the normality assumption is probably not 



414 INTRODUCTION TO PROBABILITY AND STATISTICS 

y 

ES 
A 

A A 

A 
1.0 + A 

A A 

A 

0.5 + A A 

A 

R A A 
Eo 90¢-—_—_——— 

S A A AA 
I A 

o AA Wh =0:5 + 
a A 

1D; 

A 
—1.5 + 

A A x 

—1.0+ 

A 

~2.0 ie ----------- 4+----------- $----------- 4+----------- 4+----------- +----------- ent 

20 30 40 50 60 70 80 

FIGURE 11.13 (CONTINUED) 
(b) A residual plot for the data of Examples 11.1.1 and 11.5.1. Residuals show no obvious pattern that 

would signal model misspecification. 

valid, a formal test is needed. Figure 11.15 gives the SAS printout for PROC UNI- 

VARIATE. This printout includes the observed value of the statistic W used to test 

Hp: data are from a normal distribution 

H,: data are from a nonnormal distribution 

The value of the statistic, .958717, is shown at (1); its P value, .4028, is shown at (2). 

Since this P value is large, Hy should not be rejected. Based on these residuals, there 

is no reason to suspect that the residuals do not follow a normal distribution. Notice 

that SAS gives a stem-and-leaf diagram that is different from that given in Fig. 11.14. 

Remember that there are no set rules in defining leaves. The SAS plot has defined a 

“leaf” by first rounding the residual to one decimal place and then plotting the residu- 

als. Does this clarify the question of normality? Probably not. There is still no clearly 

defined bell visible. 

In the previous example interest centered on checking for normality. In the 

next example the boxplot is used to check for symmetry and the presence of out- 

liers. A definite lack of symmetry or the presence of outliers are both signals of pos- 
sible violation of the normality assumption. 
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TABLE 11.2 

Observed response (Y), predicted response (Predict.), and residual (Resid.) 
for the 25 data points of Examples 11.1.1 and 11.5.1 a Oe ee ee 
Observation 

number ¥ Predict. Resid. 

1 11.0 10.8127 0.18727 
D ili 11.2611 —0.16107 
3 125 LMAO 1.32700 
4 8.4 8.9313 Osi 3s0 
5) 9.3 8.7231 0.57685 
6 So / 7.9305 0.76945 
7 6.4 7.6824 = le2 8236 
8 8.5 7.4982 1.00178 
9 7.8 7.9786 —0.17858 

10 9.1 9.0354 0.06462 

11 8.2 9.9241 — 1.72406 

12 122, 11.3251 0.87488 

13 11.9 11.3892 0.51084 

14 9.6 10.5085 —0.90850 

15 10.9 9.8920 1.00797 

16 9.6 9.7559 —(0. 115593 

il 10.1 8.8913 1.20873 

18 8.1 8.0346 0.06537 

19 6.8 8.0346 = h23468 

20 8.9 7.6824 1.21764 

21 Tel 7.8665 —0.16650 

22 8.5 8.9873 —0.48735 

23, 8.9 10.0682 — 1.16816 

24 10.4 10.9648 —0.56484 

25 ileil 11.3491 —0,.24913 

i & O Os 2 2 

0 SF 7 BS 

Oo i © O 

a) add tt 4 ®B 

= (ro eS) 

=| 2 2 il 

= 

FIGURE 11.14 
A stem-and-leaf diagram for the residuals of Table 11.2. The diagram uses double stems, with a “leaf” 

being the first decimal place of the residual. 

Example 11.5.2. To construct a quick boxplot for the residuals given in Table 11.2, we 

again retain only the first decimal place of the number, as was done in constructing the 

stem-and-leaf plot shown in Fig. 11.14. For these date n = 25, the median location is 

(n + 1)/2 = 13, and the median value is —.1. Quartile locations are at (13 + 1)/2 = 7. 

The quartile values are gq; = —.5 and q; = .7. The interquartile range is g,; — q; = 1.2. 

Inner fences are located at 
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SAS 

UNIVARIATE PROCEDURE 

Moments 

N 25 Sum Wegts 

Mean QO Sum 

Std Dev 0.867485 Variance 
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USS 18.06074 CSS 

Cy: . Std Mean 
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FIGURE 11.15 
An analytic test for normality. 
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E 
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FIGURE 11.16 
A boxplot for the residuals of Table 11.2 based on the stem-and-leaf plot of Fig. 11.14. No outliers are 
detected. Although the plot does not exhibit perfect symmetry, it is not skewed enough to reject the 
normality assumption. 
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Since no residual values lie beyond the inner fences, the set of residuals does not con- 

tain any outliers. This is good news, for outliers are very rare (occurring with proba- 

bility .007) when sampling from a normal distribution. The boxplot for the residuals is 

shown in Fig. 11.16. Notice that it does not exhibit the perfect symmetry expected 

from a normal distribution, but it is not skewed enough to signal a clear violation of 

the normality assumption. Values for the median, g,, and q; based on the actual resid- 

ual values are given by SAS in Fig. 11.15 at (3), (4), and (5), respectively. The SAS 

boxplot is shown at (6). The + in the box is at 0, the average value of the residuals. In 

a perfectly symmetric plot, the ideal plot, this + would coincide with the median. 

Since our data set is not perfect, as is usually the case with real data, these two values 

differ slightly. 

Regression is an art as well as a science. Real-life data sets are seldom perfect. 

You will be called upon to make some value judgments as to the appropriateness of 

linear regression. The tools presented in this section will help you make these judg- 

ments. In Sec. 12.8 some suggestions are made as to how to handle data that violate 

various assumptions described in this section. 
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11.6 CORRELATION 

Thus far in this chapter we have considered problems related to simple linear re- 

gression. Our primary problem has been to express the mean value of a random 

variable Y as a linear function of a nonrandom variable X. In this section we con- 

tinue the study of correlation presented in a theoretical context in Sec. 5.3. There are 
two important differences between the regression studies that we have been consid- 

ering and the correlation studies that we shall consider now. First, in a correlation 

study both X and Y must be random variables. Second, we are not looking for a 

linear relationship between X and the mean of Y; rather we are trying to measure the 
strength of the linear relationship that exists between X and Y itself. 

The theoretical parameter used to measure the linear relationship between X 

and Y is the Pearson coefficient of correlation p. This parameter is defined by 

Pearson correlation coefficient 

Cove‘ey) 

V (Var X) (Var Y) 

y y 

x Xx 

2 (a) y (bd) 

@, rays se 

e e rs e e ” i 
© e @ 

S oune, geile e . 

ry be et % . . " bs e 
» e e e ° = 

® ; : ee °@ ~ . 
ee e 

x Xx 

(c) (d) 

FIGURE 11.17 
(a) p = 1, perfect positive relationship; (b) p = —1, perfect negative relationship; (c) p = 0, no 
relationship exists; (d) p = 0, a relationship exists but it is not linear. 
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The parameter p assumes values between —1 and 1 inclusive. Values of | or —1 
indicate perfect positive or negative linear relationships, respectively. A value of 0 
indicates no linear relationship. When this occurs, we say that X and Y are uncorre- 
lated. Figure 11.17 illustrates the graphical interpretation of p. 

Previously we found the theoretical value of p based on knowledge of the 
joint density function for X and Y. Unfortunately, these densities are seldom known 
in practice. For this reason, the job of the researcher is to estimate p based on a set 
{(x;, y): 1 = 1, 2,3,...,n} of observations on the random variable (X, Y). It is easy 
to see how this can be done. We must estimate Var X, Var Y, and Cov(X, Y). We shall 
use the maximum likelihood estimators for variance. That is, 

ee n — 

Var c= (XX in Sein 
i=l 

ae n = 

NEO SOR VAIS Neth 
i=1 

To estimate Cov(X, Y), note that 

Cov Xt) = E | Xe iy) Y= pty) 

We estimate Cov(X, Y) by averaging products analogous to that on the right-hand 

side of the above equation. Therefore 

ae SS Se n eet = 

Covi Xe Nae Ga) (OG) nS 1 
oi 

When we combine these estimators, the estimator for p is given by 

Estimator for p, the Pearson correlation coefficient 

S A XY. =— R S 

: V SrxSyy 

Many calculators will compute p for you automatically. If you have such a calcula- 

tor, you should use it to compute p. Otherwise, the following computational formula 

is useful: 

Computational formula for 7, the estimated Pearson 
correlation coefficient 

Noxy  2KLy 

Vines’ (2x) linzy (2) 

Example 11.6.1 In studying the effect of sewage effluent on a lake, researchers take 

measurements of the nitrate concentration of the water. An older manual method has 
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Automated 

0 50 100 

FIGURE 11.18 
A scattergram of manual readings versus automated readings. 

150 200 250 300 350 400 450 500 550 600 

Manual 

been used to monitor this variable. However, a new automated method has been de- 
vised. If a high positive correlation exists between the measurements taken by using 

the two methods, then the automated method will be put into routine use. These data 

are obtained on the nitrate concentration in micrograms of nitrate per liter of water: 

x (manual) 

25 

40 
30 

80 

150 

80 

200 

350 

240 

320 

470 

583 

y (automated) 

The scattergram for these data is shown in Fig. 11.18. Since these points exhibit a 
fairly well-defined increasing trend, we expect r to be positive and close in value to 1. 
Summary statistics for these data are 
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W106 Dx 900715 dy? = 919,489 
2405 Dy = 2503 xy = 902,475 

Se 5224725 S,y = 300,503.5 
S,, = 292,988.1 

The estimated correlation between X and Y is 

ae Sas) 

a V Sex Syy 

300,503.5 

~ \/(322,372.5) (292,988.1) 
~ 978 

As expected, there appears to be a strong positive linear relationship between X and Y. 

Interval Estimation and Hypothesis Tests on p 

It is almost always possible to develop a logical point estimator for a parameter 0 

based on its definition alone. However, before confidence intervals can be con- 

structed or hypothesis tests conducted, it is usually necessary to make some as- 

sumptions concerning the distribution of the random variable under study. This is 

true here. We have a logical point estimator for p. To draw statistical inferences con- 
cerning its value, we must assume a probability distribution for the two-dimensional 

random variable (X, Y). The distribution assumed 1s the bivariate normal distribu- 

tion. The joint density for such a random variable is given by 

Bivariate normal density 

a ea a le 
fs») =kex| eal ox | ox I Dy 

i 
where k = ——— 

Q0,0,\) 1 pe 

This distribution has many interesting theoretical properties. Among them are the 

following: 

1. The marginal distributions for both X and Y are normal. The parameters fy, My, 

oy, and ory that appear in the expression for f(x, y) are the means and standard 

deviations for X and Y, respectively. 
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2. The parameter p that appears in the expression for f(x, y) is the correlation co- 

efficient between X and Y. 

3. If p = 0, then X and Y are independent. 

4. The curves of regression of X on Y and Y on X are both linear. The latter is 

given by 

hy PF (x — ) My|x — By fea Kx 

Although we shall not be overly concerned with these theoretical properties, they 

will make it easier to understand the relationship between correlation and regression. 

In assuming that (X, Y) has a bivariate normal distribution, we are assuming a 

linear regression model. That is, we are assuming that 

My|x = Bo + Bix 

where B, = (ay/ox)p. Since ay and oy are both positive, it is easy to see that the 

slope of the regression line and the correlation coefficient have the same algebraic 

sign. It is also easy to see that p = 0 if and only if 6, = 0. Thus to test Hp: p = 0 

against any one of the usual alternatives, we use the same test statistic as that used 

earlier to test Hy: B, = 0, namely, BU(S/VS,,). Since we shall have a point estimate 

for p available when we test Hp: p = 0, it is convenient to express our test statistic 

in the alternative form 

Test Statistic Hy: p = 0 

(see Exercise 52). 

We illustrate the use of this statistic in the next example. 

Example 11.6.2. In our previous example we estimated the correlation between X, 

the manual nitrate reading, and Y, the automated reading, by r = .978. Although intu- 
ition certainly leads us to suspect that we have strong evidence that p # 0, we must re- 
member that the sample size is small with n = 10. For this reason, we should test 

Hp: p = 0 

Ay: p #0 

The observed value of the test statistic 

T,-2 = RYn=2 

V1 — R? 

97810 = 2 

V1 —-(.978) 

Based on the 7, distribution, the null hypothesis can be rejected with P < .001 
(1.9995 = 5.041 and the test is two-tailed). We do have strong evidence that p # 0. 

= 13.26 
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The exact distribution of R depends on the true value of p. Furthermore, for 
large values of p this distribution is decidedly nonnormal. Fortunately, there exists 
a simple change of variable that results in a random variable whose distribution is 
approximately normal. In particular, it can be shown that when (X, Y) has a bivari- 
ate normal distribution, then the random variable 

is approximately normally distributed with 

1 1 
w=xIn a and a? = : 

Was/é) has 

This result, due to R. A. Fisher, was first published in 1921. Standardizing, we can 
conclude that the random variable 

a= 3 

[eel Re eaten 

(ie) el 
B25 pe nr = 

Although the algebraic argument is a bit messy, this inequality can be solved for p 

to obtain these bounds for a 100(1 — a)% confidence interval on p- 

Confidence interval on p, the Pearson correlation coefficient 

(12k) (1 Koexp2z yn 3) 

(1k) + (1 Royexp(22../\ n= 3) 
Lower bound = 

(lek) (1 Royexpe 22,,./\n- 3) 

(LPR) + (1 Roexpe 22, ,,/Vn— 3) 
Upper bound = 

To see how to evaluate these bounds, consider the next example. 

Example 11.6.3. We know that a point estimate for p, the correlation between the 

manual nitrate reading and the automated reading, is .978. To find a 95% confidence 

interval on p, we first note that zo); = 1.96 and n = 10. The lower bound for the con- 

fidence interval is 
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(1+r) — (1 —r)exp(2Z9;2/Vn — 3) 

AGS 2) Weal (8 = r)exp(2Z9/2/\/n — 3) 

(1 +978) — (1 — .978)exp(2(1.96)/V7) 
(1 + 978) + (1 — .978)exp(2(1.96)/V7) 
(1 + 978) — .022(4.4) 
(1 + .978) + .022(4.4) 

esse 
2.075 

.907 

Substituting, we find that the upper bound is .995. We are 95% confident that the true 

value of the correlation coefficient lies in the interval [.907, .995]. Since we rejected 

Hy: p = 0, it is not surprising that 0 is not in this interval. 

Although the usual null hypothesis concerning p is Ho: p = 0, other null val- 

ues can be tested via the Fisher transformation. Letting pp) denote any null value for 

p, we see that the Z statistic 

Test Statistic Hy: p = po 

a : ~ Sin (122) 
1 — po 

serves as the test statistic for testing Hp: p = po. 

Coefficient of Determination 

Strictly speaking, one should not use the techniques of simple linear regression pre- 

sented in this chapter and the correlation techniques given here on the same data set. 

The former assumes that X is not a random variable; the latter requires that it be a 

random variable. Even so, R can be useful in a regression study. As we shall show, 

it is an indicator of the adequacy of the simple linear regression model. To see why 

this is true, note that 

SSH Bite 

Dividing each side of this equation by S,, and replacing B, with S,,/S,,, we see that 

SSE pb S53, 

Ne Die 

Since R = S, ATS SE we may conclude that 

SSE ia 
S yy 
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FIGURE 11.19 

(a) A suggested interpretation of R; (b) a suggested interpretation of R2. 

or that R* = 1 — SSE/S,,. This equation can be rewritten as 

Since S,,, measures the total variability in Y and SSE measures the random variabil- 
ity in Y about the estimated regression line, S\,, — SSE measures the variability in Y 

explained by the linear regression model. The random variable R? represents the 

proportion of the variability in Y explained by the model. When this proportion is 

multiplied by 100%, we obtain a statistic called the coefficient of determination. If 

R lies close to 1 or — 1, then R? will also be close to 1, yielding a coefficient of de- 

termination near 100%. When R is near 0, then the coefficient of determination is 

also near 0. Thus the relative size of R? X 100% is a good descriptive measure of 
the adequacy of the model. 

Although there are no hard and fast rules concerning the interpretation of R 

and R?, the charts given in Fig. 11.19 are useful. Keep in mind the fact that the in- 

terpretation of these statistics is somewhat subject matter dependent. An R? value of 

50% might be considered very large in a social science setting where human sub- 

jects are involved; however, the same figure could be considered very small in a de- 

signed engineering experiment. The interpretation of R and R? must be left to the 

discretion of the subject matter expert. 

CHAPTER SUMMARY 

In this chapter we have considered most of the important aspects of simple linear re- 

gression and correlation. A verbal and mathematical description of the regression 

model was given along with the least-squares method for estimating the slope and in- 

tercept parameters of the model. We saw that under minimal assumptions these esti- 

mators were unbiased. When the random error E; was assumed to be normally 

distributed, the distribution of Y|x;, Bos and Bi was given. Utilizing these distribu- 

tional properties, we considered methods for testing hypotheses and estimating con- 

fidence intervals about the slope 6, and the intercept By. We carefully distinguished 
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between predicting the mean response of the dependent variable Y at a fixed value of 
the independent variable x and predicting a single value of the dependent variable Y 

at x. Methods were given for constructing interval estimates for both cases, and we 

observed that prediction of the mean led to a shorter interval (more precise) than for 

a single value. Finally, for regression, when multiple measurements of the dependent 

variable Y are observed at values of the independent variable x, we considered a pro- 

cedure that enables us to test the model for a lack of linear fit. 

In addition to simple linear regression, we considered the Pearson correlation 

coefficient. Methods were given for estimating the true correlation, testing hypoth- 

esis about the correlation, and estimating confidence intervals for the correlation co- 
efficient p. 

We also introduced and defined terms that you should know. These are: 

Linear regression Least-squares estimation 

Least-squares properties Independent variable 

Dependent variable Slope of regression 

Intercept of regression Lack of fit 

Pure error Experimental error 

Residual error Pearson correlation 

Significant correlation Bivariate normal distribution 

Observational study SSE 

Designed study Coefficient of determination 

Scattergram Response variable 

Residual Regressor 

Predictor variable 

EXERCISES 

Section 11.1 

1. Consider the following observations on the independent variable X and the de- 
pendent variable Y: 

(a) Plot the scattergram for these data. 
(b) Does it appear reasonable that a linear regression could be used for these 

data? 
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(c) Sketch, by eye, a linear regression line on the scattergram in part (a). 
For each of the three following data sets, plot a scattergram and subjectively 
state whether it appears that a linear regression will (i) fit the data well, (ii) give 
only a fair fit, or (iii) fit the data poorly: 

(a) B) 15 DS 35) 45 50 

10 18 20 25 32 45 

(Bie Sse Oe 20 eer 40 850. 

pate 5. 29a 32S Serr 30 Te R15 

(G)P eee OR: 2882030 E40 = 50 

y 40 35 30 22 14 V 

. The normal equations were given in this section. Solve the normal equations 

for by and b,, and show that your solution can be written in the form given as 

the least-squares estimates for Bp and B,. 

. Consider any arbitrary data set (x,, y,), (%2, Yo), .--, Xp» Y,). Let x and y denote 

the respective sample means for the independent variable X and the dependent 

variable Y. For the estimated linear regression equation fly), = by + b,x, show 

that the point (x, y) always lies on the estimated regression line. 

. Verify that Xe; = 0. Hint: Write e; as y; — (by + b,x;), and remember that 

bo = y — bX. 

. For each of the data sets of Exercise 2, estimate By and B,. Find the residuals in 

each case, and verify that, apart from round-off error, the residuals sum to 0. 

The relationship between energy consumption and household income was stud- 

ied, yielding the following data on household income X (in units of $1000/year) 

and energy consumption ¥ (in units of 10® Btu/year). 

Energy Household 

consumption (y) income (x) 

1.8 20.0 

3.0 30.5 
4.8 40.0 
5.0 dbl 

6.5 60.3 
7.0 74.9 

9.0 88.4 
OI OS 

(a) Plot a scattergram of these data. 

(b) Estimate the linear regression equation fry}, = Bo + Bix. 

(c) If x = 50 (household income of $50,000), estimate the average energy 

consumed for households of this income. What would your estimate be for 

a single household? 
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(d) How much would you expect the change in consumption to be if any 

household income increases $2000/year (2 units of $1000)? 

(e) How much would you expect consumption to change if any household in- 

come decreases $2000/year? 

Consider the data in Exercise 7. 

(a) Write the normal equations for these data. 

(b) Solve the normal equations for bp and b,, and verify that your results are 

the same as those you obtained in part (b) of Exercise 7. 

Connectors used in computers are subject to simultaneous multidimensional 

stresses such as high temperatures and mechanical stresses. A study is con- 

ducted to identify and quantify interface stresses. Experiments are conducted to 

investigate the relationship between pitch and connector length. These data are 

obtained: 

Connector length, Pitch 

x (inches) (millimeters) 

150 3.81 

.100 2.54 

098 ANY) 

.079 2.00 

O50 ieP-y 

.040 1.02 

039 1.00 

.032 0.80 

.020 0.50 

O16 0.40 

010 0.25 

005 0.13 

(a) Plot a scattergram for these data. 

(b) Estimate the regression line. 

(c) Calculate the residuals, and show that, apart from round-off error, they 

sum to 0. 

(d) Estimate the average pitch for all connectors of length 0.03 inch (in.). 

(e) Estimate the pitch of a particular connector of length 0.03 in. 

(f) By how much would you expect the pitch to change if the connector length 

increased by 0.1 in.? By .05 in.? 

(g) Would it be reasonable to expect to be able to use the estimated regression 

line to predict the pitch well for connectors of length .175 in.? .39 in.? 

1.0 in.? Explain. 

A particular type of power brush is a wheel made of wire strands extending out- 

ward around a hub. It is used for many purposes such as finishing aluminum 

bicycle rims, producing a matte finish on plastic, and removing burrs from gear 

teeth. The shorter the wire length and the coarser the wire, the more severe is 

the buffing action. A study is conducted to develop a chart for suggested use of 

the wheel. Tests are conducted on a 2-in.-brush-diameter wheel. These data are 
obtained: 
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y (surface ft/min 
x (rpm X 1000) covered in removing burrs) 

1.0 S25), S20; 527) 

es 785, 780, 790 

Ls 915, 900, 922 

2.5 1300, 1295, 1310 

3.0 1575, 1565, 1582 

4.0 2100, 2110, 2090 

6.0 SWSY, HAD, SBS 

10.0 5250, 5256, 5245 

(a) Sketch a scattergram for these data. 

(b) Estimate the regression line. 

(c) Estimate the surface feet per minute that can be covered when a wheel of 

this sort is used at 3450 revolutions per minute (rpm). 

Section 11.2 

11. 

12. 

13. 

Verify the following summation properties: 

(a) S (%- x) =0. 
i=] 

(b) S (4-2) -Y) = Sw DY,. 
i=1 Za 

(c) $ 901-7) = (nS 97- Say 1) /n 
i=1 i=1 i=l i=l 

(4) Si (4, -82 = Sa) - Fa). 
tl i=] 

n n n 2 

(ey OG; —x)? = Sa (Ss) \/» 
1=1 i=1 i=1 

The estimator of the true mean of the dependent variable Y was given by 

fly|x = Bo + B,x. Show that E(fiy|,) = My),, and hence that fy), is an unbiased 

estimator, for fy} ,. 

The proof that S? = SSE/(n — 2) is an unbiased estimator for a? is tricky. 

The steps in the proof are outlined below: 
(a) Show that SSE = S,, — S,,Bj. 

(b) Show thatSSE= > ¥2— nY? — S_,B?. 
i=1 

(c) Show that E[SSE] = ¥ E[Y2] — nE[Y?] — S,,E[ B31. 
i=1 

(d) Show that E[Y?] = Var Y; + (ELY,])* 

=o? + (Bo + Bx, 

E[Y7] = Var Y + (E[Y]) 

Sip 42 (shy ar [Sie 



430 INTRODUCTION TO PROBABILITY AND STATISTICS 

E[ Bt] = Var By ACE By) 

=O 1S ae 

(e) Substitute and simplify to show that E[SSE] = (n — 2)a°. 

(f) Show that E[S?] = o°. 2 

14. Recall the estimators for the parameters wy and B, are denoted by Y and B,, 
respectively. Prove that Cov(Y, B,) = 0. Hint: It is assumed that Y; and Y; are 

uncorrelated. Write Y and B, as linear combinations of Y,(Y = >7_\a,Y, and 

B, = Dhe.Y,). Note that a7 = 1/n and ¢ = = %)/2%, 6G; — x) 
15. Suppose that the true regression equation is known to be py), = 10 + 2.5x. Un- 

der the assumption of normality we have seen that the estimator for 6,, B, is 

also normally distributed with mean GB, and variance a 7/?_ ,(x; — x)°. Suppose 

that it is also known that Var B, = 1.2. For a sample of 25 observations, (x;, y;), 

find the probability that the estimate of 8, will be greater than 3.5. 

Section 11.3 

In production flow-shop problems, performance is often evaluated by minimum 

make-span, the total elapsed time from starting the first job on the first machine un- 

til the last job is completed on the last machine. For a particular flow-shop the 

make-span was evaluated with respect to the number of jobs to be done. Let the in- 

dependent variable X denote the number of jobs and the dependent variable Y de- 

note the make-span (in standardized units): 

Number of jobs (x) | 4 5 6 7 8 9 
Make-span (y) 31S et. Oe ASS TO as aan 

10 12 13 415 
00 = ign 115) via sie ets 

Refer to these data for Exercises 16 through 18. 

16. (a) Estimate the linear regression equation fy), = By + By. 

(b) Plot the estimated regression equation. 

17. Test for a significant linear regression at the a = .05 level of significance. 
18. (a) Atx = x, compute a 95% confidence interval for jzy),, and verbally ex- 

plain the answer. 

(b) Atx = 12, compute a 95% confidence interval for /ty|,, and verbally ex- 
plain the answer. 

(c) How do you explain the different widths of the intervals in parts (a) and (b)? 

Refer to the data in Exercise 7 for Exercises 19 through 22. 

19. Test Ho: By = 2 at the .01 level of significance. 

20. Calculate a 95% confidence interval for the true intercept Bo. 
21. Test for significant linear regression; that is, test Ho: B, = Oat the .05 level. 
22. (a) If x = SO, estimate Y, a single predicted value of Y when x = 50. 

(b) Calculate a 95% prediction interval for Y|x = 50, and interpret your 
answer. 

Let x denote the number of lines of executable SAS code, and let Y denote the exe- 
cution time in seconds. Use the following summary information to do Exercises 23 
through 28. 



23. 
24. 

25. 
26. 

27. 

28. 

29. 
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n= lo 
M ES 

l 
10 10 

16.75 > y; = 170 >) x7 = 28.64 
i=1 i=1 

II 
10 

Se 
t=1 

Estimate and plot the line of regression. 
(a) Estimate Var Y, = 07. 

(b) Estimate the standard deviation of B,. 

(c) Estimate the standard deviation of Bo. 
Test the hypothesis 8, = 0 at the .01 level, and verbally state the conclusion. 
Test the hypothesis 8, = 25 at the .05 level, and discuss the conclusion in the 
context of the problem. 
If significant regression is found, estimate the average time required to run a 
SAS program with 15 lines of executable code. 

If regression is not significant, what does this mean mathematically? Can you 

think of a practical reason from a computing standpoint that regression might 

not be significant in this case? 

The following data represent carbon dioxide (CO,) emissions from coal-fired 

boilers (in units of 1000 tons) over a period of years between 1965 and 1977. The 

independent variable (year) has been standardized to yield the following table: 

10 

2898 > xy, = 285.625 
i=1 

Year (x) io 5 8 9 10 meet 12 
CO, emission (y) | 910 680 520 450 370 = 380 340 

(a) Estimate the linear regression equation py), = By + Bix. 
(b) Is there a significant linear trend in CO, emission over this time span? That 

is, test Hy: B, = 0 at the .01 level of significance. 

(c) Would it be wise to use the estimated regression line to estimate the aver- 

age CO, emissions from coal-fired boilers for the year 2000? Explain. 

The following data represent the known weights of calcium oxide (CaO) from nine 

different samples and the corresponding weights determined by a standard chemi- 

cal procedure. The known weight is treated as the independent variable X. 

CaO present (x) 3.0 7.0 TIS) 15.0 19.0 

CaO found (y) Le TSS STE LR 

24,05 30.0 35.0 39.0 39.0 
[ee Tee ees 

Use these data to do Exercises 30 through 32. 

30. 

31. 

SP, 

Find the linear regression line used to estimate jy|,, the average weight of CaO 

found for a known weight x. 
Compute an unbiased estimate of the variance of Y about the true linear regres- 

sion line. 
(a) If x = 15, estimate pry), 
(b) Compute and interpret a 90% confidence interval for py), when x = 15. 
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33. An experiment was completed to study the relationship between concentrations 

of estrone in saliva and in free plasma. The following data were obtained: 

Estrone in Estrone in 

Subject saliva (x) free plasma (y) 

| 7.4 30.0 

g) WED) 25.0 

3 8.5 Sill Si 

4 9.0 SIGS 

5 9.0 39.5 

6 11.0 38.0 

7 13.0 43.2 

8 14.0 49.0 

9 14.5 55.0 

10 16.0 48.5 

(a) Plot a scattergram of the data. 

(b) Estimate the line of regression of Y on X. 

(c) Ifthe estrone level is 12.1, predict the level of estrone in free plasma. 

(d) Test for a significant linear regression at the .10 level. 

Section 11.4 

A study reported in the Journal of Coatings Technology, vol. 55, 1983, considered 

the ability to predict cracking of latex paints on exposed wood surfaces based on ac- 

celerated cracking tests. The following are representative data on accelerated crack 
rating (x) and exposure crack rating (y): 

Accelerated Exposure 

crack rating (x) crack rating (y) 

2.0 il) 

2.0 2S 

3.0 Bei 

3.0 3.9 

4.0 3.0 

4.0 4.2 

Su onl 

S10) 4.8 

6.0 4.8 

6.0 Gu 

7.0 5), 

7.0 6.4 

Refer to these data for Exercises 34 and 35. 

34. (a) Plot the data in a scattergram. 
(b) Estimate the line of regression for predicting exposure crack rating from 

accelerated crack rating. 
(c) Estimate the average exposure crack rating if the accelerated crack rating 

is 4.5. 
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(a) Test for lack of linear fit at the .05 level of significance. 
(b) Can we conclude that a linear regression equation adequately fits the data? 

Many chemicals dissolve in water at different rates depending on water tempera- 
ture. This phenomenon was studied for a certain chemical with the experimental 
data given below. The dependent variable y denotes the amount [in grams per liter 
(g/l)] of the chemical dissolved, and x denotes the temperature [in degrees Celsius 
( C)] of the water: 

a Gn) y (g/l) 

0 ida, « Pifem Eyal 

10 AS, GES, Sv! 

20 Gl, 82, 9:0 

30 Wit, WA, Wes 

40 13.3, IS2, 1 

50 L7LO MUSSELS 2S 

Use these data for Exercises 36 through 38. 

36. 
OT: 

38. 
39. 

40. 

41. 

Plot a scattergram. 

(a) Estimate the true linear regression fy, = By + B,x. 

(b) Estimate jy), when the temperature (x) is 35° C. 

Test for adequacy of fit for linear regression at the .05 level of significance. 

If the random variable Y; follows a normal distribution with mean py and vari- 

ance a *, what is the distribution of the random variable 

Hint: See Theorem 8.1.1. 

Show that the random variable SSE,./a* follows a chi-squared distribution 

with n — k degrees of freedom when Y;, follows a normal distribution with 

mean fy and variance o*. Hint: See Exercise 44, Chap. 7. 

Consider the data of Exercise 10. Test for adequacy of fit. 

Section 11.5 

42. Reconsider Exercise 1. Even though the scattergram of the data suggests that 

simple linear regression is not appropriate, a straight line can be forced through 

the data via least squares. 

(a) Estimate bp and b, to force a line through the data of Exercise 1. 

(b) Use the estimated line of regression to find }; for i = 1 to 18. 

(c) Find the 18 residuals for these data, and verify that, apart from round-off 

error, these residuals sum to 0. 

(d) Form a residual plot, and notice that it does not exhibit the ideal pattern ex- 

pected when simple linear regression is appropriate. 

(e) Can you suggest an equation that would probably describe the pattern seen 

in the raw data much better than does a straight line? 

(f) Sketch and interpret the boxplot for the residuals. 
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43. Sketch residual plots for each of the data sets given in Exercise 2. (The residu- 

als were found in Exercise 6.) Which, if any, of the plots suggest that the as- 

sumptions underlying simple linear regression are not met? 

44. Consider the residuals found in Exercise 9. 
(a) Sketch and interpret the residual plot. 

(b) Sketch and interpret the boxplot of the residuals. 

45. In the earliest stages of the development of electronic technology solders were 

used to assemble components. Due to the fact that they are applied hot, stress 

such as creeping, distortion, and metal fatigue can result. A study of the use 

of amalgams as alternatives to solder is conducted. An amalgam is an alloy 

between a liquid metal and a powder formed at room temperature. These data 

are obtained on the curing time in minutes (x) and the hardness rating (y) of a 

gallium/nickel/copper amalgam: 

x (curing time) y (hardness in durometers, D) 

5 LU 

1500 68, 70, 72 

1800 82, 80, 83 

2000 87, 86, 86 

3500 91, 90, 90 

4200 IO OP? 

5800 95, 96, 93 

(Based on information from “Amalgams for Improved Elec- 

tronics Interconnection,” Colin A. MacKay, /EEE MICRO, 

April 1993, pp. 46-58.) 

(a) Sketch a scattergram for these data. 
(b) Even though simple linear regression is not appropriate, force a regression 

line through the data. Graph this line on the scattergram. 
(c) Estimate each residual visually, and sketch a rough residual plot. Discuss 

the plot. 
(d) If you have SAS or some other computer software available, find the exact 

values of the residuals and form a residual plot by computer. 
Figure 11.20 shows residual plots for various data sets. In each case, identify 
any model assumptions that might be violated. 

46 

Section 11.6 

Pesticides used in food production can be found in food consumed by humans. A 
study focusing on chickens exposed to malaoxon was conducted. The chickens 
were also exposed to a liver enzyme inducer to determine whether liver detoxifi- 
cation of the pesticide is affected. The following data were reported as a percent- 
ay = normal pesticide detoxification (vy) and percentage of normal liver enzyme 
evels (x): 
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(a) (b) 

(c) 

FIGURE 11.20 

Residual plots. 

Enzyme Detoxification 

level (x) level (y) 

95 108 

110 126 

118 102 

124 121 

145 118 

140 155) 

185 158 

190 178 

205 159 

aps 184 

Refer to these data for Exercises 47 through 50. 

47. (a) Plot ascattergram of the data. 

(b) Estimate p, the correlation between X and Y. 

48. Test the null hypothesis that X and Y are uncorrelated at the 0.10 level. That is, 

test Hy: p = 0. Discuss your conclusion. 
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49. Find a 90% confidence interval on p. 

50. Test Hy: p = .8 at the a = .05 level of significance. 

51. These data are obtained in the random variables x, the percentage copper of a 

sample, and its Rockwell hardness rating y: 

x y 

Ol 58.0 

03 66.0 

O1 55.0 

02 63.2 

10 58.3 

08 As) 

if) 69.3 

IS) 70.1 

10 65:2 

1] 62.3 

(a) Plot a scattergram of these data. 

(b) Find a point estimate for p. 
(c) Find a 95% confidence interval for p and discuss your conclusion. 

52. Show that B,/(S/\V/S,,) = RVn—2/\/1—R2. Hint: Use the fact that 
By = Sy/Sq. and R = S,,/\VS,,Syy to show that B,/(S/VS,.) =VS\yR/S. Then 
use the fact that SEE = S,, — B,S,, and S* = SSE/(n — 2). 

53. Show that if the random variable (X, Y) has a bivariate normal distribution with 

p = 0, then X and ¥ are independent. 
54. Does a correlation coefficient of zero always imply that X and Y are indepen- 

dent? 

55. Show that if the random variable (X, Y) has a bivariate normal distribution, then 

the point (sry, My) lies on the true line of regression of Y on X. 

56. Find and interpret the coefficient of determination for the data sets of Exer- 

cise 2. 

57. Find and interpret the coefficient of determination for the data of Exercise 7. 

58. Find and interpret the coefficient of determination for the data of Exercise 10. 

59. Find and interpret the coefficient of determination for the data of Exercise 1. 

REVIEW EXERCISES 

Investigators at an interactive graphics installation designed an experiment to study 

operator performance as a function of the length of time worked. The independent 

variable (fixed by the experimenter) was the length of time worked [in hours (h)]. 

The dependent variable was the number of commands per hour. Fifteen operators of 

comparable training were used with three operators randomly selected to work for 
each of the five lengths of time in the experiment. The study yielded the following 
data: 
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Length of Number of 

work, h(x) commands (y) 

136, 143, 139 

165, 169, 173 

168, 173, 176 

170, 169, 176 

OS OM nAnBWN re 

Use these data for Exercises 60 and 61. 

60. (a) Plot the data. 

(b) Estimate and plot the curve of regression ry), = Bo + Bix. 

61. (a) Test for lack of linear fit to the data at the 5% level of significance. Does a 

linear regression curve adequately fit the data? 

(b) Do the plot in Exercise 60 and the test for lack of linear fit seem to agree 
with each other? 

The following data represent the fuel gas temperature [in degrees Fahrenheit (° F)] 

and unit heat rate [in BTU’s per kilowatt hour (Btu/kWh)] for a combustion turbine 

to be used in coal gasification: 

Gas Heat, Btu/kWh 

temperature, Units of 100 

SG) (y) 

100 oI 

150 98.5 

200 98.2 

250 98.0 

300 97.8 

350 97.6 

400 es 

450 FAO) 

500 96.8 

Use these data for Exercises 62 through 66. 

62. Estimate the regression curve My}, = Bo + Bix. 

63. Test Hy: 8, = 0 versus H,: B, < 0. Use a = .05. 

64. Estimate the coefficient of determination as a measure of goodness of fit of the 

linear regression curve. 

65. Calculate a 90% confidence interval on 8, and discuss your results in the con- 

text of the data. 

66. Calculate a 95% confidence interval on B,, and discuss your results in the con- 

text of the data. 

An engineer wishes to investigate the recovery of heat normally lost to the envi- 

ronment in the form of exhaust gases from furnaces. Her experiment is designed by 
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fixing flow speed past heat pipes [in meters per second (m/sec)] and then measur- 

ing the recovery ratio. The study yielded the following data: 

Flow Recovery 

speed, m/sec ratio 

(x) (y) 

| 740 

IRS 745 
2 Tales: 

oS .678 

3} .652 
Bi .627 

4 607 

4.5 507 
5) 545 

Refer to these data for Exercises 67 through 69. 

67. Estimate the curve of regression by), = Bo + B\X. 

68. Test for significant regression at the .05 level. 
69. (a) If the flow speed is fixed at 3.25 (m/sec), predict wy), — 325 and Y|x = 3.25. 

(b) Calculate and interpret the 95% confidence interval on py), = 35. 

(c) Calculate and interpret the 95% prediction interval on Y|x = 3.25. 

(d) How do you explain the differing widths of the intervals calculated in parts 

(b) and (c)? 

In studying the effect of air quality on a lake, the experimenter takes observations 

on the pH of the water and the air quality as measured on an air quality index. The 

index goes from 0 to 100 with larger numbers representing high pollution. These 
data are obtained: 

pH (x) AS 41 t4 So 40 5.05600, 63 eho Ome | 
Air quality | 40 50’ < (30 160 ~<20>- 910 4,90) 30)" (85 seeKs 

Refer to these data for Exercises 70 through 72. 

70. (a) Plot the data on the xy plane. 

(b) Estimate the correlation coefficient p. 

71. Test for a significant negative correlation at the .05 level of significance. 

72. Calculate and interpret the 90% confidence interval on p. 
73. Suppose that a set of 10 pairs of data (x, y) yield an estimated correlation of 

r= .3. 
(a) Give the approximate smallest P value for testing Hp: p = O versus 

H,: p # 0. 
(b) Suppose again that r = .3, but for n = 50 observations. What is the approx- 

imate smallest P value for testing the same hypothesis as given in part (a)? 
How do you explain the difference between P values in parts (a) and (b)? 

74. (a) What relationship does the size (in absolute value) of the correlation coef- 
ficient have to the slope of the linear regression line of Y on x? 



aos 

76. 
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(b) What relationship does the size (in absolute value) of the correlation coef- 
ficient have to the closeness of the points to the linear regression line of Y 
on x? 

When processing flow-shops involve semiautomatic or manual operators, pro- 
cessing times can be regarded as random variables. An investigator decided to 
study the correlation between make-spans (the time elapsed until the last job is 
completed on the last machine) for two different systems. The study yielded the 
following bivariate observations for a random selection of 10 sets of jobs: 

Job System 1 (x) System 2 (y) 

1 4.1 3.9 

2 5.0 Soll 

3 4.9 5.0 

4 5.8 4.9 

5 1S 1333 

6 12.0 132 

if 19.2 Di 3} 

8 10.0 9.1 

9 24.1 23.0 

10 6.9 8.1 

(a) Estimate the Pearson correlation coefficient. 

(b) Compute a 95% confidence interval on the true correlation p. 

(c) Test for a significant correlation at the .05 level. Do parts (b) and (c) tend 

to agree? 

(d) Calculate the coefficient of determination. Explain its meaning. 

Carbon dioxide is known to have a critical effect on microbiological growth. 

Small amounts of CO, stimulate the growth of many organisms, while high 

concentrations inhibit the growth of most. The latter effect is used commer- 

cially when perishable food products are stored. A study is conducted to inves- 
tigate the effect of CO, on the growth rate of Pseudomonas fragi, a food 

spoiler. Carbon dioxide is administered at five different atmospheric pressures. 

The response noted is the percentage change in cell mass after a 1-hour grow- 

ing time. Ten cultures are used at each level. The following data are found: 

Factor level (CO, pressure in atmospheres) 

0.0 .083 29 50 86 

62.6 50.9 45.5 29.5 24.9 

59.6 44.3 41.1 A, Js 22 

64.5 47.5 29.8 IQ 7.8 

a3 49.5 38.3 20.6 10.5 

58.6 48.5 40.2 IND) 17.8 

64.6 50.4 38.5 24.1 Pa 

= (10) 32 30.2 22.6 UALS 

VOz 49.9 27.0 B2Fil 16.8 

5.3 42.6 40.0 24.4 1S) 

62.8 41.6 Bow 29.6 8.8 



440) INTRODUCTION TO PROBABILITY AND STATISTICS 

Conduct a regression study, and write a report that summarizes the results of all 

tests and graphical tools that you used in the analysis. 

77. Below are the predicted values and the residuals for Example 11.4.1. Construct 

a residual plot, and discuss its implications. Does the plot lead you to the same 

conclusion as that of the formal test conducted in the example? 

X Y PREDICT. RESID. 

30 Isha 15.7600 —2.06000 

30 14.0 15.7600 — 1.76000 

30 14.6 15.7600 —1.16000 

40 Sys) 16.2733 AU IMSS. 

40 16.0 16.2733 SW PIBES. 

40 17.0 16.2733 0.72667 

50 18.5 16.7867 il Wilsisie: 

50 20.0 16.7867 3.21333 

50 Pll 16.7867 4.31333 

60 fee 17.3000 0.40000 

60 18.1 17.3000 0.80000 

60 18.5 17.3000 1.20000 

70 15.0 Nofceyl Sis) = 2.Oldge 

70 15.6 17.8133 Se 33 

70 16.5 17.8133 = leslse3 

78. The effect of acid type and pH on the weight loss in western red cedar was 

studied. Sulfurous acid was used at pH levels of 2.0, 2.5, 3.0, 3.5, and 4.0 with 

distilled water (pH 5.6) as a control. An accelerated weathering chamber is 

used for a total of 200 hours. Red cedar wafers of identical size are obtained 
and weighed. Each wafer is then soaked in the acid solution for one hour and 

then placed in the weathering chamber for 25 hours. This process is repeated 

until weathering time reaches 200 hours, at which time a final weight is ob- 
tained. The following data were obtained: 

Obs. no. pH Start wt. Final wt. Wt. loss 

| 2.0 696 661 35 

2 2.0 696 664 32 
3 2.0 694 664 30 

4 25 699 668 31 

5 2.5 696 668 28 

6 is 692 666 26 

7 3.0 697 673 24 

8 3.0 698 675 23 

9 3.0 698 674 24 

10 ay) 699 677 22 

1] ao 698 678 20 

12 oN 699 674 25 

13 4.0 698 677 21 

14 4.0 698 678 20 

15 4.0 698 673 25 

16 5.6 698 677 21 

17 5.6 698 678 20 

18 5.6 696 672 24 
—————— 



(a) 

(b) 
(c) 
(d) 
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Plot the graph for pH versus weight loss. What does this suggest in terms 
of levels of sulfurous acid and effect on western cedar weight loss? 
Compute the Pearson correlation for pH versus weight loss. 
Test for a significant correlation at the a = .05 level of significance. 
Compute a 95% confidence interval for the true value of the correlation p. 

An electrical engineer is concerned with predicting power demand based on tem- 
perature of the current day. This would enable the company to buy and transfer 
power based on short-term weather predictions, and, hence, brownouts could be 
reduced or avoided. A demand scale was devised from zero to ten, with zero rep- 
resenting very low demand and ten representing maximum demand. A random 
sample of 40 days over the 365-day year was obtained, yielding the following 
data: 

Obs. no. Temperature Demand Obs. no. Temperature Demand 

1 30 2.9 21 67 1.4 
D) 11 5 DD; 33 Bul 
3} 97 4.0 we} 81 1.9 
4 4] 2.0 24 101 35) 
5 33) 1.6 25 84 eS) 

6 105 4.5 26 36 LD 

7 68 3 Pa 98 Ball 

8 1 8.0 28 719 1.0 

9 48 6 29 98 3.6 

10 106 5.6 30 3 7.8 

11 98 3.3 Bil 86 27. 

12 33 DAS) By) 34 Dem 

13 10 ey) a3 108 4.5 

14 63 Be) 34 14 4.9 

15 50 3} 35 89 2.9 

16 2 Wall 36 55 1.3 

17 45 1.4 3 55 olf 

18 59 6 38 15 4.7 

19 7 6.3 39 87 Dep) 

20 96 3.5 40 87 1.9 

Refer to these data for Exercises 79 through 81. 

79.44) 

(b) 

(c) 

80. (a) 

(d) 

Plot the data for the independent variable (temperature) versus the re- 

sponse variable (demand). Do you believe that a simple linear regression 
line will predict demand well for this case? Why? 

Make two separate plots using only temperature values equal to or less 

than 60 degrees for one graph and a separate graph for temperature values 

greater than 60 degrees. Do you think that using two separate regression 

lines to predict demand would work well? 

Can you think of another way to model these data for predicting demand? 

Discuss possible alternatives. 

Estimate the linear regression line for temperature values equal to or less 

than 60 degrees. 

Test for a significant linear regression at the a = .05 level of significance. 



442 INTRODUCTION TO PROBABILITY AND STATISTICS 

(c) Using the regression equation in part (a), predict “demand” for tempera- 

ture equal to 15 degrees. 

(d) Compute a 95% confidence interval on the average “demand” when the 

temperature is 15 degrees. 

81. Repeat Exercise 80 (a)—(d) using temperature values greater than 60 degrees. 

Also predict demand, and compute your confidence interval when the temper- 

ature is 90 degrees. 



CHAPTER 

I2 
MULTIPLE 

LINEAR 
REGRESSION 

MODELS 

- the last chapter we studied the simple linear regression model. This model ex- 

presses the idea that the mean of a response variable Y depends on the value as- 

sumed by a single predictor variable X. In this chapter we extend the concepts 

studied earlier to cases in which the model becomes more complex. In particular, we 

distinguish between two basic models: the polynomial model, in which the single 

predictor variable can appear to a power greater than 1, and the multiple linear re- 

gression model, in which more than one distinct predictor variable can be used. The 

techniques employed in each case are similar and conceptually easy. However, it will 

soon become obvious that, except for the simplest cases, the analysis is too cumber- 

some to handle without the use of a computer. This should present no problem, since 

computer software packages are available for the analysis of these models. 

12.1 LEAST-SQUARES PROCEDURES 
FOR MODEL FITTING 

In this section we develop the least-squares estimators for the parameters in both the 

polynomial and multiple regression models. Before introducing these models 

specifically, let us note that each of them is a special case of what is called the gen- 

eral linear model. These are models in which the mean value of a response variable 

Y is assumed to depend on the values assumed by one or more predictor variables. 

Recall from Section 11.1 that, for the simple linear regression model 

Va Boe tL; 
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the slope 8, gives the change in y for a unit change in a single predictor variable x. 

If the slope is positive, then as x increases so does y. Similarly, as x decreases, so 

does y. When the slope is negative, things operate in reverse. For the general linear 

model, the predictor variables X,, X>, ..., X, are not treated as random variables. 

However, for a given set of numerical values for these variables x), x5, ... , X,, the 

response variable denoted by Y|x,, x», . . . , X; is assumed to be a random variable. 

The general linear model expresses the mean value of this conditional random vari- 
able as a function of x), x5, ..., %,. The model takes the following form: 

General linear model 

Wer ly 0 oe Pinar od eae ape ks (12.1) 

The general linear model is a straightforward generalization of the simple lin- 
ear model. The interpretation is also similar. When all of the predictor variables 

except one, say X;, are held constant, the expected change in Y for a unit change in 

X; is B;, the coefficient of X;. Our task is to estimate the values of these parameters 

from a data set. The model is linear in the sense that it is linear in the parameters B,, 

B2, B3,--- + By- 

Example 12.1.1. Suppose that we want to develop an equation with which we can 

predict the gasoline mileage of an automobile based on its weight and the temperature 

at the time of operation. We might pose the model 

Myix,x, = Bo + Bix; + B2x2 

Here the response variable is Y, the mileage obtained. There are two independent or 

predictor variables. These are X,, the weight of the car, and X5, the temperature. The 
values assumed by these variables are denoted by x, and x, respectively. For example, 
we might want to predict the gas mileage for a car that weighs 1.6 tons when it is be- 
ing driven in 85° F weather. Here x,= 1.6 and x,= 85. The unknown parameters in the 
model are Bo, B,, and £5. Their values are to be estimated from the data gathered. 

It is possible to treat the polynomial and multiple regression models simulta- 
neously from the mathematical standpoint. However, they differ enough in a practi- 
cal sense to justify considering them separately. We begin with a description of the 
general polynomial model. 

Polynomial Model of Degree p 

The general polynomial regression model of degree p expresses the mean of the re- 
sponse variable Y as a polynomial function of one predictor variable X. It takes the 
form 

Polynomial model of degree p 

By. = Bo + Bix 4 Bont e Pox 
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cS 

(a) 

(b) 

FIGURE 12.1 

(a) Quadratic model: 

Myiz = Bot Bix 4 Box" 

(b) Cubic model: 

Myix = Bo + Bix + B2x? +B3x° 

where p is a positive integer. If we let x, = x, x. = x*,x3 = x°,...,x, = x?, then 
the model can be rewritten in the general linear form as 

By|x — Bo aie Bix a BX Pea B,Xp 

Scattergrams are useful in determining when a polynomial model might be appro- 

priate. The pattern shown in Fig. 12.1(a) suggests the quadratic model pry), = Bo + 

Bx + Bx°; that of Fig. 12.1(b) points to the cubic model pry), = Bo + Bix + B2x? 
+ B,x°. Once we decide that a polynomial is appropriate, we are faced with the 

problem of estimating the parameters Bo, B;, Bo, . . . , B,.To apply the method of 

least squares, we first express the polynomial model in the form 

Yee Spon debe Pe fepe anyon aegeeee neds) 
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where Y|x denotes the response variable when the predictor variable assumes the 

value x, and E denotes the random difference between Y|x and its mean value, 

My|x = Bo + Bix + Box? +--+ + B,x?. Arandom sample of size n takes the form 

1( X45 Abs ip (Xo, Yix5); Sikes (Gee Y|x,,)} 

where the first member of each ordered pair denotes a real number, and the second, 

a random variable. As in the case of simple linear regression, it is customary to drop 

the condition notation. The sample itself becomes 

{(44, Y,), (Xo, Y5), Sens) (Xe ey, 

where for each i = 1,2,...,n, 

Ie oan Pie Spo Re Ge 2 ae By x? + Ej l 

Once again, we assume that the random errors E), E>, ..., E,, are independent ran- 

dom variables, each with mean 0 and variance o°. 
The estimated mean response, estimated value of Y for a given value of x, and 

estimated curve of regression are given by 

y= Ue Vo tie bak te 

where bo, b,, b>, ... , b, are the least-squares estimates for Bo, B), B2.--- Baad 

find these estimates, we minimize the sum of the squares of the residuals. Remem- 

ber that a residual, e;, is the difference between the observed response, y;, and the 

estimated response when x = x;, 3; = Do + b,x, + byx7 +--+ + b,x?. We are 

therefore minimizing the expression 

Residual sum of squares 

SSE = Se? =) > [yen (Bo bie bee a Beye 
i=] t=] 

This is done by finding the p + | partial derivatives 

OSSE OSSE oSSE ASSE 

dbp. 00) “Obs ee db, 

These derivatives are then set equal to 0 to form a system of p + | normal equa- 

tions. A little computation will show that these normal equations are given by 

Normal equations, polynomial model 

bon + by Dix; + by Sx? +++ + by => y, 
i=1 i=1 i=1 i=1 

by Dx; ar by Sx} a bh» xe aye NO} ae DiS} mi a Say; GDPAsy, 

i=] i=1 t=] ° i=1 i=] 
n H 

by >, x8 + by xr! aye by Sixpt? angle = b> xe = Sixty; 
i=] i=] i=] i=] i=1 
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These equations are then solved simultaneously for the p + 1 unknowns bo, by, b>, 

..., D, to find the least-squares estimates for the model parameters Bo, B;, Bs, . . - , 

B,,. Of course, this is easier said than done! You will find that even for moderate val- 

ues of p, these calculations become cumbersome. To overcome the problem, we 

shall show you later how to express the model in matrix form. The solution can then 

be found by using standard matrix computer packages or any of the statistical soft- 
ware packages. We demonstrate these ideas with a very small hypothetical example. 

Example 12.1.2. A study is conducted to develop an equation by which the unit cost 

of producing a new drug (Y) can be predicted based on the number of units produced 

(X). The proposed model is 

Myx = Bor Pat Box? 

This is a polynomial model of degree p = 2. Assume that these data are available: 

Number of units Cost in hundreds 

produced (x) of dollars (y) 

5 14.0 

5 25 

10 7.0 

10 5.0 

15 orl 

15 1.8 

20 6.2 

20 4.9 

25 132 

DS 14.6 

The scattergram of these data is shown in Fig. 12.2. This scattergram does suggest a 

quadratic model. The p + 1 = 2 + 1 = 3 normal equations are 

Nw e 

FIGURE 12.2 

Scattergram of Y, unit cost in hundreds of dollars of producing a new drug, versus X, the number of 

units produced. 
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n n 

nbo are b Six, ‘tg by >) x? aa Si 

i=1 i= i=] 
n n n n 

by xi + by x7 + by x} = Di 
i=1 i=1 i=1 i=] 

n > n n n 2 

by > xi + b> xi = b> xi = Driv 
i=l i=l i=l i=] 

For these data, 

n= 10 2750 y= 

> x= L50 x =.96:290 Dy II 
Co a ap 

Substituting, we have the normal equations 

10by + 150b, + 2750b, = 81.3 
150b, + 2750b, + 56,250b, = 1228 

2750by) + 56,250b, + 1,223,750b, = 24,555 

It takes quite a bit of time to solve even this small system by hand. The reader may 

wish to verify that b) = 27.3, b, = —3.313, and b, = .111. 

We continue our discussion by describing the multiple linear regression model. 

Multiple Linear Regression Model 

The multiple linear regression model expresses the mean of the response variable Y as 

a function of one or more distinct predictor variables X,, X>,...., X,. It takes the form 

Multiple linear regression model 

MY i xpixa en ape Bots Pixie Borges a Bey 

We note that this model differs conceptually from the polynomial model. In the 

polynomial model we dealt with one predictor variable that could appear to powers 

greater than 1. Here we deal with k distinct predictor variables, each of the first 
degree. 

To apply the method of least squares to estimate the parameters Bo, B, 

f,, we rewrite the model in the form 

a 8 6 5 

Y|xX1, 2%) 00. % = By + Bix, + Boro +--+ + Bixee 

where Y|x}, %,..+ 9: x, denotes the response variable when the predictor variables 

D.C foes, X, assume the values x), x5, ..., x, and E denotes the random difference 

between Y|x), >, ..., x; and its mean value. A random sample of size n consists of 
a set of n (kK + 1)-tuples and takes the form 

{ (XipsX aps eee end \apeeke poe eek ek Lame De ee 

where each of the first A members of each (k + 1)-tuple denotes a real number, and the 
last, a random variable. Dropping the conditional notation, we express the sample as 
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LOGres cays da <9 NXki> Y):t= ih, Poe wee ,n} 

where 

Y= Pot Big BoxXo; + Byx,; + E; 

We again make the assumption that the random errors FE), Ey, ..., E, are indepen- 
dent with mean 0 and common variance o. 

The estimated curve of regression of Y on X,, X5,..., X;, 1s 

A 

Ve PLY cream epee Dos Dik{ Dox) > at DX, 

where bo, b;, b3,.. . , b, are the least-squares estimates for Bp, B;, Bo... - , B,., re- 
spectively. To minimize the sum of the squares of the residuals, we minimize 

SESS Cot SSID (nar hh ne ebegyi ohOo cet wane) b 
i=1 i=1 

By taking the k + 1 partial derivatives 

dSSE SSE oSSE aSSE 
Oboe peo + arOp, 

and setting them each equal to 0, we obtain these normal equations: 

Normal equations, multiple linear regression model 

n n n n 

bon ag by xi; AP by > x2; Bit ear b> Xti as ds); 

bl i=1 i=1 Baik 

by Sx * b> XTi au bs Mtoe be Si Xti oe xi (12.5) 
i=1 : i=1 i=] ¢ i=] i=] 

n i n n n 

bo >) Xxi ae b>) Xi X11 7 by YX 4iXj see bh. DXi ae Dx 
1 i=1 i=l i=1 i=1 

These equations are solved simultaneously for bo, b;, b3, .. . , b;. To illustrate, let us 

consider some hypothetical data. 

Example 12.1.3. To develop an equation from which we can predict the gasoline 

mileage of an automobile based on its weight and the temperature at the time of oper- 

ation, these data are gathered: 

Car number 1 2 3 4 5 6 7 8 9 10 

Miles per 
gallon (y) 72 les 64 16S IS IbS I7S 1@4 is ils 

Weight 

in tons (x) 126 1S) iO is a A} SO) Ht) gsi) ALO) 

Temperature 

in °F(x2) 90 30 80 40 315) 45 50 60 65 30 
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For these data n = 10 and 

0 10 10 

Se utwe S x1jXo = 874.5 >) ayy = 282.405 
i=l i=] ZI 
ie ; 

10 10 

S X>; = 525 x3, = 31,475 > xy; = 8887.0 

i=] i=! i=1 

10 10 

Si x2, = 28.6375 y, = 170 

The normal equations are 

, n n 

bon + by Sx, af bic = ye? 
i=1 i=1 i=] 

n n n n 

2 r r = ) 
by DXi “4 b> xii = by DX ;X; = uy 

i=] i=] i=1 i=] 

nl n n J n 

by >) Xai + by > Xai%1i + by >) x5: = D9 
i =i i=] 1 

Substituting, we obtain these equations: 

II 10by + 16.75b, + 525b, = 170 
16.75by + 28.6375b, + 874.5b, = 282.405 

525b) + 874.5b, + 31,475b, = 8887 

As you know, solving a system such as this by hand is time-consuming and monotonous. 

The use of a computer or at least a programmable calculator is becoming more and more 

appealing! The solution turns out to be by = 24.75, b} = —4.16, and b, = —.014897. 

We hope you will agree that, in concept, the idea of estimating a polynomial 

or multiple linear regression model from a data set via least squares is not hard. We 

simply extend the ideas developed in the simple linear regression context to a more 

complex model. 

Before closing this section, let us note that a third class of models can be de- 

veloped by combining the polynomial and multiple linear regression models in a 

natural way. In particular, we can write a model that entails & distinct predictor vari- 

ables X,, X>, X3, .. . , X, with one or more of these variables appearing to a power 

greater than | or with cross-product terms. Examples of such models are 

Myix,%= Bo + Bix, + Byx*) + Box 

and Myix,x, = Bo + Bix, + Box. + By2x\x» 

As you can see, models of this sort can become extremely complicated very quickly. 
In practice, the experimenter hopes to obtain an adequate model without having to 
include many nonlinear or cross-product terms because the presence of these terms 
makes the practical interpretation of the model difficult. Mathematically, these mod- 
els are no more difficult to handle than any other. 

All the models mentioned in this section are special cases of the general linear 
model. In fact, the normal equations given by (12.5) are the normal equations for 
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the general linear model. The procedures used for parameter estimation, prediction, 
and hypothesis testing are similar in all cases. In the next section we shall see that 

each of these models can be expressed in the same general matrix form. This greatly 

reduces the notational difficulties that exist and simplifies the equations involved in 
studying the model. 

12.2 A MATRIX APPROACH TO 
LEAST SQUARES 

It is evident from our work thus far that finding formulas for the least-squares esti- 

mators in a complex model is not easy. To overcome this problem, we turn to ma- 

trix algebra. In this section we shall: 

1. Express the general linear model in matrix form. 

2. Find a matrix expression for the normal equations for this model. 

3. Find a matrix expression for the least-squares estimates by solving the normal 

equations. 

4. Apply the results obtained to the polynomial and multiple linear regression 

models. 

To begin, recall that the general linear model assumes the form 

[ie oe ose Thy ae ERB a (ERE ey a ooo Sr Jee 

This model can also be written in the form 

Yo= Bot Bixit boa, + + Bye EB; p= 120 an 

The matrix formulation of the model becomes fairly obvious by writing these equa- 

tions in expanded form as shown: 

Y,; =Bo+ Bix + Born +++ + Byxa t+ Ey 

Y, = Bo + Bix. + Bary +--+ + ByXin + E, 

Y; = Bo + Bix13 + BoX3 +--+ + Buri t+ Es (12.6) 

Yi = Bo ats Bi Xin ar Bo Xp ee ae Brin BE, 

We need to define three column vectors. These are 

, Bo _ 
si By Ee 

Yi - B =a Bo Bie : 

ih E, 
By 

Note that Y is the vector of responses, f is the vector of model parameters, and E is 

the vector of random errors. We also need to define an n X (k + 1) matrix X. The 



452 INTRODUCTION TO PROBABILITY AND STATISTICS 

first member of each row of this matrix is 1. The remaining elements of the ith row 

for each i consists of the values assumed by the k predictor variables that give rise 

to the response Y;. That is, the ith row takes the form 

I Xj Xj X3; Soa X ki 

The entire X matrix is given by 

Lo xy) X21 X31 Xx 

1 X12 X22 X32 XK2 

X=] 1 x13 %3 X33 XK3 

I Xin X2n X3n °° * Xkn 

We shall refer to this matrix as the model specification matrix. The reason for this 

name is that to change from one model to another, we simply change X. In this sense 

X determines or specifies the exact form of the model under study. 

Note that since X is of dimension n X (k + 1) and B is of dimension 

(k + 1) X 1, X and B are conformable. Their product XB is ann X 1 vector. A sim- 

ple matrix calculation should convince you that the system of equations given by 

(12.6) can be expressed in matrix form as 

Multiple regression model matrix form 

Y=XB+E (12.7) 

These ideas are demonstrated in a less abstract setting by reconsidering a problem 
partially solved earlier (see Example 12.1.3). 

Example 12.2.1. An equation is to be developed from which we can predict the 
gasoline mileage of an automobile based on its weight and the temperature at the time 
of operation. The model being estimated is 

Myix,,x, = Bo + Bix, + B2x2 

These data are available: 

Car number | | 2 3 4 5 6 7 8 9 10 

Miles per 

gallon (y) VS) Woysy  Aitewih aleigss IRS YS WAS) 164 15.9 183 
Weight 

in tons (x,) ieckow INEST) aay) aleLOY keto) 2.08 160 1.80 1.85 1.40 
Temperature 

in “F (x5) 90 30 80 40 35 45 50 60 65 30 

The model for these data is 
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17.9 = By + 1.358, + 908, + 
16.5 = By + 1.908, + 308, + & 
16.4 = By + 1.708, + 808, + 

18:3 = By + 1.408, + 308, + e19 

In matrix form, these equations are expressed as 

y=AptreE 

where y denotes the vector of observed responses and € denotes the vector of realiza- 
tions on the random error vector E. In this case 

17.9 &| 

16.5 Bo E> 

y =| 16.4 B =| B, €=| &, 

: B> : 

18.3 £10 

and 

Tele85 90 

i 180) 30 

X=]1 1.70 80 

1 1.40 30 

The Normal Equations 

To find the matrix formulation of the normal equations, consider the matrix X’X, 

where X’ denotes the transpose of the model specification matrix: 

1 1 1 2.0.0 1 1 X)1 X71 O20 Xr 

he Bae Chee OOS cape) Sap Eon. 2 a Bae 

XIX =| Xi Xp NXg °° * Xo || 1 X3° X3 °° XB 

ea epee ee ie || elem one oe Nn 

n n nA 

a > i Seay ee ee 
i=1 i=l 
n n 

Dea Dai Dd 41:2 rate 
i=1 i=1 
n n 

a > Xj SS X1jX2; >; x3; > XKiX2i 
i=l i=1 

n n n 

ES, Nki SS XKiN i >, XKi%2i >; Xi 
j T=1 i=1 

Consider also the vector X’y. This vector assumes the form 
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l | l 1 yy 

Xi 12 13 Xin y2 

X'Y =| %y1 Xn %3 °° ** Xan || V3 

Xr Xa 3 Xin || Yn 

If we let b denote the vector of estimated model parameters, then 

bo 
b 

A quick matrix calculation should convince you that the normal equations given in 

(12.5) for the general linear model are given in matrix notation by 

Normal equations matrix form 

(X'X)b = X'y 

To illustrate, let us find the normal equations for the data of our last example. 

Example 12.2.2. The model specification matrix and vector of responses with which 
we are working are 

LPil.ao: <9) 9/4) 

L390 230 16.5 

1 1.70 80 16.4 

1 1.80 40 16.8 

y= th st0), Sie) aS 18.8 

Lie2.05' 545 ; Ilse) 

I slCef0)  Si0) Wie 

1 1.80 60 16.4 

[1.85965 15.9 

| 1.40 30 18.3 
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1 i i! 1 l 1 1 1 1 1 
KGAA M3 51:90 tele Om 180m 13092.059 1.608 1,80" 1.8511.40 

Ome) Sao) Weed Ome oe HA 5B TESO UR O08 165. 7.30 

£35990 

1.90 30 

1.70 80 

1.80 40 

STOP se) 

20545 

1.60 50 

1.80 60 

85" 65 

1.40 30 

10 16.75 29 

= LGW mee 8.03758 874.0) 

525. 874.5 31,475 

10 16.75 525 bo 

(X'X)b =| 16.75 28.6375 874.5 || b, 

92916) 814.5) 310475 |b, 

10by + 16.75b, + 525b, 
=| 16.75b, + 28.6375b, + 874.5b, 

525by + 874.5b, + 31,475b, 

ja ee eek peek ee 

Note that the entries in this vector constitute the left-side of the normal equations 

found earlier (see Example 12.1.3). The right-hand side of the system is given by X’y. 

In this case, 

1 1 1 1 1 1 1 1 1 1 

Ky =| eleson 190 R170 P80 13 0ne2.055 51-60 91.80.9185 91.40 

30 wero Ones OF eS See (45s 04 00 29 665 830 90 

| 17.9 
16.5 
16.4 
16.8 
18.8 
15.5 
17.5 
16.4 
159 
18.3 
170 

12821405 
8887 

Note that these values coincide with those of Example 12.1.3. 
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You should agree that even though the matrix approach to finding the normal 

equations entails some work, it is easier to remember that the normal equations are 

given by (X'X)b = X’y than it is to remember the system of equations given in 

(12.5) in the last section! 

Solving the Normal Equations 

To find the matrix formulation for the least-squares estimates for Bo, By, B2, .- - » By: 

we solve the system 

(X'X)b = X'y 

We know that if the columns of X are linearly independent, that is, no column can 

be expressed as a linear combination of the others, then X’X has an inverse. We de- 

note this inverse by (X’X)~!. To solve the normal equations for b, we multiply both 

sides of the equation 

(X'X)b = X'y 

by (X'X)~! to obtain 

pe txxy XY 

Theoretically, to find the least-squares estimates for the model parameters, we sim- 

ply compute 

Least squares estimate for B 

B=b=Q'xXX’y 

Again, this is easier said than done! It is no easy task to find the inverse of a matrix 

by hand except in the simplest cases. For this reason, in practice, we normally let 

the computer do the work for us. However, you should be aware of the fact that the 

computations are being performed via the matrix operations just described. 

To illustrate, we find the least-squares estimates for Bp, B,, and B, based on 

the mileage data given in Example 12.2.1. 

Example 12.2.3. The matrix X’X with which we are working is 

10 16.75 20 

X'X =| 16.75 28.6375 874.5 

525. 874.5 31,475 

We shall let the computer find (X’X)~' for us! 

You can verify that the inverse of this matrix is, apart from round-off error, 

6.070769  —3.02588 —.017188 

(X'X)~' =| —3.02588 1.738599 002166306 

—.0171888 002166306 = .0002582903 

The vector of parameter estimates, apart from round-off error, is 
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b= (X'X) lX’y 

6.070769 —3.02588 —.0171888 170 
—3.02588 1.738599 002166306 282.405 
—.0171888 002166306 —_.0002582903 |} 8887 

24.75 

—4.16 

—.014897 

The estimated model is 

Py, = 24.75 — 4.16x, — .014897x, 

Based on this equation, we estimate the mileage for a car weighing 1.5 tons on a 70° F 
day to be ) = 24.75 — 4.16(1.5) — .014897(70) = 17.47 miles per gallon. 

As mentioned above, we would normally utilize a computer to do these calcula- 
tions. As an example, the annotated SAS output for Example 12.2.3 is given below. 
On the printout the matrix X''X is indicated by (); X'y is shown by @). The inverse 
of X'X is given in @) and @) gives the vector of parameter estimates. 

A MULTIPLE 

LINEAR REGRESSION MODEL 

MODEL CROSSPRODUCTS X’'X X’Y Y'Y 

XOX INTERCEPT X1 x2 Vv 

INTERCEP 16.75 525 qd 170 
Xl 28.6375 874.5 282.405 
X2 874.5 31475 8887 

We 170 282.405 8887 Q) 2900.46 

X’X INVERSE, B, SSE 

INVERSE INTERCEP Xi X2 Ye 

INTERCEP 6.070769 —3,02588 -0.0171888 24.74887 

Xl —3.02588 1.738599 0.002166306 GB) —4,15933 

X2 —0.0171888 0.002166306  0.0002582903 —0.014895 

Ye 24.74887 — 4.15933 -0.014895 @) 0.1403498 

Recall that we developed a model earlier by which gas mileage could be pre- 

dicted based only on the weight of the car. (See Example 11.3.3.) In our earlier 

model the estimates for the intercept and coefficient of the weight variable were 

23.75 and —4.03, respectively. We should note here that the estimates for these pa- 

rameters in our current model differ from those obtained previously. This usually 

happens when a new independent variable is introduced into an older model. We 
shall determine later whether or not the addition of the temperature variable im- 

proves our model. 



458 INTRODUCTION TO PROBABILITY AND STATISTICS 

Simple Linear Regression: Matrix Formulation 

The simple linear regression model is a special case of the multiple regression 

model in which there is only one regressor. This regressor appears to the first power. 

The matrix techniques just developed can be applied to this model. In the next ex- 

ample we illustrate the matrix approach to simple linear regression by resolving the 

problem presented in Example 11.1.1. 

Example 12.2.4. Consider Example 11.1.1, in which simple linear regression was 

used to examine the relationship between humidity, the regressor, and the extent of 

solvent evaporation in paint. These data are obtained: 

(x) (y) 

Relative Solvent 

humidity evaporation 

(%) (%wt) 

Shy) IO 

29.7 11.1 

30.8 IPE) 

58.8 8.4 

61.4 9.3 

TAS} 8.7 

74.4 6.4 

ow 8.5 

70.7 7.8 

Oyo 9.1 

46.4 8.2 

28.9 122 

28.1 11.9 

39.1 9.6 

46.8 10.9 

48.5 9.6 

59.3 10.1 

70.0 8.1 

70.0, 6.8 

74.4 8.9 

(2a) Tha 

58.1 8.5 

44.6 8.9 

33.4 10.4 

28.6 11.1 

The model for these data is 

11.0 = By + 35.38, + &, 
11.1 = B, + 29.78, + «, 
12.5 = By + 30.88, + €; 

11.1 = By + 28.68, + €5 
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In matrix form we can write this system of equations as 

y=xBt+e 

11.0 | 

ales 8) 

where y =| 12.5 B= a &=| &, 
g By a 

ike E95 

The model specification matrix contains two columns. The first is a column of 1’s and 

the second is a column that contains the numerical values of the regressor. Here 

133.3 

2 os 

X=}1 30.8 

125.0 

You should verify for yourself that the matrix expression 

y—-AB7e 

yields the system of algebraic equations presented earlier. Since X is of dimension 

25 X 2, X’ isa2 X 25 matrix and X’X is a2 X 2 matrix. The general form of X’X is 

rai es 

os a 3s 

For these data 

peas mp5 2 eels 14:0 
Ahi oe Rie 

The vector X’y is 2 X 1 and has the general form 

Ly 
BX = ~ 

, Be 

In this case 

| See 

ais Baer 

The normal equations are 

(CX)bi =X y 

b : 
where b = i In this case the normal equations are 

1 

25b5 + 1314:9b, = 235.70 

1314.9b) + 76308.53b, = 11824.44 II 
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In Example 11.1.1 we found algebraically that the solution to this system of equations is 

by = 13.64 b, = —.08 

To find the solution using matrices, we must invert the matrix X'X. Since this matrix 

is 2 X 2, the inverse can be found without the use of the computer. In Exercise 6 you 

are asked to show that for the simple linear regression model, 

Bs poral ae Ae ce 
as ns. =e 

noe (Ex) z § <rtae 
For these data S,, = = 7150.05 and nS,, = 178751.24. Notice nS,, is 

n 
always equal to the determinant of X’X. Here, 

Rseiie’ 76308.53 seed 
~ 178751.24| —1314.9 25 

-| 42689 ee 

(XX 

—.00735  .00014 

You can verify for yourself that, apart from some round-off error, (X'X)(X'X)~! yields 

the identity matrix. The solution to the normal equations and the estimates for bp and 

b, are 

b= (X'X) ix'y 

» | 42689 —.00735] | 235.70 | 
a ~.00735 .00014 | |11824.44 

eilaa 

=.077 

Using the matrix approach, we have by) = 13.71 and b, = —.077. These values differ a 

little from those obtained earlier. The difference is due to some round-off error that oc- 

curs in forming (X'X)~!. In doing simple linear regression on a calculator that does not 

have a built-in regression capability, we shall probably find that the algebraic formulas 

from Chap. 11 are easier than the matrix approach. However, when regression is done 

via the computer, the algorithm used to find by and b, does entail setting up the matri- 

ces described here and computing the estimates for By and 8, by using matrix algebra. 

Polynomial Model: Matrix Formulation 

Since the polynomial model is a special case of the general linear model, to analyze 

such a model all we must do is to find the appropriate model specification matrix. 

The equations defining the model are 

Y, = By + Bix + Boxt + B3x} +--+ + Bp x4 + EB, 

Y, = Bo + Bix%_ + Boxd + Bgx3 +--+ + B,x4 + E, 

Y; = Bo + Bix3 + Box3 + Byx3 +--+ + Bx" + BE; 

mi ee Bo “UE BX, ar Bx; 1 B3x; Baek 0 7 Bp xP ame n 
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From these equations it is easy to see that 

Ley xi 

Le x2 

Kt cs x4 x8 

ib Rael fone xP 
n 

From this point on the analysis is identical to that of the general linear model. 

Example 12.2.5. These data are available on X, the number of units of drug pro- 

duced, and Y, the cost per unit of producing the drug. (See Example 12.1.1.) 

x = 5 10 10 Sens (5208 20 25 25 

y 14.0 12.5 7.0 5.0 Pd 1.8 6.2 4.9 2 14.6 

The model specification matrix for a quadratic model is 

1 

1 

1, 10100 

1 LOR LOO 

1h US PAS) 

1 

i 

1 

1 C5025 

10 150 2750 

XX =e 150 992750 56,250 

24501456,290 9152237750 

81.3 

X’y=| 1228 

24,555 

Apart from round-off error 

23 ge 01 

COO 30534285 00171429 

01 —.00171429 = .00005714286 

The least-squares estimates for Bo, 6), By are 

We 

Dia) XV lie 13 
Pi 

The estimated model is 

yee orears ie ix? 
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The predicted unit cost of producing 12 units of the drug is 

9 = 27:3 — 3.313012) + ALIG2y = 3.528 

The corresponding annotated SAS output for Example 12.2.5 follows. The matrices 

X'X and X'y are given by (1) and Q), respectively. (X’X) | is shown in @G), and the 

parameter estimates are found in @). 

xX’xX 

INTERCEPT 
Xx 
XSQ 

We 

INVERSE 

INTERCEP 
4 
XSQ 

ne 

DEP VARIABLE: Y 

SOURCE DF 

MODEL P 

ERROR 7 

C TOTAL 9 

ROOT MSE 

DEP MEAN 

Gy; 

VARIABLE DF 

INTERCEP | 

xX | 

XSQ | 

12.3 

A POLYNOMIAL MODEL 

MODEL CROSSPRODUCTS X’X X'Y Y'Y 

INTERCEPT et XSQ 

10 150 2750 
150 2750 56250 a) 

2750 56250 1223750 

81.3 1228 24555 Q) 

X’X INVERSE, B, SSE 

INTERCEP X XSQ 

os —0.33 0.01 
—0.33 005342857 — —0.00171429 @ 

0.01 —0.00171429 00005714286 

205 —3.313 0.111] | @) 

A POLYNOMIAL MODEL 

COST 

SUM OF MEAN 

SQUARES SQUARE F VALUE 

215.762 107.811 107.589 
7.019000 1.002714 
222.781 

1.001356 R-SQUARE 0.9685 
8.130000 ADJ R-SQ 0.9595 
12.3168 

PARAMETER STANDARD T FOR HO: 
ESTIMATE ERROR — PARAMETER = 0 

27.300000 1.518632 17.977 
—3.313000 0.231460 —14.314 
0.111000 0.007569542 14.664 

PROPERTIES OF THE 
LEAST-SQUARES ESTIMATORS 

We now have a way to generate point estimates for the model parameters Bp, 8), Bo, 
..., B, in the general linear model. These estimates are denoted DY Donia bere gee 
b, respectively, and are found via the matrix equation 

=eyeNls: 

0.111 

7.019 

PROB > F 

0.0001 

PROB > !T! 

0.0001 

0.0001 

0.0001 
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b=| by |= (X'X) X’y 

where y denotes the vector of observed values of the response vector Y. The estima- 
tors for Bo, By, Bo, ..., B, are denoted Dy Bo, Bi Bo. 5 B,. respectively. The vector v5 

of parameter estimators is denoted by £. This vector is defined by 

6B =| By |= (X’X)-x'Y 

As usual, we need to investigate the properties of these estimators. Before we begin, 
let us consider what is meant by the expected value of a vector of random variables. 

Y, 
¥ 

Definition 12.3.1. Let Y = : denote a vector of random variables. The 

Y, 
expected value of this vector is denoted by E[Y] and is defined by 

ElY,] 
E ery) =| 202] 

ELY,| 

A simple example should convince you that the rules for expectation that 

were used in the case of a single random variable also hold when dealing with vec- 

tors and matrices. 

] be a random vector and let C be the 2 X 2 matrix. 

ol 
Since the entries in the matrix C are constants, the former rules for expectation sug- 

gest that 

y, 
Example 12.3.1. Let Y = ; 

9) 

E[ CY] = CE[Y] 
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Let us show that this is true. 

By definition 

2V 3 Ys _ [El2Y,+ al 

6Y, + 7Y, | E[6Y, + 7¥o] 

_ (2E(¥,]+ cot 
~ (6E[Y,] + 7E[Y] 

2 B/C 

~ [6 4 ie 
CELY| 

For easy reference we list the matrix “rules for expectation.” These rules are 

easy to verify, and their proofs are left to the reader. 

Matrix rules for expectation 

Let Y and Z denote n X 1 random vectors, and let C denote an m X n 

matrix of constants. Then 

IELC] = Cc 

2. E[CY] = CE[Y] 

3. BLY Z| = BLY) EL) 

Expected Value of B 

Recall that in the case of simple linear regression we were able to show that By and 

B, are unbiased estimators for By and B,, respectively. The arguments given for this 

in Sec. 11.2 were fairly complex and algebraic in nature. Can we show that, in 

general, E[B] = 6? That is, can we show that Bp, B,,..., B,, are unbiased estima- 

tors for Bo, B,,..., £, in the general linear model? As you should suspect, the an- 

swer is yes. The matrix rules for expectation just developed allow us to verify this 
quite easily. 

To begin, recall that our general linear model in matrix notation is given by 

Y=XB+E 

Recall also that we are assuming that the random errors E;, E>, E3,..., E,, are in- 
dependent random variables, each with mean 0 and variance o?. Thus E[E] = 0 
where 0 denotes the zero vector. Using the rules for expectation, we obtain 
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E[Y] = E[XB + E] 

= E[XB] + E[E] 

The vector of least-squares estimators is given by 

Re Cee XY, 
Once again, we use the rules for expectation to conclude that 

E(B] = E[(X'X)X'Y] 
= (X'X) X’E[Y] 

= (X'X)"1X'XB 
=f 

This completes the argument that p is an unbiased estimator for B. 

Estimation of o? and Variance of £ 

To determine the variances of the estimators Bo, B,, By, ..., B,, we need to define 
what we mean by the variance of a random vector. 

Y, 
y 

Definition 12.3.2. Let Y = . denote a vector of random variables. By 

n 

Var Y, we mean the matrix 

Var Y, Cov(Y;, Y,) Hes Covey, ¥) 

Covey, 15) Var Y, Cov(Y,, Y,,) 

Covey, 3) Cov( ys, Y,) Var Y, Covi). ¥,) 

Covel. 1) Coviy,, ¥,) Vary, 

This matrix is called the variance-covariance matrix for the vector Y. 

The name variance-covariance matrix is fitting, since the elements along the 

main diagonal are the variances of the random variables Y,, Y>, Y3,..., Y,,; those off 

the main diagonal are the covariances between variable pairs (Y;, Y;), where i # /. 

Although there are several matrix “rules for variance,” we need only one. This 

rule is 

A matrix variance rule 

Var CY — C Vat YC. 

where C is an m X n matrix of constants and Y is ann X | vector of random vari- 

ables. Let us illustrate this rule in a simple context. 
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Example 12.3.2. Let Y = Ba be a random vector, and let C be the 2 X 2 matrix. 
2 

2 ; 
Saag 

2 vary) Cov(Y;, ey 
By definition Var Y = a PY Vee. 

Applying the variance rule, we obtain 

Var GeVe—1 Gav atv Ge 

2 3]/Var Y, eee le ‘| 
6 7||Cov(Y,, ¥,) Var ¥; 39 

4 Var Y, + 12 Cov(Y, Y2) + 9 Var Y3, 

1 Var Ypt32 Covers) cia 2 lV ately 

12 Vary, +2 32. Cow Ys iste Vat: 

36 Var Y, + 84 Cov(¥;, Y,) + 49 Var Y, 

or Var CY = 

Note that this rule parallels our rule for a single random variable that requires that con- 

stants be squared when factoring. 

We can now find a quick way to determine the variances of the least-squares 

estimators in the general linear model. We first note that in the context of the linear 

model we assume that Y,, Y>, Y3,..., , are independent with common variance a. 

Since independence implies zero covariance, the variance-covariance matrix for the 
random vector Y is given by 

Var. Veer! ( 0a O aa 

Oe Oem 0 eecercrs 

This matrix can be rewritten as o7/, where / is the n X n identity matrix, a matrix of 

l’s on the main diagonal with all other entries being 0. To find the variances of the 
least-squares estimators, recall that 

B = (X'X) 'X'Y 

Since the model specification matrix is of dimension n X (k + 1), X'X and eae 
are of dimension (kK + 1) X (k + 1). The matrix (X'X)~!X’ is a matrix of constants 
of dimension (kK + 1) X n. Using our matrix rule for variance with C = (X'X)~ LX’, 
we have 

Var & = Var[(X'X)~!X' Y] 

= (XX) EX Wars [GoaX) mek) 
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Rules for matrix algebra state that (AB)’ = B’A' and that (A~!)' = (A’)~!. Applying 
these rules here, we see that 

(XX) EX]! = X[(K'X) 1] 

= TCO. 

= X(X'X)7 
Substitution yields 

Var B = (X'X)~!X’ Var YX(X'X)7! 
NGEXO ENG XXX) 

= 07(X'X) "XX)X'X) | 

= 0°(X'X)"! 

Since a? is unknown, we replace it by an appropriate estimator. As in the case of 

simple linear regression, to estimate 0” we use information concerning the variabil- 

ity of the data points about the fitted regression equation. That is, our estimator 

makes use of SSE, the sum of squares of the residuals. To obtain an unbiased esti- 

mator for 07, we divide SSE by n — k — 1. Thus our estimator is 

Estimator for a? 

S? = SSE/(n —k - 1) 

Note that in the case of simple linear regression, k = 1 and @? = SSE/(n — 2). This 

coincides with the results obtained in Chap. 11. 

To compute SSE, we again parallel the technique used in the simple linear re- 

gression context. In particular, we write SSE as the difference between two compo- 

nents whose sources are recognizable. Although the algebra is a bit messy, it can be 

shown that 

SSE => [yea Boa Diy t Da apo ByXi)\° 
n=1 

= SY? = BSS es BL SxiY, = By Six, ca al Be QXui¥s 

tA i=1 i=l ial = 

By adding and subtracting the term (2?_, Y,)*/n, which is often called the correction 

factor, we obtain the expression 

n n n n n 2 

=) Loy Bey 2a, ata oe Be Xiao (Sy) || 
ral = = i= i=1 

You should recognize the first component on the right as S,,.We shall now refer to 

this term as the “corrected” total sum of squares. It measures the total variability in 

the data. The second component on the right is called the regression sum of squares. 
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It is denoted by SSR and measures the variability in Y attributed to the linear asso- 

ciation between the mean of Y and the predictor variables. Since 

SOE Sy Ole 

it is easy to see that SSE is a measure of the random or unexplained variability in 

the response variable. That is, it helps to estimate a. In Exercise 23 we outline a 

small example that will help you to understand the algebraic argument behind this 

derivation. To illustrate, we continue the gasoline mileage study begun earlier. 

Example 12.3.3. In Example 12.2.3 we found that the estimated regression equation 
for predicting the gasoline mileage of a car based on its weight and the temperature at 

the time of operation is 

Myix,,x) = 24.75 —4.16x, — .014897x, 

Since 

170 ope 
i=] 

X'y =| 282.405 |= X19; 
i=1 

8887 Seo 

we already have available most of the information needed to compute SSE. The only 

other term needed is ¥/_,y?. A quick computation yields a value of 2900.46 for this 

term. Substituting, we have 

10 10 2 
S\y = 10S9s = ( > ») |/10 = [2900.46 — (170)?]/10 = 10.46 

i=1 i=1 

10 10 10 10 2 

SSR = by SY; ar by Sx; 7 by > xi; a ( b ») ji 

i i=1 i=] i=] i=1 

= 24.75(170) — 4.16(282.405) — .014897(8887) — (170)7/10 

= 10.31 

By subtraction 

SSE = S,,-SSR = 10.46 - 10.31 = .15 
Hence 

a? = 5* = SSE/(n-—k-1) 

= 15/10 - 2-1) 

= .0214 

In Example 12.2.3 we found that the matrix (X’X)~! for these data is 

6.070769  —3.02588 —.0171888 
(X’X)~! =| —3.02588 1.738599 002166306 

—.0171888 002166306 0002582903 
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A 

Since Var B = 07(X'X)"!, to find the estimates for the variances of Bo, B,, and B5, we 
multiply each number on the main diagonal of (X’X)~! by G*. Thus 

Var By = 6.070769(.0214) = 1299 
Var B, = 1.738599(.0214) = .0372 
Ss 

Var B, = .0002582903(.0214) = .000005 

In practice, we let the computer do much of this work for us. However, to in- 
terpret the computer printout correctly, it is important to understand what is being 
done. 

12.4 INTERVAL ESTIMATION 

As in the past, it is helpful to be able to extend a point estimate for a parameter to 
an interval estimate so that its accuracy can be assessed. We consider three types of 
intervals here. These are 

1. Confidence intervals on the parameters Bo, B,, B>,..., B, of the general linear 
model 

2. Confidence interval on fry), y,..., x, the mean response for a given set of val- 
ues of the predictor variables 

3. Prediction interval on Y|x,, x», ..., x;,, an individual response for a given set of 

values of the predictor variables 

Confidence Interval on Coefficients 

Recall that one way to express the general linear model is 

We Bote Pit st oto, oe a Opty hE, 

where E,, E>,...., E, are assumed to be independent random variables, each with 

mean 0 and variance 0”. We now make the additional assumption that these random 

variables are normally distributed. This in turn implies that we are assuming that the 

random variables Y,, Y>,..., Y,, are independent and normally distributed. In ma- 

trix form we know that the estimators Bo, B,, Bo, ..., B, are given by 

B= (XX) XY 
Since (X’X)~!X" is a matrix of constants, each component of the vector (X'X)"|X'Y 

is a linear combination of the random variables Y,, Y>,..., Y,,. Since any linear 

combination of independent normal random variables is also normal, it is easy 
to see that each of the estimators Bp, B,, By, ..., B, is a normal random variable. 

We know that these estimators are unbiased for their respective parameters. The 

variance-covariance matrix for B is (X'X), 'o?. The variances of Bp, B,, Bs... , B; 

are given by Co907, Cy;07, . . - , Cy, tespectively, where c;; denotes the element on 

the main diagonal in row i + 1 of the matrix (X'X)~'. The random variable 
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A 

7 = Bi — B; 

oV ci: 

is standard normal. Since o is unknown, we replace it with its estimator S = 

VSSE/(n —k—1) to form the 7,,_,_,; random variable 

ie _ B-B; 
n—-k-l SV; 

This random variable has the same algebraic structure as many others encountered 

previously. Thus we know that the confidence bounds for §; are given by 

Confidence bounds for B;, the ith model parameter 

in the general linear model 

B eee SG where the point f,,. is the appropriate point based 

on the 7,,_,_; distribution. 

An example will demonstrate the use of these bounds. 

Example 12.4.1. To predict the gasoline mileage of a car based on its weight and the 

temperature at the time of operation, we have developed the regression equation (see 
Example 12.2.3) 

Ayix, x, = 24.75 —4.16x, — .014897x;, 

In Example 12.3.3 we found that s? = .0214 and hence that s = Vs? = .1463. The 
variance-covariance matrix is 

6.070769  —3.02588 —.0171888 

(X’X)~'o? =| —3.02588 1.738599 002166306 |a? 

—.0171888 002166306 = .0002582903 

A 95% confidence interval on Bo, the intercept for this model, is 

Bo = tar28V Coo 

Since n = 10 and k = 2, the number of degrees of freedom associated with the point 
tog5 1s 1O-2—1 = 7. The confidence interval is given by 

24.75 + 2.365(.1463) \/ 6.070769 

or 24.75 + .853. Since 0 does not lie in this interval, we have good evidence that By + 0. 

Confidence Interval on Estimated Mean 

Although confidence intervals of the type just described can be formed, a more use- 
ful type of interval is that on the mean value of the response variable for a specific 
set of values of the predictor variables. We denote the values of interest by X10, 
X29, ++ +s Xxo and note that these values are not necessarily those used to develop the 
regression equation. We know that an unbiased estimator for this mean is 
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DA traesiincs nahin Bo Pixie + Bots + + By Xto 

To find the variance of this estimator, we write it in matrix form as 

aw as I ~ 

DAA coy pee e Xe XoB 

ae : : . 
where xo = [1 X19 X99 * + * X¢9]. Using our matrix rule for variance, we have 

A a= A 

Var feed een ene sonata: Var XoB 

= xq Var Bx, 

= xpo7(X'X) "x, 

= o* xo(X'X) |x 

Standardizing and replacing a” by its unbiased estimator S*, we obtain the T,,_,_, 
random variable 

PY 1x45, x50, saaeaGen EY 1x49, X90 Meee X Ko 

! ! —] SV X9(X X) Xo 

It is easy to see that the bounds for a 100(1 — a@)% confidence interval on 

MY 1x19. X50, aase 5 CKO are 

Confidence bounds for y\,,,, x,,,...,x,,» the mean response 
for a given set of values of the predictor variables 

A ’ i ai 
Pov 5 eta BO AO) Xo 

where the point f,,. is the appropriate point based on the 7, _,_ 

distribution. 

The next example illustrates the idea. 

Example 12.4.2. In Example 12.2.3 we estimated the average gasoline mileage for 

a car weighing 1.5 tons being operated on a 70° F day by 

ee est 243) SLO (IED ee 01289770) a 

Let us now find a 95% confidence interval on this mean value. The vector x9 required 

is given by 

xj=[1 1.5 70] 

From previous work we know that 

©: 0769 ad 02555 —.0171888 

(X'X)~! =| —3.02588 ihagickssohee) .002 166306 

—.0171888 .002 166306 .0002582903 

and that s = .1463. A simple matrix calculation yields 

SOCOM age 



472 INTRODUCTION TO PROBABILITY AND STATISTICS 

Based on the 7, _,_; = T\y_>_, = 7) distribution, a 95% confidence interval in the av- 

erage gasoline mileage when x, = 1.5 and x, = 70 is 

A 
; = 

My ix, X30 ale toj2S K(X X) Xo 

or 17.47 + 2.365(.1463) V .22 

WA o16 

We can be 95% confident that the average gasoline mileage of cars weighing 1.5 tons 

operated on a 70° F day lies between 17.31 and 17.63 miles per gallon (mi/gal). 

Prediction Interval on Single Predicted Response 

The confidence bounds for an individual response for a given set of values of the 

predictor variables are similar to those for the mean value. As in the case of simple 

linear regression, the only difference is that the variance of the estimator is a little 

larger. The bounds assume the form 

Prediction bounds for Y|x,9, X39, .. - » X;o, an individual response 

for a given set of values of the predictor variables 

Y| x10, enue etre Le Nolet kp) ee 

where the point f,/. is the appropriate point based on the 7,,_,_, distribution. 

To illustrate, we find a 95% prediction interval on the gas mileage obtained by 

a particular automobile weighing 1.5 tons when operated at 70° F. 

Example 12.4.3. From our work in the previous example we know that fly)... »,, = 

Y| X10) X99 = 17.47, s = 1463, xo(X'X)'xp = .22. The desired 95% prediction inter- 
val is given by 

y | X10: X30 + tyjaS V1 + x9(X'X) 7X 

or 17.47 + 2.365(.1463) V1 + .22 

17.47 2538 

We can be 95% confident that a given automobile weighing 1.5 tons will obtain be- 
tween 17.09 and 17.85 mi/gal when operated on a 70° F day. 

12.5 TESTING HYPOTHESES ABOUT 
MODEL PARAMETERS 

In this section we consider three types of hypotheses concerning the parameters in 
the general linear model. These are: 

1. Hypotheses concerning the value of a specific model parameter B; 
2. Hypotheses concerning the significance of the regression model as a whole 
3. Hypotheses concerning the effectiveness of a subset of the original set of pre- 

dictor variables 
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Testing a Single Predictor Variable 

Occasionally an experimenter might suspect that a particular predictor variable is 
not really very useful. To decide whether or not this is the case, we test the null hy- 
pothesis that the coefficient for this variable is 0. That is, we test 

A: B; = 0 

A: B; #0 

The test statistic used is easy to derive. We know that the random variable 

follows a T distribution with n — k — | degrees of freedom. If H, is true, then the 
statistic 

Test statistic Hy: B; = 0 

By 8 

SV ci 

follows the T,,_,_, distribution. We reject H for values of this statistic that are either 

too large or too small to have occurred by chance. If Hp is rejected, then we have ev- 

idence that B; # 0. In this case the predictor variable X; is useful in predicting the 

value of the response. If Hp is not rejected, then the predictor variable X; is not 

needed in the model that contains the other predictor variables. Of course, null val- 

ues other than 0 can be tested. However, 0 is the most commonly encountered value 

in practice. One-tailed tests can be conducted if desired. 

Testing for Significant Regression 

A more interesting hypothesis is the null hypothesis that the regression is “not sig- 

nificant.” That is, we test the null hypothesis that the regression equation does not 

explain a sizable proportion of the variability in the response variable versus the al- 

ternative that it does explain a significant proportion of this variability. Mathemati- 

cally, we are testing 

Hoe Bi Optra By, 0 

H,: B,; # 0 for at least one i [el ele 

The groundwork for developing a logical test statistic has already been laid. We 

have shown that SSE, the residual sum of squares, can be expressed as 

SS) 8) a ONS 

Rewriting this expression, we see that 

Sy ae tatoo R 

That is, the total variability in the response, S,,,, can be partitioned into two compo- 

nents. These are SSE, the residual or unexplained variability about the regression 
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line, and SSR, the variability in Y attributed to the linear association between the 

predictor variables and the mean of Y. If the regression is significant, then SSR 

should be large relative to SSE. Our test statistic makes use of this idea. In particu- 

lar, we shall use the statistic 

Testing for significant regression 

SSR/k _ SSR/k 

SSE/(n—k-1)  S? 

to test Hp. It can be shown that if Hp is true, then this statistic follows an F distribu- 

tion with k and n — k — 1 degrees of freedom. The test rejects for large values of the 

test statistic. 
To illustrate, let us turn again to the multiple linear regression equation that 

we have developed to predict gasoline mileage based on the weight of the vehicle 

and the temperature at the time of operation. Let us see if this model explains a sig- 

nificant proportion of the variability that we observe in the response variable. 

Example 12.5.1. From previous work we have this information (see Example 12.3.3): 

n= 10 See LAG SSR = 10.31 

k=2 SSE = .15 

To test 

Hy: B; = B, = 0 

A,: B; = 0 for some i 

we evaluate the F,, ,_,—1 = Fy 9 —2-— ; Statistic 

SSR/k 

SoH/ (i —k— 1) 

For these data this statistic has value 

10.31/2 

rly 
= 240.56 

Based on the F, distribution, we can reject Hy with P < .05. We have good statistical 
evidence that 8, and B, are not both 0. 

Once we know that the regression is significant, a natural question to ask is, 
“What proportion of the total variability in Y is explained by our fitted regression 
model?” To answer this question, we parallel what was done in the case of simple 
linear regression. We define what is called the coefficient of multiple determination. 
This statistic, denoted by R’, is defined by 

Coefficient of multiple determination 

SSR Ree 
yy 
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When R? is multiplied by 100%, we get the percentage of the variation in Y ex- 

plained by the fitted regression equation. Values of R? near | are taken as an indi- 

cation that the model explains the data well. The square root of R? is called the 

multiple correlation coefficient between Y and the predictor variables. In our previ- 

ous example 

OSS a 
Sy 10.46 

Our fitted model has explained 98.57% of the variation observed in Y. 
Another interpretation of R’ is possible. Note that if a model does a good 

job of explaining the variation in Y, then responses predicted by the model, Y, should 

agree well with those actually observed; otherwise there will be substantial differ- 

ences between the observed and predicted responses. This leads one to suspect that 

there is a relationship between R? and f, the estimator for the Pearson coefficient of 

correlation between Y and Y. In fact, it can be shown that R? = p2. Thus a strong 

linear association between Y and Y yields a large value of R? and vice versa. The ac- 

tual responses and those predicted by the model are listed for the data of Example 

ees hese are: 

R? ='.9857 

y actual y predicted 

17.9 eo 

16.5 16.399 

16.4 16.486 

16.8 16.666 

18.8 18.820 

ilSy5) (Sy spy 

WES 17.349 

16.4 16.368 

ISS 16.086 

18.3 18.479 

As you can see, the predicted responses agree closely with those actually observed. 

Thus p should lie close to 1, and R* = #” should be large. A quick calculation gives 

p = .9932 and R? = f° = .9864. This agrees with the value found earlier, apart 

from round-off error. 

To better understand the logic behind the F test for a significant regression, let 

us rewrite the test statistic in terms of R*: 

SSR/k 
SSE/(n — k— 1) 

SSR/k 

* Sy 
~ SSE/(n — k- 1) 

Syy 

aoe R/S 
~ (1-R2)/(n-—k-1) 

Fi ee = 
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From this expression we see clearly that, apart from the constant multiple 

(n— k—1)/k, the F statistic is the ratio of the explained to the unexplained variation 

in Y. It is natural that we say that the regression is significant only when the propor- 

tion of explained variation is large. This occurs only when the F ratio is large. For 

this reason, our F test is always to reject for values of F that are too large to have oc- 

curred by chance. 

Testing a Subset of Predictor Variables 

Even if we find the regression significant for a particular model, it is usually desir- 

able to find the simplest model that fits the data well. Why use 10 predictor vari- 

ables if 3 will suffice? A formal test that allows the experimenter to determine 

whether a subset of the original predictor variables is sufficient for purposes of pre- 

diction can be conducted. To see how this is done, let X,, X>, X3, .. . , X, denote the 

original predictor variables. The model being considered is given by 

PY 1x1, x5) 06.5 Xe Got Bini Bake et 72 Bere 

This model is referred to as the full model. Assume that we propose to reduce the 

number of predictor variables by deleting all but m of them. Without loss of gener- 

ality, we assume that the first m variables are to be retained. The new model, called 

the reduced model, is given by 

JOD aera ce Aa = Bo - Bix, a3 BoX> pik Pe By Xm 

We want to choose between the reduced and the full models. We do so by testing 

Hp: reduced model is appropriate 

Hi,: full model is needed 

The method used to test Hp is rather intuitive in nature. We first find the residual or 
error sum of squares for the full model in the usual way. We denote this sum of 
squares by SSE, to indicate that this statistic is based on the full model, the model 
containing all & of the original predictor variables. We next find the residual sum 
of squares for the reduced model. This sum of squares is denoted by SSE, to indi- 
cate that only a subset of the predictor variables is used in its computation. We 
know that for a given model the residual sum of squares reflects the variation in the 
response variable that is not explained by the model. If the predictor variables 
Xm+1>Xm42,+++,5X, are important, then deleting them from our model should re- 
sult in a significant increase in the unexplained variation in Y. That is, SSE, should 
become considerably larger than SSE,. Our test statistic makes use of this idea. It 
is given by 

Test statistic Hy: reduced model is appropriate 

. _ (SSE, — SSE,)/(k — m) 
ii ted ie SSE,/(n —k— 1) 
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Note that if Hp is true, then the reduced model does as good a job of explaining the 

variability observed in the response variable as the full model. In this case SSE,. and 

SSE; will not differ much in value, SSE, — SSE; will be small, and the F ratio will 

be small in value. On the other hand, if Hp is not true, then the reduced model is not 

appropriate. In this case SSE, will be much larger than SSE;, SSE, — SSE, will be 

large, and the F ratio will be large in value. Logic dictates that we reject Hy in favor 

of H, for values of the test statistic that are too large to have occurred by chance 

based on the F,_,,, ,-, — , distribution. Although this sounds complicated, a simple 

example should clarify things. 

Example 12.5.2. At the moment we have two models proposed for predicting gaso- 

line mileage of an automobile. One bases the prediction on both the weight of the car 

and the temperature at the time of operation; the other uses only the weight of the car 

in making predictions. The former is the full model, whereas the latter is the reduced 

model. Let us test 

Hp: reduced model is appropriate 

H,: full model is needed 

From past work (see Examples 11.3.3 and 12.3.3) we know that 

SSE, = 1.01 SSE, = .15 n= 10 

Since the full model entails two predictor variables while the reduced model entails 

only one, k = 2 and m = 1. The observed value of the test statistic is 

(SSE, = SSEy)/(k = m) 

SOEs) (Maki) 

=] CLor 1D) /C=)) 

Si CLO 21) 

= 40.13 

1c See So =a 

Based on the F, 7 distribution, Hy can be rejected with P < .05. We conclude that 

adding the variable X,, the temperature at which the automobile is operated, improves 

the original model. 

12.6 USE OF INDICATOR OR 
“DUMMY” VARIABLES 

The previous sections dealt with multiple linear regression when the independent 

(predictor) variables are all quantitative such as height, temperature, time, or pres- 

sure. It is sometimes necessary to use qualitative or categorical variables. For ex- 

ample, variables such as sex, race, shift of work, and brand or type of product are 

qualitative; they have no natural scale of measurement. In such cases indicator or 

“dummy” variables are used in the model to account for the effect that the variable 

has on the response. Example 12.6.1 will illustrate the idea. 

Example 12.6.1. Consider Example 11.1.1 in which simple linear regression was 

used to study the relationship between humidity X and the extent of solvent evaporation 
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Y for a water-reducible paint. Suppose that the study is to be rerun by using two differ- 

ent brands of paint, A and B. It is believed that humidity generally affects both paints in 

the same way but that the responses for the two brands might be systematically differ- 

ent. Thus the regression model posed should contain two predictor variables, x), hu- 

midity, and x5, a variable that allows us to code the type of paint used. The model 

becomes 

Myix,x, = Bo + Bit + B2x2 

where we let 

| if type A paint is used 

0 if type B paint is used 

The variable x, is called an indicator variable because it is used to indicate the pres- 

ence or absence of paint A. To determine whether or not the qualitative variable, in ad- 

dition to the humidity, is useful in predicting the value of Y, we test 

Ho: B2 = 0 

H,: B, #0 

This can be done using the 7 test or the equivalent F test presented in Sec. 12.5. 

Consider an experiment involving one indicator variable. If Hp: B, = O 1s re- 

jected, then there is evidence that the qualitative variable is important in the model. 

In this case we are actually dealing with two separate models. For example, in the 

paint experiment when $B, # 0 and paint A is used, the model becomes 

PByix,.x, = Bo + Bix, + Bo) 

or PMyix,,x. = (Bo + Bo) + Bix, 

That is, the relationship between mean solvent evaporation and humidity is a 

straight line with slope 6, and intercept By + Bs. However, when paint B is used, 
the model is 

Byix, x, ra Bo zs Bix is B(0) 

Or HYvigi ce Pome Bray 

This represents a straight line with slope B, and intercept By. Note that these mod- 
els are linear with the same slope but different intercepts. Hence whenever we reject 
Hy: B, = 0 we are in effect concluding that we are dealing with two parallel re- 
gression lines with different intercepts. The estimated vertical distance between 
these two lines is the estimated difference in intercepts, namely, Bs 

Example 12.6.2. These data are obtained for the study described in Example 12.6.1: 
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(x;) (x) y 

Relative Presence of Solvent 

humidity paint A evaporation 

(%) (% wt.) 

85.3 1 AED: 

29.6 1 11.0 

31.0 1 12.6 

58.0 1 8.3 

62.0 1 10.1 

72.1 1 9.6 

74.0 1 6.1 

HID 1 8.7 

Wiel 1 8.1 

57.0 1 9.0 

46.4 1 8.2 

29.6 1 13.0 

28.0 i Lee 

39.1 0 6.7 

46.8 0 Ii 

48.5 0 6.8 

59.3 0 7.0 

70.0 0 Dy) 

70.0 0 4.0 

74.4 0 “ty 
Tei 0 4.9 

58.1 0 55 

44.6 0 6.1 
33.4 0 aS 

28.6 0 8.0 

The model specification matrix is given by 

35,3 

29.6 
So je 4 

28 Um 

oon 

46.8 0 

oO 

1 28.6 0 

With the help of the computer, it can be shown that 

488429 — 00753783 =.0993029 

(X'X)~! =| —.00753783 .0001402605  =.0002971544 

— .0993029 0002971544 — .160886 

and that 

A A 

Bo = 10.3979 Bo = 3.3938 s 

—0770 G? = 1.0374 

1.0185 ll > I 

» i 
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The 7 statistic used to test Hp: B. = 0 is 

Licks eeen 

3.3938 

1.0185 V .160886 

= 8.3074 

Based on this statistic, Hy can be rejected with P < .0005. It can be concluded that the 

type of paint used is an important factor in predicting the extent of solvent evapora- 

tion. The estimated model is 

Ayix.x, = 10.3979 — .0770x, + 3.3938x, 

When paint A is used, the model is 

lI jtyiy,.., = 10.3979 — .0770x, + 3.3938(1) 
or Py ix, x, 13.7917 ial .O770x;, 

Bey t 

The model for paint B is 

Mytnce © LOST? 07 70x, 3.39380) 

DE Pviz ce 10.3979 —< 0770s, ll 

Note that, as claimed, these estimated regression lines have the same slope, namely, 

—.0770, but different intercepts. The intercepts differ by B, = 3.3938. 

Since, when Hp: B, = 0 is rejected, two regression lines result, the natural 

question to ask 1s, “Why model them this way rather than simply fitting two sepa- 

rate regression lines?” The reason 1s that by pooling the data from the two groups, 

we obtain improved estimates of the common slope 8, and the common vari- 

ance 0°. 
A similar approach can be used for qualitative factors that have more than two 

levels. If, for example, we have three types of paint, A, B, and C, two indicator vari- 

ables are required to code the type of paint being used. To illustrate, for three types 
of paint the model becomes 

HY tite te = Po + Pty Bexat Bate 

where x, denotes the humidity and x, and x; are given by 

xX, = Oand x; = 0 if type A is used 

xX, = land x; = 0 if type B is used 

xX, = Oand x; = | if type C is used 

In general, if a qualitative variable has / levels, then / — | indicator variables are 
needed to code the levels of the variable. 
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In the model just discussed it is assumed that the quantitative variable x, af- 
fects all levels of the qualitative variable in the same way. That is, it is assumed that 
one has good reason to believe that the regression lines for each level of the quali- 
tative variable have the same slope with possibly different intercepts. When it is not 
known that this is the case, then a different model is needed so that a test for equal- 
ity of slopes can be performed. In the case of one indicator variable Xy, with two lev- 
els, an appropriate model is 

Pyix,,x. = Bo + Bix, + Byx.+ B3X\X) 

Note that when x, = 1, the model becomes 

PyY\x,,x. — Bo + Bix, + Bot B3x, 

or Evga, — (Po ™ Po) (67 7 Bam 

When x, = 0, the model reduces to 

Mylx, x, = Bo + Bix 

It should be clear that to test for equality of slopes, we test 

Hy: B; = 0 

,: B; #0 

via the T or F test described in Section 12.5. 

As you can see, even though the use of indicator variables is a bit tricky, the 

analysis employs only those techniques already presented. Further reading on re- 

gression using indicator variables can be found in [12] and [39]. 

12.7. CRITERIA FOR VARIABLE SELECTION 

As you can see, selecting the best model is not a trivial problem. In the case of poly- 

nomial regression the experimenter must decide on the degree of the polynomial to 

be used. In multiple linear regression he or she must determine which of the avail- 

able predictor variables yields the simplest adequate model. Selecting a final model 

is, in many ways, an art rather than a science. Clearly, experience is valuable. How- 

ever, there are several rather standard procedures that help in the model selection 

process. Most of these procedures are available in the standard statistical software 

packages. The use of these packages is straightforward, and this relieves us of the 

computational burden of regression analysis. However, it is important to understand 

what these procedures do. We summarize some of them here. 

The basic problem is to find as simple a model as possible that has a “good 

fit.” Since R? gives the proportion of the variability in the response that is ex- 

plained by the fitted regression equation, we obviously desire R* to be large. How- 

ever, most fitted models are used eventually for prediction purposes. Note that the 
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width of the confidence intervals on B;, My), x,....4, ANd Y|xy, X, .. . , X all de- 
pend in part on the statistic S? = SSE/(n — k — 1). To get narrow confidence in- 

tervals and accurate estimates for these entities, we want S* to be small. This 
statistic is referred to as the mean squared error. We can always increase the value 

of R* by adding more terms to the model. However, the addition of unneeded vari- 
ables may result in an increase in the mean squared error. Thus our real task is to 

balance these two measures of the goodness of fit of the model. We begin by con- 

sidering some widely used methods for choosing an adequate model. Each of these 

methods is based on the statistic R?. 

Forward Selection Method 

In the forward selection process, variables are added to the model one at a time un- 

til the addition of another variable does not significantly improve the model. That 

is, variables are added until we are unable to reject the reduced model. 

Example 12.7.1. Assume that we have available three possible predictor variables 

X,, X>, and X;. Suppose that our final model via forward selection contains only the 

variables X; and X, and that they entered the model in the order stated. These are the 

steps that are taken by the computer: 

1. The three single-variable models 

Myx, = Bo + Bix, 

By, = Bo + Box> 

Myx, = Bo + B3x3 

are fitted. The value of R* is found for each. The one with the highest R? is cho- 
sen and compared to the reduced model zy = Bp. In this case we test 

Ho: by = Bo (reduced model is appropriate) 

AI,: [ty\x, = Bo + B3x3 (full model is needed) 

and H, is rejected. The variable X, is now included in our model. 

2. The two two-variable models 

Myix,,x, — Bo + Bix, + B3x; 

Myix,.x. = Bo + Boxy + Bx; 

are fitted. The value of R* is found for each. The one with the highest R? is cho- 
sen and compared to the reduced model sry), = By + 8x3. In this case we test 

A: Myx, = Bo + Bax; (reduced model is appropriate) 

A: [byix,,x, = Bo + Bix, + B3x; (full model is needed) 

and Hp is rejected. The variable X, is now included in our model. 

3. The three-variable model 

Myiz,x,2x, = Bo + Bix, + Box, + B3X3 

is fitted, and we test 
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Ho: yin, — Po + Bim + P33 (reduced model is appropriate) 

Shiver = Poo Pia! Bak. F pans (full model is needed) 

In this case Ho is not rejected. The variable X, does not appear to be needed in our 

model. The final model that we obtain is the two-variable model 

PyYix,,x, — Bo + Bix, + B3x3 

As you can see, doing this type of analysis by hand is impractical. The use of 

the computer makes the problem simple. 

Backward Elimination Procedure 

Another method of selecting a model is called backward elimination. In backward 

elimination one begins with the model that includes all the potential predictor vari- 
ables. Variables are deleted from the model one at a time until the further deletion 

of a variable results in a rejection of the reduced model. 

Example 12.7.2. Assume that we have three potential predictor variables and that 

via backward elimination we obtain a reduced model containing only the variable X. 

Assume that the variables X, and X; are deleted in the order mentioned. These are the 

steps that are taken: 

1. The full model 

PyYix,,x,.%3 — Bo + Bix, + Bor. + B3Xx3 

is fitted. The value of R? is found. 

The three two-variable models 

Bylx, x. — Bo + Bix, + Box. 

by in, x, = Bo > Pitr & Bxs 

Myix,,x, = Bo + Box, + B3x3 

are fitted. The value of R? is found for each. The model with the largest R* is cho- 

sen and compared with the full model. In this case we test 

Ap: Myix,,x, = Bo + Box. + Bsx3 (reduced model is adequate) 

Ay: Pyix,x,x, = Bo + Bi%1 + Bor. + B3xs (full model is needed) 

and are unable to reject Hy. We delete the variable X, from the model, since it ap- 

pears that the reduced model is adequate. 

The one-variable models 

Byix, = Bo + Brx2 

Pyix, = Bo + Bsx3 

are fitted. In this case we test 

Ap: byix, = Bo + B22 (reduced model is adequate) 

Ay: byiz,,x, = Bo + Boxe + B3%3 (full model is needed) 
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and are unable to reject Hp. We delete the variable X; from the model, since it ap- 

pears to be unnecessary. 

4. We now fit the model wy = Bo and test 

Ap: by = Bo 

Hy pre Bo + Brx2 

In this case Hy is rejected, and we are left with the model that contains the one 

predictor variable X,. 

The third method of variable selection that is in widespread use is called step- 

wise regression. 

Stepwise Method 

Stepwise regression is a modified version of the forward selection process. In for- 

ward selection, once a variable enters the model it stays. Unfortunately, it is possible 

for a variable entering at a later stage to render a previously selected variable unim- 

portant because of the interrelationships of the variables. This usually occurs when 

the two predictor variables are themselves closely related. Forward selection does 

not consider this possibility. In stepwise regression, each time a new variable is en- 

tered into the model, all the variables in the previous model are checked for contin- 

ued importance. 

It is hard to describe in general terms what is done in stepwise regression. 
However, an example should clarify matters. 

Example 12.7.3. In a multiple linear regression model, variables X, and X; are 

closely related, with variable X; being the best single predictor. Suppose that the final 

model contains the two variables X, and X3, with variable X, entering on the second 

stage. The steps in the stepwise regression are 

1. The three single-variable models 

Pyix, = Bo + Bix 

Sloane Bo + Box? 

Myx, = Bs + B3x3 

are fitted. The value of R* is computed for each, and the model with the largest R? 
is compared to the model 

Hy = Bo 

In this case we test 

Hp: by = Bo (reduced model is adequate) 

Ay: pyiy, = Bo + Bix (full model is needed) 

and reject Hy. The variable X, is inserted into the model. 
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2. The two-variable models 

Myix,.x, — Bo + Bix; + Boxy 

Myix,,x, = Bo + Bix, + B3x3 

are fitted. The one with the largest R* is compared to our previous model. Here 
we test 

Alo: fy)x, = Bo + Bix (reduced model is adequate) 

Le Ly ee = Gol Bikiee Bae (full model is needed) 

and reject Hp. We also check to see if the variable X, is now needed. To do so, we 
test 

Ao: fy\x, = Bo + Box. (reduced model is adequate) 

Hie pris, 5, = Bat Pix Box, (full model is needed) 

and reject Ho. The variable X, alone is not sufficient. We still need X, in our model. 

3. The model 

PY ince ae Bo + Bix, + Box. + B3x3 

is fitted. We test 

Ho: PLyiz. x, = Po + Bit1 + BoX2 (reduced model is adequate) 

Pie Pivine ce 0 te id aes te oa. (full model is needed) 

and reject Ho. The variable X; is included in the model. To see if we still need 
variable X,, we test 

Ho. Piyigee = Poh Pik + P33 (reduced model is adequate) 

iyi ee Pon a it a ote © aks (full model is needed) 

and reject Hy. This leaves X, in the model. To see if we still need variable X, in 
the model, we test 

Ao: by, x, = Bo + Box, + B3x3 (reduced model is adequate) 

Ay: Myx, x2, = Bo + Bix, + Box. + 3x3 (full model is needed) 

and are unable to reject Ho. At this point, X, is deleted from the model, leaving us 

with a prediction equation based on the two variables X, and X;3. 

The three techniques just described have been used for many years, and you 

will see references to them in the literature. These three techniques do not always 
lead to the same model, but they do allow the researcher to find a reasonable linear 

combination of regressors without having to examine all possible combinations. 

This was a major advantage in the early years of computing, when fitting a model 

was a time-consuming process. With the advent of efficient high-speed computing, 
it is now possible to examine all linear combinations of regressors. For a model with 

k regressors, the computer can fit 2 models quickly. Some models may be quite 

good, whereas others are worthless. Recent research has concentrated on techniques 
that allow the researcher to compare one model to another. In this way he or she can 
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choose the model (or models) that appears to do the best job in describing the rela- 

tionship between the regressor and the response. We now describe three of the sta- 

tistics currently being used to make these judgments. Note that if no satisfactory 

linear combination of regressors is found, then other models can be tried. 

Maximum R? Method 

The Max R? procedure selects at each step j, j = 1, 2,3,...,k, the set of j variables 

that gives the largest R?. Although R? will always increase as more variables are 

added, the mean squared error usually will first decrease and then increase as addi- 

tional variables are selected. Typically, the experimenter selects the model corre- 

sponding to the smallest mean squared error. 

Mallow’s C, Statistic 

The Mallow’s C, statistic is based on the normalized expected total error of estima- 

tion, which is given by 

E| SLY,- £(%) 1? 
(3 SSE 

| eeareemrenrsr ir ae-eeeemenl = emer wis PAU a eo 
ate o- 

where k + | is the total number of parameters in the model, including the intercept 

Bo. After substituting the sample estimator S° for a’, we see that the C;, statistic is 

_ Sok 

te 

A value of C, near k + | suggests that the model bias is small. That is, there is no 

significant overfitting or underfitting of the model. Values of C, near or below k + 1 

are generally desirable. 

C, RPV AU Seer tit Bo 

PRESS Statistic 

A somewhat different procedure for model selection is based on the PRESS (pre- 

diction sum of squares) statistic proposed by D. M. Allen. This statistic is used pri- 

marily to select a model for purposes of prediction. It is somewhat unnerving to 

realize that in the usual regression context we use each observation to develop an 

equation by which the value of the observation can be predicted. For example, we 
use information on the gasoline mileage of a car weighing 1.6 tons driven on a 50° F 
day to develop an equation by which we can predict the gasoline mileage of a car 
weighing 1.6 tons driven on a 50° F day! The PRESS statistic avoids this dilemma. 
For a specified model the PRESS statistic is formed by predicting each observation 
based on a model developed by using all the other observations. In short, the statis- 
tic is formed as follows: 

1. All data points except the first are used to fit the model. The value of the first 
observation, y,, is predicted from the fitted model. The PRESS residual y, — 9, 
is found. 
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2. All data points except the second are used to fit the model. The value of the sec- 
ond observation, y>, is predicted from the new fitted model. The residual V2 — Vo 
is formed. 

3. This process is continued until each observation has been predicted from the 
others and the PRESS residual found. 

4. The PRESS statistic is defined to be the sum of the squares of the PRESS resid- 
uals. That is, PRESS = &_,(y; — 3;)?. The model chosen is that with a small 
value for PRESS. 

It is evident that evaluating the PRESS statistic in this way entails a great deal of 
computation. Fortunately, a shortcut method is available and the statistic can be 
found via SAS. 

The ideal model for prediction has small PRESS, small C, small mean 

squared error, and large R* . Since it is almost too much to ask that one model have 

all these properties, the experimenter must use his or her own judgment to select 

the best model. Although all these criteria are useful, if forced to rate them in or- 

der of importance, we would rely upon PRESS, C,, and mean squared error in that 
order. 

In the next two examples we illustrate these criteria for two data sets. The first 

data set is unusual in that each of the criteria mentioned points to the same model. 

The second data set forces us to make some value judgments in selecting the model. 

Example 12.7.4. It is known that in mammals the toxicity of various types of drugs, 

pesticides, and chemical carcinogens can be altered by inducing liver enzyme activity. 

A study to investigate this sort of phenomena in chickens was reported in “Organo- 

phosphate Detoxification Related by Induced Hepatic Microsomal Enzymes in Chick- 

ens,” M. Ehrich, C. Larson, and J. Arnold, American Journal of Veterinary Research, 

vol. 45, 1983. Regression analysis was used to study the relationship between induced 

enzyme activity and detoxification of the insecticide malathion. Butylated hydroxy- 

toluene (BHT) was the enzyme inducer used. Each number represents the percentage 

of activity relative to a control, an untreated chicken. The response variable is the per- 

centage of detoxification of malathion. Five enzyme activities were measured and 

serve as the predictor variables. The data gathered are shown in Table 12.1. Table 12.2 

gives the value of the R? and C;, statistics for all possible models. Table 12.3 shows the 

estimated regression coefficients, the mean squared error (MSE), and the PRESS sta- 

tistic for each model. From Table 12.3 we see that the estimated model with all inde- 

pendent variables included 

fe ee ee =154,079 097g 0340) 52214 1 2.055x,-F 2.559%, 

has the smallest mean squared error (54.00) and also the smallest PRESS statistic 

(1995.1). From Table 12.2 we see that the same model also has the largest R? (.976) 

and the smallest value of C, (6.00). Hence all our criteria suggest the same model, 

namely, the one containing all five predictor variables. 

The situation just encountered makes the experimenter very confident in the 

model selected. Unfortunately, such a clear choice is rare. A more typical situation 

is demonstrated in the next example. 



TABLE 12.1 

BHT raw data 

% Detoxification Enzyme | Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5 

(y) (x1) (x3) (x3) (x4) (x5) 

146.104 348.475 337.500 108.122 106.667 107.692 
152.597 233.220 260.417 82.234 80.000 88.889 
168.831 287.458 273.958 74.619 66.667 87.179 
178.571 152.542 310.417 86.802 13333 96.581 
191.558 276.271 818.750 122.843 86.667 97.436 
113.636 78.644 156.250 112.690 930355 94.872 
188.312 196.949 260.417 79.188 80.000 106.838 
94.156 101.695 112.500 127.919 933383 80.342 
159.09] 194.576 280.208 239.594 106.667 91.453 
142.857 325.424 326.042 173.096 113.333 100.000 

TABLE 12.2 

Values of R* and C, 

Number of 

variables in Variables in 

model R? G; the model 

1 037 NEI) x3 

| 180 128.2 x4 

| 186 1272, x 

| 222 Pi) Xs 

| 408 90.9 X> 

2 219 1237 as Xa 

2 22) 122.5 X1. X3 

2 244 119.6 X3, Xs 

2 .283 ilsksy3} X, Xs 

2 425 90.0 X1, % 

2 455 85.1 Xone 

p 467 83.1 XX 

2 488 79.8 eve 

a 543 70.8 X4, Xs 

2 574 65.8 ge ta 

3 31 110.7 Ay, Xonts 

3) 473 84.2 Xs eo ety 

3 489 81.6 X1, X, Xs 

5) pyre 76.0 Xp, X3, X5 

a fs) 67.5 X1, X3, X4 

3 594 64.5 Xn, X3, X4 

3) .636 De Kis Woe Xd 

3 .642 56.6 X15 X4, Xs 

3 746 39.5 X>, X4, Xs 
3 833 ke baa Se Ree 

4 soy} WI Sais arate 
4 691 50.6 Miata etd 
4 .764 38.7 Ais Moni as ces 
4 927 12.0 Daud nce 
4 .948 8.5 i535 .X4;. 08 

=) S76" 0.0 Score co eva ye VAMC 
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Estimated models ordered by PRESS a aa ae ee A A 

Bo B, B, B; Bs Bs MSE PRESS 
54.079 .097 034 22 ODS DIY) 54.00* OOo wles 
49.802 mil O00 588 —2.910 2.195 91-70 2003.6 
16.103 000 000 578 = 2? 3,319) | 245.39 3053.4 
37.316 000 056 472 = 27422 DAS 129.78 6343.8 
43.403 O00 O00 OOO = Ib 137 DIXSII STB) 7602.9 
75.416 JD OOO OOO = || es) 1.738 S273 8306.2 

230.841 .000 .000 000 = 9) O00 905.74 9509.2 
ZAMes OS 188 000 O00 sale lOO 000 672.15 9576.4 
242.091 IMS) .000 ally = 10934 O00 625.16 10003.4 
US3.57/ 000 000 O00 O00 OOO 981.64 10907.1 
250.583 O00 OOO 187 =i Sr3 O00 985.45 11001.3 
121.140 148 O00 OOO OOO OOO 899.15 12000.0 
10.343 000 OOO 000 OOO 1.723 859.23 12051.7 

167.842 .000 OOO = US OOO OOO 1063.05 14569.6 
(LA .094 O00 O00 .000 L273) 905.29 sys 3 
66.588 .000 078 O00 OWE 1.671 373.64 16149.6 
51072 000. O00 ==. 092 .OO0 1.672 953.55 Ie 

BSS) 149 OOO Se lZ4 O00 O00 79,13 18271.4 

120.779 O00 105 000 .000 OOO 654.19 20911.9 

NCES .000 089 000 O00 1.092 646.50 212413 

30.820 .099 OOO = 103} OOO 1.193 1014.61 ZSS 2a 

195.577 O00 sll@8) .000 02) O00 538.23 23842.5 

136.482 .000 .106 — 134 000 O00 687.35 28098.8 

210.467 .000 101 134 = Il Kes) OOO 598.37 30378.6 

78.197 O57 .067 O00 = 1k26 S05 417.61 30380.0 

42.773 OOO 091 = IG .000 1.010 702.12 30904.6 

193.349 aOZ .078 O00 = Sia) O00 535.74 41406.9 

218.604 IBS .067 233) = 11 97 OOO 546.09 41871.2 

113.148 .052 .092 .000 .000 OOO 725.29 49496.5 

24.291 .O1S .086 OOO O00 1.040 W237 53154.6 

128.842 053 .094 —,134 000 OOO 775.61 60113.7 

46.104 019 088 sella, OOO 945 839.08 68821.9 

Example 12.7.5. An analysis similar to that described in the previous example was 

completed for the enzyme inducer 3-methylcholanthrene (3-MC). The complete data 

set is given in Table 12.4. Tables 12.5 and 12.6 give the values of R’, C;, the estimated 

model parameters, MSE, and PRESS statistics for these data. Let us now see which 

models are suggested by the various criteria. From Table 12.5 we see that, as expected, 

the five-variable model has the largest R?. The smallest value of C, is 1.4. This corre- 

sponds to the model containing only the two variables x, and x). From Table 12.6 we 

see that the smallest MSE is associated with the three-variable model containing the 

predictors x, Xj, and x3. The smallest PRESS statistic corresponds to the model con- 

taining the variables x, x4, and x;. Summarizing, we find that our criteria suggest these 

models: 



TABLE 12.4 

3-MC raw data 

% Detoxification Enzyme | Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5 

(y) (x4) (x) (x3) (x4) (xs) 

56.250 106.329 90.756 94.650 162.791 114.737 

75.000 144.726 203.361 131.687 255.814 112.632 

115.625 136.287 672.269 123.457 191.860 153.684 

68.750 154.430 183.193 113.169 i342 116.842 

96.875 5 Oomae 140.336 117.284 174.419 87.368 

168.750 583.544 146.218 152.263 273.256 94.737 

84.375 489.45] 184.874 PASE, 255.814 95.789 

Leonie) 445.992 537.815 150.206 552.326 113.684 

109.375 270.886 309.244 185.185 534.884 108.421 

103.125 163.291 190.756 139.918 360.465 106.316 

TABLE 12.5 

Values of R? and C, 

Number of 

variables in Variables in 

model R? CG the model 

1 .003 IB) Xs 

| 219 9.0 X> 

1 347 6.6 X4 

1 2319 6.0 X3 

1 448 4.6 x; 

2 347 8.6 X4, X5 

2 380 8.0 re oe 

y 396 7.6 ess 

2 421 see Noein 

2 478 6.1 X>, X3 

z) DS 3.8 Xp, X5 

2 612 3y5) X1, X3 

2 616 3.4 seal 

2 647 2.8 X15 X5 

Z Alls: RA Xe coy 

3 697 9.6 X3, X4, Xs 

3 481 8.0 Matas Xr 

3} .603 Shi Xp, X4, Xs 

3 .630 oa eRe 

3 642 4.9 X>, X35, Xs 

3 720 3.4 X1, Xp, Xs 

3 765 ica este 5 
3 .776 PRS) XV}, X3, X5 

3 779 23° WY xg aay Xe 
3 783 PR?) 1, X> X3 

4 652 6.7 Xo, X3, X4, X5 

4 780 4.2 M1393 Seay ts 
4 .784 4.2 Mile oR ante 

4 788 4.) X1 Xp, X35 Xs 

4 790 4.1 X15 X3, X4, Xs 

5 793* 6.0 X1,.X2, X3, X4, Xs 

490 



MULTIPLE LINEAR REGRESSION MODELS 491 

TABLE 12.6 

Estimated models ordered by MSE SS a 
Bo By B, Bs; Bs Bs MSE PRESS 

— 16.46 NBS) .090 441 000 000 497.09* 11015.6 
—101.92 BOs) 000 O00 .100 1.103 507.00 7758.1* 
— 150.64 .190 000 5 000 1.104 514.42 10557.8 

22.34 141 087 000 065 000 537.89 9097.3 
30.64 159 107 .000 000 000 552.80 8855.7 

NAT 189 000 307 058 1.093 578.10 17167.8 
cat ple () 158 .O57 493 .000 451 el) BOOS 
=A TG oll ID .089 IDS O10 000 595.42 19444.9 
ao OF, ollisi5) 018 000 .093 897 606.00 16131.7 
54.13 147 al 22 000 000 = NS) 641.93 16905.5 

—94.18 222i 000 000 000 2H 693.16 10013.5 
=S9.57 all 7 .033 338 040, 724 713.42 30456.1 
37.34 sy 000 000 Al 000 754.37 12085.2 

=iNPI2 116 .000 .668 000 000 761.60 15478.5 
261.15 .000 .239 000 000 =f) 799.87 8877.2 
169.28 000 BLO? 416 000 —1.545 821.08 15271.4 

6.73 116 000 346 065 000 847.9] 27762.1 
230.98 .000 Pali 000 035 = fae 910.08 11644.5 
61.67 SO) .000 000 000 000 948.16 12618.8 

167.11 .000 ii .639 = 1055) —1.694 956.45 2932S 
alee 000 067 815 000 000 1024.92 20604.9 

NP .000 000 950 000 000 1067.65 20324.6 

60.25 .000 .000 000 Blas) 000 1122.04 14651.1 

52.40 000 .060 000 AY 000 IY Loyy/ 13480.9 

2.34 000 000 .633 .064 000 1186.27 37564.8 

E230 .000 .064 702 024 000 1190.57 41585.2 

STOO 000 .O00 956 000 .063 1218.50 24933.1 
59.36 000 O00 000 Ble) 008 1282.30 25800.4 

79.36 .000 .096 .000 000 000 1341.90 20320.4 

—4.57 .000 000 .640 064 O55 1382252 48787.1 

105.00 000 000 .000 000 .000 1528.21 16980.1 

117.81 000 000 000 000 = ING 1714.26 21392.9 

Criterion Independent variables used 

Largest R? Sih Se Sy Ses Bs 

Cr iy 3H 

MSE X1, Xo, X3 

PRESS WG Diy O85 

We have a problem! Which model do we choose? Let us assume that we want good 

predictive ability and as good a fit of the data as possible. Looking at Table 12.6 more 

closely, we see that the first five models listed differ only slightly in MSE. The second, 

fourth, and fifth of these models have reasonably close values of the PRESS statistic. 

Hence let us look further at models 2, 4, and 5. The characteristics of these models are 

given below: 
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Model Variables MSE PRESS R? Gr. 

Hapa jm OT 00 alae 1S Salen eee 
Ki Koka  » 50789 90089 «65 25 
His 5 552.80 8855.7 .719 14 oe Sa De) 

We note that each of these models has a reasonably large R? relative to the maximum 

R2 of .793. Model 5 has the smallest value of C,, but model 2 has the smallest value 

of PRESS, the smallest MSE, and a small value of C,. Practically speaking, each 

of these models would probably perform reasonably well. For predictive purposes, 

model 2 is our choice. This fitted model is given by 

fiyix,.x, = —101.92 + 0.195x, + 0.100x, + 1.103x5 

12.8 MODEL TRANSFORMATION AND 
CONCLUDING REMARKS 

We have seen how to estimate a curve of regression when it is appropriate to assume 

that a linear relationship exists between x and the mean of ¥. We have also seen how 

to use scattergrams of the data and residual plots to get a visual check of the valid- 

ity of this assumption. If repeated observations are available at some regressor val- 

ues, then we have learned how to test for lack of fit. What can we do if there is 

strong evidence that a linear regression is not appropriate? This question is not easy 

to answer since the approach taken depends on how the data deviates from linearity 

or violates the assumptions underlying the simple linear regression model. In this 

section we summarize a few useful “tricks of the trade.” 

To begin, consider the scattergrams shown in Fig. 12.3. In each case an “eye- 

ball” curve of regression has been drawn through the data. What sort of equation 

would best describe these curves? This question is not easy to answer. In fact, there 

may be several different equations that work well. Notice that a fundamental differ- 

ence exists in the scattergrams presented. In each case a curve rather than a straight 

line seems to fit the data. In Fig. 12.3(a) there is no apparent change in spread or 

variability as the value of x changes. Thus there is no suggestion that the assump- 

tion of equality of variance is violated. This is not the case in Fig. 12.3(b). Not only 

do the data suggest a curve rather than a straight line, but the variance does appear 

to be different at different values of x. Due to this difference in the data, the two 

cases are not handled in the same way. In the former case a polynomial model is 

probably appropriate. That is, we use the techniques presented in this chapter to fit 
a model of the form 

Bey = Bok Bier Box? + +++ + pox” 

where p is a positive integer greater than 1. 
In the latter case either an exponential model or a power model can be tried. 

These models are nonlinear models because they do not express the average re- 
sponse as a linear function of the parameters. They are explained in the following 
example. 
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(a) (b) 

FIGURE 12.3 
(a) A scattergram for which a polynomial model is appropriate; (b) a scattergram for which an 
exponential or a power model should be tried. 

Example 12.8.1 (Exponential model). The exponential model assumes the form 

byix = Boe?* x>0 

or Ve Doe, 
Notice that this model is different from those presented earlier in two respects. First, 
it is nonlinear. Second, the random error e; is not added to the term Bye*''; rather, it is 
a multiplier. This fact accounts for the difference in variance for different values of x. 

Even though the model is nonlinear, it is intrinsically linear. To say that a model is in- 

trinsically linear means that it can be tranformed or rewritten in an equivalent form 

that is linear. This process, called linearization, is accomplished in this case by taking 
natural logarithms to obtain 

In y; = In Boe*i*ie; 

By the laws of logarithms the right-hand side of this equation can be written as 

In By + B,x; + In e;. If we let In y; = y*, In By = B%, B; = B4, and In e; = e*, then the 

transformed model becomes 

yt = Bh + Bix, + ef 
This model is a simple linear regression model. The method of least squares is used to 
estimate 6% and 6%. We are fitting the model by regression, the natural logarithm of 

the original response versus the regressor. Notice that B*} = £,, the parameter in the 

exponent of the original model. Hence 8, = 87; however, B% # Bo. To estimate Bo, 

the coefficient in the original model, we use the relationship B* = In By or By = eF°. 

Hence By = e°. 
Keep in mind the fact that the scattergram shown in Fig. 12.3(b) is not the only 

pattern that suggests an exponential model. In fact, the pattern shown is one for which 

8, and B, are both positive. In Exercises 59 and 60 you are asked to plot scattergrams 

for other possible exponential models. 

Example 12.8.2 (Power model). The power model is a model of the form 

Heri Box ae = 0. 

or y; = BoxPre; 
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FIGURE 12.4 
A scattergram for which a reciprocal with B, > 0 model is appropriate. 

This model, like the exponential model, is intrinsically linear. The logarithmic trans- 

formation also linearizes this model as follows: 

In y; = In Boxfre; 
or In y; = In By + B, Inx; + Ine; 

Here y* = In y,;, B4 = In Bo, BY = B,, x* = In x;, and e* = In e;. The new model 

becomes 

yi = BG + Bixt + eF 

The parameters are estimated by using least squares. Notice that we are regressing the 

natural logarithm of the original response versus the natural logarithm of the original 

regressor. Parameter estimates are B, = B+ and By = e®°. 

Figure 12.3(b) illustrates a scattergram in which a power model with By) > 0 and 
B, > 1 might be appropriate. In Exercises 61 through 63 you are asked to explore 

other possible forms for scattergrams that might suggest a power model. 

The next model is a linear model in which the regressor is a function of x rather 

than x itself. A scattergram for a data set for which this model might be appropriate is 

shown in Fig. 12.4. 

Example 12.8.3. (Reciprocal model). The reciprocal model assumes the form 

My|, = Bo + BAA) a5 =) 

or y; = Bo + B,\A/X) + e; 

The model is linear already, since it does express the average response as a linear func- 

tion of the parameters Bo and f,. In fitting the model by using least squares, we regress 

the response versus the reciprocal of the regressor rather than the regressor itself. 

Before closing this section, we need to make an additional point. One of the 
basic assumptions of simple linear regression is that of equality of variance. If a 
scattergram suggests that this assumption is not valid, then using a logarithmic 
transformation often helps to stabilize the variance. That is, we let y* = In y and 
then regress y* versus x. In this way we estimate the model 
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Mye|e = Bo + Bix 
where fy»), 1s the average value of the natural logarithm of the response for a given 
x value. Once estimates for Bp and B, are obtained, the fitted line of regression can 
be used to estimate y*, the natural logarithm of the original response for a given 
value of x. The estimated response can be recovered by using the relationship 

j= oY 

Remember that regression is an art. There may be several models that appear 
to fit a given set of data. The job of the researcher is to investigate these models to 
find the one that yields the best fit and gives the most reasonable explanation of the 
relationship between the regressor and the average response. 

In this chapter we have only touched on the powerful statistical tool known as 
regression analysis. There are many aspects of this topic that have not been men- 
tioned. For example, if predictor variables are correlated (they are linearly depen- 
dent), then we say that we have multicollinearity. When this happens, the 

least-squares estimators are ubiased but their variances can be very large. A proce- 

dure called ridge regression is often used in this situation. This procedure yields bi- 

ased estimators, but the variance is usually reduced so that the mean squared error 

is relatively small. The procedure is discussed in detail in texts on regression analy- 

sis [39]. Another rather recent approach to regression analysis is called robust re- 

gression. This procedure is useful when the assumption of normality does not seem 

realistic or when outliers that greatly influence the usual least-squares estimators are 

present in the data. The procedure is still somewhat controversial [12]. 

Our best suggestion is this. If you are engaged in a serious research project 

that might involve regression, seek the help of a statistician who is knowledgeable 

in this area in the design stages of your study. You have learned enough about re- 

gression from this text to be able to converse with such a person; you have not 

learned enough to be able to use regression to its fullest. There are several excellent 

texts on the market that are devoted solely to the discussion of regression analysis; 

among them are [12] and [39]. 

CHAPTER SUMMARY 

The simple linear regression model discussed in Chap. 11 was extended in this 

chapter. Extensions included the model for several linear independent variables, the 

polynomial model for a single independent variable, and combinations of both these 

cases. These models were then developed in matrix form, and the least-squares es- 

timation procedure and properties of this procedure were presented. Methods of 

confidence interval estimation were given for these models for a single slope, the 

predicted mean, and a single predicted value. Hypothesis testing methods were also 

discussed for testing the significance of a single predictor variable, for testing for 

significant regression, and for a subset of predictor variables. We pointed out that 

these models are very useful in applications but typically require a computer for es- 

timation of model parameters. 
The multiple correlation coefficient and the coefficient of multiple determina- 

tion was also defined and discussed. 
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In applications, deciding which predictor variables should be included in a se- 
lected model is not a trivial chore. Several of the more commonly used methods of 

variable selection were presented and discussed. These included forward selection, 
backward elimination, stepwise procedure, maximum R?, Mallow’s C,, and the 

PRESS statistic. 

We also introduced and defined important terms that you should know. These 
are: 

Multiple linear regression Polynomial regression 

Model in matrix form Least-squares estimators 

Predictor variable Significant regression 

Variable selection Multiple correlation 

Coefficient of determination Indicator variable 
Power model C, 

Exponential model PRESS statistic 
Reciprocal model 

EXERCISES 

Section 12.1 

1. The simple linear regression model is a polynomial model of what degree? Ver- 
ify that, in this case, the normal equations given in (12.3) reduce to those given 
in Chap. 11 for the simple linear regression model. 

2. The simple linear regression model is also a multiple linear regression model 
with k = 1. Verify that, in this case, the normal equations given in (12.5) reduce 
to those given in Chap. 11 for the simple linear regression model. 

3. Consider the model Myix,,x, = Bo + Bix; + B2x>. These data are available: 

xX, X> y 

0 8 9 

2 9 8 

Autiog 7 

(a) Find 

> ia. 
3 3 

i=] i=1 

3 3 

Xj > te tw) 
i=] i=] 

3 3 3 3 

» xij Sy N5, »} yi >, N9; Yj 

i=] i=1 i=] i=] 

(b) Find the normal equations. 
(c) Show that by = 9, b} = —.5, and b, = O are solutions to the normal equations. 

4. Consider the model 

Myix,x, = Bo + Bix, + By x7 + Bx» 

Express this model in the general linear form of G2s)k 
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5. Consider the model 

Byix,.x, = Bo + Bix, + BoX_ + Bio xX) xy 

Express this model in the general linear form of (12.1). 

Section 12.2 

6. 

10. 

Li: 

Consider the simple linear regression model 

By\x = Bo + Bix 

Show that 

Consider the data of Exercise 7 of Chap. 11. 
(a) Use the matrix approach to find the normal equations, and compare your 

answer to that found in Exercise 8 of Chap. 11. 
(b) Solve the normal equations by using matrix algebra, and compare your an- 

swers to those found earlier. 

Consider the data of Exercise 9 of Chap. 11. Estimate the regression line by us- 
ing the matrix approach. 

Consider the data of Exercise 10 of Chap. 11. Use the matrix approach to esti- 
mate the line of regression. 

In simple linear regression, f, the estimated response for a given value of x can 

be written in matrix notation as follows: 

(a) Verify that the above technique is valid. 

(b) Use this method and the results of Exercise 7 to estimate the average en- 

ergy consumed by a household for which the income is $50,000. 

(c) Use this method and the results of Exercise 8 to estimate the pitch of a par- 

ticular connector of length .03 inch. 

(d) Use this method and the results of Exercise 9 to estimate the surface feet 

per minute that can be covered when a wheel is used at 3450 rpm (revolu- 

tions per minute). 

In developing a simple linear regression model for predicting gasoline mileage, 

based on the weight of the car, these data are available: 

x 1ES'5 1.90 1.70 1.80 1.30 2.05 1.60 1.80 1.85 1.40 

y N79) 16.5 16.4 16.8 18.8 5%) WS) 16.4 15)-9) 18.3 

(a) Find the model specification matrix. 

(b) Find X'X. 
(c) Find X’y. 
(d) Find the normal equations via matrix algebra. 



498 INTRODUCTION TO PROBABILITY AND STATISTICS 

(e) Find (X’X)"!. 
(f) Find the least-squares estimates for By and 6B, by using matrix algebra. 

Compare these to the values found in Example 11.3.3. 

12. Consider these data for Exercises 12 and 13: 

KON GO. 1S © LAS 0 Oe ee 8 2.6 

y 12 6 13 5) 10 1 20 1 24 0 

(a) Find the model specification matrix for the quadratic model 

My|x = Bo + Bix + Box? 

(b) Find X’X. 

(c) Find X’y. 

(d) Show that, apart from round-off error, 

Olja, UA S2 et. O404 

(X’X)~!' =| —10.8182 13.9867 —4.0246 

3.0303 -—4.0246 1.1837 

Hint: Simply show that (X'X)(X'X)7! = I. 
(e) Find b. 

13. (a) Write the expression for the estimated model. 
(b) Argue that in a model of this sort, for a specific value of x, 

l 

Byix= Y= [bo b, by)| x 

x 

(c) Use the estimated model to predict the mean value of y when x = 2.5. 
14. In Exercise 3 we considered the model My,,x, = Bo + Bx, + Bx based on 

these data: 

Xy xX, y 

0 8 9 

D 9 8 

4 8 7 

(a) Find the model specification matrix. 
(b) Find X’X. 

(c) Find X’y. 

(d) Find the normal equations, and compare them to those found in Exercise 3. 
(e) Show that 

1680 —=4.=200 

16 16 16 
hi 9 

CXS : 
! 16 16 : 

—200 . o at 



15. 

16. 

1 Wl 
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9 

(f) Verify that b =| —.5 

0 

Write the model specification matrix for the model 

MyYIx,, x. — Bo + Bix, + By xt tT BoXo 

based on a random sample of size 8. 

Write the model specification matrix for the model 

Byix,,x, = Bo + Bix, + Box2 + By2X1X> 

based on a random sample of size 10. 
Reconsider the data of Exercise | of Chap. 11. Can you suggest a model that 
might be appropriate for these data? 

Section 12.3 

18. 

il), 

Deets 

Let C =| 3 6 |. Let Y, and Y, be independent random variables with E[Y,] = 3, 

ih ow) 

E[Y,] = 9, and Var Y, = Var Y, = 16. 

(a) Find E[C]. 

(b) Find E[CY], where Y = EA 
(c) Find Var Y. : 

(d) Find Var CY. 

Sy 2 
Let C= Z| Let Y, and Y, be independent random variables with E[Y,] = 5, 

E[Y,] = 10, Var Y, = Var Y, = 6. 

(a) Find E[CY] where Y = ee 
(b) Find Var Y. 2 

(c) Find Var CY. 

Consider the simple linear regression model for Exercises 20 through 22. 

20. 

21. 

22. 
ZS) 

Find Var B. That is, find the variance-covariance matrix for this model. Hint: 

see Exercise 6. 

Find Var Bo and Var B, from the variance-covariance matrix. Compare your re- 

sults to those given in Chap. 11, Sec. 2. 

Are By and B, uncorrelated? Explain, based on the variance-covariance matrix. 

Consider the model 

PY Ix, x. — Bo + Bix, + BoX2 

By definition 

SSE = SS [Y;-(Bo AP Bix; i Bax) | 

i=] 
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(a) Square the term on the right and sum over i to obtain 

SSE = i [¥?-Y(By + Bix + Box) 
i=1 

+ (By + Bix + Boxo)? — Y(Bo F Bit + By X;)] 

(b) Show that 

> [(By + Byx 4; + Byx2;)? — Y,(Bo + Byxy; + Box2))] 
i=1 

= By d) (Bo + By xy; + BoX2; — Yi) 
i=1 

+ By = (Boxy; + B, x7; + Byx\;X2; — xY¥)) 
i=1 

+ By » (Boxy + ByxyjX2) + By x3; — XY} 
i=] 

(c) Use the normal equations for the multiple linear regression model given in 

Sec. 12.1 to argue that each of the components on the right of the equation 

in part (b) is equal to 0. 

(d) Show that 

SSE = De <3 By Y;— B, Sa a Br Sa, 

thus partially verifying the computations used to find SSE. 

24. For the simple linear regression model we found that 

SSE Sea ioe 

(See Sec. 11.2.) In this section we defined SSR for this model by 

. n n 2 
SSR = By >) ¥; + By > xu¥i- > ’) |" 

i=] i=] i=] 

Show that B,S,, = SSR, thus verifying that the results obtained here coincide 

with those found earlier. 

25. In Example 12.2.5, we developed a quadratic regression equation from which 

the unit cost of producing a drug can be predicted based on the number of units 

produced. Use the information given there to estimate Var Bp, Var B,, and Var B). 

26. For the quadratic model developed in Exercise 12, estimate Var Bp, Var B,, and 
Var B). 

Section 12.4 

27. Use the data of Example 12.4.1 to find 95% confidence intervals on B, and B). 

Is there evidence that B, # 0? That B, # 0? Explain. 

28. Use the data of Example 12.2.5 to find 95% confidence intervals B, and £3. Is 
there evidence that B, # 0? That B, # 0? Explain. 



MULTIPLE LINEAR REGRESSION MODELS 501 

29. Use the information given in Example 12.3.3 to find a 90% confidence interval 

on the mean gasoline mileage obtained by cars weighing 1.5 tons when oper- 

ated on a 40° F day. Find a 90% prediction interval on the gasoline mileage ob- 

tained by a specific automobile weighing 1.5 tons when operated on a 40° F 
day. Which interval is wider? 

30. Use the information given in Example 12.2.5 to find a 95% confidence interval 

on the mean unit cost of producing 12 units of the given drug. Find a 95% pre- 

diction interval on the unit cost of producing a particular lot of 12 units of the 
drug. 

31. Use the information from Example 12.2.4 to find a 95% confidence interval on 

the mean extent of solvent evaporation when the humidity at the time of spray- 

ing is 50%. Find a 95% prediction interval on the extent of solvent evaporation 

for a particular day on which the humidity is 50%. 

The three basic structural elements of a data processing system are files, flows, and 

processes. Files are collections of permanent records in the system, flows are data 

interfaces between the system and the environment, and processes are functionally 

defined logical manipulations of data. An investigation of the cost of developing 
software as related to files, flows, and processes was investigated. The following 

data are based on that study. 

Cost (in units of 1000) Files Flows Processes 

(y) (x,) (x) (x3) 

22.6 4 44 18 

15.0 2 33 15 

78.1 20 80 80 

28.0 6 24 P| 

80.5 6 IBY] 50 

24.5 3 20 18 

20.5 4 41 13 

147.6 16 187 137 

4.2 4 19 15 

48.2 6 50 Dil 

20.5 5 48 Vy 

Exercises 32 through 36 refer to these data. 

32. Consider the model 

Pyixy xx, = Bo + Bi%1 + B2X2 + Pax 

(a) Find the model specification matrix. 

(b) For these data 

3197263 — 0408268 — 00202208 005305965 

— 0408268 .0140738 0003717104 —.00224159 

— 00202208 0003717104  .00005188447 —.000113861 

005305965 —.00224159 — 000113861 .0004938527 

Co = 
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489.7 

250 

59088.4 

33845.2 

X'y = 

s* = 98.37516961 

Use this information to estimate the model. 
33. Find a 95% confidence interval on py,, yx, When x; = 12, x. = 40, and 

x, = 20. 

34. Find a 95% prediction interval on the cost of a single system when x, = 12, 

x, = 40, and x; = 20. 

35. Find a 90% confidence interval on fo. 

36. Find a 90% confidence interval on f,. 

Section 12.5 

Consider the following data: 

Use these data for Exercises 37 through 42. 

37. Fit a regression curve of the form fry), = By + Bix. 

38. Find the model specification matrix for a model of the form 

Pry = Bo + Bix Box? 

39. For the model of Exercise 38, 

ASST le ae easel 1428571 
(XX) 1 =| 1.28571 797619 —.0952381 

1428571 —.0952381 01190476 

228 
X’y =| 1111 

6091 

s* = 12.27380952 

Use this information to estimate the model. 
40. Test an appropriate hypothesis to decide whether the quadratic regression curve 

significantly fits the data better than the linear regression curve. 
41. Using the regression curve selected from Exercise 40, compute a 95% confi- 

dence interval on wy),, when x = 4.8. 
42. Using the regression curve selected from Exercise 40, compute a 95% predic- 

tion interval on an individual response when x = 4.8. 
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A research study was conducted on cracking of latex paint on wooden structures. 
The primary concern in the study is to investigate the effect of water permeability 
and fracture energy (energy to propagate a crack through paint film) on paint crack 
rating. The investigation yielded the following data: 

Sample Crack rating Permeability Fracture energy 
number (y) (X,) (x2) 

1 2 2 4.31 
2 9 8.4 2 Wik 
3 5 Jol 11.40 
4 10 14.5 24.15 
5) 3 4.4 6.21 

6 3 6.2 SLO 
1 8 5 9.71 

8 7 7.0 12.00 
9 8 17.2 14.25 

10 5) Toll 8.63 

Refer to these data for Exercises 43 through 49. 

43. Plot y versus x, and y versus x5. 

44. Find the model specification matrix for the model 

PyY\x,, x, — Bo + Bix, + Boxy 

45. For the model of Exercise 44, 

529839 —.02535552 —.0182053 

(X’X)-1=| =.0253552 00772376 —.00337026 
—.0182053 —.00337026  .003942239 

60 
X’y =| 604.2 

860.52 

s? = 94334776 

Use this information to estimate the model. 

46. Find R? for the estimated model of Exercise 45. 

47. Estimate p, the correlation between the observed and predicted responses for 

the model of Exercise 45. 

48. Test for significant regression for the curve estimated in Exercise 45. 

49. Test Hp: B, = 0. Do you think that x, is needed in a model that already contains 

the variable x,? Explain. 

50. Test for a significant regression effect in Exercise 32. 

51. Using the data of Exercise 32, test Hp: B, = B; = 0. 

Section 12.6 

52. A study was conducted to study energy consumption versus household in- 

come and home ownership status. Let Y (in units of 10° Btu’s) denote energy 
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consumption, x, (in units of $1000/year) denote income, and x, (x, = 1, 0) for 

ownership versus rental, respectively, denote ownership status. The following 

data were obtained: 

Consumption Income Ownership 

(y) (x) (X>) 

1.8 20.0 0 

4.7 25.0 | 

3.0 30.5 0 

5.8 Boal | 
4.8 40.0 0 

Hel 48.2 | 

5.0 Spill 0 

8.0 60.5 | 

7.0 74.9 0 

9.9 80.3 1 

9.0 88.4 0 
11.3 90.1 1 

9.2 952 0 

(a) Assume that an appropriate model is 

(b) 

Miizie, = Post Bi xy + BX. 

Find the model specification matrix. 

For these data 

5416711 —.00690843 —.151114 
(X'X)-! =] —.00690843 0001196709 —-.0001430353 

—.151114 0001430353 .3096948 

86.6 
and Ry =| S754 

46.8 

Use this information to estimate the model. 

For the given data 

o* = 13417107 

Use this information to test Hp: B = 0. 
State the estimated models that describe the relationship between energy 
consumption and income for homeowners; for renters, 
Find a point estimate for the difference in intercepts for the two models in 
part (d ). 

An engineer is investigating the recovery of heat lost to the environment in the 
form of exhaust gases for two types of furnaces. The experiment is designed to 
fix flow speed past heat pipes (in meters per second) and then to measure the 
recovery ratio. 



Recovery 

(y) 

Flow speed 

(x) 

n Nn Nn 
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Type furnace 

(x2) 

Bown saeerroete desde 

(a) Assume that it is not known whether or not flow speed affects each type of 

(b) 

(c) 

(d) 

furnace in a similar way. The appropriate model is 

PyYyix,,x, = Bo + Bix, + Box. + B3x1xX2 

where x, = 1 if furnace A is used and x, = O if furnace B is used. Find the 

model specification matrix. 

For these data 

1 = 2891 14 al 2857143 

Arch alee 285714 09795918 2857143 —.0979592 
i D857 Asm 1 een 485714 

2857143 —.0979592  —.485714 1646259 

T172 
, | 19.665 

ne XY=! s5ei9 
16.5735 

Use this information to estimate the model. 

Estimate the difference in slopes for the regression lines for the two 

furnaces. 

For the given data 

ao = .0007562574 

Use this information to test Hy: 8; = 0. What practical conclusion can be 

drawn? 

54. Consider the problem of Exercise 52. Suppose that in a future study we want to 

differentiate between types of rental property and home ownership so that x, as- 

sumes four levels. These are (i) owner of single-family dwelling, (ii) owner of 
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townhouse or condominium, (iii) renter of single-family home, (iv) renter of 

condominium or apartment. 

(a) How many indicator variables are needed to code ownership status? 

(b) Assume that the slopes of the four regression lines are identical. Write an 

appropriate model. 
(cj) Let 

Xp =X, =x, =0 for owners of a single-family dwelling 

Xy = xX; = Oand x, = 1 for owners of a townhouse or condo 

Xy = x4 = O and x; = | for renters of single-family dwellings 

x3 =X, = Oandx, = | for apartment renters 

Write the model for each of these groups. 

(d) What null hypothesis must be tested to test for equality of all four intercepts? 

Suppose that we have a model with one quantitative variable, x,, and one qual- 

itative variable at three levels A, B, and C. Consider the model 

Mytx,,.x5,x3 — Bo + Bix, + Byx2 + B3x3 + Byxyx2 + BsX\X3 

55 

where X, = x3=0 for level A 

xX, = | and x, = 0 for level B 

] for level C x, = Oand x, 

(a) Write the models for each of the three levels. 

(b) What null hypothesis must be tested to test for equality of slopes among 
these three regression lines? 

(c) What null hypothesis must be tested to test simultaneously for equality of 
slopes and intercepts? How many degrees of freedom are associated with 
the F ratio used to conduct this test? 

Section 12.7 

56. Assume that we have available four possible predictor variables mak ee ey vas 
Suppose that our final model via forward selection contains only the vari- 
ables x4 and x, and that they entered the model in the order stated. Outline the 
steps taken in developing this model. Follow the format given in Example 
eared: 

57. Assume that we have four potential predictor variables and that via backward 
elimination we obtain a reduced model containing only the variables x, and x5. 
Assume that the variables x; and x, are deleted in the order mentioned. Outline 
the steps taken in developing this model. Follow the format given in Example 
Les 

58. In a multiple linear regression model variables X, and x, are closely related, 
with variable x, being the best single predictor. Suppose that the final model 
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contains the two variables x, and x,, with variable x, entering on the second 
stage and x, entering on the third. Outline the steps used to develop this model 
via stepwise regression. 

Section 12.8 

59: 

60. 

61. 

62. 

63. 

64. 

65. 

Consider the model 

Myix = Boe? x>0 

(a) Find the first derivative of the function Bye?”. 
(b) If PB) > O and B, < 0, is the regression curve increasing or decreasing? 
(c) Find the second derivative of the function Bye*". 

(d) If Bo > O and B, <0, is the regression curve concave up or concave down? 
(e) Sketch a scattergram for which it is reasonable to assume that an exponen- 

tial model with By > 0 and B, < 0 is appropriate. 
Consider the model 

Myx = Boe? 55 eal) 

Sketch a scattergram for which this model is appropriate with By < 0 and B, > 0; 
with By < 0 and B, < 0. 

Consider the model 

Myix = Box?! oe 0) 

(a) Find the first derivative of the function By x*'. 

(b) Verify that if B) > 0 and B, > 1, then this function is increasing as shown 
im Figs 1223). 

(c) Find the second derivative of the function By x*'. Verify that if By > 0 and 
B, > 1, then this function is concave up as shown in Fig. 12.3(b). 

Consider the power model with By) > 0 and 0 < B, < 1. Sketch a scattergram 

for which this model might be appropriate. 

Consider the power model with By) > O and 6, < 0. Sketch a scattergram for 

which this model might be appropriate. 

Consider the model 

My|z = Bo + B,C /x) — x >0 

(a) Find the first derivative of the function By + B,(1/x). 

(b) Verify that if 8, > 0, then this function is decreasing as shown in Fig. 12.4. 

(c) Find the second derivative of the function By + B,(1/x). Verify that if 
B, > 0, then this function is concave up as shown in Fig. 12.4. 

Consider the reciprocal model with B, < 0. Sketch a scattergram for which this 

model might be appropriate. 

REVIEW EXERCISES 

A study was conducted on the effect of water temperature and time in solution on 

the amount of dye absorbed by a certain kind of fabric. A standard amount of dye 



508 INTRODUCTION TO PROBABILITY AND STATISTICS 

(200 milligrams/mg) was added to a fixed amount of water. The three temperature 

levels used in the experiment were 105, 120, and 135° C. The fabric was left in the 

water 15, 30, or 60 minutes (min). For each of these temperature-time combinations 
the amount of dye left inside the fabric was measured. The experiment yielded the 

following data: 

Dye in yarn (mg) Time in solution (min) Temperature of H,O (°C) 

(y) (X}) (x) 

136 15 105 
153 30 105 
186 60 105 
182 Ny 120 

7s 30 120 
187 60 120 
170 15 135 
179 30 135 
183 60 135 

Problems 66 through 76 refer to these data. 

66. Graph y versus x, and y versus x. Does there appear to be a relationship be- 
tween time and/or temperature with the amount of dye left in fabric? 

67. Estimate the curve of regression of Y on x). 

68. Find and interpret the 95% confidence limits for py, seer? 

69. Estimate the curve of regression of Y on x5. 
70. Sketch a 90% prediction band about a single predicted value of Y by using a 

few values of the regressor for the model of Exercise 69. 

71. Find the model specification matrix for the model 

Myix,,.x. = Bo + Bix, + Box2 

72. For the model of Exercise 71, 

11.16667. —.0111111 — 0888889 
(X'X)-1=| —.0111111 0003174603 0 

—,0888889 0 0007407407 

1551 
X'y =| 55890 

186975 

8* = 166.78571429 

Use this information to estimate the model. 
73. Consider the model containing only x, as the reduced model. Test 

H): reduced model is appropriate 

H,: full model is needed 
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at the a = .05 level. Which model do you prefer? 

Find R? for the model chosen in Exercise 73. Find (, the estimated correlation 

between the predicted and observed responses. 

If a dye solution is prepared with the temperature at 125° C and the fabric left 

in the solution for 20 min, how much dye, on the average, would you predict to 

be left in the fabric? 
Find the 95% confidence limits on your prediction from Exercise 75. 

A study on the burn time for the common Fourth of July sparkler was con- 

ducted. The variables considered were the length of the chemical coating that 

covers the tip of the sparkler (in inches) and the burn time (in seconds) of the 

sparkler. Seventeen sparklers were burned, and the values of the chemical coat- 

ing (x) and the burn time (y) are given below. 

Obs. no. Chemical length (in.) Burn time (sec.) 

1 4.5 29 

2 3.6 26 

3 4.0 5) 

4 357) 25 

5 4.0 DL] 

6 Sei 27 

ed 4.0 28 

8 4.0 Ds) 

9 3.8 25 

10 4.0 28 

11 3.8 24 

12 4.1 15 

13 sy) Py) 

14 4.1 2 

15 3.9 24 

16 4.2 26 

17 3.8 24 

(a) Estimate the simple linear regression model with response variable burn 

time (y) and predictor variable chemical length (x). 

(b) Test for significant regression at a = 0.05. Is this a good model to predict 

burn time? 

(c) Can you think of other variables that should be included in a future study 

to improve prediction ability? 

A study was conducted on the effect of nitric acid dilutions on the accelerated 

weathering of wood. The acid pH levels of 2.0, 2.5, 3.0, 3.5, and 4.0 were tested 

with distilled water (pH 5.6) used as a control. An accelerated weathering chamber 

was used with times of 200, 400, 600, 800, and 1000 hours. Red cedar wafers of ap- 

proximately 700 mg were obtained and weighed accurately for the start weight at 

the beginning of the experiment. At the end of the accelerated time, the wafers are 

again weighed for the final weight. The resulting data, including the difference in 

“start weight” and “final weight” are given in the following table. 
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Obs. no. pH Time Start wt. Final wt. Difference 

| 2.0 200 693 669 24 

2 2.0 400, 696 647 49 

3 2.0 600 700 621 79 

4 2.0 800 692 601 9] 

> 2.0 1000 693 oy 18 

6 2a) 200 697 677 20 

7 Ph, 400 698 656 42 

8 Piss) 600 698 632 66 

9 Zea 800 698 612 86 

10 Dire) 1000 697 585 12 

11 3.0 200 698 677 21 

12 3.0 400 699 656 43 

13 3.0 600 699 636 63 

14 3.0 800 695 617 78 

its) 3.0 1000 698 O97 101 

16 35) 200 698 679 19 

17 35) 400 696 662 34 

18 3h) 600 698 641 pi 

19 35) 800 699 622 yy 

20 3) 1000 698 598 100 

21 4.0 200 695 677 18 

22 4.0 400 698 661 37 

Ps) 4.0 600 694 643 51 

24 4.0 800 698 622 76 

OS) 4.0 1000 700 602 98 

26 5.6 200 695 677 18 

27 5.6 400, 695 662 33 

28 5.6 600 698 642 56 

29 5.6 800 698 625 73 

30 5.6 1000 698 606 92 

Problems 78 through 81 refer to these data. 

78. Fit a simple linear regression model with weight difference (start weight — 

final weight) as a response variable and time as the regressor variable. 

79. Fit a multiple linear regression model with weight difference as the response 

variable and time and pH as the regressor variables. 

80. Test whether the full model (both time and pH used as regressors) is needed or 

if the reduced model (only time used as regressor) is sufficient. Which model 

would you use to predict weight loss? 

81. For the model you selected in Exercise 79, calculate R’, and test for signifi- 
cance at a = 0.05. 



CHAPTER 

13 
ANALYSIS 

OF VARIANCE 

jf? Chap. 8 we discussed the problem of hypothesis testing on the mean of a single 

population. The problem was extended to testing the equality of two population 

means in Chap. 10. In the latter case, we were concerned primarily with comparing 

means based on independent samples drawn from normal populations. We used ei- 

ther the pooled T test or the Satterthwaite procedure. We also considered the paired 

T test, a method for comparing means based on paired data. In this chapter these 

problems are extended to that of comparing several population means via a statisti- 

cal methodology called analysis of variance (ANOVA). This is a procedure in which 

the total variation in a measured response is partitioned into components that can be 

attributed to recognizable sources of variation. These individual components are 

useful in testing pertinent hypotheses. 

In this chapter and in Chap. 14 we touch on an area of statistics called exper- 

imental design. Experimental design is a broad and important area of applied statis- 

tics that deals with the practical and theoretical aspects of designing experimental 

studies. There are three major phases of such a study. These are problem formula- 

tion, the design of the experiment, and the analysis of the data collected. 

In phase | the researcher carefully states the problem to be solved. This 

process should include gathering all information currently known about the prob- 

lem, a consideration of the point of view of others, a determination of the scope of 

the study, and a clear statement of the purpose of the study. 

Phase 2, the design of the study, includes choosing the response variable(s) 

and trying to anticipate which other variables might have an influence on the re- 

sponse. Techniques for controlling or at least measuring the influence of these vari- 

ables are determined. Cost, time, and other physical constraints are considered. 

Ultimately, decisions are made concerning the number of observations to be taken, 

the order of experimentation, and the method of randomization to be used. A 

511 



512 INTRODUCTION TO PROBABILITY AND STATISTICS 

statistical model is then formulated. Ideally, this model is one that describes the ex- 

perimental design, is simple enough to be understood and analyzed by available 

analysis of variance techniques, and allows the questions posed in the formulation 

phase to be answered statistically. 

If the experiment has been well designed, then phase 3, the analysis of the 
data collected, is not difficult, since the proper analysis has been anticipated. 

In this chapter we develop the ANOVA techniques for frequently encountered 

“single-factor” experimental designs. By “single-factor” we mean designs in which 

interest centers on a single primary factor that can influence the response. For ex- 

ample, in conducting an experiment to study the viscosity of a particular motor oil, 

we can think of the temperature of the oil as a factor; in a study of the speed with 
which a sorting algorithm is able to sort a random array the computer scientist could 

view the degree to which the array is out of sort at the outset as a factor. Multifac- 

tor experiments will be considered in Chap. 14. 

13.1 ONE-WAY CLASSIFICATION 
FIXED-EFFECTS MODEL 

Assume that we are interested in comparing the means of k populations. The exper- 
imental situation may be either of the following: 

1. We have k populations, each identified by some common characteristic to be 

studied in the experiment. Independent random samples of sizes n,, 5, ..., nj, are 

selected from each of the & populations, respectively. Differences observed in the 
measured response are attributed to basic differences among the k populations. 

2. We have a collection of N homogeneous experimental units and wish to study 
the effects of k different treatments. These units are randomly divided into k 
subgroups of sizes ny, 2), ... , Nj, and each subgroup receives a different ex- 
perimental treatment. The k subgroups are viewed as constituting independent 
random samples of size n,, 2, .. . , m drawn from k populations. 

Although the above experimental situations are different, they are similar in that 
each results in independent random samples drawn from populations with means 
HM), [,.- +, fx. Our interest is in testing the null hypothesis that the population 
means are equal. That is, we want to test 

£163. by = a= yi = py 

Ay: bj F My; for some i and j 

(at least two of the means are not equal) 

As you can see, this is an extension of the two sample problems based on indepen- 
dent samples studied in Chap. 10. 

The model that we develop is called a one-way Classification fixed-effects 
model. The term “one-way classification” refers to the fact that only one factor or at- 
tribute is being studied in the experiment. The factor is studied at k different levels. 
In the second experimental situation described we usually use the word “treatments” 
rather than factor levels. The term “fixed-effects” refers to the fact that the treatments 
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Population I Population II Population III Population IV Population V 
(Seam I) (Seam I) (Seam II) (Seam IV) (Seam V) 

Sample of Sample of Sample of Sample of Sample of 
size n, SIZE Ny SIZE N3 SIZe Ng SIZE Ns 

Ao: My = My = M3 = My = Ms 

FIGURE 13.1 
Random samples of sizes n;, 1 >, 13, n4, and n; independently selected from the five major coal seams 
in a particular geographical region. 

or levels of the factor involved are specifically selected by the experimenter because 
they are of particular interest. They are not randomly selected from a larger group 
of possible treatments or levels. Random selection of treatments or levels leads to 

random-effects model, discussed in Sec. 13.5. As you will see, the types of inferences 

we make depend on whether effects are fixed or random. Example 13.1.1 should 
make the meaning of these terms clear. 

Example 13.1.1. A study is designed to investigate the sulfur content of the five ma- 

jor coal seams in a certain geographical region. Core samples are taken at randomly 

selected points within each seam, and the measured response is the percentage of sul- 

fur per core sample. We want to detect any differences that might exist in the average 

sulfur content for these five seams. Each seam constitutes a population. We want to 
compare population means by testing 

Ao: fy = Mo= M3 = ba = Ms 
Ay: pb; F By; for some i and j 

based on independent samples drawn from these populations. The one factor under 

study is the coal seam involved. The factor is being studied at five levels. These levels 

are not selected at random, Rather, we have intentionally chosen to study the five ma- 

jor seams in the region. The design is a fixed-effects design. This study is an example 

of the first experimental situation described earlier. Figure 13.1 illustrates the idea. 

Notationally, we let Y;; denote the jth response for the 7th treatment or factor 

level i = 1,2,...,k andj = 1, 2,...,n,. Here, represents the size of the sample 

drawn from the ith population. The total number of observations for the k samples 

combined is N = n,; + n, + - ++ + n,. The data collected in a single-factor experi- 

ment as well as some important sample statistics are displayed conveniently as 

shown in Table 13.1. A dot in the following notation indicates the subscript over 

which summation is being conducted. Note that 
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TABLE 13.1 

Data layout one-way classification 

Treatment or factor level 

| 2 3 k 

Yi, Ys, Y3) Yyy 

Yio Yo Y35 Yio 

Yi3 Yo Ys; Yi3 

Y, ny Y,, Yan, Ni. 

Total T;. T). T3. ee T, . Ths. 

Sample 7 _ 

mean ee Y>. Y3. vs Yo Ke 

T;. = total of the ith treatment responses 

lI 
Nn; 

> i 
j=] 

Y,. = sample mean for the ith treatment 
= T,./n; 

T.. = total of all responses 

k kn 

Bah = se 
= i= fal fea 

Y.. = sample mean of all responses 

= T../N 

Example 13.1.2 illustrates the use of this notation. 

Example 13.1.2. These data and summary statistics are obtained on the sulfur con- 
tent of the five major coal seams in a particular geographical region: 

Factor (coal seam) 

I 2 3 4 5 

1.5] 1.69 1.56 1.30 73 
1.92 64 1.22 a5 80 
1.08 90 1.32 1.26 90 
2.04 1.41 1.39 69 1.24 
2.14 1.01 1.33 62 82 
1.76 84 1.54 90 72 
1.17 1.28 1.04 1.20 57 

1.59 2.25 32 1.18 
1.49 54 

1 Fae ar eae 1.30 
Ti. = 11.62 © 7. = 9.36 Ty = 13.149 OT = 7.04 Ts.=8.8 T.. = 49.96 Ye 1,66 SY, Se PF eee AG ay ee as Yo 88 i Yas nig9 

We know that the five sample means Y,., Y,., Y;., Y4., and Y;. are unbiased estimators 
for the population means j2;, 1, M3, M4, and ws. By inspection we see that there are 
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some differences among the sample means. The question to be answered is, “Are these 
differences extreme enough to conclude that there is a real difference in the average sul- 
fur content among these five coal seams?” To answer this question, we need to develop 
an analytic method for testing Hp: w; = b@: = (3, = fy = [Ms based on these data. 

The Model 

To see how to test the null hypothesis of equal treatment means, we must devise a 

statistical model. To begin, note that each response can be expressed as 

Ve ae Ey 

where yz; denotes the theoretical mean of the ith population and E;; represents the 

random difference between the jth observation taken from the ith population and the 

mean of that population. That is, E;; = Y;; — w;. An alternative way to write this 

model is obtained by letting a; = uu; — mw, where 

k 
[po = », njpL;/N 

=" 

In a practical sense, jz represents an overall mean effect found by pooling the k in- 

dividual population means. Note that if the sample sizes are equal, then y 1s just the 

average of the k population means. Since a; is the difference between the overall 

mean p and the mean of the ith population, a; measures the effect of the ith treat- 

ment. Note that 

k k k 
> 32 —=)> 405 1) => ie Nie 0 
i=1 i=1 i=1 

By substitution the one-way classification model with fixed effects can be expressed 

in any of the three ways given below: 

One-way classification, fixed-effects model 

Ge my ac Ej 

Het p+ CO, yw, 

eS a E, 

These models are demonstrated in Fig. 13.2. 
The latter models express mathematically the idea that each response can be 

partitioned into three recognizable components as follows: 

: deviation from random deviation 

neroue one overall overall mean due from ith 
TUNE =mean +tothefactthat + population mean 

TS Onda response unit received due to random 

Geen ith treatment influences 

nat is. 

Me M te pt Ou cen (Ye ft, 00 B,) II 
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FIGURE 13.2 

(a) Y,, = ; + E;; the jth observation in the ith sample is viewed as being partitional into two 

recognizable components. These are j1;, the average for the ith treatment, and E,,, a deviation from 

this average caused by random influences acting upon the jth experimental unit; (b) Y;;, = ww + (44; — 

bh) + (Yj — ,) or Y;, = w + a; + Ej; the jth observation in the ith sample is partitioned into three 

recognizable components. These are pz, an overall average, jz; — 2, an effect due to the fact that the 

ith treatment is involved, which could cause j1; to differ from the overall average, and E,,; the 

deviation due to random influences. 

The null hypothesis of equal treatment means can be expressed in an alterna- 

tive form by noting that if wu, = w. = - ++ = py, then 

k 
b= > n/N = Ny/N = pw; fovedch. eee k 

i=] 

and a, = fw, — « = 0 for each i. This implies that testing 

Ho: hy = My = 0+ = My 

is equivalent to testing 

Hy: a) =a, =++-=a,=0 

As you will see later, it is possible to express the one-way classification model in 
the general linear form discussed in Chap. 12. By rewriting the hypothesis of equal 
means in this alternative form, we can test Hy by using regression techniques. 

Testing H, 

To derive a test statistic, we must make some assumptions concerning the random 
differences E;;. These assumptions are similar to those we made in the regression 
models considered earlier. In particular, we are assuming that the random differences 
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E,; are independent, normally distributed random variables, each with mean 0 and 

variance o*. In more easily understood terms we are assuming that: 

1. The k samples represent independent samples drawn from k specific popula- 
tions with unknown means jy, fo, .. . 5 My 

2. Each of the k populations is normally distributed. 

3. Each of the k populations has the same variance, 0”. 

When expressed in this form, it is easy to see that these assumptions parallel those 

made in Chap. 10 relative to the pooled 7 test for comparing two population means. 

Analysis of variance has been defined as a procedure whereby the total varia- 

tion in some measured response is subdivided into components that can be attrib- 

uted to recognizable sources. Since p, 1, M2,.--, L, are theoretical population 

means, the model does this in only the theoretical sense. To partition an observation 

in a practical way, these theoretical means are replaced by their unbiased estimators 
Y.., Y;., Y>.,..., Y,., respectively. By replacing the theoretical means by their esti- 

mators in the model, we obtain the following identity: 

a= Me (00 see Os ua ct Oem Y;.) 

Note that Y.. is an estimator for s1, the overall pooled mean effect; Y;. — Y.. is an es- 
timator for a; = 4; — p, the effect of the ith treatment; and Y;; — Y;. is an estimator 

for E,;, = Y,; — , the random error. The term Y; — Y;. 1s usually called a residual. 

This identity is equivalent to 

Y;, x ie = (ie = Y-) ae OG = Ve) 

If each side of the identity is squared and summed over all possible values of 1 and 

J, we get 

Gay SS Sea ey ero 
nj k = th k ead =A ca 

PSO ore Oa, I Ote oe) 

Noting that 

we get what is called the sum of squares identity for the one-way classification 

analysis of variance. 
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Sum of squares identity 
k Bs = 

eco ae S ny Va = Va) ee 
i=l i=1 j=l 

Each of the components of this identity can be interpreted in a meaningful 

way. In particular, 

k —w . . 

SE (Y,, — Y..)? = measure of the total variability in the data 

= total sum of squares (SS7,) 
k na . . . . . 

arn vas Y..)? = measure of variability in data attributed 

i=l to the fact that different factor levels or treatments 

are used 

= treatment sum of squares (SS>,) 

M>~ & | “I oe I . measure of variability in data attributed 

Sok Oho to random fluctuation among subjects 

with the same factor level 

= residual or error sum of squares (SS;) 

Symbolically, the sum of squares identity can be written as 

Conceptual sum of squares identity one way classification 

SSq = SSq, + SSz 

If there are differences in the population means, then we expect most of the varia- 

tion in the responses to be due to the fact that different treatments are being used. 

That is, we expect SS, to be large relative to SS;. The analysis of variance proce- 

dure uses this idea to test the null hypothesis of equal treatment means by compar- 

ing the between treatment variation (SS ;,) to the within treatment variation (SS;) via 

an appropriate F ratio. 

To construct an appropriate F ratio, we must consider the expected values of 

the statistics SS;, and SS;. To do so, we use the model assumption that the random 

errors E;, are independent normally distributed random variables, each with mean 0 

and variance a”. To begin, note that for each i, 

oa ni 

Y;,= >) (u + a; + E,)/n; 
=! 

n; 

ny + na; + py, EB, 
he 

Nj 

pF a, +E,. 

Also, since 2i_,n;a; = 0, 
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ni II 
Me ra = 

I M~ M = a g + o = 

Substituting, we can rewrite SS, as shown: 

k x2 Be 
SS'7, — nf a tae 

k 

ELD Pes APE ye SROYP 
iT Il i 

Nl Q; fF Ee a Ee). 
I 
M- 

( k = k — = 

n; a = py) » nae i. =e DS n;E oe = NE Ae 

pa i=] 

I 
he 

Taking the expected value of each term, we get 

k k = k zs = 

i=] i=1 =I 

In Exercise 1 we outline the proof that E[E ;.7] = o?/n, for each i. A similar argument 
shows that E[E ..7] = o°/N. It is easy to see that E[E;.] = 0. Substituting, we see that 

k k 
E[SS7,] = >) na? + > non, — No?/N 

i=] i=1 

k 
= (k — 1)o? + > 1,07 

i=1 

By dividing SS;, by k — 1, we obtain a statistic called the treatment mean square, 
which we denote by MS;,. That is, 

Treatment mean square 

MS-, = SS7,/(k Si 1) 

It is easy to see that E[MS,;,] = a? + >*_,n,;a?/(k — 1). Recall that, in the regres- 
sion context, the residual sum of squares helped to estimate a. The same is true 

here. To obtain an unbiased estimator for a” we divide the residual sum of squares 

SS; by N — k. This estimator is called the error mean square and is denoted by 

MS,. That is, 

Error mean square 
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How can we use MS;, and MS; to test Hy? To answer this question, we need only note 

that if Hy is true, then a, = a) = +++ = a, = 0, and hence She eee 

Hh is not true, then this term will be positive. Thus if Hy is true, we would expect MS;, 

and MS, to be close in value, since both of them estimate a; if Ho is not true, we 

would expect MS;, to be somewhat larger than MS;. This suggests the ratio 

Test statistic Hp: py = M2 =*°* Bx 

Fy, —1,y—% = MSq/MS¢ 

as a logical test statistic. If Hy is true, its value is expected to be close to 1; other- 

wise it is expected to be larger than 1. This ratio can be used as a test statistic, since 

if Ho is true, it is known to have an F distribution with k — | and N — k degrees of 

freedom. The test is always a right-tailed test, with rejection of Hy occurring for val- 

ues of the F;, — ;y— , random variable that appear to be too large to have occurred by 

chance. Values of F = MS,,/MS; can be less than 1, since F is a random variable. 

Such an outcome can occur by chance alone or because the assumed linear model is 

incorrect. 

Although in practice analysis of variance is usually performed via the com- 

puter, some computational shortcuts are available. We leave it as an exercise to 

show that 

Computational shortcuts 

SSrtot a 

SSr, — 

The theoretical ideas behind the analysis of variance procedure for the one- 

way Classification fixed-effects model are summarized in Table 13.2. This type of 
table is called an analysis of variance (ANOVA) table. 

TABLE 13.2 

ANOVA table for the one-way classification design with fixed effects 

Source of Degrees of Sum of Mean Expected 

variation freedom (DF) squares (SS) square (MS) mean square F 

Treatment a fr ahd SS, k 2 MS 

or level key} 2 ENT N ; ; a + > ma = Pa UY ee I al MS; 

(SSy,) 
Error : SS; 

ocartaal Nk Subtraction Nok ov 

7 (SSp) 

k n 5 T.? 

Total N-1 > ¥3,- = 
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To illustrate the use of the F ratio, we continue the analysis of the coal data 
begun in Example 13.1.2. 

Example 13.1.3. We are testing 

Ho: [hy = f= M3 = My = Ms 
or Hp: @; = a= a, =a, =a, = 0 

based on our previous data. Recall that w, i = 1, 2, 3, 4, 5, denote the mean sulfur con- 
tent of the five major coal seams in a particular geographical region. We have these 
summary statistics available: 

T,. = 11.62 Ty. = 7.04 ny =7 ng = 8 

1. — 9.36 Tse = 8.8 ho = 8 ns — 10 

T;. = 13.14 T.. = 49.96 n;=9 N= 42 

The only new statistic needed is }>_ |>"_ Yj. For the data given in Example 13.1.2 this 
statistic assumes the value 67.861. Substituting into the computational formulas, we 
obtain 

2 (49.96)? 
SSto¢ = 2 3 — T.2/N = 67.861 — ee D 

ee eee 
Ges Di eet aay 

C62)? pee) (13.14)? , (7.04) , (8.8)? (49.96)? 
7 Se 8 10 42 

= 3.935 

SS = SS tot ae SSt, 

= 8.432 — 3.935 = 4.497 

MS>, = aon. ae = .984 

SS oe 
—— = 122 

US N-k 37 ! 

The observed value of the F,_; y-; = F437 test statistic is 

Since f5(4, 37) = 2.626, we can reject Hy) with P < .05. We do have statistical evi- 

dence that at least two of the coal seams differ in mean sulfur content. The ANOVA 

table for these data is shown in Table 13.3. 

TABLE 13.3 

ANOVA for coal seam data 

Source of Degrees of Sum of Mean 

variation freedom (DF) squares (SS) square (MS) F 

Treatments 4 BOBS 984 8.066 

Error SY) 4.497 ll? 

Total 41 8.432 
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The corresponding SAS printout is given below. 

ONE WAY ANOVA 

GENERAL LINEAR MODELS PROCEDURE 

DEPENDENT VARIABLE: SULFUR 

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE 

MODEL 4 3.93539048 0.98384762 8.09 

ERROR 37 4.49700000 0.12154054 PR el! 

CORRECTED TOTAL 4] 8.43239048 0.0001 

Before concluding this section, recall that we assume that each of the k inde- 

pendent samples is drawn from normally distributed populations with equal vari- 

ances o°. If the sample sizes are reasonably large, the test is quite robust to 

departures from normality in the sense that P values reported, although approxi- 

mate, are fairly accurate. However, the test can be quite sensitive to departures from 

the assumption of equal variances. This is particularly true if the respective sample 

sizes differ considerably. When possible, it is advantageous to design experiments 

so that sample sizes are equal. A method for testing for equality of variances is 

given in the next section. If normality seems unreasonable and sample sizes are 

small or variances appear to differ, then a nonparametric method of analysis is ap- 
propriate. This method is discussed in Sec. 13.7. 

13.2 COMPARING VARIANCES 

As indicated earlier, the F test for testing equality of means is sensitive to the violation 

of the assumption of equal variances. This is especially true when sample sizes differ 

greatly. Before performing an analysis of variance, we need to test the hypothesis 

Hy 0} = 03 => + = 07 
H,: 07 # a? for some i and j 

(at least two of the variances are not equal) 

If Ho is rejected, then either a nonparametric analysis should be used or else the data 
should be transformed in hopes of stabilizing the variances. A nonparametric alter- 
native is discussed in Sec. 13.7; variance stabilization transformations are found in 
analysis of variance texts [14]. 

The most frequently used test for testing the null hypothesis of equal variances 
is called Bartlett's test. The statistic used in this test can be shown to follow an ap- 
proximate chi-squared distribution with k — | degrees of freedom when sampling 
from normal populations. 

To conduct Bartlett’s test, we compute the sample variances $?, So oe SE TOr 
each of the k samples. We also compute the error mean square, the pooled estimate 
of o* under the assumption that Hp is true. In this context it is convenient to com- 
pute MS, directly from the individual sample variances by means of the formula 

k (hiss? 

N—k 
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It is left as an exercise to verify that this equation holds. (See Exercise 8.) We next 
form the statistic Q defined by 

k 
Q = (N — k)logig Ss? . Dy (n; — 1)logS? 

i= 

The observed value of this statistic is large when the sample variances S?, i = 1, 
2,...,k are quite different; it is near 0 when these sample variances are close in 
value. The Bartlett statistic is defined by 

Test statistic ae Oj = 03 =:°: of 

= 2.3026Q/h 

where 

5 steel ae el oe 
hema) ety ee Vea, 

An example should demonstrate the use of Bartlett’s test. 

Example 13.2.1. Let us return to the coal seam data given in Example 13.1.2. The 

sample variances and their logarithms must be found for each of the five factor levels. 

The results of the calculations are summarized below: 

Coal seam Sample variance (s?) Log s? Sample size (7;) 

1 WS) = IT 7 

2 144 —.842 8 

3 MIS) = 939) g 

4 N23} —.910 8 

5 .074 = 113i 10 

The pooled estimate for 07 is 

ee 
MS; = s; Se era a 

ncn Sear EAT RAG CORTE: 

te (3 = WC IDS) se CO = W)C!) 

A = 5 

= 122 

Note that this value agrees with the value obtained for MS, in Example 13.1.3. By 

substitution 

k 

G=(N= k) logis; at yS (n; — 1) logis? 
i=] 

= sO HlOSi glo tee Oe Ol Veten (=e 842) 
SEO ge 39 itt (ae. Oe (= Ie 3.1) ] 

= .692 
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and 

k ] ] 

ee ve 1) es l - 

PLS ae salah) 
S(4):(6 7 AB. Je woe 

= 1.055 

The observed value of the Bartlett statistic is 

b = 2.3026q/h 

= 2.3026(.692)/1.055 

= 1.510 

Based on the X?_, = Xj distribution, the P value lies between .75 and .9. Since this 

value is large, we are unable to reject 

Ho: Of = 03 = 03 = 04 = 03 

We have no reason to doubt that the assumption of equal population variances is not 

valid. 

13.3. PAIRWISE COMPARISONS 

In testing for equality of means in the one-way classification model, we either re- 

ject Hp or fail to do so. If Hp is rejected, we conclude that at least two of the popu- 

lation means differ in value. Unfortunately, the analysis of variance procedure does 
not tell us which of the k population means may be regarded as being different 

from the others. 
There are many different techniques that have been suggested for comparing 

pairs of means. Several of these procedures do not require that the F test in the over- 

all analysis of variance table be conducted prior to pairwise comparisons. However, 

this procedure is usually followed in practice. As pointed out at the end of this sec- 

tion, requiring a significant F test in the analysis of variance prior to conducting 

pairwise comparisons gives added protection against falsely declaring pairs of 

means significantly different. 

Lentner and Bishop [31] present a good overview of most of the pairwise 

comparison procedures. Here we discuss three possibilities. These are the Bonfer- 

roni 7 tests, the Duncan’s multiple range test, and Tukey’s test. 

ie alle p) 

; k 
Consider a set of k population means. There are \) = k(k — 1)/2 possible pairs of 

means. Thus there are k(k — 1)/2 possible tests of the form 

Ho: bi = b; 

Ay: py; # ps, 

that can be conducted. Since one of the model assumptions is that the population 
variances are equal, each of these hypotheses can be tested by using a pooled T test 
as described in Chap. 10. In such a test the test statistic is 
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Lee a 

where S> is the pooled estimator for the common population variance based on sam- 
ples drawn from populations i and j. In this case, another estimator of o? is avail- 
able, namely, «* = MS,. Since this estimator is based on all available data, the T 
test can be improved by using 

Bonferroni test statistic Hy: a; = p,; 

as the test statistic. The critical point for the two-tailed test at the a level of signifi- 
cance is 

Bonferroni critical point 

We reject H) whenever IY;. — Y ;-| exceeds the computed critical point. Note that 

when sample sizes are unequal, it might be necessary to compute a different critical 

point for each test; if sample sizes are the same, then a single critical point will suf- 

fice. Performing k(k — 1)/2 individual T tests is laborious, but it can be done. How- 

ever, this procedure has a more serious drawback that must be handled with care. 

To understand the problem, suppose that we ask, “What is the probability of 

making at least one incorrect rejection and therefore drawing at least one incorrect 

conclusion?” If the = k(k — 1)/2 tests are independent, then this probability, called 

the experimentwise error rate and denoted by a’, can be calculated as follows: 

P[at least one incorrect rejection] = 1 — P[no incorrect rejections] 

If each test is conducted at the a level of significance, then the probability of mak- 

ing an incorrect rejection in each case is a; the probability that a rejection is not in- 

correct is | — a. If the tests are independent, then the definition of independence 

guarantees that if c tests are run then 

P{no incorrect rejections] = (1 — a)* 

Hence in the case of independent tests a’ is given by | — (1 — a)°. The problem in 

the case of multiple comparisons is that many tests are being conducted on the same 
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set of data. For this reason, these tests are not independent. However, it can be shown 

that the above expression provides an upper bound for a’ in this setting. In any 

hypothesis-testing setting in which more than one test is conducted we can say that 

Experimentwise error rate = a’ = 1 — (1 — a) 

Here a is the common level of significance per test, called the comparisonwise er- 

ror rate, and c is the number of tests run. 

5 
As an example for k = 5, there are |, ] = 10 possible paired comparisons. If 

“a 

each test is conducted at the a = .05 level, then an upper bound on the probability 

of making at least one incorrect rejection is | — (1 — .05)'° = .40. It is easy to see 
that as k increases, the overall probability of error may become unacceptably high. 

To compensate for this problem, we suggest that only those tests of real interest to 

the researcher be conducted and that some reasonably small target upper bound, b, 

be chosen. We then conduct each 7 test at the b/c level of significance, where c de- 

notes the actual number of tests run. It can be shown that if a = b/c, then a’ = b. 

(See Exercise 14.) For example, if we want a’ to be at most .10 and we run all pos- 

sible tests for k = 5 groups, we would conduct each of our paired comparisons at 

the a = .10/10 = .01 level of significance. The numerical value of the bound b is 

chosen at the discretion of the researcher. Its value is somewhat dependent on the 

number of tests being run. Notice that if b is small, then a = b/c is even smaller. If 

we try to force the experimentwise error rate to be too small, then a@ becomes so 

small that it becomes extremely difficult to reject Hp: ww; = m;, even when this hy- 

pothesis should be rejected. That is, the price paid for setting too small a bound on 

a’ is lack of power. For this reason, values of a’ as high as .15 or .20 are not unrea- 
sonable. 

The technique presented here is equivalent to what is called the Fisher’s least 

significant difference (LSD) procedure run with @ = b/c. For an excellent discus- 

sion of LSD you are referred to [31]. Since the procedure is based on an inequality 

known as the Bonferroni inequality, it bears the same name. Bonferroni T tests are 
available on SAS. 

Duncan’s Multiple Range Test 

Duncan’s multiple range test was developed by D. B. Duncan in the early 1950s. It 
was one of the first methods suggested for doing pairwise comparisons of means, 
and you will see references to this test in the literature. 

To understand Duncan’s idea, let us compare what is done to the Bonferroni 
technique just discussed. First, the Duncan procedure initially assumes that sample 
sizes are equal. That is, it is assumed that we have available a collection of k sam- 
ple means yyrs, ) 5 ene Y,, each based on a sample of size n. Notice that in this 
setting there is a common critical point cp, that applies to all Bonferroni type T tests 
conducted. We reject Hp: uw; = 4; whenever lY;. — Y).1 > cp. No attempt is made to 
account for the relative positions of Y;. — Y;. in the ordered list of sample means. 
The same critical point is used whether these means are side by side, or are sepa- 
rated by several other means, or are the extremes in the ordered list. In the Duncan 
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procedure an attempt is made to adjust the critical point to account for positioning. 

Thus in the Duncan procedure, multiple critical points are used which lead to the 

name “multiple range” test. If two means are adjacent on the ordered list of sample 

means, then the critical point used is the same as that of an ordinary T test at the 

specified a level; however, if the sample means being compared are not adjacent, 

then this critical value is increased according to the span of the means in the ordered 
set of means. In other words, critical points are chosen so that sample means that lie 

close together are not required to exhibit as much difference as those that are more 
widely separated in order to declare the corresponding population means to be “sig- 

nificantly different.’ Duncan’s contribution was to develop tables from which these 

adjusted critical points can be calculated. 
The test was first developed under the assumption that sample sizes are equal. 

However, C. Y. Kramer adapted the procedure to the case of unequal sample sizes. 

The Duncan test is conducted as follows: 

1. Linearly order the k sample means. 

2. Find the value of the least significant “studentized range,” r,, for each p = 2, 

3,...,k. This value is given in Table XI of App. A for a@ levels of .1, .01, or .05. 

In this table y denotes the number of degrees of freedom associated with MS, 

the error mean square in the original analysis of variance. 

3. For each p = 2, 3,...,k find the shortest or least significant range, SSR, This 

value is given by 

SORE, a: if the sample sizes are all equal with value n 
n 

SSR, = 7, V MSz if the sample sizes are unequal 

4. Consider any subset of p adjacent sample means. Let IY; — Y,.| denote the 

range of the means in this subgroup. The population means, of span p, [i and 

f.; are considered to be different if 

Ves = 2d) Beds for equal sample sizes 

ee 2njN; 
amet | ek, for unequal sample sizes 

3 Hy Th; 

5. Summarize your results by underlining any subset of adjacent sample means 

that are not considered to be significantly different at your chosen a level. 

or 

Although this sounds complicated, it is not! An example should make the idea clear. 

Example 13.3.1. In Example 13.1.3 we rejected 

Alo: fy = Ba= 3 = ba = Bs 

and concluded that at least two of the coal seams sampled differ in mean sulfur con- 

tent. To pinpoint the differences, we run the Duncan’s multiple range test. The sample 

means in linear order are 
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Yio ¥.) ee Ge 

thos cept lots Pal 146 1.66 

The values of r, for span p = 2, 3, 4,5 for an a = .01 level test based on 37 degrees 

of freedom are found i in Table XI of App. A. These values are 

Pp 2 3 4 5 

r 3.825 3.988 4.098 4.180 

The error mean square found earlier is MS; = .122. Since the sample sizes n; = le 

ny = 8, n, = 9, ny = 8, andn; = 10 are unequal, the shortest significant range for each 

p is given by 

SSR, = 1, VMS_ 

These values are 

p [ee 3 4 5 

ie 3.825 3.988 4.098 4.180 

SSR, 1.336 ih Sh2)8) 1.431 1.460 

A pair of means 1, and 2; of span p are considered to differ if 

~ ah 2njN; 
een 95 i doperemmenely ells) 

NaN; 

For five populations there are | , 
“ 

5 " 
) = 10 possible comparisons. We first compare the 

largest to the smallest sample mean. In this case we compare Y,. to Y,.. Since these 

means span the entire set of sample means, p = 5 and SSR, = 1.460. The observed 

value of the test statistic is 

2 = 2n,n 2(7)(8) 
IY,. — Yq.l,/—+=+ = (1.66 — .88), /——-"— 

"\-ny + ng aps Ba oul TAS 

= 2.131 

This value exceeds SSR,,, and hence we conclude that jz; and «1, are significantly dif- 

ferent. The results of other comparisons are as follows: 

Treatment Value of test Reject 

pair Pp statistic SSR, BM; = B? 

4-] 5 Pipsiesi| 1.460 Yes 

4-3 4 1.688 1.431 Yes 

4-2 3 820 1.393 No 

Re Peay bee 

4-5 2 0 1.336 No 

5-1 4 2.238 1.431 Yes 

5-3 3 1.785 1.393 Yes 

5-2 Ps 8646 1.336 No 

2-1 3] 1.339 1.393 No 

Ve veoleutact 

8440 1.336 No 

5612 1.336 No Nm bh 
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In summary, we can conclude that 

My F by 

My # Ms 

M3 F bg 

M3 F ps 

Each statement has probability .01 of being in error. 

If sample sizes are all the same, then we might not have to make all (!) 

comparisons. This is due to the fact that when sample sizes are equal, whenever the 

most extreme pair of means is found not to be significantly different then all means 

within the subgroup are assumed to be equal with no further testing required. 

Duncan’s test is widely used and available on SAS and other computer pack- 

ages. However, it should be emphasized that the significance level given does not 

refer to a’, the overall probability of making at least one incorrect rejection. There- 

fore a Bonferroni test run at the a’ = .01 or .05 level can give results that differ 

from that of a Duncan’s test at the same level. In using SAS, you must be aware of 

this fact. In an actual study only one procedure should be run. The choice of which 

one to run is yours. 

The Bonferroni technique is analytically attractive, since it is easy to calculate 

an upper bound for the experimentwise error rate. However, this technique tends to 

be very conservative, and therefore it may not detect differences in means when 

they exist. Duncan’s procedure attempts to control the experimentwise error rate but 

yet not be too conservative. The trade-off is that Duncan’s procedure may yield 

large experimentwise error rates when the number of comparisons is relatively 

large. 

An approach that is sometimes recommended is to use what can be called a 

protected Duncan’s procedure. That is, do not use Duncan’s technique unless the 

ANOVA F test is first significant at level a. This then assures the experimenter that 

if Duncan’s technique is also used at level a, then the experimentwise error rate 

a’ = a. Duncan’s standard usage does not require a preliminary significant F test 

from the ANOVA. 

Tukey’s Test 

Tukey’s test is based on the studentized range distribution and has the advantage of 
allowing simultaneous confidence intervals for the paired mean difference. Let 

q(a, k, v) denote the upper-tail a-level critical value of the studentized range, where 

a represents the significance level, k denotes the number of treatment groups, and v 

denotes the number of degrees of freedom for the mean squared error (MS;) in the 

ANOVA table used to conduct the overall F test. Values of g(a, k, v) are given in 

Table XIII for a = .05. 
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The simultaneous confidence intervals are given by (13.1) and (13.2) for equal 

sample sizes and unequal sample sizes, respectively. For equal sample sizes, 7, 1n 

each treatment group, we have 
2 wt -—— 

(Y; — Y;,.) + q(a, k, v)VMSz/n (1351) 

for all pairs of means Y;. and Y). and for 1 # /. 

When the sample sizes are not equal, the Tukey procedure for simultaneous 

confidence intervals can be approximated as follows: 

Lael ; 
us,(4 ‘is 1) where n, and n; denote the sample sizes 

‘\h Ny : 

for Y;. and Y;. , respectively. Then the confidence interval is given by 

YoY ytigy (13.2) 

Let q; = (a, k, v) 

for all pairs of means Y,. and Vie and for i # /j. 

The interpretation for both (13.1) and (13.2) is to conclude that the true means 

f., and ju; differ significantly at level a if the confidence interval does not include zero. 

13.4 TESTING CONTRASTS 

In the last section we discussed methods for comparing pairs of means. There are 

situations in which other sorts of comparisons are needed. To illustrate, reconsider 

Example 13.1.2. The experimenter may believe that because of geological charac- 

teristics, coal seams | and 3 may be similar to each other and seams 4 and 5 may be 

similar, but that pairs (1, 3) and (4, 5) differ from each other. Hence it is of interest 

to test 

Ho: by + M3 = Ma + Ms 

Ay: by + M3 F By + Ms 

Note that H, can be rewritten in the form Hp: My + by — My — Ms = O. That is, it can 

be expressed as a linear combination of population means. It is, in fact, a special lin- 

ear function called a contrast. This term is defined below: 

Definition 13.4.1 (Contrast). Let wy), Wo, ..., 4, be the means of k 
populations. Any linear function of the form 

k 
b>) Ch 

i=] 

such that S4_ ,c; = 0 is called a contrast in treatment means. 

The function jr; + (43 — fy — Ms iS a contrast with coefficients c; = cz = 1, c, = 0, 
and c4= c; = —1. 

To test a hypothesis of the form 

k 

Hb: > Crip = 0) 

i=1 



ANALYSIS OF VARIANCE 531 

where >‘_,c;u; is a contrast, we must develop a test statistic. To ee we replace 
the population means with their unbiased estimators Y;., Y>.,..., Y;. to obtain the 
Statistic 

A k 

hs seis 
= 

Since it is assumed that we are drawing independent samples from k normal distri- 

butions with means j1,, {3,. . . , 4, and common variance o*, the sample means 

ey mea Voeate normally distributed with mean 2; and variance a 7/n,, respec- 

tively. The avails Lis also normally distributed with mean =i _,C;@; and variance 

a7 X*_,(c?n,). (See Exercise 41, Chap. 7.) If Hy is true, then 2*_,c,4, = 0 and 

follows the chi-squared distribution with | degree of freedom. It can be shown that 

QO, = SS;/a? follows the chi-squared distribution with NV — k degrees of freedom 

and that Q, and Q, are independent. By Definition 10.2.1 the random variable 

Q/1 
Q,/(N — k) 

follows an F distribution with 1 and N — k degrees of freedom. It is easy to verify 

that this statistic is given by 

Test statistic Hy: 2 c,h; = 0 

The numerator of this statistic is called a contrast sum of squares and is denoted by 

SS,. To illustrate, let us test the null hypothesis posed earlier. 

Example 13.4.1. We wish to test 

Ho: fy + U3— By — bs =O 

Hy: by + B3— ba — Ms FO 
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based on the data given in Example 13.1.2. From the earlier analysis we know that 

y,. = 1.66 yz. = 1.17 

y;. = 1.46 yy. = .88 ys. = .88 

MS, = .122 ny =7 n= 8 

nmn=9 n= 8 ns = 10 

The desired contrast sum of squares is 

5 2 

(S63: _ (10.66) + 101.46) + (=1) (88) + (1) C88) P 
5 Te te pe tee oy a+ — +2 + ps 7 9 8 10 

So 
= 19 bs 

The observed value of the F ratio used to test Hp 1s 

Li i NaS ae : = 991.23 

From Table IX of App. A we see that P < .05. Hence we can conclude that the aggre- 

gate mean for coal seams | and 3 is significantly different from that of seams 4 and 5. 

It is possible to form a very special set of k — | independent contrasts L), 
ieee L,_, that have the property that their contrast sum of squares sum to the 

treatment sum of squares for the entire ANOVA. That is, 

SS7, ai SS7, Sie OAC ae SS,, = SSt, 

In this way the researcher can determine which contrasts contribute most heavily to- 

ward the rejection of the null hypothesis of equal treatment means. For this to occur 

the contrasts selected must be orthogonal. This term is defined in Definition 13.4.2. 

Definition 13.4.2 (Orthogonal contrasts). Two contrasts 

k 

L, — > a; Mj and 

are orthogonal if 

Bite that if sample sizes are equal, then L, and L, are orthogonal whenever 

_,a;b; = 0. It is relatively easy to design orthogonal contrasts in this case. When 

ee sizes are unequal, the task becomes more difficult. An example will clarify 
this point. 
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Example 13.4.2. Consider a one-way classification model in which k = 5 and sam- 
ple sizes are equal. The contrasts 

Ly = py My = fg — bs and Ly = py + py + By — 4g + prs 

are orthogonal, since 

5 

> ab; = 10) + 10) + (~ Dd) + 0(-4) + (-1)) = 0 
i=1 

Neither is orthogonal to L; = y4, — py. However, if n, = 20, n, = 22, n3 = 24, 
ny = 21, andns = 25, then L, and L, are not orthogonal. In this case 

Gop Cl) Cl) 4 C11), 204) 1) 01) 
2 n; 0 9 24 as Dil 4 25 iat “Le 

Orthogonal contrasts are used when the experimenter wants to partition the vari- 
ation in response due to treatments, SS7,, into independent components. The k — 1 
contrasts chosen to do so can be selected rather arbitrarily. However, usually the re- 

searcher has certain contrasts that are of particular interest from a physical standpoint. 

These contrasts will be included among those tested; other contrasts that are chosen 

simply must be orthogonal to those of interest for the partitioning of SS'z, into k — | 

single degrees of freedom contrast sums of squares to take place. 

13.55 RANDOMIZED COMPLETE 
BLOCK DESIGN: FIXED EFFECTS 

The procedure discussed in this section is an extension of the paired T procedure 

discussed in Chap. 10 for comparing the means of two normal populations. The pur- 

pose of pairing is to control the effect of one extraneous variable, a variable not un- 

der study in the experiment, by pairing experimental units that are similar with 

respect to this variable. Each member of the pair receives a different treatment, and 

any differences in response are attributed to treatment effects, since the effect of the 

extraneous variable has been controlled by pairing. 

When we want to compare the means of & populations in the presence of an 

extraneous variable, a procedure known as blocking is used. A block is a collection 

of k experimental units that are as nearly alike as possible relative to the extraneous 

variable. Each treatment is randomly assigned to | unit within each block. Since the 

effect of the extraneous variable is controlled by matching like experimental units, 

any differences in response are attributed to treatment effects. 
The experimental design presented here is called the randomized complete 

block design with fixed effects. The word “blocks” refers to the fact that experi- 
mental units have been matched relative to some extraneous variable; randomized 

refers to the fact that treatments are randomly assigned within blocks; and to say 

that the design is complete implies that each treatment is used exactly once within 

each block. The term “fixed effects” applies to both blocks and treatments. That is, 
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TABLE 13.4 

Data layout randomized complete blocks 

Treatment 

Block 1 2 Ss ve k Block total Block mean 

l Yi, Ys, Y3, Yu T., Y., 

2 Yas Yo Ye Yp T.» Y. 

3 ) Y53 ) Yi3 tf } 

b Yip Yo Ys Yep Ty Y., 

Treatment 

total Kia T>. Tie Ty ts 

Treatment i bs 

sample mean Yr Nes Yew igre he 

it is assumed that neither blocks nor treatments are randomly chosen. Any infer- 

ences made apply only to the & treatments and b blocks actually used. 

If blocking is done well in the sense that experimental units within blocks are 
relatively homogeneous and units in different blocks are relatively heterogeneous, 
then the randomized complete block design is usually more sensitive to differences 
in treatment means than is the one-way classification design. If blocking is not done 
well, then the reverse may be true. 

The hypothesis of interest is the hypothesis of equal treatment means given by 

Hoy [gm = Lg = = pep 

where j;. denotes the mean of the ith treatment. 
Notationally, Yj; denotes the response for the ith treatment in the jth block for 

ical Mg? era a1 My yk aS A Py b. Note that b denotes the number of blocks used 
in the experiment and the number of observations per treatment; k denotes the num- 
ber of treatments being investigated and the number of observations per block; 
N = kb denotes the total number of responses. The data collected in a randomized 
complete block experiment together with some important sample statistics are con- 
veniently displayed as shown in Table 13.4. Note that 

T;. = total of all responses to ith treatment 
b 

Perce 
j=l 

hoe sample mean for the ith treatment 

=T./b 
T.; = total of all responses in jth block 

k 
yet 

UT 

! 
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as .; = sample mean for jth block 

so Teel 

T.. = total of all responses 

k b k b 

ee hee, Je 
i j= jal 

= mean of all responses 

SSI lt) 

<I! | 

Our first example illustrates these ideas. 

Example 13.5.1. Officials of a small transit system with only five buses want to 
evaluate four types of tires with respect to wear. Each of the buses runs a different 

route so that terrain and driving conditions differ from bus to bus. To control the effect 

of this extraneous variable, a randomized complete block design is appropriate. Each 

bus constitutes a block, and each tire type constitutes a treatment. One tire of each type 

is placed on each bus, with the wheel positions being assigned randomly. The tires are 

run for 15,000 miles, after which the tread wear, in millimeters, is measured. The data 

obtained along with pertinent summary statistics are given below: 

Treatment (tire type) 
Blocks —_ NY —— Block Block 

(buses) 1 ) S 4 total mean 

l 9.1 | 20.8 11.8 T., =58.8 Y= 14.7 
?) 13.4 20.3 28.3 16.0 Te 18.0. 9S 

3 15.6 24.6 Dew 16.2 Le = 805k Ye, = 20025 

4 11.0 18.2 21.4 14.1 T.4 = 64.7 Pee O07 5 

5 7 19.8 Daal 15.8 15 = 73.4 Y.5 = 18.35 

Treatment 

total Ti Ole Sano OO MOS in —a3-9 eel 55) 0 

Treatment 

meatieeeey = 112-304 Y54= 200 ¥4) = 23:86. Yd 44.98 Y= 17575 

Note that, as expected, there appear to be substantial differences among block means. 

Also, some differences appear among treatment means. Are these differences extreme 

enough to allow us to conclude that there are differences in the average tread wear for 

these four tire types? To answer this question, we must develop a way to test 

Ay: py. = bo. = bh. = Ma 

statistically based on these data. 

The Model 

To write the model for the randomized complete block design with fixed effects, we 

need the following notation: 
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= mean for the ith treatment and jth block a5 | 

| 
b 

j.;. = mean of ith treatment = ) 44j;/b 
v= 

k 
ju.; = jth block mean = 5) p,/k 

i=] 

k b 

fe = overall mean = S) SS} pw;/kb 
i=1 j=1 

T; = Mj.— bw = effect ‘ibe to the fact that the experimental 

unit received the ‘th treatment 

B; = w.;— = effect due to the fact that the experimental 

unit is in the jth block 

Ej; = Y;; — @ = residual or random error 

We can now express the model as follows: 

Model for randomized complete block design 

Yi jeer t,; Ppa by 

This model expresses symbolically the notion that each observation can be 

partitioned into four recognizable components: an overall mean effect yu, a treat- 

ment effect 7;, a block effect 6, and a random deviation attributed to unexplained 

sources E;;, We make these model assumptions: 

1. The k - b observations constitute independent random samples, each of size 1, 
from k - b populations with unknown means 1). 

2. Each of the k - b populations is normally distributed. 

3. Each of the k - b populations has the same variance, o°. 

4. Block and treatment effects are additive; that is, there is no interaction between 

blocks and treatments. 

Assumptions | through 3 are identical to those made in the one-way classifi- 
cation model except that & - b, rather than k, populations are under consideration. 
The fourth assumption is new and needs to be examined more closely. Briefly, to 
say that block and treatment effects are additive means that the treatments behave 
consistently across blocks and that the blocks behave consistently across treatments. 
Mathematically, this means that the difference in the mean values for any two treat- 
ments is the same in every block, and the difference in the means for any two blocks 
is the same for each treatment. If this is not the case, then we say that there is inter- 
action between blocks and treatments. 

The concept of additivity versus interaction is illustrated in Fig. 13.3. In each 
case we have graphed the theoretical means for three treatments A, B, and C in each 
of two blocks. When no interaction exists, the line segments joining any two means 
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Block 1 
Block 1 

Block 2 

Block 2 

Jigles 2 eM» | Siedaliet es res el em eee eee 

> B 

Treatment Treatment 

(a) (b) 

q > oy q 

FIGURE 13.3 

(a) Additive effects—no interaction (line segments are parallel); (b) interaction exists (line segments 

are not parallel). 

will be parallel across blocks. Such is the case in Fig. 13.3(a). Practically speaking, 

this means that it is possible to make general statements concerning the treatments 

without having to specify the block involved. For example, it is correct to say that 

the mean for treatment A is smaller than that of B and C. This statement holds for 

both blocks. In Fig. 13.3(b) the line segments are not parallel. This means that there 

is interaction between blocks and treatments. In other words, we must be very care- 

ful when making statements concerning the treatments, because the block involved 

is also important. For example, it is no longer correct to say that treatment A has a 

smaller mean than B and C. This statement is true for block 1, but it is not true for 

block 2. 
Mathematically, additivity means that 

(i Be oe Gi Hee 

Sythe (Clin, FIG ses Grs = 718) 

Substituting, we can rewrite the theoretical model as 

(lig TU = Chee) ey 

(EA ig PB) AY TE GT ce GT) NN 

Replacing parameters by their respective unbiased estimators, we have 

NOES Pe AO On tee) x 
et oe (Yer) Ye) 

If each side of this identity is squared, summed over all possible values of i and j, 

and simplified, this sum-of-squares identity for the randomized complete block de- 

sign results: 
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Sum of squares identity 
. & Oe 

(Yee) = 0(Y; eae cms 4106, = 063 
1 i=1 j= 

k 

i= 

b 

1 j= 

k b = ee 

so DST OG om reat ius) <0) 

ll 
a. 

i} 

The practical interpretation for each component is similar to that of the one- 

way classification model. In particular, 

te 

k 2: 
> >; — ¥..)? = measure of total variability in data 

= total sum of squares (SS7,,) 

yet bine Y..)? = measure of variability in data attributable 

i=] to use of different treatments 

= treatment sum of squares (SS+,) 

SSeS: — Y..)? = measure of variability in data attributable 

it to use of different blocks 

a. = block sum of squares (SS.) 

Ss > (¥; — Y;. — Y.) + Y..)? = measure of variability in data due to 
ihe random factors 

= residual, or error sum of squares (SS-) 

Symbolically, the sum of squares identity is 

Conceptual sum of squares identity randomized blocks 

SSto = SS, te SSpiks ae SSr 

The hypothesis of equal treatment means can be stated in terms of the treat- 

ment effects 7;. To see how this is done, note that if w;. = wo. = ++ > = My. then 

k b 

SS py, /kb 
i=1 j=l 
k 
S m./k 
i=1 

= pM). foreach t= le 2.509 k 

II M 

By definition 7, = ;. — pe. Therefore if the treatment means are all the same, then 

their common value is 42 and each treatment effect has value 0. The null hypothesis 
in Our experiment 

Ho [iis = re ara ie 

is equivalent to 

Ho: 7; =T, =+++=7,=0 
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As in the case of the one-way classification model, this form for H, is useful if one 

wants to consider the randomized complete block design as a general linear model 

and to analyze the data via regression techniques. 

Testing Hy 

The test for this hypothesis is derived in a manner similar to that used for the one- 

way classification design. Utilizing the model assumptions and the rules for expec- 

tation, we can show that the expected mean square for treatments is given by 

E|MSy,] = E[SSp/k — 1] 
k 

Oe 04 
ey) i=l =o°+ =p 

To define the error mean square, we first note that the degrees of freedom associated 

with this statistic follow the usual pattern, 

Overall __, _ degrees of freedom associated 

sample size with other model components 

or 

os > Ih 2 Ui Ose ON se (oe 18) 

As in the past, the error mean square is an unbiased estimator fong-s Thatis: 

FAMSE | = E[Ssei(k 9b) (oD 1)) 0 

To test the null hypothesis, 

He it, — = ap 0 

we use the F ratio 

Test statistic Ay: M1. = fo, Sct = Px 

MS>, 
Fea be) = MS 

E 

If Hp is true, both the numerator and the denominator of the F statistic are estima- 

tors for 2 and the observed value of this statistic should lie close to 1; otherwise the 

numerator should be larger than the denominator, resulting in an F ratio larger than 

1. Our test is to reject Hy if the observed value of the test statistic is too large to have 

occurred by chance. 

Table 13.5 summarizes the ideas developed in this section and gives some 

computational formulas for finding SSp, and SSpis- 

Effectiveness of Blocking 

Since blocking is designed to control the effect of an extraneous variable, the nat- 

ural question to ask is, “Was blocking successful?” If so, then SS), should account 

for a substantial portion of the total sum of squares. This in turn reduces SSz, 
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TABLE 13.5 

ANOVA table for the fixed effects randomized complete block design 

Source of | Degrees of Sum of Mean Expected 

variation freedom (DF) squares (SS) square (MS) mean square fi 

EW CE Oe Ui ; eee MS, 
Treatment k= 1 > i ies Ate — 10) Oo De Tesh ali 

> ae SSgus(b — 1 ok b-1 + SSpys(b — 1) Block D a kb Bik 

Error (k= (o> 1) Subtraction SS) aL) (bi oe 

sles T2 

Total KD > Les ine 

thereby increasing the value of the F ratio used to test for equality of treatment 

means and making it more likely that H, will be rejected. The power of the test will 

be improved. Note that the number of degrees of freedom for error in the one-way 

classification design is N — k; in the randomized complete block design it is smaller 

than this, namely, (k — 1)(b — 1) = (N — k) — (b — 1). In Table IX of App. A ob- 
serve that as the number of degrees of freedom associated with the denominator of 

an F ratio decrease, the tabled F value increases. The implication of this is that if 

blocking is done unnecessarily, we pay a price for this mistake. Namely, the num- 

ber of degrees of freedom for error decreases, the critical point for testing Hp in- 

creases in size, and it becomes harder to reject Hp. The power of the test will 

become smaller. It is clear that blocking can help when appropriate but that indis- 
criminate blocking should be avoided. 

When an experiment is being conducted for the first time, intuition, based on 
knowledge of the subject matter, is the only guide in deciding whether to block. 
Once the initial experiment is conducted, an assessment of the effectiveness of 
blocking can be done so that future studies can be designed efficiently. It seems rea- 
sonable to suggest that if block means are equal, then blocking is unnecessary; oth- 
erwise blocking is useful. However, there is no known valid way to test the null 
hypothesis of equal block means. One approach used to investigate the effectiveness 
of blocking is to estimate the relative efficiency (RE) of the randomized complete 
block design as compared to the completely randomized design given in Sec. 13.1. 
The theoretical development of the notion of relative efficiency is beyond the scope 
of this text but can be found in [27] and [31]. Relative efficiency is a positive num- 
ber that can be interpreted as the ratio of the number of observations per treatment 
needed for the two designs to be equivalent. For example, if RE = 3, then the com- 
pletely randomized design requires 3 times as many observations as the randomized 
complete block design to produce a test with the same characteristics: blocking is 
desirable in this case. If RE = .5, then blocking is not desirable, since the com- 
pletely randomized design can accomplish the same thing as the randomized block 
design by using half as many observations. If RE = 1, then the designs are equiva- 
lent when sample sizes are identical. 
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Can we estimate the relative efficiency quickly from our original analysis of 
variance? Fortunately, there is an easy “way to do so. It has been found (see [32]) that 
there is a linear relationship between RE and the ratio 

where 

MS, = block mean square = SSp),,/(b — 1) 

This relationship is given by 

RE =c + (1 — c)\(MSpyo/MS,) 

where c = b(k — 1)/(bk — 1). It is easy to show that 

RE=1 if andonly if MSpy./MSp = 1 
RE<1 _ if and only if MSpy./MSp < 1 
RE>1 _ if and only if MSy,/MS; > 1 

Thus, to make a judgment about whether blocking in a particular experiment helped 

or hurt, we can use the information available from our ANOVA to find the value of 

MSp;/MS;. We then estimate the relative efficiency and decide from practical con- 

siderations such as the time, cost, and effort required to block whether blocking is 

worthwhile. As experience is gained, it will become unnecessary actually to com- 

pute RE. One need only consider the observed value of MSp),./MS,. Values consid- 

erably larger than | indicate that blocking was beneficial; values near | indicate that 

blocking neither helped nor hurt; values somewhat less than | indicate that block- 

ing was not helpful. In the latter case a completely randomized design is preferable 

in future studies. 

It should be noted that some texts include a “test” for blocks based on the sta- 

tistic MS,),,./MS;. However, due to the manner in which randomization is achieved 

in the randomized complete block design, the test 1s improper. 
As an example, let us continue the analysis of the data given in Example 

Ieroely 

Example 13.5.2. To compare four types of tires for use on buses, we test the null hy- 

pothesis that there are no differences with respect to average tread wear among these 

brands. That is, we test 

Ao: fy. = Mo. = Ma. = Ma 

We have computed these summary statistics: 

T,. = 61.8 T., = 58.8 Ten 1350 

T,. = 100 T., = 78.0 

T;.= 119.3 Ts = 80.1 

Ty. = 73.9 T.4 = 64.7 

T.; = 73.4 
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TABLE 13.6 

ANOVA for tire wear data 

Source of Degrees of Sum of Mean 

variation freedom (DF) squares (SS) square (MS) F 

Treatments 3 401.338 133.779 61.340 

Block 4 81.525 20.381 9.345" 

Error 12 26.167 2.181 

Total 19 509.030 

For the data given, >#_ ,=}_, Yj, = 6810.28. Using the computational formulas given in 

Table 13.5, you should be able to verify most of the figures in the ANOVA table 

shown in Table 13.6. Since fo;(3, 12) = 3.49 and 61.34 > 3.49, we can reject 

Ho: by. = Ma. = M3. = Mg. 

with P < .05. We have strong statistical evidence of differences in the mean tread wear 

among the four tire types. The starred value in the table is the observed value of the ra- 

tio MS,,/MS;, used to evaluate the effectiveness of blocking. Since this value exceeds 

1, we can conclude that blocking was appropriate in this experiment. The estimated 
relative efficiency is 

RE =c + (1 — c)(MSpy./MS-) 

where c = b(k — 1)/(bk — 1) = 5(3)/(19) = .789. In this case 

RE = .789 + .211(9.345) = 2.76 

Paired Comparisons 

As in the one-way classification completely randomized design, paired comparisons 

k ; ; ; : can be made by performing 4 } Bonferroni type 7 tests with a carefully chosen so 
“ 

that a’ is kept under control. In this case the T tests conducted are paired T tests. 
Keep in mind the fact that this method is feasible only when k is rather small. This 
is because large values of k force a to be extremely small, resulting in a test with 
very little power. 

A Duncan’s multiple range test is available also. The test is conducted as de- 
scribed earlier with 

MS; 
SSR, at rar 

Note that in this design sample sizes are equal. 
To use Tukey’s procedure, we use (13.1), since the number of observations for 

each treatment is equal. Hence, we say p, is significantly different from b,, if 
Y;. — Y;. is greater than 

qa, k, v) VMS,/b, 

where > is the number of blocks. 
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The 7 value used in finding the critical point for testing Ho: w;, = fj, at a = .02 level. The number of 
degrees of freedom is (k — 1)(b — 1) = 12. 

We close this section by using Bonferroni T tests to complete the analysis of 
the data given in Example 13.5.1. 

Example 13.5.3. In the two previous examples we found significant differences in 

tread wear among the four types of tires under study and that blocking was appropriate. 

: f . (4 
The number of paired comparisons to be made is ah 6. We can use either 

Duncan’s procedure or Bonferroni T tests. If Duncan’s procedure is used, then a 

should be set at .01 so that the experimentwise error rate will be kept reasonably low. 

In this case let us conduct Bonferroni T tests with a’ controlled at .12. To do so, we 

find that the comparisonwise error rate is a = .12/6 = .02. Since sample sizes are 

equal, the common critical point for the Bonferroni T tests is 

CP = te - 1b - »,1-a/2 VMSel (1/n) + (I/n) | 

The point t%—1)—1),1-a/2 is shown in Fig. 13.4. Its value is 2.681. The error mean 

square, 2.181, is found in Table 13.6. Since each treatment mean is based on a sample 

of size 4, n = 4 and the critical point is 

QD = 2.681 \/2.181[ (1/4) + (1/4) ] = 2.80 

For two population means to be declared different their corresponding sample means 

must differ by at least 2.80. The ordered sample means with nonsignificant differences 

underlined are 

ve Ve De Vx. 

12.36 14.78 20.0 23.86 

All pairs of means are significantly different except 1 and 4. Since low tread wear is 

good, the experimenter can conclude that tire types | and 4 are both superior to types 

2. and 3. He or she cannot say that one tire is clearly superior to all the others but can 

say that type 3 is clearly worse than the others based on these data. 
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13.6 LATIN SQUARES 

We have seen that the randomized complete block design is used to control the ef- 

fect of one source of extraneous variation. In Example 13.5.1 four types of tires are 

compared. Since the buses on which the tires are to be used operate under different 

driving conditions, the buses are considered as blocks to account for this extraneous 

variable. In this example there is another recognizable source of variation that 

should be controlled. Namely, it is suspected that tire wear is affected by the tire’s 
position on the bus. Front tires may wear faster than rear tires. It would be helpful 

to be able to design an experiment that takes this observation into account. This can 

be done by using what is called a Latin square design. In general, a Latin square is 

useful when the experimenter wants to control fvo extraneous sources of variation. 

Each of the extraneous variables is a blocking variable. Hypothesis tests for differ- 

ences among levels of these variables are not appropriate. Thus a Latin square de- 

sign is a design in which one factor is studied in the presence of two extraneous 

variables whose effects are controlled in the design of the experiment. 

For a Latin square to be appropriate the number of levels at which each extra- 

neous factor is studied must be the same as the number of population means being 

compared. In our example four types of tires are under study. Hence four buses are 

needed; on each bus the four natural tire positions are utilized. Tire types must be 

randomly assigned to buses and positions in such a way that each type of tire is used 

exactly once on each bus and exactly once in each position. Randomization is 

achieved by randomly selecting a design from existing tables of Latin square de- 

signs. These may be found in [15]. In our tire study a 4 X 4 design is needed. A typ- 

ical layout is shown in Table 13.7. The letters A, B, C, and D refer to the type of tire 
employed. 

For example, this design indicates that tire type B is to be used on bus | at tire 

position I; tire type C is to be used on bus I, position II; and so forth. Note that each 

tire type appears once on each bus and once at each position as desired. In general, 
when r population means are to be compared in the presence of two extraneous 
variables, an r X r design is required. Each treatment occurs exactly once in each 
row and once in each column of the design. 

The theory behind the analysis of a Latin square design is an extension of that 
developed for a randomized complete block design. Notation becomes a little tricky. 
Here Yj, denotes the response to the treatment applied in row j and column k. For 
example, in the tire experiment the treatment applied in the first row and the first 
column is B, the second treatment. We indicate this by writing the response as Y511- 
The entire data layout for the design given in Table 13.7 is shown in Table 13.8. 

The model for a Latin square design is given by 

Model for Latin square design 

Yin = e+ 7+ B+ + Ey 

where 7; 1s a treatment effect, 6; is a row effect, and y, is a column effect. In our ex- 
ample, 7; is an effect due to the type of tire being used, B; is an effect associated with 



TABLE 13.7 

A typical 4 x 4 Latin square design 

Factor (bus) 

Factor SEE 

(tire position) I Il il IV 

I B é D A 

II G D A B 

Il D A B C 

IV A B GC D 
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TABLE 13.8 

Data layout for the design of Table 13.7 

Factor (bus) 

Factor Ss SS SS 

(tire position) I Il Il IV 

I You Y319 Y413 Yiig 

HI Y 30) Y429 Yi23 Yy04 

Il Y431 Y 132 Y533 Y334 

IV Yiai Y 549 Y343 Yaa 

the position of the tire on the bus, and y, is an effect attributed to the bus itself. 

These model assumptions are made: 

1. The r* observations constitute independent random samples, each of size 1, 

from r? populations, each with unknown means. 

2. Each of the r? populations is normally distributed. 

3. Each of the r? populations has the same variance, a. 

4. There is no interaction. That is, the only effects present are those due to the row, 

treatment, and column variables acting individually as indicated in the model. 

The null hypothesis to be tested is 

A: Py. = Po... = = [ps 

Necessary totals and sample means are 

(treatment means are identical) 

T,.. = total of all responses to treatment i 

Yee = 1 = mean of all responses to treatment i 

T.;. = total of all responses in row j 

v7 im ey = mean of all responses in row j 

T.., = total of all responses in column k 

Ve == = mean of all responses in column k 

T... = total of all responses 

Mos = es = mean of all responses 
i 

Symbolically, the sum of squares identity 1s 

SS tot Fe 

Conceptual sum of squares identity Latin squares 

SS, + SSrows + SScoi + SSz 
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TABLE 13.9 

ANOVA table for the fixed effects Latin square design 

Source of Degrees of Sum of Mean 

variation freedom (DF) squares (SS) square (MS) F 

ag fe aa Ii 
treatment aa7aae! eee ee SSq,/(r—1) MS>,/MS¢ 

i=] 

ei coir bis 
Rows j= il le: Sree (7aul) 

f= r Ts 

ol eae alts 
Columns r-1 a SSco/(r—1) 

k=1 Te 

Error (2a) Ge) Subtraction Sse p= 2) 

Tee 

Tal aa De ae ee 
all possible 

idk 

These sums of squares are defined and calculated in a manner analogous to those of 
the randomized complete block design. For example, 

Treatment sum of squares = SSq, = r S\ (Y;.. — Y...)? = ee - 
i=] i=] 

You are asked to determine the form of the others as an exercise. The total number 
of degrees of freedom is given by the total sample size minus 1, or r2 — 1. 

These are partitioned as 

DF(total) = DF (treatments) + DF (rows) + DF (columns) + DF (error) 

or 

r?—-1=(r-1)+(r- Dera ]) r= De 2) 

Dividing the sums of squares by their respective degrees of freedom yields the mean 
squares needed to test Hp. The test statistic is 

The complete ANOVA is shown in Table 13.9. Note that the only F ratio listed 
is that used to test for equality among treatment means. As was the case in the ran- 
domized complete block design, no valid test exists to determine the effectiveness 
of controlling the two extraneous sources of variation. However, the benefits of con- 
trol in each case can be assessed by evaluating the ratios MSp,,./MS, and 
MS¢o/MS;. Whenever these exceed 1, the design is helpful in accounting for extra- 
neous sources of variation. 
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13.7 RANDOM-EFFECTS MODELS 

One-Way Classification 

The model discussed in Sec. 13.1 is called the fixed-effects model. This implies that 

the factor levels, or “treatments,” are selected specifically by the experimenter be- 

cause they are of particular interest. The purpose of the experiment is to make infer- 

ences about the means of the particular populations from which the samples are 

drawn. If, however, we want to make a broad generalization concerning a larger set 

of populations and not just the k populations from which we sample, then the ap- 

propriate model is called a random-effects model. In this case the k sampled popula- 
tions are considered to be a random sample of populations drawn from the larger set. 
The hypothesis of interest is not that ww, = > = °° + = py. Rather, we want to deter- 

mine whether some variability exists among the population means of the larger set. 

The random-effects model is written as follows: 

One-way classification random effects model 

where 

ju = overall mean effect 

= mean of the ith population selected for study 

oe ell . = ph; — eb = effect of the ith treatment 

E;; = Y;; — mw; = residual or random error 

The following model assumptions are made: 

1. The k samples represent independent random samples from k populations ran- 

domly selected from a larger set of populations. 

2. Each of the populations in the larger set is normally distributed, and therefore 

each of the sampled populations is also normal. 

3. Each of the populations in the larger set has the same variance o, and thus each 

of the k sampled populations also has variance, o°. 

4. T,, T>, ..., T;, are independent normally distributed random variables, each 

with mean 0 and common variance o+,. 

The model itself and the first three model assumptions are similar to those of 

the fixed-effects model. However, an important difference between the two is ex- 

pressed in assumption 4. In the fixed-effects model the treatments, or levels, used in 

the experiment are purposely chosen by the experimenter because they are of par- 

ticular interest. If the experiment were replicated, or repeated, the same treatments 

would be used. That is, the same populations would be sampled each time and the k 

treatment effects a, = 4; — would not vary. This implies that in the fixed-effects 

model the k treatment effects are unknown constants. In the random-effects model 

this is not the case. Since the first step in a random-effects experiment 1s to select 

randomly k populations for study, those actually chosen will vary from replication 



548 INTRODUCTION TO PROBABILITY AND STATISTICS 

TABLE 13.10 

ANOVA table for the one-way classification design with random effects 

Source of Degrees of Sum of Mean Expected 

variation freedom (DF) squares (SS) square (MS) mean square EK 

alt taal Soe ; A MS 1, 
c= SSS —— oa? + 10%, Treatment ia » F N err Orr MS, 

or level ior ed 

. SS 4 
Residual IN Subtraction Wir a 

or error 

n , T. 4 

Total i A ~ Yi, Ne 

to replication. Thus the k terms 7; = 4; — mw are not constants but, rather, are, in fact, 
random variables whose values for a given replication depend on the choice of the 

k populations to be studied. These random variables are assumed to be independent 

and normally distributed, each with mean 0 and common variance o j,. 

If the population means in the larger set are equal, then the treatment effects 
T; = @; — mp will not vary. That is, 07, will be 0. Thus in the random-effects model 
the hypothesis of equal means is expressed as 

Hy: 4, = 0 (no variability in treatment effects) 

Hy oe 0 

Even though the one-way classification random-effects model differs from the 
fixed-effects model, Hp is tested in exactly the same way in each case. The differ- 
ence in model assumptions concerning the nature of the treatment effects is re- 
flected not in the way the data is handled but, rather, in the expected mean squares. 
These expectations are shown in Table 13.10. The term mo, which appears in the ex- 
pected mean square for treatments, is given by 

k 
N2— > n? 

i=] 

N(k-— 1) 
dy 

If sample sizes are equal, this reduces to n. You can see that if Hg is true, then both 
MS, and MS; estimate a’. In this case the F ratio MS;,/MS, should assume a value 
close to 1. Otherwise MS}, is expected to exceed o?, yielding an F ratio larger than 
1. Just as in the fixed-effects model, we reject Hy for values of the test statistic that 
are too large to have occurred by chance based on the F;, _ 1.y —, distribution. 

If Hy is rejected, we do not perform multiple comparison tests as we did in the 
fixed-effects model. Rather, we estimate o,,, the variability in the treatment effects. 
From the table of expected mean squares it is easy to see that an unbiased estimator 
for this parameter is given by 

= MS 7, a1 MS; 

No 

5 
Or, 

The next example illustrates these ideas. 
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TABLE 13.11 

ANOVA for voltmeter data 

Source of Degrees of Sum of Mean 

variation freedom (DF) squares (SS) square (MS) Fr 

Treatment 5 11.257 Dail 5.284 

Error 18 7.669 426 

Total 23 18.926 

Example 13.7.1. A utility company has a large stock of voltmeters that are used in- 

terchangeably by many employees. A study is conducted to detect differences among 

the average readings given by these voltmeters. If it appears that differences do exist, 

then all the meters in stock will be calibrated. A random sample of six meters is se- 

lected from stock, and four readings are taken for each meter. The response variable is 

the difference between the meter reading and the known voltage being applied at the 

time of the reading. These data result: 

Voltmeter 

1 2 3 4 5 6 

18 = 15) = 25) 1.95 = 00 1.10 

=, 3il 1.85 ty EOS as) () 1.21 

3lI5) .63 1.65 .65 25 .68 

= Sl! 45 1.24 25 —.88 192 

Since the six voltmeters used in the experiment represent a random sample of meters 

drawn from a larger population of meters, a one-way classification random-effects 

model is appropriate. The null and alternative hypotheses are 

Hy: 2, = 0 (there is no difference in treatment effects—all 

voltmeters in stock give the same average reading) 

and 

H,: 0%, #0 

Treating the data exactly as in the fixed-effects model, we obtain the ANOVA shown 

in Table 13.11. If Hp is true, the observed F ratio is expected to lie close to 1; other- 

wise it should be considerably larger than 1. Based on the F’s ;g distribution, we can re- 

ject Hy with P < .05 (fos = 2.773 from Table IX of App. A). We do have statistical 

evidence of differences in average readings among the voltmeters in stotk. 

We can estimate how much of the variability in meter readings is due to dif- 

ferences in meters and how much is due to random error. To do this, we estimate the 

variance components ao? and o%,. From the ANOVA table, unbiased estimates for 

these parameters are 

6? = MS; = 426 
BI) MS-, = MS; 

ike No 

_ 2.251 — 426 
= 456 

4 
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The estimated total variability in meter readings is 

INTRODUCTION TO PROBABILITY AND STATISTICS 

62 = 67 + G4, = .426 + 456 = 882 

The proportion of total variability attributed to meter differences is 

72 456 
suas Basle Sg A? i 62, 882 

(51.7% of total variability) 

Hence recalibration of meters seems to be called for, since about 52% of total vari- 

ability can be attributed to meter differences. 

13.8 DESIGN MODELS IN MATRIX FORM 

As you can see, as the design of an experiment becomes more complex, the com- 

putations needed to analyze the data become more cumbersome. This was also the 

case in the regression context; as more variables were added to the regression equa- 

tion, the computations became so burdensome that we were forced to turn to matrix 

algebra to analyze the data efficiently. It is reasonable to assume that we might do 

the same here. 

To see how to approach the problem, let us reconsider the one-way classifica- 

tion model with fixed effects. We know that this model can be expressed as 

Y,—=p + a; + EK; a VP ae eg 

In expanded form we have 

Yu = Be On Ey, 

Yi.=pbt+a,+ Ey 

ie =p ts Qa; + Ej, 

Y= b+ at Ep, 

Yn = B+ a+ Ey 

Gs =e ny a + En 

The vectors of responses, parameters, and random errors are given by 
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Yi Ej 

Yi E, 

1G En, 

Yo Mb E,, 

1p ay Ey» 

NE a =| a E=| : 
Yon ey, 

Ay : 

Yu Ey 

Yi Ey 

Vien Be 

respectively. The model specification matrix or design matrix is 

oti) 0 

ee lay.O aso 0) 

ab © 0 

eae 0 

Mats il 0 

X= atk 

iL il 0 

LOO l 

Le Om OM eal 

|! 0 0 

A quick calculation will show that the system of equations defining the model can 
be expressed in matrix form as 

One-way classification model matrix form 

Y=Xa-+E 

This is exactly the matrix form for the general linear model derived earlier. That is, 

the one-way classification model with fixed effects is just a special case of the gen- 

eral linear model. It differs from the regression models studied earlier only in the 
format of the model specification matrix. In a regression model the first column is a 

column of 1’s; the other k columns consist of the observed values of the independent 
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variables X,, X>, . . . , X;. In a design model the first column is a column of 1’s; the 

other k columns consist of blocks of 1’s and 0’s. In a regression model our primary 

null hypothesis is 

Ay: By = Bp = °° * = B, = 0 (regression is not significant) 

In general linear form we write the primary null hypothesis of no difference among 

treatment means in the form 

Ho: @; =a, =°- + =a,=0 (regression is not significant; that is, 
there are no differences among treatment 

effects) 

As you should suspect, the matrix analysis of a design model is almost identical to 

that of a regression model. The difference in approach is necessitated by the fact 

that in a design model the matrix X’X has no inverse. We can no longer claim that 

the parameters fu, @), @>,..., a, are estimated by 

Ges OX OY 

There are various ways to remedy the situation. However, a full discussion of the 

problem is beyond the scope of this text. Excellent references are available if you 

wish to pursue the matter, [27] and [35]. 

Example 13.8.1. To illustrate in a simple context, consider these data: 

Treatment 

1 2 3 

eS pea | 

1.5 ital 3.2 

Dil 1.6 

2.0 

For these data, 

[33 Bn 

Ls Ey 
21 En 

2.7 f Eo) 
¥ =|101 a =|"! E=|E, 

A> ee 

1.6 E,, 
= a3 = 

2.0 oy 

1.6 Es; 
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The model specification matrix is 

> lI 

SS ee —_ OS SS SS] SS) S&S So COMO oS oS 

Oo \O WD W 
X'X = 

wo StS of oO + NS Ochs 

Note that X’X has no inverse, since the first column of this matrix is the sum of the last 

three columns. 

The randomized complete block can be expressed in matrix form also. We 
leave this model to the reader to investigate. 

13.9 ALTERNATIVE NONPARAMETRIC 
METHODS 

As seen in Secs. 8.7 and 10.6, there are nonparametric analogs to the normal theory 

T tests for two independent samples and for paired samples when testing location dif- 

ferences. The multiple sample extensions of the normal theory two-independent- 

sample and paired-sample problems were seen in this chapter to be the one-way 

analysis of variance and the randomized complete block design. Both of these pro- 

cedures assumed underlying normally distributed populations with rather restrictive 

assumptions on the population variances. Fortunately, nonparametric analogs are 

available for both of these procedures when the normal theory tests assumptions are 

not met. The nonparametric test for the one-way classification analysis of variance is 

the Kruskal-Wallis test. The Friedman test is the nonparametric alternative for the 

randomized complete block design. The two procedures are discussed in this section. 

Kruskal-Wallis Test 

Assume that k independent random samples of sizes n,, No, ... ,n, are drawn from 

continuously distributed populations. The Kruskal-Wallis procedure tests for hy- 

pothesis that each of the k samples has been drawn from identical populations. 

However, the test is particularly sensitive to location differences, and therefore the 
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null hypothesis is usually stated in terms of equality of population medians. Thus 

the null and alternative hypotheses can be stated as 

He; = Mae ae, 

H,: at least two population medians are not equal 

To perform the test, the N = n, + n) + + ++ + n, sample observations are 

pooled and ranked from the smallest to the largest, retaining group identity. As was 

done for the Wilcoxon tests, ties are assigned the average rank for their group. Let 

T,,i = 1,2,...,k, denote the sum of the ranks associated with the observations 
U 

from the ith population. The Kruskal-Wallis test statistic is given by 

12 BAT ene Neral ay 

Z aaa Sal? 2 
t= 

where T; = T,/n; denotes the average of the ranks assigned to the ith group. If the 

null hypothesis is true, it can be shown that E(T;) = (N + 1)/2. Therefore the 

Kruskal-Wallis test statistic is a measure of the deviations of the observed average 

ranks for the k groups from the value expected if the null hypothesis is true. Large 

deviations lead to relatively large values of H, and hence to rejection of Hp. Al- 

though exact tables are available for small k and n,, it has been shown that H ap- 

proximately follows a chi-squared distribution with k — | degrees of freedom if all 

n; 2 5. Hence approximate critical values for H can be obtained from the chi- 
squared distribution given in Table IV of App. A. The reader can easily verify that 

an equivalent but computationally easier form for the test statistic H is 

Test statistic Hy: M, = M, =---:M, 

(By ane eipoet Es 1a 
a= laa Ee Ne 

Example 13.9.1. | An experiment was conducted to compare the amount of pressure 

needed to compress three types of materials. Random samples of sizes 7, 7, and 10 

were obtained for materials labeled A, B, and C, respectively. The pressure measure- 

ments and corresponding ranks (in parentheses) of the combined sample of 7 + 7 + 
10 = 24 observations are given below: 

Material A Material B Material C 

207 (14) 194 (11) 288 (12.5) 

150. (5) 146 (3) 269 (20) 

197 (12) 175 (8) 288 (21.5) 

Wet (7B: 186 (9) 358 (24) 

147 (4) 223 (17) 229 (18) 

144 (2) 143 (1) 249 (19) 

192 (10) 170 (6) 346 (23) 

217 (16) 

203 (13) 

214 (15) 
-_-ee— 
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The rank sums are 

[j= AS ee ee) = 54 
(PS WP ag (eG 
(S20 Se e135 al 5 = 191 

Calculating the Kruskal-Wallis test statistic, we obtain 

xf ee 
INC + 1) & nN; 

pe: (36434 SE) sas 
5) 0 

= 14.94 

| SUN se IL) 

From Table IV for k — 1 = 3 — 1 = 2 degrees of freedom we see that the critical value 

for a significance level of .005 is 10.6. Hence we conclude that the amount of pressure 

required to compress the materials is significantly different for at least two of the ma- 
terials tested. 

Like the Wilcoxon rank-sum test, the Kruskal-Wallis test is very robust rela- 

tive to the usual normal theory F test. In addition, various multiple comparison pro- 

cedures are available in standard texts on nonparametric statistics. The reader is 
referred to [23], [6], and [30]. 

Friedman Test 

The Friedman test is the nonparametric analog to the randomized complete block 

design discussed in Sec. 13.5. As discussed in that section, our interest is in com- 

paring the effects of k treatments (groups) when we are able to control for extrane- 

ous variation by blocking. We divide the experimental units into b blocks, each of 

size k, with elements within a block as nearly alike as possible with respect to the 

extraneous variable. The k treatments (groups) are then randomly assigned to ele- 

ments within each block. To test the hypothesis of identical treatment effects (loca- 

tion differences), we use the ranking procedure as follows: Rank the observations 

within each block from 1 to k (the smallest to the largest), assigning tied scores the 
average group rank. Then the rank total, 7;, for each of the k treatments (groups) is 

computed. The Friedman test statistic is given by 

Test statistic H): M, = M, =:°:=M, 

| 2 Ff bee 
eat 2 | i=] 

S 

if. =| ES | -s00K+1 
tl 

When the null hypothesis is true, it can be shown that E(7;) = b(k + 1)/2. There- 

fore, the Friedman statistic is a measure of deviations of the observed treatment rank 
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totals from their expected value under Hp. The exact distribution of S has been tab- 

ulated for small values of b and k, but S is approximately distributed as a chi- 

squared distribution with k — | degrees of freedom. Using this approximation, we 
reject the null hypothesis for values of S exceeding critical values given in Table IV 

for specified significance levels. 

Example 13.9.2. As implied in our sections on alternative nonparametric proce- 

dures, the data for some kinds of problems come originally in the form of ranks. For 

such data it should be clear that normality assumptions are not met, and hence normal 

theory tests are most likely not valid. In this example we wish to determine whether 

there are significant differences in preferences for eight brands of computer terminals. 

Four judges are asked to rate the eight terminals, giving rank | to their first choice, 

rank 2 to their second choice, and so on. The experiment was conducted by using a 

randomized complete block design with the eight brands of terminals as treatments 

and the four judges as blocks. The resulting data are as follows: 

Terminal 

1 2 3 4 5 6 7 8 

Judge | | 2 3 ~ 5 6 7 8 

Judge II 4 1 3 wy) 5 6 8 7D 

Judge II 3 4 2 1 i 3 6 8 

Judge IV 3 | 6 2 3 - 7 8 

Rank totals 11 8 14 9 22 21 28 3] 

The hypothesis to be tested is 

Ho: equal preference for terminals 

H;: significant difference in preference for at least two terminals 

Calculating the Friedman test statistic, we obtain 

S reemnen ( P 1 BA 14 ke 31 ee 3 
(4) (8) (9) | cae fem? AG 

| ~) i) n 

From Table IV the critical value for k — 1 = 7 degrees of freedom is 18.50 for 
a = 0.01. Therefore we can conclude that there is a significant difference in terminal 
preferences for at least two terminals. Again, we mention that multiple comparison 
procedures are available in various nonparametric texts which enable one to determine 
which treatments differ significantly from one another. 

CHAPTER SUMMARY 

The fundamentals of analysis of variance were presented for some basic experi- 
mental design models. We considered the one-way classification, randomized com- 
plete block, and Latin square experiments. Multiple comparison methods were 
presented for fixed effects, and variance component estimation was discussed for 
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random effects. General analysis of variance (ANOVA) tables, useful for computa- 

tional purposes and for selecting appropriate mean square error ratios for hypothe- 

sis testing, were given in the chapter. We attempted to be careful about assumptions 

necessary for the various models. A test for equality of variances was given, and al- 

ternative nonparametric methods were discussed for possible use when the normal 

theory assumptions are questioned. Finally, the design models were presented in 

matrix form to enable the student to see the relation to the general linear model. 

We also introduced and defined important terms that you should know. These 

are: 

One-way classification Completely randomized design 

Homogeneity of variances Multiple comparisons 

Randomized complete block design _ Fixed effects 
Random effects Nonparametric analysis of variance 

Variance components Latin square 

Contrast Bonferroni T tests 
Comparisonwise error rate Duncan’s multiple range test 

Experimentwise error rate Tukey’s test 

Bonferroni inequality 

EXERCISES 

Section 13.1 

1. Show that E[E,2] = o?/n; for each i = 1,2,...,k. Hint: 

Argue that due to the independence of the terms E,, all cross-product terms E;; 

E,, j #f, have expectation 0. Argue also that E[E7] = 0°. 

2. Show that 

kM 
Gp = Se am 

i=1 j=l 

3. Show that 

k 

SS, = SS Teal ni om TN 

j=1 

4. Experiments were conducted to study whether commercial processing of vari- 

ous foods changes the concentration of essential elements for human consump- 

tion. One such experiment was to study the concentration of zinc in green 
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beans. A batch of green beans was divided into four groups. The four groups 

were then randomly assigned to be measured for zinc as follows: group | mea- 

sured raw; group 2 measured before blanching; group 3 measured after blanch- 

ing; and group 4 measured after the final processing step. Independent 

measurements were taken from the four groups (treatments), yielding the fol- 

lowing observations: 

Zinc concentration 

Group 1 Group 2 Group 3 Group 4 

PED} Bel pps) 5.46 

2.20 4.67 2.87 al 

2.44 3.45 2.83 eo 

eal 2S 1 3k5) 4.82 

2.30 2.58 JEG) 6.63 

age? 1.85 1.80 239 

1.78 1.81 aS 2.09 

2.36 ghey 1.83 2.27 

BA) PLAY; coy Phe 12) 

(a) State the appropriate null and alternative hypotheses. 

(b) Test your hypothesis for significance at the 5% level. 

(c) Verbally state your conclusion. 

It was known that a toxic material was dumped in a river leading into a large 

salt water commercial fishing area. Civil engineers studied the way the water 

carried the toxic material by measuring the amount of the material (in parts per 

million) found in oysters harvested at three different locations, ranging from 

the estuary out into the bay where the majority of commercial fishing was car- 

ried out. The resulting data are given below: 

Site 1 Site 2 Site 3 

15 19 22 

26 15 26 

20 10 24 

20 26 26 

29 11 i 

28 20 17 

21 13 24 

26 15 

18 

(a) ‘Test whether there is a significant difference in the average parts per million 
of toxic material found in oysters harvested at the three sites. Use a = .0S. 

(b) Would the means be significantly different at the .01 level of significance? 
(Use a computer package to find the P value.) 

(c) Do your answers in parts (a) and (b) contradict each other? Justify your 
answer. 
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6. As landfills begin to fill up and land for such operations becomes more scarce, 
recycling will become more and more necessary. Some fast-food chains have 
become aware of this problem and are beginning to use biodegradable packag- 
ing or to recycle their packaging material. A study is conducted to investigate 
the amount of money received per year for recycled goods by various sized 
businesses. These data, in thousands of dollars, are obtained (based on figures 
in “New Ways to Take Out the Trash,” Tom Andel, Transportation and Distri- 
bution, May 1993): 

Company Size 

101-250 251-500 Over 500 

employees employees employees 

3D 3.8 13.4 14.1 9.0 10.8 
3.4 3.0 14.0 14.7 LOR 10.7 

37) 2.8 14.5 15.0 10.1 5) 

33 Shy 14.7 13.6 10.6 (bil 

18) 38) a2 14.3 10.4 7) 

2.6 4.1 ISS: 14.6 10.5 10.0 

25) 4.0 14.2 14.8 10.3 ihils3 

4.2 4.9 3 15.6 10.7 Mes 

(a) Construct stem-and-leaf diagrams for each of these samples, and comment 

on the reasonableness of the normality assumption. 

(b) Estimate the variance of each of the populations from which these data are 
drawn, and comment on the reasonableness of the assumption of equal 

variances. (Do not try to test anything.) What has been done on this study 

to guard against a possible violation of the assumption of equal variances? 
(c) Test Hp: MW, = Mo = P3, and report the P value of your test. What practical 

conclusion can be drawn? 

7. Scroll speed is an important consideration in the development of color graph- 

ics cards. A study is conducted to compare the time, in seconds, required to 

scroll one screen of WORD documents using five different color graphics cards 

with 24-inch monitors. The test conducted was a standard Hydra Quick Draw 

performance test. These data are obtained (based on information found in 

“Gauging Video Speed,” MAC WORLD, June 1993, p. 28): 

Graphics cards 

A B Cc D E 

30.5 48.3 792) SEG 79.0 

32.4 42.1 84.7 59.4 85.3 

Diee 43.5 So) -sy/3} 86.2 

26.3 40.6 88.2 59.0 82.0 
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Use these data to test for equality of means. State your conclusion and report 

the P value of the test. 

Section 13.2 

8. Recall that MS; was defined as the ratio (SS;/(N — k). Show that 

for the one-way classification fixed-effects model. 
9. In Exercise 4, use Bartlett’s test to determine whether it is reasonable to assume 

homogeneity of variances for the four treatment groups. If not, what type of al- 

ternative procedure is available to analyze these data? 

10. Test for equality of variances by using the data in Exercise 6. Be sure to state 

your conclusion and to report the P value of your test. 

11. Test for equality of variances by using the data of Exercise 7. 

Section 13.3 

12. In each case, determine the number of paired comparisons possible. 

(a) k=3 

(b) k=6 
(c) k= 10 

13. Let a = .05, and assume that all possible paired comparisons are to be made. 
For each value of & given in Exercise 12, use the Bonferroni procedure to find 

an upper bound for a’, the overall probability of making at least one incorrect 

rejection. In each case, what level should be used to guarantee that a’ = .10? 

14. Consider a situation in which c tests are to be run. Let b denote the target upper 

bound for a’. In each case, show that 1 — [1 — (b/c)]° S b, thus guaranteeing 

that the choice of a = b/c implies that a’ = b. 
(a) c=2 

(b) c=3 

In each case, find the value of 1 — [1 — (b/c)]° for b = .10. 

15. (Bonferroni inequality.) The following inequality provides the basis for deter- 

mining the comparisonwise error rate needed to control the experimentwise er- 
ror rate at some specified level. 

Let Ate As. aan A. be events. Then 

PIA, MN A,N +++ NAJ=1-— [P[Ai] + P[AS] +--+ + PLA] 

(a) Prove this result for c = 2. Hint: Notice that by the general addition rule, 
P[Aj U Aj] S P[A;] + P[A)]. Use the fact that A; NM A, = (Aj U AS)’ to 
complete the proof. 

(b) Let A; denote the event that no incorrect rejection is made on the ith com- 
parison, i = 1,2,..., c. In set notation, express the probability that no in- 
correct rejections are made. In terms of this probability, what is the 



16. 

17: 

18. 

19. 

20. 

21. 

22. 
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probability that at least one incorrect rejection is made? If a = P[A‘] for 

i= 1,2,...,c, then use the Bonferroni inequality to show that a’ = ac. 

Argue that if a target upper bound b is chosen and then c tests are run at 
a = b/c, thena’ = b. 

Consider the study described in Exercise 6. If Duncan’s multiple comparisons 

are run at a = .05, what is an upper bound for the experimentwise error rate? 

Conduct these tests, and discuss your conclusions. 

Reconsider the data of Exercise 5. 

(a) How many paired comparisons are possible? 

(b) Suppose that these comparisons are to be made using Bonferroni T tests. If 

we want a’ = .15, at what a level should each test be conducted? 

(c) Conduct each of the tests indicated in part (b), and discuss your results. 

Use Bonferroni T tests with a’ = .10 to pinpoint differences among groups in 

Exercise 4. 

Use Bonferroni T tests with a’ = .20 to pinpoint differences among graphics 

cards based on the data of Exercise 7. 

Scientists concerned with treatment of tar sand wastewater studied three treat- 

ment methods for the removal of organic carbon. (Based on “Statistical Plan- 

ning and Analysis for Treatments of Tar Sand Wastewater,” W. R. Pirie, 

Technical Report, Virginia Tech University). The three treatment methods used 

were air flotation (A.F.), foam separation (F.S.), and ferric-chloride coagulation 

(F.C.C.). The organic carbon material measurements for the three treatments 

yielded the following data: 

A.F. ES. E.C:€:; 

34.6 38.8 26.7 

Bon 39.0 26.7 

BD) 40.1 VAY) 

35.8 40.9 Die! 

36.1 41.0 ed 

36 Suen d3 2 28.1 
368 449 28.1 
272m 46.95) 28.) 
B74 516 30.7 
BI 53.6 31.2 

Test for differences among means. Be sure to report the P value of your test and 

state your conclusion. 

If you found significant differences in Exercise 20, determine which treatment 

methods differ from each other. 

A study on the tensile strength of aluminum rods is conducted. Forty identi- 

cal rods are randomly divided into four groups, each of size 10. Each group 

is subjected to a different heat treatment, and the tensile strength, in thou- 

sands of pounds per square inch, of each rod is determined. The following 

data result: 
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Treatment 

(c) 

(d) 
(e) 

(f) 
(g) 

18.3 Pa Ne Ifa) 

192 PMS, 16.0 

17.8 19:9 ee 

18.4 20.2 Wie) 

18.8 21.9 Ips) 

18.6 21.8 16.8 

Kee) 23.0 Weel 

ES) PIII 18.1 

16.9 Zl 17.4 

18.0 PAWS) 19.0 

Construct a stem-and-leaf diagram for each data set. Does the assumption 

that each sample is drawn from a normal distribution appear reasonable? 

Test the null hypothesis of equal treatment means by using a one-way 

ANOVA. 
Compare all possible pairs of means by using Bonferroni 7 tests with an 

overall level of significance that is at most .05. 

Conduct a Duncan’s multiple test at the .05 significance level. 
Conduct a Tukey’s test at the .05 significance level. 

Do the tests in (c), (d), and (e) lead you to the same conclusion? 

Explain differences if they exist. 

Section 13.4 

23. Verify that (Q,/1)/(Q,/(N — k)) as defined in Sec. 13.4 can be expressed as 
SS,/MS;,, where 

24. 
as claimed. 

In each case, decide whether the linear functions given are contrasts. If so, de- 
termine whether or not they are orthogonal. 

(a) 

(b) 

C= ey 3) es te le HF ta) N= =n =nNm=n 

Ly = by — fy 
L) = 1 — Pe Nn =m =n =n=n 

Ly = pig 1g 

Ly = py — pe ny =n, =6 
Ly = ps — Mag n, = ng = 10 
Ly = py, + 2p, Nn =n =n =n =n 

Ly = ph, — 2pn + py 



25. 

26. 

27. 

28. 
29. 

30. 
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(tty "py fig = Jig Ny ye ie 
Ly = [i — Bs 

CONE aA aye Te, hy = Wp) 
ele i n, =n, = 10 

Let Y;., Y., Y3., and Y,. denote the sample means based on independent sam- 
ples drawn from normal distributions with means My, M2, 3, and f14, respec- 
tively. Find the contrast sum of squares for each of the contrasts of Exercise 24, 
parts (a), (e), and (f). 

Consider the orthogonal contrasts of Exercise 24(e). Use the data of Exercise 
22 to find the numerical values of SS, and SS,. Since k = 4, there exists a third 
contrast that is orthogonal to L, and L,. What is the numerical value of SS,,? 
Use the data of Exercise 22 to test 

Ho: fy — a + Ms — My = 0 

and to test 

Ho: by — pz = 0 

A chemical engineer is studying a newly developed polymer to be used in re- 
moving toxic wastes from water. Experiments are conducted at five different 
temperatures. The response noted is the percentage of impurities removed by 

the treatment. Use these data to answer Exercises 28 through 30: 

Temperature 

I II Ill IV V 

40 36 49 47 5) 

35 42 51] 49 60 

42 38 oie) 5] 62 

48 39 53 Sy) 63 

50 ay Sy 50 59 

= 40 50 51] 61 

Test the null hypothesis of equal treatment means at the a =.05 level. 

Use Bonferroni 7 tests with a’ = .25 to compare all possible pairs of means. 

Report your results schematically by ordering the sample means from the 

smallest to the largest and underlining pairs that are not significantly different. 

Write a contrast that can be used to compare the mean of population 5 to the ag- 

gregate of the other four means. Test the null hypothesis that this contrast as- 

sumes the value 0. Interpret your results in the context of this exercise. 

Section 13.5 

AN Is Each table given shows the theoretical treatment means for each of four treat- 

ments in each of three blocks. Graph these means in a manner similar to that of 

Fig. 13.3. In each case, decide whether or not there is interaction between 

blocks and treatments. 
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(a) Treatment 

Block A B C€ D 

l | 3 4 0 

2 4 6 i 3 

3 2 4 5 | 

(b) Treatment 

Block A B G D 

| ] 3 0 0 
2 4 6 5 3 

3 » 4 5 ] 

(c) Treatment 

Block A B Gg D 

| | 3 4 0 
» 4 5 a 3 

3 2 4+ 5 ] 

32. Show that >*_,7; = 0. 
33. Explain the meaning of each of these relative efficiencies in assessing the ef- 

fectiveness of blocking. 

(a) RE=2 

(b) RE= 10 

(c) RE = .25 

(d) RE=.10 

(e) RE=1 

A quality control engineer conducted an experiment to investigate the effect of expe- 

rience on an assembly line in terms of the average time required to complete an as- 

sembly task. If experience is found to be a factor, a training program is planned for 

newer employees. The engineer randomly selected eight employees from groups who 

had completed 1, 2, 3, and 4 years of work experience, respectively. He set up the ex- 

periment as a randomized block design with tasks as blocks and years of experience 

as treatments. The resulting data are given below: 

Time to complete assembly tasks 

Experience 

Task I year 2 years 3 years 4 years 

| 40.3 34.2 28.8 26.6 
2 25.4 25.4 29.2 Zee 
3 28.2 28.0 24.6 23-2 
4 41.6 24.9 29.1 27.0 
5 28.8 39.2 34.8 27 
6 38.7 29.5 26.6 PALS 
7 29.4 29.0 36.0 34.2 
8 Byn7 25.6 25.6 Psp 
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Use this information to answer Exercises 34 through 39. 

34. 
35: 

36. 
Sis 

38. 

ab 

Write the appropriate statistical model for this experiment. 

Test for any significant differences among years of experience for average as- 
sembly time. Use a =.05. 

Was blocking appropriate? Explain. 

How many paired comparisons are possible? If these comparisons are made by 

means of Bonferroni paired T tests, what a level must be used to attain an over- 

all level of significance that is at most .10? 

Use Bonferroni 7 tests to determine which treatments (number of years of ex- 

perience), if any, differ significantly with a’ = .10. 

Do the data suggest that a training program might be productive? 

A computer scientist is studying four different algorithms used to perform numerical 

integration. The speed (in seconds) with which a problem can be solved is measured. 

Each algorithm is to be used to solve each of 10 different problems, and hence a 

problem serves as a block. Use these data to answer Exercises 40 through 43: 

40. 

41. 

42. 

43. 

Algorithm 

Problem I II Ill IV 

l 10 11 16 10 

ps 11 mille) oll 09 

5 13} 14 oll 12 

4 08 i lls} 09 

5) 15 16 19 16 
6 7/ 18 23 16 

7 05 07 11 07 

8 13 als 18 14 

9 1) 14 15 12 
10 16 alls) 20 15 

Test for differences among the mean times required to solve integration prob- 

lems for these algorithms. 

Estimate the relative efficiency, and use it to discuss the desirability of block- 

ing in a future study of this sort. 

If the Bonferroni technique is used to compare all pairs of means, how many 

comparisons are possible? If each is done at the a = .01 level, what is an upper 

bound for a’, the overall probability of committing at least one Type I error? 

Use Bonferroni J tests with a = .01 to determine whether there appears to be a 

“fastest” algorithm. 

Section 13.6 

44. 
45. 

46. 

Give an example of a Latin square design with r = 3. 

Give an example of a 4 X 4 Latin square that is different from that given in 

Table 13.7. Give the data layout for your design. 

The design given in Table 13.12 is called a knight's move Latin square because 

one can get from each treatment type to another of the same type by making a 

knight’s move as in the game of chess. The observed responses are given in 
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47. 

48. 

49. 
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parentheses in the table. Use these data to test Ho: fy -- = fo--= Ms-- = Ma. al 

the a = .05 level: 

Note that SS;, = r2/—)( Y,.. — Y...)?. Express SSqo, SSgows: and SScoi in a simi- 

lar manner. 

In a study to compare the average gasoline mileage of three different grades of 

a particular brand of gasoline, two extraneous sources of variation are recog- 

nized. These are the driver and the type of car used in the road trials. Three dri- 

vers and three new automobiles are obtained. Table 13.13 gives the mileage 

obtained over each test run. Test the null hypothesis of equal means among 

grades of gasoline at the .05 level. 

A company is considering three word processors for use by their secretarial 

staff. All of them are acceptable, so the choice depends on which one is the eas- 

iest to learn. Since speed is affected by the type of article being produced and 

the learner, a Latin square design is used. The data obtained are given in Table 

VaslAriTest 

Ao: fy. = b2-= Ms 

TABLE 13.12 

A knight’s move Latin square 

sree | 
I 

I 

Il 

IV 

I II Il IV 

A (3) B (4.2) (E((RY) (rs) 

C(1.0) D(5.6) A (3.8) B (4.3) 

B(4.5) A (3.5) D (5.7) E12) 

Di@.>) mee CS) B (3.9) A (3.7) 

TABLE 13.13 

Gasoline mileage obtained controlling for driver and automobile type 

(A = regular, B = extra, C = super) 

WN — 

Factor (auto type) 

4 cylinder 6 cylinder 8 cylinder 

A (36.0) B (33.0) C (26.5) 

B (36.5) C (33.5) A (25.0) 

C (38.0) A (32.5) B (26.0) 

TABLE 13.14 

Time required to learn various subroutines in a word processor 

(in hours) 

Factor (type of article) 

I prose II technical III report 

I B(.5) A (1.2) C (1.0) 

I GCE) B (1.0) A (.95) 
A (.8) Qe) B (9) 
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Section 13.7 

50. A large number of laboratories are regularly used to measure the amount of 

toxic substances in various materials. There is concern that results not only 

vary due to normal measurement variability, but that there may be substantial 

variability due to different laboratory techniques. If true, this might raise a 

need for enforcing one “standard” procedure for all laboratories. To test this 

concern, four laboratories were randomly selected and asked to measure 

the amount of a certain chemical content in parts per million. Each labora- 
tory was given six identical samples for testing. The resulting data are given 

below: 

Laboratory 

1 2 3 4 

(parts per million) 

32 51.0 47.4 SO) 

54.5 40.5 46.2 ES 

52.8 50.8 46.0 48.8 

49.3 BES 45.3 49.2 

50.4 52.4 48.2 48.3 

53.8 49.9 47.1 49.8 

(a) State the appropriate null and alternative hypotheses. 

(b) Test the null hypothesis at the .05 level of significance. 

(c) Estimate the proportion of total variance due to within-laboratory variation 

(error mean square). 

(d) Estimate the proportion of total variance due to between-laboratory varia- 

tion (variance due to treatments). 

(ec) Does it appear that standardizing laboratory techniques has merit? 

Section 13.8 

oil 

52. 

Consider the one-way classification model 

ve ne ee eee 1 2 

For this model, find Y, a, X, and E. Find X'X, and show that this matrix has no 

inverse. 

Consider the randomized complete block model 

For this model, find Y, «, X, and E. Find X’X, and show that this matrix has no 

inverse. 

Section 13.9 

53. For a certain manufacturing plant, filters used to remove solid pollutants must 

be replaced as soon as they fail due to cracking or holes in the filter. An exper- 

iment was conducted to test five types of filters made from different fabrics. 
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Six filters of each type were used under the same conditions, with the number 

of hours until failure recorded for each. The experiment yielded the following 

information: 

Filter type (hours until failure) 

1 2 3 4 5 

261.1 22159 201.4 600.9 160.6 

186.2 188.7 146.1 301.2 135.0 

239.1 167.6 96.8 608.9 455.1 

243.3 224.9 PBR) 283.3 402.3 

296.8 178.8 280.8 193%3 457.9 

270.5 147.9 100.3 159.4 559.6 

(a) Use the Kruskal-Wallis test to determine whether there is significant evi- 

dence that the median time to failure among the filter types is different at 

the .05 level of significance. 

(b) Repeat this test by using the appropriate normal theory test procedure. 

Following a major accidental spill from a chemical manufacturing plant near a 

river, a study was conducted to determine whether certain species of fish 

caught from the river differ in terms of the amounts of the chemical absorbed. 

If differences are found, regulations on human consumption may be recom- 

mended. Samples from catches of three major species were measured in parts 

per million. The resulting data are given below: 

Species 

A B (g 

18.1 29.1 26.6 

16.5 15.8 16.1 

21.0 20.4 18.8 

18.7 230 ZO) 

7.4 18.5 218 

12.4 Ze 15.4 

16.1 Pay 19.9 

IgA) 23.8 Ib5),3) 

20.1 allel 

11.9 25.5 

Test whether the median amounts of chemical absorbed by the three species of 
fish differ at the .0S level of significance. 

A laboratory manager plans to purchase machines used to analyze blood sam- 
ples. Five types of machines are being considered for purchase. After trial use, 
each of the eight technicians is asked to rank the machines in order of prefer- 
ence, with a rank of | being assigned to the machine most preferred. The re- 
spective rankings were as follows: 
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Machine 

Technician I II Ill IV V 

A 1 3 4 ® 5 

B 4 5) 1 2 3 

G 4 i 3 5 2 

D 4 1 5 2 3 

E i 3 2 5 4 

F 1 Dp, 3 4 5 

G DS) I 3 2 4 

H 5 1 4 3 2 

Use the Friedman test to determine whether the group of technicians rate the 
machines differently at the .10 level of significance. 

56. Four brands of tires are tested for tread wear. Since different cars may lead to 

different amounts of wear, cars are considered as blocks to reduce the effect of 

differences among cars. An experiment is conducted with cars considered as 

blocks and brands of tires randomly assigned to the four positions of tires 

on the cars. After a predetermined number of miles driven, the amount of 

tread wear (in millimeters) is measured for each tire. The resulting data are 

given below: 

Tire brand 

Car A B G D 

CONDNPWNE 

N [on n nn \o \o i 

(a) Rank the data appropriately for this experiment. 

(b) If the null hypothesis is assumed to be true, what is the expected average 

rank total for brands of tires? 

(c) Test the hypothesis that the median tread wear is equal for each brand of 

tire. Use a = .05. 

REVIEW EXERCISES 

Carbon dioxide is known to have a critical effect on microbiological growth. Small 

amounts of CO, stimulate growth of some organisms, whereas high concentrations 

inhibit the growth of most. The latter effect is used commercially when perishable 

food products are stored. A study is conducted to investigate the effect of CO, on the 
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growth rate of Pseudomonas fragi, a food-spoiling organism. Carbon dioxide is ad- 

ministered at five predetermined different atmospheric pressures. The response mea- 

sured was the percentage change in cell mass after a 1-hour growing time. Ten 

cultures were used at each atmospheric pressure level, resulting in the following data: 

Factor level (CO, pressure) 

0.0 083 29 50 86 

62.6 50.9 45.5 29.5 24.9 

59.6 44.3 41.1 22.8 ice? 

64.5 47.5 29.8 19.2 7.8 

59.3 49.5 38.3 20.6 10.5 

58.6 48.5 40.2 292 17.8 

64.6 50.4 B35) 24.1 22.1 

SOE) Sp 30.2 22.6 22.6 

56.2 49.9 27.0 B27 16.8 

a2 42.6 40.0 24.4 iIpyle) 

62.8 41.6 33.9 29.6 8.8 

Exercises 57 through 59 refer to these data. 

57. State the assumptions required to test the null hypothesis 

oc diye pe ee 

58. (a) Numerically complete the appropriate analysis of variance (ANOVA) table. 

(b) Is there sufficient evidence to reject Hp at the a = .05 level of significance? 

59. Use Bartlett’s test to test for homogeneity of variances. Does this test lend sup- 

port to the assumptions given in Exercise 57? 

60. Three treatments were randomly selected from a large population of possible 

treatments. Ten randomly selected observations were then obtained from each 

treatment selected. 

(a) State an appropriate null hypothesis to be tested, and list all assumptions 

necessary to make this test for the described experiment. 

(b) The data yielded the following partial analysis of variance table: 

ANOVA 

Source DF SS MS F EMS 

Treatment 2 110.6 

Error 27 

Total 29 608.3 

Complete the ANOVA table, and test your null hypothesis in part (a) at the .05 
level of significance. 

(c) Estimate the proportions of total variability due to error and treatments, 
respectively. 

61. An experiment is conducted to compare the energy requirements of three phys- 
ical activities: running, walking, and bicycle riding. The variable of interest is 



62. 
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the number of kilocalories expended per kilometer traveled. To control for pos- 
sible metabolic differences, eight subjects were selected and then randomly as- 
signed (in terms of order) each of the three tasks, with ample rest between tasks 
to eliminate fatigue. Each activity is monitored exactly once for each individ- 
ual. The resulting data are given below: 

Task 

Individual Running Walking Bicycling 

| 1.4 Hl 0.7 

2 IES) 1.2 0.8 

3 1.8 iLe3} 0.7 

4 od 3 0.8 

5) 1.6 0.7 0.1 

6 IES) 1.2 0.7 

u ihe d/ ile 0.4 

8 2A) iL.3} 0.6 

(a) Test for possible differences in average kilocalories expended among the 
three tasks. State an approximate P value. 

(b) Is there evidence that blocking (individuals) was effective in eliminating 

extraneous variability? 

(c) Use Duncan’s multiple range test to determine which energy task, if any, is 

different from the other tasks in terms of energy expended at the .05 sig- 

nificance level. 

Repeat part (c) using Tukey’s test, and compare differences in results 

found, if any. 

The OPEC oil embargo made it evident that fuel economy in automobiles 

needed to be improved. Newer lightweight materials were sought for use in au- 

tomobile engines. Comparisons were made among test samples of steel, alu- 

minum, and phenolic thermoset composites containing glass fibers. Two 

variables, density (g/cm?) and tensile strength (ksi), were considered. These 

data were obtained (based on information found in “Phenolics Creep Up on En- 

gine Applications,” John Arimind and William Ayles, Advanced Materials and 

Processes, vol. 143, no. 6, June 1993; pp. 34-36): 

(d wa 

Material (density) 

Steel Aluminum Phenolics 

7.60 ese 2.90 PTA 1.79 1S 

7.80 7.90 DSS) Daa, 1.74 il, 

7.81 TIS 2.67 2.78 1.69 1.66 

7.65 TAS 205 DUD 1.68 1.67 

ene ILI 2.80 2.86 1.50 1.70 

WW 7.80 2.81 DAB 1.67 1.72 

7.68 7.87 2.85 PS 1.80 eeral 

7.79 7.89 DP 2.79 1.78 1.63 

AWS 7.78 2.60 2.81 1.62 1.62 
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Material (tensile strength) 

Steel Aluminum Phenolics 

60 100 17 40, 8 13 

73 122 25 19 17 12 

87 86 35 29 15 10 

98 112 38 22 9 1] 

175 77 27 26 10 16 

Analyze each of these data sets by using whatever tests you believe are appro- 

priate. Write a report to summarize your results. Explain your choice of test 

statistics. 
Studies are conducted to investigate the use of slag in road pavement base, 
subbase, and surfacing. The composition of slag obtained from various sources 

is of interest. These data are obtained on the percentage of S,O, in samples 

from five different sources (based on information from “Steel Plant Slag in 

Road Pavements,” B. S. Heaton, Australian Civil Engineering Transactions, 

March 1993, pp. 49-53): 

63 

Source 

Blast furnace Steel Portland Fly Natural 

slag slag cement ash basalt 

Soul 16.0 20.1 58.3 45.9 

34.7 15.6 22.0 57.6 46.3 

34.8 Lie Daal 55.0 44.5 

3B 16.2 LO 60.1 45.2 

33.6 16.3 19° 61.2 44.5 

36.8 14.7 16.2 58.2 49.6 

Analyze these data, and write a report summarizing your results. Be sure to de- 
fend your choice of test statistics. 

It is well known that power surges or line “spikes” can damage sensitive electronic 
equipment. A study of the surges was conducted to ascertain whether or not there 
are differences in the average frequency of the surges among the seven days of the 
week. Over a randomly selected ten-week period, the number of spikes was ob- 
served for ten 24-hour periods for each of the seven days in the week. The resulting 
data are as follows: 
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Mon. Tues. Wed. Thurs. Fri. Sat. Sun. 

25 24 16 22 3i5 28 35 

21 20 20 17 28 28 20 

20 19 19 19 44 Bil 2S) 

20 16 21 Zl 38) AA 19 

21 21 17 19 22 33) 26 

20 19 13 13 36 22 23 

De 24 u3} PU) 28 Pip) 26 

21 15 23 15 27 20 30 

18 20 23 20 2D, Mp) 29 

Pp) 14 23 20 16 26 29 

Exercises 64 through 67 refer to these data. 

64. Using analysis of variance, state the correct hypothesis for testing equality of 

means and conduct the appropriate ANOVA test. State your conclusion. 

65. If some of the means in Exercise 64 were found to be different, use Duncan’s 
procedure to test for any significant differences in pairs of means. Test at 

a= .05. 

66. Repeat Exercise 65 using Tukey’s test. Do you get different results in Exercises 

65 and 66? If so, explain the reasons for these differences. 

67. Repeat Exercise 64, but use an appropriate nonparametric test. 



CHAPTER 

14 
FACTORIAL 

EXPERIMENTS 

ie many experiments two or more factors are being investigated. Neither factor is 

considered extraneous; each 1s of major concern to the experimenter. When this 

occurs, the experiment is called a factorial experiment to emphasize the fact that 

interest is centered on the effect of two or more factors on a measured response. We 

note that this is clearly a different experimental situation from that discussed in 

Sec. 4 of Chap. 13 for the randomized complete block and Latin square designs. For 

these designs other factors (blocks) were used only to control for extraneous varia- 
tion in the experimental error. In Sec. | we discuss the two-way classification com- 

pletely random design with fixed effects. 

The values of the factors used in the experiment are called levels. Thus we 

deal with a model in which two factors, A and B, are studied with the levels of each 

factor being purposely, rather than randomly, selected by the experimenter. No 

matching of similar experimental units is done. 

To demonstrate the meaning of a factorial experiment, consider the following 

illustration. Suppose that a certain performance characteristic of a microcomputer is 

to be investigated at three temperatures (50° F, 75° F, 100° F) and two humidity 

(25%, 75%) levels. There are 3 * 2 = 6 experimental conditions in this experiment. 

Suppose that we have 18 identical microcomputers for use in the experiment so that 
each of the 6 experimental conditions can be applied to 3 of the microcomputers. 
We use a random mechanism, such as a random digit table or random number gen- 
erator, to assign 3 microcomputers to each of the 6 experimental conditions of tem- 
perature and humidity. 

The resulting design is called a completely randomized design; the experiment 
isa3 X 2 factorial experiment. This design allows us to compare levels of each fac- 
tor, as well as to compare treatment combinations in the same experiment. In addi- 
tion, it allows us to detect interaction. Here interaction is a measure of parallelism. 

574 
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Temperature 

(c) 

FIGURE 14.1 

(a) No interaction between the factors temperature and humidity; (b) and (c) interaction exists 

between temperature and humidity. 

For example, if there is no interaction between temperature and humidity, then the 

graph of the means of the six treatment combinations is similar to that shown in Fig. 

14.1(a). The means for the three temperature levels at 25% humidity fall on a line 

parallel to those at 75% humidity. When interaction exits, the lines will not be par- 

allel, as in Figs. 14.1(b) and 14.1(c). 

Care must be taken when interpreting the results of a two-factor experiment. 

Several meaningful tests can be conducted, but the first should be a test for interac- 

tion, since the presence of interaction can mask differences in levels of main factors. 

A testing strategy will be suggested in Sec. 14.1. 

14.1 TWO-FACTOR ANALYSIS OF 
VARIANCE 

The data collected in a two-way classification design are conveniently displayed in 

the format shown in Table 14.1. Note that a denotes the number of levels of factor 

A used in the experiment, b denotes the number of levels of factor B, and a X b is 
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TABLE 14.1 

Data layout two-way classification 

Factor A level Totals Means 

Factor B 

level 

Totals (A) 

Means (A) 

the total number of treatment combinations, where a treatment combination is a 
level of factor A applied in conjunction with a level of factor B. We assume that 

there are n = | observations for each treatment combination. That is, we assume 

equal sample sizes. The analysis for unequal sample sizes is beyond the scope of 

this text. The total number of responses is N = a: b- n. We denote the response of 

the kth experimental unit to the ith level of factor A and jth level of factor B by Y;;. 

The following statistics are needed in analyzing the data (recall that a dot indicates 
the subscript over which summation is being conducted): 

n 

» = > Yi, = total of all responses to the (i, )th treatment combination 
k=1 

Vine T;;./n = sample mean for the (i, 7) th treatment combination 

Sl 
| NX >= lI re sample mean for the ith level of factor A 

; = & T). = total of all responses to the jth level of factor B 
i=1 

= 
II 

Y.;. = T.;./an = sample mean for the jth level of factor B 
b 1 b 

> T= > Sd T;. = total of all responses 
i=1 j=1 t=1 j=1 

Ss 
] M ae I 

Y... = T.../abn = sample mean for all responses 

The computation of these statistics is illustrated in the following example. 
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TABLE 14.2 

Factor A (temperature) 
Factor B Factor B 

1 D, 3 total mean 

40 39 32 33 

| 36 36 34 27 

ae B 43 Ty. =119 33 Ty. = 108 29 Ty. =95 25 Ty. 

(humidity ) 36 32 26 20 

2 34 26 23 22 

29 T.. = 99 5 Com Ae n= me 18 Te 

Factor A 

total 

Factor A 

mean 

Example 14.1.1. A study is conducted to investigate the effect of temperature (fac- 

tor A) and humidity (factor B) on the force required to separate an adhesive product 

from a certain material. The experimenter is interested in four specific temperature 

levels (a = 4) and two specific humidity levels (b = 2). These levels are not randomly 

selected, and thus the design is a two-factor design with fixed effects. Three measure- 

ments are taken at each of the a - b = 8 treatment combinations. The resulting data and 

summary statistics are given in Table 14.2. The sample means for factor A appear to 

differ, as do the sample means for factor B. The question to answer statistically is, 

“Are these differences extreme enough to allow us to conclude that there are real dif- 

ferences in the average responses obtained for these levels of both factors A and B?” 

These parameters and random variables are used to define the model: 

[4;;. = mean for the (i, j) th treatment combination 

b 
mean for the ith level of factor A = 5} p;./b Mie — 

j=! 

j.;. = mean for the jth level of factor B = > pla 
i=1 

a b 

pe = overall mean = 5) >) pj, /ab 
1721 

Q; = [;.. — w = effect due to the fact that the experimental 
unit received the ith level of factor A 

B; = w;. — = effect due to the fact that the experimental 

unit received the jth level of factor B 

(aB) = by. — Mi — My + we = effect of interaction between 

ith level of factor A and jth level of 

factor B 

Ex = Yin — Mi = Yesidual or random error 
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Using this notation, we can express the model as follows: 

Model for the two-way classification design with fixed effects 

Yin ged Up tian 2a B; SE (ap )jj ze Bix 

The model expresses symbolically the idea that each observation can be partitioned 

into five components: an overall mean effect (4), an effect due to factor A (q@,), an 

effect due to factor B (B;), an effect due to interaction (aB);, and a random deviation 

due to unexplained sources (E;,). We make these model assumptions: 

1. The observations for each treatment combination constitute independent ran- 

dom samples, each of size n from a - b populations with means Mi: 

2. Each of the a - b populations is normally distributed. 

3. Each of the a - b populations has the same variance, o?. 

Testing H, 

The sum of squares identity obtained by replacing each of the theoretical means pz, 
Mj--, Mj, and fw; by its unbiased estimator Y..., Y,.., Y.;., and Y;;., respectively, squar- 
ing, and summing over i, j, and k is as follows: 

Sum of squares identity 

Rist Sanh SOK seahyiae Law 

In this identity, 

a b n 

SSto¢ = 3 y By ae aa 
i=1 j=1 k=1 

= measure of total variability in data 

SSp= bn S (Puc Yay? 
i=1 

= measure of variability in data attributable 
to the use of different levels of factor A 

Oe ae 
SE [Daal W ajake eed 

i=! 

= measure of variability in data attributable 
to the use of different levels of factor B 

a b 

SSap mag) ay BY (Yj. me ye aa Daye cia Yay 

== 

= measure of variability in data due to 
interaction between levels of factors A and B 
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= measure of variability in data due to random 

or unexplained sources 

The first null hypothesis to be tested is the null hypothesis of no interaction. 
Mathematically, this hypothesis is 

GOR SO) | Pe ak Sil a 

If this hypothesis is not rejected, then the analysis is continued by testing the null 

hypothesis of no difference among levels of factor A, 

LT 6 SO ai. 

or 

Hj: a, =a, =---=a,=0 

and the null hypothesis of no difference among levels of factor B, 

jab [bajo = [Ubas = 2 oS = bar. 

or 

Hf: B, = By =°°- =B,=0 

These tests are referred to as tests for “main” effects. If the null hypothesis of no in- 

teraction is rejected, then the levels of factor A do not behave consistently across the 

levels of factor B. Thus it is difficult to make generalizations concerning the behav- 

ior of factors A and B. To understand exactly what is taking place, we need to com- 

pare levels of factor A for each level of factor B and vice versa. This can be done 

graphically by constructing line graphs of the treatment means of the type illustrated 

in Fig. 14.1. It can be done analytically by performing a + b one-way analyses and 

by testing hypotheses of the form 

TEE yay lips, > [Tip tC ma pes ail ee 

and 

| PY: fg. = Be. = °° = Ba: gel ee CL 

by using the methods of Chap. 13. For example, if interaction is detected when the 

data of Example 14.1.1 is analyzed, then we can continue the analysis by running 

a+b=4-+ 2 one-way analyses. We would test 

AM: poy. = Bor = b3- = Mat: (There are no differences among temperature 
levels at humidity level 1) 

AND: py. = Poo. = Moo. = Par (There are no differences among temperature 
levels at humidity level 2) 

EPS: py. = bap: (There is no difference in humidity levels at 

temperature level 1) 

HW fia). = bao: (There is no difference in humidity levels at 

temperature level 2) 
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HWY? 031. = Hap- (There is no difference in humidity levels at 

temperature level 3) 

HY: pay. = bap: (There is no difference in humidity levels at 

temperature level 4) 

In the presence of interactions we might simply check for differences among treat- 

ment combinations. That is, we run a one-way classification analysis of variance to 

test the null hypothesis of equal treatment combination means. This hypothesis is 

expressed mathematically as 

He: pai = bo = = Ba 

Figure 14.2 summarizes these suggestions. 

The computational formulas used to compute SS4, SSz, and SSy,, are similar to 

those of previous models and are given by 

Sum of squares formulas 

Sy 

The interaction sum of squares is found by first computing what is called the treat- 

ment sum of squares. This is the usual treatment sum of squares that would be 

Test for interaction 

Is there evidence of interaction? 

Compare treatment combinations 
via a one-way ANOVA Test for main effects 

Report results Report results 

FIGURE 14.2 

A suggested testing strategy in analyzing a two-factor experiment. 
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obtained if the a - b treatment combinations were analyzed as a one-way classifica- 
tion design. That is, 

ee ae eles 

Ie ae ah ies 
It can be shown that 

Sop = O04 t Oop te OOue 

This allows us to compute the interaction sum of squares by subtraction with 

Soap = SST OA Sy 

The error sum of squares is also obtained by subtraction with 

SSz = SSq> — SS, 

The analysis of variance table for this design is given in Table 14.3. 

The first F ratio to consider in any experiment is 

Test statistic H): no interaction 

lige — 1)(b — 1), ab(n — 1) — MS3/MS; 

This ratio is used to test the null hypothesis of no interaction. If this hypothesis is 
not rejected, then the F statistics 

Testing for main effects 

Bi on) = MMS, 

Py oy — MS/MS; 

are used to test the null hypothesis of no differences among the means of levels of 

factors A and B, respectively. If the null hypothesis of no interaction is rejected, then 

the F statistic 

Testing for differences among treatment combinations 

Bay lab 1) MS/MS; 

is used to test the null hypothesis of no difference among treatment combinations. 

The methods of Chap. 13 are used to conduct one-way analyses on a level-by-level 

basis. In each method, rejection occurs for values of the F ratio that are too large to 

have occurred by chance. 

Paired Comparisons 

If significant main effects are detected, then Duncan’s multiple range test, Bonfer- 

roni T tests, or Tukey’s test are again applicable. We will illustrate with Duncan’s 

test. In order to pinpoint differences among the levels of factor A, we use 

SSR, = 7, V MSz/bn 
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To determine what differences exist among the levels of factor B, we use 

SSR, = 1, V MSz/an 

We illustrate these ideas by continuing the analysis of the data begun in Ex- 

ample 14.1.1. 

Example 14.1.2. In Example 14.1.1 we began a study of the effects of temperature 

(factor A) and humidity (factor B) on the force required to separate an adhesive prod- 

uct from a certain material. These summary statistics are available: 

T,.. = 218 T.,. = 407 Ty. = 83 

iOS digee allo T= 13 

T,.. = 145 T9. = 99 Tyo = 85 

is 122 Tj. = 108 Tg. = 60 

For these data, 

Sil j=l =I 

The required sums of squares are 

@ 1 if 2 

SSto Y2,— ——= 10018 
ae » 2 k=1 a abn , : 

SA eee a BS 
SS) : —=4 

: > bn abn oa 

es 7 
SSs= ¥— 5352.07) 

jG an 

< @ ® T;. Fa AA 

ae aa a “ay 

= he Se 
SSz = SS tot ax SSt, a I) 

The complete analysis of variance table is given in Table 14.4. Before testing for main 

effects, we first test for interaction. That is, we test 

Ho: (a@B)y = 0 for each i and j 

The observed value of the Fo — 1) - 1), abin — 1) = F3, 16 test statistic is .102. This value 

is not significant even at the a = .1 level (f.,(3, 16) = 2.46). We do not reject Ho, for 

there is no statistical evidence of interaction between temperature and humidity. We 

continue the analysis by testing 

Hi: pty. = po = Ba» = Ba- 

The observed value of the F,, — 1. ahin — 1) = F3, 16 test statistic 1s 16.58. This value is sig- 

nificant at the a = .01 level (f.9;(3, 16) = 5.29). We reject Hj} and conclude that there 

are differences in mean values among the four temperature levels. We investigate 
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TABLE 14.4 

ANOVA for adhesive force data 

Source of Degrees of Sum of Mean 

variation freedom (DF) squares (SS) square (MS) F 

Treatment qf 844.50 120.64 12.270 

A 3 488.83 162.94 16.580 

B 1 352.67 352.67 35.880 
AB 3 3.00 1.00 .102 

Error 16 IS 7e33 9.83 

Total 23 1001.83 

these differences further via Duncan’s multiple range test. The ordered sample means 

for the four temperature levels are 

Y4.. Yee Ys lic 

24.17 28.00 31.83 36.33 

The required values of the shortest significant range, SSR,, are found from Table XI 

of App. A with y = 16 and a = .01 by noting that 

SSR, = 7, VMS;/bn = r,\/9.83/6 = 1.28 r, 

p Z 3 4 

r, 4.131 4.309 = 4.425 P 

SSR, 5.288 Salo 5.664 

4 
For the ie = 6 possible pairs of means we have 

Value of Reject 

Pair p test statistic SSR Hine = Pye? 

1-4 4 12.16 5.664 Yes 

1-3 3 8.33 5.156 Yes 

1-2 2 4.50 5.288 No 

2-4 3 7.66 5.156 Yes 

2-3 2 3.83 5.288 No 

3-4 2 Shes! 5.288 No 

In summary, we have 

There is statistical evidence at the a = .O1 level that Bie F Plats Lyso%) fhy.., and 
[2.. F py... ; 
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To complete the analysis of the data, we need to test 

At: [Lioijs = M.2.- 

From Table 14.4 and the F table, we observe that these means are highly signifi- 
cantly different. 

The corresponding annotated SAS printout for Example 14.1.2, along with 
Duncan’s multiple range test, is given below. 

TWO WAY CLASSIFICATION 

WITH MULTIPLE COMPARISONS 

ANALYSIS OF VARIANCE PROCEDURE 

DEPENDENT VARIABLE: F 
SOURCE DF SUM OF SQUARES MEAN SQUARE — F VALUE 
MODEL () 7 844, 50000000 120.64285714 LO 
ERROR 16 iS/pS 3365055 9.83333333 PR>F 
CORRECTED TOTAL 23 1001.83333333 0.0001 

R-SQUARE GV; ROOT MSE F MEAN 
0.842955 10.4238 3.13581462 30.08333333 

SOURCE DF ANOVA SS F VALUE PR >F 
TEMP 3) 488.83333333 16576) 0.0001 ©) 
HUMIDITY @) | 352.66666667 35.86 (8) 0.0001 @) 
TEMP*HUMIDITY 3} 3.00000000 0.10 @ 0.9579 ) 

DUNCAN’S MULTIPLE RANGE TEST FOR VARIABLE: F 

NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT 

THE EXPERIMENTWISE ERROR RATE. 

ALPHA = 0.01 DF = 16 MSE = 9.83333 

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT. 

DUNCAN GROUPING MEAN N TEMP 

A 310),.313}3) 6 ] 

A 

B A 31.833 6 2 

@B 
B €c 28.000 6 3 

E 

Cc 24.167 6 4 

The explanation of this output follows. Note that in the two-way ANOVA the 

source, referred to as “treatment,” is called MODEL dd) by SAS. The breakdown of 

the model, or treatment, sum of squares into factors A (temperature), B (humidity), 

and AB (interaction) is given by () on the printout. To interpret the data, we look 

first at the F ratio used to test for interaction @) and its P value (@). Since this P 

value is large (.9579), we do not reject the null hypothesis of no interaction. We con- 

tinue the analysis by looking at the F ratio used to test the null hypothesis of no dif- 

ference among temperature levels. This ratio is given by (), and its P value is found 

at (6). Since this P value is small (.0001), we reject Hy and conclude that there are 
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differences among the temperature levels. These differences are pinpointed by the 

Duncan procedure shown in (J). To test for differences between humidity levels, we 

look at the F ratio given by @) and its P value, @). Since this P value is also small 
(.0001), we reject the null hypothesis and conclude that there is a difference be- 

tween these two humidity levels. 

As suggested in Figure 14.2, if there had been a significant interaction we 

would have conducted a one-way ANOVA on the eight treatment combinations and 

then would have done multiple comparisons if the overall ANOVA were found to be 

significant. Though the interaction for Example 14.1.2 was not found to be signifi- 

cant, we illustrate the procedure in the following SAS printout. 

ONE WAY ANALYSIS 

IF INTERACTION IS DETECTED 

ANALYSIS OF VARIANCE PROCEDURE 

DEPENDENT VARIABLE: F 

SOURCE DF SUM OF SQUARES MEAN SQUARE  F VALUE 

MODEL Uf 844.50000000 120.64285714 1227, 

ERROR 16 [7635353995 983333333 PR>F 

CORRECTED TOTAL 23 1001.83333333 0.0001 

R-SQUARE Gy: ROOT MSE F MEAN 

0.842955 10.4238 3.13581462 30.08333333 

SOURCE DF ANOVA SS F VALUE PR>F 

CEEE i} 844.50000000 i222 29) 0.0001 

ONE WAY ANALYSIS 

IF INTERACTION IS DETECTED 

ANALYSIS OF VARIANCE PROCEDURE 

DUNCAN’S MULTIPLE RANGE TEST FOR VARIABLE: F 
NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT 

THE EXPERIMENTWISE ERROR RATE. 

ALPHA=0.01 DF=16 MSE = 9.83333 

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT. 

DUNCAN GROUPING MEAN N GRE 

A 39.667 3 l 

A 

B A 36.000 3 2 

B A 

B A (e 33.000 5 5 

B A G 

B D A G 31.667 3 3 
B D C 

B D Cc 28.333 3 4 
D le 

D E G 27.667 3 6 
D E 

D E 24.333 2) 7 
E 

E 20,000 5 8 
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Sample Size 

A few remarks concerning sample sizes should be made. Note that for each of the 

models considered in the two-factor design the degrees of freedom for error is given 

by ab(n — 1). Hence if we have only one observation per cell, this term assumes the 

value 0. In this case MS, is undefined and we cannot test for interaction. Even 

though interaction effects may be very important, we must assume no interaction. In 

this case SS; and SS, are pooled into one sum of squares with associated degrees 

Olineedom (7 =-l))( baal rands(SSpar SSi5)) (= 1)(b — I) istused’as our error 

mean square. It should be clear that if at all possible, the researcher should have at 

least two observations per treatment combination. Furthermore, if the numbers of 

observations per treatment combination differ, then the analysis is not simple. It 

does not simply parallel the ideas presented here with n being replaced by nj. Be 

careful! If you are working with such a design, you should consult a professional 

statistician for help in analyzing your data and in interpreting your results. 

14.2 EXTENSION TO THREE FACTORS 

By now it is probably clear that the analysis for a two-factor experiment is easy to 

extend to the case of three or more factors in concept. However, it should also be 

clear that the computations involved become very tedious. Hence such experiments 

are usually analyzed by computer in practice. In Exercises 16 through 23 we lead 

you through the development of the analysis of a fixed-effects experiment with fac- 

tors A, B, and C. The design assumes the possible existence of both two and three- 

way interactions. Exercise 24 shows a model in which it is assumed a priori that 

some interactions are negligible. 

14.3 RANDOM AND MIXED MODEL 
FACTORIAL EXPERIMENTS 

The two-factor design discussed in Sec. 14.1 assumes that both factors A and B are 

fixed. As in the one-way classification and randomized complete block designs, fac- 

tors can be random. In the case of a two-factor design these experimental situations 

can arise: 

1. Both factors A and B are fixed. This type of design is called the fixed-effects 

model. 

2. Both factors A and B are random. This type of design is called the random- 

effects model. 

3. One factor is fixed and the other is random. This type of design leads to a 

mixed-effects model. 

Computations of degrees of freedom, sums of squares, and mean squares are the 

same in all cases. However, testing procedures vary from one model to another 

and are dependent on the expected mean squares. To perform each test, we inspect 

the expected mean squares and form an F ratio with the property that if H, is true, 
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both numerator and denominator are estimating the same parameter; if Hp is not 

true, then the numerator should exceed the denominator, resulting in an inflated 

F statistic. 

Random-Effects Model 

We illustrate these ideas by considering the analysis of variance table for the 
random-effects model given in Table 14.5. We follow the same order of testing as in 

the fixed-effects model. We first test for interaction. That is, we test 

Hy: a4, = 0 

By examining the expected mean squares in Table 14.5, we see that the appropriate 

test statistic is 

Test statistic Hp: no interaction 

Fae ie = 1) ove MS3/MS_ 

If Hp is true, then both the numerator and the denominator of this statistic estimates 

a; if Ho is not true, then the numerator should exceed the denominator, resulting in 

an inflated F statistic. If Hp is not rejected, then we test for differences in levels of 
factors A and B by testing 

Hi: 0% =0 

and 

Hi: 03 = 0 

The appropriate test statistic for testing H) is 

Fa —1,abin — 1) = MS4/MS 43 

From the expected mean squares we see that if H} is true, then both the numerator 

and the denominator estimate 0? + noj,; if H} is not true, then the numerator 
should exceed the denominator, resulting in a large value for the F statistic. Similar 
reasoning shows that to test H}!, we use the test statistic 

Fy — 1, abn - 1) = MSg/MSap 

Note that for the first time we are testing a hypothesis by using an F ratio that does 
not use MS; as the denominator. If the null hypothesis of no interaction is rejected, 
then we treat the experiment as a one-way classification random-effects design with 
a+ b treatments. The null hypothesis 

HY: ot, = 0 

is tested via the F ratio 

PS — 1,ab(n — 1) = MS>,/MS; 
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Mixed-Effects Model 

The analysis of a mixed-effects model is similar. The biggest difference that occurs 

is in the statements of the hypothesis to be tested. For example, in a mixed model in 

which the levels of factor A are fixed and those of factor B are random we test 

Hy: oi, = 0 

Ho: ply. = Mae = = Mae 
H!: 0% =0 

HI: 93, = 0 
The complete analysis of variance table for this model is given in Table 14.6. 

We leave the analysis of the mixed model in which levels of factor A are ran- 

dom and those of factor B are fixed as an exercise (see Exercise 25). 

14.4 2* FACTORIAL EXPERIMENTS 

A six-factor experiment (2°) will entail 64 different sets of experimental condi- 

tions. Experiments of the form 2‘ or 3* (k factors each at three levels) are called 
symmetric factorials. It is possible to have asymmetric factorials. For example, 

2° X 37 is an asymmetric factorial with three factors at two levels and two factors 

at three levels. The following presentation is for symmetric 2‘ experiments. Exper- 

iments of this sort can be analyzed by using the techniques presented in Sec. 14.1. 

However, in this case a second method of analysis that makes use of the regression 

techniques of Chap. 12 is possible. This approach is especially useful in the design 

of experiments. 

To begin, consider a two-factor experiment. Since each factor has only two 

levels, we can denote these levels as being either “high” or “low.” These four treat- 

ment combinations are possible: 

Factor 

A B 

low low 

low high 

high low 

high high 

Notationally, it is convenient to denote the high level of factor A by a and that of 
factor B by b. The low level of each is denoted by 1. This allows us to code each 
treatment combination. For example, the treatment low-low is denoted by I - 1 = 
(1); the treatment low-high is given by | - b = b. Thus the four treatment combina- 
tions in a two-factor experiment are (1), b, a, and ab. This notation can be extended 
to a k-factor design. In general, the presence of a letter denotes the use of the high 
level of the corresponding factor; its absence denotes the use of the low level. For 
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example, in a three-factor experiment the treatment combination (1) entails the use 

of the low level of all three factors; the combination ab uses the high levels of fac- 

tors A and B and the low level of C. 

To assist in the meaning of factor and interaction effects for this type of an ex- 

periment, suppose that we have n replications of each of the treatment combinations 

(1), a, b, and ab. Interpret the symbols (1), a, b, and ab to represent the totals of the 

n sample observations for each treatment combination. They are represented in the 

following graph: 

3 b ab 
High 

level 

Factor B 

Low 

level (1) a 

Factor A 
Low High 

level level 

We define the effect of a factor as the change of a response when the level of the fac- 
tor is changed. When factor B is at the low level, the effect of factor A is a — (1). 
Similarly, when factor B is at the high level, the effect of A is ab — b. The average 
effect of A is then 

A= Vt la (1) lab bi} 

L2[—()) +a — 8 ab) 

Similarly, the average effect of B is 

B=1/2|-0)) —a + 6 + abl 

Now consider the interaction effect AB. At the low level of B the A effect is 
a — (1), whereas at the high level of B the A effect is ab — b. When these two ef- 
fects differ, it implies that there is an interaction between factors A and B. Thus the 
interaction effect AB is defined as the average difference between these two effects, 
which is 

AB = 1/2{[ab — b] — [a = (1)}} 

= 1/2[((1)— a= b + ab] 

The regression model for the general two-factor design is 

Hyiz,,x, = Bo + Bix, + Box. + ByrX\X> 

Here x, denotes factor A, where we let x, = —1 if the low level of factor A is used 
and x, = | otherwise. The regressor x, represents factor B and is defined similarly. 
The cross-product term xx, represents a possible interaction between factors 
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A and B. Using this coding, we see that the entries of the model specification matrix 
are all either 1 or —1: 

Intercept XxX, Xq X Xo 

evel 1, oi 
1  -1l -1 1 

pee aoe et ee ee 
1 -1 -1 
1 -1 -1 

es eae Mest tJ esa Ae det OO 
ff i ea 
se is 

aes! bien rh al ed Note 
A il og 

I ie a 

| rd ak ey 

In this matrix each submatrix is of dimension n X 4. Notice that the first submatrix 

represents the treatment combination (1), whereas the others represent a, b, and ab, 

respectively. 

The matrix X’X is always a diagonal matrix of the form 

Li ie WW 
rete Odeo? y 0 

GeanlboMN oe aLO 
0 0 Or 271 

tape 

0 = 0 0 

sees cee, 
2°n 

Ome Oa 0) =_ 
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The response vector is 

Notice that the first subvector of the response vector contains the responses for the 

treatment combination (1), whereas the others represent a, b, and ab, respectively. 

A quick calculation will show that the vector X’y is given by 

(lise a Bb +.ab 

as ab. (1) =28 

lo) =e lo = (AD) =@ 

(1) ab— a—b 

where in this context (1), a, b, and ab denote the sum of the responses for the indi- 

cated treatment combination. An example will illustrate the idea. 

X'y = 

Example 14.4.1. The Mirogrex terrae-sanctae is a commercial sardinelike fish 

found in the Sea of Galilee. A study is conducted to determine the effect of light and 

temperature on the growth of the ovary of these fish. Two photoperiods (14 hours of 

light—10 hours of dark and 9 hours of light—15 hours of dark) and two temperatures 

(16° C and 27° C) are used. In this way the experimenter can simulate both the sum- 

mer and winter conditions in the region. These data are obtained: 

Factor A (photoperiod) 

9 hours light 14 hours light 

(low) (high) 

1.30 simulated 1.01 unnatural 

2 winter 
9 
bs 16° 

2 (low) 2.53 
(4, 

90 unnatural 83 simulated 

1.06 .67 summer 

213 

(High) b= .90 + 1.06 = 1.96 frloye— love Ko tle Si0] 

(l)+a+b+ab 

OSI 
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In matrix notation 

1.30 1-1-1 1 
2.88 Lee ers) ene 
1.01 1 1-1 -i 
1.52 1 1-1 -1 

eS 30 ST ee APE 
1.06 a ae 
83 ee marae 

ior [a a 

oS OO 
Pe OMSe ONC 

AX 00188) 0 
ORO RONS 

and 

MWe oO a 6 
Oxe1/8 0. 6 

pw = 

Cee ® © We @ 
OnaO me OMNES 

The vector X’y is given by 

1.30 
2.88 

] 1 1 1 1 tit TL ol 

ea a a Sah Ze 
Ngai ns ee eee ey ey || 00 

fo Se 2 SS ae Mets 
83 
Si 

10.17 

(= 4.418) (2,53) = 196) = (1.50) 

(4a 8 ie 2 5S) il. 96 ase 0) 

(4u1S ee 2.95) (196 Jet (130) 

COE ane Dhab 

ll Sie Stele 

~|—(1) -at+b+ab 
Clip aD 

GDiewa bab 

a+ab—(1)—b 

| b+ab-(1)=-a 
CIA? Gli SMD 

as claimed. 
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To test for interaction, we test 

Ho: Biz = 9 

Main effects are studied by testing 

Hj: B, = 0 

and 

H: B. = 0 

We already know how to conduct these tests by using the methods of Sec. 12.5. Re- 

call that it has already been shown that, in any regression analysis, 

Sy = SSR + SSE 

where S,, denotes the corrected total sum of squares, SSR is the sum of squares due 

to regression, and SSE is the residual or error sum of squares. In matrix notation it 

is easy to see that 

SSR = B’X'y —C 

where C denotes the usual correction factor. In this case (see Exercise 31), 

Ce ee 

N 22n 

It is known that 

Bia ey 

Due to the special nature of (X’X)~' and X’y in this application, B and SSR assume 

relatively simple forms. In particular, 

27n 
atab—(1)—6 

a 2?n 
B= bor ab—(1) =a 

2°n 

(1)"--'ab=—a—b 

2?n 

and 

gsp = LO tard tab)" [atab= 1) — bl 
22n 22n 

rs [bor abe (La MG Hisy-L ai Seal Ale 

2°n 2°n 

However, the term (1) + a + b + ab = T... so that the first term of the above ex- 
pression is the correction factor. Hence SSR can be written as 

= [a+ ab = (1) =)" os Lab = Cg) eC aP ads 
SSR - . 

Ven 2°n 2?2n 
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Using the techniques for testing a subset of predictor variables given in Sec. 12.5, 
we can show that the numerator of the F ratio used to test Hy: B,, = 0 is 

[ab = a—b|2 

22n 

We denote this by SS,, and write the test statistic as 

Test statistic Hy: no interaction 

ye 
SSE/(7 1 — 3 1) fe ay 

(see Exercise 47). 

It can also be verified that the test statistics for testing H}: B, = 0 and 

Hi: B, = 0 are 

Testing for main effects 

[a+ab— (1) —b|? 

F io 2H wv SS 

1,2%-3-1"” SSE/(22n-3-—1)  SSE/(22n — 3 — 1) 

[b + ab — (1) — a]? 

2?n ce SSp 

SSE/(2?n — 3 — 1) SSE/O 733 1) 
Fs 2, 3} = 

Note that in this special case, 

SSR = SS, + SSp + SSap 

We illustrate by continuing the analysis of the data of Example 14.4.1. 

Example 14.4.2. For the data of Example 14.4.1, 

10.17)? 
Spb ete ARE ay ON ++ 67) -O 

=116,38635-21 29286 = 3.4577 

((yebab =a — bt {418 50 2.53 1.96]? 

ch oa ar 3 
1770 II 

e fa+ab— (1) —b]? 
8 = (2.53 150 —4:18 = 1.96)? SS) 

= 5565 
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[b+ ab— (1) —a}? [1.96 + 1.50 — 4.18 — 2.53]? 

8 8 

= 1.3203 

Ss, = 

SSR = SS, + SSp + SSap 
5565 + 1.3203 + .1770 

= 2.0538 

SSE = S,, — SSR 
= 3.4577 — 2.0538 
= 1.4039 

The observed value of the F ratio used to test for interaction is 

SS iz .1770 
= 48 _ _*___ = _ 5043 

wh. SSE/4__1.4039/4 

The P value of this test exceeds .1, and hence Hy: B,. = 0 cannot be rejected. No in- 

teraction has been detected. 

The two-factor design has been used as an illustration of the use of regression 

techniques in a factorial experiment. The ideas can be extended to any 2‘ design. 

Fortunately, it is easy to anticipate the form of the numerator of any | degree of 

freedom F test needed without having to work directly with the appropriate reduced 

models. For example, in the two-factor case we construct a table that lists the alge- 

braic signs of x), x», and x,x, for each treatment combination. This table is shown in 

Table 14.7. 

The term to be squared in the numerator of the F ratio is found by summing 

the treatment totals with the indicated coefficient found in the column correspond- 

ing to the effect being tested. For example, to test for interaction, we find the ap- 

propriate numerator by attaching the coefficients found in column AB to the 

treatment totals (1), a, b, and ab, summing these terms, squaring the sum, and di- 

viding by 2‘n. In this case we see that 

TABLE 14.7 

Coefficients of effects for 2? factorial 

Effect 
Treatment 

combination A(x) B(x) AB(x, x3) 

(1) = - + 
a = = 

b + 

ab + + + 
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[+ (1) -—a-—b+ ab]? 
oxy = AB 22n 

ss tl) ar bea ou 

2°n 

ce [=€1) sudan Salle 

an 

As you can see, these values agree with those found earlier. In Exercises 32 and 33 

you are asked to extend this idea to the three-factor model and to a restricted four- 

factor model, respectively. 

Computational Techniques—Yates Method 

If SAS or some other statistical package is available, then it can be used to analyze 

a 2* factorial experiment easily. If you must analyze the data by hand, then a tech- 

nique developed by Yates simplifies the work. To use the technique, you must list the 

treatment combinations in a column in standard order. The standard order for a one- 
factor experiment is (1), a. When a second factor, b, is added then multiply each of 

the previous combinations by b to obtain the four treatments (1), a, b, and ab. Simi- 

larly, if the factor c is added, you multiply the preceding terms by c to obtain the 

standard order (1), a, b, ab, c, ac, bc, and abc. The pattern continues for additional 

factors. The Yates method is outlined below and is illustrated in Example 14.4.3. 

Yates Method 

1. List the treatment combinations in standard order in a column. 

2. Form a second column by listing the treatment totals in standard order. Pair the 

totals from top to bottom. 

3. Label the next column 1, and form the first half of the entries by finding the to- 

tals of the pairs in the second column. Form the last half of the entries by sub- 

tracting the first member of each pair from the second. Pair the entries in this 

column. 

4. Label the next column 2. Form this column from column | by the procedure de- 

scribed in part (3). 

5. Continue until you form k columns. 

6. The first value in the kth column is the grand total of all responses. The re- 

maining values when squared and divided by 2‘n give the numerator for the F 

ratio needed to test for the effect in question. 

Example 14.4.3. A study is conducted on the effect of temperature, time in process, 

and rate of temperature rise on the amount of dye (in milligrams) left in the residue 

bath for a dying process. The experiment was run at two levels of temperature 20s GF 

135° C), two levels of time in process (30 min, 60 min), and two levels of rate of 
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temperature rise (R,, Ry). The experiment is run as a 23 factorial with two replications, 

yielding the following data: 

Temperature 

120° C (ls iys( @: 

30 min 60 min 30 min 60 min 

R, 19.9 17.4 25.0 19.5 

R: 18.6 16.8 22.8 18.3 

ee 14.5 16.3 04 8, 28.3 
16.1 14.6 18.0 26.2 

Denoting the effects of temperature, time, and rate by A, B, and C, respectively, we 

compute the sum of squares by the Yates procedure as follows: 

Treatment Total Sum of 

combination (n = 2) (1) (2) (3) Effect squares (SS) 

(1) Beh 86.3 \ 158.3 } 320 Grand total = 
a 47.8 72.0 161.7 51.6 A 166.41 
b oa sal 12: “1 —5.2 B 1.69 
ab 37.8 85.4 38.7 2.8 AB 0.49 
c ao ay —14.3 Be 3.4 Cc 0.7225 
ac 45.7 25.8 AC 41.6025 
be oe - 1 ! ee 7 a 23.4 BC 34.2225 
abc 54.5 23.6 14.2 ABC 12.6025 

Total = SSR = 257.74 

For these data the corrected total sum of squares is 

T2 

DEI PT ee 16. ONS 8 

= 313.88 

320? 

Since SSH = 5, — SSR, 

SSE = 313.88 — 257.74 = 56.14 

The complete analysis is shown in Table 14.8. From Table LX of App. A we see that 
the A effect (temperature) is significant at the .05 level and the AC (temperature-rate 
of rise) interaction is significant at the .05 level. 

The corresponding SAS corresponding printout for Example 14.4.3 is given 
below. 
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TABLE 14.8 

Degrees of Sum of Mean 

Source Freedom(DF) squares(SS) square (MS) F 

Main effects 

A 1 166.41 166.41 PE) Fs 

B 1 1.69 1.69 0.24 

€ 1 0.7225 0.7225 0.10 
Interactions 

AB l 0.49 0.49 0.07 

AC ! 41.6025 41.6025 5.93 
BC | 34.2225 34.2225 4.88 

ABC ! 12.6025 12.6025 1.80 
Error 8 56.14 7.0175 

Total 15 313.88 

GENERAL LINEAR MODELS PROCEDURE 

DEPENDENT VARIABLE: Y 

SOURCE DF SUM OF SQUARES MEAN SQUARE FVALUE Pr>F 

MODEL 7 257.74000 36.82000 25) 0.0164 

ERROR 8 56.14000 7.01750 @ 

CORRECTED TOTAL 15 313.88000 

R-SQUARE CM, ROOT MSE Y MEAN 

0.821142 13.24528 2.6491 20.000 

SOURCE DF TYPEISS MEAN SQUARE FVALUE Pr>F 

@ ® 
Xl | 166.41000 166.41000 Ag) AM 0.0012 

X2 1 1.69000 1.69000 0.24 0.6368 

X3 1 0.72250 0.72250 0.10 0.7565 

x4 I 0.49000 0.49000 0.07 0.7983 

x5 1 41.60250 41.60250 33 0.0409 

X6 1 34.22250 34.22250 4.88 0.0582 

X7 1 12.60250 12.60250 1.80 0.2170 

The sums of squares for each effect are given in column (1). The error mean square 

is at Q). The observed values of the one degree of freedom F ratios are in column 

@ with their P values listed in column @). 

14.5 2* FACTORIAL EXPERIMENTS IN AN 
INCOMPLETE BLOCK DESIGN 

In some experimental situations it is not possible to run every treatment combina- 

tion under exactly the same experimental conditions. For example, the laboratory 

may not be equipped to handle all treatment combinations in the same day; some 

treatments must be run on one day and others later. This introduces the factor 
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“day run” as a possible source of extraneous variation that should be taken into ac- 

count. A chemical engineer might not have enough raw material from a single sup- 

plier to conduct experiments on all treatment combinations; three suppliers might be 

involved. Here the factor “supplier” is an extraneous variable to be controlled. A so- 

lution to the problem is to run the treatment combinations in subsets. Each subset is 

called an incomplete block. As you might suspect, there is a price paid for not run- 
ning the entire experiment under identical conditions. This price is that some of the 

effects become “confounded” with or inseparable from block effects. 
There are some restrictions on the number of incomplete blocks that can be 

used in a 2* factorial experiment. In particular, we restrict this number to values of 

2’, where p < k. For example if k = 2, then p must be | and 2? = 2; the four treat- 

ment combinations can be divided into two sets of two treatments each. If k = 3, 
then p = | or p = 2 so that either two or four blocks can be used. To decide which 

treatment combinations are to be used in each of the 2” incomplete blocks and to de- 

cide which effects are to be confounded by blocking, we must choose p “defining 

contrasts.” A defining contrast is an effect that is not of interest to the researcher or 

one that is expected to be negligible. It will be confounded with the block effect, 

and hence it cannot be tested for significance later. Usually, higher-order interac- 

tions are chosen as defining contrasts. 

Example 14.5.1. Suppose that we have a 2? factorial experiment to be run in four 

blocks so that p = 2. Two defining contrasts are needed. Suppose that the researcher 

has no interest in the interactions ABC and CD. These are chosen as defining contrasts. 

No inferences can be made concerning these effects later, since these interactions will 
be confounded with block effects. 

Once the defining contrasts have been selected, the treatment combinations as- 

signed to each block can be determined. One scheme for doing so is outlined below. It is 

illustrated on a step-by-step basis by completing the problem just posed. 

Forming 2? Incomplete Blocks 

1. Choose a value of p, where p < k. (In our example p = 2.) 

2. Choose p defining contrasts. (We have chosen ABC and CD.) 

3. Write each contrast in the form AY/B%C”» ... , where y,, = 1 if the ith factor ap- 
pears in the jth defining contrast and y, = 0 otherwise. (Here ABC = A'B'C!p° 
and CD = A°B°C'D!. That is, y\; = Y2; = ¥3; = 1 and y4, = 0, whereas y,> = 
Yx = Oand yx. = Yq = 1.) 

4. Associated with the p defining contrasts are p functions L;, Ls... , L, defined by 

Ly = AV tava 2 oe eee gall toh ay ee p 

(In our example there are two such functions. These are 

L, = Z + 2+ 2 

L, = 43 7 Z4) 

5. Evaluate each of these functions for each treatment combination by 
allowing z; = 1 if the high level of the ith factor is used and z; = 0 otherwise. 
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(For example, for the treatment combination (1) in which the low level of each 
factor is used 

L,=0+0+0=0 

L,=0+0=0 

For the treatment combination ab in which the high levels of factors A and B and 

the low levels of C and D are used, 

L= lel ro=2 

L,=0+0=0) 

Reduce each of the values of L; to 0 or 1 modulo 2. (To reduce L; mod 2, we di- 

vide by 2 and report the remainder. Here both L, and L, reduce to 0 mod 2.) 

Group all treatment combinations with identical values of L;, L>,..., L, into a 

single block. The block containing treatment combination (1) is called the princi- 

pal block. (The four blocks for our example have L, and L, mod 2 values of 0-0, 

1-0, 0-1, and 1-1. They are given in Table 14.9.) 

The analyses of a 2 factorial experiment with blocking is similar to the factorial 

experiment without blocking. The sums of squares for effects that are not confounded 

TABLE 14.9 

Treatment 

combination Ly L,(mod 2) 

(1) 
a 

Ss L,(mod 2) Block 

“moe Sele et he, BOCCOrRPFRR OR COORFHO Ker kS) RS) i SSS Sa SiS oS SS SOOFPRFP OR FPR RFP ORF OOO NOrr WN FWH WR WKN NH 

Block 1 Block 2 Block 3 Block 4 

(1) a ac C 

ab b be ad 

acd cd d bd 

bcd abcd abd abc 
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with blocks are computed in the same manner as in the unconfounded case. We then 

compute a block sum of squares in the usual way: 

(block total )? 
— correction factor 

block size 
SSpixs = SS 

all blocks 

or by means of the Yates method. If the Yates method is used, then the block sum of 

squares is the total of all effects that are confounded with blocks. Which effects are 

these? In general, they are the p defining contrasts and their generalized interac- 

tions. The generalized interaction of two contrasts is defined as the product of the 

contrasts where the exponents of the product have been reduced modulo 2. For in- 

stance, in Example 14.5.1 the effects ABC and CD will be confounded with blocks. 

In addition, the generalized interaction (ABC)(CD) = ABC*?D = ABD will also be 

confounded. The block sum of squares is given by SSpy., = SSypc + SSep + SS4pp.- 

Example 14.5.2 illustrates the computations involved. 

Example 14.5.2. A study of the effect of four factors on the yield of a certain chem- 

ical is planned. A 2* factorial experiment is to be conducted. Two blocks will be used. 

In this case p = | and the defining contrast chosen is the four-factor interaction 

ABCD. All three-factor interactions are assumed to be negligible and are not included 

in the model. The resulting blocks along with the single response per treatment com- 

bination are shown in Table 14.10. 

The analysis of variance table found using SAS is given in Table 14.11. In this 

table SSg),., = 11.90 is a combination of the block effect and SS4,¢p; the error sum of 

Squares is a combination of the three-factor interactions, SSygc, SSagp, SS4cp, and 

SSzcp- 

14.66 FRACTIONAL FACTORIAL 
EXPERIMENTS 

In most industrial experiments there are many variables that might influence a re- 
sponse. We have seen that in a complete factorial experiment as k increases, the 
number of treatment combinations becomes very large. For reasons of time or eco- 
nomics it might not be possible to collect data under all experimental conditions. In 
this section we consider a method of combating this problem. 

To begin, note that as the number of factors under study in an experiment in- 
creases, so do the number of higher-order (three-way or above) interactions. It is of- 
ten reasonable to assume that these are negligible. This reduces the number of 
model parameters or effects of real interest to the researcher and makes it possible 
to conduct the study by using fewer treatment combinations than would be required 
in a full 2 model. Since such a study uses only a fraction of the 2* possible treat- 
ment combinations, it is called a fractional factorial experiment. The fractions used 
are 1/2, 1/4, 1/8, and so forth. 

A fractional factorial experiment basically is a randomized incomplete block 
experiment in which only one of the 2” possible blocks is utilized. For this reason, 
most of the ideas needed to design these experiments were introduced in the last 
section. 
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TABLE 14.10 

Block i Block 2 

(1) = 29.5 a = 39.8 

ab = 38.2 b = 32.1 

ac = 33.8 c = 273 

be = 25.3 d= 31.4 

ad = 37.6 abc = 35.7 

bd = 31.0 abd = 38.9 

cd = 24.9 acd = 35.9 

abcd = 34.1 bed = 27.1 

TABLE 14.11 
ee ee ee ee ee 

Sum of Mean 

Source DF squares (SS) square (MS) F 

Blocks i 11.90 

Main effects 

A 1 267.32 267.32 789.14 

B 1 30 30 

€ 1 73.96 73.96 21838 

D 1 04 04 

Two-factor interactions 

AB 1 42 42 

AC 1 Lea La 

AD i 09 09 

BC 1 16 16 

BD i O01 01 

CD 1 02 02 

Error 4 13155) 75 

We begin by choosing one or more higher-order interactions to use as defin- 

ing contrasts. Since the effects of these and their generalized interactions are con- 

founded with blocks, they should all be effects that are not of interest to the 

researcher. Another serious consequence of running only a fraction of the 2‘ possi- 

ble treatment combinations is that other effects also become confounded. If one is 

not careful, then effects that are of major interest to the researcher might become in- 
distinguishable from one another. An example should clarify this idea. 

Example 14.6.1. Suppose that we want to design a 1/2 fractional factorial experi- 

ment to study three factors. The defining contrast used to create two blocks is the 

three-factor interaction ABC. The resulting blocks are 

Block 1 Block 2 

(1) a 

ab b 

be c 

ac abc 
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Suppose that the treatment combinations listed in block 2 are to be used in the exper- 

iment. Table 14.12 is the table of coefficients for a 2° design. 

The estimate for each of the model effects can be read from the columns of this 

table. The confounding referred to earlier can also be seen from this table. Note that if 

all eight treatment combinations are run, then the A effect is estimated by 

-—(1)+a—-—b-—c+t+ab+ac-— be + abc 

=fa—b—c + abc] +[—() + ab ac — be} 

=R+S 

whereas the BC effect is estimated by 

(1) +¢—b = ¢— ab —ae + ber abe 

= [a—b-—c + abc] — [—(1) + ab + ac — bc] 

=R-S 

When all eight treatment combinations are run, these two estimates will be distinct, 

with the difference in estimates being dependent on the magnitude of the term 

[—-(1) + ab + ac — bc]. If we run only the treatment combinations listed in 

block 2, then it can be seen that the A and BC effects are both estimated by R = a — 

b — c + abc. The effects A and BC become indistinguishable; that is, they are con- 

founded with one another. 

When two effects are confounded, we say that one is the alias of the other or 

that one is aliased with the other. In Example 14.6.1 the A effect is aliased with the 

BC effect. This is denoted by A = BC. An easy way to determine aliases is to find 

the generalized interactions between each effect and the defining contrasts. For in- 

stance, the aliases for effects B and C in Example 14.6.1 are 

BCABC) = AB*G —AC 

and 

COABG\ = ABG- =n 

We should emphasize that the 2* factorial design was used mainly as an illus- 

tration only. Fractional factorials are most useful when k is rather large, and we want 

TABLE 14.12 

Coefficients for a 2° factorial experiment 

Treatment Block (x,) (x;) (x3) (x, X>) (x,X3) (X3X3) 

combination number A B Cc AB AC BC 

(1) I 7 7 
a 2 “IF = = = = ts 

b 2 = 3 = +- = 

fe 2 = = 1° + — 

ab | uy te = 3 = = 

ac | af = “tb a Str = 

be | = a =P et = 3 

abe y) ate ste 3h te ar at 
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to run one of several possible blocks. That is, we might run a 1/2, 1/4, 1/8, or even 
smaller fraction of a very large factorial experiment. In general, for a 2? fraction of 
a 2* factorial experiment we construct p blocks after choosing p — 1 defining con- 
trasts and then select exactly one of these p blocks for the actual experiment. When 
this is done, one must be aware of the resulting alias structure. This structure is cru- 
cial, since it determines which effects can be tested from the experimental data. Of- 
ten it will be necessary to consult a professional statistician for help in choosing an 
appropriate experimental design. Example 14.6.2 illustrates the problem of aliases 
in a 2* factorial experiment. 

Example 14.6.2. Consider Example 14.5.1 in which p = 2 and k = 4. The two 
defining contrasts used to determine the four blocks given in Table 14.9 are ABC and 

CD. Suppose that main effect A is of primary interest. To determine the aliases for this 

effect, we multiply A by each of the defining contrasts and reduce the exponents mod- 
ulo 2. These aliases are 

NCABG) AC 8 GB @ 

and 

A(CD) = ACD 

The main effect A is aliased with two other effects, a two-factor and a three-factor 

interaction. If there are subject matter related reasons for believing that these inter- 

actions are negligible, then this does not create a problem; otherwise new defin- 

ing contrasts must be found that do not confound effect A with other nonnegligible 

effects. 

Example 14.6.3 illustrates the complete analysis of a fractional factorial 

experiment. 

Example 14.6.3. An experiment was conducted to study the viscosity of star block 

copolymers. Five dependent variables were selected to determine their effect upon the 

response variable viscosity. The dependent variables were temperature, diblock con- 

centration, frequency, casting solvents, and annealing time. Since experimentation was 

expensive, it was decided to use a 1/2 fraction of a 2° factorial with the five-factor in- 

teraction confounded with blocks. The levels of the respective factors used in the ex- 

periment were as follows: 

Factor Level 

A (temperature) IOF C, BBO" C 

B (diblock concentration) 10%, 100% 

C (frequency) .10, 100.0 

D (casting solvent) 8.2, 9.3 

E (annealing time) 0 hr, 2 hr 

One of the two blocks obtained by confounding the ABCDE interaction with 

blocks yielded the following responses on viscosity for the respective treatment 

combinations: 
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Factor level 
Treatment 

A B Cc D E combination Response 

0 0 0 0 0 (1) 62.7 

| 1 0 0 0 ab 11.8 

1 0 l 0 0 ac 1.8 

l 0 0 | 0 ad 108.8 

| 0 0 0 1 ae 26.4 

0 | I 0 0 be 2.0 

0 I 0 | 0 bd 36.4 

0 ] 0 0 1 be PAL 

0 0 l 1 0 cd 4), 

0 0 1 0 | ce 23 

0 0 0 I I de 117.9 

] ] ] 1 0 abcd ire 

] I 1 0 l abce 0.6 

1 1 0 1 1 abde (leit 

| 0 l | 1 acde Bhs 

0 ] 1 1 1 bcde 2 

The reader can verify that the alias structure and respective sum of squares (us- 

ing the Yates procedure) are as follows: 

Source Sum of squares (SS) 

A = BCDE 558.14 

B= ACDE 3915.63 

C = ABDE 8496.23 
D = ABCE S37 

E = ABCD 174.90 

AB = CDE sil 
AC = BDE 469.81 

AD = BCE 18 
AE = BCD 1074.20 

BC = ADE 3579.03 

BD = ACE 1157.70 

BE = ACD (23 
CD = ABE 1171.35 

CE = ABD 170.96 
DE = ABC 18 

Pooling the two-factor interactions into error, we obtain the ANOVA table for testing 
main effects, which is given in Table 14.13. 

From Table IX of App. A we can conclude that factor B is significant at the .05 
level and that factor C is significant at the .05 level. 

In interpreting this example, we should add a warning. From the alias structure 
we see that the main effects are aliased with four-factor interactions and that two-factor 
interactions are aliased with three-factor interactions. Furthermore, to be able to test 
main effects, we pooled two-factor interactions into error. Otherwise we would have 
0 degrees of freedom for error, and we have made some rather strong assumptions. 
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TABLE 14.13 

ANOVA table for 1/2 fraction of 25 factorial 

Degrees of Sum of Mean 

Source freedom (DF) squares (SS) square (MS) F 

A 1 558.14 558.14 0.73 

B | 3915.63 3915.63 5.14 

Cc 1 8496.23 8496.23 11.14 
D 1 NS Sie K7g3 IL-7) 

E 1 174.90 174.90 0.23 
Error 10 7623.74 762.37 

To determine whether the assumptions are valid requires good judgment on behalf of 

the scientist and the statistician. If the assumptions are determined to be valid, this type 

of experiment gives very useful information at considerably reduced cost. 

CHAPTER SUMMARY 

In this chapter we extended our study of analysis of variance procedures to what are 

called factorial experiments. These are experiments that are used to investigate the 

effect of two or more factors on a measured response. Mixed, fixed, and random de- 

signs were presented in the context of two factor experiments. Designs that utilize 

k factors each at two levels, that can be thought of as “high” or “low,” are called 

2* factorial designs. The computational aspects of such designs were handled via 
Yates’ method as well as via SAS output. Another design presented was the 2‘ fac- 

torial design in an incomplete block. This design is useful when it is not possible to 

run every treatment combination under exactly the same experimental conditions. 

The chapter concluded with a discussion of fractional factorial experiments. These 

are experiments in which it is not possible or perhaps not economically feasible to 

collect data on all possible treatment combinations so that only some of the possi- 

ble combinations are actually studied. 

Important terms introduced in this chapter are: 

Factor , Interaction 

Factorial experiment 2 factorial designs 

Fixed effects Yates’ method 

Random effects Incomplete block 

Mixed effects Fractional factorial experiment 

Levels 

EXERCISES 

Section 14.1 

1. Show that in the two-way fixed-effects model 

S a= S8= > S (ap) =0 
cI f=1 j=1 
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2. Show that in the two-way classification fixed-effects model the null hypothesis 

LA ee ee ner Le 

is equivalent to Hj: a; = 0,i = 1,2,..., qa, and that the null hypothesis 

At: Mgpaipg. = eee ian. 

is equivalent to Hq: B; = 0,j = 1,2,..., 6. 

Ozonization as a secondary treatment for effluent, following absorption by ferrous 

chloride, was studied for three reaction times and three pH levels. The study yielded 

the following results for effluent decline: 

Reaction time (minutes) pH level Effluent decline 

20 7.0 LIM OH? 

9.0 ING, Wi ls 

10.5 [4136 

40 7.0 20 2219 

9.0 14, 13, 12 

10.5 2 ital 

60 7.0 21, 20, 19 

9.0 nS PS WN 

10.5 MOPS ei, 

Exercises 3 through 10 refer to the above experiment. 

3. Assuming the two-way classification model with fixed effects, write the model 
for this experiment and explain what each parameter represents in the context 
of this experiment. 

4. State the null hypothesis to be tested first. 

5. (a) Plot the averages of reaction time across pH levels. 

(b) Plot the averages of pH level across reaction times. 
(c) Do the plots in parts (a) and (b) suggest that interaction exists? 

6. Test for significant interaction. State your approximate P value. 
7. Test for significant differences among reaction times. State the approximate 

P value. 

8. Test for significant differences among pH levels at the 5% level. 
9. Is it necessary to conduct one-way analyses ona level-by-level basis to be able 

to describe the nature of the differences in main effects? Explain. 
10. Conduct paired comparisons to pinpoint differences in means for those main 

effects found to be significantly different. 

Decomposition of leaf packs was studied for four environments and three time 
lengths of exposure. The measurements were in grams of weight loss of leaf packs. 
The study yielded the following results: 
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Time 

Environment 1 month 2 months 3 months 

E, 1.09 135 1.60 

1.06 i338} 1.40 

E, 1.16 1.38 2.18 

1.03 135) Lea 

E; 1.01 1.63 1.66 

1.04 Lay 1.98 

Ey 0.90 1.60 Ws 

1.03 Loy? LHS 

Exercises 11 through 15 refer to the experiment just described. 

11. 

12. 

13. 
14. 

15. 

Assuming the two-way classification model with fixed effects, write the model 
for this experiment and explain what each parameter represents in the context 
of this experiment. 

(a) Plot the averages of time across environmental conditions. 

(b) Plot the averages of environmental conditions across time. 

(c) Do the plots in parts (a) and (b) suggest that interaction exists? 

Test for significant interaction at the a = .10 level. 

Conduct any level-by-level one-way analyses deemed appropriate based on the 

resulisvot Exercise 13, 
Which combination of environment and time seems to yield the greatest de- 

composition of leaf packs? 

Section 14.2 

16. (Three-factor ANOVA.) In the three-factor design it is assumed that the a -b-c 

treatment combinations represent random samples of size n drawn from a+ b+ c 

populations, where each population is normally distributed with mean yw, and 

variance a”. The model for the three-factor design is 

Ying = et a + By + Ye + (@P)y + (aN) + (BY + COBY ix + Ex 

pd ee ee eee keel ere 

Vicgalee ea UM Le Bll cer 

Here a; 8, and y, represent main effects. The terms (af), (ay), and (By) jx 

represent interactions between factors A and B, A and C, and B and C, respec- 

tively. The interaction among factors A, B, and C is denoted by (By). Let 

[ijx. = mean for the (7k)th treatment combination 

[-. = average of the population means for those 
populations receiving the ith level of A and the jth level 

of B 
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18. 

19 
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II average of the population means for those populations 

receiving the ith level of A 
pj.-- 

uw = average of the population means for all populations 

under consideration 

So ou 
j=1 jot k=1 GDC 

Other means of a similar nature are needed to define the terms of the model. 

They are given below. Express each verbally and in summation notation as an 

average of population means. 

(A) Lj-x- 

(b) bejx- 

(6) p25. 

(d) px. 
Main effects and interaction effects can be defined in a manner that parallels 

the definitions in the two-way model. For example, we define 

Q; = Yj... — M 

(QB) = py. — Bi. — Bap + HB 

Define each of these model parameters in a similar manner. 

(a) B; 

(b) ¥; 

(c) (@Yy)ix 

(d) (BY) jx 

(e) (aBy)iix 

Using the definitions of Exercise 17, one can show that the main effects, as 

well as the two- and three-factor interaction terms, sum to 0. As an illustration, 
verify that }¢_,a; = 0. 

Totals needed in the three-way ANOVA also parallel those seen in the two-way 

design. For example, 

T,... = sum of all responses from experimental units receiving level i of A 

b c n 

i > >} > Vijkl 

j=1 k=1 l=] 

T.. = sum of all responses from experimental units receiving level i of A and 
jJofB 

¢ n 

= ye Je 
k=1 [=1 
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Define each of the following totals. 
(a) T,,.. 

OY Ie. 

CC). 

(Gal 

(e) Ty. 

Gay te 
20. Typical sums of squares needed in the three-way ANOVA are 

NN 18 55, = {Econ UB 

‘3 care CiameDcn 

a ee Cid Wore Te Te MG = Y l dpe a 

re 2 2 C1 2.0CT = Che aDCH 

Define each of these sums of squares. 

(a) SSp 
(b) SSc 
(c) SS4c 

(d) SSge 
(€) SS4gc [Hint: Look at the definition of (aBy)jjx given in Exercise 17.] 

Ge ) SS Tot 

21. Write the sum of squares identity for the three-factor design. 

22. Table 14.14 gives the ANOVA for the three-factor design. State the null hy- 
pothesis being tested by each of the given F ratios. 

TABLE 14.14 

ANOVA table for three-fixed-factor factorial 

Source of _ Degrees of Sum of Mean square 

variation freedom (DF) squares (SS) (MS) F 

Main effect 

A Gaal SSA SSy/a=1 MS),/MS, 

B n= Il SSp SSz/b—-1 MS/MS, 

G e= || SSc 1S Se Goel MS-/MS; 

Two-factor interaction 

AB @= INa= th) SSap SSap/(a—1)(6-1) MS,3/MS, 

AC (Gian) (Gan) SSac SS,c/(a— 1)(e- 1) MS,c/MS; 

BC (ian) (Gael) SSpc SSpc/(b—1)(c-1) MS3c/MS; 

Three-factor interaction 

ABC (|) (piealh) (Glee) SSanc SSancl(a — 1)(b = 1)(e- 1) MSyz-/MS;, 

Error abc(n — 1) SS SS,labc(n-1) 

Total abcn — 1 SStot 
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23. Find the ANOVA table for these data: 

Factor A 

Factor C l 2 | 1 92 1 2 

Factor B 

24. (Restricted three-way model.) Often there are a priori reasons to suspect that the 

full three-way model given in Exercise 16 is not needed. For example, suppose 

that it is believed that there is no three-way interaction and that there is no AC 

two-way interaction. In this case the model of interest is 

Ving = + a; + By + Ve + (AB)y + (BY + Eye 

The ANOVA for such a model is identical to the full three-way analysis except 

for the error term. In this case the error sum of squares is given by 

SS SS S55 So Se 

This sum is called a “pooled” error term, since it is found by combining or “pool- 
ing” variation usually attributed to the two-factor interaction AC and the three- 
factor interaction ABC with pure error. The degrees of freedom for error are also 
pooled from these three sources. Table 14.15 gives the ANOVA for this model. 
(a) Suppose that a = 4, b = 3,c = 3, andn = 2. How many degrees of freedom 

are associated with SS,, SSp, SSo, SS4z, SSgo, SSqy, and SS», respectively? 
(b) Show that the degrees of freedom for error in general can be expressed as 

(Gian) (Cee ein L)(b 1)\(c — 1) + abc(n — 1) 

Section 14.3 

25. In a mixed-effects model in which the levels of factor A are random and those of 
factor B are fixed, what null hypotheses are of interest? The analysis of variance 
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TABLE 14.15 

Reduced ANOVA for three fixed effects 

Source of Degrees of Sum of Mean 

variation freedom (DF) squares (SS) square (MS) F 

Main effect 

A Gaal SS, SS,/@ — 1) MS,/MS; 

B jo = II SSp SS3/(b — 1) MS,/MS, 

C Gaal SSc tS) a7 (Gil) MS-/MS;; 
Interaction 

AB (Gian) (Diel)) SSap SSyp/(@a—1)(6—1) MSi,/MSz 

BC (b a) 1)(c - 1) SSzc SSpcl(b = l)(e a 1) MSc/MS; 

Error DF, = subtraction SS, = subtraction SS;/DF ¢ 

Total abcn — | SS Tot 

table for such a model is given in Table 14.16. Based on the expected mean 

squares, determine the appropriate F ratios for testing each null hypothesis. 

Section 14.4 

26. How many treatment combinations are possible in an experiment with k fac- 

tors, each at two levels, where k = 4; 5; 7? 

27. Assume that for a particular two-way model, By = 12, 8B, = 3, and B, = 2. As- 
sume also that B,, = 0, which we have claimed can be interpreted as no inter- 

action. Note that the theoretical mean for the treatment combination (1) is 

Mylx, x) — Bo a B,(-1) Te B(— 1) 

12533 we 4] 

(a) Find the theoretical means for combinations a, b, and ab, respectively. 

(b) Label the remaining means on the graph of Fig. 14.3. 

(c) Find the slopes of the line segments shown in Fig. 14.3. Argue that these 

line segments are parallel, as expected when there is no interaction. 

28. Assume that for a particular two-way model, By = 12, 8, = 3, and B, = 2. As- 

sume also that 8,, = 1, which we have claimed can be interpreted as the exis- 

tence of interaction between factors A and B. 

(a) Find the theoretical means for the treatment combinations (1), a, b, and ab. 

(b) Construct a graph of those means similar to that of Fig. 14.3. 

(c) Find the slopes of the line segments in your graph. Argue that these line 

segments are not parallel, as expected when interaction exists. 

29. Assume that for a particular two-way model, By = 12, 8B; = 3, and B, = 2. 

Give a numerical value of B,, that causes the graphs of the means for the levels 

of factor B to cross. 
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(Factor B high) 

(Factor B low) 

| aff 

Low High 

Factor A 

FIGURE 14.3 

A graph of levels of factor B across levels of factor A when it is assumed that B,, = 0. 

30. In Sec. 12.3 it was shown that 

31. 
32. 

SKS Bo Yer By Sey 
i=] i=] 

+ By >) Xo; + Ne ey = C 
feu i=l 

where C is the usual correction factor. Verify that SSR can be expressed in ma- 

trix notation as 

SSR = B’X'Y — C 

Complete the analysis of the data of Example 14.4.1 by testing for main effects. 

The full 2? model is given by 

MY Ix), x, x3 Bo + Bix, + Box. + B3x3 + ByxXyX_ + B5x1x3 + BoX2x3 + B7X\X x3 

33. 

(a) Complete the table of coefficients begun in Table 14.17. 

(b) From Table 14.17 it can be seen that 

BiG et DC apache. abo|* 

eed 23n 

Find SSz, SSc, SS4z, SS4c SSpo, and SSyzc. 

Consider the four-factor model 

LY xm, x, — Po + Bit1 + Bor. + Box, + Bara 

in which it is assumed a priori that there are no interaction terms. 

(a) How many treatment combinations are possible? 
(b) Construct a table of coefficients of effects similar to Table 14.17 for this 

model. 

(c) Find SS,, SSp, SSc, and SSp. 
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TABLE 14.17 

Coefficients of effects for 2° factorial 

Effects 

Treatment x, x, x3 X1X> X\X3 X3X3 X1X7X3 

combination A B C AB AC BC ABC 

(1) — - + + 7 ~ 
a + — — - - + + 
b = a 

c = a a 

ab ar + — 

ac SI = + 

be = ste + 
abe 3° 4° 4 

34. A four-factor factorial experiment was conducted. The experiment was repli- 

cated (Rep.) two times, yielding the following responses: 

Treatment 

combination Rep. 1 Rep. 2 

(1) 29.8 30.3 

a 34.6 Bore 

b 30.7 29.5 

ab S52 34.3 

c 28.7 PIS 

ac Biles 32.0 

bc 26.7 Ziel 

abc 32.0 SID 

d 30.2 29.6 

ad 35.1 347 

bd Shui 30.8 

abd 36.0 34.9 

cd 27.0 27.8 

acd B22 33.0 

bcd 26.5 PES 

abcd Pe 26.9 

(a) Using the Yates procedure, derive the complete ANOVA table for testing 
all main effects and all interactions. 

(b) Form the complete ANOVA table if three-factor and higher-order interac- 
tions are pooled into error. 

(c) Form the ANOVA table if it is known a priori that interactions ABCD, 
ADB, BCD, and CD are negligible. 

35. Prove that in a 2‘ factorial design with n = | the maximum number of interac- 
tion terms that can be tested is 2‘ — k — 2. Hint: Note that a model with no in- 
teraction terms has 2 — k — | degrees of freedom for error. Interaction degrees 
of freedom are subtracted from this, and we must guarantee that the resulting 
term is at least 1. 
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36. In a 24 factorial experiment with n = 1, at most how many interaction terms 
can be tested? 

Section 14.5 

37. In each of the following situations, list the effects that will be confounded with 
blocks: 

(a) A 2? experiment with defining contrast AB 
(b) A 2° experiment with defining contrasts AB and ABC 

(c) A2* experiment with defining contrasts ABCD, ABC, and BCD 
38. In each case of Exercise 37, list any main effects that cannot be tested due to 

the choice of the defining contrasts selected. 

39. Consider a 2* factorial experiment with factors A, B, C, and D. 

(a) Using defining contrasts AB and CD, show that if the experiment is run in 

four blocks the following treatment combinations are assigned to each 
block: 

Block 1 Block 2 Block 3 Block 4 

(1) a c ac 

ab b abc be 

cd acd d ad 

abcd bcd abd bd 

(b) What is the generalized interaction for this experiment? Which block is 

called the principal block? 

(c) Assuming all unconfounded interactions are negligible, complete the 

skeleton ANOVA table (source of variation and degrees of freedom) for 

testing main effects. 

40. A 2* factorial experiment is to be run. Since laboratory facilities are such that 

only eight treatment combinations (experimental runs) can be run in a single 

laboratory, the scientist decided to use two laboratories, with the separate labo- 

ratories treated as blocks. Using the ABCD interaction as the defining contrast, 

we obtained the following blocks and treatment combination responses: 

Block 1 Block 2 

(1) = 229.5 a = 39.2 

ab = 38.2 b = 32.1 

ac = 33.8 c= 27.3 

be = 25.3 d=31.4 

ad = 37.6 abc = 35.7 

bd = 31.0 abd = 38.9 

cd = 24.9 acd = 35.9 

abcd = 34.1 bed = 27.1 

(a) Complete the ANOVA table by directly computing sums of squares and by 

pooling three-factor interactions into error. 
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(b) Repeat part (a), except complete the ANOVA table by using the Yates pro- 

cedure. 

(c) Estimate the main effects A, B, C, and D. Which effects, if any, are signif- 

icant at the 5% level of significance? 

Section 14.6 

41. 

42. 

43. 

44. 

Consider Example 14.6.1. Give the estimator for the B effect if all eight treat- 

ment combinations were run. Give the estimator for this effect if only the treat- 

ment combinations in block 2 are run. With what effect is the B effect aliased? 

A 1/2 fraction of a 2° factorial experiment was run yielding the following re- 

sponses for respective treatment combinations in the principal block: 

(1) = 31.3 cd = 7.1 

ab = 10.8 ce = 6.3 

ac = 5.4 de = 5.6 

ad = 59.4 abcd = 5.6 

ae = 18.2 abce = 5.3 

bc = 6.0 abde = 4.2 

bd = 23.2 acde = 7.8 

be = 15.7 bcde = 7.2 

(a) Write the complete alias structure for main effects and two-factor 

interactions. 

(b) Assuming unconfounded interactions are negligible, test all main effects at 

the 5% level of significance. 

(c) Would it be possible to test two-factor interactions in this example? Why? 

An experiment with six factors A, B, C, D, E, and F was studied on a certain re- 

sponse variable. Due to the expense and size of the experiment, it was decided 

to use only two levels of each factor and to run a 1/4 fractional factorial. 

(a) Construct the four blocks by using defining contrasts ABDE and ABCF. 

(b) Give an abbreviated ANOVA table to test all main effects and two-factor 

interactions. 

(c) Give the alias structure for all main effects. 

Consider a 2+ factorial experiment with factors A, B, C, and D. 

(a) How many treatment combinations are necessary for this experiment if a 
full factorial is run with only one replicate? 

(b) Write out an abbreviated ANOVA table (only source of variation and de- 

grees of freedom) for part (a). What must be assumed in order to have a 
test for the experiment in part (a)? 

(c) Using defining contrasts ABD and ABC, construct four incomplete blocks 

of treatment combinations for this 24 factorial experiment. 
(d) Give the complete alias structure for part (c). 

(e) Write an abbreviated ANOVA table for testing main effects in part (d), as- 
suming all unconfounded interactions are negligible. 
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REVIEW EXERCISES 

45. 

46. 

47. 

Consider a 2° factorial experiment. Using defining contrasts ABCD and BCDE, 

construct the four blocks by showing appropriate treatment combinations in 
each block. 

(a) Which interaction sums of squares are confounded with blocks? 

(b) Assuming all unconfounded three-, four-, and five-factor interactions are 

pooled into error, construct the skeleton ANOVA table for testing main ef- 

fects and appropriate two-factor interaction effects. 

(c) Without pooling unconfounded interactions into error, can any test of hy- 

pothesis be completed? Why? 

In a regression model the number of degrees of freedom for error isn — k — 1, 

where k is the number of regressors in the model and n is the number of 
responses. 

(a) Show that in order to conduct F tests on the model parameters, the number 

of responses must exceed the number of parameters in the model. 

(b) Ina 2? factorial experiment with n = 1, is it possible to test for interaction? 

Explain. 

(c) Ina 2? factorial experiment with n = 1, is it possible to test for all interac- 

tions? Explain. 

(d) In a 2? factorial experiment with n = 1, is it possible to test for any 

interaction? 

(e) In a 2? factorial experiment with n = 1, how many interactions can be 

tested? 

The full 27 factorial model is given by 

PyYix,,x. — Bo + Bix, + Box. + By2X1X2 

In testing Hp: B,. = 0, we use the methods of Sec. 12.5. In particular, we test 

H,: reduced model is appropriate 

H;: full model is needed 

(a) Write the reduced model when testing for interaction. 

(b) Write the model specification matrix for the reduced model. 

(c) Find X’X for the reduced model. 

(d) Let Y be partitioned so that the first n observations represent the responses 

to treatment combination (1). These are followed by responses from treat- 

ments a, b, and ab, respectively. Find a general expression for X'Y for the 

reduced model. 
(e) Find B for the reduced model. 

(f) Find SSR for the reduced model. 

(g) Find SSE, and SSE, . 

(h) Find SSE, — SSE; How many degrees of freedom are associated with this 

Siatisticoce DCCal2..) 

(i) Verify that SSE, — SSE; = SS,g, thus justifying the F test described in this 

section. 
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48. Consider an experiment with three factors in which it is assumed that there is 

no three-way interaction. Let a = 5, b = 4, and c = 3. 

(a) Write the model for such an experiment. 
(b) Find the abbreviated ANOVA table for the design. 

49. Consider a 2° factorial experiment with factors A, B, C, D, and E. 
(a) If ABCDE is used as the defining contrast, construct the principal block for 

a 1/2 replicate. 
(b) Give an abbreviated ANOVA table (source of variation and degrees of 

freedom) for testing main effects after pooling all unconfounded interac- 

tions into error. 

50. Consider Example 14.6.2. Find the aliases for each of these effects: 

(Gaba Gay, 
(b) In this experiment, is it possible to test all main effects? Explain. 

(c) Give an example of two defining contrasts that would guarantee that no 

main effects are aliased. 

51. Three treatments were randomly selected from a large population of possible 

treatments. Ten randomly selected observations were then obtained from each 

treatment selected. 

(a) State an appropriate null hypothesis to be tested, and list all assumptions 

necessary to make this test for the described experiment. 

(b) The data yielded the following partial analysis of variance table: 

ANOVA 

Source DF SS MS F EMS 

Treatment Za lOG 

Error 27 

Total 2900S 

Complete the ANOVA table, and test your null hypothesis given in (a) at 
the .05 level of significance. 

(c) Estimate the proportions of total variability due to error and treatments, re- 
spectively. 



CHAPTER 

[5 
CATEGORICAL 

DATA 

iE this chapter we are concerned with the analysis of data characterized by the fact 

that each observation in the data set can be classed as falling into exactly one of 

several mutually exclusive “cells” or categories. Interest centers on the number of 

observations falling into each category. The statistical problem is to determine 

whether the observed category frequencies tend to refute a stated hypothesis. We are 

concerned with three problems in particular. These are: 

1. Testing to see whether a set of observations was drawn from a specified proba- 

bility distribution 

2. Testing for independence between two variables used for classification 

purposes 

3. Comparing proportions 

The statistical procedures used in much of the work to come are based on the muIti- 

nomial distribution. We begin by describing this distribution. 

15.1 MULTINOMIAL DISTRIBUTION 

To develop the definition of a multinomial random variable, we need to consider 

first the idea of a multinomial trial. 

Definition 15.1.1 (Multinomial trial). A multinomial trial with 

parameters p), P2,.--»P, is a trial that can result in exactly one of k possible 

outcomes. The probability that outcome i will occur on a given trial is p; for 

i= 1,2,3,....6 

623 
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Note that since p;. p>... . . Py are probabilities, each of them lies between 0 

and | inclusive. Furthermore, since each trial results in exactly one of the k possible 

outcomes, these probabilities sum to 1. 

Example 15.1.1. It is noted that 1% of the items coming off a production line are de- 

fective and nonsalvageable, 5% are defective but salvageable, and the rest are nonde- 

fective. One item is selected at random and classified. Since exactly one of three 

possible outcomes can result, this experiment can be viewed as constituting a single 

multinomial trial with parameters p,; = .01, p) = .05, and p; = .94. 

The multinomial random variable arises quite naturally whenever we observe 

a series of independent and identical multinomial trials. This multivariate random 

variable is defined as follows: 

Definition 15.1.2 (Multinomial random variable). Let an experiment 
consist of n independent and identical multinomial trials with parameters pj, 

P2,..., Py Let X; denote the number of trials that result in outcome 7 for 

i= 1,2,...,k. The k-tuple (X,, X5,..., X;,) is called a multinomial random 

variable with parameters n, P}, Po, --- + Py 

Example 15.1.2. Assume that a random sample of 100 items is selected from the 

production line described in Example 15.1.1. This experiment can be viewed as con- 

sisting of n = 100 independent multinomial trials, each with parameters p, = .O1, 

p2 = .05, and p; = .94. Let X, denote the number of defective and nonsalvageable 

items selected, X, the number of defective but salvageable items selected, and X, the 

number of nondefective items selected. The triple or 3-tuple (X,, X>, X3) is a multi- 

nomial random variable with parameters 100, .01, .05, and .94. For example, if we 

observe 2 defective items that cannot be salvaged, 6 that are defective and can be 

salvaged, and 92 that are nondefective, then the multinomial random variable 

(X,, Xo, X;) assumes the observed value of (2, 6, 92). 

Although it is not hard to derive the density for a multinomial random variable, 
we shall not need to do so here. However, we do need to determine the expected 
value of each of the random variables X,, X>,... X,. This is easy to do. Consider a 
single multinomial trial and any fixed outcome i. This trial either does or does not re- 
sult in outcome 7. If outcome 7 does occur, we consider the trial a success; otherwise 
it is a failure. The probability of success is p,, the probability that outcome i will re- 
sult on a given trial; the probability of failure is | — p;. Consider now a series of n 
independent and identical multinomial trials. Let X, denote the number of trials that 
result in outcome i. Note that X; also denotes the number of successes in n indepen- 
dent trials, each with probability of success p;. Therefore X, is a binomial random 
variable with parameters n and p;. From our discussion in Chap. 3 we know that for 
each 1, E[X;] = np;. This result plays an important role in analyzing categorical data. 

Example 15.1.3. In a random sample of 100 items selected from the production line 
described in Example 15.1.1 the expected number of items falling into each category is 
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Expected number of defective and 
nonsalvageable items = E[X,] = np, = 100(.01) = 1 

Expected number of defective but 
salvageable items = E[X,] = np, = 100(.05) = 5 

Expected number of 

nondefective items = E|X3] = np; = 100(.94) = 94 

When the sampling is complete, we observe that x, = 2, x, = 6, and x3 = 92. These 
values do not coincide exactly with the expected values, but they do not seem to dif- 
fer drastically from them. For this reason, the values do not lead us to suspect the ac- 
curacy of the stated category probabilities of .01, .05, and .94, respectively. 

The previous example Illustrates the basic idea of categorical data analysis. In 
analyzing count data, we compare the observed category frequencies to those ex- 
pected under a stated null hypothesis. If these agree fairly well we do not reject Hp; 
if there are substantial disagreements, we do reject Hp. In the sections that follow we 
develop the statistics needed to determine when the differences are extreme enough 
to warrant rejection of the stated hypothesis. 

15.2 CHI-SQUARED GOODNESS OF FIT 
TESTS 

The purpose of the chi-squared goodness of fit test is to test the null hypothesis that 

a given set of observations is drawn from, or “fits,” a specified probability distribu- 

tion. We consider the situation in which the hypothesized distribution is completely 

specified before the sampling is done. The procedure for handling this case is based 

on the next theorem, which is offered without proof. 

Theorem 15.2.1. Let (X,, X>,..., X,) be a multinomial random variable with 

parameters n, Pp), P2,..-.p, For large n the random variable 

X, — np;)° 
nD; 

See 

follows an approximate chi-squared distribution with k — 1 degrees of freedom. 

We make two notational changes to make this random variable easier to re- 

member. Since in the multinomial context X; is the actual or “observed” number of 

trials resulting in outcome / or falling into category i, we denote X; by O;. Recall that 

np; is the theoretical expected number of trials resulting in outcome /, and so we let 

np; = E[X;] = E;. Thus Theorem 15.2.1 states that the statistic, 

(O,—E)° _ & [(observed frequency) — (expected frequency) |? 

= oe expected frequency 
i i=1 

is, for large n, approximately chi-squared with k — 1 degrees of freedom, where k is 

the number of mutually exclusive categories involved. This naturally brings up the 
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question, “How large is large?” There are various opinions as to the answer to this 

question. However, it is usually felt that n should be large enough that no expected 

frequency is less than 1 and no more than 20% of the expected frequencies are less 
than 5. If this condition is not met, either categories should be combined or rede- 

fined or the sample size should be increased so that the expected frequencies will be 

of adequate size. 
This random variable serves quite logically as a test statistic for testing a null 

hypothesis that a given set of observations is drawn from a specified probability dis- 

tribution. If Hp is true, the value of p,; will be known for each 7, and hence E£; can be 

computed easily. In effect, the above statistic compares the observed number of ob- 

servations per category with the number expected under A). If these figures agree 

fairly well (there is a good fit), then the term (O; — E;)* will be small for each i, 

>i_,[(O; — E;)?]/E; will be small, and Hy should not be rejected. If the observed 

and expected frequencies differ greatly, then (O; — E;)? will be large for some i, 

>'_[(O; — E;)*]/E; will be large, and Hy should be rejected. The use of this test sta- 

tistic is illustrated in the next example. 

Example 15.2.1. Computer systems crash for many reasons, among them software 

failure, hardware failure, operator error, and system overloading. It is thought that 

10% of the crashes are due to software failure, 5% to hardware failure, 25% to op- 

erator error, 40% to system overloading, and the rest to other causes. Over an ex- 

tended study period 150 crashes are observed, and each is classified according to its 

probable cause. It is found that 13 are due to software failure, 10 to hardware fail- 

ure, 42 to operator error, 65 to system overloading, and the rest to other causes. Do 

these data lead us to suspect the accuracy of the stated percentages? To answer this 
question, we test 

Ho: p; = .10, pp = .05, p3 = .25, py = .40, ps = .20 

H;: p; is not as stated for some i = 1, 2, 3, 4,5 

If Hp is true, then 

E[X,] = E, = np, = 150(.10) = 15 
E[X,] = Ey = np, = 150(.05) = 7.5 
E[X3] = E, = np; = 150(.25) = 37.5 
E[X,] = Ey = np, = 150(.40) = 60 
E[X;] = Es = nps = 150(.20) = 30 

II 

The situation is summarized in Table 15.1. Note that the expected and observed fre- 
quencies do not agree exactly. The question to be answered is, “Do they differ enough 
to cause us to reject Hy?” Since E; > 5 in each case, the test statistic 

a (On Baye 
=e 
i=1 l 

follows an approximate X;_,; = Xj distribution. The observed value of this statistic is 

(13-115 ne LO Tis) teh ee 5\= 60)? — 30)? . at 75)" , (65= 60)? | (20-30) 
15 Ss 37.5 60 30 ere 



CATEGORICAL DATA 627 

TABLE 15.1 

Software Hardware Operator System 

failure failure error overloading Other 

Category 1 2 3 4 5 

Observed frequency, O; 13 10 42 65 20 

Expected frequency, E; 15 WS 3S) 60 30 

Is this value large enough to cause us to reject Hy? From Table IV of App. A we see that 

the probability of observing a value of 5.39 or larger is .25. That is, if we reject Hp, the P 

value of the test is .25. Since this probability is large, we do not reject Hp. The data gath- 

ered are not sufficient to allow us to conclude that the stated percentages are incorrect. 

15.3. TESTING FOR INDEPENDENCE 

In this section we discuss a problem involving categorical data that is somewhat dif- 

ferent from that considered in the last section. However, the idea behind the test pro- 

cedure used is identical to that studied earlier. Namely, the test statistic compares 

observed category frequencies with those expected under the assumption that the 

stated null hypothesis is true, with rejection coming if these differ too much to have 

occurred by chance. 
Here we consider experiments in which two random variables are being stud- 

ied. The purpose of the study is to test these random variables for independence. For 

example, a highway engineer may be interested in seeing whether the extent of an in- 

jury is independent of the type of restraint being used by an accident victim; a man- 

ufacturer may want to see if the quality of an item produced is independent of the day 

of the week on which it was made; a cancer researcher may want to see whether the 

development of lung cancer is independent of exposure to airborne asbestos. 

We illustrate the test for independence in the context of what are called 2 x 2 

contingency tables. These tables arise in experiments in which each of the two ran- 

dom variables being considered is studied at two levels. This naturally defines 2 x 2 

or 4 mutually exclusive “cells” or categories. The data analysis is based on an ex- 

amination of the number of observations falling into each cell. 

Example 15.3.1. A cancer researcher performs what is called a prospective study by 

selecting a large group of individuals at random and following their progress for a long 

period of time. At the end of the study period each individual is classified according to 

whether or not lung cancer is present and according to whether or not the individual 

has been exposed to an identifiable source of airborne asbestos. Let C denote the pres- 

ence of lung cancer, and let A denote the fact that the individual has been exposed to 

airborne asbestos. 

These four mutually exclusive categories result: 

C1 A: has cancer and exposed to asbestos 

CM A’: has cancer but not exposed to asbestos 

C’ (1) A: no cancer but exposed to asbestos 

C’ NA’: no cancer and not exposed to asbestos 

Each individual in the study falls into exactly one of these cells. 
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Since we are concerned with the number of observations falling into each cell, 

we need a notational convention for the cell frequencies. We also need a notational 

convention to indicate the number of observations falling into each level of each of 

the two classification variables. We use the following: 

n,, = number of observations falling into cell in row | 

and column | 

ny. = number of observations falling into cell in row | and 

column 2 

n>, = number of observations falling into cell in row 2 and 

column | 

Ny) = number of observations falling into cell in row 2 and 

column 2 

ny. = Ny, + Ny. = number of observations in row | 

Ny. = Ny, + Ny = number of observations in row 2 

n.; = Ny, + N>, = number of observations in column | 

Ny = Nyy + Ny, = number of observations in column 2 

n = total number of observations 

This notational convention is illustrated in Example 15.3.2. 

Example 15.3.2. When the study of Example 15.3.1 is completed it is found that 50 
of the 5000 persons involved had developed lung cancer. Of these, 10 had been ex- 

posed to an identifiable source of airborne asbestos. A total of 500 persons in the study 

had been exposed to an identifiable airborne asbestos source. These data are summa- 

rized in Table 15.2. Note that n., and n., are column totals that appear along the mar- 

gins of the 2 X 2 table. They are called marginal column totals. Similarly, n,. and ny. 

are called marginal row totals. 

The general null hypothesis to be tested via a contingency table is that there is 

“no association” between the two classification variables. The alternative is that 

there is an association. The tables studied in this section are characterized by the 

fact that only the overall sample size n is fixed by the researcher. Prior to data col- 

lection all other entries, including the row and column marginal totals, are free to 

vary. In this sort of study the null hypothesis of “no association” is equivalent to a 
null hypothesis of independence. 

To develop the general test, let A and B denote the classification variables. We 
want to test 

TABLE 15.2 

A A’ 

G 10 = ny 40 = np 50 = n,. 

(Gy 490 = no», 4460 = ny» 4950 = no. 

500 = n., 4500 = n> 5000 = n 



CATEGORICAL DATA 629 

Hy: A and B are independent 

H,: A and B are not independent 

If Ho is true, then knowledge of the classification level of an object relative to char- 

acteristic A has no bearing on its level relative to characteristic B. To express this 

idea mathematically, we use the table of probabilities given in Table 15.3. Note that 

P\, denotes the probability that a randomly selected object has characteristics A and 

B, p,. denotes the probability that it has characteristic A, and p., denotes the proba- 

bility that it has characteristic B. Recall that A and B are independent if and only if 

P[A ) B] = P{A] - P[B] 

Thus the null hypothesis that A and B are independent can be expressed as 

Ho: Py) = Pi. Ps 

This implies that p,; = p;.p.; fori = 1, 2 andj = 1, 2. That is, A and B are inde- 

pendent if and only if the cell probability for any cell can be found by multiplying 

the corresponding row and column probabilities. 

Since in a 2 X 2 table each observation falls into exactly one of four mutually 

exclusive categories, a random sample of size n can be viewed as constituting a se- 

ries of n independent multinomial trials, each with parameters p1;, P12, P21, and Poo. 

Hence the set (71, 12, 121, N29) of observed cell frequencies is a multinomial ran- 

dom variable with parameters n, Pj, P12, P21, and py. Thus the expected cell fre- 

quencies are given by 

Ey 7 NP ij 

where p;; is the probability of an observation falling into the (ij)th cell and n is the 

sample size. These probabilities are not known and must be estimated from the data 

under the assumption that the null hypothesis is true. How can this be done? Quite 

simply! Note, for instance, that if Hp is true and characteristics A and B are inde- 

pendent, then 

Pu = Pi-P1 

Since p;. is the probability of an observation falling into row 1, it is logical to esti- 

mate p,. by 

_ number of elements in row 1 _ 7. 

Pi: sample size n 

TABLE 15.3 
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Similarly, since p., is the probability of an observation falling into column 1, we es- 

timate p., by 

number of elements incolumn | — 7.; 
D. 
a n n 

Thus 

, vil ny. N.4 
11 = Pi. = Sa Pu — Pi-P-1 ae 

This in turn implies that 

B ? Ny. Ny 
Ey, =pyn=——n 

Tie 

n,.n., — (marginal row total ) (marginal column total ) 

n sample size 

A similar argument holds for other cell expectations. Thus we conclude that for each 
i and j 

~ _ 1-".; _ (marginal row total) (marginal column total ) 

Te? Wh sample size 

Recall that for large samples 

Yy 

follows an approximate chi-squared distribution. The number of degrees of freedom 

is k — | — m, where m is the number of parameters estimated from the data used in 

computing the expected cell frequencies. Note that we actually need estimate only 
p,. and p., from the data, since p.y = | — p.,; and p). = 1 — p,;.. Hence the number 
of degrees of freedom associated with the test statistic is 

[ee Nie fh as S| ph 

uy 

In this case, to satisfy the rule that no expected frequency should be less than | and 
no more than 20% should be less than 5, we must, in fact, have no expected fre- 
quency less than 5. If this rule cannot be satisfied, then the data should be analyzed 
by a procedure called Fisher’s exact test [6]. Let us now complete the analysis of the 
data of Example 15.3.2. 

Example 15.3.3. We want to see if there is evidence that the development of lung can- 
cer (C) is not independent of the exposure of the individual to airborne asbestos (A). 
We shall test 

Hy: C and A are independent 

H,: Cand A are not independent 

Using the data given in Table 15.2, we see that the expected cell frequencies under Hp 
are given by 
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a eee 50(500) 

a n 5000 : 

é, = Meets x —— ee 

i= fate = we = 495 

ie Notts s ae = 4455 

The situation is summarized in Table 15.4. Note that there are some differences be- 

tween what is expected if Hp is true, listed in parentheses, and what is actually ob- 

served. Are those differences too large to have occurred strictly by chance? Note that 

no expected cell frequency is less than 5, as required. The observed value of the test 

statistic is given by 

SS Cu B _G0= 5)? , 40 = 45 , (490 ~ 495y 
eer gee 5 45 495 

(4460 — 4455)? 
4455 

= 5.61 

The number of degrees of freedom associated with this chi-squared statistic is 1. Since 

xX = 6.63 and x% 5 = 5.02, the P value of the test lies between .01 and .025. Since 
these probabilities are small, we reject H, and conclude that the development of lung 

cancer is associated with exposure to airborne asbestos. An inspection of Table 15.4 

reveals that the number of cancers observed among those exposed to asbestos 1s higher 

than that expected if no association exists. 

r X c Test for Independence 

We have illustrated the test for independence in the case in which each variable is 

studied at two levels. This results in a 2 X 2 contingency table. In general, we may 

study one variable at r levels and the other at c levels, leading to what is called an 

r X c contingency table. The data layout and associated probabilities are shown in 

Tables 15.5(a) and 15.5(b), respectively. 

The null hypothesis of independence is stated mathematically as 

Aol Di = Pip; Leh ie Ss Paley 

ee ATO nd Be 

TABLE 15.4 
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TABLE 15.5(a) 
nn 

Variable B 

Variable A 1 24 3 tee (6 

TABLE 15.5(b) 

Variable B 

Variable A 1 2 3 tee ( 

A 

Ss Sy had a 
i=1lj i=] E 

fc (marginal row total)(column row total) 

Tigers sample size 

The only question to answer is, “How many degrees of freedom are associated with 

this test statistic?” We must estimate the r — | probabilities p,., p>... .. , py-—1). and 

the c — | probabilities p.,, p.., ... , Pe) from the data in order to compute the ex- 

pected cell frequencies. Recall that the number of degrees of freedom is given by 
k — 1 — m, where k is the number of cells in the table and m is the number of pa- 

rameters estimated from the data used to compute expected frequencies. In this case 
the number of degrees of freedom is 

k>-1l—m=re= l= OS co 1) 

= SPE ae Il 

(rill Ceres 1) 

These ideas are illustrated in the next example. 

ll 
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TABLE 15.6 

Type of restraint 

Extent of Seat belt Seat belt 

injury only and harness None 

None (0:0) 60 (50.0) 65 (80.0) 200 

Minor 160 (157.5) iil) (GUD Sy 175 (180.0) 450 

Major 100 (105.0) 65 (75.0) 135 (120.0) 300 

Death ls GES) OR2es)) Cee 20.0), 50 

350 250 400 1000 

Example 15.3.4. To try to convince the public to use safety equipment in automo- 

biles, a random sample of 1000 accidents is chosen from the records. Each accident is 

classed according to the type of safety restraint used by the occupants and the severity 

of the injuries received. The data given in Table 15.6 results. 
Expected cell frequencies are given in parentheses. Do these indicate an associ- 

ation between the type of restraint used and the extent of injury? The observed value 

of the X?_1)--1) = X33 = X statistic is 

(a0) | (60'= 50) pis kUs Beat (Zee) 

70 50 80 ‘ofc eal eben 

The probability of observing a value of 10.96 or greater is between .05 (x 45 = 12.6) 

and .1 (x % = 10.6). That is, the P value of the test is between .05 and .1. 

Since this probability is fairly small we shall reject the null hypothesis and con- 

clude that the extent of an individual’s injury is not independent of the type of safety 

restraint being used at the time of the accident. 

Keep in mind the fact that when only the sample size is fixed by the experi- 

menter and the remainder of the entries in the contingency table are free to vary, we 

are te 

15.4 

sting for independence. Other types of tests are considered in the next section. 

COMPARING PROPORTIONS 

In this section we consider the use of the chi-squared statistic in comparing propor- 

tions. 

table. 

Once again, we begin by describing an experiment that results ina 2 X 2 

This example will demonstrate an important difference between the problems 

presented in this section and those considered earlier. 

Example 15.4.1. A large number of people living in a particular community have been 

exposed over the last 10 years to radioactivity from an atomic waste storage dump. 

A study is to be run to find out whether there is any association between this exposure 

and the development of a particular blood disorder. To conduct the experiment, ran- 

dom samples will be chosen of 300 persons from the community who have been ex- 

posed to the hazard and 320 persons who have not been so exposed. Each subject will 

be screened to determine whether or not the blood disorder is present. This experiment 

generates a table of the form given in Table 15.7. Note that although this 2 x 2 table 

looks exactly like those studied earlier, there is a difference. In particular, the marginal 

row totals are fixed at 300 and 320 prior to conducting the field study. That is, these 
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TABLE 15.7 

D (has D’ (does not 

disorder) have disorder) 

n,. = 300 (fixed) 

N>. = 320 (fixed) 

n = 620 (fixed) 

E (exposed) ny Ny 

E’ (not exposed) N>| Ny 

TABLE 15.8 

A Pu Pan =1-pPy 1 (fixed) 

A’ Pr) Pa = 1 — Pay 1 (fixed) 

marginal totals as well as the overall sample size are predetermined by the experi- 

menter. All other entries in the table are free to vary. 

In experiments such as this where either the row or column totals, but not 

both, are fixed by the researcher, the null hypothesis of “no association” is stated in 

terms of proportions. To see how this is done, let A and B denote the classification 

variables and assume that the marginal totals for the levels of A are fixed. Thus we 

essentially have two independent random samples: one from the population of ob- 

jects with trait A and the other from the population of objects without trait A. We 
want to test 

Ho: proportion of objects with trait B among those with 

trait A = proportion of objects with trait B among 

those without trait A 

This implies that characteristic B is no more prevalent among those with character- 
istic A than among those without characteristic A. Hence there is no apparent asso- 
ciation between A and B. In terms of our example we want to test 

H,: proportion of individuals with the blood disorder 

among those exposed to the hazard = proportion of 

individuals with the blood disorder among those not 

exposed to the hazard 

In other words, there is no apparent association of the blood disorder with exposure 
to the hazardous waste material. 

The null hypothesis can be expressed mathematically with the aid of Table 
15.8. Since p,, denotes the proportion of objects with trait B among those with trait 
A and p , denotes the proportion with trait B among those that do not have trait A, 
we are testing 

A: Puy = Pr 
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Note that since p,. = 1 — py, and py) = 1 — py, we are also testing p,> = poo. 
It is convenient to state the null hypothesis as 

Ao: py = Pr je olpd 

When the null hypothesis is expressed in this form, the test is referred to as a test of 
homogeneity. 

To understand the logic behind the test, we need to look closer at the structure 

of a2 X 2 table with the marginal row totals fixed. In particular, note that we can 

view the data in row | as constituting a random sample of size n,. drawn from a bi- 

nomial distribution with probability of success p,,. Here success is finding an object 

with trait B. Similarly, the data in row 2 constitutes a random sample of size n. from 

a binomial distribution with parameter p5,. Thus when we test 

Ao: Py, = Pa 

we are actually comparing two population proportions as we did in Chap. 9. In fact, 

the test statistic that we develop here is simply the square of the Z statistic used ear- 

lier! The important point to note here is that since the number of objects in each 

group with trait B is binomially distributed, 

Ey = ny.py 

and Ey, = Ny.Pr 

Thus to estimate E,, and E,, from the contingency table, we need to find only a 

logical way to estimate p,,; and p>,. This is not hard to do. Note that if Hp is true, 

Pi; = P2. We denote this common population proportion by p. Furthermore, if the 

proportion of objects with trait B is the same for both populations, then the overall 

proportion of objects in the two populations combined will also be p. A logical esti- 

mator for the overall proportion of objects with trait B is 

. _ humber of objects in column | _ 2. 
Pp FS Oh __ = 

overall sample size n 

Since we are assuming that p,, = p2; = p, we can also use f as an estimator for 

Pp, and p>,. Substituting, we see that the estimated expected cell frequencies under 

Hp are 

= oaks Ealy Meher ny 
Ei hy Dia =. 2 

_ (marginal row total)(marginal column total) 

sample size 

i eee: 
Ey, = N2.Pr1 = M- a 

_ (marginal row total)(marginal column total) 

= sample size 
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TABLE 15.9 
a ee Se ee ee 

D (has D' (does not 

disorder) have disorder) 

E (exposed) 52 248 300 

(48.39) (251.61) 

E’ (not exposed) 48 PG) 320 

(51.61) (268.39) 

100 520 620 

We leave it to you to verify that 

N>.N.> 

Ey = and E55 i 
. n n 

These expectations are exactly the same as those used in testing for independence. 

From this point on the test for homogeneity is identical to that for independence. We 

illustrate the idea by reconsidering the experiment described in Example 15.4.1. 

Example 15.4.2. When the experiment of Example 15.4.1 is conducted, the data of 

Table 15.9 results. The expected cell frequencies are given in parentheses. The ob- 

served value of the X statistic is 

(62 = 48.39)? (248 — 251-61) is (48 — 51.61) et (272 — 268.39)? a 

48.39 251.61 51.61 268.39 

This value is not significant even at the a = .25 level (45 = 1.32). These data do not 

allow us to conclude that there is an association between this particular blood disorder 
and exposure to this source of radioactivity. 

r X c Test for Homogeneity 

As in the test for independence, we can test for homogeneity via an r X c table. In 

this case we are dealing with two variables, one of which is studied at r levels and 

the other at c levels. The marginal totals for exactly one of these variables is fixed 

by the researcher prior to data gathering. To illustrate the idea, consider Example 
134-3: 

Example 15.4.3. A study is to be conducted to consider the association between the 
sulfur dioxide (SO ) level in the air and the mean number of chloroplasts per leaf cell 
of trees in the area. Three regions are selected for study. One is known to have a high 
SO, concentration, one to have a normal level of SO), and the third to have a low SO, 
level. Twenty trees are to be randomly selected from within each area, and the mean 
number of chloroplasts per leaf cell is to be determined for each tree. On this basis 
each tree will be classified as having a low, normal, or high chloroplast count. This 
experiment generates a table of the form given in Table 15.10. Note that by fixing the 
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TABLE 15.10 
a ee ee 

Chloroplast level 

SO, level High Normal Low 

High Ay Ny Ny ny. = 20 (fixed) 

Normal Ny, Noo N3 Ny. = 20 (fixed) 

Low N31 Ny) N33 n3. = 20 (fixed) 

ney No Nz n 

TABLE 15.11 

Variable B 

Variable A 1 2 3 see c 

I Pu Pr2 PB Pic 1 

2 P21 P22 P23 Pre | 

3 P31 P32 P33 P3c I 

Ls Pr Pr Pr Pr | 

row totals prior to experimentation, we are essentially selecting three independent 

random samples. One sample is selected from the population of trees exposed to a 

high SO, concentration, one is selected from the population of trees exposed to a nor- 

mal SO, level, and the third is selected from the population of trees with a low SO, 

exposure. 

To express the null hypothesis of “no association” when one set of marginal 
totals is fixed in an r X c table, let us assume that the row totals are fixed. Consider 

the probabilities shown in Table 15.11. Note that p,; denotes the proportion of ob- 

jects in the ith level relative to variable A that are in the jth level relative to variable 

B. The null hypothesis of no association essentially states that within each column, 

no row Classification is more prevalent than any other. The alternative is that for 

some columns this is not the case. Statistically, this null hypothesis takes the form 

Hg: Die Pop Dh =D by OLD ose te 

We can think of this null hypothesis as testing to see whether or not r multinomial 

populations are identical. For instance, in our last example we are testing the null 
hypothesis of no association between chloroplast level and level of exposure to SO). 

We want to see whether or not the proportions of trees falling into each chloroplast 

level are identical regardless of the level of SO, to which the trees are exposed. The 

null hypothesis of homogeneity is tested in exactly the same way as the null hy- 

pothesis of independence. 
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TABLE 15.12 

Chloroplast level 

SO, level High Normal Low 

3 4 13 20 

(5) (8.33) (6.67) 
Normal 5 10 5) 20 

(5) (8.33) (6.67) 
5 1] 2 20 

(5) (8.33) (6.67) 

1S 25 20 60 

Example 15.4.4. When the study described in Example 15.4.3 is conducted, the data 

shown in Table 15.12 are obtained. Again, expected cell frequencies are given in 

parentheses. The observed value of the X?,_,..;) = Xf statistic is 

(ae ee 2 ar Rada ea 
5 is 8.33 6.67 

Since x4, = 13.3 and x35 = 14.9, we can reject Hy with .005 < P < .01. We have 
strong evidence that there is an association between the SO, concentration in the area 

and the chloroplast level in the leaf cells of the trees. To see the association more 

clearly, note that if there is no association, the proportion of trees with a low chloro- 

plast count should be the same in each of the three regions. However, it is easy to see 

that this is not the case. Based on the data of Table 15.12, the estimated proportions of 

trees with a low chloroplast count are 13/20 = .65, 5/20 = .25, and 2/20 = .10, re- 

spectively. These proportions suggest that a high SO, level tends to suppress the 
chloroplast count. 

Comparing Proportions with Paired Data: 
McNemar’s Test 

Before ending our discussion of categorical data, let us consider one additional type 
of problem. Note that thus far we have been concerned with the problem of com- 
paring proportions based on independent samples drawn from two or more popula- 
tions. Occasionally there is a need to compare two proportions when the samples 
drawn are nor independent. In this case neither the methods presented thus far in this 
section nor those discussed in Chap. 9 are applicable. However, a method of com- 
parison based on a chi-squared statistic can be used. This technique, called Mc- 
Nemar’s test is illustrated now. 

Example 15.4.5. One problem that concerns the industrial engineer is that of the eco- 
nomical storage of small items that are distributed in less than case lot quantities. Two 
schemes for storing items are being studied. The first, called alphameric placement, 
stores items in strict alphameric order. The second, the selection density factor (SDP) 
method, uses a numerical factor computed for each stock item to determine its posi- 
tion relative to the distributor’s workstation. We want to see whether the two schemes 



CATEGORICAL DATA 639 

TABLE 15.13 

Alphameric 

Within 10 ft 10 ft or farther 

Within 10 ft 4 B35 By) 

10 ft or farther 2% 61 63 

6 94 

result in the same proportion of items being placed within 10 feet (ft) of the work- 

station. To decide, 100 items are classified first by alphameric placement and then via 

SDF. In this way each item generates a pair of observations. Although we have a 

sample of 100 observations from each population, the samples are not independent. 

Rather, they are matched. We record the data obtained in the format shown in Table 

15.13. Note that if there is a difference in the proportions of objects placed within 10 ft 

of the workstation by two schemes, then this difference will be reflected in the cells in 

which the methods disagree on the placement of an item. Thus we are interested only 

in the starred cells of Table 15.13. Altogether there are 35 observations in these two 

cells, if the schemes place the same proportion of objects within 10 ft of the work- 

station, then we expect half or 17.5 of these observations to fall into each of the two 

cells. Just as before, we now compare the observed cell frequencies to those expected 

under the assumption that the proportions are the same via a chi-squared statistic with 

1 degree of freedom. For these data we obtain 

(2-175) (33 — 17.5 =? 
VS Lies ee 

Since this value is significant even at the a = .005 level (x5 = 7.88), we can reject 

the null hypothesis. We do have evidence that the two proportions are not the same. An 

inspection of Table 15.13 shows that the SDF method tends to place a higher pro- 

portion of objects closer to the workstation than does the alphameric procedure. 

In this chapter we have covered some of the most frequently used tests for 

data of a categorical nature. We should say that there is a large body of literature on 

categorical data analysis. For further study we refer the reader to [6] and [15]. 

CHAPTER SUMMARY 

In this chapter we discussed problems involving categorical data. These are data 

characterized by the fact that each observation can be classed as falling into exactly 

one of several mutually exclusive categories or cells. All the procedures presented 

involve comparing the actual number of observations in a cell to that expected if a 

specified null hypothesis were true. We reject Hp if the differences observed are too 

large to have occurred by chance. The theory behind the test statistic used is based 

on the multinomial distribution. For this reason, we began our study of categorical 

data by considering this important multivariate distribution. 
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We first learned how to test to see if a data set was drawn from a specified dis- 
tribution. We next considered experiments in which two random variables are being 

studied. The purpose of the study is to test these random variables for independence. 

We examined 2 X 2 tables in which each variable is studied at two classification 

levels in some detail. We later extended the ideas presented to include r X c tables. 

In testing for independence, we see that the only fixed entry in the contingency table 

is n, the overall sample size. All other entries are random variables. The null and al- 

ternative hypotheses assume these forms: 

Ao: Pi = Pi Pj for all 7 and j 

Ay: py F pi-P-j for some i and j 

The test procedure used does require a fairly large sample. Our guideline for using 

the procedure requires that no expected cell frequency should be less than | and that 

no more than 20% should be less than 5. 

We next considered tests of homogeneity. These are tests that compare two bi- 

nomial populations via a 2 * 2 contingency table or r multinomial populations via 

an r X c contingency table. The null hypothesis takes this form: 

LEP i= 13; Sew J=1,2,3 Mn Ae & 

We saw that in such tables the marginal row totals as well as the overall sample size 

are fixed by the experimenter. However, despite these differences, the mathematical 

analysis is mechanically the same as that used in testing for independence. 

The last test that we considered, called McNemar’s test, is used to test for 
equality of two population proportions based on paired data. 

We also introduced and defined important terms that you should know. 
These are: 

Categorical data Goodness of fit test 

Cell Marginal row total 

Multinomial trial Marginal column total 

Multinomial random variable McNemar’s test 

?XERCISES 

Section 15.1 

I. A study is run to determine whether the general public favors the construction 
of a dam for the generation of electricity and flood control. It is thought that 
40% favor dam construction, 30% are neutral, 20% oppose the dam, and the 
rest have given the issue no thought. A random sample of 150 individuals in the 
affected area is selected and interviewed. If the above figures accurately reflect 
public opinion, how many individuals are expected in each category? If in the 
sample 42 are in favor, 61 are neutral, 33 are opposed, and the rest have given 
the issue no thought, do you think, on an intuitive basis, that the proposed per- 
centages are correct or incorrect? Explain. 
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2. It is assumed that the labor pool for a particular industry consists of 40% white 
males, 30% white females, 5% black females, 15% black males, and 10% 
others. Ideally the work force should reflect these percentages. To see if this is 
the case, a random sample of 200 workers is selected and each worker is placed 
into exactly one of the above categories. If the work force reflects the labor 
pool, how many workers are expected in each category? When the sampling 
is complete, it is observed that there are 95 white males, 50 white females, 
2 black females, 20 black males, and 33 others employed. Do these data lead 
you to suspect that the work force does not reflect the percentages in the labor 
pool very well? Explain. 

3. Arandom digit generator should produce the digits 0 to 9 inclusive with equal 
probability. If such a generator is activated 100 times, how many of each digit 
is expected? If we observe 10 zeros, 8 ones, 9 twos, 11 threes, 12 fours, 7 fives, 

10 sixes, 13 sevens, 9 eights, and the rest nines, do you think that there is rea- 

son to suspect that the generator does not produce the digits with equal fre- 
quency in the long run? 

Section 15.2 

4. Use the data of Exercise | to test 

Ao: P, = Al, joy = aoe (px = De Diaz all 

Is there evidence to support the contention that the stated probabilities are 

incorrect? Explain based on the P value of the test. 

5. Use the data of Exercise 2 to test the null hypothesis that the work force reflects 

the percentages in the labor pool. 

6. Use the data of Exercise 3 to test the null hypothesis that the random digit gen- 

erator produces the digits 0 to 9 inclusive with equal frequency. 

7. Select a random sample of 50 one-digit random numbers from Table III of App. 

A. Test the null hypothesis that the digits 0 to 9 inclusive occur with equal fre- 

quency in this table. 

Section 15.3 

8. A study is conducted to see if there is an association between age and willing- 

ness to use computerized banking systems. The data shown in Table 15.14 are 

obtained in a survey of 500 randomly selected customers of a bank that has 

been offering computerized banking for over a year. Is there evidence of an 

TABLE 15.14 

Use computerized 

banking 

Age Yes No 

Under 40 150 75 

40 or over 150 125 

500 
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TABLE 15.15 

Suspect make 

Fire Yes No 

TABLE 15.16 

Air quality 

Temperature Poor Fair Good 

Below average ] 

Average 12 28 76 

12 Above average 

association between these two variables? Explain, based on the P value of your 

test and inspection of the table. 

9. It is suspected that the tendency of an automobile to catch fire in a rear-end col- 

lision is not independent of the make of the car. To support this contention, a 

random sample of 200 cars involved in rear-end collisions is selected from past 

records. Each car is classified as to make and whether or not it is one of the cars 

suspected of being especially susceptible to fire under these circumstances. The 

data gathered is shown in Table 15.15. Is there evidence of an association be- 

tween this make of car and the presence of fire when involved in a rear-end col- 
lision? Explain. 

10. A study is conducted to test for independence between air quality and air tem- 

perature. These data are obtained from records on 200 randomly selected days 

over the last few years. (See Table 15.16.) Do these data indicate an association 

between these variables? Explain, based on the P value of the test. 
11. Ina study of the association between color and the effectiveness of a graphical 

display 100 graphs are randomly selected from among current scientific jour- 
nals. Each is classified as to whether or not color is used. Each is also rated as 
to its effectiveness in making its point. Resulting data are given in Table 15.17. 
Is there evidence that the effectiveness of a graphical display is not independent 
of color? Explain, based on the P value of the test. 

12. It is suspected that there is an association between the day of the week on 
which an item is produced and the quality of the item. To support this con- 
tention, a random sample of 500 items is selected from stock and each item is 
classified as to the day on which it was produced via its lot number. The item is 
also rated for quality. The data gathered are shown in Table 15.18. 
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TABLE 15.17 

Color present 

Effective Yes No 

Excellent oh 4 

Good 10 19 

Fair 9 26 

Poor 4 Pil 

100 

TABLE 15.18 

Day produced 

Quality Minter Ws Th: (8 

Excellent 44 74 719 ie, 31 

Good 14 25 ay] 24 10 

Fair 15 20 20 23 9 

Poor 3) 5 5) 0 0 

500 

TABLE 15.19 

Satisfied 

(a) Our guideline on expected cell frequencies states that no more than 20% 

can be less than 5 and none can be less than 1. Is this criterion satisfied in 

this case? 

(b) To satisfy the criterion, combine the quality of categories “Fair” and “Poor” 

to form a new table with three rows and five columns. Use this table to test 

for independence. 

(c) Has an association between quality and day of production been estab- 

lished? Explain. 

Section 15.4 

13. A study is conducted to assess the effectiveness of a new computerized system 

of filling orders in a particular industry. Random samples of 100 customers 

served via the old system and 100 served via the new system are selected. Each 

customer is contacted to determine whether or not the order was filled satisfac- 

torily within 2 weeks. Table 15.19 gives the results of the study. Test the null 
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14. 

is; 

16. 
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hypothesis that the proportion of satisfied customers among those served by 

the new system is the same as that among those served by the old system at the 

a = .05 level. 

Although many jobs in the airline industry entail stress, it is thought that air 

traffic controllers are particularly susceptible to stress-related disorders such as 

heart problems, high blood pressure, and ulcers. To support this contention, a 

random sample of 500 air traffic controllers is selected and surveyed. For com- 

parative purposes a sample of 700 workers from other areas of the airline in- 

dustry is also selected and surveyed. The data obtained is presented in Table 

15.20. Test the null hypothesis that the proportion of air traffic controllers with 

stress-related disorders is the same as that of other workers in the airline indus- 

try. Explain your results in a practical sense based on the P value of the test and 

inspection of Table 15.20. 

A new method for etching semiconductors is being studied. The quality of the 

etch is to be compared to that obtained using two older techniques. The results 

of the study are given in Table 15.21. State the null hypothesis of homogeneity 

mathematically. Test this hypothesis at the a = .05 level. Interpret your result 

in a practical sense. 

A study of the salary gains by workers in research, development, and quality 

control is conducted. The data in Table 15.22 gives a breakdown of the per- 

centage salary increases over last year of men and women working in these 

areas. The study is based on a sample of 300 men and 150 women randomly 

selected from among these workers. Raises were classified according to their 

integer value. For example, a raise of 5.75% is classified in the category 2-5%. 

Do these data tend to support the claim that there is an association between the 

percentage increase in the salary of the worker and the worker’s sex? Explain, 

TABLE 15.20 

Stress-related 

disorder present 

Yes No 

Controllers 115 385 500 

Others 125 SW/5) 700 

1200 

TABLE 15.21 

Quality 

Method Excellent Good Fair Poor 

High pressure (old) 113 34 21 32 200 

Reactive ion (old) 1 31 25 27 200 

Magnetron (new) 130 40 20 10 200 
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based on the P value of your test. Interpret your result in a practical sense by in- 
specting the data of Table 15.22. 

17. A recent study claims that an increasing proportion of engineering firms are 
purchasing liability insurance. This claim is based on a survey of 753 engi- 
neering firms. The status of each firm is recorded for the current and for the 
previous year. The data on which the claim is based are shown in Table 15.23. 
Do the data support the claim? Explain, based on the P value of McNemar’s 
test. 

18. A study is conducted of the association between the rate at which words are 
spoken and the ability of a “talking computer” to recognize commands that it is 

programmed to accept. A random sample of 50 commands is spoken at a rate 

under 60 words per minute and the response of the computer is noted. The 

same commands are repeated at a rate of 60 words per minute or faster and the 

response 1s again noted. The data gathered are shown in Table 15.24. Is there a 

difference in the proportion of commands accepted at the two speaking speeds? 

Explain, based on the P value of the McNemar test. 

TABLE 15.22 

% increase 

<2% 2-5 % 6-9 % 10-13% >14% 

Male 50 47 103 76 

Female AA Pi, 50 35 

TABLE 15.23 

This year 

Last year Insured Uninsured 

Insured 650 | 

Uninsured 28 70 98 

678 1S 753 

TABLE 15.24 

Rate under 60 

Command Command 

Rate 60 or over accepted rejected 

Command accepted 14 1 

Command rejected 28 q 

50 
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19. A study of packaging of “over-the-counter” drugs is conducted. The purpose of 

the study is to determine whether or not the proportion of drugs in tamper- 

resistant packages is the same this year as last. A sample of 100 products is se- 

lected, and the manner of packaging for each year is determined. Table 15.25 

gives the results of the study. Is there evidence that the proportions differ? 

Explain. p 
20. Show that when testing for homogeneity in a 2 X 2 table, Ej. = (7).n.2)/n and 

Ey = (Ny.n.>)/n. Hint: jor =n. — Bes 

21. Rework Exercise 13 using the pooled Z test statistic given in Chap. 9. Show 

that the square of this Z statistic is identical to the observed chi-squared value 

obtained in Exercise 13. 
22. Rework Exercise 14 using the pooled Z statistic given in Chap. 9. Show that the 

square of this Z statistic is identical to the observed chi-squared value obtained 

in Exercise 14. 

REVIEW EXERCISES 

23. The industrial robot is a programmable mechanism designed to do work in a 

limited space. Spray-painting robots are used in the automobile industry. Their 

main advantage is that they can work in areas with ventilation levels that would 

be unhealthy for human workers. Robots are highly efficient but not infallible, 

and they, like humans, occasionally produce a paint job with heavy edges or 

thin spots. In a study of these robots 50 car hoods painted by a robot are ran- 

domly selected and classified as to whether or not the paint job is flawed. A 

second sample of 50 hoods painted by a skilled painter is also studied. The re- 

sulting data are given in Table 15.26. Do these data support the contention that 

TABLE 15.25 

Current year, 

tamper-resistant 
Previous year, 

tamper-resistant Yes No 

Yes 30 3 

No 52 IIb) 

TABLE 15.26 

Flawed 

Yes No 

Robot 2 48 50 

Human 4 46 50 

6 94 100 
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robots produce a smaller proportion of flawed hoods than do humans? Explain, 
based on the P value of the appropriate test. 
Anaerobic bacteria are microbes that cannot grow in the presence of oxygen. 
These organisms are now recognized as a major causative agent in infectious 
disease. In the past their presence was often overlooked in the clinical labora- 
tory. New methods for detection have been devised recently. A study of 826 
specimens yields the data of Table 15.27. Do these data indicate that the pres- 
ence of anaerobic bacteria is not independent of the presence of aerobic bacte- 
ria? Explain, based on the P value of the appropriate test. 

Scientists have suggested that animals use the earth’s magnetic field as a clue 

to their orientation. An experiment to investigate this theory is conducted by us- 

ing homing pigeons. A pair of coils is placed around each pigeon and a mag- 

netic field that reverses the earth’s field is applied. This could disorient the bird. 

Each day for 118 consecutive days a single bird is released. The bird’s orienta- 

tion and the type of day is noted. Do the data of Table 15.28 indicate that the 

bird’s orientation is not independent of the cloud cover? Explain, based on the 

P value of the appropriate test. 

Two types of coatings are being compared for use as a rust preventive. Fifty 

pieces of pipe, each of the same type and size, are used in the equipment. Half 

of each pipe is coated with a .5-mil layer of compound A; the other half 

receives a .5-mil layer of compound B. Each pipe is then subjected to 1000 

hours of salt fog. At the end of the experiment an impartial judge compares the 

two compounds for effectiveness in preventing rust. The data gathered are 

shown in Table 15.29. Is there a difference in the proportion of pipes that 

are deemed effective for the two compounds? Explain, based on the P value of 

McNemar’s test. 

TABLE 15.27 

Anaerobic bacteria 

present 

Yes No 

Aerobic bacteria Yes 322 286 | (Random) 

present No 81 tS (Random) 

(Random) (Random) 826 

TABLE 15.28 

es 
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TABLE 15.29 

A effective 

B effective Yes No 

Yes 

No 

WwW 

co NoOwm 

50 

TABLE 15.30 

Water depth (d) (in meters) 

Very shallow Shallow Moderate Deep 

(d < .5) C= da 1) Cl id —15) a= 5 

Inside 

polder i) ‘Nn 145 81 8 
Outside 

polder 

27. 

28. 

(=) 13 43 65 

A study of a computer-based haul truck dispatching system for open-pit mines 

is conducted. A simulation of truck availability is included in the study. Simu- 

lation is done in such a way that each truck should be deemed fully operable 

50% of the time, partially operable 25% of the time, and inoperable the rest of 
the time. 

(a) The condition of a particular truck is simulated 350 times. How many of 

these simulations are expected to result in the truck being classified as fully 

operable? Partially operable? Inoperable? 

(b) When the simulation is complete, it is found that 168 trucks are classified 

as fully operable, 94 are classified as partially operable, and the rest are 

classified as inoperable. Do these data lead you to suspect that the simula- 
tor is not functioning properly? Explain. 

In Bangladesh some flooding occurs yearly, and abnormally high floods occur 
every 2 or 3 years. Poldering is a flood control technique by which the flood 
level is regulated inside an enclosed area by means of drainage regulators such 
as sluice gates and pumping stations. A study of the perceived effectiveness of 
one such polder is conducted. Samples were taken of 259 longtime residents 
of the area within the polder and 121 residents of the region outside the polder 
after a recent abnormal flood. Each person was asked to estimate the depth of 
the water in and around his or her residence. Data obtained are shown in Table 
15.30. (Based on a discussion found in “Poldering vs. Compartmentalization: 
The Choice of Flood Control in Bangladesh,” Harun Rasid and Azim Mallik, 
Environmental Management, vol. 17, no. 1, January 1993, pp. 59-71.) 
(a) From the description of the sampling scheme, is the test for association a 

test of independence or of homogeneity? 
(b) Has an association been detected between location and perceived severity 

of the flood in question? Explain, based on your statistical test. 



CHAPTER 

16 
STATISTICAL 

QUALITY 
CONTROL 

Statistical quality control methods have been used in industry since at least the early 

1940s. During the last several years interest in these methods and research in the de- 

velopment of more sophisticated methods has increased dramatically. Manufac- 

turers in industrialized countries have realized that to compete favorably in the 
international marketplace, the quality and reliability of products produced must be 

competitive. 
After World War II Japan began to place a major emphasis on industrial qual- 

ity control. An American statistician, Edward S. Deming, received international 

recognition for his early efforts in assisting Japanese industry in implementing in- 

dustrial quality control methods. Most world consumers now recognize the high 

quality of products, such as electronic equipment and automobiles, produced in 

Japan. The large success by Japan partly stimulated greater interest in areas of qual- 

ity control in the United States as well as in other industrialized countries. In fact, 

statistical quality control procedures are becoming a vital part of the manufacturing 

process. These methods are of particular importance to engineers due to their key 

role in the creation of new products, operation of production processes, and design 

of industrial and public works facilities. 
Until his untimely death in 1993, Deming surely was the most influential per- 

son to stimulate interest in quality control, especially in the United States and Japan. 

He emphasized his philosophy to industrial management with great success. Many 

other scientists have recently made major contributions to the rapidly expanding 

areas of quality control. The Japanese scientist G. Taguchi has had a major impact 

in the area. Some of his work is closely related to statistical experimental design. 

Control charts are widely used to monitor a process (process control). The 

purpose of such a chart is to detect a situation in which the process is “out of 

649 
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control” in the sense that it exhibits evidence that there has been a change in the 

process due to assignable causes. Some of the first control charts were developed by 

Walter A. Shewhart (1918-1967), a physicist who worked most of his life for Bell 

Laboratories. He is best known for his work in the area of quality control via the use 

of statistical methods. He was instrumental in the development of the control charts 

presented in this chapter which bear his name. In modern quality control proce- 

dures, emphasis is placed on designing and monitoring production processes to 

meet or exceed specifications. However, when interest is in determining whether a 

batch of items received from a vendor actually meets specifications (product con- 

trol), a procedure called acceptance sampling is useful. These ideas are discussed in 

Sec. 16.4. Some extensions and modifications to basic control charts and some 

ideas related to Taguchi’s approach for designing (process design) to control for 

product variability are given in Sec. 16.6. 

The methods presented in this chapter are mostly elementary, but they 

are widely used in industry and other areas of application such as environmental 

monitoring. 

16.1 PROPERTIES OF CONTROL CHARTS 

One of the primary tools used in process control is the simple but effective Shew- 

hart control chart. It permits the early detection of a process that is unstable or out 

of control. A process becoming unstable means that the process distribution has 
changed with respect to location (such as the mean), variability (such as process 
standard deviation), or some other process characteristic. Many factors can cause a 
process to become unstable. Among these are such things as malfunctioning ma- 
chinery, use of inferior materials, negligence or error on the part of operators, or en- 
vironmental disturbances. Once a process has been deemed unstable or out of 
control, based on statistical considerations, it is the job of the quality control engi- 
neer to determine the cause and to correct the problem. Shewhart control charts can 
be used in conjunction with measurement data, count data, or attribute data. In this 
section we consider the general characteristics that should be possessed by any con- 
trol chart. We then illustrate the ideas with the X Shewhart control chart. This is a 
chart used to monitor the mean value of the product being produced. 

Before a control chart can be developed, we must ask, “What properties 
should the chart possess?” There are several properties, and each is based on prac- 
tical considerations: 

1. Since most control charts are developed by statisticians and engineers working 
together but used in the workplace, they should be kept simple. Although most 
production workers are intelligent, they are not engineers and must be given a 
tool that they can understand and use accurately, 

2. Acontrol chart should be designed in such a way that it will allow the detection 
of an out-of-control situation quickly. For example, we do not want to produce 
a large quantity of an unacceptable product before we realize that a problem 
eX1SIS. 
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3. A control chart must have what is called a low false alarm rate. That is, we do 
not often want to call a process out of control when, in fact, there is nothing 
wrong. False alarms lead to costly and unnecessary downtime in the production 
process. 

4. Sampling is time-consuming and can be expensive. This is especially true when 
product testing is destructive in that the product is destroyed in the testing 
process. For this reason, a control chart should work well with small samples. 

The Shewhart control chart for means satisfies the above criteria and is widely 
used in industry. We shall therefore illustrate the use of control charts and develop 
some of the common language used with regard to control charts via this chart. 

Monitoring Means 

The control charts used to monitor the mean is centered at some target value po. 

The lower control limit (LCL) and the upper control limit (UCL) represent the 

minimum and maximum values that the sample mean X can assume without raising 

an alarm. That is, if LCL = X = UCL, then the process is assumed to be in control 

or Operating correctly in the sense that the mean value appears to be close to target. 

Values of X that fall below the LCL or above the UCL signal that the process mean 

has shifted away from the target value. Ideally, the upper and lower control limits 
assume the form 

LCL = po — kox UCL = po — kox 

where fp is the desired or target mean value, ox is the standard deviation of the 

sample mean, and k is some positive real number. In practice, k is usually 2 or 3, and 

we speak of a 2-sigma or a 3-sigma control chart. A Shewhart control chart for 

means is used in the following way. Samples, typically of size 4 or 5, are taken at 

fixed time intervals. The time interval chosen is at the discretion of the quality en- 

gineer; it could be every hour, every half hour, or whatever time interval is desired. 

The sample mean is computed and plotted on the control chart. As long as the 

X value obtained lies within the control limits, the process continues. Successive 

samples are drawn until x is obtained that lies outside of the central limits. When 

this occurs, we say that a “signal” has been observed, and the process is stopped to 

search for the cause of the signal. In Fig. 16.1, the first six samples obtained lead us 

to believe that the process is in control; the x values all lie within the control limits. 

The seventh sample sends a signal that the process may not be producing a product 

with the desired mean value; the process is deemed out of control, and the reason 

for the apparent shift in mean value is sought. 
To construct a 3-sigma control chart for ie mean, we assume that X has a nor- 

mal distribution with mean jp and variance a” when the process is in control. Let i 

denote the mean of a sample of size n items drawn at a given time. If the process is 

in control, then X is normally distributed with mean py and variance o7/n. The nor- 

mal probability law studied in Chap. 3 tells us that a normal random variable will lie 

within 3 standard deviations of its mean approximately 99% of the time. That is, 
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(Signal) 
UGE 

Ho 

Sample 
ECE ; number 

| 2 3 4 5 6 7 (Signal) 

FIGURE 16.1 

A typical Shewhart control chart for the mean. The desired target process mean is 4p. The first six 

samples drawn reflect a process that appears to be “in control” with respect to the mean. On the 

seventh sample a “signal” is produced. The process is deemed to be “‘out of control.” 

p(—2 = aya 2) + 99 
n Vn 

From the standard normal table it can be seen that the exact probability of this oc- 
curring is .9974. Isolating X in the middle of this inequality, we see that when the 
process is in control, X will fall in the interval 4) + 30/\/n with probability .9974. 
An observed value of X above fu) + 30/\/n or below py — 30/\/ nis very unusual 
for a process that is in control. There are two explanations for observing such a 
value: (1) the process is in control and we simply obtain a very unusual sample, or 
(2) the process is out of control. Since the probability that the former explanation is 
correct is so very small (.0026), we choose to believe the latter! That is, an observed 
sample mean outside the interval wy) + 30/\/n leads us to declare the process out 
of control. This usually results in the process being stopped to locate the problem. 
We note that declaring the process out of control when there is really nothing wrong 
is equivalent to committing a Type I error in hypothesis testing. Since stopping the 
process is costly, we want to commit such an error only very infrequently. 

Distribution of Run Length 

Two important questions arise when control charts are used to monitor a process. 
One is, “How often will we make the wrong decision of declaring the process out of 
control (observing a value of the mean outside the control limits) when, in fact, the 
process is in control and we simply observed a rare random event?” The other ques- 
tion is, “How soon will we be able to detect the process being out of control (a true 
signal)?” For the simple case where we assume that the sample means are from a 
normal distribution with known mean and known variance, we can answer these 
questions by using the geometric distribution studied in Chap. 3. 

Recall that the geometric distribution arises when a series of independent and 
identical trails are performed. It is assumed that each trial results in one of two pos- 
sible outcomes, called success or failure. The probability of success is denoted by 
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Signal (assumed out of control) 
UCL = uy + 30//n 

Ho = target mean 

when in 

control 

(Assumed in control) 

WCU te=t30/,7 
Signal (assumed out of control) 

0013 

FIGURE 16.2 A 

If the process is in control, then X is normally distributed with mean jy and standard deviation 

o/\/n. The probability that X will fall above UCL or below LCL is .0013 + .0013 = .0026. 

p, whereas the failure rate, I — p, is denoted by g. The random variable Y is the 

number of trials needed to obtain the first success. It is known that the probability 
density for Y is given by 

PLY = y) =f) =p@! db AE es 

and that the average value of Y is 1/p. 

To utilize the geometric distribution in the context of a control chart for the 

mean, let Y denote the number of samples needed to obtain the first signal. This ran- 

dom variable is called the run length. Notice that by defining Y in this manner, we 

are defining “success” as being the receipt of a signal or observing an X value that 

lies outside the control limits. Since X is a random variable, its value will vary from 

sample to sample even when the process is in control. Thus there is a small prob- 

ability, p, of observing an unusual sample mean that creates a signal by chance even 

though w = Mo. Since samples are assumed to be independent, when the process is 

in control, p remains the same from sample to sample. Thus the random variable Y 

follows a geometric distribution with probability of success p. The value of p is 

inherent in the construction of the control chart. For a 2-sigma control chart the 
approximate probability that X will lie within the control limits when the process is 
in control is .95; the exact probability is .9544. The exact probability of receiving a 

false alarm is .0456. In this case p = .0456. For a 3-sigma control chart, 

PILGL == = UCL) =".9974 

and Pike 4G meno teeee Xe=-UGLI==80026 

In this case p = .0026. Figure 16.2 illustrates this idea. 
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We now ask, “If a process is in control, on the average, how many samples 

will be taken in order to obtain the first false alarm?” That is, “If the process is in 

control, what is E[Y] or the average run length?” Since Y is geometric, this question 

is easy to answer. For a 2-sigma control chart E[Y] = 1/p = 1/.0456 = 21.929. On 
the average, a false alarm will occur on about the 22nd sample. False alarms for 

a 3-sigma chart occur less frequently. In this case E[Y] = 1/p = 1/.0026 = 384.6. 

In other words, with a 3-sigma control chart we would expect about one false signal 
in every 385 samples. 

Another interesting question to ask is, “If the process is out of control in the 

sense that the true mean has shifted off target, how many samples shall we have to 

take before a signal is received?” This question is harder to answer than the ques- 

tion concerning average run length because the probability of obtaining a signal is 

dependent on how far off target the process has become. A slight shift will be hard 

to find, whereas a dramatic change should be detected rather quickly. Example 

16.1.1 illustrates this idea. 

Example 16.1.1. Suppose that a manufacturer is producing bolts and it is known that 

the length of the bolts from this process follows a normal distribution with mean 

length f4y = 0.5 inches (in.) and standard error of the mean a/\/ n = 0.01 in. Thus a 
3-sigma control chart would have a centerline at jz) = 0.5 in., an upper control limit of 
UCL = 0.5 in. + 3(.01) in. = 0.53 in., and a lower control limit of LCL = 0.5 in. — 
3(.01) in. = 0.47 in. If the process has shifted in such a way that, in fact, the average 
length of bolts being produced is 0.51 in., what is the probability that a given sample 
will signal this shift? What is the average number of samples that is required to detect 
this shift in mean? The probability of receiving a signal is 

p= PEs 05S or te 047 

Standardization of the mean yields 

ae 059 — 051 
= 

a ah PP = 28 

0.01 0.01 | P[Z > 2.0] = .0228 

and 
X=0,51 “047= 0.51 

0.01 0.01 
|-r2<-401=0 

The probability of detecting this rather small shift in the mean for an individual sam- 
ple is p = .0228 + 0 = .0228. The average number of samples needed to detect the 
shift is I/p = 43.86. Hence it will take quite a while to detect this small shift in the av- 
crage length of bolts produced. Suppose that the process has been disturbed so that the 
average has shifted to .56 in. How soon will this rather drastic ch: ange be detected? 
Calculations analogous to those just presented yield 

0.53 = 154 
le) 79 SE Ose | PZ — 3 9987 

0.47 — 0.5 
and 1A PAX ie | |Z eo) er) 
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In this case p = .9987. There is a very high probability that a change in the mean 
of this magnitude will be detected by a single sample. The expected run length is 
1/.9987 = 1.00. 

Questions of time can also be asked. If samples are taken at time intervals of 
size d, then the average time required to receive a signal is given by 

Average time = E[Y]-d 

For instance, in the above example if samples are taken every hour, then, on the 
average, a shift from the target value of 0.5 to 0.51 in. will take 43.86 hours to 
detect. If samples are taken every 1/2 hour, then this shift will be detected, on the 
average, in 43.86(.5) = 21.93 hours. 

It should be pointed out that when a 2-sigma or a 3-sigma Shewhart control 
chart is used, a series of two-tailed hypothesis tests is conducted. At each sampling 
point we test 

Ao: LB = Bo (the process mean is in control) 

Ay: wb # Mo (the process mean is out of control) 

The P value for each test is p, the probability that the test statistic X falls outside the 

control limits. If we receive a signal that turns out to be a false alarm, then we com- 

mit a Type I error. If we do not receive a signal when, in fact, the process mean has 

shifted off target, then a Type II error results. If the control chart is designed in such 

a way that the average run length is small for detecting some practical crucial shift 

in the process mean, then the tests conducted have high power for this change. 

16.2 SHEWHART CONTROL CHARTS 
FOR MEASUREMENTS 

When monitoring a process from which measurements such as length, diameter, and 

so on are observed, we almost always monitor stability of the process with respect 

to location and variability. In this section we consider two important control charts: 

the X chart and the R chart. The X chart monitors location (in terms of means), and 

the R chart monitors variability (in terms of range). The range chart should gener- 

ally indicate control before the mean chart is constructed since the mean chart uses 
estimates of range chart parameters to determine control limits. 

X Chart (Mean) 

We have seen that the theoretical bounds for what is called a 3-sigma X chart are 

30 2 
rile Ne 

If the values of ,) and o are known, then we can determine these bounds immedi- 

ately. Unfortunately, as with most theoretical parameters, their exact values are sel- 

dom known in practice. They must be estimated experimentally. To do so, we set the 
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process in motion and draw m samples of size n over a time period in which 

the process is assumed to be under control. Suggested guidelines are that m = 20 or 
more and n = 4 or 5. For each sample we compute X,, the sample mean. We esti- 

mate 49 by pooling the m sample means to obtain this estimator: 

m 

> x; J 
j=l 

m 
Mo = 

We could estimate o by computing the sample deviation for each sample and by 

pooling the resulting estimates. In practice, this process is a bit cumbersome. For 

this reason, the sample ranges are used to estimate 0. For normal random variables 

it can be shown that the ratio of the expected value of the sample range R to the 

standard deviation o is a constant that depends only on the sample size. This con- 

stant, denoted by d,, is given by 

E[{R a, — ER 
Co 

and hence c= FIR] 
d) 

The appropriate value of d, is obtained from Table XII of App. A. The expected 

value of R is estimated from the m sample ranges R), Ro, .. . , R,, by averaging them. 
That is, 

Bounds for 3 o X chart 

30 

Example 16.2.1, illustrates the construction of an X chart. 

Example 16.2.1. A new production line is designed to dispense 12 ounces (oz) of a 
drink into each can as it passes along the line. Regardless of the care taken, there will 
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be some variability in the random variable X, the amount of drink dispensed per can. 
The process will be considered out of control if the mean amount of fill appears to 
differ considerably from the average fill obtained when the process is operating cor- 
rectly or if the variability in fill appears to differ greatly from the variability obtained 
in a properly operating system. We use an X chart to monitor the mean of X. After cal- 
ibration of the machinery and training of the assembly line personnel, five observa- 
tions on X, the amount of drink dispensed per can, are taken each hour for a 24-hour 
period. For each sample of size 5 we compute the sample mean and the sample range. 

The data obtained are shown in Table 16.1. From these data we estimate ju, the center- 
line of the X chart by 

x; 

Oo Safes! 
Ko 4 

2.088 35 LOTT 12007) 

SET a) ae a 
= 11.987 

TABLE 16.1 

Liquid drink dispensed 

Sample Mean Range 

number Weight (oz) per container Xj I; 

1 12.046 12.006 12.139 A) 12.139 12.088 28 
2 12.091 12.118 11.850 11.931 11.863 OA .268 
3 EO S2 11.862 11.899 11.999 12.139 11.970 ie 
4 11.821 11.989 11.866 12.104 12.028 11.962 .283 

5 11.674 11.881 11.886 11.921 11.886 11.850 247 
6 12.020 12.016 2D 12.004 11.887 12.031 340 
7 ZG) 12.038 11.949 12.029 IZAlO3 12.039 154 
8 11.867 Mol 12.016 11.866 11.124 11.969 258 
9 12.063 12.038 11.858 11.985 11.969 11.983 .205 

10 12.042 12.059 12.086 12.024 11.915 12.025 ml7all 
11 12.014. 11.747 11.965 M953 11.944 LEO 25 .267 
12 11.949 11.894 11.951 12.076 12.023 OW) .182 
13 12.168 11.985 12.060 11.910 11.884 12.001 .284 
14 11.974 11.964 12.183 12.054 11.794 11.994 389 
15 Ws) VTS 11.886 12.036 il) 11.963 319 
16 12.021 11.993 12.061 11.969 11.814 11.972 .247 
9 12.008 11.834 11.966 11.948 7299 12.011 465 
18 1) Ae 11.986 11.911 12.019 11.980 12.005 7 
1S 11.946 11.806 12.049 11.976 12.053 11.966 .247 
20 11.956 12.066 11.911 ROBT 12.040 11.982 SS 
21 12.246 11.947 RO 3H 12.128 12.005 12058 309 

22, 11.947 12.000 11.984 11.838 12.038 11.961 .200 

23 11.994 12.136 11.908 12.001 11.909 11.990 .228 

24 12.124 11.862 11.904 12.073 12.072 12.007 .262 

Total 287.687 6.107 
Average 11.987 254 

a 
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The average sample range is given by 

24 
"(33 + 268 hve. 202 

“i 24 
= 254 

Hence the standard deviation o is estimated by 

The value d, = 2.326 is read from Table XII for n = 5, and hence 

254 
cas = e_e_ooo- #. Co 3 396 .1092 

The 3-sigma bounds for the X chart are 

4 

or 337 

Hence the lower control limit (LCL) and upper control limit (UCL) are found to be 

LCL = 11.841 

UCL = 12.134 

The resulting X chart is shown in Fig. 16.3. This chart is used for future monitoring. 

When a future sample of size 5 is selected, its sample mean is plotted on the X chart. 

If it lies outside the control limits, the process is declared out of control. It is then the 

responsibility of the quality control engineer to locate and correct the problem. Note 

that occasionally there will be no problem to correct! On a few rare occasions the 

value of X will lie outside the control limits by chance even though the process is op- 

erating correctly. 

One further comment should be made concerning the construction of an 

X chart. Once the bounds have been determined in the manner just illustrated, the 
values X,, X>, X3,..., X,, used in the construction of the chart should be plotted on 

the chart. If these values all fall within the control limits, then the chart is complete 

and can be put into use. If one or more of these values falls outside the control lim- 

its, then these values should be deleted from the data set, s49 and a should be reesti- 

mated based on the reduced data set, and new control limits should be computed. 

Note that the control limits found in our last example are 11.841 and 12.134. Since 

each of the 24 values for x, listed in Table 16.1 fall between these limits, the X chart 

constructed is ready for use. 
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FIGURE 16.3 
A 3-sigma X chart for controlling the number of ounces of drink contained in a can based on a sample 
of size 5. 

R Chart (Range) 

Usually, the variability in a process is as important as the mean value. For example, 
suppose that we are producing bowling balls that are supposed to have an average 
diameter of 8.6 in. Is it enough to know that the production process is in control 
with respect to this mean value? Suppose that we observe a sample of five balls with 
these diameters coming off the line: 

4.0 (about the size of a softball) 

8.6 

8.7 

9.7 

12.0 (about the size of a basketball) 

The sample mean for these data is x= 8.6—right on target! The process clearly ap- 
pears to be in control with respect to the mean, but is it a stable process? Obviously 

not. A bowling ball the size of a softball or a basketball is not acceptable. Control- 

ling variability is as important as controlling the mean. In fact, one of Deming’s 

major points in his method to total quality management is that variability must be 

reduced and controlled. We shall now introduce a Shewhart control chart that is 

used to monitor product variability. A chart for the standard deviation can be con- 

structed analogous to the X chart. However, due to its simplicity, a control chart for 
the range is used more often. Such a chart is called a Shewhart R control chart. The 

theoretical bounds for the R chart are 

Mr + 30R 

where jp denotes the mean value of the sample range R and op denotes its standard 

deviation. We estimate pz by 
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Although we shall not present the derivation, it can be shown that when sampling 

from a normal distribution, a good estimator for op is 

_ ak 
Or a 

4 

where d; is also a constant whose value depends on the sample size. The values of 

d, are given in Table XII of App. A. Replacing jz and op by their estimators, we see 

that the lower and upper control limits for the sample range are 

Control limits for range 

Before illustrating the idea, we should point out one practical problem. The range of 

a distribution cannot be negative. However, occasionally the estimated lower bound 

for an R chart will be a negative number. When this occurs, the lower bound is taken 
to be zero. 

Example 16.2.2. Let us construct an R chart based on the data of Table 16.1. We 
know already that 

flr =F = .254 

The estimated mean of the sample range, when the process is in control, is 

.254 ounces. This is the centerline of the R chart. The values of d, and d; when n = 5 

are found in Table XII. They are 2.326 and .864, respectively. The estimated control 
limits are 

2.326 

254 + 283 

Since the estimated lower control limit is —.029, we set the lower limit to 0. The UCL 
is 537. Note that since none of the sample ranges given in Table 16.1 falls above the 
UCL, the control chart is ready for use. This chart is shown in Fig. 16.4. 

In practice, the X and R charts are nearly always used simultaneously. In this 
way an effort is made to control both the mean values and the variability of the 
product being produced. The next example illustrates this idea. 

Example 16.2.3. The process described in Example 16.2.1 is monitored 5 times dur- 
ing the course of a day. The resulting data are shown in Table 16.2 and illustrated in 
Fig. 16.5. Note that the process goes out of control relative to location (the mean) at 
the fourth sampling period. At this time the engineer would usually look at the process 
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fip = .254 

LCL = 0 

FIGURE 16.4 
A 3-sigma R chart for controlling the variability in the number of ounces of drink contained in a can 
based on a sample of size 5. 

TABLE 16.2 

Sample Mean Range 

number Weight (0z) per container Xj ie 

1 12.016 12.088 11.792 11.971 12.118 11.997 326 

z 12.039 12.047 12.014 W223} 12.156 12.074 142 

3 11.998 12.053 12.058 12.077 12.049 12.047 079 

4 12.167 DAZ 12.053 PX JEST 12212 12.139 159 

5 12.048 12.048 11.931 12.083 12.045 12.031 nls2 

WO IIe 

My = 11.987 

LCL= 11.841 

UCL = .537 

fig = 254 

WL = @ 

Sample number 

(b) 

FIGURE 16.5 . 

(a) An X chart for a sample of 5 days; the process is out of control relative to location on day 4; 

(b) an R chart for a sample of 5 days; the process is in control relative to variability each day. 
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and try to identify and correct the problem. The data suggest that the process is in con- 

trol relative to variability. 

16.3 SHEWHART CONTROL CHARTS 
FOR ATTRIBUTES 

In the previous sections we considered Shewhart control charts used to monitor lo- 

cation (mean) and variability (range) of a continuous random variable. Data ob- 

tained were in the form of measurements. In this section we consider Shewhart 

control charts that entail the use of count data. In particular, we use P charts to mon- 

itor the proportion of defective items produced; we use C charts to monitor the av- 

erage number of defects per the item produced. We shall present the standard 
3-sigma control limits and refer to the number of defects in an item or the number 

of defective items as either “in control” or “out of control” based on these control 

limits. 

P Chart (Proportion Defective) 

The P chart is constructed in a manner similar to that used in constructing an 
X chart. Consider a sample of n items drawn from a process that is assumed to be in 

control. Since even under the best of circumstances a defective item will be pro- 

duced occasionally, a certain proportion of items produced will fall into the defec- 

tive range. Let II denote this proportion, and let X denote the number of defective 

items found in the sample. Since it is assumed that the quality of one item is not af- 

fected by others, the random variable X follows a binomial distribution with para- 

meters n and II. Notice that in this setting “success” is observing a defective item 

and the probability of success for a process that is in control is I]. This notation is 

different from that used in earlier chapters where the probability of success was de- 

noted by p. The change is needed for two reasons. First, it is the notation commonly 

used in control chart literature for proportions. Second, we shall generate a series of 

estimates for II and average these estimates. It will be convenient to denote the es- 

timator for II by P, successive estimates for I] by p,, p>. py... -. P»» and the average 
of these estimates by Pp. 

Based on our earlier study of sample proportions, it is known that the sample 
proportion P is an unbiased estimator for IT with variance (1 — [D/n. That is, 
when the process is in control, 

Ps oer Lee) Tite 11} 
oo I] Opa eid op= aki tie 

In Chap. 4 we considered the normal approximation to the binomial distribution for 
large sample sizes. We shall utilize those results here in constructing control limits 
for P charts. Assuming a large sample size, the theoretical 3-sigma control limits for 
the P chart are 

aeons 
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As usual, we must estimate wp and op from data obtained while the process is 
assumed to be functioning properly. 

To estimate jp and op, we obtain m random samples, each of size n. Let X; 
represent the number of defective items in the jth sample. Then P, = X,/n denotes 
the proportion of defective items in the jth sample. We estimate up ath the average 
value of these m sample proportions. That is, 

m mn 

Note that /ip is just the total number of defectives found in the m samples combined 
divided by the total number of items examined. Since wp = II, fap = Pisa pooled 
estimator for II. It allows us to combine the m estimators P,, een intoed 
single unbiased estimator for IT. Since o>» is a function of IT, this parameter can be 
estimated by 

7 | P(. — P) 
n 

The estimated limits for a 3-sigma control chart are 

Q S II 

Since the proportion of defective items in a sample cannot be negative, the lower 

control limit (LCL) is set at 0 whenever P — 3\/ P(1 — P)/n is negative. 
One other comment needs to be made. It seems a little strange that we would 

want to declare a process out of control when the proportion of defectives appears 

to be too small. However, in such situations it is sometimes necessary to run a 

check. Perhaps some change has occurred that results in a better production process 

than we had before; we would certainly want to discover the reason for this unex- 

pected improvement. Perhaps we are getting too few defectives because of poor in- 

spection techniques by our operators: we must uncover this sort of situation! 

Whether or not to stop the process when an observed proportion falls below the 

LCL is a judgment that must be made by the quality control engineer. 

Example 16.3.1 demonstrates the construction and use of a P chart. 

Example 16.3.1. An electronics firm produces computer memory chips. Statistical 

quality control methods are to be used to monitor the quality of the chips produced. 

A chip is classified as defective if any flaw is found that will make the chip unaccept- 

able to the buyer. To set up a P chart to monitor the process, 300 chips are sampled on 
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TABLE 16.3 
Samples of memory chips 
ee 

Work Number of Proportion 

day defectives defective (p) 

| 16 053 

2 8 027 

3 l 003 

4 16 053 

5 9 .030 

6 13 043 

ul 10 .033 

8 14 047 

9 1 037 

10 8 027 

1] 6 .020 

12 14 047 

13 (is) 043 

14 14 047 

15 4 013 

16 11 .037 

17 4 013 

18 13 043 

19 9 .030 

20 12 .040 

Total 206 

each of 20 consecutive work days. The number and proportion of defective chips 

found each day are recorded in Table 16.3. From these data 

f * 20 x; 

Mp = p= - An 
j=1 

_ 206 
~ 20(300) 

= 0343 

The estimated proportion of defective chips being produced is .0343. This value is also 

the centerline of the P chart. The estimated standard deviation for P is 

rnp je —p) | Season 
(Oy. go memes tO per QE == 

n 300 
= .0105 

Substitution yields the UCL and LCL of 

0343 + 3(.0105) 

0343 + .0315 

The LCL is .0028, and the UCL is .0658. The P chart with the 20 observations used 
in its construction is given in Fig. 16.6. Since none of the proportions used in the 
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FIGURE 16.6 

A 3-sigma P chart for controlling the proportion of defective computer chips produced by an 

electronics firm based on a sample of size 300; the process is in control on all 20 days used in 
constructing the chart. 

construction of the P chart lies outside the control limits, the chart is ready for use. If 

a future sample of 300 chips yields a sample proportion above .0658, then the process 

is considered to be unstable or out of control and the cause of the problem is investi- 

gated. If the sample proportion falls below .0028, then it is up to the quality control en- 

gineer to decide whether or not he or she thinks that the situation warrants 

investigation. 

C Charts (Average Number of Defects) 

To construct a C chart, we let C denote the number of defects per item. If we think 

of an item as representing a continuous spacial “interval” of size s = 1 and a defect 

on the item as being a “discrete event,” then C satisfies the description given 

in Chap. 3 of a Poisson random variable. The parameter k associated with C is 
k = As = X- 1 = A, where A denotes the average number of defects per item. Based 

on the Poisson properties derived earlier, it can be seen that 

He=A of=A  oce= VA 
Thus the theoretical control limits for a 3-sigma control chart are 

Mc + 30¢ 

or Ate BA 

To estimate A, we take a sample of m items selected over a time period during 

which the process is assumed to be in control. Let C; denote the number of defects 

found on the jth item. An unbiased estimator for A is 

Note that A is the total number of defects found in the m items divided by the num- 

ber of items sampled. The estimated limits for a 3-sigma control chart are 
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30 control limits for the average number of defects per item 

AL3VA 

CHEB ALE 

Once again, if the LCL is negative, it is set equal to 0. 

To use a C chart of this sort in the future, a single item is sampled and the 

number of defects is determined. If this number falls outside the control limits, then 

the process is assumed to be out of control and the source of the problem is sought. 

Example 16.3.2. 

In the making of synthetic fabrics, large rolls of cloth are produced. They are then in- 

spected for flaws and graded as being either first quality, second quality, or unaccept- 

able. In some factories a 100% inspection scheme is used. Each yard of cloth is 

visually examined for flaws in the inspection process. The quality engineer wants to 

develop a way to control for flaws in the production process rather than after the ma- 

terial has been packaged into rolls for shipment to the consumer. To construct a con- 

trol chart for a particular loom, we obtain several 500-yard rolls of first-quality 

material produced by the loom. Twenty-five samples, each of length | linear yard, are 

selected from these rolls and the number of flaws per sample is recorded. In this case 

a single linear yard of material is considered to be an individual item. Data collected 

are shown in Table 16.4. In this case C denotes the number of flaws per linear yard in 

fabric judged to be of first quality, and A represents the average number of flaws per 
yard in this quality material. For these data, 

ee 
A=C= 5 = 4 

TABLE 16.4 
SAMPLES OF FABRIC 

Sample Number Sample Number 

number of flaws number of flaws 

l 0 14 0 

2 0 1S 0 

3 0 16 | 

4 l 17 0 

a) 0 18 0 

6 0 19 | 

7 2 20 0 

8 0 21 0 

9 0 22 0 

a CO =~ Oo 
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The estimated control limits are 

Or 

In this case the apparent LCL is negative. Since it is impossible to observe a negative 
number of defects, the LCL is taken to be 0. The working control limits are 0 to 2.3. In 
the future at randomly selected times, a yard of material will be examined as it comes 
from the loom. If more than two flaws are observed, the loom will be stopped and its 
settings checked. 

Control charts for controlling the average number of defects per item can be 
constructed that utilize samples of more than one item. Charts of this type are useful 

when the items produced are small so that it is possible to examine many of them 

fairly quickly. Exercise 15 leads you through the derivation of the control limits for 
such a chart. 

16.4 TOLERANCE LIMITS 

In Chap. 8 we discussed confidence intervals for the population mean when we as- 

sume that the sample observations came from a normally distributed population. 

Theorem 8.2.2 defined the confidence interval on the mean when the population 

variance must be estimated. We note here that this confidence interval relates to an 

interval within which we are highly confident that the true mean yp lies. Often, par- 

ticularly in engineering applications, we are interested in statements about individ- 

ual observations. For example, we may need to know the proportion of individual 

values in the population that lie in some specified interval. Or, there might be spec- 

ification limits and we may wish to estimate what proportion of items lie within the 

specification limits. We will consider two methods for computing tolerance inter- 

vals. The first method assumes a normal distribution for the population. In the sec- 

ond approach, we do not assume any specific distribution (nonparametric). 

Two-Sided Tolerance Limits 

Two-sided tolerance limits are values determined from a sample of size n so 

that one can claim with (1 — a)% confidence that at least 6 proportion of the 

population is included between these values. 

Assumed Normal Distribution 

When normality is assumed, we have seen that the interval 

(ee ROOOn el 0G) 

contains 95% of the population. In practice, 4 and o are usually unknown and must 

be estimated by X and S, the sample mean and standard deviation, Thus, the interval 

(X — 1.968, X + 1.965) 
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is arandom interval, and hence will no longer cover exactly 95% of the population. 

However, it can be shown that the interval 

(Xo RSX ELK) 

covers 6 of the population with confidence 1 — a. Values of the constant K are 

given in Table XIV for various values of 6 and 1 — a. 

Example 16.4.1. A certain machine was made to dispense twelve ounces of cereal 

per box. To check on the precision of the machine, a team sampled 25 boxes and mea- 

sured the weight of their contents. The sample average weight was 11.959 oz., and the 

sample standard deviation was 0.228. Assuming a normal distribution, calculate an 

interval so that we can claim, with 95% confidence, that 99% of the population lies 

between the smallest and largest sample observation. 

From Table XIV we find K = 3.457 for 1 — a = .95 and 6 = .99. Thus the tol- 

erance interval is given by 

(X — KS, X + KS) 

which becomes 

[11.959 — (3.457)(.228), 11.959 + (3.457)(.228)] 

or UIA PA Fy, 

For some problems we need one-sided tolerance limits. That is, determine the 

sample size needed so that a specified proportion 6 of the population is above 
the smallest value or below the largest value in the sample. 

One-Sided Tolerance Limits 

A one-sided tolerance limit is a minimum (or maximum) value determined 

from a sample of size n, chosen so that one can claim with (1 — @)% confi- 
dence that at least 6 proportion of the population will exceed this minimum 
(is less than this maximum) value. 

Table XV can be used for this purpose, as demonstrated in Example 16.4.2. 

Example 16.4.2. A manufacturer of automotive batteries wishes to establish a war- 

ranty so that they can be 95% confident that 99% of the batteries will last as long as 

the warranty period. Assume that battery life time follows a normal distribution. The 

research team randomly selected n = 50 batteries and ran a test on the life of each bat- 

tery. They found the average life for the sample to be 39 months with sample standard 
deviation 3.0 months. 

The lower (one-sided) tolerance limit is given by 

X — KS 

From Table XV we find K = 2.863, which gives a lower tolerance limit of 30.411. 
Hence, a warranty period of 30 months seems reasonable. 
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Nonparametric Tolerance Interval 

The presentation of tolerance intervals given requires the assumption of normality 
for the population from which the sample is taken. Often that is not a reasonable as- 
sumption. For example, the distribution may be skewed to the right or left. There 
does exist a nonparametric method (independent of the distribution). These intervals 
will usually be wider and/or require larger sample sizes for specified 6 and 1 — a. 

It can be shown that 

P((Ya), ¥iny) covers at least 5 of the population] (16) 

= 1 —nd”~*+ (n = 1)8" 

where Y,,, and Y;,, denote the minimum and maximum value in the sample of size n, 
respectively. Table XVI gives the values for the sample size needed so that 5 pro- 
portion of the population is between Y,,) and Y;,, with | — a percent confidence. 

Example 16.4.3. If we do not assume a normal distribution, what size sample is 
needed so that we can claim, with 90% confidence, that at least 95% of the population 
will be included between the smallest and largest observation (i.e., a = .10 and 
6 = .95)? 

From Table XVI we see that n = 77 observations are required. 

Nonparametric intervals can be used in various ways. One obvious approach 

is to find the sample size needed so that the tolerance interval covers 6 percent of 

the population with confidence 1 — a. Another approach would be, for a given sam- 

ple size, to find the confidence level for a specified 6 proportion of the population 

to be included within the tolerance interval. This can be done by solving equation 

16.1 for various values of n with 6 fixed until an acceptable confidence is obtained. 

16.5 ACCEPTANCE SAMPLING 

Although modern quality control techniques tend to emphasize process control so 
that defective items are not produced, another important area of statistical quality 

control is acceptance sampling. When a batch or lot of items has been received by 

the buyer, he or she must decide whether to accept the items. Usually, inspection of 
every item in the lot is impractical. This may be due to the time or cost required to 

do such an inspection; it may be due to the fact that inspection 1s destructive in the 

sense that inspecting an item thoroughly can be done only by cutting the item open 

or by testing it in some other way that renders it useless. Thus the decision to reject 
a lot must be made based on testing only a sample of items drawn from the lot. The 

sampling plans that we shall consider are called attribute plans. In these plans each 

item is classified as being either defective or acceptable. We make our decision as 

to whether or not to reject the lot based on the number of defectives found in the 
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sample. As you will see, acceptance sampling is just an adaptation of classical hy- 

pothesis testing. 
To begin, let us denote the number of items in the lot or batch by N. The true 

but unknown proportion of defective items in the lot is denoted by II. We agree that 

the entire lot is acceptable if the proportion of defectives IT is less than or equal to 
some specified value II). Since our job is to detect unacceptable lots, we want to test 

the hypothesis 

Alla iis (lot is acceptable) 

Hy Il > I, (lot is unacceptable) 

Usually, to decide whether to reject Hp, we determine what is called an acceptance 

number, which we denote by c. If the number of defective items sampled exceeds c, 

we reject the lot; otherwise we accept it. As you know, two kinds of errors may be 

committed when testing a hypothesis. We might reject a lot that is, in fact, accept- 

able, thus committing a Type I error; we might fail to reject an unacceptable lot, thus 

committing a Type II error. Alpha, the probability of committing a Type I error 

in this context, is called the producer's risk. Beta, the probability of committing a 

Type II error, is called the consumer's risk. 

As in the past, we shall be able to compute the value of a. In this case it will 

depend on the specific value of II, the sample size n, and the lot size N. Thus in a 

particular case we shall always know the risk to the producer. To see how to com- 

pute a, consider a lot of size N of which the proportion Ip is defective. Let r = NII, 

denote the number of defective items. We select a random sample of size n from the 

lot and consider the random variable D, the number of defective items found in the 

sample. This random variable follows a hypergeometric distribution. From Sec. 3.6 
we know that its probability density function is given by 

() 
where d is an integer lying between max[0, » — (N — r)] and min[n, r]. Fora preset 
acceptance number c the producer’s risk is given by 

a = P[reject H,|II = Tp] 

= P[D > clII = Ij] 

_ slr) 
For relatively small samples this probability can be calculated directly. However, in 
practice we usually approximate it using either the binomial density or the Poisson 
density. In the binomial approximation the probability of “success,” obtaining a 

f(d) = 
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defective part, is assumed to be r/N; in the Poisson approximation the parameter k 
is given by k = nr/N. These ideas are illustrated in the next example. We show you 
all three calculations. In practice, we would use the hypergeometric probability and 

would only turn to the approximations when the hypergeometric computations be- 
come too cumbersome to be practical. 

Example 16.5.1. A construction firm receives a shipment of N = 20 steel rods to be 

used in the construction of a bridge. The lot must be checked to ensure that the break- 

ing strength of the rods meets specifications. The lot will be rejected if it appears that 

more than 10% of the rods fail to meet specifications. We are testing 

Hell e41 (lot is acceptable) 

rere VAL acl (lot is unacceptable) 

We compute @ under the assumption that the null value is correct. That is, we compute 

a under the assumption that the lot actually contains r = NII, = 20(.1) = 2 defective 

rods. Since testing a rod requires that it be broken, we cannot test each rod. Let us as- 

sume that a sample of size n = 5 is selected for testing. Let us agree to reject the lot if 

more than one rod is found to be defective. In this way we are setting our acceptance 

number at c = 1. Note that D can assume only the values 0, 1, or 2. The producer’s 

risk is given by 

a = P{reject H|[I = .10] 

=P[D > 11 =*10) 

= P[D = 2|II = .10] 

Els") 2X2 

. 20 ) 
Using the combination formula given in Chap. | to evaluate the terms shown above, 

we see that 

a = 816/15504 = .0526 

That is, there is about a 5% chance that our sampling technique will lead us to reject 

an acceptable lot that contains only two defective items; there is about a 95% chance 

that we shall not reject such a lot. Since the numbers used in this example are small, 

the calculation based on the hypergeometric distribution is not difficult. For compara- 

tive purposes we approximate the value of a by using a binomial random variable X 

with n = 5 and p = .1. Since we want to find the probability associated with the right- 

tail region of the hypergeometric distribution, we approximate a by finding the prob- 

ability associated with the right-tail region of the appropriate binomial distribution. In 

this case 

a = P[D = 2] = P[X=2] 
= j| ape | 
geen) 
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From Table I of App. A, a= 1 — .9185 = .0815. We can also approximate a by using 

a Poisson random variable Y with parameter k = nr/N = 5(2)/20 = .S. From Table II 

of App. A, 

a= P[D = 2] = P[Y=2] 

=1-P[Y<2] 
=1-P(Y<1] 
=1-.910 
= .09 

These approximations overestimate a, but considering the small numbers involved, 

they are not bad! 

For a set sample size, a set lot size, and a set acceptance number, the prob- 

ability of accepting a lot depends only on II = r/N, the proportion of defectives ac- 

tually in the lot. The hypergeometric distribution can be used to compute this 

probability for r = 0, 1, 2,3,..., N. The graph of this acceptance probability as a 

function of II is called the operating characteristic or OC curve. In the next exam- 
ple we demonstrate how to construct and read an OC curve. 

Example 16.5.2. Consider the problem described in Example 16.5.1 in which 

N = 20, n = 5, and c = 1. The probability of accepting this lot depends only on the 

proportion of defectives in the lot. We calculate the probability for various values of 

r and II by using the equation 

PAV Ne 

aj/\n—ad 

For example, the probability of accepting a lot that contains no defective items is 
given by 

:) 20 
OUNaS 

20 

5 

The probability of accepting a lot that contains exactly one defective item is 

is) ) MERCED EAN To RINNE Diehl 
20 20 15504 CM) (3) 

We have already seen that the probability of accepting a lot that contains exactly two 
defective items is | — .0526 = .9474. Similar calculations can be done for r = a ey 
Bios ak 20. The results of these calculations for selected values of r are shown in Table 
16.5. Using Table 16.5, we can make a quick sketch of the OC curve for this sampling 

r 

P| accep lot{IT = x = 2 
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TABLE 16.5 

Probability 

I] of acceptance 

0 0 1 

i 05 i 

2 10 9474 

5 25 .6339 

10 50 silly) 

is aT) .0049 

20 1.00 0 

i= os aren Stes = “5 Producer's risk 

Probability 

of 

acceptance 

Bi=23 

Ol hy S10) <2 2 Mpa oS 6 oft 8 § 10 

Lot proportion defective 

FIGURE 16.7 

An OC curve with N = 20, II, = .10, c = 1, n = 5; the producer’s risk is a = .0526; the consumer’s 

risk when II = A, B, is approximately .3. 

plan by plotting the lot proportion defective versus the probability of acceptance for 

these selected values and then by joining the points with a smooth curve. The result- 

ing sketch is shown in Fig. 16.7. The producer’s risk is found by projecting a vertical 

line up from the point IT = II) until it intersects the OC curve. A horizontal line is then 

projected over to the vertical axis. It intersects this axis at the point 1 — a. The pro- 

ducer’s risk (a) is the length of the line segment from this intersection point to 1, as 

shown in Fig. 16.7. The consumer’s risk (8) for a specified alternative II, > I) can 

also be read from the OC curve. For example, suppose that we want to determine the 

probability of accepting a lot in which the true proportion of defectives is I], = .4. We 

use the projection method to see that this probability is approximately .3 as shown in 

Fig. 16.7. Note that as the difference in II, and II, increases, 6 decreases. That is, as 

the proportion of defectives increases, we are less likely to accept an unacceptable lot. 

As we have seen in earlier discussions on hypothesis testing, the typical ap- 

proach is to specify a value for a and then to determine the appropriate rejection re- 

gion. Here we would specify a and then determine the acceptance number that gives 

us this approximate a value. In this way we control the producer’s risk. However, if 

samples are small, this might result in an unacceptably large risk to the consumer. 
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In practice, efforts are made to obtain a balance between the producer’s risk (@) and 

the consumer’s risk (B). To do so, we specify a value II, > I that represents to us 

a “barely acceptable” lot. For example, if we really want IT = .10, we might agree 

that a defective rate of .12, while not ideal, is at least barely acceptable. When N, 

II, I1,, a, and B are specified, it is possible to find a combination of n and C that 

meets the targets for a and B. That is, it is possible to find an OC curve such that 

at I], the probability of accepting the lot is | — @ and at II, the probability of ac- 
cepting the lot is B. There are many sources available that give OC curves for spec- 

ified values of N, n, a, and B. One of the most popular sources is Military Standard 

10SD [33]. 

16.6 TWO-STAGE ACCEPTANCE SAMPLING 

Sometimes multiple-stage acceptance sampling plans are used. These plans can lead 

to smaller average sample sizes required to produce the same or similar OC curves 

as those that result in single-stage sampling. This is important when sampling is ex- 

pensive, as in the case of destructive sampling. In this section we consider two-stage 

sampling in which lot sizes are large enough so that the binomial or normal distribu- 

tions yield a good approximation to the hypergeometric distribution. 

In a two-stage sampling scheme a single sample is drawn. If the number of de- 

fective items in the sample is large, the lot is rejected immediately and sampling 

ceases. If the number of defective items is very small, then the lot is accepted im- 

mediately and sampling also ceases. However, if the number of defective items is 

deemed to be moderate in size so that no clear decision is obvious, then a second 

sample is drawn. The decision to accept or reject the lot is made based on the total 

number of defective items in the two samples combined. The terms “very small,” 

“large,” and “moderate” are defined relative to the probability of obtaining various 
numbers of defective items. 

The next example illustrates the computation of an OC chart in a two-stage 

sampling design. Recall that to compute an OC chart, we must find 

Placcept lot|[1] = Placcept lot on first or second sample|IT] 

That is, the OC chart is a graph of the probability of accepting a lot as a function of 
the true proportion of defectives in the lot. 

Example 16.6.1 Consider the following two-stage sampling scheme. We draw a 

sample of size n, = 50 and decide to reject the lot if the number of defective items is 
four or more, to accept the lot if the number is 0 or 1, and to take a second sample oth- 
erwise. Figure 16.8(q) illustrates this first stage of sampling. If a second sample of size 
ny = SO is needed, then we reject the lot if the total number of defective items in the 
two samples combined is five or more; otherwise the lot is accepted. The second-stage 
acceptance rule is shown in Fig. 16.8(b). Notice that the rejection rule can change 
from four to five because the sample size has increased from 50 to 100. Figure 16.9 
summarizes the entire sampling procedure. Let D denote the total number of defective 
items obtained while sampling. The probability of acceptance when the true propor- 
tion of defectives is I] is given by 

Placcept] = Placcept on first sample] + P[take a second sample and accept] 
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0 1 D 3 4 5) 50 
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(a) 
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FIGURE 16.8 

(a) A three-way decision rule is used in the first stage of a two-stage sampling scheme; (b) a two-way 

decision rule is used on the combined sample of size 100 in the second stage of sampling. 

Accept 

lot 

Accept lot 

Reject lot 

Accept lot 

Reject lot 

Reject 
lot 

ni—20 ny = 50 

FIGURE 16.9 

A two-stage lot acceptance plan. 

By using the multiplication rule discussed in Sec. 2.3, we can express the latter prob- 

ability as 

P{take a second sample and accept] = P[accept|take a second sample] 

X< P[take a second sample] 

In this example, 

Placcept] = PLD < 1\n, = 50, I] + P[D = 2\n, = 50, IN}PLD = 2\n, = 50, TI] 

+ PID = 3|n, = 50, IIJP[D = 1|n. = 50, I) 

To illustrate, let us calculate the probability of acceptance when II = .10. The prob- 

abilities can be found by using the binomial distribution with n = 5. Those probabili- 

ties given in Table 16.6 were found by using an extended binomial table that lists 

probabilities for n = 50 and p = .O1 through p = .10. Since our binomial table does 
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TABLE 16.6 

Probability 

II of acceptance 

0 | 
Ol 996 
.02 952 
.03 .833 
04 661 

OS 482 
.06 .328 
07 gale) 
08 sibs? 
09 O80 
10 047 

not list these values, we can either calculate the desired probabilities from the bino- 

mial density or approximate them by using the normal curve. The normal approxima- 

tion technique is demonstrated below. In this approximation it is assumed that D is 

approximately normally distributed with = 50(.1) = 5, 07 = 50(.1)(.9) = 4.5, and 

o = 2.12: 

21 

= P[Z = —1.65] 

= 0495 

P[D = 2|n, = 50, 1 = .1] = P[-1.65 = ZS -1.18] 

= .0695 

P( DiS 50, IT = .1] = .1190 

P[D = 3|n, = 50, II = .1] = .1199 

ll Ny 

Substitution yields 

0495 + .0695(.1190) + .1199(.0495) 

0637 

P{accept] 

lI 

Notice that this approximation is fairly close to the binomial value given in Table 16.6. 
The ideas illustrated here for two-stage acceptance sampling can be extended to 

multiple-stage sampling. 

16.7 EXTENSIONS IN QUALITY CONTROL 

Modifications of Control Charts 

The basic concepts of quality control were presented in previous sections. More 
sophisticated methods are available which, although more complicated, are more 
sensitive to detecting changes in a process. The simpler Shewhart control charts are 
practical, simple, and widely used. However, the reader has most likely already 
realized that these charts lead to decisions that are based only on the most recent 
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sample. A somewhat more complicated but also more efficient control chart utilizes 
past sample information as well as the present sample. These methods are called 
CUSUM (cumulative sum) control charts, since they use functions of the cumula- 
tive sums of the previous and present samples. As the reader would guess, CUSUM 
control charts are more sensitive to small shifts in the process than are Shewhart 
control charts. Furthermore, many processes monitor more than one variable simul- 
taneously. Variables sampling plans are also available. Further reading about these 
procedures can be found in [13], [18], and [38]. 

The recent increase in the awareness of the importance of quality control has 
led to a renewed interest in research in quality control procedures. Some of the clas- 
sical procedures have been improved to lead to considerably more sensitive sam- 
pling designs. For example, the control charts discussed in this chapter all assume 
that the time between samples and the size of the sample is constant. Intuition 
would suggest that it may be desirable to vary the time interval between samples or 
even the sample sizes between samples depending on the value of the most recent 
sample observation. For example, a sample value close to the target value suggests 
that the process is well in control, and hence we may be willing to wait longer be- 
fore taking the next sample in order to save sampling costs. On the other hand, a 
current sample value that is some distance from the target value, but not outside the 

control limits, might suggest that the process is becoming unstable, and hence we 

may wish to take another sample (look again at the process) as soon as possible. 
These procedures have been formally investigated for Shewhart and CUSUM con- 

trol charts and found to be much more sensitive than fixed-interval procedures. The 
reader is referred to [1], [8], [42], and [43]. 

Parameter Design Procedures 

Control charts are very useful to signal when a process goes out of control. How- 

ever, the goal in production is to reduce quality variation and still be close to the tar- 

get (ideal values) of the product characteristics. In almost all production processes 

there are two types of variables that cause variation of product quality. These are 

control factors and noise factors. Control factors are variables that can be controlled 

by operators of the process. Noise factors are variables, such as environmental fac- 

tors and manufacturing imperfection, that are difficult or very expensive to control. 

For example, suppose that transistor radios are being produced. These radios may 

be used on the beach in the hot sun or in a very cold climate. Here the producer has 

no real control on the variable, temperature. Thus it would be desirable to attempt 

to design the production process to control for variability in the product with regard 

to its intended use. 
Taguchi has advanced the basic idea that values (or settings) of the control- 

lable variables should be sought so that variation caused by noise (uncontrollable) 

variables is minimized. He developed an experimental design procedure called pa- 

rameter design to reduce product variability in a cost-effective manner. These meth- 

ods are related to both quality control and experimental design. The objective of 

these procedures is to identify optimal combinations of settings of control variables 

at which the quality characteristics are the least sensitive to uncontrollable (or at 

least very expensively controlled) noise variables. Briefly stated, parameter design 
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procedures have the objective of minimizing product sensitivity to external con- 

ditions (for example, environmental), minimizing product variability due to use or 

deterioration, and minimizing product variation among produced units with the 

average value of the quality characteristic close to the target (ideal) value. For 

further reading about this approach to quality control, see [5], [24], [26], [29], [47]. 

and [48]. 

CHAPTER SUMMARY 

This chapter presents a brief introduction to the use of statistics in quality control. 

The methods discussed here are in wide use in business, industry, government, and 

education and their purpose is to help improve the quality of the goods and services 

that we, as consumers, receive. The chapter began with a discussion of the idea be- 

hind control charts in general. It then focused on four types of charts that are in use 

today. These are the X chart for controlling the mean of a measurement and the R 

chart for controlling its range, the P chart for controlling proportions, and the C 

chart for controlling the number of defects found per item produced. Tolerance lim- 

its for products were defined and a method for finding these limits was developed. 

The chapter concluded with a discussion of acceptance sampling techniques. These 

are methods by which it can be determined whether a batch of items received by a 

customer meets or fails to meet expectations. 

As an engineer or computer scientist, you will find many references to quality 

control procedures in the literature of your field. You will also find that these pro- 

cedures are widely used. This chapter is intended to introduce you to these ideas and 

to obtain a better understanding of why these methods are so important in modern 
industrial processes. 

We also introduced and defined important terms that you should know. 
These are: 

Statistical quality control P charts 

R charts Acceptance sampling 

C charts Producer risk 

Consumer risk Control factors 

CUSUM charts Noise factors 

Parameter design Run length 

Variable interval charts Two-stage 

Unstable process acceptance sampling 

X charts OC curve 
Tolerance limits 

EXERCISES 

Section 16.1 

1. Consider the control chart constructed in Exercise 7. Find the probability of a 
false alarm and the average run length if the true mean has been shifted as de- 
scribed below (in each case assume that the variability has not been affected): 
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(a) pw has shifted up by .002. 

(b) w has shifted down by .01. 

(c) In parts (a) and (b) on the average, how long will it take to detect the shifts 

described if samples are taken every half hour? 

2. Consider a 3-sigma control chart for the data on 30-amp circuits given in Exer- 

cise 3. Find the probability of a signal and the average run length if the true 

mean has shifted from the target of 30.095 to 30.2. If it is absolutely essential 

that a shift of this magnitude be detected quickly, do you think that the chart at 

hand will do so if sampling is done every hour? Explain. If you want to detect 

the shift within a half hour on the average, how often should sampling be done? 
3. In general, for a 3-sigma control chart, find the probability of detecting a down- 

ward shift of magnitude 20 x. That is, find the probability of obtaining a signal 

if the true mean has shifted from fp to Wy + 20 x. Find the average run length 
in this setting. 

4. Acertain type of resistor is manufactured so that when operating properly, the 

value of the mean fp will be 5.0 and the variance will be oF = .0001. In order 

to detect a change in yw, a sample of four resistors is taken hourly and tested. 

If the sample mean X, for any sample, falls more than three standard errors 

from the mean (in either direction), the process is stopped so that the problem 

can be corrected. 
(a) Sketch the 3-sigma control chart for this process showing the centerline 

(target) value along with the UCL and LCL. he 

(b) If w = 5.0, what is the probability that the sample mean X will fall above 

5.015 or below 4.985? 
(c) If ~ = 5.0, what is the expected number of samples until the chart signals? 

(d) If w = 5.0, find the standard deviation of the number of samples until the 

control chart signals. 
(e) If w = 5.01, what is the expected number of samples until the control chart 

signals? 
( f) If samples are drawn every hour, how long, on the average, will it take to 

detect the shift from ps = 5.0 to w = 5.01? How long will it take if samples 

are drawn every half hour? Every 15 minutes? 

5. Consider a Shewhart control chart for means with LCL = py — 20x and 

UCL = po + 20 x. Assume that the random variable being measured follows a 

normal distribution with mean fy = 50 and variance o* = 25x when the 

process is in control. Assume that samples of size n = 4 are observed and that 

the sample means X are plotted on the control chart. 

(a) Sketch the control chart showing the target value and both control limits. 

(b) Find the false alarm rate. 

(c) If the process mean shifts from a target value of 49 = 50 to w = 45, find 

the average number of samples required to detect the shift. 

(d) Repeat part (c) for a shift to uw = 40. 

Section 16.2 

6. For each of the following sets of summary data, compute the lower control 

limits (LCL) and upper control limits (UCL) for a 3-sigma X chart (X and 7, 
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each of which is based on m samples of size n over time when the process is 

assumed to be in control): 

(ait 245 BSA 

(b) X = 0.045, F = .005, n = 10 

(c) X = 8.65, 7 = 2.15,n = 4 

A certain production process was designed for mass production of ball bearings 

1/2 in. in diameter. The engineering specification calls for a standard deviation 

of 0.02 inch. A quality control engineer randomly sampled four ball bearings 

every hour for 20 hours. The following data resulted: 

Diameter of 

Hour ball bearings (in.) 

481, 511, .463, .495 l 
2 507, .486, .491, .491 

3 495, .483, .480, .508 

- 511, .453, 539, .494 

5 479, 510, 554, .499 

6 488, .479, .497, .520 

ii 511, 508, 501, .510 

8 NOY eaves, AVA Sill) 

9 494, 521, .503, .497 

10 522, 482, 524, .477 

1] 09S Ol S020) 

12 518, 523, .470, .486 

il) 490, .473, .480, 500 

14 464, .498, .473, 521 

15 464, .476, 513, 491 

16 504, 503, 545, 501 

Ww) 515, 508, .490, 506 

18 473, 494, 503, .473 

19 NSS, coll he a5 LM) 

20 XO fs SHE SSMU LOS) 

(a) Compute the sample average and sample range for each of the 20 time pe- 

riods and the overall average and range for the combined sample. Estimate 

the standard deviation based on the sample ranges. 

(b) Calculate the UCL and LCL for a 3-sigma X chart, and plot the 20 sample 

means. Does the production process appear to be in control with respect to 

the mean? 

Calculate the UCL and LCL for a 3-sigma R chart, and plot the 20 sample 

ranges. Does the production process appear to be stable or in control with 
respect to variability? 

An electronics firm manufactures circuits to produce 30 amps. The UCL and 

LCL on the mean of the circuits for samples of size 4 were computed to be 

LCL = 27.15 and UCL = 33.04. The UCL and LCL for the sample range were 

estimated to be LCL = 0 and UCL = 5.75. These control limits were used to 

monitor the circuits produced for 13 time periods, yielding the following data: 

(c — 
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Time period Sample amp measurements 

AOD, Ost, 329), S2ail 

31.8, 32.4, 27.0, 28.6 

29.0, 27.2, 28.0, 30.0 

XS $3}, DOS, DIA, BPI 

20:83 27.0034 29.2, 

30.4, 30.4, 34.5, 30.1 

31.6, 30.8, 29.0, 30.6 

28.4, 29.4, 30.3, 28.5 

SS), 235, SUL, PN 

May VerAly oll (0), AVI 

34.5, 29.0, 32.1, 28.3 

ZIAD, YS), DES, DNS 

BOYS, MSS, 32.5), SO See WN COO AOAANHWN 

(a) Plot the sample means on the X chart for the 13 time periods. Discuss the 
quality of the process with respect to the mean. 

(b) Plot the sample ranges on the R chart for the 13 time periods. Discuss the 
quality of the process with respect to variability. 

When measurement data are used in quality control problems, why is it always 

important to use both the X chart and the R chart as opposed to using the 
X chart alone? 

For each of the sets of summary data given in Exercise 6, construct a 3-sigma 
R chart. 

Section 16.3 

11. Acompany manufacturing bolts plans a quality control program to monitor the 

12 

breaking strength of the bolts. Random samples of 200 bolts are tested for 

breaking strength specifications on 20 consecutive working days. Any bolt that 

does not meet specifications is classified as defective. The 20 samples of size 
n = 200 yielded the following information: 

Sample No. = i 1 ils) 1@h iIey ii a s I) 2o) 

s NOs Grains |" SS Ib @ Wee ay ey BY PP a Gy Rye SG 

(a) Estimate the overall proportion defective and the standard deviation of 

your estimate. 
(b) Calculate the lower and upper 3-sigma control limits for II, and plot the 20 

sample proportions used in constructing the control chart. 

(c) If any of the plotted sample values is outside the control limits, how would 

you revise the control chart for future quality control monitoring? 

A textile company wishes to implement a quality control program on a certain 

garment with respect to the number of defects found in the final product. A 
garment was sampled on 33 consecutive hours of production. The number of 

defects found per garment is given below: 

Dewees S, 1, 7, i ©, 2, 34 O; Sy, 248 By yh UG Se 4m, LE Sh, 7h 3, Bh Oh HAGE 2 

Compute the upper and lower 3-sigma control limits for monitoring the num- 

ber of defects. 
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13. Consider a setting in which m samples of size n are selected. In this case m can 

be small but n should be 20 or more. Let C,; denote the number of defects in the 

jth item of the ith sample. It is assumed that C; follows a Poisson distribution 

with parameter A, where A represents the average number of defects per item 

when the process is in control. 

(2) LetC = 2F_1C,/n, i = 1,2,..., m. Based on the Central Limit Theorem, 

what is the approximate distribution of C;? 

(b) Let C = > C,. What is the expected or average value of CG? 

(c) To monitor the average number of defects per item in the future, a single 

sample of size n will be drawn. If the sample average number of defects 

falls outside the control limits, then the process is declared out of control. 

Argue that the 3-sigma control limits are given by 

Gan 
n 

(d) Explain why a chart of this sort might not be practical in the setting 

described in Example 16.4.2. 
(e) Give an example of a setting in which a chart of this sort would be 

practical. 

Section 16.4 

14. Consider Example 16.4.1 where a sample of 25 boxes of cereal was measured 

for weight. Find the one-sided tolerance limit value so that we could claim, 

with 95% confidence, that 99% of the population weights are above the toler- 

ance limit. 
15. A soft drink machine is designed to dispense 12 oz. of a certain soft drink into 

an aluminum can. A random sample of n = 75 cans was selected, and the content 

of each can was accurately weighed. The sample yielded an average of 11.9 oz. 

with a standard deviation of 0.2 oz. Assume a normal distribution, and then 

(a) Find a 95% tolerance interval for 90% of the population. 

(b) Find a 99% tolerance interval for 90% of the population. 

(c) Find a 95% tolerance interval for 99% of the population. 

(d) Calculate the 95% confidence interval for the population mean jp. 

(e) Discuss the differences among your answers to (a) through (d). 

16. Without assuming a normal distribution, find the sample size required for a 

two-sided tolerance limit with properties given below in (a)-(d). 

(a) 95% confidence for 90% of the population. 

(b) 95% confidence for 95% of the population. 

(c) 95% confidence for 99% of the population. 

(d) 90% confidence for 95% of the population. 

17. Suppose that a random sample of n = 40 measurements were taken on the 
breaking strength of a certain material. The sample yielded an average break- 
ing strength of 1275 psi, with a minimum value of 1210 psi and a maximum 
value of 1450 psi. Without assuming normality, find the confidence level for 
90% of the population to lie within the tolerance limits of Y,) and Y (40): 
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Section 16.5 

18. 

19. 

20. 

Assume a lot of items to be inspected of size N = 100. Consider a sampling in- 
spection plan that samples n = 20 items from the lot and rejects the lot if more 

than one defective item is found in the lot (acceptance number c = 1). 

(a) Sketch the operating characteristic (OC) curve by calculating the exact 

probability of accepting the lot when the true proportion of defectives is as- 
sumed to be I] = 0, .05, .10, and .15. 

(b) If the acceptable quality level (IIo) is .05 and the barely acceptable quality 

level (II,) is .15, calculate the producer’s risk a and the consumer’s risk B. 

Repeat Exercise 18, except use the binomial approximation for the hypergeo- 

metric distribution. Comment on the validity of this approximation. 

Repeat Exercise 18, except use the Poisson approximation for the hypergeo- 

metric distribution. Comment on the validity of this approximation. 

Section 16.6 

21. 

22. 

23. 

Consider a two-stage sampling acceptance plan. At the first stage a sample of 

size n, = 10 is taken from the lot. If zero or one defective is observed, the lot 

is accepted; and if three or more defectives are observed, the lot is rejected. If 

two defectives are observed, a second sample of size n, = 10 is taken. If the cu- 

mulative number of defectives (from both samples) is three or less, the lot is ac- 

cepted. If four or more cumulative defectives are observed, the lot is rejected. 

(a) Sketch a tree diagram for this acceptance sampling plan similar to that 

shown in Fig. 16.9. 
(b) Use the binomial distribution to find the probability of accepting the lot if 

the true proportion of defectives is I] = .2. 
(c) Calculate the acceptance probabilities for IT = .1, .4, and .6 and then sketch 

the OC curve. 
(d) If the true proportion of defectives is II = .2, what is the probability that a 

lot will be rejected? 
Consider the two-stage acceptance sampling plan defined in Exercise 21 for 

n, = 10 and n, = 10. For comparison consider a single-stage sampling plan 

for a sample size of n = 20 that accepts the lot for three or fewer defectives and 

rejects the lot for four or more defectives. 

(a) If Il = .2, which sampling plan has a higher acceptance probability? 

(b) If II = .4, which sampling plan is more likely to reject the lot? 
(c) Compare the two-stage versus the single-stage plans in terms of acceptance 

probabilities. 

Use the normal approximation procedure to estimate the probabilities given in 

Table 16.6. If you have a calculator or computer software that allows you to 

compute binomial probabilities for n; = n. = 50, verify the binomial accep- 

tance probabilities given in Table 16.6. 
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TABLE I 

Cumulative binomial distribution 

Rdt) = PIC =e > ih pl — py" 
x t 

p 

~ = ™ 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 

0.5905 0.3277 0.2373 0.1681 0.0778 0.0312 0.0102 0.0024 0.0010 0.0003 

0.9185 0.7373 0.6328 0.5282 0.3370 0.1875 0.0870 0.0308 0.0156 0.0067 

0.9914 0.9421 0.8965 0.8369 0.6826 0.5000 0.3174 0.1631 0.1035 0.0579 
0.9995 0.9933 0.9844 0.9692 0.9130 0.8125 0.6630 0.4718 0.3672 0.2627 

1.0000 0.9997 0.9990 0.9976 0.9898 0.9688 0.9222 0.8319 0.7627 0.6723 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.5314 0.2621 0.1780 0.1176 0.0467 0.0156 0.0041 0.0007 0.0002 0.0001 

0.8857 0.6554 0.5339 0.4202 0.2333 0.1094 0.0410 0.0109 0.0046 0.0016 

0.9841 0.9011 0.8306 0.7443 0.5443 0.3437 0.1792 0.0705 0.0376 0.0170 

0.9987 0.9830 0.9624 0.9295 0.8208 0.6562 0.4557 0.2557 0.1694 0.0989 

0.9999 0.9984 0.9954 0.9891 0.9590 0.8906 0.7667 0.5798 0.4661 0.3446 

1.0000 0.9999 0.9998 0.9993 0.9959 0.9844 0.9533 0.8824 0.8220 0.7379 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.4783 0.2097 0.1335 0.0824 0.0280 0.0078 0.0016 0.0002 0.0001 0.0000 

0.8503 0.5767 0.4449 0.3294 0.1586 0.0625 0.0188 0.0038 0.0013 0.0004 

0.9743 0.8520 0.7564 0.6471 0.4199 0.2266 0.0963 0.0288 0.0129 0.0047 

0.9973 0.9667 0.9294 0.8740 0.7102 0.5000 0.2898 0.1260 0.0706 0.0333 

0.9998 0.9953 0.9871 0.9712 0.9037 0.7734 0.5801 0.3529 0.2436 0.1480 

1.0000 0.9996 0.9987 0.9962 0.9812 0.9375 0.8414 0.6706 0.5551 0.4233 

1.0000 1.0000 0.9999 0.9998 0.9984 0.9922 0.9720 0.9176 0.8665 0.7903 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.4305 0.1678 0.1001 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000 0.0000 

0.8131 0.5033 0.3671 0.2553 0.1064 0.0352 0.0085 0.0013 0.0004 0.0001 

0.9619 0.7969 0.6785 0.5518 0.3154 0.1445 0.0498 0.0113 0.0042 0.0012 

0.9950 0.9437 0.8862 0.8059 0.5941 0.3633 0.1737 0.0580 0.0273 0.0104 

0.9996 0.9896 0.9727 0.9420 0.8263 0.6367 0.4059 0.1941 0.1138 0.0563 

1.0000 0.9988 0.9958 0.9887 0.9502 0.8555 0.6846 0.4482 0.3215 0.2031 

1.0000 0.9999 0.9996 0.9987 0.9915 0.9648 0.8936 0.7447 0.6329 0.4967 

1.0000 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8999 0.8322 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.3874 0.1342 0.0751 0.0404 0.0101 0.0020 0.0003 0.0000 0.0000 0.0000 

0.7748 0.4362 0.3003 0.1960 0.0705 0.0195 0.0038 0.0004 0.0001 0.0000 

0.9470 0.7382 0.6007 0.4628 0.2318 0.0898 0.0250 0.0043 0.0013 0.0003 

0.9917 0.9144 0.8343 0.7297 0.4826 0.2539 0.0994 0.0253 0.0100 0.0031 

0.9991 0.9804 0.9511 0.9012 0.7334 0.5000 0.2666 0.0988 0.0489 0.0196 

0.9999 0.9969 0.9900 0.9747 0.9006 0.7461 0.5174 0.2703 0.1657 0.0856 

1.0000 0.9997 0.9987 0.9957 0.9750 0.9102 0.7682 0.5372 0.3993 0.2618 

1.0000 1.0000 0.9999 0.9996 0.9962 0.9805 0.9295 0.8040 0.6997 0.5638 

1.0000 1.0000 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.9249 0.8658 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

687 

0.9 

0.0000 

0.0005 
0.0086 
0.0815 

0.4095 

1.0000 

0.0000 
0.0001 

0.0013 
0.0159 

0.1143 
0.4686 

1.0000 

0.0000 

0.0000 

0.0002 

0.0027 

0.0257 

0.1497 

0.5217 

1.0000 

0.0000 

0.0000 
0.0000 

0.0004 

0.0050 

0.0381 
0.1869 

0.5695 
1.0000 

0.0000 

0.0000 
0.0000 

0.0001 

0.0009 

0.0083 

0.0530 

0.2252 

0.6126 

1.0000 
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TABLE I 

Cumulative binomial distribution (continued) 

0 

0.1 

0.3487 

0.7361 

0.9298 

0.9872 

0.9984 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.3138 
0.6974 

0.9104 
0.9815 

0.9972 

0.9997 
1.0000 
1.0000 

1.0000 
1.0000 

1.0000 
1.0000 

0.2824 

0.6590 

0.8891 

0.9744 

0.9957 

0.9995 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

2 1.0000 

0.2542 

0.6213 

0.8661 

0.9658 

0.9935 

0.999 | 

0.9999 

1.0000 

1.0000 

0.2 

0.1074 

0.3758 

0.6778 

0.8791 

0.9672 

0.9936 

0.999 | 

0.9999 

1.0000 

1.0000 

1.0000 

0.0859 
0.3221 

0.6174 

0.8389 

0.9496 

0.9883 
0.9980 

0.9998 
1.0000 
1.0000 

1.0000 

1.0000 

0.0687 

0.2749 

0.5583 

0.7946 

0.9274 

0.9806 

0.9961 

0.9994 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

0.0550 

0.2336 

0.5017 

0.7473 

0.9009 

0.9700 

0.9930 

0.9988 

0.9998 

0.25 

0.0563 

0.2440 

0.5256 

Ono 

0.9219 

0.9803 

0.9965 

0.9996 

1.0000 

1.0000 

1.0000 

0.0422 
0.1971 

0.4552 

0.7133 
0.8854 

0.9657 
0.9924 

0.9988 

0.9999 

1.0000 

1.0000 

1.0000 

0.0317 

0.1584 

0.3907 

0.6488 

0.8424 

0.9456 

0.9857 

0.9972 

0.9996 

1.0000 

1.0000 

1.0000 

1.0000 

0.0238 

0.1267 

0.3326 

0.5843 

0.7940 

0.9198 

0.9757 

0.9944 

0.9990 

0.3 0.4 

P 

0.5 

0.0282 

0.1493 

0.3828 

0.6496 

0.8497 

0.9527 

0.9894 

0.9984 

0.9999 

1.0000 

1.0000 

0.0198 

0.1130 
0.3127 

0.5696 
0.7897 

0.9218 
0.9784 

OME By7/ 

0.9994 

1.0000 

1.0000 

1.0000 

0.0138 

0.0850 

0.2528 

0.4925 

0.7237 

0.8822 

0.9614 

0.9905 

0.9983 

0.9998 

1.0000 

1.0000 

1.0000 

0.0097 

0.0637 

0.2025 

0.4206 

0.6543 

0.8346 

0.9376 

0.9818 

0.9960 

0.0060 

0.0464 

0.1673 

0.3823 

0.6331 

0.8338 

0.9452 

0.9877 

0.9983 

0.9999 

1.0000 

0.0036 

0.0302 
0.1189 

0.2963 

0.5328 
0.7535 

0.9006 
0.9707 

0.9941 

0.9993 

1.0000 

1.0000 

0.0022 

0.0196 

0.0834 

0.2253 

0.4382 

0.6652 

0.8418 

0.9427 

0.9847 

0.9972 

0.9997 

1.0000 

1.0000 

0.0013 

0.0126 

0.0579 

0.1686 

0.3530 

0.5744 

0.7712 

0.9023 

0.9679 

0.0010 

0.0107 

0.0547 

0.1719 

0.3770 

0.6230 

0.8281 

0.9453 

0.9893 

0.9990 

1.0000 

0.0005 

0.0059 

0.0327 

0.1133 

0.2744 

0.5000 

0.7256 

0.8867 

0.9673 

0.994] 

0.9995 

1.0000 

0.0002 

0.0032 

0.0193 

0.0730 

0.1938 

0.3872 

0.6128 

0.8062 

0.9270 

0.9807 

0.9968 

0.9998 

1.0000 

0.0001 

0.0017 

0.0112 

0.0461 

0.1334 

0.2905 

0.5000 

0.7095 

0.8666 

0.6 

0.0001 

0.0017 

0.0123 

0.0548 

0.1662 

0.3669 
0.6177 

0.8327 

0.9536 

0.9940 

1.0000 

0.0000 

0.0007 

0.0059 

0.0293 

0.0994 

0.2465 

0.4672 

0.7037 

0.8811 

0.9698 

0.9964 

1.0000 

0.0000 

0.0003 

0.0028 

0.0153 

0.0573 

0.1582 

0.3348 

0.5618 

0.7747 

0.9166 

0.9804 

0.9978 

1.0000 

0.0000 

0.0001 

0.0013 

0.0078 

0.0321 

0.0977 

0.2288 

0.4256 

0.6470 

0.7 

0.0000 

0.0001 

0.0016 

0.0106 

0.0473 

0.1503 
0.3504 

0.6172 

0.8507 

0.9718 

1.0000 

0.0000 

0.0000 

0.0006 

0.0043 

0.0216 

0.0782 

0.2103 

0.4304 

0.6873 

0.8870 
0.9802 

1.0000 

0.0000 

0.0000 

0.0002 

0.0017 

0.0095 

0.0386 

0.1178 

0.2763 

0.5075 

0.7472 

0.9150 

0.9862 

1.0000 

0.0000 

0.0000 

0.0001 

0.0007 

0.0040 

0.0182 

0.0624 

0.1654 

0.3457 

0.75 

0.0000 

0.0000 

0.0004 

0.0035 
0.0197 

0.0781 

0.2241 

0.4744 

0.7560 

0.9437 

1.0000 

0.0000 

0.0000 

0.0001 

0.0012 

0.0076 

0.0343 

0.1146 

0.2867 

0.5448 

0.8029 

0.9578 

1.0000 

0.0000 

0.0000 

0.0000 

0.0004 

0.0028 

0.0143 

0.0544 

0.1576 

0.3512 

0.6093 

0.8416 

0.9683 

1.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0010 

0.0056 

0.0243 

0.0802 

0.2060 

0.8 

0.0000 

0.0000 

0.0001 

0.0009 

0.0064 

0.0328 

0.1209 

0.3222 

0.6242 

0.8926 

1.0000 

0.0000 

0.0000 

0.0000 

0.0002 

0.0020 
0.0117 

0.0504 

0.1611 

0.3826 

0.6779 

0.9141 

1.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0006 

0.0039 

0.0194 

0.0726 

0.2054 

0.4417 

0.7251 

0.9313 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0002 

0.0012 

0.0070 

0.0300 

0.0991 

0.9 

0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0016 
0.0128 
0.0702 
0.2639 
0.6513 
1.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0003 
0.0028 
0.0185 
0.0896 
0.3026 
0.6862 
1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0005 

0.0043 

0.0256 

0.1109 

0.3410 

0.7176 

1.0000 

0.0000 
0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0009 

0.0065 
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Cumulative binomial distribution (continued) 
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eee Wh 

0.1 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.2288 

0.5846 

0.8416 

0.9559 

0.9908 

0.9985 

0.9998 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.2059 

0.5490 

0.8159 

0.9444 

0.9873 

0.9978 

0.9997 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.1853 

0.5147 

0.7892 

0.9316 

0.9830 

0.9967 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.0440 

0.1979 

0.4481 

0.6982 

0.8702 

0.9561 

0.9884 
0.9976 

0.9996 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.0352 

0.1671 

0.3980 

0.6482 

0.8358 

0.9389 

0.9819 

0.9958 

0.9992 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.0281 

0.1407 

0.3518 

0.5981 

0.7982 

0.9183 

p 
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0.4 0.6 0.7 0.75 0.8 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

0.0178 

0.1010 

0.2811 

0.5213 

0.7415 

0.8883 

0.9617 
0.9897 

0.9978 

0.9997 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.0134 

0.0802 

0.2361 

0.4613 

0.6865 

0.8516 

0.9434 

0.9827 

0.9958 

0.9992 

0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.0100 

0.0635 

0.1971 

0.4050 

0.6302 

0.8103 

0.9993 

0.9999 

1.0000 

1.0000 

1.0000 

0.0068 

0.0475 

0.1608 

0.3552 

0.5842 

0.7805 

0.9067 

0.9685 

0.9917 

0.9983 

0.9998 

1.0000 

1.0000 

1.0000 

1.0000 

0.0047 

0.0353 

0.1268 
0.2969 

ODS) 

0.7216 

0.8689 

0.9500 

0.9848 

0.9963 

0.9993 
0.9999 

1.0000 

1.0000 

1.0000 

1.0000 

0.0033 

0.0261 

0.0994 

0.2459 

0.4499 

0.6598 

0.9922 

0.9987 

0.9999 
1.0000 

1.0000 

0.0008 

0.0081 

0.0398 

0.1243 

0.2793 

0.4859 

0.6925 

0.8499 

0.9417 

0.9825 

0.9961 

0.9994 

0.9999 

1.0000 

1.0000 

0.0005 

0.0052 

0.0271 

0.0905 

0.2173 

0.4032 

0.6098 

0.7869 

0.9050 
0.9662 

0.9907 

0.9981 

0.9997 

1.0000 

1.0000 

1.0000 

0.0003 

0.0033 

0.0183 

0.0651 

0.1666 

0.3288 

0.8314 

0.9421 

0.9874 

0.9987 

1.0000 

0.0000 

0.0001 

0.0006 

0.0039 

0.0175 

0.0583 

0.1501 

0.3075 

0.5141 

0.7207 

0.8757 

0.9602 

0.9919 

0.9992 
1.0000 

0.0000 

0.0000 

0.0003 

0.0019 

0.0093 

0.0338 

0.0950 

0.2131 

0.3902 

0.5968 

0.7827 

0.9095 

0.9729 

0.9948 

0.9995 

1.0000 

0.0000 

0.0000 

0.0001 

0.0009 

0.0049 

0.0191 

0.5794 

OW°O75 

0.9363 
0.9903 

1.0000 

0.0000 

0.0000 

0.0000 
0.0002 

0.0017 

0.0083 

0.0315 

0.0933 

0.2195 

0.4158 
0.6448 

0.8392 

0.9525 
0.9932 

1.0000 

0.0000 

0.0000 

0.0000 

0.0001 

0.0007 

0.0037 

0.0152 

0.0500 

0.1311 

0.2784 

0.4845 

0.7031 

0.8732 

0.9647 

0.9953 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0003 

0.0016 

0.4157 

0.6674 

0.8733 

0.9762 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0003 

0.0022 

0.0103 

0.0383 

0.1117 

0.2585 

0.4787 

0.7189 

0.8990 

0.9822 

1.0000 

0.0000 

0.0000 
0.0000 

0.0000 
0.0001 

0.0008 
0.0042 

0.0173 
0.0566 
0.1484 

0.3135 

0.5387 

0.7639 

0.9198 

0.9866 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0003 

O2a27, 

0.4983 

0.7664 

0.9540 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0004 

0.0024 

0.0116 

0.0439 

0.1298 

0.3018 

Opsilg 

0.8021 

0.9560 

1.0000 

0.0000 

0.0000 
0.0000 

0.0000 
0.0000 

0.0001 

0.0008 

0.0042 

0.0181 
0.0611 

0.1642 
0.3518 

0.6020 

0.8329 
0.9648 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.9 

0.0342 

OBS) 

0.3787 

0.7458 

1.0000 

0.0000 
0.0000 

0.0000 

0.0000 
0.0000 

0.0000 

0.0000 
0.0002 

0.0015 

0.0092 

0.0441 

0.1584 
0.4154 
0.7712 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0003 

0.0022 

0.0127 

0.0556 

0.1841 

0.4510 

0.7941 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
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TABLE I 

Cumulative binomial distribution (continued) 

yi fe AV 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 mn 

6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0016 0.0002 0.0000 

7 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0075 0.0015 0.0000 

8 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0271 0.0070 0.0001 

9 1.0000 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0796 0.0267 0.0005 

10 1.0000 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.1897 0.0817 0.0033 

11 1.0000 1.0000 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.3698 0.2018 0.0170 

12 1.0000 1.0000 1.0000 1.0000 0.9991 0.9894 0.9349 0.7541 0.5950 0.4019 0.0684 

13 1.0000 1.0000 1.0000 1.0000 0.9999 0.9979 0.9817 0.9006 0.8029 0.6482 0.2108 

14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9967 0.9739 0.9365 0.8593 0.4853 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9967 0.9900 0.9719 0.8147 

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

17 0 0.1668 0.0225 0.0075 0.0023 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.4818 0.1182 0.0501 0.0193 0.0021 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.7618 0.3096 0.1637 0.0774 0.0123 0.0012 0.0001 0.0000 0.0000 0.0000 0.0000 

3 0.9174 0.5489 0.3530 0.2019 0.0464 0.0064 0.0005 0.0000 0.0000 0.0000 0.0000 

4 0.9779 0.7582 0.5739 0.3887 0.1260 0.0245 0.0025 0.0001 0.0000 0.0000 0.0000 

5 0.9953 0.8943 0.7653 0.5968 0.2639 0.0717 0.0106 0.0007 0.0001 0.0000 0.0000 

6 0.9992 0.9623 0.8929 0.7752 0.4478 0.1662 0.0348 0.0032 0.0006 0.0001 0.0000 
7 0.9999 0.9891 0.9598 0.8954 0.6405 0.3145 0.0919 0.0127 0.0031 0.0005 0.0000 
8 1.0000 0.9974 0.9876 0.9597 0.8011 0.5000 0.1989 0.0403 0.0124 0.0026 0.0000 
9 1.0000 0.9995 0.9969 0.9873 0.9081 0.6855 0.3595 0.1046 0.0402 0.0109 0.0001 

10 1.0000 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 0.2248 0.1071 0.0377 0.0008 
11 1.0000 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.2347 0.1057 0.0047 
12 1.0000 1.0000 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.4261 0.2418 0.0221 
13 1.0000 1.0000 1.0000 1.0000 0.9995 0.9936 0.9536 0.7981 0.6470 0.4511 0.0826 
14 1.0000 1.0000 1.0000 1.0000 0.9999 0.9988 0.9877 0.9226 0.8363 0.6904 0.2382 
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9979 0.9807 0.9499 0.8818 0.5182 
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9977 0.9925 0.9775 0.8332 
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000. 1.0000 

18 0 0.1501 0.0180 0.0056 0.0016 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.4503 0.0991 0.0395 0.0142 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.7338 0.2713 0.1353 0.0600 0.0082 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.9018 0.5010 0.3057 0.1646 0.0328 0.0038 0.0002 0.0000 0.0000 0.0000 0.0000 
4 0.9718 0.7164 0.5187 0.3327 0.0942 0.0154 0.0013 0.0000 0.0000 0.0000 0.0000 
5 0.9936 0.8671 0.7175 0.5344 0.2088 0.0481 0.0058 0.0003 0.0000 0.0000 0.0000 
6 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0002 0.0000 0.0000 
7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0012 0.0002 0.0000 
8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0054 0.0009 0.0000 
9 1.0000 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0193 0.0043 0.0000 

10 1.0000 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0569 0.0163 0.0002 
IL 1.0000 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.1390 0.0513 0.0012 
12 1.0000 1.0000 1.0000 0.9997 0.9942 0.9519 0.7912 0.4656 0.2825 0.1329 0.0064 
13 1.0000 1.0000 1.0000 1.0000 0.9987 0.9846 0.9058 0.6673 0.4813 0.2836 0.0282 
14 1.0000 1.0000 1.0000 1.0000 0.9998 0.9962 0.9672. 0.8354 0.6943 0.4990 0.0982 
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9918 0.9400 0.8647 0.7287 0.2662 
16 1.0000 1.0000 1.0000 1.0000. 1.0000 0.9999 0.9987 0.9858 0.9605 0.9009 0.5497 
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9984 0.9944 0.9820 0.8499 
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000. 1.0000 1.0000 1.0000 1.0000 
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TABLE I 

Cumulative binomial distribution (concluded) 

Pp 

ton Ose 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 

19 0.1351 0.0144 0.0042 0.0011 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.4203 0.0829 0.0310 0.0104 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.7054 0.2369 0.1113 0.0462 0.0055 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 

0.8850 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001 0.0000 0.0000 0.0000 0.0000 

0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000 0.0000 0.0000 0.0000 

0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001 0.0000 0.0000 0.0000 

0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006 0.0001 0.0000 0.0000 

0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0005 0.0000 0.0000 

1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0023 0.0003 0.0000 

1.0000 0.9984 0.9911 0.9674 0.8139 0.5000 0.0861 0.0326 0.0089 0.0016 0.0000 

10 1.0000 0.9997 0.9977 0.9895 0.9115 0.6762 0.3325 0.0839 0.0287 0.0067 0.0000 

11 1.0000 1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0775 0.0233 0.0003 

12 1.0000 1.0000 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.1749 0.0676 0.0017 

13 1.0000 1.0000 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.3322 0.1631 0.0086 

14 1.0000 1.0000 1.0000 1.0000 0.9994 0.9904 0.9304 0.7178 0.5346 0.3267 0.0352 

15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9978 0.9770 0.8668 0.7369 0.5449 0.1150 

16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9945 0.9538 0.8887 0.7631 0.2946 

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9896 0.9690 0.9171 0.5797 

18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9958 0.9856 0.8649 

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

20 0 0.1216 0.0115 0.0032 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 

3 0.8670 0.4114 0.2252 0.1071 0.0160 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 

4 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003 0.0000 0.0000 0.0000 0.0000 

5 0.9887 0.8042 0.6172 0.4164 0.1256 0.0207 0.0016 0.0000 0.0000 0.0000 0.0000 

6 

i 

8 

9 

WOOANIAAMHBWNH OS 

0.9976 0.9133 0.7858 0.6080 0.2500 0.0577 0.0065 0.0003 0.0000 0.0000 0.0000 

0.9996 0.9679 0.8982 0.7723 0.4159 0.1316 0.0210 0.0013 0.0002 0.0000 0.0000 

0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0009 0.0001 0.0000 

1.0000 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0039 0.0006 0.0000 

10 1.0000 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0139 0.0026 0.0000 

11 1.0000 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0409 0.0100 0.0001 

12 1.0000 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.1018 0.0321 0.0004 

13 1.0000 1.0000 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.2142 0.0867 0.0024 

14 1.0000 1.0000 1.0000 1.0000 0.9984 0.9793 0.8744 0.5836 0.3828 0.1958 0.0113 

15 1.0000 1.0000 1.0000 1.0000 0.9997 0.9941 0.9490 0.7625 0.5852 0.3704 0.0432 

16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9840 0.8929 0.7748 0.5886 0.1330 

17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9964 0.9645 0.9087 0.7939 0.3231 

18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9924 0.9757 0.9308 0.6083 

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9968 0.9885 0.8784 

20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
nnn 
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TABLE V 

Cumulative distribution: Standard normal 

STATISTICAL TABLES 697 

F(z) = P[Z § z] 

N 

lid) Iq Vb =F) 

0.03 

0.0003 
0.0004 

0.0006 

0.0009 
0.0012 

0.0017 

0.0023 

0.0032 

0.0043 

0.0057 

0.0075 

0.0099 
0.0129 

0.0166 

0.0212 

0.0268 

0.0336 

0.0418 

0.0516 

0.0630 

0.0764 

0.0918 

0.1093 

0.1292 

0.1515 

0.1762 

0.2033 

02827 

0.2643 

0.2981 

0.3336 

0.3707 

0.4090 

0.4483 

0.4880 

0.04 0.05 0.06 

0.0003 

0.0004 

0.0006 

0.0008 

0.0012 

0.0016 

0.0023 

0.0031 

0.0041 

0.0055 

0.0073 

0.0096 

0.0125 

0.0162 

0.0207 

0.0262 

0.0329 
0.0409 

0.0505 

0.0618 

0.0749 

0.0901 

0.1075 
0.1271 

0.1492 

0.1736 

0.2005 

0.2296 

0.2611 

0.2946 

0.0003 

0.0004 

0.0006 

0.0008 

0.0011 

0.0016 

0.0022 

0.0030 

0.0040 

0.0054 

0.0071 

0.0094 

0.0122 

0.0158 

0.0202 

0.0256 
0.0322 

0.0401 

0.0495 

0.0606 

0.0735 

0.0885 

0.1056 

OM alll 

0.1469 

0.1711 

0.1977 

0.2266 

0.2578 

0.2912 

0.3264 

0.3632 

0.4013 

0.4404 

0.4801 

0.0003 

0.0004 

0.0006 

0.0008 

0.0011 

0.0015 

0.0021 

0.0029 
0.0039 

0.0052 

0.0069 

0.0091 

0.0119 

0.0154 

0.0197 

0.0250 
0.0314 

0.0392 

0.0485 
0.0594 

0.0721 

0.0869 
0.1038 

0.1230 

0.1446 

0.1685 

0.1949 
0.2236 

0.2546 

0.2877 

0.3228 
0.3594 

0.3974 

0.4364 

0.4761 

0.07 

0.0003 

0.0004 
0.0005 

0.0008 
0.0011 

0.0015 

0.0021 

0.0028 

0.0038 

0.0051 

0.0068 

0.0089 

0.0116 

0.0150 

0.0192 

0.0244 

0.0307 
0.0384 

0.0475 

0.0582 

0.0708 
0.0853 

0.1020 

0.1210 

0.1423 

0.1660 

0.1921 
0.2206 

0.2514 

0.2843 

0.3192 

0.3557 

0.3936 

0.4325 

0.4721 

0.08 

0.0003 

0.0004 

0.0005 

0.0007 

0.0010 

0.0014 

0.0020 

0.0027 

0.0037 

0.0049 

0.0066 
0.0087 

0.0113 

0.0146 

0.0188 

0.0239 

0.0301 
0.0375 

0.0465 
0.0571 

0.0694 

0.0838 

0.1003 

0.1190 
0.1401 

0.1635 
0.1894 

0.2177 

0.2483 

0.2810 

0.3156 

0.09 

0.0002 

0.0003 

0.0005 
0.0007 

0.0010 

0.0014 

0.0019 

0.0026 

0.0036 

0.0048 

0.0064 
0.0084 

0.0110 
0.0143 

0.0183 

0.0233 

0.0294 

0.0367 

0.0455 

0.0559 

0.0681 

0.0823 
0.0985 
0.1170 

0.1379 

0.1611 
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TABLE V 

Cumulative distribution: Standard normal (concluded) 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

O12” 05398" 05438 0:5478 05517" (0:5557_ 05596) 0563659 0567598 057149805755 

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
14 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
16 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
24 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977. 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3, 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997. 0.9997 0.9998 eee 
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TABLE VI 

T distribution 

Ty 

Column heading = cumulative probability 

Row heading = degrees of freedom 

Row © = standard normal values 

0 t 

FF ) PIT, <4] 

“tye 6 75 9 95 975 99 995 999 9995 

1 0.325 1.000 3.078 6.314 2AM HL gel 63.657 318.317 636.607 
2 ORS) ORIN) 1.886 2.920 4.303 6.965 9.925 22.327 31.598 
Bae 027g) 0.765 1.638 25393 3.182 4.541 5.841 10.215 12.924 
Ay PARI 0.741 1538 232 2.716 3.747 4.604 WAU 8.610 
» OAs 0.727 1.476 2.015 Lay 3.365 4.032 5.893 6.869 

Om ORZOS 0.718 1.440 1.943 2.447 3.143 3.707 5.208 SES) 
i 0263 0.711 1.415 1.895 2.365 2.998 3.499 4.785 5.408 
Sa O2 MOL OG 1397 1.860 2.306 2.896 3.299) 4.501 5.041 
9) 0261 0.703 1.383 1.833 2.262 2.821 3.250 4.297 4.781 

10 0.260 0.700 LZ 1.812 2.228 2.764 3.169 4.144 4.587 

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 4.025 4.437 
2259 eee 0-095 1.356 1.782 DMS) 2.681 3.055 6930) 4.318 
SiO 259 eee 0004. 1.350 eT 2.160 2.650 3.012 3.852 4.221 
14 0.258 0.692 1.345 1.761 2.145 2.624 DMT 3.787 4.140 
a2) Sam 1.341 5S AN) 2.602 2.947 3.733 4.073 

GeO 258 0.690 {3337 1.746 2.120 2.583 DO, 3.686 4.015 
I Ossi) 0.689 iL 33833) 1.740 2.110 DES Oi 2.898 3.646 3.965 
Ie O27 0.688 1330) 1.734 2.101 DES 52 2.878 3.611 3.922 

19 0.257 0.688 1.328 2S) 2.093 239 2.861 379 3.883 
MY O25 Oesr L325) 25 2.086 2.528 2.845 3.552 3.850 

21 0.257 ~—-0.686 23 Al 2.080 2.518 2.831 B27 3.819 

22) 250m L086 1.321 NALA) 2.074 2.508 2.819 3.505 2 

By UA) ~~ OES) LB) 1.714 2.069 2.500 2.807 3.485 3.768 

Din 25 Om L089) 1.318 1.711 2.064 2.492 2A 3.467 3.745 

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.450 312) 

26 0.256 0.684 ish) 1.706 2.056 2.479 DTS) 3.435 3.707 

we Wo ee! 1.314 (70320522 27473 DH 3.421 3.690 

28 0.256 0.683 isle} 1.701 2.048 2.467 2.763 3.408 3.674 

29 0.256 0.683 iL silil 1.699 2.045 2.462 2.756 3.396 3.659 

XO OP Wyott 1.310 1.697 2.042 2.457 2.750 3), 3h80) 3.646 

31 0.256 0.682 1.309 1.696 2.040 2.453 2.744 Boi 3.633 

32 0259 0.682 1.309 1.694 2.037 2.449 2.738 3.365 3.622 

BS 0:295 0.682 1.308 1.692 2.035 2.445 Pe Iaye 3.356 3.611 

34k ODS = Mors ILO 1.691 2.032 2.441 2.728 3.348 3.601 

35 O25 Wa 1.306 1.690 2.030 2.438 2.724 3.340 Ol 

SOM O:255 0.08) 1.306 1.688 2.028 2.434 2.719 3.333) 3.582 

37 OSS _OSSIl 1.305 1.687 2.026 2.431 ANS) 3.326 3.574 

33 OAS = Oeil 1.304 1.686 2.024 2.429 2.712 3G 3.566 

BO 02550 Ooi 1.304 1.685 2.023 2.426 2.708 3).3)118) 3.558 

A) 0255 0.681 1.303 1.684 2.021 2.423 2.704 3.307 3.55)! 

4] 0.255 0.681 1.303 1.683 2.020 2.421 2.701 3.301 3.544 

Ae 0295 0.680 1.302 1.682 2.018 2.418 2.698 3.296 3.538 

Age) 0.2555 20.680 9917302 1.681 2.017 2.416 2.695 B29 332 

44 0.255 0.680 1.301 1.680 2.015 2.414 2.692 3.286 3526 

Ce eee eee 
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TABLE VI 

T distribution (concluded) 

Y 6 es 

45 0.255 0.680 

46 0.255 0.680 
47 0.255 0.680 
48 0.255 0.680 
49 0.255 (0.680 
50 0.255 ~—- 0.679 

ail 0.255 0.679 
52. 0.255 ~—-0.679 
53 0.255 0.679 
54. 0.255 ~—- 0.679 
55 0.255 0.679 

56 0.255 (0.679 
57 0.255 (0.679 
58 0.255 0.679 
59 0.254 0.679 
60 0.254 0.679 

61 0.254 0.679 
62 0.254 0.678 
63 0.254 0.678 
64 0.254 0.678 
65 0.254 0.678 
66 0.254 0.678 
67 0.254 0.678 
68 0.254 0.678 
69 0.254 0.678 
70 0.254 0.678 

71 0.254 0.678 
72 0.254 0.678 
73 0.254 0.678 
74 0.254 0.678 
Wa 0.254 0.678 

76 0.254 0.678 
77 0.254 0.678 
78 0.254 0.678 
79 0.254 0.678 
80 0.254 0.678 

81 0.254 0.678 
82 0.254 0.677 
83 0.254 0.677 
84 0.254 0.677 
85 0.254 0.677 

86 0.254 0.677 
87 0.254 0.677 
88 0.254 0.677 
89 0.254 0.677 
90 0.254 0.677 

9] 0.254 0.677 
O28 0.254 0.677 
93 0.254 0.677 
94 §=0.254 0.677 

0.677 

S65) 01254 0.677 
Di 0254 0.677 

0.677 
0.677 

100 =: 0.254 0.677 
0.674 

ee et ee a pa fee Bt fet frm foe Been fem meh frm fresh eh famed forehead! fall” pms fe femeh orm femmes fica femme, «fee. feed fe fem esd «fm Jed end Jed fed 55 ee ie, BO sof aoe 

ee t 

1.679 

Nor? 
1.678 
1.677 
1.677 
1.676 

1.675 
1.675 
1.674 
1.674 
1.673 

1.673 
1.672 
1.672 
1.671 
1.671 

1.670 
1.670 
1.669 
1.669 
1.669 

1.668 
1.668 
1.668 
1.667 
1.667 

1.667 
1.666 
1.666 
1.666 
1.665 

1.665 
1.665 
1.665 
1.664 
1.664 

1.664 
1.664 
1.663 
1.663 
1.663 

1.663 

1.663 
1.662 
1.662 
1.662 

1.662 
1.662 
1.661 
1.661 
1.661 

1.661 
1.661 
1.661 
1.660 
1.660 
1.645 

975 

2.014 

2.013 
2.012 
2.011 
2.010 
2.009 

2.008 
2.007 
2.006 

2.005 

2.004 

2.003 
2.002 
2.002 
2.001 
2.000 

2.000 
1.999 
1.998 
1.998 
1.997 

1.997 
1.996 
1.995 
1.995 
1.994 

1.994 
1.993 

1.993 
1.993 
1.992 

1.992 
1.99] 
1.99] 
1.990 
1.990 

1.990 
1.989 
1.989 
1.989 
1.988 

1.988 
1.988 
1.987 
1.987 
1.987 

1.986 
1.986 
1.986 
1.986 
1.985 

1.985 
1.985 
1.984 
1.984 
1.984 
1.960 

99 995 

2.412 2.690 

2.410 2.687 
2.408 2.685 
2.407 2.682 
2.405 2.680 
2.403 2.678 

2.402 2.676 
2.400 2.674 
2.399 2.672 
2.397 2.670 
2.396 2.668 

2.395 2.667 
2.394 2.665 
2.392 2.663 
2.391 2.662 
2.390 2.660 

2.389 2.659 
2.388 2.658 
2.387 2.656 
2.386 2.655 
2.385 2.654 

2.384 2.652 
2.383 2.651 
2.382 2.650 
2.382 2.649 
2.381 2.648 

2.380 2.647 
2.379 2.646 
2.379 2.645 
2.378 2.644 
EH 2.643 

2.376 2.642 
2.376 2.641 
ye) 2.640 
2.375 2.640 
2.374 2.639 

23573 2.638 
2.373 2.637 
2.372 2.636 
ole 2.636 
2.371 2.635 

2.371 2.634 
2.370 2.634 
2.369 2.633 
2.369 2.632 
2.369 2.632 

2.368 2.631 
2.368 2.630 
2.367 2.630 
2.367 2.629 
2.366 2.629 

2.366 2.628 
2.365 2.627 
2.365 2.627 
2.365 2.626 
2.364 2.626 
2.326 2.576 
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TABLE VIII 

Wilcoxon signed-rank test ee ee es ee ee ee ee 
n = 5(1)50 

One-sided Two-sided a5) n=6 =) —'S m= 9 n= 10 

P=0.05 P=0.10 1 2 4 6 8 11 
P=0.025 P=0.05 1 2 4 6 8 
P=0.01 P=0.02 0 D 3 iS) 
P = 0.005 P=0.01 0 2 3 
One-sided Two-sided n= 11 n= 12 13 n= 14 p= 16 n= 16 

P=0.05 P=0.10 14 17 Dl 26 30 36 
P=0.025 P—=005 11 14 i 21 DS) 30 

P=0.01 P=0.02 Wf 10 13 16 20 24 

P= 0.005 P=0.01 5 aT 10 13 16 19 

One-sided Two-sided jg) = 17 n= 18 n= 19 n= 20 hoi n= 22 

P=0.05 Pes Oa) 41 47 54 60 68 D 

P=0.025 P=0.05 35 40 46 52 59 66 

P=0.01 P=0.02 28 33 38 43 49 56 

P= 0.005 P— (001 23 28 32 37 43 49 

One-sided Two-sided ji— 23) n= 24 l—e25 n = 26 i= 2), n= 28 

P=0.05 P=0.10 83 92 101 110 120 130 

P=0.025 P=0.05 73 81 90 98 107 a7 

P=0.01 P=0.02 62 69 T7 85 93 102 

P0005 P=0.01 55 61 68 76 84 92 

One-sided Two-sided n = 29 n = 30 n= 31 i 12 n = 33 n = 34 

Za 0205) P=0,10 141 152 163 es) 188 201 

P= 0.025 P=0.05 127 137 148 159 7A 183 

P=0.01 P= 0,02 111 120 130 141 151 162 

IP = O05 P= OO 100 109 118 128 138 149 

One-sided Two-sided =35 n = 36 ig = Si n = 38 n = 39 

P=0.05 200 214 228 242 256 271 

P = 0.025 P =0.05 195 208 220) 235 250 

P=0.01 P = 0.02 174 186 198 Paul 224 

P =0.005 P=001 160 Neral 183 195 208 

One-sided Two-sided n= 40 n= 41 n= 42 n= 43 n= 44 45 

P= 0.05 P—0O010 287 303 319 336 353 371 

P=0.025 P=0.05 264 279 295 Sill 327 344 

P=0.01 P=0.02 238 252) 267 281 297 313 

P= 0.005 P=0.01 22 234 248 262 Dar 292 

One-sided Two-sided n = 46 A n= 48 n = 49 n= 50 

P= 0:05 P=0.10 389 408 427 446 466 

P= 0.025 P= 0105 361 379 397 415 434 

a0 Oil E002 329 345 362 380 398 

P = 0.005 P=0.01 307 323 339 356 B78) 

i nnn nnn LEE 

From Beyer, W. H. (ed.), in CRC Handbook of Tables for Probability and Statistics, 2d ed., 1968. Copyright CRC 

Press, Inc., Boca Raton, Fla. 
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TABLE IX 

F distribution 

Column heading = numerator 

degrees of freedom 

Row heading = denominator 

degrees of freedom 

i Points given are f ;, points 

For degrees of freedom > 120, 
ip use row or column 120 

PIF, », =f1= -90 

LS O 862M IS 00S S59 3Sorea5 : ; : i E 
2) 8.520) 91000) 9 9162" 91243 7 9'293) 5) 9.32699 9:349 9367 9381 01392 
3 2:03 8m 5:40298 5:39 3455 5.509 BD. 285 e200 mee ee 4 OT 
4 4545 4.325 4.191 4.107 4.051 4010 3.979 3.955 3.936 3.920 
5 4.060) "3.78055 3:61.99 93520) 34539 3.405 336088 5559 eo Lomein 
6 3 110) 3403 931289 S181 3, LOS 3.055) rs. 014 e085 2050 mee. 05 7 
ii B89 E5325) sans 074) 2-961 2:88 aie 2821 22785 ee oe eee eS 
8 3.45 Sig Sn 3h e024 2.806 e220) 2.005 mee2024 me OS Ome OO! 2.538 
9 3/300 se OCG me. 5 Sie 22093 ann 2:0 1 mee 5). Sam 2G mn 4} (DL 

10 3.282924 52128 oe 2.005 see 2.52 ee 2 4 Ole A OS 
1] 3.2255 2-800) 52:600 92536) 2.45 2/3892 3422304 en ee O48 
12 S17 e280 2.0068 82-480 fe 2.394 52) 33 2285) oe 
13 3-136" 92.763" 7 2.560) 2-434" 2.347 2283522342195) 2.164 38 
14 Sol O2 2/20) 2522 2.395 2.5 ed 24 eee 05 meen 4 ee oe (JO 
15 S073 92695 952-490 95 2:36) 92.2735 2-208 eee Skee Oe OSGI SO 
16 3.048 2.668 2.462 2.333 2.244 2.178 2.128 2.088 2.055 2.028 
17 302088 2.645, e243 2 23089 2:21.85 22152 e102 ee OG 1a 02 SmmmE OO 
18 S00 Tae 2 O24 a2. 4 Ole 2-2 86m ee. 96515070 mmmee O38 eo 005 EST /F) 
19 Pree AAS ey Pe Pes alr OEY ie Re 1.956 
20 2,9] ae 59 wee. SOON 82249) eee SOD 09 Lae O40 1999 See 965 1.937 
PA SRM Waisy Peetey PPR EBS RY pe 1.982 1.948 1.920 
22 2.949 2.561 2S. eee 9 eee 25 ee. OO LN OOS stew) ae Fe} 1.904 
23 DOS 2049 e359 ee) eee Dee OA: mel OO 5 L953) L919 1.890 
24 PIL Piety Prev | ashy “eile Moe by (lueyse' 1.94] 1.906 1.877 
25 PRN PIPERS PRSMIGE 9 2: 2 He .895 
26 2002) LON mee 3) mee 2 I 
P| 2:9) eee i Pa pepo Me 
28 PRL Pree) ~ PPX Py L 
29 Pye) OY PRY Oo) Ly 
30 2. OOUME 2489) m2.2 70) es ; 
3] 210) SOS eae OO 
32 PMS) PLC NON Sy Ol, 
343) 2.864 2.471 PEP IS See Ps 
34 yiweks —Pateloye | kpksyh (9). 
3p) 2.855 2.461 Delle ek 
36 PEO) PMD PT PYEY pk 
2i/| TENSEI SY pie PG aw PAP Note Ph 
38 2i0A2 mm e448 22348 2" 
39 2039 ee 444) T2523) os 

2, 2.440 2.226 2. 
2 PHONG Ph on 

PRESEN i) 2 
Page 2 Ihe 



TABLE IX 

F distribution (continued) 

STATISTICAL TABLES 705 

10 

11 

60.473 

9.401 

73) 

3.907 

3.282 

2.920 

2.684 

eM) 

2.396 

2.302 

DPD 

2.166 

2.116 

2.073 

2.037 

2.005 

1.978 
1.954 

1.932 

il oMts: 

1.896 

1.880 

1.866 

SDS 

1.841 

1.830 

1.820 

1.811 

1.802 

1.794 

1.787 

1.780 

ine 

1.767 

1.761 

1.756 

il 

1.746 

1.741 

a 

1eOS 

1.680 

InG25 

12 

60.705 

9.408 

>) ZIK9 

3.896 

3.268 

2.905 

2.668 

2.502 

23119 

2.284 

2.209 

2.147 

2.097 
2.054 

2.017 

1.985 

1.958 

W333) 
SP 

1.892 

1.875 

12859) 

1.845 
1.832 

1.820 

1.809 

hp 

1.790 
1.781 

S73 

1.765 

1.758 
IWMI 

1.745 

ee 

1.734 

PD 

1.724 

WIA) 

VANS 

1.680 

1.657 

1.601 

13 

60.903 

9.414 

5.210 

3.886 

S25 

2.892 

2.654 
2.488 

2.364 
2.269 

293 

2aleil 

2.080 

2.037 

2.000 

1.968 

1.940 

1.916 
1.894 

1.875 

1.857 
1.841 

1.827 

1.814 

1.802 

1.790 

1.780 

AN 

1.762 

1.754 

1.746 

1.739 

e732 

1.726 

1.720 

Als) 

1.709 
1.704 

1.700 

1.695 

1.660 

1.637 

1.580 

14 15 16 

CIO72 SS OlE22 0 Ol 50) 

9.420 9425 9.429 

5.205 5.200 5.196 

3.878 3.870 3.864 

3.24) 238 3.230 

2, SOO) Le OOS 

2.643 2.632 2.623 

2.475 2.464 2.455 

ayy PE BYNOY BYE) 

2.255 2.244 2.233 

NTS) DNS DSS 

BANG WO) PAO) 

2.066 2.053 2.042 

222 es O LO eR OS)S 

1.985 WL NASEyIl 

[953 1.940 1.928 

1.925 O12 O00 

SOO) LA Lava 

1.878 ESOS lecoZ 

1.859 1.845 1.833 

1.841 ES 27s oils 

1.825 1.811 1.798 

1.811 1.796 1.784 

ih lS ee) 

1.785 1.771 1.758 

AES TAKS) AN WA 

1.764 WES XS 

ee NAO) TeX 

1.745 ag EAH 

PAKS 

729 ey 0) 

22,07] O94. 

TSS 1.700 1.687 

1.709 1.694 1.680 

1.703 1.688 1.674 

1.697 1.682 1.669 

11692 LO een EOOS 

1.687 1.672 1.658 

[kG Sune OO/MEEILOOS 

1.678 1.662 1.649 

1.643 1.627 1.613 

1.619 1.603 1.589 

IS iS ito) 

17 

61.464 

9.432 

18 

61.566 

9.435 

S110) 

3.853 

a) Py 

2.848 

2.607 

2.438 

2.312 

22D 

2.138 

2.075 

2.023 

LOW 

1.941 

1.908 

1.879 

1.854 

1.831 

1.811 

798 

No 

1.762 

1.748 

1.736 

1.724 

1.714 

1.704 

1.695 

1.686 

1.678 

1.671 

1.664 

1.657 

1.651 

1.645 

1.640 

1.635 

1.630 

19 

61.658 

9.438 

5.187 

3.849 

S22 

2.842 

2.601 

2.431 

2.305 

2.208 

2.130 

2.067 

2.014 

1.970 

E82 

1.899 

1.870 

1.845 

1.822 

1.802 

1.784 

1.768 

793) 

78S 

1.726 

Ws 

1.704 

1.694 

1.685 

1.676 

1.668 

1.661 

1.654 

1.647 

1.641 

1.635 

1.630 

1.624 

1.619 

1.615 

1.578 

S53 

1.493 

De 
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TABLE IX 

F distribution (continued) 

1 | 61.815 61.882 61.945 62.002 62.054 62.103 62.148 62.189 62.228 62.265 

2 9.444 9446 9448 9450 9451 9.453 9.454 9.456 9.457 9.458 

3 Seles SILO! Ilyas SIN oy ial) SENG) II SIINTAD) Shall) 1.168 

4 3.841 3.837 3.834 3.831 55620 5.020) O21 ens 6 eS cy Omen O17 

5 Se PAO, IMSS SITIO af TI) Or LS (eo Lo 4 oe uo Sem) Bille) BIE 

6 2, 55 eo MnO) Sane OL Om LL OOS 8) nc Ee) 

7 Piste) PeOLE  Phayelt) ~ We) eval PsSleto3 Yeh Yall — Syst BSB TS' 

8 2419 E244 2409" S2A045 24005 92.396 7 02.392 2389 2 80 mee 8S 

9 PRS PPR PEPE PL PAH ONO PL PLR PAPHOS PENN) ORY IBS 

10 Ppt EES Pile) Petey UCI RSy PANIES PR IMGKO) ALAN tes Me Ie) IBIS 

11 Pilg Pelli 2.105 22100 2.095" 2091 2 087 2083 2080 62.076 

2 2205 321047 e204 12 03 62 031 e227 ee) 2 mee?) Ome () cme O10 

13 2.000 994 12988 1983 L973 ee O73 L209 1.965 1.961 1.958 

14 OS De 4 9 1943 O38 Bey NORE  bdees) 1S 16 Ie be? 

15 WAS TSA PO Ooo LO O4 EO ome S80 S Gules a3 

16 1.884 1.877 1.871 SOOT SOUMr SSeS SI 1.847 = 1.843 1.839 

17 IES 5) 84.0 eel) ele SOO mmmlEga ligeptey ——tlefeslh 1817 «1-813 1.809 

18 1329) 182355 IES 16 1810 a 805 S00 1795 1.791 1.787 1.783 

19 1.807) 1800) 793 17877 Wd TAA lier) INTkey AN TAes! By) 

20 11, Om ai OE 1.761 lieve: © dle Feil 1.746 1.742 1.738 
21 LOS sels 761 1.754 1.748 bead 13) leis2 128) 23 IRAN, 
ip Leo i443 e731 L205 15/20 Seles ia) 1.706 e202 
23) Le30- D729 sh 720 1716 | AL T10— SATS) 700 © i695 er ool 1.686 
24 (7A eA 1.708 1.702 1.696 1.691 1.686 = 1.681 G7 Ose lO72 
25 eA) S70 150950 O89 e-GS3 yee O7 8 a lnG 7 1.668 1.663 1.659 
26 1.698 1.690 1.684 1.677 1.671 1.666 1.660 1.656 1.651 1.647 
27 1.687 1.680 1.673 1.666 1.660 1.655 1.649 1.645 1.640 1.636 
28 1.677 1.669 1.662 1.656 1.650 1.644 1.639 1.634 = 1.630 1.625 
29 1.668 1.660 1.653 1.647 104.0 e135 alc 030 same O2 5am O20) 1.616 
30 650 cool 1.644 = 1.638 1032) 16265 1.62) 1616 1.611 1.606 
31 1.651 1.643 IResiets) —IMevekO) ales} alae Ilene 1.607 1.602 1.598 
oD 1.643 1.636 1.628 1.622 1616 1.610 1.604 09 ele 1.590 
313) 1.636 1.628 1.621 1.615 1.608 1.603 1.597 WesKee Ab Sksi7/ 1.583 
34 1.630 1.622 1.614 = 1.608 1.601 1596 1.590 1585 15580 1.576 
3b) Io) INe 1.608 1.601 evs) llete alate! yA aay! 1.569 
36 1.617 = 1.609 WO, thesis eSXeKeyesystst IL Shite! IWS llesteyy! 1.563 
37 1.612 1.604 Isseekey — llreYeTO oulbstiss —ilsi/yh  alesayde 1S C7 aeemnlieS Oa Losi 
38 1.606 = 1.598 Ihopeut 1.584 ewkse sayy il ster 1.561 1.556 Losil 
39 1.601 IN ohe}s! royetee ile a7) Woweck  ils(ey/ ales yell 15 OAS) 1.546 
40 1.596 = 1.588 1.581 1.574 steps isle? il Stole: Fey 1.546 1.541 
50 Ihave) ileeyeul 1.543 1.536 To29 2 313523 ei, esubee tL SOW 1.502 
60 1.534 1.526 Weoyllisy a) Suil 1.504 1.498 1.492 1.486 1.481 1.476 

120 1.472 1.463 1.455 1.447 1.440 = 1.433 1.427 1.421 1.415 1.409 Se 
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TABLE IX 

F distribution (continued) 

31 32 SB) 34 35 36 Syl 38 39 40 

62.298 62.330 62.361 62.389 62.415 62.441 62.464 62.487 62.508 62.528 

9.459 9460 9461 9.462 9.463 9463 9464 9465 9.466 9.466 

SGV Sal Silos Silke! Sil} Sil Sey Soil SAMO) Ske 

SSI Befhilah —BheeSINPE BN eaSIUTI 3.810 3.808 3.807 3.806 3.805 3.804 

B72 Bi - SKS SII BS SMG} BIOSIS) SE Sh ISI 

DTS 2S DEB DTI PTSD STIS, = IRS TB LTRS 3) PETAL 

DSSS DS DSS DSHS Deysb Dey) Isl) Najete) Pasi PSss 

DAS DSi Des RSs Des ISS) AAS whos) aslo) Za o)Il 
DO DNS) — Do — DY YN OYA) DIES BO) PIB BBV 

10 DAG BN) Pe —wilaiel Dale) Ne) IS AISI) IB PEI 

11 DWE DO) ANN OW BINS) PW) Aes Wisi 2W0svi Wey? 

12 2008 fae 2. 005: 200202000 1.997, 11-9955 1992512990 21-988 28 17936 

13 1.954 1.951 194 Sl 945i 943940938 936) 934 9S) 

14 10) ee 0) 1.902 1.899 1.897 1.894 1.892 1.889 1.887 1.885 

15 1c869n 1.866 9511-863 1.860 1.857— 1.855. 1852. 11850) 1.848. 9 18845, 

16 [ERG Samet SS2 Neel O29 mee t-820 melee? 1) 182005 1815 Sel 1S eal S13 Sees it 

17 1:805mel S02 1799 et 796 793 790 1788 2 7859 1785 78h 

18 WAT aie ae MSD lek lakes AL 5 Seale S Ome leg + 

19 (e750mmL 52am 49 eel 460 17439 12740 Bess les 5732) P1730 

20 NoWeyb  e rBil G/L + ee Le 7S cil) eyes He ailal 1.708 

ail GAS ee TO 708 705) 1-702. 8 1699 SIE 96 694 aii Ol 1.689 

ap 1.698 1.695 1.691 L688.) 1685. 1.68205 1679 5676 074" 5 G71 

23 1.68308 1.679) 91.675 1.672 1.669 1.666 9 1663 1660 1053 «1-055 

24 1.668 1664 1.661 1.658 1.654 1.651 1.648 1.646 1.643 1.641 

25 gsi Le(hih 1.648 1644. 1641 «1.638 1635" 1.632" «1-630 | 1.627 

26 15643 eee 15639. 0358 el 6320) 1.62999 1.6260) 1262355 1-620 9 1617 G15 

Pil G32 1628 1.624 1.621 1.617 1.614 1.611 1.608 1.606 1.603 

28 1.621 1.617 1.614 1.610 1.607 1.604 1.601 1259 See neo 2 

29 1.611 1,607 1.604 1.600 1597 1.594" 1.591 LSS StS) TTS) 

30 162 i513 isis) st) 1583 ul 585k S822 ele o) 276 we eats 

31 10594 eee 0 ele SOMES 82 1-579) ol 57Gie alco 32 elo 0 WE 507 © 156) 

32 1586 i152 ists Iss ile 1568 ISS IL562 iss) IS 

33) SS SA iL yal 1567) 15647" 1-560") 15557- "i554, 155i 1.549 

34 svi 1.567 1564915600 91556 165535 155507 547 1544 154 

35 estes) th saxeyl 1557) wles53 1) 1-550) 1.546gel25435 a 9l540 © 9 2537 L535) 

36 1559 1554 1551 SAT 1543 9 1.5408 37a i534 rool 1.528 

Sul 1663 i153 sé) Tesyaul 1.537 1.534 = 1.531 1523 i1se5 ilsw 

38 1.547 1.543 1539 e535 weet 32 oe .O2 Sam alee oe wale dc2 = GLO © 1516 

39) i540 eo ni 538en 53401530. 1526.) 152398 1520 91517 Sols Pil 

40 156 jee) 3 2eee 280 LZ) ish Ie 511 Sieeleoils Ie oyl bt 1.508 1.506 

50 1.497 1.493 1.489 1.485 1.481 1.477 1474 1471 1468 1.465 

60 1.471 1466 1.462 1.458 1.454 1450 1447 1444 1440 1.437 

120 TAA Men 309neen1 395 618390 91386) 13829) 1378) 2315 ha7T 1.368 

| 

OMONADMHFWN eK 
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TABLE IX 

F distribution (continued) 

1 | 62.688 

2 9.471 

3 ays a)3) 

4 3S 

3 3.147 

6 2.770 

7 Zo28 

8 2.348 

9 2.218 

10 LMT 

11 2.036 

12 1.970 

ils) ILQvILS) 

14 1.869 

15 1.828 

16 TA) 

17 1.763 

18 1.736 

19 Neale 

20 1.690 

21 1.670 

BD 1.652 

ap 1.636 

24 1.621 

es) 1.607 

26 1.594 

oT 1.583 

28 eS] 2 

29 1.562 

30 IL Sr 

atl 1.543 

32 1939 

33 ee 

34 1.520 

35 iowtts} 

36 1.506 

Sy 1.500 

38 1.494 

ay 1.488 

40 1.483 

50 1.441 

60 1.413 

120 1.340 

62.793 

9.475 

Saloil 

3.790 

3.140 

2.762 

2.514 

Deshaky 

2.208 

DANO) 

2.026 

1.960 

1.904 

1.857 

1.817 

1.782 

E/E 

15728 

EGOS 

1.677 

1.657 

1.639 

1.622 

1.607 

03) 

1.581 

1.569 

1.558 

1.547 

1.538 

ia29 

a2 () 

sly 

1.505 

1.497 

1.49] 

1.484 

1.478 

1.473 

1.467 

1.424 

i390 

1.320 

63.060 

9.483 

5.143 

3) US 

lls} 

2.742 

2.493 

2.316 

2.184 

2.082 

2.000 

E932 

1.876 

1.828 

1.787 

el 

eo 

1.691 

1.666 

1.643 

1.623 

1.604 

1.587 

Lesa 

I S1y/) 

1.544 

lheesyerll 

1.520 

1.509 

1.499 

1.489 

1.481 

1.472 

1.464 

1.457 

1.450 

1.443 

1.437 

1.431 

1.425 

sia") 

1.348 

1.265 
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TABLE IX 

F distribution (continued) 

Column heading = numerator 

degrees of freedom 

Row heading = denominator 

degrees of freedom 

Points given are f; points 

For degrees of freedom > 120, 

use row or column 120 

1 161.448 199.500 215.707 224583 230.161 233.985 236.768 238.882 
2 18.513 19.000 19.164 19.247 19.296 19.329 1953 LOA 
3} 10.128 spy O21 SW 9.013 8.941 8.887 8.845 
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 
5 6.608 5.786 5.409 al92 5.050 4.950 4.876 4.818 
6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 
7 509)! 4.737 4.347 4,120 Soi, 3.866 3.787 3.726 
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 
9 SIU) 4.256 3.863 3.633 3.482 3.374 3.293 3.230 

10 4.965 4.103 3.708 3.478 3.326 Say Bass 3.072 
11 4.844 B82 3.587 33 3.204 3.095 BLONe 2.948 
12, 4.747 3.885 3.490 BY) 3.106 2.996 AOS: 2.849 
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 
14 4.600 39) 3.344 3) 2.958 2.848 2.764 2.699 
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 
16 4.494 3.634 8239 3.007 2852, 2.741 2.657 71 -So)i| 
Uy 4.451 Bio Zl 2.965 2.810 2.699 2.614 2.548 
18 4.414 55 3.160 2.928 MIE 2.661 DST T 2.510 
19 4.381 B22 Sh) 2.895 2.740 2.628 2.544 2.477 
20 4.351 3.493 3.098 2.866 AGT 2599 2.514 2.447 
21 4.325 3.467 3.072 2.840 2.685 De) 2.488 2.420 

a) 4.301 3.443 3.049 Ase 2.661 2.549 2.464 3] 

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 PMS 

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 255 

25 4.242 3) 3h85 2.991 2 32) 2.603 2.490 2.405 Mest 

26 4.225 3.369 OTS 2.743 2.587 2.474 2.388 23M 

27 4.210 3.354 2.960 2.728 Deo, 2.459 2315 2.305 

28 4.196 3.340 2.947 2.714 2.598 2.445 Za) 2.291 

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 

aul 4.160 3.305 DOI 2.679 Asyis) 2.409 2.343) LIS 

32 4.149 8295 2.901 2.668 M2) 2a 99) Dols 2.244 

33 4.139 3.285 2.892 2.659 2.503 2.389 2.303 DAIS 

34 4.130 3.276 2.883 2.650 2.494 2.380 2.294 epi7ls) 

85 4.121 3.267 2.874 2.641 2.485 DP 2.285 AIM 

36 4.113 Ay) 2.866 2.634 2.477 2.364 2 2.209 

Sy) 4.105 3292 2.859 2.626 2.470 2.356 2.270 2.201 

38 4.098 3.245 2.890 2.619 2.463 2.349 2.262 2.194 

39 4.091 3.238 2.845 2.612 2.456 2.342 DROS) 2.187 

40 4.085 B32 2.839 2.606 2.449 2.336 2.249 2.180 

50 4.034 3) lleh3) 2.790 Deo 2.400 2.286 DNS) 2.130 

60 4.001 3.150 2HIDS SD 2.368 2.254 2.167 2.097 

3.9301 3.072 2.6681 2.447 BADD BoM) 2.087 2.016 
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TABLE IX 

F distribution (continued) 

9 10 11 12 13 14 15 16 

240.543 241.881 242.983 243.905 244.689 245.363 245.949 246.462 

19.385 19.396 19.405 19.412 19.419 19.424 19.429 19.433 

8.812 8.786 8.763 8.745 PAS) Sls 8.703 8.692 

5.099) 5.964 5.936 D9 1, 5.89] 5.873 5.858 5.844 

4.772 4.735 4.704 4.678 4.655 4.636 4.619 4.604 

4.099 4.060 4.027 4.000 3.976 3.956 3.938 3.922 

3.677 3.637 3.603 Spa 3.550 S29 3.511 3.494 

3.388 3.347 3.313 3.284 31259 B23 / 3.218 3.202 

SIM) Selly) 3.102 3.073 3.048 3.025 3.006 2.989 

3.020 2.978 2.943 2.913 2.887 2.865 2.845 2.828 

2.896 2.854 2.818 2.788 2.761 2.739 2S 2.701 

210 23 PA TAU 2.687 2.660 2.637 2.617 299 

2.714 2.671 2.635 2.604 OMT) 2.554 Po RS Pas: 

2.646 2.602 2.566 2.534 2.507 2.484 2.463 2.445 

2.588 2.544 2.507 2.475 2.448 2.424 2.403 2.385 

2.538 2.494 2.456 2.425 PSN) 21393 2352 23333 

2.494 2.450 2.413 2.381 Pips YS, 229 2.308 2.289 
2.456 2.412 2.374 2.342 2.314 2.290 2.269 2.250 
2.423 2.378 2.340 2.308 2.280 2.256 2.234 22215 
Peskehs; 2.348 2.310 2.278 2.250 2225 2.203 2.184 
2.366 VA 2.283 2.250 Doo 2197 2.176 Pal lele 
2.342 2.297 PROFS?) 2.226 2.198 PPa 2151 2.131 
2.320 21D 2.236 2.204 2.175 2.150 2.128 2.109 
2.300 RIS 2.216 2.183 2.155 2.130 2.108 2.088 
2.282 2.236 2.198 2.165 2.136 2.111 2.089 2.069 
2.265 2.220 2.181 2.148 2119 2.094 2.072 2.052 
2.250 2.204 2.166 22132 2.103 2.078 2.056 2.036 
2.236 2.190 2.151 2.118 2.089 2.064 2.041 2.021 
2225 PrN ET 2.138 2.105 2.075 2.050 2.027 2.007 
APA 2.165 2.126 2.092 2.063 2.037 2.015 1.995 
2AL99 253 2.114 2.080 2.051 2.026 2.003 1.983 
2.189 2.142 2.103 2.070 2.040 2.015 1.992 II hae: 
2.179 Pedi) 2.093 2.060 2.030 2.004 1.982 1.961 
2.170 £123 2.084 2.050 2.021 1.995 LOT2 O52 
2.161 2.114 2.075 2.041 2.012 1.986 1.963 1.942 
2.153 2.106 2.067 2.033 2.003 OTT, 1.954 1.934 
2.145 2.098 2.059 2.025 1.995 1.969 1.946 1.926 
2.138 2.091 2.051 2.017 1.988 1.962 1.939 1.918 
peal 2.084 2.044 2.010 1.981 1.954 1.931 | 
2.124 2.077 2.038 2.003 1.974 1.948 1.924 1.904 
2.073 2.026 1.986 1.952 1.921 1.895 1.871 1.850 
2.040 1.993 oe 1.917 1.887 1.860 1.836 1.815 
1.959 1.910 1.869 1.834 1.803 HIMES 1.750 1.728 
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TABLE IX 

F distribution (continued) 

1 246.917 247.322 247.685 248.012 248.308 248.577 248.824 249.051 

2 19.437 19.440 19.443 19.446 19.448 19.450 19.452 19.454 

3 8.683 8.675 8.667 8.660 8.654 8.648 8.643 8.639 

4 D832 5.821 5.811 5.803 5) 5,737 5.781 5.774 

5 4.590 4.579 4.568 4.558 4.549 4.541 4.534 4.527 

6 3.908 3.896 3.884 3.874 3.865 3.856 3.849 3.841 

7 3.480 3.467 3.455 3.445 3.435 3.426 3.418 3.411 

8 3.187 3.173 3.161 3.150 3.140 3) IB} Bas SIS) 

9 2.974 2.960 2.948 2.936 2.926 SMT] 2.908 2.900 

10 2.812 DY TPSKs) 2.785 2.774 2.764 2.754 2.745 PTs) 

11 2.685 2.671 2.658 2.646 2.636 2.626 2.617 2.609 

12 2.583 2.568 DED 5) 2.544 233) 22) 2.514 PROS 

13 2.499 2.484 2.471 2.459 2.448 2.438 2.429 2.420 

14 2.428 2.413 2.400 2.388 Prove 2.367 235i) 2.349 

15 2.368 7233) 2.340 2.328 2.316 2.306 PROT 2.288 

16 Proil@l 2.302 2.288 2.276 2.264 2.254 2.244 DIB 

9) DPD) Arey 2.243 2.230 APN) 2.208 NSIS) 2.190 

18 DPSS PNG 2.203 7). /NGYIh DUS, 2.168 DMS) 2.150 

19 2.198 2.182 2.168 2.156 2.144 Zale M3) 2.114 

20 au T Pap\lyi Palsy 2.124 eM AP) 2.102 2.092 2.082 

21 DMs) 2.123 2.109 2.096 2.084 2.073 2.063 2.054 

22, 2.114 2.098 2.084 2.071 2.059 2.048 2.038 2.028 

23 2.091 2.075 2.061 2.048 2.036 2.025 2.014 2.005 

24 2.070 2.054 2.040 2.027 2.015 2.003 1.993 1.984 

25 2.051 2.035 2.021 2.007 1.995 1.984 1.974 1.964 

26 2.034 2.018 2.003 1.990 1.978 1.966 1.956 1.946 

Zi 2.018 2.002 1.987 1.974 1.961 1.950 1.940 1.930 

28 2.003 1.987 OT 1 OSe 1.946 F935 1.924 ils 

29 1.989 OTS 1.958 1.945 1932 iL Sy2 1.910 1.901 

30 1.976 1.960 1.945 BD LON 1.908 1.897 1.887 

31 1.965 1.948 1BO33 1.920 1.907 1.896 1.885 1.875 

32 1.953 Oey O22, 1.908 1.896 1.884 1.873 1.864 

38) 1.943 . 1.926 1.911 1.898 1.885 1.873 1.863 1.853 

34 1933) iL My) 1.902 1.888 1.875 1.863 1.853 1.843 

55 1.924 1.907 1.892 1.878 1.866 1.854 1.843 1.833 

36 IEOTIES 1.899 1.883 1.870 1.857 1.845 1.834 1.824 

Bi) LOO 1.890 1.875 1.861 1.848 1.837 1.826 1.816 

38 1.899 1.883 1.867 1.853 1.841 1.829 1.818 1.808 

39) 1.892 1.875 1.860 1.846 1.833 1.821 1.810 1.800 

40 1.885 1.868 1.853 1.839 1.826 1.814 1.803 1.793 

50 1.831 1.814 1.798 1.784 ah 739 1.748 Ih 3 

60 1.796 1.778 1.763 1.748 Nees) 722 7A 1.700 

120 1.709 1.690 1.674 1.659 1.645 1.632 1.620 1.608 

SS 
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TABLE IX 

F distribution (continued) 

] 249.258 249.451 249.629 249.795 249.949 250.093 250.228 250.355 

2 19.456 19.457 19.459 19.460 19.461 19.462 19.463 19.464 

3 8.634 8.630 8.626 8.623 8.620 8.617 8.614 8.611 

4 5.769 5.764 2) Jae 5.754 5.750 5.746 5.742 3/39 

5 4.521 4.515 4.510 4.505 4.500 4.496 4.492 4.488 

6 3.835 3.829 3.823 3.818 3.813 3.808 3.804 3.800 

7 3.404 2h) 5391 3.386 3.381 3.376 S371 3.367 

8 3.108 3.102 3.095 3.090 3.084 3.079 3.075 3.070 

2 2.893 2.886 2.880 2.874 2.869 2.864 2.859 2.854 

10 2.730 212 2.716 2.710 2.705 2.700 2.695 2.690 
1] 2.601 2.594 2.588 2.582 2.576 2.570 2.565 2.561 
12 2.498 2.49] 2.484 2.478 2.472 2.466 2.461 2.456 
13 2.412 2.405 2.398 2.392 2.386 2.380 2.375 2.370 
14 2.341 2.333 2.326 2.320 2.314 2.308 2.303 2.298 
15 2.280 2212 2.265 D209 2253 2.247 2.241 2.236 
16 Dee Ms| Be 2) PLAN! 2.206 2.200 2.194 2.188 2.183 
7 2.181 2.174 2.167 2.160 2.154 2.148 2.142 ZS 
18 2.141 2.134 2.126 2.119 2.113 2.107 2.102 2.096 
19 2.106 2.098 2.090 2.084 2.077 2.071 2.066 2.060 
20 2.074 2.066 2.059 2.052 2.045 2.039 2.033 2.028 
21 2.045 AOS '7) 2.030 2.023 2.016 2.010 2.004 1.999 
PI 2.020 2.012 2.004 1997 1.990 1.984 1.978 1.973 
23 1.996 1.988 1.981 1.973 1.967 1.961 95S 1.949 
24 POTS 1.967 1.959 BOS? 1.945 12939) 1-933 1927 
25 E95 1.947 15939 1932 1.926 L919 1.913 1.908 
26 1.938 1.929 1.921 1.914 1.907 1.901 1.895 1.889 
A} 1.921 IL euts: 1.905 1.898 1.89] 1.884 1.878 1.872 
28 1.906 1.897 1.889 1.882 1.875 1.869 1.863 1.857 
29 1.89] 1.883 1.875 1.868 1.861 1.854 1.848 1.842 
30 1.878 1.870 1.862 1.854 1.847 1.841 1.835 1.829 
Sl 1.866 1.857 1.849 1.842 1.835 1.828 1.822 1.816 
32 1.854 1.846 1.838 1.830 1.823 1.817 1.810 1.804 
23! 1.844 1.835 1.827 1.819 1.812 1.806 1.799 93 
34 1.833 1.825 1.817 1.809 1.802 IOS 1.789 1.783 
35 1.824 1.815 1.807 1.799 1.792 1.786 1.779 7h! 
36 1.815 1.806 1.798 1.790 1.783 1.776 1.770 1.764 
oy) 1.806 1.798 1.789 1.782 Li 1.768 1.761 1.755 
38 1.798 1.790 1.781 1.774 1.766 1.760 We D3 1.747 
39 1.79] 1.782 1.774 1.766 1.759 yey 1.745 1.739 
40 1.783 1.775 1.766 1.759 1.751 1.744 1.738 32, 
50 1.727 1.718 1.710 1.702 1.694 1.687 1.680 1.674 
60 1.690 1.681 1.672 1.664 1.656 1.649 1.642 1.636 
120 1.598 1.588 1.579 1.570 1.562 1.554 1.547 1.540 
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Table IX 

F distribution (continued) 

250.474 250.586 250.691 250.793 250.886 250.975 251.061 251.141 

y) 19.465 19.466 19.467 19.468 19.468 19.469 19.470 19.470 

3 8.609 8.606 8.604 8.602 8.600 8.598 8.596 8.594 

4 nfs) SV 29) Si 5.724 D/L) Do) Soy 

3) 4.484 4.48] 4.478 4.474 4.472 4.469 4.466 4.464 

6 3.796 Je SSS) 3.786 3B) 3.780 SH) 3.774 

7 3.363 3.3) B20 3,382 3.349 3.346 3.343 3.340 

8 3.066 3.062 3.059 3.055 3.052 3.049 3.046 3.043 

©) 2.850 2.846 2.842 2.839 PISS) 2.832 2.829 2.826 

10 2.686 2.681 2.678 2.674 2.670 2.667 2.664 2.661 

11 P10) 2) 2.548 2.544 2.541 PROM 2.534 Dol 

12 2.452 2.447 2.443 2.439 2.436 2.432 2.429 2.426 

13 2.366 2.361 Ovi] B355 2.349 2.346 2.342 YN) 

14 PEDO8 2.289 2.284 2.280 PPA Dee) 2.270 2.266 

15 DAS) Danoi D928} DANE) DMS PPA 2.208 2.204 

16 2.178 2.174 2.169 2.165 2.161 2.158 2.154 2 NSM 

Va DNS AMDT AND 2) WANG) PLM) MMI 2.107 2.104 

18 2.091 2.087 2.082 2.078 2.074 2.070 2.066 2.063 

19 2.055 2.050 2.046 2.042 2.037 2.034 2.030 2.026 

20 2.023 2.018 2.013 2.009 2.005 2.001 1.997 1.994 

Dh 1.994 1.989 1.984 1.980 1.976 OTD 1.968 1.965 

22 1.968 1.963 1.958 1.954 1.949 1.945 1.942 1.938 

2B 1.944 O28) 1.934 1.930 E925 1.921 1.918 1.914 

24 E922 iLO) OZ 1.908 1.904 1.900 1.896 HES 92 

Ds) 1.902 1.897 1.892 1.888 1.884 1.879 1.876 1.872 

26 1.884 1.879 1.874 1.869 1.865 1.861 il teh) 7 1.853 

27 1.867 1.862 1.857 1.852 1.848 1.844 1.840 1.836 

28 1.851 1.846 1.841 1.837 1.832 1.828 1.824 1.820 

29 1.837 1.832 1.827 1.822 1.818 1.813 1.809 1.806 

30 1.823 1.818 1.813 1.808 1.804 1.800 1.796 D2 

31 1.811 1.805 1.800 1.796 eo 1.787 1.783 No) 

32 7S) 1.794 1.789 1.784 Ing iis) Lal 1.767 

33 NSS. Tess a, ee 1.768 1.764 1.760 1.756 

34 Lei iL 1.767 1.762 RY) I-72) 1.749 1.745 

35 1.768 1.762 ES 52 1.748 1.743 73) 73S) 

36 1.758 733) 1.748 1.743 1.738 1.734 1730) 1.726 

3) 1.750 1.744 1.739 1.734 1.730 25 1.721 iL ALY) 

38 1.741 SG il 7eu 1.726 agp LAY 7A 1.708 

3f9) SS 1.728 23 1.718 gs) 1.709 1.704 1.700 

40 1.726 722i lS) 1.710 1.706 1.701 1.697 1.693 

50 1.668 1.662 1.657 1.652 1.647 1.642 1.638 1.634 

1.630 1.624 1.618 1.613 1.608 1.603 1.599 1.594 

1.534 S27) 1.521 1.516 1.510 1.505 1.500 1.495 
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TABLE IX 

F distribution (concluded) 

l PRM ai Tek PSA Psy) 3)? 

gE 19.475 19.478 19.487 

3 8.581 8.572 8.549 

d 5.699 5.688 5.658 

5 4.444 4.43] 4.398 

6 3.754 3.740 3.705 

7 3), IW) 3.304 3.267 

8 3.020 3.005 2.967 

9 2.803 2.787 2.748 

10 2.637 2.621 2.580 

1] 2.507 2.490 2.448 

12 2.401 2.384 2.341 

13 2.314 PLPRM| 2.252 

14 2.241 PROT? 2.178 

IS) 2.178 2.160 2.114 

16 2.124 2.106 2.059 

17 2.077 2.058 2.011 

18 2.035 2.017 1.968 

19 11 A9}9%2) 1.980 1.930 

20 1.966 1.946 1.896 

21 1.936 1.916 1.866 

22 1.909 1.889 1.838 

28) 1.885 1.865 1.813 

24 1.863 1.842 1.790 

25 1.842 1.822 1.768 

26 1.823 1.803 1.749 

27 1.806 1.785 tneul 

28 1.790 1.769 1.714 

MS, ETAT) 1.754 1.698 

30 1.761 1.740 1.683 

31 1.748 1.726 1.670 

32 1.736 1.714 1.657 

33 1.724 1.702 1.645 

34 IL Alle} 1.691 1.633 

35 1.703 1.681 1.623 

36 1.694 1.671 1.612 

37 1.685 1.662 1.603 

38 1.676 1.653 1.594 

39 1.668 1.645 1.585 

40 1.660 1.637 IRoy/7] 

50 1.599 1.576 WK aylt 

60 1.559 1.534 1.467 

120 1.457 1.429 1.352 
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TABLE XII 

Control chart constants 

Number of 

observations 

in sample, 1 d, d, 

2 1.128 0.853 
3 1.693 0.888 

4 2.059 0.880 

5 2.326 0.864 

6 2.534 0.848 
7 2.704 0.833 

8 2.847 0.820 
9 2.970 0.808 

10 3.078 0.797 

11 Sy bys 0.787 
12 Ete 0.778 

13 3.336 0.770 
14 3.407 0.762 
15 3.472 0.755 

16 S092 0.749 
17 3.588 0.743 

18 3.640 0.738 

19 3.689 0.733 
20 Saas) 0.729 

21 3.778 0.724 
22 3.819 0.720 

23 3.858 0.716 
24 3.895 0.712 

25 B03 0.709 

With permission from ASTM Manual 

on Quality Control of Materials, Amer- 

ican Society for Testing Materials, 

Philadelphia, Pa, 1951. 
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TABLE XIII 

Upper percentage points of the studentized range distribution: 

values of q(0.05; k, v) 

Degrees Number of Treatments k 
of 

Freedom, v 2 3 4 5 6 i 8 9 10 

3 4.50 Sil 6.83 Heol 8.04 8.47 8.85 9.18 9.46 

3.08 5.04 5.76 6.29 6.71 7.06 7395 7.60 7.83 
3.64 4.60 Sy) 5.67 6.03 6.33 6.58 6.80 6.99 

4 

5 

6 3.46 4,34 4.90 Soil 5.63 5.89 6.12 6.32 6.49 

Wl 

8 

3.34 4.16 4.68 5.06 5).315 5).0) 5.80 a) 6.15 

3.26 4.04 4.53 4.89 Dall 5.40 5.60 ey oy 

9 3.20 Bo) 4.42 4.76 5.02 5.24 5.43 5.60 5.74 

10 Ball> 3.88 4.33 4.66 4.9] a2 S310) 5.46 5.60 

11 Sold 3.82 4.26 4.58 4.82 5.03 5.20 5.35 5.49 

12 3.08 Said 4.20 4.5] 4.75 4.95 Syl Do2/) 5.40 

13 3.06 Be 4.15 4.46 4.69 4.88 5.05 al pV 

14 B03 3.70 4.11 4.4] 4.64 4.83 4.99 Soll SS 

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 

16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 Doll) 

17 2.98 3.62 4.02 4.31 4.52 4.70 4.86 4.99 Slit 

18 AN 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 

19 2.96 3.) 3.98 4.26 4.47 4.64 4.79 4.92 5.04 

20 295 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01 

24 2D BS 3.90 4.17 4.37 4.54 4.68 4.81 4.92 

30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83 

40 2.86 3.44 2) 4.04 4.23 4.39 4.52 4.63 4.74 

60 2.83 3.40 3.74 B98 4.16 4.3] 4.44 4.55 4.65 

120 2.80 3.36 3.69 5292, 4.10 4.24 4.36 4.47 4.56 

co eh Bey 3.63 3.86 4.03 4.17 4.29 4.39 4.47 
i ———————_—_—_—_—_______——______________————MGMNvVvc 



722 APPENDIX A 

TABLE XIV 

Factors for two-sided tolerance limits 

l-—a=0.95 

0.90 0.95 0.99 0.90 0.95 0.99 

2 32.019 37.674 48.430 160.193 188.491 242.300 

3 8.380 9.916 12.861 18.930 22.401 29.055 

4 5.369 6.370 8.299 9.398 11.150 14.527 

5 4.275 5.079 6.634 6.612 7.855 10.260 

6 SLT? 4.414 SET 35337) 6.345 8.301 

7 3.369 4.007 5.248 4.613 5.488 7.187 

8 3.136 Bae 4.89] 4.147 4.936 6.468 

9 2.967 Ahoy 4.631 3.822 4.550 5.966 
10 2.839 3.379 4.433 3.582 4.265 5.594 

11 2137 31259 4.277 3.597, 4.045 5.308 
12 2.655 3.162 4.150 3.250 3.870 5.079 
13 2.587 3.081 4.044 3.130 3.127 4.893 
14 JL SVR) 3.012 3,055 3.029 3.608 4.737 
15 2.480 2.954 3.878 2.945 3.507 4.605 
16 2.437 2.903 3.812 2.872 3.421 4.492 
17 2.400 2.858 3.754 2.808 3.345 4.393 
18 2.366 2.819 3.702 2.753 Sea 4.307 
19 AS yeil) 2.784 3.656 2.703 3.221 4.230 
20 2.310 2.752 3.615 2.659 3.168 4.161 
Is) 2.208 3.457 2.494 22742, 3.904 
30 2.140 : 3.350 2.385 2.841 3.135 
a5 2.090 : 3.272 2.306 2.748 3.611 
40 2.052 : 3.213 2.247 2.677 3.518 
45 2.021 5 3.165 2.200 2.621 3.444 
50 1.996 ‘ 3,126 2.162 2.576 3.385 
ay) 1.976 j 3.094 2.130 2.538 5335 
60 1.958 Zz 3.066 2.103 2.506 3.293 
65 1.943 2 3.042 2.080 2.478 S251) 
70 I op) Paps 3.021 2.060 2.454 S25 
1p 1.917 pig) 3.002 2.042 2.433 3.197 
80 1.907 PLP) 2.986 2.026 2.414 Suil7/s' 
85 1.897 PRP 2.971 2.012 2397 3.150 
90 1.889 Pigp) 2.958 1.999 2.382 3.130 
95 1.881 2.24 2.945 1.987 2.368 Sc112 
100 1.874 2233 2.934 1.977 BRS 3.096 
150 1.825 ali 2.859 1.905 2.270 2.983 
200 1.798 2.143 2.816 1.865 2222 2.921 
250 1.780 ph 2.788 1.839 2.191 2.880 
300 1.767 De 2.767 1.820 2.169 2.850 
400 1.749 A 2.739 1.794 2.138 2.809 
500 Neu , 2.121 Vg PIM) 2.783 
600 1.729 é 2.707 1.764 2.102 2.763 
700 NPB 2.052 2.697 1.755 2.091 2.748 
800 1.717 2.688 1.747 2.082 2.736 
900, 1.712 2.040 2.682 1.741 2.075 2.726 
1000 1.709 2.036 2.676 1.736 2.068 2.718 

oo 1.645 1.960 2.576 1.645 1.960 2.576 
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TABLE XV 

Factors for one-sided tolerance limits 

1—a=0.99 

26.260 103.029 131.426 185.617 
7.656 13),.O)5) 17.370 23.896 
5.144 7.380 9.083 12.387 
4.203 5.362 6.578 8.939 
3.708 4.411 5.406 2335 
3.400 3.859 4.728 6.412 
3.187 3.497 4.285 5.812 
3.031 3.241 I) 5.389 
Mil 3.048 3.738 5.074 
2.815 2.898 3.556 4.829 
230 DATA 3.410 4.633 
2.671 2.677 3.290 4.472 

2.615 ASB 3.189 4.337 

2.566 Uy?) 3.102 4.222 

2.524 2.460 3.028 4.123 

2.486 2.405 2.963 4.037 

2.453 Pro 2.905 3.960 

2.423 2.314 2.854 3.892 
2.396 2.276 2.808 3.832 

Py DNS) 2.633 3.601 
2.220 2.030 2.516 3.447 

2.167 1.957 2.430 3.334 

2.126 1.902 2.364 3.249 
2.092 1.857 37) 3.180 

2.065 1.821 2.269 JollZ9 

2.042 1.790 2233 3.078 

2.022 1.764 2.202 3.038 

2.005 1.741 2.176 3.004 
1.990 ee M33} 2.974 

1.976 1.704 DM ay? 2.947 

1.965 1.688 2.114 2.924 

1.954 1.674 2.097 2.902 

1.944 1.661 2.082 2.883 

1.935 1.650 2.069 2.866 

7) 1.639 2.056 2.850 
1.870 Z 1.566 1.97] 2.741 

1.837 1.524 12923 2.679 
1.815 1.496 1.891 2.638 

1.800 1.476 1.868 2.608 
1.645 1.282 1.645 2.326 
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TABLE XVI 

Sample size for two-sided nonparametric tolerance limits 

0.70 0.90 

0.995 336 488 TU 947 R325 1,483 

0.99 168 244 388 473 662 740 

0.95 34 49 77 23 130 146 

0.90 17 24 38 46 64 Tee 

0.85 11 16 DS, 30 42 47 

0.80 y) 12 18 22 Sul 34 

0.75 7 10 ITs 18 24 27 

0.70 6 8 12 14 20 oy) 

0.60 4 6 9 10 14 16 

0.50 3 5 4" 8 11 12 



APPENDIX 

B 
ANSWERS TO 

SELECTED 
PROBLEMS 

Section 1.1 

1. .3; relative frequency 

3. .25; classical 

Section 1.2 

a) 

oom 

Ss ale 
(b) {ccc, ccn, cne, cnn, nec, ncn, nnc, nnn} 

(c) A; = {cce, ccn, enc, cnn, nec, ncn, nnc} 

A, = {ccc} 

A; = {nnn} 

(d) no; yes; yes; no 

(e) no; the eight sample points are not equally likely 
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I (@ 

(b) no 

(c) {c, nc, nnc, nnnc,... }; the list cannot be completed 

(d) {c, nc, nnc, nnnc} = A 

(e) A, = contact is made on the first try = {c} 

A, = contact is made on the second try = {nc} 

Section 1.3 

o; 

Ll. 

iS: 

15; 

17. 

25. 

(a) 362,880 

(Dyet20 

(c) 210 

(d) 30 

(e) 120 

(f) 720 
Case 

(b) 36 

(ew 

(b) 16 

(c) 4 

(d) | 

(a) 5! = 120 

(b) 48 

(a) 126 

(b) 56 

(c) 56 

(d) | 

- (a) 60,480 

(b) 30,240 

» (a) 201/515!1513!2! = 117,327,450,200 

(b) 20!/18!2! = 190 
12!/3!3!3!3! = 369,600 
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3 
27. (a) 3) = 3: {yyn, yny, nyy}; or 3!/2!1! = 3 

(b) 21° = 1024; @) or 10!/7!3! = 120 

CHAPTER I review exercises 

IA, FS Ness 

29. (a) 44 

2D D720 
—- S = y) 30. ( ; *) 3,268,760; ()( ; 775,200 

4 1 
St (S\(e)/( a = 1/6; no, something that occurs by chance with probability 

1/6 is not unusually rare 

32. (a) (26°)10 = 118,813,760 

>! 
(b) ()s = 50 

(eye l/50 
33.216; 21e 1 
34. 15/28 

35d) 

At eat 
NANA y 

(b). OOO; OOF, OFO,7 OFF FOO, FOR FFO, FFF} 

(eA OOOLOOr OF OROFE FOO grOr FEO} 

B = {O00, OOF, OFO, OFF} 

C = {FFF} 

D=0 
(d) no; yes; yes 

(e) impossible event 

(f) 1/8 
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36. (a) 

+ 

‘ 0 

+ 

0 0 

+ 

= 0 

(by 0 faites tO) aes Osten OO. ees 

(Can aa Oe | 

Bete; 00) =} 

Gracia Osis OU) 

(d) no; yes 

(e) The first item selected is not of inferior quality, and both items are of the 

same quality (A’ M B = {+ +, 00}); the first item selected is of inferior 

quality, but the items are not of the same quality (A M B’ = {— +, —0}); 
the first item selected is not of inferior quality, and the two items are not of 

the same quality (A’ NM B’ = {0+ ,0 — , +0, + —}); the first item se- 
lected is of inferior quality, the quality of the first does not exceed that of 

the second, and the items are of the same quality (A 1 C’ 1 B = {— —}) 

(f) The argument is invalid because the nine outcomes are not equally likely. 

37. (a) 

A B (e 

0 12 —| 

| 12 0 

2 —— 17 —— 0 

3 —— 17 —— 0 

4 —— 17 —— 0 

5 —— 17 —— 0 

6 —— 17 —— 0 

7 —— 17 —— 0 

8 —— 17 —— 0 
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a Ore tae (Ll 2) (200190), (35.17, 0). (4. 17, 0)(5,.17, (ONL TO), 
(1 750)h (87: 0), (9, 17, 0)) 

(c) yes 
(d) 5/10 
(e) 1/10 
(f) 9/10 
(g) 1 

38. 180!/515!5!... 5! 'S!5!.. 5} 
36 terms 

Section 2.1 

12/13 

[152813246 

area ak 

A. 

1 Gwe AS 

.004 eat Sl Sed le —_ 

Section 2.2 

13. (a) 30/58 
(b) 28/58 
(@)eloeoreme 12 

(d) 10/42 

(e€) no; exposure to the lethal dose should increase the probability of death 

15. 5/35; 35/40 
Ws Cea BS) 

(b) 1/80 
(c) .04 
(d) 4/20 
(e) .84 

Section 2.3 

19. no; P[A, 0 A,] = .2 # PIA, JPIA.] 
21. (.39)? = .15 
235:(a) 21 

(b) 21/23 
25. .085 
27. .0144(.67) + .0012(.33) = .010044 
29. no; P[B|T] + P[B] 
31. .931 
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Section 2.4 

35. .85(.10)/[.85(.10) + .04(.90)] = .7025 

SW EEE) 

CHAPTER 2 review exercises 

38. (a) .85 

(Dye 

(c) 5/20 

(d) 5/10 

39a) 1iZ 

(b) 1/8 

40. .3529; .2353; .2647; .1471 

41. .24; .6; .16 

AZAIG) 0 

(Deas 

(c) 50 

(ay 4/3 

(e) 35/85 

43. (a) .0008 

(b) .0002 

(Gye 

44. (.99)°(.01) = .00970299; .01 + .99(.01) + (.99)?(.01) + (.99)°(.01) 

Section 3.1 

1. not discrete 

3. discrete 

5. not discrete 

Section 3.2 

ont al 

(b) 

x | 0 | Z 3 4 5 

F(x) ti A AP) 98 99 1.00 

(G)mO Seal 

(d) .03 

9. (a) 

i) WwW a6 | 0 | 

fx) G1) EAGLE 3(.9)°(.1) (.9)° 
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3! OO=guy 
(c) 

ee 0 1 q a 

F@ | 001 028 271 °&# 412.00 

(d) .999 
(e) .028 

11. (a) 

ei 1 2 3 4 

f(x) | 16/31 8/31 4/31 Pape 1/31 

(b) F(x) = 0 for any x < 0 

(c) F(x) = 1 for any x > 4 

13. The sum of probabilities is the sum of numbers greater than or equal to 0. 

Section 3.3 

15. (a) 4.96; 26.34 

(bye 73845 1.3185 

(c) holes per bit 

17. 1/.7 = 10/7; 1/p 

21s (a) 

(Dye 17 

(G)aL6 

(d)4 

(e) 64 

(f)8 
(g) 208 
(h) 640 

(i) 0; 1 

Ga 

(k) pA] = 0 and Vay|* 4) =] 

23. (e) 163/60 = 2.7167 

in) 2.00 F 

(g) E[Xj00] = 94.7953 

Section 3.4 

25. (a) success is selecting an unacceptable lot; .05 

(b) fix) = (95)"~ ¥.05) 
SL ee 

e! 
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(d) 20; 780; 380; 19.4936 
(2), 9025 

COS ees 
27. F(x) = 1 — (.95¥ for x, a positive integer; .142625 

31. (b) 24/5 
(ce), CiS)e + 4/s)e* 
ys 116/5 
(g) 4/25; 2/5 

33. (a) Experiment consists of a series of samples, each resulting in an average 

that is too low or an average that is not too low. 

P[success] = .025 is the same for each sample. 

X is of the form, the number of trials needed until the first success is 

obtained 

.025e' 
(b) my(t) = 1 — 975e’ P= in2975 

(c) 4 
S514) et 

= tl 

(b) mx(t) = a ae 

1 = 

() [x] = —“—2 = 

Section 3.5 

Sis 25,6718: yes, FLA. = >| = 0328 

39. (a) p = 1/4 

R 

R es 

< : 
Y — colorblind male 

(Delano a5 

41. (a) .3758 

(b) (.3758)° 

43. (a) my(t) = (pe' + qy" 
45. (a) X = number of successes in one trial 

I 

(b) f(x) = p*q'~* x=0,1 



(c) my(t) = pe’+q 

(d) p; pq 
(e) .14 

47. .02852 

53. 

H 

< 
‘ Se 

h* 
female 

H* 

h ae h* 

when r = 2 and p = 3/8, 

ANSWERS TO SELECTED PROBLEMS 733 

* = hornless female 

E[X] = 16/3; no; P[X = 5] = .6185 

Section 3.7 

Sy VP 
~x=0.1 . 5° | beoal te Se ele 5/20.) ( \z 

20 is) 
57. (a) fix) (2) x=0,1,2,3 

5 
(b) .75; 5033 
(c) 3991 
(d) .6009 

eal 2400 
ie XQ) = se 

Ss Ee = ele 2 enue 20 

20 

600 \/ 2400 \/ 2980 

ay 20( 2) 2 Se 

600 \/f 2400 

5 2D) = zx 3} 

©) 2 3000 
20 

(d) 4114 

59. (a) f(x) = (a 
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Section 3.8 

59. (a) 10 

(b) 10 

G3ULG 
65. yes; P[X > 10] = .043 

67. yes; P[X < 2] = .04 

71. (.0247)° = .000000009 19 

CHAPTER 3 review exercises 

750 2118:.882 
76. (a) 5/4; 15/16 

(b) (3/4) 
(ey BiAye 

77. (a) X is binomial with n = 100 and p = .1; E[X] = 10 

(b) Poisson 

(c) P[X = 17] = .027 

78. P[X <6] = 4662 

84. 

- 5; 61/125; 64/125 
2» 30/2102 105/210 
~ (999/1000)!20° = e~!712°/0! = .000006; .999994 
» yes; PX 5) = 0127 

. (b) 36/14; 98/14 
(c) my(t) = (e+ 4e” + 9e*)/14 
(e) 76/196; \V 76/196 

(aN 
Pigs i | X a positive integer; 

13 

Pax =3)= 1 - PIX=2]=1- FQ) =( 

(b) Poisson, k = 5 

(c) point binomial, p = .3 or binomial, n = 1, p = .3 

. (a) binomial, n = 10, p = .8 

(d) geometric, p = .6 

(e) negative binomial, n = 5, p = 3 

( f ) Poisson, k = 1 

12 
13 
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86. (a) 8: 1.6;\/1.6 
OVS VS 
(@) OBEN ON 
(d) 10/6; 10/9; \V 10/9 

(2) 50/35(G7)/C3)2 = 38.8977 38.89 

yy Leela 
87. (a) f(x) = (.99)~ '(.01) eal 2 eee, 

(b) 100 

(ce) Fix) = 1.99" X a positive integer 

(dae |X = 90) —=1 — 699) = 595 

Section 4.1 

1. (a) 1/6 

(b) 11/48 

(c) 0 

(d) 11/48 

32)(D) 1 es" = 5034:-4966: 0 

(ce) yes, P[1 = X=2])=e4—e 7= 086 
Ss (a )5 

(e) equal; probabilities are constant or “uniform” over intervals of equal 

lengths 

9. (a) 

0 ae 

FO) = (12 as Vane 4 

1 x>4 

(GlmyicsmVeSAU Ices 

dF(x (a) — = fin 
by 

11. (a) 

0 peal) 

F(x) = §x/2a7 Vs x = 2a 

1 Sees Puy 

(Di yes: yes; 0; li yes 

dF () SS = fw 
13. 

0 5 2S 

FO) =< (nix In 25)/Ini2 29) 

1 ie 0) 



736 APPENDIX B 

Section 4.2 

15. 

17; 

19: 
21. 

23. 

(a) 56/18 

(b) 10 
(c) 104/324; \V 104/324 

(a) my (t) = (1 — 102)7! r= Wi) 

(b) 10 minutes 

(c) 100; 10 minutes 

a, 17/3; a/ 

10; 10; X 

(b) Fix) = ae ze) 2 <= LOZ ol 25 : ah are 2 

(eye D033 

(d) 5.364; 4.297 

Section 4.3 

25s (a)e2 

27. 

(b) 5040 

(c) 96 

(d) 1 

(Gimli O22 4 a2.) 

(b) T(n) = (n —1)! fisce 1 

(c) yes, (1) =1=0! 

(d) 14! 

~ (@) fx) = (1/128)x*e 4 x > 0 

(b) my(t) = (L— 41° t< 1/4 
(c) 12; 48; V48 

» m()=(1— Bp"! ~~ t < 1/8; B; PB’ 
. 8647 
cud cere ro 

a 9 — ay 

(b) e~M2J/e-M12 = e— 3/12. same as (a) 

Section 4.4 

SLU 

41. 

(a) .9418 

(b) .9418 

(c) O 

(d) .0582 
(e) 8543 
(f) 1.28 
(aes 

(h) 1.96 

(1) 1.645 

(a) .9544 

(b) 1.24% 

(c) 128 parsecs 
(d) my(t) = €5900F 
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43. (a) .9525 

(b) 5.065 

Section 4.5 

49 Pl 26 = X= 1p <= 2a) = 95 
51. (a) no 

(b) P[|X — p| < 50] = —3, P[|X — p| < lo] = 0, 
a= nl een) SA = lS eae eS 

Section 4.6 

53. (a) yes; .9956 

(b) .0668 

SoZ eyes 

(b) 375 

(a)2.0322 

(d) .0392 

57. .9484; .8413 

Section 4.7 

59. (a) random factors 

(Die R ea. 

(c) R(20) = .6703 

(d) f(x) = .02e7 x>0 

(e) exponential 

(7 ) 0; 2500 

(g) .5488 

65. (a) .9974; .96 

(b) .8812 

(c) .9996 

(d) .8988 © 

(e) III: .9964, V: .999999; .9537 

67. 3 

Section 4.8 

hh Oe aye ys2 
73. felx) = 5/54 59 <x < 69.8 

CHAPTER 4 review exercises 

82. (a) 1/18 
(b) 0;5.4 
(c) 5.4; V5.4 
(d) 35/54; 9/54; 26/54 



KS 

io 2) mn 

86. 
87. 

89. 

APPENDIX B 

(e) 

0 oe SS 

F(x) = 4 (x3 + 27)/54 —3=x 

. PU11) = 10! = 3,628,800 

. (a)a@ = 9 and B = 2 

(b) .01; .10; .725 (chi-squared with 18 degrees of freedom) 

| 1/x-15\/ 
| (a) fa) =e exe| 5 ( 5 Y| 

(b) .0082 
(c) no; P[10 <= X S 20] = .68 by the normal probability rule 

(d) yes; P[X = 30] = .0013 

.7904; e765); 042 
(a) 24 

(b) 122 
(c) 152 
(d) 67 

(e) 4 

(a) f(x) = (2/5)x “e-= 

(b) 3.75 years 

(c) RQ) =e 
(d) .1005 
(e) 2/5 

( f) p(t) is decreasing, so most failures are attributed to early burnout of defec- 

tive modems 

90. 8; .2912; no; P[X = 5] = .1788 
91. Aix) = (3/2) + x, ES ee | 
92. (b) 2; 6; 2 
93. .4892 

94. (a) normal, u = 3, 0° = 16 

(b) gamma, a = 7, B = 3 

(c) chi-squared with 24 degrees of freedom 
(d) uniform, a = 1,b = 3 

(e) standard normal 

( f)exponential, B = 7 
(g) normal, u = 3,07 = 

2 S516 

(b) 21; 63 
(c) 24; 48 

(d) 1; 4/2 

(e) 0; 1 

(f)7; 49 
(g) 3; 1 
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Section 5.1 

1, 

11. 

13. 

- (db) fx) = fy(y) = In 

(a) .005 

(b) .03 

(c) .98 

(d) .045 

(c) yes 
TD ee! 

(b) .429 

(dal 21 

(2) 22 

(f)no 

aa )ee OF 

(b) .031 
(c) 242 

- (b) .423 

(Gyno s, 
(ah) alee) 

(e) fx) = 1 
= -—Iny 

O——1 

Qe ay: | 

(a) .0OS 
(b) .0625 
(Gyeouo 

(d) fy(x) = .2 — .005x 
fy) = .005y — .1 

(e) .5625 

(f).25 
(g) no 
Ueser ess” 

20 <x <40 
20 <y < 40 

on) ==1() 

Plans Xf = 00a) =X = Dy 

lai 

an A, —| 

Section 5.2 

LS: (a) negative 
(b) 60/35; 80/35; 120/35; — 600/35? 

b, 
| Sim, XQ5+-: 

ay 

Vet ees IL 

FE Ee rea inde dey. dey = 1 

1 Ay =X, = d,] 

VOX OP PIOy. n 

739 
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17.0 
19. (a) 30.96; 28.99; 897.84; .3096 

(b) 1.97; average difference in the inside and outside pressures 

21. 1/2; 1/4; 1/6; 1/24 
23. (a) positive 

(b) 26.67; 33.33; 900; 11.09 

(c) 6.66 

Section 5.3 

29. (a) negative; —1 

(b) 120/35; 200/35; —1 
315959576; 341.67; 1.2451 255 24 
33. 1/3; 1/9; 1/12; 7/144; .655 
37.00 

Section 5.4 

39. (a) 31.99 
(b) 28.5 

@ 1 n+y 
41. = 3. ——— + : (a) Kx|) 2 x n=y ai l ) yes 

(b) 7 | 
‘é 2 x Var | 

My|x ah 5 ; yes 

(d) 5/2 

43. (a) py} = (& + 20)/2; yes 

(b) $25.00 

(c) py}, = (40 + x)/2; yes 

(d) $37.50 

Section 5.5 

3u—V Qiu 
45. sx = —, y = —— (a) yes; x 5 a) 5 

(b) 1/5 

47. foy(u, v) = 1/10,0<u<4,0<v<7 
(1/6)(n 3 — In u/2) 0<u<6 

3/4 0<u< 2/3 
(b) fy(u) = 1/3u2 23 Su<e@ 

53. (a) fy(u) = 

CHAPTER 5 review exercises 

54. (b) 8/18 

(c) PY S 1/2andYS=X=Y + 1/4] = 11/96 
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(d) fy (x) = 4x3 Oi eld 5 0/3 
(e) fy) = 4y0 — y’) O-=y 158/15 31/3 

(f) no 
Ody ==) Oy See il 
Cee 3/4 ye 1/6[—=s 11/20 

(i) xy = 20 + y + BC + y); no 
(j) 43/63 (about 41 minutes after the system is activated) 

(k) positive; .493 

55. fy(x) = xe™ x>0; fr) = ye” vee Up yes, 0 
56. (a) .356 

(b) 3.279 
(c) 

x 0 1 2 3 

gia | Oe PS OS 

y 1 2 3 4 

OO) | OT Oe = pr 

(d) .688 
(e) .1308; .1497; yes 

Ca \ eno. ee ie th 
57. y= pao ys foe = (EP) TOP 

x! 

(Dy 0572 

(c) 0 
—~s BS 

COR nS ap Pes () el eee 

Section 6.1 

1. yes; set of all days from past, present, and future 

3.) No: 
5. yes; the 50,000 workers affected 

Section 6.2 

th @) SBR 
(b) 8.5 
(c) 16.25 
(d) 16.25 to 24.75 

24.75 to 33.25 
33.25 to 41.75 
41.75 to 50.25 
50.25 to 58.75 
58.75 to 67.25 
67.25 to 75.75 

i = 1ASiRee =a 

py = 2.103; 02 = .694 

741 



742 APPENDIX B 

92a). 0 2 

OF feo ea, 

LC 2 ee eet 

[eee eee Oued 

Pod A Wea gale a PA 

Pea eh Me}, ateloaie) 

Sae0 Uae 

Syl ae 

4|0 1 

Ase 

Bh iad 

eens) 

(b) yes; right 

Lis a) 

Category Boundaries 

1 A5 to 1.25 

2 LE2SitOl2.05 

3 2.05 to 2.85 

4 2.85 to 3.65 

5 3.65 to 4.45 

6 4.45 to 5.25 

the gamma distribution might be appropriate 

Frequency 

Nw Womn ra 

Relative 

frequency 

7/50 

15/50 

15/50 

8/50 

3/50 

2/50 

Relative 

cumulative 

frequency 

7/50 

22/50 

37/50 

45/50 

48/50 

50/50 

13. (a) PIX < posoo] < 25/100 and PLX < pys/o0] = 25/100 

15; 

(b) 8 
(e) Ss ln 7D = 288 
(a) approximately .044 

(b) approximately 7.7 

(c) approximately 2.2 

Section 6.3 

Ile 

LD: 
21. 
23. 

(a) group!I 3; 3 

groupII 3; 2.5 

(b) 4,4 

fe)eeroup ] elo ali 

group II 2.91; 1.7 
(d) yes 

aeRO 

(PCE Palbe oR eh ba Wl 

(a) ¥ = 2.31, % = 2.05 
(b) s = 1.29, 5? = 1.6745 

(c) X, X, § are measured in minutes: s? is unitless 



25. (a) yes 

(b) 1.86 

(c)i 975 

Section 6.4 

27. (b) 1.340 
Pak, (ony aN 4) al 

iis 
2 \4 3 
Nee 
oye Re KW) 
Sel Oon, 
A ares) () 
4-7 39 
pa Ort 
By pie 
69140 

(b) <= 3.65 
q, = 2.65 

q3 = 4.10 

(é) 2a 0 

4 

Aad 6 
415 4 
Aen 
419 8 
59207 1 
So) 2° 2 
5|4 4 

Sj) 48 
S [ep © 

GF ess 
(d) ¥ = 5.05 

q, = 4.6 

q3 = 5.35 

ANSWERS TO SELECTED PROBLEMS 

TS 

Sao 
2 

igr = 1.45 no outliers 

fi = 475 
Jo = 6.275 

6 

0 
Bm 253 

igr = .75 F, = 2.35 

fi = 3.475 F; = 7.6 
fi = 6.475 

2 is an extreme outlier; 7.8 is an extreme outlier 

(é) 

NWNWNNAN BH BW WD 

= Ney > Un le) Xe) 

743 
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58 has a misplaced decimal and should read 5.8; ¥ = 7.29 (using bad 

point); ¥ = 4.91 (using corrected point) 

CHAPTER 6 review exercises 

26. (a) Poisson 

(0) 945.3607 LSet 

(c) no 

(2) 6.24; 1.852; 1:36; 6.3 

31. (a) range = 5.73 

Relative 

Relative cumulative 

Category Boundaries Frequency frequency frequency 

1 235110) lal 9S 2 2/50 2/50 

2 15195; to 22155 18 18/50 20/50 

3 SY NSW yiiO) 3), 111) 13 13/50 33/50 

4 3.115 to 4.075 4 7/50 40/50 

5 4.075 to 5.035 7 7/50 47/50 

6 5.035 to 5.995 3 3/50 50/50 

(b) 2.788; 1.8594; 1.364 

(c) approximately 2.644; about 16% 

(d) p; 3/50; 3/50 

(e) pU — p); (3/50)(47/50) = .0564; .0576; no; .0576 

(f) oy = .955 

B27 Gesell 

ih) a) 

jot ee 

l 

hd ba fee) 

Due let) 

Pile il aa cli ot rahe, 

2 NGS 2S ee ed oe ee eee ee, 

2a tad nee oe Oe eee 

ORE Bae tek. 

aero 

3 

3 

3 

3 

(b) *=25 iqr =4 F, = 10 

q, = 22 fi = 16 F, = 38 

Gat 26 hs = 32 

the values 11, 13, 14, and 15 are flagged as outliers 
(c) there is a left skew; gamma; no; outliers are flagged, assuming normality 
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(d) 3 

S213 
ah jis) os) 
Sa\LOu/ ee GF Oe ON) te 
ST PCS OR OLE O EO oe 0 WO 
ANA Ok De OP Ae ll Ocul agit 
Alene. 3 
Age Sts) 
4/6 6 
4 

yes 

(e) X=3.9 fi, =3.1 no outliers 

q, = 3.7 f= 4.7 

q3 = 4.1 F, = 2.5 

iqr=. F; = 5.3 
SSm(ael5 

< 

Seaaaeaias 
yes 

(b) X = 18.0; * = 18 
(c) s = 1.7; s? = 2.95 (from TI83) 

(ou -Wi tas = Vsign= @3 qigi= 2 
The TI83 and MINITAB give these same results. 

34. (a) 275.87, 30.57 

(d) 

15 

10 
Pay 

2 
o 
=} 

3 
ca 

5 

0 —_t—_ 

Ie r= —— 

200 250 300 350 
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(c) yes 

(2) 250729 iS 
(e) TI83 results: q, = 255.85, g3 = 298.25, X = 277.85 

MINITAB results: g, = 255.63, q3 = 298.28, ¥ = 277.85 
35. (a) The distributions of life span for both lamp types are skewed to the right 

(b) Variable Lamp type Mean Median StDev Variance 

Life span | 38.38 28.78 40.48 20.07 
2 28.97 17.14 30.22 913.25 

mean > median 

in) x* % X* 

Lamp type 

100 200 

Life span 

(d) Variable Lamp type Mean Median StDev Variance 
Life span l 28.92 23.02 22.04 485.76 

2 25.04 15.28 23.61 557.43 
36. (a) Day Mean Median StDey Min Max Q, Q, 

sn 29.9 235 5.39 12} 19 21.25 30.75 
m 20 20 4.255 12 31 [7-25 eee 
t 18.55 19 4.032 10 24 16.25 2175 
W PANN +39) 3.76 13 28 1 anes 
th 22.4 =| 30 13 34 19 Pm 
f 27.45 PE fe) 6.44 16 44 22 eeeo 
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(b) 

7 —___}—— 

fas 

s a ee ee 

od =e  « 
{+ 

Oe Tks “2 Ee eS 
No. of spikes 

Section 7.1 

1. 8; 5/20 

8b a) SOR 

(by 5225 

(C)noe25/9 

5. (b) .44 

fh (oe 

(ny Bet 

(c) 19.4 

(d) 1.9; no 

9. (b) .817; no, the sample sizes are very different 

(d) .708 

1K Kea) MO OS Oe 

[er SP ep Pe) 

ANON fe" 5) 

TE oy SY 3 

18 | 0 

LSsieS 

19 

19 | 6 

skewed right 
(b) x= 167 fi = 148 

q, = 163 fy = 188 
Ge NS tay IER) 
igr = 10 F; = 203 

196 is flagged; the distribution is not bell-shaped, so the “outlier” is prob- 

ably not unusual 
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(c) ¥ = 169.0 (169.04) 

s? = 81.54 

Section 7.2 

155067 
17. X> Xs 
19. M, — M?:no 
21. B = x = 169; 6? = M, — M? = 24/25(s?) = 78.28 
23a 

eee GL Gerla) 

re iy 
Df, (geny ol || 

Sieh | Oy ik 

| By es FF ot 

tah 0), 9) ak By a BE! 

oa Ua! ae eke tee fie ot tek BS aes Pay 

Sab lh sy ih 

34 | 9 

351.0 

(b) 333.8; 60.85 
(c) 62.94 

29, 333.8; 60.85 
SLA no 

33. (a) X/2 ; 

(b) X = 2B; yes 

(35 

(d) 70.5 

35 oer 

Section 7.3 

37. (a) normal; uw = 2,07 = 9 
(b) normal; uw = 0, 07 = 16 
(c) geometric, p = .25 

(d) binomial, n = 5, p = .S 

(e) Poisson, k = 6 

(f) gamma, a = 5, B = 3 
(g) chi-squared, y = 16 

(h) exponential, B = .5 

Section 7.4 

47. (a) .643 

(b) .643 + .0039 



49. 

ANSWERS TO SELECTED PROBLEMS 749 

(c) shorter; .643 + .0033 

(d) longer; .643 + .0052 

(a) no, X is discrete 

(b) 2.8 

(c) 2.8 + .2036; Central Limit Theorem 
(d) no; 3.0 lies in this interval—it has not been ruled out as a possible value 

for pu 

CHAPTER 7 review exercises 

51. 

a2, 

53: 

54. 

meh 

56. 

Se 

58. 

59. 

1+6 

) ae ae 

UC) eee CX 1) 
(d) — 52/76 = —.6842 
(2) = Le nin Thy, 
Ce helepnite 

(a) 6/2 
(b) 2X; yes 
(c) 2.06 
(a) normal with mean p and variance 4/16 

(b) 42.883 

(c) 42.883 + .98; no, 42.2 lies in the confidence interval 

(a) $3.698 
(b) .0487 
(cy e2212no 

(d) .0438; no 

(a) point binomial with probability of success p 
(b) normal with mean p and variance p(1 — p)/n 

fe) 09 

(Cea T/A 

(b) normal with mean yp and variance 25/36 

(elas lertes 1.9 

(d) yes; 10 lies outside the 99% confidence interval 
(a) my (f) = e15t+ 16(07/2) 

my(t) = el 5t+ .25(P/2) 

(b) mr(t) = e16.5t+ 16.25(07/2) 

(c) Tis normally distributed with mean 16.5 minutes and variance 16.25 

(2) p922 

(a) m@® =U — 39°™ 
(b) gamma with a = 500 and 6 = 3 

(c) my(t) = my(t/100) = [1 — (3/100)4] > 
(d) gamma with a = 500 and 6 = 3/100 

(e) .0681 
(a) gamma with a = 2 and B = 0 

(b) 26 
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60. 

62. 

63. 

APPENDIX B 

(c) X/2 
(ad) X/2; no 

(ey sl55 

(f) yes 
(a) standard normal 

(b) X4 

ast Sa SS: 
(c) Aaa; Y ~ normal. =—: 0° = — 

n n- 

(a) 

38 | Ds 3 4 5 6 

Sx) 1/6 1/6 1/6 1/6 1/6 1/6 

E[X | = 3.5 

E(X*|= 91/6 

ao? = 35/12 = 2.92 

(b) ELX] = 3.5; Var X = 2.92/20 = .146 
(c) bell 
(2) 3:3 

(e) .146 

(f)24 
(a) 1274.14 
(b) 1274.14 
(c) yes 

(d) .4562 

Section 8.1 

I 

18 

(b) .0129 
(c) [.0082, .0234] 
(a2) [.091, :153] 

(e) yes; .2 is not in the confidence interval 
2)! 2h 

(eo) [17822056991 

(d) [1.15, 2.39], reduce the confidence 

- (b) .00000375 

(c) [0, 00000573); [0, .00239] 

(d) yes; o appears to be at most .00239 

(5.49, 11.83] 

Section 8.2 

Lp (a) 1.86 

(b) —1.86 

(Ge) = 2G) 



11. 

13. 

15. 

Lie 
19: 
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(d) 2.179 

(e) 1.645 

iu o45 

(g) 1.708 

(h) 2.060 

Gals 53 

G7) £325 

(k) 1.746 

(512310 

(a) 1.2896; .0000123; .0035 

(b) 1.2896 + .0016 

(c) no, 1.29 is contained in the confidence interval 
(a) 2.35; .89 

(Dy 2 355 

(c) yes, we are 99% confident that the new mean time is at most 2.80 seconds 
(@) 2er> 

Shel rok eee) 

AN OS ey Le: 

SAS ahoso 6s and 

Cue leSm ch POMS ie 5! Pes 

nO eele 230 2. 

Sale lO 

Oae2 

10750 

(b) X= 605 f, = 120 no outliers 

q; = 480 fy = 1080 

igr = 240 

(c) X = 602.3; s = 169.1; 602.3 + 85.1 

(d) lower the confidence 

[371d 2) 

(b) 385 

(mos 

Section 8.3 

21. 

23. 

(a) Ho: wp = .08 

Hyp .08 

(b) We shall conclude that the average percentage of metal in household 

wastes has been reduced when, in fact, it has not been reduced. 

(c) We shall be unable to detect the fact that the mean percentage of metal in 

household waste has been reduced. 

(d) We have a 5% chance of having committed a Type I error. 
(a) We shall conclude that the model is not credible when, in fact, it is a valid 

model. 
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(b) We shall be unable to detect the fact that the proposed model is not 

credible. 

25. (a) C = {10, 11, 12, 13, 14, 15}, a = .0338 

(b) yes; Type I 

Zits (dC 

5 Ee shea) 

(Dae 
(c) .0592 
(d) .7827; .4845; .1642; .0127 
(2)i21 73501595 6300; 9073 
(f) yes; Type I 

(g) no; Type I 

29. .0065; .0003; 0; 0; yes 

Section 8.4 

SL) sha .09 
Hype) 

(b) We shall assume that the percentage titanium exceeds 5% when, in fact, it 

does not; we shall be unable to detect a situation in which the percentage 

titanium exceeds 5%. 

(c) .1056; debatable, a P value of .1056 might be considered small by some 

and large by others 

SEE Abie | ysis bs} 

He peal) 

(b) .1335; no, this probability is not unusually small; Type II 

Section 8.5 

38,°(0) 2 he7 1) 

CLE Sal ey: 

ey42.093 
(d) 2.602 
(2) sn 29 
C2045 

37. (a) Ho: w = .12 

et le 

(b) 2.462 

(c) yes, t = 2.738 

(d) that X is at least approximately normal 

(a) Ho: w = 2.5 

Ae jipo2is 

(b) t= —3.5; .001 < P < .005; yes, P seems to be small; at least approximate 
normality 

(c) conclude that the mean noise level is below 2.5 db; we shall assume that 
the new product reduces noise when, in fact, it does not 

AMY 
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41. (a) Ay w= 4.8 

Hiei = 4.8 

(b) t— 2.828; .001 = P <= .005; yes 

43. (a) Hy: <5 

(Ome 00 lee an JOD. reject Hi, 

(oj yes, because P= (05 

(d) probably not since x = 4.28; there is still a large accumulation there 

45.085 j2— 7, P = 27, no 

Section 8.6 

47. (a) unable to reject Hp 

(b) t = 1.154, critical points = +2.145; unable to reject Hp 

(c) x? = 17.81, critical point = 23.7, unable to reject Ho 

49. (a) unable to reject Hp 

(b) t = 1.22, critical point = 1.729, unable to reject Ho 

(c) yx? = 9.297, critical point = 11.7, reject Hp; yes 

Section 8.7 

Sl vyes, 0037 

(b) yes, .0207 

(Cynyes, 0207 

(d) yes, .0107 

(e) no, .0547 

(f) yes, .0074 

(g) yes, 0352 

53. no, P = .3770 

55. (a) 110/4 
(b) yes, |W_| = 8.5, critical point = 11 

57. (a) 100(101)/4 

(b) 100(101)(201)/24 

(c) Hy: M=2 

ie Vie 

(d) P = .0007, yes 

CHAPTER 8 review exercises 

58. (a) 44 

(b) no 

(¢)) 3210; 121352348, no 

(d) v5 = 33.05; [.08998, -1766]; [.298, .418] 

¥ 4s = 66.05 
(ys 108082 
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60. 

61. 
62. 
63. 

64. 

(a) Ho: w = 3 

ok Byte) 

(c) 13 
(d) tos = —1.753; t = —3.71; reject Ho; yes, the product should be marketed 

(4) Hye ad 

Heyp> 3 

(b)cG SH USp 16917 Als 19720} 

(c) no; Type II 

(d) 8744; .5836; .1958; .0113 

(e) .1256; .4164; .8042; .9887 

yes; t = —2.69; .005 < P< .01 

LO enh eS 
(ay sro2 120 

et) 2 Om On sU 
es: Oer eeu ure Car Ue) 

Coat Oni Ome Ce Oe) on hee ee ee ml ae 

Fa) OORT Ue Omet 
a 022003 0 
eu 
A 
2 
6 
| 
STO 

yes; .8 looks like an outlier 

(b) x=0 ff=—-A4 
q=-.1 fh=A 
@g=.l F, = -.7 

iqr = .2 F,=.7 

.8 is an extreme outlier 

(c) x = —.008; s = .198; —.008 + .066 
(a) The number of trials is at most 3000; in a geometric setting there is no 

a priori number of trials. 
(b) 20 

(c) exceed 

(d) 59; P[X = 59] = 0.51; see Sec. 3.4 

(e) no; Type HI; we think that the system will not crash when, in fact, it will 

(f) reject Hy and conclude that the system will crash; Type I; we shall stop the 
system unnecessarily 

Paleo. ree 

(c) [4.36, 10.56] 

(2) Sia = TOS SOD: lel Oe dee | 

(e) no 

(f)no 
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66. (a) H,: hollow arrows are faster than those made of solid aluminum 

ete 0 

(b) H>: hollow arrows are no faster than those made of solid aluminum 

Ap: w = 0 

(c) X = —20.41; s = .89; negative sign means that the time with the hollow 

arrow was better than that with the solid arrow 

(dj) t= —1025: P = .0005 

Giseaje7s 2 OeG 
APS 9 
DiS Maes eco O at OS OR ae ee 
Sa OMe eel een Og On Onno 289 2.0) 
Ae? eS ede ae OREO mr OM OTOL .G/ 2) 1.5 gc8 

ae Lae ee ee Fae ee) 
CAO) We Wl SST ele EN BY Mahe Tea | 

aaa PALE AS 88 
SiO Olea! 

a0 

wb: 2/4 8 
SF tk Pe. 
ATO Say YD 
oy | Oper MF ey Me Se eee) 
Or aera] (0 le aes 6onn 
i Oe SO A eS) i 

CUR OMeO Mn ime eel ete ome ee On OekD 

|| 2 ae A Sy Sy SY Ue ef Se 

LOD 2a? toa) 10 
[1S eZ ee eS) 

O25 
RoR le @ 
14} 1 

(b) er |4.615)5.399] 
wb: [74.112, 83.608] 

absolutely; the confidence intervals do not come close to overlapping 

(c) Company/Accident N Mean Median StDev 

ge 25 4,782 4.790 [52 

gwb 25 T1150 735250 24.450 

me 2S 4.829 4.750 2.195 

mwb 25 69.370 70.200 25.820 

pe 25 Beso”: 5.180 2.046 

pwb 25 89.460 84.600 20.120 
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pwb ae ee eee 

= pe tt 
o 

— 
3 mwb veel al NE pee 
a 
=) me {lk 
a 
= 
§ gwd a ee ee eee 

ge 
T T 

0 50 100 150 

Exposure dose 

The differences are obviously due to the differences among accident types. 

Section 9.1 

i 

<7 

(a) 9 

(b) .9 + .069 

(c) 609 

One 025 

(b) .9+ .019 

1068 

6766 

(dj eli— 2p 

(b) 1/2 

(Cc) Pe 
(d) 1/4 

Section 9.2 

Le 

dine 

LS. 

(a) Ho: p = .99 

Ay: p > 99 

(b) z = .S7; no, P = .2843 
(c) We are unable to show that the new network is compatible with more than 

99% of the equipment already in use. 
(a) Hy: p = .6 

Hy: pis 

(b) 1.645 

(c) z = .842, no; Type II 
(d) We shall not be able to show that more than 60% of the business offices in 

the United States have a mainframe when, in fact, this is true. 
(a) + 1.96 

(b) z = 1.38, no; Type II 
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Section 9.3 

es Wn) 2 a, — 18 

19. 

23. 
Vrs 

(DQ) sls) 2a 
(c) yes, 0 is not contained in the confidence interval 

(Qe). 407.09 
(oO) SWS ey) 
(c) yes, 0 is not contained in the confidence interval 

ey) 
542 

Section 9.4 

27. 

29. 

(a) Ao: pi = Po 

Ay: p; < Pr 
(Cy) Ss 

cove 00150025400 ep = 002, 2.7 Ino 

(a) Ao: Pi = P2 

Aly: p, > Po 
(b) p = .334, z = 12.35, yes, P= 0 

CHAPTER 9 review exercises 

33. 

34. 

She 

36. 

Oy: 

38. 

39. 

(a)r533 

(bye 212 2.034 
(a) Ho: p = 5 

Apps 

(b) z = .2828; no, P= 39 

(a) Hy p=) 
lek 3s 

(b) 1.645 

(c) no; the observed value of the test statistic is 1.00 

(Qa O27 
(b)) = 02 = 047 
(c) no; 0 lies in the interval 

(d) no; n = 2229, using p,; = .02 and p, = .04 as prior estimates 

eine 22 

Ay: py > Pr ; 

where p, denotes the proportion of customers reordering during the current 

year; p = .6, z = 1.87, yes, P = .0307 

(a) Ho: Pi — Po = -1 

lehg ry 18) oll 
(b) 1.645 
(c) z= .25; no, Type Il 

(Qe2s-=076 
(b) 75,000 + 29,400 

(ejels37 
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40. (a) .25 
(Byeees 00a 

(c) [2468, 2532] 

Section 10.1 

Lae 

3. 8.008; 7.609; .399 

Section 10.2 

ae 2h) 
7. (a) f =5, upper critical point = 2.725, reject Ho 

(b) f = 2, upper critical point = 2.308, unable to reject Hp 

(c) f = 1.36, upper critical point = 1.352, reject Hy 

9. (a) Hoa; = a5 
HO <s03 

(b) f = .9151; P = .4485; fail to reject Hp 

11. P = .7213; no; no 

Section 10.3 

13. (a) st} = .034, s5 = .0525, f = 1.54, upper critical point = 2.147, unable to 
reject Hy 

(b) .0433 
(@) eee Ol a= =e 

(d) yes, the confidence interval does not contain 0 

15. (a) f = 1.23, upper critical point = 2.086, unable to reject Hp 

(b) 7.93 
(Coo a8 
(d) yes, 0 1s not in the interval 

17. no; f = 1.79, P = .421 

19. (ay yes, f = 1.599, P = .2598 
(b) [.42 and 20.36]; night hours 

(c) 99%; decrease confidence level 

Section 10.4 

21. (a) Ho: hy, = po ft; = mean level for children 

Ay: fy > by 



23. 

25. 

27, 
29. 
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(b) f = 119.01, upper critical point (a = .2) = 1.348, do not pool 

(c) t = 20.00, y = 123, reject Hy: P < .0005; conclude that the average stron- 

tium level in children is higher than that in adults 

(a) Ao: by = by 
Ay: fy > fy (premium > regular) 

(b) t = 1.583, reject Hy, 05 << P<.1 

(c) conclude that the average mileage using premium gasoline is higher than 

that using regular gasoline 

(a) Ho: fy = by 
Ay: fy < My (acrylic < butyl) 

(b) f = 2.75, critical point (@ = .1) = 1.972, do not pool 

(c) t= —5.88, y = 24, reject Hy, P < .0005; conclude that the average tensile 

strength for butyl coating is higher than that for acrylic coatings 

[—.3116, —.1664]; yes, all values in the interval are negative 

(a) f = 3.32, critical point (a = .10) = 1.984, do not pool 
(b) 2.8 + 1.94, y = 37 
(c) yes, O is not in the interval 

Section 10.5 

SL 

33: 
Sky 

CD) eee le 

(c) — .412 + .723, no, the confidence interval contains 0, so the results are 

inconclusive 

.04 + .585; no, 0 lies in the interval 

Ao: bx = by t = 3.04, reject Hy: .0005 < P < .005 

Hy: by > by X = travel lane 

Section 10.6 

37 

Oo: 
41. 

43. 

Hy: M, = Mp, W,, = 101.5, upper critical point = 98; reject Ho 

H,: M,; < Mp 
W.,, = 20, critical point = 22, reject Ho 

(a) 6600 
(b) 110000 
(c) z= —1.999, P = .0228, yes 

|W_| = 7, can reject at w = .05 level (critical point = 11); no, P[Q_ = 3] = 

.1719, the sign test ignores the magnitude of the differences involved. 

CHAPTER 10 review exercises 

45. (a) Ao: fy = Be where 4; = mean temperature setting required by 

Ay: by < be using the computerized system 

Ho: 07 = 0% where a? = variance in temperature settings required 

Hea os by using the computerized system 
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(b) s3/s? = 25; reject Hy: oj = 03; P < .05; do not pool; y = 25; t = —8.73; 
reject Hp: uw, = 2; P < .0005; yes, both claims are supported 

46. (a) Ho: w,) — ws = 15 where px; = mean amount of dross obtained by using 

Hy: bf, — M2 > 15 _ the old method 

(b) st{/s5 = 25; reject Hyp: of = 03; P < .10; do not pool; y = 9; t = 4.96; 
reject Hy; P < .000S; yes, it appears that the new process will be profitable 

47. (a) yes 

(b) 2.6 + 1.0; yes, the confidence interval consists entirely of positive values 

48. si/s5 = 1.14; pool; 900 + 58.2; yes, the confidence interval consists of posi- 

tive values 

49. yes, t= 7.56; P < .0005 

50. (a) d= —14.43 
(b) =A 3 Ais = +72 
(c) yes; 0 is not contained in the confidence interval 

51. (a) 

A R 

¥ = 130 Ff, = 90.25 x 205 fi = 188.5 

q, = 119.5 jo = 168.25 q, = 238 Fi = 320.5 

q3 = 139 F, = 61 q3 = 271 F, = 139 

igr = 19.5 F; = 197.5 igr = 33 F; = 370 

12.4 and 200 are extreme 516 is an extreme outlier 
extreme outliers; 170 is a 

mild outlier 
(b) f = 8.83; upper critical point 1.908; reject at .20 level; conclude that 

oi # OF 
(c) (267.4 — 133.9) + 2.093 1/4448.89/17 + 503.83/19: df = 19 
(d) yes, the confidence interval is negative 

S20 (i) lone LS ik ack eNO Ge ang 
LGone2. 16) 5, lO 93 
BE 4 ete renal 8 ae? Uy, | ee eo 
EW! fete lee [30 (Oe 
Lat Oecd ee Coc 19 ce 9 *9 
A Ce Le Smee ae ok aay Ze 
PAN) Pes ber. Weal Rite: Lec elhalse wore 
a Oe ae PIP ae are ea | 
Zoe aay a £55) Saal EO) 
24);1 9 24 53 lie ee Os 
PA NL a] 201) 2 ely hes 0s 
nonsmokers smokers 

(b) yes; there is a difference in shape, and also variability may be different 
(c) use the Wilcoxon rank-sum test to test location 
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me ik (Oe Bales 

IPSec eo US) 7. 3 Leen TAG]. 

Cec One e Owes 93681 33 y ArS32 3 (701 

Cab Om eS OO 5: = 4107) 97 8 

Of inom Ce a4 55a eee) Oa eS De ee? Ae) 

Siete) EID Se) ORES 

Oana 8 352) 

Guino. 

bank other 

a two-sample f test should apply; f = 2.19; variances are unequal (a = .10); 
t = —13.17; df = 50 

54-"(a)) Site 1: 17::Site 2: 13 

(b) 28 
(c)r 26 

(d) yes; 17 1s not too different from 13 AND s, ~ s, 

(e) two-tailed 

(f)P = .058 

(yenOsi 2-2 Ulh yes since: Ot 

55. (a) 1: observed value of test statistic 

2: P value for two-tailed test 
3: standard deviation of the difference X — Y¥, sy 

4: Mean difference, d 

5: Standard error of the mean difference, sj = sq/ Vn 

(b) yes; yes 

Section 11.2 

7. (b) fay\, = 0.2177 + 0.0957x 
(c) 5.004 for both estimates 

(d) increase .1914 < 10° Btu 
(e) decrease .1914 < 10° Btu 

9. (b) fy, = —.1064 + 33.5178x 
(d) .8995 

(e) .8995 

(f) yes, yes, no 

15. .1814 

Section 11.3 

17. significant (P < .001) 
19. ¢ = 4.025, significant at a = .01 

21. significant (P < .001) 

23. fly), = 14.491 + 1.498x 
25. t = 1.197, not significant 

27. fiy|x=15 = 89.588 (Regression not significant. ) 
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29. (a) fly|, = 911.667 — 49.667 
(b) t = —19.431, significant at P < .0001 

(c) no 
31. 6? = .0109 
SSD eplyiy = Ord OR 2.743% 

(c) 41.987 
(d) t = 6.378, significant at .0002 

Section 11.4 

35. (a) f = .392, not significant at a = .05 

(b) yes 

37.) (a) ie = 21 1LL tb 310/% 

0b) 132194 
41. f= 4.725, P< .025 

Section 11.6 

47. (b) 6 = .887 

49. .657 <p = .966 

51. (b) p = 586 

(6) 2005 es p == .565 

57. 96.9% 

59, Rk? =0 

CHAPTER I1 review exercises 

(b) fiy\, = 145.667 + 6.20x 
61. (a) no, f = 27.91, significant at a = .05 

(b) yes 

62. fly\, = 99.383 — .0052x 
63. significant ata < .001 

64. R? = .967 
65. 99.1603 = By = 99.6057 

66. —.00602 = B, = —.00431 
675 Ry\.=— 8233 — .0552x 
68. f = —9.204, significant at P< .0001 

69. (a) Py),<325 = 6318; (Y|x = 3.25) = .6318 
(dD) 6121 S py), = 325 S 6516 

(c) 3/03)S (Y |x ='3.25)'= .6933 
70. (b) 6 = —.959 
71. significant at P< .0O001 

12. 1800: = (ie. 9ns 
73. (a) t = .889, P > .20 

(b) t= 2.179, P < .05 
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75. (a) p = .989 

(QO) OSS 72 Cee 

(c) significant; yes 

(d) 97.86% 

A coefficient of determination of .9786 implies that 97.86% of the 
variance in the dependent variable Y is explained by the linear regression 

model. 

78. (a) As pH increases to 4.0, weight loss decreases. 

(b) r = .7259 
(c) t = 4.22; P < .001; there is a significant correlation between pH and 

weight loss 

(Gye, Ae Re 
79. (a) no, the relationship is not linear 

(b) yes 

(c) fit a quadratic or other nonlinear model 

$0. (a) fy), = 6.97 — 0.120% 
(b) t= —14.96; P = 0 < .05; reject Ho 

(Gy et 
(d) [8.36, 9.18] 

81° (@) yj, = —9.94 + 0.0973x 
Oy) t= 9.855 P — 0 — 05; reject He 

(CO) 
CO ea 

Section 12.2 

Oa 1 1 I I | 

yon =e Lon i Wee 12 

ee lO) S| 
ene) [eee 28.6375 

nl ee | 
() XY = | 599 405 

I) = ale 170 | 
| 129s 28.6375 || b,| [282.405 

4.92688 —2.88172 

CLO = ee ae 

(fe= Bee results agree with Example 11.3.3 

13. (a) fy), = 42.921 — 28.625x + 4.640x° 

O)Dajeso5 = 
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Section 12.3 

Ly: 

25. 

35 
(a) E[CY] = Ea 

0 
(b) Var Y = f; . 

kOe 

102 300 
(@ Vat Gay =| 

Sees: 
Soe ergy eds re 
Var By = (2.3)(1.002714) = 2.30624 
Var 6, = (.05342857)(1.002714) = .0535737 
Var B, = (.00005714286)(1.002714) = .000057298 

Section 12.4 

27. 

29. 

Sak 

SP 
SER 

—4.6162 = B, = —3.7038; yes, since CI excludes zero 

—.02046 = B, = —.00934; yes, since CI excludes zero 

17.6605 = My| x,=1.5, x, =40 = 18.1675 

17.5383 = Y|x, = 1.5, x, = 40 S 18.2897 
9.265 = py|, = 59 = 10.007 
7.166 = Y|x = 50 = 11.506 
5.445 = py} x,=12,4=40,x,=20 = 47.301 

Section 12.5 

49. 
51 

fy), = 4.143 + 7.107x 
fy}, = —4.571 + 12.917x — .726x2 

-293:185-= wyiee sg 4780 
Byla.m = 805 + .245x, + .264x, 

. p= 9517 

f = 18.705, P = .0035, reject Hp; yes 

f = 32.2762, P = .0003, reject Hy 
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Section 12.6 

53. 

SOs 

(a) 1 1 1 

Late See.S 

ie? i 

Ih DFS oy BPS) 

i 3 ib 3) 

1 Gey I eee 

1 4 [4 

X=}1 45 1 4.5 

i ®) es) 

al 0 0 

To 2. 0 O 

eee 0.70 

(ee) 0 0 

1 4 0 O 

th as) 0 O 

(D) Piyiz,e = 410 — 084%; + 354%, + 025x445 

(c) Bz = .0248 

(d) f = 4.9506, P = .0479, reject Hp at a = .05; regression lines for the two 

furnaces have different slopes 

(QASY = Pot Pia E 

Be MEN (Eh a: B>) aE (B, = By)x; rte Ly 

Cay = Go Ba) (oy Ps) ee 

(b) Ho: By = Bs = 0 

(OH Gg By Be be = Pa 0,4 and 6 

CHAPTER 12 review exercises 

siily |e = loa.0 te 099%, 

e044 163. 7 45 = 190.695 

wae 20.033 0253%) 

ye On LOX (035%) 

. Reduced model 

. R? = 34.65; 6 = .5886 

. 164.69 

 IBRAe Sy =182.027 

5 IG) STEEP Neeeee 

(b) P= 272300 
edit = 12.2)-— 0.0704 time 

. diff = 8.0 + 0.0704 time + 1.22 ph 

af Sl S2P == )2: reduced model is sufficient 

. R* = 489; f = 27.75; P < .05; there is a significant linear relationship 
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Section 13.1 

5. (a) f = 4.95, P = .0174, significant at a = .05 

(b) no 

(c) no 

Section 13.2 

7. fa.35 = 216.34, P < .001 
9, b = 23.187 with 3 df, significant at a < .005 

not reasonable to assume homogeneity of variances; use a nonparametric test 

1. b = .354, not significant 

Section 13.3 

13; 1426, .0333 
5367, .0067 
9006, .0022 IN IA IA 

( 

( 

( 
bre 

( 

(c) py F My 
21. py F Ms, by = Bs, Po F Bata = Ol 

Section 13.4 

[Y,. — (1/3)(Y%>. + ¥3. + Y4. 7 
25. Sop (a) SS_, Cite L/D 1/0 ce 1/9) in 

Yoo int 

4 pe 

¥,.— ¥:.) 

RSE 
(pss 5 a

s be = z * 

Y,. — Y3.)? 
Se se ah

 

27. frog = 114,11; P3405; reject Hy 
fi.36 = 8.9246, P < .05, reject Ho 

29. 60 519333... 50 44.333.) 38.667 



ANSWERS TO SELECTED PROBLEMS 

Section 13.5 

33. (a) blocking is effective 

(b) blocking is effective 

(c) blocking is not effective 

(d) blocking is not effective 

(e) designs are equivalent 

35. f3.2, = 3.37, significant at a = .05 
aM les (Oe ON) 
39. yes 

41. RE = 12.47, blocking is highly desirable 

Section 13.6 

47-GSSte = >, > ae = 1)? 
Pty k 

DORowe ead SG = yexy 

j=l 

SSco = 7 UG =a er 
k=1 

49. fr = 8.75, P = .1026, rejection of Hy is debatable 

Section 13.8 

Yi, ity 0e 0 E,, 
Y1> pu 1 tf @ @ E,> 

Ye a, ib Oo ie E,, 
— =e = = 1b — 5 

ve a; cw Ou Ey, 
Yo (0 OMe Ey 

See PAE 

PID) 2282310 <0 
Riese 2.20 

SADE LO 

767 

X'X has no inverse, since the first column is the sum of the last three columns. 

Section 13.9 

53. (a) H = 9.05, not significant at a = .05 (P = .06) 

(b) f = 3.30, significant at a = .05 (P = .026) 

55. S = 3.4 with 4 df; not significant 
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CHAPTER 13 review exercises 

58. (a) 

Source Df SS MS 

CO, level 4 11,274.32 2818.50 

Error 45 1,248.04 palsies: 

Corrected total 49 12,522.36 

(b) yes, f = 101.63 

59. b = 1.07, not significant; yes 

60. (b) 

Source df SS MS F EMS 

Treatment 2 110.6 55:3 3.0 o* + 100%, 
Error 27 497.7 18.433 Oe 

Total 29 608.3 

61. 

f = 3.0 with 2 and 27 df; not significant at a = .05 

(c) due to error, 83.3%; due to treatments, 16.7% 

(a) f = 79.9, significant at a < .0001 

(b) yes 

(c) all three are significantly different 

(d) all three are significantly different 

63. f= 579.61, P =0 

Section 14.1 

P = .0001, significant 

no, interaction is not significant 

sige = fet & 1 Py (AB) B 
= .064, significant ata = .10 

. E, and 3 months 
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Section 14.2 

CLES SRR oS RIBS SRS SELLS Set 455 eS SS fee SS 
23. 

Source of Degrees of Sum of Mean 

variation freedom (DF) squares (SS) square (MS) F P value 

Treatment 2B 21100.99 917.43 8.36 0001 

A Zz 10296.36 5148.18 46.88 0001 

B 3 7586.38 ESRI) 23.03 0001 

G 1 1974.01 1974.01 17.98 0001 

AB 6 735.42 PSST Li 3671 

AC 2 6.03 3.01 .03 9729 

BE 3 25.49 8.50 .08 9719 

ABC 6 477.31 TSS We .6320 
Error 48 5270.67 109.81 

Total 71 26371.65 

Note: All SS, MS, and F statistics have been rounded to two places from SAS output. 

Section 14.3 

25. Hy: vig = 0, F = MS,3/MS;, 
H}: 0% = 0, F = MS,/MS, 

He ieee ty = MSI MSA, 
Hh": 04, = 0, F = MSy,/MSz 

Section 14.4 

27a) eee, LS 

Doli 
ae 

(c) Bhigh: slope = 3 
B low: slope = 3 

29. Any value of B,, satisfying B), > 2 or By. < —2 
BINA? Ah Bi = O.fi4 = 139 P = 82764 

B: H}!: B, = 0, fi. 4 = 3.76, P = .1244 

33. (a) 2* = 16 
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(b) 
Effects 

Treatment xX; xX, X3 X4 Treatment a 

combination A B Cc D combination A 

(1) ee — aie be — 
a ap — _ _ bd = 

b — + = = cd = 

(@ — - + = abc + 

d = ~ _ + abd ae 

ab +f + = = acd + 
ac tz = a — bcd = 

ad + = = + abcd + 

dS 

++ 1++ 144 

onal 

+++ 1+4+1+4 

Os 

++t+4+ 144) 

1 
(c) 554 = 54 [-() +a—b-—c—d+ ab + ac + ad — be 

— bd — cd + abc + abd + acd — bcd + abcd}? 

1 
S5p = 54, [-() —~a4+b—c—d +t ab— ac — ad + be 

+ bd — cd + abc + abd — acd + bed + abcd}? 

1 
Se = 54, [—0) —~a-b+¢—d-— ab + ac— ad + be 

— bd + cd + abc — abd + acd + bed + abcd]? 

1 
SSp = 54, LG) = o> b aot d= abs aecad = be 

+ bd + cd — abc + abd + acd + bcd + abcd}? 

Section 14.5 

37. (a) AB 

(b) AB, ABC, C 

(C) "ABCDSABG BCD DIA-AD BC 
39. (a) L; =z, +zandL,=z,+z, 
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Treatment 

combination L, (mod 2) L, (mod 2) Block 

(1) 0 0 1 

a 1 0 p} 

b 1 0 2 

c 0 1 3 

d 0 1 3 

ab 0 0 i 

ac ] i 4 

ad 1 1 4 

be 1 1 4 

bd 1 i 4 

cd 0 0 1 

abc 0 1 3 

abd 0 ! 3 

acd l 0 2) 

bcd i 0 2 

abcd 0 0 1 

(b) ABCD; block 1 
(c) 

Degrees of 

Source freedom (DF) 

Blocks 3 

A 1 

B i 

C i 

D 1 

Error 8 

Total 15 

Section 14.6 

41. —(1)-a+b-—c+ab—ac+be+ abc; —at+b—c + abc; AC 
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43. (a) 

Block 1 Block 2 Block 3 Block 4 

a 

b 

cd 

ce 

df 

ef 
acf 

ade 

bef 
bde 

abcd 

abce 

abdf 

abef 

acdef 

bcdef 

DEF 

CEF 

CDF 

(1) d Cc 

ab e i 

Ci ac ad 

de af ae 

acd be bd 

ace bf be 

adf abd abe 

aef abe abf 

bcd cdf cde 

bce cef def 

bdf acde acdf 

bef adef acef 

abcf bcde bcdf 

abde bdef beef 

cdef abcdf abcde 

abcdef abcef abdef 

(b) 

Degrees of 

Source freedom (DF) 

A ! 
B | 

Cc l 
D | 

E | 
F l 

Error 9 

Total 15 

(c) 
A= BDE= BCF=ACDEF 
B= ADE= ACF= 

C=ABCDE= ABF= 
D= ABE = ABCDF = 

E= ABD= ABCEF= CDE 
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CHAPTER 14 review exercises 

45. (1) a e b 
be be ab Cc 

bd ce ac d 

cd de ad ae 

abe abe bce bcd 

ace abd bde abce 

ade acd cde abde 

abcde bcde abcd acde 

(a) ABCD, BCDE, AE 

(b) 

Source of Degrees of 

variation freedon (DF) 

— SS fy yy ey Ss Sn SS Es Ge) Error 

Total Ww — 

(c) no, there would be no error term/no error degrees of freedom 

46. (b) no, error degrees of freedom is 0 

(c) no, error degrees of freedom is 0 

(d) yes 
(e) 3 

47. (a) By|x,x%5 — Bo + Bix, + Box 
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ieee 
| =1 =1 

Pall 

i all 

Nes PA 
=| ] 

] ] 

] 1 

| 

Ll J 

ey 10) 10) 

(evn Xx 20 een 

0 QO 2-n 

(I) seGise lay ae (ale: 

(dX Y==—C) +e) — ab 

—(l)\i>=a- b=: ab 

(1) +at+b+ab]/2?n 

(ec) B=| [-d) +a—b + abl/2’n 

[-—(1) —a+b+ab]/2’n 

(7) SSR= (=C1) + a@—b + abl4/2°n + [—(C1) =a + be abla 
(g) SSE. =S,, -[-(1) +a =6-+ abl7/2’n 

—[-(1) -a+b+ ab]*/2?n 

SSH SS. [= (1) tab ann 

—[-(1) -a+b+ ab]*/22n — [(11) — a — b + abj7/22n 
(h) SSE, — SS; = [(1) — a — b + ab]*/2?n 

48. (a) Ying = w+ a; + B + (a@B); + ¥; 

+ (ay), + (BY)ix x Bin 
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(b) 

Source of Degrees of 

variation freedom 

A 4 

B 3 

C D, 

AB 12 

AC 8 

BC 6 

Error 24 

Total 59 

49. (a) (1), ab, ac, ad, ae, be, bd, be, cd, ce, de, abcd, abce, abde, acde, bcde 

(b) 

Source of Degrees of 

variation freedom 

A i 

B i 

G | 

D 1 

E 1 

Error 10 

Total 15 

S5025(@)yB=ACG =BCD=AD 

G=AB = = ABCD 

D=ABCD=G_ =AB 

(b) no, the main effect C is aliased with the main effect D 

Section 15.1 

1. 60, 45, 30,.15; yes, these seem to differ quite a bit from the expected numbers 

3. 10; questionable, the observed values are not drastically different from those 

expected 

Section 15.2 

5. y? = 22.66; reject Hp, P < .005 based on the Xj distribution 

Section 15.3 

9. y? = 4.57; reject Ho, .025 < P < .05 based on the Xj distribution 
11. y? = 8.84; reject Hp, .025 < P < .05 based on the X3 distribution 
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Section 15.4 

13. y? = 3.95; reject Ho, critical point = 3.84 

15. Ao: py = Po = Pri x? = 14.72; reject Ho, .01 < P < .025 based 

Pir = Px = P32 on the Xz distribution 

Pig = Pa Pas 

Pi4 = P24 — P34 
17. x? = 16.03; reject Hp; P < .005 
19. x? = 43.65; reject Hy; P < .005 

CHAPTER 15 review exercises 

23. As Pie Pa = 2/09; N0,.2) =P 200) 

24. yes; y? = 16.04; P < .005 
25. yes; v7 = 34.05; P < .005 
265001" = 2.09;-2d a 
Die a) tl poodle led 

(b) no; y2 = .77; 50 <P <.75 

Section 16.1 

2. P = .0028; ARL = 360 minutes; no; every 5 minutes 

4. (b) .0026 
(c) 384.6 

(d) 384.1 
(e) 6.30 
( f ) 6.30 hours; 3.15 hours; 1.575 hours 

Section 16.2 

6. (a) X: LCL = 23.116, UCL = 25.884 
RaLcw = 0) UCle= 3,074 

(b) X: LCL = .04346, UCL = .04654 
R: LCL = ,00112, UCL = .00888 

(c) X, Cle 7.0847 UCL n0216 
R: LCL = 0, UCL = 4.9067 

Section 16.3 

11. (a) p = .0195, Op = .009777 
(b) LCL = 0, UCL = .0488 
(c) All sample points are within control limits. If they were not, one would 

delete points outside the limits and recompute limits with reduced data set. 
13. (a) normal 

(b) A 
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Section 16.4 

15. (a) (11.5166, 12.2834) 

(b) (11.4916, 12.3084) 
(c) (11.2996, 12.5004) 
(d) [11.854, 11.946] 
(e) In (a) and (b) we are 95% sure and 99% sure, respectively, that 90% of the 

population is in the given interval; in (c) we are 95% sure that 99% of 

the population lies in the interval; in (d) we are 95% sure that the popula- 

tion mean lies in the given interval. 

17. about 90% 

Section 16.5 

19. (a) Il =0, P,.. = 1 

Il = .05, Pace = -7358 

II = .1, Py. = .3917 

Lele Pe e156 

(b) producer risk = .2642 

consumer risk = .1756 

Section 16.6 

21. (b) .6454 
(c) .8623 for IT = .1, .1666 for II = .4, .0123 for II = .6 

(d) .3546 
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Theorem 4.3.2. 
Let X be a gamma random variable with parameters a and B. Then 

1. The moment generating function for X is given by 

my(t)=(1— Bi)" t< 1/8 

2. E[X] = aB 
3. Var X = aB* 

Proof. 

By definition, 

my (t) = E{e™*] = [ eX a= e*'/B dx 

0 T(a)pe~ 
= 1 a apie Tape (a e dx 

Let z = (1 — G8)x/B so that x = Bz/(1 — Bt). Then B dz = (1 — Bt) ax and 
dx = B dz/(1 — Bt). By making these substitutions, we obtain 

1 e a er 2 

m( = Tag, ( Ea er 
sli pee 
~ T(a)p* (1 = Bo)" 

The integral on the right is (a). Therefore 

1 (Be = na =e 

WEN Ly 
We restrict ¢ to be less than 1/6 to avoid possible division by 0. 

ioe) 

| BEARING 
0 

mx (t) = 

Theorem 4.4.1. 
Let X be normally distributed with parameters x. and o. The moment generating func- 

tion for X is given by 

my (t) _ elt orl 

Proof. 

By definition, 

foro) d il cn , 

my (t) — Efe] = | e* eA plo} dx 

=e Wee 

E ef (2) wyloP dx 1 

27 o 



780 APPENDIX C 

We complete the square in the exponent as follows: 

tx — (1/2)[ — plo} 

= tx — [1/207]? — 2ux + pu?) 

= —[1/207](x? — 2x — 207tx + py?) 

= —[1/207][x? — 2(u + o7t)x + (uw t+ ot? — (u + o7t)? + pw’) 

= —[1/207][x — (u + of)’ 

+[1/207](u? + 2uo0?t + oA?) — [1/207]? 

= -[1/207][x — Ga + 0)? + wt + 07/2 

By substituting this expression into that for my (7), we obtain 

we 

my (ft) = | e UR IIx— (wt oP + ptt 0°12 dx 

‘ 9) ae 277 O = 

] oo 4 a 
— e U2 (ut OOF pat t ot /2 dx 

VV 277 Oo J-x 

60 1 So 
= elit orl | e 2)ix— (w+ oo? dx 

—» V2 o 

The function 

fx) = eo UD ix— (w+ oo P 

27 o 

is the density for a normal random variable with parameters @ and u + o7t and thus 

integrates to 1. This implies that 

y(t) = eben 

as claimed. 

III Theorem 4.5.2 (Chebyshev’s inequality). 

Let X be a random variable with mean 2, and standard deviation a. Then for any posi- 

tive number k, 

PX ~ ul <ko] = 1-5 

Proof. 

Assume that X is continuous with mean y, and standard deviation o, and density f. 
By definition, 

o? = Var(X) = | (x — wh)? fix) dx 

Let k > 0, and c = k*a, and note that 
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h+Ve 
- (a aih)? ).ae 

Ve 

3 B-Ve 
g= [ (x — pw)? fix) dx + | 

he 

i) espe ae LL)? fix) dx 

since (¢— 1)7fx) = 0, 

pte a 

| (x — w)* fix) dx = 0 
p-Ve 

and thus 

2 n-Ve 2 st 2) c= | (ae = fu) fO) Ge se | _&% — py fix) dx re Eve 

Note that over both regions of integration (x — jx)? = c, and so it can be 
concluded that 

4 u-Ve es 
One i GAG) Cbs ar | _ fix) dx 

ut+Ve 

In terms of probabilities, 

O=cPix=p— Vet cPiX=ut Vel 
or o? = c(PIX— ws — Vel + PIX- p= Vel} 
This inequality can be rewritten to conclude that 

Pix ey cle Piety = Viele 

2) 

or that Play C= Artic] =f 

Since c = k’o? where k and c are each nonnegative, Ve = ko. Substitution yields 

P[- ko =X-p=ko]=1- 

1 
or PIX — p| Sko] 21-75 

Since X is continuous, we can conclude that 

1 
PIX — p| <ko]=1-G 

as claimed. The proof in the discrete case is similar with summation replacing 

integration. 

Theorem 5.3.1. 
The correlation coefficient pyy for any two random variables X and Y lies between — | 

and | inclusive. 
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VI 

Proof. : 

Let Z and W denote random variables such that E(Z*] # 0 and E(w" = 0. Let a de- 

note any real number. Note that since the random variable (aW — Z)- = 0, its mean is 

nonnegative. That is, 

E((aW — Z)*] = @E[W?] — 2aE[WZ] + E[Z7] 20 

Let a = E[WZ]/E[W?]. Substituting, we can conclude that 

(E|WZ]) 3 E(WZ | 3 
——_ F[W?] — 2——— E[WZ] + E[Z°*] 20 cw? EY) ~ ? ew 

(E[WZ |) Z 
— ———- + E[Z*]=0 or E[W?] [Z°] 

This implies that 

GIWZ)Y zy 
E[W*JE[Z*] 

Now let W = X — pry and Z = Y — py. Substituting into the above inequality, we can 

conclude that 

(EUX = by)(Y = by)” ay 
(EU(X — py DEW = py?) ™ 

Solving for pyy, we see that | pyy | S 1 or that —1 S pyy = 1 as claimed. 

Theorem 5.3.2. 
Let X and Y be random variables with correlation coefficient pyy. Then | pyy| = 1 if 

and only if Y = By + B,X for some real numbers By and B, + 0. 

Proof. 

We shall show that if | pyy| = 1, then X and Y are linearly related. The proof of the con- 

verse is straightforward. 

Assume that | pyy| = 1. We can reverse the steps given in the proof of The- 

orem 5.3.1, replacing inequality with equality at each step to conclude that 

E((aW — Z)°] = 0. For the mean of a nonnegative random variable to be 0, the vari- 

able must equal 0 with probability 1. That is, P[(@W — Z)* = 0] = 1. This in turn 

implies that PlaW — Z = O] = 1 or that PlaW — Z] = 1. Let W = X — py and 

Z= Y — py to conclude that PlaX — ay = Y — pry] = |. Rewriting this expression, 

we can conclude that P[Y = wy — ayy + aX] = 1. That is, PLY = By + B,X] = 1, 

where By = fy — apy and B, = a. This means that points not on the line Y = 

By + BX occur with 0 probability, and the proof is complete. 

Theorem 7.1.3. 

Let S* be the sample variance based on a random sample of size n from a distribution 

with mean yw and variance a. S? is an unbiased estimator for co. 

Proof. 

By definition, 
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Es} = By SX 
iene al 

1 n mee 

=F) pte XY 
a aa 

1 [on : a n ees 
ae] i BP = 20 — pw) Kw) + YK wy 

Li=1 i=1 i=] 

ieee a, ee iN) XG ny = 
eres 3 ge bi AS TT X= 1h) 

Li=1 

| . 2 Vv 2) _V 3) mee 12 > OG = WD — PANO IR SOC 
i=1 

il! n = 3 

= Brae a Xi) ise AN) came 

aes ICC ay) ran leery 
i=l 

Note that since X,, X, X3,..., X, is arandom sample from a distribution with vari- 
ance a”, E((X; — »)] = o° for each i = 1, 2,3,..., . Note that by Theorems 7.1.2 
and 7.1.1, Var X = E[(X — y)*] = o7/n. By substitution, we obtain 

a 1 a D) E[S?] = s a? —no*/n 
rer a 

— (no? — o*) =o? 
i= Al 

and the proof is complete. 

Theorem 8.1.1. 

[Distribution of (n — 1)S?/a7]. Let X,, X>, X3,..., X, be a random sample from a nor- 
mal distribution with mean yu and variance a. The random variable 

GG Sio7= > (X= Xe 
i=] 

has a chi-squared distribution with n — 1 degrees of freedom. 

Proof. 

This argument does not constitute a rigorous proof of our theorem. However, it does 

suggest that the distribution of the random variable (n — 1)S?/a? is as stated. We begin 
by rewriting the random variable as a difference between two chi-squared random 

variables: 
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(n — 1)S2/o? = 

We now see that 

(n — 1)S2/a? + 

Note that the random variable (X — pal Vn) i is standard normal. By Exercise 45 of 

Chap. 7 (X — pol Vn)P has a chi-squared distribution with | degree of freedom, 

iL(X; — )*/o7] has a chi-squared distribution with n degrees of freedom. 

Since the sum of independent chi-squared random variables is also a chi-squared 

random variable (see Exercise 44 of Chap. 7), it is logical to assume that the random 

variable (n — 1)S*/a? has a chi-squared distribution with n — | degrees of freedom as 

and >? _ 

claimed. 

((X, — w) — X— wP 
1 = 

5 (Xi) Legare 
2t= 3 

i=] o cf 

(> ) ie mu) e 
n(X — py 

eae) a o 

_ nx = TE 2 n(X — py 

oe o 

orf A) al\V/n 

Xi wee 
a 
i=1 dear J- 
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2 X 2 contingency tables, 627, 631 
2* design, 598 
2* experiments. See Symmetric 2‘ experiments 
2* factorial experiments, 590-601, 603. See also 

Incomplete block design 
answers, 769-770 
computational techniques, 599-601 
exercises, 615-619 

2* treatment combinations, 604 
2? incomplete blocks, formation, 602-604 
2-sigma control chart, 653, 654 
2-sigma Shewhart control chart, 655 
3-sigma control chart, 653, 654, 665 
3-sigma Shewhart control chart, 655 
3-sigma X chart, 655-656 

Abbreviated ANOVA table, writing, 620 
Acceptance number, determination, 673 
Acceptance sampling, 650, 669-674. See also Two-stage 

acceptance sampling 
answers, 777 
exercises, 683 

Acute myeloblastic leukemia, example, 237-238 
Addition rule. See General addition rule 
Adjacent values, 209 
Air pollution contribution, example, 114-117 
Air traffic controllers, example, 67—68 
Airport plane arrival, example, 79-80 
Algebraic argument, repeat, 320 
Alias structure, 607, 608 
Allen, D. M., 486 
Alpha (a), 270, 271 

value, 272 
Alternative hypothesis, 268, 276 
Aluminum usage, example, 274-275 
Amino acids, example, 10, 11 
Analysis, nonparametric method, 522 
Analysis of variance (ANOVA), 511, 541, 557, 614. See 

also One-way ANOVA; Three-factor ANOVA; Three- 

way ANOVA; Two-way ANOVA 
analysis, 511 
answers, 768 
determination. See Three-factor design 
F test, 529 
nonparametric test. See One-way classification 
procedure, 524 
review exercises, 569-573 
significance, 586 
techniques, 512 
test, 573 

Analysis of variance (ANOVA) table, 520, 529, 549, 570, 

588-590 
completion, 619 
construction, 621 
derivation, 618 
writing. See Abbreviated ANOVA table 

Andel, Tom, 559 
ANOVA. See Analysis of variance 
Applied statistics, 107 

Approximate distribution. See Wilcoxon signed rank 

statistic 
Approximation procedure, 287 
Arimind, John, 57! 
Arithmetic average, 229 
Arnold, J., 487 
Assembly line yields, example, 283-284 
Assumed normal distribution, 667-668 
Asymmetric factorials, 590 
Attribute plans, 669 
Attributes, Shewhart control charts (usage), 662-667 

answers, 776 
exercises, 681-682 

Automobiles 
battery production/quality, 668 
defects, example, 324-325 
plant tasks, example, 157-158 
safety equipment usage, example, 633 

Average effect, 592 

Average value, 54 
Axioms. See Probability 
Ayles, William, 571 

B. See Beta; Variance 
confidence bounds, 470 
expected value, 464-465 

Bo 
confidence interval, 398, 469 
least-squares estimates, 383 
least-squares estimators, 387 

Bo, distribution, 391-392 

ih 

confidence interval, 397, 469 
least-squares estimates, 383 
least-squares estimators, 387 

B,, distribution, 388-391 
B,, distribution (derivation), 389 

Backward elimination procedure, 483-484 
Barometric pressure, example, 172 
Bartlett’s test, 522, 560 
BASIC program, 181 
Bayes, Reverend Thomas, 35 

Bayes’ theorem, 35-37 

answers, 730 
direct application, 37 
exercises, 43 

Beer bottles (filling), example, 75 
Bell curve (bell-shaped curve), 121, 264, 348 
Bernoulli trials, 59, 70 
Beta (B) 

definition, 271 
relationship. See Power 
value, 272 

B,, confidence bounds, 470 
Binomial density, 66, 670 
Binomial distribution, 65-70, 273, 674. See also Negative 

binomial distribution 
answers, 732-733 
binomial properties, 66-70 
definition, 67 
exercises, 88-90 
normal approximation, 121-123 

answers, 737 

example, 243 
exercises, 147-149 

usage, 74 
Binomial probabilities, 121 
Binomial properties. See Binomial distribution 
Binomial random variable, 65-66, 68, 121 

parameter n, 68 
parameter p, 68 

Binomial setting, 70 
Binomial theorem, 66 
Biomedical Computer Programs (BMDPC), 386 
Bit (spontaneous flipping), example, 106-107 
Bivariate normal density, 421 
Bivariate normal distribution, 190, 421 

Bivariate random variable, 156 

Blocking, 533 
effectiveness, 539-542 
variable, 544 

Blocks 
24 factorial experiment, example, 602-604 

design. See Randomized complete block design 

785 



786 INDEX 

Blocks—Cont. 

2* factorial experiments. See Incomplete block 
design 

effects, 602 
treatments, interaction, 536-537 

Blood calcium level, example, 159-163, 168 

Blood type distribution, example, 37 
BMDPC. See Biomedical Computer Programs 
Bolt production, example, 654-655 
Bonferroni inequality, 560 
Bonferroni T tests, 524-526, 543, 565 
Bonferroni type T tests, 542 
Boundary value, 197-199 
Boxplots, 207-212, 411-417 

answers, 743-744 
construction, 209-212 

example. See Residual 
exercises, 219-220 

Buses, example. See Transit buses 

C charts (defects, average number), 665-667 

Calcium level, example. See Blood calcium level 
Card (drawing), example, 32 
Categorical data, 623 

answers, 776 
review exercises, 646-648 

Categorical variables, 477 
Categories, data breaking (rules), 197 

Category frequency, comparison, 625 
Cell exposure, example, 47-49 
Central limit theorem, 121, 237, 242-243, 254-257 

exercises, 253-254 
usage, 313-315 

Cereal dispensation, example, 668 
Charts - 

mean. See X 
properties. See Control charts 

Chebyshev, P. L., 120 

Chebyshev’s inequality, 118-120, 778, 780-781 
answers, 737 
exercises, 147 

Children (sex determination), example, 29-30 
Chi-squared distribution, 107, 112-113, 194, 343 

answers, 736 
approximation, 522 
definition, 112 
exercises, 143-145 
k-1 degrees of freedom, 554, 625 
n degrees of freedom, 784 
n-| degrees of freedom, 260, 341, 783 
n-2 degrees of freedom, 394 
negative value, occurrence, 260 
table. See Cumulative chi-squared distribution table 

Chi-squared family, 112 
Chi-squared goodness of fit tests, 625-627 

answers, 775 
exercises, 641 

Chi-squared random variable, 340, 783. See also 
Independent chi-squared random variable 

example, 112-113 
Chi-squared statistic, 625, 638 

usage, 633 
C, statistic. See Mallow’s C,, statistic 
Classical approach. See Probability 
Classical probability, usage, 31 
Classification 

design, fixed effects inclusion (model), See Two-way 
classification design 

fixed-effects model. See One-way classification 
variables, association, 628 

Coal consumption, example, 203, 206 
Coal seams (sulfur content), example, 513-515, 521-524, 

527-529 
Coefficient. See Correlation 

confidence interval, 469-470 

Coefficient of determination. See Determination 
Combinations, 9-17 

answers, 726-727 
counting, 14-15 

definition, 10 

exercises, 19-22 
number, 14 

Combinatorial techniques, 72 
Comparisons. See Paired comparisons; Pairwise 

comparisons 
Comparisonwise error rate, 526 
Complete block design. See Randomized complete 

block design 
Completely randomized design, 574 
Computational formula. See a? 
Computer 

crash, example, 626-627 
system turnaround, example, 276 
usage, example, 15—16, 34, 319-322 

Conditional density, 172-176 
definition, 173 
discrete case, 173 
example, 174-176 
exercises, 186-187 
regression, interaction, 172-176 

answers, 740 
exercises, 186-187 

Conditional notation, 448 
Conditional probability, 29-30 

answers, 729 
definition, 30, 35 
exercises, 40-41 

Conditional random variable, 378 
Confidence band, 400 
Confidence bounds, 350. See also B; B;; &@;—M>: My|x 

construction, 349 
derivation, 345 

Confidence interval. See By; B,; Coefficients; Estimated 
mean; Mean; (1; M\—{o3 My|,3 Py P\-P2s Ps 07: 
Simultaneous confidence intervals; Z-type confidence 
interval 

construction, 263 
definition, 237 
derivation, 314 
development, 388 
estimation, hypothesis testing (interaction), 394-404 

answers, 761-762 
exercises, 430-432 

finding, 338 
length, 241 
obtaining, 398 
upper bounds, 260 
yield, 315 

Constants 
expected value, 54 
factoring, 54 

Consumers, risk, 670, 674 
Contingency tables. See 2 X 2 contingency tables 

usage, 635 
Continuous case, computation. See F continuous case 
Continuous density, 98-104 

answers, 735 
conditions, 99 
definition, 99 
exercises, 138-141 

Continuous distribution, 98, 282 
answers, 737-738 
assumption, 283 
review exercises, 153-155 
simulation, 134 

Continuous joint density, 158-159 
Continuous joint distribution, 158-163 
Continuous marginal density, 161 
Continuous marginal distribution, 158-163 
Continuous random variable, 159, 176, 184 

definition, 98 
density f,, 131 
expected value, 105 

joint density f,,. See Two-dimensional continuous 
random variable 

Contrast 
defining, 604, 606 

example, 607 
definition, 530. See also Orthogonal contrast 
testing, 530-533 



Contrast—Cont. 
testing—Cont. 

answers, 766 
exercises, 562-563 

Contrast in treatment means, 530 
Contrast sum of squares, 531 
Control charts, 649. See also 2-sigma control chart; 

2-sigma Shewhart control chart; 3-sigma control chart; 
3-sigma Shewhart control chart; Cumulative sum; 
Shewhart R control chart 

constants, table, 686, 720 
development, 650 
modifications, 676-677 
properties, 650-655 

answers, 776 
exercises, 678-679 

Control factors, 677 
Control limit, 665. See also Lower control limit; 

Upper control limit 
computation, 658 

determination, 655 
values, 653 

Controlled study, 380 
Convergence. See Geometric series 
Correction factor, 596 
Correlation, 169-172, 418-425. See also Perfect positive 

correlation; Simple linear correlation 
answers, 740, 762 
coefficient, 422. See also Multiple correlation 

coefficient; Pearson correlation coefficient 
bounds, theorem, 170, 778, 781-782 
Pxy, 170, 781, 782. See also Random variable 

example, 171-172 
exercises, 186, 434-436 
interpretation, theorem. See Perfect correlation 
Pearson coefficient, 170, 475 

Cotton linter usage, example, 71—72 
Counting. See Combinations; Permutations 

introduction, 1 

review exercises, 23-24 
answers, 727-729 

Covariance, 167-169. See also Variable pairs; Zero 
covariance 

computational formula, 168 
interaction. See Expectation 

CPU time, example, 349 

Critical level, 274 
Cross-product terms, 450 

Cubic model, 445 
Cumulative binomial distribution table, 686-69 1 
Cumulative chi-squared distribution table, 686, 695-696 
Cumulative distribution, 49-51, 101-104 

function, 46, 49, 68, 101, 112, 125-126, 201 
plots, 199-202 
table, 686, 697-698 

Cumulative distribution—continuous, definition, 102 

Cumulative frequency distribution, 199 
Cumulative sum (CUSUM), 677 

control charts, 677 
Curves of regression. See Regression 

Data. See Categorical data 
analysis, 234, 511. See also Statistical data 
breaking rules. See Categories 
collection, 511 
example, 198-199 
layout, 631 
obtaining, 662, 663 
pairing, 350 
points, 208, 211, 227, 381, 486 
set, 206, 211. See also Real-life data sets 
variability, measure, 578 

Davies, A., 639 
Day run, 602 
De Moivre, Abraham, 113 
Defective welds, example, 164, 168, 171-172 

Defects 
average number. See C charts 
total number, 665 

INDEX 787 

Degree p, polynomial model, 444-448 

Degrees of freedom. See Freedom 
Deming, W. Edwards, 259, 649 
Density. See Bivariate normal density; Conditional density; 

Continuous density; Continuous marginal density; 
Discrete marginal density; Exponential density; 
Geometric random variable 

definition. See Discrete density 
f: See Discrete random variable; Random variable 
function, 46-47, 68, 156. See also Probability 

conditions. See Discrete density 
derivation, 70 

f,- See Continuous random variable; Independent random 
variable; Two-dimensional random variable 

fy. See Two-dimensional continuous random variable; 
- Two-dimensional discrete random variable; 

Two-dimensional random variable 
f;. See Independent random variable; Two-dimensional 

random variable 
term, 100 

Dependent variable, 379 
Descriptive level. See Significance 
Descriptive statistics, 191 

answers, 744-747 
review exercises, 220-224 

Design models, matrix form, 550-553 
answers, 767 

exercises, 567 
Destructive sampling, 674 
Determination, coefficient, 424-425. See also Multiple 

determination 
Deviation. See Random deviation; Standard deviation 

Diagnostic tools, 408 
Discrete density 

definition, 47 
function, conditions, 47 

Discrete distribution 
answers, 734-735 
simulation, 78—80 

exercises, 94-95 
Discrete distributions, 45 

review exercises, 95-97 
Discrete event, 665 
Discrete joint density 

conditions, 157 

definition, 156 
Discrete marginal density, 158 
Discrete marginal distribution, 158 
Discrete probability densities, 46-51 

answers, 730-731 

exercises, 81-83 

Discrete random variable, 47, 183 
definition, 46 
density f, 49, 52 
families, 58 

joint density f,,. See Two-dimensional discrete random 
variable 

Discrete uniform distribution, 87 
Distributed random variables, 518, 547 

example. See Independent uniformly distributed 
random variables 

linear combination, distribution. See Independent 

normally distributed random variables 
Distribution. See Binomial distribution; Chi-squared 

distribution; Cumulative distribution; Exponential 
distribution; Gamma distribution; Hypergeometric 
distribution; Joint distribution; Multinomial 
distribution; Normal distribution; Uniform 

distribution; Variance 
estimation. See Mean; Student-t distribution 
introducing, 236 

mean 
hypotheses tests (forms), 276 
pL, 226, 242 

mean inferences, 259 
answers, 753-756 
review exercises, 306-311 

median, hypotheses tests (forms), 283 
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Distribution—Cont. 
parameters, 191 

finding, 107 
interaction. See Expectation 

picturing, 194-202 
answers, 741-742 
exercises, 213-216 

simulation. See Continuous distribution; Discrete 
distribution oe 

theorem, 260, 778, 783-784. See also X 
value (average), 272 
variance, inferences, 56-57, 259 

answers, 753-756 
hypotheses tests, forms, 280 
review exercises, 306-311 
a7, 242 

DNA-RNA code, example, 12 

Double stem-and-leaf diagram, 196 
Douglas, Jr., Gordon, 375 
Drink dispensation, example, 656-658, 660-662 
Drug comparison, example, 54-55 
Drug production (unit cost), example, 447-448, 461-462 
Drug usage, example, 53-54 
Dummy variables, usage, 477-48 1 

answers, 765 
exercises, 503-506 

Duncan, D. B., 526 
Duncan procedure, 586 
Duncan’s multiple range test, 526-529, 542 

Economical storage, example, 638-639 
Ehrich, M., 487 
Electrical conduit materials, example, 341-342 
Electricity (peak demand), example, 46 
Emerson, W. H., 361 

Engine blocks, example, 10, 15, 74 
Enzyme inducer (3-methylcholanthrene), example, 

489-492 
Equal block means, null hypothesis (testing), 540 
Equal treatment 

combination means. See Null hypothesis 
means, null hypothesis (testing), 515-516, 518 

Equal variances, 342-347 
answers, 758 
exercises, 361-363 
F test assumptions, 341-342 

Error due to lack of fit, 405 
Error mean square, 519 
Error rate. See Comparisonwise error rate; Experimentwise 

error rate 
Error sum of squares, 383, 538, 596. See also Sum of 

squares error 
Estimate. See Point estimate; Regression line 
Estimated mean 

confidence interval, 470-472 
inferences, 398-400 
response, 446 

Estimated total variability, 550 
Estimation, 225. See also Interval; Least-squares 

estimation; Model; Parameter; Point estimation; 0? 
answers, 749-750 
review exercises, 254-258 

Estimator, 387, 519, 660. See also Interval; Likelihood; 
Maximum likelihood; p; p; 0? 

combination, 663 

definition. See Unbiased estimator 
derivation, 229 
properties. See Least-squares estimators 
usage, 227 
variance, determination, 471 

Events. See Mathematical event; Sample events 
collection, testing, 34 

definition, 6, See also Independent events; Mutually 
exclusive events 

finite collection, 33 

independence, definition. See Multiple events 
occurrence number, 77 
occurrence probability, 5, 29 
probabilities, assignation, 3-4 

Expectation. See Mathematical expectation 
covariance, interaction, 164-169 

answers, 739-740 
exercises, 184-185 

distribution parameters, interaction, 51-58, 105-107 
answers, 731, 736 
exercises, 83-86, 141-143 

matrix rules, 464 
rules, 54, 226, 464 

usage, 465 
Expected cell frequencies, estimation, 635 
Expected frequencies, 626, 630 

computation, 632 
Expected mean square, 587. See also Treatment 

table, 548 
Expected value, 51-52. See also B; Constants; Continuous 

random variable 
definition, 52, 105, 165 
example, 53, 105 
mean, interchangeability, 53-54 
notes. See Random variable 

Experiment. See 2 factorial experiments; Factorial 
experiments; Fractional factorial experiments; Mixed 
model factorial experiments; Random model factorial 
experiments 

physical description, 9 
restriction, 12 

Experimental design, 511. See also Single-factor 
experimental design 

Experimental error, 405 
Experimentation, order, 511 
Experimentwise error rate, 525-526, 529 
Exponential density, 110 
Exponential distribution, 107, 110-112, 194, 211 

answers, 736 
exercises, 143-145 

Exponential function, 63 
Exponential model, example, 493 
Eye color probability, example, 32-33, 45 
e*, Maclaurin series expansion, 63, 75 

F continuous case 
computation, 102 
f, obtaining, 104 

F distribution, 338-342 
answers, 758 
definition, 339 
exercises, 359-36] 
properties, 340-341 
table, 686, 704-714 

F ratio, 477, 539, 581 
examination, 586 
formation, 587 
numerator, usage, 598 
usage, 585, 588 
yield, 548 

F test, 356, 524, 598. See also Analysis of variance 
assumptions. See Equal variances 
logic, 475-476 

Factorial experiments, 574. See also 2‘ factorial 
experiments; Fractional factorial experiments; Mixed 
model factorial experiments; Random model factorial 
experiments 

answers, 773-775 
review exercises, 621-622 

Factorial notation, definition, 12 
Factorials. See Asymmetric factorials 
Factors (effect), example, 604 
Failure, 652 

density, 125 
f, 129. See also Random variable 

probability, 71 
rate, 653 

False alarm, 654 
rate, 651 

Fences. See Inner fences; Outer fences 
notion, 210 

Finished product, marketing/servicing, 259 
First event, occurrence time, 111 



Fisher, R. A., 229 

Fisher transformation, 424 
Fisher’s exact test, 630 
Fisher’s least significant difference (LSD), 526 
Fit. See Lack of fit 
Fitted regression equation, 481 
Fitted regression line, 392, 408 
Fittings (precoating), example, 317 
Fixed effects, 533 

inclusion. See Two-way classification completely 
random design; Two-way classification design 

Fixed-effects experiment, analysis, 587 
Fixed-effects model, 547, 587. See also One-way 

classification 
Fluid viscosity, example, 120 
Forward selection method, 482-483 

Fossil fuel consumption, example, 267 

Foundries (safety), example, 323 
Four-factor interactions, 608 

Fractional factorial experiments, 604-609 
analysis, example, 607-609 
answers, 771-772 

example, 605-607 
exercises, 620 

Freedom 
degrees, 263, 264, 278, 340, 587. See also Chi-squared 

distribution; k-1 degrees of freedom; N-k degrees of 
freedom; T distribution 

association, 630. See also Test statistic 
number, 347, 540, 630 

Smith-Satterthwaite degrees, 348 
Frequency. See Expected frequencies 

approximation. See Relative frequency 
histogram, 199. See also Relative frequency 
ogive. See Relative cumulative frequency ogive 

Friedman statistic, 555 
Friedman test, 553, 555-556 

Gamma densities, graph, 110 
Gamma distribution, 107-113, 194, 235 

answers, 736 
definition, 109 
exercises, 143-145 
random sample, example, 230 
theorem, 109, 778, 779 

Gamma function, 107 
definition, 108 
properties, 108 

Gamma properties, theorem, 109, 778, 779 
Gamma random variable, 110-112, 779 

mean, 109 
parameter a, 109 
parameter B, 109 
variance, 109 

Gas 
constant, | 

law. See Perfect gas law 
Gasoline (lead concentration), example, 100-101, 103 
Gasoline mileage 

car weight, example, 477 
car weight/temperature, example, 444, 449-450, 

452-453, 468-469, 477 
specific car weight/temperature 

example, 471-472, 474 

urban driving 
example, 402-404 

Gauss, Carl Frederich, 113, 229, 242 
Gaussian distribution, 113 
Gene deviation, example, 49-50 
General addition rule, 26-29 
General linear model, 443, 444, 454 

model parameters, 462 
special case, 460 

Generalized interactions, 604, 606 
Geometric distribution, 59-61, 653 

definition, 60 
moment generating function, interaction, 58-65 

answers, 731-732 
exercises, 86-88 

usage, 652 

INDEX 789 

Geometric moment generating function, definition, 62 
Geometric properties. See Geometric distribution 
Geometric random variable, 59, 64 

definition, 60 
density, 62 
geometric properties, 59-61 
mean, finding, 61 

parameter p, 62, 64 
Geometric series, convergence, 48 
Goodness of fit 

measures, 482 
tests. See Chi-squared goodness of fit tests 

Gowd, T., 93 
Gray, David M., 301 
Gross, A. Christopher, 301 
Group (random selection) study, example, 627-628 

Ay 
left-tailed test, 280, 283, 323, 346, 352 
right-tailed test, 280, 283, 318, 323, 339, 346, 352 
testing, 516-522, 539, 578-581 

example, 531-532 
test statistic, 318 

two-tailed test, 280, 283, 323, 339, 346, 352 
Hazard rate 

function, 129 
p. See Random variable 

interpretation, 127-128 
Heart rate, example, 53-54 
Heaton, B. S., 572 
Hegland, D., 290 
Hemsley, D. J. C., 293 
Higher-order interactions, 604-605 
Highway accidents, example, 35-37 
Hignett, B., 93 

Histograms, 196-197. See also Frequency; Relative 
frequency 

Homogeneity 
r X c test, 636-638 
test, 635, 636 

Humidity 
effect, example. See Mirogrex; Temperature/humidity 
regressor/solvent evaporation interaction, example, 

458-460, 477-481 
solvent evaporation interaction, example, 384-386 

Humphries, Col. John G., 335 
Hydrocarbons, example, 114-117 
Hypergeometric computations, 671 
Hypergeometric distribution, 72-75. See also Random 

variable 
answers, 733 

definition, 73 
exercises, 91-92 

hypergeometric properties, 72—75 
parameter N, 73 
parameter n, 73 
parameter 7, 73 
Poisson approximation, 683 

Hypergeometric properties, 671. See also Hypergeometric 
distribution 

Hypothesis. See Alternative hypothesis; Null hypothesis; 
Research hypothesis 

Hypothesis testing, 268-273, 394, 451, 652. See also 
Model; Two proportions 

answers, 751-752 
end results, possibilities, 269-273 
exercises, 295-298 
guidelines, 268-269, 673 
interaction. See Confidence interval 
procedure, 272 

Hypothesis tests. See Mean; p; Variance 
forms. See Distribution 

Iacopi, Robert, 93 
Identity, sum. See Squares 
Immunology, example, 45—46 
Incomplete block design, 2* factorial experiments, 601-604 

answers, 770-771 
exercises, 610-620 
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Incomplete blocks, 602 
Incomplete blocks, formation. See 2° incomplete blocks 
Independence, 163-164 

characterization, 30 
definition. See Multiple events 
interaction. See Joint density 
multiplication rule, interaction, 30-35 

answers, 729 
exercises, 41-43 

null hypothesis, 631 
r X c test, 631-633 
testing, 32, 627-633 

answers, 775 
exercises, 641-643 

Independent chi-squared random variable, 263, 339 
sum, distribution, 252 

Independent events, 31. See also Physically independent 
events 

definition, 32 
Independent normal random variable, linear function, 

389-391 
Independent normally distributed random variables, linear 

combination (distribution), 252 
Independent objects, definition, 30 
Independent random samples, 325, 512, 634 
Independent random variable, 164, 192, 235 

finite number, 235 
marginal density f,, 164 
marginal density f,, 164 
sum, distribution, 251-252 

Independent samples, 638. See also Point estimation 
Independent T test, 342 
Independent uniformly distributed random variables, 

example, 178 
Independent variable, introduction, 457 
Indicator variable, 478, 481 
Indicators, usage, 477-481 

answers, 765 
exercises, 503-506 

Indistinguishable objects, permutations, 15-17 
example, 16-17 
number, 67 

Industrial plant (safety record), example, 120 
Infections, example, 35 
Inferences. See Distribution; Estimated mean; Intercept; 

Proportion; Single predicted value; Slope 
Inner fences, 209 

Integral evaluation, example, 108-109 
Integration, regions, 781 
Interaction. See Four-factor interactions; Higher-order 

interactions; Three-factor interactions; Three-way 
interactions 

effect, 592 
pooling. See Two-factor interactions 

Intercept. See Regression line 
inferences, 397-398 

Interquartile range, finding. See Sample 
Interval, 76, 98 

definition, See Confidence interval 
estimation, 237-243, 469-472. See also p 

answers, 764 
exercises, 253-254, 500-502 

estimator, 234 
Inverse transformation, 177 
ith population, theoretical mean, 515 
ith treatment, effect, 547 

Jacobians 

absolute value, 178 
finding, 187 
notation, 176 

Joint density. See Continuous joint density 
definition, See Discrete joint density 
fy: 172. See also Two-dimensional continuous random 

variable; Two-dimensional discrete random variable; 
Two-dimensional random variable 

independence, interaction, 156-164 
answers, 739 
exercises, 180-184 

usage. See Univariate averages 

Joint distribution, 156. See also Continuous joint 
distribution 

answers, 740-741 
review exercises, 188-190 

k populations, 517, 533 
means, 512, 524 

k specific populations, 517 
k-1 degrees of freedom, 522, 625. See also Chi-squared 

distribution 
k-1 single degrees of freedom, 533 
Kerosene heaters, example, 352-353 
k-factor design, 590 
Knight’s move, 565 
Kramer, C. Y., 527 
Kruskal-Wallis test, 553-555 

usage, 568 

Lack of fit, 404-407. See also Error due to lack of fit 
answers, 762 
exercises, 432-433 

Lalich, J., 93 
Laplace, Pierre Simon, 113, 242 
Larson, C., 487 
Latin squares, 544-546 

answers, 767 
exercises, 565-566 

Lawton, E. A., 89 
LCL. See Lower control limit 
Least significant difference. See Fisher’s least significant 

difference 
Least significant studentized ranges (,, ) table, 686, 719 
Least squares 

matrix approach, 451462 
answers, 763-764 
exercises, 497-499 

method, 382 
Least-squares estimates, 446, 456. See also Bo; By 

Least-squares estimation, 382-386 
Least-squares estimators. See Bo; B; 

exercises, 429-430 
impact, 495 
properties, 386-394, 462-469 

answers, 761, 764 
exercises, 499-500 

theoretical results, summary, 393 
vector, 465 

Least-squares procedures. See Model 
Leemis, Lawrence, 135 
Left-tailed test, 276-277, 281. See also Hp; p; p\-P> 

rejection, 318 
usage, 283 

Likelihood. See Maximum likelihood 
estimators, 232 
function, 231-232 

Linear algebra, 379 
Linear combination, 456 
Linear function, 530 

distribution, 251 
Linear model. See General linear model 
Linear regression, 381 

appropriateness, 404 

models, 380. See also Multiple linear regression models 
Linear trend, 170 
Linearity, evidence, 386 
Linearization, 493 
Liss, L, 85 
Lithium battery life, example, 195-196 
Load-bearing properties, example, 348-349, 351 
Location, See Median; Truncated median location 

nonparametric test, 282, 284 
parameter, 54, 107 
statistics, 203-204 

Logarithmic transformation, usage, 494 
Long-run theoretical average value. See X 
Low-effort steering system, example, 276 
Lower control limit (LCL), 651-653, 658-659, 663-667, 

679-680 
LSD. See Fisher’s least significant difference 
Lung cancer development, example, 630-631 



4, confidence interval, 241, 266, 469 

Mi-B2 
confidence bounds, 350 
confidence interval, 342-345 
unbiased estimator, 338 

MacKay, Colin A., 434 
Maclaurin series, 75 

expansion. See e* 
McMillan, T., 85 
McNemar’s test, 638-639, 647 
Macrofoulants, 301 
Major, J. B., 261 
Mallik, Azim, 648 
Mallow’s C, statistic, 486, 496 
Mammals (toxicity), example, 487 
Marginal column/row totals, 628, 630 
Marginal density, 158 

definition, 161. See also Continuous marginal density 
J., 172. See also Independent random variable; 

Two-dimensional random variable 
Ff, 172. See also Two-dimensional random variable 
marginal density f,. See Independent random variable 
product, 163 ; 

Marginal distribution, 158-163, 421. See also Continuous 
marginal distribution; Discrete marginal distribution 

Marshall, Jeff, 301 
Mass function. See Probability 
Mathematical event, 7 
Mathematical expectation, 51-52 
Matrix. See Model; Submatrix; Variance-covariance matrix 

algebra, rules, 467 

approach. See Least squares 
calculation, 454 
example, 456-457 
form, 447, 451, 551. See also Design models 
formulation, 453. See also Polynomial model; Simple 

linear regression 
notation, 454 
operations, 456 
rules. See Expectation; Variance 

Maximum likelihood 
estimators, 230-232 
method, 229-233 

answers, 748 

exercises, 248-251 
Maximum R? method, 486 
Mean (means). See Gamma random variable; k populations: 

Population; Sample mean; Treatment 
comparison, 342-351. See also Two means 

answers, 758-759 
exercises, 361-369 

confidence interval, 237-242, 266-268 
definition. See Sample 
distribution, estimation, 262—268 

exercises, 290-295 
effect. See Pooled mean effect 
estimation, 262—268 

answers, 750-751 
exercises, 290-295 
sample size, table, 686, 701—702 

finding. See Geometric random variable 
hypothesis tests, 275-280 

answers, 752—753 
exercises, 299-303 
forms. See Distribution 

interchangeability. See Expected value 
monitoring, 651-652 
1, 51, 780. See also Distribution; Normal distribution, 

Random variable 
w,. See Random variable 
py. See Random variable 
response. See Estimated mean 
significance tests, 275-280 

answers, 752—753 
exercises, 299-303 

square. See Error mean square; Treatment 
standard error, definition, 228 

unbiased estimator, 470-471 
value, 54, 174, 472, 651, 660. See also Y 

Mean squared error, 482, 529 

INDEX 791 

Measurements, Shewhart control charts (usage), 655-662 
answers, 776 
exercises, 679-68 | 

Median. See Random variable; Sample 
hypotheses tests, forms. See Distribution 
location, 204, 208. See also Truncated median location 
sign test, 282-285 

Melting point, example, 285-286 
Memory 

amount (comparison), example, 354-355 
chip production/quality, example, 663-665 

Method of maximum likelihood. See Maximum likelihood 
Method of moments. See Moments 
Microwave radiation exposure, example, 276 
Milton, J., 85 

MINITAB, 386 
output, 357, 376 

package, example, 357 
usage, 196, 199, 208 

Mirogrex (temperature/humidity effect), example, 594-597 

Mixed model factorial experiments, 587-590 
answers, 769 
exercises, 614-615 

Mixed-effects model, 587, 590 
Model. See General linear model; Multiple linear 

regression models 
assumptions, 547, 578. See also Simple linear regression 
description, 380-382 
estimation, 380-386 

exercises, 426-429 
fitting, least-squares procedures, 443-451 

exercises, 496-497 

matrix 
form. See Design models 
formulation. See Polynomial model 

parameters. See General linear model 
parameters, hypotheses testing, 472-477 

answers, 764 

exercises, 502—503 

specification matrix, 452, 466, 479, 593 

example, 454-456 
transposition, 453 

transformation, 492-495 

exercises, 507 
MODEL 1 (SAS), 585 
Moment generating function, 61-65, 68, 234. See also 

Negative binomial distribution; Random variable 

definition, 62. See also Geometric moment generating 
function 

interaction. See Geometric distribution 
means, 124 
m,(t), 234-236 
m,(t), 234, 235 
techniques, usage, 115 
theorem. See Normal moment generating function 
usage, 114 

Moments 
definition. See Ordinary moments 
method, 229-233 

answers, 748 
exercises, 248-251 

technique method. See @ estimation 
Monotonic function, 131 
Multicollinearity, 495 
Multifactor experiments, 512 
Multinomial distribution, 623-625 

answers, 775 
exercises, 640-641 

Multinomial random variable, 629 
definition, 624 
parameter n, 625 

Multinomial trial, 629 
definition, 623 

Multiple correlation coefficient, 475 
Multiple determination, coefficient, 474 
Multiple events, independence (definition), 33 

Multiple linear regression models, 443, 448-451 
answers, 765 
conclusion, 492495 
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Multiple linear regression models—Cont. 
normal equations, 449 
review exercises, 507-511 

Multiple range test. See Duncan’s multiple range test 
Multiplication 

principle, 10 
guarantee, 16 
usage, guidelines, 11-14 

rule, 34-35, 72 
interaction, See Independence 

Mutually exclusive events 
collections, 25—26, 36 
definition, 9 

By\x 
confidence bounds, 471 
confidence interval, 399 

n terms, sum, 51 
Negative binomial distribution, 70-72 

definition, 71 
exercises, 90-91 
moment generating function, 71 
negative binomial properties, 70—72 

Negative binomial properties. See Negative binomial 
distribution 

Negative binomial random variable, 71 
parameter p, 71 
parameter 7; 71 

Nitrate readings, example, 423-424 
Nitrogen oxide, example, 267 
N-k degrees of freedom, 531 
Noise factors, 677 
Nonlinear models, 492 
Nonlinear terms, 450 
Nonnegative random variable, 782 
Nonnormal data, 7 test usage, 280 
Nonparametric intervals, 669 
Nonparametric methods, 669. See also Analysis 

alternatives, 282-287, 351-355, 553-556 
answers, 753, 759, 767 
exercises, 305-306, 369-372, 567-571 

Nonparametric procedure, example, 556 
Nonparametric test, 352. See also Location; One-way 

classification 
usage, 282 

Nonparametric tolerance interval, 669 
Nonparametric tolerance limits (sample size), table. See 

Two-sided nonparametric tolerance limits 
Nonrandom variable, linear function, 418 
Nonrepetition, contrast. See Repetition 
Nonsymmetric distribution, 194 
Nonzero probability, 33, 52 
Normal density. See Bivariate normal density 
Normal distribution, 113-118, 235, 667. See also Assumed 

normal distribution; Standard normal distribution 
answers, 736-737 

definition, 113 
exercises, 145-147 
mean pL, 236, 241, 260-261, 266 
sampling, 265 
variance a”, 236, 241, 260-261, 266 

Normal equations, 383, 453-456. See also Multiple linear 
regression models 

solution, 456-457 
Normal moment generating function, theorem, 114, 

778-780 

Normal population, 236, 339 
sampling, 342 

Normal probability rule, 118 
answers, 747 
exercises, 147 

Normal random variable, 263, 651, 656, 780 
linear function, See Independent normal random variable 
mean jp, example, 234 
parameter p, 114 
parameter a, 114 
variance a”, example, 234 

Normal theory test, assumptions, 282 
Normal variable. See Standard normal variable 

Normality 
assumption, 268, 412 
checking, 411-417 

Notation, 544. See also Conditional notation; Matrix 
definition. See Factorial notation 

Notational changes, 625 
Notational convention, 340 
Nuclear accident probability, example, 34 
Null hypothesis, 268, 284, 350, 473. See also Independence 

association level, 634, 637 
formation, 637 
independence, 629 
interaction, 579 
mathematical expression, 634 
rejection, 269-272, 275, 343, 395, 585-586 
stating, 635 
testing, 531, 579-581. See also Equal treatment 
usage, 318, 323 

Null value, 268, 271, 273 
assumption, 269 

Numerical values, 192, 238 

Objects 
arrangement, 10, 14, 15 
classification level, knowledge, 629 
definition. See Independent objects 
number, 16 
reselection. See Population 
selection, 10 
usage, 13 

Observation (falling), probability, 629-630 
Observational studies, 379, 380 
Observations 

period, 77 
sample, 204 
set, 203 

Observed values, vector, 463 
OC. See Operating characteristic 
Ogives, 196-197. See also Relative cumulative 

frequency ogive 
usage, 199-202 

One-dimensional cases, 157 
One-sample case, 344 
One-sided confidence interval, 289, 293 
One-sided tolerance limits, 668 

factors, table, 686, 723 
One-tailed test, 343 
One-tailed value, 275 
One-to-one transformation, 178 
One-variable models, 483-484 
One-way ANOVA, 586 
One-way classification, 547-550 
ANOVA, nonparametric test, 553 
design, 534, 581 
fixed effects, 550-551 
fixed-effects model, 512-522 

answers, 766 
exercises, 557-560 
statistical model, 515-516 

model, 538-539 
example, 533 
expressing, 516 
means, equality, 524 
substitution, 515 

Operating characteristic (OC) curve, 672, 674 
Order, 70 

characteristic, 10 
Ordered pair, 159. See also Two-dimensional discrete 

random variable 
Ordinary moments, definition, 62 
Orthogonal contrast, definition, 532 
Outer fences, 209 
Outlier, 207, 211 

P 
confidence interval, 313-315 
estimation, sample size, 315-317 
left-tailed test, 317 
point estimator, 313 



p—Cont. 
polynomial model. See Degree p 
pooled estimator, 324 

right-tailed test, 317 
two-tailed test, 317 

P chart (proportion defective), 662-665 

P value, 274. See also Two-tailed P value 
calculation, 343 
discovery, 278 
reporting, 346 

Pi-P2, 320 
confidence interval, 321 

estimation, sample size, 330 
left-tailed test, 322 
point estimator, 319 
right-tailed test, 322 
two-tailed test, 322 

Paired comparisons, 542-544, 581-586 
Paired data, 349-351 

answers, 759 
exercises, 367-369 
usage. See Proportion 

Paired observations 
signed-rank test, 354 
Wilcoxon signed-rank test, 354-355 

Paired T procedures, 351 
Paired T test, 511 
Pairwise comparisons, 524-530 

answers, 766 
exercises, 560-562 

Parallel systems 
definition, 129 

reliability, 129-131 
Paramecia strains, example, 111-112 

Parameter 
a. See Gamma random variable; Weibull random 

variable 
B. See Gamma random variable; Weibull random 

variable 
design procedures, 677-678 
estimates, 494 
estimation, 380-386, 451 

exercises, 426-429 
interaction. See Expectation 
k. See Poisson distribution 
X. See Poisson process 
pe. See Normal random variable 
N. See Hypergeometric distribution 
n. See Binomial random variable; Hypergeometric 

distribution; Multinomial random variable; Random 
variable 

p. See Binomial random variable; Geometric random 
variable; Negative binomial random variable; Random 
variable 

r. See Hypergeometric distribution; Negative binomial 
random variable; Random variable 

o. See Normal random variable 
0. See Population 

Pearson coefficient, 170 
Pearson correlation coefficient, 418-419, 423 

Pearson, E. S., 18 
Pearson, Karl, 229 
Perfect correlation, interpretation (theorem), 170, 778, 782 

Perfect gas law, 1-2 
Perfect positive correlation, 170 
Permutations, 9-17. See also Indistinguishable objects 

answers, 726-727 
counting, 10-11, 13 
definition, 10 
exercises, 19-22 
formation, number, 70 

number, usage, 13 
Personal approach. See Probability 
Personal opinion, 4 
Petrow, Steven, 291 
Physical measurement units. See Standard deviation 
Physically independent events, 31 
Pine seedling plantings, example, 229-230 
Pirie, W. R., 561 
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Plasma coating, example, 356-357 
Plots. See Boxplots; Residual plots; Stem-and-leaf plots 
Point binomial, 313 
Point estimate, 225 

extension, 469 

Point estimation, 225-228 

answers, 747-748 
drawback, 233-234 
exercises, 244-248 

independent samples, 336-338 
answers, 758 
exercises, 358-359 

Point estimator, 233, 313, 337, 421. See also p; p\—po; 
Two means 

Poisson approximation. See Hypergeometric distribution 
Poisson density, 670 
Poisson distribution, 75—78 

answers, 734 

definition, 76 
exercises, 92-94 
function table, 686, 691 
parameter k, 76 

Poisson problem, solution (steps), 77-78 
Poisson process, 76-77, 250 

parameter A, 77, 111 
Poisson random variable, 111, 665 

parameter k, 76 
Poisson, Simeon Denis, 75 
Polynomial model, 443. See also Degree p 

matrix formulation, 460-462 

Pooled estimator. See p 
Pooled mean effect, 517 
Pooled procedure, preference, 326 
Pooled proportions, 323-325 
Pooled sample variance, 343-344 
Pooled T test, 342, 345-347, 525 
Pooled test, 342-347 

answers, 758 
exercises, 361-363 

Pooled variance, 342-345 
definition, 343 

Population, 191-192, 784. See also Normal population; 

r population 
confidence, level, 668 
definition, 2 
example, 336 

mean, 263. See also k populations; Theoretical 
population means 

medians, equality, 554 
object, reselection, 193 
parameter 0, 268 
proportions, 321, 322, 635 

difference, 325 
samples, selection, 322 

studying, 351 
theoretical mean. See ith population 
variance, 207, 338 

comparison, 347 
replacement, 344 

Posttraumatic amnesia study, example, 210-211 

Power 
beta, relationship, 272 

definition, 272 
model, example, 493-494 

Power of the test. See Test 
Predicted value, inferences. See Single predicted value 

Prediction 
band, 402 

construction, 401 
bounds. See ¥|x 
interval, 400-401. See also Y\x 
testing, 451 
value. See Single predicted response 

Prediction sum of squares (PRESS) 
residual, 487 
statistic, 486-492, 496 

Predictor variables, 443, 448, 450 
example, 482-484 
subset, testing, 476-477, 597 
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Predictor variables—Cont. 
usage, 473 
values set, 471 

PRESS. See Prediction sum of squares 
Pressure (amount), example, 554-555 
Probability. See Conditional probability; Failure; Nonzero 

probability; Significance tests; Success 
assignation. See Events 
associations, 631 
axioms, 25-29 

answers, 729 

exercises, 38-40 
classical approach, 4-5, 15, 26 
classical formula. See Events 
computation, 99 
density function, 47, 670 
function, 46-47 
interpretation, 3-5 

answers, 725 
exercises, 17-18 

introduction, | 
laws, 25 

answers, 730 
review exercises, 43-44 

mass function, 47 
numbering, 3 
personal approach, 4 
relative frequency approach, 4 
review exercises, 23-24 

answers, 727-729 
rule. See Normal probability rule 
usage. See Classical probability 

Problem formulation, 511 
Process 

control, 649 
design, 650 

Producers, risk, 670, 673 
Product 

control, 650 
quality, 677 
variability, monitoring, 659 

Production line items (defects), example, 624-625 
Production process, 259 

example, 8 
Proportion. See Pooled proportions; Sample proportion 

comparison, 633-639 
answers, 776 
exercises, 643-646 
hypothesis testing. See Two proportions 
paired data, usage, 638-639 

comparison, estimation, 319-322 
answers, 757 
exercises, 329-331 

defective. See P chart 
estimation, 312-317 

answers, 757-758 
exercises, 326-327 

hypotheses testing, 317-318 
answers, 756 

exercises, 327-329 
inferences, 312 

Propulsion system (components arrangement), example, 27 
Pure error, 405 

Q (statistic), 523 
Qualitative variables, 477-48 | 

Quality control. See Statistical quality control 
concepts, 676 
extensions, 676-678 
interest, 649 

Quantitative variables, 477-48 | 

Pp 

confidence interval, 423 
estimator, 419 
graphical interpretation, 419 
hypothesis tests, 421-424 
interval estimation, 421-424 

R chart. See Shewhart R control chart 
construction, example, 660 
range, 659-662 

r, computational formula, 419 
r X c test. See Homogeneity; Independence 
R? method. See Maximum R? method 

population, 545 
Radar signal identification, example, 68—70 
Radiation absorption, example, 117-118 
Radioactivity 

exposure, example, 633-634, 636 
mean occupational exposure, example, 345 

RAMs (point estimate), example, 315-317 
Random design. See Two-way classification completely 

random design 
Random deviation, 578 
Random differences, 516 
Random digits 

example, 60-61 
table, 686, 693-694 

example, 78-79 
usage, 79 

Random error, 547 
Random model factorial experiments, 587-590 

answers, 769 
exercises, 614-615 

Random sample, 235. See also Independent random 
samples 

definition, 192 
example. See Gamma distribution 
mean jp, 260 
size n, 205, 226, 228, 242, 261, 283 
term, 193 
variance a7, 260 

Random sampling, 191-194 
answers, 741 
exercises, 212-213 

Random selection. See Treatment 
Random variable, 45-46, 192, 397, 418. See also Bivariate 

random variable; Independent random variable; 
Nonnegative random variable; Z random variable 

answers, 730 
correlation coefficient p,,, 170 
definition. See Continuous random variable: Discrete 

random variable; Multinomial random variable 
density 

example, 50-51, 102-103 
f, 62. See also Discrete random variable 
fy. See Two-dimensional continuous random 

variable; Two-dimensional random variable 
distribution, 423 
examples, 45—46, 54, 65, 132-134, 340-341. See also 

Independent uniformly distributed random variables 
exercises, 81 
expected value, notes, 54 
failure density f, 126, 127 
fingerprint, 234 
fluctuation, 55 
functions, 233-236 

answers, 748 
exercises, 251-253 

hazard rate function p, 126, 127 
hypergeometric distribution, 73 
joint density 

example, 158, 165-167, 173-174 
fy, 164. See also Two-dimensional continuous 

random variable; Two-dimensional discrete 
random variable 

linear combination, 469 
distribution. See Independent normally distributed 

random variables 
linear function. See Nonrandom variable 
mean, 54 

finding, 61-62 
b, 55 

&,, 167, 170 
My, 167, 170 

median, 282 
moment generating function, 63-64 
natural variability, 405 



Random variable—Cont. 
parameter 

a. See Gamma random variable; Weibull random 
variable 

B. See Gamma random variable; Weibull random 
variable 

k. See Poisson random variable 
bu. See Normal random variable 
n, 67. See also Binomial random variable; 

Multinomial random variable 
Pp, 67, 71. See also Binomial random variable; 

Geometric random variable; Negative binomial 
random variable 

r, 71. See also Negative binomial random variable 
o. See Normal random variable 

real numbers, interaction, 58 

reliability function R, 126, 127 
study, 201 

theoretical parameters, 58 
usage, 170, 234, 236, 548 
variance, 57, 259 

finding, 61-62 
(eu 

vector, 463, 465 
Random vector 

example, 463-464, 466 
variance, 465 

Random-effects models, 513, 547-550, 587-589 
exercises, 567 

Randomized complete block design, 533-544, 546, 555 
answers, 767 
exercises, 563-565 
model, 535-539 

Randomized design. See Completely randomized design 
Range 

definition, See Sample 
test. See Duncan’s multiple range test 

Rao, M. S., 93 
Rasid, Harun, 648 

RE. See Relative efficiency 
Real number, 379, 782 
Real-life data sets, 417 
Reciprocal model, example, 494-495 
Redundancy, providing, 131 
Reflective highway signs, example, 268-271 
Regression. See Ridge regression; Robust regression; 

Simple linear regression/correlation; Stepwise 
regression 

analysis, 481, 596 
curves, 174-176, 379, 422 

definition, 174 
estimate, 379 

equation, 383, 550. See also Fitted regression equation 

development, 379 
interaction. See Conditional density 
model, 551-552. See also Multiple linear regression 

models 
testing. See Significant regression 

Regression line, 381-383. See also Fitted regression line 
estimate, 400 
intercept, 398 

result, 480 
slope, 380, 386-388, 397 

Regression sum of squares (SSR), 467-468, 527 
equations, 583-584, 596-598 
expression, 473-477 
usage, 600 

Regressor, 379, 485 

linear combination, 486 
values, 409 
X», representation, 593 

Rejection region, 271 
Relative cumulative frequency ogive, 201 
Relative efficiency (RE), 540-541 
Relative frequency 

approach. See Probability 
approximation, 4 
histogram, 199 
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Reliability, 125-127. See also Parallel systems; 
Series systems 

function R, 129. See also Random variable 
interaction. See Weibull distribution 
studies, properties, 128-129 

Repeated measurements, 404-407 
answers, 762 
exercises, 432-433 

Repetition, nonrepetition (contrast), 11 
Replacement. See Sampling with replacement 
Research hypothesis, 268 
Residual, 381, 517, 536, 547 

boxplot construction, example, 415-417 
sum of squares, 596 
sum of the squares, 392, 446 

Residual analysis, 407-417 
exercises, 433-434 

Residual plots, 408-411 
Residue bath (temperature effect), example, 599-601 
Response 

variable, 379, 446 
vector, 451, 594 

example, 454-456 
Restricted three-way model, 614 
Ridge regression, 495 
Riemann sums, sequence, 99 
Right-tailed test, 276-277, 281. See also Ho; p; p\—p2 
Robust regression, 495 
Robustness, 280 
Rotary valve wear, example, 356-357 
Rules for expectation. See Expectation 
Rules for variance. See Variance 
Run length, distribution, 652-655 

o. See Standard deviation 
o*. See Variance 

computational formula, 55 
confidence interval, 261 

estimation, 465-469 
estimator, 392 
unbiased estimator (usage), 228 

Ss? 

computational formula, 204 

usage, 228 
Safety equipment usage, example. See Automobiles 
Sample. See Independent samples; Observations 

definition, 2. See also Random sample 
interquartile range, finding, 207-209 
points, 26 

expression, 67 
probabilities, 66 

range, 202 
definition, 206 
usage, 656 

Space, 7), 9537 
Sample events, 5—9 

answers, 725-726 

definition, 5 
exercises, 18-19 

Sample mean, 202, 228, 350, 576 
definition, 203 
estimation, 667 

Sample median, 202, 204, 207 

Sample proportion, 313 
Sample size, 522, 587. See also p 

considerations, 280 
n, 285-286. See also Random sample 
need, 669 
requirement, 294 

Sample spaces, 5—9 
answers, 725-726 

definition, 5 
exercises, 18-19 

Sample standard deviation, 202, 350 
definition, 205 

Sample statistics, 202-207 
answers, 742-743 
exercises, 216-219 

Sample values, 204 
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Sample variance, 202, 228, 339. See also Pooled sample 
variance 

definition, 205 
example, 343-344 
unbiased property, theorem, 228, 778, 782-783 

Sampling, 625, 651. See also Acceptance sampling; 
Destructive sampling; Normal distribution; Random 
sampling; Single-stage sampling 

scheme. See Two-stage sampling scheme 
Sampling with replacement, 72 
SAS. See Statistical Analysis System 
Satterthwaite procedure, 511. See also Smith-Satterthwaite 
Scattergram, 381, 420 
Seawater analysis, example, 28 
Sediment study, example, 208 
Series systems 

definition, 129 
reliability, 129-131 

Sets, intersection, 7 
Sewage effluent (effect), example, 419-421 

Shewhart control charts, 650, 676, 677. See also 2-sigma 
Shewhart control chart; 3-sigma Shewhart 
control chart 

introduction, 659 
usage. See Attributes; Measurements 

Shewhart R control chart, 659 
Shewhart, Walter A., 650 
Sign test. See Median 

zeros, handling, 284-285 
Signed-rank test. See Paired observations; Wilcoxon 

signed-rank test 
Significance 

b/c level, 526 
descriptive level, 274 
level, 526 

a, 285 
definition, 270 

a level, 278 
stated level, 275 

Significance testing, 270, 273-275 
answers, 752 
exercises, 298-299 
usage, example, 279-280 

Significance tests, 274. See also Mean 
performance, 277 
performing, 346 
probability, 274 

Significant regression, 394 
testing, 473-476 

Simple linear correlation, 378 
answers, 762-763 
review exercises, 436-442 

Simple linear regression, 378 
answers, 762-763 
matrix formulation, 458-460 
model, 394 

assumptions, 387, 401 
equation, 407-408 

review exercises, 436-442 
Simulation, 78. See also Discrete distribution 
Simultaneous confidence intervals, 529-530 
Single die (rolling), example, 227, 239-241 
Single predicted response, prediction interval, 472 
Single predicted value, inferences, 400-404 
Single predictor value, testing, 473 
Single-factor experimental design, 512 
Single-stage sampling, 674 
Single-variable models, 482, 484 
Slope. See Regression line 

inferences, 394-397 
Smith-Satterthwaite 

degrees of freedom. See Freedom 
procedure, 348-349 
T type confidence intervals, 356 

Smoking/pregnancy/birth defects (study), example, 
121-123 

Soft fail, 106-107 
Software quality/reliability, example, 312-313 
Solvent evaporation 

example. See Humidity 
extent, example, 396-397, 413-414 

Sometimes pool point of view, 349 
Spaces. See Sample spaces 
SPSS. See Statistical Package for the Social Sciences 
Squares. See Latin squares 

identity, sum, 518, 578 
SS. See Sum of squares 
SSE. See Sum of squares error 
SSE,,.. See Sum of squares due to pure error 
SSR. See Regression sum of squares 
Standard deviation 

definition, 57. See also Sample standard deviation 
estimation, 667 
interaction. See Variance 
physical measurement units, 58 
properties, 57-58 
replacement, 315 
a, 51, 780 

Standard error, definition. See Mean 
Standard normal distribution, 115-118 
Standard normal variable, 115 
Standardization 

procedure, 115 
theorem, 115 

proof, 234 
Star block copolymers (viscosity), example, 607-609 
Statistical Analysis System (SAS), 356, 386, 411, 599. See 

also MODEL 1 
output, 457 
usage, 487, 529 

Statistical data, analysis, 273 
Statistical model, 2, 512. See also One-way classification 
Statistical Package for the Social Sciences (SPSS), 386 
Statistical problem, characteristics, 191-194 
Statistical quality control, 649 

method, example, 663-665 
Statistical studies, 68, 259 
Statistical tables, 686 
Statistical techniques, usage, 51, 211] 
Statistical theory, 52 
Statistics, 238, 314. See also Descriptive statistics; 

Location; Sample statistics 
behavior, 205 
consideration, 285 
development, 625 
evaluation, 194 
observed value, 339 
requirement, 576 

Steel rods (checking), example, 671-673 
Stem-and-leaf diagram, 195, 341. See also Double stem- 

and-leaf diagram 
construction, 195-196 

Stem-and-leaf plots, 211, 411-417 
Stephens, Mark, 34 
Stepwise method, 484486 
Stepwise regression, 484 
Surling’s formula, usage, 74-75 
Stoplights, usage (example), 16-17 
Studentized ranges, 527 

distribution, upper percentage points (table), 686, 721 
table. See Least significant studentized ranges table 
upper-tail a-level critical value, 529 

Student-r distribution, estimation, 262-268 
answers, 750-751 
exercises, 290-295 

Sturges, H. A., 197-198 
Submatrix, 593 
Subset, testing. See Predictor variables 
Substitution, 36, 37, 779. See also One-way classification 

usage, 783 
yield, 781 

Subtraction, usage, 11 
Success, 652 

probability, 71, 624, 662 
Sulfur content, example. See Coal seams 
Sulfur dioxide 

chloroplasts (association), example, 636-638 
example, 267 



Sum of squares (SS), 519, 578-583. See also Contrast sum 
of squares; Treatment 

identity, 517-518, 537 
usage, 596-598 

Sum of squares due to pure error (SSE,..), 406407 
Sum of squares error (SSE), 383, 600 

division, 392 
equations, 446, 596-598 
estimator usage, 467-468 
expression, 473-477 
usage, 393, 405-407, 424-425 

Sum of the squares. See Regression sum of squares; 
Residual 

Summation, 52 
extension, 99 
properties, 388 
replacement, 781] 
rules, 383 
symbol, 388 

Symmetric 2‘ experiments, 590 
Symmetry, lack, 414 
Synthetic fabric production, example, 666-667 
Systems 

examples, 130-131 
failure, 130 

6 estimation, moments technique method, 232-233 
T distribution, 351, 398 

definition, 263 
estimation. See Student-r distribution 
n-2 degrees of freedom, 395, 399 
properties, 264-266 
table, 686, 699-700 

T procedures. See Paired T procedures 
T random variables, 348 
T test, 277, 351, 581. See also Bonferroni T tests; 

Independent 7 test; Paired T test; Pooled T test; 

Uncorrelated T test 
usage. See Nonnormal data 

T type confidence intervals. See Smith-Satterthwaite 
T183 calculator, 355-356 
Taguchi, G., 649, 650 
Taylor series expansion, 71 
Television signal interruption, example, 194 
Television transmitter pollution, example, 277-278 
Temperature (effect), example. See Residue bath 
Temperature/humidity (effect), example, 577-580, 583-586 
Temperature/light (effect), example. See Mirogrex 
Tensile strength, example, 346-347 
Terminals (addition), example, 279-280 

Test, power, 272 
Test statistic, 269-270, 277, 322, 345. See also Hy; Pooled 

proportions F 
degrees of freedom, association, 632 
development, 324, 394, 473, 531 
equation, 353 
observed value, 271, 278 

obtaining, 347 
rewriting, 475-476 
selection, 323, 352 
usage, 325, 520, 588, 630 

Theoretical population means, 517 
Three factors, extension, 587 

answers, 769 
exercises, 611-614 

Three-factor ANOVA, 611-612 
Three-factor design, ANOVA (determination), 613 

Three-factor experiment, 592 
Three-factor interactions, 608 
Three-variable models, 482-483 
Three-way ANOVA, 612 
Three-way interactions, 604 
Three-way model. See Restricted three-way model 
Threshold value, 123 
Tied scores, 354 
Time interval, 651, 655 
Tire evaluation, example, 535 
T,,.. distribution, 398 
Tolerance interval. See Nonparametric tolerance interval 

INDEX 797 

Tolerance limits, 667-669. See also One-sided tolerance 
limits; Two-sided tolerance limits 

answers, 777 

exercises, 682 
sample size, table. See Two-sided nonparametric 

tolerance limits 
Total quality management (TQM), 259 
TQM. See Total quality management 
Transformation. See Inverse transformation; One-to-one 

transformation 
example, 176-178 

Transit buses (tire evaluation), example, 535, 541-542 

tread wear, example, 543-544 
Transmission line faults, example, 318 

Treatment, 512 
effects, 548 
expected mean square, 539 
interaction. See Blocks/treatments 
mean square, 519 
means. See Contrast in treatment means 
random selection, 513 
sum of squares, 546 
variation, 518 

Treatment combination, 576, 598. See also 2‘ treatment 
combinations 

handling, 601 
mean, 577 

n sample observations, 592 
observations, 578, 587, 593 

Tree diagram, 5—6 
Truncated median location, 208 
Tukey, John, 195 
Tukey’s procedure, 542 
Tukey’s test, 529-530, 563, 581 
Two means 

comparison, 336 
answers, 759-761 
review exercises, 372-377 

difference, point estimator, 337 
technology, 355-357 

Two proportions, comparison 
hypothesis testing, 322-325 

answers, 757 

exercises, 331-333 

test statistic, 324 
Two variances 

comparison, 336 
answers, 759-761 
review exercises, 372-377 

technology, 355-357 
Two-dimensional continuous random variable, 159 

joint density f,,, 161, 173 
Two-dimensional discrete random variable 

joint density f,,, 157-158 
ordered pair, 156 

Two-dimensional random variable, 156, 421 
joint density f,,, 165, 168, 173 
marginal density f,, 173 
marginal density f,, 173 

Two-factor analysis. See Variance 
Two-factor design, 587, 598 
Two-factor interactions, pooling, 608 
Two-sample problem, 350 
Two-sided nonparametric tolerance limits (sample size), 

table, 686, 724 
Two-sided tolerance limits, 667 

factors, table, 686, 722 
Two-stage acceptance sampling, 674-676 

answers, 777 
exercises, 683 

Two-stage sampling scheme, 674 
example, 674-676 

Two-tailed P value, 275 
Two-tailed test, 275-277, 281, 525. See also 

Ap; Ps Pi-P2 
usage, 283 

Two-variable models, 482, 483, 485 
Two-way ANOVA, 585 
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Two-way classification completely random design, fixed 
effects (inclusion), 574 

Two-way classification design 
data, collection, 575 
fixed effects (inclusion), model, 578 

Two-way experiment, 590 
Type I error, 269, 652 

committing, 655 
definition, 270 

Type I error 
definition, 269, 271 
result, 655 

UCL. See Upper control limit 
Unbiased estimator, 260, 324, 338, 389-390. See also 

Mean; 1;—> 
definition, 226 
obtaining, 519 
providing, 262 
usage, 531. See also a7 

Unbiased property, theorem. See Sample variance 
Uncertainty, degree, 2 
Uncorrelated T test, 342 
Unequal variances, 347-349 

answers, 758-759 
exercises, 363-367 

Uniform distribution, 104, 141-142, 235. See also Discrete 
uniform distribution 

Univariate averages, joint density (usage), 165 
Unknown constants, 547 
Upper control limit (UCL), 651-653, 658-660, 679-680 

Value (values). See Average value; Mean; Sample values 
definition. See Expected value 
inferences. See Single predicted value 
set, 45 
testing. See Single predictor value 

Variability, 468. See also Estimated total variability 
degree, 241 
interval estimation, 260-262 

answers, 750 
exercises, 288-290 

knowledge, 266 
measures, 204-207. See also Data 
monitoring. See Product 

Variable pairs, covariances, 465 
Variable selection, criteria, 481-492 

exercises, 506-507 
Variables. See Categorical variables; Qualitative variables; 

Quantitative variables; Random variable; Response; 
Standard normal variable 

definition, 45. See also Discrete random variable 
subset, testing. See Predictor variables 
transformation, 131-133, 176-180 

answers, 737, 740 
exercises, 151-153, 187-188 

usage. See Dummy variables 
values set. See Predictor variables 

Variance. See Analysis of variance; Gamma random 
variable; Population 

assumption, 410 
B, 465-469 
comparison, 338-342, 522-524. See also Two variances 

answers, 758, 766 
exercises, 359-361, 560 

definition, 55. See also Pooled variance; Sample 
variance 

determination, See Estimator 
distribution, 341 
equality, assumption, 492 
estimation, 266-268 
F test, assumptions. See Equal variances 
hypothesis tests, 280-28 1 

answers, 753 
exercises, 303-304 
forms. See Distribution 

known, 237-242 

matrix rules, 466 
rules, 58, 399, 465 
o?, 51, 536. See also Normal distribution; Random 

sample; Random variable 
example. See Normal random variable 

o?/n, 237 
standard deviation, interaction, 54-57 
two-factor analysis, 575-587 

answers, 768 
exercises, 609-611 

unbiased property, theorem. See Sample variance 
Variance-covariance matrix, 465-466 
Vector, 594. See also Response 
Venn diagram, 27, 28 
Voltmeters, example, 549-550 
Volumes, probabilities, 159 

W. See Wilcoxon signed rank statistic 
Waltman, H., 288 
Water samples, example, 231-232 
Weibull density, 123 
Weibull distribution 

definition, 124 
reliability, interaction, 123-131 

answers, 737 
exercises, 149-151 

Weibull random variable 
example, 124-125 
parameter a, 124 
parameter B, 124 

White blood cell count, example, 77-78 
Wilcoxon procedures, 352 
Wilcoxon rank-sum test, 352-354, 555 

table, 686, 715-718 
Wilcoxon signed rank statistic (W), approximate 

distribution, 286 
Wilcoxon signed-rank test, 285-287. See also Paired 

observations 
table, 686, 703 

Wilcoxon statistic, 354 
Wilcoxon test statistic, 285 
Wind speed, example, 236 
Wiring connections/insulation (inspection time), example, 

336-338 
Workload, example, 261—262 

X 
hypergeometric example, 73-74 

_ long-run theoretical average value, 52 
X, 262 

chart. See 3-sigma X chart 
mean, 655-659 

computation, 656 
distribution, 233-236 

answers, 748-749 
exercises, 251-253 

— _ theorem, 236 
X,-X,, distribution (theorem), 338, 778, 784 
y 

mean value, 399 
value, 401 

ya method, 599-601, 604 
Yi 

confidence interval, 469 
prediction bounds, 472 
prediction interval, 401 

Z curve, 264 

Z random variable, 347 

Z statistic, 424, 635 

Z°, distribution, 252-253 
Zero covariance, 169, 466 
Zero differences, occurrence, 284 
Zero vector, 464 
Zero-one random variables, 313 
Zeros, handling. See Sign test 
Z-type confidence interval, 260 
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