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Preface

This book grew out of a combined fascination with games and mathematics,
from a desire to marry ‘play’ with ‘work’ in a sense. It pursues playing with
mathematics and working with games. In particular, abstract algebra is devel-
oped and used to study certain toys and games from a mathematical modeling
perspective. All the abstract algebra needed to understand the mathematics
behind the Rubik’s Cube, Lights Out, and many other games is developed here.
If you believe in the quote by von Neumann on a previous page, I hope you will
enjoy getting used to the mathematics developed here.

Why is it that these games, developed for amusement by non-mathematicians,
can be described so well using mathematics? To some extent, I believe it is be-
cause many aspects of our experience are universal, crossing cultural boundaries.
One can view the games considered in this book, the Rubik’s cube, Lights Out,
etc., to be universal in this sense. Mathematics provides a collection of univer-
sal analytical methods, which is, I believe, why it works so well to model these
games.

This book began as some lecture notes designed to teach discrete mathematics
and group theory to students who, though certainly capable of learning the ma-
terial, had more immediate pressures in their lives than the long-term discipline
required to struggle with the abstract concepts involved. My strategy, to tempt
them with something irresistible such as the Rubik’s cube, worked and students
loved it. Based on my correspondence, my students were not the only ones to
enjoy the notes, which have been expanded considerably. I’ve tried to write the
book to be interesting to people with a wider variety of backgrounds but at the
same time I’ve tried to make it useful as a reference.

This book was truly a labor of love in the sense that I enjoyed every minute
of it. I hope the reader derives some fun from it too.

I’ve tried to ensure no mistakes remain. However, if you find any, I’d appre-
ciate hearing about them so they can be fixed in a possible future edition. My
e-mail is wdjoyner@gmail.com .

To continue the universal theme mentioned above, half the royalties from this
book will go directly to support SAGE (http://www.sagemath.org/), a free and
open-source computer algebra system. SAGE installs on all major platforms
(Linux, MacOS and Windows) but is also available for use free over the Internet
via a web browser, such as Firefox. The other half of the royalties from this book
will go directly to the Earth Island Institute, a nonprofit organization dedicated
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to environmental projects all over the world; see http://www.earthisland.org/.

To paraphrase David Brower (1912-2000), the founder of EII, there is but one
ocean, one atmosphere, one Earth, and there are no replacements.

Preface to the Second Edition

I’ve been very gratified by the reception of the first edition and flattered by the
many kind e-mails from puzzle enthusiasts and mathematicians who enjoyed the
first book. Based on their suggestions, I believe that the time has come for a new
edition of the book. Based on popular demand, I have now included material
of a more interactive nature, where SAGE, a free computer algebra software
system, is used to illustrate ideas. I have also taken the opportunity to update
and correct all the first edition’s typographical, historical, and mathematical
errors I’m aware of. I trust that those who read the first edition will welcome
the new version – based as it is on the feedback that I’ve received. I hope that
those new to the book will enjoy reading it as much as I’ve enjoyed writing it.
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Where to begin...

Speaking personally, I am always fascinated to discover that one topic is con-
nected in a surprising way with another completely different topic. The Rubik’s
Cube, a mechanical toy that has a reasonably efficient solution using pure math-
ematics (and no ‘strategy’), is a case in point. It’s difficult to know where to
begin to explain this connection: as Wodehouse’s character Bertie Wooster said,
‘I don’t know if you have the same experience, but the snag I come up against
when I’m telling a story is the dashed difficult problem of where to begin it’.
Let’s begin with Rubik himself.

Erno Rubik was born in the air-raid shelter of a Budapest hospital during
World War II. His mother was a published poet, his father an aircraft engineer
who started a company to build gliders. Rubik himself, far from being a math-
ematician, studied architecture and design at the Academy of Applied Arts and
Design, remaining there as a professor, teaching interior design. In the mid-
1970’s, he patented a cube-shaped mechanical puzzle that has since captured
the imagination of millions of people worldwide. The Rubik’s Cube was born.
By 1982, ‘Rubik’s Cube’ was a household term, and became part of the Oxford
English Dictionary. More than 100 million cubes have been sold worldwide.

About 150 years earlier, in the late 1820’s and early 1830’s, a French teenager
named Evariste Galois developed a new branch of mathematics: group theory
was born from his attempts to understand the solvability of polynomial equa-
tions. In high school, students learn that

x =
−b ±

√
b2 − 4ac

2a

are the roots of the quadratic equation ax2 + bx + c = 0. There are similar
but more complicated formulas for the cubic and quartic polynomials discov-
ered during the Middle Ages (see, for example, [JKT] for more details). His
work on group theory was motivated by what was perhaps the main unsolved
mathematical problem of the day: does there exist an analogous algebraic for-
mula involving radicals only in the coefficients for an equation of fifth degree or
higher? This problem had remained unsolved for centuries despite the efforts of
the best and brightest mathematical minds. Galois’ ideas succeeded where oth-
ers had failed (although one must give credit to Ruffini and Abel here as well).
Like Rubik, Galois’ life story is also interesting (see, for example, Calinger [Ca]
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and the article by Rothman [Ro]) and we shall read more of him later in this
book.

Groups measure symmetry. (Galois, for example, studied the ‘symmetry
group’ of the roots of a polynomial, now called Galois groups.) As the math-
ematician Hermann Weyl said in his wonderful book [We], symmetry is ‘one
idea by which man has tried throughout the ages to comprehend and create
order, beauty, and perfection’. Groups play a key role in the study of roots
of polynomials, crystallography, elementary particle physics, campanology (or
‘bell-ringing’; see chapter 3 below), cryptography, and the Rubik’s Cube, among
others. Surprisingly enough, it turns out that it is possible to use group the-
ory (and only the ‘group-theoretical definition’ of the cube – no knowledge of
strategy or special moves) to solve the Rubik’s Cube (see §10.2 below).

This book will develop the basics of group theory and create group-theoretical
models of Rubik’s Cube-like puzzles. On the practical side, I also discuss the
solution strategy for the Rubik’s Cube in some detail. (For those wanting to see
a solution strategy now, see section 15.1.) Some solution strategies are briefly
discussed for similar puzzles (the ‘15 Puzzle’, the ‘Rubik tetrahedron’ or Pyra-
minx, the ‘Rubik dodecahedron’ or Megaminx, the Skewb, the ‘Hockeypuck’,
and the ‘Masterball’) as well.

The important point to remember, though, is that group theory is a powerful
tool with many real-world applications. Solving puzzles happens to be just
one of them. Because of our Rubik’s Cube focus, the approach in this book is
different from some texts:

(a) there are a lot of non-standard, though relatively elementary, group theory
topics;

(b) I emphasize permutation groups via examples over general theory (such
as Sylow theory);

(c) I present some of the basic notions algorithmically (as in [Bu]); and

(d) I include material which is interesting, from both the mathematical and
puzzlist’s perspective, while keeping the level as low as possible for as long
as possible.

Moreover, most group theory texts prove everything. Here a lot of statements
are proven; sometimes only a hint or sketch is provided, and the proof is left
to the interested reader; other statements are supported only by an example.
When a proof is not provided, a reference for a proof in the literature is given.
To keep things as clear as possible, the start of a proof is denoted Proof: and
the end by ¤. I’ve used the number system where a result or example in section
a.b has a labeling of the form a.b.c.

Chapters 1, 2 and 3 give some basic mathematical background. Chapter 4
introduces some of the puzzles and some notation we use for them. Except
for the chapter on solutions, chapter 15, the remaining chapters discuss these
puzzles using group theory, graph theory, linear algebra, or automata (finite
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state machines) theory. While the earlier chapters can probably be followed by
a good high school student, chapters 12 and 14 are relatively advanced. They
are, in my opinion, the most interesting, and illustrate some remarkable ways
in which the Rubik’s Cube is connected with other branches of mathematics,
which is a continuing source of my fascination with the subject.

The last chapter, chapter 16, gives some indications of directions which weren’t
pursued and the present state of our, or at least my own, ignorance in this area.
As it only gives some of the problems and questions that I don’t have the answer
to, it is not intended to be complete!

A note to teachers: Based on my experience teaching at the U.S. Naval
Academy, a reasonable semester course based on this book could aim for the
First Fundamental Theorem of Cube Theory, in chapter 9, with lots of time for
‘side trips’ and other material. It is possible to cover the Second Fundamental
Theorem of Cube Theory, in chapter 11, in one semester but it is a race against
time. For example, chapter 6 on ‘Merlin’s Machine’, or any uncovered sections,
might be used for some very interesting term projects.

A word about SAGE: New in this edition are numerous examples which use
SAGE, a free and open-source computer algebra system. At the SAGE website
(www.sagemath.org) there is ample documentation (a reference manual, tuto-
rial, e-mail support lists, and so on) but it is worth taking some time here to
explain how SAGE is used in this book. First, you don’t have to know or care
about SAGE to read the book. You may ignore the SAGE boxes if you wish.
On the other hand, if you are fairly comfortable with computer software, the
examples are added to help you relate to the constructions in a more interactive
manner. There are two commonly used interfaces to SAGE: one is the command
line (you type in a command and hit Enter to see the output) and the other
is the graphical “notebook” interface (you type a command into a “cell” and
hit Shift-Enter for the output). Since I prefer the command line, most exam-
ples are described that way. To keep publication costs down, SAGE plots and
graphics are reproduced in greyscale in this book, though of course in SAGE
they are in color.

xix
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Chapter 1

Elementary, my dear
Watson

If logic is the hygiene of the mathematician, it is not his source of food;
the great problems furnish the daily bread on which he thrives.

André Weil, ‘The future of mathematics’, American Mathematical

Monthly, May 1950

Think of a scrambled Rubik’s Cube as a car you want to fix on your own.
You not only need some tools but you need to know how to use them. This
chapter, among others, provides you with some of the tools needed to get the
job done. As one of our goals is to discuss the mathematics of the Rubik’s Cube,
and other games, we start with some fundamentals. The basic purpose of this
chapter is to introduce standard set theory notation and some basic notions of
mathematical logic.

Logic and set theory are as basic to mathematics as light is to the ‘real world’.
The background presented here hopefully will make some of the terminology and
notation introduced later a little easier to follow for those who either haven’t
seen or may have forgotten the mathematical notation. In any case, this is not
intended to be a ‘serious’ introduction to mathematical logic nor to set theory.

1.1 You have a logical mind if...

The sentence in the section title, intended to be somewhat whimsical, will be
finished later in this section!

A statement is an assertion which is either true or false. (Of course we assume
that this admittedly circular ‘definition’ is itself a statement.) Sometimes the
truth or falsity of a statement is called its Boolean value. One can combine
several statements into a single statement using the connectives ‘and’ ∧, ‘or’
∨, and ‘implies’ ⇒. The Boolean value of a statement is changed using the
‘negation’ ∼. We shall also use ‘if and only if’ ⇐⇒ and ‘exclusive or’ −∨ (this
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1.1. YOU HAVE A LOGICAL MIND IF...

is defined in the table below), but these can be defined in terms of negation ∼
and the other three connectives (∨, ∧, and ⇒).

Example 1.1.1. Today is Monday if and only if today is the day before Tuesday.
An example of ‘exclusive or’: Either today is Monday or today is not Monday
(but not both).

Ponderable 1.1.1. Express −∨ and ⇐⇒ in terms of ∼, ∨, ∧, and ⇒.

Solution: The statement p ⇐⇒ q is the same as (p ⇒ q)∧ (q ⇒ p), and p− ∨ q
is the same as ∼ (p ⇐⇒ q). ¤

LOGIC, n. The art of thinking and reasoning in strict accordance with
the limitations and incapacities of the human misunderstanding. The
basic of logic is the syllogism, consisting of a major and a minor premise
and a conclusion - thus:

Major Premise: Sixty men can do a piece of work sixty times as quickly
as one man.

Minor Premise: One man can dig a posthole in sixty seconds; therefore
-

Conclusion: Sixty men can dig a posthole in one second.

Ambrose Bierce, The Devil’s Dictionary

Notation: Let p and q be statements.

Statement Notation Terminology
p and q p ∧ q ‘conjunction’
p or q p ∨ q ‘disjunction’

p implies q p ⇒ q ‘conditional’
∼q implies ∼p ∼q ⇒ ∼p ‘contrapositive’ of p ⇒ q

negate p ∼p ‘negation’
p if and only if q p ⇐⇒ q ‘if and only if’

either p or q (not both) p −∨ q ‘exclusive or’

The contrapositive is part of any ‘proof by contradiction’, or ‘reductio ad
absurdum’, argument.

Truth tables: Given the Boolean values of the statements p, q, we can de-
termine the values of the statements p∧ q, p∨ q, p ⇒ q, p ⇐⇒ q, p− ∧ q using
the following truth tables:

p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

2



1.1. YOU HAVE A LOGICAL MIND IF...

p q p ⇒ q

T T T
T F F
F T T
F F T

p q p ⇐⇒ q

T T T
T F F
F T F
F F T

Example 1.1.2. The connectives “and” and “or” are already part of Python
(which SAGE is built on):

SAGE

sage: True and True
True
sage: True and False
False
sage: False and True
False
sage: False and False
False

You can see how these Boolean values agree with those in the truth table for ∧
above. As an exercise, you can replace and by or and check the truth table above
for ∨.

Here’s a way to implement “implies” as a function in SAGE:

SAGE

sage: def implies(p,q): return not(p and not(q))
sage: implies(True,True)
True
sage: implies(True,False)
False
sage: implies(False,True)
True
sage: implies(False,False)
True

You can see how these Boolean values agree with those in the truth table for
=⇒ above. As an exercise, you can try to implement ⇐⇒ im Python and use
it to check the truth table above for ⇐⇒ .

Note that ⇐⇒ is analogous to the = sign.
For example, let p be the statement ‘I am a millionaire’ and q the statement

‘I will buy my wife a brand new car.’ I claim that ‘if p then q’ is true. If I were

3



1.1. YOU HAVE A LOGICAL MIND IF...

a millionaire I really would buy my wife a new car. But I am not and cannot
afford a car, so p and q are both false. This supports the idea that ‘F ⇒ F’ is
true. Now let q be the statement ‘I will buy my wife some flowers.’ I claim that
‘if p then q’ is true. The trouble is, I plan to buy my wife flowers in any case,
i.e., q is true no matter what p is. This supports the idea that ‘F ⇒ T’ is true.
In particular, be careful about drawing conclusions from false premises because
they imply both true and false statements!

p q p −∨ q

T T F
T F T
F T T
F F F

p ∼ p

T F
F T

Ponderable 1.1.2. What can you (logically) conclude from the following Chi-
nese proverb?

If there is light in the soul,
then there will be beauty in the person.

If there is beauty in the person,
then there will be harmony in the house.

If there is harmony in the house,
then there will be order in the nation.

If there is order in the nation,
then there will be peace in the world.

Chinese Proverb

Definition 1.1.1. ‘For all’, written ∀, is the universal quantifier. ‘There
exists’, written ∃, is the existential quantifier.

Ponderable 1.1.3. Determine which of the following statements is true.

• Exactly one of these statements is false.

• Exactly two of these statements are false.

• Exactly three of these statements are false.

• Exactly four of these statements are false.

• Exactly five of these statements are false.

Though a ‘set’ is defined later (see §1.2), we shall give an example of what
can be done with a set containing only two elements.

Definition 1.1.2. Let B be the set containing only the two elements 0 and
1: this is expressed in symbols as B = {0, 1}. Think of 0 as ‘off’ and 1 as
‘on’. (In applications, B models the two possible states of an electrical circuit.)
Give B the two operations addition (+) and multiplication (∗) defined by
the following tables.

4



1.1. YOU HAVE A LOGICAL MIND IF...

x y x + y
1 1 0
1 0 1
0 1 1
0 0 0

x y x ∗ y
1 1 1
1 0 0
0 1 0
0 0 0

(Note how these mimic the truth tables of ‘exclusive or’ (−∨) and ‘and’ (∧).)
We call B the Boolean algebra. (In applications, + and ∗ model two com-
monly occurring ‘gates’ in an electrical circuit, [Wba].)

With this, we can start to do some mathematics. As Bertrand Russell said,
‘The rules of logic are to mathematics what those of structure are to architec-
ture.’ (Mysticism and logic and other essays, 1917, p61)

We can begin with
De Morgan’s laws:

(a) p ∧ (q ∨ r) ⇐⇒ (p ∧ q) ∨ (p ∧ r) ,
(b) p ∨ (q ∧ r) ⇐⇒ (p ∨ q) ∧ (p ∨ r),
and the laws of negation:
(c) ∼ (p ∧ q) ⇐⇒ (∼ p) ∨ (∼ q) ,
(d) ∼ (p ∨ q) ⇐⇒ (∼ p) ∧ (∼ q).

(Hint: It is possible, though tedious, to verify this using truth tables. To check
this yourself, you may want to do (a), (c), and (d) first, and then deduce (b)
from these. It is easier to prove the set theory analog, given below, using Venn
diagrams, and then deduce the above version from that.)

De Morgan’s laws are analogous to the distributive law a · (b+ c) = a · b+ a · c
for the real numbers. A. De Morgan (1806-1871) started out training to be a
mathematician but was refused a fellowship at Cambridge University due to his
objections over the mandatory theological test. He then began to study for the
bar but also (at the age of 21) applied for the chair of mathematics at University
College, London. He was appointed and began as a full professor there a year
later. He resigned his chair several times on matters of principle.

Of course, to think logically, we need to produce logical arguments. But what
are they?

Definition 1.1.3. Naively, a logical argument is a sequence of statements
p1, p2, ..., pn, which imply a statement q (called the conclusion). These state-
ments pi could be hypotheses, axioms (assumed true), or implications of pre-
viously made statements. Such a logical argument is also called a proof of q.

In other words, a logical argument is a true statement of the form

(p1 ∧ p2 ∧ ... ∧ pn) ⇒ q.

Ponderable 1.1.4. Using truth tables, verify the logical argument

((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r).
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1.1. YOU HAVE A LOGICAL MIND IF...

1.1.1 ‘You talking to me?’

Definition 1.1.4. A variable is a letter denoting some (possibly unknown)
object. A constant is a letter denoting some specific, well-defined object. A
term is a variable or a constant.

A predicate is a rule which associates to each term a logical statement.

Example 1.1.3. ‘Daffy Duck’ is a constant. The statement ‘x is one of Daffy
Duck’s favorite songs’ is a predicate involving a variable and a constant. Here
x might be a Miles Davis song, for example.

To finish the whimsical sentence in the section title, you have a logical mind
if when you see the famous saying ‘Time waits for no man’ and ‘No man is an
island’, you think ‘therefore time waits for an island!’ If we let x denote the
constant ‘no man’ and y denote the constant ‘an island’ then these two sayings
can be written ‘Time waits for x’ and ‘x = y’. Substituting, we therefore obtain
‘Time waits for y.’ This may seem crazy, but it’s logical.

When creating a model of the Rubik’s Cube, we shall need to convert some
‘everyday statements’ into symbolical form in order to reduce them to a form
suitable for mathematical analysis. Let’s illustrate this with some examples.

Example 1.1.4.

(a) Consider the statement ‘Each friend of mine can solve the Rubik’s Cube’.
Let

M(x) = x can solve the Rubik′s Cube, S(x) = x is a friend of mine.

The symbolic form is
∀x, S(x) ⇒ M(x).

(b) The Rubik’s Cube is subdivided into 27 smaller cubes, which we call sub-
cubes. Only 26 of these are visible, since the center of the Rubik’s Cube
is completely surrounded. Consider the statement ‘Each of the 26 visible
subcubes of the Rubik’s Cube can be moved into any other visible subcube
using some move of the Rubik’s Cube.’ This statement is false, since an
edge subcube cannot be moved into a corner subcube, but let us convert this
statement into more symbolic notation (which we can more easily analyze)
anyway. Let M be the set of all possible (sequences of) moves of the Ru-
bik’s Cube. Let S be the set of all 26 visible subcubes of the Rubik’s Cube.
The statement above says that ‘∀x, y ∈ S, ∃m ∈ M such that m sends x to
y.’ Though, as we already noticed, this is false, if we let SC denote the set
of all corner subcubes of the Rubik’s Cube then the analogous statement
‘∀x, y ∈ SC , ∃m ∈ M such that m sends x to y’ is true; given any two
corner subcubes there is a Rubik’s Cube move which sends one to the other
(and which, of course, may scramble other subcubes as well).

Ponderable 1.1.5. Convert ‘Some friend of mine can solve the Rubik’s Cube’
to symbolic form.
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1.2. ELEMENTS, MY DEAR WATSON

Ponderable 1.1.6. (M. Gardner [Gar1]) Professor White, Professor Brown
and Professor Black were lunching together. ‘Isn’t it remarkable’, said the lady,
‘that our names are White, Black, and Brown and one of us has black hair, one
has brown hair, and one has white hair.’

‘It is indeed’, answered the one with the black hair as Professor Black bit into
his sandwich, ‘and have you noticed that not one has hair color to match our
name?’

The lady’s hair is not brown. What is the color of Professor Black’s hair?

White Brown Black Lady
White
Brown
Black
Lady ×

Ponderable 1.1.7. Retrograde chess problem by Christoph Bandelow. Con-
sider the following chess position.

Figure 1.1: What were the last 6 single moves?

1.2 Elements, my dear Watson

Education never ends, Watson.
Sherlock Holmes, ‘The Adventure of The Red Circle’

A set is a ‘well-defined’ collection of objects. The objects belonging to a set
are the elements of the set. If x is an element of a set S then we write x ∈ S.
If not, we write x /∈ S. Let S, T be sets. If all the elements of S also belong
to T then we write S ⊂ T and we say that S is a subset of T . If a set S
contains only a finite number of distinct elements then we call this number the
cardinality or size of S and denote it by |S|. Two sets are said to have the
same cardinality if there is a one-to-one correspondence between them. A
finite set is a set which can be enumerated by a finite sequence. An infinite
set is a set which is not finite. A set containing exactly one element is called a
singleton.
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1.2. ELEMENTS, MY DEAR WATSON

There are two common ways to describe a set:
(a) Listing all its elements in between brackets S = {a, b, ...} if the set is finite.

For example, assume you have a Rubik’s Cube lying on a table in front of you.
We denote the set of its basic moves by {U,D,L,R, F,B}, where

• U denotes the move of the Rubik’s cube where you turn the upward face
clockwise (as you look it from above) one-quarter turn,

• D denotes the move where you turn the downward face clockwise (as you
look it from below) one-quarter turn,

• L turns the left face clockwise one-quarter turn,

• R turns the right face clockwise one-quarter turn,

• F turns the front face clockwise one-quarter turn,

• B turns the back face clockwise one-quarter turn.

This shorthand is called the Singmaster notation.
(b) Describing the set using properties of its elements using bracket notation:

S = {x | x has property P} is pronounced ‘S is the set consisting of all x such
that x satisfies the property P ’. For example, you know a Rubik’s Cube has 6
faces (or sides) and each face is subdivided into 9 facets (and each facet has a
colored sticker glued on it). We could define S = {x | x is a facet of the Rubik’s
cube}. In this case, |S| = 54.

Remark 1.2.1. (Russell’s paradox) We must be a little careful when describ-
ing sets using properties since some ‘self-referential’ properties lead to contra-
dictions. Let

R = {x | x /∈ x}.
In other words, for all x, x ∈ R ⇐⇒ x /∈ x. In particular, if we take x = R
then this becomes

R ∈ R ⇐⇒ R /∈ R,

an obvious contradiction. The problem is that R is not ‘well-defined’ (in the
sense that it does not satisfy the set theory axioms, which we will skip here; see
[St], for example).

Example 1.2.1. Here’s another way to think of Russell’s paradox: A (male)
Navy barber is ordered to only shave those (male) Naval personnel who do not
shave themselves. Does he shave himself? If yes, then he shaves himself, which
is impossible. If no, then he must shave himself, another impossibility. How is
this poor barber to avoid being court-martialed for not following orders?!

The empty set is the set containing no elements, denoted ∅.
Notation: Let S and T be sets. Assume that S ⊂ X. The table below defines

the terms intersection, union, symmetric difference, and complement.
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1.2. ELEMENTS, MY DEAR WATSON

Statement Notation Terminology

set of elements in S and T S ∩ T intersection
set of elements in S or T S ∪ T union

set of elements in S or in T (not both) S∆T symmetric difference
set of elements not in S Sc complement

S is a subset of T S ⊂ T subset

We say that two sets S, T are equal if S ⊂ T and T ⊂ S. For example, we
can visualize the intersection with the help of a Venn diagram, as in the figure
below.

S S ∩ T T

Venn diagrams are named after John Venn (1834-1923), an ordained priest.
He was a lecturer at Cambridge University in logic, probability, and set theory.

Example 1.2.2. An example using the computer algebra system SAGE [S].

SAGE

sage: S1 = Set([1,ZZ,"Zeus"])
sage: S2 = Set([S1,1,"Hera"])
sage: S1; S2
{1, ’Zeus’, Integer Ring}
{{1, ’Zeus’, Integer Ring}, 1, ’Hera’}
sage: S2.cardinality()
3
sage: S1.difference(S2)
{’Zeus’, Integer Ring}
sage: S2.difference(S1)
{{1, ’Zeus’, Integer Ring}, ’Hera’}
sage: "Zeus" in S1
True
sage: S2.symmetric_difference(S1)
{{1, ’Zeus’, Integer Ring}, ’Hera’, ’Zeus’, Integer Ring}

9
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sage: S1.symmetric_difference(S2)
{{1, ’Zeus’, Integer Ring}, ’Hera’, ’Zeus’, Integer Ring}
sage: S1.intersection(S2)
{1}
sage: S1.union(S2)
{{1, ’Zeus’, Integer Ring}, 1, ’Hera’, ’Zeus’, Integer Ring }

Ponderable 1.2.1. Using Venn diagrams, verify the De Morgan laws:
(a) S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U) ,
(b) S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U) ,
and the laws of negation:
(c) (S ∩ T )c = Sc ∪ T c,
(d) (S ∪ T )c = Sc ∩ T c.

De Morgan’s laws for sets are analogous to De Morgan’s laws for logic.

Definition 1.2.1. We call two sets S, T disjoint if they have no elements in
common, i.e., if

S ∩ T = ∅.
If

S = ∪n
i=1Si,

where the S1, S2, ..., Sn are pairwise disjoint sets, then we call {S1, S2, ..., Sn} a
partition of S.

Example 1.2.3. Let S denote the set of all 54 facets of the Rubik’s Cube. Let
SC denote all the facets belonging to a corner subcube, SE denote all the facets
belonging to an edge subcube, and SZ denote all the facets belonging to a center
subcube (we use the subscript Z since the German word for center, zentrum,
begins with a Z). Then S = SC ∪ SE ∪ SZ is a partition.

The set of all integers will be denoted by Z. By the way, use of the letter Z (for
the German word Zahlen, meaning ‘numbers’) for the integers was apparently
first introduced by N. Bourbaki in the 1930’s, a pseudonym for a group of French
mathematicians aiming to write a thorough, unified account of all mathematics.
Earlier, the notation Z was used by the German number theorist E. Landau
(1877-1938) for the integers.

Example 1.2.4. If

S = Z,

S1 = {...,−2, 0, 2, ...} = even integers,

S2 = {...,−3,−1, 1, 3, ...} = odd integers,

then S = S1∪S2 is a partition of the integers into the set of even and odd ones.
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1.2. ELEMENTS, MY DEAR WATSON

Logic/set theory analogs: Just as one can use connectives to form new
statements from old statements, there are analogous ways to form new sets
from old ones using ‘intersection’ (the analog of ‘and’), ‘union’ (the analog of
‘or’), and ‘complement’ (the analog of ‘negation’). The analog of ‘implies’ is
‘subset’. The analog of ‘if and only if’ is ‘equals’.

Set theory Logic
sets statements

union or
intersection and

subset implies
symmetric difference exclusive or

equal if and only if
Venn diagrams truth tables
complement negation

Let P,Q denote statements involving a variable x. We shall often make use of
the following facts: if S = {x | x has property P} and if T = {x | x has property Q}
then

• S ∩ T = {x | x has property P and property Q},

• S ∪ T = {x | x has property P or property Q (or both)},

• if P ⇒ Q then S ⊂ T ,

• if P ∧ Q is false then S ∩ T = ∅,

• if P ⇐⇒ Q then S = T .

We shall prove the first property and leave the other two to the interested
reader.

Proof: To show S ∩ T = {x | x has property P and property Q}, we must
show S ∩ T ⊂ {x | x has property P and property Q}, and

{x | x has property P and property Q} ⊂ S ∩ T.

Here are the gory details: First pick an arbitrary element x ∈ S ∩ T . x satisfies
property P since x ∈ S and x satisfies property Q since x ∈ T . Thus x ∈
{y | y has property P and property Q}. This shows that each element of S ∩ T
belongs to

{x | x has property P and property Q},
which we can write symbolically (by definition of ⊂) as,

S ∩ T ⊂ {x | x has property P and property Q}.

11
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Next, pick an arbitrary element

x ∈ {y | y has property P and property Q}.

x has property P , so x ∈ S, and x has property Q, so x ∈ T . Therefore (by
definition of ∩), x ∈ S ∩ T . This shows that each element of

{y | y has property P and property Q}

belongs to S ∩ T , so

{y | y has property P and property Q} ⊂ S ∩ T.

Putting these together, we have shown that

S ∩ T ⊂ {y | y has property P and property Q}.

This forces the two sets to be equal, and the proof of the first property is
complete. ¤

Ponderable 1.2.2. (Joiner’s problem [Pe]) Cut a 6 × 6 chessboard and an
8 × 8 chessboard each into two pieces and join the four pieces into a 10 × 10
chessboard.

For more on logic or set theory, see for example [C] or [St].
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Chapter 2

‘And you do addition?’

‘And you do Addition?’ the White Queen asked. ‘What’s one and one
and one and one and one and one and one and one and one and one?’

Lewis Carroll, Through the looking glass

Just as the White Queen asked Alice about addition, we need to ask ourselves
how well we know how to count. As the old pun goes, there are three kinds of
people in the world, those who can count and those who can’t.

The mathematics of the Rubik’s Cube involves understanding combinatorial
ideas, such as permutations and counting arguments. This chapter will build
up some background to introduce some of these notions, and we will end with
the binomial theorem. Someone who has read Körner’s The pleasure of counting
[Ko] may safely skip this chapter (and if you haven’t, it is highly recommended).

2.1 Functions

The type of function we will run across here most frequently is a ‘permutation’,
defined precisely later, which is roughly speaking a rule which mixes up and
swaps around the elements of a finite set.

Let S and T be finite sets.

Definition 2.1.1. A function (sometimes also called a map or transforma-
tion) f from S to T is a rule that associates to each element s ∈ S exactly one
element t ∈ T . We will use the following notation and terminology for this:

f : S → T (f is a function from S to T ),
f : s 7−→ t (f sends s in S to t in T ),
t = f(s) (t is the image of s under f).

We call S the domain of f , T the range of f , and the set

f(S) = {f(s) ∈ T | s ∈ S}

the image of f . The Venn diagram depicting this setup is
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Example 2.1.1.

• One typical example for us will be when S is the set of all 54 facets of the
Rubik’s Cube (which was introduced in the last chapter) and f is a rule for
associating to each facet some other facet determined by a Rubik’s Cube
move. This example will be given more precisely later.

• Let N = {1, 2, 3, ...} denote the set of all natural numbers. If n is any
natural number, let φ(n) denote the number of natural numbers less than
or equal to n which have no prime factor in common with n. (A prime
number is a natural number greater than 1 which has no factors less than
itself except 1. For example, 2, 3, 5, are primes but 10 = 2 · 5 is not. By
the way, a natural number greater than 1 which is not a prime is called a
composite.) The function φ : N → N is sometimes called Euler’s phi
function. We have φ(1) = 1, φ(2) = 1, φ(3) = 2.

• If n is any natural number, let π(n) denote the number of prime numbers
less than or equal to n. The function π : N → N is simply called the π
function. We have π(1) = 0, π(2) = 1, π(3) = 2, π(4) = 2, and so on.
Though the rough asymptotic behavior of π(n) is known, there are still
many unsolved problems regarding π(n). For example, it is not yet known
if there is an n > 1 such that π(n2 + 2n + 1) = π(n2) (i.e., if there is
always a prime between any two consecutive squares).

Here is an illustration of how to use SAGE to compute with these functions.
In fact, SAGE (more generally the programming language Python [Py] which
SAGE uses) allows one to define functions using the ‘lambda operator’, which
does not require a range or domain to define. (The program will return an error
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if the function you define is evaluated at points where the definition does not
make sense.) I shall give several examples below.

SAGE

sage: euler_phi(3)
2
sage: pi = lambda x: pari(x).primepi()
sage: pi(4)
2
sage: f1 = lambda x: sqrt(x)
sage: f1(3)
sqrt(3)
sage: f1(4)
2
sage: f2 = lambda x: RR(sqrt(x))
sage: f2(3)
1.73205080756888
sage: f2(4)
2.00000000000000

If you enter euler_phi(3.1) or f1(-3), you will get an error since 3.1 is not
in the domain of the Euler phi function and -3 is not in the domain of the
square-root function.

Ponderable 2.1.1. What is φ(16)? What is π(16)?

If f : S → T is any function and t ∈ f(S) then we write the preimage of t
as

f−1(t) = {s ∈ S | f(s) = t}.
(By convention, functional notation is used, even though we don’t know if f−1

is a function or not. When f−1(t) consists of a single element, say s, we usually
call s the value of f−1(t) and write s = f−1(t).) This is simply the set of all
s in S that get sent to t. For example, if f : S = R → T = R is the function
f(x) = x2, and if t = 4 then f−1(t) = f−1(4) = {2,−2}. If T ⊂ R then the
preimage of 0 is called the set of zeros or roots of f .

Example 2.1.2. Here is an example of using SAGE to compute preimages.

SAGE

sage: f = xˆ4 - 16
sage: f.roots()
[(2 * I, 1), (-2, 1), (-2 * I, 1), (2, 1)]

In other words, f−1(0) = {2i,−2i, 2,−2}, each with multiplicity one, where
i =

√
−1 is denoted I by SAGE.
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Ponderable 2.1.2. If f : S = R → T = R is the map f(x) = x4 − 81 then find
f−1(0).

The Cartesian product (or direct product) of two sets S, T is the set of
pairs of elements taken from these sets:

S × T = {(s, t) | s ∈ S, t ∈ T}.
An element of S × T is simply a list of two things, the first one from S and the
second one from T . In the case when S = T = R is the set of real numbers then
sometimes the elements (x, y) ∈ R2 are said to have Cartesian coordinates or
rectangular coordinates. This construction of a new set from two given sets
is named for the French philosopher René Descartes (1596-1650), whose work
La géométrie includes the application of algebra to geometry.

Ancient math joke:
Q: What’s a rectangular bear?
A: A polar bear after a coordinate transform.

Example 2.1.3. Here is an example of using SAGE to compute Cartesian
products.

SAGE

sage: list(cartesian_product_iterator([[1,2], [’a’,’b ’]]))
[(1, ’a’), (1, ’b’), (2, ’a’), (2, ’b’)]

More generally, given any collection of m sets, S1, S2, ..., Sm, we can define
the m-fold Cartesian product, to be the set

S1 × ... × Sm = {(s1, ..., sm) | si ∈ Si, 1 ≤ i ≤ m}.
Elements of the Cartesian product S1 × ... × Sm are called m-tuples.

Example 2.1.4. If R denotes the set of all real numbers then the Cartesian
product R×R is simply the set of all pairs or real numbers. In other words, this
is the Cartesian plane we are all familiar with from high school.

More generally, we may repeat this process and take the Cartesian product of
the set of real numbers with itself n times (where n > 1 is any integer) to get
R×...×R (n times). This n-fold Cartesian product is denoted more conveniently
by Rn.

The set Rn has some extra structure, a ‘vector space structure’, which we shall
make use of frequently in this book. The general definition is given next.

Definition 2.1.2. An element of the set Rn is simply an ordered list of n real
numbers. Such a list will be called a vector or an n-vector to be specific.

More generally, a real vector space is a set V (whose elements are called
vectors) having two operations, vector addition + and scalar multiplication
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·, satisfying the following conditions: (a) if v, w ∈ V are any two vectors then
v + w = w + v is also a vector in V , (b) there is a zero vector ~0 such that for
any vector v ∈ V , v + ~0 = v, (c) for any real number c ∈ R (called a scalar)
and any v ∈ V , the product c · v is a vector in V , (d) the distributive laws hold:
(a + b)v = av + bv and c(v + w) = cv + cw, for all a, b, c ∈ R and v, w ∈ V , (e)
the associative law holds: (u + v) + w = u + (v + w), for all u, v, w ∈ V , (f)
1 · v = v and a · (b · v) = (ab) · v, for all a, b ∈ R and v ∈ V .

Sometimes it is convenient to ‘picture’ a function as the set of its values inside
the Cartesian product S × T . The graph of a function f : S → T is the subset

{(s, f(s)) | s ∈ S} ⊂ S × T.

Example 2.1.5. In high school, if y = x2, one plotted x2 as a function of x.

Here is an example of using SAGE to compute preimages.

SAGE

sage: f = xˆ2
sage: P = plot(f,-1,1)

Now type show(P) to view the graph below in SAGE. Here f(x) = x2 and you
plotted {(x, f(x)) | x ∈ R}.

Figure 2.1: SAGE plot of y = x2.

It is not possible that every subset of S×T is the graph of some function from
S to T . The following fact classifies exactly which subsets of S × T can arise as
the graph of a function from S to T .

Ponderable 2.1.3. Let X ⊂ S × T . Show that X is the graph of a function
from S to T if and only if (a) for all (s1, t1) ∈ X and (s2, t2) ∈ X, whenever
t1 6= t2 we also have s1 6= s2, (b) for all s ∈ S, there is a t ∈ T such that
(s, t) ∈ X.

17



2.1. FUNCTIONS

(Hint: Let
pr1 : S × T → S

(s, t) 7−→ s

be the projection onto the 1st component. Recall that the graph of a function
f has the property that f−1(s) is always a singleton, i.e., a vertical line cannot
intersect the graph of a function at two different f(s) values.)

Definition 2.1.3. Let f : S → T and g : T → U be two functions. We can
compose them to get another function, the composition, denoted f ◦ g = fg :
S → U :

x 7−→ f(x) 7−→ g(f(x))
S → T → U .

Definition 2.1.4. If the image of the function f : S → T is all of T , i.e., if
f(S) = T , then we call f surjective (or ‘onto’, or ‘is a surjection’). Equiva-
lently, a function f from S to T is surjective if every t ∈ T is the image of some
s ∈ S under f .

For example, the map f : R → R defined by f(x) = 2x, for any real number
x, is surjective. Another example: let S be the set of all 54 facets of the Rubik’s
Cube. Let f : S → S be the map which sends a facet to the facet which is
diametrically opposite (for instance, the upward center facet would be mapped
to the downward center facet). This function is also surjective.

Ponderable 2.1.4. Suppose that |S| < |T |. Is there a surjective function
f : S → T? Explain.

Definition 2.1.5. A function f : S → T is called injective (or ‘one-to-one’
or ‘an injection’) if each element t belonging to the image f(S) is the image of
exactly one s in S.

In other words, f is an injection if the condition f(s1) = f(s2) (for some
s1, s2 ∈ S) always forces s1 = s2.

Ponderable 2.1.5. Suppose that S, T are finite sets and |S| > |T |. Is there an
injective function f : S → T? Explain.

Ponderable 2.1.6. Suppose that |S| = |T | < ∞. Show that a function f : S →
T is surjective if and only if it is injective.

Definition 2.1.6. A function f : S → T is called a bijection if it is both
injective and surjective.

Equivalently, a bijection from S to T is a function f : S → T for which each
t ∈ T is the image of exactly one s ∈ S.

Definition 2.1.7. A set S is called countable if there exists a bijection f :
S → Z to the set of integers Z.
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Example 2.1.6.

• The set of all odd integers S = {...,−3,−1, 1, 3, ...} is countable since the
map f : S → Z defined by f(x) = (x + 1)/2 is a bijection.

• The set of all rational numbers will be denoted by Q. The set S of all
rational numbers within the unit interval 0 < r < 1 is countable since you
can define f : Z → S as follows: f(1) = 1/2, f(2) = 1/3, f(3) = 2/3,
f(4) = 1/4, f(5) = 3/4, f(6) = 1/5, f(7) = 2/5, f(8) = 3/5, and so on.
(There are φ(n) terms of the form m/n, where m is relatively prime to n
and φ(n) denotes the Euler φ function in Example 2.1.1 above.).

Example 2.1.7. Let C be the cube in 3-space having vertices at the points
O = (0, 0, 0), P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1), P4 = (1, 1, 0), P5 =
(1, 0, 1), P6 = (0, 1, 1), P7 = (1, 1, 1). We shall also (to use a notation which
will be used more later) denote these by dbl, dfl, dbr, ubl, dfr, ufl, ubr, ufr,
respectively. Let C0 = {O,P1, ..., P7} be the set of the eight vertices of C, let
C1 = {uf, ur, ub, ul, fr, br, bl, f l, df, dr, db, dl} be the set of the 12 edges of C,
and let C2 = {F,B,U,D,L,R} be the set of the 6 faces of C. Let r be the
rotation of a point (x, y, z) by 180 degrees about the line passing through the
points (1/2, 1/2, 0), (1/2, 1/2, 1). Note that r : R3 → R3 is a function which
sends the cube C onto itself.

The cube C is pictured as follows:
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(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

•

•

•

This function r induces three functions

f0 : C0 → C0, f1 : C1 → C1, f2 : C2 → C2,

where fi is the function which sends x ∈ Ci to its image r(x) under r (which is
again in Ci), for i = 0, 1, 2. Each fi is a bijection.

Ponderable 2.1.7. Finish the labeling of the vertices and the faces in the above
picture and describe f1 and f2 explicitly by filling out the tables

19



2.2. FUNCTIONS ON VECTORS

v f0(v)
P1 = dfl P2 = dbr

e f1(e)
fl br

f f2(f)
F B

Definition 2.1.8. Suppose f : S → T is a bijection. Define f−1 to be the rule
which associates to t ∈ T the element s ∈ S,

f−1(t) = s if and only if f(s) = t.

This rule defines a function f−1 : T → S. This function satisfies f(f−1(t)) = t,
for all t ∈ T , and f−1(f(s)) = s, for all s ∈ S. In other words, the composition
f ◦ f−1 : T → T sends each element of T to itself, and f−1 ◦ f : S → S sends
each element of S to itself.

The function f−1 constructed above is called the inverse function of f .

‘In Riemann, Hilbert or in Banach space
Let superscripts and subscripts go their ways.
Our asymptotes no longer out of phase,
We shall encounter, counting, face to face.’
Stanislaw Lem, The Cyberiad

2.2 Functions on vectors

Later on, we shall need some particular types of functions. This section presents,
very briefly, a few basic facts about matrices, which we regard as a certain type
of function sending vectors to vectors. For further details, see any text on linear
algebra (for example, [Be]).

2.2.1 History

The mathematician who first published a major work that seriously studied
matrices and matrix algebra in the western world was Arthur Cayley (1821-
1895) of Cambridge, England. He wrote a memoir on the theory of matrices
which was published in 1858, and he is often thought of as one of the ‘fathers’ of
matrix theory. In fact, it was his friend and colleague James J. Sylvester (1814-
1897) who first coined the term ‘matrix’. (Incidentally, Sylvester taught at
Johns Hopkins University from 1877 to 1883 and founded the first mathematics
journal in the United States, the American Journal of Mathematics, put out by
the same press that published the book you are reading now.) Though most
people learn of matrices and then determinants, historically determinants were
studied long before matrices arose.
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One of the earliest examples that motivated Cayley’s study of matrices was
the following. If we have three coordinate systems (x, y), (x′, y′), and (x′′, y′′),
connected by

{

x′ = x + y
y′ = x − y

and

{

x′′ = −x′ − y′

y′′ = −x′ + y′

then the relationship between (x, y) and (x′′, y′′) is given by

{

x′′ = −x′ − y′ = −(x + y) − (x − y) = −2x

y′′ = −x′ + y′ = −(x + y) + (x − y) = −2y

If we do as Cayley did and abbreviate the three changes of coordinates by the
square array of the coefficients then we obtain

[

1 1
1 −1

]

,

[

−1 −1
−1 1

]

,

[

−2 0
0 −2

]

.

Cayley noticed that there was an algebraic rule that allows us to determine the
third array from the first two, without doing the substitution we did above to
relate (x′′, y′′) to (x, y). In doing so, Cayley invented ‘matrix multiplication’.
It corresponds to composing the function sending (x, y) 7−→ (x′, y′) with the
function sending (x′, y′) 7−→ (x′′, y′′).

2.2.2 3 × 3 matrices

A 3 × 3 matrix is a 3 × 3 table of real numbers

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 .

This may be thought of as a function (which we shall still denote by A) which
sends 3-vectors to 3-vectors. This function is defined by the matrix-vector
multiplication formula,

A~v =





a11 a12 a13

a21 a22 a23

a31 a32 a33









x
y
z



 =





a11x + a12y + a13z
a21x + a22y + a23z
a31x + a32y + a33z



 .

In other words, A sends the 3-vector (x, y, z) (which we have written above as a
column, as is the convention) to the 3-vector (a11x + a12y + a13z, a21x + a22y +
a23z, a31x + a32y + a33z). In general, any such 3 × 3 matrix gives rise to a
function A : R3 → R3.

Example 2.2.1. The 3 × 3 identity matrix,

I3 =





1 0 0
0 1 0
0 0 1



 ,
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satisfies I3~v = ~v for all ~v ∈ R3.
Here is an example of using SAGE to compute with matrices.

SAGE

sage: A = matrix(3,3,[1,2,3,4,5,6,7,8,9])
sage: (-1) * A
[-1 -2 -3]
[-4 -5 -6]
[-7 -8 -9]
sage: v = vector([1,1,1])
sage: A * v
(6, 15, 24)
sage: x = var("x"); y = var("y"); z = var("z")
sage: w = vector([x,y,z])
sage: A * w
( 3 z + 2 y + x, 6 z + 5 y + 4 x, 9 z + 8 y + 7 x)

Ponderable 2.2.1. Show that




0 1 0
1 0 0
0 0 1





has the effect of swapping the x- and y-axes.

2.2.3 m × n matrices

An m × n matrix (of real numbers) is a rectangular array or table of numbers
arranged with m rows and n columns. It is usually written:

A =











a11 a12 ... a1n

a21 a22 ... a2n

...
...

am1 am2 ... amn











.

The (i, j)th entry of A is aij . The ith row of A is
[

ai1 ai2 · · · ain

]

(1 ≤ i ≤ m)

The jth column of A is










a1j

a2j

...
amj











(1 ≤ j ≤ n)

A matrix having as many rows as it has columns (m = n) is called a square
matrix. The entries aii of an m×n matrix A = (aij) are called the diagonal
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entries, the entries aij with i > j are called the lower triangular entries,
and the entries aij with i < j are called the upper triangular entries. An
m × n matrix A = (aij) all of whose lower diagonal entries are zero is called
an upper triangular matrix. This terminology is logical if the matrix is a
square matrix, but both the matrices below are called upper triangular









1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10









,













1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10
0 0 0 0













whether they look triangular of not! A similar definition holds for lower tri-
angular matrices. The square n × n matrix with 1’s on the diagonal and 0’s
elsewhere,















1 ... 0

0
. . .

...
... 0

0
... 0 1















,

is called the n × n identity matrix and denoted I or In. This is both upper
triangular and lower triangular. (In general, any square matrix which is both
upper triangular and lower triangular is called a diagonal matrix.)

A square n × n matrix with exactly one 1 in each row and each column, and
0’s elsewhere, is called an n × n permutation matrix. The identity In is a
permutation matrix. We shall discuss these types of matrices in detail in the
next chapter.

A square n × n matrix with exactly one non-zero entry in each row and each
column, and 0’s elsewhere, is called an n × n monomial matrix. We shall
discuss these types of matrices later in the book. They have many proper-
ties similar to permutation matrices. Monomial matrices occur in the explicit
description of the Rubik’s Cube group, which we shall give later.

2.2.4 Multiplication and inverses

Fortunately, we shall not be forced to deal in this book too much with compu-
tations of matrix multiplications of large matrices. Roughly speaking, we shall
eventually see how each move of the Rubik’s Cube can be expressed in terms of
matrices (more precisely, as a pair of matrices–an 8 × 8 matrix corresponding
to the movement of the 8 corners and a 12 × 12 matrix corresponding to the
movement of the 12 edges). Therefore, a little bit of brief background on matrix
multiplication is appropriate.

When you multiply an m×n matrix A by a n×p matrix B, you get an m×p
matrix AB. The (i, j)th entry of AB is computed as follows:

1. Let k = 1 and c0 = 0.
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2. If k = m + 1, you’re done and (AB)ij = cm. Otherwise proceed to the
next step.

3. Take the kth entry of the ith row of A and multiply it by the kth entry of
the jth column of B. Let ck = ck−1 + aikbkj .

4. Increment k by 1 and go to step 2.

In other words, multiply each element of row i in A by the corresponding entry
of column j in B, add them up, and put the result in the (i, j) position of the
array for AB.

If A is a square n × n matrix and if there is a matrix B such that AB = In

then we call B the inverse matrix of A, denoted A−1. If you think of A as a
function A : Rn → Rn then A−1 is the inverse function. As a practical matter,
if n is ‘small’ (say, n ≤ 3) then matrix inverses can be computed by pencil and
paper. For most larger matrices, computers are needed. We shall discuss easier
techniques for inverting permutation matrices in the next chapter and this is
the type of matrix we will have to deal with most frequently anyway.

Here is an example of using SAGE to compute with matrices.

SAGE

sage: A = matrix(3,3,[1,2,3,4,5,6,1,0,0])
sage: det(A)
-3
sage: Aˆ(-1)
[ 0 0 1]
[ -2 1 -2]
[ 5/3 -2/3 1]
sage: B = matrix(4,3,[1,2,3,4,5,6,7,8,9,1,1,1])
sage: B * A
[12 12 15]
[30 33 42]
[48 54 69]
[ 6 7 9]

Note that AB and A + B are undefined and SAGE will return an error if you
enter A*B or A+B.

Ponderable 2.2.2. Imagine a chessboard in front of you. You can place at
most 8 non-attacking rooks on the chessboard. (Rooks move only horizontally
and vertically.) Now imagine you have done this and let A = (aij) be the 8 × 8
matrix of 0’s and 1’s (called a (0, 1)-matrix) where aij = 1 if there is a rook
on the square belonging to the ith horizontal down and the jth vertical from the
left. Call such a matrix a rook matrix. If there are exactly eight 1’s in A then
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we shall call A a full rook matrix. For example,
























0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0

























is a full rook matrix. Show that
(a) any full rook matrix is invertible,
(b) the product of any two rook matrices is a rook matrix.

2.2.5 Determinants

The determinant of a matrix A, denoted det(A), is defined only when A is a
square matrix, i.e., the number of rows is equal to the number of columns. If A is
an n×n real matrix then A may be regarded as a function of Rn, sending points
to points. It turns out it will send the unit hypercube in Rn to a parallelepiped
(the n-dimensional analog of a parallelogram). It also turns out that the absolute
value of the determinant of A measures the volume of that parallelpiped.

If m = n = 2 the determinant is easy to define:

det

(

a b
c d

)

= ad − bc.

Geometrically, |ad−bc| is the area of the parallelogram with vertices (0, 0), (a, c),
(b, d), (a+b, c+d). This fact, as well as the general definition of the determinant,
can be found in most texts on matrix theory or linear algebra. The simplest
way to compute the determinant of an arbitrary n × n matrix A = (aij) is to
use the Laplace cofactor expansion: for any i with 1 ≤ i ≤ n, we have

det(A) =

n
∑

j=1

(−1)i+j det(Aij)aij , (2.1)

where Aij is the (n − 1) × (n − 1) ‘submatrix of A’ obtained by omitting all
the entries in the ith row and the jth column. The matrix Aij is called the
(i, j)-minor of A and (−1)i+j det(Aij) is called the (i, j)-cofactor.

Pierre-Simon Laplace (1749-1827) was one of the most influential scientists in
French history. Modesty was not his strong point and he announced in 1780
that he was the greatest mathematician in France. In fact, Laplace made major
contributions to many areas of mathematics and physics, especially probability
and celestial mechanics (the mathematics of the motion of planets is mostly due
to him).

A square matrix A is singular if det(A) = 0. Otherwise, A is called non-
singular or invertible.
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Example 2.2.2. Taking i = 2,

det





1 2 3
4 5 6
7 8 9





= (−1) · 4 · det

(

2 3
8 9

)

+ (+1) · 5 · det

(

1 3
7 9

)

+ (−1) · 6 · det

(

1 2
7 8

)

= (−4)(18 − 24) + (5)(9 − 21) + (−6)(8 − 14) = 0.

This implies A is singular. Indeed, the parallelepiped generated by (1, 2, 3),
(4, 5, 6), (7, 8, 9), must be flat (2-dimensional, hence have 0 volume) since (4, 5, 6) =
(1, 2, 3) + (1, 1, 1) and (7, 8, 9) = (1, 2, 3) + 2(1, 1, 1).

There is an analogous Laplace expansion like (2.1) for columns as well. See
any other book on linear algebra for further details.

Here is an example of using SAGE to compute with determinants.

SAGE

sage: A = matrix(3,3,[1,2,3,4,5,6,7,8,9])
sage: det(A)
0
sage: a = var("a"); b = var("b"); c = var("c"); d = var("d")
sage: B = matrix(2,2,[a,b,c,d])
sage: det(B)
a* d - b * c

An important fact about singular matrices, and one that we will use later, is
the following.

Lemma 2.2.1. Suppose A is an n×n matrix with real entries. Then det(A) = 0
if and only if there is a non-zero vector v such that Av = 0, where 0 is the zero
vector in Rn.

Here’s a sketch: det(A) = 0 if and only if A is singular if and only if A is not
one-to-one. A is not one-to-one if and only if there are vectors v1 6= v2 for which
Av1 = Av2, i.e., Av = 0, where v = v1 − v2 6= 0.

We end this section with one last key property of determinants.

Lemma 2.2.2. If A,B are any two n × n matrices having real entries then
det(AB) = det(A) det(B).

More details on all this material can be found in any textbook on linear
algebra.

I think mathematics is a vast territory. The outskirts of mathematics
are the outskirts of mathematical civilization. There are certain subjects
that people learn about and gather together. Then there is a sort of
inevitable development in those fields. You get to a point where a certain
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theorem is bound to be proved, independent of any particular individual,
because it is just in the path of development.

William P. Thurston, More mathematical people, New York, 1990,
p.332

2.3 Relations

A relation on a set is a generalization of the concept of a function from S to
itself. Relations include =, <, and many other types of ‘comparisons’.

Definition 2.3.1. Let S be a set. If R is a subset of S × S then we call R a
relation on S. If (x, y) ∈ R then we say that x is related to y.

We may also regard a relation R on S as a function

R : S × S → {0, 1}.

In this form, we say x is related to y (for x, y ∈ S) if R(x, y) = 1.
This is a very general notion. There are lots and lots of relations in mathe-

matics: inequality symbols, functions, subset symbols are all common examples
of relations.

Example 2.3.1. Let S be any set and let f be a function from S to itself. This
function gives rise to the relation R on S defined by the graph of f :

R = {(x, y) ∈ S × S | y = f(x), for x ∈ S}.

(It is through this correspondence that we may regard a function as a relation.)

Example 2.3.2. Let S be the set of all subsets of {1, 2, ..., n}. Let R be defined
by

R = {(S1, S2) | S1 ⊂ S2, S1 ∈ S, S2 ∈ S}.
Note that R is a relation.

Definition 2.3.2. Let R be a relation on a set S. We call R an equivalence
relation if it satisfies the following properties.

(a) Each element s ∈ S is related to itself (‘reflexive’). In other words, (s, s)
belongs to R for all s.

(b) If s is related to t then t is related to s (‘symmetry’). In other words,
(s, t) ∈ R implies (t, s) ∈ R.

(c) If s1 is related to s2 and s2 is related to s3 then s1 is related to s3 (‘tran-
sitivity’).

Example 2.3.3. The equality symbol = provides an equivalence relation on the
real line: let D = {(x, x) | x real}. This is an equivalence relation on the real
line: note x = y if and only if (x, y) belongs to D.
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Notation: If R is an equivalence relation on S then we often write x ∼ y or
x ≡ y in place of (x, y) ∈ R, for simplicity.

Definition 2.3.3. Let R be an equivalence relation on a set S. For s ∈ S, we
call the subset

[s] = {t ∈ S | s ∼ t}
the equivalence class of s in S.

Example 2.3.4. Fix an integer n > 1. For integers x, y, define x ≡ y if and
only if n divides x − y. In this case, we say that x is congruent to y mod n,
written x ≡ y (mod n). The equivalence class of x is sometimes (for historical
reasons) called the residue class (or congruence class) of x (mod n). We
shall sometimes abuse notation and denote residue class of x mod n simply by
x.

This notation was first introduced by Carl F. Gauss (1777-1855), who is re-
garded by many as one of the top mathematicians of all time. At the age of 23
he wrote Disquisitiones Arithmeticae, which started a new era of number
theory and introduced this notation.

Ponderable 2.3.1.

(a) Let f(x) = x2, let S be the real line, and let R be the corresponding relation
as in Example 2.3.1. Is R an equivalence relation?

(b) Let f(x) = 2x, let S be the real line, and let R be the corresponding relation
as in Example 2.3.1. Is R an equivalence relation?

Ponderable 2.3.2. Let R be the corresponding relation as in the second exam-
ple. Is R an equivalence relation?

Example 2.3.5. For integers x, y, define x ≡ y if and only if 3 divides x − y.
the equivalence classes are

[0] = {...,−6,−3, 0, 3, 6, ...},
[1] = {...,−5,−2, 1, 4, 7, ...},
[2] = {...,−4,−1, 2, 5, 8, ...}.

Using Python’s modulo operator %, these sets can be computed in SAGE as
follows:

SAGE

sage: C0 = [x for x in range(-10,10) if x%3 == 0]; print C0
[-9, -6, -3, 0, 3, 6, 9]
sage: C1 = [x for x in range(-10,10) if x%3 == 1]; print C1
[-8, -5, -2, 1, 4, 7]
sage: C2 = [x for x in range(-10,10) if x%3 == 2]; print C2
[-10, -7, -4, -1, 2, 5, 8]
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Ponderable 2.3.3. Show that for any s1 and s2 in S, we have either
(a) [s1] = [s2], or
(b) [s1] is disjoint from [s2].

As a consequence of this problem, we see that if R is an equivalence relation
on a set S then the equivalence classes of R partition S into disjoint subsets.
We state this separately for future reference (we also assume S is finite for
simplicity).

Theorem 2.3.1. If S is a finite set and R is an equivalence relation on S then
there are subsets

S1 ⊂ S, S2 ⊂ S, ..., Sk ⊂ S,

satisfying the following properties:

(1) S is the union
S = S1 ∪ S2 ∪ ... ∪ Sk = ∪iSi

(2) the Si’s are disjoint: for 1 ≤ i ≤ k, 1 ≤ j ≤ k, if i 6= j then Si ∩ Sj = ∅.

(3) the Si’s exhaust the collection of equivalence classes of R: for each i,
1 ≤ i ≤ k, there is an si ∈ S such that

Si = [si].

(This element si is called a representative of the equivalence class Si.)

(Properties (1) and (2) say that the Si’s partition S in the sense of the previous
chapter.)

Example 2.3.6. For real numbers x, y, define x ≡ y if and only if x − y is an
integer. The equivalence classes are of the form

[x] = {..., x − 2, x − 1, x, x + 1, x + 2, ...},
for x real. Each equivalence class has exactly one representative in the half open
interval [0, 1) = {x ∈ R | 0 ≤ x < 1}.

Remark 2.3.1. Conversely, given a partition as in Theorem 2.3.1(1), there is
an equivalence relation R such that Si = [si], for some some si ∈ S, where

[s] = {x ∈ S | s ∼ x}

is the equivalence class of s with respect to R. Indeed, we define

R = ∪k
i=1Si × Si.

This is an equivalence relation and s ∼ t if and only if s, t ∈ Si, for some
i = 1, 2, ..., k.
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Ponderable 2.3.4. Let S be the set Z of all integers. Let R be the relation
defined by (x, y) ∈ R if and only if x − y is an even number (i.e., an integer
multiple of 2).

(1) Show that this is an equivalence relation,

(2) Find the sets Si in the above lemma which partition S,

(3) Find a representative of each equivalence class Si.

2.4 Counting and mathematical induction

Major General Stanley: ‘About binomial theorem I’m teeming with a
lot o’ news...’

W. S. Gilbert and A. Sullivan, Pirates of Penzance

This section quickly surveys a few basic counting principles we shall use later.
The Three Stooges, Curly, Moe, and Larry, each know 10 different insults,

none in common with each other. For example, Moe knows ‘You knucklehead!’,
and 9 others. One of them insults you by calling you a name. How many
different insults are possible? Thirty, because each one of the three can insult
you in 10 ways. The following principle generalizes this idea.

Theorem 2.4.1. (Addition Principle) Let S1, ..., Sn denote disjoint finite
sets. Then

|S1 ∪ ... ∪ Sn| = |S1| + ... + |Sn|.

We give a proof of this, mostly as an excuse to tell the corny horse joke below.
The proof proceeds by the method of mathematical induction (or simply

induction, not to be confused with the logical reasoning of induction). This
will be presented from a general viewpoint and then applied to proving the
Addition Principle.

Definition 2.4.1. Let P (1), P (2), ... be a sequence of logical statements which
you want to prove to be true (i.e., P (k) is a ‘predicate’ with ‘term’ k = 1, 2, ...).

(1) Show that the case k = 1 is true, i.e., prove P (1).

(2) Assuming the truth of the case k = n − 1, i.e., assuming P (n − 1) is true
(the induction hypothesis), prove P (n).

Once we have these two facts, we can conclude P (1) is true (case (1)), P (1) ⇒
P (2) is true (case (2)), so P (2) is true (by the truth tables in the previous
chapter), P (2) ⇒ P (3) is true (case (2)), so P (3) is true (by the truth tables in
the previous chapter), and so on. We deduce that the logical statements P (k)
are all true. This is the method of mathematical induction.
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De Morgan, whom we have met already, was the first to define the term,
mathematical induction (though the basic idea was known before him).

As a humorous example, we ‘prove’, using mathematical induction, that horses
have an odd number of feet. Let P (k) be the statement that k horses have an
odd number of feet. Case k = 1 is the statement that one horse has an odd
number of feet. Well, any horse with a broken leg has an odd number of feet,
so P (1) is true. Now assume P (k) is true and we try to prove P (k + 1). Any k
of the k + 1 horses have an odd number of feet, so all k + 1 do as well, hence
P (k + 1) holds as well.

As a more serious example, let P (k) be the logical statement |S1 ∪ ... ∪ Sk| =
|S1| + ... + |Sk|, 1 ≤ k ≤ n. We need to

(1) Prove the claim for k = 1, i.e., prove P (1).

(2) Assuming the truth of the case k = n − 1, prove P (n).

Proof: Let P (k) be the logical statement |S1 ∪ ... ∪ Sk| = |S1| + ... + |Sk|,
1 ≤ k ≤ n.

Case k = 1. P (1) is the statement |S1| = |S1|, which is of course true.
Case k = n − 1. Assume |S1 ∪ ... ∪ Sn−1| = |S1| + ... + |Sn−1| is true.
Let S = S1 ∪ ... ∪ Sn−1 and let T = Sn. Each element of S ∪ T is either an

element of S or an element of T but not both since they are disjoint. How many
ways can we pick an element from S∪T? |S|+|T | ways, since may pick one from
either S or from T . The induction hypothesis implies |S| = |S1 ∪ ... ∪ Sn−1| =
|S1|+ ... + |Sn−1|. Since S1 ∪ ... ∪ Sn = S ∪ T , this and the previous paragraph
together imply |S1∪...∪Sn−1∪Sn| = |S∪T | = |S|+|T | = |S1|+...+|Sn−1|+|Sn|.
This proves the case k = n.

By mathematical induction, the proof of the addition principle is complete.
¤

Example 2.4.1. If there are n bowls, each containing some distinguishable
marbles, and if Si is the set of marbles in the ith bowl then the number of ways
to pick a marble from exactly one of the bowls is |S1|+ ...+ |Sn|, by the addition
principle.

As a corollary of the above addition principle, we have the following result.

Proposition 2.4.1. (Dirichlet Pigeonhole Principle) Let d,m, n be positive
integers. If there are n objects (pigeons) which must be placed in m boxes (these
‘pigeonholes’ as assumed to be disjoint), where md < n, then there is at least
one box with at least d + 1 objects.

Proof: We prove this using the reductio ad absurdum argument: assume
the statement claimed to be true is actually false and derive a contradiction.

Suppose that the ith box Si has less than or equal to d objects in it, for every
i with 1 ≤ i ≤ m. Since the boxes are assumed to be disjoint, the hypothesis of
the addition principle holds. Therefore, the total number of objects in all the
boxes is |S1|+ ... + |Sm| ≤ d + ... + d = md. But there are n such objects, so we
must therefore have n ≤ md. This contradicts the assumption that md < n. ¤
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Example 2.4.2. If you are in a room with 9 other people then there must
be either at least 5 people you know or 5 people you don’t know (not counting
yourself). This is obvious enough. It is also what the Dirichlet Pigeonhole
Principle tells you: In this case, there are n = 9 objects (the people in the room)
and m = 2 boxes (the friend box and the stranger box) so we may take d = 4 in
the pigeonhole principle.

Returning to the Three Stooges, who each know 10 different insults, none in
common. Each one of them insults you exactly once. How many insults are
possible? One thousand, 103, because each one of the three can insult you in
10 ways. The following principle generalizes this idea.

Theorem 2.4.2. (Multiplication Principle) Let S1, ..., Sn denote finite sets.
Then

|S1 × ... × Sn| = |S1| · ... · |Sn|.

The proof proceeds by the method of induction. Let P (k) be the logical
statement |S1 × ... × Sk| = |S1| · ... · |Sk|, 1 ≤ k ≤ n. Singing our chorus once
again, we must

(1) Prove the claim for k = 1, i.e., prove P (1).

(2) Assuming the truth of the case k = n − 1, prove P (n).

Proof: Let P (k) be the logical statement |S1 × ... × Sk| = |S1| · ... · |Sk|,
1 ≤ k ≤ n.

Case k = 1. P (1) is the statement |S1| = |S1|, which is of course true.
Case k = n − 1. Assume |S1 × ... × Sn−1| = |S1| · ... · |Sn−1| is true.
Let S = S1 × ... × Sn−1 and let T = Sn. Each element of S × T is a list of 2

elements, the first from S, the second from T . How many ways can we pick an
element from S to put in the first coordinate? |S| ways. Suppose that the first
coordinate has been choosen. How many ways can we pick an element from T
to put in the second coordinate? |T | ways. Therefore, the number of ways to
pick elements for the first coordinate and the second coordinate is |S| · |T |. The
induction hypothesis implies |S| = |S1 × ... × Sn−1| = |S1| · ... · |Sn−1|. Since
S1 × Sn = S × T , this and the previous paragraph together imply |S1 × ... ×
Sn−1 × Sn| = |S × T | = |S| · |T | = |S1| · ... · |Sn−1| · |Sn|. This proves the case
k = n.

By mathematical induction, the proof of the multiplication principle is com-
plete. ¤

Example 2.4.3. If there are n bowls, each containing some distinguishable
marbles and if Si is the set of marbles in the ith bowl then the number of ways
to pick exactly one marble from each of the bowls is |S1| · ... · |Sn|, by the multi-
plication principle.

Corollary 2.4.1. The number of ordered selections, taken with repetition, of
m objects from a set of n objects is nm.

32



2.4. COUNTING AND MATHEMATICAL INDUCTION

An ordered selection is sometimes called an arrangement.

Example 2.4.4. Select from the set of majors,

Mathematics, Computer Science, Chemistry, Engineering, Physics,

exactly 3 (with repetition allowed). This is the same as selecting 3 objects, with
replacement, from 5 jars each containing the 5 phrases above. There are 53

possible choices.

Corollary 2.4.2. The number of ordered selections, taken without repetition,
of m objects from a set of n objects (m < n) is

n!

(n − m)!
= n · (n − 1) · ... · (n − m + 1).

Proof: Strictly speaking this is not a corollary of the multiplication principle,
so a proof is given.

Since the objects selected are ordered, by hypothesis, we may speak of a first
selection, a second selection, and so on. There are n ways to make the first
selection. Since there is no repetition allowed, this object is removed from the
set used to make the second selection. There are n−1 ways to make the second
selection, leaving n − 2 objects remaining. This process can be continued m
times since m < n, by hypothesis. Multiplying the integers n, n − 1, ..., n − m
gives the result. ¤

Example 2.4.5. The number of ‘ordered poker hands’, 5-tuples, without repe-
tition, of objects from the set {1, 2, ..., 52} is

52!

(47)!
= 52 · 51 · 50 · 49 · 48 = 311875200 ∼= 3.1 × 108.

Ponderable 2.4.1. Let C be a set of 6 distinct colors. Fix a cube in space
(imagine it sitting in front of you on a table). We call a coloring of the cube
a choice of exactly one color per side. Let S be the set of all colorings of the
cube. We say x, y ∈ S are equivalent if x and y agree after a suitable rotation
of the cube.

(a) Show that this is an equivalence relation.
(b) Count the number of equivalence classes in S.

The next two results are corollaries of the multiplication principle as well.

Corollary 2.4.3. The number of unordered selections, taken without repetition,
of m objects from a set of n objects (m < n) is

C(n,m) =

(

n
m

)

=
n!

(n − m)!m!
=

n · (n − 1) · ... · (n − m + 1)

m · (m − 1) · ... · 1 .

An unordered selection is sometimes called a combination.
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Example 2.4.6. The number of (unordered) poker hands, 5-tuples without rep-
etition of objects from the set {1, 2, ..., 52} is

C(52, 47) =
52 · 51 · 50 · 49 · 48

5!
= 2598960 ∼= 2.6 × 106.

Corollary 2.4.4. The number of unordered selections, taken with repetition
allowed, of m objects from a set of n objects (m < n) is C(n + m − 1,m)

Proof: The proof is rather clever, so we include a sketch.
Imagine m 1’s in a row. Order the n objects you will be selecting from as

object 1, object 2, ... . Starting from the leftmost 1, count the number of object
1’s you will select, then put a | mark to the right of the last 1. Put the | to
the left of all the 1’s if you don’t select any from object 1. If you selected m1

elements from object 1 then you have m1 1’s to the left of the | and m − m1

1’s to the right. Do the same for object 2, then object 3, ... . You must have
inserted n |’s. There are C(n + m − 1,m) ways to do this. ¤

This symbol C(n,m), also commonly written

(

n
m

)

, is called the combina-

torial (or binomial) symbol and pronounced ‘n choose m’. It occurs in the
binomial theorem and in Pascal’s triangle,

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

... ,

where each entry is obtained by adding the two immediately above it. In other
words, the defining property of Pascal’s triangle is the following general fact,
whose proof is left as an exercise for the interested reader.

Lemma 2.4.1. If 0 < m < n then

C(n,m) + C(n,m + 1) = C(n + 1,m + 1).

For example, C(5, 2) + C(5, 3) = C(6, 3). The following SAGE computation
illustrates this.
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SAGE

sage: C52 = binomial(5,2)
sage: C53 = binomial(5,3)
sage: C52; C53; C52 + C53
10
10
20
sage: C63 = binomial(6,3)
sage: C63
20
sage: C63 == C52 + C53
True

Theorem 2.4.3. (Binomial Theorem)

(x + y)n =
∑n

m=0 C(n,m)xmyn−m

= xn + nxn−1y + ... + C(n,m)xmyn−m + ... + nxyn−1 + yn.

We shall not prove this theorem here. For the interested reader: the key ideas
in the proof involve using mathematical induction and the defining property of
Pascal’s triangle—try to find it! By the way, Pascal’s triangle was known long
before Blaise Pascal (1623-1662) wrote his book Treatise on the Arithmeti-
cal Triangle on it in the 1600’s.

Example 2.4.7. Here is an example of using SAGE to compute with binomial
coefficients, permutations, and factorials.

For example, to find the number of times x2y3 appears in the expansion of
(x + y)5, you must count how many “words” can be formed by permuting the
letters of xxyyy. There are 10 such “words”, as SAGE shows below, and Pascal’s
triangle shows above.

SAGE

sage: expand((x+y)ˆ(5))
yˆ5 + 5 * x* yˆ4 + 10 * xˆ2 * yˆ3 + 10 * xˆ3 * yˆ2 + 5 * xˆ4 * y + xˆ5

sage: binomial(5,2)
10
sage: terms = ["x","x","y","y","y"]
sage: number_of_permutations(terms)
10
sage: permutations(terms)
[[’x’, ’x’, ’y’, ’y’, ’y’],

[’x’, ’y’, ’x’, ’y’, ’y’],
[’x’, ’y’, ’y’, ’x’, ’y’],
[’x’, ’y’, ’y’, ’y’, ’x’],
[’y’, ’x’, ’x’, ’y’, ’y’],
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[’y’, ’x’, ’y’, ’x’, ’y’],
[’y’, ’x’, ’y’, ’y’, ’x’],
[’y’, ’y’, ’x’, ’x’, ’y’],
[’y’, ’y’, ’x’, ’y’, ’x’],
[’y’, ’y’, ’y’, ’x’, ’x’]]

sage: terms = [1,2,3,4,5]
sage: number_of_permutations(terms)
120
sage: factorial(5)
120

The reader can see that the third term of the binomial expansion is really a sum
of the 10 (equal) terms which are given by the output of permutations(terms).
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Chapter 3

Bell ringing and other
permutations

Mathematics, springing up from the soil of basic human experience
with numbers and data and space and motion, builds up a far-flung ar-
chitectural structure composed of theorems which reveal insights into the
reasons behind appearances and of concepts which relate totally disparate
concrete ideas.

Sanders MacLane, American Mathematical Monthly, 1954

In the last chapter we discussed counting arguments and some combinatorial
notions. This chapter introduces more combinatorial ideas and techniques–
more tools for your toolbox, so to speak. The objective is to keep track of
rearrangements of objects, such as the facets of a Rubik’s Cube, which get
rearranged each time you make a move. Some new notation, symbols, and
terms must be introduced.

Talk about relating totally disparate ideas–at the end of the chapter, we will
see how combinatorial ideas already occurred in (church) bell ringing over 300
years ago!

3.1 Definitions

Suppose you shuffle a pack of cards. You are simply rearranging all 52 of them.
The mathematical equivalence of shuffling is a permutation. A more precise
general definition is as follows. Let Zn = {1, 2, ..., n} be the set of integers from
1 to a fixed positive integer n. A permutation of Zn is a bijection from Zn to
itself. (A bijection was defined in Definition 2.1.6.) More generally, if T is any
finite set then a permutation of T is a bijection from T to itself. In the case
when T has n elements, we shall often label the elements of T by T = {t1, ..., tn}
and regard a permutation f : T → T as a permutation φ : Zn → Zn, where
f(ti) = tj if and only if φ(i) = j. In other words, once we label the elements
of T , there is a 1-1 correspondence between the permutations of T and those of
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Zn. Since the elements of Zn are easier to write (fewer subscripts!), we often
just work with Zn.

As an example, on the 3 × 3 Rubik’s Cube there are 9 · 6 = 54 facets. If you
label them 1, 2, ..., 54 (in any way you like), then any move of the Rubik’s Cube
corresponds to a permutation of Z54. In this chapter we present some basic
notation and properties of permutations.

Notation: We may denote a permutation f : Zn → Zn by a 2 × n array:

f ↔
(

1 2 ... n
f1 f2 ... fn

)

,

where f1, f2, ..., fn is simply a rearrangement (in some order depending on f)
of the integers 1, 2, ..., n. This notation means that f sends 1 to f1, f sends 2
to f2, ..., f sends n to fn. In other words, f1 = f(1), f2 = f(2), ..., fn = f(n),
and fi 6= fj unless i = j.

Example 3.1.1.

(a) The identity permutation, denoted by I, is the permutation which doesn’t
do anything:

I =

(

1 2 ... n
1 2 ... n

)

(b) The permutation f : Z3 → Z3 defined by

f =

(

1 2 3
3 2 1

)

simply swaps 1 and 3 and leaves 2 alone.

(a) The n-cycle is a permutation which cyclically permutes the values:
(

1 2 ... n
2 3 ... 1

)

Imagine an analog clock with the numbers 1, 2, ..., n arranged around the
dial. An n-cycle simply moves each number forward (clockwise) by 1 unit.
The permutation

(

1 2 ... n
n 1 ... n − 1

)

is also called an n-cycle.

It is easy to construct such permutation in SAGE. You simply use the bottom
row of the 2 × n array above to make the construction. Here is an example.

SAGE

sage: p = Permutation([2,3,4,5,1]); p
[2, 3, 4, 5, 1]
sage: p * p* p* p
[5, 1, 2, 3, 4]
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Definition 3.1.1. Let f : Zn → Zn be a permutation and let

ef (i) = #{j > i | f(i) > f(j)}, 1 ≤ i ≤ n − 1.

Let
swap(f) = ef (1) + ... + ef (n − 1).

We call this the swapping number (or length) of the permutation f since it
counts the number of times f swaps the inequality in i < j to f(i) > f(j). If
we plot a bar graph of the function f , then swap(f) counts the number of times
the bar at i is higher than the bar at j. We call f even if swap(f) is even and
we call f odd otherwise.

The number
sign(f) = (−1)swap(f)

is called the sign (or signum function) of the permutation f .

Example 3.1.2. Here is an example of SAGE/Python code for implementing
the swapping number above. (The third line of the function should be entered
all on one line but, for typographical reasons, it has been split in two.)

SAGE

def swap(g):
N = parent(g).degree()
return sum([len([i2 for i2 in range(i1+1,N+1)\

if g(i2)<g(i1)]) for i1 in range(1,N)])

Here is an example of using this function:

SAGE

sage: G = SymmetricGroup(4)
sage: g = G([(1,2,3)]); g
(1,2,3)
sage: swap(g)
2
sage: G = SymmetricGroup(3)
sage: g = G([(1,2)])
sage: swap(g)
1

(Note the above manner of inputting a permutation such as (1, 2, 3) requires
the introduction of the ‘symmetric group’. This object will be carefully defined
later.)

How is the set of values of the swapping numbers distributed in the collection
of all permutations on n letters? SAGE helps us compute this when n = 6:

39



3.1. DEFINITIONS

SAGE

sage: G = SymmetricGroup(6)
sage: G.order()
720
sage: swaps = [swap(g) for g in G]
sage: M = max(swaps); M
15
sage: L = [swaps.count(i) for i in range(16)]
sage: list_plot(L).show()

Figure 3.1 is a list plot of the swapping numbers vs. their multiplicity for all
6! = 720 permutations of 6 letters.

Figure 3.1: Plot of the points (i, swap(gi)), where i is the i-th element of S6.

The reader may verify that the sign function satisfies the following property.

Lemma 3.1.1. Let f : Zn → Zn be a permutation. Then

sign(f) =
∏

i<j≤n

f(i) − f(j)

i − j
.

Remark 3.1.1. Let S ⊂ Zn be a subset. Let f : Zn → Zn be a permutation
for which f(i) = i, for all i ∈ S. In other words, f permutes the elements of
Sc = Zn − S but not the elements of S. Define a new permutation g of Sc (not
of Zn) by g(i) = f(i) for all i ∈ Sc. The above lemma implies that the sign
of the permutation f : Zn → Zn is the same as the sign of the permutation
g : Sc → Sc. This will turn out to be a useful fact to keep in mind later.

Example 3.1.3. We define the permutation f : Z3 → Z3 for which f(1) =
2, f(2) = 1, f(3) = 3 by a 2 × 3 array

(

1 2 3
2 1 3

)
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This swaps 1 and 2 and leaves 3 alone. There are 3 inequalities for Z3: 1 < 2,
2 < 3, and 1 < 3. Applying f to these, we get f(1) = 2 > f(2) = 1, f(2) = 1 <
f(3) = 3, and f(1) = 2 < f(3) = 3. Only the first inequality is changed, so the
swapping number is swap(f) = 1. Another way to picture f is by a ‘crossing
diagram’, where f sends the left-hand column to the right-hand column:

s s

s s

ss

3

2

1

3

2

1

©
©

©
©

©
©

©
©

©
©

©
©H

H
H

H
H

H
H

H
H

H
H

H

The number of crosses in this diagram is the swapping number of f , from
which we can see that f is an odd permutation.

Ponderable 3.1.1. Express f : Z3 → Z3 given by f(1) = 3, f(2) = 1, f(3) = 2,
as (a) a 2 × 3 array, (b) a crossing diagram. Find its swapping number and
sign.

Definition 3.1.2. Let f : Zn → Zn and g : Zn → Zn be two permutations.
We can compose them to get another permutation, the composition, denoted
fg : Zn → Zn:

k 7−→ f(k) 7−→ g(f(k))
Zn → Zn → Zn

Remark 3.1.2. A Notational Warning!. We shall follow standard conven-
tion and write our compositions of permutations left-to-right. (This contrasts
to the right-to-left composition of functions you may have seen in calculus.)
When a possible ambiguity may arise, we call this type of composition ‘compo-
sition as permutations’ and call ‘right-to-left composition’ the ‘composition as
functions’.

When f = g then we write ff as f2. In general, we write the n-fold compo-
sition f...f (n times) as fn. Every permutation f has the property that there
is some integer N > 0, which depends on f , such that fN = 1. That is to say,
if you repeatedly apply a permutation enough times you will eventually obtain
the identity permutation. In particular, if you can perform the same exact shuf-
fle on a deck of cards repeatedly, you will eventually get back to the original
ordering of the card deck.
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This is vaguely reminiscent of a theorem due to Persi Diaconis which, roughly
speaking, says that you don’t need more than 7 shuffles to scramble a card deck.
The two situations are almost completely different though, because in one case
you are trying to scramble the ordering up and in the other case you are trying
to get back to the original ordering.

The mathematician and statistician Persi Diaconis left home at 14 to become a
professional magician and dropped out of high school. He received a MacArthur
Fellowship (‘genius award’) in 1979 and is currently Mary V. Sunseri professor
of statistics at Stanford University.

Lemma 3.1.2. Let f and g be permutations Zn → Zn. sign(fg) = sign(f)sign(g).

Ponderable 3.1.2. For f, g as in Lemma 3.1.1, we have

∏

i<j≤n

fg(i) − fg(j)

i − j
=

∏

i<j≤n

g(i) − g(j)

i − j

∏

i<j≤n

fg(i) − fg(j)

g(i) − g(j)
.

Use this to prove Lemma 3.1.2.

Definition 3.1.3. The smallest integer N > 0 such that fN = 1 is called the
order of f .

For an example from science fiction, suppose you take off in a space ship
which goes faster than the speed of light. Suppose it is so fast that in one trip
you come back exactly one hour earlier, according to your wrist watch, than
everyone else! In other words, your hourly times are the same as everyone elses,
except that they have been shifted by 1. (This type of permutation is called a
cyclic permutation.) How many trips do you need to take before your watch
reads the same as everyone elses again? The answer is 24 trips total (assuming
everyone is using ‘military time’).

Example 3.1.4. Let

f =

(

1 2 3
2 1 3

)

g =

(

1 2 3
3 1 2

)

be permutations of Zn. We have

fg =

(

1 2 3
1 3 2

)

, f2 = 1, g3 = 1.

Ponderable 3.1.3. Compute (a) fg and (b) the order of f and the order of g,
where

(a) f =

(

1 2 3
3 2 1

)

g =

(

1 2 3
3 1 2

)

(b) f =

(

1 2 3
3 1 2

)

g =

(

1 2 3
2 1 3

)
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Ponderable 3.1.4. If f, g, h are permutations of Zn, is (fg)h = f(gh) (here
composition is as functions; see Remark 3.1.2)? In other words, we have three
permutations: I have f, g and you have h. First, you perform h and then I
perform g then f . Second, I give you g and you perform h then g and then I
perform f . Are these the same? Explain.

3.2 Inverses

‘I don’t understand you’, said Alice. ‘It’s dreadfully confusing!’
‘That’s the effect of living backwards’, the Queen said kindly: ‘it al-

ways makes one a little giddy at first–’
‘Living backwards!’ Alice repeated in great astonishment. ‘I never

heard of such a thing!’
‘ –but there’s one great advantage in it, that one’s memory works both

ways.’
Lewis Carroll, Through the looking glass

Try to visualize in your mind the graph of a function f : Zn → Zn. We can
think of this as either a collection of points (i, f(i)), i = 1, 2, ..., n, or as a bar
graph. In any case, we can look at this graph of f and determine

(a) if f is injective,

(b) if f is surjective,

(c) the inverse f−1, if it exists.

How? Well, from the graph of f we can determine the image f(Zn) and this
determines if f is surjective or not. The inverse exists only if f is injective
(hence, in our case, surjective by Ponderable 2.1.6). Its graph is determined by
reflecting the graph of f about the diagonal, x = y.

Lemma 3.2.1. The following statements are equivalent:

(1) f : Zn → Zn is injective.

(2) f : Zn → Zn is surjective.

(3) |f(Zn)| = |Zn|.
Proof: The equivalence of the first two statements is left to the interested

reader as an exercise (hints: first show (1) implies (2) using reductio ad absur-
dum, then show (2) implies (1), again using reductio ad absurdum). Statement
(2) is equivalent to (3) by the definition of surjectivity. ¤

Example 3.2.1. The inverse of
(

1 2 3
3 1 2

)

is obtained by reflecting its graph about the x = y line.
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Ponderable 3.2.1. Graph and determine the inverses of the following permu-
tations:

(

1 2 3
2 1 3

)

,

(

1 2 3 4
2 3 4 1

)

,

(

1 2 3 4 5
2 1 5 3 4

)

There are two more commonly used ways of expressing a permutation. The
first is the ‘matrix notation’:

Definition 3.2.1. To a permutation f : Zn → Zn, given by

f =

(

1 2 ... n
f(1) f(2) ... f(n)

)

,

we associate the matrix P (f) of 0′s and 1′s defined as follows: the ijth entry of
P (f) is 1 if j = f(i) and is 0 otherwise.

Example 3.2.2. The matrix of the permutation f given by

f =

(

1 2 3
1 2 3

)

is

P (f) =





1 0 0
0 1 0
0 0 1



 .

Definition 3.2.2. A square matrix which has exactly one 1 per row and per
column (as P (f) does) is called a permutation matrix.

Lemma 3.2.2. There are n! distinct n×n permutation matrices and there are
n! distinct permutations of the set {1, 2, ..., n}.
Ponderable 3.2.2. Prove this using the multiplication principle from Theorem
2.4.2 in the previous chapter.

Example 3.2.3. The matrix of the permutation f given by

f =

(

1 2 3
2 1 3

)

is

P (f) =





0 1 0
1 0 0
0 0 1



 .

Note that matrix multiplication gives




0 1 0
1 0 0
0 0 1









1
2
3



 =





2
1
3



 ,

from which we can recover the 2 × 3 array.
It is not hard to do this computaiton in SAGE as well:
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SAGE

sage: V = VectorSpace(QQ,3)
sage: v = V([1,2,3])
sage: G = SymmetricGroup(3)
sage: g = G([(1,2)])
sage: v; permutation_action(g,v)
(1, 2, 3)
(2, 1, 3)
sage: g.matrix()

[0 1 0]
[1 0 0]
[0 0 1]

How does the permutation function relate to the permutation matrix? The
theorem below explains parts of this relationship.

Theorem 3.2.1. If f : Zn → Zn is a permutation then

(a)

P (f)











1
2
...
n











=











f(1)
f(2)

...
f(n)











,

(b) P (f)−1 = P (f−1) (the inverse of the permutation matrix is the matrix of
the inverse of the permutation),

(c) P (fg) = P (f)P (g) (the permutation matrix of the product is the product
of the permutation matrices),

(d) sign(f) = det(P (f)).

Proof: If ~v is the column vector with entries v1, v2, ..., vn (the vi are arbitrary
real numbers) then P (f)~v is the column vector whose ith coordinate is equal to
vj if f sends i to j. Since, in this case, j = f(i) (here we write f(i) to denote
the image of i under the permutation f , even though i really gets plugged
into f on the left), this implies that P (f)~v is the column vector with entries
vf(1), vf(2), ..., vf(n). This proves (a).

Note that (b) is a consequence of (c) so we need only prove (c). We compute
P (fg)~v and P (f)P (g)~v. By the same reasoning as in (a), we find that the ith

coordinate of P (fg)~v is v(fg)(i). Similarly, the ith coordinate of P (g)~v is v′
i =

vg(i). Therefore, the ith coordinate of P (f)(P (g)~v) is v′
f(i) = vg(f(i)) = v(fg)(i).

This implies P (fg)~v = P (f)P (g)~v. Since the vi were arbitrary real numbers,
this implies the theorem. ¤
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Example 3.2.4. Let

f =

(

1 2 3
2 1 3

)

, g =

(

1 2 3
3 2 1

)

, h =

(

1 2 3
2 3 1

)

,

so f = f−1, g = g−1, h = fg. Moreover,

P (g) =





0 0 1
0 1 0
1 0 0



 , P (h) =





0 1 0
0 0 1
1 0 0



 .

A direct matrix calculation verifies that P (f)P (g) = P (fg) = P (h) and P (h−1) =
P (g−1f−1) = P (g−1)P (f−1) = P (g)−1P (f)−1, as predicted by the above theo-
rem.

The matrix can be determined from the graph of the function f : Zn → Zn

as follows. First, take the graph of the function f and flip it about the x-axis.
In this n × n grid of integral points (x, y), the 1st coordinate goes down, the
2nd coordinate goes across, and x and y are integers between 1 and n inclusive.
(This is not to be confused with the orientation of the ‘axes’ in the xy-plane.)
Now, fill in all the plotted points with 1’s and all the unplotted points with 0’s.
The resulting n × n array is the matrix P (f).

Example 3.2.5. For example, consider the

f =

(

1 2 3 4
1 3 2 1

)

,

whose graph and mirror image look like Figure 3.2.

Figure 3.2: graph and mirror image of f .
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The matrix associated to this permutation is

P (f) =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









,

as in the mirror image graph.

The set of all permutations of Zn is denoted Sn and is called the symmetric
group on n letters. When solving the Rubik’s Cube it is frequently the
case that you are making several moves of the following type: make a move,
m1 say, then another move m2, then make the inverse of the first move, m−1

1 .
For example, (R−1D2RB−1U2B)2 is composed of such moves. This move is
a two-corner twist: the urf corner (in the Singmaster notation, explained in
Example 3.2.6 below) is twisted once clockwise, and the corner bld is twisted
once counterclockwise, as illustrated in Figure 3.3.

Figure 3.3: (R−1D2RB−1U2B)2 permutes edges and faces but not vertices.

In general, to compute the effect of a move like m1m2m
−1
1 , you need to know

how it moves each vertex and the edge. Rubik cubers will often make implicit
use of the the following lemma when solving their cube.

Lemma 3.2.3. Let r ∈ Sn denote any permutation and let i, j denote distinct
integers belonging to {1, 2, ..., n}. Let s denote a permutation sending i to j:

s(i) = j.

Then sr = r−1sr is a permutation sending r(i) to r(j):

sr(r(i)) = r(j).

More specifically (and this is the case in which this lemma is most often applied
in this book): let i1, i2, ..., ik denote distinct integers belonging to {1, 2, ..., n}. Let
s denote the permutation sending ij to ij+1:

s(ij) = ij+1, 1 ≤ j < k, s(ik) = i1, s(m) = m, ∀m /∈ {i1, ..., ik}.

47



3.2. INVERSES

Then sr = r−1sr is the permutation sending r(ij) to r(ij+1):

sr(r(ij)) = r(ij+1), 1 ≤ j < k, sr(r(ik)) = r(i1),

sr(m) = m, ∀m /∈ {r(i1), ..., r(ik)}.

Example 3.2.6. Let us label the 12 edges of the Rubik’s Cube using the Singmas-
ter notation:

• uf denotes the ‘up, front edge’,

• ul denotes the ‘up, left edge’,

• ur denotes the ‘up, right edge’,

• ub denotes the ‘up, back edge’,

• df denotes the ‘down, front edge’,

• dl denotes the ‘down, left edge’,

• dr denotes the ‘down, right edge’,

• db denotes the ‘down, back edge’,

• fl denotes the ‘front, left edge’,

• fr denotes the ‘front, right edge’,

• bl denotes the ‘back, left edge’,

• br denotes the ‘back, right edge’.

The corners are denoted similarly (ufr denotes the ‘up, front, right corner’, and
so on).

If you have a Rubik’s Cube move s which is a 3-cycle on 3 particular edges,
say

uf 7−→ ul 7−→ ur 7−→ uf,

and another move r which sends these edges somewhere else, say r = F 2 so that
r : uf 7−→ df but leaves the other edges alone, then r−1sr is the permutation

df 7−→ ul 7−→ ur 7−→ df.

Try it!

A proof of this lemma will be given in chapter 9 (see Theorem 9.3.1).
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3.3 Cycle notation

The most common notation for a permutation is the ‘cycle notation’, due to
Cauchy in the mid 1800’s. This notation is more compact than the array nota-
tion we’ve been using, and from this point on we will switch over to the cycle
notation. If a1, a2, ..., ar ∈ Zn are distinct then the symbol

(a1, a2, ..., ar)

(some r less than or equal to n) denotes the permutation f of Zn which sends
a1 to a2, sends a2 to a3, ..., sends ar−1 to ar, sends ar to a1, and leaves all the
other numbers in Zn alone. In other words,

f(a1) = a2, f(a2) = a3, ..., f(ar) = a1,

and f(i) = i, if i is not equal to one of the a1, ..., ar. Such a permutation is
called cyclic. The number r is called the length of the cycle.

We call two such cycles (a1, a2, ..., ar) and (b1, b2, ..., bt) disjoint if the sets
{a1, a2, ..., ar} and {b1, b2, ..., bt} are disjoint.

Lemma 3.3.1. If f and g are disjoint cyclic permutations of Zn then fg = gf .

Proof: This is true because the permutations f and g of Zn affect disjoint
collections of integers, so the permutations may be performed in either order.
¤

Lemma 3.3.2. The cyclic permutation (a1, a2, ..., ar) has order r.

Proof: Note f(a1) = a2, f2(a1) = a3, ..., fr−1(a1) = ar, fr(a1) = a1, by
definition of f . Likewise, for any i = 1, ..., r, we have fr(ai) = ai. ¤

Definition 3.3.1. A transposition is a cycle (i, j) of length 2 which inter-
changes i and j (i 6= j).

Theorem 3.3.1. Every permutation f : {1, 2, ..., n} → {1, 2, ..., n} is the prod-
uct of disjoint cyclic permutations. More precisely, if f is a permutation of
{1, 2, ..., n} (with n > 1) then there are non-empty disjoint subsets of distinct
integers

A1 = {a11, ..., a1,r1
} ⊂ {1, 2, ..., n},

A2 = {a21, ..., a2,r2
} ⊂ {1, 2, ..., n},

...
Ak = {ak1, ..., ak,rk

},
such that

{1, 2, ..., n} = A1 ∪ ... ∪ Ak, n = r1 + r2 + ... + rk,

and
f = (a11, ..., a1,r1

)...(ak1, ..., ak,rk
).
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This product is called a cycle decomposition of f . If we rearrange the
cardinalities ri of these sets Ai in decreasing order, say we write this as

r′1 ≥ r′2 ≥ ... ≥ r′k,

then the k-tuple (r′1, ..., r
′
k) is called the cycle structure of f and f is called a

(r′1, ..., r
′
k)-cycle. For example, (1, 2)(3, 4, 5) is a (3, 2)-cycle in S5.

Proof: The proof is constructive.
Let f : Zn → Zn be a permutation. List all the distinct elements in Zn you

get by repeatedly applying f to 1. Call them (for lack of a better notation!),
a10, a11, a12, ..., a1,r1

, where,

O1 = {a10 = 1, a11 = f(1), a12 = f2(1), ..., a1,r1
= fr1(1)}.

(Incidentally, this is called the orbit of 1 under f . Like the Earth orbiting
the sun, you keep moving 1 around using f until it gets back to itself. We shall
discuss orbits later, in §5.10.) Now list the elements in the ‘orbit of 2’:

O2 = {a20 = 2, a21 = f(2), a22 = f2(2), ..., a2,r2
= fr2(2)},

and so on until we get to the ‘orbit of n’:

On = {an0 = n, an1 = f(n), an2 = f2(n), ..., an,rn
= frn(n)}.

An example: let f : Z3 → Z3 be the 3-cycle permutation, f(1) = 2, f(2) =
3, f(3) = 1. In this case, O1 = {1, 2, 3}, O2 = {2, f(2) = 3, f(f(2)) = f(3) = 1},
and O3 = {3, f(3) = 1, f(f((3)) = f(1) = 2}, so all three orbits are equal to
each other in this example.

In general, if you pick any two of these n orbits O1, ..., On, they will either be
the same or disjoint. Denote all the distinct orbits by O′

1, ..., O′
k. (The O′

1, ...,
O′

k are a subsequence of the O1, ..., On. It doesn’t matter what order you write
the O′

i’s in or in what order you write the elements in each individual orbit.)
Suppose that

O′
1 = {b11, ..., b1,s1

} so |O′
1| = s1,

O′
2 = {b21, ..., b2,s2

} so |O′
2| = s2,

.

.

.
O′

k = {bk1, ..., bk,sk
} so |O′

k| = sk.

(The aij ’s have been relabeled as bij ’s to try to simplify the notation.) In this
case,

Zn = ∪k
i=1O

′
i = O′

1 ∪ ... ∪ O′
k,

and s1 + s2 + ... + sk = n. The restriction of f to O′
1, denoted fO′

1
: O′

1 → O′
1,

is equal to the s1-cycle (b11, b12, ..., b1,s1
). In general, the restriction of f to O′

j ,
denoted fO′

j
: O′

1 → O′
j , is equal to the sj-cycle (bj1, bj2, ..., bj,sj

). Since the

O′
j ’s partition Zn, the definition of f and our construction implies that

f = (b11, b12, ..., b1,s1
)...(bk1, bk2, ..., bk,sk

).

¤
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Example 3.3.1.

• The cycle notation for
(

1 2 3
2 1 3

)

is (1, 2)(3) or simply (1, 2). In general, if any of the orbits Oj in the above
construction is a singleton, it is often omitted from the notation, with the
implicit understanding that f doesn’t permute the omitted numbers.

• The cycle notation for
(

1 2 3
2 3 1

)

is (1, 2, 3).

• The cycle notation for
(

1 2 3 4
3 4 1 2

)

is (1, 3)(2, 4) = (2, 4)(1, 3).

• The cycle notation for

(

1 2 3 4 5
3 4 1 5 2

)

is (1, 3)(2, 4, 5) = (4, 5, 2)(1, 3).

Here is an example of using SAGE to compute with elements in the cycle
notation:

SAGE

sage: G = SymmetricGroup(4)
sage: g1 = G([(2,4),(1,3)])
sage: g2 = G([(1,2,3,4)])
sage: matrix([[1,2,3,4],[g1(i) for i in [1,2,3,4]]])
[1 2 3 4]
[3 4 1 2]
sage: matrix([[1,2,3,4],[g2(i) for i in [1,2,3,4]]])
[1 2 3 4]
[2 3 4 1]
sage: g1 * g2
(1,4,3,2)
sage: matrix([[1,2,3,4],[(g1 * g2)(i) for i in [1,2,3,4]]])
[1 2 3 4]
[4 1 2 3]
sage: g2 * g1
(1,4,3,2)
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Note the manner of inputing a permutation such as (2, 4)(1, 3): first you must
define the group G it belongs to (the SymmetricGroup(4) is SAGE notation for
S4, the permutations of {1, 2, 3, 4}), then enter (2, 4)(1, 3) as a list of disjoint cy-
cles [(2, 4), (1, 3)] which are “coerced” into G using the command G([(2, 4), (1, 3)]).
(More examples will be given below but you can also find more details in the sec-
tion “Permutation group elements” in the SAGE reference manual [S].)

Ponderable 3.3.1. The disjoint cycle decomposition of (2, 3, 7)(3, 7, 10) is ei-
ther (2, 3)(7, 10) or (2, 7)(3, 10). Which one is it?

Ponderable 3.3.2. Divide a square into 4 subsquares (‘facets’) and label them
1, 2, 3, 4. For example,

s s s

s s

ss

s

s

3 4

1 2

Let r denote counterclockwise rotation by 90 degrees. Then, as a permutation
on the facets, r = (1, 3, 4, 2). Let fx denote reflection about the horizonal line
dividing the square in two, let fy denote reflection about the vertical line dividing
the square in two. Use the cycle notation to determine the permutations of the
facets (a) r2, (b) r3, (c) fx, (d) fy, (e) fxrfx, (f) fxfy.

For those wanting to do this using SAGE, here is an example.

SAGE

sage: G = SymmetricGroup(4)
sage: r = G([(1,3,4,2)]); r
(1,3,4,2)
sage: r * r
(1,4)(2,3)

This tells you that the answer to (a) is (1, 4)(2, 3).
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Ponderable 3.3.3. Label the 24 facets of the 2×2×2 Rubik’s Cube as follows:

7

6

8

5

L

11 12

109

F

15 16

1413

R

19 20

1817

B

3 4

21

U

23 24

2221

D

(You may want to xerox this page and then cut this cube out and tape it together
for this.) Let X denote rotation clockwise by 90 degrees of the face labeled x,
where x ∈ {r, l, f, b, u, d} (so, for example, if x = f then X = F ). Use the cycle
notation to determine the permutations of the facets given by (a) R, (b) L, (c)
F , (d) B, (e) U , (f) D.

Lemma 3.3.3. A cyclic permutation is even if and only if the length of its cycle
is odd. A general permutation f : Zn → Zn is odd if and only if the number of
cycles of even length in its disjoint cycle decomposition is odd.

This follows from the definition of an even/odd permutation (see Definition
3.1.1), the fact that sign(p1p2...pk) = sign(p1)sign(p2)...sign(pk), for permuta-
tions pi (because of Lemma 3.1.2), and the fact that any k-cycle can be written
as a product of k − 1 transpositions,

(a1, a2, ..., ak) = (a1, ak)(a1, ak−1)...(a1, a2). (3.1)

(Equation (3.1) can be proven by mathematical induction. The argument is left
to the reader. For details, refer to the related results in chapter 1 of Rotman
[R] or Theorem 3.3 in Gaglione [G], §3.2, for example.)
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Lemma 3.3.4. The order of a permutation is the least common multiple (lcm)
of the lengths r1, r2, ..., rk of the disjoint cycles in its cycle decomposition.

Example 3.3.2. The order of (1, 3)(2, 4) is 2. It is even. The order of
(1, 3)(2, 4, 5) is 6. It is odd.

Here is an example of using SAGE to compute with orders and signs of per-
mutations.

SAGE

sage: G = SymmetricGroup(4)
sage: g1 = G([(2,4),(1,3)])
sage: g2 = G([(1,2,3,4)])
sage: g2 * g1
(1,4,3,2)
sage: g1.sign()
1
sage: g2.sign()
-1
sage: (g1 * g2).sign()
-1
sage: g1.order()
2
sage: g2.order()
4
sage: (g1 * g2).order()
4

3.4 An algorithm to list all the permutations

Martin Gardner [Gar1] mentions an algorithm that lists all the permutations
of {1, 2, ..., n}. This algorithm gives the fastest known method of listing all
permutations of {1, 2, ..., n}. Rediscovered many times since, the procedure is
due originally to the Polish mathematician Hugo Steinhaus (1887-1972). A
student of David Hilbert at Göttingen, he did important work on orthogonal
series, probability theory, real functions and their applications.

We shall denote each permutation by the second row in its 2 × n array nota-
tion. For example, in the case n = 2

1 2
2 1

are the permutations.

To see the case n = 3, the idea is to
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(a) write down each row n = 3 times each as follows:

1 2
1 2
1 2
2 1
2 1
2 1

(b) ‘weave’ in a 3 as follows
1 2 3
1 3 2
3 1 2
3 2 1
2 3 1
2 1 3

In case n = 4, the idea is to
(a) write down each row 4 times each as follows (go down the first column

then down the second column):

1 2 3
1 2 3
1 2 3
1 2 3
1 3 2
1 3 2
1 3 2
1 3 2
3 1 2
3 1 2
3 1 2
3 1 2

3 2 1
3 2 1
3 2 1
3 2 1
2 3 1
2 3 1
2 3 1
2 3 1
2 1 3
2 1 3
2 1 3
2 1 3

(b) now ‘weave’ a 4 in:

1 2 3 4
1 2 4 3
1 4 2 3
4 1 2 3
4 1 3 2
1 4 3 2
1 3 4 2
1 3 2 4
3 1 2 4
3 1 4 2
3 4 1 2
4 3 1 2

4 3 2 1
3 4 2 1
3 2 4 1
3 2 1 4
2 3 1 4
2 3 4 1
2 4 3 1
4 2 3 1
4 2 1 3
2 4 1 3
2 1 4 3
2 1 3 4

The next subsection (§3.4.1) describes the general procedure. These construc-
tions lead to the following result.

55



3.4. AN ALGORITHM TO LIST ALL THE PERMUTATIONS

Theorem 3.4.1. (Steinhaus) There is a sequence of (not necessarily distinct)
2-cycles, (a1, b1),...,(aN , bN ), where N = n!− 1, such that each non-trivial per-
mutation f of {1, 2, ..., n} may be expressed in the form

f =
k

∏

i=1

(ai, bi)

for some k, 1 ≤ k ≤ N . These transpositions (ai, bi), for k = 1, 2, ..., N , are
not necessarily disjoint.

In particular, each permutation may be written as a product of (not neces-
sarily disjoint) 2-cycles. This theorem says much more. It says the set of all
permutations can be generated by successive multiplication by a certain trans-
position. This result will be proven in the next section.

There is an analogous result valid only for even permutations: each even per-
mutation may be written as a product of (not necessarily disjoint) 3-cycles. This
will be stated more precisely (and proved) in the next section; see Proposition
9.4.1.

3.4.1 Why Steinhaus’s algorithm works

The argument is by mathematical induction.

1. First, note that Steinhaus’s algorithm works for n = 2, n = 3.

2. Write down all the elements of Sn−1 as a list using Steinhaus’s algorithm
(by the induction hypothesis, each element differs from the previous one
by a suitable transposition in this list). We represent each element in the
2 × (n − 1) array notation. In our list, we simply record the 2nd row in
the list. i.e., as an (n − 1)-tuple. There are (n − 1)! elements in this list.

3. For the 1st (n− 1)-tuple, write an n at the end, for the 2nd (n− 1)-tuple,
write an n at the beginning, for the 3rd (n − 1)-tuple, write an n at the
end, for the 4th (n − 1)-tuple, write an n at the beginning, and so on.
Note we have a sequence of (n − 1)! n-tuples.

4. Suppose the ith n-tuple is (n, a1, a2, ..., an−1). First, act on this by the
transposition (n, a1), then by the transposition (n, a2), then by (n, a3), ...,
by (n, an−1). The result of the last one is (a1, a2, ..., an−1, n). Suppose the
jth n-tuple is (b1, b2, ..., bn−1, n). (Note that by the induction hypothesis,
(a1, a2, ..., an−1, n) and (b1, b2, ..., bn−1, n) ‘differ’ only by a suitable trans-
position, in Sn−1.) First, act on this by the transposition (b1, n), then by
the transposition (b2, n), then by (b3, n), ..., by (bn−1, n). The result of
the last one is (n, b1, b2, ..., bn−1).

5. Note that all these (for i, j ranging over even or odd integers from 1 to
n− 1), the resulting n! n-tuples are distinct. This yields a listing of Sn as
desired.
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3.4.2 A side order of dessert: cake cutting

Though somewhat off the topic, another problem connected with Steinhaus is
worth mentioning. In 1944 Steinhaus proposed the problem of dividing a cake
into n pieces so that it is ‘proportional’ (i.e., each person is satisfied with his or
her share) and ‘envy-free’ (i.e., each person is satisfied that nobody is receiving
more than a fair share). For n = 2, one person cuts the cake, and the other
chooses her piece. Steinhaus found a proportional but not envy-free solution
for n = 3. An envy-free solution to Steinhaus’s problem for n = 3 was found
in 1962 by John H. Conway (whom we will run into again later in this book)
and, independently, by John Selfridge. For general n the problem was solved by
Steven Brams and Alan Taylor in 1995. More history and details can be found
online in the Wikipedia [Wi] article on ‘fair division’.

3.5 Permutations and bell ringing

No man is an island, entire of itself ... any man’s death diminishes me,
because I am involved in mankind; and therefore never send to know for
whom the bell tolls; it tolls for thee.

John Donne (English clergy-man and poet, 1572-1631)

Since the seventeenth century, and possibly before, cathedral bells in England
have been rung by permuting the order of a ‘round’ of bells. The art and study
of such bell ringing is referred to as campanology.

Fabian Stedman provided significant contributions to bell ringing. Born in
1640 to Reverend Francis Stedman, Fabian Stedman’s connections with cam-
panology took root at the early age of 15 when he moved to London to work
as an apprentice to a master printer. While in London Stedman joined a bell-
ringing society known as the ‘Society of Colledg [sic] Youths’, which has since
been renamed the Ancient Society of College Youths and is still in existence to-
day. Stedman’s major contributions to campanology are reflected in his efforts
in Tintinnalogia and Campanologia, the first two books published on the
subject, in 1668 and 1677, respectively.

Below is a glossary of a few essential terms:

• Change: the swapping of one or more disjoint pairs of adjacent. bells

• Plain change: the swapping of one pair of adjacent bells only.

• Cross change: the swapping of more than one pair of bells.

• Round: an ordering of the bells (i.e., a permutation of (1, 2, 3, ..., n)).

In the beginning, change ringing concerned itself with a single row of bells
whose order could be denoted by (1, 2, 3, ..., n). Considering the case where
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n = 6 the concepts of plain and cross changes can be understood more clearly.
If we use only plain changes we can generate permutations of the bells as follows:

1 2 3 4 5 6
2 1 3 4 5 6
2 1 4 3 5 6
2 1 4 3 6 5

It should be fairly obvious on inspection that the first plain change swaps 1
and 2, the second swaps 3 and 4, and the third swaps 5 and 6. Considering the
same set of six bells acted upon by a cross change, the same result is achieved
in one change, as seen below:

1 2 3 4 5 6
2 1 4 3 6 5

More useful and interesting patterns can be generated by combining plain and
cross changes. The plain lead on four bells is one of the most simplistic
patterns and was devised sometime around 1621 by alternating consecutive cross
and plain changes as seen below:

1 2 3 4
2 1 4 3
2 4 1 3
4 2 3 1
4 3 2 1
3 4 1 2
3 1 4 2
1 3 2 4
1 2 3 4

The pattern that defines the plain lead on four bells is nothing more than a
cross change followed by a plain change on the middle two bells until we reach
the round, which is where we started.

Generating the permutations contained in the plain lead on four bells can be
easily described using the notation for permutations we have developed. We
begin by representing the cross change as a = (1, 2)(3, 4), which swaps the first
two and last two bells, and representing the plain change as b = (2, 3), which
swaps the middle pair. We begin with the first element, a. To generate the
next permutation we multiply this first element by b. To generate the third
element we simply multiply this second term, ab, by a to get aba. Continuing
on in this manner we multiply alternately by a then b to generate the set D4 =
{a, ab, aba, (ab)2, (ab)2a, (ab)3, (ab)3a, (ab)4}. This is the set of permutations in
the plain lead on four bells. (It is denoted D4 here for reasons which will be
explained later.) Since (ab)4 yields the original round, we say (ab)4 = 1 and
D4 = {1, a, ab, aba, (ab)2, (ab)2a, (ab)3, (ab)3a}.

Now for a more complex example. We turn our attention now to the com-
position which is commonly referred to as Plain Bob Minimus. Plain Bob
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Minimus begins at the round and ends at the round (1, 2, 3, 4) and contains
all possible permutations of these four bells (in a particular order, described
below):

1 2 3 4 1 3 4 2 1 4 2 3

2 1 4 3 3 1 2 4 4 1 3 2

2 4 1 3 3 2 1 4 4 3 1 2

4 2 3 1 2 3 4 1 3 4 2 1

4 3 2 1 2 4 3 1 3 2 4 1

3 4 1 2 4 2 1 3 2 3 1 4

3 1 4 2 4 1 2 3 2 1 3 4

1 3 2 4 1 4 3 2 1 2 4 3

1 2 3 4

We can now describe this composition using the permutation notation as we
did for the plain lead on four bells. Let a = (1, 2)(3, 4) and b = (2, 3) represent
possible changes between rows. If we look at the first column of the Plain Bob
Minimus composition, we see that it is nothing more than the plain lead on
four bells. To generate the second column, we introduce a new permutation
c = (3, 4) and we simplify our notation by letting k = (ab)3ac. Multiplying
through, we generate the second column:

{k, ka, kab, kaba, k(ab)2, k(ab)2a, k(ab)3, k(ab)3a}.
Multiplying through by k again, we generate the third column:

{k2, k2a, k2ab, k2aba, k2(ab)2, k2(ab)2a, k2(ab)3, k2(ab)3a}.

This generation of Plain Bob Minimus shows that it can be expressed as the
disjoint union of ‘translations’ of the plain lead on four bells! We shall explain
this fact using group theory in the next chapter.

Now, since we chose a = (1, 2)(3, 4), b = (2, 3), and c = (3, 4), where b and
c are obviously by definition 2-cycle or transpositions and a is the product of
two such 2-cycles or transpositions, we have shown a further result, that each
permutation of Z4 can be written as a product of 2-cycles. More generally, we
can state the following theorem originally due to H. Steinhaus.

Theorem 3.5.1. Let f be a member of Sn, i.e., let f be any permutation of
degree n. Then f can be written as a product of transpositions.

To sketch a proof of this theorem (following [G]) and hence prove Theorem
3.4.1 as promised, we need only to recall that every permutation of Sn can be
written uniquely (up to order) as a product of disjoint cycles (Theorem 3.3.1
above).

Proof: Any k-cycle can be written as a product of k − 1 transpositions, as
in equation (3.1). We see that since any permutation can be written in terms of
cycles, and any cycle can be written as product of transposition, it follows that
every permutation of Zn can be written as a product of transpositions. ¤
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It was a knowledge of the permutations in Kent Treble Bob Major, a ringing of
eight bells, which helped Lord Peter Wimsey solve a murder mystery in Dorothy
Sayer’s The Nine Tailors [Sa].

A good reference for this section is A. White [Wh].
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Chapter 4

A procession of
permutation puzzles

How can it be that mathematics, being after all a product of human
thought independent of experience, is so admirably adapted to the objects
of reality?

Albert Einstein

I shall describe several permutation puzzles in this chapter. After presenting
a lot of mathematics, we shall finally have a chance to have fun attacking some
real puzzles! Though Einstein was talking about relativity in his quote, you’ll
see for yourself how admirably adapted combinatorics (and later group theory)
is to describing these puzzles.

First, we nail down for the sake of discussion a definition of what a permutation
puzzle is.

A one-person game is a sequence of moves that follow certain rules:

• There are finitely many moves at each stage.

• There is a finite sequence of moves that yields a solution.

• There are no chance or random moves.

• There is complete information about each move.

• Each move depends only on the present position, not on the existence or
non-existence of a certain previous move (such as chess, where castling is
made illegal if the king has been moved previously).

(The reader will find a fascinating discussion of ‘two-person games’ in the book
by Berlekamp, Conway, and Guy [BCG].)

A permutation puzzle is a one-person game with a finite set T of puzzle
pieces satisfying the four properties listed below:
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(1) For some n > 1 depending only on the puzzle’s construction, each move
of the puzzle corresponds to a unique permutation of the numbers in Zn.

(2) If the permutation of Zn in (1) corresponds to more than one puzzle
move, then the two positions reached by those two respective moves must
be indistinguishable.

(3) Each move, say M , must be ‘invertible’ in the sense that there must exist
another move, say M−1, which restores the puzzle to the position it was
at before M was performed.

(4) If M1 is a move corresponding to a permutation f1 of T and if M2 is a
move corresponding to a permutation f2 of T , then M1 ∗ M2 (the move
M1 followed by the move M2) is either.

– not a legal move, or

– corresponds to the permutation f1 ∗ f2.

Notation: As in step 4 above, we shall always write successive puzzle moves
left-to-right.

4.1 15 Puzzle

The 15 Puzzle is often associated with the puzzle inventor and problem composer
Sam Loyd (1841-1911). He began publishing chess puzzles at the age of 14, had
his own regular magazine column on chess problems by the age of 16, and by the
time he died had composed over 10,000 original problems in chess, mathematics,
and logic. Though some accounts state that the 15 Puzzle was discovered by
Sam Loyd, most authorities dispute this.

The 15 Puzzle is one of the earliest and most popular permutation puzzles.
The ‘solved position’ looks like this:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 •

These numbered squares represent sliding blocks which can only move into the
unoccupied square, denoted by a •. We shall sometimes label the blank square
as ‘16’ for convenience. The moves of the puzzle consist of sliding numbered
squares (such as 12, for example) into the blank square (e.g., swapping 12 with
16). In this way, each move of this puzzle may be regarded as a permutation of
the integers in {1, 2, ..., 16}.

Not every permutation of the {1, 2, ..., 16} corresponds to a possible position
of the puzzle. For example, the position
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1 2 3 4
5 6 7 8
9 10 11 12
13 15 14 •

cannot be attained from the previous position. (The mathematical reason for
this is explained in §7.4 below.)

Apparently, Sam Loyd applied for a U.S. patent for the above ‘impossible’
puzzle (the one with the 14, 15 swapped, called the ‘14-15 Puzzle’) but since
it could not be ‘solved’—i.e., put in the correct order 1, 2, ..., 15—no working
model could be supplied, so his patent was denied. (Patent or no, there were
apparently thousands of them on the market already.) Before the Rubik’s Cube
was invented, the 15 Puzzle was probably the most popular puzzle of all time.

The moves of the 15 Puzzle may be denoted as follows. Suppose we are in a
position such as

* U * *
L • R *
* D * *
* * * *

where the squares labeled with an asterisk can be anything. The possible moves
in the above diagram are

R = Ru,r,d,l = (r, 16) = swap r and 16,
L = Lu,r,d,l = (l, 16) = swap l and 16,
U = Uu,r,d,l = (u, 16) = swap u and 16,
D = Du,r,d,l = (d, 16) = swap d and 16,

where ‘16’ denotes the unoccupied space •.

Ponderable 4.1.1. Verify that the five defining properties of a permutation
puzzle are satisfied by the 15 Puzzle.

We shall call the 15 Puzzle a planar puzzle since all its pieces lie on a flat
board. This puzzle is discussed further in §7.4 below.

4.2 The Hockeypuck puzzle

The Hockeypuck puzzle is a mechanical puzzle invented by Andràs Vègh. Slice a
disk with 6 diametrical cuts into 12 congruent ‘pie pieces’. In the solved position,
the pieces are denoted 1, 2, ..., 12 clockwise. You may make the following moves
with this puzzle:
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4.3. RAINBOW MASTERBALL

• you may flip over any half of the disk bounded by a cut, leaving the other
half unmoved (of course this will change the colors of those pie slices which
were flipped);

• you may rotate the disk by any multiple of 30 degrees.

•

12

11

10

7

8

9

6

5

4

1

2

3

Since the pieces can be flipped over, the top halves of the pieces will be denoted
(1, 0), (2, 0), ..., (12, 0) and the corresponding bottom halves by (1, 1), (2, 1), ...,
(12, 1).

Basic moves: For the ith radial segment, let fi be the transformation which
flips over that half of the circle which contains the ith pie piece on its edge. Let
r denote the rotation of this circle by 30 degrees counterclockwise.

Ponderable 4.2.1. Verify that the five defining properties of a permutation
puzzle are satisfied by this example.

4.3 Rainbow Masterball

The Rainbow Masterball puzzle will simply be referred to as a ‘Masterball’ in
the following. The Masterball is a sphere that has been sliced like an apple
along its core into 8 congruent wedges, each having a different color. It has
also been sliced three times in the orthogonal direction: viewed as a globe, once
along the equator, once along the Tropic of Cancer, and once along the Tropic
of Capricorn. (In fact, these lines occur at approximately 23 degree north and
south of the equation, not 45 degrees as we shall describe it below.) View this
sphere as follows:
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4.3. RAINBOW MASTERBALL

A geodesic path from the north pole to the south pole is called a longitudinal
line and a closed path parallel to the equator is called a latitudinal line. There
are 8 longitudinal lines and 3 latitudinal lines. In spherical coordinates θ, φ,
and ρ (θ is the angle from the xz-plane, φ is the angle down from the z-axis, ρ
is the radius of the Masterball), the longitudinal lines are at the angles which
are multiples of π/4 radians (i.e., at θ = nπ/4 radians, n = 1, .., 8) and the
latitudinal lines are at φ = π/4, π/2, 3π/4 radians. (Here π = 3.141592... as
usual.)

Without these latitudinal slices, it looks similar to a beachball. Therefore, a
Masterball sphere has 32 tiles of 8 distinct colors. We shall assume that the
Masterball is in a fixed position in space, centered at the origin.

The sphere shall be oriented by the right-hand rule: the thumb of the right
hand wrapping along the polar axis points towards the north pole. We assume
that one of the longitudinal lines has been fixed once and for all. This fixed line
shall be labeled ‘1’, the next line (with respect to the orientation above) as ‘2’,
and so on.

Allowed moves: One may rotate the Masterball east-to-west by multiples
of π/4 along each of the 4 latitudinal bands or by multiples of π along each of
the 8 longitudinal lines.

A facet will be one of the 32 subdivisions of the Masterball created by these
circles. A facet shall be regarded as an immobile position on the sphere and
labeled either by an integer i ∈ {1, ..., 32} or by a pair (i, j) ∈ [1, 4] × [1, 8],
whichever is more convenient at the time. If a facet has either the north pole or
the south pole as a vertex then we call it a small (or polar) facet. Otherwise,
we call a facet large (or middle or equatorial). A coloring of the Masterball
will be a labeling of each facet by one of the 8 colors in such a way that

(a) each of the 8 colors occurs exactly twice in the set of the 16 small facets,

(b) each of the 8 colors occurs exactly twice in the set of the 16 large facets.
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4.3. RAINBOW MASTERBALL

A move of the Masterball will be a change in the coloring of the Masterball
associated with a sequence of maneuvers as described above.

We identify each of the 8 colors with an integer in {1, ..., 8} and identify the
collection of facets of the Masterball with a 4×8 array of integers in this range.
To solve an array one must, by an appropriate sequence of moves corresponding
to the above described rotations of the Masterball, put this array into a ‘rainbow’
position so that the matrix entries of each column has the same number. Thus
the array

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

is ‘solved’. The array

6 7 8 1 2 3 4 5
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

corresponds to a rotation of the north pole facets by 3π/4.

Notation. We use matrix notation to denote the 32 facets of the Master-
ball. The generators for the latitudinal rotations are denoted r1, r2, r3, r4. For
example, r1 sends

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

to
12 13 14 15 16 17 18 11
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

As you look down at the ball from the north pole, this move rotates the top
of the ball clockwise. The other moves r2, r3, r4 rotate the associated band of
the ball in the same direction—clockwise as viewed from the north pole. The
generators for the longitudinal rotations are denoted f1, f2, ..., f8. For example,
the move f1r1 sends

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
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4.3. RAINBOW MASTERBALL

to

44 43 42 41 15 16 17 18
34 33 32 31 25 26 27 28
24 23 22 21 35 36 37 38
14 13 12 11 45 46 47 48

With these rules, one can check the relation

f5 = r4
1 ∗ r4

2 ∗ r4
3 ∗ r4

4 ∗ f1 ∗ r4
1 ∗ r4

2 ∗ r4
3 ∗ r4

4.

Ponderable 4.3.1. Find similar identities for f6, f7, f8.

Also, one can check that

r1 = (f3 ∗ f7)
−1 ∗ r−1

4 ∗ f3 ∗ f7.

Ponderable 4.3.2. There are similar identities for r2, r3, r4. Find them.

Identify the facets of the Masterball with the entries of the array

8 7 6 5 4 3 2 1
16 15 14 13 12 11 10 9
24 23 22 21 20 19 18 17
32 31 30 29 28 27 26 25

We may express the generators of the Masterball group in disjoint cycle notation
as a subgroup of S32 (the symmetric group on 32 letters):

r−1
1 = (1, 2, 3, 4, 5, 6, 7, 8),

r−1
2 = (9, 10, 11, 12, 13, 14, 15, 16),

r−1
3 = (17, 18, 19, 20, 21, 22, 23, 24),

r−1
4 = (25, 26, 27, 28, 29, 30, 31, 32),

f1 = (5, 32)(6, 31)(7, 30)(8, 29)(13, 24)(14, 23)(15, 22)(16, 21),
f2 = (4, 31)(5, 30)(6, 29)(7, 28)(12, 23)(13, 22)(14, 21)(15, 20),
f3 = (3, 30)(4, 29)(5, 28)(6, 27)(11, 22)(12, 21)(13, 20)(14, 19),
f4 = (2, 29)(3, 28)(4, 27)(5, 26)(10, 21)(11, 22)(12, 23)(13, 24),

f5 = (1, 28)(2, 27)(3, 26)(4, 25)(9, 20)(10, 19)(11, 18)(12, 17),
f6 = (8, 27)(1, 26)(2, 25)(3, 32)(16, 19)(9, 18)(10, 17)(11, 24),
f7 = (7, 26)(8, 25)(1, 32)(2, 31)(15, 18)(16, 17)(9, 24)(10, 23),
f8 = (6, 25)(7, 32)(8, 31)(1, 30)(14, 17)(15, 24)(16, 23)(9, 22).

Ponderable 4.3.3. Verify that the properties of a permutation puzzle are sat-
isfied for the Masterball.

More information on this puzzle is given in §§13.6 and 15.3.
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4.4 Pyraminx

The Pyraminx is one of the puzzles invented by Uwe Méffert (1939-), who also
markets several of his inventions (see http://www.mefferts.com for more in-
formation).

A tetrahedron is a 4-sided regular platonic solid, all of whose faces are
equilateral triangles. In the Pyraminx, each of the 4 faces of the puzzle is
divided into 9 triangular facets.

There are a total of 4 · 9 = 36 facets on the Pyraminx. They will be labeled
as in the figure below. (The reader may want to xerox this figure (enlarging it),
cut it out, then fold the corners and tape it into a tetrahedron.)
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We fix an orientation of the tetrahedron in space so that you are looking at a
face which we call the ‘front’. We may also speak of a ‘right’, ‘left’, and ‘down’
face. We label the 4 faces as f(ront), r(ight), l(eft), d(own). We label the
vertices U(p), R(ight), L(eft), and B(ack).

The tetrahedron itself has been subdivided into sub-tetrahedrons as follows:
to each vertex X (so X ∈ {U,R,L,B}) there is an opposing face F of the solid.
For each such face, we slice the solid along two planes parallel to the face F
and lying in between the face and the vertex. We want these planes, along with
the face and the vertex to be spaced apart equally. The sub-tetrahedrons in
the slice of the face itself will be called the face slice associated with the face
F , denoted F1; the sub-tetrahedrons in the middle slice parallel to the face F
will be called the middle slice associated with that face, denoted F2; and the
sub-tetrahedron containing the vertex X to the face tip associated with that
vertex, denoted F3.
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To each face labeled F , we have a clockwise rotation by 120 degrees of the
first slice F1 of the face. We shall denote this rotation also by F1. This rotation
only moves the facets on the slice F1. Similarly, we have a clockwise rotation
by 120 degrees of the second slice F2 of the face. We shall denote this rotation
also by F2. F3 denotes the clockwise rotation by 120 degrees of the opposing
sub-tetrahedron containing the vertex X. These moves permute the labels for
the 36 facets, and hence may be regarded as a permutation of the numbers
1, 2, ..., 36.

For example, the clockwise rotation by 120 degrees (looking at the front face)
of the sub-tetrahedron opposite to the front face will be denoted F3. The disjoint
cycle notation for this move, regarded as a permutation, is

F3 = (23, 22, 36).

The basic moves are given as follows:

F1 = (2, 32, 27)(8, 31, 26)(7, 30, 12)(19, 29, 11)×
×(18, 28, 3)(1, 17, 13)(6, 15, 4)(5, 16, 14)

F2 = (9, 35, 25)(21, 34, 24)(20, 33, 10)
F3 = (23, 22, 36)
R1 = (3, 36, 17)(11, 34, 16)(10, 35, 6)×

×(24, 31, 5)(23, 32, 1)(2, 22, 18)(9, 20, 7)(8, 21, 19)
R2 = (12, 33, 15)(26, 29, 14)(25, 30, 4)
R3 = (27, 28, 13)
L1 = (1, 28, 22)(5, 29, 21)(4, 33, 9)×

×(14, 34, 8)(13, 36, 2)(3, 27, 23)(11, 26, 24)(12, 25, 10)
L2 = (6, 30, 20)(16, 31, 19)(15, 35, 7)
L3 = (17, 32, 18)
D1 = (13, 18, 23)(14, 19, 24)(15, 20, 25)×

×(16, 21, 26)(17, 22, 27)(28, 32, 36)(29, 31, 34)(30, 35, 33)
D2 = (4, 7, 10)(5, 8, 11)(6, 9, 12)
D3 = (1, 2, 3)

All other moves are obtained by combining these moves sequentially. Indeed,
later, we shall want to use moves of the form F2 ∗ F3, for each face F , but the
disjoint cycle notation for these permutations is a little more cumbersome to
write down.

Ponderable 4.4.1. Verify that the properties of a permutation puzzle are sat-
isfied for the Pyraminx, and while doing so, remember Shakespeare’s phrase,
‘Though this be madness, yet there is method in’t.’

Here’s how to construct the group of the Pyraminx using SAGE. (Our count
is 12 times larger than the usual number of elements, 75582720, since we allow
for symmetries; 933120 is the count without ‘tip moves.’)
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SAGE

sage: S36 = SymmetricGroup(36)
sage: F1 = S36([(2,32,27),(8,31,26),(7,30,12),(19,29,1 1),\

(18,28,3),(1,17,13),(6,15,4),(5,16,14)])
sage: F2 = S36([(9, 35, 25),(21, 34, 24),(20, 33, 10)])
sage: F3 = S36([(23, 22, 36)])
sage: R1 = S36([(3,36,17),(11,34,16),(10,35,6),(24,31, 5),\

(23,32,1),(2,22,18),(9,20,7),(8,21,19)])
sage: R2 = S36([(12, 33, 15),(26, 29, 14),(25, 30, 4)])
sage: R3 = S36([(27, 28, 13)])
sage: G = PermutationGroup([F1,F2,F3,R1,R2,R3])
sage: G.order()
906992640
sage: L1 = S36([(1,28,22),(5,29,21),(4,33,9),(14,34,8) ,\

(13,36,2),(3,27,23),(11,26,24),(12,25,10)])
sage: L2 = S36([(6,30,20),(16,31,19),(15,35,7)])
sage: L3 = S36([(17,32,18)])
sage: G = PermutationGroup([F1,F2,F3,R1,R2,R3,L1,L2,L3 ])
sage: G.order()
906992640
sage: 302330880/4
75582720
sage: 933120 * 81
75582720
sage: 906992640/75582720
12

4.5 Rubik’s Cubes

We shall consider briefly the 2 × 2 × 2 and 3 × 3 × 3 Rubik’s Cubes.

4.5.1 2 × 2 × 2 Rubik’s Cube

The ‘pocket’ Rubik’s Cube has 6 sides, or ‘faces’, each of which has 2 · 2 = 4
‘facets’, for a total of 24 facets:

Fix an orientation of the Rubik’s Cube in space. We may label the 6 sides
as f , b, l, r, u, d (‘front’, ‘back’, ‘left’, ‘right’, ‘up’, ‘down’, respectively). The
pocket cubet has 8 subcubes. Each face of the cube is associated to a ‘slice’
of 4 subcubes which share a facet with the face. The face, along with all of
the 4 cubes in the ‘slice’, can be rotated by 90 degrees clockwise. We denote
this move by the uppercase letter associated to the lowercase letter denoting
the face. For example, F denotes the move which rotates the front face by 90
degrees to clockwise.
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Figure 4.1: Facet labeling on the 2 × 2 × 2 Rubik’s cube

We label the 24 facets of the 2× 2 Rubik’s Cube as in Ponderable 3.3.3. The
24 facets will be denoted by xyz, where x is the face on which the facet lives and
y, z (or z, y—it doesn’t matter) indicate the two edges of the facet. Written in
clockwise order, the ‘Singmaster notation’ is

front face fru frd fld flu
back face blu bld brd bru
right face rbu rbd rfd rfu

left face lfu lfd lbd lbu
up face urb urf ulf ulb

down face drf drb dlb dlf

Ponderable 4.5.1. Verify that the properties of a permutation puzzle are sat-
isfied for this puzzle.

For future reference, we call this system of notation (which we will also use
for the 3×3×3 and 4×4×4 Rubik’s Cube) the Singmaster notation, named
after the British mathematician and puzzling enthusiast David Singmaster.

4.5.2 3 × 3 × 3 Rubik’s Cube

In this section I shall, for the most part, simply introduce enough notation (due
to Singmaster [Si]) to allow us to check that the puzzle is in fact a permutation
puzzle. I shall also introduce a two-person game that is easier to play and learn
than solving the cube.

The Rubik’s Cube has 6 sides, or ‘faces’, each of which has 3 · 3 = 9 ‘facets’,
for a total of 54 facets. Since the center facets are fixed by the basic moves,
there are only 54 − 6 = 48 facets which need labeling. We label these facets
1, 2, ..., 48 as in Figure 4.5.2.

The standard generators, corresponding to the six faces of the cube, may then
be written in disjoint cycle notation as
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Figure 4.2: Facet labeling on the 3 × 3 × 3 Rubik’s cube

F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11),
B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27),
L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35),
R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24),
U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19),
D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40).

Ponderable 4.5.2. Check that these six basic moves can indeed be described
using the above disjoint cycle notation. (It is helpful to xerox the above diagram,
cut it out, and tape together a paper cube for this exercise.)

The notation for the facets will be similar to the notation used for the 2×2×2
Rubik’s Cube. The corner facets will have the same notation and the edge facets
will be denoted by xy, where x is the face on which the facet is located and
y is the face the facet borders to. In clockwise order, starting with the upper
right-hand corner of each face, the ‘Singmaster notation’ is
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front face fru fr frd fd fld fl flu fu
back face blu bl bld bd brd br bru bu
right face rbu rb rbd rd rfd rf rfu ru

left face lfu lf lfd ld lbd lb lbu lu
up face urb ur urf uf ulf ul ulb ub

down face drf dr drb db dlb dl dlf df

Ponderable 4.5.3. Verify that the properties of a permutation puzzle are sat-
isfied for the Rubik’s Cube.

Example 4.5.1. Here is an example of using SAGE to simulate a move on a
Rubik’s Cube.

You can enter the Rubik’s Cube group as a permutation group generated by the
permutations listed above. Permutation groups are objects defined in the next
chapter, but for now think of them as sets whose elements are in one-to-one
correspondence with the ‘states’ of the Rubik’s Cube, with a fixed orientation in
space.

SAGE

sage: f= [(17,19,24,22),(18,21,23,20),(6,25,43,16),\
(7,28,42,13),(8,30,41,11)]

sage: b=[(33,35,40,38),(34,37,39,36),( 3, 9,46,32),\
( 2,12,47,29),( 1,14,48,27)]

sage: l=[( 9,11,16,14),(10,13,15,12),( 1,17,41,40),\
( 4,20,44,37),( 6,22,46,35)]

sage: r=[(25,27,32,30),(26,29,31,28),( 3,38,43,19),\
( 5,36,45,21),( 8,33,48,24)]

sage: u=[( 1, 3, 8, 6),( 2, 5, 7, 4),( 9,33,25,17),\
(10,34,26,18),(11,35,27,19)]

sage: d=[(41,43,48,46),(42,45,47,44),(14,22,30,38),\
(15,23,31,39),(16,24,32,40)]

sage: cube = PermutationGroup([f,b,l,r,u,d])
sage: F,B,L,R,U,D = cube.gens()
sage: cube.order()
43252003274489856000
sage: F.order()
4

(As an exercise, do the analogous commands for the Masterball, Pyraminx, and
2 × 2 × 2 cube puzzles above.)

Given a ‘numerical’ labeling as in Figure 4.5.2, you can determine the Singmas-
ter notation for it using SAGE. For example, the facet labeled with the numeral
41 corresponds to the Singmaster notation dlf.

SAGE

sage: from sage.groups.perm_gps.cubegroup import *
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sage: index2singmaster(41)
’dlf’

The SAGE command CubeGroup() encodes a lot of the data associated to the
cube: the group, the generators, even the colors.

SAGE

sage: rubik = CubeGroup()
sage: rubik.move("")
[(), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48]]
sage: rubik.faces("R * L")
{’back’: [[48, 34, 6], [45, 0, 4], [43, 39, 1]],

’down’: [[40, 42, 19], [37, 0, 21], [35, 47, 24]],
’front’: [[41, 18, 3], [44, 0, 5], [46, 23, 8]],
’left’: [[11, 13, 16], [10, 0, 15], [9, 12, 14]],
’right’: [[27, 29, 32], [26, 0, 31], [25, 28, 30]],
’up’: [[17, 2, 38], [20, 0, 36], [22, 7, 33]]}

sage: P = rubik.plot_cube("Rˆ2 * Uˆ2 * Rˆ2 * Uˆ2 * Rˆ2 * Uˆ2")
sage: show(P)

This will display the 2-D plot of the Rubik’s cube after the move R2 ∗ U2 ∗R2 ∗
U2 ∗ R2 ∗ U2 is made, shown below. (Replace plot_cube by plot3d_cube for
the 3-d plot below, which shows the up, front and right faces.)

Figure 4.3: R2 ∗ U2 ∗ R2 ∗ U2 ∗ R2 ∗ U2.

On the other hand, if you use the SAGE notebook interface, then the com-
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4.5. RUBIK’S CUBES

mand RubiksCube().move("R^2*U^2*R^2*U^2*R^2*U^2").show3d() produces
the plot shown in Figure 4.4.

Figure 4.4: R2 ∗ U2 ∗ R2 ∗ U2 ∗ R2 ∗ U2.

4.5.3 Some two-player Rubik’s Cube games

We collect some two-player games associated with the Rubik’s Cube, motivated
by [BCG], vol. II.

The superflip game

The position of the Rubik’s Cube where every edge is flipped, but all the other
subcubes are unaffected, is called the superflip position.

To play the game, first choose two particular faces as your up (U) and front
(F ) faces—say white is up and red is front (assuming you have a cube with
adjacent white and red faces). Imagine the cube being placed in space with
rectangular coordinate axes in such a way that the bdl corner is at the origin
(0, 0, 0), the dl edge is along the x-axis and the bl edge is along the z-axis.

The rules (‘slice-superflip game’):

1. Players alternate making moves starting with the cube in the solved posi-
tion. The first player is determined by (say) a coin toss.

2. A move consists of flipping over exactly two edges. Both edges must lie
in a slice. The edge closest to the origin (or, if this is a tie, closest to the
x-axis) must be flipped from ‘solved’ to ‘wrong’.

3. The first player to reach the superflip position wins.

Of course, to play this game you must know several edge-flipping moves, such
as those in §15.1 below.
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4.6. SKEWB

This game is related to a game that might be called a ‘three-dimensional
acrostic twins game’. (See [BCG], vol. II, page 441, for a two-dimensional
acrostic twins game.)

Several alternate versions of this game may also be played.

The Nonslice-superflip game

The rules are the same except the condition that the two edges belong to the
same slice is either dropped altogether or replaced by the condition that the two
edges do not belong to the same slice.

The Möbius-superflip game

The rules for this version are the same except the condition that two edges
are flipped is to be replaced by any number of edges fewer than 6 are to be
flipped. This game is related to a game that might be called a ‘three-dimensional
Möbius’. (See [BCG], vol. II, page 434, for a Möbius game.)

Ponderable 4.5.4. Play a game!

4.6 Skewb

The Skewb is a cube-shaped puzzle invented by a London journalist named
Tony Durham. The Skewb has been subdivided into regions differently than
the Rubik’s Cube: its 8 corners have been sliced in such a way that each edge
of the cube is bisected by the slice. The 8 corner pieces are each in the shape
of a tetrahedron. First, fix an orientation of the cube in space, so we may talk
about a front face, a back face, up, down, left, and right. Each of these six
square faces are subdivided into five facets as follows:
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The four corner facets are labeled exactly as in the case of the Rubik’s cube (as
the lowercase xyz, where x is the label of the face the facet lives on, and y and
z are the two neighboring faces).

The moves of the Skewb are different from the Rubik’s Cube as well: Label
the corners as XY Z, where xyz is the notation for any of the facets belonging
to that corner piece. Pick a corner XY Z of the cube and draw a line L passing
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4.6. SKEWB

through that corner vertex and the opposite corner vertex (‘skewering the cube’).
That line defines a 120 degree rotation in the clockwise direction (viewed from
the line looking down onto the corner you picked). One move of the Skewb is
defined in terms of this rotation as follows: Of course a 120-degree rotation of
the entire cube about the line L will preserve the cube but swap some faces and
some vertices. The Skewb has a mechanism so that you can actually rotate half
(a ‘skewed’ half) the Skewb by 120 degrees about L and leave the other half
completely fixed. This rotation of half the Skewb about L will also be denoted
XY Z.
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Figure 4.5: Labeling the Skewb facets
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The eight basic moves are given by

FUR = (2, 30, 12)(6, 16, 21)(7, 18, 25)(8, 19, 22)(10, 17, 24)
RUB = (5, 13, 7)(16, 26, 21)(17, 30, 22)(18, 27, 23)(20, 29, 25)
BUL = (1, 26, 16)(2, 28, 17)(4, 30, 19)(5, 27, 20)(10, 14, 22)
LUF = (1, 16, 6)(2, 19, 10)(3, 20, 7)(5, 18, 9)(15, 27, 25)
FDR = (3, 18, 29)(6, 21, 11)(7, 23, 15)(8, 24, 12)(9, 25, 13)
BDR = (4, 8, 17)(11, 21, 26)(12, 22, 28)(13, 23, 29)(14, 24, 30)
FDL = (1, 6, 11)(2, 8, 14)(3, 9, 15)(4, 10, 12)(19, 24, 28)
LDB = (1, 11, 26)(3, 13, 27)(4, 14, 28)(5, 15, 29)(9, 23, 20).

This uses the labeling of the 5 · 6 = 30 facets as in Figure 4.6. All other moves
are obtained by combining these moves sequentially. The set of all moves of the
Skewb group can be created in SAGE using the following commands.

SAGE

sage: FUR = "(2,30,12)(6,16,21)(7,18,25)(8,19,22)(10,1 7,24)"
sage: RUB = "(5,13,7)(16,26,21)(17,30,22)(18,27,23)(20 ,29,25)"
sage: BUL = "(1,26,16)(2,28,17)(4,30,19)(5,27,20)(10,1 4,22)"
sage: LUF = "(1,16,6)(2,19,10)(3,20,7)(5,18,9)(15,27,2 5)"
sage: FDR = "(3,18,29)(6,21,11)(7,23,15)(8,24,12)(9,25 ,13)"
sage: BDR = "(4,8,17)(11,21,26)(12,22,28)(13,23,29)(14 ,24,30)"
sage: FDL = "(1,6,11)(2,8,14)(3,9,15)(4,10,12)(19,24,2 8)"
sage: LDB = "(1,11,26)(3,13,27)(4,14,28)(5,15,29)(9,23 ,20)"
sage: G = PermutationGroup([FUR,RUB,BUL,LUF,FDR,BDR,FD L,LDB])
sage: G.order()
37791360

Example 4.6.1. Consider the rotation UFR associated to the corner ufr. This
move permutes the facets of the Skewb. As a permutation, the disjoint cycle
notation for this move is

UFR = (6, 16, 21)(7, 18, 25)(10, 17, 24)(8, 19, 22).

Note, in particular, that UFR does not move the 9-facet.

Ponderable 4.6.1. Verify that the properties of a permutation puzzle are sat-
isfied for the Skewb.

4.7 Megaminx

This puzzle is in the shape of a dodecahedron, a 12-sided regular platonic solid
in which each of the 12 faces is a pentagon. We call two faces neighboring
if they share an edge. There are 20 vertices and 30 edges on a dodecahedron.
Each vertex meets exactly three edges and exactly three faces.
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Each of the puzzle faces has been subdivided into 11 facets by slicing it with
a cut that is parallel to an edge and about one-fifth the way to the opposite
vertex. Each face has a total of 5 such cuts, creating 11 facets. There are a
total of 11 · 12 = 132 facets on the puzzle. Each face of the solid is parallel
to a face on the opposite side. Fix a face of the dodecahedron and consider
a plane parallel to that face slicing through the solid and about one-fifth the
way to the opposite face. Now imagine this plane as subdividing, or slicing, the
dodecahedron in two. Do this for each of the 12 faces, yielding 12 such slices of
the dodecahedron in total. These slices subdivide each of the 12 faces into the
same 11 facets as mentioned above.

For each such slice associated to a given face fi there is a basic move, still
denoted fi, of the Megaminx given by rotation of the slice clockwise of the
Megaminx by 72 degrees, leaving the rest of the dodecahedron untouched. Such
a move effects 26 facets of the Megaminx and leaves the remaining 106 facets
completely fixed.

Label the 12 faces of the solid as f1, f2, ..., f12 in some fixed way.
Imagine that the dodecahedron is placed in 3-space in such a way that one

side lies flat on the xy-plane and is centered along the positive z-axis. Let s
denote its height and r the radius of the inscribed circle for any pentagonal face.

Ponderable 4.7.1. Suppose r = 1. Find s. (This is fairly hard. See chapter
8, on Platonic solids, for some ideas.)

The up face we label as f1. The neighboring faces on the upper half of the
puzzle may be labeled according to the picture in Figure 4.6, which represents
the dodecahedron as viewed from above. The faces on the bottom are labeled
similarly: the bottom face is labeled f12 and, moving counterclockwise, label
the remaining bottom faces f7, ..., f11, where f7 neighbors both f2 and f6.

Figure 4.6: The Megaminx labeling.

A more symmetric way to order the faces of the dodecahedron is as follows
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4.7. MEGAMINX

(see [B1], exercise 18.35):

f1 u
f2 u0

f3 u1

f4 u2

f5 u3

f6 u4

f7 d2

f8 d3

f9 d4

f12 d
f11 d1

f10 d0

One property of this labeling is explained in Ponderable 4.7.2.

Ponderable 4.7.2. Suppose that the permutation (0, 1, 2, 3, 4) of the numbers
{0, 1, 2, 3, 4} acts on the labels u0, ..., u4 and d0, ..., d4 in the obvious way. Show
that this permutation of the faces corresponds to a rotation of the dodecahedron.

Notice that, like the cube, each vertex is uniquely determined by specifying
the three faces it has in common. We use the notation x.y.z for the vertex of
the dodecahedron that lies on the three faces x, y, z. Note that the order is
irrelevant: x.y.z denotes the same vertex as y.x.z or z.y.x.

The facets of the Megaminx may be specified as with the Rubik’s Cube: a
corner facet may be specified as [x.y.z], where x is the face the facet lives on and
y, z are the two neighboring faces of the facet. An edge facet may be specified
by [x.y], where x is the face the facet lives on and y is the other neighboring
face of the facet. The center facet of f1 will simply be denoted by [f1]. We will
call this label the intrinsic label.

We may label the facets of the up face f1 as follows:

f1 facet symbol Numerical label Intrinsic label
a 1 [f1.f6.f2]
b 2 [f1.f2]
c 3 [f1.f2.f3]
d 4 [f1.f3]
e 5 [f1.f3.f4]
f 6 [f1.f4]
g 7 [f1.f4.f5]
h 8 [f1.f5]
i 9 [f1.f5.f6]
j 10 [f1.f6]
k 11 [f1]

For the next face (the f2 face), we label the facets in such a way that the abc
edge of f1 joins the ghi edge of f2:
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f2 facet symbol Numerical label Intrinsic label
a 12 [f2.f6.f7]
b 13 [f2.f7]
c 14 [f2.f7.f8]
d 15 [f2.f8]
e 16 [f2.f8.f3]
f 17 [f2.f3]
g 18 [f2.f3.f1]
h 19 [f2.f1]
i 20 [f1.f5.f6]
j 21 [f2.f6]
k 22 [f2]

In general, we can label the remaining facets in such a way that the basic
moves are, as permutations, given by

f1 = (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)(20, 31, 42, 53, 64)×
×(19, 30, 41, 52, 63)(18, 29, 40, 51, 62)

f2 = (12, 14, 16, 18, 20)(13, 15, 17, 19, 21)(1, 60, 73, 84, 31)×
×(3, 62, 75, 86, 23)(2, 61, 74, 85, 32)

f3 = (23, 25, 27, 29, 31)(24, 26, 28, 30, 32)(82, 95, 42, 3, 16)×
×(83, 96, 43, 4, 17)(84, 97, 34, 5, 18)

f4 = (34, 36, 38, 40, 42)(35, 37, 39, 41, 43)(27, 93, 106, 53, 5)×
×(28, 94, 107, 54, 6)(29, 95, 108, 45, 7)

f5 = (45, 47, 49, 51, 53)(46, 48, 50, 52, 54)(38, 104, 117, 64, 7)×
×(39, 105, 118, 65, 8)(40, 106, 119, 56, 9)

f6 = (56, 58, 60, 62, 64)(57, 59, 61, 63, 65)(49, 115, 75, 20, 9)×
×(50, 116, 76, 21, 10)(51, 117, 67, 12, 1)

f7 = (67, 69, 71, 73, 75)(68, 70, 72, 74, 76)(58, 113, 126, 86, 12)×
×(59, 114, 127, 7, 13)(60, 115, 128, 78, 14)

f8 = (78, 80, 82, 84, 86)(79, 81, 83, 85, 87)(71, 124, 97, 23, 14)×
×(72, 125, 98, 24, 15)(73, 126, 89, 25, 16)

f9 = (89, 91, 93, 95, 97)(90, 92, 94, 96, 98)(80, 122, 108, 34, 25)×
×(81, 123, 109, 35, 26)(82, 124, 100, 36, 27)

f10 = (100, 102, 104, 106, 108)(101, 103, 105, 107, 109)×
×(91, 130, 119, 45, 36)(92, 131, 120, 46, 37)(93, 122, 111, 47, 38)

f11 = (111, 113, 115, 117, 119)(112, 114, 116, 118, 120)×
×(102, 128, 67, 56, 47)(103, 129, 68, 57, 48)(104, 130, 69, 58, 49)

f12 = (122, 124, 126, 128, 130)(123, 125, 127, 129, 131)×
×(100, 89, 78, 69, 111)(101, 90, 79, 70, 112)(102, 91, 80, 71, 113)

4.8 Other permutation puzzles

With regret, I have left out several puzzles. These include such marvelous
items as the 4× 4× 4 Rubik’s Cube, the 5× 5× 5 Rubik’s Cube; ‘Topspin’ and
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‘Turnstile’ (planar puzzles); ‘Mozaika’ and ‘Equator’; ‘(Adam) Alexander’s Star’
(a stellated icosahedron), the ‘Impossiball’ (a spherically shaped icosahedron;
see [H]), and ‘Mickey’s Challenge’ (a spherically shaped irregular polyhedron
with Mickey Mouse figures on it, this puzzle is essentially the same as the
Skewb but with some added orientations of faces).

There seems to be no end to the diversity of such puzzles. ‘Christoph’s Jewel’,
designed by the German mathematician Christoph Bandelow, based on an in-
vention of Josef Trajber, is essentially a truncated ‘Rubik octahedron’ and may
be solved using ‘super-Rubik’s Cube moves’ (see [H]). [For fun, you can take a
Rubik’s Cube, strip off all the stickers (using soap and water), and replace them
with new stickers modeling a Rubik octahedron. This is because the octahedron
is the dual solid of the cube, as described in chapter 8 on symmetry and the
Platonic solids, below.]

There are even battery-run puzzles. For example the ‘Orbix’ puzzle, which
has 12 buttons, one at each vertex of an icosahedron, that light up. This is a
permutation puzzle if you think of a move (which switches certain of the buttons
on/off) as permuting the elements of the set of all subsets of the 12 buttons (the
subset of buttons which are lit) among themselves. We’ll see this puzzle and
other related ones later on in chapter 6 on Merlin’s Machines.

If this isn’t enough, you can find mention of other ‘Rubik’s Cube-like puzzles’
in many other works, such as [Ru], [Si], [H], [B1], [GT], [J2] and Jaap Scherphuis’
excellent site [Sch2].
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Chapter 5

What’s commutative and
purple?

Q: What’s commutative and purple?

A: An abelian grape.

Ancient math joke

A story told by Freeman Dyson (1923-), one of the great mathematical physi-
cists of our times, goes as follows: In the early part of the last century math-
ematician Oswald Veblen and the physicist James Jeans were discussing the
reform of the mathematical curriculum at Princeton University. Jeans argued
that group theory should be omitted, claiming that group theory was a subject
that will never be of any use to physics. Veblen must have won the argument
because group theory continued to be taught. It is ironic indeed that group
theory not only grew into one of the central themes of physics, but much of the
ground-breaking research actually took place at Princeton!

In a rough sense, group theory is the mathematical study of symmetry. The
Rubik’s Cube displays a remarkable amount of symmetry. This chapter is an
introduction to group theory–another useful tool for the Rubik’s Cube mechanic
wishing to fix his cube, so to speak.

When we studied permutation puzzles in chapter 4, one of the criteria was
that each move was ‘invertible’. This is, in fact, one of the conditions for the
set of all legal moves of a permutation puzzle to form a group.

A group can be defined very generally as a set having a small number of
properties. One of these properties is that you need to be able to combine two
elements of the set in some particular way to get another element. In the case
of the Rubik’s Cube, if you combine two moves, you get another move. The
precise abstract way to state this type of property is using the notion of a ‘binary
operation’. A binary operation ∗ on a set G is a function that associates with
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each pair of elements (g1, g2) of G a single element g3, also denoted g3 = g1 ∗g2,
in G: ∗ : G × G → G. A group G is a set with a binary operation ∗ (called the
‘group operation’) satisfying certain properties to be given later. For example,
one property is that any element has an ‘inverse element’ associated with it. In
the case of the Rubik’s Cube, if you make any move (or sequence of moves),
you can always undo the effect of that move by simply reversing every step.
This ‘reverse move’ is the ‘inverse’ of the original move, as we will see. Another
point to keep in mind is that the notation ∗ for the binary operation is not
standard. Some people use +, some use ∗, some use ·, some omit it and simply
use juxtaposition of elements. Which notation is used depends on the group
in question, but hopefully, this will be unambiguous from the context. In later
chapters, we will most often use · or juxtaposition.

Before defining a group, we must decide, just as for sets, on what notation to
use to describe or write down a group G. If G is finite then one way is to list all
the elements in G and list (or tabulate) all the values of the function ∗. Another
method is to describe G in terms of some properties and then define a binary
operation ∗ on G. A third method is to give a ‘presentation’ of G (more on this
later). Each method has its advantages and disadvantages. We shall eventually
use all three approaches.

First, though, we start with some examples.

5.1 The unit quaternions

In the fall of 1843, William R. Hamilton (1805-1865) was walking along the
Royal Canal in Ireland with his wife. It was then and there that Hamilton
found a generalization of the complex numbers - quaternions. Quaternions are
‘numbers’ of the form a + bi + cj + dk, where a, b, c, d ∈ R are real numbers, i
is the usual

√
−1 and j and k satisfy

i2 = j2 = k2 = ijk = −1.

In fact, Hamilton could not resist the impulse to carve the formulae for the
quaternions in the stone of Brougham Bridge as he and his wife passed it.

Quaternions are not only useful for physics but also for computer graphics
animation. They can be added or subtracted easily:

(a1+b1i+c1j+d1k)+(a2+b2i+c2j+d2k) = (a1+a2)+(b1+b2)i+(c1+c2)j+(d1+d2)k.

To multiply two quaternions, you use the distributive law and the multiplication
rules for i, j, k given above. One important difference between multiplying two
quaternions q1, q2 together and multiplying two real numbers r1, r2 together is
that, in general, q1q2 6= q2q1 (for example, ij 6= ji) whereas we always have
r1r2 = r2r1 (for example,

√
2 · 3 = 3 ·

√
2).

Let Q denote the quaternion group:

Q = {1,−1, i,−i, j,−j, k,−k}.
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The elements of Q are known as unit quaternions. As above, the elements
satisfy the rules: i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, and in general,
xy = −yx for x, y belonging to {i, j, k}, x 6= y. Multiplication for this group
can be visualized by the following picture:
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This handy mnemonic device indicates that ij = k, since the ordering is consis-
tent with the arrows, and ji = −k, since the ordering is not consistent with the
arrows.

Though Hamilton discovered the quaternions (though Gauss may have known
of them earlier), it may have been Cayley who first noticed that the unit quater-
nions form a group.

5.2 Finite cyclic groups

Consider the set of Rubik’s Cube moves G = {1, R,R2, R3}. We make several
more or less obvious observations:

• If you make any other rotations of the right face of the cube you won’t
get any new moves, i.e., ones not already included G. In particular, if you
compose any two moves in this set you get another move in this set.

• The move that ‘undoes’ the effect of R is in this set (in fact, R followed
by R3 is the identity move 1, so R3 must ‘undo’ R).

• If ∗ : G × G → G is simply the map defined by sending a pair (Ri, Rj),
with 0 ≤ i, j ≤ 3, to the composition of these two moves, Ri ∗Rj = Ri+j ,
then ∗ is a binary operation.

It turns out that this set G with this operation ∗ is an example of a group.

Example 5.2.1. Let C12 be the set whose elements are {0, 1, . . . , 11} and for
which the group operation ∗ is simply ‘addition mod 12’. This is how one adds
time on a clock (except that we call ‘12 o’clock’ ‘0 o’clock’). Thus 5 + 8 = 1,
1 + 11 = 0, and so on.

Questions: What is the (‘inverse’) element that, when added to 5, gives you
0? What is the inverse element of 1?

This group is called the cyclic group of order 12.
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Definition 5.2.1. Let n > 1 be an integer and let Cn be the group whose ele-
ments are {0, 1, . . . , n−1} and for which the group operation is simply ‘addition
modulo n’. This group is called the (additive) cyclic group of order n. It is
oftentimes also denoted by Z/nZ.

Geometrically, this may be regarded as the group of all possible rotations of
a regular n-gon. This idea is explored in more detail in §5.3 below.

5.3 The dihedral group

Pick an integer n > 2 and let R be a regular n-gon centered about the origin
in the plane. If n = 3 then R is an equilateral triangle, if n = 4 then R is
a square, if n = 5 then R is a pentagon, and so on. Let G denote the set of
all linear transformations of the plane to itself that preserve the figure R. The
binary operation ◦ : G × G → G given by composition of functions gives G the
structure of a group. This group is called the group of symmetries of R.

Incidentally, if we regard R as a figure in 3-space centered above the origin
and let G denote the set of all linear transformations of 3-space, then we obtain
a slightly larger group in some cases (see Example 9.3.4 below and [NST] for
more details).

Label the vertices of the n-gon as 1, 2, . . . , n. The group G permutes these
vertices amongst themselves; hence, each g ∈ G may be regarded as a permuta-
tion of the set of vertices V = {1, 2, . . . , n}. In this way, we may regard G as a
permutation group, since it is the subgroup of Sn generated by the elements of
G.

The fact that this group has 2n elements follows from a simple counting ar-
gument: Let r ∈ G denote the element that rotates R by 2π/n radians counter-
clockwise about the center. Let L be a line of symmetry of R that bisects the
figure into two halves. Let s denote the element of G that is reflection about
L. There are n rotations by a multiple of 2π/n radians about the center in
G: 1, r, r2, . . . , rn−1. There are n elements of G that are composed of a reflec-
tion about L and a rotations by a multiple of 2π/n radians about the center:
s, s ◦ r, s ◦ r2, . . . , s ◦ rn−1. These comprise all the elements of G.

The symmetry group of R is known as the dihedral group of order 2n,
denoted Dn. (Note: Some people denote this group instead by D2n.)

Example 5.3.1. Let G be the symmetry group of the square, i.e., the group of
symmetries of the square generated by the rigid motions

g0 = 90 degrees clockwise rotation about O,
g1 = reflection about ℓ1,
g2 = reflection about ℓ2,
g3 = reflection about ℓ3,
g4 = reflection about ℓ4,

where ℓ1, ℓ2, ℓ3 denote the lines of symmetry in the picture below:

86



5.4. THE SYMMETRIC GROUP

ℓ2

ℓ1
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

ℓ3

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

ℓ4

The elements of G are
1, g0, g

2
0 , g3

0 , g1, g2, g3, g4.

Let X be the set of vertices of the square. Then G acts on X.

5.4 The symmetric group

The art of doing mathematics consists in finding that special case
which contains all the germs of generality.

David Hilbert

Before defining anything, we shall provide a little motivation for some general
notions that will arise later. Each move of the Rubik’s Cube may be regarded
as a permutation of the set of 54 facets of the cube. It is natural from our
perspective to study in general permutations of a set. As Hilbert advised us,
we are looking for a really good special case to focus our attention on, and the
Rubik’s Cube group is the example we will use.

First, some basic ideas to get us started.
Let X be any finite set and let SX denote the set of all permutations of X

onto itself:
SX = {f : X → X | f is a bijection}.

This set has the following properties:

1. If f, g belong to SX then fg (the composition of these permutations) also
belongs to SX (‘closed under compositions’).
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2. If f, g, h all belong to SX then (fg)h = f(gh) (‘associativity’).

3. The identity permutation I : X → X belongs to SX (‘existence of the
identity’).

4. If f belongs to SX then the inverse permutation f−1 also belongs to SX

(‘existence of the inverse’).

The set SX is called the symmetric group of X. We shall usually take
for the set X a set of the form {1, 2, . . . , n}, in which case we shall denote the
symmetric group by Sn. This group is also called the symmetric group on n
letters.

Example 5.4.1. Suppose X = {1, 2, 3}. We can describe SX as

SX = {I, s1 = (1, 2), s2 = (2, 3), s3 = (1, 3, 2), s4 = (1, 2, 3), s5 = (1, 3)}.

We can compute all possible products of two elements of the group and tabulate
them in a multiplication table as

I s1 s2 s3 s4 s5

I I s1 s2 s3 s4 s5

s1 s1 I s3 s2 s5 s4

s2 s2 s4 I s5 s1 s3

s3 s3 s5 s1 s4 I s2

s4 s4 s2 s5 I s3 s1

s5 s5 s3 s4 s1 s2 I

Ponderable 5.4.1. Verify the four properties of SX mentioned above. (Note
that the verification of associativity follows from the associative property of the
composition of functions–see Ponderable 3.1.4).

5.5 General definitions

We take the above four properties of the symmetric group as the four defining
properties of a group. The definition of a group below (or ‘abstract group’, to
be precise) was first formulated by Cayley in 1854. (We met Cayley already in
§2.2.1 in connection with his work on matrices.)

Definition 5.5.1. Let G be a set and suppose there is a mapping

∗ : G × G → G
(g1, g2) 7−→ g1 ∗ g2

(called the group’s operation) satisfying

(G1) if g1, g2 belong to G then g1 ∗ g2 belongs to G (‘G is closed under ∗’),

(G2) if g1, g2, g3 belong to G then (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) (‘associativity’),
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(G3) that there is an element 1 ∈ G such that 1 ∗ g = g ∗ 1 = g for all g ∈ G
(‘existence of an identity’),

(G4) if g belongs to G then there is an element g−1 ∈ G, called the inverse of
g such that g ∗ g−1 = g−1 ∗ g = 1 (‘existence of inverse’).

Then G (along with the operation ∗) is a group.

For example, if R is the Rubik’s Cube move associated with rotating the right
face one quarter turn, then R−1 = R3.

Remark 5.5.1. In general, when a set G and a binary operation ∗ are explic-
itly given and when (G, ∗) is then expected to be a group, usually the hardest
condition to verify is associativity. In the special case when G is a set of per-
mutations of a set X and ∗ is simply the usual multiplication of permutations,
then associativity is easy to verify, since all the elements of G are functions
(from X to X) and the binary operation is function composition. In this case,
associativity is more or less ‘obvious’.

Example 5.5.1. Actually, this is a ‘non-example’. Let S be the set of all legal
moves (one can eventually make from a given legally obtained position) of the 15
Puzzle (as described in chapter 4). In a given position, for example the solved
position, there aren’t that many possibilities: there are only 2 moves in the solved
position and there are never any more than 4 moves possible from any position.

From the solved position one can move (15, 16) and (12, 16) (where 16 denotes
the blank square) but not, for example, (1, 16). Since (15, 16), (12, 16) ∈ S
and since (12, 16)(15, 16) is not a legal move, it follows that composition of legal
moves is not always legal. This shows that composition is not a binary operation,
so property number (G1) fails to hold.

Lemma 5.5.1. (Cancellation Law) Let G be a group and a, b, c ∈ G. If
a ∗ c = b ∗ c, where a, b, c ∈ G, then a = b.

The proof is left to the reader.

In the above definition, we have not assumed that there was exactly one
identity element 1 of G because, in fact, one can show that if there is one then
it is unique. (Suppose there are two identity elements, denoted e1, e2 say. By
definition, e1 = e1 ∗ e2 = e2.) Likewise, if G is a group and g ∈ G then the
inverse element of g is unique. The proof of this is left to the reader. There are
other properties of a group that can be derived from (G1)-(G4). We shall prove
them as needed.

The multiplication table (also called ‘Cayley tables’ after Cayley, who first
introduced them) of a finite group G is a tabulation of the values of the binary
operation ∗, as in Example 5.4.1. Let G = {g1, . . . , gn}. The multiplication
table of G is
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* g1 g2 . . . gj . . . gn

g1

g2

...
gi gi ∗ gj

...
gn

Example 5.5.2. Using SAGE it is easy to construct a multiplication table:

SAGE

sage: G = PermutationGroup([’(1,2,3)’, ’(2,3)’])
sage: G.cayley_table(names="abcdef")

[a b c d e f]
[b a d c f e]
[c e a f b d]
[d f b e a c]
[e c f a d b]
[f d e b c a]

sage: G.list()
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

The ordering in the rows and columns of the table is the same as that produced
by G.list(). In general, the first element is the identity.

Ponderable 5.5.1. Compute the multiplication table for C3.

Some properties:

Lemma 5.5.2. (a) Each element gk ∈ G occurs exactly once in each row of
the table.

(b) Each element gk ∈ G occurs exactly once in each column of the table.

(c) If the (i, j)th entry of the table is equal to the (j, i)th entry, then gi ∗ gj =
gj ∗ gi.

(d) If the table is symmetric about the diagonal, then g ∗ h = h ∗ g for all
g, h ∈ G. (In this case, we call G abelian.)

Abelian groups are named after the Norwegian mathematician Niels Abel
(1802-1829). Abel’s short life was a tragic one, punctuated by poverty and the
death of his father in 1820. However, he had great mathematical talent and
showed before Galois that the roots of the general 5th degree polynomial,

x5 + a1x
4 + a2x

3 + a3x
2 + a4x + a5 = 0,
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cannot be expressed in terms of radicals alone. (Galois proved a more general
result about six years later.) Unfortunately, his health was not good, and dur-
ing a journey to visit his fiancée over Christmas 1828 he became seriously ill
and died. In his short life, Abel made major contributions to other areas of
mathematics as well and was awarded the Grand Prix in mathematics by the
Paris Academy in 1830.

I can’t resist this corny pun: Why didn’t Isaac Newton work on group theory?
He wasn’t Abel.

Definition 5.5.2. Let g and h be two elements of a group G. We say that
g commutes with h (or that g, h commute) if g ∗ h = h ∗ g. We call a
group commutative (or abelian) if every pair of elements g, h belonging to G
commute. If G is a group that is not necessarily commutative, then we call G
noncommutative (or nonabelian).

Example 5.5.3.

• The elements in G = {1, R,R2, R3} all commute with each other, so G is
an abelian group.

• The integers, with ordinary addition as the group operation, constitutes
an abelian group.

Ponderable 5.5.2. Show that any group having exactly 2 elements is abelian.

Convention: When dealing with groups in general we often drop the ∗ and
denote multiplication simply by juxtaposition (that is, sometimes we write gh
in place of g ∗ h) or by a dot ·. However, there is one exception. If the group G
is abelian, then one often replaces ∗ by + and then + is not dropped.

Now that we know the definition of a group, the question arises: how might
they be described? The simplest answer is that we describe a group much as we
might describe a set: we could list all its elements and give the multiplication
table, or we could describe all its elements and their multiplication in terms of
some property from which we can verify the four properties of group. Though
the first way has the distinct advantage of being explicit, it is this second alter-
native that is the most common, since it is usually more concise.

Our objective is to introduce terminology and techniques that enable us to
analyze permutation puzzles mathematically. The types of groups that arise in
this context are defined next.

Definition 5.5.3. Let X be a finite set. Let S = {g1, g2, . . . , gn} be a finite set
of elements of permutations of X (so that they all belong to SX). Let G be the
set of all possible products of the form

g = x1 ∗ x2 · · · ∗ xm, m > 0,

where each of the x1, . . . , xm is taken from the set S. The set G, together with the
group operation given by composition of permutations, is called a permutation
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group with generators g1, . . . , gn (or the permutation group generated
by S). We sometimes write

G = 〈g1, . . . , gn〉 ⊂ SX .

Example 5.5.4.

• If X = {1, 2, . . . , 54} and S = {(1, 2, 3, . . . , 54)} ⊂ S54 then the permuta-
tion group generated by S is a cyclic group G with elements {1, g, g2, . . . , g53}.

• Let X be the set of 54 facets of the Rubik’s Cube and let R,L,U,D, F,B ∈
SX denote the basic moves of the Rubik’s Cube, in the notation introduced
in the previous chapter. The permutation group

G = 〈R,L,U,D, F,B〉 ⊂ SX

is called the Rubik’s Cube group. We shall determine the ‘structure’
of this group (i.e., its relationship with ‘known groups’) later in this book.

It is not too hard to justify our terminology.

Lemma 5.5.3. A permutation group is a group.

Proof: Let G be a permutation group as in the above definition.
We shall only prove that each g ∈ G has an inverse, leaving the remainder

of the properties for the reader to verify. The set {gn | n ≥ 1} ⊂ SX is finite.
There are n1 > 0, n2 > n1 such that gn1 = gn2 . Then g−1 = gn2−n1−1 since
g · gn2−n1−1 = 1. ¤

Given generators g1, . . . , gn ∈ SX , how do you construct the permutation
group G = 〈g1, . . . , gn〉 generated by them? The algorithm below explains this.

Algorithm:
Input: The generators g1, . . . , gn (as permutations in SX).
Output:

• The elements of G

• S = {g1, . . . , gn, g−1
1 , . . . , g−1

n }

• L = S ∪ {1}
Algorithm

for g in S do
for h in L do

if g * h not in L then L = L union {g * h} endif
endfor

endfor
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Note that the size of the list L in the for loop changes after each iteration of
the loop. The meaning of this is that the if-then command is to be executed
exactly once for each element of the list.

Definition 5.5.4. If G is a group then the order of G, denoted |G|, is the
cardinality of G. (In other words, if G is a finite set then it is number of
elements of G, and if G is not finite then we set |G| = ∞.) If g is an element
of the group G, then the order of g, denoted ord(g), is the smallest positive
integer m such that gm = 1, if it exists. If such an integer m does not exist then
we say that g has infinite order.

Example 5.5.5.

• A SAGE computation illustrating the above definition.

SAGE

sage: rubik = CubeGroup()
sage: G = rubik.group()
sage: N = G.order(); N
43252003274489856000
sage: N.factor()
2ˆ27 * 3ˆ14 * 5ˆ3 * 7ˆ2 * 11
sage: R = rubik.move(’R’)[0]
sage: R.order()
4

• Mathematically, we shall see later why the Rubik’s Cube group G does
indeed have the property that |G| = 227314537211 (roughly 4.3 × 1019).

• There is an odd permutation of order 42 in S12, for example,
(1, 2)(3, 4, 5)(6, 7, 8, 9, 10, 11, 12). There is an even permutation of order
15 in S8, for example (1, 2, 3)(4, 5, 6, 7, 8).

• There is an element in the Rubik’s Cube group whose order is 1260 and
no element of higher order. J. Butler found the following move of this or-
der: m = RU2D−1BD−1 (see Bandelow’s book [B1], page 51, for another
simple move of order 1260).

5.5.1 Cauchy’s theorem

We shall be able to make use of the following fact frequently.

Theorem 5.5.1.

(a) (Cauchy) Let p be a prime dividing |G|. There is a g ∈ G of order p.

(b) Let n be an integer not dividing |G|. There does not exist a g ∈ G of order
n.
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Augustin Louis Cauchy (1789-1857) made significant contributions to many
branches of mathematics and was one of the greatest mathematicians of his
time.

Part (a) will be proven in §5.11 below (see Corollary 5.11.2) and part (b) is a
corollary of Theorem 5.6.1 below.

Application. As the Rubik’s Cube group G has the property that |G| =
227314537211, it follows from this and part (b) of the above theorem that there
is no move of the Rubik’s Cube of order 13 (since 13 does not divide |G|) but
there is one of order 11. (That said, just because we know there exists a move
of order 11 doesn’t mean we know how to find one!) This is equivalent to saying
there exists a cyclic subgroup of the Rubik’s Cube group of order 11. There is
no cyclic subgroup of the Rubik’s Cube group of order 13.

Ponderable 5.5.3. Let X = {1, 2, 3}. We use the notation of Example 5.4.1
above.

(a) Let G be the permutation group with generator s1, G = 〈s1〉. Verify that
there are only two elements in G.

(b) What is the order of s5?

(c) Let G be the permutation group with generator s3: G = 〈s3〉. Verify that
there are only three elements in G.

(d) Find the order of s3.

(e) Show that SX = 〈s1, s2〉.

Definition 5.5.5. If G is a group G with only one generator, then we say that
G is cyclic.

Lemma 5.5.4. If G = 〈g〉 is a finite cyclic group with generator g then |G| =
ord(g).

Proof: Let m = ord(g), so gm = 1. We can list all the elements of G as
follows:

1, g, g2, . . . , gm−1.

There are m elements in this list. ¤

5.5.2 The Gordon game

Let (G, ∗) be a finite group, written

G = {g0 = the identity, g1, . . . , gn},

so g0 = 0 if ∗ is addition and g0 = 1 if ∗ is multiplication or composition. You
and your opponent share a set of move tokens, denoted

M = {g1, . . . , gn},
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and place tokens, denoted

P = {g1, . . . , gn}.
Rules for play:

• Players alternate turns. Each turn consists of removing one move token
and one place token according to the conditions listed below. The first
person who cannot make a legal play loses.

Let m0 = p0 = 1 (or m0 = p0 = 0, if G is written additively) and let i = 1.

• The first player picks any move token m1 ∈ M and the place token p1 =
m1 ∈ P . These tokens m1 and p1 are then removed from M and P ,
respectively.

• The next player picks a move token mi+1 and place token pi+1 such that
pi+1 = mi+1pi ∈ P . These tokens mi+1 and pi+1 are then removed from
M and P , respectively.

• Increment i and go to the previous step.

Example 5.5.6. Let

G = Z/7Z = {0, 1, 2, 3, 4, 5, 6},
in the notation of Definition 5.2.1. The moves of a game are determined by
recording the move tokens. One possible game is

• 4 1 3 2
0 1 2 3 4 5 6

where the • over the identity element 0 of the group indicates that it isn’t moved
and the numbers above a group element indicate when it was moved:

player m p P M
1 m1 = 2 p1 = 2 {1, 3, 4, 5, 6} {1, 3, 4, 5, 6}
2 m2 = 4 p2 = 2 + 4 = 6 {1, 3, 4, 5} {1, 3, 5, 6}
1 m3 = 6 p3 = 6 + 6 = 5 {1, 3, 4} {1, 3, 5}
2 m4 = 3 p4 = 3 + 5 = 1 {3, 4} {1, 5}

The second player wins.

Ponderable 5.5.4. Play a game!

Remark 5.5.2. If G = Z/pZ (the cyclic group with p elements) there is a
conjecture that the 2nd player has a winning strategy when p > 5 (see Isbell’s
note [I] for more details). For more general groups, strategies are not known.
In fact, they haven’t even been conjectured.

Remark 5.5.3. If you and your opponent both try to drag the game on as long
as possible, can you exhaust the set of move tokens and the set of place tokens?
The answer is known for abelian groups, dihedral groups, and groups of order
< 32. The general answer seems to be unknown.
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5.6 Subgroups

As already noted, the set of moves of the Rubik’s Cube forms a group G under
the operation of composition. Suppose now you consider a subset of G that
also is a group under composition. Such a subset is called a ‘subgroup’. For
example, {1, R,R2, R3} is a subgroup of G.

Definition 5.6.1. Let G be a group. A subgroup of G is a subset H of G
such that H, together with the operation ∗ inherited as a subset of G, satisfies
the group operations (G1)-(G4) (with G replaced by H everywhere).

Notation: If G is a group then we will denote the statement ‘H is a subgroup
of G’ by H ⊂ G.

Example 5.6.1. • 2Z is a subgroup of Z.

• 2Z/10Z = {0, 2, 4, 6, 8} (with addition mod 10) is a subgroup of Z/10Z.

• H = {1, (1, 2, 3), (1, 3, 2)} is a subgroup of S3.

• A permutation group G generated by elements g1, . . . , gn belonging to SX

is a subgroup of SX , i.e., G ⊂ SX .

One might ask: what are all the subgroups of the Rubik’s Cube group? Un-
fortunately, it turns out that this question is too impractical. There are too
many subgroups to list, so a simple answer is not possible. In fact, no one (as
far as I am aware) knows exactly how many subgroups the Rubik’s Cube group
has. However, later, when we have a more useful way of describing a group
(using generators and relations (see §10.3), we will explicitly determine some of
the subgroups of ‘small’ order.

We’d like an easy-to-use criterion to determine when a given subgroup H of
S54 is a subgroup of the Rubik’s Cube group G. This type of condition doesn’t
seem to exist, at least not in a practical form, but the following criterion is very
useful. Another version of the following result will be given in Theorem 5.11.1
below.

Theorem 5.6.1. (Lagrange’s theorem) Let H be a subgroup of a finite group
G. Then |H| divides |G|.

It is worth remarking that, contrary to what might be suggested by the name of
the result, Lagrange’s theorem, in the form stated here, is not due to Lagrange.
In the form given, Lagrange’s theorem (for permutation groups) was probably
known to Galois and appeared in works of Serret and Camille Jordan in the
1860’s.

Proof: For x, y ∈ G, define x ∼ y if xH = yH, where

xH = {x ∗ h | h ∈ H}.

This is an equivalence relation. (The curious reader can easily check that the
reflexive, symmetry, and transitivity properties hold.) Moreover, the equiva-
lence class of x consists of all elements in G of the form x ∗ h, for some h ∈ H,
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i.e., [x] = xH. Let g1, . . . , gm ∈ G denote a complete set of representatives
for the equivalence classes of G. Because of the cancellation law for groups,
|xH| = |H| for each x ∈ G. (Exercise: Verify this.) Furthermore, we know that
the equivalence classes partition G (see Ponderable 2.3.3), so

G = ∪m
i=1[gi] = ∪m

i=1giH.

Comparing cardinalities of both sides, we obtain |G| = |g1H| + · · · + |gmH| =
m|H|. This proves the theorem. ¤

Example 5.6.2. Here is an illustration of Lagrange’s theorem using SAGE:

SAGE

sage: G = SymmetricGroup(6)
sage: g1 = G.random_element()
sage: g2 = G.random_element()
sage: H = G.subgroup([g1,g2])
sage: G.order()/H.order() in ZZ
True

Ponderable 5.6.1. Show, as a corollary to Theorem 5.6.1, that Theorem 5.5.1(b)
is true.

Definition 5.6.2. If H and G are finite groups and H ⊂ G, then |G|/|H|
(which is an integer by Lagrange’s theorem 5.6.1, above) is called the index of
H in G, denoted [G : H] = |G|/|H|.

Example 5.6.3. Let
An = {g ∈ Sn | g is even}.

This is a subgroup of Sn called the alternating subgroup of degree n . It is
known (and not hard to prove using cosets) that |An| = |Sn|/2.

Definition 5.6.3. The center of a group G is the subgroup Z(G) of all elements
that commute with every element of G:

Z(G) = {z ∈ G | z ∗ g = g ∗ z, for all g ∈ G}.
Observe that

• The identity element always belongs to Z(G). (If the identity element is
the only element of Z(G), then we say G has a trivial center.)

• G is commutative if and only if G = Z(G). (This is follows from the
definitions.)

Ponderable 5.6.2. Let G = S3. Determine Z(G) using explicit computations.
If n ≥ 3, show that Z(Sn) has a trivial center. (Hint: Consider the elements

that commute with all the n-cycles.)

For the center of the Rubik’s Cube group, see §5.7.1 and Corollary 11.2.2
below.
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5.7 Puzzling examples

There are many puzzles on the market that give rise to interesting groups in
mathematics. A few simple examples are given in this section. More complicated
examples will be studied later.

Example 5.7.1. Consider an infinite chessboard, which we imagine being placed
on the Cartesian plane.

× × × ×
× × × ×

× × × ×
× × × ×

× × × ×
× × × ×

× × × ×
× × × ×

Label one square as (0, 0) and call it the origin. Label the others (m,n), as one
would label the vertices in a lattice in the plane. Place only one chess piece, a
king, at (0, 0). Label the move one square to the right x, one square to the left
x−1, the move one square forward y, one square backwards y−1, and label the
other moves xy, x−1y, x−1y−1, and xy−1, in the obvious way. The set of all
possible king’s moves may be identified with the set

{xmyn | m,n ∈ Z}.

This is an infinite abelian group under multiplication. The number of ways that
the king can reach the square (m,n) in N moves is the coefficient KN (m,n) of
xmyn in the expansion of

(x + x−1 + y + y−1 + xy + x−1y + x−1y−1 + xy−1)N .

Further details on this construction can be found in the chapter ‘Wanderungen
von Schachfiguren’ by K. Fabel in [BFR].

For example, using SAGE one sees that there are exactly

K10(1, 1) = 19246920 ≈ 1.9 × 107

ways to reach (1, 1) from the origin in 10 moves.
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SAGE

sage: R2 = PolynomialRing(QQ,2,"xy")
sage: F2 = FractionField(R2)
sage: x,y = R2.gens()
sage: f = lambda n: F2((x+1/x+y+1/y+x * y+y/x+1/(x * y)+x/y)ˆn)
sage: a = f(10).numerator()
sage: b = f(10).denominator()
sage: b
xˆ10 * yˆ10
sage: a.coefficient(xˆ(11) * yˆ(11))
19246920

Ponderable 5.7.1. Suppose that one day the chess king in the above example
comes alive. He starts from (0, 0) and begins walking around on his chessboard
taking completely random moves at each step. What is the likelihood that he will
end up on the square he started on after 3 moves?

Ponderable 5.7.2. Work out a similar result as in the example above using a
knight in place of a king.

Example 5.7.2. Let MR be the middle right slice rotation by 90 degrees (viewed
from the right face). Define MF , for the front face, and MU similarly. Consider
the subgroup H of the Rubik’s Cube group generated by the ‘square slice moves’,

H = 〈M2
R,M2

F ,M2
U 〉.

Then H = 〈M2
R〉 × 〈M2

F 〉 × 〈M2
U 〉 ∼= C2 × C2 × C2 = C3

2 , where Cn denotes the
cyclic group of order n.

5.7.1 The superflip

The collection of all moves of the Rubik’s Cube may be viewed as a subgroup G
of S48. We denote multiplication in S4 (and hence in G) by ·. The center of G
consists of exactly two elements, the identity and the superflip move that has
the effect of flipping over every edge, leaving all the corners alone and leaving
all the subcubes in their original position ([B1], page 48):

Z(G) = {1, superflip}.
Later, in §11.2, we shall see that this is a consequence of the ‘second fundamental
theorem of cube theory’. One move for the superflip is

superflip = R · L · F · B · U · D · R · L · F · B · U · F 2 · MR·
·F 2 · U−1 · M2

R · B2 · M−1
R · B2 · U · M2

R · D
= R · L · F · B · U · D · R · L · F · B · U · F 2 · R−1·

·L · D2 · F−1 · R2 · L2 · D2 · R · L−1·
·F 2 · D · R2 · L2 · D (34 quarter turns),
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where MR is middle right slice rotation by 90 degrees (viewed from the right
face). Other expressions for the superflip are Dik T. Winter’s move

superflip = F · B · U2 · R · F 2 · R2 · B2 · U−1 · D · F · U2 · R−1 · L−1 · U ·
·B2 · D · R2 · U · B2 · U (28 quarter turns),

and Mike Reid’s expression (found with a computer search)

superflip = R−1 · U2 · B · L−1 · F · U−1 · B · D · F · U · D−1 · L · D2 · F−1·
·R · B−1 · D · F−1 · U−1 · B−1 · U · D−1 (24 quarter turns).

(5.1)
Regarding the latter move, Jerry Bryan (in a Feb. 19, 1995, posting to the cube-
lover’s e-mail list, [CL]) showed that there is no fewer number of quarter-turn
moves taken from

{R,R−1, L, L−1, U, U−1,D,D−1, B,B−1, F, F−1},

that will also give the superflip. In the jargon, Mike Reid’s move is ‘minimal in
the quarter-turn metric’.

Remark 5.7.1. There is a ‘longer’ element of the Rubik’s Cube group, measured
in the quarter-turn metric.

Figure 5.1: Michael Reid’s superflip with four-spot.

The superflip with four-spot, depicted in Figure 5.1, is given by 26 quarter
turns maneuver

superflip4spot = U2 · D2 · L · F 2 · U−1 · D · R2 · B · U−1 · D−1 · R·
·L · F 2 · R · U · D−1 · R−1 · L · U · F−1 · B−1.

(5.2)

This was proven by Mike Reid (who discovered the move and the above expression
with the help of his own computer program) to be minimal in the quarter-turn
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metric (see the Aug. 2, 1998, posting in [CL]). It is possible that there is no
longer move than Reid’s move in the Rubik’s Cube group in the quarter turn
metric.

Remark 5.7.2. At the time of this writing (spring 2008), there is no ‘longer’
element than the superflip of the Rubik’s Cube group, measured in the face turn
metric. It is possible that there is no longer move than the superflip in the
Rubik’s Cube group in the face turn metric.

5.7.2 Example: The two squares group

Let H = 〈R2, U2〉 denote the group generated by the two square moves R2

and U2 of the Rubik’s Cube. (The reader with a cube in hand may want to
try the Singmaster magic grip: the thumb and forefinger of the right hand
are placed on the front and back face of the fr, br edge; and the thumb and
forefinger of the left hand are placed on the front and back face of the uf , ub
edge. All moves in this group can be made without taking your fingers off the
cube.) This group contains the useful 2-pair edge swap move (R2 · U2)3.
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Figure 5.2: Corner labels for the cube

101



5.7. PUZZLING EXAMPLES

We can find all the elements in this group fairly easily:

H = {1, R2, R2 · U2, R2 · U2 · R2, (R2 · U2)2, (R2 · U2)2 · R2, (R2 · U2)3,
(R2 · U2)3 · R2, (R2 · U2)4, (R2 · U2)4 · R2, (R2 · U2)5, (R2 · U2)5 · R2},

Therefore, |H| = 12. Note that 1 = (R2 · U2)6, U2 = (R2 · U2)5 · R2, and
U2 · R2 = (R2 · U2)5.

To discover more about this group, we label the vertices of the cube as in
Figure 5.7.2.

The move R2 acts on the set of vertices by the permutation (1, 4)(2, 3) and
the move U2 acts on the set of vertices by the permutation (4, 5)(3, 6). We label
the vertices of a regular hexagon as in Figure 5.7.2.
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Figure 5.3: Corner labels for the hexagon

The permutation (1, 4)(2, 3) is simply the reflection about the line of symmetry
containing both 5 and 6. The permutation (4, 5)(3, 6) is simply the reflection
about the line of symmetry containing both 1 and 2. By a fact stated in section
5.3, these two reflections generate the symmetry group of the hexagon.

Example 5.7.3. This example shows some ways of using SAGE to understand
this group.

SAGE

sage: rubik = CubeGroup()
sage: r = rubik.R()
sage: u = rubik.U()
sage: G = PermutationGroup([rˆ2,uˆ2])
sage: G.order()
12
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sage: D6 = DihedralGroup(6)
sage: G.is_isomorphic(D6)
True

SAGE (which indirectly uses GAP for this computation) tells us that the two
squares group is isomorphic to the dihedral group with 12 elements.

5.8 Commutators

When ‘playing’ with the Rubik’s Cube, certain operations can occur more often
than others. Besides combining two moves together, another operation that
takes place frequently is the operation ‘move 1, then move 2, then inverse of
move 1 then inverse of move 2’. This type of move is called a ‘commutator’.

Definition 5.8.1. If g, h are two elements of a group G, then we call the element

[g, h] = g ∗ h ∗ g−1 ∗ h−1

the commutator of g, h.

Note that [g, h] = 1 if and only if g, h commute. Thus the commutator may
be regarded as a rough measurement of the lack of commutativity. To put it
simply: putting your socks on before the shoes is not the same as putting on
shoes before the socks!

Ponderable 5.8.1. Let G = S3, the symmetric group on 3 letters. Compute
the commutators

[s1, s2], [s2, s1].

Ponderable 5.8.2. Let R,U be as in the notation for the Rubik’s Cube moves
introduced in the previous chapter. Determine the order of the move [R,U ].
(Answer: 6)

Definition 5.8.2. (Singmaster [Si]) Let G be the permutation group generated
by the permutations R,L,U,D, F,B regarded as permutations in S54. The Y
commutator is the element

[F,R−1] = F · R−1 · F−1 · R.

The Z commutator is the element

[F,R] = F · R · F−1 · R−1.

Ponderable 5.8.3.

(a) Guess why the Y commutator and the Z commutator have their names.
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(b) Find the order of the Y commutator and of the Z commutator.

(c) Find the order of [R, [F,U ]].

Example 5.8.1. If x, y are basic moves of the Rubik’s Cube associated with
faces that share an edge, then

(a) [x, y]2 permutes exactly 3 edges and does not permute any corners;

(b) [x, y]3 permutes exactly 2 pairs of corners and does not permute any edges.

Ponderable 5.8.4. Check to see if the above example is true!

Definition 5.8.3. Let G be any group. The group G′ generated by all the
commutators

{[g, h] | g, h belong to G}.
This is called the commutator subgroup of G. Sometimes this is also denoted
[G,G].

This group may be regarded as a rough measurement of the lack of commu-
tativity of the group G.

Remark 5.8.1. We will see later that the group generated by the basic moves
of the Rubik’s Cube–R, L, U , D, F , B–has a relatively large commutator sub-
group. In other words, roughly speaking ‘most’ moves of the Rubik’s Cube can
be generated by commutators such as the Y commutator or the Z commutator.

Definition 5.8.4. If we repeatedly take commutator subgroups, we get a series
of groups G, G′, G′′ = (G′)′, and so on. The derived series of a group G is
the sequence of subgroups

. . . ⊂ (G′)′ ⊂ G′ ⊂ G.

A group G is called solvable if one of the groups in the derived series is the
trivial group consisting only of the identity.

Morally speaking, if abelian groups are the best kind of group, then the next
best thing is a solvable group.

The idea of a solvable group first arose and its importance emphasized in the
work of Galois. However, it was Camille Jordan (1838–1922) who introduced the
concept of a composition series (of which the derived series is a special case).

Jordan is also well-known for the ‘Jordan normal form’ in linear algebra.
It is argued in Jordan’s entry in [MT] that the theory of finite groups began
with Jordan, his 1870 text Traités des substitutions et des équations
algebraique being the first book on group theory.

Ponderable 5.8.5. Let G be an abelian group. Show that G is solvable.
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Example 5.8.2. This example shows how to use SAGE to test if the two squares
subgroup of the cube group is solvable.

SAGE

sage: rubik = CubeGroup()
sage: r = rubik.R()
sage: u = rubik.U()
sage: G = PermutationGroup([rˆ2,uˆ2])
sage: G.is_solvable()
True

Next, let us consider the commutator g = [R,U ] = R ·U ·R−1 ·U−1. Recall and
n-cycle is a cyclic permutation of order n. As Example 5.8.1 predicts, SAGE
tells us that, indeed, [R,U ]2 is composed of 3-cycles and [R,U ]3 is composed of
2-cycles:

SAGE

sage: g = r * u* rˆ(-1) * uˆ(-1)
sage: gˆ2
(1,35,9)(2,5,21)(3,27,33)(8,25,19)(24,30,43)(26,28, 34)
sage: gˆ3
(1,33)(3,35)(8,43)(9,27)(19,30)(24,25)

5.9 Conjugation

Besides composing two moves together and using the commutator, another op-
eration that takes place frequently on the Rubik’s Cube is the operation ‘move 1,
then move 2, then inverse of move 1’. This type of move is called a ‘conjugation’.

Definition 5.9.1. If g, h are two elements of a group G, then we call the element

gh = h−1 ∗ g ∗ h

the conjugate of g by h.

Note that gh = g if and only if g, h commute. Thus the conjugates may be
regarded as a rough measurement of the lack of commutativity. The exponential
notation is justified by the following facts, which are easy to verify.

Ponderable 5.9.1. Show that

(a) (g1g2)
h = gh

1 gh
2 ,

(b) gh1h2 = (gh1)h2 .
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Ponderable 5.9.2. Let G = S3, the symmetric group on 3 letters, in the
notation of Example 5.4.1. Compute the conjugations

ss2

1 , ss1

2 .

Ponderable 5.9.3. Let R,U be as in the notation for the Rubik’s Cube moves
introduced in the previous chapter. Determine the order of the move RU . (An-
swer: 4)

Definition 5.9.2. We say that two elements g1, g2 of G are conjugate if there
is an element h ∈ G such that g2 = gh

1 .

It turns out that it is easy to see when two permutations g, h ∈ Sn are conju-
gate: they are conjugate if and only if the cycles in their respective disjoint cycle
decompositions have the same length when arranged from shortest to longest.
(This result is due to Cauchy.) For example, the elements

g = (6, 9)(1, 3, 4)(2, 5, 7, 8), h = (1, 2)(3, 4, 5)(6, 7, 8, 9)

are conjugate in S9. We shall leave the details and the proof for later (see
§9.3.1).

Ponderable 5.9.4. Show that the notion of conjugate defines an equivalence
relation. That is, show that

(a) any element g ∈ G is conjugate to itself (reflexive);

(b) if g is conjugate to h (g, h belonging to G), then h is conjugate to g (sym-
metry);

(c) if g1 is conjugate to g2 and g2 is conjugate to g3 then g1 is conjugate to
g3 (transitivity).

Notation: The set of equivalence classes of G under the equivalence relation
given by conjugation will be denoted G∗.

Ponderable 5.9.5. Let G be a finite group. Show that

(a) |G∗| ≤ |G|, and

(b) |G| = |G∗| if and only if G is abelian.

The polynomial

pG(t) =
∑

c∈G∗

tord(c), (5.3)

is called the generating polynomial of the order function on G.

Ponderable 5.9.6. Show two elements that are conjugate must have the same
order.
(Hint: (h−1gh)n = (h−1gh)(h−1gh) . . . (h−1gh) = h−1gnh, for n = 1, 2, . . . and
g, h ∈ G.)
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Therefore, the expression ord : G → N can actually be defined on G∗. Let

ord({h−1gh | h ∈ G}) = ord(g).

Notice that if g1, g2 ∈ G∗ are both of order d, then tord(g1) = tord(g2) = td. This
tells us that

pG(t) =
∑

d≥1

nG(d)td,

where nG(d) denotes the number of elements in G∗ of order d. In other words,
this polynomial encodes, via its coefficients, information on the elements of a
given order in G. However, since it sums over conjugacy classes (not on elements
of G themselves), it does not distinguish between two elements of G if they are
conjugate.

In [Si], §5.10D, D. Singmaster asks for the possible orders of the elements of
the Rubik’s Cube group and how many elements of each order there are. (A
method for determining this will be described later in this book; see §9.8.2.)
This question of Singmaster motivates the following problem.

Ponderable 5.9.7. (Hard) Determine pG(t) for the Rubik’s Cube group.

By hard, I mean you probably won’t solve it overnight (at least not unless you
have access to a very fast computer).

Example 5.9.1. For D6 (the dihedral group of order 12), the generating poly-
nomial is

2 ∗ t6 + 2 ∗ t3 + 7 ∗ t2 + t;

for S8, the generating polynomial is

t + 4t2 + 2t3 + 4t4 + t5 + 5t6 + t7 + t8 + t10 + t12 + t15;

and for S12, it is

t + 6t2 + 4t3 + 9t4 + 2t5 + 16t6 + t7 + 4t8 + 2t9 + 6t10+
t11 + 9t12 + 2t14 + 2t15 + t18 + 2t20 + t21+

t24 + t28 + 3t30 + t35 + t42 + t60.

For example, it follows from the last displayed computaiton that there exists a
permutation of order 42 in S12.

In SAGE, these computations are easy.

SAGE

sage: G = DihedralGroup(6)
sage: CG = G.conjugacy_classes_representatives()
sage: t = var("t")
sage: p = sum([tˆ(g.order()) for g in CG]); p
tˆ6 + tˆ3 + 3 * tˆ2 + t
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Depending on your computer, the analogous computation for S8 and S12 may
take a long time to finish.

Verifying the above examples ‘by hand’ is a tough exercise in itself. SAGE
comes in handy in these situations. Have fun playing with other groups too!

As was already mentioned, the maximal order (of any element) in the Rubik’s
Cube group is 1260. This and the defining equation (5.3) tell us that the degree
of the generating polynomial of the Rubik’s Cube group is 1260.

Definition 5.9.3. Fix an element g in a group G. The set

Cl(g) = ClG(g) = {h−1 ∗ g ∗ h | h ∈ G}
is called the conjugacy class of g in G. It is the equivalence class of the
element g under the relation given by conjugation.

Example 5.9.2. This example will show how to use SAGE to compute all the
conjugacy classes of a group and compute the above generating polynomial.

SAGE

sage: rubik = CubeGroup()
sage: r = rubik.R()
sage: u = rubik.U()
sage: G = PermutationGroup([rˆ2,uˆ2])
sage: CG = G.conjugacy_classes_representatives()
sage: p_G = sum([tˆ(g.order()) for g in CG]); p_G
tˆ6 + tˆ3 + 3 * tˆ2 + t

In other words, there are 6 non-conjugate elements in the two squares subgroup
of the cube group. Moreover, pG(t) = t6 +t3 +3t2 +t. Notice that the generating
polynomial of this group is the same as that of the group D6. In fact, these two
groups are actually isomorphic.

Note that if g1 ∈ G is conjugate to g2 ∈ G, then Cl(g1) = Cl(g2).
How do you ‘compute’ conjugacy classes?
Algorithm
Input: A set S of generators of a permutation group G and an x belonging to

G
Output: The conjugacy class of x, ClG(x)

Algorithm

class = {x}
for y in class do

for g in S do
if g * y* gˆ{-1} not in class then

class = class union {g * y* gˆ{-1}}
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endif
endfor

endfor

Note that the size of the list class in the for loop changes after each iteration
of the loop. As mentioned before, the meaning of this is that the if-then

command is to be executed exactly once for each element of the list.

Ponderable 5.9.8. Find the elements in S4 = 〈(1, 2), (2, 3), (3, 4)〉 that are
conjugate to (1, 2, 3, 4).

Theorem 5.9.1. Any finite group may be partitioned into its distinct conjugacy
classes,

G = ∪c∈G∗
Cl(c).

Ponderable 5.9.9. Show that Theorem 5.9.1 is a consequence of Theorem
2.3.1.

If H is a subgroup of G and if g is a fixed element of G, then the set

Hg = {g−1 ∗ h ∗ g | h ∈ H}
is a subgroup of G. Such a subgroup of G is called a subgroup conjugate to
H.

Ponderable 5.9.10. Let S be the set of all subgroups of G. We define a relation
R on S by

R = {(H1,H2) ∈ S × S | H1 is conjugate to H2}.

Show that R is an equivalence relation.

Ponderable 5.9.11. Let G = Sn and let H = 〈g〉 be a cyclic subgroup generated
by a permutation g of the set {1, 2, . . . , n}. With respect to the equivalence
relation in the previous problem, show that a subgroup K of G belongs to the
equivalence class [H] of H in G if and only if K is cyclic and is generated by
an element k of G conjugate to g ∈ G.

5.10 Orbits and actions

Orbits are very important to understand for our purposes. Without them,
understanding the mathematics of the Rubik’s Cube is a little like trying to fix
a car without having a wrench. The concept of an orbit is an essential tool in
the toolbox as it helps us both conceptually and computationally with some of
the combinatorics that arise later. Richard Feynmann (1918-1988), the famous
physicist, was reported to have said something like: ‘My job here is not to make
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you understand such-and-such but to convince you not to give up. Because
no one, not even me, really understands everything about this subject anyway.
None-the-less, it is interesting and deserving of our time.’ Likewise, orbits are
deserving of our time.

Let’s start our study of orbits with an example. Let G be the Rubik’s Cube
group and X the set of facets of the Rubik’s Cube. Imagine having two identical
cubes, and disassemble one and spread the facets out on a table. Imagine
also that when you move the assembled cube, the facets on the table permute
themselves around accordingly. You can see then that each element of G ‘moves’
the elements of X around. The mathematical terminology most commonly used
to describe this type of situation is to say ‘G acts on X’. The precise general
definition is given below.

Definition 5.10.1. Let X be a set and let G be a group. We call X a G-set
and we say G acts on X on the right provided the following conditions hold:

1. Each g belonging to G gives rise to a function

φg : X → X.

2. The identity 1 of the group G defines the identity function on X.

3. If g, h belong to G then the composite

φgh : X → X

satisfies φgh(x) = φh(φg(x)).

We call this a right action; see Ponderable 5.10.4 for the reason for this ter-
minology.

One can, in general, define for all g ∈ G, φg to be the identity map from X
to itself. Since this action doesn’t do anything, it is called the trivial action.
We are interested only in non-trivial actions here.

We define ‘left actions’ similarly.

Definition 5.10.2. Let X be a set and let G be a group. We say G acts on
X provided the following conditions hold:

1. Each g belonging to G gives rise to a function

φg : X → X.

2. The identity 1 of the group G defines the identity function on X.

3. If g, h belong to G then the composite

φgh : X → X

satisfies φgh(x) = φg(φh(x)).
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We call this action a left action; see Ponderable 5.10.3 for the reason for this
terminology.

Remark 5.10.1.

(a) We shall see another interpretation of these definitions later in §9.2.

(b) Given a left action φg, one can create a right action by defining φ′
g = φg−1 .

Following the standard convention, the Rubik’s Cube will act on the set of
facets of the cube on the right. For example, start with a basic move, say U ,
which moves the up face clockwise a quarter turn. Now make another basic
move, say F . The two moves together are denoted U ∗F , where F is written to
the right of U .

Definition 5.10.3. Let G act on a set X. We call the action transitive if for
each pair x, y belonging to X there is a g ∈ G such that y = φg(x).

In other words, a group G acts transitively on a set X if any element x of X
can be sent to any other element y of X by some element g of G (depending on
x, y).

This notion of transitive is not to be confused with the notion of transitivity
of equivalence relations, even though many orbits are equivalence classes.

The transitivity of an action turns out to be a strong condition for a group
G acting on a set X to satisfy. This illustrates how unusual the Rubik’s Cube
is, since it acts transitively on two different sets! For example, it transitively
permutes the set of corner subcubes and transitively permutes the set of edge
subcubes.

Here are several more examples.

Example 5.10.1. Let X be a finite set and let G = SX be the symmetric group
of X. Then X is a G-set and G acts transitively on X.

Ponderable 5.10.1.

(a) Show that the action in the previous example is transitive.

(b) (Hard) If r = rn,d denotes the number of groups of order n acting on a
finite set with d elements and s = sn,d denotes the number of groups of
order n acting transitively on a finite set with d elements, find a formula
for r/s. (It seems likely to me that as n, d become large, r/s tends to 0.
In this case, one can quantify the assertion that ‘a random group acting
on a finite set probably is not transitive.’)

Example 5.10.2. Let G be the group of all 2 × 2 invertible matrices with real
entries, G = GL2(R). This group acts on the set of column vectors on the left.

Ponderable 5.10.2. Let G be the permutation group generated by the permu-
tations R,L,U,D, F,B, regarded as elements of S48. Let E denote the set of
edges of the cube, which we identify with the set of edge subcubes. Let V denote
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the set of vertices of the cube, which we identify with the set of corner subcubes
of the cube. Let X be the set of all movable subcubes of the Rubik’s Cube (which
we may identify as the union of E and V ). Then G acts on X, E, and on V .

Questions:

(a) Is the action of G on X transitive? (Explain.)

(b) Is the action of G on E transitive? (Explain.)

(c) Is the action of G on V transitive? (Explain.)

Ponderable 5.10.3. Let G be a group and let X = G. Define left multipli-
cation of G on X by

φg : X → X
x 7−→ φg(x) = g ∗ x.

(a) Show that left multiplication defines a left action of G on X.

(b) Show that this action is transitive.

(c) Show that each φg : G → G is a permutation of the set G, so φg ∈ SG.

Ponderable 5.10.4. Let G be a group and let X = G. Define right multi-
plication of G on X by

φg : X → X
x 7−→ φg(x) = x ∗ g.

(a) Show that right multiplication defines a right action of G on X.

(b) Show that this action is transitive.

(c) Show that each φg : G → G is a permutation of the set G, so φg ∈ SG.

Ponderable 5.10.5. Let G be a group and let X = G. Define conjugation
on X by

φg : X → X
x 7−→ φg(x) = g−1 ∗ x ∗ g.

Show that conjugation defines an action of G on X (with X and G as above).

Ponderable 5.10.6. Let G be a group and let X denote the set of all subgroups
of G. Define conjugation on X by

φg : X → X
x 7−→ φg(x) = g−1 ∗ x ∗ g.

Show that this defines an action of G on X.

Remark 5.10.2. In general, the conjugation actions in the last two problems
are not transitive.
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Definition 5.10.4. Let G be a group acting on a set X. For each x belonging
to X, the set

G ∗ x = {φg(x) | g ∈ G}
is called the orbit of x ∈ X under G.

Given a group acting on a set X, how do you ‘compute’ the orbits? The
following algorithm addresses this.

Algorithm
Input: A set S of generators of a permutation group G and an x belonging to

X
Output: The orbit of x, G ∗ x

Algorithm

orbit = {x}
for y in orbit do

for g in S do
if g * y not in orbit then

orbit = orbit union {g * y}
endif

endfor
endfor

Note that the size of the list orbit in the for loop changes after each iteration
of the loop. As mentioned before, the meaning of this is that the if-then

command is to be executed exactly once for each element of the list orbit.

Ponderable 5.10.7. Let G be the Rubik’s Cube group and let x be the uf edge
subcube. Find the orbit of x under the action of G using the above algorithm.
Show each step.

Ponderable 5.10.8. Let G be the group of moves of the Rubik’s Cube and let
X be the set of vertices of the cube. Let H be the subgroup of G generated by
U · R. Find:

(a) the order of U · R, (Answer: 105)

(b) the orbit (in the Singmaster notation) of the ufr vertex in X under H.

Example 5.10.3. Let X be the set consisting of the 48 facets of the Rubik’s
Cube that are not center facets–i.e., the ‘movable’ facets. Let V denote the
subset of facets that belong to some corner subcube, and E the subset of facets
that belong to some edge subcube. Let G denote the Rubik’s Cube group. As
noted above, G acts on X, V , E. The action of G on X induced an equivalence
relation as follows: we say that a facet f1 is ‘equivalent’ to a facet f2 if there
is an element of G (i.e., a move of the Rubik’s Cube) that sends one facet to
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the other. By Ponderable 5.10.2, there are exactly two equivalence classes, or
orbits, of G in X: V and E. In particular, the action of G on V is transitive
and the action of G on E is transitive.

Let G be the Rubik’s Cube group, V the set of vertices, and let ruf ∈ V be
the right upper front vertex. The left face move L clearly does not affect ruf .
In this case, we say that L ‘stabilizes’ or ‘fixes’ ruf . The general definition is
given below.

Definition 5.10.5. Let G be a group acting on a set X with the action denoted
by φ. For each x belonging to X, the subgroup

stabG(x) = Gx = {g ∈ G | φg(x) = x}

is called the stabilizer of x in G.

Ponderable 5.10.9. Let G be a group acting on a set X, φg : X → X, for
all g ∈ G. Show that, for all x ∈ X and all g ∈ G, we have stabG(φg(x)) =
g−1 ∗ stabG(x) ∗ g.

Example 5.10.4. Let G be the group of symmetries of the square (see the
example in §5.3 above), let X be the set of vertices of the square, and let x0 be
the vertex in the lower right hand corner. Then stabG(x0) = 〈g3〉.

Ponderable 5.10.10. Let G be any group and let X = G. Let G act on X by
left multiplication:

φg : X → X
x 7−→ φg(x) = g ∗ x.

Show that
stabG(x) = {1},

for all x belonging to X = G.

Lemma 5.10.1. Let G be any group and let X = G. Let G act on X by
conjugation:

φg : X → X
x 7−→ φg(x) = g ∗ x ∗ g−1.

The stabilizer satisfies

stabG(x) = {g ∈ G | g ∗ x = x ∗ g},

for all x belonging to X = G.

This is relatively easy, so the proof will be omitted.
The ‘stabilizer’ subgroup for the conjugation action,

CG(x) = {g ∈ G | g ∗ x = x ∗ g};
is called the centralizer of x in G.
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5.11 Cosets

Cosets are certain types of subsets of a group G. Like some political parties,
they come in two ‘flavors’: left cosets and right cosets. As in politics, you don’t
want to get them mixed up. However, they basically look the same (the cosets,
that is), so if you just stick with either left cosets all the time or right cosets all
the time, you’ll do fine. For typographical reasons, this book will usually use
left cosets.

Example 5.11.1. Let G be the Rubik’s Cube group and H = {1,D,D2,D3}
the subgroup of moves of the down face. Let g ∈ G be a move. The set gH =
{g, gD, gD2, gD3} is called a ‘left coset of H’. The set Hg = {g,Dg,D2g,D3g}
is called a ‘right coset of H’. Each move in Hg has the same effect as g, except
you might have moved the down face afterwards.

Example 5.11.2. Let H = S2 = {1, (1, 2)} and

G = S3 = {1, (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)}.
The left cosets of H in G are

H, (1, 2)H = H, (2, 3)H = {(2, 3), (1, 2, 3)},
(1, 3)H = {(1, 3), (1, 3, 2)}, (1, 2, 3)H = {(1, 2, 3), (2, 3)} = (2, 3)H,

(1, 3, 2)H = {(1, 3, 2), (1, 3)} = (1, 3)H.

Note that G = H ∪ (2, 3)H ∪ (1, 3)H.
I leave it to the reader to compute the right cosets of H in G.

Ponderable 5.11.1. Let H be a subgroup of G and let g, g′ ∈ G. Show that
either gH = g′H or gH ∩ g′H = ∅.

Understanding cosets, like orbits, not only helps in counting arguments but
also helps us understand the ‘group structure’ of G (i.e., knowing how G is
constructed from certain ‘well-understood subgroups’). Notice that if g ∈ H
then gH = Hg = H. Conversely, if gH = Hg = H then g ∈ H.

Definition 5.11.1. Let G be a group, written multiplicatively, and H a subgroup
of G. For g belonging to G, the subset g ∗H of G is called a left coset of H in
G and the subset H ∗ g of G is called a right coset of H in G.

If G is an abelian group, written additively, and H is a subgroup, then left
cosets and right cosets are the same: H + g = g + H.

Whether G is abelian or not, we shall sometimes abuse terminology and drop
the word ‘left’ or ‘right’ in front of coset.

If G is non-abelian then the set of left cosets usually differs from the set of
right cosets. However, when G is finite there are always the same number of
left cosets as right cosets. It was Galois, in the early 1830’s, who first looked
closely at subgroups for which the set of left cosets was the same as the set of
right cosets. (Such subgroups are now called ‘normal’ and will be studied later.)
Galois’ work was applied to the study of roots of polynomials.
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Example 5.11.3. Let G = Z, H = 12Z, under ordinary addition. If n ∈ G is
any integer then n + H is a coset of H in G. In fact, all the cosets of H can be
tabulated. Each coset occurs as a column exactly once in the following table:

...
...

...
-12 -11 . . . -2 -1
0 1 . . . 10 11
12 13 . . . 22 23
...

...
...

Ponderable 5.11.2. If H is finite, show |H| = |g ∗ H| = |H ∗ g|.

Ponderable 5.11.3. If X is a left coset of H in G and x is an element of G,
show that x ∗ X is also a left coset of H in G.

Notation: The set of all left cosets is written G/H and the set of all right
cosets of H in G is denoted H\G.

These two sets don’t in general inherit a group structure from G but they
are useful none-the-less. (G/H is a group with the ‘obvious’ multiplication
(g1 ∗ H) ∗ (g2 ∗ H) = (g1g2) ∗ H if and only if H is a ‘normal’ subgroup of G. I
will define ‘normal’ below.)

As an example of their usefulness, we have the following relationship between
the orbits and the cosets of the stabilizers.

Proposition 5.11.1. Let G be a finite group acting on a set X. Then

|G ∗ x| = |G/stabG(x)|

for all x belonging to X.

Proof: The map
g ∗ stabG(x) 7−→ g ∗ x

defines a function f : G/stabG(x) → G∗x. The interested reader can easily check
that this function is a bijection, since it is both an injection and a surjection. ¤

Corollary 5.11.1. Let G be a finite group acting on itself by conjugation. Let
S ⊂ G denote a complete set of representatives of the conjugacy classes G∗ in
G and let S′ = S − Z(G), i.e., the subset of S of those elements that are not
central. Then

G = ∪x∈S Cl(x) ∼= ∪x∈S G/stabG(x) = Z(G) ∪ ∪x∈S′ G/stabG(x),

for all x belonging to X. In particular,

|G| =
∑

x∈S

|G/stabG(x)| = |Z(G)| +
∑

x∈S′

|G/stabG(x)|.
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Sometimes this is called the class equation or class formula for groups.
Proof: The first equality, G = ∪x∈SCl(x), is Theorem 5.9.1. The second

equality follows from the isomorphism G/stabG(x) ∼= G ∗ x, established in the
proof of above proposition.

By taking cardinalities, the second displayed equation is a consequence of the
first. ¤

Example 5.11.4. Using SAGE it is easy to illustrate the class equation in the
case of S6:

SAGE

sage: G = SymmetricGroup(6)
sage: CG = G.conjugacy_classes_representatives()
sage: class_eqn = sum([G.order()/(G0.Centralizer(x)).O rder()\

for x in CG])
sage: class_eqn == G.order()
True

(The line defining class_eqn had to be split in two for typographical reasons.)

I am finally ready to make good on my promise to prove Cauchy’s theorem.

Corollary 5.11.2. Theorem 5.5.1(a) holds.

sketch: The argument is by induction on |G|.
The result is trivial if |G| = 1 (since then no prime divides |G|).
Suppose |G| > 1 and let p be a prime dividing |G|. By the induction hypoth-

esis, we assume that the result is true for all subgroups H of G with |H| < |G|.
Suppose x ∈ G is not central. Then its centralizer CG(x) is a proper subgroup

of G. If p||CG(x)| then the result follows from the induction hypothesis. If p does
not divide |CG(x)| (for all non-central x), then since |G| = |CG(x)||G/stabG(x)|
(note the stabilizer and centralizer are the same in this case), it follows that
p divides |G/stabG(x)|. By Corollary 5.11.1 above, we must have p||Z(G)|. If
Z(G) is a proper subgroup of G, then we are done by the induction hypothesis.

Thus we may assume G = Z(G) is abelian. If G is cyclic then I leave it to the
reader to show that G contains an element of order p. We shall assume that G
is not cyclic. Let H be a proper subgroup of G of maximal order (this exists
since G is not cyclic) and let a ∈ G − H. Then G = H · 〈a〉 (else H would not
be maximal). This implies p either divides H or |〈a〉|. The result follows from
the induction hypothesis. For further details, see any elementary text on group
theory. For example, see Theorem 10.2 (renamed Theorem 10.1.2 in the online
version) in [G]. ¤

Ponderable 5.11.4. Let G be the group of symmetries of the square. Using
the notation of Example 5.3.1, compute G/〈g3〉 and G ∗ x0.

Here is another version of Theorem 5.6.1:
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Theorem 5.11.1. (Lagrange’s Theorem) If G is a finite group and H a
subgroup then

|G/H| = |G|/|H|.

Joseph Louis Lagrange (1736-1813) was an Italian who studied at the Uni-
verity of Turin and later taught mathematics there. He later taught at the
University of Berlin and then took a research position at the Académie des
Sciences in Paris, though he did teach at the Ecole Polytechnique. He made
important contributions to mechanics, applications of calculus, and function
theory. Many historians of mathematics believe that finite group theory began
with Camille Jordan, who was born 25 years after Lagrange died. So it is fair
to say that the original version of ‘Lagrange’s theorem’ was not in the form you
see above.

As an immediate consequence of the second version of Lagrange’s theorem
above, we obtain the first version (Theorem 5.6.1).
proof of theorem: Let X be the set of left cosets of H in G and let G act on
X by left multiplication. Apply the previous lemma with x = H. ¤

Ponderable 5.11.5. Let G = S3, the symmetric group on 3 letters, and let
H = 〈s1〉, in the notation of §5.4 above.

(a) Compute |G/H| using Lagrange’s theorem.

(b) Explicitly write down all the cosets of H in G.

Definition 5.11.2. Let H be a subgroup of G and let C be a left coset of H in
G. We call an element g of G a coset representative of C if C = g ∗ H. A
complete set of coset representatives is a subset of G, x1, x2, . . . , xm, such
that

G/H = {x1 ∗ H, . . . , xm ∗ H}
without repetition (i.e., all the xi ∗ H are disjoint).

Ponderable 5.11.6. For g1, g2 ∈ G, define g1 ∼ g2 if and only if g1 and g2

belong to the same left coset of H in G.

(a) Show that ∼ is an equivalence relation.

(b) Show that the left cosets of H in G partition G.

Ponderable 5.11.7. For G = S4 and H = S3, find a complete set of coset
representatives of G/H in G.

Theorem 5.11.2. If S is a complete set of coset representatives of G/H, then

G = ∪s∈Ss ∗ H

and |G| =
∑

s∈S |s ∗ H|.

This follows from the above definition and Theorem 2.3.1, when G is finite.
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5.12 Campanology, revisited

Let us put the material on bell-ringing from §3.5 in the context of group theory.
The fact that this can be done so easily is quite remarkable, considering that
group theory wasn’t developed until at least 100 years later!

Generating the plain lead on four bells is analogous algebraically to generating
the dihedral group of order 8, D4. If a = (1, 2)(3, 4), which swaps the first two
and last two bells, and if b = (2, 3), which swaps the middle pair, then the plain
lead on four bells corresponds to

D4 = {1, a, ab, aba, (ab)2, (ab)2a, (ab)3, (ab)3a}.

Plain Bob Minimus is equivalent algebraically to generating the symmetric
group on 4 elements, S4. Let a and b be as before. If we look at the first
column of the Plain Bob Minimus composition, we see that it is nothing more
than the dihedral group, D4, which is a subgroup of S4. To generate the second
column of S4 we introduce c = (3, 4) and let k = (ab)3ac. The second column
corresponds to kD4 and the third column to k2D4. The generation of the Plain
Bob Minimus shows that S4 can be expressed as the disjoint union of cosets of
the subgroup D4, that is, the cosets of D4 in S4 partition S4. This gives an
example of the fact that, for any group G and any subgroup H, the cosets of H
in G partition G (see also Theorem 5.11.2).

As White [Wh] concludes in his paper, he is not suggesting ‘that Fabian
Stedman was using group theory explicitly, but rather that group theoretical
ideas were implicit in (Stedman’s) writings and compositions’.

5.13 Dimino’s algorithm

We saw in an earlier chapter a simple algorithm for computing the elements of
a permutation group G. Because time is money and computer time is limited,
efficency is an important issue. We shall discuss a much more efficient algorithm
in this section.

We recall Dimino’s algorithm from Butler [Bu], chapter 3, but first some
notation.

Notation: Let S = {g1, g2, . . . , gn} be a set of generators for a permutation
group G. Let

S0 = ∅,
Si = {g1, . . . , gi},

G0 = {1},
Gi = 〈Si〉 = the group generated by the elements in Si,

for 1 ≤ i ≤ n.
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Example 5.13.1. Here is an example to illustrate this using SAGE.

Algorithm

sage: G = DihedralGroup(6)
sage: generators = G.gens(); generators
((1,2,3,4,5,6), (1,6)(2,5)(3,4))
sage: g1 = generators[0]; g2 = generators[1]
sage: G0 = G.subgroup([()])
sage: G0.order()
1
sage: G1 = G.subgroup([g1])
sage: G1.order()
6
sage: G2 = G.subgroup([g1, g2])
sage: G2.order()
12

Algorithm (inductive step):
Input: The generators S of G and a list L of all the elements of the permutation

subgroup Gi−1.
Output: A list L of elements of Gi and a list C of coset representatives of

Gi/Gi−1.

Algorithm

C = {1}
for g in C do

for s in S_i do
if s * g not in L then

C = C union {s * g}
L = L union s * g* G_{i-1}

endif
endfor

endfor
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Algorithm (Dimino):
Input: The generators S of G
Output: A list of elements of G

Algorithm

(Initial case G_1 = < g1 >)
order = 1, element[1] = 1, g = g1
while g not equal to 1 do

order = order + 1
element[order] = g
g = g* g1

endwhile

(General case)
for i from 2 to n do

<insert inductive step here>
endfor

Example 5.13.2. Let G = S3 = 〈s1, s2〉. We use Dimino’s algorithm to list
all the elements of G. We have

G0 = {1} ⊂ G1 = 〈s1〉 ⊂ G2 = G.

First, we list the elements of G1 = 〈s1〉. Since s1 = (1 2), it is order 2, so

G1 = {1, s1}.

This is our list L to which we will apply the ‘inductive step’ of Dimino’s algo-
rithm (with i = 2). We start with C = {1}. Now we look at the left cosets of
G1 in G2 = G. We have (with g = 1, s = s1)

s1 ∗ G1 = G1,

so we don’t increase the size of C or L. Next, we have (with g = 1, s = s2)

s2 ∗ G1 = {s2, s2 ∗ s1} 6= G1,

so L = {1, s1, s2, s2 ∗ s1}, C = {1, s2}. Next, we have (with g = s2, s = s1)

s1 ∗ s2 ∗ G1 = {s1 ∗ s2, s1 ∗ s2 ∗ s1} 6= G1.

(We know s1 ∗ s2 ∗ G1 6= G1 since neither of the two elements in s1 ∗ s2 ∗ G1 is
the identity.) Thus, we increase L,C:

L = {1, s1, s2, s2 ∗ s1, s1 ∗ s2, s1 ∗ s2 ∗ s1},
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and C = {1, s2, s1 ∗ s2}. We know we may stop here since we know |S3| = 6
but the algorithm still has one more statement to execute. Next, we have (with
g = s2, s = s2)

s2 ∗ s2 ∗ G1 = G1,

so we don’t increase the size of C or L (as expected). This step terminates the
algorithm and S3 = L.

Ponderable 5.13.1. Perform Dimino’s algorithm on

S4 = 〈s1 = (1 2), s2 = (2 3), s3 = (3 4)〉.
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Chapter 6

Welcome to the machine

...Organization is of the utmost importance for military affairs, as it
is ... for other disciplines where the gathering process of practical knowl-
edge exceeds the strength of any individual. In mathematics, however,
organizing talent plays a most subordinate role. Here weight is carried
only by the individual. The slightest idea of a Riemann or a Weierstrass
is worth more than all organizational endeavours. There is no royal road
to mathematics.

Georg Frobenius

This chapter expounds upon the mathematical structure in some mathemati-
cal models of some games belonging to the ‘Merlin’s Magic’ family.

In particular, we will see that for a randomly chosen initial state, the proba-
bility that

• the 3 × 3 Lights Out can be solved is 1,

• the keychain Lights Out can be solved is 1,

• the 5 × 5 Lights Out can be solved is 0.25,

• the 6 × 6 Deluxe Lights Out can be solved is 1,

• the Orbix can be solved is 1.

6.1 Some history

Some years ago, Parker Brothers (also owned by Hasbro) marketed an electronic
device called Merlin’s Magic (the rules book was published in 1979). This
device was a marketed as a 3 × 3 square array of buttons which could turn off
or on. Tiger Electronics, a subsidiary of Hasbro, sometime in the late 1990’s
marketed several generalizations under the name Lights Out (or Lights Out
Cube or Lights Out Keychain or ...). These are battery-operated puzzles.
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The rule for how each button changes the state is very simple: pressing any
button toggles on/off the neighboring buttons (what ‘neighboring’ means will
be defined in the next section). Other games in the same family include Rubik’s
Clock, Lights Out, and Orbix.

6.2 Merlin’s Machine

Let Z/mZ = {0, 1, ...,m − 1}, where you add, subtract, and multiply mod
m. When these numbers correspond to the colors of a game, we shall let zero
correspond to ‘off’ and the non-zero numbers to the different lighted colors.

6.2.1 The machine

We shall use some terminology from graph theory, which we have collected
in §7.1 of the next chapter. For now, we need only the notion of a ‘connected
graph’. Roughly speaking, a connected graph is a collection of edges and vertices
(an edge connects two distinct vertices) which is not the disjoint union of two
subgraphs (see §7.1).

The graph: Here is the graph-theoretical description of the situation. Let
Γ be a finite connected graph. Let V denote the set of vertices and E the set
of edges of Γ. The vertex set V represents the set of buttons. Two vertices are
called neighbors if they are connected by an edge. Suppose V = {v1, v2, ..., vn}.
The set of all n-tuples of 0’s, 1’s, ..., m − 1’s (we think of these n-tuples as
being indexed by the elements of V ) will be called the states of Γ and denoted
(Z/mZ)n. Let s0 ∈ (Z/mZ)n denote an ‘initial state’ (and assume s0 contains
at least one non-zero entry). If v ∈ V is any vertex, let t(v) ∈ (Z/mZ)n denote
the state (sometimes called the toggle vector) which is 1 at each coordinate
that is either indexed by v or by a neighbor of v, and which is 0 otherwise. (In
the case of the Orbix puzzle, let t(v) ∈ (Z/mZ)n denote the state (sometimes
called the toggle vector) which is 1 at each coordinate that is indexed by a
neighbor of v (but not v itself), and which is 0 otherwise.)

The rules:
Here’s how the game is played.

1. Pick any vertex v.

2. Replace the current state of the game and call it s (s = s0 initially), with
s′ = s + t(v) (where addition is coordinatewise mod m).

3. If all the coordinates of this new state s′ are equal to 0 then stop. Other-
wise, go to step 1.

Motivated by §6.4, we shall call this game Merlin’s Machine.
It is possible to generalize the above construction slightly, replacing a graph

by a digraph with multiple (parallel) labeled edges. This generalization is suf-
ficiently different from the others that it has been omitted. However, Rubik’s
Clock falls into this more general framework but with m = 12.

In most examples given below, m = 2.
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6.2.2 The rectangular graph

The general setup was described in the previous subsection. Since the most
popular games are rectangular, we shall construct the graph in this special case
for easier reference.

Let M ≥ 2, N ≥ 2 be integers. (For example, in the case of Merlin’s Magic, we
have M = N = 3.) Subdivide a square in the plane into M ·N equal subsquares
whose edges are parallel to the edges of the larger square. Each of these smaller
subsquares represents a button in Merlin’s Machine. We shall label the M · N
buttons on this M ×N array of squares (Si,j), as though they were entries of a
matrix. Thus, for example, S1,1 is in the upper left-hand corner, S1,N is in the
upper right-hand corner, SM,1 is in the lower left-hand corner, and SM,N is in
the lower right-hand corner.

Let Γ denote the graph whose vertices are the M · N squares Si,j , where two
vertices are connected by an edge if and only if the corresponding squares share
a common side. There are N(M − 1) + M(N − 1) edges. This is the graph of
the rectangular Merlin’s Machine. The rules are as in §6.2.1 above.

6.3 Variants

Several variants of Merlin’s Machine have been patented and marketed. They
all fit into the framework of §6.2.1.

6.3.1 Merlin’s Magic and 3 × 3 Lights Out

For simplicity, I only describe the 3 × 3 Lights Out (for Merlin’s Magic, which
is a slightly different game, see [P], [Sto], [Sch1]). Imagine subdividing a square
into 9 equal subsquares in a 3 × 3 grid. Take m = 2. Here the graph Γ of
§6.2.1 is the graph of a 3×3 square array with 9 vertices, where two vertices are
connected by an edge if and only if the corresponding squares share a boundary.
Thus, each interior vertex has degree 4, each edge vertex (not a corner) has
degree 3, and each corner vertex has degree 2. The rules are as in §6.2.1.

For the solution strategy, see [P], [Sto], [Sch1].

6.3.2 The Orbix

Here m = 2 and the graph Γ of §6.2.1 is the graph of the icosahedron with 12
vertices, each having degree 5. (Actually, Orbix has four different puzzle types,
of which the one described is Type 1. The others have different rules for play,
as follows. Type 2: Same as type 1, but only lit buttons can be pressed. Type
3: Only unlit buttons can be pressed, and then all buttons except the adjacent
ones change. Type 4: Only lit buttons can be pressed. If the button opposite
the pressed one is on, then the adjacent 5 lights change. If the button opposite
the pressed one is off, then all buttons except the pressed one change. These
other types might require analysis and ideas beyond what is presented here.).
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The simplest solution strategy (for the Type 1 puzzle) is given on Jaap’s Orbix
page at [Sch2]: Simply press a button if an even number of the adjacent buttons
are lit. Repeat this until the puzzle is solved.

6.3.3 Keychain Lights Out

Imagine subdividing a square into equal subsquares in a 4×4 grid. Take m = 2.
Here the graph Γ of §6.2.1 is the graph of a 4× 4 array with 16 vertices, where
each edge vertex is also connected to its mirror-opposite vertex (reflecting about
the thick central lines in Figure 6.1 below) on the opposite edge. (The corner
vertices actually have two mirror opposites.) Thus, each vertex has degree 4.
This may be visualized as the graph of a 4 × 4 grid on a donut obtained by
‘gluing’ top and bottom edges and then ‘gluing’ the left and right edges.

Figure 6.1: Keychain Lights Out Grid.

The rules are as in §6.2.1.
(The ‘ordinary’ 4 × 4 game without wraparound has not been analyzed in

detail here. However, see Example 6.5.5.)

6.3.4 Lights Out

Imagine subdividing a square into 25 equal subsquares in a 5 × 5 grid. Take
m = 2. Here the graph Γ of §6.2.1 is the graph of a 5 × 5 square array with
25 vertices, where two vertices are connected by an edge if and only if the
corresponding squares share a boundary. Thus, each interior vertex has degree
4, each edge vertex (which is not a corner) has degree 3, and each corner vertex
has degree 2. The rules are as in §6.2.1.

6.3.5 Deluxe Lights Out

Imagine subdividing a square into equal subsquares in a 6×6 grid. Take m = 2.
Here the graph Γ of §6.2.1 is the graph of a 6 × 6 array with 36 vertices, each
interior vertex having degree 4, each edge vertex (which is not a corner) having
degree 3, and each corner vertex having degree 2. The rules are as in §6.2.1.
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Like the Orbix, Deluxe Lights Out has several different types of play, such as
‘lit only’ (where you can punch only lit buttons) and ‘toggle’ (where you must
alternately punch lit and then unlit buttons). Here we only describe the easiest
‘classic’ mode of play.

6.3.6 Lights Out Cube

Take m = 2. For this puzzle, let Γ be the graph whose vertices are the 54 facets
(i.e., the colored tiles) of a Rubik’s Cube. Join two vertices by an edge of the
facets share a common boundary. Now play the game following the rules of
§6.2.1.

For the solution strategy, see [Ta].

6.3.7 Alien Tiles

Take m = 4. (This is the only example where m 6= 2.) The Internet site
http://www.alientiles.com, maintained by Cliff Pickover and Cam Mckech-
nie (who have also trademarked the term ‘Alien Tiles’), provides one with a
game based on an idea similar to Lights Out. Here the game is a 7 × 7 array
of colored buttons. The graph Γ of §6.2.1 is the graph of a 7 × 7 array with
49 vertices, where two vertices are connected if their corresponding buttons are
either in the same row or in the same column. Now play the game following the
rules of §6.2.1.

6.3.8 Theoretical generalizations and variants

Besides the Rubik’s Clock already mentioned, other related puzzles include the
class of ‘chip-firing’ games investigated, for example, by A. Björner, L. Lovasz,
and P. Shor [BLS] and K. Eriksson [E]. Though extremely interesting, their
analysis is much more technical and would take us too far afield, so we shall not
delve further into them.

6.4 Finite-state machines

This section introduces a precise language which is helpful for comparing elec-
trical devices.

A finite-state machine (or Mealy machine) is a 5-tuple (S, I,O, f, g)
where S is a (finite) set of objects called states, I is a finite set of symbols
called the input alphabet, O is a finite set of symbols called the output al-
phabet, f : S×I → S is the transition or next-state function, g : S×I → O
is the output function. (One reference for this is, for example, Grimaldi [Gr].)

Remark 6.4.1. The states of the machine can be roughly regarded as the ‘mem-
ory registers’ of the machine. The input alphabet can be roughly regarded as a

127

http://www.alientiles.com


6.4. FINITE-STATE MACHINES

labeling of the buttons one might press (or moves you make, depending on the
constitution of the machine).

Remark 6.4.2. More precisely, f and/or g need not be defined on all of S × I.
One or both may only be defined on some subset of S × I (in other words, f
and g need only be what is called a partial function). When both f and g are
functions (each defined on all of S × I) then the machine is called complete.

Define Ei,j to be the M × N matrix all of whose entries are 0 except for the
(i, j)th entry, which is equal to 1. An elementary matrix is an M ×N matrix
which is equal to Ei,j for some i, j such that 1 ≤ i ≤ M, 1 ≤ j ≤ N . Let
MM×N (Z/2Z) denote the set of all M × N matrices whose entries are either
equal to 0 or equal to 1. Clearly, Ei,j ∈ MM×N (Z/2Z). We can, if we want,
add two elements of MM×N (Z/2Z) (adding each corresponding matrix element
mod 2) and get another matrix in MM×N (Z/2Z).

Example 6.4.1. (Rubik’s Cube) A Rubik’s Cube is a cube that has been
sliced into 27 subcubes of equal sizes, each of which has 6 smaller faces parallel
to the 6 faces of the larger cube. In the ‘solved state’ each face of the larger cube
is colored a different (solid) color. To be concrete, suppose we have fixed such a
cube in space (say on a tabletop in front of you, the reader). The 9 facets of the
front face are yellow, the 9 facets of the back face are green, the 9 facets of the
up (top) face are red, the 9 facets of the down (bottom) face are orange, the 9
facets of the right face are blue, and the 9 facets of the left face are white. There
are 9 · 6 = 54 colored facets total. Each of the 6 faces has 3 parallel slices of
9 subcubes, each of which may be independently rotated at angles of 90 degrees,
180 degrees, and 270 degrees.

With the yellow center facet facing front, and the red center facet facing up,
let R denote the 90 degrees clockwise rotation (as you face that side) of the
right slice, let L denote the 90 degrees clockwise rotation of the left slice, let F
denote the 90 degrees clockwise rotation of the front slice, let B denote the 90
degrees clockwise rotation of the back slice, let D denote the 90 degrees clockwise
rotation of the down slice, and let U denote the 90 degrees clockwise rotation
of the up slice. Note that each of these rotations leaves the center facets fixed.
There are 9 · 6 − 6 = 48 colored non-central facets total.

Let S denote the set of all possible permutations of the 48 colored facets on the
cube (leaving the center facets fixed). Let I = {R,L, F,B,U,D}. Let O = S.
Let the transition function f : S × I → S be the function sending (s, i) (s ∈ S
and i ∈ I) which takes the state s (the cube with 48 non-central facets scrambled
according to some permutation) and the input i (one of the moves R, L, ..., U)
to the new state s′ obtained by performing the move i on the scrambled cube s:
f(s, i) = s′. Let the output function g be the same as f .

This describes the Rubik’s Cube as a finite state machine.

Example 6.4.2. (rectangular Merlin’s Machine) In this example, let M,N > 2
be integers. Let

S = MM×N (Z/2Z), I = {Ei,j | 1 ≤ i ≤ M, 1 ≤ j ≤ N}, O = MM×N (Z/2Z).
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We interpret the input Ei,j to mean that the (i, j)th button of the array was
pressed. The effect of pressing any button is to toggle the button itself and those
which are directly north, south, east, or west of the button pressed. There is no
wraparound (at least not in the most basic version) so there are

• 3 buttons toggled in case a corner button is pressed,

• 4 buttons toggled in case an edge button is pressed,

• 5 buttons toggled in case a central button is pressed.

To model this as a finite-state machine, let the transition function f : S×I →
S be defined by

f(s,E) = s + t(E), s ∈ S, E ∈ I,

where addition is coordinate-wise mod 2 and t(E) is the toggle matrix:

t(Ei,j) =























































Ei,j + Ei−1,j + Ei,j−1 + Ei+1,j + Ei,j+1, 1 < i < M, 1 < j < N,
Ei,j + Ei−1,j + Ei+1,j + Ei,j+1, 1 < i < M, j = 1,

Ei,j + Ei+1,j + Ei,j+1, i = 1, j = 1,
Ei,j + Ei−1,j + Ei,j+1, i = M, j = 1,

Ei,j + Ei,j−1 + Ei+1,j + Ei,j+1, i = 1, 1 < j < N,
Ei,j + Ei−1,j + Ei,j−1 + Ei,j+1, i = M, 1 < j < N,
Ei,j + Ei−1,j + Ei,j−1 + Ei+1,j , 1 < i < M, j = N,

Ei,j + Ei,j−1 + Ei+1,j , i = 1, j = N,
Ei,j + Ei−1,j + Ei,j−1, i = M, j = N.

For example, if M = N = 3 and E = E1,2 then

t(E) =





1 1 1
0 1 0
0 0 0



 ,

and if E = E22 then

t(E) =





0 1 0
1 1 1
0 1 0



 .

Finally, let the output function g : S × I → O be the same as the transition
function g = f .

This describes Lights Out as a finite-state machine.

6.5 The mathematics of the machine

We shall follow Anderson and Feil’s [AF] presentation to begin with. The idea
is generalized and extended considerably in the papers of Goldwasser, Kloster-
meyer, et al. referenced below. The essential idea presented in this section was
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posted on the sci.math newsgroup in Feb. 1998, months before [AF] appeared,
first by Carsten Haese and then by Dave Rusin [Rus]. It appears that Haese
thought of the idea independently of Anderson and Feil.

6.5.1 The square case

Suppose, to begin, that M = N . Represent each state s ∈ MN (Z/2Z) as an
N2-tuple

~s = (s1,1, s1,2, ..., s1,N , s2,1, ..., sN,N ).

Let B denote the N ×N banded matrix with 1’s on the diagonal, subdiagonal,
and superdiagonal, and 0’s elsewhere:

B =















1 1 0 0 ... 0
1 1 1 0 ... 0
0 1 1 1 ... 0
...
0 0 ... 0 1 1















.

Let IN denote the N × N identity matrix. Let A denote the N2 × N2 matrix

A =















B IN 0 0 ... 0
IN B IN 0 ... 0
0 IN B IN ... 0
...
0 0 ... 0 IN B















,

where (for simplicity of notation) 0 denotes the N × N matrix of 0’s. The ith
column of A represents the toggle vector associated with pressing the ith button
(in the ordering (1, 1), (1, 2), ..., (1, N), (2, 1),..., (N,N)).

Let ~s0 denote any initial state. The problem of solving the puzzle is that we
want to know which buttons to press (i.e., which columns of A to add together)
starting from the solved position to obtain the given state ~s0. (For once we know
this, we can work backwards from ~s0 to solve it.) In other words, we want to
add some columns of A together (addition being coordinatewise (mod 2)) and
get ~s0. This fact may be recorded as follows.

Theorem 6.5.1. The puzzle with initial state ~s0 can be solved if and only if the
matrix equation A~x = ~s0 has a solution ~x ∈ (Z/2Z)N2

.

With a little knowledge of linear algebra, the following question immediately
arises: is det(A) 6= 0 in Z/2Z? Using the computer algebra program SAGE,
one finds that the answer is no if N = 4, 5 and yes if N = 3, 6. This has the
following implications.

• No matter what initial states are given for the 3×3 Merlin’s Machine and
the 6 × 6 Merlin’s Machine, the puzzle can always be solved.
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• There are initial states for the 4×4 Merlin’s Machine and the 5×5 Merlin’s
Machine from where the puzzle cannot be solved.

What about other values of N?
To answer this question, we first introduce a sequence of polynomials. Let

f0(x) = 0, f1(x) = 1,

and for n > 1, let
fn(x) = xfn−1(x) + fn−2(x).

This defines the polynomials f0(x), f1(x), f2(x), ..., inductively. The polynomial
fi(x) is called the ith Fibonacci polynomial.

Example 6.5.1. Here is an example of some SAGE/Python code which com-
putes the first several Fibonacci polynomials.

SAGE

sage: R = PolynomialRing(QQ,"x")
sage: x = R.gen()
sage: def f(t,n):

if n<2: return R(n)
else:

return f(t,n-2)+t * f(t,n-1)
sage: [f(x,n) for n in [0,1,2,3,4,5]]
[0,1, x, xˆ2 + 1, xˆ3 + 2 * x, xˆ4 + 3 * xˆ2 + 1]

If you decide to type this in yourself, please note that indentation is very
important in Python, so be careful when entering in the function f above.

Let Bn(x) denote the n × n matrix

Bn(x) =















x 1 0 0 ... 0
1 x 1 0 ... 0
0 1 x 1 ... 0
...
0 0 ... 0 1 x















.

Lemma 6.5.1. (Goldwasser, Klostermeyer, Trapp, and Zhang [GKTZ]) For
all n > 1,

det(Bn(x)) = fn+1(x).

Recall that the determinant was defined in §2.2.5.
The following effectively answers the question of when the N × N Merlin’s

Machine can always be solved, no matter what the initial state is.

Theorem 6.5.2. (Goldwasser, Klostermeyer, and Trapp [GKT]) The N × N
puzzle can be solved with any initial state if and only if the greatest common
divisor of fN+1(x) and fN+1(x + 1) equals 1.
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6.5.2 Downshifting

We need to slow down and recall a few more mathematical concepts in linear
algebra. These are analogs of standard facts for real matrices introduced in
Definition 2.1.2 above. However, we shall eventually need them for matrices
having coefficients in a finite field (finite fields, such as Z/pZ (also denoted
GF (p)), are discussed in §12.2 below).

Let F be either R or C or Z/pZ = GF (p), where p is a prime.

Definition 6.5.1. Let V be a set with operations + : V × V → V and · :
F × V → V . V is called a vector space over F (or an F -vector space) if
the following properties hold. For all ~u,~v, ~w ∈ V and a, b ∈ F ,

• ~u + ~v = ~v + ~u (commutativity)

• (~u + ~v) + ~w = ~u + (~v + ~w) (associativity)

• there is a vector ~0 ∈ V which satisfies ~u + ~0 = ~u (the zero vector ~0 is the
‘additive identity’),

• for each ~v ∈ V the element (−1)~v = −~v ∈ V satisfies ~v + (−~v) = ~0 (each
element ~v has an ‘additive inverse’ −~v)

• (a + b)~v = a~v + b~v and a(~v + ~w) = a~v + a~w (distributive laws)

• (ab)~v = a(b~v)

• 1 · ~v = ~v

In particular, every vector space must contain at least one element (the zero
vector). The elements of V are called vectors and the elements of F are called
scalars.

Any subset W ⊂ V of a vector space which is closed under vector addition
(restricting + from V to W ) and scalar multiplication is called a subspace of
V .

Example 6.5.2. The ‘mod 2 analog’ of the basic example of the ‘3-space’,
V = R3, is (Z/2Z)3 consisting of all vectors (x, y, z) in three dimensions whose
coordinates (and scalars) belong to Z/2Z. All arithmetic is mod 2.

Example 6.5.3. Another example of a vector space is the space of all m × n
matrices having entries in F , Mm×n(F ) (m rows and n columns). Let m = n >
1 and let 1 ≤ i, j ≤ n. Define the matrix Eij ∈ Mn×n(F ) to have entry 1 at
the (i, j) coordinate and 0 at every other coordinate. This is called the (i, j)th
elementary matrix.

Suppose V is a vector space over a field F . If there are non-zero vectors
~f1, ~f2, ..., ~fk such that every ~v ∈ V can be written as a ‘linear combination’ of
these ~vi’s, i.e.,

~v = c1
~f1 + c2

~f2 + ... + ck
~fk,
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for some scalar coefficients ci ∈ F (i = 1, 2, ..., k), then we say that V is spanned

by the elements ~f1, ~f2, ..., ~fk. We also say that elements ~f1, ~f2, ..., ~fk form a
spanning set for V .

Definition 6.5.2. If a vector space V has a finite spanning set, then we say that
V is finite dimensional. The dimension of V over F is the number of vectors
in any minimal spanning set of V (it turns out this number does not depend on
the minimal spanning set choosen, so this makes sense). The dimension of V
is written dim(V ) = k. If V is of dimension k, then there are k vectors which
span V and any such set of k spanning vectors of V , is called a basis of V .

If W is a subspace of V then the number dim(V ) − dim(W ) is called the
codimension of W in V .

The dimension of a vector space measures how many degrees of freedom—how
‘big’—the space is. The codimension of a subspace measures how many degrees
of freedom V has relative to W .

Let V = Rn and let A be an n×n matrix having entries in F . Then A defines
a function A : V → V . If v ∈ V is a non-zero vector and λ ∈ C with the
property that

Av = λv,

then we say λ is an eigenvalue of A with eigenvector v.
The intuitive, geometric way to visualize eigenvalues and eigenvectors is to

think of the action of A on a vector as being some sort of combination of ‘rota-
tions’, ‘shears’ (as in the shear force on an airplane), and ‘stretches’. However,
if that vector is an eigenvector, then the action of A is simply a stretch (by a
factor of λ, at least if λ is real). The following is a basic fact about eigenvalues
which is found in any textbook on linear algebra (for example, [Be]).

Lemma 6.5.2. Assume A is a square matrix having entries in C.

(a) λ is an eigenvalue of A if and only if det(A − λI) = 0, where I denotes
the identity matrix.

(b) If A is an n×n matrix, then A has exactly n eigenvalues (counted according
to multiplicity).

The result above still holds if C is replaced by any algebraically closed field.
(For a precise definition of ‘algebraic closure’, please see any text on abstract
algebra, such as [Ar] or [JKT]. Basically, a field F is algebraically closed if any
polynomial f(x) = a0 + a1x + ... + anxn having coefficients ai in F also has all
its roots in F .)

The polynomial

pA(x) = det(A − xI)

is called the characteristic polynomial of A. A matrix A for which λ is a
root of pA(x) = 0 of multiplicity m is called an eigenvalue of A of multiplicity
m. This is the multiplicity refered to in part (b) above.
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Remark 6.5.1. If you know the fundamental theorem of algebra and the defi-
nition of determinant then you can prove (b) follows from (a). The proof of (a)
itself is not too hard. Here’s a sketch: Av = λv holds if and only if (A−λI)v = 0,
where here 0 denotes the 0 vector in the space of v. Since v is non-zero, by as-
sumption, the matrix A − λI cannot be invertible. (And conversely, if A − λI
is not one-to-one then (A − λI)v = 0 for some non-zero v.) By Lemma 2.2.1,
det(A − λI) = 0.

An odd situation arises if λ = 0. Matrices that have an eigenvalue of 0 don’t
behave as ‘nicely’, in some respects, as matrices for which all the eigenvalues
are non-zero. The number of non-zero eigenvalues (counted according to mul-
tiplicity) of a square diagonalizable matrix is its ‘rank’ (defined more generally
below). The rank is a measurement of how ‘bad’ a matrix is, in a sense. (Of
course, I do not mean to cast dispersions on the character of low ranking matri-
ces!) The following result enables one to compute the rank of a matrix without
having to compute the eigenvalues, which can be difficult if n is large.

Lemma 6.5.3. Let A be any matrix as in the lemma above. Let r1, ..., rn be the
row vectors of A. Let A′ be a matrix which is the same as A except that either
(a) exactly one row, say the ith one, has been replaced by the sum ri +crj, where
c is any constant and rj is any other row (so i 6= j) if A, or (b) the rows of A′

are the same as A but with exactly two of them swapped. Then

rank(A) = rank(A′).

A matrix A′ as in the above lemma is said to be obtained from A by an
elementary row operation. An elementary column operation may be defined
similarly. (The definition is left to the reader.) The analogous result also holds
for elementary column operations (see any text on linear algebra, for example
Beezer [Be]). The point to this lemma is that one can often choose the constant
c so that A′ has more zeros that A does. This is an instance of Gaussian
elimination. Now we shall reformulate this into a little game.

The Gauss Elimination Game

• Legal moves: These actually apply to any m× n matrix A with m < n.

1. Ri ↔ Rj : You can swap row i with row j.

2. cRi → Ri (c 6= 0): You can replace row i with row i multiplied by
any non-zero constant c.

3. cRi + Rj → Ri (c 6= 0): You can replace row i with row i multiplied
by any non-zero constant c plus row j, j 6= i.

• Goal: You win the game when you can achieve the requirements below.
Your goal is to find a sequence of legal moves leading to a matrix B
satisfying the following criteria:
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1. All rows of B have leading a non-zero term equal to 1 (the position
where this leading term in B occurs is called a pivot position).

2. The matrix B contains as many zeroes as possible.

3. All entries above and below a pivot position must be 0.

4. No pivot position is below and to the left of any other one. In par-
ticular, all entries below the diagonal of B are 0.

This matrix B is unique (a theorem which you can find in any text on elementary
matrix theory, such as [Be]) and is called the ‘row-reduced echelon form’ of A.
For short, we shall simply say B is reduced. The number of all-zero rows
of B is called the nullity of A. The number of non-zero rows of B is called
the rank of A. Therefore, ‘rank plus nullity equals m’. (This last statement is
sometimes called ‘the fundamental theory of linear algebra’.) When the rank is
as large as possible, the matrix is said to be full rank.

The result above is due to Carl F. Gauss (1777-1855), perhaps the greatest
mathematician of all time. Probably the best story about Gauss concerns the
time when he first entered elementary school at the age of 7. His teacher, no
doubt tired and wanting a break, gave his class the following problem: ‘Find the
sum of all the integers from 1 to 100: 1+2+ ...+100 =?’ He probably expected
to get a good bit of peace and quiet, but Gauss instantly saw that you could pair
1 and 100, 2 and 99, ..., 50 and 51, and get the answer 50 · 101 = 5050. For his
1799 Ph.D. thesis, he gave the first complete proof of the fundamental theorem
of algebra. Gauss made major contributions to number theory, astronomy, and
geodesy, among other fields, in his lifetime.

Gauss’s recipe to compute the rank
Input: The matrix A.
Output: The rank of A

Using the Gauss elimination game, create from A a matrix B that is reduced.
The number of non-zero rows of B is the rank of A.

Gauss was quite a cook!

Example 6.5.4. Here is an illustration of Gauss elimination using SAGE:

SAGE

sage: MS = MatrixSpace(QQ, 3, 5)
sage: A1 = MS([[1,2,3,4,5],[1,1,-1,0,1],[6,7,8,9,10]])
sage: A1.echelon_form()
[ 1 0 0 -3/2 -3]
[ 0 1 0 2 4]
[ 0 0 1 1/2 0]
sage: A2 = MS([[1,2,3,4,5],[1,1,1,1,1],[6,7,8,9,10]])
sage: A2.echelon_form()
[ 1 0 -1 -2 -3]
[ 0 1 2 3 4]
[ 0 0 0 0 0]
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The first matrix is full rank (rank 3, which is the largest rank a 3 × 5 matrix
can have). The second matrix is rank 2, which is the number of non-zero rows
in its reduced row echelon form.

6.5.3 The rectangular case

We reformulate the problem.

Let V = VM,N = MM×N (Z/2Z). This is a vector space over the field Z/2Z

with two elements. Let W = WM,N denote the subspace spanned by the vectors
t(E), in the notation of Example 6.4.2 above, where E runs over all M × N
elementary matrices.

The following question was posed by D. Rusin in [Rus]:

Problem: What is the codimension of W in V ?

This question is important for the solution of the rectangular Merlin’s Ma-
chine due to the following fact. Let cM,N = dimZ/2Z(VM,N/WM,N ) denote the
codimension of W in V .

Proposition 6.5.1. The M × N puzzle can be solved with any initial state if
and only if cM,N = 0.

Example 6.5.5. (Rusin [Rus]) Several examples were computed by Rusin. The
array of values of these numbers for 0 < m,n < 10 is

0 1 0 0 1 0 0 1 0
1 0 2 0 1 0 2 0 1
0 2 0 0 3 0 0 2 0
0 0 0 4 0 0 0 0 4
1 1 3 0 2 0 4 1 1
0 0 0 0 0 0 0 6 0
0 2 0 0 4 0 0 2 0
1 0 2 0 1 6 2 0 1
0 1 0 4 1 0 0 1 8

In particular, not every possible initial state for the the 3×5 Merlin’s Machine
puzzle can be solved, since c3,5 6= 0.

Proposition 6.5.1 above is useful only if one can compute the cM,N . For low
values of M,N this can be done with the help of a computer. For larger values,
such calculations become more difficult. The ideas of Goldwasser, Klostermeyer,
et al., provide a more computationally effective solution. Theorem 6.5.2 above
generalizes to the rectangular case as follows.

Theorem 6.5.3. (Goldwasser, Klostermeyer, and Trapp [GKT]) The M × N
puzzle can be solved with any initial state if and only if the greatest common
divisor of fM+1(x) and fN+1(x + 1) equals 1.

136



6.5. THE MATHEMATICS OF THE MACHINE

6.5.4 Alien Tiles again

This is the same as the rectangular case discussed in the subsection above,
except for two things:

• we must replace Z/2Z, representing on/off, by Z/4Z (with addition mod
4), representing red, green, blue, and purple, respectively;

• we must change the ‘toggle matrix’ t(E) in Example 6.4.2 to have a 1 for
every matrix entry corresponding to a button in the same row or column
as the button pressed (not just the neighboring buttons in the same row
or column).

The states of this puzzle machine are MM×N (Z/4Z). t′(E) is the toggle
matrix for Alien Tiles,

t′(Ei,j) =
∑

i′,j′

Ei′,j′ ,

where the sum runs over all 1 ≤ i′ ≤ M , 1 ≤ j′ ≤ N , with either i′ = i or j′ = j
or both. If s is the present state, then the next state, s′, is obtained by first
choosing an elementary matrix E corrsponding to the button you want to press
and then computing

s′ = s + t′(E),

where addition is coordinate-wise mod 4.
Let V = VM,N = MM×N (Z/4Z). This is a ‘module’ over Z/4Z (mathemati-

cians use the word ‘module’ in place of ‘vector space’ when the scalars are taken
from a ring such as Z/4Z). Let W = WM,N denote the submodule (a ‘submod-
ule’ is analogous to a ‘vector subspace’) spanned by the vectors t′(E), in the
notation above, where E runs over all M × N elementary matrices.

The following problem naturally arises.

Ponderable 6.5.1. (Hard) What is the codimension of W in V ?

A general formula for this codimension, as a function of M and N , was un-
known when the first editition of this book appeared. However, Ponderable
6.5.1 has recently been solved by Peter Maier and Werner Nickel in their paper
[MN].

6.5.5 Orbix, revisited

Let us number the lights on the Orbix as follows: with the north pole as 1, the
south pole as 12, let the numbering of the remaining buttons, as viewed from
above, be as in Figure 6.2.
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11

10 7

2

6 3

1

5 4

9 8

Figure 6.2: Orbix labels.

The labeling is detailed further in the diagram below.

Light number neighbors antipodes
1 2,3,4,5,6 1,12
2 1,3,6,7,11 2,9
3 1,2,4,7,8 3,10
4 1,3,5,8,9 4,11
5 1,4,6,9,10 5,7
6 1,2,5,10,11 6,8
7 2,3,8,11,12
8 3,4,7,9,12
9 4,5,8,10,12
10 5,6,9,11,12
11 2,6,7,10,12
12 7,8,9,10,11

The adjacency matrix of the graph in §6.2.1 is the 12 × 12 matrix A = (ai,j),
where ai,j = 1 if vertex i and vertex j are neighbors (connected by a single
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edge) and ai,j = 0, otherwise. In this case,

A =































































0 1 1 1 1 1 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0 1 0

1 1 0 1 0 0 1 1 0 0 0 0

1 0 1 0 1 0 0 1 1 0 0 0

1 0 0 1 0 1 0 0 1 1 0 0

1 1 0 0 1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1 0 0 1 1

0 0 1 1 0 0 1 0 1 0 0 1

0 0 0 1 1 0 0 1 0 1 0 1

0 0 0 0 1 1 0 0 1 0 1 1

0 1 0 0 0 1 1 0 0 1 0 1

0 0 0 0 0 0 1 1 1 1 1 0































































For example, the ‘toggle vector’ for the first button is (0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0).

Remark 6.5.2.

• The matrix A has determinant 625 = 54 and eigenvalues 5, 51/2, −51/2,
51/2, −51/2, 51/2, −51/2, −1, −1, −1, −1, −1.

• The state vector v0 = (1, 1, ..., 1) is an eigenvector with eigenvalue 5. This
state vector has the property that if you punch all the buttons on an unlit
Orbix associated to its non-zero entries of v0 then you recover v0.

• The state vector v1 = (0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0) is an eigenvector with
eigenvalue −1. This state vector has the property that if you punch all the
buttons on an unlit Orbix associated to its non-zero entries of v1 then you
recover v1.

The only other vectors with this property are the eigenvectors

v2 = (0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0), v3 = (0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0),
v4 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0), v5 = (1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1),

and their linear combinations.

• A move consists mathematically of choosing a vertex i then adding (modulo
2) row i of the adjacency matrix A to the state vector.

• If you change the rules of the Orbix and decide to toggle the button pressed
as well as its neighbors (as in the Lights Out game), then the 12×12 matrix
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of toggle vectors is









































1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0 0 0
1 0 1 1 1 0 0 1 1 0 0 0
1 0 0 1 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 0 1 1 0
0 1 1 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1
0 0 0 1 1 0 0 1 1 1 0 1
0 0 0 0 1 1 0 0 1 1 1 1
0 1 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1









































This matrix is singular. Its column span (and row span) is only 6-dimensional
over Z/2Z, and there are only 64 (out of 212 = 4096 possible) solvable
states.

Here is an example using SAGE to compute the rank of the above matrix.

SAGE

sage: MS = MatrixSpace(GF(2), 12, 12)
sage: lights = [[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],\
....: [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0],\
....: [1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0],\
....: [1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0],\
....: [1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0],\
....: [1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0],\
....: [0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1],\
....: [0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1],\
....: [0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1],\
....: [0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1],\
....: [0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1],\
....: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]
sage: A = MS(lights)
sage: A.echelon_form()
[1 0 0 0 0 1 0 1 0 0 0 1]
[0 1 0 0 0 1 0 1 1 0 0 0]
[0 0 1 0 0 1 0 1 0 1 0 0]
[0 0 0 1 0 1 0 1 0 0 1 0]
[0 0 0 0 1 1 0 0 1 1 1 1]
[0 0 0 0 0 0 1 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0]
sage: A.rank()
6

140



6.5. THE MATHEMATICS OF THE MACHINE

Theorem 6.5.4. The Orbix puzzle can be always be solved with any initial state.

6.5.6 Return of the Keychain Lights Out

Arranging the state space as in the case of the 4×4 Merlin’s machine, the matrix
of toggle vectors is

T =

0
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1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0

0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0

1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0

0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1

0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1
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Using SAGE, we can perform Gaussian elimination over GF (2). It turns out
that the rank of T over GF (2) is 16, i.e., T is full rank. This implies the following
result.

Lemma 6.5.4. The row space of T is equal to the state space. In particular,
the keychain puzzle can always be solved.

Ponderable 6.5.2. Using SAGE’s echelon_form over GF (2), verify that the
rank of T over GF (2) is 16.

Here is a SAGE computation for this matrix.

SAGE

sage: MS = MatrixSpace(GF(2),16,16)
sage: A = MS([
[1,1,0,1,1,0,0,0,0,0,0,0,1,0,0,0],
[1,1,1,0,0,1,0,0,0,0,0,0,0,1,0,0],
[0,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0],
[1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,1],
[1,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0],
[0,1,0,0,1,1,1,0,0,1,0,0,0,0,0,0],
[0,0,1,0,0,1,1,1,0,0,1,0,0,0,0,0],
[0,0,0,1,1,0,1,1,0,0,0,1,0,0,0,0],
[0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,0],
[0,0,0,0,0,1,0,0,1,1,1,0,0,1,0,0],
[0,0,0,0,0,0,1,0,0,1,1,1,0,0,1,0],
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[0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1],
[1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,1],
[0,1,0,0,0,0,0,0,0,1,0,0,1,1,1,0],
[0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,1],
[0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1]])
sage: p = A.charpoly()
sage: p.factor()
(x + 1)ˆ16
sage: A.eigenspaces()

[
(1, Vector space of degree 16 and dimension 8 over Finite Fiel d of size 2
User basis matrix:
[1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1]
[0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0]
[0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1]
[0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0]
[0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0]
[0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0]
[0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0]
[0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1])
]
sage: A.rank()
16
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Chapter 7

‘God’s algorithm’ and
graphs

Unfortunately what is little recognized is that the most worthwhile sci-
entific books are those in which the author clearly indicates what he does
not know; for an author most hurts his readers by concealing difficulties.

Evariste Galois

In this chapter we introduce a graphical interpretation of a permutation group,
the Cayley graph. This is then interpreted in the special case of a group arising
from a permutation puzzle. Along the lines of Galois’ quote above, we shall also
discuss the state of our ignorance regarding ‘God’s algorithm’. See also chapter
16.

7.1 In the beginning...

To begin, what’s a graph? A graph is a pair of sets (V,E), where

• V is a set of singleton elements called vertices,

• E is a subset of the set of all unordered pairs {{v1, v2} | v1, v2 ∈ V, v1 6= v2}.
The elements of E are called edges.

Such a graph (one without ‘loops’) is also called a simple graph in the lit-
erature. A graph is drawn by simply connecting points representing vertices
together by a line segment if they belong to the same edge. A finite graph is
a graph (V,E) with V a finite set.

A digraph, or directed graph, is a pair of sets (V,E), where

• V is a countable set of vertices,

• E is a subset of ordered pairs {(v1, v2) | v1, v2 ∈ V, v1 6= v2} called edges
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A digraph is drawn by simply connecting points representing vertices together
by an arrow if they belong to the same edge (v1, v2), the arrow originating at
v1 and arrowhead pointing to v2. .

If e = {v1, v2} belongs to E then we say that e is an edge from v1 to v2

(or from v2 to v1) and we say v1 and v2 are neighbors or adjacent in the
graph. If v and w are vertices, a path from v to w is a finite sequence of edges
beginning at v and ending at w:

e0 = {v, v1}, e1 = {v1, v2}, ..., en = {vn, w}.

If there is a path from v to w then we say v is connected to w. We say that a
graph (V,E) is connected if each pair of vertices is connected. The number of
edges emanating from a vertex v is called the degree (or valence) of v, denoted
degree(v).

Example 7.1.1. If

V = {a, b, c}, E = {{a, b}, {a, c}, {b, c}},

then we may visualize the graph Γ = (V,E) as in Figure 7.1.

¡
¡

¡
¡

¡

a

c

@
@

@
@

@

b

Figure 7.1: Each vertex has valence 2.
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Here are illustrations of how to use SAGE to construct Γ. The first SAGE plot
has the (default) labels for the vertices 0, 1, 2. The second has vertices labeled
a, b, c.

SAGE

sage: G = graphs.CycleGraph(3)
sage: show(G.plot())
sage: G = Graph({"a":["b","c"], "b":["a","c"], "c":["a", "b"]})
sage: show(G.plot())

Each of these plots illustrates the same graph as in Figure 7.1, but possibly
relabeled.

Figure 7.2: Two plots of the graph Γ.

Definition 7.1.1. If v and w are vertices connected to each other in a graph
(V,E), then we define the distance from v to w denoted d(v, w), by

d(v, w) = min
v,w∈V connected

#{edges in a path from v to w}

By convention, if v and w are not connected, then we set d(v, w) = ∞. The
diameter of a graph is the largest possible distance:

diam((V,E)) = max
v,w∈V

d(v, w).

,
In the above example, the diameter is 1.

7.2 Cayley graphs

Let G be a finite group with prescribed generators gi:
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G = 〈g1, g2, ..., gn〉.
Assume that the generating set X = {g1, g2, ..., gn} does not contain the identity
and it is closed under taking inverses (i.e., if x ∈ X then x−1 ∈ X). The
Cayley graph of G with respect to X = {g1, g2, ..., gn} is the graph (V,E)
whose vertices V are the elements of G and whose edges are determined by the
following condition: if x and y belong to V = G then there is an edge from x to
y (or from y to x) if and only if y = gi · x or x = gi · y, for some i = 1, 2, ..., n.

Cayley graphs are named for Arthur Cayley, whom we met already in §2.2.1.
Cayley, though starting out as a lawyer, eventually published over 900 papers
and notes covering nearly every aspect of mathematics.

Example 7.2.1. Here is an example of how to use SAGE and GAP’s GRAPE
package to construct a graph for the symmetric group S3:

SAGE

sage: gens = [(1,2),(2,3)]
sage: gap.eval("gens := "+str(gens))
’[ (1,2), (2,3) ]’
sage: gap.eval("C := CayleyGraph(Group(gens),gens)")
’rec( isGraph := true, order := 6,

group := Group([ (1,3)(2,4)(5,6), (1,2)(3,5)(4,6) ]),
schreierVector := [ -1, 2, 1, 1, 2, 1 ],
adjacencies := [ [ 2, 3 ] ],
representatives := [ 1 ],
names := [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ],
isSimple := true )’

sage: E = eval(gap.eval("UndirectedEdges(C)"))
sage: V = eval(gap.eval("Elements(Vertices(C))"))
sage: L = [sum([[y[i] for y in [x for x in E if v in x]\

if y[i]!=v] for i in range(len(gens))],[])\
for v in V]

sage: d = dict(zip(V,L))
sage: G = Graph(d)
sage: show(G.plot())

(The line defining L was split into three for typographical reasons.) Here is
another method which does not use the GRAPE package:

SAGE

sage: gens = [(1,2),(2,3)]
sage: G = PermutationGroup(gens)
sage: C = G.cayley_graph()
sage: show(C.plot())
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This is discussed further in Example 7.2.2 below, which also displays the graph.

Ponderable 7.2.1. Show that the Cayley graph of a finite group is connected.

Lemma 7.2.1. Let ΓG = (V,E) denote the Cayley graph associated with the
finite group G = 〈g1, g2, ..., gn〉. Let N = |{g1, g

−1
1 , g2, g

−1
2 , ..., gn, g−1

n }|. Then,
for all v ∈ V , degree(v) = N .

Proof: Assume not. Then there is a v ∈ V = G with either

(i) degree(v) < N , or

(ii) degree(v) > N .

First, we note that, for each h ∈ {g1, g
−1
1 , g2, g

−1
2 , ..., gn, g−1

n }, the set {v, h ·v}
is an edge of ΓG. This follows from the definition of the Cayley graph.

If r = degree(v) > N then, by definition of the Cayley graph, there are distinct
v1, ..., vr ∈ V with v = hi · vi, for all 1 ≤ i ≤ r, where the h1, ..., hr are distinct
elements of {g1, g

−1
1 , g2, g

−1
2 , ..., gn, g−1

n }. This contradicts the definition of N .

If r = degree(v) < N then, by definition of the Cayley graph, there are distinct
hi, hj in {g1, g

−1
1 , g2, g

−1
2 , ..., gn, g−1

n } such that hi ·v = hj ·v. Since G is a group
and V = G (as sets), we may cancel the v from both sides of the equation
hi · v = hj · v, contradicting the assumption that hi is distinct from hj . ¤

Example 7.2.2. Let

G = 〈s1, s2〉 = S3,

where s1 = (1, 2), and s2 = (2, 3). Then the Cayley graph of G with respect to
X = {s1, s2} may be visualized as below (note that s1 = s−1

1 and s2 = s−1
2 , so

X is closed under taking inverses).
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Ponderable 7.2.2. Let
G = 〈s1, s2〉 = S3,

where s1 = (1, 2), and s2 = (2, 3). Find the Cayley digraph of G with respect to
X = {s1, s2}.
Ponderable 7.2.3. Construct the Cayley graph of C4, the cyclic group, with
respect to the generator s = (1, 2, 3, 4).

Ponderable 7.2.4. Construct the Cayley graph of S4, the symmetric group on
four letters, with respect to the generators s1 = (1, 2), s2 = (2, 3) and s3 = (3, 4).

Ponderable 7.2.5. Construct the Cayley digraph of S3 with respect to the
generators f = (1, 3), r = (1, 2, 3). (Show, in particular, that f, r do indeed
generate S3.)

Example 7.2.3. Let

G = 〈R,L,U,D, F,B〉 ⊂ S54

be the group of the 3 × 3 Rubik’s Cube. Each position of the cube corresponds
to an element of the group G (i.e., the move you had to make to get to that
position). In other words, each position of the cube corresponds to a vertex of
either

• the Cayley graph associated with the quarter-turn metric with generat-
ing set {R,L,U,D, F,B,R−1, L−1, U−1,D−1, F−1, B−1}, or

• the Cayley graph associated with the face-turn metric with generating set
{R,R2, L, L2, U, U2,D,D2, F, F 2, B,B2, R−1, L−1, U−1,D−1, F−1, B−1}.

Each vertex of the first (quarter-turn metric) graph has valence 12, whereas each
vertex of the latter (face-turn metric) graph has valence 16.

Ponderable 7.2.6. Check this.

Moreover, a solution of the Rubik’s Cube is simply a path in the Cayley graph
from the vertex associated with the present position of the cube to the vertex as-
sociated with the identity element. The number of moves in the shortest possible
solution is simply the distance from the vertex associated with the present posi-
tion of the cube to the vertex associated to the identity element. The diameter of
the Cayley graph of G is the number of moves in the best possible solution in the
worst possible case. This diameter can be measured either in the quarter-turn
metric or the face-turn metric.

7.3 God’s algorithm

...O, cursed spite,
that ever I was to set it right!

Shakespeare, Hamlet, Act 1, scene 5
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Ponderable 7.3.1. (Very hard) Let G be the group of a permutation puzzle
(with a fixed generating set). Find the diameter of the Cayley graph of G.

Sometimes this is called ‘God’s algorithm’, though here that term is reserved
for a harder version of the problem, stated below. This diameter problem is
unsolved for must puzzles (including the 3 × 3 Rubik’s Cube) and appears to
be very difficult computationally in general (see [GJ] for a discussion of similar
problems and their complexity). The cases where it is known include (with no
attempt at completeness) the following puzzles (the reader is referred to [Lo],
[CFS] for more details).

Puzzle Diameter
Pyraminx 11 (not including tip moves)

Skewb 11
2 × 2 × 2 Rubik’s Cube 14 (quarter turns)

These diameters were found with the help of a computer.
Many people have worked on God’s algorithm for the Rubik’s Cube. For a

while it was guessed that the superflip position is the position which is as far
from ‘start’ (the solved position) as possible. The superflip position is 24 quarter
turns from start in the quarter turn metric (as was already mentioned, this fact
is due to Jerry Bryan and Michael Reid [CL]) and 20 turns from start in the
face-turn metric (this is due to Michael Reid and Dik Winter). However, Reid
discovered a longer move in the quarter-turn metric—26 quarter-turns away
from start (the superflip composed with the four spot, see (5.2)). No longer
move has been found in the face-turn metric. At the moment, one might guess
that the diameter of the Rubik’s Cube graph is 26 in the quarter-turn metric
and 20 moves in the face-turn metric. At the time of this writing (spring 2008),
the best-known upper bound is as follows:

• Tom Rokicki proved in 2008 that 25 face turns is enough [Rok]. (Gene
Cooperman and Daniel Kunkle proved in 2007 that 26 face turns is enough
[CK], but believe that their technique can be pushed to the 25 mark as
well.)

• In 2006, Silviu Radu proved that every position can be solved in at most
35 quarter turns [Ra].

For the latest progress, see the Wikipedia article “Optimal solutions for Rubik’s
Cube” [Wi]. For a description of the algorithms involved, see §15.2.3 below and
Herbert Kociemba’s exellent site [Koc].

Ponderable 7.3.2. Let G be the group of a permutation puzzle (with a fixed
generating set) and let v be a vertex in the Cayley graph of G. Find an effective,
practical algorithm for determining a path from v to the vertex v0 associated to
the identity having a length equal to the distance from v to v0.

This problem is even harder! This algorithm is called God’s algorithm. It
really refers to an optimal method of solution for the permutation puzzle.
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Ponderable 7.3.3. Find the Cayley graph of the sliced squared group

G = 〈M2
R,M2

F ,M2
D〉,

where MR is the middle-slice move which turns the middle slice parallel to the
right face clockwise 90 degrees (with respect to the right face). Find the diameter
of this graph.

Let Γ be a graph. A Hamiltonian circuit on Γ is a sequence of edges forming
a path in Γ which passes through each vertex exactly once. (If you think of the
vertices as cities and the edges as roads, then a Hamiltonian circuit is a tour
visiting each city exactly once.)

The following unsolved problem was first mentioned in this context by A.
Schwenk (in an unpublished paper written while he was at the U.S. Naval
Academy).

Ponderable 7.3.4. (Very hard) Let G be the group of the 3 × 3 Rubik’s Cube
puzzle. Does the Cayley graph of G have a Hamiltonian circuit? In other
words, can we (in principle) ‘visit’ each possible position of the Rubik’s Cube
exactly once, by making one move at a time using only the basic generators
R,L,U,D, F,B?

Remark 7.3.1. This is a special case of a more general unsolved problem:
For an arbitary permutation group with a given generating set, is its Cayley
graph Hamiltonian? See [CSW] and [CG] for results in this area.

An example of a group (with generators) where its Cayley graph is known to
have a Hamiltonian circuit is the symmetric group (with generators the set of
all transpositions).

Example 7.3.1. Let G be the group Sn with generators given to be the set of
all transpositions:

G = Sn, X = {(i, j) | 1 ≤ i < j ≤ n}.
(There are many more transpositions than necessary to generate Sn since the
subset of transpositions of the form (i, i+1), 1 ≤ i ≤ n−1, suffice to generate Sn

[R].) The algorithm of Steinhaus (see §3.4) shows that there is a Hamiltonian
circuit in the Cayley graph of Sn with respect to X.

The reader interested in more examples is referred to the excellent survey
article by S. Curran and J. Gallian [CG].

William Hamilton, whom we met already in §5.1, may have originated the
problem of finding Hamiltonian paths (hence the name) by patenting a game
called the ‘Icosian game’ or the ‘Hamilton game’. The idea is to find a Hamilto-
nian path around the vertices of the icosahedron. A picture of the orginal game
can be found at the MacTutor History of Mathematics archive [MT]. Hamilton
was a prodigy talented in many subjects, who by the age of five, had already
learned Latin, Greek, and Hebrew. He eventually turned to mathematics and
physics, was knighted in 1835, and was the first foreign member elected to the
National Academy of Sciences of the USA.
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7.4 The graph of the 15 Puzzle

This section discusses the 15 Puzzle from the graph-theoretical point of view
following [W].

The 15 Puzzle was introduced in §4.1 above. The object of the puzzle was to
order the pieces from 1 to 15 from left to right, top to bottom, as shown in the
solved position given in §4.1.

To solve a mixed-up puzzle, one would slide the squares around in the puzzle.
In order to do this you must slide a numbered square into the place of the space.
We could represent this mathematically by saying that this is a transposition
of that numbered square and the blank.

If we label each space in the puzzle as a vertex, and label the vertices numer-
ically, then the resulting graph is represented by the figure below.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

We will let 16 denote the blank and call this graph Γ. The only legal moves
of the puzzle are transpositions of the 16th vertex and a vertex that is adjacent
to it. Therefore, any permutation of the vertices produces a labeling on Γ.

7.4.1 General definitions

Now let Γ be a simple graph with the vertex set V (Γ) of cardinality N . (In the
above example N = 16.) By a labeling I mean the placement of the numbers 1
through N on distinct vertices of Γ, where N denotes the blank. In other words,
a labeling on Γ is a bijective mapping f : V (Γ) → {1, 2, ..., N}. Two labelings
f, g on Γ are adjacent if and only if g is a result of a single transposition on
f of vertex N with a vertex adjacent to N on f . In other words, f and g are
adjacent if they differ by one legal move of the puzzle. From Γ, we make a new
graph puz(Γ) as follows [W]: the vertex set V (puz(Γ)) contains all labelings on
Γ, and two vertices in puz(Γ) are joined by an edge if the associated labelings
are adjacent.

For example, the labelings in

1 2 3 4
5 6 7 8
9 10 11
13 14 15 12
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and

1 2 3 4
5 6 7 8
9 10 11
13 14 15 12

are adjacent.
We can consider a path p to be a sequence of moves on the graph puz(Γ),

p = (x0, x1, x2, ..., xn), where the xi’s are vertices of Γ, and (if n ≥ 1) xi and
xi−1 are adjacent in Γ for 1 ≤ i ≤ n. Such a path p is said to be from x0

(its initial vertex) to xn (its terminal vertex). The path p is simple if
x0, x1, x2, ..., xn are distinct. If x0 = xn, then p is called a closed path based
at x0. Let x0 be a fixed vertex of Γ. If p, p′ are closed paths based at x0, then
the composition pp′ is the path obtained by juxtaposing the path for p with
that for p′. The inverse of a path p, denoted p−1, is the path which traverses
p in the opposite direction. The identity path is the path from x0 to itself
which contains no edges of Γ. The set of closed paths based at x0 forms a group
(under composition of paths) called the homotopy group of Γ based at x0,
denoted Γ(x0).

Now suppose we paint the blocks of the 15 Puzzle in a checkerboard pattern:

× ×
× ×

× ×
× ×

In this arrangement the blank would start on a white square. If we were to
move the blank up, then it is now on a black square. That is one transposition;
therefore, the movement is odd. If we then move the blank to the left, the blank
would be on a white square. This is a total of two transpositions; therefore, the
movement is even. After three transpositions the blank would be on a black
square; therefore, it would be an odd permutation. Therefore, if the blank ends
on a white square, an even permutation has occurred. If the blank ends on a
black square, an odd permutation has occurred.

A legal position of the 15 Puzzle is any sequence of legal transpositions
starting from the solved position such that the blank ends up in the bottom
right-hand corner. Each such position corresponds to a permutation of the 15
numbered vertices and hence to an element of the symmetric group S15. The set
of all such permutations (arising as a sequence of transpositions) in S15 forms
a group called the (homotopy) group of the 15 Puzzle.

Note that the group of the 15 Puzzle is isomorphic to the homotopy group of
the 15 Puzzle graph based at the ‘blank vertex’.

If we assign the number 16 to the blank, then we can see that we can arrange
the pieces of the puzzle in 16! different ways. However, if we take only legal
positions of the 15 Puzzle, then we are fixing one of the pieces. As a result
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7.4. THE GRAPH OF THE 15 PUZZLE

the number of ways to permute the rest of the pieces, with the blank on the
white square at the bottom right-hand corner, is at most 15!. All such permu-
tations have to be even, by the checkerboard analysis above. The number of
even permutations of 15 elements (there are an equal number of even and odd
permutations) is 15!/2. From this we see that the 15 Puzzle has at most 15!/2
possible legal positions. In fact, it has exactly this number:

Theorem 7.4.1. The positions with the empty space at the bottom right that
can be reached from the start position of the 15 Puzzle by shifting tiles are in a
bijective correspondence with the 15!/2 = 1, 307, 674, 368, 000 even permutations
of the numbers from 1 to 15.

Remark 7.4.1. The 14-15 Puzzle cannot be solved, because it is an odd per-
mutation. It only has one transposition, 14 interchanged with 15.

Proof: If we label the empty space 16, then every possible position of the
puzzle may be regarded as an element of the symmetric group S16 and an
element of puz(Γ). There are 16! elements in S16, and 16! vertices of puz(Γ).
With the argument earlier we can show that all legal positions of the puzzle are
obtained by an even number of transpositions. Therefore, all legal moves are
even permutations of the puzzle.

Now we must show that there is a certain 3-cycle in the group of the 15 Puzzle.
For example, if we shift the three pieces surrounding the empty space around in
a circle following the order of moves south-east-north-west, then the three-cycle
(11, 12, 15) is produced. It can be shown that if you fix the 11 and 12 pieces,
then any other piece can take the place of the 15 by following one of the cycles
in the figures below.

1

?

2 3
¾

4

5 6 7 8

9 10 blank 11

13
-

14 15

6

12
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1 2

?

3 4
¾

5 6 7
-

8

6

9 10 blank 11

13 14
-
15

6

12

By Lemma 9.4.4, such 3-cycles generate A15. This proves the theorem.
¤

Remark 7.4.2. Another proof is possible. Alternatively, with some work we
can show that any number can replace the 11 in the three-cycle, and we can
show that any other number can replace the 12. From this we can conclude that
any three-cycle can be formed. Since every even permutation is a combination
of three-cycles (by Proposition 9.4.1), every even permutation of the 15 Puzzle
can be reached.

With this information, we can make a generalization to rectangular puzzles of
size m × n with m > 1 and n > 1.

Theorem 7.4.2. (Wilson [W]) The homotopy group of an m × n rectangular
puzzle is the alternating group Amn−1.

The proof of this is similar to the proof for the 4 × 4 puzzle, if m > 3 and
n > 3. (The special cases when 1 < m < 4 or 1 < n < 4 must be treated
separately.) The size of the alternating group is given by (mn − 1)!/2.

7.4.2 Remarks on applications

Cayley graphs have been used by computer scientists to model interconnection
networks for parallel processors (see [CFS], [CG] for some references).

The problem of finding an efficient algorithm for the shortest solution to the
m × n puzzle is difficult. It amounts to finding the shortest path between two
points in a graph which is, in general, a difficult problem computationally [GJ].
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Chapter 8

Symmetry and the Platonic
solids

Plato said God geometrizes continually.
Plutarch, Convivialium disputationum, liber 8,2

We have encountered regular polygons, such as the hexagon, in §5.3 on the
dihedral group. A regular polyhedron is the 3-dimensional analog: a solid figure
whose 2-dimensional faces are flat congruent regular polygons. Many puzzles
are made by slicing up a regular polyhedron, so it is natural to study them and
their symmetries. Such objects also occur in chemistry when the structure of
crystals is investigated.

8.1 Descriptions

There are exactly 5 different types of regular polyhedra. We refer to Coxeter
[Cox] for a proof.

The Platonic solids are the 5 regular polyhedrons:

Polyhedron # Faces # Vertices # Edges Group p, q
Tetrahedron 4 4 6 T 3,3
Hexahedron 6 8 12 O 4,3
Octahedron 8 6 12 O 3,4
Dodecahedron 12 20 30 I 5,3
Icosahedron 20 12 30 I 3,5

Here

• p, called the face degree, denotes the number of edges bounding each
face,

• q, called the vertex degree, denotes the number of faces meeting each
vertex.
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These solids are named after the great Greek philosopher Plato (427 BC-347
BC), who established Plato’s Academy, which flourished for 900 years until 529
AD.

A vertex of one of these solids is therefore specified by the q-tuple of faces
meeting that vertex. We saw several examples of this already when we speci-
fied notation for the movements of the associated Rubik’s Cube-like puzzles in
chapter 4.

These solids may be drawn in rectangular coordinates using

Polyhedron Coordinates

Tetrahedron (1,1,1), (1,-1,-1), (-1,-1,1), (-1,1,-1)

Hexahedron (1,1,1), (1,1,-1), (1,-1,1), (-1,1,1),
(1,-1,-1), (-1,1,-1), (-1,-1,1), (-1,-1,-1)

Octahedron (1,0,0), (0,0,1), (0,1,0),
(-1,0,0), (0,-1,0), (0,0,-1)

Dodecahedron (0,±φ−1,±φ), (±φ−1,±φ,0),
(±φ,0,±φ−1), (±1,±1,±1),

Icosahedron (1,0,φ), (1,0,−φ), (-1,0,φ), (-1,0,−φ),
(0,φ,1), (0,φ,-1), (0,−φ,1), (0,−φ,-1),
(φ,1,0), (φ,-1,0), (−φ,1,0), (−φ,-1,0)

where φ denotes the golden ratio.

If P1, P2, P3 are three vertices of an icosahedron which form a triangular face,
then (P1 +P2 +P3)/3 forms a vertex of the dual dodecahedron and every vertex
of the dual dodecahedron arises in this way.

The three ‘Platonic groups’ (the group of ‘symmetries’ of these figures) will
be described below. Their names:

• T = symmetry group of the tetrahedron = tetrahedral group,

• O = symmetry group of the octahedron (or cube) = octahedral group,

• I = symmetry group of the icosahedron (or dodecahedron) = icosahedral
group.
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8.2. BACKGROUND ON SYMMETRIES IN 3-SPACE

8.2 Background on symmetries in 3-space

This subsection presents, with some proofs, background on isometries in 3 di-
mensions necessary for understanding the symmetry groups of the Platonic
solids. Motivated by studies of the structure of crystals, Camille Jordan was the
first to consider the classification of symmetries in 3-space. Jordan (1838-1922)
was one of the pioneers of group theory and used groups to better understand
crystals.

We fix once and for all the ‘right-hand-rule’ orientation in 3-space. We call a
distance-preserving transformation in 3-space which fixes the origin a symme-
try of 3-space. We say that such a symmetry is orientation preserving if
it preserves the right-hand rule orientation.

Example 8.2.1. Let s : R3 → R3 denote the function which takes each vec-
tor v belonging to R3 and returns its reflection s(v) about the yz-plane. This
is not orientation-preserving since it reverses the direction of a counterclock-
wise moving circular path in the yz-plane. In terms of rectangular coordinates,
s(x, y, z) = (−x, y, z).

Let
R3 = {(x, y, z) | x, y, z real numbers}

denote 3-space. We also write this, when convenient, as column vectors

R3 = {





x
y
z



 | x, y, z real}.

The distance function on R3 is the function

d(~v1, ~v2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,

where ~v1 = (x1, y1, z1), ~v2 = (x2, y2, z2). This may be expressed in terms of the
inner product ~v1 ·~v2 = x1x2+y1y2+z1z2 as d(~v1, ~v2) =

√

(~v1 − ~v2) · (~v1 − ~v2).
Conversely, the polarization identity

~v1 · ~v2 =
1

4
(||~v1 + ~v2||2 − ||~v1 − ~v2||2)

allows one to recover the value of the inner product from the knowledge of the
values of the distance function.

We call a function f : R3 → R3 an isometry if it satisfies

d(f(~v1), f(~v2)) = d(~v1, ~v2)

for all ~v1 and ~v2 belonging to R3.
We want to understand isometries a little better since they will preserve dis-

tances (and, in particular, preserve the shapes of solids) and therefore provide us
with the kinds of symmetries of 3-space we want to consider. We can construct
isometries using certain types of 3 × 3 matrices.
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Lemma 8.2.1. If A is a 3 × 3 matrix then the function A : R3 → R3 is an
isometry if and only if At · A = I3, where At denotes the transpose matrix
(obtained by flipping the entries of A about the diagonal).

Remark 8.2.1. In particular, if A is an isometry then det(A)2 = det(At) det(A) =
det(At · A) = det(I3) = 1.

Proof: The distance function is preserved if and only if the dot product
function is preserved. (This is a consequence of the ‘polarization identity’
above.) Let m(~v, ~w) = ~v · ~w, where · denotes the vector dot product. Since
m(A~v,B ~w) = ~v · (At · B)~w, we have

m(A~v,A~w) = m(~v, ~w), ∀v, w ∈ R3

if and only if
~v · (At · A)~w = ~v · ~w, ∀v, w ∈ R3

if and only if At · A = I3. ¤

You may have been wondering how one could construct an isometry. This
lemma gives us lots of examples.

Example 8.2.2. A rotation matrix in 3 dimensions may be written in the form

R(φ, θ, ψ) =





r11 r12 sin(θ) sin(ψ)
r21 r22 sin(θ) cos(ψ)

sin(φ) sin(θ) − sin(θ) cos(φ) cos(θ),



 ,

where
r11 = cos(φ) cos(ψ) − cos(θ) sin(φ) sin(ψ),
r12 = sin(φ) cos(ψ) + cos(θ) cos(φ) sin(ψ),

r21 = − cos(φ) sin(ψ) − cos(θ) sin(φ) cos(ψ),
r22 = − sin(φ) sin(ψ) + cos(θ) cos(φ) cos(ψ).

and where the angles φ, θ, ψ are the ‘Euler angles’. This represents the rotation
of 3-space obtained by the following sequence of rotations: rotate by angle ψ
about the z-axis, rotate by the angle θ about the x-axis (0 ≤ θ ≤ π), then rotate
by angle φ about the z-axis again.

Although this is an interesting fact due to its explicitness, we shall not use this
expression.

Question: Are there any isometries which do not come from matrices as in
the above lemma? Yes: any translation gives rise to an isometry but translation
is not linear, so cannot be described as a matrix. Moreover, any reflection about
a plane containing the origin is also an isometry. A reflection never belongs to
the group generated by the translations and rotations.

Question: Are there any examples of isometries which do not arise from
a composition of a translation and an orthogonal matrix? No: the following
theorem classifies all the isometries.

Theorem 8.2.1. A function f : R3 → R3 is an isometry fixing the origin if
and only if f is left multiplication by an orthogonal matrix.
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This will not be proven here (see Artin [Ar], chapter 4, section 5, Proposition
5.16).

As a consequence of this lemma, we see that if the matrix A gives rise to an
isometry then det(A) is either equal to 1 or -1 (since det(A)2 = det(At · A) =
det(I3) = 1). The matrix is invertible since, by definition, A−1 = At.

Lemma 8.2.2. The set of all 3×3 matrices A such that the function A : R3 →
R3 is an isometry forms a group under matrix multiplication.

Ponderable 8.2.1. Verify the group axioms needed to prove this lemma.

Notation: This group will be denoted O3(R) and called the orthogonal
group of R3. We denote by SO3(R) the following subset

SO3(R) = {A ∈ O3(R) | det(A) = 1}.

which is called the special orthogonal group of R3.

Lemma 8.2.3. SO3(R) is a subgroup of O3(R).

Ponderable 8.2.2. Verify the group axioms for SO3(R).

It is known that the number of cosets in O3(R)/SO3(R) is 2. In fact, it is
known that

O3(R) = SO3(R) ∪ s · SO3(R) (disjoint union), (8.1)

where s is the reflection in the above example (this follows from [Ar], chapter
4, section 5).

Lemma 8.2.4. The isometry A in O3(R) is orientation-preserving if and only
if det(A) = 1.

We will not prove this lemma here (see for example, [Ar] or [NST]).

8.3 Symmetries of the tetrahedron

Fix a tetrahedron centered at the origin, with one vertex along the z-axis. Each
edge has an ‘opposite’ edge on the tetrahedron (which is actually perpendicular
to it if you look at it straight on). Each vertex has an ‘opposite’ face.

There are orientation-preserving symmetries (called rotations) of the tetrahe-
dron and orientation-reversing symmetries of the tetrahedron. The orientation-
preserving symmetries of the tetrahedron will be denoted ST . They are obtained
as follows:

• The 4 axes of symmetry through the centers of the faces yield 2 elements
each (120 degree clockwise rotation when viewed from outside and a 240
degree rotation), for a total of 8 elements.

(This ‘tetrahedral symmetry’ allows for the mechanical construction of the
Pyraminx.)
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• The 3 pairs of edges (formed by an edge and its opposite) yield one element
each (a 180 degree rotation), for a total of 3 elements.

These, plus the identity, give 12 elements in ST .
Using the coset decomposition (8.1), we have T = ST ∪ s · ST (disjoint), so

|T | = |ST | + |s · ST | = 12 + 12 = 24,

by the addition principle (Theorem 2.4.1).

Remark 8.3.1. It turns out that ST is essentially the alternating group A4 of
even permutations in S4 and T is essentially S4 itself. We shall state the precise
result in the next chapter.

8.4 Symmetries of the cube

We fix a cube centered about the origin in 3-space. The set of centers of the
faces of a cube forms a set of vertices of an octahedron drawn inside the cube.
This octahedron is called the ‘dual’ polyhedron. These two polyhedra have the
same symmetry group, which we denote by O. There are orientation-preserving
symmetries, or rotations, of the cube and orientation-reversing symmetries of
the cube. The orientation-preserving symmetries of the cube will be denoted
SO. They are obtained as follows:

• The 3 axes of symmetry through the centers of the faces yield 3 elements
each (90 degree clockwise rotation when viewed from outside, a 180 degree
rotation, and a 270 degree rotation), for a total of 9 elements.

(This ‘hexahedral symmetry’ allows for the mechanical construction of the
Rubik’s Cube.)

• The 4 axes through the opposing vertices yield 2 elements each (all of
order 3), for a total of 8 elements.

(This ‘tetrahedral symmetry’ allows for the construction of the Skewb [H].)

• The 6 axes through the opposing mid-edge points yield 1 element each (of
order 2), for a total of 6 elements.

These elements, plus the identity, yield 24 elements. Therefore, I have proven
the following result.

Lemma 8.4.1. There are 24 orientation-preserving elements in O, i.e., |SO| =
24.

Here’s another proof of this result.
Proof: Let V be the set of vertices of the cube. The group SO acts on the

set V . Fix a v belonging to V and let H = stabSO(v). One can check that
|H| = 3. (Since the only symmetry which fixes v is a rotation g about the line
through v and its opposite vertex. Since g is order 3, H = 〈g〉 is order 3 as

160



8.5. SYMMETRIES OF THE DODECAHEDRON

well.) We have |V | = 8, so by Proposition 5.11.1 on orbits and stabilizers, we
have |SO/H| = |V |. By Lagrange’s theorem, |SO| = |SO/H||H| = 8 · 3 = 24.
¤

Now we know SO, what is O? Note that s, the reflection in the example in the
previous section, belongs to O. Using the coset decomposition of the previous
section, we have the coset decomposition

O = SO ∪ s · SO (disjoint union).

We know that |s · SO| = |SO| = 24, so the addition principle again comes to
the rescue, giving us the following result.

Lemma 8.4.2. The order of the octahedral group is |O| = 48.

Remark 8.4.1. It turns out that SO is essentially the symmetric group S4

and O is ‘isomorphic to the direct product’ S4 × C2. We shall state the precise
definitions and result in the next chapter.

8.5 Symmetries of the dodecahedron

The set of centers of the faces of a dodecahedron forms a set of vertices of an
icosahedron drawn inside. This icosahedron is called the ‘dual’ polyhedron. We
fix a dodecahedron in 3-space so that the vertices of the dual icosahedron are
as listed at the beginning of this chapter.

Example 8.5.1. Here is an illustration of how to use SAGE to draw an dodec-
ahedron:

SAGE

sage: G = graphs.DodecahedralGraph()
sage: show(G.plot())

This uses SAGE’s interface to the graph (as in vertices and edges) package
NetworkX, so the plot (given in Figure 8.1) includes pre-labeled vertices.

Figure 8.1: A dodecahedron.
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Let SI denote the group of orientation-preserving symmetries of the dodecahe-
dron. Note that SI is a finite subgroup of SO3(R). Let I denote the group of all
symmetries of the dodecahedron. Note that I is a finite subgroup of O3(R) and
that SI is a subgroup of I. Let F denote the set of faces of the dodecahedron,
so |F | = 12. SI acts on F .

Lemma 8.5.1. SI acts on F transitively.

We won’t prove this. If you look at a dodecahedron it follows ‘by inspection’.
The reason why this is useful is that it tells us that if x is any face, then any
other face can be obtained from x by applying some element of SI. In other
words, the orbit of x is all of F : SI · x = F .

If x is any face then the only orientation-preserving symmetries which don’t
send x to a different face are rotations by an integer multiple of 72 degrees about
the line passing through the center of x and the center of its opposite face. There
are, for each face x, exactly 5 distinct rotations of this type. Therefore,

|stabSI(x)| = 5.

By Proposition 5.11.1, we have

|SI/stabSI(x)| = |SI · x|,
so |SI| = |stabSI(x)||SI · x| = 5 · 12 = 60.

The elements of SI include

• rotation by 2πk/5 (for k ∈ {0, 1, 2, 3, 4}) about the line passing through
the center of a face and its opposite (this ‘dodecahedral symmetry’ allows
for the construction of the Megaminx);

• rotation by 2πk/3 (for k ∈ {0, 1, 2}) about the line passing through a
vertex and its opposite;

• rotation by π about the center of an edge.

Subgroups include the following

(a) Stabilizer of a vertex. These are all cyclic of order 3, and they are all
conjugate. There are 10 distinct such subgroups since a vertex and its
opposite share the same stabilizer.

(b) Stabilizer of a face. These are all cyclic of order 5, and they are all
conjugate. There are 6 distinct such subgroups since a face and its opposite
share the same stabilizer.

(c) Stabilizer of an edge. These are all cyclic of order 2, and they are all
conjugate. There are 15 distinct such subgroups.

Ponderable 8.5.1. Verify all these claims in (a)-(c).

Remark 8.5.1. It turns out that SI is essentially the alternating group A5 of
even permutations in S5 and I is ‘isomorphic to the direct product’ A5 × C2.
We shall state the precise result in the next chapter.

For an excellent discussion of the symmetries of the icosahedron, see [Ba].
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8.6 Some thoughts on the icosahedron

Six is a number in itself, and not because God created the world
in six days; rather the contrary is true. God created the world in six
days because this number is perfect, and would remain perfect even
if the work of the six days did not exist.

St. Augustine (354-430), The City of God

This section is based on one of John Baez’s weekly internet columns [Ba].
A duad is a pair of diagonals (a diagonal is a segment from a vertex to its

antipodal opposite vertex) of the icosahedron. The top of the icosahedron has
6 vertices and each diagonal must have exactly one of these 6 vertices as an
endpoint. There are 12 vertices, hence 6 diagonals, hence

(

6
2

)

= 15

different duads. Each duad determines a ‘golden rectangle’ (i.e., a rectangle
whose ratio length/width is either the golden ratio φ = (1+

√
5)/2 or its inverse).

We may identify a duad with a pair of distinct integers {(i, j) | 1 ≤ i < j ≤ 6},
i.e., with a 2-cycle in S6.

James J. Sylvester (the same one we met already in §2.2.1) called a partitioning

X = X1 ∪ ... ∪ Xn (disjoint)

of a set X a syntheme if each of the sets Xi, 1 ≤ i ≤ n, has the same number
of elements. If we take

X = {set of diagonals of the icosahedron}
then a syntheme is a set of three duads, no two having a diagonal in common.
There are

(

6
2

) (

4
2

)

/3! = 15

different synthemes (the 3! since there are 3! ways to permute the duads among
themselves). A syntheme may be represented by a coloring of the vertices on the
top of the icosahedron using three colors, each for exactly two vertices. We may
identify a syntheme with a product of 3 distinct 2-cycles in S6. We partition the
set of 15 duads into 5 groups of 3 as follows. (Recall each syntheme is a triple of
duads.) First, pick a syntheme, A1. Pick another syntheme A2, so that A1, A2

have no duad in common. Continue on in this way until you pick 5 synthemes
A1, .., A5, no 2 of which have a duad in common. Such a choice of 5 synthemes
is called a pentad. There are 6 pentads, which we label P1, ..., P6 in any way
you like. (A list of the 6 pentads is given in [R], chapter 7.) Any permutation
of the 6 diagonals of the icosahedron gives rise to a permutation of the set of 6
pentads. Hence any permutation of the 6 diagonals of the icosahedron, which
may be regarded as an element of S6, gives rise to a permutation of the set of
6 pentads, which may also be regarded as an element of S6. This gives a map
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f : S6 → S6.

Example 8.6.1. Plotting the vertices of an icosahedron and diagonals of a
‘golden rectangle’ using SAGE (which calls the ray tracer Tachyon), a duad
may be pictured as in Figure 8.2.

Figure 8.2: A duad

The above graph was obtained by plotting the points given in the table in §8.1
above and drawing lines between the points in the duad.

Each element of the rotation group of the icosahedron (i.e., the group of
orientation-preserving symmetries of the icosahedron) must send a duad to a
duad. Each duad has 4-fold symmetry, i.e., can be sent to itself in 4 ways. There
are 15 duads, so there are 4 · 15 = 60 ways to send a duad to another. This is
precisely the number of orientation-preserving symmetries of the icosahedron.

Example 8.6.2. Here is another illustration of how to use SAGE to draw an
icosahedron:

SAGE

sage: G = graphs.IcosahedralGraph()
sage: len(G.edges()) # the number of edges
30
sage: len(G.vertices()) # the number of vertices
12
sage: show(G.plot())

This uses SAGE’s interface to NetworkX, as in the case of the dodecahedron
above. The plot is given in Figure 8.3.
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Figure 8.3: An icosahedron.

Note that the pairs (0, 3) and (4, 8) form a duad.

Some of these ideas will be discussed further in §9.3.2. See also [R] and [Ba].

8.7 901083404981813616 cubes

As a simple illustration of the basic idea in this section, consider the following
problem. You have 6 colors: red, yellow, blue, orange, white and green. You
also have an unpainted cube in front of you. How many ‘different’ ways can you
paint the cube with one color per face? By ‘different’, we mean the following:
two cubes are ‘colored the same’ if one looks the same as the other after a
rotation by some element of the symmetry group of the cube; otherwise, they
are ‘different’.

Ponderable 8.7.1. Show that the number of ‘different’ ways can you paint the
cube with your 6 fixed colors, one color per face, is 30.
(Hint: Using an element of the symmetry group, we may assume the red face of
the cube is on the bottom. There are 5 ways to point the top face. Show that,
up to rotating about the top-bottom axis, there are 6 ways to paint the sides.)

This same notion of ‘different’ is used in the problem discussed in this section.
In a cube-lover’s post from 1994 [Ho], Dan Hoey described the number of

‘different’ cube positions, if you allow for (orientation-preserving) cube symme-
tries. In other words, the orientation-preserving symmetry group of the cube
acts on the space of all possible cube states. Dan, with Jerry Bryan, showed
that 901083404981813616 is the number of equivalence classes. The full (pos-
sibly non-orientation-preserving) symmetry group of the cube acts also on the
space of all possible cube states.

Herbert Kociemba and Mike Godfrey [KG] showed that 450541810590509978
is the number of equivalence classes in that case. Their very intricate com-
putations were done theoretically and using computer software. Theoretical
work used the ‘Polya-Burnside Lemma’ [Wbl]. (This is a lemma which goes by
many names, including ‘the Lemma not due to Burnside’. It helps count sets
on which there is a group action and is a generalization of the class equation we
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saw earlier.) Computational work used software such as GAP or a modification
of Kociemba’s Cube Explorer program.
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Chapter 9

The illegal cube group

On front: 186,000 mps.

On back: It’s not just a good idea, it’s the law!

T-shirt humor

Groups in mathematics are analogous to molecules in chemistry. We want to
know what groups look like, to know how to describe them, how to compare
them, how to make more of them, to know if they fall into families with similar
properties, and so on.

Given two molecules, a chemist wants to know how to compare them, to under-
stand their similarities and differences. Given two groups G1, G2, an analogous
question is to ask how ‘similar’ are they? (Exactly what is meant by ‘similar’
will be explained later.) We shall, in this chapter, introduce notions and tech-
niques useful for comparing two groups. In a later chapter, we will focus on
the 3 × 3 Rubik’s Cube group by comparing it to ‘better understood’ (or at
least more ‘usual’) groups, such as the cyclic groups and the symmetric groups
which we have already studied. In this chapter, we shall focus on understand-
ing a somewhat simpler but closely related group, the group of all ‘legal’ and
‘illegal’ moves of the Rubik’s Cube. (In an ‘illegal’ move you can disassemble
and reassemble the cube but you cannot peel off and swap individual stickers.)
Remarkably, the illegal Rubik’s Cube group is simpler to understand than the
Rubik’s Cube group itself, even though it is much larger.

To ‘explicitly construct’ the Rubik’s Cube group, we need to know how to
construct

• quotient groups,

• direct products,

• semi-direct products.

These are studied in this chapter. Once the Rubik’s Cube group is constructed,
it is a relatively easy matter to find its order, among other things.

167



9.1. FUNCTIONS BETWEEN TWO GROUPS

9.1 Functions between two groups

To compare two groups, we often first talk about functions between them. If
f : G1 → G2 is a function from a group G1 to a group G2 then, as you might
imagine, if f and G1 were well understood then some information about G2

could probably be obtained. It is the purpose of this chapter to find out to
what extent this can be made precise.

A homomorphism between two groups is, roughly speaking, a function between
them which preserves the (respective) group operations. These special types of
functions are the most useful for our purposes.

Definition 9.1.1. Let G1, G2 be groups, with ∗1 denoting the group operation
for G1 and ∗2 the group operation for G2. A function f : G1 → G2 is a
homomorphism if and only if, for all a, b ∈ G1, we have

f(a ∗1 b) = f(a) ∗2 f(b).

Foten, when there is little cause for confusion, we shall denote the binary
operation on a group simply by · or juxtaposition, rather than ∗.
Ponderable 9.1.1. Prove the following: If f : G1 → G2 is a homomorphism
of groups then

f(G1) = {g ∈ G2 | g = f(x), for some x ∈ G1}
is a subgroup of G2.

The subgroup f(G1) ⊂ G2 is called the image of f and is sometimes denoted
im(f).

Example 9.1.1. Let G be a group and h a fixed element of G. Define f : G → G
by

f(g) = h−1 · g · h, g ∈ G.

Then the following simple trick

f(a · b) = h−1 · (a · b) · h = h−1 · a · h · h−1 · b · h = f(a) · f(b)

shows that f is a homomorphism. In this case, im(f) = G, i.e., f is surjective.
Here is an example of how to use SAGE to construct a group homomorphism.

Basically, you must specify the image of the homomorphism on the generators.

SAGE

sage: G = SymmetricGroup(4)
sage: gensG = G.gens()
sage: h = G([(1,3,4,2)]) # a ’random’ element of G
sage: gensG_h = [h * g* hˆ(-1) for g in gensG]
sage: phi = PermutationGroupMorphism_im_gens(G,G,gensG ,gensG_h)
sage: phi.image(G)
’Group([ (1,3,2,4), (2,4) ])’
sage: phi.range()

Symmetric group of order 4! as a permutation group
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In this last line, SAGE tells us that the map phi describes a one-to-one and
onto map from S4 to itself.

Ponderable 9.1.2. Let

A =





0 1 0
1 0 0
0 0 1



 , B =





1 0 0
0 0 1
0 1 0



 .

Now, let G = 〈A,B〉 denote the group of all matrices which can be written as
any arbitrary product of these two matrices (in any order and with as many
terms as you want). Show that we have

G = {I3 =





1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 0 1
0 1 0



 ,





0 1 0
1 0 0
0 0 1



 ,





0 1 0
0 0 1
1 0 0



 ,





0 0 1
1 0 0
0 1 0



 ,





0 0 1
0 1 0
1 0 0



} .

(The interested reader may want to try to check this by regarding each such
matrix as a permutation matrix.) Define f : G → S3 by

g f(g)
I3 1
A s1

B s2

A · B s1 · s2

B · A s2 · s1

A · B · A s1 · s2 · s1

Show that this is a homomorphism.

Example 9.1.2. The function

sign : Sn → {±1},

which assigns to each permutation its sign, is a homomorphism. This was al-
ready proven in §3.1. However, another reason why this is true is because the
sign of a permutation g is the determinant of the associated permutation matrix
P (g). Since the determinant of the product is the product of the determinants
(see §2.2.5), we have

sgn(gh) = detP (gh) = det(P (g)P (h)) = detP (g) det P (h) = sign(g)sign(h),

for all g, h ∈ Sn. From this it follows that sign is a homomorphism.

Lemma 9.1.1. If f : G1 → G2 is a homomorphism then
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(a) f(e1) = e2, where e1 denotes the identity element of G1 and e2 denotes
the identity element of G2,

(b) f(x−1) = f(x)−1, for all x belonging to G1,

(c) f(y−1 ∗1 x ∗1 y) = f(y)−1 ∗2 f(x) ∗2 f(y), for all x, y belonging to G1,

where ∗1 denotes the group operation for G1 and ∗2 the group operation for G2.

Proof:

(a) We have f(x) = f(x ∗1 e1) = f(x) ∗2 f(e1), for any x ∈ G1. Multiply both
sides of this equation on the left by f(x)−1.

(b) We have, by part (a), e2 = f(e1) = f(x∗1x−1) = f(x)∗2 f(x−1). Multiply
both sides of this equation on the left by f(x)−1.

(c) The proof of this part is left to the reader.

¤

Ponderable 9.1.3. Show part (c). (Hint: use the definition and part (b).)

Definition 9.1.2. Let G1, G2 be finite groups. We say that G1 embeds (or
injects) into G2 if there exists an injective homomorphism f : G1 → G2. A
homomorphism f : G1 → G2 is an isomorphism if it is a bijection (as a
function between sets). In this case, we call G1 and G2 isomorphic and write
G1

∼= G2. An isomorphism from a group G to itself is called an automorphism.

The concept of an isomorphism was first introduced by C. Jordan, whom we
have already met. Besides group theory, Jordan is famous in mathematical
circles for rigorously proving one of the most intuitively obvious, but difficult
to rigorously prove, results: Any simple closed curve divides the plane into two
regions. (Here, a simple curve in the plane is a continuous path which is not
the disjoint union of two or more such paths. A closed curve is a continuous
path which starts and ends at the same point.)

An isomorphism is the notion we will use when we want to say two groups
are ‘essentially the same group’, i.e., one is basically a carbon copy of the other
with the elements relabeled and the binary operation modified. For example,
if you have any two groups of order 2 then they must be isomorphic. (The
interested reader can verify that the map which sends the identity of one group
to the identity of the other and the only non-identity of one group to the only
non-identity of the other must be a group isomorphism.) In other words, there
is only one group of order 2, up to isomorphism.

Let O(n) denote the the number of non-isomorphic groups of order n, so O is
a function O : N → N. This is a rather curiously behaving function, jumping
up at integers which have lots of prime factors, such as 16, 24, 32, 48, ... .

Ponderable 9.1.4. Show the following:
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(a) If m ≥ 1 then

G = {e2πik/m | 0 ≤ k ≤ m − 1},

with group operation given by ordinary multiplication of complex numbers,
is isomorphic to the additive group Z/mZ.

(b) If m > 1, n > 1 have no prime divisors in common, i.e., if m,n are
relatively prime, then Cm × Cn

∼= Cmn. (For the definition of the direct
product ×, see Definition 9.6.1, below.)

(Hint: (a) Let a ∈ Cm be a generator. The map f = fm,a : Cm → Z/mZ which
satisfies f(a) = 1 extends to a unique homomorphism between these groups.
Show that this is an isomorphism. (b) First, show g(x + mnZ) = (x + mZ, x +
nZ), for all x ∈ Z defines a homomorphism Z/mnZ → Z/mZ × Z/nZ. Next,
using the assumption that m,n are relatively prime, show that this function g
is an injection. Conclude, since the domain and range of g both have the same
cardinality, that g is also a surjection, by Ponderable 2.1.6. Finally, using part
(a) show Cm × Cn

∼= Cmn.)

9.2 Group actions

We need to study actions,whose discussion was begun in chapter 5 above, in
more detail.

Lemma 9.2.1. Let G be a group and X a finite set. If G acts on X (on the
left, respectively, on the right) then there is a homomorphism G → SX given by
g 7−→ φg. Conversely, if φ : G → SX is a homomorphism then φ(g) : X → X
defines a (left, respectively, right) action of G on X.

This is an immediate consequence of the definition of an action.

Example 9.2.1. Let G be the Rubik’s Cube group generated by the basic moves
R,L,U,D, F,B. For each move g ∈ G, let

• ρ(g) be the corresponding permutation of the set of vertices V of the cube,
and

• σ(g) be the corresponding permutation of the set of edges E of the cube.

Then it is possible to show that

(a) ρ : G → SV is a homomorphism,

(b) σ : G → SE is a homomorphism.

To check this, the first fundamental theorem of cube theory in §9.6.1 is useful.
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Let G act on a set X, denoted by φg : X → X for g ∈ G. This action
also gives rise to an action on X × X: φ2,g : X × X → X × X for g ∈ G,
where φ2,g(x1, x2) = (φg(x1), φg(x2)), for each (x1, x2) ∈ X × X. When G
acts transitively on X (see Definition 5.10.3 above), it is remarkable enough.
Sometimes, G even acts transitively on X × X − ∆ (∆ = {(x, x) | x ∈ X}, the
‘diagonal’), a far more special circumstance (in this case, the action is called
doubly transitive). The definition below generalizes this idea.

Definition 9.2.1. Let a group G act on a set X. We call the action k-tuply
transitive if for each pair of ordered k-tuples (x1, x2, .., xk), (y1, y2, .., yk) of
distinct elements belonging to X (so xi 6= xj and yi 6= yj), there is a g ∈ G such
that yi = φg(xi), for each i with 1 ≤ i ≤ k.

If k = 2 then ‘2-tuply transitive’ is the same as ‘doubly transitive’.

Ponderable 9.2.1. Is the Rubik’s Cube group doubly transitive on the set of
edge facets?

The following result is one illustration of how unique the symmetric group
and alternating group are. (Recall that the alternating group An was defined
in Example 5.6.3 above.)

Theorem 9.2.1. If k > 5 and G is a permutation group acting k-transitively
on a finite set X (so G is a subgroup of SX) then G is isomorphic to Sm or to
An, for some m ≥ k or some n ≥ k + 2.

Conversely, Sn acts n-transitively on {1, 2, ..., n} and An acts (n−2)-transitively
on {1, 2, ..., n}.

This is proven in [DiMo], Theorem 7.6A. Some examples are given in §12.4
below.

Remark 9.2.1. We shall, in conjunction with our group-theoretical determi-
nation of the Rubik’s Cube group proven later, be able to deduce from Theorem
9.2.1 the following result.

Corollary 9.2.1.

(a) Suppose c1, ..., c6 are any 6 distinct corner subcubes of the Rubik’s cube.
Let c′1, ..., c

′
6 be any other 6 distinct corner subcubes. There is an element

of the Rubik’s Cube group G which fixes all edge subcubes and sends ci to
c′i, for all i = 1, ..., 6. Loosely speaking, we may express this by saying G
acts 6-transitively on the corners, fixing the edges.

(b) Suppose c1, ..., c8 are any 8 distinct corner subcubes of the Rubik’s cube.
Let c′1, ..., c

′
8 be any other 8 distinct corner subcubes. There is an element

of the Rubik’s Cube group G which sends ci to c′i, for all i = 1, ..., 8 (and
might not fix all edge subcubes). Loosely speaking, we may express this
by saying G acts 8-transitively on the corners (allowing the edges to be
moves).

(c) G acts 10-transitively on the edges, fixing the corners.

(d) G acts 12-transitively on the edges but may permute the corners.
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9.3 When two groups are really the same

This section discusses group isomorphisms.

Example 9.3.1. Let G be the group in Ponderable 9.1.2 and f : G → S3 the
homomorphism. This is in fact an isomorphism.

SAGE

sage: MS = MatrixSpace(GF(2), 3, 3)
sage: A = MS([0, 1 ,0, 1, 0, 0, 0, 0, 1])
sage: B = MS([1, 0 ,0, 0, 0, 1, 0, 1, 0])
sage: G = MatrixGroup([A,B])
sage: G1 = SymmetricGroup(3)
sage: imG = G._gap_().IsomorphismPermGroup().Image(G._ gap_())
sage: gens = imG.GeneratorsOfGroup()
sage: G2 = PermutationGroup(gens)
sage: G2.is_isomorphic(G1)
True

Example 9.3.2. Let H be the subgroup of the Rubik’s Cube group generated by
the basic move R: H = 〈R〉. Then H ∼= C4 (where C4 denotes the cyclic group
of order 4).

Example 9.3.3. Recall that to each permutation g of the set {1, 2, ..., n} we
can associate a n × n permutation matrix P (g) in such a way that

P (g)











x1

x2

...
xn











=











xg(1)

xg(2)

...
xg(n)











.

(Here the image of i under the permutation g is denoted g(i), though in fact one
plugs i into g from the left.) We let Pn denote the set of all n × n permutation
matrices. This is a group under matrix multiplication. The function

P : Sn → Pn,
g 7−→ P (g)

is an isomorphism. This is a bijection and a homomorphism, by the discus-
sion given earlier in chapter 3 on permutations (see Lemma 3.2.2 and Theorem
3.2.1).

Example 9.3.4. In this example, we consider the full symmetry groups (in
O(3, R)) of various solids and planar figures, the symmetries being regarded as
3-dimensional transformations (as opposed to 2-dimensional transformations in
§5.3).

From [NST], Table 15.7, we have the following table of isomorphisms:
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Name Notation Isomorphic to
symmetry group of tetrahedron T S4

rotation group of tetrahedron ST A4

symmetry group of octahedron O S4 × C2

rotation group of octahedron SO S4

symmetry group of icosahedron I A5 × C2

rotation group of icosahedron SI A5

symmetry group of regular n-gon D2n, n odd
Dn × C2, n even

rotation group of regular n-gon Dn

Example 9.3.5. This example may be found in [B1].
Let Q denote the quaternion group,

Q = {1,−1, i,−i, j,−j, k,−k},

where i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, as in §5.1. Then Q is
isomorphic to the group Q∗ = 〈a, b〉 ⊂ G, where G is the Rubik’s Cube group
and

a = F 2 · MR · U−1 · M−1
R · U−1 · MR · U · M−1

R · U · F 2,
b = F · U2 · F−1 · U−1 · L−1 · B−1 · U2 · B · U · L,

via the map f : Q∗ → Q defined by φ(a) = i, φ(b) = k.
One proof of this claim will be discussed in a later chapter. (The easiest way

to prove this theoretically uses ideas I haven’t yet introduced.) However, we can
use SAGE to verify this as follows:

SAGE

sage: rubik = CubeGroup()
sage: r = rubik.R()
sage: l = rubik.L()
sage: u = rubik.U()
sage: d = rubik.D()
sage: f = rubik.F()
sage: b = rubik.B()
sage: mr = rˆ(-1) * l
sage: a = fˆ2 * mr* fˆ(-1) * mrˆ(-1) * uˆ(-1) * mr* f * mrˆ(-1) * u* fˆ2
sage: b = f * uˆ2 * fˆ(-1) * uˆ(-1) * lˆ(-1) * bˆ(-1) * uˆ2 * b* u* l
sage: G = PermutationGroup([a,b])
sage: G.order()
8
sage: G.is_abelian()
False
sage: b * a* b == a
True
sage: bˆ4
()
sage: aˆ2 == bˆ2
True
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Now we refer to Example 10.4.1 below for further details (actually more along
the lines of detailed hints to an exercise).

Lemma 9.3.1. As above, let (G, ·) be a group and h a fixed element of G.
Define ch : G → G by

ch(g) = h · g · h−1, g ∈ G.

This is an automorphism.

Proof: To verify this, we must show that f = ch is an injective and surjective
homomorphism (we drop the subscript for simplicity of notation).

First, we show that f is injective. Suppose f(g1) = f(g2). Then f(g1·g−1
2 ) = 1,

so that h · g1 · g−1
2 · h−1 = 1. Multiply both sides of this equation on the right

by h and on the left by h−1. We obtain g1 · g−1
2 = 1. This implies g1 = g2, so f

is injective.
Now we show f is surjective. Let x be an arbitrary but fixed element of G.

Let y = h−1 · x · h. Then

f(y) = f(h−1 · x · h) = h · h−1 · x · h · h−1 = x.

Therefore, f is surjective.
It was previously verified that f is a homomorphism. ¤

Definition 9.3.1. An automorphism as in Lemma 9.3.1 is called inner. An
automorphism of G which is not of this form, for some h ∈ G, is called outer.

The concepts of inner and outer automorphisms were introduced by Otto
Hölder (1859-1937). Hölder also classified all the finite simple groups, up to
isomorphism, of order ≤ 200. (The definition of ‘simple’ is given in Definition
9.5.1 below.) The classification of all finite simple groups has only recently been
finished and is said to require over 3000 pages of details.

Notation: The set of all automorphisms of a group G is denoted Aut(G).
The subset of inner automorphisms is denoted

Inn(G) := {f ∈ Aut(G) | f = ch, some h ∈ G},

in the notation of the Lemma 9.3.1.

Ponderable 9.3.1.

(a) Show Aut(G) is a group with composition as the group operation.

(b) Show that Inn(G) is a subgroup of Aut(G).

9.3.1 Conjugation in Sn

In the early part of the 1900’s a brilliant Indian mathematician, Srinivasa Ra-
manujan (1887-1920), lay in hospital in England very ill. The great British
mathematician, G. H. Hardy (1877-1947), visited him and remarked that he
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took taxi number 1729, a ‘boring number’. ‘On the contrary,’ Ramanujan ar-
gued, ‘it’s a very interesting number, being the smallest integer which is the
sum of two cubes in two different ways.’ One of the most interesting and origi-
nal mathematicians of all time, Ramanujan worked (often in collaboration with
Hardy) on elliptic functions, continued fractions, and infinite series [MT]. He
knew an astonishing number of unusual facts about integers, such as this one.

What does Ramanujan have to do with conjugation? Read on, and you’ll find
out!

As promised in §5.9, we will find a simple criteria for determining when two
permutations (in Sn) are conjugate (in Sn).

The following result will be of importance to us in a later chapter.

Lemma 9.3.2. Suppose f : Sn → Sn is an inner automorphism. If g ∈ Sn is
a disjoint product of cycles of length k1, ..., kr then f(g) is a disjoint product of
cycles of length k1, ..., kr.

In other words, an inner automorphism (i.e., conjugation) must ‘preserve the
cycle structure’.

Proof: Since f is inner, let it be conjugation by some element h ∈ Sn say,
so f(g) = h−1gh, for all g ∈ Sn. Let (i)g ∈ {1, ..., n} denote the image of
i ∈ {1, ..., n} under g ∈ Sn. The lemma is a consequence of the following simple
calculation: if (i)g = j then, for all i with 1 ≤ i ≤ n, we have

((i)h)(h−1gh) = (j)h. (9.1)

In other words, if g sends i 7−→ j then h−1gh sends (i)h 7−→ (j)h. It follows
that g and h−1gh have the cycle structure. ¤

Theorem 9.3.1. Two elements g, g′ ∈ Sn are conjugate if and only if they have
the same cycle structure.

Proof: The Lemma proves the ‘only if’ direction of this equivalence. Sup-
pose that g, g′ ∈ Sn have the same cycle structure. Write their disjoint cycle
decompositions using the lexicographical ordering imposed on the lengths of the
cycles occurring in the decomposition: say

g = (i1, ... , in1
)(i1, ... , in2

)...(i1, ... , ink
),

g′ = (i′1, ... , i′n1
)(i′1, ... , i′n2

)...(i′1, ... , i′nk
),

where 1 ≤ n1 ≤ ... ≤ nk ≤ n and n = n1 + ... + nr. Pick an h ∈ Sn such that
h : ij 7−→ i′j , for all j with 1 ≤ j ≤ n. Then g′ = h−1gh, by (9.1). ¤

A partition of n is an r-tuple, (n1, ..., nr) of positive integers such that 1 ≤
n1 ≤ ... ≤ nr ≤ n and n = n1 + ... + nr. From the results above, it follows that
each conjugacy class of Sn corresponds to one and only one partition of n. In
particular, the number of conjugacy classes of Sn is equal to the number p(n)
of distinct partitions of n. An asymptotic formula for this number was found
by Srinivasa Ramanujan. His formula is too complicated for this book, but a
special case of it is the following beautiful formula:
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lim
n→∞

log p(n)√
n

= π

√

2

3
.

Example 9.3.6. Here is an example of how to use SAGE to show that the num-
ber of conjugacy classes of S5 is equal to the number p(5) of distinct partitions
of 5.

SAGE

sage: G = SymmetricGroup(5)
sage: CG = G.conjugacy_classes_representatives()
sage: len(CG)
7
sage: number_of_partitions(5, algorithm=’bober’)
7
sage: number_of_partitions(2000, algorithm=’bober’)
4720819175619413888601432406799959512200344166

This uses Jonathon Bober’s very fast implementation to compute p(5) and p(2000).

9.3.2 ... and a side order of automorphisms, please

Though we shall not need it here, the following fact is interesting since it il-
lustrates what a unique role the symmetric group S6 plays in the family of all
symmetric groups.

Theorem 9.3.2. If n 6= 2, 6 then the homomorphism φ : Sn → Aut(Sn) defined
by φ(g) = cg (where c is as in Lemma 9.3.1 above) is an isomorphism:

Sn
∼= Aut(Sn).

If n = 6 then |Aut(S6)| = 2 · |S6|.
The following example continues the discussion from §8.6.

Example 9.3.7. Any permutation of the 6 diagonals of the icosahedron, which
may be regarded as an element of S6, gives rise to a permutation of the set of 6
pentads, which may also be regarded as an element of S6. This gives a map

f : S6 → S6,

which is in fact a homomorphism. This homomorphism is injective so it is
actually an automorphism.

However, a 2-cycle on the set of 6 diagonals (i.e., swapping exactly 2 diago-
nals) does not induce a 2-cycle on the set of these 6 pentads. In fact, a 2-cycle
on the set of diagonals gives rise to a product of three disjoint 2-cycles on the set
of these 6 pentads. Therefore, by the above theorem (which says that an inner
automorphism must preserve the cycle structure) this automorphism f cannot
be an inner automorphism.
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9.4 Kernels are normal, some subgroups are not

Let f : G1 → G2 be a homomorphism between two groups. Let

ker(f) = {g ∈ G1 | f(g) = e2},

where e2 is the identity element of G2. This set is called the kernel of f .

Lemma 9.4.1. ker(f) is a subgroup of G1.

The interested reader can check this for him/herself by using the definition of
a homomorphism.

Example 9.4.1. Let
sgn : Sn → {±1}

denote the homomorphism which associates with a permutation either 1, if it is
even, or −1, if it is odd. Then An = ker(sgn) ⊂ Sn.

The following properties of the kernel are useful.

Lemma 9.4.2. Let f : G1 → G2 be a homomorphism between two groups.

(a) The homomorphism f is injective if and only if ker(f) = {e1}.
(b) If g belongs to the kernel and x is any element of G1, then x−1 · g ·x must

also belong to the kernel.

Proof:

(a) That f is injective if and only if f(g1) = f(g2) implies g1 = g2 (g1, g2 ∈
G1). Note that f(g1) = f(g2) is true if and only if f(g1 · g−1

2 ) = e2. If
ker(f) = {e1} then f(g1 · g−1

2 ) = e2 implies g1 · g−1
2 = e2, which implies

g1 = g2, which implies f is injective.

Therefore, if ker(f) = {e2} then f is injective. Conversely, if f is injective
then f(x) = f(e1)(= e2) implies x = e1(x ∈ G1). This implies ker(f) =
{e1}.

(b) Multiply both sides of e2 = f(g) on the left by f(x)−1 and on the right
by f(x). We get

e2 = f(x)−1 · e2 · f(x) = f(x−1) · f(g) · f(x) = f(x−1 · g · x),

as desired.

¤

Definition 9.4.1. Let H be a subgroup of G. We say that H is a normal
subgroup if, for each g ∈ G, g−1 · H · g = H (i.e., for each g ∈ G and each
h ∈ H, g−1 · h · g belongs to H).

Notation: Sometimes we denote ‘H is a normal subgroup of G’ by

H ⊳ G
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9.4.1 Examples of non-normal subgroups

We saw above that examples of normal subgroups are easy to construct. For
instance, the kernel of any homomorphism f : G → H is a normal subgroup
of G. For example, the kernel of the sgn homomorphism is normal: An ⊳ Sn

(see Example 9.4.1). More generally, if G is any group then the commutator
subgroup, G′, is a normal subgroup of G. (The commutator subgroup of Sn is
An.)

What about non-normal subgroups? Examples of subgroups which are not
normal are easy to come by.

Example 9.4.2.

(a) If n > 5 and H is any non-trivial proper subgroup of An (for example,
any non-trivial cyclic subgroup) then H is not normal in An (see Theorem
9.4.1 below).

(b) Any subgroup of S6 of order 2 is non-normal.

(c) Here is a way to get SAGE (rather GAP, via SAGE) to return the normal
subgroups of a group:

SAGE

sage: G = SymmetricGroup(5)
sage: GG = gap(G)
sage: GG.NormalSubgroups()
[ Group( () ), AlternatingGroup( [ 1 .. 5 ] ), SymmetricGroup( [ 1 .. 5 ] ) ]
sage: G = DihedralGroup(5)
sage: GG = gap(G)
sage: GG.NormalSubgroups()
[ Group( () ), Group( [ (1,2,3,4,5) ] ), Group( [ (1,2,3,4,5), (1,5)(2,4) ] )

]

This tells us the following facts.

1. Any subgroup of S5 other than itself, A5, and the trivial group, is not
normal.

2. Any subgroup of D5 other than itself, C5 = 〈(1, 2, 3, 4, 5)〉, and the
trivial group, is not normal.

We have already shown the following result.

Lemma 9.4.3. If f : G1 → G2 is a homomorphism between two groups then
ker(f) is a normal subgroup of G1.

Example 9.4.3. Here is an example of how to use SAGE to compute the kernel
of a group homomorphism.
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SAGE

sage: G = CyclicPermutationGroup(10)
sage: g0 = G.gens()[0]
sage: phi = PermutationGroupMorphism_im_gens(G,G,[g0], [g0ˆ2])
sage: phi.kernel()
Group([ (1,6)(2,7)(3,8)(4,9)(5,10) ])
sage: ker = PermutationGroup(["(1,6)(2,7)(3,8)(4,9)(5, 10)"])
sage: ker.order()
2

This tells us the kernel of the homomorphism of abelian groups, φ : C10 → C10

given by φ(x) = x2, is {1, (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)} (a subgroup of order 2).

9.4.2 The alternating group

The following remarkable result about the alternating group will not be needed
to understand the structure of the Rubik’s Cube. However, the theorem below is
interesting because of its connection with the fact (due to Ruffini and Abel) that
you cannot solve the general polynomial of degree 5 or higher using radicals,
i.e., that there is no analog of the quadratic formula for polynomials of degree
5 or higher. Explaining this connection would, unfortunately, take us too far
from our main topic.

Theorem 9.4.1. If X has 5 elements or greater, then AX has no non-trivial
proper normal subgroups. In other words, if H ⊳ AX is a normal subgroup, then
either H = {1} or H = AX .

This will not be proven here. (For a proof, see, for example, [R] or [Ar],
chapter 14.)

However, the next fact about the alternating group will be needed later in
our determination of the structure of the Rubik’s Cube group. This fact also
arose in connection with our discussion of the ‘legal positions’ of the 15 Puzzle
in chapter 4 (see §4.1).

Proposition 9.4.1. Let H be the subgroup of Sn generated by all the 3-cycles
in Sn; then H = An.

Proof: Since sgn : Sn → {±1} is a homomorphism, and since any 3-cycle is
even, any product of 3-cycles must also be even. Therefore, H ⊂ An. If g ∈ An

then g must swap an even number of the inequalities 1 < 2 < ... < n − 1 < n,
by Definition 3.1.1. Therefore (since any permutation may be written as a
product of 2-cycles, Theorem 3.4.1), g must be composed of permutations of
the form (i, j)(k, l) or (i, j)(j, k). But (i, j)(k, l) = (i, j, k)(j, k, l) and
(i, j)(j, k) = (i, j, k). Therefore, g ∈ H. This implies An ⊂ H, so An = H. ¤

The following more precise result is very useful for the purposes of the analysis
of permutation puzzles.
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Lemma 9.4.4. ([W]) Let X be a finite set, |X| ≥ 3 and fix u, v as elements
in X. Then the 3-cycles (u, v, x), as x runs over all elements of X − {u, v},
generate AX .

This lemma gives an even stronger statement than the previous claim. Now,
instead of only one element being fixed, there are two elements fixed and the
alternating group is still generated.

9.5 Quotient groups

QUOTIENT, n. A number showing how many times a sum of money
belonging to one person is contained in the pocket of another—usually
about as many times as it can be got there.

Ambrose Bierce, The Devil’s Dictionary

One of the most useful facts about normal subgroups is the following re-
sult/definition.

Lemma 9.5.1. If H is a normal subgroup of G then the coset space G/H with
the binary operation,

aH · bH = (ab)H, (aH)−1 = a−1H,

for all a, b belonging to G, is a group. The identity element of this group is the
trivial coset H.

This group G/H is called the quotient group of G by H and is sometimes
pronounced ‘G mod H’. Older texts may use the terminology ‘factor group’
instead. This notion, for an abstract group, was first introduced by Otto Hölder,
whom we have already met. He originally started out training to become an
engineer. Hölder made important contributions not only to group theory but
also to Fourier series.

Example 9.5.1. Here is an example of how to use SAGE to show that A5 is
a simple group, normal as a subgroup of S5, and that the quotient S5/A5 is a
group of order 2.

SAGE

sage: G = SymmetricGroup(5)
sage: H = AlternatingGroup(5)
sage: H.is_subgroup(G)
True
sage: H.is_normal(G)
True
sage: H.is_simple()
True
sage: G.quotient_group(H)
Permutation Group with generators [(1,2)]
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Recall from §9.4.1 that the commutator subgroup is normal. Another example
of a quotient group which arises naturally is called the abelianization of G:
the quotient group Gab = G/G′, where G′ = [G,G] denotes the commutator
subgroup.

Example 9.5.2. If f : G1 → G2 is a homomorphism between two groups, then
G1/ker(f) is a quotient group.

Next we introduce an important idea first emphasized by E. Galois, the French
mathematician mentioned in the introduction. Though Galois attended sec-
ondary school, he had trouble entering the French university system. Sadly,
by the time he entered the École Normale Supérieure in November 1829, he
also began to get caught up in the activities of the French Revolution of 1830
which toppled Charles X. His political activities resulted in his being expelled
from school in December 1830. Though apparently he had been a rather rebel-
lious teenager, this only frustrated him further. He died in a fight with another
Frenchman.

Galois’ work was the first to begin to illuminate the ‘basic building blocks’ of
the collection of finite groups (i.e., the analog of the idea that atoms are the
‘basic building blocks’ of molecules). Galois introduced the ideas of solvable
groups and normal subgroups, in the context of permutation groups. Roughly
speaking, one may say that the basic building blocks of finite groups are those
groups which have no proper non-trivial normal subgroups. Intuitively, this is
because a non-trivial quotient group (by a normal subgroup) is closely related
to the original group but smaller in size (and hence perhaps subject to analysis
by an inductive argument of some type). These basic building blocks are called
‘simple’ groups.

Definition 9.5.1. A simple group is a group with no proper normal subgroups
other than the trivial subgroup {1}.

Example 9.5.3. If p is a prime then Cp (the cyclic group having p elements)
is simple. In fact, if G is any group which is both abelian and simple then there
is a prime p such that G ∼= Cp. If n > 4 then An is simple (as was stated above
in Theorem 9.4.1). These facts are proven in [R].

Simple groups are not very abundant. In fact, the first non-abelian simple
group is of order 60 (it’s A5).

The following basic result describes the quotient group G1/ker(f).

Theorem 9.5.1. (First isomorphism theorem) If f : G1 → G2 is a homo-
morphism between two groups, then G1/ker(f) is isomorphic to f(G1).

Proof: ker(f) is a normal subgroup of G1, so G1/ker(f) is a group. We must
show that this group is isomorphic to the group f(G1). Define φ : G1/ker(f) →
f(G2) by φ(g · ker(f)) = f(g), for g ∈ G1. We must show

(a) φ is well-defined,
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(b) φ is a homomorphism,

(c) φ is a bijection.

If g · ker(f) = g′ · ker(f) then g−1g′ ∈ ker(f), since ker(f) is a group. This
implies f(g−1g′) ∈ f(ker(f)) = {1}, so f(g) = f(g′). This implies φ is well-
defined.

Since ker(f) is normal, (g · ker(f))(g′ · ker(f)) = gg′(g′
−1

ker(f)g′)ker(f) =
gg′ · ker(f). Therefore φ((g · ker(f))(g′ · ker(f))) = φ(gg′ · ker(f)) = f(gg′) =
f(g)f(g′) = φ(g · ker(f))φ(g′ · ker(f)), for all g, g′ ∈ G. This implies φ is a
homomorphism.

It is clear that φ is surjective. To show that φ is a bijection, it suffices to
prove φ is an injection. Suppose that φ(g · ker(f)) = φ(g′ · ker(f)), for some
g, g′ ∈ G. Then f(g) = f(g′), so f(g−1g′) = 1. By definition of the kernel, this
implies g−1g′ ∈ ker(f), so g · ker(f) = g′ · ker(f). This implies φ is injective.

¤

The other isomorphism theorems will not be needed but will be stated to help
to illustrate the usefulness of the notion of normality.

Theorem 9.5.2. (Second isomorphism theorem) If H,N are subgroups of
a group G and if N is normal then

(a) H ∩ N is normal in H,

(b) there is an isomorphism

H/(H ∩ N) ∼= NH/N.

Ponderable 9.5.1. Let n ≥ 4 be an even integer, H = Dn ⊂ Sn and N = An.
Use the second isomorphism to show that HN = Sn.

Here is an illustration using SAGE:

SAGE

sage: n = 6
sage: H = DihedralGroup(n)
sage: N = AlternatingGroup(n)
sage: gens = H.gens()+N.gens()
sage: G = PermutationGroup(gens)
sage: G == SymmetricGroup(n)
True

Theorem 9.5.3. (Third isomorphism theorem) If N1, N2 are subgroups of
a group G, if N1 ⊂ N2, and if N1 and N2 are both normal then

(a) N2/N1 is normal in G/N1,

(b) there is an isomorphism

(G/N1)/(N2/N1) ∼= G/N2.
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We shall not prove these results here; see [G] or [R]. These are due to Emmy
Noether (1882-1935), one of the first women to obtain a Ph.D. in mathematics
in Germany (or anywhere for that matter). Though extremely talented, the fact
that she was Jewish and a woman made her progress in mathematics difficult.
D. Hilbert and F. Klein, two of the world’s leading mathematicians at the time,
supported her and she conducted research and lectured at the University of
Göttingen until the Nazis came to power in the 1930’s. She left for Bryn Mawr
College in the USA but died a few years later. She made many very important
contributions to modern algebra.

9.6 Dabbling in direct products

Given two integers n1 and n2, you can always form another one from them,
using multiplication, denoted n1n2. Analogously, given two groups H1 and H2,
you can always form another group from them using the Cartesian product
construction (which we saw already in the context of sets in §2.1), denoted
H1 × H2.

Definition 9.6.1. Let H1,H2 be two subgroups. We say that a group G is the
direct product of H1 with H2, written

G = H1 × H2,

if
(a) G = H1 × H2 (Cartesian product, as sets),
(b) the group operation on G is given ‘coordinate-wise’ (still denoted ‘·’ for

simplicity):
(x1, y1) · (x2, y2) = (x1 · x2, y1 · y2),

for x1, x2 ∈ H1, y1, y2 ∈ H2 (where · denotes multiplication in H1,H2, and G).

Example 9.6.1. Let G be (as a set) the Cartesian product G = C2×C3, where
Cn denotes the cyclic group of order n (with addition mod n as the operation,
n = 2, 3). Define addition on G coordinate-wise (mod 2 in the first coordinate,
mod 3 in the second coordinate):

(m1, n1) + (m2, n2) = (m1 + m2, n1 + n2),

where 0 ≤ mi ≤ 1, 0 ≤ nj ≤ 2, for i = 1, 2, j = 1, 2.
You can use SAGE to construct this direct product as illustrated below. The

direct product in SAGE constructs a 5-tuple: (1) the direct product C2×C3, (2)
the injection C2 → C2 ×C3, (3) the injection C3 → C2 ×C3, (4) the projection
C2 × C3 → C2, (5) the projection C2 × C3 → C3.
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SAGE

sage: C2 = CyclicPermutationGroup(2)
sage: C3 = CyclicPermutationGroup(3)
sage: G = C2.direct_product(C3)
sage: G
(Permutation Group with generators [(1,2), (3,4,5)],

Homomorphism : Cyclic group of order 2 as a permutation group
--> Permutation Group with generators [(1,2), (3,4,5)],

Homomorphism : Cyclic group of order 3 as a permutation group
--> Permutation Group with generators [(1,2), (3,4,5)],

Homomorphism : Permutation Group with generators [(1,2), ( 3,4,5)]
--> Cyclic group of order 2 as a permutation group,

Homomorphism : Permutation Group with generators [(1,2), ( 3,4,5)]
--> Cyclic group of order 3 as a permutation group)

sage: G[0].order()
6

Example 9.6.2. The symmetry group O of the octahedron is isomorphic to
S4 × C2. The symmetry group I of the icosahedron is isomorphic to A5 × C2.
(This is not isomorphic to S5, despite the fact that they both have the same
number of elements and they both contain A5 as a normal subgroup.)

9.6.1 First fundamental theorem of cube theory

The following basic fact is implicitly used in some of the examples which follow.
We shall frequently need the following fact.

Theorem 9.6.1. Beginning with a solved cube, label the following facets with
an invisible ‘+’ (i.e., mark the spatial position of the facet on the cube with a
‘+’):

• U facet of the uf edge subcube

• U facet of the ur edge subcube

• F facet of the fr edge subcube

• all facets which can be obtained from these by a move of the slice group.

Label the U and D facets of each corner subcube with an invisible ‘+’. These
‘+’ signs are called the standard reference markings. Each move g of the
Rubik’s Cube yields a new collection of ‘+’ labels, called the markings relative
to g. A position of the Rubik’s Cube is determined by the following decision
process:

(a) How are the edge subcubes permuted?
(b) How are the center subcubes permuted?
(c) How are the corner subcubes permuted?
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(d) Which of the relative edge markings are flipped (relative to the standard
reference markings)?

(e) Which of the relative corner markings are rotated from the standard refer-
ence markings and, if so, by how much (2π/3 or 4π/3 radians clockwise, relative
to the standard reference markings)?

This is labeled as a theorem because of its relative importance for us, not
because of its difficulty! This is the First Fundamental Theorem of Rubik’s
Cube theory. As an exercise, the reader should convince him or herself that
this theorem is correct.

Whether or not the above theorem is ‘obvious’ or not reminds me of the
following anecdote regarding the famous British mathematician G.H. Hardy,
whom we met earlier in connection with Ramanujan. Hardy was known to be
a bit of an eccentric character in his day. The story goes that he was giving a
mathematics lecture and wrote down a theorem, then said: ‘This is obvious.’
After a pause, he went on: ‘Hmm ... is it really obvious?’ After thinking
silently for a few moments he left the room to consider the point. He returned
20 minutes later, saying: ‘Yes, it is obvious.’ He then proceeded to finish his
lecture. (The story is attributed to Prof. Jonathan R. Partington.) So, when
I say the above theorem is ‘obvious’, don’t worry if you have to think about it
for 20 minutes. It might help to have a cube in front of you.

9.6.2 Example: cube twists and flips

We recall some notation:

• X is the set of 48 facets of the Rubik’s Cube which are not center facets.

• V denotes the subset of facets which belong to some corner subcube.

• E is the subset of facets which belong to some edge subcube.

• Let G denote the Rubik’s Cube group.

• Let F be the group generated by all the moves of the Rubik’s Cube group
which do not permute any corner or edge subcubes but may twist or flip
them.

• Let SX , SV , SE , denote the symmetric group on X,V,E, respectively. We
may regard F,G, as subgroups of SX . We may also regard SV , SE as
subgroups of SX (for example, SV is the subgroup of SX which leaves all
the elements of E fixed).

• Let

GV = SV ∩ G, GE = SE ∩ G, FV = SV ∩ F, FE = SE ∩ F.

Note that the action of G on X induces an equivalence relation as follows: we
say that a facet f1 is equivalent to a facet f2 if there is a move of the Rubik’s
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Cube which sends one facet to the other. There are exactly two equivalence
classes, or orbits, of G in X: namely, V and E. In particular, the action of G
on V is transitive and the action of G on E is transitive. On the other hand, F
leaves each vertex (respectively, edge) fixed, though it may permute the corner
facets (respectively, edge facets) associated to a vertex (respectively, edge).

Ponderable 9.6.1. Show that

(a) the set V of equivalence classes of F acting on V is in bijective correspon-
dence with the set of all vertices of the cube;

(b) the set E of equivalence classes of F acting on E is in bijective correspon-
dence with the set of all edges of the cube.

The interesting thing is that we have

F = FV × FE (direct product).

Ponderable 9.6.2. With notation as above,

(a) show F = FV × FE (direct product);

(b) is SX = SV × SE (direct product)?

A harder question, which we will answer later in the negative: Is G = GV ×GE

(direct product)?

9.6.3 Example: the slice group of the cube

It is worthwhile studying a subgroup of the Rubik’s Cube group which is easier
to analyze than the Rubik’s Cube group itself. This way, some of the basic ideas
and setup are introduced in a simpler setting.

Some of the material below can also be found in [BH], [Si].

Let H be the group 〈MR,MF ,MU 〉 generated by the middle slice moves. This
group is called the ‘slice group’. Let E be the set of edges of the cube (which
we identify with the set of edge subcubes), let C be the set of center facets of
the cube, and let X = E ∪ C. Note that H acts on X and that H does not
move the elements of C (i.e, the corner vertices of the cube).

Ponderable 9.6.3.

(a) Is the action of H on X transitive?

(b) Is the action of H on C transitive?

(c) Is the action of H on E transitive?
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Solution: The answer to (a) is no; for example, an edge subcube cannot be sent
to a center facet. Consequently, there are elements of X which cannot be sent
to each by an element of H. The answer to (b) is yes; any center facet can be
sent to any other center facet by an element of H. The answer to (c) is no; for
example, the uf edge subcube cannot be sent to the ur edge subcube by a slice
move, so there is an element of E which cannot be sent to any other element of
E by an element of H. This completes the solution.

The answer of ‘no’ to (c) brings about the following question.

Ponderable 9.6.4. What are the orbits of H on E?

Solution: The answer may be phrased in various ways, but let us look at it in
the following way: suppose we call two edge subcubes equivalent if one can be
sent to the other by a slice move (i.e., an element of H). There are 3 disjoint
equivalence classes: all the subcubes in the middle RL-slice are equivalent, all
the subcubes in the middle FB-slice are equivalent, and all the subcubes in the
middle UD-slice are equivalent. The distinct orbits of H acting on E are the
following:

• the middle RL-slice, denoted by ERL,

• the middle FB-slice, denoted by EFB ,

• the middle UD-slice, denoted by EUD.

Note that

E = ERL ∪ EFB ∪ EUD,

is a partitioning of E into the distinct equivalence classes defined by the action
of H on E. This completes the solution.

Each element of H determines an element in SX . We have a homomorphism

f : H → SX .

This is another way of saying that H acts on the set X, which we already know.
Note that each basic slice move M (so M is either MR, MF , or MU ) is, as an
element of SX , of the following form:

M = (4−cycle in SE)(4−cycle in SC).

Conversely, does an element of SX uniquely determine an element of H? In
other words, is f injective (i.e., an embedding)?

To answer this, fix an h ∈ H and think about what f(h) tells us: f(h) tells us
which subcube moves to which other subcube but it doesn’t tell us, for example,
how a subcube is flipped or rotated.

The first fundamental theorem 9.6.1 of the cube inspires the following question.

Ponderable 9.6.5. Can an element of H flip, but not permute, an edge subcube
(and possibly permuting or flipping other subcubes of the cube)?
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Solution: The answer is no. The reason is that the slice moves can only rotate a
given edge subcube within the slice it belongs to. This completes the solution.

It follows, therefore, that the permutations of the edge subcube and centers
determine a unique element of the slice group. In other words, we have proven
the following

Proposition 9.6.1. The homomorphism

f : H → SX

is an embedding.

Ponderable 9.6.6. The analog of this for the Rubik’s Cube group is false!
Why?

H acts on the set ERL, so we have a homomorphism

rRL : H → SERL

and similarly, rUD : H → SEUD
, rFB : H → SEF B

.
H acts on each of the sets E and C, so we have homomorphisms

r = rRL × rUD × rFB : H → SERL
× SEUD

× SEF B
⊂ SE , s : H → SC ,

which we can put together to obtain an injective homomorphism

r × s : H → SERL
× SEF B

× SEUD
× SC .

To determine H, we determine the image of H in SERL
× SEF B

× SEUD
× SC .

To do this, we first look at the image of H in each of SERL
, SEF B

, and SEUD
.

This is easy enough:

• the image of H in SERL
is 〈MR〉 ∼= C4,

• the image of H in SEF B
is 〈MF 〉 ∼= C4,

• the image of H in SEUD
is 〈MU 〉 ∼= C4.

Later, we shall want to think of C4 as {0, 1, 2, 3}, with addition mod 4, and the
image of an element h ∈ H under one of the homomorphisms above, rRL : H →
SEF B

, say, as an integer 0 ≤ rRL(h) ≤ 3.
Next, we must determine the image of H in SC . This is easy if it’s looked at

in the right way. As far as the movements of the center facets are concerned,
the slice moves may be replaced by their corresponding rotations of the entire
cube about an axis of symmetry. In this case, we see that the image of H in SC

is the same as the image of the orientation-preserving symmetry group of the
cube! This we know, by the discussion in Example 9.3.4 above, is isomorphic
to S4.

Putting all this together, we see that the image of H in SERL
×SEF B

×SEUD
×

SC is isomorphic to a subgroup of

C3
4 × S4.

189



9.6. DABBLING IN DIRECT PRODUCTS

We may represent the elements of H , therefore, as 4-tuples (h1, h2, h3, h4), with
h1, h2, h3 ∈ C4 and h4 ∈ S4. Since each of the generating moves of H (namely,
MR, MU , and MF ) satisfies

sgn(r(h)) = sgn(s(h)),

for all h ∈ H, the image of H cannot be all of C3
4 × S4.

Proposition 9.6.2. The image of H in C3
4 × S4 is isomorphic to the kernel of

the map

t : C3
4 × S4 → {±1}

(h1, h2, h3, h4) 7−→ sgn(h1) · sgn(h2) · sgn(h3) · sgn(h4),

where each sgn is the sign of the permutation, regarded as an element of SX .

Ponderable 9.6.7. Show that |ker(t)| = (43 · 4!)/2 = 768.

Solution: We have shown that H is isomorphic to a subgroup of C3
4 × S4. In

fact, we know that the basic slice moves MR,MU ,MF (which generate H) all
belong to the kernel of t, so H is isomorphic to a subgroup of ker(t) ⊂ C3

4 ×S4.
It remains to show that every element in ker(t) belongs to H. To do this, we

consider the projection homomorphism

p : H → S4

obtained by composing the homomorphism r × s : H → C3
4 × S4 constructed

above with the projection homomorphism C3
4 × S4 → S4. We have shown that

p is surjective. Our next objective is to compute the kernel of p and use the
first isomorphism theorem to determine H.

Claim: The kernel of p is

ker(p) = {h ∈ H | s(h) = 1, rRL(h) + rUD(h) + rFB(h) ≡ 0 (mod 2)}.

Note that ker(p) is a subgroup of H so the sign of the permutation s(h) is
equal to the sign of the permutation r(h):

sgn(s(h)) = sgn(r(h)) = sgn(rRL(h)) · sgn(rUD(h)) · sgn(rFB(h)).

This implies that

ker(p) ⊂ {h ∈ H | s(h) = 1, rRL(h) + rUD(h) + rFB(h) ≡ 0 (mod 2)}.

Conversely, pick an h ∈ H such that s(h) = 1 and rRL(h) + rUD(h) + rFB(h) ≡
0 (mod 2). We may represent this element h as a 4-tuple (n1, n2, n3, s), with
0 ≤ n1, n2, n3 ≤ 3 and s = 1 ∈ S4.

For example,

• the element M1 = MR · M−1
F · MD · MF is represented by the 4-tuple

(1, 1, 0, 1),
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• the element M2 = MR · MD · MF · M−1
D is represented by the 4-tuple

(0, 1, 1, 1),

• the element M3 = MF ·MD ·M−1
R ·M−1

D ·MF ·M−1
D ·MR ·MD is represented

by the 4-tuple (0, 0, 2, 1).

These elements generate all the elements of the group

{(a, b, c, 1) | a, b, c ∈ C4, a + b + c ≡ 0 (mod 2)}.

Note that the group

{(a, b, c) | a, b, c ∈ C4, a + b + c ≡ 0 (mod 2)}

is, in turn, the kernel of the map C3
4 → C2 given by (a, b, c) 7−→ a + b + c ≡

0 (mod 2).

Ponderable 9.6.8. Show that |{(a, b, c) | a, b, c ∈ C4, a+b+c ≡ 0 (mod 2)}| =
43/2 = 32.

Therefore, the element h chosen above must be expressible as a ‘word’ in these
three elements M1,M2,M3. This shows that

{h ∈ H | s(h) = 1, rRL(h) + rUD(h) + rFB(h) ≡ 0 (mod 2)} ⊂ ker(p),

which implies the claim.
To summarize what we have so far: we have a surjective homomorphism p :

H → S4 with kernel {h ∈ H | s(h) = 1, rRL(h)+rUD(h)+rFB(h) ≡ 0 (mod 2)}.
The kernel has |ker(p)| = 32 elements and the image has |im(p)| = |S4| = 4! =
24 elements. Since, by the first isomomorphism theorem,

H/ker(p) ∼= S4,

we have |H| = 32 ·24 = 768. But the kernel of the homomorphism t : C3
4 ×S4 →

{±1}, which we know contains H as a subgroup, also has 768 elements. This
forces h = ker(t). This completes the solution.

9.6.4 Example: the slice group of the Megaminx

The subgroup S of the Megaminx group generated by all elements of the form
x · y−1, where x, y correspond to opposite faces is called the slice group of the
Megaminx.

Ponderable 9.6.9. (Mark Longridge): Determine S.

This group has recently (via an email sent Aug. 31, 2001) been completely
determined by Mike Reid. It has

(15!/2) · 414 · (10!/2) · 69 · 3 = 9627755206121277812101663948800000

elements.
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9.7 A smorgasbord of semi-direct products

To ‘explicitly construct’ the Rubik’s Cube group, we need to know how to
construct semi-direct products. We study semi-direct products in this section.
A semi-direct product is a specific type of construction, more general than the
direct product, of a new group, G, from two groups, H1 and H2, having certain
properties. It will turn out that H1 and H2 will be subgroups of G.

If a group G contains two subgroups H1 and H2, with H1 ⊳ G normal, such
that each element of G can be written uniquely as a product h1h2, with h1 ∈ H1

and h2 ∈ H2 then we say that G is the semi-direct product of H1 and H2. In
this situation, H2 is called a complement of H1. In this section, we shall see
another way how a semi-direct product can be expressed. Later, we shall see
that the Rubik’s Cube group can easily be described using semi-direct products.

Definition 9.7.1. Now suppose that H1,H2 are both subgroups of a group G.
We say that G is the semi-direct product of H1 by H2, written

G = H1 ⋊ H2,

if

(a) G = H1 · H2,

(b) H1 and H2 only have 1, the identity of G, in common,

(c) H1 is normal in G.

This is the ‘internal version’ of the semi-direct product.

Of course, if we define anything using two apparently different definitions, we’d
better be sure that they are equivalent! The fact that they are is a theorem
(Theorem 7.23 in [R]) which we won’t prove here.

Note that the multiplication rule in G doesn’t have to be mentioned since we
are assuming here that G is given.

The ‘external version’ is defined by a construction as follows:

Definition 9.7.2. Assume we have a homomorphism

φ : H2 → Aut(H1).

Define multiplication on the set H1 × H2 by

(x1, y1) · (x2, y2) = (x1 · φ(y1)(x2), y1 · y2).

This defines a group operation. This group, denoted H1⋊φH2, is the (external)
semi-direct product.

This definition will be used with the example of H1 = Cn
m and H2 = Sn in

the next chapter.
These last two definitions are equivalent by Theorems 7.22-7.23 in [R].
As a set, H1 ⋊ H2 is simply the Cartesian product H1 × H2.
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Example 9.7.1. Let R2 denote the direct product of the additive group of real
numbers with itself:

R2 = {(x, y) | x, y real},
with the group operation being addition performed componentwise. Let C2 de-
note the multiplicative cyclic group with 2 elements, whose elements we write
(somewhat abstractly) as C2 = {1, s}. (We may think of s as being equal to -1
but there is a reason for this notation which will be made clear soon.) Define
an action of C2 on R2 by

1(x, y) = (x, y), s(x, y) = (y, x), (x, y) ∈ R2.

Let G be the set
G = R2 × C2.

Define the binary operation · : G × G → G by

(g1, z1) · (g2, z2) = (g1 + z1(g2), z1 · z2),

for all g1, g2 ∈ G and all z1, z2 ∈ C2. This is a group—the semi-direct product
of R2 with C2.

To see this, we must answer some questions:

• closed under the operation? Yes

• existence of identity? Yes, e = ((0, 0), 1)

• existence of inverse? Yes, ((x, y), 1)−1 = ((−x,−y), 1), and ((x, y), s)−1 =
((−y,−x), s)

• associative? This is the hard one:

((g1, z1) · (g2, z2)) · (g3, z3) = (g1 + z1(g2), z1 · z2) · (g3, z3)
= (g1 + z1(g2) + (z1 · z2)(g3), (z1 · z2) · z3)

(g1, z1) · ((g2, z2) · (g3, z3)) = (g1, z1) · (g2 + z2(g3), z2 · z3)
= (g1 + z1(g2) + z1(z2(g3)), z1 · (z2 · z3))

This implies associativity.

Ponderable 9.7.1. Let G be the semi-direct product constructed in the above
example. Show that H = {((x, y), 1) | (x, y) ∈ R2} is a normal subgroup of G.
Show H ∼= R2.

Example 9.7.2. Let

S3 = {1, s1, s2, s1 · s2, s2 · s1, s1 · s2 · s1}, H1 = {1, s2, s1 · s2 · s1}, H2 = {1, s1}.
Let

φ : H2 → Aut(H1)

be defined by
φ(1) = 1 (the identity automorphism)

φ(s1)(h) = s−1
1 · h · s1 = s1 · h · s1

(since s−1
1 = s1), h ∈ H1.

Denote the (external) semi-direct product of H1,H2 by G = H1 ⋊φ H2.
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Ponderable 9.7.2. Let G be the semi-direct product constructed in the above
example. Show that H1 (which we identify with the subgroup {(h, 1) | h ∈ H1}
of G) is a normal subgroup.

There is of course a close relationship between internally defined semi-direct
products and externally defined ones. The following lemma, which is proven in
[R], explains this connection:

Lemma 9.7.1. If G is the (internal) semi-direct product of H1 by H2 (so H1

is a normal subgroup of G) then there is a homomorphism

φ : H2 → Aut(H1)

such that G ∼= H1 ⋊φ (H2).

Example 9.7.3. Let Cd be the cyclic group of order d, which we may regard
as a set as Cd = {0, 1, ..., d − 1}, with addition performed mod d. Let N = Cn

d ,
which we regard as the group of n-vectors with ‘coefficients in Cd’. Let H = Sn

be the symmetric group on n letters, i.e., the group of all permutations

p : {1, 2, ..., n} → {1, 2, ..., n}.

The group H acts on N by permuting the indices, i.e., the coordinates of the
vectors. For f ∈ Sn, define f∗ : Cn

d → Cn
d by

f∗(v) = (xf−1(1), ..., xf−1(n)) = P (f−1)vt, v = (x1, ..., xn) ∈ Cn
d , (9.2)

where P (g) is the permutation matrix associated to a permutation g and vt

denotes the transpose (a column vector) of v. Now, for p, q ∈ Sn and v, w ∈ Cn
d ,

define

(p, v) · (q, w) = (pq, w + q∗(v)).

This defines a semi-direct product Cn
d ⋊Sn, the generalized symmetric group.

A monomial matrix is a matrix which contains exactly one non-zero entry for
each row and column. (It is known that Cn

d ⋊ Sn is isomorphic to the group of
all ‘Cn-valued n × n monomial matrices’, [R], Exercise 7.33.)

Here is an example of how to construct C8
3 ⋊ S8 using SAGE:

SAGE

sage: C3 = CyclicPermutationGroup(3)
sage: S8 = SymmetricGroup(8)
sage: W = C3._gap_().WreathProduct(S8._gap_())
sage: W.Order()
264539520
sage: W.Order() == 3ˆ8 * factorial(8)
True
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9.8 A reification of wreath products

We briefly survey the basic facts about wreath products. Wreath products are
generalizations of semi-direct products. They occur naturally in the theory of
the Rubik’s Cube group (see [Si], for example). I shall be brief because the
wreath products which do occur in the theory of the Rubik’s Cube may be, if
desired, reformulated in terms of semi-direct products. In fact, it suffices to
consider generalized symmetric groups (see Theorem 9.8.1 below), which are
even easier to deal with and themselves special types of semi-direct products.

Let G1 be a group, and let G2 be a group acting on a finite set X2. Fix some
labeling of X2 as say X2 = {h1, h2, ..., hm}, where m = |X2| and let GX2

1 denote
the direct product of G1 with itself m times, with the coordinates labeled by
the elements of X2.

Definition 9.8.1. The wreath product of G1, G2 is the group

G1 wr G2 = GX2

1 ⋊ G2,

where the action of G2 on GX2

1 is via its action on X2.

In particular, to each t ∈ G1 wr G2 there is a g2 ∈ G2. We denote this
projection by g2 = pr(t). Define the base of the wreath product by

B = {t ∈ G1 wr G2 | pr(t) = 1},

so B = GX2

1 .

Example 9.8.1. Let Rn denote the direct product of the additive group of reals
with itself n times. The group operation on Rn is componentwise addition. Let
Sn denote the symmetric group. This acts on Rn by permuting coordinates as
in (9.2). This action respects addition:

r∗(x1 + y1, ..., xn + yn) = r∗(x1, ..., xn) + r∗(y1, ..., yn),

(x1..., xn), (y1..., yn) ∈ Rn. (Incidently, it also preserves scalar multiplication:

r∗(a ∗ ~v) = a · r∗~v,

for ~v ∈ Rn and a ∈ R. Therefore, r defines an invertible linear transformation
on Rn. In fact, there is a homomorphism Sn → Aut(Rn), where Aut(Rn) de-
notes the group of all invertible linear transformations on Rn. Do you recognize
this homomorphism? It has occurred previously.)

Let G be the set
G = Rn × Sn

and define a binary operation · : G × G → G by

(~v1, p1) · (~v2, p2) = (~v1 + p∗1(~v2), p1 · p2),

for all ~v1, ~v2 ∈ Rn and all p1, p2 ∈ Sn. This is a group. To see this, we must
answer some questions:
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• Is G closed under the operation ·? Yes.

• Does there exist an identity? Yes, e = (~0, 1).

• Does there exist an inverse? Yes, (~v, p)−1 = (−(p−1)∗~v, p−1).

• Is G associative? This is the hard one:

((~v1, p1) · (~v2, p2)) · (~v3, p3) = (~v1 + p∗1(~v2), p1 · p2) · (~v3, p3)
= (~v1 + p∗1(~v2) + (p1 · p2)

∗(~v3), (p1 · p2) · p3)
(~v1, p1) · ((~v2, p2) · (~v3, p3)) = (~v1, p1) · (~v2 + p∗2(~v3), p2 · p3)

= (~v1 + p∗1(~v2) + p∗1(p
∗
2(~v3)), p1 · (p2 · p3))

This implies associativity.

This group is the wreath product of R with Sn,

G = R wr Sn,

where Rn is the base.

Lemma 9.8.1.

(a) The base B, which is isomorphic to the direct product G
|X2|
1 , is a normal

subgroup of G1 wr G2.

(b) (G1 wr G2)/B is isomorphic to G2.

This is a consequence of the first isomorphism theorem of group theory. The
proof is omitted. (Refer to chapter 8 of [NST] or to [R] for further details.)

9.8.1 The illegal Rubik’s Cube group

Let H be the illegal Rubik’s Cube group of all legal and illegal moves of
the 3 × 3 Rubik’s Cube. In other words, in addition to the usual basic moves
(namely, R,L,U,D, F,B), we allow you to take apart the cube and reassemble
the corner and edge subcubes (but you cannot remove stickers from the facets).
Let C3 denote the group of all rotations of a particular corner subcube by a
120 degree angle. (Actually, this group depends on the corner being rotated,
but since these groups are all isomorphic, we drop the dependence from the
notation.) Let C2 denote the group of all flips of a particular edge subcube.
(Again, this group depends on the edge being flipped but since these groups
are all isomorphic, we drop the dependence from the notation.) We shall prove
later that

H = (C3 wr SV ) × (C2 wr SE),

where V is the set of corner subcubes and E is the set of edge subcubes.
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9.8.2 Elements of order d in Cm wr Sn

In this section, we will apply our understanding of wreath products to increasing
our ability to determine all the elements of order d in the Rubik’s Cube group.
(The case d = 2 will be examined in some detail later.) In some cases (e.g., in
the cases we deal with here), wreath products turn out to be relatively concrete
and familiar groups.

Let S(n,m) denote the group of all n × n monomial matrices with entries in
Cm. We begin with the following result, which allows us to identify S(n,m)
with the generalized symmetric group in Example 9.7.3.

Theorem 9.8.1. There is an isomorphism between Cm wr Sn and the group
S(n,m) which sends an element (~v, f) ∈ Cm wr Sn, ~v = (v1, v2, ..., vn) ∈ Cn

m

and f ∈ Sn, to the vector P (f)diag(~v).

This follows from a result (see Theorem 10.5.1) which will be proven in the
next chapter. It is also a special case of an exercise in [R].

Example 9.8.2. If n = 3 and m = 2 then

• ((−1, 1,−1), (1, 2)) corresponds to





0 1 0
1 0 0
0 0 1









−1 0 0
0 1 0
0 0 −1



 =





0 1 0
−1 0 0
0 0 −1



 ;

• ((1,−1, 1), (1, 2)) corresponds to





0 1 0
1 0 0
0 0 1









1 0 0
0 −1 0
0 0 −1



 =





0 −1 0
1 0 0
0 0 1



 .

Here is an example of how to use SAGE to construct a group multiplication
in this wreath product.

SAGE

sage: P = Matrix([[0,1,0], [1,0,0], [0,0,1]])
sage: v = Matrix([[-1,0,0], [0,1,0], [0,0,-1]])
sage: A = P * v
sage: A

[ 0 1 0]
[-1 0 0]
[ 0 0 -1]
sage: w = Matrix([[1,0,0], [0,-1,0], [0,0,1]])
sage: B = P * w
sage: B

[ 0 -1 0]
[ 1 0 0]
[ 0 0 1]
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sage: A * B

[ 1 0 0]
[ 0 1 0]
[ 0 0 -1]
sage: v * P* w* Pˆ(-1)

[ 1 0 0]
[ 0 1 0]
[ 0 0 -1]

Let ~v = (v1, v2, ..., vn) ∈ Cn
m and f ∈ Sn. It is clear from this theorem that

an element (~v, f) ∈ Cm wr Sn is order d only if the permutation matrix P (f) is
order d. Indeed,

(~v, f)2 = (~v + f∗(~v), f2),
(~v, f)3 = (~v + f∗(~v) + (f∗)2(~v), f3),

...
(~v, f)k = (~v + ... + (f∗)k−1(~v), fk).

We conclude with the following classification of the elements of order d in the
wreath product.

Proposition 9.8.1. An element (~v, f) ∈ Cm wr Sn, ~v = (v1, v2, ..., vn) ∈ Cn
m

and f ∈ Sn, is order d if and only if fd = 1 and ~v + ... + (f∗)d−1(~v) = 0, where
f∗ is defined in (9.2) on p. 194.

This result can, in principle, be used in conjunction with the explicit deter-
mination of the Rubik’s Cube group given later to determine all the elements
of a given order. See §11.3.
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Chapter 10

Words which move

Everyone knows what a curve is, until he has studied enough math-
ematics to become confused through the countless number of possible
exceptions.

Felix Klein

Felix Klein (1849–1925), one of the most important figures in group theory,
was right on the money with his comment about curves. However, as far as
this chapter is concerned, we might replace ‘curve’ with ‘word’. We originally
used ‘words’ and ‘relations’ to describe groups aring in the topological study of
surfaces. This chapter touches on a broad area of group theory called ‘combi-
natorial group theory’, a subject having its origins in the late 1800’s and early
1900’s. Henri Poincaré (1854-1912), one of the greatest mathematical geniuses
of all time, introduced the ‘fundamental group’ of a surface, which turns out to
be naturally defined in terms of ‘generators’ (the ‘letters’ of our ‘words’) and
‘relations’ (‘grammatical rules’ our ‘words’ satisfy). Although topology is well
outside the scope of this book, it is interesting to note how the study of one
area can ultimately lead to applications of something completely different.

Let us begin with an example. RUBDUBDUB is both a word (well, sort
of, anyway) and a move of the Rubik’s Cube. Is that move different than
DUBRUBRUB? Just because they look different doesn’t mean that they are.
(R4 and D4 look different but they both have the same effect as doing nothing
at all!) Basically, (one formulation of) the ‘word problem’ is the problem of
determining when two words (i.e., strings of generators of a group) are the same
or not in a given group.

The word problem is related to the solution of the Rubik’s Cube since if
we knew which ‘words’ in the generators R, L, U , D, F , B, described a given
position of the Rubik’s Cube, then we could use one of them to solve the position.
The problem is that this ‘word problem’ is usually quite hard to solve in practice.
It is remarkable that there are GAP commands (and also in SAGE) which can
always find a word in the generators R, L, U , D, F , B which describes a given
position of the Rubik’s Cube. These commands use no knowledge of the Rubik’s
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Cube beyond the definition of the Rubik’s Cube group, yet allow one to solve
the cube using group theory. It is the purpose of this chapter to introduce some
of the mathematical ideas which arise when trying to study the Rubik’s Cube
group from this perspective.

Roughly speaking, this cube-solving algorithm does the following:

(a) constructs the free group on the 6 face move generators and then computes
a reasonable set of relations which they satisfy;

(b) computes a homomorphism from the cube group to this free group quotient
(we discuss such quotients in this chapter);

(c) takes the cube position, regarded as a group element, and maps it over to
the free group quotient;

(d) using those relations, and tricks from combinatorial group theory (sta-
bilizer chains, which go beyond the level of this book), solves the ‘word
problem’ for that element;

(e) uses Python string parsing functions to rewrite that in cube notation.

The Rubik’s cube group has about 4.3 × 1019 elements, so this process is time-
consuming, even for simple moves.

We give an example using SAGE below, but see [Sch] at the GAP website for
an interesting discussion of some GAP code analyzing the Rubik’s Cube.

10.1 Words in free groups

To be precise and make sure everyone’s on the same page, let’s record a few
definitions and introduce some notation.

Definition 10.1.1. Given a list L of questions, a decision algorithm for L is
a uniform set of unambiguous instructions which, when applied to any question
in L, gives the correct answer ‘yes’ or ‘no’ after a finite number of steps.

Let X = {x1, ..., xn} denote a set and X−1 a set disjoint from X whose
elements we denote by {x−1

1 , ..., x−1
n }. Assume that the map x 7−→ x−1 defines

a bijection X → X−1. It will be convenient to let x1 = x, x0
i = 1, where 1 is an

element not belonging to X ∪X−1 which we will call the identity element. A
word on X is a sequence

w = (a1, a2, ..., aN ),

where N > 0 is some integer and each ai belongs to

X ∪ X−1 ∪ {1}.

The sequence of all 1’s is called the empty word. The inverse of the word w
is the word

w−1 = (a−1
N , ..., a−1

1 ).
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If ai = yei

i , where ei is in {0, 1,−1} and yi ∈ X, then we shall write the word w
as w = ye1

1 ...yeN

N .

Example 10.1.1. Let X = {R,L,U,D, F,B}. The set of words on X are in a
bijective correspondence with the set of sequences of basic moves you can make
on the Rubik’s Cube.

We call a word w = ye1

1 ...yeN

N on X reduced if either w is empty or if the
exponents ei are non-zero and if there are no x ∈ X with x, x−1 adjacent in w.

Definition 10.1.2. The free group Fn = FX on the generators x1, ..., xn is
the group of all reduced words on X.

The notion of a free group was first formulated by Walther von Dyck (1856-
1934). Von Dyck made important contributions to topology, function theory,
and group theory.

The proof that Fn is a group is not entirely easy (verifying the associativity
property is perhaps the hardest part); see Theorem 11.1 in [R].

10.1.1 Length

If, in the notation above, w = ye1

1 ...yeN

N is a reduced word (so ei ∈ {1,−1}) then
we call N the length (or reduced length, to be more precise) of w.

If G = 〈g1, ..., gk〉 ⊂ Sn is a finite permutation group generated by permuta-
tions g1, ..., gk, then we may still define the notion of length:

Definition 10.1.3. Suppose g ∈ G is not the identity, where G is a permutation
group as above. Then g may be written

g = ye1

1 ...yeN

N ,

where each yi ∈ {g1, ..., gk} and where ei ∈ {0, 1,−1}. The number N and the
sets {y1, ..., yN}, {e1, ..., eN} may not be unique for a given g but among all such
possibilities there is at least one such that the value of N is minimum. We call
this the length of g, denoted ℓ(g). In other words, the length of g is the size of
a “minimal” decomposition of g as a product of transpositions.

Let
PG(t) =

∑

g∈G

tℓ(g).

This is called the Poincaré polynomial of G.

The length of g is the distance in the Cayley graph between the vertex g
and the vertex 1. As was mentioned in chapter 7, the problem of determining
the largest possible distance in the Cayley graph of the Rubik’s Cube group is
known as ‘God’s algorithm’ and is currently unsolved.

Example 10.1.2. Let G = Sn with generators gi = (i, i + 1), i = 1, ..., n − 1.
The Poincaré polynomial is known:

Πn−1
k=1

tk+1 − 1

t − 1
,
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by [Hum], §§1.11, 3.15.

In case n = 3, this is

t3 + 2t2 + 2t + 1 = (t + 1)(t2 + t + 1)

Of course, this is very easy to compute using SAGE:

SAGE

sage: p = lambda n: \
prod([(tˆ(j+1)-1)/(t-1) for j in range(1,n+1)])

sage: p(2)
tˆ3 + 2 * tˆ2 + 2 * t + 1

If you define the “swapping number” as in Definition 3.1.1 then you can show
that the swapping number of an element g ∈ Sn is the same as its length with
respect to the generators si = (i, i + 1), i = 1, ..., n − 1.

Using the code in Example 3.1.2, we can compute the Poincaré polynomial in
another way:

SAGE

sage: G = SymmetricGroup(3)
sage: p = sum([tˆswap(g) for g in G])
sage: p
tˆ3 + 2 * tˆ2 + 2 * t + 1

Ponderable 10.1.1. What is the longest possible length of an element of the
Rubik’s Cube group (with respect to the generators R,L,U,D, F,B)?

Note this is the same as asking for longest possible length of an element of the
Rubik’s Cube group with respect to the generators

R,L,U,D, F,B,R−1, L−1, U−1,D−1, F−1, B−1.

In other words, it is simply a reformulation of ‘God’s algorithm’ in the quarter-
turn metric.

Ponderable 10.1.2. What is the Poincaré polynomial of the Rubik’s Cube
group (with respect to R,L,U,D, F,B)?

This is unknown, though I refer the reader interested in pursuing this to
Thompson’s paper [Th].
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10.1.2 Trees

We may represent the free group graphically as follows. We define the Cayley
graph of FX inductively:

• Draw a vertex for each element of X ∪X−1 (these are the vertices, V1 say,
for the words of length 1).

• Suppose that you have already drawn all the vertices for the words of
length k − 1, Vk−1 let’s call them. For each x ∈ X ∪ X−1 and each
v ∈ Vk−1, draw a vertex for each word of length k obtained by multiplying
v by x on the right, v · x, and connect v and v · x by an edge.

There are infinitely many vertices, each of which has degree |X ∪ X−1|. More-
over, this graph has no circuits or loops (i.e., no path of edges crosses back over
onto itself). Such a graph is called a tree.

Example 10.1.3. Let X = {R,L,U,D, F,B}. The elements of the free group
FX correspond to the mechanically different sequences of basic moves you can
make on the Rubik’s Cube that do not contain a basic move followed by its
inverse. Of course, different sequences of moves may yield the same position
of the Rubik’s Cube (e.g., R4 and 1 are the same position, but the sequence of
moves used to attain them are distinct).

There are infinitely many vertices of the Cayley graph of FX , each of which
corresponds to a mechanically distinct move of the Rubik’s Cube.

Further details on the background material given here may be found in [R],
[MKS].

10.2 The word problem

There is a way to list all the elements of Fn, called the lexicographic ordering.
I shall describe a way to list all the words in Fn as though they were in a
dictionary. I shall give an algorithm for determining if a word w ∈ Fn occurs
before a word w′, in which case we write w < w′. In the dictionary below, we
shall, for example, distingish between the the identity 1 and the ‘non-reduced’
word x1 · x−1

1 .
The first element in this lexicographically ordered list is the word 1, and the

next 2n words are the words

x1 < x−1
1 < ... < xn < x−1

n .

In general, we define y1...yM < z1...zN if either (a) M < N , or (b) M = N and
y1 < z1, or (c) y1 = z1 and y2 < z2, or (d) y1 = z1 and y2 = z2 and y3 < z3, or
... .

List all the elements of Fn as

Fn = {w1, w2, ...},
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so w1 = 1, w2 = x1, .... Let G be a subgroup of Fn or a permutation group
G = 〈g1, ..., gn〉. If G is a permutation group then we regard a word wk as an
element of G by substituting gi for each xi, 1 ≤ i ≤ n.

Definition 10.2.1. Fix a g ∈ G. We say that G has a solvable word problem
if there is a decision algorithm for the list L of questions of the form: Is wk = g
in G?

The word problem was first formulated by Max Dehn (1878–1952), a topologist
who worked extensively on group theory. He was a student of David Hilbert
and wrote several important papers. However, after he emigrated to the USA
in 1940 Dehn had a hard time finding a good teaching position. He taught
at several colleges in the States, including St. Johns University in Annapolis,
Maryland, and then settled down at Black Mountain College, a small school in
North Carolina. There was no mathematics department, yet he remained there
until his death. The college itself closed several years later.

Lemma 10.2.1. ([R], chapter 12) Fn has a solvable word problem.

Proof: (Sketch) The following decision algorithm yields a solvable word
problem.

1. If w is a word not equal to 1, then underline the first occurence, if any, of
the expression xi · x−1

i . If no such expression occurs in w, then go to step
3; otherwise, go to step 2.

2. Delete the expression xi · x−1
i from w and go to step 1.

3. If w = 1 then stop and return ‘yes’; otherwise, stop and return ‘no’.

¤

Remark 10.2.1. There are examples of groups G for which there is no decision
algorithm to solve the word problem. We shall not discuss them here (see [R],
chapter 12, for more details). Sometimes this is referred to in the literature by
saying ‘the word problem for G is undecidable’.

There is another used of the word ‘undecidable’ in mathematics. For example,
Georg Cantor (1845-1918), a brilliant German mathematician who suffered from
mental illness during his last years, is considered by some to be the father of
modern set theory. Using Cantor’s ‘ordinal arithmetic’, we know know that the
‘cardinality’ of the real numbers R is not the same as the ‘cardinality’ of the
rational numbers Q. Cantor conjectured, but could not prove, the Continuum
Hypothesis: ‘there are no cardinal numbers between the cardinality of Q and of
R’. On the other hand, it has been shown that the Continuum Hypothesis cannot
be proven from the axioms of set theory and that its truth or falsity is consistent
with the axioms of set theory. This was proven by Paul Cohen (1934-2007), an
American mathematician who won the Fields medal in 1966 (the ‘Nobel Prize’
of mathematics) for his solution. Paul Cohen’s result is sometimes referred to
in the literature as saying ‘the Continuum Hypothesis is undecidable.’ These
two uses of the word ‘undecidable’ are very different, so be careful!
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Lemma 10.2.2. Each finite permutation group has a solvable word problem.

Ponderable 10.2.1. Why?

Theorem 10.2.1. A decision algorithm for the word problem for the Rubik’s
Cube group with generators R,L,U,D, F,B is the same as an algorithm for
solving the Rubik’s Cube.

In fact, there is an algorithm for writing each element in the Rubik’s Cube
group (or more generally any permutation group G) as a word in the generators
R,L,U,D, F,B (or more generally the given generators of G). This has been
implemented in GAP [Gap]. Though implementing this algorithm is a remark-
able piece of work, it should be pointed out that the words one obtains in this
way from GAP are often of length 60 or more.

Example 10.2.1. In this example, we illustrate the syntax of SAGE’s cube
solver command. To use it, we must enter the state of the Rubik’s cube as a
permutation group element. This is easiest if we simply scramble the Cube and
see if SAGE (indirectly using GAP, in this case) can unscramble it. To keep
things simple, let’s scramble the cube with a simple move like R · U · R−1:

SAGE

sage: rubik = CubeGroup()
sage: b = rubik.B()
sage: d = rubik.D()
sage: f = rubik.F()
sage: l = rubik.L()
sage: r = rubik.R()
sage: u = rubik.U()
sage: r * u* rˆ(-1)
(1,19,24,6)(2,21,7,4)(8,30,17,9)(10,34,28,18)(11,35 ,25,43)
sage: G = PermutationGroup([b,d,f,l,r,u])
sage: g = G(str(r * u* rˆ(-1)))
sage: g.word_problem([b,d,f,l,r,u])

x5 * x6 * x5ˆ-1
[[’(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,2 1)

* (8,33,48,24)’, 1],
[’(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)

* (11,35,27,19)’, 1],
[’(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21 )

* (8,33,48,24)’, -1]]
’(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)

* (8,33,48,24)(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26 ,18)

* (11,35,27,19) (25,27,32,30)(26,29,31,28)(3,38,43,19)

* (5,36,45,21)(8,33,48,24)ˆ-1’

(For typographical reasons, the above SAGE session had to be slightly reformat-
ted.) The ‘solution’ is printed as the first line of output after the word_problem
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command: x5*x6*x5^-1. Note that SAGE rewrites the ordered list of generators
b, d, f, l, r, u as x1, x2, x3, x4, x5, x6. This implies that SAGE says to unscramble
the cube, make the inverse of the move rur−1, which we know to be correct.

The word_problem command works with any permutation group. The Rubik’s
Cube group has a specialized solve command that has a more familiar-looking
output.

SAGE

sage: rubik = CubeGroup()
sage: state = rubik.faces("R * U")
sage: rubik.solve(state)
’R U’
sage: state = rubik.faces("R * U* Rˆ(-1)")
sage: state
{’back’: [[33, 28, 25], [36, 0, 37], [38, 39, 40]],

’down’: [[41, 42, 11], [44, 0, 45], [46, 47, 48]],
’front’: [[9, 10, 24], [20, 0, 7], [22, 23, 6]],
’left’: [[8, 34, 35], [12, 0, 13], [14, 15, 16]],
’right’: [[43, 26, 27], [18, 0, 29], [17, 31, 32]],
’up’: [[19, 21, 3], [2, 0, 5], [1, 4, 30]]}

sage: rubik.solve(state)
"R U R’"

You can apply solve to any legal state of the Rubik’s Cube. The easiest way to
construct an example of a cube state is to actually make a legal move and read
off its state using the faces method, as shown above. This particular solver
is rather slow (it was explained in the introduction to this chapter) and has
an impractical interface, being designed more for pedogogical reasons than to
actually solve cubes.

Here is another way to use SAGE to solve the cube.

SAGE

sage: C = RubiksCube("R U F L D")
sage: C.solve(algorithm = ’kociemba’)

’R U F L D’

This uses an implementation by Dik T. Winter of an algorithm of Herbert Ko-
ciemba. There are several other Cube solvers included with SAGE. Please see
the SAGE reference manual for more details.
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10.3 Presentations and Plutonian robots

Here’s a hypothetical situation: You and a friend each have a robot on the planet
Pluto with a scrambled Rubik’s Cube. (We will call the robots R2D2 and R2B2

if you don’t mind.) These robots have manual dexterity but no preprogramming
on how to solve the cube. Furthermore, assume it is very expensive to program
different moves, so you want to teach R2D2 and R2B2 the smallest number of
separate moves that you can. On the other hand, the moves need not be basic
moves (U , R, ..) since we will assume it costs roughly the same to teach the
robot the move R as the longer move R·U2 ·R−1, for example. Your solution will
be a ‘word’ in these taught moves. Again, to minimize the cost of transmission,
you want the ‘word’ to be absolutely as short as possible. Suppose that a prize
of one million dollars has been set up for the first of you who can get his/her
robot to solve its cube.

In other words, we want to solve the word problem for the cube and we want
to do it as efficiently as possible. Suppose we know we need n generators and
we know that this is the smallest number. How do we make a ‘word’ as short as
possible? To make a word in these generators as small as possible, we must know
all the ‘relations’ between these generators so we can, if necessary, substitute
them into the word and perform some cancelation. This is what this section is
about.

Let X be a finite set, say n = |X|. Let Y be a set of reduced words on X.
Let R be the smallest normal subgroup of Fn containing Y . Since R is normal,
the quotient Fn/R is a group.

Definition 10.3.1. Let G be a group. We say that G has generators X
and relations Y if G is isomorphic to Fn/R. A collection of generators and
relations defining a group is called a presentation of the group. If X and Y
are both finite, then G is said to be finitely presented.

This concept of a group presentation is due to von Dyck, whom we met in
connection with free groups. As in the situation with free groups, von Dyck was
motivated by considerations in topology.

Example 10.3.1. If G is the Rubik’s Cube group, then X is a set of moves
which can solve any cube, no matter how mixed up it is. The symbol R is the
standard notation used for the smallest normal subgroup of Fn generated by the
relations satisfied by the generators g1, ..., gn of a finitely presented group G.
Don’t confuse the set of relations R with the Rubik’s Cube right-face move R!

If X = {R,L,D,U, F,B} then R might contain {R4, L4,D4, U4, F 4, B4},
among other things, standing for the identities R4 = 1, L4 = 1, ... .

Example 10.3.2. The Rubik’s Cube group G is generated by 2 elements. In
fact, Martin Schönert used GAP to compute the subgroups generated by 300
random pairs of elements of G. He found that 151 of those pairs generated the
entire group, so the probability that two randomly choosen elements generate G
is about 1

2 (see the Dec. 4, 1995, posting to [CL]).
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In [B1], the following two generators discovered by F. Barnes, are given: g1 =
UBLUL−1U−1B−1 and g2 = R2FLD−1R−1. In other words, as a permutation
group, G = 〈g1, g2〉. We know that there is a finite set of relations R1, ..., Rk

such that there is an isomorphism φ : G → 〈x, y|R1(x, y) = 1, ..., Rk(x, y) = 1〉,
and moreover the isomorphism satisfies φ(g1) = x and φ(g2) = y. What is
a collection of relations R1(x, y) = 1, ..., Rk(x, y) = 1 where k is as small as
possible and the total word lengths of the R1(x, y), ..., Rk(x, y) is as small as
possible?

As a matter of notation, an element r ∈ R is written as an equation r = 1 in
G.

Remark 10.3.1. For those with a background in topology: Serre [Se], §3.3,
gives a topological interpretation of R as ‘the fundamental group of the Cayley
graph of G with respect to X’.

Example 10.3.3. The cyclic group of order 3, C3, has one generator x and
one relation x3 = 1, so

X = {x}, R = {(x3)k | k ∈ Z} ⊂ F1 = {xk | k ∈ Z}.

Here the cosets of F1/R are R, xR, x2R. The set of these three cosets is closed
under multiplication. For example, (xR)(x2R) = x(Rx2)R = xx2RR = x3R =
R, so the inverse of the element xR is x2R.

More generally, Cn has the presentation

Cn = {x | xn = 1}.

Ponderable 10.3.1. By constructing moves of the Rubik’s Cube of order 2, 3,
4, show that the Rubik’s Cube ‘contains’ the subgroups C2, C3, C4.

Lemma 10.3.1. The group Cm × Cn is presented by

Cm×Cn = {a, b | am = 1, bn = 1, ab = ba} = {a, b | am = 1, bn = 1, aba−1b−1 = 1}.

Proposition 10.3.1. In general, if G is generated by g1, ..., gm with rela-
tions Ri(g1, ..., gm) = 1 and if H is generated by h1, ..., hn with relations
Si(h1, ..., hn) = 1 then G×H is the group generated by the gi, hj, with relations
Ri(g1, ..., gm) = 1, Si(h1, ..., hn) = 1, and gihj = hjgi.

We shall not prove this but refer to [MKS], §4.1, Exercise 13.

Ponderable 10.3.2. By constructing moves of the Rubik’s Cube of order 2, 3
which commute show that the Rubik’s Cube ‘contains’ the subgroups C2 × C3

∼=
C6.

Example 10.3.4. If G = 〈R〉 and H = 〈L2〉 then

G ∼= 〈x | x4 = 1〉, H ∼= 〈y | y2 = 1〉,

and
G × H ∼= 〈x | x4 = 1, y2 = 1, xy = yx〉.
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10.4 Generators, relations for groups of order
< 26

This section gives a table of all the (non-isomorphic) finite groups of order ≤ 25
and their generators and relations. Figure 10.1 below is included to give a feeling
for how complicated the table below can get for larger n. It is a histogram plot
of the function O(n), where O(n) is the number of non-isomorphic groups of
order n. It was obtained using SAGE and GAP.

Figure 10.1: Group orders, O(n), 1 ≤ n ≤ 100

Notation:

• Cn = cyclic group of order n,

• Dn = dihedral group of order 2n = symmetry group of the regular n-gon,

• Q = quaternion group = {−1, 1,−i, i,−j, j,−k, k},

• Q2m = generalized quaternion group = 〈a, b | aba = b, b2 = am, a2m = 1〉,

• Sn = symmetric group of permutations of {1, 2, ..., n},

• An = alternating group of even permutations of {1, 2, ..., n},

• Fq = finite field with q elements (q=power of a prime),

• Z/nZ = integers modulo n.

The following table was obtained from the tables in [TW].
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Order Group G Generators Relations Notes

2 C2 a a2 = 1
3 C3 a a3 = 1 G ∼= A3

4 C4 a a4 = 1
4 C2 × C2 a, b a2 = 1, b2 = 1, Klein 4-group

ab = ba Aut(G) ∼= GL(2, F2)
5 C5 a a5 = 1
6 C6 = C2 × C3 a a6 = 1
6 S3 a, b a3 = 1, b2 = 1, Aut(G) = G

aba = b G ∼= GL(2, F2)
7 C7 a a7 = 1
8 C8 a a8 = 1
8 C2 × C4 a, b a2 = 1, b4 = 1,

ab = ba
8 C2 × C2 × C2 a, b, c a2 = 1, b2 = 1, Aut(G) ∼= GL(3, F2)

c2 = 1, ab = ba,
bc = cb, ac = ca

8 D4 a, b a4 = 1, b2 = 1,
aba = b

8 Q a, b a4 = 1, b2 = a2,
aba = b

9 C9 a a9 = 1
9 C3 × C3 a, b a3 = 1, b3 = 1, Aut(G) ∼= GL(2, F3)

ab = ba
10 C10 = C2 × C5 a a10 = 1
10 D5 a, b a5 = 1, b2 = 1,

aba = b
11 C11 a a11 = 1
12 C12 = C3 × C4 a a12 = 1
12 C2 × C6 a, b a2 = 1, b6 = 1,

= C2 × C2 × C3 ab = ba
12 D6 a, b a6 = 1, b2 = 1,

aba = b
12 A4 a, b a2 = 1, b3 = 1, Aut(G) = G

(ba)3 = 1
12 Q6 a, b a6 = 1, b2 = a3, ‘dicyclic’

aba = b
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Order Group G Generators Relations Notes

13 C13 a a13 = 1
14 C14 = C2 × C7 a a14 = 1
14 D7 a, b a7 = 1, b2 = 1, Aut(G) = G

aba = b
15 C15 = C3 × C5 a a15 = 1
16 C16 a a16 = 1
16 C2 × C8 a, b a2 = 1, b8 = 1,

ab = ba
16 C4 × C4 a, b a4 = 1, b4 = 1, Aut(G)

ab = ba ∼= GL(2, Z/4Z)
16 C2

2 × C4 a, b, c a2 = 1, b2 = 1,
c2 = 1, ab = ba,
ac = ca, bc = cb

16 C4
2 a, b, c, d a2 = 1, b2 = 1, Aut(G)

c2 = 1, d2 = 1, ∼= GL(4, F2)
ab = ba, ac = ca,
bc = cb, bd = db,
ad = da, cd = dc

16 D4 × C2 a, b, c a4 = 1, b2 = 1,
c2 = 1, aba = b,
ac = ca, bc = cb

16 Q × C2 a, b, c Ponderable
16 a, b, c a2 = 1, b2 = 1, c2 = 1,

abc = bca = cab
16 a, b a2 = 1, b2 = 1,

(ab)2 = 1, (a−1b)2 = 1
16 a, b a4 = 1, b4 = 1, semidirect product

aba = b of C4 with C4

16 a, b a8 = 1, b2 = 1, semidirect product
ab = ba5 of C8 with C2

(C8 normal)
16 a, b a8 = 1, b2 = 1, semidirect product

ab = ba3 of C8 with C2

(C8 normal)
16 D8 a, b a8 = 1, b2 = 1, semidirect product

aba = b of C8 with C2

(C8 normal)
16 Q8 a, b a8 = 1, b2 = a4,

aba = b
17 C17 a a17 = 1
18 C18 = C2 × C9 a a18 = 1
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Order Group G Generators Relations Notes

18 C3 × C6 a, b a3 = 1, b6 = 1,
= C3 × C3 × C2 ab = ba

18 S3 × C3 a, b, c a3 = 1, b2 = 1, c3 = 1
aba = b, ac = ca, bc = cb

18 D9 a, b a9 = 1, b2 = 1, semidirect product
aba = b of C9 with C2

(C9 normal),
Aut(G) = G

18 a, b, c a3 = 1, b3 = 1, c2 = 1
ab = ba, aca = c, bcb = c

19 C19 a a19 = 1
20 C20 = C4 × C5 a a20 = 1
20 C2 × C10 a, b a2 = 1, b10 = 1,

ab = ba
20 D10 a, b a10 = 1, b2 = 1,

aba = b
20 Q10 a, b a10 = 1, b2 = a5,

aba = b
20 a, b a5 = 1, b4 = 1, semidirect product

ab = ba3 of C5 with C4

(C5 normal),
Aut(G) = G

21 C21 = C3 × C7 a a21 = 1
21 a, b a7 = 1, b3 = 1, semidirect product

ab = ba4 of C7 with C3

(C7 normal),
Aut(G) = G

22 C22 = C2 × C11 a a22 = 1
22 D11 a, b a11 = 1, b2 = 1, Aut(G) = G

aba = b
23 C23 a a23 = 1
24 C24 = C3 × C8 a a24 = 1
24 C2 × C12 a, b a2 = 1, b12 = 1,

= C2 × C3 × C4 ab = ba
24 C2

2 × C6 a, b, c a2 = 1, b2 = 1, c6 = 1,
ab = ba, ac = ca, bc = cb
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Order Group G Generators Relations Notes

24 D6 × C2 a, b, c a6 = 1, b2 = 1, c2 = 1,
aba = b, ac = ca, bc = cb

24 A4 × C2 a, b, c Ponderable
24 Q6 × C2 a, b, c Ponderable
24 D4 × C3 a, b, c Ponderable
24 Q × C3 a, b, c Ponderable
24 S3 × C4 a, b, c Ponderable
24 D12 a, b a12 = 1, b2 = 1,

aba = b
24 Q12 a, b a12 = 1, b2 = a6,

aba = b
24 S4 a, b a4 = 1, b2 = 1, Aut(G) = G

(ab)3 = 1
24 SL(2, F3) a, b, c a4 = 1, b2 = a2, Aut(G) ∼= Aut(Q)

c3 = 1, aba = b, = S4,
ac = cb, bc = cab semidirect product

of Q with C3

(Q normal)
24 a, b a3 = 1, b8 = 1, semidirect product

aba = b of C3 with C8

(C3 normal)
24 a, b, c a3 = 1, b4 = 1, semidirect product

c2 = 1, bcb = c, aba = b, of C3 with D4

ac = ca (C3 normal)
25 C25 a a25 = 1
25 C2

5 a, b Ponderable

Ponderable 10.4.1. Extend this Table to order 26.

Ponderable 10.4.2. Find a subgroup of the Rubik’s cube group isomorphic to
the Klein 4-group.
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Example 10.4.1. Let G denote the Rubik’s cube group and let Q denote the
quaternion group:

Q = {1,−1, i,−i, j,−j, k,−k},
where i, j, k are as in §5.1. Let

Q∗ = 〈g1, g2〉 ⊂ G

where
g1 = F 2 · MR · U−1 · M−1

R · U−1 · MR · U · M−1
R · U · F 2,

g2 = F · U2 · F−1 · U−1 · L−1 · B−1 · U2 · B · U · L.

Then φ : Q → Q∗ is an isomorphism, where φ(i) = g1 and φ(k) = g2.
This was stated without proof in Example 9.3.5. To prove it, we use the fact

that we now know the generators and relations for Q. It suffices to check that
the above generators gi satisfy the relations defining Q given in the table above.
This is left as an exercise for the interested reader with a Rubik’s Cube.

Ponderable 10.4.3. Which of these groups tabulated above is (isomorphic to)
a subgroup of the Rubik’s Cube group?

Ponderable 10.4.4. Of those which are subgroups, find moves associated to
the generators given which satisfy the relations given. In other words, find an
explicit isomorphism in terms of the generators.

Ponderable 10.4.4 is probably much harder than Ponderable 10.4.3 but possi-
bly still ‘doable’, with the help of a program such as SAGE.

10.5 The presentation problem

The expectations of life depend upon diligence; the mechanic that
would perfect his work must first sharpen his tools.

– Confucius, Chinese philosopher

The following problem is apparently unsolved at this time.

Ponderable 10.5.1. (Singmaster [Si]) Let G be the Rubik’s Cube group. Find
a set of generators and relations for G of minimal cardinality (i.e., |X|+ |Y | is
of minimal cardinality).

Dan Hoey’s post of Dec. 17, 1995 to the cube-lover’s list [CL] may describe
the best-known results. He suggests that G has a set X of 5 generators and a
set Y of 44 relations such that the total length of all the reduced words in Y is
605. However, to find a set of generators for G of minimal cardinality, but with
any number of relations, is easy. Indeed, it is known that the Rubik’s Cube
group can be generated by two elements [Si].
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10.5. THE PRESENTATION PROBLEM

10.5.1 A presentation for Cn

m
⋊ Sn+1

Motivated by the problem of D. Singmaster mentioned above, we shall find a
presentation for the generalized symmetric group. From this, one can derive a
presentation for the illegal Rubik’s Cube group.

We can identify the Cn
m ⋊ Sn+1 with the group of (n + 1)× (n + 1) invertible

monomial matrices g with coefficients in Cm having the following condition on
the determinant: if we write g = p · d, where p is a permutation matrix and d is
a diagonal matrix, then det(d) = 1 (this determinant 1 condition is a condition
corresponding to the ‘conservation of twists’ for the moves of the Rubik’s Cube).

We may identify Cn
m with the subgroup

{(x1, ..., xn+1) | x1x2...xn+1 = 1, xi ∈ Cm}

and Cn
m ⋊ Sn+1 as a subgroup of the wreath product Sn+1 wr Cm.

Consider G = Cn+1
m ⋊ Sn+1. The group Sn+1 has the presentation

Sn+1 = 〈a1, ..., an | (aiaj)
mij = 1, provided 1 ≤ i, j ≤ n〉,

where

mij =







3, j = i ± 1,
2, |i − j| > 1,
1, i = j.

The following diagram may help to visualize the exponents mij in the case
n = 4:
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As a group of (n + 1) × (n + 1) monomial matrices, we identify ai with the
permutation matrix,

si =





























1 0 ... 0
. . .

1
0 1
1 0

1
. . .

0 ... 0 1





























.

If I is the (n + 1)× (n + 1) identity matrix and if Eij denotes the matrix which
is 0 in every entry except the ij entry, which is 1, then

si = I − Eii − Ei+1,i+1 + Ei,i+1 + Ei+1,i.

The group Cm has the presentation

Cm = 〈h | hm = 1〉.
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The group Cn
m has the presentation

Cn
m = 〈h1, ..., hn | hm

i = 1, hihj = hjhi,provided 1 ≤ i, j ≤ n + 1〉.

We identify Cn
m with the Cartesian product

{(h1(x1), h2(x2), ..., hn(xn)) | xi ∈ Cm},

where hi(t) is the diagonal matrix

hi(t) = I − Eii − Ei+1,i+1 + tEi,i + t−1Ei+1,i+1.

There are the following identities between the si and the hj(t):

sihj(t)s
−1
i = hj(t), |i − j| > 1,

sihi(t)s
−1
i = hi(t)

−1,
si±1hj(t)s

−1
i±1 = hi(t)hi±1(t).

This motivates the formulation of the following statement.

Theorem 10.5.1. The group Cn
m⋊Sn+1 is given by generators a1, ..., an, h1, ..., hn

and relations

(aiaj)
mij = 1, provided 1 ≤ i, j ≤ n,

hm
i = 1, hihj = hjhi, provided 1 ≤ i, j ≤ n

aihja
−1
i = hj , provided |i − j| > 1,

aihia
−1
i = h−1

i ,
ai±1hja

−1
i±1 = hihi±1.

Remark 10.5.1. Essentially the same presentation may be found in the paper
[DM] by Davies and Morris. I only sketch the proof since it is in [DM].

10.5.2 Idea of the proof

Here is a sketch of the proof (for which I thank Dennis Spellman) of the above
theorem. Let P denote the group presented in the above theorem. The claim is,
of course, that Cn

m ⋊ Sn+1
∼= P . There is a surjective homomorphism f : P →

Cn
m ⋊ Sn+1 given by sending the generators to the generators. The problem is

to show that this is injective. Let K = ker(f), so

|P | = |P/K||K| ≥ |P/K| = |Cn
m ⋊ Sn+1| = mn(n + 1)!.

Note that H = 〈h1, ..., hn | hm
i = 1, hihj = hjhi〉 ⊂ P is a normal subgroup of

P since each ai sends a generator of H to a product of them or their inverses.
Also, note that H ∼= Cn

m.
We claim that P/H ∼= Sn+1. From this it will follow that |P | = mn(n + 1)!,

proving that |K| = 1, as desired.
To establish P/H ∼= Sn+1, we verify that the presentation on P/H one

gets from Theorem 2.1 in [MKS] is the same as that of Sn+1. Indeed, if
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10.5. THE PRESENTATION PROBLEM

W (a1, ..., an, h1, ..., hn) = 1 is a relation in the presentation, we must determine
the word W (a1, ..., an, h1, ..., hn)H in P/H. Note that every relation ‘collapses’
and becomes trivial except for the relations (aiaj)

mij = 1. These relations
define the presentation for Sn+1, as desired. ¤

Ponderable 10.5.2. How many generators and relations are specified by this
theorem when

(a) n = 7 and m = 3,
(b) n = 11 and m = 2?
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Chapter 11

The (legal) Rubik’s Cube
group

The advantage is that mathematics is a field in which one’s blunders
tend to show very clearly and can be corrected or erased with a stroke of
the pencil. It is a field which has often been compared with chess, but
differs from the latter in that it is only one’s best moments that count
and not one’s worst.

Norbert Wiener, Ex-prodigy: my childhood and youth

In this chapter, we build on the material in the previous chapters to describe
mathematically the group of (legal) moves of the 3× 3 Rubik’s Cube. For first-
timers, it might seem like we’ve just finished a long steep climb to the top of a
hill. However, we are not done! Though the terrain may flatten out, there is
still a bit of a hike until we get to our destination.

11.1 Mathematical description of the 3 × 3 × 3
cube moves

In this section, we describe mathematically the moves of the 3 × 3 × 3 Rubik’s
Cube. As we will see, this will lead eventually to the description of the Rubik’s
Cube group as a subgroup of index 12 of a direct product of two wreath products.

11.1.1 Notation

First, orient all the corners and edges as in Theorem 9.6.1.
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11.1. MATHEMATICAL DESCRIPTION OF MOVES

The edge orientations are depicted as follows on the F , R, and U faces:
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Figure 11.1: Edge orientations and labels for the cube

For the other faces: put a ‘+’ on the dl, db, lf , lu, bl, and bu edges. This fixes
the edge orientations. For the edge labels, order the edges uf , ur, ub, ul, lf ,
fr, rb, bl, df , dr, db, dl, and label them, in order, 1 through 12 (so, for example,
the db edge is 11).

For the corner orientations, put a ‘+’ sign on all the top corner facets and on
all the bottom corner facets. The corner labels and orientations are depicted on
the F , R, and D faces as in Figure 11.1.1 below. (The same labeling was used
in §5.7.2 above.)
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Figure 11.2: Corner orientations and labels for the cube

Let G = 〈R,L,U,D, F,B〉 be the group of the 3× 3× 3 Rubik’s Cube and let
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11.1. MATHEMATICAL DESCRIPTION OF MOVES

H be the ‘enlarged’ group generated by R, L, U , D, F , B and all the ‘illegal’
moves (where one is allowed to disassemble and reassemble the cube but not
remove any facets). Let V denote the set of vertices of the cube (which we
identity with the set of corner subcubes of the Rubik’s Cube) and let

ρ : H → SV

denote the homomorphism which associates with each move of the Rubik’s Cube
the corresponding permutation of the vertices (see Example 9.2.1). Let E denote
the set of edges of the cube (which we identity with the set of edge subcubes of
the Rubik’s Cube) and let

σ : H → SE

denote the homomorphism which associates with each move of the Rubik’s Cube
the corresponding permutation of the edges (see Example 9.2.1).

These homomorphisms ρ and σ will be reformulated in a slightly different way
in §11.2.2 below.

11.1.2 Corner orientations

Let v : H → C8
3 be the function which associates with each move g ∈ H the

corresponding corner orientations. More precisely, let g ∈ H and say g moves
corner i to corner j. Then vi(g) ∈ C3 is the orientation to which the ith vertex
is sent by g, where the vertices are labeled as in the diagram shown and where
the orientation is the number of 120 degrees clockwise twists required to turn
the relative reference ‘+’ obtained by moving corner i to j using the move g
into the standard reference ‘+’ on corner j.

Example 11.1.1. We have

X ~v(X)
F (2,0,1,0,1,0,0,2)
U (0,0,0,0,0,0,0,0)
D (0,0,0,0,0,0,0,0)
B (0,1,0,2,0,2,1,0)
R (1,2,2,1,0,0,0,0)
L (0,0,0,0,1,2,1,2)

The labeling of the corners used in this table are as in Theorem 9.6.1.

Remark 11.1.1. The effect of a move g ∈ H on the corner orientations may
also be regarded as a relabeling of the ‘+’ markings.

Note that a move g ∈ H has two effects on the corners:

(a) a permutation ρ(g) ∈ SV of the vertices,

(b) a reorientation of the vertices moves in (a).

221



11.1. MATHEMATICAL DESCRIPTION OF MOVES

In particular, for g, h ∈ H, the orientation ~v(gh) can only differ from v(g) in
the coordinates corresponding to the vertices permuted by h.

We shall now verify that the ‘relative’ orientation ~v(gh) − ~v(g) is the same
as the orientation ~v(h), provided one takes into account the effect of g on the
vertices: ~v(h) = ρ(g)(~v(gh) − ~v(g)).

Lemma 11.1.1. ~v(gh) = ~v(g) + ρ(g)−1(~v(h)).

Proof: The move gh orients the ith corner subcube by vi(gh) and permutes
the vertices by ρ(gh), by definition.

On the other hand, gh will first act by g then h. The move g will reorient the
ith corner subcube by vi(g) and send the ith vertex to the ρ(g)(i)th vertex.

To study the subsequent effect of h on this, let us subtract ~v(g) from ~v(gh),
so that we are back to our original orientation (we will add ~v(g) back in later).
Call this position the modified cube for now.

The move h first orients the jth corner subcube of the modified cube by vj(h)
and permutes it to vertex ρ(h)(j). The ith subcube of the modified cube comes
from (via g) the ρ(g)−1(i)th subcube of the original cube. Thus the ith corner
subcube of the modified cube is, by means of h, reoriented by vρ(g)−1(i)(h). To
this we must add in vi(g) to get the total effect of gh on the ith vertex of the
original:

vi(gh) = vi(g) + vρ(g)−1(i)(h),

for each 1 ≤ i ≤ 8, which implies Lemma 11.1.1. ¤

11.1.3 Edge orientations

Let w : H → C12
2 be the function which associates to each move g ∈ H the

corresponding edge orientations. More precisely, let g ∈ H and say g moves
edge i to edge j. Then wi(g) ∈ C2 is the orientation which the ith edge gets
sent to by g, where the edges are labeled as in the diagram shown and where
the orientation is the number of 180 degrees flips required to turn the relative
reference ‘+’ obtained by moving edge i to j using the move g into the standard
reference ‘+’ on edge j.

Example 11.1.2. We have

X ~w(X)
F (1,0,0,0,0,0,0,0,1,0,0,0)
U (1,0,1,0,0,0,0,0,0,0,0,0)

F·U (1,0,1,0,1,0,0,0,1,0,0,0)
U·F (1,1,1,0,0,0,0,0,1,0,0,0)
B (0,0,0,0,0,0,1,1,0,0,0,0)
D (0,0,0,0,0,0,0,0,0,1,0,1)
R (0,1,0,0,0,0,0,0,0,1,0,0)
L (0,0,0,0,1,0,0,0,1,0,0,0)

The labeling of the edges used in this table are as in Theorem 9.6.1.
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Remark 11.1.2. The effect of a move g ∈ H on the edge orientations may also
be regarded as a relabeling of the ‘+’ markings.

Note that a move g ∈ H has two effects on the edges:

(a) a permutation σ(g) ∈ SE of the edges,

(b) a reorientation of the edges which were moved in (a).

In particular, for g, h ∈ H, the orientation ~w(gh) can differ from ~w(g) only in
the coordinates corresponding to the edges permuted by h.

We shall now claim that

~w(gh) = ~w(g) + σ(g)−1(~w(h)), (11.1)

i.e., that

wi(gh) = wi(g) + wσ(g)−1(i)(h),

for each 1 ≤ i ≤ 12. The proof of this is so similar to the proof of Lemma 11.1.1
that I leave it to the student to modify its proof to verify (11.1).

11.1.4 The semi-direct product

Consider the following direct product of two semi-direct products:

H ′ = (C8
3 ⋊ SV ) × (C12

2 ⋊ SE).

Remark 11.1.3. This may also be written in the notation of wreath products
as the following direct product of two wreath products:

H ′ = (C3 wr SV ) × (C2 wr SE).

As a set, we think of H as belonging to C8
3 × SV ×C12

2 × SE . If we represent
elements h, h′ of H as h = (v, r, w, s), h′ = (v′, r′, w′, s′) ∈ C8

3 × SV × C8
3 × SV

then the group operation will be given by

h · h′ = (v, r, w, s) · (v′, r′, w′, s′) = (v + P (r)(v′), rr′, w + P (s)(w′), ss′).

Consider the function

ι : H → (C8
3 ⋊ SV ) × (C12

2 ⋊ SE)
g 7−→ (v(g), ρ(g), w(g), σ(g)).

Proposition 11.1.1. The homomorphism ι is a group isomorphism, H ∼= H ′.

Proof: Since

(~v(g), ρ(g), ~w(g), σ(g)) · (~v(h), ρ(h), ~w(h), σ(h))
= (~v(g) + P (ρ(g))(~v(h)), ρ(g)ρ(h), ~w(g) + P (σ(g))(~w(h)), σ(g)σ(h)),

the map ι is a homomorphism. Since any reorientation and permutation can
be achieved by some illegal move, ι must be surjective. By theorem 9.6.1, the
kernel of ι is trivial (this is just a fancy way of saying that if no subcube is
permuted or reoriented then the cube doesn’t change!). ¤
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11.2. STRUCTURE OF THE CUBE GROUP

11.2 Structure of the cube group

The scientist does not study nature because it is useful; he studies it
because he delights in it, and he delights in it because it is beautiful. If
nature were not beautiful, it would not be worth knowing, and if nature
were not worth knowing, life would not be worth living.

Henri Poincaré

The main result of this section is the ‘second fundamental theorem of cube
theory.’ The result of this section is both beautiful and, we hope the reader
agrees, is worth knowing.

Some preliminaries. We identify, as in §11.1, each g ∈ G with a 4-tuple

(~v(g), ρ(g), ~w(g), σ(g)),

where

• ρ(g) is the corresponding permutation of the set of vertices V of the cube,

• σ(g) is the corresponding permutation of the set of edges E of the cube,

• v(g), w(g) are ‘orientations’ defined in §11.1.

Remark 11.2.1. Let Sn denote the symmetric group on n letters and identify
SV with S8, SE with S12. By example 9.2.1, we know that

(a) ρ : G → S8 is a homomorphism,
(b) σ : G → S12 is a homomorphism.

11.2.1 The second fundamental theorem of cube theory

Question: Given a 4-tuple (v, r, w, s), where r, s are permutations of the cor-
ners, resp. edges, as above and

v ∈ C8
3 , w ∈ C12

2 ,

what conditions on r, s, v, w ensure that it corresponds to a possible position
of the Rubik’s Cube?

The following result answers this question. It is, according to [BCG], due to
Ann Scott.

Theorem 11.2.1. (Second fundamental theorem of cube theory) A 4-tuple
(~v, r, ~w, s) as above (r ∈ S8, s ∈ S12, ~v ∈ C8

3 , ~w ∈ C12
2 ) corresponds to a

possible position of the Rubik’s Cube if and only if

(a) sgn(r) = sgn(s), (‘equal parity as permutations’)

(b) v1 + ... + v8 ≡ 0 (mod 3), (‘conservation of total twists’)

(c) w1 + ... + w12 ≡ 0 (mod 2), (‘conservation of total flips’).
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11.2. STRUCTURE OF THE CUBE GROUP

Proof: For simplicity, we write v for ~v.
First we prove the ‘only if’ part. That is, we assume that (v, r, w, s) ∈ SV ×

SE × C8
3 × C12

2 represents a (legally obtained!) position of the Rubik’s Cube.
From this we want to prove (a)–(c).

Let g ∈ G be the element which moves the Rubik’s Cube from the solved po-
sition to the position associated with this 4-tuple. Then r = ρ(g) and s = σ(g).
We know that g may be written as a word in the basic moves R,L,U,D, F,B,
say g = X1...Xk, where each Xi is equal to one of the R,L,U,D, F,B. Observe
that if X is any one of these basic moves, then sgn(ρ(X)) = sgn(σ(X)). Since
sgn, ρ, and σ are homomorphisms, it follows that

sgn(r) = sgn(ρ(g)) =

k
∏

i=1

sgn(ρ(Xi)) =

k
∏

i=1

sgn(σ(Xi)) = sgn(σ(X)) = sgn(s).

This proves (a).
We have verified (b) for the basic moves in example 11.1.1 above. Note that

(i) the conservation of twists condition in (b) is true for (v1, ..., v8) if and only
if it is true for any permutation P (p)(v) = (v(1)p, ..., v(8)p);

(ii) if (v1, .., v8) and (v′
1, ..., v

′
8) each satisfy the conservation of twists condition

in (b) then their sum also satisfies it.

As above, write g as a word in the basic moves R,L,U,D, F,B, say g =
X1...Xk, where each Xi is equal to one of the R,L,U,D, F,B. We assume that
this expression is minimal in the sense that we choose Xi so that k is as small
as possible. This k is called the length of g. (This length is the same as the
distance from g to the identity in the Cayley graph of G.)

We now prove (b) by induction on the length. We have already checked it for
all words of length k = 1.

Assume k > 1. By the formula giving the orientation of the product of two
moves in terms of the two orientations of the moves, we have

~v(X1...Xk−1Xk) = ρ(X1...Xk−1)
−1(~v(Xk)) + ~v(X1...Xk−1).

The term ρ(X1...Xk−1)
−1(~v(Xk)) satisfies the conservation of twists condition

in (b) by (i) above. The term ~v(X1...Xk) satisfies the conservation of twists con-
dition in (b) by the induction hypothesis. Their sum satisfies the conservation
of twists condition in (b) by (ii) above. This proves (b).

The proof of (c) is very similar to the proof of (b), except that we use Example
11.1.2 in place of Example 11.1.1.

Ponderable 11.2.1. Provide the details.

Now, we must prove the theorem in the ‘if’ direction. In other words, assuming
(a), (b), and (c) we must show that there is a corresponding legal position of
the Rubik’s Cube. This part of the proof is constructive.
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First, we prove a special case. Assume that r and s are both the identity and
that (w1, ..., w12) = (0, ..., 0).

There is a move which twists exactly two corners and preserves the ori-
entations and positions of all other subcubes. For example, the move g =
(R−1D2RB−1U2B)2 twists the ufr corner by 120 degrees clockwise, the bdl
corner by 240 degrees clockwise, and preserves the orientations and positions of
all other subcubes. This move can be easily modified, by a suitable conjugation,
to obtain a move which twists any pair of corners, and preserves the orienta-
tions and positions of all other subcubes. These moves generate all possible
8-tuples satisfying the conservation of twists condition in (b). This proves the
‘if’ part of the theorem in the case that r and s are both the identity and that
(w1, ..., w12) = (0, ..., 0).

Next, we prove another special case. Assume that r and s are both the identity
and that (v1, ..., v8) = (0, ..., 0).

There is a move which flips exactly two edges and preserves the orientations
and positions of all other subcubes. For example, the move

g = LFR−1F−1L−1U2RURU−1R2U2R

(found in [B1], page 112) flips the uf edge, the ur edge, and preserves the orien-
tations and positions of all other subcubes. This move can be easily modified,
by a suitable conjugation, to obtain a move which flips any pair of edges, and
preserves the orientations and positions of all other subcubes. These moves
generate all possible 12-tuples satisfying the conservation of flips condition in
(c). This proves the ‘if’ part of the theorem in the case that r and s are both
the identity and that (v1, ..., v8) = (0, ..., 0).

As a consequence of these last two special cases, it follows that the ‘if’ part of
the theorem is true in the case that r and s are both the identity.

Finally, we prove our last special case. Assume that (v1, ..., v8) = (0, ..., 0) and
that (w1, ..., w12) = (0, ..., 0). Consider the following three claims.

• Given any three edge subcubes, there is a move which is a 3-cycle on these
edges and preserves the orientations and positions of all other subcubes.

• Given any three corners, there is a move which is a 3-cycle on these corners
and preserves the orientations and positions of all other subcubes.

• Given any pair of edges and any pair of corners, there is a move which
is a 2-cycle on these edges, a 2-cycle on these corners, and preserves the
orientations and positions of all other subcubes.

Ponderable 11.2.2. Verify these three claims.

By proposition 9.4.1, we know that AE is generated by the edge 3-cycles above
and that AV is generated by the corner 3-cycles above. In other words, we can
construct a position of the Rubik’s Cube associated with any 4-tuple (r, s, 0, 0),
provided r ∈ AV and s ∈ AE . The subgroup AE × AV is index 4 in SE × SV

since |Sn/An| = 2. The third type of move, the edge-corner 2-cycles above,
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does not correspond to an element of the subset AE × AV of the Rubik’s Cube
group because an edge 2-cycle is an odd permutation of the edges. Therefore, if
we consider the subgroup of SE × SV generated by all three types of moves we
will obtain either all of SE × SV or some subgroup of index 2 which properly
contains AE ×AV . The first possibility can be ruled out since it contradicts the
parity condition in (a). The only subgroup of SE×SV of index 2 which properly
contains AE ×AV is the subgroup of elements satisfying the parity condition in
(a).

It follows that the ‘if’ part of the theorem is true in the case that v and w are
both zero.

The theorem is a consequence of these special cases because of the following.

Claim: No matter what position the Rubik’s Cube is in, there is always a
move which does not permute any subcubes but ‘solves’ the orientation of the
cube so that v and w are both zero.

Ponderable 11.2.3. Prove this claim.

Finally, the proof of the theorem is finished. ¤

Corollary 11.2.1. The Rubik’s Cube group is given by

G = {g = (~v, r, ~w, s) ∈ H | (a), (b), (c) hold},

where (a), (b), (c) are as in the above theorem.

Now we show that the center of the Rubik’s Cube group consists of the identity
and the superflip.

Corollary 11.2.2. The center of G consists of two elements: the identity and
the ‘superflip’ element z = (~v, r, ~w, s) where ~w = (1, 1, ..., 1) ∈ C12

2 , ~v = ~0 ∈ C8
3 ,

s = 1 ∈ S12 and r = 1 ∈ S8.

Proof: The proof given here is essentially the same as that of Bandelow [B1].

Again, write v in place of ~v, for simplicity. Recall that the center of Sn, n > 2,
is trivial (see Ponderable 5.6.2 above). Fix (v, r, w, s) ∈ G. We have

(v, r, w, s) · (v′, r′, w′, s′) = (v + P (r)(v′), rr′, w + P (s)(w′), ss′)
= (v′, r′, w′, s′) · (v, r, w, s) = (v′ + P (r′)(v), r′r, w′ + P (s′)(w), s′s),

for all (v′, r′, w′, s′) ∈ G, only if r = 1 and s = 1. This implies that v + v′ =
v′ + P (r′)v, for all r′ ∈ S8. This forces v to be either (0, 0, ..., 0) or (1, 1, ..., 1)
or (2, 2, .., 2). Since it must satisfy conservation of twists, it can’t be (1, 1, ..., 1)
or (2, 2, .., 2). Similarly, w + w′ = w′ + P (s′)w, for all s′ ∈ S12 forces w to be
either (0, 0, ..., 0) or (1, 1, ..., 1). Either of these choices is okay since they both
satisfy conservation of flips. ¤
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11.2. STRUCTURE OF THE CUBE GROUP

11.2.2 Some consequences

We shall now reformulate the above fact about the Rubik’s cube group from a
different point of view. This new perspective helps us determine the size of this
group. Let

G0 = {(~v, r, ~w, s) | r ∈ S8, s ∈ S12,
~v = (v1, v2, ..., v8), vi ∈ {0, 1, 2}, v1 + ... + v8 ≡ 0 (mod 3),

~w = (w1, w2, ..., w12), wi ∈ {0, 1}, w1 + ... + w12 ≡ 0 (mod 2)}.
In other words, G0 contains the permutations of the corners, permutations of the
edges, the orientations of the corners, and the orientations of the edges. There
is a conservation of flips condition and a conservation of twists condition but no
parity condition on the permutations. Define a binary operation · : G0 × G0 →
G0 by

(~v, r, ~w, s) · (~v′, r′, ~w′, s′) = (~v + P (r)(~v′), r · r′, ~w + P (s)(~w′), s · s′),

where P is the permutation matrix (Definition 3.2.2). This defines a group
structure on G0. This is a subgroup of the illegal Rubik’s Cube group of index
6.

Theorem 11.2.2. There is an isomorphism

G0
∼= (C7

3 ⋊ S8) × (C11
2 ⋊ S12),

where Cn is the cyclic group with n elements and ⋊ denotes the semi-direct
product and where Ck

n (n = 2, 3, k = 7, 11) is identified with the subgroup of
Ck+1

n defined by

{~v = (v1, v2, ..., vk) | vi ∈ {0, 1, n − 1}, v1 + ... + vk ≡ 0 (mod n)}.

In particular,

|G0| = |S8||S12||C11
2 ||C7

3 | = 8! · 12! · 211 · 37.

Proof: This follows from the definition of semi-direct product and the Mul-
tiplication Principle (Theorem 2.4.2). ¤

Corollary 11.2.3. The Rubik’s Cube group G is the kernel of the homomor-
phism

φ : G0 → {1,−1}
(~v, r, ~w, s) 7−→ sgn(r)sgn(s).

In particular, G < G0 is normal of index 2 and

|G| = 8! · 12! · 210 · 37.

Proof: This follows from the Theorem and the first isomorphism theorem
of group theory (Theorem 9.5.1). ¤

Recall that the commutator subgroup G1 of G is the subgroup consisting of all
finite products of commutators, [g, h] = g · h · g−1 · h−1, where g, h are arbitary
elements of G.
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Theorem 11.2.3. G1 = {g ∈ G | sgn(ρ(g)) = sgn(σ(g)) = 1}.

Proof: It is known that the commutator subgroup of Sn is An, for n > 4
(see chapter 3 of [R]; in fact, for n > 4, An is the only proper non-trivial normal
subgroup of Sn).

Consider the projection map φ : Cn
k ⋊ Sn → Sn. The kernel of φ is Cn

k .
Moreover,

φ([g, h]) = φ(g · h · g−1 · h−1) = φ(g) · φ(h) · φ(g−1) · φ(h−1) = [φ(g), φ(h)],

for any g, h ∈ Cn
k ⋊ Sn. This implies that φ maps the commutator subgroup

(Cn
k ⋊ Sn)1 to the commutator subgroup (Sn)1 = An. From this it follows that

(Cn
k ⋊ Sn)1 = Cn

k ⋊ An. This implies the theorem. ¤

Corollary 11.2.4. |G1| = |G|/2.

Proof: The above theorem implies that |G/G1| = 2, by using the first
isomorphism theorem. ¤

11.3 The moves of order 2

In this section I present, as promised, a method for determining the moves of a
given order in the Rubik’s Cube group. We shall only compute the number of
moves of order 2, though the method should, in principle, work more generally.
However, perhaps it is possible for the curious and enterprising reader to use a
computer find the moves of order d, where d > 2, in a manner similar to what
we do here.

The set of elements of order 2 may be divided into 3 disjoint subsets:

(a) elements moving corner pieces only,

(b) elements moving edge pieces only,

(c) elements moving corner and edge pieces.

Let us look at a subset of (a), consisting only of the even permutations of order
2 of the 8 corner pieces. Obviously those elements can only consist of orientation-
preserving swaps of corner pieces where either 2 pairs (4 corner pieces) or 4 pairs
(all 8 corner pieces) are affected. Given a pair of corner pieces, there are always
3 orientation-preserving swaps.

The remainder of (a) and (b) (yes, do not forget (b)) has to be calculated
analogously.

Recall from §9.8.2 that an element (~v, f) ∈ Cm wr Sn, ~v = (v1, v2, ..., vn) ∈ Cn
m

and f ∈ Sn, is order d if and only if fd = 1 and ~v + ... + fd−1(~v) = 0.
In particular, elements of order 2 in C7

3 ⋊ S8 are those (~v, r) with r of order 2
(hence a product of distinct 2-cycles) and ~v satisfying v1 + ... + v8

∼= 0 (mod 3)
and vi + v(i)r

∼= 0 (mod 3). Not all such elements correspond to a legal move
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of the Rubik’s Cube. Using the ‘multiplication principle of counting’ (Theorem
2.4.2), we compute the number of elements of order 2 in C7

3 ⋊ S8 to be

1
4!

(

8
2

)(

6
2

) (

4
2

)

34+

1
3!

(

8
2

)(

6
2

) (

4
2

)

33+

1
2!

(

8
2

)(

6
2

)

32 +

(

8
2

)

3 = 21819.

(11.2)

The ‘33’ term and the ‘3’ term do not count legal Rubik’s Cube moves, if taken
on their own, since they are not even (hence do not satisfy the ‘conservation of
parity’ condition). The number of elements (~v, r) of order 2 in C7

3 ⋊ S8 with r
even is

1

4!

(

8
2

) (

6
2

)(

4
2

)

34 +
1

2!

(

8
2

) (

6
2

)

32 = 10395. (11.3)

The number of elements (~v, r) of order 2 in C7
3 ⋊ S8 with r odd is

1

3!

(

8
2

)(

6
2

)(

4
2

)

33 +

(

8
2

)

3 = 11424. (11.4)

Similarly, using the ‘multiplication principle of counting’ (Theorem 2.4.2), we
compute the number of elements of order 2 in C11

2 ⋊ S12 to be

1
6!

(

12
2

)(

10
2

)

...

(

4
2

)

26+

1
5!

(

12
2

)(

10
2

)

...

(

4
2

)

26 + 1
4!

(

12
2

)

...

(

6
2

)

27

+ 1
3!

(

12
2

)

...

(

8
2

)

28 + 1
2!

(

12
2

)(

10
2

)

29 +

(

12
2

)

210

+

(

12
0

)

211 − 1 = 15687871.

(11.5)

Again, not all these count legal Rubik’s Cube moves, if taken on their own. The
number of elements (~w, s) of order 2 in C11

2 ⋊ S12 with s even is

1
6!

(

12
2

) (

10
2

)

...

(

4
2

)

26 + 1
4!

(

12
2

)

...

(

6
2

)

27 + 1
2!

(

12
2

)(

10
2

)

29

= 8080447.
(11.6)

The number of elements (~w, s) of order 2 in C11
2 ⋊ S12 with s odd is

1
5!

(

12
2

) (

10
2

)

...

(

4
2

)

26 + 1
3!

(

12
2

)

...

(

8
2

)

28 +

(

12
2

)

210

= 7607424.
(11.7)
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Example 11.3.1. Here is an example of how to use SAGE to compute one of
these terms, in case you wish to verify it yourself.

SAGE

sage: C2 = [binomial(i,2) for i in range(13)]
sage: C2
[0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66]
sage: C2[12] == binomial(12,2)
True
sage: a = prod(C2[i] for i in [4,6,8,10,12]) * 2ˆ6/factorial(5)
sage: b = prod(C2[i] for i in [8,10,12]) * 2ˆ8/factorial(3)
sage: c = prod(C2[i] for i in [12]) * 2ˆ10/factorial(1)
sage: a+b+c
7607424

The others can be checked similarly.

The second fundamental theorem of cube theory (§11.2.1) implies that an
element (~v, r, ~w, s) of the Rubik’s Cube group is order 2 if and only if it is an
element of order 2 in the group H = (C7

3 ⋊S8)×(C11
2 ⋊S12) and sgn(r) = sgn(s).

A non-trivial element (h1, h2) ∈ H, with h1 = (~v, r) and h2 = (~w, s), is order 2
if and only if exactly one of the following mutually exclusive cases occurs:

(a) h1 6= 1, h2 = 1, h2
1 = 1, sgn(r) = 1,

(b) h1 = 1, h2 6= 1, h2
2 = 1, sgn(s) = 1,

(c) h1 6= 1, h2 6= 1, h2
1 = h2

2 = 1, sgn(r) = sgn(s) = 1,

(c) h1 6= 1, h2 6= 1, h2
1 = h2

2 = 1, sgn(r) = sgn(s) = −1.

We count each case. Case (a) is counted in (11.3), case (b) is counted in (11.6),
case (c) is counted in (11.3) and (11.6) (which you multiply together to get the
total), and case (d) is counted in (11.4) and (11.7) (again, you multiply together
to get the total). Totaling these up, we find that the number of elements of order
2 in the Rubik’s Cube group is

(11.3)+(11.6) +(11.3)*(11.6) +(11.4)*(11.7) = 170911549183 = (1.7..) × 1011.

Remark 11.3.1. Why all this theory to solve this problem? Why not make a
computer do it? How long would it take a computer to just count up the number
of moves of order 2 in the Rubik’s Cube group? Suppose that your computer can
check if an element g in the Rubik’s Cube group G is order 2 or not in 0.001
seconds (this is actually faster than the computer I’m using to type this). By
‘looping’ over all (roughly) 4.3 × 1019 elements, this means that we can count
the moves in order 2 in about 4.3 × 1015 seconds. There are about 3.1 × 106
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11.3. THE MOVES OF ORDER 2

seconds in a year, so this measn that it would take about 136 million years to
do this by this method!

A lot of mathematical problems arising in applications require a lot of theory
and significant computational horsepower. This is an example.
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Chapter 12

Squares, two-faces, and
other subgroups

In arctic and tropical times,

the integers, addition, and times,

taken mod p will yield

a full finite field,

as p ranges over the primes.

Ancient math poem

Rather than solve the Rubik’s Cube for an arbitrary scrambled position, what
if you noticed that the scrambler only used certain types of moves closed under
composition (such as the slice group)? Could you solve the cube using only
those types of moves?

It is remarkable that several ‘familiar’ groups may be embedded into the Ru-
bik’s Cube group, and hence be regarded as a subgroup of the cube group. For
example, we have seen in an earlier chapter how to embed the group of quater-
nions Q = {1,−1, i,−i, j,−j, k,−k} inside the Rubik’s Cube group. The slice
(sub)group is another such example. We shall meet another subgroup—the ‘two
faces’ group—here, which allows us to introduce finite fields.

The subgroup method, discussed in chapter 15, is a method for solving the
Rubik’s Cube which can be implemented on a computer. One of the groups
arising in this method is the group studied in the next section.

12.1 The squares subgroup

Let G denote the subgroup of the Rubik’s Cube group generated by the squares
of the basic moves,

G = 〈U2,D2, R2, L2, F 2, B2〉 ,
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12.1. THE SQUARES SUBGROUP

called the squares subgroup. We will verify below that the order of this group
is

|G| = 21334. (12.1)

(By the way, as a consequence of this and Burnside’s theorem [R], ch. 5, it
follows that G is a solvable group. We will not need this fact.) In this section,
we will investigate the group structure of G using the same method which was
used to determine the structure of the Rubik’s Cube group.

The group G acts on the set of edges and the set of vertices of the cube. There
is a choice of orientation of the edges (resp., corners) similar to that in §§10.1.2-3
such that each element of G preserves the edge (resp., corner) orientations.

The action φ of G on the edges E of the cube has exactly 3 orbits: the middle
slice parallel to the right face ER, the middle slice parallel to the front face EF ,
the middle slice parallel to the up face EU . In particular, the group G acts (by
restriction) on ER, EF , and EU . The action ψ of G on the set of vertices V has
exactly 2 orbits: V1 = {ufr, ubl, dfl, drb}, V2 = {ufl, ubr, dfr, dlb}. Therfore,
the group G acts (by restriction) on V1 and V2. These actions yield associated
homomorphisms:

φ : G → SE ,
φER

: G → SER
,

φEF
: G → SEF

,
φEU

: G → SEU
,

ψ : G → SV ,
ψ1 : G → SV1

,
ψ2 : G → SV2

.

Proposition 12.1.1. G = φ(G) × ψ(G).

The proof of this is left as an exercise. (Hint: use the second fundamental
theorem of Rubik’s Cube theory.)

Lemma 12.1.1. If g ∈ G then

sgn(φER
(g))sgn(φEF

(g))sgn(φEU
(g)) = 1.

Conversely, if (p1, p2, p3) ∈ SER
× SEF

× SEU
then there is a g ∈ G such that

p1 = φER
(g), p2 = φEF

(g), p3 = φEU
(g) if and only if sgn(p1)sgn(p2)sgn(p3) =

1.

As a consequence, we find that

φ(G) = ker(sgn × sgn × sgn : φER
(G) × φEF

(G) × φEU
(G) → {±1})

∼= (S4 × S4 × S4)/C2.

In particular, |φ(G)| = (4!)3/2 = 2833.
It remains to determine ψ(G). We denote this group by H for notational

simplicity. We may label the vertices of the cube 1, 2, ..., 8 in such a way that
H = 〈u, d, l, r, f, b〉, where u = ψ(U2), ..., and
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u = (1, 3)(2, 4), f = (1, 8)(4, 5), d = (5, 7)(6, 8),
b = (3, 6)(2, 7), r = (2, 5)(1, 6), l = (4, 7)(3, 8).

(12.2)

The action of H on the set of vertices of the cube has two orbits ({1, 3, 6, 8} and
{2, 4, 5, 7} in our labeling above), which we denote for simplicity by V1 and V2.
There are homomorphisms

ψ1 : H → SV1
, ψ2 : H → SV2

,

but I shall not say much about these. Instead, we shall determine more about
H. According to SAGE, this group has |H| = 96 elements and 10 conjugacy
classes (by the way, ‘under the hood’ SAGE is using [Gap]):

Size Representative

1 1
12 d = (5, 7)(6, 8)
32 l · d = (3, 6, 8)(4, 5, 7)
3 d · l · b · l = (2, 4)(5, 7)
12 d · b · l = (2, 4, 7, 5)(3, 6)
3 l · b · l · u = (1, 3)(6, 8)
12 b · l · u = (1, 3, 6, 8)(4, 7)
3 u · d = (1, 3)(2, 4)(5, 7)(6, 8)
12 l · d · u = (1, 3, 6, 8)(2, 4, 5, 7)
6 u · r · d · f = (1, 3)(2, 5)(4, 7)(6, 8)

SAGE

sage: u2 = ’(1,3)(2,4)’; f2 = ’(1,8)(4,5)’; d2 = ’(5,7)(6,8) ’
sage: b2 = ’(3,6)(2,7)’; r2 = ’(2,5)(1,6)’; l2 = ’(4,7)(3,8) ’
sage: H = PermutationGroup([u2,f2,d2,b2,r2,l2])
sage: H.order()
96
sage: H.conjugacy_classes_representatives()

[(),
(5,7)(6,8),
(3,6,8)(4,5,7),
(2,4)(5,7),
(2,4,7,5)(3,6),
(1,3)(6,8),
(1,3,6,8)(4,7),
(1,3)(2,4)(5,7)(6,8),
(1,3,6,8)(2,4,5,7),
(1,3)(2,5)(4,7)(6,8)]
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The stabilizer in H of any vertex v ∈ V , written Hv, is a subgroup of order
24 isomorphic to the symmetric group S4.

Furthermore, H has a normal subgroup N of order 48 (and index 2), where
N is a semidirect product of C3 by C4

2 , with C4
2 normal in N .

This is all I shall say about H.
The order of G is therefore G = |φ(G)| · |H| = 96 · (4!)3/2 = 21334, as claimed

in (12.1) above.

12.2 Fast-forwarding though finite fields

In this subsection, I introduce very briefly fields and especially finite fields.
There are many excellent books on these subjects, so the treatment here will
give the reader only a quick introduction to the basic ideas.

Finite fields are especially useful for communication theory since they are
finite, and hence can represent the letters of an alphabet inside a computer, and
since they carry a lot of structure, which can aid in making certain types of
calculations faster. We shall focus mostly on finite fields in this section.

12.2.1 The general definition of a field

A field is a set F with an addition law + and a multiplication law · which
obeys a list of properties similar to those for the field of real numbers R. More
precisely, we call (F,+, ·) a field if

(F1) (F,+) is an abelian group, with an identity element denoted 0 (‘the addi-
tive group of the field’),

(F2) for all x, y, z ∈ F , (x + y)z = xz + yz (‘distributive law’),

(F3) (F − {0}, ·) is an abelian group, with an identity element denoted 1 (‘the
multiplicative group of the field’).

Lemma 12.2.1. If F is a finite field, then not only is (F − {0}, ·) an abelian
group, but it is actually a cyclic group.

We shall not prove this here (see chapter 13 of Artin [Ar] for a proof). (The
basic idea is that all non-zero elements x of a finite field must satisfy xq = 1, for
some fixed prime power q, and the set of all such elements is a cyclic group.)

Definition 12.2.1. Let F1, F2 be two fields. A function f : F1 → F2 is called
a field isomorphism if

• when f is restricted to the additive group (F1,+), call this restriction f
again, it yields an isomorphism of groups f : (F1,+) → (F2,+),

• when f is restricted to the multiplicative group (F1 − {0}, ·), call this re-
striction f again, it yields an isomorphism of groups f : (F1 − {0}, ·) →
(F2 − {0}, ·).
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12.2.2 A construction of Fp

For each k ∈ Z, let k denote the residue class of k mod p. Let Fp denote the
finite field with p elements, so Fp is, as a set,

Fp = {0, 1, ..., p − 1},

with addition and multiplication being performed mod p.

Example 12.2.1. When p = 5, F5 will denote the finite field with 5 elements,
so F5 is, as a set,

F5 = {0, 1, 2, 3, 4},
with addition and multiplication being performed mod 5.

It is a general fact that if F is any finite field, then there is a prime number p
such that px = 0 for all x ∈ F . This prime number is called the characteristic
of F . The easiest example of a finite field with characteristic p is the finite field
constructed above having p elements, Fp. It is not hard to see that any other
finite field F of characteristic p must be isomorphic (as a vector space) to a
finite dimensional vector space over Fp. (Even if you’ve never seen a ‘vector
space over Fp’ defined before, if you know what a ‘real vector space’ is from
Definition 2.1.2, then you’ve got the right idea.) The dimension of the vector
space F is called the degree of the field F over Fp, denoted d = [F : Fp]. In
this case, we say F is a field extension of Fp (of degree d).

Lemma 12.2.2. For fixed p, d there is, up to isomorphism, only one such field
extension of degree d and characteristic p.

We shall not prove this. See chapter 13 of Artin [Ar] for a proof.
Next, we shall show how to construct such extensions.

12.2.3 A construction of finite fields

First, some general remarks on how one might begin to implement finite fields
on a computer.

Let F be a finite field. Since F is a finite dimensional vector space containing
Fp, it has a vector space basis which we label as

e1 = 1, e2, . . . , ed.

Thus F is, as a set, the collection of elements of the form

x1e1 + ... + xnen, xi ∈ Fp.

Since F is a field, there are ck
ij ∈ Fp, which we call structure constants, such

that

eiej =

n
∑

k=1

ck
ijek.
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There are dk
i ∈ Fp, which we call inversion constants, such that

e−1
i =

n
∑

k=1

dk
i ek.

These p3 + p2 constants determine how to multiply and divide elements of F .
All a computer needs to do the arithmetic operations of F can be stored in
memory.

Example 12.2.2. Let p = 5, so F5 = {0, 1, 2, 3, 4}. The set of squares is given
by

{x2 | x ∈ F5} = {0, 1, 4}.

In particular, 2, 3 are not squares in this field. Let e2 =
√

2 be a formal symbol
for some element which satisfies e2

2 = 2. This is a root of the polynomial x2−2 =
0.

The vector space F over F5 with basis {e1 = 1, e2} is 2-dimensional over

F5. Two elements x1e1 + x2e2 = x1 + x2

√
2 and y1e1 + y2e2 = y1 + y2

√
2 are

multiplied by the rule

(x1 + x2

√

2) · (y1 + y2

√

2) = x1y1 + 2x2y2 + (x1y2 + y1x2)
√

2.

It is a degree 2 field extension since

c1
11 = 1, c2

11 = 0, c1
12 = 0, c2

12 = 1, c1
21 = 2, c2

21 = 0,

and
d1
1 = 1, d2

1 = 0, d1
2 = 0, d2

2 = 3.

Using SAGE, this extension field is constructed as follows (in fact, I give two
ways).

SAGE

sage: P = PolynomialRing(GF(5),"x")
sage: x = P.gen()
sage: K.<a> = GF(5ˆ2, name=’a’, modulus=xˆ2 - 2 )
sage: K
Finite Field in a of size 5ˆ2
sage: L = GF(25,"b")
sage: L
Finite Field in b of size 5ˆ2

The construction used in the above example may be summarized more gener-
ally as follows:

1. Pick an element m ∈ Fp which is not the square of another element, if
such an element exists.
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2. Let e1 = 1 and e2 =
√

m be a formal symbol for some element which
satisfies e2

2 = m.

3. As a set, let F = {xe1 + ye2 | x, y ∈ Fp}. To define F as a field, let + be
‘componentwise addition’ mod p and let · be defined by

(x1 + x2

√
m) · (y1 + y2

√
m) = x1y1 + mx2y2 + (x1y2 + y1x2)

√
m.

A finite field F constructed in this way is called a quadratic extension of
Fp.

Definition 12.2.2. Let f(x) be a polynomial having coefficients in a field F .
If f(x) does not factor into polynomials of smaller degree having coefficients in
F , then we call f(x) an irreducible polynomial over F . A polynomial that
is not irreducible is called reducible over F , or we say it factors over F .

Remark 12.2.1. For this definition to make sense, it is important that F be
a field. For example, consider the following bizarre computation with integer
polynomials mod 6: (3x + 2)(2x + 3) = 6x2 + 13x + 6 = x. The degree of the
product actually goes down!

Let d > 1 be an integer.

1. Assume g(x) = xd−1 + xd−2 + ... + x + 1 is irreducible over Fp. Pick an
element m ∈ Fp which is not the kth power of another element in Fp (for
all 1 < k dividing d). (Since we assumed g(x) was irreducible, such an
element must exist.)

2. Let e1 = 1, let e2 = m1/d be a formal symbol that satisfies ed
2 = m, and

(if d > 2) let ei = ei−1
2 for i = 3, ..., d.

3. As a set, let F = {x1e1 + ... + xded | xi ∈ Fp}. To define F as a field, let
+ be ‘componentwise addition’ mod p and let · be defined by expanding
and collecting (x1e1 + ... + xded) · (y1e1 + ... + yded).

A finite field F constructed in this way has pd elements.
What if xd−1 +xd−2 + ...+x+1 is reducible? (This can happen, for example,

when p = 2.) In this case, we must replace the formal symbol e2 = m1/d above
by a root of an arbitrary but fixed irreducible polynomial g(x) of degree d having
coefficients in Fp. (In fact, SAGE and GAP use special irreducible polynomials,
so-called Conway polynomials [L], for the purpose of constructing finite field
extensions. Such polynomials always exist but, as of the date of this writing,
there is no known simple general formula for writing them down.) Again, we
let F = {x1e1 + ... + xded | xi ∈ Fp}, where ei = ei−1

2 for i = 3, ..., d. This is a
field for the same reason as before.

Let Fp[x] denote the collection of all polynomials having coefficients in Fp.
This set is closed under ordinary polynomial addition and multiplication. Given
any fixed polynomial g(x) which is not a constant, let Fp[x]/g(x)Fp[x] denote the
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set of all cosets f(x) + g(x)Fp[x] (for f ∈ Fp[x]). Define +, · on Fp[x]/g(x)Fp[x]
by (f1(x) + g(x)Fp[x]) + (f2(x) + g(x)Fp[x]) = (f1(x) + f2(x)) + g(x)Fp[x] and
(f1(x) + g(x)Fp[x]) · (f2(x) + g(x)Fp[x]) = (f1(x) · f2(x)) + g(x)Fp[x].

Lemma 12.2.3. If g(x) is an irreducible polynomial in Fp[x] then Fp[x]/g(x)Fp[x],
with addition and multiplication defined above, is a field.

See Artin [Ar], chapter 13, for a proof and more details on finite fields.

In fact, the field constructed above is isomorphic (as a field) to Fp[x]/g(x)Fp[x].

12.3 PGL(2, F5) and two faces of the cube

This section is devoted to ‘determining’ the two-face group generated by only
two basic moves, 〈F,U〉. Singmaster [Si] has shown that

〈σ(F ), σ(U)〉 ∼= S7, 〈ρ(F ), ρ(U)〉 ∼= PGL2(F5),

where PGL2(F5) (sometimes also denoted PGL(2, 5)) is a group of order 120
which is defined below. Here S7 arises from the action of the two-face group on
the edges and PGL2(F5) arises from the action on the corners. In this section,
we focus on the action on the corners.

Example 12.3.1. Here is some SAGE code which illustrates Singmaster’s re-
sult. First of all, here is the two-face group:

SAGE

sage: rubik = CubeGroup()
sage: f = rubik.F()
sage: u = rubik.U()
sage: T = PermutationGroup([f,u])
sage: T.order()
73483200

Using the corner labeling in (12.2) above, we see that σ(F ) acts by (1, 4, 8, 5)
and σ(U) acts by (1, 2, 3, 4):

SAGE

sage: P = PGL(2,5)
sage: sT = PermutationGroup([’(1,8,5,3)’,’(4,3,5,6)’])
sage: sT.order()
120
sage: sT.is_isomorphic(P)
True
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Using the labeling in §11.1.1, we see that ρ(F ) acts by (1, 6, 9, 5) and ρ(U) acts
by (1, 4, 3, 2):

SAGE

sage: rT = PermutationGroup([’(1,6,9,5)’,’(1,4,3,2)’])
sage: rT.is_isomorphic(S7)
True

12.3.1 Möbius transformations

Definition 12.3.1. The projective plane

P1(Fp) = {0, 1, ..., p − 1,∞}

is defined to be the set of lines through the origin in the Cartesian plane F2
p,

associating each number (including ∞) with the slope of the corresponding line.

If a, b, c, d ∈ Fp are given numbers (not all equal to zero) then we define the
Möbius transformation f by:

f : P1(Fp) → P1(Fp)
x 7−→ ax+b

cx+d .

This is also called a linear fractional transformation (or a fractional linear
transformation). This function is named after August Möbius (1790-1868), best
known for his work in topology, especially for his conception of the Möbius strip,
a two-dimensional surface with only one side. (Can’t resist the riddle: What’s
one-sided and swims in the sea? Möbius Dick.)

Theorem 12.3.1. The mapping f is a bijection if and only if det

(

a b
c d

)

6=
0.

Before proving this, we need the following definition.

Definition 12.3.2. For any prime number p, define

GL(2, Fp) = {
(

a b
c d

)

| a, b, c, d ∈ Fp, ad − bc 6= 0}.

This set GL(2, Fp) is a group under ordinary matrix multiplication (check
this). Furthermore, the group G = GL(2, Fp) acts on the set P1(Fp) by means
of Möbius transformations, thus defining a function

(

a b
c d

)

: P1(Fp) → P1(Fp),

for each

(

a b
c d

)

∈ G.
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Lemma 12.3.1.

(a) The center of GL(2, Fp) (i.e., the subgroup of all elements which commute
with every element in GL(2, Fp)) is given by

Z(GL(2, Fp)) = {
(

a 0
0 a

)

| a ∈ Fp, a 6= 0}.

(b) This subgroup is normal in GL(2, Fp).

(c) There is an isomorphism

Z(GL(2, Fp)) ∼= F×
p .

Proof: (a) Since

(

r 0
0 r

)(

a b
c d

)

=

(

r 0
0 r

)(

a b
c d

)

we can conclude that

{
(

a 0
0 a

)

| a ∈ Fp, a 6= 0} ⊂ Z(GL(2, Fp)).

To show that

Z(GL(2, Fp)) ⊂ {
(

a 0
0 a

)

| a ∈ Fp, a 6= 0},

assume that
(

r s
u v

)(

a b
c d

)

=

(

r s
u v

)(

a b
c d

)

for all a, b, c, d. This implies bu = cs for all b, c. This is impossible unless
u = s = 0. This in turn forces cr = cv, for all c. This implies that r = v. This
proves the desired inclusion.

The proof of parts (b) and (c) are left as an exercise for the reader. ¤

Definition 12.3.3. The quotient group, denoted

PGL(2, Fp) = GL(2, Fp)/Z(GL(2, Fp)),

is called the projective linear group. (This is a group since the center is a
normal subgroup by the lemma above.)

The quotient group, denoted

PSL(2, Fp) = SL(2, Fp)/Z(SL(2, Fp)),

is called the projective special linear group.

Lemma 12.3.2. This group PGL(2, Fp) acts on the set P1(Fp) by means of the
linear fractional transformations.
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Remark 12.3.1. In fact, the action of PGL(2, Fp) on the set P1(Fp) is 3-
transitive. This 3-transitivity claim is not hard to prove, but I leave it to the
interested reader to look up in [R] (see Theorem 9.48).

Proof: First, we show that the GL(2, Fp) acts on the set P1(Fp) by means
of the linear fractional transformations. In other words, if

φ

(

a b
c d

)

(x) =
ax + b

cx + d

then

(a) φ

(

1 0
0 1

)

(x) = x, for all x (i.e., the linear fractional transformation

φ

(

1 0
0 1

)

is the identity map),

(b) φ(A) ◦ φ(B) = φ(AB), for all A,B ∈ GL(2, Fp).

I leave the verification of (a) to the reader, if he or she wishes, and only check

(b). Let A =

(

a b
c d

)

and B =

(

r s
u v

)

. Then

AB =

(

ar + bu as + bv
cr + du cs + dv

)

,

so

φ(AB)(x) =
(ar + bu)x + as + bv

(cr + du)x + cs + dv
.

On the other hand, φ(A)(φ(B)(x)) is equal to

φ(A)(
rx + s

ux + v
) =

a( rx+s
ux+v ) + b

c( rx+s
ux+v ) + d

.

Simplifying this, we see that the last two displayed equations are equal. This
verifies (b).

Therefore, GL(2, Fp) acts on the set P1(Fp).

Let Z = Z(GL(2, Fp)). Since φ

(

a b
c d

)

= φ

(

ra rb
rc rd

)

, for all non-zero

r, it follows that we may define an action of PGL(2, Fp) (still denoted by φ) on
the set P1(Fp) by φ(A · Z) = φ(A), for all A ∈ GL(2, Fp).

¤

Proof (of Theorem 12.3.1): Let φ be as above and let f be as in the
statement of the theorem.

(⇐): Since GL(2, Fp) acts on the set P1(Fp), we have 1 = φ(AA−1) =
φ(A)φ(A−1), so φ(A) is invertible. This implies that f is a bijection.

(⇒): We prove the contrapositive. Suppose that det

(

a b
c d

)

= 0. The row

vectors of this matrix are therefore linearly dependent. In other words, there is
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an r ∈ Fp such that either (a, b) = r ·(c, d) or (c, d) = r ·(a, b). In either case, the
quotient f(x) = ax+b

cx+d is a constant independent of x, so cannot be surjective.
This proves that f is not a bijection, which verifies the contrapositive.

¤

12.3.2 The main isomorphism

Let G denote the Rubik’s Cube group. Let H be the subgroup generated by F
and U :

H = 〈F,U〉.
Ponderable 12.3.1. Show that the group H acts on the set of vertices above
(via the Rubik’s Cube group).

To better understand the action of H on the vertices, we describe how to label
the six vertices on the ‘up’ and ‘front’ faces of the cube,

fru, flu, dfl, dfr, bru, blu,

with the elements in the projective plane

P1(F5) = {0, 1, 2, 3, 4,∞}

in a certain way. More precisely, we will label the six vertices above with
elements of P1(F5) in such a way that (a), (b) of the following theorem hold
true.

Theorem 12.3.2. There are a0, a1, b0, b1, c0, c1, d0, d1 ∈ F5 (given explicitly
below) such that

(a) the action of F (the usual rotation of the front face) on these vertices is
the same as the action of some linear fractional transformation

fF (x) =
a0x + b0

c0x + d0
;

(b) the action of U (the usual rotation of the up face) on these vertices is the
same as the action of some linear fractional transformation

fU (x) =
a1x + b1

c1x + d1
.

In other words, the basic moves F , U may be regarded as linear fractional
transformations over a finite field!

Theorem 12.3.3. PGL(2, F5) ∼= 〈fF , fU 〉.
Remark 12.3.2. PGL(2, F5) is isomorphic to S5 (this is part of Exercise 9.25
in [R]).

We shall prove theorem 12.3.3 below.
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12.3.3 The labeling

Label the up, front, and right vertices as in §5.7.2 above.
Let

fF (x) =
x − 1

x + 1
, fU (x) = 3x + 3.

The map

φ : F 7−→ fF , U 7−→ FU ,

extends to a surjective homomorphism of groups

φ : 〈F,U〉 → 〈fF , fU 〉 ⊂ PGL(2, F5).

Ponderable 12.3.2. Verify Theorem 12.3.2 above.

12.3.4 Proof of PGL(2, F5) ∼= 〈fF, fU〉
Let

(

a b
c d

)

∗

∈ PGL(2, FF )

denote the image of

(

a b
c d

)

∈ GL(2, FF )

under the natural map GL(2, F5) → PGL(2, F5), g 7−→ F×
5 · g.

Since

f2
U =

(

0 −1
1 0

)

∗

we have

(

0 −1
1 0

)

∗

∈ 〈fU , fF 〉.

Since

fF · f5
U =

(

−1 0
−1 −1

)

∗

it follows that

(

1 0
1 1

)

∗

belongs to 〈fF , fU 〉.

Conjugating this matrix by f2
U , we find that
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(

1 −1
0 1

)

∗

belongs to 〈fF , fU 〉.

It is known that SL(2, F5) is generated by elementary transvections (see [R]).
Therefore,

PSL(2, F5) ⊂ 〈fF , fU 〉 ⊂ PGL(2, F5).

It is also known (see [R]) that

|PSL(2, F5)| = 60 and |PGL(2, F5)| = 120.

It remains to show that there is an element of 〈fF , fU 〉 which does not belong
to PSL(2, F5). We claim that such an element is fU . Note that det(fU ) belongs
to the set

3(F×
5 )2 = {3x2 | x ∈ F×

5 }.
But an element of PSL(2, F5) must have determinant 1. Since 3−1 = 2 (mod 5)
is not a square mod 5, there is no element of F5 which satisfies 1 = 3x2. Thus
fU does not belong to PSL(2, F5). ¤

Ponderable 12.3.3. As an application of Theorem 12.3.3, use the example in
section 5.7.2 to show that there exists an embedding D12 →֒ PGL(2, F5) of the
symmetry group of the hexagon into PGL(2, F5).

12.4 The cross groups

Define a cross move of the cube to be a move of the form X · Y −1, where
X,Y ∈ {R,L,U,D, F,B}. The subgroup of the Rubik’s Cube group generated
by the cross moves will be called the cross group.

The cross moves permute the set V of vertices of the cube and therefore
generate a subgroup of SV . This is called the vertex cross group. The cross
moves permute the set E of edges of the cube and therefore generate a subgroup
of SE . This is called the edge cross group.

All the enties in the following table are, as far as I am aware, new except for
the M12 entry.

Rubik polyhedra Edge cross group Vertex cross group
Tetrahedron A5

∼= PSL2(F5) C2 × C2

Cube A12 PSL2(F7)
Octahedron A12 PSL2(F5)

Dodecahedron A30 A20

Icosahedron A30 A12

Rubicon A30 M12

In fact, the subgroup of the dodecahedral edge cross group generated by a
subset of the cross moves can yield (smaller but still simple) alternating groups.
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Ponderable 12.4.1. (F. Dyson) Work out the analogous cross groups of the
‘Rubicized’ 4-dimensional regular polyhedra.

Freeman Dyson (1923-), who has contributed important work to both math-
ematics and physics, is a professor at the Institute for Advanced Studies in
Princeton, New Jersey.

Regarding Dyson’s problem, we conjecture that

• if E denotes the set of edges of a 4-dimensional regular polyhedron, then
the edge cross group is isomorphic to AE ;

• if V denotes the set of vertices of a 4-dimensional regular polyhedron, then
the vertex cross group is isomorphic to AV ;

• if F denotes the set of faces of a 4-dimensional regular polyhedron, then
the face cross group is isomorphic to AF .

Some cases of this conjecture have been verified using the computer algebra
software package GAP [Gap].

Note that these cross groups are, with only one exception so far, all simple.

Ponderable 12.4.2. Are any of the analogous cross groups of the ‘Rubicized’
3-dimensional Archimedian polyhedra simple?

According to some calculations performed using GAP, the vertex cross group
of the regular truncated cube is not simple.

12.4.1 PSL(2, F7) and crossing the cube

Let C denote the vertex cross group of the Rubik’s Cube.

Theorem 12.4.1. C ∼= PSL2(F7).

The first proof of this is by computer!

First Proof: GAP [Gap] gives that C is a simple group of order 168. By the
classification of simple groups (or, more simply, Exercise 9.26 in [R]), C must
be isomorphic to PSL2(F7). ¤

The second proof is from [CD].

Second Proof: PSL2(F7) can be generated by the three matrices:

f1 =

(

0 −1
1 0

)

, f2 =

(

2 1
0 1

)

, f3 =

(

2 0
0 1

)

.

Label the vertices of the cube as below.
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With this labeling, we can show the following:

• The image of the move m1 = (UD−1)2 will permute the vertices in this
way: (∞, 0)(1, 6)(2, 3)(4, 5). The same permutation is given by the Möbius
transform (0 · x − 1)/(x + 0) acting on P 1(F7).

• The move m2 = UR−1 gives us the permutation (0, 1, 3)(2, 5, 4), which is
given by (2x + 1)/(0 · x + 1) acting on P 1(F7).

• The move m3 = BU−1LB−1 gives us the permutation (1, 2, 4)(3, 6, 5),
which is given by (2x + 0)/(0 · x + 1) acting on P 1(F7).

You should notice that if the constants in these Möbius transformations (a, b, c, d)
are written in matrix form, they correspond to the generators of PSL2(F7).
Now we will define a homomorphism q : C → PSL2(F7), such that q(m1) =
f1, q(m2) = f2, q(m3) = f3. We want to show that our q is an isomorphism.

To do this we will first show that it is surjective. Let f be a matrix in
PSL2(F7), which can be written as a product of generators f1, f2, f3 (where
q(m1) = f1, q(m2) = f2, q(m3) = f3). Now take f as some element of PSL2(F7).
The element f can be broken down as a product of its generators, f1, f2, f3, we’ll
say

f =

n
∏

k=1

fek

ik
.

Since we have a homomorphism, we can write it as a product of the images of
the generators of C. Again we can rewrite it as f = q(

∏n
k=1 mek

ik
). Therefore q

is surjective.
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To show that q is one-to-one we need to know that PSL2(F7) has order 168
[R], and that the order of the cross group is also 168. (This fact was proven by
computer, using GAP.) We will prove by contradiction that q is one-to-one.

Now we assume that c1 and c2 are elements of C, such that q(c1) = q(c2),
and c1 6= c2. |PSL2(F7)| = |q(C)|. We now subtract c2 from C , and |q(C)| =
|q(C−c2)| because q(c1) = q(c2). Now we can say that |q(C−c2)| < or = |C−c2|
because we know that q is surjective.

Since we have taken c2 out of C, we know |C − c2| < |C|, which by tran-
sitivity implies |PSL2(F7)| < |C|. This is a contradiction because we know
|PSL2(F7)| = |C|. Therefore q is injective.

Now that we have shown that q is both surjective and injective, it is bijective
and an isomorphism. ¤

The above proof of the theorem tells us explicitly that there exists a labeling
of the vertices V of the cube by the elements of the projective line

P1(F) = {∞, 0, 1, 2, 3, 4, 5, 6},
with the property that there is a move c : V → V in C if and only if there is a
Möbius transformation f : P1(F) → P1(F) in PSL2(F7).

Because the group of Möbius transformations in PSL2(F7) acts 2-transitively
on the projective line P1(F) (see [R], Theorem 9.45), it follows that we have the
following result.

Corollary 12.4.1. C acts 2-transitively on V . In other words, for any ordered
pairs (v1, v2), (v′

1, v
′
2) of distinct vertices there is an element c ∈ C sending vi

to v′
i, for i = 1, 2.

12.4.2 Klein’s 4-group and crossing the Pyraminx

We leave the main result of this section as an exercise—actually more of a
project—for the interested reader.

Ponderable 12.4.3. Show that the subgroup of SV generated by the twist-
untwist moves of the Pyraminx is isomorphic to the Klein 4-group C2 × C2.

The determination of the cross group for the Megaminx is due to J. Conway.
It will be presented in chapter 14.

As a kind of a hint, the following SAGE code is given. Notice that it produces
the ‘right’ group.

SAGE

sage: S4 = SymmetricGroup(4)
sage: F = S4([(1,3,2)]); R = S4([(1,4,3)])
sage: D = S4([(2,3,4)]); L = S4([(1,2,4)])
sage: G = PermutationGroup([F,R,D,L])
sage: G.order()
12
sage: c1 = F * Rˆ-1; c2 = D * Rˆ-1; c3 = L * Fˆ-1
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sage: c4 = L * Rˆ-1; c5 = D * Lˆ-1; c6 = D * Rˆ-1
sage: C = PermutationGroup([c1,c2,c3,c4,c5,c6])
sage: C.order()
4
sage: KleinFourGroup().is_isomorphic(C)
True

Can you solve ponderable 12.4.3 now?
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Chapter 13

Other Rubik-like puzzle
groups

The youthful impulse is rather to prowl about the problem for awhile,
looking perhaps not for an open window or a door with a weak lock, for if
these were available some earlier malefactor would have discovered them,
but for some wall that can be scaled or some unsuspected underground
access.

Robert Langlands

We’ve spent a lot of time thinking about the Rubik’s Cube and how to solve
it—we scaled that wall using group theory. What about the Megaminx, or other
puzzles? This chapter says something about the group-theoretical structure of
some of the other permutation puzzle groups.

13.1 A uniform approach

This section provides a uniform discussion of the Pyraminx, the 3 × 3 Rubik’s
Cube, and the Megaminx.

Notation: Let

• Gp (resp., GR, Gm) denote the permutation puzzle group generated by
the basic moves of the Pyraminx (resp., the Rubik’s Cube, Megaminx),

• Vp (resp., VR, Vm) denote the set of vertex pieces of the Pyraminx (resp.,
the Rubik’s Cube, Megaminx),

• Ep (resp., ER, Em) denote the set of edge pieces of the Pyraminx (resp.,
the Rubik’s Cube, Megaminx),

• Fp (resp., FR, Fm) denote the set of facets of the movable pieces of the
Pyraminx (resp., the Rubik’s Cube, Megaminx).
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13.1.1 General remarks

Let G,V,E, F (resp.) denote either Gp, Ep, Vp, Fp (resp.), or GR, ER, VR, FR

(resp.), or Gm, Em, Vm, Fm (resp.).

Lemma 13.1.1. G acts on the set V (resp., E,F ).

If g is any move in G, then, since g acts on the sets V , E, and F , we may
regard g

• as an element of the symmetric group SV of V ,

• as an element of the symmetric group SE of E, or

• as an element of the symmetric group SF of F .

These groups SV , SE , and SF are different, so to distinguish these three ways
of regarding g, let us write

• gV for the element of SV corresponding to g,

• gE for the element of SE corresponding to g,

• gF for the element of SF corresponding to g.

What is the kernel of fV ? What is its image? To answer this question (actu-
ally, we shall not answer this precise question but one similar to it) we introduce
a certain subgroup of the symmetric group.

Recall the alternating group AX is the subgroup of all even permutations of
X (in the sense of Example 5.6.3 above).

13.1.2 Parity conditions

Consider the function
fV E : G → SV × SE

g 7−→ (gV , gE)

It is easy to check that this is a homomorphism.

Theorem 13.1.1. Let P denote a puzzle which is either the Pyraminx, Megam-
inx, or (Rubik’s) Cube. The image fV E(G) of fV E is isomorphic to

{

AV × AE , ifP ∈ {Pyraminx,Megaminx},
{(x, y) ∈ SV × SE | sgn(x) = sgn(y)}, ifP ∈ {Cube},

where sgn denotes the sign of the permutation.

This is a consequence of a result proven below in the case of the Rubik’s Cube.
To see what this theorem means, we look at an example.
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Example 13.1.1. Let G = GR.
Question: Can you find a move of the Rubik’s Cube which flips a single-edge

subcube over, leaving the rest of the puzzle pieces unmoved?
If so, then the image of fEV would have to contain an element (x, y) with

x = 1 (since moving an edge only does not effect the vertices) and where y is a
2-cycle. But x = 1 is even and a 2-cycle is odd. This contradicts the theorem,
which says that x, y are either both even or both odd. Therefore, the answer is
no: a single-edge flip is impossible.

Next, some more notation: let

K = ker(fV E) ⊳ G

denote the kernel of the map fV E introduced above. This is a normal subgroup
of G.

Example 13.1.2. In the case of the Rubik’s Cube, this subgroup K is the set
of moves which may reorient (i.e., flip or rotate) a subcube but does not swap it
with some other subcube. For example, the move

(R−1 · D2 · R · B−1 · U2 · B)2,

which twists the ufr corner clockwise and the bld corner counterclockwise, be-
longs to K.

Theorem 13.1.2. (Gold and Turner [GT]) G is a semi-direct product of K
with fV E(G).

This is a consequence of a result proven above in the case of the Rubik’s Cube.
In the case of the 3×3×3 Rubik’s Cube, some more details are given in chapter
11. See also [GT], chapter 2 of [B1], or [NST], chapter 19.

13.2 On the group structure of the Skewb

Notation: We fix an orientation of the cube and label the sides by R, L, U , D,
F , B as in the case of the Rubik’s Cube. The 120 degree clockwise rotation of
a corner is denoted by a 3-letter juxtaposition of the letters abbreviating the 3
faces which the corner meets. (When you twist a corner of the Skewb you must
permute three other corners but the opposite side of the Skewb is unaffected.)
Such a move will be called a basic move; there are 8 of them, though twisting
about a corner and twisting about the antipodal opposite corner is basically the
same move (up to a rotation of the entire cube.) For example, FRU denotes
the 120 degree clockwise rotation of the front-right-up corner, leaving the rest
of the cube alone.

Let C denote the set of square center facets and V the set of vertices of the
cube.

Let
G = 〈FRU,FLU,BRU,BLU,DFR,DFL,BDR,BDL〉

253



13.2. ON THE GROUP STRUCTURE OF THE SKEWB

denote the group of all (legal) Skewb moves. Let G∗ denote the group of all
legal and ‘illegal’ moves (where disassembly and then reassembly is allowed).
The commands for entering this into SAGE were given in §4.6.

On each square center facet of the Skewb we may choose a vertex with the
following property: if we draw an arrow pointing from the chosen vertex of the
square to the diametically opposite vertex on the square, then the moves of the
Skewb permute these arrows among themselves, except that some arrows may
possibly be reversed. This determines an orientation of each center facet. Call
this puzzle the super Skewb. For this new puzzle, let

Gsuper = 〈FRU,FLU,BRU,BLU,DFR,DFL,BDR,BDL〉
denote the group of all (legal) super Skewb moves. Let G∗

super denote the group
of all legal and ‘illegal’ moves (where disassembly is allowed).

We orient the corners as in the case for the Rubik’s Cube. Let y(g) ∈ C8
3 =

{0, 1, 2}8 denote the orientation for the corners.
For the super Skewb, we orient the center facets similarly. Let z(g) ∈ C6

4 =
{0, 1, 2, 3}6 denote the orientation for the centers.

Let SC denote the symmetric group on the set C and SV the symmetric group
on the set V .
Claim: There are homomorphisms

ρ : G → SC , σ : G → SV ,

given, for each move g ∈ G, by

ρ(g) = permutation of the center facets associated to g,

and
σ(g) = permutation of the vertices associated to g.

Let
H = C8

3 × SC × SV

and define · : H × H → H by

(~y, r, s) · (~y′, r′, s′) = (rr′, ss′, r−1(~y′) + ~y).

Let
Hsuper = C8

3 × SV × C6
4 × SC

and define · : Hsuper × Hsuper → Hsuper by

(~y, r, ~z, s) · (~y′, r′, ~z′, s′) = (r−1(~y′) + ~y, rr′, s−1(~z′) + ~z, ss′).

Observation: There is an embedding of G into H and an embedding of Gsuper

into Hsuper.
Let GC be the group that acts only on the center facets of the Skewb, and

GV the group that acts only on the vertices. Now,

G = GC × GV .
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Every generator of G is a 3-cycle on the center facets. This means that r is an
element of AC . It is a fact that the elements (i, j, k) of Sn generate An (for
i, j, k elements of {1, 2, ..., n}). Therefore, GC = A6.

The group that acts on the vertices of the Skewb is slightly more complicated.
Unlike the Rubik’s Cube, there is no condition like conservation of twists which
applies to the entire vertex set. Instead, we must split the vertices of the Skewb
into two 4-corner orbits. This idea is borrowed from Christoph Bandelow’s
booklet [B2] on Mickey’s Challenge (a puzzle similar to the Skewb). An orbit
is constructed by starting with one corner and including the opposite corner of
each face that meets at the first corner. Referring back to our original labeling
of the Skewb, the orbits are the odd corners {1, 3, 5, 7}, and the even corners
{2, 4, 6, 8}. Let the orbit of odd corners be denoted by V (odd), and let V (even)
denote the orbit of even corners. We now partition GV so that

GV = GV (odd) × GV (even).

We know that each orbit maps to a permutation on 4 vertices and an orientation
on 4 vertices. So

GV is a subgroup of (C4
3 ⋊ S4) × (C4

3 ⋊ S4).

Let h = (s, u(h), t, v(h)) be an element of GV .
First we will examine the permutations of the vertices of both orbits. Each

generator produces a 3-cycle on the vertices, whether they are in the odd or
even orbit. Therefore, we can say that the permutations of each orbit generate
A4 by the same argument used for the center permutations. Now,

GV is a subgroup of (C4
3 ⋊ A4) × (C4

3 ⋊ A4).

Claim 1: There exist h, such that s is an element of A4, u(h) = (0, 0, 0, 0), t
is an element of A4, and v(h) = (0, 0, 0, 0). We know this is true because there
are Skewb moves which permute only 3 vertices (and no edges).

Claim 2: Given any permutation u′ of (1, 2, 0, 0) by an element of A4 and
any permutation v′ of (1, 2, 0, 0) by an element of A4, there exist h, such that
s = 1, u(h) = u′, t = 1, and v(h) = v′. This is true because there are Skewb
moves which twist only vertices (and no edges).

If we combine the moves of Claims 1 and 2, we should generate all of the
possible moves of GV . The condition on each of the vertex 4-tuples will drop
them in dimension to elements of C3

3 . So we can conclude that GV is a subgroup
of index 9 of

(C4
3 ⋊ A4) × (C4

3 ⋊ A4).

Note: This claim is verified by GAP.
Since GC = A6, and GV = (C3

3 ⋊ A4) × (C3
3 ⋊ A4), we can conclude that

G = A6 × (C3
3 ⋊ A4) × (C3

3 ⋊ A4)

255



13.2. ON THE GROUP STRUCTURE OF THE SKEWB

and

|G| = (6!/2)(4!/2)236 = 37, 791, 360.

In conclusion, it is interesting to note that if we let G′ denote the illegal Skewb
group—where reassembly is permitted—then

G′ = S6 × S8 × C8
3 .

and

|G|/|G′| = 0.0001984127...

This means that if you could take apart the Skewb and reassemble it however you
wanted (leaving the stickers intact), then only about 0.02 percent of all possible
reassemblies would be solvable. The analogous percentage for the Rubik’s Cube
is about 8.3 percent. As Martin Schönert points out in a post to [CL], this
makes the Skewb harder to solve that the Rubik’s Cube, in some sense.

Permutation and Orientation Tables

Move Center permutation Vertex permutation
UFR (1, 5, 2) (2, 6, 4)
UFL (1, 4, 5) (1, 7, 3)
DFR (1, 2, 6) (1, 5, 7)
DFL (1, 6, 4) (4, 6, 8)
BRU (2, 5, 3) (1, 3, 5)
BLU (3, 5, 4) (2, 4, 8)
DBR (2, 3, 6) (2, 8, 6)
DBL (3, 4, 6) (3, 7, 5)

Move Vertex orientation
UFR (1, 2, 0, 2, 0, 2, 0, 0)
UFL (2, 0, 2, 1, 0, 0, 2, 0)
DFR (2, 0, 0, 0, 2, 1, 2, 0)
DFL (0, 0, 0, 2, 0, 2, 1, 2)
BRU (2, 1, 2, 0, 2, 0, 0, 0)
BLU (0, 2, 1, 2, 0, 0, 0, 2)
DBR (0, 2, 0, 0, 1, 2, 0, 2)
DBL (0, 0, 2, 0, 2, 0, 2, 1)

UFR·UFL (0, 2, 2, 2, 0, 0, 2, 0)
DFR·DFL (2, 0, 0, 2, 0, 0, 2, 2)

Note: The orientations for the generator moves contain two repeated orbits—
permutations of (1, 0, 0, 0) and permutations of (2, 2, 2, 0).

This section owes much to Martin Schönert’s contribution on this topic in
[CL].
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13.3 Mathematical description of the 2 × 2 × 2
cube

This section derives the group structure of the 2 × 2 × 2 Rubik’s Cube.
A position on the 2 × 2 × 2 cube is determined by

(a) a permutation of the vertices, and

(b) the orientation of the corner sub-cubes.

An illegal move on the 2 × 2 × 2 cube is a reassembly of the corners.
Let

H = 〈R,L,U,D, F,B, and all the illegal moves〉.
This will be called the illegal 2×2×2 cube group. Let G = 〈R,L,U,D, F,B〉.
G is contained in H.

Let C8
3 = {0, 1, 2}8 be the group of 8-tuples with coordinate-wise addition

mod 3. Let ~v : H → C8
3 be defined as follows: Assume h ∈ H sends the ith

corner to the jth corner. Define vi(h) to be that number in C3 = {0, 1, 2} which
describes the orientation that the standard reference marking of the ith corner
is sent to relative to the standard reference marking of the jth corner. The
values of v are tabulated in (11.1.1).

Let SV be the group of permutation of corner sub-cubes. We may identify SV

with S8 since we have labeled the corners 1, ..., 8. The group H is a subset of
the Cartesian product SV × C8

3 .
Let p(h) denote the permutation of the vertices of the cube associated with

h ∈ H. We have

(v, r) · (v′, r′) = (v + r(v′), r · r′)
(~v(g), p(g)) · (~v(h), p(h)) = (~v(g) + p(g)~v(h), p(g) · p(h))

= (~v(g · h), p(g · h)).

It is not hard to show, based on the results of the previous section, that H =
C8

3 ⋊ S8 = {(v, r) | r ∈ SV , v ∈ C8
3}. In other words, H is the wreath product

of S8 and C3 (with base C3).

Theorem 13.3.1. A pair (~v, r) ∈ C8
3 × SV corresponds to a legal position if

and only if v1 + ... + v8 ≡ 0 (mod 3) (conservation of twists).

Proof: PART 1: In this part, we show that any pair (v, r) as in the theorem
(where v satisfies conservation of twists) corresponds to a legal move g in such
a way that r = ρ(g) and v = ~v(g).

Case 1: Assume r = 1 and ~v is arbitrary. From the solved position, any two
corners, corner i and corner j say, can be twisted so that corner i has orientation
1, corner j has orientation 2, and all other corners have orientation 0. Call such
a move ei,j . Example: (R−1 · D2 · R · B−1 · U2 · B)2 is e2,7.

Let y = a1 · e1,8 + ... + a7 · e7,8, where ai ∈ {0, 1, 2}. This is a move of the
2× 2 Rubik’s Cube of the form (v, 1)—in other words, it permutes nothing but
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may twist some corners. By construction, all moves of this form are legal. For
each ai ·ei,8 there are three different possible positions (independent of all other
aj ·ej,8). Since there are three choices for each ai, there are a total of 37 distinct
moves of the form y as above.

On the other hand, there are exactly 37 possible moves of the form (v, 1) which
satisfy the conservation of twists. (Proof: If ~v = (v1, ..., v8), vi ∈ {0, 1, 2}, and
v1 + ... + v8 ≡ 0 (mod 3), then there are 3 ways to choose each of v1, .., v7, but
then once these are fixed, the consevation of twists condition leaves no choice
for v8. This leaves a total of 37 choices.) These 37 possible moves include, of
course, the legal moves of the form y above. Thus every move of the form (1, v),
with v satisfying conservation of twists, is legal.

Case 2: Assume ~v = ~0 and r is arbitrary. Recall S8 is generated by the
two-cycles (see Steinhaus’s Theorem 3.4.1 above).

Claim 1: Given any pair of corners, there is a 2-cycle move which swaps them.
(Example: F−1 · U · B · U−1 · F · U2 · B−1 · U · B · U2 · B−1.) Once two corners
have been swapped, you may correct the orientation of any sub-cube by Case
1. Thus, any permutation which preserves orientations is a legal move.

Case 3: Assume ~v and r are both arbitrary but satisfy conservation of twists.
By case 2, we may make a legal move that changes (~v, r) to (~v, 1). By case 1,
(~v, 1) is a legal move.

PART 2: In this part, we show that any legal move satisfies conservation of
twists.

Assume (~v, r) ∈ C8
3 × SV is a legal move.

Define the length of a move g ∈ G to be the smallest number (counted
according to multiplicity) n of generators needed to create the move, written
length(g) = n.

Induction hypothesis: If a move is length n, it satisfies conservation of twists.
Step n = 1: Every ~v(x) where x ∈ {R,L,U,D, F,B} satisfies the conservation

of twists.
Step n > 1: Assume the induction hypothesis is true for all lengths ≤ n−1. Let

x be length n and write x = x1·x2, where length(x1) ≤ n−1 and length(x2) = 1.
Then ~v(x) = ~v(x1) + p(x1)~v(x2), by the group operation. Furthermore, v(x1)
satisfies conservation of twists by the induction hypothesis. Since p(x1) simply
permutes the coordinates of ~v(x2), ~v(x2) still satisfies the conservation of twists.
The sum of moves satisfying conservation of twists still satisfies conservation of
twists.

Conclusion: By induction, any move (v, r) ∈ C8
3 × SV that is a legal move

satisfies the conservation of twists. ¤

13.4 On the group structure of the Pyraminx

Notation: Let

• V denote the vertices of the tetrahedron (which we identify with the set
of corner pieces of the Pyraminx),

258



13.4. ON THE GROUP STRUCTURE OF THE PYRAMINX

• E denote the edges of the tetrahedron (which we identify with the set of
edge pieces of the Pyraminx),

• C denote the set of interior pieces of the tetrahedon (i.e., movable pieces
of the Pyraminx not in E or V ),

• SV denote the permutation group of V ,

• AV denote the alternating group of V ,

• SE denote the permutation group of E,

• AE denote the alternating group of E.

Assume that the tetrahedron is lying on a flat surface in front of you, with
the triangle base pointing away from you. The corners are denoted L (left), R
(right), U (up), and B (back).

Basic Moves: Opposite each corner or vertex there are three layers: the
tip, the middle layer, and the opposite face. Let

• l denote the 120 degree clockwise rotation of the tip containing the left
corner,

• L denote the 120 degree clockwise rotation of the tip/middle layer con-
taining the left corner,

• r denote the 120 degree clockwise rotation of the tip containing the right
corner,

• R denote the 120 degree clockwise rotation of the tip/middle layer con-
taining the right corner,

• u denote the 120 degree clockwise rotation of the tip containing the up
corner,

• U denote the 120 degree clockwise rotation of the tip/middle layer con-
taining the up corner,

• b denote the 120 degree clockwise rotation of the tip containing the back
corner,

• B denote the 120 degree clockwise rotation of the tip/middle layer con-
taining the back corner.

Let G = 〈R,L,U,B, r, l, u, b〉 denote the Pyraminx group.
Each move g ∈ G induces a permutation of E denoted σ(g). Note that G does

not permute the vertices. Furthermore, the tip moves r, l, u, b do not affect the
edges.

Lemma 13.4.1. σ : G → SE is a group homomorphism.

Example 13.4.1. ρ(L) is a 3-cycle in SV , σ(L) is a 3-cycle in SE.
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13.4.1 Orientations

Assume for the moment that the Pyraminx is fixed in space as above and is
in the ‘solved’ position. For each corner or edge piece, choose once and for all
one facet on that piece. There are three possible choices for each corner piece
and two for the edges. Mark each of these chosen facets with an imaginary ‘+’,
leaving the other facets unmarked. For the rest of this section, we shall make
the following choices for the marked facets (with reference to the numbering in
§4.4 ):

• marked edge facets: 4, 6, 10, 15, 20, 25

• marked corner facets: 1, 13, 17, 23

For each edge piece, assign to a move g ∈ G either

• a ‘0’ if the ‘+ facet’ for that piece when it was in the solved position is
sent to the ‘+ facet’ for that piece in the present position,

• a ‘1’ otherwise.

Since there are 6 edge pieces, this yields a 6-tuple of 0’s and 1’s: ~w(g) =
(w1, w2, ..., w6).

Example 13.4.2. We compute the effect of the basic twist moves on the edge
orientations in Figure 13.1.

X ~w(X)
B (0,0,0,1,0,1)
R (0,0,1,0,1,0)
L (1,0,1,0,0,0)
U (0,1,0,1,0,0)

R · U−1 · R−1 · U (1,1,0,0,0,0)

Figure 13.1: Corner orientations for the Pyraminx

For each corner piece, assign to a move g ∈ G either

• a ‘0’ if the ‘+ facet’ for that piece when it was in the solved position is
sent to the ‘+ facet’ for that piece in the present position,

• a ‘1’ if the ‘+ facet’ for that piece when it was in the solved position is
sent to the facet which is a 120 degree rotation about its vertex from the
‘+ facet’ for that piece in the present position,

• a ‘2’ otherwise.

Since there are 4 corner pieces, this yields a 4-tuple of 0’s, 1’s, and 2’s: ~v(g) =
(v1, v2, v3, v4).
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X ~v(X)
B (0,0,0,2)
R (0,0,2,0)
L (0,2,0,0)
U (2,0,0,0)

Figure 13.2: Corner orientations for the Pyraminx

Example 13.4.3. We compute the effect of the basic twist moves on the corner
orientations in Figure 13.2.

Proposition 13.4.1. If ~w(g) = (w1, w2, ..., w6) corresponds to a move g ∈ G,
then

w1 + w2 + ... + w6 ≡ 0 (mod 2).

Observation: There is no corresponding condition for the v1, ..., v4, since
corner moves move them around freely.

Proof: The proof uses the following lemma, but is otherwise essentially the
same as the corresponding fact (Theorem 11.2.1 (c)) which we proved for the
Rubik’s Cube. The modifications required for the proof are left to students as
an exercise to test their understanding of the argument. ¤

Lemma 13.4.2. For g, h ∈ G, we have

~w(g · h) = σ(g)−1(~w(h)) + ~w(g).

Proof: The argument for the proof is essentially the same as the corre-
sponding fact (Lemma 11.1.1) which we proved for the Rubik’s Cube. The
modifications required for the proof are left to the interested reader. ¤

Lemma 13.4.3. For g, h ∈ G, we have

~v(g · h) = ~v(h) + ~v(g).

Ponderable 13.4.1. Try to verify this lemma.

Let H denote the illegal Pyraminx group generated by G and the ‘illegal
edge moves’ (that is, one may physically remove the edge pieces and reassemble
the Pyraminx). Illegal center or corner moves are not allowed in H. Let

H∗ = {(s, v, w) | r ∈ SV , s ∈ SE , v ∈ C4
3 , w ∈ C6

2}

and define · : H∗ × H∗ → H∗ by

(s, v, w) · (s′, v′, w′) = (s · s′, v + v′, s′(w) + w′).

Theorem 13.4.1.

• H∗ is, with this operation, a group.
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• There is an isomorphism

H ∼= H∗ ∼= C4
3 × (C6

2 ⋊ SE),

and hence between H and the direct product of the tip moves C4
3 and the

wreath product

C4
3 × (C2 wr SE).

• The map G → H∗ defined by

g 7−→ (σ(g), v(g), w(g)),

is a homomorphism.

13.4.2 Center pieces

Each corner piece has 3 center pieces neighboring it. Facts:

• The center pieces associated with a corner can never be moved into a
middle layer associated with another corner.

• The center pieces associated with a corner can always be color-aligned
with the colors of the corner piece by a corner twist move.

The last fact says, in other words, that the center pieces can always be ‘solved’
by a corner piece.

13.4.3 The group structure

Theorem 13.4.2. G is isomorphic to

{(s, v, w) ∈ H∗ | s even, w1 + w2 + ... + w6 ≡ 0 (mod 2)}.

Proof: The idea to prove this is to show that

• AE = 〈σ(R), σ(L), σ(U), σ(B)〉,

• the map

G → AE ,
g 7−→ σ(g),

is surjective, and the map

• G → {(w1, ..., w6) ∈ C6
2 | w1 + ... + w6 ≡ 0 (mod 2)}, g 7−→ ~w(g), is

surjective (as a map of sets).
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Here’s the proof of the first point: We can label (as in §5.10 ) the edges 1, 2, ..., 6
so that the edges on the front face are 1, 2, 3, resp., where the fl edge is 1, the
fr edge is 2, and the fd edge is 3 (here f , r, l, and d denote the front face, right
face, left face, and down face, resp.). The move [R,U−1] = R · U−1 · R−1 · U
is the counterclockwise cyclic permutation (1, 3, 2) of the edges on the f face.
(This move does not affect any corners but does flip some edges, a fact which
we may ignore for now since we are concerned only with the permutations
now.) In particular, (1, 3, 2) may be written as a product of the generators
in {σ(R), σ(L), σ(U), σ(B)}. Now pick any i ∈ {4, 5, 6} and let s ∈ G denote a
move which sends edge i to edge 2 and does not move edge 1 or 3. The move
s · [R,U−1] · s−1 is the 3-cycle (1, 3, i). It does not affect any corners or other
edges. By Lemma 9.4.4, these permutations generate A6

∼= AE .
The second point follows immediately from the first point proven above.
Here’s the proof of the last point: The move g = [R,U−1] has the following

effect on the orientation: w(g) = (1, 1, 0, 0, 0, 0). The group

{(w1, ..., w6) ∈ C6
2 | w1 + ... + w6 ≡ 0 (mod 2)} ∼= C5

2

is a vector space over F2. The 5 vectors listed in the table of Figure 13.1 for the
values for w are all independent. It follows from this and the group law for G
that the map g 7−→ ~w(g) is surjective.

Theorem 13.4.2 above is thus proven. ¤

13.5 The homotopy group of the Square 1

The Square 1 puzzle is described, for example, on Jaap Scherphuis’s web page
[Sch2]. It is cube-shaped (at least in the solved position), with three parallel
slices from top to bottom, just like the Rubik’s Cube has. However, the vertical
slices are not parallel to the faces, nor to each other. This means that after
some moves the puzzle is no longer cube-shaped.

Here we study the group theoretic properties of the collection G of all ‘words’
in the basic moves of the Square 1 puzzle which preserve the cube shape. This
collection forms a group which, motivated by Wilson [W], we call the homotopy
group of the Square 1 puzzle. The list of shapes which the Square 1 puzzle
can make is given in [Sch2] (also [Sn2], though it is out of print). There are 10
such shapes, including the cube shape. It is not hard to see that the homotopy
group of any one of these other shapes is conjugate to G¤.

A by-product of the proof is an collection of moves which can be used to solve
the Square 1 puzzle once it is put in the cube shape.

13.5.1 The main result

Let Sn denote the symmetric group of degree n, i.e., the group of permutations
of {1, 2, ..., n}. Let sgn : Sn → {±1} denote the homomorphism which assigns to
each permutation its sign, as in Definition 3.1.1 (the sign of a cyclic permutation
of length r is (−1)r+1, for example).
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Let G¤ denote the illegal Square 1 group generated by all legal moves
preserving the cube shape and all illegal moves (i.e., disassembly and reassembly
is allowed) preserving the cube shape. It is clear that

G¤
∼= S8 × S8.

We shall see that the size of the homotopy group G of the Square 1 is about
0.8 billion.

Theorem 13.5.1. Let G¤ be as above and let G be the subgroup generated by the
‘square moves’ d3, u3, B(u3, 1), B(1, d3), T (u3, 1), and T (1, d3), as in §13.5.2
below. The group G¤ is isomorphic to S8×S8, and G is isomorphic to the kernel
of index 2 in G¤

∼= S8 × S8 of the homomorphism f : S8 × S8 → {±1} defined
by f(g1, g2) = sgn(g1)sgn(g2). Consequently, |G¤| = 214345272 = 1625702400
and |G| = 213345272 = 812851200.

As a corollary of the proof of this theorem, given below, we shall see that any
even permutation of the corners is possible and any even permutation of the
wedges is possible.

13.5.2 Some notation

We shall assume that the puzzle is in the solved position with the ‘Square 1’
side in front, right side up.

Definition 13.5.1. Let

• u denote rotation of the up face by 30 degrees clockwise,

• d denote rotation of the down face by 30 degrees clockwise,

• R denote rotation of the cube by 180 degrees though one of the skew-
diagonal cuts (in a given position, at most one such move is possible, so
this is unambiguous).

Like the 15 Puzzle, and unlike the Rubik’s Cube, not any sequence of u, d,
and R’s is possible.

Let

T (x, y) = u · R · x · y · R · u−1, B(x, y) = d−1 · R · x · y · R · d,

where x, y are moves of the Square 1 puzzle.
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In the notation of these diagrams, we have

uRu−1d−1Rd = (2, 8)(4, 6)
T (u3, 1) = (1′, 6′, 7′, 4′)(1, 6, 7, 4)
T (1, d3) = (2′, 3′, 8′, 5′)(2, 3, 8, 5)
B(u3, 1) = (1, 2, 7, 8)(1′, 6′, 7′, 4′)
B(1, d3) = (3, 4, 5, 6)(2′, 3′, 8′, 5′).

13.5.3 Two subgroups

Let
Gu = 〈T (u3, 1), T (1, d3)〉

and
Gd = 〈B(u3, 1), B(1, d3)〉 .

Lemma 13.5.1. Gu and Gd are each isomorphic to C4 × C4.

Proof: We have T (u3, 1)T (1, d3) = T (1, d3)T (u3, 1). Moreover, T (u3, 1) and
T (1, d3) are each of order 4. Since

C4 × C4 = 〈a, b | a4 = 1, b4 = 1, ab = ba〉,

the lemma follows. ¤

The homotopy group of the Square 1 puzzle is

G = 〈d3, u3, B(u3, 1), B(1, d3), T (u3, 1), T (1, d3)〉 .

We use the labelings in Definition 13.5.1 to describe the moves of the Square 1
puzzle.

13.5.4 Proof of the theorem

We shall prove the theorem in the following steps:

• Show that the wedge 3-cycle (1, 2, 3) and the corner 3-cycle (1′, 2′, 3′) each
belong to G.

• Show that any wedge 3-cycle (1, 2, i) and each corner 3-cycle (1′, 2′, i′)
belong to G.

• Show that there is an injective homomorphism φ : G → S8×S8 where the
image φ(G) contains A8 × A8.

• Conclude that G ∼= S8 × S8/{±1}.

Step 1: First, we claim that (1, 2, 3) belongs to G. In fact, the 3-cycle (1, 2, 3)
is obtained from the move M1, defined to be

(B(u3, 1) · d3) · ((B(u3, 1) · d−3) · (B(u−3, 1) · T (1, d−3) · d6)))4 · (B(u3, 1) · d3)−1.
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(Incidently, this 80-move manuever may be verified using SAGE or GAP [Gap].
See also [Sn2].)

Next, we claim that (1′, 2′, 3′) belongs to G. In fact,

M2 = Ru3Rd−3Ru3(Ru−3)2d3Ru−3

is the product of 2-cycles (2′, 3′)(3, 4). (This move was found in [Sn2].) There-
fore, u3M2u

−3 is the product of 2-cycles (1′, 2′)(2, 3). The product of these is
(1′, 2′, 3′)(2, 3, 4). Since (2, 3, 4) is obtained from u−3M1u

3, we see that (1′, 2′, 3′)
is in G.

Step 2: Let g be any move in G which sends wedges 3 to wedge i, resp., and
does not move wedges 1, 2 (it may permute other wedges and corners). Then
(1, 2, i) = g · (1, 2, 3) · g−1. Thus (1, 2, i) ∈ G.

The proof that each (1′, 2′, i′) ∈ G is similar.
Step 3: It is clear from our definition that there is an injection G → S8 × S8

as sets. The verification that this is a homomorphism is straightforward.
Step 4: The group A8 is generated by the 3-cycles (1, 2, i) (see Lemma 9.4.4).

Since these all belong to G¤, all even wedge permutations are possible. Simi-
larly, all even corner permutations are possible. Thus A8 × A8 ⊂ G.

Let p1 : S8×S8 → S8 denote the projection onto the first factor. Let p2 denote
the projection onto the second factor. For each generator g ∈ {d3, u3, B(u3, 1),
B(1, d3), T (u3, 1), T (1, d3)} of G we have sgn(p1(g)) = sgn(p2(g)). Thus the
image φ(G) is strictly contained in S8 × S8. In fact, this shows that φ(G) is
contained in the kernel ker(f) of the homomorphism f : S8×S8 → {±1} defined
in the statement of the theorem. Since

A8 × A8 ⊂ G ⊂ ker(f),

[ker(f) : A8 × A8] = 2, and T (u3, 1) /∈ A8 × A8, the theorem follows. ¤

13.6 The Masterball group

Recall the notation from §4.3. The Masterball group,

G = 〈f1, f2, f3, f4, f5, f6, f7, f8, r1, r2, r3, r4〉,

is a subset of S32. We can provide a simple proof to show that G is a subset of
S32, by showing the following result.

Theorem 13.6.1. G = S16 × S16.

Proof: Since the Masterball is made up of 32 facets, the permutation group
G, on these facets, must be a subset of S32. If we agree that we can take the ball
apart and put the pieces back in any position, we have generated S32, saying
that any swap is legal. However, as stated before, equator facets can be swapped
only with equator facets and polar facets can be swapped only with polar facets.
Since there are 16 polar facets, the group of polar swaps, Gp is a subset of S16.
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Similarly, since there are 16 equatorial facets, the group of equatorial swaps,
Ge, is a subset of S16. To prove that Gp and Ge do each generate S16, we need
only to recall Steinhaus’s Theorem 3.4.1.

If then we can provide a 2-cycle which swaps any two polar facets and a 2-cycle
which swaps any two equatorial facets (neglecting setup moves), we have shown
that Gp and Ge, both products of 2-cycles, have generated S16. The following
polar swap can be represented by the 2-cycle, (18, 48):

r4r1f1r1f1r4f1r
−1
1 f1r

−2
4 f1r1f1r4f1r

−1
1 f1r

4
4f1r1f1r4×

×f1r
−1
1 f1r

−2
4 f1r1f1r

2
4f1r

−1
1 f1r

2
4f1r1f1r

−1
4 f1r

−1
1 f1r

−1
4 f1×

×r1f1r4f1r
−1
1 f1r1r

−2
4 f1r

−1
1 f1r

−1
4 f1r1f1r

−1
1 r4f1r1f1r

−1
1 ×

×f1r1f1r
2
4f1r

−1
1 f1r1f1r

−1
1 f1r1r

−1
4 f1r

−1
1 f1r4f1r1f1r

−2
1 r−2

4 .

The following equator swap can be represented by the 2-cycle, (28, 38):

r3r2f1r2f1r3f1r
−1
2 f1r

−2
3 f1r2f1r3f1r

−1
2 f1r

4
3f1r2f1r3f1r

−1
2 ×

×f1r
−2
3 f1r2f1r

2
3f1r

−1
2 f1r

2
3f1r2f1r

−1
3 f1r

−1
2 f1r

−1
3 f1r2f1r3×

×f1r
−1
2 f1r2r

−2
3 f1r

−1
2 f1r

−1
3 f1r2f1r

−1
2 r3f1r2f1r

−1
2 f1r2f1r

2
3×

×f1r
−1
2 f1r2f1r

−1
2 f1r2r

−1
3 f1r

−1
2 f1r3f1r2f1r

−2
2 r−2

3 .

Since any polar facet can be placed in the 18 and 48 positions, and any equator
facet can be placed in the 28 and 38 positions (with the aid of setup moves), we
have shown that Gp and Ge can be written as products of 2-cycles and therefore
generate S16. Then it follows, since G = Ge × Gp, then G = S16 × S16 and is
therefore a subgroup of S32. ¤
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Chapter 14

Crossing the Rubicon

Mathematical structures are among the most beautiful discoveries
by the human mind. The best of these discoveries have tremendous
metaphorical and explanatory power.

Douglas Hofstadter, Metamathematical themas, 1985

The title of this chapter is ‘borrowed’ from a similarly worded title of an article
by D. Hofstadter [H].

This chapter is a little more advanced than some of the others. The reader is
assumed to be familiar with some topics covered in a course in linear algebra
and elementary number theory or coding theory. I will also assume some results
from Rotman [R], though for the understanding of the material in this chapter
the reader may simply take those results on faith.

Let g1, ..., g12 denote the basic moves of the Rubik icosahedron. A surprising
result of Conway states that the group generated by gi · g−1

j is the simple ‘spo-
radic’ group M12. (This is stated more precisely below.) I shall describe, in this
chapter, what M12 is and some of its remarkable properties. They form a basis
for my opinion, which I hope you will agree with, that M12 is one of the most
interesting objects in mathematics.

Let p be a prime unless otherwise stated and let q be a power of p. We shall
assume that p > 3.

14.1 Doing the Mongean shuffle

Consider a deck of 12 cards labeled 0, 1, ..., 11. Let r, s be the permutations

r(t) = 11 − t, s(t) = min(2t, 23 − 2t).

The permutation r simply reverses the cards around; the permutation s is called
the ‘Mongean shuffle’, named after Gaspard Monge (1746-1818), a French math-
ematician known mostly for his work in geometry. Monge also worked on the
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14.1. DOING THE MONGEAN SHUFFLE

calculus of variations, partial differential equations, and combinatorics. To per-
form the reverse shuffle, simply take a stack of cards (face down, say) in your left
hand and put them in your right hand one at a time (face down). To perform
the Mongean shuffle, take the same stack of cards and, one at a time, put them
alternately into one of two piles: the first card face up into the first pile, the
second card face down into the second pile, the third card face up into the first
pile, the fourth card face down into the second pile, and so on until the pile is
exhausted. Now pick up the first pile of face-up cards, flip the entire pile over
so that they are all face down, and put this first pile on top of the second pile.

Cards Reverse shuffle Mongean shuffle
0 11 0
1 10 2
2 9 4
3 8 6
4 7 8
5 6 10
6 5 11
7 4 9
8 3 7
9 2 5
10 1 3
11 0 1

Definition 14.1.1. The Mathieu group M12 is defined to be the permutation
group M12 = 〈r, s〉 ⊂ S12.

Emile Mathieu (1835–1890) actually discovered five ‘sporadic’ simple groups,
of which M12 is only one, a year after his Docteur es Sciences thesis in 1859.
(Most simple groups belong to certain infinite families of simple groups; ‘spo-
radic’ simply means that it is not from one of these infinite families.) Mathieu’s
main work was in mathematical physics and special (hypergeometric) functions.

Example 14.1.1. Here we use SAGE to explore the Mathieu group M12.

SAGE

sage: r = lambda t: 11-t
sage: s = lambda t: min(2 * t,23-2 * t)
sage: R = [str((i+1,r(i)+1)) for i in range(12)]
sage: S = [str((i+1,s(i)+1)) for i in range(12)]
sage: print R
[’(1, 12)’, ’(2, 11)’, ’(3, 10)’, ’(4, 9)’, ’(5, 8)’,

’(6, 7)’, ’(7, 6)’, ’(8, 5)’, ’(9, 4)’, ’(10, 3)’,
’(11, 2)’, ’(12, 1)’]

sage: print S
[’(1, 1)’, ’(2, 3)’, ’(3, 5)’, ’(4, 7)’, ’(5, 9)’,
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’(6, 11)’, ’(7, 12)’, ’(8, 10)’, ’(9, 8)’, ’(10, 6)’,
’(11, 4)’, ’(12, 2)’]

sage: g1 = G(’(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)’)
sage: g2 = G(’(2, 3, 5, 9, 8, 10, 6, 11, 4, 7, 12)’)
sage: M = PermutationGroup([g1,g2])
sage: M.order()
95040
sage: MathieuGroup(12).order()
95040
sage: MathieuGroup(12).is_isomorphic(M)
True

14.2 Background on PSL2

We need a few basic facts about the projective special linear group of degree 2.
We have already discussed the related group GL(2, Fp) in §12.3.1, so I refer you
there for more details.

Möbius transformations, introduced in §12.3.1 are bijections from the projec-
tive line to itself, so we may interpret each Möbius transformation as an element
of the symmetric group SX , where X = P1(Fq) (and therefore also of Sn, where
n = |P1(Fq)| = q + 1).

Example 14.2.1. Let p = 11 and let f(x) = −1/x. Then

x ∞ 0 1 2 3 4 5 6 7 8 9 10
f(x) 0 ∞ 10 5 7 8 2 9 3 4 6 1

Therefore, as a permutation, f = (∞, 0)(1, 10)(2, 5)(3, 7)(4, 8)(6, 9).

The following facts are known about the projective special linear group.

Theorem 14.2.1. If q > 3 then PSL2(Fq) is a simple group. Moreover, for all
prime powers q,

|PSL2(Fq)| = (q2 − 1)q/gcd(2, q − 1).

(A simple group was defined in Definition 9.5.1.) This theorem is over 100
years old. It is proven, for example, in [R].

Theorem 14.2.2. Choose a k ∈ Fq such that 〈k〉 = F×
q . Let

f1(x) = x + 1, f2(x) = k · x, f3(x) = −1/x.

Then PSL2(Fq) is generated by f1, f2, and f3. In particular, the action of
PSL2(Fq) on the projective line X = P1(Fq) yields an injective homomorphism
PSL2(Fq) → SX .

Basically, this is proven in [R] as well.
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14.3 Galois’ last dream

Supposedly, the night before he died in a duel, Galois wrote a letter to a friend
containing the following remarkable theorem:

Theorem 14.3.1. (Galois) Assume p > 11. Then PSL2(Fp) has no embed-
ding into a symmetric group Sn with n ≤ p.

Example 14.3.1. Although this example doesn’t prove anything, the following
SAGE calculation is consistent with Galois’ theorem.

SAGE

sage: G = PGL(2,13)
sage: G._gap_().LargestMovedPoint()
14
sage: G._gap_().SmallerDegreePermutationRepresentati on()
IdentityMapping( Group([ (3,14,13,12,11,10,9,8,7,6,5, 4),

(1,2,9)(3,8,10)(4,5,12)(6,13,14) ]) )

The following isomorphisms (for q ≤ 11) are known:

PSL2(Fq) ∼=







A4, q = 3,
A5, q = 5,
A6, q = 9.

If p = 7 or p = 11 then explicit embeddings of PSL2(Fp) into A7 (p = 7), A11

(p = 11) are known (see [CS], ch 10, or [K] for an excellent discussion of this).

14.4 The M12 generation

One of the most amazing aspects about M12 is its close relationship with other
‘interesting’ groups.

Definition 14.4.1. Define the permutation f4 of the set P1(Fp) = {∞, 0, 1, ..., p−
1}, for 3 ≤ p ≤ 11, as follows

f4 =















1, p = 3,
(1, 2)(3, 4), p = 5,
(1, 2)(3, 6), p = 7,

(2, 10)(3, 4)(5, 9)(6, 7), p = 11.

We have run across the group S6 before, when studying the symmetries of the
icosahedron. We have also seen that S6 is rather an interesting group because it
is the only non-abelian symmetric group Sn which has an outer automorphism.
One rather interesting connection between M12 and S6 is given by the following
result.
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Theorem 14.4.1.

(a) If p = 5 then S6 = 〈f1, f2, f3, f4〉.
(b) If p = 11 then M12 = 〈f1, f2, f3, f4〉.
We shall see another interpretation of M12 below using coding theory!

Definition 14.4.2. Let

δ(x) =

{

x3/9, x ∈ (F23)
2 − 0,

9x3, x ∈ P1(F23) − (F23)
2.

This is an element of SX , where X = P1(F23). Define the Mathieu group
M24 by

〈 f, δ | f ∈ PSL2(F23) 〉.
This is a permutation group in SX , where X = P1(F23).

By the way,

(a) {x2 | x ∈ F23} = {0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18},
(b) M12 = 8 · 9 · 10 · 11 · 12 = 95040,

(c) |M24| = 244823040.

Here is how to verify this using SAGE:

SAGE

sage: Set([xˆ2 for x in GF(23)])
{0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
sage: MathieuGroup(12).order()
95040
sage: MathieuGroup(24).order()
244823040

14.5 Coding the Golay way

The Golay code is probably the most important of all codes for both
practical and theoretical reasons.

MacWilliams and Sloane [MS], p. 64

Codes are used in everyday life, from ISBN numbers on books to bar codes on
food products to music CDs to satellite transmissions. There are many types
of codes, some more efficient than others, some with better error-correcting
ability than others, some more practical than others, and so on. We shall
concern ourselves only with aspects which are related to (in one way or another)
permutation puzzles.

Let q = pk be a prime power.
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Definition 14.5.1. A q-ary code is a subset C of a finite dimensional vector
space V , provided a fixed basis over the finite field Fq. The number of coordinates
(i.e., the dimension of V) is called the length of the code word. If q = 2 then
the code is called binary (instead of 2-ary) and if q = 3 then the code is called
ternary (instead of 3-ary).

A code C which is a vector space over Fq is called a linear code. The elements
(or vectors) in this vector space C are called codewords.

Two linear codes C,C ′ ⊂ Fn
q are equivalent if there is a bijection F ;C → C ′

which is obtained by composing a permutation of the positions of the codewords
c = (c1, c2, ..., cn) (via an element p of Sn sending c to (cp(1), cp(2), ..., cp(n)))
with a map of the form c = (c1, c2, ..., cn) 7−→ c′ = (a1c1, a2c2, ..., ancn), for
some a1, ..., an ∈ F×

q .
Imagine we have a long message to send: ‘Hi Mom! I just learned how to solve

the Rubik’s Cube ...’ First, chop this message into blocks of a specific size, say
each block contains k consecutive letters. (This depends on the code you want
to use.) Next, each letter, space and punctuation mark can be translated into
a number. (It doesn’t matter how.) There are only finitely many letters and
punctuation marks, so we can choose q larger than every number arising this
way. Now associate with each number arising this way a corresponding element
of Fq, so that different numbers are associated with different elements. In this
way, our message can be regarded as a sequence of elements of Fk

q . For this

reason, the vector space Fk
q over Fq is often called the information space.

Suppose that we use a linear code to transmit our message. A linear code
of length n may be regarded as the image of an injective linear transformation
G : Fk

q → Fn
q . Give Fk

q and Fn
q their standard bases. The encoding map G, with

respect to these bases, is called the generating matrix of C. The rows of G
form a basis for the vector space C over Fq.

Example 14.5.1. Here is an example of such a code using SAGE.

SAGE

sage: C = HammingCode(3,GF(2))
sage: C
Linear code of length 7, dimension 4 over Finite Field of size 2
sage: C.gen_mat()
[1 1 1 0 0 0 0]
[1 0 0 1 1 0 0]
[0 1 0 1 0 1 0]
[1 1 0 1 0 0 1]
sage: C.check_mat()
[0 1 1 1 1 0 0]
[1 0 1 1 0 1 0]
[1 1 0 1 0 0 1]

One other interesting thing about linear codes is that there is a surjective
linear map H : Fn

q → Fn−k
q with the property that Hv = ~0 if and only if v ∈ C.

In other words, H checks whether or not your received vector v contains any
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errors (i.e., if v is actually a codeword). The map H with respect to the standard
basis is called the parity check matrix, or simply the check matrix.

Ponderable 14.5.1. Show that for all w ∈ Fk
q , HGw = ~0.

Example 14.5.2. V = Fn
q = Fq × ... × Fq (n times) is a code.

If v = (v1, v2, ..., vn), w = (w1, w2, ..., wn) are vectors in V , then we define

d(v, w) = |{i | 1 ≤ i ≤ n, vi 6= wi}|

to be the Hamming distance between v and w.

Definition 14.5.2. We say that C is e-error correcting if the following prop-
erty always holds: given any w ∈ Fn whose Hamming distance from some c ∈ C
is ≤ e then any c′ ∈ C, c 6= c′, must satisfy d(w, c′) > e (in other words, a code-
word at most distance e from w is unique if w has at most e errors).

Definition 14.5.3. Let Monn(Fq) denote the group of all n×n matrices which
have exactly one non-zero entry from Fq per row and per column. An element
of Monn(Fq) is called a monomial matrix.

Ponderable 14.5.2.

(a) Show Monn(Fq) is a group.

(b) Show |Monn(Fq)| = (q − 1)n · n!.

Definition 14.5.4. The set of all A ∈ Monn(Fq) such that A ·C = C (i.e., are
the same code) is called the automorphism group of C, denoted Aut(C).

We shall see some examples below.

Definition 14.5.5. If w is a codeword in Fn
q then the number of non-zero

coordinates of w is called the weight of w, denoted wt(w). The set of locations
where the coordinates of w are non-zero, {i | wi 6= 0}, is called the support of
w, denoted supp(w).

If C is a linear code then the smallest non-zero weight of any codeword is
called the minimum distance of C.

A cyclic code is a code which has the property that whenever (c0, c1, ..., cn−1)
is a codeword then so is (cn−1, c0, ..., cn−2). If c = (c0, c1, ..., cn−1) is a non-zero
codeword in a cyclic code C with the property that the degree of

gc(x) = c0 + c1x + ... + cn−1x
n−1

is minimum (among all such polynomials, as c ranges over all the non-zero
codewords in C), then we call gc a generator polynomial for C

.
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Example 14.5.3. The code with generator matrix








1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1









is a binary code of length 7 and minimum distance 3. It is equivalent to a cyclic
code having a generator polynomial

g(x) = 1 + x + x3.

(For the proof of this statement, see for example Huffman and Pless [HP].) This
code is called a ‘Hamming code’ and has many interesting properties which, to
describe, would take us too far afield. The interested reader is refered to [CS],
ch. 3, [MS], and [HP].)

Ponderable 14.5.3. Check that the code in Example 14.5.3 is 1-error correct-
ing.

Definition 14.5.6. Let n be a positive integer relatively prime to q and let α
be a primitive n-th root of unity. Each generator polynomial g of a cyclic code
C of length n has a factorization of the form

g(x) = (x − αk1)...(x − αkr ),

where {k1, ..., kr} ⊂ {0, ..., n − 1}. The numbers αki , 1 ≤ i ≤ r, are called the
zeros of the code C. They do not depend on the choice of g.

Definition 14.5.7. Let p and n be distinct primes and assume that p is a square
mod n. The quadratic residue code of length n over Fp is the cyclic code
whose generator polynomial has zeros

{αk | k is a square (mod n)}.
The binary Golay code GC23 is the quadratic residue code of length 23 over
F2. The binary Golay code GC24 is the code of length 24 over F2 obtained
by appending onto GC23 a zero-sum check digit (i.e., appending a field element
which makes the codeword entries sum to 0 in the field).

The ternary Golay code GC11 is the quadratic residue code of length 11
over F3. The ternary Golay code GC12 is the code of length 12 over F3

obtained by appending onto GC11 a zero-sum check digit.

A generator matrix of GC11 is

















1 0 0 0 0 0 2 0 1 2 1
0 1 0 0 0 0 1 2 2 2 1
0 0 1 0 0 0 1 1 1 0 1
0 0 0 1 0 0 1 1 0 2 2
0 0 0 0 1 0 2 1 2 2 0
0 0 0 0 0 1 0 2 1 2 2
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and a generator matrix of GC23 is

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

These were obtained using the following commands.

SAGE

sage: C = TernaryGolayCode(); C
Linear code of length 11, dimension 6 over Finite Field of siz e 3
sage: C = BinaryGolayCode(); C
Linear code of length 23, dimension 12 over Finite Field of si ze 2

Now simply enter the command C.gen_mat() to obtain the matrices above.
The Golay codes are among the most important of all error-correcting codes.

They are named after Marcel Golay (1902-1989), a physicist born in Switzerland,
and educated in Zürich and then at the University of Chicago. Right after
receiving his diploma, he worked for the U. S. Army Signal Corps Labs for
almost 25 years. It was during this time that he discovered, in 1949, the Golay
codes and the non-binary generalization of the Hamming codes. (Golay knew
only of the [7, 4]-binary Hamming code, discovered the binary Hamming codes
independently, and then generalized them to the non-binary case.)

The following result illustrates how the Mathieu groups arise in coding theory.

Theorem 14.5.1.

(a) There is a normal subgroup N of Aut(GC12) of order 2 such that Aut(GC12)/N
is isomorphic to M12.

(b) Aut(GC24) = M24.

These can be found in the excellent book Huffman and Pless [HP] and the
wonderful Atlas of finite groups [A] (look under M12 and M24, respectively).

Since the Mathieu groups are so large, this theorem above indicates that the
Golay codes GC12 and GC24 have a lot of symmetry.

It is a basic rule of thumb in mathematics that whenever you find something
displaying a lot of symmetry, it will quite often have other interesting properties.
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With this philosophy spurring us on, let us turn to some of the other properties
of these codes.

Lemma 14.5.1. Any two codewords in GC24 differ by 8 bits. The code GC24

detects 4 errors (per 24 bits) and corrects 3 errors.

When you compare that with the correcting ability of bar codes or ISBN codes
(which merely have a check-digit), GC24 is much better.

Lemma 14.5.2. If w is a codeword in GC24 then wt(w) is either 0, 8, 12, 16, 24.

In other words, the weight distribution vector (A0, A1, ..., A24), where Ai is
the number of codewords of weight i, only has Ai > 0 for i in {0, 8, 12, 16, 24}.
Definition 14.5.8. The codewords of weight 12 in GC24 are called dodecads.

Example 14.5.4. We can use SAGE to get a handle on this concept of a
dodecad.

SAGE

sage: C = ExtendedBinaryGolayCode(); C
Linear code of length 24, dimension 12 over

Finite Field of size 2
sage: print C.weight_distribution()
[1, 0, 0, 0, 0, 0, 0, 0, 759, 0, 0, 0, 2576, 0, 0, 0, 759, 0,

0, 0, 0, 0, 0, 0, 1]
sage: c = C.random(); c
(0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,

0, 1, 0, 1, 1, 1)
sage: hamming_weight(C.random())
12
sage: c in C
True
sage: d = c.nonzero_positions(); d
[2, 4, 8, 9, 11, 14, 15, 17, 19, 21, 22, 23]

The above codeword c is an example of a dodecads. You can see from the weight
distribution that most codewords in GC24 are dodecads.

We may identify a codeword w = (c0, c1, ..., c23) with the set of indices i of the
non-zero coordinates ci 6= 0.

Theorem 14.5.2. M12 is the stabilizer in M24 of a dodecad, regarded as a set
of indices.

There are also fascinating connections between the code GC24 and the con-
structions of certain designs.

A block design is a pair (X,B), where X is a non-empty finite set of v > 0
elements called points, and B is a non-empty finite multiset of size b whose
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elements are called blocks, such that each block is a non-empty finite multiset
of k points. A design without repeated blocks is called a simple block design.
If every subset of points of size t is contained in exactly λ blocks, then the block
design is called a t− (v, k, λ) design (or simply a t-design when the parameters
are not specfied). When λ = 1 then the block design is called a S(t, k, v) Steiner
system. (See chapter 8 of [HP], or almost any textbook on combinatorics, for
further details on block designs.)

Theorem 14.5.3. (Assmus and Mattson theorem, §8.4, p. 303 of [HP]) Let
A0, A1, ..., An be the weights of the codewords in a binary linear [n, k, d] code C,
and let A⊥

0 , A⊥
1 , ..., A⊥

n be the weights of the codewords in its dual [n, n − k, d⊥]
code C⊥. Fix a t, 0 < t < d, and let

s = |{i | A⊥
i 6= 0, 0 < i ≤ n − t}|.

Assume s ≤ d − t.

• If Ai 6= 0 and d ≤ i ≤ n then Ci = {c ∈ C | wt(c) = i} holds a simple
t-design.

• If A⊥
i 6= 0 and d⊥ ≤ i ≤ n − t then C⊥

i = {c ∈ C⊥ | wt(c) = i} holds a
simple t-design.

In the Assmus and Mattson theorem, X is the set {1, 2, ..., n} of coordinate
locations and B = {supp(c) | c ∈ Ci} is the set of supports of the codewords of
C of weight i. Therefore, the parameters of the t-design for Ci are:

• t (given),

• v = n,

• k = i (k is not to be confused with dim(C)),

• b = Ai

• λ = b · C(k, t)/C(v, t), where C(a, b) denotes the binomial coefficient ‘a
choose b’,

by Theorem 8.1.6, p 294, in [HP].

Example 14.5.5. The following SAGE example below means that the binary
[24, 12, 8]-code C has the property that the (support of the) codewords of weight
8 (resp, 12, 16) form a 5-design. Similarly for its dual code C⊥ (of course
C = C⊥ in this case, so this information is extraneous).

First, we enter the binary [24, 12, 8] Golay code and then use the verbose op-
tion of SAGE’s assmus mattson designs function. For typographical reasons,
SAGE uses C* instead of C⊥ in its output.
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SAGE

sage: C = ExtendedBinaryGolayCode()
sage: C.assmus_mattson_designs(5, mode="verbose")

The weight 8 codewords of C form a t-(v,k,lambda) design,
where

t = 5 , v = 24 , k = 8 , lambda = 1
There are 759 blocks of this design.

The weight 12 codewords of C form a t-(v,k,lambda) design,
where

t = 5 , v = 24 , k = 12 , lambda = 48
There are 2576 blocks of this design.

The weight 16 codewords of C form a t-(v,k,lambda) design,
where

t = 5 , v = 24 , k = 16 , lambda = 78
There are 759 blocks of this design.

The weight 24 codewords of C form a t-(v,k,lambda) design,
where

t = 5 , v = 24 , k = 24 , lambda = 1
There are 1 blocks of this design.

The weight 8 codewords of C * form a t-(v,k,lambda) design,
where

t = 5 , v = 24 , k = 8 , lambda = 1
There are 759 blocks of this design.

The weight 12 codewords of C * form a t-(v,k,lambda) design,
where

t = 5 , v = 24 , k = 12 , lambda = 48
There are 2576 blocks of this design.

The weight 16 codewords of C * form a t-(v,k,lambda) design,
where

t = 5 , v = 24 , k = 16 , lambda = 78
There are 759 blocks of this design.

[’weights from C: ’,
[8, 12, 16, 24],
’designs from C: ’,
[[5, (24, 8, 1)], [5, (24, 12, 48)], [5, (24, 16, 78)],

[5, (24, 24, 1)]],
’weights from C * : ’,
[8, 12, 16],
’designs from C * : ’,
[[5, (24, 8, 1)], [5, (24, 12, 48)], [5, (24, 16, 78)]]]

14.6 M12 is crossing the Rubicon

The result of this section was mentioned briefly in §12.3 above.

Let f1, f2, ..., f12 denote the basic moves (2π/5 degree turns of a pentagon
about a vertex) of the Rubik icosahedron, regarded as elements of SV , where V
denotes the set of 12 vertices of the Rubik icosahedron (‘Rubicon’).

The following remarkable result is due to John Conway [CS]. John Conway
(1937-) is a very interesting character in the evolution of group theory, or even in
mathematics in general. In the late 1960’s, at a time when some experts thought
all finite simple groups had been classified, Conway found another one, of order
8,315,553,613,086,720,000. This group he found had the nice property that two
of its subgroups were also undiscovered finite simple groups! Thompson [Tho]
has a fascinating account of this discovery.
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Theorem 14.6.1. M12 = 〈x · y−1 | x, y ∈ {f1, ..., f12}〉.

In other words, the Mathieu group M12 (which, recall, is a finite simple group
discovered by Mathieu) is generated by the twist-untwist moves of the Rubik
icosahedron, or Rubicon. If we call a ‘twist-untwist’ move of the form x · y−1

(with x, y as in the theorem above) a cross move, then, with apologies to
Caesar, the theorem above says that M12 is generated by the crosses of the
Rubicon.

In fact, C acts 5-transitively on the set of vertices of the Rubicon (this is
implicit in [CS]).

14.7 An aside: A pair of cute facts

It’s hard to resist stating some more interesting facts about the Mathieu groups.

14.7.1 Hadamard matrices

Let A = (aij)1≤i,j≤n denote a real n × n matrix. The following question seems
quite natural in a course in advanced vector calculus or real analysis:

Question: What is the maximum value of |det(A)|, where the entries of A
range over all real numbers |aij | ≤ 1?

From vector calculus we know that the absolute value of the determinant of a
real square matrix equals the volume of the parallelepiped spanned by the row
(or column) vectors of the matrix. The volume of a parallelepiped with sides
of a fixed length depends on the angles the row vectors make with each other.
This volume is maximized when the row vectors are mutually orthogonal, i.e.,
when the parallelepiped is a cube in Rn. Suppose now that the row vectors of
A are all orthogonal. The row vectors of A, |aij | ≤ 1, are longest when each
aij = ±1, which implies that the length of each row vector is

√
n. Suppose, in

addition, that the row vectors of A are all of length
√

n. Such a matrix is called
a Hadamard matrix of order n. Then |det(A)| = (

√
n)n = nn/2, since the

cube has n sides of length
√

n. Now, if A is any matrix as in the above question
then we must have |det(A)| ≤ nn/2. This inequality is called Hadamard’s
determinant inequality.

Jacques Hadamard (1865-1963) was a prolific mathematician who worked in
many areas, but he is most famous for giving one of the first proofs of the prime
number theorem (in 1896). (The prime number theorem, ‘known’ to Gauss
though not proven, roughly states that the number of prime numbers less than
N is about N/ log(N), as N grows to infinity.)

The above question is unsolved for arbitrary n in the sense that it is not yet (as
of this writing) known for which n’s Hadamard matrices exist. The Hadamard
conjecture states that for each n which is a multiple of 4 a Hadamard matrix
exists. (This conjecture might, in fact, be due to Raymond Paley, a brilliant
mathematician who contributed to several areas of mathematics, including two
constructions of Hadamard matrices using the theory of finite fields. Sadly, he
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died in 1933 at the age of 26 in a skiing accident.) At the time of this writing,
the smallest order for which no Hadamard matrix is presently known is 668.

What might be surprising at first sight is that there does not always exist a
Hadamard matrix—for some n’s they exist and for other n’s they don’t. For
example, there is a 2 × 2 Hadamard matrix but not a 3 × 3 one. What is
perhaps even more suprising is that, in spite of the fact that the above question
arose from an analytic perspective, Hadamard matrices are related more to
coding theory, number theory, and combinatorics [vLW]! In fact, a linear code
constructed from a Hadamard matrix was used in the 1971 Mariner 9 mission
to Mars [vL].

Example 14.7.1. Condider the 12 × 12 matrix

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1 1 1 1 1 1 1
−1 1 1 1 1 1 1 −1 −1 −1 1 −1
−1 −1 1 1 −1 1 1 1 −1 −1 −1 1
−1 1 −1 1 1 −1 1 1 1 −1 −1 −1
−1 −1 1 −1 1 1 −1 1 1 1 −1 −1
−1 −1 −1 1 −1 1 1 −1 1 1 1 −1
−1 −1 −1 −1 1 −1 1 1 −1 1 1 1
−1 1 −1 −1 −1 1 −1 1 1 −1 1 1
−1 1 1 −1 −1 −1 1 −1 1 1 −1 1
−1 1 1 1 −1 −1 −1 1 −1 1 1 −1
−1 −1 1 1 1 −1 −1 −1 1 −1 1 1
−1 1 −1 1 1 1 −1 −1 −1 1 −1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

This is a Hadamard matrix of order 12. A different Hadamard matrix of order
12 can be computed using SAGE:

SAGE

sage: MS = MatrixSpace(QQ,12,12)
sage: A = MS(sage_eval(gap.eval("HadamardMat( 12 )")))
sage: A
[ 1 1 1 1 1 1 1 1 1 1 1 1]
[ 1 -1 1 -1 1 1 1 -1 -1 -1 1 -1]
[ 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1]
[ 1 1 -1 -1 1 -1 1 1 1 -1 -1 -1]
[ 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1]
[ 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1]
[ 1 -1 -1 -1 1 -1 -1 1 -1 1 1 1]
[ 1 1 -1 -1 -1 1 -1 -1 1 -1 1 1]
[ 1 1 1 -1 -1 -1 1 -1 -1 1 -1 1]
[ 1 1 1 1 -1 -1 -1 1 -1 -1 1 -1]
[ 1 -1 1 1 1 -1 -1 -1 1 -1 -1 1]
[ 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1]
sage: det(A)
-2985984
sage: sqrt(12ˆ12)
2985984
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Here SAGE is calling a GAP package GUAVA [Gu], included as part of SAGE,
which implements some mthods for constructing Hadamard matrices. The last
lines check that det(A) = nn/2.

Ponderable 14.7.1. Show that

(a) if you swap two rows or columns of a Hadamard matrix, you will get
another Hadamard matrix;

(b) if you multiply any row or column of a Hadamard matrix by −1, you will
get another Hadamard matrix;

(c) if you multiply any Hadamard matrix on the left by a signed permutation
matrix (that is, a matrix with exactly one ±1 per row and column), you
will get another Hadamard matrix;

(d) if you multiply any Hadamard matrix on the left by a signed permutation
matrix (that is, a matrix with exactly one ±1 per row and column), you
will get another Hadamard matrix.

Ponderable 14.7.2. Let A,B be two Hadamard matrices of order n. Call
A, B left equivalent if there is an n × n signed permutation matrix P such
that A = PB. Show that this defines an equivalence relation on the set of all
Hadamard matrices of order n.

Ponderable 14.7.3. Let A be a Hadamard matrix of order n. Let Aut(A)
denote the set of all n × n signed permutation matrices Q such that A is left
equivalent to AQ. Show that Aut(A), called the automorphism group of A,
is a group under matrix multiplication.

The following result is yet another indication of the unique role of these Math-
ieu groups in mathematics.

Theorem 14.7.1. (Assmus and Mattson [AM]) Let A be the Hadamard matrix
of order 12 in the above example. Then Aut(A) ∼= M12.

14.7.2 5-transitivity

The following result exemplifies once more the unique role of these Mathieu
groups in group theory.

Theorem 14.7.2. If G is a subgroup of SX for some finite set X and if G acts
5-transitively on X, then exactly one of the following must be true:

(a) G ∼= Sn, for some n > 4,

(b) G ∼= Am, for some m > 6,
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(c) G ∼= M12,

(d) G ∼= M24.

Furthermore, each of the groups in (a)-(d) acts 5-transitively on some finite set.

For a proof of this, see [CS] and [DiMo], Theorem 7.6A.
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Chapter 15

Some solution strategies

I had a feeling once about Mathematics—that I saw it all. Depth
beyond depth was revealed to me—the Byss and Abyss. I saw—as one
might see the transit of Venus or even the Lord Mayor’s Show—a quantity
passing through infinity and changing its sign from plus to minus. I saw
exactly why it happened and why the tergiversation was inevitable but it
was after dinner and I let it go.’

Sir Winston Churchill

It is a person far better than I who can look at the Rubik’s Cube and solve it
behind his back (there are such people, I believe). They remind me of Churchill’s
amusing quote—they can ‘see it all’. Speaking for myself, I need strategies, and
the simpler the better. This chapter includes some strategies for solving the
Rubik’s Cube, the Masterball, the Skewb, and the Pyraminx. This is good
hands-on practice: in the words of Aristotle, ‘What we have to learn to do, we
learn by doing.’ In addition, I discuss some of the mathematical ideas behind
the algorithms used to solve the Rubik’s Cube. My favorite method involves a
little bit of group theory (see §15.2 below).

For unexplained notation used in some of the sections below, see chapter 4. A
great online source of solutions of lots of permutation puzzles is Jaap Scherphuis’
web site, [Sch2].

15.1 A strategy for solving the Rubik’s Cube

I recommend that the person who has never ‘played’ with the Rubik’s Cube
before and wants to follow the strategy indicated below first learn how to ‘play
a move’ without looking at the cube. Why? Think of the cube as a musical
instrument like a guitar. To play music on the guitar, you should know how
to look at the song sheet and play without having to constantly keep looking
at your fingers. The cube is similar: in the beginning, you want to be able to
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make a move such as F 2 · L2 · U2 · (F 2 · L2)3 · U2 · L2 · F 2 without having to
constantly keep looking at your fingers. This will help make you faster and cut
down on frustrating mistakes.

One way to solve it is the corner-edge method. The basic idea is as follows.

• Ignoring orientations, i.e., twists and flips, first solve the corner subcubes.
This means, make sure that the corners will, up to possible twisting, match
the center subcubes.

• Ignoring orientations, i.e., twists and flips, secondly solve the edge sub-
cubes. This means, make sure that the edges will, up to possible flipping,
match the center subcubes.

• Fix the corner orientations, i.e., twists of the corner subcubes. Now all
the corners are completely solved.

• Fix the edge orientations, i.e., flips of the edge subcubes. Now the cube
is solved.

For completeness, I mention another method. The layer method solution
strategy is composed of 3 stages.

• Solve the top face and top edges.

• Solve the middle edges (and bottom edges as best as possible).

• Solve the bottom corners (and bottom edges if necessary).

There is nothing wrong with this method, but we shall not discuss this method
further. (The reader who wishes to become a fast Rubik’s Cube solver should
learn both methods.)

15.1.1 Strategy for solving the cube

Remember, the basic moves are denoted R,L,U,D, F,B. Recall MR denotes
the clockwise (with respect to the Right side) quarter turn of the Middle slice
parallel to the right side.

To ‘solve’ the corners (ignoring orientations) I first describe a simple method,
which I will call ‘fishing’, for achieving this. (Mathematically, this amounts to
performing some carefully choosen commutators.) Hold the cube in front of you.
Suppose you want the lfd corner to be in the urf position without messing up
the rest of the cube too much. First perform R−1 (this is ‘baiting the hook’),
then D (‘setting the hook’), R (‘reeling in the hook’), and finally D−1. This
last move can be omitted since after R−1DR you have moved lfd to urf .

By fishing you can either (a) solve all the corners (if you are lucky), (b) solve
all except two which need to be swapped, or (c) solve all but 3 which need to
be cyclically permuted. To finish, we need a corner swap move in case (b) and
a corner 3-cycle in case (c). In case (b), the move
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U · F · [R,U ]3 · F−1 =
U · F · R · U · R−1 · U−1 · R · U · R−1 · U−1 · R · U · R−1 · U−1 · F−1

swaps the corners (ubr, ufl) and permutes the edges (uf, ul, ub, ur), leaving the
rest of the cube alone. (If the corners you need to ‘fix’ are not in the ubr, ufl
positions, then you first need the following trick. Rotate the cube so that one
of them is in the ubr position, say, then move (‘bait’) the other into the ufl
position, make the move above, then unmove (‘cut bait’).) In case (c), the move

[R · D · R−1, U ] = R · D · R−1 · U · R · D−1 · R−1 · U−1

is a corner 3-cycle (brd, urb, ulb), leaving the rest of the cube alone. (Again, if
the corners you need to ‘fix’ are not in the brd, urb, ulb positions, you will need
the ‘bait/cut bait’ trick.)

Once the corners have been solved, to ‘solve’ the edges (ignoring orientations),
one simply has to use the edge 3-cycle

M2
R · U−1 · M−1

R · U2 · MR · U−1 · M2
R

repeatedly. This move is a 3-cycle on (uf, ul, ur) and leaves the rest of the cube
alone. (This is not quick, and it is not at all obvious that only this move (along
with the ‘bait/cut bait’ trick) works, but it can be proven using that fact that
3-cycles generate the alternating group.)

To twist the corners correctly, you need a corner twisting move. The move

(R−1 · D2 · R · B−1 · U2 · B)2

twists the ufr clockwise and the bld corner counterclockwise, leaving the rest
of the cube alone. This move (along with the ‘bait/cut bait’ trick) will solve all
the corners.

Finally, to flip the edges correctly, use

(MR · U)3 · U · (M−1
R · U)3 · U,

which flips the top edges uf , ub (leaving the rest of the cube alone), and the
move

(MR · U)4,

which flips ub, ul and flips df, db (leaving the rest of the cube alone).

Now practice!

To shorten the notation and emphasize the group-theoretical symmetry of
some of the moves given below, let xy = y−1 · x · y denote conjugation and
[x, y] = x · y · x−1 · y−1 denote the commutator, for x, y group elements.

A table of ‘clean’ edge and corner moves (i.e., moves which perform as adver-
tised and don’t mess up the rest of your cube!) is given below.
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Move Effect

M2
R · U−1 · M−1

R · U2 · MR · U−1 · M2
R edge 3-cycle (uf,ul,ur)

(MR · U)3 · U · (M−1
R · U)3 · U flips the top edges uf, ub

(R2 · U2)3 permutes (uf,ub)(fr,br)
(MR · U)4 flips ub,ul and flips df,db

(R−1 · D2 · R · B−1 · U2 · B)2 ufr+, bld + +
[R,U ]3 = (R · U · R−1 · U−1)3 permutes (ufr, dfr)(ubr, ubl)

F 2 · L2 · U2 · (F 2 · L2)3 · U2 · L2 · F 2 permutes (uf, ub)(ur, ul)
(D2 · R2 · D2 · (F 2 · R2)2 · U)2 permutes (ufl, ubr)(dfr, dbl)

(M2
R · U · M2

R · U2)2 permutes (ufl, ubr)(ufr, ubl)
R · D · R−1 · U · R · D−1 · R−1 · U−1 corner 3-cycle (brd, urb, ulb)

These moves were compiled with help from the books [Si], [B1], and [Sn1].

15.1.2 Catalog of 3 × 3 Rubik’s ‘supercube’ moves

The supercube is the Rubik’s Cube with each center facet marked with a short
line through it and an adjoining edge (i.e., the center facets are oriented).

• (M2
R ·U−1 ·M−1

R ·U2 ·MR ·U−1 ·M2
R)2 is the top edge 3-cycle (uf, ur, ul).

• (R−1 · D2 · R · B−1 · U2 · B)2 twists the ufr corner clockwise and the bld
corner counterclockwise (and does not twist any centers).

• M−1
R · M−1

D · MR · U−1 · M−1
R · MD · MR · U is the center twist u+, r− .

These moves were compiled from [Si] and [Sn1].

15.2 The subgroup method

One approach to solving the Rubik’s Cube using a computer has been to con-
struct a certain sequence of subgroups

Gn = {1} ⊂ Gn−1 ⊂ ... ⊂ G1 ⊂ G0 = G,

where G = 〈R,L, F,B,U,D〉 is the Rubik’s Cube group, which allows the fol-
lowing strategy to be implemented:

• Represent a given position of the Rubik’s Cube by an element g0 ∈ G.

• Determine a complete set of coset representatives of Gk+1/Gk:

Gk+1/Gk = ∪rk

i=1gk+1,iGk+1, some rk > 1,∀0 ≤ k < n

(note mn−1 = 1, gn,1 = 1).

• (Step 1) If g0 ∈ g1,iG1 (where i ∈ {1, ..., n1}) then let g1 = g1,i and
g′1 = g−1

1 g0 (note g′1 ∈ G1).
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15.2. THE SUBGROUP METHOD

• (Inductive step) If g′k ∈ Gk has been defined and if g′k ∈ gk+1,jGk (where
j ∈ {1, ..., n1}), then let gk+1 = gk+1,j and g′k+1 = g−1

k+1g
′
k (note g′k+1 ∈

Gk+1).

• Putting all these together, we obtain 1 = g−1
n g−1

n−1g
−1
n−2...g

−1
1 g0, so

g0 = g1g2...gn−1gn.

The hope is to be able to choose the sequence of subgroups Gi in such a way
that the coset representatives are short, relatively simple moves on the Rubik’s
Cube so that the ‘solution’ g0 = g1g2...gn−1gn is not too long.

15.2.1 Example: The corner-edge method

I now present an example—a fairly unsophisticated one—but you will get the
idea.

Let G1 denote the subgroup which does not permute any corners, let G2 denote
the subgroup which does not permute any corners or edges, let G3 denote the
subgroup which does not permute any corners or edges and does not reorient
any corners, and let G4 = {1}:

G4 = {1} ⊂ G3 ⊂ G2 ⊂ G1 ⊂ G0 = G.

This choice of subgroups roughly corresponds to the corner-edge method de-
scribed in Singmaster [Si].

The idea is simple.

1. Represent a given position of the Rubik’s Cube by an element g0 ∈ G.

2. Let g1 denote the move which moves all the corners into the correct po-
sitions (i.e., permutes them into the solved position and possibly twists
them), so g−1

1 g0 ∈ G1. Let g′1 = g−1
1 g0.

3. Let g2 denote the move which moves all the edges into the correct positions
(i.e., permutes them into the solved position and possibly reorients corners
and edges) and leaves all other pieces unpermuted, so g−1

2 g′1 ∈ G2. Let
g′2 = g−1

2 g′1.

4. Let g3 denote the move which ‘solves’ all the corners (i.e., twists them
all into the correct orientation and may flip some edges) but does not
permute any pieces, so g−1

3 g′2 ∈ G3. Let g′3 = g−1
3 g′2.

5. Let g4 denote the move which ‘solves’ all the edges (i.e., flips them all into
the correct orientation) and leaves all other facets alone.

6. The ‘solution’ is g0 = g1g2g3g4.
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15.2. THE SUBGROUP METHOD

15.2.2 Example: Thistlethwaite’s method

Morwen Thistlethwaite (a mathematician and formerly a colleague of David
Singmaster, now at the University of Tennessee) developed one of the best sub-
group methods for solving the cube [FS]. He takes

G1 = 〈R,L, F,B,U2,D2〉, G2 = 〈R,L, F 2, B2, U2,D2〉,
G3 = 〈R2, L2, F 2, B2, U2,D2〉, G4 = {1}.

G2 is isomorphic to the ‘Rubik’s 3× 3× 2-domino’ group. Its order is (8!)2 · 12,
according to [FS], §7.6. G3 is the ‘squares’ group. Its order is 213 ·34, according
to [FS], §7.6.

Thistlethwaite has shown (using a computer to help with some of the work)
the following facts.

• There is a complete set of coset representatives {g1,i | 1 ≤ i ≤ n1} of
G/G1 such that each g1,i is at most 7 moves long (and n1 = 2048). This
set of moves flips edges only.

• There is a complete set of coset representatives {g2,i | 1 ≤ i ≤ n2} of
G1/G2 such that each g2,i is at most 13 moves long (and n2 = 1082565).
This set of moves twists corners only.

• There is a complete set of coset representatives {g3,i | 1 ≤ i ≤ n3} of
G2/G3 such that each g3,i is at most 15 moves long (and n3 = 29400).
This set of moves puts all the edge subcubes and corner subcubes in the
correct position.

• There is a complete set of coset representatives {g4,i | 1 ≤ i ≤ n4} of
G3/G4 such that each g4,i is at most 17 moves long (and n4 = 663552).

Therefore, the Rubik’s Cube can be solved in at most 7 + 13 + 15 + 17 = 52
moves.

More recent improvements on this method have reduced this number (see
the Wikipedia page [Wi] on “Optimal solutions for Rubik’s Cube” and [Lo] for
details and recent updates).

15.2.3 Example: Kociemba’s method

In the early 1990’s, Herbert Kociemba improved Thistlethwaite’s algorithm,
calling his algorithm the ‘two-phase-algorithm’. He reduced the number of in-
termediate groups to only two:

• G0 = 〈L,R, F,B,U,D〉,

• G1 = 〈L,R, F 2, B2, U2,D2〉,

• G2 = 1.
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15.3. RAINBOW MASTERBALL

As with Thistlethwaite’s algorithm, he would search through the coset space
G0/G1 to take the cube to group G1 (‘phase 1’). Next he searched the optimal
solution for group G1 (‘phase 2’).

In phase 1, the algorithm looks for maneuvers which will transform a scram-
bled cube to G1. That is, the orientations of corners and edges have to be
constrained and the edges of the UD-slice have to be transferred into that slice.
To find this goal state the program uses a search algorithm which is sometimes
called iterative deepening A* (or IDA*). In the case of the cube, this means
that it iterates through all maneuvers of increasing length using lookup tables.

In phase 2 the algorithm restores the cube in the subgroup G1, using only
moves of this subgroup. It restores the permutation of the 8 corners, the per-
mutation of the 8 edges of the U -face and D-face, and the permutation of the 4
UD-slice edges.

In 1995, Michael Reid showed that

• the search in G0/G1 needs at most 12 moves;

• the search in G1 at most 18 moves;

• using these two groups, every position can be solved in at most 29 face
turns, or in 42 quarter turns. (This result was improved by Silviu Radu
[Ra] in 2005 to 40.)

For further details on this algorithm and software, please see Herbert Kociemba’s
page [Koc] or Michael Reid’s page [Re].

15.3 Rainbow Masterball

The solution strategy for the Masterball puzzle is as follows.

Step 1 : The idea is to first get all the middle bands aligned first, so you get the
Masterball corresponding to a matrix of the form

* * * * * * * *
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
* * * * * * * *

Here, ∗ denotes any color. I have labeled the colors on the Masterball as
1, 2, ..., 8 in order of occurrence.

I describe a method which I call ‘fishing’ for achieving this. (Mathemat-
ically, this amounts to performing some carefully choosen commutators.)
Without too much trouble you can always assume that we have one col-
umn aligned. You may need to flip or rotate the ball a little to do this.
Call this aligned column ‘column 1’ and call the color in column 1, ‘color
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15.3. RAINBOW MASTERBALL

1’. We want to get the middle two entries in column 2 aligned. Call the
color in the (2, 3)-entry ‘color 2’.

We want to get color 2 in the (2, 2)-entry. The remaining large color 2 tile
is what we will ‘fish’ for. Hold the ball in front of you in such a way that
column 2 is slightly to the left of center and column 3 is slightly to the
right of center. There are 4 facets in the right upper middle band, 4 facets
in the left upper middle band, 4 facets in the right lower middle band, and
4 facets in the left lower middle band. A flip about the center on the right
half (i.e., perform f2) exchanges these. We may assume that color 2 is on
one of the 4 facets in the right lower middle band. (If it isn’t, you need
to apply f2 first). Now perform r−1

2 · f−1
2 · r2 · f2: first perform r−1

2 (this
is ‘baiting the hook’), then f−1

2 (‘putting the hook in the water’), then
r2 (‘setting the hook’), and finally f2 (‘reeling in the hook’). You may or
may not have color 2 in the (2, 2) place, but the color 1 stripe is intact. If
necessary, try again. After at most 4 tries you’ll be successful.

Step 2 : Repeat this ‘fishing’ strategy to get color 2 in the (1,2) position (using
r−1
1 ·f−1

2 ·r1 ·f2 in place of r−1
2 ·f−1

2 ·r2 ·f2). Now, by turning the ball over
if necessary, repeat this idea to get color 2 in the (4, 2) position. Now you
have two ‘aligned’ stripes on your ball—color 1 in column 1 and color 2 in
column 2. We say, in this case, that columns 1 and 2 have been ‘solved’.

Step 3 : Repeat the analogs of Steps 1 and 2 for columns 3 and 4.

Step 4 : Use the moves in the catalog in Figure 15.3.1 below to finish the puz-
zle. (I believe the only moves needed are the ‘equator2swap36’ and the
‘polar2swap36’ below, along with suitable, cleverly chosen ‘set-up moves’.)

15.3.1 A catalog of Masterball moves

Column moves

We number the columns as 1, . . . , 8. We will use a signed cycle notation to
denote an action of a move on the columns of the Masterball.

Example 15.3.1. A move which switches the 1st and 3rd column but flips both
of them over will be denoted by (1, 3)−.

A move which sends the 4th column to the 6-th column, the 6th column to the
5th column, and switches the 2nd and 3rd column but flips both of them over
will be denoted by (2, 3)− (6, 5, 4). We have used a − as a subscript to indicate
the flip.

Finally, (f1 · f2 · f3 · f4)
2 · r1 · r2 · r3 · r4 swaps the 7,8 columns and leaves all

the others fixed but flipped over.
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15.3. RAINBOW MASTERBALL

Move Cycle
f1 (1, 4) (2, 3)
f2 (2, 5) (3, 4)
f3 (3, 6) (4, 5)
f4 (4, 7) (5, 6)
f5 (5, 8) (6, 7)
f6 (1, 6) (7, 8)
f7 (2, 7) (1, 8)
f8 (3, 8) (1, 2)

f1 · f2 · f1 (1, 2) (3, 5)
f1 · f2 · f1 · f2 (5, 4, 3, 2, 1)

f1 · f3 · f1 (1, 5)(2, 6)
f2 · f3 · f2 (2, 3) (6, 5, 4)
f1 · f4 · f1 (1, 7)(5, 6)
f1 · f5 · f1 (5, 8) (6, 7)
f1 · f8 · f1 (2, 8)(3, 4)
f8 · f1 · f8 (1, 8) (4, 3, 2)
f2 · f1 · f2 (1, 3)(4, 5)
f3 · f1 · f3 (1, 3)(4, 8)
f8 · f1 · f2 (1, 4) (2, 3, 8, 5)

Move Cycle

x = r1 · f4 · r−1
1 · r4 · f4 · r−1

4 (41, 84)(44, 81)
x · r4

1 · x · r4
4 (41, 81)(44, 84)

f1 · r1 · f4 · r−1
1 · r4 · f4 · r−1

4 · f1 (14, 84)(11, 81)
polar2swap36 (11, 14)(31, 61)
polar2swap18 (61, 64)(11, 81)

equator2swap36 (12, 13)(32, 62)
equator2swap18 (62, 63)(12, 82)

Some products of 2-cycles on the facets

The polar2swap and equator2swap were obtained by trying variations of some
moves of Andrew Southern’s on a software implementation of the Masterball
[J1] (see also [JS]).

We number the facets in the ith column, north-to-south, as i1, i2, i3, i4 (where
i = 1, 2, ..., 8).
where

• polar2swap36 is

f1 · r−1
3 · r−1

4 · f1 · f2 · r1 · r−1
4 · f2 · r4

4 · f2 · r−1
1 · r4 · f2 · r4

4 · f1 · r3 · r4 · f1;

• polar2swap18 is

f1 · r−1
3 · r−1

4 · f3 · f4 · r1 · r−1
4 · f4 · r4

4 · f4 · r−1
1 · r4 · f4 · r4

4 · f3 · r3 · r4 · f1;
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• equator2swap36 is

f1 · r−1
4 · r−1

3 · f1 · f2 · r2 · r−1
3 · f2 · r4

3 · f2 · r−1
2 · r3 · f2 · r4

3 · f1 · r4 · r3 · f1;

• and equator2swap18 is

f1 · r−1
4 · r−1

3 · f3 · f4 · r2 · r−1
3 · f4 · r4

3 · f4 · r−1
2 · r3 · f4 · r4

3 · f3 · r4 · r3 · f1.

For further details on the rainbow puzzle, see [JS], [J1].

15.4 The Skewb

15.4.1 Strategy

The goal here is to collect enough moves to support the following solution strat-
egy: fix the centers and solve the corners using ‘clean corner moves’ (i.e., moves
which do not affect the centers).

The basic moves are twists by 120 degrees clockwise about each of the 6 corners
FRU,FLU,BRU,BLU,BDR,BDL,DFR,DFL.

15.4.2 A catalog of Skewb moves

The descriptions below were discovered with the help of a simulation of the
Skewb written for MAPLE [J2].

1. FRU · BLU · FRU−1 is order 3.

2. [FRU · FLU ]3 twists 6 corners clockwise by 120 degrees. The 2 corners
not twisted are those opposite the FRU , FLU corners: the BDR, BDL
corners. The centers are all fixed. (FRU ·FLU)3 = (FLU ·FRU)3 rotates
all the corners except for the bd corners. It does not permute any facets.

3. The move [FRU ·BLU ]5 fixes all the centers and the 2 ‘opposite’ corners:
DFL,BDR. It twists the 3 corners FLU , BLU , and FRU . On the
remaining 3 corners, it acts as the permutation (DFR,BRU,BDL).

4. FRU = BDL. (Actually, they are equal only up to a rotation of the entire
cube.) In general, a corner move is equal to the opposite corner move up
to a rotation of the entire cube.

5. (FRU ·FLU)3 ·(BDL·BDR)6 rotates all the corners except for the bu and
the df corners. The uf corners are rotated clockwise and the bd corners
counterclockwise. It does not permute any facets. (FRU ·FLU)6 · (BDL ·
BDR)3 is the same move, but rotates in the opposite direction.

6. (FRU · FLU)6 · (BDL · BDR)6 rotates the corners as follows:

• the uf corners counterclockwise,
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• the db corners counterclockwise,

• the df corners clockwise,

• the ub corners clockwise.

It does not permute any facets.

7. Let bottomspin = (FRU · FLU)6 · (BDL · BDR)3 · (DFR · DFL)3. This
move rotates the 4 bottom corners (the df corners clockwise and the db
counterclockwise). It does not permute any facets.

8. (BRU ·FLU)9 is a 5-cycle on the center facets (F,R,B,U, L). It fixes the
bottom and does not affect any corners. (BLU · FRU)9 is a 5-cycle on
the center facets. It fixes the bottom and does not affect any corners.

9. (BLU · FRU)9 · (BRU · FLU)9 is a product of 2 transpositions on the
center facets, swapping front/back and up/right. It fixes the bottom and
does not affect any corners.

10. Let U denote the clockwise (with respect to the up face) rotation of entire
cube by 90 degrees. Then bottomspin · U · bottomspin rotates but does
not swap 2 corners (the DFR and BDL) and does not affect any other
corners or faces.

15.5 The Pyraminx

Assume that the tetrahedron is lying on a flat surface in front of you, with
the triangle base pointing away from you. The corners are denoted L (left), R
(right), U (up), and B (back).

Basic moves: Let

• L denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the left corner,

• R denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the right corner,

• U denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the up corner,

• B denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the back corner.

First, get the ‘center’ facets solved, then twist the corner tips to solve them
and the center facets. Finally, to solve the edge facets, use the following moves
(given in [EK]):

• [R,U−1] is a 3-cycle of edge pieces on the URL face,

• [R,U−1] ∗ [R−1, L] is a flip of two edges (UR edge and UL edge) on the
URL face.
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15.6 The Megaminx

The strategy here is the same as for the 3 × 3 × 3 Rubik’s Cube.

• Place the corners correctly first (ignoring correct corner orientation).

• Place the edges correctly first (ignoring correct edge orientation).

• Twist the corners if necesary.

• Flip the edges if necessary.

Moves useful for carrying out these steps are included in the following catalog.
First, some notation. We label the faces f1, f2, ..., f6 on top and label the

bottom faces f7, f8, ..., f12 as in chapter 4. The same notation is used to indicate
the move of the Megaminx given by rotating that face of the Megaminx by 72
degrees clockwise.

Catalog of moves:

• f−1
1 ∗f−1

2 ∗f1 ∗f2 ∗f−1
1 ∗f−1

2 ∗f1 ∗f2 ∗f−1
1 ∗f−1

2 ∗f1 ∗f2 = [f1, f2]
3 - swaps

the f1.f3 and the f2.f6 corners: (f1.f2.f3, f1.f3.f4)(f1.f2.f6, f2.f6.f7)

• m = f3 ∗f−1
6 ∗f4 ∗f−1

2 ∗f5 ∗f−1
3 ∗f6 ∗f−1

4 ∗f2 ∗f−1
5 ; f6 ∗f1 ∗m6 ∗f−1

1 ∗f−1
6 -

swaps 2 pairs of corners on the f1 face: (f1.f2.f6, f1.f3.f4)(f1.f2.f3, f1.f5.f6)

• f1 ∗ f6 ∗ f−1
1 ∗ f2 ∗ f1 ∗ f−1

6 ∗ f−1
1 ∗ f−1

2 3-cycle on corners and 3-cycle on
edges (f1.f2.f6, f11.f7.f6, f2.f6.f7)(f1.f2, f6.f7, f2.f6)

• M2 = f6 ∗ f2 ∗ f1 ∗ f−1
2 ∗ f−1

1 ∗ f−1
6 ∗ f−1

3 ∗ f−1
1 ∗ f−1

2 ∗ f1 ∗ f2 ∗ f3 (Mark
Longridge) - edge 3-cycle (f1.f2, f2.f3, f2.f6)

• (f−1
6 ∗ f−1

2 ∗ f−1
3 ∗ f6 ∗ f2 ∗ f3)

6 - triple corner twister, ccw twists of
f1.f2.f3, f1.f2.f6, f1.f5.f6

• M3 = f−2
3 ∗ f2

6 ∗ f2 ∗ f−1
1 ∗ f6 ∗ f1 ∗ f2

3 ∗ f2
6 ∗ f1 ∗ f−2

6 ∗ f−2
3 ∗ f−1

1 ∗ f−1
6 ∗

f1 ∗ f−1
2 ∗ f−2

6 ∗ f2
3 ∗ f−1

1 (Mark Longridge) - edge 2-flip of f1.f2, f1.f6

• M3a = f−1
6 ∗f−1

2 ∗f1∗f−1
3 ∗f−1

1 ∗f3∗f2∗f6∗f3∗f2∗f−1
1 ∗f6∗f1∗f−1

6 ∗f−1
2 ∗f−1

3

(Mark Longridge) - edge 2-flip of f1.f2, f1.f3

For further details, see the Internet sites [Sch2], [J2], or [Lo].
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Chapter 16

Coda: Questions and other
directions

[Lefschetz and Einstein] had a running debate for many years. Lef-
schetz insisted that there was difficult mathematics. Einstein said that
there was no difficult mathematics, only stupid mathematicians. I think
that the history of mathematics is on the side of Einstein.

Richard Bellman, Eye of the hurricane, 1984

In the spirit of Galois’ quote in chapter 7, this book will conclude with some of
the (many) things which I don’t know related to the mathematics of the Rubik’s
Cube-like puzzles. Some of these have already appeared previously in the book.

Let G be the group of all legal moves of a permutation puzzle such as the
Rubik’s Cube, Skewb, Pyraminx, Megaminx, or Masterball.

1. (God’s algorithm, Singmaster) Find the diameter of the Cayley graph of
G.

Is it 26 in the quarter-turn metric (i.e., relative to the usual genera-
tors R,L,U,D, F,B with their inverses)? Is Mike Reid’s move ‘superflip
composed with the four-spot’ a longest move of the Rubik’s Cube in the
quarter-turn metric?

Is it 20 in the face-turn metric (i.e., relative to the generators R, R2, L,
L2, U , U2, D, D2, F , F 2, B, B2 with their inverses)? Is the ‘superflip’ a
longest move of the Rubik’s Cube in the face-turn metric?

In either metric, how many moves are there of maximal distance from
start?

2. (Schwenk) Is the Cayley graph of G a Hamiltonian graph?

3. With the exception of the vertex cross group of the Pyraminx, are all the
cross groups simple?
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4. (Dyson) What are the cross groups of the 4-dimensional regular polyhe-
dra?

5. Are all the cross groups of the 4-dimensional regular polyhedra alternating
groups?

6. Let H be a group in the table in §9.4. If H is a subgroup of G, find explicit
puzzle moves which satisfy the relations given for H in the table.

7. (Singmaster) Find the number of elements of each order in G.

8. Compute the Poincaré polynomial of G with respect to the generators
{R,R−1, L, L−1, U, U−1,D,D−1, F, F−1, B,B−1}.

9. Compute the generating polynomial of G.

10. Find the ‘simplest’ presentation of G.

11. If G is the Rubik’s Cube group generated by {U,D,R,L, F,B}, what is
the average length of a word in G?

There are other group-theoretical questions related to puzzles and games
which we have not touched on. The reader interested in pursuing these no-
tions further is referred (for example) to Winning ways [BCG], Conway and
Sloane’s book [CS], their paper on lexicographic codes [CS2], their paper on
Gray codes [CSW], M. Gardner [Gar2], Luers’ thesis [Lu], Stiller’s thesis [Sti],
Elkies’ paper on the combinatorical game theory aspects of chess [El], and Eriks-
son’s paper [E].
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Hölder, O., 175, 181
Hadamard

conjecture, 281
determinant bound, 281
Jacques, 281
matrix, 281

Hamilton, W., 84, 150
Hamiltonian circuit, 150
Hockeypuck puzzle, 63
Hoey, Dan, 214
Hofstadter, Douglas, 269
Holmes, Sherlock, 7
homomorphism, 168
homotopy group, 152

of the 15 Puzzle, 152
homotopy group of Square 1, 263

icosahedral group, 156
IDA, 291
identity, 89
identity matrix, 23
illegal Rubik’s Cube group, 196
illegal Square 1 group, 264
image, 168
index, 97
information space, 274
injective, 18
inner automorphism, 175
inverse, 89
inverse function, 20
inverse matrix, 24
irreducible polynomial, 239
ISBN code, 278
isometry, 157
isomorphism, 170
iterative deepening A*, 291

Jordan, C., 104, 170

kernel, 178
Klein 4-group, 209, 249
Kociemba, Herbert, 290

Lagrange’s theorem, 118
Langlands, R., 251
Laplace cofactor expansion, 25
large, 65
latitudinal line, 65
laws of negation, 5, 10
layer method, 286
left action, 111
left coset, 115

307



INDEX

left equivalent, 283
left multiplication, 112
length, 39, 225
length (of word), 201
length, code, 274
Lights Out, 123, 124, 126
Lights Out, Cube, 127
Lights Out, Deluxe, 126
Lights Out, Keychain, 126, 141
Lights Out, solved, 130
linear fractional transformation, 241
logical argument, 5
longitudinal line, 65
Longridge, M., 191
Longridge, Mark, 296
lower triangular entries, 23
Loyd, S., 62
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Poincaré polynomial, 201
polar, 65
polarization identity, 157
predicate, 6
preimage, 15
presentation, 207
projection (of wreath product), 195
projective linear group, 242
projective plane, 241
projective special linear group, 242
proof, 5
Pyraminx, 68
Pyraminx group, 258

quarter turn metric, 148
quaternion group, 84, 174, 209, 214
quaternions, 85
quotient group, 181

Radu, Silviu, 291
Ramanujan, S., 176
rank, 135
reduced matrix, 135
reducible polynomial, 239
reductio ad absurdum, 31
reference markings, 186
Reid’s move, 100
Reid, M., 100, 149, 191
Reid, Michael, 291
relation, 27
relations, 207
right action, 110
right coset, 115
right multiplication, 112
robots from Pluto, 207
roots of f , 15
rotations, 159
row reduced echelon form, 135
Rubicon, 280, 281
Rubik’s Clock, 124
Rubik’s Cube, 128
Rubik’s Cube group, 92

enlarged, 221
illegal, 221

Ruffini, Paolo, 180
Russell’s paradox, 8
Russell, B., 5

scalar, 17
Schönert, Martin, 207, 256
Schwenk, A., 150
second fundamental theorem of cube

theory, 225
second isomorphism theorem, 183
semi-direct product, 192, 223
set, 7
Shakespeare, 149
sign function, 39
simple group, 182
singleton, 7
Singmaster magic grip, 101
Singmaster notation, 8, 48, 71
Singmaster, D., 103, 107
Singmaster, David, 297
singular matrix, 25
Skewb, 78, 253
slice group, 187, 191
sliced squared group, 99, 150
small, 65
solvable, 104
solvable word problem, 204
solve, 66
spanning set, 133
special orthogonal group, 159
Square 1 puzzle, 263
square matrix, 22
squares subgroup, 234
stabilizer, 114
statement, 1
states, 127
Stedman, F., 57
Steiner system, 279
Steinhaus, Hugo, 54, 56
strategy, cube, 286
strategy, Masterball, 291
strategy, Pyraminx, 295
strategy, Skewb, 294
subgroup, 96
subset, 7
super Skewb, 254

309



INDEX

supercube, 288
superflip, 99
superflip game, 75
superflip with four-spot, 100
supernova, 78
support, 275
surjective, 18
swap function, 39
swapping number, 39
Sylvester, J., 20
symmetric group, 47, 88
symmetry group, 156
symmetry group of cube, 189
symmetry group of the square, 86
symmetry, cube, 160
symmetry, dodecahedron, 161
symmetry, icosahedron, 163
syntheme, 163

ternary code, 274
tetrahedral group, 156
tetrahedral symmetry, 159
tetrahedron, 68
third isomorphism theorem, 183
Thistlethwaite, Morwen, 290
toggle matrix, 129, 137
transformation, 13
transition function, 127
transitive, 111
tree, 203
two generators of G, 208
two-faces group, 240

universal quantifier, 4
upper triangular entries, 23
upper triangular matrix, 23

variable, 6
vector, 16
vector space, 16
Venn, J., 9
vertex, 143
vertex degree, 155
von Dyck, W., 201

weight, 275

Weil, André, 1
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