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Foreword

Turbomachines are important machines in our industrial civilization. Steam turbines are
used to generate electricity at central station power plants, whether fueled by coal or
uranium. Gas turbines and axial compressors are found in jet engines. Aero-derivative gas
turbines are used to generate electricity with natural gas as fuel. Same technology is used
to drive centrifugal compressors for transmission of natural gas across continents. Blowers
and fans are in use for mine and industrial ventilation. Large pumps provide feed-water to
boilers and move wastewater in sanitation plants. Hydraulic turbines generate electricity
from water stored in reservoirs, and wind turbines do the same from the blowing wind.

This is a textbook on turbomachines. It aims for a unified treatment of the subject
matter, with consistent notation and concepts. Chapter 4 is new to this edition. It consists
of an account of droplet laden flows of steam that is relevant to the flow in the low pressure
end of a steam turbine. It is quite specialized and ought to be left for an advanced course,
or later self-study. Similarly, the new section on oblique shocks in Chapter 3 is included as
background material for understanding phenomena in transonic compressors. Those with a
background on thermodynamics and gas dynamics, may just glance through Chapter 2 and
early parts of Chapter 3. Some sample computer codes are given in the text. They are based
on MATLAB and its equivalent GNU-OCTAVE. The latter is free software and tailored to be
compatible with MATLAB. In the Appendix B is a script that can be used in the calculations
of air with variable specific heats. The program XSTEAM by Magnus Holmgren is used
when the properties of steam are needed. It is available from Mathworks website. https://
www.mathworks.com/matlabcentral/profile/authors/870351-magnus-holmgren.

xv

https://www.mathworks.com/matlabcentral/profile/authors/870351-magnus-holmgren
https://www.mathworks.com/matlabcentral/profile/authors/870351-magnus-holmgren
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CHAPTER 1

INTRODUCTION

1.1 ENERGY AND FLUID MACHINES

The rapid development of modern industrial societies was made possible by the large-scale
extraction of fossil fuels buried in the earth’s crust. Today, oil makes up 33% of world’s
energy mix, coal’s share is 30%, and that of natural gas is 24%, for a total of 87%.
Hydropower contributes 7%, and nuclear’s share is about 4%, and these increase the total
from these sources to 98%. The final 2% is supplied by wind, geothermal energy, waste
products, and solar energy [101]. Most of the biomass is excluded from these, for it is used
largely locally, and thus, its contribution is difficult to calculate. The best estimates put its
use at 10% of the total, in which case, the other percentages need to be adjusted downward
appropriately [61].

1.1.1 Energy conversion of fossil fuels

Over the last two centuries, engineers have invented methods to convert the chemical
energy stored in fossil fuels into usable forms. Foremost among them are methods for
converting this energy into electricity. This is done in steam power plants, in which
combustion of coal is used to vaporize steam, and the thermal energy of the steam is
then converted to shaft work in a steam turbine. The shaft turns a generator that produces
electricity. Nuclear power plants work on the same principle, with uranium, and in rare
cases thorium, as the fuel.

1Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e

http://www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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2 INTRODUCTION

Oil is used sparingly this way, and it is mainly refined to gasoline and diesel fuel. The
refinery stream also yields residual heating oil, which goes to industry and to winter heating
of houses. Gasoline and diesel oil are used in internal-combustion engines for transportation
needs, mainly in automobiles and trucks, but also in trains. Ships are powered by diesel
fuel and aircraft by jet fuel.

Natural gas is largely methane, and in addition to its importance in the generation of
electricity, it is also used in some parts of the world as a transportation fuel. A good
fraction of natural gas goes to winter heating of residential and commercial buildings and
to chemical process industries as raw material.

Renewable energy sources include the potential energy of water behind a dam in a river
and the kinetic energy of blowing winds. Both are used for generating electricity. Water
waves and ocean currents also fall into the category of renewable energy sources, but their
contributions are negligible today.

In all the aforementioned methods, conversion of energy to usable forms takes place
in a fluid machine, and in these instances, they are power-producing machines. There
are also power-absorbing machines, such as pumps and compressors, in which energy is
transferred into a fluid stream.

In both power-producing and power-absorbing machines, energy transfer takes place
between a fluid and a moving machine part. In positive-displacement machines, the
interaction is between a fluid at high pressure and a reciprocating piston. Spark ignition
and diesel engines are well-known machines of this class. Others include piston pumps,
reciprocating and screw compressors, and vane pumps.

In turbomachines, energy transfer takes place between a continuously flowing fluid
stream and a set of blades rotating about a fixed axis. The blades in a pump are part of an
impeller that is fixed to a shaft. In an axial compressor, they are attached to a compressor
wheel. In steam and gas turbines, the blades are fastened to a disk, which is fixed to a shaft,
and the assembly is called a turbine rotor. Fluid is guided into the rotor by stator vanes
that are fixed to the casing of the machine. The inlet stator vanes are also called nozzles,
or in hydraulic turbines inlet guide vanes.

Examples of power-producing turbomachines are steam and gas turbines and water and
wind turbines. The power-absorbing turbomachines include pumps, for which the working
fluid is a liquid, and fans, blowers, and compressors, which transfer energy to gases.

Methods derived from the principles of thermodynamics and fluid dynamics have been
developed to analyze the design and operation of these machines. These subjects, and heat
transfer, are the foundation of energy engineering, a discipline central in the program of
study of mechanical engineering.

1.1.2 Steam turbines

Central station power plants, fueled either by coal or uranium, employ steam turbines to
convert the thermal energy of steam to shaft power to run electric generators. During the
year 2016, coal provided 30%, and nuclear fuels 20%, of the electricity production in the
United States. For the world, the corresponding numbers are 40% and 11%, respectively. It
is clear from these figures that steam turbine manufacture and service are major industries
in both the United States and the world.

Figure 1.1 shows a 100-MW steam turbine manufactured by Siemens AG of Germany.
Steam enters the turbine through the nozzles near the center of the machine, which direct
the flow to a rotating set of blades. On leaving the first stage, steam flows (in the sketch
toward the top right corner) through the rest of the 12 stages of the high-pressure section
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Figure 1.1 The Siemens SST-600 industrial steam turbine with a capacity of up to 100 MW.
Source: Courtesy Siemens press picture, Siemens AG.

in this turbine. Each stage consists of a set of rotor blades, preceded by a set of stator
vanes. The stators, fixed to the casing (of which one-quarter is removed in the illustration),
are not clearly visible in this figure. After leaving the high-pressure section, steam flows
into a two-stage low-pressure turbine, and from there, it leaves the machine and enters a
condenser located on the floor below the turbine bay. Temperature of the entering steam is
near 540 ◦C, and its pressure is close to 140 bar. Angular speed of the shaft is generally
in the range 3500–15000 rpm (rev/min). In this turbine, there are five bleed locations for
the steam. The steam extracted from the bleeds enters feed-water heaters and from them
back to a boiler. The large regulator valve in the inlet section controls the steam flow rate
through the machine.

In order to increase the plant efficiency, new designs operate at supercritical pressures.
Critical pressure for steam is 220.9 bar, and its critical temperature is 373.14 ◦C. In an
ultra-supercritical plant, the boiler pressure can reach 600 bar and turbine inlet temperature,
620 ◦C.

1.1.3 Gas turbines

Major manufacturers of gas turbines produce both jet engines and industrial turbines.
Since the 1980s, gas turbines, with clean-burning natural gas as a fuel, have also become
important in electricity production. Their use in combined cycle power plants has increased
the plant’s overall thermal efficiency to just under 60%. They have also been employed for
stand-alone power generation. In fact, most of the power plants in the United States since
1998 have been fueled by natural gas, and they now account for 34% of the electricity
production. Unfortunately, production from the old natural gas fields of North America
is strained, even if new resources have been developed from shale deposits. Projections
show increasing use of natural gas in the energy mix in the United States, although it is
still unclear how long the new deposits last since these wells deplete rapidly.

Figure 1.2 shows a gas turbine manufactured also by Siemens AG. The flow is from
the back toward the front. The rotor is equipped with advanced single-crystal turbine
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Figure 1.2 An open rotor and combustion chamber of an SGT5-4000F gas turbine. Source:
Courtesy Siemens press picture, Siemens AG.

blades, with thermal barrier coatings and film cooling. Flow enters a three-stage turbine
from an annular combustion chamber, which has 24 burners and walls made from ceramic
tiles. These turbines power the 15 axial compressor stages that feed compressed air to the
combustor. The fourth turbine stage, called a power turbine, drives an electric generator in
a combined cycle power plant for which this turbine has been designed. The plant delivers
a power output of 292 MW.

1.1.4 Hydraulic turbines

In those areas of the world with large rivers, water turbines are used to generate electric
power. At the turn of the millennium, hydropower represented 17% of the total electrical
energy generated in the world. The installed capacity at the end of year 2016 was
1064000 MW, but generation was 451000MW; therefore, their ratio, called a capacity
factor, comes to 0.38.

With the completion of the 22500-MW Three Gorges Dam, China has now the world’s
largest installed capacity of 319000 MW and generated 28000 MW of power, based on
year 2014 statistics. Canada, owing to its expansive landmass, is the world’s second largest
producer of hydroelectric power, with generation at 44000 MW from installed capacity
of 76000 MW. Hydropower accounts for 58% of Canada’s electricity needs. The sources
of this power are the great rivers of British Columbia and Quebec. The next largest producer
is Brazil, which obtains 43000 MW from an installed capacity of 89000 MW. Over 80%
of Brazil’s energy is obtained by water power. The Itaipu plant on the Paraná River, which
borders Brazil and Paraguay, generates 12600 MW of power at full capacity. Of nearly the
same size is Venezuela’s Guri dam power plant with a rated capacity of 10200 MW, based
on 20 generators.

The two largest power stations in the United States are the Grand Coulee station in
the Columbia River and the Hoover Dam station in the Colorado River. The capacity of the
Grand Coulee is 6480 MW and that of Hoover is 2000 MW. Tennessee Valley Authority
operates a network of dams and power stations in the Southeastern parts of the country.
Many small hydroelectric power plants can also be found in New England. Hydroelectric
power in the United States today provides 282 billion kilowatt-hours (kwh) a year, or
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33000 MW, but this represents only 6% of the total energy used in the United States. Fossil
fuels still account for 86% of the US energy needs.

Next on the list of largest producers of hydroelectricity are Russia and Norway. With its
small and thrifty population, Norway ships its extra generation to the other Scandinavian
countries, and now with completion of a high-voltage powerline under the North Sea,
also to western Europe. Norway and Iceland both obtain nearly all their electricity from
hydropower.

1.1.5 Wind turbines

The Netherlands has been identified historically as a country of windmills. She and
Denmark have seen a rebirth of wind energy generation since 1985 or so. These countries
are relatively small in land area, and both are buffeted by winds from the North Sea.
Since the 1990s, Germany has embarked on a quest to harness its winds. By 2015, its
installed wind turbine’s capacity was 45000 MW. It was exceeded only by China and the
United States. China’s installed capacity was 145400 MW and that of the United States was
74500 MW. They were followed by India and Spain with installed capacity of 27100 MW
in India and 23000 MW in Spain. Although Denmark has fallen from the leaders, it still
generates a larger percentage of its energy from wind than the others.

For the world, the capacity factor for wind power averages about 0.20, thus even lower
than for hydropower. But for the United States, it is about 0.32, and wind constitutes about
2% of the country’s total energy needs. It is the fastest-growing of the renewable energy
systems. The windy plains of North and South Dakota and of West and North Texas offer
great potential for wind power generation.

1.1.6 Compressors

Compressors find many applications in industry. An important use is in the transmission
of natural gas across continents. Natural-gas production in the United States is centered in
Texas and Louisiana as well as offshore in the Gulf of Mexico. In addition to Texas, there
are tight gas formations in North Dakota, Colorado, Pennsylvania, and Ohio. The main
users are the midwestern cities, in which natural gas is used in industry and for winter
heating. Pipelines also cross the Canadian border with gas supplied to the west coast and
to the northern states from Alberta.

Russia has 18% of world’s natural-gas reserves, and much of its gas is transported
to Europe through Ukraine. China has constructed a natural-gas pipeline to transmit the
gas produced in the western provinces to the eastern cities. Extensions to Turkmenistan
have been completed, and extensions to Iran are in the planning stage. Both have large
natural-gas reserves.

Another important application of compressors is in the jet engines as previously
mentioned.

1.1.7 Pumps and blowers

Pumps are used to increase pressure of liquids. Compressors, blowers, and fans do the same
for gases. In steam power plants, condensate pumps return water to feed-water heaters,
from which the water is pumped to boilers. Pumps are also used for cooling water flows in
these power plants.
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Figure 1.3 A centrifugal pump. Source: Courtesy Schmalenberger GmbH.

Figure 1.3 shows a centrifugal pump manufactured by Schmalenberger Strömungstech-
nologie GmbH. Flow enters through the eye of an impeller and leaves through a spiral
volute. This pump is designed to handle a flow rate of 100 m3/h, with a 20 m increase in
its head.

In the mining industry, blowers circulate fresh air into mines and exhaust stale and
contaminated air from them. In oil, chemical, and process industries, there is a need for
large blowers and pumps. Pumps are also used in great numbers in agricultural irrigation
and municipal sanitary facilities.

Offices, hospitals, schools, and other public buildings have heating, ventilating, and air
conditioning (HVAC) systems, in which conditioned air is moved by large fans. Pumps
provide chilled water to cool the air and for other needs.

1.1.8 Other uses and issues

Small turbomachines are present in all households. In fact, it is safe to say that in most
homes, only electric motors are more common than turbomachines. A pump is needed in a
dishwasher, a washing machine, and the sump. Fans are used in the heating system and as
window and ceiling fans. Exhaust fans are installed in kitchens and bathrooms. Both an air
conditioner and a refrigerator is equipped with a compressor, although it may be a screw
compressor (which is not a turbomachine) in an air conditioner. In a vacuum cleaner, a fan
creates suction. In a car there is a water pump, a fan, and, in some models, a turbocharger.
All are turbomachines.

In addition to understanding the fluid dynamical principles of turbomachinery, it is
important for a turbomachinery design engineer to learn other allied fields. The main ones
are material selection, shaft and disk vibration, stress analysis of disks and blades, and
topics covering bearings and seals. Finally, understanding control theory is important for
optimum use of any machine.
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In recent years, the world has awoken to the fact that fossil fuels are finite and that
renewable energy sources will not be sufficient to provide for the entire world the material
conditions that Western countries now enjoy. Hence, it is important that the machines that
make use of these resources be well designed so that the remaining fuels are used with
consideration, recognizing their finiteness and their value in providing for some of the vital
needs of humanity.

1.2 HISTORICAL SURVEY

This section gives a short historical review of turbomachines. Turbines are power-producing
machines and include water and wind turbines from early history. Gas and steam turbines
date from the beginning of the last century. Rotary pumps have been in use for 200
years. Compressors developed as advances were made in aircraft propulsion during the
last century.

1.2.1 Water power

The origin of turbomachinery can be traced to the use of flowing water as a source of
energy. Indeed, waterwheels, lowered into a river, were already known to the Greeks. The
early design moved to the rest of Europe and became known as the norse mill because
the archeological evidence first surfaced in northern Europe. This machine consists of a
set of radial paddles fixed to a shaft. As the shaft was vertical, or somewhat inclined, its
efficiency of energy extraction could be increased by directing the flow of water against the
blades with the aid of a mill race and a chute. Such a waterwheel could provide only about
one-half horsepower (0.5 hp), but owing to the simplicity of its construction, it survived in
use until 1500 and can still be found in some primitive parts of the world.

By placing the axis horizontally and lowering the waterwheel into a river, a better design
is obtained. In this undershot waterwheel, dating from Roman times, water flows through
the lower part of the wheel. Such a wheel was first described by the Roman architect and
engineer Marcus Vitruvius Pollio during the first century BCE.

Overshot waterwheel came into use in the hilly regions of Rome during the second
century CE. By directing water from a chute above the wheel into the blades increases the
power delivered because now, in addition to the kinetic energy of the water, also part of the
potential energy can be converted to mechanical energy. Power of overshot waterwheels
increased from 3 hp to about 50 hp during the Middle Ages. These improved overshot
waterwheels were partly responsible for the technical revolution in the twelfth–thirteenth
century. In the William the Conqueror’s Domesday Book of 1086, the number of watermills
in England is said to have been 5684. By 1700, about 100000 mills were powered by
flowing water in France [12].

The genius of Leonardo da Vinci (1452–1519) is well recorded in history, and his
notebooks show him to have been an exceptional observer of nature and technology around
him. Although he is best known for his artistic achievements, most of his life was spent in
the art of engineering. Illustrations of fluid machinery are found in da Vinci’s notebooks,
in De Re Metallica, published in 1556 by Agricola [1], and in a tome by Ramelli published
in 1588. From these, a good understanding of the construction methods can be gained and
of the scale of the technology then in use. In Ramelli’s book, there is an illustration of a
mill in which a grinding wheel, located upstairs, is connected to a shaft, the lower end of
which has an enclosed impact wheel that is powered by water. There are also illustrations
that show windmills to have been in wide use for grinding grain.
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Important progress to improve waterwheels came in the hands of the Frenchman Jean
Victor Poncelet (1788–1867), who curved the blades of the undershot waterwheel so that
water would enter tangentially to the blades. This improved its efficiency. In 1826, he came
up with a design for a wheel and with radial inward flow. A water turbine of this design
was built a few years later in New York by Samuel B. Howd and then improved by James
Bicheno Francis (1815–1892). Improved versions of Francis turbines are in common use
today.

About the same time in France, an outward flow turbine was designed by Claude Burdin
(1788–1878) and his student Benoît Fourneyron (1802–1867). They benefited greatly from
the work of Jean-Charles de Borda (1733–1799) on hydraulics. Their machine had a set of
guide vanes to direct the flow tangentially to the blades. In 1835, Fourneyron designed a
turbine that operated from a head of 108 m with a flow rate of 20 liters per second (L/s),
rotating at 2300 rpm, delivering 40 hp as output power at 80% efficiency.

In the 1880s, in the California gold fields, an impact wheel known as a Pelton wheel,
after Lester Allen Pelton (1829–1918) of Vermillion, Ohio, came into wide use.

An axial-flow turbine was developed by Carl Anton Henschel (1780–1861) in 1837
and by Feu Jonval in 1843. Modern turbines are improvements of Henschel’s and Jonval’s
designs. A propeller type of turbine was developed by the Austrian engineer Victor Kaplan
(1876–1934) in 1913. In 1926, a 11000-hp Kaplan turbine was placed into service in
Sweden. It weighed 62.5 tons, had a rotor diameter of 5.8 m, and operated at 62.5 rpm with
a water head of 6.5 m. Modern water turbines in large hydroelectric power plants are either
of the Kaplan type or variations of this design.

1.2.2 Wind turbines

Humans have drawn energy from wind and water since ancient times. The first recorded
account of a windmill is from the Persian-Afghan border region in 644 CE, where these
vertical axis windmills were still in use in recent times [39]. They operate on the principle
of drag in the same way as square sails do when ships sail downwind.

In Europe, windmills were in use by the twelfth century, and historical research suggests
that they originated from waterwheels, for their axis was horizontal, and the masters of
the late Middle Ages had already developed gog-and-ring gears to transfer energy from
a horizontal shaft into a vertical one. This then turned a wheel to grind grain [82]. An
early improvement was to turn the entire windmill toward the wind. This was done by
centering a round platform on a large diameter vertical post and securing the structure of
the windmill on this platform. The platform was free to rotate, but the force needed to turn
the entire mill limited the size of the early post-mills. This restriction was removed in a
tower mill in which only the platform, affixed to the top of the mill, was free to rotate. The
blades were connected to a wind shaft, which leaned about 15◦ from the horizontal so that
the blades would clear the structure. The shaft was supported by a wooden main bearing
at the blade end and a thrust bearing at the tail end. A band brake was used to limit the
rotational speed at high wind speeds. The power dissipated by frictional forces in the brake
rendered the arrangement susceptible to fire.

Over the next 500 years, to the beginning of the industrial revolution, progress was
made in windmill technology, particularly in Great Britain. By accumulated experience,
designers learned to move the position of the spar supporting a blade from mid-cord to
quarter-cord position and to introduce a nonlinear twist and leading edge camber to the
blade [82]. The blades were positioned at a steep angle to the wind and made use of the lift
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(a) (b)

Figure 1.4 A traditional windmill (a) and an American farm windmill (b) for pumping water.

force, rather than drag. It is hard not to speculate that the use of lift had not been learned
from sailing vessels using lanteen sails to tack.

A towermill is shown in Figure 1.4a. It is seen to be many meters tall, and each of
the four quarter-cord blades is about 1 m in width. The blades of such mills were covered
with either fabric or wooden slats. By an arrangement such as is found in window shutters
today, the angle of attack of the blades could be changed at will, providing also a braking
action at high winds.

The American windmill is shown in Figure 1.4b. It is a small multibladed wind turbine
with a vertical vane to keep it oriented toward the wind. Some models had downwind
orientation and did not need to be controlled in this way. The first commercially successful
wind turbine was introduced by Halladay in 1859 to pump water for irrigation in the Plains
States. It was about 5 m in diameter and generated about 1 kW at windspeed of 7 m/s
[82]. The windmill shown in the figure is an 18-steel-bladed model by Aermotor Company
of Chicago, a company whose marketing and manufacturing success made it the prime
supplier of this technology during the period 1900–1925.

New wind turbines with a vertical axis were invented during the 1920s in France by
G. Darrieus and in Finland by S. Savonius [80]. They offer the advantage of working
without regard to wind direction, but their disadvantages include fluctuating torque over
each revolution and difficulty of starting. For these reasons, they have not achieved
wide use.

1.2.3 Steam turbines

Although the history of steam to produce rotation of a wheel can be traced to Hero of
Alexandria in the year 100 CE, his invention is only a curiosity, for it did not arise out of
a historical necessity, such as was imposed by the world’s increasing population at the
beginning of the industrial revolution. Another minor use to rotate a roasting spit was
suggested in 1629 Giovanni de Branca. The technology to make shafts and overcome
friction was too primitive at that time to put his ideas to more important uses. The age of
steam began with the steam engine, which ushered in the industrial revolution in Great
Britain. During the eighteenth century, steam engines gained in efficiency, particularly
when James Watt in 1765 reasoned that better performance could be achieved if the boiler
and the condenser were separate units. Steam engines are, of course, positive-displacement
machines.

Sir Charles Parsons (1854–1931) is credited with the development of the first steam
turbine in 1884. His design used multiple turbine wheels, about 8 cm in diameter each,
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to drop the pressure in stages, and this way to reduce the angular velocities. The first of
Parson’s turbines generated 7.5 kW using steam at inlet pressure of 550 kPa and rotating at
17000 rpm. It took some 15 years before Parsons’ efforts received their proper recognition.

An impulse turbine was developed in 1883 by the Swedish engineer Carl Gustav Patrik
de Laval (1845–1913) for use in a cream separator. To generate the large steam velocities,
he also invented the supersonic nozzle and exhibited it in 1894 at the Columbian World’s
Fair in Chicago. From such humble beginnings arose rocketry and supersonic flight.
Laval’s turbines rotated at 26000 rpm, and the largest of the rotors had a tip speed of
400 m/s. He used flexible shafts to alleviate vibration problems in the machinery.

In addition to the efforts in Great Britain and Sweden, the Swiss Federal Institute
of Technology in Zurich (Eidgenössische Technische Hochschule [ETH]) had become
an important center of research in early steam turbine theory through the efforts of
Aurel Stodola (1859–1942). His textbook Steam and Gas Turbines became the standard
reference on the subject for the first half of last century [89]. A similar effort was led by
William J. Kearton (1893–1978) at the University of Liverpool in Great Britain.

1.2.4 Jet propulsion

The first patent for gas turbine development was issued to John Barber (1734–c. 1800)
in England in 1791, but again, technology was not yet sufficiently advanced to build a
machine on the basis of the proposed design. Eighty years later in 1872, Franz Stolze
(1836–1910) received a patent for a design of a gas turbine power plant consisting of a
multistage axial-flow compressor and turbine on the same shaft, together with a combustion
chamber and a heat exchanger. The first US patent was issued to Charles Gordon Curtis
(1860–1953) in 1895.

Starting in 1935, Hans J. P. von Ohain (1911–1998) directed efforts to design gas
turbine power plants for the Heinkel aircraft in Germany. The model He178 was a fully
operational jet aircraft, and in August 1939, it was first such aircraft to fly successfully.

During the same time frame, Sir Frank Whittle (1907–1996) in Great Britain was
developing gas turbine power plants for aircraft based on a centrifugal compressor and a
turbojet design. In 1930, he filed for a patent for a single-shaft engine with a two-stage
axial compressor followed by a radial compressor from which the compressed air flowed
into a straight-through burner. The burned gases then flowed through a two-stage axial
turbine on a single disk. This design became the basis for the development of jet engines
in Great Britain and later in the United States.

Others, such as Alan Arnold Griffith (1893–1963) and Hayne Constant (1904–1968),
worked in 1931 on the design and testing of axial-flow compressors for use in gas turbine
power plants. Already in 1926, Griffith had developed an aerodynamic theory of turbine
design based on flow past airfoils.

In Figure 1.5 is the De Havilland Goblin engine designed by Frank Halford in 1941.
The design was based on the original work of Sir Frank Whittle. It is a turbojet engine
with single-stage centrifugal compressor and with can combustors exhausting the burned
combustion gases into a turbine that drives the compressor. The remaining kinetic energy
leaving the turbine goes to propulsive thrust.

Since the 1950s, there has been continuous progress in the development of gas turbine
technology for aircraft power plants. Rolls Royce in Great Britain brought to the market
its Olympus twin-spool engine, its Dart single-spool engine for low-speed aircraft, and in
1967 the Trent, which was the first three-shaft turbofan engine. The Olympus was also
used in stationary power plants and in marine propulsion.
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Figure 1.5 De Havilland Goblin turbojet engine.

General Electric in the United States has also a long history in gas turbine development.
Its I-14, I-16, I-20, and I-40 models were developed in the 1940s. The I-14 and I-16
powered the Bell P-59A aircraft, which was the first American turbojet. It had a single
centrifugal compressor and a single-stage axial turbine. Allison Engines, then a division of
General Motors, took over the manufacture and improvement of model I-40. Allison also
began the manufacture of General Electric’s TG series of engines.

Many new engines were developed during the latter half of the twentieth century,
not only by Rolls Royce and General Electric but also by Pratt and Whitney in the
United States and Canada, Rateau in France, and by companies in Soviet Union, Sweden,
Belgium, Australia, and Argentina. The modern engines that power the flight of today’s
large commercial aircraft by Boeing and by Airbus are based on the Trent design of Rolls
Royce or on General Electric’s GE90 [7].

1.2.5 Industrial turbines

Brown Boveri in Switzerland developed a 4000-kW turbine power plant in 1939 to
Neuchatel for standby operation for electric power production. On the basis of this
design, an oil-burning closed-cycle gas turbine plant with a rating of 2 MW was built the
following year.

Industrial turbine production at Ruston and Hornsby Ltd. of Great Britain began by
establishment of a design group in 1946. The first unit produced by them was sold to
Kuwait Oil Company in 1952 to power pumps in oil fields. It was still operational in
1991 having completed 170000 operating hours. Industrial turbines are in use today as
turbocompressors and in electric power production.

1.2.6 Pumps and compressors

The centrifugal pump was invented by Denis Papin (1647–1710) in 1698 in France. To be
sure, a suggestion to use centrifugal force to effect pumping action had also been made by
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Leonardo da Vinci, but neither his nor Papin’s invention could be built, owing to the lack
of sufficiently advanced shop methods. Leonhard Euler (1707–1783) gave a mathematical
theory of the operation of a pump in 1751. This date coincides with the early part of the
industrial revolution, and the advances made in manufacturing during the ensuing 100
years brought centrifugal pumps to wide use by 1850. The Massachusetts pump, built in
1818, was the first practical centrifugal pump manufactured. W. D. Andrews improved
its performance in 1846 by introducing double-shrouding. At the same time in Great
Britain, engineers such as John Appold (1800–1865) and Henry Bessemer (1813–1898)
were working on improved designs. Appold’s pump operated at 788 rpm with an efficiency
of 68% and delivered 78 L/s and a head of 5.9 m.

The same companies that built steam turbines in Europe in 1900 also built centrifugal
blowers and compressors. The first applications were for providing ventilation in mines
and for the steel industry. Compressors have been used in chemical industries since 1916,
in the petrochemical industries since 1930, and in the transmission of natural gas since
1947. The period 1945–1950 saw a large increase in the use of centrifugal compressors in
American industry. Since 1956, they have been integrated into gas turbine power plants
and have replaced reciprocating compressors in other applications.

The efficiencies of single-stage centrifugal compressors increased from 70% to over
80% over the period 1935–1960 as a result of work done in companies such as Rateau,
Moss-GE, Birmann-DeLaval, and Whittle in Europe and General Electric and Pratt &
Whitney in the United States. The pressure ratios increased from 1.2 : 1 to 7 : 1. This
development owes much to the progress that had been made in gas turbine design [29].

For large flow rates, multistage axial compressors are used. Figure 1.6 shows such a
compressor, manufactured by MAN Diesel & Turbo SE in Germany. It has 14 axial stages
followed by a centrifugal compressor stage. The rotor blades are seen in the exposed rotor.
The stator blades are fixed to the casing, the lower half of which is shown. The flow is from
right to left. The flow area decreases toward the exit, for in order to keep the axial velocity
constant, as is commonly done, the increase in density on compression is accommodated
by a decrease in the flow area.

1.2.7 Note on units

The Système International (d’Unités) (SI) system of units is used in this text. It is still
customary in some industries to use the English Engineering system of units, and if other

Figure 1.6 Multistage compressor. Source: Courtesy MAN Diesel & Turbo SE.
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reference books are consulted, in some of them, one finds this system used too. In this
set of units, mass is expressed as pound (lbm), and foot is the unit of length. The British
gravitational system of units has slug as the unit of mass, and the unit of force is pound
force (lbf), obtained from Newton’s law, as it represents a force needed to accelerate a
mass of one slug at the rate of 1 ft/s2. The use of slug for mass makes the traditional British
gravitational system of units analogous to the SI units. When pound (lbm) is used for mass,
it ought to be first converted to slugs (1 slug = 32.174 lbm), for then calculations follow as
in the SI units. The unit of temperature is Fahrenheit or Rankine. Thermal energy in this
set of units is reported in British thermal units (Btu)’s for short. As it is a unit for energy, it
can be converted to one encountered in mechanics by remembering that 1 Btu = 778.17 ft
lbf. The conversion factor to SI units is 1 Btu = 1055 J. Conversion of power from units
of horsepower to kilowatts is 1 hp = 0.7457 kW. The flow rate in pumps is often given in
gallons per minute (gpm). The conversion to standard units is carried out by recalling that
1 gal = 231 in3. World energy consumption is often given in quads. The conversion to SI
units is 1 quad = 1.055 EJ, where EJ is exajoule equal to 1018 J.
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CHAPTER 2

PRINCIPLES OF THERMODYNAMICS
AND FLUID FLOW

This chapter begins with a review of the conservation principle for mass for steady
uniform flow. After this follows the first and second laws of thermodynamics, also for
steady uniform flow. Next, thermodynamic properties of gases and liquids are reviewed.
These pave the way to a discussion of various turbine and compressor efficiencies and
thermodynamic losses. The final section is on the momentum balance in fluid flow.

2.1 MASS CONSERVATION PRINCIPLE

Mass flow rate ṁ in a uniform flow is related to the density ρ and the velocity V of a fluid,
as well as the cross-sectional area of the flow channel A by

ṁ = ρVnA

When this equation is used in the analysis of steam flows, specific volume, which is the
reciprocal of density, is commonly used. The subscript n denotes the direction normal to
the flow area. The product VnA arises from the scalar product V · n = V cos θ, in which
n is a unit normal vector on the surface A and θ is the angle between the normal and the
direction of the velocity vector. Consequently, the scalar product can be written in the two
alternative forms

V ·n A = V A cos θ = VnA = V An

15Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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in which An is the area normal to the flow. The principle of conservation of mass for a
uniform steady flow through a control volume with one inlet and one exit takes the form

ρ1V1An1 = ρ2V2An2

Turbomachinery flows are steady only in a time-averaged sense; that is, the flow is periodic,
with a period equal to the time taken for a blade to move a distance equal to the spacing
between adjacent blades. Despite the unsteadiness, in elementary analysis, all variables are
assumed to have steady values.

If the flow has more than one inlet and exit, then, in steady uniform flow, conservation
of mass requires that ∑

i

ρiViAni =
∑

e

ρeVeAne (2.1)

in which the sums are over all the inlets and exits.

� EXAMPLE 2.1

Steam flows at the rate ṁ = 0.20 kg/s through each nozzle in the bank of nozzles
shown in Figure 2.1. Steam conditions are such that at the inlet, specific volume is
0.80 m3/kg and at the outlet, it is 1.00 m3/kg. Spacing of the nozzles is s = 5.0 cm,
wall thickness at the inlet is t1 = 2.5 mm, and at the outlet it is t2 = 2.0 mm. Blade
height is b = 3.0 cm. Nozzle angle is α2 = 70◦. Find the steam velocity at the inlet
and at the outlet.

s
t
1

t
2

2

1

V
1

V
2

α
2

Figure 2.1 Turning of flow by steam nozzles.

Solution: The area at the inlet is

A1 = b(s − t1) = 3 (5 − 0.25) = 14.25 cm2

Velocity at the inlet is solved from the mass balance

ṁ = ρ1V1A1 =
V1A1

v1
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which gives

V1 =
ṁv1

A1
=

0.20 · 0.80 · 1002

14.25
= 112.3 m/s

At the exit, the flow area is

A2n = b(s cos α2 − t2) = 3(5 cos(70◦) − 0.20) = 4.53 cm2

Hence, the velocity is

V2 =
ṁv2

A2n

=
0.2 · 1.00 · 1002

4.53
= 441.5 m/s

�

2.2 FIRST LAW OF THERMODYNAMICS

For a uniform steady flow in a channel, the first law of thermodynamics has the form

ṁ

(
u1 + p1v1 +

1
2
V 2

1 + gz1

)
+ Q̇ = ṁ

(
u2 + p2v2 +

1
2
V 2

2 + gz2

)
+ Ẇ (2.2)

The sum of specific internal energy u, kinetic energy V 2/2, and potential energy gz
is the specific energy e = u + 1

2V
2 + gz of the fluid. In the potential energy, term g is

the acceleration of gravity and z is a height. The term p1v1, in which p is the pressure,
represents the work done by the fluid in the flow channel just upstream of the inlet to move
the fluid ahead of it into the control volume, and it thus represents energy flow into the
control volume. This work is called flow work. Similarly, p2v2 is the flow work done by the
fluid inside the control volume to move the fluid ahead of it out of the control volume. It
represents energy transfer as work leaving the control volume. The sum of internal energy
and flow work is defined as enthalpy h = u + pv. The heat transfer rate into the control
volume is denoted as Q̇, and the rate at which work is delivered is Ẇ . Equation (2.2) can
be extended to multiple inlets and outlets in the same manner as was done in Eq. (2.1).

Dividing both sides by ṁ gives the first law of thermodynamics the form

h1 +
1
2
V 2

1 + gz1 + q = h2 +
1
2
V 2

2 + gz2 + w

in which q = Q̇/ṁ and w = Ẇ/ṁ denote the heat transfer and work done per unit mass.
By convention, heat transfer into the thermodynamic system is taken to be a positive
quantity, as is work done by the system on the surroundings.

The sum of enthalpy, kinetic energy, and potential energy is called the stagnation
enthalpy

h0 = h +
1
2
V 2 + gz

and thus, the first law can also be written as

h01 + q = h02 + w

In the flow of gases, the potential energy terms are small and can be neglected. Similarly,
for a control volume around a pump the changes in elevation are small and the potential
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energy difference is negligible. For pumps and water turbines when the suction and
discharge conduits are included into the control volume, the potential energy terms need
to be retained. When the change in potential energy is neglected, the first law reduces to

h1 +
1
2
V 2

1 + q = h2 +
1
2
V 2

2 + w

In addition, even if velocity is large, the difference in kinetic energy between the inlet and
exit may be small. In such a case, first law is simply

h1 + q = h2 + w

Turbomachinery flows are nearly adiabatic, so q can be dropped. Then work delivered by
a turbine is given as

wt = h01 − h02

and the work done on the fluid in a compressor or a pump is

wc = h02 − h01

The compressor work has been written in a form that gives the work done a positive value.
Hence, the convention of thermodynamics of denoting work out from a system as positive
and work in as negative is ignored, and the equations are written in a form that gives a
positive value for work, for both a turbine and a compressor.

� EXAMPLE 2.2

Steam flows adiabatically at a rate ṁ = 0.01 kg/s through a diffuser, shown in
Figure 2.2, with inlet diameter D1 = 1.0 cm. Specific volume at the inlet v1 =
2.40 m3/kg. Exit diameter is D2 = 2.5 cm, with specific volume at the outlet
v2 = 3.80 m3/kg. Find the change in enthalpy neglecting any change in the potential
energy.

V
1

1

2

V
2

Figure 2.2 Flow through a diffuser.

Solution: The areas at the inlet and outlet are

A1 =
πD2

1

4
=

π 0.012

4
= 7.85 · 10−5 m2

A2 =
πD2

2

4
=

π 0.0252

4
= 4.91 · 10−4 m2
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The velocity at the inlet is

V1 =
ṁv1

A1
=

0.01 · 2.4
7.85 · 10−5 = 305.6 m/s

and at the outlet it is

V2 =
ṁv2

A2
=

0.01 · 3.8
4.91 · 10−4 = 77.4 m/s

Since no work is done and the flow is adiabatic, the stagnation enthalpy remains con-
stant h01 = h02. With negligible change in potential energy, this equation reduces to

h2 − h1 =
1
2
V 2

1 − 1
2
V 2

2 =
1
2
(305.62 − 77.42) = 43.7 kJ/kg

�

2.3 SECOND LAW OF THERMODYNAMICS

For a uniform steady flow in a channel, the second law of thermodynamics takes the form

ṁ(s2 − s1) =
∫ �2

�1

Q̇′

T
d� +

∫ �2

�1

Ṡ ′
p d� (2.3)

in which s is the entropy. On the right-hand side (RHS) Q̇′ is the rate at which heat is
transferred from the walls of the flow channel into the fluid per unit length of the channel.
The incremental length of the channel is d�, and the channel extends from location �1 to
�2. The absolute temperature T in this expression may vary along the channel. The term
Ṡ ′

p on the RHS is the rate of entropy production per unit length of the flow channel. If the
heat transfer is internally reversible, entropy production is the result of internal friction and
mixing in the flow. In order for the heat transfer to be reversible, the temperature difference
between the walls and the fluid has to be small. In addition, the temperature gradient in the
flow direction must be small. This requires the flow to move rapidly so that energy transfer
by bulk motion far exceeds the transfer by conduction and radiation in the flow direction.

As Eq. (2.3) shows, when heat is transferred into the fluid, its contribution is to increase
the entropy in the downstream direction. If, on the other hand, heat is transferred from the
fluid to the surroundings, its contribution is to reduce the entropy. Entropy production Ṡ ′

p
is always positive, and its contribution is to increase the entropy in the flow direction. For
the ideal case of an internally reversible process, entropy production vanishes.

2.3.1 Tds-equations

The first law of thermodynamics for a closed system relates the work and heat interactions
to a change in internal energy U . For infinitesimal work and heat interactions, the first law
can be written as

dU = δQ − δW

For a simple compressible substance, defined to be one for which the only relevant work
is compression or expansion, reversible work is given by

δWs = p dV
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This expression shows that when a fluid is compressed so that its volume decreases, work
is negative, meaning that work is done on the system. For an internally reversible process,
the second law of thermodynamics relates heat transfer to a change in entropy by

δQs = T dS

in which it must be remembered that T is the absolute temperature. Hence, for an internally
reversible process, the first law takes the differential form

dU = T dS − p dV

Dividing by the mass of the system converts this to the expression

du = Tds − p dv

between specific properties. Although derived for reversible processes, this is a relationship
between intensive properties, and for this reason, it is valid for all processes: reversible, or
irreversible. It shows that u = u(s, v) and is usually written as

Tds = du + p dv (2.4)

and is called the first Gibbs equation.
Writing u = h − pv and differentiating gives du = dh − p dv − v dp. Substituting this

into the first Gibbs equation gives

Tds = dh − v dp (2.5)

which is the second Gibbs equation and it shows that h = h(s, p).

2.4 EQUATIONS OF STATE

The state principle of thermodynamics guarantees that a thermodynamic state for a
simple compressible substance is completely determined by specifying two independent
thermodynamic properties. Such functional relations are called equations of state and the
two fundamental ones are u = u(s, v) and h = h(s, p).

In this section, the equations of state for steam and those of ideal gases are reviewed.
In addition, ideal gas mixtures are considered as they arise in combustion of hydrocarbon
fuels. Combustion gases flow through the gas turbines of a jet engine and through
industrial turbines burning natural gas. Preliminary calculations can be carried out using
properties of air since air is 78% of nitrogen by volume, which, although contributing
to formation of nitric oxides, is otherwise largely inert during combustion. Later in the
chapter, a better model for combustion gases is discussed, but for accurate calculations,
the actual composition is to be taken into account. Also in many applications, such as
in oil and gas production, mixtures rich in complex molecules flow through compressors
and expanders. Their equations of state may be very complicated, particularly at high
pressures.
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2.4.1 Properties of steam

It has been found that a useful way to present properties of steam is to construct a chart, such
as is shown in Figure 2.3, with entropy on the abscissa and temperature on the ordinate. On
the heavy line, water exists as a saturated liquid on the descending part on the left and as
saturated vapor on the right. Away from this vapor dome, on the right, water is superheated
vapor, that is to say steam; and to the left, water exists as a compressed liquid. The
state at the top of the vapor dome is called a critical state, with pressure pc = 220.9 bar
and temperature Tc = 374.14 ◦C. At this condition, entropy is sc = 4.4298 kJ/(kg K)
and enthalpy is hc = 2099.6 kJ/kg. Below the vapor dome, water exists as a two-phase
mixture of saturated vapor and saturated liquid. Such a state may exist in the last stages of
a steam turbine where the saturated steam is laden with water droplets.
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Figure 2.3 Ts-diagram for water.

The lines of constant pressure are also shown in Figure 2.3. As they intersect the vapor
dome, their slopes become horizontal across the two-phase region. Thus they are parallel
to lines of constant temperature, and this indicates that temperature and pressure are not
independent properties in the two-phase region. To specify the thermodynamic state in this
region, quality denoted by x is used. It is defined as the mass of vapor divided by the mass
of the mixture. In terms of quality, thermodynamic properties of a two-phase mixture are
calculated as a weighted average of the saturation properties. Thus, for example

h = (1 − x)hf + xhg
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or
h = hf + xhfg

in which hf denotes the enthalpy of saturated liquid, hg that of saturated vapor, and their
difference is denoted by hfg = hg − hf . Similarly, entropy of the two-phase mixture is

s = sf + xsfg

and its specific volume is
v = vf + xvfg

Integrating the second Gibbs equation Tds = dh − vdp between the saturated vapor and
liquid states at constant pressure gives

hfg = Tsfg

The first law of thermodynamics shows that the amount of heat transferred to a fluid flowing
at constant pressure when it is evaporated from its saturated liquid state to saturated vapor
state is

q = hg − hf = hfg

and this is therefore also
q = T (sg − sf ) = Tsfg

States with pressure above the critical pressure have the peculiar property that if water at
such pressures is heated at constant pressure, it converts from a liquid state to a vapor state
without ever forming a two-phase mixture. Thus, neither liquid droplets nor vapor bubbles
can be discerned in the water during the transformation. This region is of interest because
in a typical supercritical steam power plant built today water is heated at supercritical
pressure of 262 bar to temperature 566 ◦C, and in ultra-supercritical power plants steam
generator pressures of 600 bar are in use. Steam at these pressures and temperatures then
enters a high-pressure (HP) steam turbine, which must be designed with these conditions
in mind.

Steam tables, starting with those prepared by H. L. Callendar in 1900, and Keenan
and Kays in 1936, although still in use, are being replaced by computer programs today.
Steam tables, found in Appendix B, were generated by the software EES, a product of the
company F-chart Software, in Madison, Wisconsin. It was also used to prepare Figures 2.3
and 2.4. The mathematical software MATLAB has also a tool for calculating the properties
of steam. It was written by Magnus Holmgren and called XSteam.1 Its use is demonstrated
in the following example. This can also be executed without any changes with GNU/OCTAVE

software.

� EXAMPLE 2.3

Steam at p1 = 6000 kPa and T1 = 400 ◦C expands reversibly and adiabatically
through a steam turbine to pressure p2 = 60 kPa. (a) Find the exit quality and (b) the
work delivered if the change in kinetic energy is neglected.

1https://www.mathworks.com/matlabcentral/profile/authors/870351-magnus-holmgren

https://www.mathworks.com/matlabcentral/profile/authors/870351-magnus-holmgren
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Solution: (a) The thermodynamic properties at the inlet to the turbine are first found
from the steam tables, or calculated using computer software. Either way shows that
h1 = 3178.2 kJ/kg and s1 = 6.5431 kJ/(kg K). Since the process is reversible and
adiabatic, it takes place at constant entropy and s2 = s1. The exit state is in the
two-phase region, and steam quality is calculated from

x2 =
s2 − sf

sg − sf
=

6.5431 − 1.1452
7.5311 − 1.1452

= 0.8453

in which sf = 1.1452 kJ/(kg K) and sg = 7.5311 kJ/(kg K) are the values of
entropy for saturated liquid and saturated vapor at p2 = 60 kPa. Exit enthalpy is then
obtained from

h2 = hf + x2hfg = 359.84 + 0.8453 · 2293.0 = 2298.1 kJ/kg

(b) Work delivered is

ws = h1 − h2 = 3178.2 − 2298.1 = 880.1 kJ/kg

The calculations have been carried out using the MATLAB script shown below.

%Example 2.3
clear all

%State 1
p1=60; T1=400; %pressure in units of bar
h1=XSteam(’h_pT’,p1,T1)
s1=XSteam(’s_pT’,p1,T1)

%State 2
p2=0.6;
s2=s1;
sf2=XSteam(’sL_p’,p2)
sg2=XSteam(’sV_p’,p2)
x2=(s2-sf2)/(sg2-sf2)
hf2=XSteam(’hL_p’,p2)
hg2=XSteam(’hV_p’,p2)
h2=(1-x2)*hf2+x2*hg2

%Performance Calculations
ws=h1-h2;

The results are

h1 = 3178.2 kJ/kg h2 = 2298.1 kJ/kg
hf2 = 359.84 kJ/kg hg2 = 2652.9 kJ/kg
p1 = 6000 kPa p2 = 60 kPa
s1 = 6.5431 kJ/kg-K s2 = 6.5431 kJ/kg-K
sf2 = 1.1452 kJ/kg-K sg2 = 7.5311 kJ/kg-K
T1 = 400 C x2 = 0.8453 ws= 880.1 kJ/kg

Calculation of enthalpy and steam quality at state 2 could have been shortened by
simply writing
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p2=60 % pressure in units of bar
x2=XSteam(’x_ps’,p2,s2)
h2=XSteam(’h_px’,p2,x2) % or h2=XSteam(’h_ps’,p2,s2)

�

The Ts-diagram is a convenient representation of the properties of steam, for lines of
constant temperature on this chart are horizontal in the two-phase region, as are the lines of
constant pressure. Isentropic processes pass through points along vertical lines. Adiabatic
irreversible processes veer to the right of vertical lines, as entropy must increase. These
make various processes easy to visualize.

An even more useful representation is one in which entropy is on the abscissa and
enthalpy is on the ordinate. A diagram of this kind was developed by R. Mollier in
1906. A Mollier diagram, with accurate steam properties calculated using EES, is shown
in Figure 2.4. The enthalpy drop used in the calculation of the work delivered by a steam
turbine is now represented as a vertical distance between the end states.

If the exit state is inside the vapor dome, there is a practical limit beyond which exit
steam quality cannot be reduced. In a condensing steam turbine a complicating factor in the
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analysis is the lack of thermodynamic equilibrium as steam crosses into the vapor dome.
Water droplets take a finite time to form, and if the steam is clean and free of nucleation
sites, their formation is delayed. Also, if the quality is not too low, by the time droplets
form, steam may have left the turbine.

The line below which droplet formation is likely to occur is called the Wilson line. It is
about 115 kJ/kg below the saturated vapor line, with a steam quality 0.96 at low pressures
of about 0.1 bar. The quality decreases to 0.95 along the Wilson line as pressure increases
to 14 bar. Steam inside the vapor dome is supersaturated above the Wilson line, a term
that arises from water existing as vapor at conditions at which condensation should be
taking place.

� EXAMPLE 2.4

Steam from a steam chest of a single-stage turbine at p1 = 3 bar and T1 = 440 ◦C
expands reversibly and adiabatically through a nozzle to pressure of p2 = 1 bar.
Find the velocity of the steam at the exit of the nozzle.

Solution: Since the process is isentropic, the states move down along a vertical
line on the Mollier chart. From the chart, steam tables, or using XSteam, enthalpy
of steam in the reservoir is determined to be h1 = 3359.2 kJ/kg, and its entropy
is s1 = 8.155 kJ/(kg K). For an isentropic process, the exit state is specified by
p2 = 100 kPa and s2 = 8.155 kJ/(kg K). Enthalpy, obtained by interpolating in the
tables, is h2 = 3039.7 kJ/kg.

Assuming that the velocity in the steam chest is negligible, the exit velocity is
obtained from

h1 = h2 +
1
2
V 2

2

or
V2 =

√
2(h1 − h2) =

√
2(3359.2 − 3039.7) 1000 = 799.3 m/s

A MATLAB or GNU/OCTAVE script used to solve this example is shown below.

%Example 2.4
clear all
p1=3; T1=440;
h1=XSteam(’h_pT’,p1,T1);
s1=XSteam(’s_pt’,p1,T1);
p2=1;
s2=s1;
h2=XSteam(’h_ps’,p2,s2);
p1=p1*100; p2=p2*100;
V2=sqrt(2*(h1-h2)*1000);

The results are

h1 = 3359.2 kJ/kg h2 = 3039.7 kJ/kg
s1 = 8.155 kJ/kg-K s2 = 8.155 kJ/kg-K
p1 = 300.00 kPa p2 = 100.00 kPa
T1 = 440 C V2 = 799.3 m/s

�
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To the left of the saturated liquid line, water exists as a compressed liquid. Since
specific volume and internal energy do not change appreciably as a result of water being
compressed, their values may be approximated as

v(T, p) ≈ vf (T )

u(T, p) ≈ uf (T )

Enthalpy can then be obtained from

h(p, T ) ≈ uf (T ) + pvf (T )

which can also be written as

h(p, T ) = uf (T ) + pf (T )vf (T ) + (p − pf (T ))vf (T )

or as
h = hf + vf (p − pf ) (2.6)

in which explicit dependence on temperature has been dropped and it is understood that all
the properties are given at the saturation temperature.

Consider next the calculation of a change in enthalpy along an isentropic path from the
saturated liquid state to a compressed liquid state at higher pressure. Integration of

Tds = dh − v dp

along an isentropic path, assuming v to be constant, gives

h = hf + vf (p − pf ) (2.7)

This equation is identical to Eq. (2.6). Both approximations use the value of specific
volume at the saturation state.

� EXAMPLE 2.5

Water as saturated liquid at p1 = 6 kPa is pumped to pressure p2 = 3400 kPa. Find
the specific work done by assuming the process to be reversible and adiabatic, and
assuming that the difference in kinetic energy between inlet and exit is small and can
be neglected. Also calculate the enthalpy of water at the state with temperature T2 =
36.16 ◦C and pressure p2 = 3400 kPa.

Solution: Since at the inlet to the pump, water exists as saturated liquid, its
temperature is T1 = 36.16 ◦C, specific volume is v1 = vf = 0.0010064 m3/kg,
and entropy is s1 = sf = 0.5209 kJ/(kg K). At this state its enthalpy h1 = hf =
151.494 kJ/kg.

Along the isentropic path from state 1 to state 2s, Eq. (2.7), gives the value of
enthalpy h2sa = 154.910 kJ/kg. On the other hand, the value using XSteam at p2s =
3400 kPa and s2s = 0.5209 kJ/(kg K) is h2s = 154.894 kJ/kg, which for practical
purposes is the same as the approximate value. Hence, the work done is

ws = h2s − h1 = 154.89 − 151.49 = 3.40 kJ/kg
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h
1 
= 151.494 kJ/kg

p = 3400 kPa

 p = 6 kPa12t

2s
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T
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h
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T
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h
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2s  = 154.894 kJ/kg
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T
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h
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 = 154.910 kJ/kg

Figure 2.5 Actual and approximate values for the enthalpy of compressed liquid.

From Eq. (2.6) at pressure 3400 kPa an approximate value for enthalpy becomes

h2ta = 151.494 + (3400 − 6) · 0.0010064 = 154.910 kJ/kg

whereas an accurate value obtained by XSteam for compressed liquid is 154.532
kJ/kg. These values are shown at points 1 and 2t in Figure 2.5. �

2.4.2 Ideal gases

An ideal gas model assumes that internal energy is only a function of temperature u = u(T )
and the equation of state relates pressure and specific volume to temperature by

pv = RT or p = ρRT (2.8)

in which R is an ideal gas constant. It is equal to the universal gas constant, R̄ =
8.314 kJ/(kmol K), divided by the molecular mass M of the gas and is thus calculated
according to R = R̄/M. The ideal gas model has been shown to be valid for various gases
at low pressures. From Eq. (2.8), it follows that enthalpy for an ideal gas can be written in
the form h = u + RT , and this shows that enthalpy is also a function of temperature only.

Specific heats for an ideal gas at constant volume and constant pressure simplify to

cv(T ) =
(

∂u

∂T

)
v

=
du

dT
so that du = cv(T )dT

and
cp(T ) =

(
∂h

∂T

)
p

=
dh

dT
so that dh = cp(T )dT

Differentiating next, h = u + RT gives

dh = du + R dT or cp(T )dT = cv(T )dT + R dT

from which it follows that
cp(T ) = cv(T ) + R
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Thus even if specific heats depend on temperature, their difference does not. Henceforth,
the explicit dependence on temperature is not displayed. With γ = cp/cv denoting the ratio
of specific heats, the relations

cv =
R

γ − 1
cp =

γR

γ − 1
(2.9)

follow directly. The values of cv, cp, and γ are shown for air in Figure 2.6.
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Figure 2.6 Specific heats for air and their ratio.

An approximate value for the ratio of specific heats is obtained from the equipartition
of energy principle of kinetic theory of gases. It states that each degree of freedom of a
molecule contributes 1

2R to the specific heat at constant volume. For a monatomic gas,
there are three translational degrees of freedom: one for each of the three orthogonal
coordinate directions. This means that for monatomic gases

cv =
3
2
R cp =

5
2
R γ =

5
3

= 1.67

If a molecule of a diatomic gas is regarded as a dumbbell, the rotational degrees of freedom
about the two axes giving the largest moments of inertia contribute each one degree of
freedom and the third is neglected. The vibrational degrees of freedom are not excited
at relatively low temperatures. Hence, for diatomic gases the specific heats, and their
ratio, are

cv =
5
2
R cp =

7
2
R γ =

7
5

= 1.40

Since air is made up mainly of the diatomic N2 and O2, Figure 2.6 shows that the equi-
partition principle explains the low-temperature behavior of specific heats very well.
Activation of greater number of vibrational modes takes place as temperature is increased.

Products of combustion flowing through a gas turbine consist of complex molecules,
and the reasoning above suggests that the ratio of specific heats for them is closer to unity
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than for diatomic molecules, since all three rotational and low-level vibrational modes
are excited. For combustion gases, the value γ = 1.333 is appropriate. For superheated
steam at low pressures, the value γ = 1.3 is acceptable, and for steam that is just below
the saturated vapor line, Zeuner’s empirical equation γ = 1.035 + 0.1x is often used,
with x as the steam quality. At saturation condition x = 1, and this gives γ = 1.135 for
saturated steam.

2.4.3 Air tables and isentropic relations

In this section, the influence of temperature variation of specific heats on the thermodynamic
properties of air are considered. Entropy for ideal gases can be determined by first writing

Tds = dh − v dp

in the form
ds = cp

dT

T
− R

dp

p

and integrating. This gives

s(T2, p2) − s(T1, p1) = s0(T2) − s0(T1) − R ln
p2

p1
(2.10)

in which s0 is defined as

s0(T ) =
∫ T

Tref

cp(T )
dT

T

Entropy is assigned the value zero at the reference state, Tref = 0 K and pref = 1 atm. The
value of entropy at temperature T and pressure p is then calculated from

s(T, p) = s0(T ) − R ln
p

pref

For a reversible process s2 = s1, and Eq. (2.10) shows that

p2

p1
= exp

[
s0(T2) − s0(T1)

R

]

which can be also be written as

p2

p1
=

exp[s0
2(T2)/R]

exp[s0
1(T1)/R]

Defining a relative pressure as

pr(T ) = exp[s0(T )/R]

it is seen that pr is only a function of temperature. The ratio of pressures at the endpoints
of a reversible process can now be expressed as

p2

p2
=

pr2

pr1
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By using the ideal gas relation, the pressure ratio can be recast into the form

p2

p1
=

RT2

v2

v1

RT1
=

pr2

pr1

Solving for the specific volume ratio yields

v2

v1
=

[
RT2

pr(T2)

] [
pr(T1)
RT1

]

Now defining vr(T ) = RT/pr(T ) allows the specific volume ratio to be written as

v2

v1
=

vr2

vr1

The values of s0(T ), pr(T ), and vr(T ) are listed in the air Table B.4. An alternative to
the tables is to calculate the thermodynamic properties by a computer program. Such a
function is listed in Table B.7.

� EXAMPLE 2.6

Air enters a compressor at p1 = 100 kPa and T1 = 300 K. It is compressed isen-
tropically to p2 = 1200 kPa. Assuming that there is no change in the kinetic energy
between the inlet and the exit, find the work done by the compressor using the
air tables.

Solution: Reversible work done is

ws = h2s − h1

At T1 = 300 K, pr1 = 1.386, and h1 = 300.19 kJ/kg. For an isentropic process,

pr2 =
p2

p1
pr1 =

1200
100

1.386 = 16.632

Temperature corresponding to this value of pr2 is T2s = 603.5 K and h2s = 610.64
kJ/kg. Hence

ws = h2s − h1 = 610.64 − 300.19 = 310.45 kJ/kg

Carrying out the calculations with YAir from Table B.7 gives

%Example 2.6
clear all
Rbar=8.31447; M=28.943; R=Rbar/M;

%State 1
p1=100; T1=300;
p2=1200; R=0.287;
[T1,h1,u1,s01,pr1,vr1]=YAir(’T’,T1);

%State 2
pr2=p2*pr1/p1;
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[T2s,h2s,u2s,s02,pr2,vr2]=YAir(’pr’,pr2);
%Work

ws=h2s-h1;

The results are

p1 = 100 kPa T1 = 300.0 K h1 = 300.19 kJ/kg-K pr1 = 1.386
p2 = 1200 kPa T2s = 603.7 K h2s = 611.01 kJ/kg-K pr2 = 16.654
ws = 310.82 kJ/kg

�

The function YAirwas written in such a way that with one call, all the important variables
are returned. The variables are listed in a certain logical order, namely temperature is first,
enthalpy and internal energy are next followed by the temperature dependent part of
entropy. Internal energy is seldom needed in turbomachinery analysis, but it is listed next
to enthalpy as it is closely related to it. The last two entries are the relative pressure and
volume.

When specific heats are assumed to be constant, integrating the Tds equations gives

s2 − s1 = cv ln
T2

T1
+ R ln

v2

v1

or
s2 − s1 = cp ln

T2

T1
− R ln

p2

p1

For an isentropic process, the first of these gives

v2

v1
=

(
T2

T1

)−1/(γ−1)

and the second one can be written as

p2

p1
=

(
T2

T1

)γ/(γ−1)

Eliminating the temperature ratios gives

p2

p1
=

(
v1

v2

)γ

=
(

ρ2

ρ1

)γ

The next example illustrates, the use of these equations for the same conditions as in the
previous example.

� EXAMPLE 2.7

Air enters a compressor at p1 = 100 kPa and T1 = 300 K. It is compressed isentrop-
ically to p2 = 1200 kPa. Find the work done by the compressor assuming constant
specific heats with γ = 1.4 and using variable specific heats with YAir.

Solution: Work done is
ws = cp(T2s − T1)
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Temperature T2s is found from

T2s = T1

(
p2

p1

)(γ−1)/γ

= 300 · 120.4/1.4 = 610.18 K

Hence,

ws = cp(T2s − T1) = 1.0045(610.18 − 300) = 311.58 kJ/kg

The calculations with MATLAB or GNU/OCTAVE are the same as in the previous example
but for the sake of illustration, the final state is found by calculating the temperature-
dependent part of entropy and using it as input to function YAir.

%Example 2.7
clear all
Rbar=8.31447; M=28.943; R=Rbar/M;
p1=100; T1=300; p2=1200;

%State 1
[T1,h1,u1,s01,pr1,vr1]=YAir(’T’,T1);

%State 2
s02=s01+R*log(p2/p1);
[T2s,h2s,u2s,s02,pr2,vr2]=YAir(’s0’,s02);

%Work
ws=h2s-h1;

The results are

p1 = 100 kPa T1 = 300.0 K h1 = 300.19 kJ/kg-K pr1 = 1.386
p2 = 1200 kPa T2s = 603.7 K h2s = 611.01 kJ/kg-K pr2 = 16.654
ws = 310.82 kJ/kg

Owing to the relatively small temperature range, the error made in assuming constant
specific heats is quite small. The difference between the computer calculation and
using the air tables arises from interpolation and it is insignificant. �

2.4.4 Ideal gas mixtures

Kinetic theory of ideal gas mixtures originates from the intuitive notion that the pressure on
the walls of a vessel containing a gas is caused by the momentum of colliding molecules.
This suggests that at relatively low densities, each molecular species may be assumed to
act independently.

Dalton’s model is based on such a consideration, and it states that the mixture pressure
is equal to the sum of the component pressures pi, which each of the molecular species in
the mixture would exert if it were to exist alone at the mixture temperature and volume.
Expressed algebraically, this is

p = p1 + p2 + · · · + pn
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When ideal gas behavior may be assumed, the component pressure pi can be represented by

pi =
NiR̄T

V

in which Ni is the number of moles of the ith component, T is the mixture temperature,
and V is the mixture volume. For the mixture, the ideal gas law is

p =
NR̄T

V

and N is the number of moles in the mixture. Dividing the last two equations by each other
gives

pi =
Ni

N
p = yip

and here yi is the mole fraction and pi is the partial pressure of the ith component. It is
equal to the component pressure only for ideal gases.

Other properties of an ideal gas mixture can be obtained by a generalization of Dalton’s
rule, called the Gibbs–Dalton rule. Thus internal energy of a mixture is given by

U = U1 + U2 + · · · + Un

Since the internal energy of the ith component can be written as

Ui = Niūi

in which ūi is the internal energy per mole of the ith species, the internal energy of the
mixture may be expressed as

U = N1ū1 + N2ū2 + · · · + Nnūn

Dividing this by the total number of moles gives

ū = yiū1 + y2ū2 + · · · + ynūn

On a mass basis internal energy may be written as

U = m1u1 + m2u2 + · · · + mnun

in which mi is the mass of the ith component. Dividing this by the mass of the mixture gives

u = x1u1 + x2u2 + · · · + xnun

and here xi = mi/m is the mass fraction of the ith component. Similar equations hold for
enthalpy:

h̄ = yih̄1 + y2h̄2 + · · · + ynh̄n

h = xih1 + x2h2 + · · · + xnhn
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Using the Gibbs–Dalton rule, entropy of the ith component in an ideal gas mixture behaves
as if it existed alone at the mixture temperature and its own partial pressure. Thus

S = N1s̄1(T, p1) + N2s̄2(T, p2) + · · · + Nns̄n(T, pn)

or
S = m1s1(T, p1) + m2s2(T, p2) + · · · + mnsn(T, pn)

On a molar basis the specific entropy is

s̄ = y1s̄1(T, p1) + y2s̄2(T, p2) + · · · + yns̄n(T, pn)

and on a mass basis it is

s = x1s1(T, p1) + x2s2(T, p2) + · · · + xnsn(T, pn)

Gibbs equation for the ith component can be written as

Tdsi = dhi − vi dpi

in which vi = V/mi is the specific volume of the ith component. Using the ideal gas
relation pivi = RiT puts the Gibbs equation into the form

dsi = cp,i

dT

T
− Ri

dpi

pi

By assuming the specific heat to be constant, integrating this gives

Δsi = cp,i ln
T2

T1
− Ri ln

pi,2

pi,1

or on a molar basis
Δs̄i = c̄p,i ln

T2

T1
− R̄ ln

pi,2

pi,1

The pressure term on the right is used in the definition of entropy of mixing. In combustion
reactions, once the combustion is complete, the mixture of combustion products may be
considered a pure substance, just as is done for atmospheric air. Expansion through a
turbine then takes place at a constant mixture composition and the entropy of mixing
vanishes. If the specific heats are assumed to be constant, then, in order to carry out the
calculations, it only remains to determine the specific heat and molecular mass of the
mixture.

The molecular mass of the mixture is obtained from

M =
m1 + m2 + · · · + mn

N
=

N1M1 + N2M2 + · · · + NnMn

N

= y1M1 + y2M2 + · · · + ynMn

or

M =
n∑

i=1

yiMi
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The constant pressure specific heat of the mixture is

c̄p =
n∑

i=1

yic̄pi and cp =
c̄p

M

From earlier studies of combustion, it may be recalled that combustion of methane with a
stoichiometric amount of theoretical air leads to the chemical equation

CH4 + 2(O2 + 3.76N2) → CO2 + 2H2O + 7.52N2

Assuming that the water in the products remains as vapor, the total number of moles in the
gaseous products is 10.52. If the amount of theoretical air is 125% of the stoichiometric
amount, then the previous chemical equation becomes

CH4 + 2.5(O2 + 3.76N2) → CO2 + 2H2O + 0.5O2 + 9.40N2

and the number of moles of gaseous products is 12.90. The next example illustrates the
calculation of the mixture specific heat.

� EXAMPLE 2.8

Consider the combustion of methane with 125% of theoretical air. Find the molecular
mass of the mixture and the specific heat at constant pressure.

Solution: The number of moles of each species has been calculated above and are as
follows: NCO2

= 1, NH2O = 2, NO2
= 0.5, and NN2

= 9.4. Hence the total number of
moles is N = 12.9 and the mole fractions are yCO2

= 0.0775, yH2O = 0.1550, yO2
=

0.0388, and yN2
= 0.7287. The specific heats of common gases are listed in the

Table B.5. The molecular mass of the mixture is given by

M = yCO2
MCO2

+ yH2OMH2O + yO2
MO2

+ yN2
MN2

= 0.0775 · 44.0 + 0.1550 · 18.0 + 0.0388 · 32.0 + 0.7287 · 28.0

= 27.845 kg/kmol

The molar specific heat at constant pressure is then

c̄p = yCO2
c̄p CO2

+ yH2Oc̄p H2O + yO2
c̄p O2

+ yN2
c̄p N2

= 0.0775 · 37.3292 + 0.1550 · 33.5702 + 0.0388 · 29.3683 + 0.7287 · 29.1533

= 30.480 kJ/(kmol K)

The mixture specific heat is

cp =
c̄p

M = 1.0946 kJ/(kg K)
�

As pointed out by Cohen et al. [15], it has been found that for combustion products of
jet fuel, it is sufficiently accurate to use the values

cp = 1148 J/(kg K) R = 287 J/(kg K) γ =
4
3
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As inspection of Figure 2.6 shows that the value of γ decreases and that of cp increases
as temperature increases. Hence, if the actual mean temperature during a process is lower
than that for which these values apply, then the value of γ is too large in the calculation
in which it is used to determine the temperature change, and therefore this leads to an
excessively large change in the temperature. But then the value of cp is too low and the
product cp ΔT to determine the enthalpy change during the process is nearly correct, as it
involves compensating errors. By a similar argument, the constant values for air are

cp = 1004.5 J/(kg K) R = 287 J/(kg K) γ = 1.4

2.4.5 Incompressibility

The important distinction between an incompressible fluid and incompressible flow is
introduced next. Incompressibility may, on the one hand, mean that specific volume does
not change with pressure, but it is allowed to change with temperature. A stricter model is
to have the specific volume remain absolutely constant. In liquid water even large changes
in pressure lead to only small changes in the specific volume, and by this definition it is
nearly incompressible, even if its specific volume changes appreciably with temperature.
In the flow of gases at low speeds, pressure changes are mild and the flow is considered
incompressible, even if the fluid is clearly compressible.

With these distinctions in mind, consider a strictly incompressible fluid. With v constant,
the first Gibbs equation reduces to

du = Tds

This shows that internal energy changes only if the entropy changes. If the flow is adiabatic,
entropy increases only as a result of irreversibilities, and hence, this can be the only cause
of an increase in internal energy. Similarly, if the flow is reversible and adiabatic, then
internal energy must remain constant. As a consequence, the first law of thermodynamics
in such a flow takes the form

p1

ρ
+

1
2
V 2

1 + gz1 =
p2

ρ
+

1
2
V 2

2 + gz2 + ws (2.11)

Thermal energy terms are completely absent, and this equation involves only mechanical
energy. When no work is done, it reduces to

p1

ρ
+

1
2
V 2

1 + gz1 =
p2

ρ
+

1
2
V 2

2 + gz2 (2.12)

This equation was developed for a flow through a control volume with properties that are
uniform at its inlet and exit. By taking a control surface to coincide with a stream-tube of
infinitesimal cross section, this requirement is automatically Satisfied, and this equation
goes by the name Bernoulli equation, valid between any two point on the same streamline.
The sum of the three terms is thus constant and when written as

p +
1
2
ρV 2 + ρgz = p0

the constant p0 is called the Bernoulli constant, or more commonly the stagnation pressure
in an incompressible flow, as discussed in the next section.
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2.4.6 Stagnation state

Stagnation state is defined by the equations

h0 = h +
1
2
V 2 + gz

s0 = s (2.13)

It is a reference state that may not correspond to any actual state in the flow. As was pointed
out earlier, enthalpy h0 is called the stagnation enthalpy and h is now called the static
enthalpy. Other properties, such as pressure, temperature, specific volume, or density are
designated similarly. This definition fixes to each static state in the flow a corresponding
unique stagnation state. The stagnation state is arrived at by a thought experiment in which
the flow is decelerated isentropically to zero velocity, while it descends or ascends to a
reference elevation.

From the definition of a stagnation state, integrating Tds = dh − v dp from a static
state to its stagnation state gives the following equation, since ds = 0,

h0 − h =
∫ p0

p

v dp =
∫ p0

p

dp

ρ

For an incompressible fluid this reduces to

h0 − h =
p0

ρ
− p

ρ

Substituting for h0 from Eq. (2.13) into this gives

p0 = p +
1
2
ρV 2 + ρgz (2.14)

which, as mentioned above, defines the stagnation pressure for an incompressible fluid.
This expression can also be used in low-speed compressible flow as an approximation to
the true stagnation pressure.

2.5 EFFICIENCY

In this section, various measures of efficiency for turbomachinery flows and their relation-
ship to thermodynamic losses are discussed.

2.5.1 Efficiency measures

Work delivered by a turbine is given as the difference between inlet and exit stagnation
enthalpy. A greater amount of work would be delivered during an expansion along a
reversible path to the same exit pressure. With w the actual work and ws the isentropic
work, their ratio

ηtt =
w

ws
=

h01 − h03

h01 − h03s
(2.15)

is called a total-to-total efficiency. In the analysis of a turbine stage, inlet to a stator
(nozzle) is given label 1 and 3 is the exit state from the rotor. Label 2 is reserved to
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Figure 2.7 Thermodynamic states used to define a turbine efficiency.

identify a state between the stator and the rotor. The process line for an adiabatic expansion
between static states h1 and h3 is shown in Figure 2.7, which also shows the process
line between the stagnation states h01 and h03. In addition to the constant pressure lines
corresponding to these states, a line of constant stagnation pressure p03i is drawn. This
stagnation pressure corresponds to an end state along a reversible path with the same
amount of work delivered as in the actual process. As will be shown below, the loss of
stagnation pressure Δp0 = p03i − p03 is a measure of irreversibility in the flow. However,
a stagnation pressure loss calculated in this way is only an estimate, and for a stage, the
losses across a stator and a rotor need to be calculated separately. This is discussed in
Chapters 7 and 8.

If no attempt is made to diffuse the flow to low velocity, the exit kinetic energy, say in
a single-stage turbine, is wasted. For such a turbine, a total-to-static efficiency is used as a
measure of the efficiency. By this definition, efficiency is given as

ηts =
h01 − h03

h01 − h3s
(2.16)

and the larger value of the denominator, caused by the wasted kinetic energy, reduces the
efficiency.

The total-to-total efficiency is clearly also

ηtt =
h1 + 1

2V
2
1 − h3 − 1

2V
2
3

h1 + 1
2V

2
1 − h3s − 1

2V
2
3s

(2.17)

The flow expands between the static states with enthalpy h1 and h3, with states 01 and 03
as the corresponding stagnation reference states. For an isentropic expansion to pressure
p3, the static enthalpy at the exit is h3s. To find its corresponding stagnation pressure, the
exit velocity V3s would have to be known. A consistent theory can be developed if it is
assumed that the state 03s lies on the constant-pressure line p03. Then integrating the Gibbs
equation along the constant-pressure p3 line and also along the constant p03 line gives the
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two equations

s3 − s1 = cp ln
T3

T3s
s3 − s1 = ln

T03

T03s

from which
T3

T3s
=

T03

T03s
or

T03

T3
=

T03s

T3s

From the definition of a stagnation state the following two equations are obtained

T03

T3
= 1 +

V 2
3

2cpT3

T03s

T3s
= 1 +

V 2
3s

2cpT3s

and the equality of the temperature ratios on the left-hand sides (LHSs) of these equations
shows that

V3

V3s
=

√
T3

T3s

so that V3 > V3s. Without a great loss of accuracy, the temperature ratio is often replaced
by unity, and then V3s is replaced by V3.

If a stage is designed such that V1 = V3, then the kinetic energy terms in the numerator
of Eq. (2.17) cancel. If next the approximation V3 = V3s is used, then Eq. (2.15) for
total-to-total efficiency reduces to

ηt =
h1 − h3

h1 − h3s

This is the familiar definition of turbine efficiency from the study in the first course of
thermodynamics. In a multistage turbine, the exit state would need a different label. It will
be denoted by label e when the distinction needs to be made.

� EXAMPLE 2.9

Steam enters an adiabatic multistage turbine at static pressure of 80 bar, static
temperature 520 ◦C, and velocity 50 m/s. It leaves the turbine at pressure 0.35 bar,
temperature 80 ◦C, and velocity 200 m/s. Find the stagnation enthalpy and pressure
at the inlet, stagnation enthalpy and pressure at the exit, total-to-total efficiency,
total-to-static efficiency, and the specific work done.

Solution: Using steam tables static enthalpy and entropy of steam at the inlet and
exit are

h1 = 3448.6 kJ/kg s1 = 6.7893 kJ/(kg K)

he = 2645.2 kJ/kg se = 7.7561 kJ/(kg K)

Stagnation enthalpies are

h01 = h1 +
1
2
V 2

1 = 3448.6 +
502

2 · 1000
= 3449.9 kJ/kg

h0e = he +
1
2
V 2

2 = 2645.2 +
2002

2 · 1000
= 2665.2 kJ/kg



�

� �

�

40 PRINCIPLES OF THERMODYNAMICS AND FLUID FLOW

Had the flow been isentropic, the exit state would have corresponded to pe = 0.35 bar
and ses = s1. This is inside the vapor dome at quality

xes =
ses − sf

sg − sf
=

6.7893 − 0.9876
7.7146 − 0.9876

= 0.8624

and the enthalpy at this state is

hes = hf + xes(hg − hf ) = 304.25 + 0.8624 · (2630.7 − 304.25) = 2310.7 kJ/kg

Assuming that Ves = Ve then gives

h0es = hes +
1
2
V 2

e = 2310.7 +
2002

2 · 1000
= 2330.7 kJ/kg

and the total-to-total efficiency is

ηtt =
h01 − h0e

h01 − h0es
=

3449.9 − 2665.2
3449.1 − 2329.9

= 0.7011

The total-to-static efficiency is

ηts =
h01 − h0e

h01 − hes
=

3449.9 − 2665.2
3449.9 − 2310.7

= 0.6888

and the definition of efficiency when kinetic energy changes are neglected is

ηt =
h1 − he

h1 − hes
=

3448.6 − 2645.2
3448.6 − 2310.7

= 0.7061

The specific work delivered is

w = h01 − h0e = 3449.9 − 2665.2 = 784.7 kJ/kg
�

Consider next a single-stage centrifugal compressor. The flow leaving the impeller enters
a diffuser section, and then a volute. These stationary parts of the machine are designed
to decelerate the flow so that at the exit velocity is well matched with the desired flow
velocity in the discharge pipe. Since kinetic energy from the impeller is utilized in this
way, it is again appropriate to define the efficiency as the total-to-total efficiency. It is
given by

ηtt =
ws

w
=

h03s − h01

h03 − h01
(2.18)

The process lines between the stagnation states and the corresponding static states are shown
in Figure 2.8. Now, as for the turbine, the state 03s is assumed to be on the constant-pressure
line p03, and the sketch reflects this. Had the same amount of compression work been
done reversibly the exit stagnation pressure would have been p03i, which is also shown in
the figure.
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Figure 2.8 Thermodynamic states used to define a compressor efficiency.

In ventilating blowers, no use is made of the exit kinetic energy, and in such applications,
the total-to-static efficiency is used. In these cases efficiency is defined as

ηts =
h3s − h01

h03 − h01

Since h3s is smaller than h03s, the efficiency is likewise smaller, and the difference
accounts for the wasted kinetic energy. To be sure, in ventilating a space, high velocity
may be needed to blow off light particulate matter sitting on the floors or attached to
walls. In this case, a blower may be placed upstream of the ventilated space and forced
draft used to remove the particles. In induced draft contaminated air is drawn from the
ventilated space into a blower and the kinetic energy in the exhaust stream is lost to the
surroundings.

� EXAMPLE 2.10

Air is drawn into a fan of diameter D = 95.4 cm from atmosphere at pressure
101.3 kPa and temperature 288.0 K. The volumetric flow rate is Q = 4.72 m3/s of
standard air, and the power to the fan is Ẇ = 2.52 kW. The total-to-total efficiency
of the fan is 0.8. (a) Find the total-to-static efficiency. (b) Find the stagnation pressure
rise across the fan.

Solution: (a) As air is drawn from the atmosphere at standard temperature and
pressure. It then undergoes a reversible adiabatic acceleration to the inlet of the
blower. The inlet stagnation pressure is therefore p01 = 101.3 kPa, and the stagnation
temperature is T01 = 288.0 K. The stagnation density of standard air is given by

ρ01 =
p01

RT01
=

101300
287 · 288.0

= 1.225 kg/m3
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The mass flow rate is therefore

ṁ = ρ01Q = 1.225 · 4.72 = 5.78 kg/s

The fan flow area and velocity, assuming A1 = A3, are

A =
1
4
πD2 = 0.715 m2 V1 = V3 =

Q

A
=

4.72
0.715

= 6.6 m/s

Velocity is quite low and the flow can be considered incompressible with constant
density. The specific work is

w =
Ẇ

ṁ
=

2520
5.78

= 435.8 J/kg

and the isentropic work is

ws = ηttw = 0.8 · 435.8 = 348.7 J/kg

Assuming that V3s = V3, the total-to-static efficiency may be written as

ηts =
T3s − T01

T03 − T01
=

T03s − T01 − V 2
3 /(2cp)

T03 − T01
= ηtt −

V 2
3

2w
= 0.8 − 6.62

2 · 435.8
= 0.75

(b) The stagnation pressure rise can be calculated from

p03 − p01 = ρws = 1.225 · 348.7 = 427 Pa = 43.6 mm H2O

The exit states were labeled with subscript 3 even though this machine does not have
anything that functions as a stator. �

In a multistage compressor with large pressure and temperature differences, the variability
of specific heats with temperature needs to be factored in to obtain an accurate result. This
is illustrated in the next example.

� EXAMPLE 2.11

Air from the atmosphere flows into a multistage compressor at pressure 1bar and
temperature 300 K. The ratio of stagnation pressures across the compressor is 30,
and its total-to-total efficiency is 0.82. (a) Find the loss of stagnation pressure during
this compression process, assuming specific heats to be constant. (b) Find also the
loss in stagnation pressure assuming specific heats to vary with temperature.

Solution: (a) The inlet to the compressor is labeled as state 1, and its exit is denoted
as e. The isentropic compression gives the stagnation temperature

T0es = T01

(
p0e

p01

)(γ−1)/γ

= 300 · 301/3.5 = 792.8 K

From the definition of efficiency

ηtt =
T0es − T01

T0e − T01
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the exit temperature is

T0e = T01 +
1
ηtt

(T0es − T01) = 300 +
1

0.82
(792.8 − 300) = 901.0 K

If the same amount of work had been done isentropically, the pressure ratio would
have been

p0ei

p01
=

(
T0e

T01

)γ/(γ−1)

=
(

901
300

)3.5

= 46.94

Hence, p0ei = 46.94 bar and the loss of stagnation pressure is Δp0L = p0ei − p0e =
46.94 − 30 = 16.94 bar.
(b) For variable specific heats, at T01 = 300 K and (with the script YAir) pr1 = 1.386
and h01 = 300.19kJ/kg. Hence

pre = pr1
p0e

p01
= 1.386 · 30 = 41.58

Thus T0es = 771.80 K and h0es = 791.27 kJ/kg. Using the definition of total-to-total
efficiency

ηtt =
h0es − h01

h0e − h01

gives for the exit enthalpy the value

h0e = h01 +
h0es − h01

ηtt
= 300.19 +

791.27 − 300.19
0.82

= 899.07 kJ/kg

From the air tables for this value prei = 65.85. It then follows that

p0ei

p01
=

prei

pr1
=

65.85
1.386

= 47.51

and p0ei = 47.51 bar. Hence the loss of stagnation pressure is Δp0L = p0ei − p0e =
47.51 − 30.0 = 17.51 bar. There is now a small difference in the calculated results
because the temperature range between inlet and exit states is large. �

2.5.2 Thermodynamic losses

The effect of thermodynamic losses is illustrated by considering an increment on either a
turbine or a compressor process line, as shown in Figure 2.9. From the Gibbs equation

Tds = dh − v dp

the slope of the constant-pressure line is(
∂h

∂s

)
p

= T
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s s

s + dss

p

p + dp p + dp

dh dh

h + dh

h
h

h h

dh
f = Tds

dh
s
= vdp dh

s
= vdp

1

12s

2

s + dss

p

h + dh
dh

f
 = Tds

2s

2

(a) (b)

Figure 2.9 (a) An infinitesimal irreversible process in a turbine and (b) an infinitesimal irreversible
process in a compressor.

which shows that this slope is equal to the absolute temperature on an enthalpy–entropy
(hs) diagram. The enthalpy change between the end states may be considered to be made
up of two parts. The irreversible change in enthalpy is dhf = Tds, and the isentropic
change is obtained by setting ds = 0, which gives dhs = v dp. Substituting these back into
the Tds equation shows that in this notation

dh = dhs + dhf

For a compressor, all three terms are positive. For a turbine, dhf is positive, but dh and
dhs have negative values. The irreversible process associated with dhf is called reheating,
or internal heating. Although the former term is in general use to describe this, the latter is
better for it reflects what is happening physically. In other words, the irreversibilities cause
an increase in temperature.

The nature of the irreversibilities may be further illustrated by considering a flow
channel that extends from an inlet at location �1 to some general location �. The first law
of thermodynamics for this control volume is

Q̇ + ṁ

(
u1 + p1v1 +

1
2
V 2

1 + gz1

)
= ṁ

(
u + pv +

1
2
V 2 + gz

)
+ Ẇ

Differentiating this with respect to � and rearranging gives

ṁ
du

d�
= Q̇′ − ṁ

[
d(pv)

d�
+

1
2

dV 2

d�
+ g

dz

d�

]
− Ẇ ′ (2.19)

in which the rate of heat transfer and work interaction per unit length along the element d�
have been defined as

Q̇′ =
dQ̇

d�
Ẇ ′ =

dẆ

d�
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Clearly, in those parts of the flow in which there are no heat interactions Q̇′ = 0 and
similarly Ẇ ′ = 0 in those parts where there are no work interactions.

Differentiating the second law of thermodynamics

ṁ(s − s1) =
∫ �

�1

Q̇′

T
d� +

∫ �

�1

Ṡ ′
pd�

with respect to � gives

ṁ
ds

d�
=

Q̇′

T
+ Ṡ ′

p (2.20)

2.5.3 Incompressible fluid

For an incompressible fluid, density and its reciprocal specific volume are constant. For
this kind of fluid, the first Gibbs equation reduces to

T
ds

d�
=

du

d�

Combining this with the second law in Eq. (2.20) gives

ṁ
du

d�
= Q̇′ + T Ṡ ′

p (2.21)

As was remarked earlier, the second term on the right shows that internal energy in
incompressible flow always increases as a result of irreversibilities. The first term on the
right side shows that internal energy increases by heat transfer into the fluid, but decreases
when heat is lost to the surroundings. Integrating Eq. (2.21) gives

u2 − u1 = q +
1
ṁ

∫ �2

�1

T Ṡ ′
p d� (2.22)

Substituting Eq. (2.21) into Eq. (2.19) puts the latter into the form

ṁ

(
d(pv)

d�
+

1
2

dV 2

d�
+ g

dz

d�

)
+ Ẇ ′ = −T Ṡ ′

p

Integrating this gives

p2v +
1
2
V 2

2 + gz2 = p1v +
1
2
V 2

1 + gz1 − w −
∫ �2

�1

Ts′p d� (2.23)

The specific entropy production per unit length of the flow channel, s′p, has been introduced
via s′p = Ṡ ′/ṁ to simplify the notation. In Eqs. (2.21) and (2.23) absolute temperature
T multiplies the specific entropy production per unit length, and it is the product Ts′p,
having the dimensions of specific energy per unit length of the channel, which represents
a thermodynamic energy loss.

In the first law of thermodynamics, flow work, kinetic and potential energy, and external
work are all associated with mechanical energy. On the other hand, internal energy and
heat interactions are thermal energy terms. Viewed from this perspective Eq. (2.22) may be
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said to be a thermal energy balance and Eq. (2.23) a mechanical energy balance. The term
associated with entropy production represents an irreversible conversion of mechanical
energy into internal energy and is the reason why it is also called a thermodynamic energy
loss. In contrast to a conservation principle in which there are no terms that would represent
conversion of one form of energy to another, in a balance equation such a conversion term
may be present. Further examination shows that heat transfer to, or from, an incompressible
fluid changes only the internal energy and not the pressure, velocity, or elevation. These
quantities change only as a result of work done or extracted, and they decrease as a result of
irreversibilities in the flow. It is customary not to make a distinction between conservation
and balance principles in practice, and often the principle of conservation of mass, for
example is called simply the mass balance. This practice will also be followed in this text.

For an incompressible fluid stagnation pressure has been shown to be given by

p0 = p +
1
2
ρV 2 + ρgz

Making use of this relationship Eq. (2.23) takes the form

p02 = p01 − ρw − ρ

ṁ

∫ �2

�1

T ṡ′p d� (2.24)

This shows that stagnation pressure changes because of a work interaction with the
surroundings and it drops because of irreversibilities in the flow.

2.5.4 Compressible flows

For compressible flows, the first law of thermodynamics is written for a flow extending
from location �1 to an arbitrary location �, as

Q̇ + ṁ

(
h1 +

1
2
V 2

1 + gz1

)
= Ẇ + ṁ

(
h +

1
2
V 2 + gz

)

or in terms of stagnation enthalpies as

Q̇ + ṁh01 = Ẇ + ṁh0

Differentiating gives

Q̇′ − Ẇ ′ = ṁ
dh0

d�
(2.25)

The second law of thermodynamics in the differential form has been shown to have
the form

ṁ
ds

d�
=

Q̇′

T
+ Ṡ ′

p

Writing next the second Tds equation between stagnation states as

T0
ds

d�
=

dh0

d�
− v0

dp0

d�
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and substituting ds/d� from this into the second law leads to

ṁ
dh0

d�
− ṁv0

dp0

d�
=

T0

T
Q̇′ + T0Ṡ

′
p

Using Eq. (2.25) to eliminate dh0/d� yields the equation

ṁv0
dp0

d�
=

(
T0

T
− 1

)
Q̇′ − T0Ṡ

′
p − Ẇ ′ (2.26)

Turbomachinery flows are adiabatic so the heat transfer term may be dropped.
In an adiabatic flow integrating Eq. (2.26) gives

∫ p02

p01

v0 dp0 + w = −
∫ �2

�1

T0s
′
p d� (2.27)

If the same amount of work had been done reversibly, then the exit stagnation pressure
would have been different. Because the work done is the same, the pressure p02i lies along
the constant h02 line. A process line for this is shown in Figure 2.7, except that in that
figure the exit enthalpy h03 corresponds to the enthalpy h02.

Integrating next Eq. (2.26) for a reversible adiabatic process gives∫ p02i

p01

v0 dp0 + ws = 0 (2.28)

Thus, since it has been stipulated that w = ws, subtracting Eq. (2.27) from Eq. (2.28) gives

∫ p02i

p02

v0 dp0 =
∫ �2

�1

T0s
′
p d�

Integration of this along the constant h02 line means that T0 = T02 remains constant and
factors out after the substitution v0 = RT0/p0. Then, carrying out the integration gives

R ln
p02i

p02
=

∫ �2

�1

s′p d�

But in an adiabatic flow ds = s′p d�, and this equation reduces to

s2 − s1 = sp = R ln
p02i

p02

This relates the entropy increase to a loss in stagnation pressure.

� EXAMPLE 2.12

The inlet stagnation temperature to a multistage turbine is 1400 K, and the inlet
stagnation pressure is 1000 kPa. The stagnation pressure ratio is p01/p0e = 10, and
the total-to-total efficiency of the turbine is ηtt = 0.89. Assuming that gases flowing
through the turbine have γ = 4

3 and R = 287 J/(kg K), find the specific entropy
production during the expansion assuming constant specific heats.
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Solution: In this multistage turbine, the inlet state is denoted by 1 and the exit by e.
Assuming constant specific heats, the definition of total-to-total efficiency reduces to

ηtt =
T01 − T0e

T01 − T0es
or ηtt =

1 − T0e/T01

1 − T0es/T01

from which
T0e

T01
= 1 − ηtt

(
1 − T0es

T01

)

The isentropic temperature ratio is

T0es

T01
=

(
p0e

p01

)(γ−1)/γ

=
1

101/4 = 0.5623

so that
T0es = 1400 · 0.5623 = 787.3 K

and
T0e = 1400 [1 − 0.89(1 − 0.5623)] = 854.7 K

Since the amount of work done is proportional to the difference between the
stagnation temperatures, if this work had been done reversibly, the exit pressure
would reach the value p0ei which is higher than before. It can be calculated from

p0ei

p01
=

(
T0e

T01

)γ/(γ−1)

=
(

854.7
1400

)4

= 0.1389

Hence, p0ei = 1000 · 0.1389 = 138.9 kPa. Since the pressure ratio is 10, the exit
stagnation pressure is p0e = 100 kPa, and the stagnation pressure loss is

p0ei − p0e = 138.9 − 100 = 38.9 kPa

This represents 4.3% of the overall pressure difference p01 − p02 = 900 kPa. The
entropy production is calculated to be

sp = R ln
p0ei

p0e
= 287 ln

138.9
100.0

= 94.3 J/(kg K)
�

2.6 MOMENTUM BALANCE

In this section, use of the momentum balance is illustrated in applications of interest in
turbomachinery. In uniform steady flow in a channel, the momentum balance reduces to

ṁ(V2 − V1) = Fp + Fv + Fm (2.29)

in which Fp is a pressure force and Fv is a viscous force. The force Fm is present if the
control volume cuts across the solid parts of the machine. If the control volume contains
only fluid, this term is absent. Weights of the fluid and hardware have been omitted with
the understanding that when stress analysis is carried out, they will be taken into account.
The first illustration on the use of the momentum equation is to calculate the force that a
deflection of a jet causes on a fixed vane.
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� EXAMPLE 2.13

Consider a jet of water that flows into a vane at an angle α1. The vane is equiangular
with α2 = −α1, and it turns the flow so that it leaves at a negative angle α2, as shown
in Figure 2.10. Positive angles are measured in the counterclockwise direction from
the x-axis. The jet velocity at the inlet is V , and pressure surrounding the jet and the
vane is atmospheric. Find the y component of the force on the vane.

α
1

α
2

V
1 V

2

y

x

Figure 2.10 Turning of a flow by a vane.

Solution: The inlet to the vane is denoted as station 1, and the exit as station 2. Since
both at the inlet and at the exit the streamlines are straight, pressure at both of these
locations is equal to the atmospheric pressure pa across the jet. Then, with gravity
neglected, Bernoulli equation shows that velocity at the exit is the same as at the
inlet so that V1 = V2 = V .

Momentum equation in the y direction gives

ṁ(V2y − V1y) = Fpy

in which the force Fpy is the y component of the pressure force exerted by the vane
on the fluid. An equal and opposite force acts on the vane and it is denoted by Ry.
At the inlet V1y = V sin α1 and at the exit V2y = V sin α2, and for a negative value
of α2 this velocity component points in the minus y direction. The force on the blade
is therefore

Ry = ṁV (sin α1 − sinα2)

The mass flow rate is ṁ = ρV A. Since the blade is equiangular, α2 = −α1.
Substituting gives the force as

Ry = 2ρAV 2 sinα1

The force is largest when α1 = 90◦ and the flow is turned 180◦. �

Consider again the flow shown in Figure 2.10, but now let the blade move in the y direction
with velocity U, as shown in Figure 2.11. It is known that Newton’s second law is valid in
all coordinate systems that move at constant speed. Thus the momentum balance given by
Eq. (2.29) is also valid for a control volume that moves with a uniform velocity U, if all
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Figure 2.11 A water jet impinging on a moving blade.

velocities are replaced by relative velocities. In fact, noting that the relationship between
the absolute velocity V and relative velocity W is given by

V = W + U

and substituting this into Eq. (2.29) gives

ṁ(W2 + U − W1 − U) = Fp + Fv + Fm

or
ṁ(W2 − W1) = Fp + Fv + Fm (2.30)

In the next example, the momentum balance is used to analyze the force on a moving
blade.

� EXAMPLE 2.14

Consider a waterjet directed at a blade that moves with speed U . The angle α2 of
the jet is such that the relative velocity meets the blade smoothly at the angle β2.
The blade is shaped such that it deflects the flow backward at an angle β3 = −β2, as
is shown in Figure 2.11. (a) Find the work done on the blade per unit mass of the
flow and the blade speed for maximum work by carrying out the analysis in a set of
fixed coordinates. (b) Carry out the same analysis in a set of moving coordinates,
and find the y component of the force on the blade.

Solution: (a) The analysis is carried out first in fixed coordinates. Station 1 is now
the inlet to a nozzle (not shown) that issues the water to station 2 at velocity V2 and
angle α2. Station 2 is also the inlet to the moving blade, and its exit is station 3. The
force that the blade exerts on the fluid is

Fpy = ṁ(V3 sinα3 − V2 sin α2)

and with Ry = −Fpy the force on the blade is

Ry = ṁ(V2 sinα2 − V3 sin α3)
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Assuming that there are no losses so that w = ws, and applying the first law to the
control volume shown gives

pa

ρ
+

1
2
V 2

2 =
pa

ρ
+

1
2
V 2

3 + ws (2.31)

and since the rate at which work is delivered to the blade is Ẇ = RyU , then

ws = U(V2 sin α2 − V3 sinα3) (2.32)

Substituting this into Eq. (2.31) gives

1
2
V 2

2 =
1
2
V 2

3 + U(V2 sin α2 − V3 sin α3) (2.33)

As is shown in the vector diagrams for the velocities in Figure 2.11, the x and y
velocity components of absolute and relative velocity are related by

W2 cos β2 = V2 cos α2 W2 sinβ2 = V2 sin α2 − U (2.34)

Squaring each equation and adding them yields

W 2
2 = V 2

2 + U 2 − 2V2U sin α2

A similar equation is obtained at the exit, namely

W3 cos β3 = V3 cos α3 W3 sinβ3 = V3 sin α3 − U (2.35)

W 2
3 = V 2

3 + U 2 − 2V3U sin α3

Solving for V2 sinα2 and V3 sinα3 from the squared equations and substituting them
into Eq. (2.33) reduces it to

W 2
2 = W 2

3

so that W2 = W3. Thus the relative velocity at the exit is the same as at the inlet.
This means that an observer in moving coordinates sees that the blade changes only
the direction of the flow, but not its magnitude.

Substituting from Eqs. (2.34) and (2.35) into Eq. (2.32) gives

ws = U [V2 sinα2 − (W3 sin β3 + U)] = U(V2 sin α2 + W2 sin β2 − U)

since β3 = −β2 and W3 = W2. Also W2 sinβ2 = V2 sin α2 − U , so that

ws = 2U(V2 sin α2 − U)

From this equation, it is seen that ws = 0 when U = 0, or U = V2 sinα2. In the
former case, the load on the blade is too large to move the blade. In the latter case,
the load is too light, and the blade is free-wheeling. The condition for maximum
power to the blade is obtained by differentiating ws with respect to U and setting it
to zero. This gives

dws

dU
= V2 sin α2 − 2U = 0 or

U

V2
=

1
2

sinα2
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For α2 = 90◦ the maximum work is done by the jet on the blade when the blade
moves at half the jet speed.
(b) If the moving coordinates are used, then

Ry = ṁ(W2 sinβ2 − W3 sin β3)

Substituting W3 = W2 and β3 = −β2 gives

Ry = 2ṁW2 sin β2 = 2ṁ(V2 sin α2 − U)

and with the rate of work done Ẇ = RyU , the specific work becomes

ws = 2U(V2 sinα2 − U)

as before. �

Next, the momentum equation is applied to situations in which the results may be used to
quantify thermodynamic losses.

� EXAMPLE 2.15

Water with density ρ = 1000 kg/m3 and velocity V1 = 20 m/s flows into a sudden
expansion as shown in Figure 2.12. The supply pipe has a diameter D1 = 7 cm,
and the pipe downstream has a diameter D2 = 14 cm. Find the increase in pressure
p2 − p1.

V
2

V
1

A
2

A
1

Figure 2.12 Flow in a channel with a sudden expansion.

Solution: Mass balance gives
A1V1 = A2V2

Thus

V2 = V1
D2

1

D2
2

= 20
(

7
14

)2

= 5.0 m/s

As the water enters a sudden expansion, it detaches from the boundaries and moves
into the larger space as a jet. Regions of recirculating flow develop at the upstream
corners. Flow speed in these corners is sufficiently low to make the pressure uniform.
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The pressure across the jet at the exit plane is therefore equal to that in the recirculating
regions. The stream velocity rises from small backflow in the recirculating regions
to a large forward velocity in the jet. This leads to appreciable viscous forces in the
free shear layers forming the jet boundary. Such free shear layers are unstable to
small disturbances and roll up into vortices. These cause mixing of the low velocity
fluid in the recirculating zone with the fast flow in the jet. As a consequence, the jet
spreads and fills the channel. In the mixing zone, the shear forces along the walls
influence pressure much less than the mixing, and therefore, they may be neglected.

Applying the momentum balance in the x direction leads to

ρA2V2(V2 − V1) = (p1 − p2)A2

in which the mass balance, ṁ = ρV2A2 was used. Thus

p2 − p1 = ρV2(V1 − V2)

and the numerical value for the pressure increase is

p2 − p1 = 1000 · 5.0(20 − 5.0) = 75 kPa

As the area A2, is increased, the exit velocity is reduced, and finally becomes zero.
In that case p2 = p1. This is the situation of a jet discharging to an atmosphere and
then the exit pressure is equal to the atmospheric pressure.

The loss in stagnation pressure in a sudden expansion is

p01 − p02 = p1 +
1
2
ρV 2

1 − p2 −
1
2
ρV 2

2 =
1
2
ρV 2

1 − ρV1V2 +
1
2
ρV 2

2 =
1
2
ρ(V1 − V2)

2

or
p01 − p02 =

1
2

1000 (20 − 5)2 = 112.5 kPa

If the flow were to diffuse to the exit pipe without irreversibilities, there would be
no loss of stagnation pressure and the exit pressure could be calculated from the
Bernoulli equation. It would have the value

p2i − p1 =
1
2
ρ(V 2

1 − V 2
2 ) =

1
2
1000(202 − 52) = 187.5 kPa

above the inlet pressure. Contrasting this to the value 75 kPa calculated in the actual
case shows that not all pressure is recovered, and the irreversibility can be regarded
as a loss in pressure.

This underscores the importance of a well-designed diffuser to recover as much of
the pressure as possible. The reduction of kinetic energy in diffusion goes into flow
work on the fluid particles ahead, causing pressure to increase. If part of the kinetic
energy is dissipated by viscous action in mixing, less is available for increasing the
pressure. This is clearly true if the sudden expansion takes place into a vast reservoir,
for then all the kinetic energy leaving the pipe will be dissipated in the reservoir and
none is recovered. �
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As a third example on the application of the momentum balance, consider how mixing
of a stream in a constant-area duct changes the pressure. This requires the use of the
balance equations in their integral forms.

� EXAMPLE 2.16

An incompressible fluid flows in channel of cross-sectional area A, as shown in
Figure 2.13. The flow is in the z direction with a nonuniform velocity profile
V1 = V (1 + f(x, y)) at station 1 with the nonuniformity such that V is the average
velocity. As a result of mixing, the flow enters station 2 with a uniform profile. Find
the pressure change between stations 1 and 2. Work out the solution when the inlet
velocity consists of two adjacent streams, one moving with velocity V (1 + fa) and
the other with velocity V (1 + fb). Note that, since V is the average velocity, fb must
have a negative value.

V

1 2

(a)

(b)

V(1 + f(x,y))

V

1 2

Ab

Aa Va

Vb

Figure 2.13 (a) The upper sketch shows mixing in a constant area channel with an arbitrary
inlet velocity profile. (b) The lower sketch shows mixing with stepwise constant inlet velocity
profile

Solution: Integral form of the mass balance

ṁ =
∫

A1

ρV1 dA =
∫

A2

ρV2 dA

applied to a control volume between stations 1 and 2, with A = A1 = A2 and
V2 = V , yields an expression that may be written as∫

A

V (1 + f(x, y))dA = V A

Since V is the constant average velocity, this gives the condition∫
A

f(x, y)dA = 0
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The x component of the momentum equation applied to this control volume gives∫
A2

ρV 2
2 dA −

∫
A1

ρV 2
1 dA = (p1 − p2)A

Again, since at the exit velocity V2 = V is uniform, this can be written as

−ρV 2A + ρ

∫
A

V 2(1 + f(x, y))2dA = (p2 − p1)A

Wall shear has been neglected under the assumption that mixing influences the
pressure change much more than does wall shear.

Expanding the integral leads to∫
A

(1 + f(x, y))2dA =
∫

A

(1 + 2f(x, y) + f 2(x, y))dA = A +
∫

A

f 2(x, y)dA

for, as shown above, the middle term is zero. Denoting

f̄ 2 =
1
A

∫
A

f 2(x, y)dA

the pressure increase is seen to be

p2 − p1 = ρV 2f̄ 2

With the velocities as shown on the bottom half of the figure, mass balance gives

AaVa + AbVb = AV

and since A = Aa + Ab, this reduces to

V =
VaAa + VbAb

Aa + Ab

Writing
Va = V (1 + fa) and Vb = V (1 + fb)

and solving for fa and fb gives

fa =
Va

V
− 1 =

(Va − Vb)Ab

VaAa + VbAb

and
fb =

Vb

V
− 1 =

(Vb − Va)Aa

VaAa + VbAb

The value of f̄ 2 is the area-weighted average

f̄ 2 =
f 2

aAa + f 2
b Ab

Aa + Ab

=
(Va − Vb)

2AaAb

(VaAa + VbAb)2
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Hence the pressure increase is

p2 − p1 = ρ(Va − Vb)
2 AaAb

(Aa + Ab)2

As a special case, consider the situation in which Vb = 0. Then

V =
VaAa

Aa + Ab

and Va − V =
VaAb

Aa + Ab

and
p2 − p1 = ρV (Va − V ) (2.36)

This is the same result that was developed in Example 2.15. �

In these examples, the momentum equation could be used to obtain information about the
downstream pressure. This was possible because the viscous forces could be neglected.
Such a situation also characterizes many turbomachinery flows in which the important
force balance is between the inertia of the flow and pressure forces.

EXERCISES

2.1 Steam flows through a bank of nozzles shown in Figure 2.1 with wall thickness
t2 = 2 mm, spacing s = 4 cm, blade height b = 2.5 cm, and exit angle α2 = 68◦. The exit
velocity V2 = 400 m/s, pressure is p2 = 1.5 bar, and temperature is T2 = 200 ◦C. Find
the mass flow rate. [Ans: 0.09 kg/s]

2.2 Air enters a compressor from atmosphere at pressure 102 kPa and temperature
42 ◦C. Assuming that its density remains constant, determine the specific compression
work required to raise its pressure to 140 kPa in a reversible adiabatic process, given an
exit velocity of 50 m/s. [Ans: 34.95 kJ/kg]

2.3 Steam flows through a turbine at the rate of ṁ = 9000 kg/h. The rate at which power
is delivered by the turbine is Ẇ = 440 hp. The inlet stagnation pressure is p01 = 70 bar,
and stagnation temperature is T01 = 420 ◦C. For a reversible and adiabatic process, find
the stagnation pressure and temperature leaving the turbine. [Ans: 43.59 bar, 348.3 ◦C]

2.4 Water enters a pump as saturated liquid at stagnation pressure of p01 = 0.08 bar
and leaves it at p02 = 30 bar. The mass flow rate is ṁ = 10000 kg/h and assuming that
the process takes place reversibly and adiabatically, determine the power required. [Ans:
8.11 kW]

2.5 Liquid water at 700 kPa and temperature 20 ◦C flows at velocity 15 m/s. Find the
stagnation temperature and stagnation pressure. [Ans: 20.027 ◦C, 812.5 kPa]

2.6 Water at temperature T1 = 20 ◦C flows through a turbine with inlet velocity V1 =
3 m/s, static pressure p1 = 780 kPa, and elevation z1 = 2 m. At the exit, the conditions
are V2 = 6 m/s, p2 = 100 kPa, and z2 = 1.2 m. Find the specific work delivered by the
turbine assuming it to be reversible. [Ans: 674.35 J/kg]

2.7 Air at static pressure 2 bar and static temperature 300 K flows with velocity 60 m/s.
Find stagnation temperature and pressure assuming constant specific heats. [Ans: 301.8 K,
204.2 kPa]
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2.8 Air at static temperature 300 K and static pressure 140 kPa flows with velocity
60 m/s. (a) Evaluate the stagnation temperature and stagnation pressure of air. (b) Repeat
the calculation assuming that the airspeed is 300 m/s assuming constant specific heats.
[Ans: (a) 301.8 K, 142.9 kPa, (b) 344.8 ◦C, 227.9 kPa]

2.9 Air undergoes an increase of 1.75 kPa in stagnation pressure through a blower.
The inlet stagnation pressure is one atmosphere, and the inlet stagnation temperature is
21 ◦C. (a) Evaluate the exit stagnation temperature assuming that the process is reversible
adiabatic. (b) Evaluate the specific energy added to the air. [Ans: (a) 22.4 ◦C (b) 1.46 kJ/kg]

2.10 Air enters a blower from the atmosphere where pressure is 101.3 kPa and temper-
ature is 27 ◦C. Its velocity at the inlet is 46 m/s. At the exit, the stagnation temperature
is 28 ◦C and the velocity is 123 m/s. Assuming that the flow is reversible and adiabatic,
determine (a) the change in stagnation pressure in millimeters of water and (b) the change
in static pressure, also in millimeters of water. [Ans: (a) 120 mm of water, (b) −639 mm
of water]

2.11 The stagnation pressure, static pressure, and the stagnation temperature of air at a
certain point in a flow are 700 kPa, 350 kPa, and 450 K, respectively. Find the velocity at
that point. [Ans: 403 m/s]

2.12 Air has static pressure 2 bar and static temperature 300 K while flowing at speed
1000 m/s. (a) Assuming that air obeys the ideal gas law with constant specific heats,
determine its stagnation temperature and stagnation pressure. (b) Repeat part (a) using the
air tables or YAir. [Ans: (a) 61.33 bar, (b) 62.56 bar]

2.13 At a certain location, the velocity of air flowing in a duct is 321.5 m/s. At that
location, the stagnation pressure is 700 kPa and stagnation temperature is 450 K. What is
the static density at this location? [Ans: 4.00 kg/m3]

2.14 Air flows in a circular duct of diameter 4 cm at the rate of 0.5 kg/s. The flow is
adiabatic with stagnation temperature 288 K. At a certain location, the static pressure is
110 kPa. Find the velocity at this location. [Ans: 263.2 m/s]

2.15 Saturated steam enters a nozzle at static pressure 14 bar at velocity 52 m/s. It
expands isentropically to pressure 8.2 bar. Mass flow rate is ṁ = 0.7 kg/s. Find the
exit area, assuming that (a) steam behaves as an ideal gas with γ = 1.135, and cp =
2731 J/(kg K); (b) the end state is calculated with properties obtained from the steam
tables. [Ans: (a) 3.82 cm2, (b) 3.47 cm2]

2.16 A fluid enters a turbine with stagnation temperature of 330 K and stagnation
pressure of 700 kPa. The outlet stagnation pressure is 100 kPa, and assume that the
expansion process through the turbine is isentropic. Evaluate (a) the work per unit mass
flow assuming that the fluid is incompressible with a density 1000 kg/m3, (b) and assuming
that the fluid is air. [Ans: (a) 0.6 kJ/kg, (b) 141.4 kJ/kg]

2.17 Air flows through a turbine that has a stagnation pressure ratio 5 to 1. The
total-to-total efficiency is 80%, and the flow rate is 1.5 kg/s. The desired output power
is to be 250 hp (186.4 kW). Determine (a) the inlet stagnation temperature, (b) the outlet
stagnation temperature, (c) the outlet static temperature given an exit velocity 90 m/s.
(d) Then draw the process on a Ts-diagram and determine the total-to-static efficiency of
the turbine. [Ans: (a) 419.5 K, (b) 295.8 K, (c) 291.8 K, 0.78]
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2.18 A blower has a change in stagnation enthalpy of 6000 J/kg, an inlet stagnation
temperature 288 K, and an inlet stagnation pressure 101.3 kPa. Find (a) the exit stagnation
temperature assuming that the working fluid is air, (b) the stagnation pressure ratio across
the machine, given a total-to-total efficiency of 75%. (c) If the working fluid is water, find
the pressure ratio. [Ans: (a) 294 K, (b) 1.056, (c) 45.4 multi-stage pump]

2.19 A multistage turbine has a stagnation pressure ratio of 2.5 across each of the four
stages. The inlet stagnation temperature is T01 = 1200 K and the total-to-total efficiency of
each stage is 0.87. Evaluate the overall total-to-total efficiency of the turbine by assuming
that steam is flowing through it. Steam can be assumed to behave as a perfect gas with
γ = 1.3. Why is the overall efficiency higher than the stage efficiency? [Ans: 0.904]

2.20 Gases from a combustion chamber enter a gas turbine at a stagnation pressure of
700 kPa and a stagnation temperature of 1100 K. The stagnation pressure and stagnation
temperature at the exit of the turbine are 140 kPa and 780 K. Assuming that γ = 4

3 is
used for the mixture of combustion gases, which has a molecular mass of 28.97 kg/kmol,
find the total-to-total efficiency and the total-to-static efficiency of the turbine, for an exit
velocity of 210 m/s. [Ans: 0.878, 0.834]

2.21 Air enters a compressor from atmosphere at 101.3 kPa, 288 K. It is compressed
to a static pressure of 420 kPa, and at the exit its velocity is 300 m/s. Assume that air
behaves as an ideal gas with constant specific heats and that the compressor total-to-total
efficiency is 0.82. (a) Find the exit static temperature by assuming that V2s = V2. (b) Find
the exit static temperature, without making the assumption that V2s is equal to V2. [Ans:
(a) 473.9 K, (b) 469.6 K]

2.22 Steam enters a turbine with the speed 190 m/s at static pressure 50 bar and static
temperature 560 ◦C. It expands to 0.07 bar and 120 ◦C and leaves with speed 220 m/s.
Find (a) the total-to-total efficiency, (b) total-to-static efficiency, and (c) static-to-static
efficiency. Carry out the calculations using the function XSteam. [Ans: (a) 0.826, (b) 0.807,
(c) 0.821].

2.23 Air enters a multistage compressor at static pressure of 1 bar and 300 K. The inlet
velocity is velocity 50 m/s. The overall pressure ratio across the compressor is 25. The
total-to-total efficiency is 0.86. If the exit velocity is 300 m/s, find (a) its total-to-static
efficiency and (b) its static-to-static efficiency. Assume that the air is an ideal gas
with constant specific heats. (c) Repeat the calculation assuming air to be an ideal gas with
variable specific heats. [Ans: (a) 0.7622, (b) 0.8453, (c) 0.7619, 0.8452].

2.24 If CO2 is taken into account in the composition of air, then the mole fractions of
air are: Nitrogen yN2

= 0.7808, oxygen yO2
= 0.2095, Argon yAr = 0.0093, and carbon

dioxide yCO2
= 0.0004. (a) Find the molecular mass and the gas constant for this mixture.

(b) Find the specific heat at constant pressure. (c) Find the specific heat at constant
volume. (d) Find the ratio of specific heats. [Ans: (a) 28.966, (b) 1.0054 kJ/kg K,
(c) 0.7184 kJ/kg K, (d) 1.3995].

2.25 Steam as saturated liquid flows through a throttling valve, in which pressure drops
from 40 to 1 bar. (a) Find the steam density downstream of the valve. Assume that the exit
is designed such that the inlet and exit velocities are the same. (b) What is the ratio of the
exit area to the inlet area? [Ans: (a) 1.986 kg/m3, (b) 402].
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2.26 Steam enters a throttling valve as a two phase mixture at pressure of 20 bar and at
velocity 15 m/s. It leaves the valve at pressure 1 bar and temperature 120 ◦C. (a) Find the
quality of the incoming steam. (b) Find the exit velocity. [Ans:(a) 0.9769 (b) 274.6 m/s]

2.27 A jet of diameter D strikes a plate with a small orifice. Most of the jet leaves in
directions parallel to the plane of th plate, but part flows through the orifice. The diameter
of the jet emerging from the orifice is d. Find the force the jet exerts on the plate. [Ans:
Fd = π

4 ρV 2(D2 − d2)]

V

D
d

Figure 2.14 A jet and orifice.

2.28 A long blade is tested in a water channel, as shown in Figure 2.15, with upstream
velocity V . The speed is fast enough that behind the blade a vapor cavity is formed.
Velocity in this vapor cavity can be assumed to be zero and pressure uniform and equal to
the vapor pressure, pv, at the temperature of the surroundings. The width of the channel
is a and that of the vapor cavity is b. (a) Find how the upstream pressure is related to the
vapor pressure pv, the channel width a, the cavity width b, and the upstream velocity V .
(b) Find the drag on the blade per unit length to the plane of the paper in terms of ρ, a, b,
and V . [Ans: Fd = 1

2ρa
(

a
a−b

)2
V 2].

V

Vb

Vb

a
b

Figure 2.15 A blade test

2.29 Air flows upstream velocity V across a circular cylinder located in a channel of
with 2h as shown in Figure 2.16a. The velocity in the wake behind the cylinder rises
from zero at the centerline linearly to Vm at the wall. If the the pressure difference is
p1 − p2 = 3

4ρV 2, find the drag force. [Ans: Fd = 5
12ρV 2.]
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V Vm

1 2

2h
V

Vm

2h

(a) (b)
1 2

Figure 2.16 (a) Triangular wake and (b) developing flow.

2.30 Water flows in a channel of width 2h as shown in Figure 2.16b. At the inlet,
its velocity has the uniform value V . Downstream it has the velocity profile u =
Vm(1 − y2/h2). Find the pressure drop between the upstream and downstream stations,
assuming the wall shear can be neglected. [Ans: 1

5ρV 2]

2.31 A jet pump is shown in Figure 2.17. Water at high speed Va issues from the nozzle
of area Aa, that is centrally located in the discharge tube of area A. Secondary stream at
the nozzle exit has a velocity Vb and it mixes with the jet so that downstream the velocity
is uniform. Show that the pressure increase in the flow is given by

p2 − p1 = ρ(Va − Vb)
2 AaAb

(Aa + Ab)2

where Ab = A − Aa.

Va

Vb

VAa

Ab

Vb

Figure 2.17 A jet pump.

2.32 Rework the previous exercise by the method used in Example 2.16.

V V

2a

V V

2a

(a) (b)

Figure 2.18 (a) Wake profile with a strong velocity defect. (b) Wake profile with a weak velocity
defect.
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2.33 Air flows upstream with velocity V across an airfoil as shown in Figure 2.18a.
The velocity in the wake behind the airfoil rises from zero at the centerline as u(y) =
1
2V (1 − cos πy

a ) and beyond the distance a it has reached the free stream velocity V . Find
the drag force on the airfoil. [Ans: Fd = 1

4ρaV 2]

2.34 Air flows upstream with velocity V across an airfoil as shown in Figure 2.18b. The
velocity profile in the wake behind the airfoil is given by u(y) = V − ud[1 + cos(πy/a)]
and beyond the distance a, it has reached the free stream velocity V . Find the drag force
on the airfoil. [Ans: Fd = ρaud(2V − 3ud)]

V
1

s

s

α
V

1

V
2

α

(a) (b)

V
2

V
2

V
1

Figure 2.19 (a) Flow from a side pipe to the main. (b) Flow into a blade row.

2.35 Liquid water flows at velocity V1 from a side pipe of area A1 welded at angle
α to the main, as shown in Figure 2.19a. The area of the main pipe is A2. Using the
mass and momentum balance, (a) find the downstream velocity V2, (b) find the pressure
increase in the flow, (c) Introduce into the energy balance a loss term KV 2

1 /2 and
find the loss coefficient in terms of α and the area ratios of the two streams. [Ans:
K =

(
A1
A2

)2
− 2A1

A2
cos α + 1]

2.36 Consider the flow into a cascade, shown in Figure 2.19b. The flow separates at the
leading edge and forms a recirculation region. The point s identifies a stagnation point
in the flow. Show that the kinetic energy lost in the flow as it moves to the downstream
section can be associated with the transverse component of the velocity, Vt = V1 sinα.
Hint: Choose a control volume with inlet and outlet far enough upstream and downstream
that the streamlines are straight and pressures are uniform.
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CHAPTER 3

COMPRESSIBLE FLOW

In this chapter, the dynamics and thermodynamics of compressible fluid flow are discussed.
First, the isentropic relations are developed and applied to a converging nozzle, and then,
friction is considered. To account for friction, various loss coefficients are introduced.
The next topic is the flow in converging–diverging nozzles and where normal shocks may
develop. The last section is on oblique shocks and the Prandtl–Meyer expansion.

3.1 MACH NUMBER AND THE SPEED OF SOUND

Consider a stationary fluid in which a weak pressure wave travels to the right at velocity c,
as is shown in Figure 3.1a. Pressure and other thermodynamic properties change across the
wave front. Ahead of the front the fluid is stagnant so that its velocity V = 0. Its pressure
has the value p and its density is ρ. After the front has passed through a given location, let
the velocity there be ΔV and pressure and density be p + Δp and ρ + Δρ, respectively. It
is advantageous to shift to a frame of reference that moves to the right with speed c, for in
that frame, the front is stationary. Hence, the balance principles in their steady form can be
applied to a stationary control volume containing the front as shown in Figure 3.1b. In this
frame, fluid approaches the control volume with speed c from the right. Mass balance then
gives

ρcA = (ρ + Δρ)(c − ΔV )A (3.1)

63Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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p + Δp

p + Δp

ρ + Δρ

ρ + Δρ

ΔV V = 0

(a)

(b)

p

ρ

c−ΔV

p

ρ

c

c

Figure 3.1 Sketch illustrating a weak pressure wave. (a) Stationary frame and (b) moving frame.

Carrying out the multiplications on the right-hand side (RHS) and assuming that the
pressure wave is weak so that ΔV Δρ can be neglected reduces this equation to

ΔV =
c Δρ

ρ
(3.2)

With the positive x direction pointing to the right, the x component of momentum
equation, obtained from Eq. (2.29) and applied to this control volume, gives

ρcA[c − (c − ΔV )] = (p + Δp)A − pA

which reduces to

ρcΔV = Δp

Substituting the expression for ΔV from Eq. (3.2) into this gives

c2 =
Δp

Δρ

Since the pressure wave is assumed to be weak, the entire process may be assumed to be
isentropic. In that case, the speed of the wave is given by

c =

√(
∂p

∂ρ

)
s

(3.3)

This quantity is called the speed of sound because sound waves are weak pressure waves.
For an ideal gas, for which pρ−γ is constant in an isentropic process, taking logarithms and
differentiating gives

ln p − γ ln ρ = constant
dp

p
− γ

dρ

ρ
= 0
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from which can be formed the partial derivative

(
∂p

∂ρ

)
s
= γ

p

ρ
= γRT

Speed of sound c for an ideal gas is therefore given by

c =
√

γRT =
√

γR̄T/M

For air, with R = R̄/M = 8314/28.97 = 287 J/(kg K) and γ = 1.4, the speed of sound
at T = 300 K is c = 347 m/s. For combustion gases, with γ = 4

3 and R = 287 J/(kg K),
at T = 1200 K, it is c = 677.6 m/s. For gases of large molecular mass, the speed of
sound is small and the opposite is true for gases of low molecular mass. For example,
the refrigerant R134a, or tetrafluoroethane, with a chemical formula CH2FCF3, has a
molecular mass of M = 102.0 kg/kmol. Its ratio of specific heats is γ = 1.14. Hence, at
T = 300 K, the speed of sound in R134a is only c = 167 m/s. For helium at the same
temperature, speed of sound is c = 1019 m/s.

Mach number is defined to be the ratio of the local fluid velocity to the local sound
speed

M =
V

c

Subsonic flows have M < 1, supersonic ones M > 1, and for hypersonic flows, M � 1.
Flows for which M ∼ 1 are called transonic.

3.1.1 Mach number relations

In an ideal gas with constant specific heats, the definition of stagnation enthalpy

h0 = h +
1
2
V 2

can be recast as

T0 = T +
V 2

2cp

= T +
(γ − 1)
2γR

V 2 = T

(
1 +

γ − 1
2

M 2
)

from which
T0

T
= 1 +

γ − 1
2

M 2

From the definition of a stagnation state, it follows that

p0

p
=

(
T0

T

)γ/(γ−1)
ρ0

ρ
=

(
T0

T

)1/(γ−1)

These can be written in terms of Mach number as

p0

p
=

(
1 +

γ − 1
2

M 2
)γ/(γ−1)

(3.4)
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and

ρ0

ρ
=

(
1 +

γ − 1
2

M 2
)1/(γ−1)

(3.5)

These equations are in dimensionless form, and they represent the most economical way
to show the functional dependence of the variables on the flow velocity.

Equation (3.4) for pressure can be expanded by the binomial theorem1 for small values
of Mach number. This leads to

p0

p
= 1 +

γ

2
M 2 +

γ

8
M 4 − γ(γ − 2)

48
M 6 + · · · = 1 +

γ

2
M 2

(
1 +

1
4
M 2 + · · ·

)

which, when only the first two terms are retained, can be rearranged as

p0

p
= 1 +

γV 2

2γRT
= 1 +

ρ

2p
V 2

so that

p0 = p +
1
2
ρV 2

For incompressible fluids, this was taken to be the definition of stagnation pressure. In fact,
it is seen to be approximately valid also for flows of compressible fluids when M � 1. In
practice, this approximation is quite accurate if M < 0.3.

� EXAMPLE 3.1

At a certain location in a flow of air, static pressure has been measured to be p =
2.4 bar and stagnation pressure, p0 = 3 bar. Measurement of the total temperature
shows it to be T0 = 468 K. Find the Mach number and flow rate per unit area.

Solution: Static temperature can be determined from

T = T0

(
p

p0

)(γ−1)/γ

= 468
(

2.4
3

)1/3.5

= 439.1 K

Then, solving
T0

T
= 1 +

γ − 1
2

M 2

for Mach number, gives M = 0.574. With Mach number known, velocity can be
determined from V = Mc. Speed of sound at this temperature is

c =
√

γRT =
√

1.4 · 287 · 439.1 = 420.0 m/s

so that the velocity is

V = Mc = 241 m/s

1Binomial theorem gives the expansion (1 + a)n = 1 + na + n(n−1)
2! a2 + n(n−1)(n−2)

3! a3 + · · · .
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Static density is given by

ρ =
p

RT
=

240000
287 · 439.1

= 1.904 kg/m3

Hence, the mass flow rate per unit area is

ṁ

A
= ρV = 1.904 · 241 = 458.9 kg/(s m2)

�

3.2 ISENTROPIC FLOW WITH AREA CHANGE

Consider a one-dimensional isentropic gas flow in a converging–diverging nozzle as shown
in Figure 3.2. Since the mass flow rate is

ṁ = ρV A

and ṁ is constant, taking logarithms and then differentiating yields

dρ

ρ
+

dA

A
+

dV

V
= 0

Since in adiabatic flow h0 is constant, differentiating

h0 = h +
1
2
V 2

gives
dh = −V dV

From the Gibbs equation, Tds = dh − dp/ ρ for isentropic flow, the relation

dh =
1
ρ
dp

is obtained. Equating the last two expressions for enthalpy change gives

−V dV =
1
ρ
dp =

1
ρ

(
∂p

∂ρ

)
s
dρ = c2 dρ

ρ

p
0

A
t

A

ρ
0

T
0

V
0
 = 0

p

V

ρ

T

Figure 3.2 A converging–diverging nozzle.



�

� �

�

68 COMPRESSIBLE FLOW

Using this to eliminate density from the mass balance and simplifying it gives

(M 2 − 1)
dV

V
=

dA

A
(3.6)

From this, it is seen that for subsonic flow, with M < 1, an increase in area decreases the
flow velocity. Thus, walls of a subsonic diffuser diverge in the downstream direction. For
supersonic flow with M > 1, a decrease in area leads to diffusion. Since a nozzle increases
the velocity of a flow, in a subsonic nozzle flow, area decreases, and in supersonic flow, it
increases in the flow direction.

In a continuously accelerating flow dV > 0, and Eq. (3.6) shows that at the throat,
where dA = 0, the flow is sonic with M = 1. If the flow continues its acceleration to
a supersonic speed, the area must diverge after the throat. Such a converging–diverging
nozzle, shown in Figure 3.2, is called de Laval nozzle. The assumptions made in arriving
at these results are that the flow is steady and one-dimensional and that it is reversible and
adiabatic. It has not been assumed that the fluid obeys the ideal gas relation.

It was shown in the previous chapter that Mach number is a convenient parameter for
expressing the relationship between the static and stagnation properties. By assuming ideal
gas behavior and constant specific heats, the expressions

T0

T
= 1 +

γ − 1
2

M 2

p0

p
=

(
1 +

γ − 1
2

M 2
)γ/(γ−1)

ρ0

ρ
=

(
1 +

γ − 1
2

M 2
)1/(γ−1)

were obtained. Inverses of these ratios for a gas with γ = 1.4 are shown in Figure 3.3.
At the sonic condition, denoted by the symbol (*) and for which M = 1, they reduce to

T ∗

T0
=

2
γ + 1

= 0.8333

Mach number M

1

10

0.1

0.1

0.01

0.001
1

p/p
0

ρ/ρ
0

T/T
0

Figure 3.3 Pressure, density, and temperature ratios as functions of Mach number.
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p∗

p0
=

(
2

γ + 1

)γ/(γ−1)

= 0.5283

ρ∗

ρ0
=

(
2

γ + 1

)1/(γ−1)

= 0.6339

The numerical values correspond to γ = 1.4.
Mass balance for a compressible flow, which obeys the ideal gas model, may be

written as

ṁ = ρ V A =
pAM

RT

√
γRT = pAM

√
γ

RT

Multiplying and dividing the RHS by stagnation pressure and the square root of stagnation
temperature, and expressing p/p0 ratio in terms of temperature ratio T/T0 gives

ṁ =
p0AMγ√
cp(γ − 1)T0

(
T0

T

)1/2−γ/(γ−1)

which can be recast as

F =
ṁ

√
cpT0

Ap0
=

γM√
γ − 1

(
1 +

γ − 1
2

M 2
)−(γ+1)/2(γ−1)

(3.7)

The symbol F is called a flow function. Denoting the area at which the flow would reach
M = 1 by A∗, the previous equation at this state gives

ṁ
√

cpT0

A∗p0
=

γ√
γ − 1

(
γ + 1

2

)−(γ+1)/2(γ−1)

(3.8)

The ratio of the last two equations is

A

A∗ =
1
M

(
2

γ + 1
+

γ − 1
γ + 1

M 2
)(γ+1)/2(γ−1)

(3.9)

In the usual case, area A∗ is the throat area in a supersonic flow through a converging–
diverging nozzle. But this equation is useful also when there is no location in the actual
flow, where M = 1 is reached. Then, A∗ can be regarded as a reference area. In the same
manner in which stagnation properties are reached in a thought experiment in an isentropic
deceleration of the flow to a rest state, so can the area A∗ in a thought experiment be
taken to be an area at which the sonic condition is reached in a hypothetical extension of a
properly designed and operated variable area duct. If the velocity V ∗ denotes the velocity
at the location where M = 1, it can be used as a reference velocity, and a velocity ratio
can be written as

V

V ∗ = M

√
T

T ∗ = M

(
2

γ + 1
+

γ − 1
γ + 1

M 2
)−1/2

(3.10)
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Mach number M
1

1

0.1
0.1 10

10

100

A/A*

V/V *

Figure 3.4 Area and velocity ratios as functions of Mach number.

This and the area ratio are shown in Figure 3.4. Maximum flow rate per unit area takes
place at the throat where M = 1. It is given by Eq. (3.8) as

ṁ

A∗ =
γp0√

cp(γ − 1)T0

(
2

γ + 1

)(γ+1)/2(γ−1)

(3.11)

� EXAMPLE 3.2

Air flows through a circular duct of diameter D = 10 cm at the rate of ṁ = 1.5 kg/s.
At a certain location, static pressure is p = 120 kPa and stagnation temperature is
T0 = 318 K. At this location, find the values for Mach number, velocity, and static
density.

Solution: Since the mass flow rate and diameter of the duct are known, mass balance

ṁ = ρV A

can be recast into a form in which the known quantities of area, pressure, and
stagnation temperature appear, and Mach number is the only unknown. Thus,

ṁ =
p

RT
M

√
γRTA = pMA

√
T0

T

√
γ

RT0

or
ṁ

pA

√
RT0

γ
= M

(
1 +

γ − 1
2

M 2
)1/2

Squaring both sides leads to a quadratic equation for M 2, which may be simplified
and cast into the standard form:

M 4 +
2

γ − 1
M 2 − 2

γ − 1

(
ṁ

pA

)2
RT0

γ
= 0
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For the data given, this reduces to

M 4 + 5M 2 − 0.826 = 0,

and solving it gives M = 0.40. Static temperature is then

T =
T0

1 + γ−1
2 M 2

=
318

1.032
= 308.1 K,

and the velocity and density are

V = M
√

γRT = 140.8 m/s ρ =
p

RT
=

120
0.287 · 308.1

= 1.357 kg/m3

�

3.2.1 Converging nozzle

A converging nozzle is shown in Figure 3.5. Consider a flow that develops from upstream
stagnation state and in which the back pressure pb is controlled by a throttling valve located
downstream of the nozzle. When the valve is closed, there is no flow. With a slight opening
of the valve, pressure in the nozzle follows the line marked 1, and the flow leaves the nozzle
with the exit pressure pe = pb1. The mass flow rate corresponds to condition labeled 1 in
the bottom right part of the figure. As the back pressure is reduced to pb2, pressure in the
nozzle drops along the curve 2, and the mass flow rate has increased to a value indicated
by the label 2. A further decrease in the back pressure increases the flow rate until the
back pressure is reduced to a critical value pb = p∗, at which point Mach number reaches
unity at the exit plane. Further reduction of the exit pressure has no effect on the flow
upstream, for the disturbances caused by further opening of the valve cannot propagate
upstream of the throat when the velocity there has reached the sonic speed. The flow at
this condition is said to be choked, and its mass flow rate can no longer be increased. How
the flow adjusts from this exit pressure to the value of back pressure cannot be analyzed
by one-dimensional methods.
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Figure 3.5 Flow through a converging nozzle.
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Flow rate through the nozzle can be determined at the choked condition if, in addition
to the stagnation pressure and stagnation temperature, the throat area is known. This is
illustrated in the next example.

� EXAMPLE 3.3

Air at stagnation temperature T0 = 540 K and stagnation pressure p0 = 200 kPa
flows isentropically in a converging nozzle, with exit area At = 10 cm2. (a) If the
flow is choked, what are the exit pressure and the mass flow rate? (b) Assuming that
the back pressure is pb = 160 kPa, find the flow rate.

Solution: (a) With the flow choked, the pressure ratio is

pe

p0
= 0.5283

from which the exit pressure is determined to be pe = 105.7 kPa. The flow rate can
be obtained by first calculating the flow function

F ∗ =
γ√

γ − 1

(
2

γ + 1

)(γ+1)/2(γ−1)

which has the numerical value

F ∗ =
1.4√
0.4

(
2

2.4

)3

= 1.281

Then, the mass flow rate per unit area can be determined to be

ṁ

At
=

F ∗p0√
cpT0

=
1.281 · 200, 000√

1004.5 · 540
= 347.9 kg/(s m2)

so the flow rate is ṁ = 0.348 kg/s.
(b) The second part of the example asks for the flow rate when back pressure is
pb = 160 kPa. Since this pressure is larger than the critical value 105.7 kPa, the
flow is no longer choked and pe = pb. The exit Mach number is obtained from

p0

pe
=

(
1 +

γ − 1
2

M 2
e

)γ/(γ−1)

Solving for Me gives

Me =

√√√√ 2
γ − 1

[(
p0

pe

)(γ−1)/γ

− 1

]
=

√
5(1.251/3.5 − 1) = 0.574

The flow function at this Mach number is

Fe =
γMe√
γ − 1

(
1 +

γ − 1
2

M 2
e

)−(γ+1)/2(γ−1)

,
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and its numerical value is

Fe =
1.4 · 0.574√

0.4
(1 + 0.2 · 0.5742)−3 = 1.049

The mass flow rate can then be determined from

ṁ =
Fp0At√

cpT0
=

1.049 · 200000 · 10√
1004.5 · 540 · 1002

= 0.285 kg/s

�

3.3 INFLUENCE OF FRICTION ON FLOW THROUGH NOZZLES

There are various ways in which the irreversibilities caused by friction have been taken into
account in studies of nozzle flow. These are discussed in this section. First, a polytropic
efficiency is introduced, and it is then related to a static enthalpy loss coefficient, which,
in turn, is related to a loss of stagnation pressure. Next, nozzle efficiency and the velocity
coefficient are discussed. After this, the equations for compressible flow in a variable-area
duct with wall friction are given. In the discussion that follows, the flow is adiabatic, and
no work is done. Therefore, the stagnation temperature remains constant, and assuming
constant specific heats and ideal gas behavior, the relation

T0

T
= 1 +

γ − 1
2

M 2 (3.12)

remains valid for adiabatic flow even when friction is present.

3.3.1 Polytropic efficiency

The concept of polytropic efficiency follows from examining the Tds equation

Tds = dh − v dp

for an isentropic process,
dhs = v dp (3.13)

and a nonisentropic one. A polytropic efficiency of an incremental expansion process is
defined as

ηp =
dh

dhs

so that dh = ηpdhs. The process is shown in Figure 2.9a. Substituting this into Eq. (3.13)
and making use of the ideal gas relation gives

dh = cp dT = ηpv dp = ηp
RT

p
dp

From this follows the relation

dT

T
=

ηp(γ − 1)
γ

dp

p
(3.14)
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A polytropic index n is now introduced via the equation

n − 1
n

=
ηp(γ − 1)

γ
so that ηp =

(
n − 1

n

)(
γ

γ − 1

)
, (3.15)

and Eq. (3.15) can also be written as

n =
γ

ηp + γ(1 − ηp)
(3.16)

Assuming that ηp and hence also n remain constant along the entire expansion path,
integrating Eq. (3.14) yields

T2

T1
=

(
p2

p1

)(n−1)/n

(3.17)

Rewriting this as

n − 1
n

=
ln T2/T1

ln p2/p1

gives an equation from which the polytropic exponent may be calculated, if the inlet and
exit pressures and temperatures have been determined experimentally. Real gas effects
have been incorporated into the theory by Shultz [83], Mallen and Saville [62], and
Huntington [49].

If the inlet state is a stagnation state, then, writing Eq. (3.17) as

T01

T2
=

(
p01

p2

)(n−1)/n

(3.18)

and making use of the ideal gas relation in Eq. (3.18) it follows that

ρ01

ρ2
=

(
T01

T2

)1/(n−1)
p01

p2
=

(
ρ01

ρ

)n

Finally, using Eq. (3.12), the pressure and density ratios may be written as

p01

p2
=

(
1 +

γ − 1
2

M 2
2

)n/(n−1)
ρ01

ρ2
=

(
1 +

γ − 1
2

M 2
2

)1/(n−1)

The flow velocity is

V = M
√

γRT = M
√

γRT0

(
1 +

γ − 1
2

M 2
)−(1/2)

,

which can be used to express the mass flow rate per unit area at the throat in the form

ṁ
√

cpT01

p01A2
=

γ√
γ − 1

M2

(
1 +

γ − 1
2

M 2
2

)−(n+1)/2(n−1)

(3.19)

With the conditions at the inlet fixed, M2 is the only variable in this equation. Differentiating
with respect to M2 gives that value of Mach number at the throat for which the maximum
flow rate per unit area is achieved. This operation leads to

1 +
γ − 1

2
M 2

2 − (n + 1)(γ − 1)
2(n − 1)

M 2
2 = 0,
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which when simplified and solved for M2, gives

Mt =
√

n − 1
γ − 1

(3.20)

in which the subscript has been changed to indicate that this is the Mach number at the
throat at a choked condition. Two alternative forms are

Mt =

√
ηp

ηp + γ(1 − ηp)
Mt =

√
1 − (1 − ηp)n (3.21)

It is seen that Mach number at the throat is slightly less than one. Making use of this value
of Mach number, the critical pressure ratio becomes

pt

p01
=

(
2

n + 1

)n/(n−1)

(3.22)

This has the same form as the expression for isentropic flow when γ replaced by n.
Substituting Mt from Eq. (3.21) into Eq. (3.19) gives

(
ṁ

At

)
max

=

√
2ηpnp01ρ01

(
2

n + 1

)(n+1)/(n−1)

(3.23)

Velocity at the throat at this condition is

Vt =
√

2cp(T01 − Tt) =

√
2γ

γ − 1
RTt

(
T01

Tt
− 1

)
=

√
ηpnRTt

in which the relation T01/Tt = (n + 1)/2 was used. Alternatively, velocity at the throat
may be determined from Vt = Mt

√
γRTt.

� EXAMPLE 3.4

Air in a reservoir, with temperature 540 K and pressure 200 kPa, flows into
a converging nozzle with a polytropic efficiency ηp = 0.98. The throat area is
At = 10 cm2. (a) If the flow is choked, what are the exit pressure and the mass flow
rate? (b) Given that the back pressure is pb = 160 kPa, find the mass flow rate.

Solution: (a) The polytropic exponent is

n =
γ

ηp + γ(1 − ηp)
=

1.4
0.98 + 1.4 · 0.02

= 1.389,

and the throat Mach number can then be determined to be

Mt =
√

n − 1
γ − 1

=

√
1.389 − 1
1.4 − 1

= 0.986
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With the flow choked, pressure and temperature at the throat are

pt = p01

(
2

n + 1

)n/(n−1)

= 200
(

2
1.389 + 1

)1.389/0.389

= 106 kPa

Tt =
2T01

n + 1
=

2 · 540
1.389 + 1

= 450.0 K

Mass flux at the throat at choked condition is

ṁ

At
= p01

√
γ

RT01
M2

(
n + 1

2

)−(n+1)/2(n−1)

= 343.42 kg/(s m2),

and with At = 10 cm2, flow rate is

ṁ = 0.343 kg/s

(b) For pb = 160 kPa, the flow is not choked. Hence, Mt is calculated from

Mt =

√√√√ 2
γ − 1

[(
p01

pb

)(n−1)/n

− 1

]
= 0.5678,

and the mass flux at the throat is obtained from

ṁ

At
= ρtVt = p01

√
γ

RT01
Mt

(
1 +

γ − 1
2

M 2
t

)−(n+1)/2(n−1)

= 281.7 kg/(s m2)

Hence, the mass flow rate is
ṁ = 0.282 kg/s

By comparing this to the calculation in Example 3.3 for an isentropic flow, the mass
flow rate is seen to be slightly smaller for the polytropic process. �

Since the sonic state does not appear anywhere in the actual flow, it serves as a reference
state. At the sonic state, the static properties may be calculated from the stagnation state
upstream by using the following equations:

T ∗

T01
=

2
γ + 1

p∗

p01
=

(
2

γ + 1

)n/(n−1)
ρ∗

ρ01
=

(
2

γ + 1

)1/(n−1)

Since T01 remains constant, the relationship between the static temperature at the sonic
state, and its value at the inlet is

T ∗

T1
=

T ∗

T01

T01

T1
=

(
2

γ + 1

)(
1 +

γ − 1
2

M 2
1

)

or
T ∗

T1
=

2
γ + 1

+
γ − 1
γ + 1

M 2
1
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The pressure ratio is clearly

p∗

p1
=

(
2

γ + 1
+

γ − 1
γ + 1

M 2
1

)n/(n−1)

,

and the density ratio is

ρ∗

ρ1
=

(
2

γ + 1
+

γ − 1
γ + 1

M 2
1

)1/(n−1)

3.3.2 Loss coefficients

In addition to the polytropic efficiency, there are other measures of irreversibility in nozzle
flow. The first of these is the loss coefficient for static enthalpy, defined as

ζ =
h2 − h2s

h02 − h2
=

h2 − h2s
1
2
V 2

2

(3.24)

where the end states are as shown in Figure 3.6. The numerator is the change in enthalpy
owing to internal heating.

This may also be written as

ζ =
h02 − h2s − (h02 − h2)

h02 − h2
=

V 2
2s − V 2

2

V 2
2

=
1
c2
v
− 1

in which cv = V2/V2s is called a velocity coefficient. For the given inlet conditions and exit
pressure, the static enthalpy loss coefficient may be related to the polytropic efficiency, as
the next example illustrates.
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Figure 3.6 The thermodynamic states for a flow through a nozzle with friction.
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� EXAMPLE 3.5

Air in a reservoir, with temperature 540 K and pressure 200 kPa, flows into
a converging nozzle with a polytropic efficiency ηp = 0.98. (a) Find the static
enthalpy loss coefficient, given an exit pressure of p2 = 160 kPa. (b) Find the
velocity coefficient. (c) Find the loss in stagnation pressure.

Solution: (a) As in the previous example, the polytropic exponent is

n =
γ

ηp + γ(1 − ηp)
=

1.4
0.98 + 1.4 · 0.02

= 1.389

The exit temperature is therefore

T2 = T01

(
p2

p01

)(n−1)/n

= 540
(

160
200

)1.389/0.389

= 507.29 K,

and the Mach number at the exit is

M2 =

√
2

γ − 1

(
T01

T2
− 1

)
=

√
2

0.4

(
540

507.29
− 1

)
= 0.5678

The exit velocity is therefore

V2 = M2

√
γRT2 = 0.5678

√
1.4 · 287 · 507.3 = 256.34 m/s

The temperature T2s is obtained from the expression for isentropic expansion

T2s = T01

(
p2

p01

)(k−1)/k

= 540
(

160
200

)1/3.5

= 506.65 K

Hence, the static enthalpy loss coefficient is

ζ =
2cp(T2 − T2s)

V 2
2

=
2 · 1004.5 · (507.29 − 506.65)

256.342 = 0.01976

(b) The velocity coefficient is then

cv =
1√

1 + ζ
= 0.9903

(c) The loss of stagnation pressure is obtained by noting that

p02

p01
=

p02

p2

p2

p01
=

(
T02

T2

)γ/(γ−1)(
T2s

T02

)γ/(γ−1)

=
(

T2s

T2

)γ/(γ−1)

Hence,

p02 = p01

(
T2s

T2

)γ/(γ−1)

= 200
(

506.65
507.29

)3.5

= 199.11 kPa
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The loss in stagnation pressure is Δp0 = p01 − p02 = 890 Pa. Because the values
of p01 and p02 are nearly equal, on subtracting one from the other, a number of
significant figures are lost. If the value of the static enthalpy loss coefficient is
known, then the polytropic efficiency may be calculated by reversing the steps in
this example. �

The ratio of stagnation pressures p02/p01 may also be developed by integrating the
Gibbs equation

Tds = dh − v dp

along the constant p2 line. This gives

s2 − s1 = cp ln
T2

T2s

Similarly, integrating it between states 01 and 02 along the constant h0 line leads to

s2 − s1 = R ln
p01

p02

Hence,

p02

p01
=

(
T2s

T2

)γ/(γ−1)

(3.25)

This may also be written as

T2s

T2
=

(
p02

p01

)(γ−1)/γ

=
(

p01 − Δp0

p01

)(γ−1)/γ

=
(

1 − Δp0

p01

)(γ−1)/γ

in which Δp0 = p01 − p02. Assuming that Δp0/p01 � 1 and making use of the binomial
theorem, the following approximation can be used

T2s

T2
= 1 − γ − 1

γ

Δp0

p01

which may be also recast as

T2 − T2s

T2
=

γ − 1
γ

Δp0

p01
,

and from which

h2 − h2s =
RT2Δp0

p01
=

Δp0/ρ01

1 +
γ − 1

2
M 2

2

so that the static enthalpy loss coefficient is

ζ =
Δp0/ρ01

1
2
V 2

2

(
1 +

γ − 1
2

M 2
2

)
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For small values of exit Mach number, this reduces to

ζ =
Δp0/ρ01

1
2V

2
2

,

and this is often called a stagnation pressure loss coefficient.
Another measure of the loss of stagnation pressure is given by

Yp =
p01 − p02

p02 − p2

which may be written as

Yp =
p01/p02 − 1
1 − p2/p02

The pressure ratios in this expression are

p2

p02
=

(
T2

T02

)γ/(γ−1)

and

p02

p01
=

(
T2s

T2

)γ/(γ−1)

Using the definition of static enthalpy loss coefficient, Eq. (3.24) can be rewritten as

T2s

T2
= 1 − ζ

(
T02

T2
− 1

)

Substituting these into the expression for Yp gives it the form

Yp =

[
1 − ζ

(
T02

T2
− 1

)]−γ/(γ−1)

− 1

1 −
(

T02

T2

)−γ/(γ−1)

or

Yp =

(
1 − ζ

γ − 1
2

M 2
2

)−γ/(γ−1)

− 1

1 −
(

1 +
γ − 1

2
M 2

2

)−γ/(γ−1)

For small M2, this reduces to Yp = ζ. The development indicates that the value of ζ is not
dependent on Mach number, but the loss of stagnation pressure is, and therefore also the
value of Yp. For this reason, ζ ought to be favored over other measures of irreversibility
[18]. However, it is worthwhile to be familiar with the various loss coefficients, as they
have been and still are in use in the analysis of turbine nozzles.
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3.3.3 Nozzle efficiency

The nozzle efficiency is defined as

ηN =
h1 − h2

h1 − h2s
,

or since the stagnation enthalpy remains constant so that h1 + V 2
1 /2 = h2 + V 2

2 /2, this
relation can be rewritten as

ηN =
V 2

2 − V 2
1

2(h1 − h2s)

Similarly, when h1 + V 2
1 /2 = h2s + V 2

2s/2 is used to rewrite the isentropic enthalpy
change in the denominator in terms of kinetic energy differences, nozzle efficiency takes
the alternative form

ηN =
V 2

2 − V 2
1

V 2
2s − V 2

1

If the fluid enters the nozzle from a large reservoir where V1 = 0, nozzle efficiency
becomes

ηN =
V 2

2

2(h01 − h2s)
=

V 2
2

V 2
2s

= c2
v

Thus, nozzle efficiency can be interpreted as a ratio of the actual increase in kinetic energy
of the flow to that in reversible adiabatic flow. Nozzle efficiency takes into account the
losses in the entire nozzle, from its inlet to its exit. If the nozzle is a converging–diverging
type, and the flow is subsonic, then most of the losses take place in the diverging part in
which the flow diffuses to a low velocity. Nozzle efficiency of a converging nozzle has a
value very close to unity.

For a flow that starts from the stagnation state nozzle efficiency

ηN =
V 2

2

2cp(T01 − T2s)

may be further manipulated into the form

ηN =
γ − 1

2
M 2

2(
1 − T2s

T01

) T2

T01

Expressing the isentropic temperature ratio T2s/T01 and T01/T2 as

T2s

T01
=

(
p2

p01

)(γ−1)/γ
T01

T2
= 1 +

γ − 1
2

M 2
2

and solving the resulting equation for the pressure ratio gives

p2

p01
=

[
1 − (γ − 1)M 2

2

ηN(2 + (γ − 1)M 2
2 )

]γ/(γ−1)

(3.26)
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The following development of an expression for mass flow rate through a converging
nozzle makes use of this equation. In such a nozzle, the exit area A2 is equal to the throat
area At, and the mass flux, which is the mass flow rate per unit area, at the throat is
given by

ṁ

At
= ρtVt = ptMt

√
γ

RT01

√
T01

Tt

or
ṁ

At
= p01

√
γ

RT01

pt

p01
Mt

√
1 +

γ − 1
2

M 2
t

Substituting the pressure ratio from Eq. (3.26) into this gives

ṁ

At
= p01

√
γ

RT01

[
1 − (γ − 1)M 2

t

ηN(2 + (γ − 1)M 2
t )

]γ/(γ−1)[
M 2

t

(
1 +

γ − 1
2

M 4
t

)]1/2

(3.27)

In this equation, square of Mach number appears, and therefore, differentiating this equation
with respect to M 2

t and setting the result to zero gives the value of Mt for maximum mass
flux at the throat. Carrying out the differentiation gives the equation

(γ − 1)2(1 − ηN)M 4
t − [(γ − 1)3ηN − 2γ]M 2

t − 2ηN = 0

From this, the throat Mach number at the condition of maximum mass flux is obtained as

Mt =

[
(γ−1) (3ηN−1)−2γ +

√
[(γ−1)(3ηN−1)−2γ]2 +8ηN(1−ηN)(γ−1)2

2(γ−1)2(1−ηN)

]1/2

(3.28)

If the nozzle efficiency is known, then, polytropic efficiency can be calculated by equating
the Mach number obtained from Eq. (3.28) to Mt =

√
(n − 1)/(γ − 1). For γ = 1.4 and

ηN = 0.98, the polytropic exponent becomes n = 1.3868.
Neither the polytropic efficiency nor the overall nozzle efficiency reveals how the

length of the nozzle influences the magnitude of irreversibilities in the flow. This issue is
discussed in the next section.

3.3.4 Combined Fanno flow and area change

Compressible flow with friction in constant-area ducts goes by the name Fanno flow, and
for this flow, the momentum equation is used to relate pressure and velocity changes to
wall friction. There are two closely related friction factors in use. The Fanning friction
factor is defined as

f̄ =
τw

1
2ρV 2

The Darcy friction factor is four times the Fanning value, f = 4f̄ . Care must be exercised
that the right one is used. The Darcy friction factor can be calculated for turbulent flow
from the Colebrook formula

1√
f

= −2log10

(
ε/Dh

3.7
+

2.51
Re

√
f

)
(3.29)
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in which ε is a root-mean-square (RMS) roughness of the walls and Dh is a hydraulic
diameter, equal to Dh = 4A/C. Here, A is a cross-sectional area, and C is a wetted
perimeter.

Since this equation is nonlinear, the value of f for given Re has to be determined
iteratively; that is, an initial guess can be obtained by assuming Reynolds number Re to be
so large that the second term in the parentheses may be neglected. The value of f obtained
from this calculation is then substituted on the RHS. In this way, a new value of f is then
found, and it is sufficiency accurate that the iterations can be stopped. In the equations that
follow, the Fanning friction factor is used, but the equations are left in a form in which 4f̄
appears explicitly.

To analyze the combined effects of friction and area change, equation of continuity
and energy are used together with the momentum equation. The x-component of the
momentum balance for the control volume, shown in Figure 3.7, gives

ρAV (V + dV − V ) = pA − p dA − (p + dp)(A − dA) − τwC cos α dL

Since in the sketch the flow area decreases, the downstream area is written as A − dA. In
order to draw the vector p dA in the correct direction for a converging channel, the area
change must be assumed to have the sign that is consistent with the sketch.

pA

pdA

τ
w
 C dL

(p+dp)(A−dA)

α

ρVA V ρVA (V+dV)

A − dAA

Figure 3.7 A converging nozzle with friction.

Making use of the relations C = 4A/ Dh and cos α dL = dx in this equation and
neglecting the small term dp dA, reduces it to the form

ρV dV = −dp − 4τw

Dh
dx

Introduction of the Fanning friction factor puts it into the form

ρV dV = −dp − 4f̄

Dh

1
2
ρV 2dx

Using the ideal gas relation and definition of Mach number to establish the equality
ρV 2 = γpM 2 gives, after each term has been divided by p, the equation

dp

p
+

γM 2

2
dV 2

V 2 +
γM 2

2
4f̄

dx

Dh
= 0 (3.30)
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To see the effect of area ratio and friction on the flow, this equation is next recasted
into a form in which the first two terms are expressed in terms of area ratio and Mach
number. The second term is considered first. Since V 2 = M 2γRT , taking logarithms and
differentiating this gives

dV 2

V 2 =
dM 2

M 2 +
dT

T

Next, since in adiabatic flow T0 is constant, taking logarithms and differentiating the
adiabatic relation T0 = T (1 + γ−1

2 M 2) gives

dT

T
= −

γ − 1
2

M 2

1 +
γ − 1

2
M 2

dM 2

M 2 (3.31)

and eliminating dT/T between the last two equations gives

dV 2

V 2 =
1

1 +
γ − 1

2
M 2

dM 2

M 2 (3.32)

Next, an equation between Mach number, area ratio, and friction factor is obtained by
taking logarithms and differentiating the mass balance ṁ = ρAV . This gives

dρ

ρ
+

dA

A
+

dV

V
= 0

A similar operation on the ideal gas relation p = ρRT leads to

dp

p
=

dρ

ρ
+

dT

T

Eliminating the term involving density between these two equations gives

dp

p
= −dA

A
− 1

2
dV 2

V 2 +
dT

T

Substituting this expression for dp/p into Eq. (3.30) gives

−dA

A
− 1

2
(1 − γM 2)

dV 2

V 2 +
dT

T
+

γM 2

2
4f̄

dx

D
= 0

Substituting Eqs. (3.31) and (3.32) into this yields the form

1 − M 2

2 + (γ − 1)M 2

dM 2

M 2 = −dA

A
+

γM 2

2
4f̄

dx

D
(3.33)

from which the qualitative behavior of the flow can be seen. For sufficiently low back
pressure, this equation shows that in a converging duct with dA/A < 0 both terms on the
right are positive. Hence, in a flow that begins from a stagnation state, the Mach number
increases in the flow direction, as was also true in isentropic flow. If the nozzle has a throat
with dA = 0, the right side is still positive, and the Mach number must still increase as it
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passes through the throat. This means that the Mach number is less than unity at the throat.
In a supersonic nozzle, the flow may reach M = 1 in the diverging part, with dA/A > 0,
when the terms on the RHS exactly cancel. Stagnation pressure may be calculated by
solving

dp0

p0
= −γ

2
M 2 4f̄

dx

Dh
(3.34)

which shows that it drops only because of friction.
In steam turbines high-pressure steam is admitted into the turbine from a steam chest,

to which it has entered via a regulated valve system. From the steam chest it flows first
through a nozzle row arranged as shown in Figure 3.8. After leaving the nozzles it enters
an interblade gap and then a set of rotor blades. Steam enters the nozzles in the axial
direction, and the nozzles turn it into the general direction of the wheel velocity. Curvature
of the nozzle passage does not introduce new complications into the analysis of frictional
flow except, of course, at the initial stage when the geometry is laid out. Sidestepping such
complications the calculation in the next example are for a flow channel for which the
areas can be calculated from a simple equation.

Nozzle

Rotor blades

Disk

Diaphragm

D
ire

ct
io

n 
of

 

ro
ta

tio
n

Shroud band

V

Figure 3.8 Steam turbine nozzles and blades. Source: Adapted from Keenan [54].

� EXAMPLE 3.6

Consider steam flow through a rectangular nozzle of width 1cm and height is given
by the equation

y = 2 + 5 exp(−0.4x) + 2.5 exp(0.1x)

It extends from 0 < x < 10 cm. At the inlet, steam is superheated with pressure
p1 = 1000 kPa and temperature T1 = 640 K and M1 = 0.2. The friction factor is
assumed to be 4f̄ = 0.04. Plot the Mach number and p(x)/p1 along the nozzle,
assuming that it remains superheated as an ideal gas with γ = 1.3.

Solution: The areas at the inlet and outlet are

Ai = 9.5 cm2 Ae = 8.887 cm2
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First consider the isentropic flow. With M1 = 0.2 at the inlet, the area at the sonic
state can be determined from

Ai

A∗ =
1

M1

(
2 + (γ − 1)M 2

1

γ + 1

)(γ+1)/2(γ−1)

=
1

0.2

(
2 + 0.3 · 0.22

2.3

)3.833

= 2.994

Hence, A∗ = 3.173 cm. The exit Mach number can be found by the usual procedure
of finding the Me satisfying the equation

8.887
3.173

= 2.801 =
1

Me

(
2 + (γ − 1)M 2

e

γ + 1

)(γ+1)/2(γ−1)

It is Me = 0.2145, and the normalized pressure is pe/p1 = 0.9961.
The numerical solution is carried out by using the Runge–Kutta method ode45

found in MATLAB or GNU/OCTAVE, and the important lines of the code are

xspan=[0:0.01:10]; f=0.01; k=1.3; w=1; M1=0.2;
mx1=M1^2;
[x,mx] = ode45(@(x,mx) odefun(x,mx,f,k,w),xspan,mx1);
M=sqrt(mx);

function dmdx = odefun(x,mx,f,k,w)
A=2+5*exp(-0.4*x)+2.5*exp(0.1*x);
dAdx=-2*exp(-0.4*x)+0.25*exp(0.1*x);
D=2*A/(A+w);
dmdx=-(2*mx+(k-1)*mx*mx)/(1-mx)*(dAdx/A) ...

+k*mx*(2+(k-1)*mx)/(1-mx)*4*f/D;
end

The numerical calculation of the isentropic flow is carried out by setting f̄ = 0.
This also serves as a check to partially confirm that there are no errors in the computer
program, as the calculation must yield the exit Mach number Me = 0.2145.

Plots of Mach number and normalized pressure for isentropic and frictional flow
are shown in Figure 3.9. Friction is seen to increase the Mach number and cause the
pressure to be always lower than in the isentropic case. �

In the foregoing example, length of the nozzle was taken into account explicitly. Since
the irreversibilities are clearly a function of both the surface roughness and the length of the
flow passage, this is an improvement over assigning a polytropic exponent to the process,
or by estimating the nozzle efficiency by past experience. However, an objection may be
raised in the use of friction factors, obtained experimentally from flow of incompressible
fluids in pipes, to compressible flow with large area change.

Today, it is possible to carry out computational fluid dynamics CFD simulations to take
account of frictional effects better than the one-dimensional analysis discussed here yields.
Nevertheless, it is still worthwhile to carry out a one-dimensional analysis by hand and by
the use of effective software, for such methods increase intuition, which is difficult to gain
by CFD alone.
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Figure 3.9 Mach numbers and normalized pressure for a steam flow through a nozzle. At
the inlet M1 = 0.2 and the dashed lines correspond to frictional flow whereas solid lines to
isentropic flow.

3.4 SUPERSONIC NOZZLE

In this section, compressible flow in a converging–diverging nozzle is considered, and in
the next section the theory of normal shocks is developed. In addition to friction, shocks
cause additional irreversibilities in the flow. Ignoring friction and shocks, the flow in
a converging–diverging nozzle can be considered isentropic, particularly if the flow is
accelerating to supersonic speeds after the throat of the nozzle.

Consider the operation of a converging–diverging nozzle in the same manner as was
described for the converging one. The flow rate is adjusted by a regulating valve downstream
of the nozzle. With the valve closed, there is no flow, and the pressure throughout equals the
stagnation pressure. As the valve is opened slightly, flow is accelerated in the converging
part of the nozzle, and its pressure drops. It is then decelerated after the throat with rising
pressure such that the exit plane pressure pe reaches the back pressure pb. This corresponds
to case 1 shown in Figure 3.10. Further opening of the valve drops the back pressure, and
the flow rate increases until the valve is so far open that the Mach number has the value of
unity at the throat, and the pressure at the throat is equal to the critical pressure p∗. After
the throat, the flow diffuses and pressure rises until the exit plane is reached. The pressure
variation is shown as condition 2 in the figure. If the valve is opened further, acoustic
waves to signal what has happened downstream cannot propagate past the throat once the
flow speed there is equal to the sound speed. The flow is now choked, and no further
adjustment in the mass flow rate is possible.

The adjustment to the back pressure now takes place through a normal shock and
diffusion after it in the diverging part of the nozzle. This situation is shown as condition
3 in Figure 3.10. Flows with normal shocks are discussed in the next section. A weak
normal shock appears just downstream of the throat for back pressures slightly lower than
that at which the flow becomes choked, and as the back pressure is further reduced, the
position of the shock moves further downstream until it reaches the exit plane, which is
shown as condition 4 in the figure. After this, any decrease in the back pressure cannot
cause any change in the exit plane pressure. Condition 5 corresponds to an overexpanded



�

� �

�

88 COMPRESSIBLE FLOW

T
0

p
0

V
0
 = 0

ρ
0

p
e

p
b

A
t

p/p
0

p*/p
0

1

2

3

4

5
6
7

Normal shock

Figure 3.10 Supersonic nozzle with a shock in the diverging part of the nozzle.

flow because the exit pressure has dropped below the back pressure, and the adjustment to
the back pressure takes place after the nozzle through a series of oblique shock waves and
expansion fans.

There is one value of back pressure for which the flow is isentropic and supersonic all
the way to the exit plane, and at this condition, the exit plane pressure reaches the value of
the back pressure. This corresponds to one of the two solutions in the area ratio graph of
Figure 3.4. It is also shown by line 6 in Figure 3.10. For back pressures below this value,
the flow is said to be underexpanded as its pressure remains above the back pressure.
The flow adjusts to the back pressure by expanding through a series of oblique expansion
waves and shock waves as schematically shown by line 7 in the figure. The next example
illustrates the conditions for isentropic supersonic flow.

� EXAMPLE 3.7

Air flows isentropically in a converging–diverging nozzle, with a throat area of
10 cm2, such that at the exit Me = 2. The supply pressure and temperature at the
inlet are 2 bar and 540 K, respectively, and the inlet velocity is negligibly small. (a)
Find the fluid properties at the throat, (b) the exit area, pressure, and temperature,
and (c) the flow rate.

Solution: (a) At the stagnation state, density is

ρ0 =
p0

RT0
=

200
0.287 · 540

= 1.2905 kg/m3
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Since the flow is supersonic downstream of the throat, it is sonic at the throat.
Hence,

p∗ = 0.5283 p0 = 0.5283 · 2 = 1.056 bar

T ∗ = 0.8333 T0 = 0.8333 · 540 = 450.0 K

ρ∗ = 0.6339 ρ0 = 0.6339 · 1.32905 = 0.8181 kg/m3

V ∗ =
√

γRT ∗ =
√

1.4 · 287 · 450.0 = 425.2 m/s

(b) At the exit plane, where Me = 2, temperature is

Te =
T0

1 +
γ − 1

2
M 2

e

=
540

1 + 0.2 · 4 = 300 K,

and pressure and density are

pe = p0

(
Te

T0

)γ/(γ−1)

= 2
(

300
540

)3.5

= 25.56 kPa

ρe = ρ0

(
Te

T0

)1/(γ−1)

= 1.2905
(

300
540

)2.5

= 0.2969 kg/m3

Since the throat area is A∗ = 10 cm2, exit area is obtained by first calculating the
area ratio

Ae

A∗ =
1

Me

(
2

γ + 1
+

γ − 1
γ + 1

M 2
e

)(γ+1)/2(γ−1)

=
1.53

2
= 1.6875

from which the exit area is Ae = 16.875 cm2.
(c) The mass flow rate is obtained from

ṁ = ρ∗A∗V ∗ = 0.8181 · 0.001 · 425.2 = 0.348 kg/s

�

Examination of Figure 3.4 shows that for a given area ratio A/A∗, the Mach number
can be supersonic or subsonic. The supersonic solution requires a low exit pressure, and
this was examined in the previous example. To find the subsonic solution, Eq. (3.9) needs
to be solved for Mach number when the area ratio is given. This can be carried out with
MATLAB’S or GNU/OCTAVE’S fzero function. Its syntax is

x=fzero(@(x) F(x),[x1,x2]);

This finds the value of x that satisfies F (x) = 0, with the zero in the range [x1, x2].
To obtain the subsonic solution, in the following MATLAB script, Mach number is

bracketed to the range [0.05, 1.0]. The variable k is used for γ, and a is the area ratio.
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clear all;
a=1.6875; k=1.4;
M = fzero(@(M) farea(M,a,k),[0.05,1.0])

The function farea is defined as

function f = farea(M,a,k)
f = a-(1/M)*((2/(k+1))*(1+0.5*(k-1)*M^2))^(0.5*(k+1)/(k-1));

The result is:

M=0.3722

In the MATLAB and GNU/OCTAVE, the function body is placed after the main program in
the same file as the main program, and then, it must be terminated with the command end.
A separate function is not needed if this is written as:

a=1.6875; k=1.4;
M = fzero(@(M) a-(1/M)*((2/(k+1))* ...
(1+0.5*(k-1)*M^2))^(0.5*(k+1)/(k-1)),[0.05,1.0])

3.5 NORMAL SHOCKS

In a converging–diverging duct two isentropic solutions can be found for a certain range
of back pressures. If the back pressure is reduced slightly from that corresponding to the
subsonic branch of the flow, a normal shock develops just downstream of the throat where
the flow is now supersonic. It will be seen that the flow after the shock is subsonic, and
there is a jump in pressure across the shock. After the shock, the flow diffuses to the back
pressure. A Schlieren photograph of a normal shock is shown in Figure 3.11. To understand
the details of what is happening in the flow has to wait until the theory of oblique shocks
and their interaction with the boundary layers along the walls are well understood. For
now, it is sufficient to know that the central section of the shock corresponds to the normal
shock. After the shock, the boundary layer interaction influences the flow across the entire
channel. Still, one-dimensional analysis gives good results even in this part of the flow.

Figure 3.11 Interaction between a normal shock and wall boundary layers. Source: Photograph
courtesy Professor D. Papamoschou.
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The flow through a shock can be analyzed by considering a control volume around the
shock. Since the flow is adiabatic, the energy equation reduces to

h1 +
1
2
V 2

1 = h2 +
1
2
V 2

2 (3.35)

where the subscript 1 denotes the upstream state and subscript 2 the downstream state.
Mass balance for this control volume yields

ṁ

A
= ρ1V1 = ρ2V2 (3.36)

and A is the area at the location of the shock. The momentum equation becomes

ṁ(V2 − V1) = (p1 − p2)A (3.37)

since the wall friction can be neglected. Pressure increase across the shock is thus

p2 − p1 =
ṁ

A
(V1 − V2) (3.38)

Making use of the mass balance, this equation takes the form

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 (3.39)

Since the flow is adiabatic, the energy equation, if ideal gas behavior is assumed, may be
written as

cpT1 +
1
2
V 2

1 = cpT2 +
1
2
V 2

2 (3.40)

or as
T01 = T02 (3.41)

From the definition of stagnation state, the expression

T01

T1
= 1 +

γ − 1
2

M 2
1

is obtained, and a similar equation holds on the downstream side. Hence, their ratio yields

T2

T1
=

1 +
γ − 1

2
M 2

1

1 +
γ − 1

2
M 2

2

(3.42)

Making use of the ideal gas relation p = ρRT and the mass balance ρ1V1 = ρ2V2 in this
equation gives

T2

T1
=

p2

p1

ρ1

ρ2
=

p2

p1

V2

V1
(3.43)

and, using V = Mc to eliminate the velocities, leads to

T2

T1
=

p2M2c2

p1M1c1
=

p2M2

p1M1

√
T2

T1
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from which
T2

T1
=

(
p2

p1

)2 (
M2

M1

)2

(3.44)

Combining this with Eq. (3.42) gives

p2

p1
=

M1

M2

√
1 +

γ − 1
2

M 2
1√

1 +
γ − 1

2
M 2

2

(3.45)

For an ideal gas, ρ1V
2
1 = γp1M

2
1 and ρ2V

2
2 = γp2M

2
2 . Substituting these into Eq. (3.39)

gives
p2

p1
=

1 + γM 2
1

1 + γM 2
2

(3.46)

The velocity ratio across the shock is next related to the pressure ratio and Mach number
ratio by equating Eq. (3.43) to Eq. (3.44). It gives

V2

V1
=

p2

p1

(
M 2

2

M 2
1

)
(3.47)

Equating next two expressions, Eqs. (3.45) and (3.46), for pressure gives

M1

√
1 +

γ − 1
2

M 2
1

1 + γM 2
1

=
M2

√
1 +

γ − 1
2

M 2
2

1 + γM 2
2

This is clearly satisfied if M1 = M2, but in this case, nothing interesting happens, and the
flow moves through the control volume undisturbed. Squaring both sides yields a quadratic
equation in M 2

2 . Solving it gives the result

M 2
2 =

2 + (γ − 1)M 2
1

2γM 2
1 − (γ − 1)

(3.48)

This equation relates the upstream and downstream Mach numbers across a shock, and the
expression is plotted in Figure 3.12. It shows that upstream states have M1 > 1, and those
downstream have M2 < 1. As will be shown in the following, only in this situation will
entropy increase across the shock, as it must.

Pressure before and after the shock is obtained by substituting Eq. (3.48) into Eq. (3.46),
giving the result

p2

p1
=

2γ

γ + 1
M 2

1 − γ − 1
γ + 1

(3.49)

This shows that if M1 = 1, there is no pressure jump. Defining the fractional increase in
pressure as measure of the strength of the shock, the strength is defined as

p2

p1
− 1 =

2γ

γ + 1
(M 2

1 − 1) (3.50)
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Figure 3.12 Normal shock relations for γ = 1.4.

Since across the shock, ρ1V1 = ρ2V2, the velocity ratio and inverse of density ratio are
reduced to

V1

V2
=

ρ2

ρ1
=

(γ + 1)M 2
1

2 + (γ − 1)M 2
1

(3.51)

The temperature ratio across a shock could now be obtained by substituting the value of
M 2

2 from Eq. (3.48) into Eq. (3.42). The result is

T2

T1
=

[2γM 2
1 − (γ − 1)][2 + (γ − 1)M 2

1 ]
(γ + 1)2M 2

1
(3.52)

Usually, however, the pressure and density ratios are calculated first, and the temperature
ratio is obtained from

T2

T1
=

p2

p1

ρ1

ρ2

which is formed by using the ideal gas relation on both sides of the shock.
Since T01 = T02, Eq. (3.11) shows that

p02

p01
=

A∗
1

A∗
2

(3.53)

This equation is useful for finding the area at which a shock is located when the upstream
Mach number is known.

The ratio of stagnation pressures across a shock is obtained from

p02

p01
=

p02

p2

p2

p1

p1

p01
(3.54)

which takes the form

p02

p01
=

(
(γ + 1)M 2

1

2 + (γ − 1)M 2
1

)γ/γ−1(
γ + 1

2γM 2
1 − (γ − 1)

)1/(γ−1)

(3.55)
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This ratio and others are shown in Figure 3.12. The stagnation pressure ratio curve has
zero for its slope at M1 = 1, and the ratio decreases mildly when the Mach number
increases to values only slightly greater than one. At M1 = 2, it has decreased to 0.7209
for a gas with γ = 1.4. At this Mach number, the pressure ratio has increased to 4.5, and
the temperature ratio is 3.11. They keep increasing as the Mach is increased. However,
both the Mach number downstream of the shock and the density ratio reach asymptotic
values as M1 → ∞. Their asymptotic values are M2 =

√
(γ − 1)/2γ = 0.3781 and

ρ2/ρ1 = (γ + 1)/(γ − 1) = 6.

� EXAMPLE 3.8

Air flows isentropically in a diverging supersonic nozzle. Consider a section of this
supersonic nozzle, with an inlet area Ai. The static pressure at the inlet is pi = 80 kPa,
the static temperature is Ti = 250 K, and the Mach number is Mi = 1.2. The exit
area is 2.5 times the inlet area. What should the back pressure be for a shock to form
at the location where the area is 1.5 times the inlet area?

Solution: The stagnation temperature and pressure are first calculated from

T0i

Ti
= 1 +

γ − 1
2

M 2
i = 1 + 0.2 · 1.22 = 1.288

p0i

pi
=

(
T0i

Ti

)γ/(γ−1)

= 1.2883.5 = 2.425

so that T0i = 322 K and p0i = 194 kPa.
Since the flow is supersonic and the conditions at the inlet are known, imagine

the extension of the nozzle upstream to a location where the flow is sonic. At that
location, the area can be calculated from

Ai

A∗
1

=
1

Mi

(
2

γ + 1
+

γ − 1
γ + 1

M 2
i

)(γ+1)/2(γ−1)

which gives

Ai

A∗
1

=
1

1.2

(
2

2.4
+

0.4
2.4

1.22
)3

= 1.0304

One may assign a convenient value for the inlet area, say Ai = 1 cm2. Then,
A∗

1 = 0.970 cm2. With this area known, the Mach number ahead of the shock can be
determined by solving the equation

A1

A∗
1

=
1

M1

(
2

γ + 1
+

γ − 1
γ + 1

M 2
1

)(γ+1)/2(γ−1)

The left side is known since A1 = 1.5 · Ai = 1.5 cm. The solution is best done with
MATLAB or GNU/OCTAVE, and the way it is done was demonstrated in the discussion
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after Example 3.4. This calculation gives M1 = 1.892. With the Mach number ahead
of the shock known, the stagnation pressure ratio is

p02

p01
=

(
(γ + 1)M 2

1

2 + (γ − 1)M 2
1

)γ/(γ−1)(
γ + 1

2γM 2
1 − (γ − 1)

)1/(γ−1)

=
(

2.4 · 1.8922

2 + 0.4 · 1.8922

)3.5( 2.4
2 · 1.4 · 1.8922 − 0.4

)2.5

= 0.771

so that p02 = 149.56 kPa.
From Eq.(3.53), the area at the hypothetical sonic condition downstream of the

shock can be calculated to be

A∗
2 = A∗

1
p01

p02
=

0.970
0.771

= 1.259

The exit Mach number, Me, can now be determined from

Ae

A∗
2

=
1

Me

(
2

γ + 1
+

γ − 1
γ + 1

M 2
e

)(γ+1)/2(γ−1)

Since the exit area is 2.5 times the inlet value, and inlet area was chosen to
be 1 cm2, the left-hand side of this equation is Ae/A

∗
2 = 2.5/1.259 = 1.986. The

fzero function in MATLAB or GNU/OCTAVE now gives Me = 0.308. The pressure at
the exit is therefore

pe = p02

(
1 +

γ − 1
2

M 2
2

)γ/(γ−1)

= 149.56(1 + 0.2 · 0.3082)3.5 = 140.0 kPa

�

3.5.1 Rankine–Hugoniot relations

A relationship between the pressure and density ratio across the shock can be obtained
from the momentum equation

p2 − p1 = ρ1V
2
1 − ρ2V

2
2 = ρ1V

2
1

(
1 − ρ1

ρ2

)
,

which when solved for upstream velocity, gives

V1 =
[
(p2 − p1)ρ2

(ρ2 − ρ1)ρ1

]1/2

(3.56)

A similar expression is obtained downstream of the shock:

V2 =
[
(p2 − p1)ρ1

(ρ2 − ρ1)ρ2

]1/2
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The energy equation across the shock is

h1 +
1
2
V 2

1 = h2 +
1
2
V 2

2

Since

h1 − h2 = cp(T1 − T2) =
γ

γ − 1

(
p1

ρ1
− p2

ρ2

)
, (3.57)

the energy equation can be written as

γ

γ − 1
p1

ρ1
+

p2 − p1

2(ρ2 − ρ1)
ρ2

ρ1
=

γ

γ − 1
p2

ρ2
+

p2 − p1

2(ρ2 − ρ1)
ρ1

ρ2

from which

p2

p1
=

γ + 1
γ − 1

ρ2

ρ1
− 1

γ + 1
γ − 1

− ρ2

ρ1

(3.58)

Solving this for the density ratio gives

ρ2

ρ1
=

γ + 1
γ − 1

p2

p1
+ 1

γ + 1
γ − 1

+
p2

p1

(3.59)

Equations (3.58) and (3.59) are known as Rankine–Hugoniot relations [46, 74].
The strength of the shock is obtained from the first of the Rankine–Hugoniot equations.

It is

p2

p1
− 1 =

2γ

γ − 1

(
ρ2

ρ1
− 1

)
2

γ − 1
−

(
ρ2

ρ1
− 1

) (3.60)

and the density ratio in terms of the strength of the shock is

ρ2

ρ1
=

1 +
γ + 1
2γ

(
p2

p1
− 1

)

1 +
γ − 1
2γ

(
p2

p1
− 1

) (3.61)

Entropy change across a shock is given by integrating

Tds = du + p dv

across the shock. This gives

s2 − s1 = cv ln
T2

T1
+ R ln

v2

v1
= cv ln

(
T2

T1

)(
v2

v1

)γ−1
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The temperature ratio is
T2

T1
=

p2

p1

v2

v1
=

p2

p1

ρ1

ρ2

so that the entropy change can also be written as

s2 − s1 = cv ln
(

p2

p1

)(
ρ1

ρ2

)γ

Substituting the expression for ρ2/ρ1 from Eq. (3.61) to this gives

s2 − s1

cv

= ln
(

p2

p1

)
− γ ln

[
1 +

γ + 1
2γ

(
p2

p1
− 1

)]
+ γ ln

[
1 +

γ − 1
2γ

(
p2

p1
− 1

)]

For weak shocks, p2/p1 is just slightly greater than one. For this reason, let p2/p1 = 1 + ε,
and on substituting this into the previous equation and expanding in Taylor series for small
value of ε leads to 2

s2 − s1

cv

=
γ2 − 1
12γ2

(
p2

p1
− 1

)3

− γ2 − 1
8γ2

(
p2

p1
− 1

)4

+ · · ·

or after using cv = R/(γ − 1)

s2 − s1

R
=

γ + 1
12γ2

(
p2

p1
− 1

)3

− γ + 1
8γ2

(
p2

p1
− 1

)4

+ · · ·

Using Eq. (3.50) to express the shock strength in terms of Mach number gives

s2 − s1

R
=

2
3

γ

(γ + 1)2 (M 2
1 − 1)3 − 2γ2

(γ + 1)3 (M 2
1 − 1)4 + · · · (3.62)

This shows that were M1 < 1, entropy would decrease across the shock. Thus shocks
are possible only for M1 > 1. Furthermore, entropy increases only slightly across weak
shocks.

The stagnation pressure change across weak shocks can also be developed by writing
M 2

1 = 1 + ε in

p02

p01
=

(
(γ + 1)M 2

1

2 + (γ − 1)M 2
1

)γ/γ−1(
γ + 1

2γM 2
1 − (γ − 1)

)1/(γ−1)

and expanding the resulting expression for small values of ε. The result, when written in
terms of M 2

1 − 1, is

p02

p01
= 1 − 2

3
γ

(γ + 1)2 (M 2
1 − 1)3 +

2γ2

(γ + 1)3 (M 2
1 − 1)4 + · · · (3.63)

This is an important result as it shows that flows through weak shocks experience only a
small loss in stagnation pressure. In fact, the first two terms of Eq. (3.63) may be shown to
be accurate to 1% for M1 < 1.2, and for M1 = 1.2, it gives p02/p01 = 0.986 or a stagnation
pressure drop of less than 2%. The significance of this result for turbomachinery design is
that in transonic flows with shocks, stagnation pressure losses are relatively small.

2For small values of ε series expansion yields ln(1 + ε) = ε − ε2/2 + ε3/3 − ε4/4 + · · · .
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3.6 MOVING SHOCKS

In situations in which a shock moves through still air, it is of interest to calculate the
velocity after the shock and the changes in the stagnation properties. By choosing a
reference frame that moves with the shock, for the observer in this reference frame, the
shock appears stationary, and the situation is reduced to the one already considered. The
static properties are the same in the fixed and moving frames. But the stagnation properties
are not. The absolute velocity V is the sum of the velocity of the frame U and the relative
velocity W

V = U + W

How this transformation is used to analyze moving shocks is illustrated by an example.

� EXAMPLE 3.9

A normal shock, as shown in Figure 3.13, is moving at a speed 800 m/s to the
left through still air at atmospheric conditions with temperature 300 K and pressure
100 kPa. Find the air velocity and show by calculations that the entropy change both
in fixed and in the moving coordinates is the same.

Solution: In Figure 3.13a is shown the shock that moves with velocity −U , since
the x-axis points to the right. The velocities before and after the shock are V1 = 0
and V2 in the stationary frame. The assumed direction of the unknown V2 is in the
positive x-direction, even though it is expected to be moving to the left. Hence, the
analysis should give it a negative value.

The relative velocity approaching the shock is W1 = V1 − (−U) = U , and after
the shock, it is W2 = V2 − (−U) = V2 + U . As mentioned, the static properties are
the same in stationary and moving coordinates, but stagnation properties are different.
Hence, T1 = 300 K and p1 = 100 kPa, and since the air is stagnant T01 = 300 K
and p01 = 100 kPa. The speed of sound and the relative Mach number before the
shock are

c1 =
√

γRT1 =
√

1.4 · 287 · 300 = 347.2 m/s M1R =
W1

c1
=

800
347.2

= 2.304

The relative Mach number after the shock is obtained from the standard formula

M2R =

√
2 + (γ − 1)M 2

1R

2γM 2
1R − (γ − 1)

=

√
2 + 0.4 · 2.3042

2 · 1.4 · 2.3042 − 0.4
= 0.534

The density ratio can be determined from

ρ2

ρ1
=

(γ + 1)M 2
1R

2 + (γ − 1)M 2
1R

=
2.4 · 0.5342

2 + 0.4 · 0.5342 = 3.090

UStill air

moving shock

W
1

W
2

stationary shock

Figure 3.13 Shock moving to still air.
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and the pressure ratio from

p2

p1
=

2γ

γ + 1
M 2

1R − γ − 1
γ + 1

=
2 · 1.4 · 2.3042 − 0.4

2.4
= 6.0277

The value of pressure after the shock is p2 = 6.0277 · 100 = 602.77 kPa.
The temperature T2 is then

T2 = T1
p2

p1

ρ1

ρ2
= 300

6.0277
3.090

= 585.2 K

The relative stagnation temperature is

T01R = T1

(
1 +

γ − 1
2

M 2
1R

)
= 300(1 + 0.2 · 2.3042) = 618.57 K,

and the relative stagnation pressure is

p01R = p1

(
T01R

T1

)γ/(γ−1)

= 100 ·
(

618.57
300

)3.5

= 1258.7 kPa

Since T01R = T02R, the relative stagnation pressure after the shock is

p02R = p2

(
T02R

T2

)γ/(γ−1)

= 602.8 ·
(

618.57
585.2

)3.5

= 731.9 kPa

The relative velocity after the shock is

W2 = c2M2R =
√

γRT2M2R =
√

1.4 · 287 · 585.2 · 0.534 = 258.9 m/s

hence, the absolute velocity after the shock is

V2 = W2 + (−U) = 258.9 − 800 = −541.1 m/s

and it is moving to the left in the fixed frame, as expected. Mach number after the
shock is M2 = |V2|/

√
γRT2 = 1.1159.

The stagnation temperature is

T02 = T2

(
1 +

γ − 1
2

M 2
2

)
= 585.2(1 + 0.2 · 1.11592) = 730.9 K,

and the stagnation pressure is

p02 = p2

(
T02

T2

)γ/(γ−1)

= 602.8
(

730.9
585.2

)3.5

= 1312.7 kPa

The entropy change can be calculated in two ways. In the moving coordinates, since
T01R = T02R, the entropy change is simply

s2 − s1 = −R ln
(

p02R

p01R

)
= −287 ln

(
731.86
1258.72

)
= 155.6 J/(kg K)
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and in fixed frame, it is calculated from

s2 − s1 = R ln

[ (
T02

T01

) γ
γ−1 p01

p02

]
= 287 ln

[(
730.9
300

)3.5 100
1312.7

]
= 155.6 kJ/(kg K)

Since entropy is a static property, its change is independent of the frame. �

3.7 OBLIQUE SHOCKS AND EXPANSION FANS

Oblique shocks occur in supersonic flows more commonly than normal shocks. They
appear when the boundary surface has a sharp concave corner. If the corner is convex, a
rarefaction wave is formed. This, so called expansion fan, is centered at the corner. Both
oblique shocks and expansion fans appear in transonic compressors in which the desire
to achieve a high flow rate in a small machine leads to velocity being higher than sound
speed, at least in part of the flow. The aim of this section is to develop the theoretical
background for understanding such flows, in order to carry out calculations of flow fields
in simple settings and to use the knowledge so gained to interpret those theoretical studies
that are carried out today mainly by CFD software.

3.7.1 Mach waves

Consider a source of small disturbances that moves with supersonic speed to the left,
as shown in Figure 3.14. The source produces spherical acoustic waves that propagate
outward with speed c. Next, consider five instances of time, the present time and four
preceding instances of time, separated by equal time increments. At time −4Δt, the source
was at location 4V Δt to the right of the present location, and the wavefront which formed
at time −4Δt has moved a distance 4cΔt from the source. Similar reasoning applies to
disturbances formed at −3Δt, −2Δt, and −Δt. The spherical wavefronts generated at
these times are shown in the figure. Examination of the figure reveals that a region of
influence of the disturbances is inside a cone with cone angle μ given by

sinμ =
c

V
=

1
M

(3.64)

4cΔt

4VΔt

VΔt

3cΔt

2cΔt

cΔt

2VΔt

3VΔt

μ

Figure 3.14 Illustration of the formation of Mach cone.
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If a fluid moves to the right at speed V and meets a body at rest, then, the acoustic signal
from the body is again a spherical wave. It travels upstream with the absolute velocity
c − V and downstream with velocity c + V . In supersonic flow, c − V is negative, and the
disturbance cannot influence the flow outside a cone with cone angle μ given by Eq. (3.64).
This is called a Mach cone.

In a two-dimensional flow in which the source of small disturbances is a line perpen-
dicular to the plane of the paper, the cone becomes a wedge. The region inside the cone, or
the wedge, is called a zone of action, that outside is a zone of silence. The dividing surface
between these zones is called a Mach wave or Mach line. When viewed in the downstream
direction, the upper Mach wave in Figure 3.14 is said to be left-running and the lower one
right-running wave, or line.

3.7.2 Oblique shocks

The normal shock introduced earlier can be considered to be a special case of a compression
shock for which the shock front is normal to the approaching flow. For oblique shocks,
as their name implies, the shock front forms an angle with the approaching flow. Again,
when viewed in the downstream direction, oblique shocks form two families, one of which
is left-running and the other right-running. Oblique shocks develop, when, for example, a
supersonic flow along a straight wall meets an interior (concave) corner. They may also
occur in flows over wedges for which the symmetry plane could clearly be replaced by a
wall in an inviscid flow. When a supersonic flow encounters an exterior (convex) corner,
an expansion fan, centered at the corner, is formed. Both oblique shocks and expansion
fans were mentioned briefly when the underexpanded and overexpanded flows at the exit
of a supersonic nozzle were discussed.

Consider the flow along the wall shown in Figure 3.15, with a concave (interior) corner
of angle θ. The straight oblique shock that develops in this flow emanates from this corner
and is inclined at angle β. After the shock, the flow direction has changed by θ, as the flow
is forced to move in the direction of the downstream wall. To analyze what happens to the
flow as it crosses the shock, the incoming velocity vector is resolved into one component
normal to the shock and the other aligned with the shock front.

Mass balance for a control volume surrounding the shock gives

ρ1Vn1 = ρ2Vn2 (3.65)

The momentum equation is resolved to a component normal to the shock and one
tangential to it. The tangential component gives

ρ1Vn1Vt1 = ρ2Vn2Vt2, (3.66)

V
t1

V
t2

V
n1

V
n2

V
1

V
2

β

θ

Figure 3.15 An oblique shock.
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and making use of the continuity equation gives Vt1 = Vt2. That is, the tangential component
does not change in magnitude.

The normal component of the momentum equation gives

p1 − p2 = ρ2V
2
n2 − ρ1V

2
n1 (3.67)

The energy equation takes the form

h1 +
1
2
(V 2

n1 + V 2
t1) = h2 +

1
2
(V 2

n2 + V 2
t2) (3.68)

and after canceling, since Vt1 = Vt2, it reduces to

h1 +
1
2
V 2

n1 = h2 +
1
2
V 2

n2 (3.69)

These normal component equations are identical to the normal shock equations. Hence,
one may conclude that oblique shocks may occur in the flow when the upstream Mach
number based on the normal component of the velocity is larger than one. The next example
helps fix these ideas to mind.

� EXAMPLE 3.10

Air with static temperature T1 = 280 K, static pressure p1 = 35 kPa and M1 = 2
approaches a corner of magnitude θ on a wall. The angle of the oblique shock is
observed to be β = 40◦. Find the air speed downstream of the shock and the angle θ.

Solution: The velocity upstream is

V1 = M1

√
γRT1 = 2

√
1.4 · 287 · 280 = 670.8 m/s

The stagnation temperature is obtained from

T0 = T1

(
1 +

γ − 1
2

M 2
1

)
= 280(1 + 0.2 · 22) = 504 K

The normal component of velocity is Vn1 = V1 sin β = 670.8 sin(40◦) = 431.2 m/s,
and Mach number based on this velocity is Mn1 = M1 sinβ = 2 sin(40◦) = 1.286.
The pressure ratio across the shock is therefore

p2

p1
=

2γM 2
n1 − (γ − 1)
γ + 1

=
2.8 · 1.1862 − 0.4

2.4
= 1.762,

and the temperature ratio is

T2

T1
=

[2γM 2
n1 − (γ − 1)][2 + (γ − 1)M 2

n1]
(γ + 1)2M 2

n1

=
(2.8 · 1.2862 − 0.4)(2 + 0.4 · 1.2862)

(2.4 · 1.286)2 = 1.182
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The Mach number after the shock is

M2 =

√(
2

γ − 1

)(
T0

T2
− 1

)
=

√
2

0.4

(
504
331

− 1
)

= 1.617

The normal component of M2 is

Mn2 =

√
2 + (γ − 1)M 2

n1

2γM 2
n1 − (γ − 1)

=

√
2 + 0.4 · 1.2862

2.8 · 1.2862 − 0.4
= 0.793

From Figure 3.15, it is seen that

sin(β − θ) =
Vn2

V2
=

Mn2

M2
=

0.793
1.617

= 0.4906

Hence, β − θ = sin−1(0.4906) = 29.4◦ and θ = 40 − 29.4 = 10.6◦. �

The foregoing example demonstrates that for given Mach number and shock angle β, the
value of the flow angle θ can be determined quite directly. It is not equally straightforward
to determine the shock angle if the wall angle and Mach number are specified, or for given
wall and shock angles, the Mach number is sought. A general equation is developed next
that may be used in these situations.

Since the tangential component of velocity does not change across the shock

V1 cos β = V2 cos(β − θ) (3.70)

The mass balance gives the further relation

ρ1V1 sin β = ρ2V2 sin(β − θ) (3.71)

From these two equations, the density ratio is as follows

ρ2

ρ1
=

tan β

tan(β − θ)
(3.72)

The density ratio can also be formed by using the ideal gas relations and the pressure and
temperature ratios given by

p2

p1
=

2γM 2
n1 − (γ − 1)
γ + 1

(3.73)

and

T2

T1
=

[2γM 2
n1 − (γ − 1)][2 + (γ − 1)M 2

n1]
(γ + 1)2M 2

n1

These give

ρ2

ρ1
=

(γ + 1)M 2
n1

2 + (γ − 1)M 2
n1

=
(γ + 1)M 2

1 sin2β

2 + (γ − 1)M 2
1 sin2β

(3.74)
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Dropping the subscript from the upstream Mach number and equating the density ratios in
Eqs. (3.72) and (3.74), the following equation is obtained

tan β

tan(β − θ)
=

(γ + 1)M 2sin2β

2 + (γ − 1)M 2sin2β
(3.75)

or after substituting for tan(β − θ), the trigonometric identity

tan(β − θ) =
tan β − tan θ

1 + tan β tan θ
, (3.76)

and solving the equation so obtained for tan θ gives

tan θ =
2(M 2sin2β − 1) tan β

(γ + 1)M 2sin2β + [2 + (γ − 1)M 2sin2β]tan2β
(3.77)

Dividing the numerator and denominator on the RHS by tan2β and simplifying gives

tan θ = 2 cot β
M 2sin2β − 1

(γ + 1)M 2cos2β + 2 + (γ − 1)M 2sin2β

After using the trigonometric identity cos2β = 1 − sin2β and simplifying, this can be
written as

tan θ = 2 cot β
M 2sin2β − 1

M 2(γ + 1 − 2sin2β) + 2
(3.78)

or as

tan θ = 2 cot β
M 2sin2β − 1

M 2(γ + cos 2β) + 2
(3.79)

For a given γ, the value of θ can be found from this equation for various values of M
and β. The functional relation between these parameters is shown graphically for γ = 1.4
in Figure 3.16. The separate graphs are labeled by the value of the corresponding Mach
number, with a line extending to the maximum value of θ for each value of M . Since the
graphs of M are concave down, for a given M and θ, there are two possible values of β.
The solution for the larger value of β is called a strong shock and for the smaller one a
weak shock. The Mach number after a strong shock is always less than one, and for a weak
shock, it is generally less than one. Strong attached shocks are not observed in nature.
Thus, this solution can be ignored for now.

Each graph of constant M shows that there is a maximum value of θ for which these
two solutions exit. For values of θ ≥ θmax, there is no solution. It is left as an exercise to
show that this occurs at the value of β given by

sin2β =
1

γM 2

[
(γ + 1)M 2

4
− 1 +

√
(γ + 1)

[
(γ + 1)M 4

16
+

(γ − 1)M 2

2
+ 1

]]

(3.80)

The locus of points for the maxima for various values of M is given by the dashed line on
the right.
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Figure 3.16 Oblique shock angles.

The value of θmax increases as the Mach number of the incoming flow increases, and in
the limit as M → ∞, the value of θmax takes place at sin β =

√
(γ + 1)/2γ. Its value is

given by

tan θmax =
1√

γ2 − 1
,

and for γ = 1.4, it is θmax = 45.58◦.
The dashed line on the left in Figure 3.16 is a locus of points for which the M2 = 1

after the shock. It is given by

sin2β =
(γ + 1)M 2 + (γ − 3) +

√
[(γ + 1)M 2 + (γ − 3)]2 + 16γ

4γM 2 (3.81)

For values of β larger than what are obtained from this equation, the flow after the shock is
subsonic, and below this value, it is supersonic. Hence, the flow after an attached oblique
shock is generally supersonic.

The pressure rise across an oblique shock is given by Eq. (3.73), which can be written
as

p2

p1
=

2γM 2sin2β − (γ − 1)
γ + 1

(3.82)

Solving this for sin β gives

sin β =

√
γ − 1
2γM 2 +

γ + 1
2γM 2

p2

p1
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The expression for cos β is

cos β =

√
2γM 2 − (γ − 1)

2γM 2 − γ + 1
2γM 2

p2

p1

Hence,

cot β =

⎡
⎢⎢⎣

2γ(M 2 − 1)
γ + 1

−
(

p2

p1
− 1

)
p2

p1
+

γ − 1
γ + 1

⎤
⎥⎥⎦

1/2

(3.83)

In addition, since cos 2β = cos2β − sin2β,

cos 2β =
γM 2 − (γ − 1)

γM 2 − γ + 1
γM 2

p2

p1
(3.84)

Substituting Eqs. (3.83) and (3.84) into Eq. (3.79) gives

tan θ =

p2

p1
− 1

γM 2 −
(

p1

p1
− 1

)
⎡
⎢⎢⎣

2γ

γ + 1
(M 2 − 1) −

(
p2

p1
− 1

)
p2

p1
+

γ − 1
γ + 1

⎤
⎥⎥⎦

1/2

(3.85)

Squaring and multiplying out the terms shows that this is a third-order polynomial
equation for the pressure ratio. Thus, it has three roots. Its graph is shown in Figure 3.17.
The strong shock solution, as its name implies, corresponds to the largest pressure ratio.
The solution with a pressure ratio less than unity is not a physically realizable. The weak
solution is the one sought for attached oblique shocks. The graph also shows that for a
given Mach number, no straight shock exists if the value of θ is too large. That is the
dashed vertical line may not cross the graph at all except at the location for which the
pressure ratio is less than unity and which does not represent a valid solution.
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Figure 3.17 Pressure ratio for an oblique shock.
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3.7.3 Supersonic flow over a rounded concave corner

Consider a supersonic flow along a wall in which there is a rounded interior (concave)
corner, such as shown in Figure 3.18b. Next, as shown in Figure 3.18a, approximate the
boundary curve by a set of short line segments with lengths chosen such that the angle
between successive ones in equal to φ. Since the line segments are short, the angle φ is
small, and weak oblique shocks emanate from each break in the segmented curve. The
task now is to develop an approximate formula for the pressure ratio and entropy increase
across the weak oblique shocks.

θ

ϕ
ϕ

ϕ

M
2

(a) (b)

M
1

θ

M
2

M
1

Figure 3.18 Compression shocks in a segmented and a smooth corner.

Equation (3.75) may be rearranged as

1
M 2sin2β

=
γ + 1

2
tan(β − φ)

tan β
− γ − 1

2

and using again Eq. (3.76), this becomes

1
M 2sin2β

=
(γ + 1)(tan β − tan φ) − (γ − 1)(tan β + tan2β) tan φ

2 tan β(1 + tan β tan φ)

Inverting this and simplifying yields then

M 2sin2β =
2 tan β(1 + tan β tan φ)

2 tan β − [(γ − 1)tan2β + (γ + 1)] tan φ

Subtracting unity from both sides and simplifying gives finally

M 2sin2β − 1 =
(γ + 1)(1 + tan2β) tan φ

2 tan β − [(γ − 1)tan2β + (γ + 1)] tan φ
(3.86)

For small values of φ, the second term in the denominator can be dropped, and making use
of the approximation tan φ ≈ φ in the numerator gives

M 2sin2β − 1 =
(γ + 1)(tan2β + 1)φ

2 tan β
=

γ + 1
2

φ

sin β cos β
(3.87)

The general expression for the pressure ratio across an oblique shock is

p2

p1
=

2γM 2sin2β − (γ − 1)
γ + 1
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Subtracting unity from both sides, the strength of the weak shock emanating from the jth
corner is obtained, after Eq. (3.87) is used. It is

pj+1

pj

− 1 =
γφ

sin β cos β

For weak waves, the shock angle β is the Mach angle μ. Since

sin μ =
1
M

cos μ =
√

M 2 − 1
M

,

and the final expression for the pressure ratio becomes

pj+1

pj

− 1 =
γM 2

√
M 2 − 1

φ (3.88)

The previously derived Eq. (3.62) gives the entropy change across a weak shock. For
the jth line segment, the entropy increase becomes

sj+1 − sj

R
=

γ + 1
12γ2

(
pj+1

pj

− 1
)3

or
sj+1 − sj

R
=

γ(γ + 1)
12

M 6

(M 2 − 1)3/2 φ3

As shown, for example by Rotty [78], summing up the contributions from the n line
segments gives, with θ = nφ, the overall pressure ratio across the set of weak waves. It
leads to

s2 − s1

R
=

γ(γ + 1)
12

M 6

(M 2 − 1)3/2 nφ3 =
γ(γ + 1)

12
M 6

(M 2 − 1)3/2

θ3

n2 (3.89)

Now taking the limit n → ∞ gives s2 − s1 → 0. Hence, compression over a rounded
corner is isentropic.

3.7.4 Reflected shocks and shock interactions

Consider a flow channel with a concave corner of angle θ. An oblique shock is formed
at this corner at an angle β1. Here, the shock is left-running, and the flow after the shock
bends toward the shock in such a way that it flows in the direction of the lower wall; that
is its flow direction is θ. When this shock impinges on the upper wall of the channel, a
reflected right-running shock is formed. The reason that a reflected shock must form is that
the flow must again turn so that the flow after this reflected shock is parallel to the upper
wall. This is illustrated in Figure 3.19, and its analysis is carried out in the next example.

� EXAMPLE 3.11

Air at M1 = 3.0 flows in a channel with a sharp corner as shown in Figure 3.19.
The angle θ = 15◦. The pressure of the incoming stream is p = 80 kPa, and its
temperature is T1 = 280 K. Find the Mach number after the reflected shock and the
pressure and temperature in this region.
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δ = β
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− θ

β
1
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Figure 3.19 Reflection of a shock from a wall.

Solution: The shock angle β1 is obtained with the function GNU/OCTAVE or MATLAB

call

k=1.4; theta=15*pi/180; M1=3.0;
beta1=fzero(@(beta1) tan(theta)- ...
2*cot(beta1)*(M1^2*sin(beta1)^2-1)/ (M1^2*(k+cos(2*beta1))+2),0.4)

The shock angle is determined to be β1 = 32.24◦. The normal component of M1
is Mn12 = M1 sin β1 = 3.0 sin(32.24) = 1.60, and the normal component of M2 is

Mn21 =

√
2 + (γ − 1)M 2

n12

2γM 2
n12 + (γ − 1)

=

√
2 + 0.4 · 1.602

2.8 · 1.602 + 0.4
= 0.668

Examination of the figure shows

M2 =
Mn21

sin(β1 − θ)
=

0.668
sin(32.24◦ − 15◦)

= 2.255

The angle β2 is obtained by the GNU/OCTAVE or MATLAB script above with β1 replaced
by β2 and M1 replaced by M2. This gives β2 = 40.35◦. From the construction,
the shock angle with the horizontal direction is seen to be δ = β2 − θ = 40.35◦ −
15.0◦ = 25.35◦. The Mach number component upstream and normal to the reflected
shock is

Mn23 = M2 sinβ2 = 2.255 sin(40.35◦) = 1.46

Hence, the normal component of the Mach number after the reflected shock is

Mn32 =

√
2 + (γ − 1)M 2

n23

2γM 2
n23 + (γ − 1)

=

√
2 + 0.4 · 1.462

2.8 · 1.462 + 0.4
= 0.716,

and the Mach number after the reflected shock is

M3 =
Mn32

sin(β2 − θ)
=

0.716
sin(40.35◦ − 15◦)

= 1.672
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The pressure ratio is calculated from the shock relation

pr =
2γM 2

n − (γ − 1)
γ + 1

and replacing in turn Mn by Mn12 and Mn23 yields

pr1 = 2.822 pr2 = 2.320

The reflected shock is seen to be weaker than the original one, as these pressure ratios
show. The pressures are p2 = pr1p1 = 2.822 · 80 = 225.7 kPa and p3 = pr2p2 =
2.320 · 225.7 = 523.7 kPa. The temperature ratio for shock is

Tr =
[2γM 2

n − (γ − 1)][(2 + (γ − 1)M 2
n ]

(γ + 1)2M 2
n

so that
Tr1 = 1.388 Tr2 = 1.294,

and thus, T2 = Tr1T1 = 1.388 · 280 = 388.7 K and T3 = Tr2T2 = 1.294 · 388.7 =
502.9 K. �

3.7.5 Mach reflection

When the value of the angle θ is increased, a condition is reached in which the flow passing
through the reflected shock cannot turn enough to be parallel to the upper wall. This value
is obtained from Eq. (3.80) in which the value of Mach number is that before the reflected
shock. In this situation, the original shock terminates before it reaches the upper wall, and a
new shock extends from the terminal location to the wall. This shock, called a Mach stem, is
shown in Figure 3.20. The Mach stem is curved in such a way that it ends normal to the wall.
Since the flow after a normal shock is subsonic, the flow after the Mach stem does not have
straight streamlines, as it does after a regular reflection. In addition, a slip line develops
from the point where Mach stem and the incident and reflected shocks meet. Across this
slip line, pressure is continuous, but other properties are not. It is possible to determine the
values of θ and β as functions of the incoming Mach number [66] that mark the conditions
between a regular and a Mach reflection. These curves are shown in Figure 3.21.

M
3M

2

M
1

Slip-line

θ
β

Figure 3.20 A Mach reflection.

3.7.6 Detached oblique shocks

For values of θ that are too large for a straight oblique shock to form at a sharp concave
corner or at an apex of a wedge, a detached curved shock forms ahead of a corner or a
wedge. These are shown in Figure 3.22.
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Figure 3.21 Limits of flow and corner angles for attached straight shocks.
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Figure 3.22 Attached and detached oblique shocks.

These detached shocks correspond to strong solutions. At the symmetry plane of a
wedge, this shock is normal to the flow. Similarly, since a wall may be substituted for the
plane of symmetry, this kind of a bow shock also appears ahead of a corner on a plane wall.

For the flow over a wedge, consider a particular value of the free stream Mach number,
say M = 2.4. At the right bottom corner in Figure 3.16, the curve M = 2.4 (as all the
others) has θ = 0 and β = 90◦. This condition corresponds to a locally normal shock
situated some distance ahead of the vertex of the wedge. This distance is called the shock
detachment distance. The flow is subsonic after the shock. Moving along the bow shock
away from this point, the shock remains on the strong shock branch, and the flow remains
subsonic after the shock. The angle β has decreased somewhat, and the angle θ has
increased. Further along the shock, the conditions pass from the strong shock to the weak
solution branch. For M = 2.4, this takes place when β = 62.7◦ and θ = 28.7◦. A short
distance down along the weak shock branch, a point is reached at which the flow after the



�

� �

�

112 COMPRESSIBLE FLOW

shock is sonic. The angles β and θ for this condition may be calculated from Eq. (3.81).
For M = 2.4, these are β = 62.4◦ and θ = 28.5◦. The dashed line in Figure 3.22 shows the
sonic line, which separates the supersonic and subsonic regions downstream of the shock.
The weak shock branch terminates at condition θ = 0 at which β = μ and sinμ = 1/M .
For M = 2.4, the angle is μ = 24.6◦.

Figure 3.23 shows a supersonic airflow over a double wedge airfoil. With an angle of
attack of 5◦, the flow structure is asymmetrical with a stronger oblique shock below the
leading edge than on the upper side. At the convex corners in the middle of the airfoil,
expansion fans in the flow. At the trailing edge, the flow bends toward the free stream
direction, and thus, a stronger oblique shock develops on the upper side. The strength
of these shocks is seen qualitatively by the sharper change in the gray color. The flow
features illustrated in this figure are qualitatively the same as those that may be found in
a transonic compressor, with the exception that a bow shock is expected to develop at the
leading edge, for the compressor blades have a rounded leading edge, even if the blades are
quite thin.

Figure 3.23 Transonic flow over a supersonic airfoil, M = 3 angle of attach 5◦. Source: From
Prasad et al. [72].

In a blade cascade, an oblique shock that develops below the leading edge of one
blade impinges on the next one, and a reflected shock is formed. The pressure rise across
the shock may cause a separation of the boundary layer on that blade. This is shown
schematically in Figure 3.24.

3.7.7 Prandtl–Meyer theory

In a supersonic flow over an exterior corner, shown in Figure 3.25a, as the flow turns,
Mach waves emanating from the sharp corner form an expansion fan. Since the flow is
supersonic and moves to a larger area, its Mach number increases and pressure drops.

The expansion fan is located in the region between the Mach waves oriented at angles
sin μ1 = c1/V1 = 1/M1 and sin μ2 = c2/V2 = 1/M2, with μ2 defining the terminal Mach
wave at which V is parallel to the downstream wall. Such an expansion fan is said to be
centered about the corner. Upstream of the leading Mach wave, pressure is uniform, and
the incremental pressure drop across a given Mach wave is the same regardless of where
the flow crosses it. If the expansion fan is considered to consist of a discrete number of
Mach waves, then, the wedges between successive Mach waves are regions of constant
thermodynamic properties.
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Figure 3.24 Shock and boundary layer interaction.
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Figure 3.25 (a) Supersonic expansion of a compressible flow over a convex corner. (b) Diagram
to illustrate the notation of angles.

Turning of the flow across one Mach wave is shown in Figure 3.25b. From the law of
sines

V + dV

V
=

sin(π/2 + μ)
sin(π/2 − μ − dθ)

or

1 +
dV

V
=

cos μ

cos μ cos dθ − sinμ sin dθ
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The angle dθ is small and is assumed to increase in the clockwise direction so that the
previous equation can be written as

1 +
dV

V
=

cos μ

cos μ − dθ sin μ
=

1
1 − dθ tan μ

Again making use of the smallness of dθ, this can be expanded by binomial theorem, and
the following equation is obtained:

dV

V
= dθ tan μ

Since tan μ = c/
√

V 2 + c2 = 1/
√

M 2 − 1, this can be written as

dθ =
√

M 2 − 1
dV

V
(3.90)

Taking logarithms and differentiating V = M
√

γRT gives

dV

V
=

dM

M
+

1
2

dT

T
=

1
2

dM 2

M 2 +
1
2

dT

T

The same operations on T0 = T [1 + (γ − 1)M 2/2)] give

−dT

T
=

γ − 1
2

M 2

1 +
γ − 1

2
M 2

dM 2

M 2

Using this to eliminate dT/T from the previous equation leads to

dV

V
=

1

2
(

1 +
γ − 1

2
M 2

) dM 2

M 2

This can now be substituted into Eq. (3.90), which is then written as

dθ =

√
M 2 − 1

2
(

1 +
γ − 1

2
M 2

) dM 2

M 2

Next defining,

ν(M) =
∫ M

1

√
M 2 − 1

2
(

1 +
γ − 1

2
M 2

) dM 2

M 2

and integrating gives

ν(M) =
√

γ + 1
γ − 1

tan−1
√

γ − 1
γ + 1

(M 2 − 1) − tan−1
√

M 2 − 1, (3.91)
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so that a flow that expands to a state at which the Mach number is M2 turns by an amount

θ2 − θ1 = ν2 − ν1

and the fan angle is ν2 − ν1 + μ1 − μ2. If the coordinates are aligned such that θ1 = 0,
then,

ν2 = ν1 + θ2

Two common situations are encountered. First, the wall along which the flow moves
has a convex corner of known magnitude. Hence, the angle θ2 is known; the angle ν2 can
be determined, and then, the M2 calculated from Eq. (3.91). The second situation is one
in which the flow leaves as a jet from a nozzle to a space in which the back pressure is
known. The next example illustrates the flow over a known convex corner.

� EXAMPLE 3.12

Consider a supersonic air flow over a convex corner, as shown in Figure 3.25,
with angle θ2 = 10◦, when the inflow moves in the direction of θ1 = 0◦. The Mach
number of the flow upstream of the corner is M1 = 1.46, pressure is p1 = 575.0 kPa,
and temperature is T1 = 360.0 K. Find the Mach number, temperature, and pressure
after the expansion is complete.

Solution: Mach number is obtained by the following script.

M1=1.46; k=1.4; thetadeg=10; theta=thetadeg*pi/180;
mu1=atan(1/(sqrt(M1^2-1)))*180/pi;
nu1=sqrt((k+1)/(k-1))*atan(sqrt((k-1)*(M1^2-1)/(k+1))) ...

-atan(sqrt(M1^2-1));
nu2=nu1+theta;
M2 = fzero(@(M2) nu2-sqrt((k+1)/(k-1))* ...

atan(sqrt((k-1)*(M2^2-1)/(k+1))) ...
+atan(sqrt(M2^2-1)),[1.4,4]);

Result:
M2=1.800

The angle of the leading Mach wave is μ1 = 43.23◦. After that, the upstream
Prandtl–Meyer function is calculated, and when converted to degrees, it is ν1 =
10.73◦. The Prandtl–Meyer function for complete turning is obtained as

ν2 = ν1 + θ2 = 10.73◦ + 10◦ = 20.73◦ ν2 = 0.3618 radian

Since the Prandtl–Meyer function is implicit in the downstream Mach number,
its value is obtained by invoking MATLAB’S or GNU/OCTAVE’S fzero function. An
assumed range of downstream Mach numbers is given as [1.4, 4], or something
similar. The value of Mach number after the expansion is M2 = 1.80.

The temperature and pressure after expansion are obtained by the usual method.
With

T0

T1
= 1 +

γ − 1
2

M 2
1 = 1 + 0.2 · 1.462 = 1.426 T0 = 513.48 K,
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the downstream temperature is

T0

T2
= 1 +

γ − 1
2

M 2
2 so that T2 = 311.55 K,

and the downstream pressure is therefore

p2 = p1

(
T2

T1

)γ/(γ−1)

= 575.0
(

311.55
360.00

)3.5

= 346.7 kPa

�

The second application of Prandtl–Meyer theory is from Kearton [53], who considers
a steam nozzle such as that shown in Figure 3.26. Assuming isentropic and choked flow,
the Mach number at the throat is unity. Hence, the speed of sound and the velocity are
equal, and the Mach waves are perpendicular to the flow, and therefore aligned with the
exit cross-section of the nozzle. In addition, ν(M1) = 0. Next, an angle φ is defined to be
that between the leading Mach wave and a Mach wave at any location in the expansion
fan. Hence

φ =
π

2
− μ + θ

in which θ is the angle by which the flow has turned at this location. Since ν(M) =
ν(M1) + θ, then

φ = ν(M) +
π

2
− tan−1 1√

M 2 − 1

or

φ =
√

γ + 1
γ − 1

tan−1
√

γ − 1
γ + 1

(M 2 − 1) +
π

2
− tan−1

√
M 2 − 1 − tan−1 1√

M 2 − 1

But from a right triangle, it is seen that

tan−1
√

M 2 − 1 + tan−1 1√
M 2 − 1

=
π

2
;

therefore, the expression for φ reduces to

φ

√
γ − 1
γ + 1

= tan−1
√

γ − 1
γ + 1

(M 2 − 1) (3.92)

The term inside the square root on the RHS of Eq. (3.92) may be replaced by a pressure
ratio, for

p0

p
=

(
1 +

γ − 1
2

M 2
)γ/(γ−1)

,

and therefore,

γ − 1
γ + 1

(M 2 − 1) =
2

γ + 1

[(
p0

p

)(γ−1)/γ

− 1

]
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Substitution yields

φ

√
γ − 1
γ + 1

= tan−1

√√√√ 2
γ + 1

[(
p0

p

)(γ−1)/γ

− 1

]
(3.93)

Denoting

δ = φ

√
γ − 1
γ + 1

if follows that

tan δ =

√√√√ 2
γ + 1

[(
p0

p

)(γ−1)/γ

− 1

]
,

and therefore

cos2δ =
γ + 1

2

(
p

p0

)(γ−1)/γ

(3.94)

This can be reduced further using the identity 2cos2x = 1 + cos 2x. Hence,

1 + cos(2δ) = (γ + 1)
(

p

p0

)(γ−1)/γ

Rewriting this in terms of φ gives

1 + cos
(

2
√

γ − 1
γ + 1

φ

)
= (γ + 1)

(
p

p0

)(γ−1)/γ

, (3.95)

which can be solved for the pressure ratio. The final form is

p

p0
=

⎡
⎢⎢⎣

1 + cos
(

2
√

γ − 1
γ + 1

φ

)
γ + 1

⎤
⎥⎥⎦

γ/(γ−1)

Streamlines can be calculated by considering a control volume of a wedge-shaped region
with an inlet at the throat and exit coinciding with an arbitrary Mach wave in the expansion
fan. The lateral boundary is taken to be a streamline across which there is no flow. Since
the component of velocity perpendicular to a Mach wave is the local sonic velocity, it
is this component that carries the flow through the inflow and outflow boundaries of the
chosen control volume. For this reason, the continuity equation reduces to

ρ1A1c1 = ρAc

Since the nozzle is rectangular, A = rb, in which b is the nozzle height, and r is the
distance from the corner to the chosen streamline. At the throat, the area is A1 = r1b, and
r1 is the distance from the corner to the same streamline. Hence

r

r1
=

ρ1c1

ρc
=

p1

p

√
T

T1
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In isentropic flow, T/T1 = (p/p1)
(γ−1)/γ , and this equation reduces to

r

r1
=

p1

p

(
p

p1

)(γ−1)/2γ

=
(

p

p1

)−(γ+1)/2γ

From Eq. (3.94), the expression

cos δ =
(

γ + 1
2

)1/2(
p

p0

)(γ−1)/2γ

(3.96)

is obtained. With sonic conditions at station 1, the pressure ratio there is

p0

p1
=

(
γ + 1

2

)γ/(γ−1)

so that
(

γ + 1
2

)1/2

=
(

p0

p1

)(γ−1)/2γ

,

and Eq. (3.96) can be recast as

p

p1
=

[
cos

(√
γ − 1
γ + 1

φ

)]2γ/(γ−1)

Hence, the distance from the corner to the streamline bounding the control volume is

r

r1
=

1(
cos

√
γ − 1
γ + 1

φ

)(γ+1)/(γ−1) (3.97)

Some streamlines have been plotted to Figure 3.26. The uppermost streamline in the figure
corresponds to r1, which is the width of the nozzle at the throat. This streamline leaves the
nozzle before the slanted nozzle exit. If the nozzle shape were to coincide with the contour
of this streamline, the Prandtl–Meyer flow would be an exact solution of the equations for
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V
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μ
V

Mach wave
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Initial direction

Figure 3.26 Expansion of steam form a choked nozzle.
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inviscid compressible flow through a nozzle of this shape. Since the nozzle wall is straight,
the solution presented is an approximation to the actual situation.

Equation (3.92) may be recast into the form

tan
(√

γ − 1
γ + 1

φ

)
=

√
γ − 1
γ + 1

√
M 2 − 1,

and since 1/
√

M 2 − 1 = tan μ, the following relation is obtained

tan μ =
√

γ − 1
γ + 1

cot
√

γ − 1
γ + 1

φ (3.98)

For a given exit pressure lower than the critical one, the angle φ can be found from
either Eq. (3.93) or from Eq. (3.95), and Eq. (3.98) is then used to determine the angle of
the terminal Mach wave. After that the amount of turning of the flow is obtained from

θ2 = φ − π

2
+ μ2

The flow direction is given by α2 = α1 − θ2.

� EXAMPLE 3.13

Consider steam flow from a low-pressure nozzle, such as shown in Figure 3.26,
with nozzle angle α = 65◦. At the inlet of the nozzle, steam is saturated vapor with
stagnation pressure p0 = 20 kPa. Steam exhausts into the interblade space where the
pressure is 8 kPa. Find the angle θ5 by which the flow turns on leaving the nozzle,
the far downstream velocity, and its direction.

Solution: Since at the inlet, steam is saturated, its adiabatic index, according to
Zeuner’s equation, is γ = 1.135, and its temperature is T0 = 333.2 K. Denoting
station 1 to be the throat and station 2 the exit where the back pressure is p2 = 8 kPa,
the ratio of back pressure to stagnation pressure is p2/p0 = 8/20 = 0.4, and therefore,
the flow is choked. The Mach number after the expansion is

M2 =

√√√√ 2
γ − 1

[(
p0

p2

)(γ−1)/γ

− 1

]
= 1.306

With this value of Mach number, the temperature at the exit is

T2 = T0

(
p2

p0

)(γ−1)/γ

= 333.2
(

8
20

)0.135/1.135

= 298.8 K

The sonic speed at the exit is

c2 =
√

γRT2 =
√

1.135 · 8314 · 298.8/18 = 395.8 m/s

Hence, V2 = M2c2 = 516.9 m/s. Angle φ2 can be calculated using Eq. (3.92), with
the result that φ2 = 47.44◦. The Mach angle at the exit is

μ2 = sin−1
(

1
M2

)
= tan−1 1√

M 2
2 − 1

= 49.97◦
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Hence, the amount of turning is

θ2 = φ2 + μ2 −
π

2
= 47.44◦ + 49.96◦ − 90◦ = 7.40◦

The flow angle after turning is complete is

α2 = α1 − θ2 = 65◦ − 7.40◦ = 57.60◦

The extent of the jet after it has reached the back pressure is

r

r1
=

1(
cos

√
γ − 1
γ + 1

φ

)(γ+1)/(γ−1) = 1.412

�

There is a limit on the extent to which the flow can turn. This limit is reached when the
axial component of velocity of the jet reaches sonic speed. The condition may be analyzed
by writing the mass flow rate in terms of the flow function F (M). This results in the
equations

ṁ
√

cpT0 = F (M1)A1p01 = F (M2)A2p02

so that

F (M2) = F (M1)
A1p01

A2p02

For a nozzle of constant height,

A1

A2
=

L1

L2
=

s cos α1

s cos α2
=

cos α1

cos α2

The axial component of velocity at sonic speed can be written as

Vx2 = V2 cos α2 = M2

√
γRT2 cos α2 =

√
γRT2

so that cos α2 = 1/M2.
Substituting and simplifying gives

γ√
γ − 1

(
1 +

γ − 1
2

M 2
2

)−(γ+1)/2(γ−1)

= F (M1)
p01

p02
cos α1

from which M2 may be determined.

� EXAMPLE 3.14

Steam with γ = 1.3 flows from a low-pressure nozzle shown in Figure 3.26, with
nozzle angle α = 65◦. The throat at the exit plane is choked. Find the limiting Mach
number and the value of α2 for the flow.
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Solution: With flow choked at the throat, M1 = 1, and

F ∗ =
γ√

γ − 1

(
γ + 1

2

)−(γ+1)/2(γ−1)

=
1.3√
0.3

(0.5 · 2.3)−2.3/0.6 = 1.389

Since cos α2 = 1/M2, assuming no losses so that p02 = p01, the relation

F (M2) cos α2p02 = F ∗ cos α1p01

can be written as

γ√
γ − 1

(
1 +

γ − 1
2

M 2
2

)−(γ+1)/2(γ−1)

= F ∗ cos α1

With α1 = 65◦, solving this for M 2
2 gives

M 2
2 =

2
γ − 1

[(
γ√

γ − 1
1

F ∗ cos α1

)2(γ−1 )/(γ+1)

− 1

]
= 2.9314

so that M2 = 1.712. Therefore,

α2 = cos−1
(

1
M2

)
= cos−1

(
1

1.712

)
= 54.26◦

�

The turbine nozzle may also be designed such that the throat is upstream of the exit
plane, in which case the flow may become supersonic at the exit plane. Then, in an
underexpanded expansion, the flow adjusts to the back pressure through a set of oblique
shocks emanating from the trailing edge. For transonic flows, as has been seen in the
examples in this chapter, the stagnation pressure losses are small.

As the final example, consider the intersection of two shocks of the same family. In the
analysis, both the oblique shock and Prandtl–Meyer theory are used.

� EXAMPLE 3.15

Air at pressure p1 = 101.3 kPa, temperature T1 = 288 K, and Mach number
M1 = 2.4 encounters a concave corner of angle θ1 = 8◦. After the corner, a second
corner changes the flow direction by another θ2 = 5◦. The oblique shocks emanating
from these corners intersect and form another oblique shock starting from their point
of intersection, as shown in Figure 3.27. Find the pressure, the angle of the slip line,
the Mach numbers M4 and M5, and the change in entropy in the regions across the
slip line.

Solution: With M1 and θ1 known, the value of β1 can be obtained from the implicit
equation

tan θ1 = 2 cot β1
M 2

1 sin2β1 − 1
M 2

1 (γ + cos 2β1) + 2

Its value is β1 = 31.15◦. The Mach number normal to the first oblique shock is

Mn12 = M1 sinβ1 = 2.4 · sin(31.15◦) = 1.24
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Figure 3.27 Interaction of two oblique shocks of the same family.

The normal component of the Mach number after this shock is

Mn21 =

√
2 + (γ − 1)M 2

n12

2γM 2
n12 − (γ − 1)

=

√
2 + 0.4 · 1.242

2.8 · 1.242 − 0.4
= 0.817

The Mach number after the first shock is thus

M2 =
Mn21

sin(β1 − θ1)
=

0.817
sin(31.15◦ − 8◦)

= 2.08

The ratio of the stagnation temperature to the static temperature before this shock is

T01

T1
= 1 +

γ − 1
2

M 2
1 = 1 + 0.2 · 2.42 = 2.152,

and the corresponding pressure ratio is

p01

p1
=

(
T01

T1

)γ/(γ−1)

= 2.1523.5 = 14.62

Hence,

T01 = 2.152 · 288 = 619.78 K p01 = 14.620 · 101.3 = 1481.0 kPa

The pressure after the shock is

p2

p1
=

2γM 2
n12 − (γ − 1)
γ + 1

=
2.8 · 1.242 − 0.4

2.4
= 1.631 p2 = 165.26 kPa

The stagnation temperature remains constant so that the static temperature after this
shock is obtained from

T02

T2
= 1 +

γ − 1
2

M 2
2 = 1 + 0.2 · 2.082 = 1.865 T2 =

619.78
1.865

= 332.35 K

It then follows that

p02

p2
=

(
T02

T2

)γ/(γ−1)

= 1.8653.5 = 8.856 p02 = 8.856 · 165.26 = 1463.5 kPa
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The velocity after the first shock is

V2 = M2

√
γRT2 = 2.08

√
1.4 · 287 · 332.35 = 759.9 m/s

The properties after the second shock are calculated similarly. The shock angle β2 is
obtained from

tan θ2 = 2 cot β2
M 2

2 sin2β2 − 1
M 2

2 (γ + cos 2β2) + 2

It has the value β2 = 32.94◦. Next, the normal component of Mach number before
the second shock is

Mn23 = M2 sin β2 = 2.08 · sin(32.94◦) = 1.13,

and the normal component of the Mach number after this shock is

Mn32 =

√
2 + (γ − 1)M 2

n23

2γM 2
n23 − (γ − 1)

=

√
2 + 0.4 · 1.132

2.8 · 1.132 − 0.4
= 0.889

The Mach number after the second shock is therefore

M3 =
Mn32

sin(β2 − θ2)
=

0.889
sin(32.94◦ − 5◦)

= 1.90

The pressure ratio across the second shock is

p3

p2
=

2γM 2
2n − (γ − 1)
γ + 1

=
2.8 · 1.132 − 0.4

2.4
= 1.325

and the pressure is
p3 = 1.325 · 165.26 = 218.9 kPa

Since T03 = T02 = T01, the static temperature after the shock is

T03

T3
= 1 +

γ − 1
2

M 2
3 = 1 + 0.2 · 1.902 = 1.720 T3 =

619.78
1.720

= 360.39 K,

and the stagnation pressure is

p03

p3
=

(
T03

T3

)γ/(γ−1)

= 1.7203.5 p03 = 218.92 · 1.7203.5 = 1460.2 kPa

The velocity after this shock is

V3 = M3

√
γRT3 = 1.8970

√
1.4 · 287 · 360.39 = 721.88 m/s

Next, it is tempting to assume that the flow after the second shock is parallel to the
wall after the second corner and that the flow after the detached shock is also in this
direction. Then, that the slip line that forms from the intersection of the two attached
shocks is also parallel to this direction. It turns out that carrying out the rest of the
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calculations this way does not make the pressures equal across the slip line. The
difference is small, but this needs to be taken into an account. To make the pressures
equal, an expansion fan forms at the point of intersection. Across this fan, the flow is
turned in such a way that it can be made parallel to the flow after the detached shock,
and the pressures become equal. This calculation requires an iterative solution.

With M3 = 1.897, the Prandtl–Meyer function may be calculated. Its value is
ν3 = 23.5◦. The rest of the calculation is carried out by iteration. The flow direction
after the detached shock is assumed, and the pressure after it is calculated. Similarly,
the Mach number after the expansion fan (or isentropic compression, as the case
might be) is calculated with this assumed direction, and the value of ν3 and the
pressure can be determined since the Mach number is known. The difference in the
pressures calculated this way is used to guess the new flow direction, and the process
is repeated until the pressure difference is below an acceptable level. The iterations,
shown in Table 3.1, were carried out with the secant method. The starting values
for θ5 can be taken near the value of θ3 = 13◦, and the range 11◦ < θ5 < 15◦ was
chosen.

Table 3.1 Secant iteration.

deg deg kPa kPa
θ5 = 11.000000 β5 = 34.001 Δp = +47.8634 p4 = 243.854 M4 = 1.8270
θ5 = 15.000000 β5 = 38.214 Δp = −47.5664 p4 = 196.041 M4 = 1.9683
θ5 = 13.006225 β5 = 36.050 Δp = −0.03052 p4 = 218.844 M4 = 1.8973
θ5 = 13.004945 β5 = 36.049 Δp = −0.00001 p4 = 218.859 M4 = 1.8972
θ5 = 13.004944 β5 = 36.049 Δp = +0.00000 p4 = 218.859 M4 = 1.8972

The final pressures and angles are

p4 = p5 = 218.86 kPa β5 = 36.05◦ θ5 = 13.005◦

This shows that the expansion fan is very weak, for the value of θ5 differs only
slightly from θ3 = 13◦. The entropy changes from region 1 to 4 and from region 1 to
5 are:

Δs14 = 4.0635 J/(kg · K) Δs15 = 13.1963 J/(kg · K)

and the Mach numbers across the slip line have the values: M4 = 1.8972 and
M5 = 1.8766. �

EXERCISES

3.1 Conditions in an air reservoir are 680 kPa and 560 K. From there, the air flows
isentropically through a convergent nozzle to a back pressure of 101.3 kPa. Find the
velocity at the exit plane of the nozzle. [Ans: 433 m/s]

3.2 Air flows in a converging duct at the rate ṁ = 0.25 kg/s. At the location where the
area is A1 = 6.5 cm2, air pressure is p1 = 140 kPa, and Mach number is M1 = 0.6.

(a) Find the stagnation temperature. (b) When the flow is choked, what is the size of the
throat area? (c) Give the percent reduction in area from station 1 to the throat. (d) Find the
pressure at the throat. [Ans: (a) 249.4 K, (b) 5.47 cm2, (c) 15.8 %, (d) 94.3 kPa]



�

� �

�

EXERCISES 125

3.3 Air flows in a convergent nozzle. At a certain location, where the area is A1 = 5 cm2,
pressure is p1 = 240 kPa and temperature is T1 = 360 K. Mach number at this location is
M1 = 0.4. Find the mass flow rate. [Ans: 0.177 kg/s]

3.4 The area of a throat in a circular nozzle is At = 1 cm2. (a) For a choked flow of
air, find the diameter at the location where M1 = 0.5. (b) Determine the Mach number at
the location where the diameter is D2 = 1.941 cm. Assume the flow to be isentropic and
γ = 1.4. [Ans: (a) 1.306 cm, (b) 0.200]

3.5 At the location where the area is A1 = 4 cm2, Mach number for air has the value
M1 = 0.2. Find the diameter at the location where M = 0.6. [Ans: 1.43 cm]

3.6 Air flows through a circular duct 15 cm in diameter with a flow rate 2.25 kg/s.
The total temperature and static pressure at a certain location in the duct are 30◦C
and 106 kPa, respectively. Find (a) the flow velocity, (b) the static temperature, (c) the
stagnation pressure, and (d) the density at this location. [Ans: (a) 102.7 m/s, (b) 297.9 K,
(c) 112.7 kPa, and (d) 1.24 kg/m3]

3.7 (a) Show that for one-dimensional isentropic with area change flow, the relationship

dA

A
=

(M 2 − 1)
1 + γ−1

2 M 2

dM

M

holds between the changes in area and Mach number. (b) Conclude that Mach number
has the value unity at the minimum. Determine d2A/dx2, and show that this is positive as
M → 1, so that the area is indeed minimum.

3.8 Show that in compressible flow, the velocity can be written as

V =

√
2γRT0

γ − 1

[
1 −

(
p

p0

)(γ−1)/γ
]1/2

3.9 Air flows subsonically in a converging nozzle. At a downstream location where the
Mach number is M2 = 0.5, the flow area is A2. What is the Mach number at an upstream
location where A1 = 2A2. [Ans: 0.222]

3.10 Air flows into a supersonic nozzle from an air reservoir where its pressure is
500 kPa and temperature is 470 K, the ratio of the exit area to the throat area is 2.3. The
nozzle efficiency is η = 0.91, but the flow may be assumed to be isentropic to the throat
and free of shocks thereafter. (a) Find the exit pressure, (b) the exit temperature, and (c)
the exit Mach number. [Ans: (a) 36.85 kPa, (b) 245.3 K, (c) 2.14]

3.11 Conditions in an air reservoir are 380 kPa and 460 K. From there, the air flows
through a convergent nozzle to a back pressure of 101.3 kPa. The polytropic efficiency of
the nozzle is ηp = 0.98. Find (a) exit plane pressure, (b) exit plane temperature, (c) Mach
number at the exit, and (d) the velocity at the exit plane of the nozzle. [Ans: (a) 198.1 kPa,
(b) 383.3 K, (c) 0.986, and (d) 387 m/s]

3.12 Air issues from a reservoir at conditions 260 kPa and 540 K into a converging
nozzle. The nozzle efficiency is estimated to be ηN = 0.986. The back pressure is pb =
101.3 kPa. Find, (a) exit Mach number, (b) exit plane temperature, (c) exit plane pressure,
and (d) exit velocity. [Ans: (a) 0.9883, (b) 450 K, (c) 135.9 kPa, and (d) 420.2 m/s]
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3.13 At the inlet to a nozzle, the conditions are M1 = 0.3, p01 = 320 kPa and T01 =
430 K. The flow is irreversible with polytropic exponent n = 1.396. Show that

T02

T2
=

(
p01

p1

)γ/(γ−1)(
p1

p2

)(n−1)/n

Find the Mach number at a location where p2 = 210 kPa. [Ans: 0.80]

3.14 Air from a reservoir with p01 = 260 kPa and T01 = 530 K flows through a nozzle.
It is estimated that the static enthalpy loss coefficient is ζ = 0.020. The exit pressure is
p2 = 180 kPa. (a) Find the exit Mach number. (b) Find the polytropic efficiency of the
nozzle. [Ans: (a) 0.736, (b) 0.979]

3.15 A two-dimensional nozzle has a symmetrical shape, the upper part of which is
given by

ŷ =
4
5

+
x̂(x̂ − 1)
2(x̂ + 2)

and x̂ = x/a and the ŷ/a are dimensionless coordinates for which the reference length
a = 0.1 m. The nozzle extends from 0 < x < 8 cm. (a) As a preliminary step, write the
GNU/OCATAVE script to calculate the results in Example 3.6. (b) Find the location of the
throat. (c) Assuming that the flow is isentropic, find the Mach number at the throat. (d)
Assuming that the friction factor is 4f = 0.02, write a MATLAB or GNU/OCTAVE script and
solve for the Mach number along the duct, as well as the pressure ratio p(x)/p1. Plot them
as functions of x. Do this by using the ode45 code in the software. (e) Carry out the
calculation also by setting f = 0 and check that the Mach number at the throat is the same
as that you calculated in part (a). [Ans: (b) 0.48 cm, (c) 0.5498]

3.16 Air, as shown in Figure 3.28a, flows from a reservoir at pressure p01 = 280 kPa
and temperature T01 = 1000 K into a duct with an area A3 = 2.5 cm2 and pressure
p3 = 170 kPa. The nozzle area is A1 = 1 cm. (a) Find the Mach number M3 in the flow
that has been fully mixed. (b) Find the mass flow rate of air. (c) Find the pressure p2. [Ans:
(a) 0.376, (b) 0.0358 kg/s, (c) 102.74 kPa]

1

2

3

(a) (b)

α

D
2

D
1

Figure 3.28 (a) Expansion of air into a large duct. (b) Exhaust of air through an offset nozzle.
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3.17 Air exhausts through an offset nozzle shown in Figure 3.28b, into the atmosphere,
where temperature is 20◦C, and pressure is 101.3 kPa. The absolute pressure at the flange
is p1 = 530 kPa, and temperature there is T1 = 700 K. The diameter is D1 = 15 cm. The
exit diameter of the nozzle is D2 = 10 cm. Find (a) the velocity V1, (b) the exit velocity
V2, and (c) the x-component of the force the fluid exerts on the flange. The flow leaves at
60◦ as shown. [Ans: (a) 142.4 m/s, (b) 487.6 m/s, and (c) 6.14 kN]

3.18 Show that for a normal shock

h1 − h2 = −1
2
(p2 − p1)(v1 + v2)

3.19 Air enters a section in the diverging part of a supersonic nozzle with Mi = 4. The
flow is slowed down by a shock such that at the exit of the nozzle, where Ae = 2Ai, Mach
number is Me = 0.3. (a) Find the Mach number M1 just upstream of the shock. (b) Find
the pressure ratio across the shock. [Ans: (a) 4.46 and (b) 23.0]

3.20 A shock wave moves into still air at temperature 300 K and pressure 101.3 kPa.
This results in the air behind the shock moving at velocity 400 m/s. (a) Find the velocity
at which the shock moves. (b) Find the pressure behind the shock. [Ans: (a) 662.1 m/s and
(b) 413 kPa]

3.21 A shock moving into still air. Show that the shock speed is given by

U = c1

√
γ − 1
2γ

+
γ + 1
2γ

p2

p1

3.22 A shock moves into still air. Show that the velocity after the shock is given by

V2 =
c1

γ

(
p2

p1
− 1

) ( 2γ
γ+1

p2
p1

+ γ−1
γ+1

)1/2

3.23 Consider a supersonic air flow over a convex corner with angle θ1 = 5◦. The
upstream Mach number is M1 = 1.1, pressure is p1 = 130 kPa, and T1 = 310 K. Find (a)
Mach number, (b) temperature, (c) pressure, and (d) the fan angle after the expansion is
complete. [Ans: (a) 1.306, (b) 287.1 K, (c) 99.4 kPa, and (d) 20.4◦]

3.24 Consider a supersonic air flow over a convex corner with angle θ1 = 10◦. The
upstream Mach number is M1 = 1.8, pressure is p1 = 130 kPa, and T1 = 310 K. After
the first corner, the air flows over another convect corner, also θ2 = 10◦. Find (a) Mach
number, (b) temperature, and (c) pressure after the expansion is complete. [Ans: (a) 2.57,
(b) 220.1 K, and (c) 39.2 kPa]

3.25 An oblique shock, as shown in Figure 3.29, is incident on a wall at the location
where the wall has a convex corner of angle θ. If the Mach number of the incoming air
flow is M1 = 2.0, and the angle of the incident oblique shock is φ = 31◦, find the angle θ
such that there will not be a reflected wave. [Ans: 9.09◦]
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Figure 3.29 An oblique shock incident on a corner.

3.26 Consider the steam flow from a low-pressure nozzle at an angle α1 = 65◦, as shown
in Figure 3.26. At the inlet of the nozzle, steam is saturated vapor with γ = 1.135 and at
pressure p0 = 18 kPa. Steam exhausts into the interblade space, where pressure is 7 kPa.
Find (a) the angle θ by which the flow turns on leaving the nozzle, (b) the far downstream
velocity, and (c) its direction α2. [Ans: (a) 8.11◦, (b) 522.6 m/s, and (c) 56.89◦]

3.27 Consider the steam flow from a low-pressure nozzle at angle α1 = 65◦. At the inlet
of the nozzle, steam is saturated vapor at pressure p0 = 18 kPa. Steam exhausts to the
interblade space, where pressure is p2 = 7 kPa. Using the continuity equation, and with
the aid of Figure 3.30, find (a) the angle θ by which the flow turns on leaving the nozzle,
(b) the far downstream velocity, and (c) its direction α2. [Ans: (a) 2.68◦, (b) 522.6 m/s,
and (c) 62.32◦]
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Figure 3.30 Steam nozzle.

3.28 Flat plate is oriented at angle of attack α1 = 5◦ to the incoming supersonic stream,
as shown in Figure 3.31. The upstream air pressure and temperature are p1 = 101.3 kPa
and T1 = 288 K, and the Mach number is M1 = 2.9. (a) Find the pressure above and below
the plate. (b) Assuming that the flow after the plate is in the direction of the incoming
stream, find the pressure after the plate for the air that flows over the plate and for that
which flows under the plate. (Here it is assumed that no slip line forms). [Ans: (a) 68.45
and 145.7 kPa, (b) 101.26 and 101.31 kPa]
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Figure 3.31 Flat plate in a supersonic stream.

3.29 Flat plate is oriented at angle of attack α1 = 5◦ to the incoming supersonic stream.
The upstream pressure and temperature are p1 = 101.3 kPa and T1 = 288 K, and the Mach
number is M1 = 2.9. (a) Find the pressure above and below the plate. (b) Find direction of
the slip line after the plate and the entropy change of the air that flows over the plate and
the same for that flows under the plate. [Ans: (a) 68.45 and 145.7 kPa, (b) 0.0033◦ and
Δs14 = 1.756 J/(kg K) and Δs15 = 1.404 J/(kg K)]

3.30 Two shocks of different families intersect as shown in Figure 3.32. The wall
angles are θ2 = 20◦ and θ3 = 10◦. The incoming air flow has M1 = 4.1, pressure p1 =
103 kPa, and temperature T1 = 288 K. Find the angle φ of the slip line, and the entropy
differences Δs14 and Δs15 across it. [Ans: φ = 9.54◦, Δs14 = 138.1 J/(kg K), Δs15 =
102.9 J/(kg K)]
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Figure 3.32 Interaction of two shocks of different family.
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CHAPTER 4

GAS DYNAMICS OF WET STEAM

The compressible flow equations developed in the previous chapter apply to one-
dimensional flow of pure gases or their mixtures, such as superheated steam and dry
air. How these equations need to be modified for a wet steam flow is the subject of this
chapter. The theory developed below is relevant to understanding the flow of steam in
the latter stages of low-pressure steam turbines. There, the flow passage in a blade row
is similar to converging–diverging nozzle, but with the important difference that they are
not straight. As discussed in the previous chapter, oblique shocks and expansion fans are
likely to develop in such flows.

Owing to the specialized topic, readers who wish to move directly to the analysis of
turbomachinery may wish to omit this chapter at their first reading and return to it at a
later time.

The study of wet steam flows in nozzles and low pressure turbine stages has been under
study since the seminal work by Gyarmathy [37] in 1962. Subsequent advances were made
by Marble [63] and by Jackson and Davidson [50]. The theory has been examined by Young
and coworkers [102–104], by Kirillov and Yablonik [56], and by Wróblewski et al. [102].
As computational fluid dynamics (CFD) calculations have matured, the calculation of wet
steam flow was taken up among others, by Starzmann et al. [88]. Nucleation simulations
in a nozzle flow were undertaken by Zhang et al. [107], and turbulence models were
investigated by Patel et al. [68] in a turbine cascade. Many more studies could be added to
this list.

131Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e

http://www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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This chapter follows closely the work of Young and Guha [105] for the reason that
they handle the topic systematically and completely. They not only formulated and solved
the equations for the various relaxation zones that develop after a shock, but Guha [34]
also gave the jump conditions across shocks in wet steam. He considered, in addition,
condensation shocks and gave exact solutions for them when a particular set of upstream
and downstream properties are known. Subsequently, Guha [35] extended the theory to
include a carrier gas and in a review article [36] summarized the results, as well as extended
them to particle laden flows of dry gases. The aim of the chapter is to review the theoretical
development of the flow of wet steam, with the hope that its understanding is useful, even
if the practical calculations are carried out with the aid of commercial computer codes.

4.1 COMPRESSIBLE FLOW OF WET STEAM

In compressible one-dimensional flow with area change, the gas is assumed to flow
isentropically except across shocks. A new complicating feature in the flow of wet steam is
the presence of liquid water in the form of small droplets. In this section, the fundamental
theory that takes them into account is reviewed.

4.1.1 Clausius–Clapeyron equation

The specific thermodynamic properties of a two-phase equilibrium mixture of saturated
liquid water and its vapor are usually written with the steam quality, x, as the independent
variable, since saturation pressure, p(Ts), is a function of temperature alone. As discussed
in Chapter 2, in terms of x, the mixture properties for enthalpy, entropy, and specific
volume may be written as

h = hf + xhfg s = sf + xsfg v = vf + xvfg (4.1)

in which hf stands for the enthalpy of saturated liquid, hv is the enthalpy for saturated vapor,
and the corresponding properties for specific entropy and specific volume are similarly
defined. The conventional double subscript “fg” in a term such as hfg = hv − hf is retained.
When these equations are written in terms of degree of wetness, y = 1 − x, they are

h = yhf + (1 − y)hv s = ysf + (1 − y)sv v = yvf + (1 − y)vv

For low-pressure steam, the specific volume of liquid water is much less than that of
saturated vapor (at p = 0.4 bar about 4000 times less), and if the degree of wetness is, say
y = 0.1 or smaller, the specific volume may be well approximated by v = (1 − y)vv. Under
these conditions, the density of vapor is related to the density of the mixture by the equation

ρv = (1 − y)ρ (4.2)

The symbols without subscripts refer to the properties of the two-phase mixture, except
for cp, which wherever it appears represents the specific heat of vapor.

With these basic definitions understood, the Clausius–Clapeyron equation encountered
in the study of thermodynamics is discussed next. Consider therefore a process in which
water changes from the saturated liquid state to saturated vapor state at the same pressure.



�

� �

�

COMPRESSIBLE FLOW OF WET STEAM 133

Integrating the Gibbs equation
Tds = dh − vdp (4.3)

for this process gives
T (sv − sf ) = hv − hf , (4.4)

which may also be written as
hv − Tssv = hf − Tssf , (4.5)

and here, Ts denotes a saturation temperature.
Gibbs function is defined as g = h − Ts. Hence, the previous equation shows that the

Gibbs function is the same for the two phases at equilibrium. Another name for the Gibbs
function is chemical potential, denoted by the symbol μ. It is the fundamental property in
the study of phase equilibria. The differential of μ = h − Ts is

dμ = dh − Tds − sdT

Using the second Gibbs equation, Tds = dh − vdp, changes this into

dμ = vdp − sdT

When this is written for states along the saturated vapor line and the corresponding states
on the saturated liquid line, and the two are then subtracted, it leads to

d(μv − μf ) = vfgdp − sfgdTs

The saturation pressure is written without a subscript, but it is functionally related to
saturation temperature by p = p(Ts), as was already mentioned.

Since the difference of the chemical potentials is zero as long as the end states are
saturation states, it follows that

dp

dTs
=

sfg

vfg
=

hfg

Tsvfg
(4.6)

This is the Clausius–Clapeyron equation. Replacing next vfg by vv and using the ideal gas
relation pvv = RvTs at the saturation state, puts the Clausius–Clapeyron equation into the
form

dp

p
=

hfg

RvTs

dTs

Ts
(4.7)

4.1.2 Adiabatic exponent

It is possible to develop an expression for an equivalent adiabatic exponent, γe, that reduces
the compressible flow equations to the same form as those for pure gases or their mixtures.
It is developed next.

For wet steam, the differential of enthalpy is given by

dh = (1 − y)dhv + ydhf − (hv − hf )dy

or
dh = (1 − y)cpdTs + ycfdTs − hfgdy
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With a modified specific heat denoted as

c = cp +
y

1 − y
cf ,

this equation becomes
dh = (1 − y)cdTs − hfgdy (4.8)

For isentropic flow dh = dp/ρ and Eq. (4.8) can be written as

dp

ρ
− (1 − y)cdTs = −hfgdy (4.9)

Differentiating next the ideal gas relation for the vapor

p = ρvRvT

logarithmically gives
dp

p
=

dρv

ρv
+

dT

T

This is, of course, true for superheated steam, and the absence of subscript “s” on T
signifies this. However, it is also a good approximation for low-pressure saturated vapor,
and at that state, the subscript must be attached to temperature. This is how temperature
appears in the equations that follow.

Logarithmic differentiation of Eq. (4.2) leads to

dρv

ρv
=

dρ

ρ
− dy

1 − y

and adding the last two equations gives

dp

p
− dρ

ρ
− dTs

Ts
= − dy

1 − y

Eliminating dy between this and Eq. (4.9) gives then

1
hfg

dp

ρ
− (1 − y)cTs

hfg

dTs

Ts
= (1 − y)

(
dp

p
− dρ

ρ
− dTs

Ts

)

Replacing the density in the first term on the left by ρ = ρv/(1 − y) and then using the
ideal gas relation gives the equation

RvTs

hfg

dp

p
− cTs

hfg

dTs

Ts
=

dp

p
− dρ

ρ
− dTs

Ts

The temperature ratios are now converted to pressure ratios by the Clausius–Clapeyron
equation. This gives (

1 − 2RvTs

hfg
+

cTs

hfg

RvTs

hfg

)
dp

p
=

dρ

ρ
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By defining the equivalent adiabatic index as

γe =
1

1 − 2RvTs

hfg
+

cTs

hfg

RvTs

hfg

(4.10)

gives the relation
dp

p
= γe

dρ

ρ
(4.11)

With γe replaced by γ, this is the familiar form for isentropic flow in the absence of water
droplets. Calculation of γe by Eq. (4.10) shows it not to vary greatly, making this a useful
approximation for the adiabatic index. In addition, it gives a basis for defining the speed of
sound in a two-phase mixture namely, ce =

√
γep/ρ =

√
γe(1 − y)RvTs.

The values of γe are plotted in Figure 4.1. An approximate straight line for p = 1 bar
is γe = 1.144 − 0.275y. The Zeuner equation, γe = 1.135 − 0.1y, is also plotted. It is
seen that the approximate form of the adiabatic exponent represents this experimentally
obtained formula reasonably well, although the slope in Zeuner’s equation is milder. In
order to obtain accurate values for cp and cf , the calls

cpv=XSteam(’CpV_p’,p) cf=XSteam(’CpL_p’,p)

to the function XSteam were used.
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Figure 4.1 Equivalent adiabatic exponent for wet steam for different values of pressure.

� EXAMPLE 4.1

Wet steam flows isentropically in a diffuser at a rate of ṁ = 0.2 kg/s, and at the
location where the diffuser diameter is d1 = 4 cm, its pressure is p1 = 1.0 bar, and
its quality is x1 = 0.9. (a) Find the Mach number at this location. (b) Find the quality
of the steam at the location where the pressure of the steam is p2 = 1.1 bar. (c)
Find the diameter of the diffuser at this location. (d) Find the Mach number at this
location. Assume phase equilibrium between the liquid and vapor during the process.
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Solution: (a) To find the Mach number, the flow velocity and speed of sound need
to be determined. The velocity is given by

V1 =
ṁ

ρ1A1

The flow area is

A1 =
1
4
πD2

1 =
1
4
· π · 0.042 = 0.001257 m2

The saturation specific volume of the vapor is vv = 1.694 m3/kg, and therefore, the
mixture specific volume and density are

v1 = x1vv = 0.9 · 1.694 = 1.5246 m3/kg ρ1 =
1
v1

= 0.6559 kg/m3

The entropy is calculated from

s1 = sf + x1sfg = 1.3026 + 0.9 · 6.0562 = 6.7532 kJ/(kg K)

The velocity becomes

V1 =
ṁ

ρ1A1
=

0.2
0.6559 · 0.001257

= 242.6 m/s

The adiabatic index is calculated from Eq. (4.10). The latent heat of vaporization and
specific heats of vapor and liquid at the saturation temperature Ts = 99.61 ◦C are

hfg = 2257 kJ/kg cp = 2.076 kJ/(kg K) cf = 4.216 kJ/(kg K)

so that

c = cp +
y1

1 − y1
cf = 2.067 +

0.1
0.9

4.216 = 2.544 kJ/(kg K)

and therefore

γe =
(

1 − 2 · 0.461 · 372.8
2257

+
2.544 · 372.8

2257
· 0.461 · 372.8

2257

)−1

= 1.137,

and the speed of sound is

c1 =
√

γep1/ρ1 =
√

1.137 · 100000/0.656 = 416.3 m/s

Hence, the Mach number is M1 = V1/c1 = 242.6/416.3 = 0.583. The flow is
subsonic, and thus, no shocks are formed.
(b) With p2 = 1.1 bar, and the flow assumed isentropic, so that s2 = s1, the quality
at this state is

x2 =
s2 − sf

sfg
=

6.7532 − 1.3328
7.3268 − 1.3328

= 0.9043
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(c) The area A2 can be determined using the mass balance, once V2 and ρ2 are known.
Density is given by

ρ2 =
ρv2

x2
=

0.6453
0.9043

= 0.7136 kg/m3

Velocity, V2, is obtained by first calculating h0 and h2. They are

h0 = h1 +
1
2
V 2

1 = 2449.2 +
242.62

2 · 1000
= 2478.6 kJ/kg

and

h2 = hf + x2hfg = 428.8 + 0.9043 · (2679.2 − 428.8) = 2463.8 kJ/kg

so that

V2 =
√

2(h0 − h2) =
√

2(2478.6 − 2463.8)1000 = 172.2 m/s

Therefore,

A2 = A1
ρ1V1

ρ2V2
= 0.001257

0.6559 · 242.6
0.7136 · 172.2

= 0.001628 m2

and

D2 =

√
4A2

π
=

√
4 · 0.001628

π
= 4.55 cm

(d) The speed of sound and Mach number at this state are

c2 =
√

γep2

ρ2
=

√
1.137 · 110000

0.7136
= 418.6 m/s M2 =

V2

c2
=

172.3
418.6

= 0.411

�

The calculations illustrated in this example work as long as the flow remains in the
two-phase region and need to be modified when all the liquid evaporates during the process.
Such a modification is needed in one of the exercises.

4.2 CONSERVATION EQUATIONS FOR WET STEAM

The applications of interest in this chapter involve wet steam with 0 < y < 0.2, and the
simplest model assumes that all the droplets are monodisperse, i.e. of equal size. The
droplets are further assumed neither to break up nor to coagulate to form larger droplets.
For this reason, the number of droplets in a given volume remains constant. The number of
droplets is obtained by integrating the number of droplets per unit volume over the given
volume. Thus, the number of droplets is

N =
∫
V

nρv

1 − y
dV



�

� �

�

138 GAS DYNAMICS OF WET STEAM

In the integrand, n is the number of droplets per unit mass of the mixture and ρv/(1 − y) is
the mixture density. Hence, their product is the number of droplets per unit volume. This
number remains constant for a control volume that moves with the fluid. Hence

D

Dt

∫
V

nρv

1 − y
dV = 0

The time derivative is the total derivative, or derivative following the motion, denoted by
capital D. Using the Reynolds transport theorem, encountered in the first course in fluid
dynamics, this equation can be cast into the form∫

V

∂

∂t
(

nρv

1 − y
)dV +

∫
A

nρv

1 − y
VidA = 0

in which Vi is the droplet velocity, and since the droplets are monodisperse, each droplet is
assumed to have the same velocity. In steady flow, the unsteady term drops out. Thus, for
steady one-dimensional flow in a constant area duct, this equation shows that the integrand
is independent of the location in the duct, so that

d

dx

(
nρvVi

1 − y

)
= 0 (4.12)

When shocks appear in variable area ducts, it may be still permissible to cancel the areas,
in the balance equations across the shock, if the shock thickness is not unduly large. In
contrast to the thin aerodynamic shocks discussed in the previous chapter, it turns out that
shocks in wet steam are thicker and to be able to cancel the areas in shock relations would
require a constant area duct or a slowly diverging one. The general equations for variable
area ducts will be discussed later.

The term in the parenthesis in the aforementioned equation represents the flux of
droplets. That is the rate at which the droplets flow per unit area and time. As mentioned,
the physical meaning of this equation is that the number of droplets remains constant
in the flow.

The mass balance leads to a similar expression. If the mass of a single droplet is denoted
by symbol m, then y = nm is the mass of liquid water per unit mass of the mixture. The
mass flow rate consists of vapor flow and liquid flow. The vapor flux is ρvVv, in which Vv
is the vapor velocity. The liquid flux is mnρvVi/(1 − y) or yρvVi/(1 − y), and the mass
conservation requires that their sum remains constant. Thus

d

dx

(
ρvVv +

yρvVi

1 − y

)
= 0 (4.13)

The momentum balance

d

dx

(
p + ρvV

2
v +

yρvV
2
i

1 − y

)
= 0 (4.14)

is obtained similarly. This equation shows that the sum of pressure and the momentum
fluxes of the vapor and liquid remain constant.

With heat transfer absent, the energy equation reduces to

d

dx

[
ρvVv

(
hv +

1
2
V 2

v

)
+

yρvVi

1 − y

(
hi +

1
2
V 2

i

)]
= 0 (4.15)
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The ideal gas relation for the vapor and the Clausius–Clapeyron equation are two additional
equations to determine the unknowns.

4.2.1 Relaxation times

When a shock forms in wet steam flow, the vapor properties change across the shock
similarly to those in a pure gas; but the droplet temperature lags the vapor temperature,
and since the velocity of the vapor decreases after a shock, whereas the velocity of the
droplets are not immediately affected, it takes some time to reduce their velocity to that of
the vapor. In addition, the hotter vapor causes evaporation of the droplets, but this takes
even longer. The times to adjust to the equilibrium values are called relaxation times.
Expressions for these relaxation times are developed in this section.

Consider a small spherical liquid droplet of mass m, evaporating at the rate M to the
vapor. Its mass decreases at this rate, so that

Dm

Dt
= −M (4.16)

If the droplets move with velocity Vi, then, this derivative, for a general property Φ, has
the form

DΦ
Dt

=
∂Φ
∂t

+ Vi · ∇Φ

or in one-dimensional flow in the x-direction

DΦ
Dt

=
∂Φ
∂t

+ Vi
∂Φ
∂x

For steady flow, Eq. (4.16) can thus be replaced by

Vi
dm

dx
= −M (4.17)

In order to integrate this, the dependence of Vi and M as functions of x would need to be
known.

Inertial relaxation. Consider now the drag on a liquid drop as it moves with velocity
Vi through vapor that itself moves with velocity Vv. For sufficiently small droplets, the
drag force obeys the Stokes law F = 6πaμ(Vv − Vi), in which μ is the viscosity of the
vapor and a is the radius of the droplet. Thus, if the droplet and the vapor move in the
positive x-direction with vapor velocity larger than that of the droplet, then, the drag force
is in the positive direction, and Newton’s second law reduces to

m
DVi

Dt
= F (4.18)

In this form of Newton’s second law, the mass m has been assumed to be constant, even
if it decreases by evaporation. This kind of quasi-steady assumption is often used in order
to keep the resulting equations simple enough that an analytical solution is possible. The
validity of the assumption can be checked against numerical computer calculations of
the more general equations.
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For steady one-dimensional flow, this becomes

Vi
dVi

dx
+

9μ

2a2ρi
(Vi − Vv) = 0 (4.19)

in which the mass of the droplet has been written as m = ρi
4
3πa3. The coefficient of the

second term has the dimensions of inverse time. By generalizing it, a time constant is
defined by

τI =
2a2ρi

9μ
[φ(Re) + 4.5Kn] (4.20)

Now Eq. (4.19) takes the form

dVi

dx
+

Vi − Vv

ViτI
= 0 (4.21)

The expression for the time constant extends the validity of the Stokes drag law
to somewhat larger Reynolds numbers and to small enough droplets that the Knudsen
number, Kn, is no longer small. Reynolds number and Knudsen number are defined by
the expressions

Re =
2aρv|Vv − Vi|

μ
Kn =

λ

2a

Here, λ is the mean free path [92], and it can be calculated from

λ =
μ

p

√
πRvTv

2
(4.22)

The Reynolds number dependence is given by

φ(Re) =
1

1 + 0.15Re0.687

Droplet temperature relaxation. To determine the relaxation time for droplet
temperature equilibration, the energy equation for a droplet is written as

mVi
dhi

dx
= −(hv − hi)M − Q (4.23)

The increase in the droplet temperature is caused by both M and Q, both of which are
negative, as seen below. The first term represents the net rate at which energy is transferred
to the droplet as a result of phase change, for the energy of the condensing molecules
is larger than that of the evaporating ones. If the approximation hv − hi = hfg is used,
then, this denotes the energy of the phase change. The second term, Q, is the heat transfer
given by

Q =
4πakv

1 + 4.5Kn/Pr
(Ti − Tv) (4.24)

in which Pr = μv/kvcp is the Prandtl number. The numerator is obtained by considering
conduction from vapor at the temperature Tv to a droplet at temperature Ti. Since Tv > Ti,
this term is negative. It would be more accurate to use the saturation temperature, Ts, rather
than Ti as the surface temperature, but this would lead to more complicated equations.
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The expression for the evaporation is derived from the kinetic theory of gases. It is
given by

M = 4πa2 2q

2 − q

[
ps(Ti)√
2πRvTi

− p√
2πRvT

′

]
(4.25)

This expression contains the surface area of a droplet of radius a and a factor involving q
that accounts for the fact that not all the molecules incident to the droplets get stuck to the
surface. The first term in the square brackets represents the rate at which molecules leave
the droplet, emanating from temperature Ti, and the second term accounts for the incoming
molecules originating from the effective temperature T ′. This temperature is defined by

T ′ − Tv

Ti − Tv
=

1
1 + 4.5Kn/Pr

In the continuum case, when Kn → 0, then T ′ → Ti. For highly rarefied vapor, Kn → ∞
and T ′ → Tv. When evaporation is larger than condensation, the term in the brackets is
positive, and Eq. (4.17) shows that the mass of the droplet decreases.

In order to cast Eq. (4.17) to a form from which the relaxation phenomena is apparent,
Eq. (4.25) needs to be linearized. Denoting first

α =
1

1 + 4.5Kn/Pr
from which 4Kn =

8
9

(
1 − α

α

)
Pr (4.26)

so that
T ′ = Tv + α(Ti − Tv) = Ti − (1 − α)(Ti − Tv)

Now assuming that (Ti − Tv)/Ti � 1 and expanding 1/
√

T ′ by the binomial theorem
gives

1√
T ′

=
1√
Ti

[
1 +

1
2
(1 − a)

Ti − Tv

Ti

]
· · ·

Furthermore,

p = ps(Ti) +
(

dp

dT

)
T=Ti

(Ts − Ti) + · · · ,

and using the Clausius–Clapeyron equation, this becomes

p = ps(Ti) +
hfg

RvTi

(Tv − Ti)
Ti

ps(Ti) + · · ·

Substituting this and the expansion for 1/
√

T ′ into Eq. (4.25) gives

M = −4πa2 2q

2 − q

p(Ti)√
2πRvTi

[
hfg

RvTi

(Ts − Ti)
Ti

+
1
2
(1 − α)

(Ti − Tv)
Ti

]
+ ...

Finally, replacing Ti by Ts in the denominators in this equation leads to the approximate
form

M = −4πa2 2q

2 − q

p(Ti)√
2πRvTs

[
hfg

RvTs

(Ts − Ti)
Ts

+
1
2
(1 − α)

(Ti − Tv)
Ts

]
(4.27)
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The far downstream temperature is obtained by noting that for large value of x, the
left-hand side of Eq. (4.23) tends to zero, and after Eq. (4.22) is expressed in terms of
Knudsen number, the right-hand side reduces to

hfg

cpTs

Pr

4Kn

(
2q

2 − q

) [
hfg

RvTs

(
Ts − Ti∞

Ts

)
+

1
2
(1 − α)

(
Ti∞ − Tv

Ts

)]
= α(Ti∞ − Tv)

in which Ti∞ represents the droplet temperature at the end of the relaxation zone. It is
assumed that Tv remains constant during this process. Expressing the Knudsen number in
terms of α and introducing the parameters

β =
hfg

cpTs

9
8(1 − α)

(
2q

2 − q

)
and H =

hfg

RvTs
,

this equation reduces to

β

[
H(1 − T̄i∞) +

1
2
(1 − α)(T̄i∞ − T̄v)

]
= T̄i∞ − T̄v

into which the definitions T̄v = Tv/Ts and T̄i∞ = Ti∞/Ts have been introduced. Now
letting

A =
1 − α

2H
− 1

βH
(4.28)

and solving for Ti∞ gives

Ti∞ = Ts −
A

1 − A
(Tv − Ts) (4.29)

In the relaxation zone, Eq. (4.23) can be written as

c̄Vi
dTi

dx
=

[
β

(
1 − α

2

)
− 1 − βH

]
(Ti − 1) +

[
β

(
1 − α

2

)
− 1

]
A − 1

A
(Ti∞ − 1)

in which
c̄ =

ρicia
2

3αk

The RHS can be simplified, and this equation can be written as

c̄Vi
dTi

dx
= −(1 − A)Hβ(T̄i − T̄ı∞)

Rearranging Eq. (4.28) to express β in terms of A, gives β = 2/(1 − α − 2AH), and
substituting this to the last equation gives

Vi
dTi

dx
+

2(1 − A)H
(1 − α − 2AH)c̄

(Ti − Ti∞) = 0 (4.30)

If the time scale is defined as

τD =
c̄(1 − α − 2AH)

2(1 − A)H
,
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Then, this equation has the form

dTi

dx
+

(Ti − Ti∞)
ViτD

= 0 (4.31)

The time constant can be reworked into the form

τD =
1

1 − A

(
2 − q

2q

) (
RvTs

hfg

)2
ρicia

3Rv

√
2πRvTs

p
(4.32)

Usually, the choice q = 1 is made.

Vapor relaxation. Combining Eqs. (4.17) and (4.23) gives

(hv − hi)Vi
dm

dx
= mVi

dhi

dx
+ Q

Since y = nm, multiplying both sides by y/mVi gives

(hv − hi)
y

m

dm

dx
= y

dhi

dx
+

yQ

mVi

Substituting Eq. (4.24) into this gives

(hv − hi)
y

m

dm

dx
= yci

dTi

dx
+

3ykv(Ti − Tv)
ρia

2Vi

(
1 + 4.5

Kn

Pr

)

Using Eq. (4.31) and defining the time constant

τT =
(1 − y)

y

ρicpa
2

3kv

(
1 + 4.5

Kn

Pr

)
(4.33)

gives finally the equation

(hv − hi)
y

m

dm

dx
=

yci(Ts − Ti)
ViτD

+
(1 − y)cp(Ts − Tv)

ViτT
(4.34)

In the first term on the right, the droplet temperature, Ti∞ after the relaxation is complete
has been replaced by the saturation temperature Ts, without introducing, but a small error.
In the second term, similarly Ti has been replaced by Ts, and this substitution will be seen
in the subsequent results to be justified. The equation now shows that, as both the droplet
and vapor temperature approach the saturation temperature, the right-hand side approaches
zero, and the mass of the droplet remains constant.

The magnitudes of the scales are such that

τD � τI � τT,

and their values for a range of droplet radii are seen from Figure 4.2. This means that the
droplet temperature relaxation takes place first, followed by the inertial relaxation, and
the vapor relaxation is the slowest.
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Figure 4.2 Time constants for p = 0.5 bar, y = 0.1, γ = 1.32, Vi = 496 m/s, and Vv = 511 m/s.

4.2.2 Conservation equations in their working form

Sound propagates at different speeds in different relaxation zones. In this section, the
conservation equations are written in forms from which the different sound speeds are
more readily determined.

Equation (4.13) can be written as

d

dx

(
ρvVv +

yρvVi

1 − y

)
= 0 (4.35)

Expanding Eq. (4.12) for the number flux of droplets as

d

dx

(
nρvVi

1 − y

)
=

ρvVi

1 − y

dn

dx
+ n

d

dx

(
ρvVi

1 − y

)
= 0

and multiplying this by m leads to

mρvVi

1 − y

dn

dx
+ y

d

dx

(
ρvVi

1 − y

)
= 0

Expanding next Eq. (4.35) gives

d

dx
(ρvVv) + y

d

dx

(
ρvVi

1 − y

)
+

ρvVi

1 − y

dy

dx
= 0 (4.36)

and combining this with the previous equation gives

d

dx
(ρvVv) −

mρvVi

1 − y

dn

dx
+

ρvVi

1 − y

dy

dx
= 0

Substituting y = nm into the third term, expanding it and then cancelling, leads to

d

dx
(ρvVv) +

yρvVi

1 − y

1
m

dm

dx
= 0 (4.37)
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After expanding the first term in this equation and dividing through by ρvVv, yields

1
Vv

dVv

dx
+

1
ρv

dρv

dx
+

yVi

Vv(1 − y)
1
m

dm

dx
= 0

Logarithmic differentiation of the ideal gas relation gives

1
p

dp

dx
=

1
ρv

dρv

dx
+

1
Tv

dTv

dx
,

and eliminating the term dρv/dx between the previous two equations leads to

1
p

dp

dx
− 1

Tv

dTv

dx
+

1
Vv

dVv

dx
+

Vi

Vv

y

1 − y

1
m

dm

dx
= 0 (4.38)

The momentum balance, Eq. (4.14)

dp

dx
+

d

dx
(ρvV

2
v ) +

d

dx

(
yρvV

2
i

1 − y

)
= 0

when expanded out gives

dp

dx
+ Vv

d

dx
(ρvVv) + ρvVv

dVv

dx
+ Vi

d

dx

(
yρvVi

1 − y

)
+

yρvVi

1 − y

dVi

dx
= 0

Using Eq. (4.35), the fourth term can be replaced by a term that can be combined with the
second. This leads to equation

dp

dx
+ (Vv − Vi)

d

dx
(ρvVv) + ρvVv

dVv

dx
+

yρvVi

1 − y

dVi

dx
= 0

Equation (4.35) is next used to rewrite the second term in this equation, after which the
entire equation is divided by p = ρvRvTv. This results in

1
p

dp

dx
+

V 2
v

RvTv

[
1
Vv

dVv

dx
+

yVi

(1 − y)V 2
v

dVi

dx
+

Vi − Vv

V 2
v

yVi

(1 − y)
1
m

dm

dx

]
= 0 (4.39)

Energy balance, Eq. (4.15) can also be recasted. Differentiating gives(
hv +

1
2

V 2
v

)
d(ρvVv)

dx
+ ρvVv

d

dx

(
hv +

1
2
V 2

v

)
+

(
hi +

1
2
V 2

i

)
d

dx

(
yρvVi

1 − y

)

+
yρvVi

1 − y

d

dx

(
hi +

1
2
V 2

i

)
= 0

Making use of Eqs. (4.35) and (4.37), puts this equation into the form

ρvVvcp

dTv

dx
+ ρvV

2
v

dVv

dx
+ (hi − hv)

yρvVi

1 − y

1
m

dm

dx
+

1
2
(V 2

i − V 2
v )

yρvVi

1 − y

1
m

dm

dx

+
yρvVici

1 − y

dTi

dx
+

yρvV
2
i

1 − y

dVi

dx
= 0
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and this can be further simplified to

1
Tv

dTv

dx
+

y

1 − y

Vi

Vv

ci

cp

1
Tv

dTi

dx
+

V 2
v

cpTv

×
[

1
Vv

dVv

dx
+

y

1 − y

(
Vi

Vv

)2 1
Vv

dVi

dx
−

(hv − hi +
1
2V

2
v − 1

2V
2
i )

cpTv

Vi

Vv

y

1 − y

1
m

dm

dx

]

= 0 (4.40)

When Eq. (4.34) is substituted for dm/dx in Eqs. (4.39) and (4.40), this substitution
gives terms that are proportional to ΔTi · ΔVv and ΔTv · ΔVv. These terms are small, being
products of small differences. These second- order terms are dropped in the following, and
the working form of the conservation equations can be written as

1
p

dp

dx
− 1

Tv

dTv

dx
+

1
Vv

dVv

dx
+

Vi

Vv

y

1 − y

1
m

dm

dx
= 0 (4.41)

1
p

dp

dx
+

V 2
v

RvTv

[
1
Vv

dVv

dx
+

yVi

(1 − y)V 2
v

dVi

dx

]
= 0 (4.42)

1
Tv

dTv

dx
+

y

1 − y

Vi

Vv

ci

cp

1
Tv

dTi

dx
+

V 2
v

cpTv

[
1
Vv

dVv

dx
+

y

1 − y

(
Vi

Vv

)2 1
Vv

dVi

dx

]

− (hv − hi)
cpTv

Vi

Vv

y

1 − y

1
m

dm

dx
= 0 (4.43)

4.2.3 Sound speeds

In this section, the sound speeds in different relaxation zones are discussed. The three
differences

ΔTi = Ts − Ti ΔVi = Vv − Vi ΔT = Ti − Tv (4.44)

are defined, and it is expected that these tend toward zero during the relaxation process. In
the first definition, Ts has been substituted for Ti∞, for these are close to the same after the
droplet temperature relaxation is complete. The three relaxation equations are

dTi

dx
− ΔTi

ViτD
= 0 (4.45)

dVi

dx
− ΔVi

ViτI
= 0 (4.46)

(hv − hi)
y

m

dm

dx
=

(1 − y)cpΔT

ViτT
+

yciΔTi

ViτD
(4.47)

As was seen previously, the time constants are such that the droplet relaxation takes
place in the shortest zone, followed by inertial relaxation, and then vapor relaxation
requires the longest zone for completion. To separate these zones clearly, four model
conditions are assumed.
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First, none of the variables are assumed to have relaxed to their equilibrium values.
This is achieved by assuming that the time constants all tend to be infinitely large. That is
τD → ∞, τI → ∞, and τT → ∞.

Second case has only the droplet temperature in equilibrium. Intuitively, this means
that the droplet temperature Ti → Ti∞, or as already been mentioned, this condition can
be approximated by Ti → Ts. Mathematically, this limit is obtained by letting τD → 0 and
ΔTi → 0 in such a way that their ratio remains finite. Neither inertial nor vapor relaxation
has taken place, and this is assured by the conditions τI → ∞ and τT → ∞.

Third case consists of both the droplet temperature and inertial relaxation being
complete, but the vapor relaxation has not yet taken place. Again, the limits τD → 0 and
ΔTi → 0 in such a way that their ratio remains finite, fulfills the condition that droplet
temperature relaxation is complete, and the limits τI → 0 and ΔVi → 0 with their ratio
remaining finite leads to complete inertial relaxation. Since vapor relaxation has not taken
place, the condition τT → ∞ reflects this.

Fourth and final case consist of vapor equilibration. The appropriate limits are now that
τD → 0 and ΔTi → 0 with their ratio remaining finite and τI → 0 and ΔVi → 0 with their
ratio remaining finite. Finally, the limits τT → 0 and ΔT → 0, and with a finite value for
their ratio, gives the condition for vapor relaxation.

To illustrate the development of the expression for the sound speed, consider the second
case. The droplet temperature relaxation is complete, but the inertial and vapor relaxation
have not taken place. Since ΔTi → 0, when τD → 0, with their ratio remaining constant,
then, Ti = Ts and dTi/dx = dTs/dx. In addition, with τI → ∞, Eq. (4.46) shows that

dVi

dx
= 0

Furthermore, the condition τT → ∞ reduces Eq. (4.47) to the form

1
m

dm

dx
=

ciTs

hfg

1
Ts

dTs

dx

Mass, momentum, and energy conservation equations can now be written as

1
p

dp

dx
− 1

Tv

dTv

dx
+

1
Vv

dVv

dx
+

y

1 − y

Vi

Vv

ciTs

hfg

1
Ts

dTs

dx
= 0 (4.48)

1
p

dp

dx
+

V 2
v

RvTv

1
Vv

dVv

dx
= 0 (4.49)

1
Tv

dTv

dx
+

ci

cp

y

1 − y

Vi

Vv

1
Ts

dTs

dx
+

V 2
v

cpTv

1
Vv

dVv

dx
− ci

cp

y

1 − y

Vi

Vv

1
Ts

dTs

dx
= 0 (4.50)

The second and fourth term cancel in this equation, and comparing the reduced equation
to Eq. (4.49) shows that

1
Tv

dTv

dx
=

Rv

cp

1
p

dp

dx

Substituting this into Eq. (4.48) and making use of the Clausius–Clapeyron gives(
1 − Rv

cp

− RvTv

V 2
v

+
y

1 − y

Vi

Vv

ciTs

hfg

RvTs

hfg

)
dp

dx
= 0
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The coefficient of dp/dx must therefore be zero. Introducing cp = γRv/(γ − 1) gives

γRvTv

V 2
v

= 1 +
y

1 − y

Vi

Vv

γci

Rv

(
RvTs

hfg

)2

Assuming that all the variable changes are small, then Vv = ce1 and the ratio Vi/Vv ≈ 1,
so that the speed of sound is given by

c2
e1 =

γRvTv

1 +
y

1 − y

γci

Rv

(
RvTs

hfg

)2 (4.51)

Having established this speed of sound, consider next the situation in which all the
relaxation processes are complete. In this case, the limits ΔTi → 0, when τD → 0 leads to
Ti = Ts, and the limit ΔVi → 0, when τI → 0 results in Vi = Vv. Equation (4.34) can be
written as

(hv − hi)
y

m

dm

dx
=

yciΔTi

ViτD
+

(1 − y)cpΔT

ViτT
(4.52)

The vapor relaxation requires that in the limit τT → 0 also ΔT → 0, so that their ratio
remains constant. Therefore, Tv = Ts. This condition is sufficient to cast the conservation
equations into a form from which the sound speed can be determined.

Thus, Eqs. (4.41)–(4.43) can be written as

1
p

dp

dx
− 1

Ts

dTs

dx
+

1
Vv

dVv

dx
+

y

1 − y

1
m

dm

dx
= 0 (4.53)

1
p

dp

dx
+

V 2
v

RvTv(1 − y)
1
Vv

dVv

dx
= 0 (4.54)

1
Ts

dTs

dx
+

ci

cp

y

1 − y

1
Ts

dTs

dx
+

V 2
v

cpTv(1 − y)
1
Vv

dVv

dx
−

hfg

cpTs

y

1 − y

1
m

dm

dx
= 0 (4.55)

Solving Eq. (4.53) for (1/m)(dm/dx) and substituting it to Eq. (4.55) and using the
Clausius–Clapeyron equation, these equations take the forms(

1 − RvTs

hfg

)
1
p

dp

dx
+

1
Vv

dVv

dx
+

y

1 − y

1
m

dm

dx
= 0

(4.56)

1
p

dp

dx
+

V 2
v

RvTv(1 − y)
1
Vv

dVv

dx
= 0

(4.57)

c

cp

RvTs

hfg

1
p

dp

dx
+

V 2
v

cpTv(1 − y)
1
Vv

dVv

dx
+

hfg

cpTs

[(
1 − RvTs

hfg

)
1
p

dp

dx
+

1
Vv

dVv

dx

]
= 0

(4.58)

Solving Eq. (4.57) for (1/Vv)(dVv/dx) and substituting into this gives[
1 − 2

RvTs

hfg
+

cTs

hfg

RvTs

hfg
− (1 − y)RvTv

V 2
v

]
1
p

dp

dx
= 0
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Since dp/dx is not zero, the coefficient vanishes and leads to an expression for the sound
speed, i.e. cec = Vv. It is given by

c2
ec =

(1 − y)RvTv

1 − 2
RvTs

hfg
+

cTs

hfg

RvTs

hfg

(4.59)

The derivations of the other two sound speeds are left as exercises. In summary, the
four sound speeds are given by

c2
fz = γRvTv (4.60)

c2
e1 =

γRvTv

1 +
y

1 − y

γci

Rv

(
RvTs

hfg

)2 (4.61)

c2
e2 =

(1 − y)γRvTv

1 +
y

1 − y

γci

Rv

(
RvTs

hfg

)2 (4.62)

c2
ec =

(1 − y)RvTv

1 − 2
RvTs

hfg
+

cTs

hfg

RvTs

hfg

(4.63)

and for saturated steam at p = 0.5 bar, their ratios scale as

cfz : ce1 : ce2 : cec = 1 : 0.998 : 0.947 : 0.878

4.3 RELAXATION ZONES

In the previous section, it was shown that there exists four sound speeds, of which the
frozen speed cfz is the largest, and the complete equilibrium speed cec is the smallest. If the
upstream flow velocity is lower than cec, then no waves form. Also, if the upstream velocity
is greater than the frozen sound speed cfz, then, a discontinuous shock forms after which
the flow relaxes into an equilibrium state. This kind of shock is called partly dispersed.
If the velocity is larger than the complete equilibrium speed and smaller than the frozen
sound speed, then, the waves that form are called fully dispersed. Young and Guha [105]
classify the situation according to the following schema.

Type I wave corresponds to cecu < Vvu < ce2u

Type II wave corresponds to ce2u < Vvu < ce1u

Type III wave corresponds to ce1u < Vvu < cfzu

where the subscript “u” denotes the upstream state.

4.3.1 Type I wave

For the Type I wave, the droplet and inertial relaxations can be assumed to be complete.
In such a case Ti = Ts and Vi = Vv. Under this condition,

1
m

dm

dx
=

1 − y

y

cpTv

hfg

ΔT

TvVvτT
+

ciTs

hfg

1
Ts

dTs

dx
(4.64)
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and the working equations, Eqs. (4.41)–(4.43) can be written as

1
p

dp

dx
− 1

Tv

dTv

dx
+

1
Vv

dVv

dx
+

y

1 − y

ciTs

hfg

1
Ts

dTs

dx
+

cpT

hfg

ΔT

TvVvτT
= 0 (4.65)

1
p

dp

dx
+

V 2
v

(1 − y)RvTv

1
Vv

dVv

dx
= 0 (4.66)

1
Tv

dTv

dx
+

RvV
2
v

cp(1 − y)RvTv

1
Vv

dVv

dx
− ΔT

TvVvτT
= 0 (4.67)

In Eq. (4.65), making the substitution dTv/dx = dTs/dx − dΔT/dx and then using the
Clausius–Clapeyron equation gives[

1 +
y

1 − y

ci

Rv

(
RvTs

hfg

)2

− Ts

Tv

RvTs

hfg

]
1
p

dp

dx
+

1
Vv

dVv

dx
+

1
Tv

dΔT

dx
+

cpTv

hfg

ΔT

TvVvτT
= 0

Using Eq. (4.66) to eliminate the pressure gives[
1 −

(
1 +

y

1 − y

ci

Rv

(
RvTs

hfg

)2

− Ts

Tv

RvTs

hfg

)
V 2

v

(1 − y)RvTv

]
1
Vv

dVv

dx

+
1
Tv

dΔT

dx
+

cpTv

hfg

ΔT

TvVvτT
= 0 (4.68)

By similar steps, making the substitution dTv/dx = dTs/dx − dΔT/dx in Eq. (4.67)
and then using the Clausius–Clapeyron equation gives

Ts

Tv

RvTs

hfg

dp

dx
+

Rv

cp

[
V 2

v

(1 − y)RvTv

]
1
Vv

dVv

dx
− 1

Tv

dΔT

dx
− ΔT

TvVvτT
= 0

Eliminating pressure by using Eq. (4.66) gives(
Rv

cp

− Ts

Tv

RvTs

hfg

)
V 2

v

(1 − y)RvTv

1
Vv

dVv

dx
− 1

Tv

dΔT

dx
− ΔT

TvVvτT
= 0 (4.69)

Adding Eqs. (4.68) and (4.69) gives{
1 −

[
1 +

y

1 − y

γci

Rv

(
RvTs

hfg

)2
]

V 2
v

(1 − y)γRvTv

}
1
Vv

dVv

dx
−

(
1 −

cpTv

hfg

)
ΔT

TvVvτT
= 0

Introducing the sound speed ce2 into this gives(
1 − V 2

v

c2
e2

)
1
Vv

dVv

dx
−

(
1 −

cpTv

hfg

)
ΔT

TvVvτT
= 0 (4.70)

Next multiplying Eq. (4.69) by cpTv/hfg and adding it and Eq. (4.70) gives{
1 −

[
1 +

y

1 − y

ciTs

hfg

(
RvTs

hfg

)2

− 2Ts

Tv

RvTs

hfg

]
V 2

v

(1 − y)RvTv

}
1
Vv

dVv

dx

+
(

1 +
cpTv

hfg

)
1
Tv

dΔT

dx
= 0
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Setting the ratio Ts/Tv = 1 in this and introducing the sound speed cec gives(
1 − V 2

v

c2
ec

)
1
Vv

dVv

dx
+

(
1 −

cpTv

hfg

)
dΔT

dx
= 0 (4.71)

Combining Eqs. (4.70) and (4.71) gives

dΔT

dx
+

[
1 − M 2

ec

1 − M 2
e2

]
ΔT

VvτT
= 0 (4.72)

This equation shows that these waves, indeed, fall into the Type I wave category. That
is cecu < Vv < ce2u, so that upstream the quantity in the brackets is negative. Were the
bracketed term assumed constant, −ΔT would grow exponentially toward plus infinity.

Equation (4.70) shows that the velocity is governed by

dVv

dx
=

⎡
⎢⎢⎢⎣

1 −
cpTv

hfg

1 − M 2
e2

⎤
⎥⎥⎥⎦ Θ Vv (4.73)

in which
Θ =

ΔT

TvVvτT

and Eq. (4.66) can be solved for the pressure gradient, giving

dp

dx
= −

⎡
⎢⎢⎢⎣ γ

1 − y

V 2
v

c2
fz

1 −
cpTv

hfg

1 − M 2
e2

⎤
⎥⎥⎥⎦ Θ p (4.74)

Next, the equation for the temperature gradient is obtained from Eq. (4.67)

dTv

dx
=

⎡
⎢⎢⎢⎣1 − γ − 1

1 − y

V 2
v

c2
fz

1 −
cpTv

hfg

1 − M 2
e2

⎤
⎥⎥⎥⎦Θ Tv (4.75)

The equation for the mass of the droplet, Eq. (4.64) can be cast as

dm

dx
=

⎡
⎢⎢⎢⎣1 − y

y

cpTv

hfg
− ci

Rv

(
RvTs

hfg

)2
γ

1 − y

V 2
v

c2
fz

1 −
cpTv

hfg

1 − M 2
e2

⎤
⎥⎥⎥⎦Θ m (4.76)

and the degree of wetness as

dy

dx
=

⎡
⎢⎢⎢⎣1 − y

y

cpTv

hfg
− ci

Rv

(
RvTs

hfg

)2
γ

1 − y

V 2
v

c2
fz

1 −
cpTv

hfg

1 − M 2
e2

⎤
⎥⎥⎥⎦Θ y (4.77)
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Equations (4.72)–(4.77) can now be solved by any of the numerical methods given in
MATLAB or GNU/OCTAVE. The fourth-order Runge–Kutta method is a good choice, but even
the Euler method would work well, since the small time step required is not an impediment
as computers are very fast today.

The evolution of the variables is shown in Figure 4.3. The low value of upstream |ΔT |
is manifested in its initially slow growth. But, since the growth is exponential, its value
increases rapidly until the velocity has dropped to cec. At that point, the derivative of ΔT
vanishes, and |ΔT | reaches its maximum value and then begins to decrease. The saturation
temperature increases as the pressure increases. The degree of wetness decreases so that the
steam becomes drier as the states across this fully dispersed wave move to higher values
of entropy and thus closer to the saturated vapor line. At x = 500 mm, the relaxation is
nearly complete.

The results were calculated for upstream velocity of Vvu = 1.05 cec that falls into the
range cec < Vv < ce2. The degree of wetness was yu = 0.1, the pressure pu = 0.5 bar,
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Figure 4.3 Relaxation of the fluid properties for a Type I wave.
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and the vapor temperature was Tvu = Tsu + 0.003 ◦C, so that ΔT = −0.003 ◦C. The
initial droplet radius was chosen to be au = 0.5 μm, which gives the initial droplet mass
mu = 5.08 · 10−16 kg. The script to carry out the calculations is given below.

%Relaxation for Type I waves

clear all,

Runiv=8314; M=18.02; Rv=Runiv/M; gamma=1.32; cp=Rv*gamma/(gamma-1);

cf=4181.3; y=0.1; c=cp+y*cf/(1-y); a=0.5e-6;

pbar=0.5; p=pbar*1e5;

Ts=XSteam(’Tsat_p’,pbar); TsK=Ts+273.15; TvK=TsK+0.003; Tv=TvK-273.15;

hf=XSteam(’hL_T’,Ts); hg=XSteam(’hV_T’,Ts); hfg=(hg-hf)*1000;

rhof=XSteam(’rhoL_p’,pbar);

cfz=sqrt(gamma*Rv*TvK);

cec=sqrt((1-y)*Rv*TvK/(1-(Rv*TsK/hfg)*(2-c*TsK/hfg)));

Mec=1.05; Vv=Mec*cec;

DeltaT=Ts-Tv; m=rhof*4*pi*a^3/3;

%

z0=[DeltaT;Vv;p;TvK;y;m;a];

x0=0; xf=0.5; xspan=[x0 xf];

[x,z] = ode45(@relaxwaveI,xspan,z0);

%

subplot(5,1,1); plot(x,z(:,3)/1.e5); grid

subplot(5,1,2); plot(x,z(:,4),x,z(:,4)+z(:,1)); grid;

subplot(5,1,3); plot(x,-z(:,1)); grid;

subplot(5,1,4); plot(x,z(:,2)/cfz); grid;

subplot(5,1,5); plot(x,z(:,5)); grid;

%

function zprime = relaxwaveI(x,z)

DeltaT = z(1); Vv=z(2); p=z(3); TvK=z(4); y=z(5); m=z(6); a=z(7);

Runiv=8314; M=18.02; Rv=Runiv/M; gamma=1.32; cp=Rv*gamma/(gamma-1);

cf=4181.3; c=cp+y*cf/(1-y); a=0.5e-6; Tv=TvK-273.15;

pbar=p*1e-5; rhof=XSteam(’rhoL_p’,pbar);

c=cp+y*cf/(1-y); rhof=XSteam(’rhoL_p’,pbar);

Ts=XSteam(’Tsat_p’,pbar); TsK=Ts+273.15;

hf=XSteam(’hL_T’,Ts); hg=XSteam(’hV_T’,Ts); hfg=(hg-hf)*1000;

cfz=sqrt(gamma*Rv*TvK);

ce1=cfz/sqrt(1+y/(1-y)*(gamma*cf/Rv)*(Rv*TsK/hfg)^2);

ce2=ce1*sqrt(1-y);

ce=sqrt((1-y)*Rv*TsK/(1-(Rv*TsK/hfg)*(2-c*TsK/hfg)));

mu=XSteam(’my_pT’,pbar,Ts+1); k=XSteam(’tcV_p’,pbar);

lambda=mu/p*sqrt(pi*Rv*TsK/2); Kn=0.5*lambda/a; Pr=mu*cp/k;

tauT=((1-y)*cp*a^2*rhof/(3*k*y))*(1+4.5*Kn/Pr);

DeltaT=TsK-TvK; Theta=DeltaT/(TvK*Vv*tauT);

CP=(1-cp*TvK/hfg);

zdot(1)=-(1-(Vv/ce)^2)/(1-(Vv/ce2)^2)*Theta*TvK;

zdot(2) = CP*Theta*Vv/(1-(Vv/ce2)^2);

zdot(3)=-gamma/(1-y)*(Vv/cfz)^2*CP/(1-(Vv/ce2)^2)*Theta*p;

zdot(4)=(1-(gamma-1)/(1-y)*(Vv/cfz)^2*CP/(1-(Vv/ce2)^2))*Theta*TvK;

zdot(5)=((1/y-1)*(cp*TvK/hfg)-(cf/Rv)*(Rv*TsK/hfg)^2* ...

gamma/(1-y)*(Vv/cfz)^2*CP/(1-(Vv/ce2)^2))*y*Theta;

zdot(6)=((1/y-1)*(cp*TvK/hfg)-(cf/Rv)*(Rv*TsK/hfg)^2* ...

gamma/(1-y)*(Vv/cfz)^2*CP/(1-(Vv/ce2)^2))*y*Theta;

zdot(7)=3*((1/y-1)*(cp*TvK/hfg)-(cf/Rv)*(Rv*TsK/hfg)^2* ...
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gamma/(1-y)*(Vv/cfz)^2*CP/(1-(Vv/ce2)^2))*a*Theta;

zprime=[zdot(1);zdot(2);zdot(3);zdot(4);zdot(5);zdot(6);zdot(7)];

end

As the disperse wave develops, its velocity drops, and after reaching the value cec, the
bracketed term becomes positive, and the solution begins to decay. If the starting condition
for velocity is just below the value ce2, then, the denominator in the coefficient of Eq. (4.72)
is small, and |ΔT | would appear to increase rapidly until the velocity has dropped, which
makes the denominator grow. However, for this condition, the value of ΔT remains small,
so that its derivative does not increase to a large value. The time to reach equilibrium does
increase. It is a simple matter to change the conditions in the computer program to explore
how the solution behaves as the initial conditions are changed.

4.3.2 Type II wave

For waves of Type II, the velocity upstream satisfies the condition ce2u < Vvu < ce1u. For
this wave, the droplet temperature relaxation is assumed complete, so that Ti = Ts, and
with τT → ∞, no vapor relaxation takes place. Hence, the aim here is to give a detailed
view of how the velocity relaxation proceeds.

First the working equations, (4.41)–(4.43) under this condition become

1
p

dp

dx
− 1

Tv

dTv

dx
+

1
Vv

dVv

dx
+

Vi

Vv

y

1 − y

1
m

dm

dx
= 0 (4.78)

1
p

dp

dx
+

V 2
v

RvTv

[
1
Vv

dVv

dx
+

yVi

(1 − y)V 2
v

dVi

dx

]
= 0 (4.79)

1
Tv

dTv

dx
+

y

1 − y

Vi

Vv

ci

cp

1
Tv

dTs

dx
+

V 2
v

cpTv

[
1
Vv

dVv

dx
+

y

1 − y

(
Vi

Vv

)2 1
Vv

dVi

dx

]

− (hv − hi)
cpTv

Vi

Vv

y

1 − y

1
m

dm

dx
= 0 (4.80)

and, after the Clausius–Clapeyron equation has been used, the derivative of the mass of
the droplet is given by

1
m

dm

dx
=

ciTs

hfg

1
Ts

dTi

dx
=

ci

Rv

(
RvTs

hfg

)2 1
p

dp

dx
(4.81)

Substituting this into Eqs. (4.53) and (4.55) leads to

[
1 +

y

1 − y

Vi

Vv

ci

Rv

(
RvTs

hfg

)2
]

1
p

dp

dx
− 1

Tv

dTv

dx
+

1
Vv

dVv

dx
= 0 (4.82)

1
p

dp

dx
+

V 2
v

RvTv

(
1
Vv

dVv

dx
+ Π

)
= 0 (4.83)

and
1
Tv

dTv

dx
+

V 2
v

cpTv

(
1
Vv

dVv

dx
+ Π

)
= 0 (4.84)
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In this last equation, the term Vi/Vv originally appears in front of the factor Π, but it is
replaced by unity, as was done when the sound speed ce1 was derived. The factor Π is
defined by

Π =
y

1 − y

ΔVi

V 2
v τI

(4.85)

Now adding Eqs. (4.82) and (4.84), eliminates the temperature and results in

1
Vv

dVv

dx
+

V 2
v

cpTv

(
1
Vv

dVv

dx
+ Π

)
+

[
1 +

y

1 − y

ci

Rv

(
RvTs

hfg

)2
]

1
p

dp

dx
= 0 (4.86)

Finally, solving Eq. (4.83) for the pressure and substituting it to the last equation gives
after simplification

1
Vv

dVv

dx
−

(
1
Vv

dVv

dx
+ Π

)
V 2

v

γRvTv

[
1 +

y

1 − y

γci

Rv

(
RvTs

hfg

)2
]

= 0 (4.87)

The last part of the second term is identified as V 2
v /c2

e1 so that this can be written as

(
1 − V 2

v

c2
e1

)
1
Vv

dVv

dx
− V 2

v

c2
e1

Π = 0 (4.88)

and Eqs. (4.83) and (4.84) reduce to

(
1 − V 2

v

c2
e1

)
1
p

dp

dx
+

V 2
v

RvTv
Π = 0 (4.89)

(
1 − V 2

v

c2
e1

)
1
Tv

dTv

dx
+

V 2
v

cpTv
Π = 0 (4.90)

Equation (4.85) takes the form

(
1 − V 2

v

c2
e1

)
1
m

dm

dx
+

γci

Rv

(
RvTs

hfg

)2
V 2

v

γRvTv
Π = 0 (4.91)

By setting Vv/Vi = 1, the droplet velocity is given by

1
Vi

dVi

dx
− 1 − y

y
Π = 0 (4.92)

The remaining unknown is the degree of wetness, y. There are two ways to handle this.
Since the number of droplets remains fixed,

d

dx

(
y

1 − y

pVi

RvTvm

)
= 0

so that
y

1 − y

pVi

RvTvm
=

yu

1 − yu

puViu

RvTvumu
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and this is solved for y at each location in the dispersive wave. The second method is to
differentiate this expression logarithmically, leading to

y

y(1 − y)
dy

dx
+

1
p

dp

dx
+

1
Vi

dVi

dx
− 1

Tv

dTv

dx
− 1

m

dm

dx
= 0 (4.93)

Substituting the various derivatives into this and simplifying the result gives(
1 − V 2

v

c2
e1

)
1
y

dy

dx
+

[
(1 − y)

(
1 − V 2

v

c2
e1

)
− y

V 2
v

c2
fz

]
Π = 0 (4.94)

With a computer program similar to the one aforementioned, these equations can be
integrated. The results are shown in Figure 4.4. The velocity differences remain small
throughout the relaxation zone. The vapor temperature rises and remains about three
degrees above the saturation temperature because in this form of the equations, the vapor
relaxation was not allowed to take place.

For the Type II waves, it is of interest also to develop the equations for which the droplet
temperature relaxation is complete, but both the inertial relaxation and vapor relaxation are
taking place. This falls under the heading of combined relaxation. The study of this kind
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Figure 4.4 Relaxation of the fluid properties for a Type II wave.
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of combined relaxation is left as an exercise. The general case of combined relaxation is
discussed after the Type III waves are briefly mentioned.

4.3.3 Type III wave

The Type III waves occur when the upstream velocity is larger than ce1 but smaller than
the frozen speed cfz. But since a typical value of the ratio ce1/cfz = 0.997, they are rare.
If, however, the upstream velocity were to fall into this range, a set of equations can be
obtained, which show how the droplet temperature relaxes while the inertial and vapor
relaxation have not yet started. That is assuming that τI → ∞ and τT → ∞, while τD → 0
and ΔTi → 0, with their ratio constant. Because these waves are quite unimportant, the
equations that govern them are not listed here.

4.3.4 Combined relaxation

The equation that govern the variables in the relaxation zone when all three relaxation
mechanisms are taken into account are developed next. After making the substitution

y

1 − y

1
m

dm

dx
=

cp

hfg

ΔT

ViτT
+

y

1 − y

ci

hfg

ΔTi

ViτD

and
dTi

dx
=

ΔTi

ViτD

dVi

dx
=

ΔVi

ViτI

into Eqs. (4.41)–(4.43), they become

1
p

dp

dx
− 1

Tv

dTv

dx
+

1
Vv

dVv

dx
+

cpTv

hfg
Θ +

ciTs

hfg
σ = 0 (4.95)

1
p

dp

dx
+

V 2
v

RvTv

(
1
Vv

dVv

dx
+ Π

)
= 0 (4.96)

1
Tv

dTv

dx
+

V 2
v

cpTv

(
1
Vv

dVv

dx
+

Vi

Vv
Π

)
− Θ = 0 (4.97)

where the parameters

Θ =
ΔT

VvTvτT
Π =

y

1 − y

ΔVi

V 2
v τI

σ =
y

1 − y

ΔTi

VvTsτD
(4.98)

have been introduced.
To cast these equations into the standard form, as has been done previously, add the

energy equation and the mass balance together. This eliminates dTv/dx. Next, subtract
the momentum equation from the resulting equation to eliminate dp/dx. This leaves an
equation in which only the derivative of velocity appears. Carrying this out gives

(1 − M 2
f )

1
Vv

dVv

dx
=

(
1 −

cpTv

hfg

)
Θ − ciTs

hfg
σ + M 2

f
Vi

Vv
Π
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Substituting dVv/dx from this equation into the momentum equation and energy equation
in turn gives

(1 − M 2
f )

1
p

dp

dx
=

V 2
v

cpTv

[
−

(
1 −

cpTv

hfg

)
Θ +

ciTs

hfg
σ − Π

]

(1 − M 2
f )

1
Tv

dTv

dx
=

[
1 − V 2

v

RvTv

(
1 − RvTv

hfg

)]
Θ +

V 2
v

cpTv

ciTs

hfg
σ − V 2

v

cpTv

Vi

Vv
Π

To this set are added the equations

1
m

dm

dx
=

1 − y

y

cpTv

hfg

Vv

Vi
Θ +

1 − y

y

ciTs

hfg

Vv

Vi
σ

and
1
Vi

dVi

dx
=

1 − y

y

(
Vv

Vi

)2

Π
1
Ti

dTi

dx
=

1 − y

y

Ts

Ti

Vv

Vi
σ

Since the number of droplets remains constant, the degree of wetness is obtained by noting
that

d

dx

(
y

1 − y

pVi

RvTvm

)
= 0 so that

y

1 − y

pVi

RvTvm
= K

and K is a constant. Differentiating this logarithmically gives

1 − M 2
f

y(1 − y)
dy

dx
= (1 − M 2

f )
(

1
Tv

dTv

dx
+

1
m

dm

dx
− 1

p

dp

dx
− 1

Vi

dVi

dx

)
(4.99)

Substituting the aforementioned expressions and carrying out the algebra gives the equation

1 − M 2
f

1 − y

dy

dx
= yΘ +

[
(1 − y)(1 − M 2

f )
(

Vv

Vi

)
− yM 2

f

](
cpTv

hfg
Θ +

ciTs

hfg
σ

)

−
[
(1 − y)(1 − M 2

f )
(

Vv

Vi

)3

− yM 2
f

]
Vi

Vv
Π (4.100)

The terms (Vi/Vv − 1) that appear during the manipulations are set to zero; but other
velocity ratios are kept. It turns out that the results displayed in Figure 4.5 are somewhat
sensitive to these factors. The parameters for the sample calculation are an upstream
Mach number Mfu = 1.5 and pressure pu = 0.35 bar. The saturation temperature for this
pressure is 345.83 K. The initial droplet radius is au = 0.1 μm, and the degree of wetness
is yu = 0.1. The graphs in Figure 4.5 show that the length of droplet relaxation zone is
indeed very short, as the time scale τD is about one-twentieth of τI and four hundred times
smaller than τT. Since the flow is supersonic ahead of the shock, an aerodynamic shock
forms, and the droplet temperature and velocity right after the shock are equal to their
upstream values. They then adjust to their equilibrium values in their respective relaxation
zones. Thus, the scaled droplet temperature Ti/Tiu increases from unity to a value 1.065
in a region of width on the order of about a millimeter. In this region, the droplet radius
also increases from 0.10 to 0.13 μm and then begins to drop.

The inertial relaxation takes about 70 mm to complete, and the vapor equilibrium is
achieved in a zone of about 400 mm. As the pressure increases across all the relaxation
zones, so does the saturation temperature and the vapor temperature, after an initial rise,
begins to drop toward the value of the saturation temperature.



�

� �

�

RELAXATION ZONES 159

3.0

2.8

2.6

2.4

1.3

1.2

1.1

1.0

1.5

0.5

1.0

1.1

1.0

0.9

0.8

0.7

0.9
0.8
0.7
0.6

0.4
0.5

p/p
u

T
v
/T

vu

Ti/Tiu

Vi/ciu

V
v
/c

u

a /a
u

y/y
u

400100 200 3000

x (mm)

Figure 4.5 Variation of the variables through the droplet, inertial, and vapor relaxation regions.
yu = 0.1, au = 0.1 μm, pu = 0.35 and with an upstream Mach number Mfu = 1.5.

4.3.5 Flow in a variable area nozzle

The equations governing wet steam from in channels of variable area are obtained from
the general balance equations that are of the form

d

dx
(AρvVv) +

d

dx

(
A

yρvVi

1 − y

)
= 0 (4.101)

The momentum balance

d

dx
(AρvV

2
v ) +

d

dx

(
A

yρvV
2
i

1 − y

)
+ A

dp

dx
= 0 (4.102)

is the same as before, except the extra term that accounts for the additional unbalanced
pressure force.

The energy equation is

d

dx

[
AρvVv(hv +

1
2
V 2

v )
]

+
d

dx

[
A

yρvVi

1 − y
(hi +

1
2
V 2

i )
]

= 0 (4.103)
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That the number of droplets remains constant is described by the equation

d

dx

(
Ay

1 − y

ρvVi

m

)
= 0 (4.104)

which can be simplified and rearranged as

yρvVi

1 − y

(
1
A

dA

dx
− 1

m

dm

dx

)
+

d

dx

(
yρvVi

1 − y

)
= 0 (4.105)

Differentiating out the terms in the Eq. (4.101) and making use of Eq. (4.105) reduces it to

1
A

dA

dx
+

1
Vv

dVv

dx
+

1
p

dp

dx
− 1

Tv

dTv

dx
+

y

1 − y

Vi

Vv

1
m

dm

dx
= 0 (4.106)

Equation (4.102) is next expanded and combined with Eq. (4.105), and then from the
resulting equation, the term dm/dx is eliminated with Eq. (4.106). This operation yields

1
p

dp

dx
+

V 2
v

RvTv

[
1
Vv

dVv

dx
+

y

1 − y

(
Vi

Vv

)2 1
Vi

dVi

dx

]
= 0 (4.107)

To arrive at this equation, certain intermediate terms cancel when the approximation
Vi = Vv is used.

The energy Eq. (4.103) can be reduced to

1
Tv

dTv

dx
+

V 2
v

cpTv

1
Vv

dVv

dx
+

y

1 − y

Vi

Vv

ciTs

cpTv

1
Ts

dTi

dx
+

V 2
v

cpTv

y

1 − y

(
Vi

Vv

)3 1
Vi

dVi

dx

− hv − hi

cpTv

y

1 − y

(
Vi

Vv

)
1
m

dm

dx
= 0 (4.108)

To arrive at this form, the kinetic energy terms, as before, are of higher order and can be
neglected.

Using the parameters as defined in Eqs. (4.98), the derivative of the mass of the droplet
can be written as

1
m

dm

dx
=

1 − y

y

cpTv

hfg

(
Vv

Vi

)
Θ +

1 − y

y

ciTs

hfg

(
Vv

Vi

)
σ (4.109)

and the equations for velocity and droplet relaxation become

1
Vi

dVi

dx
=

ΔVi

V 2
i τI

=
1 − y

y

(
Vv

Vi

)2

Π
1
Ti

dTi

dx
=

ΔTi

TiViτD
=

1 − y

y

(
Vv

Vi

)(
Ts

Ti

)
σ

The rest of the development is as before, with temperature eliminated by adding Eq. (4.108)
and Eq. (4.106), and then Eq. (4.107) is solved for the pressure gradient, and it is substituted
in the resulting equation. This leads to

(1 − M 2
f )

1
Vv

dVv

dx
= − 1

A

dA

dx
+

(
1 −

cpTv

hfg

)
Θ + M 2

f Π − ciTs

hfg
σ (4.110)
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Similarly, Eq. (4.107 ) can be recast as

(1 − M 2
f )

1
p

dp

dx
= γM 2

f

[
1
A

dA

dx
−

(
1 −

cpTv

hfg

)
Θ − Π +

ciTs

hfg
σ

]
(4.111)

and Eq. (4.108) becomes

(1 − M 2
f )

1
Tv

dTv

dx
= (γ − 1)M 2

f

[
1
A

dA

dx
− Π +

ciTs

hfg
σ − γ

γ − 1

(
1 − RvTv

hfg

)
Θ

]
+ Θ

(4.112)
With A = A(x) given, these equations can be solved by the Runge–Kutta methods used
previously.

4.4 SHOCKS IN WET STEAM

To recapitulate what has been discussed in this chapter, when wet steam flows in a nozzle
or in the flow passage between the blades of a low pressure turbine, shocks can occur if
the velocities are sufficiently high and the back pressure low. When the steam is laden
with liquid droplets, across such a shock, the droplet temperature lags the temperature
of the vapor owing to its thermal inertia. After the shock, owing to the heat capacity of
liquid droplets, heat is transferred from the vapor to the droplets. This heat transfer goes
into evaporating some of the liquid into vapor. The pressure after the shock is higher than
before, and thus, the saturation temperature has also increased. A complicating feature in
the analysis is that during the time before equilibrium is reached, the droplets have moved
some distance downstream. In the previous subsection, the equations have been developed
that point to a way to calculate the evolution of the flow through the relaxation zones for a
channel with a changing area.

In addition to these thermal effects, owing to the inertia of the droplets, the droplets
experience a drag force by the vapor and accelerate. Again, by the time they have reached
the vapor velocity, they have moved further downstream. A shock can now be modeled as
consisting of an aerodynamic shock followed by a relaxation zone. Such a shock is called
partially dispersed. Through the aerodynamic shock, the fluid behaves as if the droplets
were completely absent, and this model has the name frozen flow. The aerodynamic shock
is sufficiently thin that there is no time for any of the transport processes to influence the
droplets as they flow through the shock.

Consider now a shock wave moving into steam that is stationary. In the previous
chapter, moving shocks were discussed, and the shock speed was shown to be given by

Mfu =
U 2

c2
fz

=
γ + 1
2γ

pf

p1
+

γ − 1
2γ

The approximate theory for the equilibrium flow gives instead

Mec =
U 2

c2
ec

=
γe + 1
2γe

p2

p1
+

γe − 1
2γe

in which the frozen and equilibrium sound speeds are given by cfz =
√

γRvT and
cec =

√
γeRvT , respectively. Solving the second equation for U and substituting it to the

previous one, allows pf to be determined. Since the calculations and Figure 4.1 show that
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Figure 4.6 Schematic of (a) partially dispersed shock, (b) fully dispersed shock, for γ = 1.32,
p1 = 0.3 bar, y1 = 0.08, and p2/p1 = 2.5.

γe < γ, it follows that Mec > Mf . This means that pf < p2 and the pressure continues to
increase across the relaxation zone. The pressure rise is shown schematically in Figure 4.6.

For wet steam, the mass, momentum, and energy balances across a shock are

ρ1V1 = ρ2V2

p1 + ρ1V
2
1 = p2 + ρ2V

2
2

h1 +
1
2
V 2

1 = h2 +
1
2
V 2

2

For weak shocks, the entropy change is small, and Eq. (4.3) is reduced to

dh =
dp

ρ
(4.113)

By use of the chain rule and the definition of the speed of sound, Eq. (4.11), this can be
written as

dh =
γe

γe − 1
d

(
p

ρ

)
(4.114)

Assuming γe to be constant, this can be integrated and

h2 − h1 =
γe

γe − 1

(
p2

ρ2
− p1

ρ1

)

follows. Substituting this to the energy equation gives

γe

γe − 1
p1

ρ1
+

1
2
V 2

1 =
γe

γe − 1
p2

ρ2
+

1
2
V 2

2

Equation (4.11) is
dp

dρ
= γe

p

ρ

and, the equilibrium speed of sound can be written as ce =
√

γep/ρ. This also means that
the pressure to density ratio can be written as p/ρ = V 2/γeM

2
e when the equilibrium Mach

number is introduced.
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Writing the velocities in terms of Mach numbers puts the energy equation to the form

p1

ρ1

(
1

γe − 1
+

1
2
M 2

e1

)
=

p2

ρ2

(
1

γe − 1
+

1
2
M 2

e2

)
(4.115)

and this can be recasted as
p1

p2

ρ2

ρ1
=

2 + (γe − 1)M 2
e2

2 + (γe − 1)M 2
e1

or using the just mentioned pressure to density ratio, as

M 2
e2

M 2
e1

V 2
1

V 2
2

=
2 + (γe − 1)M 2

e2

2 + (γe − 1)M 2
e1

According to the mass balance, the velocity ratio is V1/V2 = ρ2/ρ1, so that the previous
equation takes the form

ρ2

ρ1
=

Me1

Me2

√
2 + (γe − 1)M 2

e2√
2 + (γe − 1)M 2

e1

Substituting this back to Eq. (4.115) gives finally

p1

p2
=

Me2

Me1

√
2 + (γe − 1)M 2

e2√
2 + (γe − 1M 2

e1

Factoring out the pressure in the momentum equation and using the definitions of speed
of sound and Mach number results in

p1

p2
=

1 + γeM
2
e1

1 + γeM
2
e2

Finally, equating the two expressions for the pressure ratios gives

Me1

√
2 + (γe − 1)M 2

e1

1 + γeM
2
e1

=
Me2

√
2 + (γe − 1)M 2

e2

1 + γeM
2
e2

This is the same expression as was developed in the last chapter, and when solved for M 2
e2,

it gives

M 2
e2 =

2 + (γ2 − 1)M 2
e1

2γeM
2
e1 − (γe − 1)

Therefore, the pressure rise across the shock is

p2

p1
=

2γe

γe + 1
M 2

e1 −
γe − 1
γe + 1

and the density and velocity ratios are

ρ2

ρ1
=

V1

V2
=

(γe + 1)M 2
e1

2 + (γe − 1)M 2
e1
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Calculations can now be carried out exactly as for pure gases or mixtures of gases, provided
that the steam remains wet on both sides of the shock. Only a reasonable value for γe first
needs to be calculated from Eq. (4.10).

Temperature after the shock is determined by the Clausius–Clapeyron equation

dp

p
=

hfg

RvTs

dTs

Ts
(4.116)

By assuming that the factor multiplying the fractional change in temperature is constant,
integration gives

p2

p1
=

(
Ts2

Ts1

)hfg/RvTs

in which Ts may be taken to be Ts1 and after Ts2 is calculated this way, a new value can be
calculated using Ts = 1

2 (Ts1 + Ts2).
The second method is to assume that hfg is constant, so that

ln
p2

p1
=

hfg

RvTs1

(
1

Ts1
− 1

Ts2

)

The third method is to assume that hfg = a − bT . The constants are a = 3.193 · 106 and
b = 2.51 · 103 [56]. Substituting this form of hfg into the Clausius–Clapeyron equation and
integrating yields

ln
p2

p1
=

a

Rv

(
1

Ts1
− 1

Ts2

)
− b ln

Ts2

Ts1

To determine T2 by this third method still requires the solution of this nonlinear algebraic
equation for Ts2, but it can be done easily by various numerical methods. The approximate
method discussed in this section yields good results for low Mach numbers. Its advantage
is that the conditions upstream of the shock can be specified, and the state after the shock
can then be determined.

4.4.1 Evaporation in the flow after the shock

If the degree of wetness is low, then, since temperature increases across a shock, in the
relaxation zone, the steam tends to become drier, or completely dry. For steam that is
completely dry after the shock, y2 = 0. Then, if the temperature, pressure, and degree of
wetness are known before the shock, and the pressure ratio across the shock is known as
well, the balance equations can be combined in such a way that the temperature after the
shock can be calculated together with the minimum value of degree wetness, which will
cause the steam to just dry up as it passes through the shock. These will now be discussed.

Enthalpy, from Eq. (4.1), ahead of the shock can be written as

h1 = hv1 − y1hfg1

and, with the steam after the shock dry, the energy balance takes the form

cpTs1 − y1hfg1 +
1
2
V 2

1 = cpT2 +
1
2
V 2

2
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Using the ideal gas relation and expressing the specific heat at constant pressure in terms
of the gas constant and the ratio of specific heats, this equation becomes

γ

γ − 1
p2

ρ2
− γRv

γ − 1
Ts1 =

1
2
(V 2

1 − V 2
2 ) − y1hfg1

The ratio of the specific heats is the actual one for steam with γ = 1.3 the accepted value,
(or more accurately γ = 1.32).

Using the mass and momentum balances, velocities can be expressed by the Hugoniot
relations as,

V 2
1 =

(
p2 − p1

ρ2 − ρ1

)
ρ2

ρ1
V 2

2 =
(

p2 − p1

ρ2 − ρ1

)
ρ1

ρ2

When these are substituted into the previous form of the energy equation, and after it has
been multiplied through by (γ − 1)/γ and the first term on the right has been simplified,
the energy balance becomes

p2

ρ2
− RvTs1 =

γ − 1
2γ

(p2 − p1)
(

1
ρ2

+
1
ρ1

)
− y1hfg1

γ − 1
γ

Expanding the first term on the right-hand side and collecting factors involving ρ2 to the
left gives

1
ρ2

[
p2

(
1 − γ − 1

2γ

)
+ p1

(
γ − 1
2γ

)]
= RvTs1 +

p2

ρ1

(
γ − 1
2γ

)

− p1

ρ1

(
γ − 1
2γ

)
− y1hfg1

γ − 1
γ

Finally, using the ideal gas relations ρ2 = p2/RvT2 and ρ1 = p1/RvTs1(1 − y1) and
collecting terms gives

T2

Ts1
=

[
1 +

γ − 1
2γ

(
p2

p1
− 1

)]
− y1

[
hfg1

cpTs1
+

γ − 1
2γ

(
p2

p1
− 1

)]

1 − γ − 1
2γ

(
1 − p1

p2

) (4.117)

It is seen that the temperature T2 after the shock decreases linearly with y1. When there
is no liquid present, the kinetic energy ahead of the shock becomes converted to internal
energy and expended as flow work, the former being 1/(γ − 1) times the latter. With liquid
droplets present, some of the internal energy goes to vaporize the droplets, and therefore,
the temperature is lower as the degree of wetness is increased. The drop in temperature, as
y1 increases toward y1 lim, is shown in Figure 4.7.

The velocity before the shock can now be determined by calculating the density from
ρ2 = p2/RvT2 and then the velocity V1 from

V 2
1 =

(p2 − p1)
(ρ2 − ρ2)

ρ2

ρ1

From this, the frozen Mach number, Mf = V1/cfz, can be calculated, by noting that the
speed of sound cfz =

√
γRvTs1, and not forgetting that upstream of the shock, the steam
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Figure 4.7 Temperature ratio as a function of degree wetness before and after complete evaporation
for γ = 1.32, p1 = 0.3 bar, and p2/p1 = 2.5.

exists as a two-phase mixture, with its density approximated by ρ1 = ρv1/(1 − y1). The
reduction in the frozen Mach number and thus the velocity is shown in Figure 4.8.

The curves on the left-hand sides in Figures 4.7 and 4.8 hold for degree of wetness
y1 < y1lim. The value of y1lim is obtained from Eq. (4.117) by setting T2 equal to Ts2. This
limit is therefore

ylim =
1 +

γ − 1
2γ

(
p2

p1
− 1

)
− Ts2

Ts1

[
1 − γ − 1

2γ

(
1 − p2

p1

)]
hfg1

cpTs1
+

γ − 1
2γ

(
p2

p1
− 1

) (4.118)

This is shown in Figure 4.9
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Figure 4.8 Frozen Mach number as a function of degree wetness before and after complete
evaporation for γ = 1.32, p1 = 0.3 bar, and p2/p1 = 2.5.
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Figure 4.9 Boundary between wet and dry steam after a shock.

If the steam is wetter than that given by the minimum value of y1, then, not only all the
liquid will have evaporated and the temperature after the shock no longer changes, but the
amount of liquid water, y2, also does. The development of the expression for y2 follows
closely the steps used to arrive at Eq. (4.117) and is left as an exercise. The result is

y2 =

2γ

γ − 1

(
Ts2

Ts1
− 1

)
+

2y1hfg1

RvTs1
− (1 − y1)

(
p2

p1
− 1

)
− Ts2

Ts1

(
1 − p1

p2

)
Ts2

Ts1

[
2hfg2

RvTs2
−

(
1 − p1

p2

)] (4.119)

The expression for the velocity ahead of the shock becomes

V 2
1 =

(p2 − p1)/ρ1

1 − ρ1(1 − y2)RvTs2/p2

from which the frozen Mach number can be formed. These results are shown also in
Figures 4.7 and 4.8.

4.5 CONDENSATION SHOCKS

Condensation shocks differ from aerodynamic shocks in a crucial detail; namely, the loca-
tion of an aerodynamic shock is determined by the back pressure, whereas a condensation
shock forms when temperature drops sufficiently to cause rapid condensation.

To understand what happens, consider steam flow through a nozzle. Upstream in the
steam chest, the thermodynamic state corresponds to the stagnation state. As usual, the
flow through the nozzle can be taken to be isentropic, except across shocks that may be
present. If the flow were to progress through states of thermodynamic equilibrium, some
of the steam would begin to condense into small droplets as soon as the process crosses
the saturated vapor line. The droplet formation is delayed however, for the reason that the
formation of droplets takes time, and their growth involves growth kinetics and transport
phenomena, both nonequilibrium effects.
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The incipient formation of droplets is called nucleation. It may begin at the crevices
along the nozzle walls, in which case it is called heterogeneous nucleation, or it may also
form at dust particles or ions in the bulk steam, and this phenomena is called homogeneous
nucleation. Some put nucleation from dust particles into the category of heterogeneous
nucleation since the dust particles may not be dispersed homogeneously in the vapor phase.
The word nucleation suggests that droplets start from molecular processes in which water
molecules with low kinetic energy become attached to the walls, or at dust particles and
then subsequently grow as more and more molecules accumulate at such sites.

As the steam in nozzle flow expands further, its temperature drops still more, and thus,
the average kinetic energy of the molecules is now lower, and they are more likely to
condense into the molecular clusters that grow into small droplets. The finite time for this
process makes it possible for the steam to remain in this supersaturated state until it is so
cold that the droplet growth becomes very rapid. Steam at this nonequilibrium state is also
said to be undercooled or subcooled.

Experimental observations have shown that the degree of undercooling or supersatura-
tion usually does not exceed the point where the steam quality is approximately x = 0.96.
The line x = 0.96 in the Mollier chart is called the Wilson line, and when the steam
pressure reaches the Wilson line, condensation front appears in the flow. To be sure, the
value of undercooling depends on the expansion rate and the number of nucleation sites;
that is to say, the cleanliness of the nozzle and the presence or absence of foreign matter
in the steam. Typical amount of undercooling in low pressure steam is 20 ◦C, the exact
amount depending where the steam crosses the Wilson line.

The mixture after the condensation shock is not in phase equilibrium but tends toward
it as it moves downstream. The adjustment to equilibrium conditions takes place in the
relaxation zone, the extent of which is determined by rate of heat and mass transfer between
the droplets and the vapor. Binnie and Woods [8] measured the pressure change across
such a condensation shock, and their results are shown in Figure 4.10. A discussion of
their work is in Kearton [53]. At a somewhat earlier date, Yellott alone and Yellott and
Holland (cited by J.H. Keenan [54]) also carried out experiments on condensation shocks.
Their work is also discussed by Kearton.

For purposes of calculation, the Wilson line will be assumed to correspond to constant
quality of x = 0.96. By this measure, the Wilson line is reached by isentropic expansion
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Figure 4.10 Illustration of a condensation shock from Binnie and Woods [8].
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when enthalpy is about 130 kJ/kg below the saturation line. Supersaturated steam above
x = 0.96 can be assumed to behave as an ideal gas with γ = 1.3. Thus, steam at stagnation
conditions with temperature T0 and pressure p0, when it expands isentropically to pressure
p1, reaches a temperature

T1 = T0

(
p1

p0

)(γ−1)/γ

The saturation pressure corresponding to temperature T1 is denoted by pss, and the ratio
of the pressure p1 to which the expansion takes place and pss is called the degree of
supersaturation. It is given by

S =
p1

pss
(4.120)

The saturation temperature Ts1 corresponding to pressure p1 is larger than T2, and the
amount of undercooling is given by ΔT = Ts1 − T1.

� EXAMPLE 4.2

Steam expands from stagnation state p0 = 10 bar and T0 = 200 ◦C isentropically
through a nozzle to pressure p1 = 3.60 bar. Find the degree of supersaturation and
the amount of undercooling, assuming superheated steam behaves as an ideal gas
with γ = 1.3 even when it is supersaturated.

Solution: At the inlet condition, the entropy of steam is s0 = 6.695 kJ/(kg K).
At pressure p1 = 3.60 bar and entropy s1 = 6.695 kJ/(kg K), the steam quality is
x1 = 0.9547. Thus, the quality is close to the Wilson line. Assuming that the steam
is supersaturated, its temperature is

T1 = T0

(
p1

p0

) (γ−1)/γ

= 473.15
(

3.60
10

) 0.3/1.3

= 373.8 K

Saturation pressure corresponding to this temperature is pss = 1.037 bar. Hence, the
degree of supersaturation is

S =
p1

pss
=

3.600
1.037

= 3.472

The saturation temperature corresponding to p1 = 3.6 bar is Ts1 = 413.0 K, and the
amount of undercooling is ΔT = Ts1 − T1 = 413.0 − 373.8 = 39.2 K. �

4.5.1 Jump conditions across a condensation shock

Assuming a thin condensation shock, the mass balance can be written as

ρ1V1 = ρ2V2

in which the density of the two-phase mixture after the shock is related to the vapor
density by

ρv2 = (1 − y2)ρ2 (4.121)
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The momentum balance is
p1 + ρ1V

2
1 = p2 + ρ2V

2
2

Since steam after the shock is a two-phase mixture, the pressure p2 = ps(T2) is the
saturation pressure at temperature T2. The mass and momentum balance can be used to
express the velocities before and after the shock as

V1 =
[
(p1 − p2)
(ρ1 − ρ2)

ρ2

ρ1

]1/2

V2 =
[
(p1 − p2)
(ρ1 − ρ2)

ρ1

ρ2

]1/2

(4.122)

The energy balance is given by

h1 +
1
2
V 2

1 = h2 +
1
2
V 2

2

Since the thermodynamic state of steam after the shock is in the two-phase region, its
enthalpy is given by

h2 = hv2 − y2hfg2 = hv2 + (1 − y2)hfg2 − hfg2

in which in the second form, the term hfg2 has been added and subtracted on the right-hand
side. The energy equation can be now written as

2cp(T1 − T2) − 2(1 − y2)hfg2 + 2hfg2 = V 2
2 − V 2

1

Substituting the velocities from Eq. (4.122) into this and simplifying gives

2cp(T1 − T2) − 2(1 − y2)hfg2 + 2hfg2 =
(

1
ρ1

+
1
ρ2

)
(p1 − p2)

Finally, substituting the mixture density from Eq. (4.121) into this gives

2cp(T1 − T2) − 2(1 − y2)hfg2 + 2hfg2 =
1
ρ1

(p1 − p2) +
1 − y2

ρv2
(p1 − p2)

Solving this for 1 − y2 gives

1 − y2 =
2hfg2 + 2cp(T1 − T2) +

(
1 − p1

p2

)

2hfg2 −
(

1 − p1

p2

)
RvT2

If T2 is known, then the quality x2 = 1 − y2 can be calculated from this expression. After
that the velocity before the shock is calculated from Eq. (4.122), in which ρ2 = ρv2/(1 − y2)
and ρv2 is obtained from ρv2 = p2/RvT2. The upstream Mach number can now be
calculated from

M1 =
V1

c1
where c1 =

√
γRvT1

This Mach number can now be compared to the one calculated from the known upstream
properties. It is given by

M1 =

√√√√ 2
γ − 1

[(
p0

p1

)(γ−1)/γ

− 1

]



�

� �

�

CONDENSATION SHOCKS 171

That value of T2 is chosen for which the Mach numbers agree. This constitutes an iteration
scheme for T2. To set up a robust iteration scheme requires the knowledge of the allowable
temperatures after the shock. The allowable range requires further investigation.

Consider the expansion of steam through a supersonic nozzle from the stagnation state
p0 = 1.0 bar and T0 = 120 ◦C. The first task is to find the pressure ahead of the shock.
Examination of the Mollier chart shows that the pressure is about half away between 0.2
and 0.5 bar. The following statements find the pressure:

p0=1.0
T0=120;
T0K=T0+273.15;
s0=XSteam(’s_pT’,p0,T0);
xw=0.96;
p1=fzero(@(p1) xw-XSteam(’x_ps’,p1,s0), [0.2,0.5])

Alternatively, a call to the function wilsonline, shown below (and a much less
sophisticated piece of code than fzero) accomplishes the same thing. Although the
function fzero is designed to be robust, it is a black box to the user. The function
wilsonline that uses the bisection method to find the pressure is robust and takes only
11 bisections to reach a 5 significant figure accuracy and executes in about 2 ms on a 2017
vintage computer.

function [pc, xc]=wilsonline(s0)
xw=0.96;
%Bisection for finding p where xw=0.96;
pl=0.2; pr=0.5; tol=0.00001;
n=1; nmax=30;
while n < nmax

pc=0.5*(pl+pr);
xl=XSteam(’x_ps’,pl,s0);
xr=XSteam(’x_ps’,pr,s0);
xc=XSteam(’x_ps’,pc,s0);
if abs(xc-xw) < tol

break
end
if (xc-xw)*(xr-xw) > 0

pr = pc;
xr = xc;

else
pl = pc;
xl = xc;

end
n=n+1;

end
xc=0.5*(xr+xl);
pc=0.5*(pr+pl);
end

The pressure ahead of the shock is p1 = 0.3265 bar, and the Mach number is M1 =
1.402. In Figure 4.11, two solution branches are shown. On the left is an expansion
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Figure 4.11 Two solution branches for a condensation shock.

wave with p2 < p1. The maximum Mach number on this branch is M1 = 0.6824, and
the temperature at this condition is 64.7 ◦C. On the right, a compression shock, with
the minimum Mach number M1 = 1.2754 and T2 = 80.1 ◦C. Between these two Mach
numbers, there are no real solutions, for the velocity becomes a complex number.
Both waves can also be split into two parts, the upper part for the expansion being
a weak expansion and the lower part a strong expansion. Similarly, the upper part of
the compression shock on the right is a strong compression and the lower part a weak
compression. The temperature range for real solutions and with y2 > 0 and Δs > 0 was
found by trial to be between 54.8 and 71.09 ◦C for the expansion waves, and for the
compression shocks, it was from 73.5 to 90.8 ◦C. The upper value was chosen such that
it is just below the value at which the line of constant entropy crosses the saturation line.
It turn out that this is slightly too high since the entropy increase across the shock takes
the solution to the superheated steam region. By trial, the value T2 = 88.7 ◦C keeps the
solution under the vapor dome. Hence, this was taken to be another constraint on the range
of possible values of T2.

Another way to represent the results is shown in Figure 4.12. For weak compressions,
the equilibrium Mach number Me2 > 1 after the shock. Temperature was changed in
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Figure 4.12 Two branches of the solution in the M1, Me2 plane.
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Figure 4.13 Identification of the structure of condensation expansions and compressions.

increments of 0.1 ◦C, and the distance between the points is larger along the strong
compression and strong expansion segments.

In Figure 4.13 are shown the same solution branches in a plot of ρ1/ρ2 on the abscissa and
p2/p1 on the ordinate. The gap in which no solution is possible corresponds to previously
mentioned situation in which the velocity after the shock becomes a complex number.
Again, only the solutions in which y2 is positive and there is an increase in entropy are
plotted. Thus, for strong expansions as the upstream Mach number is lowered, the entropy
change becomes negative, as seen from Figure 4.14. This solution branch is rejected as
not being physically meaningful. Weak expansions are also ruled out in an expanding
supersonic flow. Strong compressions have not been seen in laboratory experiments, but
weak compressions have. In fact, weak shocks are the most likely outcome in a supersonic
nozzle flow.

The entropy change across a condensation shock can be calculated by noting that s1 =
s0, and thus,

s2 − s1 = sf2 + (1 − y2)sfg2 − s0
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Figure 4.14 Entropy increase across a condensation front.
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with saturation values calculated at the saturation pressure p2. The entropy increase across
the condensation fronts is plotted in Figure 4.14.

The properties of the supersaturated state before the shock, and the equilibrium state
with x2 = 0.974 after it are:

M1 = 1.402 p1 = 0.326 bar T1 = 30.5 ◦C V1 = 598 m/s s1 = 7.468 kJ/(kg K)
Me2 = 1.290 p2 = 0.402 bar T2 = 76.0 ◦C V2 = 544 m/s s2 = 7.495 kJ/(kg K)

EXERCISES

4.1 Find the equivalent adiabatic index for saturated steam at pressure p = 0.6 bar and
degree of wetness y = 0.1. [Ans: 1.132]

4.2 Using the conservation and relaxation equations, show that for a completely frozen
flow the speed of sound is given by c2

fz = γRvTv.

4.3 Using the conservation and relaxation equations, show that after the droplet temper-
ature relaxation are complete, but complete thermal relaxation has not taken place; in this
zone, the speed of sound is given by

c2
e1 =

(1 − y)γRvTv

1 +
y

1 − y

γci

Rv

(
RvTs

hfg

)2

4.4 For waves of Type II, for which ce2u < Vvu < Ve1u, show that

dΔV

dx
+

[
1 − M 2

e2

1 − M 2
e1

]
ΔV

VvτI
= 0

4.5 For waves of Type III, for which ce1u < Vvu < Vfzu, show that

dΔTi

dx
+

[
1 − M 2

e1

1 − M 2
f

]
ΔTi

VvτD
= 0

4.6 Steam flow through a diffuser at the rate of ṁ = 0.17 kg/s. At a location where
diameter D1 = 3 cm, pressure is measured to be p1 = 1 bar, and quality is x1 = 0.9. (a).
Find the Mach number at this location. (b) Find the velocity at a location where the pressure
is p2 = 1.3 bar, by assuming that the diffuser efficiency is η = (h2s − h1)/(h2 − h1) =
0.97. (c) Find the Mach number Me2 and (d) the diameter D2 . Assume that the liquid and
vapor remain at phase equilibrium during the process. [Ans: (a) 0.881, (b) 225.2 m/s, (c)
0.533, (d) 3.41 cm]

4.7 Steam flows through a supersonic at the rate of ṁ = 0.08 kg/s. At a location where
diameter D1 = 2.5 cm, pressure is measured to be p1 = 0.9 bar, and quality is x1 = 0.92,
(a) find the Mach number at this location. (b) Find the velocity at a location where the
quality has reached pressure x2 = 0.85, by assuming isentropic flow. (c) Find the Mach
number Me2 and (d) the diameter D2. Assume that the liquid and vapor remain at phase
equilibrium during the process. [Ans: (a) 0.668, (b) 752.8 m/s, (c) 1.971, (d) 3.30 cm].
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4.8 Steam flows isentropically at a rate ṁ = 0.04 kg/s through a diffuser from the
inlet state at diameter d1 = 7.8 cm, p1 = 0.03 bar, and x1 = 0.985 and exits at the
pressure p2 = 0.047 bar. (a) Determine the value for the effective adiabatic index. (b) Find
the pressure at which all the liquid has evaporated from the stream. (c) Find the velocity
at the exit V2. (d) Find the Mach number at the exit. (e) Find the exit diameter of the
diffuser. [Ans: (a) 1.1096, (b) 0.0423 bar, (c) 132.6 m/s, (d) 0.333, and (e) 10.8 cm]

4.9 A shock develops in wet steam flow with a pressure ratio is p2/p1 = 2.5. The
pressure ahead of the shock is p1 = 0.35 bar, and the degree of wetness is y1 = 0.08.
(a) Find the approximate degree of wetness after the shock by calculating the effective
adiabatic index and using the normal shock relations. (b) Find the degree of wetness after
the shock by the method discussed in the text, with γ = 1.32, and compare it to that
calculated in the previous part. [Ans: (a) y2 = 0.0257, (b) y2 = 0.0312]

4.10 Develop the Eq. (4.119) in the text.

4.11 Steam enters a nozzle from a steam chest at saturated vapor state at pressure
p0 = 0.8 bar. It expands isentropically, with γ = 1.32 through a steam nozzle. Find the
degree of supersaturation when it crosses the Wilson line at x = 0.96. [Ans: 7.46.]

4.12 Steam with γ = 1.3 flows in a nozzle from the stagnation state in a steam
chest at p0 = 1.5 bar and T0 = 125 ◦C. Write a MATLAB or GNU/OCTAVE function that
calculates the quality of steam when it has been undercooled by 15, 20, and 25 ◦C. [Ans:
0.9560, 0.9415, and 0.9271]
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CHAPTER 5

PRINCIPLES OF TURBOMACHINE
ANALYSIS

In this chapter, the fundamental equation for turbomachinery analysis is developed from
the moment of momentum balance. It leads to an expression for the shaft torque in terms
of the difference at which the rate of angular momentum of the working fluid leaves and
enters a properly chosen control volume. Power delivered (or absorbed) by a turbomachine
is then simply the product of the torque and the angular speed of the shaft. This equation
is called the Euler equation of turbomachinery.

In the earlier chapters, power transferred to, or from, a turbomachine was expressed
as the product of mass flow rate and a change in stagnation enthalpy. By equating the
expression for work from the Euler equation of turbomachinery to the change in stagnation
enthalpy, concepts from fluid mechanics become linked to thermodynamics. This link is
central in turbomachinery performance analysis.

In applying the momentum of momentum balance to a stationary control volume,
angular momentum is usually expressed in terms of absolute velocity of the fluid. In the
analysis of the rotating blades, velocity relative to the rotor is also needed. From it, together
with the absolute velocity and the blade velocity, one can construct a velocity triangle.
These velocity triangles are discussed first in this chapter. They are followed by the
development of the Euler equation for turbomachinery. After that, the work delivered, or
absorbed, is recast in an alternative form, and a concept of degree of reaction is developed.
One measure of the effectiveness at which work transfer takes place in a turbomachine
is called utilization. Although this concept is not extensively used today, it is introduced,
and its relationship to energy transfer and reaction is developed. The final section is on the

177Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e

http://www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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theory of scaling and similitude, both of which are useful in determining the performance
of one turbomachine from the known performance of a similar one.

5.1 VELOCITY TRIANGLES

The velocity vector of a fluid particle that flows through a turbomachine is expressed most
conveniently by its components in cylindrical coordinates, with the z-coordinate as the
axis of rotation of the machine. These components are shown in Figure 5.1.

Vr

Vθ

Vz

V

V
m

z

r

θ

eθ

er

ez

Meridional plane

Figure 5.1 Meridional and tangential components of absolute velocity.

The vector sum of radial and axial components

Vm = Vrer + Vzez (5.1)

is called the meridional velocity, for it lies on the meridional plane, which is a radial plane
containing the axis of rotation. For axial machines, the radial component of velocity is small
and can be ignored, making the meridional velocity equal to the axial velocity. Similarly,
at the outlet of a centrifugal compressor, or a radial pump, the axial velocity vanishes, and
the meridional velocity then equals the radial velocity.

The absolute velocity V is the sum of the relative velocity W and the velocity of the
frame, or blade velocity U. They are related by the vector equation

V = W + U (5.2)

By the usual construction, this gives a velocity triangle, shown in Figure 5.2.
The angle that the absolute velocity makes with the meridional direction is denoted

by α, and the angle that the relative velocity makes with this direction is β. These are
called the absolute and relative flow angles. Since the flow tends to follow the blade, the
relative velocity leaving the rotor is at the angle β, which is close to the actual blade angle
designated by the symbol χ.

From Eq. (5.2) and Figure 5.2, it is seen that the meridional components give

Vm = Wm (5.3)
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V

U

W

V
m

V
u

W
u

α

β

Figure 5.2 A typical velocity triangle.

and the tangential components yield the equation

Vu = Wu + U (5.4)

These tangential components are related to the meridional velocity by

Vu = Vm tan α Wu = Wm tan β (5.5)

It is convenient to denote the tangential component by the subscript u and to take it positive
when it is in the direction of the blade motion. The meridional components are associated
with the rate at which fluid flows through the machine; the tangential components with the
blade forces.

The tangential and meridional velocity components can be also written as

V sin α = U + W sin β (5.6)

V cos α = W cos β (5.7)

Squaring each of these and adding gives

V 2 = U 2 + W 2 + 2UW sinβ (5.8)

This is the law of cosines in a slightly disguised form. The purpose to carry out this kind
of manipulation was to eliminate the angle α from the final equation.

Eliminating next the velocity V by multiplying Eq. (5.6) by cos α and Eq. (5.7) by sinα
and subtracting them gives

U cos α = W sin(α − β) or
cos α

W
=

sin(α − β)
U

(5.9)

This is essentially the law of sines.

� EXAMPLE 5.1

Consider the velocity diagram for an axial flow machine, shown in Figure 5.3.
The magnitude of the absolute velocity is V1 = 240 m/s, and the flow angle is
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V
1

U

W
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Vx1

V
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α
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β
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Figure 5.3 A velocity diagram illustrating negative flow angles.

α1 = −20◦. The blade speed is U = 300 m/s. Find the magnitude of the relative
velocity and its flow angle.

Solution: The axial velocity is given by

Vx1 = V1 cos α1 = 240 cos(−20◦) = 225.5 m/s

and Wx1 = Vx1. The tangential components of the absolute and relative velocities
are calculated as

Vu1 = V1 sinα1 = 240 sin(−20◦) = −82.1 m/s

Wu1 = Vu1 − U = −82.1 − 300 = −382.1 m/s

Hence, the magnitude of the relative velocity is

W1 =
√

W 2
x1 + W 2

u1 =
√

225.52 + 382.22 = 443.7 m/s

and the flow angle of the relative velocity becomes

β1 = tan−1
(

Wu1

Wx1

)
= tan−1

(
− 382.1

225.5

)
= −59.4◦

�

The foregoing example illustrates the sign convention for angles. Positive angles are
measured from the meridional direction, and they increase in counterclockwise direction.
Negative angles become more negative in the clockwise direction. This book will strictly
adhere to this convention and doing so makes computer calculations easy to implement.
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5.2 MOMENT OF MOMENTUM BALANCE

Consider a flow through a pump, shown in the schematic diagram in Figure 5.4. To apply
the moment of momentum equation, a control volume is chosen to include both the pump
impeller and the fluid. The velocity vector is written in cylindrical coordinates as

V = Vrer + Vθeθ + Vzez (5.10)

in terms of the unit vectors er, eθ, and ez . A working equation for the angular momentum
balance for a uniform steady flow is

ṁ(r2 × V2 − r1 × V1) = Tm + Tf (5.11)

On the right side, Tm is the torque the shaft exerts on the impeller, and Tf is a contribution
from fluid pressure and viscous stresses. The z component of this equation is obtained by
taking its scalar product with ez . Thus,

ṁ ez · (r2 × V2 − r1 × V1) = ez · Tm = T

Owing to symmetry about the axis of rotation, pressure forces do not contribute to the
axial torque, as they have radial and axial components only. Viscous forces act in the
direction opposite to rotation and increase the required torque in a shaft of a compressor
and decrease it in a turbine. These are neglected, or T is taken to be the net torque after
they have been subtracted, or added. Rotation is taken to be clockwise when the pump is
viewed in the flow direction. Hence, the rotation vector is Ω = Ωez . In order for the shaft
to rotate the pump impeller in this direction, torque must be given by Tm = ez T , and thus
ez · Tm = T .

er

ezeθ

V
m1

V
m2

V
m

Vr

Vz

Casing

Shaft

Hub

Blade

1

2

CL

Figure 5.4 A schematic of a pump and a flow through it.
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In cylindrical coordinates, the radius vector is r = rer + zez , so that

r × V =

∣∣∣∣∣∣
er eθ ez

r 0 z
Vr Vθ Vz

∣∣∣∣∣∣ = −erzVθ − eθ(rVz − zVr) + ezrVθ

and
ez · (r × V) = rVθ

Hence, the angular momentum equation becomes

T = ṁ(r2Vθ2 − r1Vθ1)

5.3 ENERGY TRANSFER IN TURBOMACHINES

The power delivered to a turbomachine is given by

Ẇ = T ·Ω = TΩ = ṁΩ(r2Vθ2 − r1Vθ1)

The blade speeds are U1 = r1Ω and U2 = r2Ω, and r1 and r2 are the mean radii at the inlet
and outlet. Dividing this equation by the mass flow rate gives an expression for the work
done per unit of mass, i.e. specific work

w = U2Vθ2 − U1Vθ1 (5.12)

This is the Euler equation for turbomachinery.
As was already done in Figure 5.2, it is common to relabel the various terms and call the

axial component of velocity Vx and denote the component of the velocity in the direction
of the blade motion, as Vu. In this notation, there is no need to keep track of whether the
rotor moves in clockwise or counterclockwise direction. The sense of rotation, of course,
depends also on whether a rotor is viewed from the upstream or downstream direction.
With these changes in notation, the Euler equation for turbomachinery may be written as

w = U2Vu2 − U1Vu1 (5.13)

This gives the work done by the shaft on the rotor, and it is thus applicable to a compressor
and a pump. For turbines, however, power is delivered by the machine, and the sign of
the work would need to be changed. Since it is generally known whether the machine
is power-absorbing or power-producing, work transfer will be taken as positive, and the
Euler turbine equation is written as

w = U2Vu2 − U3Vu3 (5.14)

For turbines, since a stage consists of a stator followed by a rotor, the inlet to the stator is
designated as location 1, the inlet to the rotor is location 2, and the exit from the rotor is
location 3.

For an axial turbomachine, U2 = U3 = U . Work delivered by a turbine stage is then
given by

w = U(Vu2 − Vu3)
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� EXAMPLE 5.2

The shaft of small turbine turns at 20000 rpm, and the blade speed is U = 250 m/s.
The axial velocity leaving the stator is Vx2 = 175 m/s. The angle at which the
absolute velocity leaves the stator blades is α2 = 67◦, the flow angle of the relative
velocity leaving the rotor is β3 = −60◦, and the absolute velocity leaves the rotor at
the angle α3 = −20◦. These are shown in Figure 5.5. Find (a) the mean radius of
the blades, (b) the angle of the relative velocity entering the rotor, (c) the magnitude
of the axial velocity leaving the rotor, (d) the magnitude of the absolute velocity
leaving the stator, and (e) the specific work delivered by the stage.

V
1

Rotor

Stator W
3

Uβ
3
= −60°

α
3 
= −20°α

1 
= −20°

W
2

U

α
2
 = 67°

β
2

V
2

U

V
3

Figure 5.5 An axial turbine stage.

Solution: (a) The mean radius of the rotor is

r =
U

Ω
=

250 · 60
20000 · 2π

= 11.94 cm

(b) With the axial velocity and flow angle known, the tangential component of the
velocity is

Vu2 = Vx2 tan α2 = 175 tan(67◦) = 412.3 m/s

and therefore,

Wu2 = Vu2 − U = 412.3 − 250 = 162.3 m/s

Since Wx2 = Vx2,

β2 = tan−1
(

Wu2

Wx2

)
= tan−1

(
162.3
175

)
= 42.8◦

(c) At the exit of the rotor,

Vu3 = Wu3 + U Vx3 tan α3 = Vx3 tan β3 + U

so that

Vx3 =
U

tan α3 − tan β3
=

250
tan(−20◦) − tan(−60◦)

= 182.7 m/s

The absolute velocity is obtained by first calculating the tangential component

Vu3 = Vx3 tan α3 = 182.7 tan(−20◦) = −66.5 m/s
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and then,
V3 =

√
V 2

x3 + V 2
u3 =

√
182.72 + 66.52 = 194.4 m/s

(d) Specific work done is w = U(Vu2 − Vu3) = 250(412.3 + 66.5) = 119.7 kJ/kg.
�

In this example, the axial velocity increased slightly across the stage. As the flow
expands through the turbine, its density decreases. Hence, the cross-sectional area would
need to be adjusted to account for the increase in velocity and a decrease in density.

Usually, axial turbines are designed such that the axial velocity is constant and
furthermore that the inlet velocity is equal to the velocity at the exit of the stage. Such a
stage is called a normal stage. For a repeating stage, in addition, the inlet and exit angles
of the absolute velocity for the stage are equal. Such a design allows for the blade shapes
to be similar. However, for a normal stage α1 need not be equal to α3, as long as V1 = V3.
This assumption simplifies the subsequent theory. For a single-stage turbine, the inlet is
likely to be axial, but as the previous example showed, neither the angle α1 nor the velocity
V1 were used in the analysis. They are needed if the cross-sectional area at the inlet to the
stage is to be determined.

The work done by a stage is

w = U(Vu2 − Vu3) = UVx(tan α2 − tan α3)

when the axial velocity is constant. Dividing by U 2 gives

w

U 2 =
Vx

U
(tan α2 − tan α3)

Defining the blade-loading coefficient and flow coefficient as

ψ =
w

U 2 φ =
Vx

U
(5.15)

gives a nondimensional version of this equation:

ψ = φ(tan α2 − tan α3)

The blade-loading coefficient is an appropriate term for ψ because it is the blade force times
the blade velocity that gives the rate at which work is delivered. Also, the flow coefficient
φ is a ratio of the axial velocity to blade velocity and is thus a measure of the flow rate
through the machine. Much use will be made of these nondimensional parameters, for
they are independent of the size of machine, and their values for best designs have been
established over many years of practice.

As another example in which the Euler equation for turbomachinery is used, an analysis
of a centrifugal pump is considered next.

� EXAMPLE 5.3

Water at 20 ◦C leaves a pump impeller with an absolute velocity of 13.94 m/s at
the angle 72.1◦. The blade speed at the exit is 25.17 m/s, and the shaft speed is
3450 rpm. The absolute velocity is axial at the inlet. The flow rate is 18.0 L/s.
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Figure 5.6 Pump exit and its velocity diagram.

Find (a) the magnitude of the relative velocity and its flow angle β2, (b) the power
required, and (c) the outlet blade radius and the blade height assuming that the open
area at the periphery is 93% of the total area. The pump is shown in Figure 5.6.

Solution: (a) The tangential component of the absolute velocity at the exit is given by

Vu2 = V2 sin α2 = 13.94 sin(72.1◦) = 13.26 m/s

and its meridional component, which is radial here, is

Vr2 = V2 cos α2 = 13.94 cos(72.1◦) = 4.29 m/s

The tangential component of the relative velocity is determined as

Wu2 = Vu2 − U2 = 13.26 − 25.17 = −11.91 m/s

Since the radial component of the relative velocity is Wr2 = Vr2 = 4.29 m/s, the
angle of the relative flow can be calculated as

β2 = tan−1
(

Wu2

Wr2

)
= tan−1

(
− 11.91

4.29

)
= −70.2◦

The magnitude of the relative velocity is then

W2 =
√

W 2
r2 + W 2

u2 =
√

4.292 + 11.912 = 12.65 m/s

A velocity triangle can now be completed. The flow angle of the relative velocity
is approximately equal to the blade angle χ, and in this pump, the impeller blades
curve backward; that is they are curved in the direction opposite to blade rotation.
(b) Since the flow is axial at the inlet, Vu1 = 0, and the work done is

w = U2Vu2 = 25.17 · 13.26 = 333.88 J/kg
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With density of water is close to ρ = 1000 kg/m3, the mass flow rate is

ṁ = ρQ = 1000 · 0.018 = 18.0 kg/s

and the power required is Ẇ = ṁw = 18.0 · 333.88 = 6.0 kW.
(c) The outlet radius is

r2 =
U2

Ω
=

25.17 · 30
3450 · π = 6.97 cm

With the flow rate Q = 0.018 m3/s, the outlet area is

A2 =
Q

Vr2
=

0.018
4.29

= 42.0 cm2

The blade height is then

b2 =
A2

0.93 · 2π · r2
=

42.0
0.93 · 2π · 6.97

= 1.03 cm

The blade-loading coefficient and flow coefficient are defined in terms of the tip
speed of the blade at the exit:

ψ =
w

U 2
2

=
333.88
25.17 2 = 0.527 φ =

Vr2

U2
=

4.29
25.17

= 0.170

�

5.3.1 Trothalpy and specific work in terms of velocities

Since no work is done in the stator, total enthalpy remains constant across it. In this section,
an analogous quantity to the total enthalpy is developed for the rotor. Specifically, consider
a mixed-flow compressor in which the meridional velocity at the inlet is not completely
axial and at the exit from the blades not completely radial. The work done by the rotor
blades is

w = h02 − h01 = U2Vu2 − U1Vu1 (5.16)

When this equation is written as

h01 − U1Vu1 = h02 − U2Vu2

the quantity
I = h0 − UVu

is seen to be constant across the impeller. It can also be written as

I = h +
1
2
V 2 − UVu = h +

1
2
V 2

m +
1
2
V 2

u − UVu

Adding and subtracting U 2/2 to complete the square gives

I = h +
1
2
V 2

m +
1
2
(Vu − U)2 − 1

2
U 2 = h +

1
2
V 2

m +
1
2
W 2

u − 1
2
U 2
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or since Vm = Wm, and W 2 = W 2
m + W 2

u, it follows that

I = h1 +
1
2
W 2

1 − 1
2
U 2

1 = h2 +
1
2
W 2

2 − 1
2
U 2

2 (5.17)

is constant across the impeller. The quantity I is called trothalpy.1

Solving Eq. (5.17) for h1 and h2 and substituting them into the equation for work

w = h02 − h01 = h2 +
1
2
V 2

2 − h1 −
1
2
V 2

1 (5.18)

gives, after I has been canceled, the following equation:

w =
1
2
V 2

2 − 1
2
W 2

2 +
1
2
U 2

2 −
(

1
2
V 2

1 − 1
2
W 2

1 +
1
2
U 2

1

)

Rearranging gives the form

w =
1
2
(V 2

2 − V 2
1 ) +

1
2
(U 2

2 − U 2
1 ) +

1
2
(W 2

1 − W 2
2 ) (5.19)

Equating this and Eq. (5.18) leads to

h2 − h1 =
1
2
(U 2

2 − U 2
1 ) +

1
2
(W 2

1 − W 2
2 ) (5.20)

From Eq. (5.18), it is seen that the work done in a centrifugal pump increases the kinetic
energy and the static enthalpy. Equation (5.20) shows first that the static enthalpy increase
involves moving the fluid to a larger radius, resulting in increased pressure. The second
term causes an increase in pressure when the relative velocity is reduced; that is diffusion
with W2 < W1 leads to pressure recovery. Pressure is increased further in the volute of a
centrifugal pump where diffusion of the absolute velocity takes place. Since this diffusion
is against an adverse pressure gradient, the kinetic energy at the exit of the impeller cannot
be so large that its deceleration through the volute causes separation of boundary layers
and a great increase in irreversibility. The use of these concepts is illustrated in the next
example.

� EXAMPLE 5.4

A small centrifugal pump with an impeller radius r2 = 4.5 cm operates at 3450 rpm.
Blades at the exit are curved back at an angle β2 = −65◦. Radial velocity at the exit
is Vr2 = Wr2 = 3.0 m/s. Flow at the inlet is axial with velocity V1 = 4.13 m/s. The
mean radius of the impeller at the inlet is r1 = 2.8 cm. (a) Find the work done using
Eq. (5.16). (b) Calculate the kinetic energy change of the relative velocity, absolute
velocity, and that associated with the change in the blade speed, and calculate work
done using Eq. (5.19). Confirm that the two methods give the same answer.

1This quantity is commonly called rothalpy, a compound word combining the terms rotation and enthalpy. Its
construction does not conform to the established rules for formation of new words in the English language,
namely, that the roots of the new word originate from the same language. The word trothalpy satisfies this
requirement as trohos is the Greek root for wheel and enthalpy is to put heat in, whereas rotation is derived from
Latin rotare.
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Solution: (a) Blade speed at the exit is

U2 = r2Ω =
0.045 · 3450 · 2π

60
= 16.26 m/s

Since Wr2 = Vr2, the tangential component of the relative velocity is

Wu2 = Vr2 tan β2 = 3.0 tan(−65◦) = −6.43 m/s

Tangential component of the absolute velocity is then

Vu2 = U2 + Wu2 = 16.26 − 6.43 = 9.83 m/s

Since the flow at the inlet is axial Vu1 = 0, the inlet does not contribute to the work
done as calculated by the Euler equation for turbomachinery, which reduces to

w = U2Vu2 = 16.26 · 9.83 = 159.7 J/kg

(b) Magnitudes of the relative and absolute velocities at the exit are given by

W2 =
√

W 2
u2 + W 2

r2 =
√

6.432 + 3.02 = 7.10 m/s

V2 =
√

V 2
u2 + V 2

r2 =
√

9.832 + 3.02 = 10.27 m/s

Since the flow is axial at the inlet. Vx1 = V1 = 4.13 m/s. The blade speed at the
inlet is

U1 = r1Ω =
0.028 · 3450 π

30
= 10.11 m/s

The tangential component of the relative velocity at the inlet is given by

Wu1 = Vu1 − U1 = 0 − 10.11 = −10.11 m/s

and therefore, the magnitude of the relative velocity is

W1 =
√

W 2
u1 + W 2

r1 =
√

10.112 + 4.132 = 10.92 m/s

The kinetic energy changes are

1
2
(V 2

2 − V 2
1 ) =

1
2
(10.272 − 4.132) = 44.21 m2/s2 = 44.21 J/kg

1
2
(U 2

2 − U 2
1 ) =

1
2
(16.262 − 10.112) = 80.99 m2/s2 = 80.99 J/kg

1
2
(W 2

1 − W 2
2 ) =

1
2
(10.932 − 7.102) = 34.51 m2/s2 = 34.51 J/kg

Their sum checks with the direct calculation of the work done. �

Since in the previous example there was no swirl at the inlet, Vu1 = 0, the work done is
independent of the inlet conditions. This means that when work is represented in terms of
kinetic energy changes, terms involving inlet velocities must cancel. Velocity triangle at
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the inlet is a right triangle with W1 as its hypothenuse, so that V 2
1 + U 2

1 = W 2
1 . Hence, in

this case,
w =

1
2
(V 2

2 + U 2
2 − W 2

2 )

and using the law of cosines gives w = U2Vu2, as it should.
When the analysis in this subsection is carried out for a turbine, the results are

w =
1
2
(V 2

2 − V 2
3 ) +

1
2
(U 2

2 − U 2
3 ) +

1
2
(W 2

3 − W 2
2 ) (5.21)

and
h2 − h3 =

1
2
(U 2

2 − U 2
3 ) +

1
2
(W 2

3 − W 2
2 ) (5.22)

These are similar to Eqs. (5.19) and (5.20) and differ only by subscript 3 replacing 1.

5.3.2 Degree of reaction

Degree of reaction, or reaction for short, is defined as the change in static enthalpy across
the rotor divided by the static enthalpy change across the entire stage. For a turbine, this is
given as

R =
h2 − h3

h1 − h3

Work delivered by a rotor in a turbine is

w = h02 − h03 = h2 +
1
2
V 2

2 − h3 −
1
2
V 2

3

Since for nozzles (or stator) h01 = h02, work can also be written as

w = h1 − h3 +
1
2
(V 2

1 − V 2
3 )

Solving the last two equations for static enthalpy differences and substituting them into the
definition of reaction gives

R =
1
2(V

2
3 − V 2

2 ) + w
1
2 (V

2
3 − V 2

1 ) + w
(5.23)

The work delivered by a turbine is given in Eq. (5.21). Substituting it to Eq. (5.23) and
simplifying leads to

R =
U 2

2 − U 2
3 + W 2

3 − W 2
2

V 2
2 − V 2

1 + U 2
2 − U 2

3 + W 2
3 − W 2

2
turbine (5.24)

In a flow in which V1 = V2, reaction R = 1. A lawn sprinkler is such a pure reaction
machine, for all the pressure drop takes place in the sprinkler arms. They turn as a reaction
to the momentum leaving them.

The steam turbine shown in Figure 3.8 is an axial machine in which U2 = U3, and
its reaction is zero when W2 = W3. For the rotor buckets shown, the blade angles are
equal but opposite in sign and by adjustment of the flow area to account for the increase
in specific volume, the magnitude of the relative velocity can be made constant across
the rotor. Since the trothalpy is also constant across the rotor, enthalpy change across it
vanishes, giving R = 0.
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� EXAMPLE 5.5

Consider an axial turbine stage with blade speed U = 350 m/s and axial velocity
Vx = 280 m/s. Flow enters the rotor at angle α2 = 60◦. It leaves the rotor at angle
α3 = −30◦. Assume a stage for which α1 = α3 and a constant axial velocity. Find
the velocities and the degree of reaction.

Solution: Since axial velocity is constant and the flow angles are equal at both the
entrance and exit of the stage, the velocity diagrams at the inlet of the stator and the
exit of the rotor are identical. From a velocity triangle, such as shown in Figure 5.2,
the tangential velocities are:

Vu2 = Vx tan α2 = 280.0 tan(60◦) = 484.97 m/s

Vu3 = Vx tan α1 = 280.0 tan(−30◦) = −161.66 m/s

and work done is

w = U(Vu2 − Vu3) = 350(484.97 + 161.66) = 226.32 kJ/kg

Tangential components of the relative velocities are

Wu2 = Vu2 − U = 484.97 − 350.00 = 134.97 m/s

Wu3 = Vu3 − U = −161.66 − 350.00 = −511.66 m/s

Hence,

V2 =
√

V 2
u2 + V 2

x =
√

484.972 + 280.02 = 560.00 m/s

V3 =
√

V 2
u3 + V 2

x =
√

161.662 + 280.02 = 323.32 m/s

W2 =
√

W 2
u2 + W 2

x =
√

134.972 + 280.02 = 310.83 m/s

W3 =
√

W 2
u3 + W 2

x =
√

511.662 + 280.02 = 583.26 m/s

Since U2 = U3, the expression for reaction is

R =
W 2

3 − W 2
2

2w
=

583.262 − 310.832

2 · 226320
= 0.538

A reaction ratio close to one-half is often used to make the enthalpy drop, and thus
also the pressure drop, in the stator and the rotor nearly equal. �

The analysis of a compressor follows similar lines, and the resulting equation for the
reaction is

R =
h2 − h1

h3 − h1

which can be cast into the form

R =
U 2

2 − U 2
1 + W 2

1 − W 2
2

V 2
2 − V 2

3 + U 2
2 − U 2

1 + W 2
1 − W 2

2
compressor (5.25)
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Since an enthalpy change is proportional to a pressure change, the degree of reaction can be
viewed in terms of pressure changes. In compressors, pressure increases downstream, and
in order to keep the adverse pressure gradient small to prevent boundary layer separation,
the value of reaction cannot be very large.

5.4 UTILIZATION

A measure of how effectively a turbine rotor converts the available kinetic energy at its
inlet to work is called utilization, and a utilization factor is defined as the ratio

ε =
w

w + 1
2V

2
3

(5.26)

The denominator is the available energy consisting of what is converted to work and the
kinetic energy that leaves the turbine. This expression for utilization equals unity if the
exit kinetic energy is negligible. But the exit kinetic energy cannot vanish completely
because the flow has to leave the turbine. Hence, utilization factor is always less than one.
Maximum utilization is reached by turning the flow so much that the swirl component
vanishes; i.e. for the best utilization, the exit velocity vector should lie on the meridional
plane.

For a turbine, when Eq. (5.21) is substituted into Eq. (5.26), the expression for utilization,
in terms of velocities alone, becomes

ε =
V 2

2 − V 2
3 + U 2

2 − U 2
3 + W 2

3 − W 2
2

V 2
2 + U 2

2 − U 2
3 + W 2

3 − W 2
2

(5.27)

Next, from Eq. (5.23), it is easy to see that the work delivered is also

w = −V 2
3

2
+

1
2

(
V 2

2 − RV 2
1

1 − R

)
(5.28)

Substituting this into Eq. (5.26) gives

ε =
V 2

2 − RV 2
1 − (1 − R)V 2

3

V 2
2 − RV 2

1
(5.29)

In the situation in which R = 1 and therefore also V2 = V1, this expression becomes
indeterminate. It is valid for other values of R.

In a usual design of a multistage axial turbine, the exit velocity triangle is identical to
the velocity triangle at the inlet of a stage. Under this condition, V1 = V3 and α1 = α3, and
the utilization factor simplifies to

ε =
V 2

2 − V 2
3

V 2
2 − RV 2

3
(5.30)

The expression for work reduces to

w =
V 2

2 − V 2
3

2(1 − R)
(5.31)
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With velocities expressed in terms of their tangential and axial components, this becomes

w =
V 2

x2 + V 2
u2 − (V 2

x3 + V 2
u3)

2(1 − R)

or

w =
V 2

2 sin2α2 + V 2
x2 − (V 2

3 sin2α3 + V 2
x3)

2(1 − R)
(5.32)

At maximum utilization, α3 = 0, and the work is w = UVu2. Equating this to the work
given in Eq. (5.32) leads to the equality

UV2 sin α2 =
V 2

2 sin2α2 + V 2
x2 − V 2

x3

2(1 − R)

from which follows the relation

U

V2
=

(V 2
x2 − V 2

x3)/V 2
2 + sin2α2

2(1 − R) sinα2
(5.33)

The left-hand side (LHS) is a speed ratio. It is denoted by λ = U/V2. Since Vx2/V2 =
cos α2, this reduces to

λ =
1 − V 2

x3/V 2
2

2(1 − R) sin α2
(5.34)

from which the ratio
V 2

x3

V 2
2

= 1 − 2(1 − R)λ sinα2 (5.35)

is obtained. For maximum utilization, V3 = Vx3, and solving Eq. (5.30) for this ratio gives

V 2
x3

V 2
2

=
1 − εm

1 − εmR

Here, the subscript m designates the condition of maximum utilization. Equating the last
two expressions and solving for εm gives

εm =
2λ sin α2

1 + 2Rλ sinα2
(5.36)

If a stage is designed such that Vx3 = Vx2, then the speed ratio in Eq. (5.34) may be written
as follows:

λ =
1 − V 2

x2/V 2
2

2(1 − R) sinα2
=

sin α2

2(1 − R)
(5.37)

Substituting this into Eq. (5.36) and simplifying gives

εm =
sin2α2

1 − R cos2α2
(5.38)

This is shown in Figure 5.7.
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Figure 5.7 Maximum utilization factor for various degrees of reaction as a function of the nozzle
angle.

It was mentioned earlier that a rotary lawn sprinkler is a pure reaction machine with
R = 1. Its utilization is therefore unity for all nozzle angles. Inspection of Figure 5.7, as
well as Eq. (5.38), shows that maximum utilization factor increases from zero to unity,
when the nozzle angle α2 increases from zero to 90◦. Hence, large nozzle angles give high
utilization factors. Typically, the first stage of a steam turbine has R = 0, with a nozzle
angle in the range from 65◦ to 78◦.

Many turbines are designed with a 50% stage reaction. For a normal stage with R = 1/2,
it turns out that β3 = −α2 and α3 = −β2 and also that V 2

3 = W 2
2 (see Exercise 5.5). Work

delivered by a 50% reaction stage is

w = U(Vu2 − Vu3) = U(Vu2 − Vx tan α3) = U(Vu2 + Vx tan β2)

or
w = U(Vu2 + Wu2) = U(Vu2 + Vu2 − U) = U(2V2 sin α2 − U)

The quantity w + V 2
3 /2 becomes

w +
1
2
V 2

3 = w +
1
2
W 2

2 = w +
1
2
(V 2

x + (Vu2 − U)2)

Hence,

w +
1
2
V 2

3 = w +
1
2
(V 2

2 − 2UV2 sinα2 + U 2)

and the utilization factor from Eq. (5.26) is given as

ε =
2U(2V2 sin α2 − U)

2U(V2 sinα2 − U) + V 2
2 + U 2
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In nondimensional form, this is

ε =
2λ(2 sin α2 − λ)

2λ(sin α2 − λ) + 1 + λ2 (5.39)

Figure 5.8 gives a graphical representation of this relation. For high inflow angles, the
curves are quite flat near the maximum, but there are two values of λ that give the same
utilization. This means that the absolute value of the exit velocity is the same, but the exit
angles are equal but of opposite sign. The positive value of α3 has a larger blade speed,
and thus, the smaller value of λ.
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Figure 5.8 Utilization factor for an axial turbine with a 50% reaction stage.

By differentiating this with respect to λ shows that the maximum utilization factor is at
λ = sin α2, and the maximum utilization is given by

εm =
2 sin2α2

1 + sin2α2

which is consistent with Eq. (5.38).

� EXAMPLE 5.6

Combustion gases flow from a stator of an axial turbine with absolute speed
V2 = 500 m/s at angle α2 = 67◦. The relative velocity is at an angle β2 = 30◦ as it
enters the rotor and at β3 = −65◦ as it leaves the rotor. (a) Find the utilization factor
and (b) the reaction. Assume the axial velocity to be constant.

Solution: (a) The axial and tangential velocity components at the exit of the nozzle are

Vx = V2 cos α2 = 500 cos(67◦) = 195.37 m/s

Vu2 = V2 sin α2 = 500 sin(67◦) = 460.25 m/s
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Since Wx = Vx, the tangential component of the relative velocity is

Wu2 = Wx tan β2 = 195.37 tan(30◦) = 112.80 m/s

so that
W2 =

√
W 2

x + W 2
u2 =

√
195.372 + 112.802 = 225.59 m/s

Next, the blade speed is obtained as

U = Vu2 − Wu2 = 460.25 − 112.80 = 347.46 m/s

Since the axial velocity remains constant, at the rotor exit, the tangential component
of the relative velocity is obtained as

Wu3 = Wx tan β3 = 195.37 tan(−65◦) = −418.96 m/s

so that
W3 =

√
W 2

x + W 2
u3 =

√
195.372 + 418.962 = 462.27 m/s

Tangential component of the exit velocity is then obtained as

Vu3 = Wu3 + U = −418.96 + 347.46 = −71.50 m/s

At the exit,

tan α3 =
Vu3

Vx

= − 71.50
195.37

= −0.366 so that α3 = −20.1◦

and the absolute velocity at the exit is

V3 =
√

V 3
x + V 2

u3 =
√

195.372 + 71.502 = 208.04 m/s

To calculate the utilization factor using its definition Eq. (5.26), work is first
determined to be

w = U(Vu2 − Vu3) = 347.46 · (460.25 + 71.50) = 184763 J/kg

the utilization factor then becomes

ε =
w

w + 1
2V

2
3

=
184763

184763 + 0.5 · 208.042 = 0.895

(b) Reaction is obtained from

R =
W 2

3 − W 2
2

2w
=

462.272 − 225.592

2 · 184763
= 0.44

�

As a second example, consider an axial turbine stage in which both utilization factor and
reaction are given, together with the nozzle angle and efflux velocity from the nozzle.
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� EXAMPLE 5.7

An axial turbine operates at reaction R = 0.48 with utilization factor ε = 0.82.
Superheated steam leaves the nozzles at speed V2 = 430 m/s in the direction
α2 = 60.6◦. Find the (a) work delivered by the stage and (b) relative flow angles at
the inlet and exit of the rotor. Assume the axial velocity to be constant through the
stage.

Solution: Since the axial velocity is constant, the expression for the utilization factor
may be written as

ε =
V 2

2 − V 2
3

V 2
2 − RV 2

3
=

1 − cos2α2/cos2α3

1 − Rcos2α2/cos2α3

Solving for the ratio of cosines gives

cos α2

cos α3
=

√
1 − ε

1 − R ε
=

√
1 − 0.82

1 − 0.48 · 0.82
= 0.5448

Thus,

cos α3 =
cos(60.6◦)

0.5448
= 0.901 and α3 = ±25.7◦

There are two solutions. Which to choose? Inspection of Figure 5.8 shows that the
curves of constant nozzle angle are concave downward so that for given utilization
factor, there are two speed ratios that satisfy the flow conditions. It is clear, however,
that the speed ratio must be less than one, for blades cannot move faster than the
flow. The correct choice for the sign can be determined after calculations have been
carried out for both angles. Turbine blades typically turn the flow over 80◦, and on
this basis, the negative angle may be tentatively chosen as being the correct one.

Next, the velocity components at the inlet to the blades are calculated as follows:

Vx = V2 cos α2 = 430 cos(60.6◦) = 211.1 m/s

Vu2 = V2 sinα2 = 430 sin(60.6◦) = 374.6 m/s

With the axial velocity constant, the tangential component at the exit is

Vu3 = Vx tan α3 = 211.1 tan(−25.7◦) = −101.6 m/s

The magnitude of the absolute velocity at the exit is thus

V3 =
√

V 2
x + V 2

u3 = 234.3 m/s

(a) Work delivered by the turbine may now be calculated from

ε =
w

w + 1
2V

2
3

or w =
εV 2

3

2(1 − ε)
=

0.82 · 234.32

2(1 − 0.82)
= 125.015 kJ/kg

(b) The blade speed is obtained from the expression

w = U(Vu2 − Vu3) U =
w

Vu2 − Vu3
=

125015
374.6 + 101.6

= 262.5 m/s
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Thus, λ = U/V2 = 262.5/430 = 0.61, and since this number is less than one, the
negative angle gives the correct solution.

It is worthwhile also to calculate the extent by which the blades turn the relative
velocity. Tangential components of the relative velocity at the inlet and exit of the
blade row are

Wu2 = Vu2 − U = 374.6 − 262.5 = 112.1 m/s

Wu3 = Vu3 − U = −101.6 − 262.5 = −364.1 m/s

The flow angles of the relative velocity are finally

β2 = tan−1
(

Wu2

Wx

)
= tan−1

(
112.1
211.1

)
= 28.0◦

β3 = tan−1
(

Wu3

Wx

)
= tan−1

(
−364.1

211.1

)
= −59.9◦

and the amount of turning is 28◦ + 59.9◦ = 87.9◦.
For the positive exit flow angle, α3 = 25.7◦, and the tangential velocity becomes

Vu3 = Vx tan α3 = 211.1 tan(25.7◦) = 101.6 m/s

and therefore, the magnitude of V3 is the same as before; so is the work delivered
since the utilization factor is the same. The blade speed, however, is changed, as it is
now calculated to be

U =
w

Vu2 − Vu3
=

125015
374.6 − 101.6

= 457.9 m/s

Consequently, the blade speed ratio is λ = U/V2 = 457.9/430 = 1.06, a value
greater than one. Therefore, this angle is the incorrect one. Proceeding with the
calculation, the tangential velocities of the relative motion are as follows:

Wu2 = Vu2 − U = 374.6 − 457.9 = −83.3 m/s

Wu3 = Vu3 − U = 101.6 − 457.9 = −356.3 m/s

Calculating the flow angles of the relative velocity gives

β2 = tan−1
(

Wu2

Wx

)
= tan−1

(
− 83.3

211.1

)
= −21.6◦

β3 = tan−1
(

Wu3

Wx

)
= tan−1

(
−356.3

211.1

)
= −59.3◦

Now, the flow turns only −21.6◦ + 59.3◦ = 37.7◦. This small amount of turning
is typical of compressors, but not of turbines. Another way is to check the value
of blade-loading coefficient. It is ψ = w/U 2 = 1.82 for the negative angle. Blade-
loading coefficients for turbines in the range 1 < ψ < 2.5 give good designs.

The data may be such that both exit angles are reasonable, which simply means
that with the magnitude of the exit velocity fixed, the same utilization is obtained if
the tangential component leaves at a positive or negative angle of equal size. �
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The examples in this chapter have illustrated the principles of turbomachinery analysis.
Some of the thermodynamic properties that appear in the examples are extensive, and
some are intensive. Few are nondimensional, and of these, the ones encountered so far
include the blade-loading coefficient, flow coefficient or speed ratio, reaction, utilization
factor, and Mach number. In addition, flow angles of the absolute and relative velocities
are nondimensional quantities. Once the nondimensional parameters, including the flow
angles, have been chosen, a choice is made for the magnitude of the exit velocity from the
nozzles or the value of the axial velocity. The blade speed can then be calculated. In order
to complete the aerothermodynamic analysis, thermodynamic losses need to be estimated.
After this, all the intensive parameters will be known.

For this much of the analysis, there was no need to introduce any extensive variables.
But, for example, a rate at which a liquid needs to be pumped, or a power delivered
by a turbine, are typical design specifications. The size of the machine depends on
these extensive variables. Thus, the cross-sectional flow areas are calculated with these
specifications in mind together with the size of rotor or impeller. Their diameter and the
blade speed determine the rotational speed of the shaft. In large machines, rotational speeds
are low; in small machines, they are high. Undoubtedly, a design iteration needs to be
carried out so that the machine conforms to a class of successful past designs. This includes
also a stress analysis and vibrational characteristics of the blades, disks, and shafts. The
next section introduces other aspects in the use of nondimensional variables.

5.5 SCALING AND SIMILITUDE

The aim of scaling analysis is to compare the performance of two turbomachines of similar
design. Thus, it is also used to relate the performance of a model turbomachine to its
prototype. Both tasks are carried out in terms of proper nondimensional variables. In
this section, the conventional nondimensional groups for turbomachinery are introduced,
scaling analysis of a model and a prototype is reviewed, and performance characteristics
of a compressor and a turbine are presented.

5.5.1 Similitude

Similitude broadly refers to similarity in geometry and flow in two turbomachines. More
precisely, dynamic similarity is obtained if the ratios of force components at corresponding
points in the flow through these machines are equal. A necessary condition for dynamic
similarity is kinematic similarity, which means that streamline patterns in two machines
are the same. To achieve this, the two machines must be geometrically similar. This means
that they differ only in scale. Proportionality of viscous force components implies that the
Reynolds number is the same for the two machines. To obtain full dynamic similarity, the
two flows must have similar density distributions, for then inertial forces are proportional
at two corresponding points in kinematically similar flows. This is trivially satisfied for
an incompressible fluid of uniform density, but for compressible fluids, Mach numbers
must be the same at two corresponding points in the flow. The definition of Mach number
involves temperature, which together with pressure determine the value of density. Thus,
in compressible flows in which Reynolds numbers and also Mach numbers match, forces
at corresponding points in kinematically similar flows are proportional to each other, and
the flows are said to be dynamically similar.

In courses on fluid dynamics, systematic methods are presented for finding dimension-
less groups. They consist of deciding first what the important variables are and grouping
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them in categories of geometric parameters, fluid properties, operational variables, and
performance variables.

The most obvious geometric variable is the diameter D of the rotor. Density ρ and
viscosity μ are the two most common fluid properties encountered in turbomachinery
flows, and since the fluid particles move along curved paths through the machine, the
flow is dominated by inertial effects. This means that pressure force is in balance with
inertial force, and viscous forces are small when compared to these. Since the inertial
term is proportional to density, in turbomachinery flows, density is a more important fluid
property than viscosity.

The rotational speed Ω of the rotor is the most important operational variable. It is
conventionally given in revolutions per minute, and in many performance plots, it is not
converted to the standard form of radians per second. The performance variables include
the volumetric flow rate Q and the work done per unit mass w and quantities such as the
power Ẇ , related to them.

5.5.2 Incompressible flow

The meridional velocity in a turbomachine accounts for the rate at which fluid flows
through a machine. Thus, the ratio Vm/U is a measure of the flow rate. As has been
seen already, this ratio is used in theoretical analysis, but in testing, it is converted and
expressed in terms of more readily measurable quantities. The meridional velocity times
the flow area equals the volumetric flow rate, and the blade speed is equal to radius times
the rotational speed. Then, with Vm proportional to Q/D2 and blade speed proportional to
ΩD, the combination

φd =
Q

ΩD3 (5.40)

is dimensionless. It is called a flow coefficient.
A nondimensional variable that includes the fluid viscosity μ will lead to some form of

Reynolds number, such as Re = ρVmD/μ, for example. The usual form, however, is

Re =
ρΩD2

μ
=

ΩD2

ν

in which ν is the kinematic viscosity and the blade speed, proportional to ΩD, is used in
place of the meridional velocity. If the boundary layers on the flow passage do not separate,
viscous forces remain important only near the walls. Thus, as the machine size increases,
boundary-layer regions become a smaller part of the flow. One contributing factor to losses
in turbulent boundary layers is the size of wall roughness, which depends on manufacturing
methods used. Hence, for example the casing and the impeller of two pumps of different
size but manufactured the same way may have about equal roughness. Since much of the
flow through the larger pump does not contact the walls of the flow channel, this part of
the flow does not experience as great a viscous loss as does the flow through the boundary
layer. This concept goes by the name scale effect, and it makes the performance variables
quite independent of Reynolds number, provided the machine is sufficiently large. It is
for this reason that in large machines, efficiency increases with machine size, and viscous
effects are ignored in preliminary design. This discussion of the influence of Reynolds
number applies at a design condition. However, when turbomachines are operated at
off-design conditions, boundary layers may separate. In worst cases, such operation can
be catastrophic. Thus, the Reynolds number enters the theory of turbomachines indirectly
through its influence on the behavior of boundary layers.
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The most important performance variable is the work done on the fluid, or delivered by
the machine. Its nondimensional form is the work coefficient

ψd =
ws

Ω2D2

in which ws is the isentropic work, and the product ΩD in the denominator is proportional
to the blade speed, so that the denominator has the units of energy per unit mass, as does
isentropic work.

In the Bernoulli equation,

p1 +
1
2
ρV 2

1 + ρgz1 = p2 +
1
2
ρV 2

2 + ρgz2

the kinetic energy term shows that in this form, the dimensions of each term are energy
per unit volume, since density has replaced mass. Furthermore, weight equals mass times
gravitational acceleration, and specific weight of a fluid is defined as ρg. Dividing each
term by ρg gives

p1

ρg
+

1
2g

V 2
1 + z1 =

p2

ρg
+

1
2g

V 2
2 + z2

and each term has the dimensions of energy per unit weight of the fluid, which can be
reduced to a length, as the potential energy term shows. From hydraulic practice, it is
common to call the first term in this equation a pressure head. The second term has the
name kinetic energy or dynamic head, and the third term is an elevation head. The sum is
called the total head.

The first law of thermodynamics applied to a flow through a pump gives

p1

ρ
+

1
2
V 2

1 + gz1 + ws =
p2

ρ
+

1
2
V 2

2 + gz2

which can also be written as
ws = gH

and here, H is the change in the total head across the pump. Pump manufacturers report
the performance of pumps in terms of their head, making the values independent of the
fluid being pumped. They also report a value for efficiency, so that actual work may be
determined as w = ws/η.

From the definition of total pressure, isentropic work for an incompressible fluid can
also be calculated from

ws =
p02 − p01

ρ
(5.41)

which shows that if the total pressure change across the pump is reported, then, to obtain
the work done, density of the fluid being pumped needs to be known.

Also from the hydraulic practice comes the custom of expressing pressure as a height
of a mercury, or a water column, particularly in fans and blowers in which the pressure
rise is small. The conversion is carried out by the manometer formula

Δp = ρmgd (5.42)
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in which ρm is the density of the manometer fluid and d is the manometer deflection. As a
consequence of the earlier discussion, for a pump, the work coefficient may be written as

ψd =
gH

Ω2D2

Power coefficient may be introduced as

P̂d =
Ẇ

ρΩ3D5

Here, Ẇ is the actual rate at which work is done. Hence, multiplying the denominator of
ψd by the mass flow rate and dividing it by a quantity with dimensions of mass flow rate,
namely, by ρ ΩD D2, gives this form, except that efficiency of the machine must also be
taken into account. It is easy to see that the power coefficients for a turbine with efficiency
ηt and compressor with efficiency ηc are

P̂d = ηtψdφd P̂d =
ψdφd

ηc
(5.43)

respectively.
For dynamically similar situations, two machines have the same values of the nondi-

mensional parameters ψd and φd. They are also expected to have the same efficiency if the
scale effect is neglected. This means that for machines 1 and 2, the following relationships
are true: ( ws

Ω2D2

)
1

=
( ws

Ω2D2

)
2

(
Q

ΩD3

)
1

=
(

Q

ΩD3

)
2

� EXAMPLE 5.8

Water with density ρ = 1000 kg/m3 flows through a pump, with a rotor diameter of
30 cm at a rate of 163 m3/h. The pump operates at 1600 rpm, and its efficiency is
ηp = 0.78. The pump work is 410.5 J/kg. If a second pump in the same series has
a diameter of 20 cm and operates at 3200 rpm, at the condition of same efficiency,
find (a) the mass flow rate, (b) the total pressure increase across it, and (c) the input
power.

Solution: (a) Since the pumps are geometrically similar and their efficiencies are the
same, dynamic similarity may be assumed. Thus,

Q1

Ω1D
3
1

=
Q2

Ω2D
3
2

Q2 = Q1
Ω2D

3
2

Ω1D
3
1

= 163
3200 · 203

1600 · 303 = 96.6 m3/h

and the mass flow rate is

ṁ2 = ρQ2 =
1000 · 96.6

3600
= 26.8 kg/s

(b) With equal work coefficient and efficiency, it follows that

ws1

Ω2
1D

2
1

=
ws2

Ω2
2D

2
2

w2 = w1
Ω2

2D
2
2

Ω2
1D

2
1

= 410.5
32002 · 202

16002 · 302 = 730 J/kg
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The total pressure rise is given by

Δp02 = ρηw2 so that Δp02 = 1000 · 0.78 · 730 = 569.2 kPa

(c) Pumping power is

Ẇ2 = ṁ2 w2 = 26.86 · 730 = 19.6 kW

Since the ratio of rotational speeds and flow rates are used in the calculations, there
was no need to convert them to standard units. �

5.5.3 Shape parameter or specific speed and specific diameter

Flow coefficient and work coefficient can be combined in such a way that the diameter is
eliminated. Raising the result to a power such that it becomes directly proportional to the
rotational speed gives a parameter that is called the specific speed, and it is given by

Ωs =
(

Q

ΩD3

)1/2(Ω2D2

gH

)3/4

=
ΩQ1/2

(gH)3/4 (5.44)

This equation shows that machines with low flow rates and large change in a head have low
Ωs. In centrifugal machines, the inlet area, which is close to the shaft, is relatively small,
and to keep the inlet velocity within a desirable range, the flow rate is relatively low. The
centrifugal action causes a large pressure rise in such machines. Both make the specific
speed low. In axial pumps and turbines, a large flow rate is possible, as the annular flow
area is far from the axis and is therefore large. This leads to a high specific speed. The
shape of the machines thus changes from a radial to an axial type as the specific speed
increases. Thus, a better name for Ωs would be a shape parameter. Shapes for pumps are
shown in Figure 5.9. Other turbomachines, such as hydraulic turbines, have similar shapes
in corresponding ranges of the specific speed.

The figure shows that large machines have higher efficiencies owing to the scale effect
discussed previously. To see how to develop a formula to account for this, consider
a turbulent flow in a pipe. The wall friction depends on the pipe Reynolds number,
Re = VmDh/ν and the relative roughness of the pipe εrms/Dh. Here, Vm is the meridional
component of the velocity, and Dh = 4A/C is the hydraulic diameter, with A the
cross-sectional area and C the length of the wetted perimeter. The quantity εrms is the
root-mean-square-roughness of the wall. The wall friction, expressed as a dimensionless
friction factor, is given by the Colebrook–White formula, which may also be written as

1√
f

= 1.14 − 2 log
εrms

Dh
− 2 log

(
1 + 9.35

Dh/εrms

Re
√

f

)
(5.45)

Here, log is the logarithm of base 10. The Moody chart for frictional flow in a pipe is
based on this formula. For large Reynolds number, the last term can be neglected, and the
friction factor is seen to depend only on the relative roughness. The resulting equation can
be put into a different form, by calculating the value of friction factor for various values of
relative roughness and fitting the results into the form

f = a

(
εrms

Dh

)n

(5.46)
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Figure 5.9 Shapes of pumps with increasing specific speed. Source: Modified from a graph in
Wislicenus [100, p. 68].

For the range 0.00001 < εrms/Dh < 0.001, the coefficient is a = 0.072, and the exponent
is n = 0.193, and for the range 0.001 < εrms/Dh < 0.02, the coefficient is a = 0.159,
and the power is n = 0.309. The similarity relationship can now be written as

fp

fm
=

(
εp

εm

Dm

Dp

)n

(5.47)

The hydraulic efficiency of a pump can be expressed as

1 − η = 1 − ws

w
=

w − ws

w
=

wL

w

where wL is the loss. Using the pipe flow loss expression for the flow passage through a
pump gives

wL = f
Lh

Dh

W 2

2

The hydraulic efficiency can now be written as

1 − η = f
Lh

Dh

W 2

2w
= f

Lh

Dh

W 2

U 2

1
2ψ

(5.48)

Owing to geometric similarity, Lh/Dh is the same for a prototype and its model. Similarly,
dynamic similarity requires that the velocity ratio W/U and ψ are the same. Making use
of Eq. (5.47), this leads to the similarity equation

1 − ηp

1 − ηm
=

(
εp

εm

Dm

Dp

)n

(5.49)
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Assuming finally that the surface roughness to be the same for the model and the prototype,
this reduces to

1 − ηp

1 − ηm
=

(
Dm

Dp

)n

(5.50)

This is a form first suggested by Moody [64, Sec. 26, p. 48], with the power n = 0.2, in
agreement with the correlation for fairly smooth pipes.

Equation (5.48) only accounts for the wall friction. But the flow experiences other fluid
dynamic losses, such as gap losses. To account for them, Ackeret [70, p. 280] suggested
inclusion of factor V that represents the fraction from the wall friction. Hence, 1 − V
represents other losses. Hutton [64, Sec. 26, p. 48] gave a similar form for hydraulic
turbines. On the basis of their reasoning, the similarity relation can be written as

1 − ηp

1 − ηm
= (1 − V ) + V

(
Dm

Dp

)n

Pfleiderer and Petermann [70, p. 281] suggest that V be in the range from 0.5 to 0.7.
In addition to Figure 5.9, Wislicenus also provides a plot of efficiency as a function of

flow rate, for two values of specific speed, and they can be used to develop the correlation

η = 0.95 − 5.056
Ω0.5145

s [ln(Q/3.7854)]2
(5.51)

Here, the volumetric flow rate Q is given liters per minute, as in Figure 5.9. The validity
of this correlations is for the centrifugal pumps in the range 0.4 < Ωs < 0.7 and flow rates
in the range 800 l/min < Q < 40000 l/min.

Another important parameter is the specific diameter obtained by combining the work
coefficient and the flow coefficient in such a way that the rotational speed does not appear.
It is given by

Ds =
D(gHe)

1/4
√

Q
(5.52)

A useful compilation of data from a large variety of turbomachines was carried out by
Cordier 2 at conditions of best efficiency, and the revised diagram is shown in Figure 5.10.
The left graph is for turbines, and the right one for pumps and compressors. It also includes
the range of specific speed for a given type of machine.

The lines of constant flow coefficient, φd and constant work coefficient ψd are also
shown in this figure. The relationships between these and the specific speed and specific
diameter are

Ωs =

√
φd

ψ
3/4
d

Ds =
ψ

1/4
d√
φd

(5.53)

� EXAMPLE 5.9

Water flows through a pump, with an impeller diameter of 30 cm at a rate of
163 m3/h. The pump operates at 1600 rpm, near its optimal efficiency point. Find
the power required.

2The Cordier diagram appears in the book by Csanady [17, p. 21]; in Pfleiderer and Petermann [70, p. 273], it is
called the Cordier diagram after its originator. A revised version can be found in the article Strömungsmaschinen,
by Dibelius and Stoff, in Dubbel Taschenbuch für den Maschinenbau, [22, p. R18].
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Figure 5.10 Cordier Diagram. Source: Adapted from the diagram by Dibelius and Stoff, in Dubbel
Taschenbuch für den Maschinenbau, [22, p. R18].

Solution: Fewer pieces of data are given than in the previous example, but the
additional information is that the pump operates at its optimal operating point. Also,
the flow coefficient can be calculated. It is

φd =
Q

ΩD3 =
163
3600

30
1600 · π

(
1

0.3

)3

= 0.01

Since the reversible work is not given, the equations need to be combined in such a
way that it is eliminated from them. Thus, solving the second of Eqs. (5.53) for ψ

1/4
d

gives
ψ

1/4
d = Ds

√
φd
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and substituting the cube of this into the first of Eqs. (5.53) gives

Ωs =
1

D3
s φd

Following the line φd = 0.01 line on the Cordier diagram to the pump line, gives
Ds = 6.0, and substituting this into the previous equation gives

Ωs =
1

63 · 0.1
= 0.463

The work coefficient is then

ψd = D4
s φ

2
d = 6.04 · 0.012 = 0.13

This is in agreement with the reading from the Cordier diagram. The reversible
work is

ws = ψd Ω2D2 = 0.13
(

1600 · π
30

)2

0.32 = 328.0 J/kg

To calculate the power required, the flow rate is first converted to liters per minute
Q = 163 m3/h = 2717 l/min, and the correlation Eq. (5.51) gives η = 0.78. The
efficiency curves are quite flat over a fairly wide range of specific speeds near
the maximum efficiency, and the flow rate influences the efficiency more than the
specific speed. The work is

w =
ws

η
=

328.0
0.78

= 420.53 J/kg

and the power can now be calculated to be

Ẇ = ρQw = 1000 · 163
3600

· 420.53 = 19.04 kW
�

5.5.4 Compressible flow analysis

For compressible flows, temperature must be listed among the fundamental dimensions.
It appears in the Mach number, M = V/c, through the speed of sound for an ideal gas,
c =

√
γRT . It is also seen that the ratio of specific heats appears as an additional parameter.

Flows with Mach numbers less than 0.3 can be approximated as incompressible.
Hence, in low-Mach-number flows, the influence of Mach number will be slight. Testing
of centrifugal compressors with refrigerants as working fluids also shows that their
performance depends only weakly on the ratio of specific heats [17]. This is useful to
notice, for then performance maps generated for air are not expected to lead to large errors
when they are used for other gases.

In compressible flows, the volumetric flow rate is replaced by the mass flow rate, as only
the latter is constant through a machine. Conventional practice is to replace the volumetric
flow rate with ṁ/ρ01, where ρ01 is the inlet stagnation density. The other parameters
include a modified blade Mach number ΩD/c01, Reynolds number ρ01ΩD2/μ, and the
ratio of specific heats. In the definition of c01, the inlet stagnation temperature is used.
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The functional relationship between the reversible work and these parameters can be
expressed as

Δh0s

Ω2D2 = f

(
ṁ

ρ01ΩD3 ,
ΩD

c01
,
ρ01ΩD2

μ
, γ

)
(5.54)

For an ideal gas, it was shown in Chapter 2 that

Δh0s

c2
01

=
1

γ − 1

[(
p02

p01

)(γ−1)/γ

− 1

]

which may be recast as

Δh0s

Ω2D2 =
c2
01

Ω2D2

1
γ − 1

[(
p02

p01

)(γ−1)/γ

− 1

]

Since the blade Mach number and the ratio of specific heats are already taken as independent
parameters, the ideal work coefficient can be replaced by a stagnation pressure ratio. This
is done, regardless of whether the gas is ideal or not.

The flow coefficient may be written as

ṁ

ρ01ΩD3 =
ṁ

ρ01c01D
2

c01

ΩD
=

c01

ΩD

ṁ
√

RT01

p01
√

γD2

Again, since the blade Mach number and γ are already counted as independent parameters,
inspection of the right side shows that the flow coefficient may be modified to

φd =
ṁ

√
RT01

p01D
2

The power coefficient is manipulated into the form

Ẇ

ρ01Ω3D5 =
ṁcpΔT0

ρ01Ω3D5 =
ṁ

ρ01ΩD3

1
γ − 1

c2
01

Ω2D2

ΔT0

T01

The first factor on the right is the original flow coefficient. It is multiplied by a factor
dependent only on γ and the reciprocal of the blade Mach number squared. Since all these
factors have been taken into account separately, the power coefficient may be replaced by
ΔT0/T01. Hence,

p02

p01
= f1

(
ṁ

√
RT01

p01D
2 ,

ΩD√
γRT01

,
ρ01ΩD2

μ
, γ

)
(5.55)

and
ΔT0

T01
= f2

(
ṁ

√
RT01

p01D
2 ,

ΩD√
γRT01

,
ρ01ΩD2

μ
, γ

)
(5.56)

Efficiency is another performance variable, and it is functionally related to the param-
eters listed on the right in the aforementioned equations. For an ideal gas undergoing
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compression, it can be calculated from

η =
T02s − T01

T02 − T01
=

T01

ΔT0

[(
p02

p01
− 1

)(γ−1)/γ
]

For a particular design and fluid, the geometric parameters and γ are fixed. This allows
the flow coefficient and the blade Mach number to be replaced by

φm =
ṁ

√
T01

p01
Ωm =

Ω√
T01

(5.57)

These are not dimensionless. Alternatively, the corrected mass flow rate and the rotational
speed

ṁc =
ṁ

√
T01/T0r

p01/p0r
Ωc =

Ω√
T01/T0r

(5.58)

are used, in which subscript “r” refers to a reference condition.

5.6 PERFORMANCE CHARACTERISTICS

The use of a performance map is illustrated in this section by representative compressor
and turbine maps for an automotive turbocharger. A turbocharger is used to precompress
air before it is inducted to an internal combustion engine, thereby allowing a larger mass
flow rate than is possible in a naturally aspirated engine. A turbocharger is shown in
Figure 5.11. It consists of a centrifugal compressor and a radial inflow turbine. The exhaust
gases from the engine drive the turbine. Shaft speeds vary from 60000 to 200000 rpm in
automotive applications.

Figure 5.11 A turbocharger. Source: Photo courtesy NASA.

5.6.1 Compressor performance map

To characterize the performance of a compressor, the pressure ratio is typically plotted as
a function of the flow coefficient, as is shown in Figure 5.12. Here, the flow rate and the
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Figure 5.12 Characteristics of a centrifugal compressor. Source: Courtesy BorgWarner Turbo
Systems.

rotational speed are modified to a corrected flow rate and a corrected shaft speed

Qc = Q

√
T0r

T01
Ωc = Ω

√
T0r

T01

This particular compressor map is for a centrifugal compressor of an automotive tur-
bocharger manufactured by BorgWarner Turbo Systems, similar to that shown in
Figure 5.11. Air is drawn in from stagnant atmosphere with reference pressure p0r =
0.981 bar and reference temperature T0r = 293 K. These are the nominal inlet stagnation
properties.

Efficiency curves are superimposed on this plot on a family of curves at constant
corrected speed, given in rpm. The constant speed curves terminate at a line called a
surge line. If the flow rate decreases beyond this, the blades will stall. Severe stall leads
to a condition known as surge. Under surge conditions, the flow may actually reverse in
direction, leading to a possible flameout in a jet engine.

In an automotive application, the operating speed of the turbomachine follows the
engine speed of the internal combustion engine. When the shaft speed is increased, the
operating condition moves across the constant speed curves in the general direction parallel
to the surge line to lower efficiency. At large flow rates, the flow in the blade passages will
choke, and this is indicated by the sharp drop in the constant-speed curves.

5.6.2 Turbine performance map

A sample plot of turbine characteristics is shown in Figure 5.13 for the radial inflow turbine
of the same BorgWarner turbocharger. Inlet to the turbine is identified by the label 3, and
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Figure 5.13 Characteristics of a radial inflow turbine. Source: Courtesy BorgWarner Turbo
Systems.

its exit is a state 4. Pressure ratio is given as the ratio of stagnation pressures at states 3 and
4. Inlet reference temperature has a value T03r = 873 K. The rotational speed of the shaft
is corrected by the square root of the ratio of the reference temperature to its actual value
at the inlet. This arises from the square root dependence of speed of sound on temperature.

Since the exit pressure from the turbine is close to the atmospheric value, the pressure
ratio is determined by the inlet pressure to the turbine, which in turn is related to engine
pressure. A high pressure ratio leads to choking of the turbine. Thus, an increase in the
pressure ratio no longer increases the flow rate, and the lines of constant speed remain flat,
as seen in Figure 5.13.

Efficiency curves are also flat near choking conditions, for the aerodynamic design is
optimized for these conditions. This is in contrast to the small envelope of high efficiency
at low pressure ratios when the turbine can still accommodate a large change in the mass
flow rate as the pressure ratio is increased.

Although it would be desirable to have a consistent representation of the dimensionless
parameters, this is not yet a common practice. Hence, the dimensions and units in each of
the parameters need to be examined for each performance map encountered.

EXERCISES

5.1 (a) By eliminating the angle β between Eqs. (5.6) and (5.7), derive the law of cosines
in the form

W 2 = U 2 + V 2 − 2UV sinα (5.59)

(b) By eliminating W between these equations develop a form of the law of sines

sin(α − β)
U

=
cos β

V
(5.60)
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5.2 In a velocity diagram at the inlet of a turbine, the angle of the absolute velocity is
60◦ and the flow angle of the relative velocity is −51.74◦. Draw the velocity diagram, and
find the value of U/V and Vx/U . [Ans: U/V = 1.5, Vx/U = 1/3]

5.3 Following the method described in the text, carry out the steps to develop the
Eqs. (5.21) and (5.22).

5.4 For an axial turbine stage, with R = 0, show that the blade speed is equal to the
average of the tangential velocities before and after the rotor. Find the work done by the
rotor if the exit angle α3 = 0. [Ans: w = 2U 2]

5.5 Determine the relationship between α2 and β3 for an axial turbine stage with reaction
equal to 0.5 and constant axial velocity. Find the work done if the exit angle α3 = 0. [Ans:
w = U 2]

5.6 Steam enters a rotor of an axial turbine with an absolute velocity V2 = 320 m/s at
an angle α2 = 73◦. The axial velocity remains constant. The blade speed is U = 165 m/s.
The rotor blades are equiangular so that β3 = −β2, and the magnitude of the relative
velocity remains constant across the rotor. Draw the velocity triangles. Find (a) the relative
flow angle β2, (b) the axial velocity Vx assumed constant across the stage, and (c) the flow
angle α3 that V3 makes with the axial direction. [Ans: (a) 56.4◦, (b) 96.6 m/s, (c) 14.38◦]

5.7 An axial turbine has a reaction ratio R = 1/2. Air enters the rotor with relative
velocity at an angle β2 = 15◦, and the axial velocity is constant for the stage. The
blade speed is U = 300 m/s, and the tangential velocity change across the rotor is
Vu2 − Vu3 = 320 m/s. (a) Find the axial velocity. (b). Find the angle at which the absolute
velocity enters the rotor. [Ans: (a) 37.3 m/s, (b) 83.1◦]

5.8 The axial component of airflow leaving a stator in an axial-flow turbine is Vx2 =
175 m/s, and its flow angle is 64◦. The axial velocity is constant, the reaction of the stage
is R = 0.5, and the blade speed is U = 140 m/s. Find the flow angle of the absolute
velocity entering the stator. [Ans: −51.3◦]

5.9 The exit flow angle of stator in an axial steam turbine is 68◦. The flow angle of the
relative velocity leaving the rotor is −67◦. Steam leaves the stator at V2 = 120 m/s, and
the axial velocity is Vx2 = 0.41U . At the exit of the rotor blades, the axial steam velocity
is Vx3 = 0.42U . The mass flow rate is ṁ = 2.2 kg/s. Find (a) the flow angle entering
the stator, assuming it to be the same as the absolute flow angle leaving the rotor; (b) the
flow angle of the relative velocity entering the rotor; (c) the reaction; and (d) the power
delivered by the stage. [Ans: (a) 1.44◦, (b) 2.07◦, (c) 0.491, (d) 26.6 kW]

5.10 The speed of airflow leaving the rotor of an axial-flow turbine is Vx3 = 140 m/s,
and its flow angle is 0◦. The axial velocity is constant and equal to the blade speed. The
inlet flow angle to the rotor is α2 = 60◦. Find the reaction. [Ans: 0.134]

5.11 Water with density 1000 kg/m3 flows in a centrifugal pump at the rate of 22 L/s.
The impeller radius is r2 = 7.7 cm, and the blade width at the impeller exit is b2 = 0.8 cm.
If the flow angles at the impeller exit are α2 = 67◦ and β2 = −40◦, what is the rotational
speed of the shaft in rpm? [Ans: 2252 rpm]

5.12 A small axial-flow turbine has an output power of 37 kW when handling 1 kg of
air per second with an inlet total temperature of 335 K. The total-to-total efficiency of the
turbine is 80%. The rotor operates at 50000 rpm, and the mean blade diameter is 10 cm.
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Evaluate (a) the average driving force on the turbine blades, (b) the change in the tangential
component of the absolute velocity across the rotor, and (c) the required total pressure ratio
across the turbine. [Ans: (a) 141.3 N, (b) 141.3 m/s, (c) 1.68]

5.13 Consider a normal, zero reaction, R = 0, axial turbine stage with Vx1 = Vx2 = Vx3.
Show that the utilization is given by the expression ε = 4λ(sin α2 − λ), where λ = U/V2
is the speed ratio. Show that the maximum utilization takes place at the speed ratio

λ =
1
2

sin α2 and εm = sin2α2

5.14 (a). Carry out the analysis to show that for a normal stage with reaction R = 0.5,
the maximum utilization is at λ = sinα2 and the maximum utilization is then

εm =
2sin2α2

1 + sin2α2

(b) Plot the results with utilization on the ordinate and the speed ratio on the abscissa, for
values of α2 in the range 10◦ − 90◦. (c) Show that work at maximum utilization is w = U 2.

5.15 For a normal stage with reaction R = 1, show that the utilization is given by the
expression

ε =
4λ sin α2

4λ sin α2 + 1

Plot the utilization on the ordinate and the speed ratio on the abscissa for values α2 in
the range 10◦–90◦. To find the maximum utilization, differentiate the expression for ε and
interpret the result.

5.16 Gas, at the speed of 500 m/s and flow angle 60◦, enters the rotor a normal axial
turbine stage, that is designed to have constant axial velocity. The reaction ratio is 0.4,
and the utilization is 0.8. (a) Find the value of the absolute exit velocity. (b) Find the
flow coefficient φ = Vx/U . (c) Find the blade-loading coefficient ψ = w/U 2. (d) Find
the angle at which the relative velocity leaves the stage. [Ans: (a) 271.2 m/s, (b) 0.915,
(c) 1.97, (d) −56.5◦]

5.17 Show that work from an axial turbine at maximum utilization is given by w =
2U 2(1 − R).

5.18 Gas enters the rotor of an axial turbine stage at the speed 520 m/s at the flow
angle of 65◦. The blade speed is 300 m/s. The reaction is 0.46, and utilization is 0.82. Do
not assume that the axial velocity is constant. (a) Find the magnitude of the exit velocity.
(b) Find the work done by the stage. (c) Find the angle at which the relative velocity leaves
the stage. [Ans: (a) 279.6 m/s, (b) 178.0 kJ/kg, (c) −61.5◦]

5.19 Gas enters the rotor of an axial turbine stage at the speed 520 m/s at the flow angle
of 65◦. If flow angle of the relative velocity leaving the stage is −55◦, then the reaction is
0.46 and utilization is 0.82. Do not assume that the axial velocity is constant. (a) Find the
magnitude of the exit velocity. (b) Find the work done by the stage. (c) Find the blade speed
and the exit angle of the absolute velocity. (d). At what blade speed is the exit angle of
the absolute velocity zero. Hint: work the previous exercise first and then consider solving
this by trial and error. [Ans: (a) V3 = 279.6 m/s, (b) w = 178 kJ/kg, (c) U = 340.1 m/s
or U = 468.8 m/s, (d) U = 377.7 m/s]
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5.20 The flow enters the rotor of a normal axial turbine stage with 50% reaction with
absolute velocity 200 m/s and angle 65◦. The relative velocity at the inlet of the rotor
is at angle 35◦, and at the exit from the rotor, the angle of the relative velocity is −60◦.
Do not assume that the axial velocity is constant. (a) Find the magnitude of the exit
velocity. (b) Find the work done by the stage. (c) Find the utilization. [Ans: (a) 109.5 m/s,
(b) 28.0 kJ/kg, and (c) 0.824]

5.21 Air flows at the rate of 500 L/s through a fan when operating at 1800 rpm. (a)
What is the flow rate if the fan speed is increased to 3600 rpm? (b) What is the percentage
increase in total pressure rise? (c) What is the power input required at 3600 rpm relative to
that at 1800 rpm? [Ans: (a) 1000 L/s, (b) 300%, (c) eight times]

5.22 An axial-flow pump having a rotor diameter of 20 cm handles water at the rate of
60 L/s when operating at 3550 rpm. The corresponding increase in total enthalpy of the
water is 120 J/kg, and the total-to-total efficiency is 75%. Suppose that a second pump
in the same series is to be designed to handle water having a rotor diameter of 30 cm and
operating at 1750 rpm. For this second pump, what will be the predicted values for (a) the
flow rate, (b) the change in the total pressure of water, and (c) the input power? [Ans:
(a) 99.8 L/s, (b) 49.2 kPa, (c) 6.55 kW]

5.23 A small centrifugal pump handles water at the rate of 6 L/s with input power of 5
hp and total-to-total efficiency of 70%. Suppose that the fluid being handled is changed
to gasoline having specific gravity 0.70. What are the predicted values for (a) flow rate,
(b) input power, and (c) total pressure rise of the gasoline? [Ans: (b) 3.5 hp, (c) 304.5 kPa]

5.24 A blower handling air at the rate of 240 L/s at the inlet conditions of 103.1 kPa
for total pressure and 288 K for total temperature. It produces a pressure rise of air equal
to 250 mm of water. If the blower is operated at the same rotational speed, but with an
inlet total pressure and total temperature of 20 kPa and 253 K. What are (a) the predicted
value for the mass flow rate and (b) the total pressure rise? [Ans: (a) 0.066 kg/s and (b)
56.2 mm of water]

5.25 Consider a fan with a flow rate of 1500 cfm, (ft3/min), and a shaft speed of
3600 rpm. If a similar fan one half its size is to have the same tip speed, what will the
flow rate be at a dynamically similar operating condition? What is the ratio of power
consumption of the second fan compared to the first one? [Ans: 1/4]

5.26 A fan operating at 1750 rpm at a volumetric flow of 4.25 m3/s develops a head
of 153 mm of water. It is required to build a larger, geometrically similar fan that will
deliver the same head at the same efficiency as the existing fan, but at the rotational speed
of 1440 rpm. (a) Determine the volume flow rate of the larger fan. (b) If the diameter of
the original fan is 40 cm, what is the diameter of the larger fan? (c) What are the specific
speeds of these fans? [Ans: 6.28 m3/s, (b) 48.6 cm, (c) 1.8]

5.27 The impeller of a centrifugal pump, with an outlet radius r2 = 8.75 cm and a blade
width b2 = 0.7 cm, operates at 3550 rpm and produces a pressure rise of 522 kPa at a flow
rate of 1450 l/min. Assume that the inlet flow is axial, and that the pump efficiency is
0.63. (a) Find the specific speed. (b) Estimate the efficiency. (c) Show that Eq. (5.19) for
work reduces to w = (V 2

u2 + U 2
2 − W 2

u2)/2, and calculate the work two ways and confirm
that they are equal. [Ans: (a) 0.529, (b) 0.752, (c) 694.4 J/kg]
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5.28 A centrifugal pump handles water at the rate of Q = 150 L/s. The impeller diameter
is D2 = 50 cm, and the blade height at the exit is b2 = 5 cm. The velocity at the inlet is
axial. (a) Calculate the efficiency by the formula given in the text. (b) Find the work done
by the impeller if it rotates at 700 rpm. What is the angle of the relative velocity at the
outlet. [Ans: 0.825, 297.3 J/kg, −47.8◦]

5.29 A centrifugal pump is to be designed with an impeller diameter equal to D2 = 43 cm
rotating at 960 rpm and with capacity of Q = 0.1 m3/s. Using the Cordier diagram,
determine the ideal head developed by the pump.

5.30 A centrifugal pump with capacity Q = 0.15 m3/s has a tip speed U2 = 8 m/s and
an impeller diameter D2 = 0.5 m. The width of the blade at the outlet b2 = 0.1D2. If the
blade makes an angle β2 = −35◦ at the outlet and the flow enters the pump without swirl,
find how many horsepower this pump requires at this operating condition. Estimate the
efficiency first to calculate the specific speed. [Ans: 10.72 hp]
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CHAPTER 6

STEAM TURBINES

6.1 INTRODUCTION

The prime mover in a steam power plant is a steam turbine that converts part of the thermal
energy of steam at high pressure and temperature to shaft power. Other components of
the plant are a steam generator, a condenser, and feedwater pumps and heaters. The
plants operate on various modifications of the Rankine cycle. The basic Rankine cycle,
operating between 40 and 565 ◦C, has a Carnot efficiency of 37%. Modifications, including
superheating, reheating, and feedwater heating, increase the efficiency by approximately
an additional 10%.

Most large power plants have two reheats and three or more turbines. The turbines
are said to be compounded when steam passes through each of them in series. The
high-pressure (HP) turbine receives steam from the steam generator. After leaving this
turbine, the steam is reheated and then enters an intermediate-pressure (IP) turbine, also
called a reheat turbine, through which it expands to an intermediate pressure. After the
second reheat, the rest of the expansion takes place through a low-pressure (LP) turbine,
from which the steam flows into a condenser at a pressure below the atmospheric value.

A turbine in which the steam leaves at quality near 90% is called a condensing turbine.
An extraction turbine has ports from which steam is extracted for feedwater heating. An
induction turbine receives steam at intermediate pressures for additional power generation.

In a noncondensing or backpressure turbine, steam leaves at superheated conditions,
and the thermal energy in the exhaust steam is used in various industrial processes.
A well-designed combined heat and power plant generates appropriate amount of power

215Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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to drop the steam temperature and pressure to values that meet the process heating needs.
District heating is an application in which steam is used at even lower temperatures than
in many industrial processes. An important consideration in providing the heating needs
of an economy is to match the source to the application. Combined heat and power plants
are designed with this in mind.

In modern coal-burning power plants, axial steam turbines are typically housed in three,
four, or five casings. Many LP turbines are double-flow type, and their single casing
accommodates a pair of turbines in which steam flows in opposite directions to balance
axial forces on the turbine shaft. When two or more turbines are connected to a common
shaft, they are said to operate in tandem, and the plant is said to be of a tandem compound
type. If the steam is directed to a set of turbines on different shafts, then the system is said
to be cross-compounded. For example, a 1000-MW power plant could have an HP turbine
and an IP turbine on a single shaft and three LP turbines on a different shaft. Rotational
speeds are typically either 3600 or 1800 rpm; the lower speed for the LP turbines that
have larger rotors in order to accommodate the larger volumetric flow rate of steam at
low pressure. The large volumetric flow rate at the low pressure end requires very long
blades. As an example, a General Electric/Toshiba LP steam turbine running at 3600 rpm
has blades 1016 mm in length and a flow area 8.2 m2 in the last stage. When this is
designed to run at 3000 rpm for generating electricity at 50 Hz, the blades of the last stage
are designed to be 1220 mm long, with a corresponding flow area 11.9 m2. For a 26-stage
steam turbine, the hub-to-casing radius ratio for the last stage may have a value 0.42,
whereas for the first stage, a typical value is 0.96.

Outlet pressures from the boiler vary from a subcritical 10 MPa to a supercritical
30 MPa, or more. The condenser pressure is below the atmospheric pressure, typically
about 8 kPa, which corresponds to a saturation temperature of 41 ◦C. This makes the
overall pressure ratio equal to 1250 for a conventional plant and three times this for
supercritical plants. In a 400-MW power plant, the HP turbine provides about 100 MW of
power, and about an equal rate is delivered by the IP turbine. A double-flow LP turbine
delivers the remaining 200 MW. The pressure ratios are 4.5 for the HP turbine and 3 for the
IP turbine. The LP turbine has ports for extracting steam to feedwater heaters at pressure
ratios ranging from 1.5 to 4.5.

Owing to the large inlet pressure, design of the HP turbine differs from that of the
others. The first stage is designed for low reaction, so that most of the pressure drop takes
place at the nozzles feeding this stage. This brings the steam to a very high velocity as
it enters the first rotor. However, the pressure is now sufficiently low that leakage flow
through seals is tolerable. Later stages are designed for higher reaction, and in IP and LP
turbines, the reaction is close to 50%.

Table 6.1 lists some typical designs and rated power outputs for coal-burning steam
power plants. Designations such as 1SF and 3DF refer to one single-flow and three
double-flow turbines [25]. At the preliminary design stage, steam inlet pressure to the
HP turbine is specified. Intermediate pressures at which reheating takes place are then
calculated according to how much moisture is allowed at the exit of the HP and IP turbines.
A similar decision is made for the reheat (RH) turbine to determine the appropriate pressure
at the inlet of the LP turbines.

The steam turbine industry is very large. The year 2017 worldwide electricity generation
from steam plants is 48.7 EJ (exajoules) equal to 1.55 TW (terawatts) of generated power.
This means that on the order of 12000 steam turbines are in use. The major manufactures
include GE power systems in the United States, Siemens, Alstom, and Ansaldo Energia in
Western Europe, and Mitsubishi Heavy Industries, Hitachi, and Toshiba in Japan. Many
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Table 6.1 Fossil steam power turbine arrangements.

Output
(MW)

Reheats Steam pressure
(MPa)

HP IP RH LP

50–150 0 or 1 10.1 1SF — — 1SF
150–200 1 12.5 1SF 1SF — 1DF
250–450 1 16.6 1SF 1SF — 1DF
450–600 1 16.6 1SF 1SF — 2DF
450–600 1 24.2 1SF 1SF — 2DF
600–850 1 16.6 1DF 1DF — 2DF
600–850 1 or 2 24.2 1SF 1SF 1DF 2DF
850–1100 1 16.6 1DF 1DF — 3DF
850–1100 1 or 2 24.2 1SF 1SF 1DF 3DF

of the steam turbines in Eastern and Central Europe are supplied by LMZ in Russia and
Skoda in the Czech Republic.

Worldwide production of electricity during the year 2017 was 26000 billion kWh. In
standard units, this is 93.6 EJ. In thermal plants, electricity generation is fueled by coal,
natural gas, oil, and uranium. Coal provides 36 EJ; natural gas, 22 EJ; and oil, 3 EJ, of the
generated electricity. Nuclear fuels provide 10 EJ. The remainder comes from renewable
sources, with 15 EJ from hydropower, 4 EJ from wind, 1 EJ from solar, and the rest
from biomass. In coal, fuel oil, and nuclear power plants, the working fluid is water, and
these steam plants provide 51% of the generated electricity. The other 49% comes from
hydropower, wind, and solar and from gas turbine power plants fueled by natural gas and
some by oil [91]. Since these figures relate to production of electricity, they do not take into
account the energy value of coal, gas, and uranium that needs to be mined. A rough value
for thermal efficiency of fossil fuel plants is 38%, and therefore, the energy content of the
fuels delivered to the plants is a factor of 2.6 larger. Ordinarily, the energy requirement for
mining and transporting the fuel needed by power stations is not factored into the energy
evaluation, as it should be.

6.2 IMPULSE TURBINES

This section begins with a discussion of impulse turbines and how a single-stage turbine is
compounded to multiple stages by two methods. These are called pressure compounding,
or Rateau staging, and velocity compounding, or Curtis staging. Both are used to reduce
the shaft speed, which in a single-stage impulse turbine may be intolerably high.

6.2.1 Single-stage impulse turbine

Carl Gustaf Patrik de Laval (1845–1913) of Sweden in 1883 developed an impulse turbine
consisting of a set of nozzles and a row of blades, as shown in Figure 6.1. This turbine
is designed to undergo the entire pressure drop in the nozzles and none across the rotor.
For sufficiently low exit pressure, converging–diverging nozzles accelerate the steam to a
supersonic speed. The angle of the relative velocity approaching the rotor blades is β2, and
the exit angle has a negative value β3. For equiangular blades, β3 = −β2. This gives the
blades a bucket shape because at the design condition, the actual metal angles of the blades
are close to the flow angles of the relative velocity.
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Figure 6.1 Single-stage impulse turbine and its Mollier chart.

The blades change the direction of the momentum of the flow, and this gives an
impulsive force to the blades. This is the origin of the name for this turbine, for it appears
as if the fluid particles were executing trajectories similar to a ball striking a wall and
caused to bounce back by an impulsive force. But if the surface forces on the blades are
examined, it is clear that the difference between the high pressure on the concave side of
the blade and the low pressure on the convex side is the actual cause of the blade force. A
combination of a nozzle row and a rotor row make up a stage. For this reason, the de Laval
turbine is also called a single-stage impulse turbine.

Work done on the blades is given by

w = h02 − h03 = U(Vu2 − Vu3)

and since the relative stagnation enthalpy is constant across the rotor

h2 +
1
2
W 2

2 = h3 +
1
2
W 2

3 (6.1)

As seen from the hs-diagram in Figure 6.1, irreversibilities cause the static enthalpy to
increase from h2 to h3, and then Eq. (6.1) shows that W3 is less than W2. For equiangular
blades, this means that the tangential and axial components of the relative velocity must
decrease in the same proportion.

It is assumed that steam flows into the nozzles from a steam chest in which velocity is
negligibly small. The nozzle efficiency, as shown in the previous chapter, is given by

ηN =
h01 − h2

h01 − h2s
=

h02 − h2

h02 − h2s

and the second expression follows since h01 = h02. This can also be written in the form

ηN =
V 2

2

V 2
2s

= c2
N

in which the velocity coefficient for the nozzle has been defined as cN = V2/V2s. The loss
of stagnation pressure across the nozzles is Δp0LN = p01 − p02. Examination of Figure 6.1
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shows that the velocity coefficient is defined such that it represents the loss of kinetic
energy in the nozzles.

For the rotor cR = W3/W3s, but since the state 3s is the same as state 2, the velocity
coefficient for the rotor is also cR = W3/W2. The loss of stagnation pressure is given by
Δp0LR = p02R − p03R. The constant pressure lines p02R and p03R are shown in Figure 6.1.
The velocity coefficient cR has been defined such that the decrease in kinetic energy of
the relative velocities represents a thermodynamic loss. The sum of the separate stagnation
pressure losses across the nozzles and the rotor gives a different and correct value for the
total loss than what was calculated in Chapter 2, where this loss in stagnation pressure was
determined for the entire stage.

The efficiency of the rotor is defined as

ηR =
h02 − h03

h02 − h3s

because the kinetic energy leaving the rotor is assumed to be wasted. Since h2 = h3s, this
can also be written as

ηR =
w

1
2V

2
2

The product
ηts = ηNηR

can be written as
ηts =

h02 − h2

h02 − h2s

h02 − h03

h02 − h3s
=

h01 − h03

h01 − h3ss

since h2 = h3s and h2s = h3ss and the standard definition of the total-to-static efficiency is
recovered. With this introduction, the principles learned in Chapter 3 are next applied to a
single-stage impulse steam turbine.

� EXAMPLE 6.1

Steam flows from nozzles at the rate 0.2 kg/s and speed 900 m/s. It then enters the
rotor of single-stage impulse turbine with equiangular blades. The flow leaves the
nozzles at an angle of 70 ◦, the mean radius of the blades is 120 mm, and the rotor
speed is 18000 rpm. The frictional loss in the rotor blades is 15% of the relative
kinetic energy entering the rotor. (a) Draw the velocity diagrams at the inlet and
outlet of the rotor with properly calculated values of the inlet and outlet flow angles
for the relative and absolute velocities. (b) Find the power delivered by the turbine.
(c) Find the rotor efficiency.

Solution: (a) The blade speed is

U = r Ω =
0.12 · 18000 · 2π

60
= 226.2 m/s

and the axial velocity is

Vx2 = V2 cos α2 = 900 cos(70◦) = 307.8 m/s
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and the tangential component of the absolute velocity at the inlet to the rotor is

Vu2 = V2 sinα2 = 900 sin(70◦) = 845.7 m/s

The tangential component of the relative velocity entering the rotor is therefore

Wu2 = Vu2 − U = 845.7 − 226.2 = 619.5 m/s

so that the relative flow speed, since Wx2 = Vx2, comes out to be

W2 =
√

W 2
2x2 + W 2

u2 =
√

307.82 + 619.52 = 691.8 m/s

The inlet angle of the relative velocity is then

β2 = tan−1
(

Wu2

Wx2

)
= tan−1

(
619.5
307.8

)
= 63.6◦

Since 15% of the kinetic energy of the relative motion is lost, at the exit, the kinetic
energy of the relative flow is

1
2
W 2

3 =
1
2
(1 − 0.15)W 2

2 and W3 =
√

0.85 · 691.82 = 637.8 m/s

For equiangular blades, β3 = −β2, and the axial velocity leaving the rotor is

Wx3 = W3 cos β3 = 637.8 cos(−63.6◦) = 283.8 m/s

and the tangential component of the relative velocity is

Wu3 = W3 sinβ3 = 637.8 sin(−63.6◦) = −571.2 m/s

The tangential component of the absolute velocity becomes

Vu3 = U + Wu3 = 226.2 − 571.2 = −345.0 m/s

Hence, with Vx3 = Wx3, the flow angle at the exit is

α3 = tan−1
(

Vu3

Vx3

)
= tan−1

(
−345.0

283.8

)
= −50.6◦

and the velocity leaving the rotor is

V3 =
√

V 2
x3 + V 2

u3 =
√

283.82 + 3452 = 446.7 m/s

The velocity triangles at the inlet and outlet are shown in Figure 6.2.
(b) The specific work done on the blades is obtained as

w = U(Vu2 − Vu3) = 226.2(845.7 + 345.0) = 269.3 kJ/kg

and the power delivered is

Ẇ = ṁw = 0.2 · 269.3 = 53.87 kW
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Figure 6.2 Velocity diagrams for a single-stage impulse turbine.

(c) The kinetic energy leaving the nozzle is

1
2
V 2

2 =
1
2
9002 = 405.0 kJ/kg

and the rotor efficiency therefore becomes

ηR =
w

V 2
2 /2

=
269.3
405.0

= 0.665 or 66.5%

Of the difference 1 − ηR, a fraction is lost as irreversibilities, and the rest is the
kinetic energy leaving the rotor. The latter is obtained by calculating the ratio V 2

3 /2
to V 2

2 /2, which is (446.7/900)2 = 0.246. Hence, loses from irreversibilities are
1 − 0.665 − 0.246 = 0.089, or about 9%. It turns out that the blade speed in this
example is too low for optimum performance, as will be shown next. �

As the theory of turbomachinery advanced, measures more general than the velocity
coefficients to account for irreversibility replaced them. A useful measure is the increase
in the static enthalpy by internal heating. The loss coefficients ζN and ζR are defined by
the equations

h2 − h2s =
1
2
ζNV 2

2 h3 − h3s =
1
2
ζRW 2

3 (6.2)

with the thermodynamic states as shown in Figure 6.1. Since the stagnation enthalpy is
constant for the flow through the nozzle, it follows that

h2s +
1
2
V 2

2s = h2 +
1
2
V 2

2

which is rearranged to the form

h2 − h2s =
1
2
ζNV 2

2 =
1
2
V 2

2s −
1
2
V 2

2

With V2s = V2/cN, this equation can be expressed as

cN =
V2

V2s
=

1√
1 + ζN

(6.3)
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Similarly, the relative stagnation enthalpy is constant for the rotor,

h3s +
1
2
W 2

2 = h3 +
1
2
W 2

3

and this equation can be rewritten in the form

h3 − h3s =
1
2
ζRW 2

3 =
1
2
W 2

2 − 1
2
W 2

3

from which
cR =

W3

W2
=

1√
1 + ζR

(6.4)

The stagnation pressure loss across the nozzles is Δp0LN = p01 − p02, and the stagnation
pressure loss across the rotor is Δp0LR = p02R − p03R. The relative stagnation pressures
are determined by first calculating the relative stagnation temperatures, which are obtained
from

T02R = T2 +
W 2

2

2cp

T03R = T3 +
W 2

3

2cp

and then relative stagnation pressures are determined from

p02R

p2
=

(
T02R

T2

)γ/(γ−1)
p03R

p3
=

(
T03R

T3

)γ/(γ−1)

To calculate the total-to-static efficiency from ηts = ηNηR, the nozzle efficiency is first
determined from

ηN = c2
N =

1
1 + ζN

(6.5)

and then the rotor efficiency needs to be found. This is done by manipulating its definition
into the form

1
ηR

− 1 =
h03 − h3s

h02 − h03
=

1
2V

2
3 + (h3 − h3s)

w

which can be recast as
1
ηR

− 1 =
V 2

3 + ζRW 2
3

2w
(6.6)

Then, using
Vu2 = U + Wu2 Vu3 = U + Wu3

the work done on the blades may be written as

w = U(Vu2 − Vu3) = U(Wu2 − Wu3) = U(W2 sinβ2 − W3 sin β3)

For equiangular blades, β3 = −β2, and making use of the relationship W3 = W2/
√

1 + ζR,
this equation takes the form

w = UW2

(
1 +

1√
1 + ζR

)
sin β2
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or with further substitution of W2 sin β2 = V2 sin α2 − U , it is

w = U
(1 +

√
1 + ζR)√

1 + ζR
(V2 sin α2 − U) (6.7)

The numerator of Eq. (6.6) still needs to be expressed in terms of V2 and α2, as was done
for work. After the component equations for the velocities

W3 cos β3 = V3 cos α3 W3 sin β3 + U = V3 sin α3

are squared and added, the relationship

W 2
3 + 2UW3 sin β3 + U 2 = V 2

3

is obtained. Making use of Eq. (6.4), the term V3 + ζRW 2
3 can be written as

V 2
3 + ζRW 2

3 =
W 2

2

1 + ζR
− 2UW2 sinβ2√

1 + ζR
+ U 2 +

ζRW 2
2

1 + ζR

or as
V 2

3 + ζRW 2
3 = W 2

2 − 2UW2 sin β2√
1 + ζR

+ U 2

The relative velocity W2 is next expressed in terms of V2 and α2. Again, the component
equations for the definition of relative velocity give

W2 cos β2 = V2 cos α2 W2 sin β2 = V2 sinα2 − U

which, when squared and added, leads to

W 2
2 = V 2

2 − 2UV2 sin α2 + U 2

Hence, the expression for V 2
3 + ζRW 2

3 takes the final form

V 2
3 + ζRW 2

3 =
(V 2

2 − 2UV2 sin α2 + 2U 2)(1 + ζR) − 2U(V2 sinα2 − U)
√

1 + ζR

1 + ζR

The equation for the efficiency can now be written as

1
ηR

− 1 =
(V 2

2 − 2UV2 sin α2 + 2U 2)(1 + ζR) − 2U(V2 sinα2 − U)
√

1 + ζR

2U(1 + ζR +
√

1 + ζR)(V2 sin α2 − U)

Introducing the speed ratio λ = U/V2 into this gives

1
ηR

− 1 =
(1 − 2λ sin α2 + 2λ2)(1 + ζR) − 2λ(sin α2 − λ)

√
1 + ζR

2λ(1 + ζR +
√

1 + ζR)(sin α2 − λ)

The rotor efficiency now can be expressed as

ηR =
2λ(1 + ζR +

√
1 + ζR)(sin α2 − λ)

1 + ζR
(6.8)
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and the stage efficiency as

ηts = ηNηR =
2λ(1 + ζR +

√
1 + ζR)(sin α2 − λ)

(1 + ζN)(1 + ζR)
(6.9)

By making use of Eqs. (6.3) and (6.4), this can also be written as

ηts = 2λc2
N(1 + cR)(sin α2 − λ) (6.10)

The blade speed at which the stage efficiency reaches its maximum value is obtained by
differentiating this with respect to λ and setting the result to zero. This gives

dηts

dλ
= 2c2

N(1 + cR)(sin α2 − 2λ) = 0

and the maximum efficiency is obtained when the speed ratio is

λ =
U

V2
=

1
2

sin α2

This equation is independent of the velocity coefficients. For typical nozzle angles, in the
range from 65◦ to 75◦, the speed ratio λ = U/V2 is about 0.47, so that the blade speed at
this optimum condition is about one-half of the exit velocity from the nozzles. The turbine
efficiency at this value of U/V2 is

ηtsopt
=

1
2
c2
N(1 + cR)sin2α2

so that for cN = 0.979, cR = 0.940, and α2 = 70◦, the stage efficiency at the optimal
condition is ηtsopt

= 0.821. Figure 6.3 shows the stage efficiency for these parameters and
for an ideal case, with cN = 1 and cR = 1.

U/V
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Figure 6.3 Efficiency of a single-stage impulse turbine: ideal and actual with cN = 0.979, cR =
0.940, and α2 = 70◦.
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� EXAMPLE 6.2

Steam leaves the nozzles of a single-stage impulse turbine at the speed 900 m/s.
Even though the blades are not equiangular, the blade speed is set at the optimum for
equiangular blades when the nozzles are at the angle 68◦. The velocity coefficient
of the nozzles is cN = 0.97, and for the rotor blades, it is cR = 0.95. The absolute
value of the relative flow angle at the exit of the rotor is 3◦ greater than the
corresponding inlet flow angle. Find (a) the total-to-static efficiency, and (b) find
again the total-to-static efficiency of the turbine, assuming that it operates at the
same conditions, but has equiangular blades. If one efficiency is higher than the
other, then, explain the reason; if they are the same, then, give an explanation for
this as well.

Solution: (a) With the optimum operating blade speed determined from

U =
1
2
V2 sinα2 =

1
2

900 sin(68◦) = 417.2 m/s

the velocity components at the exit from the nozzles are

Vx2 = V2 cos α2 = 900 cos(68◦) = 337.2 m/s

Vu2 = V2 sinα2 = 900 sin(68◦) = 834.5 m/s

the velocity components of the relative velocity are

Wx2 = Vx2 = 337.2 m/s Wu2 = Vu2 − U = 834.5 − 417.2 = 417.3 m/s

The magnitude of the relative velocity is

W2 =
√

W 2
x2 + W 2

u2 =
√

337.22 + 417.32 = 536.4 m/s

The angle at which the relative velocity enters the rotor row is

β2 = tan−1
(

Wu2

Wx2

)
= tan−1

(
417.3
337.2

)
= 51.06◦

and the exit angle is β3 = −51.06◦ − 3◦ = −54.06◦, and the magnitude of the
relative velocity is W3 = cRW2 = 0.95 · 536.4 = 509.6 m/s. Work delivered by the
rotor is

w = U(Wu2 − Wu3) = U(1 + cRC)W2 sinβ2

in which C = sin |β3|/ sin β2 = 1.041 and cR = 0.95. Therefore, the work delivered
is w = 346.23 kJ/kg. Since the exit kinetic energy is wasted, its value is needed.
The exit velocity components are

Vx3 = Wx3 = W3 cos β3 = 509.6 cos(−54.06◦) = 299.1 m/s

Vu3 = W3 sinβ3 + U = 509.6 sin(−54.06◦) + 417.2 = 4.6 m/s
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Hence,
V3 =

√
V 2

x3 + V 2
u3 =

√
299.12 + 4.62 = 299.1 m/s

In the calculation of rotor efficiency, the rotor loss coefficient is ζR = 1/c2
R − 1 =

0.108, so that

ηR =
2w

2w + V 2
3 + ζRW 2

3
=

2 · 346230
2 · 346230 + 299.12 + 0.108 · 509.62 = 0.875

and since ηN = c2
N = 0.972 = 0.941, the total-to-static efficiency becomes

ηts = ηNηR = 0.941 · 0.875 = 0.823

(b) If the blades were equiangular and the turbine were to operate at its optimal
condition, then, the total-to-static efficiency would be

ηts =
1
2
c2
N(1 + cR)sin2α2 = 0.789

The loss of efficiency for equiangular blades is caused by the exit kinetic energy now
being larger than before. When the blades are not equiangular, even when the turbine
is not operated at its optimum blade speed, it has a high efficiency because the exit
velocity is nearly axial, and the turbine has a high utilization. For equiangular blades,
the exit flow angle is slightly larger, and therefore, the flow is faster, with more of
the kinetic energy leaving the stage. �

6.2.2 Pressure compounding

The optimum blade speed for a single-stage impulse turbine is about one-half the exit
velocity from the nozzles. Such a high blade speed requires a high shaft speed, which may
lead to large blade stresses. To reduce the shaft speed, two or more single-stage impulse
turbines are arranged in series, and the steam is then expanded partially in each of the set of
nozzles. This decreases the velocity from the nozzles, and thus the blade speed for optimal
performance. This arrangement, shown in Figure 6.4, is called pressure compounding, or
Rateau staging, after Auguste Camille Edmond Rateau (1863–1930) of France. Between
any two rotors, there is a nozzle row. The pressure drop takes place in the nozzles and
none across the rotor. As the steam expands, its specific volume increases, and a larger
flow area is needed in order to keep the increase in velocity moderate. One approach is to
keep the mean radius of the wheel constant and to increase the blade height. When this is
done, the blade speed at the mean radius remains the same for all stages, and the velocities
leaving and entering a stage can be made equal. Such a stage is called a normal stage, or a
repeating stage if, in addition, the exit flow angle is equal to that at the inlet to the stage.

Consider a multistage pressure-compounded impulse turbine with repeating stages.
Unlike in the single-stage turbine, the flow now enters the second set of nozzles at a
velocity equal to the exit velocity from the preceding stage, and the function of the nozzle
is to increase it. The process lines are shown in Figure 6.5. The stagnation states 03, 03s,
and 03ss are reached from the static states 3, 3s, and 3ss, which are on the constant pressure
line p3. As was discussed earlier, it does not necessarily follow that the states 03s and 03ss
are on the constant-pressure line p03 since the magnitudes of the velocities V3s and V3ss in

h03s = h3s +
1
2
V 2

3s h03ss = h3ss +
1
2
V 2

3ss
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Figure 6.4 Sketch of a multistage pressure-compounded impulse turbine (a) and the pressure drop
and velocity variation across each stage (b).
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Figure 6.5 The process lines for a pressure-compounded impulse stage.
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are not known. However, a consistent theory can be developed if it is assumed that the
stagnation states 03s and 03ss are on the constant pressure line p03, and their thermodynamic
states are then fixed by the known value of pressure and entropy. The previous equations
then fix the magnitudes of V3s and V3ss to definite values.

With this assumption, the Gibbs equation

Tds = dh − v dp ds = cp

dT

T
− R

dp

p

when integrated between states 03s and 03 and then between states 03ss and 03s along the
constant pressure line p03 and similarly along the corresponding states along the constant
pressure line p3 give

s2 − s1 = cp ln
T03s

T03ss
s3 − s2 = cp ln

T03

T03s

and
s2 − s1 = cp ln

T3s

T3ss
s3 − s2 = cp ln

T3

T3s

from which
T03

T03s
=

T3

T3s
and

T03s

T03ss
=

T3s

T3ss
(6.11)

and from these, it follows that

T03

T3
=

T03s

T3s
=

T03ss

T3ss

Expressing these temperature ratios in terms of Mach numbers yields

T03

T3
= 1 +

γ − 1
2

M 2
3

T03s

T3s
= 1 +

γ − 1
2

M 2
3s

T03ss

T3ss
= 1 +

γ − 1
2

M 2
3ss (6.12)

so that M3 = M3s = M3ss.
The stage efficiency for a pressure-compounded stage is the total-to-total efficiency

ηtt =
h01 − h03

h01 − h03ss

which can be recast into the form

1
ηtt

− 1 =
h03 − h03ss

h01 − h03
=

h03 − h03s + h03s − h03ss

h01 − h03
(6.13)

Subtracting one from each side of both Eqs. (6.11), multiplying by cp, and rearranging
gives

h03 − h03s =
T03s

T3s
(h3 − h3s) h03s − h03ss =

T03ss

T3ss
(h3s − h3ss)

Substituting these into Eq. (6.13) leads to

1
ηtt

− 1 =

T03s

T3s
(h3 − h3s) +

T03ss

T3ss
(h3s − h3ss)

w
(6.14)
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or, since the temperature ratios are the same, according to Eq. (6.12), this expression for
efficiency becomes

1
ηtt

− 1 =

(
1 +

γ − 1
2

M 2
3

)
(h3 − h3s + h2 − h2s)

w
(6.15)

The Mach number at the exit of the rotor is quite low and is often set to zero. It is, of
course, easily determined once the work, and exit velocity have been calculated. Then,

T03 = T01 −
w

cp

T3 = T03 −
V 2

3

2cp

and M3 =
V3√
γRT3

Ignoring the Mach number and introducing the static enthalpy loss coefficients gives

1
ηtt

− 1 =
ζRW 2

3 + ζNV 2
2

2w
(6.16)

The relationship W 2
3 = c2

RW 2
2 may be substituted into this, giving

1
ηtt

− 1 =
ζRc2

RW 2
2 + ζNV 2

2

2w

or
ηtt =

2w

ζRc2
RW 2

2 + ζNV 2
2 + 2w

(6.17)

The relative velocity W2 can be written as

W 2
2 = V 2

2 − 2V2U sin α2 + U 2

so that
1
ηtt

− 1 =
ζRc2

R(V 2
2 − 2V2U sin α2 + U 2) + ζNV 2

2

2w

The work delivered by the stage is

w = U(Vu2 − V03) = U(Wu2 − Wu3) = U(1 + cR)Wu2 = U(1 + cR)(V2 sin α2 − U)

Substituting λ = U/V2 into the previous expression for the stage efficiency gives it the
form

1
ηtt

− 1 =
ζRc2

R(1 − 2λ sin α2 + λ2) + ζN

2λ(1 + cR)(sin α2 − λ)

Defining the quantity fL as

fL =
ζR(λ2 − 2λ sin α2 + 1) + ζN(1 + ζR)
2(1 + ζR +

√
1 + ζR)(λ sin α2 − λ2)

in which the relation cR = 1/
√

1 + ζR has been used, the stage efficiency can now be
written as

ηtt =
1

1 + fL
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from which it is clear that fL is a measure of the losses. The maximum value for
the efficiency of a pressure-compounded stage is obtained by minimizing fL. Thus,
differentiating it with respect to λ and setting the result to zero gives

λ2 − 2(ζR + ζN(1 + ζR))
ζR sinα2

λ +
ζR + ζN(1 + ζR)

ζR
= 0

Of the two roots

λopt =
U

V2
=

ζR + ζN(1 + ζR) +
√

(ζR + ζN(1 + ζR))(ζR + ζN(1 + ζR) + ζRsin2α2)
ζR sinα2

is the correct one, as the second root leads to U/V2 ratio greater than unity. This would
mean that the wheel moves faster than the approaching steam. The stage efficiency now
can be written as

ηtt =
2λ(1 + cR)(sin α2 − λ)

2λ(1 + cR)(sin α2 − λ) + ζRc2
R(λ2 − 2λ sin α2 + 1) + ζN

(6.18)

The stage efficiencies for various nozzle angles are shown in Figure 6.6 for both a
pressure-compounded stage and for a single-stage impulse turbine with exit kinetic energy
wasted. The efficiency curves for the pressure-compounded stage are quite flat at the top
and naturally higher as the exit kinetic energy is used at the inlet of the next stage.
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Figure 6.6 Stage efficiencies of single-stage impulse turbines with nozzle angles in the range from
60◦ to 78◦ with ζN = 0.02 and ζR = 0.14; the exit kinetic energy is wasted for the set of graphs
with lower efficiency, and the family of graphs of higher efficiency are total-to-total efficiencies
applicable to a pressure-compounded turbine stage.

6.2.3 Blade shapes

Some details of the construction of impulse blades are considered next. The equiangular
blades are shown in the sketch Figure 6.7. The concave side of the blade is circular, drawn
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Figure 6.7 Equiangular bucket blade shape. Source: Modified from Kearton [53].

with its center a distance c cot β2/2 below the mid-cord point. Here, c is the length of the
cord, and the radius of the circular arc is given by

r =
c

2 sin β2

To establish the geometric dimensions of the blade, Brilling’s rule may be followed, which
establishes the interblade spacing as d = ra/2, and ra is the radius of a circular arc that
divides the gap between the blades in half. A line segment of length equal to the interblade
spacing is marked off from the center along the line of symmetry. This point becomes the
center of the circular arc of the concave side of blade j. The convex side of the blade i
consists of a circular arc that is drawn from the same origin, and its extent is such that a
straight-line segment in the direction of the blade angle meets the exit at a location that
gives the correct spacing to the blades; that is the radius of the arc is chosen such that
this line segment is tangent to the arc at point a. This point is chosen at the location of
the intersection of a perpendicular from the trailing edge of blade j to this line segment.
The blade at the inlet is made quite sharp, and at the outlet, the blade may also have a
straight segment extending past the conventional exit plane. In a multistage turbine, the
extent of the straight segment controls the spacing between the exit of the rotor and the
inlet to the next set of nozzles. These nozzles are usually designed to have an axial entry.
If the turbine operates at the design condition, and the absolute velocity at the exit is axial,
then the steam flows smoothly into these nozzles. At off-design conditions, the flow angle
at the entry will not match the metal angle of the nozzles, leading to increased losses in
the nozzles, particularly for blades with sharp edges. In order to improve steam turbine’s
operation at a fractional flow rate, absolute values of the flow angles, at both inlet and
exit, are made larger by 2◦ or 3◦, and in a multistage turbine, for the blades next to the last
stage, this may be 4◦ or 5◦. For the last stage, the range from 5◦ to 10◦ is used [53].

Impulse blading is designed to ensure equal pressures at the inlet and exit of the rotor.
However, owing to irreversibilities, temperature increases across the rotor, and this causes
the specific volume to increase. Since mass flow rate is constant, mass balance gives

ṁ =
A2W2 cos β2

v2
=

A3W3 cos β3

v3
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in which Vx2 = W2 cos β2 and Vx3 = W3 cos β3 have been used. Since β3 = −β2 and
W3 < W2, then with v3 > v2, the flow area has to be increased. This is done by increasing
the height of the blade. However, it is also possible to alter the exit angle as previously
mentioned.

For blades that are not equiangular, the absolute value of the outlet blade angle in most
impulse turbines is larger than the inlet angle. For them, the radius of the concave surface
of the blade is given by

r =
c

sin β2 + sin |β3|

The offset between the leading and trailing edges in this case is

x = r(cos β2 − cos |β3|)

With |β3| = β2 + 3◦, the bisector of the blade profile will lean to the right, as shown in
Figure 6.8. The channel width at the exit is given by d = b (s cos |β3| − t), in which t is
the trailing edge blade thickness. For a flow with mass flow rate ṁ and specific volume v3
mass balance gives

ṁv3 = W3Z b(s cos |β3| − t) (6.19)

in which Z is the number of blades in the rotor. For a given spacing of the blades, their
thickness and number, and for a specified mass flow rate and exit specific volume, this
equation shows that only two of the three parameters: blade height b, relative velocity
W3, and flow angle |β3|, may be chosen independently. If it is possible to accommodate
the increase in specific volume in the downstream direction by an increase in the blade
height, then this equation shows that increasing |β3| decreases the channel width d, and
this leads to an increase in the relative velocity W3. Equation (6.1) then shows that since
the trothalpy is constant, the static enthalpy decreases. A drop in static enthalpy along the
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Figure 6.8 Bucket construction details for unequal blade angles. Source: Modified from Kearton
[53].
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flow is associated with a drop of pressure, as process lines on a Mollier diagram show. The
acceleration of the flow increases the force on the blade, for by the momentum principle

Fu = ṁ(Vu2 − Vu3) = ṁ(Wu2 − Wu3)

and since Wu3 is negative, an increase in its magnitude increases the force component Fu.
It has become conventional to call this additional force a reaction force in analogy to the
thrust force given to a rocket being a reaction to the exit momentum leaving the rocket
nozzle. Reaction turbines are discussed more fully in the next chapter.

6.2.4 Velocity compounding

A second way of compounding a turbine was developed by the American Charles Gordon
Curtis (1860–1953). In his design, steam first enters an impulse stage, and as it leaves
this stage, it enters a stator row of equiangular vanes. They redirect it to the second rotor
row of equiangular blades, but of course with a different magnitude for their angles than
that in the first row. All the pressure drop takes place in the upstream nozzles, and thus,
no further reduction of pressure takes place as the steam moves through the downstream
stages. There are practical reasons for not fitting the turbine by more than four stages.
Namely, work done by later stages drops rapidly. In this kind of Curtis staging, velocity is
said to be compounded from one stage to the next.

Consider an n-stage Curtis turbine with equal velocity coefficients cv for each blade
row. Analysis of the first stage is the same as for a single-stage impulse turbine. Work
delivered is

w1n = U(Vu2 − Vu3) = U(Wu2 − Wu3)

As was shown previously for equiangular blades, Wu3 = −cvWu2, and work delivered by
the first stage may be written as

w1n = U(1 + cv)Wu2

In the same way, work delivered by the second and third stages are

w2n = U(1 + cv)Wu4

and
w3n = U(1 + cv)Wu6

If the relative velocity Wu4 is related to Wu2, and Wu6 is related to Wu4, then, work from
each stage can be expressed in terms of Wu2. With Vu4 = −cvVu3 for equiangular stator
blades, Wu4 can be written as

Wu4 = Vu4 − U = −cvVu3 − U = −cv(Wu3 + U) − U = −cv(−cvWu2 + U) − U

in which Wu3 = −cvWu2 has been used. Hence, the final result is

Wu4 = c2
vWu2 − (1 + cv)U

Similarly,
Wu6 = c2

vWu4 − (1 + cv)U
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Substituting Wu4 from the previous expression into this gives

Wu6 = c4
vWu2 − (1 + cv)(1 + c2

v)U

Work delivered by each of the three rotors is then

w1n = U(1 + cv)(V2 sinα2 − U)

w2n = U(1 + cv)c
2
v(V2 sinα2 − U) − (1 + cv)(1 + cv)U

2

w3n = U(1 + cv)c
4
v(V2 sinα2 − U) − (1 + cv)(1 + cv + c2

v + c3
v)U

2

Work delivered by the next stage is easily shown to be

w4n = U(1 + cv)c
6
v(V2 sinα2 − U) − (1 + cv)(1 + cv + c2

v + c3
v + c4

v + c5
v)U

2

Inspection of these shows that work delivered by the nth stage is1

wnn = U(1 + cv)c
2n−2
v (V2 sin α2 − U) − (1 + cv)

2n−2∑
i=1

ci−1
v U 2

which can also be written as

wnn = U(1 + cv)c
2n−2
v (V2 sin α2 − U) −

(
1 + cv

1 − cv

)
(1 − c2n−2

v )U 2 (6.20)

Optimum operating conditions are now developed for turbines with different number of
wheels. Work delivered by the single wheel of single-stage turbine is given by

w1 = U(1 + cv)(V2 sinα2 − U)

and the optimum blade speed was shown in the beginning of this chapter to be

U

V2
=

1
2

sin α2

At the optimum speed, work from a single-stage turbine is

w1 =
1 + cv

4
V 2

2 sin2α2

and if cv = 1, this is

w1 =
1
2
V 2

2 sin2α2

Work delivered by a two-wheel Curtis turbine is w2 = w12 + w22, or

w2 = U(1 + cv)(1 + c2
v)(V2 sinα2 − U) − (1 + cv)(1 + cv)U

2

1That this conjecture is true can be shown by first proving by mathematical induction the three-term recurrence
relationship wi+2,n − (1 + c2

v)wi+1,n + c2
vwi,n = 0 between the stages and solving this difference equation.
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and when this is differentiated with respect to U and the result is set to zero, the optimum
blade speed is found to be

U

V2
=

(1 + c2
v) sin α2

2(2 + cv + c2
v)

For cv = 1, this reduces to
U

V2
=

1
4

sinα2

Hence, a two-wheel Curtis turbine can be operated at about one-half the shaft speed of
a single-stage impulse turbine. At the optimum speed, work delivered by a two-wheel
turbine is as follows:

w2 =
(1 + cv)(1 + c2

v)
2

4(2 + cv + c2
v)

V 2
2 sin2α2

For cv = 1, this reduces to

w2 =
1
2
V 2

2 sin2α2

which is exactly the same as in a single-stage turbine. For a three-wheel Curtis turbine,
work delivered is w3 = w13 + w23 + w33, and the expression for the work, when written
in full, is

w3 = U(1 + cv)(1 + c2
v + c4

v)(V2 sin α2 − U)

− (1 + cv)(1 + cv + c2
v + c3

v)U
2 − (1 + cv)(1 + cv)U

2

Differentiating this to determine the value of blade speed for which work is maximum
gives

U

V2
=

(1 + c2
v + c4

v) sin α2

2[(1 + c2
v + c4

v) + (1 + cv + c2
v + c3

v) + (1 + cv)]

and for cv = 1, this reduces to
U

V2
=

1
6

sinα2

and the work delivered at this speed is

w3 =
(1 + cv)(1 + c2

v + c4
v)

2

4(3 + 2cv + 2c2
v + c3

v + c4
v)

V 2
2 sin2α2

Finally, the optimum blade speed for a four-wheel turbine is

U

V2
=

(1 + c2
v + c4

v + c6
v) sin α2

2[(1+c2
v +c4

v +c6
v)+(1+cv +c2

v +c3
v +c4

v +c5
v )+(1+cv +c2

v +c3
v)+(1 + cv)]

and work delivered at this speed is

w4 =
(1 + cv)(1 + c2

v + c4
v + c6

v)
2

4(4 + 3cv + 3c2
v + 2c3

v + 2c4
v + c5

v + c6
v)

V 2
2 sin2α2

Although velocity compounding with four wheels have been built in the past, they are no
longer in use.
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If cv = 1 for a two wheel turbine, then, the ratio of the work done is 3 : 1 between the
first and second stage. If further stages are included, the work ratios become 5 : 3 : 1 and
7 : 5 : 3 : 1 for three- and four-stage turbines, respectively, and the optimum blade speeds
drop to U = sinα2V2/6 and U = sin α2V2/8. As has been shown, addition of successive
stages does not increase the amount of work delivered by the turbine in the ideal case, and
its advantage lies entirely in the reduction of the shaft speed. When irreversibilities are
taken into account, turbines with multiple stages deliver less work than does a single-stage
impulse turbine.

� EXAMPLE 6.3

Consider a velocity-compounded two-stage steam turbine. The velocity at the inlet
to the nozzle is axial, and it leaves the nozzle with speed V2 = 850 m/s at angle
α2 = 67◦. The blade speed is U = 195.6 m/s. The velocity coefficient for the nozzle
is cN = 0.967, and for the rotors, they are cR1 = 0.939 and cR2 = 0.971. For the
stator between the rotors, it is cS = 0.954. The rotors and the stator are equiangular.
Find the efficiency of the turbine.

Solution: The axial and tangential velocity components are

Vx2 = V2 cos α2 = 850 cos(67◦) = 332.1 m/s

Vu2 = V2 sinα2 = 850 sin(67◦) = 782.4 m/s

The relative velocity components are Wx2 = Vx2 = 332.1 m/s and

Wu2 = Vu2 − U = 782.4 − 195.6 = 586.8 m/s

so that
W2 =

√
W 2

x2 + W 2
u2 =

√
332.12 + 586.82 = 674.3 m/s

and the flow angle becomes

β2 = tan−1
(

Wu2

Wx2

)
= tan−1

(
586.8
332.1

)
= 60.49◦

The flow angle of the relative velocity leaving the first rotor is β3 = −60.49◦, and
its relative velocity is

W3 = cR1W2 = 0.939 · 674.3 = 633.2 m/s

so that its components are

Wx3 = W3 cos β3 = 633.2 cos(−60.49◦) = 311.9 m/s

Wu3 = W3 sinβ3 = 633.2 sin(−60.49◦) = −551.0 m/s

The axial component of the absolute velocity entering the stator is Vx3 = Wx3 =
311.9 m/s, and its tangential component is

Vu3 = Wu3 + U = −551.0 + 195.6 = −355.4 m/s
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Therefore,

V3 =
√

V 2
x3 + V 2

u3 =
√

311.92 + 355.42 = 472.9 m/s

and the flow angle is

α3 = tan−1
(

Vu3

Vx3

)
= tan−1

(
−355.4

311.9

)
= −48.74◦

The flow angle leaving the stator is α4 = −α3 = 48.74◦ and the magnitude of the
velocity is

V4 = cSV3 = 0.954 · 472.9 = 451.1 m/s

The components are

Vx4 = V4 cos α4 = 451.1 cos(48.74◦) = 297.5 m/s

Vu4 = V4 sinα4 = 451.1 sin(48.74◦) = 339.1 m/s

The axial component of the relative velocity is Wx4 = Vx4 = 297.5 m/s, and its
tangential component is

Wu4 = Vu4 − U = 339.1 − 195.6 = 143.5 m/s

so that
W4 =

√
W 2

x4 + W 2
u4 =

√
297.52 + 143.52 = 330.3 m/s

and the flow angle is

β4 = tan−1
(

Wu4

Wx4

)
= tan−1

(
143.5
297.5

)
= 25.75◦

At the inlet of the second rotor, relative velocity is at the angle β5 = −β4 = −25.75◦,
and its relative velocity is

W5 = cR2W4 = 0.971 · 330.3 = 320.7 m/s

so that its components are

Wx5 = W5 cos β5 = 320.7 cos(−25.75◦) = 288.9 m/s

Wu5 = W5 sinβ5 = 320.7 sin(−25.75◦) = −139.3 m/s

The axial component of the absolute velocity leaving the second rotor is Vx5 =
Wx5 = 288.89 m/s, and its tangential component is

Vu5 = Wu5 + U = −139.3 + 195.6 = 56.3 m/s

For the exit velocity, this gives the value

V5 =
√

V 2
x5 + V 2

u5 =
√

288.92 + 56.32 = 294.3 m/s
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and the flow angle is

α5 = tan−1
(

Vu5

Vx5

)
= tan−1

(
56.3
288.9

)
= 11.03◦

Work delivered by the two stages are

w12 = U(Vu2 − Vu3) = 195.6(782.4 + 355.4) = 222.6 kJ/kg

w22 = U(Vu4 − Vu5) = 195.6(339.1 − 56.3) = 55.3 kJ/kg

Therefore, the total work is

w2 = w12 + w22 = 222.6 + 55.3 = 277.9 kJ/kg

If all the velocity coefficients had been equal to cv = 0.96, then, the work would
have been

w2 =
(1 + cv)(1 + c2

v)
2

4(2 + cv + c2
v)

V 2
2 sin2α2 = 285.4 kJ/kg

The total-to-total efficiency is

1
ηtt

− 1 =
V 2

5 + ζR2W
2
5 + ζSV

2
4 + ζR1W

2
3 + ζNV 2

2

2w2

With

ζN =
1
c2
N
− 1 =

1
0.9672 − 1 = 0.0694 ζS =

1
c2
S
− 1 =

1
0.9542 − 1 = 0.0988

and

ζR1 =
1

c2
R1

− 1 =
1

0.9392 − 1 = 0.1341 ζR2 =
1

c2
R2

− 1 =
1

0.9712 − 1 = 0.0606

the reciprocal of efficiency is

1
ηtt

= 1+
294.32 +0.0606 · 320.72 + 0.0988 · 451.12 + 0.1341 · 633.22 + 0.0694 · 8502

2 · 277890

= 1.390

so that ηtt = 0.719. �

6.3 STAGE WITH ZERO REACTION

A stage design that is closely related to the impulse stage is one with zero reaction.
As Eq. (5.24) shows, for such a stage W3 = W2, and since trothalpy does not change
across the rotor, neither does the static enthalpy. If the axial velocity is constant, then
the blades need to be equiangular with β3 = −β2. The process lines are shown in
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Figure 6.9 Process lines for a turbine with 0% reaction.

Figure 6.9. If the exit kinetic energy is wasted, the stage efficiency is the total-to-static
efficiency:

ηts =
h01 − h03

h01 − h3ss

This is now rewritten in the form

1
ηts

− 1 =
h03 − h3ss

h01 − h03
=

1
2V

2
3 + h3 − h3ss

h01 − h03

which can be recast further as

1
ηts

− 1 =
1
2V

2
3 + h3 − h3s + h3s − h3ss

h01 − h03
=

V 2
3 + ζRW 2

3 + ζNV 2
2

2w

The work delivered by the stage is

w = U(Vu2 − Vu3) = U(Wu2 − Wu3) = 2UWu2 = 2U(V2 sin α2 − U)

As before, the component equations for velocities are

W3 cos β3 = V3 cos α3 W3 sin β3 + U = V3 sin α2

and squaring and adding them gives

V 2
3 = W 2

3 + 2UW3 sinβ3 + U 2

Since W3 = W2 and β3 = −β2, this can be written as

V 2
3 = W 2

2 − 2UW2 sinβ2 + U 2
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Similarly,
W2 cos β2 = V2 cos α2 W2 sinβ2 = V2 sin α2 − U

which when squared and added give

W 2
2 = V 2

2 − 2UV2 sin α2 + U 2

When these are included in the expression for efficiency, it takes the form

1
ηts

− 1 =
V 2

2 − 4UV2 sin α2 + 4U 2 + ζR(V 2
2 − 2UV2 sin α2 + U 2) + ζNV 2

2

4U(V2 sin α − U)

This can be written as
ηts =

1
1 + fL

in which, after the substitution λ = U/V2 has been made, fL is given by

fL =
1 − 4λ sin α2 + 4λ2 + ζR(1 − 2λ sin α2 + λ2) + ζN

4λ(sin α2 − λ)

The maximum efficiency is obtained by minimizing the loss fL. Thus, differentiating fL
with respect to λ and setting it to zero yields

λ2 − 2(1 + ζR + ζN)
ζR sin α2

λ +
1 + ζR + ζN

ζR
= 0

and the maximum efficiency is at the speed ratio

λ =
1 + ζR + ζN −

√
(1 + ζR + ζN)(1 + ζR + ζN − ζRsin2α2)

ζR sin α2

The efficiency may be written as

ηts =
4λ(sin α2 − λ)

1 + ζR(λ2 − 2λ sin α2 + 1) + ζN

These results are shown as the lower set of curves in Figure 6.10. The efficiencies of
a zero reaction stage for various nozzle angles are slightly lower than those for the
pressure-compounded impulse stage shown in Figure 6.6. The graphs for a 0% repeating
stage are also shown. Both are denoted by ηs, which needs to be interpreted appropriately,
either as repeating stage or as single stage with kinetic energy wasted.

The efficiency of a repeating stage is obtained from

ηtt =
4λ(sin α2 − λ)

(ζR − 4)λ2 + (4 − 2ζR)λ sin α2 + ζR + ζN

with maxima at speed ratios

λ =
ζR + ζN −

√
(ζR + ζN)(ζR + ζS − ζRsin2α2)

ζR sin α2

These are left to be worked out as an exercise.
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Figure 6.10 Stage efficiencies of single-stage and pressure-compounded zero-reaction turbines
with nozzle angles in the range from 60◦ to 78◦ with ζN = 0.02 and ζR = 0.14; the exit kinetic energy
is wasted for the set of graphs with lower efficiency, and the family of graphs of higher efficiency
are total-to-total efficiencies applicable to a pressure-compounded turbine stage.

6.4 LOSS COEFFICIENTS

A simple correlation for the loss coefficients was developed by Soderberg [86]. In the
definition

h − hs =
1
2
ζV 2

V replaced by V2 for the stator and by W3 for the rotor. The loss coefficients are calculated
from

ζ = 0.04 + 0.06
( ε

100

)2

in which ε is the amount of turning of the flow. For the nozzles, the amount of turning is
εN = α2 − α3, and for the rotor, it is εR = β2 − β3. In both expressions, the angles are in
degrees. Soderberg’s correlation is based on steam turbine designs, which commonly have
axial entry into the nozzles, but it gives good results for the flow through the rotor as well,
for the loss appears to depend mainly on the deflection of the flow.

� EXAMPLE 6.4

Steam enters the nozzles of single-stage impulse turbine axially and leaves from
the nozzles with speed V2 = 555 m/s at angle α2 = 74◦. The blade speed is U =
260 m/s. The exit flow angle of the relative velocity from the rotor is β3 = −65◦.
What is the efficiency of the stage if the exit kinetic energy is wasted?

Solution: The tangential and axial velocities at the exit of the nozzles are

Vu2 = V2 sinα2 = 555 · sin(74◦) = 533.5 m/s

Vx2 = V2 cos α2 = 555 · cos(74◦) = 153.0 m/s
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The components of the relative velocity at this location are

Wu2 = Vu2 − U = 533.5 − 260 = 273.5 m/s Wx2 = Vx2 = 153.0 m/s

Hence,
W2 =

√
W 2

x2 + W 2
u2 =

√
153.02 + 273.52 = 313.4 m/s

and the flow angle of the relative velocity is

β2 = tan−1
(

Wu2

Wx2

)
= tan−1

(
273.5
153.0

)
= 60.78◦

The amount of turning by the nozzles and by the rotor blades are

εN = α2 − α1 = 74◦ εR = β2 − β3 = 60.78◦ + 65◦ = 125.78◦

The static enthalpy loss coefficients are

ζN = 0.04 + 0.06
(

74
100

)2

= 0.07286 ζR = 0.04 + 0.06
(

125.78
100

)2

= 0.1349

and the velocity coefficients are therefore

cN =
1√

1 + ζN
= 0.9654 cR =

1√
1 + ζR

= 0.9387

At the exit of the rotor, the relative velocity has the magnitude

W3 = cRW2 = 0.9387 · 313.4 = 294.2 m/s

and its components are

Wu3 = W3 sin β3 = 294.2 sin(−65◦) = −266.6 m/s

Wx3 = W3 cos β3 = 294.2 cos(−65◦) = 124.3 m/s

The components of the absolute velocity at the exit are

Vu3 = U + Wu3 = 260 − 266.6 = −6.6 m/s Vx3 = Wx3 = 124.5 m/s

Hence,
V3 =

√
V 2

x3 + V 2
u3 =

√
124.32 + 6.62 = 124.5 m/s

and the flow angle is

α3 = tan−1
(

Vu3

Vx3

)
= tan−1

(
− 6.6

134.3

)
= −3.04◦

The work delivered by the turbine is

w = U(Vu2 − Vu3) = 260(533.5 + 6.60) = 140430 J/kg
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The nozzle efficiency is

ηN = c2
N = 0.96542 = 0.9321

and the rotor efficiency is

ηR =
2w

2w + V 2
3 + ζRW 2

3
=

2 · 140426
2 · 140426 + 124.52 + 0.1349 · 294.22 = 0.9118

The turbine efficiency is therefore

ηts = ηNηR = 0.9321 · 0.9118 = 0.850
�

EXERCISES

6.1 Steam leaves the nozzle of a turbine with the velocity V2 = 1000 m/s. The flow
angle from the nozzle is α2 = 70◦, the blade velocity is U = 360 m/s, and the mass
flow rate is 800 kg/h. The rotor velocity coefficient is cR = 0.8, and the rotor blades are
equiangular. Draw the velocity diagrams and determine (a) the flow angle of the relative
velocity leaving the rotor, (b) the relative velocity of the steam leaving the rotor blade row,
(c) the magnitude of the tangential force on the blades, (d) the magnitude of the axial thrust
on the blades, (e) the power developed, and (f) the rotor efficiency. [Ans: (a) 59.46◦, (b)
538.5 m/s, (c) 231.9 N, (d) 15.2 N, (e) 83.5 kW, (f) 0.751]

6.2 The diameter of a wheel of a single-stage impulse turbine is 1060 mm and shaft
speed, 3000 rpm. The nozzle angle is 72◦, and the ratio of the blade speed to the speed at
which steam issues from the nozzles is 0.42. The ratio of the relative velocity leaving the
blades is 0.84 of that entering the blades. The outlet flow angle of the relative velocity is 3◦

more than the inlet flow angle. The mass flow rate of steam is 7.23 kg/s. Draw the velocity
diagram for the blades and determine (a) the magnitude of the axial thrust on the blades,
(b) the magnitude of the tangential force on the blades, (c) power developed by the blade
row, and (d) rotor efficiency. [Ans: (a) 209.7 N , (b) 2838 N, (c) 472.5 kW, (d) 0.8317]

6.3 The wheel diameter of a single-stage impulse steam turbine is 400 mm, and the shaft
speed is 3000 rpm. The steam issues from nozzles at velocity 275 m/s at the nozzle angle
of 70◦. The rotor blades are equiangular, and friction reduces the relative velocity as the
steam flows through the blade row to 0.86 times the entering velocity. Find the power
developed by the wheel when the axial thrust is Fx = 120 N. [Ans: 208.3 kW]

6.4 Steam issues from the nozzles of a single-stage impulse turbine with the velocity
400 m/s. The nozzle angle is at 74◦. The absolute velocity at the exit is 94 m/s, and its
direction is −8.2◦. Assuming that the blades are equiangular, find (a) the power developed
by the blade row when the steam flow rate is 7.3 kg/s and (b) the rate of irreversible
energy conversion per kilogram of steam flowing through the rotor. [Ans: (a) 490 kW, (b)
61.7 kW]

6.5 Carry out the steps in the development of the expression for ratio of the optimum
blade speed to the steam velocity for a single-stage impulse turbine with equiangular
blades. Note that this expression is independent of the velocity coefficient. Carry out the
algebra to obtain the expression for the rotor efficiency at this condition. (a) Find the
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numerical value for the velocity ratio when the nozzle angle is 76◦. (b) Find the rotor
efficiency at this condition, assuming that cR = 0.9. (c) Find the flow angle of the relative
velocity entering the blades at the optimum condition. [Ans: (a) 0.485, (b) 0.894, (c) 63.5◦]

6.6 Steam flows from a set of nozzles of a single-stage impulse turbine at α2 = 78◦ with
the velocity V2 = 305 m/s. The blade speed is U = 146 m/s. The outlet flow angle of the
relative velocity is 3◦ greater than its inlet angle, and the velocity coefficient is cR = 0.84.
The nozzle velocity coefficient is cN = 1. The power delivered by the wheel is 1000 kW.
Draw the velocity diagrams at the inlet and outlet of the blades. (a) Find the angle at which
the relative velocity leaves the rotor. (b) Calculate the mass flow rate of steam. [Ans: (a)
−70.4◦, (b) 24.2 kg/s]

6.7 Steam flows from a set of nozzles of a single-stage impulse turbine at an angle
α2 = 70◦. (a). Find the maximum total-to-static efficiency given velocity coefficients
cR = 0.83 and cN = 0.98. (b) If the rotor efficiency is 90% of its maximum value, what
are the possible outlet flow angles for the relative velocity. [Ans: (a) 0.808, (b) 43.21◦ and
61.06◦]

6.8 The nozzles of a single-stage impulse turbine have a wall thickness t = 0.3 cm and
height b = 15 cm. The mean diameter of the wheel is 1160 mm, and the nozzle angle is
α2 = 72◦. The number of nozzles in a ring is 72. The specific volume of steam at the exit
of the nozzles is 15.3 m3/kg, and the velocity there is V2 = 366 m/s and the shaft turns at
3000 rpm. (a) Find the mass flow rate of steam through the steam nozzle ring. (b) Find the
power developed by the blades of an impulse wheel of equiangular blades, given that the
velocity coefficient is cR = 0.86 and cN = 1.0. [Ans: (a) 3.27 kg/s, (b) 183.6 kW]

6.9 The isentropic static enthalpy change across a stage of a single-stage impulse turbine
is Δhs = 22 kJ/kg. The nozzle exit angle is α2 = 74◦. The mean diameter of the wheel
is 148 cm, and the shaft turns at 1500 rpm. The blades are equiangular with a velocity
coefficient of cR = 0.87. The nozzle velocity coefficient is cN = 0.98. (a) Find the steam
velocity at the exit of the nozzles. (b) Find the relative velocity and its flow angle at the exit
of the rotor. (c) Find the overall efficiency of the stage. [Ans: (a) 215 m/s, (b) 94.0 m/s
and −56.76◦, (c) 0.817]

6.10 An impulse turbine has a nozzle angle α2 = 72◦ and steam velocity V2 = 244 m/s.
The velocity coefficient for the rotor blades is cR = 0.85, and the nozzle efficiency is
ηN = 0.92. The output power generated by the wheel is Ẇ = 562 kW when the mass flow
rate is ṁ = 23 kg/s. Find the total-to-static efficiency of the turbine. [Ans: 0.755]

6.11 A two-row velocity-compounded impulse wheel is part of a steam turbine. The
steam velocity from the nozzles is V2 = 580 m/s, and the mean speed of the blades is
U = 116 m/s. The flow angle leaving the nozzle is α2 = 74◦, and the flow angle of the
relative velocity leaving the first set of rotor blades is β3 = −72◦. The absolute velocity
of the flow as it leaves the stator vanes between the two rotors is α4 = 68◦, and the outlet
angle of the relative velocity leaving the second rotor is β5 = −54◦. The steam flow rate
is ṁ = 2.4 kg/s. The velocity coefficient is cv = 0.84 for both the stator and the rotor
row. (a) Find the magnitude of the axial thrust from each wheel. (b) Find the magnitude
tangential force on each wheel. (c) Find the total-to-static efficiency of the rotors defined
as the work out divided by the kinetic energy available from the nozzles. [Ans: (a) 91.1
and 50.4 N, (b) 1960 and 485 N, (c) 0.703]
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6.12 A velocity-compounded impulse wheel has two rows of moving blades with a mean
diameter of D = 72 cm. The shaft rotates at 3000 rpm. Steam issues from the nozzles at
angle α2 = 74◦ with velocity V2 = 555 m/s. The mass flow rate is ṁ = 5.1 kg/s. The
energy loss through each of the moving blades is 24% of the kinetic energy entering
the blades, based on the relative velocity. Steam leaves the first set of moving blades at
β3 = −72◦, the guide vanes between the rows at α4 = 68◦, and the second set of moving
blades at β5 = −52◦. (a) Draw the velocity diagrams, and find the flow angles at the blade
inlets both for absolute and relative velocities. (b) Find the power developed by each row
of blades. (c) Find the rotor efficiency as a whole. [Ans: (a) β2 = −70.0◦, β4 = 51.5◦,
α3 = −64.9◦, α5 = 7.44◦, (b) 456.4 kW and 126.6 kW, (c) 0.742]

6.13 A two wheel velocity compounded steam turbine has the nozzle angle α2 = 67◦,
and the blade speed is U = 195 m/s. The velocity coefficient for the rotors and stator is
cR = 0.94. If the exit velocity from the second wheel is axial, what is the inlet velocity to
the first wheel. Assume equiangular blades. [Ans: 932 m/s]

6.14 Steam at the state of dry saturated vapor at 8 bar enters from a steam chest, a
set of nozzles from which it leaves at angle α2 = 74◦ and pressure 0.5 bar. The nozzle
coefficient is cN = 0.94, and the blade speed is U = 470 m/s. It then flows through an
impulse stage with equiangular blades and with the rotor blade coefficient cR = 0.90. (a)
Find the specific work delivered by the turbine and the rotor efficiency. Find the (b) the
rotor efficiency and the total-to-static stage efficiency. [Ans: (a) w = 364.3 kJ/kg, (b)
ηR = 0.855, (c) ηts = 0.804]

6.15 Consider a repeating 0% reaction stage. By neglecting the temperature factor, show
that the approximate form of the total-to-total efficiency is

ηtt =
4λ(sin α2 − λ)

(ζR − 4)λ2 + (4 − 2ζR)λ sin α2 + ζR + ζN

and its maximum value is at the condition λ = U/V2 given by

λ =
ζR + ζN −

√
(ζR + ζN)(ζR + ζN − ζRsin2α2)

ζR sin α2

6.16 Steam flows from the nozzles of a 0% repeating stage at an angle α2 = 69◦ and
speed V2 = 450 m/s and enters the rotor with blade speed moving at U = 200 m/s. Find
(a) its efficiency when the loss coefficients are calculated from Soderberg’s correlation
and (b) the work delivered by the stage. [Ans: (a) 0.889, (b) 85.82 kJ/kg]
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CHAPTER 7

AXIAL TURBINES

In the previous chapter, the impulse stages of steam turbines were analyzed. This chapter
extends the development of axial turbine theory to reaction turbines. These include gas
turbines and all except the leading stages of steam turbines. The extent of the global steam
turbine industry was mentioned in the last chapter. Gas turbine industry is even larger,
owing to the use of gas turbine in a jet engine. Gas turbines are also used for electric
power generation in central station power plants. In addition, they drive the large pipeline
compressors that transmit natural gas across continents and provide power on oil-drilling
platforms.

The chapter begins with the development of the working equations for the reaction
stages. These relate the flow angles of the absolute and relative velocities to the degree of
reaction, flow coefficient, and the blade-loading coefficient. Three-dimensional aspects of
the flow are considered next. Then, semiempirical theories are introduced to calculate the
static enthalpy rise caused by internal heating, which is then used to develop an expression
for the stage efficiency. After this, the equations used to calculate the stagnation pressure
losses across the stator and the rotor are developed.

7.1 INTRODUCTION

Two adjacent blades of an axial reaction turbine are shown in Figure 7.1. Their spacing
along the periphery of the disk is called the pitch. The pitch increases in the radial direction
from the hub of the rotor to its casing. The nominal value of the pitch is at the mean radius.

247Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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Figure 7.1 Flow channel between two adjacent turbine blades.

The lateral boundaries of the flow channel are along the pressure and suction sides of the
blades and the endwalls along the hub and the casing.

The flow is from front to back in Figure 7.1. The blade chord is the straight distance
from the leading edge of the blade to its trailing edge. Its projection in the axial direction
is the axial chord. The path of a fluid particle, as it passes through the blade passage, is
curved and thus, longer than the chord.

The annular region formed from the blade passage areas is called the flow annulus. The
annulus area is calculated as

A = 2πrm(rc − rh) = π(r2
c − r2

h)

if the mean radius rm is taken as the arithmetic average

rm =
1
2
(rc + rh)

of the casing radius rc and the hub radius rh. The blade height, or span, is b = rc − rh and
2πrm = Zs, in which Z is the number of blades, and s is the mean pitch or spacing of the
blades. Therefore, the annulus area is also A = Zsb.

An alternative is to define a mean radius such that the flow area from it to the hub and
to the casing are equal. This definition leads to the equality

π(r̄2
m − r2

h) = π(r2
c − r̄2

m)

which, when solved for r̄m, gives

r̄m =

√
r2
c + r2

h

2

In using this root-mean-square (RMS) value of the radius, the annulus area is clearly

A = π(r2
c − r2

h) = 2π(r̄2
m − r2

h) = 2π(r2
c − r̄2

m)
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The distance between the tip of the rotor blade and the casing is called a tip clearance. This
is kept small in order to prevent tip leakage flow in the rotor. Because the tip clearance
is small, the distinction between the casing radius and tip radius is usually ignored in the
following discussion. The stator blades, as shown in Figure 7.2, are fixed to the casing,
and their tips are near the hub of the rotor blades. In many designs, their tips are fastened
to a diaphragm that extends inward. At the end of the diaphragm, a labyrinth seal separates
it from the rotating shaft. The seal prevents the leakage flow that is caused by the pressure
difference across the stator. Since the seal is located close to the shaft, the flow area for the
possible leakage flow is small.

RS

CL

Seal

Figure 7.2 A stage of an axial turbine.

Axial turbines are commonly designed such that the axial velocity remains constant,
or nearly so. Therefore, as the gas expands through the turbine, the annulus area must
increase from stage to stage. This flaring of the annulus is accomplished by changing the
hub radius, the casing radius, or both. If both are changed, the mean radius can be kept
constant.

7.2 TURBINE STAGE ANALYSIS

Consider a turbine stage as shown schematically in Figure 7.3. It consists of a stator
followed by a rotor. As in the previous chapter on steam turbines, the inlet to the stage is
station 1, and the outlet from the stator is station 2, which is also the inlet to the rotor. The
outlet from the rotor, and hence the stage, is station 3. For a normal stage in a multistage
machine, the magnitude of the velocity at the outlet of the rotor is the same as that at the
inlet to the stator. If the flow angles are also the same, the stage is called a repeating stage.
Pressure, temperature, and density naturally change from stage to stage.

Work delivered by a turbine stage is given by the Euler equation for turbomachinery

w = U(Vu2 − Vu3) = U(Wu2 − Wu3) (7.1)

For the situation shown in Figure 7.3, the inlet flow angle of the absolute velocity is
negative as the flow enters the stator. For the rotor, a deflection is the difference in the
swirl velocities Vu2 − Vu3 = Wu2 − Wu3. It is also measured by the amount of turning,
β2 − β3. The amount of turning across the stator is given by α2 − α1. Clearly, if a stage is
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Figure 7.3 Velocity triangles for a turbine stage.

to deliver a large amount of the work, for a given blade velocity, turning across the rotor
must be large. A typical value is 70◦, and it rarely exceeds 90◦. A large deflection also
means that the average pressure difference between the pressure and suction sides of a
blade must be large. Such blades are said to be heavily loaded.

In order to achieve a large amount of turning in the rotor, the stator must also turn
the flow, but in the opposite direction. The velocity diagrams in Figure 7.3 show that, as
the stator deflects the flow toward the direction of rotation, the stream velocity increases.
Since the stagnation enthalpy remains constant across the stator, it follows that

h1 +
1
2
V 2

1 = h2 +
1
2
V 2

2 h1 − h2 =
1
2
(V 2

2 − V 2
1 )

and the increase in kinetic energy leads to a drop in the static enthalpy. This expression
may be written as

(u1 − u2) + p1v1 − p2v2 =
1
2
(V 2

2 − V 2
1 )

It shows that the increase in kinetic energy comes from conversion of internal energy and
from the difference in the flow work done in pushing the fluid into and out of the flow
passage. This may also be written in a differential form. By considering station 2 to be an
arbitrary location, and differentiating, yields

−du

d�
− d(pv)

d�
=

1
2

dV 2

d�
= V

dV

d�

in which d� is an element of length along the flow path. This shows that a drop in the
internal energy increases the kinetic energy of the flow, as does the net pv work term in
this small section of the channel. That both terms have the same sign is clear for an ideal
gas, for then du = cv dT and d(pv) = R dT , and since internal energy drops in the flow
direction, so does temperature and pv. The ratio of these contributions is

du

d(pv)
=

1
γ − 1

= 3

with the numerical value corresponding to γ = 4
3 . Thus, the conversion of internal energy

contributes more to the increase in kinetic energy than the flow work.
As the gas passes through the rotor, it is directed back toward the axis, reducing its

kinetic energy. The work delivered by the stage is given by

w = h02 − h03 = h2 − h3 +
1
2
(V 2

2 − V 2
3 ) (7.2)
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With the reaction defined as the static enthalpy drop across the rotor divided by the static
enthalpy drop across the stage, for positive stage reaction, h2 > h3. An exception to this is
an expansion at constant pressure in impulse blades. Equation (7.2) may be written as

w = u2 − u3 + p2v2 − p3v3 +
1
2
(V 2

2 − V 2
3 ) (7.3)

and, since each term is expected to be positive, each contributes to the work delivered by
the turbine. This is illustrated in the following example.

� EXAMPLE 7.1

Consider the flow of combustion gases through a repeating turbine stage. The flow
angle entering the stator is α1 = −14.4◦, and since this is a repeating stage, the
flow leaves the rotor at the angle α3 = −14.4◦. The ratio of specific heats for the
gases is γ = 4

3 , and their gas constant is R = 287 J/(kg K). The inlet stagnation
temperature is T01 = 1200 K. The axial velocity is constant Vx = 280 m/s, and the
flow leaves the stator at angle α2 = 57.7◦. The mean radius of the rotor is r = 17 cm,
and the rotor turns at 20000 rpm. (a) Find the work done and the drop in stagnation
temperature across the stage. (b) Determine the flow angles of the relative velocity
at the inlet and exit of the rotor. (c) Calculate the contribution of internal energy
and flow work in increasing the kinetic energy through the stator. (d) Calculate the
contributions of internal energy, flow work, and kinetic energy to work delivered by
the stage.

Solution: (a, b) The specific heats at constant pressure and volume for the gas are

cp =
γR

γ − 1
= 4 · 287 = 1148 J/(kg K)

cv = cp − R = 1148 − 287 = 861 J/(kg K)

The blade velocity is

U = r Ω =
0.17 · 20000 · π

30
= 356.0 m/s

The tangential component and the magnitude of the absolute velocity leaving the
stator are

Vu2 = Vx tan α2 = 280 tan(57.7◦) = 442.9 m/s

V2 =
√

V 2
x + V 2

u2 =
√

2802 + 442.92 = 524.0 m/s

The tangential component and the flow angle of the relative velocity at the stator
exit are

Wu2 = Vu2 − U = 442.9 − 356.0 = 86.9 m/s

β2 = tan−1
(

Wu2

Wx

)
= tan−1

(
86.9
280

)
= 17.2◦

At the exit of the rotor, the tangential component of the flow velocity is

Vu3 = Vx tan α3 = 280 tan(−14.4◦) = −71.9 m/s
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and its speed is

V3 =
√

V 2
x + V 2

u3 =
√

2802 + 71.92 = 289.1 m/s

The tangential component and the flow angle of the relative velocity there are

Wu3 = Vu3 − U = −71.9 − 356.0 = −427.9 m/s

β3 = tan−1
(

Wu3

Wx

)
= tan−1

(
−427.9

280

)
= −56.8◦

Work delivered by the turbine is

w = U(Vu2 − Vu3) = 356.0 (442.9 + 71.9) = 183.3 kJ/kg

and the stagnation temperature drop across the rotor is

ΔT0 =
w

cp

=
183.3
1.148

= 159.7 K

(c) At the inlet to the stator, the static temperature is given by

T1 = T01 −
V 2

1

2cp

= 1200 − 289.12

2 · 1148
= 1200 − 36.4 = 1163.6 K

At the exit of the stator, the static temperature is

T2 = T02 −
V 2

2

2cp

= 1200 − 524.02

2 · 1148
= 1200 − 119.6 = 1080.4 K

so that

u1 − u2 = cv(T1 − T2) = 0.861 (1163.6 − 1080.4) = 71.6 kJ/kg

and

p1v1 − p2v2 = R(T1 − T2) = 0.287 (1163.6 − 1080.4) = 23.9 kJ/kg

Increase in the kinetic energy across the stator is

1
2
(V 2

2 − V 2
1 ) =

1
2
(524.02 − 289.12) = 95.5 kJ/kg

which also equals the sum of the previous two terms.
(d) Since the stagnation temperature drop across the rotor is ΔT0 = 159.7 K, the
stagnation temperature after the rotor is

T03 = T02 − ΔT0 = 1200 − 159.7 = 1040.3 K

and

T3 = T03 −
V 2

3

2cp

= 1040.3 − 289.12

2 · 1148
= 1040.3 − 36.4 = 1003.9 K
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The contributions to work are

u2 − u3 = cv(T2 − T3) = 0.861 (1080.4 − 1003.9) = 65.8 kJ/kg

and

p2v2 − p3v3 = R(T2 − T3) = 0.287 (1080.4 − 1003.9) = 21.9 kJ/kg

In a normal stage, the increase in kinetic energy across the stator is equal to its
decrease across the rotor. Hence, the decrease in kinetic energy across the rotor is

1
2
(V 2

2 − V 2
3 ) =

1
2
(524.02 − 289.12) = 95.5 kJ/kg

The sums of internal energy changes and pv-work, and the change in kinetic energy
across the rotor, add up to the work delivered by the stage.

�

7.3 FLOW AND LOADING COEFFICIENTS AND REACTION RATIO

The work delivered by a stage is given by

w = U(Vu2 − Vu3) = U(Wu2 − Wu3)

which, if Vx = Wx is constant across the stage, then, this may be written as

w = UVx(tan α2 − tan α3) = UVx(tan β2 − tan β3) (7.4)

Let φ = Vx/U denote a flow coefficient and ψ = w/U 2 a blade-loading coefficient.
Then, dividing both sides of this equation by U 2 gives the Euler turbine equation in a
nondimensional form as

ψ = φ(tan α2 − tan α3) (7.5)

Other names for the blade-loading coefficient are work coefficient and loading factor. In
addition to ψ and φ, a third nondimensional quantity of importance in the theory is the
reaction ratio R, introduced previously. It was defined as the ratio of the static enthalpy
change across the rotor to that across the entire stage. Hence,

R =
h2 − h3

h1 − h3
=

h1 − h3 − (h1 − h2)
h1 − h3

= 1 − h1 − h2

h1 − h3
(7.6)

Reaction naturally falls into the range 0 ≤ R ≤ 1, but it was seen to be slightly negative
for a pure impulse stage. This equation shows that the reaction is zero, if the entire static
enthalpy drop takes place in the stator.

Recalling that the stagnation enthalpy of the relative motion, given by Eq. (5.17),
remains constant across a rotor in an axial stage, it follows that

h2 +
1
2
W 2

2 = h3 +
1
2
W 2

3
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or
h2 − h3 =

1
2
(W 2

3 − W 2
2 )

Hence, if W2 = W3, the reaction is zero. Across the stator, the stagnation enthalpy is
constant so that

h1 − h2 =
1
2
(V 2

2 − V 2
1 )

The value of V1 is smallest for an axial entry, and this equation shows that the static
enthalpy drop across the stator increases and reaction decreases for increasing V2. In
addition, a large deflection of the flow across the stator leads to a large V2.

It is useful also to think of R in the incompressible limit, for then in an isentropic flow
across the stator, internal energy remains constant, and in the pv-work, only the pressure
changes. Thus, pressure changes are directly proportional to changes in static enthalpy.
Hence, in this limit, a large reaction means a small pressure drop across the stator and a
large decrease in pressure across the rotor.

The reaction may be related to the flow angles by noting first that V 2
1 = V 2

x1 + V 2
u1

and V 2
2 = V 2

x2 + V 2
u2. Then, for constant axial velocity, Vx1 = Vx2, the change in enthalpy

across the stator may be written as

h1 − h2 =
1
2
(V 2

u2 − V 2
u1) =

1
2
V 2

x (tan2α2 − tan2α1)

For a normal stage, V1 = V3, and therefore, h1 − h3 = h01 − h03. With w = h01 − h03,
Eq. (7.6) for the reaction may be written as

R = 1 − V 2
x

2
(tan2α2 − tan2α3)

ψU 2

or as

R = 1 − φ2

2ψ
(tan2α2 − tan2α3) (7.7)

Substituting ψ from Eq. (7.5) into this gives

R = 1 − 1
2
φ(tan α2 + tan α3) (7.8)

Next, α2 is eliminated, again using Eq. (7.5), and the important result

ψ = 2(1 − R − φ tan α3) (7.9)

is obtained. It shows that a decreasing R increases the loading. A small R means that
the pressure drop across the rotor is small, but the large loading is the result of a large
deflection. In the stator, the flow leaves at high speed at large angle α2. The high kinetic
energy obtained this way becomes available for doing work on the rotor blades. The flow
is then deflected back toward the axis and beyond to a negative value of α3, so that the last
term in this equation is positive. Hence, for R fixed, an increase in the absolute value of
α3, obtained by increasing it in the direction opposite to U , leads to a large deflection and
a large value for the blade-loading factor ψ. Thus, a fairly low value of R and high turning
gives heavily loaded blades and a compact design.



�

� �

�

FLOW AND LOADING COEFFICIENTS AND REACTION RATIO 255

Equations (7.5) and (7.8) can be written as

tan α2 − tan α3 =
ψ

φ
(7.10)

tan α2 + tan α3 =
2 − 2R

φ
(7.11)

when solved for the unknown angles give

tan α3 =
1 − R − ψ/2

φ
tan α2 =

1 − R + ψ/2
φ

(7.12)

Experienced turbomachinery designers choose the flow and loading coefficients and the
degree of reaction at the outset and then determine the flow angles from these equations.
These are true only for a normal stage. If the axial velocity does not remain constant, the
proper equations need to be redeveloped from the fundamental concepts.

Similar expressions are next developed for the flow angles of the relative velocity. The
Euler turbine equation may be written as

w = U(Wu2 − Wu3) = UVx(tan β2 − tan β3)

which after dividing through by U 2 gives

ψ = φ(tan β2 − tan β3) (7.13)

To arrive at the second equation relating the relative flow angles to the nondimensional
parameters, the reaction ratio

R =
h2 − h3

h1 − h3

is converted into an appropriate form. Since the stagnation enthalpy of the relative motion
is constant across the rotor, the relation

h2 − h3 =
1
2
W 2

3 − 1
2
W 2

2

follows. Then, since Wx2 = Wx3, the term on the right may be rewritten in the form

h2 − h3 =
1
2
(W 2

x3 + W 2
u3 − W 2

x2 − W 2
u2) =

1
2
(W 2

u3 − W 2
u2) =

1
2
V 2

x (tan2β3 − tan2β2)

In addition, for a normal stage, h1 − h3 = h01 − h03 = w = U 2ψ. When this and the
previous equation are substituted into the definition of reaction ratio, it becomes

R =
V 2

x

2
(tan2β3 − tan2β2)

U 2ψ
or R =

φ2

2ψ
(tan2β3 − tan2β2)

Substituting ψ from Eq. (7.13) into this gives

R = −φ

2
(tan β3 + tan β2)
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This and Eq. (7.13) written as

tan β2 − tan β3 =
ψ

φ
(7.14)

tan β2 + tan β3 = −2R

φ
(7.15)

when solved for the flow angles of the relative velocity give

tan β3 = −R + ψ/2
φ

tan β2 = −R − ψ/2
φ

(7.16)

The flow angles may now be determined if the value of the parameters φ, ψ, and R are
specified. With four equations and seven variables, any three may be specified, and the
other four calculated from them. One such calculation is illustrated in the next example.

� EXAMPLE 7.2

Combustion gases with γ = 4
3 and cp = 1148 J/(kg K) flow through an axial turbine

stage with φ = 0.80 as the design value for the flow coefficient and ψ = 1.7 for the
blade-loading coefficient. The stage is repeating with flow into the stator at angle
α1 = −21.2◦. The absolute velocity of the gases leaving the stator is V2 = 463 m/s.
The inlet stagnation temperature is T01 = 1200 K, and the total-to-total efficiency is
0.89. (a) Find the flow angles for this repeating stage and the amount of turning by
the stator and the rotor. (b) Calculate the work delivered by the stage and the drop in
the stagnation temperature. (c) Determine the static pressure ratio across the stage.

Solution: (a) With α3 = α1, solving

ψ = 2(1 − R − φ tan α3)

for R gives

R = 1 − ψ

2
− φ tan α3 = 1 − 0.85 − 0.8 tan(−21.2◦) = 0.46

The remaining flow angles are

tan α2 =
1 − R + ψ/2

φ
= 1.737 α2 = 60.08◦

tan β3 =
−(R + ψ/2)

φ
= −1.638 β3 = −58.59◦

tan β2 =
−(R − ψ/2)

φ
= 0.487 β2 = 25.97◦

The amounts of turning by the stator and the rotor are

α2 − α3 = 81.27◦ β2 − β3 = 84.57◦

(b) The axial velocity is

Vx = V2 cos α2 = 463 cos(60.08◦) = 231.0 m/s,
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and now the inlet and exit velocity to the stage may be determined. It is

V3 = V1 =
Vx

tan α1
=

231.0
cos(−21.2◦)

= 247.8 m/s

The blade speed is

U =
Vx

φ
=

231.0
0.8

= 288.7 m/s

Hence, the work done may be calculated from

w = ψU 2 = 1.7 · 288.72 = 141.7 kJ/kg

and the drop in stagnation temperature is

ΔT0 =
w

cp

=
141.7
1.148

= 123.4 K

The isentropic work is obtained by dividing the work w by the stage efficiency,
which is the total-to-total efficiency,

ws =
w

ηtt
=

141.7
0.89

= 159.2 kJ/kg

(c) The static temperature at the inlet is

T1 = T01 −
V 2

1

2cp

= 1200 − 247.82

2 · 1148
= 1173.3 K

Neither the static nor the stagnation pressure is known at the inlet, but their ratio can
be calculated from

p1

p01
=

(
T1

T01

)γ/(γ−1)

=
(

1173.3
1200

)4

= 0.9139

The stagnation temperature at the exit of the stage comes out to be

T03 = T01 −
w

cp

= 1200 − 141.7
1.148

= 1076.6 K

The static temperature at the exit is

T3 = T03 −
V 2

3

2cp

= 1076.6 − 247.82

2 · 1148
= 1049.8 K

This can be used to calculate the ratio of static to stagnation pressure at the exit:

p3

p03
=

(
T3

T03

)γ/(γ−1)

=
(

1049.8
1076.5

)4

= 0.9043

The stagnation temperature at the isentropic end state is determined to be

T03s = T01 −
ws

cp

= 1200 − 159.2
1.1148

= 1061.3 K
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and the stagnation pressure ratio across the stage is therefore

p01

p03
=

(
T01

T03s

)γ/(γ−1)

=
(

1200
1061.3

)4

= 1.635

The ratio of static pressures across the stage can now be determined:

p1

p3
=

p1

p01

p01

p03

p03

p3
=

0.9138 · 1.635
0.9043

= 1.652

The representative values for an axial turbine stage ψ = 1.7, φ = 0.8, and R = 0.46
give these values for the stagnation and static pressure ratios and the amount of
turning comes out to be about 80–85◦. In addition, the stagnation temperature drop
of ΔT0 = 123.4 K is representative for a stage. �

7.3.1 Fifty percent (50%) stage

A 50% reaction stage has equal static enthalpy drops across the stator and the rotor. For
such a stage, Eq. (7.9) reduces to

ψ = 1 − 2φ tan α3 (7.17)

The blades and velocity triangles are shown in Figure 7.4. To achieve a high efficiency,
the flow angle at the inlet is kept only slightly negative, but if some of the efficiency is
sacrificed to achieve higher performance, the inlet flow angle may reach α1 = −45◦. For
such a stage, a flow coefficient may have a value of φ = 0.75, which then gives ψ = 2.5.
Gas turbines for aircraft are designed for high performance and low weight. Hence, the
number of stages is kept as low as possible, and materials that withstand high stresses are
used for the turbine blades.
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Figure 7.4 Blading for a 50% reaction turbine.

For a 50% reaction stage, Eqs. (7.12) and (7.16) for absolute and relative flow angles
reduce to

tan α3 =
1 − ψ

2φ
tan α2 =

1 + ψ

2φ
(7.18)
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and
tan β3 = −1 + ψ

2φ
tan β2 = −1 − ψ

2φ
(7.19)

From these, it is seen that

tan α3 = − tan β2 tan α2 = − tan β3 (7.20)

With their absolute values less than 90◦, these equations are satisfied if α3 = −β2 and
α2 = −β3. Since Wx = Vx, it follows that

W 2
3 = W 2

x + W 2
u3 = V 2

x + W 2
xtan2β3

= V 2
x + V 2

x tan2α2 = V 2
x + V 2

u2 = V 2
2

By a similar argument, it can be shown that W 2
2 = V 2

3 . Hence,

W3 = V2 W2 = V3

A combined velocity diagram is shown on the right half of Figure 7.4. It is constructed
by drawing the inlet and exit velocity diagrams with U as a base of common length. If all
velocities are then divided by U , the diagram is normalized, and the base has unity for its
length. The blade-loading coefficient ψ can be identified as the vertical distance between
the left vertices of the two triangles. For a constant axial velocity, widths of the triangles
are the same and in a normalized diagram equal to the flow coefficient φ. The results for the
angles and velocities show that the velocity triangles for 50% reaction stage are symmetric.

� EXAMPLE 7.3

Combustion gases, with γ = 4
3 and R = 287 J/(kg K), flow through a 50% repeating

reaction stage of an axial turbine with the design flow coefficient φ = 0.80 and
blade-loading coefficient ψ = 1.4. The axial velocity is constant across the stage
and equal to Vx = 220 m/s, and the mass flow rate is ṁ = 15 kg/s. The inlet
stagnation temperature is T01 = 1200 K, and pressure is p01 = 400 kPa. The shaft
turns at Ω = 10000 rpm. Since the stage has 50% reaction, the enthalpy loss
coefficients are nearly equal with an estimated value for the stator ζN = 0.070, and
owing to tip leakage, the loss coefficient for the rotor is estimated to be slightly
higher, with the value ζR = 0.072. (a) Find the flow angles for a normal stage, and
the amount of turning by the stator and the rotor. (b) Find the work delivered by the
stage and the drop in the stagnation temperature. (c) Find the flow areas entering
the stator and those entering and leaving the rotor. Find also the blade heights for a
design with constant mean radius for the stage.

Solution: (a) The blade angles are

tan α3 =
1 − ψ

2φ
= −0.25 so that α3 = −14.04◦

The other angles are

tan α2 =
1 + ψ

2φ
= 1.50 so that α2 = 56.31◦
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and
β3 = −α2 = −56.31◦ β2 = −α3 = 14.04◦

The amount turning by the stator and rotor are

α2 − α3 = 70.35◦ β2 − β1 = 70.35◦

(b) The blade speed is

U =
Vx

φ
=

220
0.8

= 275.0 m/s

Hence, the work delivered may be calculated from

w = ψU 2 = 1.40 · 2752 = 105.9 kJ/kg

and the drop in stagnation temperature becomes ΔT0 = w/cp = 92.2 K, since cp =
1148 J/(kg K).
(c) In order to calculate the flow areas, density is needed at each station.
At the inlet to stator,

V1 =
Vx

cos α1
=

220
cos(−14.04◦)

= 226.8 m/s

For a repeating stage, V3 = 226.8 m/s as well. The static temperature at the inlet to
the stator is

T1 = T01 −
V 2

1

2cp

= 1200 − 226.82

2 · 1148
= 1177.6 K

and the static pressure is

p1 = p01

(
T1

T01

)γ/(γ−1)

= 400
(

1177.6
1200

)4

= 371.0 kPa

Hence, the density is ρ1 = p1/(RT1) = 371.0/(0.287 · 1177.6) = 1.10 kg/m3. The
inlet area is therefore

A1 =
ṁ

ρ1Vx

=
15

1.10 · 220
= 0.0621 m2

At the entrance to the rotor

V2 =
Vx

cos α2
=

220
cos(56.31◦)

= 396.6 m/s

and since T02 = T01, the static temperature is

T2 = T02 −
V 2

2

2cp

= 1200 − 396.62

2 · 1148
= 1131.5 K

The corresponding isentropic state is given by

T2s = T2 − ζS
V 2

2

2cp

= 1131.5 − 0.07
396.62

2 · 1148
= 1126.7 K
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Now, the static pressure is obtained from

p2 = p01

(
T2s

T01

)γ/(γ−1)

= 400
(

1126.7
1200

)4

= 310.9 kPa

A schematic diagram of these states can be found by looking ahead to Figure 7.10.
The density at the inlet to the rotor is ρ2 = p2/(RT2) = 310.9/(0.287 · 1131.5) =
0.957 kg/m3. The corresponding area is

A2 =
ṁ

ρ2Vx

=
15

0.957 · 220
= 0.0712 m2

The stagnation temperature after the rotor is given by

T03 = T02 −
w

cp

= 1200 − 105.9
1.148

= 1107.8 K

and the velocity at this location is

V3 =
Vx

cos α3
=

220
cos(−14.04◦)

= 226.8 m/s

Hence, the static temperature is

T3 = T03 −
V 2

3

2cp

= 1107.8 − 226.82

2 · 1148
= 1085.4 K

To establish the corresponding isentropic state, the relative velocity at this location
is needed. It is given by

W3 =
Vx

cos β3
=

220
cos(−56.3◦)

= 396.6 m/s

Now, the temperature T3s is obtained from

T3s = T3 − ζR
W 2

3

2cp

= 1085.4 − 0.072
396.62

2 · 1148
= 1080.4 K

The static pressure after the rotor is then

p3 = p02

(
T3s

T03

)γ/(γ−1)

= 393.3 −
(

1080.4
1107.8

)4

= 258.4 kPa

and the density is ρ3 = p3/(RT3) = 258.4/(0.287 · 1085.4) = 0.830 kg/m3. The
flow area after the rotor is thus

A3 =
ṁ

ρ3Vx

15
0.80 · 220

= 0.0797 m2

To find the blade heights, the mean radius is first determined from

rm =
U

Ω
=

275 · 30
10000 · π = 0.263 m
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By denoting the hub to casing ratio by κ = rh/rm, these are calculated from

κ1 =
2πr2

m − A1

2πr2
m + A1

= 0.749, κ2 =
2πr2

m − A2

2πr2
m + A2

= 0.718,

κ3 =
2πr2

m − A3

2πr2
m + A3

= 0.689

The blade heights at the inlet to the stator is

b1 = 2rm
1 − κ1

1 + κ1
= 0.0753 m

and at the inlet and exit of the rotor, they are b2 = 0.0863 m and b3 = 0.0966 m.
The stator blade has therefore the average height bS = (b1 + b2)/2 = 0.0808 m, and
the for the rotor, it is bR = (b2 + b3)/2 = 0.0915 m.

�

7.3.2 Zero percent (0%) reaction stage

Consider a stage for which R = 0. Equation (7.16) then shows that

tan β3 = − tan β2 or β3 = −β2

Assuming that the axial velocity is constant, it follows from these that W2 = W3. If the
flow angles were to be equal to the blade angles, then the blade would have a symmetric
bucket shape, as shown in Figure 7.5. With low reaction, the blades are heavily loaded.
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Figure 7.5 Blades for a 0% reaction stage.

This stage reaction and the impulse stage were discussed in Chapter 5 for steam turbines,
and the differences between them were shown to be slight. Since the flow enters the nozzles
from a steam chest, the inlet to the nozzles is naturally axial, and if most of the pressure
drop takes place across the nozzles, the stage reaction is close to zero. Here, the 0% reaction
stage is considered as a special case of a stage with an arbitrary reaction.

The normalized velocity diagram for a stage with α3 = 0 is shown on the right-hand
side (RHS) of Figure 7.5. For a normal stage with axial entry and with R = 0, the relation

ψ = 2(1 − R + φ tan α3)
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reduces to ψ = 2. Thus, the line indicating the blade loading is twice as long as blade
speed line.

� EXAMPLE 7.4

A repeating stage with R = 0 operates with axial entry. The nozzle turns the flow by
64◦. (a) Find the flow coefficient. (b) What is the discharge velocity from the nozzles,
if the axial velocity is Vx = 240 m/s? (c) Calculate the work delivered by the stage
and the drop in the stagnation temperature, given gases with cp = 1148 J/(kg K).

Solution: (a) From
ψ = 2(1 − R − φ tan α3)

a stage with R = 0 and axial entry has ψ = 2. Next, solving

tan α2 =
1 + ψ/2

φ

for φ, gives
φ = 2 cot α2 = 2 cot(64◦) = 0.9755

(b) The discharge velocity is

V2 =
Vx

cos α2
=

240
cos(64◦)

= 547.5 m/s

(c) The blade speed is

U =
Vx

φ
=

240
0.9755

= 246.0 m/s

and the work delivered and the drop in the stagnation temperature are

w = ψU 2 = 121.1 kJ/kg ΔT0 =
w

cp

=
121.1
1.148

= 105.5 K

�

7.3.3 Off-design operation

When a turbine is operated away from its design conditions, the incidence of the flow
entering the blades changes, and this will increase the thermodynamic losses in the flow.
The angle at which the flow leaves the stator tends not to change, however; nor does the
angle of the relative velocity leaving the rotor. By recasting the Euler turbine equation

w = U(Vu2 − Vu3)

in terms of the exit angles gives an equation that shows how the turbine performs under
off-design conditions. Replacing the exit velocity by

Vu3 = U + Wu3
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gives
w = U(−U − Wu3 + Vu2) = −U 2 + UVx(tan α2 − tan β3)

Dividing though by U 2 yields

ψ = −1 + φ(tan α2 − tan β3) (7.21)

The departure angle from the stator α2 is positive, and the exit angle of the relative velocity
β3 from the rotor is usually negative. Therefore, the term in parentheses is positive. As
these angles are close to the metal angles that are set by the design, they are fixed, and the
trigonometric terms in Eq. (7.21) tend to remain constant when the machine is operated
away from its design condition. Thus, Eq. (7.21) represents an operating line through the
design point.

Figure 7.6b shows this operating line. As the flow rate is increased beyond its design
value, the flow will eventually choke, and the flow coefficient no longer increases. In
Figure 7.6a, the velocity triangles illustrate how the incidence changes as the flow rate
decreases. The design condition is denoted by subscript d and off-design, by o. With the
exit flow angles held constant, the value of ψ + 1 drops in proportion to a drop in φ, and
as the sketch shows, both α3 and β2 decrease in absolute value as the flow coefficient
is reduced. This means that incidence of the flow to the vanes and the blades decreases.
Although the improper incidence leads to larger losses, these can be reduced by making
the leading edges of the blades and vanes well rounded.
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Figure 7.6 (a) Velocity diagrams for off-design performance. (b) A sketch of an ideal and an actual
performance characteristic.

� EXAMPLE 7.5

In an axial turbine stage, flow leaves the stator at V2 = 350 m/s in the direction
α2 = 60◦. Its blade-loading coefficient is ψ = 1.8, and flow coefficient is φ = 0.7.
Assuming that the axial velocity is reduced by 25 m/s from its design condition,
find the percent reduction in the reaction.
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Solution: The axial velocity at the design condition is

Vx = V2 cos α2 = 350 cos(60◦) = 175 m/s

and the reaction is

R = 1 +
ψ

2
− φ tan α2 = 1 + 0.9 − 0.7 tan(60◦) = 0.688

Hence, the angle of the relative flow leaving the rotor is

tan β3 = −R + ψ/2
φ

= −0.688 + 0.9
0.7

= −2.2678 β3 = −66.2◦

Reduction of the axial velocity by 25 m/s gives Vxn = 150 m/s, and with the blade
speed constant, the new value of flow coefficient is

φn =
Vxn

Vx

φ =
150
175

0.7 = 0.6

Assuming that the flow angles α2 and β3 remain constant, the new value for blade-
loading coefficient is

ψn = −1 +
φn

φ
(ψ + 1) = −1 +

0.6
0.7

(1.8 + 1) = 1.4

A new value for reaction is then obtained from the equality

tan β3 = −R + ψ/2
φ

= −Rn + ψn/2
φn

and it gives

Rn = −ψn

2
+

φn

φ

(
R +

ψ

2

)
= −1.4

2
+

0.6
0.7

(
0.688 +

1.8
2

)
= 0.661

Hence, the percent reduction for the reaction is (0.688 − 0.661)/0.688 = 0.039 or
about 4% when the axial velocity is reduced by 14.3%. �

The values of the flow coefficients in the foregoing examples were chosen to be in
their typical range 0.5 < φ < 1.0, and the blade-loading coefficients were in the range
1.4 < ψ < 2.2. The reaction turned out to be generally close to 0.5, except, of course,
for the zero-reaction stage. The typical stagnation temperature drop across the rotor is
120–150 K.

7.3.4 Variable axial velocity

Although axial turbines are designed to have constant axial velocity, the development
discussed earlier can be generalized to allow the axial velocity to vary across the stage.
The definition of a repeating stage required the axial velocity to be constant, and the
definition that the stage be normal requires that V1 = V3. If the flow coefficient varies,



�

� �

�

266 AXIAL TURBINES

then the normal stage is still obtained by assuming that V3 = V1, but except when both are
axial, it is no longer possible to have α1 equal to α3. Still, the angle α1 may be specified
independently, and its value does not change the main results of this subsection. The
requirement that V1 = V3 is assumed in the following development, for then the reaction
becomes independent of the conditions at the inlet to the stage.

Work delivered by the stage is

w = U(Vx2 tan α2 − Vx3 tan α3)

and dividing by U 2 gives
ψ = φ2 tan α2 − φ3 tan α3 (7.22)

in which φ2 = Vx2/U and φ3 = Vx3/U .
From the definition of reaction

R =
h2 − h3

h1 − h3
= 1 − h1 − h2

h1 − h3
= 1 −

h01 − h02 − 1
2V

2
1 + 1

2V
2
2

h01 − h03 − 1
2V

2
1 − 1

2V
2
3

Invoking the assumption that V1 = V3 and noting that h01 = h02 and that w = h01 − h03
reduces this to

R = 1 − V 2
2 − V 2

3

2w
= 1 − V 2

x2 + V 2
u2 − V 2

x3 − V 2
u3

2w

= 1 − V 2
x2(1 + tan2α2) − V 2

x3(1 + tan2α3)
2w

and dividing through by U 2 gives

R = 1 − φ2
2(1 + tan2α2) − φ2

3(1 + tan2α3)
2ψ

From Eq. (7.22), substituting φ3 tan α3 = φ2 tan α2 − ψ into this equation and simplifying
gives

R = 1 − φ2
2 − φ2

3 + 2ψφ2 tan α2 − ψ2

2ψ

from which
tan α2 =

2(1 − R)ψ + ψ2 − (φ2
2 − φ2

3)
2φ2ψ

Similarly, substituting φ2 tan α2 = φ3 tan α3 + ψ into the equation for the reaction gives

tan α3 =
2(1 − R)ψ − ψ2 − (φ2

2 − φ2
3)

2φ3ψ

The development of the relative flow angles follows similarly. The definition

R =
h2 − h3

h1 − h3

can be recast into a more convenient form by noting that trothalpy is constant across the
rotor so that h2 − h3 = 1

2 (W
2
3 − W 2

2 ) and V1 = V3. Making use of these and the enthalpy
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change across the stage h1 − h3 = h01 − h03 = w to simplify this equation gives

R =
W 2

x3 + W 2
u3 − W 2

x2 − W 2
u2

2w
=

V 2
x2(1 + tan2β3) − V 2

x2(1 + tan2β2)
2ψU 2

or

R =
φ2

3(1 + tan2β3) − φ2
2(1 + tan2β2)

2ψ

The expression for work done may be written as

w = U(Vu2 − Vu3) = U(Wu2 − Wu3) = U(Vx2 tan β2 − Vx3 tan β3)

or as
ψ = φ2 tan β2 − φ3 tan β3

Writing this as φ3 tan β3 = φ2 tan β2 − ψ and substituting it into the expression for
reaction and simplifying gives

tan β2 =
−2Rψ + ψ2 + (φ2

3 − φ2
2)

2φ2ψ

Similarly,

tan β3 =
−2Rψ − ψ2 + (φ2

3 − φ2
2)

2φ3ψ

Now, four parameters are needed to determine the flow angles. If V1 is not equal to V3,
then such simple equations no longer can be found.

7.4 THREE-DIMENSIONAL FLOW AND RADIAL EQUILIBRIUM

In the last stages of gas turbines, and certainly for steam turbines that exhaust to below
atmospheric pressure, the blades are long in order to accommodate the large volumetric
flow rate. Since the blade speed increases with radius, a simple approach is to construct
velocity triangles at each element of the blade. As a consequence, the blade loading and
reaction may vary considerably along the span of the blade. But this approach does not
take into account the pressure variation properly. The aim of this section is to take into
account the influence of the pressure increase from the hub to the casing in a flow with
a swirl velocity and as a result also of the variation of the reaction and the blade loading
along the span of long blades.

Consider a flow in which fluid particles move on cylindrical surfaces. Applying the
momentum balance in the radial direction to the control volume shown in Figure 7.7 gives

−2Vu sin
(

dθ

2

)
ρVu dr = pr dθ − (p + dp)(r + dr)dθ + 2

(
p +

1
2
dp

)
dr sin

(
dθ

2

)

The left side represents the net rate at which the radial component of momentum leaves
the control volume, and the right side is the net pressure force. Viscous terms have been
neglected. Noting that sin(dθ/2) ≈ dθ/2 for small dθ, simplifying, and dropping higher
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dp
2

p + dp
2

p +

p
r

dr

Vu

p + dp

dθ

Figure 7.7 Radial equilibrium condition on a fluid element.

order terms reduces this equation to

−1
ρ

dp

dr
+

V 2
u

r
= 0 (7.23)

The first term represents the net pressure force on a fluid particle of unit mass. The second
term is the centrifugal force. Since the second term is positive, pressure must increase
in the radial direction for this equation to be satisfied. Therefore, if the flow has a swirl
component, its pressure must increase from the hub to the casing.

If the radial velocity is small, then, the definition of stagnation enthalpy can be written as

h0 = h +
1
2
(V 2

x + V 2
u ) (7.24)

Differentiating with respect to r gives

dh0

dr
=

dh

dr
+ Vx

dVx

dr
+ Vu

dVu

dr
(7.25)

The Gibbs equation Tds = dh − dp/ρ may also be written as

T
ds

dr
=

dh

dr
− 1

ρ

dp

dr
(7.26)

and substituting into this dh/dr from Eq. (7.25) and dp/dr from Eq. (7.23) gives

dh0

dr
− T

ds

dr
= Vx

dVx

dr
+ Vu

dVu

dr
+

V 2
u

r

which may be rewritten as

dh0

dr
− T

ds

dr
= Vx

dVx

dr
+

Vu

r

d

dr
(rVu)

If neither h0 nor s varies with r, then the left side is zero, and this equation reduces to

Vx

dVx

dr
+

Vu

r

d

dr
(rVu) = 0 (7.27)

For a given radial variation of Vu, the variation of the axial velocity with r can be
determined by solving this equation.
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7.4.1 Free vortex flow

Let the radial variation of the tangential velocity be given by Vu = K/r. In this situation,
the second term in Eq. (7.27) vanishes, and Vx is independent of the radial coordinate. The
work done on the blades by the fluid passing through a streamtube at radial location r of
the rotor is given by

w = U(Vu2 − Vu3) = Ωr

(
K2

r
− K3

r

)
= Ω(K2 − K3)

Since this is independent of r, the work done is the same at each radial location. The
mean-line analysis that has been used in the previous chapters is thus justified if the
tangential velocity has the free vortex distribution Vu = K/r.

The degree of reaction has been shown to be

R = 1 − 1
2
φ(tan α2 + tan α3) = 1 − 1

2U
(Vx tan α2 + Vx tan α3)

= 1 − 1
2U

(Vu2 + Vu3)

or
R = 1 − K2 + K3

2Ωr2

Hence, the degree of reaction increases from the hub to the casing. The mass flow rate
through the annulus is given by

ṁ = 2πVx

∫ rc

rh

ρr dr

since Vx does not depend on r. The integration could be carried out were the density
variation with the radial position known. It is found by noting first that a free vortex design
leads to equal work done on each blade element, and therefore, the stagnation temperature
will remain uniform in the annulus. The loss of stagnation pressure takes place in the
wake as the flow leaves a blade row. There is also a loss in the endwall boundary layers
and in the tip region of the blades. Secondary flow losses are more evenly distributed
across the annulus. To make analytical progress, it is assumed that entropy and thus also
stagnation pressure are uniform across the flow channel. This can be achieved by good
lateral mixing of the flow. Even if such mixing cannot be justified, if this assumption is
made, the stagnation density is also uniform. Of course, irreversibilities still cause the
stagnation pressure loss in the flow direction. The density ratio may be written as

ρ

ρ0
=

(
T

T0

)1/(γ−1)

=

(
T0 − V 2/2cp

T0

)1/(γ−1)

=
(

1 − V 2

2cpT0

)1/(γ−1)

The velocity in this expression is seen to vary with radius according to

V 2 = V 2
x + V 2

u = V 2
x + V 2

um
r2
m

r2
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Here, rm is the mean radius, at which the tangential velocity is Vum. Defining y = r/rm,
the mass balance can be converted to the form

ṁ = 2πVxr2
mρ0

∫ 2/(1+κ)

2κ/(1+κ)

(
1 − V 2

x

2cpT0
− V 2

um

2cpT0

1
y2

)1/(γ−1)

y dy (7.28)

in which rc/rm = 2/(1 + κ), rh/rm = 2κ/(1 + κ), and κ = rh/rc. This integral can be
evaluated in closed form, at least for values of γ for which 1/(γ − 1) is an integer. But, for
example, if γ = 4

3 , the result of the integration is sufficiently complicated, that it is better
to proceed by numerical integration.

Cohen et al. [15] use the mean radius as a reference value and express at the inlet to the
rotor the free vortex velocity distribution in the form

r2mVu2m = r2Vu2

which can be recast as
r2mVx2 tan α2m = r2Vx2 tan α2

from which it follows that
tan α2 =

r2m

r2
tan α2m (7.29)

Here, r2 denotes an arbitrary radial position at the inlet of the rotor. Similarly, at the exit,

tan α3 =
r3m

r3
tan α3m (7.30)

The relative velocity at the inlet is Wu2 = Vu2 − U , from which

tan β2 = tan α2 −
U

Vx2

or
tan β2 = tan α2 −

r2

r2m

1
φ2m

(7.31)

Similarly,

tan β3 = tan α3 −
r3

r3m

1
φ3m

(7.32)

These equations are valid even if the axial velocity differs between the inlet and exit of the
rotor. When r2m = r3m, then U2m = U3m, and if the axial velocity is the same at the inlet
and outlet of the rotor, then also φ2m = φ3m.

� EXAMPLE 7.6

Combustion gases with γ = 4
3 and R = 287 J/(kg K) expand through a turbine

stage with free vortex blading. The inlet stagnation temperature is T01 = 1100 K,
and the stagnation pressure is p01 = 420 kPa. The mean radius is rm = 0.17 m. The
turbine is flared so that the axial velocity remains constant, and the mean radius is
the same at the inlet and outlet of the rotor. The hub-to-casing radius is κ2 = 0.7 at
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the inlet and κ3 = 0.65 at exit of the rotor. The flow angles at the mean radius at the
inlet are α2m = 60.08◦ and β2m = 25.98◦. At the exit, the corresponding angles are
α3m = −21.20◦ and β3m = −58.59◦. The axial velocity is Vx = 231 m/s. (a) Plot
the inlet and exit flow angles along the span of the blades. (b) Determine the reaction
at the hub. (c) Calculate the mass flow rate using both numerical integration and the
mean density.

Solution: (a) The reaction at the mean radius of this stage can be obtained by adding
both parts of Eq. (7.16) together and doing the same for Eq. (7.12) and then dividing
one by the other. This gives

1 − 1
Rm

=
tan α2m + tan α3m

tan β2m + tan β3m

Substituting the values of the angles gives Rm = 0.460. The flow coefficient is then
obtained from

φm =
1

tan α2m − tan β2m
= 0.800

and the blade-loading coefficient is

ψm = 2(1 − Rm − φm tan α3m) = 1.700

The flow angles are next calculated using Eqs. (7.29)–(7.32). At the hub,

tan α2h =
1 + κ2

2κ2
tan α2m =

1.7
1.4

tan(60.08◦) = 2.11 α2h = 64.64◦

tan β2h =
1 + κ2

2κ2
tan α2m − 2κ2

1 + κ2

1
φm

= 1.08 β2h = 47.22◦

At the casing,

tan α2c =
1 + κ2

2
tan α2m =

1.7
2

tan(60.08◦) = 1.48 α2c = 55.90◦

tan β2c =
1 + κ2

2
tan α2m − 2

1 + κ2

1
φm

= 0.0064 β2c = 0.37◦

The exit angles are calculated similarly. They are

α3h = −26.21◦ β3h = −55.90◦ α3c = −17.74◦ β3c = −61.41◦

The variation in flow angles along the span is obtained from Eqs. (7.29)–(7.32),
which, together with the blade shapes, are shown in Figure 7.8.
(b) The reaction at the hub at the inlet to the rotor is

R2h = 1 − (1 − Rm)
(

1 + κ2

2κ2

)2

= 1 − 0.54
(

1.7
1.4

)2

= 0.2038

(c) The mass flow rate is calculated from Eq. (7.28). The stagnation density is

ρ01 =
p01

RT01
=

420000
287 · 1100

= 1.330 kg/m3
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Figure 7.8 Variation of flow angles along the span for a gas with γ = 1.4.

With hub radius rh = 0.14 m, and casing radius, rc = 0.20 m, numerical integration
of Eq. (7.28) gives

ṁ = 15.068 kg/s

Cohen et al. [15] suggested that a very good approximation may be obtained by
ignoring the density variation along the span and using its value at the mean radius.
Since

Vu2m = Vx tan α2m = 231 tan(60.08◦) = 401.40 m/s

the mean temperature is

T2m = T02 −
V 2

x + V 2
u2m

2cp

= 1100 − 2312 + 401.42

2 · 1148
= 1006.6 K

Hence,

ρ2m = ρ02

(
T2m

T02

)1/(γ−1)

= 1.33
(

1006.6
1100

)3

= 1.019 kg/m3

The flow rate is then

ṁ = π(r2
c − r2

h)ρ2mVx = 2πrm(rc − rh)ρ2mVx

= 2π · 0.17 · 0.06 · 1.019 · 231 = 15.086 kg/s

The approximation of using the density at the mean radius is seen to be excellent. �
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7.4.2 Fixed blade angle

A design with a free vortex tangential velocity distribution has the attractive feature that
each blade element delivers the same amount of work and that the axial velocity remains
constant. On the other hand, the reaction varies quite strongly along the span of the blade.
Other design possibilities exist. For example, if the nozzle angle is kept constant along
the span, manufacturing cost of nozzles can be reduced. As the flow moves through the
nozzles, its stagnation enthalpy will not change, and, if the radial entropy gradients may
be neglected, the equation for radial equilibrium

dh0

dr
− T

ds

dr
= Vx

dVx

dr
+ Vu

dVu

dr
+

V 2
u

r

reduces to
Vx

dVx

dr
+ Vu

dVu

dr
+

V 2
u

r
= 0

as before. This can also be written as

d

dr

(
1
2
V 2

x +
1
2
V 2

u

)
+

V 2
u

r
= 0

Since Vu = V sinα and V 2
x + V 2

u = V 2, this becomes

V
dV

dr
+

V 2sin2α

r
= 0

or
dV

V
= −sin2α

dr

r
(7.33)

If the angle α is constant, integrating gives

V (r)
Vm

=
(rm

r

)sin2α

In addition, Vu = V sin α and Vx = V cos α, so that for constant α

rsin2αVu = rsin2α
m Vum

For nozzles, the exit flow angle is quite large (often between 60◦ and 70◦). Therefore,
sin2α2 is in the range 0.75–0.88, and the velocity distribution is nearly the same as for a free
vortex. The rotor blades may then be twisted properly to give the free vortex distribution
at their exit.

7.4.3 Constant mass flux

It has been seen that, if the tangential velocity varies inversely with radius, axial velocity is
independent of radius. Since the density also varies, Horlock [42] suggested that a designer
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might decide to hold the axial mass flux ρVx constant. This requires the blade angle to vary
in such a way that

ρV cos α = ρmVm cos αm

remains independent of radius. The flow angle in terms of the velocity and density ratios
is therefore

cos α

cos αm
=

Vm

V

ρm

ρ
(7.34)

From the definition of stagnation temperature,

T0 = T

(
1 +

γ − 1
2

M 2
)

= Tm

(
1 +

γ − 1
2

M 2
m

)

the ratio of the static temperature to its value at the mean radius is

T

Tm
=

2 + (γ − 1)M 2
m

2 + (γ − 1)M 2 (7.35)

It then follows that
ρ

ρm
=

(
2 + (γ − 1)M 2

m

2 + (γ − 1)M 2

)1/(γ−1)

(7.36)

and
p

pm
=

(
2 + (γ − 1)M 2

m

2 + (γ − 1)M 2

)γ/(γ−1)

(7.37)

The velocity ratio is obtained from the definition of Mach number:

V

Vm
=

M

Mm

√
T

Tm
=

M

Mm

(
2 + (γ − 1)M 2

m

2 + (γ − 1)M 2

)1/2

(7.38)

The ratio of cosines of the flow angles can now be written as

cos α

cos αm
=

Mm

M

(
2 + (γ − 1)M 2

2 + (γ − 1)M 2
m

)(γ+1)/2(γ−1)

(7.39)

From the equation for radial equilibrium, it follows that

dV

V
= −sin2α

dr

r
= (cos2α − 1)

dr

r

and by logarithmically differentiating Eq. (7.38) yields the equation

dM 2

M 2[2 + (γ − 1)M 2]
= (cos2α − 1)

dr

r
(7.40)

Dividing through by cos2α − 1 and integrating both sides gives

I =
∫ Mc

Mh

2dM

M [2 + (γ − 1)M 2](cos2α − 1)
= ln

rc

rh
= ln

1
κ

(7.41)
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so that
κ = e−I

Since the highest Mach number is at the hub, the way to proceed is to set it at an acceptable
value. This may be slightly supersonic. Then, if the flow angle and Mach number are
known at the average radius, Eq. (7.39) can be used to find the value of αh. After that
Eq. (7.39) is rewritten as

cos α

cos αh
=

Mh

M

(
2 + (γ − 1)M 2

2 + (γ − 1)M 2
h

)(γ+1)/2(γ−1)

(7.42)

and this is substituted for cos α in the integrand of Eq. (7.41). Finally, by trial, the value
of Mc needs to be chosen so that the numerical integration gives the desired radius ratio
κ. For a flow at the exit of the nozzle, the stagnation temperature is known, and with the
mean Mach number known, the mean temperature Tm can be determined. After that, the
other ratios are calculated from Eqs. (7.35)–(7.38).

To obtain the radial locations that correspond to the calculated values of the thermody-
namic properties, Eq. (7.40) is written as

2dM

M [2 + (γ − 1)M 2](cos2α − 1)
=

dr

r
(7.43)

and this is solved numerically using a fine grid.
Results from a sample calculation for Mh = 1.15 are shown in Figure 7.9. Panel (a)

shows the variation of the thermodynamic variables, normalized with respect to their values
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Figure 7.9 (a) Temperature, density, pressure, and velocity along the span for a gas with γ = 1.4
and (b) flow angle leaving a nozzle as a function of the radial location.
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at the mean radius. Since the flow resembles a free vortex type, the largest velocity is at
the hub. The temperature there has the smallest value, since the stagnation temperature
is constant across the span. Hence, the Mach number is largest at the hub and drops to
a value Mc = 0.6985 at the casing for a flow with radius ratio κ = 0.6. Four significant
figures were used to make sure that κ was also accurate to the same number of significant
figures. Radial equilibrium theory shows that pressure increases from the hub to the casing
in a flow with a swirl component of velocity. The density follows the ideal gas law, and it
increases from the hub to the casing. The flow angles are shown in Figure 7.9b. The value
at the mean radius was set at αm = 68◦, and its value at the hub happens to come out to be
the same. At the casing, the flow angle drops to αc = 66.18◦, and the entire variation is
seen to be quite slight.

7.5 TURBINE EFFICIENCY AND LOSSES

Three methods are in common use for the calculation of losses in axial turbines. The
correlation by Soderberg was introduced in Chapter 6. The other two methods are based on
the original work of Ainley and Mathieson [3] and the studies of Craig and Cox [16]. The
former is discussed in the following; the latter is presented by Wilson and Korakianitis [97]
in their text on gas turbines. In this section, analytical results are developed that relate the
stage efficiency to the flow parameters. They enable the calculation of efficiency contours
by methods introduced by Hawthorne [40] and Smith [84], and further developed by Lewis
[57]. Horlock [42] gives a comprehensive review of the early work.

7.5.1 Soderberg loss coefficients

The loss correlation of Soderberg makes use of the static enthalpy loss coefficient

ζ =
h − hs

1
2V

2

with V replaced by V2 for the stator and by W3 for the rotor, and enthalpy h is similarly
identified. The nominal value of the loss coefficient is calculated from

ζ∗ = 0.04 + 0.06
( ε

100

)2

in which ε is the amount of turning, εS = α2 − α3 for the stator and εR = β2 − β3 for
the rotor. The angles are in degrees. The nominal value, identified with superscript star,
is for a blade height-to-axial chord ratio b/cx = 3.0 and Reynolds number equal to 105.
For different values of blade height to axial-chord-ratio, a new value for stator vanes is
calculated from

ζ̄ = (1 + ζ∗)
(
0.993 + 0.021

cx

b

)
− 1

and for the rotor, from

ζ̄ = (1 + ζ∗)
(
0.975 + 0.075

cx

b

)
− 1
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If Reynolds number differs from 105, then the Reynolds number correction is obtained
from

ζ =
(

105

Re

)1/4

ζ̄

The Reynolds number is based on the hydraulic diameter, which is given approximately
by the expression

Dh =
2sb cos α2

s cos α2 + b

for the stator and by

Dh =
2sb cos β3

s cos β3 + b

for the rotor.

7.5.2 Stage efficiency

The process lines for a turbine stage are shown in Figure 7.10. The states of static enthalpy
are drawn such that the enthalpy drop across the rotor is slightly larger than that across
the stator. The reaction therefore is slightly larger than one-half. An isentropic expansion
through the stator takes the process from state 1 to state 2s, whereas the actual end state is
at state 2. The stagnation enthalpy remains constant through the stator, and its process line
is horizontal. The stagnation pressure in the interblade gap is denoted by p02.
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Figure 7.10 Thermodynamic states for expansion across a turbine stage.
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The irreversible expansion across the rotor takes the process to state 3, with a
corresponding stagnation enthalpy h03 and stagnation pressure p03. The loss of stagnation
pressure is discussed in the next subsection. The losses can be related to efficiency by first
writing (as was done for steam turbines) the efficiency as

ηtt =
h01 − h03

h01 − h03ss

and then manipulating it into the form

1
ηtt

− 1 =
h03 − h03ss

h01 − h03
=

h3 − h3ss

w
+

V 2
3 − V 2

3ss

2w

This can be further rearranged as

1
ηtt

− 1 =
(h3 − h3s) + (h3s − h3ss)

w
+

(
1 − V 2

3ss

V 2
3

)
V 2

3

2w

The first term in the numerator is simply

h3 − h3s =
1
2
ζRW 2

3

Next, integrating the Gibbs equation along the constant-pressure line p3 from state 3ss to
3s gives

s2 − s1 = cp ln
T3s

T3ss

Similarly, integration along the constant pressure line p2 yields

s2 − s1 = cp ln
T2

T2s

Equating the RHSs gives
T3s

T3ss
=

T2

T2s
(7.44)

Subtracting one from each side, rearranging, and multiplying by cp gives

h3s − h3ss =
T3ss

T2s
(h2 − h2s)

Since T3ss/T2s = T3s/T2 and

h2 − h2s =
1
2
ζSV

2
2

the expression for efficiency can be written as

1
ηtt

− 1 =
1

2w

[
ζRW 2

3 +
T3s

T2
ζSV

2
2 +

(
1 − T3ss

T3

)
V 2

3

]
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In the last term, the equality V 2
3ss/V 2

3 = T3ss/T3 was used, which follows from the fact that
M3 = M3ss, as was shown in Chapter 6. Furthermore, since Vx = W3 cos β3 = V2 cos α2 =
V3 cos α3, the expression for efficiency can be recast as

1
ηtt

− 1 =
φ2

2ψ

[
ζR

cos2β3
+

T3s

T2

ζS

cos2α2
+

(
1 − T3ss

T3

)
1

cos2α3

]
(7.45)

Often, this is approximated by

1
ηtt

− 1 =
φ2

2ψ

(
ζR

cos2β3
+

ζS

cos2α2

)
(7.46)

It will be shown in an example that the error in using this approximation is very small.

7.5.3 Stagnation pressure losses

The stagnation pressure drop across the stator can be related to the static enthalpy loss
coefficient by first integrating the Gibbs equation along the constant-stagnation-enthalpy
line h01 = h02:

s2 − s1 = R ln
(

p01

p02

)

Similarly, integrating the Gibbs equation along the constant-pressure line p2 gives

s2 − s1 =
γR

γ − 1
ln

(
T2

T2s

)

Equating the RHSs gives
p01

p02
=

(
T2

T2s

)γ/(γ−1)

The definition for the static enthalpy loss coefficient

h2 − h2s =
1
2
ζSV

2
2

can be written as
T2 − T2s =

γ − 1
2γR

ζSM
2
2 γRT2

from which
T2

T2s
=

(
1 − γ − 1

2
ζSM

2
2

)−1

Since the second term involving the Mach number is small, this can be expanded as

T2

T2s
= 1 +

γ − 1
2

ζSM
2
2

The pressure ratio p01/p02 is therefore

p01

p02
=

(
1 +

γ − 1
2

ζSM
2
2

)γ/(γ−1)
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and expanding this for small values of ζSM
2 gives

p01

p02
= 1 +

γ

2
ζSM

2
2

The expression for the stagnation pressure loss now takes the form

Δp0LS =
γ

2
p02ζSM

2
2 =

1
2

T02

T2
ρ02ζSV

2
2

or
Δp0LS = ρ02

(
1 +

γ − 1
2

M 2
2

)
1
2
ζSV

2
2 (7.47)

Since the loss coefficient ζS is rather insensitive to Mach number, this shows how the
stagnation pressure loss increases as compressibility becomes important.

The development of the stagnation pressure loss across the rotor is similar. It will be
carried out in detail in order to highlight the use of stagnation properties on the basis of
relative velocity. First, the stagnation enthalpy of relative motion is defined as

h03R = h3 +
1
2
W 2

3

and in using the Mach number in terms of W3, defined as

M3R =
W3√
γRT3

this can be rewritten in the form

T03R

T3
= 1 +

γ − 1
2

M 2
3R

The relative stagnation pressure is calculated from

p03R

p3
=

(
1 +

γ − 1
2

M 2
3R

)γ/(γ−1)

Since h02R = h03R across the rotor, integrating the Gibbs equation along the line of constant
relative stagnation enthalpy and also along the constant-pressure line p3 gives

s3 − s2 = R ln
p02R

p03R
s3 − s2 = cp ln

T3

T3s

so that
p02R

p03R
=

(
T3

T3s

)γ/(γ−1)

From the definition for static enthalpy loss coefficient for the rotor

h3 − h3s =
1
2
ζRW 2

3
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the temperature ratio
T3

T3s
=

(
1 − γ − 1

2
ζRM 2

3R

)−1

is obtained. Noting again that the term involving the Mach number is small and expanding
the RHS gives

T3

T3s
= 1 +

γ − 1
2

ζRM 2
3R

and the pressure ratio p02R/p03R is therefore

p02R

p03R
=

(
1 +

γ − 1
2

ζRM 2
3R

)γ/(γ−1)

Expanding this gives
p02R

p03R
= 1 +

γ

2
ζRM 2

3R

The stagnation pressure loss across the rotor is therefore

Δp0LR =
γ

2
p03RζRM 2

3R =
1
2

T03R

T3
ρ03RζRW 2

3

or

Δp0LR = ρ03R

(
1 +

γ − 1
2

M 2
3R

)
1
2
ζRW 2

3 (7.48)

� EXAMPLE 7.7

Combustion gases with γ = 4
3 and cp = 1148 J/(kg K) flow through a normal

turbine stage with R = 0.60. The flow enters the stator at α1 = −33.0◦ and leaves
at velocity V2 = 450 m/s. The inlet stagnation temperature is 1200 K, and the
inlet stagnation pressure is 15 bar. The flow coefficient is φ = 0.7, the blade
height-to-axial chord ratio is b/cx = 3.5, and the Reynolds number is 105. Find the
efficiency of the stage.

Solution: The blade-loading coefficient is first determined from

ψ = 2(1 − R − φ tan α3) = 2(1 − 0.6 − 0.7 tan(−33◦)) = 1.709

The flow angle leaving the stator is

α2 = tan−1
(

1 − R + ψ/2
φ

)
= tan−1

(
1 − 0.6 + 1.709/2

0.7

)
= 60.84◦

and the angle of the relative velocity leaving the stage is

β3 = tan−1
(
−R − ψ/2

φ

)
= tan−1

(
−0.6 − 1.709/2

0.7

)
= −64.30◦
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The angle of the relative velocity at the inlet of the rotor is

β2 = tan−1
(
−R + ψ/2

φ

)
= tan−1

(
−0.6 + 1.709/2

0.7

)
= 19.99◦

The deflections are therefore

εS = α2 − α1 = 60.84 + 33.00 = 93.84◦

εR = β2 − β3 = 19.99 + 64.30 = 84.29◦

and the loss coefficients can now be calculated. First, the nominal values are

ζ̄S = 0.04 + 0.06
( εS

100

)2
= 0.04 + 0.06

(
93.84
100

)2

= 0.0928

and

ζ̄R = 0.04 + 0.06
( εR

100

)2
= 0.04 + 0.06

(
84.29
100

)2

= 0.0826

When corrected for b/cx = 3.5, they are

ζS = (1 + ζ̄S)
(
0.993 + 0.021

cx

b

)
− 1 = (1 + 0.0928)

(
0.993 +

0.021
3.5

)
− 1

= 0.0917

ζR = (1 + ζ̄R)
(
0.975 + 0.075

cx

b

)
− 1 = (1 + 0.0826)

(
0.975 +

0.075
3.5

)
− 1

= 0.0788

The axial velocity is

Vx = V2 cos α2 = 450 cos(60.84◦) = 219.26 m/s

and the tangential velocity leaving the rotor is

Vu3 = Vx tan α3 = 219.26 tan(−33◦) = −142.39 m/s

so that
V3 =

√
V 2

x + V 2
u3 =

√
219.262 + 124.392 = 261.44 m/s

The blade speed is U = Vx/φ = 219.26/0.7 = 313.23 m/s. The tangential compo-
nent of the relative velocity leaving the stage is

Wu3 = Vu3 − U = −142.39 − 313.23 = −455.62 m/s

so that
W3 =

√
W 2

x + W 2
u3 =

√
219.262 + 455.622 = 505.63 m/s
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The work done by the stage is w = ψU 2 = 1.709 · 313.232 = 167.69 kJ/kg. An
approximate value for the stage efficiency may now be obtained by setting T3ss = T2s
and T3ss = T3 in

1
ηtt

− 1 =
ζRW 2

3 +
T3s

T2
ζSV

2
2 +

(
1 − T3ss

T3

)
V 2

3

2w

so that this expression evaluates to

1
ηtt

− 1 =
0.0788 · 505.632 + 0.0917 · 4502

2 · 167690
= 0.1154

with the result that ηtt = 0.8965.
To see the extent to which neglecting the temperature ratio T3ss/T3 and the kinetic

energy correction changes the efficiency, these terms are calculated next. The isen-
tropic stage work is ws = w/ηtt = 167.69/0.8965 = 187.05 kJ/kg. With T02 =
T01 = 1200 K, the exit temperature is

T03 = T02 −
w

cp

= 1200 − 167690
1148

= 1053.9 K

and for an isentropic process, it is

T03ss = T02 −
ws

cp

= 1200 − 187050
1148

= 1037.1 K

The static temperature at the exit is

T3 = T03 −
V 2

3

2cp

= 1053.9 − 252.092

2 · 1148
= 1024.2 K

Integrating the Gibbs equation along the constant pressure line p3 and along the
constant pressure line p03 gives

s3 − s1 = cp ln
T3

T3ss
s3 − s1 = cp ln

T03

T03ss

from which
T3ss =

T03ss

T03
T3 =

1037.1
1053.9

1024.2 = 1007.8 K

From the definition of static enthalpy loss coefficient across the rotor,

T3s = T3 −
ζRW 2

3

2cp

= 1024.2 − 0.0788 · 505.632

2 · 1148
= 1015.4 K

In addition,

T2 = T02 −
V 2

2

2cp

= 1200 − 4502

2 · 1148
= 1111.8 K
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so that

1
ηtt

− 1 =
0.0788 · 505.632 + 1015.4

1111.8 0.0917 · 4502 + (1 − 1007.8
1024.2 )261.442

2 · 167690

= 0.1139

Therefore, the total-to-total efficiency of the stage is ηtt = 0.8978, which is nearly
the same as that without the temperature and velocity correction. The temperature
correction makes the loss through the rotor lower, but the velocity correction adds
slightly to the losses, with the net result that these are compensating errors, and the
shorter calculation gives an accurate result.

The stagnation pressure at the exit of the stator is obtained from

p01

p02
= 1 +

γ

2
ζSM

2
2

The Mach number is

M2 =
V2√
γRT2

=
450√

1.333 · 287 · 1111.8
= 0.690

so that

p01

p02
= 1 +

2 · 0.0917 · 0.6902

3
= 1.0291 p02 =

1500
1.0291

= 1457.6 kPa

and the stagnation pressure loss across the stator is

Δp0LS = 1500 − 1457.6 = 42.4 kPa

To calculate the loss of stagnation pressure across the rotor, the absolute and relative
Mach numbers at the exit are determined first. They are as follows:

M3 =
V3√
γRT3

=
261.44√

1.333 · 287 · 1024.2
= 0.4176

M3R =
W3√
γRT3

=
505.63√

1.333 · 287 · 1024.2
= 0.8077

Then, stagnation pressure at the exit is

p03 = p01

(
T03ss

T01

)γ/(γ−1)

= 1500
(

1037.1
1200

)4

= 836.8 kPa

and p3 is

p3 = p03

(
1 +

γ − 1
2

M 2
3

)−γ/(γ−1)

= 836.8
(

1 +
0.41762

6

)−4

= 746.14 kPa
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The stagnation pressure p03R is obtained from

p03R = p3

(
1 +

γ − 1
2

M 2
3R

)γ/(γ−1)

= 746.14
(

1 +
0.80772

6

)4

= 1127.5 kPa

and the value of p02R is then

p02R = p03R

(
1 +

γ

2
ζRM 2

3R

)
= 1127.5

(
1 +

2
3

0.088 · 0.80772
)

= 1166.1 kPa

so that the loss of stagnation pressure across the rotor is

Δp0LR = 1166.1 − 1127.5 = 38.6 kPa
�

7.5.4 Performance charts

A useful collection of turbine performance characteristics was compiled by Smith [84] in
1965. His chart is shown in Figure 7.11. Each design is labeled in a small circle by the
value of efficiency that may be achieved for a given choice of flow coefficient φ = Vx/U
and a stage-loading coefficient ψ = w/U 2 = Δh0/U 2. The curves of constant efficiency
are based on a theory by Smith. He took blade losses other than tip losses into account, and
for this reason, the actual values of efficiency are expected to drop slightly.

The flow coefficients in the range from 0.6 ≤ φ ≤ 1.0 give uncorrected efficiencies in a
range from 90% to 94%, depending on how heavily loaded the blades are. Typical turbines
have a blade- loading coefficient in the range 1.5 < ψ < 2.2, but there are designs outside
this range.
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Figure 7.11 Variation of measured stage efficiency with stage-loading coefficient and flow
coefficient for axial-flow turbines. Source: Adapted from Smith [84].
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Smith’s method for calculating the main features of the performance characteristics has
been extended by Lewis [57]. The present discussion follows Lewis, who suggests writing
the efficiency in the form

ηtt =
1

1 + fL
(7.49)

The calculations in the foregoing example show that fL can be approximated by

fL =
ζRW 2

3 + ζSV
2
2

2w
=

1
2ψ

[
ζR

(
W3

U

)2

+ ζS

(
V2

U

)2
]

(7.50)

Since
tan α2 =

1 − R + ψ/2
φ

tan β3 =
−(R + ψ/2)

φ

it follows that

cos α2 =
φ√

φ2 + (1 − R + ψ/2)2
cos β3 =

R + ψ/2√
φ2 + (R + ψ/2)2

and the velocity ratios may be written as

(
V2

U

)2

= φ2 +
(

1 − R +
ψ

2

)2

and (
W3

U

)2

= φ2 +
(

R +
ψ

2

)2

so that

fL =
1

2ψ

[
ζR

(
φ2 +

(
R +

ψ

2

)2
)

+ ζS

(
φ2 +

(
1 − R +

ψ

2

)2
)]

This may be expressed in a more convenient form by defining ν = ζS/ζR and FL = fL/ζR,
so that

FL =
1

2ψ

[
φ2 +

(
R +

ψ

2

)2

+ ν

(
φ2 +

(
1 − R +

ψ

2

)2
)]

(7.51)

and the efficiency can now be written as

ηtt =
1

1 + FLζR

The maximum efficiency is obtained by minimizing FL with respect to ψ with the value
of ζR assumed to remain constant. Then, if the ratio ν is also assumed to remain constant,
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differentiating and setting the result to zero gives(
∂FL

∂ψ

)
ν,φ,R

=
1
ψ

[(
R +

ψ

2

)
+ ν

(
1 − R +

ψ

2

)]

− 1
ψ2

[
φ2 +

(
R +

ψ

2

)2

+ ν

(
φ2 +

(
1 − R +

ψ

2

)2
)]

= 0

which, when solved for ψ, leads to

ψm = 2

√
φ2 + R2 + ν(φ2 + (1 − R)2)

1 + ν
(7.52)

For ν = 1 and R = 1
2 , this reduces to

ψm =
√

4φ2 + 1 (7.53)

Contours of constant FL are obtained by rearranging Eq. (7.51) first as

ψ2 +
4[ν(1 − R) + R − 2FL]

1 + ν
ψ +

4[φ2 + R2 + ν(φ2 + (1 − R)2)]
1 + ν

= 0

and solving it for ψ. This gives

ψ =

2

[
2FL − ν(1 − R) − R ±

√
4F 2

L − 4FL[ν(1 − R) + R] + 4νR(1 − R)
−ν − (1 + ν)2 φ2

]

1 + ν

For R = 0.5 and ζS = ζR = 0.09, the two branches of each of the curves are shown in
Figure 7.12. The knee of the curves is where the discriminant is zero, namely, at

φm =

√
4F 2

L − 4FL[ν(1 − R) + R] + ν − 4νR(1 − R)
1 + ν

The locus of points of the blade-loading coefficient for which the losses are minimum,
obtained from Eq. (7.53), is also shown. As stressed by Lewis, when the efficiency is
written as

ηtt =
1

1 + FLζR

the factor FL depends primarily on the shape of the velocity diagrams, which, in turn, are
completely determined by ψ, φ, and R. The irreversibilities are taken into account by ζR
and ζS. These depend on the amount of turning, but their influence on the shape of the
efficiency contours is less than the influence of the flow angles.



�

� �

�

288 AXIAL TURBINES

3.5

3.0

2.0

1.0

0

2.5

1.5

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.905

0.895

0.91

0.90

η
tt
 = 0.89

ϕ

ψ
0.915

Figure 7.12 Contours of constant efficiency for an axial turbine stage with R = 0.5, ζS = 0.09,
and ζR = 0.09; also shown is the curve of least losses.

The results in Figure 7.12 are qualitatively similar to those in Figure 7.11, but they differ
in important details. In the calculations, the loss coefficients were assumed to be constant
with values ζR = ζS = 0.09. They clearly depend on the amount of turning and thus on
the values of ψ, φ, and R. As mentioned, Smith subtracted out the tip losses, and they are
not included in Soderberg’s correlation, either. The experiments on which the Smith plot
is based were carried out on a test rig at low temperature, and therefore, the results do not
represent real operating conditions. The amount of turning today is approaching 90◦ or
even higher [19]. This is achieved by using computational fluid dynamic analysis to design
highly three-dimensional blades. In fact, the high efficiencies achieved today make further
increases in efficiency more and more difficult to achieve [21].

The actual loss coefficients using the Soderberg correlation are easily included in the
calculations, and the contours of constant efficiency and the deflection for a 50% reaction
are shown in Figure 7.13. The results are based on a blade height-to-axial chord ratio of
b/cx = 3, and the Reynolds number was set at Re = 105. From the expression

ψ = 2(1 − R − φ tan α3)

it is seen that when φ = 0 and R = 1
2 , the blade-loading coefficient is ψ = 1. If this

stage has an axial entry with α3 = 0, the loading coefficient is ψ = 1 for any value of
φ. Examination of the figure shows that for an axial entry, as φ is increased to 0.5, the
efficiency increases to slightly over 0.92 and decreases from there as φ is increased. Since
the stage reaction is 50%, the flow turns across the rotor and stator by an equal amount. At
φ = 0.5 and ψ = 1, since α3 = α1 = 0, the flow angle α2 is

α2 = tan−1
(

1 − R + ψ/2
φ

)
= tan−1(2) = 63.4◦

On the other hand, if the entry angle is chosen to be α3 = α1 = −45◦, then

ψ = 1 + 2φ
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Figure 7.13 Contours of constant efficiency and deflection for a stage with R = 0.5, b/cx = 3,
and Re = 105.

and at φ = 0.5, the blade-loading coefficient would be ψ = 2. The flow angle leaving the
nozzle would then be α2 = 71.56◦, and the flow angles for the rotor would have the values
β2 = 45◦ and β3 = −71.56◦. Hence, the deflection would reach εR = 116.56◦. This is
larger than that recommended, and the inlet angle is too steep. These calculations show
that good designs are obtained for a range of flow coefficients of 0.5 < φ < 1.5 and the
blade-loading coefficient in the range 0.8 < ψ < 2.7, for then the deflection is less than
80◦. As the flow coefficient is increased from 0.5 to 1.5, the inlet flow angle may be
changed from an axial entry to one with α3 = −30◦.

Contours of constant-rotor-loss coefficients are shown in Figure 7.14. They are seen
to follow the shape of the deflection lines in Figure 7.13. When there is no turning,
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Figure 7.14 Lines of constant rotor loss coefficients for a stage with R = 0.5, b/cx = 3, and
Re = 105.
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the loss coefficient is ζR = 0.04, and the line for ζR = 0.05 corresponds to a turning of
β2 − β3 = 40◦.

For a zero-reaction stage, the contours of constant efficiency are given in Figure 7.15.
Since R = 0, the equation

ψ = 2(1 − R − φ tan α3)

shows that at φ = 0, the loading coefficient is ψ = 2. The lines of constant turning for the
rotor are now straight lines, owing to the relationship β3 = −β2 and

ψ = φ(tan β2 − tan β3) = 2φ tan β2

If the deflection is kept at 70◦, then β2 = 35◦, and at φ = 1.5, the blade-loading coefficient
is ψ = 2.1, and the efficiency is close to 0.87. At φ = 0.5, the blade-loading coefficient
has the value ψ = 0.7, and the efficiency is slightly over 0.92. For axial entry, ψ = 2
independent of φ, and an efficiency of slightly under 0.89 may be maintained for the range
of φ from 0.3 to 0.8.
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Figure 7.15 Contours of constant efficiency and deflection for a stage with R = 0, b/cx = 3, and
Re = 105.

7.5.5 Zweifel correlation

Zweifel [109] examined losses in turbines and developed a criterion for the space-to-axial
chord ratio at which losses are the smallest. He put the loading of the blades into a
nondimensional form by dividing the driving force by an ideal one defined as the pressure
difference p02 − p3 times the axial chord. The stagnation pressure p02 is the maximum
possible pressure encountered, and p3 is close to the minimum one as the flow accelerates
through the passage. The ratio becomes

ψT =
ρVxs(Vu2 − Vu3)

(p02 − p3)cx
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in which cx is the axial chord length. This can be written as

ψT =
s

cx

ρV 2
x (tan α2 − tan α3)

1
2ρV 2

3

or as
ψT = 2

s

cx

cos2α3(tan α2 − tan α3) (7.54)

In examining the performance of various turbines, Zweifel determined that the losses are
minimized when ψT = 0.8. With this value for ψT, this equation is used to determine
the spacing of the blades. With the spacing known, the cross-sectional area of the flow
channel and its wetted area may be calculated, and the Reynolds number is determined.
This may then be used to obtain the loss coefficients from the Soderberg correlation.
For the rotor, the flow angles of the absolute velocities are replaced by the relative flow
angles. Alternatively, the losses may be determined by results from experiments of Ainley
and Mathieson that are discussed next. Their correlations are based on the spacing to
chord ratio, whereas in the Zwifel’s formula, the spacing-to-axial chord is used. The angle
between the chord line and the axial chord is called the stagger angle.

7.5.6 Further discussion of losses

Ainley [2] carried out an experimental study of losses in turbines at about the same time as
Soderberg. His loss estimates are shown in Figure 7.16 for a flow that turns only by about
40◦ and thus has fairly small losses at the design condition. He presented the results in the
form of a stagnation pressure loss coefficient, defined as

Yp =
p01 − p02

p02 − p2
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Figure 7.16 Stagnation pressure loss coefficients for turbine blades as a function of incidence (flow
angle minus the metal angle), with s/c = 0.77 and b/c = 2.7 at Reynolds number Re = 2 · 105.
Source: From measurements by Ainley [2].
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The denominator of this expression clearly depends on the Mach number, and therefore,
so does the value of the loss coefficient. The losses are separated into profile losses, Yp,
secondary flow losses, Ys, and the losses in the annulus boundary layers, Ya. The profile
losses, associated with the growth of the boundary layers along the blades, are lowest at
a few degrees of negative incidence. The secondary flow losses dominate at all values
of incidence. The losses in the annulus boundary layers represent a small addition to the
secondary flow losses, and they are typically grouped together as it is difficult to separate
them from each other.

The physical cause of the secondary flows is the curvature along the flow path. From
study of fundamentals of fluid dynamics, it is known that pressure increases from concave
to convex side of curved streamlines. This transverse pressure gradient gives rise to
secondary flows for the following reason. In the inviscid stream far removed from the solid
surfaces, viscous forces are small, and inertial forces are balanced by pressure forces. The
transverse component of pressure force points from the pressure side of one blade to
the suction side of the next one, and the transverse component of the inertial force is equal
and opposite to this.

In the endwall boundary layer, viscous forces in the main flow direction retard the
flow, with the result that inertial forces in the boundary layers are smaller than those
in the inviscid stream. However, owing to the thinness of the endwall boundary layers,
pressure distribution in these layers is the same as in the inviscid stream. For this reason,
the unbalanced part of the pressure force causes a transverse flow in the endwall boundary
layers toward the suction side of the blade. This is shown schematically in Figure 7.17.
This secondary flow takes place in both endwall boundary layers. Continuity requires that
there be a return flow across the inviscid stream. The return flow is more diffuse than
that in the boundary layers as it occupies a large flow area. The effect is the development
of two counterrotating secondary vortices, with axes in the direction of the main stream.
Thus, a secondary flow exists in these vortices. If this were all, the secondary flow would
be easy to understand. But the flow in the boundary layer near the casing is also influenced
by a vortex that develops at the tips of the rotor blades. This interaction increases the

V

Figure 7.17 Secondary flows in a channel between two blades.
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Direction of blade motion
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Figure 7.18 Distortion of tip vortex as it moves through the passage.

intensity of the secondary flow, and the axis of the vortex migrates from the pressure side
of the blade to the suction side as it traverses the flow passage. A sketch of this is shown
in Figure 7.18. Further complication arises from the unsteadiness of the flow caused by a
discrete set of rotor blades passing by the row of stator vanes.

7.5.7 Ainley–Mathieson correlation

Ainley and Mathieson [3] continued the work of Ainley [2] on turbine cascades. Their
results are shown in Figure 7.19. The flow enters the nozzles axially and leaves at the angle
α2 indicated. The profile loss coefficient Ypa is seen to vary both with the space-to-chord
ratio and the amount of turning of the flow. The two curves in the figure, for which the flow
deflects 75◦ and 80◦, are marked with dashed line, for the flow is seldom turned this much.

To facilitate the use of these results with hand calculators (or in short computer
calculations), they have been fitted with two parabolas. The data in Figure 7.19 are
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Figure 7.19 Stagnation pressure loss coefficients for nozzles. Source: Measurements by Ainley
and Mathieson [3].
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correlated reasonably well by the biquadratic fit

Ypa =
[
−0.627

( α2

100

)2
+ 0.821

( α2

100

)
− 0.129

] (s

c

)2

+
[

1.489
( α2

100

)2
− 1.676

( α2

100

)
+ 0.242

] (s

c

)
(7.55)

−0.356
( α2

100

)2
+ 0.399

( α2

100

)
+ 0.0077

� EXAMPLE 7.8

A nozzle row is tested with air. The air enters the row axially and leaves it at angle
60◦. The space-to-chord ratio is s/c = 0.7. The inlet pressure is p01 = 200 kPa,
stagnation temperature at the inlet is T01 = 540 K, and the exit static pressure is
p2 = 160 kPa. Find (a) the exit stagnation pressure and (b) the static enthalpy loss
coefficient.

Solution: (a) For s/c = 0.7, the stagnation pressure loss coefficient is

Ypa =

[
−0.627

(
60
100

)2

+ 0.821
(

60
100

)
− 0.129

]
0.72

+

[
1.489

(
60
100

)2

− 1.676
(

60
100

)
+ 0.242

]
0.7

−0.356
(

60
100

)2

+ 0.399
(

60
100

)
+ 0.0077 = 0.0272

Examination of Figure 7.19 shows that this value is smaller than what can be read
from the figure, which suggests that it should be increased to 0.032. If this error can
be tolerated, solving next

Ypa =
p01 − p02

p02 − p2

for p02 gives

p02 =
p01 + Ypap2

1 + Ypa
=

200 + 0.0272 · 160
1.0272

= 198.94 kPa

so that Δp0S = 1.06 kPa. A more accurate value using the actual charts is 1.24 kPa.
(b) The exit static temperature is

T2 = T02

(
p2

p02

)(γ−1)/γ

= 540
(

160000
198940

)1/3.5

= 507.41 K
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and velocity is therefore

V2 =
√

2cp(T02 − T2) =
√

2 · 1004.5(540 − 507.41) = 255.85 m/s

These give a Mach number value of M2 = V2/
√

γRT2 = 0.567. The stagnation
density at the exit is

ρ02 =
p02

RT02
=

198940
287 · 540

= 1.284 kg/m3

The static enthalpy loss coefficient is calculated from

ζS =
2Δp0S

p01γM 2
2

= 0.0236

These calculated loss coefficients only include profile losses, and as Figure 7.16
shows, secondary flow losses contribute the major part of the total losses. Secondary
flow losses are discussed in the next section. �

The experiments of Ainley and Mathieson [3] also included the influence of the
space-to-chord ratio for impulse blades. This is shown in Figure 7.20. Again, the approach
velocity is at zero incidence. Since the rotor blades have the shape of impulse blades, the
different curves are labeled by the relative flow angles. In a two-stage velocity compounded
steam turbine, the stator between the two rotors has equiangular vanes as well, but this is
an exceptional situation in turbines. Ainley and Mathieson showed that the results from the
nozzles with axial entry and the impulse blades can be combined for use in other situations.
This is discussed in the following.

The data shown in Figure 7.20 when fitted to a biquadratic expression, results in

Ype =
[
−1.56

( α2

100

)2
+ 1.55

( α2

100

)
− 0.064

] (s

c

)2

+
[

3.73
( α2

100

)2
− 3.43

( α2

100

)
+ 0.290

](s

c

)
(7.56)

−0.83
( α2

100

)2
+ 0.78

( α2

100

)
+ 0.078

This is a reasonably good fit even if it was forced to a simple second-order polynomial
form. On the basis of values obtained from Eqs. (7.55) and (7.56), Ainley and Mathieson
recommend that for blades for which the inlet angle is between the axial entry of nozzles
and that of the impulse blades, the stagnation pressure loss coefficient can be estimated
from

Yp =

[
Ypa +

(
α1

α2

)2

(Ype − Ypa)

] (
t/c

0.2

)|α1/α2|
(7.57)
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Figure 7.20 Loss coefficients for impulse blades, β3 = −β2, and Re = 2 · 105, M < 0.6. Source:
Measurements by Ainley and Mathieson [3].

The subscripts in this expression have the following meaning: Yp is the profile loss at zero
incidence; Ypa is the profile loss coefficient for axial entry, and Ype is the profile loss
coefficient for equiangular impulse blades. The absolute values are needed in the exponent
because α1 could be negative.

For a rotor, the angle α1 is replaced by β2, and α2 is replaced by β3. Thus, Eq. (7.57)
takes the form

Yp =

[
Ypa +

(
β2

β3

)2

(Ype − Ypa)

] (
t/c

0.2

)|β2/β3|
(7.58)

In evaluating the loss coefficient from Eq. (7.56) for impulse blades, α2 is replaced by β2
for rotor blades, since β2 will be positive and β3 = −β2. The ratio of maximum thickness
to the length of the chord in these expressions is t/c, with a nominal value of 20%. Should
it be greater than 25%, the value t/c = 0.2 is used. If it is less than 15%, its value is set at
t/c = 0.15.

7.5.8 Secondary loss

Secondary and tip losses require examination of lift and drag on the rotor blades. Unlike
for airfoils, for which lift is the force component perpendicular to incoming flow direction,
in turbomachinery flows, the direction of the lift is defined as the force perpendicular
to a mean flow direction. This, together with other important geometric parameters, is
shown in Figure 7.21. The mean direction is obtained by first defining the mean tangential
component of the relative velocity as

Wum =
1
2
(Wu2 + Wu3)
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which can be rewritten in the form

Wum =
1
2
Wx(tan β2 + tan β3)

Next, writing Wum = Wx tan βm gives

tan βm =
1
2
(tan β2 + tan β3)

and βm defines the mean direction. For the situation shown in Figure 7.21, tan βm is
negative and so is Wum.

Ru

Rx

χ
2

χ
3

ξ

s
Wx

W
3

W
2

Wu2

Wum

Wu3

β
3

β
3

β
2

β
2 β

m

β
m

L

D

θ

cx

c

Figure 7.21 Illustration of flow angles, blade metal angles χ, mean direction, and lift and drag
forces on a rotor.

Next, applying the momentum theorem to the rotor, the force in the direction of the
wheel motion is given by

Fu = ρsWx(Wu3 − Wu2) = ρsW 2
x(tan β3 − tan β2)

This is the force that the blade exerts on the fluid per unit height of the blade. The reaction
force Ru = −Fu is the force by the fluid on the blade, and it is given by

Ru = ρsW 2
x(tan β2 − tan β3) (7.59)

The component of the reaction forces are related to lift L and drag D by

Rx = L sin βm + D cos βm Ru = L cos βm − D sinβm

The magnitude of the drag force has been drawn larger in the figure than its actual size, to
make the sketch clearer. If it is neglected, the reaction Ru is related to lift by

Ru = L cos βm
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and Eq. (7.59) can be written as

L cos βm = ρsW 2
x(tan β2 − tan β3)

Introducing the lift coefficient leads to the expression

CL =
L/c

1
2ρW 2

m
= 2

(s

c

) W 2
x

W 2
m

(tan β2 − tan β3)
cos βm

Since Wx = Wm cos βm, this reduces to

CL = 2
(s

c

)
(tan β2 − tan β3) cos βm (7.60)

The secondary flow and tip losses according to Dunham and Came [26] are expressed as

Ys + Yk =
c

b

[
0.0334

cos β3

cos β2
+ B

(
k

c

)0.78
] (

CL

s/c

)2 cos2β3

cos3βm
(7.61)

The second term, in which the gap width k appears, accounts for the tip losses. The
parameter B = 0.47 for standard blades and B = 0.37 for shrouded blades. A shrouded
blade is shown in Figure 3.8.

The loss coefficients are similar for the stator. The mean flow direction is given by

tan αm =
1
2
(tan α1 + tan α2)

and the lift coefficient is

CL = 2
(s

c

)
(tan α2 − tan α1) cos αm

The loss coefficient of the secondary flows is

Ys =
c

b

(
0.0334

cos α2

cos α1

) (
CL

s/c

)2 cos2α2

cos3αm
(7.62)

as there are no tip losses.

� EXAMPLE 7.9

Combustion gases, with γ = 4
3 and cp = 1148 J/(kg K), flow through a normal

turbine stage with R = 0.60. The flow enters the stator at α1 = −33◦ and leaves
at velocity V2 = 450 m/s. The inlet stagnation temperature is T01 = 1200 K, and
the inlet stagnation pressure is 15 bar. The flow coefficient is φ = 0.7, blade
height-to-chord ratio is b/c = 3, the space-to-chord ratio s/c = 0.9, and the Reynolds
number is 105. The blades are unshrouded with B = 0.47, the tip-gap-to-blade height
ratio is k/b = 0.02, and the thickness-to-chord ratio is t/c = 0.2. Find the stagnation
pressure loss across the stator and the rotor based on Ainley–Mathieson correlations.
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Solution: The blade-loading coefficient is first determined from

ψ = 2(1 − R − φ tan α3) = 2(1 − 0.6 − 0.7 tan(−33◦)) = 1.709

The flow angle leaving the stator is

α2 = tan−1
(

1 − R + ψ/2
φ

)
= tan−1

(
1 − 0.6 + 1.709/2

0.7

)
= 60.84◦

Hence, the mean flow angle is

αm = tan−1
[
1
2
(tan α1 + tan α2)

]
= 29.74◦

The lift coefficient is

CLN = 2
(s

c

)
(tan α2 − tan α1) cos αm

= 2 · 0.9(tan(60.84◦) − tan(−33◦)) cos(29.74◦) = 3.816

The secondary loss coefficient for the nozzles is

YsN =
c

b

(
0.0334

cos α2

cos α1

)(
CLN

s/c

)2 cos2α2

cos3αm

=
1
3

(
0.0334

cos(60.84◦)
cos(−33.00◦)

) (
3.816
0.9

)2 cos2(60.84◦)
cos3(29.74◦)

= 0.0434

The value of profile losses obtained from Eqs. (7.55) and (7.56) are

YpaN = 0.0269 YpeN = 0.1151

so that for the particular nozzle row

YpN =

[
YpaN +

(
α1

α2

)2

(YpeN − YpaN)

] (
t/c

0.2

)|α1/α2|

comes out to be

YpN =

[
0.0269 +

(
−33.00
60.84

)2

(0.1151 − 0.0269)

]
= 0.0529

Thus, the stagnation pressure loss coefficient is YN = YpN + YsN = 0.0963.
For the rotor, the angle of the relative velocity leaving the stage is

β3 = tan−1
(
−R − ψ/2

φ

)
= tan−1

(
−0.6 − 1.709/2

0.7

)
= −64.3◦
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and the angle of the relative velocity at the inlet of the rotor is

β2 = tan−1
(
−R + ψ/2

φ

)
= tan−1

(
−0.6 + 1.709/2

0.7

)
= 20.0◦

The mean flow angle is

βm = tan−1
[
1
2
(tan β2 + tan β3)

]
= −40.6◦

The lift coefficient is

CLR = 2
(s

c

)
(tan β2 − tan β3) cos βm

= 2 · 0.9[tan(20◦) − tan(−64.32◦)] cos(−40.6◦) = 3.34

The secondary flow and tip losses can then be determined from

YsR + YkR =
c

b

[
0.0334

cos β3

cos β2
+ B

(
k

c

)0.78
] (

CLR

s/c

)2 cos2β3

cos3βm

YsR + YkR =
1
3

[
0.0334

cos(−64.3◦)
cos(20.0◦)

+ 0.47 · 0.020.78
] (

3.34
0.9

)2 cos2(−64.3◦)
cos3| − 40.6◦|

= 0.075

From Eqs. (7.55) and (7.56), the profile losses coefficients are

YpaR = 0.0322 YpeR = 0.1334

so that

YpR =

[
YpaR +

(
β2

β3

)2

(YpeR − YpaR)

] (
t/c

0.2

)|β2/β3|

is

YpR =

[
0.0322 +

(
−20.0
−64.3

)2

(0.1334 − 0.0322)

]
= 0.0419

The stagnation pressure loss coefficient for the rotor is therefore YR = YpR + YsR +
YkR = 0.1170.

The stagnation pressure loss across the nozzle row is obtained from

YN =
p01 − p02

p02 − p2
p01 − p02 = YN(p02 − p2)

Dividing through by p02 gives

p01

p02
= 1 + YN

(
1 − p2

p02

)
= 1 + YN

[
1 −

(
T2

T02

)γ/(γ−1)
]
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Since the temperature T2 is

T2 = T02 −
V 2

2

2cp

= 1200 − 4502

2 · 1148
= 1111.8 K

and M2 = V2/
√

γRT2 = 0.690, the stagnation pressure ratio is

p01

p02
= 1 + 0.0963

[
1 −

(
1111.8
1200

)4
]

= 1.02534

Hence, p02 = 1500/1.02534 = 1462.9 kPa, and the stagnation pressure loss is
Δp0LS = 37.1 kPa.

The static pressure at the exit is

p2 = p02

(
1 +

γ − 1
2

M 2
2

)−γ/(γ−1)

= 1462.9
(

1 +
0.6902

6

)−4

= 1078.0 kPa

Some preliminary calculations are necessary for the rotor. First,

Vx = V2 cos α2 = 450 cos(60.84◦) = 219.3 m/s

and then,

W2 =
Vx

cos β2
=

219.3
cos(20◦)

= 233.3 m/s

W3 =
Vx

cos β3
=

219.3
cos(−64.3◦)

= 505.6 m/s

V3 =
Vx

cos α3
=

219.3
cos(−33◦)

= 261.4 m/s

Also

U =
Vx

φ
=

219.3
0.7

= 313.3 m/s w = ψU 2 = 1.709 · 313.32 = 167.69 kJ/kg

so that
T03 = T02 −

w

cp

= 1200 − 167.69
1148

= 1053.9 K

and
T3 = T03 −

V 2
3

2cp

= 1053.9 − 261.42

2 · 1148
= 1024.2 K

Next,

T03R = T3 +
W 2

3

2cp

= 1024.2 +
505.62

2 · 1148
= 1135.5 K

and since T02R = T03R

p02R = p2

(
T02R

T2

)γ/(γ−1)

= 1078.0
(

1135.5
1111.8

)4

= 1172.9 kPa
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The stagnation pressure loss coefficient for the rotor is

YR =
p02R − p03R

p03R − p3

so that

p02R

p03R
= 1 + YR

(
1 − p3

p03R

)
= 1 + YR

[
1 −

(
T3

T03R

)γ/(γ−1)
]

The numerical value for the pressure ratio is

p02R

p03R
= 1 + 0.1169

[
1 −

(
1024.2
1135.5

)4
]

= 1.040

and p03R = 1172.9/1.040 = 1128.28 kPa. Hence, the stagnation pressure loss across
the rotor is Δp0LR = 44.6 kPa. The value obtained by Soderberg correlation was
38.6 kPa, but that correlation neglects the tip losses. For the nozzle row, the loss is
Δp0LS = 37.1 kPa, and the Soderberg correlation gave 42.4 kPa. Ainley–Mathieson
and Soderberg correlations are therefore in reasonable agreement. �

7.6 MULTISTAGE TURBINE

7.6.1 Reheat factor in a multistage turbine

Consider next a multistage turbine with process lines as shown in Figure 7.22. The
isentropic work delivered by the jth stage is denoted as wjs, whereas the actual stage work
is wj . The stage efficiency is defined to be

ηs =
wj

wjs

01

0,N+1

0,N

w
wj

w
s

wjs

0,N+1,s

h
01

h
02

h
0, j

h
0,N+1

h
0, j+1

h
0,N

s

0,N+1,ss

p
02

p
0,N+1

p
01

Figure 7.22 Processes in a multistage turbine.
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and it is assumed to be the same for each stage. With

wjs = h0j − h0j+1,s

the sum over all the stages gives

N∑
j=1

wjs =
N∑

j=1

(h0j − h0j+1,s)

The isentropic work delivered by the turbine is ws = h01 − h0,N+1,ss. A reheat factor
is defined as

RF =

∑N
j=1 wjs

ws
=

η

ηs

∑N
j=1 wj

w

in which w =
∑N

j=1 wj , so that

RF =
η

ηs

Since the slope of constant-pressure line increases as temperature increases, it follows that

N∑
j=1

wjs > ws

and RF > 1. Hence η > ηs, and the overall efficiency of a turbine is greater than the
stage efficiency. The reason is the internal heating, for the increase in static enthalpy by
irreversibilities becomes partly available as the expansion proceeds over the next stage.
The increase in the overall efficiency depends on the number of stages.

If the ideal gas model can be used, then the actual and ideal work delivered by the first
stage are

w = cp(T01 − T02) ws = cp(T01 − T02s)

Since
T02s

T01
=

(
p02

p01

)(γ−1)/γ

the temperature difference for the isentropic process becomes

T01 − T02s = T01

[
1 −

(
p02

p01

)(γ−1)/γ
]

Letting

x = 1 −
(

p02

p01

)(γ−1)/γ

then T01 − T02s = xT01

The actual temperature drop is then

T01 − T02 = ηsxT01 so that T02 = T01(1 − ηsx)
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Assuming that the pressure ratio and the efficiency are the same for each stage, similar
analysis for the next stage gives

T02 − T03 = ηsxT02 so that T03 = T02(1 − ηsx) = T01(1 − ηsx)2

and for the Nth stage,

T0,N − T0,N+1 = ηsxT0,N so that T0,N+1 = T01(1 − ηsx)N

The work delivered by the entire turbine can then be expressed as

w = cp(T01 − T02) + cp(T02 − T03) + · · · + cp(T0,N − T0,N+1) = cp(T01 − T0,N+1)

which can be written as
w = cpT01[1 − (1 − ηsx)N ]

The isentropic work by the entire turbine is given by this same equation when ηs = 1, or

ws = cpT01[1 − (1 − x)N ]

The isentropic work can also be written as

ws = cpT01

[
1 −

(
p0,N+1

p01

)(γ−1)/γ
]

and therefore,

η =
w

ws
=

1 − (1 − ηsx)N

1 −
(

p0,N+1

p01

)(γ−1)/γ

so that the reheat factor becomes

RF =
η

ηs
=

1 − (1 − ηsx)N

ηs

[
1 −

(
p0,N+1

p01

)(γ−1)/γ
]

7.6.2 Polytropic or small-stage efficiency

The polytropic process was introduced in Chapter 3. Here, it is used for a small stage. If
the stagnation enthalpy change is small across a stage, then the stage efficiency approaches
the polytropic efficiency. Consider the situation for which the ideal gas relation is valid
and for which an incremental process is as shown in Figure 7.23. The temperature drops
for actual and ideal processes are related and given by

ηp dT0s = dT0

For an isentropic expansion,

cp

dT0s

T0
= R

dp0

p0
or

γ

ηp(γ − 1)
dT0

T0
=

dp0

p0
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Figure 7.23 Processes across a small stage.

Integrating this between the inlet and the exit gives

T0,N+1

T01
=

(
p0,N+1

p01

)(γ−1)ηp/γ

The reheat factor can then be written as

RF =
η

ηp
=

1 −
(

p0,N+1

p01

)(γ−1)ηp/γ

ηp

[
1 −

(
p0,N+1

p01

)(γ−1)/γ
]

The relationship between the turbine efficiency and polytropic or small-stage efficiency is

η =
1 −

(
1
r

)(γ−1)ηp/γ

1 −
(

1
r

)(γ−1)/γ

in which r = p01/p0e is the overall pressure ratio of the turbine. This relationship is shown
in Figure 7.24.

This completes the study of axial turbines, which began in the previous chapter on
steam turbines. Wind turbines and some hydraulic turbines are also axial machines. They
are discussed later. Many of the concepts introduced in this chapter are carried over to the
next one on axial compressors.

EXERCISES

7.1 Combustion gases enter the inlet of a rotor in a single-stage axial-flow turbine at the
absolute velocity of 610 m/s. Their direction is 61◦ as measured from the cascade front
in the direction of the blade motion. The values γ = 4/3 and cp = 1148 kJ/(kg K) are
suitable for these gases. At exit of this rotor, the absolute velocity of the fluid is 305 m/s
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Figure 7.24 Turbine efficiency as a function of pressure ratio and polytropic efficiency for a gas
with γ = 1.4.

directed such that its tangential component is negative. The axial velocity is constant, the
blade speed is 305 m/s, and the flow rate through the rotor is 5 kg/s. (a) Construct
the rotor inlet and exit velocity diagrams showing the axial and tangential components
of the absolute and relative velocities, as well as the flow angles. (b) Evaluate the change in
total enthalpy across the rotor. (c) Evaluate the power delivered by the rotor. (d) Evaluate
the average driving force exerted on the blades. (e) Evaluate the change in static and
stagnation temperature of the fluid across the rotor. (f) Calculate the flow coefficient and
the blade-loading coefficient. Are they reasonable? [Ans: (b) 185.48 kJ/kg, (c) 927.4 kW,
(d) 3040.6 N, (e) 40 and 161.6 K, (f) 0.97, 2.0]

7.2 Show that for a normal stage

V2

U
=

√
φ2 + (1 − R + ψ/2)2 W3

U
=

√
φ2 + (R + ψ/2)2

7.3 A small axial-flow turbine must have an output power of 37 kW when the mass flow
rate of combustion gases is 0.5 kg/s, and the inlet total temperature is 410 K. The value of
the gas constant is 287 J/(kg K) and γ = 4/3. The total-to-total efficiency of the turbine is
80%. The rotor operates at 50000 rpm, and the mean blade diameter is 10 cm. Evaluate (a)
the average driving force on the turbine blades, (b) the change in the tangential component
of the absolute velocity across the rotor, and (c) the required total pressure ratio across the
turbine. [Ans: (a) 141.3N, (b) 282.7 m/s, (c) 2.4]

7.4 A turbine stage of a multistage axial turbine is shown in Figure 7.3. The inlet gas
angle to the stator is α1 = −36.8◦, and the outlet angle from the stator is α2 = 60.3◦. The
flow angle of the relative velocity at the inlet to the rotor is β2 = 36.8◦, and the flow
leaves at β3 = −60.3◦. The value of the gas constant is 287 J/(kg K) and γ = 4/3. (a)
Assuming that the blade speed is U = 220 m/s, find the axial velocity, which is assumed
constant throughout the turbine. (b) Find the work done by the fluid on the rotor blades for
one stage. (c) The inlet stagnation temperature to the turbine is 950 K, and the mass flow
rate is ṁ = 400 kg/s. Assuming that this turbine produces a power output of 145 MW,
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find the number of stages. (d) Find the overall stagnation pressure ratio, given that its
isentropic efficiency is ηtt = 0.85. (e) Why does the static pressure fall across the stator
and the rotor? [Ans: (a) 218.9 m/s, (b) 120.4 kJ/kg, (c) 3, (d) 7.2]

7.5 A single-stage axial turbine has a total pressure ratio of 1.5:1, with an inlet total
pressure 300 kPa and temperature of 600 K. The absolute velocity at the inlet to the stator
row is in the axial direction. The adiabatic total-to-total efficiency is 80%. The relative
velocity is at an angle of 30◦ at the inlet of the Rotor, and at the exit, it is −35◦. If the
flow coefficient is φ = 0.9, find the blade velocity. Use compressible flow analysis with
cp = 1148 J/(kg K), γ = 4

3 , and R = 287 J/(kg K). [Ans: 215 m/s]

7.6 An axial turbine has a total pressure ratio of 4:1, with an inlet total pressure 650 kPa
and total temperature of 800 K. The combustion gases that pass through the turbine have
γ = 4

3 , and R = 287 J/(kg K). (a) Justify the choice of two stages for this turbine, and
assume repeating stages, both designed the same way, with the blade-loading coefficient
equal to 1.1 and the flow coefficient equal to 0.6. The absolute velocity at the inlet to the
stator row is at angle 5◦ from the axial direction. The adiabatic total-to-total efficiency is
91.0%. Find, (b) the angle at which the absolute velocity leaves the stator, (c) the angle of
the relative velocity at the inlet of the rotor, and (d) the angle at which the relative velocity
leaves the rotor. (e) Draw the velocity diagrams at the inlet and outlet of the rotor. (f) What
are the blade speed and the axial velocity? A consequence of the design is that each stage
has the same work output and efficiency. Find, (g) the stage efficiency and (h) the pressure
ratio for each stage. [Ans: (b) 62.5◦, (c) 14.3◦, (d) −57.7◦, (f) 333.6 and 200.1 m/s, (g)
0.902, (h) 1.895 and 2.111]

7.7 For a steam turbine rotor, the blade speed at the casing is U = 300 m/s, and at
the hub, its speed is 240 m/s. The absolute velocity at the casing section at the inlet to
the rotor is V2c = 540 m/s, and at the hub section, it is V2h = 667 m/s. The angle of the
absolute and relative velocities at the inlet and exit of the casing and hub sections are α2c =
65◦, β3c = −60◦, α2h = 70◦, and β3h = −50◦. The exit relative velocity at the casing is
W3c = 456 m/s and at the hub, it is W3h = 355 m/s. For the tip section, evaluate (a) the
axial velocity at the inlet and exit; (b) the change in total enthalpy of the steam across the
rotor; and (c) the outlet total and static temperatures at the tip and hub, assuming that the
inlet static temperature is 540 ◦C and inlet total pressure is 7 MPa, and they are the same
at all radii. Assume that the process is adiabatic, and steam can be considered a perfect gas
with γ = 1.3. The static pressure at the exit of the rotor is the same for all radii and is equal
to the static pressure at inlet of the hub section. Repeat the calculations for the hub section.
(d) Find the stagnation pressure at the outlet at the tip and the hub. (e) Find the reaction at
the tip and hub sections. [Ans: (a) 228 m/s, (b) average between tip and hub 166.6 kJ/kg,
(c) tip 783.2 and 798.4 K hub 832.0 and 845.3 K, (d) 4368 and 4303 kPa, (e) 0.343 and
−0.239. Note that reaction increases along the blade but is too low at the hub.]

7.8 Combustion gases, with γ = 4
3 and R = 287 kJ/(kg K), flow through a repeating

turbine stage. The inlet flow angle for a normal stage is α1 = 0◦. The flow coefficient is
φ = 0.52, and the blade-loading coefficient is ψ = 1.4. (a) Draw the velocity diagrams
for the stage. (b) Determine the angle at which relative velocity leaves the rotor. (c)
Find the flow angle at the exit of the stator. (d) A two-stage turbine has an inlet
stagnation temperature of T01 = 1250 K and blade speed U = 320 m/s. Assuming that the
total-to-total efficiency of the turbine is ηtt = 0.89, find the stagnation temperature of the
gas at the exit of the turbine and the stagnation pressure ratio for the turbine. (e) Assuming
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that the density ratio across the turbine based on static temperature and pressure ratios is
the same as that based on the stagnation temperature and stagnation pressure ratios, find
the ratio of the exit cross-sectional area to that of the inlet to the two-stage turbine.
[Ans: (b) −62.5◦, (c) 69.6◦, (d) 1000 K, 2.765, (e) 2.229]

7.9 Steam enters a 10-stage 50%-reaction turbine at the stagnation pressure 0.8 MPa
and stagnation temperature 200 ◦C and leaves at pressure 5 kPa and with quality equal to
0.86. (a) Assuming that the steam flow rate is 7 kg/s, find the power output and the overall
efficiency of the turbine. (b) The steam enters each stator stage axially with velocity of
75 m/s. The mean rotor diameter for all stages is 1.4 m, and the axial velocity is constant
through the machine. Find the rotational speed of the shaft. (c) Find the absolute and
relative inlet and exit flow angles at the mean blade height assuming equal enthalpy drops
for each stage. [Ans: (a) 4328 kW, 0.812, (b) 3392 rpm, (c) 0◦, 73.2◦, −73.2◦, 0◦]

7.10 Combustion gases, with γ = 4/3 and R = 287 kJ/(kg K) enter axially into a
normal stage at stagnation temperature T01 = 1200 K and stagnation pressure p01 =
1500 kPa. The flow coefficient is φ = 0.8, and the reaction is R = 0.4. The inlet Mach
number to the stator is M1 = 0.4. Find, (a) the blade speed and (b) the Mach number leaving
the stator and the relative Mach number leaving the rotor. (c) Using the Zweifel criterion,
determine the ratio of spacing to the axial chord. (d) Using the Soderberg loss coefficients,
and assuming that Re = 105, find the efficiency of the stage. (e) Repeat the calculations
with inlet Mach number M1 = 0.52 and explain the differences in the results, if any.
[Ans: (a) 334.4 m/s, (b) 0.744, 0.675, (c) 0.267, (d) 0.912, (e) 430.9 m/s, 0.99, 0.912]

7.11 Combustion gases, with γ = 4/3 and R = 287 kJ/(kg K), enter the stator of as
normal stage at angle 10◦. The relative velocity has an angle −40◦ as it leaves the rotor.
The blade-loading factor is 1.6. (a) Determine the exit angle of the flow leaving the
stator and the angle of the relative velocity as it enters the rotor. (b) Find the degree of
reaction and the flow coefficient. (c) Calculate the total-to-total efficiency using Soderberg
correlations. Take the blade height to axial chord ratio to be b/cx = 3.5. (d) Determine the
stagnation pressure loss across the stator, given that the inlet conditions are T01 = 700 K
and p01 = 380 kPa, and the velocity after the stator is V2 = 420 m/s. [Ans: (a) 61.0◦ and
38.1◦, (b) 0.026 and 0.985, (c) 0.903, (d) 9.95 kPa]

7.12 Show that the total-to-static efficiency can be expressed as

1
ηts

=
1
ηtt

+
φ2

2ψcos2α3

What kind of approximation is needed to arrive at this result?

7.13 Consider the Example 7.3. Assume that the gap between the blades is one quarter
of the average width of the stator and rotor blades and that the blade width is one third its
height. Find the angle at which the casing of the stage is increasing. [Ans: 25◦]

7.14 For Example 7.6, write a computer program to calculate the mass flow rate and plot
the blade angles as shown in Figure 7.8.

7.15 For Example 7.6, write a computer program to (a) calculate and plot the variation
of the reaction from the hub to the casing at the inlet and exit to the rotor. Define the
nondimensional abscissa as r̄2 = (r2 − r2h)/(r2c − r2h), and r̄3 = (r3 − r3h)/(r3c − r3h).
(b) Calculate and plot the blade-loading coefficient similarly. [Ans: (a) R2h = 0.2040,
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R2c = 0.6099, R3h = 0.1303, and R3c = 0.6325, (b) ψ2h = 2.506, ψ2c = 1.228, ψ3h =
2.738, and ψ3c = 1.157]

7.16 For a normal turbine stage, the exit blade angle of the stator at 70◦ and relative
velocity has angle−60◦ as it leaves the rotor. For a range of flow coefficients φ = 0.2 − 0.8,
calculate and plot the gas exit angle from the rotor, the angle the relative velocity makes as
it leaves the stator, the blade-loading coefficient, and the degree of reaction. Comment on
what is a good operating range and what are the deleterious effects in flow over the blades
if the mass flow rate is reduced too much, or if it is increased far beyond this range.

7.17 Combustion gases, with γ = 4/3 and cp = 1148 kJ/(kg K), enter into a normal
stage with a degree of reaction 50%. The ratio of the blade speed to the absolute velocity at
the inlet is U/V2 = 0.75, and the flow angle of the relative velocity is β2 = 34◦. The shaft
speed is 12000 rpm. The inlet stagnation temperature is T01 = 1400 K, and stagnation
pressure is p01 = 2200 kPa. Find the stagnation pressure ratio across this stage if the
total-to-total efficiency is ηtt = 0.92. [Ans: 1.604]

7.18 Combustion gases with γ = 4/3 and cp = 1148 kJ/(kg K) flow through a turbine.
The inlet stagnation temperature is T01 = 1400 K, and stagnation pressure is p01 =
1100 kPa. Blade speed is U = 300 m/s, and the blade height to axial chord ratio
is b/cx = 3.5. The axial velocity is not constant, and the flow coefficients for the stator is
φ2 = Vx2/U = 0.50. For the rotor it is φ3 = Vx3/U = 0.56. The absolute velocity enters
the rotor at the angle α2 = 68◦, and the relative velocity leaves it at angle β3 = −65◦.
Assuming that Re = 105 and using the Soderberg correlations to establish the loss
coefficients, find the areas entering the rotor and leaving the rotor. [Ans: A2 = 0.0434 m2

and A3 = 0.0450m2]

7.19 Combustion gases with γ = 4/3 and R = 297 kJ/(kg K), enter a normal single
stage turbine with stagnation temperature T01 = 1100 K. At the inlet to the rotor, the
absolute velocity is V2 = 400 m/s, and flow angle is α2 = 79◦. The relative velocity at the
exit of the stage is W3 = −310 m/s, and the flow angle is β3 = −65◦. (a) Find the flow
coefficients φ1 = Vx1/U , φ2 = Vx2/U , and φ3 = Vx3/U and the blade-loading coefficient.
(b) Find the temperature after the stage. [Ans: (a) φ = 0.578, φ2 = 0.547, φ3 = 0.578,
ψ = 1.744, (b) 994.4 K]

7.20 In a normal single-stage turbine, the gas with γ = 4/3 and R = 287 kJ/(kg K)
enters the rotor at angle α2 = 74.5◦. The blade-loading coefficient is ψ = 1.8, and the
flow coefficients are φ2 = 0.50 and φ3 = 0.52. The blade speed is U = 340 m/s. (a) Find
the reaction. (b) Find the flow angles of the absolute and relative velocities. (c) Find the
Mach number M2 if the flow entering the stage is T01 = 1100 K. (d) Find the velocity
entering the stator, and calculate the flow coefficient φ1 = Vx1/U assuming that the flow
at the entrance is axial. [Ans: (a) 0.103, (b) α3 = 0.3◦, β2 = 58.1◦, β3 = −62.5◦, (c) 1.07,
(d) 176.8 m/s, φ1 = 0.52]

7.21 In a normal single-stage turbine, the gas with γ = 4/3 and R = 287 kJ/(kg K)
leaves the rotor axially. The blade-loading coefficient is ψ = 1.8, and the flow coefficients
are φ2 = 0.7 and φ3 = 0.72. The blade speed is U = 220m/s. (a) Find the reaction. (b)
Find the flow angles of the absolute and relative velocities. (c) Find the Mach number M2
if the flow entering the stage is T01 = 1100 K. [Ans: (a) 0.108, (b) α2 = 68.7◦, β2 = 48.8◦,
β3 = −54.2◦, (c) 0.68]
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7.22 For a normal turbine stage, fluid enters the stator with the inlet conditions
T01 = 1100 K and p01 = 380 kPa. The inlet flow angle is −10◦, and the velocity after
the stator is V2 = 420 m/s. The relative velocity has angle −60◦ as it leaves the rotor.
The blade-loading factor is 1.6. (a) Determine the exit angle of the flow leaving the stator
and (b) the angle of the relative velocity as it enters the rotor. (c) Determine the
degree of reaction. (d) Calculate the stagnation pressure losses across the stator using
Ainley–Mathieson correlations. Take the space to axial chord ratio equal to s/cx = 0.75,
and assume that the maximum thickness-to-chord ratio is t/c = 0.22. [Ans: (a) 66.6◦, (b)
37.1◦, (c) 0.313, (d) 3.46]

7.23 Examination of Example 7.8 shows that YN ≈ ζN. Derive an expression that shows
that for ζN � 1,

ζN = YN
2

γM 2
2

[
1 −

(
1 +

γ − 1
2

M 2
2

)−γ/(γ−1)
]

and that for M2 � 1, this reduces to ζN ≈ YN.
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CHAPTER 8

AXIAL COMPRESSORS

In Chapter 5 it was pointed out that axial compressors are well suited for high flow rates
and centrifugal machines are used when a large pressure rise is needed at a relatively low
flow rate. To obtain the high flow rate, gas enters the compressor at a large radius. The gas
is often atmospheric air and as it is compressed, it becomes denser and the area is reduced
from stage to stage, often in such a way that the axial velocity remains constant. As in axial
turbines, this may be accomplished by keeping the mean radius constant and by reducing
the casing radius and increasing the hub radius. In jet engines, high-pressure ratios are
obtained by pairing one multistage compressor with a turbine sufficiently powerful to turn
that compressor. This arrangement of a turbine and compressor running on the same shaft
is called a spool. A two- spool engine has a low pressure (LP) compressor and a turbine
to drive it on the separate hollow shaft that is concentric with the shaft of a high-pressure
(HP) spool. In a three-spool engine, an intermediate (IP) spool is added. The high and
intermediate pressure spools then serve as gas generators to provide a flow to an LP
turbine that drives the fan in a turbofan jet aircraft or a generator for electricity production
in a power plant [77].

The larger LP and IP compressors turn at a lower speed than the HP spool in order
to keep the blade speed sufficiently low to ensure that compressibility effects do not
deteriorate the performance of the machine. In a typical spool, one turbine stage drives six
or seven compressor stages. The stage pressure ratio has increased with improved designs,
reaching 1.3 and 1.4 in modern jet engine core compressors [77].

311Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e

http://www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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Pipeline compressors are often driven by a power turbine that uses a jet engine spool as
the gas generator. Alternatively, a diesel engine may provide the power to the compressor.
An industrial compressor manufactured by MAN Diesel & Turbo SE in Germany is shown
in Figure 8.1. It has 14 axial stages and one centrifugal compressor stage with shrouded
blades.

Figure 8.1 A 14-stage axial compressor with a single centrifugal stage. Source: Photo courtesy
MAN Diesel & Turbo SE.

The first section of this chapter is on the stage analysis of axial compressors. The
theory follows closely that which is discussed in the previous chapter for axial turbines.
Then empirical methods for calculating the flow deflection across the stator and rotor are
introduced. After that a semiempirical method for allowable diffusion limit is discussed.
Too much diffusion leads to separation of boundary layers, which may be catastrophic,
with complete deterioration of the compressor performance. Next, the efficiency of a
compressor stage is defined, followed by methods to calculate stagnation pressure losses.
Three-dimensional effects will receive mention as well. Once the stagnation pressure losses
have been related to flow angles, reaction, blade loading, and flow coefficient, an estimate
of the stage efficiency can be obtained. The task of a compressor engineer is to use this
information to design a well-performing multistage axial compressor.

8.1 COMPRESSOR STAGE ANALYSIS

A compressor stage consists of a rotor that is followed by a stator. In contrast to the flow
in turbines, in which pressure decreases in the direction of the flow, in compressors flow
is against an adverse pressure gradient. The blade-loading coefficient is kept fairly low in
order to prevent separation, with design range 0.35 ≤ ψ ≤ 0.5. As a result, the amount of
turning is about 20◦ and does not exceed 45◦ [19]. A typical range for the flow coefficient
is 0.4 ≤ φ ≤ 0.7. If the flow is drawn into the compressor directly from an atmosphere, it
enters the first stage axially. However, a set of inlet guide vanes may be used to change the
flow angle α1 to the first stage to a small positive value [18].
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8.1.1 Stage temperature and pressure rise

Figure 8.2 shows a typical compressor stage. Since the rotor now precedes the stator, the
inlet to the rotor is station 1, and its outlet is station 2. The outlet from the stator is station
3, and for a repeating stage, the flow angles and velocity magnitudes there are equal to
those at the inlet to the rotor.

Work done by the blades is

w = U(Vu2 − Vu1) (8.1)

or
w = h02 − h01 = UVx(tan α2 − tan α1) = UVx(tan β2 − tan β1)

With w = cp(T03 − T01), this can also be expressed in the form

w

cpT01
=

ΔT0

T01
=

UVx

cpT01
(tan β2 − tan β1)

which gives the nondimensional stagnation temperature rise. From the definition of stage
efficiency

ηtt =
T03s − T01

T03 − T01

the stage stagnation pressure ratio can be written as

p03

p01
=

(
1 + ηtt

ΔT0

T01

)γ/(γ−1)

The stage stagnation temperature rise can also be written in the form

ΔT0

T01
= (γ − 1)

U

Vx

V 2
x

c2
01

(tan β2 − tan β1)

For axial entry, Vx is the inlet velocity. In terms of the flow coefficient and stagnation
Mach number, defined as

φ =
Vx

U
M01 =

Vx

c01

β
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α
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Figure 8.2 A typical axial compressor stage.
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and the temperature rise takes the form

ΔT0

T01
= (γ − 1)

M 2
01

φ
(tan β2 − tan β1)

A typical inlet velocity is Vx = 150 m/s, and an inlet stagnation temperature is T01 =
300 K. The stagnation Mach number is therefore

M01 =
Vx

c01
=

150√
1.4 · 287 · 300

= 0.432

The actual Mach number is obtained by noting that

M1 =
Vx

c01

c01

c1
= M01

√
T01

T1
= M01

(
1 +

γ − 1
2

M 2
1

)1/2

so that
M01 =

M1√
1 + γ−1

2 M 2
2

and M1 =
M01√

1 − γ−1
2 M 2

01

Hence, for this value of the stagnation Mach number, M1 = 0.440. For a flow coefficient
φ = 0.56 (and axial entry), the relative velocity is at an angle

β1 = tan−1
(

Wu1

Wx1

)
= tan−1

(
− U

Vx

)
= tan−1

(
− 1

φ

)

= tan−1
(
− 1

0.56

)
= −60.75◦

If the relative velocity is turned by 12◦, the exit flow angle is β2 = −48.75◦. With these
values, nondimensional stagnation temperature rise is

ΔT0

T01
= (γ − 1)

M 2
01

φ
(tan β2 − tan β1)

=
0.4 · 0.4322

0.56
(tan(−48.75◦) − tan(−60.75◦)) = 0.086

so that the actual stagnation temperature rise is ΔT0 = 25.8◦. Assuming a stage efficiency
ηtt = 0.9, the stage pressure rise is

p03

p01
= (1 + 0.9 · 0.086)3.5 = 1.30

This falls into the typical range of 1.3–1.4 for core compressors.
The relative Mach number may be quite high at the casing, owing to the large

magnitude of the relative velocity there. With κ = rh/rc, the blade speed at the casing is
Uc = 2U/(1 + κ). Hence, the relative flow angle, for κ = 0.4, at the casing is

β1c = tan−1
[
− 2

(1 + κ)φ

]
= tan−1

(
− 2

1.4 · 0.56

)
= −68.6◦
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and the relative mach number is

M1Rc =
M1

cos β1c
=

0.44
0.365

= 1.21

Hence, the flow is supersonic (or transonic). As has been mentioned earlier, shock losses
in transonic flows do not impose a heavy penalty on the performance of the machine and
are therefore tolerable. In Figure 8.3 is shown the relative Mach numbers for typical blade
speeds and axial velocities and how mild amount of pre-rotation reduces the relative Mach
number.
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Figure 8.3 Compressor inlet conditions with (a) α1 = 0◦ and (b) α1 = 10◦.

8.1.2 Analysis of a repeating stage

Equation (8.1) for work can be rewritten in a nondimensional form by dividing both sides
by U 2, leading to

ψ = φ(tan α2 − tan α1) = φ(tan β2 − tan β1) (8.2)

The reaction R is the ratio of the enthalpy increase across the rotor to that over the stage

R =
h2 − h1

h3 − h1
=

h3 − h1 + h2 − h3

h3 − h1
= 1 − h3 − h2

h3 − h1

The work done by the blades causes the static enthalpy and kinetic energy (as seen from
Figure 8.2) to increase across the rotor. In the stator stagnation enthalpy remains constant,
and the static enthalpy and, therefore, also a pressure increases are obtained by decreasing
the kinetic energy. In a design in which the areas are adjusted to keep the axial flow
constant, the reduction in kinetic energy and increase in pressure result from turning the
flow toward the axis. A similar argument holds for the rotor, but now it is the stagnation
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enthalpy of the relative flow that is constant. Hence, pressure is increased by turning the
relative velocity toward the axis. The velocity vectors in Figure 8.2 show this turning. The
amount of turning of the flow through the rotor and stator is quite mild. A large deflection
could lead to rapid diffusion and likelihood of stalled blades. Since compression is obtained
in both the stator and the rotor, intuition suggests that the reaction ratio ought to be fixed to
a value close to 50% in a good design. But in the first two stages, at least, where density is
low and blades long, reaction increases from the hub to the casing and the average reaction
is made sufficiently large to ensure that the reaction at the hub is not too low.

In Figure 8.4, the thermodynamic states are displayed on a Mollier diagram. The
distances that represent the absolute and relative kinetic energies are also shown. The
relative stagnation enthalpy across the rotor remains constant at the value h01R = h1 +
W 2

1 /2 = h2 + W 2
2 /2. The relative Mach number and the relative stagnation temperature

are related by
T0R

T
= 1 +

γ − 1
2

M 2
R

and the corresponding stagnation pressure and density are

p0R

p
=

(
T0R

T

)γ/(γ−1)
ρ0R

ρ
=

(
T0R

T

)1/(γ−1)

The loss of stagnation pressure across the rotor is given by p01R − p02R. Across the stator,
the loss is p02 − p03.

For the stator h02 = h03 and therefore

h2 +
1
2
V 2

2 = h3 +
1
2
V 2

3 or h3 − h2 =
1
2
V 2

2 − 1
2
V 2

3

Since V 2
2 = V 2

x2 + V 2
u2 and V 2

3 = V 2
x3 + V 2

u3 and the axial velocity Vx is constant

h3 − h2 =
1
2
(V 2

u2 − V 2
u3) =

1
2
V 2

x (tan2α2 − tan2α3)
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Figure 8.4 A Mollier diagram for an axial compressor stage.
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For normal stage V1 = V3 and h03 − h01 = h3 − h1. Since no work is done by the stator,
across a stage

w = h03 − h01 = h3 − h1 = ψU 2

Using these equations the reaction ratio, with α1 = α3, may be expressed as

R = 1 − V 2
x

2
(tan2α2 − tan2α1)

U 2ψ
or R = 1 − φ2

2ψ
(tan2α2 − tan2α1)

Substituting ψ from Eq. (8.2) into this gives

R = 1 − 1
2
φ(tan α2 + tan α1) (8.3)

Eliminating next α2 from this, with the help of Eq. (8.2), yields

ψ = 2(1 − R − φ tan α1) (8.4)

Equations (8.2) – (8.4) are identical to Eqs. (7.5),(7.8),and (7.9)for turbines, provided α1
is replaced by α3. Hence, the flow angles for the stator can be calculated from

tan α1 =
1 − R − ψ/2

φ
tan α2 =

1 − R + ψ/2
φ

(8.5)

Similarly, for the rotor, the flow angles can be determined from

tan β1 = −R + ψ/2
φ

tan β2 = −R − ψ/2
φ

(8.6)

In these four equations, there are seven variables. Thus, once three have been specified,
the other four can be determined. For example, specifying R,ψ, and φ, it is easy to
obtain the flow angles. Suggested design ranges for these have already been mentioned.
The situation changes if the axial velocity is not constant because then two flow coefficients
need to be introduced. Equations (8.5) and (8.6) no longer hold, and as was done in the
previous chapter, the appropriate equations need to be developed. This can be done for
a normal stage, and the task is left as an exercise. If the stage is not normal, then the
fundamental definitions need to be used.

There are two situations of particular interest. First, for a 50% normal reaction stage,
these equations show that

tan α1 = − tan β2 α1 = −β2

tan α2 = − tan β1 α2 = −β1

and the velocity triangles are symmetric. Second, from Eq. (8.4), it is seen that for axial
entry, with α1 = 0, the blade-loading coefficient is related to reaction by ψ = 2(1 − R)
and thus it cannot be specified independently of the reaction. If the loading coefficient is to
be in the range 0.35 < ψ < 0.5, the stage would have to be designed for a reaction greater
than 50%. But if the flow enters the stator at a small positive angle, then the blade loading
can also be reduced by reducing the flow coefficient. The calculations for this situation are
illustrated in the following example.
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� EXAMPLE 8.1

A normal compressor stage is designed for an inlet flow angle α1 = 15.8◦, reaction
R = 0.63, and the flow coefficient φ = 0.6. (a) Find the blade-loading factor.
(b) Determine the inlet and exit flow angles of the relative velocity to the rotor and
the inlet flow angle to the stator.

Solution: (a) The value

ψ = 2(1 − R − φ tan α1) = 2(1 − 0.63 − 0.6 tan(15.8◦)) = 0.400

for a blade loading coefficient falls into a typical range.
(b) The flow angles are

α2 = tan−1
(

1 − R + ψ/2
φ

)
= tan−1

(
1 − 0.63 + 0.2

0.6

)
= 43.54◦

β1 = tan−1
(
−R − ψ/2

φ

)
= tan−1

(
−0.63 − 0.2

0.6

)
= −54.14◦

β2 = tan−1
(
−R + ψ/2)

φ

)
= tan−1

(
−0.63 + 0.2

0.6

)
= −35.61◦

The rotor turns the relative velocity by Δβ = β2 − β1 = 18.53◦, and the stator turns
the flow by Δα = 27.74◦. These are also in the acceptable range. The velocity
triangles in Figure 8.2 were drawn to have these angular values. A similar calculation
shows that for a 50% reaction, the blade-loading coefficient would increase to 0.66
and the amount of turning would be 38.34◦ in both the stator and the rotor. �

A simple criterion, developed by de Haller, may be used to check whether the flow
diffuses excessively [38]. He suggested that the ratios V1/V2 and W2/W1 should be kept
above 0.72. These ratios can be expressed in terms of the flow angles, and for a normal
stage, they give the following conditions:

V1

V2
=

cos α2

cos α1
> 0.72

W2

W1
=

cos β1

cos β2
> 0.72

In the foregoing example, when R = 0.63

V1

V2
=

cos α2

cos α1
=

cos(43.54◦)
cos(15.80◦)

= 0.75
W2

W1
=

cos β1

cos β2
=

cos(−54.14◦)
cos(−35.63◦)

= 0.72

so the de Haller criterion is satisfied. If the reaction is reduced to R = 0.5, then for both
the rotor and the stator, these ratios are

cos α2

cos α1
=

cos(54.14◦)
cos(15.80◦)

= 0.61

and now the de Haller criterion is violated. On the basis of this comparison, the higher
reaction keeps the diffusion within acceptable limits.

It has been mentioned that there is another reason why the reaction should be relatively
large for the first two stages. Since the gas density there is low, to keep the axial velocity
constant through the compressor, a large area and thus long blades are needed. This causes
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reaction to vary greatly from the blade root to its tip. To see this, consider again the
equation

w = U(Vu2 − Vu1) = Ω(rVu2 − rVu1)

If the tangential velocity distribution is given by free vortex flow for which rVu is constant,
then each blade section does the same amount of work. For a blading of this kind the
equation for reaction

R = 1 − 1
2
φ(tan α2 + tan α1)

may also be written as

R = 1 − Vu2 + Vu1

2U
= 1 − C2 + C1

2rU

where C1 = rVu1 and C2 = rVu2. Since U = rUm/rm, in which subscript m designates a
condition at the mean radius, for this flow, the reaction takes the form

R = 1 − A

r2

which shows that the reaction is low at the hub and increases along the blades. Thus, if
the reaction at the mean radius is to be 50%, then low reaction at the hub causes a large
loading and greater deflection of the flow. This leads to a greater diffusion.

If guide vanes are absent, the flow enters the stage axially. Hence, α1 = 0 and Eq. (8.4)
reduces to ψ = 2(1 − R). When this is substituted into Eqs. (8.5) and (8.6), the following
relations are obtained:

tan α2 =
2(1 − R)

φ
tan β1 = − 1

φ
tan β2 = −2R − 1

φ

Two of the parameters could now be assigned values and the rest calculated from these
equations.

Another way to proceed is to use the de Haller criterion for the rotor flow angles and set

cos β1

cos β2
=

√
φ2 + (2R − 1)2

φ2 + 1
= DR (8.7)

in which DR = 0.72, or slightly larger than this. This method of designing a stage is
discussed in the next example.

� EXAMPLE 8.2

A compressor stage is to be designed for axial entry and a reaction R = 0.82. Use
the de Haller criterion to fix the flow angles for the stage design.

Solution: With α1 = 0 and R = 0.82, the blade loading coefficient is ψ = 0.36.
Using the de Haller criterion, with DR = 0.72, for limiting the amount of diffusion
in the rotor, the flow coefficient can be solved from Eq. (8.7). This yields

φ =

√
D2

R − (2R − 1)2

1 − D2
R

=

√
0.722 − (2 · 0.82 − 1)2

1 − 0.722 = 0.4753
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The remaining calculations give

α2 = tan−1
(

2 − 2R

φ

)
= tan−1

(
0.36

0.4753

)
= 37.14◦

β1 = tan−1
(
− 1

φ

)
= tan−1

(
− 1

0.4753

)
= −64.58◦

β2 = tan−1
(

1 − 2R

φ

)
= tan−1

(
− 0.64

0.4753

)
= −53.40◦

Thus, the de Haller criterion for the stator becomes

DS =
cos α2

cos α1
=

cos(37.14◦)
cos(0◦)

= 0.797

and for the rotor, it is

DR =
cos β1

cos β2
=

cos(−64.58◦)
cos(−53.40◦)

= 0.720

in agreement with its specified value. The deflection across the stator is Δα = 37.14◦,
and across the rotor it is Δβ = −53.40◦ + 64.58◦ = 11.18◦. �

The velocity triangles of the foregoing example, drawn with U as a common side, are
shown in Figure 8.5. The example shows that even if the flow turns by a greater amount
through the stator, it diffuses less than in the rotor. The reason is that the turning takes
place at a low mean value of α. In fact, were the flow to turn from, say, −10◦ to 10◦, there
would be no diffusion at all, because the magnitude of the absolute velocity would be the
same before and after the stator. Thus, it is the higher stagger of the rotor that leads to large
diffusion even at low deflection. For this reason, the de Haller criterion needs to be checked.

V
u2

−V
u1

U

Vx

W
1

W
2

β
2

β
1

Δβ

Δα

α
2

V
2

V
1

Figure 8.5 Velocity triangles on a common base for an axial compressor stage.
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The deflection, represented by the change in the swirl velocity, is shown as the vertical
distance in the top left of the diagram. Dividing it by the blade speed gives the loading
coefficient. The ratio of the horizontal Vx to blade speed is the flow coefficient. Thus,
a glance at the horizontal width of the triangles and comparison with the blade speed
shows that the flow coefficient is slightly less than 0.5. The extents of turning across
the stator and the rotor are shown as angles Δα and Δβ, respectively. The decrease
in magnitude of the velocity across the stator is slightly larger than the length of the
side opposite to the angle Δβ in the triangle with sides W1 and W2. Similarly, the
length of the side opposite to the angle Δα in the triangle with V1 and V2 as its sides
indicates the extent of reduction of the relative velocity. Hence, inspection confirms
that even a slight turning may lead to a large diffusion when the blades are highly
staggered.

8.2 DESIGN DEFLECTION

Figure 8.6 shows typical results from experiments carried out in a cascade tunnel [44]. It
shows the deflection and losses from irreversibilities for a given blade as a function of
incidence. The incidence is i = α2 − χ2, in which χ2 is the metal angle. The losses increase
with both positive and negative incidence, but there is a large range of incidence for which
the losses are quite low. The deflection increases with incidence up to the stalling incidence
εs, at which the maximum deflection is obtained. At this value, losses have reached about
twice their minimum value. This correspondence is not exact, but since the losses increase
rapidly beyond this, a stage is designed for a nominal deflection of ε∗ = 0.8εs, which also
corresponds to an incidence at which the loss is near its minimum. As shown in the figure,
at this condition, the incidence is slightly negative. But for another cascade, it may be zero,
or slightly positive. The loss coefficients have been defined as

ωR =
Δp0LR
1
2ρ1W

2
1

ωS =
Δp0LS
1
2ρ2V

2
2

These are closely related to the loss coefficients YR and YS, defined by

YR =
Δp0LR

p01R − p1
YS =

Δp0LS

p02 − p2

because at low Mach numbers, the denominators may be replaced by p01R − p1 = 1
2ρ1W

2
1

and p02 − p2 = 1
2ρ2V

2
2 . The stagnation and static pressures can be measured in a cascade

tunnel.
The conclusion from a large number of experiments is that the nominal deflection is

mainly a function of the gas outlet angle and the space-chord ratio of the cascade. The
camber and incidence are additive and both contribute to the size of the flow deflection.
For the cascade shown in Figure 8.6, the nominal deflection is 30◦ with incidence at −4◦.
Thus, the camber is quite low, making the blades rather flat. From such experiments, a
universal correlation was developed by Howell [44]. It is shown in Figure 8.7, and it relates
the deflection to the exit angle with solidity σ = c/s as a parameter. Solidity is the ratio
of the length of the blade chord to the spacing of the blades. It increases with reduced
spacing, and the term suggests that in this case, the solid blades fill the flow annulus more
than the open passages. As the solidity increases, the flow follows the blades better.
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Figure 8.6 Mean deflection and stagnation loss coefficient as a function of incidence. Source:
Drawn after Howell [43].
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Howell [44].
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A curve fit for the nominal deflection, suitable for computer calculations, is

ε∗ = (−3.68σ2 + 17.2σ + 4.3)
(

α∗
3

100

)2

+ (12.6σ2 − 54.3σ − 10.0)
α∗

3

10

− 8.7σ2 + 36.4σ + 6.1 (8.8)

For example, for a cascade with σ = 1.2, if the relative velocity leaves the rotor at angle
α3 = 30◦, the nominal deflection is ε∗ = 21.92◦. For a cascade with solidity σ = 2

3 and
the flow leaving the stator at α3 = −10◦, the nominal deflection is ε∗ = 30.7◦. For a given
ε∗ and α3, this equation is quadratic in σ. Its solution has an extraneous root with a value
greater than 3, and it needs to be rejected.

This equation can also be used to calculate the deflection across a rotor by replacing α3
with −β2. The two examples worked out earlier in this chapter show that the deflection
is larger across the stator than across rotor and that the angle at which the gas leaves the
stator is not large. The flow over the rotor is turned less, and the absolute value of its exit
angle is quite large. These are consistent with the results shown in Figure 8.7.

An alternative to Eq. (8.8) is the tangent difference formula, which for the rotor is

tan β∗
2 − tan β∗

1 =
1.55

1 + 1.5/σR
(8.9)

and a similar equation

tan α∗
2 − tan α∗

3 =
1.55

1 + 1.5/σS
(8.10)

holds for a stator. They provide a quick way to calculate the nominal deflection and fit
the data well over most of the outlet angles. At low deflections, they underpredict the
deflection, by about 3◦ at α∗

3 = −10◦ and low solidity. Indeed, at α∗
3 = −10◦ and σ = 2

3
the tangent difference formula gives ε∗ = 26.7◦, whereas Eq. (8.8) yields 30.7◦. Typically,
the flow does not leave the stator at negative angle so that such exit angles are just outside
the range of usual designs.

For a normal stage with constant axial velocity, the nondimensional equation for work is

ψ = φ(tan α2 − tan α1) = φ(tan β2 − tan β1)

The tangent difference formulas now show that the solidity for the rotor is the same as that
for the stator, as the design is based on nominal conditions. It is determined by solving

ψ∗

φ∗ =
1.55

1 + 1.5/σ

for σ. In order to prevent resonance vibrations, the number of blades in the rotor is slightly
different from the number of stator blades. Thus, the spacing is changed, but the same
solidity can still be achieved by changing the length of the chord.

� EXAMPLE 8.3

A normal compressor stage is designed to have the flow leave the stator at the angle
α1 = 12.60◦. Assume that the optimum design condition for least losses is achieved
when the reaction is R = 0.68, and the flow coefficient is φ = 0.56. For a normal
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stage, find the blade loading factor and the optimum value for the solidity. Check
also that the de Haller criterion is satisfied.

Solution: The loading coefficient is first determined from

ψ = 2(1 − R − φ tan α1) = 2(1 − 0.68 − 0.56 tan(12.6◦)) = 0.39,

and the flow angles are

α2 = tan−1
(

1 − R + ψ/2
φ

)
= tan−1

(
1 − 0.68 + 0.195

0.56

)
= 42.59◦

β1 = tan−1
(
−R − ψ/2

φ

)
= tan−1

(
−0.68 − 0.195

0.56

)
= −57.38◦

β2 = tan−1
(
−R + ψ/2

φ

)
= tan−1

(
−0.68 + 0.195

0.56

)
= −40.91◦

The deflections are therefore

ε∗S = 30.00◦ ε∗R = 16.47◦

The diffusion factors are

cos α2

cos α1
=

cos(42.60◦)
cos(12.60◦)

= 0.754
cos β1

cos β2
=

cos(−57.38◦)
cos(−40.90◦)

= 0.713

so that the diffusion in the rotor is marginally too high. If the solidity is calculated
from the tangent difference formula, it yields

σ =
1.5 ψ

1.55 φ − ψ
= 1.22

�

The values of φ, ψ, and R vary across the span, owing to the change in the blade velocity
with the radius, and ψ tends to be high near the hub and low near the casing. The reaction is
low near the hub and high near the casing, as R moves in opposite direction to the loading
coefficient. The blade angles are adjusted to counteract the natural tendency that causes
the values to change so that the loading can be kept more uniform. A 50% reaction ratio is
common, and the blade-loading coefficient is typically in the range 0.3 < ψ < 0.45.

8.2.1 Compressor performance map

Compressor blades tend to be quite thin, with maximum thickness-to-chord ratio of 5%.
If the solidity is high, the blades guide the flow well. An operating condition in which the
flow coefficient, φ0, is larger than its design value, φd, is shown in Figure 8.8. It is seen that
an increase in the flow rate causes a decrease in the blade-loading coefficient. This effect
becomes amplified downstream as the density does not change according to design, and the
difference cumulates from stage to stage. This subject is discussed by Cumpsty [18], who
shows that the last stage is one that is likely to choke. Similarly, examination of Figure 8.8
shows that if the flow coefficient decreases, then the blade loading coefficient increases.
The blades now become susceptible to stall, and the last stage controls the stall margin.
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Figure 8.8 Normalized velocity triangles at design and off-design conditions and (b) their operating
characteristics.

This reasoning can be carried out analytically by rewriting the Euler equation of
turbomachinery

w = U(Vu2 − Vu1)

into a different form. Substituting

Vu2 = U + Wu2

into the previous equation gives

w = U(U + Wu2 − Vu1) = U [U − Vx(tan α1 − tan β2)]

and dividing next each term by U 2 gives

ψ = 1 − φ(tan α1 − tan β2)

For a normal stage, the exit angle from the stator is α1, and the exit angle of the relative
velocity from the rotor is β2. These then tend to remain constant even at off-design
conditions. Furthermore, the latter angle is usually negative so that the term in parentheses
is positive. With the trigonometric factors constant, this means that increasing the flow
coefficient decreases the loading.

This equation gives the compressor characteristic for an ideal compressor. It is a
straight-line with a negative slope when the blade-loading coefficient is plotted against the
flow coefficient. This is shown in Figure 8.8b. The actual compressor characteristic is also
shown, and the differences away from the design point are caused by irreversibilities. Far
away from the design point to the left, the blades stall, and at even lower flow rates (smaller
φ), the compressor may experience surge. This means that the flow can actually reverse
its direction and flow out of the front of the compressor. For this reason, compressors
are operated some distance away from the stall line. To the right of the design point,
irreversibilities again cause deviation from the theoretical curve, and as the flow rate
increases, the blade row will choke.
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8.3 RADIAL EQUILIBRIUM

The mean line analysis on which most of the calculations in this text are based ignores
the cross-stream variation in the flow. In axial-flow machines, this means that only the
influence of the blade speed, that increases with radius, is taken into account. Today, it
is possible to carry out calculations by computational fluid dynamics (CFD) methods to
resolve the three-dimensional aspects of the flow. However, as was seen in the discussion
of axial turbines, the elementary radial equilibrium theory advances the understanding
on how the important variables, such as the reaction and the loading, vary from the hub
to the casing. There (and in Appendix A) it is shown that the principal equation to be
solved is

dh0

dr
= T

ds

dr
+ Vx

dVx

dr
+ Vu

dVu

dr
+

V 2
u

r
(8.11)

The first term on the right represents the entropy variation in the radial direction. Owing to
the entropy production in the endwall boundary layers, tip vortices, and possible shocks,
this is likely to be important near the walls. However, if the flow mixes well in the radial
direction, entropy gradients diminish and it may be reasonable to neglect this term. Of
course, irreversibilities would still cause entropy to increase in the downstream direction,
even if it does not have radial gradients.

The stagnation enthalpy is uniform at the entrance to the first row of rotor blades, and
if every blade section does an equal amount of work on the flow, it will remain uniform
even if the stagnation enthalpy increases in the direction of the stream. As a consequence,
the term on the left side of this equation may be neglected, and the equation reduces to

Vx

dVx

dr
+ Vu

dVu

dr
+

V 2
u

r
= 0 (8.12)

This is a relationship between the velocity components Vu and Vx. If the radial variation
of one of them is assumed, the variation of the other is obtained by solving this equation.
For example, as was seen in the discussion of axial turbines, if the axial component Vx is
assumed to be uniform, then the radial component must satisfy the equation

dVu

Vu

= −dr

r

the solution of which is rVu = constant. This is the free vortex velocity distribution.
Before and after a row of blades, the tangential velocity is

Vu1 =
c1

r
Vu2 =

c2

r

It was observed earlier that the expression for work is now

w = U(Vu2 − Vu1) = rΩ
(c2

r
− c1

r

)
= Ω(c2 − c1)

so that the work is independent of radius. This justifies dropping the term dh0/dr in
Eq. (8.11).
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8.3.1 Modified free vortex velocity distribution

The free vortex velocity distribution is a special case of the family of distributions

Vu1 = crn − d

r
Vu2 = crn +

d

r
(8.13)

in which n is a parameter. Regardless of the value of n, each member of this family has a
velocity distribution for which each blade section does an equal amount of work, as seen
from

w = U(Vu2 − Vu1) = Ωr

(
d

r
+

d

r

)
= 2Ωd

With the mean radius rm, the same at the inlet and the exit, a nondimensional radius may be
introduced as y = r/rm. The tangential velocity components for a free vortex distribution
with n = −1 may now be written as

Vu1 =
a

y
− b

y
=

a − b

y
Vu2 =

a

y
+

b

y
=

a + b

y

When the Eq. (8.12) for radial equilibrium is recast into the form,

Vx

dVx

dy
= −Vu

y

d

dy
(yVu)

it shows that for this velocity distribution right-hand side (RHS) vanishes at the inlet, as
the substitution shows

Vx

dVx

dy
= −a − b

y2

d(a − b)
dy

= 0 Vx �= Vx(y)

Clearly, the same result is obtained for the outlet, as only the sign of b needs to be changed
to describe the tangential velocity there. This reduced equation now shows that the axial
velocity is constant along the span of the blade, but it does not follow that it has the same
constant value before and after the blade row. The axial velocities can be made the same
by proper taper of the flow channel.

The reaction is given by

R = 1 − 1
2

Vx

U
(tan α2 + tan α1) = 1 − 1

2
Vu2 + Vu1

Umy

Here U = rΩ = rUm/rm, or U = Umy was used. Since Vu2 + Vu1 = 2a/y, the reaction is

R = 1 − a

Umy2

If Rm is the reaction at the mean radius y = 1, then a = Um(1 − Rm) and the reaction can
be written as

R(y) = 1 − (1 − Rm)
1
y2
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The parameter b can be related to the work done. From

w = U(Vu2 − Vu1) = 2Umb

and b = w/2Um = 1
2ψmUm, in which ψm = w/U 2

m.
Another way to represent the data is to introduce a nondimensional radial coordinate

z = (r − rh)/(rc − rh), so that

z =
1 + κ

1 − κ

y

2
− κ

1 − κ

in which κ = rh/rc. Clearly, the hub is now at z = 0 and the casing, at z = 1. The variation
in the reaction as a function of this variable is shown in Figure 8.9, for the hub to tip radius
ratio is κ = 0.4, and for values of the mean reaction in the range 0.5 ≤ Rm ≤ 0.8. The
graphs show that increasing the mean reaction lifts the negative reaction at the hub to a
positive value.
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Figure 8.9 Reaction as a function of the radial position on the blade for a free vortex velocity
distribution for κ = 0.4.

Since the axial velocity is constant, the mean flow angles are given by Eqs. (8.5) and
(8.6) for specified values of reaction, flow coefficient, and blade-loading coefficient. In
this flow, the flow coefficient and blade-loading coefficient vary along the blade only
because the blade speed varies. Their local values, and that of the reaction, are given by

φ =
φm

y
ψ =

ψm

y2 R = 1 − (1 − Rm)
1
y2

The angles are then obtained from

α1 = tan−1
(

1 − R − ψ/2
φ

)
β1 = tan−1

(
−R + ψ/2

φ

)

α2 = tan−1
(

1 − R + ψ/2
φ

)
β2 = tan−1

(
−R − ψ/2

φ

)
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Figure 8.10 Flow angles as a function of the radial position on the blade for a free vortex velocity
distribution for a stage with κ = 0.6. At the mean radius Rm = 0.5, α1m = 30◦ and β1m = −50◦,
α2m = 50◦ and β2m = −30◦, with φm = 0.565 and ψm = 0.347.

They are shown in Figure 8.10 for the situation for which Rm = 0.5, α1m = 30◦, β1m
= −50◦, α2m = 50◦, and β2m = −30◦. This stage is a typical one deeper into the
compressor, where blades are shorter (κ = 0.6 ) and reaction can be kept at 50%
without becoming negative at the hub. In fact, the reaction at the hub is Rh = 0.111,
and the blade-loading coefficient and flow coefficient are ψh = 0.617 and φh = 0.754.
The relative flow undergoes a large deflection at the hub of the rotor, as the flow
angle changes by 43.8◦. Furthermore, as the hub is approached, β2 changes sign, and at
(r − rh)/(rc − rh) = 0.1415, the relative flow is exactly in the axial direction.

Since the axial velocity is independent of the radius in the free vortex blading,

V1 cos α1 = V1m cos α1m W2 cos β2 = W2m cos β2m

and dividing the first equation by c01 and the second by c02 gives

M01 = M01m
cos α1m

cos α1
M02R = M02mR

cos β2m

cos β2

The stagnation Mach numbers can be calculated from

M01m =
M1m√

1 + γ−1
2 M 2

1m

M02mR =
M2mR√

1 + γ−1
2 M 2

2mR

The absolute and relative Mach numbers are then obtained from

M1 =
M01√

1 − γ−1
2 M 2

01

M2R =
M02R√

1 − γ−1
2 M 2

02R
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Figure 8.11 Variation of the Mach number as a function of radial position on the blade at the
entrance to the stator and the relative Mach number at the entrance to the rotor. In both cases,
the respective Mach numbers were 0.65 at the mean radius. The other parameters are the same as in
Figure 8.10.

Figure 8.11 shows that the relative Mach number has a minimum near the hub, where the
relative velocity changes sign. It rises rapidly to a very high value at the casing. For this
reason, its design value at the mean radius cannot be very large. It was convenient to assign
the same value 0.65 for Mach numbers M1 and M2R at the average radius to show their
trends along the blade. In actuality, for a given value of M1, the value of M2R needs to be
calculated, because the relative velocity decreases and static temperature increases across
the rotor, leading to a lower value for M2R.

8.3.2 Velocity distribution with zero-power exponent

Another member of the velocity profiles given by Eq. (8.13) is

Vu1 = a − b

y
Vu2 = a +

b

y

for which n = 0. At the inlet, the radial equilibrium equation in this case reduces to

Vx

dVx

dy
= −

(
a

y
− b

y2

)
d

dy
(ay − b) = −

(
a2

y
− ab

y2

)

Integrating both sides from y = 1 to some arbitrary location gives

V 2
x1 − V 2

x1m = −2
[
a2 ln y + ab

(
1
y
− 1

)]

Corresponding expression at the exit is obtained by changing the sign of b. It is

V 2
x2 − V 2

x2m = −2
[
a2 ln y − ab

(
1
y
− 1

)]
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The axial velocity now depends on the radial coordinate. For this reason, the reaction is
calculated from

R = 1 − h3 − h2

h3 − h1
= 1 − V 2

2 − V 2
1

2w
= 1 − V 2

x2 − V 2
x1 + V 2

u2 − V 2
u1

2U(Vu2 − Vu1)

If the taper is set such that the axial velocity at the mean radius is the same at the inlet and
the outlet, then subtracting the two equations for the axial velocity gives

V 2
x2 − V 2

x1 = 4ab

(
1
y
− 1

)

and the sum and difference terms in V 2
u2 − V 2

u1 = (Vu2 − Vu1)(Vu2 + Vu1) are

Vu2 − Vu1 =
2b

y
Vu2 + Vu1 = 2a

Hence, with U = Umy, the reaction may be written as

R = 1 − a

Um

(
1 − 2

y

)

and, with the reaction equal to Rm at y = 1, the parameter a is obtained from the expression
a = Um(Rm − 1). The reaction depends on the radius as

R(y) = 1 + (1 − Rm)
(

1 − 2
y

)

As shown above, work done is uniform and b = 1
2ψUm.

8.3.3 Velocity distribution with first-power exponent

A velocity distribution with n = 1 in Eq. (8.13) can be expressed as

Vu1 = ay − b

y
Vu2 = ay +

b

y

The radial equilibrium equation at the inlet now reduces to the form

Vx

dVx

dy
= −

(
a − b

y2

)
d

dy
(ay2 − b) =

2ab

y
− 2a2y

Integrating this from y = 1 to an arbitrary location gives

V 2
x1 − V 2

x1m = 4ab ln y − 2a2(y2 − 1)

and the same operations at the exit yield

V 2
x2 − V 2

x2m = −4ab ln y − 2a2(y2 − 1)

The reaction is calculated from

R = 1 − h3 − h2

h3 − h1
= 1 − V 2

2 − V 2
1

2w
= 1 − V 2

x2 − V 2
x1 + V 2

u2 − V 2
u1

2U(Vu2 − Vu1)
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Again, if the taper of the annulus is such that the axial velocities at the common mean
radius are equal, then the difference of the squares of the axial velocities is

V 2
x2 − V 2

x1 = −8ab ln y

and the difference and the sum of the swirl velocities are

Vu2 − Vu1 =
2b

y
Vu2 + Vu1 = 2ay

Hence, the reaction may be written as

R = 1 +
2a

Um
ln y − a

Um

With R = Rm at y = 1, the parameter a = Um(1 − Rm). Similarly, b = 1
2ψUm. The

reaction, shown in Figure 8.12, can be written as

R(y) = 1 − (1 − Rm)(1 − 2 ln y)

Also shown are the axial velocities before and after the rotor. They are given by the
expressions

Vx1

Um
=

√
φ2

m + 2(1 − Rm)ψ ln y − 2(1 − Rm)2(y2 − 1)

Vx2

Um
=

√
φ2

m − 2(1 − Rm)ψ ln y − 2(1 − Rm)2(y2 − 1)

in which φm = Vxm/Um is the flow coefficient at the mean radius.
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Figure 8.12 Normalized axial velocities before and after the rotor and reaction as a function of the
radial position on the blade for a first power velocity distribution, for φm = 0.55, ψ = 0.18, Rm = 0.7,
and κ = 0.4.



�

� �

�

DIFFUSION FACTOR 333

8.4 DIFFUSION FACTOR

Earlier in this chapter the de Haller criterion was used as a criterion to ensure that the
diffusion in the flow passages would not be so severe to cause separation of the boundary
layers. The adverse pressure gradient associated with diffusion is seen in Figure 8.13, which
shows a typical stator blade surface pressure measurement, plotted as a pressure coefficient
Cp = (p − p2)/(p02 − p2) against the fractional distance along the chord for three different
values of solidity σ = c/s. The bottom branch of the curve gives the suction-side pressure
distribution and the top branch the same for the pressure side of the blade. Under ideal
conditions at low Mach number, the spike in the pressure coefficient on the top branch
should reach unity at the stagnation point located near the leading edge. From there the
pressure falls as the flow accelerates to a location of maximum blade thickness followed by
diffusion toward the trailing edge. Near the trailing edge, the flow may accelerate slightly
owing to the blade orientation and camber. On the suction side of the blade, the negative
spike is caused by the need for the flow to negotiate the blunt leading edge of the blade as it
flows from the location of the stagnation point to the suction side. Pressure then increases
sharply from the suction spike all the way to the trailing edge as the flow diffuses. This
diffusion must be kept within acceptable limits. The difference in the value of pressure at
any given chord location is a measure of the local loading on the blade and, as seen from
Figure 8.13, the blade becomes unloaded as the trailing edge is approached.

1.0

0.8

0.8

0.4

0.2

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−0.2

−0.2

−0.4

−0.6

−0.2

−1.0

−1.2

0.0

Cp

x/c

σ = 0.75

σ = 1.5

σ = 1.0

Figure 8.13 Pressure coefficient for a cascade with different solidities.

Since the blade force is obtained by integrating the pressure acting over the blade
surface, the area inscribed by the curves represents the blade force normal to the chord.
As the solidity increases, this force is reduced, but now with reduced spacing, more blades
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can be fitted to the rotor wheel to carry the load. Increased solidity lifts the value of the
minimum pressure, with the result that the pressure gradient decreases. Therefore, the flow
can be turned by a greater amount without danger of boundary-layer separation.

A local diffusion factor is defined as

Dloc =
Vmax − V3

V2

in which Vmax is the velocity at the location of minimum pressure. This definition would be
useful, if the profile shape were known and Vmax could be easily calculated. It can, in fact,
be done quite readily with a computer code for inviscid flows. But before this became a
routine task, an alternative was sought. Lieblein and Roudebush [58] suggested a diffusion
factor of the form

DF =
V2 − V3

V2
+

1
2σ

Vu2 − Vu3

V2
(8.14)

The first part is similar to the local diffusion factor, and the second part accounts for the
amount of turning and the solidity of the blade row. Since reduced turning and higher
solidity both contribute to lighter loading on the blades, diffusion is expected to diminish
by both effects. The Lieblein diffusion factor for the stator can be expressed as

DFS =
cos α3 − cos α2

cos α3
+

1
2σS

(tan α2 − tan α3) cos α2 (8.15)

For the rotor, since the relative flow angles are negative and the flow turns toward the axis,
the diffusion factor needs to be written as

DFR =
cos β2 − cos β1

cos β2
+

1
2σR

(tan β2 − tan β1) cos β1 (8.16)

It is known that boundary layers thicken faster in a flow with an adverse pressure
gradient than when there is none. A relationship may be developed between diffusion and
the boundary-layer thickness. Figure 8.14 is a plot of the diffusion factor as a function
of the ratio, θ/c, of the momentum thickness of the boundary layer (discussed in the next
subsection) to the length of the chord. The curve begins its upward bend at the momentum
thickness-to-chord ratio of about 0.007, and this corresponds to DF = 0.45. Thus values
below these give good designs. For larger DF values, the stagnation pressure losses grow
appreciably.
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Figure 8.14 Dependence of the momentum thickness of the boundary layer on diffusion factor.
Source: Drawn after Lieblein and Roudebush [58].
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Equations (8.15) and (8.16) are two additional equations among the design variables. In
an earlier section, it was shown that specifying the values for R,ψ, φ fixes the flow angles.
With the tangent difference formulas and the two diffusion factor formulas, three more
equations are added, but solidity is the only new unknown. Hence, in principle, the designer
has the freedom to choose only one of the parameters, such as reaction, or else violate
either the tangent difference equation, or one of the diffusion factor equations. However,
if the design is such that either DFS or DFR, or both are less than 0.42, then the tangent
difference formula fixes the solidity. Thus the choice for the acceptable range of values
of reaction, blade loading, and the flow coefficient to achieve the mild diffusion restricts
the design parameter space. The typical design ranges 0.35 ≤ ψ ≤ 0.5 and 0.4 ≤ φ ≤ 0.7
reflect this.

8.4.1 Momentum thickness of a boundary layer

The momentum thickness of a boundary layer is related to the diffusion factor in Figure 8.14.
It and the displacement thickness are now discussed further. The latter is denoted by δ∗

and is introduced by the expression

δ∗Vf =
∫ δ

0
(Vf − V (y))dy (8.17)

in which Vf is the uniform velocity outside the boundary layer of thickness δ. Clearly, this
equation can be rewritten as ∫ δ

0
V (y)dy = Vf (δ − δ∗) (8.18)

and its interpretation is shown with the aid of Figure 8.15, in which the shadowed areas in
parts (a) and (b) are equal according to Eq. (8.17). Figure 8.15b shows the blocking effect
of the boundary layer; that is, the flow can be envisioned to have velocity Vf to the edge
of δ∗ and inside the layer to have zero velocity, as if the flow were completely blocked.
Another way to say this is that if the wall were to be displaced by δ∗, the same mass flow
rate would exist in the inviscid flow as in a real flow without a displacement of the wall.

The momentum thickness θ is defined by the equation

θV 2
f =

∫ δ

0
V (y)(Vf − V (y))dy (8.19)

This can be written as

θV 2
f = Vf

∫ δ

0
V (y)dy −

∫ δ

0
V 2(y))dy = V 2

f (δ − δ∗) −
∫ δ

0
V 2(y))dy

δ

δ*

θ

(a) (b) (c)

Figure 8.15 Illustration of (a) boundary layer, (b) its displacement thickness, and (c) its momentum
thickness.
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and reduced to the form ∫ δ

0
V 2(y)dy = V 2

f (δ − δ∗ − θ) (8.20)

This is also illustrated in Figure 8.15, and it shows that the momentum thickness contributes
a further blockage. Because the integrand in Eqs. (8.18) and (8.20) vanishes beyond the
boundary layer thickness, δ can be replaced by the channel width L, in which case these
become ∫ L

0
V (y)dy = Vf (L − δ∗) (8.21)

and ∫ L

0
V 2(y)dy = V 2

f (L − δ∗ − θ) (8.22)

The boundary layer at the wall y = L is ignored for now.
Consider next the flow in a compressor cascade. Figure 8.16a shows two blades and

boundary layers along them. As the boundary layers leave the blades, they form a wake
behind the cascade. On the suction side, the boundary layer is thicker than on the pressure
side owing to the strongly decelerating flow there. Consider next the control volume in
Figure 8.16b. The inflow boundary is at some location just before the trailing edge, and
the outflow boundary is sufficiently far in the wake where mixing has made the velocity
uniform. The side boundaries are streamlines that divide one flow channel from the next.
Mass balance for this control volume gives

ṁ′ =
∫ L

0
ρV (y)dy = ρLV3

or
ṁ′ = (L − δ∗)ρVf = LρV3

in which ṁ′ is the mass flow rate per unit width. The displacement thickness δ∗ is that of
the boundary layer on the suction side of the blade; the boundary layer along the pressure
side has been ignored. Dividing through by L gives

ṁ′

L
=

(
1 − δ∗

L

)
ρVf = ρV3 (8.23)

The x component of the momentum equation gives

∫ L

0
ρV 2

3 dy −
∫ L

0
ρV 2(y)dy = (p − p3)L

in which the shear stress has been neglected, as it is very small along the dividing
streamlines in the wake and also small along the blade surfaces, which now account for a
small fraction of the control surface. This can be expressed as

ρV 2
3 L − ρV 2

f (L − δ∗ − θ) = (p − p3)L
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Figure 8.16 (a) Flow in the wake of a compressor cascade and (b) a sketch for its analysis.
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Dividing through by L gives

p − p3 = ρV 2
3 −

(
1 − δ∗

L

)
ρV 2

f +
θ

L
ρV 2

f

Adding the term ρV 2
f /2 to both sides, and subtracting ρV 2

3 /2 from both sides, gives

p0 − p03 = p +
1
2
ρV 2

f − (p3 +
1
2
ρV 2

3 ) =
1
2
ρV 2

3 − (1 − δ∗

L
)ρV 2

f +
1
2
ρV 2

f +
θ

L
ρV 2

f

Making use of Eq. (8.23) puts this into the form

p0 − p03 =
1
2

(
1 − δ∗

L

)2

ρV 2
f −

(
1
2
− δ∗

L

)
ρV 2

f +
θ

L
ρV 2

f

Simplifying this gives
p0 − p03

1
2ρV 2

f
=

(
δ∗

L

)2

+
2θ

L

The stagnation pressure loss takes place mainly in the decelerating boundary layer and the
wake, so that it is reasonable to take p0 = p02. Also, the first term on the right is much
smaller than the second one and can be neglected. Thus the stagnation pressure loss is
related to the momentum boundary-layer thickness by

p02 − p03
1
2ρV 2

f
=

2θ

L

Finally, Vf is approximately V3 and L = s cos α3, so that

p02 − p03
1
2ρV 2

3
=

2θ

s cos α3
(8.24)

and

ωS =
2θ

s cos α3

(
cos α2

cos α3

)2

ωR =
2θ

s cos β2

(
cos β1

cos β2

)2

(8.25)

The boundary-layer thickness on the pressure side of the blade was neglected in the
analysis. If it is included, as it should, the only change is that the momentum thickness is
now the sum of the momentum boundary-layer thicknesses on both sides of the blade. It
is, in fact, this thickness that is shown in the experimental data relating it to the diffusion
factor. If DF = 0.45 is taken as the design value, then at this value, the momentum
boundary-layer thickness is given as θ = 0.007c, so that the stagnation pressure losses for
the stator and the rotor are

p02 − p03
1
2ρV 2

2
=

0.014 σS

cos α3

(
cos α2

cos α3

)2
p01R − p02R

1
2ρW 2

1
=

0.014 σR

cos β2

(
cos β1

cos β2

)2

(8.26)

The stagnation pressure losses and their relation to stage efficiency are discussed further
in the next section.
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8.5 EFFICIENCY AND LOSSES

Various stagnation pressure losses in a compressor stage are shown in Figure 8.17. It dates
from 1945, and the estimates reflect the way in which compressors were designed then.
Today, the design flow coefficient has been lowered to the range 0.4 ≤ φ ≤ 0.7, and the
losses are expected to be smaller as designs have improved. The data show that, owing to
boundary-layer separation and blade stall, profile losses become a major loss component
when a compressor is operated far from its design condition. Profile losses are associated
with the boundary layers along the blades, and the annular losses come from the boundary
layers along the endwalls of the flow annulus. Secondary flow arises from the interaction of
the annulus boundary layers and the inviscid stream, which set up a circulation in the plane
normal to the primary flow. Dissipation in the secondary flow accounts for these losses.
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Figure 8.17 Losses in a typical compressor stage. Source: Drawn after Howell [44].

8.5.1 Efficiency

The stage efficiency is defined by

ηtt =
h03ss − h01

h03 − h01
so that 1 − ηtt =

h03 − h03ss

h03 − h01

where the states are as shown in Figure 8.4. This can be written as

1 − ηtt =
h3 − h3ss

w
+

V 2
3 − V 2

3ss

2w

The numerator of the first term on the right is

h3 − h3ss = h3 − h3s + h3s − h3ss

From the definition of static enthalpy loss coefficient, the first of these can be written as

h3 − h3s =
1
2
ζSV

2
3 ,
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and the second term is
h3s − h3ss = cpT3s

(
1 − T3ss

T3s

)

Integrating the Gibbs equation along the constant-pressure lines p2 and p3 between states
with entropies s1 and s2 gives

T2s

T2
=

T3ss

T3s

so that the previous equation can be recast as

h3s − h3ss =
T3s

T2
(h2 − h2s)

When written in terms of the static enthalpy loss coefficient, this becomes

h3s − h3ss =
1
2
ζRW 2

2
T3s

T2

The velocity term on the right in the expression for efficiency is

V 2
3 − V 2

3ss

2w
=

(
1 − V 2

3ss

V 2
3

)
V 2

3

2w

But is has been shown in Chapter 5 that M3ss = M3. Therefore V 2
3ss/V 2

3 = T3ss/T3, and
the expression for the efficiency now takes the form

1 − ηtt =
ζSV

2
3 + ζRW 2

2
T3s

T2
+

(
1 − T3ss

T3

)
V 2

3

2w

The first and the last term have a common factor in V 2
3 , and they could be combined.

However, for a typical stage, the temperature factor of the last term has a value of about
0.008. If this is neglected and the term T3s/T2 is set to unity, the right side is simplified
somewhat. Therefore, the reduced equation

1 − ηtt =
ζSV

2
3 + ζRW 2

2

2w
;

although simple to use, underestimates the losses by about 1.5%.
The relationship to stagnation pressure loss can be developed by writing for the stator

h3 − h3s = cp(T3 − T3s) = cpT3

(
1 − T3s

T3

)
= cpT3

[
1 −

(
p03

p02

)(γ−1)γ
]

which can be rewritten and then expanded for small stagnation pressure loss as

h3 − h3s = cpT3

[
1 −

(
p03

p03 + Δp0LS

)(γ−1)/γ
]

= cpT3

[
1 −

(
1 +

Δp0LS

p03

)−(γ−1)/γ
]

= cpT3
γ − 1

γ

Δp0LS

p03
=

p3

p03

Δp0LS

ρ3
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Thus
h3 − h3s =

Δp0LS/ρ3(
1 +

γ − 1
2

M 2
3

)γ/(γ−1)

A similar analysis for the rotor gives

h2 − h2s = cp(T2 − T2s) = cpT2

(
1 − T2s

T2

)
= cpT2

[
1 −

(
p02R

p01R

)(γ−1)γ
]

which can be rewritten and then expanded for small stagnation pressure loss as

h2 − h2s = cpT2

[
1 −

(
p02R

p02R + Δp0LR

)(γ−1)/γ
]

= cpT2

[
1 −

(
1 +

Δp0LR

p02R

)−(γ−1)/γ
]

= cpT2
γ − 1

γ

Δp0LR

p02R
=

p2

p02R

Δp0LR

ρ2

Therefore
h2 − h2s =

Δp0LR/ρ2(
1 +

γ − 1
2

M 2
2R

)γ/(γ−1)

The stagnation pressure losses can now be written as

Δp0LS

ρ3
=

1
2
ζSV

2
3

(
1 +

γ − 1
2

M 2
3

)γ/(γ−1)

(8.27)

and
Δp0LR

ρ2
=

1
2
ζRW 2

2

(
1 +

γ − 1
2

M 2
2R

)γ/(γ−1)

(8.28)

Since the rotor turns the flow toward the axis, the magnitude of the relative velocity
diminishes and the relative Mach number leaving the rotor is fairly small. The same is
true for the absolute Mach number leaving the stator. Hence, if the Mach number terms in
Eqs. (8.27) and (8.28) are neglected, then with some loss of accuracy, substituting these
expressions for the stagnation pressure losses into Eq. (8.26), gives

ζR =
0.014σR

cos β2
ζS =

0.014σS

cos α3
(8.29)

These show that

ωS = ζS

(
cos α2

cos α3

)2

ωR = ζR

(
cos β1

cos β2

)2

(8.30)

Since Vx = V3 cos α3 = W2 cos β2 the efficiency may be rewritten in the form

1 − ηtt =
(

ζR

cos2α3
+

ζS

cos2β1

)
φ2

2ψ
(8.31)
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8.5.2 Parametric calculations

The development of the theory for axial compressors has been carried out in terms of
assumed values for a flow coefficient φ, a blade-loading factor ψ, and a reaction ratio R.
These three quantities are nondimensional parameters and are sufficient for calculating
the flow angles. Solidity was obtained from experimental measurements of deflection
for given flow outlet angle. It was used to establish the permissible diffusion, and the
stagnation pressure coefficient for profile losses was established. The efficiency can then
be cast in terms of the loss coefficients for the rotor and the stator. This is the most effective
way to display results, and when the actual parameters for a machine are given, all the
important results are quickly calculated from the nondimensional ones. Thus flow angles
for a compressor stator and rotor have been shown to be

tan α1 =
1 − R − ψ/2

φ
tan α2 =

1 − R + ψ/2
φ

− tan β1 =
R + ψ/2

φ
− tan β2 =

R − ψ/2
φ

Hence, with φ, ψ, and R given, they can be determined. The rest of the calculations
then follow directly. Results from such calculations are shown in Figure 8.18. The flow
coefficient was taken to be φ = 0.6 and the degree of reaction, R = 0.4. For Figure 8.18a–c,
the Lieblein diffusion factor was taken to be equal to 0.45, and solidities of the rotor and
stator were calculated in terms of this value. Figure 8.18a represents the diffusion in the flow.
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Figure 8.18 Design study for a compressor cascade with diffusion factor, DF = 0.45, flow
coefficient φ = 0.6, and reaction R = 0.4. (a) de Haller criterion, (b) losses, (c) solidity, and (d)
diffusion factor.
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If the stagnation pressure losses are neglected and the flow is assumed incompressible, then

p2 +
1
2
ρV 2

2 = p3 +
1
2
ρV 3

3

and
p3 − p2

1
2ρV 2

2
= 1 − V 2

3

V 2
2

Hence, this also gives the pressure rise in a nondimensional form. A similar expression
applies for the rotor. This nondimensional pressure rise should not be greater than 0.48,
according to the recommendation by de Haller [38]. The de Haller criterion shows that
the blade-loading factor must be kept below 0.39.

Figure 8.18b shows that if the de Haller criterion is obeyed, the stage efficiency is
around 0.96. This efficiency calculation should not be considered conclusive, as it ignores
the annulus and secondary flow losses, as well as losses from the tip region. Furthermore,
in the calculations the values of ωS = 0.014σS/ cos α3 and ωR = 0.014σR/ cos β2 were
used following Cumpsty [18, p. 55]. Had Eqs. (8.30) been used instead, the efficiency
would have been higher. Figure 8.18c shows solidity to be near unity for both the rotor and
the stator if the Lieblein diffusion factor is kept at 0.45. It turns out that Howell’s criterion
is also satisfied under these conditions. To be sure, the Howell’s criterion shows that the
solidity ought to be the same for the rotor and stator, so that the system is overconstrained.
The diffusion factor then becomes a check that the design parameters have been reasonably
chosen. Figure 8.18d shows what happens to the diffusion factor as the solidity is varied
independently. For a blade row of high solidity, diffusion is reduced, as the load per blade
is reduced.

8.6 CASCADE AERODYNAMICS

The development of axial compressor blade shapes has been carried out in extensive
experiments in cascade tunnels. Such tunnels are designed to test in a two-dimensional
arrangement, either a row of rotor blades, or a row of stator vanes. Both are shown in
Figure 8.19 in which the flow moves from left to right. The blades are characterized by
their chord, camber, thickness, and height. The axial chord cx is the chord’s projection
along the x axis. In Figure 8.19b, the blade (or metal) angle at the inlet is χ2, and at the
outlet, it is χ3. The flow incidence is defined as the difference between the flow angle
and the metal angle. Thus i = α2 − χ2 at the inlet to the stator, and since the angles are
negative, incidence is i = |β1 − χ1| at the inlet to the rotor. The figure is drawn to show
a positive incidence for both. The angle δ = α3 − χ3 at the exit of the stator is called
deviation. Although the flow tends to leave at the exit metal angle, it turns slightly toward
the suction surface.

The general orientation of the blades is given by the stagger angle ξ, and their curvature
by the camber angle θ. The lines that form a triangle on the stator blade in Figure 8.19b has
the included angle χ2 − ξ on the left, ξ − χ3 on the right, and π − θ at the top. These add up
to π. Hence, θ = χ2 − χ3. These relationships are also true for the rotor in which negative
angles are encountered. The exit metal angle χ2 of the rotor has the same designation as
the inlet metal angle to the stator. It will always be clear whether the rotor row or stator
row is analyzed, so separate symbols are not needed.
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Figure 8.19 (a) Rotor and (b) stator cascade for an axial compressor.

8.6.1 Blade shapes and terms

Today, the designer is no longer constrained to the blade shapes that were in use during the
early period of compressor development. Members from the NACA-65 series of blades in
the United States were adopted as the base profiles. In the Great Britain, blade designation,
such as 6C7/25P40, carries with it the pertinent information about the maximum thickness b
and its location from the leading edge a. The notation means that the maximum thickness is
6% of the chord, so that b/c = 0.06. The next item C7 describes how the thickness
is distributed over the blade. Next is the camber angle, which here is 25◦. After that
the letter P designates this to be a blade with a parabolic camber, with the location of
maximum thickness at 40% from the leading edge; that is, a/c = 0.4. The circular arc
profile 10C4/30C50 has 10% thickness and 30◦ camber. Its maximum thickness always
occurs at the midchord point.

For parabolic arc profiles defining θ1 = χ1 − ξ and θ2 = ξ − χ2, the angles θ1 and θ2
are given by

tan θ1 =
cb

a2 tan θ2 =
cb

a(c − a)

and, if the location of maximum camber a is close to the midchord position, these can be
approximated by

tan θ1 =
4b

4a − c
tan θ2 =

4b

3c − 4a

From these follow the relation

b

c
=

1
4 tan θ

[√
(1 + 16 tan2θ)

(
a

c
− a2

c2 − 3
16

)
− 1

]

where θ = θ1 + θ2. For blades for which the position of maximum camber is near the
midchord point, useful approximations [18] to these are

θ = 8
b

c
θ1 =

1
2
θ
[
1 + 2

(
1 − 2

a

c

)]
θ2 =

1
2
θ
[
1 − 2

(
1 − 2

a

c

)]
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8.6.2 Blade forces

Figure 8.20 shows a typical stator of an axial compressor. The x component of the
momentum equation applied to a control volume consisting of the flow channel for the
stator gives

ρsVx2(Vx3 − Vx2) = s(p2 − p3) + Fx

and if the axial velocity remains constant, this reduces to

Fx = s(p3 − p2)

Using the definition of stagnation pressure for an incompressible flow, this becomes

Fx

s
=

1
2
(V 2

2 − V 2
3 ) − Δp0L (8.32)

in which Δp0L is the loss in stagnation pressure.
The force Fx is per unit height of the blade. Since the axial velocity is taken to be

constant and α3 < α2, inspection of the magnitudes of V2 and V3 shows that V3 < V2 and
therefore, also p3 > p2, as it ought to be in a compressor. Hence, the force Fx that blades
exert on the fluid is positive. The y component gives

ρsVx2(Vu3 − Vu2) = −Fy

and the minus sign is inserted on the right side to render the numerical value of Fy positive,
because Vu3 < Vu2. This equation may also be written as

Fy

s
= ρV 2

x (tan α2 − tan α3) (8.33)
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Figure 8.20 (a) A compressor stator blade, (b) velocity vectors and definition of mean velocity,
and (c) construction of lift and drag forces.
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Since Vx2 = Vx3, the kinetic energy difference in Eq. (8.32) may be expressed as

V 2
2 − V 2

3 = (V 2
x2 + V 2

u2) − (V 2
x3 + V 2

u3)

= V 2
u3 − V 2

u3 = (Vu2 − Vu3)(Vu2 + Vu3)

Next, let the mean tangential velocity be

Vum =
1
2
(Vu2 + Vu3)

then using this definition and inspection of Figure 8.20 gives

Vum = Vx tan αm =
Vx

2
(tan α2 + tan α3)

in which the mean gas angle αm is defined by the expression

tan αm =
1
2
(tan α2 + tan α3) (8.34)

The x component of the force may now be written as

Fx = ρsV 2
x (tan α2 − tan α3) tan αm − sΔp0L (8.35)

In addition to the axial and tangential components of forces, the lift and the drag force
are also shown in Figure 8.20. They are the forces that the blades exert on the fluid. Lift
and drag are obtained by resolving the resultant along the direction of the mean flow angle
and one perpendicular to it. With the resultant expressed as

F = Fxi − Fyj

the component D parallel and L normal to the mean flow vector, as shown in Figure 8.20c,
are

L = Fx sinαm + Fy cos αm (8.36)

D = −Fx cos αm + Fy sinαm (8.37)

Introducing Eqs. (8.35) and (8.33) into Eq. (8.36) gives

L = ρsV 2
x (tan α2 − tan α3) sec αm − sΔp0L sinαm

The lift coefficient now becomes

CL =
L

1
2ρV 2

mc
=

2
σ

(tan α2 − tan α3) cos αm − Δp0L
1
2ρV 2

m

sinαm

σ

Substituting Eqs. (8.32) and (8.33) into Eq. (8.37) gives

D = s Δp0L cos αm (8.38)

The choice in defining the direction of drag and lift as parallel and perpendicular to the
mean flow direction as given by the angle αm is guided exactly by this result, since the
stagnation pressure drop from profile losses should depend mainly on the drag and not
the lift.



�

� �

�

CASCADE AERODYNAMICS 347

Defining next the drag coefficient as

CD =
D/c
1
2ρV 2

m
(8.39)

in which c is the chord, and making use of the preceding equation, gives

CD =
Δp0L cos αm

1
2ρV 2

mσ

For the stator, the stagnation pressure loss can be written as

Δp0LS =
1
2
ρζSV

2
3 =

1
2
ρV 2

m
σSCD

cos αm

so that
ζS =

σScos2α3

cos3αm
CD (8.40)

in which Vm/V3 = cos α3/ cos αm has been used. For the rotor similarly

ζR =
σRcos2β2

cos3βm
CD (8.41)

The drag coefficients in these expressions are not the same, but are the appropriately
calculated ones for the stator and the rotor. As will be seen below, the various losses
are expressed in terms of the drag coefficients, and their sum gives the total. The two
preceding equations can then be used to relate the drag coefficients to the static enthalpy
loss coefficients.

The expression for the lift coefficient for the stator can now be written as

CL =
2
σS

(tan α2 − tan α3) cos αm − CD tan αm

In a typical unstalled blade CD ∼ 0.025CL, and, as will be shown shortly, it is advantageous
to keep αm less than 45◦. Under these conditions, the drag term may be neglected. This
gives the following expression for the lift-to-drag ratio:

CL

CD
=

L

D
=

2
ζS

(tan α2 − tan α3)
cos2α3

cos2αm

To make use of these expressions for compressor rotors, the flow angle α2 is replaced by
β1 and α3 by β2 and the rotor loss coefficient ζR is substituted for ζS.

8.6.3 Other losses

The drag coefficient for annulus losses is given by

CDa = 0.02
s

b

in which b is the blade height. The annulus losses become a smaller fraction of the total
losses as the blade height increases. Secondary losses are a complicated subject, but all
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these complications are sidestepped by calculating the loss coefficient from the expression

CDs = 0.018C2
L

The tip losses arise from a tip vortex and leakage loss through the tip clearance for the
rotor. They are taken into account by the empirical relation

CDt = 0.29
k

b
C

3/2
L

where k is the tip clearance.
The total loss coefficient is then obtained by summing these

CD = CDp + CDa + CDs + CDt

The equivalent drag coefficients for secondary and tip losses are a way of expressing the
total pressure loss on the same basis for profile and annulus losses. With the sum of drag
coefficients determined, the total static enthalpy loss coefficient can be calculated from
either Eq. (8.40) or (8.41). The calculation of losses using the method outlined above
has been questioned over the years [18, 21], for it is clear that in the complicated flow
structure with highly staggered blades, dividing the losses neatly into constituent parts and
adding them is suspect. Modern CFD analysis gives a powerful alternative that can be used
to calculate stagnation pressure losses. Even if the modern methods are an improvement
over what has been done in the past, there are still hurdles to overcome. One important
advancement has been to develop methods to include unsteady interactions between moving
and stationary blade rows. The theory still hinges on accurate methods to calculate local
entropy production of a turbulent velocity and temperature fields. New turbulence models
and large-eddy-simulation methods show promise, and for this reason, industry has moved
to rely more and more on CFD to resolve the flow fields in compressors and turbines.

8.6.4 Diffuser performance

The expression for the lift-to-drag ratio can be used to assess under which conditions a
compressor cascade performs well as a diffuser. The diffuser efficiency is defined as

ηD =
p3 − p2

p3s − p2

which is the ratio of the static pressure rise to the maximum possible. The labels are chosen
to reflect that diffusion through the stator is considered. In a reversible adiabatic flow, the
stagnation pressure remains constant and

p02 − p03s = p2 − p3s +
1
2
ρ(V 2

2 − V 2
3s) = 0

Hence,
p3s − p2 =

1
2
ρ(V 2

2 − V 2
3s)

Assuming that V3 = V3s, the diffuser efficiency can thus be written as

ηD =
p3 − p2

1
2ρ(V 2

2 − V 2
3 )
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Now

Fx = s(p3 − p2) Fx = Fy tan αm − sΔp0S Fy = ρsV 2
x (tan α2 − tan α3)

so that
p3 − p2 = ρV 2

x tan αm(tan α2 − tan α3) − Δp0LS

Thus
ηD = 1 − Δp0LS

ρV 2
x tan αm(tan α2 − tan α3)

or in terms of CD and CL the diffuser efficiency can be written as

ηD = 1 − 2CD

CL sin 2αm

The maximum efficiency is determined by differentiating. Thus

dηD

dαm
=

4CD cos 2αm

CLsin22αm
= 0

Hence, αm = 45◦ at the condition of maximum diffuser Efficiency, and for CD/CL = 0.05
the efficiency is 90%. This result is due to Horlock [41].

8.6.5 Flow deviation and incidence

Before the blade angle can be set, the deviation at the exit from the blade row must be
established. The flow deviation from a stator is given by δ = α3 − χ3, in which χ3 is the
blade angle. Deviation is positive when the flow deflects from the pressure side toward the
suction side. A positive deviation for the stator is shown in Figure 8.19, and for the rotor,
the flow is deflected in the opposite direction.

Deviation is an inviscid flow effect and not related to viscosity and, therefore, to losses.
It can be regarded as incomplete turning of the flow. Hence, to obtain the desired turning,
blades need to be curved more than in the absence of deviation.

Carter [14] recommends that deviation be calculated from

δ∗ = mθ

√
s

c

at the design conditions, and Howell [44] proposed the formula

m = 0.92
a2

c2 +
α∗

3

500

for m, in which α∗
3 is given in degrees and a/c is the ratio of maximum thickness to the

chord and the superscript star denotes nominal conditions.

� EXAMPLE 8.4

A compressor state has a stator outlet metal angle χ3 = 3◦, camber angle θ = 34◦,
pitch chord ratio s/c = 0.88, and the position of maximum camber a/c = 0.5. The
ratio of the blade height to the chord is b/c = 2. Find (a) the deviation of the flow
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leaving the stator, (b) the deflection, and (c) the flow coefficient and blade-loading
coefficient, assuming that the inflow is at zero incidence. (d) Find the reaction.

Solution: (a) The flow deviation is calculated first. Since α∗
3 = χ3 + δ∗, the flow

angle can be calculated from

α∗
3 = χ3 + mθ

√
s

c
= χ3 + 0.92

a2

c2 θ

√
s

c
+

α∗
3

500
θ

√
s

c

Solving this for α∗
3 gives

α∗
3 =

χ3 + 0.92a2

c2 θ
√

s
c

1 − θ
500

√
s
c

=
3 + 0.92 · 0.25 · 34

√
0.88

1 − 34
500

√
0.88

= 11.04◦

so that δ∗ = α∗
3 − χ3 = 11.04◦ − 3◦ = 8.04◦.

(b) The nominal deflection is calculated by first solving

tan α∗
2 − tan α∗

3 =
1.55

1 + 1.5s/c

for α∗
2. It yields

α∗
2 = tan−1

(
tan α∗

3 +
1.55

1 + 1.5s/c

)
= tan−1

(
0.1951 +

1.55
1 + 1.5 · 0.88

)
= 40.8◦

Thus the nominal deflection is

ε∗ = α∗
2 − α∗

3 = 40.8◦ − 11.0◦ = 29.8◦

If the metal angle at the inlet to the stator is set at χ2 = 40.8◦, then the flow
enters the stator at zero incidence. If the metal angle is set, say, to χ2 = 37◦, then the
incidence angle is i∗ = α∗

2 − χ2 = 40.8 − 37 = 3.8◦.
(c) Since for a normal stage α∗

1 = α∗
3, the flow coefficients is obtained from

φ =
1

tan α∗
1 + tan α∗

2
=

1
0.1951 + 0.8632

= 0.945

and the blade-loading coefficient, from

ψ = φ(tan α∗
2 − tan α∗

1) = 0.945(0.8632 − 0.1951) = 0.631

Both of these are above the high end of the usual range of industrial practice which
is 0.4 ≤ φ ≤ 0.7 and 0.35 ≤ ψ ≤ 0.5, as was mentioned at the beginning of this
chapter.
(d) The reaction is

R = 1 − 1
2
φ(tan α∗

2 + tan α∗
1) = 1 − 0.5 · 0.945(0.8632 + 0.1950) = 0.500

�
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8.6.6 Multi-stage compressor

The polytropic efficiency was introduced for turbines in the previous chapter. For a small
change in the stagnation enthalpy across a stage, the stage efficiency approaches the
polytropic efficiency. For an ideal gas, the incremental process is as shown in Figure 8.21.

The relation between the stagnation temperature increases for an actual and an ideal
process is given by

dT0s = ηp dT0

For an isentropic expansion

cp

dT0s

T0
= R

dp0

p0
or

γηp

(γ − 1)
dT0

T0
=

dp0

p0

Integrating this across an infinite number of infinitesimally small stages gives

T0,N+1

T01
=

(
p0,N+1

p01

)(γ−1)ηp/γ

A reheat factor, defined as RF = ηp/η, can then be written as

RF =
ηp

η
=

ηp

[(
p0,N+1

p01

)(γ−1)/ηpγ

− 1

]
(

p0,N+1

p01

)(γ−1)/γ

− 1

The relationship between the compressor efficiency and polytropic or small-stage effi-
ciency is

η =
r(γ−1)/γ − 1

r(γ−1)/ηpγ − 1

in which r = p0e/p01 is the overall pressure ratio of the compressor. This relationship is
shown in Figure 8.22.

dT
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02 T
0
+ dT

0
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T

Figure 8.21 Processes across a small compressor stage.
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Figure 8.22 Compressor efficiency as a function of pressure ratio and polytropic efficiency for a
gas with γ = 1.4.

In a multistage compressor, the upstream stages influence those downstream. Smith
[85] measured velocity and temperature profiles after each stage of a 12-stage compressor.
These are shown in Figure 8.23, and examination shows that annulus boundary layers
cause large decrease in the axial velocity and increase in total temperature. Although it
has been assumed that average stagnation temperature does not change in adiabatic flow,
the local values may change. These influences are taken into account by modifying the
Euler equation for compressor work by introducing a work-done factor λ and expressing
the work done as

h03 − h01 = λU(Vu2 − Vu1)

Comparing different compressors Howell and Bonham recommend a work-done factors
shown in Table 8.1 [45].

Table 8.1 Work-done factor λ of various stages of an axial compressors.

stages 1 2 3 4 5 6 7 8 9
λ 0.982 0.952 0.929 0.910 0.895 0.883 0.875 0.868 0.863

stages 10 11 12 13 14 15 16 17 18
λ 0.860 0.857 0.855 0.853 0.851 0.850 0.849 0.848 0.847

8.6.7 Compressibility effects

The influence of Mach number on losses is substantial, and the loss coefficient increases
rapidly with the incidence angle as Mach number at the inlet is increased from 0.4 to 0.8. A
way in which a designer can help the situation is to choose a blade for which the location
of maximum thickness is nearer to the leading edge.
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Figure 8.23 (a) Velocity and (b) temperature profiles in a 12-stage compressor. Source: From
Smith [85].

8.6.8 Design of a compressor

In this last subsection of this chapter steps are given for a design of a multistage compressor.
The analysis of the first two stages of a five-stage compressor are carried out in the next
example and the last three are reserved for the exercises. It is expected that the reaction
varies from stage to stage, so the stages are not normal. Hence, the equations developed
for normal stage cannot be used, but the calculations are carried from the fundamental
relations between blade loading and flow coefficients and the flow angles. The reaction is
an additional parameter, and its value may be related to these.

It is assumed that the axial velocity is constant. The definition for reaction leads to

R =
h2 − h1

h3 − h1
= 1 − h3 − h2

h3 − h1
− 1 −

h03 − h02 − 1
2 (V

2
3 − V 2

2 )
h03 − h01 − 1

2 (V
2
3 − V 2

1 )

Since the stagnation enthalpy is constant across the stator h03 = h02 and work done is
w = h03 − h01. Because the stage is not normal V1 �= V3, and the reaction may be written as

R = 1 − V 2
2 − V 2

3

2w + V 2
1 − V 2

3
= 1 − φ2(tan2α2 − tan2α3)

2ψ + φ2(tan2α1 − tan2α3)
(8.42)

Solving this for tan α3 gives

tan α3 =

√
tan2α2

R
−

(
2ψ

φ2 + tan2α1

) (
1 − R

R

)
(8.43)

from which α3 may be determined when the other parameters are known.
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� EXAMPLE 8.5

A multistage axial compressor with axial inlet delivers air at total pressure ratio of
p0e/p0i = 3.5, when the inlet conditions are T0i = 300 K and p0i = 100 kPa. The
mass flow rate is ṁ = 12 kg/s, the axial flow is constant at Vx = 175 m/s, and the
blade speed at the mean radius is U = 300 m/s. Determine the number of stages
needed, the physical properties, flow angles and dimensions of the blades for the
first two stages, assuming that the radius ratio at the inlet is rh/rc = 0.5 and that the
stage efficiency is ηp = 0.9.

Solution: In the introductory section of this chapter, a stage compression ratio in the
range 1.3–1.4 was stated to be typical for core compressors and since 3.51/5 = 1.28,
a five-stage compressor is a reasonable design aim. With the stage efficiency
assumed to be ηp = 0.9, then the polytropic exponent for air, from the definition
(n − 1)/n = (γ − 1)/ηpγ becomes n = 1.465. The stagnation temperature ratio
across the entire compressor may be calculated from

T0e

T0i
=

(
p0e

p0i

)(n−1)/n

= 3.50.465/1.465 = 1.488

which yields T0e = 446.52 K. The difference T0e − T0i = 146.52 K divided into the
five stages gives a 29.30 K stagnation temperature rise across each stage. The axial
entrance to the first stage makes the relative Mach number at the casing quite large.
Following the suggestion of Cohen et al. [15], the first stage is designed to have
a lower temperature rise, so that the flow turns less and the reaction is not unduly
high. By fixing ΔT0 = 25 K for the first stage and ΔT0 = 32 K for the three middle
stages, would leave ΔT0 = 25.52 K for the last stage. It will not be exactly this
because the compressor has only five stages so that the small stage theory is not
strictly applicable.

Stage 1: The values Vx = 175 m/s and U = 300 m/s were chosen by examining the
data in Figure 8.3. These give for the flow coefficient and blade loading coefficients
the values

φ =
Vx

U
=

175
300

= 0.5833 ψ =
cpΔT0

U 2 =
1004.5 · 25

3002 = 0.2790

Mass balance gives the expression for the entrance area the expression

Ai =
ṁ

ρiVx

The static density is obtained from the ideal gas relation, in which the static
temperature is

Ti = T0i −
V 2

1

2cp

= 300 − 1752

2 · 1004.5
= 284.76 K

and the static pressure is

pi = p0i

(
Ti

T0i

)γ/(γ−1)

= 1000
(

284.76
300

)3.5

= 83.32 kPa
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The static density is therefore

ρi =
pi

RaTi
=

83.32
0.287 · 284.76

= 1.0195 kg/m3

The inlet area can now be calculated from

Ai =
ṁ

ρiVx

=
12

1.0195 · 175
= 0.1009 m2

This gives for the casing radius the value

rc =

√
A

π(1 − κ2)
= 0.2069 m

in which κ = rh/rc is the radius ratio. The hub radius is rh = κrc = 0.1035 m and
the mean radius is rm = (rc + rh)/2 = 0.1552 m. The shaft speed is Ω = U/rm =
300/0.1552 = 1933 rad/s = 18459 rpm.

Since the flow is axial at the inlet, the relative velocity is

W1 =
√

V 2
x + U 2 =

√
1752 + 3002 = 347.3 m/s

and the relative Mach number at the mean line has the value

M1R =
W1√
γRaT1

=
347.3√

1.4 · 287 · 284.76
= 1.027

At the casing Uc = rcU/rm = 0.2069 · 300/0.1552 = 400 m/s, so the relative
velocity at the casing is

W1c =
√

V 2
x + U 2

c =
√

1752 + 4002 = 436.6 m/s

and the relative Mach number is then M1R = 436.6/
√

1.4 · 287 · 284.76 = 1.291.
This makes the inlet transonic, but this high Mach number can be tolerated, as the
losses are not too high.

To obtain the flow angles, the inlet relative velocity is calculated first. To make
sure that the algebraic sign is correct, write Wu1 = −U and then the angle of the
relative velocity at the inlet is

β1 = tan−1
(

Wu1

Wx

)
= tan−1

(
− 1

φ

)
= tan−1

(
− 1

0.5833

)
= −59.74◦

The flow angle of the absolute velocity from the rotor is obtained by solving

cpΔT0 = λ1VxU tan α2 ψ = λ1φ tan α2

for α2. It gives

α2 = tan−1
(

ψ

λ1φ

)
= tan−1

(
0.2790

0.982 · 0.5833

)
= 25.97◦

in which the work-done factor λ1 = 0.982 was obtained from Table 8.1.
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The angle of the relative velocity leaving the rotor is

β2 = tan−1
(

tan α2 −
1
φ

)
= tan−1

(
tan(25.97◦) − 1

0.5833

)
= −50.82◦

Next the outflow angle from the stage may be specified. In order to bring the reaction
toward the 50% range, the inlet angle for the next stage should be such that the flow
has a swirl component. The inlet angle for the second stage is equal to the exit angle
of the first stage. This is chosen to be α3 = 10◦. The de Haller criterion can now be
checked for the rotor and the stator. They are

cos β1

cos β2
=

cos(−59.74◦)
cos(−50.82◦)

= 0.798
cos α2

cos α3
=

cos(25.97◦)
cos(10.00◦)

= 0.913

and both are clearly satisfied.
The reaction may be calculated using Eq. (8.42). It is

R = 1 − φ2(tan2α2 − tan2α3)
2ψ + φ2(tan2α1 − tan2α3)

= 1 − 0.58332[tan2(25.97◦) − tan2(10◦)]
2 · 0.2790 + 0.58332[tan2(0◦) − tan2(10◦)]

= 0.872

The stagnation properties entering the second stage are T02i = 300 + 25 = 325 K
and

p02i = p0i

(
1 +

ηpΔT0

T0i

)γ/(γ−1)

= 100
(

1 +
0.9 · 25

300

)3.5

= 128.80 kPa

Stage 2: For the second stage, the outlet angle is increased to α3 = 20◦, and the
calculations are carried out identically to those for the first stage. The angle of
the relative flow entering the rotor is

β1 = tan−1
(

tan α1 −
1
φ

)
= tan−1

(
tan(10.0◦) − 1

0.5833

)
= −56.97◦

Since ΔT0 = 32 K, the value of ψ = cpΔT0/U 2 = 1004.5 · 32/3002 = 0.3572 and

α2 = tan−1
(

ψ

λ1φ

)
= tan−1

(
0.3572

0.952 · 0.5833

)
= 39.33◦

for the Table 8.1 shows that the work-done factor λ1 = 0.952.
The relative velocity leaves the rotor at the angle

β2 = tan−1
(

tan α2 −
1
φ

)
= tan−1

(
tan(39.33◦) − 1

0.5833

)
= −41.82◦

Now the outflow angle is fixed to a value greater than from the first stage, say
α3 = 20◦ and the de Haller criterion is checked for both the rotor and the stator.
They are

cos β1

cos β2
=

cos(−56.97◦)
cos(−41.82◦)

= 0.731
cos α2

cos α3
=

cos(39.33◦)
cos(20.00◦)

= 0.823

and both are still satisfied.
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Again, the reaction may be calculated by Eq. (8.42). It is

R = 1 − φ2(tan2α2 − tan2α3)
2ψ + φ2(tan2α1 − tan2α3)

= 1 − 0.58332[tan2(39.33◦) − tan2(20.00◦)]
2 · 0.3572 + 0.58332[tan2(10.00◦) − tan2(20.00◦)]

= 0.730

The stagnation properties entering the third stage are T02i = 325 + 32 = 357 K
and

p02i = p0i

(
1 +

ηpΔT0

T0i

)γ/(γ−1)

= 128.80
(

1 +
0.9 · 32

325

)3.5

= 173.38 kPa

Mass balance gives the expression for the entrance area the expression

A2i =
ṁ

ρ2iVx

The static temperature is

T2i = T02i −
V 2

2i

2cp

= 325 − 177.702

2 · 1004.5
= 309.28 K

in which V1 = Vx/ cos α1 = 175/ cos(10.00◦) = 177.70 m/s was used. The static
pressure is

p2i = p02i

(
T2i

T02i

)γ/(γ−1)

= 128.80
(

309.28
325

)3.5

= 108.29 kPa

and the static density is

ρ2i =
p2i

RaT2i
=

108.29
0.287 · 309.28

= 1.220 kg/m3

The flow area is therefore

A2 =
ṁ

ρ2iVx

=
12

1.220 · 175
= 0.0843 m2

Since A2 = π(r2
c − r2

h) = 2πrmb, the blade height is

b =
A2

2πrm
= 0.0865 m

so that

rc = rm +
1
2
b = 0.1552 +

1
2
0.865 = 0.1984 m

rh = rm − 1
2
b = 0.1552 − 1

2
0.865 = 0.1120 m

and the radius ratio is κ2 = 0.564.
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Table 8.2 A multistage axial compressor.

Property Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
T0in (K) 300 325 357 389 421

p0in (kPa) 100 128.8 173.4 227.47 292.07
λ 0.982 0.952 0.929 0.910 0.895

ΔT0 (K) 25 32 32 32 24.82
ψ 0.279 0.357 0.357 0.357 0.277
R 0.872 0.730 0.588 0.500 0.500
α1 0 10.00 20.00 25.00 27.83
α2 25.97 39.33 45.65 48.72 46.63
β1 −59.74 −56.97 −53.48 −51.30 −49.87
β2 −50.82 −41.82 −34.65 −29.91 −33.25

rc (m) 0.2069 0.1984 0.1905 0.1844 0.1798
rh (m) 0.1035 0.1120 0.1199 0.1260 0.1306

κ 0.500 0.564 0.630 0.683 0.727

Stage 3: For the stage three ΔT0 = 32 K, λ = 0.929, and outlet angle is taken to be
α3 = 25◦. Carrying out the calculations gives the results shown in Table 8.2.
Stage 4: For the stage four ΔT0 = 32 K, λ = 0.910. Now the reaction is set to
R = 0.5, and the outlet flow angle α3 is calculated from Eq. (8.43). The results for
this set of calculations can are shown in the next column of Table 8.2.
Stage 5: Since the stage five is the last stage, the stagnation temperature rise across
it is obtained by first calculating its pressure ratio. With p0e = 350 kPa it becomes

p0e

p05in
=

350
292.07

= 1.1983

and then the stagnation temperature increase is obtained from

ΔT0 =

[(
p0e

p05in

)(γ−1)/γ

− 1

]
T05in

ηp
= (1.19831/3.5 − 1)

421
0.9

= 24.82 K

With this stagnation temperature rise and λ = 0.895, and again assigning the reaction
the value R = 0.5 gives the results listed in Table 8.2. In addition, the flow leaves
the last stage at angle α3 = 30.04 K.

The work-done factor varies from stage to stage, and this is the reason the flow
angles are not the same in absolute value even when the reaction is 50%. When the
calculations are carried out with the aid of a computer, it is quite simple to change
the assumed outlet angles or reactions, whichever is specified. Hence, the designer
is free to adjust the design to check, for example how well the de Haller criteria
is satisfied. The stage efficiency was assumed to have a value ηp = 0.9. The blade
shapes would need to be chosen next and then the detailed loss calculations carried
out to establish more accurate values for the efficiency of each stage. Today, this is
followed by CFD-calculations to check the design.

�
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EXERCISES

8.1 The inlet and exit stagnation pressures of air flowing through an axial compressor
are 100 and 1000 kPa. The inlet stagnation temperature is 281 K. What is the work of
compression if the adiabatic total-to-total efficiency is 0.75? [Ans: 350 kJ/kg]

8.2 Air flows through an axial fan rotor at mean radius of 15 cm. The tangential
component of the absolute velocity is increased by 15 m/s through the rotor. The rotational
speed of the shaft is 3000 rpm. (a) Evaluate the torque exerted on the air by the rotor,
assuming that the flow rate is 0.48 m3/s and the inlet pressure and temperature of the
air are 100 kPa and 300 K. (b) What is the rate of energy transfer to the air? [Ans: (a)
1.25 N m, (b) 394 W]

8.3 The blade speed of an axial compressor rotor is U = 280 m/s, and the total enthalpy
change across a normal stage is 31.6 kJ/kg. If the flow coefficient φ = 0.5 and the inflow
to the rotor is axial, what are the absolute and relative gas angles leaving the rotor? [Ans:
38.9◦,−50.1◦]

8.4 Air flows through an axial-flow fan, with an axial velocity of 40 m/s. The absolute
velocities at the inlet and the outlet of the stator are at angles of 60◦ and 30◦, respectively.
The relative velocity at the outlet of the rotor is at an angle −25◦. Assume reversible
adiabatic flow and a repeating stage. (a) Draw the velocity diagrams at the inlet and
outlet of the rotor. (b) Determine the flow coefficient. (c) Determine the blade-loading
coefficient. (d) Determine at what angle the relative velocity enters the rotor. (e) Determine
the static pressure increase across the rotor. The inlet total temperature is 300 K and the
inlet total pressure is 101.3 kPa. (f) Determine the degree of reaction. [Ans: (b) 0.455, (c)
0.525, (d) −58.3◦, (e) 2.27 kPa, (f) 0.475]

8.5 Air flows through an axial-flow compressor. The axial velocity is 60% of the blade
speed at the mean radius. The reaction ratio is 0.4. The absolute velocity enters the
stator at an angle of 55◦ from the axial direction. Assume a normal stage. (a) Draw the
velocity diagrams at the inlet and outlet of the rotor. (b) Determine the flow coefficient. (c)
Determine the blade-loading coefficient. (d) Determine at what angle the relative velocity
enters the rotor. (e) Determine at what angle the relative velocity leaves the rotor. (f)
Determine at what angle the absolute velocity leaves the stator. [Ans: (b) 0.600, (c) 0.514,
(d) −47.6◦, (e) −13.4◦, (f) 29.8◦]

8.6 A single stage of a multistage axial compressor is shown in Figure 8.2. The angle
at which the absolute velocity enters the rotor is α1 = 40◦, and the relative velocity at the
inlet of the rotor is β1 = −60◦. These angles at the inlet of the stator are α2 = 60◦ and
β2 = −40◦. The mean radius of the rotor is 30 cm, and the hub-to-tip radius is 0.8. The
axial velocity is constant and has a value Vx = 125 m/s. The inlet air is atmospheric at
pressure 101 kPa and temperature 293 K. (a) Find the mass flow rate. (b) What is the
rotational speed of the shaft under these conditions? (c) What is the power requirement of
the compressor? [Ans: (a) 16.81 kg/s, (b) 10230 rpm, (c) 602.85 kW]

8.7 A single stage of a multistage axial compressor is shown in Figure 8.2. The angle at
which the absolute velocity enters the rotor is α1 = 35◦, and the relative velocity makes an
angle of β1 = −60◦. The corresponding angles at the inlet to the stator are α2 = 60◦ and
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β2 = −35◦. The stage is normal, and the axial velocity is constant through the compressor.
(a) Why does the static pressure rise across both the rotor and the stator? (b) Draw the
velocity triangles. (c) If the blade speed is U = 290 m/s, what is the axial velocity? (d) Find
the work done per unit mass for a stage and the increase in stagnation temperature across
it, if the stage efficiency is ηp = 0.914. (e) The stagnation temperature at the inlet is 300 K
and pressure is 1 bar. The overall adiabatic efficiency of the compressor is ηc = 0.756,
and the overall stagnation pressure ratio is 5.5. Determine the number of stages in the
compressor. (f) How many axial turbine stages will it take to power this compressor? [Ans:
(c) 119 m/s, (d) 35.68 kJ/kg, 35.5 K, (e) 7]

8.8 The blade speed of a rotor of an axial air compressor is U = 150 m/s. The axial
velocity is constant and equal to Vx = 75 m/s. The tangential component of the relative
velocity leaving the rotor is Wu2 = −30 m/s; the tangential component of the absolute
velocity entering the rotor is Vu1 = 55 m/s. The stagnation temperature and pressure at
the inlet to the rotor are 340 K and 185 kPa. The stage efficiency is 0.9, and one-half of the
loss in stagnation pressure takes place through the rotor. (a) Draw the velocity diagrams
at the inlet and exit of the rotor. (b) Find the work done per unit mass flow through
the compressor. (c) Draw the states on an hs-diagram. (d) Find the stagnation and static
temperatures between the rotor and the stator. (e) Find the stagnation pressure between the
rotor and the stator. [Ans: (b) 9.75 kJ/kg (d) 349.7 K and 339.7 K, (e) 203.25 kPa]

8.9 Air from ambient at 1 bar and temperature 20 ◦C enters into a blower with the
velocity 61 m/s. The blade tip radius is 60 cm, and the hub radius is 42 cm. The shaft
speed is 1800 rpm. The air enters a stage axially and leaves it axially at the same speed.
The rotor turns the relative velocity 18.7◦ toward the direction of the blade movement. The
total-to-total stage efficiency is 0.87. (a) Draw the inlet and exit velocity diagrams for the
rotor. (b) Draw the blade shapes. (c) Determine the flow coefficient and the blade-loading
factor. (d) Determine the mass flow rate. (e) What is the specific work required? (f) What
is the total pressure ratio for the stage? (g) Determine the degree of reaction. [Ans: (c)
0.635, 0.488, (d) 41.8 kg/s, (e) 4.51 kJ/kg, (f) 1.047, (g) 0.756]

8.10 Air from ambient at 1 bar and temperature 300 K enters an axial-flow compressor
stage axially with velocity 122 m/s. The blade casing radius is 35 cm, and the hub radius is
30 cm. The shaft speed is 6000 rpm. At the exit, relative velocity is at an angle −45◦. The
total-to-total stage efficiency is 0.86. (a) Draw the inlet and exit velocity diagrams for the
rotor. (b) Draw the blade shapes. (c) Determine the flow coefficient and the blade-loading
factor. (d) Determine the mass flow rate. (e) What is the total pressure ratio for the stage?
(f) Determine the degree of reaction. [Ans: (c) 0.60, 0.40, (d) 14.47 kg/s, (e) 1.178, (f)
0.80]

8.11 Air from ambient at 1 bar and temperature 300 K enters an axial-flow compressor
at angle 15◦, through a set of guide vanes, and the relative velocity is at angle −65◦.
The axial velocity has a constant value Vx = 100 m/s and the ratio of the blade speed
to the exit angle from the rotor is U/V2 = 0.85. The relative velocity leaves the rotor at
angle −5◦. (a) Find the angle at which the absolute velocity leaves the rotor. (b) Find
the blade loading coefficient, the flow coefficient, and the reaction. (c) If the total-to-total
efficiency of the stage is ηtt = 0.9, find the pressure p2 leaving the rotor. [Ans: (a) 52.86◦,
(b) 0.436, 0.415, 0.671, (c) 81.5 kPa]

8.12 Air enters a repeating stage of an axial compressor with stagnation temperature
310 K. The reaction is 0.5, and the flow coefficient has the value 0.45. The relative
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Mach number entering the rotor is 0.65 and the flow leaves the rotor at angle β2 = −25◦.
(a) Assuming the axial velocity to be constant, find its value. (b) Find the stagnation
temperature rise across the stage. [Ans: (a) 112 m/s, (b) 35.9 K]

8.13 Show that when the axial velocity changes across the rotor from Vx1 to Vx2, the
flow angles are the following:

tan α1 =
2(1 − R)ψ − ψ2 − φ2

2 + φ2
1

2φ1ψ

tan α2 =
2(1 − R)ψ + ψ2 − φ2

2 + φ2
1

2φ2ψ

tan β1 =
−2Rψ − ψ2 − φ2

2 + φ2
1

2φ1ψ

tan β2 =
−2Rψ + ψ2 − φ2

2 + φ2
1

2φ2ψ

8.14 Show that the solidity is related to the diffusion ratio and the flow angles by the
equations

σS =
1
2 sin(α2 − α3)

cos α2 − (1 − DF) cos α3

σR =
1
2 sin(β2 − β1)

cos β1 − (1 − DF) cos β2

8.15 Perform design calculations for a compressor stage with blade loading factor
in the range ψ = 0.25 to ψ = 0.55, flow coefficient φ = 0.7, and reaction R = 0.6.
Keep the diffusion factor equal to 0.45. Calculate and plot 1 − η, solidity, and the
static pressure rise 1 − V 2

2 /V 2
1 for rotor and stator (including the de Haller criterion)

as functions of ψ. What are the stagnation pressure losses across stator and rotor?
[Ans: for ψ = 0.25,Δp0LS = 0.0145 kPa,Δp0LR = 0.0206 kPa, for ψ = 0.55,ΔpLS =
0.0267 kPa,ΔpLR = 0.0436 kPa]

8.16 A normal compressor stage has a reaction R = 0:54 and a stator outlet metal angle
χ3 = 14.5◦. The camber angle is θ = 32◦, pitch chord ratio is s/c = 0.82, and the position
of maximum camber a/c = 0.45. The ratio of the blade height to the chord is b/c = 1.7.
(a) Find the deviation of the flow leaving the stator. (b) Find the deflection. (c) Find the
flow coefficient and blade-loading coefficient by assuming the inflow at zero incidence.
[Ans: (a) 6.62◦, (b) 26.1◦, (c) 0.681, 0.474]

8.17 The circular arc blades of a compressor cascade have camber θ = 30◦ and maximum
thickness at a/c = 0.5. The space-to-chord ratio is s/c = 1.0. The nominal outflow angle
is α∗

3 = 25◦. (a) Determine the nominal incidence. (b) Determine the lift coefficient at the
nominal incidence given a drag coefficient of CD = 0.016. [Ans: (a) 0.77◦, (b) 0.967]

8.18 Air with density 1.21 kg/m3 flows into a compressor stator with velocity V2 =
120 m/s and leaves at angle α3 = 30◦. If the Lieblein diffusion factor is to be held at
0.5 and the stagnation pressure loss across a compressor stator is 0.165 kPa, assuming
incompressible flow and s/c = 0:8, what is the static pressure increase across the stage?
[Ans: 4.46 kPa]
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8.19 Air at temperature 288 K and at pressure 101 kPa flows into a compressor with 10
stages. The overall pressure ratio is p0e/p0i = 4.3. The efficiency of the first stage is 0.920
and the second stage, 0.916. For the remaining stages, the stage efficiency drops by 0.004
successively so that the last stage has an efficiency of 0.884. The axial velocity is constant,
and the flow angles are the same at the inlet and exit of each of the stages. Hence, the work
done by each stage is the same. (a) Find the overall efficiency of the compressor. (b) Find
the overall efficiency by using the theory for a polytropic compression with small stage
efficiency ηp = 0.902. [Ans: (a) 0.8846, (b) 0.8804]

8.20 Air at pressure 101 kPa and temperature 293 K flows into an axial flow fan of free
vortex design, with hub radius rh = 7.5 cm and casing radius 17 cm. The fan operates
at 2400 rpm. The volumetric flow rate Q = 1.1 m3/s and the stagnation pressure rise is
3 cm H2O. The fan efficiency is ηtt = 0.86. (a) Find the axial velocity. (b) Find the work
done on the fluid. (c) Find the absolute and relative flow angles at the mean radius of
the inlet and exit of the rotor when the inlet is axial. [Ans: (a) 15 m/s, (b) 284.3 J/kg,
(c) α1 = 0◦, α2 = 31.5◦, β1 = −64.0◦, β2 = −55.1◦]

8.21 Consider an axial-flow compressor in which flow leaves the stator with a tangential
velocity distributed as a free vortex. The hub radius is 10 cm and the static pressure at the
hub is 94 kPa, and the static temperature there is 292 K. The radius of the casing is 15 cm,
and the static pressure at the casing is 97 kPa. The total pressure at the hub and the casing
are both 101.3 kPa. Find the exit flow angles at the hub and the casing. [Ans: 59.3◦, 48.3◦]

8.22 Air enters axially to a compressor from atmosphere at temperature 288 K and
pressure 101.3 kPa. The axial velocity is Vx = 175 m/s, and the mass flow rate is
ṁ = 20 kg/s. The blade speed at the mean radius is Um = 280 m/s. (a) Calculate the
relative Mach number at the mean radius and at the casing, when the radius ratio κ = 0.5.
(b) If the inlet is fitted with a set of guide vanes that give some inlet swirl, so that the
absolute velocity enters at α1 = 10◦, find the value for the axial velocity, by assuming that
the shaft speed and the flow rate are the same. (c) Calculate the relative Mach number at the
mean radius and at the casing. Check your results with Figure 8.3. [Ans: (a) 0.997, 1.245,
(b) 176.07 m/s, (c) 0.922, 1.164]

8.23 Consider a three-stage axial compressor with total pressure ratio p0e/p01 = 2.5. The
inlet stagnation temperature is T = 300 K and stagnation pressure 100 kPa. The mass flow
rate is ṁ = 15 kg/s. The hub to tip ratio of the first stage of the blades is κ = rh/rt = 0.5.
Assume that the stage efficiency is ηp = 0.9. The blade speed at the mean radius is
Um = 300 m/s and the axial velocity is constant and has the value Vx = 200 m/s. The
absolute velocity at the inlet to the compressor is axial. (a) Find the relative Mach number
at the tip radius of the blade at the inlet. (b) The blade height of the first stage assuming
that the mean radius remains constant. (c) Assume that the stagnation temperature rise for
the first two stages is 25 K, and design the exit flow angle from the first stage be 10◦ and
from the second stage 20◦. Design the first two stages. Make a table listing the flow angles,
the reaction, and the casing and hub radii assuming that the mean radius remains constant.
(d) Determine the stagnation temperature rise for the third stage and for R = 0.55, find the
angles α3 leaving this stage. What happens if the reaction is set to R = 0.5. (e) Determine
diffusion factors for each stage making sure that de Haller criterion is. [Ans: (a) 1.33,
(b) 9.02 cm, (c) stage 1: R = 0.877, rc = 0.1804 m, rh = 0.0902 m stage 2: R = 0.786,
rc = 0.188 m, rh = 0.1224 m, (d) 24.14 K]

8.24 Carry out the calculations to confirm the results in Table 8.2 for stages 3, 4 and 5.
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CHAPTER 9

CENTRIFUGAL COMPRESSORS AND
PUMPS

This chapter is on centrifugal compressors and centrifugal pumps. Both achieve in a single
stage a much higher pressure ratio than their axial counterparts. Large booster compressors
are used in natural gas transmission across continental pipelines and in offshore natural
gas production. Multistage centrifugal compressors, also known as barrel compressors,
are employed when very high delivery pressure is required. When compressed air at
high pressure is needed for industrial processes, a radial compressor fits this application
well. Centrifugal compressors are often an integral part of a refrigeration plant to provide
chilled water in heating, ventilating, and air conditioning (HVAC) systems. In contrast
to these large compressors, in cars and trucks small centrifugal compressors are used as
turbochargers and superchargers. They provide a machine of low inertia that is suitable for
rapidly changing operating conditions.

Centrifugal pumps operate on the same principles as compressors, but handle liquids in
various industrial, agricultural, and sanitary applications. Small pumps perform a variety
of tasks in households. The number of various kinds of compressors and pumps in the
world is very large, making their manufacture an important industry.

A sketch of a centrifugal compressor is shown in Figure 9.1. The axial part of the
impeller at the inlet is called an inducer. The flow enters the impeller axially, or perhaps
with a small amount of swirl, and leaves the wheel peripherally. From there, it flows
through a vaned or vaneless diffuser and then enters a volute. Thus, in this machine, the
flow at the inlet has no radial component of velocity and at the outlet, the axial component
vanishes. In many blowers and fans, the inducer section is left out. An example is the

363Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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Figure 9.1 A sketch of a centrifugal compressor.

so-called squirrel cage fan, which provides large flow rates with modest pressure rise for
certain industrial needs and which is also familiar as a small exhaust fan in a bathroom and
a kitchen.

The blades in the impeller may be shrouded (as in the last stage of the compressor
in Figure 1.6). Such impellers are used in multistage compressors, which, owing to the
large load, require a large shaft, and the possible axial movement is better tolerated by a
shrouded impeller than an unshrouded one. In an impeller with many vanes, some of the
vanes do not reach all the way into the inducer, for the finite thickness of the blades leaves
less flow area and causes possible choking of the flow. The vanes that extend all the way
to the inlet of the inducer are curved at the inlet sufficiently that the relative velocity enters
the vanes tangentially when the absolute velocity is axial.

9.1 COMPRESSOR ANALYSIS

The velocity triangles at the inlet and outlet of a centrifugal compressor are shown in
Figure 9.2. At the inlet, the axial direction is to the right; at the outlet, the radial direction is
to the right and normal to U . When the work done is written in terms of kinetic energies, it is

w =
1
2
(V 2

2 − V 2
1 ) +

1
2
(U 2

2 − U 2
1 ) +

1
2
(W 2

1 − W 2
2 )

It is clear that in order to obtain a high pressure increase in the compressor, the work
transfer must be large. Only the first term on the right accounts for an actual increase in
kinetic energy, and the other two represent increases in other thermodynamic properties. If
the work done is written as

w = h02 − h01 = h2 − h1 +
1
2
(V 2

2 − V 2
1 ),

then equating the right sides of this and the previous equation gives

h1 +
1
2
(W 2

1 − U 2
1 ) = h2 +

1
2
(W 2

2 − U 2
2 )
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This is a statement that the trothalpy remains constant across the compressor wheel.
Writing this as

h2 − h1 = u2 − u1 + p2v2 − p1v1 =
1
2
(U 2

2 − U 2
1 + W 2

1 − W 2
2 ) (9.1)

shows that the two kinetic energy terms on the right represent an increase in the internal
energy of the gas and the difference in the flow work between the exit and the inlet.

α
2

β
2

α
1

β
1

U
1

U
2

W
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V
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V
2

(a)

W
2

(b)

Figure 9.2 Velocity triangles for a centrifugal compressor. (a) Inlet and (b) outlet.

Comparing Eq. (9.1) to the equation obtained for a rotor of an axial machine, it is seen
to reduce to it when U at the inlet and the outlet is the same. In that case, the increase
in static enthalpy across the rotor was seen to arise from the decrease in relative velocity
across the rotor. This effect is still there, but more importantly, enthalpy and thus pressure
now rises owing to the centrifugal effect of a larger outlet radius. This increase in pressure
is present even in the absence of any flow, and thus does not have a loss associated with it.
It is substantially larger than the diffusional effect of the relative velocity.

The expression for work in the form

w = U2Vu2 − U1Vu1

shows that a large amount of work can be done on the air if both the blade speed U2 and Vu2
are large. However, a flow with a large Vu2 and, therefore, a large V2, may be difficult to
diffuse to a slow speed in the volute. This must be taken into consideration in the design. The
velocity diagrams in Figure 9.2 have been drawn to illustrate a general situation. Typically,
in air compressors, air is drawn from the atmosphere, and it is without a tangential
component and, therefore, enters the compressor with α1 = 0. However, a maldistribution
of the flow through the impeller and the vaned space at the exit may influence the upstream
condition and lead to some swirl. In addition, in the second and the subsequent stages of
a multistage compressor, the inlet air might have some pre-rotation, and there are also
single-stage compressors with special vanes at the inlet that give the flow a small amount
of swirl, with positive swirl decreasing the work and negative swirl increasing it.

9.1.1 Slip factor

At the exit of the blades of a centrifugal compressor, the flow deviates in much the
same way as was encountered in axial compressors. To account for it, a slip factor is
introduced as

σ = 1 − V ′
u2 − Vu2

U2
= 1 − Vus

U2
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Here Vu2 is the actual velocity, and V ′
u2 the velocity if there were no slip. The slip velocity

is defined as Vus = V ′
u2 − Vu2. The flow angle of the relative velocity at the outlet is

typically negative and greater in absolute value than the blade angle χ2. The deviation is
from the pressure side toward the suction side of the blades. From the equations,

V ′
u2 = U2 + Vr2 tan χ2 Vu2 = U2 + Vr2 tan β2

the slip velocity can be determined, and then the slip coefficient may be expressed as

σ = 1 − Vr2

U2
(tan χ2 − tan β2)

This can also be written as

σU2 = U2 + Wu2 − Vr2 tan χ2 = Vu2 − Vr2 tan χ2

or in the more convenient form

Vu2 = σU2 + Vr2 tan χ2 (9.2)

In addition, writing Vr2 = Vu2/ tan α2, substituting and solving for Vu2, gives

Vu2 =
σU2

1 − tan χ2

tan α2

(9.3)

If there is no inlet swirl, then w = U2Vu2, and this equation becomes

ψ =
σ

1 − tan χ2

tan α2

(9.4)

For radial blades χ2 = 0, and Eq. (9.3) reduces to

Vu2 = σU2

The range of slip factor is 0.83 < σ < 0.95, and the higher value is obtained if the number
of blades is large and the flow is guided well. The actual and ideal velocities are shown in
Figure 9.3.

Stodola gave the following argument to estimate the slip factor [89]. The fluid flow
through the rotor is irrotational in the laboratory frame, except for that part of the flow
that moves right next to the solid surfaces. Therefore, relative to the blade, the spin of the
fluid particles (i.e. their vorticity) must be equal and opposite to that caused by the rotating
coordinates. Hence, a secondary forced vortex that rotates at the angular velocity Ω, as
shown, can be assumed to exist in the flow channel. If s is the spacing between the blades
along the peripheral circle, the diameter of the secondary vortex is roughly Ds = s cos χ2,
as the construction in Figure 9.3b shows. Hence, the slip velocity can be taken to be

Vus =
Ds

2
Ω =

DsU2

D
=

U2s cos χ2

D
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Figure 9.3 Illustration of slip.

If Z is the number of blades, then πD = sZ, so that s/D = π/Z and the slip velocity
takes the form

Vus =
πU2 cos χ2

Z

and the slip factor is
σ = 1 − π cos χ2

Z
(9.5)

Stanitz [87] recommends

σ = 1 − 0.63π

Z
(9.6)

for the slip coefficient and assures it to be good in the range −45◦ < χ2 < 45◦. Other
efforts to establish the value for the slip velocity include those by Busemann for blades of
logarithmic spiral shape. A synthesis of this and other results was carried out by Wiesner
[96], who recommends the expression

σ = 1 −
√cos χ2

Z0.7 (9.7)

9.1.2 Pressure ratio

The Euler equation for turbomachinery is

w = h03 − h01 = U2Vu2 − U1Vu1

and the ideal work is
ws = h03ss − h01

The states for the compression process are shown in the Mollier diagram in Figure 9.4.
With ηtt = ws/w from these equations, it follows that

(
p03

p01

)(γ−1)/γ

= 1 +
γ − 1
γRT01

ηtt(U2Vu2 − U1Vu1) (9.8)
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Figure 9.4 The thermodynamic states in a centrifugal compressor.

When the inlet velocity is axial and therefore small, the stagnation enthalpy h01 is only
slightly larger than h1. The line of constant trothalpy

h1 +
1
2
W 2

1 − 1
2
U 2

1 = h2 +
1
2
W 2

2 − 1
2
U 2

2

is shown in Figure 9.4, as well as the magnitudes of the various kinetic energies. In
particular, the blade velocity U1 is smaller than U2, and the relative velocity diffuses
across the rotor so that W1 > W2. The kinetic energy leaving the rotor is quite large. The
loss of stagnation pressure across the rotor is Δp0LR = p02i − p02, and across the volute,
it is Δp0LS = p02 − p03. The pressure p02i is the stagnation pressure for an isentropic
compression process in which the same amount of work has been done as in the actual
process.

The rotor efficiency is given by

ηR =
h02s − h01

h02 − h01
(9.9)

With ηR known, the stagnation temperature T02s can be calculated from Eq. (9.9), and the
stagnation pressure p02 can then be determined from

p02 = p01

(
T02s

T01

)γ/(γ−1)

In addition, integrating the Gibbs equation along the line of constant p02 and along the line
of constant h02 between the states with entropies s1 and s2 gives

p02i

p02
=

(
T02

T02s

)γ/(γ−1)

from which p02i is obtained.
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For an axial inlet flow Vu1 = 0 and introducing Vu2 = ψU2 into Eq. (9.8), the pressure
ratio may be written as

p03

p01
= [1 + (γ − 1)ψηttM

2
0u]γ/(γ−1) (9.10)

in which M0u = U2/c01. A plot of this relation is shown in Figure 9.5. Similarly, the
pressure ratio across the rotor alone is

p02

p01
= [1 + (γ − 1)ψηRM 2

0u]γ/(γ−1) (9.11)
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Figure 9.5 Pressure ratio as a function of blade stagnation Mach number, for various values of
ψηtt and for gas with γ = 1.4.

It was seen earlier that in the expression for constant trothalpy

h2 − h1 =
1
2
(U 2

2 − U 2
1 ) +

1
2
(W 2

1 − W 2
2 )

the first term on the right side is a kinematic effect and therefore represents a reversible
process. If the left side is written as

h2 − h1 = h2 − h2s + h2s − h1,

then the reversible enthalpy change may be written as

h2s − h1 =
1
2
(U 2

2 − U 2
1 ) + (1 − f)

1
2
(W 2

1 − W 2
2 ),

and for the irreversible change,

h2 − h2s = f
1
2
(W 2

1 − W 2
2 )
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in which f is the fraction of the change in relative kinetic energy lost to irreversibility. The
static enthalpy loss coefficient ζR in

h2 − h2s =
1
2
ζRW 2

2

is related to f by the equation

ζR = f

(
W 2

1

W 2
2
− 1

)

The ratio (1 − ηR)/(1 − ηtt) of rotor losses to the total losses is between 0.5 and 0.6.
Hence, for ηtt = 0.8, the rotor efficiency is about ηR = 0.89.

Writing the rotor efficiency as

ηR =
h2s − h1 + 1

2 (V
2
2s − V 2

1 )
h2 − h1 + 1

2 (V
2
2 − V 2

1 )

and assuming that V2s = V2, this becomes

ηR =
h2s − h2 + h2 − h1 + 1

2 (V
2
2 − V 2

1 )
h2 − h1 + 1

2 (V
2
2 − V 2

1 )

which can also be written as

ηR = 1 − h2 − h2s

w
= 1 − ζRW 2

2

2w
= 1 − ζRW 2

2

2ψU 2
2

Squaring and adding the component equations

W2 sin β2 = Vu2 − U2 W2 cos β2 = Vr2

gives
W 2

2 = V 2
u2 − 2Vu2U2 + U 2

2 + V 2
r2

In addition,

Vr2 =
Vu2

tan α2

so that
W 2

2

U 2
2

= 1 − 2ψ +
ψ2

sin2α2
(9.12)

and the rotor efficiency can be written as

ηR = 1 − ζR
(1 − 2ψ + ψ2/sin2α2)

2ψ

in which
ψ =

σ

1 − tan χ2

tan α2

(9.13)



�

� �

�

COMPRESSOR ANALYSIS 371

Solving the equation for rotor efficiency for ζR gives

ζR =
(1 − ηR)2ψ

1 − 2ψ + ψ2/sin2α2

For a typical case, χ2 = −40◦ and α2 = 67◦. With σ = 0.85, these equations give
ψ = 0.627, and for a rotor efficiency ηR = 0.89, the loss coefficient is ζR = 0.656. The
latter appears to be quite large, but when calculating the stagnation pressure losses, this
is multiplied by W 2

2 , which is small because the flow will have been diffused through
the rotor. In addition, a typical value for W1/W2 = 1.6. For these values, the fraction of
the relative kinetic energy lost to irreversibility is f = 0.38. This number accords with
Cumpsty’s [18] review of the field. Although this number appears to be large, in a typical
compressor, the centrifugal effect accounts for over three quarters of the pressure rise and
the diffusion of the relative velocity the rest. Hence, 38% loss keeps the rotor efficiency
still over 90%.

� EXAMPLE 9.1

Air flows from atmosphere at pressure 101.3 kPa and temperature 288 K into a
centrifugal compressor with radial blades at the exit of the impeller and without any
swirl at the inlet. The compressor wheel has 18 blades, and it turns at 15000 rpm.
The exit radius is r2 = 26 cm, and the inlet hub radius is rh = 8.5 cm and the shroud
radius is rs = 17 cm. The total-to-total efficiency is ηtt = 0.79. (a) Find the power
required assuming that the mass flow rate is ṁ = 8 kg/s. Use the Stanitz formula to
find the slip coefficient. (b) Find the stagnation pressure ratio. (c) Find the blade height
at the exit for a design in which the radial velocity at the exit is equal to the uniform
axial velocity at the inlet. In addition, as is stated in the text, one may also assume that
the losses in the impeller are equal to those in the volute. (d) Find the Mach number
at the inlet based on the relative velocity at the hub, the mean radius, and the shroud.

Solution: (a) Since the air comes from the atmosphere, where it is stagnant, the
atmospheric pressure and temperature are the inlet stagnation properties. The blade
speeds at the exit and inlet are obtained from U = rΩ, and these are

U2 = r2Ω =
0.26 · 15000 · π

30
= 408.4 m/s Um =

0.1275 · 15000 · π
30

= 200.3 m/s

Us = rsΩ =
0.17 · 15000 · π

30
= 267.0 m/s Uh =

0.085 · 15000 · π
30

= 133.5 m/s

At the outlet, the tangential velocity is Vu2 = σU2 and the slip coefficient is

σ = 1 − 0.63 · π
Z

= 1 − 0.63 · π
18

= 0.89

Since the inlet flow is axial, the work done is

w = Vu2U2 = σU 2
2 = 0.89 · 408.42 = 148.46 kJ/kg

and the power to the compressor is

Ẇ = ṁw = 8 · 148.46 = 1187.6 kW



�

� �

�

372 CENTRIFUGAL COMPRESSORS AND PUMPS

(b) The isentropic work is

ws = ηttw = 0.79 · 146.46 = 117.3 kJ/kg

so that
T03s = T01 +

ws

cp

= 288 +
117.3
1.0045

= 404.78 K,

and the pressure ratio across the compressor is

p03

p01
=

(
T03s

T01

)γ/(γ−1)

=
(

404.78
288

)3.5

= 3.29

(c) To determine the blade height at the exit, the radial velocity at the exit is needed.
In the statement of this example, it is suggested that for preliminary design it may
be assumed that it is equal to the axial velocity at the inlet. Thus, the inlet velocity
needs to be determined first. This is obtained from the mass balance at the inlet.

ṁ = ρ1VxA1

in which both Vx and ρ1 are unknowns, since the inlet area is simply

A1 = π(r2
s − r2

h) = π(0.172 − 0.0852) = 0.0681 m2

The mass balance may be written in terms of the flow function, and doing so
leaves the inlet Mach number as the only unknown. The flow function is

F =
ṁ

√
cpT01

A1p01
=

8
√

1004.5 · 288
0.0681 · 101000

= 0.624

and now from its definition

F =
γM1√
γ − 1

(
1 +

γ − 1
2

M 2
1

)−(γ+1)/(2γ−2)

the inlet Mach number may be determined iteratively by hand or with the computer
software’s FZERO-function. It is determined to be M1 = 0.297. Next the static
temperature at the inlet is

T1 = T01

(
1 +

γ − 1
2

M 2
)−1

=
288

1 + 0.2 · 0.2972 = 283.0 K

The inlet velocity is now Vx = M1

√
γRT1 = 0.297

√
1.4 · 287 · 283 =

100.1 m/s.
Just to check the work, the static pressure is seen to be

p1 = p01

(
T1

T01

)γ/(γ−1)

= 101.3
(

283
288

)3.5

= 95.28 kPa,
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and the density at the inlet is

ρ1 =
p1

RT1
=

95.29
0.287 · 283

= 1.173 kg/m3

These give for the mass flow rate

ṁ = ρ1VxA1 = 1.173 · 100.1 · 0.0681 = 8 kg/s

which accords with the mass flow rate given in the problem statement.
The mass balance at the exit of the impeller can be used to determine the

blade height. For this, the static density is needed, which in turn depends on the
static temperature and pressure. To determine them, the radial velocity at the exit
may be assumed in preliminary design to be equal to the inlet velocity, so that
Vr2 = Vx = 100.1 m/s. Since Vu2 = σU2 = 0.89 · 408.4 = 363.5 m/s, the velocity
at the exit is

V2 =
√

V 2
2r + V 2

2u =
√

100.12 + 363.52 = 377.0 m/s

Next assuming that half of the losses take place in the flow across the impeller
and the half after it, the rotor efficiency may be calculated from

1 − ηR

1 − ηtt
= 0.5 ηR = 1 − 0.5(1 − ηtt) = 1 − 0.5(1 − 0.79) = 0.895

Hence, with T02 = T03 = 435.8 K

T02s = T01 + ηR(T02 − T01) = 288 + 0.895(435.8 − 288) = 420.3 K

and

p02 = p01

(
T02s

T01

)γ/(γ−1)

= 101.3
(

420.3
288

)3.5

= 380.3 kPa

The static properties are therefore

T2 = T02 −
V 2

2

2cp

= 435.8 − 3772

2 · 1000.45
= 365.0 K

p2 = p02

(
T2

T02

)γ/(γ−1)

= 380.3
(

365.0
435.6

)3.5

= 204.5 kPa

ρ2 =
p2

RT2
=

204.5
0.287 · 365

= 1.952 kg/m3

The area at the impeller exit is thus

A2 =
ṁ

ρ2Vr2
=

8
1.952 · 100.1

= 0.0409 m2

and the blade height is

b =
A2

2πr2
=

0.0409
2 · π · 0.26

= 0.025 m = 2.5 cm
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(d) At the inlet, the flow angle of the relative velocity is at the hub, shroud, and
mean radii

β1h = tan−1
(
−Uh

Vx

)
= tan−1

(
−133.5

100.1

)
= −53.13◦

β1s = tan−1
(
−Us

Vx

)
= tan−1

(
−267.0

100.1

)
= −69.44◦

β1m = tan−1
(
−Um

Vx

)
= tan−1

(
−200.3

100.1

)
= −63.43◦,

and the corresponding relative velocities are

W1h =
Vx

cos β1h
=

100.1
cos(−53.13)

= 166.6 m/s

W1m =
Vx

cos β1m
=

100.1
cos(−63.43)

= 223.9 m/s

W1s =
Vx

cos β1s
=

100.1
cos(−69.44)

= 285.2 m/s

The relative Mach numbers are

M1Rh =
W1h

c1
= 0.495 M1Rm =

W1m

c1
= 0.664 M1Rs =

W1s

c1
= 0.846

It is desirable to keep the relative Mach number at the shroud to value less than
0.8, and in this example, it is slightly higher than that. The radial velocity at the exit
was taken to be equal to the axial velocity at the inlet. This, of course, does not need
to be exactly the case. �

9.2 INLET DESIGN

Similar design limitations are encountered in the design of centrifugal compressors as in
axial compressors. Namely, absolute and relative velocities must be kept sufficiently low
to ensure that shock losses do not become excessive. The blade speed for high-performance
compressors with a stainless-steel wheel is kept below 450 m/s owing to limitations caused
by high stresses.

Typically, the inlet stagnation pressure and temperature are known, and when atmo-
spheric air is compressed, they are the ambient values. If the compressor is not equipped
with vanes to introduce pre-swirl into the flow, the absolute velocity is axial. This velocity
is also uniform across the inlet. The inlet hub and shroud radii are r1h and r1s, and the inlet
area is

A1 = π(r2
1s − r2

1h) = πr2
1s(1 − κ2) where κ =

r1h

r1s

The flow rate
ṁ = ρ1A1V1
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may be expressed in a nondimensional form by diving it by the product ρ01πr2
2c01.

Following Whitfield and Baines [95], this is written as

Φ =
ṁ

ρ01πr2
2c01

=
ρ

ρ01

r2
1s

r2
2

(1 − κ2)
W1s

c01
cos β1s (9.14)

in which the inlet velocity V1 has been related to the relative velocity at the shroud by
V1 = W1s cos β1s. In addition, W1s =

√
U 2

1s + V 2
1 , and since the blade speed is largest at

the shroud, so is W1s, and β1s has the largest absolute value there. With r1s/r2 = U1s/U2,
the nondimensional mass flow rate may be written as

Φ =
ρ1

ρ01

U 2
1s

U 2
2

(1 − κ2)
W1s

c01
cos β1s,

and it can be further manipulated into the form

Φ =
ρ1

ρ01

(
W 2

1s − V 2
1

c2
1

)
c2
01

U 2
2

c2
1

c2
01

(1 − κ2)
W1s

c1

c1

c01
cos β1s (9.15)

which can be written as

Φ =
ρ1

ρ01

(
T1

T01

)3/2
M 3

1Rs

M 2
0u

(1 − κ2)(1 − cos2β1s) cos β1s

Here, M1Rs = W1s/c1 is the relative Mach number at the shroud. Defining next

Φf =
ΦM0u007D2

1 − κ2 ,

the preceding equation can be written as

Φf =
M 3

1Rs(1 − cos2β1s) cos β1s(
1 + γ−1

2 M 2
1Rscos2β1s

)(3γ−1)/(2γ−2) (9.16)

Graphs calculated from Eq. (9.16) are shown in Figure 9.6. The angle β1s at which
the flow rate reaches its maximum value is obtained by differentiating this equation with
respect to cos β1s and setting the derivative to zero:

cos4β1s −
3 + γM 2

1Rs

M 2
1Rs

cos2β1s +
1

M 2
1Rs

= 0 (9.17)

The solution is

cos2β1s =
(

3 + γM 2
1Rs

2M 2
1Rs

) (
1 −

√
1 − 4M 2

1Rs

(3 + γM 2
1Rs)2

)
(9.18)

Another way to plot the data is shown in Figure 9.7. For M1Rs = 0.6, the optimum
angle from Eq. (9.18) is β1s = −57.15◦, and if the relative Mach number is increased
to M1Rs = 1.2, the optimum angle is β1s = −62.56◦. In the incompressible limit, the
optimum angle is β1s = −54.74◦.
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Figure 9.6 Nondimensional mass flow rate for given inlet angle of relative flow with relative Mach
number as a parameter, for a gas with γ = 1.4.
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Figure 9.7 Relative Mach number for a given inlet angle of relative flow with nondimensional
flow rate as a parameter, for a gas with γ = 1.4.

Equation (9.16) can be recast also in the form

Φf =
ρ1

ρ01

(
W 2

1s − V 2
1

c2
1

)
c2
1

c2
01

V1

c1

c1

c01

and further as

Φf =
(M 2

1Rs − M 2
1 )M1(

1 + γ−1
2 M 2

1

)(3γ−1)/(2γ−2)
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Solving this for M 2
1Rs gives

M 2
1Rs = M 2

1 +
Φf

M1

(
1 +

γ − 1
2

M 2
1

)(3γ−1)/(2γ−2)

This result is displayed in Figure 9.8. Since M1 = M1Rs cos β1s, the lines of constant
cos β1s are straight on this set of graphs and the optimum angle is at the minima of the
curves.

0.4

0.7

0.6

0.8

0.9

1.0

1.1

1.2

Φf = 0.40

Φf = 0.35

Φf = 0.30

Φf = 0.25

Φf = 0.20

Φf = 0.15

Φf = 0.10

0.2 0.3 0.5

M
1

M
1R

0.6 0.7 0.8

Figure 9.8 Relative Mach number for given inlet Mach number with nondimensional flow rate as
a parameter and for a gas with γ = 1.4.

� EXAMPLE 9.2

In an air compressor, the relative Mach number is M1Rs = 0.9 at the shroud of the
impeller. The inlet stagnation pressure and temperature are 101.3 kPa and 288 K.
The mass flow rate is ṁ = 8 kg/s. The hub-to-shroud radius ratio is 0.4, and the
inlet flow is axial. Determine (a) the rotational speed of the impeller, (b) the axial
velocity, and (c) the inducer shroud diameter, assuming that the inducer is designed
for optimum relative flow angle, and that the compressor operates at the design point.

Solution: The stagnation density is

ρ01 =
p01

RT01
=

101.3
0.287 · 288

= 1.2256 kg/m3

and the stagnation speed of sound is

c01 =
√

γRT01 =
√

1.4 · 287 · 288 = 340.17 m/s

The optimum relative flow angle can be found from

cos2β1s =
(

3 + γM 2
1Rs

2M 2
1Rs

) (
1 −

√
1 − 4M 2

1Rs

(3 + γM 2
1Rs)2

)
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With γ = 1.4 and M1Rs = 0.9 this gives

cos2β1s =
3 + 1.4 · 0.81

2 · 0.81

(
1 −

√
1 − 4 · 0.81

(3 + 1.4 · 0.81)2

)
= 0.2546

and therefore β1s = −59.70◦. Next value of Φf is calculated from

Φf =
M 3

1Rs(1 − cos2β1s) cos β1s(
1 + γ−1

2 M 2
1Rscos2β1s

)(3γ−1)/(2γ−2) ,

and it yields the value

Φf =
0.93(1 − cos2(−59.7◦)) cos(−59.7◦)

(1 + 0.2 · 0.81cos2(−59.7◦))4 = 0.2333

The equality

Φ =
Φf(1 − κ2)

M 2
0u

can next be rewritten as

ṁ

ρ01c01πr2
2

=
Φf(1 − κ2)c2

01

U 2
2

After U2 = r2Ω is substituted and r2
2 canceled from both sides, this can be solved

for Ω with the result:

Ω =

√
Φf(1 − κ2)ρ01c

3
01π

ṁ
=

√
0.2333 · 0.84 · 1.226 · 340.173 π

8
= 18400 rpm

(b) The inlet Mach number is

M1 = M1Rs cos β1s = 0.9 cos(−59.7◦) = 0.454

and hence, the inlet static temperature has the value

T1 =
T01

1 + γ−1
2 M 2

1
=

288
1 + 0.2 · 0.4542 = 276.6 K

The static density comes out to be

ρ1 = ρ01

(
T1

T01

)1/(γ−1)

= 1.2259
(

276.6
288

)2.5

= 1.108 kg/m3

and the axial velocity is

V1 = M1

√
γRT1 = 0.454

√
1.4 · 287 · 276.6 = 151.4 m/s

The mass flow rate,

ṁ = ρ1A1V1 = ρ1πr2
1s(1 − κ2)V1
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when solved for r1s gives

r1s =

√
ṁ

ρ1π(1 − κ2)V1
=

√
8

1.108 · π · 0.84 · 151.4
= 0.1344 m

so that the inducer diameter of the impeller is D1s = 26.9 cm. �

9.2.1 Choking of the inducer

The inducer is shown in Figure 9.9. The flow is axial at the inlet, and the relative velocity
forms an angle β1 at the mean radius and β1s at the shroud. The corresponding blade veloc-
ities are U1 and U1s, with U1s = r1sU1/r1m. The blade angle is χ1, and the stagger is ξ. The
throat width is denoted by t. From the shape of the blade, its thickness distribution, and the
stagger, the width of the throat can be determined. As the sketch shows, a reasonable esti-
mate is given by t = s cos χ1. A typical value for incidence i = β1 − χ1 is −4◦ to −6◦ [75].

Mass balance in the form

ṁ = ρ1A1W1 cos β1 =
p1

RT1
A1M1R

√
γRT1 cos β1

can be written in terms of functions of the relative Mach number, by introducing the ratios

T0R

T1
= 1 +

γ − 1
2

M 2
1R

and
p0R

p1
=

(
1 +

γ − 1
2

M 2
1R

)γ/(γ−1)

with the result that the mass balance takes the form

ṁ =
p0RA1 cos β1√

cpT0R

γ√
γ − 1

M1R

(
1 +

γ − 1
2

M 2
1R

)−(γ+1)/2(γ−1)

ξ β
1

β
1s

χ
1

W
1

W
1s

U
1s

V
1

s

t

Figure 9.9 Detail of the inlet to the inducer.
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At the throat, the mass flow rate can be expressed as

ṁ = ρtAtWt =
p0RAt√
cpT0R

γ√
γ − 1

MtR

(
1 +

γ − 1
2

M 2
tR

)−(γ+1)/2(γ−1)

Equating the mass flow rates in the two preceding equations gives

A1M1R cos β1(
1 + γ−1

2 M 2
1R

)(γ+1)/2(γ−1) =
AtMtR(

1 + γ−1
2 M 2

tR

)(γ+1)/2(γ−1) (9.19)

If the flow is choked, MtR = 1, and this equation reduces to

At

A1 cos β1
= M1R

(
2

γ + 1
+

γ − 1
γ + 1

M 2
1R

)−(γ+1)/2(γ−1)

(9.20)

Figure 9.10 shows the graphs of the relative Mach number as a function of the effective
area ratio for various values of the relative throat Mach number. If more accurate numerical
values are needed than can be read from the graphs, they are easily calculated from
Eq. (9.19).
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Figure 9.10 Throat area for a choked inducer for a gas with γ = 1.4.

Substituting A1 cos β1 from Eq. (9.19) into

ṁ = ρ1A1W1 cos β1

gives

ṁ = ρ1c1AtMtR

(
1 + γ−1

2 M 2
tR

)(γ+1)/2(γ−1)

(
1 + γ−1

2 M 2
1R

)(γ+1)/2(γ−1)
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which, when multiplied and divided by ρ01c01, can be written as

ṁ = ρ01c01AtMtR

(
1 + γ−1

2 M 2
1R

)(γ+1)/2(γ−1)

(
1 + γ−1

2 M 2
1

)(γ+1)/2(γ−1)(
1 + γ−1

2 M 2
tR

)(γ+1)/2(γ−1)

In this equation, the ratio of the two terms involving relative and absolute Mach numbers
can be written as

1 + γ−1
2 M 2

1R

1 + γ−1
2 M 2

1
=

h1 + 1
2W

2
1

h1 + 1
2V

2
1

=
h1 + 1

2V
2
1 + 1

2U
2
1

h1 + 1
2V

2
1

= 1 +
U 2

1

2h01
= 1 +

γ − 1
2

U 2
1

c2
01

so that

ṁ = ρ01c01AtMtR

(
1 +

γ − 1
2

U 2
1

c2
01

)(γ+1)/2(γ−1)

(
1 +

γ − 1
2

M 2
tR

)(γ+1)/2(γ−1)

This shows that the mass flow rate increases as the blade speed increases. This happens
even after the flow chokes, for then this equation becomes

ṁ = ρ01c01At

(
2

γ + 1
+

γ − 1
γ + 1

U 2
1

c2
01

)(γ+1)/2(γ−1)

With increased blade speed, more compression work is done on the gas, and its pressure,
temperature, and density, all increase in the flow channel. Thus, at the choked throat the
higher velocity, given by Vt =

√
γRTt, and higher density result in an increased flow rate.

9.3 EXIT DESIGN

The characteristic design calculation in turbomachinery flows involves the relationship
between the flow angles and the flow and blade loading coefficients. Density differences
between the inlet and the exit of the impeller are considered only when the blade heights
are determined. This was largely ignored in the axial compressor theory, as the annulus
area could be reduced to keep the axial velocity constant. In radial compressor calculations,
the situation is somewhat more complicated, as the comparable criterion of constant axial
velocity is absent. To be sure, the design is often such that the radial velocity leaving the
impeller is reasonably close to the axial velocity at the inlet and when this is taken into
account, the range in the design parameters is reduced. In this section, the characteristics
of the exit of the impeller are discussed.

9.3.1 Performance characteristics

If the inlet is axial, the work done is
w = U2Vu2 (9.21)

Since Vu2 = U2 + W2 sin β2 and Vr2 = W2 cos β2, where Vr2 is the radial velocity at
the exit, this can be written as

w = U2(U2 + W2 sin β2) = U 2
2 + Vr2U2 tan β2



�

� �

�

382 CENTRIFUGAL COMPRESSORS AND PUMPS

Defining the blade-loading coefficient for a centrifugal machine as ψ = w/U 2
2 and the

flow coefficient as φ = Vr2/U2, this equation can be recast in the form

ψ = 1 + φ tan β2 (9.22)

This is a straight line in the performance plot shown in Figure 9.11. If β2 > 0, the
characteristic is rising, and for β2 < 0, it is falling. The outlet velocity diagrams in the
same figure show what happens to the absolute velocity in these two cases. It is clearly
much larger in a machine with a rising characteristic.
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Figure 9.11 Idealized characteristic of a centrifugal machine.

Pressure rise in a centrifugal compressor takes place not only across the impeller but
also in a vaned or vaneless diffuser and a volute. The latter consists of the stationary
components of the machine and can be viewed as the stator. This is a useful way of
thinking about the machine, and the degree of reaction can again be defined as the ratio of
the static enthalpy rise across the rotor to the total.

If the outlet velocity from the impeller is large, then the flow needs to be diffused by
a large amount in the stationary components of the machine. In order to prevent the flow
separation and the irreversibilities associated with it, the diffusion in the volute must be
kept sufficiently mild. This can be controlled by curving the blades backward, in order to
reduce the absolute velocity at the outlet of the impeller.

Backward-swept blades have an another decisive advantage; namely, the operation of
the machine is stable. If the flow rate is reduced by increasing the load, for example by
partially closing a valve downstream, on a falling characteristic of backward-swept blades,
the blade-loading coefficient increases leading to higher enthalpy and thus also pressure at
the outlet of the impeller. Hence, a higher pressure rise is obtained across the machine. This
counteracts the increase in flow resistance, and a new stable operating point is established.
On the other hand, for forward-swept blades a drop in the flow rate decreases the pressure
across the machine and thus leads to further drop in the flow rate in the system. Thus the
operation of a compressor with forward-swept blades is inherently unstable.

If the flow angle α2 of the absolute velocity at the outlet is in the range 63◦–72◦, a good
design is obtained; the best designs being in the range 67◦–69◦. For radial blades, which
are common, there is a wide range of fairly high efficiency. Radial blades have the added
advantage that they experience no bending by centrifugal loads, and the state of stress
tends to be dominated by tensile stresses.
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The pressure ratio has been shown to obey the equation(
p03

p01

)(γ−1)/γ

= 1 + (γ − 1)ηtt
U2Vu2

c2
01

= 1 + (γ − 1)ηttψM 2
0u

and the temperature ratio is

T03

T01
= 1 + (γ − 1)ψM 2

0u

in which the blade-loading coefficient is given by Eq. (9.13). The exit Mach number can
also be expressed in terms of the blade stagnation Mach number M0u. The definition of
exit Mach number can be rewritten as

M2 =
V2

c2
=

Vu2

c01 sin α2

c01

c02

c02

c2

which can be rearranged to the form

M2 =
Vu2

c01 sinα2

(
T01

T02

)1/2(
T02

T2

)1/2

=
ψM0u

sin α2

√
1 + γ−1

2 M 2
2

1 + (γ − 1)ψM 2
0u

Solving this for M2 gives

M2 =
ψM0u√

sin2α2 + (γ − 1)ψM 2
0u(sin2α2 − 1

2ψ)
(9.23)

The inlet Mach number can be written in terms of M0u as well. First, the definition of
M1 can be written in the form

M 2
1 =

V 2
1

c2
1

=
U 2

1s

c2
01

c2
01

c2
1

1
tan2β1s

and then using U1s = r1sU2/r2 and c2
01/c2

1 = T01/T1 in this leads to

tan2β1sM
2
1 = M 2

0u

r2
1s

r2
2

(
1 +

γ − 1
2

M 2
1

)

Solving this for M1 gives

M1 =
M0ur1s/r2√

tan2β1s −
γ − 1

2
M 2

0u

r2
1s

r2
2

(9.24)

The relative inlet Mach number at the shroud is M1Rs = M1/ cos β1s. These relations
are shown graphically in Figure 9.12 in the manner following Whitfield [94]. The blade
angle varies from χ2 = 0◦ for radial blades in increments of −10◦ to χ2 = −60◦. The outlet
angle was assumed to be α2 = 67◦ and the inlet flow angle, β1s = −60◦ at the shroud. The
slip factor was assumed to be σ = 0.85, and the total-to-total efficiency was taken to be
ηtt = 0.8. The radius ratio has the value r1s/r2 = 0.6. With these values fixed, a typical
design would have M0u = 1.4 and, say χ2 = −30◦. These give a blade-loading coefficient
of ψ = 0.683, an exit Mach number of M2 = 0.9, a pressure ratio of p03/p01 = 3.84, and
a relative Mach number at the inlet shroud of M1Rs = 1.17.
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Figure 9.12 Exit Mach number, pressure ratio, and relative inlet Mach number as functions of
blade stagnation Mach number for various blade angles χ2. The exit flow angle is α2 = 67◦, and at
the inlet, β1s = 60◦. The slip factor is σ = 0.85 and ηtt = 0.8. The radius ratio is r1s/r2 = 0.6, and
γ = 1.4.

9.3.2 Diffusion ratio

The diffusion ratio for the relative velocity is discussed next. It is obtained by first writing
at the inlet

−W1s sin β1s = U1s

and then developing the relative velocity at the outlet into a convenient form. Starting with

W2 sinβ2 = Vu2 − U2 W2 cos β2 = Vr2

and squaring and adding them gives

W 2
2 = V 2

u2 − 2Vu2U2 + U 2
2 + V 2

r2

Noting that Vr2 = Vu2/ tan α2, and dividing by U 2
2 , gives

W 2
2

U 2
2

= 1 − 2ψ +
ψ2

sinα2
2

a result that was developed earlier in this chapter. Hence, the diffusion ratio becomes

W1s

W2
= − U1s/U2

sin β1s

√
1 − 2ψ +

ψ2

sin2α2
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which in terms of the radius ratio is clearly

W1s

W2
= − r1s/r2

sinβ1s

√
1 − 2ψ +

ψ2

sin2α2

This ratio should be kept below W1s/W2 < 1.9. For radius ratio, r1s/r2 = 0.7, graphs
of the diffusion ratio as a function of χ2 are plotted in Figure 9.13 for various values of
the exit flow angle α2. A typical design might have α2 = 67◦, and if the diffusion ratio
W1s/W2 = 1.9 is chosen, then χ2 = −28.2◦.
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Figure 9.13 Diffusion ratio for σ = 0.85, inlet flow angle β1s = −60◦, r1s/r2 = 0.7, and γ = 1.4,
as a function of χ2 and for various values of α2.

9.3.3 Blade height

The blade height at the exit is determined by equating the mass flow rates at the inlet and
the outlet of the rotor. Writing the mass flow rates in terms of the flow functions as

ṁ
√

cpT01

p01A1
= F1(M1)

and
ṁ

√
cpT02

p02A2
= F2(M2)

Dividing the former by the latter gives

A2

A1
=

√
T02

T01

p01

p02

F1(M1)
F2(M2)

(9.25)
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The area ratio is seen to depend on the pressure ratio across the rotor, which is

p02

p01
= [1 + (γ − 1)ηRψM 2

0u]γ/(γ−1)

and the temperature ratio, which is

T02

T01
= 1 + (γ − 1)ψM 2

0u

The area ratio
A2

A1
=

2πbr2

πr2
1s(1 − κ2)

yields the blade height to radius ratio b2/r2, as

b

r2
=

A2

A1

r2
1s

r2
2

(1 − κ2)
2

To establish the area ratio in Eq. (9.25), the flow function F1(M1) can be calculated in
terms of M0u, since Eq. (9.24) gives the relationship between M1 and M0u, provided the
other parameters are known. Similarly, Eq. (9.23) is a relationship between M2 and M0u.
Thus the blade height-to-radius ratio can now be calculated for various values of M0u. The
graphs shown in Figure 9.14 are again patterned after Whitfield [94].
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Figure 9.14 Blade height-to-radius ratio for σ = 0.85, ηR = 0.9 and ηtt = 0.8. At the inlet
β1s = −60◦ and at the exit χ2 = −40◦ and α2 = 65◦. The hub-to-shroud radius ratio is κ = 0.4, and
the gas has γ = 1.4.
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9.4 VANELESS DIFFUSER

As the compressed gas leaves the rotor, it enters a vaneless space in which it diffuses to a
lower velocity. The mass balance at the exit of the rotor can be written as

ṁ = ρ22πr2b2V2 cos α2

A similar equation at the end of the diffusion process at r2e is

ṁ = ρ2e2πr2eb2eV2e cos α2e

so that
ρ2r2b2V2 cos α2 = ρ2er2eb2eV2e cos α2e (9.26)

These mass balances can also be cast in the nondimensional forms:

ṁ
√

cpT02

p022π
= r2b2F2 cos α2

ṁ
√

cpT02e

p02e2π
= r2eb2eF2e cos α2e

The stagnation temperature is constant so that T02e = T02. If it assumed that there are
no losses, then since no work is done, p02e = p02. In addition, if the channel has a constant
height, equating the foregoing two equations gives

r2eF2e cos α2e = r2F2 cos α2 (9.27)

For a free vortex velocity distribution,

r2eVu2e = r2Vu2

or
r2eV2e sinα2e = r2V2 sinα2 (9.28)

For a channel of constant width b2 = b2e, so that dividing this equation by Eq. (9.26),
yields

tan α2e

ρ2e
=

tan α2

ρ2
(9.29)

Since both T0 and p0 are taken as constant, it then follows from the ideal gas relation
that ρ02 = ρ02e. Multiplying the left side of this equation by ρ02e and the right side by ρ02
gives

(
1 +

γ − 1
2

M 2
2e

)1/(γ−1)

tan α2e =
(

1 +
γ − 1

2
M 2

2

)1/(γ−1)

tan α2 (9.30)

When the conditions at the exit of the rotor are known, this equation and Eq. (9.27) are
two equations for the two unknowns M2e and α2e for a specified location r2e.
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Mach number M2e as a function of the radius ratio is shown in Figure 9.15 for a flow
with M2 = 1.2 at the exit of the rotor and flow angles in the range 62◦ < α2 < 70◦. The
value of M2e at r2e/r2 = 1.30 is seen to be in the range 0.82–0.85, as the flow angle is
increased from 62◦ to 70◦. The diffusion of velocity is shown in Figure 9.16.
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Figure 9.15 Mach number for a gas with γ = 1.4 as a function of radius ratio r2e/r2 for flow
angles at the exit of the rotor in the range 62◦ < α2 < 70◦ and M2 = 1.2.
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Figure 9.16 Diffusion ratio for a gas with γ = 1.4 as a function of radius ratio r2e/r2 for flow
angles at the exit of the rotor in the range 62◦ < α2 < 70◦ and M2 = 1.2; the incompressible flow
case corresponds to constant flow angle.

In the incompressible limit, the mass balance and the irrotational flow condition give

r2V2 cos α2 = r2eV2e cos α2e r2V2 sin α2 = r2eV2e sinα2e
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Taking ratio of these two equations gives tan α2 = tan α2e indicating that the flow
angle remains constant. In this case,

V2e

V2
=

r2

r2e

and the diffusion varies inversely with the radius ratio. The compressible flow approaches
this condition as the flow angle moves toward 90◦. Since the Mach number at any given
radius is higher for the larger flow angles, density is lower, and Eq. (9.29) shows that the
flow angle is now smaller. The change in flow angles is shown in Figure 9.17. That the
flow angle α2e increases with radius means that the flow remains longer in the vaneless
space and, therefore, experiences losses as the boundary layers grow in a decelerating
flow in a narrow channel. For this reason, the vaneless space is kept small, and vanes are
inserted to guide the flow into the volute.
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Figure 9.17 Difference in flow angles during the diffusion process, with angle at exit of the rotor
in the range 62◦ < α2 < 70◦ and M2 = 1.2, and the ratio of specific heats γ = 1.4.

More information on losses can be found in Cumpsty [18] and in Whitfield and Baines
[95]. The function of the vaned diffuser is to reduce the area over which the diffusion takes
place. The vanes may be in the form of airfoils, triangular channels, or what are called
island diffusers. For the triangular channels a rule of thumb is to keep the opening angle at
less than 12◦. Again, Whitfield and Baines give more information, including results from
a more advanced analysis.

� EXAMPLE 9.3

Air from a centrifugal compressor leaves the blades at angle α2 = 67.40◦ and
M2 = 1.1 at the radius r2 = 7.5 cm as it enters a vaneless diffuser. (a) Find the radial
location at which the flow reaches the sonic condition. (b) Find the Mach number at
radius r2e = 10 cm.
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Solution: (a) It is assumed that there are no losses, so that the stagnation state does
not change, then by denoting the sonic state by star, and multiplying both sides of
Eq. (9.29) by ρ02 gives

ρ02

ρ2
tan α2 =

ρ02

ρ∗
tan α∗

The density ratio at the inlet to the vaneless diffuser is

ρ02

ρ2
=

(
1 +

γ − 1
2

M 2
2

)1/(γ−1)

= (1 + 0.2 · 1.12)2.5 = 1.719

and at the sonic state, it is therefore

ρ02

ρ∗
=

(
γ + 1

2

)1/(γ−1)

= 1.22.5 = 1.577

The flow angle at the sonic state is

α∗ = tan−1
(

ρ02

ρ2

ρ∗

ρ02
tan α2

)
= tan−1

[
1.719
1.577

tan(67.40◦)
]

= 69.09◦

The radial location where M = 1 is

r∗ = r2
F2 cos α2

F ∗ cos α∗ = 0.075
1.271 cos(67.40◦)
1.281 cos(69.09◦)

= 0.0801 m

in which

F2 =
γ√

γ − 1
M2

(
1 +

γ − 1
2

M 2
2

)−(γ+1)/2(γ−1)

=
1.4√
0.4

1.1(1 + 0.2 · 1.12)−3 = 1.271

and

F ∗ =
γ√

γ − 1

(
γ + 1

2

)−(γ+1)/2(γ−1)

=
1.4√
0.4

(1.2)−3 = 1.281

(b) The two equations
r2e cos α2eF2e = r2 cos α2F2

and

tan α2e =

(
1 + γ−1

2 M 2
2
)1/(γ−1)

(
1 + γ−1

2 M 2
2e

)1/(γ−1) tan α2

are to be solved simultaneously for α2e and M2e. The angle can be eliminated using

cos α2e =
1√

1 + tan2α2e

Substituting, simplifying, and rearranging gives

r2eγM2e
√

γ − 1
√

1 + γ−1
2 M 2

2e

−
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r2 cos α2F2

√(
1 +

γ − 1
2

M 2
2e

)2/(γ−1)

+
(

1 +
γ − 1

2
M 2

2

)2/(γ−1)

tan2α2 = 0

Finding the root of this equation by iteration gives M2e = 0.764. �

A well-designed vaned diffuser improves the efficiency by 2% or 3% over a vaneless one.
However, this comes at a cost, for at off-design operation, the efficiency of a vaned diffuser
will deteriorate; that is, a compressor with a vaned diffuser will have a narrow operating
range at the peak efficiency, owing to stalling of the vanes. To widen the range, adjustable
vanes can be implemented into the design at added complexity and initial cost. The payback
is reduction in operating costs at higher efficiency. A low-cost option is to have a vaneless
diffuser, which has a lower efficiency but a flatter operating range near peak efficiency.

As the flow leaves the vaneless, or vaned, diffuser, it enters a volute. Its design for
pumps is discussed at the end of this chapter. Also the use of specific diameter and specific
speed in the selection of a power absorbing turbomachine is deferred to the next section for
incompressible fluids. When using these for compressible flows, a difficulty arises as to
which volumetric flow rate to use. This is removed by adopting the volumetric flow rate at
the exit of a machine (or a stage) as the standard. The difference in the volumetric flow, if
other slightly different definitions are used, are unlikely to change the choice of the machine.

9.5 CENTRIFUGAL PUMPS

The operation and design of pumps follow principles similar to those of centrifugal
compressors. Compressibility can be clearly ignored in pumping liquids, but it may also
be neglected in fans in which the pressure rise is slight.

The first law of thermodynamics across a pump is

w = h02 − h01 =
(

u2 +
p2

ρ
+

1
2
V 2

1 + gz1

)
−

(
u1 +

p1

ρ
+

1
2
V 2

2 + gz2

)

In incompressible fluids, as was discussed in Chapter 2, internal energy increases only
as a result of irreversibilities in an adiabatic flow. Hence, if the flow through the pump is
reversible and adiabatic, internal energy does not increase and u2 = u1. In this situation,
the preceding equation reduces to

ws =
(

p2

ρ
+

1
2
V 2

2 + gz2

)
−

(
p1

ρ
+

1
2
V 2

1 + gz1

)

The total head developed by a pump is defined as

H =
(

p2

ρg
+

1
2g

V 2
2 + z2

)
−

(
p1

ρg
+

1
2g

V 2
1 + z1

)

so it represents the work done by a reversible pump per unit weight of the fluid. On the
unit mass basis, the reversible work is

ws = gH

Since the total head is readily measurable, the pump industry reports it, as well as the
overall efficiency, in the pump specifications.
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The shaft power to the pump is given by

Ẇo =
ρQgH

η

in which the overall efficiency η in the denominator is the product

η = ηmηvηh

Here ηh is a hydraulic efficiency, ηv is a volumetric efficiency, and ηm is a mechanical
efficiency. The hydraulic efficiency accounts for the irreversibilities in the flow through
the pump. If the loss term is written as

gHL = u2 − u1,

then
w = ws + gHL = gH + gHL,

and the hydraulic efficiency is defined as

ηh =
ws

w
=

gH

gH + gHL

The hydraulic efficiency may be calculated from the empirical equation

ηh = 1 − 0.4
Q1/4 (9.31)

in which Q is in liters per second. If the volumetric flow rate is given in gallons per minute,
as is still done in part of the pump industry today, the constant 0.4 has to be replaced by
0.8. It is in this form that this expression for hydraulic efficiency appears in the Pump
Handbook [52].

A typical set of pump performance curves is given in Figure 9.18. (The quantity on the
right ordinate axis, [NPSHR] = required net positive suction head, and its significance is
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Figure 9.18 A typical set of performance curves for a centrifugal pump at 1750 rpm.
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discussed later in conjunction with consideration of cavitation.) For an impeller diameter
of 31 cm and flow rate of 18 L/s, the delivered head is 48 m at the shaft speed of 1750 rpm.
The efficiency at this condition is about 0.63. The contours of constant efficiency and the
power for pumping water are shown.

There is some leakage from the exit of the impeller back to the inlet and thus work will
be redone on leakage flow as it crosses the impeller. To correct for this, the power into the
impeller is obtained from

ẆR = (ṁ + ṁL)w

in which ṁL is the leakage flow. The power transferred to the fluid is

Ẇ = ṁw

and the ratio of these two expression for power is defined as the volumetric efficiency.
Hence, it also equals the ratio of the mass flow rates and can be written as

ηv =
ṁ

ṁ + ṁL
=

Q

Q + QL
=

Q

QR
=

Ẇ

ẆR

in which QR is the flow that passes over the blade passage. The volumetric efficiency for
large pumps with flow rates of 600 L/s reaches 0.99 and for small pumps with flow rates
of 3 L/s it drops to 0.86. Logan [59] correlated the volumetric efficiency according to

ηv = 1 − C

Qn
(9.32)

The constants are given in Table 9.1 as a function of the specific speed Ωs = Ω
√

Q/w
3/4
s ,

with the flow rate in liters per second.

Table 9.1 Correlation for volumetric
efficiency

Ωs C n

0.20 0.250 0.500
0.37 0.122 0.380
0.73 0.047 0.240
1.10 0.023 0.128

Finally, there is bearing friction and disk drag that are not taken into account in the
impeller losses. Hence, if the power needed from the prime mover to power the pump is
Ẇo, then the power delivered to the rotor ẆR is less than this. Their ratio is defined as the
mechanical efficiency

ηm =
ẆR

Ẇo

The power loss from mechanical friction can be estimated. But if the overall efficiency,
hydraulic efficiency, and the volumetric efficiency are obtained from empirical relations,
then the mechanical efficiency can be determined from the equation η = ηhηvηm.
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As reported by Cooper and coworkers in the Pump Handbook [52], the overall efficiency
has been correlated by Anderson and is given by

η = 0.94 − 0.08955

[(
1.66Q

Ω

) (
3.56
erms

)2
]−0.21333

− 0.29
[
log10

(
0.8364

Ωs

)]2

(9.33)

The original correlation is in a mixed set of units, and even after it has been converted
here to a form in which Q is given in liters per second and Ω in radians per second, it
is not in a dimensionless form. Be it as it may, according to Cooper, it gives satisfactory
values for the overall efficiency, except at the upper half of the specific speed range, and he
suggests that for large-capacity pumps the dashed line in Figure 9.19 be used. This figure
gives a graphical representation of Eq. (9.33). The surface roughness of the flow passage
is denoted by erms, and its value is in micrometers, with erms = 3.56 μm for the graphs
shown.
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Figure 9.19 Efficiency of centrifugal pumps according to the correlation of Anderson, as quoted
by Cooper and coworkers [52].

The number of blades in the impeller is in the range 5 < Z < 12, and the empirical
equation of Pfleiderer and Petermann [70]

Z = 6.5
(

r2 + r1s

r2 − r1s

)
cos

(
1
2
(χ2 + β1s)

)
(9.34)

can be used to calculate this number. It shows that Z increases as r1s/r2 increases.
Analysis of a double-flow (double-suction) pump, a sketch of which is shown in

Figure 9.20, follows closely the analysis of a single-flow pump. The flow rate Q/2 is used
to calculate the hydraulic and volumetric efficiencies as well as the specific speed. The
mechanical efficiency is close to that for a single-flow pump. In the next section, Cordier
diagram is used to determine the size of a pump. When it is used for a double-flow pump,
the entire flow rate Q is used in the definition of the specific diameter.
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Figure 9.20 A double-flow pump.

9.5.1 Specific speed and specific diameter

A useful chart for pump selection was developed by Cordier. Its modified from is shown
in Figure 9.21. The abscissa in the chart is the specific diameter, and the ordinate is the
specific speed. These are defined as

Ds =
D(gH)1/4

√
Q

Ωs =
Ω
√

Q

(gH)4/3

It was seen in Chapter 5 that specific speed is used to select a pump of certain shape.
Once selected, the size of the pump can be obtained using the Cordier diagram. The curve
has been constructed such that for the size selected, optimal efficiency is obtained.

Since the total head is reported, it is more convenient to define the blade loading
coefficient in terms of the reversible work rather than the actual work. Therefore, the
loading coefficient is defined as

ψs =
ws

U 2
2

=
gH

U 2
2

,

and the subscript s serves as a reminder that this definition differs from the conventional
one. With ψ = w/U 2

2 , the relation ψs = ηψ relates the two definitions.
Another way to size pumps is given by Cooper and coworkers [52]. With a specified

flow rate and head rise across a pump, the rotational speed is first chosen, with the
understanding that the higher the speed, the more compact is the pump. Once the rotational
speed is fixed, the flow coefficient φ = Vm2/U2 can be obtained from the correlation

φ = 0.1715
√

Ωs (9.35)

A correlation for the blade-loading coefficient is

ψs =
0.386

Ω1/3
s

(9.36)
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Figure 9.21 Cordier diagram for fans and pumps. Source: Adapted from Dibelius and Stoff [22].

and after the loading coefficient is determined, the blade speed is obtained from

U2 =

√
gH

ψs

After that, the impeller radius is calculated as r2 = U2/Ω and the flow meridional
velocity determined is Vm2 = φU2. Finally, the blade height b2 is determined from

b2 =
QR

2πr2Vm2
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Figure 9.22 Velocity triangles for a low- and high-specific speed centrifugal pump. (a) inlet and
(b) exit.

where QR is the sum of the delivered flow Q and the leakage flow QL. Shapes of the
velocity diagrams for low- and high-specific speeds are shown in Figure 9.22. Since

ψs =
ws

U 2
2

=
ηw

U 2
2

=
ηVu2U2

U 2
2

the relationship
Vu2

U2
=

ψs

η
=

0.383

Ω1/3
s η

is obtained. When the specific speed is high, Vu2 becomes much smaller than U2 and vanes
have a large backsweep. The backsweep reduces as the specific speed decreases. It also
decreases because lowering the specific speed lowers the efficiency. A sufficient reduction
in the specific speed leads to forward-swept vanes, and such pumps are prone to unstable
operation if the load changes. When the specific speed becomes very low, the centrifugal
pump is no longer suitable for the application, and it should be replaced by a positive
displacement pump, such as a screw pump or a rotary vane pump. In typical designs, Vu2
is slightly over 0.5 of U2, and then the absolute values of both flow angles are quite large.
For such pumps, the exit relative flow angle ranges from −65◦ to −73◦.

In the discussion of compressors, an optimum inlet flow angle for the relative velocity
was found, which gives the largest flow rate with a given relative Mach number. In the
incompressible limit, this gives β1s = −54.74◦. A range from −65◦ to −80◦ is typical
for pumps, which means that a flow rate lower than the optimum is obtained for a fixed
relative velocity.

For axial entry, the volumetric flow rate can be written as

Q = A1V1 = πr2
1s(1 − κ2)

√
W 2

1s − r2
1sΩ2
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Solving this for W 2
1s gives

W 2
1s = r2

1sΩ
2 +

Q2

π2(1 − κ2)2r4
1s

When r1s is small, the second term causes W1s to be large, and when r1s is large, the first
term increases the value of W1s. The value of r1s for which W1s is minimum, is given by

r1s =

( √
2Q

π(1 − κ2)Ω

)1/3

An alternative way to optimize the inlet is given ion Dixon [24]. Typical values of
κ are in the range from very small to about 0.5. The smallest value of the hub radius
r1h depends on the size of the shaft. Once the torque is known, the shaft diameter is
easily determined from torsion theory, discussed in books on strength of materials. For
double-suction pumps, in which the shaft penetrates the entire hub, κ is typically 0.5. These
guidelines are illustrated next with examples.

� EXAMPLE 9.4

A pump is to be selected to pump water at the rate of 50 L/s. The increase in total
head across the pump is to be 35 m. An electric motor, connected with a direct drive
and a rotational speed of 3450 rpm, provides the power to the pump. Water is drawn
from a pool at atmospheric temperature and pressure. Its density is ρ = 1000 kg/m3.
(a) Determine the type of pump for this application and its efficiency, assuming
erms = 3.56 μm. (b) Calculate the pump diameter. (c) Estimate the pump efficiency
and the power needed.

Solution: (a) The specific speed of this pump is

Ωs =
Ω
√

Q

(gH)3/4 =
3450 · π

30

√
0.05

(9.81 · 35)3/4 = 1.013

From Figure 5.9, a pump with Francis-type impeller is chosen. The efficiency,
calculated from Eq. (9.33), is η = 0.815.
(b) To determine the size of the pump, a Cordier diagram may be consulted. The
specific diameter is estimated to be Ds = 3.1 so that the impeller diameter is

D = Ds
Q

(gH)1/4 =
3.1

√
0.05

(9.81 · 35)1/4 = 16.1 cm

(c) The power required is

Ẇ =
ρQgH

η
=

1000 · 0.05 · 9.81 · 35
0.815

= 21.0 kW

�

The specific speed of the pump in Example 9.4 is at the upper limit for centrifugal
pumps. Beyond this value pumps fall into the category of mixed-flow type. In mixed-flow
pumps, the edge of the blade on the meridional plane is inclined with respect to the radial
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Figure 9.23 Sketch for calculation of blade width.

(or axial) direction. If the meridional velocity is perpendicular to the edge, then the effective
radius for calculating the volumetric flow rate is determined from the construction shown
in Figure 9.23.

The differential area is dA = 2πr db and dr = sin ϕ db. Hence

A =
∫ r2t

r1t

2πr

sinϕ
dr =

π(r2
1t − r2

2t)
sin ϕ

=
π(r1t − r2t)(r1t + r2t)

sin ϕ
= π(r1t + r2t)b

Thus the effective radius is the mean radius rm = 1
2(r1t + r2t) and A2 = 2πrmb.

� EXAMPLE 9.5

A pump handles water at the rate of 10 L/s with a head of 100 m across the pump.
The power is provided by an electric motor with shaft speed 3450 rpm. Water is at
20◦C with density ρ = 1000 m3/kg. (a) Calculate the specific speed of the pump.
(b) Determine the flow coefficient and the blade-loading coefficient. (c) Find the
directions of the absolute velocity and the relative velocity of water leaving the
impeller. (d) Find the tip radius of the impeller. (e) Find the power needed.

Solution: (a) The specific speed of this pump is

Ωs =
Ω
√

Q

(gH)3/4 =
3450 · π

30

√
0.01

(9.81 · 100)3/4 = 0.2061

(b) The flow coefficient is determined from

φ = 0.1715
√

Ωs = 0.1715
√

0.2061 = 0.0779

and the blade loading coefficient is obtained from

ψs =
0.386

Ω1/3
s

=
0.386

0.20611/3 = 0.6535

From ψs = gH/U 2
2 , the blade tip speed is

U2 =

√
gH

ψs
=

√
9.81 · 100
0.6535

= 38.7 m/s
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(c) The hydraulic efficiency is

ηh = 1 − 0.4
Q1/4 = 1 − 0.4

101/4 = 0.775

and the work done is therefore

w =
ws

ηh
=

9.81 · 100
0.775

= 1.266 kJ/kg

The tangential and radial components of the velocity are

Vu2 =
w

U2
=

1266
38.74

= 32.67 m/s Vr2 = φU2 = 0.0779 · 38.7 = 3.02 m/s

so that the flow angle is

α2 = tan−1
(

Vu2

Vr2

)
= tan−1

(
32.7
3.01

)
= 84.72◦

The tangential and radial components of the relative velocity are

Wu2 = Vu2 − U2 = 32.67 − 38.74 = −6.08 m/s Wr2 = Vr2 = 3.02 m/s

and therefore

β2 = tan−1
(

Wu2

Wr2

)
= tan−1

(
−6.08

3.02

)
= −63.61◦

(d) The impeller radius can be calculated to be

r2 =
U2

Ω
=

38.7 · 30
3450 · π = 0.1072 m

The volumetric efficiency is obtained by first finding the constants in Eq. (9.32) by
interpolation. They are C = 0.2454 and n = 0.4957 for Ωs = 0.2061. The volumetric
efficiency is then

ηv = 1 − C

Qn
= 1 − 0.2454

100.4957 = 0.9216

so that QR = Q/ηv = 0.01/0.9216 = 0.01085 m2/s. The blade width is therefore

b2 =
QR

2π r2 Vr2
=

0.01085
2π · 0.1077 · 3.01

= 0.0053 m b2 = 0.53 cm

(e) The overall efficiency is determined from Eq. (9.33) to be η = 0.66. Hence the
power to the pump is

Ẇ =
ρQgH

η
=

1000 · 10 · 9.81 · 100
1000 · 0.66

= 14.86 kW

�

In the next example, the number of blades and their metal angle are also considered.
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� EXAMPLE 9.6

Water flows axially into a double-suction centrifugal pump at the rate of
2Q = 0.120 m3/s. The pump delivers a head of 20 m while operating at 880 rpm.
The hub-to-shroud ratio at the inlet is 0.50, and the relative velocity makes an angle
−73◦ at the shroud of the inlet. (a) Find the reversible work done by the pump. (b)
What is the work done by the impeller? (c) Find the radius of the impeller and the
inlet radius of the shroud. (d) Determine the blade width at the exit of the impeller.
(e) Assume a reasonable number of blades and calculate the blade angle at the exit.
Use the Pfleiderer equation to check this.

Solution: (a) The reversible work is

ws = gH = 9.81 · 20 = 196.2 J/kg

(b) The hydraulic efficiency is

ηh = 1 − 0.4
Q1/4 = 1 − 0.4

601/4 = 0.856

and the actual work by the impeller is

w =
ws

ηh
=

196.2
0.856

= 229.1 J/kg

(c) The specific speed is

Ωs =
Ω
√

Q

w
3/4
s

=
880 · π

√
0.060

30 · 196.23/4 = 0.431

and the loading coefficient is

ψs =
0.386

Ω1/3
s

=
0.386

0.4311/3 = 0.511

Therefore, the impeller tip speed is

U2 =
√

ws

ψs
=

√
196.2
0.511

= 19.59 m/s

and the impeller radius is

r2 =
U2

Ω
=

19.59 · 30
880 · π = 0.213 m

The volumetric flow rate can be written as

Q = A1V1 =
πr2

1s(1 − κ2)U1s

tan(−β1s)
=

π(1 − κ2)Ωr3
1s

tan(−β1s)
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Solving this for r1s gives

r1s =
[
Q tan(−β1s)
π(1 − κ2)Ω

]1/3

so that

r1s =
[

60 · tan(73◦) · 30
1000 · π2(1 − 0.502) · 880

]1/3

= 0.0967 m

and
r1h = κr1s = 0.5 · 0.0967 = 0.0483 m

and thus the blade speed at the shroud is

U1s = r1sΩ =
0.0967 · 880 · π

30
= 8.91 m/s

(d) The flow coefficient is

φ = 0.1715
√

Ωs = 0.1715
√

0.431 = 0.1125

and the radial velocity at the exit is then

Vr2 = φU2 = 0.1125 · 19.59 = 2.20 m/s

To calculate the leakage flow, the coefficients for the expression of volumetric
are interpolated to be

C = 0.1094 n = 0.3564

so that
ηv = 1 − C

Qn
= 1 − 0.1094

600.3564 = 0.975

and the flow through the exit is

QR =
2Q

ηv
=

120
0.975

= 0.123 m3/s

Hence, the blade height has the value

b2 =
QR

2πr2Vr2
=

0.123
2 · π · 0.213 · 2.20

= 4.18 cm

(e) The tangential component of the exit velocity is calculated to be

Vu2 =
w

U2
=

229.1
19.59

= 11.70 m/s

and the flow angle at the exit is

α2 = tan−1
(

Vu2

Vr2

)
= tan−1

(
11.70
2.20

)
= 79.3◦



�

� �

�

FANS 403

The tangential component of the relative velocity becomes

Wu2 = Vu2 − U2 = 11.70 − 19.59 = −7.90 m/s

so that the flow angle is

β2 = tan−1
(

Wu2

Wr2

)
= tan−1

(
−7.90

2.20

)
= −74.4◦

Next, the number of blades is assumed. Let Z = 6, and the blade angle is guessed
to be, say, χ2 = −60◦. Then the slip coefficient is calculated from

σ = 1 −
√cos χ2

Z0.7 = 1 −
√

cos(−60◦)
60.7 = 0.798

and the equation
Vu2 = σU2 + Vr2 tan χ2

is solved for χ2, giving

χ2 = tan−1
(

Vu2 − σU2

Vr2

)
= tan−1

(
11.70 − 0.798 · 19.59

2.20

)
= −60.79◦

Now a new value of σ is obtained from

σ = 1 −
√cos χ2

Z0.7 = 1 −
√

cos(−60.79◦)
60.7 = 0.801

With this value for σ, repeating the calculation gives χ2 = −61.19◦ and σ =
0.802. The number of blades can now be calculated from Pfleiderer’s equation

Z = 6.5
(

1 + r1s/r2

1 − r1s/r2

)
cos

(
β1s + χ2

2

)
= 6.75

so that the initial guess is close to being correct. Thus six (or seven) is an acceptable
number. �

9.6 FANS

An industrial fan with a wide impeller and blades in the shape of airfoils is shown in
Figure 9.24. The impeller has no inducer, and the flow enters the fan axially. It then turns
and enters the blade passage radially. The increase in radius between the inlet and outlet
is quite modest, and for this reason, such fans also have a low pressure rise and the flow
can be considered incompressible. The blades can be made quite long, which gives a large
flow area. Since the flow at the inlet is radial, at the inlet Wr1 = V1 and Wu1 = −U1. The
blades are oriented such that the relative flow enters at the angle β1 obtained by solving

tan β1 =
Wu1

Wr1

Since the width of the flow areas at the inlet and exit are the same, and the density
change is ignored, the radial velocities are related by r1Vr1 = r2Vr2. With an inlet velocity
without swirl, the work done is calculated in the same way as for centrifugal pumps.
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Inlet

Exit
Blades

Scroll

Impeller

Figure 9.24 A centrifugal fan.

9.7 CAVITATION

Common experience shows that water pressure increases with depth in a quiescent pool of
water. Similarly, pressure decreases in a vertical pipe flow if the fluid moves to a higher
elevation, not only because of this hydrostatic effect but as a result of irreversibilities caused
by turbulence and wall friction. If the inlet of the suction pipe is a short distance below
a surface of a body of water, the pressure at the inlet to the pump is below atmospheric
pressure by the sum of the hydrostatic head, the drop caused by the dynamic head, and the
frictional pressure loss. As a consequence, for an upward-moving flow, the pressure in a
sufficiently long pipe may drop enough to reach the saturation pressure corresponding to
the prevailing temperature. The saturation pressure for water at 20 ◦C is 2.34 kPa.

After the saturation pressure has been crossed, vapor bubbles begin to form in the
stream. When this happens in the blade passage of a turbomachine, the flow is said to
undergo cavitation. The effects of cavitation are harmful, and the performance of the
pump deteriorates. The work done by each element of the impeller vane increases the fluid
pressure, and as the flow moves in the flow passages, it carries the bubbles into regions
of higher pressure. There they collapse. The collapse is a consequence of an instability in
the size and shape of the bubble. As the instability develops, the bubble flattens out, and a
liquid from the back accelerates toward the center, forming a jet that pierces through the
bubble. These impinging jets from the bubbles located next to the impeller of the pump
cause erosion. This kind of cavitation damage is seen also in marine propellers.

Any dissolved air tends to come out of the liquid at low pressures. These small air
bubbles act as nucleation sites for vapor bubble formation. They are aided in turbulent flow
by local negative pressure spikes. The kinetics of nucleation, turbulence, and growth rates
of bubbles are complicated subjects and make prediction of cavitation difficult. Hence,
pump manufacturers rely on experimentation to determine when the pump performance is
significantly affected. A comprehensive review of the mechanisms of cavitation is given
by Arakeri [4] and Brennen [9, 10].

A pressure difference called net positive suction pressure (NPSP) is defined as

pN = p +
1
2
ρV 2 − pv

in which pv is the saturation pressure, p is the static pressure, and V is the velocity at the
pump end of the suction pipe (which is the inlet to the pump). When expressed in units of
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a height of water, the net positive suction pressure is called the net positive suction head
(NPSH).

The manufacturer tests the pump and gives a value for the required net positive suction
head (NPSHR). This increases with the flow rate as the accelerating flow into the inlet
causes the pressure to drop. The application engineer can now determine what is the
minimum total head at the pump end of the suction pipe and from this determine the actual
net positive suction head NPSHA. In order to avoid cavitation, NPSHA > NPSHR. In the
lower half of Figure 9.18 is a curve showing values (on the ordinate on the right) for the
NPSHR as a function of the flow rate.

A suction specific speed is defined as

Ωss =
Ω
√

Q

(g NPSH)3/4

For a single-flow pump a rough rule is to keep the suction specific speed under Ωss = 0.3
and for a double flow, under Ωss = 0.4 .

� EXAMPLE 9.7

A pump draws water with at temperature T = 20 ◦C and density ρ = 1000 kg/m3 at
the rate of 20 L/s from a large reservoir open to atmosphere with pressure 101.3 kPa.
As shown in Figure 9.25, the pump is situated a height z1 = 4 m above the reservoir
surface. The pipe diameter is 7.6 cm, and the suction pipe is 10 m in length. The
entrance loss coefficient is Ki = 0.8, the loss coefficient of the elbow is Ke = 0.6,
and the pipe roughness is 45 μm. Find the suction specific speed, given a shaft speed
is of 1800 rpm. The viscosity of water is 1.0 · 10−3 kg/(m s).

Solution: A control volume containing the water in the reservoir and in the suction
pipe is

pa

ρ
=

p1

ρ
+

1
2
V 2

p + gz1 +
(

f
Lp

Dp
+ Ki + Ke

)
1
2
V 2

p

so that

p1 +
1
2
ρV 2

p − pv = pa − ρgz1 −
(

f
Lp

Dp
+ Ki + Ke

)
1
2
ρV 2

p − pv

p
a

p
1

V
p

z
1

Figure 9.25 A pumping example illustrating possible cavitation.
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and the positive suction head is

NPSH =
pa

ρg
− z1 −

(
f

Lp

Dp
+ Ki + Ke

)
V 2

p

2g
− pv

ρg

The velocity in the pipe is calculated as

Vp =
Q

Ap
=

4Q

πD2
p

=
4 · 20

1000 · π · 0.0762 = 4.41 m/s

and the Reynolds number has the value

Re =
ρVpDp

μ
=

1000 · 4.41 · 0.076
1.0 · 10−3 = 334392

The friction factor can now be calculated from Eq. (3.29). For a commercial steel
pipe with roughness 0.045 mm, its value is f = 0.0186, and the net positive suction
head is therefore

NPSH =
101300

1000 · 9.81
− 4 −

(
0.0187

10
0.076

+ 0.6 + 0.8
)

4.412

2 · 9.81
− 2.34 · 1000

998 · 9.81

= 2.29 m

The value of the suction-specific speed becomes

Ωss =
Ω
√

Q

(gNPSH)3/4 =
1800 · π

√
0.020

30(9.81 · 2.29)3/4 = 2.58

Since the suction specific speed is lower than the criterion Ωss = 3.0, the pump
on this basis will not experience cavitation. However, if the pump in Figure 9.18
is used, then this flow rate shows the value of NPSHR = 2.1 m to be close to that
calculated here, so that inception of the cavitation is close. �

9.8 DIFFUSER AND VOLUTE DESIGN

9.8.1 Vaneless diffuser

In the vaneless space in a flow without spin, the tangential component of the velocity
follows the free vortex distribution. This is a consequence of the law of conservation of
angular momentum, if no moment is applied to the fluid particles. Thus

rVu = r2Vu2

and, if the vaneless diffuser has a constant width, then, for an incompressible flow, the
equation

ρ2πrbVr = ρ2πr2bVr2

reduces to
rVr = r2Vr2

This and the condition for irrotationality rVu = constant then yields

rV = r2V2
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This is a special case of the general result discussed for centrifugal compressors. Since
Vu = Vr tan α, the flow angle α remains constant.

From the flow trajectories in Figure 9.26, it is easy to see that the flow angle is given by

tan α =
rdθ

dr

which for a constant flow angle can be integrated to

θ2 − θ1 = ln
r2

r1
tan α

  10

  20

  30

30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

180° 0°

Figure 9.26 Logarithmic spiral with α = 70◦ and 10 cm < r < 30 cm.

The curve traced out is a logarithmic spiral. The incremental length of the path is

dL =
√

dr2 + r2 dθ2 =
√

(1 + tan2α)dr =
dr

cos α

and integrating this gives r2 − r1 = L cos α. In the spirals shown in the Figure 9.26
α = 70◦. Therefore, a spiral that starts at r1 = 10 cm and θ = 0 and ends at r2 = 30 cm
will have traversed an angular distance θ = 172.9◦. As the flow angle approaches 90◦, the
length of the path increases greatly.

9.8.2 Volute design

In this section, the calculations involved in the design of a volute are discussed. A schematic
of a volute cross section for a centrifugal pump is shown Figure 9.27, in which the various
radii are indicated. The diffuser includes a constant-width vaneless space, followed by a
section with a linearly increasing gap, and then a circular volute. Although the principles
for the calculation are straightforward, the details lead to complicated equations.

The side view of the pump is shown in Figure 9.28. The volute is a channel around the
impeller in which the flow area increases slowly, leading to a decrease in velocity and thus
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Figure 9.27 Sketch for volute design.
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Figure 9.28 Centrifugal pump and its volute.
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an increase in pressure. The upstream section of the volute begins at a tongue, or cutwater,
and the volute returns to the same location after turning 360◦. It then transitions into a
conical diffuser that is connected to a high pressure delivery pipe.

The exit blade radius is labeled r2, and the blade height is designated as b2. The vaneless
diffuser begins at radius r3 and has a width b3. In order to slide the impeller into the casing,
radius r3 is made slightly larger than r2. For large pumps for which the casing is split in
half, the impeller and the shaft can be lowered into place, and for a such a pump, r2 can be
larger than r3. The width of the vaneless diffuser b3 is just a couple of millimeters larger
than the blade height b2. For purposes of illustration, the radii r2 and r3 are assumed to
be equal. With the radius r3 decided, how the volute is developed depends on the design
practice of each pump manufacturer. One possibility is to have the volute begin with a
diffuser of trapezoidal cross section. The half-angle δ of the sidewalls and the height of
the trapezoid is chosen such that a volute of circular cross section is fitted to the trapezoid
in such a way that the slope of the circular section is the same as that of the sidewalls of
the trapezoid at the point where they join. This is shown in Figure 9.27. The radii r5 and
r6 increase in the flow direction in order to accommodate the increase in flow entering the
volute. The calculations for this kind of design are illustrated in Wirzenius [99], and his
analysis is partly repeated below.

The angle around the volute is φ, and it is convenient to measure this angle from the
tongue or lip of the volute. The design of the tongue region requires special attention to
make a smooth transition to the main part of the volute. The volute is to be designed in
such a way that the pressure at the exit of the impeller is uniform and independent of φ.
In such a situation, the rate of flow into the volute is the same at every angular location,
and, if Qφ is the volumetric flow rate through the volute at the angle φ, then by simple
proportionality

Qφ =
φ

2π
Q

where Q is the total flow rate. Let Vu be the tangential component of the velocity in the
volute. Then

Qφ =
∫

Aφ

Vu dA =
∫ r6

r3

Vub(r)dr

in which b(r) is the volute width at the radius r.
The flow is assumed to be irrotational, and the tangential velocity, therefore, varies with

r as
Vu = Vu2

r2

r

with Vu2 the tangential velocity leaving the impeller. Hence,

Qφ =
φ

2π
Q = Vu2r2

∫ r6

r3

b(r)
r

dr

Solving this for φ gives

φ =
2πVu2r2

Q

[∫ r4

r3

b(r)
r

dr +
∫ r5

r4

b(r)
r

dr +
∫ r6

r5

b(r)
r

dr

]
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It remains to evaluate the integrals. To organize the work, let

I1 =
∫ r4

r3

b(r)
r

dr I2 =
∫ r5

r4

b(r)
r

dr I3 =
∫ r6

r5

b(r)
r

dr

For the first integral b(r) = b3. Hence,

I1 = b3

∫ r4

r3

dr

r
= b3 ln

r4

r3

The channel width b(r) for the linearly diverging part is given by

b(r) = b3 + 2(r − r4) tan δ

Hence,

I2 =
∫ r5

r4

b3 + 2 tan δ(r − r4)
r

dr = (b3 − 2r4 tan δ) ln
r5

r4
+ 2(r5 − r4) tan δ

With the aid of trigonometric relationships

r5 = r4 + R
cos δ

tan δ
− b3

2 tan δ
(9.37)

the second integral therefore evaluates to

I2 = (b3 − 2r4 tan δ) ln
(

1 +
R

r4

cos δ

tan δ
− b3

2r4 tan δ

)
+ 2R cos δ − b3

The radius that gives I2 = 0 is the minimum radius Rmin = b3/2 cos δ; that is, the
triangular section of the volute increases as the volute radius increases in the downstream
direction. Therefore, the radius r5 also increases as R increases, whereas the radii r4 and
r3 remain fixed, as does the angle δ.

The integral I3 is the most complicated of the three integrals. The width of the volute at
location r is given by b(r) = 2R sin θ. Also r = r6 − R + R cos θ. Let

c =
r6

R
− 1 =

r5

R
+ sin δ =

r4

R
+

cos δ

tan δ
− b3

2R tan δ
+ sin δ

so that
c =

r4

R
+

1
sin δ

− b3

2R tan δ
(9.38)

The integral I3 now can be written as

I3 =
∫ r6

r5

b(r)
r

dr = 2R

∫ π/2+δ

0

sin2θ
r5

R
+ sin δ + cos θ

dθ = 2R

∫ π/2+δ

0

sin2θ

c + cos θ
dθ

Evaluation of this leads to

I3 = 2R

[
c
(π

2
+ δ

)
− cos δ − 2

√
c2 − 1tan−1

(√
c − 1
c + 1

1 + tan(δ/2)
1 − tan(δ/2)

)]
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Collecting the results gives the design formula

φ =
2πr2r4Vu2

Q

{
b3

r4

(
ln

r4

r3
− 1

2

)

+
(

b3

r4
− 2 tan δ

)
ln

(
1 +

R

r4

cos δ

tan δ
− b3

2r4 tan δ

)
+ 2

R

r4

[
1 + c

(π

2
+ δ

)

− cos δ − 2
√

c2 − 1tan−1

(√
c − 1
c + 1

1 + tan(δ/2)
1 − tan(δ/2)

)]}
(9.39)

The calculation now proceeds by starting with Rmin and incrementing R by ΔR, so
that the new value of R is Rmin + ΔR. Next, the value of c is determined from Eq. (9.38)
and r5 is calculated from Eq. (9.37). Then r6, the outer extent of the volute, is determined
from r6 = (1 + c)R, but this is not needed in the calculation of angle φ. The value of
angle φ is finally determined from Eq. (9.39). These values then trace out the volute and
its trapezoidal base.

EXERCISES

9.1 An industrial air compressor has 29 backward-swept blades with blade angle −21◦.
The tip speed of the blades is 440 m/s, and the radial component of the velocity is 110 m/s.
Air is inducted from atmospheric conditions at 101.3 kPa and 298 K with an axial velocity
equal to 95 m/s. The hub-to-tip ratio at the inlet is 0.4. The total-to-total efficiency of
the compressor is 0.83, and the mass flow rate is 2.4 kg/s. Find: (a) The total pressure
ratio using the Stodola slip factor and (b) the tip radius of the impeller. [Ans: (a) 3.5, (b)
9.16 cm]

9.2 A centrifugal compressor has 23 radial vanes and an exit area equal to 0.12 m2,
where the radial velocity is 27 m/s, and the tip speed of the impeller is 350 m/s. The
total-to-total efficiency is 0.83. (a) Find the mass flow rate of air, given that the total
pressure and temperature are 101.3 kPa and 298 K at the inlet. (b) What is the exit Mach
number? (c) If the blade height at the exit is b = 3 cm and there is no leakage flow, what is
the tip radius of the impeller? (d) Find the rotational speed of the compressor wheel, and
the required power neglecting mechanical losses. [Ans: (a) 5.16 kg/s, (b) 0.8, (c) 0.637 m,
(d) 5250 rpm, 545.7 kW]

9.3 A centrifugal compressor has an axial inlet and the outlet blades at an angle such
that the tangential component of the velocity at the exit has a value equal to 0.9 times the
blade speed. The outlet radius is 30 cm, and the desired pressure ratio is 3.5. The inlet
stagnation temperature is T01 = 298 K. If the total-to-total efficiency of the compressor is
0.8, at what angular speed does it need to be operated? [Ans: 13464 rpm]

9.4 Air flows from atmosphere at pressure 101.3 kPa and temperature 288 K into a
centrifugal compressor with radial blades at the exit of the impeller. The inlet velocity is
V1 = 93 m/s, and there is no pre-swirl. The compressor wheel has 33 blades, and its tip
speed is U2 = 398 m/s. The total-to-total efficiency is ηtt = 0.875. Find (a) the stagnation
pressure ratio and (b) the power required assuming that the mass flow rate is ṁ = 2.2 kg/s.
Use the Stanitz formula to find the slip coefficient. [Ans: (a) 3.67, (b) 327.6 kW]

9.5 A small centrifugal compressor as a part of a turbocharger operates at 55000 rpm.
It draws air from atmosphere at temperature 288 K and pressure 101.325 kPa. The inlet
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Mach number is M1 = 0.4, and the flow angle of the relative velocity is β1s = −60◦ at
the shroud. The radius ratio at the inlet is κ = r1h/r1s = 0.43. (a) Find the blade speed at
the inlet shroud and (b) the mass flow rate. (c) If the inducer is choked, what is the throat
area? [Ans: (a) 232.0 m/s, (b) 0.630 kg/s, (c) 20 cm2 ]

9.6 A centrifugal compressor in a turbocharger operates at 40000 rpm and inlet Mach
number M1 = 0.35. It draws air from atmosphere at temperature 293 K and pressure
101.325 kPa. The radius ratio is r1s/r2 = 0.71, and the diffusion ratio is W1s/W2 = 1.8.
The inlet angle of the relative velocity at the shroud is β1s = −63◦. The slip factor is
σ = 0.85, and the flow angle at the exit is α2 = 69◦. Find (a) the blade speed at the inlet
shroud, (b) the tip speed of the blade at the outlet, (c) the loading coefficient, and (d) the
metal angle at the exit. [Ans: (a) 232.9 m/s, (b) 328.0 m/s, (c) 0.629, (d) −42.48◦]

9.7 A small centrifugal compressor draws atmospheric air at 293 K and 101.3 kPa. At
the inlet r1h = 3.2 cm and r1s = 5 cm. The rotor efficiency of the compressor is 0.88. The
relative Mach number at the inlet shroud is 0.9 and the corresponding relative flow angle
is β1s = −62◦. At the outlet the absolute velocity is at angle α2 = 69◦. The diffusion ratio
is W1s/W2 = 1.8 and the radius ratio is r1s/r2 = 0.72. Find, (a) the rotational speed of the
shaft, (b) the blade-loading coefficient w/U 2

2 , (c) the flow coefficient φ = Vr2/U2, and (d)
the blade width at the exit. [Ans: (a) 12720 rpm, (b) 0.534, (c) 0.205, (d) 3.1 cm]

9.8 Show that in the incompressible limit, the angle of the relative velocity at the inlet is
optimum at 54.7◦.

9.9 Show that the expression for the dimensionless mass flow rate for a compressor with
pre-swirl at angle α1 is

Φf =
M 3

1R(tan α1 − tan β1s)
2cos3β1s(

1 +
γ − 1

2
M 2

1R
cos2β1s

sin2α1

)

Plot the results for α1 = 30◦, with β1s on the abscissa and Φf on the ordinate, for relative
Mach numbers 0.6, 0.7, 0.8. For a given mass flow rate, does the pre-swirl increase or
decrease the allowable relative Mach number, and does the absolute value of the relative
flow angle increase or decrease with pre-swirl?

9.10 Show that for a centrifugal compressor without any inlet swirl, the stagnation
temperature ratio is given by

T03

T01
= 1 + (γ − 1)ψM 2

0u

9.11 Air from atmosphere at pressure 101.3 kPa and temperature 288 K enters a
centrifugal axially with speed Vx = 145 m/s and flow rate of ṁ = 10 kg/s. The blade
speed at the exit is U2 = 205 m/s. If the Mach relative Mach number at the throat
is MtR = 0.7, find (a) rotational speed of the shaft, (b) the area of the throat. [Ans:
(a) 16126 rpm, (b) 0.0368 m2]

9.12 (a) Carry out the calculations to determine the ratio b/r2 for air entering a
centrifugal compressor axially at conditions σ = 0.85, r1s/r2 = 0.65, β1s = −60◦, α2 =
65◦, χ2 = −40◦, ηR = 0.9, κ = 0.4 and M0u = 0.82. (b) Determine the ratio Vr2/Vx.
[Ans: (a) 0.0774, (b) 0.759]
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9.13 Atmospheric air at 288 K and 101.2 kPa enters axially at the rate ṁ = 9 kg/s into
a centrifugal compressor, with an inlet velocity 95 ms. The blades are curved backward
with blade angle χ2 = −37◦. The radius ratio r1s/r2 = 0.65 and the radial velocity is
vr2 = 0.8Vx. Assume that the rotor efficiency ηR = 0.91. The ratio of the shroud to the hub
radii is κ = 0.52 and the mean radius is rm = 0.10 m. The angle of the relative velocity at
the inlet shroud is β1s = −62◦. (a) Find the blade height at the exit. [Ans: 1.19 cm]

9.14 Atmospheric air at 288 K and 101.3 kPa enters axially into a centrifugal compres-
sor. The impeller mean radius is rm = 5 cm, and its radius ratio is κ = 0.4. The relative
velocity makes an angle β1s = −60◦ at the inlet shroud, where the relative Mach number is
to be no more than M1Rs = 0.9. Find the rotational speed of the shaft. [Ans: (a) 17680 rpm]

9.15 Water with density 998 kg/m3 flows through the inlet pipe of a centrifugal pump
at a velocity of 6 m/s. The inlet shroud radius is 6.5 cm, and the hub radius is 5 cm. The
entry is axial. The relative velocity at the exit of the impeller is 15 m/s and is directed
by backward-curved impeller blades such that the exit angle of the absolute velocity is
α2 = 65◦. The impeller rotates at 1800 rpm and has a tip radius of 15 cm. Assume that the
rotor efficiency of the pump is 75%. Evaluate (a) the power into the pump, (b) the increase
in total pressure of the water across the impeller, and (c) the change in static pressure of
the water between the inlet and outlet of the impeller. (d) What is the ratio of the change in
kinetic energy of the water across the impeller to the total enthalpy of the water across the
pump, the change in the relative kinetic energy, and the change in the kinetic energy owing
to the centrifugal effect as a fraction of work done? (e) If the velocity at the exit of the
volute is 6 m/s, what is the ratio of change in static pressure across the rotor to the change
in static pressure across the entire pump? [Ans: (a) 24 kW, (b) 318 kPa, (c) 199 kPa, (d)
0.281, 0.837,−0.118, (e) 0.626]

9.16 A centrifugal-pump that handles water operates with backward-curving blades.
The angle between the relative velocity and the tip section is 45◦. The radial velocity at
the tip section is 4.5 m/s, the flow at the inlet is axial, and the impeller rotational speed
is 1800 rpm. Assume that there is no leakage and that the mechanical friction may be
neglected, and that the total-to-total efficiency is 70%. (a) Construct the velocity diagram
at the impeller exit and (b) evaluate the required tip radius for a water pressure rise of
600 kPa across the pump. (c) For the total pressure rise of 600 kPa, evaluate the difference
between the total and static pressure of water at the impeller tip section. [Ans: (a) 16.8 cm,
(b) 377.7 kPa]

9.17 A centrifugal water pump has an impeller diameter D2 = 27 cm, and when its shaft
speed is 1750 rpm, it produces a head H = 33 m. Find, (a) the volumetric flow rate, (b)
the blade height at the exit of the impeller assuming that there are no leakage losses, and
(c) the blade angle at the exit of the impeller, given that it has 11 blades. [Ans: (a) 26.2 L/s
(b) 1.17 cm, (c) −58.9◦]

9.18 A centrifugal water pump has an impeller diameter of D2 = 25 cm, and when its
shaft speed is 1750 rpm, it delivers 20 L/s of water. Find, (a) the head of water delivered
by the pump and (b) the power needed to drive the pump. (c) The impeller has nine blades.
Use the Stanitz slip factor to find the blade angle at the exit of the impeller. (d) Use the
Wiesner slip factor to find the blade exit blade angle. [Ans: (a) 28.25 m, (b) 6.83 kW,
(c) −50.6◦, (d) −62.4◦]
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9.19 A centrifugal pump delivers water at 0.075 m3/s with a head of 20 m while
operating at 880 rpm. The hub-to-shroud radius ratio at the inlet is 0.35, and the relative
velocity makes an angle of −52◦ at the inlet. (a) Find the reversible work done by the
pump. (b) What is the work done by the impeller? (c) Find the impeller radius and the inlet
radius of the shroud. (d) Determine the blade height at the exit of the impeller. (e) Assume
a reasonable number of blades, and calculate the blade angle at the exit. Use the Pfleiderer
equation to determine more accurately the number of blades and recalculate the blade angle
at the exit if needed. (f) What is the power required to drive the pump? [Ans: (a) 196 J/kg,
(b) 227 J/kg. (c) 23.4 cm, 7.23 cm (d) 2.04 cm, (e) 6 blades, −71.2◦, (f) 17.53 kW]

9.20 A fan draws in atmospheric air at 0.4 m3/s at pressure 101.32 kPa, and temperature
288 K. The total pressure rise across the fan, which has 30 radial blades, is 2.8 cm of
water. The inner radius is 14.8 cm and outer radius is 17.0 cm. The rotational speed of the
fan is 980 rpm and the hydraulic efficiency is the fan is 0.78. Use the Stanitz slip factor.
(a) Assuming that velocity into the fan is radially outward, find the angle of the relative
velocity at the shroud at the inlet. (b) Determine the power to the fan, given that 4% is
lost to mechanical friction. (c) Find the angle blade angle at the exit. [Ans: (a) −79.7◦,
(b) 0.147 kW, (c) 4.16◦]

9.21 A pump draws water at the rate of 75 L/s from a large tank with the air pressure
above the free surface at 98.00 kPa. The pump is z = 2 m above the water level in the
tank. The pipe diameter is 14.0 cm, and the suction pipe is 20 m in length. The entrance
loss coefficient is Ki = 0.2, and the loss coefficient of the elbow is Ke = 0.6 and the pipe
roughness is 55 μm. Find the suction specific speed given a shaft speed of 1800 rpm. The
viscosity of water is 1.08 · 10−3 kg/(m s). [Ans: 3.46]

9.22 Consider a volute consisting only a of circular section in which the tangential
velocity varies as Vu = K/r, and r is the location from the center of the volute to a
location on the circular section. (a) Show that the value of K in terms of the volumetric
flow rate Q, the radius of the circular section R, and the radius to the center of the of the
circular section a, is given by

K =
Q

2πR(λ −
√

λ2 − 1)

in which λ = a/R. (b) For R = 0.5 m, a = 2 m, and Q = 1.5 m3/s, find the pressure
difference p2 − p1 at the centerline, between the outside and inside edges of the section.
[Ans: 2 kPa]
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CHAPTER 10

RADIAL INFLOW TURBINES

The best known use of radial inflow turbines is in automobile turbochargers, but they
also appear as auxiliary power turbines and, for example in turboprop aircraft engines.
They are used in processing industries (including refineries), natural-gas processing, air
liquefaction, and geothermal energy production. In the automotive application, burned
gases from the engine exhaust manifold are directed into a radial inflow turbine of the
turbocharger, which powers a centrifugal compressor on the same axis. The compressor,
in turn, increases the pressure and density of the supply air to the engine. As the engine
speed may change quite rapidly, turbochargers must respond to the changing operating
conditions nimbly. Centrifugal machines are inherently short and thus light in weight and
low in inertia.

A sketch on the left side in Figure 10.1 is a radial cross-section of radial inflow turbine.
It looks like a centrifugal compressor, but with a reversed flow direction. Hot gases enter
through a volute and move into a vaned stator, which redirects them into a vaneless space
and then into the rotor. On the right is a front view of the rotor. The velocity diagrams
at the inlet and exit are shown in Figure 10.2. For best efficiency, the inflow angle β2
is negative. But the blades at the inlet are typically radial, which means that the entering
flow is at a negative incidence. Since the blades operate in a high-temperature environment
and material strength diminishes as temperature increases, radial blades can withstand the
imposed loads better than curved blades. It is for this reason that the blade angle at the
inlet is set at χ2 = 0. The rotor turns the flow toward the axis as it passes through the
flow channel, so that its radial velocity is zero at the exit and if the swirl component of

415Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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Figure 10.2 Velocity diagrams for a radial inflow turbine.

the absolute velocity vanishes at the exit, then the flow leaves the turbine axially. For this
reason, these machines are also called 90◦ inward-flow radial (IFR) turbines.

10.1 TURBINE ANALYSIS

The velocity diagrams in Figure 10.2 are similar to those for centrifugal compressors, and
at the exit, the absolute velocity is axial, as it is at the inlet of a compressor. Work delivered
by the turbine, if written in terms of kinetic energies, is given by

w =
1
2
(V 2

2 − V 2
3 ) +

1
2
(U 2

2 − U 2
3 ) +

1
2
(W 2

3 − W 2
2 ) (10.1)

This equation shows that increasing the inlet velocity V2 increases the work. The increase
in velocity is achieved by orienting the stator blades such that the flow enters the rotor at
a large nozzle angle α2. Similarly, a small value for W2 increases the work, and this is
obtained by directing the relative velocity radially inward at the inlet. The same reasoning
leads to a design in which the exit velocity V3 is axial and therefore as small as possible and
in which the relative velocity W3 is large. This can be obtained by making the magnitude
of the flow angle of the relative velocity |β3| large. Finally, a large U2 and a small U3
increase the work delivered.

The usual expression for work

w = U2Vu2 − U3Vu3 (10.2)
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leads to same conclusions, namely, Vu3 should be small and Vu2 large. Similarly, U2 should
be large and U3 small, which means that the ratio r3/r2 ought to be fairly small. It falls
into the range from 0.53 to 0.66 for common designs. Work could be increased by making
Vu3 negative, but this would also increase the absolute value of β3, and the exit relative
Mach number might become so large as to cause the flow to choke. If the exit swirl is
eliminated, the expression for work becomes

w = U2Vu2

When this equation is compared to Eq. (10.1) it is clear that the terms involving the exit
station in that equation must cancel.

Since the blade speed U3 = r3Ω is smallest at the hub, if the exit velocity V3 is designed
to be uniform across the exit plane, then the flow angle β3s and therefore also the magnitude
of the blade angle must be larger at the shroud than at the hub. This means that the relative
velocity and the relative Mach number M3R at the shroud will be the largest on the exit
plane. The equation for work delivered by a turbine

w = cp(T01 − T03)

when written in the form
sw =

w

cpT01
= 1 − T03

T01

defines a nondimensional specific work intensity sw = w/cpT01 = Ẇ/ṁcpT01, also known
as a power ratio. If the exit kinetic energy is wasted (as is often the case), it is appropriate
to use the total-to-static efficiency as the proper measure of efficiency. It is defined as

ηts =
T01 − T03

T01 − T3ss

=
1 − T03

T01

1 − T3ss

T01

which is clearly also

ηts =
1 − T03

T01

1 −
(

p3

p01

)(γ−1)/γ

Solving this for the pressure ratio gives

p01

p3
=

(
1 − sw

ηts

)−γ/(γ−1)

(10.3)

Graphs of the pressure ratio as a function of sw are shown in Figure 10.3. Power ratios in
the range 0.15 < sw < 0.25 correspond to pressure ratios in the range of 2 < p01/p3 < 3
for typical values of efficiency. From the pressure ratio, and an estimate of the efficiency,
the power ratio can be calculated.

The expression for work can be written as

w = cpT01sw
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and with a typical power ratio sw = 0.2 and inlet stagnation temperature T01 = 1000 K,
the specific work is w = 229.60 kJ/kg in expansion of combustion gases with cp =
1148 J/(kg K). Thus the stagnation temperature drop is 200 K. If the relative flow is radi-
ally inward and there is no exit swirl, the Euler turbine equation shows that w = U 2

2 , so that
a typical blade speed is 479 m/s. The size of the machine depends on the mass flow rate.
Thus, as a rough estimate, a turbocharger operating at shaft speed of 40000 rpm gives an inlet
radius of about 10 cm, and one operating at 200000 rpm gives a radius of 2 cm. An auto-
motive turbocharger with a rotor diameter of approximately 3 cm is shown in Figure 10.4.

Figure 10.4 An automotive turbocharger.
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At the exit, in addition to being uniform, the axial velocity V3 should be small so that the
exit kinetic energy is small. Whatever exit kinetic energy is left in the exit stream may be
recovered in an exit diffuser. Ideally, the exit diffuser would reduce the velocity to zero as
the flow enters the atmosphere. For isentropic flow, the work delivered in this situation is

ws = h01 − h3ss =
1
2
V 2

0 (10.4)

and the quantity V0 is called a spouting velocity. The kinetic energy associated with the
spouting velocity is a convenient replacement for the maximum work that this turbine can
deliver. This equation can also be interpreted as defining what velocity would be reached
in a frictionless nozzle as the flow expands from pressure p01 to the exit static pressure p3.
The equation for isentropic work can now be written as

1
2
V 2

0 = cpT01

(
1 − T3ss

T01

)

or as

V 2
0

2cpT01
= 1 −

(
p3

p01

)(γ−1)/γ

If the relative flow entering the turbine is radial and there is no exit swirl, then, the
definition of total-to-static efficiency can be written as

ηts =
w

ws
=

2U 2
2

V 2
0

(10.5)

The largest value for U2/V0 according to this equation is 0.707, but since the highest
efficiency is obtained with β2 in the range from −20◦ to −40◦, and the nozzle angle is
typically α2 = 70◦, this result needs some modification and a typical range for this ratio is
0.55 < U2/V0 < 0.77.

Since the isentropic work is given by Eq. (10.4), the value of the spouting velocity gives
a way to calculate an initial estimate for the blade speed. With the value of blade speed U2
known, the magnitude of the stresses can then be calculated.

� EXAMPLE 10.1

A radial inflow turbine with radial blades at the inlet operates at 62000 rpm. Its inlet
diameter is D2 = 12.6 cm. The gases enter the blades radially and leave without exit
swirl. The supply temperature is T01 = 1150 K, the pressure ratio of the turbine is
p01/p3 = 2, and the mass flow rate is ṁ = 0.31 kg/s. The ratio of specific heats is
γ = 1.35 and the gas constant is R = 287 J/(kg K). Find (a) the ratio U2/V0, in
which V0 is the spouting velocity, (b) the total-to-static efficiency, and (c) the power
delivered by the turbine.

Solution: (a) The specific heat is

cp =
γR

γ − 1
=

1.35 · 287
0.35

= 1107 J/(kg K)
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and the isentropic static temperature at the exit is

T3ss = T01

(
p3

p01

)(γ−1)/γ

= 1150 · 0.50.35/1.35 = 960.84 K

The isentropic work is, therefore,

ws = cp(T01 − T3ss) = 1107(1150 − 960.84) = 209.40 kJ/kg

and the spouting velocity is

V0 =
√

2ws =
√

2 · 209400 = 647.1 m/s

The blade speed at the inlet is

U2 = r2Ω =
12.6 · 62000 · π

2 · 100 · 30
= 409.0 m/s

so that the ratio U2/V0 = 0.632.
(b) Since there is no exit swirl, the work becomes

w = U 2
2 = 167.31 kJ/kg

and the stagnation temperature drop amounts to T01 − T02 = w/cp = 151 ◦C. The
total-to-static efficiency comes out to be

ηts =
w

ws
=

167.31
209.40

= 0.799

(c) The power delivered is

Ẇ = ṁw = 0.31 · 167.31 = 51.87 kW
�

The next example gives an analysis for a choked rotor passage.

� EXAMPLE 10.2

Combustion gases with γ = 1.35, cp = 1107 J/(kg K) and R = 287 J/(kg K) flow
from conditions p01 = 390 kPa and T01 = 1150 K through a radial inflow turbine
to an exit pressure p3 = 100 kPa. The total-to-static efficiency is ηts = 0.8, and the
flow leaving the stator is choked with M2 = 1. (a) Find the work delivered by the
turbine, given that the relative velocity at the inlet of the rotor is radial and that flow
leaves without swirl. (b) Find the angle of the absolute velocity at the inlet of the
rotor.

Solution: Since the stator is choked, and T02 = T01, the static temperature at the exit
of the stator is

T2 =
2

γ + 1
T02 =

2
2.35

1150 = 978.7 K
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and the velocity, since M2 = 1, is

V2 =
√

γRT2 =
√

1.35 · 287 · 978.7 = 615.8 m/s

Solving the definition of total-to-static efficiency

ηts =
T01 − T03

T01 − T3ss

for the exit stagnation temperature gives

T03

T01
= 1 − ηts

[
1 −

(
p01

p3

)−(γ−1)/γ
]

so that
T03 = 1150 [1 − 0.8 (1 − 3.9−0.35/1.35)] = 876.5 K

Work delivered by the turbine is, therefore,

w = cp(T01 − T03) = 1107(1150 − 876.5) = 302.80 kJ/kg

This is also
w = U 2

2

so that
U2 =

√
w =

√
302800 = 550.27 m/s

The flow angle at the inlet to the rotor is

α2 = sin−1
(

U2

V2

)
= sin−1(0.893) = 63.3◦

�

The foregoing two examples assumed that the relative velocity at the inlet to the rotor
is radial and that there is no exit swirl. In the next section, a general development based
on this assumption is carried out in order to relate the important flow parameters to the
total-to-static efficiency.

10.2 EFFICIENCY

The total-to-static efficiency of a turbine is

ηts =
h01 − h03

h01 − h3ss

with the thermodynamic states as shown in Figure 10.5. This can be written as

1
ηts

− 1 =
h03 − h3ss

h01 − h03



�

� �

�

422 RADIAL INFLOW TURBINES

1

02

03

h
02R

h
03R

h
2

h
1

h
3ss

h
2s

h
3

h
01 

h
03

h
03ss

h
03s

h
02

p
02

 p
01

 

p
1
 

p
3
 

p
2
 

p
03

 
p

04
 

p
4
 

p
03R

 

p
02R

 

V2V
3

1
2

V2V
2

1
2

1

2
W2W

2

1
2

2V
1

1

2
W2W

3

ss
2

s
3

s
1

3

4

2

3s4s

03s

03ss

3ss

2s

Figure 10.5 Velocity triangles and Mollier chart for a radial inflow turbine.

If the turbine is fitted with a diffuser and its exit pressure is p4, then, if the flow exhausts
to the atmosphere, the pressure p4 is the atmospheric pressure and the small amount of
residual kinetic energy is lost into the atmosphere. In this situation, the pressure p3 is
below the atmospheric value. If the flow through this diffuser were reversible, then the
pressure p4 would correspond to the stagnation pressure p03. In this case, the appropriate
efficiency to use is the total-to-total efficiency. On the other hand, if the flow is not
diffused and the flow is exhausted to the atmosphere directly, then the exit pressure p3 is
the atmospheric pressure and the residual kinetic energy is lost. In this case, the efficiency
is the total-to-static efficiency. The numerator can be rewritten as

h03 − h3ss =
1
2
V 2

3 + h3 − h3s + h3s − h3ss

Next, integrating the Gibbs equation along the constant pressure lines p2 and p3 gives

T2

T2s
=

T3s

T3ss
thus

T3ss

T2s

=
T3s

T2

Adding minus one to both sides of the first of these equations, multiplying by cp,
rearranging, and using the second equation, gives

h3s − h3ss =
T3ss

T2s
(h2 − h2s) =

T3s

T2
(h2 − h2s)

As a consequence the expression for efficiency is

1
ηts

− 1 =
V 2

3

2w
+

ζRW 2
3

2w
+

T3s

T2

ζSV
2
2

2w

in which the enthalpy changes have been written in terms of the loss coefficients as

h3 − h3s =
1
2
ζRW 2

3 h2 − h2s =
1
2
ζSV

2
2 ,
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and they have been substituted for the internal heating terms. Making use of the relationships
w = U 2

2 , U2 = V2 sinα2, U3 = −V3 tan β3, U3 = −W3 sinβ3, and U3 = r3U2/r2 turns
this equation into

1
ηts

− 1 =
1
2

[(
r3

r2

)2

(cot2β3 + ζRcsc2β3) +
T3s

T2
ζScsc

2α2

]
(10.6)

The temperature ratio in this expression can be written in a form from which it is easy to
calculate. First, it is recast as

T3s

T2
= 1 − 1

T2
(T2 − T3 + T3 − T3s)

in which temperature difference T2 − T3 is obtained from

w = U 2
2 = h02 − h03 = cp(T2 − T3) +

1
2
V 2

2 − 1
2
V 2

3

Solving this for T2 − T3 gives

T2 − T3 =
1
cp

(
U 2

2 − 1
2
V 2

2 +
1
2
V 2

3

)

But from the velocity diagrams in Figure 10.2, since β2 = 0 and α3 = 0, it is seen that

V 2
2 = W 2

2 + U 2
2 W 2

3 = V 2
3 + U 2

3

so that
T2 − T3 =

1
2cp

(W 2
3 − W 2

2 + U 2
2 − U 2

3 )

and therefore
T3s

T2
= 1 − 1

2cpT2
(W 2

3 − W 2
2 + U 2

2 − U 2
3 + ζRW 2

3 )

in which ζR = 2cp(T3 − T3s)/W 2
3 has been used. This can now be written as

T3s

T2
= 1 − 1

2cpT2
(U 2

3 csc2β3 − U 2
2 cot2α2 + U 2

2 − U 2
3 + ζRU 2

3 csc2β3)

and, with U3 = U2r3/r2, as

T3s

T2
= 1 − U 2

2

2cpT2

[
1 +

(
r3

r2

)2

((1 + ζR)csc2β3 − 1) − cot2α2

]

From
T2 = T02 −

1
2cp

V 2
2 2cpT2 = 2cpT02 − U 2

2 csc2α2

so that
U 2

2

2cpT2
=

(
T02

T2
− 1

)
sin2α2 =

γ − 1
2

M 2
2 sin2α2,
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and it follows that the temperature ratio can also be written as

T3s

T2
= 1 − γ − 1

2
M 2

2 sin2α2

[
1 +

(
r3

r2

)2

((1 + ζR)csc2β3 − 1) − cot2α2

]

The value of ζS is measured in a stationary test apparatus, and the total-to-static efficiency
can be measured from the overall balance for the turbine [15]. The value of ζR can then
be determined from the theory developed above. These calculations are illustrated in the
following example.

� EXAMPLE 10.3

In a radial-inflow turbine, combustion gases, with γ = 4
3 and cp = 1148 J/(kg K),

leave the stator at the angle α2 = 67◦. The rotor blades at the inlet are radial, with
a radius r2 = 5.8 cm. At the outlet the shroud radius of the blade is r3s = 4.56 cm,
the hub-to-shroud radius ratio is κ = 0.35, and the relative flow makes an angle
β3 = −38◦ with the axial direction at the exit. The relative velocity at the inlet
to the rotor is radial. The power delivered by the turbine is Ẇ = 58.2 kW when
the mass flow rate is ṁ = 0.34 kg/s and the rotational speed is 64000 rpm. The
stagnation temperature and pressure at the inlet to the stator are T01 = 1100 K and
p01 = 2.5 bar. The static enthalpy loss coefficient for the flow across the stator is
ζS = 0.08. The outlet static pressure is p3 = 1 bar. Find (a) the Mach number at the
inlet of the rotor, (b) the total-to-static efficiency, and (c) the static enthalpy loss
coefficient of the rotor.

Solution: (a) The blade speed at the inlet is

U2 = r2Ω =
0.058 · 64000 · π

30
= 388.72 m/s,

and since the relative flow is radial, Vu2 = U2 and

V2 =
Vu2

sinα2
=

388.72
sin(67◦)

= 422.29 m/s

Since T02 = T01, the static temperature at the inlet is

T2 = T02 −
V 2

2

2cp

= 1100 − 422.292

2 · 1148
= 1022.3 K

and the Mach number becomes

M2 =
V2√
γRT2

=
422.29√

1.333 · 287 · 1022.3
= 0.675

(b) The specific work is given by

w =
Ẇ

ṁ
=

58200
0.34

= 171.18 kJ/kg
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and the stagnation temperature at the outlet is therefore

T03 = T01 −
w

cp

= 1100 − 171.18
1.148

= 950.9 K

In an isentropic process to the exit pressure, the static temperature at the exit is

T3ss = T01

(
p3

p01

)(γ−1)/γ

= 1100
(

1
2.5

)0.25

= 874.8 K

and the total-to-static efficiency is therefore

ηts =
T01 − T03

T01 − T3ss
=

1100 − 950.9
1100 − 874.8

= 0.662

(c) If in the expression for efficiency the temperature ratio T3s/T2 is set to 1, then
the static enthalpy loss coefficient ζR can be solved from

1
ηts

− 1 =
1

2tan2β3

(
r3

r2

)2

+
ζR

2sin2β3

(
r3

r2

)2

+
ζS

2sin2α2

With ζS = 0.08, β3 = −38◦, and r3 = (r3s + r3h)/2 = 0.0308 m, solving this
equation gives ζR = 0.6256. Now the temperature ratio is calculated as

T3s

T2
= 1 − γ − 1

2
M 2

2 sin2α2

[
1 +

(
r3

r2

)2

((1 + ζR)csc2β3 − 1) − cot2α2

]
= 0.8876

Substituting this into Eq. (10.6) and repeating the calculation with the new temper-
ature ratio gives ζR = 0.6399. The static loss coefficient for the rotor is larger than
that for the stator not only because the flow path is long but also because the flow
undergoes a great deal of turning through the rotor. �

10.3 SPECIFIC SPEED AND SPECIFIC DIAMETER

The specific speed, defined as

Ωs =
Ω

√
Q3

ws

3/4

characterizes the shape of a turbomachine, and a machine with a small specific speed has a
low flow rate and a large specific work. A related quantity is the specific diameter given by

Ds =
Dw

1/4
s√
Q3

It is small in axial turbines because the flow rate is large and the work per stage is relatively
small. For radial inflow turbines, this quantity is large because the work per stage is large
and the volumetric flow rate is rather small. The product of specific speed and specific
diameter is

ΩsDs =
DΩ
√

ws
= 23/2 U2

V0
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When the work is given by w = U 2
2 , this reduces to

ΩsDs = 2
√

ηts (10.7)

Balje [5] has constructed a large number of diagrams with specific speed on the abscissa
and specific diameter as the ordinate. A Balje diagram for radial inflow turbines is shown
in Figure 10.6, and the region of highest efficiency falls into the range 0.2 < Ωs < 0.8.
The corresponding specific diameter can be calculated according to Eq. (10.7). Lines of
constant r3/r2 are also drawn with an optimum value near 0.7. The recommended range
is 0.53 < r3/r2 < 0.66. The slight discrepancy in this range and the optimum value 0.7
arises from different loss model being used to calculate the results and scant experimental
data to verify them. Here the radius

r3 =

√
1
2
(r2

3h + r2
3s)

is used to define the mean exit radius. The line ΩsDs = 2 corresponding to ηts = 1 has
been drawn into the Balje diagram as well.
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Figure 10.6 A Balje diagram for a radial inflow turbine, with β2. Source: Drawn after Balje [5].

� EXAMPLE 10.4

Combustion gases, with γ = 4
3 , R = 287 J/(kg K), and cp = 1148 J/(kg K), flow

through a radial inflow turbine. It is designed to deliver 352 kW of power. The exit
pressure is atmospheric at p3 = 101.3 kPa. The stagnation temperature to the turbine
is T01 = 960 K, and the loss coefficient of the stator is ζS = 0.08. The ratio of the
blade radii at the exit is κ = r3h/r3s = 0.35. The rotor speed is 35000 rpm, the blade
speed is U2 = 440 m/s, and the flow angle to the inlet of the rotor is α2 = 72.1◦.
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Use a design point from the Balje diagram with Ds = 2.65, Ωs = 0.68, and choose
r3s = 0.86r2. Find (a) the mass flow rate, (b) the inlet Mach number, (c) supply
stagnation pressure p01 and the blade height at the inlet. Assuming that the absolute
velocity is uniform at the exit, find (d) the relative Mach number at the exit at the
shroud and the hub, and (e) the ratios W3s/W2, W3h/W2 and Vr2/Vx3.

Solution: (a) The spouting velocity is first determined from the ratio

U2

V0
=

ΩsDs

23/2 =
0.68 · 2.65

23/2 = 0.6371

so that
V0 =

440
0.6371

= 690.6 m/s

The specific work is

w = U 2
2 = 4402 = 193.60 kJ/kg

and the mass flow rate is, therefore,

ṁ =
Ẇ

w
=

352.00
193.60

= 1.818 kg/s

(b) The inlet radius of the rotor has the value

r2 =
U2

Ω
=

440 · 30
35000 · π = 0.120 m

and the relative and absolute velocities at the inlet are

W2 = U2 cot α2 = 440 cot(72.1◦) = 142.1 m/s

V2 =
U2

sin α2
=

440
sin(72.1◦)

= 462.38 m/s

The inlet Mach number is obtained by first calculating the static temperature at the
inlet

T2 = T02 −
V 2

2

2cp

= 960 − 462.382

2 · 1148
= 866.9 K

and then the Mach number at the inlet is

M2 =
V2√
γRT2

=
462.38√

1.333 · 287 · 866.9
= 0.803

(c) From the definition of the stator loss coefficient, the isentropic inlet static
temperature is

T2s = T2 − ζS
V 2

2

2cp

= 866.9 − 0.08
462.382

2 · 1148
= 859.4 K

and the isentropic static temperature at the exit is

T3ss = T01 −
V 2

0

2cp

= 960 − 690.62

2 · 1148
= 752.3 K
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Hence, the inlet stagnation pressure to the stator has the value

p01 = p3

(
T01

T3ss

)γ/(γ−1)

= 101.3
(

960
752.2

)4

= 268.7 kPa

At the inlet to the rotor the static pressure is

p2 = p01

(
T2s

T02

)γ/(γ−1)

= 268.7
(

859.4
960.0

)4

= 172.6 kPa

so that the density at the inlet becomes

ρ2 =
p2

RT2
=

172.6
0.287 · 866.9

= 0.694 kg/m3

The blade height can now be determined from the mass balance

b2 =
ṁ

2πr2ρ2V2 cos α2
=

1.818
2π · 0.120 · 0.694 · 462.4 cos(72.1◦)

= 0.0245 m

The ratio of the inlet blade height to the inlet radius is b2/r2 = 0.204.
(d) The rotor shroud and hub radii are

r3s = 0.86r2 = 0.86 · 0.12 = 0.1032 m r3h = κr3s = 0.35 · 0.1032 = 0.0361 m

When the Balje diagram is used, the average exit radius is its root mean square value

r3 =

√
1
2
(r2

3h + r2
3s) = 0.0773 m

The blade speed at the mean radius is therefore

U3 = r3Ω =
0.0773 · 35000 · π

30
= 283.5 m/s

At the shroud and the hub, the blade speeds are

U3s = r3sΩ =
0.1032 · 35000 · π

30
= 378.4 m/s

and
U3h = U3s

r3h

r3s
= 378.4

0.0361
0.1032

= 132.4 m/s

To calculate the exit velocity, the exit Mach number is needed. First, the exit
stagnation temperature is found to be

T03 = T02 −
w

cp

= 960 − 193600
1148

= 791.4 K

Rearranging the mass balance

ṁ = ρ3V3A3 =
p3A3

RT3
M3

√
γRT3



�

� �

�

SPECIFIC SPEED AND SPECIFIC DIAMETER 429

leads to

ṁ

p3A3

√
RT03

γ
= M3

(
1 +

γ − 1
2

M 2
3

)1/2

which on squaring can be written as a quadratic equation in M 2
3

M 4
3 +

2
γ − 1

M 2
3 − 2RT03ṁ

2

γ(γ − 1)p2
3A

2
3

= 0,

and after numerical values are inserted, this reduces to

M 4
3 + 6M 2

3 − 0.3813 = 0

Solution of this is M3 = 0.251.
(e) The exit velocity can now be determined by first calculating the static temperature
at the exit

T3 = T03

(
1 +

γ − 1
2

M 2
3

)−1

= 791.4
(

1 +
0.2512

6

)−1

= 783.1 K

which gives the exit velocity

V3 = M3

√
γRT3 = 0.251

√
1.333 · 287 · 783.1 = 137.3 m/s

Since the absolute velocity is axial at the exit, the angles that the relative flow makes
at the shroud and the hub at the exit are

β3s = tan−1
(
−U3s

V3

)
= tan−1

(
−378.4

137.3

)
= −70.06◦

β3h = tan−1
(
−U3h

V3

)
= tan−1

(
−132.4

137.3

)
= −43.97◦

The relative velocities at the shroud and hub are

W3s =
√

U 2
3s + V 2

3 =
√

378.42 + 137.32 = 402.5 m/s

W3h =
√

U 2
3h + V 2

3 =
√

132.32 + 137.32 = 190.8 m/s

and at the inlet, the relative velocity is

W2 =
√

V 2
2 − U 2

2 =
√

462.42 − 4402 = 142.1 m/s

Hence, the relative velocity ratios are W3s/W2 = 2.83 and W3h/W2 = 1.34. Since
Vr2 = V2 cos α2 = 462.4 cos(72.1) = 142.1 m/s and Vx3 = V3 = 137.3, their ratio
is Vr2/Vx3 = 1.035. The relative Mach numbers are M3Rs = 0.735 and M3Rh =
0.348. �



�

� �

�

430 RADIAL INFLOW TURBINES

In the foregoing example, only the product ΩsDs = 1.802 was used. If the volumetric
flow rate is based on the exit condition, then

Ds =
D2w

1/4
s√

Q3
=

2 · 0.12 · (2.385 · 105)1/4
√

4.034
= 2.64

Ωs =
Ω

√
Q3

w
3/4
s

=
35000 · π

√
4.034

30 ·
√

2.385 · 105
= 0.682

The mass balance was used to link the upstream and downstream states. Depending on
what kind of information is known, this may become a somewhat involved calculation. The
general approach is to express the mass balance in terms of the flow function. Upstream,
this leads to

ṁ
√

cpT02

p02A2
= F2 cos α2

and downstream the corresponding statement is

ṁ
√

cpT03

p03A3
= F3

in which the flow function is

F =
γ√

γ − 1
M

(
1 +

γ − 1
2

M 2
)−(γ+1)/(2γ−2)

The term cos α2 appears in the upstream expression because it is the radial inflow
velocity, Vr2 = V2 cos α2, that enters the expression for the mass flow rate. Downstream
the corresponding factor is missing because it is assumed that the absolute velocity is axial.

Dividing these gives

A2

A3
=

F3

F2 cos α2

√
T02

T03

p03

p02

The temperature ratio is
T02

T03
=

1
1 − sw

and the pressure ratios may be written as

p03

p02
=

p03

p3

p3

p01

p01

p02

in which

p03

p3
=

(
1 +

γ − 1
2

M 2
3

)γ/(γ−1)

and

p01

p3
=

(
1 − sw

γ − 1

)γ/(γ−1)
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In addition,

p01

p02
=

(
T2

T2s

)γ/(γ−1)

=
(

1 − ζS
γ − 1

2
M 2

2

)−γ/(γ−1)

Substituting gives

A2

A3
=

F3

F2 cos α2

(
1 + γ−1

2 M 2
3

1 − ζS
γ−1

2 M 2
2

)γ/(γ−1) (
1 − sw

ηts

)γ/(γ−1) 1√
1 − sw

From this, it is clear that if the power ratio sw can be determined and the total-to-static
efficiency and the stator loss coefficient can be estimated, then the mass balance in this
form involves only M2, M3, and the area ratio A2/A3 as unknowns. Hence, if two of these
can be determined in other ways, this equation may be solved for the third. Clearly, if
the area ratio is the only unknown, then it can be solved from this explicitly. However, if
one of the Mach numbers is unknown, then an iterative solution of a nonlinear equation
must be carried out. This can be readily performed with the aid of a computer. In hand
calculations, it may be worthwhile to calculate the results directly from

ṁ = ρ2A2Vr2 = ρ3A3V3

by assuming one of the unknowns and then using the mass balance to check that the other
converges by iterations to its correct value.

A collection of typical ranges of parameters for a well-designed radial inflow turbines
has been compiled by Logan [59]. It is reproduced as Table 10.1.

Table 10.1 Design parameters for a
radial inflow turbine.

Parameter Typical range

α2 68◦ –76◦

β3 −50◦ to−70◦

r3h/r3s < 0.4
r3h/r2 < 0.7
r3/r2 0.53 – 0.66
b2/r2 0.1 – 0.3
U2/V0 0.55 – 0.8
W3/W2 2 – 2.5
V3/U2 0.15 – 0.5
ζR 0.4 –0.8
ζN 0.06 – 0.24

Source: Logan [59].

10.4 STATOR FLOW

The flow enters the stator row from a volute and leaves into a vaneless space. In the
vaneless space, if losses are neglected, the flow may be assumed to be irrotational. The
same assumption was made when the flow in the vaneless space of a centrifugal compressor
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was considered. In such an irrotational flow the tangential component of velocity varies
inversely with radius, and thus rVu is constant. Since mass flow rate is constant

ṁ = 2πr2eb2eρ2eVr2e = 2πr2b2ρ2Vr2

and, as Figure 10.1 shows, the subscript in r2e refers to a radius at the exit of the stator
blades, and r2 is the exit of the vaneless space and therefore also the inlet to the rotor. This
equation can be recast as

Vr2 = Vr2e
b2eρ2er2e

b2ρ2r2

For a gap of constant width b2e = b2. The density ratio influences only the radial component
of velocity, and since this component is much smaller than the tangential component only
a small error is made if the density is assumed constant. If the density difference is ignored,
then this equation and rVu = constant can be written as

Vr2 = Vr2e
r2e

r2
Vu2 = Vu2e

r2e

r2

Dividing gives
Vu2

Vr2
=

Vu2e

Vr2e
= tan α2

so the flow angle α2 remains constant. The calculations are illustrated next.

� EXAMPLE 10.5

A combustion gas mixture, with the ratio of specific heats γ = 4
3 and gas constant

R = 287 J/(kg K), has a specific heat cp = 1148 J/(kg K). These gases flow
through a radial inflow turbine with the inlet stagnation temperature T01 = 1015 K,
and the stagnation pressure at the exit of the stator is p02e = 8.5 bar. The mass flow
rate is ṁ = 2.8 kg/s. The outlets of the stator blades are at the circle of radius
r2e = 11.2 cm, where the flow angle is α2e = 74.0◦. The stator blade height is
b = 1.7 cm. The inlet of the rotor blade is at r2 = 9.8 cm, and at the exit of the
rotor, the shroud radius is r3s = 7.7 cm and the hub radius is r3h = 2.7 cm. The
shaft rotates at 40000 rpm, and the turbine rotor efficiency is ηtt = 0.89. At the exit,
the absolute velocity is axial. Find (a) the Mach number at the inlet to the rotor; (b)
the power delivered by the turbine; (c) the Mach number at the exit of the turbine,
assuming that the exit static pressure is 1bar; (d) the flow angle of the relative
velocity at the inlet to the rotor; and (e) the blade-loading coefficient ψ = w/U 2

2 , the
flow coefficient φ = Vr2/U2, and the specific speed of the turbine.

Solution: (a) If the thickness of the trailing edge of the stator blades is ignored, the
flow area leaving the stator is

A2e = 2π r2eb =
2π · 11.2 · 1.7

100 · 100
= 0.01196 m2

To determine the exit Mach number, the flow function is first calculated. Since
T02 = T01, it has the value

F2e =
ṁ

√
cpT02

A2ep02e cos α2e

=
2.8

√
1148 · 1015

0.01196 · 850000 · cos(74◦)
= 1.078
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Now the exit Mach number is obtained by iteration from the nonlinear equation

F2e =
γ√

γ − 1
M2e

(
1 +

γ − 1
2

M 2
2e

)−(1/2)[(γ+1)/(γ−1)]

= 1.078

With γ = 4
3 , its solution is M2e = 0.557. The temperature can now be determined

from

T2e = T02

(
1 +

γ − 1
2

M 2
2e

)−1

= 1015
(

1 +
0.5572

6

)−1

= 965.1 K,

and the pressure is

p2e = p02

(
T2e

T02

)γ/(γ−1)

= 8.5
(

965.1
1015

)4

= 6.948 bar

The static density is, therefore,

ρ2e =
p2e

RT2e
=

6.948 · 105

287 · 965.1
= 2.508 kg/m3

The exit velocity is next determined from

V2e = M2e

√
γRT2e = 0.557

√
1.333 · 287 · 965.1 = 338.5 m/s

and the radial and tangential velocity components are

Vr2e = V2e cos α2e = 338.5 cos(74◦) = 93.3 m/s

Vu2e = V2e sin α2e = 338.5 sin(74◦) = 325.4 m/s

The tangential velocity component of the flow leaving the gap is

Vu2 =
r2e

r2
Vu2e =

11.2
9.8

325.4 = 371.9 m/s

and ignoring the density change in the radial term, the corresponding value of the
velocity component entering the blade is

Vr2 =
r2e

r2
Vr2e =

11.2
9.8

93.3 = 106.6 m/s

The magnitude of the absolute velocity is therefore

V2 =
√

V 2
r2 + V 2

u2 =
√

106.62 + 371.92 = 386.9 m/s

The static temperature at this location is

T2 = T02 −
V 2

2

2cp

= 1015 − 386.92

2 · 1148
= 949.8 K
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and the Mach number is, therefore,

M2 =
V2√
γRT2

=
386.9√

1.333 · 287 · 949.8
= 0.642

If the density difference had been taken into account in the radial term, Mach number
would have increased only to M2 = 0.644.
(b) The tip speed of the rotor blade is

U2 = r2Ω =
9.8 · 40000 · π

100 · 30
= 410.5 m/s

and the tangential component of the relative velocity is

Wu2 = Vu2 − U2 = 371.9 − 410.5 = −38.6 m/s

Since Wr2 = Vr2, the flow angle of the relative velocity has the value

β2 = tan−1
(

Wu2

Wr2

)
= tan−1

(
− 38.6

106.6

)
= −19.9◦

(c) Since there is no exit swirl, the work delivered becomes

w = U2Vu2 = 410.5 · 371.9 = 152.67 kJ/kg

and the isentropic work is

ws =
w

ηtt
=

152.67
0.89

= 171.54 kJ/kg

The power delivered by the turbine is therefore

Ẇ = ṁw = 2.8 · 152.67 = 427.5 kW

(d) The stagnation temperature at the exit drops to

T03 = T02 −
w

cp

= 1015 − 152670
1148

= 882.0 K

and the corresponding temperature for an isentropic flow is

T03s = T02 −
ws

cp

= 1015 − 171540
1148

= 865.6 K

The exit stagnation pressure is therefore

p03 = p02e

(
T03s

T02

)γ/(γ−1)

= 8.5
(

865.6
1015

)4

= 449.5 kPa
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With the exit area

A3 = π(r2
3s − r2

3h) = π(0.0772 − 0.0272) = 0.01634 m2,

the exit flow function is equal to

F3 =
ṁ

√
cpT03

A3p03
=

2.8
√

1148 · 882.0
0.01634 · 449550

= 0.384

and the Mach number can then be obtained by iteration from the nonlinear equation

F3 =
γ√

γ − 1
M3

(
1 +

γ − 1
2

M 2
3

)−(γ+1)/(2γ−2)

= 0.384

in which γ = 4
3 . The solution is M3 = 0.169. The exit static temperature is then

T3 = T03

(
1 +

γ − 1
2

M 2
3

)−1

= 882.0
(

1 +
0.1692

6

)−1

= 877.8 K

so that the exit velocity becomes

V3 = M3

√
γRT3 = 0.315

√
1.333 · 287 · 877.8 = 97.9 m/s

The volumetric flow rate is, therefore,

Q3 = V3A3 = 97.9 · 0.01634 = 1.60 m3/s

(e) The blade-loading coefficient is

ψ =
w

U 2
2

=
152670
410.52 = 0.906

and the flow coefficient is

φ =
Vr2

U2
=

106.6
410.5

= 0.260

The flow coefficient for radial inflow turbines is usually less than 0.5. The specific
speed is

Ωs =
Ω

√
Q3

w
3/4
s

=
40000 · π

√
1.60

30 · 1715403/4 = 0.628

and the specific diameter turns out to be

Ds =
D2w

1/4
s√

Q3
=

0.196 · 1715401/4
√

1.60
= 3.15

These are in the range for good radial inflow turbine designs. �
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In the foregoing example, losses in the stator and vaneless gap were not taken into
account explicitly. In the next section, methods to include them in the analysis are discussed.

10.4.1 Loss coefficients for stator flow

Baskharone [6] gives a correlation for the velocity coefficient for a flow through the stator:

c2
v = 1 − 1.8

(
θ

s cos α2e − te − δ∗

) (
1 +

s cos αm

b

) (
Re

Ref

)

in which Ref = 2.74 · 106 is a reference Reynolds number, that is based on the blade chord
c and exit velocity V2e. The angle αm is the average flow angle between α1 and α2e. The
spacing of the blades is s, and their height is b. The trailing-edge thickness of the blades
is te. The sum of the pressure- and suction-side displacement thicknesses is δ∗ = δ∗p + δ∗s
and similarly for the total momentum thickness θ. It is assumed that the suction-side
thicknesses are δ∗s = 3.5δ∗p and θs = 3.5θp. The pressure-side values are obtained from

δ∗p
c

=
1.72√

Re

θp

c
=

0.664√
Re

which are valid for laminar flow when Re < 2 · 105, and for turbulent boundary layers,
when Re > 2 · 105, they are

δ∗p
c

=
0.057
Re1/6

θp

c
=

0.022
Re1/6

Baskharone also recommends a model proposed by Khalil et al. [55] for taking into
account the losses in the gap. It can be written as

Yg = YrYαYMYb

in which
Yg =

p02e − p02

p02e − p2e

is the stagnation pressure loss coefficient and

Yr = 0.193
(

1 − r2

r2e

)

Yα = 1 + 0.0641(α2e − α2f ) + 0.0023(α2e − α2f )
2

YM = 1 + 0.6932(M02e − M02f ) + 0.4427(M02e − M02f )
2

Yb = 1 + 0.0923(
r2e

b
− r2e

bf
) + 0.0008(

r2e

b
− r2e

bf
)2

Here M02e = V2e/
√

γRT02 and the reference values are

α2f = 70◦ M02f = 0.8 bf = r2e/10

The angle α2e is measured in degrees.
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� EXAMPLE 10.6

A gas with γ = 4
3 and cp = 1148 J/(kg K) flows through a radial inflow turbine.

The conditions at the inlet to the stator are T01 = 1015 K and p01 = 7.5 bar. At the
inlet, the flow angle is α1 = 20◦ and Mach number is M1 = 0.14. The gas leaves
the stator at angle α2e = 71◦. The number of stator vanes is Z = 37, their trailing
edge thickness is te = 1.5 mm, their chord length is c = 2.8 cm, and their height is
b = 0.9 cm. The radii are r1 = 12.0 cm, r2e = 10.5 cm, and r2 = 10.0 cm. Assume
the kinematic viscosity to be ν = 90 · 10−6 m2/s. Find the stagnation pressure loss
across the stator and the gap.

Solution: The static temperature at the inlet is

T1 = T01

(
1 +

γ − 1
2

M 2
1

)−1

= 1015
(

1 +
0.142

6

)−1

= 1011.7 K

and the static pressure is

p1 = p01

(
T1

T01

)γ/(γ−1)

= 7.5
(

1011.7
1015

)4

= 7.40 bar

which gives for the static density the value

ρ1 =
p1

RT1
=

7.4 · 105

287 · 1011.7
= 2.55 kg/m3

The velocity at the inlet is

V1 = M1

√
γRT1 = 0.14

√
1.333 · 287 · 1011.7 = 87.1 m/s

and its radial component is

Vr1 = V1 cos α1 = 87.1 cos(20◦) = 81.86 m/s

Mass balance may be written as

ṁ = ρ12πr1bVr1 = ρ2e2πr2ebVr2e

Introducing the flow function, the nondimensional mass flow rate may be written as

ṁ
√

cpT01

A1p01
=

γM1√
γ − 1

cos α1

(
1 +

γ − 1
2

M 2
1

)−(γ+1)/(2γ−2)

= F1 cos α1

at the inlet and at the exit it is

ṁ
√

cpT02

A2ep02e
=

γM2e√
γ − 1

cos α2e

(
1 +

γ − 1
2

M 2
2e

)−(γ+1)/(2γ−2)

= F2e cos α2e

Since the flow is adiabatic, T01 = T02, and if it is assumed to be isentropic, then it
follows that p01 = p02e. With A1 = 2πr1b and A2e = 2πr2eb, the mass balance gives
the relationship

F2e = F1
r1 cos α1

r2e cos α2e
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The value of F1 is

F1 =
γM1√
γ − 1

(
1 +

γ − 1
2

M 2
1

)−(γ+1)/(2γ−2)

=
4
√

3 · 0.14
3

(
1 +

0.142

6

)−3.5

= 0.3196

and therefore,

F2e = 0.3196
12.0 cos(20◦)
10.5 cos(71◦)

= 1.054

Solving the nonlinear equation

F2e =
γM2e√
γ − 1

(
1 +

γ − 1
2

M 2
2e

)−(γ+1)/(2γ−2)

with this value of F2e and γ = 4
3 , yields M2e = 0.539. Static temperature at the exit

of the stator is

T2e = T02

(
1 +

γ − 1
2

M 2
2e

)−1

= 1015
(

1 +
0.5382

6

)−1

= 968.7 K

and the velocity is

V2es = M2e

√
γRT2e = 0.539

√
1.333 · 287 · 968.7 = 327.85 m/s

Introduction of the flow function into the development assumes that the flow is
isentropic. It is anticipated that no correction is needed, as V2e is only used to
calculate the Reynolds number in the loss correlation. The value of the Reynolds
number is

Re =
V2ec

ν
=

327.85 · 2.8
90 · 10−6 · 100

= 1.02 · 105

so the flow is laminar. The displacement thickness on the pressure side is, therefore,

δ∗p =
1.72c

Re1/2 =
1.72 · 2.8

100 · (1.02 · 105)1/2 = 1.51 · 10−4 m

Since the suction side displacement thickness is assumed to be 3.5δ∗p, the sum
becomes δ∗ = 6.79 · 10−4 m. The momentum thickness on the pressure side is

θp =
0.644c

Re1/2 =
0.644 · 2.8

100 · (1.02 · 105)1/6 = 5.65 · 10−5 m

and with the suction side thickness assumed again to be 3.5θp, the sum is θ =
2.54 · 10−4 m. Next, the spacing can be obtained from

s2 =
2πr2e

Z
=

2π · 10.5
100 · 37

= 0.0178 m

The average flow angle is α2m = 1
2(α1 + α2e) = 45.5◦, and the velocity coefficient

is obtained from

c2
v = 1 − 1.8

(
θ

s2 cos α2e − te − δ∗

)(
1 +

s2 cos α2m

b

) Re

Ref
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with

θ

s2 cos α2e − te − δ∗
=

2.54 · 10−4

0.0178 cos(71◦) − 1.5 · 10−3 − 6.79 · 10−4 = 0.0700

and
1 +

s2 cos α2m

b
= 1 +

0.178 cos(45.5◦)
0.009

= 2.389

The square of the velocity coefficient becomes

c2
v = 1 − 1.8 · 0.070 · 2.389

102000
2740000

= 0.989 so that cv = 0.994

The actual exit velocity is therefore

V2e = cvV2es = 0.994 · 327.85 = 326.0 m/s

and the enthalpy loss coefficient is ζ = 1/c2
v − 1 = 0.0113. As anticipated, the

difference from the ideal is such that no correction is needed. The static temperature
at the exit of the stator is now

T2e = T02 −
V 2

2e

2cp

= 1015 − 326.02

2 · 1148
= 968.7 K

and the Mach number at the exit does not change significantly, and it is M2e = 0.539.
The stagnation pressure ratio across the stator ratio is now

p01

p02e
=

(
1 +

γ − 1
2

ζM 2
2e

)γ/(γ−1)

=
(

1 +
0.0113 · 0.5392

6

)4

= 1.0022

and the loss of stagnation pressure across the stator is therefore

Δp0LS = p01 − p02e = 750.0(1 − 1/1.0022) = 1.64 kPa

To determine the stagnation pressure loss across the gap, the stagnation Mach
number at the inlet to the gap is needed. With T02e = T01, it is

M02e =
V2e√
γRT02

=
326.0√

1.333 · 287 · 1015
= 0.523

The stagnation loss coefficients for the gap are

Yr = 0.193
(

1 − 10.0
10.5

)
= 0.00919

Yα = 1 + 0.0641(71 − 70) + 0.0023(71 − 70)2 = 1.0664

YM = 1 + 0.6932(0.523 − 0.8) + 0.4427(0.523 − 0.8)2 = 0.8420

Yb = 1 + 0.0923
(

10.5
0.9

− 10
)

+ 0.0008
(

10.5
0.9

− 10
)2

= 1.1561
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and the overall loss coefficient comes out as

Yg = 0.00919 · 1.0664 · 0.8420 · 1.1561 = 0.00954

With the static pressure at the inlet of the rotor

p2e = p02e

(
T2e

T02

)γ/(γ−1)

= 748.36
(

968.7
1015

)4

= 620.9 kPa

so that the stagnation pressure there is

p02 = p02e − Yg(p02e − p2e) = 748.36 − 0.00954(748.36 − 620.9) = 747.14 kPa

and the stagnation pressure loss across the gap is

Δp0LG = p02e − p02 = 748.36 − 747.14 = 1.22 kPa

Hence, upstream of the rotor the stagnation pressure loss is

Δp0LS + Δp0LG = 1.64 + 1.22 = 2.86 kPa
�

Note that the Mach number increases across the stator from 0.14 to 0.539 owing to the
acceleration of the flow as a result of the turning. There is a significant density change
associated with this acceleration.

As has been shown above, across the gap the flow angle does not change for irrotational
flow. Since the gap is also quite narrow, the area does not decrease greatly and the
acceleration of the flow is rather slight. For this reason, it is possible to assume the flow to
be incompressible across the gap and calculate it by the formula

Vr2 = Vr2e
r2e

r2

This cannot be used for the stator flow, and using it in the foregoing example would have
yielded for the radial component of the stator exit velocity the value

Vr2e = Vr1
r1

r2e
= 81.86

12.0
10.5

= 93.55 m/s

and the exit velocity would have been

V2e =
Vr2e

cos α2
=

93.55
cos(71◦)

= 287.4 m/s

This would have been a significant error as the correct value came out to be 326.0 m/s.

10.5 DESIGN OF THE INLET OF A RADIAL INFLOW TURBINE

The foregoing developments and examples illustrate the basic methods for carrying out
design calculations for radial inflow turbines. The loss calculations for the stator and
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interblade gap, together with the expression for the overall efficiency and its appropriate
value obtained from the Balje diagram, are sufficient to determine the loss through the
rotor. Table 10.1 gives the appropriate geometric length ratios for a design. Methods to
obtain some of these values are developed from the theory discussed in this section. This
work has been carried out, among others, by Rodgers and Geiser [75], Rohlik [76], and
Whitfield [94]. The extensive study by Whitfield as been included in the book by Whitfield
and Baines [95]. The following development follows their studies.

Since
sw =

w

cpT01

the blade loading coefficient is

ψ =
w

U 2
2

=
swcpT01

U 2
2

=
1

M 2
0u

sw

γ − 1

in which the blade stagnation Mach number is

M0u =
U2√
γRT01

This is based on the inlet stagnation temperature as a reference value.
If at the exit, the flow has no swirl component and at the inlet, the relative velocity is

radially inward, then w = U 2
2 , and the blade-loading coefficient is

ψ =
w

U 2
2

= 1

Experiments have shown that efficiency is increased if−40◦ < β2 < −20◦. This introduces
a negative incidence into the flow since the blade angle χ2 is invariably zero. The
blade-loading coefficient is now given by

ψ =
Vu2

U2
=

U2 + Wu2

U2
= 1 + φ tan β2

in which the flow coefficient is defined as

φ =
Vr2

U2

The flow angle of the relative velocity is in the range β2 min ≤ β2 ≤ 0, in which β2 min is
chosen such that the blade loading coefficient falls into the range 0 ≤ ψ ≤ 1.

10.5.1 Minimum inlet Mach number

Whitfield [94] has shown how to optimize the inlet to the rotor by choosing (for a given
power ratio) the absolute and relative flow angles that give the smallest inlet Mach number.
Improper flow angles might lead to high inlet Mach numbers, and a possibility for choking.
Following his development, the tangential velocity is first written as

Vu2 = U2 + Wu2 = U2 + Vu2
tan β2

tan α2
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in which the second equation follows by using

Vu2 = Vr2 tan α2 Wu2 = Wr2 tan β2

together with Vr2 = Wr2. Multiplying through by Vu2 and rearranging gives

V 2
u2

(
1 − tan β2

tan α2

)
= U2Vu2

The right side is the work delivered, and since this is related to the power ratio, it will be
taken to be a fixed quantity. Dividing both sides by V 2

2 leads to

sin2α2

(
1 − tan β2

tan α2

)
= u (10.8)

in which

u =
U2Vu2

V 2
2

=
U2Vu2

c2
02

c2
02

V 2
2

or
u =

sw

(γ − 1)
1

M 2
02

=
s

m

where the following notation has been introduced:

s =
sw

γ − 1
m = M 2

02

The inlet stagnation Mach number has been defined as

M02 =
V2√

γRT02

which can be written also as

M 2
02 =

V 2
2

c2
02

=
V 2

2

c2
2

c2
2

c2
02

= M 2
2

T2

T02

so that

M 2
02 =

M 2
2

1 + γ−1
2 M 2

2
(10.9)

Dividing Eq. (10.8) next by cos2α2, and noting that 1/cos2α2 = tan2α2 + 1, gives

(1 − u)tan2α2 − tan β2 tan α2 − u = 0

or

(m − s)tan2α2 − m tan β2 tan α2 − s = 0 (10.10)

For given values of sw, M2, and β2, this quadratic equation can be solved for tan α2. The
solution is displayed in Figure 10.7 with β2 and sw as parameters.
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Figure 10.7 Inlet Mach number as a function of the nozzle angle for different relative flow angles
and the power ratio with γ = 1.4.

For a given power ratio and relative flow angle, the minimum of each curve is sought
next. To find it, let a = tan α2 and b = tan β2. This puts Eq. (10.10) into the form

(m − s)a2 − mba − s = 0 m =
s(1 + a2)
a(a − b)

(10.11)

The minimum for m, for a fixed s and b, is obtained by setting the derivative of this with
respect to a to zero. Thus

dm

da
=

2s(a − b)a2 − s(2a − b)(1 + a2)
a2(b − a)2 = 0,

and this reduces to

ba2 + 2a − b = 0

Solving this quadratic equation gives

a =
−1 ±

√
1 + b2

b
(10.12)

Substituting this value of a into Eq. (10.11) gives

m =
2s

1 ∓
√

1 + b2
(10.13)
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for the minimum of m as a function of s and β2. Since

√
1 + b2 =

√
1 + tan2β2 =

1
cos β2

Eq. (10.12) becomes

tan α2 =
− cos β2 ± 1

sin β2
(10.14)

Next, making use of the identities

cos β2 = cos2 β2

2
− sin2 β2

2
sinβ2 = 2 sin

β2

2
cos

β2

2

in Eq. (10.14) leads to

tan α2 =
−cos2(β2/2) + sin2(β2/2) ± 1

2 sin(β2/2) cos(β2/2)

The positive sign gives

tan α2 = tan
β2

2

which is rejected because Figure 10.7 shows that α2 > 0 and β2 < 0. The negative sign
gives

tan α2 = − cot
β2

2
or tanα2 = tan

(
π

2
+

β2

2

)

hence,

α2 =
π

2
+

β2

2

when m is minimum. Substituting this into Eq. (10.13) gives

m =
2s cos β2

cos β2 ∓ 1

Since the minus sign gives a negative m, the positive sign is chosen. This then gives

M 2
02 min =

2s cos β2

1 + cos β2
(10.15)

Equation (10.9) shows that

M 2
2 =

M 2
02

1 − γ − 1
2

M 2
02

(10.16)

Substituting the value of M02 min from Eq. (10.15) into this gives, after simplification

M2 min =
[(

2sw

γ − 1

)
cos β2

1 + (1 − sw) cos β2

]1/2

(10.17)
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The minima for the curves, as seen from Figure 10.7, are at nozzle angles in their usual
range between 60◦ < α2 < 80◦. For a given M2, sw, and β2, there may be two angles α2
that satisfy Eq. (10.10). The smaller angle is to be chosen. The larger angles put a limit on
how large the inlet Mach number can be. As α2 → 90◦, tan α2 → ∞, and the second of
Eqs. (10.11) shows that m = s. This means that at α2 = 90◦ the inlet Mach number is

M2 =
[

2sw

(γ − 1)(2 − sw)

]1/2

In particular, for γ = 1.4 and sw = 0.15, M2 = 0.637, as the graph shows. Figure 10.8
shows how the minimum Mach number depends on the power ratio and that its dependence
on the angle β2, and correspondingly on α2, is weak.
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Figure 10.8 Minimum Mach number as a function of the power ratio for γ = 1.4 with angle β2 as
a parameter.

� EXAMPLE 10.7

Gas with γ = 1.4, and R = 287 J/(kg K) flows into a radial inflow turbine. The
inlet stagnation temperature is T01 = 1100 K, and the design-specific work is
w = 165.74 kJ/kg. (a) Find the value of the total-to-static efficiency that would
give a pressure ratio of p01/p3 = 2.0. (b) At what angle should the flow leave the
stator in order for M2 = 0.62 be the minimum possible Mach number at the exit of
the stator? (c) Find the blade speed at this condition. (d) Assume that the blade speed
is increased to U2 = 460 m/s and that the flow angle and the magnitude of the exit
velocity from the stator remain the same. Find the new value for the relative flow
angle β2 entering the rotor.

Solution: (a) From the expression

w = swcpT01
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the power ratio is

sw =
165740

1004.5 · 1100
= 0.15

The pressure ratio is related to the power ratio and the total-to-static efficiency by
Eq. (10.3), so that

ηts =
sw

1 −
(

p3

p01

)(γ−1)/γ
=

0.15
1 − 0.51/3.5 = 0.835

(b) The flow angle at the minimum inlet Mach number is obtained from the equation

M2 =
[(

2sw

γ − 1

)
cos β2

1 + (1 − sw) cos β2

]1/2

which, when solved for cos β2, gives

cos β2 =
M 2

2

2sw/(γ − 1) − (1 − sw)M 2
2

β2 = −24.74◦

The minus sign must be chosen for the angle. At the minimum

α2 =
π

2
+

β2

2
= 90◦ − 12.37◦ = 77.63◦

(c) To determine the blade speed, the velocity leaving the nozzle is needed, and
therefore the stagnation Mach number is calculated first as follows:

M02 =
M2√

1 +
γ − 1

2
M 2

2

=
0.62√

1 + 0.2 · 0.622
= 0.5975

The exit velocity from the stator is therefore

V2 = M02

√
γRT02 = 0.5975

√
1.4 · 287 · 1100 = 397.2 m/s

and the tangential and radial components are

Vu2 = V2 sin α2 = 397.2 sin(77.63◦) = 388.0 m/s

Vr2 = V2 cos α2 = 397.2 cos(77.63◦) = 85.10 m/s

The blade speed can be obtained, for example, from

U2 =
w

Vu2
=

165740
388

= 427.2 m/s

(d) If the blade speed is increased to U2 = 460 m/s and the nozzle exit speed and
direction are the same, then the new work done is

w = U2Vu2 = 460 · 388 = 178.48 kJ/kg
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The new value for the tangential component of the relative velocity is

Wu2 = Vu2 − U2 = 388.0 − 460.0 = −72.0 m/s

Since the radial component of the inlet velocity remains the same, the flow angle is

β2 = tan−1
(

Wu2

Wr2

)
= tan−1

(
−72.0

85.1

)
= −40.2◦

It is expected that the total-to-static efficiency will be somewhat lower at this angle.
If the efficiency drops greatly, adjustable stator blades may be used to adjust the
exit stator angle, which then influences the incidence. However, in a turbocharger,
an increase in blade speed comes from a larger cylinder pressure and a larger flow
rate through the engine. Hence, the radial component of the inlet velocity to the
rotor also increases. The control of the stator blade angle must account for this
as well. �

10.5.2 Blade stagnation Mach number

The blade stagnation Mach number is yet another parameter of interest. It is obtained from
the definition of the power ratio, which may be written as

U2

c01

Vu2

c01
=

sw

γ − 1

so that
M0u =

U2

c01
=

sw

γ − 1
c01

c2

c2

V2 sinα2

Since T01 = T02, this may be written as

M0u =
sw

γ − 1
1

M2 sin α2

√
T02

T2

and further as

M0u =
sw

γ − 1

(
1 +

γ − 1
2

M 2
2

)1/2

M2 sinα2
(10.18)

For a given power factor sw/(γ − 1), the relative flow angle β2, and Mach number M2,
Eq. (10.10) can be solved for α2 and the nondimensional blade speed M0u can be calculated
from Eq. (10.18). These results are shown in Figure 10.9. Even if the blade speed is higher
than the absolute velocity, the blade stagnation Mach number is based on the larger sonic
speed and therefore for large M2 it does not become as high as the inlet Mach number.
This graph is useful when it is linked to the maximum attainable efficiency.

Experimental data for the total-to-static efficiency, measured by Rodgers and Geiser
[75], are shown in Figure 10.10. The abscissa in this figure is the ratio of the blade speed
to spouting velocity. Since

1
2
V 2

0 = cpT01

(
1 − T3ss

T01

)
= cpT01

sw

ηts
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Figure 10.9 Blade stagnation Mach number as a function of M2 for γ = 1.4 and for various power
ratios and β2 = −20◦.
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Figure 10.10 Total-to-static efficiency contours. Source: Redrawn from the data of Rodgers and
Geiser [75].

the ratio of the spouting velocity to the stagnation speed of sound is

V0

c01
=

√
2sw

(γ − 1)ηts

hence,

M0u =
U2

V0

√
2sw

(γ − 1)ηts

For γ = 4
3 , ηts = 0.9, and sw = 0.15, the factor involving the square root is unity. For

values ηts = 0.8 and sw = 0.2, this equation yields M0u = 1.22U2/V0. Hence, a turbine
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with a reasonably low power ratio and stagnation blade Mach number in the range
0.70 < M0u < 0.75 operates in the region of highest efficiency. Also, Figure 10.9 shows
that under these conditions M2 is quite high.

10.5.3 Inlet relative Mach number

The inlet relative Mach number can be calculated by first writing the component equations

V2 sin α2 = U2 + W2 sinβ2 V2 cos α2 = V2 cos β2

and then squaring and adding them. This yields

V 2
2 = U 2

2 + W 2
2 + 2U2W2 sin β2

and after each term is divided c2
2 = γRT2, and the definition Mu = U2/c2 is substituted,

then after rearrangement this reduces to

M 2
2R + 2Mu sin β2M2R + M 2

u − M 2
2 = 0

The solution of this is

M2R = −Mu sin β2 +
√

M 2
2 − M 2

ucos2β2

in which the term Mu may be related to M2 by

Mu = M0u

√
T02

T2
= M0u

(
1 +

γ − 1
2

M 2
2

)1/2

=
(

sw

γ − 1

) 1 +
γ − 1

2
M 2

2

M2 sin α2

because the blade stagnation Mach number M0u is given by Eq. (10.18). These results are
plotted in Figure 10.11.
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Figure 10.11 The relative inlet Mach number M2R as a function of M2 for various power ratios
and for β2 = −20◦ and γ = 1.4.
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10.6 DESIGN OF THE EXIT

The blade height at the exit is to be chosen sufficiently large to reduce the relative velocity
low enough that the relative Mach number at the shroud does not reach unity. In this
section, its value is related to a nondimensional mass flow rate and the exit Mach number.
In addition, the optimum angle of the relative flow at the exit is found.

10.6.1 Minimum exit Mach number

If the turbine operates under conditions such that the absolute velocity at the exit is axial,
then the mass balance can be written as

ṁ = ρ3V3A3 = ρ3V3π(r2
3s − r2

3h) = ρ3V3πr2
3s(1 − κ2)

in which κ = r3h/r3s. This can be changed to

ṁ =
p3

RT3
M3

√
γRT3πr2

3s(1 − κ2)

Multiplying and dividing the right side by p01 = ρ01RT01 and introducing the inlet
stagnation speed of sound c2

01 = γRT01 converts this equation into

ṁ = ρ01c01πr2
3s(1 − κ2)

p3

p01

(
T01

T3

)1/2

M3

A form of a flow coefficient may now be defined as

Φ =
ṁ

ρ01c01πr2
2

=
p3

p01

(
T01

T3

)1/2

M3
r2
3s

r2
2

(1 − κ2)

in which the denominator is large because it is a product of the stagnation density and the
speed of sound at the upstream conditions (conditions at which both of these are large) and
a fictitious large flow area πr2

2 . Substituting U3s/U2 = r3s/r2 into this gives

Φ =
p3

p01

(
T01

T3

)1/2

M3
U 2

3s

U 2
2

(1 − κ2) (10.19)

Next, the absolute Mach number at the exit is related to the exit relative Mach number at
the shroud of the blade. The relative velocity at the shroud is

W 2
3s = V 2

3 + U 2
3s

Dividing through by U 2
2 leads to the following expression

U 2
3s

U 2
2

=
W 2

3s

U 2
2

− V 2
3

U 2
2

=
W 2

3s

c2
3

c2
3

c2
01

c2
01

U 2
2
− V 2

3

c2
3

c2
3

c2
01

c2
01

U 2
2

=
M 2

3Rs − M 2
3

M 2
0u

T3

T01
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Substituting this into Eq. (10.19) leads to

Φ =
p3

p01

(
T3

T01

)1/2

M3
M 2

3Rs − M 2
3

M 2
0u

(1 − κ2)

which when solved for M 2
3Rs gives

M 2
3Rs = M 2

3 +
ΦM 2

0u

1 − κ2

1
M3

(
1 +

γ − 1
2

M 2
3

)1/2 (
p01

p3

) (
T01

T03

)1/2

where the pressure ratio and the stagnation temperature ratio are given by

p01

p3
=

(
1 − sw

ηts

)−γ/(γ−1)
T01

T03
=

1
1 − sw

Defining B as

B = Φf

(
1 − sw

ηts

)−γ/(γ−1) 1√
1 − sw

in which
Φf = ΦM 2

0u/(1 − κ2) (10.20)

the relative Mach number at the exit has the form

M 2
3Rs = M 2

3 + B

(
1

M 2
3

+
γ − 1

2

)1/2

The minimum value of M 2
3Rs as a function of M 2

3 , with other parameters held fixed, is
obtained by differentiation:

dM 2
3Rs

dM 2
3

= 1 − B

2M 4
3

(
1

M 2
3

+
γ − 1

2

)− (1/2)

Setting this to zero gives the following equation for M3,

M 8
3 +

2
γ − 1

M 6
3 − B2

2(γ − 1)
= 0

This fourth-order polynomial equation in M 2
3 is now numerically solved for M 2

3 , and then
M3Rs is determined from

M3Rs =

[
M 2

3 +
B

M3

(
1 +

γ − 1
2

M 3
3

)1/2
]1/2

The results are shown graphically in Figure 10.12, with the minima of M3Rs marked by
small circles. Since the absolute velocity at the exit is axial, it follows that

M3

M3Rs
=

V3

W3s
= cos β3s
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Figure 10.12 Relative Mach number as a function of Mach number, with Φf as a parameter. The
pressure ratio is p01/p3 = 2, with ηts = 0.85 and γ = 1.4. The locations of the minima of M3Rs are
marked by circles.
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Figure 10.13 The flow angle of the relative velocity at the exit as a function of Mach number, with
Φf as a parameter. The pressure ratio is p01/p3 = 2, with ηts = 0.85 and γ = 1.4. The locations of
the angle corresponding to minima of M3Rs are marked by circles.

This equation shows that lines of constant β3s are straight-lines in Figure 10.12. The
relative flow angle is plotted in Figure 10.13. It shows that the minimum relative Mach
number at the exit occurs when β3 = −56◦ for p01/p3 = 2 and ηts = 0.85. Clearly, since
the absolute velocity is axial, the Mach number for the absolute flow is less than that for
the relative flow.
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10.6.2 Radius ratio r3s/r2

From the exit velocity diagram,

sin |β3| =
U3

W3

This equation applies at every radial location r3 of the exit, and r3 now denotes a radius
that varies from the hub to the tip. It is assumed that the angle β3 changes with radius such
that the exit velocity V3 is uniform. With U3 = U2r3/r2, this may be written as

sin |β3| =
U2

W2

W2

W3

r3

r2

Therefore, the radius ratio can be written as

r3

r2
=

W3

W2

W2

U2
sin |β3|

From the inlet velocity diagram, the tangential components give

U2 = V2 sinα2 − W2 sinβ2

or
U2

W2
=

V2

W2
sin α3 − sinβ2

From the radial components,

V2 cos α2 = W2 cos β2
V2

W2
=

cos β2

cos α2

Substituting this into the previous expression gives

U2

W2
=

sinα2 cos β2 − cos α2 sin β2

cos α2
=

sin(α2 − β2)
cos α2

which is just the law of sines.
The radius ratio may now be written as

r3

r2
=

W3

W2

cos α2 sin |β3|
sin(α2 − β2)

If the angle β2 is chosen to be that for a minimum inlet Mach number, then β2 = 2α2 − π,
and sin(α2 − β2) = sinα2, and this expression reduces to

r3

r2
=

W3

W2

sin |β3|
tan α2

(10.21)

At the shroud, it is clearly
r3s

r2
=

W3s

W2

sin |β3s|
tan α2
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Substituting α2 = π/2 + β2/2 gives the alternative form

r3s

r2
=

W3s

W2
tan

β2

2
sin β3s (10.22)

Rohlik [76] suggested that the relative velocity ratio W3/W2 = 2 gives a good design, or
if the relative velocity at the shroud is used, then W3s/W2 = 2.5 is appropriate [95].

10.6.3 Blade height-to-radius ratio b2/r2

The final parameter to be determined is the blade height-to-radius ratio b2/r2 at the inlet.
By casting the mass balance

ṁ = ρ2Vr2A2 = ρ3V3A3

in terms of the flow functions, the area ratio becomes

A3

A2
=

F2 cos α3

F3

√
T03

T02

p02

p03
=

F2 cos α3

F3

√
T03

T02

p02

p01

p01

p3

p3

p03

The stagnation pressure ratio p02/p01 is related to the static temperature ratio T2/T2s by
integrating the Gibbs equation along the constant-pressure line p2 and along the line of
constant stagnation temperature T01 = T02. Equality of entropy changes then gives

p02

p01
=

(
T2s

T2

)γ/(γ−1)

From the definition of the static enthalpy loss coefficient in the stator

ζS =
h2 − h2s

1
2V

2
2

the relationship
T2s

T2
= 1 − ζS

γ − 1
2

M 2
2

is obtained. In addition,

T03

T01
= 1 − sw and

p3

p01
=

(
1 − sw

ηts

)γ/(γ−1)

so the area ratio can now be written as

A3

A2
=

F2 sin α2

F3

(
1 − sw

ηts

)−γ/(γ−1)√
1 − sw

⎛
⎜⎝1 − ζS

γ − 1
2

M 2
2

1 +
γ − 1

2
M 2

3

⎞
⎟⎠

γ/(γ−1)

(10.23)

The blade height at the inlet is now obtained by writing the reciprocal of the area ratio as

A2

A3
=

2πr2b2

π(r2
3s − r2

3h)
= 2

(
r2

r3s

)2
b2

r2

1
1 − κ2
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Figure 10.14 Blade width-to-radius ratio as a function of the relative velocity ratio W3s/W2 for
relative flow angles corresponding to minimum Mach number at the inlet and at axial exit. The
pressure ratio is p01/p3 = 2, with ηts = 0.85, γ = 1.4, and the static enthalpy loss coefficient of the
stator is ζS = 0.15. The exit hub to shroud radius ratio is κ = 0.2.

in which κ = r3h/r3s. Solving for the blade height gives

b2

r2
=

1
2

(
r3s

r2

)2

(1 − κ2)
A2

A3

For a radial inflow turbine with a pressure ratio p01/p3 = 2, total-to-static efficiency
ηts = 0.85, the stator static enthalpy loss coefficient ζS = 0.15, κ = 0.2, and γ = 1.4, the
graphs for b2/r2 are shown in Figure 10.14. Turbines operated at low power factor have a
blade height of about one-fourth the inlet radius r2.

10.6.4 Optimum incidence angle and the number of blades

For centrifugal compressors, the Stanitz slip factor was given as

σ =
Vu2

V ′
u2

with σ = 1 − 0.63π

Z

in which Z is the number of blades and V ′
u2 is the tangential velocity component in the

absence of slip. For radial blades V ′
u2 = U2. Using this expression at the inlet to the rotor

gives
Vu2

U2
= 1 − 0.63π

Z

Since

Vu2 = U2 + Wu2 = U2 + Wr2 tan β2 = U2 + Vr2 tan β2 = U2 + Vu2
tan β2

tan α2
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the ratio Vu2/U2 becomes

Vu2

U2
=

tan α2

tan α2 − tan β2

At the condition of minimum inlet Mach number, at which α2 = π/2 − β2/2, this reduces to

Vu2

U2
= cos β2

Hence, the number of blades is related to the β2 by

cos β2 = 1 − 0.63π

Z

If this angle corresponds to the optimum nozzle angle for a minimum Mach number at the
entry, then the substitution β2 = 2α2 − π gives

cos α2 =
1√
Z

This formula for the optimum nozzle angle was developed by Whitfield [94]. The second
half of this chapter has been based on his original research on how the rotor blade design
might proceed. The optimum angle is plotted in Figure 10.15 along with Glassman’s
suggestion

Z =
π

3
(110 − α2) tan α2

These results agree when the number of blades is 13, but the incidence in the Glassman
correlation decreases more rapidly as the number of blades increases.

10 15

–15°

–25°

–35°

20

Z

β
2

Whitfield

Glassman

–20°

–30°

–40°
25 30 35

Figure 10.15 Optimum incidence angle β2 as a function of the number of blades Z according to
Glassman [30] and Whitfield [94].
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� EXAMPLE 10.8

Combustion gases with γ = 4
3 and R = 287 J/(kg K) enter the stator of an radial

inflow turbine at T01 = 1050 K and p01 = 250 kPa. The power produced by the
turbine is Ẇ = 232 kW at shaft speed of 35000 rpm. The Mach number at the exit
of the stator is M2 = 0.69, and the flow angle there is α2 = 67◦. The efficiency
of the turbine is ηts = 0.89, and the static enthalpy loss coefficient for the stator
is ζS = 0.15. There is no swirl in the exit flow, and the design seeks to have the
incidence at the inlet to be at angle β2 = −18.9◦. Find (a) the exit blade radius
entering the turbine and (b) the exit static pressure. (c) Given the exit Mach number
M3 = 0.5 and a ratio of the hub-to-shroud radius of blade of κ = 0.3, find the angle
of the relative flow at the shroud radius of the exit. Find (d) the ratio W3s/W2 for the
machine and (e) the blade height b2 at the inlet.

Solution: (a) The stagnation speed of sound at the exit of the stator is

c01 =
√

γRT01 =
√

1.333 · 287 · 1050 = 633.9 m/s

and the stagnation Mach number leaving the stator is therefore

M02 =
M2√

1 + γ−1
2 M 2

2

=
0.69√

1 + 0.692

6

= 0.664

This gives the velocity leaving the stator the value

V2 = M02c01 = 0.664 · 633.9 = 421.0 m/s

The velocity components are then

Vu2 = V2 sin α2 = 421.0 sin(67◦) = 387.5 m/s

Vr2 = V2 cos α2 = 421.0 cos(67◦) = 164.5 m/s

With Wr2 = Vr2, the relative velocity is

W2 =
Wr2

cos β2
=

164.49
cos(−18.9◦)

= 173.9 m/s

and its tangential component is

Wu2 = W2 sinβ2 = 173.9 · sin(−18.9◦) = −56.3 m/s

The blade speed comes out to be

U2 = Vu2 − Wu2 = 387.5 + 56.3 = 443.8 m/s,

and the radius has the value

r2 =
U2

Ω
=

443.8 · 30
35000 · π = 0.121 m
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(b) The work delivered by the turbine is

w = U2Vu2 = 443.8 · 387.5 = 172.00 kJ/kg

and the stagnation temperature at the exit is therefore,

T03 = T02 −
w

cp

= 1050 − 172.00
1.148

= 900.2 K

With the total-to-static efficiency ηts = 0.89, the isentropic work becomes

ws =
w

ηts
=

172.0
0.89

= 193.26 kJ/kg

so that the exit static temperature at the end of the isentropic process has the value

T3ss = T01 −
ws

cp

= 1050 − 193.26
1.148

= 881.7 K

and the static pressure at the exit is

p3 = p01

(
T3ss

T01

)γ/(γ−1)

= 250
(

881.7
1050

)4

= 124.3 kPa

(c) To calculate the conditions at the shroud, first the mass flow rate is obtained from

ṁ =
Ẇ

w
=

232
172

= 1.349 kg/s

and the stagnation density at the inlet is

ρ01 =
p01

RT01
=

250000
287 · 1050

= 0.830 kg/m3

Using these, the nondimensional mass flow rate becomes

Φ =
ṁ

ρ01c01πr2
2

=
1.349

0.830 · 633.9 · π · 0.1212 = 0.0557

The stagnation blade Mach number has the value

Mu =
U2

c01
=

443.8
633.9

= 0.70

which is used to calculate the modified nondimensional flow rate

Φf =
ΦM 2

u

(1 − κ2)
=

0.0557 · 0.702

1 − 0.09
= 0.030

With the exit Mach number M3 = 0.5, the relative shroud Mach number can now be
obtained from

M3Rs =

[
M 2

3 +
Φf

M3

(
1 +

γ − 1
2

M 2
3

)1/2
p01

p3

(
T01

T03

)1/2
]1/2

=

[
0.52 +

0.03
0.5

√
1 +

0.52

6
250

124.3

√
1050
900.2

]1/2

= 0.619
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The flow angle is therefore

β3s = −cos−1
(

M3

M3Rs

)
= −cos−1

(
0.50
0.619

)
= −36.1◦

(d) To calculate the relative velocity at the shroud, the temperature T3 is needed. It
is given by

T3 =
T03

1 + γ−1
2 M 2

3
=

900.2
1 + 0.52

6

= 864.2 K

The relative velocity at the shroud is therefore

W3s = M3Rs

√
γRT3 = 0.619

√
1.333 · 287 · 864.2 = 355.9 m/s

and the ratio of relative velocities is

W3s

W2
=

355.9
173.86

= 2.05

This is in the typical range for good designs.
(e) To determine the blade height at the inlet, the flow areas are calculated next. At
the exit, the shroud radius is obtained by first calculating the blade speed there. Its
value is

U3s = W3s sin |β3s| = 355.9 sin |36.1◦| = 209.7 m/s

The shroud radius is now obtained as

r3s = r2
U3s

U2
= 0.121

209.7
443.8

= 0.0572 m

The exit area is of size

A3 = π(r2
3s − r2

3h) = πr2
3s(1 − κ2) = π · 0.05722(1 − 0.32) = 0.00936 m2

The flow functions at the inlet and exit of the turbine blade are

F2 =
γM2√
γ − 1

(
1 +

γ − 1
2

M 2
2

)−(γ+1)/(2γ−2)

=
4 · 0.69

√
3

3

(
1 +

0.692

6

)−3.5

= 1.220

F3 =
γM3√
γ − 1

(
1 +

γ − 1
2

M 2
3

)−(γ+1)/(2γ−2)

=
4 · 0.5

√
3

3

(
1 +

0.52

6

)−3.5

= 1.001

The area ratio is now

A3

A2
=

F2 cos α2

F3

√
T03

T01

p01

p3

(
1 − ζS

γ−1
2 M 2

2

1 + γ−1
2 M 2

3

)γ/(γ−1)

=
1.220 cos 67◦

1.001

√
900.2
1050

250
124.3

(
1 − 0.150.692

6

1 + 0.52

6

)4

= 0.718

so that

A2 =
A2

A3
A3 =

0.00936
0.718

= 0.01304 m2
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and the blade height is

b2 =
A2

2πr2
=

0.01304
2π · 0.121

= 0.0171 m

or b2 = 1.71 cm. �

EXERCISES

10.1 Combustion gases with γ = 4
3 and cp = 1148 J/(kg K), at T01 = 1050 K and

p01 = 220 kPa enter a turbine with radial blades at the inlet of the rotor. At the exit
of the stator M2 = 0.9. The flow leaves the turbine without exit swirl and is diffused
to atmospheric pressure at p4 = 101.3 kPa. The total-to-total efficiency of the turbine is
ηtt = 0.89. Find the stator exit angle. [Ans: 54.3◦]

10.2 During a test, air flows through a radial inflow turbine at the rate of ṁ = 0.323 kg/s
when the shaft speed is 55000 rpm. The inlet stagnation temperature is T01 = 1000 K, and
the pressure ratio is p01/p3 = 2.1. At the inlet, the blades are radial with the blade radius
r2 = 6.35 cm. The flow leaves the blades without swirl. Find (a) the spouting velocity, (b)
the total-to-static efficiency, and (c) the power delivered. [Ans: (a) 623.5 m/s, (b) 0.688,
(c) 43.2 kW]

10.3 A radial turbine delivers Ẇ = 80 kW as its shaft turns at 44000 rpm. Combustion
gases with γ = 4

3 and cp = 1148 J/(kg K) enter the rotor with relative velocity radially
inward at radius r2 = 8.10 cm. At the exit, the shroud radius is r3s = 6.00 cm and at
this location M3Rs = 0.59. The exit pressure is p3 = 101.3 kPa and exit temperature is
T3 = 650 K. Find the hub-to-shroud ratio κ = r3h/r3s at the exit. [Ans: 0.268]

10.4 Combustion gases with cp = 1148 J/(kg K) and gas constant R = 287 J/(kg K)
enter the stator of a radial inflow turbine at the stagnation pressure p01 = 205 kPa and
stagnation temperature T01 = 980 K. They enter the rotor at the Mach number M2 = 0.8
and exhaust into the atmosphere at 101.3 kPa. The total-to-total efficiency of the turbine
is ηts = 0.83. Find (a) the angle at which the flow enters the rotor if the angle β2 = 0
and also determine the value of U2. (b) Repeat part (a) if the angle β2 = −10◦. [Ans: (a)
56.52◦, 388.4 m/s, (b) 51.33◦, 414.9 m/s]

10.5 Air enters a radial inflow turbine at T01 = 400 K and p01 = 200 kPa. The absolute
velocity is at an angle α2 = 65◦ at the inlet, where the blades are radial. The relative
velocity at the exit is axial and the air flows from there to atmosphere at p3 = 101.3 kPa.
The shaft operates at 30000 rpm and the inlet radius is r2 = 10.5 cm. The mean radius at
the exit is r3 = 5.7 cm. If the power output is Ẇ = 75 kW, find the mass flow rate. [Ans:
0.977 kg/s]

10.6 A radial inflow turbine rotor, with rotor inlet radius r2 = 9.3 cm and blade
height b2 = 1.8 cm, turns at 42000 rpm. Its working fluid is a gas mixture with cp =
1148 J/(kg K) and γ = 4

3 . The exhaust pressure is p3 = 101.3 kPa, and the total-to-static
efficiency is ηts = 0.82. The nozzle (stator) angle is α2 = 67◦, and the velocity coefficient
for the flow through the stator is cv = 0.96. The Mach number at the exit of the stator is
0.8. Find (a) the inlet stagnation pressure to the stator, and (b) the stagnation pressure loss
across the stator. [Ans: (a) 237.5 kPa, (b) 8.8 kPa].
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10.7 Determine the rotor loss coefficient ζR in Example 10.4. Also, show that the
volumetric flow rate at the exit is Q3 = 0.916 m3/s. [Ans: 0.626]

10.8 Gas with γ = 4
3 and cp = 1148 K/(kg K) flows in a radial inflow turbine, in

which the inlet stagnation temperature is T01 = 980 K and the inlet stagnation pressure
is p01 = 205.0 kPa. The exit pressure is p3 = 101.3 kPa, and the exit temperature is
T3 = 831.5 K. The stagnation temperature at the exit is T03 = 836.7 K. The pressure at the
inlet to the rotor is T2 = 901.6 K, and the pressure is p2 = 142.3 kPa. The shaft speed is
160000 rpm, and the radius ratio is r3/r2 = 0.57. Assume that the relative velocity is radial
at the inlet and that there is no exit swirl. Find (a) the total-to-static efficiency, (b) the flow
angles α2 and β3, and (c) ζS and ζR. [Ans: (a) 0.905, 72.9◦, −64.7◦, (c) 0.0903, 0.0914]

10.9 For an exit with no swirl, show that

W3(r)
W2

=
sin(α2 − β2)

cos α2

r3

r2

√
r2

r2
3

+ cot2β3

in which r is the radius at an arbitrary location of the exit plane of the blade and r3 and β3
are the mean values of the exit radius and angle. Show further that at the mean radius

W3

W2
= − sin(α2 − β2)

cos α2 sin β3

r3

r2

and plot the angle β3 for the range 0.53 < r3/r2 < 0.65 when W3/W2 = 2 and α2 = 70◦

and β2 = −40◦. [Ans: r3/r2 = 0.62, β3 = −58.4◦]

10.10 An inexpensive radial inflow turbine has flat radial blades at both the inlet and
the exit of the rotor. The shaft speed is 20000 rpm. The radius of the inlet to the rotor is
10 cm, and the mean radius at the exit is 6 cm. The ratio of blade widths is b3/b2 = 1.8
and the flow angle is α2e = 75◦. The inlet stagnation temperature is T01 = 420 K and the
exhaust flows into the atmospheric pressure 101.3 kPa. Assume that the gases that flow
through the turbine have γ = 4

3 and cp = 1148 J/(kg K) and the velocity coefficient of
the nozzle is cN = 0.97 and the rotor loss coefficient is ζR = 0.5. (a) If the power output is
10 kW, what is the mass flow rate? Find (b) the static temperature at the exit of the stator
and the static temperature at the exit of the rotor, (c) the blade height at the inlet and the
exit, (d) the total-to-total efficiency, and the total-to-static efficiency. [Ans: (a) 0.356 kg/s,
(b) 399.5 K, 387.2 K, (c) 0.100 m, 0.018 m (d) 0.924, 0.704]

10.11 Combustion gases with γ = 4
3 and cp = 1148 J/(kg K) enter a stator of a radial

flow turbine with T01 = 1150 K, p01 = 1300 kPa, and M1 = 0.5, and with a flow rate
of ṁ = 5.2 kg/s and leave with the flow angle α2e = 72◦. The radius of the inlet is
r1 = 17.4 cm, the exit from the stator is at r2e = 15.8 cm, and the inlet to the rotor
is at r2 = 15.2 cm. The chord of the stator is c = 4.8 cm, and the width of the channel is
b = 1.2 cm. The rotational speed of the rotor is 31000 rpm and the blade loading coefficient
is ψ = 1.3. The exit static pressure is p3 = 320 kPa. The trailing-edge thickness of the 17
stator vanes can be ignored. Find (a) the total-to-static efficiency of the turbine, (b) the
stagnation pressure loss across the stator, and (c) the stagnation pressure loss across the
gap. [Ans: (a) 0.811, (b) 6.98 kPa, (c) 4.22 kPa]
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10.12 Combustion gases with cp = 1148 J/(kg K) and gas constant R = 287 J/(kg K)
flow at the rate ṁ = 3.4 kg/s from a stagnation state with T01 = 1050 K and p01 =
620 kPa into a stator. The loss coefficient for the stator and the vaneless space is
ζS = 0.12. The absolute velocity enters the rotor at angle α2 = 71◦, where the blade
speed is U2 = 450 m/s. The shaft turns at 40000 rpm. The loss coefficient for the rotor is
ζR = 0.4. The flow leaves the rotor without any swirl at a relative flow angle of β3 = 60◦.
The radius ratio at the exit is κ = 0.44, and the rotor is designed such that r3h/r2 = 0.31.
The flow areas are sized such that the relative velocity ratio is W3/W2 = 1.79. (a) Find the
angle of the relative velocity at the entrance to the rotor and the radial velocity Vr2 there.
(b) Find the stagnation pressure drop across the stator and the rotor. (c). Find the blade
height b2 at the inlet to the rotor. (d) Assuming that the flow after the rotor is decelerated
isentropically to the ambient pressure find the total-to-total efficiency ηtt. (e) Calculate the
ratio Vr2/Vx3 and comment. [Ans: Two possible solutions: First solution: (a) −13.2◦, (b)
25.62 kPa, 32.01 kPa, (c) 2.29 cm, (d) 0.850, (e) 1.088, Second solution: (a) −24.8◦, (b)
22.08 kPa, 31.86 kPa, (c) 2.36 cm, (d) 0.847, (e) 1.014]

10.13 Rework the previous exercise replacing the condition W3/W2 by the condition
Vr2/Vx3 = 1. Find the value of W3/W2. [Ans: 1.782]
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CHAPTER 11

HYDRAULIC TURBINES

Hydroelectric power plants are important providers of electricity in those countries in
which there are large rivers or rainy high mountain regions, or both. In the United States,
large hydropower installations exist in the western states of Washington, Oregon, Idaho,
and Nevada. The Tennessee Valley Authority (TVA) has a large network of dams and
hydropower stations in Tennessee and other southeastern states. Smaller plants in New
England account for the rest of the installed capacity. In addition to the United States, large
hydropower installations exist in Canada, Brazil, Russia, and China. Norway, Switzerland,
Sweden, and Iceland obtain a large part of their power needs from hydroelectricity,
and Norway in particular exports its excess generation. About 7% of primary energy
production and 17% of total electricity generation in the world are obtained by hydropower.
Hydropower plants exceeding 30 MW are designated as large plants. Plants with generation
from 0.1 to 30 MW fall into a range of small plants, and those with capacity below 0.1 MW
are classified as micro-hydropower. Although hydropower is a clean form of energy, its
negative aspects relate to blocking of fish migration paths and displacement of populations
from valleys that have been cultivated for hundreds of years by local communities.

11.1 HYDROELECTRIC POWER PLANTS

The preliminary design of a power plant begins with the siting analysis, which consists of
determining the available flow rate of water and its head. The rate of water flow depends
on the season, and for large power plants with high capital costs, dams are used not only

463Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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Figure 11.1 Hydroelectric power plant.

to increase the head, but to store water for the dry season. When there is ample water
flow, several turbines can be housed in the same plant. For example, in the Three Gorges
Dam station in China, there are 32 turbines, each rated at 700 MW, and 2 smaller 50 MW
turbines. Similarly the Itaipu power station at the border of Brazil and Paraguay has 20
turbines, each 700 MW.

A schematic of a hydroelectric power plant is shown in Figure 11.1. In small installations
with high head, a forebay is included and is made large enough that debris flowing into
it will settle to the bottom. The floating debris is caught by an inlet screen. In a large
installation, the reservoir formed by an impound dam serves the same purpose. When the
waterflow is regulated into the forebay, the head can be held constant and the turbine can
be operated at its design condition. From the forebay, the flow passes through a penstock
into an inlet volute. After this, the water is directed through a set of adjustable wicket or
inlet gates to the runner. From the turbine, the water is discharged into a draft tube and
from there through a tailrace to the tailwater reservoir.

The elevation difference between the headwater and tailwater, denoted by Hg, is
called the gross head. For a control volume with an inlet just below the free surface at
the upper reservoir and an exit just below the free surface of the lower reservoir, the
pressures at the inlet and exit are both atmospheric. Owing to the size of these reservoirs,
the entering and leaving flow velocities are negligibly small. Hence, the energy balance
reduces to

gHg = ws +
∑

i

gHLi

in which
∑

iHLi is the head loss in the headwater, the penstock, the draft tube, and the
exit to the tailwater. If the losses were absent, ws = gHg would be the reversible work
delivered by the turbine. It is customary, however, to include the spiral volute and the draft
tube as part of the turbine and call the difference He = Hg − HLp the effective head, in
which HLp represents these losses. Then only the exit kinetic energy from the draft tube
is a loss not attributed to the turbine. Efficiency now might be called the total-to-static
efficiency, but this is not a customary practice. Clearly, the exit kinetic energy loss can be
made small by making the draft tube long with a mild increase in area along its length.
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In the same way as for centrifugal pumps, the overall efficiency η is given by the
product of three terms

η = ηmηvηh

in which ηm is the mechanical efficiency and ηv is the volumetric efficiency. The hydraulic
efficiency ηh takes into account the various losses in the equipment downstream of the
penstock. The overall efficiency can be written as

η =
Ẇo

ẆR

ẆR

Ẇ

Ẇ

ρQgHe

in which Ẇo is the power delivered by the output shaft, ẆR is the actual power delivered
to the runner, and Ẇ is the rate at which the water does work on the turbine blades.

The hydraulic efficiency is defined as

ηh =
Ẇ

ρQgHe
=

w

gHe

There is some leakage flow that does no work on the turbine blades. For this reason, the
power delivered to the runner is

ẆR = ρ(Q − QL)w

in which QL is the volumetric flow rate of the leakage. The ratio

ẆR

Ẇ
=

ρ(Q − QL)w
ρQw

=
Q − QL

Q

shows that the volumetric efficiency is also

ηv =
Q − QL

Q

The mechanical efficiency is defined as the ratio

ηm =
Ẇo

ẆR

and the difference between ẆR and Ẇo is caused by bearing friction and windage.

11.2 HYDRAULIC TURBINES AND THEIR SPECIFIC SPEED

The operating ranges for the three main types of hydraulic turbines are shown in Figure 11.2.
In rivers with large flow rates, Kaplan turbines and Francis turbines are used, and Pelton
wheels are the appropriate technology in very mountainous regions. A Pelton wheel is
an impulse turbine in which a high-velocity jet impinges on buckets and the flow enters
and leaves them at atmospheric pressure. Kaplan turbines are axial machines and handle
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Figure 11.2 Types of hydraulic turbine and their operating ranges. Source: Drawn after charts by
Sulzer Hydro Ltd. and Voith Hydro.

large flow rates at relatively low head. They are mounted vertically with the electrical
generators on the floor above the turbine bay. A bulb turbine is similar to a Kaplan turbine,
but mounted horizontally. Its handles even larger flow rates than does a Kaplan turbine
at lower head. For Francis turbines, the runner can be designed to accommodate a large
variation in flow rates and elevation. A Deriaz turbine is similar to a Kaplan turbine, but
with a conical runner. Turbines are classified according to their specific speed, defined as

Ωs =
Ω
√

Q

(gHe)3/4

The power specific speed is given by

Ωsp =
Ω

√
Ẇ/ρ

(gHe)5/4

Since
Ẇ = ηρQgHe

the power specific speed reduces to

Ωsp =
Ω
√

ηQ

(gHe)3/4

so that Ωsp =
√

ηΩs. For a well-designed hydropower station, the overall efficiency at
design condition is often greater than 0.9, and for this reason, there is only slight difference
between the two forms of specific speed.
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Examination of Figure 11.2 shows that in the range where Pelton wheels are appropriate,
the increased flow rate at a given head is accomplished by increasing the number of jets.
In addition, if the flow rate is sufficient, multiple penstocks and Pelton wheels may be
located at the same site. A Pelton wheel with a horizontal shaft may have one or two jets.
If the shaft is vertical even six jets can be employed, as shown in Figure 11.3.

The power-specific speeds of various machines are given in Table 11.1, obtained
from Nechleba [67, p. 477]. It shows that the specific speed increases as the effective
head decreases. Thus, the high-specific-speed Francis runners operate at lower heads. For
calculation of the specific speed, the shaft speed is needed. Since hydraulic turbines are
used for electricity generation, the shaft speed must be synchronous with the frequency of
the electric current. With some exceptions, the frequency f is 50 Hz in Europe and Asia
and 60 Hz in North and South America. To match the shaft speed to the proper value for
the line frequency, the shaft speed needs to be

Ω =
120f

P

in which the number of poles in the electric generator is P , which may vary from 2 to 48,
and there is no fundamental reason why it could not be even higher. The number 120 is
twice the 60 seconds in a minute, and the factor 2 arises from the fact that both ends of a
magnet in an electric machine behave similarly. Thus, a generator with 16 poles delivering
energy at line frequency 50 Hz needs a turbine shaft speed of 375 rpm according to this
formula. This is a typical shaft speed for large turbines.

Table 11.1 Power specific speed ranges of
hydraulic turbines.

Type Ωsp η (%)

Pelton wheel
Single jet 0.02–0.18 88–90
Twin jet 0.09–0.26 89–92
Three jet 0.10–0.30 89–92
Four jet 0.12–0.36 86

Francis
Low-speed 0.39–0.65 90–92
Medium-speed 0.65–1.2 93
High-speed 1.2–1.9 93–96
Extreme-speed 1.9–2.3 89–91

Kaplan turbine 1.55–5.17 87–94
Bulb turbine 3–8

11.3 PELTON WHEEL

A Pelton wheel is shown in Figure 11.3. This machine provides an excellent way of
producing power if the water reservoir is high. Water from the reservoir flows down a
penstock and then through a set of nozzles that are directed against buckets fastened to
a wheel. Penstocks are constructed from steel or reinforced concrete. Early ones were
made of wood stave. Pelton wheels have been generally used if the total head is greater
than 300 m. There is one installation in Switzerland in which the water head is 1700 m.
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Figure 11.3 A six-jet Pelton wheel. Source: Drawing courtesy Voith Siemens Hydro.

An important advantage of Pelton wheels is that the machine can accommodate water
laden with silt, for the erosion damage of the blades is easy to repair.

A Pelton wheel with six jets is shown in Figure 11.3. The number of buckets in the
wheel can be calculated by an empirical formula of Tygun (cited by Kadambi and Prasad
[51]), namely,

Z =
D

2d
+ 15

in which D is the wheel diameter and d is the jet diameter. In the analysis of a Pelton wheel,
the exit velocity is close to being axial, and therefore, is as small as possible. Generally,
the exit losses are ignored. The calculations are illustrated next.

� EXAMPLE 11.1

A Pelton wheel generates Ẇo = 1 MW of power as it operates under the effective
head of He = 410 m and at 395 rpm. Its overall efficiency is η = 0.84, the nozzle
velocity coefficient is cN = 0.98, and the blade speed is U = 37 m/s. Find (a) the
specific speed and the recommended number of jets, (b) the wheel diameter, the
diameter of the jet, as well as the recommended number of blades, and (c) the
mechanical efficiency.

Solution: (a) The shaft power

Ẇ0 = ηρQgHe

solved for the flow rate gives

Q =
Ẇo

ηρgHe
=

106

0.84 · 1000 · 9.81 · 410
= 0.296 m3/s
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and the specific speed comes out to as

Ωs =
Ω
√

Q

(gHe)3/4 =
395 · π

√
0.296

30 · (9.81 · 410)3/4 = 0.0446

For this value of specific speed, one jet is sufficient.
(b) The jet velocity is given by

V2 = cN

√
2gHe = 0.98

√
2 · 9.81 · 410 = 87.90 m/s

so that the cross sectional area is

A =
Q

V2
=

0.297
87.90

= 0.00337 m2

and the jet diameter is

d =

√
4A

π
=

√
4 · 0.00337

π
= 0.0655 m = 6.55 cm

The diameter of the wheel is

D =
2U

Ω
=

2 · 37 · 30
395 · π = 1.79 m

and the number of buckets comes out to be

Z =
D

2d
+ 15 =

179
2 · 6.55

+ 15 = 28.6 or Z = 29
�

When using Tygun’s formula for calculating the number of buckets, the typical range of
diameter ratio 6 < D/d < 28 gives the range 18 < Z < 29 for a single wheel.

Consider a Pelton wheel in which the work done by the jet is

w = U(Vu2 − Vu3)

Owing to symmetry, only the stream deflected to the right needs to be analyzed. The inlet
and outlet velocity diagrams are shown in Figure 11.4.

The fluid pressure at the inlet and exit is atmospheric, and frictional effects along the
blades reduce the relative velocity to W3 = cvW2, in which cv is the velocity coefficient.
At the inlet, the flow is entirely tangential and thus Vu2 = V2 and W2 = V2 − U . The
tangential component at the exit is

Vu3 = U + W3 sinβ3 = U + cvW2 sin β3

Substituting W2 = V2 − U , gives

w = U(V2 − U)(1 − cv sin β3)

From this equation, it is clear that the maximum power is obtained for β3 = −90◦, with
other parameters held constant. It is not feasible to construct the buckets with such a
large amount of turning, as the water would not clear the wheel. For this reason, in actual
installations β3 is in the neighborhood of −65◦. Any water that is partly spilled during the
operation does no work on the blades. This spillage is taken into account by the volumetric
efficiency.
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In the expression for the overall efficiency

η = ηhηvηm

the hydraulic efficiency can be written as the sum of the nozzle efficiency and the rotor
efficiency

ηh = ηNηR

in which

ηN =
V 2

2

V 2
0

and V0 =
√

2gHe is the spouting velocity. The rotor efficiency is then

ηR =
w

1
2V

2
2

The mechanical losses are taken to be proportional to U 2, with the proportionality constant
denoted by Ku. The fluid dynamic losses in turbulent flows are often proportional to the
square of the flow velocity, and therefore, the windage losses should have this dependence
on the blade speed. Then

ηmηv =
Ẇo

Ẇ
=

ẆR − ρQ 1
2KuU 2

Ẇ
= ηv −

KuU 2

2w

Hence,

η = ηh

(
ηv −

KuU 2

2w

)
=

(
ηv −

KuU 2

2w

)
w

gHe

or

η =
2ηvw

2gHe
− KuU 2

2gHe
=

1
V 2

0
(2ηvw − KuU 2)
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Substituting the expression for work into this and replacing V0 by V2/
√

ηN gives

η =
ηN

V 2
2

[2ηvU(V2 − U)(1 − cv sin β3) − KuU 2]

This can be written is terms of the ratio of the blade speed to the nozzle velocity λ = U/V2,
as follows:

η = ηN(2ηvλ(1 − λ)(1 − cv sin β3) − Kuλ2)

To determine the rotational speed at which the power is maximum, this expression is
differentiated with respect to λ while other parameters are held fixed. Setting the result to
zero gives

dη

dλ
= 2ηv(1 − 2λ)(1 − cv sin β3) − 2Kuλ = 0

from which
λm =

ηv(1 − cv sin β3)
2ηv(1 − cv sin β3) + Ku

At this value, the maximum efficiency is

ηmax =
ηNη2

v(1 − cv sinβ3)
2

2ηv(1 − cv sin β3) + Ku

If Ku = 0, then ηm = 1, and this reduces to

ηmax =
1
2
ηNηv(1 − cv sin β3) = ηNηR maxηv

in which the maximum rotor efficiency is

ηR max =
1
2
(1 − cv sin β3)

The efficiency of the Pelton wheel as a function of the speed ratio λ = U/V2 is shown in
Figure 11.5.

� EXAMPLE 11.2

A Pelton wheel operates with a gross head of 530 m and a flow rate of 9 m3/s. The
penstock length is 400 m, its diameter is 1.5. Minor losses increase the equivalent
length of the penstock to 630 m. The hydraulic efficiency is ηh = 0.84, and the shaft
speed is 650 rpm. The volumetric and mechanical losses may be neglected. Find (a)
the effective head and the power delivered by the turbine if the pipe roughness is
0.7 mm and (b) the specific speed and from it the recommended number of jets and
the number of buckets in the wheel. The nozzle coefficient is cN = 0.97, and the
ratio of the blade speed to the discharge velocity is λ = U/V2 = 0.45.

Solution: (a) The velocity of water in the penstock is

Vp =
Q

A
=

4Q

πD2
p

=
4 · 9

π · 1.52 = 5.1 m/s
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Figure 11.5 Efficiency of a Pelton wheel for various values of the windage loss coefficient.

The Reynolds number is therefore

Re =
ρVpDp

μ
=

1000 · 5.1 · 1.5
1.01 · 10−3 = 7.56 · 106

The Colebrook formula gives the friction factor the value f = 0.0165, so that the
head loss is

HL = f
L

Dp

V 2
p

2g
=

0.0165 · 630 · 5.12

1.5 · 2 · 9.81
= 9.2 m

The gross head is measured as the elevation difference between the headwater and
the nozzle. Only the upstream losses are included in the calculation of the effective
head, and whatever kinetic energy is left after the water is discharged from the wheel
is taken into account in the turbine efficiency. Thus, the turbine efficiency is the
total-to-static efficiency. The effective head is He = 530 − 9.2 = 520.8 m.

The power delivered, since η = ηh, is

Ẇo = ηρQgHe = 0.84 · 1000 · 9 · 9.81 · 520.8 = 38.6 MW

(b) The specific speed comes out to be

Ωs =
Ω
√

Q

(gHe)3/4 =
650 · π

√
9

30 · (9.81 · 520.8)3/4 = 0.338

The recommended number of jets is four. Hence, the discharge from each jet is
Qj = 2.25 m3/s. By calculating the discharge velocity as

V2 = cN

√
2gHe = 0.97

√
2 · 9.81 · 520.8 = 98.05 m/s,
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the nozzle diameter can be determined to be

d =

√
4Qj

πV2
=

√
4 · 2.25
π · 98.05

= 0.171 m

and the blade speed is U = 0.45V2 = 44.1 m/s. Therefore, the diameter of the
wheel is

D =
2U

Ω
=

2 · 44.1 · 30
650 · π = 1.3 m

and the number of buckets is

Z =
D

2d
+ 15 =

130
2 · 17.1

+ 15 = 18.8 or Z = 19
�

� EXAMPLE 11.3

A Pelton wheel operates with an effective head of 310 m producing 15 MW of
power. The overall efficiency of the turbine is η = 0.84, the velocity coefficient
of the nozzle is cN = 0.98, and the velocity coefficient of the rotor is cv = 0.85.
The angle of the relative velocity leaving the rotor is β3 = −73◦. The wheel rotates
at 500 rpm, and the ratio of the blade speed to nozzle velocity is 0.46. (a) Give
a recommended number of jets to which the supply flow should be split and the
number of blades on the wheel. (b) Find the mechanical and volumetric efficiencies
given the value of Ku = 0.05. (c) Find also the optimum speed ratio.

Solution: (a) The volumetric flow rate can be calculated from

Ẇo = ηρQgHe

which gives

Q =
Ẇo

ηρgHe
=

15 · 106

0.84 · 1000 · 9.81 · 310
= 5.87 m3/s

The spouting velocity is

V0 =
√

2gHe =
√

2 · 9.81 · 310 = 78.0 m/s

so that the nozzle velocity comes out as

V2 = cNV0 = 0.98 · 78.0 = 76.43 m/s

The blade speed is therefore U = λV2 = 0.46 · 76.43 = 35.16 m/s. With the specific
speed equal to

Ωs =
Ω
√

Q

(gHe)3/4 =
500 · π

√
5.87

30 · (9.81 · 310)3/4 = 0.310
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the suitable number of jets is N = 4. The flow rate from each jet is therefore
Qj = Q/N = 1.47 m3/s, and for this flow rate and velocity, the nozzle diameter is

d =

√
4Qj

πV2
=

√
4 · 1.47
π · 76.43

= 0.156 m = 15.6 cm

The wheel diameter is

D =
2U

Ω
=

2 · 35.15 · 30
500 · π = 1.343 m

so that the recommended number of buckets on the wheel is

Z =
D

2d
+ 15 =

134.3
2 · 15.6

+ 15 = 19.3 or Z = 20

(b) The specific work done by the jet on the rotor is

w = U(V2 − U)(1 − cv sinβ3)

= 35.16(76.43 − 35.16)(1 − 0.85 sin(−73◦)) = 2630.4 J/kg

The nozzle efficiency and rotor efficiencies are

ηN = c2
N = 0.982 = 0.960 ηR =

w
1
2V

2
2

=
2 · 2630.6
76.432 = 0.901

Hence, the hydraulic efficiency is ηh = ηNηR = 0.960 · 0.901 = 0.865. The mechan-
ical efficiency is obtained from

ηm = 1 − KuU 2

2ηvw

Solving for ηv from

η = ηhηvηm gives ηv =
η

ηhηm

and substituting this into the previous equation leads to

ηm = 1 − KuU 2ηhηm

2ηw

which when solved for ηm results in

ηm =
(

1 +
KuU 2ηh

2ηw

)−1

=
(

1 +
0.05 · 35.162 · 0.865

2 · 0.84 · 2630.4

)−1

= 0.988

The volumetric efficiency is therefore

ηv =
η

ηhηm
=

0.84
0.865 · 0.988

= 0.983
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The optimum speed ratio is

λopt =
ηv(1 − cv sin β3)

2ηv(1 − cv sin β3) + Ku

=
0.983(1 − 0.85 sin(−73◦))

2 · 0.983(1 − 0.85 sin(−73◦)) + 0.05
= 0.487

�

11.4 FRANCIS TURBINE

A schematic of a Francis turbine is shown in Figure 11.6. It is a radial inward turbine
similar in principle to the radial turbine discussed in Chapter 10. The flow enters the turbine
through a set of adjustable inlet guide vanes, located downstream of a spiral volute and a
penstock. The spiral volute is absent in Figure 11.1. Both the volute and the penstock may
be absent if the head is low, but the flow capacity is large. In that case, the turbine can be
placed into a pit. The shape of the draft tube is conical with a straight axis. An alternative
is to curve the axis as is shown in Figure 11.1. This way, the draft tube can be longer and
the diffusion milder over its length.

Guide vanes

Guide vanes

Runner blades

Runner blades

Draft tube

D
3

2.75D
3

0.75D
3

Tailrace

Flow from penstock

Inlet volute

0.5D
2

Figure 11.6 Francis turbine.

The shape of the runner depends on the specific speed and thus on the flow rate and the
effective head, with a low speed-runner having radial inlet and outlet. As the specific speed
increases, the flow is turned such that it leaves in the axial direction. These modifications
are illustrated in Figure 11.7.

The flow leaves a low-specific-speed runner in a radial direction, and it receives no
further guidance from the blades as it turns toward the axial direction and then enters the
draft tube. When the flow rate increases, the velocity in this turning region also increases,
and in order to reduce it, the flow must be guided into the axial direction by properly
shaped blades. The blade design aims to reduce the tangential component of the velocity
to zero.

For a given flow rate and effective head, Figure 11.2 is a guide to what kind of turbine
is best suited to the proposed power plant site. There is some latitude in the choices.
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Figure 11.7 Shapes of Francis turbine runners.

The axes in the figure are in terms of extensive properties and, as usual, an engineering
design proceeds also in terms of not only intensive properties but, if possible, in terms of
nondimensional parameters. The specific speed is one of them. The other is the specific
diameter, defined by

Ds =
D2(gHe)

1/4
√

Q

The loading coefficient, ψd and the flow coefficient φd, defined as

ψd =
gHe

Ω2D2
2

φd =
Q

ΩD3
2

can be related to the specific speed and the specific diameter. It is readily shown that

ψd =
1

Ω2
sD

2
s

φd =
1

ΩsD
3
s

The ratio of the blade speed to the spouting velocity V0 =
√

2gHe is

U2

V0
=

ΩD2

2
√

2gHe
=

1√
8
ΩsDs =

1√
8ψd
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Figure 11.8 Specification map of hydraulic turbines. (See also the Cordier diagram, Figure 5.10.)

Balje [5] gives the locus of maximum efficiency that tends to be in the range
0.6 < U2/V0 < 1.1. This is equivalent to 0.1 < ψd < 0.35, with Francis turbines in the
high end of this range for ψd and Kaplan turbines in the low end. Figure 11.8 is a plot with
specific speed on the abscissa and specific diameter on the ordinate, with some lines of
constant loading and flow coefficient added. The figures of different runners are placed
close to where their efficiency is the highest. Pelton wheels with multiple jets are not
shown.

The flow angles shown for the different runners in Figure 11.7 can be calculated by
noting that

tan α2 =
Vu2

Vr2
=

U2Vu2

U2Vr2
=

w

U2Vr2

and since Q = πD2b2Vr2, and w = ηhgHe, this can be written as

tan α2 =
ηhgHeπD2b2

U2Q

From the definition of the specific speed, the ratio

gHe

Q
=

Ω2

Ω2
s

√
gHe

follows immediately, and with Ω = 2U2/D2 and V0 =
√

2gHe, the formula for the tangent
of α2 can further be written as

tan α2 =
4ηh

√
2πbr

Ω2
s

U2

V0
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in which the ratio br = b/D2 appears. A graph of this ratio appears in the book by Nechleba
[[67], p. 100]. A quadratic curve fit over the range of the power-specific speeds for Francis
turbines gives

br = −0.0505Ω2
sp + 0.26Ωsp + 0.018 (11.1)

In addition, the formula
U2

V0
= 0.74Ω0.238

sp (11.2)

can be used to relate the range

0.60 <
U2

V0
< 0.90

for which the efficiency is near the maximum to the range of specific speeds for Francis
turbines

0.39 < Ωs < 2.3

This range for the speed ratio, given by Daugherty [20, p. 394], is in agreement with that
obtained from the graphs of Balje [5], mentioned above. The results of the calculations are
shown in the Table 11.2. For these, the hydraulic efficiency was taken to have the constant
value ηh = 0.9, and for simplicity, the mechanical and volumetric losses were neglected.

Table 11.2 Flow angles for various power-specific speeds
for a Francis turbine of hydraulic efficiency ηh = 0.9.

Ωsp br U/V0 α2 β2

0.39 0.11 0.59 80.0◦ 49.5◦

0.65 0.17 0.67 73.8◦ −2.9◦

1.20 0.26 0.77 61.1◦ −33.3◦

1.90 0.33 0.86 46.0◦ −35.8◦

2.30 0.35 0.90 38.0◦ −34.0◦

The angle β2 can be determined from the exit velocity diagram, which yields

tan β2 =
sinα2 − U2/V2

cos α2

and it is easy to show that the ratio U2/V2 is

U2

V2
=

Ω4
sp

(4πbr)2η5
h
tan2α2 sin α2

For low-specific-speed runners, the flow angle α2 is quite large and the angle β2 at first
drops quite quickly as Ωsp increases, but then it settles to a value around −35◦ for the
high-speed runners.

It may be of some interest to relate also the degree of reaction to the specific speed, as
well as the blade loading coefficient. Here, the formulas simplify substantially if another
definition of reaction ratio is used; namely the change in enthalpy across the runner to
the change is stagnation enthalpy across the entire machine. The two are the same for a
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repeated stage of axial machines, in which case V1 = V3. This alternative definition of
reaction ratio is thus given by

Rt =
h2 − h3

h01 − h03
=

h02 − h03 − 1
2 (V

2
2 − V 2

3 )
h01 − h03

Since h01 = h02 and w = h02 − h03, this may be written as

Rt = 1 − V 2
2 − V 2

3

2w

But V 2
2 = V 2

x2 + V 2
u2 and if there is no exit swirl, V 2

3 = V 2
m3. Assuming next, as discussed

by Dick [23], that the meridional components are approximately equal: i.e. Vx2 ≈ Vm3,
then

1 − Rt =
V 2

u2

2U2Vu2
=

Vu2

2U2

Since the blade loading coefficient is

ψ =
w

U 2
2

=
Vu2U2

U 2
2

=
Vu2

U2

it follows that
1 − Rt =

ψ

2

The speed ratio can then be written as

λ =
U2

V0
=

U2√
2gHe

=
√

η√
2ψ

=
√

η

2
√

1 − Rt

This equated to and Eq. (11.2) gives then a semi-empirical relationship between and the
reaction and the specific speed. It shows that the specific speed increases as the reaction
ratio increases.

The specific speed, the speed ratio, reaction, and blade height to diameter ratio are
nondimensional parameters, but to determine them, the head, the volumetric flow rate, and
the rotational speed of the shaft are needed. Typically, the head is known and suitable
power is chosen based on either the available flow rate, or how many turbines are needed
if the flow cannot be accommodated with a single turbine. There exist empirical relations
that relate the specific speed to the effective head. One such equation by Morozov (cited
by Nechleba [67, p. 80]) can be written as

Ωsp = 0.82
(

Hr

He

)0.57

in which Hr = 100 m has been chosen as a reference head. Similarly, by gathering data
from a large number of installations, Lugaresi and Massa [60] carried out a statistical
analysis and developed the correlation

Ωs = 1.14
(

Hr

He

)0.512
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The reference head is again Hr = 100 m. This correlation is based on the specific speed
rather than power-specific speed, and is to be preferred over the proposal of Morozov,
as it is based on a more recent and larger set of turbines. It is important to note that
these correlations are to be used as a guide, for turbine manufacturers has its own design
manual that is based on designs that have been improved over many years. The use of the
correlations is illustrated next.

� EXAMPLE 11.4

A Francis turbine is contemplated for a small power plant with an effective head
of 220 m and capacity of 1.9 m3/s. The anticipated overall efficiency is η = 0.94.
Neglect mechanical and volumetric losses. (a) Determine the power delivered by
the turbine. (b) What is your recommendation for the shaft speed if the electric line
frequency is 60 Hz? (c) What should the diameter D2 of the runner be, and what is
the tip speed of the blade?

Solution: (a) The power can be calculated readily as

Ẇo = ηρQgHe = 0.94 · 1000 · 1.9 · 9.81 · 220 = 3.85 MW

(b) Examination of Figure 11.2 shows that a single-jet Pelton wheel and a Francis
wheel are suitable for the site. It is therefore anticipated that a Francis turbine of
low-specific speed is a reasonable choice. Using the correlation for specific speed in
terms of the effective head gives

Ωs = 1.14
(

100
220

)0.512

= 0.7614

and then from the definition of the specific speed, the shaft speed can be determined
to be

Ω =
Ωs(gHe)

3/4
√

Q
=

0.7614(9.81 · 220)3/430
π
√

1.9
= 1670 rpm

If the shaft speed is taken to be 1800 rpm, then the number of poles in the generator
is

P =
120f

Ω
=

120 · 60
1800

= 4

(c) With this shaft speed, the specific speed is

Ωs =
Ω
√

Q

(gHe)3/4 =
1800 · π

√
1.9

30 · (9.81 · 220)3/4 = 0.821

and the power-specific speed is Ωsp =
√

η Ωs =
√

0.94 0.821 = 0.796. The velocity
ratio is

U2

V0
= 0.74 Ω0.238

sp = 0.701

The specific diameter can then be calculated from

Ds =
√

8U2/V0

Ωs
=

0.701 ·
√

8
0.821

= 2.415,
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and the diameter is

D2 =
Ds

√
Q

(gHe)1/4 =
2.415

√
1.9

(9.81 · 220)1/4 = 0.488 m

The blade speed is therefore U2 = D2Ω/2 = 46.0 m/s. �

To obtain more accurate results, the volumetric flow rate at the inlet to the runner can be
calculated from

Q =
(

πD2 −
Zt

cos β2

)
b2Wr2

in which t is the blade thickness, Z is the number of blades, and Wr2 is the radial
component of the relative velocity with the flow angle β2, at the inlet. The number of
blades can be taken to be between Z = 11V0/U2 and Z = 13V0/U2, which for the typical
range of U2/V0 comes close to 16 blades. The runner in Figure 11.9 has 17 blades, which
is appropriately a prime number to prevent some resonance vibrations.

Figure 11.9 Francis turbine viewed from downstream.

As the flow enters the draft tube, the axial velocity Vx3 can be obtained from the
expression for the volumetric flow rate, which is

Q =
πD2

3

4
Vx3 (11.3)

It is assumed that the flow enters without swirl so that Vx3 = V3. For the conical draft
tube shown in Figure 11.6, the length of the tube is 2.5–3 times the diameter D3 and its
submerged length into the tailwater ranges from 0.5D3 to D3. Since the function of the
draft tube is to diffuse the flow, its flare must be kept small enough to prevent separation.
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The diffuser efficiency is defined as

ηd = 1 − 2gHd

V 2
3 − V 2

4
= 1 − 2gHd/V 2

3

1 − A2
3/A

2
4

in which Hd is the head loss in the diffuser. For a conical diffuser, the peak efficiency is at
the cone angle 2θ = 6◦ and has a value of about ηd max = 0.9. Defining the loss coefficient
Kd via the equation

Hd = Kd
V 2

3

2g

it is readily seen that it can be expressed in terms of the diffuser efficiency as

Kd = (1 − ηd)
(

1 − A2
3

A2
4

)

Since all the kinetic energy leaving the draft tube is dissipated in the tailwater pool, the
exit loss is

He =
V 2

4

2g
=

V 2
4

V 2
3

V 2
3

2g
=

A2
3

A4
4

V 2
3

2g

so that the loss coefficient based on the velocity V3 is

Ke =
A2

3

A2
4

The draft tube and exit loss coefficients and their sum are shown as a function of the ratio
A4/A3 in Figure 11.10. If the inlet and exit diameters D3 and D4 are known, so is the area
ratio, and the inlet velocity V3 to the draft tube is determined from Eq. (11.3). These then
give a way to calculate the head loss in the draft tube. The true reversible work is given by

ws = g

(
He − Hd −

V 2
4

2g

)

A
3

A
4
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4
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Figure 11.10 Loss coefficients for a draft tube.
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which can then be compared to the actual work so that the true efficiency of the turbine
can be determined.

11.5 KAPLAN TURBINE

A Kaplan turbine is shown in Figure 11.11. It is an axial-flow turbine suitable for large
installations, and it generally operates under a head ranging from 20 to 70 m. The guide
vanes are similarly adjustable as in a Francis turbine. Its runner is a propeller type, typically
having 3–6 blades, but for smaller flow rates, the number may reach 10. Each blade can be
adjusted to the proper flow conditions by rotating it about its axis. This makes the power
plant perform well also at off-design flow rates. In a typical installation the runner, turning
at 120 rpm, might have a blade with 1 m hub radius and 3 m tip radius, with a volumetric
flow rate of 200 m3/s through a turbine. One such a turbine produces around 74.5 MW of
power.

A bulb turbine is similar to a Kaplan turbine but with a horizontal axis. A power plant
based on a bulb turbine can be constructed at a lower cost than one with a Kaplan turbine.
It can be used at low heads of 4–10 m when the speed of the flow is increased by proper
design of the inlet channel. The design output power ranges between 100 kW and 50 MW
for blade diameters between 0.8 and 8.4 m.

As the flow moves through the axial turbine, its relative velocity is turned only
moderately and by differing amounts at the hub and the tip of the blade. The blades extend
over a considerable distance, and the local velocity of the blade U = rΩ increases outward.
For this reason, for shockless entry, the absolute value of the blade angle must increase

Figure 11.11 Kaplan turbine.



�

� �

�

484 HYDRAULIC TURBINES

toward the tip. Thus, the blade is oriented quite broadside to the flow at the tip. The flow,
having started from stationary conditions at the headwater, remains free of vorticity as it
flows into the turbine. Hence, the tangential velocity has the free vortex distribution

K = rVu2(r) = r2tVu2t

in which r2t refers to the tip radius. If the exit swirl is absent, then the work delivered is

w = U2Vu2 = rΩVu2t
r2t

r
= ΩVu2tr2t = KΩ

which is independent of the radial location. This is the same result as was found when the
axial turbines were discussed in Chapter 7.

An equation similar to that of Morozov for Francis turbines, can be obtained from the
graphical result in Nechleba [67] for Kaplan turbines. However, by using data from more
recent installations, Schweiger and Gregory [81] give the equation

Ωs = 2.76
(

Hr

He

) 0.486

(11.4)

in which the reference head has been chosen to be Hr = 30 m. In addition, the hub-to-tip
radii ratio may be correlated as

rh

rt
= 0.8 − 0.1 Ωsp

The number of blades increases with decreasing specific speed, with 3 blades when the
power specific speed is 5.2 and 10 blades when the power-specific speed drops to 1.7.

� EXAMPLE 11.5

The Otari power plant in Japan delivers 100 MW of power when the flow rate is
220 m3/s and the effective head is 51 m. The diameter of the Kaplan turbine is
D2t = 6.1 m, and the hub-to-tip ratio is κ = 0.6. The generator has 48 poles and
delivers power at a line frequency of 50 Hz. (a) Find the efficiency of the turbine.
(b) Calculate the flow angles entering and leaving the rotor.

Solution: (a) The efficiency is

η =
Ẇ0

ρQgHe
=

108

1000 · 220 · 9.81 · 51
= 0.91

(b) Since the line frequency is 50 Hz and the generator was chosen to have 48 poles,
the shaft speed is Ω = 120 · 50/48 = 125 rpm. The tip speed of the runner blade is

U2t =
D2t

2
Ω =

6.1 · 125 · π
2 · 30

= 39.9 m/s

The axial velocity is uniform and is given by

Vx2 =
4Q

πD2
2t(1 − κ2)

=
4 · 220

π · 6.12(1 − 0.62)
= 11.76 m/s
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Since each blade element delivers the same amount of work, the tangential velocity
at the tip can be determined from

Vu2t =
ηgHe

U2t
=

0.91 · 9.81 · 51
39.9

= 11.39 m/s

The flow angles for the absolute and relative velocities can now be determined. They
are shown in Figure 11.12 across the span of the blades. To illustrate the calculations,
at the mean radius r2m = 2.44 m the absolute velocity makes an angle

α2m = tan−1
(

Vu2tr2t

Vx2r2m

)
= tan−1

(
11.39 · 3.05
11.76 · 2.44

)
= 50.4◦

The tangential component of the relative velocity at this location is

Wu2m = Vx2 tan α2m − U2t
r2m

r2t
= 11.76 tan(50.4◦) − 39.9 · 2.44

3.05
= −17.71 m/s

and the flow angle is

β2m = tan−1
(

Wu2m

Wx2

)
= tan−1

(
−17.71

11.76

)
= −56.4◦

The flow leaves the runner axially. Therefore the tangential component of the relative
velocity is Wu3m = −U2trm/rt and with the axial velocity constant, the flow angle is

β3m = tan−1
(

Wu3m

Wx3

)
= tan−1

(
− 39.9 · 2.44

11.76 · 3.05

)
= −69.8◦
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Runner blades

Waterjet

Flow path
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Figure 11.13 (a) Turgo turbine. (b) Crossflow or a Banki–Mitchell turbine.

Small turbines have been excluded from Figure 11.2. The single-jet Pelton wheels are
appropriate for flow rates lower than shown on this graph of the graph. Some who live
far from the electricity grid and have access to streams with headwaters in high hills have
built power plants using such small Pelton wheels. An alternative is a turgo turbine, shown
in Figure 11.13a. It operates at the effective head of 50–250 m. The analysis is similar to
that of a single stage steam turbines and a Pelton wheel. The nozzle angle is about 70◦.

A crossflow turbine, also called a Banki–Mitchell turbine, can be operated under heads
between 5 and 200 m, but it is generally used in rural settings with ample flow rates and
low head. It is shown in Figure 11.13b. It looks like a waterwheel, but the blades are
designed is such a way that as water flows through the turbine, it does work on both the
leading set of blades and on the trailing set. Because the axis is horizontal, the shaft and
the blades can be made long to accommodate a large flow.

11.6 CAVITATION

Cavitation takes place in a hydraulic turbine if the minimum pressure drops below the
vapor pressure of water at the prevailing temperature. For this reason, elevation of the plant
in relation to the tailwater needs to be properly chosen. In addition, since the atmospheric
pressure drops with increasing elevation, the margin between the minimum pressure and
the vapor pressure diminishes, and this is to be taken into account. With large runners in
hydroelectric power plants, the cavitation damage can become very expensive, not only in
equipment repair but also in the unavailability of the plant during repairs.

The physical basis of cavitation is discussed in the review paper by Arakeri [4], who
also proposes alternative criteria that factor in more precisely the location of the local
minimum in pressure. In this section, however, the typical engineering criterion is used.
The static pressure at the exit of the turbine is given by

p3

ρg
+

V 2
3

2g
+ Hs =

pa

ρg
+

V 2
4

2g
+ Hd

in which the last two terms represent the exit head loss and the head loss in the diffuser
and Hs is the elevation of the turbine above the tailwater. The net positive suction pressure
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is defined as the sum of the static pressure head and the dynamic head minus the vapor
pressure head of water at the ambient temperature

Hsv =
p3

ρg
+

V 2
3

2g
− pv

ρg

Substituting from the previous equation gives

Hsv =
pa − pv

ρg
− Hs +

V 2
4

2g
+ Hd

The head loss in the draft tube has been shown to be

Hd = (1 − ηd)
(V 2

3 − V 2
4 )

2g

Dividing through by the effective head leads to the definition of the Thoma cavitation
parameter σ, as

σ =
Hsv

He
=

pa − pv

ρgHe
− Hs

He
+

V 2
4

2gHe
− Hd

He

Critical values for this parameter have been given by Moody and Zowski [65] for Francis
turbines as

σc = 0.006 + 0.123Ω1.8
sp

and for Kaplan turbines as
σc = 0.100 + 0.037Ω2.5

sp

They are shown in Figure 11.14.
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Figure 11.14 Critical Thoma parameter for Francis and Kaplan turbines.
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EXERCISES

11.1 A Pelton wheel operates from an effective head of He = 300 m and at a flow rate
of 4.2 m3/s. The wheel radius is r2 = 0.75 m, and rotational speed is 450 rpm. The water
that leaves the penstock is divided into five streams. The nozzle coefficient is cN = 0.98
for each nozzle. Impulse blades turn the flow into the direction β3 = −65◦, and as a result
of friction, the relative velocity reduces by an amount that gives a velocity coefficient
cv = 0.90. Find (a) the efficiency of the turbine, (b) the power-specific speed, and (c) the
nozzle diameter and the number of buckets in the wheel. [Ans: (a) 0.869, (b) 0.225,
(c) 11.9 cm, 21]

11.2 For Example 11.2 assume that the blade coefficient is cv = 0.93 and find (a) the
blade angle at the exit assuming that the relative velocity leaves the wheel at this angle. (b)
Determine the exit kinetic energy head as a percentage of the potential energy head in the
reservoir. [Ans: (a) −58.9◦, (b) 6.2%]

11.3 The velocity diagrams for the runner of a small Francis turbine are shown in
Figure 11.15. The discharge is 4.5 m3/s, the head is 150 m of water, and the rotational
speed is 450 rpm. The inlet radius is r2 = 0.6 m, and the water leaves the guide vanes
at angle α2 = 72◦ and velocity V2 = 53.3 m/s. It leaves the turbine without swirl. (a)
Find the velocity coefficient of the stator (inlet spiral and gates). (b) Find the inlet angle
of the relative velocity β2. (c) What is the output power? (d) What is the torque on the
shaft? (e) Determine the power-specific speed. [Ans: (a) 0.982, (b) 53.7◦, (c) 6.45 MW,
(d) 136.9 kN m, (e) 0.415]
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Figure 11.15 A runner of a Francis turbine.

11.4 The pressure at the entrance of a Francis turbine runner is 238.6 kPa, and at the
exit it is 22.6 kPa. The shaft turns at 210 rpm. At the exit the flow leaves without swirl.
The inlet radius is r2 = 910 mm, and the exit radius is r3 = 760 mm. The relative velocity
entering the runner is W2 = 10.2 m/s, and the flow angle of the relative velocity leaving
the runner is β3 = −72◦. The blade height at the inlet is b2 = 0.6 m. (a) Compute the
stagnation pressure loss in the runner. (b) Find the power delivered by the turbine. [Ans:
(a) 53.0 kPa, (b) 9.1 MW]
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11.5 A Francis turbine has an inlet radius of r2 = 1450 mm and outlet radius of
r3 = 1220 mm. The blade width is constant at b = 370 mm. The shaft speed is 360 rpm
and the volumetric flow rate is Q = 16.7 m3/s. The flow enters the runner at α2 = 78◦.
Water leaves the turbine without swirl, and the outlet pressure is p3 = 35 kPa. The loss
through the runner is 0.20W 3

2 /2g. Find the pressure p2 at the inlet and the head loss through
the runner. [Ans: 1257 kPa, 21.92 m]

11.6 The relative velocities at the inlet and the exit of a Francis turbine are W2 =
10.0 m/s and W3 = 33.7 m/s. The shaft speed is Ω = 200 rpm. The inlet radius of the
runner is r2 = 1880 mm, and the outlet radius is r3 = 1500 mm. The runner blade height
is constant at b = 855 mm. Find (a) the flow rate through the turbine and (b) the torque,
assuming that the flow leaves without exit swirl. [Ans: (a) 98.3 m/s, (b) 7713 kN m]

11.7 A Francis runner is to be designed for an effective head of He = 140 m and flow
rate Q = 20 m3/s. Assume that the efficiency is η = 0.9 and that there is no exit swirl. Use
the formula of Lugaresi and Massa to calculate the specific speed. Use the other formulas
in the text to obtain br and U2/V0 from Ωsp. Assume that the mechanical and volumetric
losses are negligible. Find, (a) the specific diameter on this basis, (b) the diameter at the
inlet, (c) the blade speed at the inlet, and (d) the flow angles of the absolute and relative
velocities at the inlet. [Ans: (a) 0.960, (b) 1.57 m, (c) 37.9 m/s, (d) 69.5◦,−23.6◦]

11.8 Determine the modified reaction ratio for each of the runners shown in Table 11.2.
Assume that the efficiency of each is η = 0.92.

11.9 A hydro power plant with effective head He = 153 m and power output of
Ẇ = 330 MW has a runner diameter D2 = 5.2 m, and operates at 150 rpm. Its efficiency
is η = 0.93. (a) Find its specific speed using the fundamental definitions and compare
it with the correlation of Lugaresi and Massa. (b) Determine the blade height from the
correlation given in the chapter. (c) Assume that the meridional velocity across the runner
does not change and determine the angle of the relative velocity after the runner. (d)
Determine the modified reaction. [Ans: (a) 1.00, (b) 1.203 m, (c) −73.0◦, (d) 0.582]

11.10 The Itaipu power plant on the border of Brazil and Paraguay has a Francis turbine
that generates 715 MW of power at the volumetric flow rate of Q = 666 m3/s. The inlet
diameter of the turbine is D2 = 10.5 m, and the shaft speed is 92.3 rpm. The line frequency
is 60 Hz. (a) How many poles does the electric generator have? (b) Find its specific speed
and efficiency. (c) What is the blade height at the inlet to the runner. (d) Assuming that the
meridional velocity remains constant across the runner, find the flow angles α2, β2, and
β3, assuming that the flow leaves the turbine without swirl. [Ans: (a) 78, (b) 1.254, 0.924
(c) 2.65 m, (d) α2 = 70.2◦, β2 = −75.5◦, β3 = −81.5◦]

11.11 Water enters the runner of a Francis turbine with a relative velocity at angle −12◦.
The inlet radius is 2.29 m, and the mean radius at the exit is 1.37 m. The rotational speed is
200 rpm. The blade height at the inlet is b2 = 1.22 m, and at the exit the inclined width of the
blade is b3 = 1.55 m. The radial velocity at the runner inlet is 10.0 m/s, and the flow leaves
the runner without swirl. Evaluate (a) the change in total specific enthalpy of the water
across the runner, (b) the specific torque exerted by the water on the runner. (c) the power
developed, (d) the flow rate of water, and (e) the change in total pressure across the runner
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when the total-to-total efficiency is 95%, and the volumetric and mechanical losses can be
neglected. (f) What is the change in static pressure across the runner? [Ans: (a) 2198 kJ/kg,
(b) 105 kNm/kg, (c) 385 MW, (d) 175.5 m3/s, (e) 2198 kPa, (f) 1184.5 kPa]

11.12 The Otari number 2 power plant in Japan delivers 89.5 MW of power when the
flow rate is 207 m3/s and the head is 48.1 m. The diameter of the Kaplan turbine is
D2t = 5.1 m and the hub to tip ratio κ = 0.56. The generator has 36 poles and delivers
power at a line frequency of 50 Hz. (a) Find the efficiency of the turbine. (b) Calculate and
flow angles entering and leaving the rotor, and construct a graph to show their variation
across the span. [Ans: (a) 0.916, (b) α2m = 40.15◦, β2m = −56.45◦, β3m = −66.96◦]
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CHAPTER 12

HYDRAULIC TRANSMISSION OF POWER

The subject matter of this chapter is hydraulic transmission of power by fluid couplings
and torque converters. In these the driver shaft turns impeller blades of a centrifugal pump,
and the driven shaft is powered by a radial turbine. The pump and its driver shaft are also
called a primary and the turbine and the driven shaft, a secondary. The working fluid is
oil, and the work done by the pump increases the oil pressure, which then drops as the oil
flows through the turbine. The work done by the pump is greater than that delivered by the
turbine; the difference is lost to irreversibilities.

Transmission of power by hydraulic means offers the advantages of quiet operation,
damping of torsional vibrations, and low wear. As both the pump and the turbine are in a
common casing, these machines are compact and safe to use in industrial settings. Such
advantages come with some loss in efficiency when hydraulic transmissions are compared
to rigid couplings.

12.1 FLUID COUPLINGS

A fluid coupling was invented by Hermann Föttinger while he was an engineer at AG
Vulcan in Stettin, Germany.1 Such a coupling is shown in Figure 12.1. It is toroidal in shape

1H. Föttinger (1877–1945) received a PhD from TH München in 1904 and moved to work at AG Vulcan. In
1909, he left the company to assume a professorship in marine engineering at the Technical University of Danzig.
From there he moved to the Chair of Turbomachinery of the Technical University of Berlin in 1924.

Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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Figure 12.1 Sketch of a fluid coupling.

with a centrifugal pump on the primary side and a radial inflow turbine on the secondary
side. There are no guide vanes in the torus, and absence of a fixed member means that
there is no restraining torque on the housing. Hence, a free body diagram, cutting across
both the driver and the driven shaft, shows that the torques in these shafts are equal. This
result is independent of the shape of the blades.

12.1.1 Fundamental relations

The flow moves outward to a larger radius in the pump and inward in the turbine through
a set of straight radial blades in both. Since the fluid flows from the primary to the
secondary, the flow rate in each is the same. The torque exerted by the impeller blades on
the fluid is

Tp = ρQ(r2Vu2 − r1Vu1)

Similarly, the torque that the fluid exerts on the turbine blades is

Ts = ρQ(r2Vu2 − r1Vu1)

Owing to irreversibilities in the coupling, the transmitted power is lower than the power
inflow on the driver shaft. Therefore, with power given by Ẇ = TΩ, the output shaft must
rotate at a lower speed than the input shaft. The difference in rotational speeds is called
slip, and it is written in normalized form as follows:

s =
Ωp − Ωs

Ωp
= 1 − Ωs

Ωp

From the equation for power,

Ẇp = TΩp Ẇs = TΩs

the efficiency is given as

η =
Ẇs

Ẇp
=

Ωs

Ωp
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The dissipated power causes the temperature of the oil to increase, which, in turn, leads to
heat transfer to the housing and a rise in its temperature. With the increase in temperature
of the hardware, the dissipated energy is then transferred as heat to the surroundings. The
fractional loss of power is given by

Ẇp − Ẇs

Ẇp
= 1 − η = 1 − Ωs

Ωp
= s,

and this gives an alternative meaning for slip. In steady operation, efficiency of a fluid
coupling reaches 96–98%. During transients slip increases, and so does the loss. This is
of secondary importance, because the coupling was invented to transmit power smoothly
precisely during such transients.

� EXAMPLE 12.1

A prime mover delivers power to a fluid coupling at 140 kW, with a shaft rotating at
1800 rpm, and with a slip of 3%. (a) What is the shaft torque? (b) What is the power
flow in the output shaft? (c) Find the rotational speed of the driven shaft. (d) At what
rate is energy dissipated as heat to the surroundings?

Solution:
(a) Torque on the shaft is

T =
Ẇp

Ωp
=

140000 · 30
1800 π

= 742.7 N m

(b) The efficiency of the coupling at this operating point is

η =
Ωs

Ωp
= 1 − s = 1 − 0.03 = 0.97

and the power delivered is

Ẇs = η Ẇp = 0.97 · 140 = 135.8 kW

(c) The output shaft rotates at

Ωs = 0.97 Ωp = 1746 rpm

(d) The power dissipation rate is

Ẇd = (1 − η) Ẇp = 0.03 · 140 = 4.2 kW �

The two half-toroids making up the fluid coupling are each fitted with a set of radial
blades. A typical number is 30 blades, but in order to avoid resonance vibrations, each half
has a slightly different number. Better guidance is obtained by increasing the number of
blades, but this comes at the cost of increased frictional losses and thus a slower circulating
flow rate for the oil in the coupling. The flow rate is an operating characteristic of a
coupling and needs to be estimated. This is carried out next.
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Figure 12.2 Velocity triangles for a fluid coupling. (a) Pump outlet, (b) turbine inlet, (c) pump
inlet, and (d) turbine outlet.

12.1.2 Flow rate and hydrodynamic losses

Analysis of fluid couplings can be carried out by methods familiar from the analysis of
centrifugal pumps and radial inflow turbines. The vector diagrams are shown in Figure 12.2.
Since the relative velocity leaving the turbine and that leaving the pump are radial, the
equation for the torque can be written as

T = ρQ(Ωpr
2
2 − Ωsr

2
1) (12.1)

where
r1 =

1
2
(Ri + Ra) r2 = Ro −

1
2
b

according to the labels in Figure 12.1. The power dissipation in the coupling is T (Ωp − Ωs).
This can be estimated by noting that the losses consist of the losses at the inlets to the
pump and the turbine and the frictional losses along the flow passage.

Analysis of inlet losses is left as an exercise. It is based on destruction of the difference in
the tangential component of the velocity [69]. When carried out, it shows that at the inlet to
the turbine the tangential component of velocity undergoes a change equal to (Ωp − Ωs)r2.
Hence, the kinetic energy change is equal to (Ωp − Ωs)

2r2
2/2 per unit mass. This kinetic

energy is dissipated into internal energy of the fluid by turbulent mixing. Similarly, at
the entrance to the pump, the kinetic energy change is (Ωp − Ωs)

2r2
1/2. Hence, the shock

losses in the coupling amount to (Ωp − Ωs)
2(r2

1 + r2
2)/2.

Inside the coupling, owing to skin friction, losses, as in pipe flow, are proportional to
the square of the meridional velocity. If the effective friction factor is denoted by f , the
losses can be expressed as fLQ2/2DhA

2 in which L is the length of the flow path, A is the
cross-sectional area, and Dh is the hydraulic diameter Dh = 4A/C. In this expression, C
is the circumference of the toroidal cross section. For fully turbulent flows, f is practically
constant. The losses can now be expressed as

T (Ωp − Ωs) =
1
2
ρQ

[
(Ωp − Ωs)

2(r2
1 + r2

2) + f
L

Dh

Q2

A2

]
(12.2)
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Eliminating the torque between Eqs. (12.1) and (12.2) gives for the flow rate the expression

Q = AΩpr2

√
Dh

fL

√(
1 − Ω2

s

Ω2
p

)(
1 − r2

1

r2
2

)
(12.3)

Substituting this into the equation for torque gives

T = ρAΩ2
pr

3
2

√
Dh

fL

√(
1 − Ω2

s

Ω2
p

)(
1 − r2

1

r2
2

)(
1 − r2

1

r2
2

Ωs

Ωp

)
(12.4)

This shows that the torque varies as the square of the rotational speed of the driver shaft.
Increasing the load on the driven shaft increases the torque as well, up to a maximum value,
which corresponds to such a large load that the driven shaft stops turning. The maximum
torque is given by

Tm = ρAΩ2
pr

3
2

√
Dh

fL

√
1 − r2

1

r2
2

The equation for torque can now be expressed as

T = Tm

√
1 − Ω2

s

Ω2
p

(
1 − r2

1

r2
2

Ωs

Ωp

)

The power delivered is Ẇs = TΩs, so that it can be written as

Ẇs = ΩsTm

√
1 − Ω2

s

Ω2
p

(
1 − r2

1

r2
2

Ωs

Ωp

)

or in nondimensional form as

Ẇs

TmΩp
=

Ωs

Ωp

√
1 − Ω2

s

Ω2
p

(
1 − r2

1

r2
2

Ωs

Ωp

)

The performance curves are shown in Figure 12.3. If the load on the driven shaft is
very large, the coupling will experience a large slip and only a small amount of power
will be transmitted to the driven shaft. Similarly, for light loads, the torque is small
and a small amount of power is needed to turn the shaft. Here again, the power flow
is low. Hence, there is a maximum for some intermediate value, which depends on the
dimensions of the coupling. For the characteristics shown r1/r2 = 0.6, and the maximum
is at Ωs/Ωp = 0.642. The range 0.6 < r1/r2 < 0.8 is typical.

By dimensional analysis, a torque coefficient can be defined, and it depends on the slip,
the Reynolds number, and geometric parameters, the most important of which is the ratio
of the volume V of the space occupied by the working fluid and the cube of the outer
diameter. These dependencies can be written as

CT =
T

ρΩ2
pD

5 = f

(
s,

ρΩpD
2

μ
,
V
D3

)
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Figure 12.3 Characteristics of a fluid coupling with r1/r2 = 0.6.

The flow through a coupling, as in other turbomachines, is dominated by inertial forces and
the influence of the Reynolds number on the torque coefficient is much weaker than that
caused by the slip. The only other parameter that needs to be investigated is the volume
ratio.

12.1.3 Partially filled coupling

It was observed early in the development of fluid couplings that the torque could be
reduced by filling the coupling only partially with fluid. Modern couplings have chambers
into which some of the fluid can be drawn. Similarly, extra fluid can be added into the
coupling. This provides a smooth start, and the amount of fluid can be adjusted to obtain
the best efficiency during the nominal operating conditions.

The performance of a partially filled coupling is shown in Figure 12.4, where the
parameter V/Vm is the ratio of the actual volume of the fluid to that in a fully filled
coupling. One way to see that torque must decrease in a partially filled coupling is to
note that when some of the flow channels are starved for fluid, they are not effective in
providing a full force into the turbine blades. Although such a fluid distribution is possible
in principle, it is more likely that the fluid distribution is such that each channel is only
partially filled and then the fluid is crowded to the pressure side of each blade in a pump,
with the suction side lacking its share. Now the loading of the turbine blades is similar to
that in an impulse turbine, but since the blades are flat, they do not perform well under this
loading. As a consequence, an equally large pressure increase is not possible in the pump
as in a completely filled coupling, and the torque is reduced. The graphs in this figure
were drawn to match the results shown in Pfleiderer [69]. For couplings in use today, such
performance data are obtained from manufacturers’ catalogs.

In addition to steady rotation, torsional vibrations may be present in the input shaft.
Such torsional motions do not influence the flow in the coupling greatly, so they are not
transmitted to the output shaft. The vibrations can be further suppressed by placing the
coupling near the node of such a vibrational motion in the shaft, if it is not possible to
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Figure 12.4 Partially filled coupling characteristics.

change the natural frequency of the load. Fluid couplings vary in size, with small ones
handling about 1 kW. For those in the 2000 kW range, the outer diameter reaches over
1 m. They contain over 100 L of oil and have a mass approaching 2000 kg.

12.2 TORQUE CONVERTERS

The torque converter was also invented by H. Föttinger, while working at Vulcan
Shipbuilding, where he was interested in finding an efficient way of connecting steam
turbines to marine propellers. As the name suggests, torque converter changes and usually
increases the input torque to a different output value. In order to achieve this, a set of
guide vanes, fixed to the frame, direct the fluid into an impeller, which rotates with the
input shaft. On the output shaft is a set of runner, or turbine, blades. To obtain the larger
output torque, the blade shapes must be such that the fluid experiences a larger change in
the tangential velocity through the turbine than through the pump. A torque converter with
a single-stage radial outflow turbine is shown in Figure 12.5. More complicated designs
having three turbine stages and two stationary guide vane stages exist. They have a wider
operating range of high efficiency.

12.2.1 Fundamental relations

In order to keep the analysis general, the velocity triangles in Figure 12.6 are also drawn
to depict the general situation. The equation for the output torque from the turbine is

Ts = ρQ(r2Vu2 − r3Vu3)
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Figure 12.6 Velocity triangles for a torque converter. (a) Pump exit, (b) turbine inlet, (c) pump
inlet, (d) turbine exit, (e) fixed exit, and (f) fixed inlet.

and the torque in the input shaft is

Tp = ρQ(r2Vu2 − r1Vu1)

For the fixed member the equation is

Tf = ρQ(r1Vu1 − r3Vu3)

Adding the last two shows that
Ts = Tp + Tf
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Examination of the velocity diagrams shows that at the inlet to the turbine, the velocities
are similar to those of an impulse turbine. Namely, the absolute velocity is at a steep angle
to the axial direction. As the fluid flows through the turbine, its relative velocity is changed
first toward the axis and then beyond it to a negative angle. Since at the exit of the turbine,
the axial velocity is in the direction exactly opposite to that at the inlet of the pump, the
velocity diagram on the bottom part of the figure has been reflected about the vertical
axis to show this. Also, at the inlet to the turbine, the absolute velocity is identical to the
absolute velocity at the exit of the pump and the blade speed is lower than that of the pump.

A configuration of a torque converter that more closely reflects a centrifugal pump
and a radial inflow turbine would have these two components as mirror images across
the vertical centerline. The fixed member would then occupy only the lower part of the
converter. In this case, for a symmetric fixed member, the exit of the turbine would be at
the same radius as the inlet to the pump.

The power in the input shaft is Ẇp = TpΩp and in the output shaft it is Ẇs = TsΩs. The
efficiency, given by

η =
Ẇs

Ẇp

must be less than unity owing to irreversibilities. To obtain a large increase in torque,
the output shaft must rotate substantially slower than the input shaft. For sufficiently
large output load, the output shaft can be stopped. Under this situation, the efficiency of
the torque converter drops to zero and the irreversibilities cause its temperature to rise
considerably. The irreversibilities are now mainly shock losses, although frictional loss is
still substantial. A light load on the output shaft gives no torque multiplication at all, and
as the shock losses vanish, the small losses are now almost entirely frictional losses.

� EXAMPLE 12.2

A torque converter, when operating with a slip equal to 0.8, multiplies the torque
in the ratio of 2.5 : 1. The circulatory flow rate in the converter is 140 kg/s. For the
primary element, the ratio of inner to outer mean radii is 0.55 and the blade speed of
the primary at the outer mean radius is 50 m/s. The axial velocity remains constant
throughout the flow circuit. The absolute velocity at inlet to the primary and the
relative velocity at the exit of the primary are both axially directed. Evaluate the
power developed by the secondary element in this torque converter.

Solution: Let the inlet to the impeller be denoted by 1, the inlet to the runner by
2, and the inlet to the guide vanes as 3. The design and operation is such that the
tangential velocity at the inlet to the impeller is zero and the tangential component
of the relative velocity to the runner vanishes also. For this reason, the velocity
diagrams are as shown in Figure 12.7.

Since the inlet angular momentum to the primary is zero, the torque is Tp =
ρQr2Vu2 and the input power is Ẇp = TΩp. Therefore,

Ẇp = ρQU2Vu2 = ρQU 2
2 = 140 · 502 = 350.0 kW

Since the torque ratio is 2.5 and the slip is 0.8, it follows that

Ẇs

Ẇp
=

TsΩs

TpΩp
= 2.5 · 0.2 = 0.5
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Figure 12.7 Velocity triangles for Example 12.2. (a) Primary inlet and (b) primary exit.

and Ẇs = 0.5 · 350.0 = 175.0 kW. There is a large irreversibility in the flow as the
large torque multiplication requires heavily loaded blades. (Note that the ratio of the
radii was not needed.) �

12.2.2 Performance

To illustrate how the general analysis may proceed, consider the torque converter shown
in Figure 12.5. Assume that the blades are radial at the exit of the primary so that the
angles at which the relative velocity leaves is zero, and similarly for the flow at the exit
of the secondary. Then, since the velocity does not change in magnitude or direction as
the flow leaves the primary and enters the secondary, at the inlet of the secondary, the
angular momentum is r2Vsu2 = r2Vpu2 = r2

2Ωp. On the basis of what has been learned of
the turbomachines studied so far, if the deviation is ignored, the exit angles of the relative
velocity leaving the primary and the secondary do not change during the operation, and
neither does the angle of the absolute velocity at the exit of the fixed member. Then
dimensional analysis of this particular torque converter, which also has fixed value for the
diameter ratio, shows that the torque of the primary is related to the angular speed ratio
and Reynolds number as

Cp =
Tp

ρΩ2
pD

5 = f1

(
Ωs

Ωp
, Re

)
(12.5)

where the Reynolds number is Re = ρΩpD
2/μ. Similarly for the secondary

Cs =
Ts

ρΩ2
pD

5 = f2

(
Ωs

Ωp
, Re

)
(12.6)

Dividing these gives
Ts

Tp
= f

(
Ωs

Ωp
, Re

)
(12.7)

The efficiency is also a function of the same nondimensional groups

η = g

(
Ωs

Ωp
, Re

)
(12.8)
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Again, the influence of the Reynolds number is much weaker than the angular velocity
ratio [48].

Typical plots of the torque ratio and efficiency are shown in Figure 12.8. Experimental
evidence suggests that the torque coefficient of the primary Cp is independent of the speed
ratio; that is, the amount of slip taking place in the torque converter influences mainly
the downstream components. The primary torque is given by the angular momentum
balance

Tp = ρQ(Ωpr
2
2 − r1Vu1)

With Vu1 = Vx1 tan α1 = Q tan α1/A, the torque coefficient of the primary is then

Cp =
Tp

ρΩ2
pr

5
3

=
Q

Ωpr
3
3

(
r2
2

r2
3
− Qr1 tan α1

Ar3
3Ωp

)

The reaction torque of the secondary is given by

Ts = ρQ(Ωpr
2
2 − Ωsr

2
3)

and the torque coefficient of the secondary is

Cs =
Ts

ρΩ2
pr

5
3

=
Q

Ωpr
3
3

(
r2
2

r2
3
− Ωs

Ωp

)

The torque ratio becomes

Ts

Tp
=

r2
2/r2

3 − Ωs/Ωp

r2
2/r2

3 − Qr1 tan α1/AΩpr
2
3

(12.9)

The efficiency of the torque converter is then

η =
TsΩs

TpΩp
=

(r2
2/r2

3 − Ωs/Ωp)Ωs/Ωp

r2
2/r2

3 − Qr1 tan α1/Ar2
3Ωp

(12.10)

Since Cp is assumed to be constant, it follows that Q/Ωp is constant, and for a given torque
converter, the torque ratio is seen to decrease linearly with the speed ratio Ωs/Ωp. The
efficiency then varies parabolically, being zero when the secondary shaft either is fixed or
rotates at the value given by

Ωs

Ωp
=

r2
2

r2
3

At the point of maximum efficiency, the speed ratio decreases to about one-half of this
value. That the experimental curves of Figure 12.8 do not follow this theory exactly is
caused by variation of Cp with the speed ratio.

Another design is shown in Figure 12.9. The output shaft is concentric with the input
one, and the inlet mean radius of the fixed member is the same as its exit radius. This
design is analyzed in the next example.



�

� �

�

502 HYDRAULIC TRANSMISSION OF POWER

0 0.5

(a)

1
0 0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ω
s
/Ω

p

T
o
rq

u
e
 r

a
ti
o
 (

T s/
T p

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff
ic

ie
n
c
y

Rotational speed ratio 

0 0.5

(b)

1

Ω
s
/Ω

p

Rotational speed ratio 

Figure 12.8 Performance curves for a torque converter. (a) Torque ratio and (b) efficiency.

r
2

r
1

Runner

Impeller

Input shaft

Output shaft

Stationary 

guidevanes

Figure 12.9 Torque converter with concentric shafts.

� EXAMPLE 12.3

The mean radii of a torque converter of the type shown in Figure 12.9 are r1 = 10 cm
and r2 = 15 cm. The primary operates with Ωp = 2500 rpm, and the secondary
rotates at Ωs = 1200 rpm. The blades of the primary are oriented such that the angle
of the relative flow at the exit is βp2 = 35◦. The exit angle of the relative velocity of
the secondary is βs3 = −56◦. The fixed blades are shaped such that the exit velocity
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from them is at the angle αf1 = 55◦. The axial velocity is constant throughout the
converter, and its value is Vx = 15 m/s. Determine the flow angles and calculate the
torque ratio Ts/Tp and the efficiency of the torque converter.

Solution: The blade speeds are first determined as

Up1 = r1Ωp =
0.10 · 2500 · π

30
= 26.78 m/s

Up2 = r3Ωp =
0.15 · 2500 · π

30
= 39.27 m/s

Us2 = r2Ωs =
0.15 · 1200 · π

30
= 18.85 m/s

Us3 = r3Ωp =
0.10 · 1200 · π

30
= 12.57 m/s

Next, the tangential velocity at the exit of the primary is determined. Since the flow
angle of the relative flow is given, the tangential component Wpu2 is

Wpu2 = Vx tan βp2 = 15 tan(35◦) = 10.50 m/s

and the tangential component of the absolute velocity is

Vpu2 = Up2 + Wpu2 = 39.27 + 10.50 = 49.77 m/s

The flow angle is therefore

αp2 = tan−1
(

Vpu2

Vx

)
= tan−1

(
49.77
15.00

)
= 73.23◦

The absolute velocity and its flow angle at the inlet of the secondary are the same as
those leaving the primary. Hence, Vsu2 = 49.77 m/s. The relative velocity entering
the secondary has the tangential component

Wsu2 = Vsu2 − Us2 = 49.77 − 18.85 = 30.92 m/s,

and its flow angle is

βs2 = tan−1
(

Wsu2

Vx

)
= tan−1

(
30.92
15.00

)
= 64.12◦

At the exit of the secondary, the tangential velocity component of the relative
velocity is

Wsu3 = Vx tan βs3 = 15 tan(−56◦) = −22.24 m/s

so that the component of the absolute velocity and its flow angle are

Vsu3 = Wsu2 + Us3 = −22.24 + 12.57 = −9.67 m/s

αs3 = tan−1
(

Vsu3

Vx

)
= tan−1

(
−9.67
15.00

)
= −32.81◦
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The flow enters the fixed member at the same velocity as it leaves the secondary.
Hence, Vfu3 = −9.67 m/s. At the exit of the fixed member,

Vfu1 = Vx tan αf1 = 15 tan(55◦) = 21.42 m/s

The flow enters the primary with this tangential velocity and angle, so that Vpu1 =
21.24 m/s. The relative velocity at the inlet of the primary is then

Wpu1 = Vpu1 − Up1 = 21.42 − 26.18 = −4.76 m/s

The torques are

Ts = ρQ(r2Vsu2 − r3Vsu3) = 8.43ρQ

Tp =ρQ(r2Vpu2 − r1Vpu1) = 5.32ρQ

Tf = ρQ(r1Vfu1 − r3Vfu3) = 3.11ρQ

Hence,
Ts

Tp
=

8.43
5.32

= 1.58 η =
TsΩs

TpΩp
= 1.58

1200
2500

= 0.761 �

The velocity triangles for the preceding example are close to what are shown in
Figure 12.6.

EXERCISES

12.1 A fluid coupling operates with oil flowing in a closed circuit. The device consists
of two elements, the primary and secondary, each making up one-half of a torus, as shown
in Figure 12.1. The input power is 100 hp, and input rotational speed is 1800 rpm. The
output rotational speed is 1200 rpm. (a) Evaluate both the efficiency and output power of
this device. (b) At what rate must energy as heat be transferred to the cooling system, to
prevent a temperature rise of the oil in the coupling? [Ans: (a) 2/3, 66.7 hp, (b) 24.86 kW]

12.2 (a) Carry out the algebraic details to show that the expression for the flow rate
through a fluid coupling is given by Eq. (12.3) and assuming that for a low value of slip
the friction factor is related to the flow rate by an expression

f =
c

Re
=

cμA

ρQD

find the dependence of the flow rate on the slip for small values of s. (b) Carry out the
algebraic details to show that the expression for the torque of a fluid coupling is given by
Eq. (12.4). What is the appropriate form for this equation for low values of slip? [Ans:
CT = 2s(1 − r2

1/r2
2)

2ρAD2ωp/cμLr2]

12.3 A fluid coupling operates with an input power of 200 hp, 5% slip, and a circulatory
flow rate of 1500 L/s. (a) What is the rate at which energy as heat must be transferred
from the coupling in order for its temperature to remain constant? (b) What would be the
temperature rise of the coupling over a period of 30 minutes, assuming that no heat is
transferred from the device and that it has a mass of 45 kg, consisting of 70% metal with
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a specific heat 840 J/(kg K), and 30% oil with a specific heat 2000 J/(kg K)? [Ans: (a)
7.46 kW, (b) 251 ◦C]

12.4 In the fluid coupling shown in Figure 12.1 fluid circulates in the direction indicated,
while the input and output shafts rotate at 2000 and 1800 rpm, respectively. The fluid is an
oil having a specific gravity of 0.88 and viscosity 0.25 kg/(m s). The outer mean radius
of the torus is r2 = 15 cm and the inner mean radius is r1 = 7.5 cm. The radial height is
b = 2r2/15. The axial flow area around the torus is the same as the flow area at the outer
clearance between the primary and secondary rotors. Given that the relative roughness
of the flow conduit is 0.01, find the volumetric flow rate and the axial velocity. [Ans:
247.6 L/s.13.13 m/s]

12.5 Show that the kinetic energy loss model at the inlet to the turbine given by

1
2
r2
2(Ωp − Ωs)

2

is based on the conversion of the change in the one-half of the tangential component of the
velocity squared, irreversibly into internal energy. To show this, note that the incidence
of the relative velocity at the inlet to the turbine is β2 since the blades are radial. This
leads to a leading-edge separation, after which the flow reattaches to the blade. After
this reattachment, the radial component of the relative velocity is the same as in the flow
incident on the blade.

12.6 For a fluid coupling for which r1/r2 = 0.7, develop an expression from which by
differentiation the value of the slip at which the power is maximum may be obtained. [Ans:
0.395]

12.7 A torque converter operates with oil flowing in a closed circuit. It consists of a
torus with a pump, a turbine, and a stator. The input and output rotational speeds are 4000
and 1200 rpm, respectively. At this operating condition, the torque exerted on the stator is
twice that exerted on the pump. Evaluate (a) the output to input torque ratio and (b) the
efficiency. [Ans: (a) 3, (b) 0.9]

12.8 A torque converter is designed to provide torque multiplication ratio of 3.3 to 1.
The circulating oil flow rate is 500 kg/s. The oil enters the fixed vanes in the axial direction
at 10 m/s, and leaves at an angle 60◦ in the direction of the blade motion. The axial flow
area is constant. Find the torque that the primary exerts on the fluid and the torque by the
fluid on the blades of the secondary. The inlet and outlet radii of fixed vanes are 15 cm.
[Ans: 565 N m, 1864 N m]

12.9 Develop the Eqs. (12.7) and (12.10). At what ratio of the rotational speeds is the
efficiency maximum? From this and the experimental curves shown in the text, estimate
(a) the ratio r2/r3, (b) the value of Qr1 tan α1/Ar2

3Ωp, and (c) efficiency. [Ans: (a) 0.92,
(b) 0.584, (c) 0.68. Note that estimated efficiency is quite a bit lower than what is plotted.]
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CHAPTER 13

WIND TURBINES

A brief history of wind turbines was given in Chapter 1. The early uses for grinding grain
and lifting water have been replaced by the need to generate electricity. For this reason,
the designation windmill has been dropped and it has been replaced by a wind turbine.
Wind turbines, such as are shown in Figure 13.1, are the most rapidly growing renewable
energy technology, but as they provide for only 2.5% of the primary energy production
in the world, it will take a long time before their contribution becomes significant. Since
the installed base of wind turbines is still relatively small, even a large yearly percentage
increase in their use does not result in a large increase in the net capacity. But the possibility
of growing wind capacity is large. China leads the world in installed capacity, followed
by the United States, Germany, India, and Spain. The most windy regions of the United
States are in the North and South Dakotas. These states, as well as the mountain ridges of
Wyoming, the high plains of Texas, and the mountain passes of California, have seen the
early gains in the number of wind turbines.

In countries such as Denmark and Germany, the growth of wind turbine power has
been quite rapid. The winds from the North Sea provide particularly good wind prospects
both onshore and offshore in Denmark’s Jutland. In fact, during the year 2015, 42% of
Denmark’s electricity was generated from wind, and the entire power needs of western
Denmark are provided by its windfarms on the windiest days. The installed capacity at the
end of year 2015 was 5070 MW. The capacity factor is a modest 23% cent, owing to the
intermittency of wind.

In Germany, during the years 2001–2004 wind turbines were put into operation at the
rate of two each day. The installed capacity reached 55600 MW at the end of year 2017, and

507Principles of Turbomachinery, Second Edition. Seppo A. Korpela.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Korpela/PrinciplesTurbomachinery_2e
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(a) (b)

Figure 13.1 A Darrieus rotor (a) and a windfarm of modern wind turbines (b).

this was based on some 26800 units. They provided about 18.7% of Germany’s electricity
that year.

The cost of generating electricity from wind has dropped greatly since the 1980s. With
the rising costs of fossil fuels and nuclear energy, it is now competitive with the plants
using these fuels as sources of power.

13.1 HORIZONTAL-AXIS WIND TURBINE

Aerodynamic theory of wind turbines is similar to that of airplane propellers. Propeller
theory, in turn, originated from efforts to explain the propulsive power of marine propellers.
The first ideas for them were advanced by W. J. M. Rankine in 1865 [73]. They are based
on what has come to be called the momentum theory of propellers. It ignores the blades
completely and replaces them by an actuator disk. The flow through the disk is separated
from the surrounding flow by a streamtube, which is called a slipstream downstream of
the disk. For a wind turbine, as energy is drawn from the flow, the axial velocity in the
slipstream is lower than that of the surrounding fluid. Some of the energy is also converted
into the rotational motion of the wake.

The next advance was by W. Froude in 1878 [28]. He considered how a screw propeller
imparts a torque and a thrust on the fluid that flows across an element of a blade. This
blade element theory was developed further by S. Drzewieci at the beginning of the
twentieth century. During the same period contributions were made by N. E. Joukowsky
in Russia, A. Betz and L. Prandtl in Germany, and F. W. Lancaster in Great Britain. These
studies were compiled into a research monograph on airscrews by H. Glauert [31]. He also
made important contributions to the theory at a time when aerodynamic research took on
great urgency with the development of airplanes. In addition to marine propellers, aircraft
propellers, and wind turbines, the theory of screw propellers can also be used in the study
of helicopter rotors, hovercraft propulsion, unducted fans, axial pumps, and propellers in
hydraulic turbines. The discussion below begins by following Glauert’s presentation.

The aim of theoretical study of wind turbines is to determine what the length of blades
should be for nominal wind conditions at a chosen site, and how the chord, angle of twist,
and shape should vary along the span of the blade to give the blade the best aerodynamical
performance. Thickness of the cross section of the blade is determined primarily by
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structural considerations, but a well-rounded leading edge performs better at variable wind
conditions than a thin blade, so the structural calculations and aerodynamic analysis are
complementary tasks.

13.2 MOMENTUM THEORY OF WIND TURBINES

In momentum theory, an airscrew is replaced by an actuator disk. When it functions as a
propeller, it imparts energy to the flow; when it represents the blades of a wind turbine, it
draws energy from the flow.

13.2.1 Axial momentum

To analyze the performance of a windmill by momentum theory, consider the control
volume shown in Figure 13.2. The lateral surface of this control volume is that of a
streamtube that divides the flow into a part that flows through the actuator disk and an
external stream. Assuming that the flow is incompressible and applying the mass balance
to this control volume gives

AaV = AVd = AbVb

in which Aa is the inlet area and Ab is the outlet area. The approach velocity of the wind is
V and the downstream velocity is Vb. The disk area is A, and the velocity at the disk is Vd.

V VbV
d

Aa

Ab

A

Figure 13.2 Control volume for application of the momentum theory for a wind turbine.

If there is no rotation in the slipstream, and velocity and pressure at the inlet and exit
are uniform, then an energy balance applied to the control volume gives

ṁ

(
pa

ρ
+

1
2
V 2

)
= Ẇ + ṁ

(
pa

ρ
+

1
2
V 2

b

)
(13.1)

which gives for the specific work the expression

w =
1
2
(V 2 − V 2

b ) (13.2)

Introducing the stagnation pressures

p0+ = pa +
1
2
ρV 2 p0− = pa +

1
2
ρV 2

b
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into Eq. (13.1), gives for the specific work the alternate form

w =
p0+ − p0−

ρ
(13.3)

and the specific work is evidently uniform across the disk. Making use of the fact that
velocity Vd at the disk is the same on both sides, this can also be written as

w =
p+ − p−

ρ
(13.4)

in which p+ and p− are the corresponding static pressures. Force balance across the disk
gives

Fd = (p+ − p−)A (13.5)

The force on the disk is also obtained by applying the momentum theorem to the control
volume and assuming that the pressure along its lateral boundaries has a uniform value pa.
This yields

Fd =
∫

A

ρVd(V − Vb)dA = ρAVd(V − Vb) (13.6)

and Fd here and in Eq. (13.5) is the force that the disk exerts on the fluid. It has been taken
to be positive when it acts in the upstream direction. Equating Eq. (13.6) to Eq. (13.5) and
making use of Eq. (13.3) gives

ρVd(V − Vb) = p+ − p− = ρw

Substituting Eq. (13.2) for work gives

Vd(V − Vb) =
1
2
(V 2 − V 2

b ) =
1
2
(V − Vb)(V + Vb)

from which it follows that
Vd =

1
2
(V + Vb)

Velocity at the disk is seen to be the arithmetic mean of the velocities in the free stream
and in the far wake. Changes in velocity, total pressure, kinetic energy, and static pressure
in the axial direction are shown in Figure 13.3.

A consequence of this analysis is that power delivered by the turbine is

Ẇ = ρAVd w = AVd (p0+ − p0−) = AVd (p+ − p−) = FdVd

This is a curious result, for in the previous chapters, the work delivered by a turbine was
always related to a change in the tangential velocity of the fluid, which produces a torque
on a shaft. To reconcile this, one may imagine the actuator disk to consist of two sets of
blades rotating in opposite directions such that the flow enters and leaves the set axially.
Each rotor extracts energy from the flow with the total power delivered as given above.
Also, since the velocity entering and leaving the disk is the same, it is seen that work
extracted is obtained by the reduction in static pressure across the disk. This sudden drop
in static pressure is shown schematically in Figure 13.3.
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Figure 13.3 Variation of the different flow variables in the flow.

It is customary to introduce an axial induction, or interference factor, defined as

a =
V − Vd

V

so that the velocities at the disk and far downstream are

Vd = (1 − a)V Vb = (1 − 2a)V (13.7)

The second of these equations shows that if a > 1
2 , there will be reverse flow in the wake

and simple momentum theory has broken down. The axial force on the blades is given by

Fd = ρVd(V − Vb)A = 2a(1 − a)ρAV 2 (13.8)

A force coefficient defined as

Cx =
Fd

1
2ρV 2

= 4a(1 − a) (13.9)

is seen to depend on the induction factor. The power delivered to the blades is

Ẇ =
1
2
ρVdA(V 2 − V 2

b ) = 2a(1 − a)2ρA V 3 (13.10)

from which the power coefficient, defined as

Cp =
Ẇ

1
2ρAV 3

= 4a(1 − a)2 (13.11)

is also a function of the induction factor only. Maximum power coefficient is obtained by
differentiating this with respect to a, which gives

4(1 − a)(1 − 3a) = 0 so that a =
1
3
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Figure 13.4 Efficiencies of various wind turbines.

If the efficiency is defined as the ratio of power delivered to that in the stream moving with
speed V over an area A, which is ρAV 3/2, then the efficiency and power coefficient are
defined by the same equation. The maximum efficiency is seen to be

η =
16
27

= 0.593

This is called the Betz limit. Efficiencies of various wind turbines are shown in Figure 13.4.
Depending on their design, modern wind turbines operate at tip speed ratios RΩ/V in

the range 1–6. In the upper part of this range, the number of blades is from one to three,
and in the lower end, wind turbines are constructed with up to two dozen blades, as is
shown in the American wind turbine in Figure 1.4.

The flow through the actuator disk and its wake patterns have been studied for
propellers, wind turbines, and helicopters. Helicopters, in particular, operate under a
variety of conditions, for the flow through the rotor provides a thrust at climb and a brake
during descent. The various flow patterns are summarized in the manner of Eggleston and
Stoddard [27] in Figure 13.5. The representation of the axial force coefficient was extended
by Wilson and Lissaman [98] to the brake range a > 1, by rewriting it as

Cx = 4a|1 − a|

This explains the discontinuity in the slope at a = 1. For a < 0, the airscrew operates as
a propeller. The limit of vanishing approach velocity corresponds to a tending to a large
negative value at a rate that keeps Vd finite, while V tends to zero. Under this condition,
the airscrew functions as an unducted axial fan. Since the flow leaves the fan as a jet,
pressure is atmospheric short distance into the wake, and with a pressure increase across
the fan, pressure will be lower than atmospheric at the inlet to the fan. This low pressure
causes the ambient air to accelerate toward the front of the fan. At a given rotational speed,
proper orientation of the blades gives a smooth approach. A slipstream forms downstream
of the fan, separating the wake from the external flow. The wake is in angular rotation, and



�

� �

�

MOMENTUM THEORY OF WIND TURBINES 513

vorticity that is shed from the blades forms a cylindrical vortex sheet that constitutes the
boundary of the slipstream. As a consequence, at the slipstream boundary, velocity changes
discontinuously from the wake to the surrounding fluid. This discontinuous change and
rotation are absent in the flow upstream of the disk where the flow is axial, if the small
radial component near the disk is neglected.

As the approach velocity increases to some small value V , the airscrew functions as a
propeller, in which case V can be taken to be the velocity of an airplane flying through
still air. The continuity equation now shows that the mass flow rate ṁ across the propeller
comes from an upstream cylindrical region of area Aa, given by Aa = ṁ/ρV , and the area
decreases as the velocity V increases.

A further increase in the approach velocity leads to a condition at which a = 0. At this
state, no energy is imparted to, or extracted from, the flow, and the slipstream neither
expands nor contracts. As the velocity V increases from this condition, the angle of attack
changes to transform what was the pressure side of the blade into the suction side, and the
airscrew then extracts energy from the flow. The airscrew under this condition operates as
a wind turbine. The blades are naturally redesigned so that they function optimally when
they are used to extract energy from the wind. In a wind turbine, pressure increases as it
approaches the plane of the blades and drops across them. The diameter of the slipstream,
in contrast to that of a propeller, increases in the downstream direction.

For a > 1
2 , the slipstream boundary becomes unstable and forms vortex structures that

mix into the wake. This is shown in Figure 13.5 as the turbulent wake state. The theoretical
curve in the figure no longer holds, and an empirical curve of Glauert gives the value of
the force coefficient in this range. At the condition a = 1, the flow first enters a vortex ring
state and for large values, a brake state. Flows in these regions are sufficiently complex
that they cannot be analyzed by elementary methods.

The aim of wind turbine theory is to explain how the induction factors change as a result
of design and operating conditions. When the theory is developed further, it will be seen
that wind turbines operate in the range 0 < a < 1

2 , which is consistent with the momentum
theory.

–0.5 0 0.5 1 1.5
–1.0

–0.5

0.0

0.5

1.0

1.5

a
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Propeller

Wind turbine
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Turbulent

   wake

Figure 13.5 Operational characteristics of an airscrew. Source: After Eggleston and Stoddard [27].
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13.2.2 Ducted wind turbine

Insight can be gained by repeating the analysis for a wind turbine placed in a duct and then
considering the limit as the duct radius tends to infinity. Such an arrangement is shown
in Figure 13.6. Applying the momentum equation to the flow through the control volume
containing the slipstream gives

Fd −
∫

Ab

ρVb(Vb − V )dAb = R + paAa − pbAb (13.12)

in which R is the x component of the net pressure force that the fluid outside the streamtube
(consisting of the slipstream and its upstream extension) exerts on the fluid inside. For the
flow outside this streamtube, the momentum balance leads to

pa(Ae − Aa) − pb(Ae − Ab) − R = ρVc(Vc − V )(Ae − Ab)

which can be recast as

R = pa(Ab − Aa) + (pa − pb)(Ae − Ab) + ρV (V − Vc)(Ae − Aa)

The pressure difference pa − pb can be eliminated by using the Bernoulli equation

pa +
1
2
ρV 2 = pb +

1
2
ρV 2

c ,

which transforms the expression for R into

R = pa(Ab − Aa) −
1
2
ρ(V 2 − V 2

c )(Ae − Ab) + ρV (V − Vc)(Ae − Aa)

or
R = pa(Ab − Aa) −

1
2
ρ(V − Vc)[(V + Vc)(Ae − Ab) − 2V (Ae − Aa)]

The continuity equation for the flow outside the slipstream yields

Vc(Ae − Ab) = V (Ae − Aa)

V Vbv
d

VcV

Aa

Ab

pa

pb

R

R

Duct wall

rbr

Figure 13.6 A ducted wind turbine.



�

� �

�

MOMENTUM THEORY OF WIND TURBINES 515

so that
V − Vc = V

Aa − Ab

Ae − Ab
V + Vc = V

2Ae − Aa − Ab

Ae − Ab

Substituting these into the equation for R leads to

R = pa(Ab − Aa) −
1
2
ρV 2 (Ab − Aa)

2

Ae − Ab

This shows that, as Ae becomes large in comparison to Aa and Ab, then

R = pa(Ab − Aa)

The extra term then accounts for the variable pressure along the streamtube boundary.
That the pressure is not exactly atmospheric along this boundary is also clear by noting
that whenever streamlines are curved, pressure increases in the direction from the concave
to the convex sides. Also, as the axial velocity decreases, pressure increases, but this
is compensated partly by the flow acquiring a small radial velocity as the area of the
streamtube increases downstream.

Equation (13.12) for the force on the blades now takes the form

Fd −
∫

Ab

ρVb(Vb − V )dAb = R + paAa − pbAb

= (pa − pb)Ab −
1
2
ρV 2 (Ab − Aa)

2

Ae − Ab

=
1
2
ρ(V 2

c − V 2)Ab −
1
2
ρV 2 (Ab − Aa)

2

Ae − Ab

Since

V 2
c − V 2 = (Vc − V )(Vc + V ) = V 2

(
Ab − Aa

Ae − Ab

) (
2Ae − Aa − Ab

Ae − Ab

)

this can be written as

Fd −
∫

Ab

ρVb(Vb − V )dAb =
1
2
ρV 2 (Ab − Aa)

(Ae − Ab)2 [Ae(Aa + Ab) − 2AaAb]

For large Ae, this reduces to

Fd =
∫

Ab

ρVb (V − Vb)dAb (13.13)

This is equivalent to Eq. (13.6) obtained above. It is now assumed that this equation is also
valid for each annular element of the streamtube shown in Figure 13.6. The differential
form can be written as

dFd = ρVb(V − Vb)dAb = ρV (V − Vb)dA

The analysis based on this equation is called a blade element analysis and is justified if
no interactions take place between adjacent annular elements. This assumption has been
criticized by Goorjian [33], but evidently in many applications of the theory, the error is
small.
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13.2.3 Wake rotation

Wake rotation was included in the theory by Joukowsky in 1918, and its presentation can
be found in Glauert [31]. This theory is considered next.

The continuity equation for an annular section of the slipstream gives

Vdx dA = Vbx dAb or Vdx r dr = Vbx rb drb (13.14)

The axial component of velocity at the disk is denoted by Vdx and in the far wake is Vbx.
The value of the radial location rb far downstream depends on the radial location r at the
disk. Since no torque is applied on the flow in the slipstream after it has passed through
the disk, moment of momentum balance for the flow yields

rVdu Vdx2πr dr = rbVbu Vbx2πrb drb

in which Vdu is the tangential component of velocity just behind the disk and Vbu is its
value in the distant wake. Using Eq. (13.14), this reduces to

rVdu = rbVbu (13.15)

This means that the angular momentum remains constant. If the rotation rate is defined by
ω = Vu/r, then this can be written as

r2ω = r2
bωb (13.16)

Velocity triangles for the flow entering and leaving the blades are shown in Figure 13.7.
The rotation in the wake is in the direction opposite to blade rotation. Since trothalpy is
constant across the blades, it follows that

h+ +
1
2
W 2

+ = h− +
1
2
W 2

−

and for isentropic incompressible flow, this reduces to

p+ +
1
2
ρ(V 2

dx + r2Ω2) = p− +
1
2
ρ[V 2

dx + (rΩ + rω)2]

W
–

rΩ

rω

V
dx

V
drΩ

V
dx

W
+

Before

After

Figure 13.7 A velocity triangle for the flow leaving the blades of a wind turbine.
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which simplifies to

p+ = p− + ρ

(
Ω +

1
2
ω

)
r2ω (13.17)

The Bernoulli equation upstream of the disk yields

pa

ρ
+

1
2
V 2 =

p+

ρ
+

1
2
V 2

dx

and downstream it gives

p−
ρ

+
1
2
V 2

dx +
1
2
r2ω2 =

pb

ρ
+

1
2
V 2

bx +
1
2
r2
bω

2
b

Adding the last two equations and using Eq. (13.17) to eliminate the pressure difference
p+ − p− leads to

pa

ρ
− pb

ρ
=

1
2
(V 2

bx − V 2) +
(

Ω +
1
2
ωb

)
r2
bωb (13.18)

Differentiating this with respect to rb gives

−1
ρ

dpb

drb
=

1
2

d

drb
(V 2

bx − V 2) +
d

drb

[(
Ω +

1
2
ωb

)
r2
bωb

]

Since the radial pressure variation in the downstream section is also given by

1
ρ

dpb

drb
=

V 2
bu

rb
= rbω

2
b

equating these two pressure gradients produces

1
2

d

drb
(V 2

bx − V 2) = − d

drb

[(
Ω +

1
2
ωb

)
r2
bωb

]
− rbω

2
b

or

1
2

d

drb
(V 2

bx − V 2) = −Ω
dr2

b ωb

drb
− rbω

2
b − r2

bωb
dωb

drb
− rbω

2
b

= −Ω
dr2

b ωb

drb
− ωb

(
2rbωb + r2

b
dωb

drb

)

= −(Ω + ωb)
dr2

b ωb

drb
(13.19)

Momentum balance for the streamtube containing the flow through the disk yields∫
Ab

ρVbx(Vbx − V )dAb =
∫

Ab

(pa − pb)dAb − Fd

Assuming that this is also valid for an annular element yields

dFd = ρVbx(V − Vbx)dAb + (pa − pb)dAb
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This elemental force is related to the pressures difference across the disk, which according
to Eq. (13.17) can be related to rotation as

dFd = (p+ − p−)dA = ρ

(
Ω +

1
2
ω

)
r2ωdA

When Eq. (13.14) is used, this takes the form

dFd = ρ

(
Ω +

1
2
ω

)
r2ω

Vbx

Vdx

dAb

Therefore, the momentum balance for an elemental annulus becomes

ρVbx(V − Vbx) + pa − pb = ρ

(
Ω +

1
2
ω

)
r2ω

Vbx

Vdx

Eliminating the pressure difference pa − pb by making use of Eq. (13.18) gives

Vbx(V − Vbx) − 1
2
(V 2 − V 2

bx) +
(

Ω +
1
2
ωb

)
r2
bωb =

(
Ω +

1
2
ω

)
r2ω

Vbx

Vdx

which simplifies to

(V − Vbx)2

2 Vbx

=
(Ω + 1

2ωb)r
2
bωb

Vbx

−
(Ω + 1

2ω)r2ω

Vdx

(13.20)

This is the main result of Joukowsky’s analysis. If ωb is now specified, then Eq. (13.19)
can be solved for Vbx(rb). After this, from Eq. (13.16), rotation ω(r, rb) at the disk can
be obtained as a function of r and rb. The axial velocity Vdx(r, rb) at the disk is then
obtained from Eq. (13.20). Substituting these into the continuity equation [Eq. (13.14)]
gives a differential equation that relates rb to r. Appropriate boundary conditions fix the
values for the integration constants.

13.2.4 Irrotational wake

The analysis of the previous section is valid for an arbitrary rotational velocity distribution
in the wake. An important special case is to assume the wake to be irrotational. Then
r2ω = r2

bωb = k is constant. Equation (13.19) then shows that Vbx is constant across the
wake, and Eq. (13.20) can be recast into the form

Vdx

Vbx

[
1
2
(V − Vbx)2 −

(
Ω +

k

2r2
b

)
k

]
= −

(
Ω +

k

2r2

)
k (13.21)

Writing Eq. (13.14) as
Vdx

Vbx

=
rb

r

drb

dr

and making use of it in Eq. (13.21) leads to[
1
2
(V − Vbx)2 − Ωk

]
rb drb −

k2

2
drb

rb
= −Ωkr dr − k2

2
dr

r
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Integrating this gives[
1
2
(V − Vbx)2 − Ωk

]
r2
b

2
− k2

2
ln

rb

εRb
= −Ωk

r2

2
− k2

2
ln

r

εR

where R is the disk radius and Rb the downstream slipstream radius. Owing to the
logarithmic singularity, the lower limits of integration were taken to be εR and εRb, so that
as ε tends to zero and the ratio εR/εRb tends to R/Rb. Thus the solution takes the form

1
2
(V − Vbx)2 − Ωk

(
1 − r2

r2
b

)
= r2

bω
2
b ln

(
rb R

r Rb

)

The most reasonable way to satisfy this equation is to choose the r dependence of rb to be

rb =
Rb

R
r

for the logarithmic term then vanishes and the second term is a constant, which balances
the first constant term. Thus an equation is obtained that relates the far wake axial velocity
to the slipstream radius Rb

1
2
(V − Vbx)2 = Ωk

(
1 − R2

R2
b

)
(13.22)

Furthermore, the following ratios are obtained:

r2

r2
b

=
ωb

ω
=

Vbx

Vdx

=
R2

R2
b

(13.23)

Following Glauert’s notation [31], the previous equation can be put into a nondimensional
form by introducing the parameters

λ =
V

RΩ
μ =

Vdx

RΩ
μb =

Vbx

RΩ
q

μ
=

k

R2Ω

In terms of these parameters, Eq. (13.22) can be written as

q =
μ2

2
(λ − μb)

2

(μ − μb)
(13.24)

Equation (13.18), namely

pa

ρ
− pb

ρ
=

1
2
(V 2

bx − V 2) +
(

Ω +
1
2
ωb

)
r2
bωb

evaluated at the edge of the slipstream, where pb = pa, gives

1
2
(V 2 − V 2

bx) =
(

Ω +
k

2 R2
b

)
k =

(
Ω +

k

2 R2

Vbx

Vdx

)
k

In terms of the nondimensional parameters, this can be transformed into

1
2
(λ2 − μ2

b) =
(

1 +
q

2μ

μb

μ

)
q

μ
(13.25)
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Eliminating q between this and Eq. (13.24) gives

4(μ − μb)(2μ − μb − λ) = μ(λ − μb)
3 (13.26)

Equations (13.25) and (13.26) determine μ and μb in terms of ratio λ and q. Equation
(13.26) can be written as

μ =
1
2
(λ + μb) +

μ(λ − μb)
3

8(μ − μb)
(13.27)

or in dimensional variables as

Vdx =
1
2
(V + Vbx) +

Vdx(V − Vbx)3

8(Vdx − Vbx)Ω2R2

This shows that
Vdx >

1
2
(V + Vbx)

Since rotation of the flow takes place only in the wake, this means that the axial velocity
in the wake Vbx is smaller than its value in a nonrotating wake.

Introducing the induction factors a and b by equations

μ = λ(1 − a) μb = λ(1 − b)

and substituting them into Eq. (13.27) gives

a =
1
2
b

[
1 − λ2 (1 − a)b2

4(b − a)

]
(13.28)

which, when solved for a, gives

a =
3b

4

[
1 − 1

12
λ2b2 − 1

3

√
(1 − 1

4
λ2b2)2 + (2 − b)λ2b

]

It is customary in wind turbine analysis to replace the advance ratio λ by its reciprocal
X = RΩ/V , the tip speed ratio, and plot the values of b as a function of a with the tip
speed ratio as a parameter. The curves, shown in Figure 13.8, clearly indicate that for X
greater than 3, the approximation b = 2a is quite accurate.

For large values of X , the induction factor a can be approximated by

a =
b

2
− b

4

2 (
1 − b

2

)
1

X2 + O

(
1

X4

)

Writing this as

b = 2a +
b2

2

(
1 − b

2

)
1

X2 + O

(
1

X4

)

and after replacing b by 2a in the higher-order terms, gives

b = 2a

[
1 +

a(1 − a)
X2

]
+ O

(
1

X4

)



�

� �

�

MOMENTUM THEORY OF WIND TURBINES 521

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1.0

a

b
Large X

X = 3

X = 2

X = 1

X = 0.5 

X = 0.25 

X = 0.75

Figure 13.8 Induction factors for an irrotational wake.

This formula gives an estimate of the extent to which the axial velocity in the wake has
been reduced as a result of wake rotation.

The expression for torque is

dT = 2πρVdxrVdur dr = 2πρVdxkr dr,

which when integrated over the span gives

T = ρAVdxk

Hence, the torque coefficient

CT =
T

ρAΩ2R3 =
Vdxk

Ω2R3 = q

is given by the parameter q. With Ẇ = TΩ, the power coefficient becomes

Cp =
TΩ

ρV A 1
2V

2
=

2q

λ3 =
b2(1 − a)2

b − a

Since r2ω is constant, the rate of rotation in an irrotational wake increases with
decreasing radius, and for small enough radius, the rotation rate becomes unreasonably
large. This leads to an infinite value for the power coefficient. To remedy this, the
wake structure needs modification, and a reasonable model is obtained by making it a
combination of solid body rotation at small radii and free vortex flow over large radii. The
power coefficient for this, called the Rankine combined vortex, was stated by Wilson and
Lissaman to be

Cp =
b(1 − a)2

b − a
[2aN + b(1 − N)]

in which N = Ω/ωmax. The details on how to develop this are not in their report, and it
appears that in order to develop it, some assumptions need to be made [98].
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13.3 BLADE ELEMENT THEORY

The blade forces can be calculated at each location of the span by the blade element
analysis. This is carried out for an annular slice of thickness dr from the disk, as is shown
in Figure 13.9. Across each blade element, airflow is assumed to be the same as that for an
isolated airfoil. The situation in which wake rotation is ignored is considered first. Then
the general analysis including wake rotation and Prandtl’s tip loss model is discussed.

r

dr

c

R

c

dr

Ω

Figure 13.9 Illustration of a blade element.

13.3.1 Nonrotating wake

If the wake rotation is ignored, the velocity triangle at the midchord is as shown in
Figure 13.10. The approach velocity at the disk is (1 − a)V and the blade element moves
at the tangential speed rΩ. The broken (dashed) line gives the direction of the chord and
thus defines the blade pitch angle θ, which is measured from the plane of the disk. The
angle of attack is α, and the flow angle of the relative velocity is φ = α + θ, also measured
from the plane of the disk.

ϕ
θ

α

W

F
y

F
x

L

D

(1–a)V

c

rΩ

Figure 13.10 Illustration of the relative velocity across a blade.
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The x and y components of the blade forces, expressed in terms of lift and drag, are

dFx = (L cos φ + D sinφ)dr dFy = (L sin φ − D cos φ)dr

For small angles of attack, the lift coefficient is

CL = 2π sin α = 2π sin(φ − θ) = 2π(sin φ cos θ − cos φ sin θ)

From the velocity triangle

sin φ =
(1 − a)V

W
cos φ =

rΩ
W

,

so the lift coefficient can be written as

CL = 2π

[
(1 − a)V

W
cos θ − rΩ

W
sin θ

]

On an element of the blade of width dr, if drag is neglected, the x component of the
force on the blade is

dFx = L cos φ dr =
1
2
ρW 2c CL cos φ dr

or
dFx = πρc[(1 − a)V cos θ − rΩsin θ]rΩ dr

so that the blade force coefficient is

Cx =
dFx

1
2ρV 22πr dr

=
rΩ
V

c

r

[
(1 − a) cos θ − rΩ

V
sin θ

]

The ratio c/r is part of the definition of solidity, which is defined as σ = c dr/2πr dr =
c/2πr. With x = rΩ/V , the blade speed ratio, the blade force coefficient becomes

Cx = 2πσx[(1 − a) cos θ − x sin θ] (13.29)

The blade force coefficient can also be written as

Cx = 4a(1 − a) = 4a|1 − a| (13.30)

where the absolute value signs have been inserted so that the propeller brake mode, for
which the induction factor is larger than unity, is also taken into account. Following
Wilson and Lissaman [98], the values of Cx from both Eqs. (13.29) and (13.30) are plotted
in Figure 13.11. The operating state of the wind turbine is at the intersection of these
curves. The straight-lines from Eq. (13.29) have a negative slope that depends mainly
on the solidity times the blade speed ratio and weakly on angle θ. For θ = 0, the blade
force coefficient becomes zero at a = 1. The line for which θ1 = tan−1(1/x) has the
force coefficient zero at the value a = 0. Increasing the blade pitch angle further from this
changes the operation from a wind turbine to a propeller. At a = 0, loading on the blades
vanishes.
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Figure 13.11 Blade force coefficient for different values of the interference factor. Source: Drawn
after Wilson and Lissaman [98].

For a = 1, the blade angle becomes negative and the wind turbine operates as a propeller
brake on the flow; that is with a propeller turning in one direction and the wind attempting
to turn it in an opposite direction, the result is a breaking action on the flow. This is best
understood from the operation of helicopters. As they descend, their rotors attempt to push
air into the direction in which they move and thereby cause a breaking action on their
descending motion.

Since in the far wake, the axial velocity is (1 − 2a)V , for states in the range 1
2 < a < 1,

the simple momentum theory predicts a flow reversal somewhere between the disk and the
far wake. Volkovitch [93] has shown that this anomaly disappears for yawed windmills,
and momentum theory is still valid. Blade angles for a working range can be obtained
by equating the two expressions for the blade force coefficient and solving the resulting
equation for the interference factor. This gives

a =
1
4
[2 + πσx cos θ ±

√
(2 − πσx cos θ)2 + 8πσx2 sin θ]

The two solutions of this equation are at points A and B, with point B corresponding to
plus sign of the square root. The solution on this branch is unstable and can be ignored. The
angle θ2 is that for which the discriminant vanishes, and it can be determined as a root of

(2 − πσx cos θ2)
4 − 64π2σ2x4(1 − cos2θ2) = 0 (13.31)

For a wind turbine at the span position where σ = 0.03 and blade speed ratio is x = 4, this
comes out to be θ2 = 12.76◦.

The experimental curve of Glauert is for free-running rotors, which thus have a power
coefficient zero. These correspond to states of autorotation of a helicopter. A line drawn
through the data gives Cxe = C1 − 4(

√
C1 − 1)(1 − a), in which C1 = 1.8 is the value

of the blade force coefficient at a = 1, as obtained from the experimental data. The
straight-line touches the parabola at a∗ = 1 − 1

2

√
C1 = 0.33.

� EXAMPLE 13.1

Develop a MATLAB script to establish the value of θ2 in Eq. (13.31) for various values
of solidity and tip speed ratio.
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Solution: The discriminant given by Eq. (13.31) is a fourth-order polynomial in
cos θ2; hence, the MATLAB procedure roots can be used to find the roots of this
polynomial. Two of the roots are complex and can be disregarded. There is also an
extraneous root, which arose when the expressions were squared. The script below
gives the algorithm to calculate the roots:

sigma=0.03; x=4;
c(1)=(pi*sigma*x)^4; c(2)=-8*(pi*sigma*x)^3;
c(3)=24*(pi*sigma*x)^2*(1+8*x^2/3);
c(4)=-32*pi*sigma*x; c(5)=16-64*(pi*sigma*x^2)^2;
r=roots(c);
theta=min(acos(r)*180/pi);

For σ = 0.03 and x = 4, this gives θ2 = 12.76◦. �

13.3.2 Wake with rotation

Figure 13.12 shows a schematic of a flow through a set of blades. As the blades turn the
flow, the tangential velocity increases. If its magnitude is taken to be 2a′rΩ after the blade,
at some location as flow crosses the blade, it takes the value a′rΩ. It is assumed that this
coincides with the location at which relative velocity is parallel to the chord.1

When drag is included, the axial force is given by

dFx = (L cos φ + D sin φ)dr

ϕ
θα

W

rΩ

c

2aʹrΩ

aʹrΩ

(1−a)V

(1− a)V

L

x

y

rΩ

D

W

V

rΩ

Figure 13.12 Illustration of the increase in tangential velocity across the disk.

1This assumption is based on the examination of the induced velocity by the vortex structure in the wake.
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and the torque is dT = r dFy , or

dT = r(L sin φ − D cos φ)dr

Denoting the number of blades by Z, these can be expressed as follows:

dFx =
1
2
ρW 2Zc(CL cos φ + CD sinφ)dr (13.32)

dT =
1
2
ρW 2Zcr(CL sinφ − CD cos φ)dr (13.33)

If the influence of wake rotation on the value of the static pressure at the exit is neglected,
the momentum equation applied to an annular streamtube gives

dFx = (V − Vb)ρ 2πrVd dr = 4a(1 − a)V 2ρπr dr

Equating this to dFx in Eq. (13.32) gives

1
2
W 2Zc(CL cos φ + CD sin φ) = 4πra(1 − a)V 2 (13.34)

The velocity diagram at the mean chord position is shown on the upper part of Figure 13.12.
The relationships between the flow angle, relative velocity, and the axial and tangential
components of absolute velocity are

sinφ =
(1 − a)V

W
cos φ =

(1 + a′)rΩ
W

(13.35)

With solidity defined now as σ = Zc/2πr, Eq. (13.34) can be recast as

a

1 − a
=

σ(CL cos φ + CD sin φ)
4 sin2φ

(13.36)

Similarly, angular momentum balance applied to the elementary annulus gives

dT = rVu dṁ = rVuρVd2πr dr = 4a′(1 − a)ρV Ωr3π dr

and equating this to dT in Eq. (13.33) and making use of Eq. (13.35) yields

a′

1 + a′ =
σ(CL sinφ − CD cos φ)

4 cos φ sin φ
(13.37)

Equations (13.36) and (13.37) can now be used to calculate the relationship between
the parameters as follows. For a given blade element at location r/R, tip speed ratio
X = RΩ/V , and pitch angle θ, the solidity is σ = Zc/2πr and the local blade speed
ratio is x = Xr/R = rΩ/V . With assumed values for a and a′, the angle φ, as seen from
Figure 13.12, is calculated from

tan φ =
1 − a

1 + a′
1
x

(13.38)

and the angle of attack can then be determined from α = φ − θ.
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After this, the lift coefficient can be calculated from the theoretical relation CL =
2π sinα and the value of the drag coefficient is found from experimental data. It is often
given in the form CD = εCL with ε having a value in the range of 0.003 < ε < 0.015 as
CL increases toward 1.2. After this the value of a is calculated from Eq. (13.36) and a′ from
Eq. (13.37). With these new estimates, the calculations are repeated until the induction
factors have converged. These calculations are demonstrated in the next example.

� EXAMPLE 13.2

A three-bladed wind turbine with a rotor diameter of 40 m operates at the tip
speed ratio 4. The blade has a constant chord of 1.2 m and a pitch angle of 12◦.
The drag-to-lift ratio is 0.005. Calculate the axial and angular induction factors at
r/R = 0.7.

Solution: For given α, the lift and drag coefficients are calculated from

CL = 2π sin α CD = εCL

The rest of the solution is carried out by iterations. First, for initial guesses for a
and a′

tan φ =
1 − a

1 + a′
1
x

is solved for φ. Then the axial and tangential force coefficients are defined as

Cx = CL cos φ + CD sinφ Cy = CL sin φ − CD cos φ

and the axial and tangential induction factors are calculated from

a

1 − a
=

σCx

4sin2φ

a′

1 + a′ =
σCy

4 cos φ sin φ

or in explicit form, from

a =
σ Cx

4 sin2φ + σ Cx

a′ =
σ Cy

4 cos φ sin φ − σ Cy

These give new values for a and a′, and the process is repeated. After the iterations
have converged, the final value of the angle of attack is determined from

α = φ − θ

A MATLAB script gives the steps to carry out the calculations:

X=4; rR=0.7; R=20; theta=12*pi/180;

Z=3; c=1.2; ep=0.005; a(1)=0; ap(1)=0;

x=rR*X;

phi(1)=atan((1-a(1))/((1+ap(1))*x));

alpha(1)=phi(1)-theta;

CL(1)=2*pi*sin(alpha(1)); CD(1)=ep*CL(1);

Cx(1)=CL(1)*cos(phi(1))+CD(1)*sin(phi(1));

Cy(1)=CL(1)*sin(phi(1))-CD(1)*cos(phi(1));
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sigma=Z*c/(2*pi*R*rR); imax=5;

for i=2:imax

a(i)=sigma*Cx(i-1)/(4*sin(phi(i-1))^2+sigma*Cx(i-1));

ap(i)=sigma*Cy(i-1)/(4*sin(phi(i-1))*cos(phi(i-1))-sigma*Cy(i-1));

phi(i)=atan((1-a(i))/((1+ap(i))*x));

alpha(i)=phi(i)-theta;

CL(i)=2*pi*sin(alpha(i)); CD(i)=ep*CL(i);

Cx(i)=CL(i)*cos(phi(i))+CD(i)*sin(phi(i));

Cy(i)=CL(i)*sin(phi(i))-CD(i)*cos(phi(i));

end

fid=fopen(’induction’,’w’); i=[1:imax];

fprintf(fid,’%12i%12.8f%12.8f\n’,[i;a;ap]);
fclose(fid);

Convergence of the induction factors a and a′ are given as follows:

i a a′

1 0.00000 0.000000
2 0.06665 0.009046
3 0.06366 0.007349
4 0.06389 0.007451
5 0.06387 0.007443

�

The induction factor for the wake rotation is seen to be one order of magnitude smaller
than that for axial flow. Were the tip speed ratio smaller, the wake rotation would be more
pronounced. The next example extends the analysis to the entire span.

� EXAMPLE 13.3

A three-bladed wind turbine with a rotor diameter of 40 m operates at the tip speed
ratio 4. The blade has a constant chord of 1.2 m and the blades are at 4◦ angle of
attack. The drag-to-lift ratio is 0.005. Calculate the pitch angle along the span from
r/R = 0.2 to 1.0.

Solution: The procedure for calculating the local parameters is the same as in the
previous example. An outer loop needs to be inserted to extend the calculations to
all the span locations. Results are shown in the table below.

r/R φ θ a a′

0.2 50.17 46.17 0.0169 0.0250
0.3 38.85 34.85 0.0204 0.0135
0.4 31.13 27.13 0.0246 0.0092
0.5 25.74 21.74 0.0292 0.0069
0.6 21.81 17.81 0.0340 0.0056
0.7 18.86 14.86 0.0391 0.0047
0.8 16.57 12.57 0.0443 0.0040
0.9 14.74 10.74 0.0496 0.0036
1.0 13.25 9.25 0.0550 0.0032

�
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Examination of Figure 13.12 shows that as the blade speed increases toward the tip,
the pitch angle decreases as the tip is approached. This also causes the flow angle φ to
decrease and the lift force to tilt toward the axial direction. This means that the tangential
component of lift, which is the force that provides the torque on the shaft, diminishes. The
same effect comes from the increase in induction factor along the span, for then the axial
velocity across the blades at large radii is low, and this causes the lift force to tilt toward
the axis. Another way to think about this is that an increase in the induction factor leads to
lower mass flow rate and thus to lower work done on the blade elements near the tip.

The induction factor also varies in the angular direction, because in a two- or three-bladed
wind turbine much of the flow does not come close to the blades at all, and hence, this part
of the stream is not expected to slow down substantially. Thus the induction factor in this
part of the flow deviates from the factor that holds for an actuator disk.

The azimuthal variation of the induction factor has been calculated by Burton et al. [13]
at four radial locations for a three-bladed wind turbine with the tip speed ratio of six. Their
results are shown in Figure 13.13.

0° 120° 240° 360°300°180°60°

0.2

0.4

0.6

0.8

1.0

0

a
r r/R = 0.90

0.50

Azimuthal position

r/R = 0.96

0.76

Figure 13.13 Azimuthal variation of induction factors for a three-bladed turbine at four radial
locations. Source: Drawn after Burton et al. [13].

The axial force and torque can now be calculated for the entire disk from

Fx = 4πρV 2
∫ R

0
a(1 − a)r dr (13.39)

T = 4πρΩV

∫ R

0
a′(1 − a)r3dr (13.40)

The power is then obtained as Ẇ = TΩ. A performance calculation for an actual wind
turbine is given in the next example.

� EXAMPLE 13.4

A three-bladed wind turbine with a rotor diameter of 40 m operates at the tip speed
ratio 4. The blade has a constant chord of 1.2 m, and the blades are at 4◦ angle of
attack. The drag-to-lift ratio is 0.005. The wind speed is V = 10 m/s, and air density
can be taken to be ρ = 1.2 kg/m3. Only the blade along r/R = 0.2–1.0 is to be used
to calculate the total force and torque.
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Solution: The calculation proceeds as in the previous example. After the results have
been stored for various radial locations, the integrals can be evaluated by using the
trapezoidal rule:

∫ b

a

f(x)dx =
Δr

2

n−1∑
i=1

(f(xi) + f(xi+1)) = Δr

[
n−1∑
i=1

f(xi) +
1
2
(f(x1) + f(xn))

]

The part of the blade close to the hub is ignored and in the numerical integrations
of Eqs. (13.39) and (13.40) the lower limit of integration is replaced by r/R = 0.2.
The result of the integration gives the values

Fx = 14175 N T = 66149 Nm Ẇ = 132.3 kW

for the blade force, torque, and power. �

13.3.3 Ideal wind turbine

Glauert [31] developed relations from which the pitch angle can be calculated for a wind
turbine with the highest value for the power coefficient. Simple relations are obtained if
drag is neglected. Under this assumption Eq. (13.36) becomes

a

1 − a
=

Zc CL cos φ

8πrsin2φ

and Eq. (13.37) reduces to
a′

1 + a′ =
Zc CL

8πr cos φ

Diving the second by the first gives

tan2φ =
(

1 − a

1 + a′

)
a′

a
(13.41)

The velocity diagram at midchord shows that

tan φ =
(1 − a)

(1 + a′)x

in which the blade speed ratio is x = rΩ/V . Making use of this expression reduces
Eq. (13.41) to

a′(1 + a′)x2 = a(1 − a) (13.42)

The power delivered by the turbine is

Ẇ =
∫ R

0
Ω dT = 4πρV Ω2

∫ R

0
(1 − a)a′r3dr
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and the power coefficient can be written as

Cp =
8

X2

∫ X

0
(1 − a)a′x3dx (13.43)

Since the integrand is positive, the maximum power coefficient can be obtained by
maximizing the integrand, subject to the constraint Eq. (13.42).2 Hence, differentiating the
integrand and setting it to zero gives

(1 − a)
da′

da
= a

and the same operation on the constraint leads to

(1 + 2a′)x2 da′

da
= 1 − 2a

Eliminating the derivative between these gives

(1 − a)(1 − 2a) = a′(1 + 2a′)x2 (13.44)

Solving Eq. (13.42) for x2 and substituting into this gives

1 + 2a′

1 + a′ =
1 − 2a

a

from which
a′ =

1 − 3a

4a − 1
(13.45)

This equation shows that for 1
4 < a < 1

3 , the value of a′ is positive, and that as a → 1
4 ,

then a′ → ∞. Also, as a → 1
3 , then a′ → 0. Substituting 1 + a′ from Eq. (13.45) into

Eq. (13.42) yields
a′x2 = (1 − a)(4a − 1)

This shows that for a = 1
4 , the product a′x2 = 0 and that for a = 1

3 , the value is a′x2 = 2
9 .

The power coefficient can now be determined by integrating

Cp =
8

X2

∫ X

0
(1 − a)a′x3dx

for various tip speed ratios X . The results for this calculation are presented in the
graph in Figure 13.14. For high tip speeds, when a = 1

3 and a′x2 = 2
9 the Betz limit

Cp = 16
27 = 0.593 is approached.

With the coefficients a and a′ known at various radial positions, both the relative
velocity and the angle φ can be determined. From these, the blade pitch angle for a given
angle of attack can be calculated.

2A problem of this kind is solved by methods of variational calculus and Lagrange multipliers. Owing to the form
of the integrand, the direct method used above works.
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Figure 13.14 Power coefficient for optimum wind turbine.

13.3.4 Prandtl’s tip correction

It has been seen that lift generated by a flow over an airfoil can be related to circulation
around the airfoil. An important advance in the aerodynamic theory of flight was developed
independently by Kutta and Joukowsky, who showed that the magnitude of the circulation
that develops around an airfoil is such that the rear stagnation point moves to the trailing
edge. The action is a result of viscous forces, and the flow in the viscous boundary layers
leaves the airfoil into the wake as a free shear layer with vorticity. The vorticity distribution
in the wake is unstable and rolls into a tip vortex. In such a flow, it is possible to replace
the blade by bound vorticity along the span of the blade and dispense with the blade
completely. For such a model, vortex filaments exist in an inviscid flow, and according to
the vortex theorems of Helmholtz, they cannot end in the fluid, but must either extend to
infinity or form closed loops. This is achieved by connecting the bound vortex into the tip
vortex, which extends far downstream.

For a wind turbine with an infinite number of blades, the vortex system in the wake
consists of a cylindrical sheet of vorticity downstream from the edge of an actuator disk,
as shown in Figure 13.15, and bound vorticity along radial lines starting from the center.
From there, an axial vortex filament is directed downstream. The angular velocity in the

Ω
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z

y dΓ dΓ dΓ dΓ

dΓ

dΓ

dΓ

V

Γ

dΓ

2πR/Z

d

ϕ
t

Figure 13.15 Wake vorticity. Source: Drawn after Burton et al. [13].
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Figure 13.16 Prandtl’s tip loss factor.

wake in this model is a result of the induced velocity of this hub vortex, and it explains
why an irrotational vortex flow in the wake is a reasonable model.

When the number of blades is finite, vorticity leaves the blades of a wind turbine in
a twisted helical sheet owing to rotation of the blades. One model is to assume that it
organizes itself into a cylindrical vortex sheet. The twisted sheets are separated since the
blades are discrete. Prandtl [71] and Goldstein [32] developed ways to take into account
the influence of this vorticity, which now is assumed to be shed from the blade tips.

Prandtl’s model is based on flow over the edges of a set of vortex sheets distance d
apart, as shown in Figure 13.16. As the sheets move downstream, they induce a periodic
flow near their edges. This leads to lower transfer of energy to the blades.3

Prandtl’s analysis results in the introduction of factor F , given by

F =
2
π

cos−1
[
exp

(
−π(R − r)

d

)]

into the equation for the blade force of an elemental annulus. The distance d between
helical sheets is given by

d =
2πR

Z
sin φt

as the diagram in Figure 13.16 shows. The sine of the flow angle at the tip is

sin φt =
(1 − a)V

Wt

so that
π(R − r)

d
=

1
2
Z

(
R − r

R

)
Wt

(1 − a)V

3The origin of the xy-coordinate system is at the tip of a blade with y increasing to the right and x

vertically. With z = x + iy, a complex variable the solution is z = d
π ln
(
cos d(Φ+iΨ)

π

)
, with Φ the velocity

potential and ψ, the stream function. Equating the real and imaginary parts and eliminating Φ gives x =
− d

2π ln
(

cos2πy/d

cosh2dψ/π
+ sin2πy/d

sinh2dψ/π

)
, from which the streamlines may be calculated.
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Following Glauert and assuming that

Wt

R
=

W

r

yields
π(R − r)

d
=

1
2
Z

(
R − r

r

)
W

(1 − a)V

The relative velocity is
W =

√
(1 − a)2V 2 + (rΩ)2

so that
W

(1 − a)V
=

√
1 +

(rΩ)2

(1 − a)2V 2 =

√
1 +

X2

(1 − a)2

r2

R2

which gives
π(R − r)

d
=

1
2
Z

(
R

r
− 1

) √
1 +

X2

(1 − a)2

r2

R2

The tip loss correction factor is then given by

F =
2
π

cos−1

[
exp

(
−1

2
Z

(
R

r
− 1

) √
1 +

X2

(1 − a)2

r2

R2

)]
(13.46)

The tip loss factor calculated for four tip speed ratios is shown in Figure 13.17 for a
two-bladed wind turbine. As the expression in Eq. (13.46) shows, decreasing the number
of blades moves the curves in the same direction as decreasing the tip speed ratio. Both
of these increase the spacing d and make the winding of the helix looser. Conversely, an
actuator disk with an infinite number of blades results in F = 1. The blade force is thus
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Figure 13.17 Prandtl’s tip loss factor for two-bladed wind turbine with tip speed ratios X =
3, 4, 5, 6 at various radial positions r/R.
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reduced by factor F for a wind turbine with a discrete number of blades. The axial force
and torque are given by

dFx = 4ρπV 2a(1 − a)Fr dr dT = 4ρπΩV a′(1 − a)Fr3dr

and in terms of the axial and tangential force coefficients, these are

dFx =
1
2
ρW 2Zc Cx dr dT =

1
2
ρW 2Zc Cy rdr

Equating these gives

8πa(1 − a)V 2F = Zc W 2Cx 8πa′(1 − a)V Ωr2F = Zc W 2Cy

Making use of

cos φ =
(1 − a)V

W
sinφ =

(1 + a′)rΩ
W

and solving for a and a′ then gives

a =
σCx

4F sin2φ + σCx

a′ =
σCy

4F cos φ sinφ − σCy

(13.47)

These can now be used to calculate the wind turbine design and performance parameters.
For the data given in the previous examples (with angle of attack 4◦), the pitch angle and
induction factors are as shown in table below. The results differ slightly from those in
which the tip correction was neglected. As Figure 13.17 show, the factor F drops quickly
as the tip of the blade is approached, and this accounts for the increase in a′ at r/R = 0.9.

r/R φ θ a a′

0.20 50.17 46.17 0.0169 0.0250
0.30 38.85 34.85 0.0204 0.0136
0.40 31.13 27.72 0.0248 0.0093
0.50 25.72 21.72 0.0298 0.0071
0.60 21.78 17.78 0.0357 0.0056
0.70 18.78 14.78 0.0430 0.0051
0.80 16.39 12.39 0.0541 0.0049
0.90 14.30 10.30 0.0777 0.0053

13.4 TURBOMACHINERY AND FUTURE PROSPECTS FOR ENERGY

In some sections of this book, the reader’s attention has been drawn to how the present
primary energy resources of the world are used and how important turbomachines are in
converting the energy in fossil fuels into shaft work. Turbomachines powered by water
and wind are the main kind of machines that contribute to significant forms of renewable
energy in this mix. It is unfortunate that they still account for such a small fraction of
the world’s energy supply, because the fossil energy resources will be mostly exhausted
during the next 80 years. During the first two decades of this century, oil prices have been
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quite high, even if the tight oil production in North America with hydraulic fracturing
technology caused a sufficient surge in production to bring prices down during the years
2014–2018. Nevertheless, the decline rate of the old aging giant fields is reported to be
about 4.5% per year, which means that since the world petroleum liquids production is
now 100 million barrels a day, to offset this, new production needs to be brought online
at the rate of 4.5 million barrels a year. The new discoveries amount only two months of
the world consumption. It is difficult to see how oil production can be increased much
above the present level to keep up with the demand of the world’s growing population
(which in 2018 reached 7.5 billion). The production curves for oil, natural gas, and coal
are bell-shaped, and the significant event on the road to their exhaustion is when each
production peak will be passed. After that, the world will need to get by with less of these
nonrenewable fuels. The peak production for world’s oil is likely to occur during the next
decade, and the production peaks for natural gas and coal will not be far behind. Coal,
which is thought to be the most abundant of the three, has seen its reserve-to-production
ratio drop from 227 years to the present 134 years during the first two decades of the
present century. A 134-life for the existing reserve might seem like a long time, but the
93-year drop during this time interval indicates that the rate at which the reserves decrease
is quite rapid. In addition, the reserve-to-production ratio gives a misleading number, as it
assumes that production stays flat until the resource is completely exhausted.

In the United States, coal became the primary source of energy in the late 1800s
overtaking biomass, which met the energy needs of the early settlers. It took some 40
years for coal’s share to rise from 1% to 10% of the mix, and the historical record shows
similar timespans for the rise of oil and natural gas as well. Nuclear energy’s share, after
60 years of effort, is still less than 10% of the energy supply in the United States. The
prospects for renewable forms to offset the decline of fossil fuels and the growing demand
of the expanding population are exceedingly slim. Decisions to launch a comprehensive
strategy for coping with the exhaustion of fossil fuels have been delayed many times
despite warnings throughout the last century [11, 46]. Still installed wind energy capacity
is increasing rapidly, and wind power offers the best possibility of becoming a significant
source of energy in the United States, China, and India. Denmark and Germany, in
particular, have demonstrated that wind power can make up a sizeable fraction of a
country’s energy supply with a continuous and sustained effort.

EXERCISES

13.1 Use a cylindrical control volume of cross sectional area Ae and develop the
expression

Fd = ρAbVb(V − Vb)

for the axial force on the blades. Note that it is in agreement with Eq. (13.6).

13.2 The nondimensional pressure difference can be expressed as

p+ − pa
1
2ρV 2

in which the pressure difference is that just upstream the disk and the free stream. (a)
Use the momentum theory for a wind turbine to express this relationship in terms of the
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interference factor a. For which value of a is this maximum? Interpret this physically. (b)
Develop a similar relationship for the expression

pa − p−
1
2ρV 2

and determine for which value of a is this the maximum? [Ans: (a) a = 1, (b) a = 1/3]

13.3 A wind turbine operates at wind speed of V = 12 m/s. Its blade radius is R = 20 m
and its tip speed radius RΩ/V = 4. It operates at the condition Cp = 0.3. Find (a) the
rate of rotation of the blades, (b) the power developed by the turbine, (c) the value of
the interference factor a using the momentum theory, and (d) the pressure on the front of the
actuator disk, assuming that the free stream pressure is 101.3 kPa and the temperature
is 25 ◦C. [Ans: (a) 22.9 rpm, (b) 397.4 kW, (c) 0.0907, (d) 101.315 kPa]

13.4 Using the axial momentum theory, calculate the ratio of the slipstream radius to
that of the disk radius in terms of the interference factor a. If the wind turbine blades are
80 m long, what is the radius of the slipstream far downstream for a = 1/3? What is the
radius of the streamtube far upstream? [Ans: (a) 113 m, (b) 65.3 m]

13.5 In a wind with speed V = 8.7 m/s and air density ρ = 1.2 kg/m3, a wind turbine
operates at a condition when the axial induction factor is a = 0.11. Find the blade length,
assuming that the power of the turbine is Ẇ = 250 kW. [Ans: 24 m]

13.6 Write a computer program to carry out the calculations associated with
Example 13.4.

13.7 Write a computer program to carry out the calculations associated with Example
13.3 and which include the Prandtl tip correction.

13.8 Consider a three-bladed wind turbine with blade radius of R = 35 m and constant
chord of c = 80 cm, which operates with a rotational speed of Ω = 10 rpm. The wind speed
is V = 12 m/s. (a) Find the axial and tangential induction factors at r = 10 m, assuming
that the angle of attack is 6◦ and CD = 0.01CL. (b) Find the axial force and the torque,
assuming the air density is ρ = 0.12 kg/m3. (c) Calculate the axial force and the torque
by assuming that the induction factors are uniform and equal to their values at r/R = 0.6.
[Ans: (a) 0.0117, 0.0033, (b) 21.67 kN m, 236.8 kN m, (c) 15.33 kN, 234.6 kN m]
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Appendix A

Streamline Curvature and Radial Equilibrium

A.1 STREAMLINE CURVATURE METHOD

In this appendix, the governing equations for the streamline curvature method are devel-
oped. The derivation of the acceleration terms follows that of Cumpsty [18]. The blade
surfaces may be highly curved, but it is useful to visualize locally flat surface patches
in them. This method has been implemented into commercial CFD software, such as
ANSYS-Fluent.

A.1.1 Fundamental equations

The acceleration of a fluid particle is given by its substantial derivative

a =
∂V
∂t

+ V · ∇V

in which the unsteady term vanishes in steady flow. The second term represents the spatial
acceleration of the flow. In cylindrical coordinates, the gradient operator can be written as

∇ = er
∂

∂r
+

eθ

r

∂

∂θ
+ ez

∂

∂z
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By defining the meridional component as

Vm = Vmem = Vrer + Vzez

the velocity vector can also be written as

V = Vmem + Vθeθ

The scalar product of the unit vector in the direction of em on the meridional plane and the
gradient operator gives the directional derivative in the direction of the unit vector:

em · ∇ =
∂

∂m
= (em · er)

∂

∂r
+ (em · ez)

∂

∂z

The term in the tangential direction has dropped out because the vector em is orthogonal
to eθ.

The angle between the directions of em and ez is denoted by φ. In terms of this angle
the partial derivatives may be written as

∂

∂m
= sin φ

∂

∂r
+ cos φ

∂

∂z

and the gradient operator takes the form

∇ = em

∂

∂m
+

eθ

r

∂

∂θ

The acceleration of a fluid particle can now be expressed as

a = (Vmem + Vθeθ) ·
(
em

∂

∂m
+ eθ

1
r

∂

∂θ

)
(Vmem + Vθeθ)

which leads to

a = Vm

∂

∂m
(Vmem + Vθeθ) +

Vθ

r

∂

∂θ
(Vmem + Vθeθ)

When this is expanded, it reduces to

a = em Vm

∂Vm

∂m
− en

V 2
m

R
+ eθ Vm

∂Vθ

∂m
− er

V 2
θ

r

To arrive at these relations, the formulas

∂em

∂m
= −en

R

∂em

∂θ
= 0

∂eθ

∂m
= 0

∂eθ

∂θ
= −er

were used. The radius of curvature of a streamline on the meridional plane is denoted by R
and is taken as positive when the streamline is concave away from the z axis. The direction
of the unit vector en is perpendicular to the direction of vector em on the meridional plane
in such a way that a right-handed triple (en, eθ, em) is retained. Since this was obtained
by rotation by the angle φ about the axis of eθ, the n direction coincides with the radial
direction and the m direction coincides with z direction, when the angle φ is zero.
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eq

em

r

(a) (b)

r

z

en
en

et

ϕ

ϕ γ ε
π/2–γ–ϕπ/2–γ–ϕ

Figure A.1 Unit vectors on the meridional plane (a) and the angle of lean (b).

Consider next a direction specified by the unit vector eq on the meridional plane. It is
inclined to the radial direction by angle γ. This and other angles are shown in Figure A.1.
The angle γ is the sweep angle of the blade at its leading edge. It is positive for a
sweep toward the positive z direction. The angle between direction eq and the m axis is
π/2 − (γ + φ). Hence, the component of acceleration in the direction eq is

aq = (eq · em) Vm

∂Vm

∂m
− (eq · en)

V 2
m

R
+ (eq · eθ) Vm

∂Vθ

∂m
− (eq · er)

V 2
θ

r

This reduces to

aq = sin(γ + φ)Vm

∂Vm

∂m
− cos(γ + φ)

V 2
m

R
− cos γ

V 2
θ

r
(A.1)

Next, let the unit vector et denote a direction normal to eq on the meridional plane. The
component of acceleration in this direction is given by

at = (et · em) Vm

∂Vm

∂m
− (et · en)

V 2
m

R
+ (et · eθ) Vm

∂Vθ

∂m
− (et · er)

V 2
θ

r

which reduces to

at = cos(γ + φ)Vm

∂Vm

∂m
+ sin(γ + φ)

V 2
m

R
− sin γ

V 2
θ

r

Finally, the acceleration component in the tangential direction can be written as

aθ = Vm

∂Vθ

∂m

If the blades lean at an angle ε from the meridional plane, in the direction opposite to
θ, the acceleration components aq and aθ can be used to construct new components that
lie on the plane containing a blade with this lean angle. The transformation to this plane
is equivalent to rotation of the surface about the axis containing the unit vector et. With
ee denoting the unit vector obtained by rotating eq by angle ε counterclockwise, the
acceleration component in the direction of ee is given by

ae = (ee · eq)aq + (ee · eθ)aθ + (ee · et)at
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which reduces to
ae = cos ε aq − sin ε aθ

The Euler equation for an inviscid flow in vector notation is

a = −1
ρ
∇p +

F
ρ

(A.2)

The components of this equation in any direction can now be obtained by taking its scalar
product with a unit vector in the chosen direction. The component in the direction of ee is

ae = −1
ρ

∂p

∂e
+

Fe

ρ

and its component in the direction of eq is

aq = −1
ρ

∂p

∂q
+

Fq

ρ
(A.3)

The acceleration component aq is the acceleration in the q direction. The pressure term on
the right side of Eq. (A.3) can be modified by making use of the Tds relation

T
∂s

∂q
=

∂h

∂q
− 1

ρ

∂p

∂q
(A.4)

The directional derivative of the stagnation enthalpy

h0 = h +
1
2
(V 2

m + V 2
θ ) (A.5)

in the q direction is
∂h

∂q
=

∂h0

∂q
− Vm

∂Vm

∂q
− Vθ

∂Vθ

∂q
(A.6)

Using this in the expression for the pressure gradient in Eq. (A.4) leads to

−1
ρ

∂p

∂q
= T

∂s

∂q
− ∂h0

∂q
+ Vm

∂Vm

∂q
+ Vθ

∂Vθ

∂q
(A.7)

Substituting this into Eq. (A.3) gives

sin(γ + φ) Vm

∂Vm

∂m
− cos(γ + φ)

V 2
m

R
− Vm

∂Vm

∂q

= T
∂s

∂q
− ∂h0

∂q
+ cos γ

V 2
θ

r
+ Vθ

∂Vθ

∂q
+

Fq

ρ
(A.8)

With q =
r

cos γ
, terms involving Vθ on the RHS can be combined to yield:

∂V 2
m

∂q
+ P (q)V 2

m = T (q) (A.9)
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where the functions P (q) and T (q) are defined as

P (q) = 2
[
−cos(γ + φ)

R
− sin(γ + φ)

Vm

∂Vm

∂m

]
(A.10)

T (q) = 2
[
∂h0

∂q
− T

∂s

∂q
− 1

2q2

∂

∂q
(q2V 2

θ ) −
Fq

ρ

]
(A.11)

In a flow passage of constant height, the meridional direction is the z direction and q
can be replaced by r. In addition, the streamlines do not bend in the direction of the axis z,
so that the radius of curvature R tends to infinity. If there is no sweep γ is zero, and if the
stagnation enthalpy and entropy do not vary across the channel, then, in the absence of a
blade force, this equation reduces to

∂V 2
z

∂r
+

Vθ

r

∂

∂r
(rVθ) = 0 (A.12)

This is the simple radial equilibrium equation used in Chapters 7 and 8.

A.1.2 Formal solution

Since Eq. (A.9) is nonlinear, it must be solved numerically. One way to carry this out is
to first find its formal solution. Ignoring the nonlinearity and treating P (q) and T (q) as
functions of q, the equation

∂V 2
m

∂q
+ P (q)V 2

m = T (q) (A.13)

becomes a first-order differential equation with variable coefficients. Its solution can then
be obtained by using an integrating factor, or by variation of parameters.

To simplify the notation, first the variable V 2
m is replaced by U and the homogeneous

solution of Eq. (A.13) is seen to be

Uh = Ce−
∫

P (q)dq (A.14)

To obtain the particular solution to Eq. (A.13), the solution is assumed to have the form

Up = H(r)e−
∫

P (x)dx

which, when inserted into the equation and after rearrangement, yields

∂Up

∂q
+ P (q)Up =

∂H

∂q
e−
∫ q

q0
P (q′)dq′

Comparing this to Eq. (A.13) shows that

T =
∂H

∂q
e−
∫ q

q0
P (q′)dq′

or
∂H

∂q
= Te

∫ q
q0

P (q′)dq′
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Integrating leads to

H(q) =
∫ q

q0

T (q′)e
∫ q′

q0
P (q′ ′)dq′ ′

dq′

Therefore, the particular solution is

Up = e−
∫ q

q0
P (q′)dq′

∫ q

q0

e
∫ q′

q0 P (q′ ′)dq′ ′
T (q′)dq′ (A.15)

The complete solution in the original variable is

V 2
m(q) = V 2

Me−
∫ q

q0
P (q′)dq′

+ e−
∫ q

q0
P (q′)dq′

∫ q

q0

e
∫ q′

q0
P (q′ ′)dq′ ′

T (q′)dq′ (A.16)

If the sweep angle γ is zero, the q direction is the r direction. In such a case, integrations in
Eq. (A.13) are with respect to r. With the lower limit of integration the middle streamline,
the solution becomes

V 2
m(r) = V 2

Me
−
∫ r

rM
P (r′)dr′

+ e−
∫ r

rM P (r′)dr′
∫ r

rM

e
∫ r′

rM
P (r′ ′)dr′ ′

T (r′)dr′ (A.17)

and the integration constant is identified as the meridional velocity squared on the middle
streamline, V 2

M = V 2
m(rM ). The streamlines are then laid out such that each streamtube

has the same mass flow rate, and grid is set up on the qz plane, with grid points
on the streamlines a specified distance apart. The solution then proceeds by iteration.
The simplest situation is to consider the intergap region so that the blades are not
present. The quasiorthogonals q can be spaced and oriented such that the first one is
aligned with the trailing edge of a blade and the last one with the leading edge of the
next blade row. The curvature is calculated at the grid locations, and the velocity gradients
are determined by finite-difference approximations. This fixes the values of P and T .
Integration of Eq. (A.17) from the central streamline toward the hub and the casing gives
the velocity field. Next, the mass flow rates are calculated for each streamtube. The residual
is examined, and the streamlines are adjusted so that the fluid again flows at the same rate
through each streamtube. The process is repeated until convergence for the location of the
streamlines is obtained. This requires the use of relaxation.
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Thermodynamic Tables

Table B.1 Thermodynamic properties of saturated steam, temperature table.

T p vf · 103 vg uf ug hf hg sf sg

(◦C) (bar) (m3/kg) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (kJ/kg K)

0.01 0.00611 1.0002 206.136 0.00 2375.3 0.01 2501.3 0.0000 9.1562
1 0.00657 1.0002 192.439 4.18 2375.9 4.183 2502.4 0.0153 9.1277
2 0.00706 1.0001 179.762 8.40 2377.3 8.401 2504.2 0.0306 9.1013
3 0.00758 1.0001 168.016 12.61 2378.7 12.61 2506.0 0.0459 9.0752
4 0.00814 1.0001 157.126 16.82 2380.0 16.82 2507.9 0.0611 9.0492
5 0.00873 1.0001 147.024 21.02 2381.4 21.02 2509.7 0.0763 9.0236
6 0.00935 1.0001 137.647 25.22 2382.8 25.22 2511.5 0.0913 8.9981
7 0.01002 1.0001 128.939 29.41 2384.2 29.42 2513.4 0.1063 8.9729
8 0.01073 1.0002 120.847 33.61 2385.6 33.61 2515.2 0.1213 8.9479
9 0.01148 1.0002 113.323 37.80 2386.9 37.80 2517.1 0.1361 8.9232
10 0.01228 1.0003 106.323 41.99 2388.3 41.99 2518.9 0.1510 8.8986
11 0.01313 1.0004 99.808 46.17 2389.7 46.18 2520.7 0.1657 8.8743
12 0.01403 1.0005 93.740 50.36 2391.1 50.36 2522.6 0.1804 8.8502
13 0.01498 1.0006 88.086 54.55 2392.4 54.55 2524.4 0.1951 8.8263
14 0.01599 1.0008 82.814 58.73 2393.8 58.73 2526.2 0.2097 8.8027
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Table B.1 (continued)

T p vf · 103 vg uf ug hf hg sf sg

(◦C) (bar) (m3/kg) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (kJ/kg K)

15 0.01706 1.0009 77.897 62.92 2395.2 62.92 2528.0 0.2242 8.7792
16 0.01819 1.0011 73.308 67.10 2396.6 67.10 2529.9 0.2387 8.7560
17 0.01938 1.0012 69.023 71.28 2397.9 71.28 2531.7 0.2532 8.7330
18 0.02064 1.0014 65.019 75.47 2399.3 75.47 2533.5 0.2676 8.7101
19 0.02198 1.0016 61.277 79.65 2400.7 79.65 2535.3 0.2819 8.6875
20 0.02339 1.0018 57.778 83.83 2402.0 83.84 2537.2 0.2962 8.6651
21 0.02488 1.0020 54.503 88.02 2403.4 88.02 2539.0 0.3104 8.6428
22 0.02645 1.0023 51.438 92.20 2404.8 92.20 2540.8 0.3246 8.6208
23 0.02810 1.0025 48.568 96.38 2406.1 96.39 2542.6 0.3388 8.5990
24 0.02985 1.0027 45.878 100.57 2407.5 100.57 2544.5 0.3529 8.5773
25 0.03169 1.0030 43.357 104.75 2408.9 104.75 2546.3 0.3670 8.5558
26 0.03363 1.0033 40.992 108.93 2410.2 108.94 2548.1 0.3810 8.5346
27 0.03567 1.0035 38.773 113.12 2411.6 113.12 2549.9 0.3949 8.5135
28 0.03782 1.0038 36.690 117.30 2413.0 117.30 2551.7 0.4088 8.4926
29 0.04008 1.0041 34.734 121.48 2414.3 121.49 2553.5 0.4227 8.4718
30 0.04246 1.0044 32.896 125.67 2415.7 125.67 2555.3 0.4365 8.4513
31 0.04495 1.0047 31.168 129.85 2417.0 129.85 2557.1 0.4503 8.4309
32 0.04758 1.0050 29.543 134.03 2418.4 134.04 2559.0 0.4640 8.4107
33 0.05033 1.0054 28.014 138.22 2419.8 138.22 2560.8 0.4777 8.3906
34 0.05323 1.0057 26.575 142.40 2421.1 142.41 2562.6 0.4914 8.3708
35 0.05627 1.0060 25.220 146.58 2422.5 146.59 2564.4 0.5050 8.3511
40 0.07381 1.0079 19.528 167.50 2429.2 167.50 2573.4 0.5723 8.2550
45 0.09593 1.0099 15.263 188.41 2435.9 188.42 2582.3 0.6385 8.1629
50 0.12345 1.0122 12.037 209.31 2442.6 209.33 2591.2 0.7037 8.0745
55 0.1575 1.0146 9.5726 230.22 2449.2 230.24 2600.0 0.7679 7.9896
60 0.1993 1.0171 7.6743 251.13 2455.8 251.15 2608.8 0.8312 7.9080
65 0.2502 1.0199 6.1996 272.05 2462.4 272.08 2617.5 0.8935 7.8295
70 0.3118 1.0228 5.0446 292.98 2468.8 293.01 2626.1 0.9549 7.7540
75 0.3856 1.0258 4.1333 313.92 2475.2 313.96 2634.6 1.0155 7.6813
80 0.4737 1.0290 3.4088 334.88 2481.6 334.93 2643.1 1.0753 7.6112
85 0.5781 1.0324 2.8289 355.86 2487.9 355.92 2651.4 1.1343 7.5436
90 0.7012 1.0359 2.3617 376.86 2494.0 376.93 2659.6 1.1925 7.4784
95 0.8453 1.0396 1.9828 397.89 2500.1 397.98 2667.7 1.2501 7.4154
100 1.013 1.0434 1.6736 418.96 2506.1 419.06 2675.7 1.3069 7.3545
105 1.208 1.0474 1.4200 440.05 2512.1 440.18 2683.6 1.3630 7.2956
110 1.432 1.0515 1.2106 461.19 2517.9 461.34 2691.3 1.4186 7.2386
115 1.690 1.0558 1.0370 482.36 2523.5 482.54 2698.8 1.4735 7.1833
120 1.985 1.0603 0.8922 503.57 2529.1 503.78 2706.2 1.5278 7.1297
125 2.320 1.0649 0.7709 524.82 2534.5 525.07 2713.4 1.5815 7.0777
130 2.700 1.0697 0.6687 546.12 2539.8 546.41 2720.4 1.6346 7.0272
135 3.130 1.0746 0.5824 567.46 2545.0 567.80 2727.2 1.6873 6.9780
140 3.612 1.0797 0.5090 588.85 2550.0 589.24 2733.8 1.7394 6.9302
145 4.153 1.0850 0.4464 610.30 2554.8 610.75 2740.2 1.7910 6.8836
150 4.757 1.0904 0.3929 631.80 2559.5 632.32 2746.4 1.8421 6.8381
160 6.177 1.1019 0.3071 674.97 2568.3 675.65 2758.0 1.9429 6.7503
170 7.915 1.1142 0.2428 718.40 2576.3 719.28 2768.5 2.0421 6.6662
180 10.02 1.1273 0.1940 762.12 2583.4 763.25 2777.8 2.1397 6.5853
190 12.54 1.1414 0.1565 806.17 2589.6 807.60 2785.8 2.2358 6.5071
200 15.55 1.1564 0.1273 850.58 2594.7 852.38 2792.5 2.3308 6.4312
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T p vf · 103 vg uf ug hf hg sf sg

(◦C) (bar) (m3/kg) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (kJ/kg K)

210 19.07 1.1726 0.1044 895.43 2598.7 897.66 2797.7 2.4246 6.3572
220 23.18 1.1900 0.0862 940.75 2601.6 943.51 2801.3 2.5175 6.2847
230 27.95 1.2088 0.0716 986.62 2603.1 990.00 2803.1 2.6097 6.2131
240 33.45 1.2292 0.0597 1033.1 2603.1 1037.2 2803.0 2.7013 6.1423
250 39.74 1.2515 0.0501 1080.4 2601.6 1085.3 2800.7 2.7926 6.0717
260 46.89 1.2758 0.0422 1128.4 2598.4 1134.4 2796.2 2.8838 6.0009
270 55.00 1.3026 0.0356 1177.4 2593.2 1184.6 2789.1 2.9751 5.9293
280 64.13 1.3324 0.0302 1227.5 2585.7 1236.1 2779.2 3.0669 5.8565
290 74.38 1.3658 0.0256 1279.0 2575.7 1289.1 2765.9 3.1595 5.7818
300 85.84 1.4037 0.0217 1332.0 2562.8 1344.1 2748.7 3.2534 5.7042
310 98.61 1.4473 0.0183 1387.0 2546.2 1401.2 2727.0 3.3491 5.6226
320 112.8 1.4984 0.0155 1444.4 2525.2 1461.3 2699.7 3.4476 5.5356
340 145.9 1.6373 0.0108 1569.9 2463.9 1593.8 2621.3 3.6587 5.3345
360 186.6 1.8936 0.0070 1725.6 2352.2 1761.0 2482.0 3.9153 5.0542

374.12 220.9 3.1550 0.0031 2029.6 2029.6 2099.3 2099.3 4.4298 4.4298

Table B.2 Thermodynamic properties of saturated steam, pressure table.

p T vf · 103 vg uf ug hf hg sf sg

(bar) (◦C) (m3/kg) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (kJ/kg K)

0.06 36.17 1.0065 23.737 151.47 2424.0 151.47 2566.5 0.5208 8.3283
0.08 41.49 1.0085 18.128 173.73 2431.0 173.74 2576.0 0.5921 8.2272
0.10 45.79 1.0103 14.693 191.71 2436.8 191.72 2583.7 0.6489 8.1487
0.12 49.40 1.0119 12.377 206.82 2441.6 206.83 2590.1 0.6960 8.0849
0.16 55.30 1.0147 9.4447 231.47 2449.4 231.49 2600.5 0.7718 7.9846
0.20 60.05 1.0171 7.6591 251.32 2455.7 251.34 2608.9 0.8318 7.9072
0.25 64.95 1.0198 6.2120 271.85 2462.1 271.88 2617.4 0.8929 7.8302
0.30 69.09 1.0222 5.2357 289.15 2467.5 289.18 2624.5 0.9438 7.7676
0.40 75.85 1.0263 3.9983 317.48 2476.1 317.52 2636.1 1.0257 7.6692
0.50 81.31 1.0299 3.2442 340.38 2483.1 340.43 2645.3 1.0908 7.5932
0.60 85.92 1.0330 2.7351 359.73 2488.8 359.79 2652.9 1.1451 7.5314
0.70 89.93 1.0359 2.3676 376.56 2493.8 376.64 2659.5 1.1917 7.4793
0.80 93.48 1.0385 2.0895 391.51 2498.1 391.60 2665.3 1.2327 7.4342
0.90 96.69 1.0409 1.8715 405.00 2502.0 405.09 2670.5 1.2693 7.3946
1.00 99.61 1.0431 1.6958 417.30 2505.5 417.40 2675.1 1.3024 7.3592
2.00 120.2 1.0605 0.8865 504.49 2529.2 504.70 2706.5 1.5301 7.1275
2.50 127.4 1.0672 0.7193 535.12 2537.0 535.39 2716.8 1.6073 7.0531
3.00 133.5 1.0731 0.6063 561.19 2543.4 561.51 2725.2 1.6719 6.9923
3.50 138.9 1.0785 0.5246 584.01 2548.8 584.38 2732.4 1.7276 6.9409
4.00 143.6 1.0835 0.4627 604.38 2553.4 604.81 2738.5 1.7768 6.8963
5.00 151.8 1.0925 0.3751 639.74 2561.1 640.29 2748.6 1.8608 6.8216
6.00 158.8 1.1006 0.3158 669.96 2567.2 670.62 2756.7 1.9313 6.7602
7.00 165.0 1.1079 0.2729 696.49 2572.2 697.27 2763.3 1.9923 6.7081
8.00 170.4 1.1147 0.2405 720.25 2576.5 721.14 2768.9 2.0462 6.6627
9.00 175.4 1.1211 0.2150 741.84 2580.1 742.85 2773.6 2.0947 6.6224
10.00 179.9 1.1272 0.1945 761.67 2583.2 762.80 2777.7 2.1387 6.5861
11.00 184.1 1.1329 0.1775 780.06 2585.9 781.31 2781.2 2.1791 6.5531
12.00 188.0 1.1384 0.1633 797.23 2588.3 798.60 2784.3 2.2165 6.5227
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Table B.2 (continued)

p T vf · 103 vg uf ug hf hg sf sg

(bar) (◦C) (m3/kg) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (kJ/kg K)

13.00 191.6 1.1437 0.1513 813.37 2590.4 814.85 2787.0 2.2514 6.4946
14.00 195.1 1.1488 0.1408 828.60 2592.2 830.21 2789.4 2.2840 6.4684
15.00 198.3 1.1538 0.1318 843.05 2593.9 844.78 2791.5 2.3148 6.4439
16.00 201.4 1.1586 0.1238 856.81 2595.3 858.66 2793.3 2.3439 6.4208
17.00 204.3 1.1633 0.1167 869.95 2596.5 871.93 2795.0 2.3715 6.3990
18.00 207.1 1.1678 0.1104 882.54 2597.7 884.64 2796.4 2.3978 6.3782
19.00 209.8 1.1723 0.1047 894.63 2598.6 896.86 2797.6 2.4230 6.3585
20.00 212.4 1.1766 0.0996 906.27 2599.5 908.62 2798.7 2.4470 6.3397
25.00 224.0 1.1973 0.0800 958.92 2602.3 961.92 2802.2 2.5543 6.2561
30.00 233.9 1.2165 0.0667 1004.59 2603.2 1008.2 2803.3 2.6453 6.1856
35.00 242.6 1.2348 0.0571 1045.26 2602.9 1049.6 2802.6 2.7250 6.1240
40.00 250.4 1.2523 0.0498 1082.18 2601.5 1087.2 2800.6 2.7961 6.0690
45.00 257.5 1.2694 0.0441 1116.14 2599.3 1121.9 2797.6 2.8607 6.0188
50.00 264.0 1.2861 0.0394 1147.74 2596.5 1154.2 2793.7 2.9201 5.9726
55.00 270.0 1.3026 0.0356 1177.39 2593.1 1184.6 2789.1 2.9751 5.9294
60.00 275.6 1.3190 0.0324 1205.42 2589.3 1213.3 2783.9 3.0266 5.8886
65.00 280.9 1.3352 0.0297 1232.06 2584.9 1240.7 2778.1 3.0751 5.8500
70.00 285.9 1.3515 0.0274 1257.52 2580.2 1267.0 2771.8 3.1211 5.8130
75.00 290.6 1.3678 0.0253 1281.96 2575.1 1292.2 2765.0 3.1648 5.7774
80.00 295.0 1.3843 0.0235 1305.51 2569.6 1316.6 2757.8 3.2066 5.7431
85.00 299.3 1.4009 0.0219 1328.27 2563.8 1340.2 2750.1 3.2468 5.7097
90.00 303.4 1.4177 0.0205 1350.36 2557.6 1363.1 2742.0 3.2855 5.6771
95.00 307.3 1.4348 0.0192 1371.84 2551.1 1385.5 2733.4 3.3229 5.6452
100.0 311.0 1.4522 0.0180 1392.79 2544.3 1407.3 2724.5 3.3592 5.6139
105.0 314.6 1.4699 0.0170 1413.27 2537.1 1428.7 2715.1 3.3944 5.5830
110.0 318.1 1.4881 0.0160 1433.34 2529.5 1449.7 2705.4 3.4288 5.5525
115.0 321.5 1.5068 0.0151 1453.06 2521.6 1470.4 2695.1 3.4624 5.5221
120.0 324.7 1.5260 0.0143 1472.47 2513.4 1490.8 2684.5 3.4953 5.4920
125.0 327.9 1.5458 0.0135 1491.61 2504.7 1510.9 2673.4 3.5277 5.4619
130.0 330.9 1.5663 0.0128 1510.55 2495.7 1530.9 2661.8 3.5595 5.4317
135.0 333.8 1.5875 0.0121 1529.31 2486.2 1550.7 2649.7 3.5910 5.4015
140.0 336.7 1.6097 0.0115 1547.94 2476.3 1570.5 2637.1 3.6221 5.3710
145.0 339.5 1.6328 0.0109 1566.49 2465.9 1590.2 2623.9 3.6530 5.3403
150.0 342.2 1.6572 0.0103 1585.01 2455.0 1609.9 2610.0 3.6838 5.3091
155.0 344.8 1.6828 0.0098 1603.55 2443.4 1629.6 2595.5 3.7145 5.2774
160.0 347.4 1.7099 0.0093 1622.17 2431.3 1649.5 2580.2 3.7452 5.2450
165.0 349.9 1.7388 0.0088 1640.92 2418.4 1669.6 2564.1 3.7761 5.2119
170.0 352.3 1.7699 0.0084 1659.89 2404.8 1690.0 2547.1 3.8073 5.1777
175.0 354.7 1.8033 0.0079 1679.18 2390.2 1710.7 2529.0 3.8390 5.1423
180.0 357.0 1.8399 0.0075 1698.88 2374.6 1732.0 2509.7 3.8714 5.1054
185.0 359.3 1.8801 0.0071 1719.17 2357.7 1754.0 2488.9 3.9047 5.0667
190.0 361.5 1.9251 0.0067 1740.22 2339.3 1776.8 2466.3 3.9393 5.0256
195.0 363.7 1.9762 0.0063 1762.34 2319.0 1800.9 2441.4 3.9756 4.9815
200.0 365.8 2.0357 0.0059 1785.94 2296.2 1826.7 2413.7 4.0144 4.9331
205.0 367.9 2.1076 0.0055 1811.76 2269.7 1855.0 2381.6 4.0571 4.8787
210.0 369.9 2.1999 0.0050 1841.25 2237.5 1887.5 2343.0 4.1060 4.8144
215.0 371.8 2.3362 0.0045 1878.57 2193.9 1928.8 2291.0 4.1684 4.7299
220.9 374.1 3.1550 0.0316 2029.60 2029.6 2099.3 2099.3 4.4298 4.4298
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Table B.3 Thermodynamics properties of superheated steam.

T v u h s T v u h s

(◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K)

p = 0.06 bar p = 0.35 bar

36.17 23.739 2424.0 2566.5 8.3283 72.67 4.531 2472.1 2630.7 7.7148
80 27.133 2486.7 2649.5 8.5794 80 4.625 2483.1 2645.0 7.7553
120 30.220 2544.1 2725.5 8.7831 120 5.163 2542.0 2722.7 7.9637
160 33.303 2602.2 2802.0 8.9684 160 5.697 2600.7 2800.1 8.1512
200 36.384 2660.9 2879.2 9.1390 200 6.228 2659.9 2877.9 8.3229
240 39.463 2720.6 2957.4 9.2975 240 6.758 2719.8 2956.3 8.4821
280 42.541 2781.2 3036.4 9.4458 280 7.287 2780.6 3035.6 8.6308
320 45.620 2842.7 3116.4 9.5855 320 7.816 2842.2 3115.8 8.7707
360 48.697 2905.2 3197.4 9.7176 360 8.344 2904.8 3196.9 8.9031
400 51.775 2968.8 3279.5 9.8433 400 8.872 2968.5 3279.0 9.0288
440 54.852 3033.4 3362.6 9.9632 440 9.400 3033.2 3362.2 9.1488
500 59.468 3132.4 3489.2 10.134 500 10.192 3132.2 3488.9 9.3194

p = 0.7 bar p = 1.0 bar

89.93 2.368 2493.8 2659.5 7.4793 99.61 1.6958 2505.5 2675.1 7.3592
120 2.5709 2539.3 2719.3 7.6370 120 1.7931 2537.0 2716.3 7.4665
160 2.8407 2599.0 2797.8 7.8272 160 1.9838 2597.5 2795.8 7.6591
200 3.1082 2658.7 2876.2 8.0004 200 2.1723 2657.6 2874.8 7.8335
240 3.3744 2718.9 2955.1 8.1603 240 2.3594 2718.1 2954.0 7.9942
280 3.6399 2779.8 3034.6 8.3096 280 2.5458 2779.2 3033.8 8.1438
320 3.9049 2841.6 3115.0 8.4498 320 2.7317 2841.1 3114.3 8.2844
360 4.1697 2904.4 3196.2 8.5824 360 2.9173 2904.0 3195.7 8.4171
400 4.4342 2968.1 3278.5 8.7083 400 3.1027 2967.7 3278.0 8.5432
440 4.6985 3032.8 3361.7 8.8285 440 3.2879 3032.5 3361.3 8.6634
480 4.9627 3098.6 3446.0 8.9434 480 3.4730 3098.3 3445.6 8.7785
520 5.2269 3165.4 3531.3 9.0538 520 3.6581 3165.2 3531.0 8.8889

p = 1.5 bar p = 3.0 bar

111.37 1.1600 2519.3 2693.3 7.2234 133.55 0.6060 2543.4 2725.2 6.9923
160 1.3174 2594.9 2792.5 7.4660 160 0.6506 2586.9 2782.1 7.1274
200 1.4443 2655.8 2872.4 7.6425 200 0.7163 2650.2 2865.1 7.3108
240 1.5699 2716.7 2952.2 7.8044 240 0.7804 2712.6 2946.7 7.4765
280 1.6948 2778.2 3032.4 7.9548 280 0.8438 2775.0 3028.1 7.6292
320 1.8192 2840.3 3113.2 8.0958 320 0.9067 2837.8 3109.8 7.7716
360 1.9433 2903.3 3194.8 8.2289 360 0.9692 2901.2 3191.9 7.9057
400 2.0671 2967.2 3277.2 8.3552 400 1.0315 2965.4 3274.9 8.0327
440 2.1908 3032.0 3360.6 8.4756 440 1.0937 3030.5 3358.7 8.1536
480 2.3144 3097.9 3445.1 8.5908 480 1.1557 3096.6 3443.4 8.2692
520 2.4379 3164.8 3530.5 8.7013 520 1.2177 3163.7 3529.0 8.3800
560 2.5613 3232.9 3617.0 8.8077 560 1.2796 3231.9 3615.7 8.4867
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Table B.3 (continued)

T v u h s T v u h s

(◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K)

p = 5 bar p = 7 bar

151.86 0.3751 2561.1 2748.6 6.8216 164.97 0.2729 2572.2 2763.3 6.7081
180 0.4045 2609.5 2811.7 6.9652 180 0.2846 2599.6 2798.8 6.7876
220 0.4449 2674.9 2897.4 7.1463 220 0.3146 2668.1 2888.4 6.9771
260 0.4840 2738.9 2980.9 7.3092 260 0.3434 2733.9 2974.2 7.1445
300 0.5225 2802.5 3063.7 7.4591 300 0.3714 2798.6 3058.5 7.2970
340 0.5606 2866.3 3146.6 7.5989 340 0.3989 2863.2 3142.4 7.4385
380 0.5985 2930.7 3229.9 7.7304 380 0.4262 2928.1 3226.4 7.5712
420 0.6361 2995.7 3313.8 7.8550 420 0.4533 2993.6 3310.9 7.6966
460 0.6736 3061.6 3398.4 7.9738 460 0.4802 3059.8 3395.9 7.8160
500 0.7109 3128.5 3483.9 8.0873 500 0.5070 3126.9 3481.8 7.9300
540 0.7482 3196.3 3570.4 8.1964 540 0.5338 3194.9 3568.5 8.0393
560 0.7669 3230.6 3614.0 8.2493 560 0.5741 3229.2 3612.2 8.09243

p = 10 bar p = 15 bar

179.91 0.1945 2583.2 2777.7 6.5861 198.32 0.1318 2593.9 2791.5 6.4439
220 0.2169 2657.5 2874.3 6.7904 220 0.1405 2638.1 2849.0 6.5630
260 0.2378 2726.1 2963.9 6.9652 260 0.1556 2712.6 2945.9 6.7521
300 0.2579 2792.7 3050.6 7.1219 300 0.1696 2782.5 3036.9 6.9168
340 0.2776 2858.5 3136.1 7.2661 340 0.1832 2850.4 3125.2 7.0657
380 0.2970 2924.2 3221.2 7.4006 380 0.1965 2917.6 3212.3 7.2033
420 0.3161 2990.3 3306.5 7.5273 420 0.2095 2984.8 3299.1 7.3322
460 0.3352 3057.0 3392.2 7.6475 460 0.2224 3052.3 3385.9 7.4540
500 0.3541 3124.5 3478.6 7.7622 500 0.2351 3120.4 3473.1 7.5699
540 0.3729 3192.8 3565.7 7.8721 540 0.2478 3189.2 3561.0 7.6806
580 0.3917 3262.0 3653.7 7.9778 580 0.2605 3258.8 3649.6 7.7870
620 0.4105 3332.2 3742.7 8.0797 620 0.2730 3329.4 3739.0 7.8894

p = 20 bar p = 30 bar

212.42 0.0996 2599.5 2798.7 6.3397 233.90 0.06667 2603.2 2803.3 6.1856
240 0.1084 2658.8 2875.6 6.4937 240 0.06818 2618.9 2823.5 6.2251
280 0.1200 2735.6 2975.6 6.6814 280 0.07710 2709.0 2940.3 6.4445
320 0.1308 2807.3 3068.8 6.8441 320 0.08498 2787.6 3042.6 6.6232
360 0.1411 2876.7 3158.9 6.9911 360 0.09232 2861.3 3138.3 6.7794
400 0.1512 2945.1 3247.5 7.1269 400 0.09935 2932.7 3230.7 6.9210
440 0.1611 3013.4 3335.6 7.2539 440 0.10618 3003.0 3321.5 7.0521
480 0.1708 3081.9 3423.6 7.3740 480 0.11287 3073.0 3411.6 7.1750
520 0.1805 3150.9 3511.9 7.4882 520 0.11946 3143.2 3501.6 7.2913
560 0.1901 3220.6 3600.7 7.5975 560 0.12597 3213.8 3591.7 7.4022
600 0.1996 3291.0 3690.2 7.7024 600 0.13243 3285.0 3682.3 7.5084
640 0.2091 3362.4 3780.5 7.8036 640 0.13884 3357.0 3773.5 7.6105
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T v u h s T v u h s

(◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K)

p = 40 bar p = 60 bar

250.38 0.04978 2601.5 2800.6 6.0690 276.62 0.03244 2589.3 2783.9 5.8886
280 0.05544 2679.0 2900.8 6.2552 280 0.03317 2604.7 2803.7 5.9245
320 0.06198 2766.6 3014.5 6.4538 320 0.03874 2719.0 2951.5 6.1830
360 0.06787 2845.3 3116.7 6.6207 360 0.04330 2810.6 3070.4 6.3771
400 0.07340 2919.8 3213.4 6.7688 400 0.04739 2892.7 3177.0 6.5404
440 0.07872 2992.3 3307.2 6.9041 440 0.05121 2970.2 3277.4 6.6854
480 0.08388 3064.0 3399.5 7.0301 480 0.05487 3045.3 3374.5 6.8179
520 0.08894 3135.4 3491.1 7.1486 520 0.05840 3119.4 3469.8 6.9411
560 0.09392 3206.9 3582.6 7.2612 560 0.06186 3193.0 3564.1 7.0571
600 0.09884 3278.9 3674.3 7.3687 600 0.06525 3266.6 3658.1 7.1673
640 0.10372 3351.5 3766.4 7.4718 640 0.06859 3340.5 3752.1 7.2725
680 0.10855 3424.9 3859.1 7.5711 680 0.07189 3414.9 3846.3 7.3736

p = 80 bar p = 100 bar

295.04 0.02352 2569.6 2757.8 5.7431 311.04 0.01802 2544.3 2724.5 5.6139
320 0.02681 2661.7 2876.2 5.9473 320 0.01925 2588.2 2780.6 5.7093
360 0.03088 2771.9 3018.9 6.1805 360 0.02330 2728.0 2961.0 6.0043
400 0.03431 2863.5 3138.0 6.3630 400 0.02641 2832.0 3096.1 6.2114
440 0.03742 2946.8 3246.2 6.5192 440 0.02911 2922.3 3213.4 6.3807
480 0.04034 3026.0 3348.6 6.6589 480 0.03160 3005.8 3321.8 6.5287
520 0.04312 3102.9 3447.8 6.7873 520 0.03394 3085.9 3425.3 6.6625
560 0.04582 3178.6 3545.2 6.9070 560 0.03619 3164.0 3525.8 6.7862
600 0.04845 3254.0 3641.5 7.0200 600 0.03836 3241.1 3624.7 6.9022
640 0.05102 3329.3 3737.5 7.1274 640 0.04048 3317.9 3722.7 7.0119
680 0.05356 3404.9 3833.4 7.2302 680 0.04256 3394.6 3820.3 7.1165
720 0.05607 3480.9 3929.4 7.3289 720 0.04461 3471.6 3917.7 7.2167

p = 120 bar p = 140 bar

324.75 0.01426 2513.4 2684.5 5.4920 336.75 0.01148 2476.3 2637.1 5.3710
360 0.01810 2677.1 2894.4 5.8341 360 0.01421 2616.0 2815.0 5.6579
400 0.02108 2797.8 3050.7 6.0739 400 0.01722 2760.2 3001.3 5.9438
440 0.02355 2896.3 3178.9 6.2589 440 0.01955 2868.8 3142.5 6.1477
480 0.02576 2984.9 3294.0 6.4161 480 0.02157 2963.1 3265.2 6.3152
520 0.02781 3068.4 3402.1 6.5559 520 0.02343 3050.3 3378.3 6.4616
560 0.02976 3149.0 3506.1 6.6839 560 0.02517 3133.6 3485.9 6.5940
600 0.03163 3228.0 3607.6 6.8029 600 0.02683 3214.7 3590.3 6.7163
640 0.03345 3306.3 3707.7 6.9150 640 0.02843 3294.5 3692.5 6.8309
680 0.03523 3384.3 3807.0 7.0214 680 0.02999 3373.8 3793.6 6.9392
720 0.03697 3462.3 3906.0 7.1231 720 0.03152 3452.8 3894.1 7.0425
760 0.03869 3540.6 4004.8 7.2207 760 0.03301 3532.0 3994.2 7.1413
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Table B.3 (continued)

T v u h s T v u h s

(◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K) (◦C) (m3/kg) (kJ/kg) (kJ/kg) (kJ/kg K)

p = 160 bar p = 180 bar

347.44 0.00931 2431.3 2580.2 5.2450 357.06 0.00750 2374.6 2509.7 5.1054
360 0.01105 2537.5 2714.3 5.4591 360 0.00810 2418.3 2564.1 5.1916
400 0.01427 2718.5 2946.8 5.8162 400 0.01191 2671.7 2886.0 5.6872
440 0.01652 2839.6 3104.0 6.0433 440 0.01415 2808.5 3063.2 5.9432
480 0.01842 2940.5 3235.3 6.2226 480 0.01596 2916.9 3204.2 6.1358
520 0.02013 3031.8 3353.9 6.3761 520 0.01756 3012.7 3328.8 6.2971
560 0.02172 3117.9 3465.4 6.5133 560 0.01903 3101.9 3444.5 6.4394
600 0.02322 3201.1 3572.6 6.6390 600 0.02041 3187.3 3554.8 6.5687
640 0.02466 3282.6 3677.2 6.7561 640 0.02173 3270.5 3661.7 6.6885
680 0.02606 3363.1 3780.1 6.8664 680 0.02301 3352.4 3766.5 6.8008
720 0.02742 3443.3 3882.1 6.9712 720 0.02424 3433.7 3870.0 6.9072
760 0.02876 3523.4 3983.5 7.0714 760 0.02545 3514.7 3972.8 7.0086

p = 200 bar p = 240 bar

365.81 0.00588 2296.2 2413.7 4.9331
400 0.00995 2617.9 2816.9 5.5521 400 0.00673 2476.0 2637.5 5.2365
440 0.01223 2775.2 3019.8 5.8455 440 0.00929 2700.9 2923.9 5.6511
480 0.01399 2892.3 3172.0 6.0534 480 0.01100 2839.9 3103.9 5.8971
520 0.01551 2993.1 3303.2 6.2232 520 0.01241 2952.1 3250.0 6.0861
560 0.01688 3085.5 3423.2 6.3708 560 0.01366 3051.8 3379.5 6.2456
600 0.01817 3173.3 3536.7 6.5039 600 0.01480 3144.6 3499.8 6.3866
640 0.01939 3258.2 3646.0 6.6264 640 0.01587 3233.3 3614.3 6.5148
680 0.02056 3341.6 3752.8 6.7408 680 0.01690 3319.6 3725.1 6.6336
720 0.02170 3424.0 3857.9 6.8488 720 0.01788 3404.3 3833.4 6.7450
760 0.02280 3505.9 3961.9 6.9515 760 0.01883 3488.2 3940.2 6.8504
800 0.02388 3587.8 4065.4 7.0498 800 0.01976 3571.7 4046.0 6.9508

p = 280 bar p = 320 bar

400 0.00383 2221.7 2328.8 4.7465 400 0.00237 1981.0 2056.8 4.3252
440 0.00712 2613.5 2812.9 5.4497 440 0.00543 2509.0 2682.9 5.2325
480 0.00885 2782.7 3030.5 5.7472 480 0.00722 2720.5 2951.5 5.5998
520 0.01019 2908.9 3194.3 5.9592 520 0.00853 2863.4 3136.2 5.8390
560 0.01135 3016.8 3334.6 6.1319 560 0.00962 2980.6 3288.4 6.0263
600 0.01239 3115.1 3462.1 6.2815 600 0.01059 3084.9 3423.8 6.1851
640 0.01336 3207.9 3582.0 6.4158 640 0.01148 3182.0 3549.4 6.3258
680 0.01428 3297.2 3697.0 6.5390 680 0.01232 3274.6 3668.8 6.4538
720 0.01516 3384.4 3808.8 6.6539 720 0.01312 3364.3 3784.0 6.5722
760 0.01600 3470.3 3918.4 6.7621 760 0.01388 3452.3 3896.4 6.6832
800 0.01682 3555.5 4026.5 6.8647 800 0.01462 3539.2 4006.9 6.7881
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Table B.4 Thermodynamic properties of air.

T h s0 pr vr T h s0 pr vr
(K) (kJ/kg) (kJ/(kg K)) (K) (kJ/kg) (kJ/(kg K))

200 199.97 1.29559 0.3363 1707.0 450 451.80 2.11161 5.775 223.6
210 209.97 1.34444 0.3987 1512.0 460 462.02 2.13407 6.245 211.4
220 219.97 1.39105 0.4690 1346.0 470 472.24 2.15604 6.742 200.1
230 230.02 1.43557 0.5477 1205.0 480 482.49 2.17760 7.268 189.5
240 240.02 1.47824 0.6355 1084.0 490 492.74 2.19876 7.824 179.7
250 250.05 1.51917 0.7329 979.0 500 503.02 2.21952 8.411 170.6
260 260.09 1.55848 0.8405 887.8 510 513.32 2.23993 9.031 162.1
270 270.11 1.59634 0.9590 808.0 520 523.63 2.25997 9.684 154.1
280 280.13 1.63279 1.0889 738.0 530 533.98 2.27967 10.37 146.7
285 285.14 1.65055 1.1584 706.1 540 544.35 2.29906 11.10 139.7
290 290.16 1.66802 1.2311 676.1 550 554.74 2.31809 11.86 133.1
295 295.17 1.68515 1.3068 647.9 560 565.17 2.33685 12.66 127.0
300 300.19 1.70203 1.3860 621.2 570 575.59 2.35531 13.50 121.2
305 305.22 1.71865 1.4686 596.0 580 586.04 2.37348 14.38 115.7
310 310.24 1.73498 1.5546 572.3 590 596.52 2.39140 15.31 110.6
315 315.27 1.75106 1.6442 549.8 600 607.02 2.40902 16.28 105.8
320 320.29 1.76690 1.7375 528.6 610 617.53 2.42644 17.30 101.2
325 325.31 1.78249 1.8345 508.4 620 628.63 2.44356 18.36 96.92
330 330.34 1.79783 1.9352 489.4 630 638.63 2.46048 19.84 92.84
340 340.42 1.82790 2.149 454.1 640 649.22 2.47716 20.64 88.99
350 350.49 1.85708 2.379 422.2 650 659.84 2.49364 21.86 85.34
360 360.58 1.88543 2.626 393.4 660 670.47 2.50985 23.13 81.89
370 370.67 1.91313 2.892 367.2 670 681.14 2.52589 24.46 78.61
380 380.77 1.94001 3.176 343.4 680 691.82 2.54175 25.85 75.50
390 390.88 1.96633 3.481 321.5 690 702.52 2.55731 27.29 72.56
400 400.98 1.99194 3.806 301.6 700 713.27 2.57277 28.80 69.76
410 411.12 2.01699 4.153 283.3 710 724.04 2.58810 30.38 67.07
420 421.26 2.40142 4.522 266.6 720 734.82 2.60319 32.02 64.53
430 431.43 2.06533 4.915 251.1 730 745.62 2.61803 33.72 62.13
440 441.61 2.08870 5.332 236.8 740 756.44 2.63280 35.50 59.82
750 769.29 2.64737 37.35 57.63 1300 1395.97 3.27345 330.9 11.275
760 778.18 2.66176 39.07 55.54 1320 1419.76 3.29160 352.5 10.747
770 789.11 2.67595 41.31 53.39 1340 1443.60 3.30959 375.3 10.247
780 800.03 2.69013 43.35 51.64 1360 1467.49 3.32724 399.1 9.780
790 810.99 2.70100 45.55 49.86 1380 1491.44 3.34474 424.2 9.337
800 821.95 2.71787 47.75 48.08 1400 1515.42 3.36200 450.5 8.919
820 843.98 2.74504 52.59 44.84 1420 1539.44 3.37901 478.0 8.526
840 866.08 2.77170 57.60 41.85 1440 1563.51 3.39586 506.9 8.153
860 888.27 2.79783 63.09 39.12 1460 1587.63 3.41217 537.1 7.801
880 910.56 2.82344 68.98 36.61 1480 1611.79 3.42892 568.8 7.468
900 932.93 2.84856 75.29 34.31 1500 1635.97 3.44516 601.9 7.152
920 955.39 2.87324 82.05 32.18 1520 1660.23 3.46120 636.5 6.854
940 977.92 2.89748 89.28 30.22 1540 1684.51 3.47712 672.8 6.569
960 1000.55 2.92128 97.00 28.40 1560 1708.82 3.49276 710.5 6.301
980 1023.25 2.94469 105.2 26.73 1580 1733.17 3.50829 750.0 6.046
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Table B.4 (continued)

T h s0 pr vr T h s0 pr vr
(K) (kJ/kg) (kJ/(kg K)) (K) (kJ/kg) (kJ/(kg K))

1000 1046.04 2.96770 114.0 25.17 1600 1757.57 3.52364 791.2 5.804
1020 1068.89 2.99034 123.4 23.72 1620 1782.00 3.53879 834.1 5.574
1040 1091.85 2.99034 123.4 22.39 1640 1806.46 3.55381 878.9 5.355
1060 1114.86 3.03449 143.9 21.12 1660 1830.96 3.56867 925.3 5.147
1080 1137.89 3.05608 155.2 19.98 1680 1855.50 3.58355 974.2 4.949
1100 1161.07 3.07732 167.1 18.896 1700 1880.1 3.5979 1025 4.761
1120 1184.28 3.09825 179.7 17.886 1750 1941.6 3.6336 1161 4.328
1140 1207.57 3.11883 193.1 16.946 1800 2003.3 3.6681 1310 3.944
1160 1230.92 3.13916 207.2 16.064 1850 2065.3 3.7023 1475 3.601
1180 1254.34 3.15916 222.2 15.241 1900 2127.4 3.7354 1655 3.295
1200 1277.79 3.17888 238.0 14.170 1950 2189.7 3.7677 1852 3.022
1220 1301.31 3.19834 254.7 13.747 2000 2252.1 3.7994 2068 2.776
1240 1324.93 3.21751 272.3 13.069 2050 2314.6 3.8303 2303 2.555
1260 1348.55 3.21751 281.3 12.435 2100 2377.4 3.8605 2995 2.356
1280 1372.24 3.25510 310.4 11.835 2150 2440.3 3.8901 2837 2.175

2200 2503.2 3.9191 3138 2.012
2250 2566.4 3.9474 3464 1.864

Table B.5 Specific heats of common gases.

T CO CO2 H2 H2O O2 N2

(K) (kJ/kg K) (kJ/kg K) (kJ/kg K) (kJ/kg K) (kJ/kg K) (kJ/kg K)

250 1.0404 0.7957 14.1961 1.8498 0.9094 1.0416
300 1.0400 0.8482 14.3169 1.8629 0.9178 1.0408
350 1.0425 0.8961 14.4000 1.8805 0.9289 1.0428
400 1.0476 0.9398 14.4553 1.9018 0.9421 1.0475
450 1.0548 0.9796 14.4914 1.9263 0.9565 1.0548
500 1.0640 1.0156 14.5160 1.9534 0.9717 1.0647
550 1.0746 1.0482 14.5354 1.9827 0.9871 1.0772
600 1.0863 1.0777 14.5549 2.0136 1.0022 1.0922
650 1.0989 1.1044 14.5787 2.0458 1.0167 1.1097
700 1.1120 1.1285 14.6099 2.0790 1.0304 1.1296
750 1.1253 1.1504 14.6504 2.1128 1.0430 1.1520
800 1.1385 1.1702 14.7011 2.1472 1.0545 1.1769
850 1.1513 1.1884 14.7616 2.1819 1.0648 1.2042
900 1.1634 1.2051 14.8306 2.2167 1.0741 1.2341
950 1.1746 1.2207 14.9054 2.2518 1.0823 1.2666
1000 1.1846 1.2355 14.9825 2.2870 1.0899 1.3016
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Table B.6 Molar specific heats of common gases.

T CO CO2 H2 H2O O2 N2

(K) (kJ/(kg
mol K))

(kJ/(kg
mol K))

(kJ/(kg
mol K))

(kJ/(kg
mol K))

(kJ/(kg
mol K))

(kJ/(kg
mol K))

250 29.1421 35.0193 28.6194 33.3337 29.1004 29.1760
300 29.1294 37.3292 28.8628 33.5702 29.3683 29.1533
350 29.1996 39.4394 29.0304 33.8866 29.7249 29.2086
400 29.3419 41.3622 29.1419 34.2710 30.1457 29.3399
450 29.5459 43.1103 29.2148 34.7124 30.6086 29.5453
500 29.8015 44.6961 29.2642 35.2010 31.0944 29.8234
550 30.0989 46.1320 29.3033 35.7277 31.5863 30.1727
600 30.4285 47.4306 29.3426 36.2847 32.0704 30.5923
650 30.7811 48.6044 29.3906 36.8650 32.5355 31.0816
700 31.1478 49.6658 29.4535 37.4628 32.9729 31.6401
750 31.5199 50.6273 29.5352 38.0732 33.3769 32.2677
800 31.8892 51.5014 29.6374 38.6922 33.7443 32.9646
850 32.2475 52.3006 29.7594 39.3170 34.0744 33.7310
900 32.5872 53.0374 29.8984 39.9457 34.3696 34.5679
950 32.9008 53.7242 30.0493 40.5775 34.6347 35.4761
1000 33.1812 54.3736 30.2048 41.2125 34.8772 36.4569

Table B.7 MATLAB- or GNU/OCTAVE-function for thermodynamic properties of air.

% Thermodynamic properties of Air based on the ideal gas model with

% variable specific heats.

%

% By Seppo Korpela

% The code is free on "as is" basis. It is meant for educational purposes.

% Commercial software exits that provides similar functionality.

% I take no responsibility for any errors or if its use causes damage.

% You are free to use, modify and distribute the code as long as you

% acknowledge its authorship.

% Please notify me at korpela.1@osu.edu if you make improvements in it.

%*************************************************************************

%

% YAir takes two arguments, that are:

% YAir(’T’,T)

% YAir(’h’,h)

% YAir(’pr’,pr)

% YAir(’vr’,vr)

% YAir(’s0’,s0)

% It returns the vector [T,h,u,s0,pr,vr] in this order.

% From the calling program this function is invoked by the command, e.g.

%*************************************************************************

% T1=500;

% [T1,h1,u1,s01,pr1,vr1]=YAir(’T’,T1)

%

mailto:korpela.1@osu.edu
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Table B.7 (continued)

% or

%

% pr1=1.3860;

% [T2s,h2s,u2s,s02,pr2,vr2]=YAir(’pr’,pr1)

%

% The correlations for the specific heat at constant pressure, c_p(T),

% are from the report by E. W. Lemmon, R. T. Jacobsen, S. Penoncello and

% D. G. Friend, Thermodynamic Properties of Air and Mixtures of Nitrogen,

% Argon, and Oxygen from 60 to 2000 K at pressures to 2000 Mpa, Journal of

% Physical and Chemical Reference Data, 29, 331 (2000).

%*************************************************************************

function [T,h,u,s0,pr,vr] = YAir(fun,In)

fun = lower(fun);

tol=10^-16;

Tref=300; href=300.19; s0ref=1.70203; pref=1.3860; vref=621.2;

Rbar=8.31447; M=28.943; R=Rbar/M;

switch fun

case ’t’

[T,h,u,s0,pr,vr] = XAir(In);

case ’h’

Tf(1)=200; Tf(2)=1500;

f(1)=href+integral(@cpa,Tref,Tf(1))-In;

f(2)=href+integral(@cpa,Tref,Tf(2))-In;

i=2;

while i < 30

i=i+1;

Tf(i)=Tf(i-1)-(f(i-1))*((Tf(i-1)-Tf(i-2))/(f(i-1)-f(i-2)));

f(i)=href+integral(@cpa,Tref,Tf(i))-In;

Ta=Tf(i);

if abs(f(i)-f(i-1)) < tol

break

end

end

[T,h,u,s0,pr,vr]=XAir(Ta);

%

case ’pr’

%Secant method

Tf(1)=200; Tf(2)=1500;

s0(1)=s0ref+integral(@cpad,Tref,Tf(1));

s0(2)=s0ref+integral(@cpad,Tref,Tf(2));

f(1)=pref*exp(s0(1)/R-s0ref/R)-In;

f(2)=pref*exp(s0(2)/R-s0ref/R)-In;

i=2;

while i < 30

i=i+1;

Tf(i)=Tf(i-1)-f(i-1)*((Tf(i-1)-Tf(i-2))/(f(i-1)-f(i-2)));

s0(i)=s0ref+integral(@cpad,Tref,Tf(i));

f(i)=pref*exp(s0(i)/R-s0ref/R)-In;

if abs(f(i)-f(i-1)) <= tol

break
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end

Ta=Tf(i);

end

[T,h,u,s0,pr,vr]=XAir(Ta);

%

case ’vr’

%Secant method

Tf(1)=200; Tf(2)=1000;

s0(1)=s0ref+integral(@cpad,Tref,Tf(1));

s0(2)=s0ref+integral(@cpad,Tref,Tf(2));

pr(1)=pref*exp(s0(1)/R-s0ref/R);

pr(2)=pref*exp(s0(2)/R-s0ref/R);

f(1)=vref*(Tf(1)*pref)/(Tref*pr(1))-In;

f(2)=vref*(Tf(2)*pref)/(Tref*pr(2))-In;

i=2;

while i < 30

i=i+1;

Tf(i)=Tf(i-1)-(f(i-1))*((Tf(i-1)-Tf(i-2))/((f(i-1)-f(i-2))));

s0(i)=s0ref+integral(@cpad,Tref,Tf(i));

pr(i)=pref*exp(s0(i)/R-s0ref/R);

f(i)=vref*(Tf(i)*pref)/(Tref*pr(i))-In;

if abs(f(i)-f(i-1)) <= tol

break

end

Ta=Tf(i);

end

[T,h,u,s0,pr,vr] = XAir(Ta);

%

case ’s0’

Tf(1)=200; Tf(2)=1500;

f(1)=s0ref+integral(@cpad,Tref,Tf(1))-In;

f(2)=s0ref+integral(@cpad,Tref,Tf(2))-In;

i=2;

while i < 30

i=i+1;

Tf(i)=Tf(i-1)-(f(i-1))*((Tf(i-1)-Tf(i-2))/((f(i-1)-f(i-2))));

f(i)=s0ref+integral(@cpad,Tref,Tf(i))-In;

if abs(f(i)-f(i-1)) < tol

break

end

Ta=Tf(i);

end

[T,h,u,s0,pr,vr]=XAir(Ta);

%

case ’u’

Tf(1)=200; Tf(2)=1500;

f(1)=href+integral(@cpa,Tref,Tf(1))-R*Tf(1)-In;

f(2)=href+integral(@cpa,Tref,Tf(2))-R*Tf(2)-In;
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i=2;

while i < 30

i=i+1;

Tf(i)=Tf(i-1)-(f(i-1))*((Tf(i-1)-Tf(i-2))/((f(i-1)-f(i-2))));

f(i)=href+integral(@cpa,Tref,Tf(i))-R*Tf(i)-In;

if abs(f(i)-f(i-1))< tol

break

end

Ta=Tf(i);

end

[T,h,u,s0,pr,vr]=XAir(Ta);

otherwise

error([’Unknown calling function to XAir, ’,fun, ’...

See help XAir for valid calling functions\n’]);
end

end

%

function [T,h,u,s0,pr,vr] = XAir(In)

Rbar=8.314510; M=28.9586; R=Rbar/M;

Tref=300; href=300.19; s0ref=1.70203; pref=1.3860; vref=621.2;

T=In;

s0=s0ref+integral(@cpad,Tref,T);

h=href+integral(@cpa,Tref,T);

pr=pref*exp(s0/R-s0ref/R);

vr= vref*(T*pref)/(Tref*pr);

u=h-R*T;

end

%

function cp = cpa(T)

Rbar=8.314510; M=28.9586; R=Rbar/M;

N1=3.490888032; N2=2.395525583e-6;

N3=7.172111248e-9; N4=-3.115413101e-13;

N5=0.223806688; N6=0.791309509;

N7=0.212236768; N8=0.197938904;

N9=3364.011; N10=2242.45;

N11=11580.4;

u= N9./T; v= N10./T; w= N11./T;

cp = R*(N1+N2*T+N3*T.*T+N4*T.^3+N5*T.^(-1.5)+ ...

N6*u.^2.*exp(u)./(exp(u)-1).^2+N7*v.^2.*exp(v)./(exp(v)-1).^2+ ...

(2/3)*N8*w.^2.*exp(-w)./((2/3)*exp(-w)+1).^2);

end

%

function cpd=cpad(T)

cpd=cpa(T)./T;

end
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blade-loading coefficient, 312
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de Haller criterion, 318
design deflection, 3, 231
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flow coefficient, 312
flow deviation, 349
free vortex defined, 326
free vortex design, 319, 327
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Lieblein diffusion factor, 334
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off-design operation, 324
optimum diffusion, 349
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pressure ratio, 311, 314
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reaction, 315
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stage efficiency, 341

stage stagnation temperature rise, 313
static enthalpy loss coefficients, 341
tangent-difference formula, 323
typical range for blade-loading coefficient,
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typical range of flow coefficient, 312
work-done factor for multistage compressors,
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axial turbine

0% reaction stage, 262
50% reaction stage, 258
Ainley–Mathieson correlation, 253, 254
constant mass flux, 274
fixed nozzle angle, 273
flow angles, 255
flow coefficient, 254
free vortex design, 269
hub-to-casing ratio, 216
multistage reheat factor, 303
off-design operation, 264
performance characteristics, 285
polytropic efficiency, 304
pressure ratio, 280
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Smith chart, 285
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stage stagnation temperature drop, 265
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balance principle defined, 46
blade element theory, 312, 316

axial turbine, 254
defined, 184

blade shapes
axial compressor, 344
Francis turbine, 478
single-stage steam turbine, 231

boundary layer
displacement thickness, 335
momentum thickness, 335

British gravitational units, 13
buckets, 232
bulb turbine, 466

specific speed, 467

casing, 248
cavitation

hydraulic turbines, 486
pumps, 404

centrifugal compressor
blade height, 386
characteristics, 382
choking of inducer, 379
diffusion ratio, 385
history, 12
inducer, 364
natural-gas transmission, 5
optimum inducer angle, 375
slip, 366
vaneless diffuser, 387

centrifugal pump
cavitation, 404
Cordier diagram, 395
efficiency, 392, 394
flow and loading coefficients, 395
history, 12
industrial uses, 6
specific diameter, 395
specific speed, 395
total head, 391
vaneless diffuser, 407
volute design, 407

choking, 71, 87
axial compressor, 325

chord and axial chord, 248
Colebrook formula for friction, 82, 472
combustion

specific heat of gases, 36
theoretical air, 35

compressible flow
area change, 68
choked flow, 71
converging–diverging nozzle, 87
converging nozzle, 72
Fanno flow with area change, 83
friction in nozzle flow, 73
Mach waves, 100
over-expanded, 88
speed of sound, 64
underexpanded, 88

compressor
characteristics of a radial inflow turbine, 209
choking, 209

computer software EES, 22
condensation shocks, 167
conservation principle defined, 46
Cordier diagram, 205, 395
corrected flow rate, 208

Dalton’s model for a mixture of ideal gases, 33
Darcy friction factor, 82
diffusion ratio

centrifugal compressor, 385
radial inflow turbine, 454

double-suction pump, 394

efficiency
axial compressor stage, 316
axial turbine stage, 277
centrifugal compressor, 371
centrifugal pump, 392
hydraulic turbine, 467
nozzle, 81
polytropic, 73, 304, 351
pressure-compounded steam turbine

stage, 230
radial inflow turbine, 417, 422
Rankine cycle, 215
rotor, 219
steam power plant, 217
total-to-static, 38, 219
total-to-total, 37

electricity production, 2
endwalls, 248
energy engineering, 2
energy resources

biomass, 1
fossil fuels, 1
hydraulic, 463
wind energy, 507

enthalpy
relative stagnation, 316
stagnation, 17

Euler equation for turbomachinery, 182

fan angle, 115
Fanning friction factor, 82, 83
Fanno flow, 82

stagnation pressure loss, 85
fifty percent (50%) reaction stage, 258
flow coefficient, 184, 199

axial compressor, 316
axial turbine, 254

flow function, 69
flow work, 17
fluid coupling

advantages, 491
efficiency, 493
flow rate, 494
losses, 494
partially filled, 496
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primary, 491
secondary, 491
toroidal shape, 492
torque coefficient, 496

Francis turbine, 466, 475
specific speed, 467

friction factor
Colebrook, 82
Darcy, 82
Fanning, 82

gas turbine
electricity generation, 4
industrial, 11
jet engine history, 10

Gibbs–Dalton model for ideal gases, 34

Helmholtz vortex theorem, 532
hub, 248
hydraulic turbine

bulb turbine, 466
capacity factor, 4
crossflow or Banki–Mitchell turbine, 486
effective head, 464
electricity generation, 5
Francis turbine, 466, 475, 478
gross head, 464
history, 8
Kaplan turbine, 466, 483, 484
mechanical efficiency, 465
overall efficiency, 464
Pelton wheel, 466
pit turbine, 475
power-specific speed, 466
synchronous speed, 467
turgo, 486
volumetric efficiency, 465

IFR-turbine, 416
incompressible fluid

internal energy and irreversibility, 36
stagnation pressure, 36, 46

induced and forced draft, 41
induction factor, 511
internal heating, 44

jet engine
gas generator, 311
history, 11
spool, 311

Kaplan turbine, 466
number of blades, 484
specific speed, 467

kinetic theory of specific heats for gases, 28

Lieblein diffusion factor, 334

Mach number, 65
manometer formula, 200

mass conservation principle, 16
meridional velocity, 178
mixing and pressure change, 56
Mollier diagram, 24
moment of momentum balance, 181
momentum equation, 48

nondimensional groups, 199
normal shock, 88, 90
nozzle

efficiency, 81
polytropic process, 74
static enthalpy loss coefficient, 77
velocity coefficient, 77

nuclear fuels—uranium and thorium, 1

oblique shock, 88
off-design operation of an axial turbine, 264
overexpanded flow, 88

Pelton wheel, 466
number of buckets, 468
specific speed, 467

Pfleiderer correlation for pumps, 394
pitch, 248
polytropic efficiency, 304, 351
positive-displacement machine, 2
power-absorbing machine, 2
power coefficient, 201
power-producing machine, 2
power ratio of a radial inflow turbine, 417
power-specific speed, 466
Prandtl–Meyer theory, 112
pressure compounding, 226
pressure ratio

axial compressor, 314
axial turbine, 258
steam turbine, 216

pressure recovery partial, 53
pressure side of blade, 333
primary energy production

wind energy, 507

radial equilibrium
axial compressor, 326
axial turbine, 258
constant mass flux, 274
first power exponent for axial

compressor, 331
fixed nozzle angle, 273
zero-power exponent, 330

radial inflow turbine, 415, 416
Balje diagram, 426
blade height, 455
characteristics, 210
efficiency, 422
gap loss coefficients, 436
minimum exit Mach number, 450
number of blades, 456
optimum incidence, 456
optimum inlet, 442
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radius ratio, 453
recommended diffusion, 454
specific diameter, 426
specific speed, 426
stator flow, 432
stator loss coefficients, 436
typical design parameters, 431

Rankine combined vortex wake, 521
reaction

axial compressor, 316
axial turbine, 254
definition, 189
in terms of kinetic energies, 189

reheat factor
axial compressor, 351
axial turbine, 303

relaxation times for steam, 144
renewable energy, 1
Reynolds number, 199
rothalpy, 187
rotor efficiency

centrifugal compressor, 368

scale effect, 199
scaling analysis, 198
shape parameter, 202
shock

normal, 88, 90
Rankine–Hugoniot relations, 95
shock relations, 93
strength, 97
wet steam, 161

similitude, 198
slip, 366
slip stream, 508
sonic state, 69
specific diameter

centrifugal pump, 395
radial inflow turbine, 426

specific speed, 202
centrifugal pump, 395
hydraulic turbines, 466, 467
radial inflow turbine, 426

speed of sound, 65, 146
influence of molecular mass, 65
influence of relaxation in wet steam, 149

spouting velocity, 419
stage

axial compressor, 313
axial turbine, 249
normal, 184, 249, 254, 266
repeating, 184, 254, 266

stagnation density, 66
stagnation pressure, 66

low Mach number, 66
stagnation pressure loss and entropy, 47
stagnation pressure losses

axial turbine, 280
profile losses for axial compressor, 338

stagnation state
defined, 37

stagnation temperature, 65

static enthalpy loss coefficients, 222
steam

computer software EES, 22
equation of state, 22
MATLAB, 22
Mollier diagram, 24
supersaturation, 25
Wilson line, 25, 168
Zeuner equation, 29, 135

steam tables, 22
steam turbine, 3

blade shape, 232
electricity production, 2
history, 10
nozzle coefficient, 218
pressure compounding, 226
rotor efficiency, 219
single-stage impulse, 217
single-stage optimum blade speed, 224
Soderberg correlation, 241
types, 216
velocity compounding, 233
zero-reaction stage, 239

streamline curvature method, 539
subsonic flow defined, 65
suction side of blade, 248, 333
supercritical and ultra-supercritical steam cycle, 3
supersaturation, 168
supersonic flow defined, 65
swirl velocity, 250

thermodynamics
compressed liquid, 26
equation of state for air, 29
equation of state for steam, 22
first law, 17
Gibbs equations, 20
ideal gas, 27
ideal gas mixtures, 32
incompressible fluid, 36
second law, 19

three-dimensional flow
axial compressor, 326
axial turbine, 267

tip clearance and leakage flow, 249
torque converter

efficiency, 499, 501
torque multiplication, 497

transonic flow defined, 65
trothalpy, 187
turbocharger, 208
turbomachine

definition of, 2
history, 7
household use, 6
names of components, 2

Tygun formula, 468

undercooled
subcooled, 168

underexpanded flow, 88
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unloading of a blade, 333
utilization

definition, 191
maximum, 192
relation to reaction, 192

variable specific heats, 29, 42
velocity compounding, 233
velocity triangle, 178

flow angles of absolute and relative velocity,
178

law of cosines, 179
law of sines, 179

ventilating blower, 41
volute, 407

water wheel history, 7
Wilson line, 25
wind energy

capacity factor, 507
Denmark, 507
Germany, 507
installed capacity, 5
United States, 507

windmill, 507
wind turbine, 507

actuator disk, 509

American windmill, 9
axial induction factor, 511
Betz limit, 512
blade element theory, 522
blade element theory of W. Froude, 508
blade forces for a nonrotating wake, 522
capacity factor, 5
Darrieus rotor, 9
ducted turbine, 514
Glauert theory for an ideal turbine, 530
history, 8
induction factors for an irrotational wake, 521
momentum theory, 509
momentum theory of W. J. M. Rankine, 508
operation as a propeller, 513
power coefficient, 511
Prandtl’s tip correction, 532
pressure drop across the actuator disk, 510
Savonius rotor, 9
tip speed ratio, 512, 520
turbine efficiencies, 512
velocity at the actuator disk, 510
wake rotation, 516, 525

work coefficient, 200

zero percent (0%) reaction, 239, 262
Zweifel correlation, 291
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