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Preface

The rapid development of inorganic chemistry makes ever more challenging the task of
providing a textbook that is contemporary and meets the needs of those who use it. We
appreciate the constructive suggestions provided by students, faculty, and reviewers, and
have adopted much of this advice, keeping in mind the constraints imposed by space and
the scope of the book. The main emphasis in preparing this edition has been to bring it up
to date while providing clarity and a variety of helpful features.

New to the Fifth Edition:

New and expanded discussions have been incorporated in many chapters to reflect
topics of contemporary interest: for example, frustrated Lewis pairs (Chapter 6),
IUPAC guidelines defining hydrogen bonds (Chapter 6), multiple bonding
between Group 13 elements (Chapter 8), graphyne (Chapter 8), developments in
noble gas chemistry (Chapter 8), metal-organic frameworks (Chapter 9), pincer
ligands (Chapter 9), the magnetochemical series (Chapter 10), photosensitizers
(Chapter 11), polyyne and polyene carbon “wires” (Chapter 13), percent buried
volume of ligands (Chapter 14), and introductions to C—H bond activation,
Pd-catalyzed cross-coupling, and sigma-bond metathesis (Chapter 14).

To better represent the shapes of molecular orbitals, we are providing new images,
generated by molecular modeling software, for most of the orbitals presented in
Chapter 5.

In a similar vein, to more accurately depict the shapes of many molecules, we
have generated new images using CIF files from available crystal structure
determinations. We hope that readers will find these images a significant
improvement over the line drawings and ORTEP images that they replace.

The discussion of electronegativity in connection with the VSEPR model in
Chapter 3 has been expanded, and group electronegativity has been added.

In response to users’ requests, the projection operator approach has been

added in the context of molecular orbitals of nonlinear molecules in Chapter 5.
Chapter 8 includes more elaboration on Frost diagrams, and additional magnetic
susceptibility content has been incorporated into Chapter 10.

Chapter 6 has been reorganized to highlight contemporary aspects of acid—base
chemistry and to include a broader range of measures of relative strengths of acids
and bases.

In Chapter 9 numerous new images have been added to provide more contemporary
examples of the geometries of coordination complexes and coordination
frameworks.

The Covalent Bond Classification Method and MLX plots are now introduced in
Chapter 13.

Approximately 15% of end-of-chapter problems are new, with most based on the
recent inorganic literature. To further encourage in-depth engagement with the
literature, more problems involving extracting and interpreting information from
the literature have been included. The total number of problems is more than 580.

xi
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Preface

* The values of physical constants inside the back cover have been revised to use
the most recent values cited on the NIST Web site.

* This edition expands the use of color to better highlight the art and chemistry
within the text and to improve readability of tables.

The need to add new material to keep up with the pace of developments in inorganic chemistry
while maintaining a reasonable length is challenging, and difficult content decisions must
be made. To permit space for increased narrative content while not significantly expanding
the length of the book, Appendix B, containing tables of numerical data, has been placed
online for free access.

We hope that the text will serve readers well. We will appreciate feedback and advice
as we look ahead to edition 6.

SUPPLEMENTS

For the Instructor

ADVANCED CHEMISTRY WEBSITE The new Advanced Chemistry Series
supports upper-level course work with cutting-edge content delivered by experienced
authors and innovative multimedia. We realize chemistry can be a difficult area of study
and we want to do all we can to encourage not just completion of course work, but
also the building of the foundations of remarkable scholarly and professional success.
Pearson Education is honored to be partnering with chemistry instructors and future
STEM majors. To learn more about Pearson’s Advanced Chemistry Series, explore
other titles, or access materials to accompany this text and others in the series, please visit
www.pearsonhighered.com/advchemistry.

For the Student

SOLUTIONS MANUAL (ISBN: 0321814134) by Gary L. Miessler, Paul J. Fischer,
and Donald A. Tarr. This manual includes fully worked-out solutions to all end-of-chapter
problems in the text.
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Introduction to Inorganic
Chemistry

1.1 what s Inorganic Chemistry?

If organic chemistry is defined as the chemistry of hydrocarbon compounds and their
derivatives, inorganic chemistry can be described broadly as the chemistry of “everything
else.” This includes all the remaining elements in the periodic table, as well as carbon,
which plays a major and growing role in inorganic chemistry. The large field of organo-
metallic chemistry bridges both areas by considering compounds containing metal—carbon
bonds; it also includes catalysis of many organic reactions. Bioinorganic chemistry bridges
biochemistry and inorganic chemistry and has an important focus on medical applications.
Environmental chemistry includes the study of both inorganic and organic compounds.
In short, the inorganic realm is vast, providing essentially limitless areas for investigation
and potential practical applications.

1.2 Contrasts with Organic Chemistry

Some comparisons between organic and inorganic compounds are in order. In both areas,
single, double, and triple covalent bonds are found (Figure 1.1); for inorganic compounds,
these include direct metal—metal bonds and metal-—carbon bonds. Although the maxi-
mum number of bonds between two carbon atoms is three, there are many compounds
that contain quadruple bonds between metal atoms. In addition to the sigma and pi bonds
common in organic chemistry, quadruply bonded metal atoms contain a delta (6) bond
(Figure 1.2); a combination of one sigma bond, two pi bonds, and one delta bond makes
up the quadruple bond. The delta bond is possible in these cases because the metal atoms
have d orbitals to use in bonding, whereas carbon has only s and p orbitals energetically
accessible for bonding.

Compounds with “fivefold” bonds between transition metals have been reported
(Figure 1.3), accompanied by debate as to whether these bonds merit the designation
“quintuple.”

In organic compounds, hydrogen is nearly always bonded to a single carbon. In inor-
ganic compounds, hydrogen is frequently encountered as a bridging atom between two or
more other atoms. Bridging hydrogen atoms can also occur in metal cluster compounds,
in which hydrogen atoms form bridges across edges or faces of polyhedra of metal atoms.
Alkyl groups may also act as bridges in inorganic compounds, a function rarely encoun-
tered in organic chemistry except in reaction intermediates. Examples of terminal and
bridging hydrogen atoms and alkyl groups in inorganic compounds are in Figure 1.4.

Some of the most striking differences between the chemistry of carbon and that of
many other elements are in coordination number and geometry. Although carbon is usually
limited to a maximum coordination number of four (a maximum of four atoms bonded
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FIGURE 1.1 Single and
Multiple Bonds in Organic and
Inorganic Molecules.

Sigma @ + @ —

O O _
TOTOT

é@
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to carbon, as in CH,), numerous inorganic compounds have central atoms with coordina-
tion numbers of five, six, seven, and higher; the most common coordination geometry
for transition metals is an octahedral arrangement around a central atom, as shown for
[TiF¢]’~ (Figure 1.5). Furthermore, inorganic compounds present coordination geometries
different from those found for carbon. For example, although 4-coordinate carbon is nearly
always tetrahedral, both tetrahedral and square-planar shapes occur for 4-coordinate com-
pounds of both metals and nonmetals. When metals are in the center, with anions or neu-
tral molecules (ligands) bonded to them (frequently through N, O, or S), these are called
coordination complexes; when carbon is the element directly bonded to metal atoms or
ions, they are also classified as organometallic complexes.

H
H c?
He /N HCo /N, CHy
/ \ \ v NS ™
H/ H,C CH,
3
0 0
2o ¢
oc—clr"—H—clr'—co
7 7
C c o€ c
6 9 6

Each CH; bridges a face
of the Li, tetrahedron.

FIGURE 1.4 Examples of Inorganic Compounds Containing Terminal and Bridging Hydrogens
and Alkyl Groups.
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FIGURE 1.5 Examples of Geometries of Inorganic Compounds.

FIGURE 1.6 Inorganic Compounds Containing Pi-Bonded Aromatic Rings.

The tetrahedral geometry usually found in 4-coordinate compounds of carbon also
occurs in a different form in some inorganic molecules. Methane contains four hydrogens
in a regular tetrahedron around carbon. Elemental phosphorus is tetratomic (P4) and tet-
rahedral, but with no central atom. Other elements can also form molecules in which outer
atoms surround a central cavity; an example is boron, which forms numerous structures
containing icosahedral B, units. Examples of some of the geometries found for inorganic
compounds are in Figure 1.5.

Aromatic rings are common in organic chemistry, and aryl groups can also form
sigma bonds to metals. However, aromatic rings can also bond to metals in a dramatically
different fashion using their pi orbitals, as shown in Figure 1.6 and in this book’s cover
illustration. The result is a metal atom bonded above the center of the ring, almost as if
suspended in space. In many cases, metal atoms are sandwiched between two aromatic
rings. Multiple-decker sandwiches of metals and aromatic rings are also known.

Carbon plays an unusual role in a number of metal cluster compounds in which a
carbon atom is at the center of a polyhedron of metal atoms. Examples of carbon-centered
clusters with five, six, or more surrounding metals are known (Figure 1.7). The striking role
that carbon plays in these clusters has provided a challenge to theoretical inorganic chemists.

In addition, since the mid-1980s the chemistry of elemental carbon has flourished.
This phenomenon began with the discovery of fullerenes, most notably the cluster Cgp,
dubbed “buckminsterfullerene” after the developer of the geodesic dome. Many other
fullerenes (buckyballs) are now known and serve as cores of a variety of derivatives. In

3Fe

(CO);F:

FIGURE 1.7 Carbon-Centered
Metal Clusters.

Fe(CO);
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FIGURE 1.8 The Fullerene Cg,
a Fullerene Compound, a Carbon
Nanotube, Graphene, a Carbon
Peapod, and a Polyyne “Wire”
Connecting Platinum Atoms.

addition, numerous other forms of carbon (for example, carbon nanotubes, nanoribbons,
graphene, and carbon wires) have attracted much interest and show potential for applica-
tions in fields as diverse as nanoelectronics, body armor, and drug delivery. Figure 1.8
provides examples of these newer forms of carbon.

The era of sharp dividing lines between subfields in chemistry has long been obsolete.
Many of the subjects in this book, such as acid—base chemistry and organometallic reac-
tions, are of vital interest to organic chemists. Other topics such as oxidation-reduction
reactions, spectra, and solubility relations interest analytical chemists. Subjects related
to structure determination, spectra, conductivity, and theories of bonding appeal to
physical chemists. Finally, the use of organometallic catalysts provides a connection to
petroleum and polymer chemistry, and coordination compounds such as hemoglobin and
metal-containing enzymes provide a similar tie to biochemistry. Many inorganic chemists
work with professionals in other fields to apply chemical discoveries to addressing modern
challenges in medicine, energy, the environment, materials science, and other fields. In
brief, modern inorganic chemistry is not a fragmented field of study, but has numerous
interconnections with other fields of science, medicine, technology, and other disciplines.

The remainder of this chapter is devoted to a short history of the origins of inorganic
chemistry and perspective on more recent developments, intended to provide a sense of
connection to the past and to place some aspects of inorganic chemistry within the context
of larger historical events. In later chapters, brief historical context is provided with the
same intention.

1.3 The History of Inorganic Chemistry

Even before alchemy became a subject of study, many chemical reactions were used and
their products applied to daily life. The first metals used were probably gold and copper,
which can be found in the metallic state in nature. Copper can also be readily formed by
the reduction of malachite—basic copper carbonate, Cu,(CO3)(OH),—in charcoal fires.
Silver, tin, antimony, and lead were also known as early as 3000 BCE. Iron appeared in
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classical Greece and in other areas around the Mediterranean Sea by 1500 BCE. At about
the same time, colored glasses and ceramic glazes were introduced, largely composed of
silicon dioxide (SiO,, the major component of sand) and other metallic oxides, which had
been melted and allowed to cool to amorphous solids.

Alchemists were active in China, Egypt, and other centers of civilization early in the
first centuries CE. Although much effort went into attempts to “transmute” base metals into
gold, alchemists also described many other chemical reactions and operations. Distillation,
sublimation, crystallization, and other techniques were developed and used in their stud-
ies. Because of the political and social changes of the time, alchemy shifted into the Arab
world and later—about 1000 to 1500 ce—reappeared in Europe. Gunpowder was used in
Chinese fireworks as early as 1150, and alchemy was also widespread in China and India
at that time. Alchemists appeared in art, literature, and science until at least 1600, by which
time chemistry was beginning to take shape as a science. Roger Bacon (1214-1294), recog-
nized as one of the first great experimental scientists, also wrote extensively about alchemy.

By the seventeenth century, the common strong acids—mnitric, sulfuric, and hydro-
chloric—were known, and systematic descriptions of common salts and their reactions
were being accumulated. As experimental techniques improved, the quantitative study of
chemical reactions and the properties of gases became more common, atomic and molecu-
lar weights were determined more accurately, and the groundwork was laid for what later
became the periodic table of the elements. By 1869, the concepts of atoms and molecules
were well established, and it was possible for Mendeleev and Meyer to propose different
forms of the periodic table. Figure 1.9 illustrates Mendeleev’s original periodic table.”

The chemical industry, which had been in existence since very early times in the form
of factories for purifying salts and for smelting and refining metals, expanded as methods
for preparing relatively pure materials became common. In 1896, Becquerel discovered
radioactivity, and another area of study was opened. Studies of subatomic particles, spectra,
and electricity led to the atomic theory of Bohr in 1913, which was soon modified by the
quantum mechanics of Schrodinger and Heisenberg in 1926 and 1927.

Inorganic chemistry as a field of study was extremely important during the early years
of the exploration and development of mineral resources. Qualitative analysis methods were

Ti =50 Zr =90 ?7=180 FIGURE 1.9 Mendeleev’s 1869
V=51 Nb =94 Ta=182 Periodic Table. Two years later,
Cr=52 Mo =96 W =186 Mendeleev revised his table
Mn =53 Rh=1044 Pt=1974 into a form similar to a modern
Fe =56 Ru=1042 Ir=198 short-form periodic table, with
Ni=Co=59 Pd=106.6 Os =199 eight groups across.
H=1 Cu=0634 Ag=108 Hg =200
Be=94 Mg=24 Zn=65.2 Cd=112
B=11 Al=274 ?7=68 Ur=116 Au=197?
CcC=12 Si=28 ?7="170 Sn=118
N=14 P=31 As=175 Sb=122 Bi=210?
0=16 S=32 Se=794 Te =128?
F=19 Cl=355 Br=2380 I=127
Li=7 Na=23 K=39 Rb=2854 Cs=133 T1=204
Ca=140 Sr=2387.6 Ba=137 Pb =207
?7=45 Ce=092

?Er = 56 La=94
27Yt=160 Di=95
Mn=756 Th=1187?

“The original table was published in Zeitschrift fiir Chemie, 1869, 12, 405. It can be found in English translation,
together with a page from the German article, at web.lemoyne.edu/~giunta/mendeleev.html. See M. Laing,
J. Chem. Educ., 2008, 85, 63 for illustrations of Mendeleev’s various versions of the periodic table, including his
handwritten draft of the 1869 table.
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developed to help identify minerals and, combined with quantitative methods, to assess
their purity and value. As the Industrial Revolution progressed, so did the chemical industry.
By the early twentieth century, plants for the high volume production of ammonia, nitric
acid, sulfuric acid, sodium hydroxide, and many other inorganic chemicals were common.

Early in the twentieth century, Werner and Jgrgensen made considerable progress
on understanding the coordination chemistry of transition metals and also discovered a
number of organometallic compounds. Nevertheless, the popularity of inorganic chem-
istry as a field of study gradually declined during most of the first half of the century.
The need for inorganic chemists to work on military projects during World War II rejuve-
nated interest in the field. As work was done on many projects (not least of which was the
Manhattan Project, in which scientists developed the fission bomb), new areas of research
appeared, and new theories were proposed that prompted further experimental work.
A great expansion of inorganic chemistry began in the 1940s, sparked by the enthusiasm
and ideas generated during World War IL.

In the 1950s, an earlier method used to describe the spectra of metal ions surrounded
by negatively charged ions in crystals (crystal field theory)! was extended by the use of
molecular orbital theory? to develop ligand field theory for use in coordination compounds,
in which metal ions are surrounded by ions or molecules that donate electron pairs. This
theory gave a more complete picture of the bonding in these compounds. The field devel-
oped rapidly as a result of this theoretical framework, availability of new instruments, and
the generally reawakened interest in inorganic chemistry.

In 1955, Ziegler? and Natta* discovered organometallic compounds that could cata-
lyze the polymerization of ethylene at lower temperatures and pressures than the common
industrial method at that time. In addition, the polyethylene formed was more likely to be
made up of linear, rather than branched, molecules and, as a consequence, was stronger
and more durable. Other catalysts were soon developed, and their study contributed to the
rapid expansion of organometallic chemistry, still a rapidly growing area.

The study of biological materials containing metal atoms has also progressed rapidly.
The development of new experimental methods allowed more thorough study of these
compounds, and the related theoretical work provided connections to other areas of study.
Attempts to make model compounds that have chemical and biological activity similar to
the natural compounds have also led to many new synthetic techniques. Two of the many
biological molecules that contain metals are in Figure 1.10. Although these molecules have
very different roles, they share similar ring systems.

One current area that bridges organometallic chemistry and bioinorganic chemistry is
the conversion of nitrogen to ammonia:

N2+3H2 I 2NH'§

This reaction is one of the most important industrial processes, with over 100 million tons
of ammonia produced annually worldwide, primarily for fertilizer. However, in spite of
metal oxide catalysts introduced in the Haber—-Bosch process in 1913, and improved since
then, it is also a reaction that requires temperatures between 350 and 550 °C and from
150-350 atm pressure and that still results in a yield of only 15 percent ammonia. Bacteria,
however, manage to fix nitrogen (convert it to ammonia and then to nitrite and nitrate) at
0.8 atm at room temperature in nodules on the roots of legumes. The nitrogenase enzyme
that catalyzes this reaction is a complex iron—molybdenum-—sulfur protein. The structure of
its active sites has been determined by X-ray crystallography.’ A vigorous area of modern
inorganic research is to design reactions that could be carried out on an industrial scale
that model the reaction of nitrogenase to generate ammonia under mild conditions. It is
estimated that as much as 1 percent of the world’s total energy consumption is currently
used for the Haber—Bosch process.

Inorganic chemistry also has medical applications. Notable among these is the development
of platinum-containing antitumor agents, the first of which was the cis isomer of Pt(NH3),Cl,,



cisplatin. First approved for clinical use approximately 30 years ago, cisplatin has served as the
prototype for a variety of anticancer agents; for example, satraplatin, the first orally available
platinum anticancer drug to reach clinical trials.” These two compounds are in Figure 1.11.

14 Perspective

The premier issue of the journal Inorganic Chemistry™ was published in February 1962.
Much of the focus of that issue was on classic coordination chemistry, with more than half
its research papers on synthesis of coordination complexes and their structures and proper-
ties. A few papers were on compounds of nonmetals and on organometallic chemistry, then
arelatively new field; several were on thermodynamics or spectroscopy. All of these topics
have developed considerably in the subsequent half-century, but much of the evolution of
inorganic chemistry has been into realms unforeseen in 1962.

The 1962 publication of the first edition of F. A. Cotton and G. Wilkinson’s landmark
text Advanced Inorganic Chemistry® provides a convenient reference point for the status
of inorganic chemistry at that time. For example, this text cited only the two long-known
forms of carbon, diamond and graphite, although it did mention “amorphous forms” attrib-
uted to microcrystalline graphite. It would not be until more than two decades later that
carbon chemistry would explode with the seminal discovery of Cgqy in 1985 by Kroto,
Curl, Smalley, and colleagues,’ followed by other fullerenes, nanotubes, graphene, and
other forms of carbon (Figure 1.8) with the potential to have major impacts on electronics,
materials science, medicine, and other realms of science and technology.

As another example, at the beginning of 1962 the elements helium through radon were
commonly dubbed “inert” gases, believed to “form no chemically bound compounds”
because of the stability of their electron configurations. Later that same year, Bartlett

“For reviews of modes of interaction of cisplatin and related drugs, see P. C. A. Bruijnincx, P. J. Sadler, Curr. Opin.
Chem. Bio., 2008, 12, 197 and F. Arnesano, G. Natile, Coord. Chem. Rev., 2009, 253, 2070.

"*The authors of this issue of Inorganic Chemistry were a distinguished group, including five recipients of
the Priestley Medal, the highest honor conferred by the American Chemical Society, and 1983 Nobel Laureate
Henry Taube.
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FIGURE 1.10 Biological
Molecules Containing Metal
lons. (a) Chlorophyll a, the active
agent in photosynthesis.

(b) Vitamin B,, coenzyme, a
naturally occurring organome-
tallic compound.
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reported the first chemical reactions of xenon with PtFg, launching the synthetic chemistry
of the now-renamed “noble” gas elements, especially xenon and krypton;® numerous
compounds of these elements have been prepared in succeeding decades.

Numerous square planar platinum complexes were known by 1962; the chemistry of
platinum compounds had been underway for more than a century. However, it was not known
until Rosenberg’s work in the latter part of the 1960s that one of these, cis-Pt(NH3),Cl,
(cisplatin, Figure 1.11), had anticancer activity.” Antitumor agents containing platinum and
other transition metals have subsequently become major tools in treatment regimens for
many types of cancer.!”

That first issue of Inorganic Chemistry contained only 188 pages, and the journal was
published quarterly, exclusively in hardcopy. Researchers from only four countries were
represented, more than 90 percent from the United States, the others from Europe. Inorganic
Chemistry now averages approximately 550 pages per issue, is published 24 times annually,
and publishes (electronically) research conducted broadly around the globe. The growth
and diversity of research published in Inorganic Chemistry has been paralleled in a wide
variety of other journals that publish articles on inorganic and related fields.

In the preface to the first edition of Advanced Inorganic Chemistry, Cotton and
Wilkinson stated, “in recent years, inorganic chemistry has experienced an impressive
renaissance.” This renaissance shows no sign of diminishing.

With this brief survey of the marvelously complex field of inorganic chemistry, we
now turn to the details in the remainder of this book. The topics included provide a broad
introduction to the field. However, even a cursory examination of a chemical library or one
of the many inorganic journals shows some important aspects of inorganic chemistry that
must be omitted in a textbook of moderate length. The references cited in this text suggest
resources for further study, including historical sources, texts, and reference works that
provide useful additional material.
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Understanding the structure of the atom has been a fundamental challenge for centuries.
It is possible to gain a practical understanding of atomic and molecular structure using
only a moderate amount of mathematics rather than the mathematical sophistication of
quantum mechanics. This chapter introduces the fundamentals needed to explain atomic
structure in qualitative and semiquantitative terms.

2.1 Historical Development of Atomic Theory

Although the Greek philosophers Democritus (460-370 BCE) and Epicurus (341-270 BCE)
presented views of nature that included atoms, many centuries passed before experimental
studies could establish the quantitative relationships needed for a coherent atomic theory.
In 1808, John Dalton published A New System of Chemical Philosophy,' in which he
proposed that

.. the ultimate particles of all homogeneous bodies are perfectly alike in weight,
figure, etc. In other words, every particle of water is like every other particle of
water; every particle of hydrogen is like every other particle of hydrogen, etc.?

and that atoms combine in simple numerical ratios to form compounds. The terminology
he used has since been modified, but he clearly presented the concepts of atoms and
molecules, and made quantitative observations of the masses and volumes of substances
as they combined to form new substances. For example, in describing the reaction between
the gases hydrogen and oxygen to form water Dalton said that

When two measures of hydrogen and one of oxygen gas are mixed, and fired
by the electric spark, the whole is converted into steam, and if the pressure
be great, this steam becomes water. It is most probable then that there is the
same number of particles in two measures of hydrogen as in one of oxygen.?

Because Dalton was not aware of the diatomic nature of the molecules H, and O,, which
he assumed to be monatomic H and O, he did not find the correct formula of water,
and therefore his surmise about the relative numbers of particles in “measures” of the
gases is inconsistent with the modern concept of the mole and the chemical equation
2H, + O, — 2H,0.

Only a few years later, Avogadro used data from Gay-Lussac to argue that equal
volumes of gas at equal temperatures and pressures contain the same number of mole-
cules, but uncertainties about the nature of sulfur, phosphorus, arsenic, and mercury vapors
delayed acceptance of this idea. Widespread confusion about atomic weights and molecular
formulas contributed to the delay; in 1861, Kekulé gave 19 different possible formulas for
acetic acid!* In the 1850s, Cannizzaro revived the argument of Avogadro and argued that
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FIGURE 2.1 Numbering
Schemes and Names for Parts
of the Periodic Table.

everyone should use the same set of atomic weights rather than the many different sets
then being used. At a meeting in Karlsruhe in 1860, Cannizzaro distributed a pamphlet
describing his views.> His proposal was eventually accepted, and a consistent set of atomic
weights and formulas evolved. In 1869, Mendeleev® and Meyer’ independently proposed
periodic tables nearly like those used today, and from that time the development of atomic
theory progressed rapidly.

2.1.1 The Periodic Table

The idea of arranging the elements into a periodic table had been considered by many
chemists, but either data to support the idea were insufficient or the classification schemes
were incomplete. Mendeleev and Meyer organized the elements in order of atomic weight
and then identified groups of elements with similar properties. By arranging these groups
in rows and columns, and by considering similarities in chemical behavior as well as
atomic weight, Mendeleev found vacancies in the table and was able to predict the prop-
erties of several elements—gallium, scandium, germanium, and polonium—that had not
yet been discovered. When his predictions proved accurate, the concept of a periodic table
was quickly accepted (see Figure 1.11). The discovery of additional elements not known
in Mendeleev’s time and the synthesis of heavy elements have led to the modern periodic
table, shown inside the front cover of this text.

In the modern periodic table, a horizontal row of elements is called a period and a
vertical column is a group. The traditional designations of groups in the United States
differ from those used in Europe. The International Union of Pure and Applied Chem-
istry (IUPAC) has recommended that the groups be numbered 1 through 18. In this text,
we will use primarily the [IUPAC group numbers. Some sections of the periodic table
have traditional names, as shown in Figure 2.1.
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2.1.2 Discovery of Subatomic Particles and the Bohr Atom

During the 50 years after the periodic tables of Mendeleev and Meyer were proposed,

experimental advances came rapidly. Some of these discoveries are listed in Table 2.1.
Parallel discoveries in atomic spectra showed that each element emits light of specific

energies when excited by an electric discharge or heat. In 1885, Balmer showed that the

energies of visible light emitted by the hydrogen atom are given by the equation

E—R(l—l)
H\ 22 n%

where n;, = integer, with n, > 2
Ry = Rydberg constant for hydrogen
1.097 X 10"m™! = 2.179 X 107 8] = 13.61 eV

and the energy of the light emitted is related to the wavelength, frequency, and wavenumber
of the light, as given by the equation

h
E=h = ne_ hev
A
where” h = Planck constant = 6.626 X 107 J s

v = frequency of the light, in s~

¢ = speed of light = 2.998 X 10®ms™!

A = wavelength of the light, frequently in nm

v = wavenumber of the light, usually in cm ™!

In addition to emission of visible light, as described by the Balmer equation, infrared
and ultraviolet emissions were also discovered in the spectrum of the hydrogen atom.
The energies of these emissions could be described by replacing 2> by integers n? in
Balmer’s original equation, with the condition that n; < ny, (I for lower level, & for higher
level). These quantities, n, are called quantum numbers. (These are the principal quantum
numbers; other quantum numbers are discussed in Section 2.2.2.) The origin of this energy
was unknown until Niels Bohr’s quantum theory of the atom,? first published in 1913 and
refined over the following decade. This theory assumed that negatively charged electrons in
atoms move in stable circular orbits around the positively charged nucleus with no absorp-
tion or emission of energy. However, electrons may absorb light of certain specific energies

TABLE 2.1 Discoveries in Atomic Structure

1896 A. H. Becquerel Discovered radioactivity of uranium

1897 J. J. Thomson Showed that electrons have a negative charge, with
charge/mass = 1.76 X 10" C/kg

1909 R. A. Millikan Measured the electronic charge as 1.60 X 1071 C;
therefore, mass of electron =9.11 X 10 3'kg

1911 E. Rutherford Established the nuclear model of the atom: a very small,

heavy nucleus surrounded by mostly empty space

1913 H. G. J. Moseley Determined nuclear charges by X-ray emission, establishing
atomic numbers as more fundamental than atomic masses

" More accurate values for the constants and energy conversion factors are given inside the back cover of this book.



12 Chapter2 | Atomic Structure

and be excited to orbits of higher energy; they may also emit light of specific energies and
fall to orbits of lower energy. The energy of the light emitted or absorbed can be found,
according to the Bohr model of the hydrogen atom, from the equation

p-r( k-1
nf  mp

2rtuz2e’
where R=—""—7+
(4meg)°h
m = reduced mass of the electron/nucleus combination:
1 1 1
—_ = — +
I m, Myycleus
m, = mass of the electron

m = mass of the nucleus

nucleus

Z = charge of the nucleus
e = electronic charge
h = Planck constant
n;, = quantum number describing the higher energy state
n; = quantum number describing the lower energy state
4me, = permittivity of a vacuum

This equation shows that the Rydberg constant depends on the mass of the nucleus and
on various fundamental constants. If the atom is hydrogen, the subscript H is commonly
appended to the Rydberg constant (Ry,).

Examples of the transitions observed for the hydrogen atom and the energy levels
responsible are shown in Figure 2.2. As the electrons drop from level n, to n;, energy is
released in the form of electromagnetic radiation. Conversely, if radiation of the correct
energy is absorbed by an atom, electrons are raised from level n, to level n;,. The inverse-
square dependence of energy on n results in energy levels that are far apart in energy at
small » and become much closer in energy at larger n. In the upper limit, as n approaches
infinity, the energy approaches a limit of zero. Individual electrons can have more energy,
but above this point, they are no longer part of the atom; an infinite quantum number means
that the nucleus and the electron are separate entities.

Determine the energy of the transition from n;, = 3 to n; = 2 for the hydrogen atom,
in both joules and cm ™! (a common unit in spectroscopy, often used as an energy unit,
since v is proportional to E). This transition results in a red line in the visible emission
spectrum of hydrogen. (Solutions to the exercises are given in Appendix A.)

When applied to the hydrogen atom, Bohr’s theory worked well; however, the theory
failed when atoms with two or more electrons were considered. Modifications such as ellip-
tical rather than circular orbits were unsuccessfully introduced in attempts to fit the data
to Bohr’s theory.” The developing experimental science of atomic spectroscopy provided
extensive data for testing Bohr’s theory and its modifications. In spite of the efforts to “fix”
the Bohr theory, the theory ultimately proved unsatisfactory; the energy levels predicted by
the Bohr equation above and shown in Figure 2.2 are valid only for the hydrogen atom and
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other one-electron situations” such as He*, Li%*, and Be3*. A fundamental characteristic of
the electron—its wave nature—needed to be considered.

The de Broglie equation, proposed in the 1920s,!” accounted for the electron’s wave nature.
According to de Broglie, all moving particles have wave properties described by the equation

= wavelength of the particle
= Planck constant

mass of the particle

= 3 = >

= velocity of the particle

* Multiplying R 1 by 72, the square of the nuclear charge, and adjusting the reduced mass accordingly provides an
equation that describes these more exotic one-electron situations.
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Particles massive enough to be visible have very short wavelengths, too small to be
measured. Electrons, on the other hand, have observable wave properties because of their
very small mass.

Electrons moving in circles around the nucleus, as in Bohr’s theory, can be thought
of as standing waves that can be described by the de Broglie equation. However, we
no longer believe that it is possible to describe the motion of an electron in an atom so
precisely. This is a consequence of another fundamental principle of modern physics,
Heisenberg’s uncertainty principle,'' which states that there is a relationship between the
inherent uncertainties in the location and momentum of an electron. The x component of
this uncertainty is described as

h

Ax Ap, = —
A=y

Ax

uncertainty in the position of the electron
Ap, = uncertainty in the momentum of the electron

The energy of spectral lines can be measured with high precision (as an example, recent
emission spectral data of hydrogen atoms in the solar corona indicated a difference between
n, = 2and n; = 1 of 82258.9543992821(23) cm™ ")!'2 This in turn allows precise deter-
mination of the energy of electrons in atoms. This precision in energy also implies preci-
sion in momentum (Ap, is small); therefore, according to Heisenberg, there is a large
uncertainty in the location of the electron (Ax is large). This means that we cannot treat
electrons as simple particles with their motion described precisely, but we must instead
consider the wave properties of electrons, characterized by a degree of uncertainty in their
location. In other words, instead of being able to describe precise orbits of electrons, as in
the Bohr theory, we can only describe orbitals, regions that describe the probable location
of electrons. The probability of finding the electron at a particular point in space, also
called the electron density, can be calculated—at least in principle.

2.2 The Schrodinger Equation

In 1926 and 1927, Schrodinger'® and Heisenberg!! published papers on wave mechan-
ics, descriptions of the wave properties of electrons in atoms, that used very different
mathematical techniques. In spite of the different approaches, it was soon shown that their
theories were equivalent. Schrodinger’s differential equations are more commonly used to
introduce the theory, and we will follow that practice.

The Schrodinger equation describes the wave properties of an electron in terms of
its position, mass, total energy, and potential energy. The equation is based on the wave
function, W, which describes an electron wave in space; in other words, it describes an
atomic orbital. In its simplest notation, the equation is

HV = EV
H = Hamiltonian operator
E = energy of the electron
¥ = wave function

The Hamiltonian operator, frequently called simply the Hamiltonian, includes deriva-
tives that operate on the wave function.” When the Hamiltonian is carried out, the result
is a constant (the energy) times W. The operation can be performed on any wave function

“An operator is an instruction or set of instructions that states what to do with the function that follows it. It may be
a simple instruction such as “multiply the following function by 6,” or it may be much more complicated than the
Hamiltonian. The Hamiltonian operator is sometimes written H with the  (hat) symbol designating an operator.
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describing an atomic orbital. Different orbitals have different wave functions and different
values of E. This is another way of describing quantization in that each orbital, character-
ized by its own function W, has a characteristic energy.

In the form used for calculating energy levels, the Hamiltonian operator for one-
electron systems is

PEETEN B A
8mim\ax® ' %) dweyVP + ) + 2

This part of the operator describes ~ This part of the operator describes

the kinetic energy of the electron, the potential energy of the electron,

its energy of motion. the result of electrostatic attraction
between the electron and the nucleus.
It is commonly designated as V.

where h = Planck constant
m = mass of the electron

e = charge of the electron
Vx* + y? + 72 = r = distance from the nucleus

Z = charge of the nucleus

4me, = permittivity of a vacuum

This operator can be applied to a wave function W,

— + —+ — |+ Vix, vy, \Ifx’, :E‘Px,,
|:8772m< PPN az2> (x, y Z)] (¥, 2) (x,y,2)

where
—Ze? —Ze?

V= =
4megr dreg Vx> + y* + 2

The potential energy V is a result of electrostatic attraction between the electron and the
nucleus. Attractive forces, such as those between a positive nucleus and a negative electron,
are defined by convention to have a negative potential energy. An electron near the nucleus
(small r) is strongly attracted to the nucleus and has a large negative potential energy.
Electrons farther from the nucleus have potential energies that are small and negative. For
an electron at infinite distance from the nucleus (r = ), the attraction between the nucleus
and the electron is zero, and the potential energy is zero. The hydrogen atom energy level
diagram in Figure 2.2 illustrates these concepts.

Because n varies from 1 to oo, and every atomic orbital is described by a unique ¥,
there is no limit to the number of solutions of the Schrodinger equation for an atom. Each
W describes the wave properties of a given electron in a particular orbital. The probability
of finding an electron at a given point in space is proportional to W2, A number of condi-
tions are required for a physically realistic solution for V:

1. The wave function ¥ must be There cannot be two probabilities for an
single-valued. electron at any position in space.
2. The wave function W and its first The probability must be defined at all posi-
derivatives must be continuous. tions in space and cannot change abruptly
from one point to the next.
3. The wave function ¥ must approach For large distances from the nucleus, the
zero as r approaches infinity. probability must grow smaller and smaller

(the atom must be finite).
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FIGURE 2.3 Potential Energy
Well for the Particle in a Box.

4. The integral / YW, dr =1 The total probability of an electron being
somewhere in space = 1. This is called

all space .

normalizing the wave function.”
5. The integral VW, dr =0 V¥, and Wy are wave functions for electrons
all'space in different orbitals within the same atom.

All orbitals in an atom must be orthogonal
to each other. In some cases, this means that
the axes of orbitals must be perpendicular, as
with the p,, p,, and p, orbitals.

2.2.]1 The Particle in a Box

A simple example of the wave equation, the particle in a one-dimensional box, shows how
these conditions are used. We will give an outline of the method; details are available
elsewhere.”” The “box” is shown in Figure 2.3. The potential energy V(x) inside the box,
between x = 0 and x = g, is defined to be zero. Outside the box, the potential energy is
infinite. This means that the particle is completely trapped in the box and would require
an infinite amount of energy to leave the box. However, there are no forces acting on it
within the box.

The wave equation for locations within the box is

—h? <82‘If(x)

x>

) = EWV¥(x), because V(x) =0

87°m

Sine and cosine functions have the properties we associate with waves—a well-defined
wavelength and amplitude—and we may therefore propose that the wave characteristics
of our particle may be described by a combination of sine and cosine functions. A general
solution to describe the possible waves in the box would then be

WV = Asinrx + Bcos sx

where A, B, r, and s are constants. Substitution into the wave equation allows solution for
r and s (see Problem 8a at the end of the chapter):

2
r=gs = \/2mE77T

Because ¥ must be continuous and must equal zero at x < 0 and x > a (because the
particle is confined to the box), ¥ must go to zero at x = 0 and x = a. Because cos sx = 1
for x = 0, W can equal zero in the general solution above only if B = 0. This reduces the
expression for W to

V¥ = Asinrx

At x = a, ¥ must also equal zero; therefore, sin ra = 0, which is possible only if ra is
an integral multiple of 7:

tnw

ra=*nw or r=
a

* Because the wave functions may have imaginary values (containing \/ —1), ¥" (where " designates the
complex conjugate of W) is used to make the integral real. In many cases, the wave functions themselves are real,
and this integral becomes Vidr.

all space

™ G. M. Barrow, Physical Chemistry, 6th ed., McGraw-Hill, New York, 1996, pp. 65, 430, calls this the “particle
on a line” problem. Other physical chemistry texts also include solutions to this problem.
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where n = any integer # 0." Because both positive and negative values yield the same
results, substituting the positive value for r into the solution for r gives

2
r="T = N
a

This expression may be solved for E:
n’h?

E =
8ma*

These are the energy levels predicted by the particle-in-a-box model for any particle in a
one-dimensional box of length a. The energy levels are quantized according to quantum
numbersn = 1,2,3, ...
Substituting » = nr/a into the wave function gives
T = A sin =~
a
And applying the normalizing requirement / YW dr = 1 gives
2

A= /=
a

2
q,:\[smm
a a

The resulting wave functions and their squares for the first three states—the ground state
(n=1) and first two excited states (n =2 and n = 3)—are plotted in Figure 2.4.

The squared wave functions are the probability densities; they show one difference
between classical and quantum mechanical behavior of an electron in such a box. Classi-
cal mechanics predicts that the electron has equal probability of being at any point in the
box. The wave nature of the electron gives it varied probabilities at different locations in
the box. The greater the square of the electron wave amplitude, the greater the probability
of the electron being located at the specified coordinate when at the quantized energy
defined by the W.

The total solution is then

Wave
function ¥

Particle in a box Particle in a box Particle in a box
n=3 n=2 n=1
2 —_
2
15 A4
1 -
5
0 B R
function ¥
-2 T T T T 1 -2 T T T T 1 - T T T T 1
0 2 4 .6 .8 1 0 2 4 .6 8 1 0 2 4 .6 .8 1
xla xla xla

FIGURE 2.4 Wave Functions and Their Squares for the Particle in a Box withn = 1, 2, and 3.

“If n = 0, then r = 0 and ¥ = 0 at all points. The probability of finding the particle is / YU dx = 0; if the
particle is an electron, there is then no electron at all. :
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2.2.2  Quantum Numbers and Atomic Wave Functions
The particle-in-a-box example shows how a wave function operates in one dimension.
Mathematically, atomic orbitals are discrete solutions of the three-dimensional Schrédinger
equations. The same methods used for the one-dimensional box can be expanded to three
dimensions for atoms. These orbital equations include three quantum numbers, n, [, and m;.
A fourth quantum number, m, a result of relativistic corrections to the Schrédinger equa-
tion, completes the description by accounting for the magnetic moment of the electron. The
quantum numbers are summarized in Table 2.2. Tables 2.3 and 2.4 describe wave functions.

The quantum number 7 is primarily responsible for determining the overall energy of an
atomic orbital; the other quantum numbers have smaller effects on the energy. The quantum
number / determines the angular momentum and shape of an orbital. The quantum number
m; determines the orientation of the angular momentum vector in a magnetic field, or the
position of the orbital in space, as shown in Table 2.3. The quantum number m, determines
the orientation of the electron’s magnetic moment in a magnetic field, either in the direction
of the field (+3) or opposed to it (—3). When no field is present, all m, values associated with
a given n—all three p orbitals or all five d orbitals—have the same energy, and both m, values
have the same energy. Together, the quantum numbers 7, I, and m; define an atomic orbital.

The quantum number m, describes the electron spin within the orbital. This fourth
quantum number is consistent with a famous experimental observation. When a beam of
alkali metal atoms (each with a single valence electron) is passed through a magnetic field,
the beam splits into two parts; half the atoms are attracted by one magnet pole, and half
are attracted by the opposite pole. Because in classical physics spinning charged particles
generate magnetic moments, it is common to attribute an electron’s magnetic moment to
its spin—as if an electron were a tiny bar magnet—with the orientation of the magnetic
field vector a function of the spin direction (counterclockwise vs. clockwise). However,
the spin of an electron is a purely quantum mechanical property; application of classical
mechanics to an electron is inaccurate.

One feature that should be mentioned is the appearance of i( = \/jl) in the p and
d orbital wave equations in Table 2.3. Because it is much more convenient to work with

TABLE 2.2 Quantum Numbers and Their Properties

Symbol Name Values Role

n Principal 1,2,3,... Determines the major part of the
energy

l Angular momentum™ 0, 1,2,...,n—1 Describes angular dependence

and contributes to the energy

my Magnetic 0, =1, £2,..., =1 Describes orientation in space
(angular momentum in the z
direction)
. 1 . . .
my Spin + ) Describes orientation of the

electron spin (magnetic moment)
in space

Orbitals with different / values are known by the following labels, derived from early terms for
different families of spectroscopic lines:

l 0 1 2 3 4 5, ...
Label K P d f g continuing alphabetically

* Also called the azimuthal quantum number.
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TABLE 2.3 Hydrogen Atom Wave Functions: Angular Functions

Angular Factors Real Wave Functions
Functions In Cartesian
Related to Angular Momentum of 0 In Polar Coordinates Coordinates Shapes Label

1 m d (S] 0D, ¢) Od(x, y, 2)
0s) 0O 1 1 z 1 1 s

\V2m V2 AE— 2w 2NV Q
o0 1 B [ 1[5z o P

\/277 TCOS o 2N 2N @ r *

1

+1 Px

ot V3 JJ§~9 JJEE
2 ) sin 6 N sin 0 cos ¢ N r
L 0 V3 1J§ 13
i¢ 3 . . y
e . L3 Gne 1 [3y
o ) sin 0 N sin 0 sin ¢ N,
2(d) 0 1 1\F %; 1\F 1[5 02— 2 -
\/ Ty/5 Beos?o—1 —/=@cos? 6 — 1 ,\/:'7
2 2V2 ( ) 4 77( ) 4N P
+1 1 RVAT] |15 | 3«
bt Vs , 7%: . ’Jii
o > cos 6 sin 6 N cos 6 sin 0 cos ¢ N 2
! % 1 /15 1 15
Vis cos 6 sin 6 *\/: cosfsinfsing - RRIRd
2\Nm 2N 7 2
2 2
T M3 3\/15 in? 0 cos 2 l\/?§E£4:;&2
oy 1 sin“6 N\ sin” 6 cos 2¢ N >

-2 1 5ieVis 1 [15 1 [15 xy
—c -2 — [—= sin? 0 sin 2 ——
Van 4 Simd N ¢ N P

Source: Hydrogen Atom Wave Functions: Angular Functions, Physical Chemistry, 5th ed.,Gordon Barrow (c) 1988. McGraw-Hill Companies, Inc.

Dy

+2

B HFRBEP TS

NOTE: The relations (¢* — e~ ®)/(2i) = sin¢ and (¥ + ¢ )2 = cos¢ can be used to convert the exponential imaginary functions to real trigonometric functions,
combining the two orbitals with m; = % 1 to give two orbitals with sin ¢ and cos ¢. In a similar fashion, the orbitals with m; = = 2 result in real functions with cos®¢
and sin’ ¢. These functions have then been converted to Cartesian form by using the functions x = rsin6 cos ¢,y = rsinf sin¢, and z = r cos6.

real functions than complex functions, we usually take advantage of another property of
the wave equation. For differential equations of this type, any linear combination of solu-
tions to the equation—sums or differences of the functions, with each multiplied by any
coefficient—is also a solution to the equation. The combinations usually chosen for the p
orbitals are the sum and difference of the p orbitals having m; = + 1 and —1, normalized

V2 V2

1 1 /3
Wy, = %(‘PH +Vv_) = 2\/;[R(r)] sin 6 cos ¢

by multiplying by the constants 1 and ! , respectively:

] 1 /3
Wy, = é(qfﬂ -V = 2\/;[R(r)] sin 6 sin ¢
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Spherical coordinates
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FIGURE 2.5 Spherical
Coordinates and Volume
Element for a Spherical Shell
in Spherical Coordinates.

TABLE 2.4 Hydrogen Atom Wave Functions: Radial Functions

Radial Functions R(r), with o = Zr/a,
Orbital /

312
2s 2 0 Ry = 2{—} 2 — a)e "
2610
1 [z P~
2 1 R, = = —al2
r » \@{200} 7
o[ 7 P2
3s 3 0 Ry = -|=—| (27 — 180 + 20%e 7"
35 27{300} ( o+ 20%e
1 27 3/2
3p 1 Ry, = {7:| 6 — a)oe B
"os1Vala
1 27 3/2
3d 2 Ray = {—} ale 7P
81V15L a0
The same procedure used on the d orbital functions for m; = £ 1 and £2 gives the

functions in the column headed O®(0, ¢) in Table 2.3, which are the familiar d orbitals.
The d orbital (m; = 0) actually uses the function 27> — x> — y%, which we shorten to z*
for convenience.” These functions are now real functions, so ¥ = ¥* and ¥¥* = ¥2,

A more detailed look at the Schrodinger equation shows the mathematical origin of
atomic orbitals. In three dimensions, ¥ may be expressed in terms of Cartesian coordinates
(x, y, z) or in terms of spherical coordinates (r, 6, ¢). Spherical coordinates, as shown in
Figure 2.5, are especially useful in that r represents the distance from the nucleus. The spheri-
cal coordinate 6 is the angle from the z axis, varying from O to 77, and ¢ is the angle from
the x axis, varying from O to 27r. Conversion between Cartesian and spherical coordinates
is carried out with the following expressions:

x = rsin 6 cos ¢

y
z = rcosf

7 sin 6 sin ¢

In spherical coordinates, the three sides of the volume element are r d6, r sin 6 d¢, and
dr. The product of the three sides is 72 sin 6 d6 d¢ dr, equivalent to dx dy dz. The volume
of the thin shell between r and r + dris 47> dr, which is the integral over ¢ from 0 to
7 and over 6 from O to 27r. This integral is useful in describing the electron density as a
function of distance from the nucleus.

W can be factored into a radial component and two angular components. The radial
function R describes electron density at different distances from the nucleus; the angular
functions © and ® describe the shape of the orbital and its orientation in space. The two
angular factors are sometimes combined into one factor, called Y:

W(r, 0, ¢) = R(NOO)P(d) = R(nY (O, ¢)

“We should really call this the dy2— 22 orbital!
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¥

5 P, Py

wes
» S

R is a function only of r; Y is a function of # and ¢, and it gives the distinctive
shapes of s, p, d, and other orbitals. R, © and ® are shown separately in Tables 2.3 and 2.4.

Angular Functions

The angular functions © and ® determine how the probability changes from point to point
at a given distance from the center of the atom; in other words, they give the shape of the
orbitals and their orientation in space. The angular functions © and ® are determined by
the quantum numbers / and m;. The shapes of s, p, and d orbitals are shown in Table 2.3
and Figure 2.6.

In the center of Table 2.3 are the shapes for the © portion; when the ® portion is
included, with values of ¢ = 0 to 27, the three-dimensional shapes in the far-right col-
umn are formed. In the three-dimensional diagrams of orbitals in Table 2.3, the orbital
lobes are shaded where the wave function is negative. The different shadings of the lobes
represent different signs of the wave function W. It is useful to distinguish regions of
opposite signs for bonding purposes, as we will see in Chapter 5.

Radial Functions
The radial factor R(r) (Table 2.4) is determined by the quantum numbers n and [, the
principal and angular momentum quantum numbers.

The radial probability function is 4777°R>. This function describes the probability of
finding the electron at a given distance from the nucleus, summed over all angles, with the
47rr? factor the result of integrating over all angles. The radial wave functions and radial
probability functions are plotted for the n = 1, 2, and 3 orbitals in Figure 2.7. Both R(r)
and 477”°R? are scaled with a, the Bohr radius, to give reasonable units on the axes of the

FIGURE 2.6 Selected
Atomic Orbitals.
(Selected Atomic Orbitals by Gary

O. Spessard and Gary L. Miessler.
Reprinted by permission.)
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graphs. The Bohr radius, a;, = 52.9 pm, is a common unit in quantum mechanics. It is
the value of r at the maximum of W? for a hydrogen ls orbital (the most probable distance
from the hydrogen nucleus for the 1s electron), and it is also the radius of the n = 1 orbit
according to the Bohr model.

In all the radial probability plots, the electron density, or probability of finding the
electron, falls off rapidly beyond its maximum as the distance from the nucleus increases.
It falls off most quickly for the 1s orbital; by r = 5ay, the probability is approaching zero.
By contrast, the 3d orbital has a maximum at » = 9a; and does not approach zero until
approximately r = 20a,. All the orbitals, including the s orbitals, have zero probability at
the center of the nucleus, because 47*R> = 0 at r = 0. The radial probability functions
are a combination of 47777, which increases rapidly with r, and R, which may have maxima
and minima, but generally decreases exponentially with ». The product of these two factors
gives the characteristic probabilities seen in the plots. Because chemical reactions depend
on the shape and extent of orbitals at large distances from the nucleus, the radial probability
functions help show which orbitals are most likely to be involved in reactions.

Nodal Surfaces
At large distances from the nucleus, the electron density, or probability of finding the
electron, falls off rapidly. The 2s orbital also has a nodal surface, a surface with zero
electron density, in this case a sphere with r = 2a, where the probability is zero. Nodes
appear naturally as a result of the wave nature of the electron. A node is a surface where the
wave function is zero as it changes sign (as at r = 2a, in the 2s orbital); this requires that
W = 0, and the probability of finding the electron at any point on the surface is also zero.
If the probability of finding an electron is zero (¥ = 0), ¥ must also be equal to
zero. Because

WV (r, 6, $) = R(NY(O, )

in order for ¥ = 0, either R(r) = 0 or Y(0, ¢) = 0. We can therefore determine nodal
surfaces by determining under what conditions R = Oor ¥ = 0.

Table 2.5 summarizes the nodes for several orbitals. Note that the total number of
nodes in any orbital is 7 — 1 if the conical nodes of some d and f orbitals count as two nodes.”

TABLE 2.5 Nodal Surfaces

Angular Nodes [Y(6, ¢) = 0]

Examples (nhumber of angular nodes)

s orbitals 0
p orbitals 1 plane for each orbital
d orbitals 2 planes for each orbital except d 2

1 conical surface for d 2

Radial Nodes [R(r) = 0]
Examples (number of radial nodes)

Is 0 2p 0 3d 0 r, do_
2s 1 3p 1 4d
3s 2 4p 2 5d 2

*Mathematically, the nodal surface for the d,2 orbital is one surface, but in this instance, it fits the pattern better if
thought of as two nodes.
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FIGURE 2.8 Constant Electron
Density Surfaces for Selected
Atomic Orbitals. (a)-(d) The
cross-sectional plane is any
plane containing the z axis.

(e) The cross section is taken
through the xz or yz plane.

(f) The cross section is taken
through the xy plane.

(Figures (b)-(f) Reproduced with
permission from E. A. Orgyzlo and
G.B. Porter, in J. Chem. Educ., 40, 258.
Copyright 1963. American Chemical
Society.)

Angular nodes result when Y = 0, and are planar or conical. Angular nodes can be
determined in terms of 6 and ¢ but may be easier to visualize if Y is expressed in Cartesian
(x, y, 2) coordinates (see Table 2.3). In addition, the regions where the wave function is posi-
tive and where it is negative can be found. This information will be useful in working with
molecular orbitals in later chapters. There are / angular nodes in any orbital, with the conical
surface in the d 2 orbitals—and other orbitals having conical nodes—counted as two nodes.

Radial nodes (spherical nodes) result when R = 0. They give the atom a layered
appearance, shown in Figure 2.8 for the 3s and 3p, orbitals. These nodes occur when
the radial function changes sign; they are depicted in the radial function graphs by R(r) = 0
and in the radial probability graphs by 477°R> = 0. The lowest energy orbitals of each clas-
sification (1s, 2p, 3d, 4f, etc.) have no radial nodes. The number of radial nodes increases as
n increases; the number of radial nodes for a given orbital is always” equal ton — [ — 1.

Nodal surfaces can be puzzling. For example, a p orbital has a nodal plane through
the nucleus. How can an electron be on both sides of a node at the same time without ever
having been at the node, at which the probability is zero? One explanation is that the prob-
ability does not go quite to zero™" on the basis of relativistic arguments.

(b) C:2pZ

9PON

(d) Ti*":3d 2

3+,
(e) Ti .3dx2 _ y2

-3+,
O T 3d2 2

* Again, counting a conical nodal surface, such as for a d. orbital, as two nodes.
" A. Szabo, J. Chem. Educ., 1969, 46, 678 explains that the electron probability at a nodal surface has a very
small but finite value.
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Another explanation is that such a question really has no meaning for an electron behav-
ing as a wave. Recall the particle-in-a-box example. Figure 2.4 shows nodes at x/a = 0.5
forn = 2 and at x/a = 0.33 and 0.67 for n = 3. The same diagrams could represent the
amplitudes of the motion of vibrating strings at the fundamental frequency (n = 1) and
multiples of 2 and 3. A plucked violin string vibrates at a specific frequency, and nodes at
which the amplitude of vibration is zero are a natural result. Zero amplitude does not mean
that the string does not exist at these points but simply that the magnitude of the vibration
is zero. An electron wave exists at the node as well as on both sides of a nodal surface, just
as a violin string exists at the nodes and on both sides of points having zero amplitude.

Still another explanation, in a lighter vein, was suggested by R. M. Fuoss to one of
the authors in a class on bonding. Paraphrased from St. Thomas Aquinas, “Angels are not
material beings. Therefore, they can be first in one place and later in another without ever
having been in between.” If the word “electrons” replaces the word “angels,” a semitheo-
logical interpretation of nodes would result.

EXAMPLE 2.1

Nodal structure of Pz The angular factor Y is given in Table 2.3 in terms of Cartesian

coordinates:
y=1 (32
2 mr

This orbital is designated p, because z appears in the Y expression. For an angular
node, Y must equal zero, which is true only if z = 0. Therefore, z = 0 (the xy plane)
is an angular nodal surface for the p, orbital, as shown in Table 2.5 and Figure 2.8. The
wave function is positive where z > 0 and negative where z < 0. In addition, a 2p,
orbital has no radial (spherical) nodes, a 3p, orbital has one radial node, and so on.

1 [15 (x* —y?
y = L /1567y
4N r?

— y? appears in the equation, so the designation is dy .

Nodal structure of d,2_2

Here, the expression x>

Because there are two solutions to the equation ¥ = 0 (setting x> — y* = 0, the
solutions are x = y and x = — y), the planes defined by these equations are the
angular nodal surfaces. They are planes containing the z axis and making 45° angles
with the x and y axes (see Table 2.5). The function is positive where x > y and negative
where x <y. In addition, a 3d,2>_ > orbital has no radial nodes, a 4d,2_,2 has one radial
node, and so on.

EXERCISE 2.2 Describe the angular nodal surfaces for a d.> orbital, whose angular wave

function is
1\F(2zz—x2—y2)
IR | E—
4 N r

EXERCISE 2.3 Describe the angular nodal surfaces for a d,, orbital, whose angular

wave function is
1 (15 xz
r= 2N 7 42

The result of the calculations is the set of atomic orbitals familiar to chemists. Figure 2.6
shows diagrams of s, p, and d orbitals, and Figure 2.8 shows lines of constant electron density
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in several orbitals. Different shadings of the orbital lobes in Figure 2.6 indicate different signs
of the electron wave amplitude, and the outer surfaces shown enclose 90% of the total electron
density of the orbitals. The orbitals we use are the common ones used by chemists; others that
are also solutions of the Schrodinger equation can be chosen for special purposes.'#
Angular functions for forbitals are provided in Appendix B-8. The reader is encouraged
to make use of Internet resources that display a wide range of atomic orbitals—including f,
g and higher orbitals—show radial and angular nodes, and provide additional information.”

2.2.3 The Aufbau Principle

Limitations on the values of the quantum numbers lead to the aufbau (German, Aufbau,
building up) principle, where the buildup of electrons in atoms results from continually
increasing the quantum numbers. The energy level pattern in Figure 2.2 describes electron
behavior in a hydrogen atom, where there is only one electron. However, interactions
between electrons in polyelectronic atoms require that the order of filling orbitals be
specified when more than one electron is in the same atom. In this process, we start with
the lowest n, [, and m; values (1, 0, and 0, respectively) and either of the m values (we will
arbitrarily use+% first). Three rules will then give us the proper order for the remaining
electrons, as we increase the quantum numbers in the order m;, m,, [, and n.

1. Electrons are placed in orbitals to give the lowest total electronic energy to the atom.
This means that the lowest values of n and [ are filled first. Because the orbitals within
each subshell (p, d, etc.) have the same energy, the orders for values of m; and m, are
indeterminate.

2. The Pauli exclusion principle!’ requires that each electron in an atom have a unique
set of quantum numbers. At least one quantum number must be different from those
of every other electron. This principle does not come from the Schrédinger equation,
but from experimental determination of electronic structures.

3. Hund’s rule of maximum multiplicity'® requires that electrons be placed in orbitals
to give the maximum total spin possible (the maximum number of parallel spins).
Two electrons in the same orbital have a higher energy than two electrons in different
orbitals because of electrostatic repulsion (see below); electrons in the same orbital
repel each other more than electrons in separate orbitals. Therefore, this rule is a
consequence of the lowest possible energy rule (Rule 1). When there are one to six
electrons in a p subshell, the required arrangements are those given in Table 2.6. (The
spin multiplicity is the number of unpaired electrons plus 1, or n + 1). Any other
arrangement of electrons results in fewer unpaired electrons.™

TABLE 2.6 Hund'’s Rule and Multiplicity

Number of Electrons Arrangement Unpaired e~ Multiplicity
1 i 1 2
2 i T 2 3
3 ) ) ) 3 4
4 Tty i) 2 3
5 R 2 N 1 2
6 R N M 2 I 0 1

“Two examples are http://www.orbitals.com and http://winter.group.shef.ac.uk/orbitron.
** This is only one of Hund’s rules; others are described in Chapter 11.


http://www.orbitals.com
http://winter.group.shef.ac.uk/orbitron
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Hund’s rule is a consequence of the energy required for pairing electrons in the same
orbital. When two negatively charged electrons occupy the same region of space (same
orbital) in an atom, they repel each other, with a Coulombic energy of repulsion, II., per
pair of electrons. As a result, this repulsive force favors electrons in different orbitals
(different regions of space) over electrons in the same orbitals.

In addition, there is an exchange energy, I1,, which arises from purely quantum mechani-
cal considerations. This energy depends on the number of possible exchanges between two
electrons with the same energy and the same spin. For example, the electron configuration of
a carbon atom is 152 2s%2p2. The 2p electrons can be placed in the p orbitals in three ways:

m Y Gy v @t 1

Each of these corresponds to a state having a particular energy. State (1) involves
Coulombic energy of repulsion, I, because it is the only one that pairs electrons in the
same orbital. The energy of this state is higher than that of the other two by II, as a result
of electron—electron repulsion.

In the first two states, there is only one possible way to arrange the electrons to give
the same diagram, because there is only a single electron in each having + or — spin; these
electrons can be distinguished from each other on this basis. However, in the third state,
the electrons have the same spin and are therefore indistinguishable from each other.
Therefore, there are two possible ways in which the electrons can be arranged:

11 12 T2 T (one exchange of electrons)

Because there are two possible ways in which the electrons in state (3) can be arranged, we
can say that there is one pair of possible exchanges between these arrangements, described
as one exchange of parallel electrons. The energy involved in such an exchange of parallel
electrons is designated II,; each exchange stabilizes (lowers the energy of) an electronic
state, favoring states with more parallel spins (Hund’s rule). Therefore, state (3), which is
stabilized by one exchange of parallel electrons, is lower in energy than state (2) by I1,.

The results of considering the effects of Coulombic and exchange energies for the p?
configuration may be summarized in an energy diagram:

o L

& 1T _

State (3) is the most stable; its electrons are in separate orbitals and have parallel spin;
because state (3) has one possible exchange of electrons with parallel spin, it is lower in
energy than state (2) by II,. State (1) is highest in energy because it has two electrons in
the same orbital and is therefore higher in energy than state (2) by II,.. Neither state (1) nor
state (2) is stabilized by exchange interactions (zero I1,).
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In summary:

Coulombic energy of repulsion II. is a consequence of repulsion between electrons
in the same orbital; the greater the number of such paired electrons, the higher the
energy of the state.”

Exchange energy II, is a consequence of parallel electron spins in separate orbitals;
the greater the number of such parallel spins (and consequently the greater the number
of exchanges), the lower the energy of the state.

Both Coulombic and exchange energies must be taken into account when comparing
the energies of different electronic states.

EXAMPLE 2.2

Oxygen
With four p electrons, oxygen could have two unpaired electrons (T ¢ 1 T ),
or it could have no unpaired electrons (( * V 1TV ).

a. Determine the number of electrons that could be exchanged in each case, and find
the Coulombic and exchange energies.

l T_ T_ This configuration has one pair, energy contribution II...
L T_ _T One electron with | spin and no possibility of exchange.
Tyon 1

Four possible arrangements for electrons with | spin; three
exchange possibilities (1-2, 1-3, 2-3), shown below; energy contribution 311,.

Mot 2 13 T2 M1 13 T3 t2 1 T3 12
Overall, 311, + II..

Ty has two pairs in the same orbitals and one exchange possibility
for each spin pair.

Overall, 211, + 2II..

b. Which state, T ¢ _* i or Ty T4 is lower in energy?

The state _T ¥ 1 1 is lower in energy because it has less Coulombic energy
of repulsion (II. in comparison with 2I1,) and is stabilized by a greater number of
exchanges (311, in comparison with 2I1,).

EXERCISE 2.4 A third possible state for the p* configuration would be ty v
Determine the Coulombic and exchange energies of this state, and compare its energy W1th
the energies of the states determined in the preceding example. Draw a sketch showing the
relative energies of these three states for oxygen’s p* configuration.

EXERCISE 2.5 A nitrogen atom, with three 2p electrons, could have three
unpaired electrons (_T i T ), orit could have one unpaired
electron (T V 1 ).

a. Determine the number of electrons that could be exchanged in each case and the
Coulombic and exchange energies. Which state would be lower in energy?

*In atoms with more than one electron (polyelectronic atoms), all electrons are subject to some Coulombic
repulsion energy, but this contribution is significantly higher for electrons that are paired within atomic orbitals.
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b. A third possible state for a 2p3 configuration would be 1 1 v
Determine its Coulombic and exchange energies, and compare the energy of
this state with the energies determined in part a.

When the orbitals are degenerate (have the same energy), both Coulombic and
exchange energies favor unpaired configurations over paired configurations. However, if
there is a difference in energy between the levels involved, this difference, together with the
Coulombic and exchange energies, determines the final configuration, with the configu-
ration of lowest energy expected as the ground state; energy minimization is the driving
force. For atoms, this usually means that one subshell (s, p, d) is filled before another has
any electrons. However, this approach is insufficient in some transition elements, because
the 45 and 3d (or the higher corresponding levels) are so close in energy that the sum of
the Coulombic and exchange terms is nearly the same as the difference in energy between
the 4s and 3d. Section 2.2.4 considers these cases.

Many schemes have been used to predict the order of filling of atomic orbitals.
Klechkowsky’s rule states that the order of filling of the orbitals proceeds from the low-
est available value for the sum n + /. When two combinations have the same value,
the one with the smaller value of n is filled first; thus, 4s(n + [ = 4 + 0) fills before
3d(n + [ = 3 + 2). Combined with the other rules, this gives the order of filling of most
of the orbitals.”

One of the simplest methods that fits most atoms uses the periodic table organized as in
Figure 2.9. The electron configurations of hydrogen and helium are clearly 1s' and 1s%. After
that, the elements in the first two columns on the left (Groups 1 and 2) are filling s orbitals,
with [ = 0; those in the six columns on the right (Groups 13 to 18) are filling p orbitals,
with [ = 1; and the ten in the middle (the transition elements, Groups 3 to 12) are filling

Groups (IUPAC) FIGURE 2.9 Atomic Orbital
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Filling in the Periodic Table.
(US traditional)
1A TA 1B IVB VB VIB VIIB VIIIB IB 1B IITA IVA VA VIA VIIA VIIIA

s 7

}/ w2222

2
3y /4 —r 3p|3p |3 |3 |3 |3
/6 5 | 3a 3d | 3d | 3d | 3d | 3d | 3d|3d|3d|3d|4p|4p|4p|dp|dp |4
§ ;/ 4d 4d | 4d | 4d | 4d [ 4d | 4d | 4d | 4d | 4d | 5p | 5p | 5p | 5p | 5P | Sp
;/ 65| sd | * | 5d|5d|5d|sd|5d|sd|5d|sd|5d|6p|6p|6p|6p|ep|ep
s

6d | ** | 6d | 6d | 6d | 6d | 6d | 6d | 6d | 6d | 6d

7

slarlar | o | o || o |y || oo |||
s | splsp s sel selse | sel sl sr | sl se | ar | sf | sf

s block p block d block f block

* For recent perspective on electron configurations, energies of atomic orbitals, the periodic system, and related
topics, see S-G. Wang and W. H. E. Schwarz, Angew. Chem. Int. Ed., 2009, 48, 3404.
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d orbitals, with [ = 2. The lanthanide and actinide series (numbers 58 to 71 and 90 to 103)
are filling f orbitals, with / = 3. These two methods are oversimplifications, as shown in the
following paragraphs, but they do fit most atoms and provide starting points for the others.

2.24 Shielding

In polyelectronic atoms, energies of specific levels are difficult to predict quantitatively.
A useful approach to such predictions uses the concept of shielding: each electron acts as
a shield for electrons farther from the nucleus, reducing the attraction between the nucleus
and the more distant electrons.

Although the quantum number 7 is most important in determining the energy,
quantum number / must also be included in calculating the energy in atoms having
more than one electron. As the atomic number increases, electrons are drawn toward the
nucleus, and the orbital energies become more negative. Although the energies decrease
with increasing Z, the changes are somewhat irregular because of the shielding of outer
electrons by inner electrons. The electron configurations of atoms from the resulting order
of orbital filling are shown in Table 2.7.

As aresult of shielding and other subtle interactions between electrons, exclusive reliance
on n to rank orbital energies (higher energy with higher quantum number 7), which works
for one-electron species, holds only for orbitals with lowest values of n (see Figure 2.10)
in polyelectronic species. In multielectron atoms (and ions), for higher values of n, as the
split in orbital energies with different values of quantum number / becomes comparable
in magnitude to the differences in energy caused by n, the simplest order does not hold.

For example, consider the n = 3 and n = 4 sets in Figure 2.10. For many atoms
the 4s orbital is lower in energy than the 3d orbitals; consequently the order of
filling is ...3s, 3p, 4s, 3d, 4p... rather than the order based strictly on increasing
n...3s,3p, 3d, 4s, 4p...

Similarly, 5s begins to fill before 4d, and 6s before 5d. Other examples can be
found in Figure 2.10.

Slater!” formulated rules that serve as an approximate guide to this effect. These rules
define the effective nuclear charge Z* as a measure of the attraction of the nucleus for a
particular electron:

Effective nuclear charge Z* = Z — S, where Z = nuclear charge
S = shielding constant

Slater’s rules for determining S for a specific electron:”

1. The atom’s electronic structure is written in order of increasing quantum numbers
n and /, grouped as follows:

(1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, Sp) (5d) (and so on)

2. Electrons in groups to the right in this list do not shield electrons to their left.

3. The shielding constant S for electrons in these groups can now be determined. For ns

and np valence electrons:

a. Each electron in the same group contributes 0.35 to the value of S for each other
electron in the group.
Exception: A 1s electron contributes 0.30 to S for another 1s electron.
Example: For a configuration 2s2 2p°, a particular 2p electron has six other elec-
trons in the (2s, 2p) group. Each of these contributes 0.35 to the value of S, for a
total contribution to S of 6 X 0.35 = 2.10.

* Slater’s original numbering scheme has been changed for convenience.



TABLE 2.7 Electron Configurations of the Elements

Element V4 Configuration Element V4 Configuration
H 1 Is! Cs 55 [Xe}6s'
He 2 152 Ba 56 [Xe]6s?
Li 3 [He]2s' La 57 “[Xe]6s?5d"
Be 4 [He]2s? Ce 58 “[Xe]6s24f" 54"
B 5 [He |25%2p! Pr 59 [Xe]6s24f?
C 6 [He]2s%2p? Nd 60 [Xe]6s%4f*
N 7 [He |2s%2p? Pm 61 [Xe]6s%4f>
(¢} 8 [He]2s%2p* Sm 62 [Xe]6s%4f°
F 9 [He |2s%2p° Eu 63 [Xe]6s24f7
Ne 10 [He]2s%2p¢ Gd 64 “[Xe]6s4f75d"
Tb 65 [Xe]6s%41°
Na 11 [Ne]3s! Dy 66 [Xe]6s24f10
Mg 12 [Ne]3s? Ho 67 [Xe]6s24f!!
Al 13 [Ne]3s23p! Er 68 [Xe]6s24f !
Si 14 [Ne]3s%3p> Tm 69 [Xe]6s24f 13
P 15 [Ne]3s?3p? Yb 70 [Xe]6s24f
S 16 [Ne]3s23p* Lu 71 [Xe]6s%4f 454"
Cl 17 [Ne]3s?3p® Hf 72 [Xe]6s%4f 454>
Ar 18 [Ne]3s%3p° Ta 73 [Xe]6s%4f 4543
w 74 [Xe]6s%4f 454
K 19 [Ar]4s' Re 75 [Xe]6s24f 54
Ca 20 [Ar]4s? Os 76 [Xe]6s24f*5d°
Sc 21 [Ar]4s%3d" Ir 77 [Xe]6s%4f 4547
Ti 2 [Ar]4s23a? Pt 78 “[Xe]6s'4f5a°
v 23 [Ar]4s%3d3 Au 79 “[Xe]6s'4f145410
Cr 24 *[Ar]4s'3a° Hg 80 [Xe]6s%4f 454"
Mn 25 [Ar]4s*3d° Tl 81 [Xe]6s24f 454" 6p!
Fe 26 [Ar]4s?34° Pb 82 [Xe ]6s%4f 454" 06p?
Co 27 [Ar]4s?3d’ Bi 83 [Xe]6s%4f 454" 6p?
Ni 28 [Ar]4s?3a® Po 84 [Xe]6s%4f 454" 6p*
Cu 29 ‘[ Ar]4s'34" At 85 [Xe]6s24f 454" 06p?
Zn 30 [Ar]4s?34"° Rn 86 [Xe ]6s%4f 454" 06p®
Ga 31 [Ar]4s23d"04p!
Ge 32 [Ar]4s?34'04p? Fr 87 [Rn]7s
As 33 [Ar]45234'04p? Ra 88 [Rn]7s
Se 34 [ Ar]4s234"4p* Ac 89 *[Rn}7s 6d'
Br 35 [Ar]4s3d"04p° Th 90 “[Rn]7s>6d>
Kr 36 [Ar]4s?34"4p Pa 91 “[Rn 7525264
U 92 “[Rn]7s%5f36d"
Rb 37 [Kr]5s! Np 93 “[Rn ] 7s25F*6d"
Sr 38 [Kr]5s? Pu 94 [Rn]7s%5¢°
Am 95 [Rn]7s25f7
Y 39 [Kr]5s5%4d" Cm 96 “[Rn]7s25f76d"
Zr 40 [Kr]5s%44> Bk 97 [Rn ]7s5¢°
Nb 41 *[Kr]5s'4d* Cf 98 “[Rn]7s?5f%6d"
Mo 42 *[Kr]5s'4d? Es 99 [Rn] 75?51
Te 43 [Kr]5s%4d® Fm 100 [Rn]7s25f 12
Ru 44 *[Kr]5s'4d” Md 101 [Rn]7s?5f 13
Rh 45 “[Kr]5s'4a® No 102 [Rn]7s25f1¢
Pd 46 *[Kr]4d" Lr 103 [Rn]7s?5f 464"
Ag 47 *[Kr]5s'4q" Rf 104 [Rn]7s25f 464>
cd 48 [Kr]5s?4d" Db 105 [Rn ]7s25f1464°
In 49 [Kr15924d105p' Sg 106 [Rn}7r25f]46d4
Sn 50 [Kr]5s24d'05p? Bh 107 [Rn]7s%57 464>
Sb 51 [Kr]5s%4d"05p> Hs 108 [Rn]7s25f*6d°
Te 52 [Kr]5s%4a"05p* Mt 109 [Rn 7557464’
I 53 [Kr]5524d'05p° Ds 110 “[Rn]7s'5f146d°
Xe 54 [Kr]5s%4d'05p® Rg 111 “[Rn]7s'5£464"
Cn* 112 [Rn]7s*5£* 64"
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* Elements with configurations that do not follow the simple order of orbital filling.
“ Evidence for elements 113-118 has been reviewed by IUPAC; see R. C. Barber, P. J. Karol, H. Nakahara, E. Vardaci, E. W.
Vogt, Pure Appl. Chem., 2011, 83, 1485. In May 2012, ITUPAC officially named element 114 (flerovium, symbol Fl) and element

116 (livermorium, Lv).

Source: Actinide configurations are from J. J. Katz, G. T. Seaborg, and L. R. Morss, The Chemistry of the Actinide Elements,

2nd ed., Chapman and Hall, New York and London, 1986. Configurations for elements 100 to 112 are predicted, not experimental.
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FIGURE 2.10 Energy Level
Splitting and Overlap.

The differences between

the upper levels are
exaggerated for easier
visualization. This diagram
provides unambiguous electron
configurations for elements
hydrogen to vanadium.

~ 3d

n=] — — ———— —_—1s

b. Each electron in n — 1 groups contribute 0.85 to S.
Example: For the 3s electron of sodium, there are eight electrons in the (2s, 2p)
group. Each of these electrons contributes 0.85 to the value of S, a total contribu-
tion of 8 X 0.85 = 6.80.

c. Each electron in n — 2 or lower groups contributes 1.00 to S.

4. For nd and nf valence electrons:

a. Each electron in the same group contributes 0.35 to the value of S for each other
electron in the group. (Same rule as 3a.)

b. Each electron in groups to the left contributes 1.00 to S.

These rules are used to calculate the shielding constant S for valence electrons.
Subtracting S from the total nuclear charge Z gives the effective nuclear charge Z* on the
selected electron:

Z¥=7Z-S
Calculations of S and Z* follow.

EXAMPLE 2.3

Oxygen

Use Slater’s rules to calculate the shielding constant and effective nuclear charge of
a 2p electron.

Rule 1: The electron configuration is written using Slater’s groupings, in order:
(157252 2p%)
To calculate S for a valence 2p electron:

Rule 3a: Each other electron in the (252, 2p*) group contributes 0.35 to S.
Total contribution = 5 X 0.35 = 1.75

Rule 3b: Each 1s electron contributes 0.85 to S.
Total contribution = 2 X 0.85 = 1.70
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Total S = 1.75 + 1.70 = 3.45

Effective nuclear charge Z* = 8 — 3.45 = 4.55

So rather than feeling the full +8 nuclear charge, a 2p electron is calculated to
feel a charge of +4.55, or about 57% of the full nuclear charge.

Nickel

Use Slater’s rules to calculate the shielding constant and effective nuclear charge of a
3d and 4s electron.
Rule 1: The electron configuration is written (15%)(2s2, 2p®)(3s2, 3p®)(3d%)(4s?)

For a 3d electron:

Rule 4a: Each other electron in the (34%) group contributes 0.35 to S.
Total contribution = 7 X 0.35 = 2.45

Rule 4b: Each electron in groups to the left of (3d%) contributes 1.00 to S.
Total contribution = 18 X 1.00 = 18.00
Total § = 2.45 + 18.00 = 20.45
Effective nuclear charge Z* = 28 — 20.45 = 7.55

For a 4s electron:

Rule 3a: The other electron in the (4s%) group contributes 0.35 to S.

Rule 3b: Each electron in the (352, 3p®)(3d%) groups (n — 1) contributes 0.85.
Total contribution = 16 X 0.85 = 13.60

Rule 3c: Each other electron to the left contributes 1.00. Total contribution =
10 X 1.00 = 10.00

Total S = 0.35 + 13.60 + 10.00 = 23.95
Effective nuclear charge Z* = 28 — 23.95 = 4.05

The effective nuclear charge for the 4s electron is considerably smaller than the value
for the 3d electron. This is equivalent to stating that the 4s electron is held less tightly
than the 3d and should therefore be the first removed in ionization. This is consistent
with experimental observations on nickel compounds. Ni%*, the most common oxida-
tion state of nickel, has a configuration of [Ar] 3d®, rather than [Ar] 3d°4s?, corre-
sponding to loss of the 4s electrons from nickel atoms. All the transition metal atoms
follow this same pattern of losing ns electrons more readily than (n — 1)d electrons.

EXERCISE 2.6 Calculate the effective nuclear charge on a 5s, 5p, and 4d electron in a
tin atom.

EXERCISE 2.7 Calculate the effective nuclear charge on a 7s, 5f, and 6d electron in a
uranium atom.

Justification for Slater’s rules comes from the electron probability curves for the orbit-
als; Slater devised these rules semiempirically using equations modeled after wavefunc-
tion equations to fit experimental data for atoms. Slater’s approach results in rules that
provide useful approximations for the effective nuclear charge an electron in an atom
actually experiences after shielding is taken into account. The s and p orbitals have
higher probabilities near the nucleus than do d orbitals of the same 7, as shown earlier in
Figure 2.7. Therefore, the shielding of 3d electrons by (3s, 3p) electrons is calculated as
100% effective, a contribution of 1.00. At the same time, shielding of 3s or 3p electrons by
(2s, 2p) electrons is estimated as 85% effective, a contribution of 0.85, because the 3s and
3p orbitals have regions of significant probability close to the nucleus. Therefore, electrons
in these orbitals are not completely shielded by (2s, 2p) electrons.
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FIGURE 2.11 Electron
Configurations of Transition
Metals, Including Lanthanides
and Actinides. Solid lines sur-
rounding elements designate
filled (d'or %) or half-filled
(dPor f) subshells. Dashed lines
surrounding elements desig-
nate irregularities in sequential
orbital filling, also found within
some of the solid lines.

Rb

Fr

A complication arises at Cr (Z = 24) and Cu (Z = 29) in the first transition series
and in an increasing number of atoms with higher atomic numbers in the second and
third transition series. This effect places an extra electron in the 3d level and removes one
electron from the 4s level. Cr, for example, has a configuration of [Ar] 4s' 34 rather than
[Ar] 4s? 3d*. Traditionally, this phenomenon has often been explained as a consequence of
the “special stability of half-filled subshells.” Half-filled and filled d and f subshells are,
in fact, fairly common, as shown in Figure 2.11. A more complete explanation considers
both the effects of increasing nuclear charge on the energies of the 4s and 3d levels and
the interactions between electrons sharing the same orbital.!® This approach requires
totaling all contributions to the energy of the configuration of electrons, including the
Coulombic and exchange energies; results of the complete calculations are consistent with
the configurations determined by experimental data.

Slater’s rules have been refined to improve their match with experimental data. One
relatively simple refinement is based on the ionization energies for the elements hydrogen
through xenon, and it provides a calculation procedure similar to that proposed by Slater.!”
A more elaborate method incorporates exponential screening and provides energies that
are in closer agreement with experimental values.2’

Another explanation that is more pictorial and considers electron—electron interactions
was proposed by Rich.?! He explained electronic structures of atoms by considering the differ-
ence in energy between the energy of one electron in an orbital and two electrons in the same
orbital. Although the orbital itself is usually assumed to have only one energy, the electrostatic
repulsion of the two electrons in one orbital adds the electron-pairing energy described in
Section 2.2.3 as part of Hund’s rule. We can visualize two parallel energy levels, each with
electrons of only one spin, separated by the electron-pairing energy, as shown in Figure 2.12.

For example, an Sc atom has the valence configuration 4s? 3d'. By Rich’s approach,
the first electron is arbitrarily considered to have m; = —%. The second electron, with
my = + %, completes the 4s® configuration—but the total energy of these two electrons
is greater than twice the energy of the first electron, because of the Coulombic energy of
repulsion, IT... In Figure 2.12(a) Sc is shown as having three electrons: in ascending order

these are 4s (m, = — %), 4s (mg = + %), and 3d (m; = —%). The next element, Ti, also
Mg Half-filled d Filledd Al Si P S Cl Ar
= = 1
Ca Sc Ti V {Cr !Mn|Fe Co Ni {Cu !Zn |Ga Ge As Se Br Kr
3d! 3d%> 3d313d° | 3d° | 3d® 3d7 3d® 13410 340
4s! | 452 :4s1 | 452
———1——a === ——
I
St Y Zr INbIMo | Tc | Ru Rh |Pd Ag [Cd |[In Sn Sb Te I Xe
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Number of electrons
in half subshell

1
(b) 572

has one 4s electron with each spin, then two 3d electrons, each with m; = — % The two
3d electrons, by Hund’s rule, have parallel spin.

As the number of protons in the nucleus increases, the effective nuclear charge for all
electrons increases and the energy levels decrease in energy; their electrons become more
stable. Figure 2.12 illustrates that the energy of the 3d subshell decreases more dramatically
relative to 4s as one moves across the first transition series; this trend generally holds for
(n — 1)d and ns orbitals. A rationalization for this trend is that orbitals with shorter most
probable distances to the nucleus are stabilized more as Z increases relative to orbitals
with greater most probable distances. Because the 3d orbitals have shorter most probable
distances from the nucleus than the 4s orbital, the 3d orbitals are stabilized more than the
4s as the nuclear charge increases.

The effective nuclear charge that an electron experiences generally increases as the
most probable distance of the electron from the nucleus decreases; these electrons are less
susceptible to shielding by electrons farther from the nucleus (for example, in Slater’s rules
electrons with greater most probable distances to the electron in question do not contribute
at all to S). Since the most probable distance from the nucleus increases as n increases
(Figure 2.7), the 3d subshell ultimately stabilizes its electrons more than the 4s orbital once
Z gets sufficiently high. Regardless of the relative orbital energies, the observed electronic
configuration is always the one of lowest energy. Electrons fill the lowest available orbitals
in order up to their capacity, with the results shown in Figure 2.12 and in Table 2.7.

The schematic diagram in Figure 2.12(a) shows the order in which the levels fill,
from bottom to top in energy. For example, Ti has two 4s electrons, one in each spin level,
and two 3d electrons, both with the same spin. Fe has two 4s electrons, one in each spin
level, five 3d electrons with spin—%, and one 3d electron with spin + % For vanadium, the
first two electrons enter the 4s, —% and 4s, +% levels; the next three are all in the 3d, —%
level, and vanadium has the configuration 45% 3d°. The 3d, —% line crosses the 4s, +% line
between V and Cr. When the six electrons of chromium are filled in from the lowest level,

FIGURE 2.12 Schematic
Energy Levels for Transition
Elements. (a) Schematic
interpretation of electron
configurations for transition
elements in terms of intraorbital
repulsion and trends in subshell
energies. (b) A similar diagram
for ions, showing the shift in the
crossover points on removal of
an electron. The shift is even
more pronounced for metal ions
having 2+ or greater charges. As
a consequence, transition-metal
ions with 2+ or greater charges
have no s electrons, only d
electrons in their outer levels.
Similar diagrams, although
more complex, can be drawn for
the heavier transition elements
and the lanthanides.

(Rich, R. L., Periodic Coorelate, 1st Ed.,
(c) 1965. Reprinted and Electroni-
cally reproduced by permission of
Pearson Education Inc, Upper Saddle
River, NJ 07458.)
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chromium has the configuration 4s' 3d°. A similar crossing gives copper its 4s' 3d'°
structure. This approach to electron configurations of transition metals does not depend
on the stability of half-filled shells or other additional factors.

Formation of a positive ion by removal of an electron reduces shielding; the effective
nuclear charge for all electrons increases dramatically. On the basis of the most probable
distance effect discussed previously, (n — 1)d orbitals will be lower in energy than ns
orbitals in the cation, as shown in Figure 2.12(b). As a result, the remaining electrons
occupy the d orbitals. A common rule in introductory chemistry is that electrons with
highest n—in this case, those in the s orbitals—are always removed first when ions are
formed from the transition elements. A perhaps more mature perspective on this idea is
that regardless of which electron is lost to form a transition metal ion, the lowest energy
electron configuration of the resulting ion will always exhibit the vacancy in the ns orbital.
This effect is even stronger for 2+ ions, where the effective nuclear charge is even higher.
Transition metal cations have no s electrons, only d electrons in their outer levels.

A similar, but more complex, crossing of levels appears in the lanthanide and actinide
series. The simple explanation would have these elements start filling f orbitals at lanthanum
(57) and actinium (89), but these atoms have one d electron instead. Other elements in
these series also show deviations from the “normal” sequence. Rich has explained these
situations using similar diagrams.?!

2.3 Periodic Properties of Atoms

A valuable aspect of the arrangment of atoms on the basis of similar electronic configurations
within the periodic table is that an atom’s position provides information about its properties.
Some of these properties, and how they vary across periods and groups, are now discussed.

2.3.1 lonization Energy
The ionization energy, also known as the ionization potential, is the energy required to
remove an electron from a gaseous atom or ion:

At(g) — A"DT() + e ionization energy (IE) = AU

where n = 0 (first ionization energy), n = 1 (second ionization energy), and so on.

As would be expected from the effects of shielding, the ionization energy varies with
different nuclei and different numbers of electrons. Trends for the first ionization energies
of the early elements in the periodic table are shown in Figure 2.13. The general trend
across a period is an increase in ionization energy as the nuclear charge increases. However,
the experimental values show a break in the trend in the second period at boron and again
at oxygen. Because boron is the first atom to have an electron in a higher energy 2p orbital
that is shielded somewhat by the 2s electrons, boron’s 2p electron is more easily lost than
the 2s electrons of beryllium; boron has the lower ionization energy.

Energy

At the fourth 2p electron, at oxygen, a similar decrease in ionization energy occurs.
Here, the fourth electron shares an orbital with one of the three previous 2p electrons
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He FIGURE 2.13 lonization
Energies and Electron Affinities.
lonization energy = AU for
M(g) —> M*(g) + e~

2500

2000
(Data from C. E. Moore, lonization
Potentials and lonization Limits,
1500 National Standards Reference Data
Series, U.S. National Bureau of Stand-
° ards, Washington, DC, 1970, NSRDS-
£ 1000 NBS 34) Electron affinity = AU for
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H. Hotop and W. C. Lineberger, J.
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( Ty i) ), and the repulsion between the paired electrons (II,.) reduces the
energy necessary to remove an electron from oxygen; oxygen has a lower ionization energy
than nitrogen, which has the 2p configuration i) i) i)

Similar patterns appear in the other periods, for example Na through Ar and K through
Kr, omitting the transition metals. The transition metals have less dramatic differences
in ionization energies, with the effects of shielding and increasing nuclear charge more
nearly in balance.

Much larger decreases in ionization energy occur at the start of each new period,
because the change to the next major quantum number requires that the new s electron have
a much higher energy. The maxima at the noble gases decrease with increasing Z, because
the outer electrons are farther from the nucleus in the heavier elements. Overall, the trends
are toward higher ionization energy from left to right in the periodic table (the major
change) and lower ionization energy from top to bottom (a minor change). The differences
described in the previous paragraph are superimposed on these more general changes.

2.3.2 Electron Affinity

Electron affinity can be defined as the energy required to remove an electron from a
negative ion:"

A (g —> A(g) + e electron affinity (EA) = AU

Because of the similarity of this reaction to the ionization for an atom, electron affin-
ity is sometimes described as the zeroth ionization energy. This reaction is endothermic
(positive AU) except for the noble gases and the alkaline earth elements. The pattern of
electron affinities with changing Z, shown in Figure 2.13, is similar to that of the ionization
energies, but for one larger Z value (one more electron for each species) and with much
smaller absolute numbers. For either of the reactions, removal of the first electron past a
noble gas configuration is easy, so the noble gases have the lowest electron affinities. The
electron affinities are all much smaller than the corresponding ionization energies, because
electron removal from a negative ion (that features more shielding of the nuclear charge)
is easier than removal from a neutral atom.

Comparison of the ionization and electron affinity graphs in Figure 2.13 shows similar
zigzag patterns, but with the two graphs displaced by one element: for example, electron
affinity shows a peak at F and valley at Ne, and ionization energy a peak at Ne and valley at

*Historically, the definition has been —AU for the reverse reaction, adding an electron to the neutral atom.
The definition we use avoids the sign change.
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FIGURE 2.14 First and Second
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Na. The patterns in these two quantities can more easily be seen by plotting energy against
the number of electrons in each reactant, as shown in Figure 2.14 for electron affinity and
first and second ionization energy.

The peaks and valleys match for all three graphs because the electron configura-
tions match—for example, there are peaks at 10 electrons and valleys at 11 electrons. At
10 electrons, all three reactant species (F~, Ne, and Na*) have identical 152252 2p6 configura-
tions; these are by definition isoelectronic species. The relatively high energy necessary to
remove an electron from these configurations is typical for configurations in which electron
shells are complete. The next electron, in an 11-electron configuration, is the first to occupy
a higher energy 3s orbital and is much more easily lost, providing a valley in each graph,
corresponding to removal of an electron from the 11-electron species Ne~, Na, and Mg*.

EXERCISE 2.8

Explain why all three graphs in Figure 2.14 have maxima at 4 electrons and minima at
5 electrons.

2.3.3 Covalent and lonic Radii

The sizes of atoms and ions are also related to the ionization energies and electron affinities.
As the nuclear charge increases, the electrons are pulled in toward the center of the atom,
and the size of any particular orbital decreases. On the other hand, as the nuclear charge
increases, more electrons are added to the atom, and their mutual repulsion keeps the outer
orbitals large. The interaction of these two effects, increasing nuclear charge and increas-
ing number of electrons, results in a gradual decrease in atomic size across each period.
Table 2.8 gives nonpolar covalent radii, based on bond distances in nonpolar molecules.
There are other measures of atomic size, such as the van der Waals radius, in which
collisions with other atoms are used to define the size. It is difficult to obtain consistent
data for any such measure, because the polarity, chemical structure, and physical state of
molecules change drastically from one compound to another. The numbers shown here
are sufficient for a general comparison of different elements.

There are similar challenges in determining the size of ions. Because the stable ions
of the different elements have different charges and different numbers of electrons, as well
as different crystal structures for their compounds, it is difficult to find a suitable set of
numbers for comparison. Earlier data were based on Pauling’s approach, in which the ratio
of the radii of isoelectronic ions was assumed to be equal to the ratio of their effective
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TABLE 2.8 Nonpolar Covalent Radii (pm)

Li Be B C N o F Ne
123 89 82 77 75 73 71 69
Na Mg Al Si P S Cl Ar
154 136 118 111 106 102 99 98

K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
203 174 144 132 122 118 117 117 116 115 117 125 126 122 120 117 114 111
Rb Sr Y Zr o Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 1 Xe
216 191 162 145 134 130 127 125 125 128 134 148 144 140 140 136 133 126
Cs Ba La Hf Ta W Re Os Ir Pt Au  Hg Tl Pb Bi Po At Ra
235 198 169 144 134 130 128 126 127 130 134 149 148 147 146 (146) (145)

Source: Data from R. T. Sanderson, Inorganic Chemistry, Reinhold, New York, 1967, p. 74; and E. C. M. Chen, J. G. Dojahn, W. E. Wentworth, J. Phys. Chem. A, 1997,
101, 3088.

TABLE 2.9 Crystal Radii for Selected lons

V4 Element Radius (pm)
Alkali metal ions 3 Lit 90
11 Na* 116
19 K* 152
37 Rb* 166
55 Cs* 181
Alkaline earth ions 4 Be2* 59
12 Mg?* 86
20 Ca%* 114
38 Sr2t 132
56 Ba?" 149
Other cations 13 AT 68
30 Zn** 88
Halide ions 9 K 119
17 Cl™ 167
35 Br— 182
53 I 206
Other anions 8 02~ 126
16 S2- 170

Source: Data from R. D. Shannon, Acta Crystallogr. 1976, A32, 751 for six-coordinate ions. A longer list is given in
Appendix B-1.

nuclear charges. More recent calculations are based on a number of considerations, includ-
ing electron density maps from X-ray data that show larger cations and smaller anions than
those previously found. Those in Table 2.9 and Appendix B-1 were called “crystal radii”
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by Shannon?? and are generally different from the older values of “ionic radii” by +14 pm
for cations and —14 pm for anions, as well as being revised to accommodate more recent
measurements. The radii in Table 2.9 and Appendix B-1 can be used for rough estimation
of the packing of ions in crystals and other calculations, as long as the “fuzzy” nature of
atoms and ions is kept in mind.

Factors that influence ionic size include the coordination number of the ion, the cova-
lent character of the bonding, distortions of regular crystal geometries, and delocalization
of electrons (metallic or semiconducting character, described in Chapter 7). The radius of
the anion is also influenced by the size and charge of the cation. Conversely, the anion
exerts a smaller influence on the radius of the cation.?3 The table in Appendix B-1 shows
the effect of coordination number.

The values in Table 2.10 show that anions are generally larger than cations with similar
numbers of electrons. The radius decreases as nuclear charge increases for ions with the
same electronic structure, with the charge on cations having a strong effect, for example
in the series Na™, Mg2+, AT, Within a group, the ionic radius increases as Z increases
because of the larger number of electrons in the ions and, for the same element, the radius
decreases with increasing charge on the cation. Examples of these trends are shown in
Tables 2.10, 2.11, and 2.12.

TABLE 2.10 Crystal Radius and Nuclear Charge

lon Protons Electrons Radius (pm)

0% 8 10 126

I~ 9 10 119

Na*® 11 10 116

Mg** 12 10 86

AP* 13 10 68
TABLE 2.11 Crystal Radius and Total Number of Electrons

lon Protons Electrons Radius (pm)

0~ 8 10 126

S2- 16 18 170

Se?™ 34 36 184

Te? 52 54 207
TABLE 2.12 Crystal Radius and lonic Charge

lon Protons Electrons Radius (pm)

Ti2* 22 20 100

T3t 22 19 81

Ti*t 22 18 75
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Problems

A more thorough treatment of the electronic structure of atoms
is in M. Gerloch, Orbitals, Terms, and States, John Wiley &
Sons, New York, 1986. Many Internet sites provide images of
atomic orbitals, their wave equations, nodal behavior, and other
characteristics. Two examples are http://www.orbitals.com and
http://winter.group.shef.ac.uk/orbitron.

2.1 Determine the de Broglie wavelength of

a. an electron moving at 1/10 the speed of light.

b. a 400 g Frisbee moving at 10 km/h.

c¢. an 8.0-pound bowling ball rolling down the lane with
a velocity of 2.0 meters per second.

d. a 13.7 g hummingbird flying at a speed of 30.0 miles
per hour.

2.2 Using the equation £ = RH(% — #) determine the

h
energies and wavelengths of the visible emission
bands in the atomic spectrum of hydrogen arising from
n, = 4,5, and 6. (The red line, corresponding to n;, = 3,
was calculated in Exercise 2.1.)

2.3 The transition from the n = 7 to the n = 2 level of the
hydrogen atom is accompanied by the emission of radia-
tion slightly beyond the range of human perception, in the
ultraviolet region. Determine the energy and wavelength.

2.4 Emissions are observed at wavelengths of 383.65 and
379.90 nm for transitions from excited states of the hydro-
gen atom to the n = 2 state. Determine the quantum num-
bers n,, for these emissions.

2.5 Whatis the least amount of energy that can be emitted by an
excited electron in a hydrogen atom falling from an excited
state directly to the n = 3 state? What is the quantum num-
ber n for the excited state? Humans cannot visually observe
the photons emitted in this process. Why not?

2.6 Hydrogen atom emission spectra measured from
the solar corona indicated that the 4s orbital was
102823.8530211 cm ™!, and 3s orbital 97492.221701
em™!, respectively, above the 1s ground state. (These
energies have tiny uncertainties, and can be treated as
exact numbers for the sake of this problem.) Calculate
the difference in energy (J) between these levels on the
basis of these data, and compare this difference to that
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2.7

2.8

29

2.10

2.11

2.12

obtained by the Balmer equation in Section 2.1.2. How

well does the Balmer equation work for hydrogen? (Data

from Y. Ralchenko, A. E. Kramida, J. Reader, and NIST

ASD Team (2011). NIST Atomic Spectra Database

(ver. 4.1.0), [Online]. Available: http:// physics.nist.gov/

asd [2012, January 18]. National Institute of Standards

and Technology, Gaithersburg, MD.)

The Rydberg constant equation has two terms that vary

depending on the species under consideration, the reduced

mass of the electron/nucleus combination and the charge

of the nucleus (2).

a. Determine the approximate ratio between the Rydberg
constants for isoelectronic He" (consider the most abun-
dant helium-4 isotope) and H. The masses of the elec-
tron, proton, and that of the He™ nucleus (He2+ is an
« particle) are given on the inside back cover of this text.

b. Use this ratio to calculate an approximate Rydberg
constant (J) for He*.

c. The difference between the He™ 2s and 1s orbitals
was reported as 329179.76197(20) cm™!. Calculate
the He™ Rydberg constant from this spectral line for
comparison to your value from b.

(Data from the same reference as Problem 2.6.)

The details of several steps in the particle-in-a-box model

in this chapter have been omitted. Work out the details of

the following steps:

a. Show thatif ¥ = A sinrx + B cossx (A, B, r,and s
are constants) is a solution to the wave equation for the
one-dimensional box, then

2
r=s=7YV 2mE(7ﬂ-)
b. Show that if ¥ = A sinrx, the boundary condi-
tions (W = Owhenx = Oand x = a) require that

nir .
r= 1 —, where n = any integer other than zero.
a

c. Show that if r= = E, the energy levels of the
a

n’h?
2

particle are given by E =
8ma

d. Show that substituting the value of r given in part
c into ¥ = A sin rx and applying the normalizing
requirement gives A = V2/a.

For the 3p, and 4d,, hydrogen-like atomic orbitals, sketch

the following:

a. The radial function R

b. The radial probability function aqr’R>

c. Contour maps of electron density.

Repeat the exercise in Problem 2.9, for the 4s and 5d,2>_

orbitals.

Repeat the exercise in Problem 2.9, for the 55 and 4d.:

orbitals.

The 4f,,»,2 orbital has

Y = (constant) z(x> — y2)/r’.

a. How many radial nodes does this orbital have?

b. How many angular nodes does it have?

the angular function

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

c. Write equations to define the angular nodal surfaces.
What shapes are these surfaces?

d. Sketch the shape of the orbital, and show all radial and
angular nodes.

Repeat the exercise in Problem 2.12, for the 5f,,, orbital,

which has ¥ = (constant) xyz/r>.

The label for an f,5 orbital, like that for a d.> orbital,

is an abbreviation. The actual angular function for this

orbital is ¥ = (constant) X z(5z% — 3r2)/r’. Repeat the
exercise in Problem 2.12, for a 4f.s orbital. (Note: recall
that 2 = x2 + y2 + z2).

a. Determine the possible values for the / and m; quan-
tum numbers for a 5d electron, a 4f electron, and a
7g electron.

b. Determine the possible values for all four quantum
numbers for a 3d electron.

¢. What values of m; are possible for f orbitals?

d. At most, how many electrons can occupy a 4d orbital?

a. What are the values of quantum numbers / and n for a
5d electron?

b. At most, how many 4d electrons can an atom have?
Of these electrons how many, at most, can have
my = — %?

c. A 5f electron has what value of quantum number /?
What values of m; may it have?

d. What values of the quantum number 1, are possible for
a subshell having / = 47

a. At most, how many electrons in an atom can have both
n=5and! = 3?

b. A 5d electron has what possible values of the quantum
number m;?

¢. What value of quantum number / do p orbitals have?
For what values of n do p orbitals occur?

d. What is the quantum number / for g orbitals? How
many orbitals are in a g subshell?

Determine the Coulombic and exchange energies for the

following states, and determine which state is favored (has

lower energy):

o b1 1y

and

and 1 )

R

Two excited states for a d* configuration are shown.
Which is likely to have lower energy? Explain your choice
in terms of Coulombic and exchange energies.

T T

N N T

Two excited states for a d° configuration are shown.
Which is likely to have lower energy? Why? Explain your
choice in terms of Coulombic and exchange energies.

v ot
S T R
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2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

What states are possible for a @> configuration? Determine

the Coulombic and exchange energies for each, and rank

the states in terms of relative energy.

Provide explanations of the following phenomena:

a. The electron configuration of Cr is [Ar] 45" 3¢ rather
than [Ar] 4s>3d*.

b. The electron configuration of Ti is [Ar] 45%3d%, but
that of Cr?" is [Ar] 3d*.

Give electron configurations for the following:

a. Vv

b. Br

c. Ru**

d. Hg?"

e. Sb

Predict the electron configurations of the following metal

anions:

a. Rb™

b. P>~ (See: A. Karbov, J. Nuss, U. Weding, M. Jansen,
Angew. Chem. Int. Ed., 2003, 42, 4818.)

Radial probability plots shed insight on issues of shield-

ing and effective nuclear charge. Interpret the radial prob-

ability functions in Figure 2.7 to explain why the general

order of orbital filling is n = 1, followed by n = 2,

followed by n = 3. Interpret the graphs for 3s, 3p, and

3d to rationalize the filling order for these orbitals.

Briefly explain the following on the basis of electron

configurations:

a. Fluorine forms an ion having a charge of 1-.

b. The most common ion formed by zinc has a 2+ charge.

¢. The electron configuration of the molybdenum atom is
[Kr] 55" 4d° rather than [Kr] 55° 4d".

Briefly explain the following on the basis of electron

configurations:

a. The most common ion formed by silver has a 1+ charge.

b. Cm has the outer electron configuration s2d! f 7 rather
than s? f8,

c. Sn often forms an ion having a charge of 2+ (the
stannous ion).

a. Which 2+ ion has two 3d electrons? Which has eight
3d electrons?

b. Which is the more likely configuration for
Mn?*: [Ar] 4s% 3d° or [Ar] 3d°?

Using Slater’s rules, determine Z* for

a. a3pelectroninP, S, Cl, and Ar. Is the calculated value
of Z* consistent with the relative sizes of these atoms?

b. a 2p electron in O*7,F~, Na™ and Mg?". Is the cal-
culated value of Z* consistent with the relative sizes
of these ions?

c. a4sand a 3d electron of Cu. Which type of electron is
more likely to be lost when copper forms a positive ion?

d. a4felectron in Ce, Pr, and Nd. There is a decrease in
size, commonly known as the lanthanide contraction,
with increasing atomic number in the lanthanides. Are
your values of Z* consistent with this trend?

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

Problems | 43

A sample calculation in this chapter showed that,
according to Slater’s rules, a 3d electron of nickel has
a higher effective nuclear charge than a 4s electron. Is
the same true for early first-row transition metals? Using

Slater’s rules, calculate S and Z* for 4s and 3d electrons

of Sc and Ti, and comment on the similarities or differ-

ences with Ni.

Ionization energies should depend on the effective

nuclear charge that holds the electrons in the atom.

Calculate Z* (Slater’s rules) for N, P, and As. Do their

ionization energies seem to match these effective nuclear

charges? If not, what other factors influence the ioniza-
tion energies?

Prepare a diagram such as the one in Figure 2.12(a) for the

fifth period in the periodic table, elements Zr through Pd.

The configurations in Table 2.7 can be used to determine

the crossover points of the lines. Can a diagram be drawn

that is completely consistent with the configurations in
the table?

Why are the ionization energies of the alkali metals in the

order Li >, Na > K > Rb?

The second ionization of carbon (CT ——> C?>* + ¢7)

and the first ionization of boron (B —> BT + e™)

both fit the reaction 1s%2s%2p' — 152252 + ™.

Compare the two ionization energies (24.383 eV and

8.298 eV, respectively) and the effective nuclear charge

Z*. Is this an adequate explanation of the difference in

ionization energies? If not, suggest other factors.

Explain why all three graphs in Figure 2.14 have maxima

at 4 electrons and minima at 5 electrons.

a. For a graph of third ionization energy against atomic
number, predict the positions of peaks and valleys for
elements through atomic number 12. Compare the
positions of these peaks and valleys with those for first
ionization energies shown in Figure 2.13.

b. How would a graph of third ionization energies against
the number of electrons in reactant compare with the
other graphs shown in Figure 2.14? Explain briefly.

The second ionization energy involves removing an elec-
tron from a positively charged ion in the gas phase (see
preceding problem). How would a graph of second ion-
ization energy vs. atomic number for the elements helium
through neon compare with the graph of first ionization
energy in Figure 2.13? Be specific in comparing the posi-
tions of peaks and valleys.

In each of the following pairs, pick the element with the

higher ionization energy and explain your choice.

Fe, Ru

P, S

K, Br

C, N

Cd, In

CLF

=e R0 T
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2.39

2.40

241

242

243

On the basis of electron configurations, explain why

a. sulfur has a lower electron affinity than chlorine.

b. iodine has a lower electron affinity than bromine.

c. boron has a lower ionization energy than beryllium.

d. sulfur has a lower ionization energy than phosphorus.

a. The graph of ionization energy versus atomic number
for the elements Na through Ar (Figure 2.13) shows
maxima at Mg and P and minima at Al and S. Explain
these maxima and minima.

b. The graph of electron affinity versus atomic number
for the elements Na through Ar (Figure 2.13) also
shows maxima and minima, but shifted by one ele-
ment in comparison with the ionization energy graph.
Why are the maxima and minima shifted in this way?

The second ionization energy of He is almost exactly four

times the ionization energy of H, and the third ionization

energy of Li is almost exactly nine times the ionization

energy of H:

H(g) —> H'(g) + e 1.3120
He'(g) — He?"(g) + e~ 5.2504
Li?"(g) —> LiT(g) + e~ 11.8149

Explain this trend on the basis of the Bohr equation for
energy levels of single-electron systems.

The size of the transition-metal atoms decreases slightly from
left to right in the periodic table. What factors must be con-
sidered in explaining this decrease? In particular, why does
the size decrease at all, and why is the decrease so gradual?
Predict the largest and smallest radius in each series, and
account for your choices:

2.44

2.45

2.46

2.47

a. Se?” Br~ Rb* Sr2t
b. Y?" Zr*t Nb>*
c. Co*™  Cot Co** Co

Select the best choice, and briefly indicate the reason for
each choice:

a. Largest radius: Na" Ne F~
b. Greatest volume: S* Ser Te?”
c. Highest ionization energy: Na Mg Al

d. Most energy necessary to remove an electron:
Fe Fe?' Fe’'
e. Highest electron affinity: O F Ne

Select the best choice, and briefly indicate the reason for
your choice:
a. Smallest radius: Sc Ti V
b. Greatest volume: S Ar cat
c. Lowest ionization energy: K Rb Cs
d. Highest electron affinity: C1  Br 1
e. Most energy necessary to remove an electron:
Cu Cut co?*

There are a number of Web sites that display atomic orbitals.

Use a search engine to find a complete set of the f orbitals.

a. How many orbitals are there in one set (for example,
a set of 4f orbitals)?

b. Describe the angular nodes of the orbitals.

c. Observe what happens to the number of radial nodes
as the principal quantum number is increased.

d. Include the URL for the site you used for each,
along with sketches or printouts of the orbitals. (Two
useful Web sites at this writing are orbitals.com and
winter.group.shef.ac.uk/orbitron.)

Repeat the exercise in Problem 2.46, this time for a set of

g orbitals.


http://orbitals.com
http://winter.group.shef.ac.uk/orbitron

/
T

Simple Bonding Theory

\"/

We now turn from the use of quantum mechanics and its description of the atom to an el-
ementary description of molecules. Although most of our discussion of chemical bonding
uses the molecular orbital approach, less rigorous methods that provide approximate pictures
of the shapes and polarities of molecules are also useful. This chapter provides an overview
of Lewis dot structures, valence shell electron-pair repulsion (VSEPR), and related topics.
Molecular orbital descriptions of some of the same molecules are presented in Chapter 5 and
later chapters; the ideas of this chapter provide a starting point for that more modern treatment.

Ultimately, any description of bonding must be consistent with experimental data on
bond lengths, bond angles, and bond strengths. Angles and distances are most frequently
determined by diffraction (X-ray crystallography, electron diffraction, neutron diffraction)
or spectroscopic (microwave, infrared) methods. For many molecules, there is general
agreement on the nature of the bonding, although there are alternative ways to describe
it. For others, there is considerable difference of opinion on the best way to describe the
bonding. In this chapter and in Chapter 5, we describe some useful qualitative approaches,
including some of the opposing views.

3.1 Lewis Electron-Dot Diagrams

Lewis electron-dot diagrams, although oversimplified, provide a good starting point for
analyzing the bonding in molecules. Credit for their initial use goes to G. N. Lewis,' an
American chemist who contributed much to the understanding of thermodynamics and
chemical bonding in the early twentieth century. In Lewis diagrams, bonds between two
atoms exist when they share one or more pairs of electrons. In addition, some molecules
have nonbonding pairs, also called lone pairs, of electrons on atoms. These electrons
contribute to the shape and reactivity of the molecule but do not directly bond the atoms
together. Most Lewis structures are based on the concept that eight valence electrons, corre-
sponding to s and p electrons outside the noble gas core, form a particularly stable arrange-
ment, as in the noble gases with s p® configurations. An exception is hydrogen, which is
stable with two valence electrons. Also, some molecules require more than eight electrons
around a given central atom, and some molecules require fewer than eight electrons.

Simple molecules such as water follow the octet rule, in which eight electrons surround
the central atom. Each hydrogen atom shares two electrons with the oxygen, forming the famil-
iar structure with two bonds; the O atom accommodates two bonding pairs and two lone pairs:*

/ O\
H H

“We will see in Chapter 5 that the treatment of water via molecular orbital theory results in an electronic structure
in which each of these electron pairs has a unique energy. This model is supported by spectroscopic evidence, and
indicates one limitation of the Lewis model.

45
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FIGURE 3.1 Lewis

Diagrams for CO52™.

Simple Bonding Theory

Shared electrons are considered to contribute to the electronic requirements of both
atoms involved; thus, the electron pairs shared by H and O in the water molecule are counted
toward both the 8-electron requirement of oxygen and the 2-electron requirement of hydrogen.

The Lewis model defines double bonds as containing four electrons and triple bonds
as containing six electrons:

‘0=C=0. H—C=C—H

3.1.1 Resonance

In many Lewis structures, the choice of which atoms are connected by multiple bonds is
arbitrary. When alternate locations for single bonds and multiple bonds are possible that all
afford valid Lewis structures, a structure demonstrating each option should be drawn. For
example, three drawings (resonance structures) of CO5>~ are needed (Figure 3.1) to show
the double bond in each of the three possible C— O positions. In fact, experimental evi-
dence shows that all three C— O bonds are equivalent, with bond lengths (129 pm) between
typical C— O double-bond and single-bond distances (116 pm and 143 pm, respectively).
All three drawings are necessary to describe the structure, with each drawing contributing
equally to describe the bonding in the actual ion. This is called resonance; there is more
than one possible way in which the valence electrons can be placed in a Lewis structure.
Note that in resonance structures, such as those shown for CO327 in Figure 3.1, the electrons
are arranged differently, but the nuclei remain in fixed positions.

The species CO;>~ and NO;~ have the same number of electrons (i.e., they are
isoelectronic) and use the same orbitals for bonding. Their Lewis diagrams are identical
except for the identity and formal charge (Section 3.1.3) of the central atom.

When a molecule has several resonance structures, its overall electronic energy is
lowered, making it more stable. Just as the energy levels of a particle in a box are lowered
by making the box larger, the electronic energy levels of the bonding electrons are lowered
when the electrons can occupy a larger space. The molecular orbital description of this
effect is presented in Chapter 5.

3.1.2 Higher Electron Counts
When it is impossible to draw a structure consistent with the octet rule because additional
valence electrons remain to be assigned after the octet rule is satisfied on all atoms, it is
necessary to increase the number of electrons around the central atom. An option limited
to elements of the third and higher periods is to use d orbitals for this expansion, although
theoretical work suggests that expansion beyond the s and p orbitals is unnecessary for most
main group molecules. In most cases, two or four added electrons will complete the bonding,
but more can be added if necessary. For example, 10 electrons are required around chlorine
in CIF5 and 12 around sulfur in SF¢ (Figure 3.2). The increased number of electrons is often
described as an expanded shell or an expanded electron count. The term hypervalent is used
to describe central atoms that have electron counts greater than the atom’s usual requirement.
There are examples with even more electrons around the central atom, such as IF;
(14 electrons), [TaFg]*~ (16 electrons), and [XeFg]>~ (18 electrons). There are rarely more
than 18 electrons (2 for s, 6 for p, and 10 for d orbitals) around a single atom in the top half
of the periodic table, and crowding of the outer atoms usually keeps the number below this,
even for much heavier atoms that have f orbitals energetically available.

:'(ljz _| 2 ;'Clg; _| 2 G —lz,

A > |
o o JON; O
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3.1.3 Formal Charge T .

Formal charge is the apparent electronic charge of each atom in a molecule, based on the F—CI.
electron-dot structure. Formal charges help assess resonance structures and molecular

topology, and they are presented here as a simplified method of describing structures, just
as the Bohr model is a simple method of describing electronic configurations in atoms. F F
Both of these methods have limitations, and other approaches are more accurate, but they F E_ V1 _F
can be useful as long as their imperfections are kept in mind. F—S—F = ’S7
. T . 4 F( | \F
Formal charges can help in eliminating resonance structures expected to contribute F F F

very little to the electronic ground state of the molecule, and, in some cases, suggesting

multiple bonds beyond those required by the octet rule. It is essential, however, to remem-  FIGURE 3.2 Structures of CIF3
ber that formal charge is only a tool for assessing Lewis structures, not a measure of any ~ and SFe.

actual charge on the atoms. The number of valence electrons available in a free atom of

an element minus the total for that atom in the molecule—determined by counting lone

pairs as two electrons and bonding pairs as one electron assigned to each atom—is the

formal charge on the atom:

number of unshared number of bonds)

to the atom

number of valence
electrons on the atom) (

Formal charge = | electrons in a free | — (
atom of the element

In addition,
Charge on molecule or ion = sum of formal charges

Resonance structures that contribute more to the electronic ground state of the species
generally (a) have smaller magnitudes of formal charges, (b) place negative formal charges
on more electronegative elements (in the upper right-hand part of the periodic table), and
(c) have smaller separation of charges. Three examples—SCN ~, OCN ~, and CNO ™ —will
illustrate the use of formal charges in describing electronic structures.

EXAMPLE 3.1

SCN-

In the thiocyanate ion, SCN ~, three resonance structures are consistent with the
electron-dot method, as shown in Figure 3.3. Structure A has only one negative formal
charge on the nitrogen atom, the most electronegative atom in the ion. Structure B has
a single negative charge on the S, which is less electronegative than N. Structure C has
charges of 2— on N and 1+ on S, consistent with the relative electronegativities of these
atoms but also has a large magnitude 2— charge and greater charge separation than

the other structures. Therefore these structures lead to the prediction that structure A
contributes the most to the electronic ground state of SCN™, structure B contributes an
intermediate amount, and any contribution from C is minor in describing the electronic
ground state of SCN ™.

The bond lengths in Table 3.1 are somewhat consistent with this conclusion,
with SCN ™ bond lengths between those of structures A and B. Protonation of
the ion forms HNCS, consistent with a negative charge on N in SCN ™. The bond
lengths in HNCS are close to those of double bonds, consistent with the structure

H—N=C=S.
1- 1— 1+ 2— FIGURE 3.3 Resonance
- . .. .. Structures of Thiocyanate,
‘S=C=N. ‘S—C=N:  S=C—N: SCN-.

A B C
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FIGURE 3.4 Resonance
Structures of Cyanate, OCN ™.

TABLE 3.1 Table of S—C and C—N Bond Lengths (pm)
S—C C—N
SCN™ (in NaSCN) 165 118
HNCS 156 122
Single bond 181 147
Double bond 155 128 (approximate)
Triple bond 116
Data from A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, New York, 1984, pp. 807, 926,
934-936.

EXAMPLE 3.2

OCN-

The isoelectronic cyanate ion, OCN ™~ (Figure 3.4), has the same possibilities, but the
larger electronegativity of O is expected to make structure B contribute more to the
electronic ground state in cyanate relative the contribution of B in thiocyanate. The
protonation of cyanate results in two isomers, 97% HNCO and 3% HOCN, consistent
with a major contribution of structure A and a small, but significant, contribution from
B. The bond lengths in OCN ™~ and HNCO in Table 3.2 are reasonably consistent with
this analysis. Formal charge arguments provide a good starting point to assess Lewis
structures, and reactivity patterns are also useful to gain experimental insight about
electron distributions.

- 1 1+ 2
0=C=N. :0—C=N: :0=C—N:
A B c

TABLE 3.2 Table of 0—C and C—N Bond Lengths (pm)

0—C C—N
OCN™ 126 117
HNCO 118 120
Single bond 143 147
Double bond 116 (CO,) 128 (approximate)
Triple bond 113 (CO) 116

Data from A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, New York, 1984, pp. 807, 926,
933-934; S. E. Bradforth, E. H. Kim, E. W. Arnold, D. M. Neumark, J. Chem. Phys., 1993, 98, 800.

CNO-

The isomeric fulminate ion, CNO™ (Figure 3.5), can be drawn with three similar struc-
tures, but the resulting formal charges have larger magnitudes than in OCN . Because
the order of electronegativities is C < N < O, none of these are ideal structures, and it is
not surprising that this ion is unstable. The only common fulminate salts are of mercury
and silver; both are explosive. Fulminic acid is linear HCNO in the vapor phase,
consistent with the greatest contribution from structure C; coordination complexes of
CNO ™ with transition-metal ions are known with MCNO structures.3
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2— 1+ 3— 1+ 1+ - 1+ 1- FIGURE 3.5 Resonance
. . .. .. Structures of Fulminate, CNO™.
C=N=0. :C—N=0: (C=N—O0:

A B C

EXERCISE 3.1 Use electron-dot diagrams and formal charges to predict the bond order
for each bond in POF3, SOF,, and SO3F .

Some molecules have satisfactory electron-dot structures with octets but have more
reasonable formal charge distributions in their structures with expanded electron counts. In
each of the cases in Figure 3.6, the actual molecules and ions are consistent with electron
counts greater than 8 on the central atom and with a large contribution from the resonance
structure that uses multiple bonds to minimize formal charges. The multiple bonds may
also influence the shapes of the molecules.

314 Multiple Bonds in Be and B Compounds

A few molecules—such as BeF,, BeCl,, and BF;—seem to require multiple bonds to sat-
isfy the octet rule for Be and B, even though multiple bonds for F and CI are not generally
expected on the basis of the high electronegativities of these halogens. Structures minimiz-
ing formal charges for these molecules have only four electrons in the valence shell of Be
and six electrons in the valence shell of B, in both cases fewer than the usual octet. The
alternative, requiring eight electrons on the central atom, predicts multiple bonds, with
BeF, analogous to CO, and BF; analogous to SO5 (Figure 3.7). These structures, however,
result in nonideal formal charges (2— on Be and 1+ on F in BeF,, and 1— on B and 1+
on the double-bonded F in BF;) on the basis of the usual rules.

Octet Expanded
Molecule Atom Formal Atom Formal Expanded
Charge Charge to:
SNF, :N: S 2+ N S 0 12
| N 2— o N 0
F—S—F ‘F— ? —F
I
‘F: F
$0,Cl, :iljz s 2+ 6 S 0 12
.. .. — - . 0
CI—S—0: © ! Ql—?=0, ©
R
Cl :Cl:
XeO, .. Xe 3+ e Xe 0 14
:(l): 0 1- (”) 0 0
10— Xe— 0 0=Xe=0:
SO,> S 1+ e S 0 10
CI) 0 1- (”) 0 0,1—
:0—S—0O :0—S8—O:

FIGURE 3.6 Formal Charge and Expanded Electron Counts on Central Atom.



50 Chapter 3 | Simple Bonding Theory

FIGURE 3.7 Structures of
BeF,, BeCl,, and BF, . (Data
from A. F. Wells, Structural
Inorganic Chemistry, 5th ed.,
Oxford University Press, Oxford,
England, 1984, pp. 412, 1047.)

AN
F\ B
Be';
F/ FJ
. . g S /
F=Be==F. ~Be
. o (F( \F
Be'
F/ FJ
/
Predicted Actual solid

Cl Cl
Gl N a.. /7N
| - ‘B ClI—B Be—Cl
e\ e\ / €
Cl
Predicted Solid Vapor

T S N
.Cl=Be=Cl. /Be\C](Be\C]/Be\C](

Predicted

The B—F bond length is 131 pm;
the calculated single-bond length is 152 pm.

In solid BeF,, a complex network is formed with a Be atom coordination number of 4
(see Figure 3.7). BeCl, dimerizes to a 3-coordinate structure in the vapor phase, but the lin-
ear monomer is formed at high temperatures. This monomeric structure is unstable due to
the electronic deficiency at Be; in the dimer and the network formed in the solid-state, the
halogen atoms share lone pairs with the Be atom in an attempt to fill beryllium’s valence
shell. The monomer is still frequently drawn as a singly bonded structure, with only four
electrons around the beryllium and the ability to accept lone pairs of other molecules to
relieve its electronic deficiency (Lewis acid behavior, discussed in Chapter 6).

Bond lengths in all the boron trihalides are shorter than expected for single bonds, so
the partial double-bond character predicted seems reasonable despite the nonideal formal
charges of these resonance forms. While a small amount of double bonding is possible in
these molecules, the strong polarity of the B—halogen bonds and the ligand close-packing
(LCP) model (Section 3.2.4) have been used to account for the short bonds without the need
to invoke multiple bonding. The boron trihalides combine readily with other molecules
that can contribute a lone pair of electrons (Lewis bases), forming a roughly tetrahedral
structure with four bonds:

F

| St BN A
B + N7 — . BN~
A N F7 N

gy H F H

Because of this tendency, boron trihalides are frequently drawn with only six electrons
around the boron.

Other boron compounds that cannot be adequately described via simple electron-dot
structures include hydrides such as B,Hg, and many more complex molecules. Their struc-
tures are discussed in Chapters 8 and 15.
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3.2 Valence Shell Electron-Pair Repulsion

Valence shell electron-pair repulsion (VSEPR) is an approach that provides a
method for predicting the shape of molecules based on the electron-pair electro-
static repulsion described by Sidgwick and Powell* in 1940 and further developed by
Gillespie and Nyholm? in 1957 and in the succeeding decades. Despite this method’s
simple approach, based on Lewis electron-dot structures, the VSEPR method in most
cases predicts shapes that compare favorably with those determined experimentally.
However, this approach at best provides approximate shapes for molecules. The most
common method of determining the actual structures is X-ray diffraction, although
electron diffraction, neutron diffraction, and many spectroscopic methods are also
used.® In Chapter 5, we will provide molecular orbital approaches to describe bonding
in simple molecules.

The basis of the VSEPR approach is that electrons repel each other because
they are negatively charged. Quantum mechanical rules dictate that electrons can be
accommodated in the same region of space as bonding pairs or lone pairs, but each
pair repels all other pairs. According to the VSEPR model, therefore, molecules adopt
geometries such that valence electron pairs position themselves as far from each other
as possible to minimize electron—electron repulsions. A molecule can be described
by the generic formula AX,E,, where A is the central atom, X stands for any atom or
group of atoms surrounding the central atom, and E represents a lone pair of electrons.
The steric number” (SN = m + n) is the total number of positions occupied by atoms
or lone pairs around a central atom; lone pairs and bonding pairs both influence the
molecular shape.

Carbon dioxide is a molecule with two atoms attached (SN = 2) to the central atom
via double bonds. The electrons in each double bond must be between C and O, and the

repulsion between these electron groups forces a linear structure on the molecule. Sulfur o
trioxide has three atoms bound to the sulfur (SN = 3), with equivalent partial double- i
bond character between sulfur and each oxygen, a conclusion rendered by analysis of its O=C=0 S N
resonance forms. The best positions for the oxygens to minimize electron—electron repul- o o

sions in this molecule are at the corners of an equilateral triangle, with O—S—O bond
angles of 120°. The multiple bonding does not affect the geometry, because all three bonds
are equivalent in terms of bond order.

The same pattern of finding the Lewis structure and then matching it to a geometry
that minimizes the repulsive energy of bonding electrons is followed through steric
numbers 4, 5, 6, 7, and 8 where the outer atoms are identical in each molecule, as shown
in Figure 3.8.

Bond angles and distances are uniform in each of these structures with two, three,
four, and six electron pairs. Neither the corresponding 5- nor 7-coordinate structures can
have uniform angles and distances, because there are no regular polyhedra with these num-
bers of vertices. The 5-coordinate molecules have a trigonal bipyramidal structure, with
a central triangular plane of three positions plus two other positions above and below the
center of the plane. The 7-coordinate molecules have a pentagonal bipyramidal structure,
with a pentagonal plane of five positions and positions above and below the center of the
plane. The regular square antiprism structure (SN = 8) is like a cube that has had the top
face twisted 45° into the antiprism arrangement, as shown in Figure 3.9. It has three dif-
ferent bond angles for adjacent fluorines. [TaFg]’~ has square antiprismatic geometry but
is distorted from this ideal in the solid.”

“The steric number is also called the number of electron pair domains.
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Steric Number Geometry Examples Calculated Bond Angles
2 Linear Co, 180° 0=C=0
0
3 Zﬁiﬁgﬁiw SO, 120° s|
o~ o
H\ H
4 Tetrahedral CH, 109.5° c
7N\
H H
Cll
Trigonal 5 EME Cl...
> bipyramidal PCls RS ca” l|>—C1
Cl
F
F._ | .F
6 Octahedral SF, 90° / S \
F7 | °F
F
F
P e o
entagonal o ano B0 F
7 . . IF 72°, 90 §—— [l======
bipyramidal v ’ N
F
F
I o
%\‘\\;—-
Square \ <
8 . . [TaFg]*~ 70.5°,99.6°, 109.5° Ta
antiprismatic / F
F<f >y
F —
FIGURE 3.8 VSEPR Predictions.
45°
—_—
.-X..70.5°

FIGURE 3.9 Conversion of a
Cube into a Square Antiprism.
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3.2.1 Lone-Pair Repulsion
Bonding models are useful only if their explanations are consistent with experimental data.
New theories are continually being suggested and tested. Because we are working with
such a wide variety of atoms and molecular structures, a single approach will unlikely work
for all of them. Although the fundamental ideas of atomic and molecular structures are
relatively simple, their application to complex molecules is not. To a first approximation,
lone pairs, single bonds, double bonds, and triple bonds can all be treated similarly when
predicting molecular shapes. However, better predictions of overall shapes can be made
by considering some important differences between lone pairs and bonding pairs. These
methods are sufficient to show the trends and explain the bonding, as in rationalizing why
the H—N—H angle in ammonia is smaller than the tetrahedral angle in methane and
larger than the H—O —H angle in water.

As a general guideline, the VSEPR model predicts that electron-pair repulsions involv-
ing lone pairs (Ip) are stronger than those involving bonding pairs (bp) in the order

Ip—Ip repulsions > Ip—bp repulsions > bp—>bp repulsions

Steric Number =4

The isoelectronic molecules CH,, NH;, and H,O (Figure 3.10) illustrate the effect of lone
pairs on molecular shape. Methane has four identical bonds between carbon and each of
the hydrogens. When the four pairs of electrons are arranged as far from each other as
possible, the result is the familiar tetrahedral shape. The tetrahedron, with all H—C—H
angles measuring 109.5° has four identical bonds.

Ammonia also has four pairs of electrons around the central atom, but three are bond-
ing pairs between N and H, and the fourth is a lone pair on the nitrogen. The nuclei form
a trigonal pyramid with the three bonding pairs; the lone pair occupies the fourth region
in space resulting in a tetrahedral arrangement of the four electron groups. Because each
of the three bonding pairs is attracted by two positively charged nuclei (H and N), these
pairs are largely confined to the regions between the H and N atoms. The lone pair, on the
other hand, is attracted solely by the nitrogen nucleus; it has no second nucleus to confine
it to a small region of space. Consequently, the lone pair tends to spread out and to occupy
more space around the nitrogen than the bonding pairs. As a result, the H—N—H angles
are 106.6° nearly 3° smaller than the angles in methane.

The same principles apply to the water molecule, in which two lone pairs and two
bonding pairs repel each other. Again, the electron pairs adopt a nearly tetrahedral arrange-
ment, with the atoms arranged in a V shape. The angle of largest repulsion, between the two
lone pairs, cannot be measured. However, the lone pair—bonding pair ([p—bp) repulsion is
greater than the bonding pair-bonding pair (bp—bp) repulsion; as a result, the H—O—H
bond angle is only 104.5° another 2.1° decrease from the ammonia angles. The net result is
that we can predict approximate molecular shapes by assigning more space to lone electron
pairs; lone pairs are able to spread out and occupy more space since they are attracted to
one nucleus rather than two.

Steric Number =5

For the trigonal bipyramidal geometry, there are two unique locations for electron pairs,
axial and equatorial. If there is a single lone pair, for example in SF,, the lone pair occu-
pies an equatorial position. This position provides the lone pair with the most space and
minimizes the interactions between the lone pair and bonding pairs. If the lone pair were
axial, it would have three 90° interactions with bonding pairs; in an equatorial position, it has
only two such interactions, as shown in Figure 3.11. The actual structure is distorted by the
lone pair as it spreads out in space and effectively squeezes the rest of the molecule together.

I—|I II{ 109.5°
H—C—H C.Y
[ H/ N H
H H
H—N—H _Ne_
! HA
H
106.6°
H—O: KON
| HY_ H
H
104.5°

FIGURE 3.10 Shapes of

Methane, Ammonia, and Water.

F

Fls
F” /S<7
F

Equatorial lone pair
(observed structure)

F S—F
F/|
F

Axial lone pair
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Simple Bonding Theory

CIF; provides a second example of the influence of lone pairs in molecules having a
steric number of 5. There are three possible structures for CIF3, as shown in Figure 3.12.

In determining the feasibility of different structures, lone pair—lone pair interactions
should be considered first, followed by lone pair—bonding pair interactions. These interac-
tions at angles of 90° or less are generally considered destabilizing; larger angles gener-
ally render structures more feasible. For example, in CIF3, structure B can be eliminated
quickly because of the 90° [p—Ip angle. The [p—Ip angles are large for A and C, so the
choice must come from the /p—bp and bp—bp angles. Because the [p—bp angles are more
important, C, which has only four 90° Ip—bp interactions, is favored over A, which has six
such interactions. Experiments have confirmed that the structure is based on C, with slight
distortions due to the lone pairs. The lone pair—bonding pair repulsion causes the /p—bp
angles to be larger than 90° and the bp—bp angles to be less than 90° (actually, 87.5°). The
Cl—F bond distances show the repulsive effects as well, with the axial fluorines (approxi-
mately 90° I[p—bp angles) at 169.8 pm and the equatorial fluorine (in the plane with two
lone pairs) at 159.8 pm.® Angles involving lone pairs cannot be determined experimentally.

Angles in Possible Structures

Interaction A B C Experimental

Ip—Ip 180° 90° 120° Cannot be determined
Ip—bp 6 at 90° 3 at 90° 4 at 90° Cannot be determined
2 at 120° 2 at 120°
bp—bp 3 at 120° 2 at 90° 2 at 90° 2 at 87.5°
1 at 120° Axial CI—F 169.8 pm

Equatorial CI—F 159.8 pm

Additional examples of structures with lone pairs are illustrated in Figure 3.13. The
structures based on a trigonal bipyramidal arrangement of electron pairs around a central
atom always place any lone pairs in the equatorial plane, as in SF,, BrF;, and XeF,. The
resulting shapes minimize both lone pair—lone pair and lone pair—bonding pair repulsions.
The shapes are called seesaw (SF,), distorted T (BrF;), and linear (XeF,).

Steric Numbers =6 and 7

In octahedral structures, all six positions are equivalent. When a single lone pair is pres-
ent, it typically repels adjacent bonding pairs, reducing bond angles accordingly, as for
IF5 in Figure 3.13. In octahedron-based structures with two lone pairs, lone pair—lone pair
repulsion is minimized if these pairs are trans, and this is the shape that is adopted. Square
planar XeF,, also shown in Figure 3.13, is an example. Recently XeF;~, which would be
expected to have a steric number of 6 and three lone pairs, has been reported in the gas
phase, but attempts to prepare salts of this ion have been unsuccessful.’

The shape that minimizes electron-pair repulsions for a steric number of 7 is the pen-
tagonal bipyramid, shown in Figure 3.8. IF; (in the margin) and TeF,*~ exhibit this shape,
with both axial and equatorial fluorines. If a single lone pair is present, in some cases the
lone pair causes distortion. The nature of this distortion is not always easy to ascertain;
XeFg is a classic example.!? In other cases the structure is octahedral (see Problem 3.26)
with the lone pair not stereochemically active.” Two lone pairs minimize their repulsions
by adopting axial (trans) positions, with the atoms all in the equatorial plane. Two known
examples are XeFs~ (in the margin) and IFs>~

“A lone pair that appears in the Lewis-dot structure but has no apparent effect on the molecular geometry is
classified as not stereochemically active. The VSEPR model assumes that all lone pairs are stereochemically
active and therefore do affect the molecular geometry.
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Number of Lone Pairs on Central Atom FIGURE 3.13 Structures
Containing Lone Pairs.

Steric Number 2

3 AN
ZN "1
F F Cl 956 C
HH aN |
i « A H;-O~.
4 C - .
H/ \H H 106.6° 104.5 \f_{
Cll 173> F 1/: 86.2° 1|:
5 Clp—ci E.\ Br—F —Xe—
| 10k6° &5 - -°
a i F F
F
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SbF,™ has a single lone pair on Sb. Its structure is therefore similar to SF,, with a lone B\ _I
pair occupying an equatorial position. This lone pair causes considerable distortion, ;Sb—:
giving an F— Sb—F (axial positions) angle of 155° and an F— Sb—F (equatorial) F 1~1
angle of 90°.
SF5~ has a single lone pair. Its structure is based on an octahedron, with the ion T _| N
distorted away from the lone pair, as in IF5. 1127?§F
SeF;™ has a single lone pair. This lone pair reduces the Se—F bond angle F F
significantly, to 94°.
T
EXERCISE 3.2 Predict the structures of the following ions. Include a description of |
distortions from the ideal angles (for example, less than 109.5° because...). ,,/Se\
F~ F
NH,” NH,” Iy PCls F
3.2.2 Multiple Bonds H,C 1222°y
The VSEPR model considers double and triple bonds to have slightly greater repulsive \ Y /7
effects than single bonds because of the repulsive effect of 7 electrons that increase the 115.6 /C_C\
electron density between the bonded atoms beyond that present in a o bond. For example, H,C H
the H;C—C—CH; angle in (CH;3),C==CH, is smaller, and the H;C —C=CH, angle )
is larger than the trigonal 120° (Figure 3.14).!! FIGURE 3.14 Bond Anglesin

(CH3),C=CH,.
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Simple Bonding Theory
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* The bond angles of these molecules have not been determined accurately. However,
spectroscopic measurements are consistent with the structures shown.

FIGURE 3.15 Structures Containing Multiple Bonds.

Additional examples of the effect of multiple bonds on molecular geometry are shown
in Figure 3.15. Comparing Figures 3.13 and 3.15, we see that multiple bonds tend to occupy
the same positions as lone pairs. For example, the double bonds to oxygen in SOF,, C10,F;,
and XeOsF, are all equatorial, as are the lone pairs in the matching compounds of steric
number 5, SF,, BrF;, and XeF,. Multiple bonds, like lone pairs, also tend to occupy more
space than single bonds, causing distortions that squeeze the rest of the molecule together.
In molecules that have both lone pairs and multiple bonds, these features may compete
for space; examples are shown in Figure 3.16. As a generalization, lone pairs often have a
greater influence than multiple bonds in dictating molecular geometry.

EXAMPLE 3.5

HCP, like HCN, is linear, with a triple bond: H—C=P:

IOF,™ has a single lone pair on the side opposite the oxygen. The lone pair has a
slightly greater repulsive effect than the double bond to oxygen, as shown by the
average O —I—F angle of 89°. (The extra repulsive character of the =0 bond
places it opposite the lone pair.)

SeOCl, has both a lone pair and a selenium—oxygen double bond. The lone pair has a
greater effect than the double bond; the C1— Se —Cl angle is reduced to 97° by this
effect, and the C1—Se— O angle is 106°.

EXERCISE 3.3 Predict the structures of the following. Indicate the direction of
distortions from the regular structures.

XeOF, CIOF;  SOClL,
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3.2.3 Electronegativity and Atomic Size Effects

Electronegativity is a measure of an atom’s ability to attract electrons from a neighboring
atom to which it is bonded; it can be viewed as the ability of an atom to win the competi-
tion to attract shared electrons. Electronegativity was mentioned earlier as a guide in the
use of formal charges. It also can play an important role in determining the arrangement
of outer atoms around a central atom and in rationalizing bond angles. The effects of elec-
tronegativity and atomic size frequently parallel each other, but in some cases, the sizes
of outer atoms and groups may play the more important role.

Electronegativity Scales

Linus Pauling introduced the concept of electronegativity in the 1930s as a means of
describing bond energies. Pauling recognized that polar bonds have higher bond energies
than nonpolar bonds formed from the same elements. For example, he observed that the
bond energy of HCI, 432 kJ/mol, was much higher than the average of the bond energies
of H, (436 kJ/mol) and Cl, (243 kJ/mol)." He related the difference between actual and
average bond energies to the difference in electronegativity between the elements involved.
He also made adjustments for the sake of convenience, most notably to give the elements C
through F equally spaced values of 2.5 through 4.0.”" Some early Pauling electronegativity
values are in Table 3.3. The value of 4.0 for fluorine is still commonly used as a reference
point for other electronegativity scales.

More recent values have been derived from other molecular and atomic properties,
such as ionization energies and electron affinities. Table 3.4 summarizes approaches used
for a variety of electronegativity scales; examining differences among these is beyond the
scope of this text. In most cases the different methods give similar electronegativity val-
ues, sometimes with the exception of the transition metals.2 We choose to use the values
reported by Mann, Meek, and Allen (Table 3.5) based on configuration energies (CE),
the average ionization energies of valence electrons in ground state free atoms. For s- and
p-block elements the configuration energies are defined as follows:!3

ne; + me,

n+m

CE =

where n = number of s electrons
m = number of p electrons
&,, &, = experimental 1-electron s and p energies’

TABLE 3.3 Early Values of Pauling Electronegativities

H

2.1

C N (@) F

2.5 3.0 3.5 4.0
Si P S Cl
1.8 2.1 2.5 3.0
Ge As Se Br
1.8 2.0 2.4 2.8

“Values used by Pauling, converted to kJ/mol. L. Pauling, The Nature of the Chemical Bond, 3rd ed., 1960,
Cornell University Press, Ithaca, NY, p. 81.

“*Earlier, Pauling had assigned fluorine an electronegativity of 2.00; see L. Pauling, J. Am. Chem. Soc., 1932,
54,3570.

fMultiplet averaged values from C. E. Moore, lonization Potentials and lonization Limits Derived From the
Analyses of Optical Spectra, NSRDS-NBS-34, Washington, D.C., 1971; Atomic Energy Levels, NSRDS-35,
Washington, D.C., 1971, Vol. III.
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TABLE 3.4 Electronegativity Scales

Principal Authors Method of Calculation or Description

Pauling'4 Bond energies

Mulliken' Average of electron affinity and ionization energy

Allred & Rochow!® Electrostatic attraction proportional to Z"/r>

Sanderson!’ Electron densities of atoms

Pearson!8 Average of electron affinity and ionization energy

Allen'? Average energy of valence shell electrons, configuration energies
Jaffé20 Orbital electronegativities

TABLE 3.5 Electronegativity (Pauling Units)

1 P 12 13 14 15 16 17 18
H He
2.300 4.160
Li Be B C N O F Ne
0.912 1.576 2.051 2.544 3.066 3.610 4.193 4.787
Na Mg Al Si P S Cl Ar
0.869 1.293 1.613 1.916 2.253 2.589 2.869 3.242
K Ca Zn Ga Ge As Se Br Kr
0.734 1.034 1.588 1.756 1.994 2.211 2.424 2.685 2.966
Rb Sr Cd In Sn Sb Te 1 Xe
0.706 0.963 1.521 1.656 1.824 1.984 2.158 2.359 2.582
Cs Ba Hg Tl Pb Bi Po At Rn

0.659 0.881 1.765 1.789 1.854 (2.01) (2.19) (2.39) (2.60)
Source: J. B. Mann, T. L. Meek, L. C. Allen, J. Am. Chem. Soc., 2000, 122, 2780, Table 2.

The configuration energies are multiplied by a constant to give values comparable to the
Pauling scale to enable convenient comparison between the scales. A more complete list
of electronegativities based on configuration energies is in Appendix B.4." A graphical
representation of electronegativity is in Figure 8.2.

Pauling’s calculation of electronegativities from bond energies requires averaging over
a number of compounds in an attempt to minimize experimental uncertainties and other
minor effects. Methods that use ionization energies and other atomic properties can be cal-
culated more directly. The electronegativities reported here and in Appendix B.4 are suitable
for most uses, but the actual values for atoms in different molecules can differ depending on
the specific electronic environment of the atoms. The concept of electronegativity varying
for a given atom on the basis of its specific bonds within a molecule is usually not intro-
duced in introductory chemistry, but is a consequence of modern electronegativity scales.

It is important to emphasize that all electronegativities are measures of an atom’s
ability to attract electrons from a neighboring atom fo which it is bonded. A critique of all
electronegativity scales, and particularly Pauling’s, is that each scale cannot be successfully
applied to all situations; all of these scales have deficiencies on the basis of the specific
assumptions used in their development.?!

“For a recent approach that addresses some of the limitations of the Allen method, see P. Politzer, Z. P. Shields,
F. A. Bulat, J. S. Murray, J. Chem. Theory Comput., 2011, 7, 377.
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With the exception of helium and neon, which have large calculated electronegativi-
ties and no known stable compounds, fluorine has the largest value, and electronegativity
decreases toward the lower left corner of the periodic table. Although usually classified
with Group 1 (IA), hydrogen is quite dissimilar from the alkali metals in its electronega-
tivity, as well as in many other chemical and physical properties. Hydrogen’s chemistry is
distinctive from all the groups.

Electronegativities of the noble gases can be calculated more easily from ionization
energies than from bond energies. Because the noble gases have higher ionization energies
than the halogens, calculations suggest that the electronegativities of the noble gases may
exceed those of the halogens (Table 3.5).2 The noble gas atoms are somewhat smaller than
the neighboring halogen atoms—for example, Ne is smaller than F—as a consequence of
a greater effective nuclear charge. This charge, which is able to attract noble gas electrons
strongly toward the nucleus, is also likely to exert a strong attraction on electrons of neighbor-
ing atoms; hence, the high electronegativities predicted for the noble gases are reasonable.

Electronegativity and Bond Angles
By the VSEPR approach, trends in many bond angles can be explained by electronegativity.
Consider the bond angles in the following molecules:

Molecule X-P-X Angle (°) Molecule X-S-X Angle (°)
PF; 97.8 OSF, 92.3
PCl; 100.3 0Scl, 96.2
PBr; 101.0 OSBr, 98.2

As the electronegativity of the halogen increases, the halogen exerts a stronger pull on
electron pairs it shares with the central atom. This effect reduces the concentration of
electrons near the central atom, decreasing somewhat the repulsion between the bonding
pairs near the central atom, and allows the lone pair to have more impact in compress-
ing the halogen—central atom—halogen angles. Consequently, the molecules with the most
electronegative outer atoms, PF; and OSF,, have the smallest angles.

If the central atom remains the same, molecules that have a larger difference in
electronegativity values between their central and outer atoms have smaller bond angles.
The atom with larger electronegativity draws the shared electrons toward itself and away
from the central atom, reducing the repulsive effect of these electrons. The compounds
of the halogens in Table 3.6 show this effect; the compounds containing fluorine have
smaller angles than those containing chlorine, which in turn have smaller angles than those
containing bromine. The lone pair exerts a relatively larger effect, and forces smaller bond
angles, as the electronegativity of the outer atom increases. An alternative explanation for
this trend is size: as the size of the outer atom increases in the order F < Cl < Br, the
bond angle increases. Additional compounds showing the effects of electronegativity on
bond angles are also given in Table 3.6.

Similar considerations can be made in situations where the outer atoms remain the
same, but the central atom is changed, for example,

Molecule Bond Angle (°) Molecule Bond Angle (°)

H,0 104.5 NCl, 106.8
H,S 92.1 PCl, 100.3
H,Se 90.6 AsCl, 98.9

In these cases, as the central atom becomes more electronegative, it pulls electrons in bonding
pairs more strongly toward itself, increasing the concentration of electrons near the central atom.
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TABLE 3.6 Bond Angles and Lengths

Bond Bond Bond Bond Bond Bond Bond

Angle Length Angle Length Angle Length Angle
Molecule () (pm)  Molecule () (pm)  Molecule () (pm)  Molecule (°)
H,O 104.5 97 OF, 103.3 96 ocCl, 110.9 170
H,S 92.1 135 SF, 98.0 159 SCl, 102.7 201
H,Se 90.6 146 SeCl, 99.6 216
H,Te 90.2 169 TeCl, 97.0 233
NH; 106.6 101.5 NF; 102.2 137 NCI, 106.8 175
PH; 93.2 142 PF; 97.8 157 PClL4 100.3 204 PBr; 101.0 220
AsHj 92.1 151.9 AsF; 95.8 170.6 AsCly 98.9 217 AsBr; 99.8 236
SbH; 91.6 170.7 SbF; 87.3 192 SbCl; 97.2 233 SbBr; 98.2 249

Source: N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, 1997, pp. 557, 767; A. E. Wells, Structural Inorganic
Chemistry, 5th ed., Oxford University Press, Oxford, 1987, pp. 705, 793, 846, and 879; R. J. Gillespie and I. Hargittai, The VSEPR Model of Molecular Geometry, Allyn
and Bacon, Needham Heights, MA, 1991.

The net effect is that an increase in bonding pair—-bonding pair repulsions near the central atom
increases the bond angles. In these situations the molecule with the most electronegative central
atom has the largest bond angles. Additional examples can be found in Table 3.6, where mol-
ecules having the same outer atoms, but different central atoms, are shown in the same column.

Which molecule has the smallest bond angle in each series?

a. OSeF, OSeCl, OSeBr, (halogen—Se—halogen angle)
b. SbCl;  SbBr; Sbl;
C. PI3 ASI3 SbI3

Effects of Size

In the examples considered so far, the most electronegative atoms have also been the
smallest. For example, the smallest halogen, fluorine, is also the most electronegative.
Consequently, we could have predicted the trends in bond angles on the basis of atomic
size, with the smallest atoms capable of being crowded together most closely. It is impor-
tant to also consider situations in which size and electronegativity might have opposite
effects, where a smaller outer group is less electronegative than a larger group attached to
a central atom. For example,

Molecule C—N—CAngle (°)

N(CHs); 110.9
N(CF); 117.9

In this case VSEPR would predict that the more electronegative CF; groups would lead
to a smaller bond angle because they would withdraw electrons more strongly than CHj;
groups. That the bond angle in N(CF3); is actually 7° larger than in N(CH3); suggests that
in this case, size is the more important factor, with the larger CF; groups requiring more
space. The point at which the size of outer atoms and groups becomes more important
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than electronegativity can be difficult to predict, but the potential of large outer atoms and
groups to affect molecular shape should not be dismissed.

Molecules Having Steric Number = 5

For main group atoms having a steric number of 5, it is instructive to consider the relative
bond lengths for axial and equatorial positions. For example, in PCls, SF,, and CIF;, the
central atom—axial distances are longer than the distances to equatorial atoms, as shown
in Figure 3.17. This effect has been attributed to the greater repulsion of lone and bonding
pairs with atoms in axial positions (three 90° interactions) than with atoms in equatorial
positions (two 90° interactions).

In addition, there is a tendency for less electronegative groups to occupy equatorial posi-
tions, similar to lone pairs and multiply bonded atoms. For example, in phosphorus compounds
having both fluorine and chlorine atoms, in each case the chlorines occupy equatorial positions
(Figure 3.18). The same tendency is shown in compounds having formulas PF,CH;, PF;(CH;),,
and PF,(CH3;);, with the less electronegative CH; groups also equatorial (Figure 3.19). One
can envision the electron density of the P—A bond, where A is the less electronegative atom,
being concentrated closer to the phosphorus in such cases, leading to a preference for equatorial
positions by similar reasoning applied to lone pairs and multiple bonds.

The relative effects on bond angles by less electronegative atoms are, however, typi-
cally less than for lone pairs and multiple bonds. For example, the bond angle to equatorial
positions opposite the Cl atom in PF,Cl is only slightly less than 120° in contrast to the
greater reduction in comparable angles in SF, and SOF, (Figure 3.20).

Predicting structures in some cases is challenging. Phosphorus compounds contain-
ing both fluorine atoms and CF; groups provide an intriguing example. CFj is an electron
withdrawing group whose electronegativity has been calculated to be comparable to the
more electronegative halogen atoms.” Does CF; favor equatorial positions more strongly
than F? Trigonal bipyramidal phosphorus compounds containing varying numbers of F
and CF; groups with both axial and equatorial CF; groups are known (Figure 3.21). When
two or three CF; groups are present, the orientations are truly a challenge to explain: these
groups are axial in PF3(CF3), but equatorial in PF,(CF;3);! In both cases the more sym-
metrical structure, with identical equatorial groups, is preferred.”™

F F F
b A %‘
F-—__ | 20 Cl--__ s Cl---_. 1 00
158 = P——Cl 200 =P P Cl
P~ a= ‘ a= ‘
F F F
F F F
3 g 2
F-_ 178 H;C-- 1 H;C--- 181
34 P CH 155 =P CH =P CH
S ‘ ’ F/‘ ’ H3C/‘ ’
F F F

“For an analysis of different approaches to determining the electronegativity of CFs, see J. E. True, T. D. Thomas,
R. W. Winter, G. L. Gard, Inorg. Chem., 2003, 42, 4437.

“*See H. Oberhammer, J. Grobe, D. Le Van, Inorg. Chem., 1982, 21, 275 for a discussion of these structures.
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FIGURE 3.17 Bond Distances
in PCl;, SF,, and CIF.

FIGURE 3.18 PCIF,, PCl,F,, and
PCL,F,.

FIGURE 3.19 PF,CH,,
PF,(CHs), and PF,(CH,).
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FIGURE 3.20 Bond angles
in PF,Cl, SF,, and SOF,.

FIGURE 3.21 PF,CF,,
PF,(CF5),, and PF,(CF),.
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Group Electronegativities

As in the case of individual atoms, numerous approaches have been taken to estimate
electron-attracting abilities of groups such as CHj, CF;, and OH which may be bonded
to central atoms. For example, a CF; group would be expected to attract electrons more
strongly than a CHjy group, potentially affecting molecular shapes and reactivities, and
CF; should therefore be assigned a higher electronegativity than CH;. Although published
values of group electronegativities agree that CF; is more electronegative than CHjs, the
reported values vary widely, 2.71-3.45 for CF; and 2.45-3.05 for CH;.”

Despite wide variation in proposed group electronegativity values, trends emerge
when examining sets of values determined by different calculation methods that follow
expectations based on the electronegativities of the component atoms, as in the case
of CF; and CH;. Examples in order of decreasing group electronegativity include the
following:

CF; > CHF, > CH,F > CH;
CF; > CCl4 CH; > SiH;
F > OH > NH, > CH; > BH, > BeH

The group electronegativity concept prompts an interesting question: can bond
angles be reliably ranked using electronegativity differences for a set of related mole-
cules containing both groups and single atoms bound to the central atom? Consider the
molecules in Figure 3.22. The S—F bond has the largest electronegativity difference,
and the F—S—F bond in SO,F, is unsurprisingly the most acute of the X—S—X
angles. The approximate average group electronegativities of OH (3.5), CF3, (3.1) and
CHj; (2.6) relative to that of CI (2.869 Pauling units) suggest that the X—S—X angle
in SO,(OH), and SO,(CF;), should be more acute than that in SO,Cl,. In fact, the cor-
responding angle in SO,Cl, is more acute than those in the former molecules, a testament
to the importance of considering size when predicting bond angles. While the ranking of

“For comparisons of values of group electronegativities and associated references, see M. D. Moran, J-P. Jones, A.
A. Wilson, S. Houle, G. K. S. Prakash, G. A. Olah, N. Vasdev, Chem. Educator, 2011, 16, 164 and L. D. Garner
O’Neale, A. F. Bonamy, T. L. Meek, B. G. Patrick, J. Mol. Struct. (THEOCHEM), 2003, 639, 151.
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FIGURE 3.22 Bond Angles and Group Electronegativity.

the bond angles for SO,(OH), < SO,(CF;), < SO,(CHs), is consistent with the group
electronegativity order, the small difference in these angles ( 1.30) is surprising on the basis
of the relatively wide variation (~0.9 units) in group electronegativities. In contrast, the
electronegativity difference between F and Cl (1.324 Pauling units) is only slightly greater,
yet the result is a rather large 4.2 difference in X —S— X angles. Bond angle prediction
clearly depends on multiple factors. Size and possible hydrogen bonding between outer
atoms and groups can also affect bond angles and distances.

EXERCISE 3.5

Briefly account for the following observations:

a. The bond angle in NClj is nearly 5 degrees larger than in NF;.

b. The S—F axial distance in SOFj is longer than the S—F equatorial distance.

c. In Te(CHs),I, the methyl groups are in equatorial, rather than axial, positions.
d. The O—S—0O0 bond angle in FSO,(OCH,) is larger than in FSO,(CHs).

3.24 Ligand Close Packing

The ligand close-packing (LCP) model developed by Gillespie?> uses the distances between
outer atoms in molecules as a guide to molecular shapes. For a series of molecules having
the same central atom, the nonbonded distances™ between the outer atoms are consistent,
but the bond angles and bond lengths change. The results of the LCP approach are in many
ways consistent with those of the VSEPR model but focus primarily on the outer atoms
rather than on the immediate environment of the central atom.

For example, it was found that in a series of boron compounds, BF,X and BF;X,
the fluorine—fluorine distance remained nearly constant for a wide variety of X groups,
even if the steric number changed from 3 to 4, as shown in Table 3.7. Similar results were
obtained for a variety of other central atoms: chlorine—chlorine nonbonded distances were
similar in compounds in which the central atom was carbon, oxygen—oxygen nonbonded
distances were similar when the central atom was beryllium, and so forth.24

"Three dots (- - -) will be used to designate distances between atoms that are not directly covalently bonded to
each other.
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FIGURE 3.23 NF,*and NF,.

TABLE 3.7 Ligand Close-Packing Data

Coordination

Molecule  Number of B B—F Distance (pm) FBF Angle (°) F-+<F Distance (pm)

BF, 3 130.7 120.0 226
BF,0H 3 132.3 118.0 227
BF,NH, 3 1325 117.9 227
BF,Cl 3 1315 118.1 226
BF,H 3 131.1 1183 225
BF,BF, 3 131.7 117.2 225
BF,” 4 138.2 109.5 226
BF,CH;~ 4 142.4 105.4 227
BF,CF;~ 4 139.1 109.9 228
BF,PH, 4 137.2 112.1 228
BF;NMe, 4 137.2 1115 229

Source: R. J. Gillespie and P. L. A. Popelier, Chemical Bonding and Molecular Geometry, Oxford University Press, New
York, 2001, p. 119; Table 5.3, R. J. Gillespie, Coord. Chem. Rev., 2000, 197, 51.

In the LCP model, ligands (outer atoms) are viewed as exhibiting a specific radius
when bonded to a certain central atom.” If the outer atoms pack tightly together, as assumed
in this model, the distance between the nuclei of the atoms will then be the sum of these
ligand radii. For example, a fluorine atom, when attached to a central boron, has a ligand
radius of 113 pm. When two fluorines are attached to a central boron, as in the examples
in Table 3.7, the distance between their nuclei will be the sum of the ligand radii, in
this case 226 pm. This value matches the F - - - F distances of the examples in the table.
Examples of how this approach can be used to describe molecular shapes are presented
in the following discussion.

Ligand Close Packing and Bond Distances

The LCP model predicts that nonbonded atom—atom distances in molecules remain
approximately the same, even if the bond angles around the central atom are changed.
For example, the fluorine—fluorine distances in NF,” and NF; are both 212 pm, even
though the F—N—F bond angles are significantly different (Figure 3.23).

oot

F F
o >F “op>F
N
N
106 106 F 106 106 F

“Values of ligand radii can be found in R. J. Gillespie, E. A. Robinson, Compt. Rend. Chimie, 2005, 8, 1631.
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VSEPR predicts that NF; should have the smaller bond angle, and it does: 102.3° in
comparison with the tetrahedral angle of 109.5° in NF,*. Because the F - - - F distance
remains essentially unchanged, the N—F distance in NF; must be longer than the 130 pm
in NF,". This can be illustrated using simple trigonometry, as also shown Figure 3.23.
In NF;, because

k]

, (102.3°> 1(F- - - F distance)
sin

2 X
) 106 pm )
x = N—F bond distance = ————; = 136 pm (experimental: 136.5 pm)
sin 51.15

As expected, the smaller the F— N —F angle, the longer the N—F bond must be.

In short, the LCP model complements the VSEPR approach; whereas VSEPR
predicts that a lone pair will cause a smaller bond angle on the opposite side, LCP
predicts that the outer atom ---outer atom distances should remain essentially
unchanged, requiring longer central atom—outer atom distances. An atom that is
multiply bonded to a central atom has a similar effect, as shown in the following
example.

EXAMPLE 3.6

In PF,* the F - - - F and P—F distances are 238 pm and 145.7 pm, respectively. Predict
the P—F distance in POF3, which has an F—P—F angle of 101.1°.

SOLUTION

The LCP model predicts that the F - - - F distances should be approximately the same in
both structures. Sketches similar to those in Figure 3.23 can be drawn to illustrate the
angles opposite the double bond:

In this situation,

119 pm
x = P—F bond distance = 71)0 = 154 pm (experimental: 152 pm)
sin 50.55

(The actual F - - - F distance in POF; is 236 pm, slightly shorter than in PF,".
If this value is used in the calculation x = 153 pm, a better match for the
experimental value.)

In the example, the LCP model predicts the two structures to have approximately
the same size trigonal base of fluorines. A longer P—F distance and smaller
F—P—F angle are consistent with the VSEPR approach, which would predict a
smaller bond angle arising as a consequence of repulsion by the electrons in the
double bond.

EXERCISE3.6 Does this approach work for different steric numbers? BCl; has B—Cl
and F - - - F distances of 174 and 301 pm. Using the LCP model, predict the B—Cl
distance in BCl;~ and compare with the experimental value of 183 pm.

Gillespie and Popelier have also described several other approaches to molecular geometry,
together with their advantages and disadvantages,? and in an interview Gillespie has
provided additional perspective on the VSEPR, LCP, and related concepts, in addition to
interesting historical background.2¢
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and Molecular Dipoles.

Simple Bonding Theory

3.3 Molecular Polarity

When atoms with different electronegativities are bonded, the resulting molecule has
polar bonds, with the electrons of the bond concentrated, perhaps very slightly, on the
more electronegative atom; the greater the difference in electronegativity, the more polar
the bond. As a result, the bonds are dipolar, with relatively positive and negative ends.
This polarity can cause specific interactions between molecules, depending on the overall
molecular structure.

Experimentally, the polarity of molecules is measured indirectly by measuring the
dielectric constant, which is the ratio of the capacitance of a cell filled with the substance
to be measured to the capacitance of the same cell with a vacuum between the electrodes.
Orientation of polar molecules in the electric field partially cancels out the effect of the
field and results in a larger dielectric constant. Measurements at different temperatures
allow calculation of the dipole moment for the molecule, defined as w = Qr, where r is
the distance between the centers of positive and negative charge and Q is the difference
between these charges.”

Dipole moments of diatomic molecules can be calculated directly. In more complex
molecules, vector addition of the individual bond dipole moments gives the net molecular
dipole moment. However, it is usually not possible to calculate molecular dipoles directly
from bond dipoles. Table 3.8 shows experimental and calculated dipole moments of chloro-
methanes. The values calculated from vectors use C—H and C— CI bond dipole moments
of 1.3 X 107 and 4.9 X 1073° C m, respectively, and tetrahedral bond angles. Clearly,
calculating dipole moments is more complex than simply adding the vectors for individual
bond moments. However, for many purposes, a qualitative approach is sufficient.

The dipole moments of NH3, H,O, and NF; (Figure 3.24) reveal the often dramatic
effect of lone pairs. In ammonia, the averaged N—H bond polarities and the lone pair
point in the same direction, resulting in a large dipole moment. Water has an even larger
dipole moment; the polarities of the O — H bonds and the two lone pairs result in polarities
that reinforce each other. On the other hand, NF; has a very small dipole moment, the
result of the polarity of the three N—F bonds opposing the electron-rich lone pair. The
sum of the three N—F bond moments is larger than the lone pair effect, and the lone pair
is the positive end of the molecule. In cases such as those of NF; and SO, with opposing
polarities, the dipole direction is not easily predicted. SO, has a large dipole moment
(1.63 D), with the polarity of the lone pair outweighing that of the S— O bonds, and the
sulfur atom partially negative even though oxygen is more electronegative.

Molecules with dipole moments interact electrostatically with each other and with
other polar molecules. When the dipoles are large enough, the molecules orient themselves
with the positive end of one molecule toward the negative end of another, and higher
melting and boiling points result. Details of the most dramatic effects are given in the
discussion of hydrogen bonding later in this chapter and in Chapter 6.

TABLE 3.8 Dipole Moments of Chloromethanes

Molecule Experimental (D) Calculated from Vectors (D)
CH,CI 1.90 1.77

CH,Cl, 1.60 2.008

CHCl, 1.04 1.82

Source: Experimental data, CRC Handbook of Chemistry and Physics, 92nd ed., Taylor and Francis Group, LLC, 2011-2012,
pp. 9-54, 9-55, and 9-59.

“The SI unit for dipole moment is a Coulomb meter (C m), but a commonly used unit is the debye (D). One
D = 3.33564 X 107 Cm.



On the other hand, if the molecule has a highly symmetric structure, or if the polarities
of different bonds cancel each other out, the molecule as a whole may have no net dipole
moment, even though the individual bonds are quite polar. Tetrahedral molecules such as
CH, and CCl,, trigonal molecules and ions such as SO3, NO;~, and CO+>~, and molecules
having identical outer atoms for steric numbers 5 and 6 such as PCls and SFg, are all non-
polar. The C—H bond has very little polarity, but the bonds in the other molecules and
ions are quite polar. In all these cases, the sum of all the polar bonds is zero because of
the symmetry of the molecules, as shown in Figure 3.25.

Even nonpolar molecules participate in intermolecular attractions. Small fluctuations
in the electron density in such molecules create small dipoles with extremely short life-
times. These dipoles in turn attract or repel electrons in adjacent molecules, inducing
dipoles in them as well. The result is an overall attraction among molecules. These attrac-
tive forces are called London forces or dispersion forces, and they make liquefaction
of the noble gases and nonpolar molecules—such as hydrogen, nitrogen, and carbon
dioxide—possible. As a general rule, London forces become more important as the number
of electrons in a molecule increases. An increasing electron count generally increases the
shielding of nuclear charge, rendering the electron cloud more polarizable and susceptible
to perturbation from external dipoles.

34 Hydrogen Bonding

Ammonia, water, and hydrogen fluoride all have much higher boiling points than other
similar molecules, as shown in Figure 3.26. These high boiling points are caused by hydro-
gen bonds, in which hydrogen atoms bonded to nitrogen, oxygen, or fluorine also form
weaker bonds to a lone pair of electrons on another nitrogen, oxygen, or fluorine. Bonds
between hydrogen and these strongly electronegative atoms are very polar, with a partial
positive charge on the hydrogen. This partially positive hydrogen is strongly attracted to
the partially negative nitrogen, oxygen or fluorine of neighboring molecules. In the past,
the attractions among these molecules were considered primarily electrostatic in nature,
but an alternative molecular orbital approach (described in Chapters 5 and 6) gives a
more complete description of this phenomenon. Regardless of the detailed explanation of

T(°C)
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FIGURE 3.25 Cancellation of
Bond Dipoles Due to Molecular
Symmetry.

FIGURE 3.26 Boiling Points of
Hydrogen Compounds.
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the forces involved in hydrogen bonding, the strongly positive hydrogen and the strongly
negative lone pairs tend to line up and hold the molecules together. Other atoms with high
electronegativity, such as chlorine, can also enable formation of hydrogen bonds in polar
molecules such as chloroform, CHCI;. The definition of what atoms can participate in
hydrogen bonds has expanded dramatically beyond the traditional atoms of N, O, and F,
as described in Chapter 6.

In general, boiling points rise with increasing molecular weight, both because the
additional mass requires higher temperature for rapid movement of the molecules and
because the larger number of electrons in the heavier molecules provides larger London
forces. The difference in temperature between the actual boiling point of water and the
extrapolation of the line connecting the boiling points of the heavier analogous compounds
is almost 200° C. Ammonia and hydrogen fluoride have similar but smaller differences
from the extrapolated values for their families. Water has a much larger effect, because
each molecule can have as many as four hydrogen bonds (two through the lone pairs and
two through the hydrogen atoms). Hydrogen fluoride can average no more than two hydro-
gen bonds, because hydrogen fluoride has only one hydrogen.

Water has other unusual properties because of hydrogen bonding. For example, the
freezing point of water is much higher than that of similar molecules. An even more
striking feature is the decrease in density as water freezes. The tetrahedral structure
around each oxygen atom, with two regular bonds to hydrogen and two hydrogen bonds to
other molecules, requires a very open structure with large spaces between ice molecules
(Figure 3.27). This makes the solid less dense than the liquid water surrounding it, so
ice floats. Life on Earth would be very different if this were not so. Lakes, rivers, and
oceans would freeze from the bottom up, ice cubes would sink, and ice fishing would be
impossible. The results are difficult to imagine, but would certainly require a much dif-
ferent biology and geology. The same forces cause coiling of protein (Figure 3.28) and
polynucleic acid molecules; a combination of hydrogen bonding with other dipolar forces
imposes considerable secondary structure on these large molecules. In Figure 3.28(a),
hydrogen bonds between carbonyl oxygen atoms and hydrogens attached to nitrogen atoms

FIGURE 3.27 The open structure of ice. (Brown & Lemay, Chemistry: Central Science, 4th Ed., © 1988,

pp. 628, 946. Reprinted and Electronically reproduced by permission of Pearson Education Inc, Upper Saddle
River, NJ 07458.) The rectangular lines are included to aid visualization; all bonding is between hydrogen
and oxygen atoms.
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hold the molecule in a helical structure. In Figure 3.28(b), similar hydrogen bonds hold
the parallel peptide chains together; the bond angles of the chains result in the pleated
appearance of the sheet formed by the peptides. These are two of the many different
structures that can be formed from peptides, depending on the side-chain groups R and
the surrounding environment.

Another example is a theory of anesthesia by non-hydrogen bonding molecules such
as cyclopropane, chloroform, and nitrous oxide, proposed by Pauling.2” These molecules
are of a size and shape that can fit neatly into a hydrogen-bonded water structure with
even larger open spaces than ordinary ice. Such structures, with molecules trapped in
holes in a solid, are called clathrates. Pauling proposed that similar hydrogen-bonded
microcrystals form even more readily in nerve tissue because of the presence of other
solutes in the tissue. These microcrystals could then interfere with the transmission of
nerve impulses. Similar structures of methane and water hold large quantities of meth-
ane in the polar ice caps. The amount of methane in such crystals can be so great that
they burn if ignited.?8

More specific interactions involving the sharing of electron pairs between molecules
are discussed in connection with acid—base chemistry in Chapter 6.
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FIGURE 3.28 Hydrogen-
Bonded Protein Structures.

(@) A protein « helix. Peptide car-
bonyls and N—H hydrogens on
adjacent turns of the helix are
hydrogen bonded. (Brown

& Lemay, Chemistry: Central
Science, 4th Ed., © 1988,

pp. 628, 946. Reprinted and
Electronically reproduced by
permission of Pearson
Education Inc, Upper Saddle
River, NJ 07458.) The pleated
sheet arrangement is shown

in (b). Each peptide carbonyl
group is hydrogen bonded to an
N—H hydrogen on an adjacent
peptide chain. (Wade, L. G.,
Organic Chemistry, 1st Ed.,

© 1988. Reprinted with
permission and Electronically
reproduced by permission of
Pearson Education Inc., Upper
Saddle River NJ.)
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3.1 The dimethyldithiocarbamate ion, [S,CN(CHj3),] ", has the
following skeletal structure:

AN
CH,

a. Give the important resonance structures of this ion,
including any formal charges where necessary. Select
the resonance structure likely to provide the best descrip-
tion of this ion.

b. Repeat for the
[OSCN(CH3),] .

3.2 Several resonance structures are possible for each of the
following ions. For each, draw these resonance structures,
assign formal charges, and select the resonance structure
likely to provide the best description for the ion.

a. Selenocyanate ion, SeCN ™

ol
b. Thioformate ion, H—C N
S

dimethylthiocarbamate ion,

c. Dithiocarbonate, [S,COJ?>~ (C is central)

3.3 Draw the resonance structures for the isoelectronic ions
NSO™ and SNO™, and assign formal charges. Which ion is
likely to be more stable?

3.4 Three isomers having the formula N,CO are known: ONCN
(nitrosyl cyanide), ONNC (nitrosyl isocyanide), and NOCN
(isonitrosyl cyanide). Draw the most important resonance
structures of these isomers, and determine the formal
charges. Which isomer do you predict to be the most stable
(lowest energy) form? (See G. Maier, H. P. Reinsenauer,
J. Eckwert, M. Naumann, M. De Marco, Angew. Chem., Int.
Ed., 1997, 36, 1707.)

3.5 Show the possible resonance structures for nitrous oxide,
N,O (the central atom is nitrogen). Indicate nonzero formal
charges where they are present. Which resonance structure
gives the best representation of this molecule?

3.6 Nitric acid, which exists as HNO3 molecules in the absence
of water, has the skeletal structure shown. Show the impor-
tant resonance structures of HNOj3, and designate the formal
charges on each atom.

o
/
H—O—N\
(0)
3.7L. C. Allen has suggested that a more meaningful formal
charge can be obtained by taking into account the electro-
negativities of the atoms involved. Allen’s formula for this

type of charge—referred to as the Lewis—Langmuir (L-L)
charge—of an atom, A, bonded to another atom, B, is

(US) group  number of unshared

L-L ch =
charge number of A

electrons on A
XA ( number of bonds >
5 Xa T xp \between A and B

where x, and yp designate the electronegativities. Using
this equation, calculate the L-L charges for CO, NO™, and
HF, and compare the results with the corresponding formal
charges. Do you think the L-L charges are a better repre-
sentation of electron distribution? (See L. C. Allen, J. Am.
Chem. Soc., 1989, 111, 9115; L. D. Garner, T. L. Meek,
B. G. Patrick, THEOCHEM, 2003, 620, 43.)

3.8 Give Lewis dot structures and sketch the shapes of the

following:
a. SeCl4 b. 137
c. PSCl; (P is central) d. IF,~
e. PH,” f. TeF,>~
g. N3~ h. SeOCl, (Se is central)
i. PH,"
3.9 Give Lewis dot structures and sketch the shapes of the
following:
a. ICl,™ b. H;PO; (one H is bonded to P)
c. BH,” d. POCl,
e. 104~ f. IO(OH)s
g. SOCl, h. CIOF,~
i. XeO,F,
3.10 Give Lewis dot structures and sketch the shapes of the
following:
a. SOFg (one F is attached to O)
b. POF;
c. ClO,
d. NO,
e. $,0,2” (symmetric, with an S—S bond)
f. N,H, (symmetric, with an N—N bond)
g. CIOF,"
h. CS,
i. XeOFs

3.11 Explain the trends in bond angles and bond lengths of the
following ions:

X—O (pm) O—X—O0 Angle
ClO;~ 149 107°
BrO;~ 165 104°
105 181 100°

3.12 Select from each set the molecule or ion having the smallest
bond angle, and briefly explain your choice:
a. NH3, PHS, or ASH3

b. S.. S..
o \va o  \'F
Cl F
(halogen—sulfur—halogen angle)
c. NO, or Oy

d. CIO3;™ or BrO;~
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3.13a. Compare the structures of the azide ion, N3, and the

ozone molecule, Os.

b. How would you expect the structure of the ozonide ion,
037, to differ from that of ozone?

3.14 Consider the series OCl,, O(CH3),, and O(SiH3),, which
have bond angles at the oxygen atom of 110.9°, 111.8°,
and 144.1° respectively. Account for this trend.

3.15 Two ions isoelectronic with carbon suboxide, C;0,, are
N5" and OCNCO". Whereas C;0; is linear, both N5 and
OCNCO™ are bent at the central nitrogen. Suggest an expla-
nation. Also predict which has the smaller outer atom—
N—outer atom angle and explain your reasoning. (See
I. Bernhardi, T. Drews, K. Seppelt, Angew. Chem., Int. Ed.,
1999, 38, 2232; K. O. Christe, W. W. Wilson, J. A. Sheehy,
J. A. Boatz, Angew. Chem., Int. Ed., 1999, 38, 2004.)

3.16 Explain the following:

a. Ethylene, C,Hy, is a planar molecule, but hydrazine,
N,H,, is not.

b. ICl, is linear, but NH, ™ is bent.

c. Of the compounds mercury(Il) cyanate, Hg(OCN),, and
mercury(Il) fulminate, Hg(CNO),, one is highly explo-
sive, and the other is not.

3.17 Explain the following:

a. PCl; is a stable molecule, but NCls is not.

b. SF, and SF¢ are known, but OF, and OFg are not.

3.18 X-ray crystal structures of CIOF; and BrOF; have been
determined.

a. Would you expect the lone pair on the central halogen to
be axial or equatorial in these molecules? Why?

b. Which molecule would you predict to have the smaller
Fequatorias — central atom—oxygen angle? Explain your
reasoning. (See A. Ellern, J. A. Boatz, K. O. Christe,
T. Drews, K. Seppelt, Z. Anorg. Allg. Chem., 2002,
628, 1991.)

3.19 Make the following comparisons about the molecules shown
next, and briefly explain your choices.

a. Which molecule has the smaller
H;C—group15 atom — CH; angle?

b. Which molecule has the smaller H;C—Al—CH;
angle?

¢. Which molecule has the longer A1—C bond distance?

H3C ,CHS H3C ,CH3
N\ /»CH, \_/_CH,
| |
AL AL
HC™ /ey, HC™ /ey,
H,C H,C

3.20 Predict and sketch the structure of the (as yet) hypothetical
jon IF; ™.

3.21 A solution containing the I0,F,  ion reacts slowly with
excess fluoride ion to form I0,F;%~.

a. Sketch the isomers that might be possible matching the
formula I0,Fy* .

b. Of these structures, which do you think is most likely?
Why?

c. Propose a formula of a xenon compound or ion isoelec-
tronic with 10,F;2".

(See J. P. Mack, J. A. Boatz, M. Gerken, Inorg. Chem.,

2008, 47, 3243.)

3.22 The XeOF;™ anion has been reported recently (D. S. Brock
and G. J. Schrobilgen, J. Am. Chem. Soc., 2010, 133, 6265).
a. Several structures matching this formula are conceiv-

able. Sketch these, select the structure that is most likely,
and justify your choice.

b. What is notable about the structure of this ion?

3.23 Predict the structure of I(CF3)Cl,. Do you expect the CF;
group to be in an axial or equatorial position? Why? (See
R. Minkwitz, M. Merkei, Inorg. Chem., 1999, 38, 5041.)

3.24 a. Which has the longer axial P—F distance, PF,(CHj3); or

PF,(CF;);? Explain briefly.

b. AlL,O has oxygen as central atom. Predict the approxi-
mate bond angle in this molecule and explain your
answer.

c. Predict the structure of CAl,. (See X. Li, L-S. Wang,
A. I. Boldyrev, J. Simons, J. Am. Chem. Soc., 1999,
121, 6033.)

3.25 The structures of TeF, and TeCly in the gas phase have
been studied by electron diffraction (S. A. Shlykov, N. L.
Giricheva, A. V. Titov, M. Szwak, D. Lentz, G. V. Girichev,
Dalton Trans., 2010, 39, 3245).

a. Would you expect the Te — X (axial) distances in these
molecules to be longer or shorter than than Te—X
(equatorial) distances? Explain briefly.

b. Which compound would you predict to have the
smaller X(axial) —Te— X(axial) angles? The smaller
X(equatorial) —Te— X(equatorial) angles? Explain
briefly.

3.26 SeClg>~, TeClg>~, and CIF, ~ are all octahedral, but SeFg 2~
and [Fg ~ are distorted, with a lone pair on the central atom
apparently influencing the shape. Suggest a reason for the
difference in shape of these two groups of ions. (See J.
Pilmé, E. A. Robinson, R. J. Gillespie, Inorg. Chem., 2006,
45,6198.)

3.27 When XeF, is reacted with a solution of water in CH;CN
solvent, the product F,OXeN=CCHj; is formed. Applying
a vacuum to crystals of this product resulted in slow removal
of CH;CN:

F,0XeN=CCH; —> XeOF, + CH;CN

Propose structures for F,OXeN=CCHj; and XeOF,.

(See D. S. Brock, V. Bilir, H. P. A. Mercier,

G. J. Schrobilgen, J. Am. Chem. Soc., 2007, 129, 3598.)

3.28 The thiazyl dichloride ion, NSCl, ~, is isoelectronic with
thionyl dichloride, OSCl,.



a. Which of these species has the smaller C1—S—Cl
angle? Explain briefly.
b. Which do you predict to have the longer S— CI bond?
Why? (See E. Kessenich, F. Kopp, P. Mayer, A. Schulz,
Angew. Chem., Int. Ed., 2001, 40, 1904.)
3.29 Sketch the most likely structure of PC1;Br, and explain your
reasoning.
3.30 a. Are the CF; groups in PCI3(CF;3), more likely axial or
equatorial? Explain briefly.
b. Are the axial or equatorial bonds likely to be longer in
SbCls? Explain briefly.
3.31 Of the molecules C1SO,CHj3, C1SO,CFj3, and CISO,CCl;,
which has the largest X —S— X angle? Explain briefly.
3.32 Of the molecules FSO,F, FSO,(OCHj;), and FSO,CH;,
which has the smallest O—S — O angle? Explain briefly.
3.33 Elemental Se and Te react with 4-tetrafluoropyridyl silver(I)
to afford Se(CsF4N), and Te(CsF4N),. Two independent
bent molecules were found for each compound in the solid
state with C— Se — C angles 0of 95.47(12)° and 96.16(13)°,
and C—Te—C angles of 90.86(18)° and 91.73(18)°,
respectively (Aboulkacem, S.; Naumann, D.; Tyrra, W.;
Pantenburg, 1. Organometallics, 2012, 31, 1559).

F F F F
2 N MAg + E ——» [N »1E + 2Ag

Q E=Se, Te \ ¢

F F F F2

a. Explain why the angles are more acute for the Te com-
pound relative to the Se compound.

b. These angles are approximately 0.8° (Se) and 2.0° (Te)
more acute than those in the related pentafluorophenyl
(C¢Fs) compounds. The greater compression of these
angles in the 4-tetrafluoropyridyl compounds has been
postulated on the basis of group electronegativity differ-
ences. Explain the logic associated with this hypothesis.

3.34 Which has the smaller F—P—F angle, PF, " or PF;0?
Which has the longer fluorine—fluorine distance? Explain
briefly.

3.35 Account for the trend in P—F,;, distances in the
compounds PF4(CH3), PF;(CHs),, and PF,(CHs);. (See
Figure 3.19.)

3.36 Although the C—F distances and the F—C—F bond
angles differ considerably in F, C=CF,, F,CO, CF,, and
F;CO™ (C—F distances 131.9 to 139.2 pm; F—C—F
bond angles 101.3° to 109.5°), the F - - - F distance in all
four structures is very nearly the same (215 to 218 pm).
Explain, using the LCP model of Gillespie. (See R. J.
Gillespie, Coord. Chem. Rev., 2000, 197, 51.)

3.37 The Cl - - - Cl distance in CCly is 289 pm, and the C—Cl
bond distance is 171.1 pm. Using the LCP model, calculate
the C—Cl distance in Cl,CO, which has a CI —C—Cl
angle of 111.8°.
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3.38 The F—C—F angle in F,CO, shown here, is 109.5°; the
C—F distance is 131.7 pm, and the F - - - F distance is
215 pm. On the basis of the LCP model, predict the C—F
distance in the CF;" ion.

3.39 Compounds in which hydrogen is the outer atom can pro-
vide challenges to theories of chemical bonding. Con-
sider the following molecules. Using one or more of the
approaches described in this chapter, provide a rationale
for HOF having the smallest bond angle in this set.

A A AN

104.5° 9720 F Fo03.30
152 pm 183 pm 220 pm
<> e T—

3.40 For each of the following bonds, indicate which atom is
more negative, then rank the series in order of polarity.

a. C—N b. N—O c. C—I

d. 0—Cl e. P—Br f. S—ClI
3.41 Give Lewis dot structures and shapes for the following:

a. VOCl; b. PCl; c. SOF,

d. SO, e. ICl; f. SFs

g. IF; h. XeO,F, i. CF,Cl,

J- P40

(P4Og is a closed structure with overall tetrahedral arrange-
ment of phosphorus atoms; an oxygen atom bridges each
pair of phosphorus atoms.)

3.42 Give Lewis dot structures and sketch the shapes for the

following:
a. PH; b. H,Se c. SeF,
d. PFs e. IF; f. XeO,
g. BF2C1 h. SI]C12 i. KTFZ
j. IO,Fs?~

3.43 Which of the molecules in Problem 3.41 are polar?
3.44 Which of the molecules in Problem 3.42 are polar?
3.45 Provide explanations for the following:

a. Methanol, CH30H, has a much higher boiling point
than methyl mercaptan, CH;SH.

b. Carbon monoxide has slightly higher melting and
boiling points than Nj.

c. The ortho isomer of hydroxybenzoic acid
[CcH4(OH)(CO,H)] has a much lower melting point
than the meta and para isomers.

d. The boiling points of the noble gases increase with
atomic number.

F
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€.

g.

Acetic acid in the gas phase has a significantly lower
pressure (approaching a limit of one half) than predicted
by the ideal gas law.

Mixtures of acetone and chloroform exhibit significant
negative deviations from Raoult’s law, which states that
the vapor pressure of a volatile liquid is proportional to
its mole fraction. For example, an equimolar mixture of
acetone and chloroform has a lower vapor pressure than
either of the pure liquids.

Carbon monoxide has a greater bond-dissociation energy
(1072 kJ/mol) than molecular nitrogen (945 kJ/mol).

3.46 Structural data for classical molecules is updated as new
experiments are devised to improve precision and accuracy.

Consider the trifluoromethyl compounds E(CF;3); where
E=P, As, Sb. The following C —E — C angles were deter-
mined for gas-phase E(CF;); by electron diffraction in the
middle of the twentieth century: E =P, 99.6(25)°; E = As,
100.1(35)°; E = Sb, 100.0(35)°. (Berger, R. J. F.; Mitzel,
N. W. J. Mol. Struc., 2010, 978, 205).
a. Does the trend in these angles seem reasonable? Explain.
b. A more rigorous electron diffraction gas-phase experi-
ment found a C—As—C angle for As(CF;); of
95.4(3)°, that compared favorably to the computation-
ally determined angle of 95.9°. Which of the other two
C—E—C angles seems more suspect, and should be
reinvestigated using modern techniques? Explain.



Chapter 4 / /

Symmetry and Group
Theory

Symmetry is a phenomenon of the natural world, as well as the world of human invention
(Figure 4.1). In nature, many flowers and plants, snowflakes, insects, certain fruits and
vegetables, and a wide variety of microscopic plants and animals exhibit characteristic
symmetry. Many engineering achievements have a degree of symmetry that contributes to
their esthetic appeal. Examples include cloverleaf intersections, the pyramids of ancient
Egypt, and the Eiffel Tower.

Symmetry concepts are extremely useful in chemistry. By analyzing the symmetry
of molecules, we can predict infrared spectra, describe orbitals used in bonding, predict
optical activity, interpret electronic spectra, and study a number of additional molecular
properties. In this chapter, we first define symmetry very specifically in terms of five
fundamental symmetry operations. We then describe how molecules can be classified on
the basis of the types of symmetry they possess. We conclude with examples of how sym-
metry can be used to predict optical activity of molecules and to determine the number
and types of infrared- and Raman-active molecular vibrations.

In later chapters, symmetry will be a valuable tool in the construction of molecular
orbitals (Chapters 5 and 10) and in the interpretation of electronic spectra of coordination
compounds (Chapter 11) and vibrational spectra of organometallic compounds (Chapter 13).

A molecular model kit is a useful study aid for this chapter, even for those who can
visualize three-dimensional objects easily. We strongly encourage the use of such a kit."

4.1 Symmetry Elements and Operations

All molecules can be described in terms of their symmetry, even if it is only to say they
have none. Molecules or any other objects may contain symmetry elements such as mirror
planes, axes of rotation, and inversion centers. The actual reflection, rotation, or inversion is
called a symmetry operation. To contain a given symmetry element, a molecule must have
exactly the same appearance after the operation as before. In other words, photographs of
the molecule (if such photographs were possible) taken from the same location before and
after the symmetry operation would be indistinguishable. If a symmetry operation yields
a molecule that can be distinguished from the original in any way, that operation is not a
symmetry operation of the molecule. The examples in Figures 4.2 through 4.6 illustrate
molecular symmetry operations and elements.

The identity operation (E) causes no change in the molecule. It is included for math-
ematical completeness. An identity operation is characteristic of every molecule, even if
it has no other symmetry.

*An excellent web site that discusses symmetry with molecular animations has been developed by Dean Johnston,
and can be found at symmetry.otterbein.edu

75
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FIGURE 4.1 Examples of Symmetry.

The rotation operation (C,), also called proper rotation, is rotation through 360°/n
about a rotation axis. We use counterclockwise rotation as a positive rotation. An example
of a molecule having a threefold (C;) axis is CHCls. The rotation axis is coincident with
the C—H bond axis, and the rotation angle is 360°/3 = 120°. Two C; operations may be
performed consecutively to give a new rotation of 240°. The resulting operation is desig-
nated C5” and is also a symmetry operation of the molecule. Three successive C; operations
are the same as the identity operation (C5’ = E).

Many molecules and other objects have multiple rotation axes. For example, snow-
flakes (Figure 4.2) exhibit complex shapes that are nearly always hexagonal and approxi-
mately planar. The line through the center of the flake perpendicular to the plane of the
flake contains a twofold (C,) axis, a threefold (C3) axis, and a sixfold (Cg) axis. Rotations
by 240° (C5?) and 300° (Cy’) are also symmetry operations of the snowflake.

Rotation Angle Symmetry Operation

60° Ce
120° C3(=C¢)
180° Cy(=Cs)
240° Cy* (= Cgh
300° cg

360° Ce(=E)




4.1 Symmetry Elements and Operations | 77

FIGURE 4.2 Rotations.
TE i P
Cl '

H

|

-C

(‘_E@CI
Cl >~ c

/ Cl

Cl

Top view
C, rotations of CHCI,

Structure of the lowest energy C,, €y, and C; rotations
isomer of gas phase TaB of a snowflake design

There are also two sets of three C, axes in the plane of the snowflake, one set through
opposite points and one through the cut-in regions between the points. One of each of these
axes is shown in Figure 4.2. In molecules with more than one rotation axis, the C, axis
having the largest value of  is the highest order rotation axis or principal axis. The highest
order rotation axis for a snowflake is the Cq axis. (In assigning Cartesian coordinates, the
highest order C, axis is usually chosen as the z axis.) When necessary, the C, axes per-
pendicular to the principal axis are designated with primes; a single prime (C,") indicates
that the axis passes through several atoms of the molecule, whereas a double prime (C,")
indicates that it passes between the outer atoms.

Finding rotation axes for some three-dimensional figures can be more difficult but the
same in principle. Nature can be extraordinary when it comes to symmetry—the lowest
energy isomer of gas phase TaB,  (Figure 4.2) has a ten-fold rotation axis!”

In the reflection operation (o) the molecule contains a mirror plane. If details such as
hair style and location of internal organs are ignored, the human body has a left—right mirror
plane, as in Figure 4.3. Many molecules have mirror planes, although they may not be obvi-
ous to identify. The reflection operation exchanges left and right, as if each point had moved
perpendicularly through the plane to a position exactly as far from the plane as when it started.
Linear objects, such as a round wood pencil, or molecules, such as acetylene and carbon
dioxide, have an infinite number of mirror planes that include the center line of the object.

When the plane is perpendicular to the principal axis of rotation, it is called oy,
(horizontal). Other planes, which contain the principal axis of rotation, are labeled o, or ;.

Inversion (i) is a more complex operation. Each point moves through the center of the
molecule to a position opposite the original position and as far from the central point as
where it started.”™ An example of a molecule having a center of inversion is ethane in the
staggered conformation; this inversion operation is shown in Figure 4.4.

Many molecules that seem at first glance to have an inversion center do not; for exam-
ple, methane and other tetrahedral molecules lack inversion symmetry. To see this, hold a
methane model with two hydrogen atoms in the vertical plane on the right and two hydrogen
atoms in the horizontal plane on the left, as in Figure 4.4. Inversion results in two hydrogen
atoms in the horizontal plane on the right and two hydrogen atoms in the vertical plane on
the left. Inversion is therefore not a symmetry operation of methane, because the orientation
of the molecule following the i operation differs from the original orientation. FIGURE 4.3 Reflections.

“The extraordinary observation of this gas phase anion is described in T. R. Galeev, C. Romanescu, W.-L. Li,
L.-S. Wang, A. 1. Boldyrev, Angew. Chem., Int. Ed., 2012, 51, 2101.

“*This operation must be distinguished from the inversion of a tetrahedral carbon in a bimolecular reaction, which
is more like that of an umbrella in a high wind.
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Center of inversion
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7/ H,
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No center of inversion

FIGURE 4.4 Inversion.

FIGURE 4.6 Improper Rotation

or Rotation-Reflection.

Rotation angle

Symmetry operation

Symmetry and Group Theory

Squares, rectangles, parallelograms, rectangular solids, octahedra, and snowflakes
have inversion centers; tetrahedra, triangles, and pentagons do not (Figure 4.5).

N OO

(b)
FIGURE 4.5 Figures (a) With and (b) Without Inversion Centers.

A rotation-reflection operation (S,), or improper rotation, requires rotation of
360°/n, followed by reflection through a plane perpendicular to the axis of rotation.
In methane, for example, a line through the carbon and bisecting the angle between
two hydrogen atoms on each side is an S, axis. There are three such lines, for a total
of three S4 axes; a tetrahedron has six edges, and each of these axes bisects a pair of
opposite edges. The operation requires a 90° rotation of the molecule, followed by
reflection through the plane perpendicular to the axis of rotation. Two S, operations in
succession generate a C,, operation. For example, in methane, two S, operations are
equivalent to a C,. These operations are shown in Figure 4.6, along with a table of C
and S equivalences for methane.

Molecules sometimes have an S, axis that is coincident with a C, axis. For example,
in addition to the rotation axes described previously, snowflakes have S, (= i), S5, and Sy
axes coincident with the Cg axis. Molecules may also have §,, axes coincident with C,;
methane is an example, with S, axes coincident with C, axes, as shown in Figure 4.6.

Note that an S, operation is the same as inversion, and an S, operation is the same as
a reflection plane. The i and o notations are preferred in these cases.” Symmetry elements
and operations are summarized in Table 4.1.

First §,:

90°
180°
270°
360°

H;

"This preference originates from the group theory requirement of maximizing the number of unique classes of
symmetry operations associated with a molecule, to be discussed in Section 4.3.3.
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TABLE 4.1 Summary Table of Symmetry Elements and Operations

Symmetry Operation Symmetry Element Operation
Identity, £ None All atoms unshifted

Rotation, C, Rotation axis Rotation by 360°/n

G

Cy

Ce

Reflection, o Mirror plane Reflection through a
mirror plane

Inversion, i Inversion center Inversion through the
(point) center

Rotation by 360° /n, followed
by reflection in the plane
perpendicular to the rotation axis

Rotation-reflection

Rotation-reflection, S, . .
axis (improper axis)

Sy

Se

Examples

|
CHFCIBr _ .C
F 7/ N\
Cl Br

p-dichlorobenzene
Cl Cl

G
Cl_ .Cl
[PtC1,]* "Bt
c1 | >al
CS

Cyclopentadienyl
group

Co

Benzene

|
H,0 H H

Ferrocene (staggered) Fe

Ethane (staggered)

Ferrocene (staggered) Fe
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EXAMPLE 4.1

Find all the symmetry elements in the following molecules. Consider only the atoms
when assigning symmetry. While lone pairs influence shapes, molecular symmetry is
based on the geometry of the atoms.

H,0

H,O has two planes of symmetry, one in the plane of the molecule and one perpendicu-

lar to the molecular plane, as shown in Table 4.1. It also has a C, axis collinear with the
intersection of the mirror planes. H,O has no inversion center.

p-Dichlorobenzene

This molecule has three mirror planes: the molecular plane; a plane perpendicular to
the molecule, passing through both chlorines; and a plane perpendicular to the first two,
bisecting the molecule between the chlorines. It also has three C, axes, one perpendicu-
lar to the molecular plane (see Table 4.1) and two within the plane, one passing through
both chlorines and one perpendicular to the axis passing through the chlorines. Finally,
p-dichlorobenzene has an inversion center.

Ethane (staggered conformation)

Staggered ethane has three mirror planes, each containing the C— C bond axis and
passing through two hydrogens on opposite ends of the molecule. It has a C; axis col-
linear with the carbon—carbon bond and three C, axes bisecting the angles between the
mirror planes. (Use of a model is helpful for viewing the C, axes.) Staggered ethane
also has a center of inversion and an Sg axis collinear with the C; axis (see Table 4.1).

EXERCISE 4.1 Using a point in a three dimensional Cartesian coordinate system, show
that S, = iand §; = 0.

EXERCISE 4.2 Find all the symmetry elements in the following molecules:

NH; Cyclohexane (boat conformation) Cyclohexane (chair conformation) XeF,

4.2 point Groups

Each molecule has a set of symmetry operations that describes the molecule's overall
symmetry. This set of symmetry operations is called the point group of the molecule.
Group theory, the mathematical treatment of the properties of groups, can be used to
determine the molecular orbitals, vibrations, and other molecular properties. Navigation
of a standard sequence of steps allows systematic deduction of point groups. A flowchart
of these steps is shown in Figure 4.7.

1. Determine whether the molecule exhibits very low symmetry (C;, C,, C;) or high sym-
metry (Ty, Oy, Cw,, Do), 01 1) as described in Tables 4.2 and 4.3.

2. If not, find the rotation axis with the highest n, the highest order C,, (or principal) axis,
for the molecule.

3. Does the molecule have any C, axes perpendicular to the principal C,, axis? If it does,
there will be n of such C, axes, and the molecule is in the D set of groups. If not, it is
in the C or S set.



4. Does the molecule have a mirror plane (o) perpendicular to the principal C, axis?

If so, it is classified as C,,, or D,;,. If not, continue with Step 5.

5. Does the molecule have any mirror planes that contain the principal C, axis (o, or 0 ,)?
If so, it is classified as C,, or D, . If not, but it is in the D set, it is classified as D,,.

If the molecule is in the C or S set, continue with Step 6.

6. Is there an S, axis collinear with the principal C, axis? If so, it is classified as S,,,.

If not, the molecule is classified as C,,.

1

T

d’

0,

Yes

nh

Yes

,C

5

Yes

I

C h

oov® ooh’

Yes

D groups

@"h?

@ Group of low
symmetry?

No

@ Group of high
symmetry?

No

@ Highest-order
rotation axis

c

n

@ Perpendicular
C, axes?

No

@Ud?

Yes

nd

No

CorS,, groups

@ oy?

Yes

No

9
@Uv'

@SZH?

No
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FIGURE 4.7 Diagram of the
Point Group Assignment
Method.
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FIGURE 4.8 Molecules to H
Be Assigned to Point Groups. H\ _H (N
ann — A, F C
en = ethylenediamine = | | N-... | N
NHZCHZCHZNHZ, represented F— \1; C N> C|O \N> ..\
by N " N. I H V\H N Hy "H
H—Cl 0=C=0 F H ) H
HCI co, PF, H,CCH, [Co(en) > NH,
F
H i H cl Br H | F H
| N V2 _ /
C L c—cC Cl~c—c’. F—S—F 0—0
Hy™SH  F¢ “Br /7 N /N a ] /
H Cl H Br H Br F H
CH, CHFCIBr H,C= CCIBr HCIBrC — CHCIBr SF, H,0,
Br

f </

ol

Br
1,5-dibromonaphthalene 1,3,5,7-tetrafluoro- dodecahydro-closo-dodecaborate
cyclooctatetraene (2—) ion, B12H1227 (each corner has
a BH unit)

Each step is now illustrated by assigning point groups to the molecules in Figure 4.8.
The low- and high-symmetry cases are treated differently because of their special nature.
Molecules that are not in one of these low- or high-symmetry point groups can be assigned
to a point group by following steps 2 through 6.

421 Groups of Low and High Symmetry

1. Determine whether the molecule belongs to one of the special cases of low or high
i symmetry. '

Inspection of the molecule will determine if it fits one of the low-symmetry cases.
These groups have few or no symmetry operations and are described in Table 4.2.

TABLE 4.2 Groups of Low Symmetry

Group Symmetry Examples
C, No symmetry other than the CHFCIBr H
identity operation é
F4 OBr
Cl
(@ Only one mirror plane H,C=CCIBr H Cl
/
Cc=C
H Br
C; Only an inversion center; few HCIBrC — CHCIBr Br H
molecular examples (staggered conformation) ~ Cl \\C_ C/
/o TR
H Br




TABLE 4.3 Groups of High Symmetry

Group Description Examples

COOOLH—CI
C2
c.o—¢=o

Cs, These molecules are linear, with an infinite number
of rotations and an infinite number of reflection
planes containing the rotation axis. They do not
have a center of inversion.

Dy, These molecules are linear, with an infinite number
of rotations and an infinite number of reflection
planes containing the rotation axis. They also have
perpendicular C, axes, a perpendicular reflection
plane, and an inversion center.

T, Most (but not all) molecules in this point group H
have the familiar tetrahedral geometry. They have |
four C5 axes, three C, axes, three S, axes, and six ,/C\H
H{
o, planes. They have no C, axes. H
(o These molecules include those of octahedral struc- F
ture, although some other geometrical forms, such | F
—F

as the cube, share the same set of symmetry opera-
tions. Among their 48 symmetry operations are four F 1|7
Cj; rotations, three C, rotations, and an inversion.

I, Icosahedral structures are best recognized by their
six Cs axes, as well as many other symmetry opera-

tions—120 in all. y

&z

B,H,>~ with BH
at each vertex of
an icosahedron

In addition, there are four other groups, 7, T}, O, and I, which are rarely seen in nature. These groups are discussed at the end
of this section.

Low Symmetry

CHFCIBr has no symmetry other than the identity operation and has C; symmetry,
H,C=CCIBr has only one mirror plane and C, symmetry, and HCIBrC—CHCIBr in
the staggered conformation has only a center of inversion and C; symmetry.

High Symmetry

Molecules with many symmetry operations may fit one of the high-symmetry cases of
linear, tetrahedral, octahedral, or icosahedral symmetry with the characteristics described
in Table 4.3. Molecules with very high symmetry are of two types, linear and polyhe-
dral. Linear molecules having a center of inversion have D, symmetry; those lacking an
inversion center have C..,, symmetry. The highly symmetric point groups 7, O, and I;, are
described in Table 4.3. It is helpful to note the C, axes of these molecules. Molecules with
T, symmetry have only C; and C, axes; those with O, symmetry have C, axes in addition
to C5 and C5; and I, molecules have Cs, Cs, and C, axes.

HClI has C.,, symmetry, CO, has D, symmetry, CH4 has tetrahedral (7,) symmetry,
SF; has octahedral (0),) symmetry, and B,,H,,°~ has icosahedral (/,) symmetry.
There are now seven molecules left to be assigned to point groups out of the original 15.

4.2 Point Groups | 83
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FIGURE 4.9 Rotation Axes.

4.2.2 other Groups

2. Find the rotation axis with the highest n, the highest order C, (or principal) axis

for the molecule.

The rotation axes for the examples are shown in Figure 4.9. Some molecules feature
multiple equivalent rotation axes of highest order. In this case, any one can be chosen as

the principal axis.

3. Does the molecule have any C, axes perpendicular to the principal C, axis?

Examples of the C, axes are shown in Figure 4.10.

Yes: D Groups

PFs, H;CCH;, [Co(en);]* "

No: C or S Groups

NHs, 1,5-dibromonaphthalene, H,O,,
1,3,5,7-tetrafluorocyclooctatetraecne

Molecules with C, axes perpendicular to Molecules with no perpendicular C,
the principal axis are in one of the groups axes are in one of the groups designated
designated by the letter D; there are n of by the letters C or S.

these perpendicular C, axes.

While point group assignments have not yet been made, the molecules are now divided
into two major categories, the D set and the C or S set.

(N
G Nz(Cvo/N>
"N* | N
(Y

C; perpendicular to

1,3,5,7-tetrafluoro-

cyclooctatetraene the plane of the page
[Co(en)3 ]3+
Br
C2
H
2R
c 0—O0
2 N
Br H
C, perpendicular to the H,0,

plane of the molecule

1,5-dibromonaphthalene



N H3 1,5-dibromonaphthalene }11202 1,3,5,7-tetrafluorocylooctatetraene
No No No No

FIGURE 4.10 Perpendicular C, Axes. While all three perpendicular C, axes are shown for PF, only one out
of three of these axes is shown for both H;CCH; and [Co(en),13*.

4. Does the molecule have a mirror plane (o, horizontal plane) perpendicular to the
principal C,, axis? i

The horizontal mirror planes are shown in Figure 4.11.

D Groups C and S Groups
Yes Yes
PFs is Dj), 1,5-dibromonaphthalene is C,,

Point groups are now assigned to these molecules. Both have horizontal mirror planes.

No D, orD,,
H;CCH3, [Co(en);]**

None of these have horizontal mirror planes; they must be carried further in the process.

No C,, C,,, or S,,
NH;, H,0,,
1,3,5,7-tetrafluorocyclooctatetraene

D Groups C and S Groups
Yes Yes
H;CCHj5 (staggered) is D3y NH; is Gj,
D Groups C and S Groups
H,CCH, [Co(en)3 ]H NH, H,0, 1,3,5,7-tetrafluoro-
cyclooctatetraene
No No No No No
F
F I‘) - F O br
T~
s in @)
I
F
PF5 1,5-dibromonaphthalene
Yes Yes
D C

2h
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FIGURE 4.11 Horizontal Mirror
Planes.
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5. Does the molecule have any mirror planes that contain the principal C, axis?

These mirror planes are shown in Figure 4.12.

FIGURE 4.12 Vertical or

Dihedral Mirror Planes or S, D Groups C and S Groups
Axes. 047 0,7 Son?
[Co(en),]** H,0, 1,3,5,7,-tetrafluoro- H,0,
cyclooctatetraene
No No
C.

1,3,5,7,-tetrafluoro-

cyclooctatetraene
Yes Yes Yes

D3d C3v S4

These molecules have mirror planes containing the principal C, axis, but no horizontal
mirror planes, and are assigned to the corresponding point groups. There are n of these
mirror planes.

No[D,] No C,or S,,
[Co(en);]*" is Dy H,0,, 1,3,5,7-tetrafluorocyclooctatetraene

These molecules are in the simpler rotation groups D,, C,, and S,, because they do
not have any mirror planes. D, and C, point groups have only C, axes. S,, point groups
have C, and S,, axes and may have an inversion center.

6. Is there an S,, axis collinear with the principal C, axis?

D Groups C and S Groups

Any molecules in this category that have  Yes 1,3,5,7-tetrafluorocyclooctatetraene
S,, axes have already been assigned to is S,

groups. There are no additional groups

to be considered here.

No
H202 is C2
We have only one example in our list that falls into the S,, groups, as seen in Figure 4.12.

A flowchart that summarizes this point group assignment method is given in Figure 4.7,
and more examples are given in Table 4.4.



TABLE 4.4 Further Examples of C and D Point Groups

General Label Point Group and Example

Cnh

Dnh

C2h

G

G

difluorodiazene

B(OH);, planar

H,0

PCl,

BrFs (square pyramid)

HF, CO, HCN

N,H,, which has a
gauche conformation

P(C¢Hs)s, which is like
a three-bladed propel-
ler distorted out of the
planar shape by a lone
pair on the P

BF,

PtC1,>~

0s(CsHs), (eclipsed)

benzene

(continues)
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TABLE 4.4 Further Examples of C and D Point Groups (cont.)

General Label Point Group and Example
D, F,, N, F—F N=N
acetylene (C,H,) H—C=C—H
H
D,y Dsy H,C=C=CH,, allene c=cC =C"\"E

D Ni(cyclobutadiene),
ad (staggered)
Ds, Fe(CsHs), (staggered) Fe
_l 2+
[Ru(NH,CH,CH,NH,); ] ** N
D D (treating the N-... | N
" 3 NH,CH,CH,NH, <N RSN
group as a planar ring) NJ

Determine the point groups of the following molecules from Figures 3.13 and 3.16.

XeF4
1. XeF, is not in a low or high symmetry group.
2. Its highest order rotation axis is Cy.
3. It has four C, axes perpendicular to the C, axis and is therefore in the D set of
groups.
4. Tt has a horizontal plane perpendicular to the C, axis. Therefore its point group is Dyy,.

SF,

1. SF, is not in a high or low symmetry group.

2. Its highest order (and only) rotation axis is a C, axis passing through the lone pair.
3. The ion has no other C, axes and is therefore in the C or S set.

4. It has no mirror plane perpendicular to the C,.

5. It has two mirror planes containing the C, axis. Therefore, the point group is C,,.

I0F;
1. The molecule has has only a mirror plane. Its point group is C;.

EXERCISE 4.3  Use the procedure described previously to verify the point groups of
the molecules in Table 4.4.



C Versus D Point Group Classifications

All molecules having these classifications must have a C, axis. If more than one C,, axis is
found, the highest order (principal) axis (largest value of n) is used as the reference axis.
It is generally useful to orient this axis vertically.

D Classifications C Classifications

General Case:

Look for C, axes perpendicular to the nC, axes L C, axis No C; axes L C, axis
highest order C, axis.
Subcategories:
If a horizontal plane of symmetry exists: D, C.n
If n vertical planes exist: D,, C,,
If no planes of symmetry exist: D, €y
NOTES:

1. Vertical planes often contain the highest order C, axis. In the D, case, these planes are designated dihedral (thus,
the subscript d) because they are between the C, axes.

2. The presence of a C,, axis does not guarantee that a molecule will be in a D or C category; the high-symmetry
T4, Oy, and I, point groups and related groups have a large number of C,, axes.

3. When in doubt, check the character tables (Appendix C) for a complete list of symmetry elements for any
point group.

Groups Related to /;,, O, and T, Groups

The high-symmetry point groups [, O,, and T}, are ubiquitous in chemistry and are repre-
sented by the classic molecules Cg, SF4, and CH,. For each of these point groups, there is
a purely rotational subgroup (/, O, and T, respectively) in which the only symmetry opera-
tions other than the identity operation are proper axes of rotation. The symmetry operations
for these point groups are in Table 4.5.

One more high-symmetry point group, 77, remains. The 7}, point group is derived by
adding a center of inversion to the 7 point group; adding i generates the additional symmetry
operations S, S¢°, and o,. T}, symmetry is known for only a few molecules. The compound
shown in Figure 4.13 is an example. /, O, and T symmetry are rarely encountered in chemistry.

That’s all there is to it! It takes a fair amount of practice, preferably using molecular
models, to learn the point groups well, but once you know them, they are extremely useful.
Several practical applications of point groups are discussed in this chapter, and additional
applications are included in later chapters.
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H,C CH;
\/
H,C N
\ H,C
N.__ " _N—CH,
H,C  “w’
3 / \ ,CH3
H,C---N N
cH \
3
j\f CH,
H,C CHs

FIGURE 4.13 W[N(CHs),ls, a
Molecule with T, Symmetry.

TABLE 4.5 Symmetry Operations for High-Symmetry Point Groups and Their Rotational Subgroups

Point Group Symmetry Operations

I, E 12Cs 12C3  20C;  15C, i 12840
I E 12C;5 12¢%  20C;  15G,

0, E 8C; 6C, 6C, 3C(=CH i 65,
0 E 8C; 6C, 6C, 3C(= CP)

T, E 8C; 3G, 6S,
T E  4C, 4CE 3G

T, E 4C;  4CH 3G, i 45,

128, 208 150
8S6 30-11 60’d
60’d

455 30y,
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4.3 Properties and Representations of Groups

All mathematical groups, including point groups, must have certain properties. These
properties are listed and illustrated in Table 4.6, using the symmetry operations of NH;

in Figure 4.14 as an example.

FIGURE 4.14 Symmetry y
Operations for Ammonia. (Top

view) NH3 is of point group G,

with the symmetry operations

E G, CGloy, 0,,and o, usually

written as E, 2G;, and 30, (note H
that G33 = E).

—

T

<

I

H
|
]

X

H~ | SH

R

TABLE 4.6 Properties of a Group

C5 rotation about the z axis

I i

Hy SHy;  H{ TH,

NHj after E NHj; after Cy

One of the mirror planes

Iill
N
PN

H3 H,

NH; after o, (yz)

Property of Group

1. Each group must contain an identity operation that
commutes (in other words, EA = AFE) with all other

Examples from Point Group

operation E.

members of the group and leaves them unchanged

(EA = AE = A).

2. Each operation must have an inverse that, when

H,

combined with the operation, yields the identity opera- ' Gy

tion (sometimes a symmetry operation may be its own
inverse). Note: By convention, we perform sequential
symmetry operations from right to left as written.

C3, molecules (and all molecules) contain the identity

H H
2o !

H,
| o
N

Vv

N N N
Hy \H3Q HY \Hngz/ “H,

C>C; = E (C; and C4” are inverses of each other)

H, H,
| o, |
N

PN I /N\ I 77N
H "Hy . Hy “H, | H “Hj

0,0, = E (mirror planes are shown as dashed lines; o, is its

own inverse)

3. The product of any two group operations must also be a H,
member of the group. This includes the product of any | (O

operation with itself.

4. The associative property of combination must hold. In
other words, A(BC) = (AB)C.

N

H, H,

| o, |

— N —> N
H “H;{ H{ “H, | Hy "H

H,
O-V” &
ﬁ
- PN
-~ Hy H,

0,C5 has the same overall effect as o,"’, therefore we write
0,C3 = o,”. It can be shown that the products of any two
operations in Cj3, are also members of Cj,.

C3(0'v0-v/) = (CSO-V)O-VI
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4.3.1 Matrices
Important information about the symmetry aspects of point groups is summarized in
character tables, described later in this chapter. To understand the construction and use
of character tables, we must consider the properties of matrices, which are the basis for
the tables.”

A matrix is an ordered array of numbers, such as

{3 7}or[Z 0O 1 3 5]
2 1

While the properties of the symmetry operations that comprise a group can be exam-
ined by using a molecule (as described previously), the most rigorous tests require applica-
tion of the matrices that define the operations. To multiply matrices, the number of vertical
columns of the first matrix must be equal to the number of horizontal rows of the second
matrix. To find the product, add, term by term, the products of each row of the first matrix
by each column of the second (each term in a row must be multiplied by its corresponding
term in the appropriate column of the second matrix). Place the resulting sum in the product
matrix with the row determined by the row of the first matrix and the column determined
by the column of the second matrix:

Cyj = Ay X By

Here, C; = product matrix, with i rows and j columns
A; = initial matrix, with i rows and k columns
By; = initial matrix, with k rows and j columns
EXAMPLE 4.3
k J J J

1=

A7) + (©6)4)  (D(3) + (6)(8)

This example has two rows and two columns in each initial matrix, so it has two rows
and two columns in the product matrix; i = j = k = 2.

.{1 5}X{7 3},{_[(1)(7)‘*'(5)(4) (1)(3)‘*'(5)(8)]._{27 43].
12 6/7[a 8] 38 54/

k J
1 00
i 2 3110-1 0lk=
0 0 1

J J
[(DH(1) +(2)(0) +(3)(0) (1)(0)+(2)(—1)+(3)(0) (DHO)+2)O0)+B)(D)]i = [1 =2 3]
Here,i = 1, j = 3, and k = 3, so the product matrix has one row (i) and three
columns (j).

k J J J

I 0 01 (HM + O)2) + 0)3) 1
10—=1 0[|2/k=|O)DH+(DR)+O)3)|i=]|—-2|i

0 O I1JL3 O)n + O + 1)3) 3

Here i = 3,j = 1, and k = 3, so the product matrix has three rows (i) and one
column (j).

“More details on matrices and their manipulation are available in Appendix 1 of F. A. Cotton, Chemical
Applications of Group Theory, 3rd ed., John Wiley & Sons, New York, 1990, and in linear algebra and finite
mathematics textbooks.
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EXERCISE 4.4 Do the following multiplications:
5 1 3 2 1 1
a 4 2 2| x|1 2 3
L1 2 3 5 4 3
(1 -1 -2 2
b 0 1 —-1|X
L1 0 0 3
1 -1 -2
c. [1 2 3]1X|2 1 -1
3 2 1

43.2 Representations of Point Groups

Symmetry Operations: Matrix Representations

We will now consider how the C,, point group symmetry operations transform a set of x,
¥, and z coordinates. The water molecule possesses C,, symmetry. It has a C, axis through
the oxygen and in the plane of the molecule, no perpendicular C, axes, and no horizon-
tal mirror plane; but it does have two vertical mirror planes, as shown in Table 4.1 and
Figure 4.15. The z axis is usually chosen as the axis of highest rotational symmetry; for
H,O0, this is the only rotational axis. The other axes are arbitrary. We will use the xz plane
as the plane of the molecule.” This set of axes is chosen to obey the right-hand rule (the
thumb and first two fingers of the right hand, held perpendicular to each other, are labeled
X, y, and z, respectively).

Each symmetry operation can be expressed as a transformation matrix as follows:
[New coordinates] = [transformation matrix] [old coordinates]

As examples, consider how transformation matrices can be used to represent the symmetry
operations of the C,, point group:

C,: Rotate a point having coordinates (x, y, z) about the Cy(z) axis. The new coordi-
nates are given by

x'=newx = —x -1 0 0
y =newy= —y 0-1 0 Transformation matrix for C,
7’ =newz=7z 0 0 1
T A
O O\ /O /O
H, H, H, H, H, H, H, H,
Coordinate system After C, After o (xz) After o(yz)

FIGURE 4.15 Symmetry Operations of the Water Molecule.

“Some sources use yz as the plane of the molecule. The assignment of B, and B, in Section 4.3.3 is reversed with
this choice.
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In matrix notation,

x’ -1 0 0 X —Xx x' —Xx
y| =] 0-1 0 y = —y| or |y |=|~y
7 0 0 1 z b4 4 z

matrix coordinates in terms of old

{ New } . {transformation“ old } . {new coordinates}
coordinates

o,(xz): Reflect a point with coordinates (x, y, z) through the xz plane.

x' =newx =x 1 0 O
y =newy= —y 0-1 0 Transformation matrix for o (xz)
7’ =newz=7z3 0 0 1

The matrix equation is

! 1 0 O X x' X
"I=10 -1 0 =|—ylor|y |=]|—y
z' 0 0 1]lz Z 4 Z

The transformation matrices for the four symmetry operations of the group are

1 0 0 -1 0 0 1 0 O -1 0 0
E|0O 1 0| Cyx| O0-1 O0|o,(x:|/0 -1 0|0o,/020:| 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

Verify the transformation matrices for the E and o,’(yz) operations of the C,, point

group.
This set of matrices satisfies the properties of a mathematical group. We call this a matrix
representation of the C,, point group. This representation is a set of matrices, each cor-
responding to an operation in the group; these matrices combine in the same way as
the operations themselves. For example, multiplying two of the matrices is equivalent to
carrying out the two corresponding operations and results in a matrix that directly trans-
forms the coordinates as does the combination of symmetry operations (the operations are
carried out right to left, so C, X o, means o, followed by C,):

-1 0 0][1 0 0 -1.0 0
C,Xo)=| 0—-1 0flo—-1 0o|=| 0 1 0|=0,/02
o o 1Jlo o 1 0 0 1

The matrices of the matrix representation of the C,, group also describe the operations
of the group shown in Figure 4.15. The C, and o,’(yz) operations interchange H; and H,,
whereas E and o (xz) leave them unchanged.
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Characters

The character, defined only for a square matrix, is the trace of the matrix, or the sum of
the numbers on the diagonal from upper left to lower right. For the C,, point group, the
following characters are obtained from the preceding matrices:

E CZ Uv(xz) gy ! (YZ)
3 -1 1 1

This set of characters also forms a representation, a shorthand version of the matrix
representation. This representation is called a reducible representation, a combination of
more fundamental irreducible representations as described in the next section. Reducible
representations are frequently designated with a capital gamma (I').

Reducible and Irreducible Representations

Each transformation matrix in the C,, set can be “block diagonalized”; that is, it can be
broken down into smaller matrices along the diagonal, with all other matrix elements
equal to zero:

0 [—1] 0 0 [1] 0 0 [—11 O 0
0| Cy 0O [-11 O | o 0 [-11 O | o,/02: 0O [11 O
[1] 0 0 [1] 0 0 [1] 0 0 [1]

All the nonzero elements become 1 X 1 matrices along the principal diagonal.

When matrices are block diagonalized in this way, the x, y, and z coordinates are also
block diagonalized. As a result, the x, y, and z coordinates are independent of each other.
The matrix elements in the 1,1 positions (numbered as row, column) describe the results of
the symmetry operations on the x coordinate, those in the 2,2 positions describe the results
of the operations on the y coordinate, and those in the 3,3 positions describe the results of
the operations on the z coordinate. The four matrix elements for x form a representation of
the group, those for y form a second representation, and those for z form a third representa-
tion, all shown in the following table:

E C, o,(x2) o,'(v2) Coordinate Used
1 -1 1 -1 X
1 -1 -1 1 y
1 1 1 1
r 3 =1 1 1

These irreducible representations of the C,, point group add to make up the reducible
representation I

Each row is an irreducible representation: it cannot be simplified further. The charac-
ters of these three irreducible representations added together under each operation (column)
make up the characters of the reducible representation I', just as the combination of all the
matrices for the x, y, and z coordinates makes up the matrices of the reducible representa-
tion. For example, the sum of the three characters for x, y, and z under the C, operation is
—1, the character for I" under this same operation.

The set of 3 X 3 matrices obtained for H,O is called a reducible matrix representation
because it is the sum of irreducible representations (the block-diagonalized 1 X 1 matri-
ces), which cannot be reduced to smaller component parts. The set of characters of these
matrices also forms the reducible representation I, for the same reason.



4.3.3 cCharacter Tables
Three of the representations for C,,, labeled A, By, and B,, have now been determined.
The fourth, called A,, can be found by using the group properties described in Table 4.7.
A complete set of irreducible representations for a point group is called the character
table for that group. The character table for each point group is unique; character tables

for common point groups are in Appendix C.
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TABLE 4.7 Properties of Characters of Irreducible Representations in Point Groups

Property Example: C,,

1.

The total number of symmetry operations
in the group is called the order (/). To
determine the order of a group, simply
total the number of symmetry operations
listed in the top row of the character table.

. Symmetry operations are arranged in

classes. All operations in a class have
identical characters for their transfor-
mation matrices and are grouped in the
same column in character tables.

. The number of irreducible representations

equals the number of classes. This means
that character tables have the same number
of rows and columns (they are square).

. The sum of the squares of the

dimensions (characters under E) of each
of the irreducible representations equals
the order of the group.

h = %[)(,»(En2

. For any irreducible representation, the

sum of the squares of the characters
multiplied by the number of operations in
the class (see Table 4.8 for an example),
equals the order of the group.

— 2
h = SGR)]

. Irreducible representations are

orthogonal to each other. The sum of
the products of the characters, multiplied
together for each class, for any pair of
irreducible representations is 0.

h = SxRX[R) = 0 when i # j

Taking any pair of irreducible representa-
tions, multiplying together the characters
for each class, multiplying by the number
of operations in the class (see Table 4.8
for an example), and adding the products
gives zero.

. All groups include a totally symmetric

representation, with characters of 1 for
all operations.

Order = 4
four symmetry operations:
E, Cy, 0(x2), and 0, (y2)

Each symmetry operation is in a separate
class; therefore, there are four columns in
the character table.

Because there are four classes, there must
also be four irreducible representations—
and there are.

12+ 12 + 12 + 12 = 4 = h, the order of
the group.

For Ay, I + 17+ (=1)* + (=1)* =4 = h.
Each operation is its own class in this
group.

B, and B, are orthogonal:
(DD + (=DH(=D + (=D + (=D(1) =0
E (033 o) o, ()

Each operation is its own class in this
group.

C,, has Ay, in which all characters = 1.
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General case: x' =x cos § — y sin §
y’=xsin0+ycos(9
For C5: 6 =27/3 =120°

General Transformation Matrix
for rotation by 6° about z axis:

cosf —sinf O
sin6 cosf O
0 0 1

FIGURE 4.16 Effect of Rotation
on Coordinates of a Point.

Symmetry and Group Theory

The complete character table for C,,, with the irreducible representations in the order
commonly used, is:

Cy, E (&) 0,(xz) a,'(y2)

Ay 1 1 1 1 z P e
A, 1 1 -1 -1 R, Xy

B, 1 -1 1 -1 X, R, Xz

B, 1 -1 -1 1 v, R, vz

The labels used with character tables are:

X,z transformations of the x, y, z coordinates or combinations thereof

R. R, R, rotation about the x, y, and z axes

R any symmetry operation, such as C, or o,(xz)

X character of an operation

iandj designation of different representations, such as A; or A,

h order of the group (the total number of symmetry operations in the group)

The labels in the left column that designate the irreducible representations will be
described later in this section. Other useful terms are defined in Table 4.7.

The A, representation of the C,, group can now be explained. The character table
has four columns; it has four classes of symmetry operations (Property 2 in Table 4.7). It
must therefore have four irreducible representations (Property 3). The sum of the products
of the characters of any two representations must equal zero (orthogonality, Property 6).
Therefore, a product of A; and the unknown representation must have 1 for two of the
characters and —1 for the other two. The character for the identity operation of this new
representation must be 1 [y(E) = 1] to have the sum of the squares of these characters
equal 4 (required by Property 4). Because no two representations can be the same, A, must
then have x(E) = x(C,) = 1, and x(o,,) = x(o,,) = —1. This representation is also
orthogonal to B; and B,, as required. '

The relationships among symmetry operations, matrix representations, reducible and
irreducible representations, and character tables are conveniently illustrated in a flowchart,
as shown for C,, symmetry in Table 4.8.

Prepare a representation flowchart according to the format of Table 4.8 for trans-N,F,,
which has C,;, symmetry.

Another Example: G, (NHs)

Full descriptions of the matrices for the operations in this group will not be given, but the
characters can be found by using the properties of a group. Consider the C; rotation shown
in Figure 4.16. Counterclockwise rotation of 120° results in a new x’ and y’ as shown, which
can be described in terms of the vector sums of x and y by using trigonometric functions:

, 2T .
X ZXCOS?—y sin— =

2 2 \@ 1

=xsin— +ycos_—=——x— =
T 2 YT Y
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SO
TABLE 4.8 Representation Flowchart: H,0(C,,) H, H,
Symmetry Operations
o (0) (0) (0)
VRN PN VRN PN
Hl H2 H2 Hl H1 H2 H2 Hl
after £ after C, after o (xz) after o/ (yz)
Reducible Matrix Representations
1 0 0 -1 0 0 1 0 0 -1 0 O
E|0O 1 0 Cyl 0-1 0 o,(x2):|0 =1 0 o) 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1
Characters of Matrix Representations
3 -1 1 1
Block Diagonalized Matrices
[11 0 O [-1] 0 O [1T 0 O [-1]1 0 O
0[1] O 0 [-1] O 0[-1] 0 0 [1] O
0 0 [1] 0 0 [1] 0 0 [1] 0 0T[1]
Irreducible Representations
13 C, o, (x2) o, (y2) Coordinate Used
1 -1 1 -1 X
1 -1 -1 1 y
1 1 1 1
3 -1 1 1
Character Table
Cs, E C, o, (x7) a,'(yz) Matching Functions
A 1 1 1 1 z 2y 2
A, 1 1 -1 -1 R, xy
B, 1 -1 1 -1 X, Ry 74
B, 1 -1 -1 1 » R, ¥z
The transformation matrices for the symmetry operations are
1 _\3
1 0 0 cos¥ —sin®¥ 0 2~z O 1 0 0
E|0 1 0| Cylsin® cos® 0|=|%8 —L 0|00 -1 0
1 1 0 0 1
0 0 0 0 0 0 1

In the C, point group x(Cs?) = x(C3), which means that they are in the same class
and listed as 2C; in the character table. In addition, the three reflections have identical
characters and are in the same class, listed as 30,



98 Chapter4 | Symmetry and Group Theory

y

AN Vi W
N DN

Dy orbitals have the same
symmetry as x (positive in half
the quadrants, negative in the
other half).

Qo. N
d9

d,, orbitals have the same
symmetry as the function xy
(sign of the function in the
four quadrants).

FIGURE 4.17 Orbitals and
Representations.

The transformation matrices for C; and C;* cannot be block diagonalized into
1 X 1 matrices, because the C; matrix has off-diagonal entries; however, the matrices
can be block diagonalized into 2 X 2 and 1 X 1 matrices, with all other matrix elements
equal to zero:

_1 _ﬁ 0
[ 1 0 } 0 2 2 [1 0} 0
E|[O0O 1]0 | Cxy % 5| 0| ou|l0 —1]0
0 0 [I] 0 0[] 0 0 [1]

The C3 matrix must be blocked this way because the (x, y) combination is needed
for the new x’' and y’; determination of each of the transformed coordinates x" and y’
requires both original x and y coordinates. This is the case with most rotations, as defined
by the general transformation matrix in Figure 4.16. The other C3, matrices must follow
the same pattern for consistency across the representation. In this case, x and y are not
independent of each other.

The characters of the matrices are the sums of the numbers on the principal diagonal
(from upper left to lower right). The set of 2 X 2 matrices has the characters corresponding
to the E representation in the following character table; the set of 1 X 1 matrices matches
the A, representation. The third irreducible representation, A,, can be found by using the
defining properties of a mathematical group, as in the C,, previously shown. Table 4.9
gives the properties of the characters for the C;, point group.

G, | E 2C, 3o,

A 1 1 1 ) 2+ 2

A, 1 1 -1 R,

E 2 -1 0 6 3), (R R)| (o — 2, xy), (xz,y2)

Additional Features of Character Tables

1. When operations such as C; and C{ are in the same class, the listing in a charac-
ter table is 2Cj, indicating that the characters are the same, whether rotation is in a
clockwise or counterclockwise direction (or, alternately, that C5 and C32 give the same
characters). In either case, this is equivalent to two columns in the table being shown
as one. Similar notation is used for multiple reflections.

2. When necessary, the C, axes perpendicular to the principal axis (in a D group) are des-
ignated with primes; a single prime indicates that the axis passes through several atoms
of the molecule, whereas a double prime indicates that it passes between the atoms.

3. When the mirror plane is perpendicular to the principal axis, or horizontal, the reflection
is called o, Other planes are labeled o, or o, (see the character tables in Appendix C).

4. The expressions listed to the right of the characters indicate the symmetry properties
of the point group for the x, y, and z axes, other mathematical functions, and rotation
about these axes (R,, Ry, R). These are used to find atomic orbitals with symmetries
that match the representation. For example, the x axis with its positive and negative
directions matches the p, orbital (with a node defined by the yz plane). The function
xy, with alternating signs in the four quadrants within the xy plane matches the lobes
of the d,, orbital. These useful connections are shown in Figure 4.17. The totally
symmetric s orbital always matches the first representation in the group, one of the
A set. The irreducible representations that describe rotations about the axes (R,, Ry, R)
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TABLE 4.9 Properties of the Characters for the C;, Point Group

Property C3, Example

1. Order 6 (6 symmetry operations)
2. Classes 3 classes:
E

ACH( = Cq €
30-\/( = UV’ O-V,’ O-v”)

3. Number of irreducible representations 3(A}, Ay E)

4. Sum of squares of dimensions equals the 12+12+22=6
order of the group

5. Sum of squares of characters multiplied E  2G 30,
by the number of operations in each class Ap P +2(17 +3(1)° =6
equals the order of the group Ay 1242172 +3(-1)*=6

E: 2%+ 2(=1) + 300 =6
(Multiply the squares by the number of
symmetry operations in each class.)

6. Orthogonal representations The sum of the products of any two
representations multiplied by the number
of operations in each class equals 0.
Example of A, X E:
(DH@2) + 2()(=1) + 3(=1)(©0) =0

7. Totally symmetric representation Ay, with all characters = 1

also describe the rotational motions of molecules relative to these axes. Rotation and
other motions of the water molecule are discussed in Section 4.4.2

In the C3, example, the x and y coordinates appeared together in the E irreducible
representation. The notation for this is to group them as (x, y) in this section of the
table. This means that x and y together have the same symmetry properties as the E
irreducible representation. Consequently, the p, and p, orbitals together have the same
symmetry as the E irreducible representation in this point group.

5. Matching the symmetry operations of a molecule with those listed in the top row of
the character table will confirm any point group assignment.

6. Irreducible representations are assigned labels according to the following rules, in
which symmetric means a character of 1 and antisymmetric a character of —1 (see the
character tables in Appendix C for examples).

a. Letters are assigned according to the dimension of the irreducible representation
(the character for the identity operation).

Dimension Symmetry Label

1 A If the representation is symmetric to the principal rotation operation
X(Cy) = D.
B If it is antisymmetric (y(C,) = —1).

2 E

3 T

“In a few cases, such as D, ;(n = even) and S,, point groups, the highest order axis is an S,,. This axis takes
nd 2n P g p g 2n

priority, so the classification is B if the character is —1 for the S,, operation, even if the character is +1 for the

highest order C, axis.
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b. Subscript 1 designates a representation symmetric to a C, rotation perpendicular
to the principal axis, and subscript 2 designates a representation antisymmetric
to the C,. If there are no perpendicular C, axes, 1 designates a representation

|
1|: | l|: symmetric to a vertical plane, and 2 designates a representation antisymmetric to
C ! C. a vertical plane.
Cl / \I ! I/ \\Cl c. Subscript g (gerade) designates representations symmetric to inversion, and
Br : Br subscript u (ungerade) designates representations antisymmetric to inversion.

d. Single primes are symmetric to o, and double primes are antisymmetric to o,
when a distinction between representations is needed (Csj, Cs;,, D5, Ds),).

44 Examples and Applications of Symmetry

Here we will consider two applications of symmetry and group theory, in the realms of
chirality and molecular vibrations. In Chapter 5 we will also examine how symmetry
can be used to understand chemical bonding, perhaps the most important application of
symmetry in chemistry.

44 Chirality

Many molecules are not superimposable on their mirror image. Such molecules, labeled
chiral or dissymmetric, may have important chemical properties as a consequence of
this nonsuperimposability. One chiral molecule is CBrCIFI, and many examples of chiral
objects can also be found on the macroscopic scale, as in Figure 4.18.

Chiral objects are termed dissymmetric. This term does not imply that these objects
necessarily have no symmetry. For example, the propellers in Figure 4.18 each have a C;
axis, yet they are nonsuperimposable (if both were spun in a clockwise direction, they
FIGURE 4.18 A Chiral Molecule  would move an airplane in opposite directions). In general, a molecule or object is chiral
and Other Chiral Objects. if it has no symmetry operations (other than E), or if it has only proper rotation axes.

Which point groups are possible for chiral molecules? (Hint: refer to the character
tables in Appendix C.)

Air blowing past the stationary propellers in Figure 4.18 will be rotated in either
a clockwise or counterclockwise direction. By analogy, plane-polarized light will be
rotated on passing through chiral molecules (Figure 4.19); clockwise rotation is designated
dextrorotatory, and counterclockwise rotation is levorotatory. The ability of chiral mol-
ecules to rotate plane-polarized light is termed optical activity, which may be measured

experimentally.
I_anolarized Polarizing
light | filter Anele of
ngle o

\\ | / - rotation of
-O)=_ plane of
//Q\\ polarization
Light

source

Polarized light Optically active

solution
Polarizer

. Rotated
axis

polarized light

FIGURE 4.19 Rotation of

. K Analyzer |
Plane-Polarized Light.
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Many coordination compounds are chiral and exhibit optical activity if they can
be resolved into the two isomers. One of these is [ Ru(NH,CH,CH,NH,); |**, with D
symmetry (Figure 4.20). Mirror images of this molecule look much like left- and right-
handed three-bladed propellers. Further examples will be discussed in Chapter 9.

44.2 Molecular Vibrations

Symmetry is helpful to determine the modes of vibration of molecules. The vibrational modes
of water and the stretching modes of CO in carbonyl complexes can be treated quite simply,
as described in the following pages. Other molecules can be studied using the same methods.

Water (C,, Symmetry)

Because the study of vibrations is the study of motion of the atoms in a molecule, we must
first attach a set of x, y, and z coordinates to each atom. For convenience, we assign the z
axes parallel to the C, axis of the molecule, the x axes in the plane of the molecule, and the
y axes perpendicular to the plane (Figure 4.21). Each atom can move in all three directions,
so a total of nine transformations (motion of each atom in the x, y, and z directions) must
be considered. For N atoms in a molecule, there are 3/ total motions, known as degrees
of freedom. Degrees of freedom for different geometries are summarized in Table 4.10.
Because water has three atoms, there must be nine different motions.

We will use transformation matrices to determine the symmetry of all nine motions
within the C,, point group and then assign them to translation, rotation, and vibration. Fortu-
nately, it is only necessary to determine the characters of the transformation matrices (and only
one matrix for a symmetry operation of a unique class), not the individual matrix elements.

In this case, the initial axes make a column matrix with nine elements, and each
transformation matrix is 9 X 9. A nonzero entry appears along the diagonal of the matrix
only for an atom that does not change position. If the atom changes position during the
symmetry operation, a zero is entered. If the atom remains in its original location and the
vector direction is unchanged, a 1 is entered. If the atom remains, but the vector direction is
reversed, a —1 is entered. (Because all the operations change vector directions by 0° or 180°
in the C,, point group, these are the only possibilities.) When all nine vectors are summed,
the character of the reducible representation I is obtained. The full 9 X 9 matrix for C, is
shown as an example; note that only the diagonal entries are used in finding the character.

x' -1 0 0 0 0 0 0 0 O]«
o4 |y 0 -1 0 0 0 0 0 0 O]|y|,O
z' 0 0 1 0 0 0 0 0 0]z
x' 0 0 0 0 0 0 -1 0 O]«
Hiy [y |[=l 0 0o 0o 0o 0 0 0 -1 0[|y|eH,
k4 0 0 0 0 0 0 0 0 1 z
x' 0 0 0 -1 0 0 0 0 0 ||x
H, y' 0 0 0 0 -1 0 0 0 0|ly]|H,
Lz'l L O 0 0 0 0 1 0 0 0 ][z]
TABLE 4.10 Degrees of Freedom
Number of Total Degrees of Translational Rotational Vibrational
Atoms Freedom Modes Modes Modes
N(Linear) 3N 3 2 3N -5
3 (HCN) 9 3 2 4
N(Nonlinear) 3N 3 3 3N — 6
3(H,0) 9 3 3 3

FIGURE 4.20 Chiral Isomers of
[Ru(NH,CH,CH,NH,)51% .

O—> ]

y

y
L4 -
) /4>x N y
% \?/’

H=—>x H—x

—> N

FIGURE 4.21 A Set of Axes for
the Water Molecule.
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The H, and H, entries are not on the principal diagonal, because H, and H,
exchange with each other in a C, rotation, and x'(H,) = —x(H,), y'(H,) = —y(H,), and
z'(H,) = z(Hp). Only the oxygen atom contributes to the character for this operation, for
a total of —1.
The other entries for I" can also be found without writing out the matrices, as follows:
E: All nine vectors are unchanged in the identity operation, so the character is 9.
Cy: The hydrogen atoms change position in a C, rotation, so all their vectors
have zero contribution to the character. The oxygen atom vectors in the x
and y directions are reversed, each contributing —1, and the vector in the z
direction remains the same, contributing 1 for a total of —1. The sum of the
principal diagonal = x(C,) = (—1) + (=1) + (1) = —1.

o,(xz): Reflection in the plane of the molecule changes the direction of all the y vec-
tors and leaves the x and z vectors unchanged, for atotalof 3 — 3 + 3 = 3.

o(yz): Finally, reflection perpendicular to the plane of the molecule changes the
position of the hydrogens so their contribution is zero; the x vector on the oxy-
gen changes direction, and the y and z vectors are unchanged for a total of 1.

EXERCISE 4.8

Write the corresponding 9 X 9 transformation matrices for the o(xz) and o(yz) opera-
tions in C,, symmetry.

Because all nine direction vectors are included in this representation, it represents all
the motions of the molecule: three translations, three rotations, and (by difference) three
vibrations. The characters of the reducible representation I" are shown as the last row below
the irreducible representations in the C,, character table.

Gy, E G, 0,(x2) o,'(y2)

Ay 1 1 1 1 b4 X2 y% 22
A, 1 1 -1 -1 R, Xy

B, 1 -1 1 -1 X, Ry Xz

B, 1 -1 -1 1 v, R, 4

r 9 -1 3 1

Reducing Representations to Irreducible Representations

The next step is to determine how the irreducible representations sum to give the reduc-
ible representation. This requires another property of groups. The number of times any
irreducible representation contributes to a reducible representation is equal to the sum of
the products of the characters of the reducible and irreducible representations multiplied
by the number of operations in the class, taken one operation at a time, divided by the
order of the group. This may be expressed in equation form, with the sum taken over all
symmetry operations of the group.”

Number of irreducible I number character of character of
representations of = o 2 of operations | X | reducible X | irreducible
order ¢

a given type in the class representation representation

“This procedure should yield an integer for the number of irreducible representations of each type; obtaining a
fraction in this step indicates a calculation error.
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In the water example, the order of C,, is 4, with one operation in each class
(E, Cy, 0,, 0,"). The results are as follows:

na, = 51O + (=D(1) + @G)(1) + (D] = 3

na, = 51O + (=1(1) + B)(=1) + ()(—1] = 1
ng, = 51O)1) + (=D(=1) + @)(1) + ()(~1)] =3
ng, = LO)1) + (=D(=1) + B)(=1) + ()(D)] = 2

The reducible representation for all motions of the water molecule is therefore reduced to
3A, + A, + 3B + 2B,.

Examination of the columns on the far right in the character table shows that transla-
tion along the x, y, and z directions is A; + B; + B, (translation is motion along the x, y,
and z directions, so it transforms similarly as the three axes). Rotation in the three direc-
tions (R, R, R,) is A, + B| + B,. Subtracting these from the total given previously leaves
2A; + By, the three vibrational modes shown in Table 4.11. The number of vibrational
modes equals 3N — 6, as described earlier. Two of the modes are totally symmetric (A;)
and do not change the symmetry of the molecule, but one is antisymmetric to C, rotation
and to reflection perpendicular to the plane of the molecule (B;). These modes are illus-
trated as symmetric stretch, symmetric bend, and antisymmetric stretch in Table 4.12. It is
noteworthy that the complex motion of a water molecule in three-dimensional space (a gas
phase molecule will often be simultaneously rotating and translating while vibrating) could
be described in terms of varying contributions from each of these fundamental modes.

TABLE 4.11 Symmetry of Molecular Motions of Water

Translation Rotation Vibration
All Motions (x,y,2) (Ry, Ry, R)) (remaining modes)
34, A 24,
A, A,
3B, B, B, B,
2B, B, B,

TABLE 4.12 The Vibrational Modes of Water

A Symmetric stretch: change in dipole moment; more
distance between positive hydrogens and negative

oxygen IR active

2O
H H

B, o) Antisymmetric stretch: change in dipole moment;
H H change in distances between positive hydrogens and

negative oxygen IR active

0 Symmetric bend: change in dipole moment; angle
H'( >H between H—O vectors changes IR active

EXAMPLE 4.4

Using the x, y, and z coordinates for each atom in XeF,, determine the reducible
representation for all molecular motions; reduce this representation to its irreduc-
ible components; and classify these representations into translational, rotational,
and vibrational modes.
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First, it is useful to assign x, y, and z coordinate axes to each atom, as shown in
Figure 4.22.

z b4
—x\T z T/,y
—y/F;\‘*\\\. T"’,,——""”FZ\‘X
_x\i‘/ Xe \It/ry
Ly ~

XeF,

FIGURE 4.22 Coordinate Axes for XeF,.

It is essential to recognize that only the coordinates on atoms that do not move
when symmetry operations are applied can give rise to nonzero elements along the
diagonals of transformation matrices. For example, if a symmetry operation applied to
XeF, causes all F atoms to change position, these atoms cannot give rise to elements
along the diagonal, so they can be ignored; only coordinates of Xe would need to be
considered.

In addition: If a symmetry operation leaves the direction of a coordinate unchanged,

it gives a character of 1 along the diagonal.

For example, the identity operation on XeF, leaves the coordinates
X, y, and z unchanged; each of these has a diagonal element of 1 for
each atom.
X—>x y—>y z —>2Z
1 1 1
If a symmetry operation reverses the direction of a coordinate, this cor-
responds to a diagonal element of —1.

The o, operation on XeF, reverses the direction of the z axis for
each atom.
> 2
-1
If a symmetry operation transforms a coordinate into another coordinate,
this gives a diagonal element of zero.

If XeF, is rotated about its C, axis, the x and y coordinates of Xe are
interchanged; they contribute zero to the character.

Examining each of the D4, symmetry operations in turn generates the following reduc-
ible representation for all the molecular motions of XeF,:

D4h E 2C4 C2 2C2, ZCZH i 2S4 oy 20'v 20’d
r 15 1 -1 -3 -1 -3 -1 5 3 1

The character under E indicates that there are 15 possible motions to be considered.
By the procedure illustrated in the preceding example, this representation reduces to

F:A1g+A2g+Blg+B2g+Eg+2A2u+B2u+3Eu

These can be classified as follows:

Translational Motion. This is motion through space with x, y, and z components.
The irreducible representations matching these components have the labels x, y, and z
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on the right side of the Dy, character table: A,, (matching z) and E, (doubly degener-
ate, matching x and y together). These three motions can be represented as shown in

Figure 4.23.
“Xe T Xe T~ “Xe
7
translation in translation in translation in
z direction x direction y direction
(A2u)

FIGURE 4.23 Translational Modes of XeF,.

Rotational Motion. This type of motion can be factored into rotation about the
mutually orthogonal x, y, and z axes. The matching expressions in the character table
are R,, R,, and R, representing rotation about these three axes, respectively. The
irreducible representations are A,, (R,, rotation about the z axis), and E, ((R,, R,),
doubly degenerate rotations about the x and y axes) as shown in Figure 4.24.

rotation about rotation about rotation about
Z axis X axis y axis
| —
(Ayy) ‘)

FIGURE 4.24 Rotational Modes of XeF,.

Vibrational Motion. The remaining nine motions (15 total — 3 translations
— 3 rotations) are vibrational. They involve changes in bond lengths and angles and
motions both within and out of the molecular plane. For example, symmetrical stretch-
ing of all four Xe—F bonds matches the A,, irreducible representation, symmetrical
stretching of opposite bonds matches B, and simultaneous opening of opposite bond
angles matches B,, as shown in Figure 4.25.

/’ ™
T Xe T ToXe T Xe T
“~ T~ T~
o <’
Symmetric stretch Symmetric stretch Symmetric bend
of all 4 bonds of opposite bonds of bond angles
(Alg) (Blg) (BZg)

FIGURE 4.25 Selected Vibrational Modes of XeF,.
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TABLE 4.13 Symmetry of Molecular Motions of XeF,

T" (all modes) Translation Rotation Vibration

Ay Alg
Asy Ay

B, By,
By, By,
E, E,

24, Az, Ay,
By, By,
3E, E, 2E,

Total 15 3 3 9

Table 4.13 summarizes the classification of irreducible representations according
to mode.

EXERCISE 4.9 Using the x, y, and z coordinates for each atom in N,O,, which is
planar and has a nitrogen—nitrogen bond, determine the reducible representation for all
molecular motions. Reduce this representation to its irreducible components, and clas-
sify these representations into translational, rotational, and vibrational modes.

EXAMPLE 4.5

Reduce the following representations to their irreducible representations in the point
group indicated (refer to the character tables in Appendix C):

Cy, E C, i (o
r 4 0 2 2
SOLUTION
s, = (1) (@) (1)+ (1) (0) ()+(1) (2) (1) + (1) (2) (1)] = 2
ng, = 41 (1) (4) (1)+(1) (0) (=1)+ (1) (2) () +(1) (2) (-] = 1
m, = M1 (4) (1+ (1) (0) (D + (1) (2) (~1)+ (1) (2) (~1)] = 0
s, = 301 (4) (1)+ (1) (0) (=1)+ (1) (2) (=1)+ (1) (2) ()] = 1
Therefore, I' = 24, + B, + B,.
T E 2C;, 3o,
r 6 3 2

SOLUTION

na, = 6l (1)(6) (1)+(2) (3) (1)+(3) (=2) (1)1 =

na, = 5l (1) (6) (1)+(2) (3) (1)+(3) (=2) (-1)] =
ne = 5(1)(6)(2)+(2) (3) (=1)+(3)(-2) (0)] = 1
Therefore, I' = A; + 3A, + E.

Be sure to include the number of symmetry operations in a class (column) of
the character table. This means that the second term in the Cj;, calculation must be
multiplied by 2 (2C;3; there are two operations in this class); the third term must be
multiplied by 3, as shown.
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EXERCISE 4.10 Reduce the following representations to their irreducible representations
in the point groups indicated:

Td E 8C3 3C2 6S4 60 d

I, 4 1 0 0 2

Dy E 28, C, 20, 20,

T, 4 0 0 2 0

C4v E 2C4 C2 20 v 20 d

I, 7 —1 —1 —1 —1

Infrared Spectra

A molecular vibration is infrared active (i.e., excitation of the vibrational mode can be
measured via an IR spectrum absorption) only if it results in a change in the dipole moment
of the molecule. The three vibrations of water (Table 4.12) can be analyzed in this way to
determine their infrared behavior.

Group theory in principle can account for the possible infrared activity of all vibra-
tional modes of a molecule. In group theory terms, a vibrational mode is active in the
infrared if it corresponds to an irreducible representation that has the same symmetry (or
transforms) as the Cartesian coordinates x, y, or z, because a vibrational motion that shifts
the center of charge of the molecule in any of the x, y, or z directions results in a change
in dipole moment. Otherwise, the vibrational mode is not infrared active.

Which of the nine vibrational modes of XeF, (Table 4.13) are infrared active?

Analysis of the x, y, and z coordinates of each atom in NHj gives the following

representation: X
(G5, E 2C, 30, /O
r 12 0 2 L\ /C
M z
VRN
a. Reduce I to its irreducible representations. L C\
b. Classify the irreducible representations into translational, rotational, and 0
vibrational modes. cis-Dicarbonyl complex
c. Show that the total number of degrees of freedom = 3N.
d. Which vibrational modes are infrared active?
Selected Vibrational Modes /x
It is often useful to consider a particular vibrational mode for a compound. For example, y\ /0
useful information often can be obtained from the C—O stretching bands in infrared L C
spectra of metal complexes containing CO (carbonyl) ligands. The following example of \M/
cis- and trans-dicarbonyl square planar complexes shows the procedure. VRN
For these complexes,” a routine IR spectrum can distinguish whether a sample is cis- /C L
or trans-ML,(CO),; the number of C— O stretching bands is determined by the geometry 0
of the complex (Figure 4.26). trans-Dicarbonyl complex

. . . . . . . FIGURE 4.26 Carbonyl
cis-ML,(CO),, point group C, . The principal axis (C,) is the z axis, with the xz plane Stretching Vibrations of cis- and

assigned as the plane of the molecule. Possible C—O stretching motions are shown  tans-Dicarbonyl Square Planar
by arrows in Figure 4.27. These vectors are used to create the reducible representation  Complexes.

"M represents any metal and L any ligand other than CO in these formulas.
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FIGURE 4.27 Symmetry
Operations and Characters for
cis — ML,(CQ),,.

Symmetry and Group Theory

(0]
A
L C@
N
M
g
6}
/ Cz/ U(,XZ)\U’()‘N
N RN BN
W T Y
U c@ UV oc@® U c¢® U c¢®
(0] (0) (0] (0]
2 vectors 0 vectors 2 vectors 0 vectors
unchanged unchanged unchanged unchanged
|E C, o(xz) 0'(y2)
F| 2 2 0

that follows, using the symmetry operations of the C,, point group. A C—O bond will
transform with a character of 1 if it remains unchanged by the symmetry operations, and
with a character of 0 if it is changed. These operations and their characters are shown in
Figure 4.27. Both stretches are unchanged in the identity operation and in the reflection
through the plane of the molecule, so each contributes 1 to the character, for a total of 2 for
each operation. Both vectors move to new locations on rotation or reflection perpendicular
to the plane of the molecule, so these two characters are 0.

The reducible representation I" reduces to A; + By:

Co E G 0,(x2) a,'(y2)

r 2 0 2 0

A 1 1 1 1 z X2, yz, 72
B 1 -1 1 -1 X, R, Xz

A is an appropriate irreducible representation for an IR-active band, because it trans-
forms as (has the symmetry of) the Cartesian coordinate z. Furthermore, the vibrational
mode corresponding to By should be IR active, because it transforms as the Cartesian
coordinate x.

In summary, there are two vibrational modes for C— O stretching, one having A
symmetry and one B; symmetry. Both modes are IR active, and we therefore expect to see
two C— O stretches in the IR. This assumes that the C— O stretches are not sufficiently
similar in energy to overlap in the infrared spectrum.

trans-ML,(CO),, point group D,,. The principal axis, C, is again chosen as the z axis,
which renders the plane of the molecule the xy plane. Using the symmetry operation of
the D, point group, we obtain a reducible representation for C— O stretches that reduces
to A, + By,

Dy, E Gk G GH i oxy)  obz)  o(g2)

r 2 0 0 2 0 2 2 0

A, 1 1 1 1 1 1 1 1| 252
By, | 1 -1 -1 1 -1 1 1 -1 |x
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The vibrational mode of A, symmetry is not IR active, because it does not have the
same symmetry as a Cartesian coordinate x, y, or z (this is the IR-inactive symmetric
stretch). The mode of symmetry Bs,, on the other hand, is IR active, because it has the
same symmetry as x.

In summary, there are two vibrational modes for C—O stretching, one having the
same symmetry as A,, and one the same symmetry as Bs,. The A, mode is IR inac-
tive (it does not have the symmetry of x, y, or z); the B;, mode is IR active (it has the
symmetry of x). We therefore expect to see one C— O stretch in the IR.

It is therefore possible to distinguish cis- and trans-ML,(CO), by taking an IR
spectrum. If one C—O stretching band appears, the molecule is trans; if two bands
appear, the molecule is cis. A significant distinction can be made by a very simple
measurement.

EXAMPLE 4.6

Determine the number of IR-active CO stretching modes for fac-Mo(CO);(CH;CH,CN)s,
as shown in the margin.

This molecule has Cs, symmetry. The operations to be considered are E, C3, and o,
E leaves the three bond vectors unchanged, giving a character of 3. C; moves all three
vectors, giving a character of 0. Each o, plane passes through one of the CO groups,
leaving it unchanged, while interchanging the other two. The resulting character is 1.

The representation to be reduced, therefore, is as follows:

E 26, 3c,
3 0 1

This reduces to A + E. A; has the same symmetry as the Cartesian coordinate z
and is therefore IR active. E has the same symmetry as the x and y coordinates together
and is also IR active. It represents a degenerate pair of vibrations, which appear as one
absorption band, as shown in Figure 4.28. Infrared absorptions associated with specific
bonds are commonly designated as ¥(XY), where XY is the bond that contributes most
significantly to the vibrational modes responsible for the absorptions. In Figure 4.28,
the »(CO) spectrum features absorptions at 1920 and 1790 cm™'.

EXERCISE 4.13 Determine the number of IR-active C— O stretching modes for
Mn(CO);Cl.

1.8+
1.6 E
1.4 1
1.2 A
1.0 1
0.8
0.6 1

0.4 1
0.2 1
—0.01 J

2400 2200 2000 1800 1600
Wavenumbers (cm ™)

1920.29
1790.17

Absorbance

FIGURE 4.28 Infrared spectrum
of fac-Mo(CO);(CH;CH,CN);.
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Raman Spectroscopy

This spectroscopic method uses a different approach to observe molecular vibrations.
Rather than directly observing absorption of infrared radiation as in IR spectroscopy, in
Raman spectroscopy higher energy radiation, ordinarily from a laser, excites molecules
to higher electronic states, envisioned as short-lived “virtual” states. Scattered radiation
from decay of these excited states to the various vibrational states provides information
about vibrational energy levels that is complementary to information gained from IR
spectroscopy. In general, a vibration can give rise to a line in a Raman spectrum if it
causes a change in polarizability.” From a symmetry standpoint, vibrational modes are
Raman active if they match the symmetries of the functions xy, xz, yz, x%, y*, or Z> or a
linear combination of any of these; if vibrations match these functions, they also occur
with a change in polarizability. These functions are among those commonly listed in
character tables. In some cases—when molecular vibrations match both these functions
and x, y, or z—molecular vibrations can be both IR and Raman active.

EXAMPLE 4.7

Vibrational spectroscopy has played a role in supporting the tetrahedral structure of
the highly explosive XeO,4. Raman spectroscopy has shown two bands in the region
expected for Xe — O stretching vibrations, at 776 and 878 cm™ .1 Is this consistent
with the proposed 7, structure?

To address this question, we need to once again create a representation, this time using
the Xe==0 stretches as a basis in the 7, point group. The resulting representation is

8C3 3C2 6S4 60'd
r 4 1 0 0 2

This reduces to A + Ty:

A, 1 1 1 1 1 Pty

T, 3 0 —1 -1 1 (x,y,2) (xy, xz yz)

Both the A, and T, representations match functions necessary for Raman activity.
The presence of these two bands is consistent with the proposed 7, symmetry.

EXERCISE 4.14 Vibrational spectroscopy has played a role in supporting the pentagonal
bipyramidal structure of the ion I0,Fs>~.2 Raman spectroscopy of the tetramethyl-
ammonium salt of this ion shows a single absorption in the region expected for [=0
stretching vibrations, at 789 cm ™. Is a single Raman band consistent with the pro-
posed trans orientation of the oxygen atoms?

“For more details, see D. J. Willock, Molecular Symmetry, John Wiley & Sons, Chichester, UK, 2009,
pp. 177-184.
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Problems
4.1 Determine the point groups for 4.5 Determine the point groups for Cl
a. Ethane (staggered conformation) a. 1,1" — Dichloroferrocene 5
b. Ethane (eclipsed conformation)
c. Chloroethane (staggered conformation)
d. 1,2-Dichloroethane (staggered anti conformation) b. Dibenzenechromium Fe
4.2 Determine the point groups for (eclipsed conformation)
a. Ethylene H_ _H @
b. Chloroethylene /C:C\ @ i
¢. The possible isomers of H H Cl
dichloroethylene Cr

4.3 Determine the point groups for
a. Acetylene

b. H—C=C—F

¢. H—=HC=C—CH;4 c.
d. H—C=C—CH,Cl
e. H—C = C—Ph (Ph = phenyl)

4.4 Determine the point groups for
a. Naphthalene @@
d. H;0* /F
b. 1,8-Dichloronaphthalene  C] (I e. OF, 0—0

f. Formaldehyde, H,CO F/

Q0 58
g. Sg (puckered ring) / ST \
S

§™=S~_ ¢~ S=~§
c¢. 1,5-Dichloronaphthalene  Cl

h. Borazine (planar)
Q0 oo
\ /
Cl / \
H—N B—H
d. 1,2-Dichloronaphthalene Cl \ /

Cl / \
QO oo
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foa
(0]
/O

O—/Cr (0]
(0)
© (@)

A tennis ball (ignoring the label, but including the pat-
tern on the surface)

[Cr(C,04)31°~

4.6 Determine the point groups for

a.
. Tetrachloroallene Cl,C=C= CCl,

e

Cyclohexane (chair conformation)

S0,

. A snowflake

Diborane

The possible isomers of tribromobenzene

g. A tetrahedron inscribed in a cube in which alternate

i.
J-

corners of the cube are also corners of the tetrahedron.

. B3Hy H H

He / N\

H

B A
N~/ YHT N
H

A mountain swallowtail butterfly.
The Golden Gate Bridge, in San Francisco, CA

4.7 Determine the point groups for

a.
. An Erlenmeyer flask (no label)

o ac T

oEae

J

A sheet of typing paper

A screw

. The number 96

Five examples of objects from everyday life; select
items from five different point groups
A pair of eyeglasses, assuming lenses of equal strength

. A five-pointed star
. A fork with no decoration

Wilkins Micawber, David Copperfield character who
wore a monocle
A metal washer

4.8 Determine the point groups for

a.
b.

c.
d.

A flat oval running track
A jack (child's toy)

A person's two hands, palm to palm
A rectangular towel, blue on front, white on back

e. A hexagonal pencil with a round eraser
f. The recycle symbol, in three dimensions

g.

¥

The meander motif

L] |
ELJ

h. An open, eight-spoked umbrella with a straight handle

i.
J-

A round toothpick
A tetrahedron with one green face, the others red

4.9 Determine the point groups for

a.
b.

e a0

g.

h.

i.

j-

A triangular prism
A plus sign
A t-shirt with the letter T on the front

. Set of three wind turbine blades

A spade design (as on a deck of playing cards)
A sand dollar

Flying Mercury sculpture, by Giambologna at the
Louvre in Paris, France

An octahedron with one blue face, the others yellow

A hula hoop

A coiled spring

4.10 Determine the point groups for the examples of symmetry
in Figure 4.1.

4.11 Determine the point groups of the molecules in the follow-
ing end-of-chapter problems from Chapter 3:

a.
b.

Problem 3.40
Problem 3.41

4.12 Determine the point groups of the molecules and ions in

a.

Figure 3.8

b. Figure 3.15
4.13 Determine the point groups of the following atomic orbit-
als, including the signs on the orbital lobes:

a.

Px

b. d,,

C.

dx27y2

d. d

e.

Joyz



4.14 a. Show that a cube has the same symmetry elements as
an octahedron.
b. Suppose a cube has four dots arranged in a square on
each face as shown. What is the point group?
¢. Suppose that this set of dots is rotated as a set 10° clock-
wise on each face. Now what is the point group?

4.15 Suppose an octahedron can have either yellow or blue faces.

a. What point groups are possible if exactly two faces
are blue?

b. What points are possible if exactly three faces are blue?

¢. Now suppose the faces have four different colors.
What is the point group if pairs of opposite faces have
identical colors?

4.16 What point groups are represented by the symbols of
chemical elements?

4.17 Baseball is a wonderful game, particularly for someone
interested in symmetry. Where else can one watch a batter
step from an on-deck circle of a symmetry to a rectangular
batter's box of b symmetry, adjust a cap of ¢ symmetry (it
has OO on the front, for the Ozone City Oxygens), swing
a bat of d symmetry (ignoring the label and grain of the
wood) across a home plate of e symmetry at a baseball
that has f symmetry (also ignoring the label) that has been
thrown by a chiral pitcher having g symmetry, hit a tower-
ing fly ball that bounces off the fence, and race around the
bases, only to be called out at home plate by an umpire who
may have no appreciation for symmetry at all.

4.18 Determine the point groups for the following flags or parts
of flags. You will need to look up images of flags not
shown.

a. Botswana

b. Finland
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c. Honduras

d. Field of stars in flag of Micronesia

e. Central design on the Ethiopian flag:

f. Turkey

g. Japan

h. Switzerland

i. United Kingdom (be careful!)

4.19 Prepare a representation flowchart according to the format
of Table 4.8 for SNF;.
4.20 For trans-1,2-dichloroethylene, which has C,, symmetry,

a. List all the symmetry operations for this molecule.

b. Write a set of transformation matrices that describe the
effect of each symmetry operation in the C,;, group on a
set of coordinates x, y, z for a point (your answer should
consist of four 3 X 3 transformation matrices).

c. Using the terms along the diagonal, obtain as many
irreducible representations as possible from the trans-
formation matrices. You should be able to obtain three
irreducible representations in this way, but two will be
duplicates. You may check your results using the Cy,
character table.

d. Using the C», character table, verify that the irreducible
representations are mutually orthogonal.

4.21 Ethylene has D,;, symmetry.

a. List all the symmetry operations of ethylene.

b. Write a transformation matrix for each symmetry opera-
tion that describes the effect of that operation on the
coordinates of a point x, y, z.

c. Using the characters of your transformation matrices,
obtain a reducible representation.

d. Using the diagonal elements of your matrices, obtain
three of the D, irreducible representations.

e. Show that your irreducible representations are mutually
orthogonal.

4.22 Using the D,, character table,

a. Determine the order of the group.

b. Verify that the E irreducible representation is orthogo-
nal to each of the other irreducible representations.
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¢. For each of the irreducible representations, verify that
the sum of the squares of the characters equals the order
of the group.

d. Reduce the following representations to their compo-
nent irreducible representations:

D2d E 254 C2 ZCVZ 20’d
I, 6 0 2 2 2
T, 6 4 6 2 0

4.23 Reduce the following representations to irreducible repre-

sentations:
Cs, E 2C, 30,
T, 6 3 2
r, 5 -1 -1
Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 30’h 60'd

ri¢ o o 2 2 0 0 0 4 2

4.24 For Dy, symmetry use sketches to show that d,, orbitals
have B,, symmetry and that d,>_ orbitals have B, sym-
metry. (Hint: you may find it useful to select a molecule
that has Dy, symmetry as a reference for the operations of
the Dy, point group. Observe how the signs on the orbital
lobes change as the symmetry operations are applied.)

4.25 Which items in Problems 4.5 through Problem 4.9 are
chiral? List three items not from this chapter that are chiral.

4.26 XeOF, has one of the more interesting structures among
noble gas compounds. On the basis of its symmetry,

a. Obtain a representation based on all the motions of the
atoms in XeOF,.

b. Reduce this representation to its component irreducible
representations.

c. Classity these representations, indicating which are for
translational, rotational, and vibrational motion.

d. Determine the irreducible representation matching the
xenon—oxygen stretching vibration. Is this vibration
IR active?

4.27 Repeat the procedure from the previous problem, parts a
through c, for the SF¢ molecule and determine which vibra-
tional modes are IR active.

4.28 For the following molecules, determine the number of
IR-active C— O stretching vibrations:

a. b. c. Fe(CO)s
0 a O
C (@]
C |~
oc FI o OC_ te—CO Oc
C o C o) I
(0] C C
O 0

4.29 Repeat Problem 4.28 to determine the number of
Raman-active C— O stretching vibrations.

4.30 The structure of 1,1,2,2-tetraiododisilane is shown here.
(Reference: T. H. Johansen, K. Hassler, G. Tekautz, K.
Hagen, J. Mol. Struct., 2001, 598, 171.)

H A
_--Si Sl\
-
1/ H

a. What is the point group of this molecule?

b. Predict the number of IR-active Si—1I stretching
vibrations.

c. Predict the number of Raman-active Si—T1 stretching
vibrations.

4.31 Both cis and trans isomers of 10,F, have been observed.
Can IR spectra distinguish between these? Explain, sup-
porting your answer on the basis of group theory. (Refer-
ence: K. O. Christe, R. D. Wilson, C. J. Schack, Inorg.
Chem., 1981, 20, 2104.)

4.32 White elemental phosphorus consists of tetrahedral P,
molecules and is an important source of phosphorus for
synthesis. In contrast, tetrahedral As, (yellow arsenic) is
unstable, and decomposes to a grey As allotrope with a
sheet structure. However, AsPs, previously only observed
at high temperature in the gas phase, has been isolated at
ambient temperature as a white solid, where an As atom
replaces one vertex of the tetrahedron.

a. The Raman spectrum of AsP3, shown next, exhibits four
absorptions. Is this consistent with the proposed structure?
(Facile Synthesis of AsPz, Brandi M. Cossairt, Mariam-
Céline Diawara, Christopher C. Cummins. © 2009. The
American Association for the Advancement of Science.
Reprinted with permission from AAAS.)

557 cm™!

40000
35000
30000
25000
20000
15000 T T T T T T T 17 171
10000 — 200 300 400 500 600
5000 Raman shift (cm™1)

O_

Intensity (a.u.)

T T T 1T T T T T T T T T T.1
0 500 1000 1500 2000 2500 3000 3500

Raman shift (cmfl)

b. If As,P, is ever isolated as a pure substance, how many
Raman absorptions would be expected? (Reference:
B. M. Cossairt, C. C. Cummins, J. Am. Chem. Soc.
2009, 731, 15501.)

c¢. Could a pure sample of P, be distinguished from pure
AsP; simply on the basis of the number of Raman
absorptions? Explain.



4.33 Complexes of the general formula Fe(CO)s_ (PRj),

4.34 Disubstituted Fe(CO);(PPhs),

are long known. The bimetallic Fe,(CO)y reacts with
triphenylphosphine in refluxing diethyl ether to afford a
monosubstituted product Fe(CO)4(PPh;) that exhibits v
(CO) absorptions at 2051, 1978, and 1945 cm™! in hexane.
(N. J. Farrer, R. McDonald, J. S. McIndoe, Dalton Trans.,
2006, 4570.) Can these data be used to unambiguously
establish whether the PPh; ligand is bound in either an
equatorial or axial site in this trigonal bipyramidal com-
plex? Support your decision by determining the number of
IR-active CO stretching modes for these isomers.

v(CO): 1883 cm ;
M. O. Albers, N. J. Coville, T. V. Ashworth, E. J. Singleton,
Organomet. Chem., 1981, 217, 385.) is also formed in the
reaction described in Problem 4.33. Which of the follow-
ing molecular geometries is supported by this spectrum?
Support your decision by determining the number of IR-
active CO stretching modes for these isomers. What does
R. L. Keiter, E. A. Keiter, K. H. Hecker, C. A. Boecker,
Organometallics 1988, 7, 2466 indicate about the infal-
libility of group theoretical CO stretching mode infrared
spectroscopic prediction in the case of Fe(CO);(PPh;),?

co I\’Ph3 1‘>Ph3

oc—Fe 7Py oc—Fe €O oc—Fe :Pph3
| “PPhy | >co | ~co
co PPh, co

4.35 The reaction of [Ti(CO)ﬁ]zf and chlorotriphenylmethane,

Absorbance

Ph;CCl, results in rapid oxidation of [Ti(CO)6]27 to afford
a trityltitanium tetracarbonyl complex (P. J. Fischer, K. A.
Ahrendt, V. G. Young, Jr., J. E. Ellis, Organometallics,
1998, 17, 13). On the basis of the IR spectrum (v(CO)):
1932, 1810 cm™ ') acquired in tetrahydrofuran solution,
shown next, is this complex expected to exhibit a square
planar or a square pyramidal arrangement of four CO ligands
bound to titanium? Does the spectrum rule out either of these
possible geometries?

0.8

0.6 -

0.4 4

0.2

0.0

T T T T T
2000 1900 1800 1700 1600

Wavenumbers

4.36 A related reaction to the one described in Problem 4.34,

in  which cis — Mo(CO)4(POPh;), rearranges to
trans-Mo(CO)4(POPhjs),, has been probed mechanistically
(D. J. Darensbourg, J. R. Andretta, S. M. Stranahan, J. H.
Reibenspies, Organometallics 2007, 26, 6832.) When this reac-
tion is conducted under an atmosphere of carbon monoxide,
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cis/trans isomerization does not occur. Instead a new complex
(¥(CO) (hexane): 2085, 2000 (very weak), 1972, 1967 cm™)
is formed (D. J. Darensbourg, T. L. Brown, Inorg. Chem. 1968,
7,959.) Propose the formula of this Mo carbonyl complex con-
sistent with the »(CO) IR spectra data. Support your answer by
determining its expected number of CO stretching modes for
comparison with the published spectrum.

4.37 Three isomers of W,Cl,(NHEt),(PMe;), have been reported.

These isomers have the core structures shown here. Deter-
mine the point group of each. (Reference: F. A. Cotton, E.
V. Dikarev, W-Y. Wong, Inorg. Chem., 1997, 36, 2670.)

Cl N Cl——Cl Cl———Cl
e / e / a /
n l | l ]
Pp-Wod- p-W-1-N N-W-—i-—p
7 / 7 / L’
1 N C Cl Cl Cl
1 1I 11T

4.38 Derivatives of methane can be obtained by replacing one or

more hydrogen atoms with other atoms, such as F, Cl, or
Br. Suppose you had a supply of methane and the necessary
chemicals and equipment to make derivatives of methane con-
taining all possible combinations of the elements H, F, ClI,
and Br. What would be the point groups of the molecules you
could make? There are many possible molecules, and they can
be arranged into five sets for assignment of point groups.

4.39 Determine the point groups of the following molecules:

a. F;SCCF;, with a triple S — C bond

E. .E
~ -
pps=c—cZF
F F

b. C¢HgF,Cl,Br,, a derivative of cyclohexane, in a chair
conformation
Br F

Cl
Cl
F Br

c¢. M,ClgBry, where M is a metal atom

Cl Br
Br._ | .Cl._| .Cl
M M
a” | >ar” | YBr
Br Cl

d. M(NH,C,H4PH,)3, considering the NH,C,H,PH, rings

as planar
N
| .

P
S
P

e. PCl,F; (the most likely isomer)
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4.40 Assign the point groups of the four possible structures
for asymmetric bidentate ligands bridging two metals in
a “paddlewheel” arrangement: (Reference: Y. Ke, D. J.
Collins, H. Zhou, Inorg. Chem. 2005, 44, 4154.)

B B
doATA B
O — VB A — A
N
B B
B4 JoBA
— A B <A

4.41 Determine the point groups of the following:
a. The cluster anion [Res(u; — S)(w — S)3Brol?>~
(Reference: H. Sakamoto, Y. Watanabe, T. Sato, Inorg.
Chem., 2006, 45, 4578.)

b. The cluster anion [Fe @Ga10]3‘ (Reference: B. Zhou, M.
S. Denning, D. L. Kays, J. M. Goicoechea, J. Am. Chem.
Soc., 2009, 131, 2802).

¢. The “corner” and “square” structures: (Reference: W. H.
Otto, M. H. Keefe, K. E. Splan, J. T. Hupp, C. K. Larive,
Inorg. Chem. 2002, 41, 6172.)

e c o
cl fou C
OC—Ré—L—Ré—CO
7 7 Cl
o€ @)
L o L ocC Re L
C Cl 7
OC—Ré—L—Ré—CO C
v / 0
cl C
. 9 ¢ L
0
Square Corner
5O
\—7

d. The [Bi;I,,]*~ ion. (Reference: K.Y. Monakhov, C.
Gourlaouen, R. Pattacini, P. Braunstein, norg. Chem.,
2012, 51, 1562. This reference also has alternative
depictions of this structure.

1. i PR i 1 _I i

B B1
I/ g \I/ f \I
"Bi CBi” CBiC
T I I
: :ig
I/ g \I/ g \I
I I
4.42 Use the Internet to search for molecules with the
symmetry of
a. The I, point group
b. The T point group
c¢. The I, point group
d. The 7}, point group

Report the molecules, the URL of the Web site where you
found them, and the search strategy you used.
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Molecular Orbitals

Molecular orbital theory uses group theory to describe the bonding in molecules; it comple-
ments and extends the introductory bonding models in Chapter 3. In molecular orbital
theory the symmetry properties and relative energies of atomic orbitals determine how
these orbitals interact to form molecular orbitals. The molecular orbitals are then occupied
by the available electrons according to the same rules used for atomic orbitals as described
in Sections 2.2.3 and 2.2.4. The total energy of the electrons in the molecular orbitals is
compared with the initial total energy of electrons in the atomic orbitals. If the total energy
of the electrons in the molecular orbitals is less than in the atomic orbitals, the molecule is
stable relative to the separate atoms; if not, the molecule is unstable and predicted not to
form. We will first describe the bonding, or lack of it, in the first 10 homonuclear diatomic
molecules (H, through Ne,) and then expand the discussion to heteronuclear diatomic
molecules and molecules having more than two atoms.

A less rigorous pictorial approach is adequate to describe bonding in many small mole-
cules and can provide clues to more complete descriptions of bonding in larger ones. A more
elaborate approach, based on symmetry and employing group theory, is essential to under-
stand orbital interactions in more complex molecular structures. In this chapter, we describe
the pictorial approach and develop the symmetry methodology required for complex cases.

5.1 Formation of Molecular Orbitals from Atomic Orbitals

As with atomic orbitals, Schrodinger equations can be written for electrons in molecules.
Approximate solutions to these molecular Schrodinger equations can be constructed from
linear combinations of atomic orbitals (LCAQ), the sums and differences of the atomic
wave functions. For diatomic molecules such as H,, such wave functions have the form

v = Calpa + cb‘/jb

where W is the molecular wave function, ¢, and s, are atomic wave functions for atoms
a and b, and ¢, and ¢, are adjustable coefficients that quantify the contribution of each
atomic orbital to the molecular orbital. The coefficients can be equal or unequal, positive or
negative, depending on the individual orbitals and their energies. As the distance between
two atoms is decreased, their orbitals overlap, with significant probability for electrons
from both atoms being found in the region of overlap. As a result, molecular orbitals form.
Electrons in bonding molecular orbitals have a high probability of occupying the space
between the nuclei; the electrostatic forces between the electrons and the two positive
nuclei hold the atoms together.

Three conditions are essential for overlap to lead to bonding. First, the symmetry of
the orbitals must be such that regions with the same sign of s overlap. Second, the atomic
orbital energies must be similar. When the energies differ greatly, the change in the energy
of electrons upon formation of molecular orbitals is small, and the net reduction in energy

117
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FIGURE 5.1 Molecular Orbitals
from Hydrogen 1s Orbitals. The
o molecular orbital is a bonding
molecular orbital, and has a
lower energy than the original
atomic orbitals, since this
combination of atomic orbitals
results in an increased concen-
tration of electrons between the
two nuclei. The o* orbital is an
antibonding orbital at higher
energy since this combination
of atomic orbitals results in a
node with zero electron density
between the nuclei.

Molecular Orbitals

of the electrons is too small for significant bonding. Third, the distance between the atoms
must be short enough to provide good overlap of the orbitals, but not so short that repul-
sive forces of other electrons or the nuclei interfere. When these three conditions are met,
the overall energy of the electrons in the occupied molecular orbitals is lower in energy
than the overall energy of the electrons in the original atomic orbitals, and the resulting
molecule has a lower total energy than the separated atoms.

5.1.1 Molecular Orbitals from s Orbitals

Consider the interactions between two s orbitals, as in H,. For convenience, we label the
atoms of a diatomic molecule a and b, so the atomic orbital wave functions are ¢(1s,)
and ¢(1s;,). We can visualize the two atoms approaching each other, until their electron
clouds overlap and merge into larger molecular electron clouds. The resulting molecular
orbitals are linear combinations of the atomic orbitals, the sum of the two orbitals and the
difference between them.

In general terms for H,

(o) = Nleab (1) + (1)) = 5[0(1s0) + ¥ (1) ] (H, + 1))

and ¥ (0*) = N[cap(1s,) = epb(1s,) ] = %W(lsa) — ¢ (1s,) ] (H, — H,)

where N = normalizing factor, so f Yo+ dr = 1

¢, and ¢, = adjustable coefficients

In this case, the two atomic orbitals are identical, and the coefficients are nearly
identical as well.” These orbitals are depicted in Figure 5.1. In this diagram, as in all the
orbital diagrams in this book (such as Table 2.3 and Figure 2.6), the signs of orbital lobes
are indicated by shading or color. Light and dark lobes or lobes of different color indicate
opposite signs of W. The choice of positive and negative for specific atomic orbitals is
arbitrary; what is important is how they combine to form molecular orbitals. In the dia-
grams in Figure 5.2, the different colors show opposite signs of the wave function, both

o ‘'t ) 249
y = (s P(ls f iy \
C V2! ( ’u) !( h). A ,r’ \\
* / 1
o

® O Qi +

overlap ls, ls), \ /

Is, Is),

o= \'3};;{1.\”) r(1s,)] @ o' M

o

"More precise calculations show that the coefficients of the o orbital are slightly larger than those for the
o orbital; but for the sake of simplicity, we will generally not focus on this. For identical atoms, we will use

c,=¢,=land N= % The difference in coefficients for the o and o™ orbitals also results in a larger change in
energy (increase) from the atomic to the o molecular orbitals than for the o orbitals (decrease). In other words,

AE,« > AE,, as shown in Figure 5.1.
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FIGURE 5.2 Interactions of p Orbitals. (a) Formation of molecular orbitals. (b) Orbitals that do not form
molecular orbitals. (c) Energy-level diagram. (Interactions of p Orbitals by Kaitlin Hellie. Reprinted by
permission.)

in the schematic sketches on the left of the energy level diagram and in the calculated
molecular orbital images on the right.”

1
Because the o molecular orbital is the sum of two atomic orbitals, —=[(1s,) +
2

¥(1sp) |, and results in an increased concentration of electrons between the two nuclei, it is
a bonding molecular orbital and has a lower energy than the original atomic orbitals. The

1
o* molecular orbital is the difference of the two atomic orbitals, —=[ ¢(1s,) — t(1s,,)].

It has a node with zero electron density between the nuclei, due to cancellation of the two
wave functions, and a higher energy; it is therefore called an antibonding orbital. Electrons
in bonding orbitals are concentrated between the nuclei and attract the nuclei, holding them
together. Antibonding orbitals have one or more nodes between the nuclei; electrons in
these orbitals are destabilized relative to the parent atomic orbitals; the electrons do not
have access to the region between the nuclei where they could experience the maximum

“Molecular orbital images in this chapter were prepared using Scigress Explorer Ultra, Version 7.7.0.47,
© 2000-2007 Fujitsu Limited, © 1989-2000 Oxford Molecular Ltd.

pla) p(b)
no interaction

(b)
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nuclear attraction. Nonbonding orbitals are also possible. The energy of a nonbonding
orbital is essentially that of an atomic orbital, either because the orbital on one atom has
a symmetry that does not match any orbitals on the other atom or the orbital on one atom
has a severe energy mismatch with symmetry-compatible orbitals on the other atom.

The o (sigma) notation indicates orbitals that are symmetric to rotation about the line
connecting the nuclei:

G G
O@  Ol08-
o™ from s orbital o™ from p. orbital

An asterisk is frequently used to indicate antibonding orbitals. Because the bonding,
nonbonding, or antibonding nature of a molecular orbital is not always straightforward to
assign in larger molecules, we will use the asterisk notation only for those molecules where
bonding and antibonding orbital descriptions are unambiguous.

The pattern described for H, is the usual model for combining two orbitals: two atomic
orbitals combine to form two molecular orbitals, one bonding orbital with a lower energy
and one antibonding orbital with a higher energy. Regardless of the number of orbitals, the
number of resulting molecular orbitals is always the same as the initial number of atomic
orbitals; the total number of orbitals is always conserved.

5.1.2 Molecular Orbitals from p Orbitals

Molecular orbitals formed from p orbitals are more complex since each p orbital contains
separate regions with opposite signs of the wave function. When two orbitals overlap, and
the overlapping regions have the same sign, the sum of the two orbitals has an increased
electron probability in the overlap region. When two regions of opposite sign overlap, the
combination has a decreased electron probability in the overlap region. Figure 5.1 shows
this effect for the 1s orbitals of H,; similar effects result from overlapping lobes of p orbit-
als with their alternating signs. The interactions of p orbitals are shown in Figure 5.2. For
convenience, we will choose a common z axis connecting the nuclei and assign x and y
axes as shown in the figure.

When we draw the z axes for the two atoms pointing in the same direction,” the p,
orbitals subtract to form o and add to form o* orbitals, both of which are symmetric to
rotation about the z axis, with nodes perpendicular to the line that connects the nuclei.
Interactions between p, and p, orbitals lead to 7 and 7* orbitals. The 7 (pi) notation
indicates a change in sign of the wave function with C, rotation about the bond axis:

o5, @OK
@V OOV

As with the s orbitals, the overlap of two regions with the same sign leads to an
increased concentration of electrons, and the overlap of two regions of opposite signs leads
to a node of zero electron density. In addition, the nodes of the atomic orbitals become the

“The choice of direction of the z axes is arbitrary. When both are positive in the same direction

Dm\_; Dm\_; , the difference between the P, orbitals is the bonding combination. When the positive

z axes are chosen to point toward each other, =T =", the sum of the p_orbitals is the bonding
combination. We have chosen to have the p_ orbitals positive in the same direction for consistency with our
treatment of triatomic and larger molecules.
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nodes of the resulting molecular orbitals. In the 7* antibonding case, four lobes result that
are similar in appearance to a d orbital, as in Figure 5.2(c).

The p,, py, and p, orbital pairs need to be considered separately. Because the z axis was
chosen as the internuclear axis, the orbitals derived from the p, orbitals are symmetric to
rotation around the bond axis and are labeled o and o* for the bonding and antibonding
orbitals, respectively. Similar combinations of the p, orbitals form orbitals whose wave
functions change sign with C, rotation about the bond axis; they are labeled 7 and 7*. In
the same way, the p, orbitals also form 7 and 77* orbitals.

It is common for s and p atomic orbitals on different atoms to be sufficiently similar
in energy for their combinations to be considered. However, if the symmetry properties of
the orbitals do not match, no combination is possible. For example, when orbitals overlap
equally with both the same and opposite signs, as in the s + p, example in Figure 5.2(b), the
bonding and antibonding effects cancel, and no molecular orbital results. If the symmetry
of an atomic orbital does not match any orbital of the other atom, it is called a nonbonding
orbital. Homonuclear diatomic molecules have only bonding and antibonding molecular
orbitals; nonbonding orbitals are described further in Sections 5.1.4, 5.2.2, and 5.4.3.

5.1.3 Molecular Orbitals from d Orbitals

In the heavier elements, particularly the transition metals, d orbitals can be involved in bonding.
Figure 5.3 shows the possible combinations. When the z axes are collinear, two d orbitals can
combine end-on for o bonding. The d,, and d,, orbitals form 7 orbitals. When atomic orbit-
als meet from two parallel planes and combine side to side, as do the d2_,2 and d,, orbitals
with collinear z axes, they form (§) delta orbitals (Figure 1.2). (The & notation indicates sign
changes on C, rotation about the bond axis.) Sigma orbitals have no nodes that include the line
connecting the nuclei, pi orbitals have one node that includes the line connecting the nuclei, and
delta orbitals have two nodes that include the line connecting the nuclei. Again, some orbital
interactions are forbidden on the basis of symmetry; for example, p, and d,, have zero net over-
lap if the z axis is chosen as the bond axis since the p, would approach the d,, orbital along a
d,, node (Example 5.1). It is noteworthy in this case that p, and d,, would be eligible to interact
in a 7 fashion on the basis of the assigned coordinate system. This example emphasizes the
importance of maintaining a consistent coordinate system when assessing orbital interactions.

Sketch the overlap regions of the following combination of orbitals, all with collinear
z axes, and classify the interactions.

p,andd,, s and d2 s and dyz
P, d,. s d2 s dyz
no interaction o interaction no interaction

EXERCISE 5.1 Repeat the process in the preceding example for the following orbital
combinations, again using collinear z axes.

peand d,, p.and d sandde_p
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FIGURE 5.3 Interactions of
d Orbitals. (a) Formation of
molecular orbitals. (b) Atomic
orbital combinations that do
not form molecular orbitals.
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FIGURE 5.4 Energy Match and
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514 Nonbonding Orbitals and Other Factors

As mentioned previously, nonbonding molecular orbitals have energies essentially
equal to that of atomic orbitals. These can form in larger molecules, for example when
there are three atomic orbitals of the same symmetry and similar energies, a situation
that requires the formation of three molecular orbitals. Most commonly, one molecu-
lar orbital formed is a low-energy bonding orbital, one is a high-energy antibonding
orbital, and one is of intermediate energy and is a nonbonding orbital. Examples will
be considered in Section 5.4 and in later chapters.

In addition to symmetry, the second major factor that must be considered in forming
molecular orbitals is the relative energy of the atomic orbitals. As shown in Figure 5.4,
when the interacting atomic orbitals have the same energy, the interaction is strong, and
the resulting molecular orbitals have energies well below (bonding) and above (antibond-
ing) that of the original atomic orbitals. When the two atomic orbitals have quite different
energies, the interaction is weaker, and the resulting molecular orbitals have energies and
shapes closer to the original atomic orbitals. For example, although they have the same
symmetry, ls orbitals do not combine significantly with 2s orbitals of the other atom in
diatomic molecules such as N,, because their energies are too far apart. The general rule
is that the closer the energy match, the stronger the interaction.

5.2 Homonuclear Diatomic Molecules

Because of their simplicity, diatomic molecules provide convenient examples to illustrate
how the orbitals of individual atoms interact to form orbitals in molecules. In this section,
we will consider homonuclear diatomic molecules such as H, and 0,; in Section 5.3 we
will examine heteronuclear diatomics such as CO and HF.
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5.2.1 Molecular Orbitals

Although apparently satisfactory Lewis electron-dot structures of N,, O,, and F, can be
drawn, the same is not true with Li,, Be,, B,, and C,, which violate the octet rule. In addi-
tion, the Lewis structure of O, predicts a double-bonded, diamagnetic (all electrons paired)
molecule (O=0), but experiment has shown O, to have two unpaired electrons, making it
paramagnetic. As we will see, the molecular orbital description predicts this paramagnet-
ism, and is more in agreement with experiment. Figure 5.5 shows the full set of molecular
orbitals for the homonuclear diatomic molecules of the first 10 elements, based on the
energies appropriate for O,. The diagram shows the order of energy levels for the molecular
orbitals, assuming significant interactions only between atomic orbitals of identical energy.
The energies of the molecular orbitals change in a periodic way with atomic number, since
the energies of the interacting atomic orbitals decrease across a period (Figure 5.7), but
the general order of the molecular orbitals remains similar (with some subtle changes, as
will be described in several examples) even for heavier atoms lower in the periodic table.
Electrons fill the molecular orbitals according to the same rules that govern the filling of
atomic orbitals, filling from lowest to highest energy (aufbau principle), maximum spin

FIGURE 5.5 Molecular

Orbitals for the First 10
Elements, Assuming Significant
Interactions Only between the
Valence Atomic Orbitals of
Identical Energy. (Molecular
Orbitals for the First 10 Elements
by Kaitlin Hellie. Reprinted by
permission.)
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multiplicity consistent with the lowest net energy (Hund’s rules), and no two electrons with
identical quantum numbers (Pauli exclusion principle). The most stable configuration of
electrons in the molecular orbitals is always the configuration with minimum energy, and
the greatest net stabilization of the electrons.

The overall number of bonding and antibonding electrons determines the number of
bonds (bond order):

Bond order = —

1 [(number of electrons> B ( number of electrons )}
2

in bonding orbitals in antibonding orbitals

It is generally sufficient to consider only valence electrons. For example, O,, with
10 electrons in bonding orbitals and 6 electrons in antibonding orbitals, has a bond
order of 2, a double bond. Counting only valence electrons, 8 bonding and 4 antibond-
ing, gives the same result. Because the molecular orbitals derived from the 1s orbitals
have the same number of bonding and antibonding electrons, they have no net effect
on the bond order. Generally electrons in atomic orbitals lower in energy than the
valence orbitals are considered to reside primarily on the original atoms and to engage
only weakly in bonding and antibonding interactions, as shown for the ls orbitals in
Figure 5.5; the difference in energy between the o, and o, orbitals is slight. Because
such interactions are so weak, we will not include them in other molecular orbital
energy level diagrams.

Additional labels describe the orbitals. The subscripts g for gerade, orbitals symmetric
to inversion, and u for ungerade, orbitals antisymmetric to inversion (those whose signs
change on inversion), are commonly used.” The g or u notation describes the symmetry
of the orbitals without a judgment as to their relative energies. Figure 5.5 has examples of
both bonding and antibonding orbitals with g and u designations.

Add a g or u label to each of the molecular orbitals in the energy-level diagram in
Figure 5.2.

From top to bottom, the orbitals are o, 7, , 7,, and .

EXERCISE 5.2 Add a g or u label to each of the molecular orbitals in Figure 5.3(a).

5.2.2 orbital Mixing

In Figure 5.5, we only considered interactions between atomic orbitals of identical energy.
However, atomic orbitals with similar, but unequal, energies can interact if they have
appropriate symmetries. We now outline two approaches to analyzing this phenomenon,
one in which we first consider the atomic orbitals that contribute most to each molecular
orbital before consideration of additional interactions and one in which we consider all
atomic orbital interactions permitted by symmetry simultaneously.

Figure 5.6(a) shows the familiar energy levels for a homonuclear diatomic molecule
where only interactions between degenerate (having the same energy) atomic orbitals are
considered. However, when two molecular orbitals of the same symmetry have similar
energies, they interact to lower the energy of the lower orbital and raise the energy of the
higher orbital. For example, in the homonuclear diatomics, the o, (2s) and o, (2p) orbit-
als both have o, symmetry (symmetric to infinite rotation and inversion); these orbitals

“See the end of Section 4.3.3 for more details on symmetry labels.
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interact to lower the energy of the o, (2s) and to raise the energy of the o, (2p) as shown
in Figure 5.6(b). Similarly, the o, (2s) and o," (2p) orbitals interact to lower the energy
of the o,,” (2s) and to raise the energy of the o-," (2p). This phenomenon is called mix-
ing, which takes into account that molecular orbitals with similar energies interact if they
have appropriate symmetry, a factor ignored in Figure 5.5. When two molecular orbitals
of the same symmetry mix, the one with higher energy moves still higher in energy, and
the one with lower energy moves lower. Mixing results in additional electron stabilization,
and enhances the bonding.

A perhaps more rigorous approach to explain mixing considers that the four o molecu-
lar orbitals (MOs) result from combining the four atomic orbitals (two 2s and two 2p,) that
have similar energies. The resulting molecular orbitals have the following general form,
where a and b identify the two atoms, with appropriate normalization constants for each
atomic orbital:

V= ch(2s,) T cp(2sp) £ csp(2p,) T cap(2py)

For homonuclear diatomic molecules, ¢c; = ¢, and ¢3 = ¢, in each of the four MOs.
The lowest energy MO has larger values of ¢; and c¢,, the highest has larger values of c3
and ¢4, and the two intermediate MOs have intermediate values for all four coefficients.
The symmetry of these four orbitals is the same as those without mixing, but their shapes
are changed somewhat by having significant contributions from both the s and p atomic
orbitals. In addition, the energies are shifted relative to their placement if the upper two
exhibited nearly exclusive contribution from 2p, while the lower two exclusive contribution
from 2s, as shown in Figure 5.6.

It is clear that s-p mixing often has a detectable influence on molecular orbital ener-
gies. For example, in early second period homonuclear diatomics (Li, to N»), the o, orbital
formed from 2p, orbitals is higher in energy than the 7, orbitals formed from the 2p, and
2p, orbitals. This is an inverted order from that expected without s-p mixing (Figure 5.6).
For B, and C,, s-p mixing affects their magnetic properties. Mixing also changes the
bonding—antibonding nature of some orbitals. The orbitals with intermediate energies may,

FIGURE 5.6 Interaction
between Molecular Orbitals.
Mixing molecular orbitals of
the same symmetry results in
a greater energy difference
between the orbitals. The o
orbitals mix strongly; the o
orbitals differ more in energy
and mix weakly.



126 Chapter5 | Molecular Orbitals

FIGURE 5.7 Energy Levels of
the Homonuclear Diatomics of
the Second Period.

on the basis of s-p mixing, gain either a slightly bonding or slightly antibonding character
and contribute in minor ways to the bonding. Each orbital must be considered separately
on the basis of its energy and electron distribution.

5.2.3 Diatomic Molecules of the First and Second Periods

Before proceeding with examples of homonuclear diatomic molecules, we must define
two types of magnetic behavior, paramagnetic and diamagnetic. Paramagnetic com-
pounds are attracted by an external magnetic field. This attraction is a consequence of
one or more unpaired electrons behaving as tiny magnets. Diamagnetic compounds, on
the other hand, have no unpaired electrons and are repelled slightly by magnetic fields.
(An experimental measure of the magnetism of compounds is the magnetic moment, a
concept developed in Chapter 10 in the discussion of the magnetic properties of coordina-
tion compounds.)

H,, He,, and the homonuclear diatomic species shown in Figure 5.7 will now be
discussed. As previously discussed, atomic orbital energies decrease across a row in
the Periodic Table as the increasing effective nuclear charge attracts the electrons more
strongly. The result is that the molecular orbital energies for the corresponding homonuclear
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diatomics also decrease across the row. As shown in Figure 5.7, this decrease in energy is
larger for o orbitals than for 7 orbitals, due to the greater overlap of the atomic orbitals
that participate in o interactions.

Hylog*(15)]

This is the simplest diatomic molecule. The MO description (Figure 5.1) shows a single o
orbital containing one electron pair; the bond order is 1, representing a single bond. The
ionic species H,", with a single electron in the a o orbital and a bond order of % has been
detected in low-pressure gas-discharge systems. As expected, H," has a weaker bond than
H, and therefore a considerably longer bond distance than H, (105.2 pm vs. 74.1 pm).

He,lo 20, 2(15)]

The molecular orbital description of He, predicts two electrons in a bonding orbital and
two in an antibonding orbital, with a bond order of zero—in other words, no bond. This
is what is observed experimentally. The noble gas He has no significant tendency to form
diatomic molecules and, like the other noble gases, exists in the form of free atoms. He,
has been detected only in very low-pressure and low-temperature molecular beams. It has
an extremely low binding energy,' approximately 0.01 J/mol; for comparison, H, has a
bond energy of 436 kJ/mol.

Li,[og2(25)]
As shown in Figure 5.7, the MO model predicts a single Li—Li bond in Li,, in agreement
with gas-phase observations of the molecule.

Be [0’ "2(2p)]
Be, has the same number of antibonding and bonding electrons and consequently a bond
order of zero. Hence, like He,, Be, is an unstable species.”

B,[w,'m,'(2p)]

Here is an example in which the MO model has a distinct advantage over the Lewis dot
model. B, is a gas-phase species; solid boron exists in several forms with complex bonding,
primarily involving B, icosahedra.

B, is paramagnetic. This behavior can be explained if its two highest energy electrons
occupy separate 7 orbitals, as shown. The Lewis dot model cannot account for the para-
magnetic behavior of this molecule.

The energy-level shift caused by s-p mixing is vital to understand the bonding in B,. In
the absence of mixing, the o ,(2p) orbital would be expected to be lower in energy than the
,(2p) orbitals, and the molecule would likely be diamagnetic.” However, mixing of the
0 4(2s) orbital with the o ,(2p) orbital (Figure 5.6b) lowers the energy of the o ,(2s) orbital
and increases the energy of the o, (2p) orbital to a higher level than the 7 orbitals, giving
the order of energies shown in Figure 5.7. As a result, the last two electrons are unpaired
in the degenerate 7 orbitals, as required by Hund’s rule of maximum multiplicity, and the
molecule is paramagnetic. Overall, the bond order is one, even though the two 7 electrons
are in different orbitals.

*Bez is calculated to have a very weak bond when effects of higher energy, unoccupied orbitals are taken into
account. See A. Krapp, F. M. Bickelhaupt, and G. Frenking, Chem. Eur. J., 2006, 12, 9196.

““This presumes that the energy difference between o, (2p) and m,(2p) would be greater than II, (Section 2.2.3),
a reliable expectation for molecular orbitals discussed in this chapter, but sometimes not true in transition metal
complexes, as discussed in Chapter 10.
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C—CDistance
C=C (gas phase)
H—C=C—H
CaC,
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(pm)
124.2
120.5
119.1

C,lm,2m,2(2p)]

The MO model of C, predicts a doubly bonded molecule, with all electrons paired,
but with both highest occupied molecular orbitals (HOMOs) having 7 symmetry. C,
is unusual because it has two 7 bonds and no o bond. Although C, is a rarely encoun-
tered allotrope of carbon (carbon is significantly more stable as diamond, graphite,
fullerenes and other polyatomic forms described in Chapter 8), the acetylide ion, C,2 ™,
is well known, particularly in compounds with alkali metals, alkaline earths, and lan-
thanides. According to the molecular orbital model, szf should have a bond order of 3
(configuration wuzwuzagz). This is supported by the similar C— C distances in acetylene
and calcium carbide (acetylide)?.

Nz[ﬁuzﬂuzagz(zp)]

N, has a triple bond according to both the Lewis and the molecular orbital models.
This agrees with its very short N—N distance (109.8 pm) and extremely high bond-
dissociation energy (942 kJ/mol). Atomic orbitals decrease in energy with increasing
nuclear charge Z as discussed in Section 2.2.4, and further described in Section 5.3.1;
as the effective nuclear charge increases, the energies of all orbitals are reduced. The
varying shielding abilities of electrons in different orbitals and electron—electron inter-
actions cause the difference between the 2s and 2p energies to increase as Z increases,
from 5.7 eV for boron to 8.8 eV for carbon and 12.4 eV for nitrogen. (These energies are
given in Table 5.2 in Section 5.3.1.) The radial probability functions (Figure 2.7) indicate
that 2s electrons have a higher probability of being close to the nucleus relative to 2p
electrons, rendering the 2s electrons more susceptible to the increasing nuclear charge as
Z increases. As a result, the g4(2s) and o,(2p) levels of N, interact (mix) less than the
corresponding B, and C, levels, and the N, o,(2p) and 7,(2p) are very close in energy.
The order of energies of these orbitals has been controversial and will be discussed in
more detail in Section 5.2.4.

02[0'9217,,277”2179*1779*1(2p)]

O, is paramagnetic. As for B,, this property cannot be explained by the Lewis dot
structure .0O=0:, but it is evident from the MO picture, which assigns two electrons
to the degenerate wg* orbitals. The paramagnetism can be demonstrated by pour-
ing liquid O, between the poles of a strong magnet; O, will be held between the
pole faces until it evaporates. Several charged forms of diatomic oxygen are known,
including O,", O, , and 0,%>". The internuclear O— O distance can be conveniently
correlated with the bond order predicted by the molecular orbital model, as shown in
the following table.”

Bond Order Internuclear Distance (pm)

0," (dioxygenyl) 2.5 111.6
O, (dioxygen) 2.0 120.8
O, (superoxide) 1.5 135

07~ (peroxide) 1.0 150.4

Oxygen—oxygen distances in O, and O7 ™ are influenced by the cation. This influence is especially strong in
the case of O; ™ and is one factor in its unusually long bond distance, which should be considered approximate.
The disproportionation of KO, to O, and O7~ in the presence of hexacarboximide cryptand (similar molecules
will be discussed in Chapter 8) results in encapsulation of O~ in the cryptand via hydrogen-bonding interac-
tions. This O—O peroxide distance was determined as 150.4(2) pm.*

“See Table 5.1 for references.
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The extent of mixing is not sufficient in O, to push the o ,(2p) orbital to higher energy
than the 7, (2p) orbitals. The order of molecular orbitals shown is consistent with the
photoelectron spectrum, discussed in Section 5.2.4.

Fz[agzﬂuzwuzﬂg*zﬂ'g*z(Zp)]

The MO model of F, shows a diamagnetic molecule having a single fluorine—fluorine
bond, in agreement with experimental data.

The bond order in N,, O,, and F, is the same whether or not mixing is taken
into account, but the order of the o,(2p) and ,(2p) orbitals is different in N, than in O,
and F,. As stated previously and further described in Section 5.3.1, the energy difference
between the 2s and 2p orbitals of the second row main group elements increases with
increasing Z, from 5.7 eV in boron to 21.5 eV in fluorine. As this difference increases, the
s-p interaction (mixing) decreases, and the “normal” order of molecular orbitals returns
in O, and F,. The higher o,(2p) orbital (relative to 7,(2p)) occurs in many heteronuclear
diatomic molecules, such as CO, described in Section 5.3.1.

Ne

2
All the molecular orbitals are filled, there are equal numbers of bonding and antibonding
electrons, and the bond order is therefore zero. The Ne, molecule is a transient species, if
it exists at all.

One triumph of molecular orbital theory is its prediction of two unpaired electrons
for O,. Oxygen had long been known to be paramagnetic, but early explanations for this
phenomenon were unsatisfactory. For example, a special “three-electron bond™ was
proposed. The molecular orbital description directly explains why two unpaired electrons
are required. In other cases, experimental observations (paramagnetic B,, diamagnetic
C,) require a shift of orbital energies, raising o, above 7, but they do not require major
modifications of the model.

Bond Lengths in Homonuclear Diatomic Molecules

Figure 5.8 shows the variation of bond distance with the number of valence electrons in
second-period p-block homonuclear diatomic molecules having 6 to 14 valence electrons.
Beginning at the left, as the number of electrons increases the number in bonding orbitals
also increases; the bond strength becomes greater, and the bond length becomes shorter.

FIGURE 5.8 Bond Distances
of Homonuclear Diatomic
Molecules and lons.

Bond distance (pm)
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Valence electrons
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FIGURE 5.9 Covalent Radii of
Second-Period Atoms.

Covalent Radius (pm)
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This continues up to 10 valence electrons in N,, where the trend reverses, because the
additional electrons occupy antibonding orbitals. The ions N,*, 0,7, 0,7, and O,>~ are
also shown in the figure and follow a similar trend.

The minimum in Figure 5.8 occurs even though the radii of the free atoms decrease
steadily from B to F. Figure 5.9 shows the change in covalent radius for these atoms (defined
for single bonds), decreasing as the number of valence electrons increases, primarily
because the increasing nuclear charge pulls the electrons closer to the nucleus. For the
elements boron through nitrogen, the trends shown in Figures 5.8 and 5.9 are similar: as
the covalent radius of the atom decreases, the bond distance of the matching diatomic
molecule also decreases. However, beyond nitrogen these trends diverge. Even though the
covalent radii of the free atoms continue to decrease (N > O > F), the bond distances
in their diatomic molecules increase (N, < O, < F,) with the increasing population of
antibonding orbitals. In general the bond order is the more important factor, overriding the
covalent radii of the component atoms. Bond lengths of homonuclear and heteronuclear
diatomic species are given in Table 5.1.

5.2.4 Photoelectron Spectroscopy

In addition to data on bond distances and energies, specific information about the energies
of electrons in orbitals can be determined from photoelectron spectroscopy.® In this tech-
nique, ultraviolet (UV) light or X-rays eject electrons from molecules:

0, + hv(photons) = O," + e~

The kinetic energy of the expelled electrons can be measured; the difference between the
energy of the incident photons and this kinetic energy equals the ionization energy (bind-
ing energy) of the electron:

Ionization energy = hv(energy of photons) — kinetic energy of the expelled electron

UV light removes outer electrons; X-rays are more energetic and can remove inner
electrons. Figures 5.10 and 5.11 show photoelectron spectra for N, and O,, respectively, and
the relative energies of the highest occupied orbitals of the ions. The lower energy peaks (at the
top in the figure) are for the higher energy orbitals (less energy required to remove electrons).
If the energy levels of the ionized molecule are assumed to be essentially the same as those of
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TABLE 5.1 Bond Distances in Diatomic Species?

Formula Valence Electrons Internuclear Distance (pm)
H," 1 105.2
H, 2 74.1
B, 6 159.0
C, 8 124.2
cr 10 119.1°
N,* 9 111.6
N, 10 109.8
0," 11 111.6
0, 12 120.8
0y 13 135
0>~ 14 150.4¢
F, 14 141.2
CN 9 117.2
CN™ 10 115.94
CO 10 112.8
NO* 10 106.3
NO 11 115.1
NO™ 12 126.7

4Except as noted in footnotes, data are from K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV.
Constants of Diatomic Molecules,Van Nostrand Reinhold Company, New York, 1979. Additional data on diatomic species
can be found in R. Janoscheck, Pure Appl. Chem., 2001, 73, 1521.

bDistance in CaC, in M. J. Atoji, J. Chem. Phys., 1961, 35, 1950.

“Reference 4.

dDistance in low-temperature orthorhombic phase of NaCN in T. Schrider, A. Loidl, T. Vogt, Phys. Rev. B, 1989, 39, 6186.

the uncharged molecule,” the observed energies can be directly correlated with the molecular
orbital energies. The levels in the N, spectrum are more closely spaced than those in the O,
spectrum, and some theoretical calculations have disagreed about the order of the highest occu-
pied orbitals in N,. Stowasser and Hoffmann’ have compared different calculation methods and
showed that the different order of energy levels was simply a function of the calculation method;
the methods favored by the authors agree with the experimental results, with o, above .
The photoelectron spectrum shows the 77, lower than o, in N, (Figure 5.10). In addition
to the ionization energies of the orbitals, the spectrum provides evidence of the quantized
electronic and vibrational energy levels of the molecule. Because vibrational energy levels

“This perspective on photoelectron spectroscopy is oversimplified; a rigorous treatment of this technique is
beyond the scope of this text. The interpretation of photoelectron specta is challenging since these spectra provide
differences between energy levels of the ground electronic state in the neutral molecule and energy levels in the
ground and excited electronic states of the ionized molecule. Rigorous interpretation of photoelectron spectra
requires consideration of how the energy levels and orbital shapes vary between the neutral and ionized species.
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FIGURE 5.10 Photoelectron
Spectrum and Molecular Orbital
Energy Levels of N,. Spectrum
simulated by Susan Green

using FCF program available
atR. L. Lord, L. Davis, E. L.
Millam, E. Brown, C. Offerman,
P.Wray, S. M. E. Green, reprinted
with permission from J. Chem.
Educ., 2008, 85, 1672 © 2008,
American Institute of Physics
and data from “Constants of
Diatomic Molecules” by K.P.
Huber and G. Herzberg (data
prepared by J.W. Gallagher

and R.D. Johnson, Ill) in NIST
Chemistry WebBook, NIST
Standard Reference Database
Number 69, Eds. P.J. Linstrom
and W.G. Mallard, National Insti-
tute of Standards and Technol-
ogy, Gaithersburg MD, 20899,
http://webbook.nist.gov,
(retrieved July 22, 2012).
(Reprinted with permission from
J. Chem Phys. 62 (4) 1447 (1975),
Copyright 1975, American
Institute of Physics.)

FIGURE 5.11 Photoelectron
Spectrum and Molecular Orbital
Energy Levels of O,. Spectrum
simulated by Susan Green
using FCF program available
atR.L.Lord, L. Davis, E. L.
Millam, E. Brown, C. Offerman,
P.Wray, S. M. E. Green, J. Chem.
Educ., 2008, 85, 1672 and data
from “Constants of Diatomic
Molecules” by K.P. Huber and
G. Herzberg (data prepared

by J.W. Gallagher and R.D.
Johnson, Ill) in NIST Chemistry
WebBook, NIST Standard
Reference Database Number
69, Eds. P.J. Linstrom and

W.G. Mallard, National Institute
of Standards and Technology,
Gaithersburg MD, 20899, http://
webbook.nist.gov, (retrieved
July 22,2012).
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are much more closely spaced than electronic levels, any collection of molecules will
include molecules with different vibrational energies even when the molecules are in the
ground electronic state. Therefore, transitions from electronic levels can originate from
different vibrational levels, resulting in multiple peaks for a single electronic transition.
Orbitals that are strongly involved in bonding have vibrational fine structure (multiple
peaks); orbitals that are less involved in bonding have only a few peaks at each energy
level.® The N, spectrum indicates that the 7, orbitals are more involved in the bonding
than either of the o orbitals. The CO photoelectron spectrum (Figure 5.13) has a similar
pattern. The O, photoelectron spectrum (Figure 5.11) has much more vibrational fine
structure for all the energy levels, with the 7, levels again more involved in bonding than
the other orbitals. The photoelectron spectra of O, and of CO show the expected order of
energy levels for these molecules.®

5.3 Heteronuclear Diatomic Molecules

The homonuclear diatomic molecules discussed Section 5.2 are nonpolar molecules. The
electron density within the occupied molecular orbitals is evenly distributed over each
atom. A discussion of heteronuclear diatomic molecules provides an introduction into how
molecular orbital theory treats molecules that are polar, with an unequal distribution of the
electron density in the occupied orbitals.

5.3.1 Polar Bonds

The application of molecular orbital theory to heteronuclear diatomic molecules is similar
to its application to homonuclear diatomics, but the different nuclear charges of the atoms
require that interactions occur between orbitals of unequal energies and shifts the resulting
molecular orbital energies. In dealing with these heteronuclear molecules, it is necessary to
estimate the energies of the atomic orbitals that may interact. For this purpose, the orbital
potential energies, given in Table 5.2 and Figure 5.12, are useful.” These potential ener-
gies are negative, because they represent attraction between valence electrons and atomic
nuclei. The values are the average energies for all electrons in the same level (for example,
all 3p electrons), and they are weighted averages of all the energy states that arise due to
electron—electron interactions discussed in Chapter 11. For this reason, the values do not

FIGURE 5.12 Orbital Potential
Energies.

Potential energy (eV)

Atomic number

“A more complete listing of orbital potential energies is in Appendix B-9, available online at pearsonhighered.
com/advchemistry


http://pearsonhighered.com/advchemistry
http://pearsonhighered.com/advchemistry

134 Chapter 5

Molecular Orbitals

TABLE 5.2 Orbital Potential Energies

Atomic Number

Orbital Potential Energy (eV)

Element 2p 3s

O 0 N AN L A WD =

[ S S S L S T N e e e e e e e T
LN A W D = O O VvV © 9 O »n kA WD = O

36

—13.61
—24.59
—5.39
—9.32
—14.05 —8.30
—19.43 —10.66
—25.56 —13.18
—32.38 —15.85
—40.17 —18.65
—48.47 —21.59
—5.14
—7.65
—11.32 —5.98
—15.89 —7.78
—18.84 —9.65
—22.71 —11.62
—25.23 —13.67
—29.24 —15.82
—4.34
—6.11
—9.39
—12.61 —5.93
—16.05 —7.54
—18.94 —9.17
—21.37 —10.82
—24.37 —12.49
—27.51 —14.22

J. B. Mann, T. L. Meek, L. C. Allen, J. Am. Chem. Soc., 2000, 122, 2780.

All energies are negative, representing average attractive potentials between the electrons and the nucleus for all terms of the specified orbitals.

Additional orbital potential energy values are available in the online Appendix B-9.

show the variations of the ionization energies seen in Figure 2.10 but steadily become more
negative from left to right within a period, as the increasing nuclear charge attracts all the
electrons more strongly.

The atomic orbitals of the atoms that form homonuclear diatomic molecules have
identical energies, and both atoms contribute equally to a given MO. Therefore, in the
molecular orbital equations, the coefficients associated with the same atomic orbitals of
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FIGURE 5.13 Molecular Orbitals and
Photoelectron Spectrum of CO. Molecular

orbitals 1o and 15" are from the 1s orbitals
and are not shown.

(Molecular Orbitals and Photoelectron

Spectrum of CO by Kaitlin Hellie. Reprinted by
—_— permission.)
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each atom (such as the 2p,) are identical. In heteronuclear diatomic molecules, such as CO
and HF, the atomic orbitals have different energies, and a given MO receives unequal con-
tributions from these atomic orbitals; the MO equation has a different coefficient for each
of the atomic orbitals that contribute to it. As the energies of the atomic orbitals get farther
apart, the magnitude of the interaction decreases. The atomic orbital closer in energy to an
MO contributes more to the MO, and its coefficient is larger in the wave equation.

Carbon Monoxide

The most efficient approach to bonding in heteronuclear diatomic molecules employs the
same strategy as for homonuclear diatomics with one exception: the more electronegative
element has atomic orbitals at lower potential energies than the less electronegative ele-
ment. Carbon monoxide, shown in Figure 5.13, shows this effect, with oxygen having lower
energies for its 25 and 2p orbitals than the matching orbitals of carbon. The result is that the
orbital interaction diagram for CO resembles that for a homonuclear diatomic (Figure 5.5),
with the right (more electronegative) side pulled down in comparison with the left. In CO,
the lowest set of 7 orbitals (17 in Figure 5.13) is lower in energy than the lowest o orbital
with significant contribution from the 2p subshells (30 in Figure 5.13); the same order
occurs in Ny. This is the consequence of significant interactions between the 2p, orbital
of oxygen and both the 2s and 2p, orbitals of carbon. Oxygen’s 2p, orbital (—15.85 eV)
is intermediate in energy between carbon’s 2s (—19.43 eV) and 2p, (—10.66 ¢V ), so the
energy match for both interactions is favorable.

The 20 orbital has more contribution from (and is closer in energy to) the lower energy
oxygen 2s atomic orbital; the 20~ orbital has more contribution from (and is closer in
energy to) the higher energy carbon 2s atomic orbital.” In the simplest case, the bonding
orbital is similar in energy and shape to the lower energy atomic orbital, and the antibond-
ing orbital is similar in energy and shape to the higher energy atomic orbital. In more
complicated cases, such as the 20" orbital of CO, other orbitals (the oxygen 2p. orbital)
also contribute, and the molecular orbital shapes and energies are not as easily predicted.
As a practical matter, atomic orbitals with energy differences greater than about 10 eV to
14 eV usually do not interact significantly.

Mixing of the o and o levels, like that seen in the homonuclear o, and o, orbitals,
causes a larger split in energy between the 20~ and 30, and the 3¢ is higher than the 17
levels. The shape of the 3o orbital is interesting, with a very large lobe on the carbon end.
This is a consequence of the ability of both the 2s and 2p, orbitals of carbon to interact
with the 2p, orbital of oxygen (because of the favorable energy match in both cases, as
mentioned previously); the orbital has significant contributions from two orbitals on carbon
but only one on oxygen, leading to a larger lobe on the carbon end. The pair of electrons in
the 30 orbital most closely approximates the carbon-based lone pair in the Lewis structure
of CO, but the electron density is still delocalized over both atoms.

The p, and p, orbitals also form four molecular orbitals, two bonding (17) and two
antibonding (177*). In the bonding orbitals the larger lobes are concentrated on the side of
the more electronegative oxygen, reflecting the better energy match between these orbitals
and the 2p, and 2p, orbitals of oxygen. In contrast, the larger lobes of the 7* orbitals are on
carbon, a consequénce of the better energy match of these antibonding orbitals with the 2p,

“Molecular orbitals are labeled in different ways. Most in this book are numbered within each set of the same sym-
metry (1o, 20, and 1o, 20,). In some figures of homonuclear diatomics, 1o, and 1o, MOs from Ls atomic
orbitals are understood to be at lower energies than the MOs from the valence orbitals and are omitted. It is
noteworthy that interactions involving core orbitals are typically very weak; these interactions feature sufficiently
poor overlap that the energies of the resulting orbitals are essentially the same as the energies of the original
atomic orbitals.
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and 2p, orbitals of carbon. The distribution of electron density in the 30~ and 17" orbitals
is vital to understand how CO binds to transition metals, a topic to be discussed further in
this section. When the electrons are filled in, as in Figure 5.13, the valence orbitals form
four bonding pairs and one antibonding pair for a net bond order of 3."

EXAMPLE 5.3

Molecular orbitals for HF can be found by using the approach used for CO. The

2s orbital of the fluorine atom is more than 26 eV lower than that of the hydrogen

Ls, so there is very little interaction between these orbitals. The fluorine 2p, orbital
(—18.65 eV) and the hydrogen 15 (—13.61 eV), on the other hand, have similar ener-
gies, allowing them to combine into bonding and antibonding " orbitals. The fluorine
2p, and 2p,, orbitals remain nonbonding, each with a pair of electrons. Overall, there
is one bonding pair and three lone pairs; however, the lone pairs are not equivalent, in
contrast to the Lewis dot approach. The occupied molecular orbitals of HF predict a
polar bond since all of these orbitals are biased toward the fluorine atom. The electron
density in HF is collectively distributed with more on the fluorine atom relative to the
hydrogen atom, and fluorine is unsurprisingly the negative end of the molecule.
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EXERCISE 5.3 Use a similar approach to the discussion of HF to explain the bonding in
the hydroxide ion OH . (Exercise 5.3 by Kaitlin Hellie. Reprinted by permission.)

The molecular orbitals that are typically of greatest interest for reactions are the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO),
collectively known as frontier orbitals because they lie at the occupied—unoccupied frontier.
The MO diagram of CO helps explain its reaction chemistry with transition metals, which
is different than that predicted by electronegativity considerations that would suggest more
electron density on the oxygen. On the sole basis of the carbon—oxygen electronegativity

“The classification of the filled o orbitals as “bonding” and “antibonding” in CO is not as straightforward as in, for
example, H,, since the 20 and 20* orbitals are only changed modestly in energy relative to the 2 orbitals of oxygen
and carbon, respectively. However, these orbital classifications are consistent with a threefold bond order for CO.
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FIGURE 5.14 Approximate LiF
Molecular Orbitals. (Approximate
LiF Molecular Orbitals by Kaitlin
Hellie. Reprinted by permission.)

difference (and without considering the MO diagram), compounds in which CO is bonded
to metals, called carbonyl complexes, would be expected to bond as M—O—C with the
more electronegative oxygen attached to the electropositive metal. One impact of this elec-
tronegativity difference within the MO model is that the 20 and 17 molecular orbitals
in CO feature greater electron density on the more electronegative oxygen (Figure 5.13).
However, the structure of the vast majority of metal carbonyl complexes, such as Ni(CO),
and Mo(CO)g, has atoms in the order M—C—O. The HOMO of CO is 30, with a larger
lobe, and therefore higher electron density, on the carbon (as explained above on the basis
of s-p mixing). The electron pair in this orbital is more concentrated on the carbon atom,
and can form a bond with a vacant orbital on the metal. The electrons of the HOMO are of
highest energy (and least stabilized) in the molecule; these are generally the most energeti-
cally accessible for reactions with empty orbitals of other reactants. The LUMOs are the
17r* orbitals; like the HOMO, these are concentrated on the less electronegative carbon, a
feature that also predisposes CO to coordinate to metals via the carbon atom. Indeed, the
frontier orbitals can both donate electrons (HOMO) and accept electrons (LUMO) in reac-
tions. These tremendously important effects in organometallic chemistry are discussed in
more detail in Chapters 10 and 13.

5.3.2 Ionic Compounds and Molecular Orbitals

Ionic compounds can be considered the limiting form of polarity in heteronuclear
diatomic molecules. As mentioned previously, as the atoms forming bonds differ more in
electronegativity, the energy gap between the interacting atomic orbitals also increases, and
the concentration of electron density is increasingly biased toward the more electronegative
atom in the bonding molecular orbitals. At the limit, the electron is transferred completely
to the more electronegative atom to form a negative ion, leaving a positive ion with a high-
energy vacant orbital. When two elements with a large difference in their electronegativi-
ties (such as Li and F) combine, the result is an ionic bond. However, in molecular orbital
terms, we can treat an ion pair like we do a covalent compound. In Figure 5.14, the atomic
orbitals and an approximate indication of molecular orbitals for such a diatomic molecule,
LiF, are given. On formation of the diatomic molecule LiF, the electron from the Li 2s
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orbital is transferred to the bonding orbital formed from interaction between the Li 2s
orbital and the F 2p_ orbital. Indeed, the o orbital deriving from the 2s/2p. interaction has
a significantly higher contribution from 2p, relative to 2s on the basis of the large energy
gap. Both electrons, the one originating from Li and the one originating from the F 2p,
orbital, are stabilized. Note that the level of theory used to calculate the orbital surfaces
in Figure 5.14 suggests essentially no covalency in diatomic LiF.

Lithium fluoride exists as a crystalline solid; this form of LiF has significantly lower
energy than diatomic LiF. In a three-dimensional crystalline lattice containing many for-
mula units of a salt, the ions are held together by a combination of electrostatic (ionic)
attraction and covalent bonding. There is a small covalent bonding contribution in all ionic
compounds, but salts do not exhibit directional bonds, in contrast to molecules with highly
covalent bonds that adopt geometries predicted by the VSEPR model. In the highly ionic
LiF, each Li" ion is surrounded by six F~ ions, each of which in turn is surrounded by six
Li* ions. The orbitals in the crystalline lattice form energy bands, described in Chapter 7.

Addition of these elementary steps, beginning with solid Li and gaseous F,, results in
formation of the corresponding gas-phase ions, and provides the net enthalpy change for
this chemical change:

Elementary Step Chemical/Physical Change AH°(kJ/mol)*
Li(s) — Li(g) Sublimation 161
Li(g) — Li'(g) + e~ Tonization 520

1

EFZ(g) —> F(g) Bond dissociation 79
F(g) + e —> F (g) —Electron affinity -328

1 Formation of gas-phase ions
Li(s) + EFZ(g) —> Li*(g) + F (9 from the elements in their 432

standard states

The free energy change (AG = AH — TAS) must be negative for a reaction to
proceed spontaneously. The very large and positive AH (432 kJ/mol) associated with
the formation of these gas-phase ions renders the AG positive for this change despite its
positive AS. However, if we combine these isolated ions, the large coulombic attraction
between them results in a dramatic decrease in electronic energy, releasing 755 kJ/mol
on formation of gaseous Li*F~ ion pairs and 1050 kJ/mol on formation of a LiF crystal
containing 1 mol of each ion.

Elementary Step Chemical Change AH°(kJ/mol)

Lit(g) + F () — LiF(g) Formation of gaseous =755
ion pairs

Lit(g) + F (g) — LiF(s) Formation of crystalline solid -1050

The lattice enthalpy for crystal formation is sufficiently large and negative to render AG

1
for Li(s) + EFZ( g) — LiF(s) negative. Consequently, the reaction is spontaneous,

“While ionization energy and electron affinity are formally internal energy changes (AU), these are equivalent
to enthalpy changes since AH = AU + PAV and AV = 0 for the processes that define ionization energy and
electron affinity.



140 Chapter 5 | Molecular Orbitals

despite the net endothermic contribution for generating gaseous ions from the parent ele-
ments and the negative entropy change associated with gas-phase ions coalescing into a
crystalline solid.

5.4 Molecular Orbitals for Larger Molecules

The methods described previously for diatomic molecules can be extended to molecules
consisting of three or more atoms, but this approach becomes more challenging as mol-
ecules become more complex. We will first consider several examples of linear molecules
to illustrate the concept of group orbitals and then proceed to molecules that benefit from
the application of formal group theory methods.

541 FHF -

The linear ion FHF ~, an example of very strong hydrogen bonding that can be described
as a covalent interaction,” provides a convenient introduction to the concept of group
orbitals, collections of matching orbitals on outer atoms. To generate a set of group orbit-
als, we will use the valence orbitals of the fluorine atoms, as shown in Figure 5.15. We
will then examine which central-atom orbitals have the proper symmetry to interact with
the group orbitals.

The lowest energy group orbitals are composed of the 2s orbitals of the fluorine
atoms. These orbitals either have matching signs of their wave functions (group orbital 1)
or opposite signs (group orbital 2). These group orbitals should be viewed as sets of
orbitals that potentially could interact with central atom orbitals. Group orbitals are the
same combinations that formed bonding and antibonding orbitals in diatomic molecules
(e.g2, Pxa T Pxb» Pxa — Pxb), Dut now are separated by the central hydrogen atom. Group
orbitals 3 and 4 are derived from the fluorine 2p, orbitals, in one case having lobes with
matching signs pointing toward the center (orbital 3), and in the other case having opposite
signs pointing toward the center (orbital 4). Group orbitals 5 through 8 are derived from
the 2p, and 2p, fluorine orbitals, which are mutually parallel and can be paired according
to matching (orbitals 5 and 7) or opposite (orbitals 6 and 8) signs of their wave functions.

FIGURE 5.15 Group Orbitals. Atomic Orbitals Used Group Orbitals
Set 1 Set 2
2p, By, . . . . . . BZg
7 8
zpy Bzu @ @ @ @ B3g
5 6

S = «00.00  00.00~
. D0 0O.@-



5.4 Molecular Orbitals for Larger Molecules | 141

Fluorine Orbitals Used Bonding Antibonding FIGURE 5.16 Interaction of

Fluorine Group Orbitals with the
OO OIIO
F H F F H F

The central hydrogen atom in FHF~, with only its 1s orbital available for bonding, is
only eligible on the basis of its symmetry to interact with group orbitals 1 and 3; the 1s
orbital is nonbonding with respect to the other group orbitals. These bonding and antibond-
ing combinations are shown in Figure 5.16.

Which interaction, the hydrogen 1s orbital with group orbital 1 or 3, respectively,
is likely to be stronger? The potential energy of the ls orbital of hydrogen (—13.61 eV)
is a much better match for the fluorines’ 2p, orbitals (—18.65 eV) than their 2s orbitals
(—40.17 eV). Consequently, we expect the interaction with the 2p, orbitals (group orbital 3)
to be stronger than with the 2s orbitals (group orbital 1). The Ls orbital of hydrogen cannot
interact with group orbitals 5 through 8; these orbitals are nonbonding.

The molecular orbitals for FHF ™ are shown in Figure 5.17. In sketching molecular
orbital energy diagrams of polyatomic species, we will show the orbitals of the central
atom on the far left, the group orbitals of the surrounding atoms on the far right, and the
resulting molecular orbitals in the middle.

Five of the six group orbitals derived from the fluorine 2p orbitals do not interact with
the central atom; these orbitals remain essentially nonbonding and contain lone pairs of
electrons.

It is important to recognize that these “lone pairs” are each delocalized over two fluo-
rine atoms, a different perspective from that afforded by the Lewis dot model where these
pairs are associated with single atoms. There is a slight interaction between orbitals on
the non-neighboring fluorine atoms, but not enough to change their energies significantly
because the fluorine atoms are so far apart (229 pm, more than twice the 91.7 pm distance
between hydrogen and fluorine in HF). As already described, the sixth 2p group orbital, the
remaining 2p, (number 3), interacts with the 1s orbital of hydrogen to give two molecular
orbitals, one bonding and one antibonding. An electron pair occupies the bonding orbital.
The group orbitals from the 2s orbitals of the fluorine atoms are much lower in energy than
the 1s orbital of the hydrogen atom and are essentially nonbonding. Group orbitals 2 and
4, while both essentially nonbonding, are slightly stabilized, and destabilized, respectively,
due to a mixing phenomenon analogous to s-p mixing. These group orbitals are eligible to
interact since they possess the same symmetry; this general issue will be discussed later
in this chapter.

The Lewis approach to bonding requires two electrons to represent a single bond
between two atoms and would result in four electrons around the hydrogen atom of FHF .
The molecular orbital model, on the other hand, suggests a 2-electron bond delocalized
over three atoms (a 3-center, 2-electron bond). The bonding MO in Figure 5.17 formed
from group orbital 3 shows how the molecular orbital approach represents such a bond:
two electrons occupy a low-energy orbital formed by the interaction of all three atoms (a
central atom and a two-atom group orbital). The remaining electrons are in the group orbit-
als derived from the 2s, p,, and p, orbitals of the fluorine at essentially the same energy
as that of the atomic orbitals.

In general, bonding molecular orbitals derived from three or more atoms, like the one
in Figure 5.17, are stabilized more relative to their parent orbitals than bonding molecular
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FIGURE 5.17 Molecular Orbital .
Diagram of FHF . (Molecular i

Orbital Diagram of FHF by Kaitlin )
Hellie. Reprinted by permission.)

©
PR —
s \\

..-‘f._': "\.l
b]u l\ ."J'J"‘
Y W
a, [ @@
b i

H

o 2p
00 0@
1 ———————— S
B e
FHF ™~ F-F Group Orbitals

orbitals that arise from orbitals on only two atoms. Electrons in bonding molecular orbit-
als consisting of more than two atoms experience attraction from multiple nuclei, and are
delocalized over more space relative to electrons in bonding MOs composed of two atoms.
Both of these features lead to additional stabilization in larger systems. However, the total
energy of a molecule is the sum of the energies of all of the electrons in all the occupied
orbitals. FHF ™ has a bond energy of 212 kJ/mol and F—H distances of 114.5 pm. HF has
a bond energy of 574 kJ/mol and an F—H bond distance of 91.7 pm.!°

Sketch the energy levels and the molecular orbitals for the linear Hy™ ion.
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54.2 co,

The approach used so far can be applied to other linear species—such as CO,, N3, and
BeH,—to consider how molecular orbitals can be constructed on the basis of interac-
tions of group orbitals with central atom orbitals. However, we also need a method to
understand the bonding in more complex molecules. We will first illustrate this approach
using carbon dioxide, another linear molecule with a more complicated molecular orbital
description than FHF . The following stepwise approach permits examination of more
complex molecules:

1. Determine the point group of the molecule. If it is linear, substituting a simpler point
group that retains the symmetry of the orbitals (ignoring the wave function signs)
makes the process easier. It is useful to substitute D, for D, and C,, for C.,,. This
substitution retains the symmetry of the orbitals without the need to use infinite-fold
rotation axes.”

2. Assign x, y, and z coordinates to the atoms, chosen for convenience. Experience is the
best guide here. A general rule is that the highest order rotation axis of the molecule
is assigned as the 7 axis of the central atom. In nonlinear molecules, the y axes of the
outer atoms are chosen to point toward the central atom.

3. Construct a (reducible) representation for the combination of the valence s orbitals on the
outer atoms. If the outer atom is not hydrogen, repeat the process, finding the representa-
tions for each of the other sets of outer atom orbitals (for example, p,, p,, and p,). As in
the case of the vectors described in Chapter 4, any orbital that changesyposition during
a symmetry operation contributes zero to the character of the resulting representation;
any orbital that remains in its original position—such as a p orbital that maintains its
position and direction (signs of its orbital lobes)—contributes 1; and any orbital that
remains in the original position, with the signs of its lobes reversed, contributes —1.

4. Reduce each representation from Step 3 to its irreducible representations. This is
equivalent to finding the symmetry of the group orbitals or the symmetry-adapted
linear combinations (SALCs) of the orbitals. The group orbitals are then the combina-
tions of atomic orbitals that match the symmetry of the irreducible representations.

5. Identify the atomic orbitals of the central atom with the same symmetries (irreducible
representations) as those found in Step 4.

6. Combine the atomic orbitals of the central atom and those of the group orbitals with match-
ing symmetry and similar energy to form molecular orbitals. The total number of molecular
orbitals formed must equal the number of atomic orbitals used from all the atoms.™

In summary, the process used in creating molecular orbitals is to match the symme-
tries of the group orbitals, using their irreducible representations, with the symmetries of
the central atom orbitals. If the symmetries match and the energies are similar, there is an
interaction—both bonding and antibonding—if not, there is no interaction.

In CO, the group orbitals for the oxygen atoms are identical to the group orbitals for
the fluorine atoms in FHF ™~ (Figure 5.15), but the central carbon atom in CO, has both
s and p orbitals capable of interacting with the oxygen atom group orbitals. As in the dis-
cussion of FHF ™, the group orbital-atomic orbital interactions of CO, will be the focus.

1. Point Group: CO, has D..; symmetry so the D,,, point group will be used.
2. Coordinate System: The z axis is chosen as the C., axis, and the y and z coordinates
are chosen similarly to the FHF~ example (Figure 5.18).

“This approach is sometimes referred to as a “Descent in Symmetry.”
"We use lowercase labels on the molecular orbitals, with uppercase for the atomic orbitals and for representations
in general. This practice is common but not universal.
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FIGURE 5.18 Group Orbital Oxygen Orbitals Used Group Orbitals
Symmetry in CO,.
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3. Reducible Representations for Outer Atom Orbitals: In CO, these are the 2s and
2p oxygen orbitals. These can be grouped into four sets (Figure 5.18). For example,
the pair of 2s orbitals on the oxygen atoms has the following representation:

Do E GR GO G i oy) o) a(y2)
I'(2s) 2 2 0 0 0 0 2 2

The other group orbitals have the following representations:

Dy, E Cy(2) Cy(y) Cy(x) i a(xy) o(xz) o(yz)
r'(2p.) 2 2 0 0 0 0 2 2
T 2p,) 2 -2 0 0 0 0 2 -2
rep,) 2 -2 0 0 0 0 -2 2

4. Group Orbitals from Reducible Representations: Each of the representations from
Step 3 can be reduced by the procedure described in Section 4.4.2. For example, the
representation I'(2s) reduces to A, + By,

Dy, E Cy(2) Cy(y) Cy(x) i o(xy) o(xz) o(yz)
A ¢ 1 1 1 1 1 1 1 1
B, 1 1 -1 -1 -1 -1 1 1

When this procedure is conducted for each representation, the representations describe the
symmetry properties of the oxygen atom group orbitals for CO,, shown with the appropri-
ate D, labels in Figure 5.18. Note that these group orbitals are the same as those deduced
by inspection for the fluorine atoms in FHF .

Using the D,,, character table shown, verify that the group orbitals in Figure 5.18 match
their irreducible representations.
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Dy, E Gk Gy G i oy o@xz) oy

A, 1 1 1 1 1 1 1 1 22
By, | 1 1 -1 -1 1 1 -1 -1 | R Xy
By | 1 -1 1 -1 1 -1 1 -1 | R, Xz
By | 1 -1 -1 1 1 -1 -1 1 | R, ¥z

A, 1 1 1 1 -1 -1 -1 -1

B. | 1 1 -1 -1 -1 -1 1 1| z

B | 1 -1 1 -1 -1 1 -1 1

By | 1 -1 -1 1 -1 1 1 -1 | x

5. Matching Orbitals on the Central Atom: To determine which atomic orbitals of
carbon are of correct symmetry to interact with the group orbitals, we will consider
each group orbital separately. The carbon atomic orbitals are shown in Figure 5.19
with their symmetry labels within the D,;, point group.

FIGURE 5.19 Symmetry of the

O B Carbon Atomic Orbitals in the
Q A, O O B,, O 3u B,, D,, Point Group.
2s 2p, 2p, 2p,

The D,,, character table shows the symmetry of these orbitals. For example, B;, has
the symmetry of the z axis and of the p, oxygen orbitals; they are unchanged by the E,
Cy(2), o(xz), and o(yz) operations, and the C,(y), C,5(x), i, and o(xy) operations reverse
their signs.

6. Formation of Molecular Orbitals: Group orbitals 1 and 2 in Figure 5.20, formed by
adding and subtracting the oxygen 2s orbitals, have A, and B, symmetry, respectively.
Group orbital 1 is of appropriate symmetry to interact with the 2s orbital of carbon
(both have A, symmetry), and group orbital 2 is of appropriate symmetry to interact
with the 2p, orbital of carbon (both have B, symmetry).

25 group orbitals ___Leo P Qo0
- N - "
qo' -7 AN Ag zpz AN \ Blu
2s AN AN N AN
AN AN AN AN
\ \ N \
Nolo 200 . .
\\ \\ \\ \\
N N . \ N
. o A “0-0
N000 _--—7" 2s Q0 -7 T
OCO -C- O0CO 0-0 OCO -C- O0CO 0-0

FIGURE 5.20 Group Orbitals 1 and 2 for CO,.

Group orbitals 3 and 4 in Figure 5.21, formed by adding and subtracting the oxygen
2p, orbitals, also have A, and B;, symmetries. Therefore, group orbital 3 can also interact
with the 2s of carbon, and group orbital 4 can also interact with the carbon 2p,.
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Indeed, the 2s and 2p, orbitals of carbon have two possible sets of group orbitals
with which they may interact; all four interactions in Figures 5.20 and 5.21 are symmetry
allowed. It is necessary to estimate which interactions are expected to be the strongest from
the potential energies of the 2s and 2p orbitals of carbon and oxygen given in Figure 5.22.

FIGURE 5.22 Orbital Potential 0r
Energies of Carbon and Oxygen.
-10 - 2p
Orbital 2s 2p 2
Carbon —19.43 eV —10.66 eV
Oxygen 3238 eV ~15.85 eV E =20 =
=30 - 2s
C (0)

Orbital
Potential Energies

Interactions are strongest between orbitals having similar energies. The energy match
between group orbital 3 and the 2s orbital of carbon is much better (a difference of 3.58 eV)
than the energy match between group orbital 1 and the 2s of carbon (a difference of
12.95 eV); therefore, the primary interaction is between the 2p, orbitals of oxygen and
the 2s orbital of carbon. Group orbital 2 also has an energy too low for strong interaction
with the carbon p, (a difference of 21.72 eV), so the final molecular orbital diagram in
Figure 5.25 shows only a slight interaction with carbon orbitals for group orbital 2.

Using orbital potential energies, show that group orbital 4 is more likely than group
orbital 2 to interact strongly with the 2p, orbital of carbon.
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The 2p, orbital of carbon has B, symmetry and interacts with group orbital 5
(Figure 5.23). The result is the formation of two 7 molecular orbitals, one bonding and
one antibonding. However, there is no carbon orbital with B3, symmetry to interact with
group orbital 6, also formed by combining 2p,, orbitals of oxygen. Therefore, group orbital
6 is nonbonding.

Zpy group orbitals 6 6 6
7
// \\\
.6. /// \‘\ BZu B’ig
_</ \\
2‘0}’ \ \
SGEG) ok 6 68 868 66
\\\ /// 2py 2py
\ s 0CO :C- 0CO 0-0
£ 868 -
O0CO :C- O0CO 0-0

FIGURE 5.23 Group Orbitals 5 and 6 for CO,.

Interactions of the 2p, orbitals are similar to those of the 2p, orbitals. Group orbital 7,
with B, symmetry, interacts with the 2p, orbital of carbon to form 7 bonding and antibond-
ing orbitals, whereas group orbital 8 is nonbonding (Figure 5.24).

2p, group orbitals 8 8 8
7z \
/// \\
.8. /// \‘\ B3u Bzé'
— \\
sz \\ \\
7 88 .88 8 88 & 7777777 88
\\\ //// 2px 217)(
\ 7z . . .
£ 888 - o e
0CO :C- (oXexe) 0-0

FIGURE 5.24 Group Orbitals 7 and 8 for CO, .

The molecular orbital diagram of CO, is shown in Figure 5.25. The 16 valence
electrons occupy, from the bottom, two essentially nonbonding o orbitals, two bonding
o orbitals, two bonding 7 orbitals, and two nonbonding 7 orbitals. In other words, two
of the bonding electron pairs are in o orbitals, two are in 7r orbitals, and there are four
bonds in the molecule, as expected. As in FHF ", all the occupied molecular orbitals are
3-center, 2-electron orbitals.

The molecular orbitals of related linear triatomic species—such as N3, CS,, and
OCN™ —can be determined similarly. The molecular orbitals of longer polyatomic species
can be determined by a similar method. Examples of bonding in linear and cyclic 7
systems are considered in Chapter 13.

EXERCISE 5.7
Prepare a molecular orbital diagram for the azide ion, N3~ .
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FIGURE 5.25 Molecular
Orbitals of CO,. (Molecular
Orbitals of CO, by Kaitlin Hellie.
Reprinted by permission.)

5 o, 20

Molecular orbitals Group orbitals

Prepare a molecular orbital diagram for the BeH, molecule. (Assume an orbital
potential energy of —6.0 eV for 2p orbitals of Be. This orbital set should be taken into
account, even though it is unoccupied in a free Be atom.)

This process can be extended to obtain numerical values of the coefficients of the
atomic orbitals used in the molecular orbitals.!-'? The coefficients may be small or large,
positive or negative, similar or quite different, depending on the characteristics of the
orbital under consideration. Computer software packages are available to calculate these
coefficients and generate the pictorial diagrams that describe the molecular orbitals. Exam-
ples of problems that use molecular modeling software to generate molecular orbitals of
a variety of molecules are included in the problems at the end of this chapter and in later
chapters. Discussion of these computational methods is beyond the scope of this text.
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Molecular orbitals of nonlinear molecules can be determined by similar procedures. Water

is a useful example:

1. Water is a bent molecule with a C, axis through the oxygen and two mirror planes that

intersect along this axis (Figure 5.26). The point group is C,,.

2. The C, axis is chosen as the z axis and the xz plane as the plane of the molecule.”
Because the hydrogen s orbitals have no directionality, it is not necessary to assign

axes to the hydrogen atoms.

3. The hydrogen atoms determine the symmetry of the molecule, and their 1s orbitals form
the basis of a reducible representation. The characters for each operation for the hydro-
gen atom 1s orbitals are readily obtained, I". The sum of the contributions to the character
(1, 0, or —1, as described previously) for each symmetry operation is the character for
that operation in the representation. The complete list for all operations of the group is

the reducible representation for the atomic orbitals:
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FIGURE 5.26 Symmetry of the
Water Molecule.

The E operation leaves both hydrogen orbitals unchanged, for a character of 2.

C, rotation interchanges the orbitals, so each contributes 0, for a total character of 0.

Reflection in the plane of the molecule (o) leaves both hydrogens unchanged, for

a character of 2.

Reflection perpendicular to the plane () switches the two orbitals, for a character of 0.

Step 3 is summarized in Table 5.3.

TABLE 5.3 Representations for C, Symmetry Operations for Hydrogen

Atoms in Water
C 5, Character Table

C2v E C2 O'V(XZ) (g ’(yz)
A, 1 1 1 1 z B3 2
A, 1 1 -1 -1 R, Xy
B 1 -1 1 -1 X, Ry Xz
B, 1 -1 -1 1 v, R, vz
(H,' (1 0][H,] o ,
L= for the identity operation
LH,"] L0 TJLH,)
H,/] [0 1][H,]
= “ | for the C, operation
LH,") L1 OJ{H,]
H| L O] for th flection (xz) pl
= or the o, reflection ane
1] Lo 1]lm,) o P
H,/] _ [0 1][H,]
_H:’ = oo _H:_ for the o,’ (yz plane)
The reducible representation ' = A; + By:
C2v E CZ (TV(.XZ) g, ' (yZ)
r 2 0 2 0
A 1 1 1 1 z
Bl 1 -1 1 -1 X

“One can also select the yz plane as the plane of the molecule. This results in I’ = A; + B, and switches the b,

and b, labels of the molecular orbitals.
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FIGURE 5.27 Symmetry of
Atomic and Group Orbitals in
the Water Molecule.

4. The representation I" can be reduced to the irreducible representations A; + By, rep-

resenting the symmetries of the group orbitals. In Step 5 these group orbitals will be
matched with oxygen orbitals of matching symmetries.

. The first step in deducing the molecular orbitals is to combine the two hydrogen 1s

1
orbitals to afford group orbitals. Their sum, T[W(Ha) + W(H,)], has A; symmetry
2
(this is the group orbital in which the 1s wave functions have matching signs); their

difference, [(W(H,) — ¥(H,)], has symmetry B, (the group orbital in which the

1
V2
Is wave functions have opposite signs) as shown in Figure 5.27. These equations
define the group orbitals, or symmetry-adapted linear combinations. In this case, the
combining 1s atomic orbitals are identical and contribute equally to each group orbital.
This means that the coefficients for each unique 1s atomic orbital in the group orbital
equations have the same magnitude. These coefficients also reflect the normalization
requirement discussed in Section 2.2; the sum of squares of the coefficients for each
atomic orbital must equal 1 when all group orbitals including a given atomic orbital

1
are considered. In this case, the normalizing factor is ——. In general, the normalizing
factor (N) for a group orbital is V2

1
N=—F——
V2
Hydrogen orbitals E C, o, o,
B‘ OO0 OO OO0 OO
Ha7 Hb
Characters 1 -1 1 -1
! OO OO OO OO
H,+ H,
Characters 1 1 1 1
a b a b a b a b

’

Oxygen orbitals E C, T, o,
e OO O O
Characters 1 -1 -1 1

P B OO OO OO O
1 - 1

Characters

_O
. 06 0 0 o
| 0 0 0 O

w0 O O O

Characters
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TABLE 5.4 Molecular Orbitals for Water

Molecular Oxygen Atomic Group Orbitals from

Symmetry Orbitals Orbitals Hydrogen Atoms Description

B, W = colf(py) + colp,) — yH,)] Antibonding (c) is negative)

A s = c7y(s) + cs[Ww(H,) + P(H,) ] Antibonding (cg is negative)

B, Uy = U(py) Nonbonding

A U3 = csih(p,) + co[W(H,) + w(Hy) ] Slightly bonding (cg is small)

B, 1) = cs(p) + ca[ P(H,) — (Hy) ] Bonding (c, is positive)

A ¥ = c1i(s) + e [pH,) + wHy)] Bonding (c, is positive)
where ¢; = the coefficients on the atomic orbitals. Each group orbital is treated as a

single orbital for combination with the oxygen atomic orbitals.

The symmetries of oxygen’s 2s and 2p atomic orbitals can be assigned and confirmed
using the C,, character table. The x, y, and z axes and the more complex functions
assist in assigning representations to the atomic orbitals. In this case:

The s orbital is unchanged by all the operations, so it has A; symmetry; an s orbital
is totally symmetric.

The p, orbital has the B; symmetry of the x axis.
The p, orbital has the B, symmetry of the y axis.
The p, orbital has the A; symmetry of the z axis.

6. The atomic and group orbitals with the same symmetry are combined into molecu-
lar orbitals, as listed in Table 5.4 and shown in Figure 5.28. They are numbered WV,
through Wg in order of their energy, with 1 the lowest and 6 the highest.

The A, group orbital combines with the s and p, orbitals of the oxygen to form three
molecular orbitals (three atomic or group orbitals forming three molecular orbitals), W,
W5, and Ws. The energy of molecular orbital W, is only slightly lower in energy relative the
oxygen 2s orbital; W, can be regarded as relatively nonbonding.! The electrons that occupy
W, represent one of the lone pairs in the Lewis electron-dot structure of water, a pair with
high probability of being found on the oxygen. As expected on the basis of the relatively
close energy match between the oxygen 2p subshell and the hydrogen group orbitals, W5
has significant contribution from oxygen p_; W5 is a bonding orbital. W5 is antibonding and
has significantly more contribution from the oxygen p, relative to the oxygen 2s.

The hydrogen B; group orbital combines with the oxygen p, orbital to form two MOs,
one bonding and one antibonding (\V', and Ws). The oxygen p, (W4, with B, symmetry)
does not match the symmetry of the hydrogen 1s group orbitals and is therefore nonbond-
ing. This pair of electrons represents the second lone pair in the Lewis structure of water.
It is noteworthy that the nonbonding pairs afforded by the MO model of water are not
equivalent as in the Lewis model. Overall, there are two bonding orbitals (W, ¥5), one
nonbonding (W), one essentially nonbonding orbital (¥ ), and two antibonding orbitals
(W5, Wy). The oxygen 2s orbital (—32.38 V) is nearly 20 eV below the hydrogen orbit-
als in energy (—13.61 eV), so it has very little interaction with the group orbitals. The
oxygen 2p orbitals (—15.85 eV) are a good match for the hydrogen 1s energy, allowing
formation of the bonding b; and a; molecular orbitals. When the eight valence electrons
are added, two pairs occupy bonding orbitals, and two pairs occupy nonbonding orbitals;
this complements the two bonds and two lone pairs of the Lewis electron-dot structure.
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FIGURE 5.28 Molecular
Orbitals of H,0. (Molecular

Orbitals of H,0 by Kaitlin Hellie.

Reprinted by permission.)

g \’/(a )

FIGURE 5.29 Coordinate
System for NH.

As mentioned previously, the molecular orbital perspective differs from the common
conception of the water molecule as having two equivalent lone electron pairs and two equiva-
lent O—H bonds. In the MO model, the highest energy electron pair, designated b,, is truly
nonbonding, occupying the oxygen 2p, orbital with its axis perpendicular to the plane of the
molecule. The two pairs next highest in energy are bonding pairs, resulting from overlap of
the 2p, and 2p, orbital with the s orbitals of the hydrogen atoms. The lowest energy pair is
concentrated on the 2s orbital of oxygen. All four occupied molecular orbitals are different.

544NH,

The VSEPR approach describes ammonia as a pyramidal molecule with a lone pair of elec-
trons and C3, symmetry. To obtain a molecular orbital description of NH,, it is convenient
to view this molecule down the Cj, or z, axis and with the yz plane passing through one
of the hydrogen atoms, as shown in Figure 5.29. The reducible representation for the three
hydrogen atom 1s orbitals is given in Table 5.5. It can be reduced to the A; and E irreducible
representations. Because three hydrogen 1s orbitals are considered, there must be three
group orbitals formed from them, one with A; symmetry and two with £ symmetry.

Deducing group orbitals thus far has been relatively straightforward; each polyatomic
example considered (FHF ™, CO, , H,0) has two atoms attached to the central atom, and
the group orbitals could be obtained by combining identical atomic orbitals on the terminal
atoms in both a bonding and antibonding sense. This is no longer possible with NH.
To address situations such as NHj, the projection operator method, a systematic approach
for deduction of group orbitals, is the preferred strategy.
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TABLE 5.5 Representations for Atomic Orbitals in Ammonia

C;, Character Table

G, /3 2C, 30,

A, 1 1 1 z 2+ y 2

A, 1 1 -1

E 2 1 0 (xy), (RoRy) | (& — ¥% wy), (xz,52)
The reducible representation I' = A, + E:

G, E 2C; 30,

r 3 0 1

A, 1 1 1 z K+ ¥4 2

E 2 -1 0 (ny), (ReR) | (2% = y% ay), (a2, y2)

The projection operator method permits elucidation of how atomic orbitals should be
combined to afford the symmetry-adapted linear combinations (SALCs) that define the
group orbitals. This method requires determining the impact of each point group symmetry
operation on one atomic orbital (e.g., the hydrogen Ls orbital of H,) within a set of identi-
cal atomic orbitals (e.g., the set of three hydrogen Ls orbitals in Figure 5.29). For example,
the E operation leaves hydrogen ls orbital H, unchanged while C; transforms H, to H,,.
These outcomes are best tabulated; note that each unique symmetry operation is considered
without their usual groupings into classes as in Table 5.5.

Original Orbital E o cy Ova) 0 Tv(o)

H, becomes... H, H, H H, H, H,

c

Linear combinations of these hydrogen ls atomic orbitals that match the symmetries
of the Ay, A,, and E irreducible representations can be obtained via

(1) multiplication of each outcome by the characters associated with each opera-
tion for these irreducible representations, followed by

(2) addition of the results. This approach affords the following:

2
E G G oy 0w Oy

A H, + H, + H, + H, + H, + H, = 2H, + 2H, + 2H,
A, H,+H,+H —H,—H —H,=0
E 2H, - H,-H,+0 +0 +0 =2H, —H, — H,

The same general SALCs are obtained regardless of the initial atomic orbital exam-
ined. Show that if hydrogen 1s orbital H,, is chosen as the basis (instead of H,), the
resulting A; and A, linear combinations would be identical to those shown previously,
and the E linear combination would feature the same relative contributions and signs of
the three wave functions as in SALC(E) generated via H,,.

The zero sum associated with A, confirms that a group orbital of this symmetry cannot
be obtained using these three hydrogen ls orbitals, consistent with the A; + E reducible
representation for the group orbitals. The symmetry-adapted linear combination for A,
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N —

A group orbital

T y
a
X
N————>
Hb Hc

E(y) group orbital

X

(SALC(A))) indicates that each Ls orbital contributes equally to this group orbital, as one
would visualize for SALC(A,), a situation not the case with E.

Recall that the sum of the squares of the coefficients of each unique atomic orbital in
the SALCs must equal 1. To meet this requirement, it is necessary that each group orbital
equation be normalized, so that the sum of the squares of the coefficients within each
equation affords 1. This requires that the wave functions for the 1s orbitals of H,, H,, and

1
H, each have a contribution of ——= in the normalized A; group orbital.

V3

1
—=[W(H,) + V(H,) + V(H,)]

V3

As described in Section 5.4.3, the normalization factor is formally calculated via

-1 1
1
N = <\/(Ca2 + ¢} + cf)) = < 1>+ 1%+ 12)) = ——, where c,, ¢}, and ¢,
V3

are the lowest common integer coefficients for the hydrogen 1s atomic orbital wave func-
tions within SALC(A ). This uniform contribution for each atomic orbital is expected for a
1

V3
also indicates that each 1s atomic orbital in the A; group orbital will exhibit the same wave
function sign, since the signs of all three terms are positive.

Normalization of SALC(E) derived from the projection operator method must account
for the doubled contribution of H, relative to H;, and H,, while maintaining the opposite
wave function signs for H, relative to H, and H,..

totally symmetric group orbital. The SALC(A;) equation [W(H,) + Y(H,) + V(H,)]

\1/8[2\If(Ha) — W(H,) — V(H,)]

—1 _1
N = (\/(Caz + Cb2 + CCZ)) — (\/(22 + (_1)2 + (_1)2)) _ \1/8

The second E group orbital can be motivated by remembering that the symmetry
of central atom orbitals (in this case the N atom) must match the symmetry of the group
orbitals with which they are combined to form molecular orbitals. The Cj;, character table
indicates that £ describes the symmetries of the pair of atomic orbitals p, and p, so the E
group orbitals must be compatible with these orbitals. On the basis of the coordinate system
defined in Figure 5.29, the E group orbital shown previously has the same symmetry as p,
(with the xz plane defining a node); it will interact with the N p, orbital to create molecular
orbitals. In this way, we see that hydrogen 1s orbital H, was the most convenient basis for
deduction of the SALCs; since hydrogen 1s orbital H, lies on the y axis, the first £ group
orbital is compatible with this axis. The other E group orbital must match the symmetry
of x, requiring zero contribution from H, due to the orthogonal node defined by the yz
plane; this means that only H,, and H. can contribute to the second E group orbital. The
H, and H,. wave function contributions can be deduced by cataloging the squares of the
coefficients for the normalized equations (Table 5.6). The coefficients for H, and H, must

1 1 . . . . .
be ——=and — ——, respectively, to satisfy the normalization requirement while leading

V2

to identical total contributions from all three 1s wave functions across the three group
orbitals. The positive and negative coefficients are necessary to match the symmetry of
the p, atomic orbital.
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TABLE 5.6 SALC Coefficients and Evidence of Normalization

Coefficients in Normalized SALCs Squares of SALC Coefficients Sum of the Squares = 1
for Normalization

Requirement

\ T 1 1 1 i
: V3 V3 3 3 3 3
2 1 1 2 1 1
B — - -— -z = = 1
) Ve 6 6 3 6 6
E(x) 0 ! ! 0 ! ! 1
. L _ L L
V2 V2 2 2
Sum of the squares for each 1s wave function must
total 1 for an identical contribution of each atomic 1 1 1
orbital to the group orbitals
7] y
7 [W(H,) — V(H,)]

N= (\/(ca2 + o+ cC2)>1 = (W)l = \1/2 ‘

The s and p, orbitals of nitrogen both have A; symmetry, and the pair p,, p, has . <>/ \‘H
E symmetry, exactly the same as the representations for the hydrogen 1s group orbitals; b ¢
there are symmetry matches for both A, and E. As with the previous examples, each group
orbital is treated as a single orbital in combining with the nitrogen orbitals (Figure 5.30). E(x) group orbital
The nitrogen s and p, orbitals combine with the hydrogen A, group orbital to give three
a, orbitals, one bonding, one nonbonding, and one antibonding. The nonbonding orbital is
almost entirely nitrogen p,, with the nitrogen s orbital combining with the hydrogen group
orbital for the bonding and antibonding orbitals. The nitrogen p, and p, orbitals combine
with the E group orbitals to form four e orbitals, two bonding and two antibonding (e has
a dimension of 2, which requires a pair of degenerate orbitals).
When eight electrons are put into the lowest energy levels, three bonds and one essentially
nonbonding pair are indicated. The 1s orbital energies (—13.61 eV) of the hydrogen atoms
match well with the energies of the nitrogen 2p orbitals (—13.18 eV), resulting in large dif-
ferences between the bonding and antibonding orbital energies. The nitrogen 2s has such a
sufficiently low energy (—25.56 eV) that its interaction with the hydrogen orbitals is quite
small, and the 2a; molecular orbital has nearly the same energy as the nitrogen 2s orbital.
The HOMO of NHj is slightly bonding, because it contains an electron pair in an orbital
resulting from interaction of the 2p, orbital of nitrogen with the 1s orbitals of the hydrogens
(from the zero-node A, group orbital). The 2p_orbital participates in weak overlap with the
A, group orbital. One half of the 2p_ orbital points away from the hydrogen atoms, while
the other half points at the center of the triangle formed by the three hydrogen nuclei. The
HOMO is the lone pair of the electron-dot and VSEPR models. It is also the pair donated
by ammonia when it functions as a Lewis base (discussed in Chapter 6).

545 CO; Revisited with Projection Operators

Section 5.4.2 outlines the process for determining group orbitals in the linear case where
the outer atoms employ both s and p orbitals; Figure 5.18 illustrates the group orbitals com-
prised of 2p,, 2py, 2p., and 2s orbitals, respectively. While these orbitals can be deduced by
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FIGURE 5.30 Molecular
Orbitals of NH;. All are shown
with the orientation of the
molecule at the bottom.
(Molecular Orbitals of NH; by
Kaitlin Hellie. Reprinted by
permission.)

’ 3H

matching their symmetries to the corresponding irreducible representations, a complemen-
tary strategy is to employ projection operators. For example, the group orbitals composed
of oxygen atom 2s atomic orbitals have A, and B}, symmetry in the D, point group.” As
in the NH; example, consider the impact of each D,;, point group symmetry operation on
one atomic orbital (in this case the oxygen 2s orbital of O,) within a set of two 2s atomic
orbitals. With linear molecules, the group orbital with matching orbital lobe signs toward
the center is always chosen as the basis, in this case the A, orbital. This general strategy
was also employed in Section 5.4.4, where the A; group orbital (Figure 5.29) was used as
the basis.

’_/(T)?i?l_,z 0s(A) @ : @ 0.,(B)

“We “descend in symmetry” from D, to D,, for convenience.
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Original Orbital E Cy(2) C,(») Cy(x) i a(xy) a(xz) a(yz)

Ozs(A) becomes... O2S(A) Ozs(A) O2s(B) Ozs(B) O2s(B) Ozs(B) O2S(A) Ozs(A)

In this D,, case, unlike in the C;, point group, each operation is in its own class, and the
number of columns above is identical to that in the D, character table. SALC(A,) and
SALC(B,,) of these oxygen 2s wave functions can be obtained by multiplication of each
outcome by the characters associated with each operation of these irreducible representa-
tions, followed by addition of the results:

E C,(2) C,(y) C,(x) i a(xy) a(xz) o(yz)
A, Opay T Ogay + Oy + Oy + Oy + Oy T Onga) + Ogay = 4(Oy4a)) + 4(On))
By, Oy + Oniy = Ooey = Oy = Oy = Oy T Opay t Onay = 4Ogga) — 4(Oya))

Normalization results in the expected group orbitals. In all molecules with two identical

L. 1 .. . .
outer atoms, normalization always leads to = ——= coefficients as two atomic orbitals

2
equally contribute toward two different SALCs.

B lu OZs(A)

1
Oy %[‘/’(Ozsm)) — (Onyp) ]

1
Ay O2sa) Q . Q Oy %W(Ozsm)) + §(Os5) ]

The 2p, group orbitals also possess A, and Bj, symmetry. The basis for the projection
operator method is again the A, group orbital, with the same signs of the orbital lobes
pointing toward the center.

X X X
707C 70%1 03, (A) OO . O-O 05,(B)
y y y
Original Orbital E C,(2) () G () i o(xy) o(xz) o(z)
05, (a) becomes. .. Oy a) Oz Oz, Oz 8) O ) O2,8) Ozp.a) O a)

Extension to the SALCs affords the anticipated wave function equations and group
orbitals; the signs are defined on the basis of the orientation of the orbitals relative to
the central atom.

1

A, Osp.(a) O'O . O'O 0,,.8) %[‘l’(ozp,(A) + ‘l’(ozp,(B))]
1

By, Oz (a) OO . 0.0 0,,.8) %W(Ozpjm)) — (O, ) ]
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The SALCs for the 2p, orbitals exhibit B3, and B,, symmetries. With the Bs, orbital as
the basis, we encounter situations, common with group orbitals designated for 7 bond-
ing, where the original orbital (in this case O,, (a)) becomes its own inverse or the
inverse of another orbital upon transformation by some symmetry operations.

X X X

bt

—O0—C—0—>2

v ¥
y y

02, (A) O O 0,(B)
O

(&

Original Orbital E Cy(2) Cy(y) Cy(x) i o (xy) o(xz) o(yz)
Osp.a) Osp,a) —Ona) —0y,m) Oyp,) —0y, ) Oyp) O2pa) ~Oy 8
becomes...
B3, Ogpa) T Ogpa) + Ogpmy T Oz ) + Onpm) + O3y + Ogpa) + Onpa) = 4(02,4) + 4Oy, )
By, O5pa) T Opa) = Ozpsy = O3y = Onp3) — Oopm) + Opyay + O a) = 4(O3p8) — 40, 5)

B 3u 02[7A(A) OZPY(B) 1 (o) + (0)
: : \/2[4/( ZpX(A)) P( 2p,<3))]
By | Opn O O 058 L 0Osa) — #Om) ]
\6 P(A) Px(B)

Use the projection operator method to derive normalized SALCs that define the group
orbitals for CO, based on the 2p, orbitals.

5.4.6 BF,

Boron trifluoride is a Lewis acid, an electron-pair acceptor. Molecular orbital theory of
BF; must provide an orbital capable of acting as such an acceptor to be consistent with this
chemical property. The VSEPR-predicted shape is trigonal, consistent with experimental
observations.

The procedure for describing molecular orbitals of BF; differs from NHj3, because the
fluorine atoms surrounding the central boron atom have 2p as well as 2s electrons to be
considered. We assign the highest order rotation axis, the Cs, to be the z axis. The fluorine
Py axes are chosen to point toward the boron atom; the p, axes are in the molecular plane.
The group orbitals and their symmetry in the Ds;, point group are shown in Figure 5.31.
The molecular orbitals are shown in Figure 5.32.
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As discussed in Chapter 3, consideration of all resonance structures for BF;
suggests that this molecule possesses some double-bond character in the B—F bonds.
The molecular orbital view of BF; has an electron pair in a bonding 7r orbital with a,”
symmetry delocalized over all four atoms; this is the orbital slightly lower in energy than
the five nonbonding electron pairs. Overall, BF; has three bonding o orbitals (a;" and e”)
and one slightly bonding 7 orbital (a,”) occupied by electron pairs, together with eight
nonbonding pairs on the fluorine atoms. The greater than 10 eV difference between
the boron and fluorine p orbital energies renders this 7 orbital weakly bonding, but not
insignificant.

F FIGURE 5.31 Group Orbitals
for BF,.
BF, B }
— E F A" E"
1
Group orbitals (2p_): B8 4 e
|
l
.
1
o) B B8 | B8 B B
Central B orbitals
of suitable None None
symmetry: 6
Ay ‘ E'
Group orbitals (2p, ): O O
|
|
e
¥ & Yid KN &
1
|
Central B orbitals
of suitable None O 8
symmetry:
AL E

Group orbitals (217),):

Central B orbitals
of suitable

symmetry: ® ®®) 8
. Al I
Group orbitals (2s): !
1 O]
|
v e
!
© © © 1 0 © ©
I — | L ]
0 Node 1 Node

Central B orbitals

of suitable
symmetry: © OO 8
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B

FIGURE 5.32 Molecular Orbitals of BF;. (Molecular Orbitals of BF; by Kaitlin Hellie. Reprinted by permission.)

The LUMO of BFj; is noteworthy. It is an empty 7r orbital (a,"), which has antibonding
interactions between the 2p, orbital on boron and the 2p, orbitals of the surrounding
fluorines. This orbital has large, empty lobes on boron and can act as an electron-pair
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acceptor (for example, from the HOMO of NH;3) using these lobes in Lewis acid—base
interactions.

Other trigonal species can be treated using this molecular orbital theory approach.
The trigonal planar SO;, NO;~, and CO+>~ are isoelectronic with BF;, with three electron
pairs in o-bonding orbitals and one pair in a 7-bonding orbital with contributions from all
four atoms. The resonance forms of these oxygen-containing species all predict delocalized
m-electron density as an important aspect of their electronic ground states.

Because the extent of orbital overlap in 7 interactions is generally less than that in
most o interactions, a double bond composed of one filled o orbital and one filled 7
orbital is not twice as strong as a single bond. Single bonds between the same atoms, but
within different chemical environments in different molecules, can have widely different
energies. An “average” C— C bond is usually described as having an approximate energy
of 345 kJ/mol; a large number of molecules containing C — C bonds in different environ-
ments contribute to this average energy. These individual values vary tremendously; some
are as low as 69 and as high as 649 kJ/mol."* The low value is for hexaphenyl ethane,
(CgHs5);C —C(CgHs)s, and the high is for diacetylene, H—C=C—C=C—H, exam-
ples of extremes in steric crowding and bonding, respectively, adjacent to the C —C bond.

The group orbital approach described in this chapter, despite its modest use of group
theory, conveniently provides a qualitatively useful description of bonding in simple mol-
ecules. Computational chemistry methods are necessary for more complex molecules and
to obtain wave equations for the molecular orbitals. These advanced methods also apply
molecular symmetry and group theory concepts.

While a qualitative group orbital approach does not allow the determination of
the precise energies of molecular orbitals, we can generally place the MOs in approxi-
mate order on the basis of their shapes and expected orbital overlaps. Relatively non-
bonding energy levels at intermediate energies can be particularly difficult to rank in
energy. Proficiency at estimating orbital energies is only gained by experience, and by
always attempting to correlate molecular orbitals and their energies with experimental
properties of the molecules under consideration. Mastery of the interactions that define
the basic molecular shapes described in this chapter provides a foundation that can be
extended to other geometries.

5.4.7 Hybrid Orbitals

An oversimplified bonding model, and one engrained in the chemistry vernacular, that
also employs molecular symmetry and group theory involves hybrid orbitals. The merits
of hybrid atomic orbital theory have been recently debated.!> While the modern inorganic
literature almost exclusively employs molecular orbital theory to gain insights regarding
structure and bonding, chemists evoke the hydridization model when it is convenient to
help visualize an interaction. In the hybrid concept, the orbitals of the central atom are
combined into sets of equivalent hybrids. These hybrid orbitals form bonds with orbitals
of other atoms. The hybrid model is especially useful in organic chemistry where, for
example, it predicts four equivalent C—H bonds in methane. A traditional criticism of
the hybrid orbital description of methane was its alleged inconsistency with photoelectron
spectroscopic data. However, the assumptions associated with these conclusions have been
criticized, and the utility of the hybrid orbital model in the interpretation of methane’s
photoelectron spectrum has been validated.!® Like all bonding models, hybrids are useful
so long as their limits are recognized.

Hybrid orbitals are localized in space and are directional, pointing in a specific direc-
tion. In general, these hybrids point from a central atom toward surrounding atoms or lone
pairs. Therefore, the symmetry properties of a set of hybrid orbitals will be identical to the
properties of a set of vectors with origins at the nucleus of the central atom and pointing
toward the surrounding atoms.
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FIGURE 5.33 Bond Vectorsin
Methane.

For example, in methane, the vectors point at the corners of a tetrahedron or at alter-
nate corners of a cube (Figure 5.33).

Using the T, point group, these four vectors form the basis of a reducible representa-
tion. As usual, the character for each vector is 1 if it remains unchanged by the symmetry
operation, and 0 if it changes position (reversing direction is not an option for hybrids).
The reducible representation for these four vectorsis I' = A; + T5:

T, E 8C, 3C, 6S, 60,

r 4 1 0 0 2

A, 1 1 1 1 1 24y + 2
T, 3 0 -1 -1 1 (x,y,2) (xy, xz,yz)

In terms of hybrids, this means that the atomic orbitals of carbon used in the hybrids
must have symmetry matching A; + T,; more specifically, one orbital must match A;, and
a set of three (degenerate) orbitals must match 7,.

Ay, the totally symmetric representation, has the same symmetry as the 2s orbital
of carbon; T, has the same symmetry as the three 2p orbitals taken together(x, y, z)
or the dxy, d,,, and dyz orbitals taken together. Because the 3d orbitals of carbon are at
much higher energy, and are therefore a poor match for the energies of the s orbitals
of the hydrogens, the hybridization for methane must be sp, combining four atomic
orbitals—one 2s and three 2p—into four equivalent hybrid orbitals, one directed toward
each hydrogen atom.

Ammonia fits the same pattern. Bonding in NHj; uses all the nitrogen valence orbit-
als, so the hybrids are sp3, incorporating one s orbital and all three p orbitals, with overall
tetrahedral symmetry. The predicted HNH angle is 109.5°, reduced to the actual 106.6° by
repulsion from the lone pair, which is also viewed to occupy an sp* orbital.

There are two hybridization descriptions for the water molecule. A commonly
taught idea in general chemistry is that the electron pairs around the oxygen atom in
water can be considered as adopting nearly tetrahedral symmetry (counting the two lone
pairs and the two bonds equally). All four valence orbitals of oxygen are used, and the
hybrid orbitals are sp®. The predicted bond angle is then the tetrahedral angle of 109.5°,
compared with the experimental value of 104.5°. Repulsion by the lone pairs explains
this smaller angle.

In another approach, which complements the molecular orbital description of
Section 5.4.3, the bent planar shape indicates that the oxygen orbitals used in molecular
orbital bonding in water are the 2s, 2p,, and 2p, (in the plane of the molecule). As a result,
the hybrids could be described as sp?, a combination of one s orbital and two p orbitals.
Three sp? orbitals have trigonal symmetry and a predicted H—O—H angle of 120°,
considerably larger than the experimental value. Repulsion by the lone pairs on the oxy-
gen—one in an sp? orbital, one in the remaining py orbital—forces the angle to be smaller.
Note that the 1b, orbital in the molecular orbital picture of H,O (Figure 5.28) is a filled
nonbonding 2p, orbital.

Similarly, CO, uses sp hybrids, and SO; uses sp® hybrids. Only the o bonding is
considered when determining the orbitals used in hybridization; p orbitals not used in the
hybrids are available for 7 interactions. The number of atomic orbitals used in the hybrids
is frequently the same as the steric number in the VSEPR method. The common hybrids
are summarized in Figure 5.34. The group theory approach to hybridization is described
in the following example.
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Geometry Atomic orbitals used Hybrid orbitals FIGURE 5.34 Hybrid Orbitals.
Each single hybrid has the

general shape DQ The

figures here show all the result-

J

Linear s

Two sp hybrid orbitals ing hybrids combined, omitting

Trigonal ¢ the smaller lobe in the sp3 and

higher orbitals.

e

Three sp2 hybrid orbitals

s

Tetrahedral s

p

p

P Four sp3 hybrid orbitals
Trigonal
bipyramidal

p

p

p

d % Five dsp® hybrid orbitals
Octahedral s

UL A T

Qo @85 Q80 esfo §o

Six d2sp> hybrid orbitals

Determine the hybrid orbitals for boron in BFj;.

For a trigonal planar molecule such as BFj;, the orbitals likely to be involved in bond-
ing are the 2s, 2p,, and 2p,. This can be confirmed by finding the reducible representa-
tion in the D5, point group of vectors pointing at the three fluorines and reducing it to
its irreducible representations. The procedure is as follows.

Step 1 Determine the shape of the molecule (VSEPR), considering each sigma
bond and lone pair on the central atom to be a vector pointing out from the
center.

Step 2 Determine the reducible representation for the vectors, and deduce the
irreducible representations that combine to form the reducible representation.

Step3 The atomic orbitals that match the irreducible representations are those used in
the hybrid orbitals.

Using the symmetry operations of the D5, group, we find that the reducible B
representation I’ = A" + E'. / \
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D E 26, 3G, o, 25, 3o,

r 3 0 1 3 0 1

A 1 1 1 1 1 1 2+ 32 2
E' 2 -1 0 2 -1 0 (xy) | (¥ = y%xy)

The atomic orbitals that combine to afford the hybrids must have the same symmetry
as A;" and E’. One orbital must have A;’ symmetry and two orbitals must have E’ sym-
metry. We must therefore select one orbital with A;" symmetry and one pair of orbitals
that collectively have E’ symmetry. Examining the functions in the right-hand column
of the character table, we see that the s orbital (not listed, but understood to be present
for the totally symmetric representation) and the d2 orbital possess A;’ symmetry.
However, the 3d orbitals, the lowest energy d orbitals, are too high in energy for
bonding in BF; compared with the 2s. Therefore, the 2s orbital is the A" contributor.

The functions listed for £ symmetry match the p,, p, set and the d,>_2, d,, set.
The d orbitals are energetically inaccessible; the 2p, and 2p, orbitals are used by the
central atom.”

Overall, the orbitals used in the hybridization are the 2s, 2p,, and 2p,, orbitals of
boron, comprising the familiar sp® hybrids. The difference between this approach and
the molecular orbital approach is that these orbitals are combined to form the hybrids
before considering their interactions with the fluorine orbitals. Because the overall
symmetry is trigonal planar, the resulting hybrids must have that same symmetry, so
the three sp? orbitals point at the three corners of a triangle, and each interacts with a
fluorine p orbital to form the three o bonds. The 2p, orbital is not involved in the bond-
ing and, according to the hybrid approach, is empty; this orbital serves as an acceptor
in acid-base reactions.

EXERCISE 5.11 Determine the types of hybrid orbitals that are consistent with the
symmetry of the central atom in
a. PFS

b. [PtCl4]]27, a square planar ion

The procedure for determining hybrids is in some respects similar to that used in
the molecular orbital approach. Hybridization uses vectors pointing toward the outlying
atoms and usually deals only with o bonding. Once the o hybrids are known, 7 bonding
is added, using orbitals that do not participate in the hybridization. It is also possible to use
hybridization techniques for 77 bonding.!” As an approximate approach, hybridization may
be quicker than the molecular orbital approach, because the molecular orbital approach
uses all the atomic orbitals of the atoms and includes both o and 7 bonding directly.
Molecular orbital theory has gained prominence on the basis of its ability to predict the
relative energies of electrons in molecules much more successfully than the hybrid orbital
approach.!”

EXERCISE 5.12

Determine the reducible representation for all the o bonds, reduce it to its irreducible
representations, and determine the sulfur orbitals used in bonding for SOCl, .

*A combination of one p orbital and one d orbital cannot be chosen, because orbitals in parentheses must always
be taken together.
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5.1 Expand the list of orbitals considered in Figures 5.2 and 5.3
by using all three p orbitals of atom A and all five d orbit-
als of atom B. Which of these have the necessary match
of symmetry for bonding and antibonding orbitals? These
combinations are rarely seen in simple molecules but can
be important in transition metal complexes.

5.2 On the basis of molecular orbitals, predict the shortest
bond, and provide a brief explanation.

a. Li," Li,
b. i, F,

c¢. He,”© HHe"™ H,"

5.3 On the basis of molecular orbitals, predict the weakest
bond, and provide a brief explanation.
a. b, S, ClL
b. S," S, S,”

c. NO© NO NO*

5.4 Compare the bonding in 0,27,0, ", and O,. Include Lewis
structures, molecular orbital structures, bond lengths, and
bond strengths in your discussion.

5.5 Although the peroxide ion, O,>", and the acetylide ion,
C,>~, have long been known, the diazenide ion N,>~ has
only been prepared much more recently. By comparison
with the other diatomic species, predict the bond order,
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5.10
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bond distance, and number of unpaired electrons for N,>~.

(See G. Auffermann, Y. Prots, R. Kniep, Angew. Chem.,

Int. Ed., 2001, 40, 547.)

High-resolution photoelectron spectroscopy has provided

information on the energy levels and bond distance in the

ion Ar,". Prepare a molecular orbital energy-level diagram
for this ion. How would you expect the bond distance in

Ar," to compare with 198.8 pm, the bond distance in Cl,?

(See A. Wiist, F. Merkt, J. Chem. Phys., 2004, 120, 638.)

a. Prepare a molecular orbital energy-level diagram for
NO, showing clearly how the atomic orbitals interact
to form MOs.

b. How does your diagram illustrate the difference in elec-
tronegativity between N and O?

c. Predict the bond order and the number of unpaired
electrons.

d. NO* and NO~ are also known. Compare the bond
orders of these ions with the bond order of NO. Which
of the three would you predict to have the shortest
bond? Why?

a. Prepare a molecular orbital energy-level diagram for
the cyanide ion. Use sketches to show clearly how the
atomic orbitals interact to form MOs.

b. What is the bond order for cyanide, and how many
unpaired electrons does cyanide have?

¢. Which molecular orbital of CN™ would you predict to
interact most strongly with a hydrogen 1s orbital to form
an H—C bond in the reaction CN~ + H" — HCN?
Explain.

NF is a known molecule!

a. Construct a molecular orbital energy-level diagram for
NF, being sure to include sketches that show how the
valence orbitals of N and F interact to form molecular
orbitals.

b. What is the most likely bond order for NF?

c. What are the point groups of the molecular orbitals of

this molecule?
(See D. J. Grant, T-H. Wang, M. Vasiliu, D. A. Dixon,
K. O. Christe, Inorg. Chem. 2011, 50, 1914 for refer-
ences and theoretical calculations of numerous small
molecules and ions having formula N,F,.)

The hypofluorite ion, OF ", can be observed only with

difficulty.

a. Prepare a molecular orbital energy level diagram for
this ion.

b. What is the bond order, and how many unpaired
electrons are in this ion?

c. What is the most likely position for adding H" to the
OF"~ ion? Explain your choice.

Reaction of KrF, with AsFs at temperatures between —78

and —53 °C yields [KrF][AsF4], a compound in which

KrF™" interacts strongly with AsFg ~ through a fluorine

bridge, as shown. Would you predict the Kr—F bond to

be shorter in KrF™" or in KrF,? Provide a brief explanation.

(See J. F. Lehmann, D. A. Dixon, G. J. Schrobilgen, Inorg.

Chem., 2001, 40, 3002.)
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Although KrF* and XeF" have been studied, KrBr* has

not yet been prepared. For KrBr*:

a. Propose a molecular orbital diagram, showing the inter-
actions of the valence shell s and p orbitals to form
molecular orbitals.

b. Toward which atom would the HOMO be polarized?
Why?

c. Predict the bond order.

d. Which is more electronegative, Kr or Br? Explain your
reasoning.

Prepare a molecular orbital energy level diagram for SH™,

including sketches of the orbital shapes and the number of

electrons in each of the orbitals. If a program for calculat-
ing molecular orbitals is available, use it to confirm your
predictions or to explain why they differ.

Methylene, CH,, plays an important role in many reac-

tions. One possible structure of methylene is linear.

a. Construct a molecular orbital energy-level diagram for
this species. Include sketches of the group orbitals, and
indicate how they interact with the appropriate orbitals
of carbon.

b. Would you expect linear methylene to be diamagnetic
or paramagnetic?

Beryllium hydride, BeH,, is linear in the gas phase.

a. Construct a molecular orbital energy level diagram for
BeH, . Include sketches of the group orbitals, and indicate
how they interact with the appropriate orbitals of Be.

b. If you have worked Problem 5.14, compare the results
of these two problems.

In the gas phase, BeF, forms linear monomeric molecules.

Prepare a molecular orbital energy-level diagram for BeF,,

showing clearly which atomic orbitals are involved in

bonding and which are nonbonding.

For the compound XeF, do the following:

a. Sketch the valence shell group orbitals for the fluorine
atoms (with the z axes collinear with the molecular axis).

b. For each of the group orbitals, determine which out-
ermost s, p, and d orbitals of xenon are of suitable
symmetry for interaction and bonding.

TaHs has been predicted to have C4, symmetry, with a

calculated axial H—Ta—H angle of approximately 117.5°.

Using the six-step approach described in Section 5.4.2,

describe the bonding in TaHs on the basis of matching

group orbitals and central atom orbitals according to their
symmetry. (See C. A. Bayse, M. B. Hall, J. Am. Chem.

Soc., 1999, 121, 1348.)
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5.27

Describe the bonding in ozone, O3, on the basis of match-
ing group orbitals and central-atom orbitals according to
their symmetry. Include both o and 7 interactions, and try
to put the resulting orbitals in approximate order of energy.
Describe the bonding in SO5 by using group theory to find
the molecular orbitals. Include both o and 7 interactions,
and try to put the resulting orbitals in approximate order
of energy. (The actual results are more complex because of
mixing of orbitals, but a simple description can be found
by the methods given in this chapter.)

The ion H3* has been observed, but its structure has been

the subject of some controversy. Prepare a molecular

orbital energy level diagram for H;", assuming a cyclic
structure. (The same problem for a linear structure is given

in Exercise 5.4 in Section 5.4.2.)

Use molecular orbital arguments to explain the structures

of SCN™, OCN™, and CNO™, and compare the results with

the electron-dot pictures of Chapter 3.

Thiocyanate and cyanate ions both bond to H* through the

nitrogen atoms (HNCS and HNCO), whereas SCN™ forms

bonds with metal ions through either nitrogen or sulfur,
depending on the rest of the molecule. What does this sug-
gest about the relative importance of S and N orbitals in the

MOs of SCN™? (Hint: See the discussion of CO, bonding

in Section 5.4.2.)

The thiocyanate ion, SCN™, can form bonds to metals

through either S or N (see Problem 5.23). What is the like-

lihood of cyanide, CN ™, forming bonds to metals through

N as well as C?

The isomeric ions NSO~ (thiazate) and SNO ™ (thionitrite)

ions have been reported. (S. P. So, Inorg. Chem., 1989, 28,

2888).

a. On the basis of the resonance structures of these ions,
predict which would be more stable.

b. Sketch the approximate shapes of the 7 and 77* orbitals
of these ions.

c. Predict which ion would have the shorter N—S bond
and which would have the higher energy N—S stretch-
ing vibration? (Stronger bonds have higher energy
vibrations.)

Apply the projection operator method to derive the group

orbital SALCs for H,O given in Section 5.4.3. Confirm

using the squares of the coefficients that the group orbital
wave function equations are normalized and that each 1s
orbital contributes equally to the two group orbitals.

Apply the projection operator method to derive the

group orbital SALCs for BF; on the basis of the irre-

ducible representations given in Figure 5.31 for sets of

25, 2p,, 2p,, and 2p, orbitals, respectively. Employ a set

of three identical orbitals where all have the same bias

(i.e., the group orbitals with A;’, A,’, and A,” symmetry

in Figure 5.31) as a starting point. For each determination,

provide a table like that in Section 5.4.4 to tabulate wave
function coefficients, their squares, and how these values
simultaneously satisfy the normalization requirement and
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confirm that each atomic orbital contributes equally to each
set of group orbitals.

A set of four group orbitals derived from four 3s atomic
orbitals is necessary to examine the bonding in [PtCl,]™,
a square planar complex. Deduce the wave function equa-
tions for these four SALCs using the 3s labeling scheme
specified, starting with the irreducible representations for
these group orbitals. Using sketches of the deduced orbit-
als, symmetry characteristics of the representations, and
a coefficient table like that in Section 5.4.4, deduce the
SALCs not derived initially from the character table analy-
sis. Provide normalized equations and a sketch for each
group orbital.

y
3s(A)

O
O—»
3s(B)

O3S(C)

The projection operator method has applications beyond
the deduction of group orbital SALCs. Deduce the wave
function equations for the six 77 molecular orbitals of ben-
zene, using the labels specified for each 2p_ orbital. First,
derive initial SALCs using each representation of the Dy,
point group; some combinations will afford zero. Using
sketches of the deduced orbitals, symmetry characteristics
of the representations, and a coefficient table like that in
Section 5.4.4, deduce the SALCs not derived initially from
the character table analysis. Provide normalized equations
and a sketch for each 7 molecular orbital.

2p(A)

2p(B) 2p(F)

2p.(C) 2p.(E)

2p,(D)

Although the le ion has not been isolated, it has been

detected in the gas phase by UV spectroscopy. An attempt

to prepare this ion by reaction of Cl, with IrFy yielded

not Cl,*, but the rectangular ion Cl,". (See S. Seidel,

K. Seppelt, Angew. Chem., Int. Ed., 2000, 39, 3923.)

a. Compare the bond distance and bond energy of
Cl,* with Cl,.
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b. Account for the bonding in Cl,". This ion contains
two short CI—CI bonds and two much longer ones.
Would you expect the shorter C1— Cl distances in Cl,*
to be longer or shorter than the C1—Cl distance in CI,?
Explain.

BF; is often described as a molecule in which boron is

electron deficient, with an electron count of six. However,

resonance structures can be drawn in which boron has an
octet, with delocalized 7 electrons.

a. Draw these structures.

b. Find the molecular orbital in Figure 5.32 that shows this
delocalization and explain your choice.

c. BF; is the classic Lewis acid, accepting a pair of elec-
trons from molecules with lone pairs. Find the orbital
in Figure 5.32 that is this acceptor; explain your choice,
including why it looks like a good electron acceptor.

d. What is the relationship between the orbitals identified
in Parts b and ¢?

SF, has C,, symmetry. Predict the possible hybridization

schemes for the sulfur atom in SF,.

Consider a square pyramidal ABs molecule. Using the

C,, character table, determine the possible hybridization

schemes for central atom A. Which of these would you

expect to be most likely?

In coordination chemistry, many square-planar species are

known (for example, [PtC14]%>7). For a square planar mol-

ecule, use the appropriate character table to determine the
types of hybridization possible for a metal surrounded in

a square-planar fashion by four ligands; consider hybrids

used in o bonding only.

For the molecule PCls:

a. Using the character table for the point group of PCls,
determine the possible type(s) of hybrid orbitals that can
be used by P in forming o bonds to the five Cl atoms.

b. What type(s) of hybrids can be used in bonding to the
axial chlorine atoms? To the equatorial chlorine atoms?

c. Considering your answer to part b, explain the experi-
mental observation that the axial P— Cl bonds (219 pm)
are longer than the equatorial bonds (204 pm).

The following problems require the use of molecular modeling
software.

5.36

5.37

a. Identify the point group of the 1a,”, 2a,", la,’, and le”
molecular orbitals in Figure 5.32.

b. Use molecular modeling software to calculate and view
the molecular orbitals of BF;.

¢. Do any of the molecular orbitals show interactions
between B and F?

d. Print out the contributions of the atomic orbitals to
the 3a,’, 4a,’, la,"”, la,’, and 2a,"” molecular orbitals,
confirming (if you can) the atomic orbital combinations
shown in Figure 5.32.

The ions and molecules NO™, CN~, CO, and N, and N,

form an isoelectronic series. The changing nuclear charges

will also change the molecular energy levels of the orbitals

5.38
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541

542
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formed from the 2p atomic orbitals (17, 30, and 17").

Use molecular modeling software for the following:

a. Calculate and display the shapes of these three molecu-
lar orbitals for each species (CO and N, are included
in this chapter).

b. Compare the shapes of each of the orbitals for each of
the species (for example, the shapes of the 17 orbitals
for each). What trends do you observe?

c¢. Compare the energies of each of the orbitals. For which
do you see evidence of mixing?

Molecular modeling software is typically capable of calcu-

lations on molecules that are hypothetical, even seemingly

bizarre, in their structures. Beginning with N,, calculate
and display molecular orbitals of the isoelectronic CO, BF,
and BeNe (which is truly hypothetical!). Compare the
shapes of the matching molecular orbital in this series

What trends do you observe?

Calculate and display the orbitals for the linear molecule

BeH,. Describe how they illustrate the interaction of the

outer group orbitals with the orbitals on the central atom.

Compare your results with the answer to Problem 5.15.

Calculate and display the orbitals for the linear molecule

BeF,. Compare the orbitals and their interactions with

those of BeH, from Problem 5.39. In particular, indicate

the outer group orbitals that do not interact with orbitals
on the central atom.

The azide ion, N3, is another linear triatomic species. Cal-

culate and display the orbitals for this ion, and compare the

three highest energy occupied orbitals with those of BeF,.

How do the outer atom group orbitals differ in their inter-

actions with the central atom orbitals? How do the orbitals

compare with the CO, orbitals discussed in Section 5.4.2?

Calculate and display the molecular orbitals of the ozone

molecule, O3;. Which orbitals show 7 interactions?

Compare your results with your answer to Problem 5.19.

a. Calculate and display the molecular orbitals for linear
and cyclic H;".

b. Which species is more likely to exist (i.e., which is
more stable)?

Diborane, B,Hg, has the structure shown.

a. Using the point group of the molecule, create a rep-
resentation using the 1s orbitals on the hydrogens as
a basis. Reduce this representation, and sketch group
orbitals matching each of the irreducible representa-
tions. (Suggestion: Treat the bridging and terminal
hydrogens separately.)

b. Calculate and display the molecular orbitals. Compare
the software-generated images with the group orbital
sketches from part a, and explain how hydrogen can
form “bridges” between two B atoms. (This type of
bonding is discussed in Chapter 8.)

H..” N _H
H"B\H B~H



Chapter 6

6.1 Acid-Base Models as Organizing Concepts

A long-standing chemical objective is to organize reactions by using models to account
for trends and gain insight into what properties of reactants are prerequisites for chemical
change. Analyzing trends among similar reactions permits discovery of structure—function
relationships (for example, how do molecular geometry and electronic structure influence
reactivity?) and guides the design of molecules for practical use.

Classifying substances as acids and bases has been important since ancient times;
alchemists used neutralization—the ubiquitous reaction of an acid and base to form salt
and water—to compile observations about different substances that engaged in similar
reactions. Without modern structural analysis tools, such as X-ray crystallography and
NMR spectroscopy, alchemists used their senses: they observed the tastes of acids (sour)
and bases (bitter) and color changes of indicators. Many acid—base definitions have been
devised, but only a few have been widely adopted.

This chapter discusses the major acid—base models and their application in inorganic
chemistry. After a historical introduction (Section 6.1.1), the models are presented in
the rough order of their development. Among these are the ones attributed to Arrhenius
(Section 6.2), Brgnsted—Lowry (Section 6.3), and Lewis (Section 6.4). These sections
emphasize the challenges associated with quantifying acidity and basicity, and rela-
tionships between acid/base strength and molecular structure. The 1960s application of
molecular orbitals (i.e., HOMO/LUMO interactions) to frame Lewis acid—base reactions
(Section 6.4.1) permeates inorganic chemistry and dramatically expands the perspective
on what constitutes an acid—base reaction. Extension of HOMO/LUMO interactions to
intermolecular forces is covered in Section 6.5. For example, acid—base molecular orbital
concepts permit rationalization of host—guest interactions (Section 6.5.2) involving Cg,
(figure above®). Finally, the concept of “hard” and “soft” acids and bases is discussed in
Section 6.6.

6.1.1 History of Acid-Base Models

The history of chemistry is marked with many acid—base models. A limitation of most early
models is that they are applicable to only specific classes of compounds or a narrow set of
conditions. One such limiting idea in the eighteenth century was that all acids contained
oxygen; oxides of nitrogen, phosphorus, sulfur, and the halogens all form aqueous acids.
However, by the early nineteenth century, this definition was regarded as too narrow; many
compounds had been discovered that did not contain oxygen but showed behavior associated

*Molecular structure drawing created with CIF data from E. C. Constable, G. Zhang, D. Hiussinger, C. E.
Housecroft, J. A. Zampese, J. Am. Chem. Soc., 2011, 133, 10776, with hydrogen atoms omitted for clarity.
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with acids. By 1838, Liebig broadened the definition of acids to “compounds containing
hydrogen, in which the hydrogen can be replaced by a metal.”! The early twentieth century
featured the introduction of some models rarely evoked today. The Lux—Flood definition? is
based on oxide (O%7) as the unit transferred between acids and bases. The Usanovich defi-
nition? proposes that classification of an acid—base reaction only requires salt formation.
The all-inclusive aspect of the Usanovich definition, which included oxidation—reduction
reactions, was criticized as too broad. The electrophile—nucleophile approach of Ingold*
and Robinson,> part of the organic chemistry vernacular, is essentially the Lewis theory
with terminology related to reactivity: electrophilic reagents are acids and nucleophilic
reagents are bases. Table 6.1 summarizes the history of acid—base definitions.

6.2 Arrhenius Concept

Acid-base chemistry was first satisfactorily explained in molecular terms after Ostwald
and Arrhenius established the existence of ions in aqueous solution in the late nineteenth
century (Arrhenius received the 1903 Nobel Prize in Chemistry). Arrhenius acids yield
hydrogen ions™ in aqueous solution; Arrhenius bases yield hydroxide ions in aqueous
solution. The neutralization of hydrogen and hydroxide ions to form water, the net ionic
equation of

HCl(ag) + NaOH(aq) — 1290 | NaCl(aq) + H,O()

is a classic Arrhenius acid-base reaction, with a salt (in this case NaCl) and water as
products. The Arrhenius concept is useful in aqueous solutions, but does not apply to the
many reactions that occur in other inorganic solvents, organic solvents, the gas phase, or
the solid state.

TABLE 6.1 Acid-Base Definition History

Description
Liebig

Arrhenius

Brgnsted—Lowry

Lewis
Ingold—Robinson
Lux-Flood
Usanovich
Solvent system

Frontier orbitals

~1776
1838
1894
1923

1923
1932
1939
1939
1950s
1960s

Definitions Examples
Base Acid Base
Oxide of N, P, S Reacts with acid SO; NaOH
H replaceable by metal Reacts with acid HNO; NaOH
Forms hydronium ion Forms hydroxide ion HCl NaOH
Hydrogen ion donor Hydrogen ion acceptor H;0" H,0O
H,0 OH™
NH,* NH;
Electron-pair acceptor Electron-pair donor Ag*t NH;
Electrophile (electron-pair acceptor)  Nucleophile (electron-pair donor) BF; NH;
Oxide ion acceptor Oxide ion donor SiO, CaO
Electron acceptor Electron donor Cl, Na
Solvent cation Solvent anion BrF," BrF,~
LUMO of acceptor HOMO of donor BF; NH;

“The original Arrhenius concept did not include solvation. In modern practice, H;O™, the hydronium ion, is com-
monly used as an abbreviation of H*(ag), and this is the practice in this book. The International Union of Pure and
Applied Chemistry (IUPAC) recommends oxonium for H;O*. Frequently the shorthand H* notation is used, for
which the IUPAC recommends the term hydrogen ion, rather than proton.
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6.3 Brgnsted-Lowry Concept

Brgnsted® and Lowry’ defined an acid as a species with a tendency to lose a hydrogen ion
and a base as a species with a tendency to gain a hydrogen ion. For example, the Brgnsted—
Lowry reaction of a strong acid with the weak base nitrite in aqueous solution would be:

— conjugate pair—|
H;0%(ag) + NO, (ag) == H,0(]) + HNO,(aq)

L conjugate pair—I

The strong acid hydronium loses (donates) H" to the base NO, ™ to form H,O (the conju-
gate base of H;0") and HNO, (the conjugate acid of NO, ).

In principle, the Brgnsted—Lowry acidity of a general acid HB could be measured in
the gas phase by determining the equilibrium constant of

HB(g) == H'(g) + B (g)

However, typically large and positive AG® values associated with gaseous ionization ren-
der this acidity measurement problematic. Examination of the explicit HB ionization above
is impossible in solution; independent H* ions do not exist in solution because of their
strong interaction with solvent molecules.

The Brgnsted—Lowry model explicitly dictates that acids generate different conjugate
acids depending on the solvent used. For example, H,SO, yields H;O™ on ionization in
water but H;SO," on ionization in sulfuric acid. Acid strength in solution is inherently
tied to the solvent. The acidity or basicity ranking of a series of solutes determined in one
solvent may therefore be different in another solvent. The Brgnsted—Lowry strategy is to
compare conjugate acids and bases, species differing only in the presence or absence of a
proton, and describe reactions as occurring between a stronger acid and a stronger base to
form a weaker acid and a weaker base, as in the example of H;O" reacting with NO, . A
stronger acid has a greater tendency to transfer a hydrogen ion than a weaker acid, and a
stronger base has a greater tendency to accept a proton than a weaker base. The equilibrium
always favors the formation of weaker acids and bases. In the example above, H;O" is a
stronger acid than HNO,, and NO, ™ is a stronger base than H,O; the equilibrium lies to
the right.

Brgnsted—Lowry examples can be shown in ampheteric solvents that can function as
an acid or a base and whose conjugates play vital roles. Examples of amphoteric solvents
are in Table 6.2.

TABLE 6.2 Properties of Amphoteric Solvents

Acid Cation Base Anion pK,,n(25°C)  Boiling Point (°C)
Sulfuric acid, H,SO, H3S0," HSO,~ 3.4(10% 330
Hydrogen fluoride, HF ~ H,F™" HF,™ ~12 (0°) 19.5
Water, H,O H;0" OH™ 14.0 100
Acetic acid, CH;COOH CH;COOH," CH;COO™ 14.45 118.2
Methanol, CH;0H CH;OH," CH;0~ 16.6 64.7
Ammonia, NH; NH,* NH,"~ 27 —33.4
Acetonitrile, CH;CN CH,CNH™ CH,CN™ 34.4 81

Data from W. L. Jolly, The Synthesis and Characterization of Inorganic Compounds, Prentice Hall, Englewood Cliffs, NJ, 1970,
pp. 99-101 and M. Rosés, Anal. Chim. Acta, 1993, 276, 223 (pK.__ for acetonitrile).

ion
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Calculate the concentration of CH;CNH™ in CH;CN at 25° C.

Consider the net ionic equation for the reaction of a strong acid (HCI) and strong base
(NaOH) in aqueous solution. In water, the acid H;O™ from the ionization of HCI and base
OH™ from the dissociation of NaOH engage in Brgnsted—Lowry proton transfer to form
H,O. The net ionic equation features the conjugate acid and base of water as reactants:

H;0%(ag) + OH (aq) == H,0()) + H,0())

This class of Brgnsted—Lowry reaction can be carried out in any amphoteric solvent. For
example, liquid ammonia, NHj; (the conjugate acid of NH,™ and conjugate base of NH,"),
is a useful solvent for reactions impossible to carry out in the stronger oxidant water.
While NH,™ reacts vigorously with H,O to yield its conjugate acid NH;, and OH™ (the
conjugate base of H,O), NH,Cl and NaNH, react in liquid ammonia via the net ionic
Brgnsted—Lowry equation

NH," + NH,” _NH:(D 2 NH, ()

Because NH," is a stronger acid than its conjugate (NH;), and NH,™ is a stronger base
than its conjugate (also NHj), the products are favored.

The Brgnsted—Lowry concept can be applied in any solvent, regardless whether the
solvent possesses hydrogen atoms that can participate. For example, cyclopentadienide,
[CsH5]™, a common anion in organometallic chemistry, can be prepared in tetrahydrofuran
(THF, C4H30) via reaction of sodium hydride and cyclopentadiene (CsHg). The Brgnsted—
Lowry acidity of CsH is enhanced because the resulting negative charge is delocalized
within aromatic [CsHs]™; hydride is an extremely strong base that reacts vigorously with
water, and this reaction must be carried out under anhydrous conditions.

e ) e ©) @

cyclopentadiene cyclopentadienide

The classification of H, as a conjugate acid (of the strong base hydride) is noteworthy. It
highlights that any molecule containing hydrogen can in principle function as a Brgnsted—
Lowry acid, even if some (for example, aliphatic hydrocarbons, H,) only function as acids
under extraordinary conditions.”

Organolithium reagents are sources of strong Brgnsted—Lowry bases in nonaqueous
media. The equilibria between hydrocarbons and organolithium reagents can be
predicted via the Brgnsted—Lowry concept. Which side of the following Li/H exchange
equilibrium should be favored if C¢Hg is a stronger acid than n-butane?™"

C6H6 + n—C4H9Li S C6H5Ll + I’l-C4H10

6.3.1 Nonaqueous Solvents and Acid-Base Strength

The H;O"/H,O/OH™ reference for quantifying relative acid and base strengths is only
useful when the examined acid is inherently weaker than H;O" or the examined base
is weaker than OH ™. Hydronium ion and hydroxide ion are the strongest acid and base,

“The solvent tetrahydrofuran is another molecule with exceedingly low Brgnsted—Lowry acidity that resists
deprotonation by sodium hydride.

“*The Brgnsted—Lowry preference is achieved very slowly in this case, but rapid Li/H exchange occurs upon
addition of tetramethylethylenediamine (TMEDA) that enhances n-C4HgLi reactivity.
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respectively, than can exist in water. Acids inherently stronger than H;O™ cannot be dif-
ferentiated by their aqueous ionization; this is called the leveling effect. Due to leveling,
nitric, sulfuric, perchloric, and hydrochloric acids are all equally strong acids in dilute
aqueous solutions, essentially ionizing quantitatively to H;O" and the corresponding con-
jugate base. In these cases, more strongly acidic solvents are necessary to differentiate
acidity. For example, acetic acid, like water, is amphoteric, and can accept protons from
acids classified as strong in water, resulting in partial ionization. The CH;COOH," ion is
the strongest acid that can exist in glacial acetic acid (100% acetic acid). The solvent sets
a limit on the effective strength of the dissolved acid.

CH,COOH

H,SO, + CH;COOH CH,COOH," + HSO,”

In glacial acetic acid, the relative acid strength of HC10, > HCI > H,SO, > HNOj can be
determined. In the same way, basic solvents permit the differentiation of bases that could
not be accomplished in a less basic solvent.

A key perspective on leveling is that the classification of a substance as “weak” or
“strong” is stringently tied to the solvent. A weak aqueous base may be strong in a more
acidic solvent. Weak aqueous acids appear strong in basic solvents. For example, the equi-
librium position of

NH, + CH;COOH(/)

CH,COOH

NH," + C,H;0,

lies much further to the right in glacial acetic acid than the ammonia ionization equilibrium
in water.

Nonamphoteric solvents, with neither Brgnsted—Lowry acidic nor basic properties, do
not limit solute acidity or basicity because the solute does not react with the solvent. In these
solvents, the inherent solute acid or base strength determines the reactivity, without a leveling
effect. For example, hydride sources (e.g., LiAlH,, NaH) are commonly employed as Brgnsted—
Lowry bases or reducing agents in organic solvents (for example, Et,O, hydrocarbons) where
no acid-base reaction with the solvent is possible. In these cases, reaction conditions are often
heterogeneous; the hydride source remains insoluble due to its lack of significant interaction
with the solvent. The acid—base effects of the solvent, and the compatibility of reactants with
intended solvents must be always considered when planning reactions.

6.3.2 Bronsted-Lowry Superacids
From a Bronsted—Lowry perspective, designing molecules with exceedingly weak conju-
gate bases results in acids that could potentially transfer protons to species that could not be
appreciably protonated by leveled acids in either water (H;0™) or sulfuric acid (H3SO4").
George Olah won the Nobel Prize in Chemistry in 1994 for the discovery and application of
superacids, acid solutions more acidic than sulfuric acid. Olah proposed using superacids
to protonate monocationic species (for example, nitronium ion, below) to produce useful
concentrations of dicationic (charge = 2+) ions with increased reactivity. He coined the
term superelectrophilic activation to describe the result of generating small organic ions
bearing a large amount of positive charge.®

super-HA

+ 2+
[o=x=o] [omn=on] s
A variety of dicationic superelectrophiles have been synthesized,” and tricationic species
formed via protonation of triaryl methanols were reported recently.!? These species exhibit
new reactions resulting from the effects of closely oriented positive charges.

Superacid acidity is measured by the Hammett acidity function:!!

[BH']
(B]

Hy = pKpy+ — log
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where B and BH™ are a nitroaniline indicator and its conjugate acid, respectively. The
stronger the acid, the more negative its H; value. On this scale, the H, of 100% sulfuric
acid is —11.9 (Table 6.3).

The term Magic Acid was coined upon observation that a mixture of antimony penta-
fluoride and fluorosulfonic acid dissolved a candle, demonstrating the ability of the acid to
protonate hydrocarbons. The ability of superacids to activate hydrocarbons, and particularly
methane, via protonation, is an area of intense interest, since methane is the primary compo-
nent of natural gas. The abundance of methane makes it attractive as a feedstock for synthesis
of more complex molecules. Computational studies have proposed structures with 2-center
3-electron bonds for CHs", CH¢>", and even CH,>", but these species have not been isolated.”

Methanesulfonyl chloride, CH;SO,Cl, can be prepared from CH,; and SO,Cl, in
sulfuric acid or triflic acid in the presence of a radical initiator.!2 Sulfonation of CH, to
methanesulfonic acid (CH3;SO3;H) has been achieved with SO5 in H,SO, in the presence of
a radical initiator.!3 Dissolving SO in sulfuric acid results in “fuming sulfuric acid.” This
superacidic solution contains H,S,0- and higher polysulfuric acids, all of them stronger
than H,SO,.

Complex fluorinated anions are formed in solutions of Magic Acid and HF-AF;
(A = As, Sb) that serve as counterions to superelectrophilic cations.

2 HF + 2 SbFs == H,F' + Sb,F,,”
2 HSO3F +2 SbF5 S H2$O3F+ + szFlo(SO3F)_

Superacid media from AsFs and SbFs in HF can protonate H,S, H,Se, AsH;, SbH3, and
H,0,.1* An example of the utility of one such reaction has been protonation of H,S in super-
acid media to yield [H3S][SbFg], useful as a reagent in the synthesis of [(CH3S)3;S][SbF¢],
the first trithiosulfonium salt with three RS substituents.!>

Water is a strong base in superacid media; the presence of H,O in HF-AsFs or HF-SbF;
results quantitatively in the hydronium salts [H;O][AsF¢] and [H3O][SbF6].16 This ability
of superacids to generate an anhydrous environment (but not aprotic!) by converting trace
amounts of water to hydronium has been exploited to prepare solutions of low oxidation state
metal cations from metal(IT) oxides. These oxides immediately react to form water, which is
protonated to form hydronium. Divalent metal ions have been isolated as [H;O][M][AsFgls
(M = Mn, Co, Ni) by conversion of the corresponding metal oxides in HF-AsF5 media.l’
Related reactions have been achieved with Ln,O5 (Ln = lanthanide element)!® and CdO;!°
some of the resulting salts incorporate fluoride, [SbF¢] ~, and [Sb,F;;] .

TABLE 6.3 Common Superacids and Their Acidities

Acid H,
Hydrofluoric acid“ HF —11.0
Sulfuric acid H,SO, —11.9
Perchloric acid HCIO, —13.0
Trifluoromethanesulfonic acid (triflic acid) ~ HSO;CF; —14.6
Fluorosulfonic acid HSOzF —15.6
Magic Acid” HSO;F—SbF; —21 to —25¢
Fluoroantimonic acid HF—SbF;5 —21 to —28¢

@ HF is not a superacid but is included for comparison. It is noteworthy that while HF is a weak acid in dilute aqueous
solution, concentrated HF is significantly stronger.

b Magic Acid is a registered trademark of Cationics, Inc., Columbia, SC.

¢ Depending on concentration (how much SbFs has been added)

“G. Rasul, G. A. Olah, G. K. Surya Prakash, J. Phys. Chem. A., 2012, 116, 756. Protonated methane, CHs", has
been reported in superacid solutions.
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6.3.3 Thermodynamic Measurements in Solution
Various thermodynamic approaches have been used to probe acidity and basicity in solutions.
The impact of solvation effects must always be considered when designing these experiments.

Comparing Acidity
A defining property for any acid is its strength. One way to assess the strengths of aqueous
acids is to quantify the enthalpy change of

HA(ag) + HO() — H;0"(aq) + A (aq)

Direct measurement of this enthalpy change is complicated since weak acids do not ion-
ize completely (that is, the above reaction is generally an equilibrium with a relatively
large concentration of unionized HA). A traditional strategy is to apply Hess’s law using
thermodynamic data from reactions that essentially go to completion. For example, the
enthalpy of ionization of weak acid HA can be determined by measuring (1) the enthalpy
change for the reaction of HA with NaOH, and (2) the enthalpy change for the reaction
of H;0™ and NaOH:

(1) HA(ag) + OH (ag) — A (aq) + H,O() AH,
(2) H;0"(ag) + OH (ag) — 2 H,0(]) AH,
(3) HA(ag) + H,0(l) —> H;0%(aq) + A (aq) AH; = AH, — AH,

This strategy is not straightforward since HA is partly ionized before OH™ is added, compli-
cating AH, determination, but this approach is an acceptable starting point. It is also possible
to measure K, (via titration curves) at different temperatures and use the van’t Hoff equation

1. —AH
to simultaneously determine AH; and AS;. The slope of a plot of In K|, versus T is R :

S
and the intercept is = The accuracy of this method requires that the acid ionization AH;

and AS; do not change appreciably over the temperature range used. Data for the AH®,
AS°, and K|, for acetic acid are given in Table 6.4.

Use the data in Table 6.4 to calculate the enthalpy and entropy changes associated
with aqueous acetic acid ionization (the third equation in the table), and examine the

1
temperature dependence of K, by graphing In K, versus T How do the AH° values

obtained via these two approaches compare?

TABLE 6.4 Thermodynamics of Acetic Acid lonization

AH°(kJ/mol) AS°(J/mol - K)

H;0"(ag) + OH (ag) — 2 H,0(]) —55.9 80.4

CH;COOH(ag) + OH (ag) — H,0(l) + C,H;0, (aq) —56.3 —12.0
CH;COOH(aq) + H,0(l) == H;0"(ag) + C,H;0, (aq)

T (K) 303 308 313 318 323

K, (X1079) 1.750 1.728 1.703 1.670 1.633

NOTE: AH® and AS° for these reactions change rapidly with temperature. Calculations based on these data are valid only over
the limited temperature range given above.



176 Chapter 6 | Acid-Base and Donor-Acceptor Chemistry

&

@

Pyridine

N

@

Quinuclidine

NH,

Aniline

Comparing Basicity

Basicity has also been probed by measuring the enthalpies of proton transfer reactions
between weak bases and strong acids. A Brgnsted basicity scale has been established by
measuring the enthalpy changes associated with the protonation of weak bases in fluoro-
sulfonic acid (HSO3F, a superacid [Section 6.3.2]). Enthalpies of protonation for a series of
nitrogen bases (Table 6.5; increasingly negative AH values correspond to stronger basicity
towards HSO5F) rank in a way that compares favorably with the ranking of the correspond-
ing conjugate acid pKpgy+ values (for aqueous solution).2? The more positive the pKgy-,
the weaker the conjugate acid and the stronger the conjugate nitrogen base.” These data imply
that various molecular properties, for example inductive and steric effects (Section 6.3.6),
are significant in influencing acid/base behavior.

6.34 Brognsted-Lowry Gas-Phase Acidity and Basicity
The purest measures of acid—base strength are gas-phase acidity and basicity parameters,
where solvent effects are not applicable:

B . AG = Gas-Phase Acidity (GA)
HA(g) A (g) + H(g) AH = Proton Affinity (PA)

AG = Gas-Phase Basicity (GB)

+ +
BH(9) B@) + HU&) A\ = Proton Affinity (PA)

TABLE 6.5 Basicity of Selected Nitrogen Bases with Water and Fluorosulfonic Acid

Base PKgy+ (H,0) —AH (HSO,F, kJ/mol)
Di-n-butylamine 11.25 194.1
Quinuclidine 11.15 191.6
Diethylamine 11.02 199.5
Dimethylamine 10.78 197.4
Triethylamine 10.72 205.7
Ethylamine 10.68 195.9
Methylamine 10.65 193.9
Tri-n-butylamine 9.93 189.2
Trimethylamine 9.80 196.8
2,4,6-Trimethylpyridine 7.43 178.5
2,6-Dimethylpyridine 6.72 170.3
4-Methylpyridine 6.03 163.4
Pyridine 5.20 161.3
Aniline 4.60 142.3
3-Bromopyridine 2.85 144.9
2-Bromopyridine 0.90 126.2
2-Chloropyridine 0.72 132.5
3,5-Dichloropyridine 0.67 128.4

Data from C. Laurence and J.-F. Gal, Lewis Basicity and Affinity Scales Data and Measurement, John Wiley and Sons,
United Kingdom, 2010, p. 5. The pKpy+ of ammonia is 9.25.

“Note that these bases are ranked on their basicity towards water; the ranking on the basis of measurements
in HSO3F is different. This is one example of the challenges associated with basicity determinations; basicity
rankings of the same bases typically vary with the solvent used.
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Proton affinities and gas-phase basicities have been determined for thousands of neu-
tral organic bases; the literature on these parameters is significantly more extensive than
on gas-phase acidities. For the majority of bases, the thermodynamic parameters PA and
GB are large and positive; the reaction is essentially bond breaking without the benefit of
any solvation of the products. Increasing proton affinity and gas-phase basicity magnitudes
indicate increasing difficulty to remove the hydrogen; the more positive these values, the
stronger B as a base, and the weaker the acid BH" in the gas phase.?! Laurence and Gal
have criticized the terminology associated with proton affinity and gas-phase basicity since
an affinity is formally a chemical potential while proton affinity is defined as an enthalpy.”

While direct measurement of PA and GB via the reactions shown above is practically
impossible, these values have been estimated, with the accuracy improving with advances
in chemical instrumentation. In the early twentieth century, Born—Haber thermodynamic
cycles were employed to estimate proton affinities. As with all approaches based on ther-
modynamic cycles (Section 5.3.2), uncertainties in the data used to construct a cycle propa-
gate to the calculated values (in this case the proton affinity).

Modern mass spectrometry, photoionization techniques, and ion cyclotron resonance
spectroscopy>? revolutionized gas-phase basicity determination. These techniques have per-
mitted extremely accurate absolute gas-phase basicities to be obtained for a few molecules
via thermodynamic cycles using electron affinity and ionization energy data.?> ™ Absolute
gas-phase basicities for even a few molecules provide valuable references for determination
of GB values for bases for which direct GB determination is problematic. The mathematical
approach is conceptually straightforward. Consider the general GB equations for B; and B5:

BH" — B, + H' AG, = Gas-Phase Basicity of B,
B,H" — B, + H" AG, = Gas-Phase Basicity of B,
Subtraction of the second reaction from the first leads to
BH + B, —> B, + B,H" AG = AG,—AG,
The AG for this reaction can be calculated from the equilibrium constant
B,H" + B, == B, + B,H"
AG = AG,—AG, = —RTIn K,,

Ion-trapping and flow reactor mass spectrometry permit gas-phase ions and neutral
molecules to be confined and attain equilibrium after a sufficient number of collisions.
The equilibrium constant can then be deduced by measurement of gas partial pressures
(for B, and B,) and mass spectrometric ion intensities (for gaseous B{H" and B,H™).
The resulting AG provides the difference in gas-phase basicity between B; and B,. If the
absolute gas-phase basicity of either base is known, then the GB value of the other can be
determined. Proton affinities are subsequently determined via AG = AH — TAS, with
the “entropy of basicity” approximated via quantum chemical approaches. Table 6.6 lists
proton affinity and gas-phase basicities for nitrogen bases, with the bases ranked in order
of descending gas-phase basicity. The majority of organic bases exhibit GB values between
700 and 1000 kJ/mol. Compilations of PA and GB values are available.?*

* . . . ~ (:)G
Chemical potential is defined as | — | .
on/pr

“The details of these measurements are beyond the scope of this text. Because they require an ionizing electron
beam, measured proton affinities and gas-phase basicities for many species have large uncertainties, because the
molecules involved frequently are in excited states (with excess energy above their ground states), and some species
do not yield the necessary acid as a gaseous fragment. Relatively few molecules are ideally suited for this analysis.
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TABLE 6.6 Gas-Phase Basicity and Proton Affinities for Nitrogen Bases

Base GB (kJ/mol) PA (kJ/mol)
Tri-n-butylamine 967.6 998.5
Quinuclidine 952.5 983.3
Triethylamine 951.0 981.8
Di-n-butylamine 935.3 968.5
2,6-Dimethylpyridine 931.1 963.0
Diethylamine 919.4 952.4
Trimethylamine 918.1 948.9
4-Methylpyridine 915.3 947.2
Pyridine 898.1 930.0
Dimethylamine 896.5 929.5
3-Bromopyridine 878.2 910.0
Ethylamine 878.0 912.0
2-Bromopyridine 873.0 904.8
2-Chloropyridine 869.0 900.9
Methylamine 864.5 899.0
Aniline 850.6 882.5
Ammonia 819.0 853.6

Data from C. Laurence and J.-F. Gal, Lewis Basicity and Affinity Scales Data and Measurement, John Wiley and Sons, United
Kingdom, 2010, p. 5.

6.3.5 Brgnsted-Lowry Superbases

Thermodynamic data for quinuclidine (PA = 983.3 kJ/mol) and its conjugate acid
(pK, = 11.15 in water) underscore its relatively high basicity. What is the upper limit
on Brgnsted—Lowry basicity that is still compatible with high selectivity for deproton-
ation? While leveling limits the operative strength of all Brgnsted—Lowry bases inherently
stronger than hydroxide in water, extremely basic carbanions (for example, Grignard and
organolithium reagents) are ubiquitous in organic synthesis. The high nucleophilicity of
these carbanions lowers their tolerance towards many functional groups, and motivates the
synthesis of strong Brgnsted—Lowry bases that exhibit broader tolerance and extremely
high selectivity for deprotonation reactions.?> The aforementioned carbanions are both
strongly Brgnsted—Lowry basic and nucleophilic; one virtue of uncharged organic bases
is their lowered nucleophilicity. There is also motivation to conduct deprotonations in
syntheses without inorganic hydroxides.2®

Superbaseshave been classified as those with gas-phase proton affinities > 1000 kJ/mol,2’
greater than the bases listed in Table 6.6. Examples of organic superbases are shown in
Figure 6.1. These are weak bases in water but exhibit superbasic characteristics in organic
solvents.

The organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), is a workhorse for
organic synthesis (PA = 1048 kJ/mol). 1,8-Bis(dimethylamino)naphthalene (PA = 1028 kJ/mol)
is sometimes called a “proton sponge.” Its strong Brgnsted—Lowry basicity is believed to
arise from two effects: (1) the relief of steric hindrance of two dimethylamino substituents
in close proximity (if the nonbonding pairs adopt opposite positions to reduce Ip—Ip repul-
sion, the methyl groups are brought into close proximity), and (2) the formation of a strong
intramolecular hydrogen bond upon protonation.2? It is instructive that the considerably
more flexible 1,3-bis(dimethylamino) propane is also a superbase (PA = 1035 kJ/mol) even
though this molecule is not susceptible to the sterically enforced I[p—Ip repulsion present
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NMe, NMe,

OO N/j
X
N

1,8-bis(dimethylamino)naphthalene 1,8-diazabicyclo[5.4.0]Jundec-7-ene (DBU)

NH,
NMCZ NMCZ

H,N
NH,
o . NH,
1,3-bis(dimethylamino)propane
1,1,1-tris(1-aminopropyl)methylamine
in 1,8-bis(dimethylamino)naphthalene. The inductive effect of alkyl vs. aryl substitution
appears more important than the relief of [p—Ip repulsion in affording superbasic charac-
teristics when these two molecules are compared. The addition of propylamine substituents
to methylamine affords NH,C(CH,CH,CH,NH,); (PA = 1072 kJ/mol).2® Upon protonation,
the propylamine arms are postulated to wrap around, bringing more nitrogen atoms into
contact with the proton, stabilizing the conjugate acid.

The possibility of using 2,6-disubstituted pyridines and 2,6,7-trisubstituted quinuclidines,
where the substituents feature remote atoms with lone pairs to stabilize the hydrogen upon
protonation, are proposed superbases that have been explored by computational approaches.?’
There is interest in synthesizing macrocyclic proton chelaters as catalytically active organic
superbases,?? and a new structural motif for superbases featuring caged secondary amines
has been reported.3! The alkali metal hydroxides, of equal basicity in aqueous solution, have
proton affinities” in the order LiOH (1000 kJ/mol) < NaOH < KOH < CsOH (1118 kJ/mol).
This order matches the increasing ionic character of the alkali metal-hydroxide bonds.

6.3.6 Trends in Brgnsted-Lowry Basicity
Correlations between gas-phase and aqueous basicity data provide a starting point to con-
sider the importance of electronic, steric, and solvation effects on proton transfer reactions.
Figures 6.2 and 6.3 provide such correlations, by plotting gas-phase basicity versus aqueous
basicity (on the basis of conjugate acid pK,,) for nitrogen bases listed in Tables 6.5 and 6.6.
Higher placement on the y-axis indicates higher basicity in the gas phase, while increas-
ing conjugate acid pK, indicates higher basicity in water. Initial inspection of these graphs
reveals that higher gas-phase basicity does not necessarily translate to higher aqueous
basicity (for example, tri-n-butylamine relative to di-n-butylamine), just as higher aqueous
basicity does not always correlate well with higher gas-phase basicity (for example, ammonia
relative to 2,6-dimethylpyridine). Exploring these data uncovers trends in Brgnsted—Lowry
basicity and highlights the essential role of the solvent in influencing basicity.

Inductive effects are useful to rationalize trends in Figures 6.2 and 6.3. For example,
both gas-phase and aqueous basicity increase as:

NH; < NH,Me < NH,Et < NHMe, < NHEf, < NHBu,
N

N\Cl \Br N\ N\ N\ N\
GO0, OO
Z = /Br = Z =

“Proton affinities of inorganic hydroxides cannot be obtained from direct proton transfer measurements, but rather
from Born—Haber cycles using other thermodynamic data.

FIGURE 6.1 Organic Superbases.
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FIGURE 6.2 Gas-Phase
Basicity vs. pK, for Ammonia
and Alkyl-substituted Amines.
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The substitution of alkyl groups for hydrogen within the series of ammonia to primary
amines to secondary amines results in progressively more electron-rich nitrogen centers
and stronger Brgnsted—Lowry bases. Within this series, a longer alkyl chain enhances the
effect. Similarly, methylpyridines are stronger Brgnsted—Lowry bases than pyridine. The
substitution of highly electronegative atoms or groups (for example, fluorine, chlorine, CF5
or CF;S0,) results in weaker bases by drawing electron density away from the Brgnsted
basic atom. The halopyridines are dramatically weaker bases than pyridine. The gas-phase
acidities in Table 6.7 illustrate the impact of increasing CF;SO, substitution.

TABLE 6.7 Impact of CF,SO, Substitution on Gas-Phase Acidity

HA(g) — A(9) + H'(g)

AG = Gas-Phase Acidity (GA)

Acid GA (kJ/mol)

CF3S0,CH,
CF,SO,NH,

(CF;S0,),NH
(CF3S0,),CH,

1422
1344
1221
1209

Data from J.-F. Gal, P-C. Maria, E. D. Raczytiska, J. Mass Spectrom., 2001, 36, 699.
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Inductive effects provide a reasonable way to rationalize this gas-phase basicity ranking:
NMe; < NHEt, < NHBu, < NEt; < NBuy

Since tri-n-butylamine is more basic than triethylamine in the gas phase, we postulate that
trimethylamine is less basic than the secondary amines since two longer alkyl groups and
hydrogen enrich the electron density at nitrogen more than three methyl groups. Perhaps
more interesting is the aqueous basicity ranking of the amines below, which appears to
contradict the inductive rationalization of their gas-phase values; the tertiary amines are
weaker than expected.

NMe3 < NBU.3 < NEt3 < NHEtz < NHBU2

In addition, in aqueous solution, the methyl-substituted amines have basicities in the order
NHMe, > NH,Me > NMe; > NH; as given in Table 6.5, and shown in Figure 6.2.
The ethyl-substituted amines are in the order NHEt, > NEt; > NH,Et > NH;. In these
series, the tertiary amines are weaker than expected because of the reduced solvation of
their protonated cations. Solvation enthalpy magnitudes for the general reaction

NH, R, (¢) 129, NH, R, (aqg)

are in the order NH;R™ > NH,R," > NHR;*." Solvation is dependent on the number of
hydrogen atoms available to form O- - -H—N hydrogen bonds with water. With fewer
hydrogen atoms available for hydrogen bonding, the more highly substituted molecules are
rendered less basic. Competition between these induction and solvation effects gives the
scrambled order of solution basicity. The maximal opportunity for hydrogen bonding with
aqueous NH," plays an important role in the solution basicity of NH; being stronger than
all the bases in Figure 6.3 even though NH; exhibits the lowest gas-phase basicity among
these bases. Figure 6.3 also shows that pyridine and aniline have higher gas-phase basicities
than ammonia, but are weaker bases than NHj in aqueous solution. The higher basicity of
NH; in water is also attributed to enhanced hydrogen bonding with NH," relative to the
pyridinium or anilinium ions.3?

Steric effects are less obvious from these correlations. For example, 2,6-dimethylpyri-
dine, despite the steric bulk adjacent the nitrogen atom, is more basic than 4-methylpyridine
in both solution and the gas phase. However, consider the following basicity ranking in
aqueous solution:

N N N N
X X X X
= = = =

One might expect 2-t-butylpyridine to be more basic than 2-methylpyridine on the basis of
inductive effects, but the tertiary butyl steric bulk attenuates the basicity on steric grounds by
making the nitrogen less accessible and more difficult to solvate upon protonation. Another
steric effect deals with a geometry change that accompanies protonation; the potential of
steric hindrance in the conjugate acid may attenuate basicity. While steric hindrance often
plays major roles in understanding Lewis acidity/basicity (Section 6.4.7), the small proton
size renders these steric effects less important in gauging the Brgnsted—Lowry basicity of
amines. For example, the gas-phase basicities of quinuclidine (1-azabicyclo[2.2.2]octane,
952.5 kJ/mol) and triethylamine (951.0 kJ/mol) are nearly identical, even though the
geometric parameters associated with the cyclic quinuclidine system remains essentially
unchanged upon protonation, while a greater structural change accompanies conversion of
triethylamine to triethylammonium ion.

“E. M. Arnett, J. Chem. Ed., 1985, 62, 385 reviews the effects of solvation, with many references.
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FIGURE 6.4 Acidity of Binary
Hydrogen Compounds. Enthalpy
of ionization in kJ/mol for the
reaction HA(g) — A~(g) + H*(g),
(the same as the proton affinity,
Section 6.3.4).

(Data from J. E. Bartmess, J. A. Scott,
and R.T. Mclver, Jr,, J. Am. Chem. Soc.,
1979, 101, 6046; AsH, value from J.
E.Bartmess and R. T. Mclver, Jr., Gas
Phase lon Chemistry, M. T. Bowers, ed.,
Academic Press, New York, 1979, p. 87.)

FIGURE 6.5 Trends in Acidity
and Electronegativity of Binary
Hydrides.

6.3.7 Brgnsted-Lowry Acid Strength of Binary Hydrogen Compounds
The binary hydrogen compounds (those containing only hydrogen and one other element)
range from the strong acids HCIl, HBr, and HI to the weak base NH;. Others, such as CHy,
show almost no acid-base properties. Some of these molecules—in order of increasing
gas-phase acidities, from left to right—are shown in Figure 6.4.

Two seemingly contradictory trends are seen in these data. Acidity increases with
increasing numbers of electrons in the central atom, either going across the table or
down; but the electronegativity effects are opposite for the two directions (Figure 6.5).
Within each column of the periodic table, acidity increases going down the series, as in
H,Se > H,S > H,O0. The strongest acid is the largest, heaviest member, low in the peri-
odic table, containing the nonmetal of lowest electronegativity of the group. An explanation
of this is that the conjugate bases (SeH ", SH™, and OH ™) with the larger main group atoms
have lower charge density and therefore a smaller attraction for hydrogen ions (the H—O
bond is stronger than the H—S bond, which in turn is stronger than the H—Se bond).
As a result, the larger molecules are stronger acids, and their conjugate bases are weaker.

On the other hand, within a period, acidity is greatest for the compounds of elements
toward the right, with greater electronegativity. The electronegativity argument used above
is not applicable here, because in this series, the more electronegative elements form the
stronger acids. The order of acid strength follows this trend: NH; < H,O < HF.

The same general acidity trends are observed in aqueous solution. The three heaviest
hydrohalic acids—HCI, HBr, and HI—are equally strong in water because of the leveling
effect. All the other binary hydrogen compounds are weaker acids, their strength decreas-
ing toward the left in the periodic table. Methane and ammonia exhibit no acidic behavior
in aqueous solution, nor do silane (SiH,) and phosphine (PHj).

Least Acidic Most Acidic
1 H,
2| CH, NH; H,0 HF
8 ‘
g 3 SiH, PH, H,S HCl
o
4 GeH, AsH, H,Se HBr
5 HI
1700 1600 1500 1400 1300
AH(kJ mol™)
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electronegativity

Increasing electronegativity

Increasing acidity
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6.3.8 Brgnsted-Lowry Strength of Oxyacids

The acid strength of the oxyacids of chlorine in aqueous solution rank as
HCIO, > HCIO; > HCIO, > HOCI

The pK, values of these acids are below.

O O O
H—O—Cll—O H—O—Cll—O H—O—Cll H—O0—Cl
$
Strongest Weakest
Acid HClo, HClo, HClO, HOCI
K, (298 K) (—10) -1 2 72

For oxyacids with multiple ionizable hydrogens, the pK, values increase by about
five units with each successive proton removal:
H,PO, H,PO," HPO,2 H,S0, HSO,"
pK, (298 K) 2.15 7.20 12.37 <0 2

The trends in these pK, values are rationalized on the basis of electronegativity and
resonance arguments. Oxygen atoms have a high electronegativity, and influence the dis-
tribution of electron density in molecules. In the case of oxyacids, the electronegativity of
a terminal oxygen atom is greater than the group electronegativity of OH (Section 3.2.3).
The net result is that the electron density supporting the O—H bond decreases (along
with the bond strength) as the number of oxygen atoms increases. This renders the O—H
bond more susceptible to the heterolytic cleavage associated with Brgnsted—Lowry proton
transfer. As the number of oxygen atoms increases, oxyacid acid strength increases.

The negative charge of oxyacid conjugate bases is stabilized by delocalization, rep-
resented by resonance forms where each terminal oxygen atom is progressively assigned
a negative charge. The conjugate base is stabilized to a greater extent as the number of
oxygen atoms increases for this negative charge delocalization. The more effectively the
negative charge is delocalized, the weaker the conjugate base, and the stronger the acid.

6.3.9 Bragnsted-Lowry Acidity of Aqueous Cations

Transition metal cations exhibit acidic behavior in solution; the impact of a positively
charged metal ion on its bound water molecules is related to the inductive effect in oxyac-
ids. The O—H bonds of water bound to transition metal ions are weakened since bonding
electron density is drawn towards the metal. For example, aqueous Fe* is acidic, with yel-
low or brown iron species formed by reactions where proton transfer occurs from solvated
water molecules resulting in bound hydroxide

[Fe(H,0)]**(ag) + H,0(l) — [Fe(H,0)s(0H)]**(ag) + H;0" (aq)
[Fe(H,0)s(OH)1** (ag) + H,0()) — [Fe(H,0),(0H),]"(ag) + H;0"(ag)

In more basic solutions, hydroxide or oxide bridges form between metal atoms, resulting
in cations with rather high positive charge. The higher positive charge further enhances the
acidity of bound water molecules, and eventually metal hydroxide precipitates. A possible

first step in this process is
H

_0

2 [Fe(H,0)5(OH)** == [(H,0) Fe__ >Fe(H20)4]4++2H20

H
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TABLE 6.8 Hydrated Metal lon Brgnsted-Lowry Acidities (298 K)
Metal lon K Metal lon K

a a
Fe?* 6.7 X 1073 Fe?* 5 x107°
crt 1.6 X 10°* Cu?* 5 x10°'°
AT 1.1 X 1073 Ni* 5 x 10710
Sc3t 1.1 X 1073 Zn*" 2.5 % 10710

NOTE : These are equilibrium constants for [M(H,0),,]"" + H,0 == [M(H,0),,_,(OH)]""Y" + H;0™.

Metal ions with larger charges and smaller radii are stronger acids. The alkali metal
cations show essentially no acidity, the alkaline earth metal cations show it only slightly,
2+ transition-metal ions are weakly acidic, 3+ transition-metal ions are moderately acidic,
and ions that would have charges of 4+ or higher as monatomic ions are such strong
acids in aqueous solutions that they exist only as oxygenated ions. At this highly charged
extreme, the free metal cation is no longer a detectable species. Instead, ions such as
permanganate (MnO, ), chromate (Cr042_), uranyl (U02+), dioxovanadium (V02+), and
vanadyl (VOH) are formed, with oxidation numbers of 7, 6, 5, 5, and 4 for the metals,
respectively. Acid-dissociation constants for transition metal ions are given in Table 6.8.

6.4 Lewis Acid-Base Concept and Frontier Orbitals

Lewis?3 defined a base as an electron-pair donor and an acid as an electron-pair acceptor.”
Modern inorganic chemistry extensively uses the Lewis definition, which encompasses the
Brgnsted—Lowry definition, since HT accepts an electron pair from a Brgnsted base dur-
ing protonation. The Lewis definition dramatically expands the acid list to include metal
ions and main group compounds, and provides a framework for nonaqueous reactions. The
Lewis definition includes reactions such as

Ag® + 2 :NH; — [H;N:Ag:NH;]*

with the silver ion as an acid and ammonia as a base. In this class of reaction, the Lewis
acid and base combine to provide an adduct. The bond that links the Lewis acid and base
is called a coordinate covalent or dative bond; this bond features a shared pair of electrons
that originated from the Lewis base.”* The boron trifluoride—ammonia adduct, BF; - NHs,
is a classical Lewis acid-base complex. The BF; molecule described in Sections 3.1.4 and
5.4.6 is trigonal planar. The B —F bonds are highly polarized by virtue of the large differ-
ence in electronegativity between fluorine and boron; the boron is frequently described as
electron deficient. The electrons housed in the HOMO of the ammonia molecule interact
with the empty LUMO of the BF;—which has a large contribution from the boron 2p,
orbital (Figure 5.32)—to form the adduct. The molecular orbitals involved are depicted in
Figure 6.6, and their energy levels are shown in Figure 6.7. The driving force for adduct
formation is stabilization of the electrons in the donor HOMO.

The B—F bonds in BF; * NH; are bent away from the ammonia into a nearly tetra-
hedral geometry. The related boron trifluoride—diethyl ether adduct, BF; - O(C,Hs),, is
used in synthesis. The HOMO of diethyl ether features significant electron density at the
oxygen, as reflected in the Lewis structure via two nonbonding pairs at the oxygen. These
electrons are relatively high in energy and can be stabilized via interaction with a suitable
LUMO. In this case, the HOMO electrons attack the boron-centered LUMO, changing the

“A Lewis base is also called a nucleophile, and a Lewis acid is also called an electrophile.
“In a standard covalent bond, like that in H,, each atom formally provides one electron to each bonding pair.
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geometry around B from planar to nearly tetrahedral, as shown in Figure 6.8. As a result,
BF;, with a boiling point of —99.9° C, and diethyl ether, with a boiling point of 34.5° C,
form an adduct with a boiling point of roughly 125°. At this temperature the dative bond
dissociates to give BF5; and O(CH,CHs),. The chemical and physical properties of adducts
are often dramatically different than those of the component Lewis acid and base.

Lewis acid—base adducts involving metal ions are called coordination compounds;
their chemistry will be discussed in Chapters 9 through 14.

6.4.1 Frontier Orbitals and Acid-Base Reactions34

The molecular orbital description of acid—base reactions in Section 6.4 uses frontier
molecular orbitals, those at the occupied—unoccupied frontier, which can be further illus-
trated by NH; + H™ — NH,". In this reaction, the a, orbital containing the lone-pair elec-
trons of the ammonia molecule (Figure 5.30) combines with the empty 1s orbital of the
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Bonding in BF; - NH.

FIGURE 6.7 Simplified Energy
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FIGURE 6.8 Boron Trifluoride-
Ether Adduct Formation from a
Lewis Perspective.
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FIGURE 6.9 NH,+H*— NH,*
Molecular Energy Levels.

hydrogen ion to form bonding and antibonding orbitals. The lone pair in the a; orbital of NH;
is stabilized by this interaction, as shown in Figure 6.9. The NH," ion has the same molecular
orbital structure as methane, CHy, with four bonding orbitals (a; and #,) and four antibonding
orbitals (also a; and t,). Combining the seven NH; orbitals and the one H™ orbital, accompa-
nied by the change in symmetry from Cj, to T, gives the eight orbitals of NH,". When the
eight valence electrons are placed in these orbitals, one pair enters the bonding a; orbital, and
three pairs enter bonding #, orbitals. The net result is a lowering of energy as the nonbond-
ing a; becomes a bonding #,, making the combined NH," more stable than the separated
NH; + H™. The HOMO of the base NH; interacts with the LUMO of the acid H' resulting
in a change in symmetry to make a new set of orbitals, one bonding and one antibonding.

In most Lewis acid—base reactions, a HOMO-LUMO combination forms new HOMO
and LUMO orbitals of the product. Frontier orbitals whose shapes and symmetries allow
significant overlap, and whose energies are similar, form useful bonding and antibonding
orbitals. If the orbital combinations have no useful overlap, no net bonding is possible, and
they cannot form acid—base products.”

When the shapes of the HOMO of one species and the LUMO of another species
match, whether or not a stable adduct forms depends on the orbital energies. Formation of
a robust dative bond requires a reasonably close energy match between these orbitals. As
the energies of these orbitals get more disparate, electron transfer from the HOMO to the
LUMO becomes more likely, resulting in a possible oxidation—reduction reaction (without
adduct formation). A fascinating aspect of the Lewis model is that a single species can
act as an oxidizing agent, a Lewis acid, a Lewis base, or a reducing agent, depending on
the other reactant. Indeed, since every molecule by definition possesses a HOMO and
a LUMO, every molecule in principle can function as a Lewis acid or base. Although
predictions using this approach are difficult when the orbital energies are not known, this
perspective is useful to rationalize many reactions, as illustrated in the following examples.
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“In less common cases, the orbitals with the required geometry and energy do not include the HOMO; this
possibility should be kept in mind. When this happens, the HOMO is usually a lone pair that does not have the
geometry needed for bonding with the acid.



EXAMPLE 6.1

Water plays different roles that can be rationalized from the perspective of frontier

orbital interactions.

Water as oxidizing agent

An example would be the reaction of water with calcium. In this situation, the water
frontier orbitals are significantly lower in energy than the frontier orbitals of calcium
(the alkali metals react similarly but have only one electron in their highest s orbital).”
The energies are sufficiently different that no adduct can form, but electron transfer
occurs from the Lewis base to the Lewis acid. One would never classify Ca as a Lewis
base in introductory chemistry but it is one within this model!

From simple electron transfer from calcium to water, we might expect formation of
H,O™, but electron transfer into the antibonding H,O LUMO results in O—H bond
weakening, leading to formation of hydrogen gas; H,O is reduced to H, and OH ™, and

Ca is oxidized to Ca>":

2 H,O(l) + Ca(s) — Ca2+(aq) + 20OH (aq) + Hy(g) (water as oxidant)

While the relatively wide energy gap between the participating Ca and H,O orbitals
plays an important role in the driving force of this reaction, the thermodynamics associ-
ated with ion solvation and gas evolution are vital as well.

Solvation of an anion

If orbitals with matching shapes have similar energies, the resulting adduct bonding
orbitals will have lower energy than the Lewis base HOMO, and a net decrease in
energy (stabilization of electrons in the new HOMO) drives the formation of an adduct.
Adduct stability depends on the difference between the total energy of the product and
the total energy of the reactants.

An example with water as acceptor (with lower energy frontier orbitals) is its interac-

tion with the chloride ion:

n H,O() + CI- — [CI(H,0),]” (water as Lewis acid)

The product is solvated chloride. In this case, water is the acceptor, using as LUMO
an antibonding orbital centered primarily on the hydrogen atoms (Figure 5.28). The
chloride HOMO is a 3p orbital occupied by an electron pair. This frontier orbital
approach can be applied to many ion—dipole interactions.

Solvation of cation

A reactant with frontier orbitals lower in energy than those of water (for example, Mg
allows water to act as a donor. In this example, the resulting adduct is a solvated metal

cation:

6 H,O(l) + Mg** — [Mg(H,0)s]*"(ag) (water as Lewis base)

Water plays its traditional role as a Lewis base, contributing a lone pair primarily
from the HOMO, which is the oxygen atom 2p, orbital (Figure 5.28). The magnesium
ion LUMO (Mg " is the Lewis acid) is the vacant 3s orbital. This model provides
an introductory perspective of the driving force for the formation of hydrated metal
cations. More details are provided in Chapter 10.

Water as reducing agent

Finally, if the reactant has frontier orbitals much lower than the water orbitals (F,,
for example), water acts as a reductant and transfers electrons to the other reactant.

“Frontier orbitals can be atomic as well as molecular orbitals.
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The fate of the H,O is not the instantaneous result of electron transfer (H20+) but the
formation of molecular oxygen and hydrogen ions:

2 H,0(l) + 2F,(g) — 4F (ag) + 4H(ag) + O,(g) (water as reductant)

We can now express the Lewis definition of acids and bases in terms of frontier
orbitals:

A base has an electron pair in a HOMO of suitable symmetry to interact with
the LUMO of the acid.

An excellent energy match between the base’s HOMO and the acid’s LUMO leads to
adduct formation with a coordinate covalent bond. More disparate energy gaps between
the frontier orbitals can result in oxidation—reduction reactions initiated by electron trans-
fer from the base to the acid. While this model must be considered in concert with other
considerations (most notably thermodynamics) to predict the fate of potential reactants,
the frontier orbital perspective provides a conceptual framework for analyzing reactions.

6.4.2 Spectroscopic Support for Frontier Orbital Interactions

Reactions of I, as a Lewis acid with Lewis basic solvents dramatically show the effect of
adduct formation. The spectral changes caused by the changes in energy of the partici-
pating electronic energy levels (Figures 6.10 and 6.11) are striking. The upper I, energy
levels are shown on the left in Figure 6.10, with a bond order of 1 due to the filled 90'g
and 47, bonding orbitals and 4’7Tg* antibonding orbitals. Gaseous I, is violet, absorbing
light near 500 nm to affect electronic excitation from the 47'rg* level to the 9o, level. This
absorption, broadened due to excitation from gaseous I, in ground and excited vibrational
and rotational states, removes photons from the yellow, green, and blue parts of the visible
spectrum, transmitting red and violet that combine to afford the observed violet color.

In solvents such as hexane, with frontier orbitals neither amenable to robust adduct forma-
tion nor electron transfer with I,, the electronic structure of iodine is essentially unchanged,
and the color remains essentially the same violet; the absorption spectra of gaseous I, and
solutions of I, in hexane are nearly identical in the visible range (Figure 6.11). However, in
benzene and other 7r-electron solvents, the color becomes more reddish; and in good donors—
such as ethers, alcohols, and amines—the color becomes distinctly brown. The solubility of I,
also increases as the ability of the solvent to interact as a donor towards I, is enhanced. Inter-
action of a solvent donor orbital with the 9" I, LUMO results in a lower occupied bonding
orbital and a higher unoccupied antibonding orbital. As a result, the 77'; — ¢, transition for
the I, + donor adduct is shifted higher in energy, and the absorbance peak is blue-shifted.
The transmitted color shifts toward brown (combined red, yellow, and green), as more of the
yellow and green light passes through. Water is a poor donor towards the I, LUMO; I, is
very slightly soluble in water. In contrast, I, an excellent donor towards the I, LUMO; 1™
reacts with I, to form 1™, which is very soluble in water giving a brown solution. When the
interaction between the donor and I, is strong, the adduct LUMO is shifted to higher energy,
resulting in the donor—acceptor transition (77'; — ¢,") increasing in energy. The coordinate
covalent bonds formed in these adducts are called halogen bonds (Section 6.4.5).

In addition to the donor—acceptor absorption, a new ultraviolet band (230 to 400 nm,
marked CT in Figure 6. 11) appears upon adduct formation. This absorption is associated
with the transition o — o between the two orbitals formed by the interaction between the
frontier orbitals. Because the donor orbital (in this case, from the solvent or 1) contributes
the most to lower o adduct orbital, and the I, LUMO contributes the most to the o adduct
orbital, the CT transition transfers an electron from an orbital that is primarily of donor com-
position to one that is primarily of acceptor composition; hence, the name charge transfer
(CT) for this transition. The energy of this transition is less predictable, because it depends
on the energy of the donor orbital. These transitions result in electron density being shifted
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from one adduct region to another upon excitation. Charge-transfer phenomena are evident in
many adducts, and provide further experimental evidence for the utility of the frontier orbital
reactivity model. Charge-transfer in transition-metal complexes is discussed in Chapter 11.

6.4.3 Quantification of Lewis Basicity

Significant effort has been devoted to quantifying Lewis basicity. From this standpoint, Lewis
basicity is defined as the thermodynamic tendency of a substance to act as a Lewis base.
Comparative measures of this property are provided by the equilibrium constants for adduct
formation of Lewis bases with a common reference acid.> A major challenge is identify-
ing a reference acid that is suitable to assess a variety of bases. Because Lewis basicity is a
complicated phenomenon that is modified subtly by electronic and steric effects, the basicity
ranking for a set of Lewis bases can vary depending on the reference acid used. As previously
discussed for proton affinity (Section 6.3.4), gas-phase measurements are ideal to measure
Lewis basicities without the complication of solvation effects. However, in practice, most
thermodynamic data for Lewis bases have been obtained in solution, with important attention
paid to solvent selection. An ideal solvent for these studies would dissolve a variety of bases
yet not itself react significantly towards these solutes as a Lewis acid.” In addition, a Lewis
base may be rendered less basic towards a given Lewis acid in one solvent relative to another
solvent. Selecting a single solvent that meets these criteria for many Lewis bases is a tall order.

“In essence, a solvent is desired that will primarily interact with solutes via dispersion forces. Solvents in this
category (for example, hydrocarbons) typically are limited to relatively nonpolar solutes. Sometimes more polar

solvents must be employed, rendering the quantification of Lewis basicity more complicated as the enthalpy
associated with solvation plays an increasing role.
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FIGURE 6.11 Spectra of |, with
Different Bases.
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With this experimental design challenge in mind, quantifying Lewis basicity is simple
in theory. The equilibrium constants for adduct formation (K4, more commonly expressed
as log Kp,) can be ranked via increasing K, or log K, to communicate increasing Lewis
basicity of the base employed for adduct formation.

B + A S BA
Base Acid Lewis Acid—Base Adduct

_ [BA]
[BIIA]

BA

The solubilities of I, in different solvents provide a qualitative way to assess the Lewis
basicity of these solvents towards I,. Table 6.9 provides log K, values for the forma-
tion of adducts of the Lewis acid I, with Lewis bases in the solvents CCl, and CHClj;.
It is interesting that these five bases exhibit the same Lewis basicity ranking towards
I, in these solvents. However, the absolute basicities are quite different; for example,
N,N-dimethylformamide is roughly five times more basic towards I, in CCl, than in CHCl;.
And on the basis of these data, (C¢Hs)3P=Se is slightly more basic towards I, in CHCl;
than in CCly, while all the other bases are more basic towards this acid in CCly.

The spectroscopic evidence for I, adduct formation (Section 6.4.2) suggests that spec-
troscopic measurement of Lewis basicity is possible. The requirement is that the reference
Lewis acid must exhibit a spectroscopic change upon adduct formation (for example, an
NMR chemical shift, change in UV-Vis or IR spectrum) that can be attributed primarily
to the strength of the coordinate covalent bond within the adduct. While these spectral
measurements are generally routine (Figure 6.11), their reliability in accurately assessing
Lewis basicity must be confirmed via correlating these data (for example, how much did
the chemical shift or visible absorption change?) to K4 or AH® values for the complexation
reactions.

6.4.4 The BF; Affinity Scale for Lewis Basicity

The Lewis acid BF; is the most commonly employed reference to probe Lewis basicity.
The affinity of BF; towards many bases has been measured in dichloromethane solution
where the affinity is defined as the magnitude of the enthalpy change of adduct formation:

BF; + Lewis Base % Lewis Base—BF; —AH° = BF; Affinity

These enthalpies must be corrected for the AH° for BF; dissolving in the solvent. Upon
this adjustment, increasing BF; affinities indicate stronger coordinate covalent bonding,
consequently increasing Lewis basicity of the base towards BF;. Some BFj; affinities are
listed in Table 6.10. Steric and electronic effects suggested by these data will be discussed
in Sections 6.4.6 and 6.4.7.

TABLE 6.9 log K, for |- Lewis Base Adducts in Different Solvents (298 K)

Lewis Base log Kg, in CCl,, log Kz, in CHCI,
Tetrahydrofuran 0.12 —0.44
N,N-dimethylformamide 0.46 —0.22
(C¢Hs);P=0 1.38 0.89
(C¢Hs);P=S 2.26 2.13
(CgHs);P=Se 3.48 3.65

Data from Lewis Basicity and Affinity Scales Data and Measurement, John Wiley and Sons, p. 33, 91-101, 295-302.
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TABLE 6.10 BF, Affinities for Lewis Bases in CH,Cl, (298 K)

Lewis Base BF; Affinity (kJ/mol)

4-dimethylaminopyridine 151.55
trimethylamine 139.53
3-methylpyridine 130.93
4-phenylpyridine 129.50
pyridine 128.08
2-methylpyridine 123.44
2-phenylpyridine 103.34
trimethylphosphine 97.43
tetrahydrofuran 90.40
2-trifluoromethylpyridine 82.46
2-tert-butylpyridine 80.10
tetrahydrothiophene 51.62

Data from Lewis Basicity and Affinity Scales Data and Measurement, John Wiley and Sons, p. 33, 91-101, 295-302.

Of the Lewis bases in Table 6.10, 4-dimethylaminopyridine has the highest BF; affin-
ity and is the strongest Lewis base. What are the extremes in BF; affinities? This question is
interesting; it communicates the wide range of molecules that can function as Lewis bases
to BF;. The super (Brgnsted) base 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU, Figure 6.1)
also has a very large BF; affinity (159.36 kJ/mol). Very low BF; affinities have been
reported for ethene (5.4 kJ/mol) and propene (6.9 kJ/mol) in liquid nitrogen. These data
cannot be directly compared to the values determined in dichloromethane (Table 6.10),
however. In these adducts, the unsaturated hydrocarbons presumably use their 7 bonding
HOMOs as the donor orbitals.3® The role of olefin—borane complexes as intermediates in
chemical synthesis has been proposed.3’

6.4.5 Halogen Bonds

The reactions of I, as a Lewis acid with donor solvents and Lewis bases have been discussed
in Sections 6.4.2 and 6.4.3. The coordinate covalent bonds formed by the halogens (X,)
and interhalogens (XY, for example, ICl, discussed in Section 8.9.1) to Lewis bases are
called halogen bonds.3® These long known donor—acceptor interactions, featuring many
similarities to hydrogen bonding (Section 6.5.1), have been “rediscovered” and show poten-
tial in drug design and material science.?® Halogen bonds typically exhibit approximate 180°
angles between the donor atom and the halogen acceptor, consistent with acceptance by the
halogen o LUMO, which lies along the halogen bond axis. As an example, the gas-phase
structure of the CIF adduct with formaldehyde was determined by rotational spectroscopy,
and an O - - - CI—F angle of 176.8° was found, with the coordinate covalent bond in the
expected location based on the formaldehyde HOMO and CIF LUMO.* In the gas phase
acetylene—Br, adduct, the halogen LUMO interacts with the acetylene 77 bonding HOMO.*0

F__ Br
T |
F—CI-O angle = 176.8° ” l|3r
C H—C=C—H
H~ OH

As described in Section 6.4.3, the Lewis acid I, is used to catalog Lewis basicity via
determination of the equilibrium constants (K_.) associated with adduct formation.
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The experimental challenge is determining the I, and I, —Lewis base adduct concentra-
tions; these are often obtained via UV-Visible spectroscopy by examining charge transfer
and donor—acceptor transitions (Section 6.4.2).

alkanes

I, + Lewis base I,—Lewis base

[I,—Lewis base]
¢ [I,][Lewis base]

An extensive compilation of K. values is available for a variety of main group Lewis
bases, with most determined in heptane.*! There is interest in developing an I, affinity
scale defined similarly as the BF; affinity scale (based on AH® of adduct formation). Many
AH? values have been determined for reactions of I, with Lewis bases, but reconciliation
of data obtained via different experimental conditions for reliable I, affinity comparisons
remains a challenge.

How do we expect the bond within a halogen to change upon complexation with a Lewis
base? Since adduct formation results in donation into the halogen o* LUMO, this bond
should weaken and lengthen. The subsequent reduction in the halogen—halogen bond’s force
constant is shown by a decrease in the bond’s stretching frequency, suggesting the possibility
of assessing Lewis basicity by determining how much the stretching frequency decreases
from that in free halogen. This initially seems a very attractive strategy; a change in spec-
troscopic property of only one bond could be correlated to Lewis basicity. Unfortunately,
vibrational modes that feature considerable halogen or interhalogen stretching generally also
include motion of the Lewis basic atom as well. Nevertheless, stretching frequency changes
induced in I,, ICN, and ICI upon complexation have been tabulated for many complexes
and correlated to Lewis basicity with reasonable effectiveness.” The infrared stretching
frequency of the [C bond in ICN (485 cm™! uncomplexed) experiences red shifts (to
lower energy) upon complexation ranging from 5 cm ™! (in benzene—ICN) to 107 cm ™!
(in quinuclidine—ICN). The range in red shifts observed in I, complexes is not as dramatic;
a maximum red shift of only 39.5 cm ™! was observed in piperidine—I,.”" These red shifts
correlate fairly well with log K. values, especially when similar Lewis bases are compared.

Section 6.4.2 discussed that the donor—acceptor transition in I,—Lewis base com-
plexes is modified depending on the extent of the donor interaction with the I, LUMO. The
blue shift (to higher energy) in the 477; — 9¢,” transition upon I, complexation has also
been correlated to Lewis base strength. As shown in Figure 6.10, this transition increases
in energy as the base strength increases. Table 6.11 lists blue shifts induced by selected
bases, used to assess Lewis basicity.

6.4.6 Inductive Effects on Lewis Acidity and Basicity

Rationalization of the Lewis basicity ranking in Table 6.10 requires that inductive effects be

considered. Substitution of electronegative atoms or groups, such as fluorine or chlorine, in @

place of hydrogen on ammonia or phosphine results in weaker bases. The electronegative P p
atom draws electrons toward itself, and as a result, the nitrogen or phosphorus atom has less /" \
negative charge, and its lone pair is less readily donated to an acid. For example, PF; is a
much weaker Lewis base than PH;. A similar effect in the reverse direction results from
substituting alkyl groups for hydrogen. For example, in amines, the alkyl groups contribute
electrons to the nitrogen, increasing its negative character and making it a stronger base.

“The I, stretching mode is IR inactive, but vibrational modes with significant I—I contribution become active
upon complexation. The free I, stretching band is 210 cm ™! on the basis on Raman spectroscopy.

“*For tabulated infrared shifts of ICN, I,, and ICI as well as 477'; — 90'; blue shifts: C. Laurence and J.-F. Gal,
Lewis Basicity and Affinity Scale Data and Measurement, John Wiley and Sons, United Kingdom, 2010, pp. 286-306.
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TABLE 6.11 Blue Shiftsinthe 47" — 90 Transitionin|,
Complexes in Heptane at 15° C

Lewis Base Blue Shift (cm™)
Pyridine 4560
Dimethylsulfide 3570
THF 2280
Diethyl ethe