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PREFACE

The manufacture of semiconductor crystals underlies the 
entire electronics industry, yet growing crystals is a bit 
like growing carrots— knowing how to do it is not the 
same as knowing how it works. Snowflakes can be a valu-
able case study in this regard; if we can figure out the 
detailed molecular dynamics governing snow crystal for-
mation, maybe that knowledge  will be useful in other 
areas.

Although crystal growth is an impor tant area in ma-
terials science and engineering, my studies have not 
been motivated by any specific practical applications. My 
focus is instead on fundamental questions regarding the 
molecular physics of crystal growth. Applied research 
can certainly be rewarding, but contemplating the over-
arching scientific questions has its merits as well. History 
clearly teaches us that the knowledge gained from basic 
scientific pursuits often ends up being quite beneficial, 
even if one cannot always imagine right now how, when, 
or where  those  future benefits might arise.

On a related note, I always make a point of telling 
 people that I have not spent any tax dollars on this re-
search. I have always considered my snow crystal studies 

Studying snow crystals is a somewhat unusual 
 endeavor, so  people often ask me what got me 
started on this path, and why I have kept at it 
for over two de cades. The short answer is sim-

ply that I find the science both fascinating and entirely 
worthy of attention. The molecular dynamics of crystal 
growth is a knotty prob lem on many levels, and ice ex-
hibits some especially curious be hav iors. Even now, well 
into the twenty- first  century, our fundamental under-
standing of why snow crystals grow into the rich variety 
of structures we see falling from the clouds is remarkably 
primitive.

Part of me feels that the  humble snowflake has be-
come a bit of an embarrassment to the scientific commu-
nity. We can split the atom and sequence the  human 
genome, but explaining the growth of a snowflake re-
mains beyond our abilities?  Every winter we see  these 
icy works of art simply appearing, spontaneously, quite 
literally out of thin air. And yet we have no ready expla-
nation as to why snowflakes look the way they do.

Another part of me feels that the general physics of 
crystal growth is something we  ought to know better. 
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to be something of a scientific hobby— in ter est ing to me, 
but with no obvious financial payoff now or down the 
road. I figure with over seven billion  people on the planet 
and vast resources being spent on sports, entertainment, 
and all manner of generally unnecessary activities, per-
haps a few of us can be spared to contemplate the inner 
workings of a snowflake.

My foray into snow crystals began in 1995 during an 
idle conversation with Stephen Ross, whom I had re-
cently hired as a postdoctoral researcher in my lab at 
Caltech. It occurred to us that the basic physics of crys-
tal growth deserved more attention, and I soon realized 
that ice would be a good place to start. If nothing  else, it 
was certainly an inexpensive material to work with, with 
no onerous safety issues, and its freezing temperature was 
easily accessible as well. Although our attention was 
quickly pulled back to ongoing proj ects in atomic phys-
ics, I began researching what was known about the sci-
ence of snow crystals. By the fall of 1998, I had created a 
website devoted to the subject, which eventually morphed 
into what is now SnowCrystals . com.

Although I grew up in snowy North Dakota, I had 
not  really seen snowflakes  until I started digging through 
the scientific lit er a ture. This wonderful story was simply 
not being told outside that realm, so I set my sights on 
writing a popu lar science book on the subject, which, 
surprisingly, had never been done before. In search of 
suitable photo graphs, I found that Wilson Bentley’s pic-
tures  were something of a standard, but they  were more 
than 100 years old, and their quality was rather poor by 
modern standards. Newer snowflake photos  were out 
 there, but the quality I wanted was not to be found.

As a laboratory physicist, I was already experienced 
with optics and electronics, so I was soon building a bet-
ter snowflake photomicroscope. This led to a collabora-
tion with Patricia Rasmussen in Wisconsin, who put the 
instrument to good use during the 2001–2002 winter 
season, substantially raising the bar for high- resolution 
snowflake photography. Voyageur Press then worked 
with us to publish The Snowflake: Winter’s Secret Beauty 
in the fall of 2003, just in time for Christmas.

When The Snowflake did well, I made numerous im-
provements to my microscope and mounted it in a rug-
ged suitcase for traveling, with the aim of becoming a se-
rious snowflake photographer. This led to several 
expeditions to northern Ontario and central Alaska, in-
cluding countless hours out in the cold photographing 
minute ice crystals.  These new photos formed the basis 
for The  Little Book of Snowflakes, which came out dur-
ing the 2004 holiday season.

I continued photographing snowflakes around the 
globe for about a de cade, and the subject remained popu-
lar in the media. Voyageur Press and I produced a new 
book  every year, including The Art of the Snowflake, The 
Secret Life of a Snowflake, Ken Libbrecht’s Field Guide to 
Snowflakes, The Magic of Snowflakes, Snowflakes, and The 
Snowflake: Winter’s Frozen Artistry.  These years  were 
something of a whirlwind experience, highlighted by a 
set of snowflake photos on U.S. postage stamps (over 3 
billion sold!) and even an appearance on the Martha Stu-
art show.

With an influx of revenue from book royalties, I was 
able to gear up my snowflake lab to the point that I could 
start  doing meaningful experimental research investigat-
ing the physics of snow crystal growth. This led to bet-
ter mea sure ments of the molecular attachment kinetics, 
studies using electric needle crystals, and making de-
signer Plate- on- Pedestal snow crystals, all topics that 
are discussed at some length in the chapters that follow.

My students and I have made good pro gress on sev-
eral scientific fronts, especially  toward explaining the 
Nakaya diagram, as I describe in detail in this book. 
Why snow crystals switch back and forth between plate-
like and columnar forms with changing temperature 
had been an outstanding puzzle for 75 years, and I feel 
now that it is fi nally beginning to make sense. Still, the 
phenomenon of snow crystal growth is not a solved prob-
lem by any means. Like an onion, as you peel away lay-
ers, you tend to find more layers, as this is the nature of 
scientific research. Many in ter est ing questions remain.

 Until recently, my work on snow crystals was mostly a 
side proj ect. My scientific focus has drifted over several 
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de cades from solar astrophysics to atomic/laser physics 
to gravitational physics and the LIGO ( Laser Interfer-
ometer Gravitational- wave Observatory) proj ect, and I 
dabbled with snowflakes when time permitted. Recently 
I began to realize that snow crystals are my new calling, 
so, starting around 2014, I have been focusing nearly all 
my research efforts in this area. It remains, at least to me, 
a continually fascinating scientific venture.

I am fortunate to have worked with many talented un-
dergraduate students from Caltech and other universi-
ties on my snow crystal research, including Hannah Ar-
nold, Robert Bell, Johanna Bible, Nina Budaeva, 
Timothy Crosby, Benjamin Faber, Cameron Lemon, 
Kevin Lui, Christopher Miller, Helen Morrison, Ryan 
Potter, Mark Rickerby, Molly Swanson, Victoria Tanu-
sheva, Sarah Thomas, and Han Yu. Their determined ef-
forts are much appreciated.

In the same vein, I have enjoyed countless rewarding 
interactions with fellow snow/ice enthusiasts, colleagues 
and collaborators, including Todd Berger, Michael 

Dregni, Harald Garcke, Luis González MacDowell, 
Janko Gravner, David Griffeath, James Kelly, Ted Kins-
man, Alexey Kljatov, Don Komarechka, Heiner Müller- 
Krumbhaar, Nathan Myhrvold, Carol Norberg, Joseph 
Shaw, Matthew Sturm, Walter Tape, and Mary Anne 
White.

I am especially indebted to Caltech for educating 
me, hiring me as a young professor, and providing me 
gainful employment for most of my adult life. The uni-
versity has provided me with ample lab space while al-
lowing me the freedom to explore this aty pi cal line of 
scientific research. Without Caltech’s support, none of 
this work would have been pos si ble.

Fi nally, my wife, Rachel Wing, and our two  children, 
Maxwell and Alanna, have been enthusiastic partici-
pants throughout this snowflake adventure, especially 
on our numerous snowflake- related vacations to such 
far- flung venues as northern Japan, Vermont, northern 
Ontario, northern Sweden, Alaska, and the mountains 
of California, all during the cold of winter. Thanks for 
the memories!

Kenneth Libbrecht  
Pasadena, California  

July 30, 2020
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FIGURE 1.1 . An exceptionally large and symmetrical stellar snow crystal, mea sur ing nearly 4 mm from 
tip to tip, photographed by the author in Kiruna, Sweden.
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Snow Crystal Science

of crystal growth. Even now, well into the twenty- first 
 century, snowflake science is very much a work in pro-
gress, as several rather basic aspects of the surface struc-
ture and dynamics of ice at the molecular level remain 
quite mysterious.

When I first began reading about this subject in the 
1990s, I was immediately struck by just how  little was 
 really understood about snowflake formation. Many dif-
fer ent morphological types of snowflakes had been ob-
served and cata loged over the years, yet  there was no 
comprehensive explanation for why  these diff er ent 
shapes appeared  under diff er ent growth conditions. As 
illustrated in Figure 1.2, thin plates and ornate stellar 
crystals appear when the temperature is around −15° C, 
while slender  needles and columns form when the tem-
perature is near −5° C. Intermediate temperatures gen-
erally yield blocky shapes. Small platelike crystals are the 
norm above −3° C, while sharply faceted columnal crys-
tals form below −30° C. Why does snow crystal mor-
phology depend so strongly on temperature, and why 
specifically in this manner? I expound at some length on 
this topic in Chapter 4, as this has been a long- standing 

This book is about the science of snowflakes. Its 
overarching objective is to explain why snow-
flakes grow into  those remarkable crystalline 
structures that can be found floating down 

from the winter clouds. In  these pages, I answer some of 
the basic scientific questions one might ask while scru-
tinizing a newly fallen snowflake: Where do snowflakes 
come from? How does formless  water vapor manage to 
arrange itself, spontaneously, into such a variety of amaz-
ingly ornate shapes? What physical pro cesses guide the 
development of  these elaborate, yet symmetrical, pat-
terns? Why does all this happen the way it does?

Comprehending the  humble snowflake is a surpris-
ingly challenging task. The seemingly  simple phenome-
non of  water vapor freezing into ice involves a veritable 
symphony of subtle molecular pro cesses, from diffusive 
mixing in the air to the complex attachment kinetics 
that govern how  water molecules assimilate into a rigid 
crystalline lattice. Explaining this intricate act of mete-
orological morphogenesis requires a rather deep dive into 
areas of mathematical physics, statistical mechanics, ma-
terials science, and the many- body molecular dynamics 

How full of the creative genius is the air in which  these are generated!  
I should hardly admire more if real stars fell and lodged on my coat.

— HENRY DAVID THOREAU, JOURNAL, 1856

1
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scientific puzzle, and I have developed a few new ideas 
aimed at solving it. But a complete understanding of even 
this straightforward observation remains elusive.

At first glance, the snowflake appears to be a some-
what basic natu ral phenomenon. It is made of  little more 
than pure ice, and it assem bles itself, quite literally, out 
of thin air (Figure 1.3). Nevertheless, trying to under-
stand snowflake formation in detail  will take us to the 
cutting edge of con temporary science. The journey  will 
be neither short nor  simple, so let us begin with the 
basics.

COMPLEX SYMMETRY

I often use the term snowflake synonymously with snow 
crystal. The latter is a single crystal of ice, in which 
 water molecules are all lined up in a precise hexagonal 
array. Whenever you see that characteristic sixfold 
symmetry associated with snowflakes, you are actually 
looking at a snow crystal. A snowflake is a more general 
meteorological term that can mean an individual snow 
crystal, a cluster of snow crystals that form together, or 
even a large aggregate of snow crystals that collide and 

(a) (b) (c)

(d) (e) (f)

FIGURE 1.2 . Natu ral snow crystals exhibit a remarkable degree of morphological diversity. Platelike 
examples shown  here include (a) a basic hexagonal crystal with symmetrical surface markings; (b) a 
stellar plate with six broad- branched extensions; and (c) a “fernlike” stellar dendrite, which is an excep-
tionally thin, flat crystal with copious sidebranching.  These types of crystals typically appear when the 
temperature is in a narrow range around −15° C, although smaller platelike crystals can also be found 
near −2° C. Other natu ral specimens include (d) a  simple hexagonal prism viewed from the side; (e) a 
pair of hollow columns, each exhibiting conical voids that almost touch at the crystal centers; and (f) a 
capped column, resulting when two platelike crystals grow out from the ends of a stout column, like 
two wheels on an axle. Columnar and needle forms are common near −5° C, while a capped column 
results when the temperature changes as the crystal grows.
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humidity rises above 100  percent and the air becomes su-
persaturated with  water vapor. When this happens, the 
gaseous  water vapor in the air tends to condense out as 
liquid  water. Near the ground, the  water vapor might 
condense as dew on the grass (which is why this temper-
ature is called the “dew point”). At higher altitudes, 
however,  water vapor condenses into countless cloud 
droplets. Each liquid droplet forms around a microscopic 
particle of dust, and  these are typically abundant in the 
atmosphere. Cloud droplets are so small— about 10–20 
microns in dia meter— that they can remain suspended 
in the air almost in defi nitely.

If the cloud continues cooling and its temperature 
drops significantly below 0° C, then the liquid  water 
droplets  will start freezing into ice. Not all the droplets 
freeze at once, and none  will freeze right at 0° C. Instead, 
the droplets become supercooled as their temperature 
drops, often remaining in a metastable liquid state for 
long periods of time. Some droplets  will freeze when the 
temperature is as high −5° C, but most  will freeze some-
where in the vicinity of −10° C. A hearty few may sur-
vive unfrozen at −20° C or below, but all  will become 
solid ice before the temperature reaches −40° C.

stick together mid- flight.  Those large puff- balls you see 
floating down in warmer snowfalls are called “snow-
flakes,” and each is made from hundreds or even thou-
sands of individual snow crystals. Snow crystals are 
commonly called “snowflakes,” and this is fine, like call-
ing a tulip a “flower.”

A snow crystal is not a frozen raindrop; that type of 
precipitation is called “sleet.” Instead, a snow crystal 
forms out of  water vapor in the atmosphere, as  water 
molecules in the gaseous state transition directly to the 
solid state. Complex structures emerge as the crystal 
grows, driven mainly by how  water vapor molecules are 
transported to the developing crystal via diffusion, to-
gether with how readily impinging molecules stick to 
diff er ent ice surfaces.

From Clouds to Crystals

To begin our study of snow crystal formation, consider 
the life of a large, well- formed snowflake that falls from 
the winter clouds. The story begins as weather patterns 
transport and cool a parcel of moist air  until its temper-
ature drops below the dew point, meaning the relative 

FIGURE 1.3. A gray winter scene looking 
out over Lake Superior near Houghton, 
Michigan.  Water vapor evaporating from 
the warm lake quickly condenses into a mist 
of  water droplets,  because the air is substan-
tially colder than the  water. But the mist 
soon evaporates back to  water vapor as it 
rises above the lake. The vapor condenses 
once again into droplets at higher altitudes, 
forming thick clouds. Should the clouds 
cool down sufficiently, most of the liquid 
droplets  will evaporate to feed the forma-
tion of snowflakes that fall back into the lake, 
completing the  water cycle.
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As the temperature inside a cooling cloud falls 
below −10° C, cloud droplets  will begin freezing in large 
numbers, thus initiating a full- fledged snowfall. By the 
time the cloud has cooled to around −20° C, however, 
most of the liquid droplets  will be gone, as some  will have 
frozen and many  will have evaporated away to form snow 
crystals. At temperatures below −20° C, it is sometimes 
said to be “too cold to snow,”  because nearly all the liq-
uid cloud droplets  will have already dis appeared before 
the cloud cools to that temperature. And when no liq-
uid  water remains to feed growing snowflakes,  there  will 
not be a lot of falling snow.

Faceting and Branching

Soon  after a cloud droplet freezes, it initially grows into 
the shape of a small, faceted hexagonal prism, as illus-
trated in Figure 1.5. The prism shape is defined by two 
basal facets and six prism facets that arise from the under-
lying sixfold symmetry of the ice crystal lattice (see 
Chapter 2). The molecular mechanism that creates this 
faceted shape is one of the key physical pro cesses that 
guide snow crystal formation, and Figure 1.6 illustrates 
how it works.  Water vapor molecules strike the ice crys-
tal everywhere on its surface, but they are more likely to 
stick when the surface is molecularly “rough,” meaning 
it has a lot of dangling chemical bonds. The facet surfaces 
are special,  because they are aligned with the lattice 

The freezing temperature of a specific cloud droplet 
is determined in large part by the speck of dust it con-
tains. Pure  water can be cooled to nearly −40° C before 
freezing, while some materials (silver iodide in par tic u-
lar)  will nucleate freezing as high as −4° C. Certain bac-
terial proteins can even promote freezing at temperatures 
as high as −2° C.  These exotic materials are not much pre-
sent in the atmosphere, however, so your average speck 
of dust  will nucleate freezing around −10° C. Note that 
the character of an included dust particle usually has 
 little effect on the final snow crystal shape,  because the 
dust is soon buried within the ice.

Once a cloud droplet freezes, it becomes an embry-
onic snow crystal that commences its growth by absorb-
ing  water vapor from the air around it.  Because the vapor 
pressure of liquid  water is higher than that of solid ice 
(see Chapter 2), the cloud droplets surrounding the na-
scent snowflake begin to evaporate away, as illustrated in 
Figure 1.4. During this pro cess,  there is a net transfer of 
 water molecules from liquid  water droplets to  water 
vapor, and then from vapor to ice. About 100,000 
cloud droplets  will evaporate away to provide enough ma-
terial to make one good- sized snowflake. This round-
about route is how the liquid  water in a cloud freezes 
into solid ice.

FIGURE 1.4. A snowflake is born when a liquid cloud droplet 
freezes into ice (left sketch). The ice particle initially grows into a 
faceted prism, as the growth is  limited by anisotropic attachment 
kinetics on the ice surface.  After the crystal grows larger, the dif-
fusion of  water molecules through the air  causes branches to 
sprout from the six corners of the prism, which continue growing 
to become elaborate dendritic structures. The growing crystal 
removes  water vapor from the air, which is replenished by the 
evaporation of nearby  water droplets. About 100,000 cloud 
droplets evaporate to provide enough material to make one 
large stellar snow crystal. The flake continues growing inside the 
cloud  until it becomes so heavy that it falls to earth.

basal facet

prism
facet

FIGURE 1.5. The most basic shape of a snow crystal is a hexago-
nal prism with two basal facets and six prism facets. This shape 
arises  because of the under lying hexagonal structure of the ice 
crystal lattice.
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the supply of  water vapor is greatest. Moreover, the 
growth be hav ior of each branch is quite sensitive to the 
temperature and humidity of the air surrounding it. As 
the crystal travels through the inhomogeneous clouds, it 
experiences ever- changing conditions that modify how 
the crystal grows. Sometimes the branch tips become fac-
eted, while at other times, they may sprout additional 
sidebranches. It all depends on the growth conditions 
seen by the crystal at any given time. The final shape of 
the branch, therefore, reflects the entire history of its 
growth, which was determined by the meandering path 
the flake took through the atmosphere.

The six branches of a snow crystal develop in near 
synchrony, simply  because they all travel together 
through the cloud. All six branches experience essen-
tially the same growth conditions at the same times, so 
all six develop into the same elaborate shape, as illus-
trated in Figure 1.8. Note that the growth of the sepa-
rate branches is not synchronized by any communication 
between them, but rather by their common history. And 
 because no two snowflakes follow exactly the same path 
through the turbulent atmosphere, no two look exactly 
alike. (The full story of snowflake uniqueness is a bit 
more involved, as I describe  later in this chapter.) The for-
mation of a large stellar snow crystal takes about 30–45 
minutes, and we can reproduce the pro cess in the lab 

structure of the crystal, so  these surfaces exhibit fewer 
open molecular bonds. Thus, the facet surfaces accumu-
late  water vapor at a lower rate than do the rough sur-
faces, and this pro cess soon yields a faceted ice prism. The 
rate at which impinging  water molecules stick to vari ous 
surfaces is called the attachment kinetics, and I discuss 
this subject in considerable detail in Chapter 4.

If the cloud temperature drops to near −15° C, which 
is often the case during an ample snowfall, then the basal 
surfaces  will accumulate material especially slowly, while 
 water vapor  will condense on the prism facets much more 
readily. As a result, a frozen droplet in  those conditions 
 will soon develop into a thin, flat, hexagonal plate, which 
is an early stage of what  will eventually become a large 
stellar snow crystal. As the small hexagonal plate is grow-
ing, its six corners stick out slightly into the surround-
ing humid air, causing the tips of the hexagon to absorb 
 water vapor a bit more quickly than other parts of the 
crystal. The faster growth makes the corners stick out 
farther still, causing them to grow even faster. This 
positive- feedback effect  causes a set of six branches to 
sprout from the hexagonal plate, as illustrated in Fig-
ure 1.7. I describe this branching instability (also known 
as the Mullins- Sekerka instability) at length in Chapter 3, 
as it is responsible for most of the complex structure seen 
in snow crystals.

Once the six branches begin to develop, most of the 
subsequent growth occurs near the branch tips, where 

FIGURE 1.6. When  water vapor molecules strike a molecularly 
rough ice surface, they tend to stick and become incorporated 
into the ice lattice. But when they strike a molecularly smooth 
facet surface, they are less likely to stick. As the crystal grows, the 
rough areas soon fill in to yield a fully faceted ice prism.

FIGUR E 1 . 7.  As a thin hexagonal plate grows larger, its six 
corners stick out into the humid air around it.  Water vapor 
condenses preferentially on the corners as a result, making 
them stick out even farther. This leads to a growth instability 
that  causes six branches to sprout from the corners of the hexa-
gon. The same pro cess  later yields sidebranches on the main 
branches.
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is the primary focus of this book, continuing an endeavor 
that has been ongoing for some 400 years.

A BRIEF HISTORY OF SNOW 
CRYSTAL SCIENCE

I like to think about the snow crystal as something of a 
case study of scientific reasoning. Science is fundamen-
tally about understanding the natu ral world, so snow-
flakes, being part of that world, deserve an explanation. 
Richard Feynman commented that “nature uses only the 
longest threads to weave her patterns, so each small piece 
of her fabric reveals the organ ization of the entire tapes-
try” [1964Fey, p.  34].  There is hardly a more fitting 
example of this truism than the intricate patterns of 
common snowflakes, as the entire panoply of mod-
ern scientific knowledge is still not quite enough to fully 
explain their origin.

with relative ease, studying how environmental changes 
induce symmetrical dendritic structures.

Although this narrative reasonably describes the ori-
gin of complex symmetry in stellar snow crystals, the 
story deepens when we also consider the variety of mor-
phological types illustrated in Figure 1.2. The full me-
nagerie of natu ral snow crystals is presented in Chap-
ter 10, and laboratory studies have found that  these can 
be or ga nized according to the Nakaya diagram shown 
in Figure 1.9, which is also called the snow crystal mor-
phology diagram. This empirical chart summarizes the 
vari ous snow crystal forms that appear at diff er ent tem-
peratures and humidity levels, including platelike and 
columnar forms with varying amounts of structural 
complexity. Explaining this morphological organ ization 
is no easy task, requiring a methodical characterization 
of the relevant physical pro cesses involved. The quest to 
fully comprehend the science of snow crystal formation 

Nucleation of ice particle

Develops into hexagonal prism because smooth 
facets growth most slowly

Corners stick out farther, accumulate ice
faster           corners sprout branches

Crystal moves to new position

   Crystal travels through clouds,
   experiences many changes in growth behavior
           a complex stellar snow crystal

plates grow on ends of branches
FIGURE 1.8. The final shape of a complex stel-
lar snow crystal depends on the path it traveled 
through the clouds. Sudden changes in the 
temperature and humidity around a crystal can 
cause abrupt changes in its growth be hav ior, 
perhaps stimulating the formation of sideb-
ranches or plates. However,  because the six 
arms see the same changes at the same times, 
they grow in near synchrony. The final snow 
crystal thus exhibits a complex structure with an 
overall sixfold symmetry.
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ular dynamics investigations, and studies using computer- 
generated snowflake simulations.

In many ways, the snowflake story mirrors the his-
torical development of science itself. As mathe matics be-
came intertwined with natu ral philosophy, the precise 
symmetry of snow crystal facets suggested an under lying 
geometrical basis, foreshadowing the molecular order 
found in crystal lattices. As laboratory- based science 
emerged, synthetic snowflakes revealed an under lying 
organ ization for the observed diversity of natu ral snow 
crystal morphologies. And as the nanoscale structure of 
crystalline materials has become better characterized in 
the modern era, our understanding of the molecular at-
tachment kinetics governing snow crystal growth has 

The study of snowflake science began when the dis-
tinctive sixfold symmetry of individual snow crystals was 
first recognized as something that could be investigated 
and possibly understood. Over time, this led to a greater 
scrutiny of what fell from the clouds, yielding early 
sketches that began to document the remarkable variety 
of diff er ent morphological types. With advances in tech-
nology, snow crystals  were examined in greater detail by 
using optical microscopy and  were further documented 
in extensive photographic studies. And as sophisticated 
scientific tools became available, researchers progressed 
from observations of natu ral snowfalls to scrutinizing 
laboratory- grown snow crystals, eventually leading to 
precision mea sure ments of ice growth be hav iors, molec-
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FIGURE 1.9. The Nakaya diagram plots the morphological types of snow crystals that develop at dif-
fer ent temperatures and humidity levels.  Here the supersaturation is shown as the “excess”  water vapor 
density in the air, above the value for saturated air, and the  water saturation line shows the supersatura-
tion in a dense winter cloud made of liquid  water droplets. Explaining why snow crystals experience 
such varied growth be hav iors at dif fer ent temperatures and supersaturations is a remarkably challeng-
ing scientific puzzle, with many parts still unsolved.
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transparent and quite flat . . .  and formed as per-
fectly and symmetrically as one could possibly 
imagine.  There followed,  after this, a further quan-
tity of such wheels joined two by two by an axle, 
or rather, since at the beginning  these axles  were 
quite thick, one could as well have described them 
as  little crystal columns, decorated at each end 
with a six- petaled  rose a  little larger than their base. 
But  after that  there fell more delicate ones, and 
often the roses or stars at their ends  were unequal. 
But then  there fell shorter and progressively shorter 
ones  until fi nally  these stars completely joined, and 
fell as double stars with twelve points or rays, rather 
long and perfectly symmetrical, in some all equal, 
in  others alternately unequal.

In this passage, we can see snowflakes influencing—
in their own small way— the early development of mod-
ern science. Descartes was clearly impressed with the 
geometrical perfection he saw in snow crystal forms, 
with their flat facets and hexagonal symmetry. Ponder-
ing this and other observations, he went on to reason 
about how the princi ples of geometry and mathe matics 
play a central role in describing the natu ral world. Al-
though we take this for granted now, using mathe matics 
to explain ordinary phenomena was still something of an 
unconventional idea at the time, and a major step for-
ward in science.

improved as well. We can only guess as to what  future 
scientific tools  will be brought to bear in our effort to 
comprehend the inner workings of the common 
snowflake.

Early Observations

The earliest account (of which I am aware) describing 
the sixfold symmetry of individual snow crystals was 
written in 135 BCE by Chinese phi los o pher Han Yin 
[2002Wan, p. 3], who commented: “Flowers of plants 
and trees are generally five- pointed, but  those of snow, 
which are called ying, are always six- pointed.” Subse-
quent Chinese authors mentioned snow crystal symme-
try as well, an example being the sixth- century poet Hsiao 
Tung, who penned, “The ruddy clouds float in the four 
quarters of the cerulean sky. And the white snowflakes 
show forth their six- petaled flowers” [2002Wan, p. 3].

Eu ro pean authors began documenting snowflakes 
many centuries  after the first Asian accounts, and one 
oft- quoted reference is the woodcut shown in Figure 1.10, 
created by Olaus Magnus in 1555 [1982Fra]. It can be 
seen, however, that the clergyman depicted snowflakes 
as having a curious assortment of odd shapes, includ-
ing crescents, arrows, and even one that looked like a 
 human hand, so perhaps this account does not quite 
warrant being called a historical first. It appears that 
En glish astronomer Thomas Harriot was the first in 
Eu rope to clearly identify and document the snow-
flake’s sixfold symmetry in 1591 [1982Fra].

French phi los o pher and mathematician René Des-
cartes recorded the first detailed account of snow crys-
tal structures in his famous Les Météores in 1637, inclu-
ding the sketches shown in Figure  1.11. In his essay, 
Descartes described some remarkably thorough naked- 
eye observations of snow crystals, which included several 
uncommon forms [1982Fra, p. 5]:

 After this storm cloud,  there came another, which 
produced only  little roses or wheels with six 
rounded semicircular teeth . . .  which  were quite 

FIGURE 1.10. This 1555 woodcut by Olaus Magnus was perhaps 
the first Eu ro pean illustration depicting a sixfold symmetrical 
snow crystal, although the artist was perhaps a bit overzealous in 
his depiction of morphological diversity. Adapted from [1982Fra].
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ple that was responsible for snow crystal symmetry. 
Drawing on correspondence with Thomas Harriot, Ke-
pler noted that stacking cannonballs also yielded geo-
metric structures with sixfold symmetry, and he further 
surmised that  there might be a mathematical connection 
between  these two phenomena.  There was certainly a 
germ of truth in this reasoning, as the geometry of stack-
ing  water molecules lies at the heart of snow crystal 
symmetry. But this was long before the atomistic view 
of  matter was accepted canon, so Kepler could not carry 
the cannonball analogy very far.

Kepler realized that the genesis of crystalline sym-
metry was a worthy scientific question, and he also rec-
ognized the similarity between snow crystals and min-
eral crystals, as they both exhibited symmetrical faceted 
structures. At the end of his treatise, however, Kepler ac-
cepted that the science of his day was not advanced 
enough to explain any of it. He was certainly correct in 
this conclusion: Three centuries would pass before scien-
tists knew enough about atoms, molecules, and their ar-
rangement in solid materials to fi nally answer Kepler’s 
1611 query.

Microscopic Observations

The invention of the microscope in the mid- seventeenth 
 century quickly led to more and better snowflake obser-
vations. En glish scientist and early microscopist Robert 

Emerging Science

The first scientist to speculate on a theoretical explana-
tion of the sixfold symmetry of snow crystals was Ger-
man astronomer and mathematician Johannes Kepler. In 
1611, Kepler presented a small treatise titled The Six- 
Cornered Snowflake to his patron, Holy Roman Em-
peror Rudolf II, as a New Year’s Day gift [1611Kep, p. 35]. 
In his treatise, Kepler contrasted the sixfold symmetry 
of snowflakes with similar symmetries found in flowers, 
deducing that the similarities must be in appearance 
only,  because flowers are alive, while snowflakes clearly 
are not:

Each single plant has a single animating princi ple 
of its own, since each instance of a plant exists sep-
arately, and  there is no cause to won der that each 
should be equipped with its own peculiar shape. 
But to imagine an individual soul for each and any 
starlet of snow is utterly absurd, and therefore the 
shapes of snowflakes are by no means to be de-
duced from the operation of soul in the same way 
as with plants.

Kepler saw that a snowflake is a relatively  simple  thing, 
made only from ice, compared to the utterly baffling 
complexity of living  things. He offered, therefore, that 
 there might be some relatively  simple organ izing princi-

FIGURE 1.11. René Descartes made some of the first 
accurate sketches of dif fer ent snow crystal morphol-
ogies in 1637, including observations of capped col-
umns (group F in this sketch) [1637Des].
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complete their sketches. As a result, even the best snow 
crystal drawings lacked detail and  were not completely 
faithful to their original subjects.

Snowflake Photography

It took Wilson Bentley, a farmer from the small town of 
Jericho, Vermont, to create the first photographic  album 
of falling snow, thus awakening the world to the hidden 
won ders of snowflakes. Bentley became interested in the 
microscopic structure of snow crystals as a teenager in 
the 1880s, and he soon began experimenting with the 
new medium of photography as a means of recording 
what he observed. He constructed an ingenious mecha-

Hooke sketched snowflakes (Figure  1.12) and practi-
cally every thing  else he could find for his book Micro-
graphia, published in 1665 [1665Hoo]. Although his 
microscope was crude by modern standards, Hooke’s 
drawings nevertheless began to reveal the complexity 
and intricate symmetry of snow crystal structures, de-
tails that could not be detected with the unaided eye.

As the quality and availability of optical magnifiers 
improved, so did the accuracy of snow crystal drawings. 
By the mid- nineteenth  century, several observers around 
the globe had recorded the diverse character of snow 
crystal forms, and one notable example is shown in Fig-
ure 1.13. Given the ephemeral nature of a snowflake, 
however, observers inevitably had to rely on memory to 

FIGURE 1.12 . Robert Hooke sketched  these obser-
vations of snowflakes 1665, enabled by his newly 
 in ven ted microscope [1665Hoo].

FIGURE 1.13. En glish explorer William Scoresby made  these sketches during a winter voyage 
through the Arctic, which he recounted in 1820 [1820Sco].  These are the first drawings that ac-
curately depicted many features of snow crystal structure, as well as several rare forms, includ-
ing triangular crystals and 12- branched snowflakes. Scoresby also noted that the cold arctic 
 climate produced more highly symmetrical crystals than  were typically seen in Britain.
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any se lection bias confirm that well- formed symmetrical 
snow crystals are exceedingly rare [2012Gar].

Bentley’s photo graphs appeared in numerous publi-
cations over several de cades, providing for many their 
first look at the inner structure and symmetry of snow 
crystals. And with thousands of snowflakes, each unique, 
the world was exposed to their incredible variety as well. 
The now- familiar old chestnut that no two snowflakes 
are exactly alike appears to have had its origin in Bent-
ley’s photo graphs.

In the late 1920s, Bentley teamed with W. J. Hum-
phreys, chief physicist for the United States Weather 
 Bureau, to publish his magnum opus, containing more 
than 2,000 snow crystal photo graphs [1931Ben]. The 
book appeared in November 1931, and the 66- year- old 
Vermont farmer died of pneumonia just a few weeks 
 later. In the de cades following this seminal work, many 
 others have taken up the challenge of capturing the 
structure and beauty of snow crystals using photography, 
and I describe some modern techniques and recent re-
sults in Chapter 11.

nism for attaching a camera to his microscope for this 
purpose, and he succeeded in photographing his first 
snow crystal in 1885 when he was 19 years old.

To say Bentley was dedicated to this task is an un-
derstatement. Snowflake photography became his life-
long passion, and over the course of 46 years, he cap-
tured more than 5,000 snow crystal images, all on 
4- inch glass photographic plates. He resided his entire 
life in the same Jericho farm house, photographing 
snowflakes each winter, using the same equipment he 
constructed as a teenager. Figure  1.14 shows Wilson 
Bentley demonstrating his apparatus, although the 
grass at his feet suggests  there  were no snowflakes to be 
found that day.

Bentley usually presented his photo graphs as white 
snowflakes on a black background, as shown in Fig-
ure  1.15, but the original photos had a bright back-
ground. A snow crystal is made of pure ice, which is clear, 
not white (see Chapter 11). When illuminating a snow 
crystal from  behind, as Bentley did, the resulting photo 
exhibits a somewhat low- contrast “bright- on- bright” ap-
pearance. To increase the contrast, Bentley made a copy 
of each photographic negative and painstakingly scraped 
away the emulsion from the background areas. A print 
made from the modified negative then yielded a white 
snowflake on a black background, as illustrated in the 
figure. Bentley preferred this high- contrast look, so he 
modified most of his photos using this technique. Some 
have accused Bentley of altering his photos to augment 
what nature had provided, but he did not hide the fact 
that he pro cessed his photos this way. And he was always 
quick to point out that he never changed the snow crys-
tal images themselves during this pro cess.

One aspect of his work that Bentley rarely empha-
sized is that large, symmetrical stellar snow crystals are 
not the norm, and near- perfect specimens are quite rare 
(see Chapter 10). Over the course of an entire winter sea-
son, he only photographed about 100 crystals on aver-
age, reserving his expensive emulsions for only the most 
photogenic snow crystals he could find. Modern auto-
mated cameras that photo graph falling snow without 

FIGURE 1.14. Vermont farmer Wilson Bentley first developed 
the art of snowflake photography in the 1880s, eventually pro-
ducing a large  album of images. He is shown  here with his spe-
cially built snow crystal photomicroscope [1931Ben].



12 T C H A P T E R  1

from  these diffraction patterns, thus creating the field of 
crystallography.

Working with the Braggs in their Cambridge labora-
tory, William Barnes used X- ray crystallography to de-
termine the structure of ice for the first time in 1929 
[1929Bar], discovering the now- familiar hexagonal lat-
tice of normal ice Ih (see Chapter 2), and Figure 1.16 
shows Barnes’s discovery photo graph. In subsequent 
studies over many de cades, numerous additional solid 
phases of  water have been discovered and characterized, 
mostly at extremely high pressures. Three hundred years 
 after Kepler’s initial musings, scientists had fi nally proven 
that the geometry of stacking was indeed the under lying 
source of the snowflake’s sixfold symmetry.

In the de cades that followed  these early crystallo-
graphic discoveries, the development of quantum me-
chanics and quantum chemistry have allowed precise 
ab initio calculations of the  water molecule electronic 
and atomic structure, including two- body and higher 
order interactions between  water molecules. From 
 these fundamental quantum- mechanical calculations, 
researchers have been able to reproduce the known 
structures of  water in many of its solid phases. As a re-
sult, the lattice structure of ice Ih, from which snow 
crystals are made, is now well understood at a funda-
mental physical level.

Crystallography

The word “crystal” derives from the Ancient Greek krys-
tallos, meaning “ice” or “rock ice.” Contrary to what the 
definition implies, krystallos was not originally used to 
describe ice, but rather the mineral quartz. The early 
Roman naturalist Pliny the Elder described clear quartz 
krystallos as a form of ice, frozen so hard that it could not 
melt. Pliny was certainly mistaken on this point, as 
quartz is not a form of ice, nor is it even made of  water. 
Nevertheless,  after nearly 2,000 years, Pliny’s misunder-
standing is still seen in the language of the pre sent day. 
If you look in your dictionary, you may find that one of 
the definitions for crystal is simply “quartz.”

While mineral collectors have admired beautiful 
crystalline specimens for millennia, understanding the 
origin of their faceted structures required a bona fide sci-
entific breakthrough. In 1912, German physicist Max 
von Laue and coworkers discovered that when X- rays 
 were shone through a crystal of copper sulfate, the crys-
tal acted like a grating and produced a diffraction pat-
tern that could be recorded on photographic film. 
Australian- born British physicists William Henry Bragg 
and William Lawrence Bragg ( father and son) soon de-
veloped a mathematical theory showing how the atomic 
structures of crystalline materials could be ascertained 

FIGURE 1.15.  These are just a few of the thou-
sands of snowflake photo graphs taken by Wil-
son Bentley between 1865 and 1931. The original 
photos showed bright crystals against a bright 
background, as the clear snowflakes  were illumi-
nated from  behind. The photos  were subse-
quently modified by essentially cutting each 
crystal out and placing it on a black background. 
Adapted from [1931Ben].
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icist Martin Knudsen [1915Knu], who calculated the 
growth rate of a solid from its vapor phase (like ice from 
 water vapor) from the net flux of vapor molecules strik-
ing the solid surface. The resulting Hertz- Knudsen law 
provides the starting point for the attachment kinetics 
theory I describe in Chapter 4.

Some de cades  later, however, it had become clear 
that the Hertz- Knudsen law did not provide a complete 
description of the growth of faceted crystalline surfaces. 
The net flux of molecules striking the surface was only 
one  factor determining the growth rate; another was the 
probability that an impinging molecule would perma-
nently attach to the surface and become part of the bulk 
crystal lattice. This probability, ranging from 0 to 1, is 
now called the attachment coefficient, also discussed at 
length in Chapter 4. Figure 1.6 shows how an anisotro-
pic attachment coefficient produces faceted crystal 
growth, and this mechanism is also essentially respon-
sible for the appearance of faceted minerals like  those 
shown in Figure 1.17.

Beginning around the 1930s, physicists I. N. Stran-
ski [1928Str], R. Kaischew [1934Str], R. Becker and 
W. Döring [1935Bec], M. Volmer [1939Vol], and  others 
pushed the field forward by developing a detailed 
statistical- mechanical theory describing the nucleation 
and subsequent growth of one- molecule- high terraces on 
flat faceted surfaces. Many researchers fortified this the-
ory in the following de cades, notably W. K. Burton, 
N. Cabrera, and F. C. Frank [1951Bur], building it into 
the modern theory of crystal growth and surface attach-
ment kinetics that is described in modern textbooks 
[1996Sai, 1999Pim, 2002Mut, 2004Mar]. This theory 
provides the starting point for understanding snow crys-
tal growth.

The attachment kinetics are a major  factor in deter-
mining the growth rates and resulting morphologies in 
diff er ent environmental conditions. For example, the 
principal difference between a thin platelike snow crystal 
and a slender columnar form (see Figure 1.2) lies in how 
readily the impinging  water vapor molecules attach to 
the basal and prism surfaces. As a result, the large- scale 

Attachment Kinetics

While the sixfold symmetry of a snowflake ultimately 
derives from the symmetry of the ice crystal lattice, how 
the nanoscale structure of the molecular matrix trans-
lates into the large- scale morphology of a growing crys-
tal is a separate  matter. For example, quartz and copper 
are both crystalline minerals, but quartz often exhibits 
striking faceted features that reveal its lattice structure, 
while copper rarely does. Why? A big part of the answer 
lies in the physical pro cesses that govern the formation 
of faceted surfaces, collectively called the surface attach-
ment kinetics.

Around the beginning of the twentieth  century, sci-
entists began examining the physics of solidification 
using the newly discovered laws of statistical mechanics 
and thermodynamics, which had been developed by 
James Clerk Maxwell, Ludwig Boltzmann, J. Willard 
Gibbs, Amedeo Avogadro, Lord Kelvin, and other sci-
entific luminaries throughout the nineteenth  century. 
An early result came from German physicist Heinrich 
Hertz [1882Her] and in de pen dently from Danish phys-

FIGURE 1.16. This X- ray diffraction pattern was made by a crystal 
of normal ice Ih, allowing William Barnes to first determine the hex-
agonal lattice structure of the ice crystal. Adapted from [1929Bar].
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not all. Creating a comprehensive model of this many- 
body molecular pro cess is very much a work in pro gress, 
with many unsolved prob lems still outstanding.

The Nakaya Diagram

Japa nese physicist Ukichiro Nakaya conducted the first 
true scientific investigation of snow crystals at Hokkaido 
University in the 1930s. Motivated by the abundant 
snowfalls in Hokkaido, and inspired by Wilson Bentley’s 
photo graphs, Nakaya began his investigations by cata-
loging the diff er ent types of falling snow. Unlike Bentley, 
however, Nakaya looked beyond stellar crystals and fo-
cused his attention on describing the full range of diff er-
ent snowflake types, including columns,  needles, capped 
columns, and other less- common forms. Nakaya thus 
produced the first photographic documentation of the 
broader menagerie of falling snow.

morphology of nearly  every snowflake, from platelike to 
columnar, is determined to a large degree by how the sur-
face attachment kinetics changes with temperature, su-
persaturation, surface orientation, and other  factors.

It is a common misconception that crystallography ex-
plains crystal growth, but this is far from the truth. Crys-
tallography refers to the lattice structure of crystalline 
materials, and this is entirely a statics prob lem describing 
the lowest- energy molecular configuration in equilib-
rium. Crystal growth, by contrast, is a dynamical prob lem 
involving many- particle interactions in systems far from 
equilibrium. Modern science is quite  adept at solving stat-
ics prob lems, but less so with many- body dynamics prob-
lems. For this reason, the crystallography of ice has been 
essentially solved for nearly a  century, while many impor-
tant aspects the ice attachment kinetics remain quite puz-
zling. Terrace nucleation theory nicely explains some as-
pects of snow crystal attachment kinetics, but certainly 

FIGURE 1.17. Besides ice, many other mineral crystals grow into faceted morphologies 
 under the right conditions, as seen in  these examples (from upper left to lower right): 
gypsum, quartz, pyrite, and synthetic bismuth. The lattice structure determines the over-
all symmetry of each crystalline form, but the attachment kinetics are largely responsible 
for the appearance of faceted surfaces.
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most recent of  these is shown in Figure 1.19. The more 
stylized version in Figure 1.9 includes newer observations 
indicating that  simple plates form in low supersaturations 
at all temperatures above −20° C [2019Lib1]. Bailey and 
Hallett further extended  these results with additional 
observations, exploring temperatures down to −70° C 
and finding an abundance of columnar forms in  these 
frigid conditions [2009Bai, 2012Bai].

The Nakaya diagram was immediately recognized as 
being like a Rosetta Stone for snowflakes. With it, one 
can translate the shape of a falling snow crystal into a de-
scription of its growth history. On seeing a slender needle 
crystal, for example, one can deduce that it must have 
grown in high humidity at a temperature near −5° C. A 
large stellar crystal indicates growth near −15° C, and the 
amount of sidebranching provides an indication of the 
level of supersaturation it experienced. The formation of a 
capped column (see Figure 1.2) arises from an initial pe-
riod of growth near −5° C (columnar) followed by subse-
quent growth near −15° C (yielding plates on both ends of 
the column).

Nakaya liked to remark that snowflakes are like “hi-
eroglyphs from the sky.” With the Nakaya diagram, a 

While learning a  great deal from observations of natu-
ral snow crystals, Nakaya quickly realized that laboratory 
experiments would be essential for better understanding 
the origin of what he saw falling from the clouds. To this 
end, he constructed a walk-in freezer laboratory at Hok-
kaido, using it for a variety of experimental investigations 
of ice crystal growth. Prominent among them, Nakaya 
created the world’s first laboratory- grown snowflakes in 
his lab in 1936 [1954Nak].

Nakaya and his collaborators spent years examining 
how synthetic snow crystals grew and developed at diff er-
ent temperatures and supersaturations in their growth 
chamber, soon combining all  these observations into what 
is now called the Nakaya diagram, shown in Figure 1.18. 
Subsequent researchers further refined and expanded the 
Nakaya diagram [1958Hal, 1961Kob, 1990Yok], and the 

FIGURE 1.18. The original Nakaya diagram [1954Nak, 1958Nak] 
illustrates snow crystal morphology plotted versus growth tem-
perature and  water vapor supersaturation. Nakaya’s observa-
tions of laboratory- grown snow crystals revealed, for example, 
that large stellar dendrites only form in a narrow temperature 
range around −15° C, while slender needle crystals only appear 
near −5° C. Adapted from [1954Nak].

FIGURE 1.19. A detailed version of the Nakaya diagram, adapted 
from [1990Yok]. Additional data further indicate that plates grow 
at all temperatures above −20° C when the supersaturation is suf-
ficiently low [2019Lib1] while columns are common down to −70° C 
[2009Bai, 2012Bai].
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and carving it into a final desired form, following a pre-
conceived design. At the opposite end of the fabrication 
spectrum, living  things develop into amazingly sophisti-
cated organisms quite spontaneously, using the additive 
pro cess of growth. Thompson strove to comprehend the 
under lying physical and chemical princi ples that guide 
the development of living organisms, thus pioneering 
what has become the field of developmental biology.

Like Kepler 300 years before him, however, Thomp-
son found that the  whole of biological structure forma-
tion presented a challenging prob lem, to say the least. An 
easier approach, therefore, might be to consider some-
thing like the snowflake, which exhibits an in ter est ing 
degree of spontaneous structure formation, but in a far 
simpler physical system. Over time, physicists also began 
to appreciate that the patterns arising during solidifica-
tion offered a worthy phenomenon to investigate. Just as 
the hydrogen atom was a first step  toward understand-
ing the complex chemistry of large biomolecules, perhaps 
the physical origin of structure formation during solidi-
fication can provide insights into systems having far 
greater complexity.

A significant step forward in this direction was 
made in 1964, when American physicists William W. 
Mullins and Robert F. Sekerka realized that growth in-
stabilities are often associated with pattern- forming sys-
tems, with solidification being a specific example. In 
their seminal paper [1964Mul], the authors showed that 
many of the simplest solutions to the equations describ-
ing diffusion- limited growth  were mathematically un-
stable to small perturbations that developed into com-
plex dendritic structures. This spontaneous branching 
pro cess that arises during solidification— the Mullins- 
Sekerka instability— plays a central role whenever diffu-
sion limits the solidification of materials, and as de-
scribed in Chapter 3, growth instabilities are necessary 
for producing essentially all the complex morphological 
features seen in snow crystals.

Although dendritic structures had been docu-
mented in a broad range of physical and biological sys-
tems by D’Arcy Thompson and  others for many de cades, 

spectator on the ground can decipher the observed 
crystal morphology to ascertain the conditions of the 
clouds in which it formed, like a kind of meteorologi-
cal hieroglyphics. The Nakaya diagram also tells us 
that snow crystal growth is remarkably sensitive to 
temperature. Even a change of a few degrees can dra-
matically alter a crystal’s growth be hav ior, which helps 
explain why snowflakes have such a remarkable diver-
sity of shapes. We  will come back to the Nakaya dia-
gram many times in this book, as it has become an 
essential tool for understanding the variable nature of 
snow crystal formation.

Crystal Dendrites

In 1917, Scottish zoologist D’Arcy Went worth Thomp-
son published On Growth and Form, in which he pon-
dered on the physical, biological, and mathematical ori-
gins of complex structures in nature [1917Tho, 1961Tho]. 
While confessing that crystal growth was somewhat out-
side the province of his book, Thompson commented:

Yet snow- crystals . . .  have much to teach us about 
the variety, the beauty and the very nature of form. 
To begin with, the snow- crystal is a regular hexag-
onal plate or thin prism; that is to say, it shows 
hexagonal  faces above and below, with edges set at 
co- equal  angles of 120°. Ringing her changes on 
this fundamental form, Nature superadds to the 
primary hexagon endless combinations of similar 
plates or prisms, all with identical  angles but vary-
ing lengths of side; and she repeats, with an exqui-
site symmetry, about all three axes of the hexagon, 
whatsoever she may have done for the adornment 
and elaboration of one.

In his celebrated treatise, Thompson used extensive ex-
amples to focus scientific attention on the central ques-
tion of how complex structures arise spontaneously in 
natu ral systems.  Humans tend to create intricate objects 
via a subtractive pro cess, beginning with bulk material 
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come known as solvability theory, which explains many 
of the defining characteristics of dendritic crystal 
growth. As I describe in Chapter 3, this theory provides 
an overarching explanation for why  there is a marked in-
crease in dendritic structure with supersaturation, as 
seen in the Nakaya diagram.

TWENTY- FIRST- CENTURY 
SNOWFLAKES

In the de cades following Nakaya’s seminal work, many 
scientists have conducted specific investigations into 
snow crystal structures and growth, including Matthew 
Bailey, Norihiko Fukuta, Yoshinori Furukawa, Take-
hiko Gonda, John Hallett, Jerry Harrington, Katsuhiro 
Kikuchi, Charles Knight, Teisaku Kobayashi, Toshio 
Kuroda, R. Lacmann, Dennis Lamb, Basil Mason, Jon 
Nelson, and Vincent Schaefer. Some of their work is 
cited throughout the chapters that follow, so I do not 

the under lying  causes of  these forms was beyond the 
reach of early scientific knowledge. Counting the petals 
on a flower was one  thing; explaining their existence was 
another  matter entirely. Indeed, comprehending even 
quite  simple biological structures remains largely an in-
tractable prob lem to this day. Mullins and Sekerka 
showed, however, at least for  simple physical systems, 
that it was pos si ble to make some pro gress  toward under-
standing how complex structures arise spontaneously 
in nonequilibrium systems.

A systematic study of growth instabilities in labora-
tory solidification was undertaken in the 1970s by 
American materials scientist Martin Glicksman and 
 others, who examined the growth of dendritic structures 
when liquids cooled and solidified [1976Gli, 1981Hua]. 
In an extensive series of influential experiments,  these re-
searchers made detailed mea sure ments of structure for-
mation during the freezing of liquid succinonitrile, 
choosing this material  because it is transparent with a 
freezing temperature near room temperature, while its 
growth be hav ior is similar to most common metals. 
When unconstrained by container walls, Glicksman 
found that freezing often yielded branched structures 
like that shown in Figure 1.20, with growth character-
istics that depended mainly on crystal symmetry and the 
degree of supercooling of the liquid. Similar branching 
is seen in some stellar snow crystals, like the fernlike stel-
lar dendrite shown in Figure 1.2, and this same kind of 
dendritic growth be hav ior has been observed to be quite 
ubiquitous during solidification from both liquids and 
vapors over a broad range of materials.

The work of Glicksman and  others soon called atten-
tion to the Mullins- Sekerka instability and its conse-
quences for structure formation during crystal growth. 
 There followed a concerted push by physicists, material 
scientists, and applied mathematicians to form a self- 
consistent theory describing the characteristics of the 
diffusion- limited growth of dendritic structures. Efforts 
in the 1980s, led by James Langer [1978Lan, 1980Lan, 
1989Lan], Hans Müller- Krumbhaar, Efim Brener, Her-
bert Levine, and  others eventually yielded what has be-

FIGURE 1.20. This photo shows a dendritic crystal of succinoni-
trile growing into a supercooled melt of the same material. In a 
vessel with a fixed temperature, the tip advances at a constant 
growth velocity, while the radius of curvature and overall shape 
of the tip do not change with time. Adapted from [1981Hua].
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tent, so one cannot fully appreciate any individual 
chapter in this book without having at least some un-
derstanding of the material presented in all the other 
chapters. I believe it is useful, therefore, begin with a 
brief synopsis of some key areas that form the backbone 
of this book.

Ice Crystal Structure: Chapter 2

Chapter 2 examines the properties of ice in equilibrium, 
including lattice structures, crystallography, general ma-
terial properties, and thermodynamic quantities like 
latent heats and vapor pressures. Special attention is 
given to terrace step energies on the basal and prism fac-
ets, as  these play an impor tant role in snow crystal 
growth. Equilibrium physics is generally quite well un-
derstood, so  these topics form a foundational basis for 
studying snow crystal growth. I have some fondness for 
lattice projections and crystal twinning in natu ral snow 
crystals, so  these topics are presented in this chapter as 
well.

Although the lattice structure of crystalline ice is 
well characterized in the bulk, the molecular structure 
and chemical physics of the ice surface remains an area 
of active research [1970Fle, 2004Ike, 2010Pfa]. For ex-
ample, surface premelting has been investigated using a 
variety of surface probes over a wide range of tempera-
tures, but this phenomenon remains somewhat enig-
matic overall [2007Li, 2018Qui]. Surface premelting 
appears to play a major role in snow crystal growth, and 
I touch on the topic in this chapter. But  there is no com-
prehensive theory of surface premelting, so its detailed 
effects on the dynamics of ice crystal growth are not yet 
understood at even a qualitative level, a fact that has hin-
dered pro gress for many de cades.

This chapter also connects to current research in mo-
lecular dynamics simulations of the ice crystal surface, 
which have provided many insights into surface premelt-
ing and other ice properties [2002Mat, 2009Pae]. Mo-
lecular dynamics (MD) simulations are just beginning 
to calculate terrace step energies in ice [2020Llo], which 
have been mea sured as a function of temperature from 

 review it separately  here. Suffice it to say at this point that 
much effort has been expended by numerous researchers 
on this topic, including aspects related to meteorology, 
material science, chemical physics, and the mathe matics 
of pattern formation.

My primary goal in this book is to help carry the 
torch forward as snow crystal science advances through 
the twenty- first  century. Review papers are useful in this 
regard [1987Kob, 2001Nel, 2005Lib, 2017Lib], but their 
inevitable page limitations make it difficult to give the 
subject a proper treatment. I found much inspiration in 
Nakaya’s book when I first began studying snowflakes, 
and it is still a fascinating read [1954Nak]. But  there has 
been no comparable treatise on the subject for nearly 
70 years, so clearly an update is long overdue. When writ-
ten by a single author, books inevitably give a somewhat 
biased view of a subject, and this book is no exception 
in that regard. I find certain topics especially intriguing, 
so I dwell perhaps too long in  those areas. And I may skip 
quickly over related topics that deserve more attention, 
especially when I do not feel proficient in  those subjects. 
I have made some attempt to provide a broad overview 
of snow crystal science, but knowledge is a  limited com-
modity, and, like most  people, I tend to write about what 
I know (or what I think I know, as the case may be). I 
have been studying the physics of snow crystal growth 
for more than 20 years already, trying to understand the 
detailed physical pro cesses that govern growth rates and 
morphological development. During that time, I have 
photographed more than 10,000 natu ral snowflakes, 
mea sured the growth of countless small ice prisms, and 
developed techniques for growing complex dendritic 
structures  under well- controlled laboratory conditions. 
My interest is rooted in the fundamental physics of snow 
crystal formation, so that is the primary focus in this 
volume.

The Big Picture

Like most technical subjects, it is impossible to pre sent 
snow crystal science in an entirely linear fashion. Dif-
fer ent topics are invariably interconnected to some ex-
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 because solidification from vapor and from liquid can 
have quite diff er ent growth be hav iors. This chapter ends 
with qualitative discussions of numerous specific snow 
crystal growth be hav iors that arise from the interplay of 
the oft- competing pro cesses of particle diffusion and sur-
face attachment kinetics.

Attachment Kinetics: Chapter 4

In this chapter, I pre sent a comprehensive attachment ki-
netics (CAK) model that can explain most of the mor-
phological transitions seen in the Nakaya diagram. The 
model begins with terrace nucleation theory, as this phys-
ical pro cess nicely explains the growth of large facet sur-
faces. The theory incorporates terrace step energies on the 
basal and prism facets, which have been mea sured over 
a broad range of temperatures. This foundational ele-
ment of the model relies heavi ly on a several precision 
ice- growth mea sure ments that are presented separately 
in Chapter 7.

The CAK model goes on to incorporate the concept 
of structure- dependent attachment kinetics (SDAK), 
which stipulates that the molecular attachment kinetics 
on small faceted terraces can be dramatically diff er ent 
from that on large terraces. Enhanced surface diffusion 
 factors into this phenomenon, facilitated by temperature- 
dependent surface premelting that differs on the basal 
and prism facets. The SDAK effect further yields an edge- 
sharpening instability (ESI), which can explain the rather 
abrupt temperature transitions seen in the Nakaya dia-
gram, including the formation of thin plates at −15° C 
and hollow columns at −5° C. The CAK model extends 
and improves on  earlier models of the snow crystal at-
tachment kinetics, and it makes numerous predictions 
that are (so far) holding up to experimental scrutiny. The 
chapter ends with a detailed look at snow crystal mea-
sure ments near −5° C, as this temperature pre sents an es-
pecially in ter est ing nexus of growth be hav iors.

The general topic of surface attachment kinetics 
connects with a  great deal of work associated with crys-
tal growth theory and mesoscale molecular dynamics 
across many areas of scientific research [2007Mic, 

ice- growth experiments.  These developments suggest 
that computational chemistry  will soon become an es-
sential tool for better understanding the detailed molec-
ular dynamics governing snow crystal growth.

Diffusion- Limited Growth: Chapter 3

The formation of elaborately branched snow crystal 
structures results from the Mullins- Sekerka instabil-
ity, which arises from the slow diffusion of  water vapor 
molecules through air. Analytical solutions presented 
in Chapter 3 indicate that particle diffusion and sur-
face attachment kinetics are the primary physical 
 pro cesses guiding snow crystal growth. The complex 
 interplay of  these two effects yields the full menagerie 
of observed morphologies that are si mul ta neously 
branched and faceted.  These same analytical solutions 
show that heat diffusion and surface energies play rela-
tively minor roles in snow crystal dynamics, although 
they can become impor tant considerations in special 
circumstances.

The physics of particle diffusion is well described by 
the statistical mechanics of ideal gases, so this aspect of 
snow crystal science is essentially a solved prob lem. Ap-
plying this theory to the growth of complex structures 
continues to be a nontrivial challenge, however. Analytic 
solutions are suitable for especially  simple examples, like 
growing spheres and parabolic needlelike forms, and 
 these are extremely useful for examining scaling relations 
and revealing the relative importance of competing 
 factors in overall growth be hav iors. But numerical mod-
eling (Chapter 5) is needed to reproduce the complexity 
seen in all but the simplest snow crystals.

This chapter connects to a large body of more- 
general scientific work examining the growth of den-
dritic structures during solidification, including work on 
solvability theory [1992Mus, 1997Kar, 2019Liu]. Much 
of this work pertains to solidification from the melt, 
however, where heat diffusion and surface energies are 
dominant forces, while particle diffusion and attach-
ment kinetics are often negligible  factors. As a result, 
the connections are not as strong as one might expect, 
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Resolving  these issues is the subject of current research 
described in this chapter. Several numerical strategies 
have been investigated, including front- tracking methods, 
phase- field techniques, and cellular automata. The cellu-
lar automaton models seem to be especially  adept at deal-
ing with strongly anisotropic attachment kinetics, and 
 these appear to be winning the race to develop physically 
realistic computational snow crystals. This area is evolv-
ing rapidly, however, and it is difficult to predict how 
 future advances in numerical algorithms  will impact the 
diff er ent modeling strategies.

Laboratory Snow Crystals: Chapter 6

Quantitative experimental observations are an essential 
part of snow crystal science, so this chapter explores some 
laboratory techniques that have been applied in this area. 
I examine a variety of ice growth chambers that allow in 
situ observations of growing snow crystals over a wide 
range of environmental conditions, along with nucle-
ation methods, sample support mechanisms, and tech-
niques for creating clean ice samples with oriented basal 
and prism facets. Controlling, mea sur ing, and modeling 
supersaturation are discussed, as are unwanted system-
atic errors from substrate interactions, chemical impuri-
ties, and other experimental  factors. Imaging techniques 
at all scales are discussed briefly, along with other types of 
surface probes that can yield information about premelt-
ing and other aspects of the ice surface structure.

The technology associated with ice crystal investi-
gations connects with a broad range of studies in at-
mospheric science [1992Don, 2019Har, 2019Nel2], 
environmental science [2004Czi, 2012Hoo], atmospheric 
chemistry [2016Sei], materials science [1999Pet, 
2013Dev], planetary science [2002Pou], cryobiology 
[1987Ban], and ice technology [2009Pat]. Ice has a ubiq-
uitous presence in a broad range of scientific disciplines, 
linking  these areas like no other single material can. 
Thus, although I treat snow crystal formation as its own 
microcosm of scientific investigation, the subject is 
clearly woven into a much larger tapestry.

2010Zha]. However, while terrace nucleation theory has 
deep roots in  these areas, the SDAK and ESI phenom-
ena appear to be unique to snow crystal growth. The rea-
son is simply that ice is a special material in the world of 
materials science, as it has a high vapor pressure and is 
often investigated near the solid/liquid/vapor  triple 
point. The phenomenology of ice crystal growth thus 
stands apart from that found with the low- vapor- 
pressure, high- melting- point materials commonly stud-
ied for technology applications.

A somewhat diff er ent connection is with studies of 
antifreeze proteins (AFPs) in  water, which can strongly 
inhibit attachment kinetics at the ice/water interface 
[2003Du, 2009Pet]. Molecular dynamics simulations 
have become an impor tant tool in  these studies, which 
aim to understand the under lying molecular mecha-
nisms and to develop AFPs for applications in the food 
industry and in cryobiology.  These topics are all related 
at the molecular level, where they can be grouped into 
the general area of chemically mediated crystal growth. 
Notably, the effects of chemical additives on snow crys-
tal growth have been documented by numerous research-
ers, but  there is essentially no theoretical framework to 
describe the observations at pre sent.

Computational Snow Crystals: Chapter 5

Numerical models of solidification have been extensively 
studied since the 1980s, but only around 2005 did re-
searchers begin demonstrating realistic model struc-
tures that exhibited both branching and faceting. This 
area has attracted considerable attention from applied 
mathematicians and metallurgists seeking to better un-
derstand the solidification pro cess [2002Bra, 2011Mil]. 
The snow crystal case involves highly anisotropic attach-
ment kinetics exhibiting deep cusps at the facet  angles, 
requiring specialized computational modeling tech-
niques that are not needed in most metallurgical appli-
cations. At the time of this writing, several existing mod-
els have reproduced reasonable- looking structures, but 
only when some nonphysical assumptions are  adopted. 
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estals.” While not as flexible or scientifically valuable 
as  the electric- needle method,  these Plate- on- Pedestal 
(PoP) snow crystals are nearly ideal for recording high- 
resolution images of growing stellar- plate crystals. This 
apparatus has yielded the first photo graphs of stellar 
snow crystals that exhibit qualities that are overall supe-
rior to the best natu ral specimens, including better sym-
metry and sharper faceted features. The PoP technique 
has also yielded the highest- quality videos of growing 
stellar snowflakes thus far produced, along with the first 
observations of “identical- twin” snow crystals.

Natu ral Snowflakes: Chapter 10

This chapter examines the full menagerie of natu ral snow 
crystal types with illustrative sketches and abundant 
photographic examples. Classification schemes are dis-
cussed along with descriptions of a variety of common 
snow crystal structural features. This chapter pre sents 
something of a naturalist’s guide to falling snow, suitable 
for the con ve nient examination and identification of dif-
fer ent types of falling snow crystals.

Snowflake Photography: Chapter 11

Capturing quality imagery of natu ral snow crystals in 
cold conditions pre sents some unusual challenges for 
 aspiring snowflake photog raphers. Finding especially 
photogenic specimens is nontrivial;  handling them can 
be challenging; attaining suitable magnification requires 
special lenses; and lighting is problematic,  because single- 
crystal ice is quite transparent. This chapter looks at 
each of  these issues in detail and pre sents examples of a 
variety of innovative techniques that have been pio-
neered by the community of snowflake photog raphers.

Reductionism and Holism

My overarching goal in snow crystal science is a combina-
tion of reductionism and computational holism. The re-
ductionism side aims to break down the physics of snow 

 Simple Ice Prisms: Chapter 7

The surface attachment kinetics comprise the crux of the 
snow crystal prob lem— necessary to understand even 
basic observations like the Nakaya diagram, yet remark-
ably difficult to comprehend at even a qualitative level. 
Pro gress  toward developing a comprehensive physical 
model of the attachment kinetics begins with accurate 
mea sure ments of the growth of  simple ice prisms, a core 
topic that is examined in this chapter. I examine two key 
investigations in considerable detail, focusing on experi-
mental techniques, growth modeling, and managing 
systematic errors. Although this topic is quite special-
ized, the resulting data provide the empirical founda-
tion for the CAK model presented in Chapter 4, so pre-
cision mea sure ments like  these are central to our 
understanding of even the most basic ele ments of snow 
crystal formation.

Electric Ice  Needles: Chapter 8

 Because of the SDAK and ESI phenomena, the growth 
of  simple ice prisms cannot reveal all aspects of the at-
tachment kinetics. Further studies of complex growth 
morphologies are needed, which must be performed at 
high supersaturations and ultimately compared with full 
three- dimensional computational models of diffusion- 
limited snow crystal growth. This chapter pre sents 
what is perhaps the best overall experimental technique 
so far developed for examining the SDAK and ESI ef-
fects  under controlled conditions. By growing snow 
crystals on the ends of slender “electric” ice  needles in a 
dual diffusion chamber, a wide range of growth be hav-
iors can be examined with in situ observations and a 
well- defined initial seed- crystal geometry.

Designer Snow Crystals: Chapter 9

This chapter examines an especially artistic laboratory 
technique that exploits the ESI to create thin platelike 
snow crystals perched atop small, blocky, ice- prism “ped-



22 T C H A P T E R  1

problematic, and even the fastest supercomputers cannot 
come close to realizing full molecular resolution in large- 
scale phenomena. Thus, reductionism and holism tend to 
separate into distinct aspects of understanding snow 
crystal growth, and neither can be accomplished with ab-
solute precision. The science of complex systems is always 
an activity of successive approximations.

In any area of scientific investigation, pro gress is mea-
sured by quantitative comparisons between theory and 
experiment, and this certainly applies to snow crystals. 
Creating numerical models that generate snowflakelike 
structures is a start, but meaningful pro gress requires di-
rect comparison with laboratory observations. Chapters 5 
and 8 point  toward this eventual nexus of theory and ex-
periment, when comparisons between laboratory and 
computational snow crystals are sufficient to determine 
 whether our physical description of snow crystal forma-
tion is correct. We are certainly not at that point yet.

Some might argue that creating accurate computer 
simulations of all types of growing snow crystals would 
not constitute a true understanding of the under lying 
phenomenon. Debating this point would require a pre-
cise definition of the word “understanding,” which is 
itself a nontrivial philosophical point. Snow crystal 
formation involves a multitude of complex physical pro-
cesses acting over a broad range of length and time 
scales. It may indeed be the case that a single brain can-
not si mul ta neously comprehend all aspects of what is 
happening. If that is true, then we have  little choice but 
to let our machines do the heavy lifting for us. I would 
argue that a detailed computer model that reproduces 
laboratory snow crystals with high fidelity is as close to 
a true understanding as we are likely to achieve. It is a 
good place to start, at any rate.

As of this writing, many aspects of this overarching 
scientific strategy are coming together. Our understand-
ing of the attachment kinetics is beginning to make 
sense (Chapter 4), suitable computational models are 
rapidly becoming feasible (Chapter 5), and detailed com-
parisons between experiments and theoretical models 
of complex snow crystal morphologies are becoming pos-

crystal growth into its constituent parts and pro cesses, 
including crystal structure, attachment kinetics, diffusion- 
limited growth, and other  factors. Each of  these can be 
isolated and examined separately, perhaps right down to 
the molecular level, with the hope of developing precise 
mathematical models of all the relevant physics.

Some of the reductionist pieces are already well under-
stood, while  others remain quite puzzling. For example, 
the statistical mechanics of diffusion is well known for 
ideal gases, and the ideal- gas approximation is more than 
adequate for describing snow crystal growth. The ice lat-
tice structure and vari ous thermodynamic properties of 
 water and its phase transitions are also quite well under-
stood. However, the structure and dynamics of surface 
premelting are rather poorly known, and how premelting 
affects the attachment kinetics is a remarkably difficult 
prob lem. Nevertheless, at least in princi ple, it is pos si ble 
to isolate, investigate, and ultimately comprehend all the 
relevant physical pro cess involved in snow crystal growth.

Reductionism, however, is not sufficient to describe 
all of snow crystal science. Characterizing all the pieces 
of a puzzle and assembling the puzzle are two diff er ent 
endeavors. Learning the fundamental laws of quantum 
physics does not immediately explain every thing in the 
field of chemistry,  because understanding how atoms 
assem ble into molecules is a separate prob lem from un-
derstanding individual atoms alone. Similarly, compre-
hending the formation of a complete snow crystal, as il-
lustrated in Figures  1.21 and 1.22, is not the same as 
characterizing the separate physical pro cesses involved in 
its growth. Holism in this case is not so much that the 
 whole is greater than the sum of the parts. Rather, seeing 
the  whole requires that you be able to assem ble the parts.

Holism thus compels us to create a computational 
model that incorporates all the known physical pro cesses 
involved in ice crystal growth, with an accuracy sufficient 
to yield realistic snow crystal simulations. In princi ple, 
using a large enough computer, it would be straightfor-
ward to create the necessary algorithms. But the devil is 
in the details, and computational models involve a lot of 
details. Numerical inaccuracies and instabilities can be 
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common natu ral phenomenon. The rainbow provides a 
good analogy (see Figure 1.23), as considerable intellec-
tual determination and scientific advancement was re-
quired to fully comprehend its colorful arcs.  After centu-
ries of musings and slow pro gress  toward understanding 
 these vibrant meteorological displays, René Descartes 
described a detailed physical model of the rainbow in his 
1637 treatise, Discourse on the Method [1637Des], ex-
plaining how the primary and secondary rainbows arise 

si ble (Chapter 8).  There appears to be no serious road-
blocks impeding the path forward, and steady pro gress 
is being made on all fronts.

Curiosity- Driven Science

The quest to understand how snow crystals grow and de-
velop is not motivated by any practical applications or 
societal needs, but rather simply by a desire to explain a 

FIGURE 1.21. (Above) This “pond crystal” froze 
from liquid  water on the surface of a still pond, 
and basal faceting yielded a thin platelike sheet. 
Note how the angular branching exhibits the six-
fold symmetry that characterizes the ice crystal. 
(Below) Frost forms from  water vapor near ground 
level, and the resulting structures can look much 
like snow crystals. Large specimens like  these 
(about 2 cm in length) are called “hoarfrost” 
crystals.
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truly solved prob lem in 1908, when Gustav Mie devel-
oped a comprehensive mathematical theory for light scat-
tering from  spherical  water droplets. Does this knowl-
edge substantially improve the  human condition? In 
1880, Mark Twain wrote that “we have not the reverent 
feeling for the rainbow that the savage has,  because we 
know how it is made. We have lost as much as we gained 
by prying into that  matter” [1880Twa, p. 466]. Perhaps, 
but seeking truth seems to have worked for us in the past, 
especially in the natu ral sciences.

The snowflake is following a similar path through 
scientific history, except it is about 400 years  behind the 
rainbow. We are just now piecing together a rudimentary 
picture of the attachment kinetics, slowly deciphering 
the detailed molecular forces that guide growth rates and 
structure formation. The snowflake and the rainbow are 
two small parts of nature’s tapestry, and that is sufficient 
reason to justify our curiosity regarding their physical na-
ture. The aim of this book is to push forward this icy 
microcosm of science just a bit more.

NO TWO ALIKE?

Is it  really true that no two snowflakes are alike? I hear 
this question frequently, perhaps  because our elementary- 
school teachers planted the notion into all our heads as 
we practiced cutting paper snowflakes, and  there it has 
remained throughout our lives. It is a funny question, al-
most like a Zen koan—if two identical snowflakes fell 
in the vast winter forests, my inquisitive friend, would 
anyone ever know? And can you truly be sure that no 
two are alike, as you cannot possibly check them all to 
find out?  There is indeed a certain level of unknowabil-
ity to the question of snowflake alikeness, but as a phys-
icist, I feel that I can shed some light on this issue. As I 
 will demonstrate, the answer depends to a large extent 
on what you mean by the question. (Physics does occa-
sionally have its Zenlike qualities.)

The short answer to the question is yes—it is indeed 
extremely unlikely that any two complex snowflakes  will 
look exactly alike. It is so unlikely, in fact, that even if 

from single and double reflections inside raindrops. Isaac 
Newton discovered color dispersion three de cades  later, 
thereby explaining the rainbow’s characteristic colors. 
And around 1800, Thomas Young further identified the 
fainter supernumerary bows as a manifestation of the 
wavelike nature of light. The rainbow only became a 

FIGURE 1.22. This series of images shows the growth and devel-
opment of a laboratory- grown snow crystal. The temperature 
and supersaturation  were changed as the crystal grew, alternat-
ing between periods of faceted and branched growth.  After the 
initial seed crystal had grown into a larger hexagonal plate, the 
conditions  were changed to sprout branches from the six corners 
of the plate. Additional changes  were applied to stimulate the 
growth of sidebranches at vari ous times.  Because the six 
branches experienced the same changing growth conditions, 
they all developed symmetrically. It took about 45 minutes to 
grow the full crystal, which mea sured about 2 mm from tip to tip.
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A  water molecule is considerably more complex than 
an electron, and not all  water molecules are exactly 
alike. If we restrict ourselves to  water molecules that 
contain two ordinary hydrogen atoms and one ordi-
nary 16O atom, then again, physics tells us that all such 
 water molecules are exactly alike. However, about one 
molecule out of  every 5,000 naturally occurring  water 
molecules  will contain an atom of deuterium in place 
of one of the hydrogens, and about one in 500  will con-
tain an atom of 18O instead of the more common 16O. 
And  these rogue atoms can be distinguished from 
their common cousins.

 Because a typical small snow crystal might contain 
1018  water molecules, we see that about 1015 of  these  will 
be isotopically diff er ent from the rest.  These unusual 
molecules  will be randomly scattered throughout the 

you looked at  every one ever made, over all of Earth’s his-
tory, you would almost certainly not find any exact du-
plicates. The long answer is a bit more involved, how-
ever, as it depends on just what you mean by “alike” 
and on how you define a “snowflake.” For example, I 
 will claim that it is pos si ble that two nano- snowflakes 
could be exactly alike. When developing the theory of 
quantum mechanics, physicists discovered that some 
 things in nature are exactly, precisely, perfectly alike— 
indistinguishable is the proper technical term. For exam-
ple, our understanding of elementary particles indicates 
that all electrons are fundamentally indistinguishable 
from one another. This is one of the cornerstones of 
quantum physics, and alikeness in this arena is a pro-
found concept. Indistinguishability is part of what de-
fines a truly elementary particle.

FIGURE 1.23. Explaining the rainbow required a synthesis of many advances in physics, optics, and 
mathe matics, so  these colorful arcs  were not fully understood  until early in the twentieth  century. 
Snow crystal formation is a substantially tougher prob lem than the rainbow, involving subtle many- 
body molecular pro cesses at the ice surface. Comprehending the snowflake remains very much a 
work in pro gress. Rainbow photo by Steven E. Nelson.
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than an atom. With this relaxed definition, you could 
prob ably find two identical- looking hexagonal prisms 
falling from the sky if you conducted a diligent search, 
and it is certainly easy to make such  simple crystals in the 
laboratory. Figure 1.24 shows a pair of identical- looking 
snowflakes that happened to fall next to one another in 
my lab. When the overall crystal morphology is  little 
more than a  simple hexagon, one looks much like any 
other.

As the morphology of a snow crystal becomes more 
complex, however, the number of pos si ble ways to make 
it soon becomes staggeringly large. To see just how 
 rapidly the possibilities increase, consider a simpler 
question— how many ways can you arrange books on 
your bookshelf? With three books,  there are six pos si ble 
arrangements, and you can easily sketch all of them for 
yourself. Increasing to 15 books,  there are 15 choices 
when you place the first book on the shelf, then 14 for 
the second, 13 for the third, and so on. Multiply it out 
and  there are more than a trillion ways to arrange just 
15 books. With 100 books, the number of pos si ble ar-
rangements goes up to just  under 10158, which is about 
1070 times larger than the total number of atoms in the 
entire known universe!

If you gaze at a complex snow crystal  under a micro-
scope, you can often pick out a hundred separate fea-
tures if you look closely.  Because all  those features could 
have developed differently, or could have appeared in 
slightly diff er ent places, the math ends up being like that 
with the books, and it applies to fingerprints as well. The 
exact calculation would depend on the details, along 
with how you define individual features and their loca-
tions. But the details are not impor tant,  because the total 
number of pos si ble ways to make a complex snow crys-
tal soon becomes unfathomably large. Thus, it is essen-
tially impossible that any two complex snow crystals, out 
of all  those made over the entire history of the planet, 
have ever looked exactly alike.

The story of snowflake alikeness takes another amus-
ing turn when you start looking at complex laboratory- 
grown crystals. As I described  earlier in this chapter, the 

snow crystal lattice, giving it a unique design. The prob-
ability that two snow crystals would have identical place-
ments of  these isotopic anomalies is essentially zero. 
Even with 1024 snow crystals being made per year on 
Earth, the probability that any two would be exactly 
identical within the entire lifetime of the Universe is zero 
in any practical sense.

Thus, at this extreme level of atomic precision, no 
two snow crystals can be exactly alike  because of  these 
isotopic differences. However, an exception ( there are 
few absolute statements in science) would be a snow 
crystal with only a handful of molecules. If we assem-
ble an ice crystal of only six molecules, for example, 
then it could easily happen that each of the six  will 
contain two ordinary hydrogen atoms and one ordi-
nary 16O atom. Furthermore, a cluster of six molecules 
 will only have a few stable configurations. Therefore, 
 there is a reasonable probability that two six- molecule 
snow crystals would be exactly alike, quantum me-
chanically indistinguishable from one another. How-
ever, perhaps an assembly of just six molecules does not 
a snowflake make.

If we restrict ourselves to isotopically pure  water 
molecules, it is still extremely improbable that two mac-
roscopic snow crystals would be exactly alike. When a 
crystal grows, its molecules do not always stack together 
with perfect regularity, so a typical snow crystal contains 
a large number of minor crystal dislocations, which again 
are scattered throughout the crystal in a random fashion. 
One can then argue, as with the isotopes, that the prob-
ability of two crystals growing with exactly the same pat-
tern of dislocations is vanishingly small. And again, one 
has the exception of few- molecule crystals, which can 
easily be  free of dislocations.

Another part of this tale is that small snow crystals 
can at least look alike, even if they are not precisely iden-
tical down to the last molecule. So, let us relax our defi-
nition of alikeness and say that two snow crystals are 
alike if they just look alike in an optical microscope. The 
smallest features one can see in an optical microscope are 
about 1 micrometer in size, which is 10,000 times larger 
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function of time.  Doing this with some care yields results 
like that shown in Figure 1.25. As  these crystals  were de-
veloping, I occasionally subjected them to abrupt changes 
in temperature and/or supersaturation.  Because both 
crystals saw the same changes at the same times, they re-
sponded with synchronized growth be hav iors. I like to 
call  these “identical- twin” snowflakes, in analogy to 
identical- twin  people. They are clearly so alike that  there 
must have been some under lying connection between 
them, yet they are not identical in an absolute sense.

final shape of a large stellar snow crystal is determined 
by the path it traveled through the clouds as it formed. 
 Because the air is usually turbulent to some extent, even 
 under calm conditions, the paths of diff er ent snow crys-
tals are typically quite meandering and chaotic. Trajec-
tories that bring two crystals close to one another  will 
soon diverge, separating them again by large distances. 
In the laboratory, however, it is pos si ble to place two seed 
crystals near one another on a fixed substrate and then 
subject them both to the same growth conditions as a 

FIGURE 1.24. This laboratory photo shows several 
small, thin- plate snow crystals that grew while falling 
freely in air and then landed on a transparent substrate 
(see Chapter 6).  Because the crystals have a  simple 
hexagonal shape, one can easily find a pair of nearly 
identical specimens next to each other, like the two 
centered  here.

FIGURE 1.25. A pair of laboratory- grown “identical- twin” snow crystals, surrounded by a field of  water droplets. 
 These grew side- by- side on a fixed transparent substrate using the Plate- on- Pedestal technique described in Chap-
ter 10.  Because both crystals experienced the same growth conditions as a function of time, they grew into nearly 
identical shapes. Analogous to identical- twin  people,  these similar snowflakes are clearly related, even though they 
are not precisely equal in  every detail.



FIGURE 2.1. This synthetic snow crystal, mea sur ing 2.3 mm from tip to tip, grows while supported 
above a transparent sapphire substrate, surrounded by a field of small supercooled  water droplets. The 
precise alignment of its faceted surfaces reveals that the entire complex structure is a single crystal of 
ice with its constituent molecules arranged on an ordered lattice. Chapter 9 describes how snow crys-
tals like this one can be created in the laboratory.
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TWO

Ice Crystal Structure

The chief forms of beauty
are order and symmetry and definiteness.

— ARISTOTLE,  METAPHYSICS ,  BOOK XII I  (350 BCE)

which the ice surface is particularly “smooth” on a mo-
lecular scale. This feature gives each facet a lower- than- 
average surface energy, plus it hinders the attachment ki-
netics of impinging molecules to the surface. This latter 
property, much more than the former, controls the for-
mation of snow crystal facets and other growth be hav-
iors. The structural characteristics of  these faceted sur-
faces change substantially with temperature near 0° C, 
and this fact is ultimately responsible for many of the 
morphological transitions seen in the Nakaya diagram, 
as I discuss at length in Chapter 4.

Thermal equilibrium  will be a shared aspect of most 
of the topics discussed in this chapter, distinguishing it 
from the chapters that follow. Understanding a system 
in equilibrium is a statics prob lem, involving energy min-
imization, basic statistical mechanics, and related topics 
where the under lying physics is well in hand, at least in 
princi ple. In contrast, crystal growth is a dynamics prob-
lem, involving nonstatic molecular interactions, energy 
flow, particle fluxes, and nonequilibrium statistical me-
chanics, where often the governing physical pro cesses are 
difficult to comprehend and quantify. For this reason, we 

T he lattice structure and physical properties of ice 
are foundational ele ments needed to under-
stand the formation of snow crystals. Several 
books about the materials science of ice have 

appeared over the years [1970Fle, 1974Hob, 1999Pet], 
so I  will not delve into all the multifarious mechanical, 
thermal, chemical, electrical, and optical properties of 
this fascinating substance  here. Instead I examine the 
specific qualities of ice that  factor directly or indirectly 
into snow crystal growth. One focus  will be on the basic 
molecular arrangement of the ice lattice, as this under-
lies the well- known sixfold symmetry seen in snow crys-
tals, plus it explains several va ri e ties of crystal “twins” 
that are observed in natu ral snowflakes. Throughout 
this discussion, two- dimensional (2D) projections of 
the molecular lattice  will be useful for visualizing dif-
fer ent aspects of the ice surface structure, terrace steps, 
and crystal twinning.

The molecular organ ization of the ice/vapor inter-
face is another impor tant theme in this chapter,  because 
that interface is where growth happens. The basal and 
prism facets are identified with specific lattice planes for 
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red in the figure. Although this just a small slice of the 
 water phase diagram, the complex dynamical be hav ior 
that takes place along this phase boundary is already 
more than enough to fill a book.

The  water phase diagram only delineates the vari ous 
equilibrium phases of ice,  water, and  water vapor, depict-
ing the lowest- energy state at each temperature and 
pressure. As such, the chart conceals the phenomenolog-
ical richness inherent in transitions between the diff er-
ent states. Each line in the phase diagram tells us  under 
what equilibrium conditions the adjacent phases can co-

begin our scientific discussion of snow crystal formation 
by examining the most relevant properties of the ice crys-
tal in equilibrium.

The full phase diagram of  water is a complicated 
beast, as shown in Figure 2.2, including some 15 known 
forms of ice, with perhaps more to come as ever- higher 
pressures are being experimentally explored. Although 
 there is considerable scientific interest in the crystallog-
raphy and stability of the vari ous exotic states of ice,  these 
topics lie beyond the scope of this book. Our concern 
 will be the basic, no- frills ice/vapor transition, circled in 
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FIGURE 2.2. The phase diagram of  water shows its equilibrium form as a function of temperature and 
pressure. Snow crystal growth mostly occurs on the ice/vapor boundary below the  triple point at tem-
peratures between 0° and −40° C, where pressure refers to the partial pressure of  water vapor. Note 
that most of the known phases of ice exist only at extremely high pressures. Image adapted from 
[2018Cmg].
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the only form of ice commonly found on the earth’s sur-
face, including in snow crystals. Note how two hydro-
gen atoms closely flank each oxygen atom, so the trio 
forms an essentially intact H2O molecule. Strong cova-
lent bonds tightly bind the two hydrogens in each  water 
molecule, while weaker hydrogen bonds connect adja-
cent molecules. The ice crystal, therefore, can be consid-
ered as a collection of intact  water molecules arranged in 
a lattice structure.

While the arrangement of oxygen atoms is fully de-
scribed by the hexagonal lattice structure in ice Ih, the 
relative orientations of the molecules are described by the 
Bernal– Fowler rules [1933Ber], placing exactly one hy-
drogen atom between each adjacent pair of oxygen atoms, 
as shown in Figure 2.4. It is pos si ble to twist the individ-
ual H2O molecules around into many pos si ble arrange-

exist, but it says  little about the nonequilibrium physi-
cal pro cesses that define the character of each phase tran-
sition. It is likely that  there are many fascinating stories 
to tell about the growth dynamics that must occur along 
 every line segment in the phase diagram. We restrict our 
attention to one specific phase transition,  because it has 
proven itself worthy of study, plus the  others remain al-
most completely unexplored [2005Mar].

ICE CRYSTALLOGR APHY

The usual scientific definition of crystal is any material 
in which the atoms and molecules are arranged in an or-
dered lattice (although liquid crystals, quasicrystals, 
and other uses of the word can be found in the scientific 
lit er a ture). Figure 2.3 shows a molecular model of ice Ih, 

FIGURE 2.3. A molecular model of the ice Ih crystal rotated by 
0, 18, 72, and 90 degrees about the [01 10]  axis. The large blue 
spheres represent oxygen atoms, and the smaller spheres repre-
sent hydrogen atoms. The first image is looking down the c- axis, 
revealing the hexagonal lattice structure.

FIGURE 2.4. A 2D toy- model example of the Bernal− Fowler 
rules in ice Ih (although the full 3D rules do not visualize espe-
cially well in two dimensions). The basic idea sketched  here is that 
 there are many pos si ble ways to orient the individual H2O mole-
cules in the crystal while keeping exactly one hydrogen atom 
between each adjacent pair of oxygen atoms, with each hydro-
gen forming one strong and one weak bond.
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face, the first layer of spheres is optimally stacked in the 
usual hexagonal close- packed arrangement. The next 
layer goes on top of the first with no ambiguity;  there is 
only one obvious way to place a second layer of spheres 
on top of the first. With the third layer, however,  there 
are two choices in its placement. If the first sphere is 
placed directly over a sphere in the first layer, then the 
Ih lattice results (assuming this same choice is made for 
all subsequent layers). Shifting the third layer slightly, so 
the third- layer spheres are not directly over spheres in the 
first layer, results in the Ic structure (again, assuming this 
choice is made consistently). If some layers use the Ih 
placement and  others use the Ic placement, this is called 
a “stacking disordered” structure.

Although cubic ice Ic has been created in the labo-
ratory at low temperatures, no examples of faceted 
“cubic” snow crystals have been made, although this 
would certainly be an in ter est ing sight. More signifi-
cantly, no pure samples of cubic ice Ic, faceted or not, 
have ever been definitively observed in the laboratory or 
in nature. Laboratory samples are generally stacking dis-
ordered to a substantial degree and are thus essentially 
molecular  jumbles of ice Ic and Ih. It appears that ice Ic 
has a slightly lower surface energy than ice Ih, causing it 
to nucleate more readily from liquid  water  under certain 
conditions [1995Hua, 2005Joh].  There is even some evi-
dence that ice Ic can be found as minute ice grains in 
high- altitude clouds, although this is not known with 
certainty. The line between ice Ih and ice Ic in Figure 2.2 
is dotted, not solid, representing that this is not a real 

ments while maintaining two strong and two weak O- H 
bonds on each oxygen atom. This orientational ambiguity 
appears to play no impor tant role in snow crystal growth, 
but it is a basic feature of the ice Ih lattice. Of course, this 
is all better visualized in three dimensions, and ice mo-
lecular model kits are readily available for this purpose.

Hexagonal and Cubic Ice

The two O- H bonds in a  free H2O molecule meet at an 
 angle of 104.5 degrees, which is close to the tetrahedral 
 angle of 109.5 degrees.  Because of this near match, the 
four O- H bonds emanating from each oxygen atom in 
the ice crystal (two tight bonds, two weaker bonds) are 
essentially in a tetrahedral arrangement. Given this bond 
structure,  there are two ways to form a crystal lattice: the 
hexagonal (icelike) structure and a cubic (diamondlike) 
structure, as shown in Figure 2.5. The difference between 
 these two structures comes down to a twist in the bond-
ing of adjacent tetrahedra separating the basal planes. 
Adopting the ice Ih bonding gives the normal ice lattice 
with hexagonal symmetry. Choosing the alternate bond-
ing throughout the lattice yields a structure with a cubic 
symmetry called ice Ic. Both crystal structures can be 
found in the phase diagram in Figure 2.2, but only ice 
Ih is stable  under ordinary environmental conditions. 
Nevertheless, as we  will see below, cubic ice bonding 
plays a small role in some snow crystal structures.

Stacking spheres is another way to see the difference 
between the Ih and Ic lattices. Beginning with a flat sur-

Hexagonal
ice

Cubic ice

[111]
axis

c-axis
FIGURE 2.5. The essential lattice difference between hex-
agonal ice Ih (left) and cubic ice Ic (right) is a twist in some of 
the bonds, specifically,  those between the basal layers in ice 
Ih.  Here the balls and sticks represent oxygen and hydrogen 
atoms, respectively.
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the figure. The {1120} planes are sometimes called the 
“secondary prism  faces,” although growing ice crystals do 
not form facets on  these planes.

While the {0001} basal facets and the {1010}  prism 
facets are by far the most common faceted surfaces seen 
in snow crystals, the {10 11}  pyramidal facets can also 
be observed in nature, as illustrated in Figure  2.7. 
 Little is known about the growth of pyramidal facets, 
but the evidence suggests that they form only rarely, typ-
ically at temperatures below −20° C.

To relate the Miller- Bravais indices to the ice crystal 
facets and the molecular structures of  these surfaces, it 
is useful to examine several 2D projections of the 
three- dimensional (3D) lattice structure of ice Ih. For ex-
ample, Figure  2.8 shows the lattice structure of the 
{1010}  prism facets and the {1120}  surfaces, both 
looking down along the c- axis. Since the early days of 
X- ray crystallography, it had been assumed that the 
{1010}  surfaces coincided with the well- known prism 
facets seen in snow crystals, as the {1010}  surfaces have 

phase boundary in the usual thermodynamic sense of a 
first- order phase transition. In general, the overall equi-
librium and nonequilibrium relationships between ices 
Ih and Ic are not completely understood.

Lattice Projections

When referring to the vari ous planes and axes in crystal 
lattices, it is customary to use  either the 3- axis Miller in-
dices or (more usually) the 4- axis Miller- Bravais indi-
ces, and the latter are shown in Figure 2.6 for ice Ih. 
Curly brackets refer to families of planes, including the 
{0001} basal facets and the {1010}   family of prism fac-
ets. Parentheses refer to specific planes, including the 
basal facet (0001) and the six prism facets (1100),  (1010), 
(0110),, (1100),, (1010),, and (0110).. Square brackets 
denote directions, for example, the c- axis [0001] that is 
perpendicular to the basal face, or the a- axis [1120] that 
is perpendicular to the (1120) face. All six a- axes point 
away from corners of the hexagonal prism, as shown in 

basal facet

[2110]

c axis
[0001]

(0001)

a axis

prism
facet

[2110]

(0110) (1100) (1010) (0110) (1100) (1010)

[1
12

0]

[2110] [2110][1210][1120]

(1120)

[1
12

0] FIGURE 2.6. The Miller- Bravais indi-
ces displayed on an “unfolded” hex-
agonal prism of ice Ih.

FIGURE 2.7.  These south- pole 
snow crystals display pyramidal 
facets [2006Tap]. The scale bar in 
the first photo is 100 μm long, and 
the  angles shown in the second are 
31.5 degrees. Images courtesy of 
Walter Tape and Jarmo Moilanen.
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Prism facet 1120 surface

a0

FIGURE 2.8. Two projections of the ice 
Ih lattice looking down along the [0001] 
direction (perpendicular to a basal facet). 
A prism { 1010}  facet and a {1120}  sur-
face are labeled. The latter is sometimes 
called a “secondary prism surface,” al-
though it does not exhibit any known 
faceting.

Basal facet

Pyram
idal facet

Prism
 facet

c0
FIGURE 2.9. A projection of the ice Ih lattice 
looking along the [1120]  direction, showing 
the basal, prism, and pyramidal facets. The 
 angle between the prism and pyramidal fac-
ets is tan−1( 3a0/2c0) = 28.0  degrees. (The 
31.5- degree  angle seen in Figure 2.7 is from 
looking along the [ 1010]  direction, which is 
not parallel to a pyramidal facet.)

a more tightly bound lattice structure compared to the 
{1120}  surfaces. Although this early assessment was in-
deed correct, it was only definitively confirmed by di-
rect observation quite recently [2017Bru].

Figure  2.9 shows another lattice projection that in-
cludes the basal, prism, and pyramidal facets. The ice lat-
tice par ameters a0 and c0 are defined in Figures 2.8 and 
2.9, with crystallographic mea sure ments near 0° C giving

 
a0 = 0.452 nm,
c0 = 0.736  nm,  (2.1)

and the respective spacings between basal and prism lay-
ers are then

 
xbasal = c0

2
= 0.37  nm

x prism = 3
2

⎛
⎝⎜

⎞
⎠⎟
a0 = 0.39 nm,

 
(2.2)

which is comparable to the effective size of a  water mol-
ecule in ice, a≈ cice−1/3 ≈0.32 nm, nm, where cice is the num-
ber density of  water molecules in ice.
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stantial only at low temperatures, as pyramidal facets ap-
parently only form in quite cold conditions.

When the temperature is sufficiently low,  water mole-
cules on some metallic surfaces assem ble into 2D hex-
agonal lattice structures that can be imaged using atomic 
force microscopy [2016Mai]. Edge structures resemble 
the lattice models in Figure 2.11, and it is even becoming 
pos si ble to investigate growth pro cesses in this regime 
[2020Ma].

As a general word of caution, it should be remembered 
that  these sketches of lattice projections are oversimpli-
fied repre sen ta tions of the molecular surface structures 
of ice, approximately valid only at extremely low tem-
peratures. At temperatures typically associated with 
snow crystal growth, thermal fluctuations can easily dis-
tort (or even completely rearrange) the lattice structure 
at the surface, and the high vapor pressure of ice means 
that molecules are continuously leaving the surface and 
reattaching at a prodigious rate, of order one monolayer 
per microsecond at −5° C. Although  these lattice 
sketches can be quite useful for visualization purposes, 
real ice surfaces are neither rigid nor static.

Terrace Steps

As we  will see in Chapter 4, the nucleation of new mo-
lecular terraces is a key  factor in the formation of snow 
crystal facets, and terrace nucleation is governed by the 
terrace step energies. It is useful, therefore, to examine 
the molecular structure of terrace steps, and several lat-
tice projections that do so are shown in Figures 2.10 and 
2.11. While the surface energies of the facet planes are 
generally lower than nonfaceted surfaces, this anisotropy 
in the surface energy seems to play only a minor role in 
snow crystal faceting. The anisotropy in the attachment 
kinetics is much stronger, and this is the more impor tant 
 factor governing snow crystal growth rates and faceting 
(Chapter 4).

The fact that the terrace steps are relatively shallow on 
the {1120}  surfaces, as seen in Figure 2.11, likely explains 
the absence of faceting on  these surfaces. In contrast, the 
larger terrace steps on the basal and prism surfaces creates 
a substantial nucleation barrier that promotes strong 
faceting on both  these surfaces. This line of reasoning fur-
ther predicts that the pyramidal step energy becomes sub-

FIGURE 2.10. (Left) A projection of the ice Ih lattice looking along the [1120]  direction, showing 
basal and prism facets and terrace steps. The spacing between basal layers is c0/2 = 0.37 nm, 
while the spacing between prism layers is ( 3/2)a0 =0.39nm.  (Right) A projection of the ice Ih 
lattice looking along the [ 1010]  direction, showing basal and (1120)  surfaces and terrace steps. 
From this perspective, it is easy to see why the basal terraces are sometimes called molecular 
“bilayers.”

Basal facet Basal facet

Prism
 facet

1120 surface
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uid and solid phases of a material is only precisely de-
fined when the sample has infinite extent (called “bulk” 
material). For nanometer- scale molecular clusters, the 
melting point can be substantially lower than the bulk 
melting temperature [2005Bre, 2011Agu], and this shift 
is related to surface premelting.  There is considerable cur-
rent theoretical and experimental interest in the topic 
of cluster premelting and finite- sample thermodynamics 
more generally. Unfortunately,  there is no comprehensive 
theory at pre sent that provides an accurate quantitative 
description of  either cluster premelting or surface pre-
melting in detail.

The experimental evidence to date suggests that the 
first ice bilayer becomes at least partially disordered 
at quite low temperatures, roughly −70° C [2002Wei], 
and a second bilayer joins the QLL at around −15° C 
[2017San]. The QLL thickness increases rapidly at still 
higher temperatures, diverging logarithmically as the 
temperature approaches the melting point. As illus-
trated in Figure  2.12, the many conflicting mea sure-
ments of premelting in ice make it difficult to deter-
mine the QLL characteristics with much confidence. 
The phenomenon has been investigated using a variety 
of surface probes, but diff er ent experiments mea sure 
diff er ent surface properties, and it is not always clear 
how to compare vari ous results [2019Sla]. Sum fre-
quency generation spectroscopy has proven to be an es-
pecially useful tool, as this probe is noncontact and 
quite surface specific [2002Wei, 2017San]. However, 

SURFACE PREMELTING

 Because  water molecules at an ice surface are less 
tightly bound compared to  those in the bulk, a disor-
dered quasiliquid layer (QLL) appears near the melt-
ing point, and this phenomenon is known as surface 
premelting [1999Pet, 2006Das, 2007Li, 2014Lim]. 
First predicted by Michael Faraday in 1859 [1859Far], 
much recent research has sought to better understand 
this enigmatic feature of the ice/vapor interface, 
which is illustrated in Figure 2.12. One intuitive way 
of thinking about surface premelting is through the 
Lindemann criterion [1910Lin], which states that a 
solid  will melt if thermal fluctuations of the intermo-
lecular distance become larger than approximately 
10–15  percent of the average distance. This empirical 
rule applies (roughly) to a broad range of materials, 
and one expects that thermal fluctuations  will be 
larger near the surface, owing to the reduced binding 
 there. One can turn this into a pedagogically useful 
toy model [2005Lib], but more sophisticated theoreti-
cal treatments of the phenomenon have been devel-
oped [2006Das, 2014Lim, 2019Sla]. Molecular dy-
namics simulations are an especially power ful tool for 
understanding the dynamics of surface premelting and 
the temperature- dependent structure of the quasiliq-
uid layer [2007Li, 2019Ben, 2020Llo].

Surface premelting is an equilibrium phenomenon 
demonstrating that the phase boundary between the liq-

FIGURE 2.11. Terrace steps on a prism { 1010}  facet and a {1120}  surface, as seen looking along the 
[0001] direction. Note that the prism step is more distinct, and admolecules would likely bind much 
more strongly at a terrace step than on the prism facet. In contrast, the {1120}  step is less distinct, and 
binding at the step edge is likely not much stronger than elsewhere on the surface. This difference in 
terrace steps explains why faceting is strong on prism surfaces and absent on {1120}  surfaces.

Prism facet

Prism facet

Terrace
step

(1120) Surface
(1120) Surface
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producing accurate, quantitative comparisons between 
experiments and theoretical models remains a topic of 
much current research.

It has long been speculated that surface premelting 
plays a major role in snow crystal growth, especially in 
relation to the temperature- dependent morphological 
transitions seen in the Nakaya diagram [1984Kur1, 
1987Kob]. While such a dramatic restructuring of the 
ice surface is almost certainly an impor tant  factor, es-
tablishing a clear physical connection between surface 
premelting and snow crystal growth is a nontrivial chal-
lenge, as discussed in Chapter  4. Our current under-
standing of ice premelting, based on a combination of 
experiments and molecular dynamics (MD) simulations, 
is simply not yet advanced enough to make reliable pre-
dictions regarding the ice/vapor attachment kinetics.

Surface premelting becomes especially pronounced 
at temperatures above −1° C, when the QLL becomes 
quite thick and perhaps subject to instabilities that 

 result in a nonuniform QLL thickness [2015Asa, 
2019Nag]. This topic relates to a long- debated question 
of  whether  water completely “wets” ice at 0° C. The evi-
dence suggests that the ice/water contact  angle near 
the  triple point is small but nonzero, although the sub-
ject has not been fully settled. Snow crystal growth at 
temperatures above −1° C could be phenomenologi-
cally quite in ter est ing, although few observations have 
been made in this high- temperature regime.

ICE ENERGETICS

Many ice properties  factor into the physics of snow crys-
tal growth, notably the bulk, surface, and step energies 
of the ice crystal. The terrace step energies are particu-
larly impor tant for determining growth rates, so  these 
 will receive special attention throughout this book. For 
 future reference, I document  here a list of particularly rel-
evant ice energetics.

Tm – T = 50K Tm – T = 1K 100
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FIGURE 2.12. (Left) A molecular- dynamics simulation demonstrating surface premelting [2014Lim]. At 
temperatures far below the melting point, the bulk lattice structure persists up to the ice/vapor inter-
face. Near the melting point, however, the top molecular layers lose their ordered structure, forming 
an amorphous premelted layer, also called a “quasiliquid layer” (QLL). (Right) The QLL thickness d (T ) 
generally increases at higher temperatures, but dif fer ent experiments and MD simulations yield quite 
dif fer ent results [2018Con]. Surface premelting likely plays an impor tant role in snow crystal growth, par-
ticularly in how the attachment kinetics vary with temperature (see Chapter 4). However, understanding 
this role remains a challenging prob lem. Images courtesy of David Limmer and Julián Constantin.
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Both the ice and  water densities can be assumed constant 
for our purposes, as both change only slightly with tem-
perature. The equilibrium vapor density, in contrast, de-
pends strongly on temperature and so requires special 
treatment.

Vapor Pressure and Supersaturation

The equilibrium (saturated) vapor pressure of ice and 
 water can be written in the Arrhenius form

 csat ≈C(T )exp − ℓ
kT

⎛
⎝⎜

⎞
⎠⎟ ,  (2.7)

where ℓ ≈ Lmmol is the latent heat per molecule, and C(T) 
is a weak function of temperature.  Table 2.1 gives mea-
sure ments of the vapor pressure of  water and ice 
[1971Mas] along with other useful quantities, and Fig-
ure 2.13 shows a fit to the vapor- pressure data, expressed 
as the Arrhenius curves:

 
pice ≈3.7e10 ⋅⋅exp − 6150

TK

⎛
⎝⎜

⎞
⎠⎟

,

pwater ≈ (2.8e9 +1700TC
3 )⋅⋅exp − 5450

TK

⎛
⎝⎜

⎞
⎠⎟

,
 

(2.8)

where TK is the temperature in Kelvin and TC is the tem-
perature in degrees Celsius. Figure 2.13 also shows the 
supersaturation of supercooled liquid  water relative 
to ice,

 σ water =
csat,water − csat,ice

csat,ice
,  (2.9)

along with the “excess”  water vapor mass density plotted 
as a function of temperature,

 [csat, water (T) –  csat,ice (T)] m water. (2.10)

The data in the  table and in  these two plots are 
often  useful for understanding the physics under lying 
snow crystal growth and for estimating experimental 
quantities.

Bulk Energies

Bulk material properties refer to sample sizes that are 
large enough that all surface effects are negligible. The 
bulk energies include the latent heats of the water/vapor 
transition (called “evaporation,” “condensation,” or “va-
porization,” depending on conventions), the ice/vapor 
transition (typically called “sublimation” or “deposi-
tion”), and the ice/water transition (melting, freezing, 
or fusion). Each of  these is the amount of energy needed 
to cross a line in the  water phase diagram (see Figure 2.2), 
as all of  these are basic first- order phase transitions. 
 Because  water is an extremely well- studied material, all 
 these quantities have been accurately mea sured over a 
broad range of temperatures and pressures. Near the 
 triple point of  water (using the notations s/l/v = solid/
liquid/vapor = ice/water/wv),

 
Lsv ≈2.8×106   J/kg
Llv ≈2.5×106  J/kg
Lsl ≈0.33×106  J/kg ,

 
(2.3)

and we see Lsv ≈ Lsl + Llv, as we would expect at the  triple 
point. The latent heats vary somewhat with position on 
the respective phase bound aries, but  these differences are 
not impor tant for our focus on snow crystal growth.

Related useful quantities include the specific heat ca-
pacities ( here at constant pressure) of  water vapor, liq-
uid  water, and ice:

 
cp,wv ≈2.0 kJ/kg ⋅⋅K

cp,water ≈ 4.2 kJ/kg ⋅⋅K
cp,ice ≈2.1 kJ/kg ⋅⋅K;

 
(2.4)

thermal conductivities

 
κwv ≈0.02 W /m ⋅⋅K

κwater ≈0.6  W /m ⋅⋅K
κ ice ≈2.3 W /m ⋅⋅K;

 
(2.5)

and material densities

 
ρice ≈917  kg /m3

ρwater ≈1000 kg /m3 .
 

(2.6)
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 TABLE 2.1
Several handy physical quantities that commonly appear in the study of snow crystal growth, listed as a function 
of temperature

Temp 
(°C)

P water 
(mbar)

Pice 
(mbar)

csat 
(#/m3)

csat/cice σ water νkin 
(μm/sec)

η	
(Κ–1)

χ0 Cdiff 
(Κ–2)

−45 0.111 0.072 2.29 × 1021 7.46 × 10−8 0.5431 9.6 0.1109 0.017 6.48 × 10−3

−44 0.123 0.081 2.55 × 1021 8.31 × 10−8 0.5280 10.8 0.1136 0.019 6.37 × 10−3

−43 0.138 0.091 2.87 × 1021 9.35 × 10−8 0.5154 12.1 0.1143 0.022 6.26 × 10−3

−42 0.153 0.102 3.20 × 1021 1.04 × 10−7 0.5015 13.6 0.1107 0.024 6.15 × 10−3

−41 0.170 0.115 3.57 × 1021 1.17 × 10−7 0.4882 15.2 0.1101 0.026 6.04 × 10−3

−40 0.189 0.128 3.99 × 1021 1.30 × 10−7 0.4739 17.0 0.1091 0.029 5.93 × 10−3

−39 0.210 0.144 4.44 × 1021 1.45 × 10−7 0.4603 19.0 0.1082 0.032 5.83 × 10−3

−38 0.232 0.161 4.95 × 1021 1.61 × 10−7 0.4458 21.2 0.1072 0.036 5.73 × 10−3

−37 0.257 0.179 5.50 × 1021 1.80 × 10−7 0.4326 23.6 0.1061 0.039 5.63 × 10−3

−36 0.284 0.200 6.12 × 1021 2.00 × 10−7 0.4191 26.3 0.1052 0.043 5.54 × 10−3

−35 0.314 0.223 6.79 × 1021 2.22 × 10−7 0.4059 29.3 0.1044 0.048 5.44 × 10−3

−34 0.346 0.249 7.54 × 1021 2.46 × 10−7 0.3924 32.5 0.1036 0.052 5.35 × 10−3

−33 0.382 0.277 8.35 × 1021 2.72 × 10−7 0.3790 36.1 0.1026 0.057 5.26 × 10−3

−32 0.420 0.308 9.25 × 1021 3.02 × 10−7 0.3658 40.1 0.1017 0.063 5.17 × 10−3

−31 0.463 0.342 1.02 × 1021 3.34 × 10−7 0.3529 44.5 0.1010 0.069 5.08 × 10−3

−30 0.509 0.380 1.13 × 1022 3.69 × 10−7 0.3397 49.3 0.1003 0.076 5.00 × 10−3

−29 0.559 0.421 1.25 × 1022 4.08 × 10−7 0.3264 54.5 0.0993 0.083 4.91 × 10−3

−28 0.613 0.467 1.38 × 1022 4.50 × 10−7 0.3138 60.3 0.0983 0.091 4.83 × 10−3

−27 0.673 0.517 1.52 × 1022 4.96 × 10−7 0.3012 66.6 0.0976 0.100 4.75 × 10−3

−26 0.737 0.572 1.68 × 1022 5.47 × 10−7 0.2885 73.6 0.0967 0.109 4.68 × 10−3

−25 0.807 0.632 1.85 × 1022 6.02 × 10−7 0.2762 81.2 0.0957 0.118 4.60 × 10−3

−24 0.883 0.698 2.03 × 1022 6.62 × 10−7 0.2645 89.5 0.0953 0.130 4.52 × 10−3

−23 0.965 0.771 2.23 × 1022 7.28 × 10−7 0.2516 98.6 0.0947 0.142 4.45 × 10−3

−22 1.054 0.850 2.45 × 1022 8.00 × 10−7 0.2394 108.5 0.0935 0.154 4.38 × 10−3

−21 1.150 0.937 2.69 × 1022 8.78 × 10−7 0.2276 119.3 0.0931 0.168 4.31 × 10−3

−20 1.254 1.032 2.95 × 1022 9.64 × 10−7 0.2149 131.2 0.0922 0.182 4.24 × 10−3

−19 1.366 1.135 3.24 × 1022 1.06 × 10−6 0.2035 144.0 0.0912 0.198 4.17 × 10−3

−18 1.487 1.248 3.54 × 1022 1.16 × 10−6 0.1915 158.0 0.0906 0.215 4.10 × 10−3

−17 1.618 1.371 3.88 × 1022 1.27 × 10−6 0.1802 173.3 0.0898 0.233 4.04 × 10−3

−16 1.759 1.505 4.24 × 1022 1.38 × 10−6 0.1688 189.9 0.0891 0.253 3.97 × 10−3

−15 1.911 1.651 4.63 × 1022 1.51 × 10−6 0.1575 207.9 0.0885 0.275 3.91 × 10−3

−14 2.075 1.810 5.06 × 1022 1.65 × 10−6 0.1464 227.4 0.0878 0.298 3.85 × 10−3

−13 2.251 1.983 5.52 × 1022 1.80 × 10−6 0.1351 248.7 0.0872 0.323 3.79 × 10−3

(continued)
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 water vapor  will not condense  until the pressure is above 
csat, water, at which point liquid  water droplets  will appear. 
A separate nucleation step is then required to turn a 
liquid droplet into ice. This second step  will occur al-
most instantaneously when the substrate temperature 

When the  water vapor pressure exceeds csat,ice at the 
surface of an existing ice crystal, the crystal  will generally 
absorb  water vapor and grow. But this vapor pressure is 
not sufficient to nucleate the formation of a new ice crys-
tal. On most chemically inactive surfaces below 0° C, 

 TABLE 2.1 (Continued)

Temp 
(°C)

P water 
(mbar)

Pice 
(mbar)

csat 
(#/m3)

csat/cice σ water νkin 
(μm/sec)

η	
(Κ–1)

χ0 Cdiff 
(Κ–2)

−12 2.440 2.171 6.02 × 1022 1.97 × 10−6 0.1239 271.8 0.0864 0.349 3.73 × 10−3

−11 2.644 2.375 6.56 × 1022 2.14 × 10−6 0.1133 296.7 0.0859 0.378 3.67 × 10−3

−10 2.862 2.597 7.15 × 1022 2.33 × 10−6 0.1020 323.8 0.0851 0.408 3.62 × 10−3

−9 3.096 2.837 7.78 × 1022 2.54 × 10−6 0.0913 353.1 0.0843 0.440 3.56 × 10−3

−8 3.348 3.097 8.46 × 1022 2.76 × 10−6 0.0810 384.7 0.0837 0.475 3.51 × 10−3

−7 3.617 3.379 9.20 × 1022 3.00 × 10−6 0.0704 419.0 0.0831 0.512 3.45 × 10−3

−6 3.906 3.684 9.99 × 1022 3.26 × 10−6 0.0603 455.9 0.0824 0.552 3.40 × 10−3

−5 4.214 4.014 1.08 × 1023 3.54 × 10−6 0.0498 495.9 0.0818 0.595 3.35 × 10−3

−4 4.544 4.371 1.18 × 1023 3.84 × 10−6 0.0396 539.0 0.0812 0.640 3.30 × 10−3

−3 4.897 4.756 1.28 × 1023 4.16 × 10−6 0.0296 585.3 0.0806 0.689 3.25 × 10−3

−2 5.274 5.173 1.38 × 1023 4.5 × 10−6 0.0195 635.5 0.0800 0.741 3.20 × 10−3

−1 5.677 5.622 1.50 × 1023 4.88 × 10−6 0.0098 689.4 0.0793 0.795 3.15 × 10−3

 0 6.107 6.106 1.62 × 1023 5.28 × 10−6 0.0000 747.4 0.0786 0.824 3.10 × 10−3
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FIGURE 2.13. (Left) The vapor pressure of ice and supercooled  water as a function of temperature 
below 0° C. When the  water vapor pressure is above the Ice line, ice  will grow; when the pressure is 
above the  Water line, supercooled  water droplets  will condense and grow. (Right) The supersaturation 
of supercooled  water with re spect to ice, given by σ water (T ) = [c water (T ) − csat (T )]/csat(T ). This is also 
plotted as the “excess”  water vapor, equal to [c water (T ) − csat (T )]m water .
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theory together with extrapolations of mea sured prop-
erties of liquid  water down to temperatures as low 
as −40° C. The uncertainty in γsl given above is a rough 
estimate based on the data presented in [2015Ick]. The 
value of γsl decreases with decreasing temperature, down 
to roughly γsl ≈ 20 mJ/m2 at temperatures near −40° C, 
again with considerable uncertainty [2015Ick].

The ice/vapor surface energy γsv is more difficult to 
mea sure than  either γlv or γsl, plus it has not received as 
much experimental or theoretical attention. Surface wet-
ting mea sure ments have produced the best mea sure-
ments of γsv [1974Hob, 1999Pet], but  these can be quite 
susceptible to surface contamination, so I tend to be con-
servative and give them a high uncertainty. Neverthe-
less, the mea sure ments appear to be consistent with 
Antonow’s relation, which states that

 γ sv ≈γ sl +γ lv ≈106 ±15 mJ/m2  (2.13)

near the  triple point. The mea sure ment uncertainty is 
somewhat subjective, based  here on an examination of 
existing data from vari ous sources. The ice/vapor surface 
energy γsv is also likely nearly isotropic, as I discuss below. 
Surface energy anisotropies are best determined from 
mea sure ments of the equilibrium crystal shape, which 
has not yet been definitively observed for  either the ice/
water or ice/vapor systems.

In a naïve chemical bond picture, one can approxi-
mate of the ice/vapor surface energy as

 γ 0, sv ≈
1
6
aρice Lsv ≈135 mJ/m2 ,  (2.14)

 because vaporizing bulk ice creates a total surface area 
of (roughly) 6a2 per molecule. This crude estimate does 
not account for surface relaxation or the specific ice 
lattice structure, so γ0,sv is mainly useful for pedagog-
ical purposes However, it does illustrate that  there are 
numerous connections between bulk, surface, and 
step energies, along with other equilibrium quantities, 
and  these are further explored in materials science 
textbooks.

is below −40° C, but liquid droplets can remain in a su-
percooled state for long periods at higher temperatures, 
easily an hour or more at −15° C. The necessity of this 
two- step nucleation pro cess is an example of Ostwald’s 
step rule, which has numerous manifestations in physical 
chemistry.

Surface Energies

The surface energy, simply put, is the amount of energy 
needed to create additional interface between two ma-
terial phases. For example, cutting a piece of ice in two 
requires breaking the chemical bonds holding the pieces 
together. The amount of energy needed to do this is pro-
portional to the area of the new surface created during 
the break, and this defines the surface energy. If the ma-
terial is intrinsically anisotropic, like a crystal lattice, 
then the surface energy could be anisotropic as well, de-
pending on the  angle of the surface relative to the crys-
tal axes.

 Because liquid  water is an amorphous material, the 
water/vapor surface energy (also known as the surface 
tension of  water) is isotropic, equal to

 γlv ≈ 76 mJ/m2 (2.11)

near the  triple point. This decreases with increasing tem-
perature, dropping to γlv ≈ 72 mJ/m2 at 25° C and γlv ≈ 59 
mJ/m2 at 100° C. The water/vapor surface energy is 
known to quite high accuracy, being determined from 
observations of the oscillation frequencies of liquid 
droplets.

The ice/water surface energy is best mea sured 
from the homogeneous nucleation of ice from super-
cooled  water droplets as a function of temperature, 
yielding

	 γsl ≈ 30 ± 5 mJ/m2 (2.12)

near the  triple point. Mea sure ments of this quantity as 
a function of temperature are somewhat model depen-
dent, as they assume a good understanding of nucleation 
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Limiting Cases

 Because the ice/vapor terrace step energies are so central 
to the snow crystal story, it is worthwhile to examine the 
physics under lying the mea sured values shown in Fig-
ure 2.14. At the low- temperature end of this graph, sur-
face premelting is essentially absent on the ice surface, so 
the terrace step structure tends  toward that of a rigid lat-
tice. In this regime, the lattice projections above illus-
trate specific terrace steps, and low- temperature MD 
simulations (e.g., Figure 2.12) confirm the rigid lattice 
limit. We can make a toy model of  these terrace steps by 
assuming a  simple geometrical step of height a, and in-
troducing such an idealized step increases the total sur-
face area of the crystal by al, where l is the step length. 
Assuming the simplest pos si ble case of a continuous, iso-
tropic surface energy γsv, this toy model indicates that 
the step energy can be approximated as

 β sv ≈β0 = aγ sv ≈3×10−11  J/m.  (2.15)

This is a crude estimate, much like the surface energy es-
timate in Equation 2.14, but it should give a reasonable 
upper limit. Moreover, we might expect the mea sured βsv 
to approach β0 at low temperatures, when the ice lattice 
structure becomes especially rigid. And indeed, both the 
prism and basal step energies seem to be trending  toward 
β0 at the lowest temperatures in Figure 2.14, lending cre-
dence to this basic physical picture.

At the other extreme, when the temperature ap-
proaches the melting point, surface premelting dramat-
ically changes the structure of the ice surface, yielding a 
substantial quasiliquid layer that diverges in thickness as 
the temperature approaches 0° C. In this case,  there  will 
be a correspondence between the ice/QLL step energy 
and the ice/water step energy at sufficiently high temper-
ature, as illustrated in Figure 2.15. With this overall pic-
ture of surface premelting, we see that the terrace nucle-
ation pro cess must take place at the ice/QLL interface, 
as this is where the ice lattice structure begins. Inasmuch 
as the disordered QLL resembles bulk liquid  water, we 

Terrace Step Energies

Terrace step energies  factor into the rate of nucleation of 
new molecular terraces on faceted ice surfaces, which is 
one of the most impor tant pro cesses in snow crystal 
growth. In analogy to the surface energy, the step energy 
is the amount of energy needed to create the edge, or 
step, of a molecular terrace on a faceted surface. For ex-
ample, separating a single island terrace into two smaller 
islands requires energy to break the molecular bonds 
holding the unseparated terrace together. The amount of 
energy needed is proportional to the length of new ter-
race step created, and this defines the terrace step energy. 
As with bulk energies and surface energies, the step en-
ergies on diff er ent faceted surfaces are equilibrium prop-
erties of a material.

For ice surfaces in  water, the basal step energy has 
been accurately mea sured from nucleation- limited ice 
growth mea sure ments [1958Hil, 1966Mic, 2014Lib], 
yielding βsl,basal ≈ 5.6 ± 0.7 × 10−13 J/m near the  triple 
point. This step energy provides a substantial nucleation 
barrier that results in basal faceting and the formation 
of thin, platelike ice crystals when liquid  water freezes 
at low supercooling. Prism faceting is not observed in ice 
grown from liquid  water near the  triple point, and βsl,prism 
has not yet been mea sured,  because it is much smaller 
than βsl,basal. However, prism faceting at the ice/water 
interface has been observed at very high pressures 
[2005Mar], when the ice/water phase transition occurs 
near −20° C (see Figure  2.2), suggesting that βsl,prism 
 becomes relatively high in that region of the phase 
diagram.

The ice/vapor step energies on both the basal and 
prism facets have been mea sured with good accuracy at 
temperatures ranging from −2° C to −40° C, giving the 
results shown in Figure 2.14. A closer examination of the 
ice growth data yielding  these mea sure ments is given in 
Chapter 7. As with γsl, the step energies  were determined 
using nucleation- limited ice growth mea sure ments, in-
ferring the step energies using classical nucleation theory 
as described in Chapter 4.
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βsv,basal in Figure 2.14 levels off and is consistent with 
βsv,basal → βsl,basal ≈ 5.6 ± 0.7 × 10−13 J/m at the highest 
temperatures mea sured. In the prism case, βsv,prism drops 
to quite low values at high temperatures, which is again 
consistent with the fact that βsl,prism  βsl,basal in the ice/
water system. Although a lot can happen between −2° C 
and the melting point, the data in Figure 2.14 do seem 
to support this correspondence between the ice/vapor 
and ice/water step energies near 0° C.

thus expect that terrace nucleation at the ice/QLL inter-
face  will begin to resemble that at the ice/water inter-
face, as shown in the figure. In turn, this suggests that 
the ice/QLL step energy should tend  toward the ice/
water step energy at high temperatures. In other words, we 
should expect βsv → βsl as T → 0° C for both the basal 
and prism facets.

This correspondence of step energies can be seen 
quite clearly in the data. In the basal case, we see that 
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cussed in the text, step- energy mea sure ments at the ice/water and ice/vapor interfaces do show a 
good correspondence as the temperature approaches 0° C.
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Much work has focused on developing models of 
 water molecular interactions that reproduce bulk equi-
librium properties like the freezing temperature, latent 
heats, diffusion coefficients, and the peak density of liq-
uid  water near 4° C. Equilibrium properties are generally 
the most amenable to MD simulations, and considerable 
pro gress has been made over the past several de cades 
[2005Car, 2006Fer, 2008Con]. In par tic u lar, surface 
premelting has been seen in numerous simulations 
[1987Kar, 1988Kar, 1996Nad, 1997Fur, 2004Ike, 
2016Ben, 2020Llo], allowing investigation of the QLL 
thickness as a function of temperature for both the basal 
and prism facets, along with estimates of molecular dif-
fusion rates and other material characteristics in the 
QLL.  These investigations clearly confirm the existence 
of surface premelting, which has proven to be a robust 
computational phenomenon that is insensitive to details 
of the  water model used [2008Con].

Observing  actual ice growth in MD simulations re-
mains a substantial challenge, so  there is  little chance 
that direct simulations of attachment kinetics  will be 
practical soon. While simulations now routinely observe 
the freezing pro cess [2005Car, 2012Roz, 2012Seo], this 
has only been pos si ble in rather extreme conditions, 
when growth rates are of order 0.1 m/sec or higher. Ex-
periments rarely access this region of pa ram e ter space 
[2005Shi, 2017Lib], and accurate mea sure ments of such 
rapid growth rates are difficult. Snow crystal growth oc-
curs in far more benign conditions, where the growth 
rates are  orders of magnitude slower than what is typi-
cally observed in MD simulations.

I am especially optimistic that MD simulations of ice/
vapor step energies  will soon provide a direct link between 
fundamental molecular physics and snow crystal attach-
ment kinetics. On the theory side, the step energies βbasal 
(T) and βprism (T) are basic equilibrium properties of the 
ice crystal, so they should be amenable to direct calcula-
tion using MD simulations. Computational methods 
for computing terrace step energies have only recently 
been developed for silicon [2012Fro] and ice [2019Ben, 
2020Llo], demonstrating that numerical methods are 

Putting all this together, we see that the ice/vapor 
step energies are reasonably well explained at both tem-
perature extremes. The  simple geometrical model applies 
at the lowest temperatures when the ice lattice assumes 
a rigid structure, allowing a satisfactory approximation 
for both the basal and prism step energies in that limit. 
And the correspondence between the ice/water and ice/
QLL interfaces constrains the ice/vapor step energies as 
the temperature approaches 0° C. Therefore, the mea-
sured step energies in Figure 2.14 provide the transition 
between  these low-  and high- temperature be hav iors. All 
in all, this provides a reasonably self- consistent picture 
of the step energies for a combination of the ice/vapor 
and ice/water systems on both the basal and prism 
facets.

MOLECULAR DYNAMICS 
SIMULATIONS

Many interfacial properties of the ice/vapor and ice/liq-
uid systems are ultimately determined by complex many- 
body molecular interactions, and theoretical advances 
are likely best obtained using molecular dynamics (MD) 
simulations. The basic idea is to create a detailed math-
ematical model for the electronic potential between in-
dividual  water molecules, assem ble a computational sys-
tem of many thousands of molecules, and then evolve 
and/or relax the system by calculating the many- body 
dynamics. In princi ple, with a sufficiently accurate model 
of the relevant molecular interactions, one can examine 
the detailed structure and dynamics of quite complex 
systems using MD simulations. Beyond their intrinsic 
usefulness for understanding  water and ice,  there is con-
siderable motivation to develop accurate  water models 
for studying the molecular biology of proteins and other 
large biomolecules in solution. This highly technical area 
of computational science is far outside my expertise, so I 
 will comment  little on specific molecular models or com-
putational methodologies. Instead, I briefly summarize 
some results from MD simulations that have examined 
the structure and growth of ice surfaces.
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sent, and the step energy is especially large in that 
regime. This suggests that step energies in the low- 
temperature limit should be especially amenable to 
calculation using MD simulation, although the ini-
tial results in Figure 2.16 have not shown this to be 
the case so far.

SURFACE ENERGY 
CONSIDER ATIONS

Although the ice/vapor surface energy is not a dominant 
 factor in snow crystal growth compared to particle dif-
fusion and the attachment kinetics, it does play a role and 
needs to be included in computational models of 
diffusion- limited growth. Of par tic u lar importance is 
the Gibbs- Thomson effect, which describes how the vapor 
pressure of a convex ice surface is slightly higher than 
that of a flat surface [1871Tho]. In terms of molecular in-
teractions, a molecule on a convex surface is slightly 
more distant from its collective neighbors than one on a 
flat surface, simply from geometrical considerations. The 
convex- surface molecule is thus less tightly bound, result-
ing in a higher vapor pressure compared to a flat sur-
face. This picture helps visualize the Gibbs- Thomson 
phenomenon, but it is difficult to quantify without pre-
cisely adding up all the binding energies.

The Gibbs- Thomson effect can be calculated by con-
sidering how the surface energy connects to the vapor 
pressure. For an ice sphere of radius R, pulling one mol-
ecule off the sphere reduces its surface area by an 
amount δA = 2 / cice R, as the size of the sphere is reduced 
slightly with the loss of one molecule. This, in turn, re-
sults in a reduction in the surface energy by an amount 
δE = 2 γsv / cice R, where γsv is the ice/vapor surface en-
ergy. Including this additional energy term in the Ar-
rhenius equation gives the modified equilibrium vapor 
pressure

 
ceq(R)≈C(T )exp − ℓ−δ E

kT
⎛
⎝⎜

⎞
⎠⎟

≈ csat (1+ dsvκ ),
 (2.16)

suitable for this task. Figure 2.16 shows some first results 
comparing experiments and simulations.

Further investigation of step energies should be an 
especially fruitful research direction for several reasons:

1) On the experimental side, we already have ice/vapor 
step energy mea sure ments over a broad range of tem-
peratures for both the basal and prism facets (Fig-
ure 2.14), and  there is considerable room for improve-
ment in  these mea sure ments at both higher and 
lower temperatures [2019Har]. Mea sure ments of ice/
water step energies at 0° C are also well established.

2) Exploring the correspondence between ice/water and 
ice/vapor step energies near 0° C should be especially 
in ter est ing. To my knowledge,  there have not yet 
been any MD simulations of the ice/water step en-
ergy, although the ice/water system is quite impor-
tant in many areas of science.

3) The ice lattice structure is especially  simple at low 
temperatures when surface premelting is largely ab-
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FIGURE 2.16. Ice/vapor terrace step energies on basal (blue) 
and prism (red) faceted surfaces as a function of temperature, 
comparing experimental mea sure ments (top) with MD simula-
tions (bottom) [2020Llo]. That it is now pos si ble to make such 
comparisons bodes well for  future improvements in our under-
standing of the ice/vapor attachment kinetics. Image courtesy of 
Luis Gonzalez Mac- Dowell.
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comes essentially a  spherical shape decorated with 
small faceted “dimples.” The dimples become larger 
with increasing anisotropy, and, when the surface en-
ergy anisotropy is sufficiently high, the ECS becomes 
a fully faceted prism.

To see how much surface energy anisotropy is 
needed to produce a fully faceted ECS, consider the case 
of a cubic crystal with γfacet on the facets and γunfaceted on 
all other surfaces. Comparing the surface energy of a 
cube with that of a sphere of the same total volume, basic 
geometry shows that the cube  will have a lower overall 
surface energy if γfacet < 0.806 γunfaceted, in de pen dent of the 
crystal size. Although this result is too  simple for direct 
comparison with more complex crystal symmetries, it 
does tell us that we can expect an ECS that is fully fac-
eted if the facet surface energy is of order 10–20  percent 
lower than the surface energy of unfaceted surfaces. If 
the surface energy anisotropy is less than 5  percent, the 
ECS  will likely be a faceted prism with rounded corners, 
and the degree of rounding  will depend on the amount 
of the anisotropy. More precise ECS calculations can be 
done using the Wolff construction, and  there is much 
discussion of this in the scientific lit er a ture and in text-
books on crystal growth [1996Sai, 2004Mar].

The appearance of faceted surfaces on the ECS is re-
lated to the terrace step energies on  those surfaces. If 
βfacet goes to zero, then  there is no energy penalty for cre-
ating terrace steps, and therefore no energy gain in hav-
ing faceted surfaces. In the limit of small βfacet, the half- 
angle of a faceted ECS dimple is approximately 
[2001Bon]

 θ ≈
β facet

aγ facet
.  (2.17)

Taking βfacet ≈ 10−12 J/m and γfacet ≈ 0.1 J/m2 gives θ ≈ 0.03 
radians, suggesting that the ice ECS is nearly  spherical 
at temperatures above −10° C [2012Lib1]. The ice/vapor 
ECS could become quite faceted at lower temperatures, 
however, when the step energies are larger.

where dsv = γsv / cice kT ≈ 1 nm and κ  = 2/R is the curva-
ture of the  spherical surface. For a smooth but nonspher-
ical surface, the curvature is defined as κ = 1/R1 + 1/R2, 
where R1 and R2 are the two principal radii of curvature 
of the surface. Note that this expression reduces to the 
normal flat- surface vapor pressure csat when R → ∞, as 
it must. The analy sis is more complicated when γsv is 
anisotropic, but the functional form  will be like the 
above expression if the surface energy anisotropy is small, 
as it is for ice. For a small ice prism of size L, replacing 
κ = 2/R with κ = 2G/L, where G is a geometrical  factor 
of order unity, gives a reasonable approximation for most 
 simple shapes.

This additional vapor pressure can have a signifi-
cant effect on snow crystal growth if the supersatura-
tion is especially low while the surface curvature is 
quite high. For example, taking R = 1 μm gives a 
change in the effective supersaturation of Δσ = 2dsv / 
R ≈ 0.1%, which is often negligible  under many nor-
mal circumstances in snow crystal growth. Such small 
feature sizes appear mostly in growth morphologies 
that occur at quite high supersaturations. However, 
detailed modeling reveals that the Gibbs- Thomson ef-
fect plays a large role in preventing the growth of thin 
plates at especially low supersaturations. I examine 
the Gibbs- Thomson effect in more detail in Chapter 3 
and discuss how it can be incorporated into snow crys-
tal modeling in Chapter 5.

Equilibrium Crystal Shape

The equilibrium crystal shape (ECS) of an isolated 
snow crystal is the shape that minimizes the total sur-
face energy at constant volume. For a perfectly isotro-
pic surface energy, the ECS is a perfect sphere, as this 
shape minimizes the surface area and thus also mini-
mizes the surface energy. If γfacet < γunfaceted, however, 
then it becomes energetically favorable to increase the 
facet surface areas with a nonspherical shape. If γfacet is 
only slightly smaller than γunfaceted, then the ECS be-
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Lowering the background air pressure P increases the 
diffusion constant as D ~ P −1,  until the vapor transport 
becomes  limited by attachment kinetics instead of dif-
fusion. In the kinetics- limited case, the equilibration 
time becomes

 τ eq ≈
R2

2αvkindsv
,  (2.19)

which becomes a more favorable 2 hours for R = 50 μm 
and α  = 1 at −15° C. However, the fact that α → 0 on 
faceted surfaces at low supersaturations can increase 
this time dramatically.

Overall, the evidence suggests that the ice ECS is 
nearly  spherical at higher temperatures [2012Lib1], but 
better experiments could  settle this question by directly 
mea sur ing the ECS as a function of temperature. How-
ever, in nearly all snow crystal growth scenarios, the 
equilibration times mentioned above are much longer 
than typical growth times τgrowth ≈ R/v. This fact sug-
gests that surface energy effects are less impor tant than 
effects from attachment kinetics in most snow crystal 

Direct mea sure ment of the ice ECS is challenging 
 because of the timescales involved. It takes a substantial 
amount of time for an ice crystal in an initially arbitrary 
shape to relax to its equilibrium shape, as this involves 
the transport of molecules between diff er ent parts of the 
crystal surface. Observations of  bubble migration in ice 
[2010Dad] indicate that vapor transport (and not sur-
face migration) is the dominant path to equilibration, 
so the equilibration time can be estimated using the 
Gibbs- Thomson effect. Beginning with a slightly nons-
pherical shape of overall radius R, the equilibration time 
becomes approximately

 τ eq ≈
ciceR3

2csatdsvD
,  (2.18)

and inserting the diffusion constant for normal air 
(Chapter 3) gives τeq ≈ 8 days for R = 50 μm. This casts 
doubt on the one reported ECS mea sure ment for ice 
[1985Col, 1997Pru], suggesting that slow growth may 
have yielded the observed faceted surfaces, given the 
known highly anisotropic attachment kinetics for ice. 

FIGURE 2.17. Columnar twins. (Left) A sketch of a columnar twin snow crystal, illustrating that 
 these are essentially two ordinary columnar crystals connected by a twin plane between them. 
The crystal structure is relatively weaker in the twin plane, so sublimation often produces an 
evaporation groove between the two columns. (Center) The presence of an evaporation groove 
identifies this as a twinned column, which other wise looks just like a normal single- crystal col-
umn. (Right) This capped column began as a  simple twinned column, as evidenced by the evap-
oration groove.
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phases of its growth, from which it cannot reach the 
lowest- energy configuration. The second question is one 
of dynamics, and therefore more difficult to answer, in-
volving how the crystal’s nucleation and growth history 
happened to produce a twinned state. Estimating the 
probability that a twinned state  will form  under diff er-
ent circumstances is an extremely challenging task. Our 
goal  here is relatively modest: simply to report on some 
examples of snow crystal twins and try to explain their 
structures as best we can. Although certainly not a well- 
studied topic, snow crystal twinning has been discussed 
in the scientific lit er a ture over many de cades [1971Iwa, 
1978Fur, 1987Kob, 2011Kik, 2013Kik].

Columnar Twins

Figure 2.17 shows examples of columnar twins, illustrat-
ing the most common form of twinning found in natu-
ral snow crystals [1974Kob]. If you look carefully when 

growth circumstances, except at extremely low supersat-
urations and reduced pressures. Thus, while surface en-
ergy effects are not always completely negligible in snow 
crystal growth, they are usually overwhelmed by other 
 factors.

SNOW CRYSTAL TWINNING

When two single crystals grow together with a specific 
orientation between their respective lattices, this is called 
crystal twinning. Many mineral crystals exhibit twinning 
in vari ous forms, and ice is no exception. Two questions 
immediately arise with crystal twinning: 1) What de-
fines the orientation between the twin crystals? and 2) 
What circumstances bring about the diff er ent twinned 
states? The first of  these questions is usually the easier to 
answer, as it involves statics and energetics. A twinned 
state is typically a metastable state: a local energy mini-
mum that the crystal structure fell into during the early 
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FIGURE 2.18. Columnar twins. The crystal lattice structure of 
a columnar twin crystal. Comparing this with Figure 2.5, it be-
comes apparent that the twin plane consists of a layer cubic 
bonds between  water molecules, whereas the rest of the 
structure is made from the typical hexagonal bonds. Also note 
the small offset between the columns, necessary to accom-
modate the cubic bond structure. The twin plane could consist 
of multiple, randomly arranged layers of cubic/hexagonal 
bonds (i.e., a stacking- disordered region), rather than the sin-
gle cubic layer shown  here.
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quite high. Thus, it is perhaps not surprising that some 
lattice disorder can arise during this pro cess. The initial 
ice growth soon warms the liquid and thus reduces its su-
percooling, so subsequent growth quickly  settles into 
the energetically favorable ice Ih configuration. Once the 
initial droplet is completely frozen and growth from 
 water vapor commences, the stacking disorder can result 
in a pair of twinned columns growing out from the nu-
cleation site. The initial disorder may be more complex 
than a single, clean cubic plane, but subsequent growth 
can bury many dislocations. Polycrystalline forms are 
also common via this same mechanism, including bul-

FIGURE 2.19. Columnar twins. When a colum-
nar twin is growing (left), the facet corners are 
sharp, so the twin plane is not readily apparent. 
When it begins to sublimate (right), the corners 
become rounded, and the evaporation groove 
deepens. Image adapted from [1987Kob].

columnar crystals are falling from the clouds near −5° C, 
you are likely to find some twin columns in the mix. This 
form of twinning is also easily explained by ice crystal-
lography, as shown in Figure 2.18. The two halves of a 
twin column fit perfectly together at the twin plane if a 
single plane of hexagonal bonds is replaced with a plane 
of cubic bonds. This can be nicely demonstrated using a 
3D molecular model as well. A columnar twin plane 
likely originates when the initial crystal nucleation (typ-
ically from a liquid  water droplet) results in some stack-
ing disorder. Nucleation can be a somewhat violent 
event, as the supercooling just prior to nucleation is often 

FIGURE 2.20. Arrowhead twins variant I.  These photos show examples of arrowhead twin snow crys-
tals with 78- degree apex  angles. The first two crystals (left, center) fell at a temperature near −5° C 
[2003Lib2], while the third (right) fell at a temperature near −40 C [2006Tap]. Photos by Patricia Ras-
mussen [2003Lib2] and courtesy of Walter Tape.
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During nucleation and growth of a columnar 
 crystal, the most likely scenario is that no twin planes 
form. Thus, most columns are untwinned single crys-
tals. The next most likely scenario is that  there is some 
stacking disorder during nucleation, resulting in a 
single twin plane. Perhaps this plane contains a single, 
clean, cubic layer, as shown in Figure 2.18, but it may 
contain several randomly stacked layers. In any case, 
the situation eventually sorts itself out, often yielding 
two normal columns on  either side of the twin plane. 
 Because both columns grow outward at about the 
same rate, the evaporation groove is usually near the 
midpoint of the twinned column. However, one col-
umn may grow a bit faster than the other, so the twin 
symmetry need not be perfect in  every case. Creating 
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FIGURE 2.21. Arrowhead twins variant I. This sketch illustrates 
the peculiar faceted structure of a 78- degree arrowhead twin. It 
is a thin platelike crystal (seen face-on in this sketch and in the 
photos), but the two  faces of the plate are prism facets, not the 
usual basal facets seen in thin hexagonal plates. A pair of narrow 
prism facets make up each of the lower- facing edges, while the 
top- facing edges are narrow basal facets. An arrowhead twin 
typically emerges from some unknown initial structure,  here 
shown as an ill- formed blob at the bottom of the sketch.

let rosettes, which are especially common at low temper-
atures (Chapter 10).

 Because ice Ih is energetically favorable over ice Ic, 
the cubic bond plane comes with an energy cost, which 
slightly increases the equilibrium vapor pressure at the 
twin plane. As a result, when the crystal begins slowly 
sublimating away (as usually happens  after it falls from 
the clouds, or when it is being photographed), the twin 
plane sublimates faster than the surrounding prism fac-
ets, yielding an evaporation groove that appears like a  belt 
around the columns at the twin plane, as illustrated in 
Figure 2.19. An evaporation groove is a characteristic 
marking that identifies a columnar twin; other wise, the 
twinned column is essentially indistinguishable from a 
normal columnar snow crystal.



FIGURE 2.22. Arrowhead twins variant I. The crystal lattice projection in the sketch is looking 
down along the [ 1010]  axis, which is perpendicular to a prism facet. This is called a contact twin, 
 because the twins meet at a single plane, and further a reflection twin,  because the contact 
plane is also a reflection plane. The model gives a theoretical apex  angle of 2 tan−1 (c0/2a0) = 78.3 
degrees. A pair of black lines separated by 78 degrees has been superimposed on the photo-
graph [2006Tap], showing good agreement with this lattice model. Image courtesy of Walter 
Tape.

FIGURE 2.23. Arrowhead twins variant II. The left and  middle photos above show two examples of this 
arrowhead- twin variant. The lattice projection in the sketch is similar to that in Figure 2.22, giving a 
theoretical apex  angle of 2 tan−1 (c0/3a0) = 57.0 degrees. The pairs of white lines in the photos subtend 
this  angle, showing good agreement with theory. Images adapted from [2011Kik].

FIGURE 2.24. Arrowhead twins variant III. This variant of an arrowhead twin displays an apex  angle 
that is close to 90 degrees, and the model structure shown in the sketch has a theoretical value of 
2 tan−1 (3c0/5a0) = 88.7 degrees. Images by Patricia Rasmussen [2003Lib2].
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the thin basal edges grow most rapidly, like an unrolled, 
sheathlike hollow column. With this geometry, the 
basal edges flanking the apex experience the fastest 
growth, extending the apex forward. By comparison, 
the broad prism surfaces accumulate  water vapor very 
slowly.

Figure  2.22 shows a crystal lattice model that ex-
plains the structure of this arrowhead twin variant, giv-
ing a theoretical apex  angle of 2tan−1(c0/2a0) = 78.3 de-
grees, in good agreement with observations. Arrowhead 
twins are generally quite small (seldom more than a mil-
limeter in size), typically appearing at temperatures 
near −5° C or −40° C, often mixed with hollow colum-
nar crystals. Arrowhead twins are uncommon, but they 
have an easily recognizable shape, so they can be found 
if you go searching for them.

Figure  2.23 shows a second variant of arrowhead 
twinning, like Variant I but with a diff er ent apex 
 angle. Comparing Figures  2.22 and 2.23, it becomes 
apparent that the twinning mechanisms are quite 
similar, and the geometry of Variant II gives it an apex 
 angle of 2tan−1(c0/3a0) = 57.0 degrees. Figure  2.24 
shows yet a third arrowhead variant, this time with an 
apex  angle just slightly below 90 degrees. The model 
does not give as tight a lattice match as the previous 
two arrowhead variants, but the theoretical apex  angle 
of 2tan−1(3c0/5a0) = 88.7 degrees agrees well with 
one of the best photographic specimens, as shown in 
Figure 2.25.

Crossed Plates

Figure 2.26 shows several examples of another class of 
snow crystal twinning, this time in the form of crossed 
platelike crystals.  These can be found in nature, although 
specimens are relatively uncommon, quite small, and 
most are rather poorly formed, as shown in the figure. 
They seem to appear mostly at temperatures near −2° C. 
Crossed plates have been seen in the laboratory as well, 
but  there are few good photo graphs. Figure 2.27 shows 

more than one twin plane in a single structure would 
be quite unlikely, and I know of no photographic ex-
amples of a  simple hexagonal column exhibiting multi-
ple evaporation grooves.

Arrowhead Twins

Figure 2.20 shows several photo graphs of one variant of 
arrowhead snow crystal twins, also known as Gohei 
twins [2004Bai]. The sketch in Figure  2.21 illustrates 
their overall faceted structure. Note that the platelike 
 faces of an arrowhead twin are prism facets, as opposed 
to the basal facets that one normally associates with 
platelike snow crystals. This morphology results  because 

FIGURE 2.25. Arrowhead variant III. Walter Tape photographed 
this sharply faceted example of an arrowhead twin near the 
South Pole [2006Tap]. A careful mea sure ment of the crystal (by 
the author) yielded an apex  angle of 88.5 ± 0.5 degrees, in good 
agreement with the model shown in Figure 2.24. Image courtesy 
of Walter Tape.
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a pos si ble lattice structure for this first crossed- plate vari-
ant. The twin  angle is 2tan−1 c0 / 3a0( )= 86.5  degrees, 
which is consistent with the observations showing 
plates crossing at roughly 90 degrees. Unfortunately, I 
have not found any photographic examples that have al-
lowed a precise mea sure ment of the  angle between the 
crossed plates.

Figure  2.28 shows a second crossed- plate variant 
that is observed quite readily in free- falling labora-
tory crystals grown in air near −10° C, this time exhib-
iting a basal- plane  angle of about 70 degrees. This form 
was first documented by Kunimoto Iwai [1971Iwa], 
who proposed the lattice model shown in Figure 2.29 
with a theoretical  angle between the plates of 
tan−1 3c0 /a0( )= 70.5  degrees. However, this is not a 
 simple contact- twin model, so the lattice connection 
about the twin plane does not extend to large distances. 
The connection points (circled in Figure 2.29) have the-
oretical spacings of 3a0

2 + 9c0
2  in the top crystal and 

3 3a0  in the bottom crystal. Although  these values 
only differ by about 0.2   percent, this model geometry 
leads to an inevitable lattice mismatch as the twin 
plane propagates outward.

FIGURE 2.26. Crossed plates variant I.  These photos show examples of natu ral crossed- plate crystals, 
along with a sketch of their overall structure. Note that one prism facet edge is parallel to the intersec-
tion axis of the twinned crystals. Images by the author and Patricia Rasmussen [2003Lib2].
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FIGURE 2.27. Crossed plates variant I. A pos si ble lattice model 
for variant- I crossed- plate twinning. This is a contact twin where 
the theoretical  angle between basal facets is 2tan−1(c0/ 3a0) =86.5  
degrees.
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tals shown in the figure. The subsequent vapor growth 
soon produces two crossed plates, burying the minute 
seed in the pro cess. This cubic- nucleation model nicely 
explains why such a high- order twinning would occur 
so readily, and it supports the hypothesis that stacking 

Kobayashi and Kuroda [1987Kob] pointed out that 
this crossed- plate variant could originate from an ice 
Ic seed crystal, as shown in Figure 2.30. In this physi-
cal picture, the cubic seed appears during the initial 
nucleation pro cess, stimulating the twin ice Ih crys-

FIGURE 2.28. Crossed plates 
variant II. Several snow crystal 
twins grown by the author in air in 
a free- fall chamber near −10° C. 
Top/bottom pairs of images show 
the same crystal with a dif fer ent 
microscope focus, one image fo-
cusing on the flat plate resting on 
the substrate and the other image 
focusing on the top edge of the 
twin plate.

FIGURE 2.29. Crossed plates variant II. This diagram shows the 
likely crystal structure for variant- II crossed- plate twinning 
[1971Iwa, 1978Fur].

Prism facet Basal facet

Plate 2

Plate 1

Cubic seed

FIGURE 2.30. Crossed plates variant II. This diagram shows how 
a cubic seed crystal can give rise to a variant- II crossed plate 
[1987Kob].
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variants of twinning beyond  those described  here. To 
date, however,  these observations are rather poor, so it is 
perhaps premature to extend our discussion of twin-
ning much further. As with many other aspects of snow 
crystal science, better observations may yield additional 
surprises in the  future.

disordered crystals, containing a mix of Ih and Ic 
bonding, can play a significant role in snow crystal 
nucleation.

 There are several additional observations of snow 
crystals with rather odd geometries that have been re-
ported in the lit er a ture, and  these might be explained as 



FIGURE 3.1. This stellar snow crystal displays complex sidebranching brought about by diffusion- 
limited growth. It also experienced a major induced- sidebranching event when the primary branches 
 were about half their final length. Photo taken by the author in Kiruna, Sweden.
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vicinity, more  will flow inward  toward the crystal from 
afar, providing additional material for continued growth. 
Diffusion is a common phenomenon in everyday life, al-
though we may not readily notice diffusion in action, 
especially when it involves invisible gases like air and 
 water vapor. Diffusion of colored liquids can be more 
easily visualized, as shown in Figure 3.2. Most  people are 
familiar with material dispersing away from a central 
source, but diffusion  toward a central sink is more rele-
vant to snow crystal growth, as shown in the illustration. 
In  either case, the net diffusive transport is always from 
high to low densities, and the net flow at any point is 
along the local density gradient, with a flow rate propor-
tional to the magnitude of the gradient.

 There are two types of diffusion involved in snow 
crystal growth: particle diffusion and heat diffusion. The 
latter arises when latent heat is generated by vapor depo-
sition, as this heat must diffuse away into the surround-
ing the air. As I show  later in this chapter, the effects of 
heating and heat diffusion are relatively small compared 
to particle diffusion. Except in a few special circum-
stances, to a good approximation one can describe the 

When a snow crystal grows in the atmo-
sphere, it does so by removing  water 
vapor molecules from the air in its vi-
cinity. To continue growing, more 

 water molecules must diffuse through the surrounding 
air, making their way into the depleted region near the 
crystal.  Because diffusion is a slow pro cess, it can sub-
stantially limit the development of the crystal, so we say 
its growth is diffusion  limited. As I discuss in this chap-
ter, diffusion- limited growth is responsible for the cre-
ation of branches and other structures, making this phys-
ical phenomenon especially impor tant in the formation 
of complex snow crystal patterns.

The word “diffusion” derives from the Latin diffun-
dere, meaning to spread out over time. The diffusion of 
 water molecules in air results from the normal thermal 
jostling of air and  water molecules, which tends to mix 
the two species together. If the  water vapor density is not 
spatially uniform, then the random molecular motions 
 will, on average, transport  water molecules from higher- 
density to lower- density regions. Therefore, as a grow-
ing snow crystal consumes  water vapor molecules in its 

If the Lord Almighty had consulted me
before embarking on Creation,

I should have recommended
something simpler.

— ALPHONSO THE WISE,  ATTRIBUTED, CA. 1250

THREE

Diffusion- Limited Growth
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growth of snow crystals by neglecting heat diffusion en-
tirely, and that  will be my default assumption  unless 
other wise indicated.

Figure  3.3 illustrates how a growing ice crystal de-
pletes the  water vapor density around it, creating a super-
saturation gradient. As seen in this computer simula-
tion, the gradient is highest near the tips of a growing 
crystal, resulting in a high flow of  water vapor at  these 
points, and thus fast growth at the tips. Around the in-
terior parts of the crystal, the supersaturation gradients 
are lower, resulting in lower  water vapor flow and slower 
growth. The result can be seen in movies of growing 
snow crystals (both in computer models and in labora-
tory observations), as the outer regions grow outward 
quickly, while the interior structures evolve more slowly.

Figure  3.4 shows another illustration of the deple-
tion of  water vapor around a growing snow crystal, this 
time in a laboratory setting.  Water droplets condense 
on non- ice surfaces when the supersaturation is above 
σ water, meaning that the humidity is above the dew 
point (Chapter  2). When humid air is blown down 

Undersaturated solution 

Supersaturated solution

FIGURE 3.2 . The pro cess of diffusion, shown 
operating in two directions. A crystal dropped 
into an undersaturated solution  will dissolve (top 
row). Diffusion  will then slowly spread the dis-
solved material throughout the solution. In con-
trast, a seed crystal placed into a supersaturated 
solution (bottom row)  will grow as diffusion car-
ries material to the crystal and depletes the solu-
tion nearby. The first case is analogous to a snow 
crystal sublimating in undersaturated air, and the 
second case is analogous to a snow crystal 
growing in supersaturated air.

FIGURE 3.3. This 2D numerical simulation demonstrates the 
depletion of  water vapor around a snow crystal [2008Gra]. The 
supersaturation is constant (gray) far away from the crystal, but it 
drops to near zero (white) at the growing crystal surface. The su-
persaturation gradient produces a diffusion- driven inward flow of 
 water vapor that continuously supplies material to the growing 
crystal. Image courtesy of Janko Gravner.
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most impor tant transport pro cess, as it operates even in 
still air. To a first approximation, therefore, we can ig-
nore large- scale air flow and focus our attention on un-
derstanding basic particle diffusion and how it affects 
snow crystal growth.

The pro cess of diffusion is defined mathematically 
by the classical diffusion equation. Unlike attachment 
kinetics, where our comprehension of the under lying 
molecular dynamics is still an area of active scientific re-
search (see Chapter 4), the essential physics of diffusion 
is extremely well understood, and has been for over a 
 century. Calculating the effects of diffusion in complex 
geometries (for example, surrounding a branched snow 
crystal) remains a challenging computational prob lem, 
but at least we have a firm grasp of the under lying 
physics.

Our overarching goals in this chapter are both quali-
tative and quantitative. The first is to describe the phe-
nomenology of diffusion- limited growth as it pertains to 

on the growing crystal, a fog of  water droplets con-
denses on the substrate around it,  because σ  > σ water in 
that outer region. But the supersaturation is depleted 
near the growing crystal, giving σ < σ water and no con-
densed droplets in the inner region. The boundary be-
tween the inner and outer regions reveals where 
σ  ≈ σ water near the substrate surface. While this labo-
ratory image nicely illustrates  water vapor depletion 
around a growing snow crystal, it would require a 
rather sophisticated 3D numerical simulation to accu-
rately reproduce the σ  ≈ σ water contour.

Large- scale air flow can also transport and mix  water 
vapor in air, and  these flows operate in addition to dif-
fusion. Wind and turbulence thus affect snow crystal 
growth, sometimes substantially, and I discuss this topic 
 later in the chapter.  These effects tend to be insignificant 
for small atmospheric snow crystals, however, as  these 
simply travel with the wind as it blows, like specks of 
dust. As a result, ordinary particle diffusion is by far the 

FIGURE 3.4. This laboratory- grown Plate- on- 
Pedestal (PoP) snowflake (see Chapter 9) indi-
rectly shows the depletion of  water vapor 
around a growing crystal. As moist air blows 
down onto the substrate supporting the crystal, 
a fog of tiny  water droplets condenses onto its 
surface. But no droplets condense near the ice 
crystal,  because the  water vapor density is lower 
in that region. The boundary between  these two 
regions shows where the humidity passes 
through the dew point (or, equivalently, the su-
persaturation passes through σ water), which is 
when  water droplets begin to condense.
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in Chapter 4, while branching is driven by diffusion- 
limited growth. We can begin to see the interplay of 
faceting and branching by examining the growth of the 
 simple faceted crystal shown in Figure 3.5.  Because of the 
depletion effect outlined above, the supersaturation  will 
generally decrease as one approaches the crystal surface. 
It  will equal some constant value σ∞ far away, reducing 
to lower values σsurf at the ice surface, where σsurf  depends 
on position around the crystal.  Because the six corners 
of the hexagonal crystal stick out farther into the humid 
air, σsurf  is slightly higher at the corners compared to σsurf 
near the facet centers. This phenomenon is a basic out-
come of the particle diffusion pro cess and is sometimes 
called the Berg effect [1938Ber].

Although the faceted surfaces appear to be perfectly 
flat, consider what happens if this is initially the case. 
By virtue of the Berg effect, the higher supersatura-
tion at the hexagonal corners  causes the corners to 
grow more rapidly than the facet centers. Soon the 
faceted surfaces are no longer perfectly flat but slightly 
concave at the molecular level. New molecular terraces 
nucleate preferentially near the corners, where the su-
persaturation is highest, and the steps subsequently grow 
inward  toward the facet centers. Moreover,  because 
the supersaturation is highest near the corners, the ter-
race steps move fastest  there, slowing down as they ap-
proach the facet centers. This change in step velocity 
 causes the terrace steps to bunch up near the facet cen-
ters, as shown in the sketch.

As the slightly concave facet shape develops, how-
ever, it changes how readily  water molecules attach to 
the surface. Terrace steps typically absorb  water vapor 
molecules more readily than do faceted surfaces with no 
steps, so the increased step density near the facet centers 
results in faster growth  there. This is quantified by the 
attachment coefficient α, which is essentially the prob-
ability that an impinging  water vapor molecule  will at-
tach to a surface (see Chapter 4). The value of αcenter in-
creases as the surface becomes more concave, while αcorner 
remains essentially unchanged at the faceted corners. 
Eventually this pro cess of nucleation and motion of mo-

the specific case of snow crystal formation. Phenomeno-
logical descriptions are not always the best way to un-
derstand the under lying science, as they can involve 
rough approximations and empirical descriptions. Our 
brains, however, are very much attuned to visual inputs, 
such as graphs, sketches, and photo graphs, and less so to 
mathematical formulas. Therefore, a well- crafted phe-
nomenological description is not without pedagogical 
value. Moreover, I have always found it useful to develop 
a basic  mental picture of a physical phenomenon  under 
study, unfettered by words or equations, as this often 
provides a helpful intuitive grasp of the subject.

The second goal is to develop the quantitative side of 
diffusion- limited growth, writing down the relevant 
equations and then outlining the techniques used to 
solve them. This mathematical background  will be re-
quired when we examine computational modeling, plus 
careful diffusion modeling can be quite impor tant in de-
signing and interpreting laboratory observations of 
snow crystal growth. Throughout this discussion, our 
general game plan is a straightforward application of 
modern reductionist science: 1) break down a complex 
phenomenon (snow crystal formation) into its simplest 
component pieces, including the physics of diffusion; 2) 
study and understand  those pieces as best we can by using 
realistic physical models informed by precise laboratory 
mea sure ments; and 3) reassemble the pieces into a com-
puter simulation that re creates the original phenomenon 
and (hopefully) agrees with quantitative observations. As 
I have been striving to execute this plan over the years, I 
have found that both the quantitative and qualitative 
perspectives are valuable to fully understand and appre-
ciate the science of snow crystal formation, so I try to ad-
dress both in this chapter.

FACETING AND BR ANCHING

A good starting point for the discussion is to examine 
how particle diffusion affects the transition from a fac-
eted to a branched snow crystal. Faceting is driven pri-
marily by attachment kinetics, which I describe in detail 
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 Because molecular steps are extremely small, only a 
small amount of surface curvature is usually needed to 
produce a stably growing facet. Thus, the concave facet 
shape is normally imperceptible. In a similar vein, one 
cannot easily observe the supersaturation variations 
around the crystal, as  water vapor is an invisible gas. 
When you look at faceted snow crystals with the naked 
eye, with a magnifier, or even with a high- powered mi-
croscope, you often see that the faceted surfaces appear 
as smooth and flat as a pane of glass.

Transition to Branching

This picture of facet formation takes on a new twist as 
the growth rate increases, or as the crystal grows larger. 
In  either of  these cases, the faceting mechanism contin-
ues working only  until α ≈ 1 at the facet centers, mean-
ing that all available  water vapor molecules are immedi-
ately assimilated onto the surface. Once this happens, α 
can no longer increase, which  causes the self- regulating 
pro cess described above to break down. At some point, 
the facet centers  will no longer be able to keep pace with 
the corners, and the facet  will no longer maintain its flat 
appearance. When this happens, branches sprout from 
the hexagonal corners, as illustrated in Figure 3.6.

This transition from faceted to branched growth tends 
to be rather abrupt. Once the hexagonal tips sprout 
branches, they quickly grow outward and leave the re-
gions between the branches far  behind. Exactly when the 
transition occurs depends on several  factors. A general 
rule of thumb is that faceting dominates when 1) crystals 
are small, 2) the degree of anisotropy in the attachment 
kinetics is large, and 3) the growth is slow. When  these 
three criteria no longer describe a growing crystal, 
branching becomes more likely. For example, if αfacet is 
just below unity, then the facet stability is weak, as  there 
can be  little difference between the value of α at the cor-
ners and at the facet centers. In this case, branches form 
readily and  will sprout from quite small crystals even 
when they are growing slowly. In contrast, if αfacet  1, 
then faceted growth with be highly stable, and a crystal 

lecular steps results in stable, self- regulating facet growth. 
 There is a negative feedback that maintains the precise 
concave shape needed to keep the growth velocity con-
stant across the entire facet surface. If the surface became 
too flat, the corners grow a bit faster and increase the sur-
face curvature. If the surface became too concave, the 
facet center regions grow a bit faster and again restore the 
correct concave shape.  There is a stable point in the cur 
vature that is determined by the supersaturation, crys-
tal size, attachment kinetics, and perhaps other par-
ameters. This pro cess is one of the simplest examples of 
spontaneous structure formation, as the rules of crystal 
growth bring about the sustained, stable growth of a fac-
eted crystal with slightly concave  faces.

Lower σ
Lower αHigher α
Higher σ

FIGURE 3.5. The prism facets on this PoP snow crystal (top 
photo) look straight, but they must be slightly concave at the mo-
lecular scale (bottom sketch). The hexagonal corners stick out 
farther into the humid air, so σ is slightly higher at the corners 
than at the facet centers. At the same time, the density of mo-
lecular terrace steps is higher nearer the facet centers, making 
the attachment coefficient α slightly higher  there (the surface 
lines in the sketch represent molecular layers).  Because the 
growth rate is proportional to ασ, the entire facet surface grows 
outward at a constant rate, maintaining its flat appearance.
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texts, I also call it the branching instability,  because this 
is a simpler and more descriptive moniker. The hallmark of 
any instability is positive feedback, and Figure 3.7 illus-
trates this for the special case of an initially flat ice sur-
face with α ≈ 1. If a small bump randomly appears on 
the surface, then the top of the bump sticks out slightly 
into the humid air above it. As a result, slightly more 
 water vapor in the air diffuses to the top of the bump 
than diffuses to the flat surface around it. With this 
slight enhancement in material transported to it, the top 
of the bump grows slightly faster than its surroundings, 
and so it grows taller. Soon the bump sticks out even far-
ther than it did before, causing it to grow even faster, 
which makes it stick out still farther, and so on. In this 
way, positive feedback yields a growth instability. The 
Mullins- Sekerka instability applies to many physical sys-
tems when growth is  limited by diffusion.

Interestingly, the uniform surface growth shown in 
the top panel in Figure 3.7 is a perfectly valid solution 
to the diffusion equation; it is just not a stable solution. 
Any deviation from perfect flatness, no  matter how 
small,  will grow larger. Thus, the Mullins- Sekerka insta-
bility  will eventually turn a  simple growing structure 
into a complex, branched structure with an ever- 
changing morphology. When you get to the heart of the 
 matter, this growth instability is one of the main reasons 
that the  simple pro cess of  water vapor freezing into ice 

may grow quite large before branches sprout. Just to make 
 things in ter est ing, the value of αfacet often depends 
strongly on the surface supersaturation σsurf , which in 
turn depends on the size of the crystal, the functional 
form of αfacet(σsurf), and the far- away supersaturation σ∞. 
 Because of all  these contingencies, determining the exact 
point at which branches appear becomes a nontrivial 
prob lem best left to computational modeling.

The formation of a sixfold symmetrical branched 
snow crystal results partly  because faceting is more sta-
ble on smaller crystals. When a nascent snow crystal be-
gins its existence, it is small and tends to grow into a 
faceted hexagonal prism. As it grows larger, diffusion be-
comes a larger  factor,  until at some point a set of six 
branches  will sprout si mul ta neously from the six corners 
of the hexagon, as seen in Figure 3.6. When you see a 
large branched snow crystal with sixfold symmetry, it is 
almost certain that the primary branches first sprouted 
in unison from an initially faceted ice crystal.

The Mullins- Sekerka Instability

The transition from stable faceted growth to branching 
is just one example of a more general phenomenon in 
diffusion- limited growth called the Mullins- Sekerka in-
stability, named  after its discoverers William Mullins 
and Robert Sekerka [1963Mul, 1964Mul]. In some con-

FIGURE 3.6. This series of photo-
graphs shows branches sprouting 
from the six corners of a hexagonal 
snow crystal, which happened 
when the applied supersaturation 
was increased. Branching like this 
becomes more likely when a hex-
agonal crystal is large and/or its 
growth rate is fast.
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concave shape of the surface. If  there is no anisotropy in 
the attachment kinetics (for example, when α ≈ 1), then 
the surface is always susceptible to the Mullins- Sekerka 
instability. In the opposite extreme, for a large anisotropy 
in the attachment kinetics (αfacet  1), faceted growth 
 will continue for quite some time. In general, the growth 
be hav ior of a snow crystal is determined by a combina-
tion of branching and faceting, with the details depend-
ing on the crystal size, growth rate, attachment kinetics, 
and other  factors. Faceting dominates in some regions of 
pa ram e ter space, while branching dominates in  others. 
The complex interplay of the pro cesses of faceting and 
branching is what gives snow crystal growth its especially 
rich phenomenology.

The Mullins- Sekerka instability is also well known 
for its repeated application in the formation of elabo-
rately branched dendritic structures. Once a branch 
sprouts and grows outward, perturbations on its surfaces 
may again become amplified, thereby sprouting addi-
tional sidebranches, as illustrated in Figure  3.8. In 
princi ple, this could lead to sidebranches on the sideb-
ranches, and so on, yielding quite intricate structures. 
Dendritic snow crystals forming near −15° C are often 
characterized by a set of six primary branches that are 
decorated with copious sidebranches, as shown in Fig-
ure 3.9. Side- sidebranches are sometimes seen, although 
they are somewhat rare. More common is a mixture of 
both faceting and branching be hav iors on a single crys-
tal, producing the endless morphological variations we 
associate with snowflakes.

The branching instability can become quite chaotic 
when it is driven hard, and Figure 3.9 illustrates the result-
ing unruly be hav ior in the snow crystal world. When this 
crystal was small, the six primary branches must have si-
mul ta neously sprouted from the corners of a tiny hexago-
nal prism, as the symmetry of  these branches reflects the 
initial faceted order of the crystal. In contrast, the sideb-
ranches arose from random perturbations that occurred 
near the primary branch tips.  Because the supersatura-
tion was quite high around this crystal, the sidebranch-
ing events  were somewhat random in nature, yielding a 

creates the beautiful, complex snow crystal patterns we 
observe falling from winter clouds.

When anisotropic attachment kinetics are pre sent in 
addition to diffusion- limited growth, we see that 
faceting provides a stabilizing influence that initially in-
hibits the Mullins- Sekerka instability. The faceting pro-
cess described above provides a negative feedback that 
reduces perturbations and maintains the ever- so- slightly 

Water vapor

Ice

Ice

Ice

Water vapor

Water vapor

FIGURE 3.7. The diffusion- limited growth of an initially flat sur-
face with α ≈ 1 (top sketch) is susceptible to the Mullins- Sekerka 
instability, also known as the branching instability. If a small bump 
appears on the surface (center), it  will stick out farther into the 
supersaturated medium, so the top of the bump  will grow slightly 
faster than the surrounding flat surface. This initiates a positive 
feedback effect, causing the bump to become larger, increasing 
its relative growth rate even more (bottom). This illustration as-
sumes zero anisotropy in the attachment kinetics (α ≈ 1), which 
eliminates the possibility of faceting and thus emphasizes the 
Mullins- Sekerka instability.
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grows out into open space with a uniform far- away su-
persaturation σ∞, and the overall tip morphology of a 
 free dendrite is essentially in de pen dent of time. If you 
photographed the near- tip structure at diff er ent times, 
you would find that the photos all looked about the 
same. The detailed placement of the sidebranches with 
re spect to the tip is always changing, but the overall mor-
phology remains constant. Also, the initial origin of the 
dendritic branch is largely unimportant; once it becomes 
fully developed, the branch automatically assumes its 
characteristic shape and properties. Fernlike stellar den-
drites, like the one shown in Figure  3.9, are basically 
made of six free- dendrite branches that grew out from 
the six corners of a small hexagonal plate.

Dendritic structures are quite ubiquitous in solidifi-
cation systems, reflecting the universal nature of the 
Mullins- Sekerka instability. When diffusion- limited 
growth is driven hard enough, branching invariably re-
sults. Particle diffusion is the main limiting  factor in 
snow crystal growth, while heat diffusion can yield  free 
dendrites when ice freezes from liquid  water (as shown 
 later in the chapter). Countless other solidification sys-
tems exhibit similar be hav iors, and  there is a large scien-
tific lit er a ture on the general physics of dendrite forma-
tion during solidification [1989Lan, 1993Cro]. Besides 
diffusion, surface energy effects and the attachment ki-
netics both guide the overall development of  these struc-
tures, as I describe further below. Examining the uni-
versal nature of this rich field of study is beyond the scope 
of this book, however, so my focus  here  will be to apply 
what is known about dendrite formation to the specific 
prob lem at hand.

In the world of snow crystals, fernlike stellar crystals 
are a common and easily recognizable form of dendritic 
growth. They grow readily at temperatures near −15° C 
when the supersaturation is high (as indicated in the 
Nakaya diagram), and they exhibit several characteris-
tic traits:

1) The branched morphology is mainly confined to a 
flat plane  because of strong basal faceting.

disor ga nized arrangement of sidebranches, such that 
even the two sides of a single primary branch exhibit quite 
diff er ent structures. Thus, the detailed sixfold symmetry 
in this crystal is quite poor, even though the six branches 
have similar overall shapes. While such chaotic sideb-
ranching is common, it is also pos si ble to stimulate sym-
metrical sidebranches with not- so- random perturbations, 
and I discuss this phenomenon  later in the chapter.

 FREE DENDRITES

An individual branch like the one in Figure 3.10 is often 
called a “ free” dendrite,  because it is a self- assembling 
structure that can be considered  free from the constraints 
of container walls or competing crystals. The branch 

FIGURE 3.8. A schematic diagram showing the creation of den-
dritic sidebranches resulting from repeated application of the 
Mullins- Sekerka instability. Random perturbations on the sides 
of the growing tip typically yield somewhat erratically placed 
sidebranches. However, a characteristic length scale is often in-
volved in the formation of  these perturbations, resulting in a 
minimum spacing between adjacent sidebranches. Image adapted 
from [1980Lan].
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FIGURE 3.9. Both branching and 
faceting play large roles in fernlike 
stellar dendrites like this one. The 
branching instability is clearly re-
sponsible for the copious sideb-
ranching and for the largely random 
sidebranch placement. However, 
this crystal began its life as a fac-
eted hexagonal prism,  because the 
six primary branches must have 
spouted from the small prism’s six 
corners. Moreover, the crystal is 
thin and flat, indicating strong basal 
faceting even in the presence of 
highly developed dendritic branch-
ing. The complex interplay of facet-
ing and branching (attachment ki-
netics and diffusion- limited growth) 
 causes the morphological richness 
seen in snow crystal formation.

FIGURE 3.10. A fernlike dendrite 
growing out from the tip of a wire 
substrate at a temperature of −15° C. 
The complex branched structure is 
mostly confined to a thin plane by 
slow basal growth.
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Chapters  6 and 8). While they look quite dif fer ent 
from fernlike dendrites, fishbones are also  free den-
drites with many of the same characteristic traits just 
described. However, the sidebranches are not con ve-
niently confined to a nearly f lat plane, and thus their 
structure is not so easy to convey using a single photo-
graph. Moreover, the formation of fishbone dendrites 
requires high supersaturation levels that do not occur 
in nature, so they are entirely a laboratory creation 
[2009Lib1].

Fernlike dendrites near −15° C and fishbone den-
drites near −5° C are the fastest growing and most dis-
tinctive cases of snow crystal dendritic structures. How-
ever,  these are just two examples from the full spectrum 
of  free dendrites that appear in the snow crystal mor-
phology diagram, and additional photos of morpholo-
gies as a function of growth temperature are presented 
in Chapter 8.  These show that the direction of dendrite 
tip growth depends on both temperature and supersat-
uration. Flat fernlike dendrites have vtip aligned with the 
crystal a- axis, but typically the growth direction is not 
aligned with any specific axis, being determined by de-
tails of the attachment kinetics. In par tic u lar, the growth 
direction depends on the ratio of αbasal to αprism, which 
depends on both temperature and supersaturation at the 
growing tip. Even at −15° C, fernlike dendrites exhibit 
growth out of the basal plane at high supersaturations. 
Also notable is that no snow crystal  free dendrites grow 
along the c- axis, although e- needles (see Chapter 8) can 
be coaxed to grow in that direction using chemical vapor 
additives.

Sidebranch Competition

Another manifestation of the Mullins- Sekerka insta-
bility can be seen in the development of sidebranches 
 after they sprout near a dendrite tip, as illustrated in 
Figures  3.9 and 3.10. As the individual sidebranches 
grow longer, each competes with its neighbors for 
available  water vapor. If one branch becomes slightly 

2) The tip of each dendritic branch grows outward with 
a constant tip velocity vtip that increases approxi-
mately linearly with the far- away supersaturation, 
so vtip ~ σ∞.

3) The radius of curvature of the tip is equal to about 
Rtip ≈ 1 micron, a value that does not change with 
time and is roughly in de pen dent of supersaturation.

4) Each distinct sidebranch grows out at an  angle of 60 
degrees relative to the primary branch.

5) New sidebranches typically spout at a characteristic 
distance from the tip that is roughly several times 
Rtip.

6) The sidebranch spacing is generally erratic, with  little 
correlation between branches or on  either side of a 
primary branch.

I delve a bit more into the mathematical aspects of den-
drite formation in the section on solvability theory  later 
in this chapter, as this theory explains some aspects of 
dendrite growth near the tip. However, computational 
models have not yet advanced to the point where they 
can reproduce fernlike stellar dendrite snow crystals, so 
many of their detailed properties remain unexplained, 
including the sidebranch spacing, the distinctive “back-
bone” construction, and how the attachment kinetics 
guide the overall morphology. Although fernlike stel-
lar dendrites are easy to find in nature and straightfor-
ward to create in the laboratory, developing a compre-
hensive theory of their construction remains a significant 
challenge.

Fishbone Dendrites Near −5° C

While fernlike dendrites near −15° C are something of 
a canonical snow crystal form, other dendritic struc-
tures appearing at diff er ent temperatures are also wor-
thy of attention. The “fishbone” dendrites shown in 
Figure  3.11 are especially pronounced, as they grow 
rapidly near −5° C and make up the “fishbone peak” 
often seen in snow crystal diffusion chambers (see 
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Fractal Structure

Although the topic comes up frequently, I have not 
found that the concepts of fractal mathe matics add much 
to our understanding of snow crystal formation and 
structure. Perhaps this view results from my perspective 
as an experimental physicist focusing on the materials 
science and crystal growth aspects of this prob lem. But 
my bias is reinforced by the failure of fractal mathe matics 
to provide much predictive power when it comes to un-
derstanding snow crystal formation. Nevertheless, snow 
crystals do exhibit some fractal characteristics. The most 
apparent of  these is a degree of self- similarity in the 
formation of dendritic structures, as illustrated in 
Figures  3.12 and 3.13. Primary branches yield sideb-
ranches, and  these can yield side- sidebranches, and so 
forth. If a dendrite sidebranch develops sufficiently, 
its overall structure  will be indistinguishable from 
the central branch from which it arose. And the same 
would be true of side- sidebranches if they mature to 
the same extent.

longer than  others nearby, then it sticks out farther 
into the humid air and shields its neighbors. Diffusion 
brings the longer branch a greater supply of  water 
vapor, so soon it shoots ahead, while its immediate 
neighbors are greatly stunted. The under lying physical 
effect is essentially the same as with the Mullins- 
Sekerka instability described above. Over time, this 
competition plays out on many length scales, so the 
spacing between the fastest growing sidebranches be-
comes ever larger, as a few players become dominant 
by appropriating available resources at the expense of 
the  others. Diffusion- driven competition between 
neighboring structures is a common feature in snow 
crystal growth dynamics, and many examples can be 
found scattered throughout this book. In socioeco-
nomic circles, a similar phenomenon is sometimes 
called the Matthew effect, from the biblical quote: 
“For unto  every one that hath  shall be given, and he 
 shall have abundance: but from him that hath not 
 shall be taken away even that which he hath” (Mat-
thew 25:29).

Prograde
sidebranches

Primary branch

“Prograde” sidebranches
(two sets)

“Retrograde”
sidebranches Retrograde

sidebranches

FIGURE 3.11. The sidebranch struc-
ture of a fishbone dendrite is more 
three dimensional than a fernlike 
dendrite. This figure compares a 
photo graph with a sketch that shows 
the orientations of the dif fer ent 
sidebranches with re spect to the ice 
crystal axes (defined by the hexago-
nal prisms in the sketch). Unlike fern-
like dendrites, fishbone dendrites are 
clearly not confined to a flat plane.
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ing diff er ent mathematical approaches for dif fer ent 
systems. To avoid confusion regarding which physical 
effects are impor tant and which can be neglected in 
snow crystal growth, it is useful to list the dif fer ent 
types of systems in which dendritic structures arise 
in diffusion- limited crystal growth.

Unfaceted Solidification from the Melt. Most of the 
scientific lit er a ture on dendritic solidification can be 
found in this category, as it has impor tant applications 
in metallurgical and semiconductor systems. Succinoni-
trile and pivalic acid are two oft- studied materials 
[2004Gli , 2012Mel], popu lar  because they are easy to 
work with and are considered good proxies for  simple 
metals; Figure 3.14 shows a typical example of an unfac-
eted  free dendrite. The dominant physical effects that 
need to be considered in this category include, in order 
of importance:

1) Thermal diffusion. Removing latent heat is a major 
consideration in solidification from the melt, so the 
thermal diffusion equation is of paramount impor-
tance. Dendritic structures in this system arise mainly 
from thermal- diffusion- limited growth.

2) Surface energy. Although less impor tant than ther-
mal diffusion, this physical effect sets the scale for 

Observations generally reveal that the degree of self- 
similarity seen in snow crystal structure is relatively 
minor. Moreover, the concept of self- similarity does not 
provide a physics- based explanation of the formation of 
the dendritic structure in the first place; that requires the 
Mullins- Sekerka instability. Explaining snow crystal 
structure necessitates a broad understanding of diffusion- 
limited growth, attachment kinetics, and ultimately the 
molecular dynamics of the ice crystal surface. Saying that 
a snowflake has some self- similar fractal characteristics is 
an accurate description, but, by itself, this description 
does not provide many useful insights that allow one to 
comprehend the under lying physical phenomena.

A Brief Classification of Solidification 
Systems

When surveying the scientific lit er a ture, one soon 
finds that  there is a large body of work on dendrite 
structure formation and on the physics of solidifica-
tion more generally. Some of this work applies readily 
to the prob lem of snow crystal growth, but much of it 
does not. Some aspects of the under lying physics are 
quite universal and can be described by a general 
mathematical formalism. But other aspects can be 
quite dependent on the material being studied, requir-

FIGURE 3.12. The construction of geometrical curve known as the Koch snowflake, first described by 
Swedish mathematician Helge von Koch in 1904. It is one of the earliest known examples of a fractal 
structure. As ever- smaller triangular sidebranches are attached ad infinitum, the area of the Koch 
snowflake converges to 8/5 times the area of the original triangle, while its perimeter length diverges 
to infinity. Consequently, the Koch snowflake has a finite area bounded by an infinitely long perimeter. 
Although this fractal structure bears some resemblance to a stellar dendrite snow crystal,  there is  little 
real connection between fractal mathe matics and the physics of snow crystal formation.
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Faceted Solidification from Vapor. Snow crystal for-
mation stands out as perhaps the most studied example 
of solidification of a high- vapor- pressure system. Mate-
rials science, usually classified as a branch of engineering, 
has  little interest in materials that readily evaporate away, 
so over the years, the solidification of high- vapor- pressure 
materials has received less attention than metals. Listing 
the dominant physical effects for the snow crystal case, 
in order of importance, we obtain:

1) Particle diffusion. In air, particle diffusion transports 
 water vapor molecules to the ice surface, and this 
slow pro cess greatly limits growth. Particle diffusion 
is responsible for branching and essentially all the 
complex structure seen in snow crystals.

2) Attachment kinetics. In the formation of snow 
crystal  free dendrites, attachment kinetics set the 
scale for Rtip and the overall branched structure, as I 
describe in detail  later in this chapter. Together, 
particle diffusion and attachment kinetics define 
the primary features seen in snow crystal growth.

Rtip and therefore the overall structure of a  free den-
drite. Together, thermal diffusion and surface energy 
effects define the primary features seen in metallur-
gical solidification.

3) Anisotropic surface energy. As I discuss  later in this 
chapter, stable dendrites require some anisotropy in 
the surface boundary conditions, and  here that is 
provided by an anisotropic surface energy.

4) Attachment kinetics. This is often neglected en-
tirely, as the attachment kinetics are so fast that they 
do not limit growth significantly. This fast- kinetics 
approximation appears to provide a good descrip-
tion of solidification systems that exhibit no 
faceting, which is true for many metals and metal 
analogs.

5) Particle diffusion. This pro cess is also usually ne-
glected in solidification from the melt,  because 
liquid is always pre sent at the solidification inter-
face. Particle diffusion may be a  factor in multi-
component systems, but not in growth from pure 
melt.

FIGURE 3.13. A close-up of one section 
of an exceptionally large fernlike stellar 
dendrite. The crystal exhibits a somewhat 
self- similar fractal structure with side-
branches begetting side- sidebranches, 
and even a few side- side- sidebranches.
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Any residual effects are dwarfed by similar effects 
from anisotropic attachment kinetics.

Chemical Vapor Deposition. So much work has been 
done with chemical vapor deposition (CVD) that it 
deserves a separate listing, although in princi ple it 
could be included in other categories. The primary 
focus in CVD systems has been on technological ap-
plications, so  these materials almost always exhibit low 
vapor pressures. Theoretical descriptions of CVD often 
make an implicit assumption of zero vapor pressure 
from the outset, which greatly simplifies the theory 
but also immediately changes the under lying physics 
compared to high- vapor- pressure systems. Thus, the 
vast lit er a ture on CVD systems often has remarkably 
 little (although certainly not zero) direct application to 
snow crystal growth.

Unfaceted Solidification from Vapor. To my knowl-
edge (quite  limited in this case), the formation of unfac-
eted  free dendrites from vapor has received  little scien-
tific attention. I performed a few experiments using 
carbon tetrabromide, as this seemed to be a con ve nient 
test system, but  little came out of  those observations. 
Impor tant physical effects could include all the items 
mentioned above (particle diffusion, heat diffusion, sur-
face energy, and attachment kinetics), all to varying de-
grees depending on the specific material  under consid-
eration. With few practical applications, substantial 
experimental challenges, and especially complex input 
physics, it is perhaps  little surprise that vapor solidifica-
tion of unfaceted  free dendrites has not been a popu lar 
research topic.

Faceted Solidification from the Melt. Ice growth from 
liquid  water falls into this category, as is clearly indicated 
by the presence of strong basal faceting (Figure 3.15). The 
dominant physical pro cesses are the same as with unfac-
eted solidification from the melt, except now one must 
include effects from both anisotropic attachment kinet-
ics and anisotropic surface energy, as possibly neither is 

3) Anisotropic attachment kinetics. Snow crystal at-
tachment kinetics are generally highly anisotropic, 
which tends to yield strongly faceted structures.

4) Surface diffusion. This is nominally part of the at-
tachment kinetics, but surface diffusion introduces 
nonlocal effects that are not included with a  simple 
attachment coefficient. As discussed in Chapter 4, 
surface diffusion effects appear to be quite impor tant 
in snow crystal growth.

5) Thermal diffusion. A minor effect compared to par-
ticle diffusion, thermal diffusion is often neglected. 
Its role increases close to 0° C, but this can often by 
approximated by a  simple rescaling of σ∞ (as dis-
cussed  later in this chapter).

6) Surface energy. Almost negligible,  because surface 
energy effects are dwarfed by similar effects arising 
from attachment kinetics. However, the surface en-
ergy is necessary in modeling to avoid unphysical re-
sults at exceptionally low supersaturations.

7) Anisotropic surface energy. This effect is negligible. 
Surface energy effects are small to begin with, plus 
the surface energy anisotropy in ice is quite small. 

50 mμ

FIGURE 3.14. A  free dendrite forming in succinonitrile from its 
melt. This transparent material is often used as a metal analog in 
studies of solidification, as it forms dendritic structures that are 
typical for solidification from the melt when attachment kinetics 
is not an impor tant  factor. Image adapted from [1976Gli].
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mathe matics. Most textbooks on mathematical phys-
ics derive the diffusion equation and examine its so-
lution, and I  will assume that the reader already has a 
basic familiarity with diffusion physics. Therefore, my 
focus in the following discussion is on describing how 
to apply the diffusion equation to the specific prob-
lem at hand, examining physical concepts and specific 
model systems.

Particle Diffusion

We begin with the particle diffusion equation that 
describes the transport of  water molecules through 
the air

 
∂c
∂t

= Dair∇2c ,  (3.1)

where c(!x) is the number density of  water molecules, 
Dair is the diffusion constant for  water molecules in air, 
and !x  is the position vector. For typical atmospheric 
conditions, Dair ≈ 2 × 10−5 m2/sec.

negligible compared with the other. Unfortunately, this 
complicates  matters substantially and creates a full plate 
on the theory side, so again this has not been a popu lar 
research topic. The ice/water system is a good example of 
the current situation in this category; basal faceting 
clearly plays an impor tant role, but surprisingly  little is 
known about the attachment kinetics at the ice/water 
interface. Several ice/water solidification studies ignore 
attachment kinetics entirely, which seems unwise con-
sidering the clear occurrence of faceting. Given the 
ease of creating and studying ice structures from liq-
uid  water, and the many recent advances in numerical 
modeling, this topic seems ripe for additional experi-
mental research.

DIFFUSION IN SNOW CRYSTAL 
GROWTH

Now that we have examined a few of the more promi-
nent morphological effects of diffusion on snow crys-
tal growth, it is time to delve into the under lying 

FIGURE 3.15. This ice crystal grew 
from liquid  water on the surface of a 
quiet pond when the overnight tem-
perature dipped slightly below 0° C. 
Attachment kinetics  limited the 
basal growth, resulting in a thin plate 
of ice, while thermal diffusion 
brought about dendritic branching. 
The under lying sixfold symmetry of 
the ice crystal lattice guided the ori-
entations of the branches and sideb-
ranches, as it does with snow crystal 
growth. Photo courtesy of Bath-
sheba Grossman.
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and its value is typically less than 10−4 for a snow crystal 
growing in air. (In contrast, the Peclet number is usually 
not small for solidification from the melt, so the quasi- 
static approximation is not valid in  those systems. Solidi-
fication from the vapor generally yields much smaller 
Peclet numbers than solidification from the melt.) The 
Laplace approximation works  because the depleted re-
gion around a snow crystal adjusts itself almost instan-
taneously to changes in the crystal shape, and this is 
equivalent to a quasi- static approximation. Adopting 
Equation 3.4 from the outset affords a substantial sim-
plification in the mathe matics, allowing us to assume 
that the  water vapor field surrounding a growing snow 
crystal is always in its completely relaxed state. This state 
changes as the crystal grows, but we need not worry 
about the relaxation pro cess itself.

Boundary Conditions

To solve the diffusion equation, we also need to supply 
appropriate boundary conditions.  These are nontrivial 
for snow crystal growth, so we need to consider them 
with some care.

Faraway Boundary. One commonly used boundary 
condition is to assume that the supersaturation is equal 
to some fixed value σ∞ far from the growing crystal. The 
term “far” in this context usually means at a distance 
much larger than the size of the growing crystal in ques-
tion. This boundary condition works well in three di-
mensions if the growing crystal is small in all three di-
mensions. It is pos si ble, however, to apply this boundary 
condition incorrectly. Assuming a  simple faraway bound-
ary may not work with infinitely long cylinders, infi-
nitely large walls, large dendritic structures, or other sys-
tem geometries. We  will encounter examples of such 
cases  later in this chapter.

Mass Flux. To look at additional boundary condi-
tions, we need to understand the flow of material in a 
diffusing system. Particle diffusion always has a net 

If the temperature is equal to a fixed value everywhere 
(the isothermal approximation), then Equation  3.1 can 
be rewritten in terms of the supersaturation as

 
∂σ
∂t

= Dair∇2σ ,  (3.2)

where σ (!x) is defined by

 σ (!x)= c(!x)− csat
csat

 (3.3)

and csat is the saturated  water vapor density, equal to c 
above a flat ice surface in equilibrium with the vapor 
phase.  Here we assumed that csat is a constant in de pen-
dent of !x , which is true in the isothermal approxima-
tion.  Because the values of both c and σ	 vary with posi-
tion around a growing crystal, I often refer to the fields 
c(!x)  and σ (!x) .

In addition to the isothermal approximation, we can 
also employ a quasi- static approximation that reduces 
Equation 3.2 to Laplace’s equation

 ∇	2σ = 0. (3.4)

To see why this is a good approximation, consider sud-
denly placing a snow crystal into a uniform body of pre-
existing supersaturated air. The crystal  will begin grow-
ing immediately and thereby create around it a region 
somewhat depleted of  water vapor. The size of this de-
pleted “hole” in the  water vapor density  will be a few 
times larger than R, the size of the crystal, and its creation 
 will take a time roughly equal to τdiffusion ≈ R2/D. (This is a 
well- known result from diffusion physics. To make the 
notation more compact, I often use D in place of Dair .) If 
we put in some typical numbers, taking D = Dair ≈ 2 × 10−5 
m2/sec and R ≈ 1mm, we obtain τ ≈ 50 msec.

Meanwhile, it takes a time τgrowth ≈ 2R/vn for a snow 
crystal to grow appreciably, where vn is the growth veloc-
ity. The ratio of the relaxation time to the growth time 
is called the Peclet number, defined as

 pPeclet = Rvn/2D, (3.5)
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ture. But it is an oversimplification that often obscures 
in ter est ing aspects of snow crystal growth. Assuming 
σsurf  = 0 on a growing crystal can never be absolutely ac-
curate, as Equation 3.8 would then imply zero growth. 
Quantifying this discussion is impor tant, and I defer 
that topic to the section below on  spherical solutions. 
Equation 3.9 is the usual boundary condition needed at 
the surface of a growing snow crystal.

Ice- Free Walls. If particles cannot flow into or out of 
an ice- free wall in an experimental chamber, then zero 
net particle flux implies zero density gradient at the 
wall. Thus the boundary condition at an ice- free wall is 
given by

 
∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ wall

= 0,  (3.11)

where (∂σ/∂n)wall is the gradient of the supersaturation 
in the direction of the surface normal.

Ice- Covered Walls. In many experimental situations, a 
boundary might consist of an ice- covered surface at some 
temperature T. Assuming the ice is neither growing nor 
sublimating appreciably, the vapor pressure  will equal the 
equilibrium value, c ≈ csat(T), at the ice- covered surface. 
For an isothermal environment, this means σ ≈ 0 at 
the ice surface. Even  here, however, we must be a bit 
careful with this boundary condition. For the isother-
mal case, the surface boundary condition is given more 
accurately by

 σ surf ≈
vn

αvkin
,  (3.12)

where v is the growth velocity of the ice on the surface. 
This can be close to zero for a large ice- covered reservoir 
wall, but it is often not a good assumption to take σ ≈ 0 at 
the surface of a small, isolated ice crystal. In any case, the 
only time σsurf  is exactly zero is in equilibrium, when the 
growth velocity is also zero, as shown in Equation 3.8. If 
the temperature varies in an experimental system, then 

particle flux associated with a density gradient, in our 
case given by

 F = D(n̂ ⋅⋅
!
∇ c)= Dcsat (n̂ ⋅⋅

!
∇σ ).  (3.6)

(This is also a standard result from basic diffusion phys-
ics found in textbooks.) Note that the equals sign goes 
both ways. If  there is a gradient in the  water vapor den-
sity in air, it necessarily results in a flow of  water vapor 
molecules given by F. Likewise, any net diffusive flow of 
 water vapor molecules through air must be accompanied 
by a density gradient 

!
∇ c .

Mass Conservation. If a snow crystal is growing in 
air, then  there must be a particle flux into the surface 
of the ice, as the flow of particles is what supplies the 
growth.  Doing the math yields a surface boundary 
condition

 vn = csatD
cice

∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

,  (3.7)

where vn is the growth velocity of the crystal normal to 
the surface, and (∂σ/∂n)surf is the normal gradient of the 
supersaturation just above the ice surface. Combining 
this with the Hertz- Knudsen relation (see Chapter 4),

 vn = α	vkinσsurf   , (3.8)

then gives the surface boundary condition as

 X0
∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

=ασ surf ,  (3.9)

where

 X0 = csat
cice

 
D
vkin

.  (3.10)

This is called a mixed boundary condition,  because it in-
volves both the value and gradient of σ at the surface.

In some circumstances, it is reasonable to just as-
sume σsurf ≈ 0 at the surface of a growing snow crystal, 
and one occasionally sees this assumption in the lit er a-
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to quite high accuracy. Equating the heat flux away from 
the crystal surface to the heat generated gives the surface 
boundary condition

 κ air
∂T
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

= vnρice Lsv .  (3.16)

With all the relevant diffusion equations and boundary 
conditions now in hand, we can proceed to examine their 
simplest analytic solutions.

THE  SPHERICAL SOLUTION

The case of a  spherical snowflake is remarkably useful 
for understanding the relevant physics of snow crystal 
growth. The prob lem is  simple enough to be solvable 
analytically, yet its solution provides a  great deal of in-
tuition that can be applied to more challenging scenar-
ios. The  spherical solution is especially useful for exam-
ining the relative importance of diff er ent physical 
effects and for making suitable simplifying approxima-
tions in other analyses. Moreover, analytical solutions 
like the  spherical case play an impor tant role in testing 
quantitative computation models of snow crystal growth, 
verifying that the simulations reproduce known analyti-
cal results with acceptable accuracy. If you  really want 
to understand the growth of snow crystals, with all 
their branching, faceting, and other complex structures 
and growth be hav iors, I recommend starting your quest 
with the simplest pos si ble example— the growth of a 
 spherical ball of ice.

Kinetics Plus Diffusion

The  spherical prob lem can be solved analytically and ex-
actly, and I like to start with the minimum physics 
needed to describe the basic prob lem. Thus, let us begin 
by including particle- diffusion- limited growth and at-
tachment kinetics with a constant α on the surface of 
the sphere. This addresses the heart of the prob lem with-

we must be careful about the definition of σ itself, as csat 
is temperature dependent. In this case, the boundary 
condition is best left as c ≈ csat(T) at the surface of a large, 
ice- covered wall, as written above.

Heat Diffusion

The solidification of  water molecules at a growing snow 
crystal surface releases latent heat that increases the 
surface temperature and thus slows growth. The tem-
perature rise is countered by the diffusion of heat away 
from the surface through the surrounding air, produc-
ing another type of diffusion- limited growth. Heat 
diffusion is less impor tant than particle diffusion in 
snow crystal growth, so it is rightfully ignored in most 
numerical models, at least for the time being. Never-
theless, the separate contributions of heat and particle 
diffusion have been observed at least once [2016Lib], 
so researchers  will have to face the full dual- diffusion 
prob lem (particle plus heat diffusion) at some point in 
the  future.

Heat diffusion is described by the thermal diffusion 
equation

 
∂T
∂t

= Dtherm∇2T ,  (3.13)

where T (!x)  is the temperature field surrounding the 
crystal, with

 Dtherm = κ air

ρair c p, air
,  (3.14)

where κair is the thermal conductivity of air, ρair is the air 
density, and cp,air is the heat capacity of air. For typical 
atmospheric conditions, Dtherm ≈ 2 × 10−5 m2/sec, and the 
fact that Dtherm ≈ Dair reflects the universal nature of dif-
fusion through ideal gases.

The quasi- static approximation applies for heat dif-
fusion as it does for particle diffusion, giving

 ∇	2T = 0 (3.15)
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Diffusion- Limited Growth

This limit applies when

 αdiff  α, (3.24)

and gives

 vn ≈
csatD
ciceR

σ∞ ≈ X0

R
 vkinσ∞ ,  (3.25)

with

 σ surf ≈
α diff

α
σ∞ ≈ X0

αR
σ∞ .  (3.26)

Figure 3.16 shows some example solutions for σ(r) using 
a constant R and several diff er ent values of α.

Looking beyond the  spherical solution, the  spherical 
analy sis tells us that faceting becomes a dominant growth 
characteristic in the kinetics- limited regime, whereas 
branching tends to dominate in the diffusion- limited re-
gime. Thus, tiny snow crystals (small R) tend to grow 
into  simple faceted prisms, as do slow- growing crystals 
(small α). Crystals grown at low pressures (large D) often 

out a lot of unnecessary complications. The solution of 
the diffusion equation gives

 σ (r)=σ∞ − R
r

(σ∞ −σ surf ),  (3.17)

where

 σ surf =
α diff

α +α diff
σ∞  (3.18)

and

 α diff = csat
cice

 
D
vkin

 
1
R

= X0

R
.  (3.19)

The crystal growth velocity is then

 vn =
αα diff

α +α diff

⎛

⎝
⎜

⎞

⎠
⎟ vkinσ∞ .  (3.20)

 There are two limiting cases that deserve special 
attention.

Kinetics- Limited Growth

This limit applies when

 α  αdiff (3.21)

and gives

 vn ≈ α	vkinσ∞ (3.22)

 σsurf ≈ σ∞ (3.23)

As the name implies, kinetics- limited growth depends 
on α but is in de pen dent of D and X0.  Because X0 is typi-
cally about 0.15 microns in normal air, αdiff  is quite small 
for even a small natu ral snow crystal. For this reason, 
kinetics- limited growth usually applies in air only when 
α is extremely small. At low pressure, however, X0 can be 
substantially larger, so kinetics- limited growth is more 
likely to apply in near- vacuum conditions.
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FIGURE 3.16. The solution to the diffusion equation for the 
growth of a  spherical snow crystal with αdiff  = 0.05. When α → 0, 
the growth is kinetics  limited, and σsurf  ≈ σ∞. As α increases, the 
growth becomes more diffusion  limited, and σsurf decreases.
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with all the variables in Equation 3.29 evaluated at T∞. 
Values of χ0 as a function of temperature are given in 
 Table 2.1 in Chapter 2. In addition, the surface temper-
ature of the growing  spherical crystal is given by

 ΔT = 1
η

α
α +α diff ,heat

χ0

1+ χ0
σ∞ ,  (3.30)

where ΔT = Tsurf − T∞. If αdiff  α, so the growth is 
purely diffusion  limited (which gives the maximum 
ΔT), then Equation 3.30 reduces to

 ΔT ≈ 1
η

χ0

1+ χ0
σ∞ ,  (3.31)

which, interestingly, is in de pen dent of the crystal ra-
dius R.

A first takeaway message from this analy sis is that 
heat diffusion plays a somewhat minor role in snow crys-
tal growth compared to particle diffusion. The relevant 
variable χ0 equals about 0.8 at −1° C, drops to about 0.4 
at −10° C, and it continues falling with colder tempera-
tures. Moreover, if the growth is mainly diffusion 
 limited, then Equation 3.27 becomes

 vn ≈α diff vkin
σ∞

1+ χ0
,  (3.32)

which means that the main effect of heating can be in-
corporated into a  simple rescaling of σ∞.

This is a significant result; once we can create realistic 
computer models of snow crystal growth incorporating 
only particle diffusion and attachment kinetics, then add-
ing heat diffusion can be done to a reasonably good ap-
proximation simply by taking σ∞ → σ∞/(1 + χ0) in the same 
models. The takeaway message is that we should prob ably 
ignore heating (in atmospheric snow crystal growth)  until 
we first solve the prob lem including just particle diffusion 
and attachment kinetics. One step at a time.

Qualitatively, we can understand the heating effects 
from the under lying physics. Deposition generates latent 
heat, which warms the growing snow crystal  until a bal-
ance is reached, when the heat carried away by diffusion 

grow as  simple prisms for the same reason. Conversely, 
branching tends to dominate over faceting in the 
diffusion- limited regime. Although the  spherical solu-
tion is of  little use for describing the detailed formation 
of complex snow crystals, it is invaluable for understand-
ing diff er ent limiting be hav iors.

The  spherical solution also tells us that that vn is in-
de pen dent of α in the diffusion- limited regime, but σsurf 
is not. We also see that σsurf  generally becomes smaller 
as R becomes larger. However, σsurf  never reduces fully 
to zero for a growing crystal, as zero supersaturation 
would be equivalent to a zero- growth equilibrium state. 
It is also worth noting that even though the  spherical so-
lution is a perfectly correct and accurate solution to the 
diffusion equation, in real life it is not a stable solution. 
Diffusion- limited  spherical growth is subject to the 
Mullins- Sekerka instability, eventually producing den-
dritic structures.

Kinetics, Diffusion, and Heating

When latent heating is included in the  spherical prob-
lem, we must then si mul ta neously solve both the heat 
and particle diffusion equations, which is a substantially 
more difficult prob lem. Notably, the isothermal approx-
imation clearly no longer holds, so csat is not a  simple 
constant, and one must be quite careful with the defini-
tion of the supersaturation field σ (!x). The mathe matics 
is straightforward but a bit tedious [2005Lib], yielding 
a result that can be written in the same basic form as 
Equation 3.20:

 vn =
αα diff ,heat

α +α diff ,heat

⎛

⎝
⎜

⎞

⎠
⎟ vkinσ∞ ,  (3.27)

where

 α diff ,heat = X0

R
1

1+ χ0
 (3.28)

and χ0 is a dimensionless pa ram e ter

 χ0 = ηDLsvρice

κ air

csat
cice

,  (3.29)
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compared with the dominant effects of particle diffusion 
and attachment kinetics. Someday, we  will need to solve 
the combined particle + heat double- diffusion prob lem 
in three dimensions to explain all the subtleties of snow 
crystal growth, but that day is not yet upon us. Through-
out most of this book, therefore, I have largely ignored 
latent heating and heat diffusion for growth in air (ex-
cept when dealing with pos si ble systematic errors in pre-
cision growth experiments).  Until we have a better un-
derstanding of the attachment kinetics over the full 
range of growth conditions, it is reasonable to mostly ig-
nore heating effects, at least for the immediate  future.

Kinetics, Diffusion, Heating,  
and Surface Energy

Rounding out our analy sis of  spherical ice growth, we 
add surface energy by including the Gibbs- Thomson 
effect, which gives the new Hertz- Knudsen relation 

equals that generated. The increased crystal temperature 
then lowers the effective supersaturation by changing csat 
at the surface. Moreover, the heat conductivity of ice is 
much higher than that of air, so the  whole snow crystal 
heats nearly uniformly. When all this is considered in the 
 spherical solution, we see that thermal diffusion effects, 
while not always negligible, are not nearly as impor tant 
as particle diffusion and attachment kinetics for snow 
crystal growth in air.

Experimental Verification

Although diffusion theory is well understood, it is nev-
ertheless good to see an experimental verification, if for 
no other reason than to obtain a “real ity check” to make 
sure one is on the correct theoretical track. Producing a 
suitable experiment is nontrivial, however, as  spherical 
growth is generally unstable to the Mullins- Sekerka 
 instability, plus just getting to an in ter est ing region in 
pa ram e ter space is not a  simple task.

I was able to validate the particle + heat diffusion 
model using mea sure ments of the growth of long ice 
 needles [2016Lib], and the results are shown in Fig-
ure 3.17. Although  needles are certainly not spheres, the 
mathe matics of cylindrical growth is nearly identical to 
that of  spherical growth, as I describe  later in this chap-
ter. Moreover, slightly tapered cylinders have the desir-
able property that α is large enough to make αdiff  α 
valid, and so the growth is mainly diffusion  limited. 
Thus, with (almost) no adjustable par ameters, experi-
ment and theory  were found to agree nicely.  These data 
confirm the relative roles of particle and heat diffusion, 
demonstrating that the net effect of heating is greater 
near the melting point, reflecting the dependence of χ0 
on temperature. To my knowledge, this is the first and 
only experimental result demonstrating that snow crys-
tal growth in air is indeed  limited by a combination of 
particle and heat diffusion.

Although this experiment nicely demonstrates that 
latent heating plays a role in snow crystal growth in air, 
I reiterate that it is a relatively modest perturbation when 
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FIGURE 3.17. Mea sure ments of the radial growth of thin ice 
 needles, together with an analytical model that includes only 
particle diffusion (top line), plus a similar model that includes both 
particle and heat diffusion (lower line) [2016Lib]. The plotted ve-
locity coefficient is equal to the cylinder growth rate at a fixed far-
away supersaturation and a fixed cylinder radius of 5 microns. The 
mea sure ments show good agreement with the particle + heat dif-
fusion model, confirming the temperature- dependent reduction 
in growth rate caused by latent heating.
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diffusion. Then αdiff,heat in Equation 3.27 should be re-
placed with

αheat = κ air

ηLsvρicevkin

1
R
≈0.03

300 µm
sec

vkin

⎛
⎝⎜

⎞
⎠⎟

10 µm
R

⎛
⎝⎜

⎞
⎠⎟ .  (3.35)

At temperatures near 0° C, αheat is low enough that heat 
diffusion becomes the dominant  factor limiting growth 
in many situations, making it difficult to extract infor-
mation about the attachment kinetics from levitation 
experiments. This prob lem is reduced at lower tempera-
tures, as vkin is strongly temperature dependent (see 
 Table 2.1).

Heating effects are reduced for ice growth on a sub-
strate, and this can be estimated by considering the 
plane- parallel prob lem of a thin sheet of ice resting a 
substrate. The solution is like  those above, except with 
αdiff,heat being replaced with

 
α therm ≈ κ ice

ηLsvρicevkin

G
H

≈3G 300 µm
sec

vkin

⎛
⎝⎜

⎞
⎠⎟

10 µm
H

⎛
⎝⎜

⎞
⎠⎟ ,

      α therm ≈ κ ice

ηLsvρicevkin

G
H

≈3G 300 µm
sec

vkin

⎛
⎝⎜

⎞
⎠⎟

10 µm
H

⎛
⎝⎜

⎞
⎠⎟ ,  (3.36)

where H is the crystal thickness, and G = 1. For the 
case of a small ice prism on a substrate, G can be re-
placed by a dimensionless geometrical  factor of order 
unity.  Here we see that heating effects are reduced by 
about a  factor of κice/κair ≈ 100 compared to the 
levitated- crystal case, owing to the higher thermal 
conductivity of ice. From this analy sis, we see that 
both heating and diffusion effects are reduced for ice 
growth on a substrate in near vacuum, making this 
experimental system well suited for learning about the 
attachment kinetics (see Chapter 7).

Finite Outer Boundary

Bringing the outer boundary in from infinity com-
plicates the analy sis, but the finite- boundary case is 
useful for validating numerical models to make sure 

vn = αvkin(σsurf − dsvκ), where κ = 2/R is the surface cur-
vature for a sphere (see Chapter  2). Plugging this in 
gives

σ surf =
α diff,heat

α +α diff,heat

⎛

⎝
⎜

⎞

⎠
⎟ vkin σ∞ + α

α diff,heat
dsvκ

⎛

⎝
⎜

⎞

⎠
⎟  (3.33)

and

 vn =
αα diff ,heat

α +α diff ,heat

⎛

⎝
⎜

⎞

⎠
⎟ vkin σ∞ − dsvκ( ).  (3.34)

If one wishes to ignore heating effects, αdiff,heat can be re-
placed with αdiff .

In many snow crystal growth scenarios, the added 
Gibbs- Thomson term is a minor effect, especially with 
large crystals or fast growth rates. With a fernlike stel-
lar dendrite, for example, the tip radius is R ≈ 1 μm, giv-
ing dsvκ ≈ 0.2  percent, while the supersaturation is typi-
cally σ∞ > 20  percent. In contrast, during the growth of 
exceptionally thin plates at low supersaturations, the 
Gibbs- Thomson effect does limit the growth and prevent 
the formation of even thinner plates than what is 
observed.

Low- Pressure Growth

While heating effects are generally small in normal air, 
the situation changes at low pressures. To first order, D 
is inversely proportional to background gas pressure P, 
so particle diffusion speeds up considerably at low pres-
sures. But κair is roughly in de pen dent of P down to quite 
low pressures ( until the molecular mean  free path be-
comes larger than other scales in the prob lem). For this 
reason, χ0 ~ P −1, and heating effects can become impor-
tant at lower pressures.

For example, in the case of an ice crystal levitated in 
near- vacuum conditions, the diffusion constant increases 
substantially, making χ0  1. In this limit, particle dif-
fusion no longer limits growth in comparison to heat 
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in a form like Equation 3.20, giving the radial growth 
velocity

 vn =
αα diffcyl

α +α diffcyl

⎛

⎝
⎜

⎞

⎠
⎟ vkinσ far ,  (3.41)

where σfar = σ(Rout) and

 α diffcyl = 1
B
X0

Rin
,  (3.42)

with B = log (Rout/Rin), where Rin is the radius of the cyl-
inder and Rout is the radius of the faraway boundary. 
Note that one cannot assume Rout → ∞ in this solution 
without encountering a logarithmic divergence, a feature 
that is well known from cylindrical electrostatics prob-
lems. It is straightforward to extend the analy sis to in-
clude latent heating and heat diffusion, and the result-
ing model is the one compared with experimental data 
in Figure 3.17. The cylindrical solution is also useful for 
validating numerical models, as described in [2013Lib1].

The Ivantsov Solution

While the  spherical case is quite useful for a general ex-
amination of diff er ent physical pro cesses, solving the dif-
fusion equation in parabolic coordinates yields many 
insights into the growth of  free dendrites, including the 
snow crystal dendrites described  earlier in the chapter. 
The parabolic solution was discovered in 1947 by Rus-
sian physicist G. P. Ivantsov [1947Iva], and in three di-
mensions, it takes the form of a needlelike paraboloid of 
revolution that is pa ram e terized solely by its tip radius 
Rtip, as shown in Figure 3.18.

For purely diffusion- limited growth, the Ivantsov 
solution (for  either particle or heat diffusion separately) 
shows that the entire paraboloid grows at a constant ve-
locity vtip in the direction of the needle axis, while Rtip 
and the full parabolic shape of the crystal remain un-
changed in time. I  will not describe the derivation of 
the Ivantsov solution  here but pre sent the primary result 

they obtain correct quantitative results. Including both 
particle diffusion and attachment kinetics, the solution 
becomes

 σ (r)=σ out −
′R
r
− ′R
R far

⎛

⎝
⎜

⎞

⎠
⎟σ out ,  (3.37)

where

 ′R = γ
R
− 1
R far

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

 (3.38)

and

 γ =
α +α diff

α diff
.  (3.39)

This then gives the crystal growth velocity

 vn =
αα diff

α +α diff

⎛

⎝
⎜

⎞

⎠
⎟ vkinσ∞ 1− R

γ R far

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,  (3.40)

and we see that this reduces to Equation 3.20 when 
Rfar → ∞, as it must.

ADDITIONAL ANALYTIC 
SOLUTIONS

While the  spherical solution is the best starting point for 
any quantitative discussion of diffusion- limited growth, 
several other analytic solutions are known. In this sec-
tion, I examine some of  these additional solutions and 
their application.

Cylindrical Growth

The analytic solution for an infinitely long growing cyl-
inder is useful when examining the growth of electric 
needle crystals (see Chapter 8), so I mention the results 
 here. The diffusion analy sis is analogous to the  spherical 
case, the main change being to work in a cylindrical co-
ordinate system. Once again, the solution can be written 
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theless, the parabolic shape often provides a reasonable 
description of the overall envelope of  free dendrite 
growth, and it does especially well near the tip, which is 
often nearly parabolic in form. The Mullins- Sekerka in-
stability can create copious sidebranching away from the 
tip, but the tip be hav ior is often well represented by the 
Ivantsov parabola.

Although sidebranches clearly complicate the pic-
ture, the Ivantsov form is a remarkably robust solution 
to the diffusion equation. The large- scale outline of a 
typical  free dendrite is roughly parabolic, and usually the 
structure near the tip is relatively smooth with a nearly 
parabolic form. Put another way, the Ivantsov solution 
creates a self- assembling free- dendrite morphology with 
constant vtip that is generally insensitive to perturbations 
from other growth effects. This property helps explain 
why free- dendrite growth in diffusion- limited solidifica-
tion is such a commonly observed phenomenon.

Looking closely at the fernlike and fishbone den-
drite morphologies in Figures  3.10 and 3.11, respec-
tively, we see that both have roughly parabolic envelopes 
and tip shapes, but the appearance of strong faceting 
means that the Ivantsov solution does not tell the  whole 
story in  either case. Nevertheless, the analytic Ivantsov 
solution is useful as a limiting case and for examining 
overall trends regarding diff er ent par ameters and growth 
be hav iors. As with the other analytic solutions presented 
 earlier, the Ivantsov solution helps build one’s intuition 
and understanding about which physical pro cesses are 
impor tant and which can be safely neglected in diff er-
ent circumstances. Reproducing  actual snow crystal 
structures and growth mea sure ments with any real fidel-
ity, however,  will require computational modeling.

SOLVABILITY THEORY

For roughly a de cade around the 1980s, a concerted ef-
fort was made to create a full analytical model of free- 
dendrite growth, and the result became known as solv-
ability theory [1988Kes, 1988Sai, 1989Lan, 1991Bre]. 
The primary goal of this endeavor was to derive vtip and 

for the case of ice growing from  water vapor in air, where 
the Laplace approximation applies to high accuracy. Ne-
glecting surface energy and attachment kinetics 
(αdiff  α ≈ 1), the tip velocity is given by [1996Sai, 
2002Lib]

 vtip ≈
2D
BRtip

csat
cice

σ far ≈
2
B

X0

Rtip
vkinσ far ,  (3.43)

where B = log (ηfar/Rtip), ηfar is the position of the far- 
away boundary (using a parabolic coordinate system 
with standard variables (ξ, η, ϕ), and σfar = σ(ηfar). Like 
the cylindrical case, one cannot assume ηfar → ∞ with-
out encountering a logarithmic divergence.

The functional form of this equation is analogous to 
Equation 3.25, but its overall be hav ior is quite diff er ent. 
In the  spherical case, R increases as the crystal grows, 
while vn ~ 1/R decreases. In the parabolic case, however, 
both Rtip and vtip remain unchanged as the crystal grows. 
Note that the Ivantsov solution is actually a  family of so-
lutions,  because it does not specify a unique Rtip. The 
diffusion equation alone only specifies the Ivantsov re-
lationship between vtip and Rtip.

As with the  spherical and cylindrical cases, the 
Ivantsov solution is subject to the Mullins- Sekerka insta-
bility, resulting in complex branched structures. Never-

Vtip
Rtip

FIGURE 3.18. The Ivantsov solution to the diffusion equation de-
scribes a crystalline paraboloid of revolution with a constant 
parabolic shape and tip radius Rtip, growing forward with a con-
stant velocity vtip. If viewed from a frame of reference that moves 
in the growth direction with velocity vtip, the system would ap-
pear completely static.
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and attachment kinetics. In solidification from the melt, 
surface energy turns out to be the dominant effect, and 
many theoretical treatments in the lit er a ture ignore at-
tachment kinetics for that reason. Solidification from 
the vapor phase has been much less studied, but  here it 
appears that attachment kinetics are more impor tant 
than surface energy, as we  will see shortly in the snow 
crystal case.

My goal in this chapter is not to provide an in- depth 
review of all aspects of solvability theory, but rather to 
outline its basic results as applied to snow crystal forma-
tion. To this end, I ignore all heating effects, as particle 
diffusion is more impor tant than heat diffusion, and the 
former by itself is enough to develop a crude version of 
vapor- growth solvability theory. Using this theory, I then 
show that attachment kinetics are likely more impor tant 
than surface energy in the theory, which is opposite to 
the melt- growth case.

I begin with a perturbation expansion of the 
 spherical solution, Equation 3.34, neglecting heating 

Rtip directly from basic physical princi ples and intrinsic 
material properties, reproducing mea sure ments from a 
broad range of materials. This research effort was stim-
ulated in part by a series of beautiful, quantitative obser-
vations of dendritic solidification from the melt by 
Martin Glicksman and  others, with one experimental 
example shown in Figure 3.19.

It was realized early on that the Ivantsov relation pro-
vides the appropriate solution to the diffusion equation, 
but it provided only a relation between vtip and Rtip with-
out specifying  either, as seen in Equation 3.43 for the 
snow crystal case. This physical indeterminacy became 
known as the se lection prob lem. If diffusion alone does 
not specify vtip and Rtip uniquely, what does?

The Se lection Prob lem

Resolving the se lection prob lem requires some additional 
physics beyond diffusion alone, and the only two  viable 
possibilities (in most realistic cases) are surface energy 

ΔT =0.07
1mm

ΔT =0.10
500   mμ

ΔT =0.22
250   mμ

ΔT =0.37
125   mμ

ΔT =1.00
50   mμ

ΔT =1.35
50   mμ

d e f 

a b c

FIGURE 3.19. A series of photo graphs 
showing the tips of  free dendrites grow-
ing during the solidification of liquid suc-
cinonitrile (a clear, waxy material that 
melts at 57° C). As the supercooling ΔT of 
the liquid increases, Rtip decreases while 
vtip increases, while their constant prod-
uct Rtipvtip satisfies the Ivantsov relation 
for thermal diffusion. The overall growth 
be hav ior and dendrite tip morphology re-
main essentially in de pen dent of ΔT. Image 
adapted from [1981Hua].
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The nature of  these two stabilizing effects can also 
be reasonably well understood from the under lying 
physics. The Gibbs- Thomson effect states that the 
equilibrium vapor pressure increases as 1/R on a 
 spherical surface, and this effectively reduces the driv-
ing supersaturation at the tip. Following the math 
through gives the RGT term in Equation 3.45. The neg-
ative sign means that this is a stabilizing force that 
prevents runaway tip sharpening. Put another way, 
 there is a Gibbs- Thomson “penalty” for fast growth 
(which requires a small Rtip), which serves to prevent 
Rtip → 0.

The kinetics term Rkin arises  because a finite surface 
supersaturation σsurf  > 0 is needed to drive crystal growth, 
as the growth must become identically zero if σsurf  = 0. 
Moreover, the necessary σsurf  increases with vtip, which is 
proportional to 1/Rtip to first order in this perturbation 
analy sis.  Here again,  there is a supersaturation penalty 
for fast growth, which also serves to prevent Rtip → 0. 
The fact that RGT  Rkin suggests that the kinetics term 
in Equation 3.45 is more impor tant than the surface en-
ergy term for selecting the final dendrite tip radius in 
typical snow crystals.

Although the attachment kinetics usually domi-
nate, one can imagine a snow crystal scenario in which 
surface energy is more impor tant in the tip se lection 
prob lem. From Equation 3.45, this would happen if σfar 
 were low and α remained high. While this scenario is 
conceivable, it is not particularly realistic. As we  will see 
in Chapter 4, α depends strongly on σsurf ,  going to zero 
rapidly at low supersaturations. As a result, faceting be-
comes a dominant  factor at low σsurf , making the Ivantsov 
solution inappropriate in that regime. Computational 
models (see Chapter 5) generally support this conclusion. 
Snow crystal dendrites are typically found only at high 
σfar , where the surface energy term is small compared to 
the attachment kinetics term. When considering  free 
dendrites and solvability theory, therefore, it is reason-
able to neglect the RGT term while keeping the Rkin term 
in Equation 3.45.

(αdiff, heat = αdiff) and assuming that the growth is mainly 
diffusion  limited (αdiff   α), which gives

 vn ≈
X0

R
vkin σ∞ − 2dsv

R
− σ∞

α
X0

R
⎛
⎝⎜

⎞
⎠⎟ .  3.44

For a typical fernlike dendrite tip in air (taking 
X0 ≈145 nm, R = Rtip ≈ 1 μm, σ∞ ≈ 1, and α ≈ 1), we 
find that the second and third terms in this equation 
are roughly 0.002 and 0.15, respectively, so both are in-
deed small compared to σ∞, justifying the perturbation 
expansion. To take the next step, assume that the near- 
hemispherical tip of a parabolic ice dendrite behaves 
much like  spherical growth, so  doing an analogous per-
turbation expansion of the Ivantsov solution, Equa-
tion 3.43, yields

 vtip ≈
2X0

BRtip
vkin σ far −

RGT

Rtip
−
σ far

α
Rkin

Rtip

⎛

⎝
⎜

⎞

⎠
⎟ ,  (3.45)

where RGT = 2dsv ≈ 2  nm, and Rkin = 2X0/B ≈ 35  nm. 
(Choosing B ≈ 8 is a reasonable approximation for typi-
cal snow crystal dendrites.)

From this expansion, we can begin to see the essen-
tial physics under lying the dendrite se lection prob lem. 
Referring to Figure 3.7, we see that the Mullins- Sekerka 
instability generally promotes the growth of bumps on 
top of broad, flat surfaces. Zooming in on the end of a 
dendrite tip, it stands to reason that the Mullins- Sekerka 
instability would also promote the growth of a smaller 
bump on top of a broad dendrite tip. Taking this reason-
ing to its logical conclusion, we see that the Mullins- 
Sekerka instability would, if no other forces intervened, 
sharpen a dendrite tip in defi nitely, driving Rtip → 0. The 
available intervening forces are  those found in Equation 
3.45, specifically in the second and third terms of this ex-
pression. As Rtip → 0,  these terms both become so large 
that they are no longer small compared to σfar. At some 
value of Rtip, therefore,  these forces halt any further tip 
sharpening.
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to the background air pressure, while vtip should be 
roughly in de pen dent of pressure. It would be straightfor-
ward to confirm this prediction, but to my knowledge, 
it has not yet been done. However, experiments have re-
vealed finer structural details in snow crystals grown at 
higher pressures, supporting the result from solvability 
theory [1976Gon].

This analy sis of snow crystal  free dendrite growth 
comes with some caveats, however. Solvability theory in-
dicates that the value of s0 depends on the detailed prop-
erties of the most impor tant stabilization term, namely, 
the attachment kinetics in this case. This is problematic, 
 because the attachment kinetics are not well known from 
in de pen dent mea sure ments, and they may depend on 
growth conditions at the tip surface, specifically the near- 
surface supersaturation. Thus, the theory is somewhat 
underconstrained due to a poor knowledge of material 
properties, so we should perhaps not read too much into 
the linear trend seen in Figure 3.20. This issue is a mani-
festation of a more general prob lem with solvability the-
ory in all experimental systems:  there is no easy way to 
calculate s0, so an analytic theory including just a few 

Snow Crystal Dendrites

Extending this qualitative discussion into a rigorous the-
ory is not a  simple task, which is why it took a significant 
effort to develop solvability theory. Although my com-
prehension of this highly mathematical theory is not 
thorough, it appears that the final result can be expressed 
in a fairly  simple form [1988Kes, 1988Sai, 1989Lan, 
1991Bre, 2002Lib]. The answer differs for melt growth 
and snow crystal growth, however,  because of the relative 
importance of the surface energy and attachment kinet-
ics terms in Equation 3.45. For the snow crystal case, we 
neglect surface energy (on the grounds that RGT  Rkin), 
and solvability theory then yields the relationship

 vtipRtip
2 ≈

4σ farvkinX0
2

s0Bα
,  (3.46)

where s0 is a dimensionless constant called the solvabil-
ity pa ram e ter. This second mathematical relationship, in 
addition to the Ivantsov solution, allows one to uniquely 
determine both Rtip and vtip as a function of intrinsic ma-
terial properties and external growth conditions. Com-
bining Equations 3.45 and 3.46 yields

 Rtip ≈
2X0

s0α
; vtip ≈

s0
B
αvkinσ far ,  (3.47)

and at this point, it is beneficial to compare the theory 
with experimental observations. Figure 3.20 show mea-
sure ments of vtip as a function of σfar for fernlike  free den-
drites growing near −15° C. The data support a linear 
dependence vtip ~ σfar, and the low- resolution tip images 
are at least consistent with Rtip being in de pen dent of σfar, 
so both observed trends agree with Equation 3.47. A fit 
to the data assuming B ≈ 8 yields Rtip ≈ 1 μm and 
αs0 ≈ 0.25 [2002Lib]. Similar data for fishbone  free den-
drites yields Rtip ≈ 1.5 μm and αs0 ≈ 0.2 [2002Lib].

 These values of Rtip  were mea sured in air, and we see 
from Equation 3.47 that theory indicates Rtip ~ X0, im-
plying that Rtip should be roughly inversely proportional 
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FIGURE 3.20. Mea sure ments of the tip velocity of fernlike  free 
dendrites growing near −15° C as a function of the faraway super-
saturation. The data indicate a linear relationship between  these 
variables, and the line shows vtip = 5σfar μm/sec [2002Lib].
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That stable free- dendrite growth requires anisotropy 
appears to be a general property of diffusion- limited den-
drite formation, pre sent over a broad range of diff er ent 
physical systems. When the surface stabilization forces 
are sufficiently anisotropic, Ivantsov- like dendrites ap-
pear with stable tip structures, as seen in snow crystal 
dendrites. As the anisotropy is turned down, tip  splitting 
begins to occur only occasionally, increasing with lower 
anisotropy. Eventually the growth transitions to com-
pletely random seaweed- like structures as the anisot-
ropy decreases to zero.

Tip splitting is largely absent in snow crystal den-
drites, owing to the exceptionally large under lying an-
isotropy in the attachment kinetics. Nevertheless, Fig-
ure 3.22 shows an example of tip splitting in a rapidly 
growing fernlike stellar dendrite, indicating αprism ≈ 1 
when the supersaturation is sufficiently high. This gen-
eral be hav ior fits the model for nucleation- limited at-
tachment kinetics presented in Chapter  4. I have also 
witnessed some dendritic tip splitting at temperatures 
near 0° C when the supersaturation is high and chemical 
contaminants are pre sent, again indicating αprism ≈ 1 
 under  those conditions. The basal anisotropy is relatively 
high  under essentially all growth conditions, owing to a 
finite basal step energy at 0° C (see Chapter 4). Thus, one 
expects a complete absence of basal tip splitting, and this 
expectation is consistent with observations.

basic par ameters might not be sufficient to describe a 
complex phenomenon like  free dendrite growth.

Note that had we ignored the attachment- kinetic per-
turbation and instead kept the surface energy perturba-
tion in solvability theory, the result would have included 
the scaling Rtip ~ σfar and vtip ~σ far

2 . The above caveats 
notwithstanding, Figure 3.20 does not agree with such a 
quadratic dependence, supporting the notion that at-
tachment kinetics provide the more impor tant stabiliz-
ing mechanism, in agreement with expectations.

Anisotropy and Tip Splitting

Another impor tant discovery from solvability theory is 
that s0 depends on the anisotropy of the surface physics 
that stabilizes the dendrite tip radius. For perfectly isotro-
pic systems, even the initial premise of a stable, Ivantsov- 
like parabolic tip structure turns out to be incorrect. With 
perfect isotropy, the Mullins- Sekerka instability brings 
about not only sidebranches, but also tip splitting. This 
phenomenon is best seen in computer simulations of den-
dritic growth, and Figure 3.21 shows a growing dendritic 
system for which the anisotropy was varied in diff er ent 
runs. With no anisotropy, the dendritic branches exhib-
ited frequent tip splitting that resulted in a complex 
“seaweed- like” structure. Above some threshold anisot-
ropy, dendrites with stable tip structures appeared.

FIGURE 3.21. In crystal growth, some degree of surface anisotropy in the attachment kinetics or sur-
face energy is necessary to prevent tip splitting and create stable free- dendrite growth (far left). For 
perfectly isotropic systems, seaweed- like structures emerge (far right). This numerical simulation illus-
trates a morphological transition between  these two states as the under lying anisotropy is reduced, in 
this case for a system with sixfold symmetry. Image adapted from [2006Gra1].
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Drag and Terminal Velocity

Gravity creates a net velocity between crystals and 
air,  and a falling snow crystal quickly reaches its ter-
minal velocity in still air. The viscous drag on a snow 
crystal is well described by Stokes drag at low veloci-
ties, given by

 FStokes = 6πμRHu, (3.48)

where FStokes is the drag force, RH is the hydrodynamic ra-
dius of the object, μ is the dynamical viscosity of air, 
and u is the flow velocity. For a  spherical particle, RH 
equals the radius R of the sphere.

At the velocity increases, the flow becomes turbu-
lent, adding a component to the drag that is propor-
tional to u2. Assuming a thin disk morphology with ra-
dius R and thickness T (a satisfactory model for a 
platelike snow crystal), the drag force becomes

 Fdrag ≈6πµRu+ π
2
ρairR2u2  (3.49)

to a reasonable approximation, where ρair is the density 
of air [2009Lib2]. The two terms in this expression are 

SNOW CRYSTAL AERODYNAMICS

We next turn our attention to how aerodynamics can 
affect snow crystal growth and morphologies [1982Kel, 
1997Pru, 1999Fuk, 2002Wan, 2009Lib3]. In normal 
air, the motion of falling crystals can align their orien-
tation relative to the horizon, change their growth 
rates, and even alter their growth morphologies, al-
though typically all  these effects are rather small per-
turbations compared to normal growth be hav iors. Our 
main goal in this section is to outline the basic physical 
pro cesses by using analytic models and estimating the 
importance of the vari ous effects over a range of growth 
conditions. Throughout this discussion, it is impor tant 
to remember that wind speed relative to the ground is 
not the relevant pa ram e ter in the prob lem, but rather 
wind speed relative to the crystal in question. A small 
snow crystal may be carried by the wind for long dis-
tances, but it mostly travels along with the moving air 
around it. Thus, while wind blowing over a stationary 
snow crystal in the lab may strongly perturb its growth 
[1982Kel], we cannot apply  these results  until we un-
derstand the velocity of air flow around a freely falling 
snow crystal.

FIGURE 3.22. An example of tip splitting in rapidly 
growing fernlike dendrites at σfar ≈ 1.3 near −15° C. In 
 these conditions, αprism is close to unity, and the anisot-
ropy in the attachment coefficient becomes quite low. 
Notably, the tip splitting in this example occurred early 
in its growth, when the surface supersaturation was 
higher than at  later times. Chemical vapor additives 
that increase αprism can also result in increased tip 
splitting.
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Horizontal Alignment

Over a range of snow crystal sizes and morphologies, drag 
forces can align falling crystals relative to the horizon. The 
resulting alignment is well known in natu ral snow crys-
tals, as it is essential for explaining many distinctive fea-
tures in atmospheric halos [1980Gre, 1990Tap, 2006Tap]. 
For example, thin disks often align with a vertical c- axis, 
while slender columns align with a horizontal c- axis. In 
some instances, columns may align further with two 
prism facets in a horizontal orientation, known as the 
Parry orientation [2006Tap]. In some rare halo observa-
tions, models suggest widespread crystal alignments as 
precise as a few degrees relative to the horizon.

Focusing on plates, theory suggests that the smallest 
crystals  will not align  unless their terminal velocities 
are larger than surrounding turbulent air flows that per-
turb their fall and orientation. Moreover, large plates 
are unstable to vari ous fluttering and tumbling instabili-
ties when the Reynolds number exceeds Re ≈ 100. The 
latter regime applies to crystals with sizes of about 1 mm 
or more, while Figure 3.23 shown two models for turbu-
lent air velocities.  Unless the air is exceptionally still, 
snow crystals are likely to exhibit good alignment only 
in roughly the 0.1–1 mm size range.

The Ventilation Effect

When supersaturated air flows around a snow crystal, 
the latter’s growth rate increases as the flow essentially 
enhances the diffusion of  water vapor molecules to its 
surface, and this phenomenon is called the ventilation ef-
fect [1982Kel, 1997Pru]. The magnitude of the growth 
change can be estimated by comparing the diffusion time 
and the flow time. The diffusion timescale for  water mol-
ecules diffusing a distance L through the air is

 τ diffusion ≈
L2

D
,  (3.54)

and a growing crystal significantly reduces the supersat-
uration in its vicinity only out to a distance comparable 

equal when the Reynolds number Re is about 24, where 
I take

 Re = 2ρairuR
µ

= 2uR
ν kinematic

,  (3.50)

and vkinematic = μ/ρair is the kinematic viscosity.
The falling thin- disk crystal reaches its terminal ve-

locity uterm when Fdrag = mg, where m = πR2Tρice is the 
mass of the crystal, giving
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for the case of small crystals falling at low Reynolds num-
ber and
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for larger crystals moving at high Reynolds number. For 
 these thin- disk crystals, the transition from low to high 
Reynolds number terminal velocity occurs when the 
crystal radius exceeds

 Rtransition ≈ 450
10 µm
T

⎛
⎝⎜

⎞
⎠⎟

1/2

µm.  (3.53)

Figure 3.23 shows an example of the terminal velocity of 
a 2- μm thick disk as a function of its radius.

Comparing terminal velocity calculations with ob-
servations is not especially fruitful, unfortunately. The 
theory is well understood for small crystals with  simple 
shapes, while most mea sure ments have been obtained 
using larger crystals with complex, rather poorly char-
acterized morphologies and sizes. Nevertheless, the ex-
tensive mea sure ments of fall velocities in a vertical flow 
chamber made by Fukuta and Takahashi [1999Fuk] 
seem to be consistent with the above theory, given the 
substantial uncertainties involved.
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Applying  these results to a specific example, consider 
the fernlike stellar dendrite shown in Figure 3.9. This is 
a common snow crystal morphology, and an examina-
tion of the calibrated photo reveals that the initial 
branching instability occurred when the crystal radius 
was no larger than R ≈ 30 μm. From Figure  3.23, the 
Reynolds number of the air flow around this nascent 
crystal was likely about Re ≈ 0.1, giving an enhancement 
 factor of fv ≈ 1.01, meaning that the ventilation effect 
was likely negligible when the first branching event 
occurred. Strong turbulence might have increased this 
enhancement, but well- formed crystals like the one 
in  Figure  3.9 rarely survive long in windy, turbulent 
conditions.

As this crystal grew larger, the Reynolds number of 
the flow around it increased, and the crystal morphology 
became dominated by the six fernlike dendritic branches. 
Then the air flow likely aligned the crystal so that its 
basal  faces  were nearly horizontal, and the flow past each 
tip was roughly perpendicular to the growth direction. 
The ventilation effect is more difficult to analyze in this 

to its size, so we take L to be the approximate size of the 
crystal. Meanwhile, the time it takes for air to flow the 
same distance L is

 τflow ≈
L
u

.  (3.55)

If the flow velocity is low and τdiffusion  τflow, then dif-
fusion creates a depleted region around the crystal 
before the air flows by it. In this case, the ventilation 
effect becomes negligible, as must be the case when 
u → 0. We expect, therefore, that air flow significantly af-
fects the crystal growth only when τflow < τdiffusion, which 
is equivalent to the regime Re > 1. In a somewhat more 
in- depth analy sis incorporating studies of liquid drop-
let growth in the lit er a ture, I found that that the 
growth rate of a  spherical snow crystal is enhanced by 
a  factor

 
fv ≈1+ 0.1Re (Re <1)
fv ≈0.8 + 0.3Re

1
2 (Re >1),

 (3.56)

to a reasonable approximation [2009Lib2].
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FIGURE 3.23. The terminal- velocity curve in 
this plot shows the fall velocity of a 2- μm- thick 
snow crystal disk as a function of disk radius, 
while approximate scaling with disk thickness 
is given by Equations 3.51 and 3.52. The tur-
bulence curves show two models of root- 
mean- squared air velocities when the aver-
age air speed in 1 m/sec, and three lines of 
constant Reynolds number Re are also shown. 
When the disk radius R is large enough that 
the terminal velocity curve is above the tur-
bulence curves, then gravity can align the 
crystal horizontally [2009Lib2].
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surface energy, aerodynamics, and other  factors may be 
significant as well. But attachment kinetics and particle 
diffusion are usually the main players.

In this section, I examine a se lection of snow crystal 
morphological features in some detail and attempt to 
describe how each originates. This undertaking would be 
best accomplished with the help of corresponding nu-
merical simulations, but  here the state of the art is 
somewhat unreliable. Although computational models 
are improving rapidly (see Chapter 5), they cannot yet re-
produce real snow crystal structures with good fidelity. 
Thus, one motivation in this section is to provide quali-
tative descriptions of growth be hav iors that might be ex-
plained more quantitatively in  future numerical investi-
gations. Another motivation is to develop an overarching 
physical intuition regarding the under lying  causes of 
snow crystal formation, as this is helpful for making ad-
ditional pro gress in the field. And last, but not least, it is 
simply pleasing to have an essential understanding of 
some of the puzzling characteristics often found in natu-
ral snow crystals.

Aspect Ratios and Anisotropy

As a general rule, the large- scale aspect ratio of a snow 
crystal— here defined as the ratio of the overall size of a 
crystal along the c- axis to that along an a- axis— reflects 
the anisotropy in the under lying attachment kinetics. 
For example, the formation of thin plates invariably re-
quires αbasal  αprism, while the formation of slender 
columns requires αbasal  αprism. Although qualitative in 
nature, this aspect- ratio rule applies throughout the 
menagerie of diff er ent snow crystal types.

One reason this rule exists is  because diffusion- 
limited growth alone cannot yield structures with ex-
treme aspect ratios, like thin plates or slender columns. 
Numerical models reveal that while the Mullins- Sekerka 
instability often drives complex dendritic branching, the 
overall aspect ratios of the resulting crystals are still 
mainly determined by anisotropies in the under lying at-
tachment kinetics. A second reason the rule exists is 

case, but the sharp- tipped geometry leads to a substan-
tially higher ventilation effect compared to the  spherical 
case. At terminal velocity for this crystal, the ventilation 
effect would produce roughly a 25  percent increase in tip 
growth velocity [2009Lib2].

Through a combination of alignment and ventila-
tion effects, it is pos si ble that aerodynamics plays a role 
in promoting the high symmetry of some snow crystal 
structures. This is likely a small effect, a supposition that 
is supported by the fact that most snow crystals do not 
exhibit a high degree of sixfold symmetry. Nevertheless, 
aerodynamic alignment can lead to tumbling instabili-
ties that would tend to enhance symmetrical growth of 
several crystal morphologies. Some possibilities along 
 these lines have been discussed in the lit er a ture [1999Fuk, 
2009Lib3]. It has also been suggested that aerodynamic 
effects may promote the growth of triangular snow crys-
tals through a combination of alignment and ventila-
tion effects [2009Lib3]. However, as discussed in the 
next section, the origin of triangular plate snow crystals 
is still a bit of a mystery, and it is not yet clear if aerody-
namics plays a major role in their development.

The bottom line in this discussion is that aerody-
namics can play a role in snow crystal growth dynamics, 
but it is usually a rather minor one. Small crystals are the 
least susceptible to aerodynamic effects, although re-
markably precise crystal alignments are pos si ble in es-
pecially calm conditions.

ORDER AND CHAOS

Snow crystal morphologies are determined mainly by the 
interplay of two physical pro cesses: attachment kinetics 
and particle diffusion. Attachment kinetics bring about 
ordered, faceted surfaces with sharp edges and corners, 
defined precisely by the crystal lattice structure. Diffu-
sion brings about instability, yielding complex structures 
and the chaotic sidebranching seen in dendritic growth. 
 These are the competing forces of order and chaos that 
drive the formation of snow crystals. In some circum-
stances, additional physical effects from heat diffusion, 
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is highest near the fast- growing edge of the plate. This 
makes sense,  because the fast growth needs a high flux of 
 water vapor molecules, which can only happen in a steep 
supersaturation gradient. In contrast, the particle flux and 
supersaturation gradient are low near the center of the 
basal facets, reflecting their lower growth rates.

Additional models like  these reveal that the strong 
correlation between aspect ratio and anisotropy in the 
attachment kinetics applies over a broad range of 
growth conditions. If, for example, one begins with a 
thin plate crystal and then changes par ameters so that 
αbasal ≈ αprism, then the subsequent growth  will not 
maintain the thin- plate structure. Instead the edges 
of the plate thicken over time, and the overall aspect 
ratio  will tend  toward unity as the crystal continues to 
grow. Diffusion- limited growth generally pushes mor-
phologies  toward small overall aspect ratios, and this 
trend is usually countered only by a strong anisotropy 
in the attachment kinetics.

Morphological Complexity in the  
Nakaya Diagram

Another general rule in snow crystal growth is that facet-
ing requires a high anisotropy in the attachment kinet-
ics, specifically, αbasal  1 for basal faceting or αprism  1 
for prism faceting. Turning this around, the higher αfacet 
becomes, the more likely it  will be that a faceted surface 

that extreme aspect ratios in crystal growth do not usu-
ally arise from surface energy anisotropy. Highly aniso-
tropic surface energies exist in the realm of exotic mate-
rials, but  simple solids (such as ice or metals) generally 
exhibit modest anisotropies that are too small to produce 
large aspect ratios during solidification. In par tic u lar, the 
extreme aspect ratios seen in snow crystals and platelike 
pond crystals are the result of highly anisotropic attach-
ment kinetics and not of highly anisotropic surface 
energies.

Figure 3.24 shows an illustration of what low and 
high anisotropy in the attachment kinetics can look like 
around a faceted snow crystal. In the case of a nearly iso-
metric faceted prism (left panel in the figure), αbasal and 
αprism are roughly equal in magnitude, and σsurf is high-
est at the corners of the prism (the Berg effect). The pres-
ence of basal and prism faceting on this crystal indicates 
anisotropy in the sense that both αbasal and αprism are 
smaller than αrough. But the overall aspect ratio of the 
crystal is near unity,  because αbasal/αprism ≈ 1. The figure 
also shows a model with αbasal  αprism, which resulted 
in the formation of a thin platelike crystal, again sup-
porting the anisotropy rule (right panel). In this case, 
we see that σsurf is substantially higher on the basal facet 
than on the prism facet, contrary to the usual expecta-
tion from the Berg effect. Even though the prism edge 
sticks out farther into the supersaturated air, σsurf is 
lowest  there. Note also that the supersaturation gradient 

FIGURE 3.24. Calculated contour plots of supersatu-
ration levels around two growing platelike ice crystals, 
shown  here in (r, z) coordinates. Around a nearly iso-
metric crystal (left), σsurf is highest near the corners of 
the faceted prism, a phenomenon called the “Berg ef-
fect.” Around a thin- plate crystal, the contour lines are 
tightly bunched at the fast- growing plate edge, while 
σsurf is highest at the centers of the basal facets. The 
model on the left assumes αbasal ≈ αprism < 1, while the 
model on the right assumes αbasal  αprism.
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the branch tips indicates that αprism ≈ 1  there,  because 
rounding indicates that rough and faceted surfaces are 
growing at nearly the same rate. If αprism  were substan-
tially below unity, prism faceting would be more prev-
alent. Thus, just looking at a large stellar dendrite with 
rounded branch tips reveals that αprism ≈ 1 at the tips 
and αbasal ≈ 0.01. In the words of Yogi Berra, you can 
observe a lot just by watching.

Stellar dendrites are also a good illustration of the 
complex interplay between branching and faceting. 
 Because αbasal  1, basal faceting dominates the c- axis 
dimension of the crystal structure. At the opposite ex-
treme, the fact that αprism ≈ 1 means that prism faceting 
is quite weak and susceptible to branching and sideb-
ranching. Thus, both the aspect ratio and the degree of 
sidebranching are determined by the attachment coeffi-
cients on the two primary facet surfaces.

If σ∞ around a growing stellar dendrite is high, then 
σsurf becomes relatively high as well, sending αprism → 1 
via the Edge- Sharpening Instability (Chapter 4), stimu-
lating copious sidebranching. But if σ∞ and σsurf are 
lower, then αprism is lower and the branches exhibit 
greater prism faceting. Thus, the ESI mechanism con-
tributes to why higher σ∞ yields more complex branched 
structures. Similarly, σsurf is typically highest near the 
branch tips, so  these are often rounded, while σsurf is 
lower near the crystal center, yielding more prism facet-
ing in the central region. Indeed, photo graphs of stellar 
dendrite crystals often reveal greater prism faceting in 
the inner parts of the crystals.

We see that many morphological characteristics of 
stellar dendrites can be explained from the detailed be-
hav ior of αbasal and αprism as functions of σsurf, along with 
subtle effects like the ESI that can greatly affect the mor-
phological development of a crystal. The big challenge 
in making computational models is to reproduce the full 
range of observed growth be hav iors.  Doing this requires 
a comprehensive model of the attachment kinetics 
(Chapter 4) together with numerical algorithms that can 
accurately model the growth pro cess (Chapter 5). And 
confirming that the models work correctly necessitates 

 will be susceptible to some form of the branching insta-
bility. When αfacet ≈ 1, faceting is no longer pos si ble at all, 
yielding rounded (unfaceted) surfaces and highly 
branched structures.

This fundamental feature of the Mullins- Sekerka in-
stability provides a straightforward explanation for the 
increasing morphological complexity with increasing σ∞, 
which is one of the principal characteristics of the Na-
kaya diagram. To see this, note that σsurf generally in-
creases with σ∞, and further note that αfacet typically 
increases strongly and monotonically with σsurf (Chap-
ter 4). Together  these statements imply that αfacet must 
increase with increasing σ∞.  Because branching invari-
ably increases as αfacet increases, the unavoidable conclu-
sion is that branching must increase at higher σ∞. Of 
course, this basic reasoning glosses over many details, and 
computational modeling  will be required to fully com-
prehend how morphology depends on supersaturation. 
But the overarching conclusion is that snow crystal mor-
phologies  will be more complex at higher supersatura-
tions, as seen in the Nakaya diagram.

Interestingly, the tip radius and sidebranching spac-
ing in snow crystal dendrites does not change substan-
tially with supersaturation once the dendritic structure 
is well established. This follows from Equation 3.47, 
which shows that Rtip is in de pen dent of σ∞, a result that 
generally agrees with observations. At sufficiently low 
σ∞, however, α drops and Rtip increases, eventually yield-
ing faceted morphologies. Adding an additional pres-
sure axis to the Nakaya diagram would reveal that Rtip 
decreases with increasing pressure.

Stellar Dendrites Near −15° C

Although often overlooked, the primary morphological 
feature of a stellar dendrite snow crystal is the fact that 
it is thin and flat. Aspect ratios can be as low as 0.01 for 
thin plates, and I like to say that this extreme aspect ratio 
is what puts the “flake” in “snowflake.” Following the dis-
cussion above, the platelike aspect ratio immediately 
demands that αbasal  αprism. Moreover, rounding on 
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netics is clearly a repeating theme in the symphony of 
snow crystal growth dynamics.

Hollow columns appear when three conditions are 
met: 1) αprism  αbasal, 2) αbasal ≈ 1, and 3) the supersat-
uration is not too low (which would yield solid prisms) 
and not to high (which would yield needle- like crys-
tals).  These conditions are often found at temperatures 
around −5° C, so this is why hollow columns are most 
prevalent at this region of the snow crystal morphol-
ogy diagram. The conditions can also be met at much 
lower temperatures, around −40° C, and  these low- 
temperature hollow columns can also be found in the 
atmosphere.

Figure  3.26(a) shows an example of a −5° C hollow 
columnar snow crystal that exhibits long conical voids. 
In this crystal, the hollow regions changed their growth 
be hav ior slightly as the external conditions changed, 

making quantitative comparisons with laboratory mea-
sure ments of complex morphologies (Chapter 8). Putting 
all  these pieces together is a task that has not even begun 
to an appreciable degree.

Hollow Columns and  Needles  
Near −5° C

Once again, the primary morphological feature of snow 
crystal columns and  needles is their large aspect ratio, 
which can be 20 or more for an especially slender nee-
dle. The anisotropy rule applies  here as well, so an over-
all columnar shape indicates αprism  1 for moderate 
supersaturations near −5° C. One can create a  simple 
diffusion model for a faceted column, analogous to the 
models in Figure 3.24, and the results are similar to what 
was discussed above. If the anisotropy in the attachment 
kinetics is sufficiently high, then the supersaturation 
around a slender column is lowest near the basal surfaces, 
accompanied by steep supersaturation gradients needed 
to achieve the faster basal growth.

Fully faceted, platelike prisms are the norm when σ∞ 
is sufficiently low at −5° C (Chapter 7), but hollow col-
umns form when the supersaturation increases to inter-
mediate values. The basic hollowing mechanism is a form 
of the Mullins- Sekerka instability illustrated in Fig-
ure  3.25. Diffusion- limited growth  causes σsurf to be 
higher at the edges of a basal facet compared to the facet 
center, and soon the facet edges grow upward and leave 
the center  behind, resulting in conical hollow regions on 
both ends of the column. This be hav ior is analogous to 
the formation of branches on platelike crystals, except 
now the edges of the basal surface remain faceted, or 
nearly so, as the hollows develop. As described in Chap-
ter 4, the Edge- Sharpening Instability augments the nor-
mal Mullins- Sekerka instability in this case, adding an 
additional layer of subtly to the overall prob lem.  Here 
again, computational modeling  will be needed to fully 
comprehend and reproduce laboratory mea sure ments 
of  hollow- column growth but the basic interplay of 
diffusion- limited growth and anisotropic attachment ki-

FIGURE 3.25. A schematic diagram illustrating the transition 
from solid columnar growth (first sketch, showing a side view of a 
solid column) to the formation of a hollow columnar snow crystal 
(third sketch) via the Mullins- Sekerka instability. The image on the 
right shows a 3D numerical simulation of hollow- column growth, 
adapted from [2009Gra].
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the 3D cellular- automata method [2009Gra], which 
I describe in Chapter  5. Moreover, hollow columnar 
be hav ior can be reproduced and studied in the lab 
using electric needle crystals, as described in Chap-
ter 8. Making quantitative comparisons between lab-
oratory observations and numerical models is thus 
quite feasible, but work along  those lines is only just 
beginning.

 Bubbles in Columns

 Under appropriate circumstances, the conical hollows in 
a hollow- column snow crystal can develop into enclosed 
 bubbles, as illustrated in Figure 3.27. I have also created 
enclosed columnar  bubbles in the lab using electric 
 needles, and an example is shown near the end of Chap-
ter 8. To form such  bubbles, the first step is to create a 
hollow column, as described previously, followed by a pe-
riod of growth at lower supersaturation that seals off 
the hollow ends.

yielding a wavy structure in the shape of the hollows. 
 Because both ends of the column experienced the same 
growth conditions as a function of time, the shape 
variations on the two ends of the column are nearly 
symmetrical.

As the growth of a hollow column continues, often 
the basal edges are no longer able to maintain their fac-
eted shape, as they too succumb to the branching insta-
bility. When this happens, the basal edges can split into 
slender  needles, as shown in Figure 3.26(b). Note how 
the initial conical voids are still pre sent near the center 
of this crystal, illustrating the transition from a solid col-
umn at the earliest stage of growth to a hollow column, 
and fi nally to a set of needle- like branches sprouting from 
the basal corners. Note also that the very center of a hol-
low column can never itself be hollow, as  there would be 
no mechanism that would yield such a structure from a 
small seed crystal.

The successful numerical simulation of faceted hol-
low columns was an excellent early achievement for 

Conical hollows

Conical hollowsNeedles

(a)

(b)

FIGURE 3.26. (a) This hollow column snow crystal shows a characteristic matched pair of conical hol-
low voids in the ice. (b) This crystal began as a solid prism when it was small but soon transformed into 
a hollow column, leaving  behind central conical voids in the ice as it grew.  Later, the corners of the 
basal edges sprouted branches that developed into a set of slender ice  needles.
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Hollows and  Bubbles in Plates

Hollow plates are essentially like hollow columns, except 
with the basal and prism roles reversed. The under lying 
physics is essentially the same as with hollow columns, 
and Figures 3.29 and 3.30 show two examples of hollow 
plates, the latter also exhibiting some enclosed  bubbles. 
The formation of “corner pockets” [2019Nel] shows 
some similar characteristics. If a hollow region evolves 
into an enclosed  bubble, the void becomes essentially a 
closed system unaffected by the supersaturation field sur-
rounding the crystal. In this isolated state (neglecting 
any temperature gradients in the crystal), the  bubble 
would naturally evolve  toward its equilibrium shape, 
which is nearly  spherical (Chapter 2). However, relax-
ation  toward equilibrium is significantly hindered by a 
nucleation barrier on the interior faceted surfaces, as 
shown in Figure 3.31.  Here we see that while the growth 
of interior concave surfaces is never  limited by a nucle-
ation barrier, evaporation from the interior basal surfaces 
is strongly  limited by a hole- nucleation barrier. For this 

Figure  3.28 illustrates how diff er ent nucleation dy-
namics on convex and concave surfaces facilitates the 
sealing- off pro cess. The outer surfaces of a growing col-
umn soon become faceted  because of the usual nucle-
ation barrier that makes αprism  αrough ≈ 1, yielding a 
hexagonal column. Inside the hollow region, however, 
 there are always interior corners at which  there is no 
nucleation barrier. In the figure, for example, the red 
hexagon (representing an idealized molecular cell) can 
readily attach at the corner shown, as this position is es-
sentially the same as the edge of a terrace step on a fac-
eted surface.  Because of this mechanism, the growth of 
concave surfaces is never  limited (in a global sense) by a 
nucleation barrier. When a hollow column is exposed 
to a relatively low supersaturation, therefore, the strong 
nucleation barrier on the outer faceted surfaces slows 
additional growth. But the inner surfaces lack this nu-
cleation barrier, so they grow readily  under the same 
conditions. At the same time, diffusion brings more 
 water vapor molecules to the columnar ends than to re-
gions deep inside the hollows, so growth at the ends is 
preferred. Putting all this together, the inner surfaces 
near the columnar ends grow fastest, soon sealing off 
the conical hollow regions to form enclosed  bubbles.

FIGURE 3.27. This photo graph of a natu ral snow crystal shows 
enclosed  bubbles in an ice column.

FIGURE 3.28. Diagram of the end of an idealized nanoscopic 
hollow columnar snow crystal, with hexagons representing mo-
lecular cells in the ice lattice. While a nucleation barrier prevents 
growth of the outer faceted surfaces,  there is no nucleation bar-
rier on the inner surfaces,  because molecules can always attach 
at interior corners (red hexagon).
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reason, even an exceedingly thin  bubble in a platelike 
snow crystal may retain its nonequilibrium shape for 
long periods of time.

Ridges and Sectored Plates

Ridge structures are commonly found in both natu ral 
and synthetic snow crystals, and Figure 3.32 shows a par-
ticularly  simple example.  Here the six ridges are thick 
linear features on an other wise thin plate. The ridges di-
vide the hexagonal plate into six equal sectors, like slices 
of a hexagonal pie, so snow crystals displaying  these dis-
tinctive features are called sectored plates. Sectored- plate 
snow crystals typically grow near −15° C at intermediate 
supersaturations when the growth conditions are nearly 
constant in time. Laboratory observations reveal that 
ridges are associated with slightly convex basal surfaces, 
such as  those shown in the sketch in Figure 3.32.

Figure 3.33 shows a diagram of the growth pro cess 
that leads to ridge formation. The convex basal surface 
includes a series of regularly spaced molecular terrace 
steps, and the step spacing defines the slope of the sur-
face, like a set of contour lines on a topographic map. As 

FIGURE 3.29. The essential geometry of a hollow- plate snow crystal (left) and a photo graph of a natu-
ral snow crystal with deep hollows (right). Note that the six hollow regions are separated by solid ice at 
the hexagonal corners. The photo exhibits oddly  shaped hollow regions that reflect the changing con-
ditions the crystal experienced during its growth.

FIGUR E 3. 30. A natu ral snow crystal exhibiting deep hollow 
regions in each of the prism surfaces. Near the center of the 
crystal, some of the hollows have closed off to form thin 
 bubbles in the ice. The colors arise from optical interference 
between reflections off the top and bottom surfaces of the hol-
lows/bubbles, which are separated by about one wavelength of 
light (see Chapter 11). Photo courtesy of Don Komarechka 
[2013Kom].
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supply of  water vapor to the step corners. Each terrace 
corner thus sprouts a one- molecule- high “branch,” as 
shown in the figure, and  these linear branches combine 
to form a macroscopic ridge. Note that the closely spaced 
contours around the ridge indicate its steep vertical sides, 
like a ridge on a topographic map.

the faceted prism edges grow outward (arrows in Fig-
ure 3.33) the lower terrace edges grow outward also, al-
though the step velocity need not be the same as the edge 
velocity. A 2D manifestation of the Mullins- Sekerka in-
stability comes into play on the molecular steps, en-
hancing the corner growth, as diffusion brings a greater 

FIGURE 3.31. Even if the initial shape of an enclosed  bubble is highly nonspheri-
cal, a faceted  bubble may evolve exceedingly slowly  toward its nearly  spherical 
equilibrium shape. It is difficult to remove molecules from a fully faceted surface 
(red), and this pre sents a strong hole- nucleation barrier that can greatly slow 
equilibration. For this reason, even very thin  bubbles in platelike crystals can retain 
their nonequilibrium shapes for long periods of time.

POP snow crystal

Substrate
Ridges form on convex surfaces

FIGURE 3.32. This small PoP snow crystal (top) 
exhibits  simple ridges that originate at the six 
faceted corners as the plate grows outward. As 
shown in the accompanying sketch (bottom), the 
top basal surface of this crystal is essentially flat 
and featureless, while the ridges and other vis i-
ble structural features exist on the convex lower 
surface of the crystal.
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The relatively  simple nature of ridge formation 
means that ridges are readily found in 3D numerical 
simulations of snow crystal growth using cellular au-
tomata, as shown in Figures 3.34 and 3.35. It is not nec-
essary to have completely accurate attachment kinetics 
in  these models to produce ridgelike structures, as ridg-
ing requires only that diffusion limits the growth of 
basal terraces.  These examples of ridge formation sug-
gest that many new insights await when we move be-
yond the demonstration phase in computational mod-
eling and are fi nally able to make direct quantitative 

 There are two ways to establish and maintain the con-
vex basal shape needed to form ridges: 1) nucleation of 
new basal terraces near the center of the convex basal 
facet, or 2) nucleation of new basal terraces near the edges 
of the opposing basal surface. The second mechanism 
dominates in Figure  3.32, and the necessary conditions 
for this to happen are imposed by the laboratory environ-
ment. The first mechanism is likely responsible for forma-
tion of natu ral sectored plates, although their growth may 
also be affected by the aerodynamic effects described 
above. The overall structure of ridges on natu ral snow 
crystals has not been well studied [1954Nak] but it ap-
pears to fit this basic convex- basal- surface picture.

FIGURE 3.33. The development of a snow crystal ridge on a 
convex basal surface. Lines represent molecular steps defining 
individual terraces. As the prism facet edges grow outward (ar-
rows), diffusion enhances the growth of the terrace corners, 
leading to ridge formation.

FIGURE 3.34. This numerical model of a growing stellar crystal 
exhibits clear ridging on the primary branches [2014Kel]. The 
micron- scale steps in the model are  orders of magnitude larger 
than molecular steps, but the under lying diffusion- driven ridge 
growth is essentially the same. Image courtesy of James Kelly.

FIGURE 3.35. This 3D numerical model also shows ridge structures on slightly convex basal surfaces 
[2009Gra]. It appears that ridge formation is readily seen in both natu ral snow crystals and numerical 
modeling, at least when using the cellular automata method. The robustness of ridging seems to re-
flect the basic diffusion physics under lying the phenomenon, which is insensitive to other material 
par ameters.
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vancements, choreographed by particle diffusion around 
the growing crystal, results in ridges flanked by parallel 
grooves.

Chemical impurities in the air may further aid in 
the formation of  these grooves, along with perhaps some 
of the small pits seen in Figure 3.36 and other snow crys-
tals. Impurities are not readily incorporated into the ice 
lattice, and an advancing molecular step  will tend to 
push impurity molecules ahead of it as it grows. Thus, al-
though the average density of impurity molecules on 
the ice surface may be quite low, step motion  will redis-
tribute and concentrate  those impurities that are pre sent. 
Looking at ridge and groove formation, as thousands of 
steps march along during the pro cess, their collective mo-
tion  will tend to push impurities into the grooves and 
pits, where they  will remain, stuck on the ice surface. The 
concentrated region of chemical crud could then sub-
stantially impede further ice growth, and the grooves 
would remain unfilled in the ice. Additional laboratory 
experiments would be needed to investigate  whether 
chemical impurities  really have such effects on snow crys-
tal surface features.

Ridges on Cones and Cups

The detailed structure of ridges in snow crystals depends 
a  great deal on the “cone  angle” of the plate on which 
they grow. The previous discussion assumed a small cone 
 angle, by which I mean a nearly flat basal surface that is 
slightly convex in overall shape. (Of course, this is not a 
true cone in the strict geometrical sense, but a roughly 
conelike shape made from six slightly tapered flat sur-
faces.) This morphology includes the trains of propagat-
ing steps shown in Figures 3.33 and 3.37 that are neces-
sary to produce ridge structures.

One can extend the discussion further to include 
steeper cone  angles, progressing from nearly flat plates to 
cuplike structures like  those shown in Figure 3.38. The 
outer surfaces of a cup also include trains of molecular 
steps, but with much higher step densities. The same 
ridge- formation instability applies, but now the ridges 

comparisons between snow crystal models and labora-
tory experiments.

Ridges with Grooves

In some instances, snow crystal ridges are flanked by 
linear “grooves” that are long, shallow depressions in 
the ice on  either side of a ridge, as shown in Figure 3.36. 
The formation of  these grooves appears to be yet an-
other example of the Mullins- Sekerka instability relat-
ing to step growth, an additional feature on top of basic 
ridge formation described above. Once a ridge begins to 
form, as shown in Figure  3.37, it sticks up above the 
basal surface surrounding it, and α on the sides of the 
ridges is close to unity. The ridge growth thus attracts a 
 great deal of  water vapor, depleting the air nearby. As 
diagrammed in the figure, the presence of the high- α 
ridge means that the growth velocity of a step far from 
the ridge is larger than the velocity of the same step ad-
jacent to the ridge. This rather subtle dance of step ad-

FIGURE 3.36. This partially sublimated sectored- plate snow 
crystal exhibits a pair of grooves flanking the central ridge. Simi-
lar features can be found in many snow crystals, although usually 
they are not as distinctive as in this example.
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morphology that readily occurs on e- needles over a cer-
tain range of conditions when the cone  angle is interme-
diate between plates and cups.  Here the ridges grow out 
to form what are essentially stubby fins, but then plate-
like extensions grow out from the base of the fins, yield-
ing what I call an “I- beam” structure. This feature can 
be found in natu ral snow crystals as well, but it is espe-
cially clear on e- needles  because the growth conditions 
can be kept constant for long periods of time. The lower 
plates on the I- beams are another example of how read-
ily thin plates emerge in snow crystal growth.

All the ridge structures described above are easily 
created in the laboratory  under constant growing con-
ditions, especially on e- needles. Moreover, the ridge 
morphology is quite robust, with diff er ent variations 
appearing over a broad range of temperatures and su-
persaturations. It is difficult to explain their structure 
simply, owing to the complex balance of faceting, branch-
ing, and step motions that must be happening. For this 
reason, however, ridges should prove to be a good test of 
 future 3D numerical modeling techniques. Once mod-

develop into the pronounced “fins” shown in the figure. 
Note that  because the supersaturation is relatively low 
below the fast- growing cup edge, the fins develop nearly 
faceted prism surfaces. Figure 3.39 shows another ridge 

FIGURE 3.37. The development of a snow crystal ridge flanked 
by two grooves on a convex basal surface. As the ridge structure 
develops, it depletes the  water vapor supply in its proximity. This 
suppresses the advancement of steps near the ridge, thereby 
creating grooves.

FIGURE 3.38. Cups with fins. The photos on the left and right show two views of a cup- shaped snow 
crystal growing on the end of a slender ice column. The 3D drawing (center) illustrates the main struc-
tural features, including six platelike fins that are related to snow crystal ridges. The laboratory crystals 
 were grown on an e- needle (see Chapter 8) near −7° C. SolidWorks drawings by Ryan Potter.
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Figure 3.41 illustrates how a temporary drop in su-
persaturation surrounding a snow crystal can lead to 
the formation of a rib on a growing plate. The top 
sketch shows the outer edge of a PoP crystal growing 
at a relatively high supersaturation near −15° C.  These 
conditions result in the formation of thin plates, and 
the sketch shows a plate that is flat on the upper sur-
face and slightly convex on the lower surface, which is 
typical of PoP crystals. This thin- plate morphology 
continues as long as the supersaturation remains high. 
Upon lowering the supersaturation (second sketch in 
Figure  3.41), the edge- sharpening instability (ESI) is 
diminished, yielding subsequent growth as a thicker 
plate. Note that the faceted basal and prism surfaces 
grow slowly at low σ  because of the usual nucleation 
barriers on  those surfaces. The underside of the plate 
begins as a vicinal surface, however, on which  there is 
no nucleation barrier. Thus, the underside grows rela-
tively quickly, especially near the edge of the plate, as 
illustrated in the figure. Soon a thick “rim” of ice 
emerges on the edge of the plate. Increasing the super-
saturation to its previous high level (third sketch), the 
ESI again kicks in and a thin plate grows out from the 
upper edge of the thicker rim. As this thin plate grows 
outward, it shields further growth below it, leaving a 
thick rib structure  behind.

els are able to reproduce  these kinds of complex struc-
tures, especially with growth rates that match observa-
tions, we  will fi nally be able to say that we have made 
serious pro gress  toward providing realistic simulations of 
snow crystal structure formation.

Ribs on Plates

While ridges readily appear  under constant environmen-
tal conditions, other common snow crystal structural 
features require changing conditions for their formation. 
One prominent example is the creation of hexagonal 
“ribs” like  those shown in Figure 3.40. In the first of  these 
crystals, the ribs form a set of hexagonal rings where the 
ice is a bit thicker than elsewhere in the plate. In the sec-
ond example, the ribs are restricted to the crystal’s outer 
platelike extensions, where they exhibit the same over-
all hexagonal structure. In both cases, the ribs are accom-
panied by ridges that divide the plates into sectors. Both 
ribs and ridges are frequently found in natu ral snow crys-
tals as well, as described in Chapter 10. As with other 
growth phenomena in this section, ribs are especially 
nicely demonstrated using laboratory- grown Plate- on- 
Pedestal (PoP) snow crystals, where the growth condi-
tions can be well controlled and quickly modified at  will 
(see Chapter 9).

FIGURE 3.39. I- beams. The photo on the 
left shows a snow crystal growing on an e- 
needle near (T, σ) = (−9° C, 16  percent), and 
its overall structure is illustrated in the 
drawing on the right.  Here the plate has an 
intermediate cone  angle, yielding short 
fin- ridges that subsequently developed 
platelike extensions, resulting in an overall 
I- beam ridge structure. This morphology is 
remarkably robust on e- needles, occur-
ring over a considerable range of growth 
conditions (see Chapter 8). SolidWorks 
drawings by Ryan Potter.
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convex basal surfaces. The multitude of features seen 
in natu ral snow crystals are generally much more dif-
ficult to interpret, as natu ral crystals often exhibit a 
cacophony of ridges and riblike features that ref lect 
the ever- changing and unknown conditions in which 
they grew.

Inwardly Propagating Rings

Just as ridgelike structures are common on slightly con-
vex basal plates growing  under constant environmental 
conditions, inward- propagating rings readily form on 
slightly concave basal plates, and two examples are 
shown in Figure  3.42. Similar rings appear quite fre-
quently on PoP snow crystals (see Chapter 9), owing to 
their unique geometry of thin plates that are slightly 
conical in overall shape, as illustrated in the accompa-
nying sketch in the figure. Inwardly propagating rings 
can also be found on natu ral snow crystals, but they are 
somewhat rare  because quite specific growth conditions 
are required.

 Under uniform growth conditions, one might na-
ively expect that a steady creation of new terraces on the 
top basal surface might yield a  simple vicinal surface with 

The qualitative explanation of rib formation in Fig-
ure 3.41 was easily confirmed by observing the growth 
of PoP crystals in real time while adjusting the super-
saturation in the pro cess. Both ribs and ridges  were 
easily created, and it was straightforward to confirm 
that both  these features  were confined to the lower 

FIGURE 3.40. While growing  these PoP snow crystals, I periodically reduced and then increased the 
supersaturation, yielding a spider- web structure of ribs and ridges. Hexagonal rib patterns like  these 
are typically associated with changes in external growth conditions.

high σ

low σ

rib

high σ

FIGURE 3.41. This series of sketches chronicles the formation of 
a snow crystal rib on the underside of a PoP snow crystal. Starting 
with a thin plate (top), lowering the supersaturation yields a 
thicker edge ( middle). Restoring the high supersaturation yields a 
thin plate again, leaving a rib structure  behind on the underside 
of the plate (bottom).
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also.  Because  there is no clear model of step bunching 
in ice, it is not yet pos si ble to calculate the average 
macrostep height or (equivalently) the spacing be-
tween macrosteps for a given vicinal  angle. As with so 
many features in snow crystal growth, macrostep phe-
nomena are easily observable, but not so easily under-
stood in detail.

Note that diffusion effects on inwardly propagating 
rings  causes them to evolve  toward a generally circular 
shape.  Because  water vapor diffuses in from the super-
saturated air surrounding the crystal, the step growth is 
faster for steps nearer the outer edges. Thus, any devia-
tion from a circular shape is corrected by the growth dy-
namics. For inward- propagating steps (on slightly con-

roughly uniform spacing between steps. In fact, while 
such a surface is a valid solution to the diffusion equa-
tion, it is not a stable solution. The ubiquitous Mullins- 
Sekerka instability, along with pos si ble additional effects 
from molecular surface diffusion, results in a phenom-
enon called step bunching. As the name implies, isolated 
steps soon bunch together to form macrosteps that are 
large enough that they can be seen using optical micros-
copy, as illustrated in Figure 3.42.

Step bunching can be the result of several diff er ent 
physical effects, so disentangling  these for the case of 
ice growth is not a trivial task. Bulk diffusion almost 
certainly plays a role via the Mullins- Sekerka instabil-
ity, but surface diffusion effects might be impor tant 

Rings form on concave surfaces

POP snow crystal

Substrate Ridges form on convex surfaces

FIGURE 3.42. (Top left) This small hexagonal PoP crystal exhibits ridges, ribs, and a pair of inwardly 
propagating rings. (Top right) A series of inwardly propagating rings appears on this sectored plate 
branch, while the top basal surface is flat beyond the outermost ring. (Bottom) The sketch illustrates the 
growth of inwardly propagating rings on the upper concave surface of a PoP crystal along with ridges 
and ribs on the lower convex surface. This interpretation of  these features is made somewhat easier by 
the clear distinction between the concave upper surface and the convex lower surface in PoP crystals. 
Patterns on natu ral snow crystals can be substantially more complex and difficult to decipher.
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One can contrast the induced- sidebranching pro cess 
with the growth of a fernlike stellar dendrite like the one 
shown  earlier in Figure 3.9. This crystal grew  under nearly 
constant growth conditions with a high supersaturation, 
so  there  were no induced sidebranching events. Instead, 
the sidebranches  were stimulated by random perturba-
tions that occurred separately on each of the six main 
branches. Even the sidebranches on  either side of a single 
main branch  were not synchronized.

The induced- sidebranching pro cess shows in detail 
that no direct internal communication between the 
diff er ent branches is needed to induce simultaneous 
sidebranching and large- scale snow crystal symmetry. 
Changes in the externally applied environmental condi-
tions are sufficient to bring this about. It is straightfor-
ward to introduce many abrupt changes as a PoP snow 
crystal is growing, and one result is shown in Figure 3.45. 
Essentially all the large- scale symmetry seen in this ex-

cave basal surfaces), therefore, diffusion- limited growth 
brings about a stabilizing effect that maintains a  simple 
circular shape. In contrast, Figures 3.33 and 3.37 shows 
how diffusion- limited growth on outward- propagating 
steps (on a slightly convex basal surfaces) yields a form 
of the branching instability. The  water vapor supersatu-
ration is highest near the outer corners of the crystal, so 
terrace step branches soon form at each corner, and re-
peated branching on multiple steps leads to the forma-
tion of macroscopic ridges, as described previously. A 
small change in the basal surface geometry, from slightly 
concave to slightly convex, thus yields a large change in 
overall growth be hav ior.

The intrinsically asymmetrical PoP construction 
often produces outward- propagating terrace steps on the 
lower basal surface and inward- propagating steps on the 
upper basal surface. Ridges then develop on the lower 
convex surface, as described above, while rings appear on 
the upper concave surface.  There is essentially no inter-
action between the ridges and rings, and indeed  these 
structures appear to be in de pen dent of one another when 
observed as a function of time.

Induced Sidebranching and  
Complex Symmetry

Changes in environmental conditions can profoundly af-
fect the growth of many snow crystal forms, and one 
particularly impor tant phenomenon is induced sideb-
ranching, illustrated in Figure 3.43. During this pro cess, 
a short reduction in the supersaturation yields prism fac-
ets on a growing branch tip, and a subsequent increase 
in the supersaturation  will stimulate the growth of sideb-
ranches from the prism corners. If this series of events 
happens with a growing stellar dendrite, the result can 
be the coordinated appearance of sidebranches on all the 
main branches. In other words, induced sidebranching 
is one method for producing complex dendritic structure 
that includes an overall sixfold symmetry. Figure  3.44 
 illustrates this same pro cess on a laboratory- grown PoP 
crystal.

High σ Low σ
High σ

FIGURE 3.43. Induced sidebranching. When the supersatura-
tion is sufficiently high near −15° C (left), αprism  will be near unity at 
the tip of a growing dendrite branch, yielding a rounded shape 
with  little prism faceting. Upon lowering the supersaturation 
( middle), αprism is reduced, and the tip becomes faceted. Increas-
ing the supersaturation once again (right), branches sprout from 
the three exposed corners of the faceted tip. One branch contin-
ues in the primary direction, while the other two become sideb-
ranches. Looking at the  whole crystal, this mechanism creates a 
coordinated set of sidebranches on all six primary branches. In-
duced sidebranching is thus responsible for much of the com-
plex symmetry seen in stellar dendrite snow crystals.
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at the same location on all six primary branches,  were 
almost certainly the product of an induced- sidebranching 
event.

Tridents and Triangular Snow Crystals

While sixfold symmetry is a snow crystal hallmark, 
small plates occasionally exhibit a threefold symmetry 
like that shown in Figure 3.46. Note that the  angles of 
the prism facets are the same as with a normal hexago-
nal prism, but now  there are alternating long and 
short facets, giving the overall appearance of a trun-
cated equilateral triangle. Triangular plates like  these 
typically appear together with hexagonal plates in 
natu ral snowfalls, although the latter are always much 
more common [1973Yam].

We did a brief study looking at the statistics of trian-
gular plates by growing small platelike snow crystals in 
a free- fall growth chamber in air near −10° C with 
σ∞ ≈ 1.4   percent [2009Lib3]. Small hexagonal plates are 
the normal morphology  under  these conditions 
[2008Lib1, 2009Lib], but about five  percent of the crystals 
exhibited a truncated triangular morphology. Figure 3.47 

ample was created by induced- sidebranching events or 
other longer- time changes in the growth conditions. 
This kind of large- scale complex symmetry generally 
does not arise if the growth conditions are held con-
stant in time.

Having made numerous movies of growing PoP 
snow crystals, they have an almost magical final ap-
pearance  because the viewer cannot discern the tem-
perature or humidity from the images alone. Watch-
ing the video, sidebranches appear si mul ta neously on 
all the primary branches from no apparent cause. 
Making the movie is a diff er ent experience, however, 
as I consciously change the growth conditions to pro-
duce diff er ent effects at diff er ent times, with predict-
able outcomes that can be seen in real time. This expe-
rience makes it abundantly clear that the choreography 
and symmetry of a complex snow crystal is almost 
entirely determined by time- varying externally ap-
plied growth conditions.

The natu ral snow crystal shown in Figure 3.1 exhibits 
a  great deal of chaotic dendrite growth that produced 
the helter- skelter sidebranching typical of fernlike stellar 
dendrites. But the largest set of sidebranches, occurring 

FIGURE 3.44. This composite photo graph 
shows the phenomenon of induced sideb-
ranching on a laboratory- grown PoP snow 
crystal. The left image shows the crystal  after 
long branch tips  were first grown out at high 
supersaturation. Then the branch tips became 
faceted  after a short period of low supersatu-
ration (center image). Increasing the supersat-
uration again then caused central branches 
and sidebranches to sprout si mul ta neously on 
the tips of all the primary branches (right 
image).
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truncated triangular morphology would have a small 
value of T, while T → 0 for a near- perfect equilateral 
triangle.

The T distribution we mea sured from our data ex-
hibited a sizable peak at low values, quantifying our 
visual impression that truncated triangular morphol-
ogies  were the most common among the nonhexago-
nal shapes. We then devised a Monte Carlo model in 
which we generated crystals where the perpendicular 
growth velocity of each facet was chosen from the 
same random distribution. From  these crystals, we se-
lected ones with H<0.33 and calculated the T pa ram-
e ter for each. Comparing the model and data, we con-
cluded that crystals with a triangular morphology 
(small T) are much more common than one would 
expect from random growth perturbations of normal 
hexagonal crystals.

shows some examples of  these and other non- hexagonal 
morphologies observed. Crystals with nearly perfect 
equilateral- triangle morphologies  were also readily found 
in this sample.

We first mea sured an unbiased sample of all  simple 
platelike crystals and defined a “hexagonality” pa ram e-
ter H = L1/L6 as the ratio of the length of the shortest 
side to that of the longest side. While H = 1 for a perfect 
hexagonal prism, we found that any crystal with H > 0.75 
had a generally hexagonal appearance by eye. While 
many crystals in our sample exhibited a roughly hexag-
onal appearance,  these data indicated that near- perfect 
hexagons (H ≈ 1)  were somewhat rare. We then exam-
ined a larger sample from which we rejected crystals 
with H > 0.33, and in this non- hexagonal sample we de-
fined a “triangularity” pa ram e ter T = L3/L4 as the ratio 
of the lengths of the third and fourth longest sides. A 

FIGURE 3.45. The high degree of 
complex symmetry seen in this PoP 
snow crystal did not emerge spon-
taneously; I imposed it using a series 
of induced- sidebranching events. 
Induced sidebranching is the pri-
mary mechanism that coordinates 
the growth of sidebranching on 
stellar snow crystals, both in the lab 
and in nature.
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usual perturbation, so it is unlikely to happen during 
the short growth span of a hexagonal plate. But 
clearly the hexagonal form is unstable to a triangular 
perturbation.

A similar triangular instability is more readily found 
in the formation of dendritic crystals forming from 
hexagonal columns near −5° C, as illustrated in Fig-
ure  3.48.  Here the high- σ crystal developed into 
a  six- pronged “witch’s broom” shape as fishbone 
dendrites sprouted from each of the six corners of the 
initial hexagonal column. In contrast, only three 
branches developed in the low- σ crystal, giving it a 
three- pronged “trident” shape.  Here again the latter 
crystal exhibits a threefold symmetry, and more than 
half of all crystals grown  under  these conditions ex-
hibited the same trident morphology.

The point of this exercise is to show, quantitatively, 
that  there  really is something special about the trian-
gular morphology. Of all the other pos si ble non- 
hexagonal shapes (some of which are shown in Fig-
ure  3.47),  those with overall threefold symmetry are 
by far the most numerous. Given that the under lying 
ice crystal symmetry is unchanged, so all six facets are 
essentially identical at the molecular level, the ques-
tion then becomes what forces guide the development 
of triangular plates?

The answer appears to be another diffusion- limited 
snow crystal growth instability that  favors triangular 
crystals over hexagonal ones. For example, if a small 
perturbation produced a slight triangularity, then 
particle diffusion would amplify it via the usual 
Mullins- Sekerka instability. This would be an un-

FIGURE 3.46.  These natu ral snow crystals are  shaped like small 
truncated triangular plates. Although not common, they can 
sometimes be found together with normal hexagonal plates.

FIGURE 3.47. A se lection of nonhexagonal plates observed in a free- fall growth chamber at −10° C 
with σ∞ ≈ 1.4  percent [2009Lib3]. The six images on the left show crystals with an overall triangular 
symmetry, while the six images on the right show “scalene” crystals having sides with somewhat ran-
dom widths. While hexagonal crystals  were most common in this sample, triangular crystals far out-
numbered scalene crystals.
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left as an exercise for the reader to show that a trident 
also results if initially one branch grew slightly slower 
than the  others. This mechanism also explains why the 
low- σ crystal in Figure  3.48 developed into a trident 
while the high- σ crystal retained all six branches. In the 
low- σ case, the opening  angle of the branches was small, 
so the competition between branches was strong and 
per sis tent. In the high- σ case, the opening  angle was 
greater, and the growth rate was faster, so the branches 
quickly grew apart and the competition between them 
was weaker.

A key feature in this discussion is that threefold 
symmetry is generally more stable than sixfold sym-
metry, at least regarding diffusion- limited growth. If a 
hexagonal plate is perturbed slightly  toward a trigonal 
symmetry, then the Mullins- Sekerka instability  will 
reinforce this perturbation, growing it to larger scales. 
But this pro cess does not work in reverse; perturbing a 
triangular crystal slightly cannot produce a hexagonal 
crystal via this mechanism. In the same vein, tridents 
are more stable than six- branched witch’s brooms. 
Given this one- way stability feature, all that is needed 
to turn a hexagonal crystal into a trigonal one is the 
initial perturbation. In the case of tridents, the likely 

The formation of tridents can be explained from the 
diffusion- driven competition between the diff er ent 
branches, as illustrated in Figure 3.49. Beginning with six 
identical branches, assume that one grows out a bit faster 
than the  others, just by random chance. This branch then 
sticks out farther into the supersaturated air and shields 
the growth of its nearest neighbors slightly. The larger 
branch thus grows faster while its nearest neighbors are 
soon left  behind, this pro cess being yet another manifes-
tation of the Mullins- Sekerka instability.

Of the remaining three branches, the outer two re-
ceive slightly more  water vapor  because of their two 
stunted neighbors, so they too grow out faster, leaving 
their  middle neighbor  behind. Assuming this diffusion 
dance plays out quickly, a trident crystal emerges. It is 

FIGURE 3.48. (Left) A “trident” snow crystal forms on the end of 
an ice e- needle (see Chapter 8) in air with (T, σ) = (−5° C, 
32  percent). Starting from a hexagonal column, only three 
branches grew to a discernable length. (Right) A similar crystal 
grows with (T, σ) = (−5° C, 64  percent), but the opening  angle be-
tween the branches is larger and all six grew out from the initial 
columnar crystal.
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FIGUR E 3.49. Trident formation. (Left) If one of six primary 
branches (branch A) extending from a columnar crystal be-
comes a bit taller than the  others, then the Mullins- Sekerka in-
stability  will enhance its growth, while its immediate neighbors 
(branches B and C)  will be shielded. (Center) As branch A grows 
taller and branches B and C are left  behind, D and E  will be 
more exposed to the supersaturated air and  will thus grow 
faster, shielding branch F. (Right) In time, branches A, D, and E 
 will dominate, while B, C and F are shielded, yielding a trident- 
shaped crystal.
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a major player in snow crystal growth, it is largely ab-
sent in snow crystal sublimation and most surfaces ex-
hibit α ≈ 1. For this reason, the sublimating crystal in the 
figure exhibits mostly rounded surfaces, while the grow-
ing crystal has a generally sharper appearance. In 
diffusion- limited sublimation, crystal features that stick 
out farthest into the sub- saturated air sublimate fastest, 
so sharp corners and edges quickly become rounded.

Occasionally  people  will capture multiple photo-
graphs of a natu ral snow crystal as it sublimates away 
 under the camera lens, and then show the time series 
 running in reverse and call it a growing snowflake. Of 
course, taking a set of photo graphs of a sublimating 
crystal is much easier than growing a snow crystal in 
the lab, but a trained eye can quickly identify the tell-
tale signs of sublimation.

Photo graphs of natu ral snow crystals often show 
rounded edges  because they begin sublimating once 
they leave the supersaturated clouds for their final de-
scent through sub- saturated air. When snow clouds 
are quite high in the sky, falling crystals often have a 
“travel- worn” appearance for this reason. Snow crystal 
photography can be especially rewarding when the 
clouds are close to ground level, revealing sharply fac-
eted features. Laboratory- grown PoP crystals exhibit 
generally sharper, more vibrant structural features 
 because they are photographed as they are growing.

A Panoply of Growth Instabilities

Nature abounds with dynamical instabilities in non-
equilibrium systems, even though they are not much 
discussed in early science teaching. For example, when 
sunlight heats the ground, the air warms and becomes 
unstable to convection. This convective instability 
drives the wind, the clouds, and much of our weather. 
When the resulting wind blows over a still lake, the sur-
face of the lake becomes unstable to the formation of 
 ripples and waves. When waves reach the shore, they 
become unstable and break. Whenever you see any kind 

perturbation mechanism is illustrated in Figure 3.49. 
The case for triangular plates is not so clear, but we de-
scribed a pos si ble aerodynamic mechanism in [2009Lib3]. 
Regardless of the specific details, it appears that three-
fold symmetry in snow crystal formation generally 
arises from diffusion- limited growth.

Sublimation

If the  water vapor pressure in air surrounding a snow 
crystal is lower than the equilibrium vapor pressure of 
ice, then σ∞ < 0 and sublimation  will begin removing 
molecules from the ice surface, as illustrated in Fig-
ure 3.50. In sub- saturation conditions in air, the excess 
vapor near the surface must be carried away by diffu-
sion, yielding diffusion- limited sublimation.

One substantial difference between sublimation and 
deposition is that  there are no nucleation barriers for 
the sublimation of convex surfaces, including most of 
the surfaces seen in Figure 3.50. Thus, while faceting is 

FIGURE 3.50. (Left) A photo graph of a single branch of a grow-
ing PoP snow crystal. (Right) The same PoP crystal a few minutes 
 later,  after reducing the humidity to subsaturation levels, at which 
point the ice  stopped growing and began sublimating away.
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The Mullins- Sekerka instability (MSI) is clearly a big 
player in snow crystal formation, as described throughout 
this chapter, manifesting itself in remarkable variety of 
pattern- forming phenomena:

• Dendrite formation might be called the standard 
form the MSI, as diffusion- limited branching is al-

of complex structure in nature, it is a good bet that 
some dynamical instabilities  were involved in its forma-
tion. We tend to skip over this topic in science courses 
 because it is so complicated and difficult to understand, 
and it seems that each case has its own unique character-
istics. Nevertheless, instabilities should be appreciated 
more,  because they are everywhere the natu ral world.

FIGURE 3.51. This PoP snow crystal exhibits broad, platelike extensions growing on the ends of 
narrow branches, decorated with ridges and ribs. The two prominent sets of ribs in  these plates did 
not appear spontaneously but  were induced by twice lowering the supersaturation briefly.
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• The grooves flanking ridges are essentially a higher- 
order effect in the same terrace instability responsible 
for ridges.

• Inwardly propagating rings require step bunching to 
be observable, again resulting from the Mullins- 
Sekerka instability.

• When strong electric fields are added to the mix, “elec-
tric” needle crystals arise, as described in Chapter 8.

• When structure- dependent attachment kinetics play 
a role, the Edge- Sharpening Instability arises (Chap-
ter 4), playing a large role in the formation of thin 
plates and hollow columns.

One likes to think of snow crystal growth as a relatively 
 simple phenomenon, being  little more than ice condens-
ing from  water vapor. But, as illustrated in Figure 3.51, 
when particle diffusion limits ice growth, a rich exhibi-
tion of pattern- forming pro cesses can result.

most synonymous with this instability. Fernlike and 
fishbone dendrites result when branching is addition-
ally influenced by attachment kinetics.

• Sidebranch competition is another MSI variant, re-
sulting in a gradual thinning of the sidebranch forest 
as some individuals dominate over the rest.

• The triangular instability leading to the develop-
ment of tridents and triangular crystals is a more or-
derly version of sidebranch competition involving 
just six players.

• Hollow columns appear when the MSI is combined 
with strong prism faceting. Hollow plates likewise 
arise when strong basal faceting is pre sent.

• Ridge formation involves a 2D version of the MSI 
that guides the growth of terrace steps, resulting in 
the spontaneous development of  these common sur-
face features. Related structures include ridges on 
cups and I- beam crystals.



FIGURE 4.1.  These photo graphs show a series of laboratory- grown PoP snow crystals (see Chapter 9). 
Their strong faceted features and platelike forms are largely defined by molecular attachment 
kinetics.
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readily to the edges of the plate but attach only slowly 
to the basal  faces. The opposite is true for long col-
umns. The appearance of plates and columns at diff er-
ent temperatures in the Nakaya diagram (see Chap-
ter  1) is thus an especially intriguing aspect of snow 
crystal formation that derives mainly from the anisot-
ropy in the molecular attachment kinetics.

My principal goal in this chapter is to define and 
quantify a comprehensive physical model of the mo-
lecular attachment kinetics at the ice/vapor interface. 
I outline a suitable theoretical framework, examine 
what has been learned from experiments, and develop 
at least a qualitative picture of the detailed molecular 
pro cesses involved. Many- body molecular dynamics is 
a complex subject, however, and previous attempts to 
understand the attachment kinetics have not fared 
particularly well (as discussed in this chapter). But a 
good model provides a springboard for  future discus-
sion and makes quantitative predictions that can be 
tested in  future experiments. In the science of com-
plex systems, pro gress often begins with a model, even 
an imperfect one. For the lack of a better name, I refer 

In snow crystal growth, the attachment kinetics de-
scribe how  water vapor molecules striking an ice 
surface become incorporated into the crystal lattice. 
The attachment pro cess is ultimately determined 

by the complex molecular interactions that jostle inci-
dent  water vapor molecules into position, so they can 
bind to the existing lattice structure.  Because this 
many- body molecular dance is both intricate and un-
seen,  there is much about it that we do not under-
stand, even at a basic qualitative level. Nevertheless, 
the attachment kinetics represent one of the most 
impor tant parts of the snow crystal story, driving the 
formation of faceted ice surfaces and other large- scale 
structural features. It has been well known for many 
de cades that particle diffusion and surface attachment 
kinetics are the two primary physical pro cesses gov-
erning snow crystal formation [1982Kur, 1984Kur1, 
1990Yok, 2017Lib].

 Whether a snow crystal develops into a thin stellar 
plate or a slender columnar form is determined by how 
rapidly  water vapor molecules bind to diff er ent ice sur-
faces. With a platelike crystal,  water molecules attach 

Like a  great poet, Nature knows how to produce the greatest effects  
with the most  limited means.

— HEINRICH HEINE, PICTURES OF TRAVEL ,  1871

FOUR

Attachment Kinetics



112 T C H A P T E R  4

saturation at the surface, csurf is the  water vapor number 
density just above the surface, csat = csat(T) is the saturated 
number density of an ice/vapor surface in equilibrium 
at temperature T, and

 vkin = csat
cice

kT
2πmmol

 (4.2)

is the kinetic velocity, in which mmol is the mass of a  water 
molecule, cice = ρice/mmol is the number density of ice, and 
ρice is the mass density of ice. Values of several of  these 
quantities as a function of temperature are given in 
Chapter 2 and in the Appendix. Throughout the discus-
sion, I assume that any background gases surrounding a 
growing snow crystal, such as air and  water vapor, are 
well described by the ideal gas laws in statistical mechan-
ics. Given this assumption, which is highly accurate in 
most situations, one can work in terms of the  water vapor 
molecular number density or the  water vapor partial 
pressure, as the two are proportional (at constant tem-
perature). I prefer the former, so csat , csurf , and cice appear 
throughout this book.

Equations 4.1 and 4.2 derive from the basic tenets of 
statistical mechanics [1965Rei; 1996Sai], and I assume 
that the reader is generally familiar with this area of 
fundamental physics. In a nutshell,  these equations 
come from considering two  water vapor fluxes: the flux 
of molecules incident on a surface, equal to csurf vmol, 
where vmol is an average molecular velocity, and the flux 
leaving the surface from sublimation, equal to csatvmol. 
The difference between  these two fluxes defines the 
growth velocity, and the statistical physics of ideal 
gases gives the appropriately weighted average velocity 
vmol that appears in vkin. Note that Equation 4.1 in-
cludes the trivial case of a vapor/solid interface in 
equilibrium: if the supersaturation σsurf is zero, then 
the growth rate must also be zero.

Much of the in ter est ing molecular physics involved 
in snow crystal growth is wrapped up in the attachment 
coefficient α, whose value lies in the range 0 ≤ α ≤ 1. One 
can think of α as a sticking probability, equal to the 

to the specific model advanced in this chapter as the 
comprehensive attachment kinetics (CAK) model.

 Because this book is all about the growth and forma-
tion of snow crystals, our model of the attachment ki-
netics should provide a foundation for explaining the 
Nakaya diagram as well as quantitative ice growth exper-
iments (see Chapters 7 and 8), and it should provide a 
suitable pa ram e terization for creating computational 
models of growing snow crystals (Chapter 5). As we  will 
quickly discover, however, achieving  these goals is a tall 
order. The under lying molecular physics is often un-
clear, and a complex model  will be needed to encom-
pass a variety of diff er ent growth regimes. Like it or 
not, understanding snow crystal formation is not a 
trivial undertaking.

I believe that the model presented below represents 
significant pro gress  toward understanding the many nu-
ances of the Nakaya diagram and other aspects of snow 
crystal growth. However, some of its core ideas are still 
relatively new and not thoroughly tested. The model has 
some impor tant merits (in my opinion), but it is far from 
being widely accepted canon. Indeed, some aspects of the 
model are speculative and may not withstand additional 
experimental and theoretical scrutiny. Nevertheless, this 
is the best solution I have found  after considerable study 
of this thorny prob lem, so I pre sent it  here in its current 
form. Developing a comprehensive model of the ice/
vapor attachment kinetics remains very much a work in 
pro gress, as one can say about many scientific endeavors.

ICE KINETICS

We begin our discussion with the Hertz- Knudsen rela-
tion [1882Her, 1915Knu, 1990Yok, 1996Sai], which can 
be written as

 vn = α	vkin σsurf , (4.1)

where vn is the crystal growth velocity perpendicular to 
the growing surface, α is a dimensionless attachment 
 coefficient, σsurf  = (csurf  − csat)/csat is the  water vapor super-



A T T A C H M E N T  K I N E T I C S T 113

admolecules, while tightly bound molecules are sim-
ply considered part of the under lying solid.

2) Sublimation (a.k.a. desorption)— when thermal fluc-
tuations cause molecules to leave the surface and 
join the vapor phase. Isolated admolecules are espe-
cially likely to sublimate, often  doing so before ever 
becoming tightly bound to the crystal lattice.

3) Surface diffusion— random motions of admolecules 
along a crystal surface. Diffusion along faceted sur-
faces can be especially substantial, as lateral motion 
is only weakly inhibited by molecular binding.

4) Attachment— when a diffusing admolecule encoun-
ters a terrace step (typically from the lower terrace) 
and becomes incorporated into the ice lattice. De-
tachment from a terrace step (typically onto the 
lower terrace) yields an isolated admolecule, and this 
pro cess is often a precursor to sublimation.

5) Ehrlich- Schwoebel barrier— a potential barrier that 
inhibits admolecule motion between terraces. For an 
admolecule to leave an upper terrace and attach to a 
lower terrace step (see Figure 4.2), it would first have 
to detach from the upper terrace. The attachment to 
the lower edge is energetically favorable, but the ini-
tial detachment from the upper terrace is not. The 
resulting Ehrlich- Schwoebel barrier tends to suppress 
 these over- step transitions. Thus, surface diffusion 
between separate terraces is suppressed compared to 
diffusion confined to the surface of a single terrace.

probability that a  water vapor molecule striking the ice 
surface becomes assimilated into the crystal lattice. The 
value of α may depend on σsurf  , T, surface orientation rela-
tive to the crystal axes, and perhaps other  factors. Ice 
surfaces that are “rough” at the molecular level typically 
exhibit αrough ≈ 1, as  water vapor molecules striking a 
rough surface usually become immediately indistin-
guishable from  those in the existing ice lattice. Mean-
while, it is common to find αfacet  1 on “smooth” faceted 
surfaces, as  these expose fewer open molecular binding 
sites, reducing the average sticking probability. With this 
definition of the attachment coefficient, it is generally 
true that thin platelike crystals (including stellar plates 
and stellar dendrites) form only when αbasal  αprism, 
while slender columnar forms require αprism  αbasal .

Molecular Pro cesses

Theoretical models of the attachment kinetics typically 
begin with an atomistic (or, in our case, molecular) pic-
ture of the crystal surface structure and dynamics, as 
 illustrated in Figure  4.2. This sketch depicts several 
 molecular pro cesses that can occur on a growing ice 
surface:

1) Deposition (a.k.a. adsorption)— when a  water vapor 
molecule strikes the surface and sticks. Molecules 
that are loosely attached to faceted surfaces are called 

Leaky
Ehrlich–Schwoebel
barrier

Deposition

Sublimation
Terrace
nucleation

Attachment at
terrace step

Admolecule surface di�usion

FIGURE 4.2. The attachment kinetics are governed by a variety of molecular pro cesses occur-
ring on the surface of a growing crystal, including  those illustrated  here.
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this tighter molecular structure is a lower surface energy, 
but this fact plays a relatively minor role in snow crystal 
growth dynamics. The overall surface energy anisotropy 
is just too weak to significantly affect snow crystal 
growth or facet development. However, the anisotropy 
in the attachment kinetics can be enormous, as faceted 
surfaces often exhibit αfacet values that are  orders of 
magnitude lower than on nonfaceted surfaces. In con-
trast to the surface energy, the highly anisotropic at-
tachment kinetics typically play a major role in deter-
mining the development of snow crystal structures.

Rough Surfaces. A rough surface contains a high den-
sity of terrace steps, giving it a high density of dangling 
molecular bonds and a high attachment coefficient. In 
the case of ice surfaces, the experimental evidence sug-
gests that  water vapor molecules striking a rough surface 
are immediately indistinguishable from molecules in the 
ice lattice, which is another way of saying that incident 
molecules are immediately incorporated into the ice 
 lattice. And this, by definition, means αrough ≈ 1. This 
commonly encountered rough- surface limit is sometimes 
called fast kinetics. The attachment kinetics at a water/
vapor interface is also near unity.

Vicinal Surfaces. A vicinal surface is essentially a flat 
surface cut at a slight  angle relative to a faceted surface. 
Figure 4.2 illustrates a vicinal surface, which includes a 
series of terrace steps with an average spacing ℓvicinal, 
where ℓvicinal depends on the vicinal  angle. If ℓvicinal is less 
than the mean diffusion length xdiff (the typical distance 
admolecules on a faceted surface  will diffuse before sub-
limating), then most admolecules  will encounter a ter-
race step and attach. Therefore, αvicinal ≈ 1 when 
ℓvicinal < xdiff, and αvicinal → αfacet when ℓvicinal → ∞. Note 
that the pro cess of surface diffusion is usually implicitly 
incorporated into the attachment coefficient. It is also 
generally assumed, as part of the local form of the attach-
ment kinetics defined by Equation 4.1, that xdiff can be 
considered small compared to most macroscopic snow 
crystal structures.

6) Terrace nucleation— when several admolecules on 
a faceted surface come together to form a new mo-
lecular layer, or terrace. This pro cess is required to 
form new terraces on the topmost terrace of a facet 
surface.

This cartoon molecular picture of a crystal surface is too 
simplistic to provide a full kinetic description of ice, even 
at a qualitative level. Ice has a high vapor pressure, is not 
made from  simple  spherical molecules, and the ice sur-
face experiences surface premelting at high temperatures 
(see Chapter 2). As a result, the above list of molecular 
pro cesses likely leaves out much impor tant many- body 
physics. Molecular dynamics simulations can help de-
velop our understanding of real ice surfaces, but we are 
still far from fully understanding the structure and dy-
namics of the ice/vapor interface. Nevertheless, experi-
ments suggest that this cartoon picture can aid our in-
tuition when describing many impor tant aspects of snow 
crystal growth, so we adopt it as a reasonable starting 
point.

Surface Characteristics

Three types of surfaces play especially impor tant roles in 
the discussion of snow crystal attachment kinetics: fac-
eted, rough, and vicinal surfaces:

Faceted Surfaces. A faceted crystalline surface is de-
fined by its low Miller indices, as described in Chap-
ter 2. Low- index facets tend to have well- defined molec-
ular terraces, and  these surfaces best resemble the sketch 
shown in Figure 4.2. A perfect faceted surface can be 
thought of as being molecularly “flat” in that it contains 
no terrace steps or dislocations. The detailed molecular 
structures of the principal basal and prism facets are de-
scribed in Chapter 2, as are the bilayer terrace steps on 
 those surfaces.

An impor tant feature of any faceted surface is that 
its molecular structure includes fewer dangling molecu-
lar bonds than does a nonfaceted surface. One result of 
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prob lems in computational snow crystal modeling. But 
this strong anisotropy also helps bring about the rich 
variety of observed snow crystal patterns.

As we saw in Chapter 1, this basic model of anisotro-
pic molecular attachment kinetics immediately ex-
plains the formation of snow crystal facets.  Because 
αfacet  αrough, the rough surfaces quickly accumulate ma-
terial and fill in, while the faceted surfaces accumulate 
material at a much slower rate. The appearance of mac-
roscopic facets in most natu ral crystalline materials, 

Facet- Dominated Growth

In ice growth from  water vapor, the attachment kinetics 
are often highly anisotropic with deep cusps in α(θ, φ) 
at the principal facet  angles, where (θ, φ) is the angular 
orientation of the surface normal relative to the crystal 
lattice axes. It is not uncommon to have αfacet < 0.01, 
while αvicinal ≈ 1 at a vicinal  angle of just a degree or 
two. As we  will see in Chapter 5, such a deep, cusplike 
anisotropy can lead to challenging numerical stability 

FIGURE 4.3. Facet- dominated growth. The attachment kinetics on any snow crystal can be divided 
into three classes of surfaces: top basal terraces described by αbasal, top prism terraces described by 
αprism, and all other surfaces described by α ≈ αrough ≈ 1. The overall platelike structure of this crystal, as 
well as much of its dendritic branching, is determined by the first two surface classes. Thus, the attach-
ment kinetics on the topmost facet terraces strongly influence the morphological development of the 
entire structure.
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grown snow crystals frequently (although not always) 
appear to be essentially  free from significant lattice 
imperfections.

As illustrated in Figure 4.2, isolated admolecules on a 
faceted ice surface are not yet fully incorporated into 
the crystalline lattice, owing to their relatively weak 
binding. In the absence of nearby terrace edges to bind 
to, a typical admolecule  will reside on the surface for only 
a short time before thermal fluctuations send it back into 
the vapor phase. On large- faceted surfaces, sustained 
crystal growth requires the nucleation of new molecular 
terraces. In this circumstance, αfacet is mainly determined 
by nucleation- limited attachment kinetics.

The facet surface is typically a maelstrom of molecu-
lar activity, as admolecules are continually coming and 
 going, diffusing along the surface, and interacting with 
one another. Small terrace islands are constantly form-
ing and disintegrating, growing as admolecules attach to 
their edges and shrinking as molecules thermally detach 
and diffuse away. Small terrace islands are the least sta-
ble and frequently break up via thermal fluctuations, but 
 these are also the most likely to form via chance encoun-
ters. Larger islands are less likely to form but generally 
survive longer before breaking up. The nucleation of a 
new, permanent terrace occurs when an island appears 
with a radius larger than some critical size Rcrit that de-
pends on the local supersaturation. Once such a stable 
terrace forms, it  will usually continue to grow in def-
initely as more admolecules diffuse to its edges and at-
tach. The facet attachment coefficient depends on the 
value of Rcrit, the rate at which stable terraces nucleate, 
and how rapidly stable terraces accumulate additional 
admolecules.

If the terrace nucleation rate is exceptionally low, 
then a single terrace may nucleate and grow  until it cov-
ers the entire facet surface before the next new terrace ap-
pears. This is called layer- by- layer growth, and it is gen-
erally not so impor tant when considering large facets 
(and certainly not for our ideal facets of infinite extent). 
For most growing snow crystals, a large- faceted surface 
 will contain many stable terraces of vari ous sizes at all 

including mineral crystals, typically results from highly 
anisotropic attachment kinetics via this mechanism. (Al-
though on most commercial gemstones, facets are fabri-
cated with a grinder.)

Beyond facet formation, the attachment kinetics on 
the basal and prism surfaces also play a large role in guid-
ing the formation of even complex, large- scale snow crystal 
structures (Figure  4.3). Essentially all nonfaceted ice/
vapor surfaces can be described with α ≈ αrough ≈ 1 to a 
reasonable degree of accuracy. Thus, the only par-
ameters left to define the overall morphology of a snow 
crystal are αbasal and αprism. On dendritic structures ex-
hibiting complex curved surfaces, it is often the attach-
ment kinetics on the topmost, sometimes tiny, basal 
and prism terraces that guide the overall growth be-
hav ior. If not for the high anisotropy in the attach-
ment kinetics, expressed mainly in αbasal and αprism, 
the menagerie of snow crystal forms would be absent its 
marvelous diversity. I call this situation facet- dominated 
growth,  because the slowest growing, faceted surfaces 
tend to define the overall growth morphology, even 
when the growth is also strongly diffusion  limited. 
In  this circumstance, understanding snow crystal mor-
phologies largely comes down to creating a suitable 
comprehensive model of the attachment kinetics on the 
basal and prism facets.

LARGE- FACET ATTACHMENT 
KINETICS

 Because the basal and prism facets play such an impor-
tant role in defining the growth be hav ior and structural 
development of many snow crystals, our first task is to 
examine the attachment kinetics on  these surfaces. We 
begin with the ideal case of a large- faceted surface of ef-
fectively infinite lateral extent, so we can ignore any 
nonlocal, edge- related effects. We further assume a per-
fect crystalline structure,  free from dislocations and 
other lattice defects. This is a good place to begin the dis-
cussion, as large- faceted surfaces are common in many 
snow crystals. Moreover, both natu ral and laboratory- 
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quote several salient features of the theory and apply 
it to the case of snow crystal growth.

Jumping straight to the main result in a multinucle-
ation model, the creation and growth of new terraces 
yields an attachment coefficient that can be written, to 
a reasonable approximation, as [1996Sai]

 α(σ surf )= Ae−σ 0/σ surf  (4.4)

for the growth of a faceted surface, where A and σ0 are 
dimensionless par ameters, with

 σ 0(T )= Sβ 2a2

k2T 2
.  (4.5)

 Here I have included a dimensionless geometrical  factor 
S ≈ 1 to absorb several small theoretical  factors (for ex-
ample, the difference between a and the  actual terrace 
thickness). Given the substantial uncertainties in our 
current knowledge of β, the exact value of S is not of 
 great concern at this time, so I assume S = 1.

Nucleation theory generally indicates that A  will de-
pend weakly on σsurf, but I  will mostly neglect any such 
dependence, as it is dwarfed by the strongly varying 
exp(−σ0/σsurf)  factor. Therefore, I take the par ameters 
A(T), σ0(T), and β(T) to all be in de pen dent of σsurf, and 
the resulting function in Equation 4.4 seems to provide 
a good fit to existing mea sure ments of faceted ice growth 
(see Chapter 7).

As a note of caution, I point out that theoretical 
models of terrace nucleation invariably include a variety 
of implicit, simplifying assumptions regarding molecu-
lar surface structure and dynamics, and some of  these as-
sumptions may not be justified for ice. For example, the 
theory usually begins with the basic surface molecular 
picture illustrated in Figure 4.2, which does not include 
surface premelting. While it is well known that premelt-
ing is an impor tant structural characteristic of ice crys-
tal surfaces near 0° C, we do not know how this phenom-
enon modifies the dynamics of terrace nucleation. 
Nucleation theory was developed mainly for low- vapor- 
pressure solids like metals and semiconductors, and it is, 

times, and this situation is called a multinucleation 
model.

Terrace Nucleation Theory

On a faceted ice surface, the equilibrium vapor pressure 
of a small island of admolecules is higher than the nor-
mal saturated vapor pressure. Using an argument like 
that used to derive the Gibbs- Thomson effect in Chap-
ter 2, the equilibrium vapor pressure of a circular island 
terrace of radius R is

 ceq ≈ csat 1+ a2β
RkT

⎛
⎝⎜

⎞
⎠⎟

,  (4.3)

where a is the molecular size, k is the Boltzmann  factor, 
T is the surface temperature, and β is the step energy of 
the terrace edge. Thus, for a terrace island to be stable 
against sublimation, the supersaturation near the surface 
must be at least σsurf = a2β/RkT. Turning this around, an 
island terrace  will achieve long- term stability only if its 
radius is greater than Rcrit = a2β/σsurf kT. Putting in some 
typical numbers, β ≈ 10−12 J/m and σsurf ≈ 1   percent, 
a marginally stable island terrace might have a radius 
of about Rcrit ≈ 10a and contain roughly 300  water 
molecules.

The growth rate vn of a faceted surface, and thus the 
attachment coefficient αfacet, is tied directly to the rate 
at which new terraces appear and the rate at which ex-
isting terraces grow via admolecule attachment. The 
statistical mechanics describing  these pro cesses 
has  been much studied over many de cades, yielding 
a  well- established classical nucleation theory that is 
 described in detail in essentially all textbooks on 
crystal growth [e.g., 1994Ven, 1996Sai, 1999Pim, 
2002Mut]. In three dimensions, classical nucleation 
theory describes the homogeneous nucleation of liquid 
droplets, while in two dimensions, the same theory 
applies to the nucleation of island terraces on faceted 
crystal surfaces. The derivation of nucleation theory is 
quite involved, and I cannot improve on the existing 
textbook treatments. In this book, therefore, I simply 
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physical model that plays an impor tant role in the ice/
vapor attachment kinetics.

Model Par ameters from Mea sure ments

How well the terrace nucleation model applies to real ice 
growth can only be determined by detailed comparisons 
with experimental observations. Early mea sure ments 
clearly exhibited some of the characteristic traits of 
nucleation- limited growth [1972Lam, 1983Bec, 1989Sei, 
1998Nel], and the evidence became ever stronger as im-
proved experimental techniques yielded greater mea sure-
ment precision [2013Lib, 2019Lib3]. For example, Fig-
ure 4.4 illustrates the exponential rise in growth velocity 
with σsurf that is the hallmark of a nucleation- limited 
model.  Here the data points show mea sure ments of the 
perpendicular growth velocity of a prism facet surface as 
a function of the near- surface supersaturation σsurf.  These 
data  were taken at −15° C with a background air pressure 
of 20 mbar using the vacuum ice growth apparatus de-
scribed in Chapter 7. The curve shows vn = αvkinσsurf with 
α(σsurf) = exp(−σ0/σsurf) and σ0 = 3   percent. The inset 
image shows the test crystal immediately  after the 

I believe, not thoroughly tested experimentally outside 
this realm.

 These caveats notwithstanding, some aspects of nu-
cleation theory appear to be quite robust in the sense 
that they are largely insensitive to many surface charac-
teristics. The exponential  factor exp(−σ0/σsurf) is an es-
pecially robust feature in nucleation theory, along with 
the relationship between σ0 and β given in Equation 4.5. 
 These aspects of the theory are essentially in de pen dent 
of details pertaining to how admolecules diffuse along a 
faceted surface, the admolecule residence time, how ter-
races grow, and the number of stable terraces that are pre-
sent on the surface at any given time. Importantly, over 
a broad range of surface characteristics, the terrace step 
energy β is the only pa ram e ter that has a substantial ef-
fect on σ0.

 Because of this robust feature in nucleation theory, 
observing the functional form α ~ exp(−σ0/σsurf) in 
ice growth experiments is a strong indication that the 
growth rate is  limited primarily by the nucleation of 
new terraces. In this case, one can use mea sure ments 
of α(σsurf, T) to extract the step energy function 
β(T), which is other wise difficult to mea sure. More-
over, β is a fundamental material property of any fac-
eted surface, like the surface energy. In princi ple, the 
step energy could be determined from purely equilib-
rium mea sure ments (i.e., in de pen dent of crystal 
growth dynamics) or even by detailed calculations that 
determine crystal structure and energetics from known 
molecular interactions. To date, however, growth- rate 
experiments have yielded the best mea sure ments of β 
on the ice facets (see Chapter 7).

One of the marvelous aspects of terrace nucleation 
theory is that it reduces a complex surface dynamical pro-
cess to essentially a single equilibrium quantity β. All 
the specific molecular dynamics details regarding admol-
ecule deposition, sublimation, surface diffusion, and 
bonding at terrace steps become largely irrelevant. The 
distinctive functional form α ~ exp(−σ0/σsurf) depends 
only on the terrace step energy. Terrace nucleation the-
ory thus provides a  simple, accurate, and quantitative 
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FIGURE 4.4. Ice growth mea sure ments (data points) are well de-
scribed by a terrace nucleation model (curve) [2013Lib]. Chap-
ter 7 describes  these data in detail.
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chemical species in the prob lem. How well this pure 
model describes real snow crystal growth is an impor tant 
experimental question, and I discuss this issue  later in 
this chapter and in Chapter 7.

The mea sured terrace step energies are a founda-
tional ele ment in the CAK model, and  these represent 
equilibrium material properties of the ice surface, as dis-
cussed in Chapter 2. At low temperatures, surface pre-
melting is essentially absent on both the basal and prism 
facets, so the step energies should tend  toward the rigid- 

growth mea sure ments  were completed [2013Lib]. Many 
additional experimental results like this suggest that the 
terrace nucleation model accurately describes the growth 
of large, defect- free basal and prism faceted surfaces over 
essentially all conditions relevant to snow crystal forma-
tion. This is a strong statement, and it represents my ex-
perienced, albeit perhaps not entirely unbiased, interpre-
tation of the available published data.

As a first step in developing the comprehensive at-
tachment kinetics (CAK) model in this chapter, I com-
bine results from the best available ice growth experi-
ments to produce the best- estimate extracted model 
par ameters A(T), σ0(T), and β(T) shown in Figures 4.5 
and 4.6. For the sake of pedagogy, I display  these largely 
empirical results in the form of smooth curves, as this ap-
proach allows a less cluttered discussion of the under-
lying physical pro cesses, thus facilitating our continued 
development of the CAK model below. This somewhat 
oversimplified pre sen ta tion glosses over experimental 
uncertainties and the inevitable inconsistencies between 
published data sets, and I examine some of  these issues 
in Chapter 7. For now, suffice it to say that  these curves 
are prob ably reasonably accurate in an absolute sense but 
may require some modification in the light of  future im-
proved experiments.

The set of curves in Figures 4.5 and 4.6 pa ram e terize 
the attachment kinetics describing large, defect- free fac-
eted surfaces in the CAK model, and they are  little 
more than pa ram e terized fits to experimental data. Mea-
sure ments of vn(σsurf , T) like  those shown in Figure 4.4 
are first converted to α(σsurf , T) using Equation 4.1, and 
then fits to Equation 4.4 are used to extract the par-
ameters A(T) and σ0(T). The step energies β(T) are fur-
ther obtained from σ0(T) using Equation 4.5. The as-
sumed functional forms come from terrace nucleation 
theory, and they seem to provide quite a good fit to ice 
growth data over a broad range of (σsurf , T). The CAK 
model includes an implicit assumption that the attach-
ment kinetics do not depend on background gas pressure 
or other chemical effects. In the spirit of an ideal large- 
facet kinetics model, I assume that  water is the only 
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FIGURE 4.5. The smooth curves in  these graphs show best- 
estimate CAK model functions σ0 (T ) and A(T ) on large basal and 
prism facets as a function of temperature, where Tm = 0° C is the 
ice melting point. The respective attachment coefficients are 
then given by α (σsurf ) = A exp (−σ0/σsurf ). The under lying experi-
mental data and mea sure ment techniques used to obtain  these 
curves are described in Chapter 7.  Because  these curves pa ram-
e terize the large- facet attachment kinetics over a broad range of 
growth conditions, they provide the foundation for the CAK 
model of snow crystal attachment kinetics.
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erally reflect the growth be hav iors at high σsurf, specifi-
cally when σsurf  σ0 and the exp(−σ0/σsurf)  factor is 
near unity. In this fast growth regime, terrace nucle-
ation is rapid, so the surface contains a relatively high 
density of terrace steps, even though it remains faceted 
on large scales. The abundance of terrace steps means 
that the surface begins to resemble a molecularly rough 
surface. In this situation, surface diffusion  will quickly 
transport admolecules to nearby terrace steps, where 
they  will be incorporated into the ice lattice. Thus, on 
both the prism and basal facets, it is natu ral to expect 
α → αrough ≈ 1 when σsurf  σ0, and this expectation 
implies A ≈ 1. And, indeed, we see Abasal ≈ 1 at all tem-
peratures in Figure  4.5 (see Chapter  7), along with 
Aprism ≈ 1 at temperatures below −10° C. Consequently, it 
appears that the high- temperature region with Aprism < 1 
is something of an anomaly.

To explain this anomalous be hav ior, the short an-
swer is that this is an empirical observation with no ob-
vious physical explanation. Nevertheless, the tempera-
ture dependence suggests that surface premelting may 
be involved,  because the transition to Aprism < 1 happens 
right about where surface premelting becomes impor-
tant. Therefore, undeterred by mere ignorance, let us 
follow this thread a bit further and look at the attach-
ment kinetics in the presence of surface premelting when 
the nucleation barrier is low. In the extreme case of a 
thick QLL, assume that the surface has an overall ice/
QLL/vapor structure (as inferred from MD simula-
tions), and further assume that attachment is fast at the 
QLL/vapor interface. If  these reasonable assumptions 
are true, then the relevant physics giving us Aprism < 1 
must be happening at the ice/QLL interface. And this 
suggests that we take a quick foray into the ice/water at-
tachment kinetics.

While the fundamental theory of solid/liquid at-
tachment kinetics is not well developed, the Wilson- 
Frenkel model of melt growth provides an overview of 
the under lying physics [1900Wil, 1932Fre, 1996Sai]. In 
a nutshell, the solid/liquid kinetics is  limited by the mo-
bility that allows a near- surface liquid molecule to move 

lattice value of β0 = aγsv ≈ 3 × 10−11 J/m, and this state-
ment is reasonably consistent with the data. At high 
temperatures, the basal step energy should tend  toward 
the ice/water step energy βsl,basal ≈ 5.6 ± 0.7 × 10−13 J/m 
(see Chapter 2), while the prism step energy should tend 
 toward βsl,prism  βsl,basal. Again,  these statements ap-
pear to fit the data. Put another way, although we do not 
have a precise model of the terrace step energies for 
 either the ice/vapor or ice/water interfaces, the mea sure-
ments seem to paint a reasonably consistent picture of 
the under lying physics. Thus, while the step energies in 
Figure 4.6 reflect empirical mea sure ments, the results 
seem sensible overall.

Frustrated QLL Kinetics

The mea sured A(T) be hav ior is not as impor tant as the 
terrace step energies, but it is a significant feature in the 
mea sure ments, and it does not readily suggest a physical 
explanation.  Going back to the ice growth data that 
yielded Figure 4.5, the values of both Abasal and Aprism gen-
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FIGURE 4.6.  These curves show CAK model estimates for the 
step energies β(T) for large basal and prism facets as a function of 
temperature, extracted from σ0 (T) using Equation 4.5. While de-
rived from dynamical growth mea sure ments,  these step energies 
represent fundamental equilibrium properties of the ice crystal 
surface.
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sketchy line of reasoning provides us no method for cal-
culating Aprism, it does agree with at least one recent MD 
simulation [2018Lou] showing that the near- surface 
QLL viscosity is up to 1,000 times higher than bulk 
 water, and is especially high on the prism facet. Although 
simulating ice surfaces is not an exact science at pre sent, 
this result suggests that it may be pos si ble to investigate 
the frustrated- QLL model further using MD simula-
tions. Moreover, the model immediately makes a sig-
nificant experimental prediction.  Because the mobility 
must increase with QLL thickness in this model, it pre-
dicts that Aprism → 1 as T → 0° C. The upward trend in 
Aprism at the highest temperatures in Figure 4.5 largely 
reflects this CAK model bias, although  there is only a 
weak indication that this trend is pre sent in the data. If 
the upward trend is confirmed in experimental investi-
gations at higher temperatures, this would support the 
model, crude as it is. Moreover, the frustrated- kinetics 
model becomes useful once again for interpreting the 
growth of ice dendrites at high temperatures, which I 
discuss further in the section on structure- dependent at-
tachment kinetics  later in this chapter.

An alternative explanation for Aprism < 1 might come 
from classical terrace nucleation theory [1996Sai], which 
indicates that Aprism is proportional to the surface diffu-

into position so it can be incorporated into the solid lat-
tice. In the Wilson- Frenkel model, this mobility trans-
lates into an attachment coefficient that is inversely pro-
portional to the liquid viscosity, which is proportional 
the liquid diffusion constant [1996Sai].

In ice growth from liquid  water, prism growth rates 
are extremely fast, which suggests that the ice/QLL ki-
netics would be fast as well, again implying Aprism ≈ 1. 
 Because this is not observed to be the case above −10° C, 
it suggests that the molecular diffusion constant in the 
QLL is substantially slower than in bulk  water. This is 
not a shocking statement to make, as the QLL is a na-
noscale thin layer, plus its structure is somewhat con-
strained by its proximity to the ordered ice lattice 
[2018Lou]. However, neither theory nor experiments tell 
us much that is definitive about QLL diffusion, so we 
cannot say how this might give us the observed Aprism < 1 
be hav ior seen in Figure 4.5, or why  there is no similar be-
hav ior for Abasal. Nevertheless, a crude “frustrated QLL 
kinetics” model (the word “model” being a bit generous 
 here) may provide at least a qualitative physical picture 
of the under lying molecular pro cesses.

Figure  4.7 shows a graphical repre sen ta tion of this 
frustrated- kinetics model, comparing the ice/water case 
with that for an ice/QLL/vapor interface. Although this 

Water Ice/Water: fast kinetics

Vapor

thin QLL

Ice/QLL: frustrated kinetics

Ice

Ice

FIGURE 4.7. An illustration of how the inhibited mobil-
ity of QLL molecules might explain the observed 
Aprism < 1 be hav ior seen in Figure 4.5. In the absence of a 
nucleation barrier (when σsurf  σ0), ice growth is  limited 
by how quickly liquid (or quasiliquid) molecules can dif-
fuse into position to be incorporated into the ice lattice. 
The data suggest that perhaps  there is a high mobility in 
the ice/water system (top) but a substantially lower mo-
bility near the ice/QLL interface (bottom).
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is a relatively minor issue that mainly affects fast- growing 
prism surfaces at high temperatures. Even including that 
regime, ice growth mea sure ments generally tell us that 
the terrace nucleation model pa ram e terized in Fig-
ures  4.5 and 4.6 provides quite a good approximation 
for the growth of the principal basal and prism faceted 
surfaces in the large- facet limit.

The large- facet limit, however, is only one aspect of 
the attachment kinetics. A  great variety of snow crys-
tal morphologies— including thin plates, hollow col-
umns, and essentially all dendritic structures— exhibit 
sharply curved features that contain tiny basal and 
prism facets with last- terrace dimensions that are often 
as small as 50 nanometers. But even  these minute fac-
ets can be impor tant  drivers of the overall growth 

sion length xdiff on prism facets. If xdiff is substantially 
lowered by the onset of surface premelting, this could 
also explain the observed Aprism < 1 be hav ior. However, 
a reduction in xdiff is not altogether dissimilar to a reduc-
tion in QLL mobility, so perhaps the overall picture is 
roughly the same in both explanations. And again, it re-
mains a mystery why Aprism is substantially diff er ent 
from Abasal at high temperatures. But this be hav ior can 
certainly be investigated further with additional targeted 
experiments and MD simulations [2018Lou, 2020Llo].

We can add an additional telling observation to this 
story, as prism faceting is readily observed at −0.5° C in 
air, as illustrated in Figure 4.8. This faceting could not 
result from a high nucleation barrier,  because the growth 
data indicate that σ0 is too low to cause faceting at the 
estimated σsurf. Instead, this high- temperature prism 
faceting appears to arise  because Aprism < 1 at high tem-
peratures, providing a direct, in de pen dent confirmation 
of this feature in the data [1991Elb].

 Because Figures 4.5 and 4.6 describe the attachment 
kinetics on perfect faceted surfaces having infinite lateral 
extent, the CAK model curves are relatively clean and 
well defined.  There must exist, for example, definite val-
ues for βbasal(T) and βprism(T), just as  there are definite 
values for the facet surface energies γbasal(T) and γprism(T). 
 These are all fundamental properties of the ice crystal, 
determined by the lattice structure and  water molecular 
interactions. The  actual values of βbasal(T) and βprism(T) 
shown in Figure 4.6 are imperfect to some degree, owing 
to experimental uncertainties, and the step energies may 
vary slightly with the orientation  angles of the steps, step 
curvature, and other minor  factors. But well- defined step 
energies must exist in the defect- free, large- facet limit.

The par ameters A(T) and σ0(T) are somewhat 
model dependent, as they assume that a terrace nucle-
ation model is generally correct for the growth of fac-
eted ice surfaces. But this assumption is quite strongly 
supported by a fair amount of experimental evidence at 
this point (see Chapter 7), and defect- free crystals seem 
to be the norm over this temperature range. The some-
what odd be hav ior of Aprism(T) is a complication, but this 

FIGURE 4.8. A blocky plate crystal grows on the end of a c- axis 
electric ice needle (see Chapter 8) in air at −0.5° C, with σsurf  ≈ 0.1 
 percent.  Because σsurf  σ0  under  these conditions, the strong 
prism faceting did not result from a nucleation barrier but instead 
arose  because αprism ≈ Aprism < 1 at this temperature, as shown in 
Figure 4.5. The CAK model proposes a “frustrated QLL kinetics” 
phenomenon to explain this low Aprism be hav ior, although the 
under lying molecular physics in this case is not known with 
certainty.
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Thus w can be as low as about 50  nm on many snow 
crystal structures, which is less than 200 molecules across. 
(Although electric ice  needles have substantially sharper 
tips, as described in Chapter 8.)

This lower limit puts us squarely in the mesoscopic 
regime, as a 200- molecule- wide facet would likely have 
roughly the same molecular surface structure as a large 
facet, even in the presence of significant surface premelt-
ing. However, lateral molecular transport from the 
facet edges might affect the overall growth be hav ior in 
comparison to that of a large- faceted surface. Theoreti-
cal considerations alone cannot tell us  whether edge ef-
fects  will significantly alter the attachment kinetics, but 
rather basic observations of snow crystal morphologies 
indicate that the large- facet attachment kinetics de-
scribed above cannot be the  whole story.

Thin- plate crystals like that shown in Figure 4.9 are 
common near −15° C, and their very existence requires 
αprism  αbasal. Basic numerical modeling further indi-
cates that the large aspect ratio of a thin- plate crystal 
cannot be a  simple diffusion effect but must be caused 
by highly anisotropic attachment kinetics (see Chap-
ter  3). The large- facet curves in Figure  4.5, however, 
clearly indicate that αprism ≈ αbasal at −15° C, thereby pre-
cluding the formation of thin plates. This discrepancy is 
immediately problematic,  because our large- facet attach-

morphology, as essentially all nonfaceted surfaces ex-
hibit α ≈ αrough ≈ 1. One might imagine that the addi-
tion of edge effects or other  factors on such small fac-
ets could yield attachment kinetics that are quite 
diff er ent compared to large facets. In our quest to un-
derstand the full range of snow crystal morphologies, 
therefore, we must address the attachment kinetics on 
 these diminutive faceted surfaces.

STRUCTURE- DEPENDENT 
ATTACHMENT KINETICS

To begin our examination of the growth of small faceted 
surfaces, consider the edge of a thin hexagonal plate, as 
illustrated in Figure 4.9. The edge terminates on a nar-
row prism facet, and, from basic geometry, the width of 
the last prism terrace on a curved edge is w ≈ 8Ra , 
where R is the radius of curvature of the edge, and a is 
the size of a  water molecule. Experimental mea sure-
ments, together with input from solvability theory (see 
Chapter 3) suggest edge and tip radii that are often in 
the 1–2 µm range for a broad range of snow crystal mor-
phologies growing in normal air. Slower growth generally 
yields larger R, as does growth at lower air pressures. 
But fast- growing structures in air do not generally de-
velop structures with R values much lower than 1–2 µm. 

Large basal facet

Large basal facet

Narrow
   prism facet

Facet width
w ≈ √8Ra

FIGURE 4.9. The shape of a thin hexagonal platelike crystal is largely defined by the 
growth of the basal and prism facets. While the basal facets are quite large, the six prism 
facets have widths w ≈ 8Ra , where R is the radius of curvature of the edge and a is the 
molecular size. In many common circumstances, the attachment kinetics on  these ex-
tremely narrow facets are markedly dif fer ent from the attachment kinetics on large- 
faceted surfaces.
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around this crystal, then the Gibbs- Thomson effect pro-
vides that the edge of the plate  will neither grow nor 
shrink with time. If we further assume a large nucleation 
barrier having σ0,basal  σsurf, then the basal facets  will 
remain static as well. The resulting lack of any signifi-
cant growth is consistent with our assumption of 
σ∞ ≈ σsurf in this near- equilibrium situation.

The shape of the edge  will be rounded, as shown in 
Figure 4.10a, as this minimizes the local surface energy. 
And, again from Chapter 2, the time needed for the edge 
to reach this rounded state is just a few seconds in air. 
Eventually, the overall platelike shape would evolve 
 toward the (roughly  spherical) equilibrium crystal shape, 
but the time required for this relaxation is extremely 
long. Thus, Figure 4.10a represents a quasi- static, near- 
equilibrium condition.

Next let us increase the supersaturation, as illus-
trated in Figure 4.10b. Assume that the nucleation bar-
riers are still quite large on both facets, so they experi-
ence  little growth. The only significant change is that 
the Gibbs- Thomson effect now yields a new quasi- 
equilibrium state in which the corner radii are smaller 
than Redge. This means that the increased supersaturation 
now prevents the plate edge from assuming its rounded, 
near- equilibrium shape. Thus, the high applied supersat-
uration constitutes a nonequilibrium condition that 
then supports a static, nonequilibrium edge shape, in this 
case one with sharpened corners.

For our final step, illustrated in Figure 4.10c, we now 
introduce the possibility of surface diffusion onto the 
prism facet. The nonequilibrium edge shape means that 
a transfer of molecules from the sharpened corners to the 
prism facet (arrows)  will reduce the total surface energy 
of the system. Thus, if significant surface diffusion is al-
lowed,  there  will be an energetically driven flow of  water 
molecules onto the prism surface.  These additional ad-
molecules  will not immediately attach to the prism sur-
face, as a nucleation barrier still must be overcome. But 
they  will increase the overall admolecule surface density, 
and this disturbs the normal deposition/sublimation bal-
ance on the surface. With a greater admolecule surface 
density, terrace nucleation is statistically more likely, 

ment kinetics model is largely empirical, supported by 
quite solid experimental mea sure ments.  Either some-
thing is very wrong with the large- facet mea sure ments, 
or small facets have a diff er ent story to tell. Delving into 
this discrepancy over some years, I reached the conclu-
sion that the facet attachment kinetics must depend 
strongly on the local mesoscopic crystal structure, spe-
cifically the facet width w, a phenomenon I call structure- 
dependent attachment kinetics (SDAK) [2003Lib1].

Supposing that this SDAK hypothesis is correct, our 
next challenge is to understand the physical origin of a 
facet- width- dependent attachment kinetics. Ice surface 
physics is already challenging in the large- facet limit, and 
it does not become simpler when any number of edge- 
related physical effects may come into play. While this 
might be a good point to throw up our hands and declare 
that no clear solution is pos si ble, such a declaration pro-
vides  little insight into pos si ble paths forward. Instead I 
 will plunge ahead and describe two pos si ble mechanisms 
I have developed for SDAK effects. Both have merits in 
diff er ent growth regimes, but neither is solidly rooted in 
established molecular physics.  These models should 
therefore be considered as hypotheses to be tested with 
additional experimental and theoretical investigations. 
I have been  going down this path of hypothesis testing 
recently using numerous precision ice growth mea sure-
ments, and so far, the results are quite promising. But a 
long road lies ahead to fully develop and verify  these 
SDAK models.

SDAK-1: Enhanced Terrace Nucleation

As a first venture into developing an SDAK model, let 
us consider more carefully the structure and growth of 
a prism edge on a thin platelike crystal. If we establish 
the thin- plate morphology and then turn down the su-
persaturation, so the crystal sits in near- equilibrium con-
ditions, then Figure  4.10a illustrates the resulting 
rounded edge structure. The value of Redge is set by the 
initial conditions, and the discussion in the previous sev-
eral paragraphs suggests that 1–2 µm is a typical value 
for an especially thin edge. If we set σ∞ ≈ σsurf ≈ 2dsv/Redge 
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cal pro cess. But it does suggest at least a plausible molec-
ular mechanism for an SDAK phenomenon.

Notably, this SDAK mechanism cannot yield a value 
of αprism above unity. As the nucleation barrier drops and 
αprism → 1, the Gibbs- Thomson effect  will no longer sup-
port the nonequilibrium edge shape with sharpened cor-
ners. This only happens when the prism nucleation barrier 
is significant enough to suppress prism growth. Once 
αprism ≈ 1, the edge reverts to an overall rounded shape 
that no longer provides an energetically driven surface 
flow. In a nutshell, this SDAK mechanism effectively low-
ers σ0,prism  until αprism → 1, but it cannot yield αprism > 1.

Surface Premelting and the  
Ehrlich- Schwoebel Barrier

Continuing with this line of reasoning, our next ques-
tion is when to expect a significant amount of corner- to- 
facet surface diffusion. With a traditional rigid- lattice 
surface structure, this type of edge- crossing surface dif-

which results in a lower effective nucleation barrier, and 
thus a higher αprism. With some additional reasonable as-
sumptions [2019Lib], the growth increase behaves es-
sentially as if βprism  were lower. Note that the real βprism 
is unchanged, as the lattice structure of the facet is es-
sentially equal to that of a large facet. But the nucleation 
rate goes up nevertheless, behaving much like a surface 
with a lower βprism. As a result,  because of this facet- edge 
effect, the effective σ0,prism goes down even when βprism re-
mains unchanged. This phenomenon cannot occur on 
large facets,  because large facets, by definition, are not in-
fluenced by edge effects.

This picture also suggests that the increase in admole-
cule surface density  will be more pronounced as the 
facet width w decreases,  because the additional admol-
ecules  will quickly disperse over the available top- terrace 
surface. The narrower the facet surface is, the higher the 
resulting admolecule density  will be. Once again, this 
cartoon picture does not allow us to calculate the SDAK 
effect in any detail, as this is a complex surface dynami-

Basal facet(a) (c)

(d)(b)

Basal facet

Large σ0,basal & σ0,prism

σ > 0      Corners sharper

Redge

Near equilibrium;
Corners rounded

Add surface di�usion
Prism admolecule density
increases
Faster nucleation on
prism facet

Ice

QLL

Surface transport

Pr
is

m
 fa

ce
t

Su
rf

ac
e 

di
�u

si
on

Thickens edge QLL
Increases Aprism

FIGURE 4.10. A pos si ble physical model of an SDAK phenomenon on the thin prism edge of a plate-
like snow crystal [2019Lib]. As described in detail in the text, a surface diffusion driven by surface en-
ergy can increase the admolecule density on the narrow prism facet, enhancing the normal rate of 
terrace nucleation. As a result, the attachment kinetics on the narrow prism facet is dif fer ent from that 
on a large prism facet, which is the essence of the SDAK phenomenon.
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At still higher temperatures, surface diffusion be-
comes even more prevalent, and a thick QLL develops 
atop the crystalline lattice, as illustrated in Figure 4.10d. 
In this regime, the ice/vapor terrace nucleation model 
is replaced with an ice/QLL model that starts to re-
semble terrace nucleation at an ice/water interface. 
The concept of an admolecule surface density begins 
to lose its meaning at the ice/QLL interface, as the 
molecular dynamics is more influenced by QLL bulk 
diffusion, as in the Wilson- Frenkel picture discussed 
 earlier in the chapter. Although  there should be plenty 
of surface diffusion at temperatures well above Tonset, 
when the Ehrlich- Schwoebel barrier is essentially ab-
sent, this additional transport  will have a relatively 
minor effect on the nucleation barrier. Thus, at tem-
peratures substantially above Tonset, we again expect 
that terrace nucleation on small facets  will be  little 
changed from the large- facet model.

Putting  these ideas together, this (admittedly inex-
act) model predicts the existence of an “SDAK dip” on 
each of the large- facet σ0 curves, as illustrated in Fig-
ure 4.12.  Here I have chosen diff er ent values of Tonset for 
the basal and prism facets to impose agreement with 
the known ice growth be hav iors from the Nakaya dia-
gram and other growth mea sure ments. Moreover, the 
values of the SDAK curves must depend on w and per-
haps other  factors, as the very nature of the SDAK hy-
pothesis is that the attachment kinetics depend on the 
mesoscopic crystal structure. The specific curves shown 
in Figure 4.12 represent rough estimates for Redge in the 
1–2 µm range, as  these are typical for snow crystal 
growth in air, as discussed above.  These portions of the 
curves are drawn as dotted lines to signify their sub-
stantial uncertainties.

Although the SDAK model is certainly wanting in 
that it does not make precise calculable predictions for 
αbasal and αprism, it nevertheless makes some surpris-
ingly concrete predictions. For example, the CAK 
model with the SDAK phenomenon indicates that 
thick plates should be the primary habit at −5° C 
when the supersaturation is low,  because αprism > αbasal 

fusion is suppressed by the Ehrlich- Schwoebel barrier 
(Figure  4.11), a phenomenon that is commonly dis-
cussed in crystal growth textbooks [1996Sai, 1999Pim, 
2002Mut]. From Chapter 2, the ice surface tends to re-
semble this rigid structure at especially low temperatures, 
when surface premelting is absent. We expect, therefore, 
that surface diffusion like that shown in Figure 4.10c 
would be effectively suppressed by the Ehrlich- Schwoebel 
barrier at low temperatures. In this case, terrace nucle-
ation on narrow facets would be no diff er ent than on 
large facets.

As the temperature increases, however, surface pre-
melting eventually begins to develop, increasing the 
amount of disorder in the top molecular layers of the 
crystal surface. When the temperature reaches some 
critical value Tonset and surface disorder becomes suffi-
ciently large, it stands to reason that the Ehrlich- 
Schwoebel barrier  will become quite leaky. At this 
temperature, I have proposed that the above SDAK 
mechanism becomes impor tant, effectively lowering 
the nucleation barrier and thereby increasing αprism 
[2019Lib].

Ehrlich–Schwoebel
  barrier

Diffusion
barrier

Step site

FIGURE 4.11. On a rigid lattice, admolecule diffusion over abrupt 
terrace steps is suppressed by the Ehrlich- Schwoebel barrier. An 
admolecule crossing over the step edge  will (temporarily) be in a 
position nearly removed from the surface, which is energetically 
quite unfavorable. This creates a potential barrier that impedes such 
crossings. The step structure  will become less rigid in the presence 
of surface premelting, however, which should substantially reduce 
the Ehrlich- Schwoebel barrier. Image adapted from [2002He].
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for Tonset on the basal and prism facets results in a set of 
model curves that reproduces the overall temperature 
 dependence seen in the Nakaya diagram. According 
to  this CAK model, the vari ous transitions between 
platelike and columnar growth are caused largely by 
changes in the effective nucleation barriers on narrow 
basal and prism facets. If correct, the SDAK phenom-
enon thus plays a crucial role in defining the long- 
mysterious temperature transitions observed in snow 
crystal morphology.

Of course, the critical reader may balk at the specula-
tive nature of this model, along with its complexity and 
ill- defined curves. Fair enough. What the reader may not 
immediately see, however, is that the model is largely 
driven by empirical data from a variety of ice growth 
mea sure ments. The large- facet curves are well grounded 
in experiments, and the SDAK dips, or something 

on large facets at that temperature. But hollow col-
umns can also grow at −5° C if the basal edges are 
thin, owing to the SDAK effect. Indeed, as described 
below, a close look at a broad range of ice growth data 
indicates that thick plates do readily form at −5° C, 
as  do hollow columns, and the two forms can even 
grow concurrently  under certain conditions [2012Kni, 
2019Lib2].

Plotting the two narrow- facet curves together yields 
the result shown in Figure 4.13, revealing the full impact 
of this SDAK modeling exercise. Using suitable choices 
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FIGURE 4.12. The solid lines in  these two graphs are reproduced 
from Figure 4.5, again illustrating the CAK terrace- nucleation 
model for the attachment kinetics on large basal and prism fac-
ets. The dotted lines show the “SDAK dips” described in the text. 
Near −5° C, the narrow basal facets on hollow columns exhibit a 
much reduced effective σ0,basal, explaining the rapid growth of 
 these features. Near −15° C, narrow prism facets exhibit a simi-
larly low effective σ0,prism, explaining the growth of thin plates at 
that temperature.

1 2 3 5 10 20 30 50
(Tm - T) (C)

Basal

Plates
Prism

Columns

Columns

Thin
plates

0.1

1

10

σ 0
 (p

er
ce

nt
)

FIGURE 4.13. Plotting the SDAK curves from Figure 4.12 to-
gether, we can compare the basal and prism nucleation barriers 
as a function of temperature. A lower nucleation barrier (that is, a 
lower σ0) means faster attachment kinetics on the corresponding 
facet surface. Thus the CAK model exhibits the same transitions 
between platelike and columnar growth that are seen in the Na-
kaya diagram (see Chapter 1). Beyond this qualitative agreement 
with morphologies, the CAK model also provides good quantita-
tive agreement with many precision ice growth mea sure ments 
[2019Lib1, 2020Lib].
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mechanisms could produce a similar growth be hav ior, 
but this model provides a ready explanation for Aprism 
being especially large on the smallest prism facets.

Note that the SDAK-2 effect only becomes impor-
tant on small prism facets at high growth rates, and it has 
 little effect on the overall morphology diagram shown in 
Figure 4.13. As a result, SDAK-2 is overall less impor tant 
than SDAK-1, as the former is mostly needed to repro-
duce the observed growth of sharply tipped dendritic 
structures at temperatures above −10° C. This is an eas-
ily studied region, however, as such crystals grow reliably 
in air at high supersaturations.

The Edge- Sharpening Instability

A particularly fascinating consequence of the SDAK 
hypothesis is a phenomenon I call the edge- sharpening in-
stability (ESI), which is illustrated in Figure 4.15. As the 
name implies, the ESI tends to sharpen basal and prism 

similarly complex, are required to explain a substantial 
body of additional data. Creating a comprehensive 
model of the attachment kinetics that can explain the 
Nakaya diagram, along with a variety of additional ice 
growth mea sure ments, is a challenging task that re-
quires a complex solution. As I discuss  later in this 
chapter,  there are essentially no other  viable alternatives 
to the CAK model at pre sent, at least not if one requires 
a reasonable consistency with recent experimental data. 
Although “something  else” is always a  viable alternative 
hypothesis, the CAK model, including the SDAK ef-
fect, provides at least a plausible working model of the 
attachment kinetics over a broad range of conditions. 
Moreover, the CAK model makes abundant quantifi-
able predictions regarding growth rates and morpho-
logical be hav iors that can be tested with straightforward 
experimental investigations, as I describe below.

SDAK-2: Enhanced QLL Kinetics

The SDAK mechanism illustrated in Figure 4.10 sug-
gests an additional consequence of enhanced surface 
diffusion that might change the attachment kinetics at 
high temperatures. When the QLL is well developed, the 
transport of  water molecules from the facet corners to 
narrow prism facets could become  great enough to in-
crease the nominal thickness of the QLL on the prism 
surfaces. If so, then the increased QLL thickness should 
tend to alleviate the frustrated QLL kinetics de-
scribed in the large- facet model above. This additional 
mechanism— call it SDAK-2— will thus increase Aprism 
on small prism facets, as illustrated in Figure 4.14.  Here 
again, the SDAK-2 curve is drawn as a dotted line, sig-
nifying that its exact location is not well defined, and it 
 will change with w and σsurf . The model mainly makes 
the qualitative prediction that Aprism → 1 on especially 
small, fast- growing prism facets on the ends of sharply 
tipped dendritic structures. The SDAK-2 phenomenon 
thus reconciles Aprism < 1 seen in large- facet growth with 
additional experimental evidence pointing to Aprism → 1 
on narrow facets [2019Lib1]. Perhaps other physical 
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FIGURE 4.14. The SDAK-2 mechanism increases the value of 
Aprism on small prism facets at temperatures above −10° C, as ap-
proximated  here by the dotted curve. This curve is expected to 
depend on supersaturation, such that Aprism → 1 at especially high 
σsurf . The solid curves are reproduced from Figure 4.5. This 
change in Aprism mainly affects the growth of sharp- tipped den-
dritic structures, which are often observed in high- supersaturation 
experiments.
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If the SDAK hypothesis is correct, then diffusion- 
limited growth naturally brings about the positive- 
feedback effect illustrated in Figure 4.15. For example, 
when the applied supersaturation σ∞ is low and the 
facet growth rates are corresponding low, then stable 
facets form, as shown in the  middle sketch in the fig-
ure. On both the basal and prism facets, new terraces 
mostly nucleate near the exposed corner, where the su-
persaturation is highest owing to diffusion effects. 
This yields trains of basal and prism terrace steps 
propagating from the corners to the facet centers. The 
facet surfaces both become slightly concave in the pro-
cess, and this overall growth morphology describes 
stable, faceted crystal growth (see Chapter 3).

As σ∞ is increased, the crystal grows faster as ter-
races nucleate more readily at the corners, and the facets 
become more concave. The faster growth means that the 
terrace steps become more closely spaced, and the width 
of the uppermost basal and prism terraces becomes 
smaller.  Because σ0,prism decreases as the top prism terrace 
width decreases (our hypothesized SDAK be hav ior), the 

edges via a positive feedback effect that takes place during 
diffusion- limited growth. I believe that this growth in-
stability is largely responsible for the remarkably robust 
appearance of thin plates near −15° C and the similarly 
robust formation of hollow columns near −5° C. If this 
addition to the CAK model is correct, then the ESI is one 
of the most impor tant physical pro cesses shaping the 
growth of atmospheric snow crystals.

Looking at thin- plate growth near −15° C in Fig-
ure 4.15 (shown as a plate- on- pedestal morphology), the 
essential starting point for the ESI is the hypothesis that 
αprism on an edgelike prism facet depends strongly on the 
width of the top prism terrace (the SDAK hypothesis). 
For a broad facet, αprism is well described by the 
nucleation- limited model with the par ameters given in 
Figure 4.5. On a narrow prism edge, αprism → 1 as w → 0, 
where w is the edge width. The SDAK mechanism 
described above would bring about this be hav ior, but 
the precise physical mechanism is not impor tant as 
long as it operates over a narrow range of temperatures 
near −15° C.

c axis

Growing slowly

Hollow column

Plate on pedestal
–15 C

–5 C

FIGURE 4.15. The edge- sharpening instability (ESI). This sketch illustrates how the SDAK phenomenon 
can bring about an edge- sharpening growth instability on  either the basal or prism facets. As described 
in detail in the text, as the uppermost terrace becomes narrower, the attachment coefficient on that ter-
race can increase via the SDAK mechanism, thus increasing the growth and further narrowing the upper 
terrace. This brings about a positive feedback effect, and thus a growth instability, that promotes the 
formation of sharp edges,  either as hollow columns (upper right sketch) or thin plates (lower right sketch). 
In the comprehensive attachment kinetics (CAK) model presented in this chapter, the ESI mechanism in 
air is largely responsible for the formation of thin plates at −15° C and hollow columns at −5° C.
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curred, the SDAK mechanism keeps αprism high on the 
plate edges, reinforcing the development of thin plates 
on the capped columnar crystal.

In the right image in the figure, the ESI also provides a 
ready explanation for the formation of thin- walled hol-
low columns near −5° C.  These crystals appear over a nar-
row range of supersaturations, as σ∞ must be high enough 
to initiate the ESI mechanism but not so high that the 
sheathlike edges split to yield a complex needle cluster. 
Note also that natu ral snow crystals can be a bit tricky to 
interpret, as the final morphology of a given crystal de-
pends on its entire growth history. In the case of hollow 
columns, sheathlike crystal edges may develop a thicker 
character if the supersaturation  later decreases, thus com-
plicating the final interpretation. Therefore, laboratory 
observations are generally better suited to examining the 
dynamics of the ESI  under controlled conditions.

As a growth instability, the ESI naturally yields quite 
thin basal and prism edges in air, as are often observed. 
Once the instability kicks in, it often does not stop  until 
the edge thickness reduces to a width of 1–2 microns. As 
a result, this edge thickness appears over a broad range of 
growth conditions, including thin- plate crystals, thin- 
walled hollow columns, and fast- growing dendritic struc-
tures. Solvability theory (see Chapter  3) provides some 
insights as to why this par tic u lar size scale is so prevalent, 
but computational modeling in tandem with experimen-
tal observations  under controlled conditions  will be 
needed to investigate this phenomenon in detail.

The nature of the ESI mechanism also suggests that 
in ter est ing effects should be found when growing com-
plex snow crystal structures as a function of back-
ground gas pressure.  Because the ESI  couples the at-
tachment kinetics to diffusion- limited growth, this 
opens a new dimension in the exploration of struc-
tures that are both faceted and branched. Takehiko 
Gonda found that both structural complexity and over-
all aspect ratios  were pressure dependent [1976Gon], 
but it appears that the supersaturation may have also 
varied with applied pressure in that work, making it 
difficult to obtain a quantitative interpretation of the 
observations. Si mul ta neously controlling the tempera-

nucleation rate increases as well, so more prism terraces 
appear, and thus the width of the top prism terrace de-
creases further still. The result is a growth instability 
brought about by a positive feedback effect— the prism 
edge sharpens, σ0 decreases, the edge sharpens more, σ0 
decreases more, and so forth. Above some threshold 
value of σ∞, the pro cess runs away, and a thin plate forms 
atop the initial blocky crystal. This is the ESI, which I 
exploit to create the PoP laboratory snow crystals de-
scribed in Chapter 9.

Note that the ESI is not equivalent to the normal 
Mullins- Sekerka instability (MSI) that is a part of 
diffusion- limited growth (see Chapter 3). Instead, the 
ESI can be thought of as an extension of the MSI that 
comes about when the SDAK phenomenon is incorpo-
rated into the overall growth pro cess. The MSI by itself 
(without SDAK)  will certainly cause branching that re-
sults in the formation of complex dendritic structures. 
But diffusion- limited growth and the MSI alone  will not 
produce morphologies with extreme aspect ratios, like 
thin plates. The formation of thin plates requires highly 
anisotropic attachment kinetics, specifically, αprism/
αbasal  1, which results from the SDAK phenomenon. 
The under lying physics is both complicated and some-
what subtle,  because several physical pro cesses are hap-
pening si mul ta neously, but I believe that the ESI is the 
best explanation for the robust formation of thin plates 
and hollow columns in atmospheric snow crystals.

Being a growth instability, the ESI helps explain the 
somewhat extreme morphological features one often ob-
serves in natu ral snow crystals, as illustrated in Fig-
ure 4.16. As the left image illustrates, it is not uncommon 
to find capped columns with surprisingly thin endplates, 
suggesting an abrupt transition from columnar to plate-
like growth.  These crystals likely experience gradually 
changing environmental conditions in the clouds, so one 
might expect more gradual morphological transitions. 
But the presence of a bone fide growth instability can 
handily explain  these abrupt transitions, as the ESI nat-
urally brings about rapid changes in αprism/αbasal, which 
the MSI cannot accomplish by itself. Moreover, once the 
transition from columnar to platelike growth has oc-
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4.4, as this functional form provides good agreement 
with experimental mea sure ments. Including SDAK ef-
fects necessitates pa ram e terizing the attachment coeffi-
cient as α(σsurf, T, w) or α(σsurf, T, κ), where w is the 
width of the top terrace, and κ is the surface curvature. 
Note that w and κ are related, so the choice of in de pen-
dent variable is largely a  matter of computational con ve-
nience. However, unlike the case for terrace nucleation, 
theory does not provide any clear functional form for the 
SDAK effect.

 Because the ESI tends to yield structures with tip 
radii in the 1–2 µm range in air, the precise functional 
form for the SDAK effect may not be essential for pro-
ducing realistic computational models. As long as the 
chosen α(σsurf, T, w) results in a suitable growth insta-
bility, the details may not  matter as much as the at-
tachment coefficients on the narrow 1–2 µm tips and 
edges. For example, in [2015Lib2] we used the func-
tional form σ0 = σ0,∞[1 − exp(−w/w0)], where σ0,∞ is the 
broad- facet value and w0 is an adjustable model pa ram e-
ter. This allowed us to reproduce the ESI transition to 
platelike growth at −15° C reasonably well, as the be hav-
ior that mattered most is having σ0 → 0 as w → 0.

ture, supersaturation, and background gas pressure is 
challenging in the laboratory, but exploring the ESI 
over a broad range of conditions could yield many in ter-
est ing insights regarding our general understanding 
and modeling of snow crystal growth.

Pa ram e terized Kinetics

While the large- facet attachment kinetics can be exam-
ined by mea sur ing the growth of  simple ice prisms (see 
Chapter 7), observations of complex snow crystal struc-
tures  will be needed to investigate the SDAK and ESI 
phenomena.  These can be readily grown in air on the tips 
of electric ice  needles (see Chapter 8), but analyzing  these 
complex structures  will be challenging.  Simple platelike 
or hollow- column structures can be approximated by cy-
lindrically symmetrical forms, but complex dendritic 
crystals  will require fully 3D computational modeling 
(see Chapter 5). In  either case, pa ram e terized expressions 
describing the attachment kinetics  will be needed as 
model inputs.

As described  earlier in the chapter, the large- facet at-
tachment kinetics can be pa ram e terized by Equation 

FIGURE 4.16. The ESI can explain many distinctive morphological features in natu ral snow crys-
tals. For example, the often abrupt transition from columnar to platelike growth seen in many 
capped columns (left) suggests the ESI operating on the prism surfaces near −15° C. Similarly, the 
remarkably thin, sheathlike edges on many hollow columns (right) can arise when the ESI operates 
on basal surfaces near −5° C. It is difficult to explain  these commonly observed snow crystal fea-
tures without invoking the ESI mechanism.
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facets as a function of temperature [1958Hal, 1963Mas]. 
 These observations suggested a temperature depen-
dence in the relative growth rates of the primary facets 
that roughly explained the several transitions between 
platelike and columnar growth seen in the Nakaya 
diagram. The Mason et al. model enjoyed some early 
popularity, but it has generally not withstood the test 
of time for several reasons. On the experimental side, 
the under lying mea sure ments relied on observations of 
macrostep growth velocities in air to extract xdiff values, 
and this technique is now known to be prone to sys-
tematic errors. Macrostep growth rates are strongly af-
fected by bulk diffusion and other subtle effects, and 
even  today, it is exceedingly difficult to mea sure admol-
ecule surface diffusion lengths with good absolute ac-
curacy [2014Asa, 2015Lib]. Moreover, recent mea sure-
ments have achieved a reasonable degree of consensus 
that terrace nucleation, not surface diffusion, is the pri-
mary  factor limiting facet growth in most circum-
stances [2013Lib, 2017Lib, 2019Har].

On the theory side, mea sure ments of xdiff (T) alone 
would not constitute a comprehensive model of the at-
tachment kinetics  unless the model included at least 
some sketch of the under lying molecular physics that ex-
plained the observations. In this same vein, while em-
pirical mea sure ments of αbasal and αprism as a function of 
growth conditions are an impor tant step forward, such 
mea sure ments alone do not constitute a comprehensive 
physical model.

In the 1980s, Toshio Kuroda and R. Lacmann (KL) 
created a new comprehensive model incorporating a mo-
lecular picture of how attachment kinetics might vary 
with temperature- dependent changes in surface premelt-
ing [1982Kur, 1984Kur]. The authors postulated sev-
eral speculative, but physically plausible, transitions in 
the ice surface structure as a function of temperature and 
further postulated that  these transitions occurred at dif-
fer ent temperatures on the basal and prism facets. By 
adjusting several model par ameters, rough agreement 
with the observed plate/column transitions in the Na-
kaya diagram was obtained.

At pre sent, 3D computational models are not suffi-
ciently advanced to reproduce the full menagerie of 
snow crystal structures with good fidelity, but that situ-
ation is improving rapidly (see Chapter 5). On a parallel 
track, our ability to create complex snow crystals in con-
trolled environments with reproducible initial condi-
tions is also improving rapidly (see Chapter 8). Soon it 
should be pos si ble to combine  these technologies and 
fully explore the SDAK and ESI phenomena, no doubt 
generating many new insights into how  these peculiar as-
pects of the attachment kinetics affect snow crystal 
structure formation.

EXPLAINING THE NAK AYA 
DIAGR AM

At this point, it is beneficial to take a step back and ex-
amine just how difficult it has been to understand the 
enigmatic Nakaya diagram, even at a basic qualitative 
level. Ever since its discovery (see Chapter 1), research-
ers have strug gled to create a comprehensive physical 
model that describes its overall features. The increase in 
morphological complexity with greater supersaturation 
generally arises from diffusion- limited growth (Chap-
ter  3), so this aspect is reasonably well explained. But 
the vari ous transitions between platelike and columnar 
growth with temperature are brought about by changes 
in the attachment kinetics, and this aspect of the Nakaya 
diagram presented a challenge right from the outset. The 
overall empirical be hav iors of the morphology transi-
tions  were quickly reproduced and extended by several 
researchers, so the observational side was quickly well es-
tablished. But the quest for a comprehensive physical 
model continues to this day.

Previous Attempts

Basil Mason and collaborators made an early attempt at 
developing a suitable model of the attachment kinetics 
in the 1960s by reporting mea sure ments of admolecule 
diffusion lengths xdiff (T) on both the basal and prism 
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prove, but the importance of terrace nucleation 
seems to be a solid conclusion.

2) On most nonfaceted surfaces, αrough ≈ 1. Experi-
ments generally support this blanket statement, and 
 there are no definitive mea sure ments (to my knowl-
edge) indicating αrough values significantly below 
unity.  Here again, this may change with improved 
mea sure ments, and the transition from rough to fac-
eted (i.e., the attachment kinetics on vicinal sur-
faces) has not been well explored.

3) Structure- dependent attachment kinetics (SDAK). 
The realization that the attachment kinetics on small 
facets cannot be entirely the same as on large facets 
constituted something of a breakthrough in my 
thinking on this subject. Once I began examining 
large and small facets separately, I encountered many 
“ah, that makes sense now” moments. The specific 
SDAK models presented above may be overthrown 
or discarded by  future research, but I have come to 
believe that the SDAK concept is essential for ex-
plaining snow crystal growth.

4) A rich SDAK phenomenology. If the preceding 
points are correct, then it follows that the full SDAK 
picture  will be complicated and difficult to under-
stand in detail. The edge- sharpening instability 
(ESI) is one example. Developing an accurate model 
of the attachment kinetics in this regime  will be chal-
lenging, likely requiring a substantial research effort 
that combines carefully controlled laboratory obser-
vations with fully 3D computational modeling of 
complex snow crystal structures.

5) Facet- dependent surface premelting. This seems to be 
the only reasonable way to explain the observed tran-
sitions between platelike and columnar growth as a 
function of temperature. The concept was postulated 
in the KL model, and I incorporated it into the CAK 
model as well. Surface premelting likely exhibits 
some differences on the basal and prism facets, so this 
assumption is plausible. MD simulations generally 
exhibit similar premelting be hav iors on the two fac-
ets, but the calculations may not be accurate enough 

In many re spects, the KL model was prescient in sev-
eral of its features. Kuroda and Lacmann clearly recog-
nized the separation between large- scale diffusion effects 
and the localized attachment kinetics, with the latter de-
pending mainly on the near- surface supersaturation 
σsurf. The authors further realized the importance of de-
termining σsurf in ice growth experiments via careful 
diffusion modeling. The KL model was also the first to 
incorporate surface premelting as a major physical com-
ponent and to postulate a facet- dependent premelting 
be hav ior as an integral part of the model. My selective 
positioning of the SDAK dips, postulated from facet- 
dependent premelting, was an idea  adopted from the 
KL model.

Beyond  these clear successes, the KL model does not 
provide an adequate comprehensive description of the at-
tachment kinetics. With its focus on surface roughen-
ing phenomena at the ice/QLL/vapor interface, the KL 
model is generally inconsistent with subsequent observa-
tions identifying terrace nucleation as the primary 
mechanism limiting the growth of large facets. More-
over, it now appears that a more complex set of physical 
mechanisms, including substantial differences between 
large and small facets, is necessary to explain all the dif-
fer ent snow crystal growth be hav iors that have been re-
vealed by newer experiments.

The CAK model presented in this chapter builds 
on   these past efforts, responding to much additional 
input from recent precision ice growth experiments. 
The model thus does a better job reproducing a broader 
spectrum of mea sure ments, but at a cost of considerably 
increased physical complexity. Although the CAK model 
may not be correct in  every detail, I believe that the fol-
lowing features  will likely withstand the test of time:

1) Terrace nucleation on large facets. The experimental 
evidence has become quite strong that ice growth 
data are well represented by a terrace nucleation 
model over a broad range of growth conditions. The 
specific curves in Figures 4.5 and 4.6 may require 
some tweaking as experimental mea sure ments im-
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Beyond the Nakaya Diagram

One fact that becomes glaringly obvious when thinking 
about a comprehensive model of the attachment kinet-
ics is that the traditional Nakaya diagram cannot capture 
the full richness of snow crystal formation. Describing 
typically observed growth morphologies in air on a tem-
perature/supersaturation plane simply cannot do justice 
to such a complex physical phenomenon. Background 
pressure is another in ter est ing environmental  factor, and 
initial conditions play a role via the SDAK effect. Over-
all crystal size is impor tant as well, as dendritic structures 
are generally less prevalent on smaller crystals. Therefore, 
it is impor tant to move beyond morphologies and de-
velop new ways to visualize the physics and phenome-
nology describing snow crystal growth.

I have found that plotting αbasal and αprism as a func-
tion of σsurf at constant temperature provides one useful 
complement to the Nakaya diagram, and some illustra-
tive examples are shown in Figure 4.17.  These curves  were 
derived from the CAK model and include several sepa-
rate “branches” that describe diff er ent growth regimes. 
Solid lines show the large- facet kinetics, while dotted 
lines indicate the two SDAK effects. Drawn this way, 
one begins to see some of the morphological complexity 
inherent in the CAK model.

At −5° C, for example, the appearance of four separate 
branches leads to several distinct morphological be hav-
iors. Both platelike and columnar forms can develop at 
σsurf  = 0.15   percent, the former being  simple plates with 
large facets, the latter being hollow columns or  needles 
with narrow basal facets. And both forms are readily ob-
served, offering persuasive support for the CAK model 
[2012Kni, 2019Lib2]. The ESI tends to stimulate hollow- 
column growth at relatively high σ∞ in normal air, while 
platelike forms are more prevalent at lower σ∞ and lower 
air pressures. At the highest σsurf , the two SDAK curves 
at −5° C yield “fishbone” dendritic structures (Chap-
ter  3) with a tip growth axis that varies with growth 
rate (see Chapter 8). The full range of  observed growth 
be hav iors at −5° C is reasonably consistent with the CAK 
model but is difficult to explain other wise.

to see small facet- dependent effects. Moreover, no 
one has suggested a  viable alternative that would 
yield a physically sensible, yet sufficiently complex, 
model of the attachment kinetics.

6) Data- driven features. Beyond terrace nucleation, 
 there is  little solid theoretical guidance for model-
ing the attachment kinetics, and cartoon sketches 
can only take one so far. Pro gress must be driven 
largely by empirical reasoning, especially using pre-
cision mea sure ments of ice growth rates  under 
well- controlled conditions. I have begun a critical 
examination of the CAK model using a variety of 
ice growth mea sure ments [2019Lib1, 2020Lib], 
and the results so far are quite promising. But 
much additional work needs to be done along  these 
lines.

My objective with the CAK model presented in this 
chapter is not to declare a full solution to the attach-
ment kinetics prob lem but rather to move the ball 
forward while stimulating additional pro gress in this 
area. A quantitative working model, even an imperfect 
one, is far better than no model at all, as it can serve to 
suggest specific, targeted experimental and theoretical 
investigations.

As described in Chapter 1, a primary motivator for 
this book is a desire to grow computational snow crys-
tals that accurately reproduce what one finds in nature. 
Developing a physical model of the attachment kinetics 
is an impor tant prerequisite for this task, as computa-
tional models require physical inputs.  Because tracking 
 every molecule is clearly impossible, even the best model 
can only provide approximate pa ram e terizations of the 
functions αbasal and αprism as a function of σsurf , T, w, and 
perhaps other variables. While no such pa ram e terizations 
can attain absolute accuracy, one can hope to capture the 
essential physics and create plausibly realistic computa-
tional snow crystals. At the very least, a good model of 
the attachment kinetics should agree with ice growth ex-
periments and provide a reasonable explanation of the 
Nakaya diagram. The CAK model presented in this 
chapter strives to attain  these objectives.
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are a must for making detailed comparisons with models 
of the attachment kinetics. Graphical repre sen ta tions of 
growth phenomenology may soon become even more 
sophisticated, once we begin making fully 3D structural 
comparisons between computational models and ad-
vanced laboratory observations of complex snow crystal 
structures.

THE MORPHOLOGICAL  
NEXUS AT −5°C

 Because snow crystal growth at −5° C involves a conflu-
ence of all the varied growth be hav iors identified in the 
CAK model, this temperature provides an especially 

At −15° C, Figure  4.17 indicates that  simple prisms 
with large facets should be nearly isometric in form, and 
such crystals are readily observed in a vacuum. But the 
ESI quickly yields rapidly growing prism edges in air, re-
sulting in the formation of thin plates. Dendritic forms 
remain nearly platelike even at high growth rates, owing 
to the strong SDAK effect on prism facets together with 
the large nucleation barrier on basal facets. Morphologies 
at −2° C are generally platelike at all supersaturations.

While morphology studies are a good starting point, 
 there is much more to be learned by exploring snow crys-
tal growth as a function of background gas pressure and 
generally covering a broader range of environments and 
initial conditions. And, of course, quantitative experiments 
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Plots like  these are especially useful for comparing with all dif fer ent types of ice growth 
experiments.
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As shown in  these examples at −5° C, precision mea-
sure ments of  simple prisms provide the foundation for 
the CAK model, in which large- facet growth is  limited 
by terrace nucleation over a broad range of environmen-
tal conditions. The functional form of the model curves 
comes from terrace nucleation theory, but the model par-
ameters A(T) and σ0(T) are obtained entirely from em-
pirical data.

Bimodal Be hav ior

The VPG experiment at −5° C allows another look at 
how the SDAK phenomenon can yield remarkably dif-
fer ent growth morphologies at a single temperature. In 
a near- vacuum environment at low supersaturations, 
platelike growth is the norm, and Figure  4.19 illus-
trates that even quite extreme aspect ratios can be ob-
served. According to the CAK model, even thinner 
plates should appear at lower supersaturations, but re-
sidual substrate interactions may be preventing  these 
from forming in the VPG apparatus [2019Lib1]. Thin 
plates at low supersaturations require an exceedingly 
low basal nucleation rate (with growth rates below 
1  nm/sec), and substrate- induced basal nucleation 
could set a practical limit on making thin plates on any 
substrate. A levitation experiment at −5° C might yield 
thinner plates than  those shown in the figure, but small 
amounts of chemically induced basal nucleation may 
also be problematic at the lowest growth rates. In any 
real experimental environment,  there may be some 
small rate of heterogeneous terrace nucleation that is 
difficult to eliminate.

Growing crystals in air at higher supersaturations 
yields the hollow columnar crystals shown in Fig-
ure 4.19, their overall shape being somewhat distorted 
 because they are resting on the substrate. The sharp 
basal edges observed on  these crystals suggests that the 
ESI played a major role in determining their growth 
morphology. As discussed  earlier in this chapter, the 
development of the CAK model was driven largely by 
the empirical necessity to explain the diversity of ob-
servations like  these.

thorough test of many of the most impor tant aspects of 
the attachment kinetics, including large- facet growth 
and both SDAK effects. In this section, I examine data 
from a variety of ice growth experiments, including large 
and small facets, all focusing on the morphological nexus 
that appears at −5° C.

Large- Facet Growth

Beginning with large facets, both the vacuum ice growth 
(VIG) and variable pressure growth (VPG) experiments 
(see Chapter 7) provide mea sure ments of αbasal and αprism 
as a function of σsurf , and  these results are shown together 
in Figure 4.18. Several immediate conclusions can be 
reached from  these data:

1) The VIG and VPG experiments show excellent 
agreement at −5° C, even though they use signifi-
cantly diff er ent mea sure ment strategies and com-
pletely diff er ent hardware. Moreover, the basal and 
prism facets  were mea sured separately in the VIG ex-
periment, using diff er ent crystals in diff er ent runs, 
while both facets  were mea sured si mul ta neously on 
smaller ice prisms in the VPG experiment. Obtain-
ing clear agreement from such diff er ent experiments 
is itself a noteworthy achievement, given the consid-
erable mea sure ment uncertainties and discrepancies 
found in  earlier ice growth experiments.

2)  There is no obvious air- pressure dependence in  either 
αbasal or αprism as a function of σsurf in  these data, at 
least over the  limited range that was mea sured (see 
Chapter  7). This supports the assumption in the 
CAK model that air at a pressure of 1 bar has  little 
effect on the attachment kinetics.

3) The data all strongly support the terrace nucleation 
mechanism for the large- facet attachment kinetics in 
the CAK model. Note also that the data support 
Abasal ≈ 1 and Aprism < 1 at this temperature, as de-
scribed above. Constraining the model to have 
Aprism = 1 is not excluded completely by the mea sure-
ments, but both data sets show quite similar trends 
that prefer Aprism < 1.
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64  percent, and 128  percent). Although we cannot yet 
model the growth of  these elaborate morphologies in de-
tail, it is still pos si ble to glean some useful information 
from growth ratios. For the hollow columnar and nee-
dle crystals, for example, it is straightforward to mea sure 
vbasal and vprism at the end of each column from a time se-
ries of images.  Because the sides of the columns contain 
large- faceted prism surfaces, the CAK model suggests 
that their growth should be determined by terrace 

Fishbones, Tridents,  Needles, and 
Columns

The −5° C story becomes especially intriguing when one 
also considers the small prism and basal facets appearing 
on complex crystal structures growing in air. Figure 4.20 
illustrates several examples, including hollow columns 
(4   percent and 8   percent supersaturation),  needles 
(16   percent), and fishbone dendrites (32   percent, 
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FIGURE 4.18. Data points in  these two graphs show mea sure ments of αbasal (σsurf) and αprism(σsurf) 
at −5° C in a low- pressure environment. Lines in both graphs are from the CAK model for −5° C (less rele-
vant curves have been faded in the dif fer ent panels).  These observations reveal that platelike be hav iors 
are the norm for  simple ice prisms at −5° C, with thinner plates forming at lower supersaturations.  These 
plots combine mea sure ments from the VIG and VPG experiments described in Chapter 7.

FIGURE 4.19. (Left) A se lection of thin platelike crystals growing at −5° C at low pressure in the VPG 
apparatus with σsurf ≈ 0.1  percent.  These examples illustrate that quite thin plates can be grown at −5° C. 
(Right) Hollow columnar crystals grown in air at −5° C using the VPG apparatus. Although the overall 
morphologies are distorted by their intersection with the substrate, it appears that the ESI is largely 
responsible for the formation of thin basal edges on  these crystals.
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the equality might be somewhat off if large supersatura-
tion gradients are pre sent. With this approximation for 
σsurf , it then becomes pos si ble to determine αbasal (σsurf) 
from the mea sured vbasal , thus yielding the first three data 
points in Figure 4.21. Note that vbasal /vprism  1 for co-
lumnar and needle growth, fixing αbasal /αprism in this 
figure, and our main model– dependent statement was 
estimating σsurf by putting the αprism points on the large- 
facet terrace nucleation model curve. Note also that we 
could not have applied the witness- surface analy sis in the 
opposite direction, as the basal facet is small on a hollow 
column, so its growth is not well known from the CAK 
model.

Perhaps the most in ter est ing part of this analy sis is 
that it quantifies the bimodal be hav ior at −5° C, show-
ing that both platelike and columnar crystals can form 

nucleation, so the known αprism(σsurf) in that case means 
we can ascertain σsurf from the mea sured vprism. Of course, 
this is a model- dependent statement, and it would be bet-
ter if a full diffusion model determined σsurf directly, as 
we did with the VIG and VPG experiments. But the dif-
fusion corrections are too large for this to be practical at 
pre sent, so the indirect, model- dependent determination 
 will have to suffice. I refer to this as a “witness- surface” 
analy sis, as the (presumably) known large- facet prism 
growth be hav ior provides a witness that allows a deter-
mination of σsurf .

The next step in the witness- surface analy sis is to as-
sume that σsurf on the prism facet near the top corner of 
the columnar crystal is approximately equal to σsurf on 
the basal surface at the same corner. This is reasonable 
when the two surfaces are small and proximate, although 
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–5C

FIGURE 4.20. Several examples of crystals growing at −5° C in air on the ends of “electric” ice  needles 
(see Chapter 8). Each image is labeled with the supersaturation σ∞ far from the needle tip. At 4  percent, 
the initial needle thickens to form a solid column with slight basal hollowing, while hollow- column 
growth develops quickly at 8  percent. At 16  percent, a hollow column has split to form needle clusters. 
At 32  percent, trident structures are common (see Chapter 3). At 64  percent and 128  percent, fishbone 
dendrites (Chapter 3) exhibit rapid growth.
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using B ≈ 10 and Rtip ≈ 1.5 μm gives σsurf/σ∞ ≈ 1/50, 
which is not too far from what comes out of the witness- 
surface analy sis. Thus, the numbers are reasonably con-
sistent in an absolute sense, even if it is not yet pos si ble 
to solve the diffusion equation with sufficient accuracy 
to make an accurate mea sure ment. Although the 
witness- surface analy sis is model dependent and only 
uses growth ratios, the results describe a self- consistent 
pattern of growth be hav iors that support the CAK 
model overall. Figure 4.22 shows all the diff er ent CAK 
model growth be hav iors pre sent at −5° C.

Figure 4.23(a) shows another data set, this time for 
columnar crystals growing in ordinary air in a free- fall 
growth chamber (see Chapter 6). Although the experi-
ment produced estimates of σ∞, the diffusion corrections 
are so high that it is not pos si ble to determine σsurf with 
good accuracy. For this reason, the graph shows the re-
sult of another witness- surface analy sis, once more as-
suming that the prism growth of the columnar crystals 
is given by the terrace nucleation curve in the CAK 

 under quite similar conditions. Platelike crystals grow 
readily in near- vacuum and in air, while columnar crys-
tals only appear when the basal facets are small, which 
only happens in air  because of the ESI. With the CAK 
model including the ESI, it all makes a reasonable 
amount of sense. But without the ESI, explaining the full 
range of columnar and platelike growth be hav iors would 
be quite challenging.

The analy sis is a bit trickier for the three fishbone 
dendrites shown in Figure 4.20, but again we can extract 
some useful information from growth ratios. Each of 
 these crystals exhibits a mea sur able tip velocity and 
growth direction, where the latter is mea sured relative to 
the c- axis defined by the initial electric- needle crystal. 
Thus, from a time series of images, it is straightforward 
to mea sure vbasal and vprism at the fishbone tips. However, 
the witness- surface analy sis runs into prob lems,  because 
now both the basal and prism surfaces are tiny on  these 
sharply pointed crystals, so neither would be well de-
scribed by large- facet growth. Nevertheless, starting 
with the 128  percent fishbone, the fast growth points to 
αbasal being near unity, which is consistent with the 
SDAK-1 basal curve in Figure 4.21. Assuming αbasal ≈ 1, 
the witness surface analy sis then yields αprism ≈ 1 as well, 
simply reflecting the large opening  angle of this set of 
fishbone dendrites (or, equivalently, vbasal ≈ vprism). This 
allows us to bootstrap our way along, as the αbasal points 
can be interpolated onto a reasonable SDAK-1 curve, in 
turn giving a set of αprism points from an approximate 
witness- surface analy sis. Note that the fishbone  angle 
changes with σsurf , which means that the SDAK-2 points 
diverge from the SDAK-1 points at lower supersatura-
tions. With the trident morphology at 32   percent, for 
example, we see growth that is midway between colum-
nar and fishbone be hav iors.

Also note that the σsurf values in Figure 4.21, as de-
termined from the witness- surface analy sis, drop by 
about a  factor of two between data points, as one would 
expect from the corresponding drop in σ∞ between the 
diff er ent crystals. The Ivantsov solutions for parabolic 
growth (Chapter  3) predicts σsurf/σ∞ ≈ 2X0/BRtip, and 
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FIGURE 4.21. Analy sis of the snow crystals growing at −5° C in 
air on the ends of electric ice  needles shown in Figure 4.20. 
 These data all show fast basal kinetics compared to large basal 
facets, resulting from the basal SDAK-1 mechanism. Prism growth 
also increases at high supersaturations from the SDAK-2 phe-
nomenon. The lines are again from the CAK model at −5° C.
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 these observations are at least consistent with the CAK 
model, and the simultaneous observation of platelike 
and needle forms certainly confirms the bimodal growth 
be hav ior at −5° C.

Summarizing all  these results at −5° C, we find:

1) When large prism or basal facets are pre sent, their 
growth fits the large- facet be hav ior provided by the 
CAK model, as illustrated in Figure 4.18.

2) On hollow columns, the narrow basal facets grow rap-
idly in a manner that is consistent with the SDAK-1 
mechanism, while the large prism facets are still de-
scribed by large- facet growth (Figures 4.21 and 4.23).

3) On the tips of fishbone dendrites, the basal and prism 
growth be hav iors are consistent with the SDAK-1 
and SDAK-2 phenomena (Figure 4.21).

model. And again, we see that the basal growth lies near 
the SDAK-1 curve, reflecting the fact that the hollow co-
lumnar crystals exhibit sharp basal edges. The free- fall 
mea sure ments again support the CAK model to a rea-
sonable degree, considering the vari ous data and analy-
sis uncertainties.

Figure 4.23(b) shows a crude analy sis of some obser-
vations at −5° C reported by Knight [2012Kni], in 
which he describes the simultaneous growth of platelike 
and needle crystals in air. The nature of the observations 
makes it impossible to estimate σsurf with any real accu-
racy, so the data points shown in the figure should be 
taken as rough estimates only. Nevertheless, with some 
commonsense reckoning, it is pos si ble to place  these ob-
servations in the CAK model, even if this cannot be 
done with  great accuracy. The exercise mainly shows that 
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FIGURE 4.22. This photo collage illustrates several snow crystal growth be hav iors at −5° C. (a) With 
 simple prisms grown in vacuum, thick plates are the norm. (b) Starting with a c- axis needle in air (see 
Chapter 8), the basal ESI from the SDAK-1 phenomenon brings about sharp basal edges and a hollow 
column. (c) At a higher supersaturation, the hollow column splits into a needle cluster. (d) At still higher 
growth rates, the SDAK-2 mechanism increases the prism kinetics, yielding dendritic structures where 
the opening  angle increases with supersaturation. All four CAK branches in Figure 4.21 are needed to 
reproduce  these dif fer ent growth be hav iors.
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done, a compelling picture of snow crystal growth phe-
nomenology is beginning to emerge from  these studies.

Figure  4.24 provides another example using data 
compiled at −2° C [2020Lib]. The CAK model is gener-
ally simpler at this temperature, as the SDAK-1 effect is 
no longer significant, so only platelike and dendritic 
morphologies appear  under all mea sured growth condi-
tions. In keeping with expectations from the Nakaya di-
agram, no columnar forms are pre sent at −2° C. Once 
again, displaying the mea sure ments on a log- log plot 
showing α as a function of σsurf provides a useful tool for 
exploring the diff er ent growth regimes, and again the 
data generally support the CAK model. At the time of 
this writing, my colleagues and I are examining addi-
tional temperatures following this same methodology, a 
pro cess that  will likely take some years to complete.

DISLOCATION- MEDIATED 
GROWTH

Up to this point, we have ignored lattice dislocations and 
other lattice imperfections in this chapter, focusing first 
on the ideal case of the attachment kinetics on a flawless 
under lying crystal. But real crystals inevitably have some 

4) The CAK model explains the simultaneous forma-
tion of platelike and needle crystals  under certain 
conditions (Figure 4.23).

5) By treating broad and narrow facets differently, the 
CAK model reasonably explains a convoluted tangle 
of morphological observations and quantitative ice 
growth data at −5° C.

SNOW CRYSTAL CARTOGR APHY

The full spectrum of mea sure ments at −5° C illustrates 
how several quite diff er ent growth be hav iors can all be 
explained with the same comprehensive model of the at-
tachment kinetics.  These results at −5° C are especially 
intriguing, as so many physical effects come into play at 
this temperature, thus providing an excellent overall test 
the CAK model. I have begun to call this analy sis “snow 
crystal cartography,” as one is able to map out the diff er-
ent growth regimes in remarkable detail using a variety of 
diff er ent experimental and data- analysis strategies. Re-
markably, even with just a  simple witness- surface analy sis 
for the fast growth data, requiring no complex 3D diffu-
sion modeling, we can explore the diff er ent SDAK 
branches in the CAK model. Although much remains to be 
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FIGURE 4.23. Additional snow crystal growth data obtained at a fixed temperature of −5° C [2019Lib1]. 
(a) Data from a free- fall growth chamber, again analyzed using the witness- surface method. (b) A rough 
analy sis of observations [2012Kni] that demonstrated the simultaneous growth of platelike and needle 
structures at −5° C. The data can also be explained using the CAK model, albeit with substantial experi-
mental uncertainties. Together with Figures 4.18 and 4.21,  these data exhibit a remarkably diverse 
range of growth be hav iors, and all can be reasonably well explained with the CAK model.
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cation  will not “heal” as the crystal grows. By providing 
a continuous source of molecular steps, a screw disloca-
tion can thus yield substantial growth rates even when 
σsurf is far below that required for normal terrace nucle-
ation. The theory  behind this mechanism is described in 
most crystal growth textbooks [1996Sai, 1999Pim, 
2002Mut], yielding α ~ σsurf  and a perpendicular growth 
velocity vn ~σ surf

2 .
F. C. Frank suggested that the  simple observation of 

symmetrical hexagonal prisms likely indicates the absence 
of dislocation- mediated growth on the six prism facets 

flaws, so let us now examine to what extent  these flaws 
can affect the attachment kinetics. If lattice dislocations 
are pre sent on a faceted surface, then the terrace nucle-
ation mechanism described above may be augmented by 
a faster mechanism involving screw dislocations. The left 
sketch in Figure 4.25 shows the lattice structure of a 
screw dislocation, which begins as a defect in the ideal 
lattice configuration. As admolecules attach to the ex-
posed terrace edge, it develops into the characteristic 
spiral pattern shown in the right sketch in the figure. 
This spiral pattern can persist in defi nitely, as the dislo-

0.1

(a)
VIG
40 mbar

(b)
VPG
60 mbar

(c)
Dendrites on
ice needles
(in air)

(d)
Free-fall
plates
(in air)

0.01
0.001

0.01

0.1

1
0.001

0.01

0.1

1

1 0.01 0.1 1
σsurface (percent)

α
α

σsurface (percent)

FIGURE 4.24. A collection of snow crystal growth data obtained at a fixed temperature of −2° C [2020Lib]. 
(a) Data from the VIG experiment at low background pressure, showing good agreement with the CAK 
model. (b) Similar data from the VPG experiment, confirming the  earlier VIG results and the CAK model. 
(c) Observations of ice crystals growing on the ends of electric ice  needles, analyzed using the witness- 
surface method on the basal facets.  These data show rapid prism growth at high supersaturations, in 
agreement with the SDAK-2 phenomenon in the CAK model. (d) Additional data from a free- fall growth 
chamber, again analyzed using the witness- surface method. Although the overall phenomenology 
at −2° C is not as rich as at −5° C, the data show quite good agreement with the CAK model on all fronts.
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somewhat beyond the scope of this book. Most of this 
chapter has examined the attachment kinetics on essen-
tially perfect single crystals, and the resulting CAK 
model is already quite complex. For this reason, I leave a 
fuller discussion of the effects of dislocations on snow 
crystal growth for another day. Instead, throughout most 
of this book, I focus on the growth of defect- free ice 
crystals.

CHEMICAL VAPOR EFFECTS

In the preceding sections of this chapter, I made the im-
plicit assumption that the ice/vapor attachment kinet-
ics are completely unaffected by any physical or chemi-
cal effects associated with the surrounding medium. In 
our discussion of the ESI, for example, particle diffusion 
influenced the nucleation of new terraces by modifying 
σsurf around the crystal, but the presence of air did not 
change the attachment kinetics directly. In other words, 
I assumed that αbasal and αprism had no intrinsic depen-
dence on the background gas pressure or composition. 
Let us now examine this assumption more closely.

Air Effects

A first question is  whether ordinary clean air affects the 
attachment kinetics in any significant way. This  matters 
not only for natu ral snow crystals but also for the many 
laboratory ice growth experiments that have been per-
formed in laboratory air, sometimes at reduced pres-

[1982Fra].  Because the facet surfaces all grow at equal 
rates,  either  there are no dislocations pre sent on any of the 
facets or  there must be at least one dislocation on each of 
them. If screw dislocations  were pre sent on some of the 
facet surfaces but not all, then the growth rates would 
vary, and the overall prism morphology would not show 
hexagonal symmetry. Although asymmetrical prisms can 
be found [1979Kik], most prisms are nearly symmetrical. 
As a high dislocation density seems improbable on small 
crystals with  simple morphologies, the logical conclusion 
is that most prism facet surfaces are  free of dislocations, 
or at least  those that greatly alter the facet growth rates.

Beyond this  simple observation,  there is also consid-
erable experimental evidence indicating that many 
laboratory- grown snow crystals, particularly  simple 
prisms and other forms exhibiting especially clean mor-
phologies, are generally  free from dislocations that affect 
their growth. The example in Figure 4.4, which is repre-
sentative of many similar crystal specimens, is quite well 
described by a nucleation- limited model, while a 
dislocation- mediated growth model gives a substantially 
poorer fit to the data. Some  simple prisms do exhibit 
anomalous growth be hav iors, but up to 90  percent of 
well- formed samples are consistent with nucleation- 
limited growth [2013Lib, 2019Lib2], at least at temper-
atures above −20° C. As with polycrystalline forms, dis-
locations appear to be more common as the temperature 
decreases [2004Bai, 2009Bai].

While many fascinating crystal growth phenomena 
are mediated by dislocations [2013Men], this subject is 

FIGURE 4.25. (Left) The lattice 
structure of a screw dislocation. 
(Right) As the dislocation edge 
grows from admolecule attach-
ment, it creates a spiral pattern that 
can propagate in def initely, yielding 
growth in the absence of additional 
terrace nucleation.
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2) When diffusion effects are especially small (low α, 
small crystals), recent experiments suggest negligible 
changes in α with gas pressure (see Chapter 7). In 
this regime, the attachment kinetics are dominated 
by terrace nucleation on large facets.

3) When αdiff  α in ice growth experiments, it becomes 
exceedingly difficult to separate diffusion- limited 
growth from kinetics- limited growth, so results can 
be influenced by quite small systematic errors.

4) The CAK model can explain the morphology dia-
gram and other ice growth mea sure ments without 
requiring that the attachment kinetics change with 
gas pressure. Although this model may not be en-
tirely correct, it suggests that gas- dependent kinet-
ics are not obviously required to explain the full range 
of observed snow crystal growth be hav iors.

 There is a  great need for additional investigation in this 
area, as large swaths of pa ram e ter space have not yet been 
adequately explored by experiments. At pre sent, how-
ever, it appears that the molecular dynamics determin-
ing the ice/vapor attachment kinetics is  little affected by 
a background gas of ordinary air.

Chemical- Dependent Attachment 
Kinetics

In contrast to inert gases, including clean air, the pres-
ence of chemically active vapor additives can dramati-
cally change ice growth rates and morphologies.  There 
is much experimental evidence supporting this general 
conclusion, and  little understanding of any of it. This is 
a fascinating area for continued investigation and a con-
stant concern that unwanted chemical impurities can 
lead to erroneous experimental conclusions.

This area of research has a long history, as Vonnegut, 
Hallett, and Mason [1948Von, 1958Hal, 1971Mas] 
found that the addition of just 10 ppm of butyl alcohol 
in air yielded columnar growth at −20° C instead of the 
usual platelike growth. Schaefer [1949Sch] further 
observed that vapors of ketones, fatty acids, silicones, 

sure. Beginning with nitrogen and oxygen, Henry’s Law 
data show that both  these gases have rather low solubili-
ties in  water, and adsorption data reveal that they do not 
stick well to ice surfaces  either. Moreover, recent molec-
ular dynamics simulations indicate that nitrogen gas at 
1 bar appears to have  little direct effect on the structure 
and dynamics of surface premelting [2019Llo].  These 
considerations, although somewhat indirect, all suggest 
that normal air prob ably has a negligible influence on the 
attachment kinetics. Carbon dioxide has a higher solu-
bility in  water, but it has a low concentration in air, and 
snow crystals grown in CO2 at 1 bar do not show any 
obvious abnormalities (see below).

Nevertheless, some experiments have indicated that 
ice growth rates are influenced by the presence of air, to 
an extent beyond that caused by normal particle 
diffusion- limited growth. For example, Beckmann et al. 
[1983Bec] found that the slower growth rates of ice crys-
tals in air  were due in part to a reduction in the attach-
ment kinetics, and similar conclusions  were reached by 
Kuroda and Gonda [1984Kur1]. Recently I suggested 
that air- dependent effects  were especially strong on prism 
facets at −5° C, which could explain the growth of co-
lumnar crystals at that temperature [2016Lib1]. Looking 
more closely at  these experiments, however, I now believe 
that all three suffered from faulty diffusion analyses. The 
diffusion corrections are quite large in air, and relatively 
small systematic errors can easily be mistaken for a 
pressure- dependent attachment kinetics. The best way 
around this prob lem is to examine especially small crys-
tals, and then only in a low- α regime, where diffusion ef-
fects are relatively minor. In that restricted regime, 
newer mea sure ments show no significant dependence 
of  the attachment kinetics on air pressure at −5° C 
[2019Lib1]. Given our current state of knowledge, sev-
eral pieces of evidence appear to be reliable:

1) Basic chemical physics reasoning suggests that nitro-
gen, oxygen, and other molecular species in air are 
generally inert with re spect to ice adsorption. MD 
simulations appear to support this conclusion as well.
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aldehydes, and alcohols could all change ice growth mor-
phologies to varying degrees. Nakaya, Hanajima, and 
Mugurama [1958Nak] observed that even trace silicone 
vapor in air caused columnar crystals to grow at −15° C 
instead of thin plates. Hallett and Mason [1958Hal] 
found that the addition of camphor vapor in air could 
yield columnar ice crystals at all temperatures in the 
range −40° C < T < 0° C.  These authors also observed 
that isobutyl alcohol in air changed ice growth near −15° C 
from plates to columns and then back to plates again as 
the concentration was increased. Anderson, Sutkoff, 
and Hallett [1969And] found that methyl 2- cyanoacrylate 
in air could change the morphology from platelike 
dendrites to  needles at −15° C. Libbrecht, Crosby, and 
Swanson [2002Lib] found that acetic acid and other va-
pors promoted the c- axis growth of “electric” needle 
crystals in air near −5° C, thus yielding a useful tool for 
studying snow crystal growth (see Chapter 8). Knepp, 
Renkens, and Shepson [2009Kne] observed vari ous 
morphological changes caused by acetic acid vapor in 
air, even in concentrations as low as 1 ppm. Libbrecht 
and Bell [2011Lib] examined snow crystal morphologies 
as a function of temperature for a range of chemical addi-
tives as a function of concentration. From all  these re-
ports, we can summarize some of the principal findings:

1) In nitrogen gas at 1 bar, most chemical additives at 
concentrations below 10 ppm produce no clearly ob-
servable changes in ice crystal growth morphologies 
[2011Lib]. As a rough rule of thumb, if the air has no 
discernable odor, it likely has  little effect on snow 
crystal formation at 1 bar.

2) Ice growth in air, nitrogen, helium, argon, hydrogen, 
carbon dioxide, and methane gases at a pressure of 1 
bar yield roughly identical crystal morphologies as a 
function of temperature [1959Heu, 2008Lib1], sug-
gesting that  these gases are essentially chemically 
inert.

3) Growth in ultraclean nitrogen gas was not signifi-
cantly diff er ent from growth in ordinary laboratory 

air [2011Lib].  These first three points suggest that 
trace impurities in ordinary air do not play a large 
role in snow crystal growth.

4) Chemical additives generally tend to promote the 
growth of columnar crystals over platelike crystals.

5) Nitric acid vapor or nitrous oxide tends to promote 
the growth of triangular crystals near −15° C 
[1949Sch].

6) The most effective chemicals for producing growth 
modification are  those having strong polar properties 
[1949Sch].

7) Chemical additives generally have an especially large, 
detrimental effect on thin plates and platelike den-
dritic growth at −15° C [2011Lib]. In general, thin 
plates at −15° C seem to grow best in inert gases at 
pressures of 1 bar or higher.

8) Chemical effects are generally more pronounced 
at  lower temperatures, and ice growth experi-
ments performed at T <	−20° C are especially prone 
to  unwanted influences from trace chemical 
contaminants.

Given our poor understanding of ice growth without the 
complicating effects of chemical additives, it should 
come as no surprise that  there is essentially no theoreti-
cal understanding, even at a qualitative level, of how 
chemical additives alter growth rates and change growth 
morphologies. It appears likely that  these impurities ad-
sorb onto the ice surface, where they modify the attach-
ment kinetics in a variety of ways, but  there is  little the-
oretical guidance relating to how. While the adsorption 
of chemical vapors on ice has been much studied from 
the standpoint of atmospheric chemistry, relatively  little 
attention has been given to chemical modification of the 
attachment kinetics. This remains a fascinating research 
direction, although somewhat hampered by a lack of the-
oretical guidance. Antifreeze proteins strongly affect 
the attachment kinetics at the ice/water interface, but 
that fascinating topic is only peripherally related to the 
ice/vapor interface.



FIGURE 5.1. An array of snow crystal models generated using the cellular- automaton method 
[2014Kel]. Dif fer ent values of the supersaturation σ∞ (vertical axis) and σ10 (horizontal axis)  were used, 
the latter being a nucleation pa ram e ter in αprism (σsurf ). The basal attachment coefficient αbasal (σsurf ) was 
the same for all models shown. Numbers give physical growth times in seconds. Image courtesy of 
James Kelly.
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Computational Snow Crystals

Nature is an endless combination and repetition of a very few laws. She hums the old 
well- known air through innumerable variations.

— RALPH WALDO EMERSON, ESSAYS,  LECTURES AND ORATIONS, 1851

of the puzzle, examining the ice crystal structure, diffu-
sion physics, and the attachment kinetics in isolation. 
Using physical insights gained from  these studies, we 
now examine numerical techniques that allow us to grow 
computational snow crystals.

In princi ple, building a computer model of a grow-
ing snow crystal is straightforward enough. Starting 
with a small digital ice crystal, first numerically solve 
the diffusion equation around it, assuming all the 
proper boundary conditions. From this solution, ex-
tract the growth rate at all points on the surface, and 
then use this information to “grow” the crystal a small 
amount to yield a slightly larger crystal. Repeat.  After 
many iterations, the crystal develops into a complex 
morphology that hopefully resembles a laboratory 
snow crystal produced  under the same physical condi-
tions. Alas, although the task is relatively straightfor-
ward in princi ple, developing appropriate numerical 
algorithms that can accomplish this objective is re-
markably difficult. Current computational models are 
just beginning to look promising, and  there have been 

Computational modeling has become an 
impor tant tool in con temporary science, and 
once again we find that the snow crystal pre-
sents a fascinating microcosm of modern 

scientific investigation. Being an intrinsically complex 
phenomenon, snow crystal formation cannot be de-
scribed by a fundamental “theory,” at least not in the 
simplest sense of the word. Instead it is necessary to first 
break the prob lem down into its constituent parts to bet-
ter understand the variety of physical pro cesses acting 
over diff er ent scales. One then reassembles  those parts 
into a computational model to replicate the full range of 
complex be hav iors.

The scientific method remains intact in this view, 
but now the computational model becomes the hypoth-
esis to be tested, as it predicts specific snow crystal struc-
tures for given environmental and physical inputs. If 
the hypothesis agrees with experimental mea sure ments 
over a broad range of conditions, then we can rightly say 
that we generally understand the phenomenon. In the 
preceding chapters, we focused on the individual pieces 
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including temperature, supersaturation, background 
gas pressure, and any other  factors we care to include. 
Generating digital structures that resemble stellar 
snowflakes is a fine start, but this alone is not a bone 
fide scientific objective. The ultimate goal in this 
chapter, and indeed this book, is to develop a compre-
hensive physical model of snow crystal formation, 
which  will require physically realistic computational 
modeling.

A PROGRESSION OF SNOW 
CRYSTAL MODELS

The overarching topic of structure formation during so-
lidification has received much attention in the scientific 
lit er a ture, and numerous reviews are available [2002Boe, 
2016Kar, 2017Jaa, 2018Che]. The vari ous algorithms 
and computational techniques can be mathematically 
quite sophisticated, and I am by no means an expert in 
this broad and technical field. Thus, to limit the scope 
of this chapter, I mostly restrict the discussion to research 
efforts that have examined the specific prob lem of snow 
crystal growth.

Packard Snowflakes

In 1986, Norman Packard described one of the first at-
tempts to model structure formation during solidifica-
tion using cellular automata (CA) methods [1986Pac]. 
Although Packard’s CA rules  were not physically de-
rived, they revealed a rich variety of morphological 
structures that developed during growth, including the 
Packard snowflake shown in Figure 5.2. Packard’s itera-
tive CA could be considered something of an extension 
of the ideas  behind the Koch snowflake [1904Koc] (see 
Chapter 3), enabled by the widespread availability of per-
sonal computers in the 1980s.  These early models  were 
intriguing for their ease in generating complex structures 
from  simple governing rules, but they contained only a 
superficial relation to the  actual physical pro cess of 
solidification.

almost no quantitative comparisons between models 
and laboratory observations.

When setting out to create a snowflake simulator, 
one soon encounters a host of thorny technical issues to 
deal with, such as numerical instabilities, highly aniso-
tropic boundary conditions, nonlocal effects, and nu-
merous other prob lems that must be addressed. More-
over, a variety of shortcuts and approximations are 
required if one is to produce a realistic code with finite 
spatial resolution and a reasonable  running time. More-
over, beyond  these computational issues, accurately re-
producing snow crystal growth requires a thorough un-
derstanding of the molecular attachment kinetics, which 
is a remarkably challenging prob lem all by itself (see 
Chapter 4). As is often the case in science, the devil is in 
the details, and producing realistic computational snow 
crystals involves a lot of details. Several diff er ent classes 
of computational strategies have been developed over the 
years for simulating a range of solidification prob lems, 
and each technique comes with its own strengths and 
weaknesses. Several of  these methods have been applied 
to the specific prob lem of snow crystal growth, but with 
 limited success to date. Developing a robust numerical 
method that reproduces crystal growth that is both 
branched and faceted remains very much a work in 
pro gress.

 Because this book is about the science of snow crys-
tal formation, the pre sent chapter  will focus on numeri-
cal modeling techniques that strive to produce physically 
realistic simulations, not just pretty pictures that vaguely 
resemble snowflakes. Our objective is to create compu-
tational models that can be compared with experimen-
tal observations in a quantitative fashion, reproducing 
both growth rates and morphologies over a broad range 
of conditions. Moreover, the model under pinnings 
should derive from sound molecular and statistical phys-
ics to the greatest pos si ble degree, rather than ad hoc 
pa ram e terizations.

Importantly, a successful computational model 
should reproduce the full menagerie of snow crystal 
structures as a function of external growth conditions, 
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phological transition using rational (albeit not entirely 
accurate) physical foundations.

Improving Physical Inputs

In 1990, Etsuro Yokoyama and Toshio Kuroda presented 
the first significant attempt to create a comprehensive 
physical model of snow crystal growth dynamics 
[1990Yok]. By combining a novel molecular model of 
temperature- dependent attachment kinetics [1982Kur] 
with a numerical method for solving the diffusion equa-
tion, the authors sought to re create the growth be hav ior 
of  actual snow crystals  under realistic environmental 
conditions.

While previous investigators had simulated general 
growth be hav iors using ad hoc pa ram e terizations, Yo-
koyama and Kuroda modeled the specific phenomenon 
of snow crystal growth from  water vapor, including a 
careful examination of all the physical pro cesses in-
volved. Notably, the authors incorporated the known 
physical properties of ice and  water vapor, allowing a di-
rect quantitative comparison between simulated snow 
crystals and laboratory experiments. As the authors 
stated in their abstract [1990Yok, p. 2038]: “We propose 
a model of pattern formation in the growth of snow crys-
tals that takes into account the  actual elemental pro-

Diffusion- Limited Aggregation

In a landmark early paper on modeling diffusive trans-
port, Thomas Witten and Leonard Sander [1981Wit] 
examined the formation of metal- particle aggregates via 
a random- walk pro cess that they called diffusion- limited 
aggregation (DLA). In their model, individual particles 
traverse a fixed grid in random small steps  until they en-
counter a solid surface and stick to it, thus simulating a 
crude form of diffusion- limited solidification. Being es-
pecially  simple to implement on small computers, the 
DLA method was quickly adapted and applied across 
many fields to a wide range of physical phenomenon.

Rong- Fu Xiao, J. Iwan Alexander, and Franz Rosen-
berger carried the DLA method a step further by incor-
porating CA rules that attempted to simulate anisotro-
pic attachment kinetics and molecular surface diffusion 
[1988Xia]. With a suitable adjustment of their model 
par ameters, the authors demonstrated a clear transition 
from faceted to dendritic growth morphologies, as seen 
in Figure 5.3. Moreover, this transition resulted from the 
competing pro cesses of particle diffusion and attach-
ment kinetics, which is essentially the current paradigm 
of snow crystal formation. When applied to a fixed tri-
angular grid, the Xiao et al. DLA model was the first to 
convincingly demonstrate this central snow crystal mor-

FIGURE 5.2 . A Packard snowflake 
(left), generated using  simple nearest- 
neighbor rules in a cellular automa-
ton, is compared to a photo graph 
of a natu ral snowflake (right). Al-
though  there are obvious struc-
tural similarities between the two 
images, the model has  little basis in 
the physical pro cesses under lying 
snow crystal growth. Image adapted 
from [2008Gra].
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real physical times in seconds, as is needed for compari-
son with experimental mea sure ments.

The Yokoyama and Kuroda paper was pioneering in 
recognizing the central importance of a detailed molec-
ular model of the attachment kinetics for understand-
ing snow crystal formation, along with an early realiza-
tion that latent heating and surface energy effects  were 
relatively minor compared to the dominant pro cesses of 
particle diffusion and surface attachment kinetics, as I 
discussed in detail in Chapter 3. This was only a 2D sim-
ulation, using a largely incorrect model of the attach-
ment kinetics (see Chapter 4), so it was not yet suitable 
for direct comparisons with experiments. Moreover, the 
Green’s- function method used to solve the diffusion 
equation was inefficient compared to modern numerical 
techniques. Nevertheless, the authors’ careful examina-
tion of the relevant physical pro cesses was a substantial 
step  toward developing a physically accurate model of 
snow crystal growth.

cesses relevant to the growth of crystals, i.e., a surface ki-
netic pro cess for incorporating molecules into a crystal 
lattice and a diffusion pro cess.”

In terms of numerical techniques, the authors began 
with the differential equations describing the diffusion 
of  water vapor molecules in air along with a reasonable 
estimate for the boundary conditions at the crystal sur-
face, including an attachment coefficient with deep 
cusps at the facet  angles. The diffusion equation was 
solved using a Green’s function method that generated 
the supersaturation field around the crystal along with 
the growth velocity at each point on the surface. The so-
lidification front was then propagated in small steps to 
grow a 2D snow crystal, as illustrated in Figure 5.4. This 
simulation exhibits the initial growth of a faceted prism 
followed by the development of six primary branches, 
both well- known phenomena in snow crystal formation. 
Note also that the model depicts  actual physical sizes at 

(a) (b)

(c) (d)

FIGURE 5.3. A progression from faceted prism growth (a) to 
dendritic growth (d) in a 2D DLA model. This work was the first to 
demonstrate a morphological transition of this nature resulting 
from the competing pro cesses of diffusion- limited growth and 
surface attachment kinetics. Image adapted from [1988Xia].

FIGURE 5.4. This numerical model by Yokoyama and Kuroda 
exhibits an initial transition from a round seed crystal to a fac-
eted plate, followed by the formation of six primary branches. 
Unlike  earlier investigations,  these authors created the first 
detailed physical model of the specific phenomenon of 
snow crystal growth from  water vapor. Image adapted from 
[1990Yok].
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growth, and this appears to be the case for snow crystal 
faceting as well.  These issues aside, the work presented 
in Barrett et al. [2012Bar] demonstrated that a modern 
front- tracking numerical model can generate 3D struc-
tures that are both faceted and branched, which is a sub-
stantial step forward.

Phase- Field Snow Crystals

In 2017, Demange, Zapolsky, Patte, and Brunel demon-
strated a novel phase- field technique for simulating snow 
crystal growth [2017Dem, 2017Dem1]. In contrast to 
front- tracking approaches, this method defines an arti-
ficial phase- field pa ram e ter that equals −1 for the  water 
vapor phase and +1 for the ice phase, and this pa ram e-
ter varies smoothly between  these values across a spatially 
diffuse interfacial region (spanned by at least several pix-

Front Tracking

Soon  after  these early modeling efforts, the field ex-
panded rapidly, as several innovative mathematical 
techniques  were developed and applied to investigations 
of a variety of solidification phenomena. At first  these 
studies focused mainly on freezing from the melt, which 
has metallurgical applications and involves relatively 
small anisotropies in surface physics (see Chapter 3). 
Quite recently, however, the field has begun developing 
models of crystal systems that exhibit both faceting and 
branching, including snow crystal growth. With sharp 
cusps in surface anisotropies at the facet  angles, this so-
lidification prob lem introduces additional computa-
tional challenges that are not pre sent in the unfaceted 
case.

In 2012, Barrett, Garcke, and Nürnberg presented 
3D numerical simulations of growing snow crystals 
using a finite- element method, in which the ice surface 
was approximated using an adaptive polygonal mesh 
[2012Bar]; Figure  5.5 shows an example from this 
paper. This technique demonstrates one variant of a 
front- tracking strategy, as it defines a sharp solidifica-
tion front between solid ice and the  water vapor field 
surrounding it [1996Sch, 2010Bar]. As with the Yo-
koyama and Kuroda model, Figure 5.5 again exhibits 
the initial formation of a faceted prism followed by a 
transition from faceted to branched growth. Fig-
ure 5.6 shows another example modeling the growth of 
a hollow column.

The authors concluded in this study that a substan-
tial surface energy anisotropy was necessary to produce 
faceted growth in their models, while anisotropy in the 
attachment coefficient was not enough to produce facet-
ing. I believe that this conclusion is likely not correct, as 
the simulations in Barret et al. [2012Bar] examined only 
a rather weak anisotropy in the attachment kinetics, far 
weaker than what is indicated in recent experiments (see 
Chapter 4). It appears to be generally the case in materi-
als science that highly anisotropic attachment kinetics 
are usually the dominant cause of faceting in crystal 

FIGURE 5.5. A 3D front- tracking model of a platelike snow crys-
tal, showing a transition from faceted to branched growth 
[2012Bar]. Image courtesy of Harald Garcke.



152 T C H A P T E R  5

tropic and did not include the known basal nucleation 
barrier described in Chapter 4. The high degree of sur-
face anisotropy needed to produce faceting instead came 
from the surface energy, which is likely not an accurate 
physical model for snow crystal dynamics. The Peclet 
number was also  orders of magnitude higher in the 
model than in real snow crystal growth.  These significant 
technical points notwithstanding, the authors clearly 
demonstrated the potential of the phase- field method for 
modeling growth that is both faceted and branched, a 
necessary condition for creating accurate simulations of 
snow crystal growth.

Cellular Automata

Of the vari ous computational strategies that have been 
applied to solidification prob lems so far, the CA method 
has demonstrated the most promise (in my  opinion) 
for providing a power ful research tool for investigating 
the physical dynamics of snow crystal growth. Much 
like the early Packard snowflakes [1986Pac], a CA 
model begins by defining a fixed grid having the same 
hexagonal symmetry as the ice crystal lattice. Indi-
vidual cells (also known as pixels) on the grid are la-
beled as  either ice or vapor, with vapor pixels having a 
value proportional to the  water vapor supersaturation. 
A set of CA “rules” evolves the supersaturation field 

els in the model). By eliminating the sharp solidifica-
tion boundary in this way, phase- field models can employ 
generally simpler numerical propagation algorithms 
[1996Kar, 1998Kar, 2002Boe, 2017Jaa].

In the phase- field technique, the diffusion equation 
and its accompanying boundary conditions are replaced 
with a set of nonconservative phase- field equations. 
 These equations represent a phenomenological descrip-
tion of the under lying microscopic interfacial physics 
that reduces to the correct physical description of the 
growth prob lem in the sharp- interface limit [1998Kar]. 
Once the proper phase- field equations have been deter-
mined, they are used to evolve the entire phase field in 
a uniform fashion, so no explicit front tracking is 
required.

Figure 5.7 shows an example of a 3D simulation of a 
growing snow crystal from Demange et al. [2017Dem] 
that again illustrates several features representative of 
stellar snow crystals, including the transition from fac-
eted to branched growth, well- developed sidebranch-
ing, and rib- like surface markings. The authors  were 
also able to reproduce several other commonly observed 
snow crystal structures, as illustrated in Figure  5.8 
[2017Dem1]. As with Barrett et al. [2012Bar], however, 
the under lying physical par ameters used in Demange 
et al. [2017Dem]  were not entirely realistic. For example, 
the attachment kinetics function was only weakly aniso-

FIGURE 5.6. A 3D front- tracking model of a hol-
low columnar snow crystal, showing a transition 
from faceted to hollow growth [2012Bar]. The top 
images show renderings of the full 3D model as it 
developed, while the bottom images show cross- 
sectional views that also depict the supersatura-
tion field around the crystal. Image courtesy of 
Harald Garcke.
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highly anisotropic attachment kinetics pre sent in snow 
crystal growth.

Clifford Reiter first demonstrated the potential for 
creating realistic CA simulations of snow crystal growth 
when he presented a  simple 2D model that yielded sev-
eral snowflake- like structures, including  those shown in 
Figure 5.9 [2005Rei]. Ning and Reiter described addi-
tional 3D models [2007Nin]. Reiter’s algorithms im-
plemented nearest- neighbor rules that solved Laplace’s 

over time and determines when pixels change their 
state from vapor to ice.

A CA model can describe physically realistic snow 
crystal growth if the rules are carefully chosen to simu-
late the  actual physical pro cesses involved. Both the 
mathematical structure and the numerical implementa-
tion of CA techniques are generally simpler than other 
simulation strategies, plus the results to date suggest that 
the CA method is rather well suited for handing the 

t = 0 50 100 250 500

FIGURE 5.7. A 3D phase- field model of a 
platelike snow crystal, again showing a 
transition from faceted to branched 
growth, along with well- developed sideb-
ranching [2017Dem1]. Image courtesy of 
Hélène Zapolsky.

12-star Double plate Sectored plate Solid plate Scrolls on plate

Stellar dendrite Fern dendrite Dendrite plate Stellar plate Simple star

Needle Needles cluster Hollow prism Capped col.  a Capped col.  b

FIGURE 5.8. Additional 3D phase- 
field models of several well-  
known snow crystal morphologies 
[2017Dem1]. Image courtesy of Hé-
lène Zapolsky.
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physics, however, so the Reiter model did not describe 
the formation of  actual snow crystals in a meaningful 
way. But it was a first step in what has turned out to be a 
fruitful direction.

Janko Gravner and David Griffeath greatly ex-
panded  these ideas in a series of influential papers 
[2006Gra, 2008Gra, 2009Gra], the latest of which dem-
onstrated a fully 3D snow crystal simulator that gener-
ated a remarkable diversity of realistic morphologies, in-
cluding details that had hitherto not been seen in any 
numerical simulations. The appearance of robust ridge-
like structures on several stellar- plate morphologies is es-
pecially noteworthy, as  these are also robust features in 
real snow crystals (see Chapter 3). A few representative 
examples are shown in Figure  5.10. Rendering a 3D 
model to produce a 2D image is also a nontrivial chal-
lenge, and Figures 5.11 and 5.12 show some particularly 
artistic renderings of Gravner- Griffeath snow crystals 
done by Antoine Clappier.

The Gravner- Griffeath work was a significant break-
through in modeling snow crystal growth, as it so 
clearly demonstrated the  great potential of the cellular- 
automata method, especially for fully 3D simulations. In 

equation in the region surrounding the snow crystal, 
thus accurately modeling the diffusion of  water vapor 
 toward the growing crystal. The rules governing the con-
version of vapor to ice had  little basis in solidification 

FIGURE 5.9. Several 2D CA models of diffusion- limited growth 
on a sixfold symmetrical lattice, exhibiting faceted and branched 
structures [2005Rei]. Image courtesy of Cliff Reiter.

FIGURE 5.10. Several 3D CA 
models by Gravner and Griffeath 
[2009Gra] demonstrating struc-
tures that are both faceted and 
branched, reproducing many mor-
phological features found in real 
snow crystals. Image courtesy of 
Janko Gravner.
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in that crystal growth is not accompanied by a corre-
sponding removal of  water vapor from the air. More-
over, no clear relationship exists between the pa ram e-
terized CA rules and the known physical properties of 
ice crystal attachment kinetics. Thus, while the par-
ameters in the Gravner- Griffeath algorithm could be 
adjusted to yield remarkably realistic snow crystal struc-
tures, the surface boundary conditions  were not appro-
priate for a physically accurate model.

Physically Realistic Cellular Automata

The prob lem of creating a CA snow crystal model with 
physically derived rules was soon addressed by Libbrecht 
[2008Lib, 2013Lib1], who further investigated the incor-
poration of surface energy effects, surface diffusion 
[2015Lib1], and the edge- sharpening instability (ESI) 
[2015Lib2] in a CA model with anisotropic attachment 
kinetics. Using a 2D model of cylindrically symmetrical 
3D growth, this allowed some of the first direct, quanti-

additional to modeling several common snow crystal 
types, many surface structural details matched  those 
seen on natu ral crystals to a remarkable degree. All pre-
vious numerical models of solidification had shown  little 
or no adeptness for generating structures that are si mul-
ta neously faceted and branched, and this prob lem is still 
pre sent to some degree in several of the computational 
strategies described above. In contrast, the CA method 
appears to be almost ideally suited for  handling faceted +  
branched structures produced by diffusion- limited 
growth with highly anisotropic attachment kinetics.

However, a substantial remaining prob lem with the 
Gravner- Griffeath model [2009Gra] was that it used a 
pa ram e terized set of CA rules that  were largely ad hoc 
and not entirely physically realistic. For example, the 
model imposed an artificial boundary condition setting 
σsurf  = 0 on all ice surfaces. This is technically true only 
in equilibrium and thus is not correct for any growing 
snow crystal. Setting σsurf  = 0 may be a reasonable ap-
proximation for diffusion- limited growth in some cir-
cumstances (Chapter 3), but it is not a suitable general 
assumption to make. Kelly and Boyer [2014Kel] further 
pointed out that the Gravner- Griffeath model does not 
always obey mass conservation in the attachment step, 

FIGURE 5.11. A Gravner- Griffeath 3D snow crystal model ren-
dered by Antoine Clappier. Image courtesy of Janko Gravner 
and Antoine Clappier.

FIGURE 5.12. An abrupt change in model par ameters can yield 
the formation of capped columns with axial hollows, as illus-
trated in this Clappier- rendered Gravner- Griffeath 3D model. 
Image courtesy of Janko Gravner and Antoine Clappier.
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formation during solidification is a rapidly evolving field, 
so it makes sense at this point to briefly compare the dif-
fer ent computational approaches.

The first  thing to note is that all the existing compu-
tational techniques can solve the particle diffusion 
equation in  free space with ease, especially as the Laplace 
approximation simplifies the prob lem considerably (see 
Chapter  3). The phase- field, front- tracking, and CA 
models all take diff er ent mathematical approaches to 
solving the diffusion equation, but the results are all ba-
sically the same, and all are highly accurate. The main 
differences between techniques lie not in solving the 
free- space diffusion equation but rather in how the sur-
face boundary conditions are handled and how surface 
growth is propagated.

In many re spects, polygonal front- tracking methods 
seem the most natu ral when dealing with a continuum 
phenomenon like crystal growth. A distinct solidifica-
tion front makes perfect sense for snow crystal growth, 
as  there is an extremely sharp transition between the 
vapor and solid phases at the ice surface, just a few mo-
lecular layers in thickness.  Because the molecular size is 
so small compared to even the smallest morphological 
features being modeled, a continuum model with a sharp 
interface is an excellent approximation. Moreover, a po-
lygonal surface is a reasonable computational model for 

tative comparisons of simulated snow crystal growth 
with laboratory mea sure ments, as I describe below.

James Kelly and Everett Boyer made substantial ad-
ditional pro gress by developing a fully 3D CA model 
with sound physical foundations, thus beginning a sys-
tematic study of 3D snow crystal growth as a function 
of pa ram e terized attachment kinetics [2013Kel, 
2014Kel]. Some results from this work are shown in Fig-
ures 5.1 and 5.13. With  these recent model studies, it is 
now becoming clear that perhaps the biggest impedi-
ment to creating accurate computational snow crystals 
is simply incorporating an accurate and comprehensive 
model of the surface attachment kinetics. Given recent 
pro gress in this area (see Chapter 4), the path forward 
appears to be quite open and accessible. As further phys-
ical insights and model improvements are realized 
[2016Li], I expect that the CA technique  will become 
the method of choice for modeling snow crystal growth, 
at least in the near term, and I discuss the specific algo-
rithms and physical under pinnings in more detail below.

Comparing Computational Methods

Although CA models have produced the most impres-
sive snow crystal results to date, other techniques show 
 great promise as well. Numerical modeling of structure 

FIGURE 5.13. A few representative 
3D snow crystal models created by 
Kelly and Boyer using CA rules de-
rived from physically realistic calcu-
lations [2014Kel], exhibiting several 
morphological features found in 
real snow crystals. Image courtesy 
of James Kelly.
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tial uncertainty regarding our desire to model snow crys-
tal growth, as highly anisotropic attachment kinetics 
have not yet been adequately explored in phase- field 
models.

One disadvantage with phase- field models is the dif-
ficulty inherent in defining the phase- field equations. 
Once again, I have not worked in this area, but my im-
pression is that deriving an appropriate set of phase- field 
equations from a specific pa ram e terization of the surface 
boundary conditions is not a trivial assignment. It is un-
clear (to me) that finding phase- field equations that 
properly incorporate highly anisotropic attachment ki-
netics  will be entirely straightforward. And when addi-
tion physical features are added, like surface energy ef-
fects and surface diffusion, the prob lem becomes even 
more challenging. Once again, this is not necessarily a 
showstopper for phase- field models, but it is an uncer-
tainty, given that the prob lem has not yet been ade-
quately studied to date.

One excellent advantage of the phase- field method is 
that it nicely  handles the merging of solidification 
fronts. In metallurgical applications, for example, one 
often requires that a melt  will eventually fully solidify 
into a solid block, including the merging of numerous in-
de pen dent solidifying structures into a final matrix of 
solid domains. Moreover, the material properties of the 
solidified metal may depend strongly on the size, struc-
ture, and arrangement of the domains. This kind of do-
main merging happens naturally in a phase- field model 
but is something of a computational nightmare in a 
front- tracking model.

In snow crystal growth, the merging of separate solidi-
fication fronts can happen, but it is not usually an impor-
tant consideration. Sidebranches are especially prone to 
colliding trajectories, as illustrated in Figure  5.14. But 
merging events like  these are not a central feature in snow 
crystal growth compared to more basic morphological 
features. As Barrett et al. succinctly described [2014Bar1, 
p. 550], “The main advantage of phase field methods over 
direct front- tracking methods is that they intrinsically 
allow for topological changes. However, for the prob lem 

almost any morphological situation, and the under lying 
surface physics is well defined on such a surface. If the 
grid is small enough, a front- tracking algorithm should 
be capable of modeling all manner of solidification prob-
lems, including snow crystal growth.

One disadvantage with front tracking, however, is 
the algorithmic complexity involved with deriving and 
continually adapting the polygonal solidification surface 
and the polygonal mesh that surrounds it. I have not 
worked in this area myself, but my impression is that it 
took many years to develop the computational tools 
needed to manage the diffusion equation with its non-
trivial surface boundary conditions on an ever- adapting 
polygonal mesh. However, now that the required algo-
rithms have been established, perhaps it is straightfor-
ward to apply them to a new physical system like snow 
crystal growth. But it does appear to be a nontrivial 
undertaking.

Perhaps the biggest uncertainty in creating a suitable 
front- tracking code for snow crystal growth involves 
dealing with highly anisotropic attachment kinetics and 
faceting. The facet planes are unusual in that αbasal and 
αprism can be much smaller than αvicinal, even when the 
vicinal  angle is extremely low. Put another way, the at-
tachment coefficient α(θsurf) as a function of surface 
 angle may have extremely sharp and deep cusps at the 
facet  angles. This likely requires some special treatment 
of the facet surfaces, as Yokoyama and Kuroda noted 
even in their early examination of snow crystal model-
ing using front tracking [1990Yok]. It certainly does not 
seem unfeasible that one could incorporate highly aniso-
tropic attachment kinetics into a front- tracking model. 
However, it has not been done to date, so we cannot say 
for sure how difficult such a task might be.

In contrast to front- tracking models, phase- field 
techniques are typically applied on a fixed coordinate 
grid, thus avoiding the use of complex polygonal meshes. 
This may also facilitate the preferred treatment of faceted 
surfaces, as the grid coordinates can easily be defined to 
be along facet planes. As with front- tracking methods, 
however, the issue of faceted growth remains a substan-
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Another outstanding feature of CA models is that 
they are remarkably  simple to define and build, plus the 
run times are relatively short. Moreover, the CA rules 
can be derived fairly easily from physical foundations, al-
lowing straightforward pa ram e terizations of the at-
tachment kinetics and other physical effects. This  will 
become apparent as I focus the remainder of this chap-
ter mainly on developing CA techniques specifically for 
modeling snow crystal growth.

Facet- Dominated Growth

Much of the scientific lit er a ture on solidification mod-
eling focuses on metallurgical systems, where the mate-
rial anisotropies (mostly in the surface energy) are quite 
small, perhaps a few  percent. However, as we learned 
from solvability theory (Chapter 3), it is impor tant that 
 these small anisotropies be treated correctly, as they are 
critical in determining dendritic growth morphologies. 
 Because CA techniques tend to exhibit numerical an-
isotropies that are nearly impossible to eliminate, they 
are a poor choice for modeling metallurgical solidifica-
tion. In the opposite extreme, however, when the intrin-
sic material anisotropies are high, modest levels of nu-
merical anisotropy are not huge prob lem. Thus, diff er ent 
classes of materials may call for diff er ent computational 
techniques.

Snow crystal growth is somewhat unique in the field 
of solidification modeling  because of the importance of 
highly anisotropic attachment kinetics. To my knowl-
edge, snow crystal growth is the only highly anisotropic 
system that has received much attention,  either theoreti-
cal or experimental, from the standpoint of under-
standing the basic physics of solidification and structure 
formation. Beginning with the careful studies of den-
dritic growth by Glicksman and  others in the 1980s 
(see Chapter 3), nearly all substantial scientific efforts 
aimed at numerical solidification modeling  were focused 
on weakly anisotropic metallurgical systems. In  these 
systems, the Peclet number is high, growth is largely 

of solidification and dendritic growth as considered in 
this paper, topological changes are rare.”

CA models are not especially popu lar in metallurgi-
cal solidification modeling, and yet they have demon-
strated a remarkable aptitude for modeling snow crys-
tal structures. A big reason for this success is that CA 
models can easily incorporate highly anisotropic at-
tachment kinetics. By defining a grid with the same 
symmetry as the under lying ice crystal lattice, it is 
straightforward to give special treatment to faceted sur-
faces, as this is practically built into the model struc-
ture. However, one impor tant downside of this rigid 
grid structure is that it is nearly impossible to create a 
CA model that does not include some level of intrinsic 
numerical anisotropy in the surface boundary condi-
tions, as I describe below.

FIGURE 5.14. A laboratory- grown PoP snow crystal with two in-
stances of sidebranch mergers (arrows). The upper merger oc-
curred relatively recently before the photo was taken, so the 
separate branch edges are still clearly seen. The lower merger is 
older, and the individual sidebranches have grown together into 
a single flat plate.
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inherent limitations in the CA technique with addi-
tional study. Nevertheless, given how  little modeling ef-
fort has focused on strongly faceted solidification, and 
how rapidly the field is evolving, I suspect the best strat-
egy at this point is simply to dive in and see how far the 
CA method can take us.

The discussion below derives mainly from work I 
have done in developing CA models for snow crystal 
growth using physically derived CA rules [2013Lib1, 
2015Lib2], combined with significant model improve-
ments from Kelly and Boyer [2013Kel, 2014Kel], as 
well as a few additional (unpublished) tweaks I have been 
investigating recently. My focus with  these models has 
been not just on morphologies but also on developing 
quantitative CA rules that accurately reflect the under-
lying physical pro cesses that govern snow crystal growth.

This field is evolving rapidly at pre sent, especially 
 because our understanding of the attachment kinetics is 
only beginning to converge on a workable model (Chap-
ter 4). As targeted experiments continue to develop (see 
Chapter 7), my hope is that better computational mod-
els  will soon allow detailed comparisons with complex 
morphologies grown  under well- known conditions, es-
pecially on electric ice  needles (see Chapter 8). As  these 
experimental and computation efforts move forward in 
parallel, they  will eventually combine to yield a truly 
comprehensive model of snow crystal formation.

The Diffusion Equation

For pedagogical reasons, I like to begin the discussion by 
creating a numerical model of the simplest pos si ble phys-
ically in ter est ing one- dimensional (1D) prob lem— the 
growth of a  spherical crystal governed solely by particle 
diffusion and attachment kinetics.  There is hardly any 
need for numerical modeling of this system, of course, 
as an exact analytic solution exists and is described in 
Chapter 3. But fully understanding  spherical growth is 
always a good beginning before modeling more complex 
systems.

 limited by thermal diffusion, weakly anisotropic surface 
energy dominates the surface boundary conditions, and 
attachment kinetics are  either weakly anisotropic or ig-
nored altogether. Dendritic structures typically exhibit 
no faceting in  these materials, so it is imperative that 
computational models include low intrinsic numerical 
anisotropies.

Snow crystal growth is, in many ways, a completely 
diff er ent prob lem. The Peclet number is extremely small, 
particle diffusion is more impor tant than heat diffusion, 
surface energy effects are almost negligible, and aniso-
tropic attachment kinetics play a central role in bringing 
about highly faceted dendritic structures. In snow crys-
tal growth modeling, both αprism and αbasal are often 
small and highly dependent on σsurf, while one can rea-
sonably assume α ≈ 1 on nearly all nonfaceted surfaces. 
In this “facet- dominated” growth regime, the overall 
growth rates and morphologies are largely defined by the 
growth of the faceted surfaces.

Modeling facet- dominated growth requires an espe-
cially accurate treatment of the facet dynamics, which 
means a careful  handling of anisotropic attachment ki-
netics. In contrast, a somewhat sloppy treatment of non-
faceted surfaces may be tolerable. Thus, although it is 
not clear that one can build a perfect CA model even in 
princi ple, it may nevertheless be pos si ble to build a CA 
model that reproduces most snow crystal morphologies 
with reasonable fidelity. The early results look quite 
promising, but the only real way to know for sure is to 
start building physically accurate models that allow 
quantitative comparison with careful experimental 
observations.

 SPHERICAL CELLULAR AUTOMATA

I focus the remainder of this chapter on CA models, as 
they are the leading contender for creating realistic com-
putational snow crystals, at least in the short term. 
Opinions may differ on this, as other numerical strate-
gies are promising as well, and we may uncover serious 
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terms introduce a potential prob lem when dividing by 
ri = 0, but we  will ignore this issue,  because the central 
pixel  will always be part of the seed crystal in our model. 
A 1D Cartesian model would avoid the (1 ± Δr/ri) terms, 
but I prefer to work with a model that describes a real 
physical system, in this case the growth of a  spherical ice 
crystal.

At this point, we recognize that snow crystal growth 
is described by a very low Peclet number, as described in 
Chapter 3. Thus the supersaturation field around a crys-
tal relaxes very rapidly compared to the crystal growth 
time, so we can solve the particle diffusion equation 
while assuming a nonmoving crystal surface. In our CA 
model, this means we can iterate Equation 5.2 with fixed 
bound aries  until σ(ri) converges to a stationary solution 
of Laplace’s equation. We do this without yet worrying 
about the  actual growth of the crystal,  because, as far as 
particle diffusion is concerned, the crystal is growing so 
slowly that it is essentially stationary.

For computational efficiency, we would like to relax 
σ(r) using the smallest pos si ble number of iterations of 
Equation 5.2, so we want to choose Δτ to be as large as 
pos si ble. Taking Δτ = DΔt/(Δr)2 = 1/2 seems to be about 
optimal, as larger values can lead to numerical instabili-
ties. As a bonus, this choice sets one term in Equation 
5.2 equal to zero, so the optimal propagation equation 
becomes

 

σ (ri ,k +1)= 1
2

1+ Δr
ri

⎛
⎝⎜

⎞
⎠⎟
σ (ri+1,k)

+ 1
2

1− Δr
ri

⎛
⎝⎜

⎞
⎠⎟
σ (ri−1,k),  (5.3)

where  here we have replaced τ with a  simple integer in-
dexing variable k. At each instant in time, we simply it-
erate Equation 5.3 to determine the correct supersatu-
ration field σ(r) surrounding the crystal at that time.

From a computational perspective, note that Equa-
tion 5.3 can be performed using highly efficient vector 
pro cessing. The vectors (1 ± Δr/ri) are constant and need 
only be calculated once at the beginning of a modeling 

The first step in any CA model is to define the cells, 
which I usually call “pixels,” as shown in Figure 5.15. For 
our  spherical system, assume a set of radial pixels for 
which the pixel center is located at ri = (i − 1)Δr for inte-
ger i with 1 ≤ i ≤ N. (Of course, other numbering conven-
tions could be used to equal effect.) We further assume 
that pixels with ri < rb are filled with ice, while pixels with 
ri ≥ rb are filled with vapor. We call the i = b pixel a 
“boundary” pixel,  because it is filled with vapor but is ad-
jacent to an ice pixel. The vapor pixels typically include 
a background gas of air, and each is labeled with the 
 water vapor supersaturation σi = σ(ri) at that location. In 
the vapor surrounding the crystal, we write the particle 
diffusion equation in  spherical coordinates

 
∂σ
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and on our radial grid, this becomes
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 (5.2)
where τ = Dt/(Δr)2. Note that the (1 ± Δr/ri) terms arise 
from the  spherical coordinate system, reflecting the fact 
that the volume in a Δr shell increases with ri.  These 

Ice pixels Vapor pixels

ri
r

Δr

r1 = 0

Boundary pixel

FIGURE 5.15. The radial layout of cells (a.k.a. pixels) for a 1D 
 spherical CA model. At any given time, the model consists mainly 
of ice pixels (blue) and vapor pixels (white). The red “boundary” 
pixel is a vapor pixel that borders an ice pixel.
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In summary, calculating the supersaturation field 
means iterating Equation 5.3 for b < i < N using 
σ(rN) = σfar while si mul ta neously iterating Equation 5.7 
for i = b. For any physically realistic scenario, this should 
converge to give the full solution σ(ri) that satisfies La-
place’s equation with the proper boundary conditions.

Convergence Criterion

A next question is how long to continue the iterative prop-
agation of Equations 5.3 and 5.7. The supersaturation field 
σ(r) typically converges exponentially with time, which 
unfortunately means that it never actually reaches the 
exact solution. An informative worst- case test is easily 
done using a 1D Cartesian system and setting σ(ri, 
k = 1) = 1 for all i while setting both bound aries equal to 
zero. In this test case, iterating the propagation equation 
yields a center- pixel value of σ(rN/2, k) ≈ A exp(−k/k0) for 
large k, where A = exp(0.25), and k0 = 0.2N2. Thus, a 
10  percent convergence is obtained  after about N2/2 steps, 
while a 1  percent convergence takes N2 steps. This sets a 
good benchmark for the initial relaxation of the supersat-
uration field around the seed crystal, but fewer steps may 
be sufficient  after a boundary pixel converts to ice (see 
below), as a one- pixel change may not substantially alter 
the supersaturation at large distances. Determining an 
optimal convergence criterion is often best accomplished 
by comparing numerical simulations with known analyti-
cal results in  simple test cases. Of course,  there is always a 
trade- off between accuracy and code  running time.

Growth Steps

Once we have calculated the supersaturation field σ(r) 
at some instant in time, the next step is to use this solu-
tion to grow the crystal out a small amount. In the 
 spherical CA model, this means turning a boundary 
pixel into an ice pixel using the known surface growth 
rate (Chapter 4)

 vn = αvkin σsurf = α(σ(rb)) vkin σ(rb), (5.8)

run. The vectors σ(ri ± 1) are rapidly computed using a 
 simple permutation of σ(ri), and vector operators can 
perform the arithmetic in Equation 5.3 using optimized 
parallel- processing algorithms built into the compiler. 
While optimizing efficiency is of  little concern for a 1D 
 spherical calculation, it becomes quite impor tant in 3D 
codes with high spatial resolution.

Boundary Conditions

For the outer boundary condition far from our growing 
 spherical crystal, we assume a constant value σ(rN) = σfar, 
where rN = rfar is the position of the outer boundary. This 
is easily implemented in our CA algorithm by simply ap-
plying Equation 5.3 to all σ(ri) out to σ(rN − 1). As de-
scribed in Chapter 3, we have a mixed boundary condi-
tion at the crystal surface:

 X0
∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

=ασ surf ,  (5.4)

where

 X0 = csat
cice

 
D
vkin

 (5.5)

is a fundamental length scale in the diffusion prob lem. 
On our CA model grid, Equation 5.4 becomes

 σ b =σ b+1 1+α(σ b )
Δr
X0

⎛
⎝⎜

⎞
⎠⎟

−1

 (5.6)

to first order in Δr, where σb is the supersaturation in the 
boundary pixel.

Note that determining the value of α(σb) can be in-
cluded in the convergence pro cess by generalizing Equa-
tion 5.6 to give the propagation equation

σ (rb ,k +1)=σ (rb+1,k) 1+α σ (rb ,k)( ) Δr
X0

⎛
⎝⎜

⎞
⎠⎟

−1

.  (5.7)

 Doing this allows one to assume any desired functional 
form for α(σsurf) without having to solve Equation 5.6 
analytically.
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could make a dual- diffusion CA model that would in-
corporate both particle and thermal diffusion, but that 
requires a significant increase in complexity that is best 
left for another day.

Adaptive Boundary Matching

One prob lem with any computational diffusion model 
is that the outer boundary is only a finite distance from 
the growing crystal, while often the outer boundary con-
dition is specified at infinity, σ(r → ∞) = σ∞. If we use 
the outer boundary condition σ(rfar) = σfar as described 
above, then the best results  will be obtained by making 
rfar as large as pos si ble. However, for computational ef-
ficiency, one would like to keep rfar small, as that de-
creases the total volume of modeled space.

One way to address this prob lem is with an adaptive 
grid, increasing the pixel size with distance from the 
crystal. This works  because σ(r) changes rapidly only 
near the crystal surface, so a coarser grid can be used 
far from the surface. With an adaptive grid, a small 
number of pixels can be used to model a large volume of 
space efficiently. But an adaptive grid introduces ad-
ditional computational complexity and overhead, and 
it may interfere with one’s ability to make full use of 
highly efficient parallel pro cessing algorithms. Simply 
changing Δr with ri is a fine approach with a 1D model, 
but extending this idea to higher dimensions becomes 
problematic.

Another relatively easy approach to the far- away 
boundary prob lem is to keep Δr constant with rfar rea-
sonably small, and then adjust σfar appropriately as the 
crystal grows. To see how this works, start with the ana-
lytic solution for  spherical growth presented in Chap-
ter  3.  Because the full supersaturation field σ(r) is 
known in the  spherical model, it is straightforward to 
show that

 σ (rfar )=σ∞ − dV/dt
4πrfar X0vkin

,  (5.10)

which indicates that ice growth would “fill” the bound-
ary pixel in a time

 δ t = Δr
vn

,  (5.9)

and this time interval is easily calculated from the known 
supersaturation field σ(ri).

Putting every thing together, growing a  spherical 
snow crystal using this 1D CA model involves the fol-
lowing steps:

1) Set up the physical par ameters and initial conditions, 
including the initial seed crystal.

2) Iterate Equations 5.3 and 5.7  until reaching conver-
gence, yielding the supersaturation field σ(ri) around 
the crystal.

3) Promote the boundary pixel ( there is only one in this 
1D model) into an ice pixel while advancing the real 
time by δ	t in Equation 5.9. Promote the next vapor 
pixel to a boundary pixel.

4)  Either stop the model at this point or go back to 
step 2.

The result of this pro cess is a series of time steps giving 
R(t), the size of the crystal as a function of time, along 
with σ(ri, t). Note that although the growth steps have 
a uniform size Δr, the time steps are not uniform in du-
ration. Note also that this CA model is completely de-
terministic, including no random pro cesses of any kind. 
It also excludes evaporation, so once a vapor pixel be-
comes an ice pixel, it cannot go back again. Fi nally, the 
model only includes bulk diffusion in air together with 
surface attachment kinetics, ignoring all heating and sur-
face energy effects.  These model attributes are put in 
place mainly to simplify the calculations at this point, 
and other choices are pos si ble. In par tic u lar, I discuss sur-
face energy, surface diffusion, and other physical effects 
in more detail below. However, I neglect thermal effects 
entirely in this discussion, as they play only a relatively 
minor role in snow crystal growth (see Chapter 3). One 
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it becomes useful when working in higher dimensions, 
as we  will see in the next section.

CYLINDRICALLY SYMMETRIC 
CELLULAR AUTOMATA

Having set the stage by exploring the simplest 1D model, 
the next obvious step is to move up to a 2D model. A 2D 
model introduces additional complexity and new physi-
cal effects compared to the 1D model, and it introduces 
additional model developments along several fronts. 
While it is tempting to jump straightaway to a full 3D 
model, we  will soon find that the 2D case provides a 
valuable test system for addressing many nontrivial is-
sues. Also, from the standpoint of practical pedagogics, 
a 2D model can be easily described using 2D sketches, 
which display well on a printed page and are relatively 
easy to comprehend. In contrast, communicating ideas 
relating to full 3D structures can be something of a vi-
sual challenge.

Focusing, therefore, on 2D models, I have found 
that a cylindrically symmetrical system is the best choice 
for exploring the physics of snow crystal growth. A pla-
nar model is another 2D option that is often explored, 
but such a model is not as useful for examining realistic 
solidification physics. To see this, consider 2D models of 
stellar crystals like  those shown in Figure 5.9.  These mod-
els to not describe real snow crystals, but they are ade-
quate models of infinitely long bars with snowflake- 
shaped cross- sections. Solving the infinite- bar prob lem 
in three dimensions is identical to solving just the 2D 
cross- section. While this is a fine exercise,  there are no 
real snow crystals that have anything like this kind of 
complex extruded morphology. Thus, this kind of 2D 
flat- plate model is of  little  actual use when examining the 
physics of real snow crystals.

In contrast, 2D cylindrically symmetric models can 
include  simple disks,  simple columns, hollow columns, 
disks on columns, and other morphologies that serve as 
reasonable proxies for real snow crystals. While cylindri-

where

 
dV
dt

= 4πR2vn  (5.11)

is the volume change per unit time for a  spherical crys-
tal with radius R. This expression is dictated by conser-
vation of mass, which requires that the flux of  water 
vapor diffusing  toward the crystal must equal the rate at 
which vapor turns into ice.

From this knowledge of the exact  spherical solution, 
we can write a propagation equation for σ(rfar)

 σ (rfar ,k +1)=σ∞ − dV/dt(k)
4πrfar X0vkin

,  (5.12)

and this operation would be performed between steps 
3 and 4 listed above. As the model crystal develops, 
σ(rfar) adapts to the changing crystal size and growth 
be hav ior.

Note that this is an iterative procedure; once the su-
persaturation field σ(ri) around the crystal is known, 
this allows a calculation of dV/dt at that point in time. 
Performing Equation 5.12 then sets up σ(rfar) for the 
next time step in the series. If the crystal grows slowly, 
the pro cess  will converge to yield a reasonable approxi-
mation of σ(rfar) at each time step. Once again, the over-
all accuracy of this adaptive outer boundary can be ex-
amined by comparing model results with the analytic 
solution of the diffusion equation.

For typical conditions, we expect (from the analytic 
solution for a  spherical crystal) that dV/dt ~ R for 
diffusion- limited growth, and dV/dt ~ R2 for kinetics- 
limited growth (Chapter 3). In both cases, dV/dt is small 
at early times, so Equation 5.12 yields σ(rfar) ≈ σ∞. This 
makes sense, as presumably rfar is much larger than the 
initial seed crystal. Then σ(rfar) decreases as the crystal 
grows larger, as one would expect. This adaptive outer 
boundary method essentially “matches” the CA solution 
to the known analytic solution beyond rfar. While this 
procedure is somewhat trivial for the 1D  spherical model 
( because the analytic solution is already known for all r), 
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wishes to accurately reproduce small- scale snow crystal 
structures. It appears that  there is  little to be gained, 
however, in choosing Δx < X0.

As with the 1D  spherical case, most pixels in a CA 
model are vapor pixels, and each of  these is assigned a su-
persaturation σi,j = σ(ri, zj). The supersaturation field is 
determined by particle diffusion together with the ap-
propriate boundary conditions, and the diffusion equa-
tion in cylindrical coordinates is

 
∂σ
∂t

= D∇2σ = D 1
r
∂σ
∂r

+ ∂2σ
∂r2

+ ∂2σ
∂z2

⎛
⎝⎜

⎞
⎠⎟

 (5.13)

for σ(r, z, t). Projecting this equation onto the 2D CA 
grid yields

σ i , j(τ + Δτ )= (1− 4Δτ )σ i , j + Δτ 1+ Δr
2ri

⎛
⎝⎜

⎞
⎠⎟
σ i+1, j

⎡

⎣
⎢

+ 1− Δr
2ri

⎛
⎝⎜

⎞
⎠⎟
σ i−1, j

⎤

⎦
⎥+ Δτ[σ i , j+1 +σ i , j−1],

(5.14)

and choosing Δτ = 1/4 simplifies this expression by elim-
inating the first term, giving the propagation equation

σ i , j(k+1)= 1
4

1+ Δr
2ri

⎛
⎝⎜

⎞
⎠⎟
σ i+1, j(k)+ 1− Δr

2ri

⎛
⎝⎜

⎞
⎠⎟
σ i−1, j(k)

⎡

⎣
⎢

⎤

⎦
⎥

+ 1
4

[σ i , j+1(k)+σ i , j−1(k)].

(5.15)

In the limit of low Peclet number, iterating this equation 
to convergence  will yield the static supersaturation field 
σ(ri, zj) that satisfies Laplace’s equation. As we saw with 
the 1D case, the choice of Δτ = 1/4 is a good one in that 
it produces rapid convergence without introducing nu-
merical instabilities that can be problematic with higher 
values of Δτ.

cal symmetry has its limitations, I have found that it 
works quite well for describing  simple snow crystal mor-
phologies. Thus, unlike the flat- plate 2D model, a cylin-
drically symmetrical 2D model connects much better to 
the real physics of snow crystal growth.

In a 2D cylindrically symmetrical model, a  simple 
hexagonal plate is approximated by a thin disk. The six 
prism facets on the hexagonal plate are thus replaced by 
a single cylindrical “facet,” while the basal facets are es-
sentially unchanged. Particle diffusion around a thin 
disk is about the same as that around a hexagonal plate, 
and  there is a good correspondence between the basal 
and prism attachment coefficients in the two cases 
[2015Lib2]. In par tic u lar, the same αprism describing 
growth on the six prism surfaces of a hexagonal plate can 
be used for the single edge of the circular disk.

Transforming a hexagonal plate to a thin disk in-
volves a small geometrical correction, but other wise, 
the cylindrically symmetric disk is a tolerably good phys-
ical repre sen ta tion of a hexagonal plate. The same is true 
for snow crystal columns, hollow columns, and capped 
columns. For all  these  simple morphologies, cylindrically 
symmetrical models are quite well suited for investigat-
ing growth dynamics and attachment kinetics. Snow 
crystals grown on electric  needles are also well suited for 
study using cylindrically symmetric models (see Chap-
ter 8). Of course, dendritic structures and other complex 
morphologies  will require full 3D modeling, but I have 
always found that difficult physics prob lems are best 
solved one step at a time.

Figure 5.16 shows a typical pixel geometry for a 2D 
cylindrically symmetrical CA model. The position of the 
center of each pixel is (ri, zj), where ri = (i − 1)Δr and 
zj = ( j − 1)Δz for all (i, j) ranging from (1, 1) to (Nr, Nz). 
(Once again, diff er ent coordinate conventions are also 
pos si ble.) I usually choose Δr = Δz = Δx, thus defining 
Δx, as this simplifies the mathe matics and is also a rea-
sonable choice for a realistic snow crystal model. The 
physical size of Δx is somewhat arbitrary, but we  will see 
below that Δx should not be much greater than X0 if one 
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ure 5.16. Each facet boundary pixel is a vapor pixel bor-
dered by exactly one nearest- neighbor ice pixel (out of 
four nearest- neighbor positions, neglecting all farther 
positions). Meanwhile kink boundary pixels are vapor 
pixels bordered by exactly two ice pixels. Boundary pix-
els with three or even four neighboring ice pixels are also 
pos si ble, but only the facet and kink boundary pixels 
play impor tant roles in  simple growth morphologies. 
How one treats three-  and four- neighbor boundary pix-
els is not so impor tant; even just turning them immedi-
ately into ice as soon as they appear does not greatly af-
fect the overall model dynamics, except perhaps in 
somewhat convoluted morphologies.

The facet- kink CA model is especially  simple in 
that the character of each boundary pixel is defined 
solely from its nearest neighbors. This local definition 
makes for easy bookkeeping, but we  will soon find that 
this simplicity requires some compromises in physical 
accuracy.

Boundary Conditions

The outer boundary is typically defined by a constant far-
away supersaturation, so we set σi,j = σfar when i = Nr or 
j = Nz, and this is easily implemented in the model by 
applying Equation 5.15 only out to i = Nr − 1 and 
j = Nz − 1.  There are some numerical issues that must be 

A Facet- Kink Model

A central feature of any finite- element computational 
model is that one must define a mathematical system 
that operates at finite resolution while providing a good 
physical repre sen ta tion of what is essentially a continuum 
system. Thus for crystal growth, the mathe matics must 
somehow deal with both nanometer physics at scales 
much smaller than X0 (e.g., the molecular dynamics that 
governs attachment kinetics) and mesoscale physics at 
scales at and above X0 (including particle diffusion 
around the crystal and other pro cesses).

With a CA model, the specific CA rules need to de-
rive from nanoscale physics but run accurately on a me-
soscale grid. In par tic u lar, the attachment kinetics rules 
must be pa ram e terized so that they can be applied at the 
much larger scale of the CA, and how one does this is not 
always immediately obvious. Dealing with this broad 
range of physical scales is one of the most difficult aspects 
of modeling snow crystal growth.

 These issues mostly play out at the crystal boundary, 
and in two- dimensions,  there is no obvious,  simple 
choice for accurately specifying the boundary conditions 
or growth rules. One of the simpler ways to tackle this 
prob lem using CA is with what I call a facet- kink model. 
In the 2D cylindrically symmetric case, this means de-
fining the two classes of boundary pixels shown in Fig-

Kink boundary pixel

Facet boundary pixels

Vapor pixels

Ice pixels

r

z

r

r1 
= z1= 0

Δ

zΔ

FIGURE 5.16. A pixel geometry for a 2D cylindri-
cally symmetric CA model. Ice pixels are shown 
as blue, while vapor pixels are white. The “facet” 
boundary pixels (adjacent to faceted ice sur-
faces) are pink, while this par tic u lar model in-
cludes a single red “kink” boundary pixel that 
touches two ice pixels. For con ve nience, I often 
take Δr = Δz = Δx, which defines the generic pixel 
size Δx.
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pect αkink ≈ 1. Note that the additional  factor of 2  
compared to Equation 5.16 is simply a geometrical  factor 
coming from the tilted geometry of the 45- degree sur-
face on the CA grid. As with the 1D model, the 2D 
propagation equations can be iterated  until some suit-
able convergence criterion is satisfied. This pro cess 
solves Laplace’s equation in the space surrounding the 
growing crystal, thus yielding the supersaturation field 
σ(ri, zj) in all vapor and boundary pixels at a fixed time.

Growth Steps

The next step in the model is to use the known supersat-
uration field to calculate the crystal growth rates at 
each point and define appropriate CA rules for turning 
boundary pixels into ice pixels. If all goes well,  these the 
CA propagation equations and growth rules  will gener-
ate physically accurate computational snow crystals.

As with the 1D model, we define a growth step as 
occurring when a single boundary pixel transforms into 

dealt with along the (0, z) and (r, 0) axes, but  these are 
minor bookkeeping details that are discussed elsewhere 
[2013Lib1]. It is typical to use reflection boundary con-
ditions at z = 0, so the physically modeled space then in-
cludes −zmax ≤ z ≤ zmax and 0 ≤ r ≤ rmax.

The surface boundary conditions for faceted bound-
ary pixels are similar to the 1D case described above, 
and Equation 5.6 becomes

 
σ i , j =σ i+1, j 1+α prism(σ i , j )

Δ x
X0

⎛
⎝⎜

⎞
⎠⎟

−1

σ i , j =σ i , j+1 1+α basal (σ i , j )
Δ x
X0

⎛
⎝⎜

⎞
⎠⎟

−1

,

 

(5.16)

where αprism and αbasal are the attachment coefficients for 
the two principal facets. For simplicity, the index nota-
tion  here is for facets that face in the +r and +z directions, 
and we have assumed Δr = Δz = Δx.  These then become 
propagation equations that are similar in form to Equa-
tion 5.7.

For a kink boundary pixel, the optimum boundary 
condition can be estimated by examining the growth of 
the 45- degree surface orientation shown in Figure 5.17. 
 Because only kink boundary pixels are pre sent on this 
surface, the continuum boundary condition Equation 
5.4 can be expressed in two essentially equivalent forms

 

σ i , j =σ i+1, j+1 1+α kink(σ i , j )
2Δ x
X0

⎛
⎝⎜

⎞
⎠⎟

−1

or

σ i , j =σ opp 1+α kink(σ i , j )
Δ x
2X0

⎛
⎝⎜

⎞
⎠⎟

−1

 ,

 

(5.17)

where σopp = (σi+1,j + σi ,j+1)/2, and αkink is the appropri-
ate attachment coefficient. Both expressions can be de-
rived from Equation 5.4 using the geometry illustrated 
in Figure 5.17, and the two equations are equal to first 
order in Δx. If the 45- degree surface is essentially flat (the 
small Δx limit),  these expressions provide an accurate 
model of the surface boundary condition.  Because a sur-
face made from kink sites is molecularly rough, we ex-

r

z

FIGURE 5.17. The 45- degree surface depicted  here includes 
only kink boundary pixels. This can be taken as an essentially flat 
surface in the limit of a large crystal, giving a good approxima-
tion for determining the CA rules governing kink boundary 
pixels.
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for all kink boundary pixels. In  doing this, one filling 
 factor  will reach fb = 1, while all the  others  will increase 
but remain below unity.  After updating the filling  factors 
and turning one boundary pixel to ice, we then locate the 
new boundary pixels (assigning to them a filling  factor 
of zero) and proceed with calculating the next supersat-
uration field.

One pleasant feature of the CA method is that it is 
remarkably easy to write down physically realistic (albeit 
not entirely accurate) rules and transcribe them into rel-
atively  simple iterative algorithms. In general, other 
front- tracking and phase- field techniques require a sub-
stantially greater mathematical sophistication and a 
commensurate increase in programming effort. Unfor-
tunately, the relative simplicity of a CA model brings 
with it some deficiencies in terms of accuracy, which 
we examine next. How serious all  these prob lems are, 
and how well they can be addressed by developing 
more advanced CA rules, remains a topic for additional 
research.

Numerical Anisotropy

If cylindrically symmetrical snow crystal growth could 
be modeled accurately using only faceted surfaces to-
gether with the 45- degree surface shown in Figure 5.17, 
then the facet- kink model described above would be ad-
equate to solve this 2D prob lem. As Δx → 0, the facet- 
kink CA rules satisfy the surface boundary conditions 
and growth rates to high accuracy on  these surfaces. 
Prob lems arise, however, when one considers other 
surfaces.

Consider, for example, the 2:1 surface shown in Fig-
ure 5.18. In the small- Δx limit, this is a  simple vicinal 
surface, so a solution of the diffusion equation (assum-
ing an infinite surface and ignoring the Mullins- Sekerka 
instability) would yield uniform planar growth with a 
growth velocity vn = αvkin σsurf . However, the facet- kink 
model cannot reproduce this  simple result, even if α is 
constant on all surfaces. The model growth rates are typ-
ically off by about 10  percent, depending on the model 

an ice pixel [2014Kel], and the newly defined surface 
then requires a new calculation of the supersaturation 
field. The main difference between the 1D and 2D mod-
els is that now  there are many boundary pixels to con-
sider si mul ta neously.

To keep an ongoing account of the crystal growth at 
each point on the ice surface, we assign a numerical 
“filling  factor” fb to each boundary pixel, where we as-
sign an integer index b to label the boundary pixels. 
Whenever a vapor pixel becomes a new boundary pixel, 
fb for that pixel is set to zero. As the model develops, each 
fb increases with time at a rate that derives from the crys-
tal growth rate at its position. When a filling  factor in-
creases to unity, then that boundary pixel turns to ice.

 After relaxing the supersaturation field to produce 
σ(ri, zj) throughout the space above the crystal, we can 
again use Equation 5.8 to calculate the growth velocity 
along the surface normal. For a facet boundary pixel, the 
time required to “fill” the remainder of each boundary 
pixel becomes

 δ tb = Δ x
vn

(1− fb ),  (5.18)

while for kink boundary pixels, we again examine the 
45- degree surface to obtain

 δ tb = Δ x
2vn

(1− fb ),  (5.19)

and the additional 2  is again a geometrical  factor as-
sociated with the 45- degree surface. From the entire 
set of time intervals δ	tb, we choose the smallest one, 
δ	tb,min, and then fill each boundary pixel for this amount 
of time, giving

 fb→ fb + vn
Δ x

δ tb ,min  (5.20)

for all facet boundary pixels, and

 fb→ fb + 2vn
Δ x

δ tb ,min  (5.21)
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only way to answer  these questions  will be to make de-
tailed comparisons between computational and labora-
tory snow crystals over a broad range of growth 
conditions.

A Facet- Vicinal Model

One way to reduce the intrinsic anisotropies is to devise 
an improved set of CA rules. The facet- kink model uses 
only nearest- neighbor interactions to determine the 
boundary conditions, and we can do better by incorpo-
rating nonlocal effects, at the expense of increased algo-
rithmic complexity. One possibility in two dimensions 
is what I call a facet- vicinal model.

The basic idea in the facet- vicinal model is to define a 
new pa ram e ter L, equal to the width of the terrace 
“ledge” associated with each boundary pixel, in integer 
pixel units. Figure 5.19 shows one example of a vicinal 
surface with L = 3 for each boundary pixel. In this ex-
ample, all the terrace ledges are basal surfaces facing 
the +z direction. On a more complex surface, one would 
simply count how many adjacent boundary pixels make 
up a single ledge, and that value of L would be assigned 

details. With the facet- kink model, the growth rates are 
essentially exact for the facet surfaces and the 45- degree 
surface, but systematic errors are unavoidable on other 
vicinal surfaces. If one removes all the 2   factors in 
the above discussion, the maximum error can be as high 
as 40  percent.

In an absolute sense, a 10  percent growth- rate error 
may not be terrible, as experiments are typically not able 
to determine σfar to this level of accuracy. The prob lem 
arises  because this is an anisotropic error. If snow crys-
tal growth is sufficiently facet- dominated, as described 
above, then perhaps a small intrinsic anisotropy in the 
model  will have  little importance in its overall morpho-
logical development. Even a 2  anisotropic error may 
not have much of a detrimental effect [2014Kel]. Some 
features in snow crystal growth, however, may simply 
be impossible to reproduce with this level of intrinsic 
anisotropy. One example might be tip splitting (see 
Chapter  3), as this phenomenon arises when the at-
tachment kinetics are especially isotropic. Subtle fea-
tures in ridge formation and other common snow crys-
tal morphological features may also be adversely affected 
by built-in anisotropies in the facet- kink model. The 

r

z

FIGURE 5.18. This 2:1 vicinal surface includes equal numbers of 
facet and kink boundary pixels. A facet- kink CA model with a 
constant α yields growth- rate errors of about 10  percent, de-
pending on model par ameters.  These errors pre sent an intrinsic 
anisotropy in the facet- kink model that cannot be corrected by 
increasing the model resolution.

r

θz

FIGURE 5.19. A vicinal surface in which all the terrace ledges 
have a ledge width L = 3, and the vicinal  angle θ is given by 
tan(θ) = 1/L. For any individual terrace facing the +z direction (as 
shown  here), the ledge width L is defined as the number of adja-
cent boundary pixels in its row, and that value of L is assigned to 
all boundary pixels in that row.
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The growth algorithm is like that described above, 
but with Equations 5.18 and 5.19 replaced by

 δ tb = Ac
Δ x
vn

(1− fb )  (5.25)

for the growth of +z boundary pixels with 0 < θ < 45 de-
grees, like  those shown in Figure 5.19.

For the special case of a flat vicinal surface, we see 
that all the boundary pixels shown have identical prop-
erties.  Because σsurf  will be nearly constant along this flat 
surface, all the boundary pixels  will turn to ice pixels at 
essentially the same time, and this  will preserve the vici-
nal character of the surface. In the limit of small Δx, I 
expect that the facet- vicinal model  will provide an im-
proved model be hav ior compared to a facet- kink model. 
The facet- vicinal CA model has not yet been tried, as 
only facet- kink models have so far been demonstrated for 
snow crystal growth. I suspect that facet- vicinal, or some 
improved version of this model, may someday displace 
the facet- kink model for snow crystal growth. But the ad-
ditional level of complexity is prob ably not desirable 
 until facet- kink models have been better explored.

Monopole Matching

Extending the outer boundary to infinity can again be 
accomplished, to a reasonable approximation, using the 
known analytical solution for  spherical growth. The es-
sential idea is the same as was described above, but in 
place of Equation 5.11, we use

 
dV
dt

= 2πrb∑ Δ x2

δ tb
, (5.26)

where the sum is over all boundary pixels, and δ	tb is evalu-
ated with fb = 0. This yields the adaptive outer boundary

 σ i , j(ρ far )→σ∞ − dV /dt
4πρ far X0vkin

,  (5.27)

where σi,j refers to an outer boundary pixel, and 

ρ far = r2 + z2  is the distance to the outer boundary 
point.

to all the boundary pixels making up that ledge. Al-
though more complicated than the facet- kink model, 
this degree of nonlocal bookkeeping is not an onerous 
computational task.

From the ledge width L, the vicinal  angle θ is given 
by tan (θ) = 1/L, and the attachment coefficient is 
specified as αvicinal (σi,j, θ), being a function of both 
the surface supersaturation and the vicinal  angle. For 
simplicity, I now assume 0 < θ < 45 degrees, as gener-
alization to  angles outside this range is straightfor-
ward. For any vicinal surface, the boundary condi-
tions are again derived from the continuum boundary 
conditions

 X0
∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

=ασ surf ,  (5.22)

with

 

∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

= n̂ ⋅⋅∇σ = Ac
σ i , j+1 −σ i , j

Δ x
+ As

σ i+1, j −σ i , j

Δ x
,

    

∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

= n̂ ⋅⋅∇σ = Ac
σ i , j+1 −σ i , j

Δ x
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(5.23)

and again we are assuming Δr = Δz = Δx and σi,j = σ(ri, 
zj), and we define Ac = cos(θ) and As = sin (θ). With  these 
assumptions, the propagation equation for the supersat-
uration in any boundary pixel becomes

 σ i , j =
Acσ i , j+1 + Asσ i+1, j

Ac + As +αvicinal (σ i , j ,θ) Δ x
X0

.  (5.24)

This expression is a generalized form of the bound-
ary conditions described in Equations 5.16 and 5.17 
(and agreement can be seen by noting that σi,j+1 + σi+1,j  
= σi,j + σi+1,j+1 to first order in Δx). However, while 
Equations 5.16 and 5.17 applied with high accuracy 
to  only three surfaces, Equation 5.24 is accurate for 
all  flat vicinal surfaces with any vicinal  angle. Thus, 
with some increase in bookkeeping, we have a new 
boundary condition with substantially reduced intrinsic 
anisotropy.
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and a is the size of a  water molecule. Although xsurf is 
not well known on faceted ice surfaces, one expects 
(xsurf/a) > 30, so this  factor pre sents a sizable increase in 
the attachment coefficient over large vicinal surfaces in 
a CA model.  Here we see that the relevant surface diffu-
sion pa ram e ter in a CA model is not xsurf, but xsurf/a.

Given the finite resolution in a CA model, it is not 
unreasonable to speak of a fast surface diffusion (FSD) 
approximation that assumes xsurf/a → ∞. In this approx-
imation, any terrace that includes a kink site would 
have α ≈ 1 over the entire terrace surface, while only 
small faceted “island” terraces (which I also call “upper 
terraces”) would be described by αbasal or αprism. I suspect 
that the FSD approximation may be a reasonable repre-
sen ta tion of the  actual attachment kinetics, but the use 
of this approximation has not yet been explored in CA 
models. In contrast, the bare facet- kink CA model could 
be called a low surface diffusion approximation, as it ne-
glects surface diffusion entirely. This is almost certainly 
a poor approximation of the  actual ice surface physics, 
although, once again, the  actual surface diffusion lengths 
have not been well determined.

Concave Growth

The growth of shallow concave plates is another in ter est-
ing testing ground for exploring the accuracy of CA 
models. As shown in Figure 5.21, the issue of insufficient 
spatial resolution becomes especially acute with this 

This iterative outer boundary assignment matches 
the outer boundary to an optimal  spherical solution, so 
it would be quite accurate for the case of nearly isomet-
ric crystals. For the general case, it can be considered a 
monopole approximation of the correct outer boundary. 
One can imagine extending this to higher- order multi-
pole matching, but I  will not elaborate further on that 
possibility  here. For a sufficiently distant model bound-
ary, the monopole approximation is prob ably good 
enough for most purposes, allowing a reasonable first 
estimate for extending the model to an infinite outer 
boundary.

Surface Diffusion and the Fast Surface 
Diffusion Approximation

In its most basic form, the facet- kink CA model de-
scribed above does a rather poor job describing the 
growth of low- angle vicinal surfaces. As illustrated in 
Figure 5.20, surface diffusion on faceted surfaces trans-
ports admolecules to kink sites, and this pro cess can 
greatly increase the attachment coefficient near terrace 
steps (assuming αkink  αfacet). This bit of physics is ab-
sent in the facet- kink model, where all facet boundary 
pixels are described by αfacet, even if they are right next to 
kink sites [2015Lib1]. When incorporating this physical 
effect into a CA model, the increase in the attachment 
coefficient extends over a distance of approximately 
(xsurf /a) pixels, where xsurf is the surface diffusion length, 

    ≈   facet
    ≈ 1

α α
α

FIGURE 5.20. On a low- angle vicinal surface, molecules can diffuse along a faceted 
surface to reach kink sites where they readily attach. Thus α ≈ αfacet far from a kink site, 
while α ≈ 1 within one surface diffusion length from a kink site. A high Ehrlich- Schwoebel 
barrier that prevents diffusion over the tops of terrace steps is assumed  here.
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geometry. Watching a CA model evolve in real time, 
one sees a peculiar time dependence in the model that 
does not happen in real life. With a perfectly faceted 
plate (a1  in the figure), αbasal is low across the entire 
plate, and the slow growth of this surface yields a high 
σsurf  above it (see Chapter  4). As soon as a kink site 
appears, however (a2), α increases substantially (espe-
cially with an FSD model), and thus σsurf  drops sig-
nificantly. Moreover, this happens essentially instanta-
neously, as that is how fast the supersaturation field 
responds in the Laplace approximation. Once the ter-
race fills in and is replaced by a fully faceted surface, α 
and σsurf  again change instantaneously. This is a curi-
ous sight to watch, as clearly it does not accurately 
model what must happen around an  actual crystal 
(sketch b in Figure 5.21).

With full molecular resolution, even a shallow con-
cave surface contains hundreds of terrace steps all march-
ing inward. The attachment coefficient is thus αbasal 
near the plate edge and α ≈ 1 elsewhere, while σsurf over 
the surface changes  little with time as the steps pro gress. 
This issue would go away with sufficient resolution, and 
it would not be a prob lem if the concave depression is 
deep enough, but it does identify a deficiency in the CA 
technique. In contrast, a front- tracking model would 
likely  handle this scenario much better. Even at low spa-

tial resolution, the front- tracking model would look 
more like (b) in the figure, with a faceted region at the 
outer edge and a segmented concave region within. The 
freedom to build a surface out of short line segments, 
rather than small blocks, gives a substantial advantage to 
the front- tracking model in this case.

The Gibbs- Thomson Effect

So far in our CA modeling discussion, we have ignored 
surface energy effects, focusing mainly on vapor diffu-
sion and attachment kinetics, the latter depending on 
surface diffusion. The resulting models are likely reason-
able approximations in many situations, but our exami-
nation of solvability theory in Chapter 3 suggests that 
surface energy effects become impor tant when α is large 
and σ is low. This is borne out in model investigations 
like that shown in Figure 5.22.

In this modeling exercise, αbasal  αprism = 1, and σ∞ 
is quite low, yielding the growth of a one- pixel- thick plate 
from the edge of a columnar crystal. A single pixel mea-
sured 0.15 μm in this model, and the high curvature of 
the plate edge would create a large Gibbs- Thomson ef-
fect. Clearly the emergence of this ultrathin plate would 
have been suppressed by surface energy effects, so this re-
sult is not physically plausible.

(a1)

(a2)

(a3)

(b)

FIGURE 5.21. The growth of a shallow 
concave basal surface is difficult to repro-
duce with good accuracy in a CA model. 
In the model (a1, a2, a3), a new terrace 
nucleates at the edges of the plate and 
then grows inward. In real life (b), a con-
tinuous series of terraces nucleate at the 
plate edge and propagate inward. The 
 finite resolution of the model precludes 
a fully accurate repre sen ta tion of such 
surfaces.
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istic case. Another approach is to increase the CA pixel 
size Δx to the point that the Gibbs- Thomson effect is 
negligible even with one- pixel- thick structures. And 
again, this is not especially difficult to arrange, but it is 
not a very satisfying approach to the prob lem. Of course, 
a better solution is to add the correct surface energy phys-
ics to the CA model, thereby obviating the need to 
avoid certain areas of pa ram e ter space.

 Because the Gibbs- Thomson effect is quite small in 
snow crystal growth, it is sufficient to approximate it 
rather crudely, as this is enough to eliminate one- 
pixel- wide plates and other nonphysical model mani-
festations. One way to accomplish this quite easily in 
the CA model is to use the widths of the outermost 
terraces, which, owing to their extreme positions, do 
not include any kink pixels. The values of Lrmax and 
Lzmax in Figure 5.23 can be used as proxies to estimate 
the edge curvatures, and the precise algorithm used is 
not very impor tant.

The Gibbs- Thomson effect can be ignored in calcu-
lating the supersaturation field, as its effect is negligi-
bly small. It need only be included in the calculation 
of the pixel growth, specifically replacing the usual 
vn = αvkinσb with vn = αvkin(σb − dsvk), using the 
known Gibbs- Thomson pa ram e ter dsv and a roughly 
estimated curvature κ. Although the outer terrace 
widths are not extremely accurate curvature indica-
tors, this method is sufficient to suppress the for-
mation of structures with especially high surface 
curvature.

 There are several ways to avoid this prob lem in a CA 
model. One is simply to avoid regions of pa ram e ter space 
where low σ and high α can occur si mul ta neously. This 
is not especially difficult to arrange, and the model crys-
tal in Figure 5.22 was something of a physically unreal-

r

z

Lzmax = 7                      

Lrmax = 5

FIGURE 5.23. A CA model in which the outer basal and 
prism boundary pixels are shown in pink.  These pixels 
represent upper terraces with no adjoining kinks sites, 
and the terrace widths can be used to roughly estimate 
the edge curvature for including the Gibbs- Thomson 
effect.

FIGURE 5.22. An illustration of the Gibbs- Thomson effect in a cylin-
drically symmetric CA model of a plate growing from the edge of a 
column [2013Lib1]. With zero surface energy (top), a one- pixel- thick 
(0.15 μm) plate grows from the edge of the column, which is not a 
physically plausible solution. A Gibbs- Thomson length of 
dsv = 0.3 nm ( middle) or dsv = 1 nm (bottom) suppresses the thin- plate 
growth. Vertical lines show the original seed crystal, and the super-
saturation around the crystal is proportional to the image brightness.
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showed thicknesses down to 1 μm at temperatures 
near −2° C and again near −12° C [2008Lib1]. Column 
dia meters as low as a few microns  were also observed 
near −5° C [2009Lib].  These observations all suggest that 
a grid size of a few times X0 should be sufficient to re-
produce essentially all snow crystal structures, where 
X0 ≈ 0.15 μm in normal air. Finer structures are likely 
suppressed by the Gibbs- Thomson effect and perhaps by 
additional surface diffusion effects.

A Scaling Relation

If we switch variables from physical dimensions (r, z) 
to  scaled dimensions (ξr ,ξz )= X0

−1(r ,z),  the surface 
boundary condition, Equation 5.6, is converted to di-
mensionless form. Laplace’s equation is essentially unal-
tered by this variable change, so our CA models  will pro-
ceed equally well in dimensionless coordinates, while 
physical time intervals change from δ	t = Δx/αvkin σ to 
δ	t = X0 Δξ/αvkin σ. What this all means is that we have 
a scaling relation for growth as a function of the diffu-
sion constant D, or equivalently, a scaling relation with 
air pressure P [2013Lib1].  Because X0 ~ D ~ P −1, we see 
that increasing the air pressure by a  factor of two  will re-
sult in a crystal that grows half as large in a time that is 
twice as long compared to growth at the original pres-
sure. This assumes that all other aspects of the model (for 
example, the attachment coefficients) are unchanged as 
a function of pressure and crystal size.

This scaling relation directly explains some promi-
nent characteristics of snow crystal growth as a function 
of pressure. At low pressures, for example, crystals grow 
rapidly into faceted, prismatic shapes, even when the 
crystals are quite large. However, in normal air, initially 
faceted prisms quickly branch into dendritic morpholo-
gies, and dendritic shapes at higher pressures have been 
observed to show generally finer structural features 
[1976Gon]. At least at a qualitative level, the observed 
pressure dependence is nicely explained by this  simple 
scaling relation. Besides just morphologies, however, 

Structure- Dependent  
Attachment Kinetics

The outer facet widths defined in Figure 5.23, with the 
surface curvatures derived from them, can also be used 
to incorporate the SDAK phenomenon (see Chapter 4). 
The basic idea  here is to make the attachment coefficient 
depend on curvature κ, just as the effective supersatura-
tion depends on κ via the Gibbs- Thomson effect. Al-
though  these physical effects are quite diff er ent, both 
can be included in the CA model using the outer facet 
widths. This idea was explored somewhat [2015Lib2] by 
comparing CA models with experimental mea sure ments 
of thin plates forming on electric  needles near −15° C. 
Some additional details are presented in Chapter 8, with 
the results generally supporting the SDAK model and its 
CA models. Additional work is certainly needed in this 
area, but this result suggests that much could be learned 
from continued careful comparisons between CA mod-
els and experimental mea sure ments.

Minimum Feature Sizes

While the CA grid size Δx is somewhat arbitrary, it 
should not be made too large if one expects to repro-
duce realistic snow crystal structures. As we saw in our 
discussion of solvability theory (Chapter 3), the char-
acteristic radius of curvature of a growing dendrite tip 
is roughly

 Rtip ≈
2X0

s0α
,  (5.28)

and mea sure ments of ice dendrites in air have yielded 
Rtip ≈ 1 μm and αs0 ≈ 0.25 for fernlike dendrites 
near −15° C, and Rtip ≈ 1.5 μm and αs0 ≈ 0.2 for fish-
bone dendrites growing near −5° C (see Chapter 3). In 
both cases, the tip structure was quite rounded, sug-
gesting α ≈ 1.

In addition to dendrite tips, interferometric mea-
sure ments of thin plates growing in a free- fall chamber 
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the scaling relation also makes clear predictions regard-
ing growth rates as a function of pressure, although 
 these have not yet been experimentally confirmed.

But this scaling relation comes with numerous ca-
veats, as it assumes that all other  factors (other than 
particle diffusion) are in de pen dent of pressure and 
physical scale. For example, the scaling relation re-
quires that α be in de pen dent of pressure, which con-
tradicts the fact that α depends strongly on σsurf. In 
addition, as particle diffusion becomes rapid at lower 
pressures, heat diffusion begins to dominate as a  factor 
that limits growth, and this complicating  factor ne-
gates the  simple scaling relation. Other physical ef-
fects, including surface energy, surface diffusion, and 
the ESI, may also affect pressure scaling in vari ous re-
gions of pa ram e ter space. Thus, although expressing 
the prob lem in dimensionless coordinates brings some 
mathematical appeal, I find it tends to obscure the 
physics as well. And  there is no getting around the 
fact that snow crystal growth is not just a mathemati-
cal prob lem, as it involves a variety of physical pro-
cesses acting over many length scales.

Comparison with Experiments

Although CA models have some inherent shortcomings, 
they have already been shown to produce realistic snow 
crystal morphologies and growth rates. This first became 
abundantly apparent when 3D models yielded morpho-
logical structures that resembled real snow crystals to a 
much higher degree than did other models, including 
ridging and other features. In this section, I describe how 
CA models have fared quite well in comparisons with ex-
perimental observations as well, at least to the  limited 
degree to which the models have been tested.

To date, no 3D models of snow crystal growth, of 
any kind, have been subjected to detailed comparisons 
with experimental observations. That day is coming, 
but so far only 2D cylindrically symmetrical models 
have been examined in conjunction with quantitative 
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FIGURE 5.24. A quantitative comparison a 2D CA model with 
experimental data [2013Lib]. (a) A composite image made from 
five photo graphs shows the growth of a platelike snow crystal on 
the end of an electric ice needle, viewed from the side. (b) A cy-
lindrically symmetrical 2D CA model reproduces the observa-
tions, also showing the  water vapor diffusion field around the 
crystal. (c) A quantitative comparison of experimental data 
(points) and the computational model (lines) shows good agree-
ment. The inset photo shows the crystal in (a) from a dif fer ent 
 angle.
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The Two- Dimensional  Future

Although clearly 3D modeling  will be preferred in the 
long run, I believe that 2D cylindrically symmetrical 
models have some substantial advantages in the short 
term for investigating the physics under lying snow crys-
tal growth dynamics, including:

1) With one fewer dimension, the run times for a 2D 
code are much faster than a 3D code. This allows one 
to run dozens or hundreds of models quickly, which 
is highly beneficial when making detailed compari-
sons between models and experiments.

2) With a simpler geometry and fewer special cases to 
deal with, a 2D code is easier to write and modify 
than a 3D code. This makes it generally easier to 
incorporate additional physics, such as the Gibbs- 
Thomson effect, the ESI, and surface diffusion. 
Thus, a 2D model can be more practical for inves-
tigating the overall importance of  these effects in 
conjunction with experimental observations.

3) A 2D cylindrically symmetric model can provide a 
reasonably accurate approximation for  simple snow 
crystal morphologies, including  simple plates and 
columns, hollow columns, capped columns, and 
 simple forms growing on electric  needles.  Here again, 
the 2D model is well suited for examining basic mor-
phological changes in growth be hav ior with tem-
perature, supersaturation, and background gas pres-
sure. Low- pressure growth, exhibiting overall simpler 
structures than at higher pressures, is especially ame-
nable to 2D modeling.

4) Most of what we have learned to date about snow 
crystal attachment kinetics has been from mea sure-
ments of small crystals with relatively  simple mor-
phological structures. Once more, a 2D model 
should be sufficient for further investigations along 
 these lines.

5) Working with a 2D CA model is a good prelude to 
building a full 3D CA model, as the 2D model al-

snow crystal growth mea sure ments. Figure 5.24 shows 
one of my favorite early examples of a CA model 
matching the formation of a thin- plate snow crystal 
growing on the end of an electric ice needle (see Chap-
ter 8). The cylindrically symmetric CA model cannot 
reproduce the hexagonal faceting or ridge features, as 
 these would require fully 3D modeling. But it does 
reproduce the slightly concave plate growth and the 
shielding of the columnar growth just below the plate. 
In terms of overall morphological features, the model 
seems to get the details right.

Moreover, both the morphology and growth mea-
sure ments  were adequately reproduced using one set of 
model par ameters.  After some tweaking of the outer- 
boundary supersaturation and the attachment coeffi-
cients, the model could be made to fit the growth mea-
sure ments quite well, as can be seen in the figure. A clear 
result from this exercise was that αprism ≈ 1 was essential 
to fit the data and morphology, matching our expecta-
tions based on the observation that the plate sprouts 
branches if the supersaturation is raised only slightly 
higher than was used in this experiment. Libbrecht et al. 
[2015Lib2] performed a series of mea sure ments like this, 
investigating the formation of thin plates on electric 
 needles as a function of the faraway supersaturation level. 
This experiment nicely illustrates the potential for using 
electric  needles in quantitative studies of snow crystal 
growth.

This experiment is also a good example of how cy-
lindrically symmetrical CA models can be used to ana-
lyze precise growth mea sure ments to reach substantial, 
quantitative physical conclusions. As described else-
where [2015Lib2], the data support the ESI described 
in Chapter  4, indicating the need for structure- 
dependent attachment kinetics. The ESI model is still a 
hypothesis in need of additional testing, but it is abun-
dantly clear that comparing CA models with experi-
mental observations has much potential for yielding 
in ter est ing scientific pro gress regarding the physics of 
snow crystal growth.
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A 3D Hexagonal Grid

Figure 5.25 illustrates a hexagonal grid of cells appropri-
ate for a 3D CA snow crystal model. In this grid, each 
pixel has eight nearest neighbors: two in the vertical di-
rection and six in the horizontal direction, where  here 
we use “horizontal” as a somewhat generic term referring 
to all directions perpendicular to the c- axis. As with the 
previous 1D and 2D models, the cells are labeled as ice, 
vapor, or boundary pixels.

Figure 5.26 shows a con ve nient mapping that takes a 
honeycomb structure in the horizontal plane to a 
 simple rectilinear grid, which can be useful for book-
keeping purposes in the vari ous CA algorithms. Note 
the definition of the spacing Δx between prism- facet ter-
races shown in the figure. This is diff er ent from the 
definition used by Kelly and Boyer [2014Kel], for reasons 
that  will become apparent when we discuss boundary 
conditions below. We also define Δz to be the spacing be-
tween basal terraces, and we usually assume Δz = Δx. 
Like the previous CA models in this chapter, our 3D 
model  will be completely deterministic, including no 
random walks or random probabilities of any kind, and 
evaporation  will not be included.  Running the model 
twice with the same initial conditions  will produce the 
identical results. Such a deterministic model must always 

ready exhibits in ter est ing be hav iors and puzzling 
quirks, so learning about  these  will benefit  future ef-
forts with full 3D modeling.

THREE- DIMENSIONAL CELLULAR 
AUTOMATA

As described in the previous sections, 1D and 2D mod-
els provide an instructive perspective on many of the 
good and bad aspects of modeling snow crystal growth 
using cellular automata. CA models are generally 
 simple to construct and fast to run, but it is difficult to 
remove the mathematical anisotropies and other 
quirks that are essentially hardwired into the fixed grid 
and CA rules. Several of  these issues are relatively easy 
to see and understand in 2D cylindrically symmetric 
models, as I attempted to describe above. Three- 
dimensional models have not yet been abundantly ex-
plored, and the extra dimension  will likely introduce 
even more hidden foibles that have not yet been dis-
covered. Nevertheless, 3D modeling is the ultimate 
goal, so I examine this next step now. Much of this sec-
tion is based on work done by Gravner and Griffeath 
[2009Gra] and by Kelly and Boyer [2014Kel], to-
gether with some additional embellishments derived 
from my own research.
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FIGURE 5.25. A 3D hexagonal grid of cells for a CA 
snow crystal model.  Here the blue- green pixels repre-
sent ice, and the red pixels show a few representative 
boundary pixels. Vapor pixels are not shown. The 
boundary pixels are labeled with [HV] nearest- neighbor 
data, where H is the number of adjacent horizontal ice 
pixels, and V is the number of adjacent vertical ice pix-
els. Image adapted from [2009Gra].
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the full space from the 1/24 slice. A reflection bound-
ary condition is applied about the z = 0 plane, as it was 
with the 2D model discussed  earlier in the chapter, and 
similar boundary reflections occur at the edges of the 
30- degree wedge shown in Figure 5.27. As one might ex-
pect,  there is considerably more bookkeeping involved 
in a 3D model than in a 2D model, which is simply the 
price one has to pay for the added complexity.

Boundary Pixel Attributes

Another complicating issue with a 3D CA model is the 
plethora of diff er ent boundary pixel types, as illustrated 
in Figure 5.25. Moreover, to encompass all the varied 
physical pro cesses governing snow crystal growth, it is 
necessary to consider both nonlocal and nearest- neighbor 
interactions, as I briefly discussed for the 2D model. For 
this reason, it is necessary to describe the diff er ent types 
of boundary pixels and their vari ous attributes with some 
care. For example, a [01] boundary pixel indicates a po-
sition on a basal facet, and we also want to label this pixel 
with information relating to its surroundings beyond its 
nearest neighbors. One approach to accomplishing this 
is to count the number of boundary pixels in each of the 
six directions out from the pixel in question, staying in 
the same basal plane, as illustrated in Figure 5.28.  Doing 
so yields six integer pixel lengths ±	Li, where the value is 
positive if the line of boundary pixels ends with a ledge 
(a terrace step approached from the top) and the value is 
negative if the line ends in a kink (a terrace step ap-
proached from below).

From  these six lengths, one can extract quite a lot of 
useful information about the crystal structure near that 
boundary point:

1) If the Li are all positive, then the boundary pixel in 
question lies on an upper terrace, which is identi-
fied as having no ice terraces on top of it. On the 
faceted upper- terrace surface, αbasal is the appro-
priate attachment coefficient. As described in 
Chapter 4, the best functional form for this term is 

exhibit perfect sixfold bilateral snow crystal symmetry, 
simply  because the input physics and the external bound-
ary conditions are defined to have this same symmetry.

 Because of this intrinsic symmetry, the CA model 
need only include 1/24 of the total physical space being 
modeled, with reflection boundary conditions recreating 
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FIGURE 5.26. A coordinate mapping that connects a 2D hexagonal 
grid to a 2D Cartesian grid, with numbers showing corresponding 
pixels. Note the definition of the horizontal coordinate scale Δx, 
equal to the spacing between prism facet terraces. We typically 
assume Δx = Δz, the latter being the distance between basal 
facet terraces.

FIGURE 5.27. The 1/12 slice of horizontal space needed to 
model a symmetrical snow crystal. Reflection boundary condi-
tions apply on the two long edges, and corresponding dots il-
lustrate some reflected pixels on the stepped edge. The upper 
edge is the faraway boundary of the model.



178 T C H A P T E R  5

turning a facet- kink model into a facet- vicinal 
model, and the latter has substantially reduced in-
trinsic model anisotropy.

All  these possibilities exist for  every [01] boundary pixel, 
which is just one type of boundary pixel, and perhaps the 
simplest type at that. One must face an unfortunate real-
ity in snow crystal growth that the under lying growth 
physics is complicated, so many diff er ent effects must be 
considered before a computational model  will reproduce 
realistic crystals. It is not obvious at this point which 
physical effects must be included to high precision, which 
can be ignored altogether, and which are necessary but 
only to a rough approximation. Labeling each [01] 
boundary pixel with the six ±	Li is one way to incorpo-
rate a fair amount of flexibility into the model, which can 
then be used to explore diff er ent physical effects.

Moving on, the [20] boundary pixels describe prism 
facets, so, like the [10] boundary pixels, it is impor tant 
to characterize their surroundings carefully. Again, we 
can define four lengths ±	Li by mea sur ing the distances 
to the nearest ledges or kinks in each of the four vertical 
and horizontal directions. The discussion is then essen-
tially identical to that for the [10] boundary pixels, ex-
cept that we know that modeling of the prism- facet edges 
of thin plates is even more likely to involve some unusual 
physics, such as the SDAK effect or the Gibbs- Thomson 
effect. Suppressing the growth of one- pixel- thick plates 
via the Gibbs- Thomson effect could be incorporated into 
the model via  these par ameters.

Although the facet surfaces must be described care-
fully in any realistic snow crystal model, we can be a bit 
more cavalier regarding many of the remaining bound-
ary pixels. For example, simply setting α = 0 for all [10] 
pixels should be fine, as the molecular attachment at iso-
lated [10] tips  will be weak. At the same time, one can 
likely assume α = 1 for all “kink- dominated” boundary 
pixels (such as [30], [40], and [21]), as  these are all tight- 
binding sites. Snow crystal growth is largely facet domi-
nated, so  these model simplifications are likely acceptable 
over a broad range of growth conditions.

αbasal = Aexp(−σ0/σsurf), where A and σ0 are physical 
par ameters included in the model.

2) If at least one of the Li is negative and small, then sur-
face diffusion can carry admolecules to kink sites, 
where they are readily adsorbed. In this case, the 
boundary pixel is best described by α ≈ 1.

3) If the Li are all positive and two opposing Li are both 
small, then the boundary pixel may lie on a thin basal 
edge, for example, on the edge of a hollow column, 
which may change the value of αbasal through the 
SDAK phenomenon (see Chapter 4). Additionally, 
a thin edge suggests a high surface curvature, which 
lowers the effective supersaturation via the Gibbs- 
Thomson effect.

4) The six ±	Li can also be used to infer something 
about the vicinal  angle of the surface near the 
boundary pixel in question. As described in the 
2D model above, such knowledge is useful for 

FIGURE 5.28. This diagram of several basal terraces 
shows a topmost “upper” basal terrace in dark blue, 
the next lowest terrace in light blue, and the terrace 
below that in white. The red cell illustrates a represen-
tative boundary pixel that lies atop the light- blue ter-
race. Counting the number of same- terrace boundary 
pixels in the six directions shown yields the Li vector 
[−1, −2, +7, +5, +4, +7].
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with the outer boundary that is fairly close to the grow-
ing crystal. How close depends on the overall accuracy 
desired, as a close outer boundary  will distort the super-
saturation field to some extent.

For our 3D grid, the outer boundary is defined as 
(see Equations 5.10 and 5.27)

 σ B(ρ far )→σ∞ − dV /dt
4πρ far X0vkin

,  (5.30)

where σB refers to an outer boundary pixel, and ρfar is the 
distance from the model’s physical center to that outer 
boundary pixel location.

The rate of change of the total volume is given by (see 
Equation 5.26)

 dV
dt

= G1Δ x3

δ tb
∑ , (5.31)

where the sum is over all surface boundary pixels, and 
G1 = 2/ 3  so the numerator is equal to the volume of a 
single pixel in our model, assuming Δx as defined in Fig-
ure 5.26 along with Δz = Δx. The δtb are defined below.

Facet- Dominated Growth

As with the 2D model, most of the impor tant physics in 
three dimensions rests in the surface boundary condi-
tions, so it is impor tant that we define  these to reflect 
the correct under lying physical pro cesses as accurately as 
pos si ble. This is most easily done for a  simple basal sur-
face, where the continuum surface boundary condition

 X0
∂σ
∂n

⎛
⎝⎜

⎞
⎠⎟ surf

=ασ surf  (5.32)

(see Chapter 3) becomes (on upper basal surfaces only)

 σ b =σ b+1 1+α(σ b )
Δ x
X0

⎛
⎝⎜

⎞
⎠⎟

−1

 (5.33)

on our CA grid, where σb is the supersaturation in the 
basal boundary pixel, σb+1 is the supersaturation in the 
vapor pixel just above the boundary pixel, and α(σb) = αbasal 
is the attachment coefficient at the boundary pixel.

Note that the boundary pixel attributes must be recal-
culated  after each growth step in the model.  Every time a 
single boundary pixel turns to an ice pixel, the boundary 
geometry changes along with many of the ±	Li around it. 
This issue is usually handled by defining all the boundary 
pixels anew  after each growth step and immediately re-
calculating all attributes for the set. Some computational 
savings could be realized, however, by only recalculating 
boundary- pixel attributes near the position of the last 
growth step, as this is the only region where the bound-
ary changes significantly during that step.

Laplace Approximation

As discussed  earlier in this chapter, the low Peclet num-
ber associated with snow crystal growth means that the 
particle diffusion equation turns into Laplace’s equation, 
and growth modeling can be divided into separate dif-
fusion and growth steps. This latter point, first made by 
Kelly and Boyer [2014Kel], provides a substantial sim-
plification in CA modeling.

The first step is to assume a static crystal surface and 
iterate to a solution of Laplace’s equation in the space sur-
rounding the crystal. For a 3D model, the optimal 
propagation equation (see Equation 5.15) becomes

 σ a(k +1)= 1
9

σ i(k)
i=1

6∑ + 1
6

σ i(k),
i=7

8∑  (5.29)

where σa is a vapor pixel, and the sum is over its eight 
nearest neighbors. As usual with CA models, this is the 
 simple part, and the level of precision is mainly  limited 
by the number of iterative steps computed.

Outer Boundary and Monopole 
Matching

The next- easiest part of the model is the outer boundary, 
and again we can use monopole matching to extend the 
outer boundary to infinity to a satisfactory approxima-
tion. This avoids complications associated with an adap-
tive grid, allowing the use of a constant grid spacing 
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geometry correctly for a [21] boundary pixel, however, 
much like it was with the 45- degree surface in the 2D 
model discussed  earlier in the chapter. A few added 
touches like this can substantially reduce the intrinsic 
anisotropy in the CA model, which could improve how 
some familiar snow crystal features are reproduced in the 
model.

Another possibility is to use Gb = 1 on [01] and [20] 
facet surfaces while leaving it as a constant, but adjust-
able, model pa ram e ter on all other surfaces to see what 
happens. It appears that some additional research is 
needed to determine the best course of action. Greater 
algorithmic complexity can reduce intrinsic model an-
isotropies, but the additional effort may not greatly in-
fluence the outcomes for facet- dominated growth. Most 
impor tant at this point is simply to make sure that the 
surface boundary condition in Equation 5.34 reproduces 
the correct attachment physics on the facet surfaces with 
the highest pos si ble precision.

Note that this equation disagrees with the Kelly and 
Boyer boundary condition [2014Kel, Equation 11], as 
the latter is incorrect for a flat basal surface. Note also 
that Equation 5.33 should be used as part of the itera-
tive pro cess of defining the supersaturation field, as dis-
cussed in connection with Equation 5.7. When applied 
in this way, any functional form for α(σb) can be used, 
regardless of complexity. Both σb and α(σb) should con-
verge smoothly to the correct result during this iterative 
pro cess.

Unfortunately, the 3D grid geometry is such that 
Equation 5.33 cannot be used for other boundary pix-
els, even on a prism facet. We therefore define a general-
ized boundary condition that is valid for all boundary 
pixels

 σ b =σ opp 1+α(σ b )
GbΔ x
X0

⎛
⎝⎜

⎞
⎠⎟

−1

, (5.34)

where σb is any boundary pixel, σopp is the average su-
persaturation in all vapor pixels that “oppose” ice pix-
els for this boundary pixel (see Figure 5.29), and Gb is 
a dimensionless geometrical  factor that must be de-
fined for each boundary pixel. Con ve niently, Gb = 1 
for both [20] (prism facet) and [10] (basal facet) 
boundary pixels, which is why we defined Δx as we 
did in Figure 5.26.

Admittedly, calculating σopp is a chore for  every 
boundary pixel in  every iterative step of the relaxation 
pro cess, but this could be done in a straightforward man-
ner by using

 σ opp = 1
Nweight

i=1

8∑ Miσ i ,  (5.35)

where Mi is a weighting vector equal to 1 for an “oppose” 
pixel and 0 other wise, and Nweight = ΣMi. As with other 
boundary pixel attributes, the Mi can be calculated once 
 after each growth step. This vector then allows for rapid 
calculation of σopp at each step in the Laplace iteration 
of the supersaturation field.

For facet- dominated growth, the values of Gb on 
nonfacet boundary pixels may not greatly change the 
outcome of a model run. It might be beneficial to do the 

FIGURE 5.29. This diagram illustrates the calculation of σopp, 
the supersaturation averaged over all pixels that “oppose” a 
given boundary pixel. In each of  these examples, the red cell 
is a boundary pixel, blue cells are ice pixels, and the yellow 
cells “oppose” the ice pixels. The value of σopp is calculated 
by averaging the supersaturations in the yellow cells. This 2D 
diagram does not show additional cells in the vertical 
direction.
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produce reasonable model results. However, it is valuable 
to recognize that  these geometrical  factors exist and that 
errors in their calculation result in intrinsic anisotropies 
in the model. Understanding the extent and importance 
of this prob lem is left for another day.

Attachment Coefficients on Faceted 
Surfaces

I believe that the most impor tant challenge right now is 
to incorporate accurate attachment coefficients in snow 
crystal models, particularly on the primary facet sur-
faces. This  will be something of an iterative scientific 
pro cess, as detailed 3D modeling  will help us better un-
derstand the attachment kinetics, which, in turn,  will 
allow us to build better models, and so on.

As described in Chapter  4, targeted experiments 
mea sur ing αbasal and αprism on broad facets are necessary 
but not sufficient, as the attachment kinetics appear to 
depend on supersaturation, temperature, terrace width, 
and perhaps other  factors yet unknown. Growing and 
modeling fully 3D structures at diff er ent background 
pressures  will likely be needed to fully comprehend what 
is  going on with the attachment kinetics. And we are 
only just beginning to execute this scientific program in 
earnest.

Given that our understanding is quite  limited at pre-
sent, a good first step is to pa ram e terize αbasal and αprism 
with αfacet = A exp(−σ0/σsurf), where A and σ0 are model 
par ameters that may depend on a variety of other  factors. 
This functional form clearly applies to large- facet growth, 
and it is likely a good approximation for narrow facets 
as well. However, both A and σ0 may depend on facet 
width to some degree, as described in detail in Chapter 4. 
What ever the form chosen, the faceted αbasal and αprism 
apply only to upper- terrace boundary pixels or to  those 
far removed from any kink sites that can dramatically in-
crease α via surface diffusion. In terms of the ±	Li data, 
all  these par ameters must be greater than zero, or the 
smallest negative Li must be greater than some prescribed 
limit (which is a pa ram e ter in the model). It is an unfor-
tunate real ity in snow crystal modeling that we do not 

Growth Steps

As with the 2D model described above,  there are addi-
tional geometrical  factors inherent in how we define a 
growth step. We begin with a generic functional form for 
the time required to “fill” the remainder of each bound-
ary pixel, generalizing Equation 5.18 to

 δ tb = HbΔ x
vn

(1− fb ),  (5.36)

where fb is the filling  factor described above (equal to 0 
when a boundary pixel first appears and 1 when a bound-
ary pixel turns to ice),

 vn = α	vkin σsurf  = α(σb)vkin σb (5.37)

is the growth velocity normal to the ice surface, and Hb 
is a dimensionless geometrical  factor near unity.

As with Equation 5.34, Hb = 1 for both [20] (prism 
facet) and [10] (basal facet) boundary pixels. This accu-
rately describes facet growth partly  because of our choice 
of Δx in Figure  5.26, along with Δz = Δx, and partly 
 because the surface normals lie along the grid axes for 
both primary facets. As with the Gb  factors, determin-
ing Hb for nonfaceted boundary pixels is difficult to do 
with high accuracy, as the correct surface normal is not 
easily determined in a CA model. I described this same 
prob lem for the 2D model, where the facet- vicinal model 
appears to achieve reasonably accurate geometrical 
 factors for all flat vicinal surfaces, thus substantially re-
ducing the built-in anisotropies in the CA model.

Extending the facet- vicinal ideas to a 3D model 
would be challenging, as one would have to deal with 
quite a bit of additional geometrical complexity. I can 
imagine vari ous numerical strategies for calculating ap-
proximate Gb and Hb using the ±	Li data, but nothing 
that would be both  simple and accurate. At this stage in 
our understanding of 3D CA snow crystal models, I sus-
pect that it is premature to worry too much about the 
intrinsic anisotropies and geometrical precision associ-
ated with  these geometrical  factors. Perhaps simply using 
Gb = Hb = 1 for all boundary pixels is good enough to 
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ary pixel by requiring that all the Li be positive, as de-
scribed above. Moreover, the curvature of the surface at 
a given point can be estimated from the Li data as well; 
for example, by the sum of opposing Li. The precise al-
gorithm is prob ably not especially impor tant, and one 
can imagine diff er ent approaches. What likely does 
 matter is consistently identifying large arrays of high- 
curvature surfaces, for example, the edges of thin plates 
that remain thin as the crystal grows.

In the SDAK effect, a high- curvature basal or prism 
surface would exhibit an attachment coefficient that is 
far larger than the usual αprism associated with broad 
prism facets (see Chapter 4). This effect can be incorpo-
rated into the model by letting the facet attachment co-
efficients depend on the upper facet width, as extracted 
from the Li boundary pixel attributes. This  factors into 
α(σb) in Equation 5.34, and we see that α(σb) changes 
automatically with  every update of the boundary pixel 
attributes. The same goes for the growth- step calculation 
in Equations 5.36 and 5.37.

For the Gibbs- Thomson effect, the surface curvature 
need only be used to adjust the growth step, so Equation 
5.37 is replaced by the general form

 vn = α(σb)vkin (σb − dsvκ) (5.38)

where κ is again estimated from the Li boundary pixel 
attributes.  Because the Gibbs- Thomson effect is not 
strong in snow crystal growth, it is prob ably not neces-
sary to provide an extremely accurate algorithm for es-
timating κ. Likewise, it is prob ably not necessary to in-
clude the Gibbs- Thomson effect when solving Laplace’s 
equation to determine the supersaturation field around 
the growing crystal, as the perturbation arising from sur-
face curvature is so small.

Throughout this discussion, we see that the key ele-
ment for including the Gibbs- Thomson effect and inves-
tigating the SDAK phenomenon in a 3D CA model is 
the initial step of generating boundary pixel attributes 
that include nonlocal information via the ±	Li data. Only 
nearest- neighbor considerations  were used in previous 

yet fully understand attachment kinetics, although the 
CAK model (see Chapter 4) can be used as a reasonable 
approximation.

Upper Terrace Effects

Sharp edges are somewhat common features in snow 
crystal growth, and it appears that  these require some 
special attention in CA models. The edges of thin plates 
are especially prominent near −15° C, yielding narrow 
prism facets, but narrow basal facets can also be found 
on the edges of sheathlike hollow columns. In both cases, 
the radii of curvature of the edge surfaces appear to be 
few times X0 in extreme cases, although the dimensions 
are not known with  great precision.

We have regularly observed thin plates in normal air 
with overall thicknesses down to 1 micron using accu-
rate interferometric mea sure ments [2008Lib1, 2009Lib], 
and this thickness puts an upper limit on the edge cur-
vature for  these crystals. Sheathlike edges appear to be a 
few times thicker, but I am not aware of any accurate 
mea sure ments for  these crystals. In a curvature class all 
their own are the electric ice  needles (see Chapter 8), 
where the tips of c- axis  needles have exhibited radii of 
curvature down to 100 nm in the most extreme cases 
[2002Lib]. Incorporating electric- field effects in CA 
models is beyond the scope of this chapter, but suffice it 
to say that even 100 nm surface curvatures are not im-
possible to realize in snow crystal growth experiments.

 There are two primary physical effects that one 
should consider when modeling  these high surface cur-
vature features: the Gibbs- Thomson effect (Chapter 2) 
and the SDAK effect (Chapter 4). The former is a well- 
understood phenomenon but appears to play a relatively 
small role in snow crystal growth. The latter appears to 
play a substantial role in the formation of thin plates 
near −15° C and hollow columns near −5° C. I believe 
that both  these physical phenomena can be incorporated 
into a CA model, to a reasonable approximation anyway, 
by considering only the upper terraces of faceted surfaces. 
The upper terraces are easily identified for a given bound-
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poor, and the value could be quite diff er ent on the basal 
and prism facets. As a result, surface diffusion is per-
haps best left as two adjustable par ameters (one for each 
facet) at pre sent.

Note that even a leaky Ehrlich- Schwoebel barrier 
does not mean that α ≈ 1 on upper- terrace surfaces. 
Moreover, the xsurf /a logic described above does not apply 
to upper terrace surfaces like it does to other surfaces in 
CA models. In the case of a leaky Ehrlich- Schwoebel 
barrier (Chapter 4), admolecules near the edges of upper 
terraces could diffuse to an edge and be absorbed by a 
lower kink site. Physically, however, this only happens 
within a distance xsurf from the edge, meaning it does not 
affect the entirety of a large facet area. It is reasonable to 
assume, therefore, that αfacet on an upper terrace in our 
CA model is also negligibly affected by a leaky Ehrlich- 
Schwoebel barrier.

Quantitative Modeling

It is a telling statement that no 3D snow crystal models 
to date have ever been directly compared with quantita-
tive experimental data.  There is an opportunity  here, as 
the CA techniques described in this chapter are begin-
ning to yield realistic faceted + branched structures, and 
the corresponding snow crystal forms can now be grown 
reliably on the ends of electric ice  needles (see Chapter 8). 
 These are both quite recent developments, and many new 
insights may be forthcoming when they are brought to-
gether for detailed comparisons.

Our understanding of the under lying physics is in-
complete at pre sent, but that is what makes the scientific 
challenge especially in ter est ing. The best way to proceed 
is likely just to plunge forward with both modeling and 
quantitative growth studies, comparing one with the 
other to see what works and what does not. A complex 
menagerie of morphological be hav iors awaits explana-
tion. This appears to be a fruitful path to follow in the 
ongoing quest to improve our understanding the physi-
cal dynamics of snow crystal growth.

3D CA models [2009Gra, 2014Kel], but it is becoming 
clear (in my opinion) that nonlocal surface structure  will 
be absolutely necessary before CA models  will be able to 
match experimental observations of snow crystal growth 
rates and morphologies.

Vicinal Surfaces and the FSD 
Approximation

While nonlocal information can be impor tant on upper- 
terrace faceted surfaces, it is also relevant on vicinal sur-
faces, which include essentially all non- upper- terrace sur-
faces in the CA model. The basic idea  here is that 
admolecules on normal terraces (not upper terraces) can 
diffuse along the surface  until they reach kinks sites, 
where they are readily absorbed. Thus, surface diffusion 
increases the attachment kinetics to α ≈ 1 for surface lo-
cations closer than xdiff , the surface diffusion length, to 
the nearest kink sites. Moreover, as discussed above in 
connection with Figure 5.20, the impor tant pa ram e ter 
for CA modeling is not xsurf, but xsurf /a, as surface diffu-
sion effectively operates over xsurf /a cells in the CA model. 
So in a practical sense, α ≈ 1 should be assumed on most 
non- upper- terrace surfaces in the model. Upper- terrace 
surfaces are described by αfacet, as are surfaces where 
|Li|  xsurf /a for all negative Li. But all other surfaces 
are best described by α ≈ 1. This is the essence of the 
FSD approximation described above.  Because essen-
tially all nonfaceted surfaces have α ≈ 1, the overall 
growth dynamics are largely determined by the be hav-
ior of the faceted surfaces.

Incorporating surface diffusion is relatively straight-
forward using the ±	Li boundary pixel attributes. If the 
distance to the nearest kink site is less than some pre-
scribed value Lsd in the model, then one simply sets 
α ≈ 1 for that boundary pixel and proceeds. It is likely, 
given our current knowledge of surface diffusion, 
that this method  will set α ≈ 1 over much of the sur-
face for all but the most cleanly faceted crystals. Nev-
ertheless, the existing mea sure ments of xsurf are quite 



FIGURE 6.1. This synthetic snow crystal mea sures about 3 mm from tip to tip and was grown by the 
author using the Plate- on- Pedestal (PoP) technique described in Chapter 9. The edges and faceted 
features are noticeably sharper than can be found in natu ral snow crystals,  because this laboratory 
specimen was photographed as it was growing.
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SIX

Laboratory Snow Crystals

A scientist does not study nature  because it is useful; he studies it  because he delights in it, 
and he delights in it  because it is beautiful.

— HENRI POINCARÉ, SCIENCE AND METHOD ,  1908

C reating synthetic snow crystals is an essential 
activity in our quest to understand the physical 
dynamics of ice growth. Laboratory investi-
gations reveal how morphologies change 

with temperature, supersaturation, air pressure, and 
other par ameters, while careful growth mea sure ments 
allow us to develop models and test quantitative hypoth-
eses. Comparing experimental data with theoretical 
predictions is the time- honored scientific method that 
allows us to gradually comprehend the under lying mo-
lecular pro cesses that cause formless  water vapor to spon-
taneously consolidate into intricately patterned snow 
crystals.

Beginning with Nakaya’s pioneering work creating 
the first laboratory snowflakes, researchers have devel-
oped a variety of strategies for nucleating, preparing, 
imaging, and mea sur ing ice crystals  under a range of en-
vironmental conditions. In some cases, including the 
example shown in Figure 6.1, the primary motivation is 
an artistic one, and I describe how to grow specimens like 
this one in Chapter 9. More commonly, however, snow 
crystals are produced for specific scientific objectives, and 

I describe some detailed techniques along  those lines in 
Chapters 7 and 8. Regardless of the under lying goals, it 
is useful to possess a toolbox of practical experimental 
skills that can be employed to create quality specimens. 
While the scientific lit er a ture includes a considerable 
list of hardware approaches, I survey  here some broadly 
applicable techniques that I have found especially use-
ful when studying the physical dynamics of snow crys-
tal growth.

FREE- FALL SNOW CRYSTALS

One of the simplest ways to grow synthetic snow crys-
tals (not the same as artificial snow, as seen in Fig-
ure 6.2) is by letting them fall through the air as they 
grow, essentially imitating the formation of atmo-
spheric snowflakes. Of course, a laboratory growth 
chamber is vastly smaller than a winter cloud, so we 
can expect that freely falling synthetic snow crystals 
 will be substantially smaller than the natu ral variety. 
But the size difference is not as  great as one might na-
ively expect, which we can show from an understanding 
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than  those falling a kilo meter. The details  will depend 
on the attachment kinetics, crystal morphology, and 
other  factors, and thin plates  will fall slower and grow 
larger than spheres. Thus, even with a modest fall dis-
tance in a laboratory free- fall chamber, crystal dia-
meters of up to 100 microns are readily achievable in a 
relatively short time.

Freezer Snowflakes

A basic top- loading  house hold freezer is perhaps the least 
expensive means of creating freely falling synthetic snow 
crystals. The set-up illustrated in Figure 6.3 was first con-
ceived by Vincent Schaefer and colleagues in the 1940s 
as an easy demonstration of basic cloud physics [1981Sch]. 
Opening the top of the freezer and simply breathing 
down into it produces a vis i ble cloud of  water droplets, 
as  water vapor from your breath condenses on dust par-
ticles in the cold air. The cold air sinks stably into the 
freezer, and the fog  will float inside for many minutes be-
fore slowly turning into frost on the freezer walls. The 
supercooled liquid  water droplets supersaturate the air 
in this environment, making an excellent nursery for 
growing snow crystals.

of snow crystal growth and aerodynamics. From Chap-
ter  3, the terminal velocity of a small  spherical ice 
crystal of radius R is

 uterm ≈ 2
9
ρice g

µ
R2 ,  (6.1)

and assuming that the growth of the sphere is purely dif-
fusion  limited at a pressure of 1 atmosphere gives the 
growth velocity

 v ≈α diff vkinσ∞ ≈ X0

R
vkinσ∞ .  (6.2)

Integrating this expression gives the crystal radius as a 
function of time:

 R ≈ 2X0vkinσ∞ t .  (6.3)

Using typical values of vkin ≈ 300 μm/sec and σ∞ ≈ 0.01, 
integrating the terminal velocity over time gives a fall dis-
tance of h ≈ 1 meter  after a fall time of T ≈ 140 seconds, 
at which point the crystal radius is R ≈ 11 μm. Impor-
tantly,  these results scale as R ~ h1/4 and T ~ h1/2, so crys-
tals falling 1 meter  will only be about six times smaller 

FIGURE 6.2. Artificial snow at ski resorts (left) is made from rapidly freezing liquid  water droplets, 
which produces small globules of ice (right). Synthetic snow crystals, such as the example in Figure 6.1, 
are made from freezing  water vapor, which can yield the same elaborate morphological structures 
seen in natu ral snow crystals.
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1994Gon], and the expansion nucleator described below 
provides an especially  simple and effective technique.

House hold freezers are usually set to about −15° C, 
 because this is cold enough to reliably freeze liquid  water 
 after an hour or two, but this temperature is also ideal 
for growing thin, hexagonal snow crystal plates. By shin-
ing a bright flashlight or  laser pointer into a cloud of 
freezer snowflakes, sparkling reflections from the flat 
basal facets can be observed quite easily. Covering the 
walls of the freezer with dark cloth greatly enhances the 
view. A cloud of  water droplets looks like a rather dull 
gray fog, but a cloud of platelike crystals in front of a 
black background makes a beautiful swirl of sparkling 
diamond dust.

The tiny freezer snowflakes are generally too small to 
resolve with the naked eye, so making out their mor-
phology requires a microscope. As described in the cal-
culation above, crystal sizes in a free- fall chamber are 
typically some tens of microns, which is smaller than the 
dia meter of a  human hair, so quite high magnification 
is needed just to see their overall hexagonal form. More-
over, the viewing is best at the bottom of the freezer, 
where the crystals fall, so a  house hold freezer is perhaps 
not the ideal scientific tool for making detailed snow 
crystal observations.

Expansion Nucleator

An excellent general- purpose method for initiating ice 
crystal growth is the expansion nucleator shown in Fig-
ure 6.4. In this device, pressurized air fills the nucleator 
body via an air hose and a flow restrictor, supplied by a 
commercial oil- free air compressor. The nucleator body 
is typically 5–10 cm in length, the air pressure is about 
15–30 psi, and I usually pass the compressed air through 
a column of activated charcoal grains to absorb any re-
maining chemical impurities. With the solenoid valve 
closed, pressurized air fills the nucleator in a few seconds. 
Abruptly opening the solenoid valve allows the com-
pressed air to expand rapidly into the surrounding me-
dium. The dynamics of the expansion is impossible to 

The next step in making freezer snowflakes is to pro-
vide a nucleation event that  will stimulate the produc-
tion of some microscopic ice particles. This step is nec-
essary,  because supercooled liquid droplets can remain 
unfrozen for many hours at −15° C, which is a typical 
freezer temperature. One effective nucleation method is 
to drop a small fleck of dry ice into the floating freezer 
cloud,  because dry ice sublimates at a temperature 
of −78° C. The frigid particle produces an extremely 
high supersaturation in its vicinity that leaves a trail of 
nucleated ice crystals in its wake as it falls through the 
freezer. By repeatedly breathing into the freezer and 
dropping in flecks of dry ice, one can create a veritable 
flurry of tiny snow crystals. Popping individual bubble- 
pack cells in a syringe can nucleate crystals as well 
[1976Rya], although not as effectively as dry ice. Amus-
ingly, Schaefer also described mixing iodine vapor with 
lead pollution from car exhaust to form lead- iodide ice 
nucleators [1981Sch], but that technique is no longer an 
option in a world of unleaded gasoline. Particles of silver- 
iodide smoke are also good ice nucleators [1982Gon, 

FIGURE 6.3. A top- loading  house hold freezer can be used to 
demonstrate several meteorological pro cesses involved in the 
formation of snow crystals. Image adapted from [1981Sch].
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around them, causing any remaining  water droplets to 
evaporate (see Chapter  1). Thus, the pro cess could be 
described as a miniature, high- speed snowfall. Each dis-
charge of the nucleator results in a puff of microscopic 
crystals.

Note that the expansion nucleator in Figure 6.4 loses 
its effectiveness when the air discharges into a low- 
pressure environment. Before the valve opens, the  water 
vapor density inside the nucleator body is roughly equal 
to csat at the body temperature.  After expansion, the air 
fills a much larger volume at low pressure, thus reducing 
the  water vapor density by roughly the expansion ratio. 
If the reduced vapor density is below csat at the ambient 
temperature inside the main growth chamber, then any 
nucleated crystals  will quickly sublimate away. This di-
lution effect can be countered by using much higher 
pressures, a task that is best accomplished using a super-
sonic de Laval nozzle [1995Hua].

Convection Chambers

A relatively  simple method for creating free- fall snow 
crystals is the convection chamber illustrated in Fig-
ure  6.5, which has become something of a work horse 
device in my lab. In the chamber, a heated  water reser-
voir provides a source of  water vapor via evaporation, si-
mul ta neously driving convection that carries the  water 
vapor upward. Turbulent convection mixes the air to 
yield a steady- state supersaturated environment that is 
reasonably uniform, although not as homogeneous as in 
a droplet- filled cloud chamber. An expansion nucleator 
generates seed crystals on demand, at a known time, and 
 these crystals grow as they slowly descend in the super-
saturated air. Typical fall times τfall are about 1–5 min-
utes, depending on supersaturation, at which point crys-
tals begin to appear on the substrate for observation. By 
about 2τfall, most of the crystals have settled to the bot-
tom of the chamber.

Increasing the temperature of the  water reservoir in-
creases the supersaturation in the chamber, giving the 
convection chamber added flexibility compared to a 

calculate precisely, as the flow is turbulent, nonadiabatic, 
and generally quite ill defined. Nevertheless, the rapid ex-
pansion cools the air, thus greatly increasing the super-
saturation at localized positions in the outflow, which is 
sufficient to nucleate the formation of numerous tiny ice 
crystals.

The expansion nucleator relies on the fact that nor-
mal room air invariably contains a good amount of 
 water vapor along with an ample supply of dust parti-
cles that act as ice nucleation sites. It is only necessary 
to increase the air pressure  until ice crystals appear. A 
higher body temperature requires more cooling of the 
air, and thus higher air pressures, so I usually keep 
the nucleator at about −15° C. At this temperature, no 
crystals form if the pressure is much below 10 psi, 
while 30 psi is generally high enough to form some 
hundreds or thousands of minute crystals each time 
the valve is pulsed open.

The expansion nucleator creates ice particles through 
a pro cess essentially like that occurring in a winter 
cloud, except much faster. The rapid expansion cools 
the air and  causes  water droplets to condense on sus-
pended dust particles, which is basically how clouds 
form in the atmosphere. As in a cloud, the first nucle-
ation step produces liquid  water droplets rather than ice 
crystals, in accordance with Ostwald’s step rule. But 
the tiny droplets only last a fraction of a second in the 
nucleator pulse, as continued expansion provides addi-
tional cooling, causing some of the droplets to freeze. 
The nascent ice particles quickly absorb  water vapor 

Flow
restrictor

Compressed
air in

Body Solenoid
valve

FIGURE 6.4. This expansion nucleator is a  simple apparatus for 
creating small ice crystals. When the valve is pulsed opened, the 
rapid expansion nucleates numerous tiny crystals.
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quantitative data over a broad range of temperatures and 
supersaturations in air [2008Lib1,2009Lib]. Figure 6.6 
shows some photographic examples of snow crystals 
grown in a convection chamber at supersaturations close 
to σ water, and Figures 6.7 and 6.8 show mea sure ments of 
growth rates. The diff er ent experiments show generally 
good agreement with one another, but the large diffusion 
corrections in air at one bar make it difficult to deter-
mine σsurf from σ∞.

 These mea sure ments illustrate that a free- fall cham-
ber is a  simple and effective apparatus for growing small, 
 simple snow crystals  under reasonably controlled condi-
tions. Growth times are  limited, but many crystals can 
be observed from a single nucleation pulse. The growth 
morphologies are not encumbered by supporting sub-
strates or filaments, and no complex levitation strategies 
are needed. While not ideal for  every experimental goal, 
a free- fall chamber can be quite a useful tool when grow-
ing synthetic snow crystals.

A Seed- Crystal Generator

One of my favorite applications of the free- fall convec-
tion chamber is to produce an on- demand supply of 
copious ice seed crystals. The basic idea is a chamber 
like that shown in Figure 6.5 but perhaps smaller and 
without the observation hardware. By opening the 
nucleator valve about once  every 10 seconds during 
operation, a continuous cloud of fresh ice crystals can 
be found floating in the chamber. The small crystals 
grow quickly at first, while larger crystals  settle to the 
floor of the chamber.  These two effects combine to 
yield a seed- crystal size distribution inside the cham-
ber that typically peaks at around 20–50 microns. As 
seen in Figure 6.6, thin plates or slender columns can 
be produced, depending on the chamber temperature. 
Crystals with  simple, faceted prism morphologies are 
readily produced if the supersaturation is kept sub-
stantially lower than σ water. The experiments described 
in Chapters 7 and 9 began with seed crystals created 
using this method.

cloud chamber. However, while it is straightforward to 
produce supersaturations that range from zero to σ water, 
mea sur ing the precise value of the supersaturation is a 
challenging task. We presented a calibrated method 
using differential hygrometry mea sure ments of air sam-
pled from the chamber [2008Lib2], but the potential for 
systematic errors with this technique is significant. An-
other issue is that the growing crystals remove  water 
vapor from the air, and its rate of replenishment from the 
 water reservoir is not well known. Despite  these prob-
lems, convection chambers can provide reasonably 

Nucleator

Growing,
freely falling
snow crystals

Crystal

Glass

Window

FIGURE 6.5. A free- fall convection chamber. The expansion 
nucleator near the top of the chamber produces microscopic 
seed crystals that subsequently grow and slowly fall in the su-
persaturated air.  After a few minutes of growth, the crystals 
fall to the bottom of the chamber, where some of them land 
on a glass substrate for observation.
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FIGURE 6.6. Examples of snow crystals grown in a free- fall convection chamber at temperatures 
of −2° C (top), −5° C ( middle), and −15° C (bottom). The scale bar in the lower left corner of the image is 
50 microns in length. The variation in crystal size and morphology at each temperature reflects inho-
mogeneities in temperature and supersaturation in the chamber. Overall, however, the morphologies 
are consistent with expectations from the Nakaya diagram.
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handing, or experience sublimation/regrowth cycling are 
apt to become contaminated with surface impurities. I 
believe that chemical contamination effects have been, 
and continue to be, underestimated in many snow crys-
tal experiments, and beginning with fresh, clean seed 
crystals is a good first step in reducing potential contam-
ination effects.

SUBSTR ATE SUPPORT

Dropping a seed crystal onto a fixed, flat substrate and 
watching its subsequent development is a popu lar 
method for studying snow crystal formation. Sapphire 
is often the substrate material of choice, as it is trans-
parent and has a high heat conductivity. The fact that 
sapphire is highly resistant to scratching is a big plus as 
well. Some advantages of growing snow crystals on 
substrates include:

1) Individual crystals can be observed for long periods 
of time.

In typical operation, the seed- crystal generator op-
erates continuously and is located adjacent to a sepa-
rate experiment. When some seed crystals are needed, 
a bit of air is drawn out of the free- fall chamber and 
wafted over a waiting cold substrate. A few seed crys-
tals drop onto the substrate, which can then be exam-
ined to select a suitable test crystal for subsequent obser-
vations. When a free- fall seed- crystal chamber is set up 
with a temperature near −15° C and modest supersatura-
tion levels, roughly half of the crystals are well- formed 
 simple hexagonal plates, the remainder being malformed 
to some degree, perhaps from mid- air collisions, polycrys-
talline nucleation, or other  factors.

A highly desirable feature of this seed- crystal genera-
tor is its intrinsic self- cleaning nature. Ice crystals are 
created in large numbers, and they typically fall to the 
bottom of the chamber in just a few minutes. The grow-
ing crystals, both in the chamber and covering the walls, 
absorb chemical contaminants from the chamber air, 
thus rapidly and continuously cleaning it. In contrast, 
seed crystals that sit for long periods, require a lot of 
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However, substrates have some significant disadvantages 
as well, including:

1)  Water droplets readily condense on substrate surfaces, 
generally limiting supersaturations to σ water and below.

2) The additional boundary condition at the substrate 
surface can affect the ice growth be hav ior.

3) Heterogeneous nucleation at the ice/substrate inter-
face can strongly affect the growth of faceted surfaces 
that intersect the substrate.

2) The stationary crystals can be mea sured using 
high- resolution microscopy or interferometry, al-
lowing precise mea sure ments of sizes and growth 
velocities.

3) Supersaturations can be accurately modeled with a 
plane- parallel ice reservoir above a fixed substrate (see 
Chapter 7).

4) Crystals experience good thermal coupling to the 
substrate, greatly reducing heating effects that may be 
problematic in free- fall or levitation experiments.
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the artistic creation of large stellar crystals, again grow-
ing crystals on a sapphire substrate.

Thin Filaments

Filamentary support of snow crystals has been popu lar 
ever since Nakaya’s first experiments using rabbit hair 
[1954Nak], and the current state- of- the- art has been the 
development of thin capillary tubes for this purpose 
[1996Nel]. Heating and drawing capillaries with tip dia-
meters down to 10 μm has been a staple of laboratories 
for many de cades, and suitable commercial micropipettes 
have recently become available. Creating an isolated ice 
crystal at the tip can be accomplished by freezing  water 
in the capillary from below [1996Nel] or by using ice 
transfer from the top, as shown in Figure 6.10.

Filament support reduces some of the prob lems associ-
ated with using substrates, but not entirely. Substrate in-
teractions can still cause unwanted heterogeneous nucle-
ation, and droplet condensation on the filament  will still 
be pre sent at high supersaturations. The per sis tence of 
 these substrate- related issues plus low experimental 
throughput in creating crystals have made capillary sup-
port generally less popu lar compared to other methods.

Negative Snow Crystals

Pulling a vacuum through a thin capillary tube embed-
ded in a block of single- crystal ice can yield “negative” 
snow crystals like the one shown in Figure 6.11.  Water 

Regarding this last point, Figure  6.9 illustrates how 
substrate interactions can result in the nucleation of 
new terraces on faceted ice surfaces. The ice/substrate 
contact  angle is like the often- discussed water/substrate 
contact  angle, and both depend on how well  water mol-
ecules bond to the substrate surface. Enhanced ice 
growth from this mechanism can be quite pronounced 
on hydrophilic surfaces (see below). The ice/substrate 
contact  angle seems to be generally larger than with 
 water, usually increasing somewhat at lower tempera-
tures. Sapphire and most other surfaces are slightly hy-
drophilic, with θcontact < 90 degrees, and the contact 
 angle is usually smaller if the surface is not clean. How-
ever, surface coatings can often be applied to yield ro-
bust hydrophobic surfaces with θcontact > 90 degrees. Cre-
ating robust superhydrophobic coatings with θcontact > 150 
degrees is an active area of research. One concern with 
 these advanced coatings, however, is they can be quite 
thick and have low thermal conductivities. This may re-
duce the thermal coupling to the substrate to the point 
that latent heating can significantly reduce the mea sured 
growth rates (see Chapter 3).

The advantages of using substrates generally out-
weigh the disadvantages to the point that most ice 
growth investigations have been conducted on a sub-
strate of some kind. I discuss two such experiments in-
volving the growth of  simple ice prisms in Chapter 7, 
where precise growth rates  were mea sured  under well- 
controlled conditions for investigating the attachment 
kinetics. Chapter 9 pre sents another apparatus used for 

Substrate

Ice
θcontact < θfacet

θcontact > θfacet

Ice

Substrate

FIGURE 6.9. If the ice/substrate contact 
 angle is less than the facet/substrate  angle 
(left sketch), then new terraces  will be nu-
cleated at the ice/substrate contact line. 
With a larger contact  angle (right sketch), 
new terrace nucleation can only occur on 
the  free faceted surface, away from the 
contact region. The enhanced terrace nu-
cleation in the first case can greatly in-
crease the growth rates of facets contact-
ing the substrate.
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over, the time needed for this prismatic void to relax to 
its equilibrium shape can be exceedingly long. If the cap-
illary  were somehow extracted to leave  behind a clean 
faceted void, then relaxation to a  spherical shape would 
mean removing molecules from the facet surfaces and de-
positing them in the corners. This pro cess is strongly 
suppressed by the nucleation barrier, greatly increasing 
the relaxation time.

The formation of negative snow crystals is also af-
fected by thermal diffusion, resulting in the peculiar 
protruding shapes seen in the void in Figure 6.11. Begin-
ning with a perfectly faceted void, removing material 
via sublimation cools the ice, and the extracted heat must 
be replaced by thermal diffusion from the surrounding 
medium. The prism corners, sticking out farther into the 
ice, are more efficiently heated by diffusion, so the cor-
ners sublimate more quickly than the facet centers do. 

vapor is extracted through the capillary, leaving  behind 
a void in the ice. Facets appear during this pro cess, 
 because it is especially difficult to remove  water mole-
cules from a perfectly faceted surface, as each is tightly 
bound by neighbors on all sides. It is comparatively much 
easier to remove molecules from a terrace step, as step- 
edge molecules have fewer nearest neighbors and are thus 
less tightly bound. Beginning with an arbitrarily  shaped 
void, molecules are preferentially removed from terrace 
edges, eventually leaving  behind a faceted void in the 
shape of a hexagonal prism.

Note that the faceted shape in this image does not 
arise from surface energy effects, and the minimum en-
ergy shape is likely nearly  spherical (see Chapter 2). As 
with snow crystal growth, the formation of a prismatic 
void is a dynamical effect resulting from sublimation ki-
netics, which are related to attachment kinetics. More-

FIGURE 6.10. Growing an oriented snow crystal on a capillary tube with a 20- μm dia meter. In the upper left 
image, a water- filled capillary is brought up to the basal surface of an ice crystal, freezing the  water with 
the ice c- axis (nearly) collinear with the capillary axis. With the ice plate removed, the remaining images 
show subsequent development of the crystal in a diffusion chamber. The stellar snow crystal in the lower 
image mea sures 3 mm from tip to tip, but this crystal eventually grew to 12 mm from tip to tip. This capillary 
technique is well suited for growing large snow crystals at high supersaturations. Photos by the author.
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but it pre sents another ave nue that might be explored 
someday.

Oriented Ice Crystals

It is often desirable to create large, single- crystal speci-
mens of bulk ice in the lab for a variety of functions, and 
how one obtains such samples is not immediately obvi-
ous. A  century ago, researchers would “mine” the Men-
denhall glacier in Alaska for this purpose, as high- purity 
single- crystal ice specimens could be found  there. Fortu-
nately, a remarkably easy method for creating large 
single- crystal specimens in a top- loading  house hold 
freezer was described by Knight [1996Kni], obviating 
the need for polar ice mining.

In Knight’s method, one simply fills an open, insu-
lated container with  water, places it in a freezer, and 
waits.  Water vapor first evaporates from the  water’s sur-
face and deposits a bit of frost on the lid of the freezer 
above the  water container. Over time, the  water cools to 
below freezing, and at some point (if all goes well) a sin-
gle crystal of frost  will break off from the lid and fall 
into the  water. If the  water temperature is just below 
freezing, the ice seed  will grow out as a thin disk crystal. 
As it floats on the surface of the  water, buoyancy forces 
automatically orient the growing disk so that its c- axis 
points in the vertical direction as the edges of the disk 
grow outward. Soon the ice disk expands and covers the 
surface, preventing nucleation by subsequent falling frost 
crystals.  Because the container is insulated, the rest of the 
 water freezes slowly, its thickness increasing at a rate of 
about 1 cm per day.

This experimental procedure is not particularly 
well controlled, but usually  there  will be some sections 
of single- crystal ice on the surface, with the crystalline 
c- axis oriented vertically. Viewing the sheet between 
crossed polarizers verifies that no domain bound aries 
are pre sent. This technique could be better developed, 
but I can verify that it works surprisingly well with 
 little effort. Ice samples with higher purity, or with 
controlled chemical doping, can be grown using the 

As this pro cess continues and the void grows larger, ice 
protrusions extend from the facet centers into the void. 
This is a “negative” version of the Mullins- Sekerka insta-
bility applying to thermal- diffusion- limited sublima-
tion (see Chapter 3).

Negative snow crystals have received relatively  little 
study [1965Kni, 1993Fur], in part  because they are 
somewhat difficult to grow  under well- defined envi-
ronmental conditions. Determining the undersatura-
tion with useful accuracy is challenging, and negative 
crystals tend to be substantially larger than normal 
snow crystals. Quantitative growth mea sure ments of 
negative crystals are subject the same kinds of system-
atic errors discussed in Chapter 7, and  these errors are 
generally smaller with normal snow crystals. Neverthe-
less, one can imagine an array of microscopic holes in a 
substrate contacting a block of ice, allowing one to per-
form hundreds of simultaneous sublimation experi-
ments. Nothing of this sort has been attempted to date, 

FIGURE 6.11. A “negative” snow crystal growing at −14° C in a block 
of single- crystal ice, as a vacuum pump removes  water vapor via a 
0.45- mm- diameter capillary tube. The morphology of the void is 
determined from thermal diffusion effects together with a strong 
nucleation barrier in the sublimation kinetics. As with normal snow 
crystal growth, surface energy effects are negligible compared to 
anisotropic sublimation kinetics. Image adapted from [1965Kni].
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are relatively clean and uncontaminated compared to 
 those obtained from other methods.

LEVITATION

Levitation appears to be an attractive method for investi-
gating snow crystal growth, combining long observing 
times with none of the substrate- related issues described 
above. Of course, the technical challenges are substantial 
in comparison to simply dropping a seed crystal on a sub-
strate, but two diff er ent levitation methods have been dem-
onstrated for ice crystal growth with promising results.

Electrodynamic Ion Trapping

Electrodynamic trapping of charged aerosol particles was 
first developed in the 1950s, and this levitation technique 
was applied to snow crystal research by Brian Swanson 
and colleagues in 1999 [1999Swa]. In their apparatus, 
AC electric fields provide trapping forces together with 
DC electric fields that  counter the downward force of 
gravity, yielding stably trapped ice crystals. Particle sizes 

Czochralski method [2017Bru, 1973Bil], but this 
method requires a substantially greater investment in 
effort and equipment. Etch pits can also be used to de-
termine the lattice orientation of single- crystal sam-
ples [2017Bru].

For smaller ice sheets, I have also created an on- 
demand version of Knight’s method using an expansion 
nucleator. First a temperature- controlled glass win dow is 
treated with a hydrophilic coating and wetted with a film 
of  water. The win dow is then placed,  water side up, in a 
supersaturated chamber, and its temperature is set to just 
below 0° C. A small puff of air containing seed crystals 
from the nucleator is passed over the disk, such that a 
single crystal  will randomly drop onto the  water’s sur-
face. With a bit of luck, surface tension and buoyancy 
 will align the crystal with re spect to the  water film, and a 
small disk of ice  will slowly grow outward over the glass, 
as shown in Figure 6.12. This disk is a single crystal of ice 
oriented with its crystalline c- axis perpendicular to the 
glass surface, and it took just a few minutes to grow. I 
have used this technique in an experiment growing snow 
crystals on glass capillaries (described  earlier in the chap-
ter), but the method may have other applications as well.

If oriented ice crystals in the size range of 10–200 µm 
are sufficient, the seed- crystal generator described  earlier 
in this chapter can be used to drop prismatic crystals 
onto a waiting substrate. Thin hexagonal plates are pro-
duced when the generator temperature is set near −15° C, 
and  these typically fall with one basal facet flat against 
the substrate. Prism faceting can be used to determine 
the orientation  angle about the c- axis. Operating the 
seed- crystal generator near −7° C yields blocky crystals, 
and dropping  these on a substrate produces a significant 
yield of crystals with one prism facet resting against the 
substrate. As illustrated in Figure  6.13, using a hydro-
philic substrate stimulates preferential growth of the 
basal and prism surfaces that contact the substrate.  After 
some growth in a near- vacuum environment, one ob-
tains a large platelike crystal that  includes a single prism 
facet oriented parallel to the substrate. Being freshly pre-
pared on demand,  these fully oriented crystal surfaces 

FIGURE 6.12. A 2- mm- diameter disk of ice grows outward on 
the surface of a thin film of slightly supercooled  water covering a 
glass plate. The dark regions are copper arms supporting the 
glass. The c- axis of the oriented ice crystal is aligned perpendic-
ular to the glass surface.
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A Laminar- Flow Chamber

Tsuneya Takahashi and Norihiko Fukuta developed an 
ingenious system for levitating a falling snow crystal in 
a vertical flow of air [1988Tak, 1991Tak, 1999Fuk], al-
lowing the growth of quite large crystals. A slightly ta-
pered flow tube  gently pushes a growing snow crystal 
 toward the tube’s central axis, and the laminar flow rate 
is continually adjusted to keep the crystal’s vertical po-
sition fixed in an observation region as it grows. A fog of 
 water droplets is added to the flowing air to keep the su-
persaturation at σ water.

Using this laminar- flow chamber,  these authors re-
ported extensive observations of snow crystals growing 
in air for up to 30 minutes, covering a range of tempera-
tures from −2° C to −24° C, including the examples 
shown in Figure 6.15. This unique data set provides the 
best rec ord to date of laboratory snow crystals growing in 
controlled environmental conditions quite close to what 
can be found in dense clouds. If an adjustable humidifi-
cation method could be worked out, the laminar- flow 
chamber could perhaps be used over a range of supersatu-
rations as well. The electric- needle technique presented 
in Chapter 8 might be better suited overall for compari-
son with numerical modeling studies, but the laminar- 
flow chamber provides an attractive alternative for study-
ing the growth of large levitated snow crystals in air.

 were in the 10–100 μm range, carry ing charges typically 
of 0.1–0.5 pC. The physics under lying microparticle ion 
trapping is beyond the scope of this book, but a summary 
can be found in Libbrecht and Black [2018Lib], along 
with techniques for building  simple ion traps for labora-
tory demonstrations. Subsequent development of this 
technique has led to diff er ent electrode geometries and 
other improvements [2003Bac, 2016Har]. For example, 
Figure  6.14 shows an electrode geometry that traps ice 
crystals at the center of a plane- parallel diffusion cham-
ber, allowing precise control of temperature and super-
saturation surrounding the particle.

Electrodynamic trapping allows observations of sin-
gle, isolated, levitated ice prisms growing  under well- 
controlled environmental conditions, which is a some-
what ideal experimental setup. Moreover, particle mass 
changes can be precisely determined by monitoring the 
levitating electric fields. Some disadvantages include dif-
ficulties loading seed crystals, the generally slow through-
put that comes with examining individual crystals, and 
difficulty maintaining levitation during substantial mass 
increases. When used at low pressures, latent heating can 
also become problematic in any levitation apparatus, as 
heat diffusion through the surrounding medium tends 
to limit the growth (see Chapter 2). The heating prob lem 
is especially severe near 0° C but becomes less of an issue 
as the temperature is reduced.

FIGURE 6.13. Large prism facets can be created by growing seed crystals on a hydrophilic substrate. 
This series of images shows a specimen growing at −7° C to a final size of 150 microns. The increased 
terrace nucleation at the ice/substrate interface enhances growth along the substrate, yielding an 
overall flat morphology with a large prism facet oriented parallel to the substrate. Note that small voids 
became trapped at the substrate surface, below the unblemished top prism facet. This technique al-
lows the easy preparation of large, clean, faceted prism surfaces with known orientation.
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bers like the one shown in Figure  6.16  were used by 
Schaefer [1952Sch] and by Hallett and Mason [1958Hal] 
in numerous studies of snow crystal growth and mor-
phologies. One clever trick used in snow crystal diffu-
sion chambers is to hang a vertical filament down the 

CONTINUOUS DIFFUSION 
CHAMBERS

While several diff er ent experimental techniques can be 
employed to study slowly growing snow crystals, obtain-
ing the high supersaturation levels needed to observe 
fast- growing crystals is best accomplished with a contin-
uous diffusion chamber. The basic layout consists of an 
insulated box with a strong vertical temperature gradi-
ent, as illustrated in Figure 6.16.  Water vapor evaporates 
from the liquid  water reservoir at the top of the chamber 
and diffuses downward into the colder air below, causing 
the air to become supersaturated. If any kind of substrate 
is placed in this region, snow crystals  will nucleate on its 
surface and grow.  Because the diffusion pro cess happens 
continuously, the supersaturation remains roughly con-
stant in time  unless perturbed by convection or growing 
snow crystals. The supersaturation reaches its peak value 
near the center of the chamber and drops to zero at the 
chamber walls, as the walls soon become covered with 
 water droplets or frost crystals.

The basic physical concepts being applied in diffu-
sion chambers have been known since the cloud- chamber 
work of Charles Wilson and  others in the early twenti-
eth  century. Continuous snow crystal diffusion cham-
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FIGURE 6.14. In this electrody-
namic trap [2016Har], a trapping 
quadrupole electric field oscillating 
at 60 Hz is delivered via a set of 
“button” electrodes, while a con-
stant vertical electric field balances 
gravity. The parallel- plate diffusion- 
chamber geometry allows for pre-
cise modeling of the supersatura-
tion at the position of a trapped ice 
crystal. Image © American Meteo-
rological Society, courtesy of Jerry 
Harrington.

FIGURE 6.15. Examples of snow crystals grown in a laminar- flow 
chamber. Image adapted from [1999Fuk].
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this chamber, giving naïve constant- temperature surfaces 
like  those illustrated in the sketch. I call  these surfaces 
“naïve,”  because this clamshell design is unstable to the 
weak convection air currents illustrated, so the static dif-
fusion equation does not apply in this situation. For 
this reason, it is not easily pos si ble to accurately calcu-
late  either the temperature or the supersaturation pro-
file in a clamshell diffusion chamber.

Figure 6.18 also illustrates a linear- gradient diffusion 
chamber that is amenable to accurate thermal and super-
saturation modeling. In this design, the stainless- steel 
plates have a modest thermal conductivity that results in 
a linear temperature gradient with a constant dT/dz 
along the walls. The aluminum clamshell plates are still 
pre sent to reduce heating from the outer boundary, and 
some engineering is required to obtain an accurately lin-
ear temperature gradient. Solving the heat diffusion 
equation then yields a constant dT/dz in interior region 
as well, and this can be verified by direct mea sure ments. 
With entirely horizontal isothermal surfaces, this ther-

central axis of the chamber, as illustrated in Figures 6.16 
and 6.17. Snow crystals  will grow all along the filament, 
allowing one to view a variety of diff er ent growth mor-
phologies as a function of temperature, reproducing 
many aspects of the Nakaya diagram si mul ta neously 
[1958Hal]. When the supersaturation is high, fast- 
growing dendritic crystals tend to grow out faster than 
blocky crystals do, often yielding three distinct clusters 
along the filament at −2°, −5°, and −15° C.

The aluminum side walls at the top and bottom of 
the apparatus shown in Figure 6.16 are  there to conduct 
heat and tailor the temperature profile in the chamber. 
The supersaturation generally increases as the vertical 
temperature gradient dT/dz increases, and “clamshell” 
geometries like this are often used to create especially 
high supersaturation levels. Figure 6.18 shows an extreme 
example of a clamshell diffusion chamber design that 
 will create an exceptionally high  water vapor supersatu-
ration level at its central point. It is straightforward to 
numerically solve the static heat diffusion equation in 
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FIGURE 6.16. (Left) This snow crystal dif-
fusion chamber creates a steep vertical 
temperature gradient with the top warmer 
than the bottom.  Water vapor evaporates 
from the warm  water reservoir and diffuses 
downward into the colder air below, yield-
ing highly supersaturated air in the interior 
of the chamber. In this illustration, snow 
crystals grow at dif fer ent temperatures on 
a vertical filament. (Right) A filament sup-
ports snow crystals growing at high super-
saturation in a diffusion chamber like that 
illustrated. The fastest- growing dendritic 
crystals cluster at −2°, −5°, and −15° C. At 
other temperatures, the crystals tend to be 
blocky in form with slower growth rates.
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FIGURE 6.17. Shown are two strings of snow crystals like that shown in Figure 6.16, but at higher reso-
lution. The cluster at −5° C is made of fishbone dendrites (see Chapter 3), while the cluster at −15° C is 
made from individual branches of fernlike stellar dendrites. As soon as  these fast- growing crystals ex-
tend out away from the filament, they tend to shield  water vapor from reaching smaller crystals nearer 
the filament, stunting their growth.
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FIGURE 6.18. (Left) A clamshell diffusion chamber designed to create a high supersaturation level at the 
center of the chamber. This system is unstable to convection, however, making it quite difficult to accu-
rately characterize the temperature and supersaturation in the chamber. (Right) A linear- gradient diffu-
sion chamber designed using moderately conducting stainless- steel walls to produce a linear tempera-
ture profile. With this simpler thermal structure, it becomes pos si ble to model the supersaturation in the 
chamber with quite high accuracy.

mal profile is stable against convection, so the static heat 
diffusion equation  will describe the correct 3D tempera-
ture field T (!x)  within in the chamber.

Once the temperature profile is stable and well char-
acterized, it then also becomes pos si ble to solve the par-

ticle diffusion equation to obtain the  water vapor field 
c(!x)  throughout the chamber. In a nutshell, the diffu-
sion equation becomes Laplace’s equation ( because 
∂c/∂t =0), with the boundary conditions c = csat(Tsurf) 
on all  surfaces. Solving this diffusion prob lem yields 
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prob lems arising from scattered light in the microscope 
body, but it requires a second high- quality lens for reim-
aging. A more direct approach is to use a microscope ob-
jective on the end of a long extension tube. The objec-
tive then images the subject directly onto the camera 
sensor, without reimaging, which is a substantial gain in 
optical simplicity. This approach also facilitates mount-
ing the microscope objective inside the cold chamber, 
near the growing snow crystals, which is often necessary 
for high- resolution imaging. The direct- imaging method 
does tend to increase prob lems associated with scattered 
light, but  these can usually be mitigated using any or all 
of the following methods:

1) Use a field stop near the test crystal to block extra-
neous light. Then only the area around the test crys-
tal is brightly illuminated.

2) If a field stop is impractical, image the incident light 
onto the subject, again only illuminating a small area 
around the test crystal. This can generally be done 
using inexpensive optics that are not part of the im-
aging optical system.

3) Add baffles inside the extension tube.
4) Coat the inside of the extension tube with light- 

absorbing material

The first two methods on this list reduce the amount of 
light that does not strike the test crystal but might still 
make its way into the microscope. This light contributes 
nothing to the desired image but  will add scattered light 
that reduces contrast in the final image. The last two 
methods help absorb scattered light in the extension tube 
before it can strike the imaging sensor.

Once the diffraction limit is reached in any optical 
systems, one always  faces the question of optical resolu-
tion versus depth of focus. For example, I often use a Mi-
tutoyo long- working- distance 10X objective for crystals 
with sizes in the range 5–50 microns, as it has a 0.28 nu-
merical aperture, 1.0 micron resolving power, and a 
depth of focus of 3.5 microns. The low depth- of- field 
value can be problematic with this objective, however, as 
crystals thicker than 3.5 microns  will not focus well, 

the supersaturation field c(!x)  and thus the interior 
supersaturation

 σ (!x)=
c(!x)− csat T (!x)( )

csat T (!x)( ) .  (6.4)

If we move the side walls of the linear diffusion cham-
ber out to infinity, giving a 1D parallel- plate geometry, 
then the diffusion equation yields a  simple linear gradi-
ent for c(!x),  giving

 
σ cent ≈

1
2

1
csat (Tcent )

d2csat
dT 2

(Tcent )⋅⋅(ΔT )2

≈Cdiff (ΔT )2

 (6.5)

at the center point midway between the two plates, 
where ΔT = (Ttop − Tbottom)/2. The last column in  Table 2.1 
in Chapter 2 lists some Cdiff values. With the side walls 
not at infinity, as sketched in Figure 6.18, a numerical 
solution of Laplace’s equation is required to deter-
mine c(!x).  Further investigations of snow crystals 
growing in a linear diffusion chamber are described in 
Chapter 8.

SNOW CRYSTAL IMAGING

The most straightforward approach to mea sur ing ice 
crystal morphology and growth is via optical microscopy. 
Growth velocity can be derived from observations of the 
crystal size as a function of time, and velocity mea-
sure ments can be combined with a knowledge of the 
supersaturation to examine the attachment kinetics. 
Moreover, optical images are ideal for investigating 
morphologies and morphological transitions. High- 
quality microscope objectives are readily available, and 
modern digital cameras produce excellent images even in 
low light levels.

Commercial bench microscopes typically use a two- 
step approach to imaging. First the microscope objec-
tive focuses an image onto an intermediate aperture, the 
purpose of which is to block all light except for that com-
ing from the field of view around the desired subject. 
This first image is then reimaged onto the camera sen-
sor by a second lens group. This technique greatly reduces 
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illustrated in the upper- right corner of the figure. Both 
reflections have roughly the same amplitude,  because 
the index of refraction jumps at the two interfaces are 
similar. The interference of the two reflections  will de-
pend on the wavelength of the incident light, ranging 
from constructive to nearly fully destructive. A trans-
mission grating disperses the reflected light to reveal a 
pattern of fringes. Note that the dark line segments in 
Figure 6.19 are images of the slit  after destructive in-
terference. The ends of the line segments indicate the 
edges of the thin ice prism.

which tends to interfere with achieving the rated resolv-
ing power. For somewhat larger crystals, or for imaging 
flat, platelike crystals, I like the Mitutoyo long- working- 
distance 5X objective. This lens has a 0.14 numerical 
aperture, 2.0 micron resolving power, and a depth of 
focus of 14 microns, producing bitingly sharp images of 
stellar plate snow crystals. Even for quite small crystals, 
the depth- of- field issue means that the 10X objective is 
not substantially better than the 5X in many circum-
stances. When lower resolution is sufficient, I often 
build in a 3X Mitutoyo compact objective. This lens has 
a working distance of 78 mm when imaging at infinity, 
becoming longer when imaging to shorter distances 
without a secondary lens. The resolving power is 3.6 mi-
crons, which is adequate for larger snow crystals, espe-
cially  those with complex morphologies, and the depth 
of focus is a comfortable 50 microns.

In nearly all my work, I often use focus stacking to 
achieve a higher effective depth of focus for a given res-
olution. Focusing by hand is adequate for stacking just a 
few images, and this can make a surprisingly large dif-
ference in overall image quality. For better consistency 
when acquiring a greater number of images, a StackShot 
automated focus- stacking rail (or something similar) can 
make the image acquisition pro cess quite  simple. For 
postpro cessing,  there are a variety of software tools avail-
able (for example, Helicon Focus) for combining im-
ages. I discuss optical microscopy techniques further in 
Chapter 11.

Optical Interferometry

When additional mea sure ment precision is desired, 
optical interferometer can be applied to snow crystal 
observations [1990Gon1, 1993Fur1, 1994Gon]. My 
favorite example is determining the thickness of thin, 
platelike crystals using a white- light interferometer, as 
illustrated in Figure 6.19. The essential idea is to inter-
fere a reflection from the ice/substrate interface with a 
second reflection from the nearby ice/air interface, as 

Substrate

Substrate

Ice crystal

Microscope
objective

Beamsplitter

Transmission
grating

Camera

Slit

Lamp

FIGURE 6.19. (Top) An optical setup for mea sur ing the thickness 
of thin ice crystal plates using white- light interferometry, de-
scribed further in the text. The upper- right sketch shows the in-
terfering reflections from the substrate/ice and ice/air inter-
faces. (Bottom) An example of a white- light spectrum, in true 
color, showing a series of dark interference fringes. The absolute 
thickness of the ice crystal can be derived from the mea sured 
spacing between the optical fringes [2013Lib].
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the crystal thickness increases, the  laser intensity rises 
and falls, again from interference between reflections 
from the ice/substrate and ice/air interfaces. This tech-
nique does not yield absolute thickness mea sure ments, 
and velocity mea sure ments are less precise than using 
white- light interferometry. Note that the  laser intensity 
is far too low to significantly affect the crystal tempera-
ture or growth dynamics.

For crystals smaller than about 10 microns, the cycli-
cal brightness oscillations from  laser interferometry can 
be difficult to interpret. I have found that multiple reflec-
tions in the ice, especially for slender columnar crystals 
(substantially smaller than that shown in Figure  6.20), 
can produce a puzzling variety of brightness patterns. 
But once the reflecting surfaces become larger than the 
 laser spot size, the oscillating brightness signal matches 
expectations from basic plane- wave interferometry the-
ory. When applied to  simple ice prisms with clean fac-
eted surfaces, white- light and  laser interferometry are 
quite valuable in precision growth experiments, and I 
describe this technique in more detail in Chapter 7, along 
with resulting mea sure ments of the attachment coeffi-
cients over a broad range of conditions.

 Laser interferometry can also be applied to larger 
snow crystals with complex surface structures [1993Fur1, 
1994Gon, 2016Shi]. In Figure 6.21, for example, narrow- 
band light reflecting off the surface of a natu ral den-
dritic snow crystal interferes with a reference beam 
reflecting off a flat mirror in a standard Michelson in-
terferometer arrangement. The interference fringes 
create a pattern much like a topographic map, mapping 
the overall surface structure of the observed crystal. 
With care, both surfaces of a platelike crystal can be ob-
served simply by changing the focus of the imaging sys-
tem. This photo graph nicely reveals the contours of the 
central ridges on the branches of this crystal, which can 
be compared to the discussion of ridge formation in 
Chapter 3. In a laboratory setting, this technique would 
allow, for example, many in ter est ing in situ studies of the 
PoP snow crystals described in Chapter 9.

The spacing between the fringes depends on the 
thickness of the ice crystal, with thicker crystals produc-
ing more closely spaced fringes. Working through the 
math, the ice crystal thickness h is given by

 h= λ2

2nΔλ
,  (6.6)

where λ is the wavelength of light, Δλ is the fringe spac-
ing, and n is the index of refraction of ice. Note that the 
use of white- light interferometry allows for absolute thick-
ness mea sure ments, and one can achieve sub- micron pre-
cision with careful calibration. As a crystal grows thicker, 
the fringes move laterally across the image, and the fringe 
spacing becomes smaller. The fringe motion can be deter-
mined with especially high accuracy, allowing velocity 
mea sure ments down to 1 nm/sec in many cases.

The astute reader may note that the ice crystal at the 
focus of the microscope objective acts as a “cat’s eye” re-
flector. A nearly collimated light beam enters the objec-
tive and reflects from the flat surfaces at the microscope’s 
focus, then exits through the objective as a nearly colli-
mated beam. Reflections from other surfaces, such as the 
bottom surface of the substrate, do not take place in the 
focal plane and thus do not yield collimated exit beams. 
The cat’s- eye effect explains why only the interference 
pattern from the ice crystal reflections appears on the 
camera sensor; interference patterns involving other re-
flections in the optical system are suppressed. However, 
this same effect means that especially thick crystals pro-
duce poor fringe patterns. In practice, it becomes diffi-
cult to discern fringe patterns when the crystal thickness 
is more than a few times the depth- of- focus of the micro-
scope objective.

For thicker crystals, white- light interferometry be-
comes difficult as the fringe contrast becomes too low to 
observe. In this case, one can use direct  laser interferom-
etry by removing the transmission grating and replac-
ing the lamp and slit in Figure 6.19 with a collimated 
 laser beam.  Simple imaging then shows a bright spot su-
perimposed on the crystal, as shown in Figure 6.20. As 
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1996Ran, 2002Wer]. More recently, researchers have 
developed environmental scanning electron micros-
copy (ESEM) that allows direct imaging of uncoated 
snow crystals in humid, low- pressure environments 
[2014Mag], making it pos si ble to observe in situ 
growth and sublimation on the ESEM stage, as shown 
in Figure 6.22 [2010Pfa]. Several authors also observed 
the development of peculiar “trans- prismatic strands” 
during sublimation [2014Mag]. Clearly, ESEM investi-
gations have  great potential for examining small- scale 
snow crystal surface structures.

Molecular Imaging and Surface Probes

Optical imaging of individual terrace steps on faceted 
mineral crystals was first demonstrated in the early 1950s 
using precision interferometry [1950Gri, 1951Ver], but 
related techniques have been applied to ice crystal sur-
faces only recently [2010Saz]. The image shown in Fig-
ure 6.23 was obtained using  laser confocal microscopy 
combined with differential interference contrast micros-
copy (LCM- DIM), and the authors clearly verified that 
the observed features  were one- terrace- high molecular 
steps.

Subsequent studies using LCM- DIM have investi-
gated the surface premelting structure near the  triple point 
[2016Mur] and ice wetting by liquid  water (including the 
water/ice wetting contact  angle) [2015Asa, 2016Asa]. 
Mea sure ments of step velocities have also been used to 
determine the surface diffusion length for admolecules 
on faceted surfaces [2014Asa, 2018Ino], although  these 
mea sure ments may have been affected by a lower- than- 
estimated supersaturation near the ice surface [2015Lib].

Electron Microscopy

Beyond optical imaging and mea sure ment techniques, 
electron microscopy has also been  adopted to examine 
ice crystal structure and growth. In a series of papers 
beginning in the 1990s, William Wergin and collabo-
rators examined natu ral snow crystals that  were col-
lected, transported in liquid nitrogen, sputter coated 
with a several- nanometer thickness of platinum (to 
provide a conductive surface), and imaged using a low- 
temperature scanning electron microscope [1995Wer, 

FIGURE 6.20. A series of images of a columnar ice prism showing a reflected spot from a (extremely low 
power) helium- neon  laser beam. As the crystal grows (left to right), the  laser spot first increases and then de-
creases in brightness, owing to interference between reflections from the ice/substrate and ice/air interfaces.

FIGURE 6.21. Optical tomography of one branch of a natu ral 
stellar dendrite snow crystal [2016Shi]. The interferometric fringe 
pattern produces a contour map of one surface of the crystal 
with a contour interval of 273 nm [2016Shi]. Note the contours of 
the ridge structures on the large sidebranches, which can be 
compared with the ridge formation mechanism described in 
Chapter 3. Image courtesy of Wataru Shimada.
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Scanning probe microscopy has also been used to 
image terrace steps on many faceted crystalline surfaces, 
but so far, not on ice  under normal environmental condi-
tions [1997Pet, 1998Dop, 1998Pit, 2001Zep, 2018Con]. 
Surface premelting appears to interfere with molecular- 
scale resolution, perhaps by surface tension forces, but 
the details are not yet well known. Molecular imaging 
of single ice bilayers on metal surfaces has recently been 
demonstrated [2013Thu, 2020Ma], but only at temper-
atures below −100° C.

Beyond imaging, a plethora of surface probes have 
been applied to ice, including Brewster reflectometry 
[1993Elb], ellipsometry [1980Bea], Fourier- transform in-
frared spectroscopy [2002Sad], interfacial force micros-
copy [2009Goe], photoelectron spectroscopy [2002Blu], 
proton scattering [1977Gol], grazing- incidence X- ray 
diffraction [1995Dos], and second harmonic generation 
spectroscopy [2015Abd].  These techniques are generally 
beyond the scope of this book, as they have focused on 
aspects of the materials science of ice to date [1970Fle, 
1974Hob, 1999Pet]. Nevertheless, one can certainly 
imagine  future connections to snow crystal growth as we 
better develop our understanding of the molecular at-
tachment kinetics (see Chapter 4).

FIGURE 6.22. ESEM images before (left) and  after (right) a period of ice growth that filled in part of the 
unfaceted corner [2010Pfa]. Images courtesy of Steven Neshyba.

FIGURE 6.23. Photomicrographs of terrace steps on the basal 
face of an ice crystal that display the nucleation and growth of new 
terraces [2010Saz]. Image courtesy of Gen Sazaki.



FIGURE 7.1. A collection of  simple ice prisms growing in near vacuum at −7° C on a sapphire substrate. 
The size of typical crystal in this image is about 30 μm.
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To see a World in a Grain of Sand,
And a Heaven in a Wild Flower.

Hold Infinity in the Palm of your Hand,
And Eternity in an Hour.

— WILLIAM BLAKE, AUGURIES OF INNOCENCE ,  CA.  1803

SEVEN

 Simple Ice Prisms

Understanding the physics of snow crystal for-
mation begins with a careful consideration of 
the  simple ice prism. With its minimalist 
shape, bounded by two basal facets and six 

prism facets, the hexagonal ice prism is like the hydro-
gen atom of snowflakes— the most elemental form pos-
si ble, with none of the complicating embellishments one 
finds on stellar dendrites and other elaborate structures. 
Following the well- traveled path of scientific reduction-
ism, our goal in this chapter is to observe the growth of 
 these archetypal snowflakes with the highest pos si ble 
precision, so we can better understand the physical pro-
cesses that govern their development.  Doing so builds 
the foundation for further pro gress, as much of our un-
derstanding of the attachment kinetics stems from mea-
sure ments and models of microscopic crystals grown 
 under well- controlled conditions. Before we can develop 
algorithms to fashion complex computational snow crys-
tals that faithfully reproduce the full morphological 
menagerie of laboratory and natu ral specimens, we must 
first thoroughly understand the formation of  simple ice 
prisms.

I begin this story with the conclusion, as Figures 7.2 
and 7.3 encapsulate what are (in my opinion) the best 
mea sure ments to date of the ice/vapor attachment kinet-
ics on large faceted surfaces. Much of this chapter is de-
voted to a discussion of how  simple ice prisms are cen-
tral to such mea sure ments, including descriptions of the 
two experiments used to acquire  these specific data. I 
 will demonstrate that the functional form α(σsurf) = A 
exp(−σ0/σsurf) provides an excellent fit to ice growth 
data, thus supporting the terrace nucleation theory de-
scribed in Chapter 4. The theory also connects the ter-
race step energies β(T) to the mea sured σ0(T), thus re-
lating the data in Figures  7.2 and 7.3. Considerable 
attention is also given to a critical analy sis of systematic 
errors that can corrupt ice growth mea sure ments and 
analy sis, as identifying and controlling  these errors has 
proven to be quite impor tant for obtaining consistent 
results.

The principal methodology for determining the at-
tachment coefficients is straightforward enough— 
measure the growth velocity vn normal to the surface of a 
faceted surface, determine the  water vapor supersatura-
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ing their attachment kinetics  under controlled condi-
tions would be straightforward as well. Indeed, mea sur ing 
growth velocities to sufficient accuracy is not particu-
larly difficult. But precisely determining the growth 
conditions, especially σsurf , has long been problematic. 
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FIGURE 7.2 . Mea sure ments of the basal (top) and prism (bot-
tom) step energies from the VIG (solid points) and VPG (open 
circles) experiments described in this chapter. Lines are from the 
CAK model (see Chapter 4).
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FIGURE 7.3. Mea sure ments of the basal (top) and prism ( middle) 
nucleation par ameters from the VIG and VPG experiments, using 
the functional form αbasal  = exp (−σ0,basal /σsurf  ) and αprism = Aprism 
exp(−σ0,prism /σsurf  ). The bottom plot shows Aprism mea sure ments, 
and all lines are from the CAK model (see Chapter 4).

tion σsurf just above the growing surface, and use that 
information to extract the attachment coefficient via the 
usual growth equation vn = α	vkin σsurf . And then repeat 
this procedure to map out αbasal and αprism as a function 
of temperature T, σsurf  , and perhaps other  factors. In the 
ideal case— infinite faceted surfaces growing in pure 
 water vapor— there are no other  factors, so α(T, σsurf) 
must be a single- valued function. Surface diffusion, sur-
face premelting, and other surface properties are auto-
matically incorporated into the attachment coefficient. 
Adding a background gas of air could conceivably change 
α(T, σsurf), but the data presented below suggest that 
such effects are perhaps small enough to be considered 
negligible. SDAK effects are quite impor tant on small 
facets (see Chapter 4), but our focus in this chapter  will 
be on large facets only.

Given how easy it is to make and grow  simple ice 
prisms (see Chapter 6), one might expect that mea sur-
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Taking a close look at some of the  earlier ice growth 
mea sure ments at temperatures above −25° C [1969Fuk, 
1972Lam, 1976Rya, 1982Bec, 1983Bec, 1984Kur1, 
1989Sei, 1998Nel, 2003Lib], it soon becomes apparent 
that the mea sure ment uncertainties are not just statistical 
in nature; they also exhibit a significant level of system-
atic errors associated with diffusion corrections, sub-
strate interactions, and other  factors. Moreover,  because 
the potential for systematic errors was not always fully 
appreciated in the early experiments, one cannot tell 
from published reports the degree to which  these un-
wanted effects influenced the resulting data and conclu-
sions. All one knows for sure is that substantial unex-
plained discrepancies exist between the diff er ent data 
sets, as evidenced by the large amount of scatter seen when 
they are all plotted together [2019Har]. My goal  here  will 
not be to give all the published results equal weight, but 
to focus on producing better mea sure ments with a level 
of accuracy and precision that supersedes  earlier efforts. 
The observed scatter in the data in Figures 7.2 and 7.3 is 
roughly five times smaller than a similar plot including 
all published data [2019Har], and this fivefold reduction 
is what made it pos si ble to develop the CAK model.

I begin by briefly examining several ice growth strate-
gies and by performing an in- depth analy sis of a generic 
substrate- based experiment. Having laid this founda-
tion, I then take a close look at the Libbrecht and Rick-
erby experiment [2013Lib], which I believe is the best 
comprehensive ice growth data set above −25° C at the 
time of this writing. From  there I continue with a de-
scription of a new, improved experiment also designed 
to explore the growth of  simple prisms in the same tem-
perature region [2019Lib2]. Although the two experi-
ments use substantially diff er ent mea sure ment strate-
gies and completely diff er ent hardware, they have 
produced remarkably similar results so far, lending cre-
dence to the notion that we are indeed converging on a 
set of reliable and accurate mea sure ments of the attach-
ment coefficients α(T, σsurf), at least for  simple ice prisms 
over a  limited range of environmental conditions. My 
primary focus is on the temperature range from 0° C 

to −30° C, but I also briefly examine lower temperatures 
at the end of the chapter.

PRECISION ICE GROWTH 
MEA SURE MENTS

As described in Chapter 6, many pos si ble experimental 
techniques can be employed to observe and mea sure 
snow crystal growth, including  simple ice prisms. No 
single apparatus is appropriate for all mea sure ments, as 
each has its own advantages and disadvantages. As tech-
nology develops and general observations become re-
placed by targeted experimental investigations, the tools 
for mea sur ing ice growth become ever more varied and 
sophisticated. Designing an experimental plan and ap-
paratus thus involves many choices.

Air or Vacuum? Growing ice crystals in ordinary air is 
certainly con ve nient and may be desirable if one wants 
to simulate a meteorological environment. But if the goal 
is to better understand the attachment kinetics, mea-
sure ments in air can be problematic. The  spherical 
growth analy sis described in Chapter 3 tells us that ice 
growth rates  will be determined primarily by particle 
diffusion whenever αdiff   α, and αdiff is inversely pro-
portional to both the background gas pressure and crys-
tal radius. If αdiff   α, then it becomes nearly impossi-
ble to extract information about the attachment kinetics 
using direct growth mea sure ments. Even with a small 
crystal (for example, one having a radius of 5 microns), 
we find αdiff  ≈ 0.03 in air at a pressure of 1 bar, which is 
quite small. From the discussion of the CAK model in 
Chapter  4, we see that restricting a set of mea sure-
ments to α  < 0.03 places serious limitations on the 
available physics scope, as this regime describes mainly 
the slow growth of large facets. Much of the in ter est ing 
physics is clearly at higher α, so one would like to probe 
the fast- growth region as much as pos si ble using  simple 
ice prisms.  These considerations provide an incentive 
to make mea sure ments using the smallest pos si ble ice 
prisms at low background gas pressures.
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Reducing the background gas pressure to zero gets 
rid of the particle diffusion prob lem entirely, but work-
ing in a pure  water vapor environment can pre sent some 
quirky experimental prob lems of its own. If the growth 
chamber is not perfectly isothermal (which it never is), 
then  water vapor  will tend to quickly deposit as frost on 
the coldest point. Pressure generally equilibrates rapidly 
inside a sealed chamber, so temperature inhomogeneities 
can drive some rather large and unpredictable  water 
vapor flows, especially if the point- to- point temperature 
variations are not constant in time. Analyzing all this is 
difficult in practice, so a pure  water vapor environment 
is perhaps best avoided if pos si ble.

 There is a broad experimental sweet spot when the 
background gas pressure is several times greater than the 
saturated  water vapor pressure, meaning residual air 
pressures of around 5–50 mbar, depending on tempera-
ture. In this environment,  water vapor  will still want to 
migrate to the coldest point in the chamber, but parti-
cle diffusion through the background gas creates a sub-
stantial hindrance to  water vapor flows. And while the 
total pressure  will still equilibrate quickly, the partial 
pressure of  water vapor need not be constant through-
out the chamber. Without getting into a serious diffu-
sion analy sis, the bottom line is that a bit of inert back-
ground gas pressure greatly reduces large- scale  water 
vapor flows, thus yielding a generally more benign and 
stable growth environment.

Substrate or Levitate? Growing a  simple ice prism levi-
tating in nearly empty space has a certain intuitive ap-
peal, providing something of an ideal crystal growth ex-
periment. But the strategy has an impor tant downside 
in that latent heat generated by crystal growth is only 
slowly dissipated by conduction through the surround-
ing medium. Again using the  spherical analy sis discussed 
in Chapter 3, we see that heating  will limit a levitation 
experiment to the region of phase space with α < αheat, 
which is only marginally better than working in air at 1 
bar, although this situation improves rapidly at low tem-

peratures. This analy sis shows that a levitation appara-
tus like that described by Harrison et al. [2016Har] is 
close to ideal for observing cirrus cloud particles in the 
lab at low temperatures, but it is not so well suited for 
examining ice prism attachment kinetics at low pressures 
and temperatures above −20° C.

Observing crystals growing on a substrate largely 
eliminates the latent heating prob lem, owing to the rel-
atively high thermal conductivity of ice (see Chapter 3), 
but this strategy also introduces the possibility of sub-
strate interactions. Hydrophobic surface coatings can 
help (see Chapter 6), but the prob lem can never be elim-
inated entirely, and it is not always obvious  whether 
substrate interactions are introducing significant system-
atic errors or not. Nevertheless, substrates have addi-
tional advantages over levitation, including experimen-
tal simplicity, fully stable crystals, and issues arising from 
mass changes during growth in levitation. For  these and 
other practical reasons, it is hard to beat watching crys-
tals grow as they simply rest on a substrate.

Optical or Other? Ordinary optical imaging is a stan-
dard method for making basic growth mea sure ments, 
but the optical resolution limit makes it challenging to 
observe especially small ice prisms or  those growing 
especially slowly. Vari ous forms of optical interferom-
etry can provide improved velocity sensitivity, and 
electrodynamic levitation has what is essentially a 
built-in, extremely sensitive system for mass mea sure-
ment. Electron microscopy can provide ultra- high spa-
tial resolution, as can scanning probe microscopy, but 
 these techniques pre sent significant experimental 
challenges. Some of  these advanced techniques are de-
scribed in Chapter 6, and all have found use in mod-
ern ice growth experiments. Over a substantial range 
of pa ram e ter space, however, the biggest experimental 
limiting  factor is determining σsurf  , not achieving optical 
resolution. In this case, increasing the velocity sensi-
tivity may not provide a large improvement in the re-
sulting data quality.
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Diffusion Modeling?  There is no real need for a ques-
tion mark  after this heading— diffusion modeling is es-
sential when using ice growth data to probe the physical 
pro cesses under lying snow crystal formation. It is likely 
that much of the scatter in the early mea sure ments of at-
tachment kinetics resulted from imperfect diffusion 
modeling that yielded inaccurate determinations of σsurf 
around growing test crystals. This subject deserves espe-
cially careful attention, and it should be an impor tant 
consideration when designing any ice growth experi-
ment. Even the most sophisticated mea sure ment appa-
ratus may yield scientifically uninteresting results if σsurf 
is not well determined. Before delving into  actual exper-
iments and results, therefore, we next consider a diffu-
sion analy sis of a basic apparatus for mea sur ing the 
growth of  simple ice prisms.

A Generic Substrate Experiment

Figure 7.4 sketches a  simple substrate- based ice growth 
experiment, showing a test crystal resting on a substrate 
at temperature Tsubstrate accompanied by a nearby ice res-
ervoir at temperature Treservoir. The test crystal  will grow 
as long as Treservoir > Tsubstrate, and the goal of the experi-
ment is to determine the attachment coefficient α(σsurf). 
If we remove all the substrate crystals for a moment, then 
it is straightforward to determine the temperature 

T (!x)  and  water vapor number density c(!x)  as a func-
tion of position !x  throughout the chamber. Solving 
the heat diffusion equation yields a  simple linear tem-
perature gradient profile

 T (!x)=Tsubstrate + ΔT ⋅⋅ z
L

⎛
⎝⎜

⎞
⎠⎟ ,  (7.1)

where z is vertical distance above the substrate, L is the 
chamber inner height, and ΔT = Treservoir − Tsubstrate. This 
 simple solution is valid in the presence of nearby walls, 
provided their heat conductivity is relatively low. Like-
wise, solving the particle diffusion equation yields the 
trivial solution c(!x)= csat (Treservoir )  throughout the cham-
ber. Putting  these two solutions together yields the 
supersaturation

 

σ subst,0 = csat (Treservoir )− csat (Tsubstrate )
csat (Tsubstrate )

≈ 1
csat

dcsat
dT

ΔT ≈ηΔT
 

(7.2)

at the surface of the substrate, while σ = 0 at the sur-
face of the reservoir. Note that this solution only ap-
plies when no ice crystals are pre sent on the substrate 
or on the walls of the chamber. If we then place a sin-
gle small (R  L) test crystal on the substrate with 
no additional “extraneous” crystals, then it  will begin 

Treservoir

Tsubstrate R

L
Test crystal

σbottom

FIGURE 7.4. A schematic layout of a basic ice growth experiment. The test crystal 
being mea sured rests on an isothermal substrate at temperature Tsubstrate , surrounded by 
some additional “extraneous” ice crystals.  Water vapor is supplied by a large collection 
of frost crystals on the top of the chamber at temperature Treservoir . The walls are  free of 
ice crystals and have a relatively low thermal conductivity.
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growing as if surrounded by a faraway boundary con-
dition σ∞ = σsubst,0. Thus, for this ideal experimental 
geometry, the growth conditions seen by the test crys-
tal are quite well known.

In a real experiment, however, it is not always easy 
to drop a single, isolated test crystal on the bottom of 
a growth chamber. More often, several additional 
crystals end up on the substrate, as illustrated Fig-
ure  7.4, and  these may even be treated as additional 
test crystals, allowing numerous mea sure ments in par-
allel. In this case, we need to consider how the entire 
set of crystals affects our calculation of the supersat-
uration,  because Equation 7.2 may no longer be a 
good approximation for the supersaturation near the 
substrate.

Large- Scale Diffusion Correction

To simplify the analy sis with multiple crystals on the 
substrate, I have drawn Figure 7.4 with a  simple square 
array of ice crystals, all hemispherical in shape with a uni-
form radius R, each spaced a distance ℓ from its nearest 
neighbors. The additional crystals  will not affect the 
temperature solution given by Equation 7.1, but they  will 
alter the  water vapor field c(!x), so our first task is to 
calculate the supersaturation σsubst at the bottom of the 
chamber, for which I  will assume R  ℓ  L.

From the  spherical solution for diffusion- limited 
growth, the substrate crystals  will all grow at a rate

 v = εαdiff vkin σsubst, (7.3)

where

 ε = α
α +α diff  (7.4)

and α is the usual attachment coefficient. For mainly 
diffusion- limited growth, ε ≈ 1. This growth implies an 
overall downward flux of  water molecules equal to

  F = 2πRDcsatεσ subst

ℓ2
 (7.5)

from mass conservation, where csat = csat(Tsubstrate). Equat-
ing this to the downward diffusion flux F = D∇c then 
gives the result

 
σ subst ≈ 1+ 2εξL

R
⎛
⎝⎜

⎞
⎠⎟
−1

σ subst,0

 ≈ 1+ 2πεRL
ℓ2

⎛
⎝⎜

⎞
⎠⎟
−1

σ subst,0 ,
 

(7.6)

where

 ξ = πR2

ℓ2  (7.7)

is the substrate filling  factor, equal to the fraction of the 
substrate surface area that is covered with ice crystals. If 
we put in some typical numbers, with a filling  factor of 
ξ = 0.01, a chamber height L = 1  cm, a crystal radius 
R = 10 μm (giving ℓ ≈ 180 μm), and  simple diffusion- 
limited growth with ε = 1, we find σsubst ≈ 0.05σsubst,0. 
 Because the filling  factor is quite small and R  ℓ, one 
might naively think that σsubst ≈ σsubst,0 would be reason-
ably accurate. But this naive assumption would overes-
timate σsubst by a  factor of 20! Lowering the pressure re-
duces ε, but often the correction  factor is substantial 
even at quite low pressures. In practice, I have found that 
the large- scale diffusion correction arising from having 
extraneous ice crystals on the substrate is nearly always 
an impor tant consideration.

Several ice growth mea sure ments described in the 
lit er a ture have used growth chambers with geometries 
roughly like the one illustrated in Figure 7.5, which turns 
out to be a somewhat poor choice, especially if operated 
at normal atmospheric pressure. Topologically, this ge-
ometry is like that shown in Figure 7.4, but the effective 
L is quite large  because the ice reservoir is located far 
from the growing crystals. Even if  there are only a few 
extraneous ice crystals near the test crystal, an assump-
tion of σsurf  ≈ σsubst,0 could be quite inaccurate. Moreover, 
if the extraneous crystals are not vis i ble inside the cham-
ber, then it  will not even be clear how large the diffu-
sion correction might be. It appears that such systematic 
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Window

Test crystal Extraneous crystals

TreservoirTreservoir

Tsubstrate

FIGURE 7.5. An example of a somewhat poor chamber design for making precision ice 
growth mea sure ments. The presence of any extraneous ice crystals on the substrate, 
coupled with the ice reservoir being far from the test crystal (making L large in Equation 
7.6), make it quite difficult to determine the supersaturation near the test crystal with 
high accuracy.

errors can explain at least some of the discrepancies seen 
in published ice growth data.

 Going back to Figure  7.4, a related analy sis shows 
that one can use the substrate growth observations di-
rectly to estimate the diffusion correction in determin-
ing σsubst, provided one can view the extraneous crystals 
near the test crystal [2019Lib2]. The basic idea is to watch 
the crystals growing on the substrate and use the mea-
sured crystal sizes over time to estimate V

.
, which is 

equal to the change in ice volume per unit time and per 
unit area on the substrate.  Because this ice is supplied 
by a downward flux of  water vapor from the ice reser-
voir, a straightforward analy sis yields a mea sur able cor-
rection  factor

 σ subst ≈σ subst,0 −
cice
csat

L
D
V

.
.  (7.8)

Moreover, one can also estimate an uncertainty in V
.
,  

from mea sure ments of the growing crystals, so Equa-
tion 7.8 can be used to estimate both σsubst and the ex-
perimental uncertainty in σsubst.

The takeaway message from this exercise is that it is 
difficult to produce precise mea sure ments of α with-
out limiting the number of crystals on the substrate to 
quite low values, lower than one might initially ex-
pect. Achieving σsubst ≈ σsubst,0 requires that the filling 
 factor satisfy

 ξ≪ R
2εL

 (7.9)

or, equivalently, having a spacing between test crystals of

 ℓ≫ 2πεRL .  (7.10)

Reducing the background gas pressure reduces this dif-
fusion issue, but it may introduce the temperature inho-
mogeneity prob lem discussed  earlier in the chapter. I 
have found that the best way to manage  these large- scale 
diffusion prob lems is to make careful mea sure ments and 
do a throughout diffusion analy sis. As a rule of thumb, 
if σsubst is less than about σsubst,0/2, then the large- scale 
diffusion correction becomes so large that it may be dif-
ficult to obtain meaningful results from the data.

Small- Scale Diffusion Correction

To proceed with the next step in our diffusion analy sis, 
first assume that we have managed to place a single, iso-
lated test crystal on the substrate, thus achieving the ex-
perimental geometry illustrated in Figure 7.4, but with no 
extraneous crystals. Assuming that the test crystal size is 
much less than L, the crystal is surrounded by a supersat-
uration given by σsubst = σsubst,0 in Equation 7.2. Put an-
other way,  because R  L, the isolated test crystal  will 
grow as if it  were immersed in a uniform supersaturation 
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environment with σ∞ ≈ σsubst. Starting with this faraway 
boundary condition, we must then determine σsurf  , the 
supersaturation at the crystal surface, in order to extract α 
using the growth equation vn = α	vkin σsurf  .

For a faceted test crystal, the supersaturation  will 
vary with position on the crystal surface, so numerical 
modeling of the diffusion equation is necessary to deter-
mine σ surf (!x)  over the entire surface with extremely 
high accuracy. But the monopole matching approxima-
tion (see Chapter 5) is often sufficient if the diffusion 
correction is not too large, and it requires only the ana-
lytic solution for the growth of a  spherical ice crystal. 
The solution for a hemispherical crystal on a substrate 
is similar to the  spherical case, as we can apply reflection 
boundary conditions to solve the diffusion equation. 
The result is the supersaturation field σ(r) at all radii, 
including on the surface of the hemi sphere, which we 
write as

 

σ (r)=σ∞ − V
.
s

2πrX0vkin

σ (R)=σ∞ − R
X0

vR
vkin

 ,
 

(7.11)

where V
.
s = 2πR2vR  is the time derivative of the volume 

of the hemispherical test crystal growing at velocity vR.
For a nonspherical crystal, Equation 7.11  will still 

give a good approximation for the supersaturation field 
σ(r) when r is much larger than the size of the crystal, as 
this is the nature of the monopole approximation. For a 
nearly isometric test crystal, the monopole solution is 
likely a good repre sen ta tion of the real solution nearly all 
the way down to the crystal surface. Thus, Equation 7.11 
provides a useful estimate of the surface supersaturation, 
which we can write as

 σ surf ≈σ∞ − V
.
s

2πReff X0vkin
,  (7.12)

where V
.
s  is the time derivative of the volume of the 

nonspherical test crystal, and Reff is an effective radius 
estimated from the size and morphology of the crystal. 
If Reff is not precisely known, this translates into an ex-
perimental uncertainty in the estimate of σsurf  . Of 

course, Equation 7.12 is less accurate for highly aniso-
metric crystals, but it can be used as a reasonable first ap-
proximation in many cases. If we have a collection of 
crystals growing on the substrate, then σ∞ in Equation 
7.12 is replaced by σsubst. And, once again, if σsurf is less 
than about σsubst/2, then the small- scale diffusion cor-
rection becomes so substantial that it may be difficult to 
obtain meaningful results from the data.

The overarching theme in this exercise is that a careful 
diffusion analy sis of the entire growth chamber is neces-
sary to accurately determine σsurf around a growing ice 
prism. While a full- blown 3D solution to the diffusion 
equation would be ideal, this level of accuracy is unneces-
sary if the crystal morphology is  simple and the diffusion 
corrections are reasonably small. Importantly, if the 
growth chamber is specifically designed to minimize dif-
fusion corrections and make their calculation feasible, 
then relatively  simple analytic solutions to the diffusion 
equation can yield good estimates for σsurf in many prac-
tical situations, along with realistic uncertainty estimates 
as well. Without this careful attention to detail from the 
outset, however, it is remarkably easy for systematic er-
rors to creep in and seriously degrade the results from an 
other wise excellent ice growth experiment.

A TALE OF TWO EXPERIMENTS

The set of ice growth mea sure ments described in the Lib-
brecht and Rickerby paper [2013Lib] initiated some-
thing of a turning point in my investigations, as this was 
the first data set that I felt was extensive enough and ac-
curate enough to allow a detailed investigation of the 
attachment kinetics. Compared to  earlier mea sure ments, 
including some of my own,  these data stood out as fi nally 
providing a reliable sample.  These data played a central 
role in developing the CAK model (Chapter 4), result-
ing in what I believe is a clearer picture of the growth of 
large basal and prism facets. Some years  later, I developed 
another precision ice growth experiment with similar, 
but somewhat complementary characteristics, which was 
again able to mea sure attachment kinetics over a broad 
range of growth conditions [2019Lib2]. Although it  will 
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take several additional years to fully analyze the newer 
experiment and collect a comprehensive set of data, so 
far it is giving results that are in good agreement with the 
2013 results.  After many years slogging through a care-
ful examination of systematic errors of  every ilk, the 
mea sure ments are fi nally beginning to provide (in my 
opinion) a convincing physical picture of the snow crys-
tal attachment kinetics.

In this section, I examine  these two experiments in 
detail, in each case focusing on the apparatus design, ice 
crystal  handling, mea sure ment strategy, and data analy-
sis. Special attention is given to the identification and 
minimization of potential systematic errors. My motiva-
tion for this section is threefold: 1)  these experiments 
pre sent substantial improvements over  earlier efforts and 
so deserve some attention and scrutiny, 2) the discussion 
and comparison of techniques may be useful for design-
ing  future precision ice growth experiments, and 3) the 
resulting data played a foundational role in the develop-
ment of the CAK model described in Chapter 4.

Case Study I: The Vacuum Ice  
Growth Experiment

Figure 7.6 illustrates the vacuum ice growth (VIG) ap-
paratus that we used [2013Lib], which was designed to 
approximate the ideal growth- chamber geometry shown 
in Figure 7.4. The easiest way to describe this device is to 

walk through the steps used during its operation. This 
somewhat pedagogical approach  will both explain the 
apparatus details and examine vari ous design choices and 
their consequences.

Vacuum Chamber. The pancake- shaped outer box in 
Figure 7.6 depicts a short cylindrical vacuum chamber 
with an outer dia meter of 7.5 cm, machined out of alu-
minum. The chamber is black anodized to seal the alu-
minum surfaces, and it includes a lid that bolts to the 
lower box, sealed using a silicone O- ring. The high ther-
mal conductivity of aluminum keeps the chamber walls 
at a uniform temperature, and the silicone O- ring retains 
its pliability (and vacuum seal) at low temperatures. A 
digital temperature controller maintains a constant 
chamber temperature by means of a thermistor sensor 
embedded in the aluminum using thermally conducting 
epoxy together with thermoelectric modules on the bot-
tom of the outer box. The chamber is opened, cleaned, 
and baked between runs to minimize chemical vapor 
contaminants. The sapphire substrate is also removed 
and thoroughly cleaned between runs to remove dirt and 
chemical residues. The substrate is given a final rinse with 
deionized  water before being installed in the chamber, 
again to reduce remaining solvent residues.

The Subchamber. Figure 7.7 shows a close-up of the 
subchamber where the test crystals grow. A key feature 

Manipulator arm

Moat
Sapphire
   substrate Thermoelectric

      module

Windows
Microscope

objective

Thermoelectric module

Light guide
Sapphire window
(ice reservoir)

FIGURE 7.6. Schematic diagram of the 
VIG chamber used to mea sure the growth of 
small ice crystals in near vacuum [2013Lib].
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FIGURE 7.7. A close-up view of the ice 
growth region of the apparatus in Figure 7.6, 
showing the ice reservoir and single test crys-
tal. Note the similarities to the ideal growth- 
chamber geometry shown in Figure 7.4, with 
a close spacing (L = 1 mm) between the reser-
voir and substrate to reduce large- scale diffu-
sion corrections.

in this region is the spacing L = 1 mm between the ice 
reservoir and the test crystal. This spacing is as small as 
practical to minimize the difference between σsubst and 
σsubst,0, as given in Equation 7.6. The 0.25 mm gap be-
tween the substrate and inner walls is large enough to 
allow  free movement of the substrate but small enough 
to isolate the subchamber somewhat from the main vac-
uum chamber, reducing perturbations to the supersatu-
ration in the subchamber. The overall geometry of the 
subchamber, together with the procedure for placing a 
single test crystal in it (described below), are quite impor-
tant for creating a well- defined supersaturation in the 
vicinity of the test crystal.

Seed- Crystal Generator. The VIG vacuum chamber 
rests on the bottom of a much larger refrigerated cham-
ber filled with ordinary air, about 1 meter in height, 
shown in Figure 7.8. The larger chamber serves as a con-
tinuous seed- crystal generator (see Chapter 6), produc-
ing a constantly replenished cloud of small ice crystals 
that slowly drift down all around the small vacuum 
chamber.  These crystals grow as they  free fall in air, and 
a typical crystal grows for just a few minutes before set-
tling out. New crystals are nucleated  every 10 seconds 
using an expansion nucleator, thus yielding a steady sup-
ply of pristine seed crystals. The seed- crystal chamber is 
somewhat self- cleaning,  because the cloud of fresh ice 
crystals tends to continuously remove residual chemical 
impurities from the air in the chamber.

Temperature Control. The aluminum vacuum 
chamber, substrate base, and ice reservoir are all in de-
pen dently temperature regulated using thermistor 
sensors and thermoelectric heating/cooling. The sap-
phire win dow that defines the ice reservoir is bonded 
using thermal epoxy to a small copper plate that con-
tains a small thermistor for temperature sensing. The 
high thermal conductivity of copper, sapphire, and 
thermal epoxy makes for a well- defined ice- reservoir 
temperature. The sapphire substrate can slide freely 
over the anodized aluminum substrate base, and only 
the latter is temperature regulated. However, the 
large- area f lat- on- f lat contact between the substrate 
and base, along with the fact that the substrate has 
almost no heat load, keeps the substrate and base at es-
sentially the same temperature.

The ice- reservoir servo uses a home- built controller 
that does not regulate Treservoir directly but instead regu-
lates ΔT = Treservoir − Tsubstrate. Thus ΔT is controlled with 
high accuracy, minimizing effects from any substrate 
temperature drifts. During normal operation, ΔT is quite 
close to zero, yielding a nearly isothermal environment 
in the vacuum chamber.

Temperature Calibration. The thermistor response is 
known from the manufacturer’s specifications, and the 
chamber and substrate temperatures are set using cali-
brated temperature controllers. The value of ΔT is espe-
cially critical, so the σ = 0 point is mea sured for each test 



S I M P L E I C E P R I S M S T 217

crystal by adjusting ΔT (changing Treservoir)  until the crys-
tal is neither growing nor sublimating. This can be ac-
complished with especially high accuracy at low pres-
sures, when the response to temperature change is swift. 
With care, one can locate the σ = 0 point with an abso-
lute uncertainty of about δσ ≈ 0.001, which is equivalent 
a temperature accuracy for ΔT of about 0.01° C.

Supersaturation Verification. Observing the condensa-
tion of  water droplets on the substrate provides an ex-
cellent method for verifying that the supersaturation is 
equal to that given by Equation 7.2. With the chamber 
evacuated and no test crystals pre sent, one can increase 
ΔT  until  water droplets appear on the substrate and then 
slowly adjust ΔT  until the droplets are neither growing 
nor evaporating. The value ΔTstable when the droplets 
are just stable must be producing a supersaturation 
equal to σ water at the substrate surface. Calculating σ water 

from the mea sured ΔTstable yields excellent agreement be-
tween theory and mea sure ments with no adjustable 
par ameters or fits to the data [2013Lib].

Preparing the Ice Reservoir. At the beginning of a run, 
 after the system has reached its operating temperature 
and the vacuum chamber is stably temperature con-
trolled, a butterfly vacuum valve on top of the alumi-
num vacuum chamber (not shown in Figure  7.6) is 
opened, allowing some seed crystals to fall onto the large 
sapphire substrate. A small electric motor rotates the 
substrate about a central pivot point so that seed crystals 
land at all points around the circumference of the sub-
strate. The vacuum pump, controlled by a variable nee-
dle valve, slowly draws air and seed crystals from the large 
seed- crystal chamber into the small vacuum chamber, 
and the crystal density on the substrate is monitored 
using the imaging system during this pro cess.

FIGURE 7.8. The VIG experiment in the lab. The aluminum vacuum chamber is a small black package 
inside the much larger copper- walled seed- crystal chamber. A heat lamp inside the large chamber is 
baking the system in this photo. The optics are covered in black panels below the large chamber, and 
the high- resolution camera is contained in the white styrofoam box at the lower left.



218 T C H A P T E R  7

Once an ample supply of ice crystals has landed on the 
substrate, the ice- reservoir temperature is set lower than 
the substrate temperature. The butterfly valve is closed, 
and a vacuum is drawn inside the chamber while the sub-
strate slowly rotates. Some ice on the substrate then subli-
mates and deposits on the sapphire ice- reservoir win dow. 
The microscope is focused on the latter surface to verify 
that a thick coating of frost appears on the win dow, form-
ing the ice reservoir.  After this loading pro cess is com-
plete, the substrate is further warmed to drive off any re-
maining ice, and air is let back into the chamber. With 
the ice reservoir thus prepared, Tsubstrate and Tchamber are set 
to the desired operating temperature, while ΔT is set to 
zero. The chamber is then ready for the main experimen-
tal session to commence. Additional ice can be added to 
the ice reservoir during the run as needed.

Positioning an Isolated Test Crystal. When the sub-
strate is ice  free and a test crystal is desired, the butterfly 
vacuum valve is opened once again, allowing some seed 
crystals to fall onto the rotating sapphire substrate. The 
needle valve to the vacuum pump is again opened slightly 
to draw air down from the seed- crystal chamber, facili-
tating the transfer of seed crystals onto the substrate. 
This pro cess is continued for some tens of seconds to 
yield a low density of seed crystals on the substrate. With 
the butterfly valve closed, a live video view through the 
microscope objective is scrutinized while the substrate 
slowly rotates to search for a suitable seed crystal. The 
substrate’s central pivot can also be translated using the 
manipulator arm shown in Figure 7.6, allowing a 2D 
sweep of the substrate surface for test crystals. The crys-
tal density is low, and not  every seed crystal has an ideal 
prism morphology, so it often takes some searching to 
locate a suitable test crystal. Typically, one looks for a 
well- formed ice prism with  either a basal or prism facet 
lying flat on the substrate. Polycrystalline forms, mal-
formed crystals, or poorly oriented crystals are all re-
jected. Crystals with nearby neighbors are also rejected. 
If need be, the substrate can be heated to remove all the 
crystals, so it can be reloaded with new seed crystals for 

another attempt. Finding high- quality, isolated seed 
crystals can be a laborious pro cess, sometimes taking 
10–20 minutes to locate a suitable specimen.

Pumping Out the Chamber. Once a high- quality test 
crystal has been positioned at the center of the micro-
scope field of view, the variable needle valve is opened 
slowly to begin the pump- down. This is a somewhat 
tricky step when the pressure becomes low, as it is 
relatively easy to sublimate away the test crystal with 
overzealous pumping. The operator carefully watches 
the test crystal and adjusts ΔT and the pump- out 
speed appropriately to make sure that the test crystal 
neither grows nor sublimates appreciably during the 
pump- down. Once the pressure has been reduced to 
about 30 mbar, the test crystal is ready for a growth 
mea sure ment.

The Optical System. A white- light interferometer sys-
tem is used to mea sure the thickness of test crystals, 
using the optical layout described in Chapter 6. The main 
illumination is from above, with light passing through 
the ice reservoir. Calculations show that this light and 
all other relevant light sources are far too weak to affect 
the temperature of the test crystals or the ice reservoir. 
A low- resolution camera is used for finding and position-
ing a suitable test crystal and for verifying that the test 
crystal has no nearby neighbors. A second image is pro-
jected onto the high- resolution camera for direct imag-
ing of the test crystal along with its interferometer fringe 
pattern. Figure 7.9 shows two typical images from the 
high- resolution sensor.

Basal and Prism Growth. As implemented in this ex-
periment, the white- light interferometric mea sure ment 
of the crystal thickness works only for thin, platelike 
crystals, as demonstrated in Figure 7.9. As the crystal 
thickness increases, the fringes become closely spaced, 
and the fringe contrast diminishes. Thus, the technique 
is well suited for mea sur ing growth of basal facet surfaces 
using thin plates, but it cannot be used when mea sur ing 
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the growth of prism facet surfaces using columnar crys-
tals, as the prism facet- to- facet spacing is too large.

Therefore, when performing runs with columnar 
test crystals, the interferometer lamp and slit are replaced 
by a helium- neon  laser giving direct images like  those 
shown in Figure 7.10. As with light from the slit, the He- 
Ne beam reflects off both the substrate/ice and ice/vac-
uum interfaces, and  these two reflections interfere with 
each other. The brightness of the reflected spot then de-
pends on crystal thickness, oscillating between bright 
and dark as the crystal grows. This method is not as pre-
cise as white- light interferometry, nor does it yield an ab-
solute mea sure ment of the crystal thickness. With care, 
however, it can yield acceptable growth mea sure ments of 
faceted prism surfaces.

A Growth Sequence. Once a suitable test crystal has 
been found and positioned, and the chamber has been 
pumped down to about 20–40 mbar, the σ  = 0 point is 
determined by adjusting the ice- reservoir temperature 
 until the test crystal is neither growing nor sublimating. 
This procedure also gives the chamber a few minutes to 
equilibrate near σ = 0. A growth sequence then com-

mences by slowly increasing σ by changing Treservoir 
while monitoring ΔT. The substrate and chamber tem-
peratures remain constant as ΔT increases. Figure 7.11 
shows typical data during a growth sequence, where σsubst 
 here is defined from ΔT using Equation 7.2. The small 
size of the ice reservoir, and the high thermal conductiv-
ity of copper and sapphire, give the reservoir a fast tem-
perature response while keeping the overall temperature 
equal to that indicated by its thermistor sensor. Thus, the 
mea sured voltage gives an accurate indication of ΔT and 
thus σsubst during the sequence. The temperatures of the 
substrate and vacuum chamber are kept fixed during this 
time, as they have longer thermal response times.

At the end of the growth sequence, the test crystal is 
discarded by heating the substrate. We have found that 
“recycling” a test crystal— sublimating it back down to a 
smaller size and growing it out again— generally leads to 
unreliable results. Surface impurities become concentrated 
during large- scale sublimation, which often seems to cor-
rupt the subsequent regrowth of the crystal. Sometimes a 
recycled crystal behaves normally, but this is not always 
the case. To avoid any potential prob lems from crystal re-
cycling, we typically use each test crystal only once.

FIGURE 7.9. Two still images from a video showing the growth of a test crystal. The top parts of both 
images show interferometer fringes in true colors, while the bottom parts show a direct image of the 
crystal including illumination from the slit. The numerical sub- images show a projected voltage from 
which ΔT can be determined. The left image was taken near the beginning of the growth cycle. The 
right image shows the same crystal  after it had grown larger and thicker. The bright slit light is periodi-
cally blocked to provide a better direct image of the crystal.
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Chemical Contamination Tests. Contamination of ice 
surfaces from unwanted chemical vapors is always a con-
cern in any ice growth experiment, as one is never sure 
how clean is clean enough. Opening the entire system 
and baking it between runs is a first line of defense 
against chemical contaminants, as they tend to bake out 
 after numerous thermal cycles. Another plus is using a 
continuous seed- crystal generator (see Chapter  6), as 
fresh seed crystals keep the air in the seed- crystal gener-
ator chamber quite clean during a run. As a test crystal 
is being grown, the growing ice surface is also somewhat 
self- cleaning with re spect to chemical contaminants. As 
a crystal grows, each expanding ice terrace edge tends to 
push surface chemicals ahead of it, as few chemicals are 
readily incorporated into the ice lattice. Surface contam-
inants are thus swept aside as a crystal grows, cleaning 
the faceted surface in the pro cess.

One can test this pro cess in a single growth sequence 
by first increasing ΔT with time and then decreasing it 
back to zero.  After a short period of rapid growth, when 
ΔT is high, the fresh ice surface should be especially  free 
of contaminants. Quickly bringing ΔT back down then 
allows a growth mea sure ment of this pristine surface. If 
the growth velocity v(σsurf) looks the same  whether ΔT 

is increasing or decreasing, then it suggests that the ice 
surface is reasonably clean.

Data Analy sis

To analyze a growth sequence, the video is first tran-
scribed to produce time- dependent mea sure ments of H, 
R, and ΔT as a function of time, as shown in Figure 7.11. 
Then the H and R data are used to extract growth veloci-
ties (also seen in the figure), while σsubst as a function of 
time is derived from the ΔT voltage mea sure ment. 
 Because the chamber design keeps the correction in 
Equation 7.6 quite small, ΔT gives σsubst directly from 
Equation 7.2. This gives the velocities VH and VR as a 
function of σsubst as the test crystal grew. Note that the 
growth sequence of a single test crystal yields growth ve-
locities over a range of supersaturations. Thus,  every test 
crystal growth sequence can be used to extract α(σsurf) 
for σsurf ranging from zero to some maximum value.

Substrate Interactions. As described in Chapter 6, sub-
strate interactions can have detrimental effects on ice crys-
tal growth mea sure ments. Especially impor tant is that a 
low ice/substrate contact  angle may cause spurious nucle-

(a)

(b)

FIGURE 7.10. (Top) A series of five images showing the interference of two reflections 
from an incident helium- neon  laser beam, one from the substrate/ice interface and one 
from the ice/vacuum interface. As the columnar crystal grows (left to right), the spot 
brightness oscillates from dim (first image) to bright ( middle image) and back to dim (last 
image). (Bottom) Snapshots from several other example crystals.
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ation of new terraces, thereby increasing growth rates 
compared to surfaces that do not contact the substrate. 
This effect can be seen directly in Figure 7.11, as the prism 
growth velocity VR is much larger than the basal growth 
VH  at early times, when the supersaturation is low. In  these 
data, the basal growth is suppressed by a large nucleation 

barrier, while the prism growth is aided by substrate- 
mediated terrace nucleation. We have found that substrate 
interactions can be both significant and somewhat un-
predictable on bare sapphire surfaces. For example, the 
ice/substrate contact  angle is sensitive to surface chemical 
residues, which may vary with position on the substrate. 
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FIGURE 7.11. (a) A typical growth sequence for a single thin- plate crystal at −12° C, like the crystal 
shown in Figure 7.9. As the supersaturation is slowly increased by increasing ΔT, the plate thickness H is 
mea sured using white- light interferometry while the plate “radius” R ( here defined as half the distance 
between opposing prism facets) is mea sured from direct imaging. Note that R   H, indicating a thin, 
platelike crystal. (b) Growth velocities of the basal and prism facets derived from the size data in (a). The 
higher accuracy of the interferometric mea sure ments yields lower noise in the basal thickness and ve-
locity data. (c) The growth sequence in (b)  after being converted to velocity versus supersaturation 
σsubst just above the substrate surface. Note that σsubst is not generally equal to the supersaturation σsurf 
at the crystal surface. (d) The basal growth data converted to the basal attachment coefficient α as a 
function of supersaturation. The open points show αuncorrected  = v/vkin σsubst plotted as a function of σsubst, 
while the filled points show the corrected α  = v/vkin σsurf plotted as a function of σsurf. The arrows show 
how two individual points transformed from uncorrected to corrected. A nucleation- limited growth 
model α  = A exp(−σ0/σsurf ) (solid line) provides a good fit to the corrected data using A = 1 and 
σ0 = 2  percent. Including diffusion gives the dashed curve, equal to ααdiff /(α + αdiff ) with αdiff  = 0.075 
(Chapter 3). At low σsurf  , the basal growth is strongly  limited by a nucleation barrier, so α   αdiff  and the 
diffusion correction is small. At higher σsurf, α   αdiff and the diffusion correction is quite large.
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Therefore in the VIG experiment, we treat growth veloc-
ity data for all surfaces that contact the substrate directly 
as suspect. In Figure 7.11, for example, we mostly discard 
the VR data for this platelike crystal, but retain the VH 
data, as the latter came from mea sure ments of the top 
basal surface, which is parallel to the under lying substrate. 
For columnar crystals like  those in Figure 7.10, we retain 
only growth data from the upper prism surface for the 
same reason. Interestingly, Beckmann et al. [1983Bec] ob-
served similar substrate interactions to  those just de-
scribed, but they chose to discard data from the facets that 
 were not contacting the substrate, keeping data from the 
 those that did, rather than the other way around.

Diffusion Correction. The next step in the data analy-
sis is to recognize that while the ΔT data give σsubst ≈ σsubst,0 
with good accuracy (for a suitably isolated test crystal), 
σsubst is not generally equal to σsurf at the surface of the 
growing crystal. Even at a low pressure of 30 mbar, the 
diffusion correction is substantial at high growth rates 
and must be calculated. The monopole approximation 
described  earlier in the chapter is adequate to convert 
σsubst to σsurf  , using the volume derivative V

.
s  calculated 

from the crystal size and velocity data [2012Lib], and 

using both the VH and VR data, so the δσ correction 
contains no adjustable par ameters. The correction is 
thus based entirely on mea sured quantities, and the 
under lying physics is well understood.

Figure 7.11(d) shows an example of this diffusion cor-
rection being applied to data from a single test crystal. 
 Because the correction changes σsubst to the lower value 
σsurf  , a given point moves to the left in the diagram. The 
same point also moves vertically upward as αuncorrected = v/
vkinσsubst changes to α = v/vkinσsurf  . The filled points in 
Figure 7.11(d) then give the desired function α(σsurf) for 
this test crystal. Clearly the correction is quite large for 
the highest- velocity points, as σsurf is only about half as 
large as σsubst for the final point mea sured. We find that 
diffusion corrections of this magnitude are acceptable, 
but barely. Pushing the experiment to substantially higher 
growth rates, however, becomes problematic.

Nucleation- Limited Growth. Once corrected for diffu-
sion effects, the VIG data strongly suggest that the at-
tachment kinetics are primarily  limited by terrace nucle-
ation. Figure 7.12, for example, shows that the data are 
well fit by a nucleation model, while a spiral- dislocation 
model does not fit the data (Chapter 4). This conclusion 
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FIGURE 7.12. An example showing corrected mea sure-
ments (data points) of the growth velocity of the basal 
surface for a single ice crystal as a function of σsurf 
at −12° C. The solid line through the points gives the model 
vbasal  = αbasal vkin σsurf  with αbasal (σsurf  ) = exp(−σ0/σsurf  ) and 
σ0 = 2.3 ± 0.2  percent, flanked by dotted curves using 
σ0 = 2.1 and σ0 = 2.5  percent. The dashed line shows a 
spiral- dislocation model with v ~σ surf

2 ,  which is a poor 
fit to the data. The inset graph shows an unweighted 
histogram of mea sured σ0 values for 23 crystals. A 
weighted fit to  these data gives an estimated mean of 
σ0 = 1.95 ± 0.15  percent.
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applies broadly to both basal and prism growth data, and 
Figure 7.13 shows additional mea sure ments of αbasal plot-
ted as a function of 1/σsurf for a variety of temperatures. 
Note that displaying α versus 1/σsurf in a semi- log plot 
provides an especially good view of the nucleation- limited 
growth be hav ior seen in the data, as the functional form 
α(σ surf )= Ae−σ 0/σ surf  appears as a straight line in such a 
graph. Moreover, the convergence of  these data on 
αbasal → 1 as σsurf → ∞ was not imposed by the analy sis 
in any way. Once the proper (in de pen dently determined) 
diffusion corrections  were applied to the data, this be-
hav ior appeared, suggesting that A ≈ 1 is an accurate 
description of the basal growth data over the entire 
temperature range mea sured. The same cannot be said 
for the prism data, however, as the mea sure ments indi-
cate A < 1 at temperatures above −10° C.

Precision Mea sure ments. One impor tant lesson from 
the VIG experiment is that obtaining high- quality mea-
sure ments of the attachment kinetics requires a  great 
deal of attention to detail regarding apparatus design, 
systematic errors, and data analy sis. With the VIG ex-
periment,  these details included:

1) The chamber was designed specifically to produce a 
well- defined supersaturation near the test crystal, fol-
lowing a careful diffusion analy sis. The vari ous cor-
rection  factors are impor tant and must be examined 
carefully. Even at low pressures and with a small fill-
ing  factor of crystals on the substrate, diffusion ef-
fects can still be quite significant.

2) Several mea sures  were taken to avoid chemical vapor 
contamination. The entire system was baked between 
runs, a self- cleaning seed- crystal generator was used, 
and the vacuum chamber was purged with fresh air 
throughout each run.

3) We  were careful to select test crystals with the high-
est visual quality. Only near- perfect ice prisms with 
no nearby neighbors on the substrate  were chosen.

4) Crystals  were not sublimated and then regrown. 
A  new test crystal was selected for each growth 
sequence.

5) We spent a  great deal of time perfecting the appara-
tus, data acquisition procedures, and analy sis meth-
ods. More than 200 crystals  were grown and ana-
lyzed, which allowed many consistency checks and 
redundancies.
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FIGURE 7.13. Experimental data showing the attachment 
coefficient αbasal plotted as a function of 1/σsurf , including 
mea sure ments taken at four dif fer ent temperatures. Plotted 
this way, data exhibiting a nucleation- limited growth be-
hav ior with αbasal (σsurf  ) = A exp(− σ0/σsurf  ) appear as straight 
lines. The data at each temperature extrapolate to α ≈ 1 
at large σsurf  , indicating rapid kinetics in the absence of a 
nucleation barrier. The values of σ0 at dif fer ent tempera-
tures can be extracted from the slopes of  these lines 
[2013Lib, 2017Lib].
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Attachment Coefficients

We found that all VIG data could be well represented 
using attachment coefficients having the functional form 
α(σsurf) = Aexp(−σ0/σsurf), thus reducing the entire large- 
facet attachment kinetics data to the functions σ0(T) 
and A(T) shown in Figure 7.14.  These data clearly  favor 
a terrace- nucleation model for ice crystal growth from 
 water vapor over a broad range of environmental condi-
tions, and I discussed the physical implications of this 
result in Chapter 4. Remarkably, the data suggest that 
ice crystal growth rates on the basal and prism facets are 
largely determined by the terrace step energies as a func-
tion of temperature, which are fundamental equilib-
rium properties of the ice crystal lattice (see Chapter 2). 

If  these step energies can be in de pen dently determined 
by molecular dynamics simulations, this would pro-
vide a major step forward in solving the full prob lem of 
snow crystal growth dynamics.

Case Study II: The Variable Pressure 
Growth Experiment

The VIG experiment yielded some excellent ice growth 
data, as just described, and it also provided us with valu-
able insights that we soon put to use in developing an 
even better apparatus. With the specific goal of mea sur-
ing the attachment kinetics on small ice prisms, we found 
the following:

1) Interferometric velocity mea sure ments provided an 
unnecessarily high level of velocity sensitivity. Higher 
is always better, of course, but extracting the attach-
ment coefficients from velocity data was  limited pri-
marily by our ability to determine σsurf with preci-
sion. Except at the lowest growth rates, extracting 
growth velocities from direct imaging is good enough 
and much simpler. Moreover, with direct imaging, 
one can examine substantially smaller crystals, thus 
reducing the diffusion corrections and allowing better 
σsurf  determinations.

2) Substrate interactions  were generally not as problem-
atic as expected, especially at low temperatures, pro-
vided the sapphire substrate was adequately cleaned. 
Moreover, we subsequently found suitable hydrophobic 
coatings that reliably yield  water contact  angles on 
sapphire that are greater than 90 degrees, reducing 
this prob lem further. Thus, with some care, we could 
use direct imaging to extract velocity mea sure ments 
without suffering large systematic errors caused by 
substrate interactions.

3) Placing a single test crystal in the VIG apparatus was 
quite laborious, which reduced overall throughput to 
about one usable crystal per hour. As camera sensors 
improved rapidly in terms of pixel count and sensi-
tivity  after the VIG experiment, it became pos si ble 
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FIGURE 7.14. Experimental data showing the attachment coef-
ficient fit par ameters σ0 (T  ) and A(T  ) for the basal and prism fac-
ets, assuming a functional form α(σsurf  ) = A exp (−σ0/σsurf  ) for both 
αbasal and αprism [2013Lib].
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to drop 100 or more small crystals onto a substrate 
field- of- view without excessive crowding effects. This 
allows  doing multiple mea sure ments in parallel to 
greatly increase throughput, plus this strategy pro-
vides a quick visual check on the uniformity of over-
all crystal size and morphology that is useful for 
managing systematic errors.

4) Determining αbasal and αprism with overall mea sure-
ment uncertainties of about a  factor of two is accept-
able (for now),  because  these quantities vary by 
 orders of magnitude with temperature and supersat-
uration. Thus, systematic errors are typically accept-
able if below that factor- of- two level. More impor tant 
is to mea sure αbasal and αprism over a broad range of 
environmental conditions, as an extensive explora-
tion of pa ram e ter space is the best way to gain infor-
mation about the attachment kinetics.

Based on  these considerations, we developed the variable- 
pressure growth (VPG) apparatus illustrated in Fig-
ures 7.15 and 7.16. Once again, it is useful to walk through 
this experiment as a case study in how one can mea sure 
the growth be hav ior of small ice prisms.

Vacuum Chamber. The VPG vacuum envelope is a 
stainless- steel Conflat chamber with the usual array of 
ports, including one high- quality, coated optical win dow 
at the bottom of the chamber for optical imaging. This 
win dow used an indium vacuum seal to avoid warping 
the overall figure or damaging the optical coatings. The 
chamber is wrapped on all sides with copper cooling 
plates covered with soldered copper pipe for cooling 
using a programmable recirculating chiller. The cham-
ber is opened and baked between runs to reduce chemi-
cal contaminants as much as pos si ble.
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FIGURE 7.15. A schematic drawing showing the VPG vacuum chamber (left) and the test chamber (right). 
The expansion nucleator creates a collection of minute ice crystals, and some of  these make it into the 
test chamber and onto the waiting substrate. The microscope objective creates an image of  these crys-
tals on a camera sensor outside the chamber. A thin film of ice on the upper sapphire win dow serves as a 
 water vapor reservoir to grow small crystals on the substrate below. The supersaturation is set by adjust-
ing the temperature difference between the two plates, which are separated by a 2-mm gap.
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Test Chamber. The inner test chamber consists of a 
thick- walled copper block resting on a temperature- 
controlled base plate, illustrated in Figure 7.15. Thermal 
joint compound provides a good thermal connection to 
keep the copper block at a fixed temperature. This design 
supports a pair of sapphire win dows in the parallel- plate 
configuration, as this allows for accurate modeling of the 
supersaturation in the test region. The top win dow is wet 
with a thick  water film before each run, which subse-
quently freezes to form the ice reservoir. The status of 
the reservoir can be viewed on the camera by refocusing 
the optical system. The lower win dow, on which the test 
crystals rest, is attached to a small thermoelectric mod-
ule for temperature control. The absolute temperature of 
the copper block is maintained using a temperature con-

troller operating on the base place, and a second con-
troller sets the temperature difference ΔT between the 
ice reservoir and substrate. As in the VIG experiment, 
ΔT determines the supersaturation σsubst,0 at the substrate 
surface. The copper block is also lifted off and cleaned be-
tween runs to minimize chemical contaminants. Clean 
air is also cycled into the inner chamber periodically dur-
ing each run to maintain cleanliness.  Because the sys-
tem temperature is quite low during operation, outgas-
sing from the thermal joint compound and other surfaces 
does not appear to cause serious prob lems.

Substrate Interactions. Before each run, the sapphire 
substrate is thoroughly cleaned, and a hydrophobic sur-
face coating is applied to reduce pos si ble substrate inter-

FIGURE 7.16. The VPG experiment in the lab.
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actions (see Chapter 6). Hendlex Nano Glass Pro and 
Glass Prepare Cleaner give good results, as treatment 
with  these products yields  water contact  angles that are 
consistently greater than 90 degrees at room temperature 
in air, whereas bare sapphire surfaces generally yield con-
tact  angles slightly below 90 degrees. Moreover, the pre-
scribed surface preparation seems to give quite robust 
coatings that are insensitive to imperfect surface clean-
ing. The ice/substrate contact  angle at temperatures 
below 0° C seems to be generally somewhat higher than 
the water/substrate contact  angle at room temperature, 
so this bodes well that a suitable coating  will largely elim-
inate significant substrate interactions. However, we 
have not tested this statement conclusively. Coating 
technology is rapidly advancing on many fronts at pre-
sent, so it is likely that new and improved coatings  will 
become available in the near  future.

Unfortunately,  there is no clear test that would guar-
antee the absence of significant substrate interactions in 
an experiment of this kind. Indeed, we have some pre-
liminary evidence that growth rates at especially low σsurf 
are somewhat higher than expected from a terrace nu-
cleation model, as the model predicts extremely low 
growth rates when σsurf   σ0 on a faceted surface. Thus 
 there may be some low level of heterogeneous terrace nu-
cleation that arises from substrate interactions  under 
even the best conditions. This is one area where the VIG 
experiment was superior, as it mea sured ice surfaces that 
did not contact the substrate.

Test Crystal Preparation. Once the vacuum pressure, 
base temperature, and substrate temperature are all set 
and stable, a growth set is initiated by pulsing the expan-
sion nucleator. This produces a small cloud of nascent 
test crystals that spray onto the outside of the test cham-
ber, and some enter it through a small hole in the cop-
per block, depositing an assortment of submicron ice 
crystals on the substrate surface.  These crystals are im-
aged by the microscope objective onto a camera sensor 
via a direct optical path. For a typical growth set, the 
camera data acquisition is set to a fixed cadence before 

nucleation, as the crystals are too small to be easily seen 
 until  after the growth cycle is over. With experience, the 
nucleator can be set to produce a suitable density of crys-
tals on the substrate.

The desired spacing between test crystals is set by an 
experimental trade- off: on one hand, a larger sample 
makes it easier to find well- formed specimens for analy-
sis, plus one can examine the distribution of crystal sizes 
to avoid outliers; on the other hand, the large- scale dif-
fusion correction becomes detrimental if  there are too 
many crystals on the substrate, as shown in the diffusion 
analy sis above. For example, with the 4.9 mm × 3.3 mm 
field of view of the VPG, a set of 100 test crystals means 
a typical spacing of ℓ ≈ 400 µm between adjacent neigh-
bors, which results in a fairly small diffusion correction 
 under low- pressure conditions. Figure 7.17 shows a rep-
resentative set of crystals  after growing large enough for 
analy sis. In most runs, the overall crystal sizes are kept 
below 10–20 microns, which is large enough for making 
satisfactory growth mea sure ments but small enough to 
avoid large diffusion corrections.

Crystal Se lection. Having dozens of crystals on the sub-
strate during a growth set makes it especially easy to 
examine the crystal uniformity and avoid outliers. The 
eye is quite good at rapidly discerning the overall consis-
tency on a field, even when the crystal orientations are 
somewhat random. Figure 7.18 shows a mea sure ment of 
the size distribution of crystals on a single field (more 
crowded than that in Figure 7.17), yielding an overall 
width of about ±20  percent for both the basal and prism 
dimensions. In most cases, it is pos si ble to determine the 
approximate center of the size distribution simply by a 
judicious visual examination of a single substrate image 
showing the crystals when their overall sizes are reason-
ably large. In this way, one can use the entire set of crys-
tals to select a “typical” specimen for detailed analy sis. 
In contrast, other experimental strategies involving the 
mea sure ment of one crystal at a time (such as the VIG 
experiment and levitation experiments) are subject to 
troublesome inconsistencies if a crystal chosen for de-
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FIGURE 7.17. (Left) A sample image of the substrate  after a set of crystals had grown to a fairly large 
size at −7° C, showing the entire 4.9 × 3.3 mm field of view of the camera. (Right) Several individual 
crystals from this set are shown, with each small frame mea sur ing 37 × 31 microns. The crystals fell onto 
the substrate with random positions and orientations, but most grew to similar sizes with a  simple prism 
morphology. A few fast- growing outliers can also be found in this field as well, prob ably affected by 
crystal dislocations or other defects.
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FIGURE 7.18. (Left) Several ice crystals selected from a single image of the VPG substrate  after a brief 
growth period at −5° C. (Right) The histogram shows mea sured effective radii R and half- thicknesses H 
from  these crystals along with numerous  others, including all crystals that exhibited  simple prismatic 
morphologies and  were oriented such that both R and H could be mea sured.
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tailed study happens to be a significant outlier for some 
reason. Recognizing outliers necessarily requires a large 
sample size, and the VPG experiment supplies this with-
out having to make laborious mea sure ments of many 
individual crystals.

Supersaturation Management. Before nucleation, the 
supersaturation is set to a predetermined value by means 
of the temperature difference ΔT, so the crystals begin 
growing as soon as they land on the substrate. The 
nucleation pulse introduces a brief temperature per-
turbation that initially disturbs the growth condi-
tions by a small amount, but this perturbation  settles 
 after about 10 sec, with the time scale being set by the 
temperature servo response. In a typical growth set, 
the crystals are allowed to grow for some fixed period 
 under constant conditions, then ΔT is reduced lin-
early with time to slowly reduce the supersaturation 
and slow the growth. The ramp is continued  until the 
supersaturation drops below zero and the crystals 
begin sublimating. Observing this transition from 
growth to sublimation allows a precise determination 
of the σ = 0 point, better than what can be extracted 
from the thermistor data alone.

Modeling Tiny Prisms

A growth set in the VPG experiment consists of a series 
of images of the substrate together with a simultaneous 
recording of ΔT from the temperature controller. In a 
typical set, the substrate contains a collection of crystals 
that have landed at random positions and orientations, 
with a spacing of at least several hundred microns 
 between crystals on average. With roughly isometric 
prisms, some specimens  will be oriented with one prism 
facet resting flat on the substrate, allowing a simultane-
ous mea sure ment of R(t) and H(t),  these being respec-
tively the crystal “radius” (approximating the hexagonal 
prism as a circular prism) and half- thickness as a func-
tion of time. Choosing one of  these crystals for analy sis 

yields a time series like that shown in Figure 7.19. With 
up to 100 growing crystals on the substrate, it is usually 
straightforward to visually inspect the field to choose a 
suitable specimen for detailed analy sis. Or, if the crystal 
uniformity is observed to be poor, the  whole collection 
can be discarded.

Once a suitable test crystal is chosen and the mea-
sure ments of R(t) and H(t) are obtained from the image 
series, the data are fit using a fast “1.5- dimensional” nu-
merical modeling program [2019Lib2]. Fixed program 
inputs include: 1) the R(t) and H(t) data, 2) the corre-
sponding time series ΔT from the temperature control-
ler, 3) the mea sured average crystal spacing ℓ on the 
substrate, and 4) a variety of physical par ameters. Ad-
justable program inputs include: 1) the ΔT value of 
the σ = 0 point, which is when σsubst,0 goes to zero, and 
2) a guess for the attachment coefficients αbasal (σsurf) 
and αprism(σsurf). Using  these inputs, the program inte-
grates the crystal growth to determine a model R(t) and 
H(t) that it plots along with the data, as illustrated in 
Figure 7.19. The inputs are then adjusted to give a good 
fit to the data, which takes  little time,  because the 
1.5- dimensional code runs in a  matter of seconds. In 
most cases, it is straightforward to converge on an un-
ambiguous set of par ameters that give a reasonable fit to 
the data.

As the code runs, it first uses the calculated test crys-
tal size and growth velocities from the previous time 
step to calculate σsubst from σsubst,0 using the large- scale 
diffusion correction described  earlier in the chapter. This 
section of the code uses the mea sured crystal spacing ℓ 
on the substrate, and it assumes a square array of crys-
tals all identical to the modeled test crystal. Clearly, this 
result is only an approximation of the  actual distribution 
of crystals on the substrate, but it is adequate if the cor-
rection is not too large. The code further calculates σsurf 
from σsubst using the small- scale diffusion correction de-
scribed above along with a volume- conserving estimate 
for Reff in Equation 7.12. Once σsurf is suitably deter-
mined, it is straightforward to calculate the growth 
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velocities and advance the crystal by a time step. As is some-
thing of a theme in this chapter, the difficult part of the 
analy sis is always determining σsurf  accurately around the 
growing crystal. Figure 7.19 illustrates how σsubst,0, σsubst, 
and σsurf  evolve with time as ΔT was slowly ramped down 
in this growth set, and additional modeling details can 
be found in the lit er a ture [2019Lib2].

Note that the 1.5- dimensional analy sis also makes it 
straightforward to quantify and reduce systematic er-
rors in the VPG experiment, simply by adjusting the vari-
ous par ameters to see how this changes the fit to the 
data. The vacuum pressure, σ = 0 point, crystal spacing 
ℓ, the attachment kinetics pa ram e terization, and other 
 factors can all be examined and adjusted to estimate 

the mea sure ment uncertainties with reasonable confi-
dence. This information can further be used to change 
vari ous experimental par ameters in subsequent runs 
to obtain better mea sure ments  under a variety of 
growth conditions.

The largest uncertainty in the VPG data usually 
comes from the position of the σ = 0 point, which is 
shown as the vertical line in Figure 7.19. The flattening 
of the growth rate prior to this time arises from terrace 
nucleation,  because α	(σsurf)  = A exp(−σ0/σsurf) drops 
precipitously once σsurf   σ0.  After the σ = 0 point, the 
crystal slowly begins sublimating away, which happens 
first at the corners and  later on the broad facets. Mod-
eling the sublimation be hav ior has proven somewhat 
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FIGURE 7.19. The panel on the left shows a series of images of a single ice prism growing and then 
sublimating at −5° C with an air pressure of 60 mbar. The effective radius R(t ) and half- thickness H(t ) 
 were obtained from each image to yield the data points shown in the accompanying graph (left scale). 
Lines through the points show a model fit to the data, as described in the text. Additional lines show the 
calculated supersaturation (right scale) in the absence of any test crystals (σsubst,0),  after a large- scale 
diffusion correction (σsubst), and  after an additional small- scale diffusion correction to yield the near- 
surface supersaturation (σsurf  ).
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difficult, so it has not yet been pos si ble to fit to the 
full growth/sublimation curve in detail. Note also that 
the modeled σ = 0 position is not precisely at σ = 0, 
being shifted slightly by the Gibbs- Thomson effect on 
 these small crystals. Although the uncertainty in deter-
mining this point is not large, the fitted growth par-
ameters are quite sensitive to its location. Thus, as usual, 
the most difficult part of the VPG experiment is accu-
rately determining σsurf  around each growing crystal.

SIMPLE- PRISM CONVERGENCE

At the time of this writing, we have not yet obtained a 
comprehensive set of mea sure ments over a broad range 
of temperatures with the VPG experiment, but early 

data show good agreement with the VIG experiment, 
and one example of this is shown in Figure 7.20. Sev-
eral immediate conclusions can be reached from  these 
data:

1) The VIG and VPG experiments show excellent 
agreement at −5° C, even though they use signifi-
cantly diff er ent mea sure ment strategies and com-
pletely diff er ent hardware. Moreover, the basal and 
prism facets  were mea sured separately in the VIG ex-
periment, using diff er ent crystals in diff er ent runs, 
and even diff er ent types of interferometry on the 
basal and prism facets. In contrast, both facets  were 
mea sured si mul ta neously on smaller ice prisms in the 
VPG experiment. Obtaining such clear agreement 
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Although  there is still much work to be done, the data 
we have acquired to date provide a self- consistent picture 
of the ice/vapor attachment kinetics on large faceted sur-
faces, providing the foundation for the CAK model de-
scribed in Chapter 4.

At temperatures below −25° C,  there are  limited 
data, and the overall picture is not so clear. Mea sure-
ments by Bailey and Hallett [2004Bai, 2009Bai, 
2012Bai] indicate that columnar forms predominate at 
temperatures between −40° C and −70° C at relatively 
high growth rates, with typical aspect ratios (length/di-
ameter) of roughly 10. Converting the observations to a 
characteristic supersaturation (a surrogate for σ0 in a 
terrace- nucleation model) [2019Har] shows essentially a 
power- law be hav ior that extends the σ0(T) trends seen 
in Figure 7.3, with σ0,basal and σ0,prism differing by no 
more than about a  factor of 2 below −30° C. Arrowhead 
crystals at −40° C (see Chapter 2) are consistent with an 
aspect ratio of about 10.

The CAK model predicts that  there should be almost 
no SDAK effects at  these low temperatures, so the ob-
served columnar growth at −40° C should result from 
the terrace- nucleation model. Assuming this model, one 
expects a crystal length/diameter aspect ratio of approxi-
mately exp(Δσ0/σsurf), where Δσ0 = σ0,prism − σ0,basal. 
At −40° C, the CAK model was chosen to have 
σ0,prism ≈ 23   percent, σ0,basal ≈ 14   percent, and thus 
Δσ0 ≈ 9   percent, so an aspect ratio of 10 requires 
σsurf  ≈ 4   percent, which is not unreasonable for growth 
in air at this temperature, and far below σ water ≈ 47  percent. 
This quick calculation shows that a  simple terrace nucle-
ation model is sufficient to yield columnar growth at low 
temperatures, while the SDAK effect is necessary to pro-
duce thin plates and slender columns at higher tempera-
tures, as described in Chapter 4.

In summary, the focus in this chapter has been on 
experimental studies of  simple ice prisms,  because 
 these studies provide the foundation for our under-
standing of the attachment kinetics. Over the temper-
ature range from −2° C to −30° C, data from both the 

from quite diff er ent experiments is itself a notewor-
thy achievement, given the considerable mea sure-
ment uncertainties and discrepancies found in 
 earlier ice growth experiments.

2)  There is no obvious air- pressure dependence in  either 
αbasal or αprism as a function of σsurf in the VPG ex-
periment, at least over the  limited range that was 
mea sured. This supports our assumption in the CAK 
model that air at a pressure of 1 bar has  little effect 
on the attachment kinetics.

3) The data all strongly support the terrace- nucleation 
mechanism for the large- facet attachment kinetics in 
the CAK model. Specifically, the function forms for 
both αbasal(σsurf) and αprism(σsurf) are both well de-
scribed by the terrace- nucleation model.

4) The data support Abasal ≈ 1 and Aprism < 1 at this tem-
perature, as described in Chapter 4. Constraining the 
model to have Aprism = 1 is not excluded completely 
by the mea sure ments shown  here, but both data sets 
show quite similar trends that prefer Aprism < 1. 
The same is true for the data at −2° C shown in 
Chapter  4. In all four cases (VIG and VPG data 
at −2° C and −5° C), the individual data sets each 
separately support Aprism < 1.

5) As described in Chapter 4, substantial evidence from 
a variety of experiments now indicates that platelike 
crystals are the norm at −5° C when the overall mor-
phology is that of a  simple hexagonal prism. Colum-
nar forms appear at higher supersaturations in air 
when the basal facets are narrow, which is a manifes-
tation of the SDAK phenomenon.

It  will take some years to complete our experimental pro-
gram with the VPG experiment, examining the full 
available temperature range and further investigating 
 whether the attachment kinetics are significantly af-
fected by air pressure. Figure 7.20 shows results at −5° C 
[2019Lib1], and similar data at −2° C are shown in Chap-
ter 4 [2020Lib]. Combining all the VIG and VPG data 
yields the mea sure ments shown in Figures 7.2 and 7.3. 
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VIG and VPG experiments are well described by a ter-
race nucleation model with α(σsurf) = A exp(−σ0/σsurf). 
The basal growth data additionally indicate Abasal ≈ 1 
over this entire temperature range, while the prism 
data indicate Aprism < 1 at temperatures above −10° C. 

The two experiments yield remarkably similar results, 
and both appear to be substantial improvements rela-
tive to  earlier experiments. In this realm, therefore, 
the data appear to be converging on a consistent pic-
ture of  simple prism growth.



FIGURE 8.1. Stellar snow crystals grow on the ends of slender ice  needles in this laboratory photo. The 
c- axis  needles  were created using high electric fields to accelerate normal crystal growth by using the 
techniques presented in this chapter.
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Experimental hardware features prominently in 
this book,  because laboratory investigations are 
so impor tant in our attempts to understand the 
physical dynamics of snow crystal growth. The-

ory provides a necessary mathematical framework for 
the discussion, along with new ideas regarding the 
under lying molecular pro cesses, but experiments are 
essential to test  those ideas and suggest additional the-
oretical directions. Pro gress happens when the two are 
applied in concert. While Chapter 7 looked at growing 
 simple ice prisms for investigating the molecular attach-
ment kinetics on broad facets, this chapter examines a 
particularly valuable technique for studying larger 
snow crystals exhibiting thin edges and complex mor-
phologies. By creating slender “electric” ice  needles and 
cultivating ordinary snow crystals on their ends, it is 
pos si ble to explore growth be hav iors that arise from 
structure- dependent attachment kinetics (SDAK), 
which plays such a major role in defining the Nakaya 
diagram (see Chapter 4). As I describe in this chapter, 
the electric- needle method allows the reproducible 
growth of complex structures over a broad range of 

temperatures and supersaturations, starting from well-
defined seed crystals.  These synthetic snowflakes are 
especially well suited for analy sis alongside their 3D 
computational counter parts, thus facilitating direct quan-
titative comparisons between theoretical models and 
experimental mea sure ments.

SNOWFLAKE ON A STICK

Figure 8.2 shows a typical set of c- axis electric ice  needles, 
which I also call e- needles. One begins with a thin metal 
wire exposed to highly supersaturated air in a diffusion 
chamber, so the wire quickly becomes covered with frost. 
The wire is seen at the bottom of the photo graph, sup-
porting with an assortment of small ice crystals growing 
on its surface. In this example, the temperature sur-
rounding the wire tip was near −6° C, so the frost crys-
tals grew in random orientations with a generally colum-
nar morphology, as expected from the Nakaya diagram 
(see Chapter 1). The wire extends down to the bottom 
of the growth chamber where it exits and is connected 
to a high- voltage power supply.

The universe is full of magical  things patiently waiting for our wits to grow sharper.

— EDEN PHILLPOTTS,  A SHADOW PASSES ,  1919

EIGHT

Electric Ice  Needles
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When a high voltage (typically +2,000 volts DC) is 
applied to the wire, slender ice e- needle crystals grow out-
ward from the tips of some frost crystals in just a few sec-
onds, provided that the conditions are right. When the 
temperature at the wire tip is close to −6° C, the  water 
vapor supersaturation is near 100  percent, and the air con-
tains trace quantities of acetic acid vapor, then the e- 
needles  will typically emerge, growing along the crystalline 
c- axis with tip velocities of about 100–150 microns/sec 

FIGURE 8.2. A set of slender e- needles grows on the end of a 
frost- covered wire. The e- needle centered in the image is about 
3 mm in length. The e- needles formed when +2,000 volts was 
applied to the frost- covered wire at the bottom of the photo, 
which was si mul ta neously exposed to highly supersaturated air 
at a temperature near −6° C. The e- needle phenomenon is the 
result of an electrically induced growth instability described in 
this chapter. The radius of curvature of the tip of a fast- growing 
e- needle can be as small as 100 nm.

[2002Lib]. In  these conditions, 3- mm- long e- needles 
can be grown in less than a minute.

While electrically modified needle growth is an in-
triguing phenomenon in its own right, c- axis e- needles 
are also quite useful as seed crystals for a broad range of 
snow crystal investigations. Ordinary (nonelectrified) 
growth commences as soon as the applied high voltage 
is removed, yielding well- formed single- crystal specimens 
growing on the tips of the e- needles. In Figure 8.3, for 
example, a set of e- needles was transferred to a second 
growth chamber near −15° C, causing platelike crystals 
to grow on the ends of the e- needles. As the plates be-
came larger, they soon shielded the ice  needles on which 

FIGURE 8.3. Thin, platelike snow crystals growing on the ends of 
c- axis e- needles. This example illustrates how e- needles can be 
used to cleanly support isolated snow crystals as they growth 
and develop.  After the thin plates had grown out, the supersatu-
ration was raised to stimulate branching from the corners of the 
plates. Figure 8.1 shows a similar example  after additional growth.
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they grew, so the plate structures  were only moderately 
perturbed by the presence of their supporting  needles.

The e- needle method is an especially versatile tool 
for studying snow crystal growth in the dual- chamber 
apparatus described in detail below. The first chamber is 
optimized for rapidly and reproducibly growing high 
quality c- axis electric  needles, while the second chamber 
is designed to provide a carefully controlled growth en-
vironment that can produce a broad range of tempera-
tures and supersaturations. Once created in the first 
chamber, the e- needles are quickly transported to the 
second growth chamber, so their subsequent normal 
growth can be observed and mea sured. With such a dual- 
chamber setup, the entire morphology diagram can be 

explored using quantitative growth mea sure ments. The 
challenge then becomes creating realistic computational 
models that can reproduce both the observed growth 
rates and morphologies. Figure 8.4 illustrates just a few 
of the possibilities.

If  there is one  thing I have learned with  great cer-
tainty in this field, it is that snow crystal growth exhib-
its a mystifying variety of complex growth be hav iors that 
 will require much additional study to appreciate. While 
the  simple ice prisms discussed in Chapter 7 generally fit 
a basic terrace- nucleation model, the formation of thin 
plates and hollow columns requires the SDAK and ESI 
phenomena (see Chapter 4), and dendritic structures 
arise from a convoluted mix of diffusion- limited growth 

FIGURE 8.4. E- needles make excellent seed crystals for studying the development of complex snow 
crystal morphologies at high supersaturations, as shown in  these examples. Once a c- axis e- needle 
has grown to a desired length, the high voltage is removed, and normal growth commences on the 
needle tip. Each single- crystal structure shown was grown in air at a constant temperature and super-
saturation, and time- lapse photography can rec ord the full growth history if desired. Observations like 
 these are wonderfully suited for comparing quantitative growth mea sure ments with detailed computa-
tion models, hopefully leading to a better understanding of the physical dynamics of snow crystal 
formation.
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and anisotropic attachment kinetics. Understanding 
how all this works  will require a variety of experimental 
tools that can be used in conjunction with sophisticated 
3D computational models. This undertaking is nontriv-
ial, and I believe that experiments using electric ice 
 needles  will play an impor tant role in advancing the sci-
ence of snow crystal formation.

Advantages . . .

At this point, I believe it is instructive to examine what 
makes the e- needle method especially useful as a scien-
tific tool and to compare it with other experimental tech-
niques for creating snow crystals for quantitative study.

Single- Crystal Specimens. One normally thinks of a 
seed crystal as being a tiny crystalline speck, a minute 
hexagonal prism in the case of ice. A single- crystal spec-
imen is almost always desirable, as polycrystalline sam-
ples are unnecessarily complicated and less well suited for 
investigating the under lying crystal growth dynamics. 
But being small in all three dimensions is not an essen-
tial requirement, and a slender e- needle, small in two di-
mensions only, can still be considered to be a seed crys-
tal. Moreover, with a well- defined crystal orientation and 
a sub- micron tip radius (at least during its initial growth 
phase), a c- axis e- needle embodies many qualities one 
seeks in an ideal seed crystal.

Versatile Support. Once a seed crystal has been created, 
the question of supporting it while it grows must be ad-
dressed. In the case of e- needles, this question answers 
itself, as the support is already provided by the wire from 
which the needle originally grew. This support is robust 
and is easily manipulated, so the e- needle can be moved 
to a second growth chamber, positioned in front of a 
camera lens, and rotated to a desired orientation with 
relative ease. Moreover, a complex snow crystal growing 
on the end of a long, slender e- needle is well isolated from 
other parts of the apparatus, so its surrounding environ-
ment can be carefully manipulated and controlled.

No Substrate Interactions. When a seed crystal is sup-
ported by a non- ice surface (for example, a supporting 
surface, filament, or capillary tube),  there is a good 
chance that the substrate  will influence the ice growth 
rates. Flat substrates and capillary supports all suffer 
from this prob lem to some extent. I discuss the topic of 
substrate interactions in some detail in Chapters 6 and 
7,  because this has been a significant issue in many of my 
own ice growth experiments. Moreover, the substrate in-
teraction prob lem was often not fully appreciated in the 
past, sometimes yielding growth data of dubious quality. 
With crystals growing on the tips of e- needles, however, 
no non- ice surfaces are pre sent, so substrate interactions 
are completely absent. When the entire structure is made 
of ice, it all becomes part of the same computational 
modeling prob lem.

No  Water Condensation. Another prob lem with non- 
ice surfaces in a supersaturated environment is  water 
condensation. If the supersaturation is above the dew 
point, then  water droplets tend to condense on all avail-
able surfaces, greatly perturbing the surrounding super-
saturation field. For example, with small seed crystals 
placed on a planar substrate, droplet condensation read-
ily occurs around the crystals (see Chapter 9), which ef-
fectively precludes any useful studies at high supersatu-
ration levels. E- needles avoid this issue, as  there are no 
non- ice surfaces for  water to condense on. Thus with 
e- needle support, one is  free to explore quite high su-
persaturations with relative ease compared to other 
techniques.

Witness Surfaces. The supersaturation level is difficult 
to know with high accuracy in ice growth experiments, 
and e- needles provide a way around this prob lem, at least 
partially. In many circumstances, the columnar body of 
the needle can serve a “witness surface” for determining 
the surrounding supersaturation. If the columnar growth 
satisfies αdiffcyl  αprism (see Chapter 3), then the radial 
growth of the needle is determined to a good approxi-
mation by just the needle radius and the faraway super-
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saturation. In practice, then, the mea sured growth of the 
body of the needle can often be used to effectively mea-
sure the faraway supersaturation.

Rapid Turnaround. To make any real pro gress  toward 
understanding the physics of snow crystal growth, one 
must mea sure a lot of crystals. The under lying molecu-
lar pro cesses are complex and difficult to isolate, plus 
every thing changes substantially with temperature, su-
persaturation, and a variety of other  factors. Therefore, 
one of my favorite features of the e- needle method is that 
it is pos si ble to grow a lot of crystals in a short time, while 
still examining each one as it grows.  Because several e- 
needles typically form si mul ta neously on a wire tip (for 
example, as shown in Figure 8.3), the observer can select 
the best of several specimens, while examining the  others 
to gauge the overall variability in growth and morpho-
logical development. This is useful for avoiding crystal 
outliers that can distort one’s scientific conclusions. The 
wide spacing between needle tips results in only minor 
interactions between the growth of the diff er ent crystals 
in a cluster. Equally impor tant, a new cluster of e- needles 
can be created in about a minute’s time, allowing many 
observations in a single observing session. By compari-
son, techniques with lower turnaround often look good 

in a first demonstration experiment but then lose their 
luster when it ends up taking all day to produce just two 
or three useful mea sure ments.

The Double- Plate Prob lem. Another surprisingly ben-
eficial feature of the e- needle method is that a needle tip 
contains only one exposed basal facet, compared to two 
basal facets on a small hexagonal prism. As illustrated in 
Figure 8.5, when a thin plate grows out from an e- needle, 
 there  will only be one plate. But two plates may emerge 
from the two ends of a stout columnar crystal, and the 
double plate often pre sents a substantially more difficult 
analy sis prob lem. In the lab,  these two plates are subject 
to a growth instability, in that they  will compete  until 
one dominates over the other. In computational models, 
however, the double- plate symmetry is typically built 
into the code, so both plates grow equally. This difference 
can make it problematic to compare models and experi-
ments. This “double- plate” prob lem does not exist with 
the e- needle case, as  there is only one plate from the 
outset.

Moreover, the geometry of an e- needle tip and its 
surroundings provides a degree of symmetry breaking 
that can be valuable when examining morphologies and 
growth rates in detail. In many circumstances, a plate-

Small prism seed crystal
à Double plate

E-needle seed crystal
à Plate on needle

FIGURE 8.5. Using e- needles avoids the “double- plate prob lem” in snow crystal 
modeling. Simple- prism seed crystals often grow into double- plate structures 
(left), both in natu ral snow crystals and in computational models. This added com-
plication can be problematic when comparing models with laboratory experi-
ments, as the two plates tend to interfere with one another. In similar conditions, 
however, only a single plate emerges from an e- needle seed crystal (right). Thus, 
snow crystals on e- needles are often easier to grow and to analyze than crystals 
growing from small seed crystals, especially at high supersaturations when mor-
phologies are complex.
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like crystal growing on the end of an e- needle  will exhibit 
a slightly concave upper basal surface and a slightly con-
vex lower basal surface (depending on the detailed 
growth conditions). This built-in asymmetry means that 
ridge structures form only on the lower basal surface, 
while inwardly propagating macrosteps are found only 
on the upper basal surface (see Chapter 3). Several other 
morphological features are similarly isolated when using 
an e- needle seed crystal, which turns out to be surpris-
ingly helpful when trying to decipher the characteristics 
and physical origins of  these features, especially when 
they appear together.

. . .  and Disadvantages

Although the use of e- needles as seed crystals has numer-
ous experimental advantages when examining complex 
snow crystal structures,  there are some disadvantages as-
sociated with the technique as well.

Larger Diffusion Effects.  Because αdiffcyl  < αdiff  at fixed 
R (see Chapter 3), the diffusion effects arising from an 
e- needle of radius R are substantially larger than  those 
of a hexagonal prism of overall size R. This is bad news 
for the e- needle method, as it means that e- needles are 
not especially well suited for making quantitative mea-
sure ments of the attachment kinetics. As presented in 
Chapter 7, the smallest pos si ble seed crystals are needed 
for this purpose. I have tried to use  simple columnar 
 e- needles for making mea sure ments of attachment kinet-
ics, but the diffusion corrections are always large and 
problematic. In general, the e- needle method shines best 
when growing crystals with complex morphologies, at 
high supersaturations, for comparison with correspond-
ing computational growth models.

Weight Restrictions. Although e- needles can support 
their own weight along with some build-up of material 
on their tips,  there are limits. The contact point at the 
base of an e- needle is especially weak, and the needle  will 
fall if it becomes sufficiently top heavy. Oddly enough, 

e- needles almost never crack and break the way one 
might expect from a crystalline structure. Instead, an e- 
needle tends to rotate slowly downward when too much 
weight accumulates at its tip. The e- needle itself behaves 
like a rigid structure, but its base support does not. When 
a growing crystal on the tip becomes sufficiently heavy, 
the entire needle structure usually pivots about its sup-
port point, slowly falling like a stick with its bottom end 
held in chewing gum.

Growth at Room Air Pressure. The apparatus described 
in this chapter operates in air at 1 bar, and modifying it 
to operate in a vacuum environment would be difficult. 
Thus, while exploring snow crystal growth as a func-
tion of background gas pressure is desirable, achieving 
this with e- needles pre sents a significant experimental 
challenge.

Complicated Construction. A final disadvantage with 
the e- needle method is that the apparatus is complex and 
therefore nontrivial to construct. I describe my dual- 
chamber setup in some detail in this chapter and in 
[2014Lib1], but it is impractical to list  every nuance of 
its construction and operation in any publication. A 
 great deal of trial- and- error experimentation was neces-
sary to produce satisfactory crystals and growth mea-
sure ments, and much of this effort would likely have to 
be repeated (to some degree) with a new e- needle venture. 
Although this disadvantage is nontrivial, I certainly 
hope that the results presented in this chapter stimulate 
at least some interest in developing the e- needle technol-
ogy to greater heights.

E- NEEDLE FORMATION

Electrically enhanced ice growth was discovered in 1963 
by Bartlett, van den Heuvel, and Mason [1963Bar], who 
observed the spontaneous formation of fast- growing e- 
needles when large, positive DC voltages  were applied to 
ice crystals growing at high supersaturations. Libbrecht 
and Tanusheva explained the under lying physical cause 
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as an electrically induced growth instability 35 years  later 
[1998Lib, 1999Lib1, 1999Lib2]. The importance of 
chemical influences on the crystalline orientation of e- 
needle growth was discovered soon thereafter [2002Lib], 
leading to the reliable technique for growing high qual-
ity c- axis e- needles described in this chapter.

Basic Theory

The physical mechanism that produces electric ice 
 needles can be understood by first considering the equi-
librium vapor pressure of a charged ice sphere. From basic 
electrostatics, if the sphere has some nonzero conduc-
tance, then the static charge must all reside on the sur-
face of the sphere, while the electric field inside the sphere 
is zero. Pulling a neutral  water molecule off the sphere 
reduces its radius but not its charge, and this brings the 
surface charges closer together than they  were before the 
 water molecule was removed.  Because like charges repel, 
it requires some energy to reduce the size of the sphere 
and pull the surface charges closer together. It follows 
that pulling a  water molecule off a charged sphere re-
quires slightly more energy than pulling a  water mole-
cule off an uncharged sphere. For this reason, the equi-
librium vapor pressure of a charged sphere is slightly 
lower than that of an uncharged sphere. A high voltage 
applied to the sphere has the same effect.

The argument is essentially the same as for the 
Gibbs- Thomson effect presented in Chapter 2, and the 
math is also similar. Adding in the electrostatic self- 
energy term, the equilibrium vapor pressure of a charged 
sphere of radius R becomes

 ceq(R)≈ csat 1+ 2dsv
R
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ϕ0 is the applied electrical potential, and ε0 is the vacuum 
permittivity in SI units [2002Lib].

When the growth of the sphere is mainly diffusion 
 limited, we can add the electrostatic term to the same 
perturbation expansion described in Chapter  3 to 
obtain
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where  here we have neglected the small effect from sur-
face tension. The corresponding equation for the tip ve-
locity of a growing Ivantsov parabolic crystal becomes
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where Rtip is the radius of curvature of the parabola at the 
tip, and G is a dimensionless geometrical  factor. This 
equation describes the growth of the parabolic crystal 
 illustrated in Figure 8.6.

Examining the individual terms in Equation 8.4 gives 
us a picture of the essential physics under lying the e- 
needle growth instability. The first term in the parenthe-
ses gives the constant tip velocity of a parabolic crystal 
when its growth is entirely diffusion  limited. This is the 
Ivantsov solution discussed in Chapter  3, arising solely 
from the solution to the particle diffusion equation. The 
second term is rather small compared to the first, but it 
reduces the growth velocity as Rtip becomes smaller. This 
term, albeit small, plays an essential role in stabilizing the 
normal growth of a parabolic crystal, as it “selects” the 
final Rtip for the growing Ivantsov parabola via solvability 
theory (see Chapter 3). Together,  these first two terms de-
scribe the growth of a normal ice needle or dendrite that 
has an approximately parabolic shape near its tip.

The third term in Equation 8.4 tends to destabilize 
the normal parabolic growth, and this is the term that 
drives the growth of e- needles. As Rtip becomes smaller, 
this term increases the tip velocity relative to the normal 
growth, and the Rtip

−2  dependence means that this term 
eventually overwhelms the kinetic term in the equation 
as the tip sharpens. Including this third term in an ex-
tension of solvability theory and following the algebra 
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through, the resulting equation for the parabola tip ra-
dius can be written in the form of a quadratic equation 
[2002Lib]

 Rtip
2 − R0Rtip + ARes

2 ≈0,  (8.5)

where R0 is the tip radius in the absence of an applied 
electrical potential (the normal solvability- theory result), 
and A is a dimensionless constant.

Solving the quadratic equation gives Rtip = R0 when 
 there is no applied potential, which is the normal solv-
ability result. As the potential is turned on slowly, at first 
the solution yields a tip velocity that is only slightly larger 
than the normal velocity. In this regime, the normal solv-
ability solution is only slightly perturbed by the applied 
potential, decreasing Rtip and increasing vtip as ϕ0 be-
comes larger. Thus,  there is no dramatic effect when a 
small voltage is applied, as one would expect.

This “perturbative” regime remains in effect as long 
as Rtip < 2R0, or, equivalently, as long as vtip is no greater 
than about twice its normal growth result.  Under typi-
cal ice growth conditions, the perturbative regime holds 
as long as the applied voltage is less than about 1,000 
volts. Beyond that point, the quadratic equation no lon-
ger has any real roots, meaning that the second term can 

FIGURE 8.6. When a high voltage is applied to an ice needle, 
strong electric fields (arrows) are concentrated at the tip.  These 
fields decrease the equilibrium  water vapor pressure near the tip 
and increase its growth rate, yielding fast- growing e- needles.

no longer stabilize the growth as described by solvabil-
ity theory.

Physically, the destabilizing electrostatic term eventu-
ally brings about a full- blown growth instability. Above a 
threshold voltage of about ϕthresh ≈ 1,000 volts, the physi-
cal influence of the third term in Equation 8.4 exceeds 
that of the second term, providing a positive feedback ef-
fect that leads to runaway growth. Reducing Rtip makes 
the tip electric fields higher, which turns up the growth 
rate and reduces Rtip still more, further increasing the tip 
electric fields. All this quickly leads to an abrupt increase 
in vtip and the formation of an electric ice needle.

Figure 8.7 shows a direct comparison of experiment 
mea sure ments with the theory described above [1998Lib], 
illustrating the initial perturbation of the solvability solu-
tion followed by a runaway instability that leads to the 
formation of an electric needle. Consistent with the 
solvability model, the dendrite tip growth increases in 
a well- behaved fashion  until reaching about twice its 
normal value, at which point the e- needle forms, and 
the tip velocity increases abruptly.

Figure  8.8 shows mea sure ments of tip velocities 
near −5° C for normal needle growth, e- needle growth 
along axes other than the c- axis, and c- axis e- needles. Al-
though the tip radius Rtip was often too small to mea-
sure optically, the value of Rtip can be accurately esti-
mated from the Ivantsov solution and the mea sured vtip. 
This solution dictates that Rtip is proportional to vtip−1, 
indicating that the inferred tip radius Rtip falls to values 
below 100 nm for the fastest growing c- axis e- needles.

This electrostatic theory is a natu ral extension of solv-
ability theory, and it seems to fit the observations reason-
ably well. But it only describes the tip be hav ior in the per-
turbative regime when the tip radius is still stabilized by 
the kinetic term in Equation 8.4. Above the voltage 
threshold,  there must be some other stabilization mecha-
nism that selects the final e- needle tip velocity. This neces-
sary stabilization cannot be provided by vapor- pressure 
effects stemming from  either surface energy or the attach-
ment kinetics, as  these effects both go only as Rtip

−1,  as seen 
in the second term in Equation 8.4. Therefore,  these terms 
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FIGURE 8.7. Experimental mea sure ments (data 
points) showing a gradual increase in the tip 
growth velocity of an ice dendrite at −15° C as the 
applied voltage is increased. The curve through 
the data points comes from the theory contained 
in Equation 8.5, with A adjusted to fit the data. 
Note that the dendrite morphology continued to 
exhibit sidebranching as the voltage was initially 
increased. Once a threshold voltage was ex-
ceeded, however, normal dendrite growth gave 
way to the formation of an e- needle. The inset 
image shows a similar run in which the normal 
dendrite growth transformed into a fast- growing 
a- axis e- needle above threshold [1998Lib].
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FIGURE 8.8. Experimental mea sure ments (data 
points) showing the tip velocities for normal nee-
dle growth (lower points), e- needles growing 
along crystalline axes other than the c- axis 
( middle points), and c- axis e- needles (upper 
points) [2002Lib]. The data  were all taken at a 
temperature of −5° C, and in all cases, the tip 
growth velocity is linearly proportional to the su-
persaturation, as predicted by solvability theory 
(see Chapter 3). Growth along the c- axis was 
stimulated using chemical vapor additives, as de-
scribed in this chapter.

cannot compete with the Rtip
−2  term once the tip radius 

becomes small. At the 100 nm scale, surface tension may 
provide sufficient mechanical force to halt additional tip 
sharpening, but this is just a guess. As of this writing, the 
e- needle tip stabilization mechanism is not known.

Polarizability Effects

The alert reader  will note that the above theory does not 
involve the polarizability of the highly polar  water mol-
ecule in the electric field near the needle tip. It turns out 
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that molecular polarizability brings about two electrical 
effects that nearly cancel each other in the theory. First, 
the vapor pressure of a charged sphere is increased by the 
polarizability,  because removing a molecule from the 
zero- field region inside the sphere to the high- field region 
outside releases energy. Second, the  water vapor density 
in the high- field region is increased as polarized  water 
molecules are preferentially drawn into this region. The 
theory becomes somewhat complicated at this point, but 
the result is that the polarizability of the  water molecule 
can be ignored to first order [1999Bre, 2002Lib]. It ap-
pears that molecular polarizability contributes some-
what to the energetics, but it is not as impor tant as the 
electrostatic effect for creating e- needles.

The electrostatic effect is somewhat universal in that 
it does not depend much on the characteristics of the 
vapor molecules in the prob lem, including the polariz-
ability.  Because of this universality, one expects that the 
e- needle phenomenon should be observable in other 
high- vapor- pressure material systems besides ice. Indeed, 
Libbrecht, Crosby, and Swanson [2002Lib] demon-
strated a similar e- needle effect in iodine crystal growth, 
even though this  simple dipole molecule has a quite low 
molecular polarizability.

E- Needle Crystal Orientation

E- needles can be persuaded to grow with a variety of 
crystalline orientations, depending on growth condi-
tions, as is demonstrated in Figure  8.9. Near −15° C, 
e- needles often prefer to grow along the a- axis of the ice 
crystal, but sometimes they grow preferentially along the 
[1 100]  axis, as shown in the  middle image in the fig-
ure. I have not fully explored the  causes of the diff er ent 
e- needle orientations, and the precise conditions needed 
to produce growth along the a- axis or the [1 100]  axis 
are not presently known. The preference for growth 
along the [1 100]  axis is especially puzzling, as this 
axis seems to play  little role in other aspects of ice crys-
tal growth, and the phenomenon shown in Figure 8.10 
adds another twist to the mystery.

FIGURE 8.9.  Under dif fer ent experimental conditions, e- needles 
can grow preferentially along the a- axis (top photo), the [1 100]  
axis ( middle photo), or the c- axis (bottom photo). In many condi-
tions (not shown), e- needle growth is not along a well- defined 
crystalline axis but appears to be somewhat random and is likely 
dependent on the orientation of the seed crystal from which the 
e- needle formed. In each of  these photos, the e- needle growth 
was followed by a period of normal growth, during which no volt-
age was applied. The orientation of the e- needle could then be 
determined by the orientation of the subsequent normal growth.
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At temperatures near the needle peak around −6° C 
in the Nakaya diagram, e- needle growth is usually not 
along a well- defined crystal axis. Instead the growth axis 
appears to be roughly the same as the growth direction 
of fishbone dendrites, which is somewhat temperature 
and supersaturation dependent. However, we found 
that c- axis electric  needles can be reliably produced 
near −6° C by adding trace quantities of vaporous 
chemical additives to the air in which the  needles grow 
[2002Lib].

Vari ous chemicals  were found to promote c- axis  
e- needles near −6° C, including hydrocarbons (such as 
gasoline vapor), vari ous alcohols, and other solvent 

vapors.  After some trial- and- error investigations, we 
found that acidic acid vapor is especially effective, with 
concentrations as low as 1 ppm readily promoting nee-
dle growth along the c- axis. However, the best vapor 
we have found for promoting c- axis e- needles is that 
emitted from GE Silicone II caulk. Acetic acid is the 
primary solvent used in this caulk, but the vapor ap-
pears to include additional proprietary volatile organic 
compounds at low concentrations. This chemical- 
vapor trick can be used to produce c- axis e- needles 
with nearly 100  percent efficiency. Why trace chemical 
impurities promote c- axis e- needle growth so effec-
tively remains a mystery.

FIGURE 8.10. The preferential growth of e- needles along the [1 100]  axis sometimes yields a pecu-
liar tip splitting phenomenon seen in dendrite growth near −15° C, illustrated in this photo. When the 
applied voltage is just slightly above the e- needle threshold, an [1 100]  axis e- needle apparently 
begins to form, but the growth halts before the structure can turn into a full- fledged e- needle. In-
stead the re orientation of the crystal axis brings about a tip splitting that yields two primary dendrite 
branches and two secondary branches, the latter perpendicular to the original branch axis. This 
split- tip structure lowers the electric fields sufficiently (at constant applied voltage) so that near- 
normal growth commences from the split tip. In this example, the two primary branches then grew 
farther apart  until the electric fields passed through threshold again, so the two branch tips each 
underwent an additional splitting. The applied potential was not changed  after the first tip splitting 
occurred.
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During the weeks and months  after seeing this lone 
photo, we  were unable to reproduce the high yield of c- 
axis e- needles. We carefully explored growing e- needles 
at diff er ent temperatures, supersaturations, voltages, and 
other par ameters in our apparatus, but nothing worked, 
and the desired  recipe eluded us during many frustrat-
ing tests and  trials. Having excluded many other possi-
bilities, we began to think that unwanted chemical va-
pors in our apparatus may have been affecting our results. 
The diffusion chamber was constructed from aluminum, 
styrofoam, glass, and other materials, and much of it was 
held together with silicone caulk, which does emit a 
characteristic odor.

Removing the contaminating vapors entirely was 
impossible, but baking the chamber would slowly reduce 
the contaminant levels. So, we heated the chamber to 
about 50° C and left it alone for several weeks, focusing 
our attention on other proj ects for the duration. When 
the time seemed right, and the odors had clearly subsided 
substantially, we turned off the bake and tried our luck 
once more. And, lo and behold, now we saw no c- axis 
e- needles whatsoever; the bake had reduced the yield to 
effectively zero. At that point, the light bulb turned on, 
and we realized that vapor contaminants  were not the 
prob lem but instead  were an essential part of our desired 
 recipe. Adding a bit of caulk vapor back into the cham-
ber was straightforward, and in short order, we  were 
 producing superb c- axis e- needles reproducibly with a 
nearly 100  percent yield.

 After additional tests, we found that many chemical 
vapor additives could bring about the formation of c- 
axis e- needles. Just about anything with a significant 
odor seemed to do the trick. Acetic acid (a.k.a. vinegar) 
worked especially well, and it was entirely fortuitous 
that this was a main constituent in the caulk we had 
been using all along (G.E. Silicone II caulk). In fact, 
the caulk vapor ended up being slightly better than 
pure acetic acid, and better than any other chemical 
additive we tested. We soon developed a highly repro-
ducible procedure for creating copious c- axis e- needles, 
which is presented in this chapter. As with many em-

FIGURE 8.11. The serendipitous discovery of chemically in-
duced c- axis e- needles (1997). The appearance of five perpen-
dicular stars on five  needles in this photo initiated our search for 
a chemical “ recipe” for reliably producing c- axis  needles.

A Serendipitous Discovery

In 1997, summer student Victoria Tanusheva captured 
the photo graph shown in Figure 8.11 during our early 
studies of electric ice  needles. The image shows five 
beautifully formed stellar snow crystals growing on 
the tips of the five e- needles. Notably, all five stars are 
perpendicular to their respective e- needles, indicating 
that all five e- needles had grown along the crystalline 
c- axis. We had witnessed c- axis e- needles previously, 
but  these  were rare occurrences. Most of the time, the 
e- needle axes  were somewhat randomly oriented with 
re spect to the crystal axes, which was not ideal for 
growing snow crystals on the needle tips. Turning off 
the voltage and setting the growth conditions to pro-
duce stellar crystals on  these e- needles yielded mostly 
lopsided, rather malformed stars. Seeing this image, 
with all five e- needles growing along the c- axis, we re-
alized that  there must be some  recipe for reliably mak-
ing c- axis e- needles.
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FIGURE 8.12. A dual- diffusion- chamber apparatus for observing snow crystal growth on e- needles. 
Diffusion Chamber 1 (DC1, on the right) provides the necessary conditions for creating c- axis e- 
needles easily and quickly. The e- needles are then transported to Diffusion Chamber 2 (DC2, on the 
left), which provides a well- controlled environment that can achieve a broad range of temperatures 
and supersaturation levels. The inside height of DC2 is 10 centimeters [2014Lib1].

pirical  recipes, however, we still do not understand 
why it works!

Some Remaining  
Questions

Although the above theory is prob ably correct at a basic 
level, the e- needle phenomenon is nevertheless largely 
unexplored, both experimentally and theoretically. Some 
remaining questions and ideas for further research in-
clude the following.

• What stabilizes the e- needle growth above the insta-
bility threshold? Solvability theory is no longer ade-
quate for this prob lem, so some new theoretical ideas 
seem to be required.

• Why do c- axis e- needles grow about four times faster 
than e- needles growing along less preferred lattice 
directions?

• What mechanism is responsible for chemical impu-
rities promoting the growth of c- axis e- needles?

• How would the e- needle phenomenon change in dif-
fer ent gases or as a function of gas pressure? No ex-
periments along  these lines have ever been performed, 
to my knowledge.

• Is it pos si ble to grow individual c- axis e- needles in a 
more controlled fashion, for example, producing c- 
axis e- needles that are oriented perpendicular to a 
fixed substrate? To date, I have only been able to grow 
c- axis e- needles from a frost- covered wire, which leads 
to somewhat random spatial orientations.

• Why do e- needles sometimes prefer growth along the 
[1 100]  axis near −15° C, while at other times select-
ing the a- axis at this same temperature?

• Are  there other preferred e- needle orientations  under 
diff er ent growth conditions? Much of the available 
pa ram e ter space remains largely unexplored, leaving 
open the possibility of new discoveries.

• What other materials exhibit the e- needle growth in-
stability? Iodine exhibited some e- needle- like be hav ior, 
but  little work has been done exploring this phenome-
non in other materials that grow from the vapor phase.
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cise mea sure ments of single, isolated crystals growing in 
situ, avoiding the complications of substrate effects and 
crystal crowding. In turn, this enables the next substan-
tial phase in the scientific progression— making detailed, 
quantitative comparisons with modern computational 
models that can yield new insights into the under lying 
physical pro cesses that govern snow crystal growth.

Diffusion Chamber 1

Referring to Figure 8.12, DC1 was designed to produce 
c- axis electric  needles quickly, reliably, and easily. Its basic 
construction is a partial clamshell diffusion chamber (see 
Chapter 6) with a top temperature of +60° C and a bot-
tom temperature of −35° C [2014Lib1].  These tempera-
tures, along with the dimensions of the aluminum clam-
shell walls,  were adjusted (somewhat by trial- and- error) 
to yield a high supersaturation (σ  ≈ 100  percent) and a 
temperature of −6° C at the location of the wire tip of the 
support post.

FIGURE 8.13. A laboratory photo graph of the dual- diffusion- chamber apparatus depicted in Fig-
ure 8.11. The recirculating chiller that cools the chambers, as well as several temperature controllers 
and other pieces of electronic hardware, are not vis i ble in this picture.

AN E- NEEDLE DUAL DIFFUSION 
CHAMBER

To exploit e- needles for additional studies of snow crys-
tal growth, I constructed the dual- diffusion- chamber ap-
paratus shown in Figures 8.12 and 8.13 [2014Lib1]. The 
basic idea  here is to grow c- axis e- needles in one diffu-
sion chamber and then move the e- needles to a second 
diffusion chamber, where their subsequent ordinary 
growth can be observed over a broad range of conditions. 
The first diffusion chamber can then be optimized for 
the task of creating c- axis e- needles quickly and reliably, 
while the second chamber can be separately designed to 
produce a well- controlled environment with a precisely 
known temperature and supersaturation level.

In many re spects, this is a next logical step in the 
morphological studies begun by Nakaya [1954Nak] and 
advanced by Mason [1958Hal, 1963Mas], Kobayashi 
[1961Kob], Bailey and Hallett [2004Bai, 2009Bai], and 
 others. The main difference is that we can now make pre-
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The base of the apparatus is cooled using a recirculat-
ing chiller that circulates methanol at −35° C to a 
12 × 18- inch aluminum base plate, on which the rest of 
the hardware is assembled. Four 1 × 1- inch copper bars 
thermally connect this base plate to the top surface in 
DC2. Three sets of thermoelectric modules provide ad-
justable temperature control for the bases of both DC1 
and DC2, and the top of DC2, set by in de pen dent elec-
tronic temperature controllers.

A key feature in DC1 is that the supersaturation 
must be high enough to reliably produce c- axis e- needles, 
which do not readily form when when σ < 100  percent. 
The clamshell diffusion- chamber design is well suited to 
this task, although it is difficult to calculate the super-
saturation a priori from the design par ameters. Some 
trial- and- error reckoning was necessary, therefore, to 
achieve the desired environmental conditions in DC1.

The temperature profile in a clamshell diffusion 
chamber is typically nonlinear, and Figure 8.14 shows 
the vertical profile along the centerline in DC1. This pro-
file varies with horizontal distance from the walls, so 
the air in the chamber is not stable against weak convec-
tion currents. The resulting slow air circulation in the 
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FIGURE 8.14. A mea sure ment of the temperature profile along 
the central vertical axis in DC1.

chamber complicates any attempt to calculate the super-
saturation using diffusion modeling. Even quite slow 
air currents are impor tant to consider, as the time nec-
essary to establish the final supersaturation profile is on 
the order of the diffusion time τ = L2/D, which is about 
10 minutes in this chamber. It is not necessary, however, 
that the air be perfectly still or that the temperature pro-
file be precisely known. All that  really  matters in DC1 
is that the temperature be near −6° C and the supersatu-
ration be at or above 100  percent at the position of the 
wire tip.

The top plate in DC1 includes a reservoir that holds 
about 100 mL of  water in a shallow pan to facilitate evap-
oration. The plate, clamshell walls, and  water reservoir 
are all made from copper, soldered together for good heat 
conduction. The top- plate assembly is heated using a 
sealed resistive heating ele ment with a digital tempera-
ture controller to maintain a well- defined plate temper-
ature throughout the duration of an experimental run.

At the beginning of a run, and for other testing pur-
poses, it is often con ve nient to hang a weighted length 
of thin monofilament fishing line down the center of 
DC1 to observe the resulting ice growth at the position 
where the wire tip  will be placed. Two cylindrical observ-
ing ports are included in the DC1 walls for this purpose 
(one for viewing, one for back illumination), and the long- 
distance viewing microscope can be seen in Figure 8.13. 
When DC1 is operating correctly, fishbone dendrites (see 
Chapter 2) appear at temperatures near −5° C on the fila-
ment, as shown in Figure  8.15.  These fast- growing 
dendrites provide an effective temperature mea sure ment 
inside the chamber, and they indicate that a high su-
persaturation level has been achieved. This filament is 
removed during normal operation of the chamber, so as 
not to interfere with the e- needle growth on the wire 
tip (at the end of the post in Figure 8.12).

A small amount of chemical vapor is needed to pro-
duce c- axis electric ice  needles, as they do not readily 
form in clean air. At the same time, too much chemical 
vapor might contaminate the subsequent growth in 
DC2, which would clearly be undesirable for quantitative 
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syringe. Note that the caulk itself remains untouched at 
the bottom of the  bottle; only the air above it is used. The 
air in the syringe is then ejected through the inlet tube 
into the region surrounding the wire tip. A high voltage 
(typically +2,000 volts DC) is quickly applied to produce 
c- axis e- needles. The injected air quickly disperses in 
DC1, and the quantity is too low to significantly con-
taminate the air in DC2.

Remarkably  little caulk vapor is needed to stimulate 
the formation of c- axis e- needles. It is often sufficient to 
draw 2 ml of caulk- bottle air into the syringe, eject this 
air out of the syringe (not into DC1), and then draw an-
other 2 ml of normal lab air into the syringe and eject 
that air into DC1. The residual caulk vapor coming from 
what ever comes off the inner walls of the syringe is 
enough to produce c- axis e- needles in DC1 with nearly 
100  percent efficiency. However, completing  these same 
steps with no initial caulk- bottle draw does not work, 
yielding almost entirely non- c- axis e- needles. Why this 
chemical vapor is needed to produce c- axis e- needles re-
mains a mystery, and this procedure was developed al-
most entirely from an initial serendipitous observation 
followed by trial- and- error experimentation. As dis-
cussed in Chapter  4, our overall understanding of 
chemical vapor influences on snow crystal growth is ex-
tremely poor.

The swing-in cover in DC1 (shown in Figure 8.12) 
is  made from a strip of 0.1- mm- thick plastic sheet 
mounted horizontally, rigid enough to maintain its flat 
shape, about 4 cm in width. The cover quickly becomes 
covered with frost crystals, and it is normally kept near 
the chamber walls, where it does not perturb the super-
saturation to a  great extent. Swinging the cover into 
place, so it is positioned above the wire tip, quickly re-
duces the supersaturation at the tip by a substantial (but 
not well mea sured)  factor. With this cover in place, the 
voltage can be turned off, and the  simple e- needle struc-
ture remains stable for some tens of seconds. Without 
the cover over the e- needles, turning off the high voltage 
produces normal fishbone growth that greatly broadens 
the tip structure in just a few seconds.

FIGURE 8.15. An image showing ice crystals growing on a seg-
ment of 200- micon- diameter nylon fishing line hanging in the 
center of DC1. The scale bar is 1 mm long, and the crystal grow-
ing time was 19 minutes [2014Lib]. The crystal morphology is 
strongly temperature dependent, with the fast- growing “fish-
bone” dendrites appearing near −5° C. The best wire tip location 
for producing c- axis electric  needles is just below the fishbone 
peak, where the temperature is near −6° C. Hollow columnar 
crystals appear at this position.

analy sis. Therefore, the vapor inlet tube shown in Fig-
ure 8.12 is included in DC1 so only a minute amount of 
chemical vapor need be used to create c- axis e- needles.

The following methodology was found to work 
quite well in practice. First, a good amount of GE Sili-
cone II caulk is deposited into an empty half- liter soda 
 bottle. The caulk has quite a strong odor, mostly from 
acetic acid, and capping the  bottle nicely traps this vapor 
for weeks at a time. When the wire tip is in place in DC1, 
a syringe is inserted into the  bottle through a small hole 
in the cap, and 2 ml of odoriferous air is drawn into the 
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I have also found that judicious use of the swing-in 
cover greatly improves the transfer of e- needles from 
DC1 to DC2. The best procedure is to first get the e- 
needles started with the cover removed, as this requires 
the highest available supersaturation.  After the  needles 
grow to about 1 mm long, swing the cover into place 
while leaving the high voltage on. This slows the e- needle 
growth by about a  factor of 2–3, but their sharp mor-
phology remains. In this state, let the e- needles growth 
another 1–2 mm, then turn off the high voltage (leaving 
the cover in place) and pull the wire tip into DC2. Fol-
lowing this procedure, the transfer efficiency is nearly 
100  percent; the e- needles mostly survive the journey 
into DC2. Without the slower growth step with the 
cover in place, however, the e- needles frequently break off 
from the wire tip before they make it into DC2, which 
can be quite frustrating in practice.

The “tapper” shown in Figure  8.12 is a con ve nient 
tool for removing built-up frost from the wire tip. The 
tapper consists of a small cylindrical weight on a string 
that swings into place like the cover plate. The weight 
swings from its string and effectively knocks crystals off 
the wire, readying it for making more e- needles. Over 
time, the frost buildup on the wire tip becomes so high 
that it cannot be removed effectively with the tapper. 
When this happens, the wire tip can be cleaned by in-
serting a long plastic rod into the top of the chamber. A 
plastic rod with a 2- cm- long wire end seems to work 
best. Touching the thicker, room- temperature wire to 
the thin wire tip immediately melts and removes the ice 
buildup. The frost- covered tapper is then brought in to 
tap the wire tip a few times to nucleate freezing of the 
remaining  water. (Without this nucleation step, only 
liquid  water condenses on the wire tip, as the tempera-
ture is not cold enough to quickly nucleate spontaneous 
freezing.)

 After some trial- and- error development of this appa-
ratus, the result is an efficient electric- needle “factory” 
that works remarkably well and nearly always yields a set 
of c- axis e- needles in DC2 like  those shown in Figure 8.2. 
Moreover, the dual chamber has a rapid sample turn-

around that is especially impor tant for turning a proof- 
of- principle demonstration into a work horse experiment 
that produces valuable scientific data.

Diffusion Chamber 2

DC2 was designed to be a linear- gradient diffusion 
chamber, optimized to allow accurate modeling of the 
interior supersaturation. As shown in Figure 8.12, a pair 
of aluminum clamshells provide a cold barrier around 
the chamber, while stainless- steel inner walls conduct 
heat vertically to establish a linear vertical temperature 
gradient along the walls and throughout the chamber in-
terior (see Chapter  6). The thickness of the stainless- 
steel walls (1.6 mm) was chosen to provide sufficient con-
duction to define a linear temperature gradient, but not 
so thick that the resulting heat conduction is difficult to 
sustain. Figure 8.16 shows a mea sured temperature pro-
file at the center of the chamber.

With a linear temperature gradient and frost- covered 
walls to produce the boundary condition cwall(z) =  
csat(Twall(z)) at the chamber walls, it becomes pos si ble to 
accurately model the interior temperature and supersat-
uration. In the limit that the width of DC2 is much 
greater than the height, the heat and particle diffusion 
equations yield linear profiles for both the temperature 
and particle density inside the chamber. From this, one 
obtains the supersaturation at the chamber center

 σ center ≈
1
2

1
csat (Tcent )

d2csat
dT 2

(Tcent )(ΔT )2 =Cdiff (ΔT )2 ,  

 (8.6)

where Tcent = (Ttop + Tbottom)/2, ΔT = (Ttop − Tbottom)/2, and 
 Table 2.1 lists Cdiff as a function of temperature.

This faraway- walls approximation is not too far off 
for DC2, but the walls do reduce the supersaturation 
somewhat. Using a finite- element diffusion analy sis to 
calculate the effects of the walls and the post supporting 
the crystals yields the supersaturation model shown in 
Figure 8.17 [2016Lib]. This model predicts that, over a 
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broad range of growth conditions, the center supersatu-
ration is well described by

 σcenter ≈ Gmod Cdiff (ΔT )2, (8.7)

where Gmod ≈ 0.72 is a correction  factor arising from the 
walls and post.
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FIGURE 8.16. Mea sure ments of the linear vertical temperature 
profile in DC2.

DC2 also includes a swing-in thermistor to moni-
tor the temperature at the chamber center and a swing-
in cover to lower the supersaturation if desired. The cali-
brated thermistor has an absolute accuracy of ±0.1° C 
and can be rotated in to mea sure the temperature at 
the location of the growing crystals. In princi ple, 
the center temperature is the average of the top and 
bottom temperatures, but small perturbations arise 
from the imaging optics, optical viewports, and other 
 factors.

The DC2 cover consists of a 0.1- mm- thick, 1- cm- wide 
plastic strip mounted horizontally. Swinging the cover 
into position just above the center of the chamber greatly 
reduces the supersaturation seen by the growing crys-
tals. The cover is typically put in place right before the 
e- needle transfer from DC1, which then allows time to 
position the  needles and focus the camera  under condi-
tions of low supersaturation. Swinging the cover away 
then restores the normal supersaturation in a time 
of  roughly τ ≈ L2/Dair ≈ 5  sec, where L ≈ 1  cm and 
Dair ≈ 2 × 10−5 m2/sec. The impact of the cover on the su-
persaturation can be verified by direct mea sure ments of 
the crystal growth.

During the several- hour- long cool- down of the sys-
tem, the bottom surface of DC2 is heated to produce 

FIGURE 8.17. A finite- element diffusion 
model of the supersaturation field in DC2 
at a fixed ΔT. The supersaturation goes to 
zero (black) at the frost- covered walls and 
exhibits a broadly peaked maximum (yel-
low/white) below the chamber center. The 
black dot indicates the center of the cham-
ber, which is the location of the growing e- 
needles. By  running the model with dif fer ent 
top and bottom temperatures, one can de-
termine the supersaturation at the center 
of the chamber as a function of ΔT.
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strong convection within the chamber. Evaporation 
from  water reservoirs at the bottom of DC2 (see Fig-
ure 8.12) produces  water vapor that is then transported 
upward to deposit as frost on the walls and upper sur-
face of the chamber, and this frost provides the  water 
vapor source for normal operation of the diffusion 
chamber. At the start of cooldown, the DC2 bottom 
temperature is set to +35° C, and it remains at this tem-
perature for about an hour, producing a substantial 
evaporation rate for icing the upper surfaces. The DC2 
bottom temperature drops as the chiller cools the base 
plate during cooldown. This temporary inverted tem-
perature profile during cooldown provides an ample 
supply of ice on the upper surface and walls of DC2, 
thus maintaining the assumed boundary condition 
that all DC2 surfaces are covered with ice.

Beginning during cooldown, clean air is introduced 
slowly into the top of DC2 to reduce effects from chem-
ical contamination. Air is first sent through an acti-
vated charcoal filter to remove residual chemical con-
taminants, and the clean air is then injected into the 
top of DC2 at a rate of 60 cc/min via a flow meter. This 
slow trickle of clean air continually replaces the air in 
DC2 about once per hour without significantly affect-
ing the temperature or supersaturation profiles. The 
clean- air purge is not essential for operating DC2, but it 
does seem to improve the overall reproducibility of the 
crystal growth observations.

The Manipulator Arm

Moving the e- needles reliably from DC1 to DC2 is a 
nontrivial challenge, and Figure 8.12 shows the manip-
ulator arm that was constructed for this task. The lateral 
motion is guided by a pair of precision- polished stainless- 
steel rods moving through linear- motion bearings, pro-
viding a smooth  ride, so that the e- needles are not shaken 
off the frost- covered wire tip on which they formed. The 
drawing shows the post assembly placed in both DC1 
and DC2, but  there is only one post that shut tles back 
and forth between  these two chambers.

The post assembly consists of a set of telescoping 
stainless- steel capillary tubes that produce minimal 
perturbation of the supersaturation field while still 
providing the necessary support and rigidity. The top 
of the post, extending out from the smallest stainless- 
steel capillary tube, is a sharpened, 120- micron- diameter 
stainless- steel acu punc ture needle (J type). The base of 
the post is connected, via an insulating coupler, to a 
6- mm- diameter DC motor that rotates the entire post 
assembly about its vertical axis. Wires for the motor and 
the high- voltage brush connection to the post pass 
through a tube that runs along the entire length of the 
manipulator arm and out the back end.

A pair of insulating sliding- plate shutters (see Fig-
ure 8.12) are used to open and close a keyhole- shaped 
passage between DC1 and DC2.  These shutters are nor-
mally kept closed to maintain the temperature profiles 
in the two chambers, and they are slid open horizontally 
only briefly to allow passage of the post assembly. A nar-
row slot at the base of DC2 is not shuttered, as the tem-
perature below the DC2 bottom plate is colder, so the 
air below does not mix with the air in DC2.

Optical Microscopy

Imaging of the growing e- needles in DC2 is done using 
a 3X Mitutoyo Compact Objective, with 0.07 Numeri-
cal Aperture and a 2.5- micron resolving power. The ob-
jective is built into the back wall of DC2, and the front 
surface of the objective has a fixed distance of 69 mm 
from the chamber center. A short plastic tube placed over 
the front of the objective keeps frost from forming on the 
optical surface. As with all optical microscopy, this ob-
jective was chosen as a compromise between resolution, 
depth- of- field, and working distance (see Chapter 11).

A full- frame digital camera at room temperature is 
positioned  behind the objective, separated by a three- 
window cylindrical viewing port. No additional optics 
are placed between the microscope objective and the 
camera sensor, while extension tubes minimize scattered 
light from the room lighting. Focusing is done by moving 
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the manipulator arm slightly (perpendicular to its main 
line of travel) and by sliding the camera back and forth 
on an optical rail.

Illumination is provided by an LED lamp positioned 
outside the chamber, and another viewing port near the 
lamp completes the optical path. The manipulator arm is 
held only by the bearing block, so the wire tip exhibits 
several microns of shake when in normal operation, 
brought about largely from unavoidable coupling to vi-
brations from the recirculating chiller. A camera shutter 
speed of 1/8000 sec effectively freezes the crystal motion 
to provide sharp imaging. This dual- chamber apparatus 
has become something of a work horse for my ongoing 
investigations of snow crystal growth. The hardware has 
evolved to where it has a nearly turn- key operation, able 
to churn out observations of a broad range of single- 
crystal structures on the tips of e- needles.

FIGURE 8.18. A thin platelike crystal was first 
grown on this e- needle,  after which the super-
saturation was increased to produce dendritic 
branches.

THE NAK AYA DIAGR AM ON 
E- NEEDLES

Using the dual- diffusion- chamber apparatus just de-
scribed, one can examine ice growth over a substantial 
range of temperatures and supersaturations, thus explor-
ing a broad pa ram e ter space in the snow crystal mor-
phology diagram. Figure 8.18 shows one example, and 
Figure 8.19 shows an array of photo graphs of normal 
growth on e- needles as a function of temperature 
from −0.5° C to −21° C and as a function of supersatura-
tion from 8 to 128  percent.

Each tile in this collection of photos shows a represen-
tative example using fixed values of temperature and su-
persaturation that remained constant as the crystals grew. 
In  these images, the smallest needlelike structures have 
dia meters of about 30 microns, while the largest dendritic 
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plates have dia meters of about 1.5 mm. The image scale 
and cropping  were separately adjusted for each image, and 
growth times ranged from about 5 minutes at the highest 
supersaturations to 30 minutes at lower supersaturations. 
This set of photos serves mainly to convey a qualitative 
sense of the morphological changes that occur as a func-
tion of temperature and supersaturation.

 Earlier versions of the Nakaya diagram  were created 
from observations of snow crystals growing on filaments, 
and this technique has disadvantages relative to e- needle 
support. Filamentary materials can influence the ob-
served growth be hav iors to some degree, as can competi-
tion from closely spaced crystals. With filament experi-
ments, therefore, it can be difficult to observe sharp 
morphological bound aries and other features, and de-
tailed comparisons with numerical models are not practi-
cal. In contrast, e- needles can be used to grow isolated 
single crystals with no substrate interactions and in well- 
defined environmental conditions. The resulting crystals 
exhibit nearly flawless morphologies with excellent six-
fold symmetry.  Because each crystal begins as a  simple ice 
needle, the subsequent tip growth be hav ior is remarkably 
reproducible over the entire observed range of environ-
mental conditions. E- needle observations are thus nearly 
ideal for examining detailed morphological features.

Importantly, each of the photos in Figure 8.19 pre-
sents an opportunity for quantitative comparisons be-
tween observed growth be hav iors and numerical mod-
els. Properly calibrated images of snow crystals growing 
on e- needles allow a broad investigation into the detailed 
physical pro cesses that determine all the vari ous growth 
be hav iors. Thus e- needle observations open up new op-
portunities for better understanding of the physical pro-
cesses under lying the broad diversity of snow crystal 
growth be hav iors.

Robust Features

The e- needle observations shown in Figure 8.19 demon-
strate a rich variety of robust morphological features that 
are characteristic of snow crystal growth. In this context, 

I use “robust” to indicate a specific be hav ior that is eas-
ily generated in the lab, distinctive, and can be reliably 
found over a well- characterized range of environmental 
conditions. Numerical models that cannot readily repro-
duce  these robust features are clearly incomplete or in-
correct in some way.

A first robust feature is one that has long been part of 
the Nakaya diagram, namely, the increased degree of 
complexity in crystals grown at higher supersaturations. 
E- needles grown at low supersaturations often develop as 
 simple columns,  simple blocky structures, or perhaps 
thick plates on stout columns. At even lower supersatura-
tions than  those shown in Figure 8.19, e- needles generally 
grow slowly to become  simple hexagonal columns. As the 
supersaturation increases, branching often begins with six 
primary branches exhibiting  little or no sidebranching. 
Sidebranching eventually develops at the highest super-
saturations shown, although some temperatures are more 
prone to copious sidebranching than  others.

Near −15° C, dendritic branching is mainly confined 
to a nearly planar structure, as growth outside the plane 
is  limited by strong basal faceting. On e- needles,  these 
dendritic plates are typically slightly conical in overall 
shape, as the top basal surface grows faster than the bot-
tom surface. The resulting cone  angle depends rather 
strongly on growth conditions, and  these morphological 
trends tell a story about how αprism/αbasal varies with tem-
perature and supersaturation.

The six primary branches develop into dendrite struc-
tures at the highest supersaturations, with the distinctive 
fishbone dendrites appearing near −5° C, while fernlike 
dendrites develop near −15° C. Over the entire tempera-
ture range in Figure 8.19, the morphology of a single den-
dritic branch at high supersaturation (see Chapter 3) de-
fines the shapes of the six primary branches. Unfortunately, 
reaching high supersaturations at low temperatures is ex-
perimentally difficult, so this region of phase space has yet 
to be explored. At −0.5° C, melting prevented the forma-
tion of snow crystals at σ = 128  percent.

 Simple stars are a robust feature near (T, σ) = (−14° C, 
32   percent), and the spikelike primary branches are 
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FIGURE 8.19(A). The Nakaya diagram illustrated by snow crystals growing on the ends of slender ice 
 needles in air. The horizontal and vertical axes indicate temperature and faraway supersaturation, as 
labeled. Platelike growth is common at high temperatures, with greater morphological complexity as 
the supersaturation increases. Plates transition to somewhat blockier forms as the temperature falls 
from −0.5° to −3° C. Dendritic sidebranching is weak in this temperature range, and the dendrite 
growth direction varies with temperature and supersaturation. Prism and basal faceting are both strong 
even at −0.5° C. The upper- left panel is missing,  because the fast growth rate at  those conditions 
 causes melting.
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FIGURE 8.19(B). The Nakaya diagram illustrated by snow crystals growing on the ends of slender ice 
 needles in air. The horizontal and vertical axes indicate temperature and faraway supersaturation, as 
labeled. Columns and  needles are common near −5° C, turning into distinctive “fishbone” dendrites at 
the highest supersaturations. Hollow columns appear at (−5° C, 8  percent), branching into  needles 
at (−5° C, 16  percent). Exceptionally thin- walled cups can be seen at (−7° C, 32  percent). The “tridents” at 
(−5° C, 32  percent) result from competition between neighboring branches (see Chapter 3).
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FIGURE 8.19(C). The Nakaya diagram illustrated by snow crystals growing on the ends of slender ice 
 needles in air. The horizontal and vertical axes indicate temperature and faraway supersaturation, as 
labeled. The basal and prism growth rates are nearly identical at −8° C, yielding blocky forms and weak 
sidebranching at high supersaturations. Thin plates emerge as temperatures drop just a few degrees 
below −8° C. Deep ridging is seen at (−8° C, 32  percent), developing into I- beam structures at −9° 
and −10° C (see Chapter 3). Ridges generally tend to become thinner as the temperature moves 
 toward −15° C.
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FIGURE 8.19(D). The Nakaya diagram illustrated by snow crystals growing on the ends of slender ice 
 needles in air. The horizontal and vertical axes indicate temperature and faraway supersaturation, as 
labeled. Exceptionally thin plates appear in a narrow temperature range near −14° C, accompanied by 
nearly flat fernlike dendrites at high supersaturations, exhibiting exceptionally well- developed sideb-
ranching.  Simple starts are common around (−14° C, 32  percent), quickly transitioning to dendrites at 
higher supersaturations.
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FIGURE 8.19(E). The Nakaya diagram illustrated by snow crystals growing on the ends of slender ice 
 needles in air. The horizontal and vertical axes indicate temperature and faraway supersaturation as 
labeled. Thin platelike crystals transition to blockier forms as the temperature drops from −15° C to −21° C, 
with I- beam structures appearing during the transition. Hollow plates form at (−16° C, 16  percent), while 
much thinner plates appear at (−16° C, 32  percent). Panels on the upper right are missing,  because it is 
difficult to reach high supersaturations at low temperatures in a linear diffusion chamber.
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observed to grow stably to substantial lengths with no 
sidebranches. I suspect that this morphology  will be 
difficult to reproduce in 3D modeling without the ESI, 
but that question remains to be investigated. Hollow 
columnar structures appear on the ends of e- needles 
near −5° C, but they occupy a rather small region of pa-
ram e ter space. Hollows do not readily form if the su-
persaturation is too low, and the walls break up into a 
cluster of needle- like structures if the supersaturation is 
too high. Deep cups form near (−7° C, 32   percent), 
with the cup opening  angle depending strongly on 
temperature. When growing on e- needles, the cups 
are typically f lanked by straight “fins” on the outside 
edges.

Ridges on the six corners of hexagonal plates appear 
over a broad range of growth conditions, making  these 
features especially robust. Their morphology depends 
quite strongly on the cone  angle of the growing plates, 
and often the ridges develop an “I- beam” structure, for 
example, seen clearly at (T, σ) = (−9° C, 32   percent). 
Ridges generally become more pronounced and more 
structured as the cone  angle of the plates increases, 
eventually yielding the fins described in the previous 
paragraph. The diversity and widespread appearance of 
ridgelike structures is quite remarkable in e- needle 
growth. In part, this is  because the supersaturation 
gradient around an e- needle tip yields slightly conical 
plates that exhibit especially distinctive ridgelike 
structures. As mentioned above, this built-in supersat-
uration gradient can be quite beneficial in that it ac-
centuates  these morphological features and facilitates 
their detailed investigation.

The formation of exceedingly thin plates on e- needle 
tips near −15° C is another noteworthy feature of the Na-
kaya diagram. As seen in Figure 8.19, remarkably thin, 
nearly featureless hexagonal plates form at several loca-
tions in the (T, σ) plane near −15° C. Ridges are some-
times absent at low supersaturations, but delicate ridg-
ing is pre sent in the largest, thinnest plates. The CAK 
model in Chapter 4 provides a pos si ble explanation for 
why such thin plates form so dramatically near −15° C, 

over just a narrow temperature region so far from the 
freezing point.

The Next  Grand Challenge

The obvious next step in this scientific progression is to 
quantify the e- needle observations over a broad range of 
conditions and then compare the results with 3D numer-
ical models. At least the first part of this statement is 
relatively straightforward, as the technology for creating 
and exploiting e- needles is already quite mature. Unfor-
tunately, the theory side of this research program now 
substantially lags the experimental side, as described in 
Chapter 5.

Full 3D cellular- automata models have yielded 
structures that nicely resemble many aspects of snow 
crystals, and this puts them ahead of other numerical 
modeling techniques. Nevertheless, the models to date 
have not progressed much beyond their demonstration 
phases. They have not yet incorporated realistic pa ram-
e terizations of the attachment kinetics, so their morpho-
logical successes do not always reflect a good under-
standing of the under lying crystal growth physics. Plus, 
the 3D models have not yet reached the kind of turnkey 
operation needed for churning out dozens or hundreds 
of models for direct comparison with observations of 
growth rates as well as morphologies.

 There appear to be no obvious roadblocks to devel-
oping suitable numerical models at this point, however, 
so it appears likely that researchers  will begin making 
quantitative 3D comparisons between observations and 
numerical models in the not- too- distant  future. When 
this happens, I expect it  will lead to rapid pro gress as the 
attachment kinetics and surface diffusion effects are 
studied and adjusted to provide good quantitative agree-
ment between observations and theory over a broad 
range of environmental conditions. And this, hopefully, 
 will spark new theoretical insights into the molecular 
pro cesses that underlie the best- fit model par ameters. At 
some point, we may fi nally achieve a fundamental under-
standing of how snow crystals form.
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SIMPLEST E- NEEDLE GROWTH

Examining the most basic columnar growth of e- 
needles provides a good validation of the supersatura-
tion model for DC2, and it provides a basic confirma-
tion of our overall understanding of ice growth from 
 water vapor [2016Lib]. This example tests the accuracy 
of Equation 8.7, confirms our understanding of the 1D 
cylindrical growth model (see Chapter  3), and gener-
ally supplies a “real ity check” that our basic picture of 
diffusion- limited growth is quantitatively correct. In 
my opinion, it is impor tant to perform  these kinds of 
model- validation experiments if one expects to realize 
an accurate quantitative understanding of complex ice 
growth phenomena.

The general idea in this basic experiment is to start 
with a set of e- needles in DC2, like that shown in Fig-
ure 8.2, rotate the support post to bring a single e- needle 
into focus perpendicular to the imaging axis, and then 
mea sure the radial growth of the chosen needle as a func-
tion of time. The growth is subsequently compared with 
the 1D cylindrical model for diff er ent temperatures and 
supersaturations. If every thing is working properly, then 

we should find good quantitative agreement between 
theory and mea sure ments.

Figure 8.20 shows some sample data of the growth of a 
relatively  simple e- needle tip structure. At  later times, the 
formation of the blocky crystal at the needle tip likely af-
fects the overall needle growth somewhat, but the mor-
phology is quite  simple at early times, being that of a 
slightly tapered hexagonal column. At  these early times, 
it is reasonable to approximate the shape as a  simple cylin-
der, and the radius R(t) can be extracted from the image 
data. As shown in the graph, a  simple power- law func-
tional form fits the data quite well even at  later times.

Drawing a line through  these data, I then use the fit-
ted line to determine the growth velocity dR/dt when 
the needle radius was with R = 5 μm, before the blocky 
structure appeared at the tip of the needle. Analyzed in 
this way, producing a single dR/dt value at early times 
and at a position quite far from the needle tip, this value 
can be taken as a reasonable proxy for the analogous mea-
sure ment of the growth velocity of an infinite cylinder 
with R = 5 μm. Figure 8.21 shows a series of growth mea-
sure ments reduced in this way from mea sure ments of 
R(t) on individual  needles at diff er ent supersaturations. 
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FIGURE 8.20. Example observations at −2° C of the growth of a single electric ice needle  after being 
transported into DC2. The composite image shows the needle at several dif fer ent times, and the graph 
shows mea sure ments of the needle radius as a function of time, mea sured at the position of the white 
horizontal line in the image, which is approximately 100 μm below the needle tip. The images corre-
spond to the first ten data points in the graph [2016Lib].
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We see that dR/dt (when R = 5 μm) is proportional to 
ΔT 2 to reasonable accuracy, meaning that the growth 
velocity is proportional to supersaturation at the growth 
region in DC2, as is expected from theory.

The theory of cylindrical growth is well understood 
for the limiting case of an infinitely long cylinder, as de-
scribed in Chapter 3. In most circumstances of interest 
in this section, αdiffcyl  αprism is a good approximation, 
so the growth is not substantially  limited by attachment 
kinetics, but instead is determined solely by particle and 
heat diffusion around the cylinder. The theory then de-
pends only on well- known physics, and, importantly, it 
is in de pen dent of the not- so- well- known molecular at-
tachment kinetics. Assuming Equation 8.7 provides an 
accurate model of the supersaturation around the grow-
ing ice  needles in DC2, the radial growth velocity of an 
infinite ice cylinder is then given by

 v ≈ 1
1+ χ0

Gmod

B
X0

R
Cdiff (ΔT )2 ,  (8.8)

where R is the radius of the cylinder, B = log(Rout/R) de-
rives from the cylindrical boundary conditions of the 
diffusion prob lem, and χ0 is a thermal pa ram e ter that de-
rives from latent heating of the crystal during growth.

Writing v = A(T)(ΔT)2, the proportionality con-
stant A(T) depends only on the growth temperature, 
and it is known directly from the analytical theory de-
scribing cylindrical growth. The only unknown pa ram-
e ter in the theory is B, which varies only logarithmically 
with Rout and can be estimated to an accuracy of about 
20   percent [2016Lib]. Putting all this together yields 
the result shown in Chapter 3 (Figure 3.17), where we 
derived how thermal diffusion affects snow crystal 
growth. As discussed in that chapter, latent heating is 
mostly impor tant at higher temperatures, and its effects 
can be approximated by changing the effective super-
saturation around the crystal.

This relatively  simple experiment provides a nice 
demonstration that our basic understanding of particle 
and heat diffusion in snow crystal growth is indeed cor-
rect. To my knowledge, this is the first experiment that 
has clearly observed the simultaneous effects of both par-
ticle and heat diffusion in snow crystal growth. As such, 
it a step forward in the quest to make quantitative ob-
servations that can be compared directly with theoreti-
cal models of snow crystal growth. The experiment also 
demonstrates the inherent accuracy that can be obtained 
with careful modeling of linear diffusion chambers.
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FIGURE 8.21. Example mea sure ments at −2° C and −15° C showing the radial growth velocity of cylin-
drical ice  needles when the needle radius was equal to 5 μm. The data are shown as a function of 
ΔT = (Ttop − Tbottom)/2 in DC2, and Equation 8.7 indicates that the supersaturation is proportional to ΔT  2. 
Fitting the data reduces it to a single pa ram e ter A(T  ), with the growth velocity given by dR/dt = A (t  )
ΔT  2 when the needle radius is equal to 5 μm [2016Lib].
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AN ANALY SIS EX AMPLE:  
E- NEEDLES AT −15°C

The formation of thin, platelike crystals at temperatures 
near −15° C is an especially intriguing aspect of snow 
crystal growth that is also quite amenable to analy sis 
using e- needles. At the lower supersaturations shown in 
Figure 8.19, we see that the thinnest plates appear only 
in a narrow temperature range between about −13° 
and −15° C. In Chapter 4, this be hav ior is attributed to 
the SDAK phenomenon, specifically, the localized re-
duction in σ0,prism in this temperature range that I call 
the “SDAK dip.” In this section, I describe a focused in-
vestigation that helps quantify this distinctive feature 
in the attachment kinetics [2015Lib2].

A notable ele ment of this investigation is that the phe-
nomenon of plates growing on e- needles is relatively 
straightforward to analyze, as the overall morphology of 
a thin hexagonal plate growing on a slender hexagonal e- 
needle is quite  simple in its structure. As described in 
Chapter  5, basic columnar and platelike morphologies 
can be modeled with reasonable accuracy using a cylin-

FIGURE 8.22. Example of a thin snow 
crystal plate growing on the end of a slen-
der ice needle. The supporting wire was 
rotated so that the entire needle is in the 
focal plane of the image.

drically symmetric 2D numerical model that is substan-
tially easier to create and run than a fully 3D model. 
With a 2D model, one can quickly run dozens of config-
urations using a wide range of par ameters for comparison 
with experimental mea sure ments, greatly speeding up 
the analy sis. Thus, this exercise pre sents a good example 
of how a quantitative analy sis of e- needle growth can pro-
vide valuable information about the SDAK effect as well 
as potentially many other aspects of snow crystal growth.

On the experimental side, I have found that select-
ing an especially well- formed, representative crystal spec-
imen and analyzing it in detail tends to give better re-
sults than trying to form averages over many crystals. The 
pre sent observations begin with creating e- needles in the 
dual- chamber apparatus described  earlier in this chap-
ter and photographing the normal growth of a single 
crystal in the linear diffusion chamber (DC2). Figure 8.22 
shows a sample image selected from a series of similar 
photo graphs. By rotating the support post (see Fig-
ure  8.12), the entire needle is brought into focus in 
the frame, allowing a mea sure ment of the needle radius 
Rneedle, the plate radius Rplate, and the overall needle 
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length H. The length is determined relative to the frost 
crystals growing at the base of the needle, which do not 
provide an ideal reference point. As a result, the mea sure-
ment uncertainty in H is generally greater than with 
the radius mea sure ments.

In a typical run, the overhead cover in DC2 is ro-
tated into place to reduce the supersaturation during the 
e- needle transfer from DC1.  After orienting the ice nee-

dle and bringing it into focus on the camera, the cover 
is then rotated away, restoring the supersaturation to its 
normal level in a few seconds. The growing crystal is then 
photographed at regular intervals, and the images are 
subsequently analyzed to give quantitative mea sure-
ments. Figure  8.23 shows three separate sets of data 
taken this way, with additional details presented in Lib-
brecht et al. [2015Lib2].

FIGURE 8.23. Growth of e- needles in air 
at −15° C when the supersaturation was set 
to 4.6  percent (top), 7  percent ( middle), 
and 11  percent (bottom), illustrating the 
transition from blocky to platelike growth. 
 Because  these morphologies are relatively 
undeveloped, a simpler 2D cylindrically 
symmetric model (see Chapter 5) can be 
used to analyze the growth [2015Lib2].
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Figure 8.24 shows an example comparing the 11 per-
cent data in Figure 8.23 (including other images not 
shown) with a set of 2D computational models. The data 
points in the figure show mea sure ments of H(t), Rplate(t), 
and Rneedle(t) extracted from the set of e- needle images, 
where the plotted height is  after subtracting a con-
stant value, as the overall needle length is quite long (as 
 illustrated in Figure  8.22). The lines through the data 
points came from 2D numerical models, and the right 
side of  Figure 8.24 shows model cross- sections at the times 
given in the figure.  Here the brightness outside the crystal 
is proportional to the supersaturation (Chapter 5).

An in ter est ing feature in this example is that many of 
the model par ameters are quite strongly constrained from 
the outset. We know from Chapter 4 that assuming α— 
Aexp(−σ0/σsurf) with A = 1 at −15° C is reasonable for both 
the basal and prism facets, and  doing so reduces the at-
tachment kinetics par ameters to just σ0,basal and σ0,prism. 
Moreover, the basal growth is so slow that the data do  little 
to constrain our choice of σ0,basal, and assuming the large- 
facet value of σ0,basal ≈ 0.02 seems to give good results.

While the value of σfar (at the outer boundary of the 
model space) is constrained by our knowledge of the su-

persaturation in DC2 from the diffusion modeling dis-
cussed above, (yielding σ∞ ≈ 0.11), we can also use the 
mea sured Rneedle(t) to fix σfar with higher accuracy. 
 Running models with diff er ent pa ram e ter choices quickly 
reveals that Rneedle (t) is mainly sensitive to σfar, being quite 
insensitive to reasonable choices for σ0,basal and σ0,prism. 
The reason for this is simply that αdiffcyl  αprism over a 
broad range of par ameters, which means that Rneedle(t) 
is  essentially entirely diffusion  limited. A value of 
σfar ≈ 5 ± 1  percent fits the data well, which is consistent 
with expectations for the size of the modeling space.

 After determining σfar directly from Rneedle(t), the 
only remaining  free pa ram e ter that  matters much in the 
model is σ0,prism, so Figure 8.24 shows four models run 
with diff er ent values of this pa ram e ter. And we see that 
quite a low value of σ0,prism ≈ 0.15 is needed to fit the data. 
This is not surprising,  because we also know that the thin 
plate morphology in this crystal is close to sprouting 
branches, as this transition does take place at moderately 
higher values of σ∞, as seen in Figure 8.19. The formation 
of prism facets on this crystal indicate that αprism < 1, but 
the observation of branching at slightly higher supersat-
urations indicates that αprism is not much below unity.
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FIGURE 8.24. (Left) Mea sure ments of the plate radius, needle radius, and axial growth as a function of 
time, from the 11  percent data shown in Figure 8.23 (plus other images not shown). Lines through the 
data are from numerical models of the growing crystals, as described in the text. (Right) Computer- 
generated cross sections of the four model crystals shown in the data graph [2015Lib2].
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The main takeaway message from this exercise is 
that the only way to provide a quantitative fit to  these 
data is with a choice of model par ameters that gives a 
value of αprism that is close to unity. This fits our overall 
understanding of thin- plate growth, as this morphology 
requires αprism  αbasal, and additionally having αprism 
near unity is needed to reproduce the formation of 
branching at slightly higher supersaturations. This all 
follows rather simply from the observation of the thin- 
plate morphology. At the same time, the appearance of 
nearly isometric  simple prisms at −15° C (see Chapter 7) 
requires αprism ≈ αbasal in that growth regime.  These two 
experiments yield conflicting results, yet both results are 
quite robust. As discussed in Chapter 4, the CAK model 
provides one way to reconcile  these facts via the SDAK 
mechanism, and I believe that  there are no  viable alter-
native explanations at this time.

The story at −15° C develops further when one starts 
varying the supersaturation and thereby growing diff er-
ent crystal morphologies on the ends of e- needles, as 
shown in Figure 8.23. Modeling  these data in de pen dently 
following a similar procedure, we quickly find that 
σ0,prism ≈ 0.6  percent is needed to fit the 7  percent data and 
σ0,prism ≈ 1.5   percent is needed for the 4.6   percent data 
[2015Lib2]. Surprisingly, the models also indicate that the 
value of surface supersaturation remains at roughly 
σsurf  ≈ 0.5  percent at the outermost prism edges of all three 
crystals. It is a somewhat fascinating result when you 
think carefully about it, but it all fits with the CAK model 
presented in Chapter 4. It further suggests that  there is 
perhaps much more to be learned by investigating snow 
crystal growth over a wider range of conditions using 
computational models. Fi nally, this exercise illustrates the 
usefulness of e- needles for quantitative investigations of 
the physical dynamics of snow crystal growth over a broad 
range of temperatures and supersaturations.

SHIELDED TIP
When a platelike crystal grows on an e- needle, it shields the nee-
dle tip, resulting in a small point of contact.

E- NEEDLE VIGNETTES

This final section pre sents a collection of diff er ent 
growth be hav iors observed on the ends of e- needles. This 
is by no means a complete accounting of morphological 
features that can be found on e- needles, but rather a sam-
pling of phenomena we have observed to date. As with 
any scientific endeavor, this investigation of e- needles is 
a work in pro gress, presenting considerable opportunity 
for further investigation and discovery.



268 T C H A P T E R  8

ICY BROOMSTICK (RIGHT)
This image shows a set of six fishbone dendrites 
(Chapter 3) growing out from an e- needle.

PRECARIOUS SUPPORT (ABOVE)
This platelike crystal is supported by a remarkably 
small ice tip. The plate has a slightly conical shape 
overall, reflecting a slight gradient in the sur-
rounding supersaturation.
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CRYSTAL BOUQUET
Thin, near- perfect hexagonal plates readily grow on the ends of c- axis e- needles. The front plate is al-
most perfectly flat on its top surface but has a slightly convex shape on the underside, the latter sup-
porting a set of ridges (Chapter 3).
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COLUMNAR SIMPLICIT Y (LEFT)
When the supersaturation is especially low at any temperature, 
e- needles typically just thicken into  simple columnar forms.

MULTIPLE MACROSTEPS (BELOW)
This series of images shows a platelike crystal exhibiting multiple 
macrosteps, propagating both inward and outward, on both the 
top and bottom surfaces of the plate. Deciphering the growth of 
each is a nontrivial prob lem.
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CURVED BR ANCHES (ABOVE)
The spikelike branches on this crystal grew up and 
out at high supersaturation, then mainly out at lower 
supersaturation, giving them an overall curved 
appearance.

STELL AR DENDRITE (BELOW)
Spontaneous sidebranching is a characteristic 
feature of a fernlike stellar dendrite.
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OUT WARDLY PROPAGATING RINGS
A ringlike pattern (image 1) formed on the underside of this platelike crystal at (T, σ) = (−15° C, 16  percent), 
and the ring slowly expanded outward with time (2-3). The Gibbs- Thomson effect pulled  water vapor 
onto the needle contact point, owing to its sharply concave shape  there. This vapor was supplied by 
evaporation from the nearby plate, resulting in the expanding ring. Once the ring had grown large (3), 
and new small ring appeared (4).

CRYSTAL BATTLEMENTS
This unusual structure emerged when a cup- with- 
fins crystal (Chapter 3) grew near (T, σ) = (−7° C, 
32  percent) and was subsequently exposed to a 
higher supersaturation, causing the rim of the cup to 
break up into six sections.
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SHEATH ON A STICK
This image shows a thin- walled sheath 
crystal growing on the end of an electric 
needle crystal at −7° C. Sheathlike mor-
phologies are rarely found in natu ral snow 
crystals, as they require nearly constant 
growth conditions in quite narrow ranges 
of temperature and supersaturation.

TIP SPLITTING
This photo graph shows a crystal grown on the end of an e- needle at (T, σ) = (−15° C, 128  percent). Early 
in this crystal’s development, when the crystal was small and the near- surface supersaturation espe-
cially high, all six branches underwent tip splitting, yielding six sets of split branches. As discussed in 
Chapter 3, tip splitting indicates nearly isotropic prism attachment kinetics, in this case  because αprism 
was close to unity. As the crystal grew larger, diffusion lowered the surface supersaturation, which in 
turn lowered αprism, so the branches experienced no additional tip splitting. Tip splitting is common at 
 these extreme conditions around −15° C, although the nearly symmetrical tip splitting seen in this ex-
ample is unusual.
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 BUBBLE EVOLUTION
This series of images shows the formation and evolution of 
two  bubbles inside a columnar crystal grown over several 
hours near −7° C. The large markings  running down the 
length of the column are surface features, while the 
 bubbles grew from hollows at the end of the column.

CROWNS ON  NEEDLES
This frame shows a set of e- needles that  were made to branch 
into arrays of additional e- needles.  After that, fishbone- dendrite 
crowns  were grown on the ends of the  needles.
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CRYSTAL CHANDELIER (ABOVE)
 After creating a snow crystal star on an e- needle, columns  were 
added on the stellar tips, and then plates  were grown on the 
 columnar ends.

PL ATE WITH THICK RIDGES 
This plate exhibits thick ridges on its underside, while 
the top surface is quite flat.



FIGURE 9.1. A laboratory- grown Plate- on- Pedestal (PoP) snow crystal, mea sur ing 3.3 mm from tip to 
tip, grown by the author. Remarkably, most of this stellar plate is not in contact with the transparent 
substrate, but lies above it, balanced atop the tiny flower- shaped nub seen at the center of the crystal.
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In this chapter, I set aside the science and consider the 
snowflake as an objet d’art— a diminutive sliver of ice 
worthy of admiration for its intricate beauty and com-
plex symmetry. In search of new artistic vistas, I go be-

yond photographing natu ral specimens falling from the 
clouds and describe a technique for crafting synthetic 
snow crystals that are even more spectacular than the best 
nature has to offer. I like to call  these designer snowflakes, 
as one can create a desired growth morphology simply by 
adjusting the applied temperature, humidity, and other 
environmental  factors as a function of time. Moreover, 
one can photo graph a designer snowflake as it forms, al-
lowing a time- lapse recording of the entire pro cess, 
thereby adding a temporal dimension that is unavailable 
when viewing natu ral crystals. The activity becomes a 
novel type of emergent ice sculpture, discarding the chisel 
and using molecular self- assembly and the laws of crystal 
growth to create beautiful, symmetrical crystalline struc-
tures. While creating synthetic snow crystals is an essen-
tial endeavor for investigating the under lying physical dy-
namics of ice solidification, the occupation also pre sents 
an excellent opportunity for artistic expression.

Designer snowflakes have lagged their natu ral counter-
parts as photographic subjects, in part  because it had 
not previously been pos si ble to grow synthetic snow 
crystals of a quality that compared to the best natu ral 
specimens. Just as synthetic diamonds have only recently 
begun to rival their quarried counter parts in size and 
quality, designer snowflakes are only now surpassing 
 those found in nature, exhibiting sharper facets and 
more precise symmetries.

This chapter focuses on a Plate- on- Pedestal (PoP) 
technique that I developed for creating well- formed stel-
lar snow crystals in the laboratory. The PoP apparatus is 
relatively straightforward to construct and operate, plus 
it is specifically engineered for capturing high- resolution 
photo graphs of designer snow crystals as they form and 
develop. Both the growth temperature and supersatura-
tion can be separately adjusted as a function of time, al-
lowing the manufacture of a nearly infinite variety of 
complex morphologies. And as an added bonus, one need 
not wait for a suitable snowfall, or brave the frigid 
weather, to photo graph  these icy creations. All the cold 
parts of the apparatus are built into an insulated enclo-

Build a better snowflake, and the world  will shovel a path to your door.

— KGL

NINE

Designer Snow Crystals
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Plate-on-pedestal snow crystal

Substrate

FIGURE 9.2. A side view of the basic PoP snow crystal geome-
try. A thin platelike crystal grows outward from the top edge of a 
small hexagonal prism, while the lower basal face of the prism 
rests on a transparent substrate.

sure, allowing one to explore the artistic side of snow 
crystal formation on one’s own schedule while working 
in room- temperature comfort.

THE PLATE- ON- PEDESTAL 
METHOD

Creating a PoP snow crystal begins by producing a cloud 
of small ice prisms in a free- fall growth chamber (see 
Chapter 6) and letting a few of  these crystals fall onto a 
transparent substrate held at a temperature near −12° C. 
Some of the prisms  will land with one basal facet rest-
ing flat against the substrate surface, as illustrated in Fig-
ures 9.2 and 9.3. Select one of  these crystals, expose it to 
a moderately high supersaturation in air, and a thin ice 
plate  will commence growing out horizontally from the 
top edge of the prism.  Because the upper plate is sup-
ported above the substrate by the central ice prism, I 
refer to this as a Plate- on- Pedestal geometry.

The physics under lying the formation of the PoP ge-
ometry arises from diffusion- limited growth and the 
edge- sharpening instability (ESI) described in Chap-
ter  4, which itself arises from the phenomenon of 
structure- dependent attachment kinetics (SDAK). The 
under lying molecular physics responsible for this growth 
be hav ior is not completely understood at pre sent, as the 
attachment kinetics are generally a subject of current re-
search (see Chapters 4 and 7). Nevertheless, like many 
aspects of engineering, one need not understand a phe-

Seed crystal

Upper plate
begins

Trapped
bubbles

Plate
on
pedestal

FIGURE 9.3. Multiple images showing the formation of a small 
PoP snow crystal from a seed crystal,  here growing from about 
50 μm to 170 μm in dia meter. The initial seed crystal exhibited 
some nonfaceted structure, and its early growth trapped six 
small  bubbles between the ice and the substrate surface. Once 
formed,  these isolated  bubbles did not evolve substantially over 
time. Soon the upper plate began growing from the top basal/
prism corner, as sketched in Figure 9.2. Note that the thin hex-
agonal plate in the last photo is not touching the substrate but is 
supported above it by a small ice pedestal.
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nomenon perfectly to put it to good use. Figure 9.3 shows 
the formation of a small PoP crystal, which is remarkably 
easy to achieve in practice.

Once the PoP structure has been established, the 
upper plate  will continue to grow outward, provided the 
temperature remains within a few degrees of −15° C. 
Even as the ice plate becomes quite large, it grows entirely 
above the substrate, balanced atop the initial small prism. 
I have used this technique to create a variety of intricately 
patterned stellar snow crystals, many of which are shown 
at the end of this chapter. Being stationary and supported 
above a transparent substrate, PoP snow crystals can be 
photographed easily as they form and develop, allowing 
high- resolution imaging and striking time- lapse videos 
of their emerging structure.

It appears that Gonda, Nakahara, and Sei grew snow 
crystals using a similar technique in the 1990s [1990Gon, 
1997Gon], although  these papers do not explic itly de-
scribe the PoP structure. However,  little subsequent 
work appeared  after  these initial results, perhaps  because 

the PoP technique is not especially well suited for scien-
tific investigations.  After recognizing the PoP geometry 
in my own studies, I continued its development mainly 
to grow snow crystals in a more artistic realm.

PoP Hardware

Figures 9.4 and 9.5 illustrate the apparatus I constructed 
for creating and photographing PoP snow crystals 
[2015Lib3]. The tall chamber is essentially the seed- 
crystal generator described in Chapter  6, producing a 
continuous cloud of small ice prisms that slowly fall 
through the chamber as they grow. Upon opening a shut-
ter connecting the seed chamber to the adjoined lower 
chamber, some of the seed crystals waft through the 
opening and fall randomly onto a waiting sapphire sub-
strate, shown in its loading position in Figure 9.4.  After 
loading crystals for a few seconds, the substrate is moved 
over to its growth position  under a photomicroscope, 
shown in greater detail in Figure 9.5. While watching the 

Synthetic
snow crystal
growth apparatus

Nucleator

Seed
crystal
growth
chamber

Heated water

Camera

Microscope
objective

Growth
region

Cold plate

Substrate,
growth phase

Substrate,
loading phase

Shutter

FIGURE 9.4. The apparatus used to grow 
and photo graph PoP snow crystals. Small, 
freely falling ice prisms in the seed- crystal 
chamber first pass through a shutter, and 
some of them fall randomly onto a waiting 
sapphire substrate (loading phase). The 
substrate is then moved to the observation 
region (growth phase) for subsequent PoP 
crystal development.
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microscope image displayed on a TV monitor, the sub-
strate is moved around using a pair of manipulator arms 
to search for a well- formed, isolated hexagonal prism that 
can be grown into a PoP snow crystal. Once a suitable 
ice prism has been positioned in the microscope field, 
moist air is blown  gently down onto the crystal in the 
growth region. When the proper temperature and super-
saturation conditions are applied to the seed crystal, the 
early growth produces the PoP geometry, which can then 
be grown further into a large stellar plate.

When growing the PoP crystal, air passes through the 
heat exchanger to become saturated with  water vapor at 
temperature T2. This air blows  gently down onto the sub-
strate at temperature T1 < T2 to grow the crystal. Not 
shown in Figure  9.5 are the microscope camera and a 
white- light LED lamp placed under neath the color filter. 
It typically takes 20–60 minutes to produce a large PoP 
snow crystal, during which time one can monitor its pro-
gress using the photomicroscope. Changing the substrate 
temperature T1 changes the growth temperature of the 

Insulation

Insulation

Cold plate Field lens + Field stop

Color �lter

Window cell

Microscope objective

Base plate, T1

Heat exchanger, T2

Sapphire
substrate

FIGURE 9.5. An expanded schematic view of the PoP growth 
region shown in Figure 9.4.

crystal, while changing the heat- exchanger temperature 
T2 adjusts the effective supersaturation around the crys-
tal. Increasing the air flow though the heat exchanger 
increases the supersaturation as well. Changing the 
growth conditions frequently and abruptly tends to pro-
duce especially complex growth morphologies with a 
high degree of sixfold symmetry (see Chapter 3).

With a bit of experience, one can, at least to some 
degree, plan the structural features of a PoP snow crys-
tal in advance or improvise its morphological develop-
ment in real time as it grows. Each change in the tem-
perature and supersaturation alters the growth be hav ior, 
and  these par ameters become the tools needed to create 
a wide variety of snow crystal forms. As one begins to de-
velop a set of empirical rules for guiding the crystal de-
velopment, the PoP pro cess becomes a unique and quite 
satisfying form of additive ice sculpture. In working with 
this apparatus to date, I have typically observed the crys-
tal formation in real time and made temperature and 
air- flow adjustments without a  great deal of pre- planning. 
However, it would be straightforward to add computer 
control to  these inputs and develop specific algorithms 
for producing a variety of morphological outcomes.

The Seed- Crystal Generator

The seed- crystal growth chamber in Figure 9.4 has inside 
dimensions of approximately 40 × 40 × 100 cm and is 
made from a frame of aluminum T- rail covered with 1/8” 
thick aluminum panels. Methanol coolant from a recir-
culating chiller flows through central holes in the four 
vertical T- rails, and heat conduction through the alumi-
num rails and panels is sufficient to cool the remainder 
of the chamber, which is well insulated from the room 
by Styrofoam panels.

An insulated reservoir containing 1 liter of ordinary 
tap  water rests on the bottom of the seed- crystal cham-
ber, and the  water temperature is kept constant by an 
electronic regulator using an immersed  water heating ele-
ment and  water temperature sensor. The top of the con-
tainer is open to allow evaporation, and the resulting 
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 water vapor is carried by convection throughout the rest 
of the chamber. The continuous evaporation and convec-
tion maintain a steady- state supersaturation in the 
seed- crystal chamber that can be adjusted by changing 
the  water temperature.

 Water vapor is continually removed from the air by 
the growing ice crystals and by frost depositing on the 
walls of the chamber, and this  water vapor is continually 
replenished by evaporation from the  water reservoir. The 
air temperature is typically kept near −15° C, as mea sured 
by a thermistor near the center of the chamber, as this 
temperature yields small platelike seed crystals. The su-
persaturation is difficult to determine precisely but can 
be inferred to some degree by the morphology of the 
growing crystals. The chiller temperature is typically set 
to −19° C (giving a −15° C air temperature) and the  water 
temperature to 17° C, as this yields a continuous supply 
of thin, hexagonal platelike seed crystals with dia meters 
in the 20–50 micron range. Higher  water temperatures 
yield somewhat branched morphologies, which is not de-
sirable for PoP seed crystals.

The expansion nucleator (see Chapter 6) at the top of 
the seed- crystal chamber consists of a standard 1.33- inch 
Conflat vacuum nipple with an interior volume of about 
25 cc that is connected to a solenoid valve on the output 
side. Pressurized room air flows into the nucleator through 
a needle valve that constricts the rate of input air flow. The 
nucleator assembly is placed inside the growth chamber, 
so its temperature is approximately −15° C during opera-
tion. The overall flow rate is slow enough that the air tem-
perature becomes roughly equilibrated inside the nuclea-
tor with a  water vapor content near the saturated value.

 Every 10 seconds the solenoid valve is pulsed open, 
causing the pressurized air to rapidly expand into the 
growth chamber. The expansion cools the air (at least in 
some localized regions) sufficiently to nucleate ice crys-
tals. Air pressures as low as 15 psi  will usually nucleate 
some crystals, while 30 psi produces many thousands per 
pulse.  Water buildup inside the nucleator is removed  after 
each run by operating it for several hours when the cham-
ber is at room temperature. With no initial ice buildup, 

the nucleator can run continuously for at least 10 hours 
without difficulty.

The nucleated ice crystals float freely as they grow,  until 
they eventually  settle to the bottom of the chamber. The 
fall times are typically a few minutes, depending on tem-
perature and supersaturation. Pulsing the nucleator valve 
open  every 10 seconds thus produces a steady state in 
which roughly a million seed crystals are growing inside 
the chamber at any given time (this number being deter-
mined by a visual estimate of the typical spacing between 
crystals floating inside the chamber during operation). 
Shining a bright flashlight into the chamber reveals spar-
kles caused by reflections off the crystal facets, and this is a 
con ve nient way to verify that seed crystals are pre sent.

Compressed air for both the nucleator and the crystal 
growth region is supplied by an ordinary oil- free work-
shop air compressor with a built-in storage tank and 
regulator, which automatically maintains the required 
30 psi air pressure. The compressed air is passed through 
an oil filter and then an activated charcoal filter (con-
taining coconut- husk charcoal) to remove remaining 
chemical contaminants from the air, and then it passes 
through a fine- pore fiber filter to remove any remaining 
charcoal dust.

A 50- mm- diameter hole in the side of the seed- crystal 
growth chamber connects it to the adjoining main growth 
chamber seen in Figure 9.4. The cold plate at the bottom 
of the growth chamber is cooled using the same circulat-
ing coolant that flows through the walls of the seed cham-
ber. To grow a PoP crystal, the ice- free substrate is first 
moved to its loading position, and a  simple plate shutter is 
then slid open between the two chambers. The convective 
air currents in the seed chamber cause a slight air flow be-
tween the chambers that carries a small number of seed 
crystals into the growth chamber, and some of  these crys-
tals fall onto the substrate within a few seconds. The shut-
ter is then closed, and the substrate is moved to a covered 
region in the main growth chamber. The substrate is posi-
tioned using a pair of manipulator arms to locate a suitably 
isolated seed crystal and center it  under the microscope for 
subsequent growth and observation.



282 T C H A P T E R  9

The Growth Chamber

As illustrated in Figure 9.5, the substrate is an uncoated 
sapphire disk, 50 mm in dia meter and 1 mm thick, with 
the sapphire c- axis perpendicular to the disk surface. The 
principal advantages of using sapphire in this application 
are its high thermal conductivity and its re sis tance to 
scratching. Using c- axis sapphire avoids birefringence is-
sues that can interfere with optical imaging. The sub-
strate slides on a smooth anodized aluminum plate with 
its temperature T1 maintained by a digital temperature 
controller using a thermistor temperature sensor in the 
aluminum plate, together with thermoelectric heating/
cooling modules beneath it. The thermistors have an ab-
solute accuracy of better than ±0.1° C, and the tempera-
ture regulation is stable to better than ±0.01° C  under 
normal operation. However, the substrate and the air im-
mediately above it  will not be at precisely the same tem-
perature as the aluminum plate, which adds some uncer-
tainty to the ice crystal growth temperature. Moreover, 
the PoP geometry itself provides a rather poor thermal 
coupling between the snow crystal and the substrate.

The primary heat exchanger above the substrate is an 
aluminum plate at a temperature T2 maintained by a 
separate temperature controller. Filtered room air from 
the compressor first passes through a baffled precooler 
kept near Tprecool = 0° C to lower the air temperature and 
remove a large fraction of the  water vapor it contains. 
This step reduces the thermal load on the primary heat 
exchanger and prevents it from clogging with ice during 
long observing runs. The precooled air then passes 
through a series of serpentine channels in the primary 
heat exchanger before blowing down onto the substrate 
and the growing snow crystal. The air flow rate F is typi-
cally 200–300 cubic centimeters per minute (cc/min), 
mea sured using a tapered- tube flow meter and controlled 
with a  simple needle valve. This flow rate replaces air in 
the guide tube (between the heat exchanger and the sub-
strate, shown in Figure  9.5) about once per second, 
which is comparable to the time needed to equilibrate 
the air temperature to that of the guide tube. The inte-
rior dia meter of the guide tube is 1.6 cm, and its overall 

length is approximately 2.3 cm. Air flows into the guide 
tube via four channels in the heat- exchanger plate, ar-
ranged symmetrically around the circumference of the 
top of the guide tube. The equal flow rates through the 
four input channels, along with the cylindrical geome-
try of the guide tube assembly,  were engineered to pro-
duce a nearly cylindrically symmetric downward flow 
pattern in the guide tube, with the flow axis centered on 
the growing crystal. The guide tube temperature is kept 
near the substrate temperature T1, and the guide tube is 
thermally isolated from the heat exchanger by a short 
section of thin- walled plastic tube.

An impor tant consideration in this heat exchanger 
design is the uniformity and symmetry of the air- flow 
pattern around the growing snow crystal. If the temper-
ature, supersaturation, or air flow are substantially non-
uniform across the face of a stellar crystal, this  will com-
promise the symmetry of its final morphology, creating 
a lopsided crystal. Thus, in pursuit of artistic snow crys-
tal perfection, the apparatus was designed to produce 
quite uniform environmental conditions around a grow-
ing crystal.

This growth chamber design provides three adjust-
able par ameters that can be used to control the crystal 
growth be hav ior: T1, T2, and F. The crystal temperature 
is nearly equal to T1, which is typically kept within a few 
degrees of −15° C to grow stellar- plate snow crystals. The 
quantity ΔT = T2 − T1 mainly determines the supersatu-
ration, which can be at most

	 σmax = [csat (T2) − csat (T1)]/csat (T1) ≈ ηΔT.

During a cooldown of the apparatus, air is passed 
through the heat exchanger for 30 minutes to deposit ice 
on its inner surfaces. The temperature is set to T2 <	− 20° C 
during this time to make sure ice (and not supercooled 
 water) is deposited inside the heat exchanger. Once the 
heat exchanger has been preconditioned in this way, air 
passing through it  will exit at temperature T2 and be sat-
urated with  water vapor relative to ice at T2. As it ap-
proaches the substrate, this air cools to near T1 < T2 and 
thus becomes supersaturated.
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Modeling the temperature and supersaturation at 
the growing ice surface is problematic with this appara-
tus for several reasons. The Reynolds number of the air-
flow in the guide tube is approximately 10, so the flow is 
prob ably not perfectly laminar, and the timescale for the 
air in the guide tube to become equilibrated with the 
guide- tube walls via diffusion is comparable to the time 
it takes air to flow through the tube. Moreover, a stag-
nation point in the flow occurs where the flow axis of the 
system intercepts the substrate surface, which is at the 
position of the growing crystal, and this further compli-
cates the air- flow and thermal analy sis. In general, how-
ever, a higher ΔT and a higher F produce a higher super-
saturation around the growing snow crystal. To 
complicate the supersaturation analy sis even further, 
 water droplets often condense on the substrate near the 
crystal, as I describe below. The presence of liquid  water 
substantially alters the supersaturation field, and the 
amount of  water condensation changes substantially 
with changes in ΔT and F. The thermal connection be-
tween the edge of a growing PoP crystal and the under-
lying substrate is also difficult to determine accurately, 
given the pedestal geometry.

For all  these reasons, I do not expect that the appa-
ratus described  here, in its current form,  will ever find 
much application in performing precision mea sure-
ments of ice growth rates  under known conditions. It 
is simply too difficult to determine the temperature 
and supersaturation at the crystal surface to high ac-
curacy. Nevertheless, the technique is quite suitable 
for qualitative studies examining snow crystal mor-
phologies and growth be hav iors, as well as for creating 
and photographing snow crystals purely for artistic 
purposes.

Optical Imaging

The microscope objective shown in Figure 9.5 is part of 
the heat exchanger assembly, but it is kept a few degrees 
warmer than T2 by using a heater dissipating 1–2 watts 
into the objective body. This elevated temperature is nec-
essary to keep fog from condensing on the glass face of 

the objective, which would interfere with optical imag-
ing. A Mitutoyo 5X Plan Apo objective with a 250-mm 
focal length achromatic reimaging lens immediately 
 behind it works well for single- frame imaging. The 
infinity- corrected objective has a working distance of 
34 mm, a numerical aperture of 0.14, resolution of 2.0 
µm, and a depth of focus of 14 µm, yielding excellent 
image quality. Focusing is done by moving the camera 
body on a StackShot linear positioning stage, and some 
amount of focus stacking (see Chapter 11) is typically 
needed for optimal imaging of large crystals, owing to 
the shallow depth of focus. The image proj ects to about 
1 µm per pixel of the 36 × 25 mm, 5616 × 3744 pixel sen-
sor in a Canon EOS 5D camera.

Small glass beads are a con ve nient tool for testing 
the focus quality of the optical system (see Chapter 11), 
as even a slight tilt of the substrate relative to the focal 
plane can degrade the image sharpness across the field of 
view, owing to the small depth of focus. This can be 
nicely corrected using focus stacking, which is also quite 
helpful when photographing PoP crystals that are 
slightly conical in shape (a common overall morphology 
for larger specimens). Obtaining high- quality micro-
scope imaging is always a challenge with a custom- built 
apparatus, so some image testing like this is quite useful 
for characterizing and improving the optical system.

When shooting still images for making time- lapse 
videos of growing PoP crystals, I prefer a 3X Mitutoyo 
Compact Objective, which has a resolution of 4 microns 
and a depth of focus of 50 microns (see Chapter 11). The 
3X images are noticeably less sharp, but focus stacking 
is no longer needed in most cases, greatly simplifying 
video production from the series of time- lapse stills. 
Also, the reduction in image sharpness is hardly notice-
able in videos of growing snow crystals, as the edges are 
constantly moving.

The field lens shown in Figure  9.5 reimages a color 
filter onto a pupil in the objective for achieving a variety 
of illumination effects, which are discussed below. Fig-
ure 9.6 shows a ray diagram that illustrates how the mi-
croscope objective creates an image of the snow crystal 
on the camera sensor while the field lens images the color 
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filter onto the pupil inside the microscope objective. Un-
derstanding this ray diagram, particularly the impor-
tance of the pupil plane, is quite useful for creating 
 desirable illumination effects that yield especially eye- 
catching color photo graphs. The topic of illumination 
effects is discussed in more detail in Chapter 11.

A rectangular field stop placed over the field lens 
blocks all incident light that does not transmit to the 
field of view of the camera, thus reducing the amount of 
unwanted scattered light in the optical system. The lens 
tube above the objective is also baffled and lined on its 
interior with a light- absorbing flocking material to fur-
ther reduce scattered light. The win dow cell provides 
thermal insulation between the room and the cold plate.

Often a pellicle beamsplitter is placed right  after the 
microscope objective to send an additional image to a 
second camera not shown in Figure  9.4. This is useful 
when collecting images rapidly from the main camera, as 
its live view seen on the TV monitor experiences a sub-
stantial dead time each time an image is being recorded. 
During times when the crystal growth be hav ior is chang-
ing rapidly, the second camera live view (seen on a second 
TV monitor) can be used to inform choices of T1, T2, and 
F that  will achieve desired morphological effects.

Choosing a Seed Crystal

Finding a well- formed, isolated seed crystal on the sub-
strate is perhaps the most difficult step in using this ap-
paratus. Seed crystals fall randomly during loading, 
and their surface density on the substrate is adjusted by 
how long the shutter remains open with the substrate 
in the loading position. Also, many seed crystals are 
malformed or do not lie flat on the substrate, and  these 
are not suitable candidates for further growth. If the 
surface density of loaded seed crystals is too low, it may 
not be pos si ble to locate a well- formed specimen. If 
the density is too high, then it may not be pos si ble to 
obtain a well- formed crystal that is sufficiently isolated. 
Often several loading attempts are needed to find a 
suitable specimen, with the substrate being heated be-
tween attempts to evaporate the existing crystals. The 
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FIGURE 9.6. A simplified ray diagram of the optical layout used 
in the PoP apparatus. Note that the microscope objective im-
ages the snow crystal onto the camera sensor (A → A′), while the 
field lens images the color filter onto a pupil inside the micro-
scope objective (B → B′).
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search pro cess can be laborious and may end up taking 
anywhere from 1 to 30 minutes.

When growing large, platelike ice crystals, the ideal 
seed crystal is a  simple, well- formed hexagonal plate with 
one basal surface flat against the substrate and with no 
additional ice within at least 1–2 millimeters from the 
chosen crystal. The subsequent growth phase typically 
lasts 20–60 minutes and is recorded via the imaging sys-
tem. The temperatures T1 and T2 are adjusted with time 
(it requires about a minute for each to stabilize), along 
with the flow rate, to obtain the desired growth be hav-
iors. At the end of the growth phase, the substrate is 
heated to just below 0° C so that the ice crystals sublimate 
away, at which point the cycle can be started once again.

 After a typical day- long run growing crystals, the en-
tire system is warmed to room temperature and baked 
to remove  water. The base plate is typically heated to 40° C 
via its temperature controller, while the seed- crystal 
chamber is heated by means of an internal heat lamp, 
 after emptying the  water reservoir. Following about a day 
of baking, the entire system is clean and dry, reducing the 
presence of residual chemical contaminant vapors. 
 Because a growing crystal is surrounded by air that has 
passed through the heat exchanger, special care is taken 
to reduce chemical contaminants in that air. The char-
coal filter in the air stream removes contaminants com-
ing from the air compressor, and the fiber filter down-
stream from the charcoal filter contributes  little odor 
emission. Moreover, the heat exchanger is baked at 40° C 
overnight while clean air is passed through it before 
each run to remove residual contaminants. Seeing thin 
plates growing readily near −15° C is a good indication 
that the air flowing into the growth region is quite clean, 
as chemical contaminants readily inhibit thin- plate 
growth at this temperature (see Chapter 4).

ILLUMINATION AND 
POSTPRO CESSING

A variety of illumination techniques can be explored 
using the relatively  simple optical imaging system illus-
trated in Figure 9.6. The fixed microscope position and 

orientation are mainly optimized for photographing 
platelike stellar snow crystals, achieving a high imaging 
resolution while capturing crystals as they grow and de-
velop. For most crystal morphologies, however, the type 
of illumination used can greatly affect the overall char-
acter of a resulting photo graph. Ice is an almost perfectly 
clear material, so the choice of illumination is substan-
tially more impor tant than one might be accustomed to 
from photographing opaque subjects. Digital postpro-
cessing can also be used for creating a variety of novel 
artistic effects, and, as with illumination techniques, 
 there is considerable opportunity for enriching the over-
all look of a PoP snow crystal photo graph.

Uniform Illumination

The most straightforward illumination method is to 
apply uniform white light from  behind the crystal, re-
placing the color filter in Figure 9.5 with a  simple round 
aperture. Uniform illumination tends to produce the 
sharpest microscopic details, and Figure 9.7 gives one ex-
ample. This photo shows off the bitingly sharp facets 
and corners that are a special characteristic of most PoP 
snow crystals.

Natu ral snow crystals usually experience some subli-
mation  after they fall out of the clouds, which gives 
their features a generally softer, “travel- worn” appearance 
(Chapter 11). This is not the case with PoP snow crys-
tals,  because they are being photographed as they grow, 
so their facets and corners are especially sharp. As a re-
sult, photo graphs of PoP crystals often reveal features 
that are rarely, if ever, seen in natu ral snow crystals. You 
need to be something of a snowflake connoisseur to no-
tice the difference (or perhaps to care), but it does give 
PoP snow crystals a unique crispness in their finer 
details.

The specific appearance of the PoP snow crystal in 
Figure 9.7 can be understood from how light is transmit-
ted through the clear ice. A flat pane of ice reflects some 
light incident on its surfaces, just as a flat pane of glass 
reflects some light. But not much is reflected, so the over-
all appearance of the flat areas of the crystal in this 
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FIGURE 9.7. Plain white- light illumination from  behind yields a particularly high- resolution image, re-
vealing exceptionally sharp facets and fine details in the surface structures. This crystal mea sures 
2.7 mm from tip to tip, and five images  were combined using focus stacking to improve the resolution 
slightly. Minimal postpro cessing was applied, mainly just adjusting to background to full bright white 
and applying a slightly bluish hue to the dark contours.

photo are quite bright, almost as bright as the back-
ground. In  these flat areas, most of the incident light 
simply passes through the clear ice, as it would a piece of 
glass. In contrast, the edges of a crystal refract transmit-
ted light, diverting it away from its initial path. If the 
curvature of the edge is high, some of this light is 
 diverted to such large  angles that it does not enter the 
microscope objective, which gives the edges a darker 
appearance. More generally, the clear ice acts like a 
complex lens that refracts the transmitted light through 
a variety of  angles. Edges tend to refract light to large 

 angles, so the edges appear darkest in the image. Flat 
panes of ice refract the light less, so they appear brighter. 
No light at all is reflected or refracted where  there is no 
ice, so the background is the brightest part of this photo-
graph. While this type of plain white- light illumina-
tion is good for showing off the detailed structure in a 
PoP snow crystal, the resulting images tend to be a bit 
“flat” in character, as they give  little sense of the snow-
flake’s rich 3D structure.

When using a  simple round aperture to produce 
white- light illumination, one soon finds that the size of 
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the aperture affects the character of the resulting photo-
graph. When the aperture is small, the resolution of the 
image is decreased, yielding generally fuzzier edges. The 
reason stems from how the field lens images the aperture 
onto the microscope objective, specifically onto the pupil 
plane, as shown in Figure 9.6. A close look at this ray di-
agram reveals that a smaller illumination aperture is es-
sentially equivalent to reducing the aperture of the ob-
jective,  because now no light enters the outer part of the 
objective. This reduces the resolution,  because imaging 
is generally diffraction  limited in microscopy. A smaller 
input aperture means a lower resolution in the diffrac-
tion limit, so using a small illumination aperture pro-
duces the same effect.

At the opposite extreme, if the illumination aper-
ture is especially large, then the edges  will not be as 
dark as they would other wise be, which reduces the con-
trast of the final image. In the limit that white light is 
incident from  behind the crystal at all pos si ble  angles, 
covering a full 2π steradians, the contrast would drop to 
nearly zero. In this extreme case, even large- angle refrac-
tion from the edges would not reduce the amount of 
light entering the objective, yielding a low- contrast 
image. This concept is best seen by  running the rays in 
reverse, from the camera sensor to the illumination 
source. With wide- angle illumination, rays starting from 
any point on the image  will run backward into the light 
source. Thus,  every pixel on the camera  will be exposed 
to light, which is the same as saying that the entire image 
 will be washed out. This feature is what makes it espe-
cially tricky to photo graph clear objects.

With plain white- light illumination, the optimal il-
lumination aperture size is that for which the image of 
the aperture just fills the entrance of the microscope ob-
jective. This gives the maximum resolution, as the full 
objective is being used. And it produces a high contrast 
as well, as even small- angle scattering from the crystal 
edges  will reduce the amount of light entering the ob-
jective. As can be seen from this exercise, a good under-
standing of the princi ples of optics is quite helpful for 
taking photo graphs of snow crystals. Commercial cam-

FIGURE 9.8. Setting the background to black in Figure 9.7 yields 
this image, which looks much like the snow crystal photo graphs 
taken by Wilson Bentley (see Chapter 1).

eras and microscopes are not optimized for this purpose 
(as snow crystal photography is certainly not their pri-
mary market), so some DIY design effort and a fair bit 
of trial and error are required for obtaining high- quality 
photographic results.

Figure  9.8 shows this same photo  after applying a 
“Bentley blocker” that digitally sets the background 
color to black. Wilson Bentley modified nearly all his 
photo graphs this way (see Chapter 1), although he did 
it the hard way by scraping the background emulsion off 
his glass photographic plates with a razor blade. Digital 
image pro cessing reduces this task to a few clicks, but I 
am not a fan of the flat, high- contrast look. The main ad-
vantage of the Bentley blocker is that the crystal now 
appears white on a dark background, which many  people 
feel is a more natu ral look for snow, even though indi-
vidual snow crystals are actually clear, not white (see 
Chapter 11).

Figure 9.9 shows some additional image modifica-
tions that can be applied to a  simple white- light PoP 
image to yield colorful effects. The vari ous adaptations 
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do not change the under lying snow crystal structure, but 
simply pre sent it in diff er ent ways. Given the amount of 
time and effort required to grow a single PoP snow crys-
tal, it is often beneficial to explore a multitude of light-
ing and postpro cessing effects like  these.

FIGURE 9.9. Beginning with a single PoP snow crystal illuminated with white light,  these modified im-
ages show a blue- on- white version from minimal postpro cessing (left), an inverted image  after color 
modification to give a white- on- blue appearance (center), and another inverted image modified to 
give a red- on- dark look (right).

FIGURE 9.10. An image of a PoP 
snow crystal using dark- field illumi-
nation. In the absence of any ice, no 
light enters the microscope objec-
tive, so the background is dark. The 
crystal appears bright,  because the 
ice refracts some light from oblique 
 angles  toward the objective. In this 
case, the central light was blocked 
using a slightly off- center opaque 
spot in place of the color filter, giv-
ing an asymmetry to the overall illu-
mination of the crystal.

Dark- Field Illumination

Another approach using white light is to replace the color 
filter in Figure 9.6 with a  simple annulus that blocks the 
central light while letting a ring of light illuminate the 
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crystal from an oblique  angle. Figure 9.10 gives one exam-
ple of this use of dark- field illumination in PoP snow crys-
tal photography.  Here the color filter has been replaced 
with an opaque disk on a clear glass holder. As shown in 
Figure 9.6, the field lens images the disk onto the micro-
scope objective, so no light enters the microscope if no ice 
is pre sent, giving the image a dark background.

When a snow crystal is pre sent, it again acts like a 
clear, complex lens, this time refracting some of the light 
coming from outside the disk in such a way that it does 
enter the objective. For the photo graph in Figure 9.10, 
the opaque disk filter was moved around and placed 
slightly off- center, producing diff er ent amounts of re-
fraction on diff er ent sides of the crystal. Comparing 
Figures 9.8 and 9.10, one can see that off- center dark- field 
illumination gives the image a pleasing sense of depth 
along with an overall “glassy” look, as the brightness vari-
ations accentuate the 3D structure of the snow crystal. 
The “flat” image in Figure 9.8 is much less vibrant by 
comparison, and it gives the viewer no sense of the full 
3D crystal structure. Using illumination to create a re-
alistic sense of depth is one of the tricks of snow crystal 
photography (seen Chapter 11) that applies as well to 
PoP crystals.

Rheinberg Illumination

The technique of placing a patterned color filter in the 
pupil plane is a variation of dark- field illumination that 
was first described by microscopist Julius Rheinberg in 
1896 and is now called Rheinberg illumination. Fig-
ure  9.11 shows one example of a PoP crystal photo-
graphed using this method. Rheinberg illumination pro-
duces an excellent sense of depth in snow crystal 
photo graphs, accentuating the full 3D structure better 
than other types of illumination do. Surface features re-
main sharp with high contrast, plus this technique adds 
a dimension of color to snowflake photography. This il-
lumination method is described further in Chapter 11.

 Because the Rheinberg color filter is placed at a pupil 
in the optical system, the pattern in the filter itself is not 

FIGURE 9.11. Rheinberg illumination was used in this PoP photo 
to accentuate the crystal surface structure while maintaining 
high resolution and adding some color to the image. Note that 
the background color is quite uniform across the image, while 
the snow crystal shows some red highlights introduced by the 
colorful Rheinberg filter (see Chapter 11).

seen in the background image. One way to think about 
this illumination method is that diff er ent colors of light 
are shining onto the crystal from diff er ent  angles. 
 Because each point on the focal plane receives equal 
amounts of all the colors, the background image has a 
uniform average color. In this way, a uniform back-
ground color appears regardless of the color variations 
in the filter used. This is typical of optical systems, as pat-
terns in the pupil plane have  little effect on what is seen 
in the image plane.

Note also that the colors seen using Rheinberg illu-
mination do not result from any dispersion effects, like 
the rainbow colors you see from a glass prism. Color dis-
persion is negligible in snow crystals,  because the ice is 
simply too small and thin. It would take quite a large, 
thick ice prism to produce much color separation, and it 
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would only be noticeable with careful lighting and large, 
flat prismatic surfaces. Ordinary glass objects like cups 
and plates also show negligible color dispersion for the 
same reason.

With Rheinberg illumination, the colors all come 
from the color filter being used. As the light passes 
through the snow crystal, the ice can be thought of as a 
complex lens that refracts the light and changes its direc-
tion of travel, and this pro cess is how color variations 
are produced. For example, if a bit of red light is shining 
on the image plane from an oblique  angle, none of this 
light  will normally enter the microscope objective, so 
none  will make it onto the camera sensor. But if the ice 
bends some of that red light and sends it into the objec-
tive, and thus onto the camera sensor, then some red 
highlights  will appear on the snow crystal image. And 
this is how the subtle red highlights in Figure 9.11  were 
created. Rheinberg illumination can also yield images 
with colorful shading that adds a sense of depth and ac-

centuates the 3D structure in a thick snow crystal, as il-
lustrated in Figure 9.12.

When photographing a PoP crystal, it is straight-
forward to swap color filters or move a patterned fil-
ter around while observing the live view on the TV 
monitor to produce a variety of pleasing color effects. 
If the crystal is growing slowly, as is often the case, 
one has plenty of time to experiment with diff er ent 
illumination techniques. Moreover, a PoP crystal is 
constantly changing as it grows, and each new mor-
phological development provides what is essentially a 
new subject to rec ord. With natu ral snowflakes, a 
crystal falls to earth and that is what you have. But 
photographing a PoP snow crystal is something of a 
continuous pro cess, as each stage of its development 
pre sents a new photographic opportunity.  After at-
taining some level of proficiency with the hardware, a 
single day of crystal growing can yield a bounty of ex-
cellent photo graphs.

FIGURE 9.12. Rheinberg illumination gives an 
especially pleasing sense of depth to thicker 
PoP snow crystals like this one, accentuating 
their surface features.
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POP GROWTH BE HAV IORS

Having described the PoP hardware, optics, and photog-
raphy, I now step back from the photography aspect and 
discuss how one goes about growing a PoP snow crystal. 
Having worked with this apparatus for some years, I have 
developed some strategies for producing diff er ent mor-
phological features  under diff er ent growth conditions, 
and  these have basically become a set of “ recipes” for de-
signing and fabricating diff er ent types of PoP snow crys-
tals. As we  will see, this hardware is quite versatile in 
that it can be used to grow a  great variety of highly sym-
metrical stellar- plate snow crystals.

Establishing the PoP Geometry

Loading and positioning a seed crystal is usually done by 
setting the substrate temperature to −12.2° C, the heat- 
exchanger temperature to −12.0° C, and the air flow at 
about 250 cc/min. This establishes a slight supersatura-
tion and a correspondingly modest degree of ice growth 
on the substrate, allowing some time to search for a suit-
able seed crystal. On opening the shutter, the substrate 
is moved into its loading position, where it stays for just 
a few seconds before being pulled back to the growth re-
gion. The substrate is then moved around in a 2D raster 
pattern to search for a well- formed seed crystal, one that 
exhibits a clean hexagonal prism morphology and has no 
nearby neighboring crystals. If none can be found, then 
the substrate is heated to −6° C for several minutes to 
drive off the seed crystals and then back to −12.2° C for 
another attempt. Once a suitable seed is in position at the 
center of the microscope field, the substrate temperature 
is lowered slightly to −12.5° C to commence the initial 
growth of a hexagonal PoP geometry.

The initial formation of the PoP geometry requires a 
careful se lection of growth temperature and supersatu-
ration. Thin plates grow out most readily from small 
hexagonal prisms when the temperature is near −15° C, 
which can be seen from the pictorial Nakaya diagram 
shown in Figure 8.19. The CAK model in Chapter 4 pro-

vides an explanation for why platelike growth is most 
prevalent at this temperature, but it can equally well just 
be taken as an empirical fact for this discussion.

Setting the initial temperature to near −15° C would 
quickly result in a PoP geometry, but growth at this tem-
perature is also highly susceptible to branching. Even at 
relatively low supersaturations, the attachment coeffi-
cient on the plate edge  will be so close to unity that the 
plate becomes unstable to branching even when the crys-
tal is quite small. For this reason, −15° C is too cold if 
one desires a  simple hexagonal plate like the one shown 
in Figure 9.3. However, the PoP geometry may not de-
velop at all if the temperature is higher than −10° C. 
Blocky growth is common at this temperature, and the 
ESI (see Chapter 4) is often too weak to yield an upper 
plate at −10° C. With −15° C being too cold and −10° C 
too warm, a temperature of −12.5° C has been found to 
be about right for initiating the PoP geometry, and hex-
agonal sectored plates  will grow out to around 0.5 mm 
in size at this temperature before branching occurs.

For even larger hexagonal plates, a good strategy is to 
move the temperature to near −10° C  after the PoP geom-
etry has been well established. A thin upper plate may not 
readily grow out from a small seed crystal at such a high 
temperature, but it  will likely continue growing once the 
plate has formed. This type of hysteresis appears to be a 
feature of the ESI.  After some amount of trial and error, I 
found that beginning near −12.5° C and slowly transi-
tioning to −10° C provides a good  recipe for growing a 
large,  simple hexagonal plates. The plate growth rate de-
creases with plate size, however, so growing exceptionally 
large plates requires quite a lot of patience. The largest 
 simple PoP plates I have made following this  recipe have 
mea sured about 1.5 mm from facet to facet.

Fog Droplets

If the supersaturation at the substrate exceeds σ water, then 
 water droplets  will readily condense on its surface, as il-
lustrated in Figure 9.13. As  these small droplets continue 
growing, they  will slowly coalesce into larger droplets 
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FIGURE 9.14. At high magnification (left), one can see individual droplets that recently nucleated on the 
substrate in this photo. At lower magnification (right), the droplets take on the appearance of a continu-
ous fog. In this case, the σ ≈ σ water contour is not circular but follows the overall shape of the PoP crystal.

next to a growing snow crystal (see Chapter 1),  because 
the vapor pressure of liquid  water is higher than the vapor 
pressure of ice at the same temperature (Chapter 2). The 
left image in Figure 9.14 shows a small PoP crystal sur-
rounded by an array of individual droplets that had re-
cently condensed, while the right image shows the same 
crystal  after substantial additional growth. As the crystal 
grows outward, it “pushes” the σ ≈ σ water perimeter out in 
front of it, as nearby droplets evaporate to provide  water 
vapor for the growing crystal. Within this perimeter, the 
nearby ice pulls the supersaturation down below σ water , 
causing droplets to evaporate in that region.

Note that the supersaturation at the surface of a liq-
uid droplet is essentially clamped at σ water , making it 
nearly impossible to achieve supersaturations substan-
tially above this level using the PoP method. This is true 
whenever snow crystals are supported on a large sub-
strate, as  water droplets  will nucleate and grow on 
nearly any available surface when the supersaturation is 
above σ water. As a result, one cannot grow true fernlike 
stellar dendrites using this apparatus. The electric- needle 
technique presented in Chapter 8 is better suited for in-
vestigating stellar dendrites and other forms that require 
supersaturations substantially above σ water .

FIGURE 9.13. When the supersaturation exceeds σ water near the 
substrate,  water droplets  will condense on it,  here appearing as a 
fog around a small PoP crystal. The growing crystal absorbs 
 water vapor in its vicinity, however, keeping the supersaturation 
below σ water nearby. The circular transition region indicates 
where σ ≈ σ water at the substrate.

through a pro cess called Ostwald ripening. The pro cess 
takes quite a bit of time, however, so often the droplet 
coalescence is not noticeable next to the rapid crystal 
growth. Moreover, fog droplets may evaporate when 
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It is pos si ble to remove the condensed droplets around 
a crystal by reducing the supersaturation below σ water, 
but the procedure can be quite time consuming in many 
circumstances. For a relatively large crystal, it may take 
5–10 minutes to remove the droplets, and the crystal 
continues growing slowly during this time. The  water 
evaporation is largely diffusion  limited and therefore 
quite slow for a field of large droplets.

 Because the substrate temperature is invariably 
below 0° C, eventually the liquid  water droplets  will 
freeze. However, they can remain in a metastable unfro-
zen state for quite some time, often for more than an 
hour even at temperatures down to −20° C. In some 
cases, a rapidly growing ice branch  will approach a drop-
let field faster than the droplets evaporate away, causing 
the ice to grow into the supercooled  water. The first drop-
let touched by the ice freezes instantly, and the solidifi-
cation front slowly migrates outward as the frozen drop-
lets each grow  toward isolated liquid droplets in their 
immediate vicinity. Typically within several minutes, the 
entire droplet field becomes interconnected and frozen. 
Once this happens, the supersaturation  will be clamped 
near zero by the ice- covered surface, thereby greatly re-
ducing the supersaturation over the entire substrate. The 
PoP growth is thus greatly slowed when the droplet field 
freezes, as now the PoP crystal must compete for  water 
vapor with all the surrounding ice. Increasing ΔT and 
the air flow rate  will cause the  whole ice field to continue 
growing slowly, along with the PoP crystal, as shown in 
Figure 9.15. But the supersaturation is generally too low 
to allow significant branching, and the PoP symmetry 
 will also degrade with additional growth. In some of my 
PoP photo graphs (Figure 9.7 being one example), I have 
digitally removed the droplet field surrounding the crys-
tal, simply to declutter the image background.

Branches, Wrinkles, and Spikes

Figure 9.16 illustrates the branching instability being ini-
tiated on the corners of a thin, faceted hexagonal plate. 
I use the word “initiated,”  because the branching pro cess 

was brought about in this case by lowering the tempera-
ture of this substrate. The crystal first grew at −12.5° C 
with a low supersaturation, resulting in a  simple hexag-
onal plate with sharp prism facets. Then I abruptly re-
duced the substrate temperature to −15° C, which both 
changed the growth temperature of the crystal and in-
creased ΔT. This rapidly increased the supersaturation 
and initiated the sharp spikes seen in the figure.

The branching transition near −15° C is one of the 
most remarkable aspects of snow crystal formation, as the 
overall growth be hav ior is extremely sensitive to tempera-
ture in this region. The CAK model (see Chapter 4) pro-
vides a pos si ble explanation of this phenomenon as a nar-
row “SDAK dip” on the prism attachment kinetics, but 
the under lying molecular dynamics responsible for this 
phenomenon is not yet well understood. Nevertheless, 
the high propensity for branching near −15° C is quite ap-
parent when growing PoP snow crystals.

As the branches developed in Figure  9.16, they left 
 behind a set of concave plate edges that experienced a 
new kind of “wrinkling” instability, which Figure 9.17 
shows more closely. Close to the branch tip, αprism is near 
unity and the growth is  limited mainly by diffusion, re-
sulting in a roughly parabolic tip shape that is essentially 
the Ivantsov solution to the diffusion equation (see 
Chapter 3), except with an added complication coming 
from strong basal faceting. Farther from the tip, the su-
persaturation is lower, so αprism is reduced, and prism 
faceting becomes relatively more impor tant. In this re-
gion, the faceting pro cess turns the smooth concave 
edges into a series of faceted segments, yielding the over-
all serrated contours observed. Similar features can be 
seen in natu ral snow crystals, albeit not as clearly.

Figure 9.18 shows a slower branching transition that 
occurred at a temperature near −13° C. Before taking the 
first picture in this set, the crystal grew with a set of spiky 
branches that formed at −15° C. But the temperature was 
increased to −13° C soon  after the branches formed, and 
the warmer conditions turned the narrow spikes into the 
broad- branched sectored plates seen in the top photo. 
The crystal continued growing at this temperature  until 



294 T C H A P T E R  9

FIGURE 9.15. Soon  after taking the 
top photo graph, the field of  water 
droplets became frozen. A long 
 period of additional slow growth 
yielded the bottom scene.

the branching instability slowly took hold, breaking up 
the cleanly faceted prism surfaces and promoting the 
growth of narrower branches, faceted just at the tips, 
with each tip flanked by wrinkled concave surfaces. This 
kind of growth is typical when the branching instabil-

ity is driven only weakly, resulting in broad branches 
with no sidebranches.

Figure 9.19 shows another example where a hexago-
nal plate grew out near −12.5° C, followed by an abrupt 
branching transition near −15° C. In this case, branches 
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FIGURE 9.16. An example of the onset of branching on a  simple hexagonal plate, brought about by 
lowering the temperature to near −15° C and increasing the supersaturation. First the edge of the plate 
first grew thinner, then the prism facet started to become curved, and fi nally the branching instability 
kicked in. The small “petals” at the center of the crystal are  bubbles trapped at the base of the pedestal. 
As described in Chapter 3, the remaining surface structure is located on the underside of the plate, 
while the upper basal surface is almost perfectly flat.

FIGURE 9.17. When the formation of branches results 
in a concave plate edge, the initially smooth perimeter 
is unstable to localized faceting, which produces a ser-
rated edge and a series of “wrinkled” surface features.

FIGURE 9.18. Starting as a sec-
tored plate with strong prism facet-
ing (left), this PoP crystal experi-
enced a period of weak branching, 
resulting in broad outgrowths with 
faceted tips flanked by serrated 
edges ( middle and right). Weak 
branching transitions like this are 
commonly seen in natu ral snow 
crystals.
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grew stably outward and would continue growing out for 
quite some time, resulting in long spikes with roughly 
parabolic tips and serrated sides. I have never seen spon-
taneous sidebranching in the PoP apparatus, however, 
 because droplet formation generally limits the supersat-
uration to not much above σ water , which is too low for 
spontaneous sidebranching even near −15° C.  After 
growing out  these spiky branches a bit more, I changed 
the temperature from −15° to −13° C to make a set of sec-
tored plates, as seen in Figure  9.20, and then back 
to −15° C to put spikes on the sectored plates.

Sectored Plates

When grown at a temperature near −12° C with a con-
stant supersaturation, PoP snow crystals often develop 
into  simple sectored plates with the overall structure 
shown in Figure  9.21.  Because the supersaturation is 
higher on the top basal surface than under neath, the 
plate edge grows up as well as out, resulting in a slightly 
conical shape overall. Basal terrace nucleation occurs near 

FIGURE 9.19. Spiky branches growing out from a hexagonal 
plate at −15° C. At constant growth conditions,  these spikes  will 
grow out in def initely.

the plate edges, and the terraces subsequently propagate 
 toward the center. If the basal growth is slow, then the top 
terrace may grow to cover the entire basal surface before 
another terrace nucleates, yielding what is called layer- by- 
layer growth. It is more likely, however, that  there  will be 
a continuous train of propagating terraces, as illustrated 
in Figure 9.21(a) and (b). If the number of unfinished ter-
races is small, the basal facet may look perfectly flat. But 
often the terrace steps bunch together to form a series of 
inwardly propagating rings, as described in Chapter 3.

While the upper basal surface of a PoP crystal typi-
cally exhibits a slightly concave shape, the lower surface is 
slightly convex, as illustrated in Figure 9.21. As the upper 
prism edges grow outward, terrace steps are left  behind 
on the lower basal surface, and  these steps subsequently 
propagate outward.  Because the  water vapor supply is 
highest near the corners, the lower basal steps tend to 
sprout 2D step branches that develop into ridges. This 
pro cess is described in Chapter  3, being one of many 
manifestations of the Mullins- Sekerka instability in 
snow crystal growth. As a result, all the sector- plate ridges 
seen in PoP snow crystals form on lower basal surfaces.

Figure  9.22 illustrates a  simple sectored- plate PoP 
snow crystal with several characteristic surface markings. 
First, the series of faint circular rings indicate step bunch-
ing on the top basal surface, and a time series of images 
reveals that  these rings propagate slowly inward with 
time. Second, on the underside of the plate, a set of 
sectored- plate ridges divide the plate into six sectors, like 
equal slices of a hexagonal pie. In this example, however, 
the plate did not grow with perfect hexagonal symme-
try, so the ridges are a bit curved. The ridges always ter-
minate at the faceted plate corners, so nonlinearity of the 
ridges indicates a slight variation of the growth rates of 
the diff er ent prism facets. Third, this crystal also exhib-
its a few faint hexagonal surface markings I call “ribs”. 
Unlike the rings and ridges, rib formation requires 
changes in the supersaturation with time, and the pro-
cess is described in detail in Chapter 3.

Fi nally, four dislocation lines can be seen on this 
crystal, appearing as faint evaporation grooves on the 
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FIGURE 9.20.  After the spikes in Fig-
ure 9.19 had grown longer (note the 
fixed size of the central hexagonal 
plate), the temperature was increased 
to −13° C to slowly grow a set of sec-
tored plates on the ends of the spikes 
(top). Then the temperature was re-
turned to −15° C and a new set of spikes 
grew out from the sectored plates 
(bottom).
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surface (Chapter 2).  These originated at early times, 
when the outer prism facets began to break up at the 
beginning of a weak branching event (inset image). 
Seeing this happen, I lowered the supersaturation in 
the apparatus, which caused the prism edges to “heal” 
back to a  simple hexagonal plate. The healing pro cess 

(a)

(b)

(c)

FIGURE 9.21. (a) The overall geometry of a PoP crystal, as seen from 
the side. The steps represent molecular terraces on the basal sur-
faces. (b) Growth on the concave top surface yields nearly circular 
inward- propagating steps. Step bunching sometimes turns a series 
of one- molecule- high steps into a coarser series of macrosteps 
that can be seen using optical microscopy. (c) Faster step advance-
ment near the hexagonal corners yields ridges on the lower convex 
surface.

did not happen with full molecular precision, how-
ever, and the remaining molecular mismatches turned 
into dislocation lines on the crystal. Unlike screw dis-
locations (see Chapter 4),  these lattice errors had  little 
effect on  either the basal or prism attachment coeffi-
cients, so the overall crystal shape was not much af-
fected by the dislocations.

Figure 9.23 shows another example of ridge forma-
tion on a PoP snow crystal, this time forming a broad- 
branched stellar plate.  After a set of six branches grew 
out from the corners of this crystal, the conditions  were 
set to promote the formation of flat plates near −12° C. 
With constant growth conditions, the sectored plate 
extensions are nearly featureless except for the distinc-
tive ridging. The ridges are curved,  because the plates 
interfere with one another as they develop, which 
stunts the sideways growth while maintaining fast out-
ward growth. The curved ridges thus indicate the posi-
tions of the prism corners at dif fer ent times. Similar 
morphological features can be seen in natu ral snow 
crystals, but large,  simple plates like this are quite 
rare. They require constant growth conditions to form, 
and such conditions are unlikely in the turbulent 
atmosphere.

Inwardly propagating rings are also quite common 
in sectored- plate extensions on PoP crystals, and Fig-
ure 9.24 shows two examples. Similar structures can be 
found in natu ral snow crystals as well, but the asymme-
try between the top and bottom plates in the PoP geom-
etry facilitates their construction. Also, ring formation 
requires a significant growth time at nearly constant con-
ditions, which again  favors their observation in a labo-
ratory setting. Ring formation is quite sensitive to the 
flatness of the top basal surface, with the most pro-
nounced rings occurring on surfaces with larger cone 
 angles. At −15° C, the prism/basal growth ratio is espe-
cially high, and the resulting plates are especially flat, so 
ring structures are typically absent, or nearly so. When 
the temperature is a few degrees higher or lower, the top 
plate surface becomes more concave and ring structures 
become more apparent.
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FIGURE 9.22. A  simple hexagonal plate PoP crystal il-
lustrating several common snow crystal morphological 
features, including ridges, inwardly propagating ring, 
and ribs. The four curved dislocation lines are not com-
mon, reflecting this crystal’s unusual early growth his-
tory. The plate is supported by the small star- shaped 
pedestal seen at its center. The top- right inset shows the 
crystal at an  earlier stage in its growth, at the same image 
scale as the main image.

FIGURE 9.23. Sectored plate extensions. Curved ridges often 
form on broad- branched sectored plates, looking a bit like “duck’s 
feet” in this PoP example.  Because ridge formation originates at 
the faceted corners of a plate, the ridges trace out the location of 
the corners as a function of time as the crystal developed.

Stellar Dendrites and Imposed  
Symmetry

The PoP growth technique is especially  adept a creating 
complex, symmetrical stellar dendrites using the pro cess 
of induced sidebranching described in Chapter 3. The 
basic idea is to first form a set of six primary branches, 
then lower the supersaturation so the branch tips become 
faceted, and then increase the supersaturation abruptly 
to a high value, stimulating the formation of branches at 
all three of the exposed prism corners. Sidebranch for-
mation is thus “induced” by first creating a faceted tip 
geometry and then quickly exposing it to a high super-
saturation. Figure 9.20 shows one example of induced 
sidebranching, although this is something of an odd case. 
More typically, the supersaturation is lowered just long 
enough to develop clear prism faceting before abruptly 
increasing the supersaturation again to stimulate a set of 
sidebranches. Figure 9.25 shows a large PoP crystal that 
experienced many induced- sidebranching events.
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With induced sidebranching, the formation of com-
plex structure is coordinated by the timing of the events 
that caused it. Sidebranches form on all six primary 
branches si mul ta neously, and on both sides of each pri-
mary, yielding a symmetrical morphology. For both PoP 
and natu ral snow crystals, we see that the large- scale, 
complex symmetry does not result from any communi-
cation or other internal coordination between the pri-
mary branches. Instead it arises simply from the time- 
dependent environmental conditions being applied to 
the growing crystal, as described in Chapter 1. In the 
PoP apparatus, of course, the pro cess of induced sideb-
ranching can be applied repeatedly at varying tempera-
tures and supersaturations, and with varying wait times 
between events. The example in Figure 9.25 shows how 
a series of growth transitions can be used to fabricate an 
extraordinarily complex, yet symmetrical, PoP snow 
crystal.

Natu ral snow crystals essentially never exhibit this 
degree of complexity accompanied by such near- perfect 
symmetry. However, the feat can be accomplished rela-
tively easily in the laboratory,  because the environment 
is carefully engineered and electronically controlled. It 

is straightforward to apply sudden and quite large 
changes to the growth conditions, thus stimulating 
sidebranching and other morphological features with 
considerable precision. It takes about an hour to grow a 
large snow crystal like this, but the pro cess is quite reli-
able if the apparatus is working well.

In contrast to stimulated sidebranching, spontaneous 
sidebranching generally does not yield symmetrical stel-
lar snow crystals. As described in Chapter  2, fernlike 
stellar dendrites exhibit copious sidebranching, but the 
sidebranch spacing is quite irregular over the entire crys-
tal. The primary branch tips are roughly parabolic in 
shape, and the rounded profile makes it difficult for 
sidebranches to appear. High supersaturation is needed 
to produce sidebranches in this circumstance, and the 
pro cess is often so haphazard that even the opposite sides 
of a single primary branch exhibit sidebranches at diff er-
ent locations. While stimulated sidebranching is thus 
somewhat chaotic, induced sidebranching is a controlled 
pro cess that first prepares the tip by giving it faceted cor-
ners. The sharp corners are then more susceptible to the 
branching instability, so a lower supersaturation level is 
needed to make branching happen.

FIGURE 9.24. Large sectored- plate extensions on PoP snow crystals often exhibit concentric- ring 
patterns like  those seen in  these two examples. The rings slowly propagate inward as the plates grow, 
and they are located on the top basal surfaces, as sketched in Figure 9.21. Ridges and faint ribs can also 
be seen, and both  these features are located on the lower plate surfaces.
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FIGURE 9.25. This elaborate PoP snow crystal underwent a series of induced sidebranching events, 
each producing a set of symmetrical sidebranches flanking the primary branches. The final crystal 
displays a decidedly complex overall structure with a remarkable degree of sixfold symmetry, substan-
tially better than what one finds in natu ral snow crystals. Just before this photo graph was taken, the 
supersaturation was increased to condense a fog of  water droplets quite close to the outer perimeter 
of the crystal. This crystal mea sures 3.8 mm from tip to tip.
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Controlling the applied growth conditions is what 
makes growing PoP snow crystals something of an artis-
tic pro cess. The entire temporal history of the tempera-
ture and supersaturation can be planned and manip-
ulated to create a unique snow crystal morphology. Of 
course,  there are limits to what snow crystal designs 
can be created, as one is bound by the under lying 
rules of snow crystal growth. And we cannot yet pre-
dict what patterns  will appear in all circumstances, as 
our understanding the rules is somewhat incomplete. 
Nevertheless, the PoP technique provides an opportu-
nity for artistic expression in the novel medium of 
snow crystal fabrication.

Other Forms

While the PoP apparatus was designed for creating 
stellar- plate snow crystals, columnar seed crystals are 
often pre sent, and  these can land with one prism facet 
resting on the substrate. Growing platelike crystals from 
 these columnar seeds yields crystals like  those shown in 
Figure  9.26, which are essentially double plates seen 
edge-on. Technically,  these might be called “half- double 
plates,” as the crystals can only grow up from the sub-

FIGURE 9.26. When a small columnar seed crystal on the PoP substrate is exposed to temperatures 
near −15° C, plates often grow out from the ends of the column.  These images show some of the result-
ing double plates seen edge-on.

strate. As seen in Figure 9.27,  these crystals often grow 
side- by- side with the usual PoP geometry.

IDENTICAL- TWIN SNOW 
CRYSTALS

That familiar maxim that no two snowflakes are exactly 
alike appears to have had its origin with the photo graphs 
taken by Wilson Bentley. In his book with William 
Humphreys [1931Ben], Bentley presented pictures of 
nearly 2,000 stellar snow crystals, selected for their 
beauty and symmetry, and each was clearly diff er ent 
from all the  others. Since then, the notion of snowflake 
uniqueness seems to be something we all learn at a young 
age (at least in North Amer i ca), possibly in elementary 
school while participating in the nearly universal craft of 
cutting snowflakes out of paper.

 There is good reason to believe that no two com-
plex, natu ral snow crystals  will ever look quite the 
same, as I described in Chapter 1.  Because each snow-
flake follows a diff er ent path through the clouds, 
guided by the motions of a turbulent atmosphere, each 
one experiences diff er ent growth conditions during its 
journey. The number of pos si ble variations is vast, so 
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FIGURE 9.27. The double- plate crystal on the upper left grew out from a columnar seed crystal, while 
the stellar crystal followed the usual PoP geometry. As both seed crystals  were exposed to the same 
growth conditions near −15° C, both developed thin- plate morphologies.

the probability of finding two identical snowflakes is 
vanishingly small. But this discussion changes when 
you consider growing PoP snow crystals. Now the 
growth conditions are not determined by random 
paths through a turbulent atmosphere. Instead, the 
temperature and supersaturation are controlled by 
precision temperature controllers that can be set and 
changed according to a prescribed schedule. In princi-
ple, one could engineer a precision snow crystal fac-

tory that would produce a continuous flurry of essen-
tially identical snowflakes. (Of course, one must be 
careful about how you define the word “identical,” as 
discussed at some length in Chapter 1.) I have not had 
any  great urge to create such a factory, but it would not 
be an impossible task.

Instead of growing identical PoP snowflakes one 
 after another, however, a much easier approach is to grow 
two at the same time, side by side, as illustrated in 
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Figure 9.28. This photo, unmodified except for crop-
ping and small global brightness/contrast/color adjust-
ments, shows two snow crystals that I grew si mul ta-
neously in the PoP apparatus. I like to call  these 
“identical- twin” snow crystals,  because they are not 
perfectly identical, and small differences can easily be 
found if you look carefully at the photo. But like  human 
identical twins, they are clearly much more similar than 
one might generally expect to see. In the spirit of full 
disclosure, Figure 9.29 shows the original, unmodified 
image of the full 5.6 × 3.7  mm field of view of the 
camera.

To create this pair of identical- twin snow crystals, I 
first had to locate a pair of well- formed seed crystals, 
close to one another, but not too close, and reasonably 
isolated from any additional crystals. This is a high bar to 
clear, and Figure 9.29 shows that  there was quite a bit of 
unwanted activity  going on over the entire substrate, a 
fact that the cropped image does not convey. Pretty 
much  every photo in this chapter was cropped in this 
way, to focus the viewer’s attention on the primary 
subject.

With a suitable pair of seed prisms in place, I then 
proceeded to grow the dual PoP crystals by applying 

FIGURE 9.28. A pair of “identical- twin” 
snow crystals, grown side- by- side in the 
PoP apparatus.

FIGURE 9.29. The unretouched, uncropped, 
straight- out- of- the- camera original ver-
sion of the image shown in Figure 9.28.
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branching, faceting, and other effects at vari ous times. 
A key trick for growing identical- twin snow crystals is 
to make a continuous series of large, abrupt changes in 
growth conditions. Rapidly changing the environment 
by a substantial amount  causes a correspondingly large 
and abrupt change in the growth be hav ior. A series of 
such events creates an exceptionally complex morphol-
ogy, which tends to accentuate the similarities between 
the two crystals. Smaller, gradual changes typically yield 
less- perfect symmetry, even among the six branches of a 
single crystal.  There are inevitably some weak tempera-
ture gradients in the growth region, and neighboring 
crystals also perturb the local environment to some ex-
tent. Making large, abrupt changes tends to mask  these 
weaker effects, thus improving the overall symmetry of 
the growing crystals.

Another trick is to create a field of  water droplets 
around the two crystals early on and to maintain a well- 
defined droplet perimeter around both crystals, always 
with a “barrier” of droplets separating the crystals, as 
shown in Figure 9.28. The droplets provide a stabilizing 
influence on the supersaturation, greatly reducing the 
perturbations that arise from neighboring crystals. This 
makes sense,  because the droplets hold the supersatura-
tion at σ ≈ σ water in their immediate vicinity, and the 
boundary condition of having a clean droplet perimeter 
around both crystals tends to improve the overall sym-
metry of the two crystals.

The final trick is just knowing when to stop. In Fig-
ure 9.28, for example, the line of droplets between the 
crystals  will soon evaporate as the crystals grow larger, 
and then the crystals  will begin to interfere with each 
other’s growth. Figure 9.30 shows what happens when 
the droplet barrier disperses while the crystals continue 
to grow. The branches growing between the two crys-
tals compete for the available  water vapor, thereby 
stunting their growth relative to the outer branches, 
which are still supplied by nearby droplets. Viewing a 
video that shows first the nearly identical growth of 
nearby crystals, followed by the stunted growth of the 
branches between them, gives one a good appreciation 

FIGURE 9.30. (Top) The  water droplets surrounding a PoP snow 
crystal tend to isolate it and stabilize its growth. The droplet field 
thus contributes to providing the same level of supersaturation 
for each growing branch. (Bottom) The same pair of crystals  after 
the droplet barrier between the crystals evaporated. In this envi-
ronment, the facing branches grow more slowly, yielding asym-
metrical crystals.

of how the droplet field affects the overall growth 
pro cess.

Note that the phenomenon of twelve branches 
growing in synchrony is essentially no diff er ent than 
with six branches. For a natu ral snow crystal, only its six 
conjoined branches experience the same growth condi-
tions as a function of time (although twelve- branched 
crystals can be quite symmetrical also, as seen in Chap-
ter 10). In the PoP apparatus, however, all the crystals are 
connected by virtue of the substrate.  There is no need to 
stop at twelve in this line of reasoning, and Figure 9.31 
shows that larger groups can also grow into similar- 
looking snow crystals.
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FIGURE 9.31. When any cluster of small PoP crystals exhibits the same growth conditions as a function 
of time, the individual crystals  will all develop into similar morphologies.

POP ART

The remainder of this chapter pre sents a gallery of syn-
thetic PoP snow crystals that I grew using the apparatus 
and techniques described in the previous sections. The 
images that follow show real PoP snow crystals, with es-
sentially no digital modifications of the overall crystal 
structures. However, I did use a fair bit of artistic license 
when adjusting brightness, contrast, cropping, sharpness, 
and a host of color effects. In some images, I also removed 
droplets, specks of dirt, or other distractions from the 

background around the growing crystals. My overarch-
ing goal in this gallery is to pre sent the growth of syn-
thetic snow crystals as a novel art form, rather than as a 
tool for scientific discovery. While science and art are 
normally quite distinct endeavors, they come together 
beautifully in snow crystal growth. An understanding of 
the science was needed to engineer the PoP apparatus, 
making pos si ble the creation of high- resolution images 
and videos showing details not observable in natu ral 
snow crystals. I believe  there is much left to explore in 
this novel form of additive ice sculpture.
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FIGURE 10.1. A large stellar- plate snow crystal with complex surface markings, mea sur ing just over 
3 mm from tip to tip, captured by the author in Burlington, Vermont.
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Nature provides a marvelous laboratory for ex-
amining the morphological diversity of 
snow crystals. With a  simple magnifier and 
a robust tolerance for cold weather, one can 

observe a remarkable variety of crystalline forms falling 
from the winter clouds. The possibilities range from 
 simple plates and prisms to hollow columns, sectored 
plates, fernlike stellar dendrites, capped columns, and a 
host of rare and exotic va ri e ties. Each snowfall has its 
own character, and  there is always something new to 
discover.

In this chapter, I pre sent an extensive cata logue of 
photographic examples showing diff er ent types of snow-
flakes and snow crystals along with a discussion of their 
vari ous identifying features and characteristics. The pre-
sen ta tion is in the form of a field guide [2006Lib], 
aimed at assisting snowflake photog raphers or other 
readers who want to see for themselves what the winter 
clouds have to offer. Although such exploration could be 
done without any guidance, the venture is generally more 
rewarding when you start out knowing what  others have 
observed and documented over the years.  Unless other-

wise indicated, I photographed all the snow crystals in 
this chapter during snowfalls in northern Ontario, 
Alaska, Michigan, Vermont, northern Sweden, and 
other locations.

As an occasionally avid bird watcher, I like to think 
of snowflake watching as an entirely analogous activity. 
It can be entertaining, educational, and a surprisingly en-
joyable recreation. Keeping an eye out for in ter est ing 
crystals is a worthwhile pursuit any time you happen to 
be outside during a light snowfall. You could be riding 
the chair lift at your local ski area, taking a stroll through 
the winter woods, or just waiting in your car somewhere. 
If the snow is falling all around you, why not have a look 
from time to time to see what you can find?

Growing up on a farm in North Dakota, I experienced 
a lot of snow, and I saw my share of birds. But I never  really 
noticed  either  until someone showed me what to look for, 
which happened long  after my childhood days. Looking 
back on this par tic u lar aspect of my youth,  these  were lost 
opportunities. We all live in nature, but it takes a bit of 
effort to develop an awareness and appreciation of the 
natu ral world around us. If you happen to live in a cold 

One cannot fix one’s eyes on the commonest natu ral production without finding food for a 
rambling fancy.

— JANE AUSTEN, MANSFIELD PARK ,  1814

TEN

Natu ral Snowflakes
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climate, I heartily recommend that you think about snow-
flakes occasionally, and perhaps go outside to have a look 
for yourself. You never know what works of art the clouds 
might be sending down.

SNOWFLAKE WATCHING

Ukichiro Nakaya described snow crystals as “hiero-
glyphs from the sky” [1954Nak],  because the form of 
each crystal can be interpreted, at least in princi ple, to 
reveal the atmospheric conditions it experienced as it 
grew and developed.  There is some truth to this suppo-
sition,  because the pro cess of snow crystal growth is 
largely deterministic, meaning that two crystals experi-
encing the same conditions as a function of time  will 
grow into nearly identical shapes. The “identical- twin” 

snow crystals presented in Chapter 9 provide a direct 
confirmation of this deterministic be hav ior.

A primary tool for deciphering the shape of a spe-
cific snow crystal is the Nakaya diagram illustrated in 
Figure 10.2, as this morphological overview connects the 
seemingly disparate observations of falling snow into a 
generally coherent picture of what is happening up in the 
clouds. Of course,  there are limitations to how much one 
can say about the growth history of a snowflake by ex-
amining a single photo graph of its final state; but usu-
ally one can envision a plausible scenario to explain an 
observed morphology. Another use of the Nakaya dia-
gram is to predict what types of crystals  will appear in 
diff er ent weather conditions. For example, if one wishes 
to find large, well- formed stellar snow crystals (a popu-
lar photographic goal), it is useful to know that such 

0
0

–5 –10 –15 –20 –25 –30 –35
C°

Temperature, Colder

H
ig

he
r h

um
id

ity

Solid plates

Solid 
plates

Thin 
plates

Plates

PlatesPlates

Plates

Hollow
columns

Stellar
plates

Dendrites

Columns

Columns and PlatesColumns

Needles

Dendrites

32 20 10 0 –10 –20 –30
F°

FIGURE 10.2. The Nakaya diagram illustrates what types of crystals form in air as a function of 
temperature and humidity level. This chart provides just a rough approximation of the dif fer ent 
morphologies, however, plus it applies only if the growth conditions are constant in time.



N A T U  R A L  S N O W F L A K E S T 331

crystals can only be found when the cloud temperatures 
are around −15° C.

Snow Crystal Classification

We name snowflakes for the same reason we name most 
 things—so we can talk about them. Certain morpholo-
gies are commonly found in nature and have a distinc-
tive appearance, and  those have historically well- defined 
names. Stellar plates, stellar dendrites, fernlike stellar 
dendrites, hollow columns, and capped columns have all 
been part of the snowflake vernacular for some time. But 
 there is no absolute classification system for snow crys-
tals, and  there never  will be,  because we have no defini-
tive way to divide snow crystals into distinct, nonover-
lapping categories.

Some  things are better suited to classification than 
 others. Atoms, for example, are neatly classified by how 
many protons they contain (in the periodic  table) and by 
how many neutrons they contain (in isotope  tables). 
Naming chemical species works quite well also, as each 
name refers to a specific chemical formula (and perhaps a 
specific isomer). Biological species cannot easily inter-
breed, so they too mostly form well- defined, nonoverlap-
ping categories (although  there are many exceptions, such 
as the mule). In  these cases, naming conventions can be 
quite precise, making it reasonably straightforward to 
identify the named group that a given individual fits into.

Other groups of items are not so easily categorized. 
We can talk about diff er ent types of bread, cheese, 
cookies, breeds of dogs, types of hobbies, or musical in-
struments, but the names are generally  human con-
structs with few natu ral partitions.  People or ga nize 
and cata log all  these items, but diff er ent  people have 
diff er ent lists, and the names often change over time. 
As a specific example, skiers have many names for dif-
fer ent types of snow on the ground, but again the cate-
gories are a bit arbitrary. Snow scientists have done the 
same for falling snow crystals.

Asking “what kind of snowflake is that?” is not an 
especially good question,  because  there may not be a 

well- defined answer. The shape of a snow crystal depends 
on its entire growth history, which is somewhat analo-
gous to saying that the breed of a dog depends on its en-
tire ancestry. If a specific snow crystal had an unusual 
history, then it may not fit well into any category, no 
 matter how many categories one defines. (And the same 
is true for dogs.)  There is no way to avoid  these ambigui-
ties, so classifying snow crystals is a practice with some-
what  limited usefulness. Nevertheless, some taxonomy 
is useful and necessary to guide the conversation, so clas-
sification systems have been devised for this purpose.

Nakaya first recognized the need for nomenclature 
and constructed a classification system containing seven 
primary categories that branch out into a total of 41 
snowflake types [1954Nak]. This system was  later ex-
panded by Magono and Lee to 80 categories [1966Mag] 
and recently expanded again by Kikuchi and Kajikawa 
to include 121 distinct snowflake types [2011Kik , 
2013Kik], as shown in Figure 10.3.

For the purposes of everyday snowflake watching, I 
prefer the somewhat simpler chart shown in Figure 10.4. 
This is essentially a modernized version of Nakaya’s orig-
inal list, placing a greater focus on the physical pro cesses 
that underlie the diff er ent morphological types. With 35 
diff er ent named categories, this chart includes the com-
mon designations that have evolved over the years, and 
it describes most of what can readily be found in the 
wild. I have found this chart quite useful for identifying 
and describing natu ral snow crystals, so I continue to 
promote its use.  There is no definite, ideal method for 
classifying snow crystals, but Figure 10.4 is the chart I 
find most useful in the field.

Biased Sampling

In the spirit of full disclosure, I like to point out that 
well- formed snow crystals like  those illustrated in clas-
sification charts are not the norm, and most of the snow-
flake types shown are quite rare. You may not realize 
this from photos you have seen,  because photog raphers 
invariably pre sent a heavi ly biased sample of what falls 
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FIGURE 10.3. This large snow crystal classification system contains 121 separate categories 
[2011Kik, 2013Kik]. Image courtesy of Takao Kameda.
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FIGURE 10.4. I devised this simplified snow crystal classification system for everyday observing 
[2006Lib]. While  there is no definitive method for dividing snow crystals into precise categories,  these 
35 types provide a reasonable overview of the morphological diversity found in natu ral snow crystals.
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from the clouds. We stand out in the  bitter cold for hours 
on end, searching for especially photogenic examples 
that exhibit well- formed, strikingly symmetrical fea-
tures. Exceptionally beautiful snow crystals are a de-
light to behold, so we work hard to find them. And 
 because most  people are not  eager to buy a book or read 
an article showing unattractive snowflakes,  those pho-
tos do not get published.

To witness an unbiased snowflake sample, you need 
only go outside during a light snowfall and have a look. 
 Every snowfall has a diff er ent character, and certain 
weather conditions are conducive to producing photoge-
nic crystals (see Chapter 11). But essentially all snowfalls 
produce many, many examples from the “Irregulars” cat-
egory in Figure 10.4, and Figure 10.5 provides a represen-
tative sample.  These small, somewhat malformed plate-
like crystals are extremely common, and some snowfalls 
deliver  little  else. I sometimes call this “granular snow,” 
 because the crystals look a lot like icy grains of sand.

Another common occurrence is when growing snow 
crystals collide with cloud droplets, creating what is 
called rime— basically collections of tiny, frozen drop-

FIGURE 10.5. Although this chapter fo-
cuses on dif fer ent types of well- formed 
snow crystals, clumps of small “irregular” 
crystals like  those shown in  these two pho-
tos, are far more common.

FIGURE 10.6. As they are growing and falling, snow crystals 
often collide with  water droplets from the surrounding clouds. 
The supercooled droplets immediately freeze onto the ice sur-
face, and this example shows a thick coating of the resultant rime 
on a stellar crystal.
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lets. Figure 10.6 shows an example where a stellar snow 
crystal first developed normally in a region relatively  free 
of cloud droplets, and then it moved into a dense cloud 
and accumulated a thick coating of rime. If the rime 
coating becomes so thick that essentially the entire struc-
ture is an agglomeration of frozen droplets, then it is 
called graupel, or soft hail. Again, some snowfalls deliver 
mostly rimed crystals.

An unfortunate truth when snowflake watching is 
that granular snow and rimed crystals are especially prev-
alent when the temperature is near 0° C, which includes 
a lot of snowfalls. Warm conditions tend to produce 
lower quality specimens overall (Figure 10.7), while the 
most spectacular stellar crystals appear when the cloud 
temperatures are near −15° C.  Because population cen-
ters tend to form in moderate climates, and −15° C (5° F) 
is considered  bitter cold by typical standards, the laws of 
probability suggest that most  people  will rarely ob-
serve exceptionally beautiful snow crystals where they 
live, even when snow is fairly common. I discuss this and 

FIGURE 10.7. Many snow crystals exhibit a somewhat “travel- 
worn” appearance, especially when the temperature is warm. 
In this example that I captured in California, the branch tips 
are rimed, and nearly all the crystal edges are rounded from 
sublimation.

related prob lems further when considering snowflake 
photography in Chapter 11.

The goal and tenor of the guide to snowflakes in this 
chapter is much like what you find in a guide to mineral 
crystals. Mineral books tend to focus on beautiful, 
single- crystal specimens, as  these represent the basic min-
eral types. But if you go hiking up in the mountains to 
look for yourself, all you  will likely encounter is rather 
ordinary rocks. Small mineral crystals can be seen if you 
look closely at many rocks, as any geologist  will quickly 
point out. But large single- crystal mineral specimens are 
exceedingly rare.

The good news for snowflake watchers is that find-
ing high- quality snow crystals is much easier than find-
ing high- quality minerals. Rock hounds have already re-
moved nearly all the nice specimens that  were easily 
retrievable, leaving few  behind to discover. You can find 
large mineral crystals in museums, and for purchase, but 
not so much in the wild. New mining operations are 
among the best places to find quality mineral specimens, 
as they expose unexplored material.

In contrast, snow crystals are all made anew for  every 
snowfall, so you have a good chance of finding some out-
standing examples. If the temperature is somewhere be-
tween −10° C and −20° C, and you know what to look for, 
you  will almost certainly find some noteworthy crystals if 
you are a determined observer. Not  every snowfall brings 
exquisite snow crystal gems; but occasionally one can wit-
ness beautiful crystals falling to earth in large numbers. 
Patience and per sis tence are often needed, but  those few 
magical snowfalls bringing exquisite crystals make up for 
all the granular and rimed crystals.

The remainder of this chapter pre sents many examples 
to illustrate the diff er ent snow crystal morphologies pre-
sented in Figure 10.4, along with some discussion of the 
physical pro cesses involved in their creation. If you go 
outside to look at the falling snow, magnifier in hand, you 
may find this chart useful for observing and identifying 
diff er ent crystals.  Human nature being what it is, you are 
more likely to spot a triangular crystal, a bullet rosette, or 
a double plate if you know that they might be out  there.
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 SIMPLE PRISMS

Basal facet

Column Plate

Prism facet

 Simple prisms are small, faceted snow crystals that 
range from platelike to columnar in form. They have 
relatively plain shapes, with minor patterning and no 
branching.  These minimalist snowflakes are common 
and can be found in most snowfalls, regardless of tem-
perature. However, most  simple prisms are so tiny that 
you need a microscope to see them clearly.

 Every snowflake has its beginning, and  these small 
crystals are essentially young snowflakes that have not 
had time to grow into larger and more elaborate shapes. 
The examples shown on this page are roughly 0.3 mm 
in size, about as large as the period at the end of this 
sentence.

Faceting is a dominant force in the development of 
 simple prisms,  because they are still small. The transition 
to branching has simply not yet had a chance to occur. 
A rough rule of thumb is that branching begins when a 
crystal grows to more than half a millimeter in size, al-
though this rule is only approximate.

Occasionally you can observe  these small crystals on 
 bitter cold days when the sun is out, so their mirror- like 
facets sparkle brightly as they tumble through the air. 
With that image in mind, you can see why  these are also 
called diamond dust snow crystals.

Prism facets

Prism facet Basal facet
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Well- formed crystal facets have razor- sharp corners 
during growth, but this is not always what you see in the 
pictures. Sublimation  will often round the edges, as you 
can see with the small prism shown above. The rounding 
of sharp features is especially noticeable on smaller spec-
imens and when the temperature is warm. Sublimation 
is always an unknown  factor when snowflake watching, 
 because you do not know what conditions the diff er ent 
crystals have been through  after forming. By the time it 
reaches the ground, a crystal may look quite diff er ent 
than it did when it was growing up in the clouds.

When photographing snow crystals, I usually illu-
minate them from  behind with colored lights, giving my 
photos a bright background. In the photo below/right, 

Corners rounded
by sublimation

Prism facets

Canadian photographer Don Komarechka [2013Kom] 
used a ring flash to capture  these bright, glasslike crys-
tals on a dark background.
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Hollow  Faces. (right) For this photo graph, I focused 
my camera on one face of a diamond dust prism, 
about 0.3 mm in size. I caught this crystal quickly on 
an especially cold day, so sublimation has not yet taken 
its toll; the corners are still distinct and sharp. This 
picture also illustrates the hollowing sometimes seen 
in prism facets.

During growth, diffusion gives the corners of the 
crystal a greater supply of  water vapor. The facet centers 
receive less, so they accumulate material more slowly. 
Over time, the facet centers lag  behind the growth of the 
edges, as shown in the accompanying sketch. This is a 
common growth be hav ior, and it is a first step in the 
transition to branching.

“Hollow” prism facets

Basal facet

Sharp corner

Antarctic Snow Crystals. (below)  These tiny crystals 
 were photographed at the South Pole [1990Tap]. In the 
dry, bitter- cold arctic conditions, snow crystals often 
grow into  simple, sharply faceted prisms like  these.



N A T U  R A L  S N O W F L A K E S T 339

Atmospheric Halos. Simple- prism snow crystals are 
responsible for a variety of atmospheric halo phenom-
ena. The photo above shows a spectacular halo display 
captured at the South Pole [1990Tap]. The lower- left 
image illustrates a simpler light pillar phenomenon 
that includes the author’s thumb blocking the sun, 
photographed in Cochrane, Ontario. The lower- right 
photo shows the sun f lanked by a pair of sundogs 

captured in Fargo, North Dakota [2009Gop]. Much 
has been written about halo phenomena [1980Gre, 
1990Tap], and complex reflection/refraction models 
are needed to explain how falling ice crystals can create 
such complex patterns of light. For many halo features, 
including sundogs, the falling crystals must be aligned 
relative to vertical by aerodynamic forces, as described 
in Chapter 3.
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STELLAR PLATES

Broad branches

Prism
facets

Surface markings

Stellar plates are thin, flat crystals of medium size with 
an overall sixfold symmetry. They are typically broad 
branched with  little or no sidebranching and a profu-
sion of complex surface markings. Stellar plates can be 
abundant when conditions are right. The best speci-
mens are found during light snowfalls at fairly low 
temperatures.

The sparkle you see in falling snow often comes from 
stellar plates, as their flat basal surfaces reflect incident 
light like tiny mirrors.  These crystals are large enough 
that a  simple magnifier gives you a nice view of their 
overall structure, as a good- sized specimen might be 
2 mm in dia meter. A microscope reveals a  whole new 
realm of observing, however, allowing a detailed look at 
the intricate patterning on each crystal.

Stellar plates form over a narrow range in tempera-
ture, so are not pre sent in all snowfalls. The Nakaya dia-
gram tells us that large, platelike crystals  will grow when 
the clouds are near  either −15° C or −2° C. At the higher 
of  these temperatures, however, one does not generally 
find well- formed crystals,  because of sublimation and 
other  factors. Thus, large stellar crystals mainly appear 
when the temperature is within several degrees of −15° C. 
If you want to find some beautiful stellar plates, you 
must wait for just the right conditions.
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Ridges Ribs

Inwardly propagating ringsRibs, Ridges, and Rings. The ribs, ridges, and inwardly 
propagating rings described in Chapters  3 and 9 are 
often prominent surface features on stellar- plate snow 
crystals. The complexity of the patterning reflects the 
ever- changing conditions experienced by each crystal, 
brought about by the convoluted path it followed 
through the atmosphere. The pos si ble permutations are 
endless, and some crystals develop highly complex sur-
face markings. Laboratory- grown snow crystals allow 
 these diff er ent features to be analyzed in isolation, as de-
scribed in Chapter 9.
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Malformed Plates. Most stellar plates are not beauti-
fully formed and flawlessly symmetrical, as you can verify 
by spending 10 minutes with a magnifying glass in any 
snowfall. The quin tes sen tial, well- formed snow crystal is 
actually quite rare. The above pictures provide several ex-
amples of imperfect, somewhat malformed stellar plates. 
 These are all single crystals of ice, as you can ascertain 
from the relative alignment of the vari ous facets on each 

crystal. The facets reveal the under lying molecular order, 
and the aligned facets indicate that this order is preserved 
throughout each plate. The odd shapes of  these crystals 
came about  because their growth was perturbed in some 
way. Perhaps they experienced some lattice defects during 
growth or suffered collisions with rime particles or other 
falling crystals.  There are many potential prob lems that 
can interfere with symmetrical growth.
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Surface Patterns. Some stellar plates exhibit remark-
ably complex and symmetrical surface markings, espe-

cially in their central regions. The structures are so small 
that a microscope is usually needed to see them.
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Perpetual Variety. (above plus facing page) Stellar- plate 
snow crystals exhibit an endless diversity of complex sur-
face patterns.
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Rimed Crystals. Snow crystals are often decorated with 
rime particles, ranging in number anywhere from one to 
thousands. A typical droplet has a size of roughly 30 mi-
crons, which is half the dia meter of a  human hair. Large 
crystals can be especially prone to rime, as the high hu-
midity necessary for their growth requires a high density 

of cloud droplets. Aerodynamic forces often deposit rime 
particles on the edges of large plates, as seen in the upper- 
left image. The lower crystal is unusual in that it picked 
up quite a bit of rime and then it moved to a region with 
fewer cloud droplets, where the crystal tips grew out rel-
atively un perturbed by the rime.
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Epitaxial Growth.  After growing into a small hexago-
nal plate, the above crystal wandered into a dense re-
gion of a cloud and picked up a good dusting of rime 
droplets. Each droplet froze upon contact with the ice, 
and if you look closely, you can see that the facets on 
the frozen droplets are mostly aligned with the facets 
of the plate. This is an example of epitaxial growth, as 
the plate ice served as a template to guide the molecu-
lar orientation of the freezing liquid. The crystal on the 
right apparently acquired a single rime droplet when it 
was smaller, which froze epitaxially and then stimu-
lated the growth of an errant branch that grew differ-
ently from its siblings.
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SECTORED PLATES

Broad-branched
sectored plate

Ridges

Simple
sectored

plate

Sectored plates are flat, broad- branched crystals deco-
rated with pronounced radiating patterns of ridges. 
They get their name from the way the ridges seem to 
neatly divide the plates into sectors. At times,  these sur-
face markings look like veins on a leaf, giving some snow-
flakes an almost plantlike appearance.

The simplest sectored plate is a hexagonal shape di-
vided into six sectors, like the example shown below right 
(see also Chapter  9). Broad- branched crystals with 
sectored- plate extensions are more common, as illus-
trated in the other photos. Sectored plates can be con-
sidered a subclass of stellar plates, and  there is no sharp 
dividing line between the two categories. If a stellar plate 
shows especially prominent ridging and few other sur-
face markings, then we tend to call it a sectored plate.
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Sectored- Plate Extensions. The relative simplicity of 
their surface markings indicates that sectored plates 
form in relatively constant conditions, without large 
swings in temperature or humidity. Thus, the platelike 
branches are generally flat and smooth (aside from the 
ridges), and the prism facets tend to be well formed and 
large. Then they look a bit like duck’s feet.



350 T C H A P T E R  1 0

Prominent Ridges. Sectored plates merit a separate 
name,  because ridging is such a robust feature in snow 
crystal growth. As described in Chapters 4 and 9, ridges 
form on slightly convex basal surfaces, owing to a 2D ver-
sion of the branching instability. The pictorial Nakaya 
diagram in Chapter 8 shows that ridging occurs over a 
broad range of temperatures and supersaturations, mak-
ing it one of the most prevalent snow crystal features. If 
you look carefully, you can usually find some evidence of 
ridge formation on most thin- plate crystals.
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Contemporaneous Crystals. It is not aty pi cal to see a 
cluster of comparable crystals all falling in a brief pe-
riod, as  these did one day. When the conditions are 

right to form a par tic u lar crystal type, the clouds can 
release them in large numbers. As usual, some are well 
formed, but many are not.
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STELLAR DENDRITES

Sidebranches

Simple
star

Stellar dendrites are platelike crystals with narrow 
branches decorated with numerous sidebranches. They 
tend to be larger than stellar plates, with generally less 
prominent faceting and more complex shapes.  These 
crystals can be readily found with the naked eye, and 
considerable detail can be seen with a  simple magnifier. 
Stellar dendrites are common in many snowfalls, often 
arriving in  great numbers.

The word “dendrite” means “treelike,” which is an 
apt description of  these extravagant crystals. They form 
around −15° C when the humidity is quite high. The 
ample  water vapor supply drives the branching instabil-
ity to produce numerous sidebranches. Stellar dendrites 
are often con spic u ous, as a generously sized specimen 
might mea sure 3 mm from tip- to- tip. They are also quite 
thin and flat. Their ornate shapes with outstanding sym-
metry make stellar dendrites the much- celebrated ca-
nonical holiday snowflakes.

Thin Plates. (left) Stellar plates and dendrites are usually 
remarkably thin and flat, which can be appreciated by 
viewing them from the side. This overall shape is why we 
call them snowflakes.
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Induced Sidebranching. Symmetrical sidebranching 
on a stellar dendrite is typically brought about by in-
duced sidebranching, as described in Chapters 4 and 9. 
This is the only known mechanism that  will cause sideb-
ranches to sprout synchronously from all six primary 
branches on a large stellar crystal. It requires a carefully 

orchestrated series of events to produce several sets of 
well- formed symmetrical sidebranches, which is why 
good examples are rare and difficult to find in nature. 
They are substantially easier to create in the lab  under 
controlled conditions.
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Backward Branches. On rare occasions, one can find 
sidebranches that appear to be growing 60 degrees off 
from the usual forward direction, so I call them “back-
ward” sidebranches. Their formation mechanism can be 

seen in the crystal on the right. When a platelike crystal 
grows on the end of a long thin branch, all five available 
plate corners are susceptible to sidebranching.

Backward
branching

 Simple Stars.  These minimal stellar crystals appear 
when the supersaturation is high enough to produce nar-
row branched growth, but too low to create much sideb-
ranching. As seen in the pictorial Nakaya diagram in 

Chapter 8,  these crystals grow only over a narrow range 
of pa ram e ter space, so they are not especially common. 
They also tend to be small with  simple features, making 
them easy to overlook.
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Shielded
branches

Shielded Branches. Snow crystals grow fastest at their 
outer edges, which have the greatest supply of  water 
vapor. But sometimes the interior branches  will grow 
substantially even  after the outer branches have grown 
out and left them  behind.  Because the interior branches 

are shielded by the outer branches, they receive a re-
duced supply of  water vapor. Such conditions often 
yield thin, rather featureless platelike structures that 
are rather asymmetrically placed, as seen in  these 
examples.



356 T C H A P T E R  1 0

Branched Beauty. One does not easily grow bored ex-
amining the endless variety of stellar- dendrite snow 
crystals.



N A T U  R A L  S N O W F L A K E S T 357



358 T C H A P T E R  1 0

FERNLIKE STELLAR DENDRITES

Narrow
branches

Sidebranches
parallel to

neighboring
branches

Fernlike stellar dendrites are large, thin plates with nar-
row branches and sidebranches that look like a fern. 
Sidebranches typically form at 60- degree  angles relative 
to their primary branches.  These crystals are common, 
and their exceptionally large size makes them easy to spot.

Fernlike stellar dendrites are the largest snow crys-
tals, on rare occasions mea sur ing more than 10 mm in 
dia meter. Their thickness may be 100 times less than 
this, however, making them extremely thin, flat, plate-
like crystals. They only form near −15° C when the hu-
midity is exceptionally high, which drives their rapid 
growth with copious sidebranching.

The well- defined 60 degree  angles between the 
branches and sidebranches of fernlike stellar dendrites 
indicate that they are single crystals of ice. Despite their 
complex shapes, the molecules in the ice lattice are all 
lined up from one tip to the other.
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Chaotic Branching. Fernlike stellar dendrites grow rap-
idly in a humid environment, resulting in copious sideb-
ranching. As soon as the above crystal was born, the 
abundance of  water vapor drove the branching instabil-
ity hard, so the transition from faceted to branched 
growth occurred early. As a result, at its center  there is 
 little vis i ble remnant of the crystal’s initial faceted stage. 
Once the six principal arms  were established, the high 
humidity resulted in narrow, closely spaced sidebranches 
with no prism faceting. The absence of faceting means 
that  there  were no induced sidebranching events, and 

thus no sixfold symmetry in the placement of the sideb-
ranches. Even the sidebranches on opposite sides of a 
single primary branch are uncorrelated. In a sense, the 
growth of this crystal was too fast to be orchestrated. 
This is a medium- sized dendritic specimen, just over 
2 mm from tip to tip, but it is also quite thin and flat. 
Basal faceting, with some assistance from the ESI (see 
Chapter 4), mainly restricted its growth to two dimen-
sions.  Because it stayed thin and light, the crystal made 
a slow descent through the clouds, never falling faster 
than about half a meter per second.
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Monster Snowflake. To my knowledge, this is the larg-
est single snow crystal ever photographed— a fernlike 
stellar dendrite mea sur ing just over 10 mm from tip to 
tip. Each branch holds first- generation sidebranches 
along with second- , third- , and even fourth- generation 
sidebranches. Extensive higher- order sidebranching like 
this is rare in snow crystals. I have witnessed such large 

crystals only twice, both times in Cochrane, Ontario, 
and both times for just a few minutes. Weather condi-
tions need to be quite finely tuned to create such large 
crystals, with the temperature close to −15° C, the hu-
midity exceptionally high in a dense cloud, not too 
many crystals forming at once, and absolutely no wind 
to break up the delicate branched structure.
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Snowflake Sizes. This composite image shows several 
snow crystals compared to a penny (which is 19 mm in 
dia meter), all at the same magnification. A large stellar 
dendrite might be 5 mm from tip to tip, while many 

 simple plates are no more than 1 mm in size. The mon-
ster snowflake on the preceding page is about as large as 
Lincoln’s head.
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Powder Snow. When conditions are right for the for-
mation of fernlike stellar dendrites, they can fall in 
abundance. The top picture above shows a close-up view 
of the windshield of my car  after a snowfall that dropped 
almost entirely large stellar snowflakes. You can see how 
the barbed branches locked together to form an excep-

tionally light, fluffy blanket of ice. On the ground, this 
kind of snow is called “fresh powder,” and the airy struc-
ture is so soft that a skier might sink waist- deep into it, 
skies and all.  After being exposed to the sun and wind 
for a day or two, however, the snow packs down into a 
denser, less yielding composition.
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Variations. Once again,  there is no sharp dividing line 
between the stellar- dendrite and fernlike stellar- dendrite 
categories. Many crystals display aspects of both types, 
so they rightfully belong somewhere between  these two 
classifications.
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HOLLOW COLUMNS

Conical hollows

Prism facets

Hollow columns are  simple hexagonal ice prisms with 
conical voids extending down from their ends. The re-
cesses typically appear in a symmetric pair  running along 
the central axis of a crystal, with the tips nearly touching 
at the waist. Hollow columns are small and easy to over-
look with the naked eye, being about 1 mm in length, and 
their internal structure is best viewed with a microscope. 
They are a relatively common columnar morphology and 
can frequently be found in warmer snowfalls.

Conical hollows
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Hollow columns are most likely found when the 
temperature is near −5° C, as indicated in the Nakaya di-
agram. The overall hexagonal columnar structure is 
often not apparent,  because the prism corners have been 
rounded by sublimation, which is especially rapid at 
 these warmer temperatures. Thus, hollow columns may 
look more like round cylinders than like hexagonal 
columns.

The best way to find and view  these crystals is to let 
some snow fall onto several glass slides and then view the 
slides  under a microscope. When the temperature is high 
and granular snow is the norm, one can often find a few 
well- formed hollow columns in the mix. As is true with 
most snow crystal types, however, finding and photo-
graphing well- formed examples can be a challenge.

The formation of a hollow column is a manifestation 
of the familiar branching instability (see Chapter 3). The 
crystal starts out as a tiny ice prism, but soon the basal 
edges grow faster than the basal centers, resulting in the 
columnar hollowing. This mechanism predicts that  there 
can never be a fully hollow column (hollow like a pipe), 

and none has ever been observed. The initial seed crys-
tal  will always leave  behind a solid central core.

Columnar  Bubbles. In some hollow columns, including 
the two examples below, the hollows close up when the 
supersaturation becomes low, leaving pairs of columnar 
 bubbles in the ice.
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 NEEDLES

Needle cluster

Crossed needles

Columnar branching

Simple
needle

 Needles are long, slender columnar crystals. The simplest 
examples are just exceptionally lengthy solid or hollow 
columns, but usually needle crystals develop into more 
complex shapes.  Needles are common and easy to spot 
with the naked eye, looking like short bits of white hair 
on one’s sleeve. Their detailed structures are best viewed 
with the aid of a microscope or strong magnifier.

Needle crystals are the product of warm, wet snow-
falls, forming when the temperature is close to −5° C and 
the humidity is high. With lengths often up to 3 mm, 
 needles are the longest of the columnar snow crystals. A 
crossed needle arises  either from a polycrystalline seed 

crystal or from the mid- air collision of two  simple 
 needles. Needle clusters are another result of the branch-
ing instability, as secondary  needles sprout from the 
corners of a primary needle end.



N A T U  R A L  S N O W F L A K E S T 367

Hollow Column with Needle Extensions. The com-
plex needle crystal above began as a hollow column, as 
evidenced by the conical voids seen deep inside the struc-

ture. As the hollow column grew larger, needlelike 
branches sprouted from the corners of the columnar 
ends.

Conical voids

Columnar branches
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CAPPED COLUMNS

Capped columns are columnar crys-
tals with stellar plates on their ends. 
A typical specimen looks like a stubby 
axle flanked by two hexagonal wheels, 
but multiply capped columns have 
more than two plates. Although these 
crystals are not especially common, a trained eye can 
often find a few mixed in with  simple columnar crys-
tals in warmer snowfalls. Capped columns are just large 
enough to be spotted with the naked eye, and their dis-
tinctive shape makes them easy to identify.

A capped column forms when a snow crystal experi-
ences its own style of midlife crisis, abruptly changing 
its growth be hav ior from columnar to platelike. This can 
happen when a large mass of moist air is pushed upward 
by a passing storm front. The air cools as it rises, carry-
ing its suspended cloud droplets along with it. When the 
temperature falls to about −6° C, some of the droplets 
freeze and begin growing into columns. If the air con-
tinues to rise, the temperature may drop to about −12° C, 
promoting platelike growth on the columnar ends and 
yielding capped columns.

A common feature of capped columns is that the 
transition from columnar to platelike growth is usually 
quite abrupt, owing to the ESI (see Chapter 4). This same 
physical effect allows the formation of PoP crystals de-
scribed in Chapter 9. In addition to two primary end 
plates, additional side plates may sprout from the exposed 
ledges in needle clusters or other features when columns 
are not  simple and smooth.
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Capped Column Close- Up. The three photo graphs 
at left are all of the same crystal, but with two diff er ent 
orientations and with diff er ent focal planes. The top 
picture shows the crystal in the orientation I found it, 
 after it had fallen onto a glass slide. This shows a nice 
side view of the column on which the plates formed. 
Some hollowing is pre sent, so at one point this crystal 
must have looked like a  simple hollow column.  After 
photographing the crystal as it had fallen, I then used a 
fine paintbrush to flip it onto one face. Focusing my 
microscope on the smaller upper plate yielded the sec-
ond picture, which looks like a typical stellar plate. 
The symmetry is subtly imperfect, and you can see a 
central dark spot where the column attaches. Without 
moving the crystal, I then refocused on the lower plate 
to produce the third picture. In this photo, the blurry 
upper plate now obscures the lower plate to some de-
gree. The lower plate looks a lot like the upper one, as 
you would expect,  because the two formed  under 
nearly identical conditions.

The crystal on the right is a capped column with es-
pecially distinctive stellar plates on both ends. The 
image was captured in Moscow by Rus sian photographer 
Alexey Kljatov.
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Capped  Needles.  These two remarkable specimens are 
essentially capped columns, but they might be more ap-
propriately called “capped needle clusters,” as each has 
multiple plates growing from the ends of sizable needle 
clusters. Both are about 1.7 mm long, and the vari ous 
plates (seen edge-on) are all amazingly thin, with razor- 
sharp edges. Moreover, the column- to- plate transitions 
are especially abrupt.  Here again  these crystals provide 
excellent demonstrations of the ESI in action. I have 
encountered large capped  needles like this only once, 
on one extraordinary day in the Michigan Upper Penin-
sula.  These two crystals fell within a few minutes of 
each other, and I spotted several  others like them as 
well. When the conditions are just right, rare snow 
crystals can fall in abundance.
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Plates from Rime. The world of multiply capped col-
umns is inhabited by some exotic beasts, such as the 
two ice caterpillars above and below left. Both are rela-
tively  simple needle crystals festooned with copious side 
plates (the plates are viewed edge-on in the photos). Each 
of  these crystals started out as a  simple needle, which 
then became coated with rime. Next the temperature 

dropped, and plates sprouted from many of the rime 
droplets. Note that the rime froze with the same lattice 
orientation as the under lying  needles, so the side plates 
are all parallel to one another. Thus, each of  these seem-
ingly disordered structures is a single crystal of ice, with 
the  water molecules aligned throughout.
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Small plate

Large plate

Connecting
column

Small
plate

Main
plate

Connecting
column

DOUBLE PLATES

Small plate

Large plate

Connecting
column

Small
plate

Main
plate

Connecting
column

Double plates are pairs of thin, platelike crystals held to-
gether by a small connecting column. Often one side is 
a large stellar plate while the other is a smaller hexagon, 
although many other variations are pos si ble. This phe-
nomenon is relatively common, and many stellar crystals 
are actually double plates if you look closely.

Double plates are basically extreme versions of 
capped columns that result in two closely spaced plates. 
The two plates compete for  water vapor, leading to a 
growth instability: any slight perturbation can cause one 
plate to overshadow the other, yielding one dominant 
and one recessive plate. The two photos below show the 
same rimed crystal with separate focus on the top and 
bottom plates.
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Layer 2:
Faceted
branch

Layer 1:
Hexagonal
plate

Layer 3:
Extended
branch

Cross section view Layer 1
Layer 2

Layer 3

A Multi- Layered Plate. At first glance, this snow crys-
tal may look like an ordinary stellar plate, but a closer 
inspection reveals three distinct layers, as shown in 
cross- section in the sketch. Note first the nicely 
formed hexagonal plate near the center of the crystal 
(layer 1), which is slightly out of focus in this picture. 
This hexagon was one half of a double plate when the 
crystal was small. The other half grew out faster and 
branched, and in  doing so, it deprived the hexagon of 
 water vapor.  Because it grew relatively slowly, the 
hexagon remained smaller and faceted. One often sees 
double plates where the larger sheet is branched and 
the smaller one is faceted for this reason. When the 

crystal was about half its final size, it ran into low hu-
midity and the branches grew thicker.  Later the humidity 
picked up again, and the branches became double plates 

of their own (layers 2 and 3).  Here again, one plate was 
left  behind growing slowly (layer 2) while the other 
grew out more quickly and became branched (layer 3). 
If you look carefully, many stellar crystals show mul-
tiple layers like this one.



374 T C H A P T E R  1 0

SPLIT PLATES AND SPLIT STARS

Connecting column

Layer 1

Layer 2

Split crystals are essentially double plates that have ex-
perienced asymmetrical growth. A surprising number of 
stellar dendrites are split stars when you look carefully 
at their central construction.  These snowflakes are com-
monly mixed in with normal stellar plates, and some-
times one finds isolated partial plates  after the two parts 
of a split crystal have separated during flight.

The formation of a split crystal is driven by a growth 
competition between the two members of a double plate. 
The pair starts out symmetrical, looking much like a 
short capped column. But if one branch or corner hap-
pens to edge ahead of its nearby sibling, then the growth 
of the latter is soon stunted from overshadowing. If one 
entire plate dominates over the other, then the result is a 
double plate. But if parts of both plates prevail, then the 
crystal  will develop into a split plate or split star. If the 
split occurs early, the six dominant branches may grow 
into a surprisingly symmetrical stellar crystal.
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Split Categories.  There are eight pos si ble topologies for 
making a split plate or star, as illustrated in the sketches 
on the left. The crystal above is one of the three pos si ble 
4 + 2 variants, photographed by Patricia Rasmussen in 
Wisconsin [2003Lib2].  Here the two parts of the crys-
tal broke apart during  handling, giving a nice look at a 
“disassembled” split star. The photo below shows one 
piece from another 4 + 2 variant.
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HOLLOW PLATES

Hollows

Thick hexagonal plate

Hollow plates are thick plates with voids extending down 
from their prism  faces. Sometimes the  faces grow over the 
voids to enclose thin  bubbles in the ice.  These features are 
occasionally found in small prisms and on the broad 
branches of stellar crystals, although it can be difficult to 
tell the difference between “dimples” that are depressions 
on basal surfaces and nearly enclosed “voids.”

Hollow plates are essentially the platelike analog of 
hollow columns. One starts with a thick- plate crystal, 
and then the facet edges grow faster than the centers, 
eventually leaving  behind hollows in the prism  faces. The 
sketch above shows a hexagonal hollow- plate crystal, but 
the phenomenon is more of a structural feature than a 
snow crystal type. Like ridges and ribs, small hollows are 
fairly common features in broad- branched stellar plates 
and other thick- plate crystals.

Hollow plates are most likely to grow when the tem-
perature is  either just above or just below −15° C, and 
fluctuations in temperature and humidity can yield 
rather oddly  shaped voids, although broad, wide voids 
are more typical.
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When you begin to look closely, hollows and  bubbles can be found on many 
platelike snow crystals, as in  these two examples.
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SKELETAL FORMS

Plate from ridge

Main plate

Ridges

This category refers to the formation of thick ridges on a 
basal surface followed by secondary plates growing out 
from the ridges. The distinctive “I- beam” structures that 
result are a fairly common morphological feature that 
can be found in many stellar snow crystals.

While thin ridges are the defining feature of sectored- 
plate snow crystals, thick ridges are the basis for skeletal 
forms. In both cases, the under lying physical phenome-
non is the spontaneous appearance of ridge structures on 
convex basal surfaces, which is described in Chapters 3 
and 8. Both thin-ridge and thick-ridge phenomena are 
clearly seen over a broad range of conditions in the picto-
rial Nakaya diagram in Chapter  8, showing that they 
grow  under constant growth conditions (in contrast to 
capped columns, for example, which cannot form in con-
stant conditions). When circumstances are right, plate- 
from-ridge skeletal forms can be remarkably common.

Plates
from
ridges

Main plate
Thick
ridges
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Needles on a plate

COLUMNS ON PLATES

Scrolls on a plate

Columns on a plate

This category includes crystals for which platelike growth 
was followed by columnar growth, which is essentially 
the opposite of capped columns. As shown in the sketch, 
the columnar growth can take the form of  simple col-
umns (top), or sections of hollow columns called 
“scrolls” (bottom). Unlike capped columns,  simple ex-
amples of  these forms are exceedingly rare.

A typical cooling cloud may transition through −2° C 
(not cold enough to freeze droplets) to −6° C (droplets 
start to freeze, columns form), to −15° C (plates form), 
and this common be hav ior can yield capped columns. 
Weather scenarios that produce columns  after plates 
are unusual, so any kind of column- on- plate growth 
be hav ior is quite rare.

Scrolls on a plate
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Locally Abundant. In birdwatching, rare but “locally 
abundant” birds are generally hard to find except when 
a  whole flock of them shows up where you happen to be. 
Snow crystals can behave in the same way. When a snow-
fall produces just the right weather conditions, ordinar-
ily rare crystals can be quite abundant, at least for a short 

while. I photographed all the peculiar column- on- plate 
crystals on this page during a 20- minute period in Fair-
banks, Alaska, when the temperature was near −5° C. 
One never knows what oddities the clouds may deliver, 
so you just have to be watching when they appear.
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TRIANGULAR CRYSTALS

Branched triangular

Truncated triangle

Triangular snow crystals display an overall threefold 
symmetry rather than the usual sixfold symmetry. The 
most common shape is a truncated triangular plate, some-
times with branching. Triangular crystals are relatively 
rare and usually small. They are most likely to be found 
in warmer snowfalls, mixed in with other small plates.

As described in Chapter  3,  there is a weak growth 
instability that can cause a hexagonal plate to transform 
into a triangular shape. A slight perturbation in that di-
rection  will be amplified by diffusion- limited growth, 
and once begun, the transition from hexagonal to trian-
gular is irreversible. Exactly how and when this instabil-
ity is triggered is not yet well understood.
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BULLET ROSETTES

Bullet
rosette Isolated

bullet

Capped
bullet
rosette

Bullet rosettes are collection of columnar crystals that 
form together around a single nucleus. Competition for 
 water vapor inhibits growth near the center, giving each 
column a bullet- like shape. Individual bullets come from 
the breakup of bullet rosettes.  These snowflakes are typi-
cally found mixed with columnar crystals in warmer 
snowfalls. Bullet rosettes are polycrystalline forms, 
which means that the entire structure is made of several 
individual crystals that grew out from an initially poly-
crystalline seed.
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R ADIATING PLATES AND DENDRITES

Radiating plates

Radiating dendrites

Radiating plates and dendrites are polycrystalline forms 
much like bullet rosettes, except with a collection of 
platelike crystals instead of columns. Typically, the dif-
fer ent segments grow out from a common center, and 
their structure can be anything from  simple faceted 
plates to fernlike dendrites.  These composite structures 
are common and typically found mixed in with other 
platelike crystals.

 Whether a cloud droplet freezes into a single ice 
crystal or a polycrystal depends on many  factors. Larger 
droplets are more likely to become polycrystalline, as are 
highly supercooled droplets. Polycrystalline forms are 
generally much more common at lower temperatures 
than at high temperatures. A polycrystal can also form 
when a rime particle collides and sticks to a single- crystal 
form. The crystal at right prob ably picked up a rime 
droplet that froze with some random crystal orientation. 
This nucleated the formation of the additional branches 
you see growing out of the plane of the photo graph.
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SHEATHS AND CUPS

Cup

Sheath

Sheaths are exaggerated hollow columns with exceptionally 
thin walls and deep hollows. Cups are stout crystals with 
flared walls that resemble shallow hexagonal goblets.

In terms of growth mechanisms,  these crystals could 
be included in the hollow- column and capped- column 
categories; but both can be quite distinctive in appear-
ance, so they have picked up their own names over the 
years.  These crystals are generally small and rare, so they 
are easily overlooked. I found  these by scanning over col-
lections of small irregular crystals that had landed on 
glass slides.
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Twin capped column

Evaporation groove

Small scrolls

CRYSTAL TWINS

Arrowhead
twin

Twin
column

Crossed plates

A crystal twin is a special polycrystalline form consist-
ing of two separate single- crystal pieces attached in spe-
cific orientations, and twin columns are common 
enough that you see them with some regularity. Most 
twins are small, rare, and easy to overlook when sur-
rounded by other crystals,  unless you watch for them.

Crystal twinning is a common mineralogical phe-
nomenon involving an initial molecular lattice mismatch 
that develops into a pair of co- growing crystals. The 
alignment of the pieces indicates the lattice construction 
of a twin crystal, and I described the known possibilities 
for snow crystals in detail in Chapter 2. Crossed plates 
and arrowhead twins are both quite rare in the wild, al-
though some variants are fairly easy to produce in the lab. 
Twin columns can be quite common; they look almost 
exactly the same as normal columns, but often one can 
see a distinct “evaporation groove” around the column’s 
waist, indicating the weaker molecular bonding in that 
plane.

Arrowhead twin

Crossed plates
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TWELVE- BR ANCHED SNOWFLAKES

A twelve- branched snowflake is essentially a matched 
pair of six- branched stellar crystals attached at their cen-
ters, with one rotated 30 degrees relative to the other. 
Twelve- branched snowflakes are not common, but they 
can be quite large and distinctive in appearance. Some 
snowfalls bring more than  others, mixed in with normal 
stellar crystals.

The evidence to date suggests that a twelve- branched 
snowflake is nothing more than two six- branched crys-
tals that collided and stuck together when they  were 
small. The near- perfect twelvefold symmetry in some ex-
amples appears to arise from a se lection effect: if two 
tiny prisms experience a collision that bonds their basal 
 faces together with close to a 30- degree rotation between 
them, then the pair  will develop into a well- developed 
and easily spotted twelve- branched crystal. However, if 
the collision is less ideal (which is far more likely), then 
the pair  will develop into an inconspicuous radiating 
dendrite. A key to this model is that your brain is quite 
 adept at noticing symmetrical snowflakes in the midst 
of a  great deal of malformed clutter. The fact that many 
twelve- branched crystals are not quite aligned,  either in 
position or  angle, supports this selection- bias hypothe-
sis [1975Kob, 1990Uye].
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FIGURE 11.1 . Freshly fallen snow crystals perched on a branch of eastern hemlock in Vermont. Photo 
courtesy of Martha Macy.
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Snowflake photography has much in common 
with other forms of nature photography; it re-
quires an artistic eye, some suitable optical gear, 
and a compelling desire to just go out  there and 

take some pictures. The activity pre sents its own unique 
challenges as well, in that snow crystals are small, some-
what fragile, prone to evaporation and melting, and—as if 
that  were not enough— they need to be handled outside 
in the cold. As a semi- professional snowflake photogra-
pher for many years, I have managed to pick up a few 
tricks and techniques regarding lighting,  handling, equip-
ment, and other considerations that  matter out in the 
field. Moreover, I have studied the subject extensively and 
have learned from other prominent snowflake photog-
raphers as well. When you take a deep dive into the sub-
ject,  there are a substantial number of rather subtle issues 
involved in capturing quality images of  these tiny slivers 
of ice. In this chapter, I attempt to document what I have 
learned about snowflake photography, in the hope that 
 others can continue developing this fascinating craft.

In my experience, three  factors are of primary im-
portance in snowflake photography: finding suitable 

subjects, using quality equipment, and developing an 
effective technique (especially regarding lighting). If 
any one of  these  factors is insufficiently developed, 
the quality of the resulting photo graphs  will suffer. 
Patience is a virtue as well, along with an artistic eye 
and a willingness to try dif fer ent approaches. And, as 
with all types of nature photography, success some-
times requires just being in the right place at the 
right time.

FINDING SNOWFLAKES

Perhaps the most common difficulty one encounters in 
snowflake photography is simply a dearth of quality sub-
jects. One cannot control what the clouds are produc-
ing, and not  every snowfall brings superb crystals. As de-
scribed in Chapter 10, the most common bits of frozen 
precipitation are best classified as “irregular” or “rimed,” 
and  these are undoubtedly the least photogenic of all 
snow crystal types. Crystals from more desirable catego-
ries can be quite difficult to find, and they are usually 
mixed in with a sizable number of irregular specimens. 

It is extremely improbable that anyone has as yet found, or, indeed, ever  will find,
the one preeminently beautiful and symmetrical snow crystal that nature has prob ably 

fashioned when in her most artistic mood.

— WILSON BENTLEY,  THE VERMONTER ,  1922

ELEVEN

Snowflake Photography
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The first step in snowflake photography, therefore, is 
learning how to find nice specimens.

To begin, proper snowflake photography can only be 
done with freshly fallen crystals. Once the flakes hit the 
ground, they  will stick together and soon transform into 
clumps of crystals with much changed morphologies. 
The character of ground snow is of considerable interest 
to skiers and  people studying avalanches, but that takes 
us outside the scope of this book. Moreover, hoarfrost 
crystals and many other icy phenomena can also be 
amazingly beautiful, and they too make worthy photo-
graphic subjects. But if you want to photo graph snow 
crystals in all their glory, you must catch them before 
they hit the ground.

The optimal strategy for photographing snowflakes 
 will depend on what kinds of crystals are falling. When 
it begins to snow, a good first step is to leave the camera 
 behind and just go outside to have a look. My preferred 
tools at this point are a sheet of dark- blue foam- core card-
board and a small magnifier like the one shown in Fig-
ure 11.2. The foam core provides a smooth matte surface 
that makes it easier to spot nice crystals, and the magni-
fier is handy for evaluating the quality of the crystals.

It is not unusual to observe a lot of small, grainy, 
gloppy, rimed, and generally undesirable crystals at this 
point; my generic name for them is “granular” snow, 
 because the crystals look essentially like small icy grains 
of sand. As described in Chapter 10, this type of snow 
offers  little appeal for snowflake photography. If  there 

FIGURE 11.2 . An inexpensive fold-up magnifier, or loupe, is 
a con ve nient tool for appraising the overall quality of falling 
snow crystals. A magnification of about 5X is good for most 
circumstances.

is  nothing falling from the clouds but granular snow, 
then one’s best option is prob ably just to go back inside 
and try again  later. Wishing that the clouds would 
drop something better to photo graph is not especially 
helpful.

However, I find it impor tant not to give up too 
quickly. Even when  there is a lot of granular snow all 
around, some in ter est ing crystals might be in the mix. 
Moreover, some of the rare and quite captivating crystal 
types are usually quite small, and I like to photo graph 
 those almost as much as the canonical stellar variety. 
Capturing the full menagerie of snow crystal types is a 
worthwhile and often fascinating activity in its own 
right.

One useful trick I have learned is to hold the foam 
core out  under a bright light, perhaps a streetlight or a 
yard light that is essentially a single point of bright illu-
mination from a distance. By moving the foam core 
around  under such sharp lighting, even small- faceted ice 
surfaces  will sparkle clearly, making them easier to spot 
when surrounded by unfaceted granular snow. As a gen-
eral rule of thumb, if you can see some sparkle on the 
board, then  there is a reasonable chance that some in ter-
est ing crystals are pre sent.

If the snow has been falling for a while, and it hap-
pens to be dark outside, another trick is to just look out 
a win dow and view the reflection of a bright streetlight 
off a nearby snowbank. Pure granular snow, especially 
heavi ly rimed snow, has  little or no sparkle, and this gives 
a snowbank a flat, white appearance. In contrast, a snow-
bank that shows some sparkle suggests that some nice, 
faceted crystals are falling.

It is also impor tant to keep watch on the crystals 
throughout a snowfall, even when it appears that  there 
 will be  little of interest to see. The character of the fall-
ing crystals can change dramatically with time, and you 
can miss some  great pictures if you are not sufficiently 
diligent.  There have been times when, as I was outside 
photographing, some exceptional crystals appeared only 
briefly, for perhaps 10–20 minutes. Granular snow does 
not usually change to  great snow that quickly, so I typi-
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cally check the crystals  every 30 minutes or so. I have wit-
nessed many snowfalls that started out as granular glop, 
then improved somewhat, then improved more, and then 
delivered some excellent photographic subjects for an 
hour or two, only to go back to granular snow as the 
snowfall waned. Like all other aspects of weather, snow 
crystal production can be highly variable and quite 
unpredictable.

In addition, snowflake photography is often best 
done at night. Partly that is simply  because the nights are 
long in the winter, especially at high latitudes. As one 
ventures farther north in the dead of winter, working in 
the dark becomes a  matter of statistical necessity, as the 
daylight hours are so short. Also, the temperature is typ-
ically lower at night, and lower temperatures are desir-
able in most locations. Thus, a dedicated snowflake pho-
tographer can expect to spend long hours outside, alone, 
in the cold and dark. Treating this as a serious hobby is 
not for every one, but it does satisfy one’s hermit- like 
tendencies.

Weather and Climate

In princi ple, the Nakaya diagram could be used to pre-
dict what kinds of snow crystals fall in diff er ent weather 
conditions, and this works to a  limited extent. For exam-
ple, like most snowflake photog raphers, I am always 
keen to find large stellar crystals, and  these occur almost 
exclusively when the temperature is near −15° C. More 
precisely,  because the temperature is usually slightly 
higher on the ground than up in the clouds, around −13° C 
is close to an ideal ground temperature for finding 
good specimens. However, the weather is not nearly as 
predictable or precise as that makes it sound. In practice, 
well- formed stellar crystals might be found anywhere 
from −10° to −20° C. But the probability falls off sub-
stantially outside that temperature range.

Warmer snowfalls often bring a  great variety of snow 
crystal types, including columnar crystals near −5° C, or 
perhaps capped columns and other exotic forms.  These 
crystals tend to be on the small side, however, and they 

are nearly always accompanied by lots of granular snow. 
As I describe  later in this chapter, working a warmer 
snowfall is best done with high magnification and a dif-
fer ent collection strategy compared with stellar crystals. 
But small can be beautiful, and I have captured many ex-
cellent photo graphs of unusual snow crystal types in 
relatively warm (above −10° C) conditions.

Although temperature is the most impor tant pa-
ram e ter for predicting snow crystal types, many other 
 factors influence quality. For example, wind can be 
quite detrimental, as the crystals can get beaten up by 
mid- air collisions. A heavy snowfall is not ideal for the 
same reason. In my experience, the best specimens can 
usually be found during calm, cold, light snowfalls, 
providing just a steady dusting of crystals drifting 
slowly downward.

Another meteorological phenomenon I have come 
to appreciate is low- hanging clouds. When the clouds are 
high in the sky, a kilo meter or more above the ground, 
that usually yields what I call “travel- worn” snowflakes. 
The prob lem is that the crystals stop growing once they 
leave their cloudy nurseries, and they can experience 
quite a bit of sublimation as they slowly descend. Subli-
mation rounds the faceted corners and yields somewhat 
shabby- looking crystals. When I see snow falling from 
especially high clouds, I know that finding extraordinary 
specimens  will be unlikely.

However, although it can be relatively easy to predict 
low- quality snow crystals from observing the weather 
conditions, predicting high- quality crystals is almost 
impossible. I have experienced some snowfalls that 
checked off all the boxes for  great crystals yet brought 
nothing but granular snow for hours on end. More-
over, often granular snow gives way to beautiful stellar 
crystals, or vice versa, with no obvious change in weather 
conditions. It is certainly true that hollow columns and 
 needles generally form only around −5° C, and large stel-
lar plates are restricted to around −15° C; but  there is 
not much one can reliably say beyond that. The atmo-
sphere is not a precisely controlled laboratory environ-
ment, so it is impossible to predict exactly what kinds of 
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crystals  will appear, at least not with any real accuracy. 
For the snowflake photographer, waiting and watching 
are simply part of the pro cess.

I have been especially attentive when it comes to 
finding the best conditions for observing large stellar 
crystals, as  these are such a delight to photo graph. As a 
concrete example, Figure 11.3 shows a photo I took dur-
ing a “perfect storm” that lasted about eight hours and 
gave me some of my best snowflake photo graphs. Look-
ing back on this day, I noted several beneficial character-
istics of the weather:

1) The temperature had hovered around −13° C all day, 
which is the ideal temperature for finding stellar 
crystals.

2) It snowed lightly all day, so the crystals did not much 
interfere with one another in the clouds or on my col-
lection board.

3)  There was essentially no wind all day.
4) The clouds  were hanging low in the sky, barely above 

ground level, so the crystals continued growing dur-
ing most of their descent, yielding sharply faceted 
crystals.

5) The clouds  were thin and patchy, so the varying con-
ditions resulted in a good deal of morphological di-
versity in the falling crystals.

Even at a good location, one might encounter a high- 
quality snowfall like this maybe a few times during a 
winter season. As I already mentioned, some degree of 
patience is essential in snowflake photography.

Location  Matters

Quality snowflakes can appear anywhere, as long as 
the temperature and other weather conditions are fa-
vorable. Location is a  factor only  because the proba-
bility of experiencing such conditions varies from 
place to place. Being a snowflake photographer who 
happens to live in southern California, I have tried to 
find locations that maximize the probability of find-
ing high- quality snow crystals, especially large stellar 
dendrites, and I have studied this prob lem quite a bit 
over the years.

Temperature is the most impor tant  factor, as I 
mentioned above. One of my favorite locations is the 
small town of Cochrane, Ontario, where the average 
January temperature is −18° C and the average daily 
high is −12° C. This means that the probability of 
finding stellar crystals is reasonably high on average, 
notably in the daytime, when being outside is most 
pleasant. The average January precipitation is a re-
spectable 3.5 cm ( water equivalent), and this arrives in 

FIGURE 11.3. The scene during a 
near- perfect storm for snow crystal 
photography, taken by the author 
in Cochrane, Ontario. On rare oc-
casions, the meteorological condi-
tions seem to conspire to create 
the most beautiful snow crystal 
forms.
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frequent, light snowfalls. Wind speeds are generally 
low as well (7 mph), and I have found Cochrane to be 
an excellent location for photographing snowflakes 
overall. Many time zones away, the town of Kiruna, 
Sweden, has comparable average conditions, and I 
have found some excellent crystals  there also. One 
noteworthy characteristic of both Cochrane and 
Kiruna is that residential roads in January are almost 
always covered with packed snow, as seen in Fig-
ure 11.4. This is a good sign for snowflake photogra-
phy, as it tends to indicate consistent low tempera-
tures (as the snow does not melt) and plenty of falling 
snow.

My hometown of Fargo, North Dakota, provides a 
good example where a low average temperature is not the 
only pa ram e ter to consider. The average January temper-
ature in Fargo is −13° C, which sounds good; but the 
average precipitation is only 0.7 cm, and the brisk winds 
can be quite incessant. Snowfalls are somewhat infre-
quent, and much of the winter precipitation comes in 
the form of intense blizzards. Although Fargo has a fa-
vorable average temperature, it is not an ideal location for 
snowflake photography.

Ukichiro Nakaya lived in Sapporo, Japan, where 
the January average is a balmy −4° C, although condi-
tions are better in nearby Asahikawa at −8° C. The 
January precipitation weighs in at an impressive 
10 cm  water equivalent, with typically calm winds, so 
 there is certainly no shortage of snow. Central Hok-
kaido is also well known as an excellent location for 
snowflake photography, as evidenced by Nakaya, Kat-
suhiro Kikuchi, Yoshinori Furukawa, and  others 
from that region.

Another good case study is Barrie, Ontario, which is 
home to noted snowflake photographer Don Kom-
arechka. The average January temperature in Barrie 
is −8° C, and the average low is −12° C, so perhaps this 
location is a bit on the warm side. Nevertheless, Don has 
taken some of the world’s best snowflake photo graphs in 
Barrie, so the site is obviously working for him. It helps 
that it snows a lot, bringing 4 cm on average in January, 
and the average wind is not too bad (9 mph). Moscow is 
worthy of consideration also, as this location is the home 
of Alexey Kljatov, another renowned snowflake photog-
rapher.  Here the average January temperature is −8° C 
with an average snowfall of 4 cm, and Moscow can boast 

FIGURE 11.4. Roads packed with accumu-
lated snow often indicate a good location 
for snow crystal photography. In Kiruna, 
Sweden, shown  here, some exercise- 
conscious residents use sleds for their gro-
cery shopping, using the snow- packed 
roads to good advantage.
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a remarkably low average wind speed (3 mph). Wilson 
Bentley, the founding  father of snowflake photography, 
made his home in Jericho, Vermont, where the January 
average is −7° C, although this number was a bit lower 
in the 1880s. The precipitation and wind speeds are also 
both suitable, and Vermont remains a prime location for 
snowflake photography.

The climate data indicate that Barrie, Moscow, and 
Jericho are all quite similar in average January condi-
tions, so certainly that says something regarding the 
availability of quality snow crystals. Personally, I would 
rate Cochrane as slightly higher, with its colder average 
temperatures, but the statistics are thin all around; even 
the best locations deliver exceptionally well- formed crys-
tals only rarely. Note also that the population density 
drops off rapidly with the average winter temperature. I 
suspect that slightly warmer conditions yield more snow-
flake photog raphers in part  because fewer  people live in 
colder regions. Details notwithstanding, snowflake pho-
tography is a craft best practiced near the cold edges of 
 human civilization.

Other than average weather conditions,  there does 
not seem to be anything exceptional about any of  these 
locations. No magic lurks  behind producing quality 
snowflakes, other than the fact that favorable weather 
conditions are more likely in some places than in  others. 
I have never been especially fond of mountain locations 
 because of generally high winds, and most highly popu-
lated areas are simply too warm. But quality snow crys-
tals can occur whenever and wherever the clouds con-
spire to make them.

If you happen to live in a place that experiences suf-
ficiently cold winters with plenty of snow, then you  will 
likely find some excellent snow crystals if you go out 
looking for them. The best way to find out is just to go 
outside with a  simple magnifier to have a look for your-
self, preferably sampling multiple snowfalls at multiple 
times, as not  every storm brings exceptionally photoge-
nic crystals. If you like what you see, and you are willing 
to spend some time outside in the cold, then you might 
well enjoy snowflake photography.

 Handling Snowflakes

When I am photographing snowflakes, how I  handle 
them depends on  whether the in ter est ing crystals are 
larger or smaller than about 2 mm. When larger crystals 
are falling, I let them fall onto a foam- core collection 
board, with the result looking something like what is 
shown in Figure 11.5. Especially photogenic specimens 
are rare even on the best days, so a large foam- core col-
lection board gives one a lot of crystals to look over, and 
the eye is remarkably  adept at noticing especially nice 
crystals in a field of mostly granular snow. In this figure, 
I would say that more than 1  percent of the crystals are 
reasonably well formed, which is considered quite a good 
yield. The average yield is much lower than 1  percent, as 
many snowfalls bring nothing but granular glop. With 
maybe a thousand snowflakes on the board (which is just 
a modest 33 × 33 array of crystals), one can usually search 
and find the best of the bunch in a minute or two, thus 
delivering a one- in- a- thousand snow crystal to photo-
graph. With a quick brush of one’s sleeve, the board is 
cleared for another round. Scanning over a board like 
this  every few minutes, before long, one can capture some 
exceptionally photogenic, one- in- a- million specimens.

When I spot what looks like a promising candidate 
on my collection board, I pick it up using a small paint-
brush and transfer it from the board to a glass microscope 
slide. This works surprisingly well, as the fine bristles  will 
lift a typical stellar snow crystal with hardly any damage 
(most of the time, anyway). Best is to  gently roll the bris-
tles  under the crystal, lifting it in the pro cess. Of course, 
some breakage in  handling is to be expected, and Fig-
ure  11.6 shows one example. A worse prob lem, in my 
experience, is carefully lifting a highly promising speci-
men onto the brush and then poof, a slight gust of wind 
sends it flying off, gone forever.

A glass microscope slide is certainly not the only desti-
nation for placing a snow crystal, and one might want 
to frame a photo in any number of ways. Regardless of 
how you want to proceed, a large foam- core surface and 
a small paintbrush can be used to scan through many 
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snowflakes quickly, thus allowing one to choose the nic-
est specimens. If you want to photo graph rare crystals, 
including large, well- formed stellar crystals, then it is es-
sential to examine as much falling snow as pos si ble.

Another secret to photographing exquisite crystals is 
to move fast. A good snowfall  will not last forever, so it 
pays to capture as many crystals as pos si ble while the 
clouds are being generous. Scan the collection board, find 
a worthy subject, pick it up, place in on a slide, put it 
 under the microscope, adjust the lighting, and take the 
shot . . .  and then repeat. On a good day, I can do a crys-
tal  every minute or two this way, thus achieving a fairly 
large throughput. I have never met a photographer who 
managed to get terrific pictures with  every single shot; 
taking lots of pictures is essential for yielding a much 
smaller number of outstanding photos.

Another good reason to hurry is to avoid sublima-
tion. Figure 11.7 shows a nice example of a small stellar 

FIGURE 11.5. A collection of freshly fallen snowflakes on a dark- blue foam- core collection 
board. The glow in the upper right comes from a bright lamp shining down on the crystals, 
producing strong reflections from smooth faceted surfaces.

FIGURE 11.6. A fine paintbrush works quite well for picking up 
and placing snow crystals, but damage is not uncommon. I broke 
this snow crystal when I tried to pick it up and move it onto a glass 
slide, losing a platelike branch in the pro cess.
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fall directly on a piece of fabric, but searching through 
large numbers of specimens  will be somewhat slower 
using this technique.

As I describe further below, my foam- core and glass- 
slide approach appeals to my science side, as it gives ex-
ceptional clarity and resolution, revealing fine details in 
the crystals. But Alexey Kljatov’s point- and- shoot tech-
nique is wonderfully pleasing from the artistic side, yield-
ing a more natu ral view of  these tiny slivers of ice.  There 
are many ways to photo graph a snow crystal.

Granular Gems

Although photographing large, well- formed stellar snow 
crystals can yield some spectacular results, I have ob-
tained many excellent pictures while focusing on small 

crystal that slowly evaporated away as it sat in the bright 
lights of my microscope. Figure 11.8 shows a further ex-
ample of a snow crystal that melted as it was being pho-
tographed. Melting is mostly a prob lem only when the 
temperature is close to 0° C, and sublimation is not a 
huge issue at temperatures near −15° C. Nevertheless, 
speed is a virtue when photographing snowflakes.

Although I am partial to a foam- core collection 
board and glass slides, this is by no means the only ap-
proach to snow crystal photography. Many prac ti tion ers 
prefer to let the crystals fall onto a dark- colored wooly 
fabric for direct point- and- shoot photography, as illus-
trated in Figure 11.9. Nice- looking specimens are often 
supported by a single cloth fiber, and the tangle of neigh-
boring fibers provides an in ter est ing backdrop for the 
photo. No collection board is needed when the crystals 

FIGURE 11.7. This snow crystal experienced quite a lot of sublimation during the 2 minutes that 
elapsed between the first photo and the last. You can see how the finer structural features on the crys-
tal extremities are the usually first to dis appear during sublimation.

FIGURE 11.8. This series of photos shows a snow crystal melting, and only 27 seconds elapsed be-
tween the first and last image. The temperature was just below 0° C during this series, illustrating how 
challenging it can be to photo graph snow crystals in such warm temperatures.
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specimens, typically around 1–2  mm in size or even 
smaller. Many of the exotic snow crystal va ri e ties de-
scribed in Chapter  10 are invariably quite small, and 
 these tiny gems are worth pursuing. Their small size adds 
a new challenge, so diff er ent techniques are needed to 
find and photo graph falling snow in this regime.

One big change when working with small crystals is 
that it is no longer pos si ble to scan over a collection 
board to pick out promising specimens with the naked 
eye, at least not effectively. The crystals usually must be 
placed  under a microscope just to see what you have. Al-
though this sounds like something of a painstaking pro-
cess, it is actually quite  simple and enjoyable, and it can 
yield some remarkably in ter est ing photos even when the 
clouds seem to be delivering  little more than granular 
snow.

The technique I like best is to lay out a set of glass 
microscope slides to catch the falling snow, and then just 
pick one up and look it over  under my photomicroscope. 
If a crystal looks worthy of a photo graph, then I focus, 
adjust the lighting, and take the shot. If I find nothing 
worthwhile on the slide, then I clean it off, set it back out 
to catch more snow, and pick up another slide to scan. 
Cycling through a half- dozen slides usually works quite 

well, allowing each slide to accumulate a new dusting of 
snow while looking at the  others. I support the slides on 
a pair of knife- edge “rails” (made from tape) to keep them 
elevated. This keeps the bottoms of the slides clean and 
 free of snow.

If the clouds are being unkind, nearly all the falling 
snow may consist of gloppy, granular, or rimed crystals; 
at such times,  there is  little one can do but try again  later. 
Small hexagonal plates can usually be found even in 
quite wretched conditions, but  there are only so many 
photos one can take of  those forms, as they all look pretty 
much the same. Surprisingly often, however, if one has 
some patience, in ter est ing crystals are waiting to be 
found in the mix, at least from time to time. Most of the 
photos of the smaller exotic crystals described near the 
end of Chapter 10  were taken by scanning over hundreds 
of glass slides when no large stellar plates  were to be had.

OPTICS AND LENSES

Many equipment options are available for photograph-
ing snowflakes, depending on the image quality you seek 
and how much money you are willing to spend. At the 
low end, a smartphone with a $10 clip-on macro lens can 

FIGURE 11.9. A snow crystal is supported by a 
single fiber of a dark fabric in this photo graph 
taken by Alexey Kljatov in Moscow. Note how the 
out- of- focus fibers provide a pleasing back-
ground that adds a sense of depth and scale to 
the photo.
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yield some reasonably nice snowflake photos; not super- 
sharp, but good enough to capture the overall shape of 
stellar crystals, including some surface detail. Many 
 people have been experimenting with this simplest form 
of snowflake photography, and a quick web search  will 
yield numerous examples. This is a fine approach for get-
ting started, just to see what kinds of crystals nature has 
to offer in your part of the world.

A next step up, if you already own some camera 
equipment, is to use a “reversed lens” at the end of an ex-
tension tube to make a relatively inexpensive macro 
lens. This technique is discussed in considerable detail on 
vari ous photo blogs and websites, so again, a web search 
 will provide much more information than I care to write 
down  here. By my estimation, a reversed- lens macro sys-
tem can achieve an optical resolution of perhaps 10–20 
microns or even better if done with care using a high- 
quality lens. This resolution is sufficient to take some 
excellent snowflake photos, and no one has demon-
strated this better than Alexey Kljatov, who has cap-
tured many stunning snow crystals using a reversed- lens 
system. With quality crystals, an artistic eye, and some 
patience and effort, this technique can yield outstanding 
photos without spending a lot of money on fancy opti-
cal gear.

Given the scientific nature of this book, my primary 
focus  here is on achieving exceptionally high optical res-
olution, with the overarching goal of revealing the fin-
est details in snow crystal structure, especially with 
smaller specimens. Obtaining resolutions of 2–5 microns 
is not an inexpensive undertaking, but the exceptional 
photos that result take one to a  whole new level in snow-
flake photography. This kind of professional- grade 
hobby is clearly not for every one, but it can reveal a de-
lightful world of nature’s frozen artistry.

To begin, it has been my experience that the choice 
of camera sensor is not especially impor tant in snowflake 
photography. Many high- quality, reasonably priced cam-
era bodies are on the market with sensors in the 20-  to 
40- megapixel range, and most would work well in this 
application. Sensors with larger physical dimensions tend 

to be better than smaller sensors, other  things being 
equal, and the lens requirements are somewhat relaxed 
with a larger sensor as well; but this detail is prob ably not 
terribly impor tant. As long as you have a reasonably 
modern digital camera, the imaging sensor  will likely not 
be the limiting  factor in obtaining quality photo graphs.

It is necessary to have at least two pixels for each real 
resolution ele ment, so the optimal camera field- of- view 
is one that is matched to the optical resolution of the lens 
(described below). For example, if one wants to achieve 
a 2- μm optical resolution, the camera field- of- view 
should have about 1 μm/pixel. Put another way, a 
2- micron feature on the object snow crystal should image 
onto two sensor pixels, regardless of the  actual physical 
size of the sensor pixels. Oversampling the image beyond 
this just wastes camera real estate, while undersampling 
 will compromise the optical resolution. A 20- megapixel 
sensor imaged to produce 1 μm/pixel  will give about a 
4 × 5 mm field of view, and already this is larger than 
most snow crystals. If the physical size of the sensor pix-
els is 5 μm, which is typical for many cameras, then the 
lens should provide 5× magnification.

This exercise shows that a 100- megapixel sensor 
would not yield substantially better snowflake photos 
than a 20- megapixel sensor. A larger field- of- view is of 
 little use, as very few snowflakes would fill it, and more 
pixels per micron would not help  either,  because the op-
tical resolution of the lens is what usually limits the 
photo, as described below. Occasionally one encounters 
a  really huge crystal, and a field of view larger than 
4 × 5 mm would be handy. But  those situations are rare, 
and it is straightforward to just take two or more pho-
tos and stitch them together digitally in postpro cessing. 
When you consider the full pa ram e ter space, the cam-
era is usually not the limiting  factor for achieving high- 
quality snowflake photos.

While the choice of camera is not so impor tant, the 
choice of lens is quite critical, especially when the goal is 
to obtain the highest pos si ble resolution.  Because reso-
lution is of central importance in this chapter, I  will use 
resolution as a starting point in the discussion of lens op-
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tions. The usual definition of optical resolution (a.k.a. 
resolving power) is about what you would expect— the 
distance between two pointlike objects that can just 
barely be resolved in an image. In practice, a resolution 
of 2 μm  will allow you to clearly distinguish features that 
are separated by at least 4 μm. Features that are 2 μm 
apart would be “barely resolved,” which usually means 
they are almost completely blurred together and so not 
easily distinguished. Of course, one can provide a proper 
mathematical definition of resolution, but this rule- of- 
thumb is adequate for the pre sent discussion.

In the case of snow crystals, the smallest structural 
features are about 1 micron in size, and this is a real phys-
ical limit imposed by surface tension and the Gibbs- 
Thomson effect (see Chapter 2). Any significant surface 
structure (like a rib, ridge, or sharp edge) that is substan-
tially smaller than 1 micron would have such a high 
vapor pressure that it would soon sublimate away  unless 
 under extreme environmental conditions. Thus, unlike 
with most solid objects, one does not observe ever more 
detail in snow crystal structure by observing with ever 
higher resolution.  There just is not much to see beyond 
a resolution of about 1 μm. As a result, electron micro-
scope images do not reveal much more structural details 
than do optical images, as discussed in Chapter 6.

In my personal experience photographing snow 
crystals, I have found that using a lens with 2- micron 
resolution yields noticeably better photos than a lens 
with 4- micron resolution; the edges are crisper, and the 
image has a sharper appearance overall. This can be seen 
quite easily in side- by- side comparisons of a single snow 
crystal. Put into typical photographic language, I would 
say that a 4- micron- resolution lens yields a noticeably 
“softer” snowflake image than a 2- micron- resolution 
lens. It may sound counterintuitive, but using a 1- micron-  
resolution lens generally yields lower- quality images 
than a 2- micron- resolution lens, at least when looking 
at snowflakes. Depth of focus is the main reason for this 
(discussed below), but another reason is simply that 
 there are few additional structures to be seen in snow 
crystals at super- high resolution. The takeaway message 

is that one gains  little by  going beyond using a 2- micron- 
 resolution lens when photographing snow crystals. That 
has been my experience, anyway.

Macro and Micro Lenses

In terms of overall resolution, snowflake photography 
falls roughly between the usual regimes of macro pho-
tography and full- blown microscopy. Macro lenses tend 
to yield resolutions in the 5-  to 20- micron range, and a 
few exceptional lenses can do a bit better. Unfortunately, 
the optical resolution of most macro lenses is not listed 
in their specification sheets, even though high resolution 
is pretty much the main reason one purchases a macro 
lens. I have  limited experience with the broad range of 
macro lenses that are available, but my experience has 
been that a 5- micron- resolution lens is quite good, and 
photography reviewers  will speak of its bitingly sharp im-
ages. And it  will cost a lot. A 10- micron lens  will likely 
cost less, but it  will be reviewed as only okay, yielding 
somewhat “softer” images in high- resolution tests and 
lacking in their finer details.

For example, I have done some testing with the 
Canon MP- E 65 mm lens, which is something of a high- 
resolution macro stalwart, well reviewed by many 
macro photog raphers. When set to its highest- resolution 
setting (5×), I mea sured an overall resolution of about 4 
microns using this lens (discussed below). I imagine 
 others have made similar mea sure ments, but I have not 
found much resolution data online,  either from the man-
ufacturer or from lens reviewers. The world of macro 
photography is often not a very quantitative place, which 
can make it difficult to know what you are buying. It is 
not always obvious what to make of adjectives like “soft” 
or “bitingly sharp.”

In contrast, microscope objectives invariably list re-
solving power (resolution), numerical aperture, working 
distance, and depth of focus as part of their specs.  These 
numbers can still be deceptive, as they refer only to on- 
axis viewing, and inexpensive microscope objectives can 
have dreadful off- axis optical quality even with supposedly 
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good specs. However, for most reputable manufacturers 
(such as Zeiss, Olympus, and Mitutoyo), the specifica-
tions provide a reliable assessment of the quality of their 
objectives. In this re spect, it is generally easier to pur-
chase a quality microscope objective of known per for-
mance than a high- resolution macro lens, and micro-
scope objectives are usually somewhat cheaper as well.

While most  people equate microscope objectives 
with full- blown (and expensive) microscopes, Fig-
ure 11.10 shows how a  simple microscope objective can 
be turned into a DIY photomicroscope. This configura-
tion is identical to the usual reversed- lens setup, just re-
placing the reversed lens with a higher quality micro-
scope objective. The biggest drawback with this layout 
is scattered light, which sends unwanted light onto the 
camera sensor. Fortunately, this prob lem can often be 
ameliorated by carefully covering the inside of the exten-
sion tube with highly absorbing black flocking paper. A 
field stop in the object plane is also useful, as this pre-
vents other wise unused light from entering the objective 
and rattling around inside the extension tube.

The  simple optics and fixed extension tube in Fig-
ure 11.10 means that focusing involves  either moving the 
camera or moving the subject, usually with some kind of 
mechanical translation stage. This focusing method is 
the norm for both microscope objectives and high- 
resolution macro lenses. Moving lens ele ments in a lens 
(using a focusing ring) is generally not practical at high 
resolution, nor is in- lens autofocus. Personally, I tend to 
 favor microscope objectives over macro lenses for several 
reasons:

1) A larger se lection of microscope objectives is avail-
able, at generally higher quality (in my opinion).

2) Microscope objectives have clear specifications that 
include their optical resolution, unlike macro lenses.

3) Microscope objectives are typically somewhat 
cheaper than macro lenses for a given resolution.

4) Microscope objectives are far more compact than 
macro lenses, making them much easier to incorpo-
rate into snow crystal growth chambers.

Camera

Microscope
objective

Snowflake

FIGURE 11.10. A basic DIY photomicroscope consists of  little 
more than a microscope objective, an extension tube, and a 
camera body. Viewing is done through the camera, for example, 
displaying the image on a TV monitor via the live- feed camera 
output. The field of view of the camera can be set by choosing an 
appropriate length for the extension tube, which is the same as 
for reversed- lens setups.

5) Microscope objectives are easily adaptable for use 
with diff er ent camera bodies.

The Diffraction Limit

In the microscopy world, optics are nearly always dif-
fraction  limited, meaning that the wavelength of 
light is ultimately what limits the image resolution. 
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This is not true with normal photography, but the 
diffraction limit  will play a role in macro photogra-
phy at the highest resolutions. As a rule, if the overall 
image resolution is smaller than about 10λ, where 
λ ≈ 0.5 μm is the wavelength of vis i ble light, then the 
diffraction limit  will be an impor tant consideration. 
 Because I am mainly concerned with high- resolution 
imaging in this book, I assume that diffraction is one 
of the main  factors limiting the overall optical 
resolution.

 Because a 2- μm optical resolution is substantially 
larger than λ, the diffraction limit takes on a relatively 
 simple mathematical form. Using the terms defined in 
Figure  11.11, and assuming an index- of- refraction of 
unity for imaging in air, we can assume a small- angle ap-
proximation with sin θ  ≈ tan θ  ≈ θ, where θ is mea sured 
in radians. For θ  = 0.15, sin θ  = 0.149 and tan θ  = 0.151, 
so this is an excellent assumption.

Microscope objectives are typically specified by a 
 numerical aperture, NA, and in our small- angle approxi-
mation, this is given by

 NA ≈ θ. (11.1)

In photography, a lens is specified by its f- number, 
f#, which can be adjusted by changing the aperture of 

F

f

D
θ

FIGURE 11.11. This sketch defines the focal length f, the lens aper-
ture D, and the half- angle θ for a  simple microscope objective.

the lens, and it is given by (in the small- angle 
approximation)

 f# ≈
1
θ
≈ 1
NA

.  (11.12)

Photog raphers and microscopists tend to use diff er ent 
nomenclatures, but the under lying optical physics is the 
same. In the diffraction limit, the optical resolution is 
given by

 Rxy ≈
λ

2NA
,  (11.3)

and I  will typically assume λ ≈ 0.5 μm. Additionally, 
 there is a corresponding resolution perpendicular to the 
image plane, Rz, which is given by

 Rz ≈
λ

2NA
2

.  (11.4)

This is usually called the depth of focus or depth of field; 
parts of the object that are within ±Rz of the focus posi-
tion  will be essentially in focus, while parts outside this 
range  will be considerably out of focus.

For example, if we want an optical resolution of 
Rxy = 2 μm, then we need a microscope objective with a 
numerical aperture of at least NA ≈ 0.125, and this means 
that the depth of focus  will be a scant Rz ≈ 16 μm. This 
latter number can be problematic,  because most snow 
crystals are thicker than 16 μm, even platelike crystals. 
This prob lem is inescapable in snowflake photography— 
one cannot have both high resolution and a large depth 
of focus si mul ta neously. In normal photography, one 
closes down the aperture to increase the depth of focus, 
but that no longer works when the resolution is diffrac-
tion  limited.

As another example, the Canon MP- E 65 mm macro 
lens has an f/2.8 aperture, and the above equations give 
a corresponding numerical aperture of NA = 0.36 with a 
theoretical resolution of Rxy ≈ 0.7 μm, which would be 
awesome. However, this lens is not diffraction  limited 
when used at its maximum resolution, and the mea sured 
resolution (see Table 11.1) is about 4 μm. Most traditional 
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camera lenses are not diffraction  limited, even high- 
quality macro lenses. Any good microscope objective 
 will be diffraction  limited, or close to it, so the above 
equations are quite useful for evaluating the per for mance 
of quality objectives. Inexpensive objectives may have se-
rious deficiencies, but quality objectives should always 
meet spec, at least on axis. With camera lenses, however, 
it is often not pos si ble to know the optical resolution 
 unless you mea sure it yourself.

One straightforward way to estimate the optical reso-
lution of a lens is to image a calibrated resolution target, 
as demonstrated in Figure  11.12 for several example 
lenses. In all cases, the camera sensor was not a limiting 
 factor in determining the quality of the images. Al-
though making an absolute mea sure ment of Rxy is dif-
ficult, comparisons between lenses are straightforward. 
By my reckoning,  these images reveal that the 5X Mitu-
toyo objective seems to meet its spec of having a 2- μm 
resolution, and from this, I obtained the mea sure ments 
shown in  Table 11.1.

The microscope objectives mostly met spec, except 
for the Compact 3X, whose specified Rxy = 2.5 μm sim-
ply does not agree with the mea sured resolution of about 
4 μm. However, the specified numerical aperture (0.07) 
gives a theoretical resolution of Rxy ≈ 3.6 μm, which 
agrees reasonably well with the mea sure ment. As far as 
I can tell, this is a specification error by Mitutoyo, which 
is unusual for this com pany. The Canon lens has no res-
olution specification, and the 4- μm number is the best I 
could get using this lens. The Canon resolution- target 
images at 5X with f/2.8 and f/4.0  were similar, and the 
resolution rapidly deteriorated at lower magnification or 
higher f- numbers, as one would expect.

Another useful method for examining resolution is 
to sprinkle 10- μm beads onto a glass substrate, as shown 
in Figure 11.13. A quality microscope objective  will pro-
duce a good focus across a wide field of view, whereas 
cheaper lenses often focus well only near the center of the 
field. Even in this example, the Mitutoyo 5X produced 
some noticeable variation in focus across the field, but I 
corrected this with focus stacking (see the next section). 

10X

5X

3X

2X

Canon

FIGURE 11.12 . Images of a calibrated resolution target using 
three Mitutoyo Plan APO Objectives (10X, 5X, and 2X), a Mitu-
toyo 3X Compact Objective (3X), and the Canon MP- E 65mm 
1-5X Macro Lens set at 5X/f2.8 (f4.0 is similar). The Mitutoyo 2X 
Compact Objective (not shown  here) yields a resolution- target 
image that is quite similar to the 3X objective. The spacing be-
tween the bars is 7.8, 7.0, 6.2, 5.6, 4.9, and 4.4 μm.
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 Every objective has its foibles, so care is needed to deliver 
the highest resolution. Imaging an array of small beads 
makes it easy to evaluate the focus and resolution across 
an entire field of view, which is useful for optimizing an 
optical system.

Focus Stacking

Snowflake photography always involves a trade- off be-
tween resolution and depth of focus. When the resolu-
tion is high, the depth of focus is low, so only a thin plane 

is brought into sharp focus on the sensor. If the snow 
crystal is tilted with re spect to that plane, or if the crys-
tal is not thin and flat, then not all parts of the crystal 
can be brought into focus at the same time. This is a fun-
damental feature of diffusion- limited optics, so  there is 
no optical means to avoid this trade- off.

However, focus stacking is an effective workaround 
that allows one to photo graph complex snow crystals at 
high resolution over their entire structure. The basic idea 
is to take several pictures at diff er ent focus settings, with 
each photo bringing a diff er ent part of the crystal into 

 TABLE 11.1
Mea sure ments and specifications of several microscope objectives and the Canon MP- E macro lens

Lens/Objective
NA 
spec

Rxy 
(μm) 
spec

Rz 
(μm) 
spec

Rxy 
(μm) 
meas

Rz 
(μm) 
calc

Rxy 
(μm) 
calc

Working 
distance 

(mm)
Price 
(US$)

Mitutoyo Plan APO 10X 0.28 1 3.5 1.5 3.2 0.9 34 880

Mitutoyo Plan APO 5X 0.14 2 14 2 13 1.8 34 700

Mitutoyo Plan APO 2X 0.055 5 91 5 83 4.5 34 930

Mitutoyo Compact 3X 0.07 (2.5) (23) 4 51 3.6 78 500

Mitutoyo Compact 2X 0.06 4.6 76 4.5 70 4.2 92 460

Canon MP- E 65mm @5X 50 4 42 950

Note: For the Compact 3X objective, my mea sure ments suggest that the manufacturer’s online specified numerical aperture is 
accurate, but the specified resolution (shown in parentheses) is incorrect.

FIGURE 11.13. This photo graph shows a glass 
substrate sprinkled with 10- μm glass beads, im-
aged with a bare Mitutoyo Plan APO 5X objec-
tive. The total field of view is about 5 × 4 mm, and 
the inset images show magnified snippets of the 
main image taken from the center and the four 
corners. Adding a secondary lens to compensate 
for the infinity- corrected objective gave better 
off- axis focus, and combining several images by 
using focus stacking yielded a sharp focus across 
the entire image.
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focus. The images can then be combined digitally in 
postpro cessing to stitch together the in- focus pieces of 
each of the individual photos, thus creating a single 
image that appears to be in focus throughout. Several 
software packages are available to do the image recon-
struction (for example, Helicon Focus), and much in-
formation about focus stacking can be found online. 
 There are even hardware systems (such as from Stack-
Shot) that  will automatically move the camera focus in 
programmable steps using a translation stage to acquire 
the desired series of images.

Nearly all serious snowflake photog raphers use focus 
stacking to some extent, as this is a straightforward tech-
nique for effectively increasing the depth of focus while 
maintaining a high optical resolution. Large stellar snow 
crystals are intrinsically thin and flat, so photographing 
 these crystals face-on usually requires minimal focus 
stacking even at high resolution. It is hard to avoid some 
tilt of the crystal relative to the image plane, however, so 
I often take two or three pictures while adjusting the 
focus to make sure all the branch tips are nicely in focus. 
This kind of minimal focus stacking is easy to apply and 
nearly always yields good results. Moreover, it is often de-
sirable to tilt a flat crystal over quite large  angles to ob-
tain specular light reflections (see the section on Specu-
lar Reflection illumination  later in this chapter), and in 
this case, a  great deal of focus stacking is needed at high 
resolution. Don Komarechka is the undisputed focus- 
stacking champion in snow crystal photography, often 
combining 30–50 individual shots to obtain a single in- 
focus image, as I describe below [2013Kom].

Like any photographic tool, focus stacking can be 
employed or not, depending on what is being photo-
graphed and what kinds of optical effects are desired. If 
one opts for a lower overall optical resolution, then per-
haps a single image is sufficient. Moreover, having the ex-
tremities of a crystal appearing slightly out of focus 
often gives an image a pleasing sense of depth, and this 
type of optical illusion is often used by photog raphers (a 
version of bokeh). But if super- high resolution is desired 
over an entire crystal, then some focus stacking (and per-

haps a lot of it) is usually required. Focus stacking is a 
nice trick that is both easy and inexpensive to use, so it 
has become a valuable addition to any snow crystal pho-
tographer’s toolkit.

Point- and- Shoot versus Stable Mounting

In most circumstances, photomicroscopy is not per-
formed in a point- and- shoot fashion using hand- held 
optics. Microscopes tend to be rigid structures where the 
camera, the optics, and the object being viewed are all 
solidly mounted. The reason is that photomicroscopy 
subjects are so tiny that it is nearly impossible to hold 
every thing steady enough by hand to get good pictures. 
In contrast, macro photography is often a point- and- 
shoot affair, as a hand- held camera plus lens gives the 
photographer plenty of freedom to move around an ob-
ject to get just the right  angle for an artistic shot. Snow-
flake photography is somewhere between  these two, as a 
resolution of 5–10 microns is quite low by microscopy 
standards but is quite high for macro photography. Given 
this intermediate position, some snowflake photog-
raphers use the point- and- shoot method, while  others 
go with rigidly mounted hardware. Both can be made to 
work, but  there are trade- offs for each.

For low- resolution imaging at 10–20 microns, point- 
and- shoot is relatively easy, inexpensive, and effective. 
Not as easy as normal photography, but doable. You let 
the snowflakes fall where they may, and then simply 
photo graph them as you would anything  else. It requires 
a steady hand,  because the crystals are small, and a bright 
flash is useful to freeze any remaining camera motion. 
The point- and- shoot method is especially con ve nient as 
 there is no additional investment in mounting hardware. 
Even at relatively low resolutions, focusing is not accom-
plished by rotating a lens ring, but simply by moving the 
camera+lens in and out.

For high- resolution imaging, point- and- shoot be-
comes substantially more challenging, and the savings 
gained by not having to buy a lot of mounting hardware 
tends to be lost in the need for high- performance camera 
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equipment and a  great deal of image pro cessing. A bright 
flash becomes an absolute necessary at high resolution, 
as it is practically impossible to hold a camera steady 
enough by hand  unless you use a superfast shutter speed. 
In addition, you prob ably want to take a lot of photos 
quickly,  because the camera is moving around somewhat 
and changing the focus, which means that both your 
camera and flash need to be capable of taking several pic-
tures per second for best results. Don Komarechka has 
described his point- and- shoot methods [2013Kom], and 
they involve some high- end camera gear.

 Because I like to achieve the highest pos si ble resolu-
tion with relatively  simple gear, I prefer to use a stable 
mounting platform, essentially like a traditional micro-
scope.  There are many options for mounting the hard-
ware, but a tripod is one of the worst, as tripods are gen-
erally too unwieldy and unstable for microscopy. If 
money is no object, then a commercial microscope with 
a camera attachment would work fine, provided it has a 
field of view up to 3–5 mm to fit large snow crystals. On 
a tighter bud get, it is pos si ble to build a quality DIY 
mounting system. Focusing is typically the most difficult 
and expensive part of a rigid mounting system, as focus-
ing requires a mount that is both stable and movable. 
Linear positioning stages and focusing rings are reason-
able options, and one can move  either the lens, the sub-
ject, or even the camera. Motorized stages are available 
as well, such as from StackShot, and  these are designed 
specifically for focus stacking.

One of the biggest advantages of a rigid mounting 
system is ease of use. You drop a snowflake onto a glass 
slide (for example), place it  under the microscope objec-
tive, and  there it sits, solid as a rock. You can move it 
around in the field of view, adjust the focus, adjust the 
lighting, and take the shot when every thing looks right. 
No flash is needed, and slow shutter speeds are not a 
prob lem. Focus stacking is easy as well,  because the crys-
tal does not move laterally when you tweak the focus, at 
least not if you use a quality linear positioning stage. I 
clearly prefer the up- front costs of stable mounting hard-
ware over the constant  trials and tribulations of point- 

and- shoot photography out in the cold, but that is a 
 matter of personal taste. Overall, rigid mounting tends 
to win over point- and- shoot at the highest resolutions.

ILLUMINATION  MATTERS

One  thing that separates snow crystal photography from 
other types of photography is that ice is transparent, like 
glass. With opaque materials, one can simply shine some 
light on an object and expect to get a reasonably good 
picture. Of course, lighting is impor tant for taking ex-
cellent photos in any situation, but the type of illumina-
tion one uses is particularly critical in producing high- 
quality snow crystal photo graphs.

To understand why the type of illumination  matters 
so much when photographing snow crystals, it is neces-
sary to examine how transparent objects scatter and re-
fract light. For example, a bank of snow looks white even 
though the ice crystals it contains are all quite transpar-
ent. When you look at an individual sliver of ice up close, 
it looks clear, like glass. But a large pile of clear objects 
always looks white. When light shines onto the surface 
of a snowbank, some light reflects off  every air/ice inter-
face. Only a small fraction of the light is reflected from 
each surface, while the rest is transmitted, and very  little 
light is absorbed in the pro cess.  After encountering thou-
sands of air/ice surfaces in the snow, the light is mostly 
scattered this way and that,  until it makes its way back 
out of the snowbank. The net result is that light striking 
the snow is scattered in all directions with  little absorp-
tion, which is exactly what being “white” means. Any 
pile of transparent grains appears white, as shown in Fig-
ure 11.14. Paper is white for the same reason,  because it 
is made from layers of tiny, transparent cellulose fibers. 
The whitest paper comes from using extremely transpar-
ent fibers. Similarly, a snowbank is bright white  because 
its constituent ice particles are especially clear. This an-
swers that amusing question: when a snowbank melts, 
where does all the white go?

A pane of glass looks transparent  because it contains 
only two smooth, planar surfaces. When you look at the 
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pane from certain  angles, you can see the light reflecting 
like a weak mirror. But other wise, light transmits 
through the glass and it looks transparent. If you scratch 
up the surfaces with sandpaper, however, then the light 
scatters in all directions, and the surface takes on a whit-
ish appearance. It is not bright white  because some light 
incident on the front surface of the scratched pane makes 
it out the back surface. With a pile of ground glass, the 
light mostly keeps scattering around  until it comes back 
out the front; the probability that the light makes it 
through to the back of the pile is extremely low.

In addition to reflecting light from its surfaces, a 
transparent object also bends light via refraction. This is 
how lenses work, and a lens- shaped piece of clear ice 
would behave similarly. The fact that ice is clear— 
transmitting, reflecting, scattering, and refracting 
light— brings an added dimension of lighting effects to 
snow crystal photography. Even interference effects can 
be impor tant in some circumstances.

In many ways, a snowflake can be thought of as a 
complex lens that refracts light through vari ous  angles 
as it is transmitted through the clear ice. In other circum-
stances, the snowflake can be thought of as a small sliver 
of scratched-up glass that scatters light from its highly 
structured surface. And a heavi ly rimed snowflake be-
gins to look like a small pile of crushed glass,  because its 
surface is covered with a dense layer of frozen droplets.

One aspect of light transmission that is completely 
negligible in snowflakes is color dispersion. A beam of 
light transmitted through a glass prism  will be dispersed 

into a rainbow of colors, and this happens with ice as 
well. But it would have to be an exceptionally large block 
of ice for this to be even remotely noticeable. One does 
not normally observe color dispersion from glass bowls, 
pitchers, cups, or other glass objects. Likewise, color dis-
persion in tiny snow crystals is completely negligible.

Perhaps the easiest way to understand the diff er ent 
ways illumination affects snowflake photography is by 
example.  People have been experimenting with diff er ent 
types of lighting for many years, and it is straightforward 
to categorize diff er ent photo graphs by the type of light-
ing used. The sections that follow focus on  these light-
ing categories.

Side Illumination

What I am calling “side illumination” could also be 
called “ambient light illumination.” The basic idea is il-
lustrated in Figure 11.15. This is essentially the type of 
lighting you get when you simply photo graph a snow-
flake resting on an opaque surface with a point- and- 
shoot camera. Light shines down on the crystal from all 
around, and some of that light enters the camera lens and 
is focused onto the sensor.

If you supply your own lighting, then an infinite 
number of variations of the side lighting method are pos-
si ble. For example, you might shine a bright light in 
from one side only. Or you might shine blue light in from 
one direction and red light in from another. The creative 
possibilities for using colored light in side illumination 

FIGURE 11.14. This photo shows piles of 
crushed glass (left), sugar crystals (center), 
and salt grains (right). In all cases, the indi-
vidual particles are essentially transparent. 
The piles look white,  because light scatters 
repeatedly off the countless small surfaces.
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mination tends to accentuate the crystal edges and sur-
face structures.

Another impor tant aspect of side illumination is 
that a flat ice plate that lies perpendicular to the view-
ing  angle  will not reflect any light directly into the cam-
era lens. When a flat plate rests perpendicular to the cam-
era, as shown in Figure  11.15, any direct reflection of 
the side illumination  will not enter the camera lens. 
 Because no light shines down on the crystal from above, 
no directly reflected light from the plate surface can enter 
the camera. Thus, flat plates appear somewhat invisible, 
like a pane of glass, when using side illumination.

Alexey Kljatov is a master of side- illumination snow-
flake photography, and several examples from Alexey 
illustrate many features of this illumination method. 
Several shared features can be seen in many of Alexey’s 
side- illumination photos, including:

1) Thin, platelike regions scatter  little light, making them 
appear almost invisible in some side- illuminated 
photos (Figures 11.16 and 11.17) This gives the accu-
rate impression that snow crystals are clear, which is 
good, although many  people expect snow crystals to 
be white.

2) Crystal edges are generally quite bright, as they 
strongly scatter light into the camera. Surfaces with 

Camera

Lens

Snow crystal

Side

illu
minatio

n Side
illumination

FIGURE 11.15. Side illumination. In this straightforward method, 
light shines in from the side to illuminate the snow crystal, and 
scattered light enters the lens and is focused onto the camera 
sensor.

FIGURE 11.16. With side illumination, the flat, platelike 
parts of a crystal scatter almost no light into the camera 
lens, so they appear invisible, like small panes of glass. 
Edges tend to scatter a lot of light, however, so they look 
bright white. This crystal is supported by a few fibers 
from the under lying piece of cloth. Photo by Alexey 
Kljatov.

have received  little attention, and I believe  there are some 
in ter est ing opportunities for branching out into new 
photographic directions  here.

One aspect of side illumination that I want to focus 
on is that only scattered light can contribute to a snow-
flake photo graph taken using this method. Refraction is 
irrelevant,  because the transmitted light strikes the 
opaque substrate and is absorbed. As a result, side illu-
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Although I have long been enamored with Alexey’s 
beautiful photos, I have found that taking high- quality 
snow crystal photos with side illumination is a difficult 
skill to master, and it does not work well with all types 
of snow crystals. The bright edges of thin, platelike crys-
tals are easy to oversaturate, giving the photo a garish 
look. Thicker crystals, however, like capped columns, 
provide more varied light scattering and often photo-
graph well using side illumination.

Specular Reflection

Figure 11.20 illustrates another variation of side illumi-
nation in which a platelike snow crystal is tilted slightly 
compared with the face-on arrangement shown in Fig-
ure 11.15.  Because of this tilt, flat basal surfaces  will pro-
duce a mirror- like (specular) reflection of some of the 
side- illumination light into the camera lens. When this 
reflection is especially strong, the face of the crystal has 
a much brighter appearance compared to the side- 
illumination examples described above. This added 
specular reflection solves, or greatly reduces, the main 
prob lem associated with using side- illumination for 

FIGURE 11.17. Holes in snowflakes? This snow crystal looks like it 
has a central hole, but holes do not spontaneously form from 
small seed crystals. In fact,  there is a thin ice sheet at the center, 
so clear that it looks just like a hole. Photo by Alexey Kljatov.

FIGURE 11.18. In this wonderfully creative 
photo, Alexey dropped a bit of snow onto 
a plastic surface and then used the snow 
to balance a stellar crystal on its edge. 
Note the beautiful combination of white- 
light side illumination with colored back il-
lumination. Photo by Alexey Kljatov.

a lot of structural detail (Figure 11.18) and thicker 
crystals like capped columns (Figure 11.19) tend to 
appear quite white also.

3) Rimed structures appear bright white, like a pile 
of crushed glass.
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inated by high- contrast edges. Moreover, this gives the 
crystal an overall white appearance, which satisfies many 
viewers’ desire that snowflakes  ought to look white. 
What is somewhat lost in the pro cess, however, is the 
glassy look that gives one the (correct) impression that a 
snow crystal is not intrinsically white but is rather made 
from a sliver of transparent ice. Reducing the intensity 
of the specular reflection can alter this effect, and the 
right balance is in the eye of the beholder. Specular- 
reflection illumination is especially popu lar for point- 
and- shoot snowflake photog raphers working at moder-
ate (10–20 micron) resolution. Finer structural details 
are diminished at this resolution, but  there are endless 
opportunities for artistically placed crystals on colorful, 
textured backgrounds.

Perhaps the biggest drawback associated with 
specular- reflection illumination is that a tilted crystal 
does not lie in the image plane of the camera. From Equa-
tion 11.4, we see that the depth of focus is inversely pro-
portional to the square of the resolution, so this issue is 
not so bad with a low- resolution lens. Perhaps only the 

FIGURE 11.19. Side illumination yields es-
pecially pleasing photos of thick crystals 
like this capped column. The body of the 
crystal scatters a good amount of light, 
and the out- of- focus regions give the pic-
ture an overall sense of depth. Photo by 
Alexey Kljatov.

Camera

Lens

Snow crystal

Side

illu
minatio

n Side
illumination

FIGURE 11.20. Specular reflection. In this variation of side il-
lumination, a platelike snow crystal is tilted so that the flat face of 
the crystal reflects light into the camera lens. The direct reflec-
tion makes thin plates appear much brighter than for the face-on 
version of side illumination.

platelike crystals, namely, that bright edges dominate the 
photo while flat plates are nearly invisible.

In Figure 11.21, for example, the main body of this 
flat stellar crystal is quite bright, so the image is not dom-
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edges of a platelike crystal  will be out of focus, and this 
can even be beneficial, as it gives the image a sense of 
depth (Figure 11.22). But  things get worse quickly as one 
goes to higher- resolution lenses. At exceptionally high 
resolution (<5 microns), just a small portion of a tilted, 
platelike crystal can be in focus in a single photo, as il-
lustrated in Figure 11.23.

Don Komarechka has been a pioneering proponent 
of high- resolution snow crystal photography using 
specular- reflection illumination, managing the depth- of- 
focus prob lem by using an unpre ce dented amount of 
focus stacking. Don typically captures 200–300 images 
in quick succession using a hand- held camera with a 
high- speed ring flash, and he then selects the best 30–50 

FIGURE 11.21. Specular reflection gives this platelike 
snow crystal a bright- white appearance. Although the 
ice plate is still quite transparent, it reflects the lamp 
much like a pane of flat glass. A red cloth supports the 
delicate crystal and provides an excellent textured 
background. Photo by Katy Turk.

FIGURE 11.22. Specular reflection works 
especially well at modest optical resolu-
tion, as this avoids depth- of- focus issues at 
high resolution. This illumination method is 
well suited to point- and- shoot snowflake 
photo graph, affording many possibilities 
for artistic compositions. Photo by Delena- 
Jane Lane.
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to combine into a single composite image in postpro-
cessing [2013Kom].

Don’s technique is perhaps the most demanding in 
terms of hardware and software capabilities, computing 
power, and overall effort expended. Shooting hundreds 
of images in burst mode at six frames per second or faster 
requires a high- end camera, a rapid- refresh ring flash, and 
a high- resolution lens, none of which is cheap. Moreover, 
a high- speed computer  running first- rate software is 
needed when focus stacking so many images, and Don 
estimates that he spends up to 4 hours pro cessing a sin-
gle composite image [2013Kom]. This amount of expense 
and effort is not for every one, but Don has captured 
many world- class snow crystal photo graphs using this in-
novative technique, as illustrated in Figure 11.24.

While experimenting with specular- reflection illu-
mination, Don discovered the colorful appearance of in-
ternal  bubbles and thin hollows in platelike snow crys-
tals, as illustrated in Figure 11.25. The colors arise from 
light- interference effects when specular reflections from 
the top and bottom faceted surfaces of a hollow region 

interfere with one another, which is analogous to simi-
lar interference effects seen in soap films or oil films on 
 water. Figure 11.26 shows a calculation of the interfer-
ence color as a function of the thickness of the hollow 
cavity in a snow crystal. The details of the calculation de-
pend on several  factors relating to the physics of optical 
interference, such as the spectrum of the incident light 
source and the RGB sensitivity of the camera sensor. 
 These details notwithstanding, Don’s images suggest 
that the most colorful hollow regions and voids are 
roughly 0.5–1.5 microns in thickness. The structure and 
stability of such remarkably thin hollows and  bubbles is 
described briefly in Chapter 3, but their formation is not 
well understood at pre sent.

Front Illumination

Figure 11.27 shows a diff er ent type of specular- reflection 
illumination that avoids having to tilt platelike snow 
crystals. With this geometry, the flake lies flat with re-
spect to the image plane, so an entire thin- plate crystal 

FIGURE 11.23. Don Komarechka took  these images using the Canon MP- E 65 mm macro lens at 5X, 
giving an optical resolution of Rxy ≈ 4 μm and a depth- of- focus of Rz ≈ 50 μm (see  Table 11.1). With  these 
par ameters and specular- reflection illumination, only a small sliver of the tilted snow crystal is in focus 
in a single shot (left image). Don manages this prob lem by focus stacking 30−50 images into a single 
composite photo (right image) [2013Kom].
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FIGURE 11.24. Don Komarechka employs extensive 
focus stacking to capture exquisite high- resolution im-
ages using specular- reflection illumination of tilted snow 
crystals. This small- sized reproduction does not do the 
photo justice, but many similar images can be viewed at 
high resolution online. Don clearly has a strong prefer-
ence for the Bentley- esque style of a jet- black back-
ground, so he often digitally removes background cloth 
fibers that support the crystals, so they seem to float 
through the night [2013Kom].

FIGURE 11.25. Specular reflection sometimes yields intense colors caused by interference effects 
between closely spaced faceted surfaces defining hollow regions within thick- plate crystals. Photos by 
Don Komarechka.
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can be brought into focus in a single photo. This avoids 
the need for extensive focus stacking while still provid-
ing a direct specular reflection off the face of the crystal. 
From a scientific perspective, this technique has the ad-
ditional advantage that a face-on view provides a more 
accurate depiction of the hexagonal geometry of plate-
like crystals. With a tilted crystal, the overall hexagonal 
shape in the image depends on viewing  angle, so the mea-

0 500 1000
Thickness (nm)

1500 2000

FIGURE 11.26. Estimated interference 
colors for white light reflecting off the two 
parallel surfaces of a hollow void in an ice 
crystal. The calculation  will change some-
what depending on the camera color re-
sponse and the spectrum of the light source. 
Adapted from an image by Björn Böttcher, 
Seifenblasenmann.de, with permission.
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FIGURE 11.27. Front illumination. This largely unexplored vari-
ation of specular- reflection illumination uses a pellicle beam-
splitter to direct light onto a platelike crystal. In contrast to Fig-
ure 11.20, the face-on crystal lies nicely in the image plane, 
avoiding depth- of- focus issues.

sured  angles between prism facets is no longer 120 de-
grees. A face-on view would make it pos si ble to mea sure 
 these and other  angles accurately.

A pellicle beamsplitter is shown in Figure  11.27, 
 because it is generally ill advised to image through a glass- 
plate or cube beamsplitter.  Because the pellicle is only a 
few microns in thickness, it introduces minimal image 
distortion compared to other beamsplitter options. Front 
illumination like this would be difficult to achieve using 
a hand- held setup, so it is prob ably necessary to use a rigid 
mounting system for the vari ous components. This 
method of front illumination appears to have some sig-
nificant advantages over tilted- crystal specular- reflection 
illumination, and it should be straightforward to imple-
ment. However, this technique appears to be essentially 
untried in snow crystal photography, so I have no exam-
ple images to show  here.

Back Illumination

Back illumination is another straightforward and adapt-
able method for photographing snow crystals. As illus-
trated in Figure 11.28, a specimen is placed on a trans-
parent substrate and photographed using light that is 
transmitted through the clear ice. Unlike the previously 
discussed illumination methods, refraction of the light 
by the ice now plays a major role in defining the overall 
appearance of the image, while specular reflection is rel-
atively unimportant.
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mined simply by the color of the illumination source. 
Refraction by the edges of the crystal deflects light that 
would other wise have struck the camera, so the edges are 
typically quite dark, while clear ice plates transmit the 
background without reducing its brightness. Overall, the 
crystal acts like a complex ice lens that can refract the 
light in many in ter est ing ways.

Front illumination tends to reveal the interior snow 
crystal structure quite clearly, providing a detailed look 
at surface patterns and other morphological character-
istics. The edges are not oversaturated (as they can be 
with side illumination), and the broad illumination fills 
the lens to provide the highest pos si ble image resolution. 
A downside, however, is that this technique yields a dark 
snowflake on a bright background, which does not al-
ways invoke a feeling of an icy crystal.

Dark- Field Illumination

Figure 11.30 shows a special variation of back illumina-
tion that can be used to good effect in snow crystal pho-
tography. Light rays from the side proceed undeflected 
and do not enter the camera lens if no snow crystal is pre-
sent, giving a completely black background. But a snow 
crystal placed in the field  will deflect some of the rays 
into the lens, thereby yielding a bright snow crystal, as 

Lens

Snow crystal

Back
illumination

Back
illumination

Camera

FIGURE 11.28. Back illumination. With this method, a snow crystal 
is photographed using light transmitted through the clear ice. The 
method requires placing the crystal on a transparent substrate, 
typically a glass microscope slide, and it is best implemented using 
a rigid mounting system. Many illumination effects can be achieved 
by modifying the direction, intensity, and color of the illumination.

In the absence of a snow crystal, quite a lot of light 
passes through the substrate and strikes the camera sen-
sor, yielding a featureless bright background, as illus-
trated in Figure  11.29. The background color is deter-

FIGURE 11.29. With back illumination, re-
fraction by the snow crystal deflects light 
that would have struck the camera sensor, 
so the snow crystal is always darker than 
the background.
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FIGURE 11.30. Dark- field illumination. This variation of back 
illumination uses only light that does not enter the lens in the 
absence of a snow crystal. If not deflected, the light rays shown 
in the sketch all pass outside the lens. A snow crystal  will refract 
some of  those rays, however, sending them into the lens and 
resulting in a bright snow crystal on a dark background.

FIGURE 11.31. Dark- field illumination 
gives results that are like side illumination 
in the absence of a background surface. In 
both cases, the lighting accentuates the 
edges of the crystal while thin plates are 
essentially invisible.

illustrated in Figure 11.31. The overall look is much like 
that obtained using side illumination on a featureless 
black background, and the prob lems are similar as well. 

In par tic u lar, the crystal edges often appear bright to the 
point of being oversaturated, while thin platelike regions 
contribute  little to the photo graph.

Rheinberg Illumination

Rheinberg illumination is another variation of back il-
lumination that adds a highly flexible method for achiev-
ing a variety of colorful effects on a uniform background. 
The overall optical layout is illustrated in Figure  11.32, 
and the key new addition is a field lens (so named 
 because it is near the image field) that images a color 
filter onto the optical pupil inside the microscope ob-
jective. Adding this additional lens complicates the 
optics, and it requires a rigidly mounted optical system, 
but it provides the ability to rapidly experiment with all 
diff er ent types of back illumination simply by using dif-
fer ent color filters. This capability is especially useful 
 because diff er ent types of snow crystals tend to photo-
graph better  under diff er ent types of lighting. With Rhe-
inberg illumination, switching the lighting around can 
be done simply by swapping in diff er ent color filters.

Figure 11.33 shows a variety of diff er ent color filters 
that I have used with my Rheinberg illumination setup. 
 These  were made by photographing my computer screen 
using 2 × 2 color slide film, as the mounted slides are a 
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FIGURE 11.32. The optical layout for Rheinberg illumination in-
cludes a field lens that images a color filter onto the optical pupil 
at the microscope objective. This layout yields a uniform back-
ground even with a highly patterned color filter.

FIGURE 11.33. Nine dif fer ent color filters I have found useful with 
Rheinberg illumination, yielding a variety of colorful effects.

con ve nient size for my Rheinberg setup. Filters could 
also be made from any colored plastic sheet. Looking at 
the fourth filter in this set, following the rays in Fig-
ure 11.32 shows how the red side of the filter produces a set 
of nearly parallel red light rays impinging onto the snow 

crystal from the left, while the blue side of the filter pro-
duces rays impinging from the right. Both sets of rays fill 
the entire image plane uniformly, and  these rays combine 
to yield an overall red+blue background color. The result is 
angle- dependent back illumination, uniform across the 
image plane, with the colors of the diff er ent rays deter-
mined by the pattern on the filter. By imaging the filter 
onto the optical pupil, the overall background color is uni-
form regardless of the pattern in the filter. Figure 11.29 
was taken using this filter, and I obtained most of the pho-
tos in Chapter 10 using Rheinberg illumination.

Figure 11.34 illustrates some of the diff er ent effects 
one can obtain using diff er ent color filters in a Rheinberg 
illumination system. For the first image in this set, the 
plain filter produced uniform white light impinging on 
the crystal from a broad range of  angles. This is like cov-
ering a flashlight with waxed paper and placing it directly 
 behind the crystal. As can be seen in the image, the uni-
form lighting tends to wash out the structural details in 
the crystal, producing a rather flat, bland image.

Better results  were obtained in the second image by 
using a patterned red/white filter. Now the snow crystal 
acts like a complex lens that refracts the light through dif-
fer ent  angles. The refraction depends on the shape of the 
ice, so the resulting image shows a variety of subtle red 
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FIGURE 11.34. This snow crystal was photographed swapping in several dif fer ent Rheinberg filters in 
quick succession. The insets show the filter used for each corresponding photo.

and blue highlights that reveal more structural details 
and give the image a pleasing sense of depth. Meanwhile 
the background has a uniform color and brightness, 
 because the back illumination varied only by  angle, not 
by position at the object plane. The third image is similar, 
but  there is greater variation in the illumination as a func-
tion of  angle, resulting in stronger shading and higher 
contrast overall. Note how the inward- propagating rings 
(see Chapter 4) on the outer branches are barely vis i ble in 
first photo, quite clear in second, and highly vis i ble in the 
third. Fi nally, the fourth photo used a “rainbow” filter 
that shines many diff er ent colors in from diff er ent  angles 
around the crystal, yielding a somewhat psychedelic ef-

fect. I would not use this as my go-to illumination 
method  every day, but I like to photo graph snowflakes 
using a full range of lighting techniques, just for variety.

Figure  11.35 shows a side- by- side comparison of 
Rheinberg back illumination with dark- field illumina-
tion. The Rheinberg image shows off subtle curvature ef-
fects like the faint ribbing in the platelike sections, but 
it gives the crystal a somewhat “plastic” look that may be 
unappealing to some. Dark- field illumination produces 
a white- on- black image, but the sense of depth is reduced. 
The Rheinberg method can also be used to add some 
color to dark- field illumination, as illustrated in Fig-
ure  11.36. The basic idea is to use a filter with a dark 



FIGURE 11.35. The left image shows a photo taken using Rheinberg back illumination, while the right 
image shows the same crystal using dark- field illumination. Surface features and edges refract light 
through large  angles, so  these features appear dark in the left image and bright in the right image. 
Note the central dark “hole” in the dark- field image, where the plate is thin and featureless.

FIGURE 11.36. Rheinberg illumination can be used to add some color to dark- field illumination, yield-
ing the colorful effects shown in  these photos.  Because blue is associated with cold, the fourth image 
has an especially frigid look.
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spot at its center (see Figure 11.33) and vari ous colors at 
its extremities.

The SnowMaster 9000

For many years I have traveled to vari ous cold locations 
to photo graph snowflakes using the apparatus shown in 
Figure 11.37, constructed in 2003, which I have come to 
call the SnowMaster 9000. The overall optical layout is 
basically that depicted in Figure 11.32, using Rheinberg 
illumination. This hardware has become a real work-
horse for me, and I have used it to take more than 
10,000 snowflake photos. Starting at the top, the cam-
era is an older Canon EOS single- lens reflex (SLR) model 
with a 20- megapixel full- frame (36 × 24 mm) sensor, 
outfitted with a right- angle eyepiece for through- the- lens 
focusing. I put the camera in a styrofoam lined box and 
included a low- power heater to keep the temperature 

FIGURE 11.37. The author’s traveling snow crystal photomicro-
scope, the Snowmaster 9000.

above freezing, as the camera specifications showed it 
rated down only to 0° C. I have since learned that this 
spec is highly conservative, and most digital cameras 
have no trou ble working at temperatures down to −20° C, 
although the battery capacity tends to be reduced 
(temporarily) when the temperature is low.

Below the camera is a length of extension tube from 
Thorlabs, attached to the camera using an appropriate 
adaptor. Below this is a home- built turret, complete with 
the Mitutoyo Plan APO 2X, 5X, and 10X objectives (see 
 Table 11.1). In hindsight, the turret was largely unnec-
essary, as I have used the 5X objective about 90  percent 
of the time. However, the “monster” fernlike stellar den-
drite described in Chapter 10 was so big that it required 
four separate photos at 2X, so I was happy to have the 
ability to switch objectives quickly that day.

Directly below the microscope objectives  there is an 
array of LEDs I used for experimenting with side illumi-
nation. The LEDs point down  toward a spot on the cen-
ter of the image plane, where a snow crystal rests on a 
microscope slide. I was never very happy with the results 
I obtained using the LED light source, however, so I 
mainly used Rheinberg illumination, which allowed for 
a much greater variety of illumination effects by chang-
ing color filters, as described above. The microscope slide 
rests on a 90- degree  angle plate that is attached to a lin-
ear translation stage, both from Thorlabs. The microm-
eter on the stage is attached to a flexible cable that in-
cludes a large plastic  handle at its end, used to adjust the 
focus. This thin plastic tube makes it easier to change the 
focus using ungloved hands in the cold.

The field lens sits directly below the snow crystal, 
mounted to the bottom surface of the  angle plate. The 
field lens is just a basic one- inch- diameter achromatic 
lens, as  there is no need to focus the color filter onto 
the pupil with  great precision. An incandescent light 
source is contained in the glowing box in the photo, 
although this was  later replaced with an LED bulb to 
reduce the amount of heat generated.  Because this sys-
tem provides plenty of light, I usually set my camera to 
ISO 100, as this reduces noise in the image relative to 
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FIGURE 11.38. The author photographing 
snowflakes using the SnowMaster 9000 in 
the frozen north outside Cochran, On-
tario. Note the blue foam- core collection 
board mounted at a con ve nient height 
using a tripod, the small paintbrush in one 
hand, and a glass slide in the other. Finger-
less gloves are used to retain enough 
dexterity to be able to  handle small snow 
crystals.

FIGURE 11.39. Rheinberg illumination was 
used to produce red highlights in this some-
what asymmetrical stellar snow crystal.
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higher ISO settings. The shutter speed was quite slow, of 
order 1/100  sec, but this is plenty fast when using a 
rigid mounting system.

Although this hardware setup may look imposing, 
the overall optical layout is quite  simple, as illustrated in 
Figure 11.32. If you remove the unnecessary heated cam-
era box, get rid of the hard shell case by putting the setup 
in an unheated garage or shed, and forgo the turret, then 
what remains is not particularly difficult to build. You 
 will not find microscope objectives or translation stages 
at your local camera store, but  these tools are not difficult 
to work with, and they are no more expensive than tradi-
tional macro photography gear.

Figure  11.38 shows the author working with the 
SnowMaster 9000  under typical winter conditions. Fig-
ure 11.39 illustrates a photo taken with it in northern 
Ontario. Once the system is set up, the workflow is 
straightforward: search for suitable crystals on the foam- 
core collection board by eye, pick up a promising speci-
men using a fine paintbrush, set it carefully on a glass 
microscope slide, place the slide on the observing plate, 
adjust the focus, adjust the color filter, and take the shot. 
Take several shots for focus stacking as needed. If the 
crystal looks especially nice, try a few additional color fil-
ters for diff er ent visual effects. Then clean the slide and 
repeat.
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APPENDIX

List of Variables and Physical  
Constants

a— Size of a  water molecule:  

a≈ cice−1/3 ≈0.32 nm
a0— Ice lattice pa ram e ter
A, Abasal, Aprism— Nucleation par ameters in attachment kinetics
B— Cylinder/parabolic diffusion pa ram e ter:
 B = log(rfar/R)
c— Water vapor number density
c0— Ice lattice pa ram e ter
cice— Ice molecular number density: 

cice = ρice/mmol 
cice ≈ 3.1 × 1028 m−3

cp,air— Heat capacity of air: 
cp,air ≈ 1.0 kJ/kg- K

cp,s— Heat capacity of ice: 
cp,s ≈ 2.1 kJ/kg- K

cp,l  — Heat capacity of  water: 
cp,l ≈ 4.2 kJ/kg- K

cp,v— Heat capacity of  water vapor: 
cp,v ≈ 2.0 kJ/kg- K

csat— Saturated  water vapor number density
csat, water— Saturated  water vapor density of supercooled  water

csurf  — Water vapor number density at the surface
Cdiff  — Second derivative of csat(T):

Cdiff = 1
2

1
csat

d2csat
dT 2

D— Diffusion constant
Dair— Particle diffusion constant in air: 

Dair ≈ 2 × 10−5 m2/sec
Dtherm— Thermal diffusion constant in air: 

Dtherm ≈ 2 × 10−5 m2/sec
D water— Thermal diffusion constant in  water: 

D water ≈ 1.4 × 10−7 m2/sec
dsv— Gibbs- Thomson length: 

dsv = γsv/cicekT 
≈1 nm

F— Flux
f#— Lens f- number
k— Boltzmann constant: 

k ≈ 1.38 × 10−23 m2 kg sec−2 K−1 
kT−15 ≈ 3.6 × 10−21 Joules

KT  — Kinetic coefficient for ice growth from liquid  water
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ℓ— Latent heat per molecule, or . . .
ℓ— A generic length
ℓvicinal— Step spacing on a vicinal surface
L— A generic length
Lsl — Latent heat of melting (solid/liquid): 

Lsl ≈ 0.33 × 106 J/kg
Llv— Latent heat of evaporation (liquid/vapor): 

Lsl ≈ 2.5 × 106 J/kg
Lsv— Latent heat of sublimation (solid/vapor) 

Lsv ≈ 2.8 × 106 J/kg
mmol— Mass of  water molecule: 

mmol ≈ 3.0 × 10−26 kg
NA— Lens numerical aperture
Pice— Ice equilibrium vapor pressure
P water— Water equilibrium vapor pressure
R— A generic radius
Rtip— Tip radius of parabolic dendrite
Rxy— Optical resolution (resolving power)
Rz— Optical depth of focus
s0— Solvability pa ram e ter
Δ	t— A small time step
T— Temperature
TK  — Temperature in Kelvin
T0— Ice/water nucleation pa ram e ter
T−15—258 K (−15° C)
T∞— Temperature at infinity
Tm— Ice/water melting point (0° C)
Tsl  — Solid/liquid transition temperature
Tsurf  — Surface temperature
ΔTsurf  — Surface supercooling
uterm— Terminal velocity
v— Crystal growth velocity
vn— Crystal growth velocity normal to the surface
vkin— Kinetic velocity:

vkin = csat
cice

 
kT

2πmmol

vmol — Water vapor molecular velocity
vtip— Growth velocity of dendrite tip
w— Width of a top facet terrace

X0— Characteristic diffusion length:

X0 = csat
cice

D
vkin

In air at −15° C, X0 ≈ 0.145 μm
xbasal  — Spacing between basal layers
xprism— Spacing between prism layers
xdiff  — Diffusion length for a  water molecule on an ice surface
α— Kinetics attachment coefficient
αbasal — Attachment coefficient on a basal faceted surface
αdiff  — Attachment coefficient for diffusion- limited growth of a 

sphere: 
αdiff  = X0/R

αdiff,heat— Attachment coefficient including heat diffusion
αdiffcyl — Attachment coefficient for diffusion- limited growth of a 

cylinder
αfacet— Attachment coefficient on a generic faceted surface
αprism— Attachment coefficient on a prism faceted surface
αtherm— Attachment coefficient for heat flow to substrate
β— Step energy on an ice/vapor surface
β0— Fictitious “rigid terrace” step energy: 

β0 ≡ aγsv 
≈ 3 × 10−11 J/m

γ— Surface energy
γ0— Ice solid/vapor surface energy of rough, unfaceted surface
γlv— Ice liquid/vapor surface energy: 

γlv ≈ 76 mJ/m2

γsl — Ice solid/liquid surface energy: 
γsl ≈ 30 ± 5 mJ/m2

γsv— Ice solid/vapor surface energy: 
γsv ≈ 106 ± 15 mJ/m2

δ— Step density (number per unit length) on a faceted surface
η— Logarithmic change in csat with T:

η = 1
csat

⎛
⎝⎜

⎞
⎠⎟

dcsat
dT

⎛
⎝⎜

⎞
⎠⎟ ,  or . . .

η— Part of the (η, ξ, ϕ) parabolic coordinate system
ηeff  — Dynamical viscosity for liquid  water
θsurf  — Surface normal relative to a faceted surface
κ— Surface curvature, or . . .
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κ— Thermal conductivity coefficient
κair— Thermal conductivity of air: 

κair ≈ 0.025 W m−1 K1

κice— Thermal conductivity of ice: 
κice ≈ 2.3 W m−1 K1

κ water— Thermal conductivity of  water: 
κ water ≈ 0.6 W m−1 K1

κwv— Thermal conductivity of  water vapor: 
κwv ≈ 0.02 W m−1 K1

λ— Wavelength of light
μ— Dynamical viscosity of air: 

μ ≈ 1.8 × 10−5 kg/(m- sec)
νkinematic— Kinematic viscosity of air: 

νkinematic = μ/ρair ≈ 1.4 × 10−5 m2/sec at 1 atm pressure
ξ— Ice filling fraction on substrate
ρair— Mass density of air: 

ρair ≈ 1.2 kg/m3

ρice— Mass density of ice: 
ρice ≈ 917 kg/m3

ρ water— Mass density of  water: 
ρ water ≈ 1000 kg/m3

σ— Supersaturation
σ0— Nucleation pa ram e ter
σ∞— Supersaturation at infinity
σsubst— Supersaturation at a substrate
σsurf  — Supersaturation at ice surface
σ water— The supersaturation of supercooled liquid  water relative to ice:

σ water =
csat,water − csat,ice

csat,ice

χ0— Thermal pa ram e ter (dimensionless):

χ0 = ηDLsvρice

κ air

csat
cice
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